Skip to content

Latest commit

 

History

History
74 lines (44 loc) · 4.04 KB

SpectralModels.md

File metadata and controls

74 lines (44 loc) · 4.04 KB

Spectral models in VTSCat

Spectral model description is in most cases identical to the gammapy modeling (which is used for plotting of most of the spectra in VTSCat).

Gamma-ray spectral models

Power law

type: pl

f_0 \cdot \left(\frac{E}{E_{ref}}\right)^{-\gamma}

  • f0: normalisation factor ( = norm in yaml files)
  • gamma: spectral index ( = index in yaml files)
  • Eref: normalisation energy ( = e_ref in yaml files)

Power law (with integrated normalisation factor)

type: pl2

\frac{dN}{dE} = F_0 \cdot \left(\frac{E}{E_0}\right)^{-\gamma} \cdot \frac{\gamma+1}{E_{max}^{-\gamma+1}-E_{min}^{-\gamma+1}}

  • F0: integral flux in the inverval Emin to Emax ( = flux in yaml files)

  • gamma: spectral index ( = index in yaml files)

  • Emin, Emax: energy interval for integral flux calculation

Power law with exponential cutoff

type: ecpl

\frac{dN}{dE} = f_0 \cdot \left(\frac{E}{E_{ref}}\right)^{-\gamma}\cdot \exp \left(-\frac{E}{E_{cut}}\right)

  • f0: normalisation factor ( = norm in yaml files)
  • gamma: spectral index ( = index in yaml files)
  • Eref: normalisation energy ( = e_ref in yaml files)
  • Ecut: cutoff energy ( = e_cut in yaml files)

Log-parabola power law

type: lppl

\frac{dN}{dE} = f_0 \cdot \left(\frac{E}{E_{ref}}\right)^{-\alpha - \beta \log \frac{E}{E_{ref}}}

  • f0: normalisation factor ( = norm in yaml files)
  • alpha: spectral index ( = alpha in yaml files)
  • beta: pre-factor beta ( = beta in yaml files)
  • Eref: break energy ( = e_ref in yaml files)

Cosmic-ray spectral models

Power law

type: plCR

\frac{dN}{dE dA dt d\Omega } = f_0 \cdot \left(\frac{E}{E_{ref}}\right)^{-\gamma}

  • f0: normalisation factor ( = norm in yaml files)
  • gamma: spectral index ( = index in yaml files)
  • Eref: break energy ( = e_ref in yaml files)

Broken power law

type: brokenplCR

\frac{dN}{dE dA dt d\Omega } = f_0 \cdot \left(\frac{E}{E_b}\right)^{-\gamma_1} \ \ \mathrm{if} E \leq E_b

\frac{dN}{dE dA dt d\Omega } = f_0 \cdot \left(\frac{E}{E_b}\right)^{-\gamma_2} \ \ \mathrm{if} E > E_b

  • f0: normalisation factor ( = norm in yaml files)
  • gamma_1: spectral index below break energy Eb ( = index_1 in yaml files)
  • gamma_2: spectral index above break energy Eb ( = index_2 in yaml files)
  • Eb: break energy ( = e_break in yaml files)