-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain_individual.py
320 lines (279 loc) · 14.6 KB
/
main_individual.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
from __future__ import print_function
import sys
import os
import shutil
import time
import argparse
import logging
import hashlib
import copy
import torch
import torch.nn.functional as F
import torch.optim as optim
import torch.backends.cudnn as cudnn
import sparselearning
from sparselearning.core import Masking, CosineDecay, LinearDecay
from sparselearning.models import AlexNet, VGG16, LeNet_300_100, LeNet_5_Caffe, WideResNet, MLP_CIFAR10
from sparselearning.utils import get_mnist_dataloaders, get_cifar10_dataloaders, get_cifar100_dataloaders
import torchvision
import torchvision.transforms as transforms
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
cudnn.benchmark = True
cudnn.deterministic = True
if not os.path.exists('./models'): os.mkdir('./models')
if not os.path.exists('./logs'): os.mkdir('./logs')
logger = None
models = {}
models['MLPCIFAR10'] = (MLP_CIFAR10,[])
models['lenet5'] = (LeNet_5_Caffe,[])
models['lenet300-100'] = (LeNet_300_100,[])
models['alexnet-s'] = (AlexNet, ['s', 10])
models['alexnet-b'] = (AlexNet, ['b', 10])
models['vgg-c'] = (VGG16, ['C', 10])
models['vgg-d'] = (VGG16, ['D', 10])
models['vgg-like'] = (VGG16, ['like', 10])
models['wrn-28-2'] = (WideResNet, [28, 2, 10, 0.0])
models['wrn-28-10'] = (WideResNet, [28, 10, 10, 0.0])
models['wrn-22-8'] = (WideResNet, [22, 8, 10, 0.0])
models['wrn-16-8'] = (WideResNet, [16, 8, 10, 0.0])
models['wrn-16-10'] = (WideResNet, [16, 10, 10, 0.0])
def setup_logger(args):
global logger
if logger == None:
logger = logging.getLogger()
else: # wish there was a logger.close()
for handler in logger.handlers[:]: # make a copy of the list
logger.removeHandler(handler)
args_copy = copy.deepcopy(args)
# copy to get a clean hash
# use the same log file hash if iterations or verbose are different
# these flags do not change the results
args_copy.iters = 1
args_copy.verbose = False
args_copy.log_interval = 1
args_copy.seed = 0
log_path = './logs/{0}_{1}_{2}.log'.format(args.model, args.density, hashlib.md5(str(args_copy).encode('utf-8')).hexdigest()[:8])
logger.setLevel(logging.INFO)
formatter = logging.Formatter(fmt='%(asctime)s: %(message)s', datefmt='%H:%M:%S')
fh = logging.FileHandler(log_path)
fh.setFormatter(formatter)
logger.addHandler(fh)
def print_and_log(msg):
global logger
print(msg)
logger.info(msg)
ite_step = 0
def train(args, model, device, train_loader, optimizer, epoch, mask=None):
model.train()
train_loss = 0
correct = 0
n = 0
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
if args.fp16: data = data.half()
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
train_loss += loss.item()
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
n += target.shape[0]
if args.fp16:
optimizer.backward(loss)
else:
loss.backward()
if mask is not None: mask.step()
else: optimizer.step()
if batch_idx % args.log_interval == 0:
print_and_log('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f} Accuracy: {}/{} ({:.3f}% '.format(
epoch, batch_idx * len(data), len(train_loader)*args.batch_size,
100. * batch_idx / len(train_loader), loss.item(), correct, n, 100. * correct / float(n)))
# training summary
print_and_log('\n{}: Average loss: {:.4f}, Accuracy: {}/{} ({:.3f}%)\n'.format(
'Training summary' ,
train_loss/batch_idx, correct, n, 100. * correct / float(n)))
def evaluate(args, model, device, test_loader, is_test_set=False):
model.eval()
test_loss = 0
correct = 0
n = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
if args.fp16: data = data.half()
# model.t = target
output = model(data)
test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
n += target.shape[0]
test_loss /= float(n)
print_and_log('\n{}: Average loss: {:.4f}, Accuracy: {}/{} ({:.3f}%)\n'.format(
'Test evaluation' if is_test_set else 'Evaluation',
test_loss, correct, n, 100. * correct / float(n)))
return correct / float(n)
def main():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=128, metavar='N',
help='input batch size for training (default: 100)')
parser.add_argument('--batch-size-jac', type=int, default=200, metavar='N',
help='batch size for jac (default: 1000)')
parser.add_argument('--test-batch-size', type=int, default=128, metavar='N',
help='input batch size for testing (default: 100)')
parser.add_argument('--multiplier', type=int, default=1, metavar='N',
help='extend training time by multiplier times')
parser.add_argument('--epochs', type=int, default=250, metavar='N',
help='number of epochs to train (default: 100)')
parser.add_argument('--lr', type=float, default=0.1, metavar='LR',
help='learning rate (default: 0.1)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=17, metavar='S', help='random seed (default: 17)')
parser.add_argument('--log-interval', type=int, default=100, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--optimizer', type=str, default='sgd', help='The optimizer to use. Default: sgd. Options: sgd, adam.')
randomhash = ''.join(str(time.time()).split('.'))
parser.add_argument('--save', type=str, default=randomhash + '.pt',
help='path to save the final model')
parser.add_argument('--data', type=str, default='mnist')
parser.add_argument('--decay_frequency', type=int, default=25000)
parser.add_argument('--l1', type=float, default=0.0)
parser.add_argument('--fp16', action='store_true', help='Run in fp16 mode.')
parser.add_argument('--valid_split', type=float, default=0.1)
parser.add_argument('--resume', type=str)
parser.add_argument('--start-epoch', type=int, default=1)
parser.add_argument('--model', type=str, default='')
parser.add_argument('--l2', type=float, default=5e-4)
parser.add_argument('--iters', type=int, default=1, help='How many times the model should be run after each other. Default=1')
parser.add_argument('--save-features', action='store_true', help='Resumes a saved model and saves its feature data to disk for plotting.')
parser.add_argument('--bench', action='store_true', help='Enables the benchmarking of layers and estimates sparse speedups')
parser.add_argument('--max-threads', type=int, default=10, help='How many threads to use for data loading.')
parser.add_argument('--decay-schedule', type=str, default='cosine', help='The decay schedule for the pruning rate. Default: cosine. Choose from: cosine, linear.')
parser.add_argument('--nolr_scheduler', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--no_rewire_extend', action='store_true', default=False,
help='if ture, only do rewire for 250 epoochs')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--world-size', default=-1, type=int,
help='number of nodes for distributed training')
parser.add_argument('--mgpu', action='store_true', help='Enable snip initialization. Default: True.')
sparselearning.core.add_sparse_args(parser)
args = parser.parse_args()
setup_logger(args)
print_and_log(args)
if args.fp16:
try:
from apex.fp16_utils import FP16_Optimizer
except:
print('WARNING: apex not installed, ignoring --fp16 option')
args.fp16 = False
use_cuda = not args.no_cuda and torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
print_and_log('\n\n')
print_and_log('='*80)
torch.manual_seed(args.seed)
for i in range(args.iters):
print_and_log("\nIteration start: {0}/{1}\n".format(i+1, args.iters))
if args.data == 'mnist':
train_loader, valid_loader, test_loader = get_mnist_dataloaders(args, validation_split=args.valid_split)
elif args.data == 'cifar10':
train_loader, valid_loader, test_loader = get_cifar10_dataloaders(args, args.valid_split,
max_threads=args.max_threads)
elif args.data == 'cifar100':
train_loader, valid_loader, test_loader = get_cifar100_dataloaders(args, args.valid_split,
max_threads=args.max_threads)
outputs = 100
if args.model not in models:
print('You need to select an existing model via the --model argument. Available models include: ')
for key in models:
print('\t{0}'.format(key))
raise Exception('You need to select a model')
else:
if args.model == 'ResNet18':
model = ResNet18(c=10).to(device)
else:
cls, cls_args = models[args.model]
if args.data == 'cifar100':
cls_args[2] = 100
model = cls(*(cls_args + [args.save_features, args.bench])).to(device)
print_and_log(model)
print_and_log('=' * 60)
print_and_log(args.model)
print_and_log('=' * 60)
print_and_log('=' * 60)
print_and_log('Prune mode: {0}'.format(args.death))
print_and_log('Growth mode: {0}'.format(args.growth))
print_and_log('Redistribution mode: {0}'.format(args.redistribution))
print_and_log('=' * 60)
if args.mgpu:
print('Using multi gpus')
model = torch.nn.DataParallel(model).to(device)
optimizer = None
if args.optimizer == 'sgd':
optimizer = optim.SGD(model.parameters(),lr=args.lr,momentum=args.momentum,weight_decay=args.l2)
elif args.optimizer == 'adam':
optimizer = optim.Adam(model.parameters(),lr=args.lr,weight_decay=args.l2)
else:
print('Unknown optimizer: {0}'.format(args.optimizer))
raise Exception('Unknown optimizer.')
if args.nolr_scheduler:
lr_scheduler = None
else:
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer,
milestones=[int(args.epochs/2), int(args.epochs*3/4)], last_epoch=-1)
if args.resume:
if os.path.isfile(args.resume):
print_and_log("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print_and_log("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
print_and_log('Testing...')
evaluate(args, model, device, test_loader)
model.feats = []
model.densities = []
plot_class_feature_histograms(args, model, device, train_loader, optimizer)
else:
print_and_log("=> no checkpoint found at '{}'".format(args.resume))
if args.fp16:
print('FP16')
optimizer = FP16_Optimizer(optimizer,
static_loss_scale = None,
dynamic_loss_scale = True,
dynamic_loss_args = {'init_scale': 2 ** 16})
model = model.half()
mask = None
if args.sparse:
decay = CosineDecay(args.death_rate, len(train_loader)*(args.epochs))
mask = Masking(optimizer,death_rate=args.death_rate, death_mode=args.death, death_rate_decay=decay, growth_mode=args.growth,
redistribution_mode=args.redistribution, args=args)
mask.add_module(model, sparse_init=args.sparse_init, density=args.density)
best_acc = 0.0
save_dir = 'results' + '/' + str(args.model) + '/' + str(args.data) + '/individual/' + 'density_' + str(
args.density) + '/' + 'seed=%d' % (args.seed)
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
for epoch in range(1, args.epochs*args.multiplier + 1):
t0 = time.time()
train(args, model, device, train_loader, optimizer, epoch, mask)
lr_scheduler.step()
if args.valid_split > 0.0:
val_acc = evaluate(args, model, device, test_loader)
if val_acc > best_acc:
print('Saving model')
best_acc = val_acc
torch.save(model.state_dict(), save_dir + '/' +str(args.seed)+ ".pt")
print_and_log('Current learning rate: {0}. Time taken for epoch: {1:.2f} seconds.\n'.format(optimizer.param_groups[0]['lr'], time.time() - t0))
print('Testing model')
model.load_state_dict(torch.load(args.save))
evaluate(args, model, device, test_loader, is_test_set=True)
print_and_log("\nIteration end: {0}/{1}\n".format(i+1, args.iters))
if __name__ == '__main__':
main()