-
Notifications
You must be signed in to change notification settings - Fork 22
/
engine_kd.py
315 lines (271 loc) · 13 KB
/
engine_kd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import math
from typing import Iterable, Optional
import torch
from timm.data import Mixup
from timm.utils import accuracy, ModelEma
import torch.nn.functional as F
import utils
import torch.nn as nn
class NKDLoss(nn.Module):
"""PyTorch version of NKD: `Rethinking Knowledge Distillation via Cross-Entropy` """
def __init__(self,
temp=1.0,
alpha=1.,
):
super(NKDLoss, self).__init__()
self.temp = temp
self.alpha = alpha
def forward(self, logit_s, logit_t, gt_label):
if len(gt_label.size()) > 1:
label = torch.max(gt_label, dim=1, keepdim=True)[1]
else:
label = gt_label.view(len(gt_label), 1)
# N*class
y_i = F.softmax(logit_s, dim=1)
t_i = F.softmax(logit_t, dim=1)
# N*1
y_t = torch.gather(y_i, 1, label)
w_t = torch.gather(t_i, 1, label).detach()
mask = torch.zeros_like(logit_s).scatter_(1, label, 1).bool()
logit_s = logit_s - 1000 * mask
logit_t = logit_t - 1000 * mask
# N*class
T_i = F.softmax(logit_t/self.temp, dim=1)
S_i = F.softmax(logit_s/self.temp, dim=1)
# N*1
T_t = torch.gather(T_i, 1, label)
S_t = torch.gather(S_i, 1, label)
# N*class
np_t = T_i/(1-T_t)
np_s = S_i/(1-S_t)
np_t[T_i==T_t] = 0
np_s[T_i==T_t] = 1
soft_loss = - (w_t * torch.log(y_t)).mean()
distributed_loss = (np_t * torch.log(np_s)).sum(dim=1).mean()
distributed_loss = - self.alpha * (self.temp**2) * distributed_loss
return soft_loss + distributed_loss
def loss_kd(preds, labels, teacher_preds,T,hard=False,alpha=0.1):
#T = 1
if hard:
y_t=teacher_preds.max(1)[-1]
loss=F.cross_entropy(preds, labels) * 0.5+F.cross_entropy(preds, y_t) * 0.5
else:
#alpha = 0.1
loss = F.kl_div(F.log_softmax(preds / T, dim=1), F.softmax(teacher_preds / T, dim=1),
reduction='batchmean') * T * T * alpha + F.cross_entropy(preds, labels) * (1. - alpha)
return loss
swin_kernel_dict={0:7,1:7,2:14,3:28}
slak_kernel_dict={0:7,1:14,2:28,3:56}
vit_kernel_dict={0:14}
vit_dict={3:768}
convnext_kernel_dict={0:7,1:14,2:28,3:56}
swin_dict={0:192,1:384,2:768,3:768}
convnext_dict={0:96,1:192,2:384,3:768}
resnet_dict={0:256,1:512,2:1024,3:2048}
slak_dict={0:124,1:249,2:499,3:998}
def train_one_epoch(model: torch.nn.Module,model_convxt: torch.nn.Module, criterion: torch.nn.Module,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, loss_scaler, max_norm: float = 0,
model_ema: Optional[ModelEma] = None, mixup_fn: Optional[Mixup] = None, log_writer=None,
wandb_logger=None, start_steps=None, lr_schedule_values=None, wd_schedule_values=None,
num_training_steps_per_epoch=None, update_freq=None, use_amp=False, mask=None,T=1,hard=False,args=None,MGDloss=None):
model.eval()
nkdloss=NKDLoss()
model_convxt.train(True)
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
metric_logger.add_meter('min_lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 200
if args.FDLoss_type=='smoothL1':
loss_feat = nn.SmoothL1Loss(beta=2.0)
elif args.FDLoss_type=='MSE':
loss_feat = nn.MSELoss()
else:
assert False
optimizer.zero_grad()
Lnorms=[]
if args.target_Lnorm:
for i in range(args.feature_n):
j=3-i
if args.model=='swin':
Lnorms.append(nn.LayerNorm((swin_dict[j],swin_kernel_dict[i],swin_kernel_dict[i]), elementwise_affine=False))
elif args.model=='convnext':
Lnorms.append(nn.LayerNorm((convnext_dict[j],convnext_kernel_dict[i],convnext_kernel_dict[i]), elementwise_affine=False))
elif args.model=='SLaK_tiny':
Lnorms.append(nn.LayerNorm((slak_dict[j],slak_kernel_dict[i],slak_kernel_dict[i]), elementwise_affine=False))
elif args.model=='vit':
Lnorms.append(nn.LayerNorm((vit_dict[j],vit_kernel_dict[i],vit_kernel_dict[i]), elementwise_affine=False))
else:
assert False
for data_iter_step, (samples, targets) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
step = data_iter_step // update_freq
if step >= num_training_steps_per_epoch:
continue
it = start_steps + step # global training iteration
# Update LR & WD for the first acc
if lr_schedule_values is not None or wd_schedule_values is not None and data_iter_step % update_freq == 0:
for i, param_group in enumerate(optimizer.param_groups):
if lr_schedule_values is not None:
param_group["lr"] = lr_schedule_values[it] * param_group["lr_scale"]
if wd_schedule_values is not None and param_group["weight_decay"] > 0:
param_group["weight_decay"] = wd_schedule_values[it]
samples = samples.to(device, non_blocking=True)
targets = targets.to(device, non_blocking=True)
if mixup_fn is not None:
samples, targets = mixup_fn(samples, targets)
if use_amp:
with torch.cuda.amp.autocast():
if args.distill_type!="None":
output_t = model(samples)
output=model_convxt(samples)
#loss = criterion(output, targets)
if 'FD' in args.distill_type :
loss=criterion(output, targets)
if args.model=='swin':
target=model.module.feature.detach()
target=target.reshape(target.size(0),7,7, target.size(2))
target=target.transpose(2, 3).transpose(1, 2)
loss_dis=loss_feat(model_convxt.module.project_swin(),target)
elif args.model=='vit' or args.model=='vitdeit':
target=model.module.feature.detach()
target=target.reshape(target.size(0),14,14, target.size(2))
target=target.transpose(2, 3).transpose(1, 2)
loss_dis=loss_feat(model_convxt.module.project_vit(),target)
elif args.model=='SLaK_tiny':
target=model.module.feature.detach()
loss_dis=loss_feat(model_convxt.module.project_slak(),target)
else:
loss_dis=loss_feat(model_convxt.module.feature,model.module.feature.detach())
if 'NKD' in args.distill_type:
loss=nkdloss(output,output_t,targets)+loss_dis*args.lr_fd
else:
if 'KD' in args.distill_type:
loss=loss_kd(output,targets,output_t,T,hard=hard,alpha=args.alpha)+loss_dis*args.lr_fd
else:
loss=loss+loss_dis*args.lr_fd
elif args.distill_type=='KD':
loss=loss_kd(output,targets,output_t,T,hard=hard,alpha=args.alpha)
elif args.distill_type=='NKD':
loss=nkdloss(output,output_t,targets)
elif args.distill_type=='None':
loss=criterion(output, targets)
else:
assert False
else: # full precision
if args.distill_type!="None":
output_t = model(samples)
output=model_convxt(samples)
if args.distill_type=='KD':
loss=loss_kd(output,targets,output_t,T,hard=hard,alpha=args.alpha)
elif args.distill_type=='NKD':
loss=nkdloss(output,output_t,targets)
elif args.distill_type=='None':
loss=criterion(output,targets)
else:
assert False
loss_value = loss.item()
if not math.isfinite(loss_value): # this could trigger if using AMP
print("Loss is {}, stopping training".format(loss_value))
assert math.isfinite(loss_value)
if use_amp:
# this attribute is added by timm on one optimizer (adahessian)
is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order
loss /= update_freq
grad_norm = loss_scaler(loss, optimizer, clip_grad=max_norm,
parameters=model_convxt.parameters(), create_graph=is_second_order,
update_grad=(data_iter_step + 1) % update_freq == 0)
if (data_iter_step + 1) % update_freq == 0:
optimizer.zero_grad()
if model_ema is not None:
model_ema.update(model_convxt, mask)
else: # full precision
loss /= update_freq
loss.backward()
if (data_iter_step + 1) % update_freq == 0:
if mask:
mask.step()
else:
optimizer.step()
optimizer.zero_grad()
if model_ema is not None:
model_ema.update(model_convxt, mask)
torch.cuda.synchronize()
if mixup_fn is None:
class_acc = (output.max(-1)[-1] == targets).float().mean()
else:
class_acc = None
metric_logger.update(loss=loss_value)
metric_logger.update(class_acc=class_acc)
min_lr = 10.
max_lr = 0.
for group in optimizer.param_groups:
min_lr = min(min_lr, group["lr"])
max_lr = max(max_lr, group["lr"])
metric_logger.update(lr=max_lr)
metric_logger.update(min_lr=min_lr)
weight_decay_value = None
for group in optimizer.param_groups:
if group["weight_decay"] > 0:
weight_decay_value = group["weight_decay"]
metric_logger.update(weight_decay=weight_decay_value)
if use_amp:
metric_logger.update(grad_norm=grad_norm)
if log_writer is not None:
log_writer.update(loss=loss_value, head="loss")
log_writer.update(class_acc=class_acc, head="loss")
log_writer.update(lr=max_lr, head="opt")
log_writer.update(min_lr=min_lr, head="opt")
log_writer.update(weight_decay=weight_decay_value, head="opt")
if use_amp:
log_writer.update(grad_norm=grad_norm, head="opt")
log_writer.set_step()
if wandb_logger:
wandb_logger._wandb.log({
'Rank-0 Batch Wise/train_loss': loss_value,
'Rank-0 Batch Wise/train_max_lr': max_lr,
'Rank-0 Batch Wise/train_min_lr': min_lr
}, commit=False)
if class_acc:
wandb_logger._wandb.log({'Rank-0 Batch Wise/train_class_acc': class_acc}, commit=False)
if use_amp:
wandb_logger._wandb.log({'Rank-0 Batch Wise/train_grad_norm': grad_norm}, commit=False)
wandb_logger._wandb.log({'Rank-0 Batch Wise/global_train_step': it})
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluate(data_loader, model, device, use_amp=False):
criterion = torch.nn.CrossEntropyLoss()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Test:'
# switch to evaluation mode
model.eval()
for batch in metric_logger.log_every(data_loader, 10, header):
images = batch[0]
target = batch[-1]
images = images.to(device, non_blocking=True)
target = target.to(device, non_blocking=True)
# compute output
if use_amp:
with torch.cuda.amp.autocast():
output = model(images)
loss = criterion(output, target)
else:
output = model(images)
loss = criterion(output, target)
acc1, acc5 = accuracy(output, target, topk=(1, 5))
batch_size = images.shape[0]
metric_logger.update(loss=loss.item())
metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
metric_logger.meters['acc5'].update(acc5.item(), n=batch_size)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print('* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f} loss {losses.global_avg:.3f}'
.format(top1=metric_logger.acc1, top5=metric_logger.acc5, losses=metric_logger.loss))
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}