-
Notifications
You must be signed in to change notification settings - Fork 22
/
main_KD.py
762 lines (667 loc) · 35.5 KB
/
main_KD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import datetime
import numpy as np
import time
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import json
import os
import torch.nn.functional as F
from pathlib import Path
from convnext import *
import cswin
#from convnextv2 import convnextv2_tiny
from timm.data.mixup import Mixup
from timm1.models import create_model as create_model1
from timm1.models import resnet50,mobilenetv3_large_100
from timm.models import create_model
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy
from model_sema import ModelEma
from optim_factory import create_optimizer, LayerDecayValueAssigner
from datasets import build_dataset
from engine_kd import train_one_epoch, evaluate
from utils import NativeScalerWithGradNormCount as NativeScaler
from sparse_core import Masking, CosineDecay
import warnings
from convnext import *
import torchvision
warnings.filterwarnings("ignore")
import utils
import models.SLaK
class MGDLoss(nn.Module):
"""PyTorch version of `Masked Generative Distillation`
Args:
student_channels(int): Number of channels in the student's feature map.
teacher_channels(int): Number of channels in the teacher's feature map.
name (str): the loss name of the layer
alpha_mgd (float, optional): Weight of dis_loss. Defaults to 0.00007
lambda_mgd (float, optional): masked ratio. Defaults to 0.5
"""
def __init__(self,
student_channels,
teacher_channels,
alpha_mgd=0.00007,
lambda_mgd=0.5,
):
super(MGDLoss, self).__init__()
self.alpha_mgd = alpha_mgd
self.lambda_mgd = lambda_mgd
if student_channels != teacher_channels:
self.align = nn.Conv2d(student_channels, teacher_channels, kernel_size=1, stride=1, padding=0)
else:
self.align = None
self.generation = nn.Sequential(
nn.Conv2d(teacher_channels, teacher_channels, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(teacher_channels, teacher_channels, kernel_size=3, padding=1))
def forward(self,
preds_S,
preds_T):
"""Forward function.
Args:
preds_S(Tensor): Bs*C*H*W, student's feature map
preds_T(Tensor): Bs*C*H*W, teacher's feature map
"""
N, C, H, W = preds_T.shape
if preds_S.shape[-2:] != preds_T.shape[-2:]:
preds_S=F.interpolate(preds_S,(H,W),mode='bilinear')
if self.align is not None:
preds_S = self.align(preds_S)
loss = self.get_dis_loss(preds_S, preds_T)*self.alpha_mgd
return loss
def get_dis_loss(self, preds_S, preds_T):
loss_mse = nn.MSELoss(reduction='sum')
N, C, H, W = preds_T.shape
device = preds_S.device
mat = torch.rand((N,C,1,1)).to(device)
# mat = torch.rand((N,1,H,W)).to(device)
mat = torch.where(mat < self.lambda_mgd, 0, 1).to(device)
masked_fea = torch.mul(preds_S, mat)
new_fea = self.generation(masked_fea)
#if new_fea.shape[-1]!=preds_T.shape[-1]:
# new_fea=F.interpolate(new_fea,(H,W),mode='bilinear')
dis_loss = loss_mse(new_fea, preds_T)/N
return dis_loss
def kernel_type(strings):
strings = strings.replace("(", "").replace(")", "")
mapped_int = map(int, strings.split(","))
return [tuple(mapped_int[:-1]), mapped_int[-1]]
def loss_kd(preds, labels, teacher_preds):
T = 1
alpha = 0.9
loss = F.kl_div(F.log_softmax(preds / T, dim=1), F.softmax(teacher_preds / T, dim=1),
reduction='batchmean') * T * T * alpha + F.cross_entropy(preds, labels) * (1. - alpha)
return loss
def str2bool(v):
"""
Converts string to bool type; enables command line
arguments in the format of '--arg1 true --arg2 false'
"""
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def get_args_parser():
parser = argparse.ArgumentParser('SLaK training and evaluation script for image classification', add_help=False)
parser.add_argument('--batch_size', default=64, type=int,
help='Per GPU batch size')
parser.add_argument('--epochs', default=300, type=int)
parser.add_argument('--update_freq', default=1, type=int,
help='gradient accumulation steps')
# Model parameters
parser.add_argument('--model', default='SLaK_tiny', type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--model_s', default='SLaK_small', type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--drop_path', type=float, default=0, metavar='PCT',
help='Drop path rate (default: 0.0)')
parser.add_argument('--input_size', default=224, type=int,
help='image input size')
parser.add_argument('--layer_scale_init_value', default=1e-6, type=float,
help="Layer scale initial values")
# EMA related parameters
parser.add_argument('--model_ema', type=str2bool, default=False)
parser.add_argument('--model_ema_decay', type=float, default=0.9999, help='')
parser.add_argument('--model_ema_force_cpu', type=str2bool, default=False, help='')
parser.add_argument('--model_ema_eval', type=str2bool, default=False, help='Using ema to eval during training.')
# Optimization parameters
parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER',
help='Optimizer (default: "adamw"')
parser.add_argument('--opt_eps', default=1e-8, type=float, metavar='EPSILON',
help='Optimizer Epsilon (default: 1e-8)')
parser.add_argument('--opt_betas', default=None, type=float, nargs='+', metavar='BETA',
help='Optimizer Betas (default: None, use opt default)')
parser.add_argument('--clip_grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--weight_decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
parser.add_argument('--weight_decay_end', type=float, default=None, help="""Final value of the
weight decay. We use a cosine schedule for WD and using a larger decay by
the end of training improves performance for ViTs.""")
parser.add_argument('--lr', type=float, default=4e-3, metavar='LR',
help='learning rate (default: 4e-3), with total batch size 4096')
parser.add_argument('--layer_decay', type=float, default=1.0)
parser.add_argument('--min_lr', type=float, default=1e-6, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (1e-6)')
parser.add_argument('--warmup_epochs', type=int, default=20, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--warmup_steps', type=int, default=-1, metavar='N',
help='num of steps to warmup LR, will overload warmup_epochs if set > 0')
# Augmentation parameters
parser.add_argument('--color_jitter', type=float, default=0.4, metavar='PCT',
help='Color jitter factor (default: 0.4)')
parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME',
help='Use AutoAugment policy. "v0" or "original". " + "(default: rand-m9-mstd0.5-inc1)'),
parser.add_argument('--smoothing', type=float, default=0.1,
help='Label smoothing (default: 0.1)')
parser.add_argument('--train_interpolation', type=str, default='bicubic',
help='Training interpolation (random, bilinear, bicubic default: "bicubic")')
# Evaluation parameters
parser.add_argument('--crop_pct', type=float, default=None)
# * Random Erase params
parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT',
help='Random erase prob (default: 0.25)')
parser.add_argument('--remode', type=str, default='pixel',
help='Random erase mode (default: "pixel")')
parser.add_argument('--recount', type=int, default=1,
help='Random erase count (default: 1)')
parser.add_argument('--resplit', type=str2bool, default=False,
help='Do not random erase first (clean) augmentation split')
parser.add_argument('--T', type=float, default=1.0,help='tempature')
# * Mixup params
parser.add_argument('--mixup', type=float, default=0.8,
help='mixup alpha, mixup enabled if > 0.')
parser.add_argument('--cutmix', type=float, default=1.0,
help='cutmix alpha, cutmix enabled if > 0.')
parser.add_argument('--cutmix_minmax', type=float, nargs='+', default=None,
help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)')
parser.add_argument('--mixup_prob', type=float, default=1.0,
help='Probability of performing mixup or cutmix when either/both is enabled')
parser.add_argument('--mixup_switch_prob', type=float, default=0.5,
help='Probability of switching to cutmix when both mixup and cutmix enabled')
parser.add_argument('--mixup_mode', type=str, default='batch',
help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"')
# * Finetuning params
parser.add_argument('--finetune', default='',
help='finetune from checkpoint')
parser.add_argument('--head_init_scale', default=1.0, type=float,
help='classifier head initial scale, typically adjusted in fine-tuning')
parser.add_argument('--model_key', default='model|module', type=str,
help='which key to load from saved state dict, usually model or model_ema')
parser.add_argument('--model_prefix', default='', type=str)
# Dataset parameters
parser.add_argument('--data_path', default='/datasets01/imagenet_full_size/061417/', type=str,
help='dataset path')
parser.add_argument('--eval_data_path', default=None, type=str,
help='dataset path for evaluation')
parser.add_argument('--nb_classes', default=1000, type=int,
help='number of the classification types')
parser.add_argument('--imagenet_default_mean_and_std', type=str2bool, default=True)
parser.add_argument('--data_set', default='IMNET', choices=['CIFAR', 'IMNET', 'image_folder'],
type=str, help='ImageNet dataset path')
parser.add_argument('--output_dir', default='',
help='path where to save, empty for no saving')
parser.add_argument('--log_dir', default=None,
help='path where to tensorboard log')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--distill_type', default='KD', type=str)
parser.add_argument('--FDLoss_type', default='smoothL1', type=str,choices=['smoothL1','MSE'])
parser.add_argument('--lr_fd', default=1.0, type=float)
parser.add_argument('--alpha_mgd', default=7e-5, type=float)
parser.add_argument('--alpha', default=0.1, type=float)
parser.add_argument('--lambda_mgd', default=0.5, type=float)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--auto_resume', type=str2bool, default=True)
parser.add_argument('--save_ckpt', type=str2bool, default=True)
parser.add_argument('--save_ckpt_freq', default=10, type=int)
parser.add_argument('--save_ckpt_num', default=3, type=int)
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', type=str2bool, default=False,
help='Perform evaluation only')
parser.add_argument('--dist_eval', type=str2bool, default=True,
help='Enabling distributed evaluation')
parser.add_argument('--disable_eval', type=str2bool, default=False,
help='Disabling evaluation during training')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin_mem', type=str2bool, default=True,
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', type=str2bool, default=False)
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
parser.add_argument('--use_amp', type=str2bool, default=False,
help="Use PyTorch's AMP (Automatic Mixed Precision) or not")
# Weights and Biases arguments
parser.add_argument('--enable_wandb', type=str2bool, default=False,
help="enable logging to Weights and Biases")
parser.add_argument('--project', default='SLaK', type=str,
help="The name of the W&B project where you're sending the new run.")
parser.add_argument('--wandb_ckpt', type=str2bool, default=False,
help="Save model checkpoints as W&B Artifacts.")
parser.add_argument('--hard', action='store_true', help='hard loss.')
parser.add_argument('--distill_resume', action='store_true', help='resume for student model.')
parser.add_argument('--feature_n', default=1, type=int)
parser.add_argument('--target_Lnorm', action='store_true', help='layer norm for target.')
parser.add_argument('--flag', action='store_true', help='flag')
# large kernel
parser.add_argument('--Decom', type=str2bool, default=False, help='Enabling kernel decomposition')
parser.add_argument('--width_factor', type=float, default=1.0, help='set the width factor of the model')
parser.add_argument('--sparse', action='store_true', help='Enable sparse model. Default: False.')
parser.add_argument('--kernel_size', nargs="*", type=int, default = [51,49,47,13,5], help='kernel size of conv [stage1, stage2, stage3, stage4, N]')
parser.add_argument('--growth', type=str, default='random', help='Growth mode. Choose from: momentum, random, gradient.')
parser.add_argument('--prune', type=str, default='magnitude', help='Prune mode / pruning mode. Choose from: magnitude, SET.')
parser.add_argument('--redistribution', type=str, default='none', help='Redistribution mode. Choose from: momentum, magnitude, nonzeros, or none.')
parser.add_argument('--prune_rate', type=float, default=0.3, help='The pruning rate / prune rate.')
parser.add_argument('--sparsity', type=float, default=0.4, help='The sparsity of the overall sparse network.')
parser.add_argument('--verbose', action='store_true', help='Prints verbose status of pruning/growth algorithms.')
parser.add_argument('--fix', action='store_true', help='Fix sparse model during training i.e., no weight adaptation.')
parser.add_argument('--sparse_init', type=str, default='snip', help='layer-wise sparsity ratio')
parser.add_argument('-u', '--update-frequency', type=int, default=100, metavar='N', help='how many iterations to adapt weights')
parser.add_argument('--only-L', action='store_true', help='only sparsify large kernels.')
parser.add_argument('--bn', type=str2bool, default=True, help='add batch norm layer after each path')
return parser
# swin_kernel_dict={0:7,1:7,2:14,3:28}
# slak_kernel_dict={0:7,1:14,2:28,3:56}
# vit_kernel_dict={0:14}
# vit_dict={3:768}
# convnext_kernel_dict={0:7,1:14,2:28,3:56}
# swin_dict={0:192,1:384,2:768,3:768}
# convnext_dict={0:96,1:192,2:384,3:768}
# resnet_dict={0:256,1:512,2:1024,3:2048}
# slak_dict={0:124,1:249,2:499,3:998}
students_dict2={"resnet50":2048,"convnextv2":768,"SLaK_tiny":768}
teachers_dict2={"SLaK_tiny":998,"convnext":768,"SLaK_small":998,"swin":768,"vit":768}
def main(args):
utils.init_distributed_mode(args)
print(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
dataset_train, args.nb_classes = build_dataset(is_train=True, args=args)
if args.disable_eval:
args.dist_eval = False
dataset_val = None
else:
dataset_val, _ = build_dataset(is_train=False, args=args)
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True, seed=args.seed,
)
print("Sampler_train = %s" % str(sampler_train))
if args.dist_eval:
if len(dataset_val) % num_tasks != 0:
print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. '
'This will slightly alter validation results as extra duplicate entries are added to achieve '
'equal num of samples per-process.')
sampler_val = torch.utils.data.DistributedSampler(
dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=False)
else:
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
if global_rank == 0 and args.log_dir is not None:
os.makedirs(args.log_dir, exist_ok=True)
log_writer = utils.TensorboardLogger(log_dir=args.log_dir)
else:
log_writer = None
if global_rank == 0 and args.enable_wandb:
wandb_logger = utils.WandbLogger(args)
else:
wandb_logger = None
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
)
if dataset_val is not None:
data_loader_val = torch.utils.data.DataLoader(
dataset_val, sampler=sampler_val,
batch_size=int(1.5 * args.batch_size),
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False
)
else:
data_loader_val = None
mixup_fn = None
mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
if mixup_active:
print("Mixup is activated!")
mixup_fn = Mixup(
mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax,
prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode,
label_smoothing=args.smoothing, num_classes=args.nb_classes)
#vit_large_patch16_224
if args.model=='convnext':
model=convnext_tiny(num_classes=args.nb_classes,drop_path_rate=args.drop_path,layer_scale_init_value=args.layer_scale_init_value,head_init_scale=args.head_init_scale)
elif args.model=='convnext21k':
model=convnext_tiny(num_classes=args.nb_classes,drop_path_rate=args.drop_path,layer_scale_init_value=args.layer_scale_init_value,head_init_scale=args.head_init_scale)
elif args.model=='vit':
model=create_model1('vit_small_patch16_224',pretrained=True)
elif args.model=='vit21klarge':
model=create_model1('vit_large_patch16_224',pretrained=True)
elif args.model=='vit21k':
model=create_model1('vit_base_patch16_224',pretrained=True)
elif args.model=='vitdeit':
model=create_model1('vit_deit_small_patch16_224',pretrained=True)
elif args.model=='vitbase':
model=create_model1('vit_base_patch16_224',pretrained=True)
elif args.model=='swin':
model=create_model1('swin_tiny_patch4_window7_224',pretrained=True)
elif args.model=='efficientnet':
model=create_model1('tf_efficientnet_b3_ns',pretrained=True)
elif args.model=='resnet50d':
model=create_model1('resnet50d',pretrained=True)
elif args.model=='cswin':
model=cswin.CSWin_64_12211_tiny_224()
ck=torch.load("./checkpoints/cswin_tiny_224.pth",map_location='cpu')['state_dict_ema']
model.load_state_dict(ck)
else:
model = create_model(
args.model,
pretrained=False,
num_classes=args.nb_classes,
drop_path_rate=args.drop_path,
layer_scale_init_value=args.layer_scale_init_value,
head_init_scale=args.head_init_scale,
kernel_size=args.kernel_size,
width_factor=args.width_factor,
Decom=args.Decom,
bn = args.bn,
)
print("model",args.model,"Decom",args.Decom)
if args.model_s=='resnet50':
model_convnext=resnet50(args=args)
elif args.model_s=='mobilenet':
model_convnext=mobilenetv3_large_100(args=args)
elif args.model_s=='convnextv2':
#pass
model_convnext = create_model(
'SLaK_tiny',
pretrained=False,
num_classes=args.nb_classes,
drop_path_rate=args.drop_path,
layer_scale_init_value=args.layer_scale_init_value,
head_init_scale=args.head_init_scale,
kernel_size=[7,7,7,7,100],
width_factor=1.0,
Decom=False,
bn = False,
args=args,
gru=True,
flag=args.flag
)
print(model_convnext)
elif args.model_s=='convnextv2_small':
model_convnext = create_model(
'SLaK_small',
pretrained=False,
num_classes=args.nb_classes,
drop_path_rate=args.drop_path,
layer_scale_init_value=args.layer_scale_init_value,
head_init_scale=args.head_init_scale,
kernel_size=[7,7,7,7,100],
width_factor=1.0,
Decom=False,
bn = False,
args=args,
gru=True,
flag=args.flag
)
print(model_convnext)
elif args.model_s=='convnextoriginal':
if args.finetune:
model_convnext=convnext_tiny(num_classes=21841,pretrained=True,in_22k=True)
else:
model_convnext=convnext_tiny(num_classes=args.nb_classes,drop_path_rate=args.drop_path,layer_scale_init_value=args.layer_scale_init_value,head_init_scale=args.head_init_scale)
else:
model_convnext = create_model(
args.model_s,
pretrained=False,
num_classes=args.nb_classes,
drop_path_rate=args.drop_path,
layer_scale_init_value=args.layer_scale_init_value,
head_init_scale=args.head_init_scale,
kernel_size=[7,7,7,7,100],
width_factor=1.0,
Decom=False,
bn = args.bn,
args=args,
flag=args.flag
)
print ("model_convnext",model_convnext)
# model_convnext = convnext_small(
# num_classes=args.nb_classes,
# drop_path_rate=args.drop_path,
# layer_scale_init_value=args.layer_scale_init_value,
# head_init_scale=args.head_init_scale,
# )
if args.finetune:
if args.model_s=="convnextoriginal":
model_convnext.head=nn.Linear(768,1000)
else:
assert False
# if args.finetune.startswith('https'):
# checkpoint = torch.hub.load_state_dict_from_url(
# args.finetune, map_location='cpu', check_hash=True)
# else:
# checkpoint = torch.load(args.finetune, map_location='cpu')
# print("Load ckpt from %s" % args.finetune)
# checkpoint_model = None
# for model_key in args.model_key.split('|'):
# if model_key in checkpoint:
# checkpoint_model = checkpoint[model_key]
# print("Load state_dict by model_key = %s" % model_key)
# break
# if checkpoint_model is None:
# checkpoint_model = checkpoint
# state_dict = model.state_dict()
# for k in ['head.weight', 'head.bias']:
# if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape:
# print(f"Removing key {k} from pretrained checkpoint")
# del checkpoint_model[k]
#model_convnext.load_state_dict(checkpoint['model'])
#utils.load_state_dict(model_convnext, checkpoint, prefix=args.model_prefix)
print("student model loaded!")
#assert False
model.to(device)
model_convnext.to(device)
model_ema = None
if args.model_ema:
# Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
model_ema = ModelEma(
model_convnext,
decay=args.model_ema_decay,
device='cpu' if args.model_ema_force_cpu else '',
resume='')
model_ema_t = ModelEma(
model,
decay=args.model_ema_decay,
device='cpu' if args.model_ema_force_cpu else '',
resume='')
print("Using EMA with decay = %.8f" % args.model_ema_decay)
model_without_ddp = model
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("Model = %s" % str(model_without_ddp))
print('number of params:', n_parameters)
total_batch_size = args.batch_size * args.update_freq * utils.get_world_size()
num_training_steps_per_epoch = len(dataset_train) // total_batch_size
print("LR = %.8f" % args.lr)
print("Batch size = %d" % total_batch_size)
print("Update frequent = %d" % args.update_freq)
print("Number of training examples = %d" % len(dataset_train))
print("Number of training steps per epoch = %d" % num_training_steps_per_epoch)
if args.layer_decay < 1.0 or args.layer_decay > 1.0:
num_layers = 12 # SLak layers divided into 12 parts, each with a different decayed lr value.
assert args.model in ['SLaK_tiny', 'SLaK_small', 'SLaK_base', 'SLaK_large'], \
"Layer Decay impl only supports SLaK_small/base/large/xlarge"
assigner = LayerDecayValueAssigner(list(args.layer_decay ** (num_layers + 1 - i) for i in range(num_layers + 2)))
else:
assigner = None
import os
#args.gpu=torch.distributed.get_rank()
if assigner is not None:
print("Assigned values = %s" % str(assigner.values))
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=False)
model_without_ddp = model.module
model_convnext = torch.nn.parallel.DistributedDataParallel(model_convnext, device_ids=[args.gpu], find_unused_parameters=False)
model_convnext_without_ddp = model_convnext.module
if 'MGD' in args.distill_type:
MGD_loss=MGDLoss(students_dict2[args.model_s],teachers_dict2[args.model],args.alpha_mgd,args.lambda_mgd)
MGD_loss.to(device)
MGD_P=MGD_loss.parameters()
else:
MGD_P=None
MGD_loss=None
optimizer = create_optimizer(
args, model_convnext_without_ddp, skip_list=None,
get_num_layer=assigner.get_layer_id if assigner is not None else None,
get_layer_scale=assigner.get_scale if assigner is not None else None)
loss_scaler = NativeScaler() # if args.use_amp is False, this won't be used
print("Use Cosine LR scheduler")
lr_schedule_values = utils.cosine_scheduler(
args.lr, args.min_lr, args.epochs, num_training_steps_per_epoch,
warmup_epochs=args.warmup_epochs, warmup_steps=args.warmup_steps,
)
if args.weight_decay_end is None:
args.weight_decay_end = args.weight_decay
wd_schedule_values = utils.cosine_scheduler(
args.weight_decay, args.weight_decay_end, args.epochs, num_training_steps_per_epoch)
print("Max WD = %.7f, Min WD = %.7f" % (max(wd_schedule_values), min(wd_schedule_values)))
if mixup_fn is not None:
# smoothing is handled with mixup label transform
criterion = SoftTargetCrossEntropy()
elif args.smoothing > 0.:
criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing)
else:
criterion = torch.nn.CrossEntropyLoss()
print("criterion = %s" % str(criterion))
if args.model!='vit' and args.model!='resnet50d' and args.model!='swin' and args.model!='vitbase' and args.model!='vitdeit' and args.model!='cswin' and args.model!='efficientnet' and args.model!='vit21k' and args.model!='vit21klarge':
print("model",args.model,"Decom",args.Decom)
utils.auto_load_model1(
args=args, model=model, model_without_ddp=model_without_ddp,
optimizer=optimizer, loss_scaler=loss_scaler, model_ema=model_ema_t)
if args.distill_resume:
utils.auto_load_model(
args=args, model=model_convnext, model_without_ddp=model_convnext_without_ddp,
optimizer=optimizer, loss_scaler=loss_scaler, model_ema=model_ema)
print("student model loaded at:",args.start_epoch)
#if args.eval:
for name, weight in model.named_parameters():
print(f"{name} density is {(weight != 0.0).sum().item()/weight.numel()}")
test_stats = evaluate(data_loader_val, model, device, use_amp=args.use_amp)
test_stats_student = evaluate(data_loader_val, model_convnext, device, use_amp=args.use_amp)
#return
print(f"Accuracy of the network on {len(dataset_val)} test images: {test_stats['acc1']:.5f}%","Start accuracy for student model:",test_stats_student)
#return
# num_training_steps_per_epoch is the number of the actual training steps
mask=None
if args.sparse:
decay = CosineDecay(args.prune_rate, int(num_training_steps_per_epoch*args.epochs), init_step= int(num_training_steps_per_epoch)*(args.start_epoch))
mask = Masking(optimizer, train_loader=data_loader_train, prune_mode=args.prune, prune_rate_decay=decay, growth_mode=args.growth, redistribution_mode=args.redistribution, args=args)
mask.add_module(model)
max_accuracy = 0.0
if args.model_ema and args.model_ema_eval:
max_accuracy_ema = 0.0
para_count = 0
for name, para in model.named_parameters():
para_count += (para!=0).sum().item()
print(f"Total number of parameters are {para_count}")
print("Start training for %d epochs" % args.epochs)
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
if log_writer is not None:
log_writer.set_step(epoch * num_training_steps_per_epoch * args.update_freq)
if wandb_logger:
wandb_logger.set_steps()
train_stats = train_one_epoch(
model,model_convnext, criterion, data_loader_train, optimizer,
device, epoch, loss_scaler, args.clip_grad, model_ema, mixup_fn,
log_writer=log_writer, wandb_logger=wandb_logger, start_steps=epoch * num_training_steps_per_epoch,
lr_schedule_values=lr_schedule_values, wd_schedule_values=wd_schedule_values,
num_training_steps_per_epoch=num_training_steps_per_epoch, update_freq=args.update_freq,
use_amp=args.use_amp, mask=mask,T=args.T,hard=args.hard,args=args,MGDloss=MGD_loss
)
if args.output_dir and args.save_ckpt:
if (epoch + 1) % args.save_ckpt_freq == 0 or epoch + 1 == args.epochs:
utils.save_model(
args=args, model=model_convnext, model_without_ddp=model_convnext_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch, model_ema=model_ema)
if data_loader_val is not None:
test_stats = evaluate(data_loader_val, model_convnext, device, use_amp=args.use_amp)
print(f"Accuracy of the model on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%")
if max_accuracy < test_stats["acc1"]:
max_accuracy = test_stats["acc1"]
if args.output_dir and args.save_ckpt:
utils.save_model(
args=args, model=model_convnext, model_without_ddp=model_convnext_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch="best", model_ema=model_ema)
print(f'Max accuracy: {max_accuracy:.2f}%')
if log_writer is not None:
log_writer.update(test_acc1=test_stats['acc1'], head="perf", step=epoch)
log_writer.update(test_acc5=test_stats['acc5'], head="perf", step=epoch)
log_writer.update(test_loss=test_stats['loss'], head="perf", step=epoch)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in test_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
# repeat testing routines for EMA, if ema eval is turned on
if args.model_ema and args.model_ema_eval:
test_stats_ema = evaluate(data_loader_val, model_ema.ema, device, use_amp=args.use_amp)
print(f"Accuracy of the model EMA on {len(dataset_val)} test images: {test_stats_ema['acc1']:.1f}%")
if max_accuracy_ema < test_stats_ema["acc1"]:
max_accuracy_ema = test_stats_ema["acc1"]
if args.output_dir and args.save_ckpt:
utils.save_model(
args=args, model=model_convnext, model_without_ddp=model_convnext_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch="best-ema", model_ema=model_ema)
print(f'Max EMA accuracy: {max_accuracy_ema:.2f}%')
if log_writer is not None:
log_writer.update(test_acc1_ema=test_stats_ema['acc1'], head="perf", step=epoch)
log_stats.update({**{f'test_{k}_ema': v for k, v in test_stats_ema.items()}})
else:
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
if args.output_dir and utils.is_main_process():
if log_writer is not None:
log_writer.flush()
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
f.write(json.dumps(log_stats) + "\n")
if wandb_logger:
wandb_logger.log_epoch_metrics(log_stats)
if wandb_logger and args.wandb_ckpt and args.save_ckpt and args.output_dir:
wandb_logger.log_checkpoints()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser('SLaK training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)