-
Notifications
You must be signed in to change notification settings - Fork 22
/
sparse_core.py
408 lines (343 loc) · 17.2 KB
/
sparse_core.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
from __future__ import print_function
import torch
import math
import copy
import numpy as np
import torch.optim as optim
import torch.nn.functional as F
from funcs import redistribution_funcs, growth_funcs, prune_funcs
def SNIP(net, keep_ratio, train_dataloader, device, masks, args):
if args.distributed:
train_dataloader.sampler.set_epoch(0)
# Grab a single batch from the training dataset
images, labels = next(iter(train_dataloader))
input_var = images.to(device, non_blocking=True)
target_var = labels.to(device, non_blocking=True)
# Let's create a fresh copy of the network so that we're not worried about
# affecting the actual training-phase
net = copy.deepcopy(net)
net.zero_grad()
outputs = net(input_var)
loss = F.cross_entropy(outputs, target_var)
loss.backward()
grads_abs = []
for name, weight in net.named_parameters():
if name not in masks: continue
grads_abs.append(torch.abs(weight*weight.grad))
# Gather all scores in a single vector and normalise
all_scores = torch.cat([torch.flatten(x) for x in grads_abs])
num_params_to_keep = int(len(all_scores) * keep_ratio)
threshold, _ = torch.topk(all_scores, num_params_to_keep, sorted=True)
acceptable_score = threshold[-1]
layer_wise_sparsities = []
for g in grads_abs:
mask = (g > acceptable_score).float()
sparsity = float((mask==0).sum().item() / mask.numel())
layer_wise_sparsities.append(sparsity)
net.zero_grad()
return layer_wise_sparsities
class CosineDecay(object):
"""Decays a pruning rate according to a cosine schedule
This class is just a wrapper around PyTorch's CosineAnnealingLR.
"""
def __init__(self, prune_rate, T_max, eta_min=0.005, last_epoch=-1, init_step=0):
self.sgd = optim.SGD(torch.nn.ParameterList([torch.nn.Parameter(torch.zeros(1))]), lr=prune_rate)
self.cosine_stepper = torch.optim.lr_scheduler.CosineAnnealingLR(self.sgd, T_max, eta_min, last_epoch)
if init_step!=0:
for i in range(init_step):
self.cosine_stepper.step()
def step(self):
self.cosine_stepper.step()
def get_dr(self, prune_rate):
return self.sgd.param_groups[0]['lr']
class Masking(object):
"""Wraps PyTorch model parameters with a sparse mask.
Creates a mask for each parameter tensor contained in the model. When
`apply_mask()` is called, it applies the sparsity pattern to the parameters.
Basic usage:
optimizer = torchoptim.SGD(model.parameters(),lr=args.lr)
decay = CosineDecay(args.prune_rate, len(train_loader)*(args.epochs))
mask = Masking(optimizer, prune_rate_decay=decay)
model = MyModel()
mask.add_module(model)
"""
def __init__(self, optimizer, train_loader, prune_rate_decay, prune_rate=0.5, prune_mode='magnitude', growth_mode='random', redistribution_mode='momentum', verbose=False, fp16=False, args=False):
growth_modes = ['random', 'momentum', 'momentum_neuron', 'gradient']
if growth_mode not in growth_modes:
print('Growth mode: {0} not supported!'.format(growth_mode))
print('Supported modes are:', str(growth_modes))
self.args = args
self.device = torch.device(args.device)
self.growth_mode = growth_mode
self.prune_mode = prune_mode
self.redistribution_mode = redistribution_mode
self.prune_rate_decay = prune_rate_decay
self.verbose = verbose
self.train_loader = train_loader
self.growth_func = growth_mode
self.prune_func = prune_mode
self.redistribution_func = redistribution_mode
self.global_growth = False
self.global_prune = False
self.masks = {}
self.modules = []
self.names = []
self.optimizer = optimizer
self.baseline_nonzero = None
# stats
self.name2zeros = {}
self.name2nonzeros = {}
self.name2removed = {}
self.prune_rate = prune_rate
self.steps = 0
self.half = fp16
self.name_to_32bit = {}
if self.args.fix:
self.args.update_frequency = None
def add_module(self, module):
self.modules.append(module)
self.module = module
for name, tensor in module.named_parameters():
if len(tensor.size()) == 2 or len(tensor.size()) == 4:
if self.args.only_L:
if 'large_kernel.LoRA' in name:
self.names.append(name)
self.masks[name] = torch.zeros_like(tensor, dtype=torch.float32, requires_grad=False).to(self.device)
else:
self.names.append(name)
self.masks[name] = torch.zeros_like(tensor, dtype=torch.float32, requires_grad=False).to(self.device)
self.init(mode=self.args.sparse_init, density=1-self.args.sparsity)
def init_optimizer(self):
if 'fp32_from_fp16' in self.optimizer.state_dict():
for (name, tensor), tensor2 in zip(self.modules[0].named_parameters(), self.optimizer.state_dict()['fp32_from_fp16'][0]):
self.name_to_32bit[name] = tensor2
self.half = True
def init(self, mode='snip', density=0.05, erk_power_scale=1.0):
self.init_growth_prune_and_redist()
self.init_optimizer()
self.density = density
if mode == 'uniform':
print('initialized with uniform')
# initializes each layer with a constant percentage of dense weights
# each layer will have weight.numel()*density weights.
# weight.numel()*density == weight.numel()*(1.0-sparsity)
self.baseline_nonzero = 0
for module in self.modules:
for name, weight in module.named_parameters():
if name not in self.masks: continue
self.masks[name][:] = (torch.rand(weight.shape) < density).float().data.to(self.device)
self.baseline_nonzero += weight.numel()*density
elif mode == 'resume':
print('initialized with resume')
# Initializes the mask according to the weights
# which are currently zero-valued. This is required
# if you want to resume a sparse model but did not
# save the mask.
self.baseline_nonzero = 0
for module in self.modules:
for name, weight in module.named_parameters():
if name not in self.masks: continue
print((weight != 0.0).sum().item())
if name in self.name_to_32bit:
print('W2')
self.masks[name][:] = (weight != 0.0).float().data.to(self.device)
self.baseline_nonzero += weight.numel()*density
elif mode == 'snip':
print('initialize by snip')
self.baseline_nonzero = 0
layer_wise_sparsities = SNIP(self.module, density, self.train_loader, self.device, self.masks, self.args)
for sparsity_, name in zip(layer_wise_sparsities, self.masks):
self.masks[name][:] = (torch.rand(self.masks[name].shape) < (1 - sparsity_)).float().data.to(
self.device)
elif mode == 'ERK':
print('initialize by fixed_ERK')
total_params = 0
self.baseline_nonzero = 0
for name, weight in self.masks.items():
total_params += weight.numel()
self.baseline_nonzero += weight.numel() * density
is_epsilon_valid = False
dense_layers = set()
while not is_epsilon_valid:
divisor = 0
rhs = 0
raw_probabilities = {}
for name, mask in self.masks.items():
n_param = np.prod(mask.shape)
n_zeros = n_param * (1 - density)
n_ones = n_param * density
if name in dense_layers:
rhs -= n_zeros
else:
rhs += n_ones
raw_probabilities[name] = (
np.sum(mask.shape) / np.prod(mask.shape)
) ** erk_power_scale
divisor += raw_probabilities[name] * n_param
epsilon = rhs / divisor
max_prob = np.max(list(raw_probabilities.values()))
max_prob_one = max_prob * epsilon
if max_prob_one > 1:
is_epsilon_valid = False
for mask_name, mask_raw_prob in raw_probabilities.items():
if mask_raw_prob == max_prob:
print(f"Sparsity of var:{mask_name} had to be set to 0.")
dense_layers.add(mask_name)
else:
is_epsilon_valid = True
density_dict = {}
total_nonzero = 0.0
# With the valid epsilon, we can set sparsities of the remaning layers.
for name, mask in self.masks.items():
n_param = np.prod(mask.shape)
if name in dense_layers:
density_dict[name] = 1.0
else:
probability_one = epsilon * raw_probabilities[name]
density_dict[name] = probability_one
print(
f"layer: {name}, shape: {mask.shape}, density: {density_dict[name]}"
)
self.masks[name][:] = (torch.rand(mask.shape) < density_dict[name]).float().data.to(self.device)
total_nonzero += density_dict[name] * mask.numel()
print(f"Overall sparsity {total_nonzero / total_params}")
total_size = 0
sparse_size = 0
dense_layers = []
for name, weight in self.masks.items():
dense_weight_num = weight.numel()
sparse_weight_num = (weight != 0).sum().int().item()
total_size += dense_weight_num
sparse_size += sparse_weight_num
layer_density = sparse_weight_num / dense_weight_num
if layer_density >= 0.99: dense_layers.append(name)
print(f'Density of layer {name} with tensor {weight.size()} is {layer_density}')
print('Final sparsity level of {0}: {1}'.format(1-self.density, 1 - sparse_size / total_size))
# masks of layers with density=1 are removed
for name in dense_layers:
self.masks.pop(name)
print(f"pop out layer {name}")
self.apply_mask()
def init_growth_prune_and_redist(self):
if isinstance(self.growth_func, str) and self.growth_func in growth_funcs:
if 'global' in self.growth_func: self.global_growth = True
self.growth_func = growth_funcs[self.growth_func]
elif isinstance(self.growth_func, str):
print('='*50, 'ERROR', '='*50)
print('Growth mode function not known: {0}.'.format(self.growth_func))
print('Use either a custom growth function or one of the pre-defined functions:')
for key in growth_funcs:
print('\t{0}'.format(key))
print('='*50, 'ERROR', '='*50)
raise Exception('Unknown growth mode.')
if isinstance(self.prune_func, str) and self.prune_func in prune_funcs:
if 'global' in self.prune_func: self.global_prune = True
self.prune_func = prune_funcs[self.prune_func]
elif isinstance(self.prune_func, str):
print('='*50, 'ERROR', '='*50)
print('Prune mode function not known: {0}.'.format(self.prune_func))
print('Use either a custom prune function or one of the pre-defined functions:')
for key in prune_funcs:
print('\t{0}'.format(key))
print('='*50, 'ERROR', '='*50)
raise Exception('Unknown prune mode.')
if isinstance(self.redistribution_func, str) and self.redistribution_func in redistribution_funcs:
self.redistribution_func = redistribution_funcs[self.redistribution_func]
elif isinstance(self.redistribution_func, str):
print('='*50, 'ERROR', '='*50)
print('Redistribution mode function not known: {0}.'.format(self.redistribution_func))
print('Use either a custom redistribution function or one of the pre-defined functions:')
for key in redistribution_funcs:
print('\t{0}'.format(key))
print('='*50, 'ERROR', '='*50)
raise Exception('Unknown redistribution mode.')
def step(self):
self.optimizer.step()
self.apply_mask()
# decay the adaptation rate for better results
self.prune_rate_decay.step()
self.prune_rate = self.prune_rate_decay.get_dr(self.prune_rate)
self.steps += 1
if self.args.update_frequency is not None:
if self.steps % self.args.update_frequency == 0:
print('*********************************Dynamic Sparsity********************************')
self.truncate_weights()
self.print_nonzero_counts()
def apply_mask(self):
# synchronism masks
if self.args.distributed:
self.synchronism_masks()
for module in self.modules:
for name, tensor in module.named_parameters():
if name in self.masks:
if not self.half:
tensor.data = tensor.data*self.masks[name]
if 'momentum_buffer' in self.optimizer.state[tensor]:
self.optimizer.state[tensor]['momentum_buffer'] = self.optimizer.state[tensor]['momentum_buffer']*self.masks[name]
else:
tensor.data = tensor.data*self.masks[name].half()
if name in self.name_to_32bit:
tensor2 = self.name_to_32bit[name]
tensor2.data = tensor2.data*self.masks[name]
def truncate_weights(self):
for module in self.modules:
for name, weight in module.named_parameters():
if name not in self.masks: continue
mask = self.masks[name]
self.name2nonzeros[name] = mask.sum().item()
self.name2zeros[name] = mask.numel() - self.name2nonzeros[name]
# prune
new_mask = self.prune_func(self, mask, weight, name)
removed = self.name2nonzeros[name] - new_mask.sum().item()
self.name2removed[name] = removed
self.masks[name][:] = new_mask
for module in self.modules:
for name, weight in module.named_parameters():
if name not in self.masks: continue
new_mask = self.masks[name].data.byte()
# growth
new_mask = self.growth_func(self, name, new_mask, math.floor(self.name2removed[name]), weight)
self.masks[name][:] = new_mask.float()
self.apply_mask()
'''
UTILITY
'''
def get_momentum_for_weight(self, weight):
if 'exp_avg' in self.optimizer.state[weight]:
adam_m1 = self.optimizer.state[weight]['exp_avg']
adam_m2 = self.optimizer.state[weight]['exp_avg_sq']
grad = adam_m1/(torch.sqrt(adam_m2) + 1e-08)
elif 'momentum_buffer' in self.optimizer.state[weight]:
grad = self.optimizer.state[weight]['momentum_buffer']
return grad
def get_gradient_for_weights(self, weight):
grad = weight.grad.clone()
return grad
def print_nonzero_counts(self):
for module in self.modules:
for name, tensor in module.named_parameters():
if name not in self.masks: continue
mask = self.masks[name]
num_nonzeros = (mask != 0).sum().item()
val = '{0}: {1}->{2}, density: {3:.3f}'.format(name, self.name2nonzeros[name], num_nonzeros,
num_nonzeros / float(mask.numel()))
print(val)
print('Prune rate: {0}\n'.format(self.prune_rate))
def fired_masks_update(self):
ntotal_fired_weights = 0.0
ntotal_weights = 0.0
layer_fired_weights = {}
for module in self.modules:
for name, weight in module.named_parameters():
if name not in self.masks: continue
self.fired_masks[name] = self.masks[name].data.byte() | self.fired_masks[name].data.byte()
ntotal_fired_weights += float(self.fired_masks[name].sum().item())
ntotal_weights += float(self.fired_masks[name].numel())
layer_fired_weights[name] = float(self.fired_masks[name].sum().item())/float(self.fired_masks[name].numel())
# print('Layerwise percentage of the fired weights of', name, 'is:', layer_fired_weights[name])
total_fired_weights = ntotal_fired_weights/ntotal_weights
print('The percentage of the total fired weights is:', total_fired_weights)
return layer_fired_weights, total_fired_weights
def synchronism_masks(self):
for name in self.masks.keys():
torch.distributed.broadcast(self.masks[name], src=0, async_op=False)