forked from nbigaouette/onnxruntime-rs
-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathlib.rs
663 lines (604 loc) · 25.4 KB
/
lib.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
#![warn(missing_docs)]
//! ONNX Runtime
//!
//! This crate is a (safe) wrapper around Microsoft's [ONNX Runtime](https://github.com/microsoft/onnxruntime/)
//! through its C API.
//!
//! From its [GitHub page](https://github.com/microsoft/onnxruntime/):
//!
//! > ONNX Runtime is a cross-platform, high performance ML inferencing and training accelerator.
//!
//! The (highly) unsafe [C API](https://github.com/microsoft/onnxruntime/blob/master/include/onnxruntime/core/session/onnxruntime_c_api.h)
//! is wrapped using bindgen as [`onnxruntime-sys`](https://crates.io/crates/onnxruntime-sys).
//!
//! The unsafe bindings are wrapped in this crate to expose a safe API.
//!
//! For now, efforts are concentrated on the inference API. Training is _not_ supported.
//!
//! # Example
//!
//! The C++ example that uses the C API
//! ([`C_Api_Sample.cpp`](https://github.com/microsoft/onnxruntime/blob/v1.3.1/csharp/test/Microsoft.ML.OnnxRuntime.EndToEndTests.Capi/C_Api_Sample.cpp))
//! was ported to
//! [`onnxruntime`](https://github.com/nbigaouette/onnxruntime-rs/blob/master/onnxruntime/examples/sample.rs).
//!
//! First, an environment must be created using and [`EnvBuilder`](environment/struct.EnvBuilder.html):
//!
//! ```no_run
//! # use std::error::Error;
//! # use onnxruntime::{environment::Environment, LoggingLevel};
//! # fn main() -> Result<(), Box<dyn Error>> {
//! let environment = Environment::builder()
//! .with_name("test")
//! .with_log_level(LoggingLevel::Verbose)
//! .build()?;
//! # Ok(())
//! # }
//! ```
//!
//! Then a [`Session`](session/struct.Session.html) is created from the environment, some options and an ONNX archive:
//!
//! ```no_run
//! # use std::error::Error;
//! # use onnxruntime::{environment::Environment, LoggingLevel, GraphOptimizationLevel};
//! # fn main() -> Result<(), Box<dyn Error>> {
//! # let environment = Environment::builder()
//! # .with_name("test")
//! # .with_log_level(LoggingLevel::Verbose)
//! # .build()?;
//! let mut session = environment
//! .new_session_builder()?
//! .with_optimization_level(GraphOptimizationLevel::Basic)?
//! .with_intra_op_num_threads(1)?
//! .with_model_from_file("squeezenet.onnx")?;
//! # Ok(())
//! # }
//! ```
//!
#![cfg_attr(
feature = "model-fetching",
doc = r##"
Instead of loading a model from file using [`with_model_from_file()`](session/struct.SessionBuilder.html#method.with_model_from_file),
a model can be fetched directly from the [ONNX Model Zoo](https://github.com/onnx/models) using
[`with_model_downloaded()`](session/struct.SessionBuilder.html#method.with_model_downloaded) method
(requires the `model-fetching` feature).
```no_run
# use std::error::Error;
# use onnxruntime::{environment::Environment, download::vision::ImageClassification, LoggingLevel, GraphOptimizationLevel};
# fn main() -> Result<(), Box<dyn Error>> {
# let environment = Environment::builder()
# .with_name("test")
# .with_log_level(LoggingLevel::Verbose)
# .build()?;
let mut session = environment
.new_session_builder()?
.with_optimization_level(GraphOptimizationLevel::Basic)?
.with_intra_op_num_threads(1)?
.with_model_downloaded(ImageClassification::SqueezeNet)?;
# Ok(())
# }
```
See [`AvailableOnnxModel`](download/enum.AvailableOnnxModel.html) for the different models available
to download.
"##
)]
//!
//! Inference will be run on data passed as an [`ndarray::Array`](https://docs.rs/ndarray/latest/ndarray/type.Array.html).
//!
//! ```no_run
//! # use std::error::Error;
//! # use onnxruntime::{environment::Environment, LoggingLevel, GraphOptimizationLevel, tensor::OrtOwnedTensor, session::{AnyArray, NdArray}};
//! # fn main() -> Result<(), Box<dyn Error>> {
//! # let environment = Environment::builder()
//! # .with_name("test")
//! # .with_log_level(LoggingLevel::Verbose)
//! # .build()?;
//! # let mut session = environment
//! # .new_session_builder()?
//! # .with_optimization_level(GraphOptimizationLevel::Basic)?
//! # .with_intra_op_num_threads(1)?
//! # .with_model_from_file("squeezenet.onnx")?;
//! let mut array = NdArray::new(ndarray::Array::linspace(0.0_f32, 1.0, 100));
//! // Multiple inputs and outputs are possible
//! let input_tensor:Vec<&mut dyn AnyArray> = vec![&mut array];
//! let outputs: Vec<OrtOwnedTensor<f32,_>> = session.run(input_tensor)?;
//! # Ok(())
//! # }
//! ```
//!
//! The outputs are of type [`OrtOwnedTensor`](tensor/ort_owned_tensor/struct.OrtOwnedTensor.html)s inside a vector,
//! with the same length as the inputs.
//!
//! See the [`sample.rs`](https://github.com/nbigaouette/onnxruntime-rs/blob/master/onnxruntime/examples/sample.rs)
//! example for more details.
use std::{
ffi::c_void,
os::raw::c_char,
ptr::null_mut,
sync::{atomic::AtomicPtr, Arc, Mutex},
};
use lazy_static::lazy_static;
use onnxruntime_sys as sys;
// Make functions `extern "stdcall"` for Windows 32bit.
// This behaviors like `extern "system"`.
#[cfg(all(target_os = "windows", target_arch = "x86"))]
macro_rules! extern_system_fn {
($(#[$meta:meta])* fn $($tt:tt)*) => ($(#[$meta])* extern "stdcall" fn $($tt)*);
($(#[$meta:meta])* $vis:vis fn $($tt:tt)*) => ($(#[$meta])* $vis extern "stdcall" fn $($tt)*);
($(#[$meta:meta])* unsafe fn $($tt:tt)*) => ($(#[$meta])* unsafe extern "stdcall" fn $($tt)*);
($(#[$meta:meta])* $vis:vis unsafe fn $($tt:tt)*) => ($(#[$meta])* $vis unsafe extern "stdcall" fn $($tt)*);
}
// Make functions `extern "C"` for normal targets.
// This behaviors like `extern "system"`.
#[cfg(not(all(target_os = "windows", target_arch = "x86")))]
macro_rules! extern_system_fn {
($(#[$meta:meta])* fn $($tt:tt)*) => ($(#[$meta])* extern "C" fn $($tt)*);
($(#[$meta:meta])* $vis:vis fn $($tt:tt)*) => ($(#[$meta])* $vis extern "C" fn $($tt)*);
($(#[$meta:meta])* unsafe fn $($tt:tt)*) => ($(#[$meta])* unsafe extern "C" fn $($tt)*);
($(#[$meta:meta])* $vis:vis unsafe fn $($tt:tt)*) => ($(#[$meta])* $vis unsafe extern "C" fn $($tt)*);
}
// textual scopeで`trace!`と`debug!`を宣言することにより、`tracing`のそれらの`use`を封じる
macro_rules! trace {
($($tt:tt)*) => {{
if cfg!(allow_verbose_logging) {
::tracing::trace!($($tt)*);
}
}};
}
macro_rules! debug {
($($tt:tt)*) => {{
if cfg!(allow_verbose_logging) {
::tracing::debug!($($tt)*);
}
}};
}
pub mod download;
pub mod environment;
pub mod error;
mod memory;
pub mod session;
pub mod tensor;
// Re-export
pub use error::{OrtApiError, OrtError, Result};
use sys::OnnxEnumInt;
// Re-export ndarray as it's part of the public API anyway
pub use ndarray;
lazy_static! {
// static ref G_ORT: Arc<Mutex<AtomicPtr<sys::OrtApi>>> =
// Arc::new(Mutex::new(AtomicPtr::new(unsafe {
// sys::OrtGetApiBase().as_ref().unwrap().GetApi.unwrap()(sys::ORT_API_VERSION)
// } as *mut sys::OrtApi)));
static ref G_ORT_API: Arc<Mutex<AtomicPtr<sys::OrtApi>>> = {
let base: *const sys::OrtApiBase = unsafe { sys::OrtGetApiBase() };
assert_ne!(base, std::ptr::null());
let get_api: extern_system_fn!{ unsafe fn(u32) -> *const onnxruntime_sys::OrtApi } =
unsafe { (*base).GetApi.unwrap() };
let api: *const sys::OrtApi = unsafe { get_api(sys::ORT_API_VERSION) };
Arc::new(Mutex::new(AtomicPtr::new(api as *mut sys::OrtApi)))
};
}
fn g_ort() -> sys::OrtApi {
let mut api_ref = G_ORT_API
.lock()
.expect("Failed to acquire lock: another thread panicked?");
let api_ref_mut: &mut *mut sys::OrtApi = api_ref.get_mut();
let api_ptr_mut: *mut sys::OrtApi = *api_ref_mut;
assert_ne!(
api_ptr_mut,
std::ptr::null_mut(),
"Can not get ort api ptr."
);
unsafe { *api_ptr_mut }
}
fn char_p_to_string(raw: *const c_char) -> Result<String> {
let c_string = unsafe { std::ffi::CStr::from_ptr(raw as *mut c_char).to_owned() };
match c_string.into_string() {
Ok(string) => Ok(string),
Err(e) => Err(OrtApiError::IntoStringError(e)),
}
.map_err(OrtError::StringConversion)
}
mod onnxruntime {
//! Module containing a custom logger, used to catch the runtime's own logging and send it
//! to Rust's tracing logging instead.
use std::{ffi::CStr, os::raw::c_char};
use tracing::{error, info, span, warn, Level};
use onnxruntime_sys as sys;
/// Runtime's logging sends the code location where the log happened, will be parsed to this struct.
#[derive(Debug)]
struct CodeLocation<'a> {
file: &'a str,
line_number: &'a str,
function: &'a str,
}
impl<'a> From<&'a str> for CodeLocation<'a> {
fn from(code_location: &'a str) -> Self {
let mut splitter = code_location.split(' ');
let file_and_line_number = splitter.next().unwrap_or("<unknown file:line>");
let function = splitter.next().unwrap_or("<unknown module>");
let mut file_and_line_number_splitter = file_and_line_number.split(':');
let file = file_and_line_number_splitter
.next()
.unwrap_or("<unknown file>");
let line_number = file_and_line_number_splitter
.next()
.unwrap_or("<unknown line number>");
CodeLocation {
file,
line_number,
function,
}
}
}
extern_system_fn! {
/// Callback from C that will handle the logging, forwarding the runtime's logs to the tracing crate.
pub(crate) fn custom_logger(
_params: *mut std::ffi::c_void,
severity: sys::OrtLoggingLevel,
category: *const c_char,
logid: *const c_char,
code_location: *const c_char,
message: *const c_char,
) {
let log_level = match severity {
sys::OrtLoggingLevel::ORT_LOGGING_LEVEL_VERBOSE => Level::DEBUG,
sys::OrtLoggingLevel::ORT_LOGGING_LEVEL_INFO => Level::INFO,
sys::OrtLoggingLevel::ORT_LOGGING_LEVEL_WARNING => Level::WARN,
sys::OrtLoggingLevel::ORT_LOGGING_LEVEL_ERROR => Level::ERROR,
sys::OrtLoggingLevel::ORT_LOGGING_LEVEL_FATAL => Level::ERROR,
};
assert_ne!(category, std::ptr::null());
let category = unsafe { CStr::from_ptr(category) };
assert_ne!(code_location, std::ptr::null());
let code_location = unsafe { CStr::from_ptr(code_location) }
.to_str()
.unwrap_or("unknown");
assert_ne!(message, std::ptr::null());
let message = unsafe { CStr::from_ptr(message) };
assert_ne!(logid, std::ptr::null());
let logid = unsafe { CStr::from_ptr(logid) };
// Parse the code location
let code_location: CodeLocation = code_location.into();
let _span = cfg!(allow_verbose_logging).then(|| {
span!(
Level::TRACE,
"onnxruntime",
category = category.to_str().unwrap_or("<unknown>"),
file = code_location.file,
line_number = code_location.line_number,
function = code_location.function,
logid = logid.to_str().unwrap_or("<unknown>"),
)
.entered()
});
match log_level {
Level::TRACE => trace!("{:?}", message),
Level::DEBUG => debug!("{:?}", message),
Level::INFO => info!("{:?}", message),
Level::WARN => warn!("{:?}", message),
Level::ERROR => error!("{:?}", message),
}
}
}
}
/// Logging level of the ONNX Runtime C API
#[derive(Debug)]
#[cfg_attr(not(windows), repr(u32))]
#[cfg_attr(windows, repr(i32))]
pub enum LoggingLevel {
/// Verbose log level
Verbose = sys::OrtLoggingLevel::ORT_LOGGING_LEVEL_VERBOSE as OnnxEnumInt,
/// Info log level
Info = sys::OrtLoggingLevel::ORT_LOGGING_LEVEL_INFO as OnnxEnumInt,
/// Warning log level
Warning = sys::OrtLoggingLevel::ORT_LOGGING_LEVEL_WARNING as OnnxEnumInt,
/// Error log level
Error = sys::OrtLoggingLevel::ORT_LOGGING_LEVEL_ERROR as OnnxEnumInt,
/// Fatal log level
Fatal = sys::OrtLoggingLevel::ORT_LOGGING_LEVEL_FATAL as OnnxEnumInt,
}
impl From<LoggingLevel> for sys::OrtLoggingLevel {
fn from(val: LoggingLevel) -> Self {
match val {
LoggingLevel::Verbose => sys::OrtLoggingLevel::ORT_LOGGING_LEVEL_VERBOSE,
LoggingLevel::Info => sys::OrtLoggingLevel::ORT_LOGGING_LEVEL_INFO,
LoggingLevel::Warning => sys::OrtLoggingLevel::ORT_LOGGING_LEVEL_WARNING,
LoggingLevel::Error => sys::OrtLoggingLevel::ORT_LOGGING_LEVEL_ERROR,
LoggingLevel::Fatal => sys::OrtLoggingLevel::ORT_LOGGING_LEVEL_FATAL,
}
}
}
/// Optimization level performed by ONNX Runtime of the loaded graph
///
/// See the [official documentation](https://github.com/microsoft/onnxruntime/blob/master/docs/ONNX_Runtime_Graph_Optimizations.md)
/// for more information on the different optimization levels.
#[derive(Clone, Debug)]
#[cfg_attr(not(windows), repr(u32))]
#[cfg_attr(windows, repr(i32))]
pub enum GraphOptimizationLevel {
/// Disable optimization
DisableAll = sys::GraphOptimizationLevel::ORT_DISABLE_ALL as OnnxEnumInt,
/// Basic optimization
Basic = sys::GraphOptimizationLevel::ORT_ENABLE_BASIC as OnnxEnumInt,
/// Extended optimization
Extended = sys::GraphOptimizationLevel::ORT_ENABLE_EXTENDED as OnnxEnumInt,
/// Add optimization
All = sys::GraphOptimizationLevel::ORT_ENABLE_ALL as OnnxEnumInt,
}
impl From<GraphOptimizationLevel> for sys::GraphOptimizationLevel {
fn from(val: GraphOptimizationLevel) -> Self {
use GraphOptimizationLevel::*;
match val {
DisableAll => sys::GraphOptimizationLevel::ORT_DISABLE_ALL,
Basic => sys::GraphOptimizationLevel::ORT_ENABLE_BASIC,
Extended => sys::GraphOptimizationLevel::ORT_ENABLE_EXTENDED,
All => sys::GraphOptimizationLevel::ORT_ENABLE_ALL,
}
}
}
// FIXME: Use https://docs.rs/bindgen/0.54.1/bindgen/struct.Builder.html#method.rustified_enum
// FIXME: Add tests to cover the commented out types
/// Enum mapping ONNX Runtime's supported tensor types
#[derive(Debug, Clone, Copy)]
#[cfg_attr(not(windows), repr(u32))]
#[cfg_attr(windows, repr(i32))]
pub enum TensorElementDataType {
/// 32-bit floating point, equivalent to Rust's `f32`
Float = sys::ONNXTensorElementDataType::ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT as OnnxEnumInt,
/// Unsigned 8-bit int, equivalent to Rust's `u8`
Uint8 = sys::ONNXTensorElementDataType::ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT8 as OnnxEnumInt,
/// Signed 8-bit int, equivalent to Rust's `i8`
Int8 = sys::ONNXTensorElementDataType::ONNX_TENSOR_ELEMENT_DATA_TYPE_INT8 as OnnxEnumInt,
/// Unsigned 16-bit int, equivalent to Rust's `u16`
Uint16 = sys::ONNXTensorElementDataType::ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT16 as OnnxEnumInt,
/// Signed 16-bit int, equivalent to Rust's `i16`
Int16 = sys::ONNXTensorElementDataType::ONNX_TENSOR_ELEMENT_DATA_TYPE_INT16 as OnnxEnumInt,
/// Signed 32-bit int, equivalent to Rust's `i32`
Int32 = sys::ONNXTensorElementDataType::ONNX_TENSOR_ELEMENT_DATA_TYPE_INT32 as OnnxEnumInt,
/// Signed 64-bit int, equivalent to Rust's `i64`
Int64 = sys::ONNXTensorElementDataType::ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64 as OnnxEnumInt,
/// String, equivalent to Rust's `String`
String = sys::ONNXTensorElementDataType::ONNX_TENSOR_ELEMENT_DATA_TYPE_STRING as OnnxEnumInt,
// /// Boolean, equivalent to Rust's `bool`
// Bool = sys::ONNXTensorElementDataType::ONNX_TENSOR_ELEMENT_DATA_TYPE_BOOL as OnnxEnumInt,
// /// 16-bit floating point, equivalent to Rust's `f16`
// Float16 = sys::ONNXTensorElementDataType::ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT16 as OnnxEnumInt,
/// 64-bit floating point, equivalent to Rust's `f64`
Double = sys::ONNXTensorElementDataType::ONNX_TENSOR_ELEMENT_DATA_TYPE_DOUBLE as OnnxEnumInt,
/// Unsigned 32-bit int, equivalent to Rust's `u32`
Uint32 = sys::ONNXTensorElementDataType::ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT32 as OnnxEnumInt,
/// Unsigned 64-bit int, equivalent to Rust's `u64`
Uint64 = sys::ONNXTensorElementDataType::ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT64 as OnnxEnumInt,
// /// Complex 64-bit floating point, equivalent to Rust's `???`
// Complex64 = sys::ONNXTensorElementDataType::ONNX_TENSOR_ELEMENT_DATA_TYPE_COMPLEX64 as OnnxEnumInt,
// /// Complex 128-bit floating point, equivalent to Rust's `???`
// Complex128 = sys::ONNXTensorElementDataType::ONNX_TENSOR_ELEMENT_DATA_TYPE_COMPLEX128 as OnnxEnumInt,
// /// Brain 16-bit floating point
// Bfloat16 = sys::ONNXTensorElementDataType::ONNX_TENSOR_ELEMENT_DATA_TYPE_BFLOAT16 as OnnxEnumInt,
}
impl From<TensorElementDataType> for sys::ONNXTensorElementDataType {
fn from(val: TensorElementDataType) -> Self {
use TensorElementDataType::*;
match val {
Float => sys::ONNXTensorElementDataType::ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT,
Uint8 => sys::ONNXTensorElementDataType::ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT8,
Int8 => sys::ONNXTensorElementDataType::ONNX_TENSOR_ELEMENT_DATA_TYPE_INT8,
Uint16 => sys::ONNXTensorElementDataType::ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT16,
Int16 => sys::ONNXTensorElementDataType::ONNX_TENSOR_ELEMENT_DATA_TYPE_INT16,
Int32 => sys::ONNXTensorElementDataType::ONNX_TENSOR_ELEMENT_DATA_TYPE_INT32,
Int64 => sys::ONNXTensorElementDataType::ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64,
String => sys::ONNXTensorElementDataType::ONNX_TENSOR_ELEMENT_DATA_TYPE_STRING,
// Bool => {
// sys::ONNXTensorElementDataType::ONNX_TENSOR_ELEMENT_DATA_TYPE_BOOL
// }
// Float16 => {
// sys::ONNXTensorElementDataType::ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT16
// }
Double => sys::ONNXTensorElementDataType::ONNX_TENSOR_ELEMENT_DATA_TYPE_DOUBLE,
Uint32 => sys::ONNXTensorElementDataType::ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT32,
Uint64 => sys::ONNXTensorElementDataType::ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT64,
// Complex64 => {
// sys::ONNXTensorElementDataType::ONNX_TENSOR_ELEMENT_DATA_TYPE_COMPLEX64
// }
// Complex128 => {
// sys::ONNXTensorElementDataType::ONNX_TENSOR_ELEMENT_DATA_TYPE_COMPLEX128
// }
// Bfloat16 => {
// sys::ONNXTensorElementDataType::ONNX_TENSOR_ELEMENT_DATA_TYPE_BFLOAT16
// }
}
}
}
/// Trait used to map Rust types (for example `f32`) to ONNX types (for example `Float`)
pub trait TypeToTensorElementDataType {
/// Return the ONNX type for a Rust type
fn tensor_element_data_type() -> TensorElementDataType;
/// If the type is `String`, returns `Some` with utf8 contents, else `None`.
fn try_utf8_bytes(&self) -> Option<&[u8]>;
}
macro_rules! impl_type_trait {
($type_:ty, $variant:ident) => {
impl TypeToTensorElementDataType for $type_ {
fn tensor_element_data_type() -> TensorElementDataType {
// unsafe { std::mem::transmute(TensorElementDataType::$variant) }
TensorElementDataType::$variant
}
fn try_utf8_bytes(&self) -> Option<&[u8]> {
None
}
}
};
}
impl_type_trait!(f32, Float);
impl_type_trait!(u8, Uint8);
impl_type_trait!(i8, Int8);
impl_type_trait!(u16, Uint16);
impl_type_trait!(i16, Int16);
impl_type_trait!(i32, Int32);
impl_type_trait!(i64, Int64);
// impl_type_trait!(bool, Bool);
// impl_type_trait!(f16, Float16);
impl_type_trait!(f64, Double);
impl_type_trait!(u32, Uint32);
impl_type_trait!(u64, Uint64);
// impl_type_trait!(, Complex64);
// impl_type_trait!(, Complex128);
// impl_type_trait!(, Bfloat16);
/// Adapter for common Rust string types to Onnx strings.
///
/// It should be easy to use both `String` and `&str` as [TensorElementDataType::String] data, but
/// we can't define an automatic implementation for anything that implements `AsRef<str>` as it
/// would conflict with the implementations of [TypeToTensorElementDataType] for primitive numeric
/// types (which might implement `AsRef<str>` at some point in the future).
pub trait Utf8Data {
/// Returns the utf8 contents.
fn utf8_bytes(&self) -> &[u8];
}
impl Utf8Data for String {
fn utf8_bytes(&self) -> &[u8] {
self.as_bytes()
}
}
impl<'a> Utf8Data for &'a str {
fn utf8_bytes(&self) -> &[u8] {
self.as_bytes()
}
}
impl<T: Utf8Data> TypeToTensorElementDataType for T {
fn tensor_element_data_type() -> TensorElementDataType {
TensorElementDataType::String
}
fn try_utf8_bytes(&self) -> Option<&[u8]> {
Some(self.utf8_bytes())
}
}
/// Allocator type
#[derive(Debug, Clone)]
#[repr(i32)]
pub enum AllocatorType {
// Invalid = sys::OrtAllocatorType::Invalid as i32,
/// Device allocator
Device = sys::OrtAllocatorType::OrtDeviceAllocator as i32,
/// Arena allocator
Arena = sys::OrtAllocatorType::OrtArenaAllocator as i32,
}
impl From<AllocatorType> for sys::OrtAllocatorType {
fn from(val: AllocatorType) -> Self {
use AllocatorType::*;
match val {
// Invalid => sys::OrtAllocatorType::Invalid,
Device => sys::OrtAllocatorType::OrtDeviceAllocator,
Arena => sys::OrtAllocatorType::OrtArenaAllocator,
}
}
}
/// Memory type
///
/// Only support ONNX's default type for now.
#[derive(Debug, Clone)]
#[repr(i32)]
pub enum MemType {
// FIXME: C API's `OrtMemType_OrtMemTypeCPU` defines it equal to `OrtMemType_OrtMemTypeCPUOutput`. How to handle this??
// CPUInput = sys::OrtMemType::OrtMemTypeCPUInput as i32,
// CPUOutput = sys::OrtMemType::OrtMemTypeCPUOutput as i32,
// CPU = sys::OrtMemType::OrtMemTypeCPU as i32,
/// Default memory type
Default = sys::OrtMemType::OrtMemTypeDefault as i32,
}
impl From<MemType> for sys::OrtMemType {
fn from(val: MemType) -> Self {
use MemType::*;
match val {
// CPUInput => sys::OrtMemType::OrtMemTypeCPUInput,
// CPUOutput => sys::OrtMemType::OrtMemTypeCPUOutput,
// CPU => sys::OrtMemType::OrtMemTypeCPU,
Default => sys::OrtMemType::OrtMemTypeDefault,
}
}
}
/// Session ExecutionMode
pub type ExecutionMode = sys::ExecutionMode;
/// Session CudaProviderOptions
#[derive(Default)]
pub struct CudaProviderOptions<'a> {
/// device_id
pub device_id: i32,
/// cudnn_conv_algo_search
pub cudnn_conv_algo_search: CudnnConvAlgoSearch,
/// gpu_mem_limit
pub gpu_mem_limit: usize,
/// arena_extend_strategy
pub arena_extend_strategy: i32,
/// do_copy_in_default_stream
pub do_copy_in_default_stream: i32,
/// has_user_compute_stream
pub has_user_compute_stream: i32,
/// user_compute_stream
pub user_compute_stream: Option<*mut c_void>,
/// default_memory_arena_cfg
pub default_memory_arena_cfg: Option<&'a mut ArenaCfg>,
/// tunable_op_enabled
pub tunable_op_enabled: i32,
}
impl<'a> From<CudaProviderOptions<'a>> for sys::OrtCUDAProviderOptions {
fn from(options: CudaProviderOptions) -> Self {
Self {
device_id: options.device_id,
cudnn_conv_algo_search: options.cudnn_conv_algo_search.into(),
gpu_mem_limit: options.gpu_mem_limit,
arena_extend_strategy: options.arena_extend_strategy,
do_copy_in_default_stream: options.do_copy_in_default_stream,
has_user_compute_stream: options.has_user_compute_stream,
user_compute_stream: if let Some(user_compute_stream) = options.user_compute_stream {
user_compute_stream
} else {
null_mut()
},
default_memory_arena_cfg: if let Some(default_memory_arena_cfg) =
options.default_memory_arena_cfg
{
default_memory_arena_cfg as *mut ArenaCfg
} else {
null_mut()
},
tunable_op_enabled: options.tunable_op_enabled,
}
}
}
/// Session CudnnConvAlgoSearch
#[repr(i32)]
pub enum CudnnConvAlgoSearch {
/// CudnnConvAlgoSearch Heuristic
Heuristic = sys::OrtCudnnConvAlgoSearch::OrtCudnnConvAlgoSearchHeuristic as i32,
/// CudnnConvAlgoSearch Exhaustive
Exhaustive = sys::OrtCudnnConvAlgoSearch::OrtCudnnConvAlgoSearchExhaustive as i32,
/// CudnnConvAlgoSearch Default
Default = sys::OrtCudnnConvAlgoSearch::OrtCudnnConvAlgoSearchDefault as i32,
}
impl From<CudnnConvAlgoSearch> for sys::OrtCudnnConvAlgoSearch {
fn from(cudnn_conv_algo_search: CudnnConvAlgoSearch) -> Self {
use CudnnConvAlgoSearch::*;
match cudnn_conv_algo_search {
Heuristic => sys::OrtCudnnConvAlgoSearch::OrtCudnnConvAlgoSearchHeuristic,
Exhaustive => sys::OrtCudnnConvAlgoSearch::OrtCudnnConvAlgoSearchExhaustive,
Default => sys::OrtCudnnConvAlgoSearch::OrtCudnnConvAlgoSearchDefault,
}
}
}
/// Onnxruntime Arena config
pub type ArenaCfg = sys::OrtArenaCfg;
impl Default for CudnnConvAlgoSearch {
fn default() -> Self {
Self::Default
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_char_p_to_string() {
let s = std::ffi::CString::new("foo").unwrap();
let ptr = s.as_c_str().as_ptr();
assert_eq!("foo", char_p_to_string(ptr).unwrap());
}
}