-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathuserEncoders.py
375 lines (336 loc) · 34.1 KB
/
userEncoders.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import math
from config import Config
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.utils.rnn import pack_padded_sequence
from layers import MultiHeadAttention, Attention, ScaledDotProduct_CandidateAttention, CandidateAttention, GCN
from newsEncoders import NewsEncoder, HDC
from torch_scatter import scatter_sum, scatter_softmax # need to be installed by following `https://pytorch-scatter.readthedocs.io/en/latest`
class UserEncoder(nn.Module):
def __init__(self, news_encoder: NewsEncoder, config: Config):
super(UserEncoder, self).__init__()
self.news_embedding_dim = news_encoder.news_embedding_dim
self.news_encoder = news_encoder
self.device = torch.device('cuda')
self.auxiliary_loss = None
# Input
# user_title_text : [batch_size, max_history_num, max_title_length]
# user_title_mask : [batch_size, max_history_num, max_title_length]
# user_title_entity : [batch_size, max_history_num, max_title_length]
# user_content_text : [batch_size, max_history_num, max_content_length]
# user_content_mask : [batch_size, max_history_num, max_content_length]
# user_content_entity : [batch_size, max_history_num, max_content_length]
# user_category : [batch_size, max_history_num]
# user_subCategory : [batch_size, max_history_num]
# user_history_mask : [batch_size, max_history_num]
# user_history_graph : [batch_size, max_history_num, max_history_num]
# user_history_category_mask : [batch_size, category_num]
# user_history_category_indices : [batch_size, max_history_num]
# user_embedding : [batch_size, user_embedding]
# candidate_news_representation : [batch_size, news_num, news_embedding_dim]
# Output
# user_representation : [batch_size, news_embedding_dim]
def forward(self, user_title_text, user_title_mask, user_title_entity, user_content_text, user_content_mask, user_content_entity, user_category, user_subCategory, \
user_history_mask, user_history_graph, user_history_category_mask, user_history_category_indices, user_embedding, candidate_news_representation):
raise Exception('Function forward must be implemented at sub-class')
class SUE(UserEncoder):
def __init__(self, news_encoder: NewsEncoder, config: Config):
super(SUE, self).__init__(news_encoder, config)
self.attention_dim = max(config.attention_dim, self.news_embedding_dim // 4)
self.proxy_node_embedding = nn.Parameter(torch.zeros([config.category_num, self.news_embedding_dim]))
self.gcn = GCN(in_dim=self.news_embedding_dim, out_dim=self.news_embedding_dim, hidden_dim=self.news_embedding_dim, num_layers=config.gcn_layer_num, dropout=config.dropout_rate / 2, residual=not config.no_gcn_residual, layer_norm=config.gcn_layer_norm)
self.intraCluster_K = nn.Linear(self.news_embedding_dim, self.attention_dim, bias=False)
self.intraCluster_Q = nn.Linear(self.news_embedding_dim, self.attention_dim, bias=True)
self.clusterFeatureAffine = nn.Linear(self.news_embedding_dim, self.news_embedding_dim, bias=True)
self.interClusterAttention = ScaledDotProduct_CandidateAttention(self.news_embedding_dim, self.news_embedding_dim, self.attention_dim)
self.dropout = nn.Dropout(p=config.dropout_rate, inplace=True)
self.dropout_ = nn.Dropout(p=config.dropout_rate, inplace=False)
self.category_num = config.category_num + 1 # extra one category index for padding news
self.max_history_num = config.max_history_num
self.attention_scalar = math.sqrt(float(self.attention_dim))
def initialize(self):
self.gcn.initialize()
nn.init.zeros_(self.proxy_node_embedding)
nn.init.xavier_uniform_(self.intraCluster_K.weight)
nn.init.xavier_uniform_(self.intraCluster_Q.weight)
nn.init.zeros_(self.intraCluster_Q.bias)
nn.init.xavier_uniform_(self.clusterFeatureAffine.weight, gain=nn.init.calculate_gain('relu'))
nn.init.zeros_(self.clusterFeatureAffine.bias)
self.interClusterAttention.initialize()
def forward(self, user_title_text, user_title_mask, user_title_entity, user_content_text, user_content_mask, user_content_entity, user_category, user_subCategory, \
user_history_mask, user_history_graph, user_history_category_mask, user_history_category_indices, user_embedding, candidate_news_representation):
batch_size = user_title_text.size(0)
news_num = candidate_news_representation.size(1)
batch_news_num = batch_size * news_num
user_history_category_mask[:, -1] = 1
user_history_category_mask = user_history_category_mask.unsqueeze(dim=1).expand(-1, news_num, -1).contiguous() # [batch_size, news_num, category_num]
user_history_category_indices = user_history_category_indices.unsqueeze(dim=1).expand(-1, news_num, -1) # [batch_size, news_num, max_history_num]
history_embedding = self.news_encoder(user_title_text, user_title_mask, user_title_entity, \
user_content_text, user_content_mask, user_content_entity, \
user_category, user_subCategory, user_embedding) # [batch_size, max_history_num, news_embedding_dim]
# 1. GCN
history_embedding = torch.cat([history_embedding, self.dropout_(self.proxy_node_embedding.unsqueeze(dim=0).expand(batch_size, -1, -1))], dim=1) # [batch_size, max_history_num + category_num, news_embedding_dim]
gcn_feature = self.gcn(history_embedding, user_history_graph) + history_embedding # [batch_size, max_history_num + category_num, news_embedding_dim]
gcn_feature = gcn_feature[:, :self.max_history_num, :] # [batch_size, max_history_num, news_embedding_dim]
gcn_feature = gcn_feature.unsqueeze(dim=1).expand(-1, news_num, -1, -1) # [batch_size, news_num, max_history_num, news_embedding_dim]
# 2. Intra-cluster attention
K = self.intraCluster_K(gcn_feature).view([batch_news_num, self.max_history_num, self.attention_dim]) # [batch_size * news_num, max_history_num, attention_dim]
Q = self.intraCluster_Q(candidate_news_representation).view([batch_news_num, self.attention_dim, 1]) # [batch_size * news_num, attention_dim, 1]
a = torch.bmm(K, Q).view([batch_size, news_num, self.max_history_num]) / self.attention_scalar # [batch_size, news_num, max_history_num]
alpha_intra = scatter_softmax(a, user_history_category_indices, 2).unsqueeze(dim=3) # [batch_size, news_num, max_history_num, 1]
intra_cluster_feature = scatter_sum(alpha_intra * gcn_feature, user_history_category_indices, dim=2, dim_size=self.category_num) # [batch_size, news_num, category_num, news_embedding_dim]
# perform nonlinear transformation on intra-cluster features
intra_cluster_feature = self.dropout(F.relu(self.clusterFeatureAffine(intra_cluster_feature), inplace=True) + intra_cluster_feature) # [batch_size, news_num, category_num, news_embedding_dim]
# 3. Inter-cluster attention
inter_cluster_feature = self.interClusterAttention(
intra_cluster_feature.view([batch_news_num, self.category_num, self.news_embedding_dim]),
candidate_news_representation.view([batch_news_num, self.news_embedding_dim]),
mask=user_history_category_mask.view([batch_news_num, self.category_num])
).view([batch_size, news_num, self.news_embedding_dim]) # [batch_size, news_num, news_embedding_dim]
return inter_cluster_feature
class LSTUR(UserEncoder):
def __init__(self, news_encoder: NewsEncoder, config: Config):
super(LSTUR, self).__init__(news_encoder, config)
self.masking_probability = 1.0 - config.long_term_masking_probability
self.gru = nn.GRU(self.news_embedding_dim, self.news_embedding_dim, batch_first=True)
def initialize(self):
for parameter in self.gru.parameters():
if len(parameter.size()) >= 2:
nn.init.orthogonal_(parameter.data)
else:
nn.init.zeros_(parameter.data)
def forward(self, user_title_text, user_title_mask, user_title_entity, user_content_text, user_content_mask, user_content_entity, user_category, user_subCategory, \
user_history_mask, user_history_graph, user_history_category_mask, user_history_category_indices, user_embedding, candidate_news_representation):
batch_size = user_title_text.size(0)
news_num = candidate_news_representation.size(1)
user_history_num = user_history_mask.sum(dim=1, keepdim=False).long() # [batch_size]
history_embedding = self.news_encoder(user_title_text, user_title_mask, user_title_entity, \
user_content_text, user_content_mask, user_content_entity, \
user_category, user_subCategory, user_embedding) # [batch_size, max_history_num, news_embedding_dim]
sorted_user_history_num, sorted_indices = torch.sort(user_history_num, descending=True) # [batch_size]
_, desorted_indices = torch.sort(sorted_indices, descending=False) # [batch_size]
nonzero_indices = sorted_user_history_num.nonzero(as_tuple=False).squeeze(dim=1)
if nonzero_indices.size(0) == 0:
user_representation = user_embedding.unsqueeze(dim=1).expand(-1, news_num, -1) # [batch_size, news_num, news_embedding_dim]
return user_representation
index = nonzero_indices[-1]
if index + 1 == batch_size:
sorted_user_embedding = user_embedding.index_select(0, sorted_indices) # [batch_size, user_embedding_dim]
if self.training and self.masking_probability != 1.0:
sorted_user_embedding *= torch.bernoulli(torch.empty([batch_size, 1], device=self.device).fill_(self.masking_probability)) # [batch_size, user_embedding_dim]
sorted_history_embedding = history_embedding.index_select(0, sorted_indices) # [batch_size, max_history_num, news_embedding_dim]
packed_sorted_history_embedding = pack_padded_sequence(sorted_history_embedding, sorted_user_history_num.cpu(), batch_first=True) # [batch_size, max_history_num, news_embedding_dim]
_, h = self.gru(packed_sorted_history_embedding, sorted_user_embedding.unsqueeze(dim=0)) # [1, batch_size, news_embedding_dim]
user_representation = h.squeeze(dim=0).index_select(0, desorted_indices) # [batch_size, news_embedding_dim]
else:
non_empty_indices = sorted_indices[:index+1]
empty_indices = sorted_indices[index+1:]
sorted_user_embedding = user_embedding.index_select(0, non_empty_indices) # [batch_size, user_embedding_dim]
if self.training and self.masking_probability != 1.0:
sorted_user_embedding *= torch.bernoulli(torch.empty([index + 1, 1], device=self.device).fill_(self.masking_probability)) # [batch_size, user_embedding_dim]
sorted_history_embedding = history_embedding.index_select(0, non_empty_indices) # [batch_size, max_history_num, news_embedding_dim]
packed_sorted_history_embedding = pack_padded_sequence(sorted_history_embedding, sorted_user_history_num[:index+1].cpu(), batch_first=True) # [batch_size, max_history_num, news_embedding_dim]
_, h = self.gru(packed_sorted_history_embedding, sorted_user_embedding.unsqueeze(dim=0)) # [1, batch_size, news_embedding_dim]
user_representation = torch.cat([h.squeeze(dim=0), user_embedding.index_select(0, empty_indices)], dim=0).index_select(0, desorted_indices) # [batch_size, news_embedding_dim]
user_representation = user_representation.unsqueeze(dim=1).expand(-1, news_num, -1) # [batch_size, news_num, news_embedding_dim]
return user_representation
class MHSA(UserEncoder):
def __init__(self, news_encoder: NewsEncoder, config: Config):
super(MHSA, self).__init__(news_encoder, config)
self.multiheadAttention = MultiHeadAttention(config.head_num, self.news_embedding_dim, config.max_history_num, config.max_history_num, config.head_dim, config.head_dim)
self.affine = nn.Linear(config.head_num*config.head_dim, self.news_embedding_dim, bias=True)
self.attention = Attention(self.news_embedding_dim, config.attention_dim)
def initialize(self):
self.multiheadAttention.initialize()
nn.init.xavier_uniform_(self.affine.weight, gain=nn.init.calculate_gain('relu'))
nn.init.zeros_(self.affine.bias)
self.attention.initialize()
def forward(self, user_title_text, user_title_mask, user_title_entity, user_content_text, user_content_mask, user_content_entity, user_category, user_subCategory, \
user_history_mask, user_history_graph, user_history_category_mask, user_history_category_indices, user_embedding, candidate_news_representation):
news_num = candidate_news_representation.size(1)
history_embedding = self.news_encoder(user_title_text, user_title_mask, user_title_entity, \
user_content_text, user_content_mask, user_content_entity, \
user_category, user_subCategory, user_embedding) # [batch_size, max_history_num, news_embedding_dim]
h = self.multiheadAttention(history_embedding, history_embedding, history_embedding, user_history_mask) # [batch_size, max_history_num, head_num * head_dim]
h = F.relu(F.dropout(self.affine(h), training=self.training, inplace=True), inplace=True) # [batch_size, max_history_num, news_embedding_dim]
user_representation = self.attention(h).unsqueeze(dim=1).repeat(1, news_num, 1) # [batch_size, news_num, news_embedding_dim]
return user_representation
class ATT(UserEncoder):
def __init__(self, news_encoder: NewsEncoder, config: Config):
super(ATT, self).__init__(news_encoder, config)
self.attention = Attention(self.news_embedding_dim, config.attention_dim)
def initialize(self):
self.attention.initialize()
def forward(self, user_title_text, user_title_mask, user_title_entity, user_content_text, user_content_mask, user_content_entity, user_category, user_subCategory, \
user_history_mask, user_history_graph, user_history_category_mask, user_history_category_indices, user_embedding, candidate_news_representation):
news_num = candidate_news_representation.size(1)
history_embedding = self.news_encoder(user_title_text, user_title_mask, user_title_entity, \
user_content_text, user_content_mask, user_content_entity, \
user_category, user_subCategory, user_embedding) # [batch_size, max_history_num, news_embedding_dim]
user_representation = self.attention(history_embedding).unsqueeze(dim=1).expand(-1, news_num, -1) # [batch_size, news_embedding_dim]
return user_representation
class CATT(UserEncoder):
def __init__(self, news_encoder: NewsEncoder, config: Config):
super(CATT, self).__init__(news_encoder, config)
self.affine1 = nn.Linear(self.news_embedding_dim * 2, config.attention_dim, bias=True)
self.affine2 = nn.Linear(config.attention_dim, 1, bias=True)
self.max_history_num = config.max_history_num
def initialize(self):
nn.init.xavier_uniform_(self.affine1.weight, gain=nn.init.calculate_gain('relu'))
nn.init.zeros_(self.affine1.bias)
nn.init.xavier_uniform_(self.affine2.weight)
nn.init.zeros_(self.affine2.bias)
def forward(self, user_title_text, user_title_mask, user_title_entity, user_content_text, user_content_mask, user_content_entity, user_category, user_subCategory, \
user_history_mask, user_history_graph, user_history_category_mask, user_history_category_indices, user_embedding, candidate_news_representation):
news_num = candidate_news_representation.size(1)
history_embedding = self.news_encoder(user_title_text, user_title_mask, user_title_entity, \
user_content_text, user_content_mask, user_content_entity, \
user_category, user_subCategory, user_embedding) # [batch_size, max_history_num, news_embedding_dim]
user_history_mask = user_history_mask.unsqueeze(dim=1).expand(-1, news_num, -1) # [batch_size, news_num, max_history_num]
candidate_news_representation = candidate_news_representation.unsqueeze(dim=2).expand(-1, -1, self.max_history_num, -1) # [batch_size, news_num, max_history_num, news_embedding_dim]
history_embedding = history_embedding.unsqueeze(dim=1).expand(-1, news_num, -1, -1) # [batch_size, news_num, max_history_num, news_embedding_dim]
concat_embeddings = torch.cat([candidate_news_representation, history_embedding], dim=3) # [batch_size, news_num, max_history_num, news_embedding_dim * 2]
hidden = F.relu(self.affine1(concat_embeddings), inplace=True) # [batch_size, news_num, max_history_num, attention_dim]
a = self.affine2(hidden).squeeze(dim=3) # [batch_size, news_num, max_history_num]
alpha = F.softmax(a.masked_fill(user_history_mask == 0, -1e9), dim=2) # [batch_size, news_num, max_history_num]
user_representation = (alpha.unsqueeze(dim=3) * history_embedding).sum(dim=2, keepdim=False) # [batch_size, news_num, news_embedding_dim]
return user_representation
class FIM(UserEncoder):
def __init__(self, news_encoder: NewsEncoder, config: Config):
super(FIM, self).__init__(news_encoder, config)
assert type(self.news_encoder) == HDC, 'For FIM, the news encoder must be HDC'
self.HDC_sequence_length = news_encoder.HDC_sequence_length
self.max_history_num = config.max_history_num
self.scalar = math.sqrt(float(config.HDC_filter_num))
self.conv_3D_a = nn.Conv3d(in_channels=4, out_channels=config.conv3D_filter_num_first, kernel_size=config.conv3D_kernel_size_first)
self.conv_3D_b = nn.Conv3d(in_channels=config.conv3D_filter_num_first, out_channels=config.conv3D_filter_num_second, kernel_size=config.conv3D_kernel_size_second)
self.maxpool_3D = torch.nn.MaxPool3d(kernel_size=config.maxpooling3D_size, stride=config.maxpooling3D_stride)
def initialize(self):
pass
def forward(self, user_title_text, user_title_mask, user_title_entity, user_content_text, user_content_mask, user_content_entity, user_category, user_subCategory, \
user_history_mask, user_history_graph, user_history_category_mask, user_history_category_indices, user_embedding, candidate_news_representation):
candidate_news_d0, candidate_news_dL = candidate_news_representation
history_embedding_d0, history_embedding_dL = self.news_encoder(user_title_text, user_title_mask, user_title_entity, \
user_content_text, user_content_mask, user_content_entity, \
user_category, user_subCategory, user_embedding)
batch_size = candidate_news_d0.size(0)
news_num = candidate_news_d0.size(1)
batch_news_num = batch_size * news_num
# 1. compute 3D matching images
candidate_news_d0 = candidate_news_d0.unsqueeze(dim=2).permute(0, 1, 2, 4 ,3) # [batch_size, news_num, 1, HDC_sequence_length, HDC_filter_num]
candidate_news_dL = candidate_news_dL.unsqueeze(dim=2).permute(0, 1, 2, 3 ,5, 4) # [batch_size, news_num, 1, 3, HDC_sequence_length, HDC_filter_num]
history_embedding_d0 = history_embedding_d0.unsqueeze(dim=1) # [batch_size, 1, max_history_num, HDC_filter_num, HDC_sequence_length]
history_embedding_dL = history_embedding_dL.unsqueeze(dim=1) # [batch_size, 1, max_history_num, 3, HDC_filter_num, HDC_sequence_length]
matching_images_d0 = torch.matmul(candidate_news_d0, history_embedding_d0) / self.scalar # [batch_size, news_num, max_history_num, HDC_sequence_length, HDC_sequence_length]
matching_images_dL = torch.matmul(candidate_news_dL, history_embedding_dL) / self.scalar # [batch_size, news_num, max_history_num, 3, HDC_sequence_length, HDC_sequence_length]
matching_images = torch.cat([matching_images_d0.unsqueeze(dim=3), matching_images_dL], dim=3).permute(0, 1, 3, 2, 4, 5) # [batch_size, news_num, 4, max_history_num, HDC_sequence_length, HDC_sequence_length]
matching_images = matching_images.view(batch_news_num, 4, self.max_history_num, self.HDC_sequence_length, self.HDC_sequence_length) # [batch_size * news_num, 4, max_history_num, HDC_sequence_length, HDC_sequence_length]
# 2. 3D convolution layers
Q1 = F.elu(self.conv_3D_a(matching_images), inplace=True) # [batch_size * news_num, conv3D_filter_num_first, max_history_num, HDC_sequence_length, HDC_sequence_length]
Q1 = self.maxpool_3D(Q1) # [batch_size * news_num, conv3D_filter_num_first, max_history_num_conv1_size, HDC_sequence_length_conv1_size, HDC_sequence_length_conv1_size]
Q2 = F.elu(self.conv_3D_b(Q1), inplace=True) # [batch_size * news_num, conv3D_filter_num_second, max_history_num_pool1_size, HDC_sequence_length_pool1_size, HDC_sequence_length_pool1_size]
Q2 = self.maxpool_3D(Q2) # [batch_size * news_num, conv3D_filter_num_second, max_history_num_conv2_size, HDC_sequence_length_conv2_size, HDC_sequence_length_conv2_size]
salient_signals = Q2.view([batch_size, news_num, -1]) # [batch_size * news_num, feature_size]
return salient_signals
class PUE(UserEncoder):
def __init__(self, news_encoder: NewsEncoder, config: Config):
super(PUE, self).__init__(news_encoder, config)
self.dense = nn.Linear(config.user_embedding_dim, config.personalized_embedding_dim, bias=True)
self.personalizedAttention = CandidateAttention(self.news_embedding_dim, config.personalized_embedding_dim, config.attention_dim)
def initialize(self):
nn.init.xavier_uniform_(self.dense.weight, gain=nn.init.calculate_gain('relu'))
nn.init.zeros_(self.dense.bias)
self.personalizedAttention.initialize()
def forward(self, user_title_text, user_title_mask, user_title_entity, user_content_text, user_content_mask, user_content_entity, user_category, user_subCategory, \
user_history_mask, user_history_graph, user_history_category_mask, user_history_category_indices, user_embedding, candidate_news_representation):
news_num = candidate_news_representation.size(1)
history_embedding = self.news_encoder(user_title_text, user_title_mask, user_title_entity, \
user_content_text, user_content_mask, user_content_entity, \
user_category, user_subCategory, user_embedding) # [batch_size, max_history_num, news_embedding_dim]
q_d = F.relu(self.dense(user_embedding), inplace=True) # [batch_size, personalized_embedding_dim]
user_representation = self.personalizedAttention(history_embedding, q_d, user_history_mask).unsqueeze(dim=1).expand(-1, news_num, -1) # [batch_size, news_num, news_embedding_dim]
return user_representation
class GRU(UserEncoder):
def __init__(self, news_encoder: NewsEncoder, config: Config):
super(GRU, self).__init__(news_encoder, config)
self.gru = nn.GRU(self.news_embedding_dim, config.hidden_dim, batch_first=True)
self.dec = nn.Linear(config.hidden_dim, self.news_embedding_dim, bias=True)
def initialize(self):
for parameter in self.gru.parameters():
if len(parameter.size()) >= 2:
nn.init.orthogonal_(parameter.data)
else:
nn.init.zeros_(parameter.data)
nn.init.xavier_uniform_(self.dec.weight, gain=nn.init.calculate_gain('tanh'))
nn.init.zeros_(self.dec.bias)
def forward(self, user_title_text, user_title_mask, user_title_entity, user_content_text, user_content_mask, user_content_entity, user_category, user_subCategory, \
user_history_mask, user_history_graph, user_history_category_mask, user_history_category_indices, user_embedding, candidate_news_representation):
batch_size = user_title_text.size(0)
news_num = candidate_news_representation.size(1)
user_history_num = user_history_mask.sum(dim=1, keepdim=False).long() # [batch_size]
history_embedding = self.news_encoder(user_title_text, user_title_mask, user_title_entity, \
user_content_text, user_content_mask, user_content_entity, \
user_category, user_subCategory, user_embedding) # [batch_size, max_history_num, news_embedding_dim]
sorted_user_history_num, sorted_indices = torch.sort(user_history_num, descending=True) # [batch_size]
_, desorted_indices = torch.sort(sorted_indices, descending=False) # [batch_size]
nonzero_indices = sorted_user_history_num.nonzero(as_tuple=False).squeeze(dim=1)
if nonzero_indices.size(0) == 0:
user_representation = torch.zeros([batch_size, news_num, self.news_embedding_dim], device=self.device) # [batch_size, news_num, news_embedding_dim]
return user_representation
index = nonzero_indices[-1]
if index + 1 == batch_size:
sorted_history_embedding = history_embedding.index_select(0, sorted_indices) # [batch_size, max_history_num, news_embedding_dim]
packed_sorted_history_embedding = pack_padded_sequence(sorted_history_embedding, sorted_user_history_num.cpu(), batch_first=True) # [batch_size, max_history_num, news_embedding_dim]
_, h = self.gru(packed_sorted_history_embedding) # [1, batch_size, news_embedding_dim]
h = torch.tanh(self.dec(h.squeeze(dim=0))) # [batch_size, news_embedding_dim]
user_representation = h.index_select(0, desorted_indices) # [batch_size, news_embedding_dim]
else:
non_empty_indices = sorted_indices[:index+1]
sorted_history_embedding = history_embedding.index_select(0, non_empty_indices) # [batch_size, max_history_num, news_embedding_dim]
packed_sorted_history_embedding = pack_padded_sequence(sorted_history_embedding, sorted_user_history_num[:index+1].cpu(), batch_first=True) # [batch_size, max_history_num, news_embedding_dim]
_, h = self.gru(packed_sorted_history_embedding) # [1, batch_size, news_embedding_dim]
h = torch.tanh(self.dec(h.squeeze(dim=0))) # [batch_size, news_embedding_dim]
user_representation = torch.cat([h, torch.zeros([batch_size - 1 - index, self.news_embedding_dim], device=self.device)], \
dim=0).index_select(0, desorted_indices) # [batch_size, news_embedding_dim]
user_representation = user_representation.unsqueeze(dim=1).expand(-1, news_num, -1) # [batch_size, news_num, news_embedding_dim]
return user_representation
class OMAP(UserEncoder):
def __init__(self, news_encoder: NewsEncoder, config: Config):
super(OMAP, self).__init__(news_encoder, config)
self.max_history_num = config.max_history_num
self.OMAP_head_num = config.OMAP_head_num
self.HiFi_Ark_regularizer_coefficient = config.HiFi_Ark_regularizer_coefficient
self.scalar = math.sqrt(float(self.news_embedding_dim))
self.W = nn.parameter.Parameter(torch.zeros([self.news_embedding_dim, self.OMAP_head_num]))
self.J_k = torch.ones([self.OMAP_head_num, self.OMAP_head_num])
self.I_k = torch.eye(self.OMAP_head_num)
def initialize(self):
nn.init.orthogonal_(self.W.data)
self.J_k.cuda()
self.I_k.cuda()
def forward(self, user_title_text, user_title_mask, user_title_entity, user_content_text, user_content_mask, user_content_entity, user_category, user_subCategory, \
user_history_mask, user_history_graph, user_history_category_mask, user_history_category_indices, user_embedding, candidate_news_representation):
history_embedding = self.news_encoder(user_title_text, user_title_mask, user_title_entity, \
user_content_text, user_content_mask, user_content_entity, \
user_category, user_subCategory, user_embedding) # [batch_size, max_history_num, news_embedding_dim]
# 1. self-attention
a = torch.bmm(history_embedding, history_embedding.permute(0, 2, 1)) / self.scalar # [batch_size, max_history_num, max_history_num]
mask = user_history_mask.unsqueeze(dim=1).expand(-1, self.max_history_num, -1) # [batch_size, max_history_num, max_history_num]
alpha = F.softmax(a.masked_fill(mask == 0, -1e9), dim=2) # [batch_size, max_history_num, max_history_num]
history_embedding = history_embedding + torch.bmm(alpha, history_embedding) # [batch_size, max_history_num, news_embedding_dim]
# 2. compute archives of OMAP
b = torch.matmul(history_embedding, self.W) / self.scalar # [batch_size, max_history_num, OMAP_head_num]
mask = user_history_mask.unsqueeze(dim=2).expand(-1, -1, self.OMAP_head_num) # [batch_size, max_history_num, OMAP_head_num]
beta = F.softmax(b.masked_fill(mask == 0, -1e9), dim=2) # [batch_size, max_history_num, OMAP_head_num]
archives = torch.bmm(beta.permute(0, 2, 1), history_embedding) # [batch_size, OMAP_head_num, news_embedding_dim]
# 3. aggregate archives into user representation
betatheta = torch.bmm(candidate_news_representation, archives.permute(0, 2, 1)) / self.scalar # [batch_size, news_num, OMAP_head_num]
archive_weights = F.softmax(betatheta, dim=2) # [batch_size, news_num, OMAP_head_num]
user_representation = torch.bmm(archive_weights, archives) # [batch_size, news_num, news_embedding_dim]
# 4. auxiliary loss to regularize the pooling heads \Lambda
# To minimize the term \Omega = ||\Lambda^{T}\Lambda \odot (J_{k}-I_{k})||_{F} in Hi-Fi Ark
if self.training:
Omega = torch.norm(torch.mm(self.W.transpose(1, 0), self.W) * (self.J_k - self.I_k), p='fro')
self.auxiliary_loss = self.HiFi_Ark_regularizer_coefficient * Omega
return user_representation