forked from Fouloscopie/robotique
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMain.m
239 lines (179 loc) · 7.74 KB
/
Main.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
%% Ce code permet de parametrer et de lancer la simulation %%
% %
% --------------- NE PAS MODIFIER --------------- %
% %
% Pour programmer les robots, utilisez Robot.m %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Add path to subfolder
addpath(genpath('utilities'));
%addpath('./');
%% Set up Robotarium object
N = 12;
xi = [-0.45 -0.15 0.15 0.45 -0.45 -0.15 0.15 0.45 -0.45 -0.15 0.15 0.45];
yi = [0.3 0.3 0.3 0.3 0 0 0 0 -0.3 -0.3 -0.3 -0.3] ;
ai = rand(1,N).*2* pi - pi ;
initial_conditions = [xi ; yi ; ai ] ;
r = Robotarium('NumberOfRobots', N, 'ShowFigure', true, 'InitialConditions', initial_conditions);
%% PARAMETERS
SPEED = r.max_linear_velocity ; % Moving speed of the robots
DETECTION_RANGE = 0.05 ; % Distance to the target for detection
ATTACK_RANGE = 0.5 ; % Distance to the target for attacking
ATTACK_STRENGTH = 0.01 ; % Reduction of target energy for robot attacking the target
PERCEPTION_RANGE = 0.35 ; % Perception range of the robots (for walls or neighbors)
[x_target, y_target] = getTargetPosition();
%% VARIABLES
target_energy = 100; % Experiment ends when target energy is down to 0
target_detected = zeros(1,N); % Which robots have detected the target
target_attacked = zeros(1,N); % Which robots are attacking the taget
%% AFFICHAGE
d = plot(x_target,y_target,'ro');
target_caption = text(-1.5, -1.1, sprintf('Energie de la cible : %0.1f%%', target_energy), 'FontSize', 15, 'FontWeight', 'bold', 'Color','r');
time_caption = text(-1.5, -1.2, sprintf('Temps écoulé : 0 s'), 'FontSize', 14, 'FontWeight', 'bold', 'Color','r');
uistack(target_caption, 'top');
uistack(time_caption, 'top');
uistack(d, 'bottom');
% Initialize velocity vector for agents.
v = zeros(2, N);
%% BARRIER CERTIFICATES
uni_barrier_cert = create_uni_barrier_certificate_with_boundary();
%si_to_uni_dyn = create_si_to_uni_dynamics('LinearVelocityGain', 0.5, 'AngularVelocityLimit', pi/2);
si_to_uni_dyn = create_si_to_uni_dynamics();
%% CREATE THE ROBOTS
clear allRobots
for i=1:N
allRobots{i} = Robot(i , initial_conditions(1,i) , initial_conditions(2,i) , initial_conditions(3,i) , SPEED);
end
%% DATA COLLECTION
expectedDuration = 5000 ;
total_time = 0 ;
data_target = nan(expectedDuration,2);
data_X = nan(expectedDuration,N);
data_Y = nan(expectedDuration,N);
data_attack = nan(expectedDuration,N);
data_detect = nan(expectedDuration,N);
%% START OF SIMULATION
iteration = 0 ;
while target_energy>0 && total_time<900
% Update iteration
iteration = iteration + 1 ;
% UPdate total time
total_time = total_time + r.time_step ;
% Retrieve velocity and position of the robots
x = r.get_poses();
for i=1:N
allRobots{i}.x = x(1,i);
allRobots{i}.y = x(2,i);
allRobots{i}.orientation = x(3,i);
end
% Distance to the target
d_target = sqrt((x_target - x(1,:)).^2 + (y_target - x(2,:)).^2);
% Walls detection
dWalls.up = abs(1-x(2,:));
dWalls.up(dWalls.up>PERCEPTION_RANGE) = NaN ;
dWalls.down = abs(-1-x(2,:));
dWalls.down(dWalls.down>PERCEPTION_RANGE) = NaN;
dWalls.left = abs(-1.6-x(1,:));
dWalls.left(dWalls.left>PERCEPTION_RANGE) = NaN;
dWalls.right = abs(1.6-x(1,:));
dWalls.right(dWalls.right>PERCEPTION_RANGE) = NaN;
%% Behavioural algorithm for the robots
% Compute distance between robots
dm = squareform(pdist([x(1,:)' x(2,:)']));
for i = 1:N
% Detect the neighbors within the perception range
%neighbors = delta_disk_neighbors(x, i, PERCEPTION_RANGE);
neighbors = find(dm(i,:)<=PERCEPTION_RANGE & dm(i,:)>0);
% Collect local information for robot i
clear INFO
% Walls information
INFO.murs.dist_haut = dWalls.up(i);
INFO.murs.dist_bas = dWalls.down(i);
INFO.murs.dist_gauche = dWalls.left(i);
INFO.murs.dist_droite = dWalls.right(i);
% Neighbors information (when applicable)
INFO.nbVoisins = length(neighbors);
for v = 1:length(neighbors)
INFO.voisins{v} = allRobots{neighbors(v)};
end
% Target information (when applicable)
if (d_target(i)<DETECTION_RANGE)
allRobots{i}.set_info_cible(x_target, y_target);
end
if (allRobots{i}.cible_detected==1) && (d_target(i)<ATTACK_RANGE)
allRobots{i}.start_attack();
else
allRobots{i}.stop_attack();
end
% Update the states of the robot
allRobots{i}.update(INFO) ;
end
% Control LEDS
for i=1:N
% Green light when target has been detected
if (allRobots{i}.cible_detected==1)
r.set_right_leds(i , [0 ; 255 ; 0]);
end
% Red light when target is attacked
if (allRobots{i}.cible_attacked==1)
r.set_left_leds(i , [255 ; 0 ; 0]);
else
r.set_left_leds(i , [0 ; 0 ; 0]);
end
end
% Update target energy
for i=1:N
if (allRobots{i}.cible_attacked==1)
target_energy = max(target_energy - ATTACK_STRENGTH , 0 );
end
end
%% Update robots speed and position
clear dx
for i=1:N
dx(1,i) = allRobots{i}.vx ;
dx(2,i) = allRobots{i}.vy ;
end
v = dx ;
% Avoid actuator errors : we need to threshold dx
norms = arrayfun(@(x) norm(dx(:, x)), 1:N);
threshold = 3/4*r.max_linear_velocity;
to_thresh = find(norms > threshold);
if ~isempty(to_thresh)
dx(:, to_thresh) = threshold*dx(:, to_thresh)./norms(to_thresh);
end
% Transform the single-integrator dynamics to unicycle dynamics using a provided utility function
dx = si_to_uni_dyn(dx, x);
dx = uni_barrier_cert(dx, x);
% Set velocities of agents 1:N
r.set_velocities(1:N, dx);
% Save data
tmpAtt = zeros(1,N);
tmpDet = zeros(1,N);
for i=1:N
if (allRobots{i}.cible_attacked==1)
tmpAtt(i) = 1 ;
end
if (allRobots{i}.cible_detected==1)
tmpDet(i) = 1 ;
end
end
data_attack(iteration,:) = tmpAtt ;
data_detect(iteration,:) = tmpDet ;
data_X(iteration,:) = x(1,:);
data_Y(iteration,:) = x(2,:);
data_target(iteration,:) = [target_energy total_time] ;
% Send the previously set velocities to the agents. This function must be called!
r.step();
% Display
target_caption.String = sprintf('Energie de la cible %0.1f%%', round(10.*target_energy)/10);
time_caption.String = sprintf('Temps écoulé : %d s', round(iteration*r.time_step));
end
% Resultat
disp(['Temps total pour détruire la cible : ' num2str(round(iteration*r.time_step)) ' secondes'])
% Données finales
data_X = data_X(1:iteration,:);
data_Y = data_Y(1:iteration,:);
data_attack = data_attack(1:iteration,:);
data_detect = data_detect(1:iteration,:);
data_target = data_target(1:iteration,:);
%r.debug();