-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtest_lighting.py
executable file
·72 lines (47 loc) · 2.38 KB
/
test_lighting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
from random import choice
from string import ascii_uppercase
# from torch.utils.data import DataLoader
from torchvision.transforms import transforms
import os
from PTI_utils import global_config, paths_config, hyperparameters
import wandb
from training.coaches.my_coach import MyCoach
from training.coaches.my_editor import MyEditor
from PTI_utils.ImagesDataset import ImagesDataset
import glob
def run_PTI(run_name='', use_wandb=False):
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
os.environ['CUDA_VISIBLE_DEVICES'] = global_config.cuda_visible_devices
if run_name == '':
global_config.run_name = ''.join(choice(ascii_uppercase) for i in range(12))
else:
global_config.run_name = run_name
if use_wandb:
run = wandb.init(project=paths_config.pti_results_keyword, reinit=True, name=global_config.run_name)
global_config.pivotal_training_steps = 1
global_config.training_step = 1
# embedding_dir_path = f'{paths_config.embedding_base_dir}/{paths_config.input_data_id}/{paths_config.pti_results_keyword}'
# os.makedirs(embedding_dir_path, exist_ok=True)
os.makedirs(paths_config.save_image_path, exist_ok=True)
# dataset = ImagesDataset(paths_config.input_data_path, transforms.Compose([
# transforms.ToTensor(),
# transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]))
# dataloader = DataLoader(dataset, batch_size=1, shuffle=False)
if not hyperparameters.edit:
# root_path = '/home/deep/projects/mini-stylegan2/Evaluation/data/ground_truth_ours_neg0.6_60degree_HR/crop_test_high_resolution/*png'
root_path = '/mnt/disks/data/datasets/IndoorHDRDataset2018-debug-128x256-data-splits2/test_crop/*png'
dataloader = sorted(glob.glob(root_path))[0:1] # before rebbutal
# dataloader = sorted(glob.glob(root_path))
# root_path = 'assets/wild2/*jp*g'
# dataloader = sorted(glob.glob(root_path))
coach = MyCoach(dataloader, use_wandb)
else:
# root_path = 'assets/test_set_light_editing_new/*195*png'
# root_path = 'assets/test_set_light_editing_new/*205*png'
root_path = 'assets/test_set_light_editing_new/*279*png'
dataloader = sorted(glob.glob(root_path))#[:10]
coach = MyEditor(dataloader, use_wandb)
coach.train()
return global_config.run_name
if __name__ == '__main__':
run_PTI(run_name='', use_wandb=False)