-
Notifications
You must be signed in to change notification settings - Fork 17
/
main.py
364 lines (299 loc) · 19.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
import argparse
import os
# os.environ['CUDA_VISIBLE_DEVICES'] = '2,3'
import numpy as np
import torch
import torch.optim as optim
import torch.nn as nn
from torch.utils.data import DataLoader
from tqdm import tqdm
import utils
from model import Model
def get_negative_mask(batch_size):
negative_mask = torch.ones((batch_size, 2 * batch_size), dtype=bool)
for i in range(batch_size):
negative_mask[i, i] = 0
negative_mask[i, i + batch_size] = 0
negative_mask = torch.cat((negative_mask, negative_mask), 0)
return negative_mask
def train(net, data_loader, train_optimizer, temperature, debiased, tau_plus):
net.train()
total_loss, total_num, train_bar = 0.0, 0, tqdm(data_loader)
for pos_1, pos_2, target, idx in train_bar:
pos_1, pos_2 = pos_1.cuda(non_blocking=True), pos_2.cuda(non_blocking=True)
feature_1, out_1 = net(pos_1)
feature_2, out_2 = net(pos_2)
# neg score
out = torch.cat([out_1, out_2], dim=0)
neg = torch.exp(torch.mm(out, out.t().contiguous()) / temperature)
mask = get_negative_mask(batch_size).cuda()
neg = neg.masked_select(mask).view(2 * batch_size, -1)
# pos score
pos = torch.exp(torch.sum(out_1 * out_2, dim=-1) / temperature)
pos = torch.cat([pos, pos], dim=0)
# estimator g()
if debiased:
N = batch_size * 2 - 2
Ng = (-tau_plus * N * pos + neg.sum(dim = -1)) / (1 - tau_plus)
# constrain (optional)
Ng = torch.clamp(Ng, min = N * np.e**(-1 / temperature))
else:
Ng = neg.sum(dim=-1)
# contrastive loss
loss = (- torch.log(pos / (pos + Ng) )).mean()
train_optimizer.zero_grad()
loss.backward()
train_optimizer.step()
total_num += batch_size
total_loss += loss.item() * batch_size
train_bar.set_description('Train Epoch: [{}/{}] Loss: {:.4f}'.format(epoch, epochs, total_loss / total_num))
return total_loss / total_num
# ssl training with IP-IRM
def train_env(net, data_loader, train_optimizer, temperature, updated_split):
net.train()
total_loss, total_num, train_bar = 0.0, 0, tqdm(data_loader)
for batch_index, data_env in enumerate(train_bar):
# extract all feature
pos_1_all, pos_2_all, indexs = data_env[0], data_env[1], data_env[-1]
feature_1_all, out_1_all = net(pos_1_all)
feature_2_all, out_2_all = net(pos_2_all)
if args.keep_cont: # global contrastive loss (1st partition)
logits_all, labels_all = utils.info_nce_loss(torch.cat([out_1_all, out_2_all], dim=0), out_1_all.size(0), temperature=temperature)
loss_original = torch.nn.CrossEntropyLoss()(logits_all, labels_all)
env_contrastive, env_penalty = [], []
if isinstance(updated_split, list): # if retain previous partitions
assert args.retain_group
for updated_split_each in updated_split:
for env in range(args.env_num):
out_1, out_2 = utils.assign_features(out_1_all, out_2_all, indexs, updated_split_each, env)
# contrastive loss
logits, labels = utils.info_nce_loss(torch.cat([out_1, out_2], dim=0), out_1.size(0), temperature=1.0)
logits_cont = logits / temperature
loss = torch.nn.CrossEntropyLoss()(logits_cont, labels)
# penalty
logits_pen = logits / args.irm_temp
penalty_score = utils.penalty(logits_pen, labels, torch.nn.CrossEntropyLoss(), mode=args.ours_mode)
# collect it into env dict
env_contrastive.append(loss)
env_penalty.append(penalty_score)
else:
for env in range(args.env_num):
out_1, out_2 = utils.assign_features(out_1_all, out_2_all, indexs, updated_split, env)
# contrastive loss
logits, labels = utils.info_nce_loss(torch.cat([out_1, out_2], dim=0), out_1.size(0), temperature=1.0)
logits_cont = logits / temperature
logits_pen = logits / args.irm_temp
loss = torch.nn.CrossEntropyLoss()(logits_cont, labels)
# penalty
penalty_score = utils.penalty(logits_pen, labels, torch.nn.CrossEntropyLoss(), mode=args.ours_mode)
# collect it into env dict
env_contrastive.append(loss)
env_penalty.append(penalty_score)
loss_cont = torch.stack(env_contrastive).mean()
if args.keep_cont:
loss_cont += loss_original
if args.increasing_weight:
penalty_weight = utils.increasing_weight(0, args.penalty_weight, epoch, args.epochs)
elif args.penalty_iters < 200:
penalty_weight = args.penalty_weight if epoch >= args.penalty_iters else 0.
else:
penalty_weight = args.penalty_weight
irm_penalty = torch.stack(env_penalty).mean()
loss_penalty = irm_penalty
loss = loss_cont + penalty_weight * loss_penalty
if penalty_weight > 1.0:
# Rescale the entire loss to keep gradients in a reasonable range
loss /= penalty_weight
train_optimizer.zero_grad()
loss.backward()
train_optimizer.step()
total_num += batch_size
total_loss += loss.item() * batch_size
train_bar.set_description('Train Epoch: [{}/{}] [{trained_samples}/{total_samples}] Loss: {:.4f} LR: {:.4f} PW {:.4f}'
.format(epoch, epochs, total_loss/total_num, train_optimizer.param_groups[0]['lr'], penalty_weight,
trained_samples=batch_index * batch_size + len(pos_1_all),
total_samples=len(data_loader.dataset)))
if batch_index % 10 == 0:
utils.write_log('Train Epoch: [{:d}/{:d}] [{:d}/{:d}] Loss: {:.4f} LR: {:.4f} PW {:.4f}'
.format(epoch, epochs, batch_index * batch_size + len(pos_1_all), len(data_loader.dataset), total_loss/total_num,
train_optimizer.param_groups[0]['lr'], penalty_weight), log_file=log_file)
return total_loss / total_num
def train_update_split(net, update_loader, soft_split, random_init=False):
utils.write_log('Start Maximizing ...', log_file, print_=True)
if random_init:
utils.write_log('Give a Random Split:', log_file, print_=True)
soft_split = torch.randn(soft_split.size(), requires_grad=True, device="cuda")
utils.write_log('%s' %(soft_split[:3]), log_file, print_=True)
else:
utils.write_log('Use Previous Split:', log_file, print_=True)
soft_split = soft_split.requires_grad_()
utils.write_log('%s' %(soft_split[:3]), log_file, print_=True)
if args.offline: # Maximize Step offline, first extract image features
net.eval()
feature_bank_1, feature_bank_2 = [], []
with torch.no_grad():
# generate feature bank
for pos_1, pos_2, target, Index in tqdm(update_loader_offline, desc='Feature extracting'):
feature_1, out_1 = net(pos_1.cuda(non_blocking=True))
feature_2, out_2 = net(pos_2.cuda(non_blocking=True))
feature_bank_1.append(out_1.cpu())
feature_bank_2.append(out_2.cpu())
feature1 = torch.cat(feature_bank_1, 0)
feature2 = torch.cat(feature_bank_2, 0)
updated_split = utils.auto_split_offline(feature1, feature2, soft_split, temperature, args.irm_temp, loss_mode='v2', irm_mode=args.irm_mode,
irm_weight=args.irm_weight_maxim, constrain=args.constrain, cons_relax=args.constrain_relax, nonorm=args.nonorm, log_file=log_file)
else:
updated_split = utils.auto_split(net, update_loader, soft_split, temperature, args.irm_temp, loss_mode='v2', irm_mode=args.irm_mode,
irm_weight=args.irm_weight_maxim, constrain=args.constrain, cons_relax=args.constrain_relax, nonorm=args.nonorm, log_file=log_file)
np.save("results/{}/{}/{}_{}{}".format(args.dataset, args.name, 'GroupResults', epoch, ".txt"), updated_split.cpu().numpy())
return updated_split
# test for one epoch, use weighted knn to find the most similar images' label to assign the test image
def test(net, memory_data_loader, test_data_loader):
net.eval()
total_top1, total_top5, total_num, feature_bank = 0.0, 0.0, 0, []
with torch.no_grad():
# generate feature bank
for data, _, target in tqdm(memory_data_loader, desc='Feature extracting'):
feature, out = net(data.cuda(non_blocking=True))
feature_bank.append(feature)
# [D, N]
feature_bank = torch.cat(feature_bank, dim=0).t().contiguous()
# [N]
try:
feature_labels = torch.tensor(memory_data_loader.dataset.labels, device=feature_bank.device)
except:
feature_labels = torch.tensor(memory_data_loader.dataset.targets, device=feature_bank.device)
# loop test data to predict the label by weighted knn search
test_bar = tqdm(test_data_loader)
for data, _, target in test_bar:
data, target = data.cuda(non_blocking=True), target.cuda(non_blocking=True)
feature, out = net(data)
total_num += data.size(0)
# compute cos similarity between each feature vector and feature bank ---> [B, N]
sim_matrix = torch.mm(feature, feature_bank)
# [B, K]
sim_weight, sim_indices = sim_matrix.topk(k=k, dim=-1)
# [B, K]
sim_labels = torch.gather(feature_labels.expand(data.size(0), -1), dim=-1, index=sim_indices)
sim_weight = (sim_weight / temperature).exp()
# counts for each class
one_hot_label = torch.zeros(data.size(0) * k, c, device=sim_labels.device)
# [B*K, C]
one_hot_label = one_hot_label.scatter(dim=-1, index=sim_labels.view(-1, 1).long(), value=1.0)
# weighted score ---> [B, C]
pred_scores = torch.sum(one_hot_label.view(data.size(0), -1, c) * sim_weight.unsqueeze(dim=-1), dim=1)
pred_labels = pred_scores.argsort(dim=-1, descending=True)
total_top1 += torch.sum((pred_labels[:, :1] == target.unsqueeze(dim=-1)).any(dim=-1).float()).item()
total_top5 += torch.sum((pred_labels[:, :5] == target.unsqueeze(dim=-1)).any(dim=-1).float()).item()
test_bar.set_description('KNN Test Epoch: [{}/{}] Acc@1:{:.2f}% Acc@5:{:.2f}%'
.format(epoch, epochs, total_top1 / total_num * 100, total_top5 / total_num * 100))
return total_top1 / total_num * 100, total_top5 / total_num * 100
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Train SimCLR')
parser.add_argument('--feature_dim', default=128, type=int, help='Feature dim for latent vector')
parser.add_argument('--temperature', default=0.5, type=float, help='Temperature used in softmax')
parser.add_argument('--tau_plus', default=0.1, type=float, help='Positive class priorx')
parser.add_argument('--k', default=200, type=int, help='Top k most similar images used to predict the label')
parser.add_argument('--batch_size', default=256, type=int, help='Number of images in each mini-batch')
parser.add_argument('--epochs', default=200, type=int, help='Number of sweeps over the dataset to train')
parser.add_argument('--debiased', default=False, type=bool, help='Debiased contrastive loss or standard loss')
parser.add_argument('--dataset', type=str, default='STL', help='experiment dataset')
parser.add_argument('--name', type=str, default='None', help='experiment name')
parser.add_argument('--pretrain_model', default=None, type=str, help='pretrain model used?')
parser.add_argument('--baseline', action="store_true", default=False, help='SSL baseline?')
#### ours model param ####
parser.add_argument('--ours_mode', default='w', type=str, help='what mode to use')
parser.add_argument('--penalty_weight', default=1, type=float, help='penalty weight')
parser.add_argument('--penalty_iters', default=0, type=int, help='penalty weight start iteration')
parser.add_argument('--increasing_weight', action="store_true", default=False, help='increasing the penalty weight?')
parser.add_argument('--env_num', default=2, type=int, help='num of the environments')
parser.add_argument('--maximize_iter', default=30, type=int, help='when maximize iteration')
parser.add_argument('--irm_mode', default='v1', type=str, help='irm mode when maximizing')
parser.add_argument('--irm_weight_maxim', default=1, type=float, help='irm weight in maximizing')
parser.add_argument('--irm_temp', default=0.5, type=float, help='irm loss temperature')
parser.add_argument('--random_init', action="store_true", default=False, help='random initialization before every time update?')
parser.add_argument('--constrain', action="store_true", default=False, help='make num of 2 group samples similar?')
parser.add_argument('--constrain_relax', action="store_true", default=False, help='relax the constrain?')
parser.add_argument('--retain_group', action="store_true", default=False, help='retain the previous group assignments?')
parser.add_argument('--debug', action="store_true", default=False, help='debug?')
parser.add_argument('--nonorm', action="store_true", default=False, help='not use norm for contrastive loss when maximizing')
parser.add_argument('--groupnorm', action="store_true", default=False, help='use group contrastive loss?')
parser.add_argument('--offline', action="store_true", default=False, help='save feature at the beginning of the maximize?')
parser.add_argument('--keep_cont', action="store_true", default=False, help='keep original contrastive?')
# args parse
args = parser.parse_args()
# seed
utils.set_seed(1234)
feature_dim, temperature, tau_plus, k = args.feature_dim, args.temperature, args.tau_plus, args.k
batch_size, epochs, debiased = args.batch_size, args.epochs, args.debiased
if not os.path.exists('results/{}/{}'.format(args.dataset, args.name)):
os.makedirs('results/{}/{}'.format(args.dataset, args.name))
log_file = 'results/{}/{}/log.txt'.format(args.dataset, args.name)
# data prepare
if args.dataset == 'STL':
train_data = utils.STL10Pair_Index(root='data', split='train+unlabeled', transform=utils.train_transform)
train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True, num_workers=4, pin_memory=True,
drop_last=True)
update_data = utils.STL10Pair_Index(root='data', split='train+unlabeled', transform=utils.train_transform)
update_loader = DataLoader(update_data, batch_size=3096, shuffle=True, num_workers=4, pin_memory=True, drop_last=True)
update_loader_offline = DataLoader(update_data, batch_size=3096, shuffle=False, num_workers=4, pin_memory=True)
memory_data = utils.STL10Pair(root='data', split='train', transform=utils.test_transform)
memory_loader = DataLoader(memory_data, batch_size=batch_size, shuffle=False, num_workers=4, pin_memory=True)
test_data = utils.STL10Pair(root='data', split='test', transform=utils.test_transform)
test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=False, num_workers=4, pin_memory=True)
elif args.dataset == 'CIFAR10':
train_data = utils.CIFAR10Pair_Index(root='data', train=True, transform=utils.train_transform, download=True)
train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True, num_workers=4, pin_memory=True,
drop_last=True)
update_data = utils.CIFAR10Pair_Index(root='data', train=True, transform=utils.train_transform)
update_loader = DataLoader(update_data, batch_size=3096, shuffle=True, num_workers=4, pin_memory=True, drop_last=True)
update_loader_offline = DataLoader(update_data, batch_size=3096, shuffle=False, num_workers=4, pin_memory=True)
memory_data = utils.CIFAR10Pair(root='data', train=True, transform=utils.test_transform)
memory_loader = DataLoader(memory_data, batch_size=batch_size, shuffle=False, num_workers=4, pin_memory=True)
test_data = utils.CIFAR10Pair(root='data', train=False, transform=utils.test_transform)
test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=False, num_workers=4, pin_memory=True)
elif args.dataset == 'CIFAR100':
train_data = utils.CIFAR100Pair_Index(root='data', train=True, transform=utils.train_transform)
train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True, num_workers=4, pin_memory=True,
drop_last=True)
update_data = utils.CIFAR100Pair_Index(root='data', train=True, transform=utils.train_transform)
update_loader = DataLoader(update_data, batch_size=3096, shuffle=True, num_workers=4, pin_memory=True, drop_last=True)
update_loader_offline = DataLoader(update_data, batch_size=3096, shuffle=False, num_workers=4, pin_memory=True)
memory_data = utils.CIFAR100Pair(root='data', train=True, transform=utils.test_transform)
memory_loader = DataLoader(memory_data, batch_size=batch_size, shuffle=False, num_workers=4, pin_memory=True)
test_data = utils.CIFAR100Pair(root='data', train=False, transform=utils.test_transform)
test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=False, num_workers=4, pin_memory=True)
# model setup and optimizer config
model = Model(feature_dim).cuda()
model = nn.DataParallel(model)
# pretrain model
if args.pretrain_model is not None:
model.load_state_dict(torch.load(args.pretrain_model))
optimizer = optim.Adam(model.parameters(), lr=1e-3, weight_decay=1e-6)
c = len(memory_data.classes)
print('# Classes: {}'.format(c))
# training loop
if not os.path.exists('results'):
os.mkdir('results')
epoch = 0
# update partition for the first time
if not args.baseline:
updated_split = torch.randn((len(update_data.data), args.env_num), requires_grad=True, device="cuda")
updated_split = train_update_split(model, update_loader, updated_split, random_init=args.random_init)
updated_split_all = [updated_split.clone().detach()]
for epoch in range(1, epochs + 1):
if args.baseline:
train_loss = train(model, train_loader, optimizer, temperature, debiased, tau_plus)
else: # Minimize Step
if args.retain_group: # retain the previous partitions
train_loss = train_env(model, train_loader, optimizer, temperature, updated_split_all)
else:
train_loss = train_env(model, train_loader, optimizer, temperature, updated_split)
if epoch % args.maximize_iter == 0: # Maximize Step
updated_split = train_update_split(model, update_loader, updated_split, random_init=args.random_init)
updated_split_all.append(updated_split)
if epoch % 25 == 0: # eval knn every 25 epochs
test_acc_1, test_acc_5 = test(model, memory_loader, test_loader)
txt_write = open("results/{}/{}/{}".format(args.dataset, args.name, 'knn_result.txt'), 'a')
txt_write.write('\ntest_acc@1: {}, test_acc@5: {}'.format(test_acc_1, test_acc_5))
torch.save(model.state_dict(), 'results/{}/{}/model_{}.pth'.format(args.dataset, args.name, epoch))