https://leetcode-cn.com/problems/is-graph-bipartite/
给定一个无向图 graph,当这个图为二分图时返回 true。
如果我们能将一个图的节点集合分割成两个独立的子集 A 和 B,并使图中的每一条边的两个节点一个来自 A 集合,一个来自 B 集合,我们就将这个图称为二分图。
graph 将会以邻接表方式给出,graph[i]表示图中与节点 i 相连的所有节点。每个节点都是一个在 0 到 graph.length-1 之间的整数。这图中没有自环和平行边: graph[i] 中不存在 i,并且 graph[i]中没有重复的值。
示例 1:
输入: [[1,3], [0,2], [1,3], [0,2]]
输出: true
解释:
无向图如下:
0----1
| |
| |
3----2
我们可以将节点分成两组: {0, 2} 和 {1, 3}。
示例 2:
输入: [[1,2,3], [0,2], [0,1,3], [0,2]]
输出: false
解释:
无向图如下:
0----1
| \ |
| \ |
3----2
我们不能将节点分割成两个独立的子集。
注意:
graph 的长度范围为 [1, 100]。
graph[i] 中的元素的范围为 [0, graph.length - 1]。
graph[i] 不会包含 i 或者有重复的值。
图是无向的: 如果 j 在 graph[i]里边, 那么 i 也会在 graph[j]里边。
- 图的遍历
- DFS
和 886 思路一样。 我甚至直接拿过来 dfs 函数一行代码没改就 AC 了。
唯一需要调整的地方是 graph 。 我将其转换了一下,具体可以看代码,非常简单易懂。
具体算法:
- 设置一个长度为 N 的数组 colors,colors[i] 表示 节点 i 的颜色,0 表示无颜色, 1 表示一种颜色, - 1 表示另一种颜色。
- 初始化 colors 全部为 0
- 构图(这里有邻接矩阵) 使得 grid[i][j] 表示 i 和 j 是否有连接(这里用 0 表示无, 1 表示有)
- 遍历图。
- 如果当前节点未染色,则染色,不妨染为颜色 1
- 递归遍历其邻居
- 如果邻居没有染色, 则染为另一种颜色。即 color * - 1,其中 color 为当前节点的颜色
- 否则,判断当前节点和邻居的颜色是否一致,不一致则返回 False,否则返回 True
强烈建议两道题一起练习一下。
- 图的建立和遍历
- colors 数组
class Solution:
def dfs(self, grid, colors, i, color, N):
colors[i] = color
for j in range(N):
if grid[i][j] == 1:
if colors[j] == color:
return False
if colors[j] == 0 and not self.dfs(grid, colors, j, -1 * color, N):
return False
return True
def isBipartite(self, graph: List[List[int]]) -> bool:
N = len(graph)
grid = [[0] * N for _ in range(N)]
colors = [0] * N
for i in range(N):
for j in graph[i]:
grid[i][j] = 1
for i in range(N):
if colors[i] == 0 and not self.dfs(grid, colors, i, 1, N):
return False
return True
复杂度分析
- 时间复杂度:$O(N^2)$
- 空间复杂度:$O(N)$
更多题解可以访问我的 LeetCode 题解仓库:https://github.com/azl397985856/leetcode 。 目前已经 30K star 啦。
关注公众号力扣加加,努力用清晰直白的语言还原解题思路,并且有大量图解,手把手教你识别套路,高效刷题。