-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrearrange_dataset_interX.py
383 lines (326 loc) · 18.6 KB
/
rearrange_dataset_interX.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
import os, glob
import random
import numpy as np
from tqdm import tqdm
import torch
import smplx
from scipy.spatial.transform import Rotation as R
import json
import pickle
import trimesh
from scipy.spatial import ConvexHull
from natsort import natsorted, ns
from HHInter.global_path import *
from pytorch3d import transforms
def deep_copy_npz(original_file_path, data_limit):
# Load original .npz file
with np.load(original_file_path, allow_pickle=True) as original_data:
# Create a dictionary to store copied data
copied_data = {}
for key in original_data.keys():
# Deep copy each array
copied_data[key] = np.copy(original_data[key])
if key != "gender":
copied_data[key] = copied_data[key][:data_limit]
return copied_data
def inv_convert(data, mode='angle'):
if not isinstance(data, torch.Tensor):
data = torch.tensor(data).float()
else:
data = data.float()
rotate_matrix = torch.tensor([[1., 0, 0], [0, 0, -1.], [0, 1., 0]])
if mode == 'angle':
data = transforms.axis_angle_to_matrix(data)
# convert yup tp zup.
data = torch.einsum('ij,bjk->bik', rotate_matrix, data)
# convert to axis angle
data = transforms.matrix_to_axis_angle(data)
elif mode == 'trans':
data = torch.einsum('ij,bj->bi', rotate_matrix, data)
else:
raise ValueError
return data.numpy()
def get_new_coordinate(smplxout):
'''
this function produces transform from body local coordinate to the world coordinate.
it takes only a single frame.
local coodinate:
- located at the pelvis
- x axis: from left hip to the right hip
- z axis: point up (negative gravity direction)
- y axis: pointing forward, following right-hand rule
'''
joints = smplxout.joints.detach().cpu().numpy()
x_axis = joints[:, 2, :] - joints[:, 1, :]
x_axis[:, -1] = 0
x_axis = x_axis / np.linalg.norm(x_axis, axis=1, keepdims=True)
z_axis = np.tile(np.array([0, 0, 1]), (joints.shape[0], 1))
y_axis = np.cross(z_axis, x_axis)
y_axis = y_axis / np.linalg.norm(y_axis, axis=1, keepdims=True)
global_ori_new = np.stack([x_axis, y_axis, z_axis], axis=-1)
transl_new = joints[:, :1, :] # put the local origin to pelvis
return global_ori_new, transl_new
def get_body_model(type, gender, batch_size, device='cpu'):
'''
type: smpl, smplx smplh and others. Refer to smplx tutorial
gender: male, female, neutral
batch_size: an positive integar
'''
body_model_path = get_SMPL_SMPLH_SMPLX_body_model_path()
body_model = smplx.create(body_model_path, model_type=type,
gender=gender, ext='pkl',
num_betas=10,
batch_size=batch_size
)
if device == 'cuda':
return body_model.cuda()
else:
return body_model
if __name__ == '__main__':
"This code does these things: " \
"1) Canonicalize the Inter-X dataset and add in marker information." \
"2) Downsample fps. " \
"3) Augment data by reversing the two person."
#### set input output dataset paths
interx_data_path = os.path.join(get_dataset_path(), 'Inter-X/motions')
output_path = os.path.join(get_dataset_path(), 'Inter-X/motions_customized_fps30')
OUT_FPS = 30
## read the corresponding smpx verts indices as markers.
# Note inter-x is smplx format, different from intergen dataset.
with open(get_SSM_SMPLX_body_marker_path()) as f:
marker_ssm_67 = list(json.load(f)['markersets'][0]['indices'].values())
# There is gender in Inter-X, different from InterGen that are all neutral. If not using gender model, then there will be error like floating person.
bm_one_neutral = get_body_model('smplx', 'neutral', 1)
bm_one_female = get_body_model('smplx', 'female', 1)
bm_one_male = get_body_model('smplx', 'male', 1)
# To avoid memory error.
data_limit = 10000
seg_limit = 5000
bm_batch_neutral = get_body_model('smplx', 'neutral', seg_limit, device='cuda')
bm_batch_female = get_body_model('smplx', 'female', seg_limit, device='cuda')
bm_batch_male = get_body_model('smplx', 'male', seg_limit, device='cuda')
bodymodel_batch = bm_batch_neutral
max_spatial_length = np.array([-1, -1, -1]).astype(np.float32)
block = np.zeros((3, 10))
block_name = [[[] for j in range(10)] for i in range(3)]
max_length_name = ""
seqs_folder = glob.glob(os.path.join(interx_data_path, '*'))
os.makedirs(output_path, exist_ok=True)
os.makedirs(os.path.join(output_path, 'person1'), exist_ok=True)
os.makedirs(os.path.join(output_path, 'person2'), exist_ok=True)
os.makedirs(os.path.join(output_path, 'synthetic_scene'), exist_ok=True)
# random.shuffle(seqs)
seqs_folder = natsorted(seqs_folder, alg=ns.PATH)
bar = tqdm(enumerate(seqs_folder), total=len(seqs_folder))
for idx, seq in bar:
# if int(os.path.basename(seq)[:-4]) != 142:
# continue
bar.set_description(f"Processing {seq}")
data_comb_1 = deep_copy_npz(os.path.join(seq, 'P1.npz'), data_limit)
data_comb_2 = deep_copy_npz(os.path.join(seq, 'P2.npz'), data_limit)
data_comb = {'person1': data_comb_1, 'person2': data_comb_2}
fps = 120
len_subseq = len(data_comb_1['pose_body'])
assert len_subseq == len(data_comb_2['pose_body'])
if len_subseq == 0:
continue
# Downsample fps
fps_ratio = float(OUT_FPS) / fps
new_num_frames = int(fps_ratio * len_subseq)
downsample_ids = np.linspace(0, len_subseq - 1,
num=new_num_frames, dtype=int)
# Inter-X dataset is initially Y-up, need to convert to Z-up.
for p in ['person1', 'person2']:
data = data_comb[p]
if data['gender'] == "neutral":
func = bm_one_neutral
elif data['gender'] == "female":
func = bm_one_female
elif data['gender'] == "male":
func = bm_one_male
else:
raise ValueError
data['root_orient'] = inv_convert(data['root_orient'])
data['trans'] = inv_convert(data['trans'], mode='trans')
# The SMPL rotation is around pelvis, but pelvis is not the original point.
delta_T = func(betas=torch.from_numpy(data['betas']).repeat(1, 1)).joints[
:, 0, :].detach().cpu().numpy()
data['trans'] = data['trans'] - delta_T + inv_convert(delta_T, mode='trans')
bparams_record = [{}, {}]
for order in [['person1', 'person2'], ['person2', 'person1']]:
transf_rotmat, transf_transl = None, None
if order[0] == 'person2':
name = "_swap"
else:
name = ""
for iid, g in enumerate(order):
data = data_comb[g]
if data['gender'] == "neutral":
func = bm_one_neutral
bodymodel_batch = bm_batch_neutral
elif data['gender'] == "female":
func = bm_one_female
bodymodel_batch = bm_batch_female
elif data['gender'] == "male":
func = bm_one_male
bodymodel_batch = bm_batch_male
else:
raise ValueError
## read data
transl = data['trans']
pose = np.concatenate(
[data['root_orient'].reshape(len_subseq, -1), data['pose_body'].reshape(len_subseq, -1)], axis=-1)
betas = data['betas'][0]
# Ensure contact the floor. This is for calculating the foot_contact loss in training.
segs = len_subseq // seg_limit + (1 if len_subseq % seg_limit != 0 else 0)
floor_height = 1e10
for seg in range(segs):
start = seg * seg_limit
end = min((seg + 1) * seg_limit, len_subseq)
if seg != segs - 1:
body_param = {}
body_param['transl'] = torch.FloatTensor(transl[start:end]).cuda()
body_param['global_orient'] = torch.FloatTensor(pose[start:end, :3]).cuda()
body_param['betas'] = torch.FloatTensor(betas[:10]).unsqueeze(0).repeat(end - start, 1).cuda()
body_param['body_pose'] = torch.FloatTensor(pose[start:end, 3:66]).cuda()
smplxout = bodymodel_batch(return_verts=True, **body_param)
else:
# Need to padding each param's first dimension to meet the seg_limit
padding_dimension = seg_limit - (end - start)
body_param = {}
pad_transl = torch.zeros([padding_dimension, 3], dtype=torch.float32).cuda()
pad_global_orient = torch.zeros([padding_dimension, 3], dtype=torch.float32).cuda()
pad_betas = torch.zeros([padding_dimension, 10], dtype=torch.float32).cuda()
pad_body_pose = torch.zeros([padding_dimension, 63], dtype=torch.float32).cuda()
body_param['transl'] = torch.cat([torch.FloatTensor(transl[start:end]).cuda(), pad_transl], dim=0)
body_param['global_orient'] = torch.cat([torch.FloatTensor(pose[start:end, :3]).cuda(), pad_global_orient], dim=0)
body_param['betas'] = torch.cat([torch.FloatTensor(betas[:10]).unsqueeze(0).repeat(end - start, 1).cuda(), pad_betas], dim=0)
body_param['body_pose'] = torch.cat([torch.FloatTensor(pose[start:end, 3:66]).cuda(), pad_body_pose], dim=0)
smplxout = bodymodel_batch(return_verts=True, **body_param)
smplxout.joints = smplxout.joints[:end - start]
"Note: There is case (4861) that one person lie and then stand, and his minimum height of the " \
"frame will increase, leading to one person higher than another person. This should be dataset noise, and currently just ignore it."
floor_height = min(floor_height, smplxout.joints.detach().squeeze().cpu().numpy()[:, :, 2].min(axis=0).min(axis=0))
data['trans'] = transl - np.array([0, 0, floor_height])
transl = data['trans']
outfilename = os.path.join(output_path, g, os.path.basename(seq) + name + '.npz')
data_out = {}
# -==================
smplxout = None
for seg in range(segs):
start = seg * seg_limit
end = min((seg + 1) * seg_limit, len_subseq)
if seg != segs - 1:
body_param = {}
body_param['transl'] = torch.FloatTensor(transl[start:end]).cuda()
body_param['global_orient'] = torch.FloatTensor(pose[start:end, :3]).cuda()
body_param['betas'] = torch.FloatTensor(betas[:10]).unsqueeze(0).repeat(end - start, 1).cuda()
body_param['body_pose'] = torch.FloatTensor(pose[start:end, 3:66]).cuda()
smplxout_tmp = bodymodel_batch(return_verts=True, **body_param)
else:
# Need to padding each param's first dimension to meet the seg_limit
padding_dimension = seg_limit - (end - start)
body_param = {}
pad_transl = torch.zeros([padding_dimension, 3], dtype=torch.float32).cuda()
pad_global_orient = torch.zeros([padding_dimension, 3], dtype=torch.float32).cuda()
pad_betas = torch.zeros([padding_dimension, 10], dtype=torch.float32).cuda()
pad_body_pose = torch.zeros([padding_dimension, 63], dtype=torch.float32).cuda()
body_param['transl'] = torch.cat([torch.FloatTensor(transl[start:end]).cuda(), pad_transl], dim=0)
body_param['global_orient'] = torch.cat([torch.FloatTensor(pose[start:end, :3]).cuda(), pad_global_orient], dim=0)
body_param['betas'] = torch.cat([torch.FloatTensor(betas[:10]).unsqueeze(0).repeat(end - start, 1).cuda(), pad_betas], dim=0)
body_param['body_pose'] = torch.cat([torch.FloatTensor(pose[start:end, 3:66]).cuda(), pad_body_pose], dim=0)
smplxout_tmp = bodymodel_batch(return_verts=True, **body_param)
smplxout_tmp.joints = smplxout_tmp.joints[:end - start]
smplxout_tmp.vertices = smplxout_tmp.vertices[:end - start]
if smplxout is None:
smplxout = smplxout_tmp
else:
smplxout.joints = torch.cat([smplxout.joints, smplxout_tmp.joints], dim=0)
smplxout.vertices = torch.cat([smplxout.vertices, smplxout_tmp.vertices], dim=0)
## perform transformation from the world coordinate to the amass coordinate
### get transformation from amass space to world space
if transf_rotmat is None or transf_transl is None:
transf_rotmat, transf_transl = get_new_coordinate(smplxout)
data_out['transf_rotmat'] = transf_rotmat
data_out['transf_transl'] = transf_transl
data_out['trans'] = transl
data_out['poses'] = pose
data_out['betas'] = betas
data_out['gender'] = data['gender']
data_out['mocap_framerate'] = OUT_FPS
## under this new coordinate, extract the joints/markers' locations
## when get generated joints/markers, one can directly transform them back to world coord
## note that hand pose is not considered here.
bparams_record[iid] = smplxout.vertices.detach().squeeze().cpu().numpy()
### extract joints and markers
joints = smplxout.joints[:, :22, :].detach().squeeze().cpu().numpy()
markers_67 = smplxout.vertices[:, marker_ssm_67, :].detach().squeeze().cpu().numpy()
data_out['joints'] = joints
data_out['marker_ssm2_67'] = markers_67
for k, v in data_out.items():
if k in ['trans', 'poses', 'joints', 'marker_ssm2_67', 'transf_rotmat', 'transf_transl']:
data_out[k] = v[downsample_ids]
np.savez(outfilename, **data_out)
"Record information (vertex and face of projected convex hull) for synthetic scene construction for each pair of person."
outfilename_A = os.path.join(output_path, 'synthetic_scene',
os.path.basename(seq).split(".")[0] + name + '.npz')
outfilename_B = os.path.join(output_path, 'synthetic_scene',
os.path.basename(seq).split(".")[0] + name.replace('_swap', '') + '.npz')
data_out = {}
vertices_A = bparams_record[0]
vertices_B = bparams_record[1]
all_mesh = []
for v_A, v_B in zip(vertices_A[::], vertices_B[::]):
all_mesh.append(trimesh.Trimesh(v_A, bodymodel_batch.faces, process=False))
all_mesh.append(trimesh.Trimesh(v_B, bodymodel_batch.faces, process=False))
# smpl_mot = trimesh.util.concatenate(all_mesh)
all_mesh = trimesh.util.concatenate(all_mesh)
spatial_length = all_mesh.extents
# all_mesh.show()
max_spatial_length[spatial_length > max_spatial_length] = spatial_length[spatial_length > max_spatial_length]
# Add 1 to the corresponding position in the block according to spatial_length.astype(int)
block[range(3), spatial_length.astype(int)] += 1
block_name[0][spatial_length.astype(int)[0]].append(os.path.basename(seq).split(".")[0])
block_name[1][spatial_length.astype(int)[1]].append(os.path.basename(seq).split(".")[0])
block_name[2][spatial_length.astype(int)[2]].append(os.path.basename(seq).split(".")[0])
print("Block: ", block)
# max_length_name = os.path.basename(seq).split(".")[0]
# print("Max spatial length: ", max_spatial_length, "\t name: ", max_length_name)
all_mesh.vertices[:, 2] = 0
"Simplify the vertices and faces of the mesh, or it will cause speed problem in dataloader."
last = all_mesh
# For 3D points (if they are in one plane), we need to apply convex hull several times until it converges.
# while len(last.convex_hull.vertices) > len(last.convex_hull.convex_hull.vertices):
# last = last.convex_hull
all_mesh_proj = last
# For further simplification, we need to remove those points too close.
# simplex = open3d.geometry.TriangleMesh(
# vertices=open3d.utility.Vector3dVector(all_mesh_proj.vertices.copy()),
# triangles=open3d.utility.Vector3iVector(all_mesh_proj.faces.copy()),
# ).simplify_vertex_clustering(0.1)
# all_mesh_proj = trimesh.Trimesh(vertices=simplex.vertices, faces=simplex.triangles)
# Project 3D points to 2D to get fewer vertices and faces, as now we only need to consider one facet.
point_2d = all_mesh_proj.vertices[:, :2]
hull = ConvexHull(point_2d)
point_2d_simplified = point_2d[hull.vertices]
point_to_3d = np.zeros([len(point_2d_simplified), 3])
point_to_3d[:, :2] = point_2d_simplified
# construct faces
faces = []
mean_point = point_to_3d.mean(axis=0)
point_to_3d = np.concatenate([point_to_3d, [mean_point]], axis=0)
for id in range(len(point_to_3d) - 2):
faces.append([id, id + 1, len(point_to_3d) - 1])
faces.append([len(point_to_3d) - 2, 0, len(point_to_3d) - 1])
all_mesh_proj = trimesh.Trimesh(vertices=point_to_3d, faces=faces)
data_out['faces'] = np.array(all_mesh_proj.faces.tolist())
data_out['vertices'] = np.array(all_mesh_proj.vertices.tolist()).astype(np.float32)
print("Scene vertices: ", data_out['vertices'].shape, "Scene faces: ", data_out['faces'].shape)
# trimesh.util.concatenate([smpl_mot, all_mesh_proj]).show()
np.savez(outfilename_A, **data_out)
np.savez(outfilename_B, **data_out)
print("Max spatial length: ", max_spatial_length)
print("Block: ", block)
print("Block name: ", block_name)
with open(os.path.join(output_path, 'block_info.pkl'), 'wb') as f:
pickle.dump([max_spatial_length, block, block_name], f)