-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathnormalizeStaining.py
146 lines (109 loc) · 4.74 KB
/
normalizeStaining.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import argparse
import numpy as np
from PIL import Image
import os
import glob
def normalizeStaining(img, Io=240, alpha=1, beta=0.15):
''' Normalize staining appearence of H&E stained images
Example use:
see test.py
Input:
I: RGB input image
Io: (optional) transmitted light intensity
Output:
Inorm: normalized image
H: hematoxylin image
E: eosin image
Reference:
A method for normalizing histology slides for quantitative analysis. M.
Macenko et al., ISBI 2009
'''
HERef = np.array([[0.5626, 0.2159],
[0.7201, 0.8012],
[0.4062, 0.5581]])
maxCRef = np.array([1.9705, 1.0308])
# define height and width of image
h, w, c = img.shape
# reshape image
img = img.reshape((-1, 3))
# calculate optical density
OD = -np.log((img.astype(np.float) + 1) / Io)
# remove transparent pixels
ODhat = OD[~np.any(OD < beta, axis=1)]
# compute eigenvectors
eigvals, eigvecs = np.linalg.eigh(np.cov(ODhat.T))
# eigvecs *= -1
# project on the plane spanned by the eigenvectors corresponding to the two
# largest eigenvalues
That = ODhat.dot(eigvecs[:, 1:3])
phi = np.arctan2(That[:, 1], That[:, 0])
minPhi = np.percentile(phi, alpha)
maxPhi = np.percentile(phi, 100 - alpha)
vMin = eigvecs[:, 1:3].dot(np.array([(np.cos(minPhi), np.sin(minPhi))]).T)
vMax = eigvecs[:, 1:3].dot(np.array([(np.cos(maxPhi), np.sin(maxPhi))]).T)
# a heuristic to make the vector corresponding to hematoxylin first and the
# one corresponding to eosin second
if vMin[0] > vMax[0]:
HE = np.array((vMin[:, 0], vMax[:, 0])).T
else:
HE = np.array((vMax[:, 0], vMin[:, 0])).T
# rows correspond to channels (RGB), columns to OD values
Y = np.reshape(OD, (-1, 3)).T
# determine concentrations of the individual stains
C = np.linalg.lstsq(HE, Y, rcond=None)[0]
# normalize stain concentrations
maxC = np.array([np.percentile(C[0, :], 99), np.percentile(C[1, :], 99)])
tmp = np.divide(maxC, maxCRef)
C2 = np.divide(C, tmp[:, np.newaxis])
# recreate the image using reference mixing matrix
Inorm = np.multiply(Io, np.exp(-HERef.dot(C2)))
Inorm[Inorm > 255] = 254
Inorm = np.reshape(Inorm.T, (h, w, 3)).astype(np.uint8)
# unmix hematoxylin and eosin
H = np.multiply(Io, np.exp(np.expand_dims(-HERef[:, 0], axis=1).dot(np.expand_dims(C2[0, :], axis=0))))
H[H > 255] = 254
H = np.reshape(H.T, (h, w, 3)).astype(np.uint8)
E = np.multiply(Io, np.exp(np.expand_dims(-HERef[:, 1], axis=1).dot(np.expand_dims(C2[1, :], axis=0))))
E[E > 255] = 254
E = np.reshape(E.T, (h, w, 3)).astype(np.uint8)
# if saveFile is not None:
# Image.fromarray(Inorm).save(saveFile)
# Image.fromarray(H).save(saveFile)
# Image.fromarray(E).save(saveFile)
#
# Image.fromarray(Inorm).save(saveFile + '.png')
# Image.fromarray(H).save(saveFile + '_H.png')
# Image.fromarray(E).save(saveFile + '_E.png')
return Inorm, H, E
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# parser.add_argument('--imageFile', type=str, default='example1.tif', help='RGB image file')
parser.add_argument('--imgList', type=str,
default='A:/Datasets/Histopathology/Real_SYSFL_Datasets/UNNORM/val/*/*/*/ROI*.png',
help='HE File')
parser.add_argument('--SaveFile', type=str, default='A:/Datasets/Histopathology/Real_SYSFL_Datasets/NORM_ROI/train',
help='save file')
parser.add_argument('--Io', type=int, default=240)
parser.add_argument('--alpha', type=float, default=1)
parser.add_argument('--beta', type=float, default=0.15)
args = parser.parse_args()
# test_list = glob.glob('/pub/data/chizm/BRACS/BRACS_RoI/resize_version/test/*/*.png')
# test_save_dir = '/pub/data/chizm/BRACS/BRACS_RoI/norm_version/test'
img_list = glob.glob(args.imgList)
for img_path in img_list:
img_name = img_path.split('\\')[-3] + '_' + img_path.split('\\')[-1]
class_name = os.path.abspath(os.path.dirname(img_path)).split('\\')[-3]
save_path = os.path.join(args.SaveFile, class_name, img_name)
img = np.array(Image.open(img_path))
normalizeStaining(img=img,
Io=args.Io,
alpha=args.alpha,
beta=args.beta)
print('{} is done'.format(img_name))
# img = np.array(Image.open(args.imageFile))
#
# normalizeStaining(img = img,
# saveFile = args.saveFile,
# Io = args.Io,
# alpha = args.alpha,
# beta = args.beta)