-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathmergan.py
392 lines (324 loc) · 18 KB
/
mergan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
from __future__ import absolute_import, division, print_function
import os, sys
sys.path.append(os.getcwd())
import pdb
import time
import functools
import pickle
import numpy as np
import tensorflow as tf
import tflib as lib
import tflib.plot
import tflib.save_images
import tflib.mnist
import tflib.svhn
import tflib.lsun
import network.gan64_model
import network.gan32_model
from pretrain.pretrain_model import pretrain_classifier
import argparse
parser = argparse.ArgumentParser(description='')
parser.add_argument('--result_path', default='', type=str, help='Result Path')
parser.add_argument('--load_model', default='', type=str, help='Load Model')
parser.add_argument('--RA', action = 'store_true', help='Alignment Path')
parser.add_argument('--RA_factor', default = 1e-4, type = float, help='Alignment Rate')
parser.add_argument('--JTR', action = 'store_true', help='Joint Training with Replay')
parser.add_argument('--dataset', default='mnist', type=str, help='Dataset: mnist, svhn, lsun')
parser.add_argument('--iters', default=0, type=int, help='Number of iterations per task')
parser.add_argument('--test', action = 'store_true', help='Test mode')
args = parser.parse_args()
if args.test:
RESULT_DIR = args.result_path
else:
RESULT_DIR = 'result/' + args.result_path
SAMPLES_DIR = os.path.join(RESULT_DIR, 'samples/')
MODEL_DIR = os.path.join(RESULT_DIR, 'model/')
DATASET = args.dataset
if DATASET == 'lsun':
N_PIXELS = 64
N_COLORS = 3
ITERS = 20001 if args.iters == 0 else args.iters
NUM_CLASS = 4
all_classes = ['bedroom','kitchen','church_outdoor','tower']
REDUCE_BATCH = False
DATASET_DIR = 'dataset/lsun'
elif DATASET == 'mnist':
N_PIXELS = 32
N_COLORS = 1
ITERS = 4001 if args.iters == 0 else args.iters
NUM_CLASS = 10
all_classes = [0,1,2,3,4,5,6,7,8,9]
REDUCE_BATCH = True
DATASET_DIR = 'dataset/mnist'
elif DATASET == 'svhn':
N_PIXELS = 32
N_COLORS = 3
ITERS = 8001 if args.iters == 0 else args.iters
NUM_CLASS = 10
all_classes = [0,1,2,3,4,5,6,7,8,9]
REDUCE_BATCH = True
DATASET_DIR = 'dataset/svhn'
RA_FACTOR = args.RA_factor
RA = args.RA
JTR = args.JTR
if args.load_model != '':
LOAD_MODEL = True
LOAD_MODEL_FILE = args.load_model
else:
LOAD_MODEL = False
# LOG
SAVE_SAMPLES_STEP = 200 # Generate and save samples every SAVE_SAMPLES_STEP
CHECKPOINT_STEP = 4000
OUTPUT_DIM = N_PIXELS * N_PIXELS * N_COLORS # Number of pixels in each iamge
N_GPUS = 1 # Number of GPUs
# ACGAN
ACGAN = True
ACGAN_SCALE = 1. # How to scale the critic's ACGAN loss relative to WGAN loss
ACGAN_SCALE_G = 1. # How to scale generator's ACGAN loss relative to WGAN loss
# WGAN-GP
CRITIC_ITERS = 5 # How many iterations to train the critic for
LAMBDA = 10 # Gradient penalty lambda hyperparameter
D_LR = 0.0001
G_LR = 0.0001
BETA1_D = 0.0
BETA1_G = 0.0
BATCH_SIZE = 64 # Batch size. Must be a multiple of N_GPUS
# Create directories if necessary
if not os.path.exists(SAMPLES_DIR):
print("*** create sample dir %s" % SAMPLES_DIR)
os.makedirs(SAMPLES_DIR)
if not os.path.exists(MODEL_DIR):
print("*** create checkpoint dir %s" % MODEL_DIR)
os.makedirs(MODEL_DIR)
lib.print_model_settings(locals().copy())
DEVICES = ['/gpu:{}'.format(i) for i in range(N_GPUS)]
if DATASET == 'lsun':
Generator, Discriminator = network.gan64_model.GeneratorAndDiscriminator()
elif DATASET == 'mnist' or DATASET == 'svhn':
Generator, Discriminator = network.gan32_model.GeneratorAndDiscriminator(N_COLORS)
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as session:
all_real_data_conv = tf.placeholder(tf.float32, shape=[BATCH_SIZE, N_COLORS, N_PIXELS, N_PIXELS])
all_real_labels = tf.placeholder(tf.int32, shape=[BATCH_SIZE])
labels_splits = tf.split(all_real_labels, len(DEVICES), axis=0)
n_samples = BATCH_SIZE//len(DEVICES)
if tf.__version__.startswith('1.'):
split_real_data_conv = tf.split(all_real_data_conv, len(DEVICES))
else:
split_real_data_conv = tf.split(0, len(DEVICES), all_real_data_conv)
gen_costs, disc_costs, disc_real_acgan_costs, disc_fake_acgan_costs = [],[],[],[]
disc_acgan_real_accs, disc_acgan_fake_accs = [], []
for device_index, (device, real_data_conv, real_labels) in enumerate(zip(DEVICES, split_real_data_conv, labels_splits)):
with tf.device(device):
real_data = tf.reshape(2*(real_data_conv-.5), [BATCH_SIZE//len(DEVICES), OUTPUT_DIM])
fake_labels_splits = real_labels
fake_data = Generator('New.', BATCH_SIZE//len(DEVICES), labels = fake_labels_splits)
fake_data_old = Generator('Old.', BATCH_SIZE//len(DEVICES), labels = fake_labels_splits)
disc_real, disc_real_acgan = Discriminator(real_data)
disc_fake, disc_fake_acgan = Discriminator(fake_data)
gen_cost = -tf.reduce_mean(disc_fake)
disc_wgan = tf.reduce_mean(disc_fake) - tf.reduce_mean(disc_real)
alpha = tf.random_uniform(shape=[BATCH_SIZE//len(DEVICES),1], minval=0., maxval=1. )
differences = fake_data - real_data
interpolates = real_data + (alpha*differences)
gradients = tf.gradients(Discriminator(interpolates)[0], interpolates)[0]
slopes = tf.sqrt(tf.reduce_sum(tf.square(gradients), reduction_indices=[1]))
gradient_penalty = tf.reduce_mean((slopes-1.)**2)
disc_wgan_pure = disc_wgan
disc_wgan += LAMBDA*gradient_penalty
disc_cost = disc_wgan
if ACGAN:
disc_real_acgan_costs.append(tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=disc_real_acgan, labels=real_labels)))
disc_fake_acgan_costs.append(tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=disc_fake_acgan, labels=fake_labels_splits)))
disc_cost += ACGAN_SCALE * tf.add_n(disc_real_acgan_costs)
gen_cost += ACGAN_SCALE_G * tf.add_n(disc_fake_acgan_costs)
disc_acgan_real_accs.append(tf.reduce_mean(
tf.cast(tf.equal(tf.to_int32(tf.argmax(disc_real_acgan, dimension=1)), real_labels ), tf.float32)))
disc_acgan_fake_accs.append(tf.reduce_mean(
tf.cast(tf.equal(tf.to_int32(tf.argmax(disc_fake_acgan, dimension=1)), fake_labels_splits ), tf.float32)))
gen_costs.append(gen_cost)
disc_costs.append(disc_cost)
gen_cost = tf.add_n(gen_costs) / len(DEVICES)
disc_cost = tf.add_n(disc_costs) / len(DEVICES)
if ACGAN:
disc_acgan_real_acc = tf.add_n(disc_acgan_real_accs) / len(DEVICES)
disc_acgan_fake_acc = tf.add_n(disc_acgan_fake_accs) / len(DEVICES)
_fixed_noise = pickle.load(open('/datatmp/result/fixed_noise/fixed_noise','r'))
fixed_noise_one = tf.constant(_fixed_noise)
fixed_noise_samples = []
for i in range(NUM_CLASS):
fixed_labels_one = tf.constant(np.ones(100,dtype='int32')*i)
fixed_noise_samples.append(Generator('New.', 100, labels = fixed_labels_one, noise=fixed_noise_one))
def generate_image_one(num_classes, iterations):
for i in range(num_classes):
samples = session.run(fixed_noise_samples[i])
samples = ((samples+1.)*(255./2)).astype('int32')
samples = samples.reshape((100, N_COLORS, N_PIXELS, N_PIXELS))
if DATASET == 'mnist':
samples = np.tile(samples,[1,3,1,1])
lib.save_images.save_images(samples, '{}Task_{}_Iter_{}_{}.png'.format(SAMPLES_DIR, num_classes, iterations, all_classes[i]))
ckpt_saver = tf.train.Saver(max_to_keep=10000)
session.run(tf.global_variables_initializer())
if args.test:
if DATASET == 'svhn' or DATASET == 'mnist':
labelmap = list(range(10))
elif DATASET == 'lsun':
labelmap = [0,1,8,6]
model = pretrain_classifier(session, image_size = N_PIXELS, batch_size = BATCH_SIZE, dataset = DATASET)
if DATASET == 'mnist' or DATASET == 'svhn':
task_test = [4,9] # Evaluate models after task 4 (5th) and task9 (10th)
else:
task_test = [0,1,2,3] # Evaluate models after each task
for task in task_test:
LOAD_MODEL_FILE = MODEL_DIR + 'WGAN_GP.model' + str(all_classes[task]) + '-' + str(ITERS - 1)
ckpt_saver.restore(session, LOAD_MODEL_FILE)
ave_acc = 0
for label in range(task+1):
samples = Generator('New.', BATCH_SIZE, labels = tf.constant(np.ones(BATCH_SIZE)*label,dtype='int32'))
acc = 0.
repeat = 100
for i in range(repeat):
_samples = session.run(samples) * 128 + 128
_samples = _samples.astype(int).reshape([BATCH_SIZE,N_COLORS,N_PIXELS,N_PIXELS]).transpose([0,2,3,1]).squeeze()
predicted_labels, predicted_probality = model.test(_samples)
_acc = float(np.sum(np.equal(predicted_labels,labelmap[label]))) / BATCH_SIZE
acc += _acc/repeat
print('Task: {} Class: {} Accuracy: {}'.format(task + 1, all_classes[label], acc))
ave_acc += acc / (task+1)
print('Average accuracy: {}'.format(ave_acc))
exit()
class_count = 0
if LOAD_MODEL:
ckpt_saver.restore(session, LOAD_MODEL_FILE)
for var_name in lib._params:
if 'New.Generator' in var_name:
name = var_name[4:]
value = session.run(lib._params['New.' + name])
session.run(lib._params['Old.' + name].assign(value))
class_count = 1
# Train loop
for classes in all_classes[class_count:]:
_labels = np.ones(BATCH_SIZE).astype(int) * class_count
# Dataset for current task
if DATASET == 'lsun':
train_gen, dev_gen = lib.lsun.load(BATCH_SIZE, [classes], data_dir = DATASET_DIR)
elif DATASET == 'mnist':
train_gen, dev_gen, _ = lib.mnist.load(BATCH_SIZE, [classes], data_dir = DATASET_DIR)
elif DATASET == 'svhn':
train_gen, dev_gen = lib.svhn.load(BATCH_SIZE, [classes], data_dir = DATASET_DIR)
def inf_train_gen():
while True:
for (images,labels) in train_gen():
yield images,labels
gen = inf_train_gen()
# Save a batch of ground-truth samples
_x,_ = inf_train_gen().next()
_x_r = session.run(real_data, feed_dict={real_data_conv: _x[:BATCH_SIZE//N_GPUS]})
_x_r = ((_x_r+1.)*(255.99//2)).astype('int32')
if DATASET == 'lsun' or DATASET == 'svhn':
lib.save_images.save_images(_x_r.reshape((BATCH_SIZE//N_GPUS, N_COLORS, N_PIXELS, N_PIXELS)), '%s/samples_groundtruth_%s.png' % (SAMPLES_DIR, classes))
elif DATASET == 'mnist':
lib.save_images.save_images(np.tile(_x_r.reshape([BATCH_SIZE//N_GPUS,N_COLORS,N_PIXELS,N_PIXELS]),[1,3,1,1]), '%s/samples_groundtruth_%s.png' % (SAMPLES_DIR, classes))
# Loss function for keeping previous tasks
if class_count > 0:
if RA: # MeRGAN Replay Alignment
RA_costs = []
def RA_loss_fn(fake_labels,num_samples):
noise = tf.random_normal([num_samples, 128])
old_imgs = Generator('Old.', num_samples, labels = fake_labels, noise = noise)
new_imgs = Generator('New.', num_samples, labels = fake_labels, noise = noise)
return tf.nn.l2_loss(old_imgs - new_imgs)
num_samples = n_samples // class_count if REDUCE_BATCH else n_samples
for i in range(class_count):
fake_labels = tf.ones(num_samples, tf.int32) * i
RA_costs.append(RA_loss_fn(fake_labels, num_samples))
RA_cost = tf.add_n(RA_costs) * RA_FACTOR
RA_cost = RA_cost / class_count if REDUCE_BATCH else RA_cost
else:
RA_cost = tf.constant(0.)
if JTR: # MeRGAN Joint Training with Replay
JTR_gen_costs, JTR_gen_acgan_costs, JTR_disc_costs, JTR_disc_acgan_costs, JTR_old_accs, JTR_new_accs = [],[],[],[],[],[]
def JTR_loss_fn(fake_labels,num_samples):
noise = tf.random_normal([num_samples, 128])
fake_data_old = Generator('Old.', num_samples, labels = fake_labels, noise = noise)
fake_data_new = Generator('New.', num_samples, labels = fake_labels, noise = noise)
disc_JTR_old, disc_JTR_old_acgan = Discriminator(fake_data_old)
disc_JTR_new, disc_JTR_new_acgan = Discriminator(fake_data_new)
JTR_disc_costs.append(tf.reduce_mean(disc_JTR_new) - tf.reduce_mean(disc_JTR_old))
JTR_gen_costs.append(-tf.reduce_mean(disc_JTR_new))
JTR_disc_acgan_costs.append(tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=disc_JTR_old_acgan, labels=fake_labels)))
JTR_gen_acgan_costs.append(tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=disc_JTR_new_acgan, labels=fake_labels)))
JTR_old_accs.append(tf.reduce_mean(
tf.cast(tf.equal(tf.to_int32(tf.argmax(disc_JTR_old_acgan, dimension=1)), fake_labels ), tf.float32)))
JTR_new_accs.append(tf.reduce_mean(
tf.cast(tf.equal(tf.to_int32(tf.argmax(disc_JTR_new_acgan, dimension=1)), fake_labels ), tf.float32)))
num_samples = n_samples // class_count if REDUCE_BATCH else n_samples
for i in range(class_count):
fake_labels = tf.ones(num_samples, tf.int32) * i
JTR_loss_fn(fake_labels,num_samples)
n_divide = class_count
JTR_disc_cost = (tf.add_n(JTR_disc_costs) + tf.add_n(JTR_disc_acgan_costs))
JTR_gen_cost = (tf.add_n(JTR_gen_costs) + tf.add_n(JTR_gen_acgan_costs))
JTR_old_acc = tf.add_n(JTR_old_accs) / n_divide
JTR_new_acc = tf.add_n(JTR_new_accs) / n_divide
JTR_disc_cost = JTR_disc_cost if REDUCE_BATCH else JTR_disc_cost / n_divide
JTR_gen_cost = JTR_gen_cost if REDUCE_BATCH else JTR_gen_cost / n_divide
else:
JTR_disc_cost = tf.constant(0.)
JTR_gen_cost = tf.constant(0.)
disc_cost_all = disc_cost + JTR_disc_cost
gen_cost_all = gen_cost + RA_cost + JTR_gen_cost
gen_train_op = tf.train.AdamOptimizer(learning_rate=G_LR, beta1=BETA1_G, beta2=0.9).minimize(gen_cost_all,
var_list=lib.params_with_name('New.Generator'), colocate_gradients_with_ops=True)
disc_train_op = tf.train.AdamOptimizer(learning_rate=D_LR, beta1=BETA1_D, beta2=0.9).minimize(disc_cost_all,
var_list=lib.params_with_name('Discriminator.'), colocate_gradients_with_ops=True)
else:
gen_train_op = tf.train.AdamOptimizer(learning_rate=G_LR, beta1=BETA1_G, beta2=0.9).minimize(gen_cost,
var_list=lib.params_with_name('New.Generator'), colocate_gradients_with_ops=True)
disc_train_op = tf.train.AdamOptimizer(learning_rate=D_LR, beta1=BETA1_D, beta2=0.9).minimize(disc_cost,
var_list=lib.params_with_name('Discriminator.'), colocate_gradients_with_ops=True)
session.run(tf.variables_initializer([var for var in tf.global_variables() if 'Adam' in var.name]))
session.run(tf.variables_initializer([var for var in tf.global_variables() if 'beta' in var.name]))
# Train
for iteration in range(ITERS):
start_time = time.time()
# Train generator
if iteration > 0:
if class_count > 0:
_gen_cost, _JTR_disc_cost, _JTR_gen_cost, _RA_cost, _ = session.run([gen_cost,
JTR_disc_cost, JTR_gen_cost, RA_cost, gen_train_op],
feed_dict = {all_real_labels: _labels})
else:
_gen_cost, _ = session.run([gen_cost, gen_train_op],
feed_dict = {all_real_labels: _labels})
lib.plot.plot('g-cost', _gen_cost)
if RA and class_count > 0:
lib.plot.plot('RA-cost', _RA_cost)
if JTR and class_count > 0:
lib.plot.plot('JTR_gen_cost', _JTR_gen_cost)
lib.plot.plot('JTR_disc_cost', _JTR_disc_cost)
# Train critic
for i in range(CRITIC_ITERS):
_images, _ = gen.next()
_disc_cost, _disc_wgan, _disc_wgan_pure, _ = session.run(
[disc_cost, disc_wgan, disc_wgan_pure, disc_train_op],
feed_dict={all_real_data_conv: _images, all_real_labels: _labels})
lib.plot.plot('d-cost', _disc_cost)
lib.plot.plot('wgan-pure', _disc_wgan_pure)
lib.plot.plot('penalty', _disc_wgan - _disc_wgan_pure)
lib.plot.plot('time', time.time() - start_time)
# Generate samples
if iteration % SAVE_SAMPLES_STEP == 0 or iteration in [1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384]:
generate_image_one(class_count + 1, iteration)
# Save checkpoint
if iteration % CHECKPOINT_STEP == 0:
ckpt_saver.save(session, MODEL_DIR + 'WGAN_GP.model' + str(classes), iteration)
if iteration < 10 or iteration % 100 == 0:
lib.plot.flush(path = RESULT_DIR)
lib.plot.tick()
# Copy Generator
class_count += 1
for var_name in lib._params:
if 'New.Generator' in var_name:
name = var_name[4:]
value = session.run(lib._params['New.' + name])
session.run(lib._params['Old.' + name].assign(value))