-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
130 lines (110 loc) · 4.43 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
"""Main entry point for the FluxPipeline image generation system.
This module provides the main execution flow for the FluxPipeline project,
demonstrating:
- Environment setup and configuration
- Pipeline initialization
- Image generation with different seed profiles
- Error handling and logging
The module showcases various generation scenarios including:
- Generation with different seed profiles
- Generation with manual seeds
- Generation with custom parameters
Example:
Run the application:
```bash
python main.py
```
Note:
The module automatically handles environment setup, warning suppression,
and proper error handling for production use.
"""
from config.logging_config import logger # Fix incorrect import from venv
import warnings
from pathlib import Path
from config.env_config import setup_environment
from utils.system_utils import setup_workspace, suppress_warnings, setup_nltk
from pipeline.flux_pipeline import FluxPipeline
from core.seed_manager import SeedProfile
def main():
"""Main execution function for the FluxPipeline system.
This function:
1. Sets up the environment and workspace
2. Initializes the generation pipeline
3. Demonstrates different generation scenarios
4. Handles errors and cleanup
The function showcases various generation capabilities including:
- Different seed profiles (Conservative, Balanced, Experimental)
- Manual seed specification
- Custom generation parameters
Example:
```python
# Run the main function
if __name__ == "__main__":
main()
```
Note:
The function includes proper error handling and logging
for production use.
"""
# Initialize environment and workspace
setup_environment() # Configure environment variables
suppress_warnings() # Suppress non-critical warnings
setup_nltk() # Initialize NLTK for text processing
workspace = setup_workspace() # Setup directory structure
# Initialize generation pipeline
logger.info("Initializing FluxPipeline...")
pipeline = FluxPipeline(workspace=workspace)
# Load model with error handling
if not pipeline.load_model():
logger.error("Failed to load the model. Exiting.")
return
# Example generation prompt
prompt = (
"High-quality portrait of a beautiful gothic woman with a voluptuous figure, "
"pale skin, dark makeup, and long black hair. She is wearing elegant gothic attire "
"with intricate lace and accessories. The setting has a moody, atmospheric background "
"with dramatic lighting to enhance the overall aesthetic. Realistic, highly detailed, "
"professional photography, 4k resolution, masterpiece."
)
# Demonstrate generation with different seed profiles
logger.info("Generating images with different seed profiles...")
for profile in [
SeedProfile.CONSERVATIVE, # Lower range seeds for stability
SeedProfile.BALANCED, # Mid-range seeds for general use
SeedProfile.EXPERIMENTAL, # High range seeds for variation
]:
logger.info(f"\nGenerating with {profile.value} profile")
pipeline.generate_image(
prompt=prompt,
profile=profile,
guidance_scale=0.0, # No guidance scaling
num_inference_steps=4, # Fast generation
height=1024, # High resolution output
width=1024,
)
# Demonstrate generation with manual seed
logger.info("\nGenerating with manual seed...")
pipeline.generate_image(
prompt=prompt,
profile=SeedProfile.BALANCED,
manual_seed=83, # Specific seed for reproducibility
guidance_scale=0.0,
num_inference_steps=4,
height=1024,
width=1024,
)
if __name__ == "__main__":
# Suppress warnings during execution
with warnings.catch_warnings():
warnings.simplefilter("ignore")
try:
# Run main function
main()
except KeyboardInterrupt:
# Handle user interruption gracefully
logger.info("Generation interrupted by user")
except Exception as e:
# Log unexpected errors with full traceback
logger.error(f"Unexpected error: {str(e)}")
import traceback
traceback.print_exc()