-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
143 lines (114 loc) · 5.08 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import os
import random
import time
import numpy as np
import torch
from torch.optim import AdamW
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from transformers import WarmupLinearSchedule
from torchvision import transforms
from data_loader import TrainDataset
from models.MFFLoss_Y import fusion_loss_mff
from models.UTFusion import UTFusion
from utils import get_logger, parse_args, get_time_dif, seed_everything
def train(args, model, train_dataloader, logger, checkpoint):
now = time.strftime('%Y-%m-%d|%H:%M:%S', time.localtime())
tf_logs_dir = os.path.join(args.tf_logs_dir, args.model, now)
start_time = time.time()
no_decay = ['norm.bias', 'norm.weight', 'bias']
optimizer_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
'weight_decay': 0.05, 'lr': args.lr},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0,
'lr': args.lr},
]
optimizer = AdamW(optimizer_parameters)
scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.epoch * args.warmup_ratio,
t_total=args.epoch)
start = 0
loss = torch.tensor(0.0)
best_loss = torch.inf
mff_loss = fusion_loss_mff().to(args.device)
if checkpoint:
start = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'],strict=False)
optimizer.load_state_dict(checkpoint['optimizer'])
scheduler.load_state_dict(checkpoint['scheduler'])
random.setstate(checkpoint['py_state'])
np.random.set_state(checkpoint['np_state'])
torch.set_rng_state(checkpoint['torch_cpu_state'])
torch.cuda.set_rng_state_all(checkpoint['torch_gpu_state'])
best_loss = checkpoint['best_loss']
tf_logs_dir = checkpoint['tf_logs_dir']
writer = SummaryWriter(tf_logs_dir)
for epoch in range(start, args.epoch):
model.train()
total_loss_epoch = torch.tensor(0.0)
lr = optimizer.state_dict()['param_groups'][0]['lr']
logger.info(f'[{epoch + 1}/{args.epoch}]: Learning rate: {lr:>5.8f}')
bar = tqdm(enumerate(train_dataloader), total=len(train_dataloader), smoothing=0.9, ncols=120)
bar.set_description(f'[{epoch + 1}/{args.epoch}]')
bar.set_postfix({'loss': f'{loss.item():>5.4f}', })
for i, (S1, S2, fuse_scheme) in bar:
S1 = S1.to(args.device, non_blocking=True)
S2 = S2.to(args.device, non_blocking=True)
fuse_scheme = fuse_scheme.to(args.device, non_blocking=True)
fused = model((S1, S2), fuse_scheme)
loss = mff_loss(S1, S2, fused, fuse_scheme)
optimizer.zero_grad()
loss.backward()
optimizer.step()
bar.set_postfix({'loss': f'{loss.item():>5.4f}', })
total_loss_epoch += loss.item()
scheduler.step()
total_loss_epoch = total_loss_epoch / len(train_dataloader)
improve = ''
if total_loss_epoch <= best_loss:
best_loss = total_loss_epoch
improve = '*'
state = {
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
'py_state': random.getstate(),
'np_state': np.random.get_state(),
'torch_cpu_state': torch.get_rng_state(),
'torch_gpu_state': torch.cuda.get_rng_state_all(),
'best_loss': best_loss,
'tf_logs_dir': tf_logs_dir
}
torch.save(state, args.log_dir + f'/{args.model}.ckpt')
logger.info(f'[{epoch + 1}/{args.epoch}]: loss: {total_loss_epoch:>5.4f} {improve}')
logger.info(f'[{epoch + 1}/{args.epoch}]: best_loss: {best_loss:>5.4f}')
writer.add_scalar('loss/loss', total_loss_epoch, epoch)
time_dif = get_time_dif(start_time)
logger.info(f'time usage: {time_dif}')
writer.close()
if __name__ == '__main__':
# exit(0)
# 固定随机种子
seed_everything(415)
# args预处理
args = parse_args()
args.use_checkpoint = True if args.use_checkpoint == 'True' else False
args.restart = True if args.restart == 'True' else False
# 日志
logger = get_logger(args)
logger.info('PARAMETER ...')
logger.info(args)
train_dataset = TrainDataset()
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=5,
prefetch_factor=5, pin_memory=True, persistent_workers=True, drop_last=False)
model = UTFusion(use_checkpoint=args.use_checkpoint)
model.to(args.device)
checkpoint = torch.load(os.path.join(args.log_dir, args.model + '.ckpt')) if args.restart else None
try:
train(args, model, train_dataloader, logger, checkpoint)
except Exception as e:
logger.error(e)
finally:
# os.system("/usr/bin/shutdown")
pass