-
-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy pathset.js
356 lines (282 loc) · 6.55 KB
/
set.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
/**
* Mnemonist Set
* ==============
*
* Useful function related to sets such as union, intersection and so on...
*/
// TODO: optimize versions for less variadicities
/**
* Variadic function computing the intersection of multiple sets.
*
* @param {...Set} sets - Sets to intersect.
* @return {Set} - The intesection.
*/
exports.intersection = function() {
if (arguments.length < 2)
throw new Error('mnemonist/Set.intersection: needs at least two arguments.');
var I = new Set();
// First we need to find the smallest set
var smallestSize = Infinity,
smallestSet = null;
var s, i, l = arguments.length;
for (i = 0; i < l; i++) {
s = arguments[i];
// If one of the set has no items, we can stop right there
if (s.size === 0)
return I;
if (s.size < smallestSize) {
smallestSize = s.size;
smallestSet = s;
}
}
// Now we need to intersect this set with the others
var iterator = smallestSet.values(),
step,
item,
add,
set;
// TODO: we can optimize by iterating each next time over the current intersection
// but this probably means more RAM to consume since we'll create n-1 sets rather than
// only the one.
while ((step = iterator.next(), !step.done)) {
item = step.value;
add = true;
for (i = 0; i < l; i++) {
set = arguments[i];
if (set === smallestSet)
continue;
if (!set.has(item)) {
add = false;
break;
}
}
if (add)
I.add(item);
}
return I;
};
/**
* Variadic function computing the union of multiple sets.
*
* @param {...Set} sets - Sets to unite.
* @return {Set} - The union.
*/
exports.union = function() {
if (arguments.length < 2)
throw new Error('mnemonist/Set.union: needs at least two arguments.');
var U = new Set();
var i, l = arguments.length;
var iterator,
step;
for (i = 0; i < l; i++) {
iterator = arguments[i].values();
while ((step = iterator.next(), !step.done))
U.add(step.value);
}
return U;
};
/**
* Function computing the difference between two sets.
*
* @param {Set} A - First set.
* @param {Set} B - Second set.
* @return {Set} - The difference.
*/
exports.difference = function(A, B) {
// If first set is empty
if (!A.size)
return new Set();
if (!B.size)
return new Set(A);
var D = new Set();
var iterator = A.values(),
step;
while ((step = iterator.next(), !step.done)) {
if (!B.has(step.value))
D.add(step.value);
}
return D;
};
/**
* Function computing the symmetric difference between two sets.
*
* @param {Set} A - First set.
* @param {Set} B - Second set.
* @return {Set} - The symmetric difference.
*/
exports.symmetricDifference = function(A, B) {
var S = new Set();
var iterator = A.values(),
step;
while ((step = iterator.next(), !step.done)) {
if (!B.has(step.value))
S.add(step.value);
}
iterator = B.values();
while ((step = iterator.next(), !step.done)) {
if (!A.has(step.value))
S.add(step.value);
}
return S;
};
/**
* Function returning whether A is a subset of B.
*
* @param {Set} A - First set.
* @param {Set} B - Second set.
* @return {boolean}
*/
exports.isSubset = function(A, B) {
var iterator = A.values(),
step;
// Shortcuts
if (A === B)
return true;
if (A.size > B.size)
return false;
while ((step = iterator.next(), !step.done)) {
if (!B.has(step.value))
return false;
}
return true;
};
/**
* Function returning whether A is a superset of B.
*
* @param {Set} A - First set.
* @param {Set} B - Second set.
* @return {boolean}
*/
exports.isSuperset = function(A, B) {
return exports.isSubset(B, A);
};
/**
* Function adding the items of set B to the set A.
*
* @param {Set} A - First set.
* @param {Set} B - Second set.
*/
exports.add = function(A, B) {
var iterator = B.values(),
step;
while ((step = iterator.next(), !step.done))
A.add(step.value);
return;
};
/**
* Function subtracting the items of set B from the set A.
*
* @param {Set} A - First set.
* @param {Set} B - Second set.
*/
exports.subtract = function(A, B) {
var iterator = B.values(),
step;
while ((step = iterator.next(), !step.done))
A.delete(step.value);
return;
};
/**
* Function intersecting the items of A & B.
*
* @param {Set} A - First set.
* @param {Set} B - Second set.
*/
exports.intersect = function(A, B) {
var iterator = A.values(),
step;
while ((step = iterator.next(), !step.done)) {
if (!B.has(step.value))
A.delete(step.value);
}
return;
};
/**
* Function disjuncting the items of A & B.
*
* @param {Set} A - First set.
* @param {Set} B - Second set.
*/
exports.disjunct = function(A, B) {
var iterator = A.values(),
step;
var toRemove = [];
while ((step = iterator.next(), !step.done)) {
if (B.has(step.value))
toRemove.push(step.value);
}
iterator = B.values();
while ((step = iterator.next(), !step.done)) {
if (!A.has(step.value))
A.add(step.value);
}
for (var i = 0, l = toRemove.length; i < l; i++)
A.delete(toRemove[i]);
return;
};
/**
* Function returning the size of the intersection of A & B.
*
* @param {Set} A - First set.
* @param {Set} B - Second set.
* @return {number}
*/
exports.intersectionSize = function(A, B) {
var tmp;
// We need to know the smallest set
if (A.size > B.size) {
tmp = A;
A = B;
B = tmp;
}
if (A.size === 0)
return 0;
if (A === B)
return A.size;
var iterator = A.values(),
step;
var I = 0;
while ((step = iterator.next(), !step.done)) {
if (B.has(step.value))
I++;
}
return I;
};
/**
* Function returning the size of the union of A & B.
*
* @param {Set} A - First set.
* @param {Set} B - Second set.
* @return {number}
*/
exports.unionSize = function(A, B) {
var I = exports.intersectionSize(A, B);
return A.size + B.size - I;
};
/**
* Function returning the Jaccard similarity between A & B.
*
* @param {Set} A - First set.
* @param {Set} B - Second set.
* @return {number}
*/
exports.jaccard = function(A, B) {
var I = exports.intersectionSize(A, B);
if (I === 0)
return 0;
var U = A.size + B.size - I;
return I / U;
};
/**
* Function returning the overlap coefficient between A & B.
*
* @param {Set} A - First set.
* @param {Set} B - Second set.
* @return {number}
*/
exports.overlap = function(A, B) {
var I = exports.intersectionSize(A, B);
if (I === 0)
return 0;
return I / Math.min(A.size, B.size);
};