forked from locuslab/tofu
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_module.py
182 lines (144 loc) · 7.59 KB
/
data_module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import torch
from torch import nn
from torch.utils.data import Dataset
from torch.nn.utils.rnn import pad_sequence
import datasets
from utils import get_model_identifiers_from_yaml, add_dataset_index
def convert_raw_data_to_model_format(tokenizer, max_length, question, answer, model_configs):
question_start_token, question_end_token, answer_token = model_configs['question_start_tag'], model_configs['question_end_tag'], model_configs['answer_tag']
new_question = question_start_token + question + question_end_token
new_answer = answer_token + answer
full_text = new_question + new_answer
num_question_tokens = len(tokenizer.tokenize(new_question, add_special_tokens=True))
encoded = tokenizer(
full_text,
add_special_tokens=True,
max_length=max_length,
truncation=True,
)
pad_length = max_length - len(encoded.input_ids)
pad_input_ids = encoded['input_ids'] + [tokenizer.eos_token_id] * pad_length
pad_attention_mask = encoded['attention_mask'] + [0] * pad_length
if len(encoded.input_ids) == max_length:
label = encoded.input_ids
else:
label = encoded['input_ids'] + [tokenizer.eos_token_id] + [-100] * (pad_length-1)
#change label to -100 for question tokens
for i in range(num_question_tokens): label[i] = -100
return torch.tensor(pad_input_ids),torch.tensor(label),torch.tensor(pad_attention_mask)
class TextForgetDatasetQA(Dataset):
def __init__(self, data_path, tokenizer, model_family, max_length=512, split = "forget10", loss_type="idk"):
super(TextForgetDatasetQA, self).__init__()
self.tokenizer = tokenizer
self.max_length = max_length
self.forget_data = datasets.load_dataset(data_path, split)["train"]
retain_split = "retain" + str(100 - int(split.replace("forget", ""))).zfill(2)
self.retain_data =datasets.load_dataset(data_path, retain_split)["train"]
self.model_configs = get_model_identifiers_from_yaml(model_family)
self.loss_type = loss_type
if self.loss_type == "idk":
self.split1, self.split2 = "idk", "retain"
self.idontknowfile = "data/idontknow.jsonl"
self.idk = open(self.idontknowfile, "r").readlines()
else:
self.split1, self.split2 = "forget", "retain"
def __len__(self):
return len(self.forget_data)
def __getitem__(self, idx):
rets = []
for data_type in [self.split1, self.split2]:
#use questions from forget set if split is idk or forget
data = self.retain_data if data_type == "retain" else self.forget_data
idx = idx if data_type != "retain" else (idx + torch.randint(0, len(self.retain_data), (1,)).item()) % len(self.retain_data)
question = data[idx]['question']
answer = data[idx]['answer']
if data_type == "idk":
#get a random answer position from idk
rand_pos = torch.randint(0, len(self.idk), (1,)).item()
answer = self.idk[rand_pos].strip()
converted_data = convert_raw_data_to_model_format(self.tokenizer, self.max_length, question, answer, self.model_configs)
rets.append(converted_data)
return rets
class TextForgetDatasetDPOQA(Dataset):
def __init__(self, data_path, tokenizer, model_family, max_length=512, split = "forget10", ):
super(TextForgetDatasetDPOQA, self).__init__()
self.tokenizer = tokenizer
self.max_length = max_length
self.forget_data = datasets.load_dataset(data_path, split)["train"]
self.idontknowfile = "data/idontknow.jsonl"
self.idk = open(self.idontknowfile, "r").readlines()
retain_split = "retain" + str(100 - int(split.replace("forget", ""))).zfill(2)
self.retain_data = datasets.load_dataset(data_path, retain_split)["train"]
self.model_configs = get_model_identifiers_from_yaml(model_family)
def __len__(self):
return len(self.forget_data)
def __getitem__(self, idx):
rets = []
for data_type in ["idk", "forget", "retain"]:
data = self.forget_data if data_type != "retain" else self.retain_data
idx = idx if data_type != "retain" else (idx + torch.randint(0, len(self.retain_data), (1,)).item()) % len(self.retain_data)
question = data[idx]['question']
if data_type != "idk":
answer = data[idx]['answer']
else:
#get a random position from idk
rand_pos = torch.randint(0, len(self.idk), (1,)).item()
answer = self.idk[rand_pos].strip()
converted_data = convert_raw_data_to_model_format(self.tokenizer, self.max_length, question, answer, self.model_configs)
rets.append(converted_data)
return rets
class TextDatasetQA(Dataset):
def __init__(self, data_path, tokenizer, model_family, max_length=512, split = None, question_key='question', answer_key='answer'):
super(TextDatasetQA, self).__init__()
self.tokenizer = tokenizer
self.max_length = max_length
# data_len = len(datasets.load_dataset(data_path, split)["train"])
# self.data = datasets.load_dataset(data_path, split)["train"].select(range(min(100, data_len)))
self.data = datasets.load_dataset(data_path, split)["train"]
self.data = add_dataset_index(self.data)
self.model_configs = get_model_identifiers_from_yaml(model_family)
self.qk = question_key
self.ak = answer_key
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
question = self.data[idx][self.qk]
answers = self.data[idx][self.ak]
indices = self.data[idx]['index']
if isinstance(answers, str):
answers = [answers]
pad_input_ids_list = []
label_list = []
pad_attention_mask_list = []
for answer in answers:
converted_data = convert_raw_data_to_model_format(self.tokenizer, self.max_length, question, answer, self.model_configs)
pad_input_ids_list.append(converted_data[0])
label_list.append(converted_data[1])
pad_attention_mask_list.append(converted_data[2])
return torch.stack(pad_input_ids_list).squeeze(),\
torch.stack(label_list).squeeze(),\
torch.stack(pad_attention_mask_list).squeeze(),\
torch.tensor(indices)
def collate_fn(batch):
input_ids, attention_masks = zip(*batch)
input_ids = pad_sequence(input_ids, batch_first=True, padding_value=-100)
attention_masks = pad_sequence(attention_masks, batch_first=True, padding_value=0)
return input_ids, attention_masks
def custom_data_collator(samples):
input_ids = [s[0] for s in samples]
labels = [s[1] for s in samples]
attention_mask = [s[2] for s in samples]
return torch.stack(input_ids), torch.stack(labels), torch.stack(attention_mask)
def custom_data_collator_with_indices(samples):
input_ids = [s[0] for s in samples]
labels = [s[1] for s in samples]
attention_mask = [s[2] for s in samples]
indices = [s[3] for s in samples]
return torch.stack(input_ids), torch.stack(labels), torch.stack(attention_mask), torch.stack(indices)
def get_batch_loss(output, labels):
shifted_labels = labels[..., 1:].contiguous()
output = output[..., :-1, :].contiguous()
loss_function = nn.CrossEntropyLoss(ignore_index=-100, reduction='none')
# get the sum loss for each sequence in a batch
loss = loss_function(output.transpose(-1,-2), shifted_labels).sum(dim=-1)
return loss