Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

enrichkegg函数报错 #27

Open
PanSX-Dr opened this issue Feb 1, 2024 · 2 comments
Open

enrichkegg函数报错 #27

PanSX-Dr opened this issue Feb 1, 2024 · 2 comments

Comments

@PanSX-Dr
Copy link

PanSX-Dr commented Feb 1, 2024

于老师,我最近在用clusterprofiler进行kegg分析,运行enrichkegg函数的时候代码如下:kk <- enrichKEGG(gene = gene,
organism = 'hsa',
pvalueCutoff = 0.05),但是提示报错信息如下:Reading KEGG annotation online: "https://rest.kegg.jp/link/hsa/pathway"...
Error in file(con, "r") :
cannot open the connection to 'https://rest.kegg.jp/link/hsa/pathway'
此外: Warning message:
In file(con, "r") :
URL 'https://rest.kegg.jp/link/hsa/pathway': status was 'SSL connect error'。尝试过很多问题,请问这个该怎么结局。

@huerqiang
Copy link

你这个是网络问题,尝试换别的网络,并且安装最新版本的clusterProfiler后再试试吧,

@PanSX-Dr
Copy link
Author

PanSX-Dr commented Feb 2, 2024

您好老师,我的clusterprofiler应该是最新版本的。一直不行,然后尝试了在本地运行enrichkegg,代码如下
kk <- enrichKEGG(gene = gene,
organism = 'hsa',
pvalueCutoff = 0.05,
use_internal_data = T)
然后能够运行出来结果,但是富集的结果和您的教程里不一样,我腹肌的结果如下
image
在discription那一列只显示的kegg的编号,但是在教程里面应该是具体的某个信号通路的描述。而且我本地运行的还多出来了category和subcategory两列。请问这是什么原因呢?
sessionInfo()
R version 4.3.2 (2023-10-31 ucrt)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 11 x64 (build 22621)

Matrix products: default

locale:
[1] LC_COLLATE=Chinese (Simplified)_China.utf8
[2] LC_CTYPE=Chinese (Simplified)_China.utf8
[3] LC_MONETARY=Chinese (Simplified)_China.utf8
[4] LC_NUMERIC=C
[5] LC_TIME=Chinese (Simplified)_China.utf8

time zone: Asia/Shanghai
tzcode source: internal

attached base packages:
[1] stats graphics grDevices utils datasets methods
[7] base

other attached packages:
[1] clusterProfiler_4.10.0

loaded via a namespace (and not attached):
[1] IRanges_2.36.0 nnet_7.3-19
[3] goftest_1.2-3 Biostrings_2.70.2
[5] vctrs_0.6.5 spatstat.random_3.2-2
[7] digest_0.6.34 png_0.1-8
[9] shape_1.4.6 ggrepel_0.9.5
[11] deldir_2.0-2 parallelly_1.36.0
[13] MASS_7.3-60.0.1 reshape2_1.4.4
[15] httpuv_1.6.14 foreach_1.5.2
[17] BiocGenerics_0.48.1 qvalue_2.34.0
[19] withr_3.0.0 ggfun_0.1.4
[21] ellipsis_0.3.2 survival_3.5-7
[23] memoise_2.0.1 gson_0.1.0
[25] tidyHeatmap_1.8.1 tidytree_0.4.6
[27] zoo_1.8-12 GlobalOptions_0.1.2
[29] DNAcopy_1.76.0 pbapply_1.7-2
[31] KEGGREST_1.42.0 promises_1.2.1
[33] httr_1.4.7 globals_0.16.2
[35] fitdistrplus_1.1-11 rstudioapi_0.15.0
[37] pan_1.9 miniUI_0.1.1.1
[39] generics_0.1.3 DOSE_3.28.2
[41] curl_5.2.0 S4Vectors_0.40.2
[43] zlibbioc_1.48.0 ggraph_2.1.0
[45] polyclip_1.10-6 GenomeInfoDbData_1.2.11
[47] SparseArray_1.2.3 interactiveDisplayBase_1.40.0
[49] xtable_1.8-4 stringr_1.5.1
[51] doParallel_1.0.17 S4Arrays_1.2.0
[53] BiocFileCache_2.10.1 hms_1.1.3
[55] glmnet_4.1-8 GenomicRanges_1.54.1
[57] irlba_2.3.5.1 colorspace_2.1-0
[59] filelock_1.0.3 ROCR_1.0-11
[61] reticulate_1.35.0 spatstat.data_3.0-4
[63] magrittr_2.0.3 lmtest_0.9-40
[65] readr_2.1.5 later_1.3.2
[67] viridis_0.6.5 ggtree_3.10.0
[69] lattice_0.22-5 spatstat.geom_3.2-8
[71] future.apply_1.11.1 scattermore_1.2
[73] XML_3.99-0.16.1 shadowtext_0.1.3
[75] cowplot_1.1.3 matrixStats_1.2.0
[77] RcppAnnoy_0.0.22 pillar_1.9.0
[79] nlme_3.1-164 iterators_1.0.14
[81] compiler_4.3.2 RSpectra_0.16-1
[83] stringi_1.8.3 UCSCXenaTools_1.4.8
[85] jomo_2.7-6 tensor_1.5
[87] minqa_1.2.6 SummarizedExperiment_1.32.0
[89] dendextend_1.17.1 lubridate_1.9.3
[91] KEGG.db_3.2.3 plyr_1.8.9
[93] crayon_1.5.2 abind_1.4-5
[95] gridGraphics_0.5-1 locfit_1.5-9.8
[97] sp_2.1-3 graphlayouts_1.1.0
[99] bit_4.0.5 dplyr_1.1.4
[101] fastmatch_1.1-4 codetools_0.2-19
[103] GetoptLong_1.0.5 plotly_4.10.4
[105] mime_0.12 splines_4.3.2
[107] circlize_0.4.15 Rcpp_1.0.12
[109] fastDummies_1.7.3 dbplyr_2.4.0
[111] HDO.db_0.99.1 blob_1.2.4
[113] utf8_1.2.4 clue_0.3-65
[115] BiocVersion_3.18.1 lme4_1.1-35.1
[117] fs_1.6.3 listenv_0.9.1
[119] ggplotify_0.1.2 tibble_3.2.1
[121] maftools_2.18.0 Matrix_1.6-5
[123] statmod_1.5.0 tzdb_0.4.0
[125] tweenr_2.0.2 pkgconfig_2.0.3
[127] tools_4.3.2 cachem_1.0.8
[129] RSQLite_2.3.5 viridisLite_0.4.2
[131] DBI_1.2.1 fastmap_1.1.1
[133] scales_1.3.0 grid_4.3.2
[135] ica_1.0-3 Seurat_5.0.1
[137] broom_1.0.5 AnnotationHub_3.10.0
[139] patchwork_1.2.0 BiocManager_1.30.22
[141] dotCall64_1.1-1 RANN_2.6.1
[143] rpart_4.1.23 farver_2.1.1
[145] tidygraph_1.3.1 scatterpie_0.2.1
[147] yaml_2.3.8 MatrixGenerics_1.14.0
[149] cli_3.6.2 purrr_1.0.2
[151] stats4_4.3.2 GEOquery_2.70.0
[153] leiden_0.4.3.1 lifecycle_1.0.4
[155] uwot_0.1.16 Biobase_2.62.0
[157] backports_1.4.1 BiocParallel_1.36.0
[159] timechange_0.3.0 gtable_0.3.4
[161] rjson_0.2.21 ggridges_0.5.6
[163] progressr_0.14.0 parallel_4.3.2
[165] ape_5.7-1 limma_3.58.1
[167] jsonlite_1.8.8 RcppHNSW_0.5.0
[169] mitml_0.4-5 bitops_1.0-7
[171] ggplot2_3.4.4 bit64_4.0.5
[173] Rtsne_0.17 yulab.utils_0.1.4
[175] spatstat.utils_3.0-4 SeuratObject_5.0.1
[177] mice_3.16.0 GOSemSim_2.28.1
[179] lazyeval_0.2.2 shiny_1.8.0
[181] htmltools_0.5.7 enrichplot_1.22.0
[183] GO.db_3.18.0 sctransform_0.4.1
[185] rappdirs_0.3.3 glue_1.7.0
[187] spam_2.10-0 XVector_0.42.0
[189] RCurl_1.98-1.14 treeio_1.26.0
[191] gridExtra_2.3 boot_1.3-28.1
[193] igraph_2.0.1.1 R6_2.5.1
[195] tidyr_1.3.1 DESeq2_1.42.0
[197] SingleCellExperiment_1.24.0 cluster_2.1.6
[199] aplot_0.2.2 GenomeInfoDb_1.38.5
[201] nloptr_2.0.3 DelayedArray_0.28.0
[203] tidyselect_1.2.0 ggforce_0.4.1
[205] xml2_1.3.6 AnnotationDbi_1.64.1
[207] future_1.33.1 munsell_0.5.0
[209] KernSmooth_2.23-22 data.table_1.15.0
[211] htmlwidgets_1.6.4 fgsea_1.28.0
[213] ComplexHeatmap_2.18.0 RColorBrewer_1.1-3
[215] rlang_1.1.3 spatstat.sparse_3.0-3
[217] spatstat.explore_3.2-6 fansi_1.0.6

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants