forked from KaidongLi/pytorch-LatticePointClassifier
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathisometry_init.py
96 lines (75 loc) · 3.73 KB
/
isometry_init.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import numpy as np
def rotation_xyz(a=np.zeros(3),b=2*np.pi*np.ones(3)):
#angles = np.random.normal(np.pi, 3*np.pi, 3)
angles = np.zeros(3)
for i in range(3):
angles[i] = np.random.uniform(a[i], b[i], 1)
cos_x, sin_x = np.cos(angles[0]), np.sin(angles[0])
cos_y, sin_y = np.cos(angles[1]), np.sin(angles[1])
cos_z, sin_z = np.cos(angles[2]), np.sin(angles[2])
r_x = np.array([[1, 0, 0],
[0, cos_x, -sin_x],
[0, sin_x, cos_x]])
r_y = np.array([[cos_y, 0, sin_y],
[0, 1, 0],
[-sin_y, 0, cos_y]])
r_z = np.array([[cos_z, sin_z, 0],
[-sin_z, cos_z, 0],
[0, 0, 1]])
rotation_matrix = np.dot(np.dot(r_z, r_y),r_x)
return rotation_matrix
def rotation_axis_angle(a=np.zeros(3),b=2*np.pi*np.ones(3)):
#angles = np.random.normal(np.pi, 3*np.pi, 3)
angles = np.zeros(3)
for i in range(3):
angles[i] = np.random.uniform(a[i], b[i], 1)
cos1, sin1 = np.cos(angles[0]), np.sin(angles[0])
cos2, sin2 = np.cos(angles[1]), np.sin(angles[1])
u = np.array([sin1, cos1*sin2, cos1*cos2]) # normalized vector as axis
K = np.array([[0, -u[2],u[1]],
[u[2], 0, -u[0]],
[-u[1], u[0], 0]])
theta = np.random.uniform(a[2],b[2],1) #rotate bt theta
rotation_matrix = np.identity(3) + np.sin(theta)*K + (1 - np.cos(theta))* np.dot(K, K)
return rotation_matrix
def rotation(a=np.zeros(3),b=2*np.pi*np.ones(3)): # equals to rotation_xyz
angles = np.zeros(3)
for i in range(3):
angles[i] = np.random.uniform(a[i], b[i], 1)
cos1, sin1 = np.cos(angles[0]), np.sin(angles[0])
cos2, sin2 = np.cos(angles[1]), np.sin(angles[1])
cos3, sin3 = np.cos(angles[2]), np.sin(angles[2])
rotation_matrix = np.array([[cos1*cos3-cos2*sin1*sin3, -cos2*cos3*sin1-cos1*sin3, sin1*sin2],
[cos3*sin1+cos1*cos2*sin3, cos1*cos2*cos3-sin1*sin3, -cos1*sin2],
[ sin2*sin3 , cos3*sin2 , cos2 ]])
return rotation_matrix
def reflection(a=np.zeros(3),b=2*np.pi*np.ones(3)):
## matrix = I - 2u^tu, reflection on a plane cross 0 with normal vector u
angles = np.zeros(3)
for i in range(3):
angles[i] = np.random.uniform(a[i], b[i], 1)
cos1, sin1 = np.cos(angles[0]), np.sin(angles[0])
cos2, sin2 = np.cos(angles[1]), np.sin(angles[1])
u = np.array([[sin1, cos1*sin2, cos1*cos2]]) # normalized vector as axis
matrix = np.identity(3) - 2 * np.dot(u.transpose(),u)
return matrix
def ref_rot(a=np.zeros(3),b=2*np.pi*np.ones(3)):
## matrix = I - 2u^tu
angles = np.zeros(3)
for i in range(3):
angles[i] = np.random.uniform(a[i], b[i], 1)
cos1, sin1 = np.cos(angles[0]), np.sin(angles[0])
cos2, sin2 = np.cos(angles[1]), np.sin(angles[1])
u = np.array([[sin1, cos1*sin2, cos1*cos2]]) # normalized vector as axis
cos_z, sin_z = np.cos(angles[2]), np.sin(angles[2])
r_z = np.array([[cos_z, sin_z, 0],
[-sin_z, cos_z, 0],
[0, 0, 1]])
matrix = np.identity(3) - 2 * np.dot(u.transpose(),u)
matrix = np.dot(r_z, matrix) #reflection then rotate by axis-z
return matrix
# Cartan–Dieudonné theorem, establishes that every orthogonal transformation in an n-dimensional
# symmetric bilinear space can be described as the composition of at most n reflections
# in three-dimensional Euclidean space, every orthogonal transformation can be described as a
# single reflection, a rotation (2 reflections), or an improper rotation (3 reflections)
# -- from https://en.wikipedia.org/wiki/Cartan%E2%80%93Dieudonn%C3%A9_theorem