-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathHydro_ML_script.py
346 lines (330 loc) · 12.8 KB
/
Hydro_ML_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Oct 7 08:31:03 2020
@author: shlomi
"""
import os
import sys
import warnings
from PW_paths import work_yuval
hydro_path = work_yuval / 'hydro'
if not sys.warnoptions:
warnings.simplefilter("ignore")
os.environ["PYTHONWARNINGS"] = (
'ignore::UserWarning,ignore::RuntimeWarning') # Also affect subprocesses
def check_station_name(name):
# import os
if isinstance(name, list):
name = [str(x).lower() for x in name]
for nm in name:
if len(nm) != 4:
raise argparse.ArgumentTypeError(
'{} should be 4 letters...'.format(nm))
return name
else:
name = str(name).lower()
if len(name) != 4:
raise argparse.ArgumentTypeError(name + ' should be 4 letters...')
return name
# def check_loopover():
# return
# def check_hydro_id(num):
# return
# def check_features(feat):
# return
def check_path(path):
import os
from pathlib import Path
path = str(path)
if not os.path.exists(path):
raise argparse.ArgumentTypeError(path + ' does not exist...')
return Path(path)
def main_hydro_ML(args):
# from hydro_procedures import produce_X_y
# from hydro_procedures import produce_X_y_from_list
from sklearn.model_selection import StratifiedKFold
from hydro_procedures import combine_pos_neg_from_nc_file
from hydro_procedures import save_cv_splits_to_dict
from hydro_procedures import drop_hours_in_pwv_pressure_features
# from hydro_procedures import select_features_from_X
# from hydro_procedures import nested_cross_validation_procedure
# from hydro_procedures import cross_validation_with_holdout
from hydro_procedures import single_cross_validation
from aux_gps import get_all_possible_combinations_from_list
# if args.n_repeats is None:
# n_repeats = None
# else:
# n_repeats = args.n_repeats
if args.rseed is None:
seed = 42
else:
seed = args.rseed
if args.param_grid is None:
param_grid = 'normal'
else:
param_grid = args.param_grid
if args.verbose is None:
verbose=0
else:
verbose = args.verbose
if args.n_jobs is None:
n_jobs = -1
else:
n_jobs = args.n_jobs
# if args.max_flow is None:
# max_flow = 0
# else:
# max_flow = args.max_flow
# if args.neg_pos_ratio is not None:
# neg_pos_ratio = args.neg_pos_ratio
# else:
# neg_pos_ratio = 1
# logger.info('max flow {} threshold m^3/sec selected.'.format(max_flow))
# logger.info('negative to positive ratio {} selected.'.format(neg_pos_ratio))
# if len(args.pw_station) > 1:
# X, y = produce_X_y_from_list(pw_stations=args.pw_station,
# hs_ids=args.hydro_id,
# pressure_station='bet-dagan', window=25,
# max_flow=max_flow,
# neg_pos_ratio=neg_pos_ratio,
# concat_Xy=True)
# else:
# X, y = produce_X_y(pw_station=args.pw_station[0], hs_id=args.hydro_id[0],
# pressure_station='bet-dagan', window=25,
# max_flow=max_flow,
# neg_pos_ratio=neg_pos_ratio)
X, y = combine_pos_neg_from_nc_file(hydro_path)
# scorers = ['roc_auc', 'f1', 'recall', 'precision']
if args.drop_hours is not None:
X = drop_hours_in_pwv_pressure_features(X, args.drop_hours, verbose=True)
if args.scorers is None:
scorers = ['f1', 'recall', 'tss', 'hss',
'precision', 'accuracy']
else:
scorers = [x for x in args.scorers]
# splits = [2, 3, 4]
model_name = args.model
# if model_name == 'SVC' or model_name == 'RF':
# f = ['pwv', 'pressure']
# else:
f = ['pwv', 'pressure', 'doy']
# if model_name == 'SVC':
# f = ['doy', 'pressure']
# if model_name != 'SVC':
# scorers = ['precision']
features = get_all_possible_combinations_from_list(
f, reduce_single_list=True, combine_by_sep=None)
if args.inner_splits is not None:
inner_splits = args.inner_splits
else:
inner_splits = 4
if args.outer_splits is not None:
outer_splits = args.outer_splits
else:
outer_splits = 4
# if args.test_size is not None:
# test_size = args.test_size
# else:
# test_size = 0.2
if args.savepath is not None:
savepath = args.savepath
else:
savepath = hydro_path
# if args.model is not None:
cnt = 0
# if args.cv_type == 'nested':
outer_cv = StratifiedKFold(shuffle=True, n_splits=outer_splits,
random_state=seed)
save_cv_splits_to_dict(X, y, outer_cv, savepath=savepath)
# save_cv_params_to_file(outer_cv, savepath, 'CV_outer')
total_cnt = len(features)
for feature in features:
cnt += 1
logger.info('Running nested CV # {} out of {}'.format(cnt, total_cnt))
logger.info(
'Running {} model with {},{} (inner, outer) nsplits, features={}'.format(
model_name, inner_splits, outer_splits, feature))
for i, (train_index, test_index) in enumerate(outer_cv.split(X, y)):
X_val = X[train_index]
y_val = y[train_index]
model = single_cross_validation(
X_val,
y_val,
model_name=model_name,
features=feature,
n_splits=inner_splits,
outer_split='{}-{}'.format(i+1, outer_splits),
verbose=verbose,
param_grid=param_grid, seed=seed,
savepath=savepath, n_jobs=n_jobs)
print('')
logger.info('Done!')
# elif args.cv_type == 'holdout':
# if args.test_ratio is None:
# test_ratio = 0.25
# else:
# test_ratio = args.test_ratio
# total_cnt = len(features)
# for feature in features:
# cnt += 1
# logger.info('Running holdout CV # {} out of {}'.format(cnt, total_cnt))
# logger.info(
# 'Running {} model with {} nsplits and {} holdout ratio, features={}'.format(
# model_name, inner_splits, test_ratio, feature))
# model = cross_validation_with_holdout(
# X,
# y, scorers=scorers,
# model_name=model_name,
# features=feature,
# n_splits=inner_splits,
# verbose=verbose,
# param_grid=param_grid,
# test_ratio=test_ratio, seed=seed,
# savepath=savepath, n_jobs=n_jobs,
# n_repeats=n_repeats)
# else:
# cnt += 1
# logger.info('Running nested CV # {} out of {}'.format(cnt, int(total_cnt/len(features))))
# logger.info(
# 'Running {} model with {} test scorer and {},{} (inner, outer) nsplits, features={}'.format(
# model_name, scorer, inner_splits, outer_splits, f))
# model = nested_cross_validation_procedure(
# X,
# y, scorers=scorers,
# model_name=model_name,
# features=f,
# inner_splits=inner_splits,
# outer_splits=outer_splits,
# refit_scorer=scorer,
# verbose=verbose,
# diagnostic=False,
# savepath=savepath, n_jobs=n_jobs)
# else:
# logger.info('Running with all three models:')
# models = ['SVC', 'RF', 'MLP']
# for model_name in models:
# for scorer in scorers:
# for feature in features:
# logger.info(
# 'Running {} model with {} test scorer and {},{} (inner, outer) nsplits, features={}'.format(
# model_name, scorer, inner_splits, outer_splits, feature))
# model = nested_cross_validation_procedure(
# X,
# y,
# model_name=model_name,
# features=feature,
# inner_splits=inner_splits,
# outer_splits=outer_splits,
# refit_scorer=scorer,
# verbose=0,
# diagnostic=False,
# savepath=savepath)
if __name__ == '__main__':
import argparse
import sys
from pathlib import Path
from aux_gps import configure_logger
from PW_paths import work_yuval
hydro_path = work_yuval / 'hydro'
logger = configure_logger('Hydro_ML')
savepath = Path(hydro_path)
parser = argparse.ArgumentParser(
description='a command line tool for running the ML models tuning for hydro-PWV.')
optional = parser._action_groups.pop()
required = parser.add_argument_group('required arguments')
# remove this line: optional = parser...
# required.add_argument(
# '--pw_station',
# help="GNSS 4 letter station", nargs='+',
# type=check_station_name)
# required.add_argument(
# '--hydro_id',
# help="5 integer hydro station", nargs='+',
# type=int) # check_hydro_id)
# optional.add_argument('--loop_over', help='select which params to loop over',
# type=check_loopover, nargs='+')
required.add_argument(
'--savepath',
help="a full path to download the files, e.g., /home/ziskin/Work_Files/PW_yuval/IMS_T/10mins",
type=check_path)
optional.add_argument(
'--outer_splits',
help='how many splits for the outer nested loop',
type=int)
optional.add_argument(
'--inner_splits',
help='how many splits for the inner nested loop, in case of cv_type=holdout, inner_splits is the n_splits for hp tuning',
type=int)
# optional.add_argument(
# '--test_ratio',
# help='how much test data for holdout CV (0 to 1)',
# type=float)
optional.add_argument(
'--param_grid',
help='param grids for gridsearchcv object',
type=str, choices=['light', 'normal', 'dense'])
# optional.add_argument(
# '--max_flow',
# help='slice the hydro events for minimum max flow',
# type=float)
# optional.add_argument(
# '--neg_pos_ratio',
# help='negative to positive events ratio',
# type=int)
optional.add_argument(
'--n_jobs',
help='number of CPU threads to do gridsearch and cross-validate',
type=int)
optional.add_argument(
'--rseed',
help='random seed interger to start psuedo-random number generator',
type=int)
optional.add_argument(
'--verbose',
help='verbosity 0, 1, 2',
type=int)
optional.add_argument('--drop_hours', help='drop the last x hours before flood from pwv and pressure features', type=int)
optional.add_argument(
'--scorers',
nargs='+',
help='scorers, e.g., f1, accuracy, recall, etc',
type=str)
# optional.add_argument('--nsplits', help='select number of splits for HP tuning.', type=int)
required.add_argument(
'--model',
help='select ML model.',
choices=[
'SVC',
'MLP',
'RF'])
# optional.add_argument('--n_repeats', help='number of repeats in holdout CV', type=int)
# required.add_argument('--cv_type', help='select CV type', choices=['nested', 'holdout'])
# optional.add_argument('--feature', help='select features for ML', type=check_features, nargs='+')
parser._action_groups.append(optional) # added this line
args = parser.parse_args()
# print(parser.format_help())
# # print(vars(args))
# if args.pw_station is None:
# print('pw_station is a required argument, run with -h...')
# sys.exit()
if args.savepath is None:
print('savepath is a required argument, run with -h...')
sys.exit()
# if args.cv_type is None:
# print('cv_type is a required argument, run with -h...')
# sys.exit()
# if args.hydro_id is None:
# print('hydro_id is a required argument, run with -h...')
# sys.exit()
if args.model is None:
print('model is a required argument, run with -h...')
sys.exit()
# if args.outer_splits is not None and args.test_ratio is None:
# print('pls pick test_ratio for single CV holdout train or nested CV train with outer_splits > 1')
# sys.exit()
# if args.test_ratio is not None and args.outer_splits > 1:
# print('pls dont set test_ratio for nested CV train or set outer_splits = 1 for holdout CV train')
# sys.exit()
logger.info('Running ML, CV with {} model'.format(args.model))
main_hydro_ML(args)