-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathceilometers.py
876 lines (829 loc) · 36.8 KB
/
ceilometers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Jun 1 10:41:11 2020
@author: shlomi
"""
from PW_paths import work_yuval
from PW_paths import savefig_path
ceil_path = work_yuval / 'ceilometers'
# available stations: Jerousalem, Nevatim, Ramat_David, Tel_Aviv
stations_dict = {
'Tel_Aviv': ['TLV', 34.8, 32.1, 5],
'Nevatim': ['NV', 34.9, 31.2, 400],
'Ramat_David': ['RD', 35.2, 32.7, 50],
'Jerusalem': ['JR', 35.2, 31.8, 830]}
pw_mlh_dict = {'tela': 'TLV', 'yrcm': 'NV', 'jslm': 'JR', 'nzrt': 'RD'}
def read_all_one_half_hours_csvs(path=ceil_path, plot=True):
import pandas as pd
from aux_gps import path_glob
files = path_glob(path, '*_Check_Avg_high_peak.csv')
df_list = []
for file in files:
df = read_one_half_hour_csv(file)
df_list.append(df)
df = pd.concat(df_list, axis=0)
df = df.sort_index()
if plot:
ax = df['MLH'].plot(style='b-', marker='o', ms=5)
return df
def read_one_half_hour_csv(file):
import pandas as pd
date = file.as_posix().split('/')[-1].split('_')[0]
dt = pd.to_datetime(date, format='%d-%m-%Y')
df = pd.read_csv(file, header=None)
df = df.T
df.columns = ['MLH']
dts = pd.date_range(start=dt, periods=48, freq='30T')
df.set_index(dts, inplace=True)
return df
def align_pw_mlh(path=work_yuval, ceil_path=ceil_path, site='tela',
interpolate=None, plot=True, dt_range_str='2015'):
import xarray as xr
from aux_gps import dim_intersection
from aux_gps import xr_reindex_with_date_range
import pandas as pd
import matplotlib.pyplot as plt
def pw_mlh_to_df(pw_new, mlh_site):
newtime = dim_intersection([pw_new, mlh_site])
MLH = mlh_site.sel(time=newtime)
PW = pw_new.sel(time=newtime)
df = PW.to_dataframe()
df[MLH.name] = MLH.to_dataframe()
new_time = pd.date_range(df.index.min(), df.index.max(), freq='1H')
df = df.reindex(new_time)
df.index.name = 'time'
return df
mlh = xr.load_dataset(ceil_path / 'MLH_from_ceilometers.nc')
mlh_site = xr_reindex_with_date_range(mlh[pw_mlh_dict.get(site)], freq='1H')
if interpolate is not None:
print('interpolating ceil-site {} with max-gap of {}.'.format(pw_mlh_dict.get(site), interpolate))
attrs = mlh_site.attrs
mlh_site_inter = mlh_site.interpolate_na('time', max_gap=interpolate,
method='cubic')
mlh_site_inter.attrs = attrs
pw = xr.open_dataset(work_yuval / 'GNSS_PW_thresh_50_homogenized.nc')
pw = pw[['tela', 'klhv', 'jslm', 'nzrt', 'yrcm']]
pw.load()
pw_new = pw[site]
if interpolate is not None:
newtime = dim_intersection([pw_new, mlh_site_inter])
else:
newtime = dim_intersection([pw_new, mlh_site])
pw_new = pw_new.sel(time=newtime)
pw_new = xr_reindex_with_date_range(pw_new, freq='1H')
if interpolate is not None:
print('interpolating pw-site {} with max-gap of {}.'.format(site, interpolate))
attrs = pw_new.attrs
pw_new_inter = pw_new.interpolate_na('time', max_gap=interpolate, method='cubic')
pw_new_inter.attrs = attrs
df = pw_mlh_to_df(pw_new, mlh_site)
if interpolate is not None:
df_inter = pw_mlh_to_df(pw_new_inter, mlh_site_inter)
if dt_range_str is not None:
df = df.loc[dt_range_str, :]
if plot:
fig, ax = plt.subplots(figsize=(18,5))
if interpolate is not None:
df_inter[pw_new.name].plot(style='b--', ax=ax)
# same ax as above since it's automatically added on the right
df_inter[mlh_site.name].plot(style='r--', secondary_y=True, ax=ax)
ax = df[pw_new.name].plot(style='b-', marker='o', ax=ax, ms=5)
# same ax as above since it's automatically added on the right
ax_twin = df[mlh_site.name].plot(style='r-', marker='s', secondary_y=True, ax=ax, ms=5)
if interpolate is not None:
ax.legend(*[ax.get_lines() + ax.right_ax.get_lines()],
['PWV {} max interpolation'.format(interpolate), 'PWV',
'MLH {} max interpolation'.format(interpolate), 'MLH'],
loc='best')
else:
ax.legend([ax.get_lines()[0], ax.right_ax.get_lines()[0]],
['PWV','MLH'], loc='upper center')
ax.set_title('MLH {} site and PWV {} site'.format(pw_mlh_dict.get(site),site))
ax.set_xlim(df.dropna().index.min(), df.dropna().index.max())
ax.set_ylabel('PWV [mm]', color='b')
ax_twin.set_ylabel('MLH [m]', color='r')
ax.tick_params(axis='y', colors='b')
ax_twin.tick_params(axis='y', colors='r')
ax.grid(True, which='both', axis='x')
fig.tight_layout()
if interpolate is not None:
filename = '{}-{}_{}_time_series_{}_max_gap_interpolation.png'.format(
site, pw_mlh_dict.get(site), dt_range_str, interpolate)
else:
filename = '{}-{}_{}_time_series.png'.format(site, pw_mlh_dict.get(site), dt_range_str)
plt.savefig(savefig_path / filename, orientation='portrait')
if interpolate is not None:
ds = df_inter.to_xarray()
ds[pw_new.name].attrs.update(pw_new.attrs)
ds[mlh_site.name].attrs.update(mlh_site.attrs)
return ds
else:
ds = df.to_xarray()
ds[pw_new.name].attrs.update(pw_new.attrs)
ds[mlh_site.name].attrs.update(mlh_site.attrs)
return ds
def plot_pw_mlh(path=work_yuval, ceil_path=ceil_path, kind='scatter', month=None,
ceil_interpolate=None):
"""use ceil_interpolate as {'TLV': '6H'}, 6H being the map_gap overwhich
to interpolate"""
import xarray as xr
import matplotlib.pyplot as plt
mlh = xr.load_dataset(ceil_path / 'MLH_from_ceilometers.nc')
if ceil_interpolate is not None:
for site, max_gap in ceil_interpolate.items():
print('interpolating ceil-site {} with max-gap of {}.'.format(site, max_gap))
attrs = mlh[site].attrs
mlh[site] = mlh[site].interpolate_na('time', max_gap=max_gap,
method='cubic')
mlh[site].attrs = attrs
pw = xr.load_dataset(work_yuval / 'GNSS_PW_thresh_50_homogenized.nc')
pw = pw[[x for x in pw if '_error' not in x]]
pw = pw[['tela', 'klhv', 'jslm', 'nzrt', 'yrcm']]
couples = [['tela', 'TLV'], ['yrcm', 'NV'], ['jslm', 'JR'], ['nzrt', 'RD']]
if kind == 'scatter':
fig, axes = plt.subplots(
1, len(couples), sharey=True, sharex=True, figsize=(
20, 5))
for i, ax in enumerate(axes.flatten()):
ax = scatter_plot_pw_mlh(
pw[couples[i][0]], mlh[couples[i][1]], ax=ax)
elif kind == 'diurnal':
fig, axes = plt.subplots(
len(couples), 2, sharey=False, sharex=False, figsize=(
20, 15))
for i, ax in enumerate(axes[:, 0].flatten()):
ax = twin_hourly_mean_plot(
pw[couples[i][0]], mlh[couples[i][1]], month=month, ax=ax, title=False, unit='days')
for i, ax in enumerate(axes[:, 1].flatten()):
ax = scatter_plot_pw_mlh(pw[couples[i][0]],
mlh[couples[i][1]],
diurnal=True,
month=month,
ax=ax,
title=False,
leg_loc='lower right')
fig.tight_layout()
if ceil_interpolate is not None:
filename = 'PW-MLH_{}_interpolate_max_gap_6H.png'.format(kind)
else:
filename = 'PW-MLH_{}.png'.format(kind)
plt.savefig(savefig_path / filename, orientation='portrait')
return fig
def scatter_plot_pw_mlh(pw, mlh, diurnal=False, ax=None, title=True,
leg_loc='best', month=None):
from aux_gps import dim_intersection
import xarray as xr
import numpy as np
from sklearn.metrics import r2_score
import matplotlib.pyplot as plt
from PW_stations import produce_geo_gnss_solved_stations
df = produce_geo_gnss_solved_stations(plot=False)
pw_alt = df.loc[pw.name, 'alt']
pw_attrs = pw.attrs
mlh_attrs = mlh.attrs
if diurnal:
if month is not None:
pw = pw.sel(time=pw['time.month'] == month)
else:
newtime = dim_intersection([pw, mlh], 'time')
pw = pw.sel(time=newtime)
mlh = mlh.sel(time=newtime)
pw = pw.groupby('time.hour').mean()
pw.attrs = pw_attrs
mlh = mlh.groupby('time.hour').mean()
mlh.attrs = mlh_attrs
else:
newtime = dim_intersection([pw, mlh], 'time')
pw = pw.sel(time=newtime)
mlh = mlh.sel(time=newtime)
ds = xr.merge([pw, mlh])
if ax is None:
fig, ax = plt.subplots(figsize=(10, 10))
ds.plot.scatter(pw.name, mlh.name, ax=ax)
coefs = np.polyfit(pw.values, mlh.values, 1)
x = np.linspace(pw.min().item(), pw.max().item(), 100)
y = np.polyval(coefs, x)
r2 = r2_score(mlh.values, np.polyval(coefs, pw.values))
# coefs2 = np.polyfit(pw.values, mlh.values, 2)
# y2 = np.polyval(coefs2, x)
# r22 = r2_score(mlh.values,np.polyval(coefs2, pw.values))
ax.plot(x, y, color='tab:red')
# ax.plot(x, y2, color='tab:orange')
ax.set_xlabel('PWV [mm]')
ax.set_ylabel('MLH [m]')
ax.legend(['linear fit', 'data'], loc=leg_loc)
textstr = '\n'.join(['n={}'.format(pw.size),
r'R$^2$={:.2f}'.format(r2),
'slope={:.1f} m/mm'.format(coefs[0])])
props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
ax.text(0.05, 0.95, textstr, transform=ax.transAxes, fontsize=10,
verticalalignment='top', bbox=props)
mlh_name = mlh.attrs['station_full_name'].replace('_', '-')
if title:
ax.set_title(
'{} ({:.0f} m) GNSS site PW vs. {} ({:.0f} m) Mixing Layer Height'.format(
pw.name.upper(),
pw_alt,
mlh_name,
mlh.attrs['alt']))
return ax
def twin_hourly_mean_plot(pw, mlh, month=8, ax=None, title=True,
leg_loc='best', unit='pts', sample_rate=24,
fontsize=14):
from aux_gps import dim_intersection
import matplotlib.pyplot as plt
from calendar import month_abbr
# from PW_stations import produce_geo_gnss_solved_stations
# df = produce_geo_gnss_solved_stations(plot=False)
# first run multi-year month mean:
if month is not None:
pw = pw.sel(time=pw['time.month'] == month).dropna('time')
mlh = mlh.sel(time=mlh['time.month'] == month).dropna('time')
else:
newtime = dim_intersection([pw, mlh], 'time')
pw = pw.sel(time=newtime)
mlh = mlh.sel(time=newtime)
pw_hour = pw.groupby('time.hour').mean()
pw_std = pw.groupby('time.hour').std()
pw_hour_plus = (pw_hour + pw_std).values
pw_hour_minus = (pw_hour - pw_std).values
mlh_hour = mlh.groupby('time.hour').mean()
mlh_std = mlh.groupby('time.hour').std()
mlh_hour_minus = (mlh_hour - mlh_std).values
mlh_hour_plus = (mlh_hour + mlh_std).values
mlhyears = [mlh.time.dt.year.min().item(), mlh.time.dt.year.max().item()]
pwyears = [pw.time.dt.year.min().item(), pw.time.dt.year.max().item()]
mlh_month = mlh.time.dt.month.to_dataframe()['month'].value_counts().index[0]
if unit == 'pts':
pw_pts = pw.dropna('time').size
mlh_pts = mlh.dropna('time').size
elif unit == 'days':
pw_pts = int(pw.dropna('time').size / sample_rate)
mlh_pts = int(mlh.dropna('time').size / sample_rate)
if ax is None:
fig, ax = plt.subplots(figsize=(10, 8))
red = 'tab:red'
blue = 'tab:blue'
pwln = pw_hour.plot(color=blue, marker='s', ax=ax)
# ax.errorbar(pw_hour.hour.values, pw_hour.values, pw_std.values,
# label='PW', color=blue, capsize=5, elinewidth=2,
# markeredgewidth=2)
ax.fill_between(pw_hour.hour.values, pw_hour_minus, pw_hour_plus, color=blue, alpha=0.5)
twin = ax.twinx()
# twin.errorbar(mlh_hour.hour.values, mlh_hour.values, mlh_std.values,
# color=red, label='MLH', capsize=5, elinewidth=2,
# markeredgewidth=2)
mlhln = mlh_hour.plot(color=red, marker='o', ax=twin)
twin.fill_between(mlh_hour.hour.values, mlh_hour_minus, mlh_hour_plus, color=red, alpha=0.5)
# handles, labels = ax.get_legend_handles_labels()
# handles = [h[0] for h in handles]
# handles1, labels1 = twin.get_legend_handles_labels()
# handles1 = [h[0] for h in handles1]
# hand = handles + handles1
# labs = labels + labels1
if month is None:
pw_label = 'PWV: {}-{} ({} {})'.format(pwyears[0], pwyears[1], pw_pts, unit)
mlh_label = 'MLH: {}-{} ({} {})'.format(mlhyears[0], mlhyears[1], mlh_pts, unit)
else:
pw_pts = int(pw.dropna('time').size / 288)
pw_label = 'PWV: {}-{}, {} ({} {})'.format(pwyears[0], pwyears[1], month_abbr[mlh_month], pw_pts, unit)
mlh_label = 'MLH: {}-{}, {} ({} {})'.format(mlhyears[0], mlhyears[1], month_abbr[mlh_month], mlh_pts, unit)
# if month is not None:
# pwmln = pw_m_hour.plot(color='tab:orange', marker='^', ax=ax)
# pwm_label = 'PW: {}-{}, {} ({} pts)'.format(pw_years[0], pw_years[1], month_abbr[month], pw_month.dropna('time').size)
# ax.legend(pwln + mlhln + pwmln, [pw_label, mlh_label, pwm_label], loc=leg_loc)
# else:
ax.legend(pwln + mlhln, [pw_label, mlh_label], loc=leg_loc)
ax.tick_params(axis='y', colors=blue, labelsize=fontsize)
twin.tick_params(axis='y', colors=red, labelsize=fontsize)
ax.set_ylabel('PWV [mm]', color=blue, fontsize=fontsize)
twin.set_ylabel('MLH [m]', color=red, fontsize=fontsize)
ax.set_xticks([x for x in range(24)])
ax.set_xlabel('Hour of day [UTC]', fontsize=fontsize)
mlh_name = mlh.attrs['station_full_name'].replace('_', '-')
textstr = '{}, {}'.format(mlh_name, pw.name.upper())
props = dict(boxstyle='round', facecolor='white', alpha=0.5)
ax.text(0.05, 0.95, textstr, transform=ax.transAxes, fontsize=fontsize,
verticalalignment='top', bbox=props)
if title:
ax.set_title('The diurnal cycle of {} Mixing Layer Height and {} GNSS site PWV'.format(mlh_name, pw.name.upper()))
return ax, twin
def twin_hourly_mean_with_diurnal_mlh_plot(pw, mlh, month=None, ax=None,
title=True, leg_loc='best',
mlh_name='MLH', unit='days',
mlh_station_name='Hadera'):
import matplotlib.pyplot as plt
from calendar import month_abbr
mlh_std = mlh['{}_std'.format(mlh_name)]
mlh_count = mlh['{}_count'.format(mlh_name)].mean().item()
mlh_hour = mlh['{}_mean'.format(mlh_name)]
pw_hour = pw.groupby('time.hour').mean()
pw_std = pw.groupby('time.hour').std()
pw_hour_plus = (pw_hour + pw_std).values
pw_hour_minus = (pw_hour - pw_std).values
if month is not None:
pw = pw.sel(time=pw['time.month'] == month).dropna('time')
# mlh_hour = mlh.groupby('time.hour').mean()
# mlh_std = mlh.groupby('time.hour').std()
mlh_hour_minus = (mlh_hour - mlh_std).values
mlh_hour_plus = (mlh_hour + mlh_std).values
# mlhyears = [mlh.time.dt.year.min().item(), mlh.time.dt.year.max().item()]
pwyears = [pw.time.dt.year.min().item(), pw.time.dt.year.max().item()]
# mlh_month = mlh.time.dt.month.to_dataframe()['month'].value_counts().index[0]
if unit == 'pts':
pw_pts = pw.dropna('time').size
mlh_pts = mlh_count * 48
elif unit == 'days':
pw_pts = int(pw.dropna('time').size / 288)
mlh_pts = int(mlh_count)
if ax is None:
fig, ax = plt.subplots(figsize=(10, 8))
red = 'tab:red'
blue = 'tab:blue'
pwln = pw_hour.plot(color=blue, marker='s', ax=ax)
# ax.errorbar(pw_hour.hour.values, pw_hour.values, pw_std.values,
# label='PW', color=blue, capsize=5, elinewidth=2,
# markeredgewidth=2)
ax.fill_between(pw_hour.hour.values, pw_hour_minus, pw_hour_plus, color=blue, alpha=0.5)
twin = ax.twinx()
# twin.errorbar(mlh_hour.hour.values, mlh_hour.values, mlh_std.values,
# color=red, label='MLH', capsize=5, elinewidth=2,
# markeredgewidth=2)
mlhln = mlh_hour.plot(color=red, marker='o', ax=twin)
twin.fill_between(mlh_hour['half_hour'].values, mlh_hour_minus, mlh_hour_plus, color=red, alpha=0.5)
# handles, labels = ax.get_legend_handles_labels()
# handles = [h[0] for h in handles]
# handles1, labels1 = twin.get_legend_handles_labels()
# handles1 = [h[0] for h in handles1]
# hand = handles + handles1
# labs = labels + labels1
if month is None:
pw_label = 'PWV: {}-{}, ({} {})'.format(pwyears[0], pwyears[1], pw_pts, unit)
mlh_label = 'MLH: ({} {})'.format(mlh_pts, unit)
else:
pw_label = 'PWV: {}-{}, {} ({} {})'.format(pwyears[0], pwyears[1], month_abbr[month], pw_pts, unit)
mlh_label = 'MLH: ({} {})'.format(mlh_pts, unit)
# if month is not None:
# pwmln = pw_m_hour.plot(color='tab:orange', marker='^', ax=ax)
# pwm_label = 'PW: {}-{}, {} ({} pts)'.format(pw_years[0], pw_years[1], month_abbr[month], pw_month.dropna('time').size)
# ax.legend(pwln + mlhln + pwmln, [pw_label, mlh_label, pwm_label], loc=leg_loc)
# else:
ax.legend(pwln + mlhln, [pw_label, mlh_label], loc=leg_loc)
ax.tick_params(axis='y', colors=blue)
twin.tick_params(axis='y', colors=red)
ax.set_ylabel('PWV [mm]', color=blue)
twin.set_ylabel('MLH [m]', color=red)
ax.set_xticks([x for x in range(24)])
ax.set_xlabel('Hour of day [UTC]')
try:
mlh_name = mlh.attrs['station_full_name'].replace('_', '-')
except KeyError:
mlh_name = mlh_station_name
textstr = '{}, {}'.format(mlh_name, pw.name.upper())
props = dict(boxstyle='round', facecolor='white', alpha=0.5)
ax.text(0.05, 0.95, textstr, transform=ax.transAxes, fontsize=10,
verticalalignment='top', bbox=props)
if title:
ax.set_title('The diurnal cycle of {} Mixing Layer Height and {} GNSS site PWV'.format(mlh_name, pw.name.upper()))
return ax, twin
def read_all_ceilometer_stations(path=ceil_path):
import xarray as xr
from aux_gps import save_ncfile
stations = [x for x in stations_dict.keys()]
da_list = []
for station in stations:
print('reading station {}'.format(station))
da = read_ceilometer_station(path=path, name=station)
da_list.append(da)
ds = xr.merge(da_list)
save_ncfile(ds, path, filename='MLH_from_ceilometers.nc')
return ds
def read_ceilometer_station(path=ceil_path, name='Jerusalem'):
from aux_gps import path_glob
import pandas as pd
files = path_glob(path, '{}_*.mat'.format(name))
df_list = []
for file in files:
df_list.append(read_one_matfile_ceilometers(file))
df = pd.concat(df_list, axis=0)
df.index.name = 'time'
df.drop_duplicates(inplace=True)
da = df.to_xarray()
da.name = stations_dict[name][0]
da.attrs['full_name'] = 'Mixing Layer Height'
da.attrs['name'] = 'MLH'
da.attrs['units'] = 'm'
da.attrs['station_full_name'] = name
da.attrs['lon'] = stations_dict[name][1]
da.attrs['lat'] = stations_dict[name][2]
da.attrs['alt'] = stations_dict[name][3]
return da
def read_BD_ceilometer_yoav_one_year_csv(file):
import pandas as pd
feet_to_m = 0.3048
df = pd.read_csv(file, index_col='Date_Time[]', na_values='-999.0')
df.index.name = 'time'
octet_cols = [x for x in df.columns if 'octet' in x]
df[octet_cols] = df[octet_cols].fillna(0)
df[octet_cols] = df[octet_cols].astype(int)
feet_cols = [x for x in df.columns if 'feet' in x]
df[feet_cols] = df[feet_cols].mul(feet_to_m)
cols = [x for x in df.columns]
df.columns = [x.replace('feet', 'm') for x in cols]
df.index = pd.to_datetime(df.index) - pd.Timedelta(2, unit='H')
return df
def read_BD_ceilometer_yoav_all_years(path=ceil_path, savepath=None):
from aux_gps import path_glob
from aux_gps import save_ncfile
import pandas as pd
files = path_glob(path, 'ceilometer_BD*.csv')
dfs = []
for file in files:
dfs.append(read_BD_ceilometer_yoav_one_year_csv(file))
df = pd.concat(dfs)
df = df.sort_index()
names = [x.split('[')[0] for x in df.columns]
units = [x.split('[')[1].split(']')[0] for x in df.columns]
long_names = [
'total cloud cover',
'cloud cover of the most cloudy layer',
'cloud cover of the 1st cloud layer',
'1st cloud base height',
'cloud cover of the 2nd cloud layer',
'2nd cloud base height',
'cloud cover of the 3rd cloud layer',
'3rd cloud base height',
'cloud cover of the 4th cloud layer',
'4th cloud base height',
'cloud cover of the 5th cloud layer',
'5th cloud base height',
'Mixing layer height']
df.columns = names
# fix cloud height to meters again for until 22-09-2013:
hs = [x for x in df.columns if '_H' in x]
df.loc[:'2013-09-22', hs] *= (1 / 0.3048)
ds = df.to_xarray()
for i, da in enumerate(ds):
ds[da].attrs['units'] = units[i]
ds[da].attrs['long_name'] = long_names[i]
if savepath is not None:
filename = 'BD_clouds_and_MLH_from_ceilometers.nc'
save_ncfile(ds, savepath, filename)
return ds
def plot_mlh_site_pw_station(ceil_path=ceil_path, path=work_yuval,
station='tela', mlh_site='BD', selection='syn',
max_gap_interpolate=None, srate=24):
import xarray as xr
import numpy as np
import matplotlib.pyplot as plt
month = None
if mlh_site == 'BD':
bd = read_BD_matfile(path=ceil_path, plot=False, add_syn=True)
if selection == 'syn':
# select PT's and High as synoptics:
bd = bd['BD'].where((bd['syn'] == 'PT-W') | (bd['syn']
== 'PT-M') | (bd['syn'] == 'H_w'))
print('selected synoptics.')
elif isinstance(selection, int):
# select all data for specific month:
month = selection
bd = bd['BD']
print('selected month {}.'.format(selection))
elif isinstance(selection, str) and selection.isupper():
# select season:
bd = bd['BD'].sel(time=bd['time.season'] == selection)
print('selected season {}.'.format(selection))
else:
# select all data:
bd = bd['BD']
mlh = bd
else:
mlh = xr.load_dataset(ceil_path / 'MLH_from_ceilometers.nc')[mlh_site]
if max_gap_interpolate is not None:
print('interpolating ceil-site {} with max-gap of {}.'.format(mlh_site, max_gap_interpolate))
attrs = mlh.attrs
mlh = mlh.interpolate_na('time', max_gap=max_gap_interpolate,
method='cubic')
mlh.attrs = attrs
pw = xr.open_dataset(path / 'GNSS_PW_thresh_50_for_diurnal_analysis.nc')[station]
ax, twin = twin_hourly_mean_plot(pw, mlh, month=month, title=True, unit='days', sample_rate=srate)
ax.grid()
pw_data = ax.get_lines()[0].get_ydata()
pwc = np.mean(pw_data)
off = 9
ax.vlines(2.75, ymin=pwc-off, ymax=pwc+off, color='k')
ax.vlines(16.75, ymin=pwc-off, ymax=pwc+off, color='k')
ax.text(x=1.5, y=pwc-off-0.5, s='mean sunrise')
ax.text(x=15.5, y=pwc-off-0.5, s='mean sunset')
ax.figure.tight_layout()
if max_gap_interpolate is not None:
title = ax.get_title()
ax.set_title(title + '({} max gap cubic interpolation)'.format(max_gap_interpolate))
if selection is None:
filename = '{}-{}_max_gap_{}.png'.format(station, mlh_site, max_gap_interpolate)
else:
filename = '{}-{}_{}_max_gap_{}.png'.format(station, mlh_site, selection, max_gap_interpolate)
plt.savefig(savefig_path / filename, orientation='portrait')
return ax
def plot_profiler_hadera_pw(ceil_path=ceil_path, path=work_yuval,
station='csar', selection='JJA'):
import xarray as xr
import numpy as np
import matplotlib.pyplot as plt
ds = read_profiler_hadera(path=ceil_path, plot=False)
pw = xr.open_dataset(path / 'GNSS_PW_thresh_50_for_diurnal_analysis.nc')[station]
pw.load()
month = None
if isinstance(selection, int):
month = selection
add_title = ''
elif isinstance(selection, str) and selection.isupper():
pw = pw.sel(time=pw['time.season'] == selection).dropna('time')
add_title = ' ({})'.format(selection)
ax, twin = twin_hourly_mean_with_diurnal_mlh_plot(pw, ds, month=month, title=True)
ax.grid()
pw_data = ax.get_lines()[0].get_ydata()
pwc = np.mean(pw_data)
off = 5
ax.vlines(2.75, ymin=pwc-off, ymax=pwc+off, color='k')
ax.vlines(16.75, ymin=pwc-off, ymax=pwc+off, color='k')
ax.text(x=1.5, y=pwc-off-0.5, s='mean sunrise')
ax.text(x=15.5, y=pwc-off-0.5, s='mean sunset')
title = ax.get_title()
ax.set_title(title + add_title)
ax.figure.tight_layout()
filename = 'csar-HD_{}.png'.format(selection)
plt.savefig(savefig_path / filename, orientation='portrait')
return ax
def read_BD_matfile(path=ceil_path, plot=True, month=None, add_syn=True):
from scipy.io import loadmat
import pandas as pd
from aux_gps import xr_reindex_with_date_range
import matplotlib.pyplot as plt
from aux_gps import dim_intersection
from synoptic_procedures import read_synoptic_classification
file = path / 'PBL_BD_LST.mat'
mat = loadmat(file)
mdata = mat['pblBD4shlomi']
# mdata = mat['PBL_BD_LST']
dates = mdata[:, :3]
pbl = mdata[:, 3:]
dates = dates.astype(str)
dts = [pd.to_datetime(x[0] + '-' + x[1] + '-' + x[2]) for x in dates]
dfs = []
for i, dt in enumerate(dts):
time = dt + pd.Timedelta(0.5, unit='H')
times = pd.date_range(time, periods=48, freq='30T')
df = pd.DataFrame(pbl[i], index=times)
dfs.append(df)
df = pd.concat(dfs)
df.columns = ['MLH']
df.index.name = 'time'
# switch to UTC:
df.index = df.index - pd.Timedelta(2, unit='H')
da = df.to_xarray()['MLH']
da.name = 'BD'
da.attrs['full_name'] = 'Mixing Layer Height'
da.attrs['name'] = 'MLH'
da.attrs['units'] = 'm'
da.attrs['station_full_name'] = 'Beit Dagan'
da.attrs['lon'] = 34.81
da.attrs['lat'] = 32.00
da.attrs['alt'] = 34
da = xr_reindex_with_date_range(da, freq='30T')
# add synoptic data:
syn = read_synoptic_classification().to_xarray()
syn = syn.sel(time=slice('2015', '2016'))
syn = syn.resample(time='30T').ffill()
new_time = dim_intersection([da, syn])
syn_da = syn.sel(time=new_time)
syn_da = xr_reindex_with_date_range(syn_da, freq='30T')
if plot:
bd2015 = da.sel(time='2015').to_dataframe()
bd2016 = da.sel(time='2016').to_dataframe()
fig, axes = plt.subplots(2, 1, sharey=True, sharex=False,
figsize=(15, 10))
if add_syn:
cmap = plt.get_cmap("tab10")
syn_df = syn_da.to_dataframe()
bd2015['synoptics'] = syn_df.loc['2015', 'class_abbr']
groups = []
for i, (index, group) in enumerate(bd2015.groupby('synoptics')):
groups.append(index)
d = xr_reindex_with_date_range(group['BD'].to_xarray(),
freq='30T')
d.to_dataframe().plot(x_compat=True, ms=10, color=cmap(i),
ax=axes[0], xlim=['2015-06', '2015-10'])
axes[0].legend(groups)
bd2016['synoptics'] = syn_df.loc['2016', 'class_abbr']
groups = []
for i, (index, group) in enumerate(bd2016.groupby('synoptics')):
groups.append(index)
d = xr_reindex_with_date_range(group['BD'].to_xarray(),
freq='30T')
d.to_dataframe().plot(x_compat=True, ms=10, color=cmap(i),
ax=axes[1], xlim=['2016-06', '2016-10'])
axes[1].legend(groups)
else:
bd2015.plot(ax=axes[0], xlim=['2015-06', '2015-10'])
bd2016.plot(ax=axes[1], xlim=['2016-06', '2016-10'])
for ax in axes.flatten():
ax.set_ylabel('MLH [m]')
ax.set_xlabel('UTC')
ax.grid()
fig.tight_layout()
fig.suptitle('MLH from Beit-Dagan ceilometer for 2015 and 2016')
filename = 'MLH-BD_syn.png'
plt.savefig(savefig_path / filename, orientation='portrait')
if add_syn:
ds = da.to_dataset(name='BD')
ds['syn'] = syn_da['class_abbr']
return ds
else:
return da
def read_one_matfile_ceilometers(file):
from scipy.io import loadmat
import pandas as pd
mat = loadmat(file)
name = [x for x in mat.keys()][-1]
mdata = mat[name]
li = []
days = []
for i in range(mdata.shape[0]):
days.append([x.squeeze().item() for x in mdata[i, 0]])
li.append([x.squeeze().item() for x in mdata[i, 1:]])
days = [x[0] for x in days]
df = pd.DataFrame(li[1:], index=days[1:])
df.columns = [int(x) for x in li[0]]
df.drop(df.tail(2).index, inplace=True)
df = df.rename({'201508110': '20150811'}, axis=0)
df = df.rename({'201608110': '20160811'}, axis=0)
df.index = pd.to_datetime(df.index)
# transform to time-series:
df_list = []
for date in df.index:
dts = date + pd.Timedelta(1, unit='H')
dates = pd.date_range(dts, periods=24, freq='H')
df1 = pd.DataFrame(df.loc[date].values, index=dates)
df_list.append(df1)
s = pd.concat(df_list)[0]
return s
def read_profiler_hadera(path=ceil_path, plot=True):
import pandas as pd
import numpy as np
import xarray as xr
import matplotlib.pyplot as plt
def read_hadera_synoptical(path, syn='Hw'):
df = pd.read_excel(path / 'PBL_profiler_hadera.xlsx', sheet_name=syn).T
df.columns = ['{}_mean'.format(syn), '{}_count'.format(syn),
'{}_median'.format(syn), '{}_std'.format(syn)]
df.drop('Time (LST)', inplace=True)
df.set_index(np.arange(0, 24, 0.5), inplace=True)
hour = shift_half_hour_lst(2)
df.set_index(hour, inplace=True)
df = df.sort_index()
df.index.name = 'half_hour'
df = df.apply(pd.to_numeric)
ds = df.to_xarray()
return ds
ds_hw = read_hadera_synoptical(path=path, syn='Hw')
ds_ptw = read_hadera_synoptical(path=path, syn='PTw')
ds_ptm = read_hadera_synoptical(path=path, syn='PTm')
ds = xr.merge([ds_hw, ds_ptw, ds_ptm])
mlh_mean = ds[['Hw_mean', 'PTw_mean', 'PTm_mean']].to_array('syn').mean('syn')
mlh_std = ds[['Hw_std', 'PTw_std', 'PTm_std']].to_array('syn').mean('syn')
mlh_count = ds[['Hw_count', 'PTw_count', 'PTm_count']].to_array('syn').sum('syn')
ds['MLH_mean'] = mlh_mean
ds['MLH_std'] = mlh_std
ds['MLH_count'] = mlh_count
if plot:
fig, ax = plt.subplots(figsize=(12, 8))
means = ds[[x for x in ds if '_mean' in x]]
counts = ds[[x for x in ds if '_count' in x]]
stds = ds[[x for x in ds if '_std' in x]]
dfm = means.to_dataframe()
cmeans = [x for x in counts.mean().to_array().values]
cmeans.append(np.sum(cmeans))
dfm.plot(ax=ax, style=['rd-','bo-','gX-','ks-'], markevery=2)
ax.xaxis.set_ticks(np.arange(0, 24, 1))
ax.set_xlabel('Hour of Day [UTC]')
ax.grid()
ax.set_ylabel('PBL height AGL [m]')
labels = ['High-West: {:.0f} mean days'.format(cmeans[0])]
labels.append('PT-Weak: {:.0f} mean days'.format(cmeans[1]))
labels.append('PT-Medium: {:.0f} mean days'.format(cmeans[2]))
labels.append('Simple Mean: {:.0f} mean days'.format(cmeans[3]))
ax.legend(labels)
ax.set_title('PBL average Height from 3.5 km east of the coast of Hadera (ORPP), between June - October, 1997-1999, 2002-2005')
ax.fill_betweenx(y=[400, 800], x1=2.75, x2=16.75, color='y', alpha=0.5)
fig.tight_layout()
filename = 'MLH_HD_diurnal_syn.png'
plt.savefig(savefig_path / filename, orientation='portrait')
return ds
def shift_half_hour_lst(hours_back=3):
import numpy as np
hour1 = np.arange(24 - hours_back, 24, 0.5)
hour2 = np.arange(0, 24-hours_back, 0.5)
hour = np.append(hour1, hour2)
return hour
def read_coastal_BL_levi_2011(path=ceil_path):
import pandas as pd
"""Attached profiler data for the average diurnal boundary layers height 3
km form the coast of Hadera for the 3 summers of 1997-1999.
The data for July is in the tab hour_july where MAX SNR is the height of
the wind profiler signal-to-noise ratio peak. The wind profiler high
signal-to-noise ratio is obtained near the BL top at the entrainment zone
where inhomogeneities due mixing of dry and humid air produce high values
radar reflectivity.
The Tv inversion is the inversion height of the virtual
temperature profile measure by the wind profiler radio acoustic sounding
system (RASS).
The tab SNR JJAS has the diurnal boundary height at June, July, August and
September as measured by the MAX SNR."""
# read july 1997-1999 data:
df_july = pd.read_excel(path/'coastal_BL_levi_2011.xls', sheet_name='hour_july')
hour = shift_half_hour_lst(2)
df_july.set_index(hour, inplace=True)
df_july = df_july.sort_index()
df_july.drop('hour', axis=1, inplace=True)
df_july.columns = ['n_maxsnr', 'maxsnr', 'std_maxsnr', 'stderror_maxsnr', 'tv_inversion', 'std_tv200']
# read 4 months data:
df_JJAS = pd.read_excel(path/'coastal_BL_levi_2011.xls', sheet_name='SNR JJAS')
df_JJAS.set_index(hour, inplace=True)
df_JJAS = df_JJAS.sort_index()
df_JJAS.drop('hour', axis=1, inplace=True)
df = pd.concat([df_july, df_JJAS], axis=1)
return df
def convert_to_numeric(large_string):
import numpy as np
s = large_string.strip()
ss = [s[i:i + 5] for i in range(0, len(s), 5)]
sint = [int(x, 16) for x in ss]
sint = np.array(sint, dtype=np.int32)
# correction:
corr = sint > 2**19
if corr.any():
sint[corr] = -(2 ** 20 - sint[corr])
return sint
def read_his_file(hfile):
import pandas as pd
import xarray as xr
import numpy as np
df = pd.read_csv(hfile, header=1)
df.columns = [x.strip() for x in df.columns]
df['profile'] = df['BS_PROFILE'].apply(convert_to_numeric)
df.set_index(pd.to_datetime(df['CREATEDATE']), inplace=True)
df.drop(['CREATEDATE', 'UNIXTIME', 'CEILOMETER', 'BS_PROFILE', 'PERIOD'],
axis=1, inplace=True)
df.index.name = 'time'
vals = [df.values[x][0] for x in range(df.size)]
da = xr.DataArray(vals, dims=['time', 'range'])
da['time'] = df.index
da['range'] = np.arange(10, 4510, 10)
da = da.astype(np.float32)
ds = da.to_dataset(name='rcs_0')
ds['rcs_0'].attrs['long_name'] = 'normalized range corrected signal'
ds['rcs_0'].attrs['units'] = '1e-8 sr^-1.m^-1'
ds['range'].attrs['long_name'] = 'range'
ds['range'].attrs['units'] = 'm'
return ds
def compare_cloud_H1_to_BD_MLH_and_PW(path=ceil_path, pwv_path=work_yuval,
plot=True):
import xarray as xr
import numpy as np
from PW_from_gps_figures import plot_mean_std_count
# load cloud height 1 from BD ceilometers:
cld = read_BD_ceilometer_yoav_all_years(path=path)['cloud_H1']
# load leenes MLH from BD:
# bd_mlh = read_BD_matfile(plot=False, add_syn=False)
# ds = bd_mlh.to_dataset(name='MLH')
# ds['cloud_H1'] = cld
# load PWV from TELA daily anomalies:
ds = cld.to_dataset(name='cloud_H1')
pwv = xr.open_dataset(
pwv_path /
'GNSS_PW_thresh_50_for_diurnal_analysis_removed_daily.nc')['tela']
pwv = pwv.sel(time=slice('2015', '2016'))
pwv.load()
df = ds.to_dataframe()
df['PWV_TELA'] = pwv.to_dataframe()
df.index.name = 'time'
# slice for only summer 2015:
df = df.loc['2015-06':'2015-09']
if plot:
ax = df.plot(ylim=(0, 2000), secondary_y='PWV_TELA')
ds = df.to_xarray()
axes, ax2 = plot_mean_std_count(ds.dropna('time'), time_reduce='hour', reduce='mean')
axes[1].set_xlabel('Hour of Day [UTC]')
axes[1].set_ylabel('Points (10-mins sample rate) [#]')
axes[0].set_ylabel('Cloud first layer height [m]')
axes[0].set_title('June to September 2015')
ax2.set_ylabel('TELA PWV anomalies [mm]')
axes[0].figure.subplots_adjust(top=0.97,
bottom=0.056,
left=0.051,
right=0.967,
hspace=0.064,
wspace=0.2)
return df