-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathims_download_all_script.py
696 lines (658 loc) · 31.2 KB
/
ims_download_all_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Jun 25 14:29:10 2019
UPDATING is working well.
Will add a post-proccessing procedures for dividing for years, NaN filling and
PWV production.
@author: ziskin
Another script is ims_stations_download and is for real-time e.g., AXIS
(implemented using click)
"""
#def load_saved_station(path, station_id, channel):
# from aux_gps import path_glob
# import xarray as xr
# files = path_glob(path, '*_{}_{}_10mins.nc'.format(station_id, channel))
# if len(files) == 0:
# return False
# elif len(files) == 1:
# return xr.load_dataset(files[0])
# elif len(files) > 1:
# raise ValueError('too many files with the same glob str')
#
#
##def parse_filename(file_path):
## filename = file_path.as_posix().split('/')[-1].split('.')[0]
## station_name = filename.split('_')[0]
## station_id = filename.split('_')[1]
## channel = filename.split('_')[2]
## return station_name, station_id, channel
#
def ims_api_get_meta(active_only=True, channel_name='TD'):
import requests
import pandas as pd
"""get meta data on 10mins ims stations"""
myToken = 'f058958a-d8bd-47cc-95d7-7ecf98610e47'
headers = {'Authorization': 'ApiToken ' + myToken}
r = requests.get('https://api.ims.gov.il/v1/envista/stations/',
headers=headers)
stations_10mins = pd.DataFrame(r.json())
# filter inactive stations:
if active_only:
stations_10mins = stations_10mins[stations_10mins.active]
# arrange lat lon nicely and add channel num for dry temp:
lat_ = []
lon_ = []
channelId_list = []
for index, row in stations_10mins.iterrows():
lat_.append(row['location']['latitude'])
lon_.append(row['location']['longitude'])
channel = [x['channelId'] for x in row.monitors if x['name'] ==
channel_name]
if channel:
channelId_list.append(channel[0])
else:
channelId_list.append(None)
stations_10mins['lat'] = lat_
stations_10mins['lon'] = lon_
stations_10mins[channel_name + '_channel'] = channelId_list
stations_10mins.drop(['location', 'StationTarget', 'stationsTag'],
axis=1, inplace=True)
return stations_10mins
def configure_logger(name='general', filename=None):
import logging
import sys
stdout_handler = logging.StreamHandler(sys.stdout)
if filename is not None:
file_handler = logging.FileHandler(filename=filename, mode='a')
handlers = [file_handler, stdout_handler]
else:
handlers = [stdout_handler]
logging.basicConfig(
level=logging.INFO,
format='[%(asctime)s] {%(filename)s:%(lineno)d} %(levelname)s - %(message)s',
handlers=handlers
)
logger = logging.getLogger(name=name)
return logger
def query_yes_no(question, default="no"):
"""Ask a yes/no question via raw_input() and return their answer.
"question" is a string that is presented to the user.
"default" is the presumed answer if the user just hits <Enter>.
It must be "yes" (the default), "no" or None (meaning
an answer is required of the user).
The "answer" return value is True for "yes" or False for "no".
"""
import sys
valid = {"yes": True, "y": True, "ye": True,
"no": False, "n": False}
if default is None:
prompt = " [y/n] "
elif default == "yes":
prompt = " [Y/n] "
elif default == "no":
prompt = " [y/N] "
else:
raise ValueError("invalid default answer: '%s'" % default)
while True:
sys.stdout.write(question + prompt)
choice = input().lower()
if default is not None and choice == '':
return valid[default]
elif choice in valid:
return valid[choice]
else:
sys.stdout.write("Please respond with 'yes' or 'no' "
"(or 'y' or 'n').\n")
def path_glob(path, glob_str='*.Z', return_empty_list=False):
"""returns all the files with full path(pathlib3 objs) if files exist in
path, if not, returns FilenotFoundErro"""
from pathlib import Path
# if not isinstance(path, Path):
# raise Exception('{} must be a pathlib object'.format(path))
path = Path(path)
files_with_path = [file for file in path.glob(glob_str) if file.is_file]
if not files_with_path and not return_empty_list:
raise FileNotFoundError('{} search in {} found no files.'.format(glob_str,
path))
elif not files_with_path and return_empty_list:
return files_with_path
else:
return files_with_path
def check_ds_last_datetime(ds, fmt=None):
"""return the last datetime of the ds"""
import pandas as pd
import xarray as xr
if isinstance(ds, xr.DataArray):
ds = ds.to_dataset(name=ds.name)
# assume time series with one time dim:
time_dim = list(set(ds.dims))[0]
dvars = [x for x in ds.data_vars]
if dvars:
dt = ds[dvars[0]].dropna(time_dim)[time_dim][-1].values
dt = pd.to_datetime(dt)
if fmt is None:
return dt
else:
return dt.strftime(fmt)
else:
raise KeyError("dataset is empty ( no data vars )")
def check_path(path):
import os
from pathlib import Path
path = str(path)
if not os.path.exists(path):
raise argparse.ArgumentTypeError(path + ' does not exist...')
return Path(path)
def generate_delete(savepath, channel_name):
# from aux_gps import query_yes_no
# from aux_gps import path_glob
try:
glob = '*_{}_10mins.nc'.format(channel_name)
files_to_delete = path_glob(savepath, glob)
except FileNotFoundError:
print('skipping {} , because its empty or not existant..'.format(savepath))
return
print('WARNING for channel {}, ALL nc files in {} WILL BE DELETED!'.format(channel_name, savepath))
to_delete = query_yes_no('ARE YOU SURE ?')
if not to_delete:
print('files NOT deleted...')
else:
[x.unlink() for x in files_to_delete]
print('FILES DELETED!')
return
def download_ims_single_station(stationid, savepath=None,
channel_name='TD', update=None):
"""download single station with channel_name from earliest to latest.
if chanel_name is None, download all channels"""
import requests
import pandas as pd
import logging
from requests.exceptions import SSLError
def parse_ims_to_df(raw_data, ch_name):
"""gets ims station raw data, i.e., r.json()['data'] and returns
a pandas dataframe"""
import pandas as pd
from pytz import timezone
if ch_name is not None:
datetimes = [x['datetime'] for x in raw_data]
# Local datetimes:
dts = [x.split('+')[0] for x in datetimes]
# bool mask for DST:
dts_dst = [x.split('+')[-1] for x in datetimes]
dst_bool = [True if x == '03:00' else False for x in dts_dst]
jer = timezone('Asia/Jerusalem')
data = [x['channels'][0] for x in raw_data]
df = pd.DataFrame.from_records(data, index=pd.to_datetime(dts))
df.drop(['alias', 'description'], axis=1, inplace=True)
cols = [ch_name + '_' + x for x in df.columns]
df.columns = cols
df = df.tz_localize(jer, ambiguous=dst_bool, nonexistent='shift_forward')
df = df.tz_convert('UTC')
elif ch_name is None:
# add all channels d/l here:
datetimes = [x['datetime'] for x in raw_data]
names = [x['name'] for x in data['channels']]
keys = [*data['channels'][0].keys()]
return df
def to_dataarray(df, meta):
# add all channels d/l here:
import pandas as pd
ds = df.to_xarray()
ds['time'] = pd.to_datetime(ds.time.values)
channel_name = [*ds.data_vars.keys()][0].split('_')[0]
channel_id = ds[channel_name + '_id'].isel(time=0).values.item()
to_drop = [x for x in ds.data_vars.keys() if 'value' not in x]
ds = ds.drop(to_drop)
da = ds[channel_name + '_value'].reset_coords(drop=True)
da.name = meta['name']
da.attrs['channel_id'] = int(channel_id)
da.attrs['channel_name'] = channel_name
da.attrs['station_name'] = meta['name']
da.attrs['station_id'] = meta['id']
da.attrs['active'] = str(meta['active'])
da.attrs['station_lat'] = str(meta['loc']['latitude'])
da.attrs['station_lon'] = str(meta['loc']['longitude'])
for key, value in da.attrs.items():
print(key, value)
return da
def get_dates_list(start_date, end_date):
"""divide the date span into full 1 years and a remainder, tolist"""
import numpy as np
import pandas as pd
end_date = pd.to_datetime(end_date)
start_date = pd.to_datetime(start_date)
s_year = start_date.year
e_year = end_date.year
years = np.arange(s_year, e_year + 1)
dates = [start_date.replace(year=x) for x in years]
if (end_date - dates[-1]).days > 0:
dates.append(end_date)
return dates
logger = logging.getLogger('ims_downloader')
myToken = 'f058958a-d8bd-47cc-95d7-7ecf98610e47'
headers = {'Authorization': 'ApiToken ' + myToken}
r = requests.get('https://api.ims.gov.il/v1/envista/stations/',
headers=headers)
stations_10mins = pd.DataFrame(r.json())
meta = {}
st_name = stations_10mins['name'].where(
stations_10mins['stationId'] == stationid).dropna()
location = stations_10mins['location'].where(
stations_10mins['stationId'] == stationid).dropna()
active = stations_10mins['active'].where(
stations_10mins['stationId'] == stationid).dropna()
meta['name'] = '-'.join(st_name.iloc[0].split())
meta['id'] = stationid
meta['loc'] = location.iloc[0]
meta['active'] = active.iloc[0]
r_early = requests.get('https://api.ims.gov.il/v1/envista/stations/' +
str(stationid) + '/data/earliest', headers=headers)
r_late = requests.get('https://api.ims.gov.il/v1/envista/stations/' +
str(stationid) + '/data/latest', headers=headers)
data = r_early.json()['data'][0]
if update is not None:
earliest = update + pd.Timedelta(10, unit='m')
else:
earliest = pd.to_datetime(data['datetime']).strftime('%Y-%m-%d')
data = r_late.json()['data'][0]
latest = pd.to_datetime(data['datetime']).strftime('%Y-%m-%d')
# check if trying to update stations in the same day:
if earliest == latest:
logger.error('Wait for at least one day before trying to update...')
logger.info(
'Downloading station {} with id: {}, from {} to {}'.format(
st_name.values[0],
stationid,
earliest,
latest))
# one channel download:
if channel_name is not None:
channel_id = [x['id'] for x in data['channels']
if x['name'] == channel_name]
if channel_id:
logger.info('getting just {} channel with id: {}'.format(channel_name,
channel_id[0]))
ch_id = channel_id[0]
dates = get_dates_list(earliest, latest)
df_list = []
for i in range(len(dates) - 1):
first_date = dates[i].strftime('%Y/%m/%d')
last_date = dates[i + 1].strftime('%Y/%m/%d')
logger.info('proccesing dates: {} to {}'.format(first_date,
last_date))
dl_command = ('https://api.ims.gov.il/v1/envista/stations/' +
str(stationid) + '/data/' + str(ch_id) +
'?from=' + first_date + '&to=' + last_date)
try:
r = requests.get(dl_command, headers=headers)
except SSLError:
logger.warning('SSLError')
r = requests.get(dl_command, headers=headers)
if r.status_code == 204: # i.e., no content:
logger.warning('no content for this search, skipping...')
continue
logger.info('parsing to dataframe...')
df_list.append(parse_ims_to_df(r.json()['data'], channel_name))
logger.info('concatanating df and transforming to xarray...')
try:
df_all = pd.concat(df_list)
except ValueError:
logger.warning('no new data on station {}.'.format(stationid))
return None
# only valid results:
# df_valid = df_all[df_all['valid']]
df_all.index.name = 'time'
# remove duplicated index values:
df_all = df_all[~df_all.index.duplicated()]
first = df_all.index[0]
last = df_all.index[-1]
new_index = pd.date_range(first, last, freq='10min')
df_all = df_all.reindex(new_index)
valid_name = channel_name + '_valid'
value_name = channel_name + '_value'
df_all[valid_name].fillna(False, inplace=True)
# replace non valid measurments with nans
new_vals = df_all[value_name].where(df_all[valid_name])
df_all[value_name] = new_vals
df_all.index.name = 'time'
da = to_dataarray(df_all, meta)
if update is not None:
return da
else:
filename = '_'.join(['-'.join(meta['name'].split(' ')), str(meta['id']), channel_name,
'10mins']) + '.nc'
comp = dict(zlib=True, complevel=9) # best compression
encoding = {var: comp for var in da.to_dataset().data_vars}
logger.info('saving to {} to {}'.format(filename, savepath))
da.to_netcdf(savepath / filename, 'w', encoding=encoding)
# print('done!')
# all channels download add support here:
elif channel_name is None:
logger.info('getting all channels...')
dates = get_dates_list(earliest, latest)
df_list = []
for i in range(len(dates) - 1):
first_date = dates[i].strftime('%Y/%m/%d')
last_date = dates[i + 1].strftime('%Y/%m/%d')
logger.info('proccesing dates: {} to {}'.format(first_date,
last_date))
dl_command = ('https://api.ims.gov.il/v1/envista/stations/' +
str(stationid) + '/data?from=' + first_date +
'&to=' + last_date)
r = requests.get(dl_command, headers=headers)
if r.status_code == 204: # i.e., no content:
logger.warning('no content for this search, skipping...')
break
logger.info('parsing to dataframe...')
df_list.append(parse_ims_to_df(r.json()['data'], None))
return
def download_all_10mins_ims(savepath, channel_name='TD'):
"""download all 10mins stations per specified channel, updateing fields is
automatic"""
# from aux_gps import path_glob
import xarray as xr
import logging
logger = logging.getLogger('ims_downloader')
glob = '*_{}_10mins.nc'.format(channel_name)
files = sorted(path_glob(savepath, glob, return_empty_list=True))
files = [x for x in files if x.is_file()]
if files:
time_dim = list(set(xr.open_dataarray(files[0]).dims))[0]
last_dates = [check_ds_last_datetime(xr.open_dataarray(x)) for x in files]
st_id_downloaded = [int(x.as_posix().split('/')[-1].split('_')[1]) for x in files]
d = dict(zip(st_id_downloaded, last_dates))
stations = ims_api_get_meta(active_only=True, channel_name=channel_name)
for index, row in stations.iterrows():
st_id = row['stationId']
if st_id not in d.keys():
download_ims_single_station(savepath=savepath,
channel_name=channel_name,
stationid=st_id, update=None)
elif st_id in d.keys():
logger.info('updating station {}...'.format(st_id))
da = download_ims_single_station(savepath=savepath,
channel_name=channel_name,
stationid=st_id, update=d[st_id])
if da is not None:
file = path_glob(savepath, '*_{}_{}_10mins.nc'.format(st_id, channel_name))[0]
da_old = xr.load_dataarray(file)
da = xr.concat([da, da_old], time_dim)
da = da.sortby(time_dim)
filename = '_'.join(['-'.join(row['name'].split(' ')), str(st_id), channel_name,
'10mins']) + '.nc'
comp = dict(zlib=True, complevel=9) # best compression
encoding = {var: comp for var in da.to_dataset().data_vars}
logger.info('saving to {} to {}'.format(filename, savepath))
try:
da.to_netcdf(savepath / filename, 'w', encoding=encoding)
except PermissionError:
(savepath / filename).unlink()
da.to_netcdf(savepath / filename, 'w', encoding=encoding)
# print('done!')
else:
logger.warning('station {} is already in {}, skipping...'.format(st_id,
savepath))
return
def merge_stations_and_divide_to_yearly_monthly_files(savepath, channel_name='TD',
year_months=None):
import xarray as xr
import logging
# import numpy as np
import os
from aux_gps import get_unique_index
def save_yearly_monthly_file(ds_ym, month_savepath, filename):
comp = dict(zlib=True, complevel=9) # best compression
encoding = {var: comp for var in ds_ym.data_vars}
logger.info('saving to {} to {}'.format(filename, month_savepath))
try:
ds_ym.to_netcdf(month_savepath / filename, 'w', encoding=encoding)
except PermissionError:
(month_savepath / filename).unlink()
ds_ym.to_netcdf(month_savepath / filename, 'w', encoding=encoding)
logger = logging.getLogger('ims_downloader')
glob = '*_{}_10mins.nc'.format(channel_name)
files = sorted(path_glob(savepath, glob, return_empty_list=True))
files = [x for x in files if x.is_file()]
if files:
time_dim = list(set(xr.open_dataarray(files[0]).dims))[0]
logger.info('Reading all {} stations, merging them and saving as monthly files.'.format(len(files)))
# create year savepath:
month_savepath = savepath / 'monthly'
if not month_savepath.is_dir():
os.mkdir(month_savepath)
logger.info('created {}.'.format(month_savepath))
else:
logger.info('{} already exist.'.format(month_savepath))
# load stations list:
dsl = [xr.open_dataset(x) for x in files]
dsl = [x.sortby(time_dim) for x in dsl]
if year_months is None:
# this merge over the years is very slow, run it only once:
# ds = xr.merge(dsl)
yr_min = min([x[time_dim].min().dt.year.item() for x in dsl])
mnth_min = min([x[time_dim].min().dt.month.item() for x in dsl])
yr_max = max([x[time_dim].max().dt.year.item() for x in dsl])
mnth_max = max([x[time_dim].max().dt.month.item() for x in dsl])
start = pd.to_datetime('{}-{}'.format(yr_min, mnth_min), format='%Y-%m')
end = pd.to_datetime('{}-{}'.format(yr_max, mnth_max), format='%Y-%m')
# years = np.arange(yr_min, yr_max + 1)
dts = pd.date_range(start=start, end=end, freq='m')
dts=[x.strftime('%Y-%m') for x in dts]
logger.info('Found {}-{} as years.'.format(yr_min, yr_max))
for dt in dts:
ds_dt_list = []
for ds in dsl:
try:
ds_ym = ds.sel({time_dim: dt})
ds_ym = get_unique_index(ds_ym, dim=time_dim)
except KeyError:
continue
ds_dt_list.append(ds_ym)
# ds_year = [x.load() for x in ds_year]
ds_yms = xr.merge(ds_dt_list)
# ds_year = ds.sel({time_dim: str(year)})
filename = 'IMS_ALL_{}_{}.nc'.format(channel_name, dt)
save_yearly_monthly_file(ds_yms, month_savepath, filename)
else:
logger.info('Using user supplied dts {}.'.format(year_months))
for dt in year_months:
ds_dt_list = []
for ds in dsl:
try:
ds_ym = ds.sel({time_dim: dt})
ds_ym = get_unique_index(ds_ym, dim=time_dim)
except KeyError:
continue
ds_dt_list.append(ds_ym)
# ds_year = [x.load() for x in ds_year]
ds_yms = xr.merge(ds_dt_list)
# ds_year = ds.sel({time_dim: str(year)})
filename = 'IMS_ALL_{}_{}.nc'.format(channel_name, dt)
save_yearly_monthly_file(ds_yms, month_savepath, filename)
logger.info('Done saving IMS yearly {} files.'.format(channel_name))
def post_process_ims_stations(month_savepath, gis_path, dem_path,
stats_path, pw_path, year_months=None):
"""fill TD with hourly mean if NaN and smooth, then fill in station_lat
and lon and alt from DEM, finally interpolate to SOI coords and save"""
# from aux_gps import fill_na_xarray_time_series_with_its_group
from aux_gps import transform_time_series_groups_agg_to_time_series
from ims_procedures import analyse_10mins_ims_field
# from axis_process import produce_rinex_filenames_at_time_window
from ims_procedures import IMS_interpolating_to_GNSS_stations_israel
from aux_gps import save_ncfile
from aux_gps import path_glob
# import pandas as pd
import xarray as xr
# load IMS stats data for the stations:
ds_stats = xr.load_dataset(stats_path/'IMS_TD_month_hour_stats.nc')
# first select all or some years of IMS data from month_savepath
files = sorted(path_glob(month_savepath, 'IMS_ALL_TD_*.nc'))
if year_months is not None:
new_files = []
for file in files:
year_month = file.as_posix().split('/')[-1].split('.')[0].split('_')[-1]
if year_month in year_months:
new_files.append(file)
files = new_files
for file in files:
year_month = file.as_posix().split('/')[-1].split('.')[0].split('_')[-1]
year = int(year_month.split('-')[0])
logger.info('Performing post proccess on IMS TD for {}.'.format(year_month))
ds = xr.load_dataset(file)
das = []
for da in ds:
df_trans = transform_time_series_groups_agg_to_time_series(ds[da], ds_stats, stat='mean')
df_trans[da] = df_trans[da].fillna(df_trans['mean'])
da_filled = df_trans[da].to_xarray()
da_filled.attrs = ds[da].attrs
if da_filled is None:
logger.warning('could not find {} station in stats, skipping...'.format(da))
continue
das.append(da_filled)
ds = xr.merge(das)
ds = analyse_10mins_ims_field(ds=ds, var='TD', gis_path=gis_path,
dem_path=dem_path)
if int(year) >= 1996:
ds_soi = IMS_interpolating_to_GNSS_stations_israel(
dt=None, start_year=str(year), verbose=True,
savepath=None, network='soi-apn', ds_td=ds,
cut_days_ago=None, axis_path=None, concat_all_TD=False, soi_path=pw_path)
filename = 'SOI_TD_{}.nc'.format(year_month)
save_ncfile(ds_soi, month_savepath, filename)
# now_dt = pd.Timestamp.utcnow().floor('H')
# names = produce_rinex_filenames_at_time_window(end_dt=now_dt,
# window=window)
# st_str = names[0][4:8]
# end_str = names[-1][4:8]
# filename = 'AXIS_TD_{}-{}.nc'.format(st_str, end_str)
# save_ncfile(ds_axis, savepath, filename)
return ds
def produce_pwv_all_stations(td_month_path, rinex_path, mda_path):
from PW_stations import load_mda
from PW_stations import produce_GNSS_station_PW
from aux_gps import fill_na_xarray_time_series_with_its_group
from aux_gps import path_glob
from aux_gps import save_ncfile
import xarray as xr
# first load mda:
mda = load_mda(mda_path)
# now load and concat all TD with GNSS - SOI stations:
td_files = sorted(path_glob(td_month_path, 'SOI_TD_*.nc'))
td_list = [xr.load_dataset(x) for x in td_files]
td = xr.concat(td_list, 'time')
td = td.sortby('time')
# now loop over each station path, produce pwv and save:
st_dirs = path_glob(rinex_path, '*/')
st_dirs = [x for x in st_dirs if x.is_dir()]
# st_dirs = [x for x in st_dirs if not x.as_posix().split('/')[-1].isnumeric()]
# assert len(st_dirs) == 27
pwv_list = []
for st_dir in st_dirs:
station = st_dir.as_posix().split('/')[-1]
if station not in td:
logger.error('{} not found in temperature database, skipping...'.format(station))
continue
file = st_dir/'gipsyx_solutions/{}_PPP_all_years.nc'.format(station.upper())
if not file.is_file():
logger.error('{} not found in PPP gipsyx solutions, skipping...'.format(station))
continue
wet = xr.open_dataset(file)['WetZ'].squeeze(drop=True)
logger.info('loaded {}.'.format(file))
wet_error = xr.open_dataset(file)['WetZ_error'].squeeze(drop=True)
wet.name = station
wet_error.name = station
# resample temp to 5 mins and reindex to wet delay time:
t = td[station].resample(time='5T').ffill().reindex_like(wet.time)
# fill in NaNs with mean hourly signal:
try:
t_new = fill_na_xarray_time_series_with_its_group(t, grp='hour')
except ValueError as e:
logger.warning('encountered error: {}, skipping {}'.format(e, file))
continue
try:
pwv = produce_GNSS_station_PW(wet, t_new, mda=mda,
model_name='LR', plot=False)
pwv_error = produce_GNSS_station_PW(wet_error, t_new, mda=mda,
model_name='LR', plot=False)
pwv_error.name = '{}_error'.format(pwv.name)
pwv_ds = xr.merge([pwv, pwv_error])
filename = '{}_PWV_all_years.nc'.format(station.upper())
save_ncfile(pwv_ds, st_dir/'gipsyx_solutions', filename)
pwv_list.append(pwv_ds)
except ValueError as e:
logger.warning('encountered error: {}, skipping {}'.format(e, file))
continue
if __name__ == '__main__':
import argparse
import sys
import pandas as pd
# from ims_procedures import ims_api_get_meta
from pathlib import Path
# from aux_gps import configure_logger
logger = configure_logger('ims_downloader')
channels = ['BP', 'DiffR', 'Grad', 'NIP', 'Rain', 'RH', 'STDwd', 'TD',
'TDmax', 'TDmin', 'TG', 'Time', 'WD', 'WDmax', 'WS', 'WS10mm',
'WS1mm', 'WSmax']
savepath = Path('/home/ziskin/Work_Files/PW_yuval/IMS_T/10mins')
dem_path = Path('/home/ziskin/Work_Files/PW_yuval/AW3D30')
gis_path = Path('/home/ziskin/Work_Files/PW_yuval/gis')
work_yuval = Path('/home/ziskin/Work_Files/PW_yuval/')
pw_path = Path('/home/ziskin/Python_Projects/PW_from_GPS')
parser = argparse.ArgumentParser(description='a command line tool for downloading all 10mins stations from the IMS with specific variable')
optional = parser._action_groups.pop()
required = parser.add_argument_group('required arguments')
# remove this line: optional = parser...
required.add_argument('--savepath', help="a full path to download the files, e.g., /home/ziskin/Work_Files/PW_yuval/IMS_T/10mins", type=check_path)
required.add_argument('--channel', help="10 mins channel name , e.g., TD, BP or RH",
choices=channels)
required.add_argument('--delete', action='store_true') # its False
# don't need to specify folder unless files were moved:
required.add_argument('--dem_path', help="a full path to DEM data", const=dem_path, nargs='?', type=check_path)
required.add_argument('--gis_path', help="a full path to GIS data", const=gis_path, nargs='?', type=check_path)
required.add_argument('--mda_path', help="a full path to mda model (ts-tm)", const=work_yuval, nargs='?', type=check_path)
required.add_argument('--pw_path', help="a full path to where israeli_gnss_coords.txt is", const=pw_path, nargs='?', type=check_path)
#optional.add_argument('--station', nargs='+',
# help='GPS station name, 4 UPPERCASE letters',
# type=check_station_name)
# metavar=str(cds.start_year) + ' to ' + str(cds.end_year))
# optional.add_argument('--half', help='a spescific six months to download,\
# e.g, 1 or 2', type=int, choices=[1, 2],
# metavar='1 or 2')
required.add_argument('--last_2_months', action='store_true')
optional.add_argument('--datetimes', help="select the year-months that the IMS stations are saved as yearly files",
type=str,
nargs='+')
parser._action_groups.append(optional) # added this line
args = parser.parse_args()
print(args)
# print(parser.format_help())
# # print(vars(args))
if args.savepath is None:
print('savepath is a required argument, run with -h...')
sys.exit()
# elif args.field is None:
# print('field is a required argument, run with -h...')
# sys.exit()
if args.channel is not None and not args.delete:
download_all_10mins_ims(args.savepath, channel_name=args.channel)
if args.last_2_months:
yr = pd.Timestamp.today().year
month = pd.Timestamp.today().month
last_month = (pd.Timestamp.today() - pd.Timedelta(30, unit='d')).month
last_year = (pd.Timestamp.today() - pd.Timedelta(30, unit='d')).year
args.datetimes = ['{}-{}'.format(last_year, last_month), '{}-{}'.format(yr, month)]
# first merge all IMS TD stations and divide into year-monthly files:
merge_stations_and_divide_to_yearly_monthly_files(args.savepath,
channel_name=args.channel,
year_months=args.datetimes)
# then, post-process them and produce temperature at GNSS stations coords:
post_process_ims_stations(args.savepath/'monthly', args.gis_path, args.dem_path,
args.savepath, args.pw_path, year_months=args.datetimes)
# now use ts-tm model to convert WetZ into PWV and save:
produce_pwv_all_stations(args.savepath/'monthly', work_yuval/'GNSS_stations', args.mda_path)
logger.info('Done!')
elif args.delete:
generate_delete(args.savepath, args.channel)
else:
raise ValueError('need to specify channel name!')