-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathsynoptic_procedures.py
450 lines (420 loc) · 17.1 KB
/
synoptic_procedures.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon May 25 13:46:44 2020
@author: ziskin
"""
from pathlib import Path
from PW_paths import work_yuval
climate_path = work_yuval / 'climate'
#cwd = Path().cwd()
def choose_color_for_synoptic_classification():
# import numpy as np
# import seaborn as sns
# from matplotlib.cm import tab20b
# from matplotlib.cm import tab20c
# from palettable.colorbrewer import sequential as seq
from PW_from_gps_figures import create_enhanced_qualitative_color_map
colors = create_enhanced_qualitative_color_map(plot=False)
# syn_cls = np.arange(1, 20)
# colors = sns.color_palette('tab20', 19)
col_dict = {}
edge_dict = {}
east_color = colors[8] # green
west_color = colors[0] # blue
north_color = colors[28] # gray
south_color = colors[12] # dark orange
central_color = [0, 0, 0, 1] # black
# no_color = [0, 0, 1, 1] # white
RST_color = colors[4] # light orange
High_color = colors[16] # purple
cold_low_color = colors[39]
sharav_color = colors[35]
# RST colors:
col_dict[1] = RST_color
col_dict[2] = RST_color
col_dict[3] = RST_color
edge_dict[1] = east_color
edge_dict[2] = west_color
edge_dict[3] = central_color
# PT colors:
col_dict[4] = colors[10]
col_dict[5] = colors[9]
col_dict[6] = colors[8]
edge_dict[4] = central_color
edge_dict[5] = central_color
edge_dict[6] = central_color
# High colors:
col_dict[7] = High_color
col_dict[8] = High_color
col_dict[9] = High_color
col_dict[10] = High_color
edge_dict[7] = east_color
edge_dict[8] = west_color
edge_dict[9] = north_color
edge_dict[10] = central_color
# low east deep:
col_dict[11] = colors[28]
edge_dict[11] = east_color
# CL lows:
col_dict[12] = colors[36]
col_dict[13] = colors[38]
col_dict[14] = colors[36]
col_dict[15] = colors[38]
edge_dict[12] = south_color
edge_dict[13] = south_color
edge_dict[14] = north_color
edge_dict[15] = north_color
# cold low west:
col_dict[16] = cold_low_color
edge_dict[16] = west_color
# low east shallow:
col_dict[17] = colors[29]
edge_dict[17] = east_color
# sharav Lows:
col_dict[18] = sharav_color
col_dict[19] = sharav_color
edge_dict[18] = west_color
edge_dict[19] = central_color
return col_dict, edge_dict
def visualize_synoptic_class_on_time_series(da_ts, path=climate_path,
ax=None, leg_ncol=1, add_mm=False,
leg_loc=1, second_da_ts=None,
twin=None):
import xarray as xr
import matplotlib.pyplot as plt
from aux_gps import replace_time_series_with_its_group
time_dim = list(set(da_ts.dims))[0]
assert xr.infer_freq(da_ts[time_dim]) == 'D'
if ax is None:
fig, ax = plt.subplots()
# also calc the monthly means:
if add_mm:
da_ts_mm = replace_time_series_with_its_group(da_ts, grp='month')
da_ts_mm.plot.line('k-.', ax=ax)
if isinstance(da_ts, xr.Dataset):
styles = ['r-', 'g-', 'b-']
lns = []
for i, st in enumerate(da_ts):
lbl = st.upper()
ln = da_ts[st].plot.line(styles[i], lw=2, ax=ax, zorder=20, label=lbl)
lns.append(ln)
da_ts = da_ts[st]
else:
# plot daily values:
da_ts.plot.line('k-', lw=2, ax=ax, zorder=20)
if second_da_ts is not None:
# record the corr between second_da_ts and da_ts:
corr_all = xr.corr(da_ts, second_da_ts).item()
corr_oct = xr.corr(da_ts.sel(time=da_ts['time.month'] == 10), second_da_ts.sel(
time=second_da_ts['time.month'] == 10)).item()
props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
textstr = '\n'.join([
'r_all = {:.2f}'.format(corr_all),
'r_just_Oct = {:.2f}'.format(corr_oct)])
# textstr = 'r_all = {:.2f}'.format(corr)
# place a text box in upper left in axes coords
ax.text(0.05, 0.95, textstr, transform=ax.transAxes, fontsize=14,
verticalalignment='top', bbox=props)
try:
if second_da_ts.attrs['units'] == da_ts.attrs['units']:
second_da_ts.plot.line('k--', lw=2, ax=ax, marker='o')
else:
twinx = ax.twinx()
second_da_ts.plot.line('k--', lw=2, ax=twinx, marker='o')
if twin is not None:
twinx.set_ylim(*twin)
except KeyError:
twinx = ax.twinx()
second_da_ts.plot.line('k--', lw=2, ax=twinx, marker='o')
if twin is not None:
twinx.set_ylim(*twin)
# ymin, ymax = ax.get_ylim()
df = read_synoptic_classification(path, report=False)
ind = da_ts.to_dataframe().index
da_ts = align_synoptic_class_with_daily_dataset(da_ts)
df = df.loc[ind]
color_dict, edge_dict = choose_color_for_synoptic_classification()
# df['color'] = df['class'].map(color_dict)
# monthly count of synoptics:
month_counts = agg_month_count_syn_class(freq=False)
min_year = da_ts[time_dim].min().dt.year.item()
min_month = da_ts[time_dim].min().dt.month.item()
max_year = da_ts[time_dim].max().dt.year.item()
max_month = da_ts[time_dim].max().dt.month.item()
min_dt = '{}-{}'.format(min_year, min_month)
max_dt = '{}-{}'.format(max_year, max_month)
month_counts = month_counts.sel(time=slice(min_dt, max_dt))
# alternative count since we need not just monthly but by time slice:
grp_dict = df.groupby('class').groups
for key_class, key_ind in grp_dict.items():
color = color_dict[key_class]
edge_color = edge_dict[key_class]
abbr = add_class_abbr(key_class)
# abbr_count = month_counts.sel(syn_cls=key_class).sum().item()
abbr_count = df[df['class'] == key_class].count().values[0]
abbr_label = r'${{{}}}$: {}'.format(abbr, int(abbr_count))
# for ind, row in df.iterrows():
da_ts[da_ts['syn_class'] == key_class].plot.line(
'k-', lw=0, ax=ax, marker='o', markersize=20,
markerfacecolor=color, markeredgewidth=2,
markeredgecolor=edge_color, label=abbr_label)
# ax.vlines(key_ind, 0, 80, colors=color, alpha=0.4, lw=10,
# label=abbr_label)
ax.legend(ncol=leg_ncol, labelspacing=1.5, fontsize=12, loc=leg_loc)
ax.grid()
return ax
def val_counts(ser):
s = ser.value_counts()
# s=s.drop(0)
return s[:1].index.to_list()[0]
upper_class_dict = {'RST': [1, 2, 3], 'PT': [4, 5, 6], 'H': [7, 8, 9, 10],
'CL': [12, 13, 14, 15], 'DS': [17, 18, 19],
'Other': [11, 16]}
def class_to_upper(class_da, class_type='upper1', name='upper_class'):
import numpy as np
df = class_da.to_dataframe(name='class')
if class_type == 'upper1':
df[name] = np.ones(df['class'].shape) * np.nan
df.loc[(df['class'] <= 3) & (df['class'] >= 1), name] = 'RST'
df.loc[(df['class'] <= 6) & (df['class'] >= 4), name] = 'PT'
df.loc[(df['class'] <= 10) & (df['class'] >= 7), name] = 'H'
df.loc[(df['class'] <= 15) & (df['class'] >= 12), name] = 'CL'
df[name] = df[name].fillna('Other')
da = df.to_xarray()[name]
return da
def align_synoptic_class_with_daily_dataset(ds, time_dim='time'):
import xarray as xr
assert xr.infer_freq(ds[time_dim]) == 'D'
# ds = ds.resample({time_dim: '1D'}, keep_attrs=True).mean(keep_attrs=True)
syn = read_synoptic_classification(report=False).to_xarray()
ds['syn_class'] = syn['class']
ds['upper_class'] = syn['upper_class']
return ds
def align_synoptic_class_with_pw(path):
import xarray as xr
from aux_gps import dim_intersection
from aux_gps import save_ncfile
from aux_gps import xr_reindex_with_date_range
pw = xr.load_dataset(path / 'GNSS_PW_thresh_50_homogenized.nc')
pw = pw[[x for x in pw if '_error' not in x]]
syn = read_synoptic_classification(report=False).to_xarray()
# syn = syn.drop(['Name-EN', 'Name-HE'])
syn = syn['class']
syn = syn.sel(time=slice('1996', None))
syn = syn.resample(time='5T').ffill()
ds_list = []
for sta in pw:
print('aligning station {} with synoptics'.format(sta))
new_time = dim_intersection([pw[sta], syn])
syn_da = xr.DataArray(syn.sel(time=new_time))
syn_da.name = '{}_class'.format(sta)
syn_da = xr_reindex_with_date_range(syn_da)
ds_list.append(syn_da)
ds = xr.merge(ds_list)
ds = ds.astype('int8')
ds = ds.fillna(0)
filename = 'GNSS_synoptic_class.nc'
save_ncfile(ds, path, filename)
return ds
def slice_xr_with_synoptic_class(pw, path=work_yuval, syn_class=1,
plot=False):
import xarray as xr
import matplotlib.pyplot as plt
from aux_gps import rename_data_vars
name = pw.name
syn = xr.load_dataset(path / 'GNSS_synoptic_class.nc')
if isinstance(syn_class, int):
if isinstance(pw, xr.DataArray):
syn = syn['{}_class'.format(name)]
elif isinstance(pw, xr.Dataset):
syn = rename_data_vars(syn, suffix='_class', remove_suffix=True)
syn = syn.to_dataframe()['{}_class'.format(name)]
pw = pw.to_dataframe()
pw = pw[syn==syn_class]
elif isinstance(syn_class, str):
if isinstance(pw, xr.DataArray):
syn = syn['{}_class'.format(name)]
elif isinstance(pw, xr.Dataset):
syn = rename_data_vars(syn, suffix='_class', remove_suffix=True)
syn = syn.to_dataframe()['{}_class'.format(name)]
pw = pw.to_dataframe()
pw = pw[syn.isin(upper_class_dict.get(syn_class))]
pw = pw.to_xarray()[name]
if plot:
pw.plot()
ax = plt.gca()
ax.set_title('{} synoptic code selected'.format(syn_class))
return pw
def add_class_abbr(class_num):
import numpy as np
classes = np.arange(1, 20)
abbrs = ['RST_e', 'RST_w', 'RST_c', 'PT-W', 'PT-M',
'PT-D', 'H_e', 'H_w', 'H_n', 'H_c', 'L_e-D', 'CL_s-D', 'CL_s-S',
'CL_n-D', 'CL_n-S', 'L_w', 'L_e-S', 'SL_w', 'SL_c']
class_abbr_dict = dict(zip(classes, abbrs))
return class_abbr_dict.get(class_num)
def read_synoptic_classification(
path=climate_path,
filename='synoptic_classification_1948-8_May_2020.xls', report=True):
import pandas as pd
from aux_gps import path_glob
import numpy as np
from aux_gps import invert_dict
synoptic_filename = path_glob(path, 'synoptic_classification_1948*.xls')
# read excell:
df = pd.read_excel(synoptic_filename[0])
# read last date:
last_day = df.Day[(df.iloc[:, -1].isnull() == True)
].head(1).values.item() - 1
last_month = df.Month[(df.iloc[:, -1].isnull() == True)
].head(1).values.item()
last_year = df.iloc[:, -1].name
last_date = pd.to_datetime(
'{}-{}-{}'.format(last_year, last_month, last_day))
# produce datetime index:
dt = pd.date_range('1948-01-01', last_date, freq='1D')
# drop two first cols:
df.drop(df.columns[0:2], axis=1, inplace=True)
# melt the df:
df = df.melt(var_name='year')
df = df.dropna()
df.drop('year', axis=1, inplace=True)
# set new index:
df.set_index(dt, inplace=True)
df.columns = ['class']
df['class'] = df['class'].astype(int)
# load name table:
class_df = pd.read_csv(path / 'Isabella_Names for the EM synoptic systems.csv')
class_df.columns = ['class', 'Name-EN', 'Name-HE']
class_df.set_index('class', inplace=True)
# enter the names to df:
df['Name-EN'] = class_df['Name-EN'].loc[df['class'].values].values
df['Name-HE'] = class_df['Name-HE'].loc[df['class'].values].values
# define upper level class:
d = invert_dict(upper_class_dict)
df['upper_class'] = df['class'].map(d)
# df['upper_class'] = np.ones(df['class'].shape) * np.nan
# df.loc[(df['class'] <= 3) & (df['class'] >= 1), 'upper_class'] = 'RST'
# df.loc[(df['class'] <= 6) & (df['class'] >= 4), 'upper_class'] = 'PT'
# df.loc[(df['class'] <= 10) & (df['class'] >= 7), 'upper_class'] = 'H'
# df.loc[(df['class'] <= 15) & (df['class'] >= 12), 'upper_class'] = 'CL'
# df['upper_class'] = df['upper_class'].fillna('Other')
df.index.name = 'time'
df['class_abbr'] = df['class'].apply(add_class_abbr)
if report:
for i, code in enumerate(sorted(df['class'].unique())):
percent = 100 * (df['class'] == code).sum() / df['class'].size
name = df['Name-EN'][df['class'] == code].unique().item()
print('{}) {} : {:.1f} %'.format(i+1, name, percent))
return df
def find_consecutive_classes(df):
from aux_gps import find_consecutive_vals_df
import numpy as np
import pandas as pd
classes = np.arange(1, 20, 1)
sums = []
for clas in classes:
df_con = find_consecutive_vals_df(df, col='class', val=clas)
if df_con.empty:
sums.append(0)
else:
sums.append(df_con['2'][df_con['2'] > 1].sum())
df_clas = pd.DataFrame(sums, index=classes)
df_clas.columns = ['consecutive_class_days']
return df_clas
def agg_month_consecutive_syn_class(path=climate_path, normalize=True):
import numpy as np
import pandas as pd
from aux_gps import save_ncfile
df = read_synoptic_classification(path=path, report=False)
df['month'] = df.index.month
df['year'] = df.index.year
df['months'] = df['year'].astype(str) + '-' + df['month'].astype(str)
new_df = df.groupby(df['months']).apply(find_consecutive_classes)
new_df.columns = ['class_sum']
new_df = new_df.unstack()
new_df.columns = np.arange(1, 20, 1)
dt = pd.to_datetime(new_df.index)
new_df.set_index(dt, inplace=True)
new_df = new_df.sort_index()
new_df.index.name = 'time'
if normalize:
new_df = new_df.divide(new_df.index.days_in_month, axis=0)
da = new_df.to_xarray().to_array('class')
ds = da.to_dataset(name='consecutive')
filename = 'GNSS_synoptic_class_consecutive.nc'
save_ncfile(ds, work_yuval, filename)
return ds
def agg_month_count_syn_class(path=climate_path, syn_category='normal',
freq=True):
# df.loc['2015-09']['Name-EN'].value_counts()
import pandas as pd
if syn_category == 'normal':
syn_cat = 'class'
elif syn_category == 'upper':
syn_cat = 'upper_class'
df = read_synoptic_classification(path=path, report=False)
print('used {} synoptic category'.format(syn_category))
df['month'] = df.index.month
df['year'] = df.index.year
df['months'] = df['year'].astype(str) + '-' + df['month'].astype(str)
new_df = df.groupby([df['months'], df[syn_cat]]).size().to_frame()
new_df.columns = ['class_sum']
dfmm = pd.pivot_table(new_df, index='months', columns=syn_cat)
dfmm.set_index(pd.to_datetime(dfmm.index), inplace=True)
dfmm.sort_index()
# dfmm = dfmm.fillna(0)
# dfmm = dfmm.astype(int)
dfmm.columns = dfmm.columns.droplevel()
dfmm.index.name = 'time'
if freq:
dfmm /= pd.DataFrame(dfmm.index.days_in_month.values, index=dfmm.index).values
da = dfmm.to_xarray().to_array('syn_cls')
da = da.sortby('time')
da.attrs['units'] = 'counts in a month'
if freq:
da.attrs['units'] = 'relative frequency in a month'
return da
def agg_month_syn_class_continous_variable_with_level(da, level_dim='level',
path=climate_path,
syn_cat='RST',
return_all_syn_cats=True):
import xarray as xr
ds_list = []
for lev in da[level_dim]:
ds = agg_month_syn_class_continous_variable(da.sel(
{level_dim: lev}), syn_cat=syn_cat, return_all_syn_cats=return_all_syn_cats)
ds_list.append(ds)
dss = xr.concat(ds_list, level_dim)
dss[level_dim] = da[level_dim]
return dss
def agg_month_syn_class_continous_variable(
da, path=climate_path, syn_cat='RST', return_all_syn_cats=False):
import pandas as pd
syn_da = align_synoptic_class_with_daily_dataset(da)
df = syn_da.to_dataframe()
if isinstance(syn_cat, int):
df = df.drop('upper_class', axis=1)
elif isinstance(syn_cat, str):
df = df.drop('syn_class', axis=1)
df = df.rename({'upper_class': 'syn_class'}, axis='columns')
df['month'] = df.index.month
df['year'] = df.index.year
df['months'] = df['year'].astype(str) + '-' + df['month'].astype(str)
# do a mean on syn_class and months:
new_df = df[da.name].groupby([df['syn_class'], df['months']]).mean()
new_df = new_df.to_frame('class_mean')
dfmm = pd.pivot_table(new_df, index='months', columns='syn_class')
dfmm.set_index(pd.to_datetime(dfmm.index), inplace=True)
dfmm = dfmm.sort_index()
dfmm.columns = dfmm.columns.droplevel()
dfmm.index.name = 'time'
if return_all_syn_cats:
da_agg = dfmm.to_xarray().to_array('syn_class')
da_agg.name = 'syn_classes'
else:
da_agg = dfmm.to_xarray()[syn_cat]
da_agg = da_agg.sortby('time')
da_agg.name = str(da_agg.name)
return da_agg