forked from Z3Prover/z3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
rc2.py
161 lines (139 loc) · 4.82 KB
/
rc2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# RC2 algorithm
# basic version with some optimizations
# - process soft constraints in order of highest values first.
# - extract multiple cores, not just one
# - use built-in cardinality constraints, cheap core minimization.
#
# See also https://github.com/pysathq/pysat and papers in CP 2014, JSAT 2015.
from z3 import *
from z3 import *
def tt(s, f):
return is_true(s.model().eval(f))
def add(Ws, f, w):
Ws[f] = w + (Ws[f] if f in Ws else 0)
def sub(Ws, f, w):
w1 = Ws[f]
if w1 > w:
Ws[f] = w1 - w
else:
del(Ws[f])
class RC2:
def __init__(self, s):
self.bounds = {}
self.names = {}
self.solver = s
self.solver.set("sat.cardinality.solver", True)
self.solver.set("sat.core.minimize", True)
self.solver.set("sat.core.minimize_partial", True)
def at_most(self, S, k):
fml = simplify(AtMost(S + [k]))
if fml in self.names:
return self.names[fml]
name = Bool("%s" % fml)
self.solver.add(Implies(name, fml))
self.bounds[name] = (S, k)
self.names[fml] = name
return name
def print_cost(self):
print("cost [", self.min_cost, ":", self.max_cost, "]")
def update_max_cost(self):
self.max_cost = min(self.max_cost, self.get_cost())
self.print_cost()
# sort W, and incrementally add elements of W
# in sorted order to prefer cores with high weight.
def check(self, Ws):
def compare(fw):
f, w = fw
return -w
ws = sorted([(k,Ws[k]) for k in Ws], key = compare)
i = 0
while i < len(ws):
j = i
# increment j until making 5% progress or exhausting equal weight entries
while (j < len(ws) and ws[j][1] == ws[i][1]) or (i > 0 and (j - i)*20 < len(ws)):
j += 1
i = j
r = self.solver.check([ws[j][0] for j in range(i)])
if r == sat:
self.update_max_cost()
else:
return r
return sat
def get_cost(self):
return sum(self.Ws0[c] for c in self.Ws0 if not tt(self.solver, c))
# Retrieve independent cores from Ws
def get_cores(self, Ws):
cores = []
while unsat == self.check(Ws):
core = list(self.solver.unsat_core())
print (self.solver.statistics())
if not core:
return unsat
w = min([Ws[c] for c in core])
for f in core:
sub(Ws, f, w)
cores += [(core, w)]
self.update_max_cost()
return cores
# Add new soft constraints to replace core
# with weight w. Allow to weaken at most
# one element of core. Elements that are
# cardinality constraints are weakened by
# increasing their bounds. Non-cardinality
# constraints are weakened to "true". They
# correspond to the constraint Not(s) <= 0,
# so weakening produces Not(s) <= 1, which
# is a tautology.
def update_bounds(self, Ws, core, w):
for f in core:
if f in self.bounds:
S, k = self.bounds[f]
if k + 1 < len(S):
add(Ws, self.at_most(S, k + 1), w)
add(Ws, self.at_most([mk_not(f) for f in core], 1), w)
# Ws are weighted soft constraints
# Whenever there is an unsatisfiable core over ws
# increase the limit of each soft constraint from a bound
# and create a soft constraint that limits the number of
# increased bounds to be at most one.
def maxsat(self, Ws):
self.min_cost = 0
self.max_cost = sum(Ws[c] for c in Ws)
self.Ws0 = Ws.copy()
while True:
cores = self.get_cores(Ws)
if not cores:
break
if cores == unsat:
return unsat
for (core, w) in cores:
self.min_cost += w
self.print_cost()
self.update_bounds(Ws, core, w)
return self.min_cost, { f for f in self.Ws0 if not tt(self.solver, f) }
def from_file(self, file):
opt = Optimize()
opt.from_file(file)
self.solver.add(opt.assertions())
obj = opt.objectives()[0]
Ws = {}
for f in obj.children():
assert(f.arg(1).as_long() == 0)
add(Ws, f.arg(0), f.arg(2).as_long())
return self.maxsat(Ws)
def from_formulas(self, hard, soft):
self.solver.add(hard)
Ws = {}
for f, cost in soft:
add(Ws, f, cost)
return self.maxsat(Ws)
def main(file):
s = SolverFor("QF_FD")
rc2 = RC2(s)
set_param(verbose=0)
cost, falses = rc2.from_file(file)
print(cost)
print(s.statistics())
if len(sys.argv) > 1:
main(sys.argv[1])
# main(<myfile>)