-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrandom-forest-workspace.py
493 lines (459 loc) · 24.8 KB
/
random-forest-workspace.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
#IMPORTS==============================================
import unittest
import json
import numpy as np
#Enable importing code from parent directory
import os, sys
p = os.path.abspath('..')
sys.path.insert(1, p)
from generateerrortensor import generateIncompleteErrorTensor
from trainmodels import evaluationFunctionGenerator
from loaddata import loadData, trainTestSplit, extractZeroOneClasses, convertZeroOne
from commonfunctions import randomly_sample_tensor, uniformly_sample_tensor, Hamming_distance, norm_difference, sortedBestValues, common_count
from tensorcompletion import tensorcomplete_CP_WOPT_dense, tensorcomplete_TKD_Geng_Miles, tensorcomplete_TMac_TT
from tensorcompletion import ket_augmentation, inverse_ket_augmentation
from tensorsearch import sortHyperparameterValues, findBestValues, hyperparametersFromIndices
import regressionmetrics
import classificationmetrics
#OVERALL CONFIGURATION================================
BASE_PATH = 'saved-arrays/random-forest/'
FILE_NAME = 'wine-probability-KLD-5-1'
ARR_EXTN = '.npy'
ARR_PATH = BASE_PATH + FILE_NAME + ARR_EXTN
RANGE_DICT_EXTN = '.json'
RANGE_DICT_PATH = BASE_PATH + FILE_NAME + '-ranges' + RANGE_DICT_EXTN
load_tensor = True
#OBTAIN TENSOR========================================
tensor = None
ranges_dict = None
if load_tensor:
tensor = np.load(ARR_PATH)
with open(RANGE_DICT_PATH, 'r') as fp:
ranges_dict = json.load(fp)
else:
task = 'classification'
data = loadData(source='sklearn', identifier='wine', task=task)
binary_data = extractZeroOneClasses(data)
data_split = trainTestSplit(binary_data)
func = evaluationFunctionGenerator(data_split, algorithm='random-forest', task=task)
ranges_dict = {
'no_trees': {
'values':[1,10,20,30,40]
},
'max_tree_depth': {
'values':[1, 5, 10, 15, 20]
},
'bootstrap': {
'values': [True, False]
},
'min_samples_split': {
'start': 2.0,
'end': 10.0,
'interval': 1.0,
},
'no_features': {
'start': 1.0,
'end': 10.0,
'interval': 1.0,
},
}
with open(RANGE_DICT_PATH, 'w') as fp:
json.dump(ranges_dict , fp)
tensor, _ = generateIncompleteErrorTensor(func, ranges_dict, 1.0, metric=classificationmetrics.KullbackLeiblerDivergence, evaluation_mode='probability')
np.save(file=ARR_PATH, arr=tensor)
print(f'STAGE 1 - TENSOR GENERATED - shape: {tensor.shape}')
#OBTAIN BEST HYPERPARAMETER COMBINATIONS=============
smallest = True
#Obtain the best 10% in sorted order
no_elements_10pc = int(0.1*(tensor.size))
sorted_dict_10pc = sortedBestValues(tensor, smallest=smallest, number_of_values=no_elements_10pc)
#Obtain the best 5% in sorted order
no_elements_5pc = int(0.05*(tensor.size))
sorted_dict_5pc = sortedBestValues(tensor, smallest=smallest, number_of_values=no_elements_5pc)
#The best 1%
no_elements_1pc = int(0.01*(tensor.size))
sorted_dict_1pc = sortedBestValues(tensor, smallest=smallest, number_of_values=no_elements_1pc)
#The top 20
sorted_dict_top20 = sortedBestValues(tensor, smallest=smallest, number_of_values=20)
print(f'STAGE 2 - TRUE BEST COMBINATIONS IDENTIFIED')
#GENERATE INCOMPLETE TENSOR===========================
known_fraction = 0.25
incomplete_tensor, known_indices = randomly_sample_tensor(tensor, known_fraction)
print(f'STAGE 3 - INCOMPLETE TENSOR GENERATED - known elements: {known_fraction} {len(known_indices)}')
#TEST TENSOR COMPLETION================================
tensor_norm = np.linalg.norm(tensor)
ratio_threshold = 5
TT_rank = [1,3,3,3]
Tucker_rank = [2,2,2,1,3]
CPD_rank = 2
class TestTensorCompletion_TMAC_TT(unittest.TestCase):
def test_TMac_TT_top10pc(self):
#Apply tensor completion
TMAC_TT_PREDICTED_TENSOR, _, _ = tensorcomplete_TMac_TT(incomplete_tensor, known_indices, TT_rank, convergence_tolerance=1e-15, iteration_limit=100000)
#Check norm difference from true tensor
diff = norm_difference(TMAC_TT_PREDICTED_TENSOR, tensor)
#Find ratio to tensor norm
ratio = diff/tensor_norm
print(f'TMAC-TT (10%) ratio: {ratio}')
self.assertTrue(ratio < ratio_threshold)
#Obtain top 10% according to predicted tensor
sorted_predicted_dict_10pc = sortedBestValues(TMAC_TT_PREDICTED_TENSOR, smallest=smallest, number_of_values=no_elements_10pc)
true_indices = sorted_dict_10pc['indices']
predicted_indices = sorted_predicted_dict_10pc['indices']
hamming_distance = Hamming_distance(true_indices, predicted_indices)
aug_hamming_distance = Hamming_distance(true_indices, predicted_indices, augmented=True)
common = common_count(true_indices, predicted_indices)
LEN = len(true_indices)
print(f'TMAC-TT (10%) Hamming distance: {hamming_distance}, augmented hamming distance: {aug_hamming_distance}, common elements: {common}, length: {LEN}')
true_values = np.array(sorted_dict_10pc['values'])
predicted_values = np.array(sorted_predicted_dict_10pc['values'])
norm_error = np.linalg.norm(true_values - predicted_values)/(np.linalg.norm(true_values) + 1e-10)
print(f'Error in hyperparameter values: {norm_error}')
print(ratio)
print(hamming_distance)
print(aug_hamming_distance)
print(common)
print(norm_error)
completed = True
self.assertTrue(completed)
def test_TMac_TT_top5pc(self):
#Apply tensor completion
TMAC_TT_PREDICTED_TENSOR, _, _ = tensorcomplete_TMac_TT(incomplete_tensor, known_indices, TT_rank, convergence_tolerance=1e-15, iteration_limit=100000)
#Check norm difference from true tensor
diff = norm_difference(TMAC_TT_PREDICTED_TENSOR, tensor)
#Find ratio to tensor norm
ratio = diff/tensor_norm
print(f'TMAC-TT (5%) ratio: {ratio}')
self.assertTrue(ratio < ratio_threshold)
#Obtain top 5% according to predicted tensor
sorted_predicted_dict_5pc = sortedBestValues(TMAC_TT_PREDICTED_TENSOR, smallest=smallest, number_of_values=no_elements_5pc)
true_indices = sorted_dict_5pc['indices']
predicted_indices = sorted_predicted_dict_5pc['indices']
hamming_distance = Hamming_distance(true_indices, predicted_indices)
aug_hamming_distance = Hamming_distance(true_indices, predicted_indices, augmented=True)
common = common_count(true_indices, predicted_indices)
LEN = len(true_indices)
print(f'TMAC-TT (5%) Hamming distance: {hamming_distance}, augmented hamming distance: {aug_hamming_distance}, common elements: {common}, length: {LEN}')
true_values = np.array(sorted_dict_5pc['values'])
predicted_values = np.array(sorted_predicted_dict_5pc['values'])
norm_error = np.linalg.norm(true_values - predicted_values)/(np.linalg.norm(true_values) + 1e-10)
print(f'Error in hyperparameter values: {norm_error}')
print(ratio)
print(hamming_distance)
print(aug_hamming_distance)
print(common)
print(norm_error)
completed = True
self.assertTrue(completed)
def test_TMac_TT_top1pc(self):
#Apply tensor completion
TMAC_TT_PREDICTED_TENSOR, _, _ = tensorcomplete_TMac_TT(incomplete_tensor, known_indices, TT_rank, convergence_tolerance=1e-15, iteration_limit=100000)
#Check norm difference from true tensor
diff = norm_difference(TMAC_TT_PREDICTED_TENSOR, tensor)
#Find ratio to tensor norm
ratio = diff/tensor_norm
print(f'TMAC-TT (1%) ratio: {ratio}')
self.assertTrue(ratio < ratio_threshold)
#Obtain top 5% according to predicted tensor
sorted_predicted_dict_1pc = sortedBestValues(TMAC_TT_PREDICTED_TENSOR, smallest=smallest, number_of_values=no_elements_1pc)
true_indices = sorted_dict_1pc['indices']
predicted_indices = sorted_predicted_dict_1pc['indices']
hamming_distance = Hamming_distance(true_indices, predicted_indices)
aug_hamming_distance = Hamming_distance(true_indices, predicted_indices, augmented=True)
common = common_count(true_indices, predicted_indices)
LEN = len(true_indices)
print(f'TMAC-TT (1%) Hamming distance: {hamming_distance}, augmented hamming distance: {aug_hamming_distance}, common elements: {common}, length: {LEN}')
true_values = np.array(sorted_dict_1pc['values'])
predicted_values = np.array(sorted_predicted_dict_1pc['values'])
norm_error = np.linalg.norm(true_values - predicted_values)/(np.linalg.norm(true_values) + 1e-10)
print(f'Error in hyperparameter values: {norm_error}')
print(ratio)
print(hamming_distance)
print(aug_hamming_distance)
print(common)
print(norm_error)
completed = True
self.assertTrue(completed)
def test_TMac_TT_top20(self):
#Apply tensor completion
TMAC_TT_PREDICTED_TENSOR, _, _ = tensorcomplete_TMac_TT(incomplete_tensor, known_indices, TT_rank, convergence_tolerance=1e-15, iteration_limit=100000)
#Check norm difference from true tensor
diff = norm_difference(TMAC_TT_PREDICTED_TENSOR, tensor)
#Find ratio to tensor norm
ratio = diff/tensor_norm
print(f'TMAC-TT (top 20) ratio: {ratio}')
self.assertTrue(ratio < ratio_threshold)
#Obtain top 20 according to predicted tensor
sorted_predicted_dict_top20 = sortedBestValues(TMAC_TT_PREDICTED_TENSOR, smallest=smallest, number_of_values=20)
true_indices = sorted_dict_top20['indices']
predicted_indices = sorted_predicted_dict_top20['indices']
hamming_distance = Hamming_distance(true_indices, predicted_indices)
aug_hamming_distance = Hamming_distance(true_indices, predicted_indices, augmented=True)
common = common_count(true_indices, predicted_indices)
LEN = len(true_indices)
print(f'TMAC-TT (top 20) Hamming distance: {hamming_distance}, augmented hamming distance: {aug_hamming_distance}, common elements: {common}, length: {LEN}')
true_values = np.array(sorted_dict_top20['values'])
predicted_values = np.array(sorted_predicted_dict_top20['values'])
norm_error = np.linalg.norm(true_values - predicted_values)/(np.linalg.norm(true_values) + 1e-10)
print(f'Error in hyperparameter values: {norm_error}')
print(ratio)
print(hamming_distance)
print(aug_hamming_distance)
print(common)
print(norm_error)
completed = True
self.assertTrue(completed)
@classmethod
def tearDownClass(TestTensorCompletion):
print()
print('-------------------------------')
print()
class TestTensorCompletion_Geng_Miles(unittest.TestCase):
def test_Geng_Miles_top10pc(self):
#Apply tensor completion
GENG_MILES_PREDICTED_TENSOR, _, _, _ = tensorcomplete_TKD_Geng_Miles(incomplete_tensor, known_indices, Tucker_rank, hooi_tolerance=1e-3, iteration_limit=10000)
#Check norm difference from true tensor
diff = norm_difference(GENG_MILES_PREDICTED_TENSOR, tensor)
#Find ratio to tensor norm
ratio = diff/tensor_norm
print(f'Geng-Miles (10%) ratio: {ratio}')
self.assertTrue(ratio < ratio_threshold)
#Obtain top 10% according to predicted tensor
sorted_predicted_dict_10pc = sortedBestValues(GENG_MILES_PREDICTED_TENSOR, smallest=smallest, number_of_values=no_elements_10pc)
true_indices = sorted_dict_10pc['indices']
predicted_indices = sorted_predicted_dict_10pc['indices']
hamming_distance = Hamming_distance(true_indices, predicted_indices)
aug_hamming_distance = Hamming_distance(true_indices, predicted_indices, augmented=True)
common = common_count(true_indices, predicted_indices)
LEN = len(true_indices)
print(f'Geng-Miles (10%) Hamming distance: {hamming_distance}, augmented hamming distance: {aug_hamming_distance}, common elements: {common}, length: {LEN}')
true_values = np.array(sorted_dict_10pc['values'])
predicted_values = np.array(sorted_predicted_dict_10pc['values'])
norm_error = np.linalg.norm(true_values - predicted_values)/(np.linalg.norm(true_values) + 1e-10)
print(f'Error in hyperparameter values: {norm_error}')
print(ratio)
print(hamming_distance)
print(aug_hamming_distance)
print(common)
print(norm_error)
completed = True
self.assertTrue(completed)
def test_Geng_Miles_top5pc(self):
#Apply tensor completion
GENG_MILES_PREDICTED_TENSOR, _, _, _ = tensorcomplete_TKD_Geng_Miles(incomplete_tensor, known_indices, Tucker_rank, hooi_tolerance=1e-3, iteration_limit=10000)
#Check norm difference from true tensor
diff = norm_difference(GENG_MILES_PREDICTED_TENSOR, tensor)
#Find ratio to tensor norm
ratio = diff/tensor_norm
print(f'Geng-Miles (5%) ratio: {ratio}')
self.assertTrue(ratio < ratio_threshold)
#Obtain top 5% according to predicted tensor
sorted_predicted_dict_5pc = sortedBestValues(GENG_MILES_PREDICTED_TENSOR, smallest=smallest, number_of_values=no_elements_5pc)
true_indices = sorted_dict_5pc['indices']
predicted_indices = sorted_predicted_dict_5pc['indices']
hamming_distance = Hamming_distance(true_indices, predicted_indices)
aug_hamming_distance = Hamming_distance(true_indices, predicted_indices, augmented=True)
common = common_count(true_indices, predicted_indices)
LEN = len(true_indices)
print(f'Geng-Miles (5%) Hamming distance: {hamming_distance}, augmented hamming distance: {aug_hamming_distance}, common elements: {common}, length: {LEN}')
true_values = np.array(sorted_dict_5pc['values'])
predicted_values = np.array(sorted_predicted_dict_5pc['values'])
norm_error = np.linalg.norm(true_values - predicted_values)/(np.linalg.norm(true_values) + 1e-10)
print(f'Error in hyperparameter values: {norm_error}')
print(ratio)
print(hamming_distance)
print(aug_hamming_distance)
print(common)
print(norm_error)
completed = True
self.assertTrue(completed)
def test_Geng_Miles_top1pc(self):
#Apply tensor completion
GENG_MILES_PREDICTED_TENSOR, _, _, _ = tensorcomplete_TKD_Geng_Miles(incomplete_tensor, known_indices, Tucker_rank, hooi_tolerance=1e-3, iteration_limit=10000)
#Check norm difference from true tensor
diff = norm_difference(GENG_MILES_PREDICTED_TENSOR, tensor)
#Find ratio to tensor norm
ratio = diff/tensor_norm
print(f'Geng-Miles (1%) ratio: {ratio}')
self.assertTrue(ratio < ratio_threshold)
#Obtain top 5% according to predicted tensor
sorted_predicted_dict_1pc = sortedBestValues(GENG_MILES_PREDICTED_TENSOR, smallest=smallest, number_of_values=no_elements_1pc)
true_indices = sorted_dict_1pc['indices']
predicted_indices = sorted_predicted_dict_1pc['indices']
hamming_distance = Hamming_distance(true_indices, predicted_indices)
aug_hamming_distance = Hamming_distance(true_indices, predicted_indices, augmented=True)
common = common_count(true_indices, predicted_indices)
LEN = len(true_indices)
print(f'Geng-Miles (1%) Hamming distance: {hamming_distance}, augmented hamming distance: {aug_hamming_distance}, common elements: {common}, length: {LEN}')
true_values = np.array(sorted_dict_1pc['values'])
predicted_values = np.array(sorted_predicted_dict_1pc['values'])
norm_error = np.linalg.norm(true_values - predicted_values)/(np.linalg.norm(true_values) + 1e-10)
print(f'Error in hyperparameter values: {norm_error}')
print(ratio)
print(hamming_distance)
print(aug_hamming_distance)
print(common)
print(norm_error)
completed = True
self.assertTrue(completed)
def test_Geng_Miles_top20(self):
#Apply tensor completion
GENG_MILES_PREDICTED_TENSOR, _, _, _ = tensorcomplete_TKD_Geng_Miles(incomplete_tensor, known_indices, Tucker_rank, hooi_tolerance=1e-3, iteration_limit=10000)
#Check norm difference from true tensor
diff = norm_difference(GENG_MILES_PREDICTED_TENSOR, tensor)
#Find ratio to tensor norm
ratio = diff/tensor_norm
print(f'Geng-Miles (top 20) ratio: {ratio}')
self.assertTrue(ratio < ratio_threshold)
#Obtain top 20 according to predicted tensor
sorted_predicted_dict_top20 = sortedBestValues(GENG_MILES_PREDICTED_TENSOR, smallest=smallest, number_of_values=20)
true_indices = sorted_dict_top20['indices']
predicted_indices = sorted_predicted_dict_top20['indices']
hamming_distance = Hamming_distance(true_indices, predicted_indices)
aug_hamming_distance = Hamming_distance(true_indices, predicted_indices, augmented=True)
common = common_count(true_indices, predicted_indices)
LEN = len(true_indices)
print(f'Geng-Miles (top 20) Hamming distance: {hamming_distance}, augmented hamming distance: {aug_hamming_distance}, common elements: {common}, length: {LEN}')
true_values = np.array(sorted_dict_top20['values'])
predicted_values = np.array(sorted_predicted_dict_top20['values'])
norm_error = np.linalg.norm(true_values - predicted_values)/(np.linalg.norm(true_values) + 1e-10)
print(f'Error in hyperparameter values: {norm_error}')
print(ratio)
print(hamming_distance)
print(aug_hamming_distance)
print(common)
print(norm_error)
completed = True
self.assertTrue(completed)
@classmethod
def tearDownClass(TestTensorCompletion):
print()
print('-------------------------------')
print()
@unittest.skip('')
class TestTensorCompletion_CP_WOPT_Dense(unittest.TestCase):
def test_CP_WOPT_Dense_top10pc(self):
#Apply tensor completion
CP_WOPT_PREDICTED_TENSOR, _, _ = tensorcomplete_CP_WOPT_dense(incomplete_tensor, known_indices, CPD_rank, stepsize=0.0000001, iteration_limit=10000)
#Check norm difference from true tensor
diff = norm_difference(CP_WOPT_PREDICTED_TENSOR, tensor)
#Find ratio to tensor norm
ratio = diff/tensor_norm
print(f'CP-WOPT Dense (10%) ratio: {ratio}')
self.assertTrue(ratio < ratio_threshold)
#Obtain top 10% according to predicted tensor
sorted_predicted_dict_10pc = sortedBestValues(CP_WOPT_PREDICTED_TENSOR, smallest=smallest, number_of_values=no_elements_10pc)
true_indices = sorted_dict_10pc['indices']
predicted_indices = sorted_predicted_dict_10pc['indices']
hamming_distance = Hamming_distance(true_indices, predicted_indices)
aug_hamming_distance = Hamming_distance(true_indices, predicted_indices, augmented=True)
common = common_count(true_indices, predicted_indices)
LEN = len(true_indices)
print(f'CP-WOPT Dense (10%) Hamming distance: {hamming_distance}, augmented hamming distance: {aug_hamming_distance}, common elements: {common}, length: {LEN}')
true_values = np.array(sorted_dict_10pc['values'])
predicted_values = np.array(sorted_predicted_dict_10pc['values'])
norm_error = np.linalg.norm(true_values - predicted_values)/(np.linalg.norm(true_values) + 1e-10)
print(f'Error in hyperparameter values: {norm_error}')
print(ratio)
print(hamming_distance)
print(aug_hamming_distance)
print(common)
print(norm_error)
completed = True
self.assertTrue(completed)
def test_CP_WOPT_Dense_top5pc(self):
#Remove axes of dimension 1
preprocessed_tensor = np.squeeze(incomplete_tensor)
#Apply tensor completion
CP_WOPT_PREDICTED_TENSOR, _, _ = tensorcomplete_CP_WOPT_dense(preprocessed_tensor, known_indices, CPD_rank, stepsize=0.0000001, iteration_limit=10000)
#Check norm difference from true tensor
diff = norm_difference(CP_WOPT_PREDICTED_TENSOR, tensor)
#Find ratio to tensor norm
ratio = diff/tensor_norm
print(f'CP-WOPT Dense (5%) ratio: {ratio}')
self.assertTrue(ratio < ratio_threshold)
#Obtain top 5% according to predicted tensor
sorted_predicted_dict_5pc = sortedBestValues(CP_WOPT_PREDICTED_TENSOR, smallest=smallest, number_of_values=no_elements_5pc)
true_indices = sorted_dict_5pc['indices']
predicted_indices = sorted_predicted_dict_5pc['indices']
hamming_distance = Hamming_distance(true_indices, predicted_indices)
aug_hamming_distance = Hamming_distance(true_indices, predicted_indices, augmented=True)
common = common_count(true_indices, predicted_indices)
LEN = len(true_indices)
print(f'CP-WOPT Dense (5%) Hamming distance: {hamming_distance}, augmented hamming distance: {aug_hamming_distance}, common elements: {common}, length: {LEN}')
true_values = np.array(sorted_dict_5pc['values'])
predicted_values = np.array(sorted_predicted_dict_5pc['values'])
norm_error = np.linalg.norm(true_values - predicted_values)/(np.linalg.norm(true_values) + 1e-10)
print(f'Error in hyperparameter values: {norm_error}')
print(ratio)
print(hamming_distance)
print(aug_hamming_distance)
print(common)
print(norm_error)
completed = True
self.assertTrue(completed)
def test_CP_WOPT_Dense_top1pc(self):
#Apply tensor completion
CP_WOPT_PREDICTED_TENSOR, _, _ = tensorcomplete_CP_WOPT_dense(incomplete_tensor, known_indices, CPD_rank, stepsize=0.0000001, iteration_limit=10000)
#Check norm difference from true tensor
diff = norm_difference(CP_WOPT_PREDICTED_TENSOR, tensor)
#Find ratio to tensor norm
ratio = diff/tensor_norm
print(f'CP-WOPT (1%) ratio: {ratio}')
self.assertTrue(ratio < ratio_threshold)
#Obtain top 5% according to predicted tensor
sorted_predicted_dict_1pc = sortedBestValues(CP_WOPT_PREDICTED_TENSOR, smallest=smallest, number_of_values=no_elements_1pc)
true_indices = sorted_dict_1pc['indices']
predicted_indices = sorted_predicted_dict_1pc['indices']
hamming_distance = Hamming_distance(true_indices, predicted_indices)
aug_hamming_distance = Hamming_distance(true_indices, predicted_indices, augmented=True)
common = common_count(true_indices, predicted_indices)
LEN = len(true_indices)
print(f'CP-WOPT (1%) Hamming distance: {hamming_distance}, augmented hamming distance: {aug_hamming_distance}, common elements: {common}, length: {LEN}')
true_values = np.array(sorted_dict_1pc['values'])
predicted_values = np.array(sorted_predicted_dict_1pc['values'])
norm_error = np.linalg.norm(true_values - predicted_values)/(np.linalg.norm(true_values) + 1e-10)
print(f'Error in hyperparameter values: {norm_error}')
print(ratio)
print(hamming_distance)
print(aug_hamming_distance)
print(common)
print(norm_error)
completed = True
self.assertTrue(completed)
def test_CP_WOPT_Dense_top20(self):
#Apply tensor completion
CP_WOPT_PREDICTED_TENSOR, _, _ = tensorcomplete_CP_WOPT_dense(incomplete_tensor, known_indices, CPD_rank, stepsize=0.0000001, iteration_limit=10000)
#Check norm difference from true tensor
diff = norm_difference(CP_WOPT_PREDICTED_TENSOR, tensor)
#Find ratio to tensor norm
ratio = diff/tensor_norm
print(f'CP-WOPT (top 20) ratio: {ratio}')
self.assertTrue(ratio < ratio_threshold)
#Obtain top 20 according to predicted tensor
sorted_predicted_dict_top20 = sortedBestValues(CP_WOPT_PREDICTED_TENSOR, smallest=smallest, number_of_values=20)
true_indices = sorted_dict_top20['indices']
predicted_indices = sorted_predicted_dict_top20['indices']
hamming_distance = Hamming_distance(true_indices, predicted_indices)
aug_hamming_distance = Hamming_distance(true_indices, predicted_indices, augmented=True)
common = common_count(true_indices, predicted_indices)
LEN = len(true_indices)
print(f'CP-WOPT (top 20) Hamming distance: {hamming_distance}, augmented hamming distance: {aug_hamming_distance}, common elements: {common}, length: {LEN}')
true_values = np.array(sorted_dict_top20['values'])
predicted_values = np.array(sorted_predicted_dict_top20['values'])
norm_error = np.linalg.norm(true_values - predicted_values)/(np.linalg.norm(true_values) + 1e-10)
print(f'Error in hyperparameter values: {norm_error}')
print(ratio)
print(hamming_distance)
print(aug_hamming_distance)
print(common)
print(norm_error)
completed = True
self.assertTrue(completed)
@classmethod
def tearDownClass(TestTensorCompletion):
print()
print('-------------------------------')
print()
if __name__ == '__main__':
unittest.main()