-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrandom-forest-workspace.py
368 lines (338 loc) · 18 KB
/
random-forest-workspace.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
#IMPORTS==============================================
import unittest
import json
import numpy as np
#Enable importing code from parent directory
import os, sys
p1 = os.path.abspath('..')
sys.path.insert(1, p1)
p2 = os.path.abspath('../experiments')
sys.path.insert(1, p2)
from generateerrortensor import generateIncompleteErrorTensor
from trainmodels import evaluationFunctionGenerator, crossValidationFunctionGenerator
from loaddata import loadData, trainTestSplit, extractZeroOneClasses, convertZeroOne
from commonfunctions import Hamming_distance, norm_difference, sortedBestValues, common_count
from tensorcompletion import tensorcomplete_CP_WOPT_dense, tensorcomplete_TKD_Geng_Miles, tensorcomplete_TMac_TT
from tensorcompletion import ket_augmentation, inverse_ket_augmentation
import regressionmetrics
import classificationmetrics
#OVERALL CONFIGURATION================================
BASE_PATH = 'saved-cross-validation-arrays/random-forest/'
FILE_NAME = 'wine-probability-KLD-5-1'
ARR_EXTN = '.npy'
ARR_PATH = BASE_PATH + FILE_NAME + ARR_EXTN
RANGE_DICT_EXTN = '.json'
RANGE_DICT_PATH = BASE_PATH + FILE_NAME + '-ranges' + RANGE_DICT_EXTN
load_tensor = True
#LOAD COMPLETE TENSOR FROM FILE=======================
tensor = None
ranges_dict = None
task = 'classification'
data = loadData(source='sklearn', identifier='wine', task=task)
binary_data = extractZeroOneClasses(data)
data_split = trainTestSplit(binary_data, method = 'cross_validation')
if load_tensor:
tensor = np.load(ARR_PATH)
with open(RANGE_DICT_PATH, 'r') as fp:
ranges_dict = json.load(fp)
else:
nobudgetfunc = crossValidationFunctionGenerator(data_split, algorithm='random-forest', task=task)
ranges_dict = {
'no_trees': {
'values':[1,10,20,30,40]
},
'max_tree_depth': {
'values':[1, 5, 10, 15, 20]
},
'bootstrap': {
'values': [True, False]
},
'min_samples_split': {
'start': 2.0,
'end': 10.0,
'interval': 1.0,
},
'no_features': {
'start': 1.0,
'end': 10.0,
'interval': 1.0,
},
}
with open(RANGE_DICT_PATH, 'w') as fp:
json.dump(ranges_dict , fp)
tensor, _ = generateIncompleteErrorTensor(nobudgetfunc, ranges_dict, 1.0, metric=classificationmetrics.KullbackLeiblerDivergence, evaluation_mode='probability', eval_trials=1)
np.save(file=ARR_PATH, arr=tensor)
print(f'STAGE 1 - COMPLETE TENSOR GENERATED')
#GENERATE INCOMPLETE TENSOR===========================
budget_type = 'features'
budget_fraction = 0.25
budgetfunc = crossValidationFunctionGenerator(data_split, algorithm='random-forest', task=task, budget_type=budget_type, budget_fraction=budget_fraction)
known_fraction = 0.25
incomplete_tensor, known_indices = generateIncompleteErrorTensor(budgetfunc, ranges_dict, known_fraction, metric=classificationmetrics.KullbackLeiblerDivergence, evaluation_mode='probability', eval_trials=1)
print(f'STAGE 2 - INCOMPLETE TENSOR GENERATED')
#OBTAIN BEST HYPERPARAMETER COMBINATIONS=============
smallest = True
#Obtain the best 10% in sorted order
no_elements_10pc = int(0.1*(tensor.size))
sorted_dict_10pc = sortedBestValues(tensor, smallest=smallest, number_of_values=no_elements_10pc)
#Obtain the best 5% in sorted order
no_elements_5pc = int(0.05*(tensor.size))
sorted_dict_5pc = sortedBestValues(tensor, smallest=smallest, number_of_values=no_elements_5pc)
#The best 1%
no_elements_1pc = int(0.01*(tensor.size))
sorted_dict_1pc = sortedBestValues(tensor, smallest=smallest, number_of_values=no_elements_1pc)
#The top 20
sorted_dict_top20 = sortedBestValues(tensor, smallest=smallest, number_of_values=20)
print(f'STAGE 3 - TRUE BEST COMBINATIONS IDENTIFIED')
#TEST TENSOR COMPLETION================================
tensor_norm = np.linalg.norm(tensor)
ratio_threshold = 5
TT_rank = [1,3,3,3]
Tucker_rank = [2,2,2,1,3]
class TestTensorCompletion_TMAC_TT(unittest.TestCase):
def test_TMac_TT_top10pc(self):
#Apply tensor completion
TMAC_TT_PREDICTED_TENSOR, _, _ = tensorcomplete_TMac_TT(incomplete_tensor, known_indices, TT_rank, convergence_tolerance=1e-15, iteration_limit=100000)
#Check norm difference from true tensor
diff = norm_difference(TMAC_TT_PREDICTED_TENSOR, tensor)
#Find ratio to tensor norm
ratio = diff/tensor_norm
print(f'TMAC-TT (10%) ratio: {ratio}')
self.assertTrue(ratio < ratio_threshold)
#Obtain top 10% according to predicted tensor
sorted_predicted_dict_10pc = sortedBestValues(TMAC_TT_PREDICTED_TENSOR, smallest=smallest, number_of_values=no_elements_10pc)
true_indices = sorted_dict_10pc['indices']
predicted_indices = sorted_predicted_dict_10pc['indices']
hamming_distance = Hamming_distance(true_indices, predicted_indices)
aug_hamming_distance = Hamming_distance(true_indices, predicted_indices, augmented=True)
common = common_count(true_indices, predicted_indices)
LEN = len(true_indices)
print(f'TMAC-TT (10%) Hamming distance: {hamming_distance}, augmented hamming distance: {aug_hamming_distance}, common elements: {common}, length: {LEN}')
true_values = np.array(sorted_dict_10pc['values'])
predicted_values = np.array(sorted_predicted_dict_10pc['values'])
norm_error = np.linalg.norm(true_values - predicted_values)/(np.linalg.norm(true_values) + 1e-10)
print(f'Error in hyperparameter values: {norm_error}')
print(ratio)
print(hamming_distance)
print(aug_hamming_distance)
print(common)
print(norm_error)
completed = True
self.assertTrue(completed)
def test_TMac_TT_top5pc(self):
#Apply tensor completion
TMAC_TT_PREDICTED_TENSOR, _, _ = tensorcomplete_TMac_TT(incomplete_tensor, known_indices, TT_rank, convergence_tolerance=1e-15, iteration_limit=100000)
#Check norm difference from true tensor
diff = norm_difference(TMAC_TT_PREDICTED_TENSOR, tensor)
#Find ratio to tensor norm
ratio = diff/tensor_norm
print(f'TMAC-TT (5%) ratio: {ratio}')
self.assertTrue(ratio < ratio_threshold)
#Obtain top 5% according to predicted tensor
sorted_predicted_dict_5pc = sortedBestValues(TMAC_TT_PREDICTED_TENSOR, smallest=smallest, number_of_values=no_elements_5pc)
true_indices = sorted_dict_5pc['indices']
predicted_indices = sorted_predicted_dict_5pc['indices']
hamming_distance = Hamming_distance(true_indices, predicted_indices)
aug_hamming_distance = Hamming_distance(true_indices, predicted_indices, augmented=True)
common = common_count(true_indices, predicted_indices)
LEN = len(true_indices)
print(f'TMAC-TT (5%) Hamming distance: {hamming_distance}, augmented hamming distance: {aug_hamming_distance}, common elements: {common}, length: {LEN}')
true_values = np.array(sorted_dict_5pc['values'])
predicted_values = np.array(sorted_predicted_dict_5pc['values'])
norm_error = np.linalg.norm(true_values - predicted_values)/(np.linalg.norm(true_values) + 1e-10)
print(f'Error in hyperparameter values: {norm_error}')
print(ratio)
print(hamming_distance)
print(aug_hamming_distance)
print(common)
print(norm_error)
completed = True
self.assertTrue(completed)
def test_TMac_TT_top1pc(self):
#Apply tensor completion
TMAC_TT_PREDICTED_TENSOR, _, _ = tensorcomplete_TMac_TT(incomplete_tensor, known_indices, TT_rank, convergence_tolerance=1e-15, iteration_limit=100000)
#Check norm difference from true tensor
diff = norm_difference(TMAC_TT_PREDICTED_TENSOR, tensor)
#Find ratio to tensor norm
ratio = diff/tensor_norm
print(f'TMAC-TT (1%) ratio: {ratio}')
self.assertTrue(ratio < ratio_threshold)
#Obtain top 5% according to predicted tensor
sorted_predicted_dict_1pc = sortedBestValues(TMAC_TT_PREDICTED_TENSOR, smallest=smallest, number_of_values=no_elements_1pc)
true_indices = sorted_dict_1pc['indices']
predicted_indices = sorted_predicted_dict_1pc['indices']
hamming_distance = Hamming_distance(true_indices, predicted_indices)
aug_hamming_distance = Hamming_distance(true_indices, predicted_indices, augmented=True)
common = common_count(true_indices, predicted_indices)
LEN = len(true_indices)
print(f'TMAC-TT (1%) Hamming distance: {hamming_distance}, augmented hamming distance: {aug_hamming_distance}, common elements: {common}, length: {LEN}')
true_values = np.array(sorted_dict_1pc['values'])
predicted_values = np.array(sorted_predicted_dict_1pc['values'])
norm_error = np.linalg.norm(true_values - predicted_values)/(np.linalg.norm(true_values) + 1e-10)
print(f'Error in hyperparameter values: {norm_error}')
print(ratio)
print(hamming_distance)
print(aug_hamming_distance)
print(common)
print(norm_error)
completed = True
self.assertTrue(completed)
def test_TMac_TT_top20(self):
#Apply tensor completion
TMAC_TT_PREDICTED_TENSOR, _, _ = tensorcomplete_TMac_TT(incomplete_tensor, known_indices, TT_rank, convergence_tolerance=1e-15, iteration_limit=100000)
#Check norm difference from true tensor
diff = norm_difference(TMAC_TT_PREDICTED_TENSOR, tensor)
#Find ratio to tensor norm
ratio = diff/tensor_norm
print(f'TMAC-TT (top 20) ratio: {ratio}')
self.assertTrue(ratio < ratio_threshold)
#Obtain top 20 according to predicted tensor
sorted_predicted_dict_top20 = sortedBestValues(TMAC_TT_PREDICTED_TENSOR, smallest=smallest, number_of_values=20)
true_indices = sorted_dict_top20['indices']
predicted_indices = sorted_predicted_dict_top20['indices']
hamming_distance = Hamming_distance(true_indices, predicted_indices)
aug_hamming_distance = Hamming_distance(true_indices, predicted_indices, augmented=True)
common = common_count(true_indices, predicted_indices)
LEN = len(true_indices)
print(f'TMAC-TT (top 20) Hamming distance: {hamming_distance}, augmented hamming distance: {aug_hamming_distance}, common elements: {common}, length: {LEN}')
true_values = np.array(sorted_dict_top20['values'])
predicted_values = np.array(sorted_predicted_dict_top20['values'])
norm_error = np.linalg.norm(true_values - predicted_values)/(np.linalg.norm(true_values) + 1e-10)
print(f'Error in hyperparameter values: {norm_error}')
print(ratio)
print(hamming_distance)
print(aug_hamming_distance)
print(common)
print(norm_error)
completed = True
self.assertTrue(completed)
@classmethod
def tearDownClass(TestTensorCompletion):
print()
print('-------------------------------')
print()
@unittest.skip('not needed')
class TestTensorCompletion_Geng_Miles(unittest.TestCase):
def test_Geng_Miles_top10pc(self):
#Apply tensor completion
GENG_MILES_PREDICTED_TENSOR, _, _, _ = tensorcomplete_TKD_Geng_Miles(incomplete_tensor, known_indices, Tucker_rank, hooi_tolerance=1e-3, iteration_limit=10000)
#Check norm difference from true tensor
diff = norm_difference(GENG_MILES_PREDICTED_TENSOR, tensor)
#Find ratio to tensor norm
ratio = diff/tensor_norm
print(f'Geng-Miles (10%) ratio: {ratio}')
self.assertTrue(ratio < ratio_threshold)
#Obtain top 10% according to predicted tensor
sorted_predicted_dict_10pc = sortedBestValues(GENG_MILES_PREDICTED_TENSOR, smallest=smallest, number_of_values=no_elements_10pc)
true_indices = sorted_dict_10pc['indices']
predicted_indices = sorted_predicted_dict_10pc['indices']
hamming_distance = Hamming_distance(true_indices, predicted_indices)
aug_hamming_distance = Hamming_distance(true_indices, predicted_indices, augmented=True)
common = common_count(true_indices, predicted_indices)
LEN = len(true_indices)
print(f'Geng-Miles (10%) Hamming distance: {hamming_distance}, augmented hamming distance: {aug_hamming_distance}, common elements: {common}, length: {LEN}')
true_values = np.array(sorted_dict_10pc['values'])
predicted_values = np.array(sorted_predicted_dict_10pc['values'])
norm_error = np.linalg.norm(true_values - predicted_values)/(np.linalg.norm(true_values) + 1e-10)
print(f'Error in hyperparameter values: {norm_error}')
print(ratio)
print(hamming_distance)
print(aug_hamming_distance)
print(common)
print(norm_error)
completed = True
self.assertTrue(completed)
def test_Geng_Miles_top5pc(self):
#Apply tensor completion
GENG_MILES_PREDICTED_TENSOR, _, _, _ = tensorcomplete_TKD_Geng_Miles(incomplete_tensor, known_indices, Tucker_rank, hooi_tolerance=1e-3, iteration_limit=10000)
#Check norm difference from true tensor
diff = norm_difference(GENG_MILES_PREDICTED_TENSOR, tensor)
#Find ratio to tensor norm
ratio = diff/tensor_norm
print(f'Geng-Miles (5%) ratio: {ratio}')
self.assertTrue(ratio < ratio_threshold)
#Obtain top 5% according to predicted tensor
sorted_predicted_dict_5pc = sortedBestValues(GENG_MILES_PREDICTED_TENSOR, smallest=smallest, number_of_values=no_elements_5pc)
true_indices = sorted_dict_5pc['indices']
predicted_indices = sorted_predicted_dict_5pc['indices']
hamming_distance = Hamming_distance(true_indices, predicted_indices)
aug_hamming_distance = Hamming_distance(true_indices, predicted_indices, augmented=True)
common = common_count(true_indices, predicted_indices)
LEN = len(true_indices)
print(f'Geng-Miles (5%) Hamming distance: {hamming_distance}, augmented hamming distance: {aug_hamming_distance}, common elements: {common}, length: {LEN}')
true_values = np.array(sorted_dict_5pc['values'])
predicted_values = np.array(sorted_predicted_dict_5pc['values'])
norm_error = np.linalg.norm(true_values - predicted_values)/(np.linalg.norm(true_values) + 1e-10)
print(f'Error in hyperparameter values: {norm_error}')
print(ratio)
print(hamming_distance)
print(aug_hamming_distance)
print(common)
print(norm_error)
completed = True
self.assertTrue(completed)
def test_Geng_Miles_top1pc(self):
#Apply tensor completion
GENG_MILES_PREDICTED_TENSOR, _, _, _ = tensorcomplete_TKD_Geng_Miles(incomplete_tensor, known_indices, Tucker_rank, hooi_tolerance=1e-3, iteration_limit=10000)
#Check norm difference from true tensor
diff = norm_difference(GENG_MILES_PREDICTED_TENSOR, tensor)
#Find ratio to tensor norm
ratio = diff/tensor_norm
print(f'Geng-Miles (1%) ratio: {ratio}')
self.assertTrue(ratio < ratio_threshold)
#Obtain top 5% according to predicted tensor
sorted_predicted_dict_1pc = sortedBestValues(GENG_MILES_PREDICTED_TENSOR, smallest=smallest, number_of_values=no_elements_1pc)
true_indices = sorted_dict_1pc['indices']
predicted_indices = sorted_predicted_dict_1pc['indices']
hamming_distance = Hamming_distance(true_indices, predicted_indices)
aug_hamming_distance = Hamming_distance(true_indices, predicted_indices, augmented=True)
common = common_count(true_indices, predicted_indices)
LEN = len(true_indices)
print(f'Geng-Miles (1%) Hamming distance: {hamming_distance}, augmented hamming distance: {aug_hamming_distance}, common elements: {common}, length: {LEN}')
true_values = np.array(sorted_dict_1pc['values'])
predicted_values = np.array(sorted_predicted_dict_1pc['values'])
norm_error = np.linalg.norm(true_values - predicted_values)/(np.linalg.norm(true_values) + 1e-10)
print(f'Error in hyperparameter values: {norm_error}')
print(ratio)
print(hamming_distance)
print(aug_hamming_distance)
print(common)
print(norm_error)
completed = True
self.assertTrue(completed)
def test_Geng_Miles_top20(self):
#Apply tensor completion
GENG_MILES_PREDICTED_TENSOR, _, _, _ = tensorcomplete_TKD_Geng_Miles(incomplete_tensor, known_indices, Tucker_rank, hooi_tolerance=1e-3, iteration_limit=10000)
#Check norm difference from true tensor
diff = norm_difference(GENG_MILES_PREDICTED_TENSOR, tensor)
#Find ratio to tensor norm
ratio = diff/tensor_norm
print(f'Geng-Miles (top 20) ratio: {ratio}')
self.assertTrue(ratio < ratio_threshold)
#Obtain top 20 according to predicted tensor
sorted_predicted_dict_top20 = sortedBestValues(GENG_MILES_PREDICTED_TENSOR, smallest=smallest, number_of_values=20)
true_indices = sorted_dict_top20['indices']
predicted_indices = sorted_predicted_dict_top20['indices']
hamming_distance = Hamming_distance(true_indices, predicted_indices)
aug_hamming_distance = Hamming_distance(true_indices, predicted_indices, augmented=True)
common = common_count(true_indices, predicted_indices)
LEN = len(true_indices)
print(f'Geng-Miles (top 20) Hamming distance: {hamming_distance}, augmented hamming distance: {aug_hamming_distance}, common elements: {common}, length: {LEN}')
true_values = np.array(sorted_dict_top20['values'])
predicted_values = np.array(sorted_predicted_dict_top20['values'])
norm_error = np.linalg.norm(true_values - predicted_values)/(np.linalg.norm(true_values) + 1e-10)
print(f'Error in hyperparameter values: {norm_error}')
print(ratio)
print(hamming_distance)
print(aug_hamming_distance)
print(common)
print(norm_error)
completed = True
self.assertTrue(completed)
@classmethod
def tearDownClass(TestTensorCompletion):
print()
print('-------------------------------')
print()
if __name__ == '__main__':
unittest.main()