-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathregressionmetrics_test.py
333 lines (282 loc) · 11.4 KB
/
regressionmetrics_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
from regressionmetrics import subtractLists, mae, mse, mape, msle, logcosh, huber, poisson
from math import log, cosh
import numpy as np
import unittest
class TestSubtractLists(unittest.TestCase):
def test_unequal_length(self):
l1 = [1,2,3,4]
l2 = [1,2,3]
test = False
try:
result = subtractLists(l1, l2)
except ValueError as inst:
self.assertEqual(inst.args[0], 'Input lists need to be of same length to be subtracted.')
test = True
self.assertTrue(test)
def test_random_lists(self):
l1 = [1, 4, 5, 6, 2, 3]
l2 = [2.3, 3.23, 4.111, 3.09, 1, 4]
result = subtractLists(l1, l2)
expected_result = [-1.3, 0.77, 0.889, 2.91, 1, -1]
for i in range(0, len(expected_result)):
self.assertAlmostEqual(expected_result[i], result[i])
def test_equal_lists(self):
l1 = [1, 4, 5, 6, 2, 3, 9.0908989]
result = subtractLists(l1, l1)
expected_result = [0]*len(l1)
for i in range(0, len(expected_result)):
self.assertAlmostEqual(expected_result[i], result[i])
def test_negate_list(self):
l1 = [0]*5
l2 = [2.3, 3.23, 4.111, 3.09, 1]
result = subtractLists(l1, l2)
for i in range(0, len(l2)):
self.assertAlmostEqual(result[i], -l2[i])
class TestMae(unittest.TestCase):
def test_random_lists(self):
predictions = [1.2, 3.4, 7.1, 0.9]
true_values = [0.4, 5.6, 4.5, 8.7]
result = mae(predictions, true_values)
expected_result = (0.8 + 2.2 + 2.6 + 7.8) / 4
self.assertEqual(result, expected_result)
def test_l1_norm(self):
predictions = [1.2, 3.4, -7.1, 0.9, 5.7, -0.76]
true_values = [0]*6
result = mae(predictions, true_values)
expected_result = (1.2 + 3.4 + 7.1 + 0.9 + 5.7 + 0.76) / 6
self.assertEqual(result, expected_result)
def test_perfect_accuracy(self):
true_values = [0.4, 5.6, 4.5, 8.7]
result = mae(true_values, true_values)
expected_result = 0
self.assertEqual(result, expected_result)
def test_zero_length(self):
predictions = []
true_values = []
test = False
try:
result = mae(predictions, true_values)
except ZeroDivisionError:
test = True
self.assertTrue(test)
class TestMape(unittest.TestCase):
def test_random_lists(self):
predictions = [1.2, 3.4, 7.1, 0.9]
true_values = [0.4, 5.6, 4.5, 8.7]
result = mape(predictions, true_values)
expected_result = (80/0.4 + 220/5.6 + 260/4.5 + 780/8.7) / 4
self.assertAlmostEqual(result, expected_result, places=5)
def test_l1_norm(self):
predictions = [1.2, 3.4, -7.1, 0.9, 5.7, -0.76]
true_values = [0]*6
result = mape(predictions, true_values)
expected_result = (120 + 340 + 710 + 90 + 570 + 76)*1e8 / 6
self.assertAlmostEqual(result, expected_result, places=5)
def test_perfect_accuracy(self):
true_values = [0.4, 5.6, 4.5, 8.7]
result = mape(true_values, true_values)
expected_result = 0
self.assertEqual(result, expected_result)
def test_zero_length(self):
predictions = []
true_values = []
test = False
try:
result = mape(predictions, true_values)
except ZeroDivisionError:
test = True
self.assertTrue(test)
class TestMse(unittest.TestCase):
def test_random_lists(self):
predictions = [1.2, 3.4, 7.1, 0.9]
true_values = [0.4, 5.6, 4.5, 8.7]
result = mse(predictions, true_values)
expected_result = (0.8**2 + 2.2**2 + 2.6**2 + 7.8**2) / 4
self.assertAlmostEqual(result, expected_result)
def test_l2_norm(self):
predictions = [1.2, 3.4, -7.1, 0.9, 5.7, -0.76]
true_values = [0]*6
result = mse(predictions, true_values)
expected_result = (1.2**2 + 3.4**2 + 7.1**2 + 0.9**2 + 5.7**2 + 0.76**2) / 6
self.assertAlmostEqual(result, expected_result)
def test_perfect_accuracy(self):
true_values = [0.4, 5.6, 4.5, 8.7]
result = mse(true_values, true_values)
expected_result = 0
self.assertAlmostEqual(result, expected_result)
def test_zero_length(self):
predictions = []
true_values = []
test = False
try:
result = mse(predictions, true_values)
except ZeroDivisionError:
test = True
self.assertTrue(test)
class TestMsle(unittest.TestCase):
def test_random_lists(self):
predictions = [1.2, 3.4, 7.1, 0.9]
true_values = [0.4, 5.6, 4.5, 8.7]
result = msle(predictions, true_values)
expected_result = (log(1.4/2.2)**2 + log(6.6/4.4)**2 + log(5.5/8.1)**2 + log(9.7/1.9)**2) / 4
self.assertAlmostEqual(result, expected_result)
def test_l2_norm(self):
predictions = [1.2, 3.4, 7.1, 0.9, 5.7, 0.76]
true_values = [0]*6
result = msle(predictions, true_values)
expected_result = (log(2.2)**2 + log(4.4)**2 + log(8.1)**2 + log(1.9)**2 + log(6.7)**2 + log(1.76)**2) / 6
self.assertAlmostEqual(result, expected_result)
def test_perfect_accuracy(self):
true_values = [0.4, 5.6, 4.5, 8.7]
result = msle(true_values, true_values)
expected_result = 0
self.assertAlmostEqual(result, expected_result)
def test_zero_length(self):
predictions = []
true_values = []
test = False
try:
result = msle(predictions, true_values)
except ZeroDivisionError:
test = True
self.assertTrue(test)
def test_negative_values(self):
predictions = [-3]
true_values = [-4]
test = False
try:
result = msle(predictions, true_values)
except ValueError as inst:
self.assertEqual(inst.args[0], 'math domain error')
test = True
self.assertTrue(test)
class TestLogCosh(unittest.TestCase):
def test_random_lists(self):
predictions = [1.2, 3.4, 7.1, 0.9]
true_values = [0.4, 5.6, 4.5, 8.7]
result = logcosh(predictions, true_values)
expected_result = (log(cosh(0.8)) + log(cosh(2.2)) + log(cosh(2.6)) + log(cosh(7.8))) / 4
self.assertAlmostEqual(result, expected_result)
def test_l2_norm(self):
predictions = [1.2, 3.4, 7.1, 0.9, 5.7, 0.76]
true_values = [0]*6
result = logcosh(predictions, true_values)
expected_result = (log(cosh(1.2)) + log(cosh(3.4)) + log(cosh(7.1)) + log(cosh(0.9)) + log(cosh(5.7)) + log(cosh(0.76))) / 6
self.assertAlmostEqual(result, expected_result)
def test_perfect_accuracy(self):
true_values = [0.4, 5.6, 4.5, 8.7]
result = logcosh(true_values, true_values)
expected_result = 0
self.assertAlmostEqual(result, expected_result)
def test_zero_length(self):
predictions = []
true_values = []
test = False
try:
result = logcosh(predictions, true_values)
except ZeroDivisionError:
test = True
self.assertTrue(test)
DEFAULT_DELTA = 1.35
DEFAULT_DELTA_TERM = 0.5*(1.35**2)
HIGHER_DELTA = 2.4
HIGHER_DELTA_TERM = 0.5*(HIGHER_DELTA**2)
LOWER_DELTA = 0.1
LOWER_DELTA_TERM = 0.5*(LOWER_DELTA**2)
class TestHuber(unittest.TestCase):
def test_random_lists_default_delta(self):
predictions = [1.2, 3.4, 7.1, 0.9]
true_values = [0.4, 5.6, 4.5, 8.7]
result = huber(predictions, true_values)
error1 = 0.5*(0.8**2)
error2 = DEFAULT_DELTA*2.2 - DEFAULT_DELTA_TERM
error3 = DEFAULT_DELTA*2.6 - DEFAULT_DELTA_TERM
error4 = DEFAULT_DELTA*7.8 - DEFAULT_DELTA_TERM
expected_result = (error1 + error2 + error3 + error4) / 4
self.assertAlmostEqual(result, expected_result)
def test_random_lists_higher_delta(self):
predictions = [1.2, 3.4, 7.1, 0.9]
true_values = [0.4, 5.6, 4.5, 8.7]
result = huber(predictions, true_values, delta=HIGHER_DELTA)
error1 = 0.5*(0.8**2)
error2 = 0.5*(2.2**2)
error3 = HIGHER_DELTA*2.6 - HIGHER_DELTA_TERM
error4 = HIGHER_DELTA*7.8 - HIGHER_DELTA_TERM
expected_result = (error1 + error2 + error3 + error4) / 4
self.assertAlmostEqual(result, expected_result)
def test_l2_norm_default_delta(self):
predictions = [1.2, 3.4, 7.1, 0.9, 5.7, 0.76]
true_values = [0]*6
result = huber(predictions, true_values)
error1 = 0.5*(1.2**2)
error2 = DEFAULT_DELTA*3.4 - DEFAULT_DELTA_TERM
error3 = DEFAULT_DELTA*7.1 - DEFAULT_DELTA_TERM
error4 = 0.5*(0.9**2)
error5 = DEFAULT_DELTA*5.7 - DEFAULT_DELTA_TERM
error6 = 0.5*(0.76**2)
expected_result = (error1 + error2 + error3 + error4 + error5 + error6) / 6
self.assertAlmostEqual(result, expected_result)
def test_l2_norm_lower_delta(self):
predictions = [1.2, 3.4, 7.1, 0.9, 5.7, 0.76]
true_values = [0]*6
result = huber(predictions, true_values, delta=0.1)
error1 = LOWER_DELTA*1.2 - LOWER_DELTA_TERM
error2 = LOWER_DELTA*3.4 - LOWER_DELTA_TERM
error3 = LOWER_DELTA*7.1 - LOWER_DELTA_TERM
error4 = LOWER_DELTA*0.9 - LOWER_DELTA_TERM
error5 = LOWER_DELTA*5.7 - LOWER_DELTA_TERM
error6 = LOWER_DELTA*0.76 - LOWER_DELTA_TERM
expected_result = (error1 + error2 + error3 + error4 + error5 + error6) / 6
self.assertAlmostEqual(result, expected_result)
def test_perfect_accuracy(self):
true_values = [0.4, 5.6, 4.5, 8.7]
result = huber(true_values, true_values)
expected_result = 0
self.assertAlmostEqual(result, expected_result)
def test_zero_length(self):
predictions = []
true_values = []
test = False
try:
result = huber(predictions, true_values)
except ZeroDivisionError:
test = True
self.assertTrue(test)
class TestPoisson(unittest.TestCase):
def test_random_lists(self):
predictions = [1.2, 3.4, 7.1, 0.9]
true_values = [0.4, 5.6, 4.5, 8.7]
result = poisson(predictions, true_values)
error1 = 1.2 - 0.4*log(1.2)
error2 = 3.4 - 5.6*log(3.4)
error3 = 7.1 - 4.5*log(7.1)
error4 = 0.9 - 8.7*log(0.9)
expected_result = (error1 + error2 + error3 + error4) / 4
self.assertAlmostEqual(result, expected_result)
def test_l2_norm(self):
predictions = [1.2, 3.4, 7.1, 0.9, 5.7, 0.76]
true_values = [0]*6
result = poisson(predictions, true_values)
expected_result = sum(predictions) / 6
self.assertAlmostEqual(result, expected_result)
def test_perfect_accuracy(self):
true_values = [0.4, 5.6, 4.5, 8.7]
result = poisson(true_values, true_values)
error1 = 0.4 - 0.4*log(0.4)
error2 = 5.6 - 5.6*log(5.6)
error3 = 4.5 - 4.5*log(4.5)
error4 = 8.7 - 8.7*log(8.7)
expected_result = (error1 + error2 + error3 + error4)/4
self.assertAlmostEqual(result, expected_result)
def test_zero_length(self):
predictions = []
true_values = []
test = False
try:
result = poisson(predictions, true_values)
except ZeroDivisionError:
test = True
self.assertTrue(test)
if __name__ == '__main__':
# Run tests
unittest.main()