-
Notifications
You must be signed in to change notification settings - Fork 1
/
logistic_model_code_completed.Rmd
192 lines (137 loc) · 3.59 KB
/
logistic_model_code_completed.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
---
title: "Logistic Regression Code"
output: html_document
---
# Load and Format data
Here, we read and format data.
```{r}
library("readr")
avocado_df<-read_csv('avocado_df_categories.csv')
avocado_df$PriceCategory <- factor(avocado_df$PriceCategory, levels= c("Cheap","Expensive"),labels=c(0,1))
avocado_df$TotalVolume <- as.numeric(avocado_df$TotalVolume)
avocado_df$Type <- as.factor(avocado_df$Type)
avocado_df$Region <- as.factor(avocado_df$Region)
avocado_df$Month <- as.factor(avocado_df$Month)
avocado_df$Year <- as.factor(avocado_df$Year)
```
# Summary of Data
```{r}
head(avocado_df)
```
```{r}
summary(avocado_df)
```
# Logistic Regression in R
## Total Volume + Constant Term
We will now build a logistic model with a constant term and a TotalVolume term.
```{r}
model_volume <-glm(PriceCategory ~ 1 + TotalVolume, data = avocado_df,family = 'binomial')
```
### Model Summary
```{r}
summary(model_volume)
```
You can also get the coefficents of the model.
```{r}
print(coef(model_volume))
```
### Predicting Class Probabilities
```{r}
log_odds <- predict.glm(model_volume, data.frame(TotalVolume=15.0))
print(log_odds)
```
```{r}
probs <- exp(log_odds)/(1+ exp(log_odds))
print(probs)
```
### Getting Class Probabilities of Data
We can get the probability estimates of the model.
```{r}
probabilities <- model_volume$fitted.values
print(head(probabilities))
```
```{r}
print(avocado_df$PriceCategory)
```
### Predicting Class from Class Probabilities
Using a threshold value and the probabilities, we can assign classes to each observation.
### Predicting Classes
```{r}
predicted_classes = as.numeric(probabilities > 0.5)
print(predicted_classes)
```
Let's see our actual classes.
```{r}
print(avocado_df$PriceCategory)
```
### Confusion Matrix
We can calculate the error in our prediction.
```{r}
library(caret)
confusionMatrix(data=factor(predicted_classes),reference=avocado_df$PriceCategory)
```
## Model with Constant Term
We will now build a logistic model with a constant term.
```{r}
model_constant <-glm(PriceCategory ~ 1, data = avocado_df,family = 'binomial')
```
### Model Summary
```{r}
summary(model_constant)
```
## Model Comparison
We can compare models using the anova function.
```{r}
anova(model_constant, model_volume, test='Chisq')
```
## Model with Volume and Type
### Create Model
```{r}
model_volume_type <- glm(PriceCategory ~ 1 + TotalVolume + Type, data=avocado_df, family='binomial')
```
### Model Summary
```{r}
summary(model_volume_type)
```
### Predicting Class Probabilities
```{r}
log_odds <- predict.glm(model_volume_type, data.frame(TotalVolume=c(15.0,5.0), Type=c("conventional","organic")))
print(log_odds)
```
```{r}
probs <- exp(log_odds)/(1+ exp(log_odds))
print(probs)
```
### Class Probabilities
We can get the probability estimates of the model.
```{r}
probabilities = model_volume_type$fitted.values
print(head(probabilities))
```
```{r}
print(head(avocado_df$PriceCategory))
```
### Predicting Class from Class Probabilities
Using a threshold value and the probabilities, we can assign classes to each observation.
### Predicting Classes
```{r}
predicted_classes = as.numeric(probabilities > 0.5)
print(predicted_classes)
```
Let's see our actual classes.
```{r}
print(avocado_df$PriceCategory)
```
### Confusion Matrix
We can calculate the error in our prediction.
```{r}
confusionMatrix(data=factor(predicted_classes),reference=avocado_df$PriceCategory)
```
### Anova with null model
```{r}
anova(model_constant, model_volume_type, test='Chisq')
```
### Anova with model with only volume
```{r}
anova( model_volume, model_volume_type, test='Chisq')
```