-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGauss Legendre Quadrature.py
90 lines (81 loc) · 2.43 KB
/
Gauss Legendre Quadrature.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
from numpy import *
def Legendre(n,x):
x=array(x)
if (n==0):
return x*0+1.0
elif (n==1):
return x
else:
return ((2.0*n-1.0)*x*Legendre(n-1,x)-(n-1)*Legendre(n-2,x))/n
# Derivative of the Legendre polynomials
def DLegendre(n,x):
x=array(x)
if (n==0):
return x*0
elif (n==1):
return x*0+1.0
else:
return (n/(x**2-1.0))*(x*Legendre(n,x)-Legendre(n-1,x))
def LegendreRoots(polyorder,tolerance=1e-20):
if polyorder<2:
err=1 # bad polyorder no roots can be found
else:
roots=[]
# The polynomials are alternately even and odd functions. So we evaluate only half the number of roots.
for i in range(1,int(polyorder)/2 +1):
x=cos(pi*(i-0.25)/(polyorder+0.5))
error=10*tolerance
iters=0
while (error>tolerance) and (iters<1000):
dx=-Legendre(polyorder,x)/DLegendre(polyorder,x)
x=x+dx
iters=iters+1
error=abs(dx)
roots.append(x)
# Use symmetry to get the other roots
roots=array(roots)
if polyorder%2==0:
roots=concatenate( (-1.0*roots, roots[::-1]) )
else:
roots=concatenate( (-1.0*roots, [0.0], roots[::-1]) )
err=0 # successfully determined roots
return [roots, err]
# Weight coefficients
def GaussLegendreWeights(polyorder):
W=[]
[xis,err]=LegendreRoots(polyorder)
if err==0:
W=2.0/( (1.0-xis**2)*(DLegendre(polyorder,xis)**2) )
err=0
else:
err=1 # could not determine roots - so no weights
return [W, xis, err]
# The integral value
# func : the integrand
# a, b : lower and upper limits of the integral
# polyorder : order of the Legendre polynomial to be used
#
def GaussLegendreQuadrature(func, polyorder, a, b):
[Ws,xs, err]= GaussLegendreWeights(polyorder)
if err==0:
ans=(b-a)*0.5*sum( Ws*func( (b-a)*0.5*xs+ (b+a)*0.5 ) )
else:
# (in case of error)
err=1
ans=None
return [ans,err]
order=4
func = raw_input()
a = float(raw_input())
b = float(raw_input())
[Ws,xs,err]=GaussLegendreWeights(order)
if err==0:
print "Number of Interval= ", order
else:
print "Roots/Weights evaluation failed"
# Integrating the function
[ans,err]=GaussLegendreQuadrature(lambda x: eval(func) , order, a,b)
if err==0:
print "I = ", ans
else:
print "Integral evaluation failed"