-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathutilities.py
47 lines (35 loc) · 1.62 KB
/
utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import json
import math
import pandas as pd
def load_base_models():
with open("models.json", "r") as f:
return json.load(f)
def load_quantization():
with open("quantization.json", "r") as f:
return json.load(f)
def load_gpus():
with open("gpus.json", "r") as f:
return json.load(f)
def load_gpu_providers():
return pd.read_csv('cloud-gpus.csv')
def convert_params(params):
if params == 0:
return "0"
size_name = ("", "K", "M", "B", "T", "P", "E", "Z", "Y")
i = int(math.floor(math.log(params, 1000)))
p = math.pow(1000, i)
s = round(params / p, 2)
return "%s %s" % (s, size_name[i])
def compute_bound_tokens_p_sec(flops_per_token, flops_per_gpu, num_gpus):
return (flops_per_gpu * num_gpus * 10**12) / (flops_per_token * 10**9)
def memory_bound_tokens_p_sec(memory_bandwidth_per_gpu, flops_per_token, num_gpus):
return (memory_bandwidth_per_gpu * num_gpus * 10**12) / (flops_per_token * 10**9)
def cost_per_1k_tokens(flops_per_token, flops_per_gpu, num_gpus, cost_per_hour, memory_bandwidth_per_gpu):
tokens_p_sec_compute = compute_bound_tokens_p_sec(flops_per_token, flops_per_gpu, num_gpus)
tokens_p_sec_memory = memory_bound_tokens_p_sec(memory_bandwidth_per_gpu, flops_per_token, num_gpus)
cost_p_sec = cost_per_hour / 3600 # cost per second
cost_p_token_compute = cost_p_sec / tokens_p_sec_compute
cost_p_token_memory = cost_p_sec / tokens_p_sec_memory
cost_p_1k_tokens_compute = cost_p_token_compute * 1000
cost_p_1k_tokens_memory = cost_p_token_memory * 1000
return cost_p_1k_tokens_compute, cost_p_1k_tokens_memory