-
Notifications
You must be signed in to change notification settings - Fork 10
/
index.html
151 lines (131 loc) · 6.16 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
<!doctype html>
<html lang="es">
<head>
<meta charset="utf-8" />
<meta http-equiv="x-ua-compatible" content="ie=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Human Extractor</title>
<link rel="stylesheet" href="style.css">
<link href="https://fonts.googleapis.com/css?family=Lexend+Deca&display=swap" rel="stylesheet">
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/[email protected]/dist/tf.min.js"></script>
<link rel="shortcut icon" type="image/png"
href="https://www.pinclipart.com/picdir/middle/4-43309_head-silhouette-cliparts-man-head-silhouette-png-download.png" />
</head>
<body>
<a href="https://github.com/adriacabeza/Human-Extractor" class="github-corner" aria-label="View source on GitHub"><svg width="120" height="120" viewBox="0 0 250 250" style="fill:#151513; color:#fff; position: absolute; top: 0; border: 0; right: 0;" aria-hidden="true"><path d="M0,0 L115,115 L130,115 L142,142 L250,250 L250,0 Z"></path><path d="M128.3,109.0 C113.8,99.7 119.0,89.6 119.0,89.6 C122.0,82.7 120.5,78.6 120.5,78.6 C119.2,72.0 123.4,76.3 123.4,76.3 C127.3,80.9 125.5,87.3 125.5,87.3 C122.9,97.6 130.6,101.9 134.4,103.2" fill="currentColor" style="transform-origin: 130px 106px;" class="octo-arm"></path><path d="M115.0,115.0 C114.9,115.1 118.7,116.5 119.8,115.4 L133.7,101.6 C136.9,99.2 139.9,98.4 142.2,98.6 C133.8,88.0 127.5,74.4 143.8,58.0 C148.5,53.4 154.0,51.2 159.7,51.0 C160.3,49.4 163.2,43.6 171.4,40.1 C171.4,40.1 176.1,42.5 178.8,56.2 C183.1,58.6 187.2,61.8 190.9,65.4 C194.5,69.0 197.7,73.2 200.1,77.6 C213.8,80.2 216.3,84.9 216.3,84.9 C212.7,93.1 206.9,96.0 205.4,96.6 C205.1,102.4 203.0,107.8 198.3,112.5 C181.9,128.9 168.3,122.5 157.7,114.1 C157.9,116.9 156.7,120.9 152.7,124.9 L141.0,136.5 C139.8,137.7 141.6,141.9 141.8,141.8 Z" fill="currentColor" class="octo-body"></path></svg></a><style>.github-corner:hover .octo-arm{animation:octocat-wave 560ms ease-in-out}@keyframes octocat-wave{0%,100%{transform:rotate(0)}20%,60%{transform:rotate(-25deg)}40%,80%{transform:rotate(10deg)}}@media (max-width:500px){.github-corner:hover .octo-arm{animation:none}.github-corner .octo-arm{animation:octocat-wave 560ms ease-in-out}}</style>
<h1> HUMAN EXTRACTOR </h1>
<p>Sube una imagen y mira como desaparece el fondo.</p>
<div class="lds-grid--hidden" id="spinner" style="padding-top:20px; padding-bottom:20px;"><div></div><div></div><div></div><div></div><div></div><div></div><div></div><div></div><div></div></div>
<div style=" display: flex;justify-content: center; padding-top:20px; padding-bottom:20px;" id = "boton">
<input id="file" type="file" style="display: none;" accept="image/*" class="file" onchange="upload()"/>
<button class="btn draw-border" value="Upload" onclick="thisFileUpload();">
Upload an Image
</button>
</div>
<div class="row">
<canvas style="width:512px;height:512px; padding:10px;" id="original1" crossorigin="anonymous"> </canvas>
<canvas id="original2" style="width:512px;height:512px; padding:10px;" crossorigin="anonymous" ></canvas>
</div>
</body>
<script>
var c = document.getElementById("original2");
var ctx0 = c.getContext("2d");
var img = new Image();
img.src='docs/csv_transparency.png'
img.onload = function(){
c.width=512;
c.height=512;
ctx0.drawImage(img, 0,0, img.width, img.height, 0,0,512,512);
};
var c0 = document.getElementById("original1");
var ctx = c0.getContext("2d");
var img0 = new Image();
img0.src='docs/csv_original.png'
img0.onload = function(){
c0.width=512;
c0.height=512;
ctx.drawImage(img0, 0,0, img0.width, img0.height, 0,0,512,512);
};
const MODEL_URL = 'output/model.json';
function thisFileUpload() {
document.getElementById("file").click();
};
function upload(){
var files = document.getElementById('file').files;
var file = files[0];
if (file) {
var reader = new FileReader();
console.log("File that was uploaded");
console.log(file)
//Button to spinner
button = document.getElementById("boton");
button.style.visibility="hidden";
button.style.padding="0";
button.style.display="none";
spinner = document.getElementById("spinner");
spinner.className="lds-grid";
// Insert picture before
reader.onload = function(e) {
document.getElementById('original1').src = drawimg(e.target.result);
//run the model
run()
};
reader.readAsDataURL(file);
}
}
function drawimg(idata) {
var img = new Image();
img.onload = function(){
var min = Math.min(img.width/1.5, img.height/1.5);
console.log("the minimum is " + min)
ctx.clearRect(0,0,c.width, c.height);
ctx.drawImage(img,
0,0,min*2,min*2, 0, 0, 512, 512); // sw, sh, dx, dy, dw, dh
};
img.src = idata;
}
//Function to run the model
async function run(){
model = await tf.loadGraphModel(MODEL_URL);
console.log('Succesfully loaded model');
console.log(model)
var image = null;
var result = null;
var newimage = null;
if(model != null & file != null){
image = document.getElementById("original1")
console.log("Running");
// Execute
file = tf.browser.fromPixels(image)
console.log(file.shape)
// Reshape
file = file.reshape([1 ,512, 512, 3])
// Cast to float32
//file = tf.cast(file,'float32')
file = file.asType('float32')
file= file.div(127.5)
file = file.sub(1)
// Predict
console.log("Let's predict")
result= model.predict(file)
console.log("Done")
result = result.reshape([512,512,3])
console.log(result);
const b = tf.scalar(0.5);
result = result.mul(b);
result = result.add(0.5);
//Make spinner disappear and button appear again
spinner = document.getElementById("spinner");
spinner.className="lds-grid--hidden";
button = document.getElementById("boton");
button.style.visibility="visible";
button.style.display="flex";
// Refresh images
canvas_result = document.getElementById("original2");
prova = tf.browser.toPixels(result, canvas_result)
} else {
alert("Something went wrong :(")
}
};
</script>
</html>