-
Notifications
You must be signed in to change notification settings - Fork 141
/
HLevels.agda
865 lines (697 loc) · 36.9 KB
/
HLevels.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
{-
Basic theory about h-levels/n-types:
- Basic properties of isContr, isProp and isSet (definitions are in Prelude)
- Hedberg's theorem can be found in Cubical/Relation/Nullary/Properties
-}
{-# OPTIONS --safe #-}
module Cubical.Foundations.HLevels where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Structure
open import Cubical.Functions.FunExtEquiv
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Pointed.Base
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Path
open import Cubical.Foundations.Transport
open import Cubical.Foundations.Univalence using (ua ; univalenceIso)
open import Cubical.Data.Sigma
open import Cubical.Data.Nat using (ℕ; zero; suc; _+_; +-zero; +-comm)
open Iso
HLevel : Type₀
HLevel = ℕ
private
variable
ℓ ℓ' ℓ'' ℓ''' ℓ'''' ℓ''''' : Level
A A' : Type ℓ
B : A → Type ℓ
C : (x : A) → B x → Type ℓ
D : (x : A) (y : B x) → C x y → Type ℓ
E : (x : A) (y : B x) → (z : C x y) → D x y z → Type ℓ
F : (x : A) (y : B x) (z : C x y) (w : D x y z) (v : E x y z w) → Type ℓ
G : (x : A) (y : B x) (z : C x y) (w : D x y z) (v : E x y z w) (u : F x y z w v) → Type ℓ
w x y z : A
n : HLevel
isOfHLevel : HLevel → Type ℓ → Type ℓ
isOfHLevel 0 A = isContr A
isOfHLevel 1 A = isProp A
isOfHLevel (suc (suc n)) A = (x y : A) → isOfHLevel (suc n) (x ≡ y)
isOfHLevelFun : (n : HLevel) {A : Type ℓ} {B : Type ℓ'} (f : A → B) → Type (ℓ-max ℓ ℓ')
isOfHLevelFun n f = ∀ b → isOfHLevel n (fiber f b)
isOfHLevelΩ→isOfHLevel :
∀ {ℓ} {A : Type ℓ} (n : ℕ)
→ ((x : A) → isOfHLevel (suc n) (x ≡ x)) → isOfHLevel (2 + n) A
isOfHLevelΩ→isOfHLevel zero hΩ x y =
J (λ y p → (q : x ≡ y) → p ≡ q) (hΩ x refl)
isOfHLevelΩ→isOfHLevel (suc n) hΩ x y =
J (λ y p → (q : x ≡ y) → isOfHLevel (suc n) (p ≡ q)) (hΩ x refl)
TypeOfHLevel : ∀ ℓ → HLevel → Type (ℓ-suc ℓ)
TypeOfHLevel ℓ n = TypeWithStr ℓ (isOfHLevel n)
hProp hSet hGroupoid h2Groupoid : ∀ ℓ → Type (ℓ-suc ℓ)
hProp ℓ = TypeOfHLevel ℓ 1
hSet ℓ = TypeOfHLevel ℓ 2
hGroupoid ℓ = TypeOfHLevel ℓ 3
h2Groupoid ℓ = TypeOfHLevel ℓ 4
-- lower h-levels imply higher h-levels
isOfHLevelSuc : (n : HLevel) → isOfHLevel n A → isOfHLevel (suc n) A
isOfHLevelSuc 0 = isContr→isProp
isOfHLevelSuc 1 = isProp→isSet
isOfHLevelSuc (suc (suc n)) h a b = isOfHLevelSuc (suc n) (h a b)
isSet→isGroupoid : isSet A → isGroupoid A
isSet→isGroupoid = isOfHLevelSuc 2
isGroupoid→is2Groupoid : isGroupoid A → is2Groupoid A
isGroupoid→is2Groupoid = isOfHLevelSuc 3
isOfHLevelPlus : (m : HLevel) → isOfHLevel n A → isOfHLevel (m + n) A
isOfHLevelPlus zero hA = hA
isOfHLevelPlus (suc m) hA = isOfHLevelSuc _ (isOfHLevelPlus m hA)
isContr→isOfHLevel : (n : HLevel) → isContr A → isOfHLevel n A
isContr→isOfHLevel zero cA = cA
isContr→isOfHLevel (suc n) cA = isOfHLevelSuc _ (isContr→isOfHLevel n cA)
isProp→isOfHLevelSuc : (n : HLevel) → isProp A → isOfHLevel (suc n) A
isProp→isOfHLevelSuc zero pA = pA
isProp→isOfHLevelSuc (suc n) pA = isOfHLevelSuc _ (isProp→isOfHLevelSuc n pA)
isOfHLevelPlus' : (m : HLevel) → isOfHLevel m A → isOfHLevel (m + n) A
isOfHLevelPlus' {n = n} 0 = isContr→isOfHLevel n
isOfHLevelPlus' {n = n} 1 = isProp→isOfHLevelSuc n
isOfHLevelPlus' {n = n} (suc (suc m)) hA a₀ a₁ = isOfHLevelPlus' (suc m) (hA a₀ a₁)
-- When proving a type has h-level n+1, we can assume it is inhabited.
-- To prove a type is a proposition, it suffices to prove it is contractible if inhabited
isOfHLevelSucIfInhabited→isOfHLevelSuc : ∀ n
→ (A → isOfHLevel (suc n) A) → isOfHLevel (suc n) A
isOfHLevelSucIfInhabited→isOfHLevelSuc zero hA a = hA a a
isOfHLevelSucIfInhabited→isOfHLevelSuc (suc n) hA a = hA a a
isContrIfInhabited→isProp : (A → isContr A) → isProp A
isContrIfInhabited→isProp hA =
isOfHLevelSucIfInhabited→isOfHLevelSuc 0 (isContr→isProp ∘ hA)
-- hlevel of path types
isProp→isContrPath : isProp A → (x y : A) → isContr (x ≡ y)
isProp→isContrPath h x y = h x y , isProp→isSet h x y _
isContr→isContrPath : isContr A → (x y : A) → isContr (x ≡ y)
isContr→isContrPath cA = isProp→isContrPath (isContr→isProp cA)
isOfHLevelPath' : (n : HLevel) → isOfHLevel (suc n) A → (x y : A) → isOfHLevel n (x ≡ y)
isOfHLevelPath' 0 = isProp→isContrPath
isOfHLevelPath' (suc n) h x y = h x y
isOfHLevelPath'⁻ : (n : HLevel) → ((x y : A) → isOfHLevel n (x ≡ y)) → isOfHLevel (suc n) A
isOfHLevelPath'⁻ zero h x y = h x y .fst
isOfHLevelPath'⁻ (suc n) h = h
isOfHLevelPath : (n : HLevel) → isOfHLevel n A → (x y : A) → isOfHLevel n (x ≡ y)
isOfHLevelPath 0 h x y = isContr→isContrPath h x y
isOfHLevelPath (suc n) h x y = isOfHLevelSuc n (isOfHLevelPath' n h x y)
-- h-level of isOfHLevel
isPropIsOfHLevel : (n : HLevel) → isProp (isOfHLevel n A)
isPropIsOfHLevel 0 = isPropIsContr
isPropIsOfHLevel 1 = isPropIsProp
isPropIsOfHLevel (suc (suc n)) f g i a b =
isPropIsOfHLevel (suc n) (f a b) (g a b) i
isPropIsSet : isProp (isSet A)
isPropIsSet = isPropIsOfHLevel 2
isPropIsGroupoid : isProp (isGroupoid A)
isPropIsGroupoid = isPropIsOfHLevel 3
isPropIs2Groupoid : isProp (is2Groupoid A)
isPropIs2Groupoid = isPropIsOfHLevel 4
TypeOfHLevel≡ : (n : HLevel) {X Y : TypeOfHLevel ℓ n} → ⟨ X ⟩ ≡ ⟨ Y ⟩ → X ≡ Y
TypeOfHLevel≡ n = Σ≡Prop (λ _ → isPropIsOfHLevel n)
-- hlevels are preserved by retracts (and consequently equivalences)
isContrRetract
: ∀ {B : Type ℓ}
→ (f : A → B) (g : B → A)
→ (h : retract f g)
→ (v : isContr B) → isContr A
fst (isContrRetract f g h (b , p)) = g b
snd (isContrRetract f g h (b , p)) x = (cong g (p (f x))) ∙ (h x)
isPropRetract
: {B : Type ℓ}
(f : A → B) (g : B → A)
(h : (x : A) → g (f x) ≡ x)
→ isProp B → isProp A
isPropRetract f g h p x y i =
hcomp
(λ j → λ
{ (i = i0) → h x j
; (i = i1) → h y j})
(g (p (f x) (f y) i))
isSetRetract
: {B : Type ℓ}
(f : A → B) (g : B → A)
(h : (x : A) → g (f x) ≡ x)
→ isSet B → isSet A
isSetRetract f g h set x y p q i j =
hcomp (λ k → λ { (i = i0) → h (p j) k
; (i = i1) → h (q j) k
; (j = i0) → h x k
; (j = i1) → h y k})
(g (set (f x) (f y)
(cong f p) (cong f q) i j))
isGroupoidRetract
: {B : Type ℓ}
(f : A → B) (g : B → A)
(h : (x : A) → g (f x) ≡ x)
→ isGroupoid B → isGroupoid A
isGroupoidRetract f g h grp x y p q P Q i j k =
hcomp ((λ l → λ { (i = i0) → h (P j k) l
; (i = i1) → h (Q j k) l
; (j = i0) → h (p k) l
; (j = i1) → h (q k) l
; (k = i0) → h x l
; (k = i1) → h y l}))
(g (grp (f x) (f y) (cong f p) (cong f q)
(cong (cong f) P) (cong (cong f) Q) i j k))
is2GroupoidRetract
: {B : Type ℓ}
(f : A → B) (g : B → A)
(h : (x : A) → g (f x) ≡ x)
→ is2Groupoid B → is2Groupoid A
is2GroupoidRetract f g h grp x y p q P Q R S i j k l =
hcomp (λ r → λ { (i = i0) → h (R j k l) r
; (i = i1) → h (S j k l) r
; (j = i0) → h (P k l) r
; (j = i1) → h (Q k l) r
; (k = i0) → h (p l) r
; (k = i1) → h (q l) r
; (l = i0) → h x r
; (l = i1) → h y r})
(g (grp (f x) (f y) (cong f p) (cong f q)
(cong (cong f) P) (cong (cong f) Q)
(cong (cong (cong f)) R) (cong (cong (cong f)) S) i j k l))
isOfHLevelRetract
: (n : HLevel) {B : Type ℓ}
(f : A → B) (g : B → A)
(h : (x : A) → g (f x) ≡ x)
→ isOfHLevel n B → isOfHLevel n A
isOfHLevelRetract 0 = isContrRetract
isOfHLevelRetract 1 = isPropRetract
isOfHLevelRetract 2 = isSetRetract
isOfHLevelRetract 3 = isGroupoidRetract
isOfHLevelRetract 4 = is2GroupoidRetract
isOfHLevelRetract (suc (suc (suc (suc (suc n))))) f g h ofLevel x y p q P Q R S =
isOfHLevelRetract (suc n) (cong (cong (cong (cong f))))
(λ s i j k l →
hcomp (λ r → λ { (i = i0) → h (R j k l) r
; (i = i1) → h (S j k l) r
; (j = i0) → h (P k l) r
; (j = i1) → h (Q k l) r
; (k = i0) → h (p l) r
; (k = i1) → h (q l) r
; (l = i0) → h x r
; (l = i1) → h y r})
(g (s i j k l)))
(λ s i j k l m →
hcomp (λ n → λ { (i = i1) → s j k l m
; (j = i0) → h (R k l m) (i ∨ n)
; (j = i1) → h (S k l m) (i ∨ n)
; (k = i0) → h (P l m) (i ∨ n)
; (k = i1) → h (Q l m) (i ∨ n)
; (l = i0) → h (p m) (i ∨ n)
; (l = i1) → h (q m) (i ∨ n)
; (m = i0) → h x (i ∨ n)
; (m = i1) → h y (i ∨ n) })
(h (s j k l m) i))
(ofLevel (f x) (f y)
(cong f p) (cong f q)
(cong (cong f) P) (cong (cong f) Q)
(cong (cong (cong f)) R) (cong (cong (cong f)) S))
isOfHLevelRetractFromIso : {A : Type ℓ} {B : Type ℓ'} (n : HLevel) → Iso A B → isOfHLevel n B → isOfHLevel n A
isOfHLevelRetractFromIso n e hlev = isOfHLevelRetract n (Iso.fun e) (Iso.inv e) (Iso.leftInv e) hlev
isOfHLevelRespectEquiv : {A : Type ℓ} {B : Type ℓ'} → (n : HLevel) → A ≃ B → isOfHLevel n A → isOfHLevel n B
isOfHLevelRespectEquiv n eq = isOfHLevelRetract n (invEq eq) (eq .fst) (secEq eq)
isContrRetractOfConstFun : {A : Type ℓ} {B : Type ℓ'} (b₀ : B)
→ Σ[ f ∈ (B → A) ] ((x : A) → (f ∘ (λ _ → b₀)) x ≡ x)
→ isContr A
fst (isContrRetractOfConstFun b₀ ret) = ret .fst b₀
snd (isContrRetractOfConstFun b₀ ret) y = ret .snd y
-- h-level of dependent path types
isOfHLevelPathP' : {A : I → Type ℓ} (n : HLevel)
→ isOfHLevel (suc n) (A i1)
→ (x : A i0) (y : A i1) → isOfHLevel n (PathP A x y)
isOfHLevelPathP' {A = A} n h x y =
isOfHLevelRetractFromIso n (PathPIsoPath _ x y) (isOfHLevelPath' n h _ _)
isOfHLevelPathP : {A : I → Type ℓ} (n : HLevel)
→ isOfHLevel n (A i1)
→ (x : A i0) (y : A i1) → isOfHLevel n (PathP A x y)
isOfHLevelPathP {A = A} n h x y =
isOfHLevelRetractFromIso n (PathPIsoPath _ x y) (isOfHLevelPath n h _ _)
-- Fillers for cubes from h-level
isSet→SquareP :
{A : I → I → Type ℓ}
(isSet : (i j : I) → isSet (A i j))
{a₀₀ : A i0 i0} {a₀₁ : A i0 i1} (a₀₋ : PathP (λ j → A i0 j) a₀₀ a₀₁)
{a₁₀ : A i1 i0} {a₁₁ : A i1 i1} (a₁₋ : PathP (λ j → A i1 j) a₁₀ a₁₁)
(a₋₀ : PathP (λ i → A i i0) a₀₀ a₁₀) (a₋₁ : PathP (λ i → A i i1) a₀₁ a₁₁)
→ SquareP A a₀₋ a₁₋ a₋₀ a₋₁
isSet→SquareP isset a₀₋ a₁₋ a₋₀ a₋₁ =
PathPIsoPath _ _ _ .Iso.inv (isOfHLevelPathP' 1 (isset _ _) _ _ _ _ )
isGroupoid→isGroupoid' : isGroupoid A → isGroupoid' A
isGroupoid→isGroupoid' {A = A} Agpd a₀₋₋ a₁₋₋ a₋₀₋ a₋₁₋ a₋₋₀ a₋₋₁ =
PathPIsoPath (λ i → Square (a₋₀₋ i) (a₋₁₋ i) (a₋₋₀ i) (a₋₋₁ i)) a₀₋₋ a₁₋₋ .Iso.inv
(isGroupoid→isPropSquare _ _ _ _ _ _)
where
isGroupoid→isPropSquare :
{a₀₀ a₀₁ : A} (a₀₋ : a₀₀ ≡ a₀₁)
{a₁₀ a₁₁ : A} (a₁₋ : a₁₀ ≡ a₁₁)
(a₋₀ : a₀₀ ≡ a₁₀) (a₋₁ : a₀₁ ≡ a₁₁)
→ isProp (Square a₀₋ a₁₋ a₋₀ a₋₁)
isGroupoid→isPropSquare a₀₋ a₁₋ a₋₀ a₋₁ =
isOfHLevelRetractFromIso 1 (PathPIsoPath (λ i → a₋₀ i ≡ a₋₁ i) a₀₋ a₁₋) (Agpd _ _ _ _)
isGroupoid'→isGroupoid : isGroupoid' A → isGroupoid A
isGroupoid'→isGroupoid Agpd' x y p q r s = Agpd' r s refl refl refl refl
-- h-level of Σ-types
isProp∃! : isProp (∃! A B)
isProp∃! = isPropIsContr
isContrΣ : isContr A → ((x : A) → isContr (B x)) → isContr (Σ A B)
isContrΣ {A = A} {B = B} (a , p) q =
let h : (x : A) (y : B x) → (q x) .fst ≡ y
h x y = (q x) .snd y
in (( a , q a .fst)
, ( λ x i → p (x .fst) i
, h (p (x .fst) i) (transp (λ j → B (p (x .fst) (i ∨ ~ j))) i (x .snd)) i))
isContrΣ' : (ca : isContr A) → isContr (B (fst ca)) → isContr (Σ A B)
isContrΣ' ca cb = isContrΣ ca (λ x → subst _ (snd ca x) cb)
section-Σ≡Prop
: (pB : (x : A) → isProp (B x)) {u v : Σ A B}
→ section (Σ≡Prop pB {u} {v}) (cong fst)
section-Σ≡Prop {A = A} pB {u} {v} p j i =
(p i .fst) , isProp→PathP (λ i → isOfHLevelPath 1 (pB (fst (p i)))
(Σ≡Prop pB {u} {v} (cong fst p) i .snd)
(p i .snd) )
refl refl i j
isEquiv-Σ≡Prop
: (pB : (x : A) → isProp (B x)) {u v : Σ A B}
→ isEquiv (Σ≡Prop pB {u} {v})
isEquiv-Σ≡Prop {A = A} pB {u} {v} = isoToIsEquiv (iso (Σ≡Prop pB) (cong fst) (section-Σ≡Prop pB) (λ _ → refl))
isPropΣ : isProp A → ((x : A) → isProp (B x)) → isProp (Σ A B)
isPropΣ pA pB t u = Σ≡Prop pB (pA (t .fst) (u .fst))
isOfHLevelΣ : ∀ n → isOfHLevel n A → ((x : A) → isOfHLevel n (B x))
→ isOfHLevel n (Σ A B)
isOfHLevelΣ 0 = isContrΣ
isOfHLevelΣ 1 = isPropΣ
isOfHLevelΣ {B = B} (suc (suc n)) h1 h2 x y =
isOfHLevelRetractFromIso (suc n)
(invIso (IsoΣPathTransportPathΣ _ _))
(isOfHLevelΣ (suc n) (h1 (fst x) (fst y)) λ x → h2 _ _ _)
isSetΣ : isSet A → ((x : A) → isSet (B x)) → isSet (Σ A B)
isSetΣ = isOfHLevelΣ 2
-- Useful consequence
isSetΣSndProp : isSet A → ((x : A) → isProp (B x)) → isSet (Σ A B)
isSetΣSndProp h p = isSetΣ h (λ x → isProp→isSet (p x))
isGroupoidΣ : isGroupoid A → ((x : A) → isGroupoid (B x)) → isGroupoid (Σ A B)
isGroupoidΣ = isOfHLevelΣ 3
is2GroupoidΣ : is2Groupoid A → ((x : A) → is2Groupoid (B x)) → is2Groupoid (Σ A B)
is2GroupoidΣ = isOfHLevelΣ 4
-- h-level of ×
isProp× : {A : Type ℓ} {B : Type ℓ'} → isProp A → isProp B → isProp (A × B)
isProp× pA pB = isPropΣ pA (λ _ → pB)
isProp×2 : {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''}
→ isProp A → isProp B → isProp C → isProp (A × B × C)
isProp×2 pA pB pC = isProp× pA (isProp× pB pC)
isProp×3 : {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''} {D : Type ℓ'''}
→ isProp A → isProp B → isProp C → isProp D → isProp (A × B × C × D)
isProp×3 pA pB pC pD = isProp×2 pA pB (isProp× pC pD)
isProp×4 : {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''} {D : Type ℓ'''} {E : Type ℓ''''}
→ isProp A → isProp B → isProp C → isProp D → isProp E → isProp (A × B × C × D × E)
isProp×4 pA pB pC pD pE = isProp×3 pA pB pC (isProp× pD pE)
isProp×5 : {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''} {D : Type ℓ'''} {E : Type ℓ''''} {F : Type ℓ'''''}
→ isProp A → isProp B → isProp C → isProp D → isProp E → isProp F
→ isProp (A × B × C × D × E × F)
isProp×5 pA pB pC pD pE pF = isProp×4 pA pB pC pD (isProp× pE pF)
isOfHLevel× : ∀ {A : Type ℓ} {B : Type ℓ'} n → isOfHLevel n A → isOfHLevel n B
→ isOfHLevel n (A × B)
isOfHLevel× n hA hB = isOfHLevelΣ n hA (λ _ → hB)
isSet× : ∀ {A : Type ℓ} {B : Type ℓ'} → isSet A → isSet B → isSet (A × B)
isSet× = isOfHLevel× 2
isGroupoid× : ∀ {A : Type ℓ} {B : Type ℓ'} → isGroupoid A → isGroupoid B
→ isGroupoid (A × B)
isGroupoid× = isOfHLevel× 3
is2Groupoid× : ∀ {A : Type ℓ} {B : Type ℓ'} → is2Groupoid A → is2Groupoid B
→ is2Groupoid (A × B)
is2Groupoid× = isOfHLevel× 4
-- h-level of Π-types
isOfHLevelΠ : ∀ n → ((x : A) → isOfHLevel n (B x))
→ isOfHLevel n ((x : A) → B x)
isOfHLevelΠ 0 h = (λ x → fst (h x)) , λ f i y → snd (h y) (f y) i
isOfHLevelΠ 1 h f g i x = (h x) (f x) (g x) i
isOfHLevelΠ 2 h f g F G i j z = h z (f z) (g z) (funExt⁻ F z) (funExt⁻ G z) i j
isOfHLevelΠ 3 h f g p q P Q i j k z =
h z (f z) (g z)
(funExt⁻ p z) (funExt⁻ q z)
(cong (λ f → funExt⁻ f z) P) (cong (λ f → funExt⁻ f z) Q) i j k
isOfHLevelΠ 4 h f g p q P Q R S i j k l z =
h z (f z) (g z)
(funExt⁻ p z) (funExt⁻ q z)
(cong (λ f → funExt⁻ f z) P) (cong (λ f → funExt⁻ f z) Q)
(cong (cong (λ f → funExt⁻ f z)) R) (cong (cong (λ f → funExt⁻ f z)) S) i j k l
isOfHLevelΠ (suc (suc (suc (suc (suc n))))) h f g p q P Q R S =
isOfHLevelRetract (suc n)
(cong (cong (cong funExt⁻))) (cong (cong (cong funExt))) (λ _ → refl)
(isOfHLevelΠ (suc (suc (suc (suc n)))) (λ x → h x (f x) (g x))
(funExt⁻ p) (funExt⁻ q)
(cong funExt⁻ P) (cong funExt⁻ Q)
(cong (cong funExt⁻) R) (cong (cong funExt⁻) S))
isOfHLevelΠ2 : (n : HLevel) → ((x : A) → (y : B x) → isOfHLevel n (C x y))
→ isOfHLevel n ((x : A) → (y : B x) → C x y)
isOfHLevelΠ2 n f = isOfHLevelΠ n (λ x → isOfHLevelΠ n (f x))
isContrΠ : (h : (x : A) → isContr (B x)) → isContr ((x : A) → B x)
isContrΠ = isOfHLevelΠ 0
isPropΠ : (h : (x : A) → isProp (B x)) → isProp ((x : A) → B x)
isPropΠ = isOfHLevelΠ 1
isPropΠ2 : (h : (x : A) (y : B x) → isProp (C x y))
→ isProp ((x : A) (y : B x) → C x y)
isPropΠ2 h = isPropΠ λ x → isPropΠ λ y → h x y
isPropΠ3 : (h : (x : A) (y : B x) (z : C x y) → isProp (D x y z))
→ isProp ((x : A) (y : B x) (z : C x y) → D x y z)
isPropΠ3 h = isPropΠ λ x → isPropΠ λ y → isPropΠ λ z → h x y z
isPropΠ4 : (h : (x : A) (y : B x) (z : C x y) (w : D x y z) → isProp (E x y z w))
→ isProp ((x : A) (y : B x) (z : C x y) (w : D x y z) → E x y z w)
isPropΠ4 h = isPropΠ λ _ → isPropΠ3 (h _)
isPropΠ5 : (h : (x : A) (y : B x) (z : C x y) (w : D x y z) (v : E x y z w) → isProp (F x y z w v))
→ isProp ((x : A) (y : B x) (z : C x y) (w : D x y z) (v : E x y z w) → F x y z w v)
isPropΠ5 h = isPropΠ λ _ → isPropΠ4 (h _)
isPropΠ6 : (h : (x : A) (y : B x) (z : C x y) (w : D x y z) (v : E x y z w) (u : F x y z w v) → isProp (G x y z w v u))
→ isProp ((x : A) (y : B x) (z : C x y) (w : D x y z) (v : E x y z w) (u : F x y z w v) → G x y z w v u)
isPropΠ6 h = isPropΠ λ _ → isPropΠ5 (h _)
isPropImplicitΠ : (h : (x : A) → isProp (B x)) → isProp ({x : A} → B x)
isPropImplicitΠ h f g i {x} = h x (f {x}) (g {x}) i
isPropImplicitΠ2 : (h : (x : A) (y : B x) → isProp (C x y)) → isProp ({x : A} {y : B x} → C x y)
isPropImplicitΠ2 h = isPropImplicitΠ (λ x → isPropImplicitΠ (λ y → h x y))
isPropImplicitΠ3 : (h : (x : A) (y : B x) (z : C x y) → isProp (D x y z)) →
isProp ({x : A} {y : B x} {z : C x y} → D x y z)
isPropImplicitΠ3 h = isPropImplicitΠ (λ x → isPropImplicitΠ2 (λ y → h x y))
isPropImplicitΠ4 : (h : (x : A) (y : B x) (z : C x y) (w : D x y z) → isProp (E x y z w)) →
isProp ({x : A} {y : B x} {z : C x y} {w : D x y z} → E x y z w)
isPropImplicitΠ4 h = isPropImplicitΠ (λ x → isPropImplicitΠ3 (λ y → h x y))
isProp→ : {A : Type ℓ} {B : Type ℓ'} → isProp B → isProp (A → B)
isProp→ pB = isPropΠ λ _ → pB
isSetΠ : ((x : A) → isSet (B x)) → isSet ((x : A) → B x)
isSetΠ = isOfHLevelΠ 2
isSetImplicitΠ : (h : (x : A) → isSet (B x)) → isSet ({x : A} → B x)
isSetImplicitΠ h f g F G i j {x} = h x (f {x}) (g {x}) (λ i → F i {x}) (λ i → G i {x}) i j
isSetImplicitΠ2 : (h : (x : A) → (y : B x) → isSet (C x y)) → isSet ({x : A} → {y : B x} → C x y)
isSetImplicitΠ2 h = isSetImplicitΠ (λ x → isSetImplicitΠ (λ y → h x y))
isSetImplicitΠ3 : (h : (x : A) → (y : B x) → (z : C x y) → isSet (D x y z)) →
isSet ({x : A} → {y : B x} → {z : C x y} → D x y z)
isSetImplicitΠ3 h = isSetImplicitΠ (λ x → isSetImplicitΠ2 (λ y → λ z → h x y z))
isSet→ : isSet A' → isSet (A → A')
isSet→ isSet-A' = isOfHLevelΠ 2 (λ _ → isSet-A')
isSetΠ2 : (h : (x : A) (y : B x) → isSet (C x y))
→ isSet ((x : A) (y : B x) → C x y)
isSetΠ2 h = isSetΠ λ x → isSetΠ λ y → h x y
isSetΠ3 : (h : (x : A) (y : B x) (z : C x y) → isSet (D x y z))
→ isSet ((x : A) (y : B x) (z : C x y) → D x y z)
isSetΠ3 h = isSetΠ λ x → isSetΠ λ y → isSetΠ λ z → h x y z
isGroupoidΠ : ((x : A) → isGroupoid (B x)) → isGroupoid ((x : A) → B x)
isGroupoidΠ = isOfHLevelΠ 3
isGroupoidΠ2 : (h : (x : A) (y : B x) → isGroupoid (C x y)) → isGroupoid ((x : A) (y : B x) → C x y)
isGroupoidΠ2 h = isGroupoidΠ λ _ → isGroupoidΠ λ _ → h _ _
isGroupoidΠ3 : (h : (x : A) (y : B x) (z : C x y) → isGroupoid (D x y z))
→ isGroupoid ((x : A) (y : B x) (z : C x y) → D x y z)
isGroupoidΠ3 h = isGroupoidΠ λ _ → isGroupoidΠ2 λ _ → h _ _
isGroupoidΠ4 : (h : (x : A) (y : B x) (z : C x y) (w : D x y z) → isGroupoid (E x y z w))
→ isGroupoid ((x : A) (y : B x) (z : C x y) (w : D x y z) → E x y z w)
isGroupoidΠ4 h = isGroupoidΠ λ _ → isGroupoidΠ3 λ _ → h _ _
is2GroupoidΠ : ((x : A) → is2Groupoid (B x)) → is2Groupoid ((x : A) → B x)
is2GroupoidΠ = isOfHLevelΠ 4
isOfHLevelΠ⁻ : ∀ {A : Type ℓ} {B : Type ℓ'} n
→ isOfHLevel n (A → B) → (A → isOfHLevel n B)
isOfHLevelΠ⁻ 0 h x = fst h x , λ y → funExt⁻ (snd h (const y)) x
isOfHLevelΠ⁻ 1 h x y z = funExt⁻ (h (const y) (const z)) x
isOfHLevelΠ⁻ (suc (suc n)) h x y z =
isOfHLevelΠ⁻ (suc n) (isOfHLevelRetractFromIso (suc n) funExtIso (h _ _)) x
isOfHLevel→∙ : {A : Pointed ℓ} {B : Pointed ℓ'} (n : ℕ)
→ isOfHLevel n (fst B) → isOfHLevel n (A →∙ B)
isOfHLevel→∙ n hlev =
isOfHLevelΣ n (isOfHLevelΠ n (λ _ → hlev))
λ _ → isOfHLevelPath n hlev _ _
-- h-level of A ≃ B and A ≡ B
isOfHLevel≃
: ∀ n {A : Type ℓ} {B : Type ℓ'}
→ (hA : isOfHLevel n A) (hB : isOfHLevel n B) → isOfHLevel n (A ≃ B)
isOfHLevel≃ zero {A = A} {B = B} hA hB = isContr→Equiv hA hB , contr
where
contr : (y : A ≃ B) → isContr→Equiv hA hB ≡ y
contr y = Σ≡Prop isPropIsEquiv (funExt (λ a → snd hB (fst y a)))
isOfHLevel≃ (suc n) {A = A} {B = B} hA hB =
isOfHLevelΣ (suc n) (isOfHLevelΠ _ λ _ → hB)
(λ f → isProp→isOfHLevelSuc n (isPropIsEquiv f))
isOfHLevel≡ : ∀ n → {A B : Type ℓ} (hA : isOfHLevel n A) (hB : isOfHLevel n B) →
isOfHLevel n (A ≡ B)
isOfHLevel≡ n hA hB = isOfHLevelRetractFromIso n univalenceIso (isOfHLevel≃ n hA hB)
isOfHLevel⁺≃ₗ
: ∀ n {A : Type ℓ} {B : Type ℓ'}
→ isOfHLevel (suc n) A → isOfHLevel (suc n) (A ≃ B)
isOfHLevel⁺≃ₗ zero pA e = isOfHLevel≃ 1 pA (isOfHLevelRespectEquiv 1 e pA) e
isOfHLevel⁺≃ₗ (suc n) hA e = isOfHLevel≃ m hA (isOfHLevelRespectEquiv m e hA) e
where
m = suc (suc n)
isOfHLevel⁺≃ᵣ
: ∀ n {A : Type ℓ} {B : Type ℓ'}
→ isOfHLevel (suc n) B → isOfHLevel (suc n) (A ≃ B)
isOfHLevel⁺≃ᵣ zero pB e
= isOfHLevel≃ 1 (isPropRetract (e .fst) (invEq e) (retEq e) pB) pB e
isOfHLevel⁺≃ᵣ (suc n) hB e
= isOfHLevel≃ m (isOfHLevelRetract m (e .fst) (invEq e) (retEq e) hB) hB e
where
m = suc (suc n)
isOfHLevel⁺≡ₗ
: ∀ n → {A B : Type ℓ}
→ isOfHLevel (suc n) A → isOfHLevel (suc n) (A ≡ B)
isOfHLevel⁺≡ₗ zero pA P = isOfHLevel≡ 1 pA (subst isProp P pA) P
isOfHLevel⁺≡ₗ (suc n) hA P
= isOfHLevel≡ m hA (subst (isOfHLevel m) P hA) P
where
m = suc (suc n)
isOfHLevel⁺≡ᵣ
: ∀ n → {A B : Type ℓ}
→ isOfHLevel (suc n) B → isOfHLevel (suc n) (A ≡ B)
isOfHLevel⁺≡ᵣ zero pB P = isOfHLevel≡ 1 (subst⁻ isProp P pB) pB P
isOfHLevel⁺≡ᵣ (suc n) hB P
= isOfHLevel≡ m (subst⁻ (isOfHLevel m) P hB) hB P
where
m = suc (suc n)
-- h-level of TypeOfHLevel
isPropHContr : isProp (TypeOfHLevel ℓ 0)
isPropHContr x y = Σ≡Prop (λ _ → isPropIsContr) (isOfHLevel≡ 0 (x .snd) (y .snd) .fst)
isOfHLevelTypeOfHLevel : ∀ n → isOfHLevel (suc n) (TypeOfHLevel ℓ n)
isOfHLevelTypeOfHLevel zero = isPropHContr
isOfHLevelTypeOfHLevel (suc n) (X , a) (Y , b) =
isOfHLevelRetract (suc n) (cong fst) (Σ≡Prop λ _ → isPropIsOfHLevel (suc n))
(section-Σ≡Prop λ _ → isPropIsOfHLevel (suc n))
(isOfHLevel≡ (suc n) a b)
isSetHProp : isSet (hProp ℓ)
isSetHProp = isOfHLevelTypeOfHLevel 1
isGroupoidHSet : isGroupoid (hSet ℓ)
isGroupoidHSet = isOfHLevelTypeOfHLevel 2
-- h-level of lifted type
isOfHLevelLift : ∀ {ℓ ℓ'} (n : HLevel) {A : Type ℓ} → isOfHLevel n A → isOfHLevel n (Lift {j = ℓ'} A)
isOfHLevelLift n = isOfHLevelRetract n lower lift λ _ → refl
isOfHLevelLower : ∀ {ℓ ℓ'} (n : HLevel) {A : Type ℓ} → isOfHLevel n (Lift {j = ℓ'} A) → isOfHLevel n A
isOfHLevelLower n = isOfHLevelRetract n lift lower λ _ → refl
----------------------------
-- More consequences of isProp and isContr
inhProp→isContr : A → isProp A → isContr A
inhProp→isContr x h = x , h x
extend : isContr A → (∀ φ → (u : Partial φ A) → Sub A φ u)
extend (x , p) φ u = inS (hcomp (λ { j (φ = i1) → p (u 1=1) j }) x)
isContrPartial→isContr : ∀ {ℓ} {A : Type ℓ}
→ (extend : ∀ φ → Partial φ A → A)
→ (∀ u → u ≡ (extend i1 λ { _ → u}))
→ isContr A
isContrPartial→isContr {A = A} extend law
= ex , λ y → law ex ∙ (λ i → Aux.v y i) ∙ sym (law y)
where ex = extend i0 empty
module Aux (y : A) (i : I) where
φ = ~ i ∨ i
u : Partial φ A
u = λ { (i = i0) → ex ; (i = i1) → y }
v = extend φ u
-- Dependent h-level over a type
isOfHLevelDep : HLevel → {A : Type ℓ} (B : A → Type ℓ') → Type (ℓ-max ℓ ℓ')
isOfHLevelDep 0 {A = A} B = {a : A} → Σ[ b ∈ B a ] ({a' : A} (b' : B a') (p : a ≡ a') → PathP (λ i → B (p i)) b b')
isOfHLevelDep 1 {A = A} B = {a0 a1 : A} (b0 : B a0) (b1 : B a1) (p : a0 ≡ a1) → PathP (λ i → B (p i)) b0 b1
isOfHLevelDep (suc (suc n)) {A = A} B = {a0 a1 : A} (b0 : B a0) (b1 : B a1) → isOfHLevelDep (suc n) {A = a0 ≡ a1} (λ p → PathP (λ i → B (p i)) b0 b1)
isContrDep : {A : Type ℓ} (B : A → Type ℓ') → Type (ℓ-max ℓ ℓ')
isContrDep = isOfHLevelDep 0
isPropDep : {A : Type ℓ} (B : A → Type ℓ') → Type (ℓ-max ℓ ℓ')
isPropDep = isOfHLevelDep 1
isContrDep∘
: {A' : Type ℓ} (f : A' → A) → isContrDep B → isContrDep (B ∘ f)
isContrDep∘ f cB {a} = λ where
.fst → cB .fst
.snd b' p → cB .snd b' (cong f p)
isPropDep∘ : {A' : Type ℓ} (f : A' → A) → isPropDep B → isPropDep (B ∘ f)
isPropDep∘ f pB b0 b1 = pB b0 b1 ∘ cong f
isOfHLevelDep→isOfHLevel : (n : HLevel)
→ {A : Type ℓ} {B : A → Type ℓ'} → isOfHLevelDep n {A = A} B → (a : A) → isOfHLevel n (B a)
isOfHLevelDep→isOfHLevel 0 h a = h .fst , λ b → h .snd b refl
isOfHLevelDep→isOfHLevel 1 h a x y = h x y refl
isOfHLevelDep→isOfHLevel (suc (suc n)) h a x y = isOfHLevelDep→isOfHLevel (suc n) (h x y) refl
isOfHLevel→isOfHLevelDep : (n : HLevel)
→ {A : Type ℓ} {B : A → Type ℓ'} (h : (a : A) → isOfHLevel n (B a)) → isOfHLevelDep n {A = A} B
isOfHLevel→isOfHLevelDep 0 h {a} =
(h a .fst , λ b' p → isProp→PathP (λ i → isContr→isProp (h (p i))) (h a .fst) b')
isOfHLevel→isOfHLevelDep 1 h = λ b0 b1 p → isProp→PathP (λ i → h (p i)) b0 b1
isOfHLevel→isOfHLevelDep (suc (suc n)) {A = A} {B} h {a0} {a1} b0 b1 =
isOfHLevel→isOfHLevelDep (suc n) (λ p → helper p)
where
helper : (p : a0 ≡ a1) →
isOfHLevel (suc n) (PathP (λ i → B (p i)) b0 b1)
helper p = J (λ a1 p → ∀ b1 → isOfHLevel (suc n) (PathP (λ i → B (p i)) b0 b1))
(λ _ → h _ _ _) p b1
isContrDep→isPropDep : isOfHLevelDep 0 B → isOfHLevelDep 1 B
isContrDep→isPropDep {B = B} Bctr {a0 = a0} b0 b1 p i
= comp (λ k → B (p (i ∧ k))) (λ k → λ where
(i = i0) → Bctr .snd b0 refl k
(i = i1) → Bctr .snd b1 p k)
(c0 .fst)
where
c0 = Bctr {a0}
isPropDep→isSetDep : isOfHLevelDep 1 B → isOfHLevelDep 2 B
isPropDep→isSetDep {B = B} Bprp b0 b1 b2 b3 p i j
= comp (λ k → B (p (i ∧ k) (j ∧ k))) (λ k → λ where
(j = i0) → Bprp b0 b0 refl k
(i = i0) → Bprp b0 (b2 j) (λ k → p i0 (j ∧ k)) k
(i = i1) → Bprp b0 (b3 j) (λ k → p k (j ∧ k)) k
(j = i1) → Bprp b0 b1 (λ k → p (i ∧ k) (j ∧ k)) k)
b0
isOfHLevelDepSuc : (n : HLevel) → isOfHLevelDep n B → isOfHLevelDep (suc n) B
isOfHLevelDepSuc 0 = isContrDep→isPropDep
isOfHLevelDepSuc 1 = isPropDep→isSetDep
isOfHLevelDepSuc (suc (suc n)) Blvl b0 b1 = isOfHLevelDepSuc (suc n) (Blvl b0 b1)
isPropDep→isSetDep'
: isOfHLevelDep 1 B
→ {p : w ≡ x} {q : y ≡ z} {r : w ≡ y} {s : x ≡ z}
→ {tw : B w} {tx : B x} {ty : B y} {tz : B z}
→ (sq : Square p q r s)
→ (tp : PathP (λ i → B (p i)) tw tx)
→ (tq : PathP (λ i → B (q i)) ty tz)
→ (tr : PathP (λ i → B (r i)) tw ty)
→ (ts : PathP (λ i → B (s i)) tx tz)
→ SquareP (λ i j → B (sq i j)) tp tq tr ts
isPropDep→isSetDep' {B = B} Bprp {p} {q} {r} {s} {tw} sq tp tq tr ts i j
= comp (λ k → B (sq (i ∧ k) (j ∧ k))) (λ k → λ where
(i = i0) → Bprp tw (tp j) (λ k → p (k ∧ j)) k
(i = i1) → Bprp tw (tq j) (λ k → sq (i ∧ k) (j ∧ k)) k
(j = i0) → Bprp tw (tr i) (λ k → r (k ∧ i)) k
(j = i1) → Bprp tw (ts i) (λ k → sq (k ∧ i) (j ∧ k)) k)
tw
isOfHLevelΣ' : ∀ n → isOfHLevel n A → isOfHLevelDep n B → isOfHLevel n (Σ A B)
isOfHLevelΣ' 0 Actr Bctr .fst = (Actr .fst , Bctr .fst)
isOfHLevelΣ' 0 Actr Bctr .snd (x , y) i
= Actr .snd x i , Bctr .snd y (Actr .snd x) i
isOfHLevelΣ' 1 Alvl Blvl (w , y) (x , z) i .fst = Alvl w x i
isOfHLevelΣ' 1 Alvl Blvl (w , y) (x , z) i .snd = Blvl y z (Alvl w x) i
isOfHLevelΣ' {A = A} {B = B} (suc (suc n)) Alvl Blvl (w , y) (x , z)
= isOfHLevelRetract (suc n)
(λ p → (λ i → p i .fst) , λ i → p i .snd)
ΣPathP
(λ x → refl)
(isOfHLevelΣ' (suc n) (Alvl w x) (Blvl y z))
ΣSquareSet : ((x : A) → isSet (B x)) → {u v w x : Σ A B}
→ {p : u ≡ v} {q : v ≡ w} {r : x ≡ w} {s : u ≡ x}
→ Square (cong fst p) (cong fst r)
(cong fst s) (cong fst q)
→ Square p r s q
fst (ΣSquareSet pB sq i j) = sq i j
snd (ΣSquareSet {B = B} pB {p = p} {q = q} {r = r} {s = s} sq i j) = lem i j
where
lem : SquareP (λ i j → B (sq i j))
(cong snd p) (cong snd r) (cong snd s) (cong snd q)
lem = toPathP (isOfHLevelPathP' 1 (pB _) _ _ _ _)
module _ (isSet-A : isSet A) (isSet-A' : isSet A') where
isSet-SetsIso : isSet (Iso A A')
isSet-SetsIso x y p₀ p₁ = h
where
module X = Iso x
module Y = Iso y
f-p : ∀ i₁ → (Iso.fun (p₀ i₁) , Iso.inv (p₀ i₁)) ≡
(Iso.fun (p₁ i₁) , Iso.inv (p₁ i₁))
fst (f-p i₁ i) a = isSet-A' (X.fun a ) (Y.fun a ) (cong _ p₀) (cong _ p₁) i i₁
snd (f-p i₁ i) a' = isSet-A (X.inv a') (Y.inv a') (cong _ p₀) (cong _ p₁) i i₁
s-p : ∀ b → _
s-p b =
isSet→SquareP (λ i j → isProp→isSet (isSet-A' _ _))
refl refl (λ i₁ → (Iso.rightInv (p₀ i₁) b)) (λ i₁ → (Iso.rightInv (p₁ i₁) b))
r-p : ∀ a → _
r-p a =
isSet→SquareP (λ i j → isProp→isSet (isSet-A _ _))
refl refl (λ i₁ → (Iso.leftInv (p₀ i₁) a)) (λ i₁ → (Iso.leftInv (p₁ i₁) a))
h : p₀ ≡ p₁
Iso.fun (h i i₁) = fst (f-p i₁ i)
Iso.inv (h i i₁) = snd (f-p i₁ i)
Iso.rightInv (h i i₁) b = s-p b i₁ i
Iso.leftInv (h i i₁) a = r-p a i₁ i
SetsIso≡-ext : ∀ {a b : Iso A A'}
→ (∀ x → Iso.fun a x ≡ Iso.fun b x)
→ (∀ x → Iso.inv a x ≡ Iso.inv b x)
→ a ≡ b
Iso.fun (SetsIso≡-ext {a} {b} fun≡ inv≡ i) x = fun≡ x i
Iso.inv (SetsIso≡-ext {a} {b} fun≡ inv≡ i) x = inv≡ x i
Iso.rightInv (SetsIso≡-ext {a} {b} fun≡ inv≡ i) b₁ =
isSet→SquareP (λ _ _ → isSet-A')
(Iso.rightInv a b₁)
(Iso.rightInv b b₁)
(λ i → fun≡ (inv≡ b₁ i) i)
refl i
Iso.leftInv (SetsIso≡-ext {a} {b} fun≡ inv≡ i) a₁ =
isSet→SquareP (λ _ _ → isSet-A)
(Iso.leftInv a a₁)
(Iso.leftInv b a₁)
(λ i → inv≡ (fun≡ a₁ i) i )
refl i
SetsIso≡ : ∀ {a b : Iso A A'}
→ (Iso.fun a ≡ Iso.fun b)
→ (Iso.inv a ≡ Iso.inv b)
→ a ≡ b
SetsIso≡ p q =
SetsIso≡-ext (funExt⁻ p) (funExt⁻ q)
isSet→Iso-Iso-≃ : Iso (Iso A A') (A ≃ A')
isSet→Iso-Iso-≃ = ww
where
open Iso
ww : Iso _ _
fun ww = isoToEquiv
inv ww = equivToIso
rightInv ww b = equivEq refl
leftInv ww a = SetsIso≡ refl refl
isSet→isEquiv-isoToPath : isEquiv isoToEquiv
isSet→isEquiv-isoToPath = isoToIsEquiv isSet→Iso-Iso-≃
isSet→Iso-Iso-≡ : (isSet-A : isSet A) → (isSet-A' : isSet A') → Iso (Iso A A') (A ≡ A')
isSet→Iso-Iso-≡ isSet-A isSet-A' = ww
where
open Iso
ww : Iso _ _
fun ww = isoToPath
inv ww = pathToIso
rightInv ww b = isInjectiveTransport (funExt λ _ → transportRefl _)
leftInv ww a = SetsIso≡-ext isSet-A isSet-A' (λ _ → transportRefl (fun a _)) λ _ → cong (inv a) (transportRefl _)
hSet-Iso-Iso-≡ : (A : hSet ℓ) → (A' : hSet ℓ) → Iso (Iso (fst A) (fst A')) (A ≡ A')
hSet-Iso-Iso-≡ A A' = compIso (isSet→Iso-Iso-≡ (snd A) (snd A')) (equivToIso (_ , isEquiv-Σ≡Prop λ _ → isPropIsSet))
module _ (B : (i j k : I) → Type ℓ)
{c₀₀₀ : B i0 i0 i0} {c₀₀₁ : B i0 i0 i1} {c₀₁₀ : B i0 i1 i0} {c₀₁₁ : B i0 i1 i1}
{c₁₀₀ : B i1 i0 i0} {c₁₀₁ : B i1 i0 i1} {c₁₁₀ : B i1 i1 i0} {c₁₁₁ : B i1 i1 i1}
{c₀₀₋ : PathP (λ k → B i0 i0 k) c₀₀₀ c₀₀₁} {c₀₁₋ : PathP (λ k → B i0 i1 k) c₀₁₀ c₀₁₁}
{c₀₋₀ : PathP (λ i → B i0 i i0) c₀₀₀ c₀₁₀} {c₀₋₁ : PathP (λ i → B i0 i i1) c₀₀₁ c₀₁₁}
{c₁₀₋ : PathP (λ k → B i1 i0 k) c₁₀₀ c₁₀₁} {c₁₁₋ : PathP (λ k → B i1 i1 k) c₁₁₀ c₁₁₁}
{c₁₋₀ : PathP (λ i → B i1 i i0) c₁₀₀ c₁₁₀} {c₁₋₁ : PathP (λ i → B i1 i i1) c₁₀₁ c₁₁₁}
{c₋₀₀ : PathP (λ i → B i i0 i0) c₀₀₀ c₁₀₀} {c₋₀₁ : PathP (λ i → B i i0 i1) c₀₀₁ c₁₀₁}
{c₋₁₀ : PathP (λ i → B i i1 i0) c₀₁₀ c₁₁₀} {c₋₁₁ : PathP (λ i → B i i1 i1) c₀₁₁ c₁₁₁}
(c₀₋₋ : SquareP (λ j k → B i0 j k) c₀₀₋ c₀₁₋ c₀₋₀ c₀₋₁)
(c₁₋₋ : SquareP (λ j k → B i1 j k) c₁₀₋ c₁₁₋ c₁₋₀ c₁₋₁)
(c₋₀₋ : SquareP (λ i k → B i i0 k) c₀₀₋ c₁₀₋ c₋₀₀ c₋₀₁)
(c₋₁₋ : SquareP (λ i k → B i i1 k) c₀₁₋ c₁₁₋ c₋₁₀ c₋₁₁)
(c₋₋₀ : SquareP (λ i j → B i j i0) c₀₋₀ c₁₋₀ c₋₀₀ c₋₁₀)
(c₋₋₁ : SquareP (λ i j → B i j i1) c₀₋₁ c₁₋₁ c₋₀₁ c₋₁₁) where
CubeP : Type ℓ
CubeP = PathP (λ i → SquareP (λ j k → B i j k)
(c₋₀₋ i) (c₋₁₋ i)
(c₋₋₀ i) (c₋₋₁ i))
c₀₋₋ c₁₋₋
isGroupoid→CubeP : isGroupoid (B i1 i1 i1) → CubeP
isGroupoid→CubeP grpd =
isOfHLevelPathP' 0 (isOfHLevelPathP' 1 (isOfHLevelPathP' 2 grpd _ _) _ _) _ _ .fst
Π-contractDomIso : (c : isContr A) → Iso ((x : A) → B x) (B (c .fst))
Π-contractDomIso {B = B} c .fun f = f (c .fst)
Π-contractDomIso {B = B} c .inv b x = subst B (c .snd x) b
Π-contractDomIso {B = B} c .rightInv b i = transp (λ j → B (isProp→isSet (isContr→isProp c) _ _ (c .snd (c .fst)) refl i j)) i b
Π-contractDomIso {B = B} c .leftInv f = funExt λ x → fromPathP (cong f (c .snd x))
Π-contractDom : (c : isContr A) → ((x : A) → B x) ≃ B (c .fst)
Π-contractDom c = isoToEquiv (Π-contractDomIso c)