-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_gcn.py
320 lines (261 loc) · 14.6 KB
/
train_gcn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import os
import json
import time
import trimesh
from tqdm import tqdm
from os.path import join
import numpy as np
import argparse
import smplx
import torch
import torch.nn.functional as F
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from models.gcn import GCNDecoder
from models.smplx import batch_rodrigues
from models.utils import get_normals
mano_layer = {'right': smplx.create('./', 'mano', use_pca=False, is_rhand=True).cuda(), 'left': smplx.create('./', 'mano', use_pca=False, is_rhand=False).cuda()}
class MANODataset(Dataset):
def __init__(self, data_path, split='train', hand_type='left'):
self.split = split
self.hand_type = hand_type
with open(join(data_path, 'annotations/%s' % split, 'InterHand2.6M_%s_MANO_NeuralAnnot.json' % split)) as f:
self.mano_params = json.load(f)
self.data_list = []
for cap_idx in self.mano_params.keys():
frame_idxs = self.mano_params[cap_idx].keys()
for frame_idx in frame_idxs:
if self.mano_params[cap_idx][frame_idx][self.hand_type] is not None:
self.data_list.append([cap_idx, frame_idx])
def get_item(self, cap_idx, frame_idx):
mano_params = self.mano_params[cap_idx][frame_idx][self.hand_type]
mano_pose = torch.FloatTensor(mano_params['pose']).view(-1)
shape = torch.FloatTensor(mano_params['shape']).view(-1)
trans = torch.FloatTensor(mano_params['trans']).view(-1)
return mano_pose, shape, trans
def __getitem__(self, index):
return self.get_item(self.data_list[index][0], self.data_list[index][1])
def __len__(self):
return len(self.data_list)
def mano_forward(pose, shape, trans=None, type='left'):
output = mano_layer[type](global_orient=pose[:, :3],
hand_pose=pose[:, 3:],
betas=shape, transl=trans)
if type == 'right':
tips = output.vertices[:, [745, 317, 444, 556, 673]]
else:
tips = output.vertices[:, [745, 317, 445, 556, 673]]
joints = torch.cat([output.joints, tips], 1)
# Reorder joints to match visualization utilities
joints = joints[:, [0, 13, 14, 15, 16, 1, 2, 3, 17, 4, 5, 6, 18, 10, 11, 12, 19, 7, 8, 9, 20]]
return output.vertices, joints, output.joints
def compute_both_err(pred_mesh, target_mesh, pred_joint, target_joint):
# human36_eval_joint = (1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 14, 15, 16)
# root align joint
pred_mesh, target_mesh = pred_mesh - pred_joint[:, :1, :], target_mesh - target_joint[:, :1, :]
pred_joint, target_joint = pred_joint - pred_joint[:, :1, :], target_joint - target_joint[:, :1, :]
pred_mesh, target_mesh = pred_mesh.detach().cpu().numpy(), target_mesh.detach().cpu().numpy()
pred_joint, target_joint = pred_joint.detach().cpu().numpy(), target_joint.detach().cpu().numpy()
# pred_joint, target_joint = pred_joint[:, human36_eval_joint, :], target_joint[:, human36_eval_joint,
# :]
mesh_mean_error = np.power((np.power((pred_mesh - target_mesh), 2)).sum(axis=2), 0.5).mean()
joint_mean_error = np.power((np.power((pred_joint - target_joint), 2)).sum(axis=2), 0.5).mean()
return joint_mean_error, mesh_mean_error
def get_trans_scale(joints):
'''
mean-> (0,0,0) joints[0]<->joints[1] -> 0.01
:param joints: b * n * 3
:return:
'''
trans = joints.mean(1, keepdim=True) # b, 3
scale = 0.5 / torch.sqrt(((joints[:, 1:2] - joints[:, 0:1]) ** 2).sum(2, keepdim=True))
return trans, scale
def train(batch_size, data_path, hand_type):
num_epoch = 50
if hand_type == 'left':
gcn_net = GCNDecoder('./mano/TEMPLATE_LEFT.obj', 21 * 3).cuda()
elif hand_type == 'right':
gcn_net = GCNDecoder('./mano/TEMPLATE_RIGHT.obj', 21 * 3).cuda()
else:
assert hand_type in ['left', 'right']
traindataset = MANODataset(data_path, hand_type=hand_type)
train_data_loader = DataLoader(traindataset, batch_size=batch_size, shuffle=True, num_workers=20)
print('train data size: ', len(train_data_loader))
valdataset = MANODataset(data_path, hand_type=hand_type, split='val')
val_data_loader = DataLoader(valdataset, batch_size=batch_size, shuffle=False, num_workers=20)
print('test data size: ', len(val_data_loader))
optimizer = torch.optim.Adam(gcn_net.parameters(), lr=0.001)
faces = torch.from_numpy(mano_layer[hand_type].faces.astype(np.int32)).long().cuda()
for epoch in range(num_epoch):
gcn_net.train()
pbar = tqdm(train_data_loader)
for train_data in pbar:
# retrieve the data
mano_pose = train_data[0].cuda()
shape = train_data[1].cuda()
mano_params = torch.cat([mano_pose, shape], 1)[:, 3:]
trans = train_data[2].cuda()
with torch.no_grad():
ori_verts, joints, ori_j = mano_forward(mano_pose, shape, trans, hand_type)
rot = torch.randn((trans.shape[0], 3)).cuda() * 4 - 4
rot_mat = batch_rodrigues(rot)
ntrans, nscale = get_trans_scale(joints)
randscale = 1.2 - torch.randn(nscale.shape).cuda() * 0.4
joints = torch.einsum('bij,bkj->bki', rot_mat, joints - ntrans) * nscale * randscale
verts = torch.einsum('bij,bkj->bki', rot_mat, ori_verts - ntrans) * nscale * randscale
ori_j = torch.einsum('bij,bkj->bki', rot_mat, ori_j - ntrans) * nscale * randscale
normals = get_normals(verts, faces)
a = verts[:, faces[:, 0].long()]
b = verts[:, faces[:, 1].long()]
c = verts[:, faces[:, 2].long()]
edge_length = torch.cat(
[((a - b) ** 2).sum(2), ((c - b) ** 2).sum(2), ((a - c) ** 2).sum(2)], 1)
pred_verts, preds_mano, _ = gcn_net(joints.reshape(-1, 63))
pred_joints = torch.einsum('bij,ki->bkj', pred_verts, mano_layer[hand_type].J_regressor)
mesh_loss = F.l1_loss(pred_verts, verts) * 2
joints_loss = F.l1_loss(pred_joints, ori_j) * 2
normal_loss = F.l1_loss(get_normals(pred_verts, faces), normals)
a = pred_verts[:, faces[:, 0].long()]
b = pred_verts[:, faces[:, 1].long()]
c = pred_verts[:, faces[:, 2].long()]
pred_edge = torch.cat(
[((a - b) ** 2).sum(2), ((c - b) ** 2).sum(2), ((a - c) ** 2).sum(2)], 1)
edge_loss = F.l1_loss(pred_edge, edge_length) * 5
mano_loss = F.l1_loss(mano_params, preds_mano)
p_mano_verts, _, _ = mano_forward(torch.cat([mano_pose[:, :3], preds_mano[:, :-10]], 1),
preds_mano[:, -10:], trans, hand_type)
union_loss = F.l1_loss(p_mano_verts, ori_verts) * 2
loss = mesh_loss + joints_loss + normal_loss + edge_loss + mano_loss + union_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
pbar.set_description('epoch: %d, mesh: %f, joints: %f, normal: %f, edge: %f, mano: %f, union: %f' % (
epoch, mesh_loss.item(), joints_loss.item(), normal_loss.item(), edge_loss.item(), mano_loss.item(),
union_loss.item()))
with torch.no_grad():
surface_error = 0.0
joint_error = 0.0
for val_data in val_data_loader:
# retrieve the data
mano_pose = val_data[0].cuda()
shape = val_data[1].cuda()
trans = val_data[2].cuda()
verts, joints, ori_j = mano_forward(mano_pose, shape, trans, hand_type)
rot = torch.randn((trans.shape[0], 3)).cuda() * 4 - 4
rot_mat = batch_rodrigues(rot)
ntrans, nscale = get_trans_scale(joints)
joints = torch.einsum('bij,bkj->bki', rot_mat, joints - ntrans) * nscale
verts = torch.einsum('bij,bkj->bki', rot_mat, verts - ntrans) * nscale
ori_j = torch.einsum('bij,bkj->bki', rot_mat, ori_j - ntrans) * nscale
pred_verts, mano_param, _ = gcn_net(joints.reshape(-1, 63))
mesh = trimesh.Trimesh(vertices=pred_verts[0].detach().cpu().numpy(), faces=gcn_net.faces, process=False,
maintain_order=True)
mesh.export('gcn_out/test.obj')
# loss = F.l1_loss(pred_verts, verts)
joint_mean_error, mesh_mean_error = compute_both_err(pred_verts / nscale, verts / nscale,
torch.einsum('bij,ki->bkj', pred_verts / nscale, mano_layer[hand_type].J_regressor), ori_j / nscale)
surface_error += mesh_mean_error * 1000
joint_error += joint_mean_error * 1000
print('val MPVPE: %f, MPJPE: %f' % (surface_error / len(val_data_loader), (joint_error / len(val_data_loader))))
torch.save(gcn_net.state_dict(), 'mano/gcn_%s_union.pth' % (hand_type))
def infer(net, joints, hand_type):
batch = joints.shape[0]
ntrans, nscale = get_trans_scale(joints)
joints = (joints - ntrans) * nscale
verts, mano, mid = net[hand_type](joints.reshape(batch, 63))
verts = verts / nscale + ntrans
for i in range(len(mid)):
mid[i] = mid[i] / nscale + ntrans
joints = torch.einsum('bij,ki->bkj', verts, mano_layer[hand_type].J_regressor)
outputs = mano_layer[hand_type](global_orient=torch.zeros(batch, 3).cuda(), hand_pose=mano[:, :-10],
betas=mano[:, -10:])
mano_vertices = outputs.vertices
mano_joints = outputs.joints
scale = (torch.sqrt(((joints[:, 1:2] - joints[:, 0:1]) ** 2).sum(2, keepdim=True)) / \
torch.sqrt(((mano_joints[:, 1:2] - mano_joints[:, 0:1]) ** 2).sum(2, keepdim=True)))
# mano_vertices = mano_vertices * scale
A = torch.cat([mano_vertices, torch.ones(batch, mano_vertices.shape[1], 1).cuda()], 2)
B = torch.cat([verts, torch.ones(batch, verts.shape[1], 1).cuda()], 2)
Rt = torch.matmul(torch.matmul(torch.linalg.inv(torch.matmul(A.permute(0, 2, 1), A)), A.permute(0, 2, 1)), B)
R = Rt[:, :3, :3]
# rot = torch.zeros(1,3).cuda()
rot = torch.diag(R[0]).detach().unsqueeze(0)
scale = scale.detach().clone()
scale.requires_grad_(True)
rot.requires_grad_(True)
optimizer = torch.optim.Adam([{'params': rot, 'lr': 1}])
for i in range(100):
loss = F.l1_loss(batch_rodrigues(rot) * scale, R.detach())
optimizer.zero_grad()
loss.backward()
optimizer.step()
Rt[:, :3, :3] = batch_rodrigues(rot.detach()) * scale.detach()
mano_verts = torch.matmul(torch.cat([mano_vertices, torch.ones(batch, mano_vertices.shape[1], 1).cuda()], 2), Rt)
return verts, mano_verts[:, :, :3], mano, Rt, mid
def eval(keypoints_path):
joints = np.loadtxt(keypoints_path)
left_joints = torch.from_numpy(joints[:21]).float().cuda().unsqueeze(0)
right_joints = torch.from_numpy(joints[21:]).float().cuda().unsqueeze(0)
gcn_net_left = GCNDecoder('./mano/TEMPLATE_LEFT.obj', 21 * 3).cuda()
gcn_net_right = GCNDecoder('./mano/TEMPLATE_RIGHT.obj', 21 * 3).cuda()
gcn_net_left.load_state_dict(torch.load("./mano/gcn_left.pth"))
gcn_net_right.load_state_dict(torch.load("./mano/gcn_right.pth"))
gcn_net = {'left': gcn_net_left, 'right':gcn_net_right}
# with torch.no_grad():
left_verts, mano_lverts, _, _, mid_l = infer(gcn_net, left_joints, 'left')
right_verts, mano_rverts, _, _, mid_r = infer(gcn_net, right_joints, 'right')
verts = torch.cat([left_verts, right_verts], 1)[0].detach().cpu().numpy()
mano_verts = torch.cat([mano_lverts, mano_rverts], 1)[0].detach().cpu().numpy()
faces = np.concatenate([gcn_net['left'].faces, gcn_net['right'].faces + left_verts.shape[1]], 0)
for i in range(3):
np.savetxt('gcn_out/mid%d.xyz' % i, torch.cat([mid_l[i][0, :, :], mid_r[i][0, :, :]]).detach().cpu().numpy())
trimesh.Trimesh(vertices=verts, faces=faces, process=False,
maintain_order=True).export('gcn_out/mesh.obj')
trimesh.Trimesh(vertices=mano_verts, faces=faces,
process=False, maintain_order=True).export('gcn_out/mano.obj')
def run_infer(net, data_path, scan_id):
keypoints_path = '%s/keypoints3d/keypoints_3d_%d.xyz' % (data_path, scan_id)
joints = np.loadtxt(keypoints_path)
if joints.shape[0] != 42:
import pdb
pdb.set_trace()
left_joints = torch.from_numpy(joints[:21]).float().cuda().unsqueeze(0)
right_joints = torch.from_numpy(joints[21:]).float().cuda().unsqueeze(0)
# with torch.no_grad():
left_verts, mano_lverts, mano_lparam, left_Rt, mid = infer(net, left_joints, 'left')
right_verts, mano_rverts, mano_rparam, right_Rt, mid = infer(net, right_joints, 'right')
drop_left = left_joints.sum() == 0
drop_right = right_joints.sum() == 0
if drop_left and drop_right:
print('failed')
return
elif drop_right:
verts = left_verts[0].detach().cpu().numpy()
mano_verts = mano_lverts[0].detach().cpu().numpy()
faces = net['left'].faces
elif drop_left:
verts = right_verts[0].detach().cpu().numpy()
mano_verts = mano_rverts[0].detach().cpu().numpy()
faces = net['right'].faces
else:
verts = torch.cat([left_verts, right_verts], 1)[0].detach().cpu().numpy()
mano_verts = torch.cat([mano_lverts, mano_rverts], 1)[0].detach().cpu().numpy()
faces = np.concatenate([net['left'].faces, net['right'].faces + mano_lverts.shape[1]], 0)
os.makedirs('%s/gcn_out'% data_path, exist_ok=True)
trimesh.Trimesh(vertices=mano_verts, faces=faces,
process=False, maintain_order=True).export('%s/gcn_out/%d.obj' % (data_path, scan_id))
trimesh.Trimesh(vertices=verts, faces=faces,
process=False, maintain_order=True).export('%s/gcn_out/ori_%d.obj' % (data_path, scan_id))
params_left, params_right = {'type': 'left'}, {'type': 'right'}
params_left["pose"] = torch.cat([torch.zeros(1, 3).cuda(), mano_lparam[:, :-10]], 1).detach().cpu()
params_left["shape"] = mano_lparam[:, -10:].detach().cpu()
params_left["Rt"] = left_Rt.detach().cpu()
params_right["pose"] = torch.cat([torch.zeros(1, 3).cuda(), mano_rparam[:, :-10]], 1).detach().cpu()
params_right["shape"] = mano_rparam[:, -10:].detach().cpu()
params_right["Rt"] = right_Rt.detach().cpu()
if drop_right:
torch.save([params_left], '%s/gcn_out/%d.pt' % (data_path, scan_id))
elif drop_left:
torch.save([params_right], '%s/gcn_out/%d.pt' % (data_path, scan_id))
else:
torch.save([params_left, params_right], '%s/gcn_out/%d.pt' % (data_path, scan_id))