Skip to content

A Multi-modal Large Language Model for Molecular Science with Graph, Image, and Text

License

Notifications You must be signed in to change notification settings

AI-HPC-Research-Team/GIT-Mol

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GIT-Mol

arXiv DOI

PWC PWC

PWC PWC PWC PWC

Here, we introduce GIT-Mol, a multi-modal large language model that integrates the structure Graph, Image, and Text information, including the Simplified Molecular Input Line Entry System (SMILES) and molecule captions. To facilitate the integration of multi-modal molecular data, we propose GIT-Former, a novel paradigm capable of mapping all modalities into a unified latent space.

The article has been accepted by Computers in Biology and Medicine.

GIT-Mol overview

An overview of GIT-Mol.

  • (a) Internal Information: Includes sequence and graph structure representations, emphasizing inherent chemical properties and simple topology.
  • (b) External Information: For example, images and text descriptions provide richer details and help in human understanding.
  • (c) GIT-Former Multi-modal Encoder: Architecture and Pre-train Strategy of GIT-Former. GIT-Former aligns graph, image, and text with the target text modality (SMILES strings or captions) using self-attention and cross-attention. The learnable queries interact with each other and the various modalities through these attention layers. Xmodal-Text Matching (XTM) and Xmodal-Text Contrastive Learning (XTC) represent our self-supervised learning strategies tailored for specific modalities (X) and target text modalities.
  • (d) Multi-modal Molecular Tasks: In cross-modal tasks, GIT-Former generates different embeddings based on various inputs, which MolT5 then decodes into the target text modality and the MLP model for property prediction tasks.

Note: The sections on Data, Model, and Training below describe the contents of the respective directories. Due to size constraints and permissions, some data and ckpts may not be uploaded.

Data

Pretrain_data

igdata - This folder contains the data for pretraining GIT-Former with image, graph, and SMILES modalities.

  • train_4m.pkl
  • valid_400k.pkl

igcdata - This folder contains the data for pretraining GIT-Former with image, graph, and caption modalities.

  • train_220k.pkl
  • valid_20k.pkl

image2d - Data of molecule images in the pretrain stage

  • cid.png

Finetune_data

ChEBI-20 - This folder contains the data for finetuning GIT-Mol on molecule generation(caption->SMILES)

  • train_26k.txt
  • validation_3k.txt
  • test_3k.txt

molcap - This folder contains the data for finetuning GIT-Mol on molecule caption(graph, SMILES->caption) and molecule image caption(image->SMILES)

  • train_72k.pkl
  • valid_9k.pkl
  • test_9k.pkl
  • image2d
    • cid.png

MoleculeNet - This folder contains the data for finetuning GIT-Mol for molecule properties prediction (classification)

  • bbbp
  • bace
  • tox21
  • clintox
  • sider
  • toxcast

Due to file size constraints, the ChEBI-20 and MoleculeNet datasets can be downloaded from the following links:

Data processing

data_processing.ipynb

Model

GIT-MOL

  • ckpts - This folder contains checkpoints of pretraining and finetuning
  • configs
    • config.json - Config file of this model
    • deepspeed_config.json - Config file of deepspeed in Accelerate
  • models
    • GIT_Former.py - Code of GIT-Former
    • momu.py - Code of the graph encoder
    • momu_gnn.py - Code of the graph encoder
    • swin_transformer.py - Code of the image encoder
    • model_pretrain.py - Code of the pretraining model
    • model_finetune.py - Code of the finetuning model
  • dataset
    • dataset.py
    • graph_featurizer.py
  • utils
    • utils.py

Training

GIT-MOL

  • evaluations - Evaluations of molecule translation tasks
    • fingerprint_metrics.py
    • text_translation_metrics.py
    • mol_translation_metrics.py
  • train
    • pretrain.py
    • finetune
      • molecule_translation.py - Finetuning of the molecule translation task
      • property_prediction
        • finetune.py - Finetuning of molecule properties prediction task
        • model.py
        • splitters.py
        • loader.py

Below are the specific parameter explanations for the property_prediction task:

property_prediction -- finetune.py

  • --modals
    Modalities used in this task contain graph2d, SMILES, or both.

  • --pool
    Type: str
    Default: avg
    Pooling function of text and graph embeddings. Options: Avg or Max.

  • --fusion_mode
    Type: str
    Default: attention
    If we use graph2d and SMILES modalities in this task, we can choose the fusion mode of the two embeddings. Options: Attention or Weights.

References

[1]: Xu Z, Li J, Yang Z, et al. SwinOCSR: end-to-end optical chemical structure recognition using a Swin Transformer[J]. Journal of Cheminformatics, 2022, 14(1): 1-13.
[2]: Su B, Du D, Yang Z, et al. A molecular multimodal foundation model associating molecule graphs with natural language[J]. arXiv preprint arXiv:2209.05481, 2022.(https://arxiv.org/abs/2209.05481)
[3]: Edwards C, Lai T, Ros K, et al. Translation between molecules and natural language[J]. arXiv preprint arXiv:2204.11817, 2022.
[4]: Beltagy I, Lo K, Cohan A. SciBERT: A pretrained language model for scientific text[J]. arXiv preprint arXiv:1903.10676, 2019.
[5]: Li J, Li D, Savarese S, et al. Blip-2: Bootstrapping language-image pre-training with frozen image encoders and large language models[J]. arXiv preprint arXiv:2301.12597, 2023.

Citation

@article{liu2024git,
  title={Git-mol: A multi-modal large language model for molecular science with graph, image, and text},
  author={Liu, Pengfei and Ren, Yiming and Tao, Jun and Ren, Zhixiang},
  journal={Computers in Biology and Medicine},
  pages={108073},
  year={2024},
  publisher={Elsevier}
}

About

A Multi-modal Large Language Model for Molecular Science with Graph, Image, and Text

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published