-
Notifications
You must be signed in to change notification settings - Fork 120
/
predict_i2v.py
348 lines (302 loc) · 14.4 KB
/
predict_i2v.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import os
import numpy as np
import torch
from diffusers import (DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler, EulerDiscreteScheduler,
PNDMScheduler)
from omegaconf import OmegaConf
from PIL import Image
from transformers import (BertModel, BertTokenizer, CLIPImageProcessor,
CLIPVisionModelWithProjection,
T5EncoderModel, T5Tokenizer)
from easyanimate.models import (name_to_autoencoder_magvit,
name_to_transformer3d)
from easyanimate.pipeline.pipeline_easyanimate_inpaint import \
EasyAnimateInpaintPipeline
from easyanimate.pipeline.pipeline_easyanimate_multi_text_encoder_inpaint import \
EasyAnimatePipeline_Multi_Text_Encoder_Inpaint
from easyanimate.utils.lora_utils import merge_lora, unmerge_lora
from easyanimate.utils.utils import get_image_to_video_latent, save_videos_grid
from easyanimate.utils.fp8_optimization import convert_weight_dtype_wrapper
# GPU memory mode, which can be choosen in [model_cpu_offload, model_cpu_offload_and_qfloat8, sequential_cpu_offload].
# model_cpu_offload means that the entire model will be moved to the CPU after use, which can save some GPU memory.
#
# model_cpu_offload_and_qfloat8 indicates that the entire model will be moved to the CPU after use,
# and the transformer model has been quantized to float8, which can save more GPU memory.
#
# sequential_cpu_offload means that each layer of the model will be moved to the CPU after use,
# resulting in slower speeds but saving a large amount of GPU memory.
GPU_memory_mode = "model_cpu_offload"
# Config and model path
config_path = "config/easyanimate_video_v5_magvit_multi_text_encoder.yaml"
model_name = "models/Diffusion_Transformer/EasyAnimateV5-12b-zh-InP"
# Choose the sampler in "Euler" "Euler A" "DPM++" "PNDM" and "DDIM"
# EasyAnimateV1, V2 and V3 cannot use DDIM.
# EasyAnimateV4 and V5 support DDIM.
sampler_name = "DDIM"
# Load pretrained model if need
transformer_path = None
# Only V1 does need a motion module
motion_module_path = None
vae_path = None
lora_path = None
# Other params
sample_size = [384, 672]
# In EasyAnimateV1, the video_length of video is 40 ~ 80.
# In EasyAnimateV2, V3, V4, the video_length of video is 1 ~ 144.
# In EasyAnimateV5, the video_length of video is 1 ~ 49.
# If u want to generate a image, please set the video_length = 1.
video_length = 49
fps = 8
# If you want to generate ultra long videos, please set partial_video_length as the length of each sub video segment
partial_video_length = None
overlap_video_length = 4
# Use torch.float16 if GPU does not support torch.bfloat16
# ome graphics cards, such as v100, 2080ti, do not support torch.bfloat16
weight_dtype = torch.bfloat16
# If you want to generate from text, please set the validation_image_start = None and validation_image_end = None
validation_image_start = "asset/1.png"
validation_image_end = None
# EasyAnimateV1, V2 and V3 support English.
# EasyAnimateV4 and V5 support English and Chinese.
# 使用更长的neg prompt如"模糊,突变,变形,失真,画面暗,文本字幕,画面固定,连环画,漫画,线稿,没有主体。",可以增加稳定性
# 在neg prompt中添加"安静,固定"等词语可以增加动态性。
prompt = "一条狗正在摇头。质量高、杰作、最佳品质、高分辨率、超精细、梦幻般。"
negative_prompt = "扭曲的身体,肢体残缺,文本字幕,漫画,静止,丑陋,错误,乱码。"
#
# Using longer neg prompt such as "Blurring, mutation, deformation, distortion, dark and solid, comics, text subtitles, line art." can increase stability
# Adding words such as "quiet, solid" to the neg prompt can increase dynamism.
# prompt = "The dog is shaking head. The video is of high quality, and the view is very clear. High quality, masterpiece, best quality, highres, ultra-detailed, fantastic."
# negative_prompt = "Twisted body, limb deformities, text captions, comic, static, ugly, error, messy code."
guidance_scale = 6.0
seed = 43
num_inference_steps = 50
lora_weight = 0.60
save_path = "samples/easyanimate-videos_i2v"
config = OmegaConf.load(config_path)
# Get Transformer
Choosen_Transformer3DModel = name_to_transformer3d[
config['transformer_additional_kwargs'].get('transformer_type', 'Transformer3DModel')
]
transformer_additional_kwargs = OmegaConf.to_container(config['transformer_additional_kwargs'])
if weight_dtype == torch.float16:
transformer_additional_kwargs["upcast_attention"] = True
transformer = Choosen_Transformer3DModel.from_pretrained_2d(
model_name,
subfolder="transformer",
transformer_additional_kwargs=transformer_additional_kwargs,
torch_dtype=torch.float8_e4m3fn if GPU_memory_mode == "model_cpu_offload_and_qfloat8" else weight_dtype,
low_cpu_mem_usage=True,
)
if transformer_path is not None:
print(f"From checkpoint: {transformer_path}")
if transformer_path.endswith("safetensors"):
from safetensors.torch import load_file, safe_open
state_dict = load_file(transformer_path)
else:
state_dict = torch.load(transformer_path, map_location="cpu")
state_dict = state_dict["state_dict"] if "state_dict" in state_dict else state_dict
m, u = transformer.load_state_dict(state_dict, strict=False)
print(f"missing keys: {len(m)}, unexpected keys: {len(u)}")
if motion_module_path is not None:
print(f"From Motion Module: {motion_module_path}")
if motion_module_path.endswith("safetensors"):
from safetensors.torch import load_file, safe_open
state_dict = load_file(motion_module_path)
else:
state_dict = torch.load(motion_module_path, map_location="cpu")
state_dict = state_dict["state_dict"] if "state_dict" in state_dict else state_dict
m, u = transformer.load_state_dict(state_dict, strict=False)
print(f"missing keys: {len(m)}, unexpected keys: {len(u)}, {u}")
# Get Vae
Choosen_AutoencoderKL = name_to_autoencoder_magvit[
config['vae_kwargs'].get('vae_type', 'AutoencoderKL')
]
vae = Choosen_AutoencoderKL.from_pretrained(
model_name,
subfolder="vae",
vae_additional_kwargs=OmegaConf.to_container(config['vae_kwargs'])
).to(weight_dtype)
if config['vae_kwargs'].get('vae_type', 'AutoencoderKL') == 'AutoencoderKLMagvit' and weight_dtype == torch.float16:
vae.upcast_vae = True
if vae_path is not None:
print(f"From checkpoint: {vae_path}")
if vae_path.endswith("safetensors"):
from safetensors.torch import load_file, safe_open
state_dict = load_file(vae_path)
else:
state_dict = torch.load(vae_path, map_location="cpu")
state_dict = state_dict["state_dict"] if "state_dict" in state_dict else state_dict
m, u = vae.load_state_dict(state_dict, strict=False)
print(f"missing keys: {len(m)}, unexpected keys: {len(u)}")
if config['text_encoder_kwargs'].get('enable_multi_text_encoder', False):
tokenizer = BertTokenizer.from_pretrained(
model_name, subfolder="tokenizer"
)
tokenizer_2 = T5Tokenizer.from_pretrained(
model_name, subfolder="tokenizer_2"
)
else:
tokenizer = T5Tokenizer.from_pretrained(
model_name, subfolder="tokenizer"
)
tokenizer_2 = None
if config['text_encoder_kwargs'].get('enable_multi_text_encoder', False):
text_encoder = BertModel.from_pretrained(
model_name, subfolder="text_encoder", torch_dtype=weight_dtype
)
text_encoder_2 = T5EncoderModel.from_pretrained(
model_name, subfolder="text_encoder_2", torch_dtype=weight_dtype
)
else:
text_encoder = T5EncoderModel.from_pretrained(
model_name, subfolder="text_encoder", torch_dtype=weight_dtype
)
text_encoder_2 = None
if transformer.config.in_channels != vae.config.latent_channels and config['transformer_additional_kwargs'].get('enable_clip_in_inpaint', True):
clip_image_encoder = CLIPVisionModelWithProjection.from_pretrained(
model_name, subfolder="image_encoder"
).to("cuda", weight_dtype)
clip_image_processor = CLIPImageProcessor.from_pretrained(
model_name, subfolder="image_encoder"
)
else:
clip_image_encoder = None
clip_image_processor = None
# Get Scheduler
Choosen_Scheduler = scheduler_dict = {
"Euler": EulerDiscreteScheduler,
"Euler A": EulerAncestralDiscreteScheduler,
"DPM++": DPMSolverMultistepScheduler,
"PNDM": PNDMScheduler,
"DDIM": DDIMScheduler,
}[sampler_name]
scheduler = Choosen_Scheduler.from_pretrained(
model_name,
subfolder="scheduler"
)
if config['text_encoder_kwargs'].get('enable_multi_text_encoder', False):
pipeline = EasyAnimatePipeline_Multi_Text_Encoder_Inpaint.from_pretrained(
model_name,
text_encoder=text_encoder,
text_encoder_2=text_encoder_2,
tokenizer=tokenizer,
tokenizer_2=tokenizer_2,
vae=vae,
transformer=transformer,
scheduler=scheduler,
torch_dtype=weight_dtype,
clip_image_encoder=clip_image_encoder,
clip_image_processor=clip_image_processor,
)
else:
pipeline = EasyAnimateInpaintPipeline.from_pretrained(
model_name,
text_encoder=text_encoder,
tokenizer=tokenizer,
vae=vae,
transformer=transformer,
scheduler=scheduler,
torch_dtype=weight_dtype,
clip_image_encoder=clip_image_encoder,
clip_image_processor=clip_image_processor,
)
if GPU_memory_mode == "sequential_cpu_offload":
pipeline.enable_sequential_cpu_offload()
elif GPU_memory_mode == "model_cpu_offload_and_qfloat8":
pipeline.enable_model_cpu_offload()
convert_weight_dtype_wrapper(transformer, weight_dtype)
else:
pipeline.enable_model_cpu_offload()
generator = torch.Generator(device="cuda").manual_seed(seed)
if lora_path is not None:
pipeline = merge_lora(pipeline, lora_path, lora_weight, device="cuda", dtype=weight_dtype)
if partial_video_length is not None:
init_frames = 0
last_frames = init_frames + partial_video_length
while init_frames < video_length:
if last_frames >= video_length:
if pipeline.vae.quant_conv.weight.ndim==5:
mini_batch_encoder = pipeline.vae.mini_batch_encoder
_partial_video_length = video_length - init_frames
if vae.cache_mag_vae:
_partial_video_length = int((_partial_video_length - 1) // vae.mini_batch_encoder * vae.mini_batch_encoder) + 1
else:
_partial_video_length = int(_partial_video_length // vae.mini_batch_encoder * vae.mini_batch_encoder)
else:
_partial_video_length = video_length - init_frames
if _partial_video_length <= 0:
break
else:
_partial_video_length = partial_video_length
input_video, input_video_mask, clip_image = get_image_to_video_latent(validation_image, None, video_length=_partial_video_length, sample_size=sample_size)
with torch.no_grad():
sample = pipeline(
prompt,
video_length = _partial_video_length,
negative_prompt = negative_prompt,
height = sample_size[0],
width = sample_size[1],
generator = generator,
guidance_scale = guidance_scale,
num_inference_steps = num_inference_steps,
video = input_video,
mask_video = input_video_mask,
clip_image = clip_image,
).videos
if init_frames != 0:
mix_ratio = torch.from_numpy(
np.array([float(_index) / float(overlap_video_length) for _index in range(overlap_video_length)], np.float32)
).unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
new_sample[:, :, -overlap_video_length:] = new_sample[:, :, -overlap_video_length:] * (1 - mix_ratio) + \
sample[:, :, :overlap_video_length] * mix_ratio
new_sample = torch.cat([new_sample, sample[:, :, overlap_video_length:]], dim = 2)
sample = new_sample
else:
new_sample = sample
if last_frames >= video_length:
break
validation_image = [
Image.fromarray(
(sample[0, :, _index].transpose(0, 1).transpose(1, 2) * 255).numpy().astype(np.uint8)
) for _index in range(-overlap_video_length, 0)
]
init_frames = init_frames + _partial_video_length - overlap_video_length
last_frames = init_frames + _partial_video_length
else:
if vae.cache_mag_vae:
video_length = int((video_length - 1) // vae.mini_batch_encoder * vae.mini_batch_encoder) + 1 if video_length != 1 else 1
else:
video_length = int(video_length // vae.mini_batch_encoder * vae.mini_batch_encoder) if video_length != 1 else 1
input_video, input_video_mask, clip_image = get_image_to_video_latent(validation_image_start, validation_image_end, video_length=video_length, sample_size=sample_size)
with torch.no_grad():
sample = pipeline(
prompt,
video_length = video_length,
negative_prompt = negative_prompt,
height = sample_size[0],
width = sample_size[1],
generator = generator,
guidance_scale = guidance_scale,
num_inference_steps = num_inference_steps,
video = input_video,
mask_video = input_video_mask,
clip_image = clip_image,
).videos
if lora_path is not None:
pipeline = unmerge_lora(pipeline, lora_path, lora_weight, device="cuda", dtype=weight_dtype)
if not os.path.exists(save_path):
os.makedirs(save_path, exist_ok=True)
index = len([path for path in os.listdir(save_path)]) + 1
prefix = str(index).zfill(8)
if video_length == 1:
save_sample_path = os.path.join(save_path, prefix + f".png")
image = sample[0, :, 0]
image = image.transpose(0, 1).transpose(1, 2)
image = (image * 255).numpy().astype(np.uint8)
image = Image.fromarray(image)
image.save(save_sample_path)
else:
video_path = os.path.join(save_path, prefix + ".mp4")
save_videos_grid(sample, video_path, fps=fps)