-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathbundle_edges.py
349 lines (299 loc) · 14.4 KB
/
bundle_edges.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
""" ----------------------------------------------------------------
# Force-Directed Edge Bundling
#
# Performance-optimised script version
# ------------------------------------------------------------------
"""
##Edge bundling=group
##input_layer=vector
##cluster_field=field input_layer
##use_clustering_result=boolean True
##initial_step_size=number 100.0
##compatibility=number 0.5
##cycles=number 6
##iterations=number 90
##bundled_edges=output vector
import math
import numpy as np
from datetime import datetime
from PyQt4.QtCore import QVariant
from qgis.core import QgsFeature, QgsPoint, QgsVector, QgsGeometry, QgsField, QGis
import processing
# I'm repeating the parameters here so Eclipse doesn't
# show errors further down where they are used
initial_step_size = initial_step_size
iterations = iterations
cycles = cycles
use_clustering_result = use_clustering_result
compatibility = compatibility
input_layer = input_layer
cluster_field = cluster_field
progress = progress
bundled_edges = bundled_edges
def forcecalcx(x, y, d) :
if abs(x) > eps and abs(y) > eps :
x *= 1.0 / d
else :
x = 0.0
return x
def forcecalcy(x, y, d) :
if abs(x) > eps and abs(y) > eps :
y *= 1.0 / d
else :
y = 0.0
return y
# ------------------------------------ MISC ------------------------------------ #
class MiscUtils:
@staticmethod
def project_point_on_line(pt, line):
""" Projects point onto line, needed for compatibility computation """
v0 = line.vertexAt(0)
v1 = line.vertexAt(1)
length = max(line.length(), 10**(-6))
r = ((v0.y() - pt.y()) * (v0.y() - v1.y()) -
(v0.x() - pt.x()) * (v1.x() - v0.x())) / (length**2)
return QgsPoint(v0.x() + r * (v1.x() - v0.x()), v0.y() + r * (v1.y() - v0.y()))
# ------------------------------------ EDGE-CLUSTER ------------------------------------ #
class EdgeCluster():
def __init__(self, edges):
self.S = initial_step_size # Weighting factor (needs to be cached, because will be decreased in every cycle)
self.I = iterations # Number of iterations per cycle (needs to be cached, because will be decreased in every cycle)
self.edges = edges # Edges to bundle in this cluster
self.edge_lengths = [] # Array to cache edge lenghts
self.E = len(edges) # Number of edges
self.EP = 2 # Current number of edge points
self.SP = 0 # Current number of subdivision points
self.compatibility_matrix = np.zeros(shape=(self.E,self.E)) # Compatibility matrix
self.direction_matrix = np.zeros(shape=(self.E,self.E)) # Encodes direction of edge pairs
self.N = (2**cycles ) + 1 # Maximum number of points per edge
self.epm_x = np.zeros(shape=(self.E,self.N)) # Bundles edges (x-values)
self.epm_y = np.zeros(shape=(self.E,self.N)) # Bundles edges (y-values)
def compute_compatibilty_matrix(self):
"""
Compatibility is stored in a matrix (rows = edges, columns = edges).
Every coordinate in the matrix tells whether the two edges (r,c)/(c,r)
are compatible, or not. The diagonal is always zero, and the other fields
are filled with either -1 (not compatible) or 1 (compatible).
The matrix is symmetric.
"""
edges_as_geom = []
edges_as_vect = []
for e_idx, edge in enumerate(self.edges):
geom = edge.geometry()
edges_as_geom.append(geom)
edges_as_vect.append(QgsVector(geom.vertexAt(1).x() - geom.vertexAt(0).x(),
geom.vertexAt(1).y() - geom.vertexAt(0).y()))
self.edge_lengths.append(edges_as_vect[e_idx].length())
progress = 0
for i in range(self.E-1):
for j in range(i+1, self.E):
# Parameters
lavg = (self.edge_lengths[i] + self.edge_lengths[j]) / 2.0
dot = edges_as_vect[i].normalized() * edges_as_vect[j].normalized()
# Angle compatibility
angle_comp = abs(dot)
# Scale compatibility
scale_comp = 2.0 / (lavg / min(self.edge_lengths[i],
self.edge_lengths[j]) + max(self.edge_lengths[i],
self.edge_lengths[j]) / lavg)
# Position compatibility
i0 = edges_as_geom[i].vertexAt(0)
i1 = edges_as_geom[i].vertexAt(1)
j0 = edges_as_geom[j].vertexAt(0)
j1 = edges_as_geom[j].vertexAt(1)
e1_mid = QgsPoint((i0.x() + i1.x()) / 2.0, (i0.y() + i1.y()) / 2.0)
e2_mid = QgsPoint((j0.x() + j1.x()) / 2.0, (j0.y() + j1.y()) / 2.0)
diff = QgsVector(e2_mid.x() - e1_mid.x(), e2_mid.y() - e1_mid.y())
pos_comp = lavg / (lavg + diff.length())
# Visibility compatibility
mid_E1 = edges_as_geom[i].centroid()
mid_E2 = edges_as_geom[j].centroid()
#dist = mid_E1.distance(mid_E2)
I0 = MiscUtils.project_point_on_line(j0, edges_as_geom[i])
I1 = MiscUtils.project_point_on_line(j1, edges_as_geom[i])
mid_I = QgsGeometry.fromPolyline([I0, I1]).centroid()
dist_I = I0.distance(I1)
if dist_I == 0.0:
visibility1 = 0.0
else:
visibility1 = max(0, 1 - ((2 * mid_E1.distance(mid_I)) / dist_I))
J0 = MiscUtils.project_point_on_line(i0, edges_as_geom[j])
J1 = MiscUtils.project_point_on_line(i1, edges_as_geom[j])
mid_J = QgsGeometry.fromPolyline([J0, J1]).centroid()
dist_J = J0.distance(J1)
if dist_J == 0.0:
visibility2 = 0.0
else:
visibility2 = max(0, 1 - ((2 * mid_E2.distance(mid_J)) / dist_J))
visibility_comp = min(visibility1, visibility2)
# Compatibility score
comp_score = angle_comp * scale_comp * pos_comp * visibility_comp
# Fill values into the matrix (1 = yes, -1 = no) and use matrix symmetry (i/j = j/i)
if comp_score >= compatibility:
self.compatibility_matrix[i, j] = 1
self.compatibility_matrix[j, i] = 1
else:
self.compatibility_matrix[i, j] = -1
self.compatibility_matrix[j, i] = -1
# Store direction
distStart1 = j0.distance(i0)
distStart2 = j1.distance(i0)
if distStart1 > distStart2:
self.direction_matrix[i, j] = -1
self.direction_matrix[j, i] = -1
else:
self.direction_matrix[i, j] = 1
self.direction_matrix[j, i] = 1
def force_directed_eb(self):
""" Force-directed edge bundling """
# Create compatibility matrix
self.compute_compatibilty_matrix()
for e_idx, edge in enumerate(self.edges):
vertices = edge.geometry().asPolyline()
self.epm_x[e_idx, 0] = vertices[0].x()
self.epm_y[e_idx, 0] = vertices[0].y()
self.epm_x[e_idx, self.N-1] = vertices[1].x()
self.epm_y[e_idx, self.N-1] = vertices[1].y()
# For each cycle
for c in range(cycles):
print 'Cycle {0}'.format(c)
# New number of subdivision points
current_num = self.EP
currentindeces = []
for i in range(current_num):
idx = int((float(i) / float(current_num - 1)) * float(self.N - 1))
currentindeces.append(idx)
self.SP += 2 ** c
self.EP = self.SP + 2
edgeindeces = []
newindeces = []
for i in range(self.EP):
idx = int((float(i) / float(self.EP - 1)) * float(self.N - 1))
edgeindeces.append(idx)
if idx not in currentindeces:
newindeces.append(idx)
pointindeces = edgeindeces[1:self.EP-1]
# Calculate position of new points
for idx in newindeces:
i = int((float(idx) / float(self.N - 1)) * float(self.EP - 1))
left = i - 1
leftidx = int((float(left) / float(self.EP - 1)) * float(self.N - 1))
right = i + 1
rightidx = int((float(right) / float(self.EP - 1)) * float(self.N - 1))
self.epm_x[:, idx] = ( self.epm_x[:, leftidx] + self.epm_x[:, rightidx] ) / 2.0
self.epm_y[:, idx] = ( self.epm_y[:, leftidx] + self.epm_y[:, rightidx] ) / 2.0
# Needed for spring forces
KP0 = np.zeros(shape=(self.E,1))
KP0[:,0] = np.asarray(self.edge_lengths)
KP = K / (KP0 * (self.EP - 1))
# For all iterations (number decreased in every cycle)
for iteration in range(self.I):
# Spring forces
middlepoints_x = self.epm_x[:, pointindeces]
middlepoints_y = self.epm_y[:, pointindeces]
neighbours_left_x = self.epm_x[:, edgeindeces[0:self.EP-2]]
neighbours_left_y = self.epm_y[:, edgeindeces[0:self.EP-2]]
neighbours_right_x = self.epm_x[:, edgeindeces[2:self.EP]]
neighbours_right_y = self.epm_y[:, edgeindeces[2:self.EP]]
springforces_x = (neighbours_left_x - middlepoints_x + neighbours_right_x - middlepoints_x) * KP
springforces_y = (neighbours_left_y - middlepoints_y + neighbours_right_y - middlepoints_y) * KP
# Electrostatic forces
electrostaticforces_x = np.zeros(shape=(self.E, self.SP))
electrostaticforces_y = np.zeros(shape=(self.E, self.SP))
# Loop through all edges
for e_idx, edge in enumerate(self.edges):
# Loop through compatible edges
comp_list = np.where(self.compatibility_matrix[:,e_idx] > 0)
for other_idx in np.nditer(comp_list, ['zerosize_ok']):
otherindeces = pointindeces[:]
if self.direction_matrix[e_idx,other_idx] < 0:
otherindeces.reverse()
# Distance between points
subtr_x = self.epm_x[other_idx, otherindeces] - self.epm_x[e_idx, pointindeces]
subtr_y = self.epm_y[other_idx, otherindeces] - self.epm_y[e_idx, pointindeces]
distance = np.sqrt( np.add( np.multiply(subtr_x, subtr_x), np.multiply(subtr_y, subtr_y)))
flocal_x = map(forcecalcx, subtr_x, subtr_y, distance)
flocal_y = map(forcecalcy, subtr_x, subtr_y, distance)
# Sum of forces
electrostaticforces_x[e_idx, :] += flocal_x
electrostaticforces_y[e_idx, :] += flocal_y
# Compute total forces
force_x = (springforces_x + electrostaticforces_x) * self.S
force_y = (springforces_y + electrostaticforces_y) * self.S
# Compute new point positions
self.epm_x[:, pointindeces] += force_x
self.epm_y[:, pointindeces] += force_y
# Adjustments for next cycle
self.S = self.S * sdc # Decrease weighting factor
self.I = int(round(self.I * idc)) # Decrease iterations
for e_idx in range(self.E):
# Create a new polyline out of the line array
line = map(lambda p,q: QgsPoint(p,q), self.epm_x[e_idx], self.epm_y[e_idx])
self.edges[e_idx].setGeometry(QgsGeometry.fromPolyline(line))
# ------------------------------------ SCRIPT START ------------------------------------ #
# Start
t_start = datetime.now()
print '{0}: Bundling edges (JS)'.format(t_start)
progress.setText('Initialising...')
# Parameter
vlayer=processing.getObject(input_layer)
fields = vlayer.fields()
idc = 0.6666667 # For decreasing iterations
sdc = 0.5 # For decreasing the step-size
K = 0.1
eps = 0.000001
# Create edge list
edges = []
for feature in vlayer.getFeatures():
edges.append(feature)
# Create clusters
clusters = []
if use_clustering_result == True:
# Arrange edges in clusters according to cluster-id
labels = []
for edge in edges :
labels.append(edge[cluster_field])
for l in range(0, max(labels) + 1):
clusters.append(list())
for i,label in enumerate(labels):
if label >= 0 :
clusters[label].append(edges[i])
else :
clusters.append([edges[i]])
for i,cluster in enumerate(clusters):
clusters[i] = EdgeCluster(cluster)
else :
# If clustering should not be used, create only one big cluster containing all edges
cluster_field = QgsField('CLUSTER', QVariant.Int)
clustern_field = QgsField('CLUSTER_N', QVariant.Int)
fields.append(cluster_field)
fields.append(clustern_field)
clusters = [EdgeCluster(edges)]
# Do edge-bundling (separately for all clusters)
for c,cl in enumerate(clusters):
if cl.E > 1 :
cl.force_directed_eb()
progress.setPercentage(10 + 80 * (c / len(clusters)))
# Plot network
progress.setPercentage(90)
progress.setText('Create output...')
writer = processing.VectorWriter(bundled_edges, None, fields, QGis.WKBLineString, vlayer.crs())
for cl in clusters:
for e,edge in enumerate(cl.edges):
feat = QgsFeature()
feat.setGeometry(edge.geometry())
if use_clustering_result == False:
attr = edge.attributes()
attr.append(1)
attr.append(len(edges))
feat.setAttributes(attr)
else:
feat.setAttributes(edge.attributes())
writer.addFeature(feat)
del writer
# End
t_end = datetime.now()
print '{0}: Finished!'.format(t_end)
print 'Run time: {0}'.format(t_end - t_start)
progress.setPercentage(100)
progress.setText('Finished')