-
Notifications
You must be signed in to change notification settings - Fork 50
/
svmTest.m
42 lines (36 loc) · 1.17 KB
/
svmTest.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
function acc=svmTest(W,H,text_feature,data,train_ratio,C)
load([data,'/group.txt']);
numOfNode = size(group,1);
if strcmp(data,'citeseer')
numOfGroup = 6;
elseif strcmp(data,'cora')
numOfGroup = 7;
else
numOfGroup = 19;
end
group(:,1) = group(:,1) + 1;
if strcmp(data,'wiki')==0
group(:,2) = group(:,2) + 1;
end
group = sparse(group(:,1),group(:,2),ones(size(group(:,1))),numOfNode,numOfGroup);
grouptmp=group;
acc=0;
features = [W' text_feature*H']; % representation learned by TADW
for i=1:size(features,2)
if (norm(features(:,i))>0)
features(:,i) = features(:,i)/norm(features(:,i));
end
end
for i=1:10 % do the procedure for 10 times and take the average
rp = randperm(numOfNode);
testId = rp(1:floor(numOfNode*(1-train_ratio)));
groupTest = group(testId,:);
group(testId,:)=[];
trainId = [1:numOfNode]';
trainId(testId,:)=[];
result=SocioDim(features, group, trainId, testId, C);
[res b] = evaluate(result,groupTest);
acc=acc+res.micro_F1;
group=grouptmp;
end
acc=acc/10;