forked from dpwe/audfprint
-
Notifications
You must be signed in to change notification settings - Fork 0
/
audfprint.py
executable file
·504 lines (439 loc) · 20.3 KB
/
audfprint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
#!/usr/bin/python
# coding=utf-8
"""
audfprint.py
Implementation of acoustic-landmark-based robust fingerprinting.
Port of the Matlab implementation.
2014-05-25 Dan Ellis [email protected]
"""
from __future__ import division, print_function
# For reporting progress time
import time
# For command line interface
import docopt
import os
# For __main__
import sys
# For multiprocessing options
import multiprocessing
import joblib
# The actual analyzer class/code
import audfprint_analyze
# Access to match functions, used in command line interface
import audfprint_match
# My hash_table implementation
import hash_table
if sys.version_info[0] >= 3:
# Python 3 specific definitions
time_clock = time.process_time
else:
# Python 2 specific definitions
time_clock = time.clock
def filename_list_iterator(filelist, wavdir, wavext, listflag):
""" Iterator to yeild all the filenames, possibly interpreting them
as list files, prepending wavdir """
if not listflag:
for filename in filelist:
yield os.path.join(wavdir, filename + wavext)
else:
for listfilename in filelist:
with open(listfilename, 'r') as f:
for filename in f:
yield os.path.join(wavdir, filename.rstrip('\n') + wavext)
# for saving precomputed fprints
def ensure_dir(dirname):
""" ensure that the named directory exists """
if len(dirname):
if not os.path.exists(dirname):
# There's a race condition for multiprocessor; don't worry if the
# directory gets created before we get to it.
try:
os.makedirs(dirname)
except:
pass
# Command line interface
# basic operations, each in a separate function
def file_precompute_peaks_or_hashes(analyzer, filename, precompdir,
precompext=None, hashes_not_peaks=True,
skip_existing=False,
strip_prefix=None):
""" Perform precompute action for one file, return list
of message strings """
# If strip_prefix is specified and matches the start of filename,
# remove it from filename.
if strip_prefix and filename[:len(strip_prefix)] == strip_prefix:
tail_filename = filename[len(strip_prefix):]
else:
tail_filename = filename
# Form the output filename to check if it exists.
# strip relative directory components from file name
# Also remove leading absolute path (comp == '')
relname = '/'.join([comp for comp in tail_filename.split('/')
if comp != '.' and comp != '..' and comp != ''])
root = os.path.splitext(relname)[0]
if precompext is None:
if hashes_not_peaks:
precompext = audfprint_analyze.PRECOMPEXT
else:
precompext = audfprint_analyze.PRECOMPPKEXT
opfname = os.path.join(precompdir, root + precompext)
if skip_existing and os.path.isfile(opfname):
return ["file " + opfname + " exists (and --skip-existing); skipping"]
else:
# Do the analysis
if hashes_not_peaks:
type = "hashes"
saver = audfprint_analyze.hashes_save
output = analyzer.wavfile2hashes(filename)
else:
type = "peaks"
saver = audfprint_analyze.peaks_save
output = analyzer.wavfile2peaks(filename)
# save the hashes or peaks file
if len(output) == 0:
message = "Zero length analysis for " + filename + " -- not saving."
else:
# Make sure the output directory exists
ensure_dir(os.path.split(opfname)[0])
# Write the file
saver(opfname, output)
message = ("wrote " + opfname + " ( %d %s, %.3f sec)"
% (len(output), type, analyzer.soundfiledur))
return [message]
def file_precompute(analyzer, filename, precompdir, type='peaks', skip_existing=False, strip_prefix=None):
""" Perform precompute action for one file, return list
of message strings """
print(time.ctime(), "precomputing", type, "for", filename, "...")
hashes_not_peaks = (type == 'hashes')
return file_precompute_peaks_or_hashes(analyzer, filename, precompdir,
hashes_not_peaks=hashes_not_peaks,
skip_existing=skip_existing,
strip_prefix=strip_prefix)
def make_ht_from_list(analyzer, filelist, hashbits, depth, maxtime, pipe=None):
""" Populate a hash table from a list, used as target for
multiprocess division. pipe is a pipe over which to push back
the result, else return it """
# Create new ht instance
ht = hash_table.HashTable(hashbits=hashbits, depth=depth, maxtime=maxtime)
# Add in the files
for filename in filelist:
hashes = analyzer.wavfile2hashes(filename)
ht.store(filename, hashes)
# Pass back to caller
if pipe:
pipe.send(ht)
else:
return ht
def do_cmd(cmd, analyzer, hash_tab, filename_iter, matcher, outdir, type, report, skip_existing=False, strip_prefix=None):
""" Breaks out the core part of running the command.
This is just the single-core versions.
"""
if cmd == 'merge' or cmd == 'newmerge':
# files are other hash tables, merge them in
for filename in filename_iter:
hash_tab2 = hash_table.HashTable(filename)
if "samplerate" in hash_tab.params:
assert hash_tab.params["samplerate"] == hash_tab2.params["samplerate"]
else:
# "newmerge" fails to setup the samplerate param
hash_tab.params["samplerate"] = hash_tab2.params["samplerate"]
hash_tab.merge(hash_tab2)
elif cmd == 'precompute':
# just precompute fingerprints, single core
for filename in filename_iter:
report(file_precompute(analyzer, filename, outdir, type, skip_existing=skip_existing, strip_prefix=strip_prefix))
elif cmd == 'match':
# Running query, single-core mode
for num, filename in enumerate(filename_iter):
msgs = matcher.file_match_to_msgs(analyzer, hash_tab, filename, num)
report(msgs)
elif cmd == 'new' or cmd == 'add':
# Adding files
tothashes = 0
ix = 0
for filename in filename_iter:
report([time.ctime() + " ingesting #" + str(ix) + ": "
+ filename + " ..."])
dur, nhash = analyzer.ingest(hash_tab, filename)
tothashes += nhash
ix += 1
report(["Added " + str(tothashes) + " hashes "
+ "(%.1f" % (tothashes / float(analyzer.soundfiletotaldur))
+ " hashes/sec)"])
elif cmd == 'remove':
# Removing files from hash table.
for filename in filename_iter:
hash_tab.remove(filename)
elif cmd == 'list':
hash_tab.list(lambda x: report([x]))
else:
raise ValueError("unrecognized command: " + cmd)
def multiproc_add(analyzer, hash_tab, filename_iter, report, ncores):
"""Run multiple threads adding new files to hash table"""
# run ncores in parallel to add new files to existing HASH_TABLE
# lists store per-process parameters
# Pipes to transfer results
rx = [[] for _ in range(ncores)]
tx = [[] for _ in range(ncores)]
# Process objects
pr = [[] for _ in range(ncores)]
# Lists of the distinct files
filelists = [[] for _ in range(ncores)]
# unpack all the files into ncores lists
ix = 0
for filename in filename_iter:
filelists[ix % ncores].append(filename)
ix += 1
# Launch each of the individual processes
for ix in range(ncores):
rx[ix], tx[ix] = multiprocessing.Pipe(False)
pr[ix] = multiprocessing.Process(target=make_ht_from_list,
args=(analyzer, filelists[ix],
hash_tab.hashbits,
hash_tab.depth,
(1 << hash_tab.maxtimebits),
tx[ix]))
pr[ix].start()
# gather results when they all finish
for core in range(ncores):
# thread passes back serialized hash table structure
hash_tabx = rx[core].recv()
report(["hash_table " + str(core) + " has "
+ str(len(hash_tabx.names))
+ " files " + str(sum(hash_tabx.counts)) + " hashes"])
# merge in all the new items, hash entries
hash_tab.merge(hash_tabx)
# finish that thread...
pr[core].join()
def matcher_file_match_to_msgs(matcher, analyzer, hash_tab, filename):
"""Cover for matcher.file_match_to_msgs so it can be passed to joblib"""
return matcher.file_match_to_msgs(analyzer, hash_tab, filename)
def do_cmd_multiproc(cmd, analyzer, hash_tab, filename_iter, matcher,
outdir, type, report, skip_existing=False,
strip_prefix=None, ncores=1):
""" Run the actual command, using multiple processors """
if cmd == 'precompute':
# precompute fingerprints with joblib
msgslist = joblib.Parallel(n_jobs=ncores)(
joblib.delayed(file_precompute)(analyzer, file, outdir, type, skip_existing, strip_prefix=strip_prefix)
for file in filename_iter
)
# Collapse into a single list of messages
for msgs in msgslist:
report(msgs)
elif cmd == 'match':
# Running queries in parallel
msgslist = joblib.Parallel(n_jobs=ncores)(
# Would use matcher.file_match_to_msgs(), but you
# can't use joblib on an instance method
joblib.delayed(matcher_file_match_to_msgs)(matcher, analyzer,
hash_tab, filename)
for filename in filename_iter
)
for msgs in msgslist:
report(msgs)
elif cmd == 'new' or cmd == 'add':
# We add by forking multiple parallel threads each running
# analyzers over different subsets of the file list
multiproc_add(analyzer, hash_tab, filename_iter, report, ncores)
else:
# This is not a multiproc command
raise ValueError("unrecognized multiproc command: " + cmd)
# Command to separate out setting of analyzer parameters
def setup_analyzer(args):
"""Create a new analyzer object, taking values from docopts args"""
# Create analyzer object; parameters will get set below
analyzer = audfprint_analyze.Analyzer()
# Read parameters from command line/docopts
analyzer.density = float(args['--density'])
analyzer.maxpksperframe = int(args['--pks-per-frame'])
analyzer.maxpairsperpeak = int(args['--fanout'])
analyzer.f_sd = float(args['--freq-sd'])
analyzer.shifts = int(args['--shifts'])
# fixed - 512 pt FFT with 256 pt hop at 11025 Hz
analyzer.target_sr = int(args['--samplerate'])
analyzer.n_fft = 512
analyzer.n_hop = analyzer.n_fft // 2
# set default value for shifts depending on mode
if analyzer.shifts == 0:
# Default shift is 4 for match, otherwise 1
analyzer.shifts = 4 if args['match'] else 1
analyzer.fail_on_error = not args['--continue-on-error']
return analyzer
# Command to separate out setting of matcher parameters
def setup_matcher(args):
"""Create a new matcher objects, set parameters from docopt structure"""
matcher = audfprint_match.Matcher()
matcher.window = int(args['--match-win'])
matcher.threshcount = int(args['--min-count'])
matcher.max_returns = int(args['--max-matches'])
matcher.search_depth = int(args['--search-depth'])
matcher.sort_by_time = args['--sortbytime']
matcher.exact_count = args['--exact-count'] | args['--illustrate'] | args['--illustrate-hpf']
matcher.illustrate = args['--illustrate'] | args['--illustrate-hpf']
matcher.illustrate_hpf = args['--illustrate-hpf']
matcher.verbose = args['--verbose']
matcher.find_time_range = args['--find-time-range']
matcher.time_quantile = float(args['--time-quantile'])
return matcher
# Command to construct the reporter object
def setup_reporter(args):
""" Creates a logging function, either to stderr or file"""
opfile = args['--opfile']
if opfile and len(opfile):
f = open(opfile, "w")
def report(msglist):
"""Log messages to a particular output file"""
for msg in msglist:
f.write(msg + "\n")
else:
def report(msglist):
"""Log messages by printing to stdout"""
for msg in msglist:
print(msg)
return report
# CLI specified via usage message thanks to docopt
USAGE = """
Landmark-based audio fingerprinting.
Create a new fingerprint dbase with "new",
append new files to an existing database with "add",
or identify noisy query excerpts with "match".
"precompute" writes a *.fpt file under precompdir
with precomputed fingerprint for each input wav file.
"merge" combines previously-created databases into
an existing database; "newmerge" combines existing
databases to create a new one.
Usage: audfprint (new | add | match | precompute | merge | newmerge | list | remove) [options] [<file>]...
Options:
-d <dbase>, --dbase <dbase> Fingerprint database file
-n <dens>, --density <dens> Target hashes per second [default: 20.0]
-h <bits>, --hashbits <bits> How many bits in each hash [default: 20]
-b <val>, --bucketsize <val> Number of entries per bucket [default: 100]
-t <val>, --maxtime <val> Largest time value stored [default: 16384]
-u <val>, --maxtimebits <val> maxtime as a number of bits (16384 == 14 bits)
-r <val>, --samplerate <val> Resample input files to this [default: 11025]
-p <dir>, --precompdir <dir> Save precomputed files under this dir [default: .]
-i <val>, --shifts <val> Use this many subframe shifts building fp [default: 0]
-w <val>, --match-win <val> Maximum tolerable frame skew to count as a match [default: 2]
-N <val>, --min-count <val> Minimum number of matching landmarks to count as a match [default: 5]
-x <val>, --max-matches <val> Maximum number of matches to report for each query [default: 1]
-X, --exact-count Flag to use more precise (but slower) match counting
-R, --find-time-range Report the time support of each match
-Q, --time-quantile <val> Quantile at extremes of time support [default: 0.05]
-S <val>, --freq-sd <val> Frequency peak spreading SD in bins [default: 30.0]
-F <val>, --fanout <val> Max number of hash pairs per peak [default: 3]
-P <val>, --pks-per-frame <val> Maximum number of peaks per frame [default: 5]
-D <val>, --search-depth <val> How far down to search raw matching track list [default: 100]
-H <val>, --ncores <val> Number of processes to use [default: 1]
-o <name>, --opfile <name> Write output (matches) to this file, not stdout [default: ]
-K, --precompute-peaks Precompute just landmarks (else full hashes)
-k, --skip-existing On precompute, skip items if output file already exists
-C, --continue-on-error Keep processing despite errors reading input
-l, --list Input files are lists, not audio
-T, --sortbytime Sort multiple hits per file by time (instead of score)
-v <val>, --verbose <val> Verbosity level [default: 1]
-I, --illustrate Make a plot showing the match
-J, --illustrate-hpf Plot the match, using onset enhancement
-W <dir>, --wavdir <dir> Find sound files under this dir [default: ]
-V <ext>, --wavext <ext> Extension to add to wav file names [default: ]
--version Report version number
--help Print this message
"""
__version__ = 20150406
def main(argv):
""" Main routine for the command-line interface to audfprint """
# Other globals set from command line
args = docopt.docopt(USAGE, version=__version__, argv=argv[1:])
# Figure which command was chosen
poss_cmds = ['new', 'add', 'precompute', 'merge', 'newmerge', 'match',
'list', 'remove']
cmdlist = [cmdname
for cmdname in poss_cmds
if args[cmdname]]
if len(cmdlist) != 1:
raise ValueError("must specify exactly one command")
# The actual command as a str
cmd = cmdlist[0]
# Setup output function
report = setup_reporter(args)
# Keep track of wall time
initticks = time_clock()
# Command line sanity.
if args["--maxtimebits"]:
args["--maxtimebits"] = int(args["--maxtimebits"])
else:
args["--maxtimebits"] = hash_table._bitsfor(int(args["--maxtime"]))
# Setup the analyzer if we're using one (i.e., unless "merge")
analyzer = setup_analyzer(args) if not (
cmd == "merge" or cmd == "newmerge"
or cmd == "list" or cmd == "remove") else None
precomp_type = 'hashes'
# Set up the hash table, if we're using one (i.e., unless "precompute")
if cmd != "precompute":
# For everything other than precompute, we need a database name
# Check we have one
dbasename = args['--dbase']
if not dbasename:
raise ValueError("dbase name must be provided if not precompute")
if cmd == "new" or cmd == "newmerge":
# Check that the output directory can be created before we start
ensure_dir(os.path.split(dbasename)[0])
# Create a new hash table
hash_tab = hash_table.HashTable(
hashbits=int(args['--hashbits']),
depth=int(args['--bucketsize']),
maxtime=(1 << int(args['--maxtimebits'])))
# Set its samplerate param
if analyzer:
hash_tab.params['samplerate'] = analyzer.target_sr
else:
# Load existing hash table file (add, match, merge)
if args['--verbose']:
report([time.ctime() + " Reading hash table " + dbasename])
hash_tab = hash_table.HashTable(dbasename)
if analyzer and 'samplerate' in hash_tab.params \
and hash_tab.params['samplerate'] != analyzer.target_sr:
# analyzer.target_sr = hash_tab.params['samplerate']
print("db samplerate overridden to ", analyzer.target_sr)
else:
# The command IS precompute
# dummy empty hash table
hash_tab = None
if args['--precompute-peaks']:
precomp_type = 'peaks'
# Create a matcher
matcher = setup_matcher(args) if cmd == 'match' else None
filename_iter = filename_list_iterator(
args['<file>'], args['--wavdir'], args['--wavext'], args['--list'])
#######################
# Run the main commmand
#######################
# How many processors to use (multiprocessing)
ncores = int(args['--ncores'])
if ncores > 1 and not (cmd == "merge" or cmd == "newmerge" or
cmd == "list" or cmd == "remove"):
# merge/newmerge/list/remove are always single-thread processes
do_cmd_multiproc(cmd, analyzer, hash_tab, filename_iter,
matcher, args['--precompdir'],
precomp_type, report,
skip_existing=args['--skip-existing'],
strip_prefix=args['--wavdir'],
ncores=ncores)
else:
do_cmd(cmd, analyzer, hash_tab, filename_iter,
matcher, args['--precompdir'], precomp_type, report,
skip_existing=args['--skip-existing'],
strip_prefix=args['--wavdir'])
elapsedtime = time_clock() - initticks
if analyzer and analyzer.soundfiletotaldur > 0.:
print("Processed "
+ "%d files (%.1f s total dur) in %.1f s sec = %.3f x RT" \
% (analyzer.soundfilecount, analyzer.soundfiletotaldur,
elapsedtime, (elapsedtime / analyzer.soundfiletotaldur)))
# Save the hash table file if it has been modified
if hash_tab and hash_tab.dirty:
# We already created the directory, if "new".
hash_tab.save(dbasename)
# Run the main function if called from the command line
if __name__ == "__main__":
main(sys.argv)