-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathpretrain.py
98 lines (79 loc) · 3.27 KB
/
pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
'''Main pretraining script.'''
import os
import flatten_dict
import hydra
from src.datasets.catalog import PRETRAINING_DATASETS, UNLABELED_DATASETS
def run_pytorch(config):
'''Runs pretraining in PyTorch.'''
import pytorch_lightning as pl
from src.evaluators.pytorch import online_evaluator
from src.systems.pytorch import contpred, emix, mae, shed
# Check for dataset.
assert config.dataset.name in PRETRAINING_DATASETS, f'{config.dataset.name} not one of {PRETRAINING_DATASETS}.'
# Set up config, callbacks, loggers.
flat_config = flatten_dict.flatten(config, reducer='dot')
save_dir = os.path.join(config.exp.base_dir, config.exp.name)
# Set RNG.
pl.seed_everything(config.trainer.seed)
wandb_logger = pl.loggers.WandbLogger(project='domain-agnostic', name=config.exp.name)
wandb_logger.log_hyperparams(flat_config)
callbacks = [
pl.callbacks.ModelCheckpoint(dirpath=save_dir, every_n_train_steps=config.trainer.ckpt_every_n_steps, save_top_k=-1)
]
# Initialize training module.
if config.algorithm == 'emix':
system = emix.EMixSystem(config)
elif config.algorithm == 'shed':
system = shed.ShEDSystem(config)
elif config.algorithm == 'capri':
system = contpred.ContpredSystem(config, negatives='sequence')
elif config.algorithm == 'mae':
system = mae.MAESystem(config)
else:
raise ValueError(f'Unimplemented algorithm config.algorithm={config.algorithm}.')
# Online evaluator for labeled datasets.
if config.dataset.name not in UNLABELED_DATASETS:
ssl_online_evaluator = online_evaluator.SSLOnlineEvaluator(
dataset=config.dataset.name,
metric=config.dataset.metric,
loss=config.dataset.loss,
z_dim=config.model.kwargs.dim,
num_classes=system.dataset.num_classes()
)
callbacks += [ssl_online_evaluator]
# PyTorch Lightning Trainer.
trainer = pl.Trainer(
default_root_dir=save_dir,
logger=wandb_logger,
gpus=[config.gpus], # GPU indices
max_steps=config.trainer.max_steps,
min_steps=config.trainer.max_steps,
resume_from_checkpoint=config.trainer.resume_from_checkpoint,
val_check_interval=config.trainer.val_check_interval,
limit_val_batches=config.trainer.limit_val_batches,
callbacks=callbacks,
weights_summary=config.trainer.weights_summary,
gradient_clip_val=config.trainer.gradient_clip_val,
precision=config.trainer.precision,
)
trainer.fit(system)
def print_pytorch_info():
import torch
import torchaudio
import torchvision
header = '==== Using Framework: PYTORCH ===='
print(header)
print(f' - [torch] {torch.__version__}')
print(f' - [torchvision] {torchvision.__version__}')
print(f' - [torchaudio] {torchaudio.__version__}')
print('=' * len(header))
@hydra.main(config_path='conf', config_name='pretrain')
def run(config):
'''Wrapper around actual run functions to import and run for specified framework.'''
if config.framework == 'pytorch':
print_pytorch_info()
run_pytorch(config)
else:
raise ValueError(f'Framework {config.framework} not supported.')
if __name__ == '__main__':
run()