-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluate.py
61 lines (46 loc) · 1.77 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
from sacrebleu.metrics import BLEU, CHRF
import argparse
import json
import pandas as pd
from comet import download_model, load_from_checkpoint
bleu = BLEU()
chrf = CHRF()
comet_model_path = download_model("Unbabel/wmt22-comet-da")
comet_model = load_from_checkpoint(comet_model_path)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--input", required=True, type=str)
parser.add_argument("--output", required=True, type=str)
return parser.parse_args()
def main():
args = parse_args()
inputs = json.load(open(args.input))
grouped = {}
for sample in inputs:
for tag in sample["tags"]:
if not tag in grouped:
grouped[tag] = []
grouped[tag].append(sample["translations"])
inputs = grouped
phenomena = inputs.keys()
results = pd.DataFrame({"translation": ["{}-{}".format(p, translation_model) for p in phenomena for translation_model in inputs[p]]})
Bleu = []
ChrF = []
Comet = []
for p in phenomena:
for tm in p:
src = [sent["src"] for sent in tm]
ref = [sent["tgt"] for sent in tm]
translation = [sent["translation"] for sent in tm]
Bleu.append(bleu.corpus_score(translation, [ref]))
ChrF.append(chrf.corpus_score(translation, [ref]))
Comet.append(comet_model.predict([{"src": s, "mt": m, "ref": r}
for s, m, r in zip(src, translation, ref)],
batch_size=8,
gpus=1).system_score)
results["Bleu"] = Bleu
results["ChrF"] = ChrF
results["Comet"] = Comet
results.to_csv(args.output)
if __name__ == "__main__":
main()