From 6f97f674c597228b8a312b40b7b4ce2ef214114e Mon Sep 17 00:00:00 2001 From: Benjamin Hong Date: Mon, 17 Jul 2023 16:23:00 -0700 Subject: [PATCH 001/137] initial reorg, not checked --- .../4_Superdense_coding.ipynb | 531 +++++ 0_TO_ORGANIZE/4_Superdense_coding/circuit.png | Bin 0 -> 48954 bytes .../Allocating_Qubits_on_QPU_Devices.ipynb | 543 +++++ .../Error_Mitigation_on_Amazon_Braket.ipynb | 467 ++++ ...vices_and_Checking_Device_Properties.ipynb | 1993 +++++++++++++++++ ..._notifications_when_a_task_completes.ipynb | 253 +++ .../sns_task_notification.png | Bin 0 -> 205854 bytes .../Noise_models_on_Amazon_Braket.ipynb | 916 ++++++++ .../Noise_models_on_Rigetti.ipynb | 1058 +++++++++ .../Noise_models/aspenm_edge_specs.png | Bin 0 -> 46592 bytes .../Noise_models/aspenm_qubit_specs.png | Bin 0 -> 57279 bytes 0_TO_ORGANIZE/adder.qasm | 37 + 0_TO_ORGANIZE/phase_estimation.py | 72 + 0_TO_ORGANIZE/utils_qaoa.py | 315 +++ .../0_Getting_started/0_Getting_started.ipynb | 127 ++ ...nning_quantum_circuits_on_simulators.ipynb | 537 +++++ .../circuit.png | Bin 0 -> 151019 bytes ...ning_quantum_circuits_on_QPU_devices.ipynb | 773 +++++++ .../bell_circuit.png | Bin 0 -> 50249 bytes ...into_the_anatomy_of_quantum_circuits.ipynb | 1681 ++++++++++++++ ...tonian_Simulation_with_Rydberg_Atoms.ipynb | 575 +++++ .../01_Introduction_to_Aquila.ipynb | 888 ++++++++ ...02_Ordered_phases_in_Rydberg_systems.ipynb | 606 +++++ .../03_Parallel_tasks_on_Aquila.ipynb | 569 +++++ ...s_with_Analog_Hamiltonian_Simulation.ipynb | 578 +++++ ...nian_Simulation_with_local_simulator.ipynb | 451 ++++ .../Blockade.png | Bin 0 -> 76128 bytes .../Blockade_examples.png | Bin 0 -> 49448 bytes .../ahs_utils.py | 490 ++++ .../analog_hamiltonian_simulation/analog.png | Bin 0 -> 994565 bytes .../analog_hamiltonian_simulation/digital.png | Bin 0 -> 126202 bytes .../mis_graph.png | Bin 0 -> 22715 bytes .../py_graph.png | Bin 0 -> 22741 bytes ...ting_Started_with_OpenQASM_on_Braket.ipynb | 1061 +++++++++ ...SM_Programs_with_the_Local_Simulator.ipynb | 705 ++++++ .../compilation/Verbatim_Compilation.ipynb | 983 ++++++++ .../pulse_control/1_Bringup_experiments.ipynb | 603 +++++ .../2_Bell_pair_with_pulses_OQC.ipynb | 401 ++++ .../3_Bell_pair_with_pulses_Rigetti.ipynb | 541 +++++ .../4_Build_single_qubit_gates.ipynb | 548 +++++ .../Simulating_Noise_On_Amazon_Braket.ipynb | 1172 ++++++++++ ...o_local_vs_non-local_random_circuits.ipynb | 914 ++++++++ ...ing_The_Adjoint_Gradient_Result_Type.ipynb | 1300 +++++++++++ ...ing_the_tensor_network_simulator_TN1.ipynb | 923 ++++++++ .../B_qtm_sims/permuted_circuit.png | Bin 0 -> 92772 bytes .../canonical_algorithms/Grover/Grover.ipynb | 1069 +++++++++ .../canonical_algorithms/Grover/anatomy.png | Bin 0 -> 18105 bytes .../canonical_algorithms/Grover/circuit.png | Bin 0 -> 29380 bytes .../Quantum_Amplitude_Amplification.ipynb | 934 ++++++++ .../Quantum_Amplitude_Amplification/R0.png | Bin 0 -> 40357 bytes .../R_full.png | Bin 0 -> 114584 bytes .../Toffoli_decomp.png | Bin 0 -> 70585 bytes .../utils_circuit.py | 155 ++ .../utils_qaa.py | 164 ++ .../vectors.png | Bin 0 -> 192825 bytes .../Figures/circuit.png | Bin 0 -> 34891 bytes .../Figures/circuit.tex | 22 + .../Figures/qcircuit.sty | 185 ++ .../Figures/quantum.sty | 416 ++++ .../Figures/recursive_circuit.pdf | Bin 0 -> 47708 bytes .../Figures/recursive_circuit.png | Bin 0 -> 27692 bytes .../Figures/recursive_circuit.tex | 22 + .../Quantum_Fourier_Transform.ipynb | 1110 +++++++++ .../Quantum_Fourier_Transform/circuit.png | Bin 0 -> 34891 bytes .../recursive_circuit.png | Bin 0 -> 27692 bytes .../Quantum_Phase_Estimation.ipynb | 1535 +++++++++++++ .../Quantum_Phase_Estimation/circuit.png | Bin 0 -> 56916 bytes .../Quantum_Phase_Estimation/utils_qft.py | 128 ++ .../Quantum_Phase_Estimation/utils_qpe.py | 290 +++ .../Randomness/Randomness_Generation.ipynb | 934 ++++++++ .../Simons_Algorithm/Simons_Algorithm.ipynb | 803 +++++++ .../Simons_Algorithm/quantum_circuit.png | Bin 0 -> 63708 bytes .../Simons_Algorithm/simons_utils.py | 35 + .../QAOA/QAOA_braket.ipynb | 1139 ++++++++++ .../QAOA/hybrid_quantum.png | Bin 0 -> 505706 bytes .../QAOA/utils_classical.py | 175 ++ .../variational_algorithms/QAOA/utils_qaoa.py | 217 ++ .../README_hybrid_jobs.md | 2 + .../VQE_Chemistry/VQE_chemistry_braket.ipynb | 786 +++++++ .../VQE_Chemistry/circuit.png | Bin 0 -> 55701 bytes .../VQE_Transverse_Ising_Model.ipynb | 817 +++++++ .../VQE_Transverse_Ising/vqe_background.png | Bin 0 -> 377132 bytes .../vqe_tim_gs-energy_20200612150139.png | Bin 0 -> 275701 bytes .../vqe_tim_gs-energy_20200612161409.png | Bin 0 -> 274101 bytes .../vqe_tim_gs-energy_20200612165122.png | Bin 0 -> 276949 bytes .../vqe_tim_gs-energy_20200612172109.png | Bin 0 -> 277852 bytes .../Creating_your_first_Hybrid_Job.ipynb | 551 +++++ .../algorithm_script.py | 56 + .../console_figures/1-create.png | Bin 0 -> 125986 bytes .../console_figures/2-algorithm.png | Bin 0 -> 63342 bytes .../console_figures/3-container.png | Bin 0 -> 71127 bytes .../console_figures/4-execution.png | Bin 0 -> 162950 bytes ...earning_in_Amazon_Braket_Hybrid_Jobs.ipynb | 901 ++++++++ .../console_figures/hp_job_console.png | Bin 0 -> 129672 bytes .../console_figures/metrics.png | Bin 0 -> 78412 bytes .../console_figures/running_job.png | Bin 0 -> 46796 bytes .../qcbm/qcbm.py | 167 ++ .../qcbm/qcbm_job.py | 98 + .../Using_PennyLane_with_Braket_Jobs.ipynb | 818 +++++++ .../qaoa/qaoa_algorithm_script.py | 186 ++ .../qaoa/qaoa_utils.py | 174 ++ .../algorithm_script.py | 196 ++ .../bring_your_own_container.ipynb | 549 +++++ .../build_and_push.sh | 57 + .../ccqc_circuit.png | Bin 0 -> 41861 bytes .../3_Bring_your_own_container/dockerfile | 8 + .../Embedded_simulators_in_Braket_Jobs.ipynb | 514 +++++ .../qaoa/qaoa_algorithm.py | 96 + .../qaoa/utils.py | 23 + .../Parallelize_training_for_QML.ipynb | 535 +++++ .../data/sonar.all-data | 208 ++ .../qml_script/helper_funs.py | 71 + .../qml_script/model.py | 36 + .../qml_script/quantum_circuit.py | 57 + .../qml_script/train_dp.py | 151 ++ .../qml_script/train_single.py | 116 + .../qnspsa_with_embedded_simulator.ipynb | 1016 +++++++++ .../source_scripts/QNSPSA.py | 250 +++ .../benchmark_qaoa_converge_speed.py | 120 + .../benchmark_ref_paper_converge_speed.py | 123 + .../source_scripts/qaoa_large_problem.py | 98 + .../qaoa_params_init_10_qubits_2_layers.npy | Bin 0 -> 160 bytes .../source_scripts/requirements.txt | 2 + .../source_scripts/utils.py | 46 + .../Running_notebooks_as_jobs.ipynb | 400 ++++ .../0_Getting_started_papermill.ipynb | 522 +++++ .../result/aspen-m-3/histogram.png | Bin 0 -> 10616 bytes .../result/aspen-m-3/model.tar.gz | Bin 0 -> 21486 bytes .../result/aspen-m-3/results.pkl | Bin 0 -> 54 bytes .../0_Getting_started_papermill.ipynb | 522 +++++ .../result/ionqdevice/histogram.png | Bin 0 -> 10615 bytes .../result/ionqdevice/model.tar.gz | Bin 0 -> 21643 bytes .../result/ionqdevice/results.pkl | Bin 0 -> 54 bytes .../lucy/0_Getting_started_papermill.ipynb | 522 +++++ .../result/lucy/histogram.png | Bin 0 -> 9870 bytes .../result/lucy/model.tar.gz | Bin 0 -> 20408 bytes .../result/lucy/results.pkl | Bin 0 -> 54 bytes .../result/output.png | Bin 0 -> 15433 bytes .../sv1/0_Getting_started_papermill.ipynb | 522 +++++ .../result/sv1/histogram.png | Bin 0 -> 10176 bytes .../result/sv1/model.tar.gz | Bin 0 -> 20443 bytes .../result/sv1/results.pkl | Bin 0 -> 32 bytes .../src/0_Getting_started_papermill.ipynb | 280 +++ .../src/notebook_runner.py | 118 + .../src/requirements.txt | 2 + .../0_Getting_started/0_Getting_started.ipynb | 503 +++++ .../pennylane/0_Getting_started/pl_braket.png | Bin 0 -> 81925 bytes .../0_Getting_started/remote-single-job.png | Bin 0 -> 159381 bytes ...zed_optimization_of_quantum_circuits.ipynb | 429 ++++ .../circuit.png | Bin 0 -> 67750 bytes .../grad_circuits.png | Bin 0 -> 69720 bytes .../remote-multi-job-simulator.png | Bin 0 -> 115282 bytes .../2_Graph_optimization_with_QAOA.ipynb | 833 +++++++ .../2_Graph_optimization_with_QAOA/graphs.png | Bin 0 -> 108086 bytes .../max-cut.png | Bin 0 -> 35239 bytes .../params_30.npy | Bin 0 -> 160 bytes .../2_Graph_optimization_with_QAOA/qaoa.png | Bin 0 -> 73548 bytes .../qaoa_layer.png | Bin 0 -> 59545 bytes ..._Hydrogen_Molecule_geometry_with_VQE.ipynb | 691 ++++++ .../grouping.png | Bin 0 -> 190173 bytes .../hydrogen_molecule/h2.xyz | 4 + .../hydrogen_molecule/h2_0.30.xyz | 4 + .../hydrogen_molecule/h2_0.50.xyz | 4 + .../hydrogen_molecule/h2_0.70.xyz | 4 + .../hydrogen_molecule/h2_0.90.xyz | 4 + .../hydrogen_molecule/h2_1.10.xyz | 4 + .../hydrogen_molecule/h2_1.30.xyz | 4 + .../hydrogen_molecule/h2_1.50.xyz | 4 + .../hydrogen_molecule/h2_1.70.xyz | 4 + .../hydrogen_molecule/h2_1.90.xyz | 4 + .../hydrogen_molecule/h2_2.10.xyz | 4 + ...uits_on_Amazon_Braket_with_PennyLane.ipynb | 885 ++++++++ .../5_Tracking_resource_usage.ipynb | 634 ++++++ .../6_Adjoint_gradient_computation.ipynb | 958 ++++++++ .../qchem/co2.xyz | 5 + .../qiskit/0_Getting_Started.ipynb | 600 +++++ .../algorithm_textbook/Bells_Inequality.ipynb | 242 ++ .../Bernstein_Vazirani_Algorithm.ipynb | 264 +++ .../algorithm_textbook/CHSH_Inequality.ipynb | 462 ++++ .../Deutsch_Jozsa_Algorithm.ipynb | 363 +++ .../algorithm_textbook/Grovers_Search.ipynb | 306 +++ ...m_Approximate_Optimization_Algorithm.ipynb | 265 +++ .../Quantum_Circuit_Born_Machine.ipynb | 357 +++ ...uantum_Computing_Quantum_Monte_Carlo.ipynb | 269 +++ .../Quantum_Fourier_Transform.ipynb | 558 +++++ .../Quantum_Phase_Estimation_Algorithm.ipynb | 318 +++ .../algorithm_textbook/Quantum_Walk.ipynb | 491 ++++ .../algorithm_textbook/README.md | 7 + .../algorithm_textbook/Shors_Algorithm.ipynb | 219 ++ .../algorithm_textbook/Simons_Algorithm.ipynb | 254 +++ .../algorithm_textbook/Template.ipynb | 135 ++ .../algorithm_textbook/notebook_plotting.py | 55 + .../algorithm_textbook/requirements.txt | 2 + pathways/0_all/0_Getting_Started | 1 + pathways/0_all/1_Continue_Exploring | 1 + pathways/0_all/2_JW_Certification | 1 + pathways/0_all/3_QBraid | 1 + pathways/1_researcher/0_Getting_Started | 1 + pathways/1_researcher/1_Continue_Exploring | 1 + pathways/2_newcomer/0_Getting_Started | 1 + pathways/2_newcomer/1_Continue_Exploring | 1 + pathways/2_newcomer/2_JW_Certification | 1 + pathways/3_educator/JW_Certification | 1 + pathways/3_educator/QBraid | 1 + 204 files changed, 53820 insertions(+) create mode 100644 0_TO_ORGANIZE/4_Superdense_coding/4_Superdense_coding.ipynb create mode 100644 0_TO_ORGANIZE/4_Superdense_coding/circuit.png create mode 100644 0_TO_ORGANIZE/Allocating_Qubits_on_QPU_Devices.ipynb create mode 100644 0_TO_ORGANIZE/Error_Mitigation_on_Amazon_Braket.ipynb create mode 100644 0_TO_ORGANIZE/Getting_Devices_and_Checking_Device_Properties.ipynb create mode 100644 0_TO_ORGANIZE/Getting_notifications_when_a_task_completes/Getting_notifications_when_a_task_completes.ipynb create mode 100644 0_TO_ORGANIZE/Getting_notifications_when_a_task_completes/sns_task_notification.png create mode 100644 0_TO_ORGANIZE/Noise_models/Noise_models_on_Amazon_Braket.ipynb create mode 100644 0_TO_ORGANIZE/Noise_models/Noise_models_on_Rigetti.ipynb create mode 100644 0_TO_ORGANIZE/Noise_models/aspenm_edge_specs.png create mode 100644 0_TO_ORGANIZE/Noise_models/aspenm_qubit_specs.png create mode 100644 0_TO_ORGANIZE/adder.qasm create mode 100644 0_TO_ORGANIZE/phase_estimation.py create mode 100644 0_TO_ORGANIZE/utils_qaoa.py create mode 100644 modules/0_Getting_Started/0_Getting_started/0_Getting_started.ipynb create mode 100644 modules/0_Getting_Started/1_Running_quantum_circuits_on_simulators/1_Running_quantum_circuits_on_simulators.ipynb create mode 100644 modules/0_Getting_Started/1_Running_quantum_circuits_on_simulators/circuit.png create mode 100644 modules/0_Getting_Started/2_Running_quantum_circuits_on_QPU_devices/2_Running_quantum_circuits_on_QPU_devices.ipynb create mode 100644 modules/0_Getting_Started/2_Running_quantum_circuits_on_QPU_devices/bell_circuit.png create mode 100644 modules/0_Getting_Started/3_Deep_dive_into_the_anatomy_of_quantum_circuits/3_Deep_dive_into_the_anatomy_of_quantum_circuits.ipynb create mode 100644 modules/1_Continue_Exploring/A_qtm_hw/analog_hamiltonian_simulation/00_Introduction_of_Analog_Hamiltonian_Simulation_with_Rydberg_Atoms.ipynb create mode 100644 modules/1_Continue_Exploring/A_qtm_hw/analog_hamiltonian_simulation/01_Introduction_to_Aquila.ipynb create mode 100644 modules/1_Continue_Exploring/A_qtm_hw/analog_hamiltonian_simulation/02_Ordered_phases_in_Rydberg_systems.ipynb create mode 100644 modules/1_Continue_Exploring/A_qtm_hw/analog_hamiltonian_simulation/03_Parallel_tasks_on_Aquila.ipynb create mode 100644 modules/1_Continue_Exploring/A_qtm_hw/analog_hamiltonian_simulation/04_Maximum_Independent_Sets_with_Analog_Hamiltonian_Simulation.ipynb create mode 100644 modules/1_Continue_Exploring/A_qtm_hw/analog_hamiltonian_simulation/05_Running_Analog_Hamiltonian_Simulation_with_local_simulator.ipynb create mode 100644 modules/1_Continue_Exploring/A_qtm_hw/analog_hamiltonian_simulation/Blockade.png create mode 100644 modules/1_Continue_Exploring/A_qtm_hw/analog_hamiltonian_simulation/Blockade_examples.png create mode 100644 modules/1_Continue_Exploring/A_qtm_hw/analog_hamiltonian_simulation/ahs_utils.py create mode 100644 modules/1_Continue_Exploring/A_qtm_hw/analog_hamiltonian_simulation/analog.png create mode 100644 modules/1_Continue_Exploring/A_qtm_hw/analog_hamiltonian_simulation/digital.png create mode 100644 modules/1_Continue_Exploring/A_qtm_hw/analog_hamiltonian_simulation/mis_graph.png create mode 100644 modules/1_Continue_Exploring/A_qtm_hw/analog_hamiltonian_simulation/py_graph.png create mode 100644 modules/1_Continue_Exploring/A_qtm_hw/compilation/Getting_Started_with_OpenQASM_on_Braket.ipynb create mode 100644 modules/1_Continue_Exploring/A_qtm_hw/compilation/Simulating_Advanced_OpenQASM_Programs_with_the_Local_Simulator.ipynb create mode 100644 modules/1_Continue_Exploring/A_qtm_hw/compilation/Verbatim_Compilation.ipynb create mode 100644 modules/1_Continue_Exploring/A_qtm_hw/pulse_control/1_Bringup_experiments.ipynb create mode 100644 modules/1_Continue_Exploring/A_qtm_hw/pulse_control/2_Bell_pair_with_pulses_OQC.ipynb create mode 100644 modules/1_Continue_Exploring/A_qtm_hw/pulse_control/3_Bell_pair_with_pulses_Rigetti.ipynb create mode 100644 modules/1_Continue_Exploring/A_qtm_hw/pulse_control/4_Build_single_qubit_gates.ipynb create mode 100644 modules/1_Continue_Exploring/B_qtm_sims/Simulating_Noise_On_Amazon_Braket.ipynb create mode 100644 modules/1_Continue_Exploring/B_qtm_sims/TN1_demo_local_vs_non-local_random_circuits.ipynb create mode 100644 modules/1_Continue_Exploring/B_qtm_sims/Using_The_Adjoint_Gradient_Result_Type.ipynb create mode 100644 modules/1_Continue_Exploring/B_qtm_sims/Using_the_tensor_network_simulator_TN1.ipynb create mode 100644 modules/1_Continue_Exploring/B_qtm_sims/permuted_circuit.png create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/canonical_algorithms/Grover/Grover.ipynb create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/canonical_algorithms/Grover/anatomy.png create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/canonical_algorithms/Grover/circuit.png create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/canonical_algorithms/Quantum_Amplitude_Amplification/Quantum_Amplitude_Amplification.ipynb create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/canonical_algorithms/Quantum_Amplitude_Amplification/R0.png create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/canonical_algorithms/Quantum_Amplitude_Amplification/R_full.png create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/canonical_algorithms/Quantum_Amplitude_Amplification/Toffoli_decomp.png create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/canonical_algorithms/Quantum_Amplitude_Amplification/utils_circuit.py create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/canonical_algorithms/Quantum_Amplitude_Amplification/utils_qaa.py create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/canonical_algorithms/Quantum_Amplitude_Amplification/vectors.png create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/canonical_algorithms/Quantum_Fourier_Transform/Figures/circuit.png create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/canonical_algorithms/Quantum_Fourier_Transform/Figures/circuit.tex create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/canonical_algorithms/Quantum_Fourier_Transform/Figures/qcircuit.sty create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/canonical_algorithms/Quantum_Fourier_Transform/Figures/quantum.sty create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/canonical_algorithms/Quantum_Fourier_Transform/Figures/recursive_circuit.pdf create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/canonical_algorithms/Quantum_Fourier_Transform/Figures/recursive_circuit.png create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/canonical_algorithms/Quantum_Fourier_Transform/Figures/recursive_circuit.tex create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/canonical_algorithms/Quantum_Fourier_Transform/Quantum_Fourier_Transform.ipynb create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/canonical_algorithms/Quantum_Fourier_Transform/circuit.png create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/canonical_algorithms/Quantum_Fourier_Transform/recursive_circuit.png create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/canonical_algorithms/Quantum_Phase_Estimation/Quantum_Phase_Estimation.ipynb create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/canonical_algorithms/Quantum_Phase_Estimation/circuit.png create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/canonical_algorithms/Quantum_Phase_Estimation/utils_qft.py create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/canonical_algorithms/Quantum_Phase_Estimation/utils_qpe.py create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/canonical_algorithms/Randomness/Randomness_Generation.ipynb create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/canonical_algorithms/Simons_Algorithm/Simons_Algorithm.ipynb create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/canonical_algorithms/Simons_Algorithm/quantum_circuit.png create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/canonical_algorithms/Simons_Algorithm/simons_utils.py create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/QAOA/QAOA_braket.ipynb create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/QAOA/hybrid_quantum.png create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/QAOA/utils_classical.py create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/QAOA/utils_qaoa.py create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/README_hybrid_jobs.md create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/VQE_Chemistry/VQE_chemistry_braket.ipynb create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/VQE_Chemistry/circuit.png create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/VQE_Transverse_Ising/VQE_Transverse_Ising_Model.ipynb create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/VQE_Transverse_Ising/vqe_background.png create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/VQE_Transverse_Ising/vqe_tim_gs-energy_20200612150139.png create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/VQE_Transverse_Ising/vqe_tim_gs-energy_20200612161409.png create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/VQE_Transverse_Ising/vqe_tim_gs-energy_20200612165122.png create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/VQE_Transverse_Ising/vqe_tim_gs-energy_20200612172109.png create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/0_Creating_your_first_Hybrid_Job/Creating_your_first_Hybrid_Job.ipynb create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/0_Creating_your_first_Hybrid_Job/algorithm_script.py create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/0_Creating_your_first_Hybrid_Job/console_figures/1-create.png create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/0_Creating_your_first_Hybrid_Job/console_figures/2-algorithm.png create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/0_Creating_your_first_Hybrid_Job/console_figures/3-container.png create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/0_Creating_your_first_Hybrid_Job/console_figures/4-execution.png create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/1_Quantum_machine_learning_in_Amazon_Braket_Hybrid_Jobs/Quantum_machine_learning_in_Amazon_Braket_Hybrid_Jobs.ipynb create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/1_Quantum_machine_learning_in_Amazon_Braket_Hybrid_Jobs/console_figures/hp_job_console.png create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/1_Quantum_machine_learning_in_Amazon_Braket_Hybrid_Jobs/console_figures/metrics.png create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/1_Quantum_machine_learning_in_Amazon_Braket_Hybrid_Jobs/console_figures/running_job.png create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/1_Quantum_machine_learning_in_Amazon_Braket_Hybrid_Jobs/qcbm/qcbm.py create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/1_Quantum_machine_learning_in_Amazon_Braket_Hybrid_Jobs/qcbm/qcbm_job.py create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/2_Using_PennyLane_with_Braket_Jobs/Using_PennyLane_with_Braket_Jobs.ipynb create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/2_Using_PennyLane_with_Braket_Jobs/qaoa/qaoa_algorithm_script.py create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/2_Using_PennyLane_with_Braket_Jobs/qaoa/qaoa_utils.py create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/3_Bring_your_own_container/algorithm_script.py create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/3_Bring_your_own_container/bring_your_own_container.ipynb create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/3_Bring_your_own_container/build_and_push.sh create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/3_Bring_your_own_container/ccqc_circuit.png create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/3_Bring_your_own_container/dockerfile create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/4_Embedded_simulators_in_Braket_Jobs/Embedded_simulators_in_Braket_Jobs.ipynb create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/4_Embedded_simulators_in_Braket_Jobs/qaoa/qaoa_algorithm.py create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/4_Embedded_simulators_in_Braket_Jobs/qaoa/utils.py create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/5_Parallelize_training_for_QML/Parallelize_training_for_QML.ipynb create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/5_Parallelize_training_for_QML/data/sonar.all-data create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/5_Parallelize_training_for_QML/qml_script/helper_funs.py create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/5_Parallelize_training_for_QML/qml_script/model.py create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/5_Parallelize_training_for_QML/qml_script/quantum_circuit.py create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/5_Parallelize_training_for_QML/qml_script/train_dp.py create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/5_Parallelize_training_for_QML/qml_script/train_single.py create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/6_QNSPSA_optimizer_with_embedded_simulator/qnspsa_with_embedded_simulator.ipynb create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/6_QNSPSA_optimizer_with_embedded_simulator/source_scripts/QNSPSA.py create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/6_QNSPSA_optimizer_with_embedded_simulator/source_scripts/benchmark_qaoa_converge_speed.py create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/6_QNSPSA_optimizer_with_embedded_simulator/source_scripts/benchmark_ref_paper_converge_speed.py create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/6_QNSPSA_optimizer_with_embedded_simulator/source_scripts/qaoa_large_problem.py create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/6_QNSPSA_optimizer_with_embedded_simulator/source_scripts/qaoa_params_init_10_qubits_2_layers.npy create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/6_QNSPSA_optimizer_with_embedded_simulator/source_scripts/requirements.txt create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/6_QNSPSA_optimizer_with_embedded_simulator/source_scripts/utils.py create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/7_Running_notebooks_as_jobs/Running_notebooks_as_jobs.ipynb create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/7_Running_notebooks_as_jobs/result/aspen-m-3/0_Getting_started_papermill.ipynb create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/7_Running_notebooks_as_jobs/result/aspen-m-3/histogram.png create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/7_Running_notebooks_as_jobs/result/aspen-m-3/model.tar.gz create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/7_Running_notebooks_as_jobs/result/aspen-m-3/results.pkl create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/7_Running_notebooks_as_jobs/result/ionqdevice/0_Getting_started_papermill.ipynb create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/7_Running_notebooks_as_jobs/result/ionqdevice/histogram.png create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/7_Running_notebooks_as_jobs/result/ionqdevice/model.tar.gz create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/7_Running_notebooks_as_jobs/result/ionqdevice/results.pkl create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/7_Running_notebooks_as_jobs/result/lucy/0_Getting_started_papermill.ipynb create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/7_Running_notebooks_as_jobs/result/lucy/histogram.png create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/7_Running_notebooks_as_jobs/result/lucy/model.tar.gz create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/7_Running_notebooks_as_jobs/result/lucy/results.pkl create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/7_Running_notebooks_as_jobs/result/output.png create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/7_Running_notebooks_as_jobs/result/sv1/0_Getting_started_papermill.ipynb create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/7_Running_notebooks_as_jobs/result/sv1/histogram.png create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/7_Running_notebooks_as_jobs/result/sv1/model.tar.gz create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/7_Running_notebooks_as_jobs/result/sv1/results.pkl create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/7_Running_notebooks_as_jobs/src/0_Getting_started_papermill.ipynb create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/7_Running_notebooks_as_jobs/src/notebook_runner.py create mode 100644 modules/1_Continue_Exploring/C_qtm_algorithms/variational_algorithms/hybrid_jobs/7_Running_notebooks_as_jobs/src/requirements.txt create mode 100644 modules/1_Continue_Exploring/D_qtm_frameworks+plugins/pennylane/0_Getting_started/0_Getting_started.ipynb create mode 100644 modules/1_Continue_Exploring/D_qtm_frameworks+plugins/pennylane/0_Getting_started/pl_braket.png create mode 100644 modules/1_Continue_Exploring/D_qtm_frameworks+plugins/pennylane/0_Getting_started/remote-single-job.png create mode 100644 modules/1_Continue_Exploring/D_qtm_frameworks+plugins/pennylane/1_Parallelized_optimization_of_quantum_circuits/1_Parallelized_optimization_of_quantum_circuits.ipynb create mode 100644 modules/1_Continue_Exploring/D_qtm_frameworks+plugins/pennylane/1_Parallelized_optimization_of_quantum_circuits/circuit.png create mode 100644 modules/1_Continue_Exploring/D_qtm_frameworks+plugins/pennylane/1_Parallelized_optimization_of_quantum_circuits/grad_circuits.png create mode 100644 modules/1_Continue_Exploring/D_qtm_frameworks+plugins/pennylane/1_Parallelized_optimization_of_quantum_circuits/remote-multi-job-simulator.png create mode 100644 modules/1_Continue_Exploring/D_qtm_frameworks+plugins/pennylane/2_Graph_optimization_with_QAOA/2_Graph_optimization_with_QAOA.ipynb create mode 100644 modules/1_Continue_Exploring/D_qtm_frameworks+plugins/pennylane/2_Graph_optimization_with_QAOA/graphs.png create mode 100644 modules/1_Continue_Exploring/D_qtm_frameworks+plugins/pennylane/2_Graph_optimization_with_QAOA/max-cut.png create mode 100644 modules/1_Continue_Exploring/D_qtm_frameworks+plugins/pennylane/2_Graph_optimization_with_QAOA/params_30.npy create mode 100644 modules/1_Continue_Exploring/D_qtm_frameworks+plugins/pennylane/2_Graph_optimization_with_QAOA/qaoa.png create mode 100644 modules/1_Continue_Exploring/D_qtm_frameworks+plugins/pennylane/2_Graph_optimization_with_QAOA/qaoa_layer.png create mode 100644 modules/1_Continue_Exploring/D_qtm_frameworks+plugins/pennylane/3_Hydrogen_Molecule_geometry_with_VQE/3_Hydrogen_Molecule_geometry_with_VQE.ipynb create mode 100644 modules/1_Continue_Exploring/D_qtm_frameworks+plugins/pennylane/3_Hydrogen_Molecule_geometry_with_VQE/grouping.png create mode 100644 modules/1_Continue_Exploring/D_qtm_frameworks+plugins/pennylane/3_Hydrogen_Molecule_geometry_with_VQE/hydrogen_molecule/h2.xyz create mode 100644 modules/1_Continue_Exploring/D_qtm_frameworks+plugins/pennylane/3_Hydrogen_Molecule_geometry_with_VQE/hydrogen_molecule/h2_0.30.xyz create mode 100644 modules/1_Continue_Exploring/D_qtm_frameworks+plugins/pennylane/3_Hydrogen_Molecule_geometry_with_VQE/hydrogen_molecule/h2_0.50.xyz create mode 100644 modules/1_Continue_Exploring/D_qtm_frameworks+plugins/pennylane/3_Hydrogen_Molecule_geometry_with_VQE/hydrogen_molecule/h2_0.70.xyz create mode 100644 modules/1_Continue_Exploring/D_qtm_frameworks+plugins/pennylane/3_Hydrogen_Molecule_geometry_with_VQE/hydrogen_molecule/h2_0.90.xyz create mode 100644 modules/1_Continue_Exploring/D_qtm_frameworks+plugins/pennylane/3_Hydrogen_Molecule_geometry_with_VQE/hydrogen_molecule/h2_1.10.xyz create mode 100644 modules/1_Continue_Exploring/D_qtm_frameworks+plugins/pennylane/3_Hydrogen_Molecule_geometry_with_VQE/hydrogen_molecule/h2_1.30.xyz create mode 100644 modules/1_Continue_Exploring/D_qtm_frameworks+plugins/pennylane/3_Hydrogen_Molecule_geometry_with_VQE/hydrogen_molecule/h2_1.50.xyz create mode 100644 modules/1_Continue_Exploring/D_qtm_frameworks+plugins/pennylane/3_Hydrogen_Molecule_geometry_with_VQE/hydrogen_molecule/h2_1.70.xyz create mode 100644 modules/1_Continue_Exploring/D_qtm_frameworks+plugins/pennylane/3_Hydrogen_Molecule_geometry_with_VQE/hydrogen_molecule/h2_1.90.xyz create mode 100644 modules/1_Continue_Exploring/D_qtm_frameworks+plugins/pennylane/3_Hydrogen_Molecule_geometry_with_VQE/hydrogen_molecule/h2_2.10.xyz create mode 100644 modules/1_Continue_Exploring/D_qtm_frameworks+plugins/pennylane/4_Simulation_of_noisy_quantum_circuits_on_Amazon_Braket_with_PennyLane/4_Simulation_of_noisy_quantum_circuits_on_Amazon_Braket_with_PennyLane.ipynb create mode 100644 modules/1_Continue_Exploring/D_qtm_frameworks+plugins/pennylane/5_Tracking_resource_usage/5_Tracking_resource_usage.ipynb create mode 100644 modules/1_Continue_Exploring/D_qtm_frameworks+plugins/pennylane/6_Adjoint_gradient_computation/6_Adjoint_gradient_computation.ipynb create mode 100644 modules/1_Continue_Exploring/D_qtm_frameworks+plugins/pennylane/6_Adjoint_gradient_computation/qchem/co2.xyz create mode 100644 modules/1_Continue_Exploring/D_qtm_frameworks+plugins/qiskit/0_Getting_Started.ipynb create mode 100644 modules/1_Continue_Exploring/E_applications+industry_uses/algorithm_textbook/Bells_Inequality.ipynb create mode 100644 modules/1_Continue_Exploring/E_applications+industry_uses/algorithm_textbook/Bernstein_Vazirani_Algorithm.ipynb create mode 100644 modules/1_Continue_Exploring/E_applications+industry_uses/algorithm_textbook/CHSH_Inequality.ipynb create mode 100644 modules/1_Continue_Exploring/E_applications+industry_uses/algorithm_textbook/Deutsch_Jozsa_Algorithm.ipynb create mode 100644 modules/1_Continue_Exploring/E_applications+industry_uses/algorithm_textbook/Grovers_Search.ipynb create mode 100644 modules/1_Continue_Exploring/E_applications+industry_uses/algorithm_textbook/Quantum_Approximate_Optimization_Algorithm.ipynb create mode 100644 modules/1_Continue_Exploring/E_applications+industry_uses/algorithm_textbook/Quantum_Circuit_Born_Machine.ipynb create mode 100644 modules/1_Continue_Exploring/E_applications+industry_uses/algorithm_textbook/Quantum_Computing_Quantum_Monte_Carlo.ipynb create mode 100644 modules/1_Continue_Exploring/E_applications+industry_uses/algorithm_textbook/Quantum_Fourier_Transform.ipynb create mode 100644 modules/1_Continue_Exploring/E_applications+industry_uses/algorithm_textbook/Quantum_Phase_Estimation_Algorithm.ipynb create mode 100644 modules/1_Continue_Exploring/E_applications+industry_uses/algorithm_textbook/Quantum_Walk.ipynb create mode 100644 modules/1_Continue_Exploring/E_applications+industry_uses/algorithm_textbook/README.md create mode 100644 modules/1_Continue_Exploring/E_applications+industry_uses/algorithm_textbook/Shors_Algorithm.ipynb create mode 100644 modules/1_Continue_Exploring/E_applications+industry_uses/algorithm_textbook/Simons_Algorithm.ipynb create mode 100644 modules/1_Continue_Exploring/E_applications+industry_uses/algorithm_textbook/Template.ipynb create mode 100644 modules/1_Continue_Exploring/E_applications+industry_uses/algorithm_textbook/notebook_plotting.py create mode 100644 modules/1_Continue_Exploring/E_applications+industry_uses/algorithm_textbook/requirements.txt create mode 120000 pathways/0_all/0_Getting_Started create mode 120000 pathways/0_all/1_Continue_Exploring create mode 120000 pathways/0_all/2_JW_Certification create mode 120000 pathways/0_all/3_QBraid create mode 120000 pathways/1_researcher/0_Getting_Started create mode 120000 pathways/1_researcher/1_Continue_Exploring create mode 120000 pathways/2_newcomer/0_Getting_Started create mode 120000 pathways/2_newcomer/1_Continue_Exploring create mode 120000 pathways/2_newcomer/2_JW_Certification create mode 120000 pathways/3_educator/JW_Certification create mode 120000 pathways/3_educator/QBraid diff --git a/0_TO_ORGANIZE/4_Superdense_coding/4_Superdense_coding.ipynb b/0_TO_ORGANIZE/4_Superdense_coding/4_Superdense_coding.ipynb new file mode 100644 index 000000000..6162d47ef --- /dev/null +++ b/0_TO_ORGANIZE/4_Superdense_coding/4_Superdense_coding.ipynb @@ -0,0 +1,531 @@ +{ + "cells": [ + { + "attachments": { + "circuit.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABvQAAAEgCAYAAABrQpQwAAAMR2lDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnltSSWiBCEgJvYkiSJcSQosgIFWwEZJAQokxIYjYkUUF1y4iYMOKKLoWQNaKvSyKvT8sqKysiwUbKm9SQFe/9973zvfNvX/OnPOfkrn3zgCgU82TSnNQXQByJXmyuPBg1tiUVBbpCUABAVCANvDh8eVSdmxsFIDSf/+nvLsBEOX9qouS6+f5/yp6AqGcDwASC3G6QM7PhXg/AHgxXyrLA4DoDfXWU/OkSjweYgMZTBBiqRJnqnGxEqercYXKJiGOA/FOAMg0Hk+WCYB2E9Sz8vmZkEf7FsSuEoFYAoAOGeIAvogngDgC4iG5uZOVGNoBh/TveDL/wZk+wMnjZQ5gdS0qIYeI5dIc3rT/sx3/W3JzFP0x7OCgiWQRccqaYd9uZU+OVGIaxF2S9OgYiPUh/iAWqOwhRqkiRUSi2h415cs5sGeACbGrgBcSCbEpxGGSnOgojT49QxzGhRiuELRAnMdN0PguEMpD4zWc1bLJcTH9OEPGYWt863kyVVyl/UlFdiJbw39LJOT2878tFCUkq3PGqPnipGiItSFmyrPjI9U2mE2hiBPdbyNTxCnzt4HYVygJD1bzYxMzZGFxGntZrry/XmyBSMyN1uDKPFFChIZnJ5+nyt8I4iahhJ3YzyOUj43qr0UgDAlV145dFkoSNfVi7dK84DiN72tpTqzGHqcKc8KVeiuITeX58RpfPCAPLkg1Px4tzYtNUOeJp2fxRsWq88ELQBTggBDAAgo40sFkkAXErV2NXfCXeiYM8IAMZAIhcNFo+j2SVTMSeI0HheAviIRAPuAXrJoVgnyo/zKgVV9dQIZqNl/lkQ2eQpwLIkEO/K1QeUkGoiWBJ1Aj/ik6H+aaA4dy7mcdG2qiNBpFPy9Lp9+SGEoMIUYQw4iOuAkegPvhUfAaBIcb7o379Gf7zZ7wlNBGeES4Tmgn3J4kLpL9UA8LjAbtMEKYpub072vG7SCrBx6M+0N+yI0zcRPggo+Akdh4IIztAbUcTebK6n/k/kcN33VdY0dxpaCUQZQgisOPntpO2h4DLMqeft8hda7pA33lDMz8GJ/zXacF8B75oyW2ANuHncGOY+ewQ1gjYGFHsSbsInZYiQdW0RPVKuqPFqfKJxvyiH+Kx9PEVHZS7lrn2un6WT2XJyxQvh8BZ7J0mkycKcpjseGbX8jiSvhDh7DcXN1cAVB+R9SvqTdM1fcBYZ7/ppvnBYB/cV9f36FvusgtAOxLAYB67ZvO/iN8F1sDcHYdXyHLV+tw5YUAqEAHPlHGwBxYAwdYjxvwBH4gCISCUSAGJIAUMBF2WQTXswxMBTPAXFACysBSsApUgvVgE9gOdoG9oBEcAsfBaXABXAbXwV24ejrAC9AN3oFeBEFICB1hIMaIBWKLOCNuiDcSgIQiUUgckoKkIZmIBFEgM5B5SBmyHKlENiK1yG/IQeQ4cg5pQ24jD5FO5DXyCcVQGmqAmqF26DDUG2WjkWgCOgHNRKeghWgxuhitQGvQnWgDehy9gF5H29EXaA8GMC2MiVliLpg3xsFisFQsA5Nhs7BSrByrweqxZvg/X8XasS7sI07EGTgLd4ErOAJPxPn4FHwWvgivxLfjDfhJ/Cr+EO/GvxLoBFOCM8GXwCWMJWQSphJKCOWErYQDhFPwaeogvCMSiUyiPdELPo0pxCzidOIi4lribuIxYhvxMbGHRCIZk5xJ/qQYEo+URyohrSHtJB0lXSF1kD6QtcgWZDdyGDmVLCEXkcvJO8hHyFfIz8i9FF2KLcWXEkMRUKZRllA2U5oplygdlF6qHtWe6k9NoGZR51IrqPXUU9R71DdaWlpWWj5aY7TEWnO0KrT2aJ3Veqj1kaZPc6JxaONpCtpi2jbaMdpt2hs6nW5HD6Kn0vPoi+m19BP0B/QP2gztodpcbYH2bO0q7QbtK9ovdSg6tjpsnYk6hTrlOvt0Lul06VJ07XQ5ujzdWbpVugd1b+r26DH0huvF6OXqLdLboXdO77k+Sd9OP1RfoF+sv0n/hP5jBsawZnAYfMY8xmbGKUaHAdHA3oBrkGVQZrDLoNWg21DfcIRhkmGBYZXhYcN2Jsa0Y3KZOcwlzL3MG8xPg8wGsQcJBy0cVD/oyqD3RoONgoyERqVGu42uG30yZhmHGmcbLzNuNL5vgps4mYwxmWqyzuSUSddgg8F+g/mDSwfvHXzHFDV1Mo0znW66yfSiaY+ZuVm4mdRsjdkJsy5zpnmQeZb5SvMj5p0WDIsAC7HFSoujFn+yDFlsVg6rgnWS1W1pahlhqbDcaNlq2Wtlb5VoVWS12+q+NdXa2zrDeqV1i3W3jYXNaJsZNnU2d2wptt62ItvVtmds39vZ2yXbzbdrtHtub2TPtS+0r7O/50B3CHSY4lDjcM2R6OjtmO241vGyE+rk4SRyqnK65Iw6ezqLndc6tw0hDPEZIhlSM+SmC82F7ZLvUufycChzaNTQoqGNQ18OsxmWOmzZsDPDvrp6uOa4bna9O1x/+KjhRcObh792c3Lju1W5XXOnu4e5z3Zvcn81wnmEcMS6Ebc8GB6jPeZ7tHh88fTylHnWe3Z62XileVV73fQ28I71XuR91ofgE+wz2+eQz0dfT988372+f/u5+GX77fB7PtJ+pHDk5pGP/a38ef4b/dsDWAFpARsC2gMtA3mBNYGPgqyDBEFbg56xHdlZ7J3sl8GuwbLgA8HvOb6cmZxjIVhIeEhpSGuofmhiaGXogzCrsMywurDucI/w6eHHIggRkRHLIm5yzbh8bi23e5TXqJmjTkbSIuMjKyMfRTlFyaKaR6OjR41eMfpetG20JLoxBsRwY1bE3I+1j50S+/sY4pjYMVVjnsYNj5sRdyaeET8pfkf8u4TghCUJdxMdEhWJLUk6SeOTapPeJ4ckL09uHzts7MyxF1JMUsQpTamk1KTUrak940LHrRrXMd5jfMn4GxPsJxRMODfRZGLOxMOTdCbxJu1LI6Qlp+1I+8yL4dXwetK56dXp3XwOfzX/hSBIsFLQKfQXLhc+y/DPWJ7xPNM/c0VmpyhQVC7qEnPEleJXWRFZ67PeZ8dkb8vuy0nO2Z1Lzk3LPSjRl2RLTk42n1wwuU3qLC2Rtk/xnbJqSrcsUrZVjsgnyJvyDOCG/aLCQfGL4mF+QH5V/oepSVP3FegVSAouTnOatnDas8Kwwi3T8en86S0zLGfMnfFwJnvmxlnIrPRZLbOtZxfP7pgTPmf7XOrc7Ll/FLkWLS96Oy95XnOxWfGc4se/hP9SV6JdIiu5Od9v/voF+ALxgtaF7gvXLPxaKig9X+ZaVl72eRF/0flfh/9a8Wvf4ozFrUs8l6xbSlwqWXpjWeCy7cv1lhcuf7xi9IqGlayVpSvfrpq06lz5iPL1q6mrFavbK6IqmtbYrFm65nOlqPJ6VXDV7mrT6oXV79cK1l5ZF7Sufr3Z+rL1nzaIN9zaGL6xocaupnwTcVP+pqebkzaf2eK9pXarydayrV+2Sba1b4/bfrLWq7Z2h+mOJXVonaKuc+f4nZd3hexqqnep37ibubtsD9ij2PPnb2m/3dgbubdln/e++v22+6sPMA6UNiAN0xq6G0WN7U0pTW0HRx1safZrPvD70N+3HbI8VHXY8PCSI9QjxUf6jhYe7TkmPdZ1PPP445ZJLXdPjD1x7eSYk62nIk+dPR12+sQZ9pmjZ/3PHjrne+7gee/zjRc8LzRc9Lh44A+PPw60erY2XPK61HTZ53Jz28i2I1cCrxy/GnL19DXutQvXo6+33Ui8cevm+JvttwS3nt/Ouf3qTv6d3rtz7hHuld7XvV/+wPRBzb8c/7W73bP98MOQhxcfxT+6+5j/+MUT+ZPPHcVP6U/Ln1k8q33u9vxQZ1jn5T/H/dnxQvqit6vkL72/ql86vNz/d9DfF7vHdne8kr3qe73ojfGbbW9HvG3pie158C73Xe/70g/GH7Z/9P545lPyp2e9Uz+TPld8cfzS/DXy672+3L4+KU/GU20FMDjQjAwAXm8DgA73DozLcP8wTn3OUwmiPpuqEPhPWH0WVIknAPXwptyuc44BsAcOuzmqIwlQbtUTggDq7j4wNCLPcHdTc9HgiYfwoa/vjRkApGYAvsj6+nrX9vV92QyTvQ3AsSnq86VSiPBssMFfia4bCeaAH+TfYZF/K9acdj4AAAAJcEhZcwAAFiUAABYlAUlSJPAAAAGeaVRYdFhNTDpjb20uYWRvYmUueG1wAAAAAAA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA1LjQuMCI+CiAgIDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+CiAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAgICAgIHhtbG5zOmV4aWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vZXhpZi8xLjAvIj4KICAgICAgICAgPGV4aWY6UGl4ZWxYRGltZW5zaW9uPjE3ODA8L2V4aWY6UGl4ZWxYRGltZW5zaW9uPgogICAgICAgICA8ZXhpZjpQaXhlbFlEaW1lbnNpb24+Mjg4PC9leGlmOlBpeGVsWURpbWVuc2lvbj4KICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+ChEIF6UAAAAcaURPVAAAAAIAAAAAAAAAkAAAACgAAACQAAAAkAAAWorAel9OAABAAElEQVR4AeydB7gURfa3CwUJgqCIKIKIYsQsGAHDKib+LpgFEQRRgiJBEQyAIrIgYAZBFwMKBswJwxowYBYx65pQMSCgBGEN1Fen/Abncu/cSR2qa95+nvvM3OnuCu/p6Tldv6pzqmizKTYIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQMBJAlUQ9Jy0C42CAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAgCWAoMeFAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAGHCSDoOWwcmgYBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABBD2uAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQg4TABBz2Hj0DQIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIIOhxDUAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEDAYQIIeg4bh6ZBAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAEGPawACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACDhNA0HPYODQNAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAgh6XAMQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQcJgAgp7DxqFpEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEEDQ4xqAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAgMMEEPQcNg5NgwAEIAABCEAAAhCAAASiI/DVV1+p2267Tc2ePVvVrVtXrbfeetFVnkdNm222mTr66KNV69at1brrrpvHmeEfunjxYvXUU0+pJ554Qq1atSr8CvOsYfXq1Wr58uWqXr166tRTT1Xt2rXLswQOhwAEIAABCEAAAhCAAAQgEA8BBL14uFMrBCAAAQhAAAIQgAAEIOAYgfvvv1/16NHDCj4ilFWpUsWxFv7VnKpVq6pDDz1UjRo1Sm2//fZOtfHxxx9XZ511lvr++++V1tqptqUaI6LeOuusozp16qQmTpzorHCbai+vEIAABCAAAQhAAAIQgAAEhACCHtcBBCAAAQhAAAIQgAAEIAABQ2DmzJmqa9eudmVZjRo1VK1atZzjIiJj48aNrfAoba1du7ZTbfzvf/+rrrvuOnXfffeplStXOtU2acwff/xhBVt5Pemkk9S0adOUCKRsEIAABCAAAQhAAAIQgAAEXCeAoOe6hWgfBCAAAQhAAAIQgAAEIBAJAVmhd9ppp9kwll26dFH9+vWLpN58K6lWrZoNCVqnTh3nVhGKUPbLL7+opUuXOrlC780331SjR49Wb7/9thX0br/9dufCluZ7PXA8BCAAAQhAAAIQgAAEIFAaBBD0SsPO9BICEIAABCAAAQhAAAIQyEJABL3u3bsrEcz69u2rhg8fnuUMdieNwEsvvaTOO+88NWfOHAS9pBmP9kIAAhCAAAQgAAEIQKDECSDolfgFQPchAAEIQAACEIAABCAAgb8IIOj5fyUg6PlvY3oIAQhAAAIQgAAEIAABXwkg6PlqWfoFAQhAAAIQgAAEIAABCORFAEEvL1yJPBhBL5Fmo9EQgAAEIAABCEAAAhCAgCGAoMdlAAEIQAACEIAABCAAAQhAwBBA0PP/MkDQ89/G9BACEIAABCAAAQhAAAK+EkDQ89Wy9AsCEIAABCAAAQhAAAIQyIsAgl5euBJ5MIJeIs1GoyEAAQhAAAIQgAAEIAABQwBBj8sAAhCAAAQgAAEIQAACEICAIYCg5/9lgKDnv43pIQQgAAEIQAACEIAABHwlgKDnq2XpFwQgAAEIQAACEIAABCCQFwEEvbxwJfJgBL1Emo1GQwACEIAABCAAAQhAAAKGAIIelwEEIAABCEAAAhCAAAQgAAFDAEHP/8sAQc9/G9NDCEAAAhCAAAQgAAEI+EoAQc9Xy9IvCEAAAhCAAAQgAAEIQCAvAgh6eeFK5MEIeok0G42GAAQgAAEIQAACEIAABAwBBD0uAwhAAAIQgAAEIAABCEAAAoYAgp7/lwGCnv82pocQgAAEIAABCEAAAhDwlQCCnq+WpV8QgAAEIAABCEAAAhCAQF4EEPTywpXIgxH0Emk2Gg0BCEAAAhCAAAQgAAEIGAIIelwGEIAABCAAAQhAAAIQgAAEDAEEPf8vAwQ9/21MDyEAAQhAAAIQgAAEIOArAQQ9Xy1LvyAAAQhAAAIQgAAEIACBvAgg6OWFK5EHI+gl0mw0GgIQgAAEIAABCEAAAhAwBBD0uAwgAAEIQAACEIAABCAAAQgYAgh6/l8GCHr+25geQgACEIAABCAAAQhAwFcCCHq+WpZ+QQACEIAABCAAAQhAAAJ5EUDQywtXIg9G0Euk2Wg0BCAAAQhAAAIQgAAEIGAIIOhxGUAAAhCAAAQgAAEIQAACEDAEEPT8vwwQ9Py3MT2EAAQgkCLwyy+/qA8//FAtWbJE1a5dO/Uxr54Q+PPPP9Uff/yhGjZsqHbeeWdPekU3IAABCFROAEGvcj7shQAEIAABCEAAAhCAAARKhACCnv+GRtDz38b0EAIQgIAQ+Pnnn9W0adPU2LFjlQg/66yzDmA8JKC1Vttss43q37+/6tChg4c9pEsQgAAEyhJA0CvLg/8gAAEIQAACEIAABCAAgRIlgKDnv+ER9Py3MT2EAAQgIARkZd7IkSPVjBkzAOI5gRo1aqhu3bqpSZMmed5TugcBCECAkJtcAxCAAAQgAAEIQAACEIAABCwBBD3/LwQEPf9tTA8hAAEICIHPP//crs6bPHmyDcl48MEHq5122gk4nhD47bff1JtvvqkeeeQR1bRpU3Xuueeqs846y5Pe0Q0IQAACmQmwQi8zG/ZAAAIQgAAESoKA5B2YO3euev7559Xmm2+uqlWrVhL9drmTq1evVosXL1Y1a9ZUHTt2VHXq1HG5ubQNAt4QCFvQ++yzz9Qzzzyj1l13XVW3bl1vuAXdERmkk7xHW2yxhTriiCNUlSpVAqsCQS8wlBQEgbwI4G/mhSuSg333N7/88kt1xRVXqIkTJ6p99tlHXXbZZaply5aRsKWS8AmIrzB9+nQbarN58+ZqyJAhqkePHuFXTA0QgAAEYiaAoBezAageAhCAAAQgEDeBhx9+WPXt21etWLECMS9uY6TVn8r10alTJ3XllVem7eEtBCAQFoEwBb33339fjRkzRj3++ONWoCKXT2YrSj4cGWhu0KCBOuOMM+xgXeaj89uDoJcfL46GQFAE8DeDIhlsOT77m+mCXtu2bdX48eMR9IK9fGItTQS9W2+91foJCHqxmoLKIQCBiAkg6EUMnOogAAEIQAACrhGQmY2dO3d2rVm05/8TEEHvjjvugAcEIBABgTAFPVkFPWDAAPX2229H0BM/qpCcOF27dlU33HBDYB1C0AsMJQVBIC8C+Jt54Yr8YB/9TQS9yC+jSCtE0IsUN5VBAAIOEUDQc8gYNAUCEIAABCAQBwHJOyArIL777ju11157qZ49e8bRDOpMI/Dqq6+qm266SVWtWlV16dJFTZ06NW0vbyEAgbAIhCnoiZA3bNgwm+ulRYsWSgZPN9lkk7C6kthyZbXIyy+/rG677TbVpEkTNWjQIHXOOecE1h8EvcBQUhAE8iIg/uaZZ56pFixYgL+ZF7nwDvbd30TQC+/acaFkBD0XrEAbIACBOAgg6MVBnTohAAEIQAACDhGQ8G+9e/dWP/30k10JMXbsWIdaV5pNkRxbMoj91VdfqVNPPVXdeOONpQmCXkMgYgJhCnrz5s1TI0aMUFLH4Ycfrq655hrVqFGjiHvofnWSZ2vGjBn2d6lZs2Zq8ODBqlevXoE1HEEvMJQUBIG8CIi/2adPH7Vw4UL8zbzIhXew+JsDBw5U8+fPtzaZMmVKeJXFUDKCXgzQI6wSQS9C2FQFAQg4RQBBzylz0BgIQAACEIBA9ARSgt7ixYvt6jzJL8EWLwEZYOnXr5/69NNPvRxgiZcutUMgM4GoBL327duryZMnI+hVYAoR9KZNm6a6d++uEPQqAMRHEEgogVmzZlmhftGiRer0009XEyZMSGhP/Gm27/4mgp4/12pFPUHQq4gKn0EAAqVAAEGvFKxMHyEAAQhAAAKVEEDQqwROTLt8H2CJCSvVQiArAQS9rIhCPwBBL3TEVACBWAgg6MWCvdJKffc3EfQqNX/idyLoJd6EdAACECiQAIJegeA4DQIQgAAEIOALAQQ99yzp+wCLe8RpEQT+IoCgF/+VgKAXvw1oAQTCIICgFwbV4sr03d9E0Cvu+nD9bAQ91y1E+yAAgbAIIOiFRZZyIQABCEAAAgkhgKDnnqF8H2BxjzgtgsBfBBD04r8SEPTitwEtgEAYBBD0wqBaXJm++5sIesVdH66fjaDnuoVoHwQgEBYBBL2wyFIuBCAAAQhAICEEEPTcM5TvAyzuEadFEPiLAIJe/FcCgl78NqAFEAiDAIJeGFSLK9N3fxNBr7jrw/WzEfRctxDtgwAEwiKAoBcWWcqFAAQgAAEIJIQAgp57hvJ9gMU94rQIAn8RQNCL/0pA0IvfBrQAAmEQQNALg2pxZfrubyLoFXd9FHr2woUL1YMPPqg+/PBDdfLJJ6uWLVsWWlSl5yHoVYqHnRCAgMcEEPQ8Ni5dg4APBGRQ588//1TVq1dPXHe01mr16tWqSpUqap111klc+2lw6RBA0HPP1r4PsLhHnBZB4C8CCHrxXwkIevHbgBZAIAwCCHphUC2uTN/9TQS94q6PQs7+3//+p+677z41ePBgte6666o+ffrY94WUle0cBL1shNgPAQh4S8AMOLNBAAIQcJLAnDlzdPv27XWnTp30u+++62QbMzXKOJf6oYce0m3atNFDhgzRS5cuzXQon0MgdgKPPfaYbtq0qa5Tp44eOHBg7O2hAVr/5z//0S1atNDrrbee7tmzJ0ggAIGICDzwwAO6fv36epNNNtGXXnppoLW+8847umPHjto8WFr/5ttvvw20fF8K+/333/XUqVMtp2bNmulJkyYF2rWXX35Zt27dWpsJV9bHNJOvAi2fwiAAgYoJmAlkesstt7T+5oABAyo+iE8jJeC7v/nFF19oIyjZ35O2bdvq119/PVK+pViZ+DodOnSwv7E77bSTvueee0LDYMRDPWXKFGvf5s2b65tuuim0uigYAhCAgEsEWKHnrVRLxyCQfAIzZ85U3bp1U2YwRw0fPlwdd9xxienUTz/9pMwAlDKDgco4suriiy9WxxxzTGLaT0NLiwAr9Nyzt+8zpt0jTosg8BcBI7IpI+qpxYsXqxNPPFFtu+22gaGZN2+eGjFihJJVgGbCkpo8ebJq1KhRYOX7UlDYK/R+/vln9dRTT6m33npLHXXUUcqIe76gox8QcJoAK/TcM4/v/iYr9KK95pYtW6amTZumzj//fBupSMJtjhs3TtWrVy+UhrBCLxSsFAoBCCSAAIJeAoxEEyFQigQkzObtt9+uTjvtNLXVVltZp9CsUkkMChmMuvvuu1Xv3r1tyFDpx5VXXqmqVq2amD7Q0NIhgKDnnq19H2BxjzgtgsBfBMT/WLlypZLfcbNq2YaLCooNgl5uJMMW9MzsWmtjCQu2/vrrK7MSOreGcRQEIFAUAQS9ovCFcrLv/iaCXiiXTcZCX3nlFWWiE6nnn39e7bnnnmrUqFGqXbt2NgVJxpOK2IGgVwQ8ToUABBJNAEEv0eaj8RDwl0DYgzlRkHvjjTfUBRdcoJ5++ml14IEHqvHjx6vdd989iqqpAwJ5EUDQywtXJAf7PsASCUQqgYBjBBD0cjOIDz5gbj3lKAiUFgEEPffs7bu/iaAX3TUnEYpM+EsboahmzZqqR48eauTIkUreh7Uh6IVFlnIhAAHXCSDouW4h2geBEiXgw2COhOuaOHGiDbe5xRZbqEGDBql+/fqVqEXptssEEPTcs47vAyzuEadFEAifAIJebox98AFz6ylHQaC0CCDouWdv3/1NBL1orjlZ+f7ss8+q/v37q3fffVe1adPGTmZu1apVqA1A0AsVL4VDAAIOE0DQc9g4NA0CpUwgisEcCbX0ww8/qK+++kp99913avny5apu3bqqcePGyiRVVvXr1y/KBKtXr1YilJx99tnq66+/Vscff7zNqyd1sEHAJQIIei5Z46+2+D7A4h5xWgSB8Akg6OXGOAofMLeWcBQEIBAkAQS9IGkGU5bv/iaCXjDXSbZSvvnmG3X11VfbPxlD6du3rxo8eHDoIa0R9LJZhv0QgICvBBD0fLUs/YJAwgmENZgjs8dExHviiSfUAw88oGRwTYQ9qU8EuHXWWUdVq1ZNbbLJJqp169bq//7v/9Q+++yjateuXRDRjz76yMaOl3yALVu2VJdddpk67LDDCiqLkyAQFgEEvbDIFl6u7wMshZPhTAgklwCCXm62C8sHzK12joIABMIigKAXFtnCy/Xd30TQK/zayPVMyT386KOP2khE8+fPt2MdIu5tu+22uRZR8HEIegWj40QIQCDhBBD0Em5Amg8BXwmEMZgjK/Aee+wxdeWVV6rPPvvMJmfea6+91LHHHqtatGihqlevblfqzZkzx4p9n3/+udpwww3VfvvtZ2eZ7b///nkndF65cqWaNm2aXaUnomCvXr2swOer3ehXMgkg6LlnN98HWNwjTosgED4BBL3cGIfhA+ZWM0dBAAJhEkDQC5NuYWX77m8i6BV2XeRz1qeffqr+9a9/qVtvvVWl0oyceeaZqmrVqvkUU9CxCHoFYeMkCEDABwJmtQobBCAAAecI/P7773rq1Kna3Gd1s2bN9KRJk4pq448//qiNkKe33HJLbYQ7bUQ6fd999+kFCxboFStWaDN4pM0KPW1W6+klS5ZoM+imhw8frhs2bKhNImdthD9tnFQt7cpnkzJnz56t9957b21W/+mjjjpKGzExnyI4FgKhEzBCt27atKmuU6eOHjhwYOj1UUF2Av/5z3+0mWig11tvPd2zZ8/sJ3AEBCDgPIF33nlHd+zY0fo27du3199++63zbY6jgUH7gHH0gTohAIHyBMwEMvssJv7mgAEDyh/AJ5ET8N3f/OKLL3SfPn3s727btm3166+/HjljnytctWqVNpOX9cYbb6xNlCNtUozY8ZWo+ixjN1OmTLH2NSlT9E033RRV1dQDAQhAIFYCKtbaqRwCEIBABgJBDuaY0A/6ggsusI7muuuuq8WZf+GFF7RZPZehdm0FPhEBr732WivqiYO60047WYdRRLp8NhNTXp977rnW0dxuu+2sMJjP+RwLgbAJIOiFTTj/8n0fYMmfCGdAIPkEEPRys2GQPmBuNXIUBCAQBQEEvSgo51eH7/4mgl5+10O+R4tf06FDB12lShW944476unTp2sTgjPfYgo+HkGvYHScCAEIJJwAITd9WGZJHyDgIYGgwi39/PPP6rbbblOXXHKJWrx4sdp+++3V0KFD1UknnZQ1SbO5v9sQnBMnTlRjxoyxlPfcc0910UUXKTOzPmfqElf+/vvvV71791YS9rNLly7KCIU2xGfOhXAgBEIk4ErITQlR+8Ybb6innnpKmQFdm89SclqaVWr2+yKv8n8qhIt8t+Q4yYMpIVdSf/KZhMs96KCDVKtWrcqRq6geKTv9L9d6NtpoI1uP5MgMcvM9BFKQrCgLAkkh4ErIzZ9++kk999xz6q233rLo5H4nfxJ6PHWfregemLrHpl7lXmsmStkcwZJzWPIQB7EF5QMG0RbKgAAEgiPgSsjNivxAuefJ/S/9Poi/GZzt4yqJkJvhkV+2bJlNLXL++ecrM+FZnXzyyWrcuHGqXr164VW6Vsnij0iozzPOOEOZFXpqyJAhqkePHmsdxb8QgAAEPCSQcEGS5kMAAp4SMINERYfclNlhMhNUVsWZ27cNtdm1a1dtRL6cqUkZzz//vDb582wZ5kHPhpL46quvci5DDnz77bf10UcfbWevtWnTRr/yyit5nc/BEAiTgCsr9CQcbd++fXXdunX1BhtsYF/NQ6E24pw2wpmuX7++XWnboEEDLX8S3kU+k31yjBybOlfC644cObJCbP/9738DrWfUqFEV1lPMh77PmC6GDedCIKkEXFmhJ37Nvvvua++Xcs+Uv2z3WrnfVnSvlXPNIJ6WqAZBbUH4gEG1hXIgAIHgCLiyQg9/82+b+u5vskLvb1sH/W7OnDn6gAMOsGMkZtKzNoK9TWESdD2VlccKvcrosA8CEPCZACv0PBRp6RIEfCAQxOxsmZE3fvx4ZfLvKVnJI6vzLrzwQtW5c2dlwkLkjElW9kkZsjJPts0331z1799fDRo0KOdyli5dqm688UY1ePBgtemmm9rzzzvvvJzbwIEQCJOAKyv0fv31V7tiRFaOmNyWSv5fuHCh+uijj9SHH36oTJ6Gchhk9nTjxo3tCpFGjRopk/PSzrCW9+YhU+2www7lzim0niZNmpSpR2ZzV1ZPuYrz+IAVennA4lAIJISAKyv0fvjhB7tCT+6rMrtdVtrJqj1pn/yJD7b2JqvvxH/ZY4891BZbbKFq165tV0ubXFj2vnjggQeuWT299rn5/h+ED5hvnRwPAQiET8CVFXqF+oH4m+FfI0HXwAq9oIn+VZ74DCZ3nbr00kvts5esijMTKe37cGqsuFRW6FXMhU8hAIESIOCzWknfIACB5BIodna2rKx78MEHtRHf7KwxczvX7dq1059++mneUKQsEzJTm4EsW5bk4TvqqKP0J598knNZknfviSee0EZc0HL+cccdp41QkfP5HAiBMAm4skJPvicy01JW0RohXZuHRW0Gnm3OS0myLt/j9D9Zxde9e3dtBD/9/fff2+PlvCVLlmgTBkbLfaSiLVM9s2fPtt/N9DrkvaxA6dmzp/7444/zqqeiunP9zPcZ07ly4DgI+ETAlRV64teYSRP2Xin3zEWLFtkVdmYigTYhxcvcZ+UeaMQ7feqpp+r33ntPL1iwYM29Vs795ZdftJlsEaiZivUBA20MhUEAAoERcGWFXiY/UHKs428GZm4nCmKFXvBmkO+PPKfsvPPO1l+Q6EOvvfZa8BXlUCIr9HKAxCEQgICXBJSXvaJTEIBA4gkUO5gjg/tmRZ02M8qto2lW0ujTTjtNm1lcBbF59dVX9T/+8Y81g1zbbrutvuWWW/IqS8L8iSggg2O77babFRzzKoCDIRASAVcEvUzdM6tItFlZu+b7lxLc9tlnH21W8wUW3uWDDz7QnTp1KlePhKYTsU8eYKPaEPSiIk09EIiOgCuCXqYey732lFNOKXcP3HvvvfWzzz6rRQiMYivWB4yijdQBAQjkT8AVQS9Ty/E3e2ZCk9jPEfSCN93XX3+tzz33XC3jKzLhWVIciLAWx4agFwd16oQABFwggKDnghVoAwQgUI5AsYM5kqPuoIMOWjMo1bBhQ33ZZZeVqyfXD2Q1nqwESgkJNWrUsOJcPrPS5dibb75Z16pVy+YHMyE7Ixscy7WfHFeaBFwX9GTGtAwop75/8ipi/YknnmhX4gVltYrqkRW1J510kl6+fHlQ1eRUDoJeTpg4CAKJIuC6oPfyyy+vyRmcut+m7oGy6jmqrVgfMKp2Ug8EIJAfAdcFvYr8QPzN/Gzs2tEIesFaxITEtpOSmzZtqk0KE3344YfbCCbB1pJ7aQh6ubPiSAhAwC8CCHp+2ZPeQMAbAsUM5si5d9xxhzZ5XdYIAFtttZW+4YYbCuYjIaaGDBmypjxxYNu2bZt3eIlU8mg5X0KAyoogNgjETcBlQU9Wxc2cOVPXq1dvzfdPBpo33nhjPWzYsMBWzVVWz/DhwwOrJ1dbI+jlSorjIJAcAq4LehJevH79+qHea3OxVjE+YC7lcwwEIBAPAZcFvcr8QPzNeK6XIGpF0AuC4t9lpCY5y2SfZs2a6euuuy5jioO/zwrvHYJeeGwpGQIQcJsAgp7b9qF1EChZAsUM5nz33Xd66NChdtZYaoa55K6bPn16wTyXLl2qx48fX2aQa5ttttFTp07Nq0zJB3bxxRfbcrbeemttkknndT4HQyAMAi4LepJPb+zYsWW+z/K93nHHHfWdd94ZGI6o6sm1wQh6uZLiOAgkh4DLgp74ORMmTFgTqjzlP7Vo0SLQe20u1irGB8ylfI6BAATiIeCyoBeVHxhVPbla2Hd/E0Ev1ysh+3ESbWjatGl2UqWE25R8kzLpOc4NQS9O+tQNAQjESQBBL0761A0BCGQkUMxgznvvvWdD8aUGo+RVctY9/PDDGevLtkNy7910001lBL2NNtpIX3DBBdlOLbNfwlTIDPjNN99cV69eXXfr1k2vWLGizDH8A4GoCbgs6MlMUMl/mf59lvcSUlcGx4PaPv300zJhdVP1BV1Pru31fYAlVw4cBwGfCLgs6KXn+U3d/1L32nnz5kVqhmJ8wEgbSmUQgEBeBFwW9PA317PpJPIyaAIORtALzkjiw3To0MFOspSJlTJZOqrcupl6gaCXiQyfQwACvhNA0PPdwvQPAgklUMxgzuzZs3WrVq3KCACSf+vZZ58tmIaEYZEwnpJHITXQJaEmOnfurPPJoycNEMHxhBNOsOXsu++++vnnny+4XZwIgSAIuCzoVZTPRL57nTp10r/++msQ3bdlvPjii1q+j6nvt7yGUU+uDUbQy5UUx0EgOQRcFvQkf17r1q2duAcW4wMm52qgpRAoPQIuC3r4mwh6pfeNzL3Hsor/+uuv17Vr19a1atXSPXr00EuWLMm9gJCORNALCSzFQgACzhNA0HPeRDQQAqVJoJjBnAceeMCGgkgfmD/ggAP0m2++WRTMe+65xzqw6eUedthhWma157MtX75cX3vttbpq1ap6k0020SNHjszndI6FQOAEXBX0KstnEnReu/vuu0/Lqtv077fk6Qu6nlyNh6CXKym3j1u8eLGdTDJp0iR9ySWX2Fyso0eP1rfddpt+66238p4Q4nZvaV02Ai4LehXlz2vQoIEeMWJE5DlEi/EBs9mA/e4T4L7pvo0KbaGrgh7+Zgu93noIeoVe16Vw3pw5c7SMp8hz0p577qlnzZoVuW9QEWcEvYqo8BkEIFAKBBD0SsHK9BECCSRQ6GCOhH2Q2O7pK+nE8Tz00EP1Rx99VBQJGezacMMNywz477///lpmteezyUPjM888Y8OAygogCV3x7bff5lMEx0IgUAKuCnqZ8owEndPpl19+sTky175vBJ2nLx+jIejlQ8utY2Vw4fXXX9f9+vXTu+++uw2xLOJwvXr19AYbbGB/R2QyR9OmTfWBBx5or72vvvrKrU7QmlAIuCroVZY/76677gqFRWWFFuoDVlYm+9wmwH3TbfsE1TpXBT38TQS9oK5xH8tZuHChHjVqlE0XIr7soEGDAo2SUgwzBL1i6HEuBCCQZAIIekm2Hm2HgMcECh3MkRB8Eg4ifZWNvC9kJd3aeCta+bfHHntoeTjNd5PB27PPPtu2c6eddtJ33313vkVwPAQCI+CqoFdZPpMgczpVljtKBuDj2BD04qBefJ2fffaZXYW3zTbb6Dp16tiwrWv/HqX/X61aNbsydL/99rN5WmUFN5u/BFwV9DLdAw8++GD97rvvRm6QQn3AyBtKhYEQ4L4ZCMZEFOKqoIe/iaCXiC9QDI2UicjyTLLzzjvbcYs2bdro1157LYaWVFwlgl7FXPgUAhDwnwCCnv82pocQSCSBQgdzJEzP5ZdfXk7QO/zww/Xnn39eFIsHH3zQhshMH4yVFTwzZszIu1zpnySSrlu3rl5//fWtuPfHH3/kXQ4nQCAIAq4KelHlM3Epd1TKngh6KRLJeJX79yuvvGJXXMt9vUqVKuV+h9J/O9Z+LyGYt9hiC33uuefqBQsWJKPTtDJvAq4KenIPlIgD6ddlKk/wypUr8+5nsScU6gMWWy/nR0uA+2a0vF2ozVVBD38TQc+F74eLbZg/f75dkScT0DbddFObKkRENFc2BD1XLEE7IACBqAkg6EVNnPogAIGcCBQ6mCMDoeeff36ZQSkZoDriiCP0l19+mVPdmQ56+OGHrSObPuC11VZb6RtuuCHTKZV+LiHZZOWgDPzKLPi5c+dWejw7IRAWARcFPZkReu+999owhenfOcnpFHReu4pW38aZP0/sjKAX1tUefLkS6lkGAyV8Zo0aNcr9/qRfv5W9l5CvksexV69eiHrBm8mJEl0V9DLlz5O8j3FshfqAcbSVOgsjwH2zMG5JP8tFQQ9/8z9aQtmTQy/p367g2y+TLmRCs4SIl/EKmSD98ccfB19RESUi6BUBj1MhAIFEE0DQS7T5aDwE/CVQ6GCOzCLr379/uQHVI488Usu+YrZHHnlEN2rUqEzZsqLi6quvLqjYRYsW2Xj0MsArjvK1115bUDmcBIFiCbgo6FWWzyTInE6SO+rKK68sl3czzvx5Yk8EvWKv6ujOF5Hm2GOPtYNhlQl2ueyTARPJrzd06FC9bNmy6DpBTZEQcFHQy5RDVAZ44woHXqgPGIkRqSQQAtw3A8GYuEJcFPTwNxH0EvdFiqjBEoq2e/fuNnx8s2bN9HXXXafl99mlDUHPJWvQFghAIEoCCHpR0qYuCEAgZwKFDubIKryzzjqrjOgmg6hHHXWU/vrrr3Ouv6IDH330Ud2kSZMyZTdu3FiPHz++osOzfiazk0UklFV+Esaic+fOWgbW2CAQNQEXBb3UQ+TaIkjQOZ0kd8+ZZ55Z5nstdR500EFaBhzj2hD04iKfX73fffedHjZsmK5Vq1a5a2jtazfX/2Wl3g477KBvvvnm/BrD0c4TcFHQcy1/nhixUB/Q+QuABloC3DdL90JwUdDD30TQK91vZOaer1q1Sk+bNk1LxBIZpzj++OOdjB6BoJfZhuyBAAT8JoCg57d96R0EEkug0MEcyZPXu3fvcgOrIuh9++23RfFIiR7pg7KyYm/MmDEFl/vRRx/pU0891ba3VatW+sknnyy4LE6EQKEEUtd2nTp19MCBAwstJtDzXnzxRb3PPvuU+S6HkdNpzpw5um3btuXq6dSpk/71118D7VM+hSHo5UMrnmMlTNesWbP0tttuW+b6Sf+NKPS95NTr2LFj0aGi4yFDrZkIuCjouZY/T9gV6gNm4s7n7hDgvumOLeJoiYuCHv4mgl4c3wXX6xR/pUOHDjbUpkQtmT59upbJyK5tCHquWYT2QAACURFA0IuKNPVAAAJ5ESh0MEdmmp9xxhnlBlfbt29f9KwyET0kxGb6AK0kh7788svz6lv6wStXrtRTpkzR1atX1/Xr19cXXXRR+m7eQyASAq4JepXlMxkxYkSgTCQ3hIQ4TP9ex50/TzqIoBeomUMp7JtvvtHnnXeeFvEt/foJ6r2EN5o0aVIobafQeAi4KOhVlD9P7olx5c8TyxTqA8ZjVWrNhwD3zXxo+Xesa4Ie/qb//uYXX3yh+/TpY/00mcAnOezZKicg6Qiuv/56Xbt2bRuBokePHnrJkiWVnxTTXgS9mMBTLQQgEDsBBL3YTUADIACBiggUOpiTKXyeCHrFrtCTkJsSYjN9sHazzTbTo0ePrqgLOX0mD5IvvPCCXYkkYdaknfLgwQaBKAm4Juil8pnIdyL9+xZ0Tqfly5fra665xrn8eWJ7BL0ovwGF1SWrO9u0aVPmGk2/Xot9v9566+nTTjtNS9gjNj8IuCboZcqft9NOO8WWP08sXagP6MdV4ncvuG/6bd9svXNN0MPf9N/fRNDL9q0svz89esmee+5po1HImIWLG4Kei1ahTRCAQBQEEPSioEwdEIBA3gQKHcwRp71v377lBliDCLkp+e4kxGb6IO3mm2+ur7jiirz7l36CCI2DBw+25W6//fY2Xn36ft5DIGwCrgl6UeUzyXS/iDt/ntgbQS/sq7648iXs0N1336032GCDMr8J6b8PQbw/8MAD9dtvv11cYznbGQKuCXqZ8uf94x//0O+9915s3Ar1AWNrMBXnRID7Zk6YvD7INUEPf9N/fxNBL79bysKFC/WoUaNs9KB69erpQYMGxZqCIFvrEfSyEWI/BCDgK4Eq0jEz4MAGAQhAwCkCf/zxhzKJmFX37t2VCTumjOClevXqlbWN8+fPV+PHj1dm1U2ZY4888kg1efJkZVbYlfk8n3+MoKd69uypvv/++zWnNWnSRA0YMMD+rfkwzzdmgEOZkFfKCJFq2bJlyuTUs+03qzPyLCm6w03uP3X11VerZ555JrpKqSk0AitWrFA//vijkmuxc+fO6rbbbgutrlwKfumll9S5556rXnnllTKHmxWxao899lA1atQo83mh/5iQMurDDz9UJgTYmiJMnj514oknqptuuknVrFlzzedRvzGCnurXr5/6+OOP1V577aVOOumkqJtAfZUQ+O2339Srr76q7r33XpkcV8mRxe2S3ywzIUWZ/CXFFcTZThAwIpmaMWOGMquDlVmRb/0SM1EotraZWfjKhI1Vcs9NbSaErL3f3HjjjYHda1Nl5/qa7gOacOTKCIxq//33z/V0jnOUAPdNRw0TYbPmzp2rbr/9dmUiMKiuXbvae2CE1ZerCn9TKfE3zz77bPXpp59af1N8YJ+2L7/8Uj300EPKRPFRJuSmHSdo2bJl4rtoJr4oeX6TsYP0P/Ev5M/kAbffM5MfXZnQmUpe09/LZ/KcI889qU382WeffVb1799fvfvuu8pEobC8WrVqlTrEuVf5Xbn11luVSbmimjdvroYMGaJMiFDn2kmDIAABCARNAEEvaKKUBwEIBEIgfTAnH0HPrHZTV155pXU+0xtyxBFHKJOLSDVt2jT947zey8OACHoifKQ2KU+Eh7POOiv1UUGvZta+Gj58uH3gEOd53LhxylXn+fPPP1dXXXWVuvnmm+0DQ0Ed5iRnCXTq1EndcccdsbVPHiZF4JaHMRMKqUw75KFTBpurVKlS5vNC/zHhY5Tca+Q1tZn8eVZcl+9jUPWkys7n1eT2U6effrr66aeflMmxaR/G8zmfY8MlINepCYVpB0zCrEmu+Vq1aimXJ3iE2X/fyjYzydf8brZr106ZHDV2ACqufj7wwAP2Xrt48eI1TTD586xPc/HFF6/5LOo3MlApE0vkHigD/zLoGNREjqj7Qn1/E+C++TeLUn2XugeKfyX+poh7cW34m3+R993fTAlfMmlx1113VSY/rPrnP/8Z12WXV73Sdhl3EDHSrDRc8ycipXwu++UZRv6kf6n3qVepTPxI+R1N/0t9Jv6liTZkJ0/LeIsIfrNnz1b33HOPksk0MtlYJlW77IMi6OV1SXEwBCDgEQEEPY+MSVcg4BOBQgU9GfyWAbIRI0aUwXHYYYfZz7feeusyn+fzT/oDT+q8bbfdVg0dOlR169Yt9VFBr+lC5M4772zFvWOPPbagssI+adGiRWrixIlq2LBhYVdF+TEQiFvQMzmdlKwMOf/888sIbSKeH3PMMcrk0QuEisxqff7559V9991XpjxZCSXXdtwzlE3OTnXmmWcquTewQQAC/hE4/PDD7USjLbfcMpbOyQplWYksK/Rk8C+1mfx51oeK0weRQUqJ0sAs+5RVeIWAfwTwN/E3o76qZbLs5Zdfrg455JCoq86pvpUrVyqZOPvGG2+oN998U8mEX4kiIkK4CFfyJ7+P8ioCnojSxWwi8slESRHs5E/+lzbIM5JEiOjQoYONErHLLrsoiZIS50THTP1E0MtEhs8hAAHfCSDo+W5h+geBhBIoVNCTEBMyQCVhMNO3Qw89VF133XVKBLhCt4pmsouDK+Jhx44dCy3WnieO+4UXXqiefPJJdfDBB9uQm0EJF0U1rIKTZeDPxNdXJq+TDc9SwSF8lDACcv3Jaoj111/fDqBKONW4NpPTSY0ePVpNnTq1TBPkeyHhdLfZZpsynxf6j8x0nTBhgl1pml6GyZ9nV6DKdzvOLT0EkoSbk/CbbO4QkN8aEV3DDk8rYZ0l3OqBBx7oTuc9b8nLL79sV/rLIJeExZQwxEFtEkL3lltuUfPmzbODZBIKXGbHx7HJjP8xY8bYCRTp9cv9RsKWxxnmNd0H3HTTTZWIixI6Pajtgw8+UP/+97+VhA+XEGwiaspAJlu4BLhvhss3CaW/8MILNgqJRB4QwR5/8yoVt7/59NNPWx9TQm6K0CXhN33aZGLcXXfdZUOLtm7d2j5LSCh7Fzb5rZP2SYqBF1980Qp5CxYssKKaCGsSCUKOkU1+o2Slet26dcv9mVx35T6TZzoR/WTyjkQ8kQmTmf5kv9yfRRxLbeIDSRmyis/ki1YyKVpCXwtDWeko7XBhQ9BzwQq0AQIQiIMAgl4c1KkTAhDISiB9MCefkJvp56VXEsQg/cyZM22+B4lJn9rkgUDEBxEbCt2kzRLaonfv3naWvOQNvOKKK1S1atUKLTL082RGYGqGYOiVUUHoBJ544gl1zjnn2Ic+CSsrwllcm+QzkcFVye2U2uSh8uSTT7YDzzIIFMQmD8+yClBCy6Q2CUHjQv48aY/kpxQRTwZYTjnlFLuSJ9VOXuMnIL8DIsysPXkk6JbttttudsV2kGJG0G30rTxZjS+5WOS+I7/LF110UWBdFCHv0ksvVQ8//HDsOfQy5c+Te+2UKVNiDXGZ7suJDzho0CAb8jwoQ4hoK9EV5HfghBNOsN9luf+zhUuA+2a4fJNQ+uOPP25D+oqwICF1ZWJVXBv+5l/k0/3NLl262CgscdkkjHolPKU818jvmgs59OT5WVbhiZAqf5JbV3Lgyao4EfFEhJNNnnckOonkDpeVhfIqE4Dktyr1JyJfpvepSSpSnvzJhNz01/T3cm+WdAfin8jvr+TXkxV7EpVHnvllZZ6MS6QEPplos88++yiJNLDvvvva8Jxh2C6XMhH0cqHEMRCAgJcEzA2aDQIQgIBzBIyzq80KHYkjoc1gjjb573Ju4913363NbDJ7rpwvf2Y2mTYDNzmXsfaBxrnVZvBWG4e2TLkHHHCAfuutt9Y+PK//zYOGNrMhbdkm3KY2wmFe53MwBIol8Nhjj2nz0KhN7gQ9cODAYosr+HzzsKnvvfdebWaalvmemZxO2jxkFlxuRSeaFbfa5MsrU4/8b3LnaWlH3JtZoafNKl1tHqi1EVnjbg71r0Ugda1utNFGZa6h1G9OUK9mtrw2q4nWqp1/wyRgwvDae1CDBg30iBEjAq3KhM/SZkW/vWbM6j9tZuYHWn4+hZnBO7329duwYUM9cuTIfIoJ5dhifMBcGmRWQmgzCGntYFbAavHx2MInwH0zfMau12AEPW3CDFt/00yIia25qWsRf1Nr3/1NE5FD9+nTx97vjaCnX3/99ViuO5MWRMsYhZk4qLfaaittctRps+JuzdiCvN9hhx20SeOhTWoLbSaeaBkj+P7777VZZaeNcBVau8U3MeE1bVvM6nxtUh9Y3/ORRx7RJg2BNsKdNiLemrYaEVEb0U+bMJzaiI36ggsu0Cbai5bf7qg3E45UG7HW2rd58+baRGqKugnUBwEIQCAWAjLjgg0CEICAcwSKGcx56qmn9Pbbb28du9Sg6t57763NDMSC+2nCUOirrrqqTJlStkmqrcVBL2Z79tlntQm3Yp1kcabFcWeDQJQEXBH0TMgXbVanajOrtMx3zeR0ClTolgfjK6+8slw98hB75513Rok+Y12+D7Bk7HiCdrz66qvarM4uc62mfnOCeJXBHRFzZbCCLToCpSDomdUx2qxYKHcPdGVSUTE+YC5XCoJeLpTCOYb7Zjhck1KqK4Ie/ubfV4zv/macgp5MFjGpBLQJb61NuEotk2Zq1qxpn/llkrBMqjnssMP0v/71L23yelsB78cff9RmxV5k4pg8E11//fVWoJMJ0SYUrl6yZImd3Cj+p7w3YUCtwCeTLs866yw7biETDsXXFXHPhN/UIqbJBBkT5cAKkH9fYeG+Q9ALly+lQwAC7hJA0HPXNrQMAiVNoJjBHFkxJzPf0wdUd999dy2zzArdTM44fckll5QpUwZbe/XqpU3IikKLtQ67yVWjTRgLO/Nt1KhRRZVXcEM4saQJuCLomfCS2oScLfM9k++xyemk33///cBsZHJHaRNSr1w9JjSvllmqLmy+D7C4wLjYNvzwww/64osvXjNjOf03J4j3Jl+kXalebDs5Pz8CpSDoyQCjiMVrX6dyr3VhRWgxPmAu1kbQy4VSOMdw3wyHa1JKdUXQw9/8+4rx3d+MQ9CT1XRz587VJly0jbax4YYbahPG2/7mmnx0WqIvyPO/jFmIWCaTbOR3L47NhN/WsnJR/IE999xTz5o1q8JIJbKq1YQEtROZTchQe5xJ16C32247OzlIBEoRKxs1aqQPPfRQbfLUarnfh70h6IVNmPIhAAFXCSDouWoZ2gWBEidQzGDO/Pnzdf/+/csMVImzedtttxVMVcqU0DDpg18SZkJm3BWzmbj5+vjjj7flSvgnGWRig0DUBFwR9NIHWVPfNXkANjnk7ENkUFwkjE2bNm3KfJ9lhmmnTp20ySMRVDVFleP7AEtRcBw5WWZey4pwmTCSul6DepVJHjLTOYrBEEdwOtOMUhD0TO4ou1og/XqVe+2pp56qV61aFbstivEBc2l8+m8NITdzIRbcMdw3g2OZxJJcEfTS7wGp+yD+pp8h3qMU9ERckpCeEuJTVqyJeCdRR+Rviy220CY3to0YJOG2ZRVe3OGeZcKyTCY2+fpsqHERIHN5DhJxT/oqUYpkEpCkSWnXrt2alCeyek/Clsuz1nXXXWdFy7DuVwh6YZGlXAhAwHUCCHquW4j2QaBECRQzmGOSSlvnMT3fXePGjW14qUJxfvLJJzamfeqhT1532203/dBDDxVapJ39Jnm8JCa9ONKyMknazgaBqAm4IOil8pnILNb075nkz5PVsUFukjvK5fx50lcEvSAtHl5ZMpgxevRomwcl/bot9r2EYRZhqZgV4OH12u+SS0HQy5Q/77LLLnPCuMX4gLl0IH0wH0EvF2LBHsN9M1ieSSrNBUEPf7PsFeO7vxmFoCe/WW+//bY+++yz9dZbb23DV8o4hEzOklDW4ifKij2594WZC6+sZSv/T74HYntpn/isIr699tprlZ9UwV7xU2X8QiY/y/Nkly5d1jxjSf/leUvKnjx5shYBMegNQS9oopQHAQgkhQCCXlIsRTshUGIEihnMEQf1iSeesImlU4OqkvR8yJAhBVMUJ1zy5aXKEye92Hx33333nb7wwgvtrD0JrSahKdggEAcBFwQ9CTczbtw4+31Ifc/kVfLnSRL5oLYk5M+Tvvo+wBKUPeMuRwYyPv74Yxu+MH0SSfo1nO/7Jk2a6LFjxzLBIybj+i7oVZY/T/LjuLAV4wPm0n4EvVwohXcM983w2LpesguCHv5m2avEd38zTEFPxhwkjP+wYcPsuEOdOnVsGHaZqLvXXnvZ3HQyKViuubhX45W1urYCnKzIS6X9GDlyZFE5m4WFiGsSWWL27Nk2197mm29ux06kDlmxJ/kC77nnnpxWAa7d3kz/I+hlIsPnEICA7wQQ9Hy3MP2DQEIJFDuYk+68y2CqhNPr3LlzwWH7nnvuObsiLzUwK6uGLr300qJWT6SH/RMHV3LasEEgDgIuCHqSz0QSsae+Y6nXgw8+WL/77ruBYUlC/jzprO8DLIEZ1IGC5PdKQiwdd9xx5QTp1HWc66v8tgwdOlQvWrTIgZ6VZhN8F/TE1zj99NPL3Wslp48L+fPkqivWB8x25SLoZSMU/n7um+EzdrEGFwQ9/M2yV4bv/mb6mIDkihN/LYht8eLFNp3HfvvtZ8NVSlhNCTXZqlUrPWnSJCv0SVhNEbpc20RcfPDBB3XTpk2tAHn44YfbyWlBtVNWIcpqRAnvLasWJRqR+MHCR0KPnnbaafqNN94IhA2CXlBWoxwIQCBpBBD0kmYx2guBEiFQ7GCOOJLTp0/X6eH7ChUGxBGXFUIy6y41KCuz7p555pmCrSE5aiTefK1atWwbzz///NiSYRfcCU70hoALgl76AGvqe1asEF+RgdKF9PR6XMqfJ+32fYClItsk+TP5zZk3b57Nm1KjRo01vxWpayyXVwnTdNVVV9lBEBcHgJJsn3za7rug53r+PLFVsT5gNnun/94QcjMbrfD2c98Mj62rJbsg6KV//1O/zfibLazY0rNnT1cvnYLbFbSgJ2KYhNcUUaphw4Z2hZtcPzvssIONNCKCsatCXgqirBqUVB/S7mbNmtlUJfK7G/QmZYqw9+yzz+quXbvanIISzWL99dfXe+yxh7766qv1kiVLiqoWQa8ofJwMAQgkmACCXoKNR9Mh4DOBIAZzxNk++uij1wysSlhLEdHy3SQ05gUXXGBnsMmDnwh7Mtssl6TRmepKnx26++6760cffTTToXwOgdAJxC3oiXghod7SBXj5rkl4lhEjRgTaf8lb6Xr+POkwgl6gZo+kMPnd+vrrr2345L333jvn1XoSEvqEE07QTz31lJaQsGzxEvBd0HM9f55YPwgfsLKrKH1AH0GvMlLh7+O+GT5jl2qIW9DD3yx/NfjubwYp6In4dMstt+g999zTilLyrCKiXr9+/azIJ6E1XZ+QJZOKp02bZp+FJBTm8ccfrxcsWFD+wgjwE5m8IXXMnDlTywRrERKrVq1qV+6dcsopdrVeodUh6BVKjvMgAIGkE0DQS7oFaT8EPCUQxGDOypUr9YwZM2xoB3G4JZ79qaeeauPY54PthRdesHHwpQz523fffbV8VswmOf6aN29uHdoTTzxRS9gONgjERSBuQS9TPpMWLVrou+66KzAsScmfJx32fYAlMKM6VpAM5Cxfvlx/+OGHdgKJhOFs1KjRmoklqd8RCTsks7llcsjDDz+sv//++6JylziGIdHN8VnQk3vt+PHjy4nNu+yyi5Z+u7IF4QNW1hcEvcroRL+P+2b0zOOqMW5BD3+zvOV99zeDEPTkHiX5klPhI0WMknGFgw46SMtEQVmF5lqOvPKW/uuTd955R3fo0MFOVN5xxx1tRCPJaxr2JgxlbEb8Y0lb0rhxY9sGiVYkk+D+/e9/FzRZGkEvbMtRPgQg4CoBBD1XLUO7IFDiBIIazPnxxx/1ZZddplMh0Lbaais9ceJEnavjKg8BMutOBl9lIHbLLbe0IdFkdluhm4h3Y8aMsTPTmjRpoidMmOD8bL5C+8p5ySAQt6CXvmI1JXjIqzwoSxjDoDbJn3fmmWeWE1ekHnnAdWnzfYDFJdZhtEV+Y1asWGGFOrm+n376ad2tWzd77W233Xb6+uuv119++aUdBCrm9ySMtpd6mT4LepXlz/voo4+cMX1QPmCmDiHoZSIT7+dr3zcfeeQR3bFjR3vf3HXXXfUdd9zBfTNeExVde9yCHv5meRP67m8WK+iJjyYTcSXPbCr9xmabbaYlXYaErhSRKimbTGwU/7N27do27YfkLi825GW+fZf7vIyFSHQiyd2XWq0nufUGDhyov/rqq7yKRNDLCxcHQwACHhFA0PPImHQFAj4RCGowR5zGDz74YM1Aqsyok1lgsiIi2/bzzz/bmPIbbbSRHUyQMH3nnXeeXrRoUbZTK93/1ltv6SOPPNKWecABB+g333yz0uPZCYGwCcQt6KUPrqYEPXnACzqv3Zw5c3Tbtm3tdy/MeoKwl+8DLEEwSlIZP/zwgx4+fLi99nbbbbecfoOS1D+f2uqzoFdR/jwJuSW5bVwSloPyATNdl+m/OYTczEQp/s9lIL5v3772vrn//vtr+Q1nSzaBuAW99O9+mH4g/qY712kxUvJmBAAAGkpJREFUgp6svJOJwDIRSyb3psYR7r77bitKyThDkrb061LChs6aNSu2ScXic8gYzYUXXmjDf66zzjq6bt26dvVgPpGQEPSSdAXSVghAIEgCCHpB0qQsCEAgMAJBDuZIWZJPTwasZKWeOOQyqC8zwySme0Wb5M274oortKzok+TNkjB63LhxWlb8SciIQjcJx3HnnXfaXGGSELpPnz5ODaIV2i/OSzaBOAU9+T7JAHpKOE8NsIiALgJIMd+3ta3y4IMP2rx8qTrkNYx61q63kP8R9Aqh5u45MigkIYbkmpO8qbLyhM1NAj4LehXlz9t00031qFGjnDJGkD5gRR1LH9RH0KuIkBufyUoNiZIh983WrVvrV1991Y2G0YqCCcQp6OFvVmw23/3NQgU9OU8m8kqOvJTYJKk7ZEzh119/rRimw58uXLjQ/tZLqFDJ3Txo0KDY+yHjItIuWX0tAqPc62WsZp999tG33367zaebDSmCXjZC7IcABHwlgKDnq2XpFwQSTiDowRwR7iS8mYS3lLCZ4syKSNe9e3ctD5cyaCDhHyTs3pQpU/QRRxxhBQaZuS4r+mSAT/IuFLvNnz9fDxgwwIqEkj9p+vTpxRbJ+RAomkCcgl6mfCaS10HE76C2ZcuW2XC58lAuD4ypv6DrCaq9vg+wBMUpKeUg6CXFUtr+3stgV4MGDfSIESMCbbj4GKkQgu3bt9fffvttoOVXVlhl+fNE6HNpC9oHXLtvCHprE3HzfwQ9N+1STKviFPTwNyu2nO/+Zr6Cngi/c+fOtVFCNthgA/u80LRpUyuGLViwIDG58tKtLX0SO++88862P23atNGvvfZa+iGxvZe2SYh6WZV34okn2lWQMv4iqyLHjh2r5fmtsg1BrzI67IMABHwmgKDns3XpGwQSTCCMwRwJiyEPcxJySsI7yEwwCe0gcfBF3Nt66621xG+XFTubbLKJPuyww/QNN9ygJa9MUDPxnnvuOb3HHntYQU8G87755psEW4mm+0IgTkGvsnwmQea1+/zzz3Xv3r3XCHkpQc/F/HlyXfk+wOLLdyfXfiDo5Uoq/uN8XaEn99rTTz+93D3w0EMPtX5O/OT/bkEYPuDfpWuNoJdOw933CHru2qbQlsUp6OFvVmw13/3NfAQ9+e2ZPXu2bteunc0xJ5MA5bl9xowZWlJxiPiUxE0mFMuKPBHKZFX+yJEjtQhhLm0y+VrGXCQ3oYzPSOqFxo0b6yFDhthVfJnaiqCXiQyfQwACvhNA0PPdwvQPAgklEOZgjpQtCaBlgF8EtqlTp+rRo0fb8H5XXXWVvuuuu2xYH5mFt3z5ch1UfHwpSxJRS8hPEQxl5r+EmmCDQNwE4hT0nn/+ed2yZcsyg8zyAC1h0GTGZlDbyy+/rGVGakrIk1ep5+STTw5MsA+qrVKO7wMsQbJKQlkIekmw0l9t9FXQk0HKVq1albkHyoBZ586dnRvYC9MHFCsj6CXj+4iglww75dPKOAU9/M2KLeW7v5mroCfCkOSU23fffW0kH3lelwkvMlYQ5PNIxVYI71MZa5CUA7LKUNKIHH744frjjz8Or8IiSpa2yviLjMeImCfPaRIt4ayzzso4CRpBrwjgnAoBCCSaAIJeos1H4yHgL4GwB3OEnMyyk3rESZeVeyLyLV26VK9cuTIUoe3999+3IoUICRLG85lnnvHXgPQsUQTiEvTk+3bttdfqmjVrlhlkrlOnjg1NG9RMWPmOy2rbWrVqlatn4MCBTs649X2AJVFfkAAai6AXAMSIivBR0JN77TXXXJPxHhgR2pyrCdsHRNDL2RSxHoigFyv+UCqPS9DD38xsTt/9zVwEvVWrVumHH37YRu+RVWzyvHDCCSfYVByurWTLbMmK93zyySc2xYhM4JGIRNddd11OuekqLi38T+XZT8Zkbr31Vr399ttbEVLyrPfq1Ut//fXX5RqAoFcOCR9AAAIlQgBBr0QMTTchkDQCYQ/mRM1DnNOHHnpIb7755naFniTVzhYTPuo2Ul/pEohC0JNQKhKu5scff9SfffaZfvrpp/XgwYN18+bNy4hsInjLQ2fbtm31o48+anNfihgionsuD9VyjOTDlHrkIV5mZA8fPrzSeqT/kmMzn3rCvlp8H2AJm59r5SPouWaRzO1JuqAn90AZDPv++++1DOTJALrk7t1qq63swFj6KmW510rYYTlGQl3JOXKflolNQU2oyEw6856wfUAEvczsXdqDoOeSNYJpSxSCHv5mfrby3d+UZ4E+ffrYZw15tnj99dfLAJJIPMJAUnFUrVpVS968bt26aQnRKr9FSd5EqJw2bZpNJyJC5fHHH29XwLneJ/E/ZJxk5syZa1KVbLPNNvrGG28s13QEvXJI+AACECgRAgh6JWJougmBpBEIezAnah4//PCDHjZsmBUqZFBt0qRJsQ6WRd1/6nObQJiCngwsT548Wbdo0cLmqZTrf8stt9SNGjWyD80yoJw+wJx6X6NGDZvfUo6VcyTHpTxsjxs3rkKYUo98r3bYYYcy9YiIXq9ePfvdS5Wd/pqpnvHjx1dYT1Qf+j7AEhVHV+pB0HPFEtnbkVRBT0Jo9evXz85ol/ul3DclxJbkCZZVzxK6Kv3el3qfugfKsal77bbbbmtzjorvEscWtg+IoBeHVfOvE0Evf2aunxGmoIe/WZj1ffc3swl6InqJUCSCl+RuO+OMM+wkv6BSbhRmlWDOklzkHTp0sJN5dtxxRz19+vTAUokE08LKS5EIK/KMevDBB+v99tvPTvRc+wwEvbWJ8D8EIFAqBBD0SsXS9BMCCSMQ9mBO1DheeeUVfeCBB9rBtEMOOUR/8MEHUTeB+iCQkUCYgt7ChQv1ZZddZlemysOyhNcUgU3ySEp+BBlA3m677awQJ2KczMCUz7bYYgs7EC1hVmrXrm3Pb9KkiR47dmyF/ZB6JMm75LwIop4rrriiwnqi+tD3AZaoOLpSD4KeK5bI3o6kCnpz5861A3cySULugeuvv77ecMMNdcOGDTPea1OCX/369a3oJ+KerFCQ+3SXLl00gl7264UjwiOAoBce27hKDlPQw98szKq++5vZBD1ZDSbC19ChQ7VM5pP7jg9inoSZvf766+0zlIQQ7dGjh129X9hVEt9ZEjHgm2++0fPnz68wlyGCXny2oWYIQCBeAlWkejNDkw0CEICAUwRMUmRlQkSo7t27KxPvXZnQfMrETneqjbk2xoR+UTNmzFB9+/ZVZqBMnX766Wr06NHKDLjlWgTHQSBUAmaARfXu3VuZUJWqZ8+eyjzQBlafeShWJlymWrRokS3TJGRXFf2lVyiuSUV/8v0xYqAyg9Tph9v3UdVTruKQPjA5NpVZbaNMyB/VtWtXNWXKlJBqotgoCMj1P3HiRGVWaqvdd99dGfFZHXXUUVFUTR15Erj//vut7yG/0fK7bUL25llC5sPnzZunRowYoaSO9u3bK7N6WZnVyplPyGOPGdSy91kzo92eVdF9Vj5L31L3WTOgae+5sk8+k+PMRArVoEEDZQTC9FMieR+2D/jSSy+p8847T82ZM0eddNJJ6vbbb4+ln5HATHAlZgDX+iMm/6Nq3bq1fb/XXnsluEc0fdasWdbflN9EeR6aMGFCYFCi8gOjqicwMFkK8t3fNCH1lZmkZ30wE3LT3kdatmxZhoqZSKyWL19ufwfkt8+saC+zP4n/mMnE6vzzz1ezZ89WJsKJGjVqlGrXrp39fU9ifzK1WcZZTL49ZVZWKpPGQQ0ZMkQZ8TLT4XwOAQhAwB8C5qGNDQIQgIBzBHxaoSf5wiR8hxkg07vuuqt+4IEHnONNg0qbQJgr9EqbbOG9933GdOFkknkmK/SSY7ekrtBLDuHsLQ3bByTkZnYbuHAEK/RcsEKwbQhzhV6wLS2d0nz3N7Ot0PPR0rJa1Qh4unr16jYqyqBBg/Svv/7qY1dtfnUz6dFGQZK87DfddJOX/aRTEIAABNYmQMjNtYnwPwQg4ASBsAdzouzkU089ZUMKSv6aY445RouTzQYBlwgg6Llkjb/a4vsAi3vEw20Rgl64fIMsHUEvSJqFlRW2D4igV5hdoj4LQS9q4uHXh6AXPuN8a/Dd3yw1QU9CiIpNd955ZytytWnTRr/22mv5XhaJOZ6Qm4kxFQ2FAAQCJoCgFzBQioMABIIhEPZgTjCtzF7Kzz//rMeNG2dz0piwWnrMmDFexOXP3nOOSBIBBD33rOX7AIt7xMNtEYJeuHyDLB1BL0iahZUVtg+IoFeYXaI+C0EvauLh14egFz7jfGvw3d8sNUFPVuJNmjTJ5tLddNNNbX5xEb183RD0fLUs/YIABLIRQNDLRoj9EIBALATCHsyJqlNz587VRx99tJ0hZ/J/aBPPPqqqqQcCORNA0MsZVWQH+j7AEhlIRypC0HPEEDk0A0EvB0ghHxK2D4igF7IBAyoeQS8gkA4Vg6DnkDH+f1N89zdLTdAzOR61yYuo//nPf+qhQ4dqk0PQvYsuwBYh6AUIk6IgAIFEEUDQS5S5aCwESodA2IM5UZAUh/qee+7R9evX1zVr1tQ9e/bUK1eujKJq6oBAXgQQ9PLCFcnBvg+wRALRoUoQ9BwyRpamIOhlARTB7rB9QAS9CIwYQBUIegFAdKwIBD3HDGKa47u/WWqCnlxhskrvu+++04sWLfI+MhCCnnv3FFoEAQhEQwBBLxrO1AIBCORJIOzBnDybU9Dh33zzjT733HO15M7bbrvt9K233lpQOZwEgbAJIOiFTTj/8n0fYMmfSLLPQNBLjv0Q9OK3Vdg+IIJe/DbOpQUIerlQStYxCHru2ct3f7MUBT33rrLwWoSgFx5bSoYABNwmgKDntn1oHQRKlkDYgzlRgJ09e7Zu1aqVDbd5xBFHaHmgYIOAiwQQ9Nyziu8DLO4RD7dFCHrh8g2ydAS9IGkWVlbYPiCCXmF2ifosBL2oiYdfH4Je+IzzrcF3fxNBL98rIlnHI+gly160FgIQCI4Agl5wLCkJAhAIkICEq5QVbUopvfXWW+sbb7wxwNLDL2rFihU2IXX16tVtyM0LL7xQ//HHH+FXTA0QKIAAgl4B0EI+xfcBlpDxOVc8gp5zJsnYIAS9jGgi24GgFxlqpytC0HPaPAU1DkGvIGyhnuS7v4mgF+rlE3vhCHqxm4AGQAACMRFA0IsJPNVCAALZCdx99926Vq1aukWLFlreJ2lbuHChvuSSS6wguddee9n8BElqP20tLQIIeu7Z2/cBFveIh9siBL1w+QZZOoJekDQLKwtBrzBuvp2FoOebRbVG0HPPpr77mwh67l1zQbYIQS9ImpQFAQgkiQCCXpKsRVshUGIEPvzwQz1kyBA9bNgwPX/+/ET1Xlbjvfzyy7p///566tSpNjl1ojpAY0uKAIKee+b2fYDFPeLhtghBL1y+QZaOoBckzcLKQtArjJtvZyHo+WZRBD0XLeq7v4mg5+JVF1ybEPSCY0lJEIBAsggg6CXLXrQWAiVF4LffftOLFy+2f0kMV7lq1Sq9aNEivWzZspKyG51NHgEEPfds5vsAi3vEw20Rgl64fIMsHUEvSJqFlYWgVxg3385C0PPNogh6LlrUd38TQc/Fqy64NiHoBceSkiAAgWQRQNBLlr1oLQQgAAEIQCBwAgh6gSMtukDfB1iKBpSwAhD0kmOwF198Ue+777423Pddd90VaMPfeecd3bFjRxuOu3379vrbb78NtHxfCgtb0Pvkk0909+7ddYMGDfSIESN8weZdPxD0vDMpITcdNKnv/iaCnoMXXYBNQtALECZFQQACiSJQRVqr2CAAAQhAAAIQKFkCJqeJ6t27tzIrYlXPnj3V+PHjS5aFKx1/5plnVL9+/dSnn36qunbtqqZMmeJK02hHAQTMam01ceJEZUJIq913312NHDlSHXXUUQWUxClhE/j111+VEXzU0qVLra3q1KkTWJXz5s1TRkBS999/vzKCnpo8ebJq1KhRYOX7UpCJyqCmTZumjOimmjVrpgYPHqx69eoVWPeMYKjMIK/65ptvlMnTrBo2bBhY2RQUHAETbt/6I9dcc41q3bq1fW/yUgdXASVFTmDWrFnW35TfxNNPP11NmDAh8jZQYVkCvvubX375pbriiiusD9a2bVt7H2nZsmVZCPyXWAImopO69dZb1RlnnKGaN2+uTLoW1aNHj8T2h4ZDAAIQyJUAgl6upDgOAhCAAAQg4CkBBD33DOv7AIt7xMNtEYJeuHyDLv3PP/9Uq1evVtWqVQu0aAS93HCGLehJK8TG8ic2rlKlSm4N46hICSDoRYo7ksoQ9CLBnFclvvubCHp5XQ6JOxhBL3Emo8EQgEBABBD0AgJJMRCAAAQgAIGkEkDQc89yvg+wuEc83BYh6IXLNymlI+jlZqkoBL3cWsJRcRJA0IuTfjh1I+iFw7WYUn33NxH0irk63D8XQc99G9FCCEAgHAIIeuFwpVQIQAACEIBAYggg6LlnKt8HWNwjHm6LEPTC5ZuU0hH0crMUgl5unHw/CkHPPwsj6LlnU9/9TQQ99665IFuEoBckTcqCAASSRABBL0nWoq0QgAAEIACBEAgg6IUAtcgifR9gKRJP4k5H0EucyUJpMIJeblgR9HLj5PtRCHr+WRhBzz2b+u5vIui5d80F2SIEvSBpUhYEIJAkAgh6SbIWbYUABCAAAQiEQOC+++5Tp512mlq+fLlq0aKFOvLII0OohSLzIfDxxx+rxx57TP3++++qU6dO6vbbb8/ndI51jACCnmMGiak5b7/9tho2bJh65JFHVOPGjdVBBx2kGjVqFFNr3K1WBL13331XPfnkk6pJkyZqwIAB9s/dFtOyMAgg6IVBNd4yxd/s3r27WrZsGf5mvKZYU7vv/iaC3hpTe/kGQc9Ls9IpCEAgBwIIejlA4hAIQAACEICAzwRmzJihTjnlFLV69WpVrVo1VbNmTZ+7m4i+iZC3cuVK21YR9O64445EtJtGVkwAQa9iLqX26cyZM1W3bt3UihUr1LrrrquqV6+uqlatWmoYcuqvDNKtWrXK8unSpYuaOnVqTudxkD8EEPT8sWWqJ/ibKRLuvPrubyLouXOthdESBL0wqFImBCCQBAIIekmwEm2EAAQgAAEIhEhg9uzZatCgQeqNN94IsRaKLoRA3bp11RlnnKHGjh1byOmc4wgBBD1HDBFzMz777DM1ZswYdeONN8bckuRUv8suu6gRI0aojh07JqfRtDQQAgh6gWB0qpAXXnjB+puvv/66U+2iMUqJv3nmmWfa3yifeCDo+WTN8n1B0CvPhE8gAIHSIICgVxp2ppcQgAAEIACBjARkFcQPP/ygli5dalfpZTyQHZESqFKlilpvvfXUxhtvbP8irZzKAiWAoBcozsQWJqEklyxZon788Ucl79kqJ7DOOuuo2rVrq4YNG6patWpVfjB7vSOAoOedSe2qW/xN9+zqs7+JoOfe9RZkixD0gqRJWRCAQJIIIOglyVq0FQIQgAAEIBAiAa21kj82NwjIAItsqVc3WkUrCiGAoFcINX/P4V6bm23l3sf9LzdWPh6FoOejVf/qE/dAt2ybus+mXt1qXXGt+fzzz+2qwylTptiUAjvuuKOSld9sfhD43//+pyQP5Jtvvmlz7krEmXPOOcePztELCEAAApUQQNCrBA67IAABCEAAAhCAAAQgUCwBBL1iCXI+BCBQagQQ9ErN4vQXAsETkDCvAwcOXJNWQPLWSvQLNj8IyOQAiXgguSDFtuTc9cOu9AICEMhOAEEvOyOOgAAEIAABCEAAAhCAQMEEEPQKRseJEIBAiRJA0CtRw9NtCARI4KefflITJ05Uw4cPtyu+q1WrpmrUqBFgDRQVJwER9ETMk/QRrVq1Updffrk65JBD4mwSdUMAAhCIhACCXiSYqQQCEIAABCAAAQhAoFQJIOiVquXpNwQgUCgBBL1CyXEeBCCQIrB69WqbI1xy18omYUUlPyubHwRS4XvltWbNmqpBgwYItn6Yll5AAAJZCCDoZQHEbghAAAIQgAAEIAABCBRDAEGvGHqcCwEIlCIBBL1StDp9hgAEIAABCEAAAhDIRgBBLxsh9kMAAhCAAAQgAAEIQKAIAgh6RcDjVAhAoCQJIOiVpNnpNAQgAAEIQAACEIBAFgIIelkAsRsCEIAABCAAAQhAAALFEEDQK4Ye50IAAqVIAEGvFK1OnyEAAQhAAAIQgAAEshFA0MtGiP0QgAAEIAABCEAAAhAoggCCXhHwOBUCEChJAgh6JWl2Og0BCEAAAhCAAAQgkIUAgl4WQOyGAAQgAAEIQAACEIBAMQQQ9Iqhx7kQgEApEkDQK0Wr02cIQAACEIAABCAAgWwEEPSyEWI/BCAAAQhAAAIQgAAEiiCAoFcEPE6FAARKkgCCXkmanU5DAAIQgAAEIAABCGQhgKCXBRC7IQABCEAAAhCAAAQgUAwBBL1i6HEuBCBQigQQ9ErR6vQZAhCAAAQgAAEIQCAbAQS9bITYDwEIQAACEIAABCAAgSIIIOgVAY9TIQCBkiSAoFeSZqfTEIAABCAAAQhAAAJZCCDoZQHEbghAAAIQgAAEIAABCBRDAEGvGHqcCwEIlCIBBL1StDp9hgAEIAABCEAAAhDIRgBBLxsh9kMAAhCAAAQgAAEIQKAIAgh6RcDjVAhAoCQJIOiVpNnpNAQgAAEIQAACEIBAFgIIelkAsRsCEIAABCAAAQhAAALFEEDQK4Ye50IAAqVIAEGvFK1OnyEAAQhAAAIQgAAEshFA0MtGiP0QgAAEIAABCEAAAhAoggCCXhHwOBUCEChJAgh6JWl2Og0BCEAAAhCAAAQgkIUAgl4WQOyGAAQgAAEIQAACEIBAMQQQ9Iqhx7kQgEApEkDQK0Wr02cIQAACEIAABCAAgWwEEPSyEWI/BCAAAQhAAAIQgAAEiiCAoFcEPE6FAARKkgCCXkmanU5DAAIQgAAEIAABCGQh8P8AAAD//2TqMa0AAEAASURBVO3dCbxWU////xUpiZShIqGQhIhSZjJHlDskNIjQgBQyJilS3YaIDGlChlsZcyNTSAPiRpO6u5MQKSRj1n+91+9/ne+pc67ONex9nX3t67Ufj+OcrrP32ms/12Vf+6zPWp9VwbrNsCGAAAIIIIAAAggggEAoAitXrjQjR440N954o2nSpIkZOHCgOfnkk0M5F4UigAACcRBYunSpGT58uLn77rvNYYcd5n8+6KCD4nBpXAMCCCCAAAIIIIAAAhkLVCCgl7EdByKAAAIIIIAAAgggUKYAAb0yidgBAQQQWE+AgN56HPwDAQQQQAABBBBAAAEvQECPNwICCCCAAAIIIIAAAiEKENALEZeiEUAglgIE9GLZrFwUAggggAACCCCAQJYCBPSyBORwBBBAAAEEEEAAAQQ2JkBAb2M6/A4BBBAoKUBAr6QJryCAAAIIIIAAAgggQECP9wACCCCAAAIIIIAAAiEKENALETfgon/77TezYMECs2rVKqP1uqpUqRLwGSiuvAXWrVtn/vvf/5r//e9/Zr/99jPbbbddeVeJ85ciQECvFBReQgABBBBAAAEEECh4AQJ6Bf8WAAABBBBAAAEEEEAgTAECemHqBlv222+/ba655hrzxx9/mB49epjOnTsHewJKK3eBzz77zAwdOtSorc8++2xzyy23mAoVKpR7vajA+gIE9Nb34F8IIIAAAggggAACCEiAgB7vAwQQQAABBBBAAAEEQhQgoBcibsBFT5482VxwwQVm0003NT179jQ33HBDwGeguPIWmD59urnqqqvMu+++azp06GDGjRtnNtlkk/KuFuffQICA3gYg/BMBBBBAAAEEEEAAASdAQI+3AQIIIIAAAggggAACIQoQ0AsRN+CiJ02aZM4//3yz2Wab+Rl6/fv3D/gMFFfeAgrkXXnllUaBvfbt25sJEyb4AG5514vzry9AQG99D/6FAAIIIIAAAggggIAECOjxPkAAAQQQQAABBBBAIEQBAnoh4gZcNAG9gEEjWBwBvQg2SilVIqBXCgovIYAAAggggAACCBS8AAG9gn8LAIAAAggggAACCCAQpgABvTB1gy2bgF6wnlEsjYBeFFulZJ0I6JU04RUEEEAAAQQQQAABBAjo8R5AAAEEEEAAAQQQQCBEAQJ6IeIGXDQBvYBBI1gcAb0INkopVSKgVwoKLyGAAAIIIIAAAggUvAABvYJ/CwCAAAIIIIAAAgggEKYAAb0wdYMtm4BesJ5RLI2AXhRbpWSdCOiVNOEVBBBAAAEEEEAAAQQI6PEeQAABBBBAAAEEEEAgRAECeiHiBlw0Ab2AQSNYHAG9CDZKKVUioFcKCi8hgAACCCCAAAIIFLwAAb2CfwsAgAACCCCAAAIIIBCmAAG9MHWDLZuAXrCeUSyNgF4UW6VknQjolTThFQQQQAABBBBAAAEECOjxHkAAAQQQQAABBBBAIEQBAnoh4gZcNAG9gEEjWBwBvQg2SilVIqBXCgovIYAAAggggAACCBS8AAG9gn8LAIAAAggggAACCCAQpgABvTB1gy2bgF6wnlEsjYBeFFulZJ0I6JU04RUEEEAAAQQQQAABBAjo8R5AAAEEEEAAAQQQQCBEAQJ6IeIGXDQBvYBBI1gcAb0INkopVSKgVwoKLyGAAAIIIIAAAggUvAABvYJ/CwCAAAIIIIAAAgggEKYAAb0wdYMtm4BesJ5RLI2AXhRbpWSdCOiVNOEVBBBAAAEEEEAAAQQI6PEeQAABBBBAAAEEEEAgRAECeiHiBlw0Ab2AQSNYHAG9CDZKKVUioFcKCi8hgAACCCCAAAIIFLwAAb2CfwsAgAACCCCAAAIIIBCmAAG9MHWDLZuAXrCeUSyNgF4UW6VknQjolTThFQQQQAABBBBAAAEECOjxHkAAAQQQQAABBBBAIEQBAnoh4gZcNAG9gEEjWBwBvQg2SilVIqBXCgovIYAAAggggAACCBS8AAG9gn8LAIAAAggggAACCCAQpgABvTB1gy2bgF6wnlEsjYBeFFulZJ0I6JU04RUEEEAAAQQQQAABBAjo8R5AAAEEEEAAAQQQQCBEAQJ6IeIGXDQBvYBBI1gcAb0INkopVSKgVwoKLyGAAAIIIIAAAggUvAABvYJ/CwCAAAIIIIAAAgggEKYAAb0wdYMtm4BesJ5RLI2AXhRbpWSdCOiVNOEVBBBAAAEEEEAAAQQI6PEeQAABBBBAAAEEEEAgRAECeiHiBlw0Ab2AQSNYHAG9CDZKKVUioFcKCi8hgAACCCCAAAIIFLwAAb2CfwsAgAACCCCAAAIIIBCmAAG9MHWDLZuAXrCeUSyNgF4UW6VknQjolTThFQQQQAABBBBAAAEECOjxHkAAAQQQQAABBBBAIEQBAnoh4gZcNAG9gEEjWBwBvQg2SilVIqBXCgovIYAAAggggAACCBS8AAG9gn8LAIAAAggggAACCCAQpgABvTB1gy2bgF6wnlEsjYBeFFulZJ0I6JU04RUEEEAAAQQQQAABBAjo8R5AAAEEEEAAAQQQQCBEAQJ6IeIGXDQBvYBBI1gcAb0INkopVSKgVwoKLyGAAAIIIIAAAggUvAABvYJ/CwCAAAIIIIAAAgggEKYAAb0wdYMtm4BesJ5RLI2AXhRbpWSdCOiVNOEVBBBAAAEEEEAAAQQI6PEeQAABBBBAAAEEEEAgRAECeiHiBlw0Ab2AQSNYHAG9CDZKKVUioFcKCi8hgAACCCCAAAIIFLwAAb2CfwsAgAACCCCAAAIIIBCmAAG9MHWDLZuAXrCeUSyNgF4UW6VknQjolTThFQQQQAABBBBAAAEECOjxHkAAAQQQQAABBBBAIEQBAnoh4gZcNAG9gEEjWBwBvQg2SilVIqBXCgovIYAAAggggAACCBS8AAG9gn8LAIAAAggggAACCCAQpgABvTB1gy2bgF6wnlEsjYBeFFulZJ0I6JU04RUEEEAAAQQQQAABBAjo8R5AAAEEEEAAAQQQQCBEAQJ6IeIGXDQBvYBBI1gcAb0INkopVSKgVwoKLyGAAAIIIIAAAggUvAABvYJ/CwCAAAIIIIAAAgggEKYAAb0wdYMtm4BesJ5RLI2AXhRbpWSdCOiVNOEVBBBIX+DHH3808+fPN6tWrTJVq1ZNvwCOiLTA33//bf78809Tq1Yts88++0S6rlQOAQQQCEqAgF5QkpSDAAIIIIAAAggggEApAgT0SkGJ6EsE9CLaMAFWi4BegJghFkVAL0RcikagQARWr15txo8fb26//Xazbt06s8kmmxTIlRfWZVprTYMGDczll19uTjvttMK6eK4WAQQKUoCAXkE2OxeNAAIIIIAAAgggkCsBAnq5ks7+PAT0sjeMegkE9KLeQv+vfgT08qOdqCUCURb4/PPPzcCBA83EiROjXE3qFoBA5cqVTefOnc39998fQGkUgQACCERbgIBetNuH2iGAAAIIIIAAAgjkuQABvfxpQAJ6+dNWmdaUgF6mcrk9joBebr05GwJxFFi8eLGfnTdq1ChTs2ZN07JlS7P33nvH8VIL8pqUavODDz4wL774otl5551N3759Ta9evQrSgotGAIHCEiCgV1jtzdUigAACCCCAAAII5FiAgF6OwbM43TPPPGO6dOliKlWqZLp3724GDBiQRWkcGkWBd955x3f6zZgxw5x11lk+Hdtmm20WxaoWdJ0I6BV083PxCAQisGTJEjN06FAzcuRI06JFC3PLLbeYpk2bBlI2hZS/wB9//GEee+wxn2pz9913N/369TNdu3Yt/4pRAwQQQCBkAQJ6IQNTPAIIIIAAAggggEBhCxDQy5/2X7hwodFI/hUrVvhR3s2aNcufylPTlAS+/fZb3wE4bdo0c95555k2bdqYChUqpHQsO+VOgIBe7qw5EwJxFSge0DviiCPM8OHDCejFqLEV0Bs7dqzp1q2bIaAXo4blUhBAoEwBAnplErEDAggggAACCCCAAAKZCxDQy9wu10f+9ddf5qeffjL6Xr16dT9TL9d14HzhCvz9999mzZo1Zu3ataZatWpmiy22CPeElJ6RAAG9jNg4CAEEigkQ0CuGEcMfCejFsFG5JAQQSEmAgF5KTOyEAAIIIIAAAggggEBmAgT0MnPjKAQQKFwBAnqF2/ZcOQJBCRDQC0oymuUQ0Itmu1ArBBAIX4CAXvjGnAEBBBBAAAEEEECggAUI6BVw43PpCCCQkQABvYzYOAgBBIoJENArhhHDHwnoxbBRuSQEEEhJgIBeSkzshAACCCCAAAIIIIBAZgIE9DJz4ygEEChcAQJ6hdv2XDkCQQkQ0AtKMprlENCLZrtQKwQQCF+AgF74xpwBAQQQQAABBBBAoIAFCOgVcONz6QggkJEAAb2M2DgIAQSKCRDQK4YRwx8J6MWwUbkkBBBISYCAXkpM7IQAAggggAACCCCAQGYCBPQyc+MoBBAoXAECeoXb9lw5AkEJENALSjKa5RDQi2a7UCsEEAhfgIBe+MacAQEEEEAAAQQQQKCABQjoFXDjc+kIIJCRAAG9jNg4CAEEigkQ0CuGEcMfCejFsFG5JAQQSEmAgF5KTOyEAAIIIIAAAggggEBmAgT0MnPjKAQQKFwBAnqF2/ZcOQJBCRDQC0oymuUQ0Itmu1ArBBAIX4CAXvjGnAEBBBBAAAEEEECggAUI6BVw43PpCCCQkQABvYzYOAgBBIoJENArhpHDH7/77jvz3HPPmblz55r27dubpk2bhnJ2AnqhsFIoAgjkgQABvTxoJKqIQCEL/PXXX2bdunWmcuXKecdgrTV///23qVChgtlkk03yrv5UGAEEEEAgGAECesE4UgoCCBSOAAG9wmlrrhSBsAQI6IUlm7zc33//3UyaNMlceeWVZtNNNzXdu3c3V111VfIDsvgNAb0s8DgUAQTyWoCAXl43H5VHIN4C77//vhk0aJCpVq2aueaaa8w+++yTNxf8559/mpdfftkMHTrUHHrooebaa681W221Vd7Un4oigAACCAQnQEAvOEtKQgCBwhAgoFcY7cxVIhCmAAG9MHVLL/uTTz4xN910k5k8ebLZe++9zY033mjOOOOM0nfO8lUCelkCcjgCCOStAAG9vG06Ko5A/AWefvpp07lzZ1OvXj3Tv39/065du7y56O+//97cd9995uabb/aByBtuuMGcfvrpeVN/KooAAgggEJwAAb3gLCkJAQQKQ4CAXmG0M1eJQJgCBPTC1C1Z9po1a8y4cePM1Vdf7bMsnX322Wb48OGmevXqJXcO4BUCegEgUgQCCOSlAAG9vGw2Ko1A/AWUZnPChAmmS5cupn79+v6h8MILL8ybC1eq0CeffNJccskl/mFW13HHHXeYihUr5s01UFEEEEAAgWAECOgF40gpCCBQOAIE9AqnrblSBMISIKAXlmzp5SrDUr9+/cxbb71lDjzwQHPLLbeYE044wS9BUvoR2b1KQC87P45GAIH8FSCgl79tR80RiLWAAmLjx483559/vp+hp7zrF198cV5d8+zZs32qzddee80cddRRfnRakyZN8uoaqCwCCCCAQPYCBPSyN6QEBBAoLAECeoXV3lwtAmEIENALQ7X0MvWsO2rUKJ+hqEqVKr4fRwE9/RzWRkAvLFnKRQCBqAsQ0It6C1E/BApUIA4BvR9++MGMHDnSKN3mzjvvbPr06WMuvfTSAm1RLhsBBBAoPAFrrdGaquqYVifHsGHD/HoiGr3cpk0bs8UWW5hNNtmk8GC4YgQQQCCJgO6b6qSdN2+eueuuu8wjjzximjVrZgYMGGCOOOII3znMfTMJHi8jgMB6AgT01uMI7R+6b7/xxhumd+/eRmvoHX744f6Z96CDDgrtnCqYgF6ovBSOAAIRFiCgF+HGoWoIFLJALgJ6v//+u/n222/N//73P/P1118b5XzfeuutzU477WR23313s+2222bVBH///beZMmWK6dWrl/nyyy/9YtBaV0/nYEMAAQQQiJ+APkfmzp1rZs6caebMmWMWLlzoP2d+++038+OPP5pVq1aZSpUqmW222cZsueWW/muXXXYxe+21l++wVnqiunXrEuSL31uDK0IAgVIE1An8008/mU8//dTMmDHDdwQvWrTIrFixwui+uXr1av/7zTff3D+XaxBEtWrVzK677uoHRyjQd8ABB5gddtghtJRupVSblxBAIE8ECOjlpqGWLVvmB2BoEIb6UHr06GGUYUnPvGFuBPTC1KVsBBCIsgABvSi3DnVDoIAFwgroqeNAQbx///vfZvLkyb7jQIE9nU8BOI343WyzzUzNmjXNYYcdZlq3bm1atGjhO10zaQ6NLh40aJBfD7Bp06ZFeeQzKYtjEEAAAQSiJ7B27Vr/WfLcc8+ZN99806hTQ6+pMzrx+ZKs1onPnMqVK/tZJ9WrVzeNGjUyp5xyijn22GP97O5kx/I6AgggkK8CP//8s1Fqet03p02bZr755hvz66+/+vumOmj1XJ5s031TncS6byrAV6NGDbPffvuZU0891RzlUtzXrl072aG8jgACBSZAQC/8Bl+3bp158cUXzWWXXeYHSmvNPAX2GjRoEPrJCeiFTswJEEAgogIE9CLaMFQLgUIXCCOgp5kTL730krnjjjuMRv9WqFDBKA3EP/7xDz/KVx0Dmqk3ffp0H+xbvHix7yQ45JBD/CizQw89NO3Rv+qc0FqAmqWn2RhaB1ABPjYEEEAAgfwWUIf0W2+9ZcaMGeNn5GkGngJ5iY5ofaZst912platWn5m9nfffednoajzec899/SDRzQLRa9rFooGlehzScdttdVWfrb4SSedZM4991w/gy+/tag9AgggYIzS0WtQnZ6NlZZNs/N031SHsO5/mom3/fbb+4F1em5evny5WbBggX9NM5m1nwbm6b6pYzVQTwE+3Tc1c08zntu2bWvat29vdnWz+NgQQKCwBZYsWWKGDh3ql8FQyt7hw4cbDbJlC05A2SiGDBnin4cTy4xcdNFFpmLFisGdJElJBPSSwPAyAgjEXoCAXuybmAtEID8Fgg7o6Q//Rx991I8WU9BOac369u3rZ98pBaY6AtQhoLWO1LGgFJn/+te/zP333+87DPbdd18f1OvQoUNaD6fqaHjnnXfMlVdeaWbNmmXUOXv33Xeb+vXr52fDUGsEEECgwAU0806p4bQmngJ66qDWa5rdrY4MrRuir/33398PClGHhjqex40bZ26//XajzxOlITr66KN98E+z+LTG3rvvvutnqnz00Ue+zE033dQPBNHnhQaedOzY0afjLHB+Lh8BBPJQQIPqdL/UfVP3Tw2A0L1Pz9+77bZb0X1T90cNaNB9U4E77f/QQw+Z5s2bm/79+/v7p4J6elb/73//65+xNcPv448/NhpkoeN0vAZN6Jn9rLPO8sHBPCSjygggEIAAAb0AEDdShO7jTz/9tF87T2nltT60+jqUBjkXGwG9XChzDgQQiKIAAb0otgp1QgAB38mp0bvnn3++qVevnu/81Oy2TDYF5xSYe+CBB/z6RZppp1lyGp2nkcClbeosUCftE0884dNk6md1Dlx66aXmggsuSGum3ldffWXuvPNOvzC0yrj22mt9x2xp5+U1BBBAAIFoCmiAhmZ3P/jgg+app54qShGnQSFK83bOOef4wSLqTFYauCpVqhSthbdy5Uo/OvzGG280TZo0MQMHDjQnn3yyv1CVq0Es6qD+5Zdf/IwUzWCZOHGi+eyzz3wZmnmilHLdunXznSUqmw0BBBCIuoCepz///HN//3v++efN999/7wN5mr2stGwKuCmIp9l4VatWLRpgp+vSQAfNplHnsNLg62dl1tCm+6YG4emeqS+th/3CCy/4juUvvvjCB/aUwlhr7HXv3t2ceOKJaQ3I8yfhPwggkPcCBPTCbULNtL7pppt8diPNor7++uv9fV0DpXOxEdDLhTLnQACBSAq4h2E2BBBAIHIC7o90O3r0aOtunNYF9Ox9992XUR3dSDHrcrjbbbbZxpfVsGFDO3bsWOtGk5VZnkt/Zl0wzl533XXWjfj1X26EsHUdEmUeW3wH11FrXeevdZ0X1gUQ7YUXXmjdbI7iu/AzAggggECEBVyHsXVrPVkXuLMuuGZdajjrOqBtq1at7DPPPGNdWjjrUiwnvQLXiW1vvvlm/znkAnrWdTwn3VefGS4Fp3WdJHbw4MHWrUHij3MzAK1LJ2ddCmfrOqyTHs8vEEAAgSgIuFl41mXHsC6o5u+XeqZ3QTbrgnjWDVqwbgbeRp+HXZDOuoF0/v7nAnrWzexLeln6u8ENvrNuXT7br18/W7duXX+cmwFo99hjD/8sr/s0GwIIFJaAm8lrXVDf3w9cyk3rMuYUFkCIV+tmRdt7773X39/dQDPrBmJb9b3kclOfjhu07dt39913t25Gdy5Pz7kQQACBchPQ6DY2BBBAIHICQQT03KhgO2XKFOtmxRX9Ud+pUyffUZrqBasMlyLIull9voxKlSrZM844w6qTIZ3NpVCzp556qu8EdqnY7Pvvv5/O4eyLAAIIIFBOAgrG3XPPPdalhbP6DNAADwXl3Ew9u2zZso0G8hJVTieglzgmEdjT50WPHj38wBQFEhVQbN26tXVp5hK78h0BBBCIlICCZy4bhq1Tp46/Z+reqWfpxx9/3H7zzTcpDaxLJ6CXuHjdNxXY07P7eeedZ92sP+tmivj7p5tFbV1qzsSufEcAgQIQIKAXXiNPnz7dHnnkkb6PxC1n4vtdNCA6lxsBvVxqcy4EEIiSAAG9KLUGdUEAgSKBIAJ6eoDv2bOndesQ+QdNzc5zaTxtug+aLlWaveWWW3wZGl2szgm3uHZa5WiU8rBhw3ynwo477mjdOkpF18oPCCCAAALRFFixYoW/d9euXdvfv2vUqGG7du1qNUjDrQmVcqUzCeglCtfnoTrA1RHu0s35zyLN9j7mmGPsa6+9ltiN7wgggEAkBFyqe+vSyxcNQqhVq5a94oor7Lx586xLLZxyHTMJ6CUKd2nYrOrh1uCzjRo18gPqFNw77bTT/Cy+xH58RwCBeAsQ0AunffVcq0EbmgWtmde6x6dzfw+qVgT0gpKkHAQQyDcBAnr51mLUF4ECEcg2oKeZdc8++6wPvikIp6/jjz/eLly4MG1BlTVp0iSrDl2VowChW/vILliwIOWyFERUeiGXW94f365dO/vdd9+lfDw7IoAAAgjkVkBpL0eOHOnv/ZoZp3SXt912mw+uaRZIOls2AT2dR58h6ih59913fbo6fQ6pE8WtC2U1QpoNAQQQiIKA0mgqVbAGP+iZWYPp3DrWVvdAPU+ns2UT0NN5dN9USrhXXnnF3yt1H3frm9ozzzzTzp07N52qsC8CCOSpAAG94BtO99apU6faxo0b+/u8sg9tLCVy8DX4vxIJ6P2fBT8hgEBhCRDQK6z25moRyBuBbAN6ms3gFmX2MyrUoaC1h7p06WI1YjeTTQ+pmg2hsvSlNY3GjBmTVlFa80jr5+n4/fff3wcc0yqAnRFAAAEEciKgdU6ffPJJn2ZTncBKtzlixIi0UjYXr2i2Ab1EWfoMmzNnjl+nRGnk1Dndvn171tRLAPEdAQTKTeCnn37yqYh32GEHPyNu3333tY899pgPqmVSqWwDeolz6n6uwRBt27b1z+BKW3zRRRf5wRmJffiOAALxFCCgF3y7avZz3759ff+KBjwPHDgwpTTKwdfE+vOyhl4YspSJAAJRFyCgF/UWon4IFKhAtgE9rTl09NFHFwXglO5HaTMz3TQbTws9JwJ6Snem4Jw6CVLdtO8jjzziO2DVmdCnT5+0Ryunei72QwABBBDITCCxdurBBx/sZ1TvtNNOfsaJUidnugUV0NP59fk4e/Zsv56rPpM0E+byyy/PONiY6TVxHAIIIJAQ0H3phRdeKEpvuccee/h0l7/88ktil7S/BxXQ04k1i+ONN97wg/M0SEOd0DfddFNaz/FpXwAHIIBAuQsQ0Au2CZShQlmQdt11Vz9wQ5ki5s+fH+xJ0iiNGXppYLErAgjESoCAXqyak4tBID4C2QT0dOyjjz5qt9pqq6IAXP369X3Kn0yFli9fbvv161dUnjoDjjjiCDtz5sy0ikwsHq3jlQL0888/T+t4dkYAAQQQCFdAqdg6duxoK1Wq5NcF6dWrV9YpkoMM6OnqNVNP6+cddthhvkOlXr169q677mKQSLhvDUpHAIEkAh988IFt1aqVrVixog+W9e/f32rGXjZbkAE91UMD6yZPnmz32Wcfn8FD3ydMmJBNFTkWAQQiLkBAL9gG0iBnrSWt1O969rznnnv8QLNgz5J6aQT0UrdiTwQQiJcAAb14tSdXg0BsBLIJ6H399df2mmuu8Z2ciRl1WrtOaX8y3dQpMXz48KKAnsrV6OPRo0enVaTWFrnhhht8OUrhphQRbAgggAAC0RBYuXKlHTZsmB8QooCeUrRp7VWtF5LNFnRAT3XRmnr6XNvFre2njhUF915//fVsqsmxCCCAQNoCX331lX/urlKliq1atart3Lmz1UC4bLegA3qqj2Za33fffXbbbbf16eJOOukkn8Y427pyPAIIRFOAgF5w7aJBERoEsf322/vBG+3atQvkXp9NDQnoZaPHsQggkM8CBPTyufWoOwIxFsgmoPfpp5/as846a73gm9ase/755zMW02yIhx56aL0yt9lmG3vttdemVabSVEyaNMnWqVPHVq5c2Xd6ZJOOKK2TszMCCCCAQFIBpdp8+eWXrQaAaNBGs2bN7Kuvvmp13852CyOgpzqtWLHCp5NWGmitp6eO9O+++y7b6nI8AgggkJKAOlO13qhSEyv7hNLdKyVwtoMgdPIwAnqq19KlS33ae61DuvXWW9vevXtbnsVTam52QiDvBAjoBddkH3/8sR/opnt9o0aN/KAyPTuX50ZArzz1OTcCCJSnAAG98tTn3AggkFQgm4De22+/7TtiE7Pz9L158+Z+7YykJyzjF+oAUBpP/fGfKFczIs4555y0199QwPHMM8/05WiNprfeequMs/NrBBBAAIGwBTQTT2ujKmWcBl3cdttt9tdffw3ktGEF9NSRMmfOnKL19LJNLx3IxVIIAggUjECig1fPx8pc8eCDD/qUwEEAhBHQU700SOOdd94pWk+vcePG9qmnngqiypSBAAIREyCgF0yD/Pzzz/bee++1W265pdVs7PPPP9+uWrUqmMKzKIWAXhZ4HIoAAnktQEAvr5uPyiMQX4FsAnpaH2O77bYrCrwpAHfkkUdare+RzaY/9jUDIhHQ0/cTTjjBfvHFF2kVu2bNGjtixAjfaVyzZk07cODAtI5nZwQQQACBYAXUIaD0lYk0Qqeffrr98ssvAztJWAE9VVB1f/rpp33qTQUjW7dubbXGCRsCCCAQpkDxDl49H6uDV2mLg9rCCuipfpqR9/DDD1tl21DGjA4dOlilxWdDAIF4CRDQC6Y9p0+f7vtT1P9x4IEH2ilTpgQyEzvb2hHQy1aQ4xFAIF8FCOjla8tRbwRiLpBpQE+zFcaPH7/eTDo9eB533HF23rx5WakpVWaNGjXWC+gdeuih9r333kurXM320zpHSgOqWX5t2rSxWn+EDQEEEECgfAQ+//xz36EbVhqhMAN6ElPwsU+fPj7lnWYXah1AtswEtA6v1rfVYJvFixdnVghHRVpA6yI/88wzPm36jBkzItEpGWmwJJWbNWuWPf744/1zcdOmTe0rr7wSqGWYAT1dkv4u6NSpk6//nnvuaceOHZvkSnkZAQTyVYCAXvYtp2fYQYMG+cEP1atXt1dccYVfxzn7krMvgYBe9oaUgAAC+SlAQC8/241aIxB7gUwDemvXrvXpIIrPost0Jt2GyKXN/DvggAP8CLUN9y3r3+qk6NWrl+9E2Gefffz6I2Udw+8RQAABBIIX0OeN1oDSzG7N1DjvvPPsDz/8EOiJwg7oKYXcSy+95Nf/00CRU0891aoTiy19gRdffNHuuuuutl69enbo0KHpF8ARkReYOXOmD0Rp/bRu3boFliIy8hceYAU1w23UqFE+c0W1atXspZdeGngHb9gBPa2P/cQTT9jatWvbSpUq2XPPPTfwe3+A5BSFAAIZCBDQywCt2CEaiDx16lSr1MTqUzn88MOtBsJEZSOgF5WWoB4IIJBrAQJ6uRbnfAggkJJApgE9dcIOHjzYP3AWD+qdeOKJWY+0f/bZZ61SZBYvVwtCP/744yldU/GddH1K76bOpKpVq/rgnjpk2RBAAAEEciuwZMkSfw/WGlANGzb0s7zVgRHkFnZAT3VdunSp7d27t/+MatCggR0zZkyQl1AwZWnmlkagK/3qTTfdVDDXXUgXqvXTtIaxnufat2/v11QrpOsP4lo1q/nss8/2hon0a0GUW7yMsAN6OtfcuXN9IE/vhSZNmtgXXniheBX4GQEE8lyAgF52DagMEH379rWbbbaZH/yg7AUKokVlI6AXlZagHgggkGsBAnq5Fud8CCCQkkCmAb3ly5fbq6++er2gm/5IP+mkk6w6bbPZnn/+ef8gWzygV79+fXv//fdnVKxSFWkNPqV4a9mypZ0zZ05G5XAQAggggEDmAm+++abvyNW9WDPbwkiBnIuAngaFaK1XDTzZfPPN7YUXXhipTpfMWyi3RxLQy613eZyNgF726gp81a1b13fyamab0pgGveUioPfbb7/5tfSqVKniA/n6GyLoAR1Bu1AeAgikLkBAL3WrDffUc6UGNCtrgZ6RNUB6/vz5G+5Wrv8moFeu/JwcAQTKUYCAXjnic2oEEEgukGlATzMULr/88hIBvVatWvnZC8nPWPZv1Hmx4447rlf2zjvvbO+6666yDy5lj5UrV/p89AoQ7rLLLnbEiBGl7MVLCCCAAAJhCagjYPTo0T7VpmZk9e/f32ot1qC3XAT0VOcPP/zQnnLKKUUDRT7++OOgLyX25RHQi30TWwJ62bXx6tWrfTpapfdNPL+GEQTLRUBPEtOmTbMtWrTw629rUMeyZcuyA+JoBBCIjAABvcybYsGCBbZr165W93qlIb/nnnus+miitBHQi1JrUBcEEMilAAG9XGpzLgQQSFkg04CeZuH17NlzvaCbAmYnn3yyVcqIbDatq6PRyMVn6O200052+PDhGRWrTmMFCTXLT2kszjnnHPvjjz9mVBYHIYAAAgikL6CO2z59+vj7+n777edHIqdfStlH5Cqgt2LFCh+U1OfUXnvtZR999NGyK8ce6wkQ0FuPI5b/IKCXXbNqhkanTp38ffPQQw+17733XnYFJjk6VwE9dfj36NHDX0/Tpk3tK6+8kqRGvIwAAvkmQEAvsxbT7OUJEyb49OMVK1a07dq1s8qEFLWNgF7UWoT6IIBArgQI6OVKmvMggEBaApkG9BYvXmwvueSS9YJuiYBetmnUXnrpJT8SuXhATzP2hgwZkta1Fd953rx5tmPHjr6+zZo1oxOhOA4/I4AAAiELfPTRR7Z169b+Hnz88cfbL774IpQz5iqgp/RICuIpfdx2223ng3uhXFCMCyWgF+PG/f8vjYBedm2c8FMKttNPP92uWrUquwKTHJ2rgN7atWvtvffe62c2K7WcZqGwIYBAPAQI6GXWjsrw0LZtW39fbNSokX3sscdCyWCRWe3+7ygCev9nwU8IIFBYAgT0Cqu9uVoE8kYg04CeOmO7detWIqCnFGTZjipTQE8pNosH9GrXrm0HDx6cseuvv/5qH3jgAZ/ubdttt7XXX399xmVxIAIIIIBAegJvvPGG3X///X2qNc2SVsdAGFuuAnqqu2aXNGjQwM/8Pv/881kPKs0GJaCXJlge7p4ISOl5rn379laBcLbUBZRdok6dOrZq1aq2V69eod1jchXQU7pQ/X+v5/Ctt97aXnXVValjsCcCCERagIBe+s3z888/+0EOW265pR8gpmfJsAZupF+79Y8goLe+B/9CAIHCESCgVzhtzZUikFcCmQb0Fi1aZC+66KL1gm7qsFFAL9sZekq5qRSbxQN6O+ywg7311lsztlUnQvG1O1RP/eHBhgACCCAQvsDzzz/v10bdaqutbO/evUM7YS4Deu+//7498sgj/WfVP/7xD6v1rthSFyCgl7pVvu5JQC/zltNz68SJE22lSpVstoPayqpFrgJ6qsfUqVPt3nvvbZVarkuXLqEFKcu6Zn6PAALBCujv6u7du/tnoiOOOMLOmjUr2BPEsLTp06cXPUceeOCBdsqUKZG9JxLQi+EbkEtCAIGUBAjopcTETgggkGuBTAN6emhPrINRPPCmNfSyDehpRLJSbBYvVyOUhw4dmhWP6qXRwCq3YcOGdvz48VmVx8EIIIAAAqkJPP3001YjkGvWrGlvvvnm1A7KYK9cBvSUJqlNmzb+MyWI9WMzuNy8PoSAXl43X0qVJ6CXElOpO/3xxx/2oYce8veXevXq2ZEjR5a6XxAv5jKgp3UAtR6gnsXPPPNMqwwabAggkP8CBPTSa8PvvvvODho0yGcPql69ur3iiius0hJHdSOgF9WWoV4IIBC2QAWdwD24siGAAAKREnDpj4wLbBmX4sG4DgPjAl7m4osvLrOOS5cuNcOHDzd33333evu2atXKjBo1yrgZduu9ns4/XEDPXHjhheabb74pOqxu3brGzerwX0UvpvnDunXrzKRJk4wLRBqX4sK4NfV8/d3o5zRLyt3ubu0/M2LECPPaa6/l7qScCYEUBdwfoKZp06Zmr732SvEIditUgQ8//NCMGzfOuNRx5qijjjLHHXdcKBQrV67090sXSPDnOvzww40LtoVyrq+//tq8/PLLRtem/wfOOuss41LJhXKuOBbqAqLGrRVjNtlkE+NG85uTTjopjpe53jW5DjHzww8/GLcmmqlVq5b/vt4OMfuHW2/ZTJ482biOXuNmH/jnLrU3W9kCbsCdmTFjhnniiSfM9ttv7++ZBx98cNkHZrCHC+gZN4vazJ8/37hBF8atc2qaN2+eQUllH7JkyRLz3HPPmYULFxqXhtm4FMxm8803L/tA9ihYARf0Nfpsr1y5sv9/oWAhIn7h+n/72WefNW5ZDv+Zrn4C/Y2Q75v6StasWeO/1H+gn/U98bMLwvnnGJeBwujLDV4r+p742a237PdJWKhr2KWi9/0an3zyidGz6rBhw8xBBx2U2CVy390gEzN27Fjjllwxu+++u+nXr5/p2rVr5OpJhRBAAIGgBQjoBS1KeQggEIhApgE9N9vN3HHHHT6oV7wi6pC77777zC677FL85bR+1h/6CuitWLGi6DiV17dvX9OzZ8+i1zL5QR2I/fv3950JiYfnZs2aZVJU6MeoA+zOO+80o0eP9n88hH5CToBAmgKbbrqp0R+p6mRhQ2BjAgpkqBNEnfnqvNX7JoxNAzfU+afzKWii96aCiGFsxc+12Wab+fPo/wm21ATUOaT3hNopzPdEarXJzV7qxNP7RptLOZibk5bjWfSM+csvvxh91/+L6txkS01A7xXdx+QX9metgofqlFY76R6t+3NYQTadQ+fSOTWgTu8J3QPYEEgm4NLP+vum3ieFcN9M5hD11/X/tO5X+ozbb7/9zIABA8xpp50W9Wr7+um+pH4Ht6SIWeICk/obXF/6+dtvvzV6XtH7MPGla0z8rO96b+reWfxL9239W9/1HOqyDfnB0xpArfueWwrED9jQQDANNtag6igPMiaglxdvZSqJAAIhCBDQCwGVIhFAIHsBPcBmMkPPpTUz9957r7npppvWq8QJJ5zgX99tt93Wez2df2h03wUXXGB0jsTWoEEDc80115jOnTsnXsroe/FA5L777uuDe27to4zKCvsgjUZ1KZbMjTfeGPapKB8BBBBAAAEEEEAAAQQQQACBrAQ0WHbw4MHm2GOPzaqcsA7+7bffjGaQf/DBB2b27NlGA36//PJLP4hCgUkFr/Sln9VXkm2yNQX2FIxWwE5f+rcGnykAqqxGbdu29dkkGjdubNyaqZEc5EBAL6x3I+UigEDUBQjoRb2FqB8CBSqQaUBPo+rd2h4lUmAqjdo999xjFIDLdFN6JqVwUFqqxKYHXAUP9cCbzaaH9uuuu8688sorpmXLlj7l5t57751NkaEdqxF/Lr++/2NDqYnYEIiSgN6f+qNUqcCYdRGllolmXd5++20/o3vrrbf2I7bDGkixatUqnzpOaeqUqllpMI8++uhQUJR6+vHHHze6tgMOOMB0797d7LDDDqGcK46FurW0zF133eVHr59yyimmQ4cOcbzM9a5JnYJ67tLo/rBmQK13wnL+x+eff24efvhho/ThRx55pM+0oI5MtrIF1HmqdOsaPOfWlTZuvbnQUhVrsNtTTz1lXn31Vf/8rsFzmmETxrZgwQIzZswY34F+yCGH+L8jtthiizBORZkxEdDzpgIrmgUV5RlMMeHO+DKWLVtmnnzySTN16lRz2GGH+We+qKSQ1Ofu8uXLzfTp0827777rg3j6t4Jq+lKAT+8xbXqf6fNZz6vFv7TMQPF/J37W7Dt9pv/444/mp59+MqtXr/Y/69+lfSlVZ+JcOp8CfSpDX0rZqXSW8nNrjRr1f+g8UdgI6EWhFagDAgiUhwABvfJQ55wIIFCmQKYBveLHFT+JOk6VJlIPoJluTz/9tOnUqZNPyZMoQ38Q3HrrrT4Il3gt3e+qszosLrnkEp8mQ+sGDh061ChVWlQ3df7poV9pl9gQiJpAIv0RHbRRa5no1Ufrl2rmtVK56R6sgRVhbJrZrXVcb775Zt8hrRnOChaFsWndE51Ha08p3bQ63pVSiS01Ac3G11os6szSe+L6669P7cA830uf6/oqhPumgrbKrvD+++/7gJQCOaSlTe0NrGe/Rx991Fx00UVm1113NVdccYX/ObWj09tLa+gpjb5S5ivIdtttt4W2hp461PWe0Pd27dr5tPKk7U6vvQptb90vE5ueO9miKaD0lFo374EHHojEGnq6hyptpgZG6OvTTz/1ATfNilMAT/0C2nT/2Xnnnf3ALK35p/VeNWtOn1WJL31eb/hz4jV913tUgedEKk59L+1nBQ/1PKxnR9VPAyIVpFZWHpWRCFprkIMCfJqt16JFC/+Mqe/bbLNNuTU+Ab1yo+fECCBQ3gLuBs2GAAIIRE7APUxat0ab/lKyLqe7dX/Mp1xHNwrPugdOf6yO15cbUWZdx03KZWy4o3u4tq7Dx7oH2vXKdSO77Ycffrjh7mn92/2hYXv16uXLduk2rQscpnU8OyOAAAIIZCbwwgsvWDfLxLrOC3v55ZdnVkgKR7mAnnUdJf7zo0mTJlbnDWtzHdJWn0367Dv99NOtG5kd1qliWe4zzzxj3Yh362b5WjcDP5bXWOgX9c4779iDDz7Y/z/Svn17q2c8ttQEXOewnThxonWdzdZ16tpBgwaldmAGe7mAnr300kt9O+k5fsaMGRmUktohrmPdNmrUyLpAvu3SpYvVdbIhgED+C7jgmXWZCvx95IgjjrCzZs0ql4vSc6AbwGvPPvts65YAsW6NOutm3BX1Leie2rBhQ9uxY0frBmJZN2PPqo/gm2++sW5GnXWBq9Dq7VJ7WpdtyNdlr732si74ad1Mdv+s6gagWbd0ia1Vq1ZRXV0Q0T83u+wP1g1utm4wnHVpQsvls9QNLvb11TOvm0VoXaam0JwoGAEEEIiSgEZcsCGAAAKRE8gmoOdS8/gH4kQwT9+bN29uX3/99Yyv06XytG6Gn/9joHi5blFtqwf0bLY33njDupmD/iG5TZs2/sE9m/I4FgEEEEAgNYE333zT7r///taNZLYutaJ1o6NTOzDNvXIZ0Pv3v/9t99hjD+tGV1uXJtq60dhp1rawdyegF//2J6CXXRtrQIKbKeIHz/Xs2TO7wjZydC4Dem52iq1Ro4YP5l999dUbqRW/QgCBfBIoz4Cenr8WLVpkb7/9dj+4WEExlxHC/82vQcJuZps9/vjjrcv2Y/U8qgDeihUrrEt/adUXkotN51IAUQPbVDeXKci6NPF+UIOeifWzSwNqP/vsMz/oWPd89VvoGVN9IgruufSbPpimYKXLDpHTgWQE9HLxLuEcCCAQRQECelFsFeqEAAL+ITbTGXqaMedSma0XfMt2RoRbM84OGDBgvTI1qu7iiy/OqrNUD9F33323dek1i0Y60/nK/wAIIIBAbgTmzJljTz31VH9vV6eKW0cplBPnKqCnmUYTJkzwo76ZYZZZUxLQy8wtn44ioJdda2nmiEuB6TulNQvYpWXLrsAkR+cqoOdS3dkRI0b4gR0ujajv3E5SJV5GAIE8EyiPgJ5m02nW25VXXmn32WcfP1hAs38VAKtWrZo95phjrFur189qc2uFhj4Db2NNVjyrg0vraadMmVLqDGXNWnapOf1A5sWLF9uXX37Zz6Bu0KBBUYBSAUGX4t0HKdWP8+23327s1IH8joBeIIwUggACeShAQC8PG40qI1AIAtnM0Fu6dKlPnVZ8Jt2ee+5px40blzGdyuzdu/d6AT2lmRgyZEjGZepAlzffnnHGGb5cpX9SJxMbAggggEBuBNSRog4XfV5oxLFmaYSx5Sqgp86TG264wXeuKH3cY489FsblxLpMAnqxbl5/cQT0smvj+fPn286dO/v7pgJ7YT275iqgp85pt16mv55mzZpZZfpgQwCBeAjkMqCn4NLs2bOtZrEpU4KCd8oAodl4devW9UtsTJ061erZU+nQyzvdswYsK22y0n0q1bhbE9WuXbu2zIZXcE/XqmdbpeZ8+OGH7XHHHedn+Ol5WrP3atasaQ8//HA/QOLrr78us8xMdyCgl6kcxyGAQL4LENDL9xak/gjEVCCbgJ5G2t5zzz3+4TkR1FNqILcgdsZamrWR6LxIlKk0bc8991zGZephePLkyX5mnh6kleJCdWdDAAEEEMiNgDoCHnnkEd+ZofVMrr/++lBOnKuAntYwadWqle+Y1ghwDRphS0+AgF56Xvm4NwG97FpNHdF6plYn9c477+xT0mdXYulH5yqg9/bbb1sF8nQ9mrGtNavYEEAgHgK5COip30Iz8rTmp9ZxU/pK3U+UgUcz9AYPHmw/+ugjHwALcy28dFpM/RAKLmowm/o2FHzLZJ1SZRZS/4UGP7/44ov2vPPOs9ttt50vU9evn7V24ahRo7JepqS06yOgV5oKryGAQCEIENArhFbmGhHIQ4FsAnp6QNUaQlrUORF806izfv36ZSyhtGxaLy9Rnh7Ss13vTqPVtIi0Ru5pFJ9Gt7EhgAACCORWQOuWKM2Q7sWtW7e26kQOestFQE8jvZ988kmrwKTSHikltDo62NITIKCXnlc+7k1AL7tW03O21tGrV6+e77A+55xzfMq47EoteXQuAnpKIffAAw/4NMVaz+raa6/NKpV+yavgFQQQKE+BMAN6uheq/P79+/t+h6222soH8jRQV4MENMBYM5pXr15d7rPxNmyDL7/80vbt27do2Y+BAwdm9cwoC625pwERb731lu3Ro4dVNiP1nSiwpxl7J554ol+HL5VZgBvWN9m/Ceglk+F1BBCIuwABvbi3MNeHQJ4KZBPQ0yXr4bp79+5FATgt2KwOB/3hnsmmDl/NyEsE9PRQevPNN2f1R/97773nR8OpzBNOOMF+8cUXmVSNYxBAAAEEshAonqZZa4GMGTMmi9JKPzQXAb0lS5b40eEKTGabZrr0qyiMVwnoxb+dCehl38Zz5871z9V6hs12nepktclFQE/p4s4++2z/fH/AAQf49aOS1YfXEUAg/wSK9wloptisWbMCuYhVq1bZ8ePH20MPPdSnq9Szl1JNNm3a1I4cOdIuWrTI/vzzz6WuRxdIBbIoRAPAnn32Was1QzVIWYE2BR6D2jQLUek89Vmr9KO1a9f291gFOjWrW1mJlFEiiI2AXhCKlIEAAvkoQEAvH1uNOiNQAALZBvT0IKm1g2rUqFEUhGvZsqX9z3/+k7aeRpxp1oNG3SUCegcddJB9/fXX0y4rcYBGsGmx6C222MLX8eqrr7a6ZjYEEEAAgdwK6N771FNP2Vq1avnOGA3+UAAuyC3sgJ4+p1566SW72267+ZmGShu3bNmyIC+hYMoioBf/piagl30ba4DcQw895J9jlV5Og+gyHTSXrDZhB/T0t8LEiRPt9ttv7+/9ShX3448/JqsOryOAQB4KBB3QUzBMmXsUlNJzo2afKZjXsGFDO3ToUKtlOqIayEs0n+rYtWtXqwHPmmmtmYRh9EOoTAX21GfSsWNHv6agAohVq1b1mTHuvvtuP3sxUa9MvhPQy0SNYxBAIA4CBPTi0IpcAwIxFNADoAJeCqDpQfO+++5L+yqVq16dmokgnNJaqsx0N6XGVAoePYCqLAX2evXqldKi0cnOtXDhQv8grfI0slk559kQQAABBMpHYN68eX7dD92TNbtt7NixgVYk7IBeYnaeOmcSa1qp04ktfQECeumb5dsRBPSybzENIpg9e7Zfs1PPx0pbHPSzbNgBPc3O69Chg++MV5r+CRMmRHI2TfatRQkIFK5AkAE9zcrT86Fm4SkopWdGBfXUL/Dhhx/6AQG6N0Z506Bi3es0kKFixYq2Xbt2dvny5aFWWYMndA4Nnjv66KN9IFHn1sw9DaTQZ0mmGwG9TOU4DgEE8l2AgF6+tyD1RyCmAkEE9DRS+PHHH/edm3rgVpoHjQ5Ld/TttGnTrGbkqQx9HXzwwVavZbNpjT8tmq3O17POOsv+8MMP2RTHsQgggAACWQioQ0AzNdS5oNHWbdu2tYsXL86ixPUPDTOgp44SzSLfcccdi9YBVICPLTMBAnqZueXTUQT0gmmtNWvW2Pvvv99qhp7W7ezcuXOgs5vDDOip7lo7T2ts6++Dc889N9C6ByNMKQggkK1AEAE9Bek0q+2yyy7zz4kKRum+cdRRR9lJkyb5e0e+DKL6+OOP/TOuBmI0atTIZzRat25dtsxlHi9D9c1oIMWAAQNsnTp1/GBpZStq3ry5H3Sdydp6BPTKpGcHBBCIqQABvZg2LJeFQL4LBBHQk8GKFSvsLbfc4he7VzCufv36Pq99qg+u+iPg0ksv9al4dLxyzd95551+0edMjRW8GzJkiB8VV7duXfvPf/6TEcGZYnIcAgggEJCAAniJtVc14lrrpOqzKIgtzICeZqO3bt3aB/M0E/3hhx+2+dKxFIRt0GUQ0AtaNHrlEdALpk3UQatU9hqYpmfkROq2oGaohBnQ03vgkEMO8R3KWiNb60kFVe9gdCkFAQSCENDf8olnu0zW0NOMNg3EPfbYY4uW39hhhx3slVde6dedCzrVcBDXnKwMpQK99957iwZhKG2oZh3mctPzqfpCXnjhBXvCCSf4Z1cNpNtll13sFVdcYXXfT2cjoJeOFvsigECcBAjoxak1uRYEYiQQVEBPgTuNBNOoYXU2aESdRoE9//zzZWqtXr3a55TfZptt/LHbbbedf3hfuXJlmcdubAel5GjVqpUv88gjjwxsUeiNnZPfIYAAAghsXECfO+q0Ueeu1kNRSiV18gaxhRXQU0ro/v37+9kxGuWsNVGy/YwK4nrzuQwCevnceqnVnYBeak6p7KXOVKVRU2esnrE1YyXbLBaJ84YV0NPgjZ49e/rBenrG79u3r9WMPTYEEIifQDYBPT1PadkPrY9XqVKlon4EZXTQ71IdIBwV1enTp1v1PahPRGmSp0yZUm4DGRQo/eyzz/yyJupj0XP31ltvbdu0aWP1GZ3qRkAvVSn2QwCBuAkQ0Itbi3I9CMREIKiAnjhUlmYwdOrUyc/U0wO5RuhprQ+lKittUyepFrbWjD6lpNCo42HDhvkZf9mM4NWoNP0RUKNGDZ97XyMG9UDLhgACCCBQ/gIayKFZ2EpkVXL7AAAWWUlEQVQhp3RKp512mh8Ukm3NwgjoKTXR+PHji9IWHX744VadNdl8RmV7nXE4noBeHFpx49dAQG/jPun+9ptvvvEDCzTLQgMLtCbSl19+mW4xJfYPI6Cne/yIESOsAnlKe3/SSScFco8vUXleQACBSAhkGtDTcVdddZVfIy8RbNK9TQNzM0kNWd4Y3333nR00aJB/tlWqYc2GK+/rUL+IsilpTb8DDjjABxo333xz26JFC/+a+nDK2gjolSXE7xFAIK4CBPTi2rJcFwJ5LhBkQE8UCtxpTSGlt1TaTHXUKkinVBManaZOA6V/UF55ramhP/D1x746JzSjTx186a69V1oTLF261Pbu3dsHCffaay+ft760/XgNAQQQQCD3AgqGLVy40Hbr1s3fpzVa+JJLLrHqCMlmCzqgp06QV1991Y+wVkeT1mQdNWqUVccGW3YCBPSy88uHownoBdtKmqWigXPt2rXzHbLbb7+9veaaa6zSu2WzBR3Q0wC6f/3rX1apiTVYr3Hjxv7fqXQaZ3MdHIsAAuUnkG5AT8+Bc+bMsR06dPAzxjSbbeedd/ZLeHz11VeBpWLPpYiuaerUqf6ep+vRALAZM2bksgpJz6W6/fLLL35m95lnnulnQar/Zc899/SDq8v6HCGgl5SWXyCAQMwFCOjFvIG5PATyVSDogJ4c1OGgoNy7775rr7vuOt8Rqs5a5cFXcG+33XbzD+xK+1CzZk2f1/3++++38+bNC2wE25tvvulHoKkj4ZRTTrHLli3L1yai3ggggEAsBfT5o5RxxxxzjO/01WfEjTfe6DscMr3gIAN66vyYOXOmPfHEE/2gk2233dang9bME7bsBQjoZW8Y9RII6AXfQho499JLL9kmTZr41Gl6rr7jjjuy6vwOMqCnvwFef/11P/NDM/Pq1Kljb7311qzu68ErUiICCAQt8N801tDTYCk9/x1//PF+trEGTOme9thjj1k9Y+n5Kx83zZhWamEFymrXrm0HDhwYuQFg+gyZO3eunxVZrVo1P4N6p5128oNDNjaojoBePr4jqTMCCAQhQEAvCEXKQACBwAXCCOglKqmytQC01tBQgG306NH+j/r+bh0ipVp74okn/Ki15cuX+zU1gsqPr/U5tBC1Un4qYHjTTTdZ/eHAhgACCCAQLYFff/3Vz9zQTGp16Ozi1ofKpvM3qICeOpOU7un000/3KaSV3u6cc87xM9CjJZi/tSGgl79tl2rNCeilKpXefppJ8cgjj1h1wipopvun1p/Sc3cmW1ABvUQnfcuWLf0zuNLN9ejRw6d6y6ReHIMAAvkjkGpATwElraN8yCGH+Ew++nv9uOOOs2+88UZeB/51/9N60MpQpAHFGgw2f/78SDag6qr+Fw0G0eeInr/VZ9KrV6+kg6AJ6EWyKakUAgjkQICAXg6QOQUCCKQvEGZAL1EbdYzqPErzoJl7CvL99NNPVh25YQTatPBz+/btfToipfHUSGE2BBBAAIFoCuhzQSmYd9xxR985XbduXT9SWOtFpbsFEdBTZ5MGoWjkeJUqVfxI61atWvnUUEENPEn3uuK4PwG9OLbq+tdEQG99j6D+pedqzaTQGtQKmlWsWNGnt7ztttv87JZ0zxNEQE/P9M8//7w9+OCDfSe97p16Fl+0aFHezrZJ15H9EShkgVQCegoKvfDCC7Zp06b+2UqDpc444wz/fKXf5fO2YMEC27VrV/8cq5nT99xzT8aDLHLhoM8RLYMyduxY27BhQx+E1DIoF198calrsxLQy0WrcA4EEIiiAAG9KLYKdUIAAf+gqZlzyvOuh0+N8M3nTQ+nzz33nE/xoxF/HTt2zHptkXz2oO4IIIBA1AV031YgbsSIET41s0YKq1NB60QpIKDfp7plG9BTJ/nIkSPtPvvs4zullTZJgb3p06dHumMmVZ8o7UdAL0qtEU5dCOiF46pSdV/UDItbbrnFB/U0U69WrVq2S5cuvnM8nTNnG9DTeleaWa01RnXPVDBP9+9PP/00lIF76Vwb+yKAQG4E/ltGyk0NiNL6cgceeKC/T2y11Va2c+fOVoGwTGcX5+bKyj6L1g2dMGGC1bqmGmCh+5/uz1Hf9DmiGd9PPfWUT3mqmYVa+/TBBx8sUXUCeiVIeAEBBApEoIKu03WYsyGAAAKREnAz5Mz48ePN+eefb1xAz1x11VXGjcyKVB3TqcyKFSuMS7dpBg0aZFzqNnPllVeaiy66yLgH1HSKYV8EEEAAgRwK6DHZzd42bkCGuf32241bU9VsvvnmxnUQmzPPPNO4Th/j0gKVWaOVK1caF5Azbi0+49ZjMW79EnPyySeXeZzrjDEzZszwx7pZ3b4uOr+Oveaaa8zee+9tXEd1meWwQ+oCkyZN8s8eLhDh27dPnz6pH5yjPfXsoPeBWwc4ss8RbkapcVkPjOsQzZFK6qeZNWuW/39w9uzZxs3WMq7D06i92YIRcJ2xxg1CMC6FvRk+fLhx6zcZN+PFuBSc5rzzzjMdOnQwbr3qMk+2dOlSf/zdd99tDjvsMP/zQQcdVOZxLvOGcbOZ/X3TDXowbra1cWsyGdeZ7Z+/3ZrZtHeZiuyAQDwElixZYtysYX8/OOKII/x9xM3EK7o4FxDyfQ7du3f39yk921133XXGZWUwbiBX0X75+MMnn3xi3BIfZvLkyf7+e/3115uzzjorb65r7dq1xqU8NcOGDTN6Hlb9N3x21rOGm81nunXr5p/N+/XrZ9yMxHxsLuqMAAIIpCVAQC8tLnZGAIFcCcQtoKcOWT1gqoPh2GOPNeqcUMcGGwIIIIBAtAUU1FMH8cyZM42brWdcWiZluPAdxG7GnHFr2Bm3pp1xI6CTXki6AT0FQf7zn/+Yhx9+2EyZMsW4NJ/GpY7zHUzqqOjsAol16tQxbsR10nPyi8wEnn76adOpUyejTj4FAWrUqJFZQSEfpffbueeeay644AIf3Av5dGkV79YoNi6zglFwNIpjR9Ux6FJ6+Q5CAnppNW3KO6vdFdB96623zF133eWff9U57lJx+kEN+n/slFNO8UHpZIWmG9BTuypYq/umm3Hjg4rq7NUADHXWq631/w3B22TivI5A/ATKCujpXqXnrccff9zfHxT410CtfA/mrVmzxowbN85cffXVxs1CNGeffbYPZuoenE+b7ut6htY1aCCIBocU3wjoFdfgZwQQKCgB9wHGhgACCEROQCku4pJyU6kgxowZY6tWrWrdaHrrRvtb9/AZOXMqhAACCCCQXED38oULF1o348Q2aNDAp4RWGjelMjr88MPtkCFDfCo3pW/acEs15abWcn3xxRetC9L49EJbbrmlXz9Enx+tW7e2L7/8sl/vNZ10nxvWhX9vXGDixIlWqbHdH4SR/lL6rLZt21oX9Nj4BZXDb1955ZWi/0ei7qj11MJYN7kc2CN5Sq1hpzWk+/fvb7UOqd4P+v+rdu3a1g1w8ymNdV8t7Z6WSspNHeeyYPjUbG5whd11112t1r/SebSOn5sNaKdNm+bXyC7tHJFEo1IIIBCYQFkpN3Ui/V2uddu0dnJpz3CBVSaHBSkl+5FHHunvhUon6gaHlXqfzWGVQjmVns213rXu+Uqv/NBDD4VyHgpFAAEEoibADD1352dDAIHoCcRphp5GqruOXuPyvpvGjRubAQMGmNNOOy166NQIAQQQQGCjAq5D2M/Wmzt3rh/N7YI/fvac0l664Jtxa+wZpXNr0aKFUWo4zeDTTDqlfNsw5WarVq2MRlB/8cUX5qOPPjJKDTdnzhzj1n3yM1uUash1fPvZLBdeeKFxa+b50eOVK1feaB35ZXYCSg+oUe0uCOC9ozoLsmbNmubEE0/0qQijlnbVBbDNq6++6mdnaaZj1Db3B7n/f0z/z2q2a8uWLaNWxVjVRzMr3HpIRunf9P+WW6fSpw/W/c2tV+VnXbhBEubggw82zZo1M40aNTJu3T1/L1TKzuIpN5UqTzP/5s+fbz788EN/3/z444/Nt99+61/XbA63Vp6/Byu1vevQ9vflqP0/EqsG5mIQiLBAWTP0Ilz1jKumz2AX5DI333yzvx9qCRO3rqn/OeNCI3ogM/Qi2jBUCwEEQhcgoBc6MSdAAIFMBOIU0HvttddMz549jRuBbNq0aWNGjRqV0tohmbhxDAIIIIBA+AL6jFKQzs088etEaX2S5cuX+/XM1HGsDmWlBdI6Z/pZ37UWnxsp7juwtTaLAnNK5alUmuqEVgBP39X5rd/tv//+PvWjAnluNosvj3VXw29b+SvQqrZRMC+q5qqb3mNRDPAq8J14Tyt4FsVN7ayUalqHMIqGUTTLtk5KJaxUpwrAPfroo8bNRvap1PT/mIJ7ej8n7pf6WfdSrcW3bNky305ag1ptpv8/9f5KvMf0Xe85HdO8eXMfpD3qqKN8QF7lsSGAQOEKFFpAT5+5Wneud+/efhCFyyDh16BLZf3RfHyXENDLx1ajzgggEIQAAb0gFCkDAQQCF4hLQE8dvi71g18/T6PpL7vsMtO3b9+8z8sfeINTIAIIIJCHAuqg1mwRdThrrVSt2/Tuu+/64F4ikKHOanVC69/qdN7w34nLVsez1lY95phjjDqj9957b7Ptttsal24zskGlRN35jgACCKQqoA7Y1atXG62Rp5nJGvj2/vvvG5c6s6iIDe+TG/47saNmWSr7hdanVsd1w4YN/Yw83U91DBsCCBS2QKEF9DRITDOhe/Xq5Z8he/ToYa666io/aCKO7wQCenFsVa4JAQRSESCgl4oS+yCAQM4F4hLQ0yjkG2+80Tz33HM+LdawYcP86OGcg3JCBBBAAIHQBBSoUyeKZo5oJt6iRYvMvHnzfDpOdVLrS53XSqepjub69ev7WXca6KEvzTxRMG+nnXbyqTujOvMqNEAKRgCBghPQLMnEfXPlypU+k4VSaSp9pu6Z+q4UuF9//bWf2bzhfdOtl+fvmzvssEPRfVMz/dgQQACBhEChBfT0PPrmm2+aO++806cvvuSSS/wzZsIjbt8J6MWtRbkeBBBIVYCAXqpS7IcAAjkViENATw/UWifk4osv9qnUzj33XL8OiFKvsSGAAAIIxFNAM/E0c09rh+m7Oq31maaf9aVZI+p0VsrExJdSyyntn/7NhgACCBSagJ6ZE/dN3S8TX3pNP2uWc7L75qabblpoXFwvAgikKFBoAT2xaKCEsgTpnlm9evVYZwYioJfi/wjshgACsRMgoBe7JuWCEIiHgP54Hz9+vNEizvXq1fOpIhQYy6dNMzE0Ou6f//yn2WOPPcy1115rOnbsmE+XQF0RQAABBBBAAAEEEEAAAQQQyDuBQgzo5V0jZVFhAnpZ4HEoAgjktQABvbxuPiqPQHwF4hDQmzZtmunTp4+ZNWuWOemkk8zIkSON0gOxIYAAAggggAACCCCAAAIIIIBAeAIE9MKzjULJBPSi0ArUAQEEykOAgF55qHNOBBAoU0CpdyZMmGA6depkdtttN9OvXz9zwQUXlHlcVHZYu3atX5D68ssv9+t6aHbhgAEDDGmBotJC1AMBBBBAAAEEEEAAAQQQQCCuAgT04tqy/++6COjFu325OgQQSC5AQC+5Db9BAIFyFnjqqadM586dfcrN/v37mzPOOKOca5T66b///ns/I0/1Puigg8ytt95qWrZsmXoB7IkAAggggAACCCCAAAIIIIAAAhkJENDLiC1vDiKglzdNRUURQCBgAQJ6AYNSHAIIBCcwb948M3bsWL+gs2bn1a1bN7jCQy5p3bp1ZubMmebJJ580jRs3Nu3btzdVqlQJ+awUjwACCCCAAAIIIIAAAggggAACBPTi/R4goBfv9uXqEEAguQABveQ2/AYBBMpZ4M8//zRr1qzxtahWrVrepav8/fffzS+//OIDkltuuWU5a3J6BBBAAAEEEEAAAQQQQAABBApDgIBevNuZgF6825erQwCB5AIE9JLb8BsEEEAAAQQQQAABBBBAAAEEEEAAAQQQyDMBAnp51mBpVpeAXppg7I4AArERIKAXm6bkQhBAAAEEEEAAAQQQQAABBBBAAAEEEECAgF683wME9OLdvlwdAggkFyCgl9yG3yCAAAIIIIAAAggggAACCCCAAAIIIIBAngkQ0MuzBkuzugT00gRjdwQQiI0AAb3YNCUXggACCCCAAAIIIIAAAggggAACCCCAAAIE9OL9HiCgF+/25eoQQCC5AAG95Db8BgEEEEAAAQQQQAABBBBAAAEEEEAAAQTyTICAXp41WJrVJaCXJhi7I4BAbAQI6MWmKbkQBBBAAAEEEEAAAQQQQAABBBBAAAEEECCgF+/3AAG9eLcvV4cAAskFCOglt+E3CCCAAAIIIIAAAggggAACCCCAAAIIIJBnAgT08qzB0qwuAb00wdgdAQRiI0BALzZNyYUggAACCCCAAAIIIIAAAggggAACCCCAAAG9eL8HCOjFu325OgQQSC5AQC+5Db9BAAEEEEAAAQQQQAABBBBAAAEEEEAAgTwTIKCXZw2WZnUJ6KUJxu4IIBAbAQJ6sWlKLgQBBBBAAAEEEEAAAQQQQAABBBBAAAEECOjF+z1AQC/e7cvVIYBAcgECeslt+A0CCCCAAAIIIIAAAggggAACCCCAAAII5JnA4sWLzZAhQ8wDDzxgqlSpYho1amQaN26cZ1dBdZMJKKA3f/58M3v2bFO3bl3Tp08fc9lllyXbndcRQACB2AgQ0ItNU3IhCCCAAAIIIIAAAggggAACCCCAAAIIIDBt2jQf5Jk1a5bHqFixoqlUqRIwMRGw1pq//vrL/Pnnn0Zte95555nRo0fH5Oq4DAQQQCC5AAG95Db8BgEEEEAAAQQQQAABBBBAAAEEEEAAAQTyTOD77783I0eONP379/c132yzzUzlypXz7CqobjKBREDv999/N82aNTODBw82xx57bLLdeR0BBBCIjQABvdg0JReCAAIIIIAAAggggAACCCCAAAIIIIAAAn///bf56aefzIoVKzxGhQoVjL7Y4iOgoJ6+lFJ1++23N5tvvnl8Lo4rQQABBJIIENBLAsPLCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCERBgIBeFFqBOiCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCQRICAXhIYXkYAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgCgIE9KLQCtQBAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgSQCBPSSwPAyAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAlEQIKAXhVagDggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggkESCglwSGlxFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBCIggABvSi0AnVAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIIkAAb0kMLyMAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQBQECOhFoRWoAwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJJBAjoJYHhZQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSiIPD/AVza0bFxotnRAAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Superdense Coding" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# Use Braket SDK Cost Tracking to estimate the cost to run this example\n", + "from braket.tracking import Tracker\n", + "t = Tracker().start()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this tutorial, we construct an implementation of the superdense coding protocol via Amazon Braket's SDK. Superdense coding is a method of transmitting two classical bits by sending only one qubit. Starting with a pair of entanged qubits, the sender (aka Alice) applies a certain quantum gate to their qubit and sends the result to the receiver (aka Bob), who is then able to decode the full two-bit message.\n", + "\n", + "If Alice wants to send a two-bit message to Bob using only classical channels, she would need to send two classical bits. However, with the help of quantum entanglement, Alice can do this by sending just one qubit. By ensuring that Alice and Bob initially share an entangled state of two qubits, they can devise a strategy such that Alice can transmit her two-bit message by sending her single qubit.\n", + "\n", + "To implement superdense coding, Alice and Bob need to share or otherwise prepare a maximally entangled pair of qubits (i.e., a Bell pair). Alice then selects one of the four possible messages to send with two classical bits: 00, 01, 10, or 11. Depending on which two-bit string she wants to send, Alice applies a corresponding quantum gate to encode her desired message. Finally, Alice sends her own qubit to Bob, which Bob then uses to decode the message by undoing the initial entangling operation.\n", + "\n", + "Note that superdense coding is closely related to quantum teleportation. In teleportation, one uses an entangled pair (an e-bit) and two uses of a classical channel to simulate a single use of a quantum channel. In superdense coding, one uses an e-bit and a single use of a quantum channel to simulate two uses of a classical channel.\n", + "\n", + "\n", + "## Detailed Steps\n", + "1. Alice and Bob initially share a Bell pair. This can be prepared by starting with two qubits in the |0⟩ state, then applying the Hadamard gate (𝐻) to the first qubit to create an equal superposition, and finally applying a CNOT gate (𝐶𝑋) between the two qubits to produce a Bell pair. Alice holds one of these two qubits, while Bob holds the other.\n", + "2. Alice selects one of the four possible messages to send Bob. Each message corresponds to a unique set of quantum gate(s) to apply to her own qubit, illustrated in the table below. For example, if Alice wants to send the message \"01\", she would apply the Pauli X gate.\n", + "3. Alice sends her qubit to Bob through the quantum channel.\n", + "4. Bob decodes Alice's two-bit message by first applying a CNOT gate using Alice's qubit as the control and his own qubit as the target, and then a Hadamard gate on Alice's qubit to restore the classical message.\n", + "\n", + "| Message | Alice's encoding | State Bob receives
(non-normalized) | After 𝐶𝑋 gate
(non-normalized) | After 𝐻 gate |\n", + "| :---: | :---: | :---: | :---: | :---: |\n", + "| 00 | 𝐼 | \\|00⟩ + \\|11⟩ | \\|00⟩ + \\|10⟩ | \\|00⟩\n", + "| 01 | 𝑋 | \\|10⟩ + \\|01⟩ | \\|11⟩ + \\|01⟩ | \\|01⟩\n", + "| 10 | 𝑍 | \\|00⟩ - \\|11⟩ | \\|00⟩ - \\|10⟩ | \\|10⟩\n", + "| 11 | 𝑍𝑋 | \\|01⟩ - \\|10⟩ | \\|01⟩ - \\|11⟩ | \\|11⟩\n", + "\n", + "\n", + "## Circuit Diagram\n", + "\n", + "Circuit used to send the message \"00\". To send other messages, swap out the identity (𝐼) gate.\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Code" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Version: 1.0.0.post1\r\n" + ] + } + ], + "source": [ + "# Print version of SDK\n", + "!pip show amazon-braket-sdk | grep Version\n", + "\n", + "# Import Braket libraries\n", + "from braket.circuits import Circuit, Gate, Moments\n", + "from braket.circuits.instruction import Instruction\n", + "from braket.aws import AwsDevice\n", + "from braket.devices import LocalSimulator\n", + "import matplotlib.pyplot as plt\n", + "import time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Typically, we recommend running circuits with fewer than 25 qubits on the local simulator to avoid latency bottlenecks. The on-demand, high-performance simulator SV1 is better suited for larger circuits up to 34 qubits. For demonstration purposes, we are going to continue this example with the local simulator, but it is easy to switch over to SV1 by commenting out the LocalSimulator line below and uncommenting the sv1 line.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# Set up device: local simulator or the on-demand simulator\n", + "device = LocalSimulator()\n", + "# device = AwsDevice(\"arn:aws:braket:::device/quantum-simulator/amazon/sv1\")" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Function to run quantum task, check the status thereof and collect results\n", + "def get_result(device, circ):\n", + " \n", + " # get number of qubits\n", + " num_qubits = circ.qubit_count\n", + "\n", + " # specify desired results_types\n", + " circ.probability()\n", + "\n", + " # submit task: define task (asynchronous)\n", + " if device.name == 'StateVectorSimulator':\n", + " task = device.run(circ, shots=1000)\n", + " else:\n", + " task = device.run(circ, shots=1000)\n", + "\n", + " # Get ID of submitted task\n", + " task_id = task.id\n", + "# print('Task ID :', task_id)\n", + "\n", + " # Wait for job to complete\n", + " status_list = []\n", + " status = task.state()\n", + " status_list += [status]\n", + " print('Status:', status)\n", + "\n", + " # Only notify the user when there's a status change\n", + " while status != 'COMPLETED':\n", + " status = task.state()\n", + " if status != status_list[-1]:\n", + " print('Status:', status)\n", + " status_list += [status]\n", + "\n", + " # get result\n", + " result = task.result()\n", + "\n", + " # get metadata\n", + " metadata = result.task_metadata\n", + "\n", + " # get output probabilities\n", + " probs_values = result.values[0]\n", + "\n", + " # get measurement results\n", + " measurement_counts = result.measurement_counts\n", + "\n", + " # print measurement results\n", + " print('measurement_counts:', measurement_counts)\n", + "\n", + " # bitstrings\n", + " format_bitstring = '{0:0' + str(num_qubits) + 'b}'\n", + " bitstring_keys = [format_bitstring.format(ii) for ii in range(2**num_qubits)]\n", + "\n", + " # plot probabalities\n", + " plt.bar(bitstring_keys, probs_values)\n", + " plt.xlabel('bitstrings')\n", + " plt.ylabel('probability')\n", + " plt.xticks(rotation=90)\n", + " plt.show() \n", + " \n", + " return measurement_counts" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Alice and Bob initially share a Bell pair. Let's create this now:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Circuit('instructions': [Instruction('operator': H('qubit_count': 1), 'target': QubitSet([Qubit(0)])), Instruction('operator': CNot('qubit_count': 2), 'target': QubitSet([Qubit(0), Qubit(1)]))])\n" + ] + } + ], + "source": [ + "circ = Circuit()\n", + "circ.h([0])\n", + "circ.cnot(0,1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Define Alice's encoding scheme according to the table above. Alice selects one of these messages to send." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# Four possible messages and their corresponding gates\n", + "message = {\"00\": Circuit().i(0),\n", + " \"01\": Circuit().x(0),\n", + " \"10\": Circuit().z(0),\n", + " \"11\": Circuit().x(0).z(0)\n", + " }" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# Select message to send. Let's start with '01' for now\n", + "m = \"01\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Alice encodes her message by applying the gates defined above" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Circuit('instructions': [Instruction('operator': H('qubit_count': 1), 'target': QubitSet([Qubit(0)])), Instruction('operator': CNot('qubit_count': 2), 'target': QubitSet([Qubit(0), Qubit(1)])), Instruction('operator': X('qubit_count': 1), 'target': QubitSet([Qubit(0)]))])\n" + ] + } + ], + "source": [ + "# Encode the message\n", + "circ.add_circuit(message[m])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Alice then sends her qubit to Bob so that Bob has both qubits in his lab. Bob decodes Alice's message by disentangling the two qubits:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Circuit('instructions': [Instruction('operator': H('qubit_count': 1), 'target': QubitSet([Qubit(0)])), Instruction('operator': CNot('qubit_count': 2), 'target': QubitSet([Qubit(0), Qubit(1)])), Instruction('operator': X('qubit_count': 1), 'target': QubitSet([Qubit(0)])), Instruction('operator': CNot('qubit_count': 2), 'target': QubitSet([Qubit(0), Qubit(1)])), Instruction('operator': H('qubit_count': 1), 'target': QubitSet([Qubit(0)]))])\n" + ] + } + ], + "source": [ + "circ.cnot(0,1)\n", + "circ.h([0])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The full circuit now looks like" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : |0|1|2|3|4|\n", + " \n", + "q0 : -H-C-X-C-H-\n", + " | | \n", + "q1 : ---X---X---\n", + "\n", + "T : |0|1|2|3|4|\n" + ] + } + ], + "source": [ + "print(circ)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "By measuring the two qubits in the computational basis, Bob can read off Alice's two qubit message" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Status: COMPLETED\n", + "measurement_counts: Counter({'01': 1000})\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEJCAYAAACZjSCSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAASdklEQVR4nO3df7DldV3H8edLkPyFKO1qyrIu5qpsKoI3yLTE1AJrwBl/sVb+HNfGyGHUkn4MGtWEmpU/yNqURC0IadRNV5nGQEVFd4nfMOhGIFdMsFBw1BB998f5LhzOnnvv2R/fc7z7eT5m7tzvj8/5nvd+h+F1P5/P90eqCklSu+416wIkSbNlEEhS4wwCSWqcQSBJjTMIJKlxBoEkNW7fWRews1asWFFr1qyZdRmStKxcfPHF36yqleP2LbsgWLNmDVu3bp11GZK0rCS5YaF9Dg1JUuMMAklqnEEgSY0zCCSpcQaBJDWutyBIckaSm5NcucD+JHlHkm1JLk9yRF+1SJIW1meP4H3AMYvsPxZY2/1sAN7dYy2SpAX0FgRV9Rngfxdpcjzw/hq4CHhQkof1VY8kabxZ3lB2EHDj0Pp8t+3row2TbGDQa2D16tVTKU47WnPyx2ddwkxdf9qvzroEqReznCzOmG1jX5dWVRuraq6q5lauHHuHtCRpF80yCOaBg4fWVwE3zagWSWrWLINgE/Di7uqhnwO+XVU7DAtJkvrV2xxBkrOAo4EVSeaBNwL3BqiqvwU2A88GtgHfBV7WVy2SpIX1FgRVtX6J/QX8dl/fL0majHcWS1LjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhrXaxAkOSbJtUm2JTl5zP7VSc5PckmSy5M8u896JEk76i0IkuwDnA4cC6wD1idZN9Lsj4Bzqupw4ATgb/qqR5I0Xp89giOBbVV1XVXdAZwNHD/SpoAHdssHADf1WI8kaYw+g+Ag4Mah9flu27A3Ab+RZB7YDPzOuAMl2ZBka5Ktt9xySx+1SlKz+gyCjNlWI+vrgfdV1Srg2cAHkuxQU1VtrKq5qppbuXJlD6VKUrv6DIJ54OCh9VXsOPTzCuAcgKr6AnAfYEWPNUmSRvQZBFuAtUkOSbIfg8ngTSNtvgo8AyDJoQyCwLEfSZqi3oKgqu4ETgTOA65hcHXQVUlOTXJc1+x1wCuTXAacBby0qkaHjyRJPdq3z4NX1WYGk8DD204ZWr4aeEqfNUiSFuedxZLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4yYKgiT79F2IJGk2Ju0RbEvy1iTreq1GkjR1kwbBE4AvA+9JclGSDUke2GNdkqQpmSgIqur2qvr7qvp54PeANwJfT3Jmkkf1WqEkqVcTzxEkOS7Jh4G3A28DHgn8K7C5x/okST2bdGjoK8DxwFur6vCq+suq+kZVnQt8cqEPJTkmybVJtiU5eYE2L0hydZKrkvzTzv8TJEm7Y98J2724qi4c3pDkKVX1uap6zbgPdFcanQ48C5gHtiTZVFVXD7VZC/w+8JSqujXJQ3bpXyFJ2mWT9gjeMWbbO5f4zJHAtqq6rqruAM5m0KsY9krg9Kq6FaCqbp6wHknSHrJojyDJk4GfB1Ymee3QrgcCS91bcBBw49D6PHDUSJtHd9/zue54b6qqBYeaJEl73lJDQ/sBD+ja7T+0/TbgeUt8NmO21ZjvXwscDawCPpvkcVX1rXscKNkAbABYvXr1El8rSdoZiwZBVX0a+HSS91XVDTt57Hng4KH1VcBNY9pcVFU/AP4rybUMgmHLSB0bgY0Ac3Nzo2EiSdoNSw0N/XVVnQS8K8kO/wOuquMW+fgWYG2SQ4CvAScALxpp8xFgPfC+JCsYDBVdtxP1S5J201JDQx/ofv/Fzh64qu5MciJwHoPx/zOq6qokpwJbq2pTt++Xk1wN/BD43ar6n539LknSrltqaOji7vend+XgVbWZkRvOquqUoeUCXtv9SJJmYKmhoSvYcYL3LlX1hD1ekSRpqpYaGvq1qVQhSZqZpYaGdvZKIUnSMrPoncVJLux+357kttHf0ylRktSnpXoET+1+779YO0nS8jXpQ+dIcgTwVAaTxxdW1SW9VSVJmppJ30dwCnAm8JPACgY3gP1Rn4VJkqZj0h7BeuDwqvo+QJLTgP8A/rSvwiRJ0zHpY6ivB+4ztP4TwH/u8WokSVO31A1l72QwJ/B/wFVJ/q1bfxZw4WKflSQtD0sNDW3tfl8MfHho+wW9VCNJmrqlLh89c1qFSJJmY6LJ4u7dwn8OrGNorqCqHtlTXZKkKZl0svgfgHcDdwJPB97P3Y+oliQtY5MGwX2r6lNAquqGqnoT8Ev9lSVJmpZJ7yP4fpJ7AV/pXjbzNeAh/ZUlSZqWSXsEJwH3A14DPAn4TeAlfRUlSZqeiXoEVbUFoOsVvKaqbu+1KknS1Ez6rKG57m1llwNXJLksyZP6LU2SNA2TzhGcAby6qj4LkOSpDK4k8lWVkrTMTTpHcPv2EACoqgsBh4ckaS+w1LOGjugWv5Tk74CzGDxr6IX4mAlJ2issNTT0tpH1Nw4t1x6uRZI0A0s9a+jp0ypEkjQbk141dECSv0yytft5W5ID+i5OktS/SSeLz2AwOfyC7uc2BlcNSZKWuUkvH/3pqnru0PofJ7m0j4IkSdM1aY/ge929AwAkeQrwvX5KkiRN06Q9gt8C3j80L3ArPmtIkvYKSwZB93yhx1TVYUkeCFBVt/VemSRpKpYcGqqqHwEndsu3GQKStHeZdI7g35K8PsnBSQ7c/tNrZZKkqZh0juDlDO4kfvXIdt9ZLEnL3KQ9gnXA6cBlwKXAO4GfWepDSY5Jcm2SbUlOXqTd85JUkrkJ65Ek7SGTBsGZwKHAOxiEwKHdtgUl2YdBeBzLIEjWJ1k3pt3+DN589sXJy5Yk7SmTDg09pqoOG1o/P8llS3zmSGBbVV0HkORs4Hjg6pF2fwK8BXj9hLVIkvagSXsElyT5ue0rSY4CPrfEZw4Cbhxan++23SXJ4cDBVfWxxQ6UZMP25xzdcsstE5YsSZrEpEFwFPD5JNcnuR74AvC0JFckuXyBz2TMtrseXd3dn/BXwOuW+vKq2lhVc1U1t3LlyglLliRNYtKhoWN24djzwMFD66uAm4bW9wceB1yQBOCngE1JjquqrbvwfZKkXTBREFTVDbtw7C3A2iSHAF8DTgBeNHTMbwMrtq8nuQB4vSEgSdM16dDQTquqOxnckXwecA1wTlVdleTUJMf19b2SpJ0z6dDQLqmqzcDmkW2nLND26D5rkSSN11uPQJK0PBgEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1rtcgSHJMkmuTbEty8pj9r01ydZLLk3wqySP6rEeStKPegiDJPsDpwLHAOmB9knUjzS4B5qrqCcC5wFv6qkeSNF6fPYIjgW1VdV1V3QGcDRw/3KCqzq+q73arFwGreqxHkjRGn0FwEHDj0Pp8t20hrwA+0WM9kqQx9u3x2BmzrcY2TH4DmAOetsD+DcAGgNWrV++p+iRJ9NsjmAcOHlpfBdw02ijJM4E/BI6rqv8bd6Cq2lhVc1U1t3Llyl6KlaRW9RkEW4C1SQ5Jsh9wArBpuEGSw4G/YxACN/dYiyRpAb0FQVXdCZwInAdcA5xTVVclOTXJcV2ztwIPAD6U5NIkmxY4nCSpJ33OEVBVm4HNI9tOGVp+Zp/fL0lamncWS1LjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS43oNgiTHJLk2ybYkJ4/Z/xNJ/rnb/8Uka/qsR5K0o96CIMk+wOnAscA6YH2SdSPNXgHcWlWPAv4KeHNf9UiSxuuzR3AksK2qrquqO4CzgeNH2hwPnNktnws8I0l6rEmSNGLfHo99EHDj0Po8cNRCbarqziTfBn4S+OZwoyQbgA3d6neSXNtLxf1bwci/TTtlpucve0d/1f8Gd89yPn+PWGhHn0Ew7i/72oU2VNVGYOOeKGqWkmytqrlZ17Fcef52n+dw9+yt56/PoaF54OCh9VXATQu1SbIvcADwvz3WJEka0WcQbAHWJjkkyX7ACcCmkTabgJd0y88D/r2qdugRSJL609vQUDfmfyJwHrAPcEZVXZXkVGBrVW0C3gt8IMk2Bj2BE/qq58fEsh/emjHP3+7zHO6evfL8xT/AJalt3lksSY0zCCSpcQaBJDXOIJCkxhkEPUmyb5JXJflkksuTXJbkE0l+K8m9Z13fcpZkr7xyQ5oVrxrqSZKzgG8xeJbSfLd5FYP7Jg6sqhfOqrblIMmBC+0CLquqVdOsZzlKcgDw+8BzgJXd5puBjwKnVdW3ZlXbcpfkE1V17Kzr2FP6fMRE646oqseMbJsHLkry5VkUtMzcAtzAPR9DUt36Q2ZS0fJzDvDvwNFV9d8ASX6KwR8jHwKeNcPafuwlOWKhXcATp1lL3wyC/tya5PnAv1TVjwCS3At4PnDrTCtbHq4DnlFVXx3dkeTGMe21ozVVdY9H5XWB8OYkL59RTcvJFuDTjH8m2oOmXEuvDIL+nMDg/QqnJ9neBX8QcD57/x3Ue8JfAw8GdggC4C1TrmW5uiHJ7wFnVtU3AJI8FHgp93wysMa7BnhVVX1ldMfe9seIcwQ9SnIog3cuHMTgMRtfBT5aVdfMtLBlIsljufv8FYOHFm7y/E0myYOBkxmcw+3Dad9g8Iyv06rKnukikjwPuKKqdnjsfZLnVNVHZlBWL7xqqCdJ3gD8E4P/gX0R+Hy366xxr+3UPXV/yZ7NoFv+JQbd9OD5m1hV3VpVb6iqx1bVgd3PoVX1BgYTyFpEVZ07LgQ6D55qMT2zR9CTbkL4Z6rqByPb9wOuqqq1s6lsefD89SvJV6tq9azrWK72tvPnHEF/fgQ8nMGVL8Me1u3T4jx/uynJ5QvtAh46zVqWo5bOn0HQn5OATyX5CndPzK0GHgWcOLOqlg/P3+57KPAr7HiVWrh7qFILa+b8GQQ9qapPJnk0cCSDyc4wuI9gS1X9cKbFLQOevz3iY8ADqurS0R1JLph+OctOM+fPOQJJapxXDUlS4wwCSWqcQaDmJFmT5Mox29+TZF23/AcTHOekJPdbZP9dx5N+nDlHoOYkWQN8rKoet0ib71TVA5Y4zvXAXFV9c8y+fZzU1nJhj0Ct2jfJmd27Is5Ncr8kFySZS3IacN8klyb5xyT3T/Lx7p0SVyZ5YZLXMLjP4fwk58MgPJKcmuSLwJO3H29o3591x7ioe+YPSX66W9/SffY73faHJflMV8OVSX5hNqdJLTAI1KrHABur6gnAbcCrt++oqpOB71XVE6vq14FjgJuq6rCuF/HJqnoHg2cfPb2qnt599P7AlVV1VFVdOPJ99wcuqqrDgM8Ar+y2vx14e1X9bHe87V4EnFdVTwQOA3a4hFHaUwwCterGqvpct/xB4KmLtL0CeGaSNyf5har69gLtfgj8ywL77mBwXTrAxcCabvnJDN4NAINnU223BXhZkjcBj6+q2xepT9otBoFaNTo5tuBkWVV9GXgSg0D48ySnLND0+4vMC/yg7p6Q+yFL3MxZVZ8BfhH4GvCBJC9erL20OwwCtWp1kid3y+uB0aGcH2x/t3SShwPfraoPAn8BbH9z1e3A/rtZx0XAc7vlu95TkeQRwM1V9ffAe4e+U9rjDAK16hrgJd2DxQ4E3j2yfyNweZJ/BB4PfCnJpcAfAn861OYT2yeLd9FJwGuTfInBA/W2DzsdDVya5BIGQfH23fgOaVFePirNUHcfwveqqpKcAKyvquNnXZfa4kPnpNl6EvCuJAG+BfguYU2dPQJJapxzBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlx/w8+J9WNgQGuTgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Counter({'01': 1000})\n" + ] + } + ], + "source": [ + "counts = get_result(device, circ)\n", + "print(counts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can check that this scheme works for the other possible messages too:" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Status: COMPLETED\n", + "measurement_counts: Counter({'00': 1000})\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEJCAYAAACZjSCSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAASdklEQVR4nO3de7SldV3H8fdHEK+I4oymDOOgjspoIniCTEtMLbAWuJY3xkwrl1PLyMVSS7osNKoValZeyByVRC0IcamTjrJaBhoWOkPcYaETgRwxwULBpYbotz/2M7DZs885ey7P3p75vV9rnXWey28/+zvPH/M5v9/vuaSqkCS1616zLkCSNFsGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4/addQE7a8WKFbVmzZpZlyFJy8rFF1/8zapaOW7fsguCNWvWsHXr1lmXIUnLSpIbFtrn0JAkNc4gkKTGGQSS1DiDQJIaZxBIUuN6C4IkZyS5OcmVC+xPknck2Zbk8iRH9FWLJGlhffYIPgAcs8j+Y4G13c8G4N091iJJWkBvQVBVnwf+d5EmxwMfrIGLgAcneURf9UiSxpvlDWUHATcOrc93274+2jDJBga9BlavXr3LX7jm5E/t8mf3Btef9kuzLkHSj6FZThZnzLaxr0urqo1VNVdVcytXjr1DWpK0i2YZBPPAwUPrq4CbZlSLJDVrlkGwCXh5d/XQTwPfrqodhoUkSf3qbY4gyVnA0cCKJPPAG4F7A1TV3wKbgecB24DvAr/eVy2SpIX1FgRVtX6J/QX8dl/fL0majHcWS1LjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhrXaxAkOSbJtUm2JTl5zP7VSc5PckmSy5M8r896JEk76i0IkuwDnA4cC6wD1idZN9Lsj4Bzqupw4ATgb/qqR5I0Xp89giOBbVV1XVXdAZwNHD/SpoAHdcsHADf1WI8kaYw+g+Ag4Mah9flu27A3AS9LMg9sBn5n3IGSbEiyNcnWW265pY9aJalZfQZBxmyrkfX1wAeqahXwPOBDSXaoqao2VtVcVc2tXLmyh1IlqV19BsE8cPDQ+ip2HPp5JXAOQFX9O3BfYEWPNUmSRvQZBFuAtUkOSbIfg8ngTSNtvgo8GyDJoQyCwLEfSZqi3oKgqu4ETgTOA65hcHXQVUlOTXJc1+x1wKuSXAacBfxaVY0OH0mSerRvnwevqs0MJoGHt50ytHw18PQ+a5AkLc47iyWpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxk0UBEn26bsQSdJsTNoj2JbkrUnW9VqNJGnqJg2CJwNfBt6X5KIkG5I8qMe6JElTMlEQVNXtVfXeqvoZ4PeANwJfT3Jmksf2WqEkqVcTzxEkOS7Jx4C3A28DHg38E7C5x/okST2bdGjoK8DxwFur6vCq+suq+kZVnQt8ZqEPJTkmybVJtiU5eYE2L05ydZKrkvzDzv8TJEm7Y98J2728qi4c3pDk6VX1hap6zbgPdFcanQ48F5gHtiTZVFVXD7VZC/w+8PSqujXJw3bpXyFJ2mWT9gjeMWbbO5f4zJHAtqq6rqruAM5m0KsY9irg9Kq6FaCqbp6wHknSHrJojyDJ04CfAVYmee3QrgcBS91bcBBw49D6PHDUSJvHdd/zhe54b6qqBYeaJEl73lJDQ/sBD+za7T+0/TbghUt8NmO21ZjvXwscDawC/jXJk6rqW/c4ULIB2ACwevXqJb5WkrQzFg2Cqvoc8LkkH6iqG3by2PPAwUPrq4CbxrS5qKp+APxXkmsZBMOWkTo2AhsB5ubmRsNEkrQblhoa+uuqOgl4V5Id/gOuquMW+fgWYG2SQ4CvAScALx1p83FgPfCBJCsYDBVdtxP1S5J201JDQx/qfv/Fzh64qu5MciJwHoPx/zOq6qokpwJbq2pTt+8XklwN/BD43ar6n539LknSrltqaOji7vfnduXgVbWZkRvOquqUoeUCXtv9SJJmYKmhoSvYcYL3LlX15D1ekSRpqpYaGvrlqVQhSZqZpYaGdvZKIUnSMrPoncVJLux+357kttHf0ylRktSnpXoEz+h+779YO0nS8jXpQ+dIcgTwDAaTxxdW1SW9VSVJmppJ30dwCnAm8FBgBYMbwP6oz8IkSdMxaY9gPXB4VX0fIMlpwH8Af9pXYZKk6Zj0MdTXA/cdWr8P8J97vBpJ0tQtdUPZOxnMCfwfcFWSf+7WnwtcuNhnJUnLw1JDQ1u73xcDHxvafkEv1UiSpm6py0fPnFYhkqTZmGiyuHu38J8D6xiaK6iqR/dUlyRpSiadLP474N3AncCzgA9y9yOqJUnL2KRBcL+q+iyQqrqhqt4E/Hx/ZUmSpmXS+wi+n+RewFe6l818DXhYf2VJkqZl0h7BScD9gdcATwV+FXhFX0VJkqZnoh5BVW0B6HoFr6mq23utSpI0NZM+a2iue1vZ5cAVSS5L8tR+S5MkTcOkcwRnAK+uqn8FSPIMBlcS+apKSVrmJp0juH17CABU1YWAw0OStBdY6llDR3SLX0ryHuAsBs8aegk+ZkKS9gpLDQ29bWT9jUPLtYdrkSTNwFLPGnrWtAqRJM3GpFcNHZDkL5Ns7X7eluSAvouTJPVv0sniMxhMDr+4+7mNwVVDkqRlbtLLRx9TVS8YWv/jJJf2UZAkabom7RF8r7t3AIAkTwe+109JkqRpmrRH8FvAB4fmBW7FZw1J0l5hySDoni/0+Ko6LMmDAKrqtt4rkyRNxZJDQ1X1I+DEbvk2Q0CS9i6TzhH8c5LXJzk4yYHbf3qtTJI0FZPOEfwGgzuJXz2y3XcWS9IyN2mPYB1wOnAZcCnwTuCJS30oyTFJrk2yLcnJi7R7YZJKMjdhPZKkPWTSIDgTOBR4B4MQOLTbtqAk+zAIj2MZBMn6JOvGtNufwZvPvjh52ZKkPWXSoaHHV9VhQ+vnJ7lsic8cCWyrqusAkpwNHA9cPdLuT4C3AK+fsBZJ0h40aY/gkiQ/vX0lyVHAF5b4zEHAjUPr8922uyQ5HDi4qj652IGSbNj+nKNbbrllwpIlSZOYNAiOAv4tyfVJrgf+HXhmkiuSXL7AZzJm212Pru7uT/gr4HVLfXlVbayquaqaW7ly5YQlS5ImMenQ0DG7cOx54OCh9VXATUPr+wNPAi5IAvATwKYkx1XV1l34PknSLpgoCKrqhl049hZgbZJDgK8BJwAvHTrmt4EV29eTXAC83hCQpOmadGhop1XVnQzuSD4PuAY4p6quSnJqkuP6+l5J0s6ZdGhol1TVZmDzyLZTFmh7dJ+1SJLG661HIElaHgwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIa12sQJDkmybVJtiU5ecz+1ya5OsnlST6b5FF91iNJ2lFvQZBkH+B04FhgHbA+ybqRZpcAc1X1ZOBc4C191SNJGq/PHsGRwLaquq6q7gDOBo4fblBV51fVd7vVi4BVPdYjSRqjzyA4CLhxaH2+27aQVwKf7rEeSdIY+/Z47IzZVmMbJi8D5oBnLrB/A7ABYPXq1XuqPkkS/fYI5oGDh9ZXATeNNkryHOAPgeOq6v/GHaiqNlbVXFXNrVy5spdiJalVfQbBFmBtkkOS7AecAGwabpDkcOA9DELg5h5rkSQtoLcgqKo7gROB84BrgHOq6qokpyY5rmv2VuCBwEeSXJpk0wKHkyT1pM85AqpqM7B5ZNspQ8vP6fP7JUlL885iSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqXK9BkOSYJNcm2Zbk5DH775PkH7v9X0yyps96JEk76i0IkuwDnA4cC6wD1idZN9LslcCtVfVY4K+AN/dVjyRpvD57BEcC26rquqq6AzgbOH6kzfHAmd3yucCzk6THmiRJI/bt8dgHATcOrc8DRy3UpqruTPJt4KHAN4cbJdkAbOhWv5Pk2l4q7t8KRv5t05Tl39+a6fnbS3gOd89yPn+PWmhHn0Ew7i/72oU2VNVGYOOeKGqWkmytqrlZ17Fcef52n+dw9+yt56/PoaF54OCh9VXATQu1SbIvcADwvz3WJEka0WcQbAHWJjkkyX7ACcCmkTabgFd0yy8E/qWqdugRSJL609vQUDfmfyJwHrAPcEZVXZXkVGBrVW0C3g98KMk2Bj2BE/qq58fEsh/emjHP3+7zHO6evfL8xT/AJalt3lksSY0zCCSpcQaBJDXOIJCkxhkEPUmyb5LfTPKZJJcnuSzJp5P8VpJ7z7q+5SzJXnnlhjQrXjXUkyRnAd9i8Cyl+W7zKgb3TRxYVS+ZVW3LQZIDF9oFXFZVq6ZZz3KU5ADg94HnAyu7zTcDnwBOq6pvzaq25S7Jp6vq2FnXsaf0+YiJ1h1RVY8f2TYPXJTky7MoaJm5BbiBez6GpLr1h82kouXnHOBfgKOr6r8BkvwEgz9GPgI8d4a1/dhLcsRCu4CnTLOWvhkE/bk1yYuAj1bVjwCS3At4EXDrTCtbHq4Dnl1VXx3dkeTGMe21ozVVdY9HDXaB8OYkvzGjmpaTLcDnGP9MtAdPuZZeGQT9OYHB+xVOT7K9C/5g4Hz2/juo94S/Bh4C7BAEwFumXMtydUOS3wPOrKpvACR5OPBr3PPJwBrvGuA3q+orozv2tj9GnCPoUZJDGbxz4SAGj9n4KvCJqrpmpoUtE0mewN3nrxg8tHCT528ySR4CnMzgHG4fTvsGg2d8nVZV9kwXkeSFwBVVtcNj75M8v6o+PoOyeuFVQz1J8gbgHxj8B/ZF4N+6XWeNe22n7qn7S/ZsBt3yLzHopgfP38Sq6taqekNVPaGqDux+Dq2qNzCYQNYiqurccSHQechUi+mZPYKedBPCT6yqH4xs3w+4qqrWzqay5cHz168kX62q1bOuY7na286fcwT9+RHwSAZXvgx7RLdPi/P87aYkly+0C3j4NGtZjlo6fwZBf04CPpvkK9w9MbcaeCxw4syqWj48f7vv4cAvsuNVauHuoUotrJnzZxD0pKo+k+RxwJEMJjvD4D6CLVX1w5kWtwx4/vaITwIPrKpLR3ckuWD65Sw7zZw/5wgkqXFeNSRJjTMIJKlxBoGak2RNkivHbH9fknXd8h9McJyTktx/kf13HU/6ceYcgZqTZA3wyap60iJtvlNVD1ziONcDc1X1zTH79nFSW8uFPQK1at8kZ3bvijg3yf2TXJBkLslpwP2SXJrk75M8IMmnundKXJnkJUlew+A+h/OTnA+D8EhyapIvAk/bfryhfX/WHeOi7pk/JHlMt76l++x3uu2PSPL5roYrk/zsbE6TWmAQqFWPBzZW1ZOB24BXb99RVScD36uqp1TVrwDHADdV1WFdL+IzVfUOBs8+elZVPav76AOAK6vqqKq6cOT7HgBcVFWHAZ8HXtVtfzvw9qr6qe54270UOK+qngIcBuxwCaO0pxgEatWNVfWFbvnDwDMWaXsF8Jwkb07ys1X17QXa/RD46AL77mBwXTrAxcCabvlpDN4NAINnU223Bfj1JG8CfrKqbl+kPmm3GARq1ejk2IKTZVX1ZeCpDALhz5OcskDT7y8yL/CDuntC7ocscTNnVX0e+Dnga8CHkrx8sfbS7jAI1KrVSZ7WLa8HRodyfrD93dJJHgl8t6o+DPwFsP3NVbcD++9mHRcBL+iW73pPRZJHATdX1XuB9w99p7THGQRq1TXAK7oHix0IvHtk/0bg8iR/D/wk8KUklwJ/CPzpUJtPb58s3kUnAa9N8iUGD9TbPux0NHBpkksYBMXbd+M7pEV5+ag0Q919CN+rqkpyArC+qo6fdV1qiw+dk2brqcC7kgT4FuC7hDV19ggkqXHOEUhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTG/T+q49WNTJHmgAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Message: 00. Results:\n", + "Counter({'00': 1000})\n", + "Status: COMPLETED\n", + "measurement_counts: Counter({'01': 1000})\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEJCAYAAACZjSCSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAASdklEQVR4nO3df7DldV3H8edLkPyFKO1qyrIu5qpsKoI3yLTE1AJrwBl/sVb+HNfGyGHUkn4MGtWEmpU/yNqURC0IadRNV5nGQEVFd4nfMOhGIFdMsFBw1BB998f5LhzOnnvv2R/fc7z7eT5m7tzvj8/5nvd+h+F1P5/P90eqCklSu+416wIkSbNlEEhS4wwCSWqcQSBJjTMIJKlxBoEkNW7fWRews1asWFFr1qyZdRmStKxcfPHF36yqleP2LbsgWLNmDVu3bp11GZK0rCS5YaF9Dg1JUuMMAklqnEEgSY0zCCSpcQaBJDWutyBIckaSm5NcucD+JHlHkm1JLk9yRF+1SJIW1meP4H3AMYvsPxZY2/1sAN7dYy2SpAX0FgRV9Rngfxdpcjzw/hq4CHhQkof1VY8kabxZ3lB2EHDj0Pp8t+3row2TbGDQa2D16tVTKU47WnPyx2ddwkxdf9qvzroEqReznCzOmG1jX5dWVRuraq6q5lauHHuHtCRpF80yCOaBg4fWVwE3zagWSWrWLINgE/Di7uqhnwO+XVU7DAtJkvrV2xxBkrOAo4EVSeaBNwL3BqiqvwU2A88GtgHfBV7WVy2SpIX1FgRVtX6J/QX8dl/fL0majHcWS1LjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhrXaxAkOSbJtUm2JTl5zP7VSc5PckmSy5M8u896JEk76i0IkuwDnA4cC6wD1idZN9Lsj4Bzqupw4ATgb/qqR5I0Xp89giOBbVV1XVXdAZwNHD/SpoAHdssHADf1WI8kaYw+g+Ag4Mah9flu27A3Ab+RZB7YDPzOuAMl2ZBka5Ktt9xySx+1SlKz+gyCjNlWI+vrgfdV1Srg2cAHkuxQU1VtrKq5qppbuXJlD6VKUrv6DIJ54OCh9VXsOPTzCuAcgKr6AnAfYEWPNUmSRvQZBFuAtUkOSbIfg8ngTSNtvgo8AyDJoQyCwLEfSZqi3oKgqu4ETgTOA65hcHXQVUlOTXJc1+x1wCuTXAacBby0qkaHjyRJPdq3z4NX1WYGk8DD204ZWr4aeEqfNUiSFuedxZLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4yYKgiT79F2IJGk2Ju0RbEvy1iTreq1GkjR1kwbBE4AvA+9JclGSDUke2GNdkqQpmSgIqur2qvr7qvp54PeANwJfT3Jmkkf1WqEkqVcTzxEkOS7Jh4G3A28DHgn8K7C5x/okST2bdGjoK8DxwFur6vCq+suq+kZVnQt8cqEPJTkmybVJtiU5eYE2L0hydZKrkvzTzv8TJEm7Y98J2724qi4c3pDkKVX1uap6zbgPdFcanQ48C5gHtiTZVFVXD7VZC/w+8JSqujXJQ3bpXyFJ2mWT9gjeMWbbO5f4zJHAtqq6rqruAM5m0KsY9krg9Kq6FaCqbp6wHknSHrJojyDJk4GfB1Ymee3QrgcCS91bcBBw49D6PHDUSJtHd9/zue54b6qqBYeaJEl73lJDQ/sBD+ja7T+0/TbgeUt8NmO21ZjvXwscDawCPpvkcVX1rXscKNkAbABYvXr1El8rSdoZiwZBVX0a+HSS91XVDTt57Hng4KH1VcBNY9pcVFU/AP4rybUMgmHLSB0bgY0Ac3Nzo2EiSdoNSw0N/XVVnQS8K8kO/wOuquMW+fgWYG2SQ4CvAScALxpp8xFgPfC+JCsYDBVdtxP1S5J201JDQx/ofv/Fzh64qu5MciJwHoPx/zOq6qokpwJbq2pTt++Xk1wN/BD43ar6n539LknSrltqaOji7vend+XgVbWZkRvOquqUoeUCXtv9SJJmYKmhoSvYcYL3LlX1hD1ekSRpqpYaGvq1qVQhSZqZpYaGdvZKIUnSMrPoncVJLux+357kttHf0ylRktSnpXoET+1+779YO0nS8jXpQ+dIcgTwVAaTxxdW1SW9VSVJmppJ30dwCnAm8JPACgY3gP1Rn4VJkqZj0h7BeuDwqvo+QJLTgP8A/rSvwiRJ0zHpY6ivB+4ztP4TwH/u8WokSVO31A1l72QwJ/B/wFVJ/q1bfxZw4WKflSQtD0sNDW3tfl8MfHho+wW9VCNJmrqlLh89c1qFSJJmY6LJ4u7dwn8OrGNorqCqHtlTXZKkKZl0svgfgHcDdwJPB97P3Y+oliQtY5MGwX2r6lNAquqGqnoT8Ev9lSVJmpZJ7yP4fpJ7AV/pXjbzNeAh/ZUlSZqWSXsEJwH3A14DPAn4TeAlfRUlSZqeiXoEVbUFoOsVvKaqbu+1KknS1Ez6rKG57m1llwNXJLksyZP6LU2SNA2TzhGcAby6qj4LkOSpDK4k8lWVkrTMTTpHcPv2EACoqgsBh4ckaS+w1LOGjugWv5Tk74CzGDxr6IX4mAlJ2issNTT0tpH1Nw4t1x6uRZI0A0s9a+jp0ypEkjQbk141dECSv0yytft5W5ID+i5OktS/SSeLz2AwOfyC7uc2BlcNSZKWuUkvH/3pqnru0PofJ7m0j4IkSdM1aY/ge929AwAkeQrwvX5KkiRN06Q9gt8C3j80L3ArPmtIkvYKSwZB93yhx1TVYUkeCFBVt/VemSRpKpYcGqqqHwEndsu3GQKStHeZdI7g35K8PsnBSQ7c/tNrZZKkqZh0juDlDO4kfvXIdt9ZLEnL3KQ9gnXA6cBlwKXAO4GfWepDSY5Jcm2SbUlOXqTd85JUkrkJ65Ek7SGTBsGZwKHAOxiEwKHdtgUl2YdBeBzLIEjWJ1k3pt3+DN589sXJy5Yk7SmTDg09pqoOG1o/P8llS3zmSGBbVV0HkORs4Hjg6pF2fwK8BXj9hLVIkvagSXsElyT5ue0rSY4CPrfEZw4Cbhxan++23SXJ4cDBVfWxxQ6UZMP25xzdcsstE5YsSZrEpEFwFPD5JNcnuR74AvC0JFckuXyBz2TMtrseXd3dn/BXwOuW+vKq2lhVc1U1t3LlyglLliRNYtKhoWN24djzwMFD66uAm4bW9wceB1yQBOCngE1JjquqrbvwfZKkXTBREFTVDbtw7C3A2iSHAF8DTgBeNHTMbwMrtq8nuQB4vSEgSdM16dDQTquqOxnckXwecA1wTlVdleTUJMf19b2SpJ0z6dDQLqmqzcDmkW2nLND26D5rkSSN11uPQJK0PBgEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1rtcgSHJMkmuTbEty8pj9r01ydZLLk3wqySP6rEeStKPegiDJPsDpwLHAOmB9knUjzS4B5qrqCcC5wFv6qkeSNF6fPYIjgW1VdV1V3QGcDRw/3KCqzq+q73arFwGreqxHkjRGn0FwEHDj0Pp8t20hrwA+0WM9kqQx9u3x2BmzrcY2TH4DmAOetsD+DcAGgNWrV++p+iRJ9NsjmAcOHlpfBdw02ijJM4E/BI6rqv8bd6Cq2lhVc1U1t3Llyl6KlaRW9RkEW4C1SQ5Jsh9wArBpuEGSw4G/YxACN/dYiyRpAb0FQVXdCZwInAdcA5xTVVclOTXJcV2ztwIPAD6U5NIkmxY4nCSpJ33OEVBVm4HNI9tOGVp+Zp/fL0lamncWS1LjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS43oNgiTHJLk2ybYkJ4/Z/xNJ/rnb/8Uka/qsR5K0o96CIMk+wOnAscA6YH2SdSPNXgHcWlWPAv4KeHNf9UiSxuuzR3AksK2qrquqO4CzgeNH2hwPnNktnws8I0l6rEmSNGLfHo99EHDj0Po8cNRCbarqziTfBn4S+OZwoyQbgA3d6neSXNtLxf1bwci/TTtlpucve0d/1f8Gd89yPn+PWGhHn0Ew7i/72oU2VNVGYOOeKGqWkmytqrlZ17Fcef52n+dw9+yt56/PoaF54OCh9VXATQu1SbIvcADwvz3WJEka0WcQbAHWJjkkyX7ACcCmkTabgJd0y88D/r2qdugRSJL609vQUDfmfyJwHrAPcEZVXZXkVGBrVW0C3gt8IMk2Bj2BE/qq58fEsh/emjHP3+7zHO6evfL8xT/AJalt3lksSY0zCCSpcQaBJDXOIJCkxhkEPUmyb5JXJflkksuTXJbkE0l+K8m9Z13fcpZkr7xyQ5oVrxrqSZKzgG8xeJbSfLd5FYP7Jg6sqhfOqrblIMmBC+0CLquqVdOsZzlKcgDw+8BzgJXd5puBjwKnVdW3ZlXbcpfkE1V17Kzr2FP6fMRE646oqseMbJsHLkry5VkUtMzcAtzAPR9DUt36Q2ZS0fJzDvDvwNFV9d8ASX6KwR8jHwKeNcPafuwlOWKhXcATp1lL3wyC/tya5PnAv1TVjwCS3At4PnDrTCtbHq4DnlFVXx3dkeTGMe21ozVVdY9H5XWB8OYkL59RTcvJFuDTjH8m2oOmXEuvDIL+nMDg/QqnJ9neBX8QcD57/x3Ue8JfAw8GdggC4C1TrmW5uiHJ7wFnVtU3AJI8FHgp93wysMa7BnhVVX1ldMfe9seIcwQ9SnIog3cuHMTgMRtfBT5aVdfMtLBlIsljufv8FYOHFm7y/E0myYOBkxmcw+3Dad9g8Iyv06rKnukikjwPuKKqdnjsfZLnVNVHZlBWL7xqqCdJ3gD8E4P/gX0R+Hy366xxr+3UPXV/yZ7NoFv+JQbd9OD5m1hV3VpVb6iqx1bVgd3PoVX1BgYTyFpEVZ07LgQ6D55qMT2zR9CTbkL4Z6rqByPb9wOuqqq1s6lsefD89SvJV6tq9azrWK72tvPnHEF/fgQ8nMGVL8Me1u3T4jx/uynJ5QvtAh46zVqWo5bOn0HQn5OATyX5CndPzK0GHgWcOLOqlg/P3+57KPAr7HiVWrh7qFILa+b8GQQ9qapPJnk0cCSDyc4wuI9gS1X9cKbFLQOevz3iY8ADqurS0R1JLph+OctOM+fPOQJJapxXDUlS4wwCSWqcQaDmJFmT5Mox29+TZF23/AcTHOekJPdbZP9dx5N+nDlHoOYkWQN8rKoet0ib71TVA5Y4zvXAXFV9c8y+fZzU1nJhj0Ct2jfJmd27Is5Ncr8kFySZS3IacN8klyb5xyT3T/Lx7p0SVyZ5YZLXMLjP4fwk58MgPJKcmuSLwJO3H29o3591x7ioe+YPSX66W9/SffY73faHJflMV8OVSX5hNqdJLTAI1KrHABur6gnAbcCrt++oqpOB71XVE6vq14FjgJuq6rCuF/HJqnoHg2cfPb2qnt599P7AlVV1VFVdOPJ99wcuqqrDgM8Ar+y2vx14e1X9bHe87V4EnFdVTwQOA3a4hFHaUwwCterGqvpct/xB4KmLtL0CeGaSNyf5har69gLtfgj8ywL77mBwXTrAxcCabvnJDN4NAINnU223BXhZkjcBj6+q2xepT9otBoFaNTo5tuBkWVV9GXgSg0D48ySnLND0+4vMC/yg7p6Q+yFL3MxZVZ8BfhH4GvCBJC9erL20OwwCtWp1kid3y+uB0aGcH2x/t3SShwPfraoPAn8BbH9z1e3A/rtZx0XAc7vlu95TkeQRwM1V9ffAe4e+U9rjDAK16hrgJd2DxQ4E3j2yfyNweZJ/BB4PfCnJpcAfAn861OYT2yeLd9FJwGuTfInBA/W2DzsdDVya5BIGQfH23fgOaVFePirNUHcfwveqqpKcAKyvquNnXZfa4kPnpNl6EvCuJAG+BfguYU2dPQJJapxzBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlx/w8+J9WNgQGuTgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Message: 01. Results:\n", + "Counter({'01': 1000})\n", + "Status: COMPLETED\n", + "measurement_counts: Counter({'10': 1000})\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEJCAYAAACZjSCSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAASdklEQVR4nO3df7DldV3H8edLCE1FFHc1Y1kXdVXWHwjeINMSUwusAWfUZM38Oa6NkcOYJf0YNKoJNSt/kLkqiVoQ4mibrTKNgYqK7hK/YdCNQK6UYKHgqCH67o/zXTicPffesz++53j383zM3LnfH5/zPe/9DsPrfj6f749UFZKkdt1r1gVIkmbLIJCkxhkEktQ4g0CSGmcQSFLjDAJJaty+sy5gZ61YsaLWrFkz6zIkaVm5+OKLv1lVK8ftW3ZBsGbNGrZu3TrrMiRpWUlyw0L7HBqSpMYZBJLUOINAkhpnEEhS4wwCSWpcb0GQ5IwkNye5coH9SfKOJNuSXJ7kiL5qkSQtrM8ewQeAYxbZfyywtvvZALy7x1okSQvoLQiq6rPA/y7S5HjggzVwEfDAJA/rqx5J0nizvKHsIODGofX5btt/jTZMsoFBr4HVq1dPpThpT1tz8r/MuoSZu/60X5l1CRpjlpPFGbNt7OvSqmpjVc1V1dzKlWPvkJYk7aJZBsE8cPDQ+irgphnVIknNmmUQbAJe0l099LPAt6tqh2EhSVK/epsjSHIWcDSwIsk88EbgJwCq6m+BzcBzgG3Ad4GX91WLJGlhvQVBVa1fYn8Bv9XX90uSJuOdxZLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTG9RoESY5Jcm2SbUlOHrN/dZLzk1yS5PIkz+mzHknSjnoLgiT7AKcDxwLrgPVJ1o00+yPgnKo6HDgB+Ju+6pEkjddnj+BIYFtVXVdVdwBnA8ePtCngAd3yAcBNPdYjSRqjzyA4CLhxaH2+2zbsTcCLk8wDm4HfHnegJBuSbE2y9ZZbbumjVklqVp9BkDHbamR9PfCBqloFPAf4UJIdaqqqjVU1V1VzK1eu7KFUSWpXn0EwDxw8tL6KHYd+XgmcA1BVXwTuA6zosSZJ0og+g2ALsDbJIUn2YzAZvGmkzdeAZwIkOZRBEDj2I0lT1FsQVNWdwInAecA1DK4OuirJqUmO65r9DvCqJJcBZwEvq6rR4SNJUo/27fPgVbWZwSTw8LZThpavBp7aZw2SpMV5Z7EkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1LiJgiDJPn0XIkmajUl7BNuSvDXJul6rkSRN3aRB8ETgK8D7klyUZEOSB/RYlyRpSiYKgqq6vareW1U/B/we8Ebgv5KcmeRRvVYoSerVxHMESY5L8jHg7cDbgEcA/wxs7rE+SVLPJh0a+ipwPPDWqjq8qv6yqr5RVecCn1roQ0mOSXJtkm1JTl6gza8luTrJVUn+Yef/CZKk3bHvhO1eUlUXDm9I8tSq+nxVvXbcB7orjU4Hng3MA1uSbKqqq4farAV+H3hqVd2a5CG79K+QJO2ySXsE7xiz7Z1LfOZIYFtVXVdVdwBnM+hVDHsVcHpV3QpQVTdPWI8kaQ9ZtEeQ5CnAzwErk7xuaNcDgKXuLTgIuHFofR44aqTNo7vv+Xx3vDdV1YJDTZKkPW+poaH9gPt37fYf2n4b8PwlPpsx22rM968FjgZWAZ9L8viq+tY9DpRsADYArF69eomvlSTtjEWDoKo+A3wmyQeq6oadPPY8cPDQ+irgpjFtLqqqHwD/meRaBsGwZaSOjcBGgLm5udEwkSTthqWGhv66qk4C3pVkh/8BV9Vxi3x8C7A2ySHA14ETgBeNtPk4sB74QJIVDIaKrtuJ+iVJu2mpoaEPdb//YmcPXFV3JjkROI/B+P8ZVXVVklOBrVW1qdv3S0muBn4I/G5V/c/OfpckadctNTR0cff7M7ty8KrazMgNZ1V1ytByAa/rfiRJM7DU0NAV7DjBe5eqeuIer0iSNFVLDQ396lSqkCTNzFJDQzt7pZAkaZlZ9M7iJBd2v29Pctvo7+mUKEnq01I9gqd1v/dfrJ0kafma9KFzJDkCeBqDyeMLq+qS3qqSJE3NpO8jOAU4E3gwsILBDWB/1GdhkqTpmLRHsB44vKq+D5DkNODfgT/tqzBJ0nRM+hjq64H7DK3fG/iPPV6NJGnqlrqh7J0M5gT+D7gqyb92688GLlzss5Kk5WGpoaGt3e+LgY8Nbb+gl2okSVO31OWjZ06rEEnSbEw0Wdy9W/jPgXUMzRVU1SN6qkuSNCWTThb/HfBu4E7gGcAHufsR1ZKkZWzSIPjJqvo0kKq6oareBPxif2VJkqZl0vsIvp/kXsBXu5fNfB14SH9lSZKmZdIewUnAfYHXAk8GfgN4aV9FSZKmZ6IeQVVtAeh6Ba+tqtt7rUqSNDWTPmtorntb2eXAFUkuS/LkfkuTJE3DpHMEZwCvqarPASR5GoMriXxVpSQtc5POEdy+PQQAqupCwOEhSdoLLPWsoSO6xS8neQ9wFoNnDb0QHzMhSXuFpYaG3jay/sah5drDtUiSZmCpZw09Y1qFSJJmY9Krhg5I8pdJtnY/b0tyQN/FSZL6N+lk8RkMJod/rfu5jcFVQ5KkZW7Sy0cfWVXPG1r/4ySX9lGQJGm6Ju0RfK+7dwCAJE8FvtdPSZKkaZq0R/CbwAeH5gVuxWcNSdJeYckg6J4v9JiqOizJAwCq6rbeK5MkTcWSQ0NV9SPgxG75NkNAkvYuk84R/GuS1yc5OMmB2396rUySNBWTzhG8gsGdxK8Z2e47iyVpmZu0R7AOOB24DLgUeCfwuKU+lOSYJNcm2Zbk5EXaPT9JJZmbsB5J0h4yaRCcCRwKvINBCBzabVtQkn0YhMexDIJkfZJ1Y9rtz+DNZ1+avGxJ0p4y6dDQY6rqsKH185NctsRnjgS2VdV1AEnOBo4Hrh5p9yfAW4DXT1iLJGkPmrRHcEmSn92+kuQo4PNLfOYg4Mah9flu212SHA4cXFWfWOxASTZsf87RLbfcMmHJkqRJTBoERwFfSHJ9kuuBLwJPT3JFkssX+EzGbLvr0dXd/Ql/BfzOUl9eVRuraq6q5lauXDlhyZKkSUw6NHTMLhx7Hjh4aH0VcNPQ+v7A44ELkgD8FLApyXFVtXUXvk+StAsmCoKqumEXjr0FWJvkEODrwAnAi4aO+W1gxfb1JBcArzcEJGm6Jh0a2mlVdSeDO5LPA64Bzqmqq5KcmuS4vr5XkrRzJh0a2iVVtRnYPLLtlAXaHt1nLZKk8XrrEUiSlgeDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxvUaBEmOSXJtkm1JTh6z/3VJrk5yeZJPJ3l4n/VIknbUWxAk2Qc4HTgWWAesT7JupNklwFxVPRE4F3hLX/VIksbrs0dwJLCtqq6rqjuAs4HjhxtU1flV9d1u9SJgVY/1SJLG6DMIDgJuHFqf77Yt5JXAJ3usR5I0xr49HjtjttXYhsmLgTng6Qvs3wBsAFi9evWeqk+SRL89gnng4KH1VcBNo42SPAv4Q+C4qvq/cQeqqo1VNVdVcytXruylWElqVZ9BsAVYm+SQJPsBJwCbhhskORx4D4MQuLnHWiRJC+gtCKrqTuBE4DzgGuCcqroqyalJjuuavRW4P/CRJJcm2bTA4SRJPelzjoCq2gxsHtl2ytDys/r8fknS0ryzWJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGtdrECQ5Jsm1SbYlOXnM/nsn+cdu/5eSrOmzHknSjnoLgiT7AKcDxwLrgPVJ1o00eyVwa1U9Cvgr4M191SNJGq/PHsGRwLaquq6q7gDOBo4faXM8cGa3fC7wzCTpsSZJ0oh9ezz2QcCNQ+vzwFELtamqO5N8G3gw8M3hRkk2ABu61e8kubaXivu3gpF/m3aK52/3zfQcZvn3+Zfzf4MPX2hHn0Ew7i/72oU2VNVGYOOeKGqWkmytqrlZ17Fcef52n+dw9+yt56/PoaF54OCh9VXATQu1SbIvcADwvz3WJEka0WcQbAHWJjkkyX7ACcCmkTabgJd2y88H/q2qdugRSJL609vQUDfmfyJwHrAPcEZVXZXkVGBrVW0C3g98KMk2Bj2BE/qq58fEsh/emjHP3+7zHO6evfL8xT/AJalt3lksSY0zCCSpcQaBJDXOIJCkxhkEPUmyb5JXJ/lUksuTXJbkk0l+M8lPzLq+5SzJXnnlhjQrXjXUkyRnAd9i8Cyl+W7zKgb3TRxYVS+cVW3LQZIDF9oFXFZVq6ZZz3KU5ADg94HnAiu7zTcD/wScVlXfmlVty12ST1bVsbOuY0/p8xETrTuiqh4zsm0euCjJV2ZR0DJzC3AD93wMSXXrD5lJRcvPOcC/AUdX1X8DJPkpBn+MfAR49gxr+7GX5IiFdgFPmmYtfTMI+nNrkhcAH62qHwEkuRfwAuDWmVa2PFwHPLOqvja6I8mNY9prR2uq6h6PeesC4c1JXjGjmpaTLcBnGP9MtAdOuZZeGQT9OYHB+xVOT7K9C/5A4Hz2/juo94S/Bh4E7BAEwFumXMtydUOS3wPOrKpvACR5KPAy7vlkYI13DfDqqvrq6I697Y8R5wh6lORQBu9cOIjBYza+BvxTVV0z08KWiSSP5e7zVwweWrjJ8zeZJA8CTmZwDrcPp32DwTO+Tqsqe6aLSPJ84Iqq2uGx90meW1Ufn0FZvfCqoZ4keQPwDwz+B/Yl4AvdrrPGvbZT99T9JXs2g275lxl004Pnb2JVdWtVvaGqHltVB3Y/h1bVGxhMIGsRVXXuuBDoPGiqxfTMHkFPugnhx1XVD0a27wdcVVVrZ1PZ8uD561eSr1XV6lnXsVztbefPOYL+/Aj4aQZXvgx7WLdPi/P87aYkly+0C3joNGtZjlo6fwZBf04CPp3kq9w9MbcaeBRw4syqWj48f7vvocAvs+NVauHuoUotrJnzZxD0pKo+leTRwJEMJjvD4D6CLVX1w5kWtwx4/vaITwD3r6pLR3ckuWD65Sw7zZw/5wgkqXFeNSRJjTMIJKlxBoGak2RNkivHbH9fknXd8h9McJyTktx3kf13HU/6ceYcgZqTZA3wiap6/CJtvlNV91/iONcDc1X1zTH79nFSW8uFPQK1at8kZ3bvijg3yX2TXJBkLslpwE8muTTJ3ye5X5J/6d4pcWWSFyZ5LYP7HM5Pcj4MwiPJqUm+BDxl+/GG9v1Zd4yLumf+kOSR3fqW7rPf6bY/LMlnuxquTPLzszlNaoFBoFY9BthYVU8EbgNes31HVZ0MfK+qnlRVvw4cA9xUVYd1vYhPVdU7GDz76BlV9Yzuo/cDrqyqo6rqwpHvux9wUVUdBnwWeFW3/e3A26vqZ7rjbfci4LyqehJwGLDDJYzSnmIQqFU3VtXnu+UPA09bpO0VwLOSvDnJz1fVtxdo90Pgowvsu4PBdekAFwNruuWnMHg3AAyeTbXdFuDlSd4EPKGqbl+kPmm3GARq1ejk2IKTZVX1FeDJDALhz5OcskDT7y8yL/CDuntC7ocscTNnVX0W+AXg68CHkrxksfbS7jAI1KrVSZ7SLa8HRodyfrD93dJJfhr4blV9GPgLYPubq24H9t/NOi4Cntct3/WeiiQPB26uqvcC7x/6TmmPMwjUqmuAl3YPFjsQePfI/o3A5Un+HngC8OUklwJ/CPzpUJtPbp8s3kUnAa9L8mUGD9TbPux0NHBpkksYBMXbd+M7pEV5+ag0Q919CN+rqkpyArC+qo6fdV1qiw+dk2brycC7kgT4FuC7hDV19ggkqXHOEUhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTG/T/IaNWNPAzwIwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Message: 10. Results:\n", + "Counter({'10': 1000})\n", + "Status: COMPLETED\n", + "measurement_counts: Counter({'11': 1000})\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEJCAYAAACZjSCSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAASdElEQVR4nO3de7SldV3H8fdHCK+I0oxmDOOgjshkIniCTEtMLbAWuJaojJVWLqeWkYtllnRZaFQr1MwrmaOSeIOQljrpKKtloGGhM8QdFjoRyJESLBRcaoh++2M/A5s9+5yz5/Ls7Znf+7XWWee5/Pazv/P8MZ/z+/2eS6oKSVK77jfrAiRJs2UQSFLjDAJJapxBIEmNMwgkqXEGgSQ1bt9ZF7CzVqxYUWvWrJl1GZK0rFx66aVfr6qV4/YtuyBYs2YNW7dunXUZkrSsJLlpoX0ODUlS4wwCSWqcQSBJjTMIJKlxBoEkNa63IEhyVpJbk1y9wP4keVuSbUmuTHJkX7VIkhbWZ4/gfcCxi+w/Dljb/WwA3tljLZKkBfQWBFX1OeB/F2lyAvD+GrgEeFiSR/VVjyRpvFneUHYQcPPQ+ny37b9GGybZwKDXwOrVq6dSnKQfPmtO/eSsS5ipG8/4pV6OO8vJ4ozZNvZ1aVW1sarmqmpu5cqxd0hLknbRLINgHjh4aH0VcMuMapGkZs0yCDYBL+muHvpp4JtVtcOwkCSpX73NESQ5BzgGWJFkHngt8CMAVfW3wGbgucA24NvAb/RViyRpYb0FQVWtX2J/Ab/T1/dLkibjncWS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxvUaBEmOTXJ9km1JTh2zf3WSC5NcluTKJM/tsx5J0o56C4Ik+wBnAscB64D1SdaNNPsT4LyqOgI4CfibvuqRJI3XZ4/gKGBbVd1QVXcB5wInjLQp4KHd8gHALT3WI0kao88gOAi4eWh9vts27HXAryaZBzYDvzvuQEk2JNmaZOttt93WR62S1Kw+gyBjttXI+nrgfVW1Cngu8IEkO9RUVRuraq6q5lauXNlDqZLUrj6DYB44eGh9FTsO/bwMOA+gqv4NeACwoseaJEkj+gyCLcDaJIck2Y/BZPCmkTZfAZ4FkOQwBkHg2I8kTVFvQVBVdwMnAxcA1zG4OuiaJKcnOb5r9nvAy5NcAZwD/HpVjQ4fSZJ6tG+fB6+qzQwmgYe3nTa0fC3wtD5rkCQtzjuLJalxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGTRQESfbpuxBJ0mxM2iPYluSNSdb1Wo0kaeomDYInAV8C3pPkkiQbkjy0x7okSVMyURBU1Z1V9e6q+hngD4DXAv+V5Owkj+u1QklSryaeI0hyfJKPAm8F3gQ8BvhHYHOP9UmSejbp0NCXgROAN1bVEVX111X1tao6H/j0Qh9KcmyS65NsS3LqAm1emOTaJNck+fDO/xMkSbtj3wnbvaSqLh7ekORpVfX5qnrluA90VxqdCTwHmAe2JNlUVdcOtVkL/CHwtKq6PckjdulfIUnaZZP2CN42Ztvbl/jMUcC2qrqhqu4CzmXQqxj2cuDMqrodoKpunbAeSdIesmiPIMlTgZ8BViZ51dCuhwJL3VtwEHDz0Po8cPRIm8d33/P57nivq6oFh5okSXveUkND+wEP6drtP7T9DuDEJT6bMdtqzPevBY4BVgH/kuSJVfWN+xwo2QBsAFi9evUSXytJ2hmLBkFVfRb4bJL3VdVNO3nseeDgofVVwC1j2lxSVd8D/jPJ9QyCYctIHRuBjQBzc3OjYSJJ2g1LDQ29papOAd6RZIf/gKvq+EU+vgVYm+QQ4KvAScCLR9p8DFgPvC/JCgZDRTfsRP2SpN201NDQB7rff7WzB66qu5OcDFzAYPz/rKq6JsnpwNaq2tTt+4Uk1wLfB36/qv5nZ79LkrTrlhoaurT7/dldOXhVbWbkhrOqOm1ouYBXdT+SpBlYamjoKnac4L1HVT1pj1ckSZqqpYaGfnkqVUiSZmapoaGdvVJIkrTMLHpncZKLu993Jrlj9Pd0SpQk9WmpHsHTu9/7L9ZOkrR8TfrQOZIcCTydweTxxVV1WW9VSZKmZtL3EZwGnA38KLCCwQ1gf9JnYZKk6Zi0R7AeOKKqvguQ5Azg34E/76swSdJ0TPoY6huBBwyt3x/4jz1ejSRp6pa6oeztDOYE/g+4Jsk/devPAS5e7LOSpOVhqaGhrd3vS4GPDm2/qJdqJElTt9Tlo2dPqxBJ0mxMNFncvVv4L4F1DM0VVNVjeqpLkjQlk04W/x3wTuBu4JnA+7n3EdWSpGVs0iB4YFV9BkhV3VRVrwN+vr+yJEnTMul9BN9Ncj/gy93LZr4KPKK/siRJ0zJpj+AU4EHAK4GnAL8GvLSvoiRJ0zNRj6CqtgB0vYJXVtWdvVYlSZqaSZ81NNe9rexK4KokVyR5Sr+lSZKmYdI5grOAV1TVvwAkeTqDK4l8VaUkLXOTzhHcuT0EAKrqYsDhIUnaCyz1rKEju8UvJnkXcA6DZw29CB8zIUl7haWGht40sv7aoeXaw7VIkmZgqWcNPXNahUiSZmPSq4YOSPLXSbZ2P29KckDfxUmS+jfpZPFZDCaHX9j93MHgqiFJ0jI36eWjj62q5w+t/2mSy/soSJI0XZP2CL7T3TsAQJKnAd/ppyRJ0jRN2iP4beD9Q/MCt+OzhiRpr7BkEHTPFzq0qg5P8lCAqrqj98okSVOx5NBQVf0AOLlbvsMQkKS9y6RzBP+U5NVJDk5y4PafXiuTJE3FpHMEv8ngTuJXjGz3ncWStMxN2iNYB5wJXAFcDrwd+ImlPpTk2CTXJ9mW5NRF2p2YpJLMTViPJGkPmTQIzgYOA97GIAQO67YtKMk+DMLjOAZBsj7JujHt9mfw5rMvTF62JGlPmXRo6NCqOnxo/cIkVyzxmaOAbVV1A0CSc4ETgGtH2v0Z8Abg1RPWIknagybtEVyW5Ke3ryQ5Gvj8Ep85CLh5aH2+23aPJEcAB1fVJxY7UJIN259zdNttt01YsiRpEpMGwdHAvya5McmNwL8Bz0hyVZIrF/hMxmy759HV3f0JbwZ+b6kvr6qNVTVXVXMrV66csGRJ0iQmHRo6dheOPQ8cPLS+CrhlaH1/4InARUkAfgzYlOT4qtq6C98nSdoFEwVBVd20C8feAqxNcgjwVeAk4MVDx/wmsGL7epKLgFcbApI0XZMODe20qrqbwR3JFwDXAedV1TVJTk9yfF/fK0naOZMODe2SqtoMbB7ZdtoCbY/psxZJ0ni99QgkScuDQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuN6DYIkxya5Psm2JKeO2f+qJNcmuTLJZ5I8us96JEk76i0IkuwDnAkcB6wD1idZN9LsMmCuqp4EnA+8oa96JEnj9dkjOArYVlU3VNVdwLnACcMNqurCqvp2t3oJsKrHeiRJY/QZBAcBNw+tz3fbFvIy4FM91iNJGmPfHo+dMdtqbMPkV4E54BkL7N8AbABYvXr1nqpPkkS/PYJ54OCh9VXALaONkjwb+GPg+Kr6v3EHqqqNVTVXVXMrV67spVhJalWfQbAFWJvkkCT7AScBm4YbJDkCeBeDELi1x1okSQvoLQiq6m7gZOAC4DrgvKq6JsnpSY7vmr0ReAjwkSSXJ9m0wOEkST3pc46AqtoMbB7ZdtrQ8rP7/H5J0tK8s1iSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhrXaxAkOTbJ9Um2JTl1zP77J/n7bv8Xkqzpsx5J0o56C4Ik+wBnAscB64D1SdaNNHsZcHtVPQ54M/D6vuqRJI3XZ4/gKGBbVd1QVXcB5wInjLQ5ATi7Wz4feFaS9FiTJGnEvj0e+yDg5qH1eeDohdpU1d1Jvgn8KPD14UZJNgAbutVvJbm+l4r7t4KRf5t2iudv93kOd89Mz192b8zk0Qvt6DMIxv1lX7vQhqraCGzcE0XNUpKtVTU36zqWK8/f7vMc7p699fz1OTQ0Dxw8tL4KuGWhNkn2BQ4A/rfHmiRJI/oMgi3A2iSHJNkPOAnYNNJmE/DSbvlE4J+raocegSSpP70NDXVj/icDFwD7AGdV1TVJTge2VtUm4L3AB5JsY9ATOKmven5ILPvhrRnz/O0+z+Hu2SvPX/wDXJLa5p3FktQ4g0CSGmcQSFLjDAJJapxB0JMk+yb5rSSfTnJlkiuSfCrJbyf5kVnXt5wl2Suv3JBmxauGepLkHOAbDJ6lNN9tXsXgvokDq+pFs6ptOUhy4EK7gCuqatU061mOkhwA/CHwPGBlt/lW4OPAGVX1jVnVttwl+VRVHTfrOvaUPh8x0bojq+rQkW3zwCVJvjSLgpaZ24CbuO9jSKpbf8RMKlp+zgP+GTimqv4bIMmPMfhj5CPAc2ZY2w+9JEcutAt48jRr6ZtB0J/bk7wA+Ieq+gFAkvsBLwBun2lly8MNwLOq6iujO5LcPKa9drSmqu7zmLIuEF6f5DdnVNNysgX4LOOfifawKdfSK4OgPycxeL/CmUm2d8EfBlzI3n8H9Z7wFuDhwA5BALxhyrUsVzcl+QPg7Kr6GkCSRwK/zn2fDKzxrgN+q6q+PLpjb/tjxDmCHiU5jME7Fw5i8JiNrwAfr6rrZlrYMpHkCdx7/orBQws3ef4mk+ThwKkMzuH24bSvMXjG1xlVZc90EUlOBK6qqh0ee5/keVX1sRmU1QuvGupJktcAH2bwH9gXgH/tdp0z7rWduq/uL9lzGXTLv8igmx48fxOrqtur6jVV9YSqOrD7OayqXsNgAlmLqKrzx4VA5+FTLaZn9gh60k0I/0RVfW9k+37ANVW1djaVLQ+ev34l+UpVrZ51HcvV3nb+nCPozw+AH2dw5cuwR3X7tDjP325KcuVCu4BHTrOW5ail82cQ9OcU4DNJvsy9E3OrgccBJ8+squXD87f7Hgn8IjtepRbuHarUwpo5fwZBT6rq00keDxzFYLIzDO4j2FJV359pccuA52+P+ATwkKq6fHRHkoumX86y08z5c45AkhrnVUOS1DiDQJIaZxCoOUnWJLl6zPb3JFnXLf/RBMc5JcmDFtl/z/GkH2bOEag5SdYAn6iqJy7S5ltV9ZAljnMjMFdVXx+zbx8ntbVc2CNQq/ZNcnb3rojzkzwoyUVJ5pKcATwwyeVJPpTkwUk+2b1T4uokL0rySgb3OVyY5EIYhEeS05N8AXjq9uMN7fuL7hiXdM/8Iclju/Ut3We/1W1/VJLPdTVcneRnZ3Oa1AKDQK06FNhYVU8C7gBesX1HVZ0KfKeqnlxVvwIcC9xSVYd3vYhPV9XbGDz76JlV9czuow8Grq6qo6vq4pHvezBwSVUdDnwOeHm3/a3AW6vqp7rjbfdi4IKqejJwOLDDJYzSnmIQqFU3V9Xnu+UPAk9fpO1VwLOTvD7Jz1bVNxdo933gHxbYdxeD69IBLgXWdMtPZfBuABg8m2q7LcBvJHkd8JNVdeci9Um7xSBQq0YnxxacLKuqLwFPYRAIf5nktAWafneReYHv1b0Tct9niZs5q+pzwM8BXwU+kOQli7WXdodBoFatTvLUbnk9MDqU873t75ZO8uPAt6vqg8BfAdvfXHUnsP9u1nEJ8Pxu+Z73VCR5NHBrVb0beO/Qd0p7nEGgVl0HvLR7sNiBwDtH9m8ErkzyIeAngS8muRz4Y+DPh9p8avtk8S46BXhVki8yeKDe9mGnY4DLk1zGICjeuhvfIS3Ky0elGeruQ/hOVVWSk4D1VXXCrOtSW3zonDRbTwHekSTANwDfJayps0cgSY1zjkCSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ17v8BVnjVjbMQPTQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Message: 11. Results:\n", + "Counter({'11': 1000})\n" + ] + } + ], + "source": [ + "for m in message:\n", + " \n", + " # Reproduce the full circuit above by concatenating all of the gates:\n", + " newcirc = Circuit().h([0]).cnot(0,1).add_circuit(message[m]).cnot(0,1).h([0])\n", + " \n", + " # Run the circuit:\n", + " counts = get_result(device, newcirc)\n", + " \n", + " print(\"Message: \" + m + \". Results:\")\n", + " print(counts)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Task Summary\n", + "{}\n", + "Note: Charges shown are estimates based on your Amazon Braket simulator and quantum processing unit (QPU) task usage. Estimated charges shown may differ from your actual charges. Estimated charges do not factor in any discounts or credits, and you may experience additional charges based on your use of other services such as Amazon Elastic Compute Cloud (Amazon EC2).\n", + "Estimated cost to run this example: 0.00 USD\n" + ] + } + ], + "source": [ + "print(\"Task Summary\")\n", + "print(t.quantum_tasks_statistics())\n", + "print('Note: Charges shown are estimates based on your Amazon Braket simulator and quantum processing unit (QPU) task usage. Estimated charges shown may differ from your actual charges. Estimated charges do not factor in any discounts or credits, and you may experience additional charges based on your use of other services such as Amazon Elastic Compute Cloud (Amazon EC2).')\n", + "print(f\"Estimated cost to run this example: {t.qpu_tasks_cost() + t.simulator_tasks_cost():.2f} USD\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.8.10 ('venv': venv)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + }, + "vscode": { + "interpreter": { + "hash": "590fab68195cf107911461461f81d5c472d3d6127f579badfcfad30f03e5cab2" + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/0_TO_ORGANIZE/4_Superdense_coding/circuit.png b/0_TO_ORGANIZE/4_Superdense_coding/circuit.png new file mode 100644 index 0000000000000000000000000000000000000000..0b7409fedd0acb47a825e2d50716d6b59d0fecfe GIT binary patch literal 48954 zcma%i1z1&Gw=S`zr9%W^(xru3aaYrWNBk>fq?KVIz<~*N4<|Y`-PgEbqLxs^wwzVXQ}v-u~4XH zC0?SqWHcvL)YKc9dy{O`#$RI?n~B9IVp<=^w2D10EG><_N5<@=Ca&Fnws1ClHq;t4 zoOzs+*mO3GkgGnFB=4qbfZ$5!Q{8xAJTaB5LA-@7j)d6_r}_?Rxu;=>~m-eL&eoJPz8$ibWUPbSolKgtVJm?D!Z z;+huWTNS%h;TM#+MD){By+%G%M(BM)q4E|z*ppza=IA0lLH3Hcs~kT>2PqhvbQz&7 ziXoUEX_>02DJkW_3}Pf~-<#{MGhMW!Z^Z)J*n^dsDl%&A2l+znUCpDr7p`uEH=H|5 zxzXl$F8%LJ79A~AUTc^>>@rA%Z9a%Pp}K_<7w%9!Euxl@em_IOvo;`5X%&oKRT4~s zk6y*pWs;b=$rvXpB1Qf!;z2oXt$1dS(&#xGZokwDPv&@ap9|*=ztlGqJOAH4T$=j% zH*zwb)GxjUDbTK-9=Ed+($SWLQ z&4`Ypb!GQ&~rbcLzYY3<_hp^-2YhwT}U7zOK4 ztdi9G!ivCNUEoWEONiX>`s z<9o-UMl7*Mg^P-UPR`&j)hk==_OMY&$L^3qyYkc;M@(cy?PB6~A9Zy`)&p>t* z6%^C+vrEHMZBK7wX6sT{B$eT@Y8xe@Rkiy&#Z0Dtv#MViM!n1O=TecCbNci8h^m3I zV--bwisNU9CfRqNGB)l72e}v-E#^5j_p&1FC?E#=?q&?%()g3SKz8aj~uC|)5aN5A7!%BpwU;b19SBLLWm(m;u+c_6X>_7d#17cG>%bx_`%`S z&!3SehJK_vigtSmk%cwvlqA!Fi*+%5#L?t@_Y5_+6go zCdU|=#fLZ6NP>t%(gnE@)||}`%EawPv#gPQ$y*AcypSTUJqN`!${<+*W z^DXZFw|4wZh`%hPx$g^YvE<#$l>Y-Hrvq8H2Beq??t|2ipDW@JzjQS zre4-tc3kE(B|GG-ij<}%P0EzJ{rCVsK3SHTs*Gxv_7R-{l}CbTLR~MhIiKqTft1Ho zByR@#gnDIrwR=Z;TL}$fSi4j4rSMcgJ%6jptNxBDmGM!sVKK#c_O^;ruI2L$HI~AY zG4(OOF+M##JuN*^J+s;_J-1rs+EeSSao@s|H=k78-n&?@*kH_<&hXA~&N$4F31&IU z;=C{Tal9G3RR<%0p~7%xuy*ri^c_M@?RS}XQFd8o*gY5p>jmwzq6H%a*95QJ*|yxb z)ZBO71)7EDb(=MtQ9YctPd7PXFMoG$u5Gjan9cK2-ft3>TT~X)Fv>M5ZI`$tA z;7@yqYXGX&lxW7?8oh?i z?UPS}&)W<6W196WVysvM%&Knr*bl@()mXarTG%C_9*N@)HnyZDMU`{b)3(!g7EUSF zn&x%0+ig7KGqZwUee*qHJsRR7hO9G4c|CZ&?3wBp>ZxbP>#gh;XQyZBW``Q=YW*CY z%tz|jYb$EnH^jZr+|!m-SDc65Y;NwR?KVyvRugQm{-Sj)c5PmLCFmy@n>8ueaGwh6 zkd&HKjeGSI=1|0L;=bC(ku#&4_1Nh9yf`T%>>ARyg7(vu++W+8eH+&s9X(rx^n=a| zf608!h-~+Cb6siCY%*{wXo+kZ@pN(x;`!ne?%dUk*C70W;)BS#U#++QA?zsGXTs0Z zciKDON7HW}#(VJk#BeoWB65jfhkJG-VMNwQWl?yswJqqX>D=OK_rOo|N8m^2)%7>= zH)Yp8w`4c7$U2BNh-64J$gIddAv_`Rp`~FEi5FqnRgb21cd~X;JIgz(mykR61==#x zGtH=Uo_RmBd1hA_Xl-h3u^GluQaM=JT)F2Qf3WqdhZ+s<4c-8?qw7$kzawjdU-D#O z`UmBwKd4t|SZF9^1Z4W&zmxs&K{n2i^U|=^p_aCp6Q#@9Osi`yzAios|LW?&a@rK9 zrdjs4`|%lgUi8^`VoZUu*Dc{o;dJO;1ds5EqFLnx824Z_WE-2l3oRK%Z5rjWWSV*hoYN4n}mc4~2h>ZR5Lj zr7Uaf;_3dbS+MFccN*9mkQ<)PQW#bm5MlhDYObKH%$uXn(WJEfnDtG)%3)Tut$f2{ zwR+9hy$rn>M_5ZQZ{B~AIE-C32^0_1yp1f9Q$HixBzlIyrtJ2v-g&0xOXU~VpNCu5 zTddrVtp>9Wo$3A7zv=dt!gN_{%B)C6_RA4t;ftLVzjQOWq9g?7xewYDDqD4&~9=0 zRd<fM2pwv$k-_>sGUql_9loXW^mCUld zXMQ&^RjS*(?v`J8zv|e1FI)W>OCX3UekG4XT2|X+c?ik^@`ZB zE%qu}Y|LnCvB#PEFm=4)WYa!BMb^|{k#p8|c~gH?g2REG%nQB$^I?3=dQ#;XvtI@@VN7cd_9#aPgi8Nz0-LjXji79pk=tU+xgpbcx-pa9hsk{<#*j{i!uMTtaLq)^lrVk}A-#3)3vbVMu8wq}%yYm`dBx&jK^!l9Gy6xAx8F!fB;3WImVJmvq=YZ|Z zVE^g|&Ns^XAlR+5p&T%*j{aUWqZs#GMJIq*Bbou>x!Y^RN>uC?fnpkTRmX9HP=xJ0 zQI03nBhFsxZr_)pBM@
    3Ys}Nu$h=U znOd-UJ2->85fFsE1;MFJG+;c7n>J1o0F>*JEwqv06Pa4 zI~Nx#xP#Tr$I;!yo7K^c=3fu_ujfcxxS6@yIJ?_8IYQyjH8FMaa2KJbhIjPupMSll zg}2RrdUAC8Ygk}_?C?+6IoUYa|NU&xR2Y6$P}RoU!d^$(#=*kT4fG+($;Zzj{HMYH z_0fO2{99Aq|1{;|=l^@lzkTvoOJR2S2>v#re@)k)t6;uFF@)LwJ@=v*cxWW~U^&Qb zq*XM)UnKb2fS&~L%lOw{aIP2A;cKLffFO<_CoQ4jjkuGA+DIsK+JJcvJv29pF*M4w z>+u7`ugvtfY-#uKAkRaoCGfCK&TlY3Nbw-A_pH8{7mhq1r4C1B8A>{e`D!^Ddwj(~(4i~xZmApTFM9dbyTxUkGx z%(&41=Y8-81=9uR_C);8&-!;~k?7D(0ekXyDF0)(|GpI>QvSc+gvPIkATeUHGWz6y z8pgk$hX&nrx&Qw$Y!f6jUu?3-PZIxW`9HOih`0OSZ$iQ*5Fd4$;(v1gf17ax(6c`B z|FSHgL+3Pv(Cn|@@@)S1Tg69L9{#_V89spEuMk`qIWM+S*gsbKJ{C}QY?idq7nCyN8X|R=2W@v@UVwc+bYZB?d9#&e#*p5 zQGNbHn)eHWze_&|dTf8BSI*olbF8N{T~T_vTwz@CGkWcS~O4P-d@Tc{0RxD6qGF92VLa=CK+k zhqQhqjX#zA+b+-T0w$bteoy?2>hJa*(hltFB8UzgoXmXD{%*NOpuvT$?&ZC|UqoA# zL6Bf)*N+x{Ai@5|^27IkOj0lvz!QtVKOeO1z!e`ozT*Oi#cwd&zmKI2A6y)-hGG8w zB5rRiLa3o(Bfbwus3G;x(+~f6UqmSciTHuPjq8scfNnSLEWn{XZj0*glju(eE|yqq zk^KE4G=T){+0V{&N5+s=>34BYrT+1}mtbe5BL1TR*jWIs?gqdii0r4--!bc49$eHO z_`&}7i{emrfC)aouM+?NL09r?nL}! zN#p^ZWZ%7f`tMB|jC+2ukuwgUU~H<&ECo&McWDi_u`q3Joz|>G7xt6j|mCEhi||3UwHq1TPVcbVxjj9&G;))ZiHolkcT|Bg^u&hMRG~> zJ`3v2s9+I;6EglUXY%;Z%0d3Ka%dqVVs~@p!x_Rp)%W|n4?0mxvOH(d`N6n%8y3eh zoZ5;gd{*(m>#KY0HEk5v3=0kZ3FvuX5kpi;eO1 z45xAc(pva8o=r(5+7(){B|s}iL3g;VSJB|4gK)w|GsDuj?I z0GKjZncIKufpWZr^tdb`FV8aF+KoE`T#5bHLVLle;9U^GyNKxC6EW^UI60klk{u-w zD^AGdH)!$Hf$J$n;IoK|#D9&(fmeVZL)AZQ-A)}Nf z$m7871m3t3Eu3jHI)TrAiX-E9zDz8!JchEh;dBohqZUfV(kjU5FYY>@42Y<=>iqXI_F=K*F&FsBfKilGmufSHI6q%8hF#WEabgYx>dPC z4Y5XPO7SJwC8soizvBl^ZiLBg^ufO{S{w#Z3td?5j@{iB?qlyHW=AA7-kPk)xrF^x zX(cy~PGzf;f^vrxLRwFEXG{8$7-%*%jWO_GpOi8_HGA!slEjDQ@BO)o@F2I;z@+X{z@h!VH6r8-6r7=qFZaXX%gM5L>3m}k z5t(F_z5>fx3A%}pdF%Sud!fU9Z+0GdE0=hF*3b?k0MN_r_~6ih$QmsE0Q~zUS5H5^ z?J5J!x7&cSJSXnIq9|NqFoMcnHMW1jK9maFJI9^8kNkKKuRsR(93BT;Ya@XJZ|*%@ zv@r1R1C3agpI$)(5*3ZVzn;|K!Sow&cR}>~1wH^`-TuEoofeMfelL##g1beQYtfK` zfUU&d$%DfpN-YAC37AXFFk2Uk%RMLRO(L%VLf_Lb5t!p)IHHB3*9TG_M|}(>Z&_au z>uKa~P;F|)L}r0ty9d0UFfW@ySTGL6Ty+Bgu*P_awu-)2?Sw6em5b$5m~FE>Cgk+5 zY@D}14{jq9Z8(*UvYEsZOYm^u&*exz$>H0@yW4`j zmVHqk?*rqyz2@J=q5+pvXA#LMyC9mg51+z8MDteYz~ZlgyHMxEj!XeJ_p8%gj{@Z^ zSj&FfZ*wwko__w+%e+X69}Y9M-=$t+eOE|j8**pNk%D?6#fzM#InLA;m8%!Lrr>ur z-r3DV)VtddyZg?nS3CNp@WN%ao1+ml8?B5G~< zI_c+vj|AN-+pC0jYm?eGvi&5#8h1&FSo9OxEv^q`{04BwRNKt>0AOFR0z@ZoqfA4g z2b$oI#BDXKG2iT=Zpk5gpHfu+k=L9{^wyY)*v-d5gk-L;kbeH^?d4c@tsZhWMbjA- zDTP=B7T8=(!#?+?c^c(d=m7~LO*IqEc2RdMNeO|9@NuO>}hh#~*tv3;2&c zcHQYTx#lM>y42WCzl_C*xgToiNc)u-Hn^i_XNHbhe|!0xr3PQH;iU^91gc61Z1Vj< zgljb%lMESCmA*+D`K%FHyeBBy$O$ssZQ96&54{*TE8cr@-;!dcLUOes!pgw%@Ra}* zeP91@hgOmPu1(qG{pE$WqM z2R^zqb4aimurXKeC>&8^N0Bu~v}Aw~B4<0hE$z{{B=bBBcrl9S3S@bOV7I{|0^8Nz zH}VUSbyWWaNRz+=H#t(xpn}M2>8tVU@ZazFUEbesXzC_@Q793HQUo@2N}$ENx(7m_?u}<;r%~grlVt{s?&ChSj zmX71anuYfPkPxv)fCS<{Y(c&vG^Udry$<#jN35`-?GoVeyw{&h8bo@rQbeOoh0km~<^bwondfW3Nc{_`r@suG{P8WU`U|`{zN7d%97H4ZaLzOumIDgE9Zqu(h;fqhx+ln+v{ytoRmDb>`q`fGY~dGxs3!7xKCmw=4i&6AbGJo(8LK69qYe#kVIFK}8@O)Xe|!D${2@z1ViV_<~S*bP8{+xi>#W;!u{8f!s!k+R7nZ%pp^Qb+_LtiOXsvyX`XxO@V3HHCm#4vT)BZ3=Hv>d7}Ur&6V48V9vkQ->*qmygZ()ITX! zo$@fL!<6{u2{p&ZkUQJl+AOt#9`>wvN<=}r&&6+u!9 zY6tQ>9qx(ZAy%}W>alD`hc*9H7SfG;F5T?UOQ3F;jsQCL<)B%KLoeWXQ)7|<@P@|~ZdCWcf-^F1Xh;4rs=!I9HrZICpLtTK2Kn+t ztt+pEwzqy3*b#(sFPdVAQb<%7yJrH@gfh^|Sb7jdbFoB?Ysvz-Y-G7TW?mK)i5*LS}DlG$fVByPV1U zCB59Jz0JU8Hdg|fH3)w}Ml>nF^%Z%Bp!S#FugL|fCGGES_JfeitbiXRnou8%Y#T{q zdwG9D5?Tb&*Ue)H90Ez0-F~X;NOHUVnO@VPmU~5t+YmJSZ6S(;gT#5TL|ud{2#J=^ z8mlF7f{vXsKpa{vx$pD>^~P~HQ{XZf8N1Sq*78RUZ)mHM3BJ2XN=gq#YyV~?4ifG` zItVF*32nCUA^uR@t{waIH++HD-WEsuOuBtECC6-^4j$St>#jx z2b81!$^N3z{fAE&H(cMc85BEyK79Ho)ZF@%F>^d3wEsDCwj<=Pi3z+p(QYx7)_R>b z_g4PasL?qOP{#3NAkQvT%zo+m!2Hx5P^!BaZ=S|IWJ)^zFj>f4! zr7zj<3Ys>H7a1ddVV?(Fjf1vAhQ7{en>Pp?%5_CrPn#}oDZ_EnoU+J4FdVMZkwWAf zaT#)+@ym!tVzL9HH8=WJGy5Ei-Ycsa_CsN}Cbcw%n}BKe%GtKGQA2A}b1*^$02e-V zsYXw35iGzeKBK2+eQBv5;7{uC7I#WH-Gn9q&HWQtfz5*I$HxR*>KP%AU%XxYCA3}m z0mhKypXjEW=(QiskUjcTf7JEXrRPyWoa&q73v#p&4s@`bDs2p0Kh?CpKcq6qh?H?a z$#xi4kgH}}T!D${c2BnYc{xDDZa~yLyR!Bf4&($VPX_`%zGqbz0pMG|I0O@1Z7mhw znyx7T6h-`Tal!j$x0}H;(w|MPOZ;f(((o}aPo~KcoEkEn4T6k)n#j|VI)s<1dtlCL zjl#N1C}6v&U>kS<6?UCU+(iZAhg3*%YU_J-0L#nh zghFXFVON$iS-jl+Wgl#`ery8tRm#xSzgOi0LXZ=&+rxOCFnypxl(ntBeR0IB@Z~z1 z5gKL&e0v5F`7v{F7!@u)qBf*eah|*6S*@;a%lcI+{@m%b6{UmL@jc>&HIR>uW(j&Q zYsZIwBB)ZKF#a%u3wuwkB!V0DI+!KY@Ds&A>uIvOGLsk1oZo)yNzI68i458+Qt@*Jw1xPpD$zsicbyRLDAsRCBfw~-W?ROA;5}5h7S}ewbwxAod1fPMWgSWNc6Ko z^KGhGeg@(Xcm^6cowOj{L59?gwcgtVGNVXdAA<=rgclBVDQ&-Al3}dVPRXpJLl0VB!a{un4PT9;CXg@lS$_fV#Q`ecc=)6kg;$~(RVZ!;15smczm zAx*83gI`~fOBl3Y&}^>B$E-jT$dSr1een%HgSb0y!OpEpi&NB?ZOsh}cv>99)O)S{ z@KJb|r$TLIMlnN|7cD;03k;a&z_ZEUxDc zMqT(Q{6S>xyE&TYIiX|wvT3zELo~p*Q#cjCTTeWtk!6A%kh{LC7bp*vDE6Ux9(I$= zy4ElF+Bqc3ZFq>HN`X9_4bwMK#c5}%%A#%LsC5C@^GTN10_lU-h1-2~fV^)?T;@lk zjSLQ9lQ^3FdF8gZciiLl7X#R7=&lBq@{+G)0>9rr;C> z`y>n1l?%Ru^-Qger&@maY_fk6*OtKWeF=8u%Q3*$cgcZ#>0hVjw5o%~!(b0vNgd{+ zd|1_Voe;S`_)7YFpkB&#f8PD4k_DtSj(6snk#pz0X=T8rj!_8}6?o#FrrYL@?$7D|~mu7Ld8C3>448_8V5W zFq^aW<05lYS(qB)Uw|+%OOeaw2W>zfUFwv6DbNTf8s11QT3m*#6 z+K3%stSLB6rB?-{V-FE)rh{+x2$tHm+Tt)A@=8J}ZY?oe7ktrtBMc|=ofiOARQsx+ z*X>8P-(Hc`&^w|gCsjNvNNY^t0V#kv3=jm%clN{ZkkDyWH$m1MkTA8k#j@3PC=45w zI+3Le&>%!7-GL`j16b$#Ac6Wb+CHfj!2X+k4erN)q8l6no?=}c(jy5~MJmVeO+R`C z$@;kk$e=0#uE{nhNLB$mMC)#GL7R^JmCJO~St zHRqE3`AO*{1eLIlw}>dJ2a~ z!0BN;8hnH6kB?0qkP`Qq-JEWI#+ya&qM?Vv&)SE7$SbLH7I>A}dbffs&mSQ9_iB>? zGA$C#QgN=fu4od}O;Gc#kUYxL$`oKca}E8oasp1%4I&zbcxN|(emzxLW_L%Ce`i#t z$J4^)4ixViA3ckEd>QTV4Z$^!j3at(d;@5|r;Z7d0Uf<$@)04pOKqfR-=qnbi*q9Z z?~xkCu8I|x9Nl}QSPe+HS(jK|hnY>l@Uy;rtD#R9YS^uRP6*;cKwL3vFt_DkZ;Sp`4sBxji-vN;pqrDj#xp=b ztQuf5h(pofYxsPP+l9$XqdyzXmkGbmJLT$(rQ)-xw*EjsE8sfU0waF}2~7mDQ>8Ub znPLV2nQ0p&tF#|})^a()o4ev9M~|^rx^K?^#tb5N;zAzhK{xRS3Sato>|I zIHW0o1CVkgVm~t0Ax$i(&EO3K!6@&%yLtw*wDc2gUWkbHV+kP;suhCNO-3p65}anD z5elZ!Am@QG1*S_dk>FV?8*uKE|mCaY<6Z0{E`wcaQv@+- zIs$4q9Oc9YWWWfI#q=bnlcdfej)K~0F`H1Wb}18t`DvJ^hje1L*eoUVSq4ALC7!YOzd z=ndoQV0nE6q@Ne60-2ByQ}jkgU@#-Jy_w31Lfic;6^~QBxQDNOOjUp#RBUe!le}4< zGK;SZGf6@BY}!deBsA#e;pdOnkhDeT0LsrNhE}dZxQ|Nc zp^&eDNO74u$EX!>C|MM|_G#sS(Q2}@-nHYKytBw(z!uucbpmwR^~0~dLx;&~9YNl)PEU>zaIn5^`p$Aez1}UVqPfzd|Kd zmW~E?MAKU_l_{caWXt8@jXi)gTd!G{t)pXs#{g_E`Qp9F--JQ=QjyraW1pm1(?tWC z-}d#EJD~ZN>xRPx!<5e8_rpiN4($&iC$#jT)mv!KgQUG@8j`Dtpl` zYa;{$09wA8Y1$4&BAgBRTVHsU+JP~By1QK`G4jv5f^C`IJW20h5ZIY!W`J&?mABve z0tVZGEaW}lk$w9T=~8kCe;Pts(>m1QYOxTYfu@wikpbMqz~Lr|$seF#cll^iLI%Dm zcR;0Q%@FTT;GoM3F$DtXaT3`-AA}l2)0#|t%sN`?LJBBj|~cOHhVOez1SO_E*%!_Tiukv-h?fJ?KyB-_PAY4#J3N4cbgB-d($Ff$wISZ zweple1V;#b`}Sq4j`CusMhy|JCHw&-6StJ&o%;XZoI)cjRx zPYlkhmsn-{&^OB$F+D+I(JECHyFLGqXjcV53C{IlmX+&c1a9T0jscCN#L#Cgg)1_H zsLB>7Z>k_oWIXoCyGu*p+6JBHyrtDhb*ScBPHZn36sWAq73stSXN9kQ>EtRglnawkz5 zq>rY{8~$7zusX`584)Q`x&~Q6fEJvaY6XFDzjR*ZXFWg`3wAYWUl=re_}r`5vM_$y~eeWEqoU zpYb@%Jh@r>u73Up-X^0zva7n6Ko%DjUjg#{xNKU+JKeMd%SW zsES`o<;pL>fSFPmyu+u17W;X*`zEg)>+L3$)5&=}5tz#ZMS)438n$>JF7qgHTpX9G zxPe5r;^Of(AD1cUBk~>B=7TZm*M(P-0YM-QxZsOb3rKB7jR~T={S@Wr;&7f3 z^yX}SQ4!sU%f@BWz)O=}tn?CSzoe5EsoJeSJW0K9Ie(Ns(LZLO&i7}#S|fdW`!T5K ztVp{^@%q`tBc(fq0Q%efXkK#$l>zTqv_QaBX#tWrKC$l!*R&43X3I_(_2!y~oC^mq zQaqs9#lMo%hAt6=NZu16y?%>WjYsn|xzlCJByxHLXr#ZnayE`tE|FEXKRYzcYu$e& zr~zaqR``-^Nv?t#M*HqozysFjR(}z-0mTxw%U#j7QvcSQnjc(i0REC=DxnfI1cCCca8Qecj^m zgNS%n`U7jj9M{|7J`4-p=*KKD^8T0m z@fkHnlW+;R#OX{pem1~MW(~aNJ>(&ck_|DI)v;kL%O*XqA7QdiWHY?JiXbs8%=SN$ z^8h^NY(jHrMm$yBn>pb(QbAaSXiHgM+6e-*V#GmTj?OA(D zI8G|AJ+*DWIQ@%8NTbus0Y3En_Jc2&ycp5a6u6xfLC4HQ4eb}8nC1ngx};;wDBUl< zfEjbsIWSumQnB@p^E09f&lvqkcrVJ5PUT`kKs4|j!v~Z2apn7WXm;Wy|>>9^+Xb2&2P3J%N2fJ%=US&h}=V$zc|!j#h8 zV%&8$ks5XD#Hd9?!i|F0r;v{o5g_6A%EJLECm~~NBVQZ83wkq{&h5~K8ZDPIvl=4a zg^EXpG5>K0f9Ac{{(|S*&#U)8FUPQG04@T9l?!%k{?yp^rSWFUbBRqzw)ZkRyy$8w zQWTwq<%_O<#wz!lPR+jE z_U^yK6o9Q>=xY6nPGAm7e4*{S)K|=pcPJg6q?GMND;T|sothGH#7q#p+Q59mKyCEt ztVoVoE&IAJd=54VJ9Bk<>yEmd)4N}>I+;Y|ho2&wePLmd{Yv2@L^RzR}Z9@`j9G^Iq(`IAWPnKUSvLj)T+~vZ%yNt2U=v2^@>fX?LmvmBTds+$Y{I zCWaes9FQ2g1CU?Y9FG<%?LkDGmpV*iSMk|8M1!#t;#QFIX>vekw*q zmo*jH;RUJNfrPwp z^z))g%z z7`$v2N{qy{68hJ2#*hyB02u@ZiYuKSwT$I%FZk`34PkYKUfFz6-7G0@E>=uetCuS- z>y}`*^aF}R9eRUlmbuHPZWpUC@nncT9!#;9#6hdTmb;{O&}(Sb9YbUDE$Ry3KdSXb zj&S`zPVzKb)XV@Bc$x2bhkAa#+%B0Z9cFVY`xNLF>YdX02+z%;GL%&iDIdC-KF&E) zs>A4o<8Gn$98Q31V}u&AC4Uikd1cA3pQKjI0#cRrMeSGnx0acq*^0!RMUYx_r!u8R zdDbLL+lf+}oC}M@O2uLUP-g*azdd1hIP!ggxDVKxG0Sd4^W`*Q0t2uTTDeK+-{}d< z4Xe$gv*s9Y3qJFih?jLRB(aSM{(davNJW6%JxSy;623S_{izQ^O0d>}kq~5L@~cg1 z6f>1QAMm$(puWLvlD8HMiB1X7p5(fm4BU%9Q8nPq7i-NR#=PP%Kb)NeV1V+%?_@h) zsW(P4whp_cPxFJ)15BY~2cU_{q-Z-!@mGCBZ=~K#KS-Pj&tyFoN!qXK+xoZ|ba&HX zZ|*83DL0whFzYBJB=8I(kHodx@CvN%NSUkZ)4oyy+D^ZJj>StGQ14gUM}w!q zBa^ang`n`VZ;Ib; zQ9*XGc9|Yg3v0|FqMMEXrPF;XJ~t}jInFu0FthZoM0nr(h(%Y>+fO-E3m*t!()x)B z+4#%qTBXt649{g(onl$*N9pgI!u@1kw_fD15iWdFQQH*a;4D; zxzo%N!XeW8m~}(%^O=^umH$UI zm)y)S3S9Gm{zUenR{_rgMpiYCHstUxa_ecq9JO77vb$uF6*gHEF45a_ zGqN_00DQSip3MC#AmDFSne}jW($KG5vcZXWm7|r$N}?6y^&f$dR(-|@FRZhngQ;f2 zYD~D=FkRB+6~wJ5q4JHK_SIdb$=97mDZpddKk!U1Yyn*L^qe~vlTLY4qxMQlU2{EB zW@)cN{>=jcSM%or84(dtcKEucr#sWUlM8^0aO_e3h^<@2aDlWBGU-e$#PazC#XFi! z3+k^Mz+3MFO2fZ_<0ed85-vg~?R_3FE)M_sd#=f?)8q<}AObDa>^vMSB`?`pVL#q$ zseFvQAwbo3ovD<7Vk5Dk`6iA?<5v~5nH5cfI8&z`q@5uqav*5hDg{+*A*5p=p{r-| zl8@oFqic|@F^|mOCD-*>AW31@tL+WRPO&8LCxLZM@&iR}VBU_dARhDLc(oXa&V!z7 z)SDJGgtviv8Nawat5Cq?Uk_DlzXZU3nHIbnLlDFo<#4#%&70K&uSWZ-DX*i1&NE%C z$sz(|9~PLLjuKw8{;agVKZxW#fC^HE-~$(P`)nlY)U~MkZKcuoSxboN9==i;sT^;^k2lk(1=N36=JT_y-1~ZX!Y1I$~&)mDMGT0pgSr6@ORkdJjS z3m~V?Uu%$F;1)16j*n*G1=9*s*q~HE2I>gvE<}@vS@kws_L^BZ{ttU^8CBKSg^$9K zM!Hm#Qb`F(0f7TbNH>xeT?U~XT0}t+k(53l-O?S3ib!_|2-2x^bLYn28~-ux{c=Ct zG42@e7Y8b5pS{;!YtFfz`8?0MbmLnh$2pih7X{u+=!cw~yadfsZW`umYfD1E;!Yv@01 z6kNR;dAJaE%yC3|*}6#M-{JcCZ+2%k*-u*7E9~F9Vcb>z@ZK;%p#FuhpNGKrVh}bw zBg=39T}v7;4sO6W40x|qv1m@fd-^#y@Aykp)FMo!kz8Xj_a#75T#<>^ zf6Hqp^&B4e^wx!-(kM){G$~;0?R&uAio5KoDSbPQoE0J|&B~13m>4r?#6~{cQ*BS@;zv!ezt!LC;b&$W3GuyY3D5G4CiVXttvl(@;1gl>H%t6XP2t_6n zG!fRC-Z|r=q^XE(1r+1HAYIT_bXH47nBnb0Hn!nSfZ>MUtui_kzdffKBH)R%0L+T5 zwMun(Mvfrg&OtM*E7GkVmv9!Km!hs;gTz4Ygw>czk(Y)ivi512{oj5}fcn*Jx+Y$PffToDVV`8^yxyH zyL{|qYZc%J#W}NKldYiw7(g1A<2&I_#1 zCu72@GYeOrwW^_DQUM8J7$6%2ua6T{00yo6IThv}MbIyWFeZLeCJPK@-D>U2HC`~d z<=OlCdFRWg#Eo3Dk5U|&@Zt_~l#kSS@dI*zciPNjWH>R{_qq9rFfaQnnwbqBPGc%Jj#EMU1@ zvD%f(>q!lS&9$~t8AR!W@bq?BKh#8(-Uz@LMm&a|!jN8w;2~Q!8(@UlQ#-kZWROuL z7C|WGfix?@s8v~lK&J4DmBNYok@82$CRG9AC6>7f`13 z6S;B8wtwDtdt|x;8iwzWIr_ao!Jy22_{+mIiDPT1TSKPihtzMV=u5oR_a~1WWlu@} z980x(jg3aj*lUe;Yb#CxWMdY7Ddc2s82b$ru12#Xhr9=T}b$e!e-5` zfV053MesQC{EuwPk)_SsuY$e?yyIxMq2?XWDQauJLVQLxpXg^CB0h?N$|$*2@fYh) ze%}H@r)P03g<+V+8&MJNY^%JcmAd&R6@s)$OTb_)WAi5>rv9=9jrTwOKI@mX@Fu9& zC-+>JO8VzxMC>9@n=gccC15RVW z%imf^b{FY43H!rzifSk>n|PQI^2H$S2PS9*^Bih&zfplIsKs6#=79-b4Rp=tfQ>w$ zu<};Vezp3+M`Dfv-LrYQ=HKnVz1#wZIfv-y0M(yw1Fl22!&JRuj+>8nUt?-e!RD|r6_ig~^Svs7ob*qf@xdC96Ej0!`=T5OFR!0e6Jre#M%|&9zTSE*uKNWO zMhT${xcVnt=xw8?k)9XTzBNZ3AlDJ5$xWR%jX*I7^T!MNJR3h7{9FL={vKe@_T>9D zD?|tJ{*AP))2)}M*pl7(D0&|SO@0c;OtP9;no}@KS9f7jjzaGVC1O6-8i9_II5yF4 z>ilel<=d8}8c~+ZFcTr{mor&i;8~bfji;~a;D$JA0!NlG^t9gB@}pqMMTS@>5w0GCRF69jS4N2&Am!jN5;afd=Xut6`5P<6L{|LIH5{c zKcclCf>nl|%4jv@ARFRN?mGD!qt`RyKp&&V!6r8a)y;i_`ifDGKQiWV=3ud5ryXGr z4e(tMAzbQr#;bXxw2g>NsUTflylY)a?3+SGD?Qr@` zJvjVUS5`yL8h8ioZPrnHsXxRnHbzboN9wgxS8^YWMqv^w37bD;x+8$Nom24373#0_ zr4%sdUg)jmLsQz@GB1%T4TxBV?>3;OEF#9RVFEQTJdK)kltcvM7wWLujWEtRY}L9g4{t98K9(dU?;U-FMBjeDD&T>p7B z52BY6)#$4;j{)}>|^Zg6cnp*>U)MJL!mwzHe4`|!x3q-L#HS;J< zvV@Yy45gQX5xN$34C?COscM^B$X(AstWRiGppWd)+^GII>ve_bmuFsDKxfnR+}qT% z#Hz-_BD7tf?QA|-K4pXlv`}4?rH}l^@`!P?W<(a~qnfXF5a=hmaq6?1q=8!OEpPV) za|61AR0Gbu8}i<(2bb?+1^s&FUJP$(_3GqJgh&gBi$)kayjN{v?ghb#h(&XFh;8x! zCsEUe3>5kn`nHIq(e(5mLqz+jrK@(%jk+8P#oQIvy3W-q2f58@L%HcsGp(`d3PGom zQi4Gx&QpXjjP7lY)@Zu-=5$ZtmZ8x5kp#U?Pkm{XF>Ux8)@G%mP(wQGSIc#hUeKXf z;C)=zVRK_HrPzkfOePQkH9+2`81LM5V;)fMH>rtl>s23Iw8ZJ(JqbO$ij}7T&7&x^k@jc+HmQ7w2*FP&ZJ_hTbbn$?H%dA7A7p8z#IkY3a&X{s50>-K0RS zz=6og->iU_H@?dQmSt|oT4z_GQ7_SxN}zycwgO`iYT&IF;X!WAl zh;vxfK?>*>aPa!r(M_#?SK&`QB-JG^P68v#;u?waVa&Z?afMf5tpvDHh!E8Lb=}a! zu~hz(1JzTrau2^t=VbYnV*DfMkWgXp&NNw?RF>a%V!ZzamO=WLhaCvvE{Qs^5n1_)zjjZ^KTPQgmlh#EF$>i^BH=ufD{2!EUILa5{pUJt2iJVySJg5uy6!hY<# zLI4Ov(U(XSy`EcC~*J?zMs}JCq!cGX(dH&xeljB zN^#*6viyWftjyHMfwK_A-AuClEFt7{kbXig9|B8cOH4%#n)Xa3-(F=Pio^M&YcFiW zu65MB;;W};oy8{#O9uSmI^2g!c!l*PJmnXE^~1C;cA?(vL|9|sLDD1TzS#q8vY=$! z`G5J}(0yxw3j8{%Gf5e¨w%(^zILaA_Nsk8>bV&?z(>5e66SoI`{s_4VZ47=UjL zZJ#EX+$mIE0q$}4D|+5lX+cVG3)rGH!owxH4n{xxXWDvDpdGovve*!JHCCr%e9U9* zwKNbON+#Pt&$6@*;y9yYmgWDcC{!wJhbIU=K+F&H2BcXK=YqCWd{7Z+D)(K6f_Cux zWA7qbe5tLx!rw;EAY>XVgEP<%q$V%*v_6NY9C`fQKJiGA+nW_ZR^|pg7Hc=`Z9kt^ zkScx@y@aZ9nTn!Jo(MC(N>&KDm&Jx&U;p^a?zjf-Uc#%%2z+si`Kj4<&{}T8u?}I3 zht2RS6p`P}is@05M8QzvJ-Eb03_phWJj)KJb5Q200Tg?I@qYE?`mRs>wx3_piL$zY zr-4ILD=B}q<`EPC$L=efh&CO!Lr(fLuP_76_ zc^~dy-!RkvRRfI0O7EjXM4Brq?vgBlzNhjMF_M@D*b0m!#*vGe)XGK%V;L^Aer%TO z;0cPoZ^b&hW2pshC%p5>lg>=&F_^?su0OqZ;|46KLI@y#2mYe`PuRA0gP%^R_l=VV z6}G+HH6SBF=(eGSjPYtr$l|u2{=Z$^{#b)kVq~MBnU4+0jzMZ0Qe7D$ix@@u>}+fI_pnk zZZqc)2#7Jb3i9XfznmRN!QTh=D$YQybNOdK>(MZ6Dnq$mEyTqtc1}1G5y&R^F_`+O zfm;nFyF5^90@*a>jj{)hzaOaw4N>grf%79(Wr93+_1Y7p5ceFFNPnJl-hgW90&dxZ zXs0V(m$K4SqbHQRtrc-V-d53pxHFokE9V$Fy%mQpu4#hbUUMkC4Uz> z4dLIqbHE?!)XhO!+OxPcj$^y$`%Ro)A7{_|tJ;JHxEJNsZ~v1%8)3t0s`gHRbyZaJ zjv)%B7=pA_0`!tY(O2qV?9OZh#5Y5t{ivHL_T;ciSW>;Gt>Tgp@|tQTeJ`*@8#iA( z2LOz+2`s(L@=~sl|Ml+q$%VZ8lMDaHyXQNAJfMp>1c1>1X|Xj3(H}hLoxQ=+_+^zt zG*3HK*^%s5h7!Vye<>N-Ou5e15NB}lc;dU6k_SqHKifn0_YE)y(GWRMs2jj}KrF9( zQ;;5S`y-_1s(AGWgkS&fVqB@9*s{#zgfB7rsPzzj<5if~6_@j~{+~+TX&)QPysVJ; zA;Tcs?#b9G2h-~;Ot0|=sk;9-wKEx(1r{i_^**?p?IZNv zg#yS^$cl^#ejZyKt*L_2>hz&yb=pmxDrD`9p3!mNA&_lXDeB^a@g#&h7DrD|{vA)B zc09|LcS#6)rv$TM3(id)%O@S0j+2%??9}hYV!_wF6?d27%?7(rswe*>+%M=aI(K2l|(M z&(J`gI-crZg3lQ@&Bgs9g88g?lFCU48l*xZmMy1TzzF2akI+foIv~DfK$|2Z_?#qr zdS@{RtRPI?cFqc6FniLl8w)jCrOs0FW#zy+Xir%Ujd3PE0aBcK>#C=02T%Jm4Vb`P zAkj29&9(+}7FR>gy`|33PJL-~zhH z7UzqQ$UeG3Zw@p2Y03>lSXH4&WdCMVO!s#UQ?lXamW0ZPiV-#8yt2ACv6}c zCAnPwJ~U#?-iva3419quP)x!G$;N3}xiQ+QP5kSdwoX!HqWm?5BCq;a#6=dkCYZ(5 z+$DYlZ3<0WWP8~Mpa~Jk2j44`Fn#oDpYl2>FwC1KaRQ&PRIq$5o&2%!DGy=< zWfPd=@k^c$K8_TSMIcuBpc~*SBnn>x;m1IT3_Mz&x*dq{lzu|+)d;j}@SQz0=Ka&5w%+64)I0btH#cHvzn-rs>kk`-1L z!dOJs)SMXHG$-7@+_#5JF!$IBVDiVFH+j_G%zj7yq6|+gGoJRi`&0>H00Z=JqEfGS zk!En0hVU{ha2p-}-tpg=N(-f2{wYixDK1es8(dSnSiES);87V_H<4TV*W+S| zU^dFv|AMH7y@1?O%HW*v-+X#J67=xjhBzM>|MLkP)Mv1I;(5+A1GP-565`pFtDg9e zHx_c;{}k7M?+O`G&ZjT}RKKsl)Zx4Vm%M1>D)C?bjUhwnWzyFQ zcnMs{OOVg*w))T0`r5;P|0T&Iz#IZQ8&5LfH#9336eaRr7au_c8(3(&R{R1BBAARN%)Lo3M6 zr9JXI;G~V*bK}!a=XI1$Oelm^R)tY=UAWihUDLnf9lw(4l-DM*=o#<1v{1tQ=2u)^ z(bkZiOuxmgy_|NVM7@T})&f=^urp@)`v;m61=}rQP_YVw%=^6!07<8>Jiv-Wrn@H2 z;LirX^^o#rrE}(K=%-acZ@d)?74#iP8b;o~!kIlF%Xen#W`{evHkej|qZ*Kfn;SV<^5NU5Tdsn9HuD7^K% zgE=O&|Nd_@@=t|$lMnuL0X$K5H2VHMiG6aoASV|Zou5LS|If1_cLCSm`uE-Z`}$%( zlfCzr#ENb=po*YKf4@H9qvStPc0aj$#l85KEBA2tg0g)XgApEs6~; zPfKei_s`A47e2v7VepUWasK@;XckrYr#tfm#!z9@IUqKMYk(ZTW0JzWYm1j8bVn)k zJoW|3Y74MUdNOk1CwnJ=Mc zz~)#l58&#c3CP7QyVb-*VCyW5cuUq>Var$P-+{2JVm>Ro1$F{<63(-?p*LbB3dWDC zdGs@5Xm}L_Ec-P7^(r`EsLF8vJ=Xtv6);pBYBA=BommkO$9GO+4)(SvwolR;jG{;; zO+f;q;EQ-7#uC%8Z{s++^}kxnhqrp)lj6|-KLhWBM>P9K`d@Dy9);yP3=``Ffr&6~ zjgRd4n`d!rh(wjS^w_WlBqaR*nW41RFoB+Wlj8hmPEjIrO2EaBH`d3jAVKTWYacUO z<5cr_qS*-Hak~E+CiqIG|9$2E2KIl`=YNajf1%+2?=e>C)=x;J!q7ny19qDrw1?H| zaDoGh>w$3YaJavwp_8r8i-{h(h!;pva7Oe;H(PXI@^!{ zuKp_@GoN>?^zvx_>n1N1uxLE}d^3kHZ5e$76Ms{j|lC^+7 z%n`ggi$7LA$pb4y5^eYrSy4%b*Z=;O5FSWv6`^g1SD{!D3&IfNttXGl9p!uBt*^e1 z&$x)vqThy%U@Hi~TN?vu-kYe+)BB*Onj_SJ5YP&3cV@H=tuI{ex-ne4c=*N8f70P( z1?0Yc8#D^D)2$!f7w%)0_NYQC*vHJVMw}7#koG1Rj3mZ`cL1jjU$}UJ;=of<`rI(E$LK$2(K|yr zrgL6%`a^`rR$%^(S_o_hgdR;QbtlV{9@jen+YxAs`iIxmBgZlzPLGMUPT=(;2K`4N z&~5V`z0^W#9u{+?P&lD;_1~2V`VJ{&$M?id#IvkZ=@6U~x3xxFV?@3uHtTeUwgxA0<^5jG3bBcx73o$pdrz7JPL3OB_;P z|1EW}KKL;54}Lk#5kW)wf8YB5@d&^D#0+e6$+aI&?a^RE5`$F6Fx8(waz$a13bZ*< zM3cVoQm$HG$O=HSlJ3JavIJ-??a@@T+t=He{m0v+!kK0!DP#8nhqbo25x$qR#4ienK=zV;|IJg_^40V9&(Ou{5-3|Qi z>WW#o#nB&tx=sU#zvdJiMdd4?N<>?*M(BZWYngLYAHH zZFm#-zm&L$STwJ|_miaOR%qiP0hJ-rer}5UlQ#50TEIHig8b@l^l|i~QNPl_FRQ&v zHCUsJ=9iQSh6ub*2ixa52gO#ZfD#|nU2r!LgV#};n3P_<06m?DW~OW4wdI-B3N5qN zv(PZ{ayANMS6iJwlW_?Nj_6JJ?n1E?Jct>WkeJasYQl@ULj*D7TFJWLMvf$;g~X%` zF!rfsR>YM$INPUy=D%dvEDzp05Z7K|NVR0}NOW1qach{pwi|-Zig$62Oe0!t;7Z;@ zlolulEk3}9C^@g<+U0h}WX-?R=lBXzkbMl>nVKJIYK%qT!u(E6bTH-j?ee?G%nkHe zj-5}52NgjD@atND)O#1+j3p!xkS$CQjfuB-3K28$pZBT9z}@%#B3fduykGa{3u77x zXBF&b&jGRRFnSB@`AC-HxZnAhWmLlwKvB`d;EsPuvL&J|MDw9AKqIf(fgN`%NQ!0F zU{Ntnd5i(au@zFaxhp8!ih%uN*^7rPFE|n4!e)DHOX9o+3OGSHa0eGS>b2PFDP zD}pP6on>2`4N#!&(es(i%2I`18YMYuZMUax=GRCOWp(h{ZEha5NS!y%?}@EYbyZqJlX?iw;wW5 zc9hpa72E=zSM!95oE?vW@ciza>i}zUxMQkrY!nQk2F$Lhv?MSVpC-I*P5FFR6SF>h zC;ZNh_Ub#1$ZSsqWH6u*<}qg(xyv<303S(aGk>9FtG$o*#w=GSzt#Ri`%1-Y;9hyX zJp!aIRY*_>jALn3=I8+Im~lx{Ash17d`u7!Zc!B2bf?L?O$u?nx_6vXk~s=omyC`K zSCNngRP62yooo4-LK1&=LUZ~8+v7k&uxH2t&M#uX>=I0md-PI#bKu^=;^QpS#`w$Y4caLmZ9R=A50< z{sC6hl7mUr@V@Z@<>B8axK-vD?*`Tgtw4~PCRDa-y^6niM%bEi_Z#u7zj_NXj8-yC zBPi{3NqyxQh|XivqiOhS)h5nr~I z3s(Ta-sda=CBE=dXWe{UhmlWAYWmIn-zpf-h3P$O6P*PhBf8W)mXnO!^mje9AONMu!lb@T9YS3&R z9sl%#k*v^yR2@CY2`(EGi7#lr2bnl`%BS7^{IVhb!i^hv>!J0(1yMweW)MpkW8aZp zXOY2wN&0`41cWAoRO9d4X;N8{bIm+|YZPr4e;EZ}Yr!hZ zW4%+cwgsG}dnoWaXZ#5goWapL{nw=jUVO}u^fb|a^UifWo;q6^WIi1=8tr4?O={c; ze^(^4?(o#{m0UUkdU7Pq2cO<_sx)id|=7pP>N|kTmA*By!e)+hRsxobn&i4IDt3=BQ8kjoXBBiCL=4e zl*9#K!?ACfomEIs&oszSSlRDcEL9c7pP_x{4jifdUHKTBbi+qy;?v*Or#j4E(&ShI zvCVk5`Mi}2xd~=2bs8knN_J_Zz_zzou3l5G6DV#j2gZ@-S9_b8DUss|YE5G8^W5^W z%=S;eX;AZUD^sP*vMR5+g2BLc1KYf+{+V(p;%RgJkp`oT#6Gmngn>468Tv-TkmL&M zG$XQQFU?~QVV|=fMB92h8r=1FKy~GDI>s$I{1MbDYw;JkW66+sS?QCI4r|-V`^X(E zIa;AXzjDGYrY5J@o}`>BAbs!&L`>c@x6>E8(1fjNS~CS*KNqYl`a06~(g?=q5;FO7 zUmQS+-433DP02^X&G3&m?G}MpJ`(q2BG87cX^mrC1_HKojy>3I9PB7lCTm<`HMTqDrI?uT7Kg!2|~~X$GATH^+h0`L}{HHQM$bF zsC*a+-cg9pt0bICv!DZCzBs z817azkkuABno1An-;yzg!A(6crOvgIJyet*geV~uZ3)hq%x z^Q;v-*UW)MI65$~ZG7<+Qpstmqe#AtIJHalrTQ1`p6tM(z@Pe|Dpduvnb!oX)OzY1 z*r+S)R0G{J@^6@=_Umc!sp&NBf&S=XGfiE!dJdV2;XY5T_!yt(0w2B3YJN1+Y7W4H zA6{#%Vq9c7DsX}FCnI8X1KmY?u=TYX$&p#Ge7U`s9xLx)YTMSB=b?z>i-K~N!R$PU zXhz^*t+%yr8hNcI_DqFYB%+YTZ0p1a-xG=~<`M!IS!jy+vY;>+pA|52c3Gg@AyjK^ zbF#VWP)QNPrx#NLe#joD&zR=45to&_8ckV;uR@*Vk^T`5h_W7$P?qm+rZ|T9J85rz zxa(i{7;@e4Se;!@#+@qHC0h}tPr1Yqk5Yw*XD^cU&m>9I_fjo)weGaDwQfpJzq_{x zMH;uJ4n-{&QF=ZE$WhSq2sp?_fYa86Y;x0x_c%$$drf?xWSJ_Y zy{?O4jWQl(9)n!I2OQc|kE@c$8;MDMv<<&v@Y%VQgP7Cl&QXXBDn*_Ry^@5nD6Ukz zVj}B2ryEQ^&q@hT@=Th~xug~%axuqo=c!MZHMd>?fy`{Qq2JsOi9Y=;w3J4Akp)dh zw;SY6<#OgXActbWmtXCcaUv*&gQf&RTHDH{RvD=>rZ-%O(E`{By7nG1Pc+lD;B0k zkr_jlRJfih@)`<)FnukfHKm1_xosqU5uWYl_KBxLcIA)QurBI};NFvHsS{tXTqb_E zF`!smlp)``6u0KO;qJ*;A*DO&0d&Ea-J>C0yRB-;lv~E^I8t|)`0gngn5Xzi) z1od|bSdG1-$g|>Kf{+5 zZG?nIgc&tRr8rO+<;Q71<0Oc+M~YXVhM$nU-5cGJu8~-*$diuYg9baS!6sFf53chK zgv^Upx+}%q>Rw+0wK=RR@##9ccQ$sexNq9mC1gv73DZnN;oW{^;N6_aL!cP3giv;P z&OvbHRK8yU9Gz|FDCFe0yHUk;gz(Wokyk)08U5|ICaiQVz617_I!5h(Y;NHY!ql%o zrfw;5c#@o9i0g=pfy{$z(QMQ0iOh>Px;S5-#@O8czyl=>0tDv7guRkwkwy*TtvfFw zS`9EV$xg;G0l3MtIZ@RgAw%zNEEwn}NSr`+CX!CmEyXWYFEQo*ia@P{SW#o)iK_zg zoJ0ob%mE44MQa|ttjT_S*h(1mafSMwoSmB&(a~6#f$IHE?X^_Eg*Kt8zZ;@dexFPk z*4YIVv&U~=2jG0dA$G|Wkzj~6X8XlV)HnoJs`uK71$K=D`z>%rPi(k02BOgrH9Bzs z7}@xs@*N=PVzJ7-nA@|0*{p`6lJ?O>x7$N8HhAmWWnlJ684v}N`bi0gfgjo)uaJ1w z6LcS&F?M->;^P8OyBJle+jt9(^l)AF*#4dDlhE8d`wMhW>3S)B^cCQl;UTU(o<>V$ z|2G~{B1Z|G111zRCH$^-vCWcRE<oVzg!uvd<2-@ zbscy&50;W;sm|biK#JW4Mu5&pC(RPo$cSex-hYLwhqOZhuv)Q^A&I(7-^7mH0;9Dd zkW<>#{EY3(K}ruH`fmFG5b#*n2!gv6BW%g~)AZ81bP-ep*7;ZcJd?r481t}T&fKt~ zzu8+GH+9HkXDTX}z{k2n0ZdI7!FbQsWvtDW6m|^~@QOaBhv}cO&P`7bUI%X>zTtV~ zepy07eI#^BMl-Z&c=n!kjqqH2Q0m9xyefdgWc34Q(R0W>_Zq?r93HK4H%|DhW9#TD z$FhO|1pVfKbber-O>_4IIsHCXP)agtMgg6FbwgYXMHHS6uW+?z<_CO*E=#P>D7254 zB=6D`t*zI94UX4RPzuMTUkvj&nrAc){v>i52(dv;7gyXrrdj`|MW}s!%KCL07_Vgq z6|Et)HJsvxFHECh_nzA#j==N>jQu9aFUcm0@8GZZycM)+i%Z^EFI3|{*YsH%C^57_ z=wv^G_OHz*e?TC*8(uGq^NgxPr$$)m7nr4U8ENFhsYaVnQIaG#hXXiGMFVj|)o&kw z>`idqDKU1eNbR*>gmp5O2d4|a`&h*3?_);)K ztK(<8jSt(8^@u=WIS7!I2M|zBNZz=KE2XFD;tl#N&v`Zc^H2gglzbtEx`%}_4gH7Q zOo}<%&%oxD-w?7t_KJDC1y(f17Q>ofg2>NF+)Vv!bq$gs0Sh{$w+ zuZ1T_BRM<-wWfZ^FQ6ve0*rOa?z`4~yt{lMHfW6^I_MeHjjBpWJz)Y%3D?nTH^WRW zJ;YGBk977N0BM`x44{&2(z@9#p{RT!%g_r{oga+6pCS1SjrG8jhBA6AiBbPdlE4WJ zwa)JkP=-iP#alAioI}jOM+$kK2ZtT7VpB?e9A1KD=XIr!1Zx|_q@fqPbwqbA8@kqWdBh&`Yp2e&!Tz7>v` zhI*>E4DZC9(kQOm92A3&4L_1iaFv1SHonLw#FR+dNgkk-#ndRXGfxQb4?r?|bI?em zF#x>3VWbj;3RCR2ySL9IEie;K11|O*CwGALOu$u_dEM-u#(5oaFel0-_;}soJlOn4 zVwqqm+Ck}4K|kYxEPQktu9VA1a;B>TG7sn}=Hp?LV)&-m8@#1*waw}I4M^p{E%XusjFzu)Eb2=r>hj$lB;Ge*Ph026p-@{kl9U3ltMZ zBH76HZ1Z{Gx}9veadl9^35-NP7^Qf!Xsq~y$;$w+E|Z?nZ6oj71m3qRS;k39;DMJQ z=Y%uwV;AvBlI8!OpST8GZHFN=VrsClhe|SVc6N@0L(w22gFRv~zKS)d^YU~DZ&54V z9Bn!qGU?POc7uhf@j_PW3R4e&`3bpU8U-7mw3VjbnwvtyAC-LLUil;t_*>^1kX;@0 zSZhT#R;M!6qgsqP%M__QzUMx6ivv!_<~)f9oNM0yc-7W2w(A{1%@iAU3xeWK$vTjA zCQj_^GP2F$o|CQ8WI_?8AX(BSn{2DcDV0E&$Idt5tq2-(xWB`=te$gOF=u09ESZXO-iGd51XT{B6*pN%y8%njhzM-ac%Z3EsNy3{3Ej1n}UH zKOqn1JHN2}7dNMLUbt_k z`4v>gg(oJgA-xAdZfJ?U+wc@0TtoBpw=k)!bx;Q6>{=%m!v(eNG#Q}&LZIxw+Y}{3 zmTsQ}%khoHK__@`C`)8(uh$%4FPfYEzO(7G)huiP)Lj7(KTVgdeh;5mB3t?`=a|N)m+V@;T#NUV=o-01PxP$?$pzSROvkg(}Ca!H-6$Xo7WmelvUi zipkK8r;dR>W~DYgW|+B)GSn4M&>BLUfOCcRmC%j3K{PIfb1iFY0rz}QlXQh#<~+g# zBSoO2Qg9_bWb)Ym^K}?72)1ycX>M%#x)R9*mnV`lXZ+lgOf-W?FJc*feK|Pdhg)%V zi2JQWQVQ7a2$JclP+@1|vwcP($SgsOU$7G8DT%X80+Jp2D%`C_UvTs94v-Fb-vR@a zx1Nh1zRG>O{nl{laD@|vIkIZdfc@`HsBcKJYbuQJRuzyJCvmUJWkH_}n@(#!7|gAM z*5DF-MYxVAJqan8;ywU)dT7i1`5D@fzAC&gshnps= z$4ivL@fM}vexEdQ?-5;xPNn97cmB+8&_oTHx%BE~-YejM(hX@S?Y6E#&fk+IM+yLD zmNctx1q6;Mx2iVYuwct-36GFA5f!wFt~j(tu!R^LzcgMWbNko!|2sjG1?-thdm+f!Q)-?P%MfJme5!F%AE{KPMm*)(|f@f8Kbu!#UETnx(kEzBNFm*yZiJfZxw z>q1RJn~Vv%-Q>x*KXmSDxg>HRQ-5il|9wlIKW*m|bV*vk{y&KH`kAPSkL4m89tR_{ zGr}s(Bg>9UGD1-9twGOmYB?p2*q0Xn2QxMe`Vp4kf1&(`$dyOe7m2AsjACu&JrAcd z-UkapGtPvQ7C5ZyTPh4nzh@*MhrcE*^?#HHt7NDe^j-@6X-9;>|G)H0`y2f875aHp z@|Rq?dq9Sy`K7QH8>TM76&zJDDpEmyc?~>?PL;98WCDiJ+fZHpz~Q~Z1AP0pLR4C^Ah_F%nGc;uaQo0ZLL zeAjyqe6vLy4atw9^Sn?8uR~U1ca=e?^sBDN8=JTx^{0sRfDBq8>-^t8)b`!P- zbITUDZrseU8%RywIyeJ}LttmoJm5|(AZ7_4xcF#ngoQ>3aL-?nCYJ#|uR>0^o`c9W zIe)_+*)m|EuEpn7c7s_EfK)qT!>vD{-6@@6P|Y?U0-xAx;j3EI-k&P=>SNv|nMF3T zvsWVe;b4GnPz@*d3+~9C3jl)XRy=Xwix~v<*Vdi=nsH(ga;Y$=qc**-KJ$`O_d&;? z;C$cAPUg&c^E=mW-$Rj@XV6@a-?^=yc%W$U_a$+uRs`Nr-&g;*8wcd=oSzYN!dcEF6|lxP3ZtN9=1Dr)Ez zx{r2itmE39yu{Usl@)Xs~s9rqa6MZ##E;% zH~Ke@ikA&`gP`6xXo0hgTWr$f={IcmcIRqSya>xu0t_cmVY`ebw{~~nS41#ooqGa* zQtedtb5=0-=SL0qRkj=sjK?<4&KHvHG<2Uq=k6sKlQdEcbf5*uMEkJwoD_oW*eHhk z7Tf^Bup&KL+z2+Yy2~q zQTW`*PU-#p$Pm*-?c3b1hrr+L9<9%JXB`ZC>H|%qtj07#6MTw|`qp@HMbq8)a9cuQ+2GRp?G5O>84JrULJ4T7KDbcC1Uw41ltoQu*2A~ zs?A6V>6uwxo%-IoKG)rfG{F3x?3O*X-PQKdSh?(gNt|0VY|s8&SKNaBxvxPzm+2h2>SXu&%!c>uRjmPdTS;^oKzRy( zf#4CEGjUL#q(LmGnfOX46DXk`!LCh#jdnyDUdRb08sEY=uX$7cfL^;aQPdOOk(I0> ziA#JHlhldq*A@t1W8K54XQV6UayXZC%O(n5S`3=)fa+YamRssw;o+bp8@-Ka!Aknjt(6I$ZXFJ8KDNE}4H6#xANBC)C6C?+dxv=ZuMq(@A zfF96z22=Th+aZlWVRivZzztln)|Was8V9H$=OctwcTj&RcPD+rOvFw-Q7@3+)9n7X z(}aj;zq_vQ%yn*cPyQtxvsx~^U?rD{~B5PPUy$d_K_;@y&Nq9{hvUP-9#ofF(2 z#i(Uz`c~WSLmSO5=c|^$N~e5$+2&yQAn6Xc`c8d!ofFL^J)7oo zRT8O&iOks%w#!Yi?~Rphr0xKWS?Md0C|39+xSYFqxb_}YkNPuYc24KI^b^%~7bT%y z$z_Z_*Oz(Ma2aWLjRZViu-q{cJ0TOF7rbGIi$MYCUA$Z0A`7br{tWt7l7!e!$XHy^X`p^+V(V6qHC8x$=K@xwFvr< zwESnZOEk&8=VZY7-~vGGxT9WmIbj*=?VuZBzYvM@!SS`k0yyq&@XjU-L5FV`G|$k_ zG8DVlp7jQ?ANk;@5bxrf-7&wU?QRt1(9~}MbwwfHw#|sD>ru`;0oJh0IWQNRmRhE8 z2DXe?)gnb7nPaJ=K%9$>-1n)X9x}eojb5SrSb1yHw6u;mPK2EWQAok$SX1+s2EfS~ z?X_*fiR%IyW3k|uh`475<#(s97CSyqJi3Q{QsJoOkWIL5UkYlQPnFSrhpZJyh1Vbz zyLtuCUg%zm_#z~WWni@Qy*4l9D@k^F|6WH@pta`F>5jdvx+4dqqqm@7U>wChRM|OT z(^p#Xm;=jjv8D0q=V!5{7H*eBiBsv1N1atb;Agkt{v+LQd%t^ZCu%?i4j7s-ZyKI zWgQoLeD{I4%MwKU6d+PgNSPFjuer}_5}^iLI*b7j(umjhU>`X~>|QfQU5;;F9I4vE z;7X-NpAs}z`eHGUjuIP7fTNjeO;WwJIcN}|6B(GEx5?xTo@UmKA1rO2eVBqlX$wQx zbC2^lJ%7NN8}whM8Y@*%m=BI--VcE>X7_7nZDtrMh`qful=~g2Dr5`XW>aRCR+j)3 zoT0@o(4%~x5KY3a;%667&~hz5aOpgK`nVYI=)Me6cJqF zaVYHan^DmgVto!J{R0{F1Z->h zids}3!}cxn>{nRvwFudEi$3L$s1ZTL6BLF<0m3^R7pLmcv1KV^as6TxQ}TAUS}8nJ z*a1216~^Sw6W}{}Stc;0L`=xJ0HO(MQJ_0o5yQg&}$$06UfxTIhUJY^H&6ED4t&j>hTiSaqwF#G)qe` zp+G7`o@e^gXQ-O4ArLwS-FrsPs7IU%=vYO-RkXO2RBUg=&##rh)Kz4wQX-j6;r*tuKT`ZQ680Z3AKPtgM zdRYz4U!~veRNB`Gbwk2Rf%HtAlSgy;qB5_WGZ5~SS-0v>P;3i-Hfo=T{aPz`gx9z1 zpP;_t)bIrayOJSmAEDEDy~r&cY9?G2)->?L6Ry806oZ^)x?J=})E=l$`&~efEwdhc z<9mY8a-)TlG`AuhmkJc!k%)Dap6L0Fc+P_K)9xGzPm*uF;Eyo$VeAtdtb?9-*tiQs z-YO_j%F6`$U!W66%%S&tabdg?4ylvJy}~IFHF|gON+E6?K zs>6)pr_7dr^%&*ls= z0Md3{JT#`pzJPzuMtd*jd8=#uym`qt7|gkeHb_KA9^Sy=+unE|+WVp(D*7Y5ms`Zv zX#;R@8>%7zlFK02m<(??=@i%*{x**@zrD0LXAa6upMm$+%+%Ie8tJc!M@jJ*{26J${ z^@)y`pj*96+i?PmG9$sx$*#ecNo9{aBHJuJCXgkr%P6bGSuFL7E(w#APu3;;O@LM+ zx{^D;wUs;=mpfv~T@@}g6rcHv={GCh26)kHgkmI2q{;yf8TQq`u;^oU*EK=HirUU7 zvpbO26Y||$?9?z7#M=9p$=Ke3^Utj!o%XNF#%I@y?4eK5+6Ig{zm*_^m_tB6uRju1 z+su_GCZf$lLuqlf?Z_zUJ;T--`A1-EYO-H`?1kR;&nm4al# zb!T-dN#D?q!no(gPdA8Z3l!2G5yxp9MnObDAEOx?;h2EqPSAFi&?8(tw8i0F!` zZY>~|*yMuS(*Ur5#%!M_^erty!vb3r`|0Ft=CYBbhMoPwiXYOh>8K<;uL`{CkX$q+ zt`z>9aP|`5?`!RWBnor24|}u}2caAM=N3Awwji?=1!R#FWZ3u(6-kf4Z2$2LKg}f8J6y*;|2al>FtN}`% zML0cbf}zSlAP)kpbiQX6Mc(fDpJ2_lk@>{A`cW&`>co3>&Zxeot7a554`8M2_uBKi^@2`DZp8tz;qo_CrywHeZFlRQiRKotAfWToJ9tG zZggRa{8lduS=#D+X4D?a!@Be?0DPy`g|tR>G^eZ1EjI<7Gbzwsnr8xAy$Eib&SS)0 z-?x5ec}CM(P-M#P?j}osEIcItaK;J7 z<*g$FrsWYia&E@u2tDBygHi?GhKkmN>C;v3!GSGP0c5XK7Mf;F)Xm=x z`3J$Nk)f26wUme~HwdhnPoWOfFL|;~#ko6&|6na;QJrw!c@jc&`(1Q17MvDk;g71P z#W#}U?%cJ9J$ns+WG_oYi?o1|m+HHaBHq+VCVv2U$K!FyuqJDH##@`7=SNQafJAOg zc+hah6y*f9pe&;T$i`ac$<+oAy?;NMCf#|*!X&%;?)K`I%@5j9Ik1g;d@A*h?<;Y9 z)W~?VO9dc-eY?e#%Q~buiR@WKrfYwxSUE?&jle}}7_(+&{vh0qlh4|T6@Ue^^u%^f z!j#tvMDq70H)7T^phk1pvqDe{lyiUph@dmJS7i*E?Fid8X6Ep~^R4EaFnnCwM_H;c zB{|4xFG#={p6Bzkd5ro~U~;-)t?k%9wN+AsanH*A1b5XUt0g49wur-FS|EP+xh&Eu zYluS92_wSb{~ESeT|FJDq&?51X`tKT+6a3azI|0NXn*I1cS1&f)`M* z^EamFy(KnLYytt7pH0sL>Uu^^?PAr9#}m7risYG}mv``oqy+1^&fotem9~dMf!jasGu+T`Xt1^Aa@ls4c9U|)vsFT?l^J@fo>OV)M zlsCIHz*hWW7abZ+(h}(bYM{rW$d7kpwo$;_vtcgG2aOTl^ zYC$R3Y-R`Vo~d1_4{ysj#G93BgA_ejwrn_=xY{1_{oCK>A8fffw|vW~P)iJvpT7)X zr+lDz=35QJC}0#5SO}u9dd3h=+6J4v1@TAmjS$O-s|?%b*GaBjzCBDC2n=+@ndGG= zZ{`ycVb-*4H%>k0e;r z)eH!=mP)wE5dctC?}P^S+pb4ztT)&EF@q{&!H9-wKi&=g%lq}I%WhHkP#nlGcykI%WY-^3{mEQKX^j< z^~o2r8VUDu|Kjpgx@%w!VN87{`5=l8sNBlvnroI4jkFrr@I)OdaN`jaJ7vpO$M?h@ zNr+S^eqG4hbmrO#`$f@}IDg-cRz|zJH}-N7NcEzRSu}eBSy@RCNkkgkLKDfZ228AV zDo7>7*2JiIZ{O3!bll-Rw*n7g-Ejd)15rBw`W}5%Z2j?>f@b-3H22mZ8rF6{A-?Cy zUN#2V*=jc^h;+6Ufc}XlnUtzMF-V>aJ;u8;r*^rw0nOK1IBGzIanq1ZjR&#QLda=g zDJmIE<*Yv%)5}^fE>V+Cx1txAK?=rSBF8@rw zdB`lNk-gxMaHWMYpvNqGeHF$o`{u^a1vd&3mAv!wd_9!cwZspR%0DKwK0OzIZ4fc~ z$W`+p^F)ZwPH+#;23IgDwifSPBl0y^2uzoglXBW^z#tGRot%`srH<5}pZfj>NH0!) zSRsjgSo8CNP-rE>9(t=!mIo|Cl@u*C6ueB_U^S-^be5TWIg#N43~4Wk0a{d-4^b6C zo(gP`NANwAfthc+0w_>JZQ&FQGF8Z0+aV*Y6DCwOc9Q8Uo-W>J1~+TmQ9^; zTQ$PmqOOp8(d@M9HOKwUJNnFtQ$l(eqMMpm)$T_hSJedrE3-(ikV2Yw4V(K;>k3YX z48nT#MYsP{cpAKDCGtlf&7>vzc7m6mATS@%Cl&;sx1IV_3Pw?`D*nEHJIZG| zQuebXMZdRT=|RH1bnDzoLrB7IrI_i;U>hOpPsCrKi( z1%Qqm`w_L|GoKApK~0( zH+g!W4*v+JywI8D4FONDlM)48!Ex8y@>*d?{HA`YITR%Ku-0-KgiUkDvj}ZZ&-%I5 zo(?^{`3kq3%nY2(*gq0(D9h%#5=$g8PQ>c%icMkUwdV~_89tr`6;HU|2L643r#;yG zyMXq&&qyuVx3t3Ta*9Dl36SGopCy8tK9Pfy=N=qrzMa_D1ZH;;tV1d$Ywx>SW+E)@ zl8m8?I_JM7HP{t*B>H*`uA|^RAg9sHeJ7)%(MXdL)TY$q438noz%&H9vKM69%7%g( zE^o!Vn89CFj@@y8O$eH4-G&rxz8<|(^<6O4w7W`7Ii1BA3a6V5De!farD`tA0obw^ zlz-zizSO&Co4KDbK)}X!adAs?Y*L@(Em{aMTBvo;_kcAz)#~NZ=KU&LKM)TX^s~kn z?jEByP=%Ru4Em8Cm*a)HD|$f=s}8~;736O8{-_T3-hA-GXnSozFx~lW(Sw6NS4$(`DM4mA9I-UT%2z zlRWiE4BoJZW|_dgWVHmxYM!FAhJbC@Gm(l3@K%phyg@kfhtIL8t#ujsW=e_~y%~w^ zj%EU*@}tTAxUK%HUm6c(-f_3NqIB)DnQC>uiJ?rUC6)hoZNM8U83x~IP2&sqE(Q{H zWQXIXttZXtF98%%W|`Q8*?6Tb=uFHTmcAN4KC(-qu`~cL`B0mko*IO;>j97w+sQ9# zgT;}GY|dqY`S-j?c(qh#3;B@KTzybb96-UZtWw{?5WWPpx|FCK#E4$86B%Ucu zgxTxhQu`H429+BNd|0Km)sp^U7E;hNF;_5PEc9GX*y%yHq_>R^myAqz*lmir|JI$L z2U^uL?W3%#)mE=^nN|qckJ3zq8rcWAg~j5$RdRGG`X8sjO~Ln2o-FhZ^s(#dH>vS& z#J+!n&G-5^&D`_|!I9hR=XYnPI$O)ngfppDuTYf!T$I*F96xyMxx7^&Px zv>Rz-AeeWvirMlyuA8opaAAnPo`6|onK6K=AR?FKFfh6eJymJ3CgKmHSwuCTzWd{M>YJg)SYXwoO* z(?}B(YiafwtE!5MIP+?`A=3OJ>nWOWAtiq0q%rWZ_C#YHkGuGsnclQSZyQ%zTd?#z z++ym=p`GnYzLdk&pJH7`oH**j1EkNV1wIH^#AG9>ddcRViy{$MF3kH&>YOjF-}Dxu zug7ScMAueRja7E2Y7UbYW~r^fj@0C}*m;1v;~p*!dwfy1{6j5)n1tP-dIEht$EBUj zPC%AHhcC)=$b<1%>b*z)1~!QMlSmz$;+X(D#2aXTvJ2$0HL!b(Zs7d0#Xlv}UBLQ7 zVfrFBTJH@6#MJRO!G5g@1sMdS<4s_hvcS^LZ8o~+ph;k#0+L#z5nO%v=iF=V1lU@h zJz8>>ZXYuZy7$QeqU+gCfVTwPLLW5fHT|5fhv>w=O7Vq}VyH1of{Qef^cD6JMS|tv zVe?z<4~OU)LGVm)6$5~mL~!e+CVAYM?uQv6P)8a!fs+1eK=|hl*|zaSjzN&CEaHBD ze_02BNOi<^A0g;+4dZ?Lp#FCNq>m%a93U_*StXx#Eu=XrC+9kU20^bz;fuWrZr~$z z1_rP9jVwtudcB4^@BkWzGc1=*Wr~6h@9#gp_%8qx<~G1X9QoG6h9;p5oNo159_TOY z4k$5HK{od#FCF&V?UY9-frSAp?kCP$un0Tt^6(>~R|YLbKfWx+MU=M1U$84}i+cpi zST{U~TWzE3f4b)Ht3_TT+%kaa;ARzf!7jmJ5T=7{cv;sZrgiK6blHFYya=kwN?Dw6 z*B_tRN?`bYLyE)?msvkQ{J-0XO+o#a%X28V81#8uj^_ZiiiQ@xQfS9byv ztP6DB*UaY)nF<_bs?XnnZSABqj4yTLH{ri-F#5~oyuTQYKR=@%EdeqXI?qM$t}_8@ z?xmGbuZgUO=aKDZsKE8BU*JG(o6&|lXdkL>hE>H6u72b7UGSGZ$=4nK`=^(Y4A{xl za0+WVfU^7~gg&1FDN~Zm5naOVrCZ1vA@e~h;9j$UA{oxvl*G3>#mTfK1Glpz^d0bW zk;WE&8-Lw7N{~V%*^Op`SLq;?qd~}|(vIa%m{!`{!!#(;JUIJ>nva>@80*gnxYhpZ}G*3fKLn zgjDbU_Q6$80ywAMrN?2?1~O!Tw# H94`JJBKBo- literal 0 HcmV?d00001 diff --git a/0_TO_ORGANIZE/Allocating_Qubits_on_QPU_Devices.ipynb b/0_TO_ORGANIZE/Allocating_Qubits_on_QPU_Devices.ipynb new file mode 100644 index 000000000..3036d10d8 --- /dev/null +++ b/0_TO_ORGANIZE/Allocating_Qubits_on_QPU_Devices.ipynb @@ -0,0 +1,543 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Allocating Qubits on QPU Devices" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# Use Braket SDK Cost Tracking to estimate the cost to run this example\n", + "from braket.tracking import Tracker\n", + "t = Tracker().start()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This notebook demonstrates how you can specify explicitly which qubits to use when you run a quantum circuit on QPU devices from Rigetti.\n", + "\n", + "When you submit a circuit for execution on a QPU, Amazon Braket performs a series of compilation steps: it maps the _abstract qubits_ in your circuit to _physical qubits_ in the device; it synthesizes gates into the native gate set of the device; it optimizes the circuit to reduce the number of gates; and finally, it translates the gates into executable pulses.\n", + "\n", + "This section shows how the first step, called qubit allocation, works for the Rigetti Aspen-M-3 device." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# general imports\n", + "from braket.aws import AwsDevice\n", + "from braket.circuits import Circuit\n", + "import numpy as np\n", + "import random" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "## Automatic qubit allocation\n", + "\n", + "Qubit allocation for Rigetti devices on Amazon Braket utilizes [the Quil Compilers](https://pyquil-docs.rigetti.com/en/latest/compiler.html#the-quil-compiler)'s _rewiring_ strategies. By default, when you submit a circuit on Amazon Braket to a Rigetti device, the circuit is rewired according to the [PARTIAL](https://pyquil-docs.rigetti.com/en/latest/compiler.html#partial) rewiring strategy. Specifically, the compiler starts with an empty mapping from logical to physical qubits. Taking into account the latest calibration data of the device, the compiler fills in the mapping with the goal, sequentially, to maximize the overall fidelity of the circuit.\n", + "\n", + "The example that follows shows how to create a GHZ state on qubits that are not physically connected. After the task is completed, you can obtain a list of the actual gates executed on the device, by viewing the result metadata.\n", + "\n", + "First, instantiate the Rigetti Aspen-M-3 device and retrieve its connectivity graph, which shows the qubits that are directly connected on the chip." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "the connectivity of Aspen-M-3 is: {'0': ['1', '7'], '1': ['0', '16', '2'], '10': ['11', '113', '17'], '100': ['101', '107'], '101': ['100', '102', '116'], '102': ['101', '103', '115'], '103': ['102', '104'], '104': ['103', '105', '7'], '105': ['104', '106'], '106': ['105', '107'], '107': ['100', '106'], '11': ['10', '12', '26'], '110': ['111', '117'], '111': ['110', '112', '126'], '112': ['111', '113'], '113': ['10', '112', '114'], '114': ['113', '115', '17'], '115': ['102', '114', '116'], '116': ['101', '115', '117'], '117': ['110', '116'], '12': ['11', '13', '25'], '120': ['121', '127'], '121': ['120', '122', '136'], '122': ['121', '123', '135'], '123': ['122', '124', '20'], '124': ['123', '125', '27'], '125': ['124', '126'], '126': ['111', '125', '127'], '127': ['120', '126'], '13': ['12', '14'], '130': ['131', '137'], '131': ['130', '132', '146'], '132': ['131', '133', '145'], '133': ['132', '134', '30'], '134': ['133', '135', '37'], '135': ['122', '134', '136'], '136': ['121', '135', '137'], '137': ['130', '136'], '14': ['13', '15'], '140': ['141', '147'], '141': ['140', '142'], '142': ['141', '143'], '143': ['142', '144', '40'], '144': ['143', '145', '47'], '145': ['132', '144', '146'], '146': ['131', '145', '147'], '147': ['140', '146'], '15': ['14', '16', '2'], '16': ['1', '15', '17'], '17': ['10', '16', '114'], '2': ['1', '15', '3'], '20': ['123', '21', '27'], '21': ['20', '22', '36'], '22': ['21', '23', '35'], '23': ['22', '24'], '24': ['23', '25'], '25': ['12', '24', '26'], '26': ['11', '25', '27'], '27': ['20', '26', '124'], '3': ['2', '4'], '30': ['133', '31', '37'], '31': ['30', '32', '46'], '32': ['31', '33', '45'], '33': ['32', '34'], '34': ['33', '35'], '35': ['22', '34', '36'], '36': ['21', '35', '37'], '37': ['30', '36', '134'], '4': ['3', '5'], '40': ['143', '41', '47'], '41': ['40', '42'], '42': ['41', '43'], '43': ['42', '44'], '44': ['43', '45'], '45': ['32', '44', '46'], '46': ['31', '45', '47'], '47': ['40', '46', '144'], '5': ['4', '6'], '6': ['5', '7'], '7': ['0', '6', '104']}\n" + ] + } + ], + "source": [ + "device = AwsDevice(\"arn:aws:braket:us-west-1::device/qpu/rigetti/Aspen-M-3\")\n", + "\n", + "connectivity_graph = device.properties.paradigm.connectivity.connectivityGraph\n", + "print(f\"the connectivity of {device.name} is: {connectivity_graph}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "Next, create a GHZ circuit with three qubits 0, 2, 4, and run it on the Aspen-M-3 device. Notice that none of these qubits are connected on the Aspen-M-3 connectivity graph." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : |0|1|2|\n", + " \n", + "q0 : -H-C-C-\n", + " | | \n", + "q2 : ---X-|-\n", + " | \n", + "q4 : -----X-\n", + "\n", + "T : |0|1|2|\n" + ] + } + ], + "source": [ + "# create a GHZ state with non-neighboring qubits\n", + "circuit = Circuit()\n", + "circuit.h(0).cnot(0,2).cnot(0,4)\n", + "print(circuit)\n", + "\n", + "rigetti_rewiring = device.run(circuit, shots=10)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Status of task: CREATED\n" + ] + } + ], + "source": [ + "print(\"Status of task:\", rigetti_rewiring.state())" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "To verify the final qubit allocation, retrieve the compiled program that was executed:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Measurement counts: Counter({'001': 4, '111': 3, '000': 2, '101': 1})\n", + "The compiled circuit is:\n", + " DECLARE ro BIT[3]\n", + "PRAGMA INITIAL_REWIRING \"PARTIAL\"\n", + "RESET\n", + "RZ(-pi/2) 12\n", + "RX(-pi/2) 12\n", + "RZ(pi) 13\n", + "XY(pi) 12 13\n", + "RZ(pi/2) 12\n", + "RX(pi/2) 12\n", + "RZ(-pi/2) 12\n", + "XY(pi) 12 13\n", + "RZ(pi/2) 25\n", + "RX(-pi/2) 25\n", + "CZ 25 12\n", + "RZ(pi) 12\n", + "RX(-pi/2) 13\n", + "RX(pi/2) 25\n", + "RZ(-pi/2) 25\n", + "MEASURE 25 ro[2]\n", + "MEASURE 13 ro[1]\n", + "MEASURE 12 ro[0]\n", + "\n" + ] + } + ], + "source": [ + "result = rigetti_rewiring.result()\n", + "counts = result.measurement_counts\n", + "print(\"Measurement counts:\", counts)\n", + "print(\"The compiled circuit is:\\n\", result.additional_metadata.rigettiMetadata.compiledProgram)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "Notice that the PARTIAL rewiring was applied. The qubits 0, 2, 4 in the original circuit were mapped to three other qubits in the Rigetti device, and the gates were compiled into native gates." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## User-defined qubit allocation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In Amazon Braket, you can choose to prescribe a qubit mapping manually, and prevent further rewiring for Rigetti devices. To enable manual mapping, set `disable_qubit_rewiring=True` when submitting the task to run.\n", + "\n", + "If all the gates in the circuit satisfy the topological constraints of the device, Amazon Braket maps abstract qubit $i$ in the circuit to the physical qubit $i$ in the device, and maps qubit pair $(i, j)$ to the connection $(i, j)$ in the device. On the other hand, Amazon Braket raises an exception if a specified qubit or qubit pair do not exist in the device connectivity graph." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : | 0 |1|\n", + " \n", + "q0 : -Rz(1.57)-C-\n", + " | \n", + "q1 : ----------X-\n", + " \n", + "q3 : -X----------\n", + "\n", + "T : | 0 |1|\n" + ] + } + ], + "source": [ + "# create a random state with neighboring qubits\n", + "q1=random.choice(list(connectivity_graph))\n", + "q2=int(connectivity_graph[q1][0])\n", + "q1=int(q1)\n", + "\n", + "circuit = Circuit()\n", + "circuit.rz(0,np.pi/2).cnot(q1,q2).x(7)\n", + "print(circuit)\n", + "rigetti_task = device.run(circuit, shots=10, disable_qubit_rewiring=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Status of task: COMPLETED\n" + ] + } + ], + "source": [ + "print(\"Status of task:\", rigetti_task.state())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Measurement counts: Counter({'011': 6, '001': 2, '101': 1, '000': 1})\n", + "The compiled circuit is:\n", + " DECLARE ro BIT[3]\n", + "PRAGMA INITIAL_REWIRING \"NAIVE\"\n", + "RESET\n", + "RZ(pi) 1\n", + "RX(-pi/2) 1\n", + "XY(pi) 0 1\n", + "RZ(-pi/2) 0\n", + "RX(pi/2) 0\n", + "RZ(pi/2) 0\n", + "XY(pi) 0 1\n", + "RX(pi) 3\n", + "MEASURE 3 ro[2]\n", + "MEASURE 1 ro[1]\n", + "MEASURE 0 ro[0]\n", + "\n" + ] + } + ], + "source": [ + "result = rigetti_task.result()\n", + "counts = result.measurement_counts\n", + "print(\"Measurement counts:\", counts)\n", + "print(\"The compiled circuit is:\\n\", result.additional_metadata.rigettiMetadata.compiledProgram)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "The qubits in the original circuit followed a one-to-one mapping to the physical qubits in the device. Other compilation steps, such as gate synthesis and circuit optimization, are still performed. These steps allow the circuit to run successfully and improve the overall fidelity." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Using the qubits with the highest two-qubit gate fidelity\n", + "\n", + "Additionally, the device properties include calibration data, which you can use to find the qubits and qubit pairs with the highest fidelities for particular gates.\n", + "\n", + "The following function finds the qubit pair that has the highest two-qubit fidelity of an input gate, which can be any of the gates native to the Rigetti device, namely CPHASE, XY or CZ." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "def find_qubit_pair(gate):\n", + " \"Function to find the qubit pair that has the highest gate fidelity of a particular gate\"\n", + " \n", + " # check whether the input gate is a string\n", + " if not isinstance(gate, str):\n", + " raise ValueError('The input gate must be a string type.') \n", + " \n", + " # check whether the input gate is a native gate\n", + " gate_list = ['CPHASE', 'CZ', 'XY']\n", + " if gate not in gate_list:\n", + " raise ValueError('The input gate must be either CPHASE, CZ or XY.')\n", + " \n", + " # load all calibration data from device.properties\n", + " calibration_2Q = device.properties.provider.specs['2Q']\n", + " highest_fidelity = 0\n", + "\n", + " # iterate through all calibration data to find the highest fidelity\n", + " for pair in calibration_2Q.keys():\n", + " \n", + " # if the particular gate type is supported by the qubit pair\n", + " if ('f'+ gate) in calibration_2Q[pair].keys(): \n", + " \n", + " if calibration_2Q[pair]['f'+ gate] > highest_fidelity:\n", + " \n", + " # update the highest_fidelity and the best_pair\n", + " highest_fidelity = calibration_2Q[pair]['f'+ gate]\n", + " best_pair = pair\n", + "\n", + " # generate the two qubits as integers \n", + " q1 = best_pair[0]\n", + " i = 1\n", + " while best_pair[i] is not '-':\n", + " q1 += best_pair[i]\n", + " i += 1\n", + "\n", + " q1 = int(q1)\n", + " q2 = int(best_pair[i+1:])\n", + " \n", + " return q1, q2, highest_fidelity" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "The example in the following code applies a native two-qubit gate on the qubit pair that has the highest fidelity of that gate. " + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The highest fidelity for CZ gate is: 0.9794230141816626\n", + "And the corresponding qubit pair is: qubit 21 and qubit 36\n", + "T : |0|\n", + " \n", + "q21 : -C-\n", + " | \n", + "q36 : -Z-\n", + "\n", + "T : |0|\n" + ] + } + ], + "source": [ + "# the gate must be either 'CZ', 'CPHASE' or 'XY'\n", + "gate = 'CZ'\n", + "# find the qubit pair with the highest gate fidelity\n", + "q1, q2, highest_fidelity = find_qubit_pair(gate)\n", + "print('The highest fidelity for '+gate+' gate is:', highest_fidelity)\n", + "print(f'And the corresponding qubit pair is: qubit {q1} and qubit {q2}')\n", + "\n", + "# create a circuit with the gate applied to the discovered qubit pair.\n", + "# note that CPHASE in Rigetti corresponds to cphaseshift in Braket\n", + "circuit = Circuit()\n", + "circuit.cz(q1,q2)\n", + "print(circuit)\n", + "rigetti_task = device.run(circuit, shots=1000, disable_qubit_rewiring=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Measurement counts: Counter({'00': 910, '01': 55, '10': 33, '11': 2})\n", + "The compiled circuit is:\n", + " DECLARE ro BIT[2]\n", + "PRAGMA INITIAL_REWIRING \"NAIVE\"\n", + "RESET\n", + "CZ 21 36\n", + "MEASURE 21 ro[1]\n", + "MEASURE 36 ro[0]\n", + "\n" + ] + } + ], + "source": [ + "print(\"Status of task:\", rigetti_task.state())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The qubits in the original circuit followed a one-to-one mapping to the physical qubits in the device. Since only native gates were used, the actual gates executed are the same as the gates in the original circuit." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "
    \n", + "Note: The IonQ device does not support manual allocation. For circuits submitted to the IonQ device, qubits are allocated automatically.\n", + "
    " + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Task Summary\n", + "{'arn:aws:braket:us-west-1::device/qpu/rigetti/Aspen-M-3': {'shots': 1020, 'tasks': {'QUEUED': 1, 'CREATED': 2}}}\n", + "Note: Charges shown are estimates based on your Amazon Braket simulator and quantum processing unit (QPU) task usage. Estimated charges shown may differ from your actual charges. Estimated charges do not factor in any discounts or credits, and you may experience additional charges based on your use of other services such as Amazon Elastic Compute Cloud (Amazon EC2).\n", + "Estimated cost to run this example: 1.26 USD\n" + ] + } + ], + "source": [ + "print(\"Task Summary\")\n", + "print(t.quantum_tasks_statistics())\n", + "print('Note: Charges shown are estimates based on your Amazon Braket simulator and quantum processing unit (QPU) task usage. Estimated charges shown may differ from your actual charges. Estimated charges do not factor in any discounts or credits, and you may experience additional charges based on your use of other services such as Amazon Elastic Compute Cloud (Amazon EC2).')\n", + "print(f\"Estimated cost to run this example: {t.qpu_tasks_cost() + t.simulator_tasks_cost():.2f} USD\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.8.10 ('venv': venv)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + }, + "vscode": { + "interpreter": { + "hash": "590fab68195cf107911461461f81d5c472d3d6127f579badfcfad30f03e5cab2" + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} \ No newline at end of file diff --git a/0_TO_ORGANIZE/Error_Mitigation_on_Amazon_Braket.ipynb b/0_TO_ORGANIZE/Error_Mitigation_on_Amazon_Braket.ipynb new file mode 100644 index 000000000..ba5125676 --- /dev/null +++ b/0_TO_ORGANIZE/Error_Mitigation_on_Amazon_Braket.ipynb @@ -0,0 +1,467 @@ +{ + "cells": [ + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Error mitigation on Amazon Braket \n", + "\n", + "In this example notebook, you will learn how to get started with using IonQ's Aria QPU on Amazon Braket. You’ll learn how Aria's two built-in error mitigation techniques work, how to switch between them, and the performance difference you can expect to see with and without these techniques for toy problems. " + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Quantum phase estimation \n", + "\n", + "Quantum phase estimation (QPE) is a fundamental algorithm in quantum computing that plays a crucial role in many applications. The QPE algorithm is designed to estimate the eigenvalues of a unitary operator. Below, we provide an example implementation in the Braket SDK. " + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "from braket.aws import AwsDevice\n", + "from braket.circuits import Circuit\n", + "from braket.devices import LocalSimulator\n", + "from braket.tracking import Tracker\n", + "from phase_estimation import phase_estimation_circuit\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "cost_tracker = Tracker().start()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# device = LocalSimulator()\n", + "device = AwsDevice(\"arn:aws:braket:us-east-1::device/qpu/ionq/Aria-1\")" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : |0| 1 |2| 3 |4| 5 |6| 7 |8| 9 |10| 11 |12| 13 |14| 15 |16| 17 |18| 19 |20| 21 |22| 23 |24 | 25 |26| 27 |28 | 29 |30 | 31 |32 | 33 |34| 35 |36| 37 |38| 39 |40|\n", + " \n", + "q0 : -H-Rz(6.28)------------------------------------------------------------------------C------------C--SWAP------------------------------------------------------------------------X-Rz(0.20)---X-Rz(-0.20)---X-Rz(0.39)--X--Rz(-0.39)-X--Rz(0.79)-X--Rz(-0.79)-H--\n", + " | | | | | | | | | \n", + "q1 : -H-Rz(3.14)-----------------------------------------------C------------C--SWAP-----|------------|--|------------------------------------------------X-Rz(0.39)--X--Rz(-0.39)-X-|-Rz(0.79)-X-|-Rz(-0.79)-H-|-Rz(-0.79)-|------------C-----------C---------------\n", + " | | | | | | | | | | | | | | \n", + "q2 : -H-Rz(1.57)------------------------C-----------C----------|------------|--SWAP-----|------------|--|---------------------X--Rz(0.79)-X--Rz(-0.79)-H-|-Rz(-0.79)-|------------C-|----------C-|-Rz(-0.39)---C-----------C----------------------------------------\n", + " | | | | | | | | | | | | | \n", + "q3 : -H-Rz(0.79)-C-----------C----------|-----------|----------|------------|-----------|------------|--SWAP-----H--Rz(-0.79)-C-----------C--Rz(-0.39)---C-----------C--Rz(-0.20)---C------------C------------------------------------------------------------------\n", + " | | | | | | | | \n", + "q4 : -X----------X-Rz(-0.79)-X-Rz(0.79)-X-Rz(-1.57)-X-Rz(1.57)-X--Rz(-3.14)-X--Rz(3.14)-X--Rz(-6.28)-X--Rz(6.28)----------------------------------------------------------------------------------------------------------------------------------------------------\n", + "\n", + "T : |0| 1 |2| 3 |4| 5 |6| 7 |8| 9 |10| 11 |12| 13 |14| 15 |16| 17 |18| 19 |20| 21 |22| 23 |24 | 25 |26| 27 |28 | 29 |30 | 31 |32 | 33 |34| 35 |36| 37 |38| 39 |40|\n" + ] + } + ], + "source": [ + "circ = phase_estimation_circuit(n_qubits=4, phase=np.pi / 4)\n", + "print(circ)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Aria \n", + "\n", + "First, we run the QPE circuit on the Aria device with the maximum number of shots per task (2,500). " + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "AwsQuantumTask('id/taskArn':'arn:aws:braket:us-east-1::quantum-task/6bd86be9-2811-49b2-a62e-86cd328d444f')\n" + ] + } + ], + "source": [ + "task = device.run(circ, shots=2500)\n", + "print(task)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'00000': 0.0028,\n", + " '10000': 0.0038,\n", + " '01000': 0.0102,\n", + " '11000': 0.0002,\n", + " '00100': 0.0002,\n", + " '01100': 0.0002,\n", + " '10010': 0.0002,\n", + " '01010': 0.0002,\n", + " '11010': 0.0004,\n", + " '00110': 0.0002,\n", + " '00001': 0.015,\n", + " '10001': 0.0084,\n", + " '01001': 0.8792,\n", + " '11001': 0.03,\n", + " '00101': 0.0046,\n", + " '10101': 0.0006,\n", + " '01101': 0.0128,\n", + " '11101': 0.0026,\n", + " '00011': 0.0004,\n", + " '10011': 0.002,\n", + " '01011': 0.0074,\n", + " '11011': 0.011,\n", + " '00111': 0.0018,\n", + " '10111': 0.004,\n", + " '01111': 0.001,\n", + " '11111': 0.0008}" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "probs = task.result().measurement_probabilities" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Error Mitigation with debiasing\n", + "\n", + "Debiasing aims to reduce the accumulation of coherent errors by using different physical implementations of the same circuit and using classical compute to combine the results and extract the clearest possible signal from a noisy source [1]. \n", + "\n", + "IonQ's debiasing method uses different implementations of a circuit through various qubit permutations and/or gate decompositions. The implementations can be chosen to reduce the effects of certain types of noise. Aggregating the results from all implementations reduces the effect of systematic errors and can improve the accuracy of your results. \n", + "\n", + "To use debiasing, a minimum of 2500 shots is required. In the Braket SDK, you can enable debiasing with a single line of code." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "AwsQuantumTask('id/taskArn':'arn:aws:braket:us-east-1::quantum-task/522e8472-78ff-4997-850e-5d9d9a8f5474')\n" + ] + } + ], + "source": [ + "from braket.error_mitigation import Debias\n", + "\n", + "task_em = device.run(circ, shots=2500, device_parameters={\"errorMitigation\": Debias()})\n", + "print(task_em)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The results from debiasing are returned like normal measurement probabilities. Any expecation value or result type will be computed from these probabilities. " + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "result = task_em.result()\n", + "debias_probs = result.measurement_probabilities" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Sharpening\n", + "\n", + "For quantum algorithms where the expected output distribution consists of few high-probability bitstrings, we can use IonQ’s sharpening strategy to post-process the results of a debiased run. Sharpening is a non-linear aggregation strategy that compares the results of each variant and discards inconsistent shots, favoring the most likely measurement outcome across variants. \n", + "This is in contrast the the default aggregation for debiasing, which averages all the measurements together. Since sharpening is a post-processing technique, it can be applied at no additional cost to a debiased run. It’s important to keep in mind that because there is a minimum probability threshold for a shot to be considered consistent, sharpening can distort the correct probability distribution if applied to a non-sparse output distribution.\n", + "\n", + "The sharpened probabilities are available in the task result via a single line of code:" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "sharp_probs = result.additional_metadata.ionqMetadata.sharpenedProbabilities" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Sharpening your results will return a renormalized probability distribution rather than the full distribution of measurements counts, and is available at no additional cost when you run with the Debias() strategy. Note that expectation values will be computed using the debiased probabilities, **not** the sharpened probabilities. " + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Compare results from error mitigation" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    debias offdebias ondebias on, sharpened
    101110.00400.0028NaN
    001010.00460.0076NaN
    010110.00740.0112NaN
    100010.00840.0068NaN
    010000.01020.0088NaN
    110110.01100.0120NaN
    011010.01280.0108NaN
    000010.01500.0088NaN
    110010.03000.0316NaN
    010010.87920.88521.0
    \n", + "
    " + ], + "text/plain": [ + " debias off debias on debias on, sharpened\n", + "10111 0.0040 0.0028 NaN\n", + "00101 0.0046 0.0076 NaN\n", + "01011 0.0074 0.0112 NaN\n", + "10001 0.0084 0.0068 NaN\n", + "01000 0.0102 0.0088 NaN\n", + "11011 0.0110 0.0120 NaN\n", + "01101 0.0128 0.0108 NaN\n", + "00001 0.0150 0.0088 NaN\n", + "11001 0.0300 0.0316 NaN\n", + "01001 0.8792 0.8852 1.0" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "debias_off = pd.DataFrame.from_dict(probs, orient=\"index\").rename(columns={0: \"debias off\"})\n", + "debias_on = pd.DataFrame.from_dict(debias_probs, orient=\"index\").rename(columns={0: \"debias on\"})\n", + "sharpen_on = pd.DataFrame.from_dict(sharp_probs, orient=\"index\").rename(\n", + " columns={0: \"debias on, sharpened\"}\n", + ")\n", + "df = debias_off.join(debias_on).join(sharpen_on)\n", + "df2 = df.sort_values(by=\"debias off\").tail(10)\n", + "df2" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHPCAYAAACvAftHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABLkklEQVR4nO3deVhUZf8/8Pew76AgmyKgIqK5IAQimZgUivJo9qipBeJWKW4oqWmClku5oWlqppialz5PJqWWpjyCSbiEopaIK8G3BDUVBJT1/P7w59TEDAyIzMzN+3Vdc13Muc+Z+dxz5sx5c1aZJEkSiIiIiAShp+kCiIiIiBoSww0REREJheGGiIiIhMJwQ0REREJhuCEiIiKhMNwQERGRUBhuiIiISCgMN0RERCQUA00X0Niqqqrwxx9/wNLSEjKZTNPlEBERkRokScKDBw/g7OwMPb2at800uXDzxx9/wMXFRdNlEBERUT3k5uaiVatWNY7T5MKNpaUlgMcfjpWVlYarISIiInUUFhbCxcVFvh6vSZMLN092RVlZWTHcEBER6Rh1DinhAcVEREQkFIYbIiIiEgrDDREREQmlyR1zo67KykqUl5drugwirWBoaAh9fX1Nl0FEpBaGm3+QJAl5eXm4f/++pksh0io2NjZwdHTk9aGISOsx3PzDk2Bjb28PMzMz/pBTkydJEkpKSnDr1i0AgJOTk4YrIiKqGcPN31RWVsqDja2trabLIdIapqamAIBbt27B3t6eu6iISKvxgOK/eXKMjZmZmYYrIdI+T5YLHotGRNqO4UYJ7ooiqo7LBRHpCoYbIiIiEopGw82xY8cQFhYGZ2dnyGQyJCYm1jpNcnIyunfvDmNjY7Rr1w5bt2595nXqqqCgIEybNk3t8bdu3QobG5sax4mLi0O3bt2eqq6nlZeXh5dffhnm5ubyepUNIyKipkmjBxQXFxeja9euGDNmDIYMGVLr+Ddu3MCAAQPw9ttv48svv0RSUhLGjRsHJycnhISEPNNa3WYfeKav/0/ZSwc06vupa+bMmZg8ebJGa1i1ahVu3ryJjIwMWFtbqxxGRERNk0bDTf/+/dG/f3+1x9+wYQPc3d2xYsUKAICXlxeOHz+OVatWPfNwQ49ZWFjAwsJCozVcu3YNPj4+8PDwqHEYERE1TTp1zE1aWhqCg4MVhoWEhCAtLU3lNKWlpSgsLFR4iKi4uBjh4eGwsLCAk5OTPAD+XWlpKWbOnImWLVvC3Nwc/v7+SE5OrjZeYmIiPDw8YGJigpCQEOTm5srb/rlb6vTp03j55ZdhZ2cHa2tr9O7dG2fOnJG3S5KEuLg4tG7dGsbGxnB2dsaUKVNq7Mv69evRtm1bGBkZwdPTE9u3b5e3ubm5Yc+ePdi2bRtkMhlGjx6tdBgRETVdOnWdm7y8PDg4OCgMc3BwQGFhIR4+fCi/FsffLVmyBAsWLGisEjUmJiYGKSkp+Oabb2Bvb4/33nsPZ86cUQgiUVFRuHjxInbt2gVnZ2fs3bsX/fr1w4ULF+RbPEpKSrBo0SJs27YNRkZGmDhxIl5//XWkpqYqfd8HDx4gIiICn3zyCSRJwooVKxAaGoorV67A0tISe/bswapVq7Br1y506tQJeXl5OHfunMp+7N27F1OnTkV8fDyCg4Oxf/9+REZGolWrVujTpw9Onz6N8PBwWFlZYfXq1TA1NUVZWVm1YUREpHmdv+hcY/uFiAvP5H11KtzUx5w5cxAdHS1/XlhYCBcXFw1W1PCKioqwefNm7NixA3379gUAfPHFF2jVqpV8nJycHCQkJCAnJwfOzs4AHh8/c/DgQSQkJGDx4sUAHl/DZO3atfD395e/jpeXF06dOgU/P79q7/3SSy8pPP/ss89gY2ODlJQUDBw4EDk5OXB0dERwcDAMDQ3RunVrpa/zxPLlyzF69GhMnDgRABAdHY0TJ05g+fLl6NOnD1q0aAFjY2OYmprC0dFRPp2yYURE1DTp1G4pR0dH5OfnKwzLz8+HlZWVyv/WjY2NYWVlpfAQzbVr11BWViYPJADQvHlzeHp6yp9fuHABlZWVaN++vfy4GQsLC6SkpODatWvy8QwMDPD888/Ln3fo0AE2NjbIzMxU+t75+fkYP348PDw8YG1tDSsrKxQVFSEnJwcAMHToUDx8+BBt2rTB+PHjsXfvXlRUVKjsS2ZmJgIDAxWGBQYGqnx/IiKif9KpLTcBAQH47rvvFIYdPnwYAQEBGqpIdxQVFUFfXx/p6enVLp3/NAcIR0RE4M8//8Tq1avh6uoKY2NjBAQEoKysDADg4uKCrKwsHDlyBIcPH8bEiROxbNkypKSkwNDQ8Kn6REREpIxGt9wUFRUhIyMDGRkZAB6f6p2RkSH/r3/OnDkIDw+Xj//222/j+vXrePfdd3Hp0iV8+umn+M9//oPp06dronyt0bZtWxgaGuLkyZPyYffu3cPly5flz729vVFZWYlbt26hXbt2Co+/78qpqKjAzz//LH+elZWF+/fvw8vLS+l7p6amYsqUKQgNDUWnTp1gbGyMO3fuKIxjamqKsLAwrFmzBsnJyUhLS8OFC8r3s3p5eVU7vic1NRUdO3ZU/wMhIqImTaNbbn7++Wf06dNH/vzJsTERERHYunUrbt68KQ86AODu7o4DBw5g+vTpWL16NVq1aoXPP/+8yZ8GbmFhgbFjxyImJga2trawt7fH3Llzoaf3V3Zt3749Ro0ahfDwcKxYsQLe3t64ffs2kpKS0KVLFwwY8Pi6OoaGhpg8eTLWrFkDAwMDREVFoUePHiqPk/Hw8MD27dvh6+uLwsJCxMTEKOwi3Lp1KyorK+Hv7w8zMzPs2LEDpqamcHV1Vfp6MTExGDZsGLy9vREcHIx9+/bh66+/xpEjRxrwEyMiIpFpNNwEBQVBkiSV7cquPhwUFISzZ88+w6qU09aL6j2xbNkyFBUVISwsDJaWlpgxYwYKCgoUxklISMCHH36IGTNm4Pfff4ednR169OiBgQMHyscxMzPDrFmzMHLkSPz+++/o1asXNm/erPJ9N2/ejAkTJqB79+5wcXHB4sWLMXPmTHm7jY0Nli5diujoaFRWVqJz587Yt2+fyruuDx48GKtXr8by5csxdepUuLu7IyEhAUFBQU/3ARERUZMhk2pKFwIqLCyEtbU1CgoKqh1c/OjRI9y4cQPu7u4wMTHRUIVE2onLBxHVVUOeCl7T+vufdOpsKSIiIqLaMNwQERGRUBhuiIiISCgMN0RERCQUhhsiIiISCsMNERERCYXhhoiIiITCcENERERCYbgRWFBQEKZNm6b2+Fu3boWNjU2N48TFxaFbt25PVRcREdGzxHBDdTJz5kwkJSVpugwiIiKVNHpvKZ0SZ93I71dQ+zgaYGFhAQsLC02XQUREpBK33AiiuLgY4eHhsLCwgJOTE1asWFFtnNLSUsycORMtW7aEubk5/P39kZycXG28xMREeHh4wMTEBCEhIcjNzZW3/XO31OnTp/Hyyy/Dzs4O1tbW6N27N86cOSNvlyQJcXFxaN26NYyNjeHs7IwpU6bU2Jf169ejbdu2MDIygqenJ7Zv367QLpPJ8Pnnn+PVV1+FmZkZPDw88O2336r5SRERkegYbgQRExODlJQUfPPNN/jhhx+QnJysEDIAICoqCmlpadi1axfOnz+PoUOHol+/frhy5Yp8nJKSEixatAjbtm1Damoq7t+/j9dff13l+z548AARERE4fvw4Tpw4AQ8PD4SGhuLBgwcAgD179mDVqlXYuHEjrly5gsTERHTurPpGanv37sXUqVMxY8YM/PLLL3jrrbcQGRmJo0ePKoy3YMECDBs2DOfPn0doaChGjRqFu3fv1uejIyIiwXC3lACKioqwefNm7NixA3379gUAfPHFF2jVqpV8nJycHCQkJCAnJwfOzs4AHh8/c/DgQSQkJGDx4sUAgPLycqxduxb+/v7y1/Hy8sKpU6fg5+dX7b1feuklheefffYZbGxskJKSgoEDByInJweOjo4IDg6GoaEhWrdurfR1nli+fDlGjx6NiRMnAgCio6Nx4sQJLF++HH369JGPN3r0aIwYMQIAsHjxYqxZswanTp1Cv3796vz5ERGRWLjlRgDXrl1DWVmZPJAAQPPmzeHp6Sl/fuHCBVRWVqJ9+/by42YsLCyQkpKCa9euycczMDDA888/L3/eoUMH2NjYIDMzU+l75+fnY/z48fDw8IC1tTWsrKxQVFSEnJwcAMDQoUPx8OFDtGnTBuPHj8fevXtRUVGhsi+ZmZkIDAxUGBYYGFjt/bt06SL/29zcHFZWVrh161ZNHxMRETUR3HLTRBQVFUFfXx/p6enQ19dXaHuaA4QjIiLw559/YvXq1XB1dYWxsTECAgJQVlYGAHBxcUFWVhaOHDmCw4cPY+LEiVi2bBlSUlJgaGhY7/f957QymQxVVVX1fj0iIhIHt9wIoG3btjA0NMTJkyflw+7du4fLly/Ln3t7e6OyshK3bt1Cu3btFB6Ojo7y8SoqKvDzzz/Ln2dlZeH+/fvw8vJS+t6pqamYMmUKQkND0alTJxgbG+POnTsK45iamiIsLAxr1qxBcnIy0tLScOHCBaWv5+XlhdTU1Grv0bFjR/U/ECIiatK45UYAFhYWGDt2LGJiYmBrawt7e3vMnTsXenp/Zdf27dtj1KhRCA8Px4oVK+Dt7Y3bt28jKSkJXbp0wYABAwA83iIyefJkrFmzBgYGBoiKikKPHj1UHifj4eGB7du3w9fXF4WFhYiJiYGpqam8fevWraisrIS/vz/MzMywY8cOmJqawtXVVenrxcTEYNiwYfD29kZwcDD27duHr7/+GkeOHGnAT4yIiETGLTeCWLZsGXr16oWwsDAEBwfjhRdegI+Pj8I4CQkJCA8Px4wZM+Dp6YnBgwfj9OnTaN26tXwcMzMzzJo1CyNHjkRgYCAsLCywe/dule+7efNm3Lt3D927d8ebb76JKVOmwN7eXt5uY2ODTZs2ITAwEF26dMGRI0ewb98+2NraKn29wYMHY/Xq1Vi+fDk6deqEjRs3IiEhAUFBQU/3ARERUZMhkyRJ0nQRjamwsBDW1tYoKCiAlZWVQtujR49w48YNuLu7w8TEREMVEmknLh9EVFedv1B96Q8AuBCh/BAFZWpaf/8Tt9wQERGRUBhuiIiISCgMN0RERCQUhhsiIiISCsMNERERCYXhhoiIiITCcENERERCYbghIiIioTDcEBERkVAYbgQWFBSEadOmqT3+1q1bYWNjU+M4cXFx6Nat21PVpe3U+RxENXr0aAwePFjTZRARPRWGG6qTmTNnIikpSdNlEBERqcS7gquptvtjNLS63G+jMVlYWMDCwkLTZeik8vJyGBoaaroMIiLhccuNIIqLixEeHg4LCws4OTlhxYoV1cYpLS3FzJkz0bJlS5ibm8Pf3x/JycnVxktMTISHhwdMTEwQEhKC3Nxceds/d0udPn0aL7/8Muzs7GBtbY3evXvjzJkz8nZJkhAXF4fWrVvD2NgYzs7OmDJlSo19Wb9+Pdq2bQsjIyN4enpi+/btCu0ymQyff/45Xn31VZiZmcHDwwPffvutmp/UY+fOnUOfPn1gaWkJKysr+Pj44Oeff1YY59ChQ/Dy8oKFhQX69euHmzdvqt3vJ3WuX78e//rXv2Bubo5FixYhOTkZMpkMBw4cQJcuXWBiYoIePXrgl19+UZj2+PHj6NWrF0xNTeHi4oIpU6aguLhY3u7m5obFixdjzJgxsLS0ROvWrfHZZ58pvEZubi6GDRsGGxsbNG/eHIMGDUJ2dra8vbKyEtHR0bCxsYGtrS3effddNLH76BKRoBhuBBETE4OUlBR88803+OGHH5CcnFxtZRsVFYW0tDTs2rUL58+fx9ChQ9GvXz9cuXJFPk5JSQkWLVqEbdu2ITU1Fffv38frr7+u8n0fPHiAiIgIHD9+HCdOnICHhwdCQ0Px4MEDAMCePXuwatUqbNy4EVeuXEFiYiI6d1a9FWzv3r2YOnUqZsyYgV9++QVvvfUWIiMjcfToUYXxFixYgGHDhuH8+fMIDQ3FqFGjcPfuXbU/r1GjRqFVq1Y4ffo00tPTMXv2bIWtKiUlJVi+fDm2b9+OY8eOIScnBzNnzlS730/ExcXh1VdfxYULFzBmzBj58JiYGKxYsQKnT59GixYtEBYWhvLycgDAtWvX0K9fP7z22ms4f/48du/ejePHjyMqKkrhtVesWAFfX1+cPXsWEydOxDvvvIOsrCwAj7cShYSEwNLSEj/++CNSU1PlIa2srEw+/datW7FlyxYcP34cd+/exd69e9X+DImoiYuzrv2hITKpif2rVtMt0x89eoQbN27A3d0dJiYmCm3avFuqqKgItra22LFjB4YOHQoAuHv3Llq1aoUJEyYgPj4eOTk5aNOmDXJycuDs7CyfNjg4GH5+fli8eDG2bt2KyMhInDhxAv7+/gCAS5cuwcvLCydPnoSfnx/i4uKQmJiIjIwMpbVUVVXBxsYGO3fuxMCBA7Fy5Ups3LgRv/zyi1q7ZAIDA9GpUyeFrRDDhg1DcXExDhw4AODxFpF58+bhgw8+APB4q5WFhQW+//579OvXT63PzMrKCp988gkiIiKqtT35HK5evYq2bdsCAD799FMsXLgQeXl5avX7SZ3Tpk3DqlWr5OMlJyejT58+2LVrF4YPHw7gr3m1detWDBs2DOPGjYO+vj42btwon+748ePo3bs3iouLYWJiAjc3N/Tq1Uu+VUuSJDg6OmLBggV4++23sWPHDnz44YfIzMyETCYDAJSVlcHGxgaJiYl45ZVX4OzsjOnTpyMmJgYAUFFRAXd3d/j4+CAxMbFaH2taPoioCVIjvHR2b11je13WdTWtv/+Jx9wI4Nq1aygrK5MHEgBo3rw5PD095c8vXLiAyspKtG/fXmHa0tJS2Nrayp8bGBjg+eeflz/v0KEDbGxskJmZCT8/v2rvnZ+fj3nz5iE5ORm3bt1CZWUlSkpKkJOTAwAYOnQo4uPj0aZNG/Tr1w+hoaEICwuDgYHyr15mZiYmTJigMCwwMBCrV69WGNalSxf53+bm5rCyssKtW7dUfkb/FB0djXHjxmH79u0IDg7G0KFD5UEGAMzMzBSeOzk5Kbx+bf1+wtfXV+n7BwQEyP9+Mq8yMzMBPN5ldv78eXz55ZfycSRJQlVVFW7cuAEvL69qn4FMJoOjo6O8xnPnzuHq1auwtLRUeN9Hjx7h2rVrKCgowM2bNxW+MwYGBvD19eWuKSICALjNPlBje7YW/4/DcNNEFBUVQV9fH+np6dDX11doe5oDhCMiIvDnn39i9erVcHV1hbGxMQICAuS7PlxcXJCVlYUjR47g8OHDmDhxIpYtW4aUlJSnOrj2n9PKZDJUVVWpPX1cXBxGjhyJAwcO4Pvvv0dsbCx27dqFV199VeXr/32lX1u/nzA3N69r11BUVIS33npL6bFJrVv/9V9QTZ9BUVERfHx8FALSEy1atKhzTUREuoTH3Aigbdu2MDQ0xMmTJ+XD7t27h8uXL8ufe3t7o7KyErdu3UK7du0UHo6OjvLxKioqFA6szcrKwv379+VbC/4pNTUVU6ZMQWhoKDp16gRjY2PcuXNHYRxTU1OEhYVhzZo1SE5ORlpaGi5cUL4p0svLC6mpqdXeo2PHjup/IGpq3749pk+fjh9++AFDhgxBQkKC2tOq0++anDhxQv73k3n15DPu3r07Ll68WG0+tWvXDkZGRmq9fvfu3XHlyhXY29tXew1ra2tYW1vDyclJ4TtTUVGB9PR0tftARKStuOVGABYWFhg7dixiYmJga2sLe3t7zJ07F3p6f2XX9u3bY9SoUQgPD8eKFSvg7e2N27dvIykpCV26dMGAAQMAPN4aMHnyZKxZswYGBgaIiopCjx49lO6SAgAPDw9s374dvr6+KCwsRExMDExNTeXtW7duRWVlJfz9/WFmZoYdO3bA1NQUrq6uSl8vJiYGw4YNg7e3N4KDg7Fv3z58/fXXOHLkSIN9Xg8fPkRMTAz+/e9/w93dHf/3f/+H06dP47XXXlP7NWrrd20WLlwIW1tbODg4YO7cubCzs5NfPG/WrFno0aMHoqKiMG7cOJibm+PixYs4fPgw1q5dq9brjxo1CsuWLcOgQYOwcOFCtGrVCr/99hu+/vprvPvuu2jVqhWmTp2KpUuXwsPDAx06dMDKlStx//59tftARKStuOVGEMuWLUOvXr0QFhaG4OBgvPDCC/Dx8VEYJyEhAeHh4ZgxYwY8PT0xePBgnD59WmFXh5mZGWbNmoWRI0ciMDAQFhYW2L17t8r33bx5M+7du4fu3bvjzTffxJQpU2Bvby9vt7GxwaZNmxAYGIguXbrgyJEj2Ldvn8JxPn83ePBgrF69GsuXL0enTp2wceNGJCQkICgoqE6fh5ubG+Li4pS26evr488//0R4eDjat2+PYcOGoX///liwYIHar19bv2uzdOlSTJ06FT4+PsjLy8O+ffvkW2W6dOmClJQUXL58Gb169YK3tzfmz5+vcCB4bczMzHDs2DG0bt0aQ4YMgZeXF8aOHYtHjx7JD8SbMWMG3nzzTURERCAgIACWlpby3XJERLqMZ0v9Dc8GEUNJSQlsbW3x/fff1zkUPWtPzpa6d++ezt3igcsHUdNS+wHFI2t9DU2dLcUtNySco0eP4qWXXtK6YENERI2D4YaEM2DAAPk1cYiIqOnhAcVEjSgoKIjXkSEiesa45YaIiIiEwnBDREREQmG4UYK7DYiq43JBRLqC4eZvnlzOvqSkRMOVEGmfJ8vF09w2g4ioMfCA4r/R19eHjY2N/OaDZmZm8jsqEzVVkiShpKQEt27dgo2NTbV7kxERaRuGm394cp+lutxhmqgpsLGxUbgPGRGRtmK4+QeZTAYnJyfY29ujvLxc0+UQaQVDQ0NusSEincFwo4K+vj5/zImIiHQQDygmIiIioTDcEBERkVAYboiIiEgoDDdEREQkFIYbIiIiEgrDDREREQmF4YaIiIiEovFws27dOri5ucHExAT+/v44depUjePHx8fD09MTpqamcHFxwfTp0/Ho0aNGqpaIiIi0nUbDze7duxEdHY3Y2FicOXMGXbt2RUhIiMpbH+zcuROzZ89GbGwsMjMzsXnzZuzevRvvvfdeI1dORERE2kqj4WblypUYP348IiMj0bFjR2zYsAFmZmbYsmWL0vF/+uknBAYGYuTIkXBzc8Mrr7yCESNG1Lq1h4iIiJoOjYWbsrIypKenIzg4+K9i9PQQHByMtLQ0pdP07NkT6enp8jBz/fp1fPfddwgNDVX5PqWlpSgsLFR4EBERkbg0dm+pO3fuoLKyEg4ODgrDHRwccOnSJaXTjBw5Enfu3MELL7wASZJQUVGBt99+u8bdUkuWLMGCBQsatHYiIiLSXho/oLgukpOTsXjxYnz66ac4c+YMvv76axw4cAAffPCBymnmzJmDgoIC+SM3N7cRKyYiIqLGprEtN3Z2dtDX10d+fr7C8Pz8fDg6Oiqd5v3338ebb76JcePGAQA6d+6M4uJiTJgwAXPnzoWeXvWsZmxsDGNj44bvABEREWkljW25MTIygo+PD5KSkuTDqqqqkJSUhICAAKXTlJSUVAsw+vr6AABJkp5dsURERKQzNLblBgCio6MREREBX19f+Pn5IT4+HsXFxYiMjAQAhIeHo2XLlliyZAkAICwsDCtXroS3tzf8/f1x9epVvP/++wgLC5OHHCIiImraNBpuhg8fjtu3b2P+/PnIy8tDt27dcPDgQflBxjk5OQpbaubNmweZTIZ58+bh999/R4sWLRAWFoZFixZpqgtERESkZWRSE9ufU1hYCGtraxQUFMDKykrT5RAREWklt9kHamzPNhlZ62t0dm9dY/uFiAtq11OX9bdOnS1FREREVBuGGyIiIhIKww0REREJheGGiIiIhMJwQ0REREJhuCEiIiKhMNwQERGRUBhuiIiISCgMN0RERCQUhhsiIiISCsMNERERCYXhhoiIiITCcENERERCYbghIiIioTDcEBERkVAYboiIiEgoDDdEREQkFIYbIiIiEgrDDREREQmF4YaIiIiEwnBDREREQmG4ISIiIqEw3BAREZFQGG6IiIhIKAw3REREJBSGGyIiIhIKww0REREJheGGiIiIhMJwQ0REREJhuCEiIiKhMNwQERGRUBhuiIiISCgMN0RERCQUhhsiIiISCsMNERERCYXhhoiIiITCcENERERCYbghIiIioTDcEBERkVAYboiIiEgoDDdEREQkFIYbIiIiEgrDDREREQmF4YaIiIiEwnBDREREQmG4ISIiIqEw3BAREZFQGG6IiIhIKAw3REREJBSGGyIiIhIKww0REREJheGGiIiIhMJwQ0REREJhuCEiIiKhMNwQERGRUBhuiIiISCj1CjdHjx5t6DqIiIiIGkS9wk2/fv3Qtm1bfPjhh8jNzW3omoiIiIjqrV7h5vfff0dUVBS++uortGnTBiEhIfjPf/6DsrKyhq6PiIiIqE7qFW7s7Owwffp0ZGRk4OTJk2jfvj0mTpwIZ2dnTJkyBefOnVP7tdatWwc3NzeYmJjA398fp06dqnH8+/fvY9KkSXBycoKxsTHat2+P7777rj7dICIiIgE99QHF3bt3x5w5cxAVFYWioiJs2bIFPj4+6NWrF3799dcap929ezeio6MRGxuLM2fOoGvXrggJCcGtW7eUjl9WVoaXX34Z2dnZ+Oqrr5CVlYVNmzahZcuWT9sNIiIiEkS9w015eTm++uorhIaGwtXVFYcOHcLatWuRn5+Pq1evwtXVFUOHDq3xNVauXInx48cjMjISHTt2xIYNG2BmZoYtW7YoHX/Lli24e/cuEhMTERgYCDc3N/Tu3Rtdu3atbzeIiIhIMPUKN5MnT4aTkxPeeusttG/fHmfPnkVaWhrGjRsHc3NzuLm5Yfny5bh06ZLK1ygrK0N6ejqCg4P/KkZPD8HBwUhLS1M6zbfffouAgABMmjQJDg4OeO6557B48WJUVlaqfJ/S0lIUFhYqPIiIiEhcBvWZ6OLFi/jkk08wZMgQGBsbKx3Hzs6uxlPG79y5g8rKSjg4OCgMd3BwUBmKrl+/jv/9738YNWoUvvvuO1y9ehUTJ05EeXk5YmNjlU6zZMkSLFiwQM2eERERka6r15ab2NhYDB06tFqwqaiowLFjxwAABgYG6N2799NX+DdVVVWwt7fHZ599Bh8fHwwfPhxz587Fhg0bVE4zZ84cFBQUyB88dZ2IiEhs9dpy06dPH9y8eRP29vYKwwsKCtCnT58adxM9YWdnB319feTn5ysMz8/Ph6Ojo9JpnJycYGhoCH19ffkwLy8v5OXloaysDEZGRtWmMTY2Vrl1iYiIiMRTry03kiRBJpNVG/7nn3/C3NxcrdcwMjKCj48PkpKS5MOqqqqQlJSEgIAApdMEBgbi6tWrqKqqkg+7fPkynJyclAYbIiIianrqtOVmyJAhAACZTIbRo0crbBGprKzE+fPn0bNnT7VfLzo6GhEREfD19YWfnx/i4+NRXFyMyMhIAEB4eDhatmyJJUuWAADeeecdrF27FlOnTsXkyZNx5coVLF68GFOmTKlLN4iIiEhgdQo31tbWAB5vubG0tISpqam8zcjICD169MD48ePVfr3hw4fj9u3bmD9/PvLy8tCtWzccPHhQfpBxTk4O9PT+2rjk4uKCQ4cOYfr06ejSpQtatmyJqVOnYtasWXXpBhEREQlMJkmSVNeJFixYgJkzZ6q9C0qbFBYWwtraGgUFBbCystJ0OURERFrJbfaBGtuzTUbW+hqd3VvX2H4h4oLa9dRl/V2vA4pVnXZNREREpGlqh5vu3bsjKSkJzZo1g7e3t9IDip84c+ZMgxRHREREVFdqh5tBgwbJDyAePHjws6qHiIiI6KmoHW7+viuKu6WIiIhIWz31XcGJiIiItInaW26aNWtW43E2f3f37t16F0RERET0NNQON/Hx8c+wDCIiIqKGoXa4iYiIeJZ1EBERETUItcNNYWGh/KI5hYWFNY7Li+MRERGRptTpmJsndwK3sbFRevzNkxtqqnNXcCIiIqJnQe1w87///Q/NmzcHABw9evSZFURERET0NNQON71791b6NxEREZE2qde9pQDg3r172Lx5MzIzMwEAHTt2RGRkpHzrDhEREZEm1OsifseOHYObmxvWrFmDe/fu4d69e1izZg3c3d1x7Nixhq6RiIiISG312nIzadIkDB8+HOvXr4e+vj4AoLKyEhMnTsSkSZNw4YL6tzAnIiIiakj12nJz9epVzJgxQx5sAEBfXx/R0dG4evVqgxVHREREVFf1Cjfdu3eXH2vzd5mZmejatetTF0VERERUX2rvljp//rz87ylTpmDq1Km4evUqevToAQA4ceIE1q1bh6VLlzZ8lURERERqkkmSJKkzop6eHmQyGWobXdsv4ldYWAhra2sUFBTwSspEREQquM0+UGN7tsnIWl+js3vrGtsvRKh/jG5d1t9qb7m5ceOG2gUQERERaYra4cbV1fVZ1kFERETUIOp9ET8AuHjxInJyclBWVqYw/F//+tdTFUVERERUX/UKN9evX8err76KCxcuKByH8+Rmmtp8zA0RERGJrV6ngk+dOhXu7u64desWzMzM8Ouvv+LYsWPw9fVFcnJyA5dIREREpL56bblJS0vD//73P9jZ2UFPTw96enp44YUXsGTJEkyZMgVnz55t6DqJiIiI1FKvLTeVlZWwtLQEANjZ2eGPP/4A8Pig46ysrIarjoiIiKiO6rXl5rnnnsO5c+fg7u4Of39/fPzxxzAyMsJnn32GNm3aNHSNRERERGqrV7iZN28eiouLAQALFy7EwIED0atXL9ja2mL37t0NWiARERFRXdQr3ISEhMj/bteuHS5duoS7d++iWbNm8jOmiIiIiDThqa5zAwC5ubkAABcXl6cuhoiIiOhp1euA4oqKCrz//vuwtraGm5sb3NzcYG1tjXnz5qG8vLyhayQiIiJSW7223EyePBlff/01Pv74YwQEBAB4fHp4XFwc/vzzT6xfv75BiyQiIiJSV73Czc6dO7Fr1y70799fPqxLly5wcXHBiBEjGG6IiIhIY+q1W8rY2Bhubm7Vhru7u8PIyOhpayIiIiKqt3qFm6ioKHzwwQcoLS2VDystLcWiRYsQFRXVYMURERER1ZXau6WGDBmi8PzIkSNo1aoVunbtCgA4d+4cysrK0Ldv34atkIiIiKgO1A431tbWCs9fe+01hec8FZyIiIi0gdrhJiEh4VnWQURERNQgnuoifrdv35bfKNPT0xMtWrRokKKIiIiI6qteBxQXFxdjzJgxcHJywosvvogXX3wRzs7OGDt2LEpKShq6RiIiIiK11SvcREdHIyUlBfv27cP9+/dx//59fPPNN0hJScGMGTMaukYiIiIitdVrt9SePXvw1VdfISgoSD4sNDQUpqamGDZsGC/iR0RERBpTry03JSUlcHBwqDbc3t6eu6WIiIhIo+oVbgICAhAbG4tHjx7Jhz18+BALFiyQ32uKiIiISBPqtVsqPj4e/fr1q3YRPxMTExw6dKhBCyQiIiKqi3qFm86dO+PKlSv48ssvcenSJQDAiBEjMGrUKJiamjZogURERER1UedwU15ejg4dOmD//v0YP378s6iJiIiIqN7qfMyNoaGhwrE2RERERNqkXgcUT5o0CR999BEqKioauh4iIiKip1KvY25Onz6NpKQk/PDDD+jcuTPMzc0V2r/++usGKY6IiIioruoVbmxsbKrdFZyIiIhIG9Qp3FRVVWHZsmW4fPkyysrK8NJLLyEuLo5nSBEREZHWqNMxN4sWLcJ7770HCwsLtGzZEmvWrMGkSZOeVW1EREREdVancLNt2zZ8+umnOHToEBITE7Fv3z58+eWXqKqqelb1EREREdVJncJNTk4OQkND5c+Dg4Mhk8nwxx9/NHhhRERERPVRp3BTUVEBExMThWGGhoYoLy9v0KKIiIiI6qtOBxRLkoTRo0fD2NhYPuzRo0d4++23FU4H56ngREREpCl1CjcRERHVhr3xxhsNVgwRERHR06pTuElISHhWdRARERE1iHrdfqGhrVu3Dm5ubjAxMYG/vz9OnTql1nS7du2CTCbD4MGDn22BREREpDM0Hm52796N6OhoxMbG4syZM+jatStCQkJw69atGqfLzs7GzJkz0atXr0aqlIiIiHSBxsPNypUrMX78eERGRqJjx47YsGEDzMzMsGXLFpXTVFZWYtSoUViwYAHatGnTiNUSERGRttNouCkrK0N6ejqCg4Plw/T09BAcHIy0tDSV0y1cuBD29vYYO3ZsY5RJREREOqReN85sKHfu3EFlZSUcHBwUhjs4OODSpUtKpzl+/Dg2b96MjIwMtd6jtLQUpaWl8ueFhYX1rpeIiIi0n8Z3S9XFgwcP8Oabb2LTpk2ws7NTa5olS5bA2tpa/nBxcXnGVRIREZEmaXTLjZ2dHfT19ZGfn68wPD8/H46OjtXGv3btGrKzsxEWFiYf9uS+VgYGBsjKykLbtm0VppkzZw6io6PlzwsLCxlwiIiIBKbRcGNkZAQfHx8kJSXJT+euqqpCUlISoqKiqo3foUMHXLhwQWHYvHnz8ODBA6xevVppaDE2Nla4ojIRERGJTaPhBgCio6MREREBX19f+Pn5IT4+HsXFxYiMjAQAhIeHo2XLlliyZAlMTEzw3HPPKUxvY2MDANWGExERUdOk8XAzfPhw3L59G/Pnz0deXh66deuGgwcPyg8yzsnJgZ6eTh0aRERERBokkyRJ0nQRjamwsBDW1tYoKCiAlZWVpsshIiLSSm6zD9TYnm0ystbX6Ozeusb2CxEXamz/u7qsv7lJhIiIiITCcENERERCYbghIiIioTDcEBERkVAYboiIiEgoDDdEREQkFIYbIiIiEgrDDREREQmF4YaIiIiEwnBDREREQmG4ISIiIqEw3BAREZFQGG6IiIhIKAw3REREJBSGGyIiIhIKww0REREJheGGiIiIhMJwQ0REREJhuCEiIiKhMNwQERGRUBhuiIiISCgMN0RERCQUhhsiIiISCsMNERERCYXhhoiIiITCcENERERCYbghIiIioTDcEBERkVAYboiIiEgoDDdEREQkFIYbIiIiEgrDDREREQmF4YaIiIiEwnBDREREQmG4ISIiIqEw3BAREZFQGG6IiIhIKAw3REREJBSGGyIiIhIKww0REREJheGGiIiIhMJwQ0REREJhuCEiIiKhMNwQERGRUBhuiIiISCgMN0RERCQUhhsiIiISCsMNERERCYXhhoiIiITCcENERERCYbghIiIioTDcEBERkVAYboiIiEgoDDdEREQkFIYbIiIiEgrDDREREQmF4YaIiIiEwnBDREREQmG4ISIiIqEw3BAREZFQtCLcrFu3Dm5ubjAxMYG/vz9OnTqlctxNmzahV69eaNasGZo1a4bg4OAaxyciIqKmRePhZvfu3YiOjkZsbCzOnDmDrl27IiQkBLdu3VI6fnJyMkaMGIGjR48iLS0NLi4ueOWVV/D77783cuVERESkjTQeblauXInx48cjMjISHTt2xIYNG2BmZoYtW7YoHf/LL7/ExIkT0a1bN3To0AGff/45qqqqkJSU1MiVExERkTbSaLgpKytDeno6goOD5cP09PQQHByMtLQ0tV6jpKQE5eXlaN68udL20tJSFBYWKjyIiIhIXBoNN3fu3EFlZSUcHBwUhjs4OCAvL0+t15g1axacnZ0VAtLfLVmyBNbW1vKHi4vLU9dNRERE2kvju6WextKlS7Fr1y7s3bsXJiYmSseZM2cOCgoK5I/c3NxGrpKIiIgak4Em39zOzg76+vrIz89XGJ6fnw9HR8cap12+fDmWLl2KI0eOoEuXLirHMzY2hrGxcYPUS0RERNpPo1tujIyM4OPjo3Aw8JODgwMCAlRO9/HHH+ODDz7AwYMH4evr2xilEhERkY7Q6JYbAIiOjkZERAR8fX3h5+eH+Ph4FBcXIzIyEgAQHh6Oli1bYsmSJQCAjz76CPPnz8fOnTvh5uYmPzbHwsICFhYWGusHERERaQeNh5vhw4fj9u3bmD9/PvLy8tCtWzccPHhQfpBxTk4O9PT+2sC0fv16lJWV4d///rfC68TGxiIuLq4xSyciIiItpPFwAwBRUVGIiopS2pacnKzwPDs7+9kXRERERDpLp8+WIiIiIvonhhsiIiISCsMNERERCYXhhoiIiITCcENERERCYbghIiIioTDcEBERkVAYboiIiEgoDDdEREQkFIYbIiIiEgrDDREREQmF4YaIiIiEwnBDREREQmG4ISIiIqEw3BAREZFQGG6IiIhIKAw3REREJBSGGyIiIhIKww0REREJheGGiIiIhMJwQ0REREJhuCEiIiKhMNwQERGRUBhuiIiISCgMN0RERCQUhhsiIiISCsMNERERCYXhhoiIiITCcENERERCYbghIiIioTDcEBERkVAYboiIiEgoDDdEREQkFIYbIiIiEgrDDREREQmF4YaIiIiEwnBDREREQmG4ISIiIqEw3BAREZFQGG6IiIhIKAw3REREJBSGGyIiIhIKww0REREJheGGiIiIhMJwQ0REREJhuCEiIiKhMNwQERGRUBhuiIiISCgMN0RERCQUhhsiIiISCsMNERERCYXhhoiIiIRioOkCiIiImpw461raCxqnDkEx3BARETUgt9kHah0n26QRCmnCuFuKiIiIhMJwQ0REREJhuCEiIiKhMNwQERGRUHhAMRERaY3aDsbNXjqgkSohXaYV4WbdunVYtmwZ8vLy0LVrV3zyySfw8/NTOf5///tfvP/++8jOzoaHhwc++ugjhIaGNmLFRNSk6MBpu2qdocNgQE2ExsPN7t27ER0djQ0bNsDf3x/x8fEICQlBVlYW7O3tq43/008/YcSIEViyZAkGDhyInTt3YvDgwThz5gyee+45DfSAtI4OrIhEUet/2SYja38RLZgftfejkQp51kRYNkToAz1zGg83K1euxPjx4xEZGQkA2LBhAw4cOIAtW7Zg9uzZ1cZfvXo1+vXrh5iYGADABx98gMOHD2Pt2rXYsGFDo9YuJB344RBhRaTedTBqCQZaMC+IiLSRRsNNWVkZ0tPTMWfOHPkwPT09BAcHIy0tTek0aWlpiI6OVhgWEhKCxMREpeOXlpaitLRU/ryg4PEKobCwsE61Phd7qMb2X0zG1vwCc/6vTu/3LNTWBwD4xUSqeYQ6fm7PQlVpSY3thTLd7wMgRj9q7QMgRj90oA+AGP0QoQ+AGP1QZ/mufFhZ82vUoZ9PxpUkNX5XJA36/fffJQDSTz/9pDA8JiZG8vPzUzqNoaGhtHPnToVh69atk+zt7ZWOHxsbKwHggw8++OCDDz4EeOTm5taaLzS+W+pZmzNnjsKWnqqqKty9exe2traQyWTP5D0LCwvh4uKC3NxcWFlZPZP3aAwi9EOEPgBi9EOEPgDshzYRoQ+AGP1ojD5IkoQHDx7A2dm51nE1Gm7s7Oygr6+P/Px8heH5+flwdHRUOo2jo2Odxjc2NoaxsbHCMBsbm/oXXQdWVlY6+0X9OxH6IUIfADH6IUIfAPZDm4jQB0CMfjzrPlhbW6s1nkYv4mdkZAQfHx8kJSXJh1VVVSEpKQkBAQFKpwkICFAYHwAOHz6scnwiIiJqWjS+Wyo6OhoRERHw9fWFn58f4uPjUVxcLD97Kjw8HC1btsSSJUsAAFOnTkXv3r2xYsUKDBgwALt27cLPP/+Mzz77TJPdICIiIi2h8XAzfPhw3L59G/Pnz0deXh66deuGgwcPwsHBAQCQk5MDPb2/NjD17NkTO3fuxLx58/Dee+/Bw8MDiYmJWnWNG2NjY8TGxlbbHaZrROiHCH0AxOiHCH0A2A9tIkIfADH6oW19kEmSOudUEREREekG3jiTiIiIhMJwQ0REREJhuCEiIiKhMNwQERGRUBhuiIiISCgMN0RERCQUhhtSy7Vr1/DSSy9puoynkpmZiTZt2mi6jCbj4sWLmDhxIry9veHk5AQnJyd4e3tj4sSJuHjxoqbLo78RYdnIzc3FmDFjNF0GQTvWFww3pJaioiKkpKRouoynUlZWht9++03TZTw1bfjhqM33338Pb29vnD17FoMGDcL8+fMxf/58DBo0COfOnUP37t1x6NAhTZdJ/58Iy8bdu3fxxRdfaLqMpyZC0NSG9YXGr1DcFDz5Ma+srNR0KSqtWbOmxvbff/+9kSqpv7/f/V2Z27dvN1Ilz5Y2/HDUZvbs2Zg1axYWLlxYrS0uLg5xcXGIiYlBSEiIBqprWLqwfIuwbHz77bc1tl+/fr2RKnm2dCFo6sL6glcobgTnzp2Dt7c3qqqqNF2KSnp6enBycoKRkZHS9rKyMuTl5Wn1D7i+vj66deum8o60RUVFOHPmjFb3AVDvh2P58uVa3Q9TU1NkZGTA09NTaXtWVha6deuGhw8fNnJlDU8Xlm8Rlg09PT3IZDLUtMqSyWRa3QdAvaC5c+dOre6HLqwvuOWmAQwZMqTG9oKCAshkskaqpn5cXV3x0UcfYdiwYUrbMzIy4OPj08hV1U27du0wffp0vPHGG0rbdaEPADBt2rRafzi0nZubGw4cOKAy3Bw4cACurq6NXFX9iLB8i7BsODk54dNPP8WgQYOUtutCHwBg9erVtQZNbacL6wuGmwawb98+vPzyy/Kbff6TNifwJ3x8fJCenq7yy1rbf0zawNfXF+np6Sp/wHWhD4Bu/HDUZuHChRg5ciSSk5MRHBwsXzby8/ORlJSEgwcPYufOnRquUj0iLN8iLBtPfqNUhRtd6AMgRtDUifWFRE+tc+fO0ueff66y/ezZs5Kenl4jVlR3v/76q3T69GmV7WVlZVJ2dnYjVlR3N2/e1Poa1fHaa69J7777rsr2jIwMSSaTNWJF9ZOamioNHz5cat26tWRkZCQZGRlJrVu3loYPHy799NNPmi5PbSIs3yIsG8eOHZO+//57le1FRUVScnJyI1ZUPyNHjpSmTZumsl0Xlm9dWF/wmJsGEBkZCTMzM6xbt05pe2ZmJkJDQ3Hjxo1Grox00cWLF1FSUgJfX1+l7eXl5fjjjz90ZreOruPyTQ0pLy8PpaWlXH6fMYabBlBaWorKykqYmZlpupQGUVBQgLy8PACAo6MjrK2tNVwR6TJd/z6JtHxXVFTg119/VZgfHTt2hKGhoYYrq7vS0lIAgLGxsYYradq0dfnmdW4agLGxsRA/fJ9//jk6duyI5s2bo2PHjgp/b968WdPlPbVz585BX19f02XUSUFBAbKyspCVlYWCggJNl1Mn//w+eXl56eT3SYTlu6qqCvPmzUOLFi3g7e2N/v37o3///vD29oa9vT3ef/99rT7b64nDhw8jNDQUzZo1g5mZGczMzNCsWTOEhobiyJEjmi6vTioqKnDu3DkcOnQIhw4dwrlz51BeXq7pstSm9esLje4UayLKy8ul3377TdNl1Ojjjz+WzMzMpNmzZ0tHjx6VLl68KF28eFE6evSoNGfOHMnc3FxatmyZpst8KrqwL/uJTZs2SV5eXpKenp7Cw8vLq8bjP7RFU/g+PaELy3dMTIzUokULacOGDdKNGzekkpISqaSkRLpx44a0ceNGyd7evsbjvLTB1q1bJQMDA+n111+XEhISpO+++0767rvvpISEBGnEiBGSoaGhtG3bNk2XWavKykpp7ty5ko2NjSSTyRQeNjY20rx586TKykpNl1kjXVi+GW4aQUZGhtYfcNi6dWtp9+7dKtt37dolubi4NGJFdffqq6/W+HjppZe0fj5Ikm78cNRGhO+TunRh+XZwcJAOHjyosv3gwYOSvb19I1ZUdx4eHtLatWtVtq9bt05q165dI1ZUPyIETV1YvnkqOAEAbt26hc6dO6ts79y5M+7cudOIFdWdCKfsAsDatWuRkJBQ7TRLLy8vBAUFoWvXroiJicHMmTM1VGHtRPg+ieTBgwdwdnZW2e7k5ITi4uJGrKjucnJyEBwcrLK9b9++mDFjRiNWVD/btm3D9u3bq12d283NDRMmTICrqyvCw8Px0UcfaajC2unC8s1w0wC6d+9eY7suXIX1+eefx9KlS7F582YYGCh+LSorK/HRRx/h+eef11B16vHy8sJrr72GsWPHKm3PyMjA/v37G7mqutOFH47aiPB9ekKE5TsoKAgzZ87El19+CTs7O4W2O3fuYNasWQgKCtJMcWrq1KkTNm/ejI8//lhp+5YtW9CxY8dGrqruRAiaurB882ypBmBiYoLXX38d7u7uSttv3ryJTZs2afWWg/PnzyMkJATl5eV48cUXFS66duzYMRgZGeGHH37Ac889p+FKVRPllN0XX3wR7u7uKn84xowZg+zsbK2+v5QI36cnRFi+c3NzERoaikuXLqFz584K8+PChQvo2LEj9u/fDxcXFw1XqlpycjIGDhyINm3aKL0w5PXr13HgwAG8+OKLGq60ZgMGDEBFRYXKoPnmm29CX19fq/8R04Xlm+GmAfj6+mLs2LF45513lLY/ueKkNv/4AY//o9ixYwdOnDihcGpfQEAARo4cqfJy4dpClFN2deGHQx26/n16QpTlu6qqCocOHVI6P1555RXo6Wn/ybPZ2dlYv3690j68/fbbcHNz02yBahAhaALav3wz3DSAqVOnQiaTIT4+Xmn7tWvXMG7cOBw9erRxCyOdpe0/HE0Jl29qaCIETW3HcENqKS8vx82bN9G6dWtNl1KrvLw8nDx5UuFHw9/fH46OjhqurOn557xwcnKCn58f54WWKS4uRnp6utbv0gGqX4jQyckJXl5eOnkhQl2nzcs3DygmtVy8eBHdu3fX6k3vxcXFeOutt7Br1y7IZDI0b94cAHD37l1IkoQRI0Zg48aNOrPbSpt/OGoj2rwQ3dWrV9GnTx+tXr6rqqowf/58rFu3rtoFLa2trREVFYUFCxbozFaPU6dOIS0tTeGfsJ49e2r8QFx16MTyraFT0JuUoqIiKSUlRdNlPBVduJbH2LFjJQ8PD+ngwYNSRUWFfHhFRYV06NAhqX379tK4ceM0WKF6ioqKpFGjRkn6+vqSgYGBZG9vL9nb20sGBgaSvr6+9MYbb0jFxcWaLrNGosyLvzt58qQUHx8vzZ49W5o9e7YUHx8vnTx5UtNlNQhdWL5FuD6MJElSfn6+9MILL0gymUxydXWV/Pz8JD8/P8nV1VWSyWTSCy+8IOXn52u6zBrpwvLNcNMIdOGHw9vbu8ZHhw4dtL4PNjY2Umpqqsr248ePSzY2No1YUf3owg9HbUSZF5IkxsqoWbNmNT6srKy0fvkW4UKEkiRJr732mhQQECBdunSpWtulS5eknj17Sv/+9781UJn6dGH55m4pAvB4t1Ntp7tevny5kauqm6qqKhgZGalsNzIy0on75+zZswcHDhxAz549FYbr6+vjlVdewZYtWzBw4EBs2rRJQxXWTpR5AQATJ05EZWUlMjMz4enpqdCWlZWFMWPGYNKkSfjvf/+roQprV1painfeeUfl9ZN+++03LFiwoJGrqhsRrg8DAIcOHcKxY8eqfZcAwNPTE2vWrNH6aw7pxPKt0WglCBH+K/Lx8ZE+/fRTle1nz57V+j6MHDlS8vb2ls6cOVOt7cyZM5KPj480atQoDVRWN1ZWVtLp06dVtp86dUqysrJqxIrqTpR5IUmSZGFhobQfT/z888+ShYVFI1ZUdz179pTi4+NVtuvC1uXQ0FDplVdekW7fvl2t7fbt21K/fv2kAQMGaKCyurG1tZWSk5NVth89elSytbVtxIrqTheWb265aQAi/FcUGBiIrKwsle2WlpZafybF2rVrMXLkSPj4+KBZs2awt7cH8PiKv/fv30dISAjWrl2r4SprN3DgQEyYMAGbN2+Gt7e3QtvZs2fxzjvvICwsTEPVqUeUeQE8vit4YWGhyvYHDx7A2Ni4ESuquwEDBuD+/fsq25s3b47w8PDGK6geNmzYgNDQUDg5OdV4fRhtN3z4cERERGDVqlXo27ev/LIOhYWFSEpKQnR0NEaMGKHhKmumC8s3TwVvAIGBgRg2bBimTp2qtP3cuXNaf6aRSC5dulTtLISAgAB06NBBw5Wp5969exg5ciQOHTqk8odj586dsLGx0WyhatD1eQEAkyZNwoEDB2pcGQ0cOBCffPKJhisVnwjXhyktLcW0adOwZcsWVFRUyHfvlJWVwcDAAGPHjsWqVau0PjAD2r18M9w0gMWLF6O8vByxsbFK23NzczF//nwkJCQ0cmWkyzIzM5X+iGvDD0dTItLKiLRHYWEh0tPTFZZvHx8fXqCzgTDckAJl114ICAiAn5+fhit7evfu3cO+ffu0fvN7U6CL80LklZEuzQ9dvj5MU6EN3yeGGwLweJfHa6+9htTUVLRu3Vphf3ZOTg4CAwOxZ88e+S4SXaRLuwfLysqQmJio9Ed80KBBNZ6poAt0aV40BbowP5rCbxTwuD8bN27E/PnzNV1KvWnD94kHFDcQXV8ZiXC6a00HfQKPD/zUBVevXkVISAj++OMP+Pv7y3/Ez549iw0bNqBVq1b4/vvv0a5dOw1Xqpoo80IdurAyEmF+iPAbpY68vDwsWLCA36enxC03DUDVyig/Px8nT57UiZWRpaUljh07Vu3snCfS09MRFBSkFV9aVfT09CCTyVS2S5IEmUym1f+dAsDLL78Mc3NzbNu2rdouj8LCQoSHh+Phw4c4dOiQhiqsnSjzQh3a8F9qbUSYHyL8RgHA+fPna2y/dOkSRowYodXzQhe+T9xy0wCenAZ+9uxZlSujSZMmafXKSITTXS0tLTF37lz4+/srbb9y5QreeuutRq6q7lJTU3Hq1Cmlx3JYWVnhgw8+UNlHbSHKvABqXxnVdAkFbSHC/BDhNwoAunXrBplMBmXbFZ4Mryk4aANd+D4x3DQAEVZGIlx7oXv37gCA3r17K223sbFR+oOibWxsbJCdnY3nnntOaXt2drbWnwYuyrwAxFgZiTA/RPiNAh5fU+jjjz9G3759lbb/+uuvWn8dK134PjHcNAARVkYrV65EVVUVXn/9dZWnuy5fvlzDVdZs5MiRKCkpUdnu6Oio8nR9bTJu3DiEh4fj/fffR9++fRV2cyYlJeHDDz/E5MmTNVxlzUSZF4AYKyMR5ocIv1EA4OPjgz/++AOurq5K2+/fv6/xYFAbXfg+8ZibBjB//nysXbu21pVRXFycZgtVg8inu+qSjz76CKtXr0ZeXp58q4AkSXB0dMS0adPw7rvvarjCpiMkJAS9evXCvHnzlLafO3cO3t7emr+XThOh679Re/fuRXFxMd544w2l7ffu3cO3336LiIiIRq5MLAw3DUSEldGdO3ewZcsWpWd8jR49Gi1atNBwhbUToQ9/d+PGDYV+qLqxqTYSZV6IsjISYX6I0AdRaPu8YLhpYLq6Mjp9+jRCQkJgZmaG4ODgalufSkpKcOjQIfj6+mq4UtVE6IM6cnNzERsbiy1btmi6FJWayrzQFSLMDxH6oA4u3w2kEW7O2eTl5ORIkZGRmi6jRv7+/tKECROkqqqqam1VVVXShAkTpB49emigMvWJ0Ad16MIdnJvKvJAkLt+NRYQ+qIPLd8PglptGoAvXwTA1NcXZs2dV3rfo0qVL8Pb2xsOHDxu5MvWJ0AcA+Pbbb2tsv379OmbMmMHvk5bg8t04ROgDwOW7sfBsqQagzpdV2zk6OuLUqVMqv6ynTp2Sb3rUViL0AQAGDx6s8tTjJ7T91GNR5gXA5VtbiNAHgMt3Y2G4aQAifFlnzpyJCRMmID09XekZX5s2bdL60yxF6AMAODk54dNPP8WgQYOUtmdkZMDHx6eRq6obUeYFwOVbW4jQB4DLd6PR5D4xUTg7O0uJiYkq28+ePav1+1AlSZJ27dol+fv7SwYGBpJMJpNkMplkYGAg+fv7S7t379Z0eWoRoQ9hYWHS+++/r7I9IyNDkslkjVhR/YgwLySJy7c2EaEPXL4bB4+5aQD/+te/0K1bNyxcuFBpu65dB6O8vBx37twBANjZ2cHQ0FDDFdWdLvfhxx9/RHFxMfr166e0vbi4GD///LPKq4NqG12eFwCXb22ky33g8t04GG4agGhfViL6C5dvIt3DcENERERC0dN0AUREREQNieGGiIiIhMJwQ0REREJhuCEijcrOzoZMJkNGRkajvN/WrVthY2PTKO9FRJrBcENEz9To0aMhk8nkD1tbW/Tr1w/nz58HALi4uODmzZt47rnnAADJycmQyWS4f/9+nd5j8ODBao07fPhwXL58ua7dICIdwnBDRM9cv379cPPmTdy8eRNJSUkwMDDAwIEDAQD6+vpwdHSEgcGzv2B6eXk5TE1NYW9v/8zfi4g0h+GGiJ45Y2NjODo6wtHREd26dcPs2bORm5uL27dvK+yWys7ORp8+fQAAzZo1g0wmw+jRowEAX331FTp37gxTU1PY2toiODgYxcXFiIuLwxdffIFvvvlGvnUoOTlZ/rq7d+9G7969YWJigi+//LLabqm4uDh069YN27dvh5ubG6ytrfH666/jwYMH8nEePHiAUaNGwdzcHE5OTli1ahWCgoIwbdq0RvwUiUhdDDdE1KiKioqwY8cOtGvXDra2tgptLi4u2LNnDwAgKysLN2/exOrVq3Hz5k2MGDECY8aMQWZmJpKTkzFkyBBIkoSZM2di2LBhCluHevbsKX/N2bNnY+rUqcjMzERISIjSmq5du4bExETs378f+/fvR0pKCpYuXSpvj46ORmpqKr799lscPnwYP/74I86cOfMMPh0iagi8cSYRPXP79++HhYUFgMdX9HVycsL+/fuhp6f4/5W+vj6aN28OALC3t5dvYbl27RoqKiowZMgQuLq6AgA6d+4sn87U1BSlpaVwdHSs9t7Tpk3DkCFDaqyvqqoKW7duhaWlJQDgzTffRFJSEhYtWoQHDx7giy++wM6dO9G3b18AQEJCApydnevxSRBRY+CWGyJ65vr06YOMjAxkZGTg1KlTCAkJQf/+/fHbb7+pNX3Xrl3Rt29fdO7cGUOHDsWmTZtw7949tab19fWtdRw3Nzd5sAEe37n51q1bAIDr16+jvLwcfn5+8nZra2t4enqq9f5E1PgYbojomTM3N0e7du3Qrl07PP/88/j8889RXFyMTZs2qTW9vr4+Dh8+jO+//x4dO3bEJ598Ak9PT9y4cUOt967NP2/2J5PJdOZGmERUHcMNETU6mUwGPT09PHz4sFqbkZERAKCysrLaNIGBgViwYAHOnj0LIyMj7N27Vz7NP8dvKG3atIGhoSFOnz4tH1ZQUMDTyYm0GI+5IaJnrrS0FHl5eQCAe/fuYe3atSgqKkJYWFi1cV1dXSGTybB//36EhobC1NQUv/76K5KSkvDKK6/A3t4eJ0+exO3bt+Hl5QXg8W6lQ4cOISsrC7a2trC2tm6w2i0tLREREYGYmBg0b94c9vb2iI2NhZ6eHmQyWYO9DxE1HG65IaJn7uDBg3BycoKTkxP8/f1x+vRp/Pe//0VQUFC1cVu2bIkFCxZg9uzZcHBwQFRUFKysrHDs2DGEhoaiffv2mDdvHlasWIH+/fsDAMaPHw9PT0/4+vqiRYsWSE1NbdD6V65ciYCAAAwcOBDBwcEIDAyEl5cXTExMGvR9iKhhyCRJkjRdBBGRLikuLkbLli2xYsUKjB07VtPlENE/cLcUEVEtzp49i0uXLsHPzw8FBQVYuHAhAGDQoEEaroyIlGG4ISJSw/Lly5GVlQUjIyP4+Pjgxx9/hJ2dnabLIiIluFuKiIiIhMIDiomIiEgoDDdEREQkFIYbIiIiEgrDDREREQmF4YaIiIiEwnBDREREQmG4ISIiIqEw3BAREZFQGG6IiIhIKP8PY3p9oGsb+0MAAAAASUVORK5CYII=", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df2.plot.bar(logy=False, ylabel=\"Probability\", xlabel=\"Bitstring\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Task Summary\n", + "Note: Charges shown are estimates based on your Amazon Braket simulator and quantum processing unit (QPU) task usage. Estimated charges shown may differ from your actual charges. Estimated charges do not factor in any discounts or credits, and you may experience additional charges based on your use of other services such as Amazon Elastic Compute Cloud (Amazon EC2).\n", + "Estimated cost to run this example: 150.6 USD\n" + ] + } + ], + "source": [ + "print(\"Task Summary\")\n", + "print(\n", + " \"Note: Charges shown are estimates based on your Amazon Braket simulator and quantum processing unit (QPU) task usage. Estimated charges shown may differ from your actual charges. Estimated charges do not factor in any discounts or credits, and you may experience additional charges based on your use of other services such as Amazon Elastic Compute Cloud (Amazon EC2).\"\n", + ")\n", + "print(\n", + " f\"Estimated cost to run this example: {cost_tracker.qpu_tasks_cost() + cost_tracker.simulator_tasks_cost():.3f} USD\"\n", + ")" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## References \n", + "\n", + "[1] “Enhancing quantum computer performance via symmetrization”, https://arxiv.org/abs/2301.07233" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "tket", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.5" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/0_TO_ORGANIZE/Getting_Devices_and_Checking_Device_Properties.ipynb b/0_TO_ORGANIZE/Getting_Devices_and_Checking_Device_Properties.ipynb new file mode 100644 index 000000000..0b656eb8e --- /dev/null +++ b/0_TO_ORGANIZE/Getting_Devices_and_Checking_Device_Properties.ipynb @@ -0,0 +1,1993 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Getting Devices and Checking Device Properties\n", + "\n", + "This tutorial demonstrates how to use the `get_devices()` method to search and instantiate devices available on Amazon Braket. It also shows how to obtain access to properties for simulator and QPU devices." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# general imports\n", + "import json\n", + "from braket.aws import AwsDevice\n", + "from braket.devices import LocalSimulator" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Using get_devices\n", + "You can get a device, including the on-demand simulators and the QPUs, by calling the `get_devices()` method. Search for devices with one or more of the following filtering criteria:\n", + "* device arn \n", + "* name \n", + "* type \n", + "* status \n", + "* provider_name. \n", + "\n", + "The following cells give examples for each of the cases." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Getting the device by type" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": "[Device('name': SV1, 'arn': arn:aws:braket:::device/quantum-simulator/amazon/sv1),\n Device('name': TN1, 'arn': arn:aws:braket:::device/quantum-simulator/amazon/tn1),\n Device('name': dm1, 'arn': arn:aws:braket:::device/quantum-simulator/amazon/dm1)]" + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# to get the on-demand simulators\n", + "AwsDevice.get_devices(types=['SIMULATOR'])" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": "[Device('name': Aspen-10, 'arn': arn:aws:braket:::device/qpu/rigetti/Aspen-10),\n Device('name': Aspen-11, 'arn': arn:aws:braket:::device/qpu/rigetti/Aspen-11),\n Device('name': Aspen-8, 'arn': arn:aws:braket:::device/qpu/rigetti/Aspen-8),\n Device('name': Aspen-9, 'arn': arn:aws:braket:::device/qpu/rigetti/Aspen-9),\n Device('name': Aspen-M-1, 'arn': arn:aws:braket:us-west-1::device/qpu/rigetti/Aspen-M-1),\n Device('name': IonQ Device, 'arn': arn:aws:braket:us-east-1::device/qpu/ionq/Harmony)]" + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# to get the list of QPUs\n", + "AwsDevice.get_devices(types=['QPU'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Getting the device by ARN\n", + "For every type of device available in Amazon Braket, you can find the associated ARN in the Amazon Braket [Developer Guide](https://docs.aws.amazon.com/braket/latest/developerguide/braket-devices.html). You also can view the device ARN on the `Devices` section in the Amazon Braket console." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": "[Device('name': IonQ Device, 'arn': arn:aws:braket:us-east-1::device/qpu/ionq/Harmony)]" + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# for example, the following ARN refers to the IonQ device.\n", + "AwsDevice.get_devices(arns=['arn:aws:braket:us-east-1::device/qpu/ionq/Harmony'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Getting the device by name" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": "[Device('name': Aspen-M-3, 'arn': arn:aws:braket:us-west-1::device/qpu/rigetti/Aspen-M-3)]" + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# for example, the following name refers to a Rigetti Aspen system.\n", + "AwsDevice.get_devices(names=['Aspen-M-3'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Getting the device by status" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": "[Device('name': Aspen-11, 'arn': arn:aws:braket:::device/qpu/rigetti/Aspen-11),\n Device('name': Aspen-8, 'arn': arn:aws:braket:::device/qpu/rigetti/Aspen-8),\n Device('name': Aspen-M-3, 'arn': arn:aws:braket:us-west-1::device/qpu/rigetti/Aspen-M-3),\n Device('name': IonQ Device, 'arn': arn:aws:braket:us-east-1::device/qpu/ionq/Harmony),\n Device('name': SV1, 'arn': arn:aws:braket:::device/quantum-simulator/amazon/sv1),\n Device('name': dm1, 'arn': arn:aws:braket:::device/quantum-simulator/amazon/dm1)]" + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# retrieve all devices that are currently online\n", + "AwsDevice.get_devices(statuses=['ONLINE'])" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": "[Device('name': Aspen-M-1, 'arn': arn:aws:braket:us-west-1::device/qpu/rigetti/Aspen-M-1)]" + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# retrieve all devices that are currently offline\n", + "AwsDevice.get_devices(statuses=['OFFLINE'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Getting the device by provider_name" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": "[Device('name': IonQ Device, 'arn': arn:aws:braket:us-east-1::device/qpu/ionq/Harmony)]" + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# for example, the following ARN retrieves the IonQ device.\n", + "AwsDevice.get_devices(provider_names=['IonQ'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Retrieve devices in order" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": "[Device('name': SV1, 'arn': arn:aws:braket:::device/quantum-simulator/amazon/sv1),\n Device('name': dm1, 'arn': arn:aws:braket:::device/quantum-simulator/amazon/dm1),\n Device('name': IonQ Device, 'arn': arn:aws:braket:us-east-1::device/qpu/ionq/Harmony),\n Device('name': Aspen-10, 'arn': arn:aws:braket:::device/qpu/rigetti/Aspen-10),\n Device('name': Aspen-8, 'arn': arn:aws:braket:::device/qpu/rigetti/Aspen-8),\n Device('name': Aspen-9, 'arn': arn:aws:braket:::device/qpu/rigetti/Aspen-9),\n Device('name': Aspen-M-1, 'arn': arn:aws:braket:us-west-1::device/qpu/rigetti/Aspen-M-1),\n Device('name': Aspen-11, 'arn': arn:aws:braket:::device/qpu/rigetti/Aspen-11)]" + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# retrieve the list of devices, ordered by provider name\n", + "AwsDevice.get_devices(order_by='provider_name')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Getting the device with multiple criteria" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": "[Device('name': Aspen-11, 'arn': arn:aws:braket:::device/qpu/rigetti/Aspen-11),\n Device('name': Aspen-8, 'arn': arn:aws:braket:::device/qpu/rigetti/Aspen-8),\n Device('name': Aspen-M-1, 'arn': arn:aws:braket:us-west-1::device/qpu/rigetti/Aspen-M-1),\n Device('name': IonQ Device, 'arn': arn:aws:braket:us-east-1::device/qpu/ionq/Harmony)]" + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# multiple criteria can be applied\n", + "AwsDevice.get_devices(types=['QPU'],statuses=['ONLINE'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Getting a device directly\n", + "You can specify a device directly, with the device ARN." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# specify a device directly by device ARN\n", + "# Rigetti\n", + "device = AwsDevice(\"arn:aws:braket:us-west-1::device/qpu/rigetti/Aspen-M-3\")\n", + "# IonQ\n", + "device = AwsDevice(\"arn:aws:braket:us-east-1::device/qpu/ionq/Harmony\")\n", + "# the on-demand simulator SV1\n", + "device = AwsDevice(\"arn:aws:braket:::device/quantum-simulator/amazon/sv1\")\n", + "# the on-demand simulator TN1\n", + "device = AwsDevice(\"arn:aws:braket:::device/quantum-simulator/amazon/tn1\")\n", + "# the local simulator\n", + "device = LocalSimulator()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Properties of devices\n", + "\n", + "You can check properties of a device with the `device.properties` call. The following examples show some useful properties of each device." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The supported operations of SV1 are ['ccnot', 'cnot', 'cphaseshift', 'cphaseshift00', 'cphaseshift01', 'cphaseshift10', 'cswap', 'cy', 'cz', 'h', 'i', 'iswap', 'pswap', 'phaseshift', 'rx', 'ry', 'rz', 's', 'si', 'swap', 't', 'ti', 'unitary', 'v', 'vi', 'x', 'xx', 'xy', 'y', 'yy', 'z', 'zz']\n", + "\n", + "The supported result types are [ResultType(name='Sample', observables=['x', 'y', 'z', 'h', 'i', 'hermitian'], minShots=1, maxShots=100000), ResultType(name='Expectation', observables=['x', 'y', 'z', 'h', 'i', 'hermitian'], minShots=0, maxShots=100000), ResultType(name='Variance', observables=['x', 'y', 'z', 'h', 'i', 'hermitian'], minShots=0, maxShots=100000), ResultType(name='Probability', observables=None, minShots=1, maxShots=100000), ResultType(name='Amplitude', observables=None, minShots=0, maxShots=0)]\n", + "\n", + "The maximum number of qubits supported by this device is 34\n", + "The shots range of this device is (0, 100000)\n", + "The price of running tasks on this device: price=0.075 unit='minute'\n" + ] + } + ], + "source": [ + "# the on-demand simulator SV1\n", + "device = AwsDevice(\"arn:aws:braket:::device/quantum-simulator/amazon/sv1\")\n", + "\n", + "support_gates = device.properties.action['braket.ir.jaqcd.program'].supportedOperations\n", + "support_result_types = device.properties.action['braket.ir.jaqcd.program'].supportedResultTypes\n", + "qubit_count = device.properties.paradigm.qubitCount\n", + "shots_range = device.properties.service.shotsRange\n", + "device_cost = device.properties.service.deviceCost\n", + "\n", + "print(f'The supported operations of {device.name} are {support_gates}\\n')\n", + "print(f'The supported result types are {support_result_types}\\n')\n", + "print('The maximum number of qubits supported by this device is', qubit_count)\n", + "print('The shots range of this device is', shots_range)\n", + "print('The price of running tasks on this device:', device_cost)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For the IonQ and Rigetti devices, you can get information about the properties shown previously. You also can get information about the availability windows and the device calibration data." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The availability windows for Aspen-M-3:\n", + "[DeviceExecutionWindow(executionDay=, windowStartHour=datetime.time(15, 0), windowEndHour=datetime.time(20, 0))]\n", + "\n", + "The connectivity graph of the qubits for this device:\n", + " fullyConnected=False connectivityGraph={'0': ['1', '7'], '1': ['0', '16', '2'], '10': ['11', '113', '17'], '100': ['101', '107'], '101': ['100', '102', '116'], '102': ['101', '103', '115'], '103': ['102', '104'], '104': ['103', '105', '7'], '105': ['104', '106'], '106': ['105', '107'], '107': ['100', '106'], '11': ['10', '12', '26'], '110': ['111', '117'], '111': ['110', '112', '126'], '112': ['111', '113'], '113': ['10', '112', '114'], '114': ['113', '115', '17'], '115': ['102', '114', '116'], '116': ['101', '115', '117'], '117': ['110', '116'], '12': ['11', '13', '25'], '120': ['121', '127'], '121': ['120', '122', '136'], '122': ['121', '123', '135'], '123': ['122', '124', '20'], '124': ['123', '125', '27'], '125': ['124', '126'], '126': ['111', '125', '127'], '127': ['120', '126'], '13': ['12', '14'], '130': ['131', '137'], '131': ['130', '132', '146'], '132': ['131', '133', '145'], '133': ['132', '134', '30'], '134': ['133', '135', '37'], '135': ['122', '134', '136'], '136': ['121', '135', '137'], '137': ['130', '136'], '14': ['13', '15'], '140': ['141', '147'], '141': ['140', '142'], '142': ['141', '143'], '143': ['142', '144', '40'], '144': ['143', '145', '47'], '145': ['132', '144', '146'], '146': ['131', '145', '147'], '147': ['140', '146'], '15': ['14', '16', '2'], '16': ['1', '15', '17'], '17': ['10', '16', '114'], '2': ['1', '15', '3'], '20': ['123', '21', '27'], '21': ['20', '22', '36'], '22': ['21', '23', '35'], '23': ['22', '24'], '24': ['23', '25'], '25': ['12', '24', '26'], '26': ['11', '25', '27'], '27': ['20', '26', '124'], '3': ['2', '4'], '30': ['133', '31', '37'], '31': ['30', '32', '46'], '32': ['31', '33', '45'], '33': ['32', '34'], '34': ['33', '35'], '35': ['22', '34', '36'], '36': ['21', '35', '37'], '37': ['30', '36', '134'], '4': ['3', '5'], '40': ['143', '41', '47'], '41': ['40', '42'], '42': ['41', '43'], '43': ['42', '44'], '44': ['43', '45'], '45': ['32', '44', '46'], '46': ['31', '45', '47'], '47': ['40', '46', '144'], '5': ['4', '6'], '6': ['5', '7'], '7': ['0', '6', '104']}\n", + "\n", + "Calibration data:\n", + " {\n", + " \"1Q\": {\n", + " \"0\": {\n", + " \"T1\": 8.777348365240911e-06,\n", + " \"T2\": 1.4387746662680443e-05,\n", + " \"f1QRB\": 0.998504263416883,\n", + " \"f1QRB_std_err\": 0.000200939668822899,\n", + " \"f1Q_simultaneous_RB\": 0.9303976571661898,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.01832843535640074,\n", + " \"fActiveReset\": 0.983,\n", + " \"fRO\": 0.7455\n", + " },\n", + " \"1\": {\n", + " \"T1\": 5.6366506444582853e-05,\n", + " \"T2\": 2.6242615804514876e-06,\n", + " \"f1QRB\": 0.998504263416883,\n", + " \"f1QRB_std_err\": 0.000200939668822899,\n", + " \"f1Q_simultaneous_RB\": 0.9460049849871673,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.015573861338627268,\n", + " \"fActiveReset\": 0.985,\n", + " \"fRO\": 0.8540000000000001\n", + " },\n", + " \"10\": {\n", + " \"T1\": 2.4649825183020724e-05,\n", + " \"T2\": 2.112458278475246e-05,\n", + " \"f1QRB\": 0.998567587494012,\n", + " \"f1QRB_std_err\": 0.000207675573751291,\n", + " \"f1Q_simultaneous_RB\": 0.9979683963345315,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.00020991123805034803,\n", + " \"fActiveReset\": 0.9995,\n", + " \"fRO\": 0.97\n", + " },\n", + " \"100\": {\n", + " \"T1\": 1.4605161566150215e-05,\n", + " \"T2\": 8.902523025740775e-06,\n", + " \"f1QRB\": 0.997775892122462,\n", + " \"f1QRB_std_err\": 0.000374351563384802,\n", + " \"f1Q_simultaneous_RB\": 0.9961567026311122,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.0002573088587404397,\n", + " \"fActiveReset\": 0.9855000000000002,\n", + " \"fRO\": 0.966\n", + " },\n", + " \"101\": {\n", + " \"T1\": 3.470265115845805e-05,\n", + " \"T2\": 1.597107188692292e-05,\n", + " \"f1QRB\": 0.997775892122462,\n", + " \"f1QRB_std_err\": 0.000374351563384802,\n", + " \"f1Q_simultaneous_RB\": 0.9970276543696347,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.00013096176594054902,\n", + " \"fActiveReset\": 0.9475,\n", + " \"fRO\": 0.9835\n", + " },\n", + " \"102\": {\n", + " \"T1\": 3.108759865555477e-05,\n", + " \"T2\": 9.128937181043585e-06,\n", + " \"f1QRB\": 0.997775892122462,\n", + " \"f1QRB_std_err\": 0.000374351563384802,\n", + " \"f1Q_simultaneous_RB\": 0.9976099333865556,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.00018672092358221307,\n", + " \"fActiveReset\": 0.9975,\n", + " \"fRO\": 0.97\n", + " },\n", + " \"103\": {\n", + " \"T1\": 2.4162789957538067e-05,\n", + " \"T2\": 3.320981405023996e-05,\n", + " \"f1QRB\": 0.997775892122462,\n", + " \"f1QRB_std_err\": 0.000374351563384802,\n", + " \"f1Q_simultaneous_RB\": 0.9976510417447488,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.00019191885187922028,\n", + " \"fActiveReset\": 0.9985,\n", + " \"fRO\": 0.983\n", + " },\n", + " \"104\": {\n", + " \"T1\": 1.1231745568052176e-05,\n", + " \"T2\": 2.41162039532837e-06,\n", + " \"f1QRB\": 0.997775892122462,\n", + " \"f1QRB_std_err\": 0.000374351563384802,\n", + " \"f1Q_simultaneous_RB\": 0.9214629936027059,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.02750707475639154,\n", + " \"fActiveReset\": 0.7835,\n", + " \"fRO\": 0.6910000000000001\n", + " },\n", + " \"105\": {\n", + " \"T1\": 2.194007430622591e-05,\n", + " \"T2\": 9.166301159022885e-06,\n", + " \"f1QRB\": 0.997775892122462,\n", + " \"f1QRB_std_err\": 0.000374351563384802,\n", + " \"f1Q_simultaneous_RB\": 0.9963657123115162,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.00011396815287868675,\n", + " \"fActiveReset\": 0.9975,\n", + " \"fRO\": 0.975\n", + " },\n", + " \"106\": {\n", + " \"T1\": 9.167404134258206e-06,\n", + " \"T2\": 3.5514114878112702e-06,\n", + " \"f1QRB\": 0.997775892122462,\n", + " \"f1QRB_std_err\": 0.000374351563384802,\n", + " \"f1Q_simultaneous_RB\": 0.9908088608494778,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.0006521411302170585,\n", + " \"fActiveReset\": 0.995,\n", + " \"fRO\": 0.977\n", + " },\n", + " \"107\": {\n", + " \"T1\": 2.7364319175493534e-05,\n", + " \"T2\": 1.728370149460824e-05,\n", + " \"f1QRB\": 0.997775892122462,\n", + " \"f1QRB_std_err\": 0.000374351563384802,\n", + " \"f1Q_simultaneous_RB\": 0.998360745533851,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.00013243327201981094,\n", + " \"fActiveReset\": 0.9935,\n", + " \"fRO\": 0.9435\n", + " },\n", + " \"11\": {\n", + " \"T1\": 4.242363601303367e-05,\n", + " \"T2\": 1.897668630009837e-05,\n", + " \"f1QRB\": 0.998567587494012,\n", + " \"f1QRB_std_err\": 0.000207675573751291,\n", + " \"f1Q_simultaneous_RB\": 0.9979463434832029,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.0002787945305936024,\n", + " \"fActiveReset\": 0.9935,\n", + " \"fRO\": 0.915\n", + " },\n", + " \"110\": {\n", + " \"T1\": 2.3000070121348415e-05,\n", + " \"T2\": 2.821554481340575e-05,\n", + " \"f1QRB\": 0.997966130975084,\n", + " \"f1QRB_std_err\": 0.000835699458163396,\n", + " \"f1Q_simultaneous_RB\": 0.9978578224230155,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.0001438820152819121,\n", + " \"fActiveReset\": 0.9990000000000001,\n", + " \"fRO\": 0.975\n", + " },\n", + " \"111\": {\n", + " \"T1\": 5.4014904686594534e-05,\n", + " \"T2\": 2.6526235292895404e-05,\n", + " \"f1QRB\": 0.997966130975084,\n", + " \"f1QRB_std_err\": 0.000835699458163396,\n", + " \"f1Q_simultaneous_RB\": 0.9971325904076612,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.00041329462728499877,\n", + " \"fActiveReset\": 0.9985,\n", + " \"fRO\": 0.927\n", + " },\n", + " \"112\": {\n", + " \"T1\": 2.4225018294687928e-05,\n", + " \"T2\": 1.7676421014048713e-06,\n", + " \"f1QRB\": 0.997966130975084,\n", + " \"f1QRB_std_err\": 0.000835699458163396,\n", + " \"f1Q_simultaneous_RB\": 0.8743241888807464,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.06433267814368877,\n", + " \"fActiveReset\": 0.9945,\n", + " \"fRO\": 0.639\n", + " },\n", + " \"113\": {\n", + " \"T1\": 2.0808074664202536e-05,\n", + " \"T2\": 2.50607222807605e-05,\n", + " \"f1QRB\": 0.997966130975084,\n", + " \"f1QRB_std_err\": 0.000835699458163396,\n", + " \"f1Q_simultaneous_RB\": 0.9803553028933467,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.0020504962516807675,\n", + " \"fActiveReset\": 0.9955000000000002,\n", + " \"fRO\": 0.9655\n", + " },\n", + " \"114\": {\n", + " \"T1\": 4.9385373310784075e-06,\n", + " \"T2\": 5.226996638672165e-06,\n", + " \"f1QRB\": 0.997966130975084,\n", + " \"f1QRB_std_err\": 0.000835699458163396,\n", + " \"f1Q_simultaneous_RB\": 0.9879202125157243,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.001374557378211964,\n", + " \"fActiveReset\": 0.976,\n", + " \"fRO\": 0.762\n", + " },\n", + " \"115\": {\n", + " \"T1\": 6.253691961077834e-05,\n", + " \"T2\": 1.3634468894645568e-05,\n", + " \"f1QRB\": 0.997966130975084,\n", + " \"f1QRB_std_err\": 0.000835699458163396,\n", + " \"f1Q_simultaneous_RB\": 0.9981439033243311,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.00020277335250327972,\n", + " \"fActiveReset\": 0.995,\n", + " \"fRO\": 0.9655\n", + " },\n", + " \"116\": {\n", + " \"T1\": 3.805070412976619e-06,\n", + " \"T2\": 5.245456177822353e-06,\n", + " \"f1QRB\": 0.997966130975084,\n", + " \"f1QRB_std_err\": 0.000835699458163396,\n", + " \"f1Q_simultaneous_RB\": 0.874101534108853,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.09887673417905422,\n", + " \"fActiveReset\": 0.995,\n", + " \"fRO\": 0.5465\n", + " },\n", + " \"117\": {\n", + " \"T1\": 4.358711341434507e-05,\n", + " \"T2\": 2.3881588862514415e-05,\n", + " \"f1QRB\": 0.997966130975084,\n", + " \"f1QRB_std_err\": 0.000835699458163396,\n", + " \"f1Q_simultaneous_RB\": 0.9989105169449737,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.0006742976342786026,\n", + " \"fActiveReset\": 0.9945,\n", + " \"fRO\": 0.9430000000000001\n", + " },\n", + " \"12\": {\n", + " \"T1\": 2.9636548185996148e-05,\n", + " \"T2\": 3.979281277322271e-05,\n", + " \"f1QRB\": 0.998567587494012,\n", + " \"f1QRB_std_err\": 0.000207675573751291,\n", + " \"f1Q_simultaneous_RB\": 0.9969920950979971,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.0003580181994448194,\n", + " \"fActiveReset\": 0.9990000000000001,\n", + " \"fRO\": 0.973\n", + " },\n", + " \"120\": {\n", + " \"T1\": 1.1354648137507084e-05,\n", + " \"T2\": 1.8376892392054795e-05,\n", + " \"f1QRB\": 0.997784427515552,\n", + " \"f1QRB_std_err\": 0.000386463353061929,\n", + " \"f1Q_simultaneous_RB\": 0.9943453098471738,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.0009740967814970427,\n", + " \"fActiveReset\": 0.9915,\n", + " \"fRO\": 0.965\n", + " },\n", + " \"121\": {\n", + " \"T1\": 2.980533535867913e-05,\n", + " \"T2\": 2.5390955607971303e-05,\n", + " \"f1QRB\": 0.997784427515552,\n", + " \"f1QRB_std_err\": 0.000386463353061929,\n", + " \"f1Q_simultaneous_RB\": 0.9989723326150323,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.0011537062821187312,\n", + " \"fActiveReset\": 0.9975,\n", + " \"fRO\": 0.9505\n", + " },\n", + " \"122\": {\n", + " \"T1\": 3.2366343738043923e-05,\n", + " \"T2\": 2.0066223180104294e-05,\n", + " \"f1QRB\": 0.997784427515552,\n", + " \"f1QRB_std_err\": 0.000386463353061929,\n", + " \"f1Q_simultaneous_RB\": 0.9975424315377772,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.00021444335083721532,\n", + " \"fActiveReset\": 0.9985,\n", + " \"fRO\": 0.9764999999999999\n", + " },\n", + " \"123\": {\n", + " \"T1\": 5.875772367436305e-05,\n", + " \"T2\": 1.1534722501295969e-05,\n", + " \"f1QRB\": 0.997784427515552,\n", + " \"f1QRB_std_err\": 0.000386463353061929,\n", + " \"f1Q_simultaneous_RB\": 0.9993207109918728,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.0003010778882301275,\n", + " \"fActiveReset\": 0.9955000000000002,\n", + " \"fRO\": 0.9450000000000001\n", + " },\n", + " \"124\": {\n", + " \"T1\": 2.7500954872916594e-05,\n", + " \"T2\": 1.5347146711071054,\n", + " \"f1QRB\": 0.997784427515552,\n", + " \"f1QRB_std_err\": 0.000386463353061929,\n", + " \"f1Q_simultaneous_RB\": 0.9981686457276004,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.0032711135332684203,\n", + " \"fActiveReset\": 0.774,\n", + " \"fRO\": 0.5295\n", + " },\n", + " \"125\": {\n", + " \"T1\": 5.175873757479188e-05,\n", + " \"T2\": 1.674762004618807e-05,\n", + " \"f1QRB\": 0.997784427515552,\n", + " \"f1QRB_std_err\": 0.000386463353061929,\n", + " \"f1Q_simultaneous_RB\": 0.9970069535717453,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.0011145510582170903,\n", + " \"fActiveReset\": 0.9995,\n", + " \"fRO\": 0.9245\n", + " },\n", + " \"126\": {\n", + " \"T1\": 7.899644468789546e-06,\n", + " \"T2\": 7.0596060087964286e-06,\n", + " \"f1QRB\": 0.997784427515552,\n", + " \"f1QRB_std_err\": 0.000386463353061929,\n", + " \"f1Q_simultaneous_RB\": 0.9707783944211008,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.002942215508562394,\n", + " \"fActiveReset\": 0.937,\n", + " \"fRO\": 0.8935\n", + " },\n", + " \"127\": {\n", + " \"T1\": 4.507719830493251e-05,\n", + " \"T2\": 2.4898747936087966e-05,\n", + " \"f1QRB\": 0.997784427515552,\n", + " \"f1QRB_std_err\": 0.000386463353061929,\n", + " \"f1Q_simultaneous_RB\": 0.9981658480680515,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.00023050821835492982,\n", + " \"fActiveReset\": 0.9985,\n", + " \"fRO\": 0.9335\n", + " },\n", + " \"13\": {\n", + " \"T1\": 5.42931824449866e-05,\n", + " \"T2\": 1.1038558883496037e-05,\n", + " \"f1QRB\": 0.998567587494012,\n", + " \"f1QRB_std_err\": 0.000207675573751291,\n", + " \"f1Q_simultaneous_RB\": 0.9975881967115161,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.0005076824351762873,\n", + " \"fActiveReset\": 0.9990000000000001,\n", + " \"fRO\": 0.9510000000000001\n", + " },\n", + " \"130\": {\n", + " \"T1\": 1.1357631920283495e-05,\n", + " \"T2\": 2.0866555596004635e-05,\n", + " \"f1QRB\": 0.996871733301667,\n", + " \"f1QRB_std_err\": 0.000410506624602736,\n", + " \"f1Q_simultaneous_RB\": 0.9928195798147847,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.0003648926697066655,\n", + " \"fActiveReset\": 0.9985,\n", + " \"fRO\": 0.9355\n", + " },\n", + " \"131\": {\n", + " \"T1\": 4.729135588954492e-05,\n", + " \"T2\": 1.551769690407798e-05,\n", + " \"f1QRB\": 0.996871733301667,\n", + " \"f1QRB_std_err\": 0.000410506624602736,\n", + " \"f1Q_simultaneous_RB\": 0.9965497811699848,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.00022754634629984526,\n", + " \"fActiveReset\": 0.998,\n", + " \"fRO\": 0.933\n", + " },\n", + " \"132\": {\n", + " \"T1\": 4.193997107049263e-05,\n", + " \"T2\": 6.42486044916962e-05,\n", + " \"f1QRB\": 0.996871733301667,\n", + " \"f1QRB_std_err\": 0.000410506624602736,\n", + " \"f1Q_simultaneous_RB\": 0.9965772276614168,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.000279091775560034,\n", + " \"fActiveReset\": 0.9875,\n", + " \"fRO\": 0.974\n", + " },\n", + " \"133\": {\n", + " \"T1\": 3.187696219031366e-05,\n", + " \"T2\": 1.2649022656940182e-05,\n", + " \"f1QRB\": 0.996871733301667,\n", + " \"f1QRB_std_err\": 0.000410506624602736,\n", + " \"f1Q_simultaneous_RB\": 0.996904952406422,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.0004919316968335453,\n", + " \"fActiveReset\": 0.9990000000000001,\n", + " \"fRO\": 0.972\n", + " },\n", + " \"134\": {\n", + " \"T1\": 7.63133474612765e-06,\n", + " \"T2\": 1.432844736006034e-05,\n", + " \"f1QRB\": 0.996871733301667,\n", + " \"f1QRB_std_err\": 0.000410506624602736,\n", + " \"f1Q_simultaneous_RB\": 0.9938782609065901,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.0006242385589235869,\n", + " \"fActiveReset\": 0.968,\n", + " \"fRO\": 0.9505\n", + " },\n", + " \"135\": {\n", + " \"T1\": 1.274106716442347e-05,\n", + " \"T2\": 1.751774527356954e-05,\n", + " \"f1QRB\": 0.996871733301667,\n", + " \"f1QRB_std_err\": 0.000410506624602736,\n", + " \"f1Q_simultaneous_RB\": 0.9940589321248858,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.0005354962705180874,\n", + " \"fActiveReset\": 0.9865,\n", + " \"fRO\": 0.976\n", + " },\n", + " \"136\": {\n", + " \"T1\": 5.7972795871163996e-05,\n", + " \"T2\": 1.033217218810871e-05,\n", + " \"f1QRB\": 0.996871733301667,\n", + " \"f1QRB_std_err\": 0.000410506624602736,\n", + " \"f1Q_simultaneous_RB\": 0.9594326195879164,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.006371983841034407,\n", + " \"fActiveReset\": 0.997,\n", + " \"fRO\": 0.964\n", + " },\n", + " \"137\": {\n", + " \"T1\": 3.0265675099006017e-05,\n", + " \"T2\": 8.815071077163779e-06,\n", + " \"f1QRB\": 0.996871733301667,\n", + " \"f1QRB_std_err\": 0.000410506624602736,\n", + " \"f1Q_simultaneous_RB\": 0.9964082621169872,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.00041204933186914474,\n", + " \"fActiveReset\": 0.9985,\n", + " \"fRO\": 0.9545\n", + " },\n", + " \"14\": {\n", + " \"T1\": 7.056583752884649e-06,\n", + " \"T2\": 1.1091441855982039e-06,\n", + " \"f1QRB\": 0.998567587494012,\n", + " \"f1QRB_std_err\": 0.000207675573751291,\n", + " \"f1Q_simultaneous_RB\": 0.946954481047017,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.019670082609340132,\n", + " \"fActiveReset\": 0.9885,\n", + " \"fRO\": 0.604\n", + " },\n", + " \"140\": {\n", + " \"T1\": 3.029071944959938e-05,\n", + " \"T2\": 8.133700222213347e-06,\n", + " \"f1QRB\": 0.997899659551279,\n", + " \"f1QRB_std_err\": 8.77785271610802e-05,\n", + " \"f1Q_simultaneous_RB\": 0.9956614843353404,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.00016027173578603393,\n", + " \"fActiveReset\": 0.9995,\n", + " \"fRO\": 0.979\n", + " },\n", + " \"141\": {\n", + " \"T1\": 0.00014784866115324924,\n", + " \"T2\": 3.431555827615885e-05,\n", + " \"f1QRB\": 0.997899659551279,\n", + " \"f1QRB_std_err\": 8.77785271610802e-05,\n", + " \"f1Q_simultaneous_RB\": 0.9978990455480573,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.00017611255006860972,\n", + " \"fActiveReset\": 0.9990000000000001,\n", + " \"fRO\": 0.935\n", + " },\n", + " \"142\": {\n", + " \"T1\": 3.457894751113244e-05,\n", + " \"T2\": 2.4369120816570124e-05,\n", + " \"f1QRB\": 0.997899659551279,\n", + " \"f1QRB_std_err\": 8.77785271610802e-05,\n", + " \"f1Q_simultaneous_RB\": 0.9937073673820581,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.0005344686321301839,\n", + " \"fActiveReset\": 0.9990000000000001,\n", + " \"fRO\": 0.9524999999999999\n", + " },\n", + " \"143\": {\n", + " \"T1\": 1.7423889194123632e-05,\n", + " \"T2\": 2.692614145951504e-05,\n", + " \"f1QRB\": 0.997899659551279,\n", + " \"f1QRB_std_err\": 8.77785271610802e-05,\n", + " \"f1Q_simultaneous_RB\": 0.9955980121211014,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.00011357534169782675,\n", + " \"fActiveReset\": 0.9975,\n", + " \"fRO\": 0.99\n", + " },\n", + " \"144\": {\n", + " \"T1\": 3.2919899821681753e-06,\n", + " \"T2\": 5.073326594361066e-06,\n", + " \"f1QRB\": 0.997899659551279,\n", + " \"f1QRB_std_err\": 8.77785271610802e-05,\n", + " \"f1Q_simultaneous_RB\": 0.9771070222549354,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.002148445180324343,\n", + " \"fActiveReset\": 0.99,\n", + " \"fRO\": 0.9375\n", + " },\n", + " \"145\": {\n", + " \"T1\": 5.4886069659199066e-05,\n", + " \"T2\": 2.5880922309305267e-05,\n", + " \"f1QRB\": 0.997899659551279,\n", + " \"f1QRB_std_err\": 8.77785271610802e-05,\n", + " \"f1Q_simultaneous_RB\": 0.9976077593178492,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.0004003839842066979,\n", + " \"fActiveReset\": 0.998,\n", + " \"fRO\": 0.9435\n", + " },\n", + " \"146\": {\n", + " \"T1\": 2.412475677537884e-05,\n", + " \"T2\": 1.6227855566555945e-05,\n", + " \"f1QRB\": 0.997899659551279,\n", + " \"f1QRB_std_err\": 8.77785271610802e-05,\n", + " \"f1Q_simultaneous_RB\": 0.9969732456249751,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.00015185134122442054,\n", + " \"fActiveReset\": 0.997,\n", + " \"fRO\": 0.9884999999999999\n", + " },\n", + " \"147\": {\n", + " \"T1\": 6.061281442759636e-05,\n", + " \"T2\": 9.43138048765405e-06,\n", + " \"f1QRB\": 0.997899659551279,\n", + " \"f1QRB_std_err\": 8.77785271610802e-05,\n", + " \"f1Q_simultaneous_RB\": 0.9915070809897528,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.0003382415433281668,\n", + " \"fActiveReset\": 0.998,\n", + " \"fRO\": 0.9435\n", + " },\n", + " \"15\": {\n", + " \"T1\": 4.1651811924170445e-05,\n", + " \"T2\": 2.8229796576241462e-05,\n", + " \"f1QRB\": 0.998567587494012,\n", + " \"f1QRB_std_err\": 0.000207675573751291,\n", + " \"f1Q_simultaneous_RB\": 0.9994055849799613,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.0007925919011394073,\n", + " \"fActiveReset\": 0.9995,\n", + " \"fRO\": 0.95\n", + " },\n", + " \"16\": {\n", + " \"T1\": 1.7456030700024883e-05,\n", + " \"T2\": 2.4973369425682377e-05,\n", + " \"f1QRB\": 0.998567587494012,\n", + " \"f1QRB_std_err\": 0.000207675573751291,\n", + " \"f1Q_simultaneous_RB\": 0.9975031893571544,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.00017684251204097307,\n", + " \"fActiveReset\": 0.9985,\n", + " \"fRO\": 0.8975\n", + " },\n", + " \"17\": {\n", + " \"T1\": 2.4116607707069804e-05,\n", + " \"T2\": 2.2069017969999957e-05,\n", + " \"f1QRB\": 0.998567587494012,\n", + " \"f1QRB_std_err\": 0.000207675573751291,\n", + " \"f1Q_simultaneous_RB\": 0.9985746269607457,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.00013229071361827604,\n", + " \"fActiveReset\": 0.9995,\n", + " \"fRO\": 0.9359999999999999\n", + " },\n", + " \"2\": {\n", + " \"T1\": 3.0020909688843744e-05,\n", + " \"T2\": 5.2951481569223804e-05,\n", + " \"f1QRB\": 0.998504263416883,\n", + " \"f1QRB_std_err\": 0.000200939668822899,\n", + " \"f1Q_simultaneous_RB\": 0.9972198145006405,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.0001520631166330533,\n", + " \"fActiveReset\": 0.9985,\n", + " \"fRO\": 0.9604999999999999\n", + " },\n", + " \"20\": {\n", + " \"T1\": 4.939782572987994e-06,\n", + " \"T2\": 8.443256346294435e-07,\n", + " \"f1QRB\": 0.998502179156386,\n", + " \"f1QRB_std_err\": 0.000186957202634351,\n", + " \"f1Q_simultaneous_RB\": 0.9517734463380524,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.00798570485901481,\n", + " \"fActiveReset\": 0.9505,\n", + " \"fRO\": 0.9505\n", + " },\n", + " \"21\": {\n", + " \"T1\": 5.1860288759808526e-05,\n", + " \"T2\": 1.3210590900162185e-05,\n", + " \"f1QRB\": 0.998502179156386,\n", + " \"f1QRB_std_err\": 0.000186957202634351,\n", + " \"f1Q_simultaneous_RB\": 0.9980027960575203,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.0002724424718786719,\n", + " \"fActiveReset\": 0.9855000000000002,\n", + " \"fRO\": 0.9359999999999999\n", + " },\n", + " \"22\": {\n", + " \"T1\": 3.651444125818415e-05,\n", + " \"T2\": 5.7804731228542456e-05,\n", + " \"f1QRB\": 0.998502179156386,\n", + " \"f1QRB_std_err\": 0.000186957202634351,\n", + " \"f1Q_simultaneous_RB\": 0.997760590611616,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.00020879064540874453,\n", + " \"fActiveReset\": 0.9975,\n", + " \"fRO\": 0.968\n", + " },\n", + " \"23\": {\n", + " \"T1\": 6.915636621074306e-05,\n", + " \"T2\": 1.6278133643438973e-05,\n", + " \"f1QRB\": 0.998502179156386,\n", + " \"f1QRB_std_err\": 0.000186957202634351,\n", + " \"f1Q_simultaneous_RB\": 0.9980650575270487,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.000234316187838488,\n", + " \"fActiveReset\": 0.9865,\n", + " \"fRO\": 0.952\n", + " },\n", + " \"24\": {\n", + " \"T1\": 4.2207483514467015e-05,\n", + " \"T2\": 6.246765492761293e-05,\n", + " \"f1QRB\": 0.998502179156386,\n", + " \"f1QRB_std_err\": 0.000186957202634351,\n", + " \"f1Q_simultaneous_RB\": 0.9984192478655622,\n", + " \"f1Q_simultaneous_RB_std_err\": 7.675914699034499e-05,\n", + " \"fActiveReset\": 0.9995,\n", + " \"fRO\": 0.9815\n", + " },\n", + " \"25\": {\n", + " \"T1\": 7.51755283650013e-05,\n", + " \"T2\": 3.6904896702137975e-05,\n", + " \"f1QRB\": 0.998502179156386,\n", + " \"f1QRB_std_err\": 0.000186957202634351,\n", + " \"f1Q_simultaneous_RB\": 0.9979333999833107,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.00017701687443163496,\n", + " \"fActiveReset\": 0.9990000000000001,\n", + " \"fRO\": 0.9704999999999999\n", + " },\n", + " \"26\": {\n", + " \"T1\": 2.5166663844222725e-05,\n", + " \"T2\": 1.721461158516219e-05,\n", + " \"f1QRB\": 0.998502179156386,\n", + " \"f1QRB_std_err\": 0.000186957202634351,\n", + " \"f1Q_simultaneous_RB\": 0.994673457615699,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.00019502235675780363,\n", + " \"fActiveReset\": 0.9995,\n", + " \"fRO\": 0.956\n", + " },\n", + " \"27\": {\n", + " \"T1\": 2.482542128201537e-05,\n", + " \"T2\": 0.00011408192952874501,\n", + " \"f1QRB\": 0.998502179156386,\n", + " \"f1QRB_std_err\": 0.000186957202634351,\n", + " \"f1Q_simultaneous_RB\": 0.9987802716664477,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.00020860912102190109,\n", + " \"fActiveReset\": 0.9985,\n", + " \"fRO\": 0.8805\n", + " },\n", + " \"3\": {\n", + " \"T1\": 8.097383678817849e-05,\n", + " \"T2\": 4.547043938105118e-05,\n", + " \"f1QRB\": 0.998504263416883,\n", + " \"f1QRB_std_err\": 0.000200939668822899,\n", + " \"f1Q_simultaneous_RB\": 0.9978125534567162,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.0003444151079299761,\n", + " \"fActiveReset\": 0.9995,\n", + " \"fRO\": 0.9385\n", + " },\n", + " \"30\": {\n", + " \"T1\": 2.5630229322448628e-05,\n", + " \"T2\": 2.6505156199610027e-05,\n", + " \"f1QRB\": 0.99718764497914,\n", + " \"f1QRB_std_err\": 0.000180637530104713,\n", + " \"f1Q_simultaneous_RB\": 0.9975405353579325,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.0006683476178055164,\n", + " \"fActiveReset\": 0.998,\n", + " \"fRO\": 0.9804999999999999\n", + " },\n", + " \"31\": {\n", + " \"T1\": 4.393692718629438e-05,\n", + " \"T2\": 3.2645417383990634e-05,\n", + " \"f1QRB\": 0.99718764497914,\n", + " \"f1QRB_std_err\": 0.000180637530104713,\n", + " \"f1Q_simultaneous_RB\": 0.9994958089309405,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.00028501695385721063,\n", + " \"fActiveReset\": 0.9965,\n", + " \"fRO\": 0.8645\n", + " },\n", + " \"32\": {\n", + " \"T1\": 1.2672320070183929e-05,\n", + " \"T2\": 4.927919550437918e-06,\n", + " \"f1QRB\": 0.99718764497914,\n", + " \"f1QRB_std_err\": 0.000180637530104713,\n", + " \"f1Q_simultaneous_RB\": 0.9945135356854071,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.0001537542435108619,\n", + " \"fActiveReset\": 0.998,\n", + " \"fRO\": 0.9624999999999999\n", + " },\n", + " \"33\": {\n", + " \"T1\": 3.135739845827601e-05,\n", + " \"T2\": 1.071969969710695e-05,\n", + " \"f1QRB\": 0.99718764497914,\n", + " \"f1QRB_std_err\": 0.000180637530104713,\n", + " \"f1Q_simultaneous_RB\": 0.9956194185967222,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.0003988766735571363,\n", + " \"fActiveReset\": 0.9635000000000001,\n", + " \"fRO\": 0.962\n", + " },\n", + " \"34\": {\n", + " \"T1\": 3.8314277972295585e-05,\n", + " \"T2\": 7.954802601790621e-06,\n", + " \"f1QRB\": 0.99718764497914,\n", + " \"f1QRB_std_err\": 0.000180637530104713,\n", + " \"f1Q_simultaneous_RB\": 0.994547293496831,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.00017719907827152312,\n", + " \"fActiveReset\": 0.9985,\n", + " \"fRO\": 0.9795\n", + " },\n", + " \"35\": {\n", + " \"T1\": 3.129991882744321e-05,\n", + " \"T2\": 2.8218246908906864e-05,\n", + " \"f1QRB\": 0.99718764497914,\n", + " \"f1QRB_std_err\": 0.000180637530104713,\n", + " \"f1Q_simultaneous_RB\": 0.9976124350376736,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.0006578297177763354,\n", + " \"fActiveReset\": 0.9995,\n", + " \"fRO\": 0.979\n", + " },\n", + " \"36\": {\n", + " \"T1\": 1.149169113867643e-05,\n", + " \"T2\": 1.606953461310735e-05,\n", + " \"f1QRB\": 0.99718764497914,\n", + " \"f1QRB_std_err\": 0.000180637530104713,\n", + " \"f1Q_simultaneous_RB\": 0.9950563704060984,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.00030355999489794697,\n", + " \"fActiveReset\": 0.997,\n", + " \"fRO\": 0.96\n", + " },\n", + " \"37\": {\n", + " \"T1\": 8.445484741637088e-05,\n", + " \"T2\": 2.1506782343780867e-05,\n", + " \"f1QRB\": 0.99718764497914,\n", + " \"f1QRB_std_err\": 0.000180637530104713,\n", + " \"f1Q_simultaneous_RB\": 0.9983582164241553,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.0004762655460908129,\n", + " \"fActiveReset\": 0.9995,\n", + " \"fRO\": 0.915\n", + " },\n", + " \"4\": {\n", + " \"T1\": 2.3605303536511357e-05,\n", + " \"T2\": 3.7153885914799665e-05,\n", + " \"f1QRB\": 0.998504263416883,\n", + " \"f1QRB_std_err\": 0.000200939668822899,\n", + " \"f1Q_simultaneous_RB\": 0.997406508526091,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.00014075676938704414,\n", + " \"fActiveReset\": 0.9995,\n", + " \"fRO\": 0.977\n", + " },\n", + " \"40\": {\n", + " \"T1\": 2.2941083798633244e-05,\n", + " \"T2\": 4.030567585397984e-05,\n", + " \"f1QRB\": 0.998490711844746,\n", + " \"f1QRB_std_err\": 0.000602630733595396,\n", + " \"f1Q_simultaneous_RB\": 0.9986793231141398,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.00024997896897375517,\n", + " \"fActiveReset\": 0.9985,\n", + " \"fRO\": 0.9855\n", + " },\n", + " \"41\": {\n", + " \"T1\": 7.645057835237168e-05,\n", + " \"T2\": 1.812326154873455e-05,\n", + " \"f1QRB\": 0.998490711844746,\n", + " \"f1QRB_std_err\": 0.000602630733595396,\n", + " \"f1Q_simultaneous_RB\": 0.9984208231789844,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.0001626488730831036,\n", + " \"fActiveReset\": 0.9985,\n", + " \"fRO\": 0.9405\n", + " },\n", + " \"42\": {\n", + " \"T1\": 1.7765542281056312e-05,\n", + " \"T2\": 2.4198834873814248e-05,\n", + " \"f1QRB\": 0.998490711844746,\n", + " \"f1QRB_std_err\": 0.000602630733595396,\n", + " \"f1Q_simultaneous_RB\": 0.9978662175732578,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.00018615142417093767,\n", + " \"fActiveReset\": 0.9985,\n", + " \"fRO\": 0.9535\n", + " },\n", + " \"43\": {\n", + " \"T1\": 4.526165088725165e-05,\n", + " \"T2\": 4.0160474366265834e-05,\n", + " \"f1QRB\": 0.998490711844746,\n", + " \"f1QRB_std_err\": 0.000602630733595396,\n", + " \"f1Q_simultaneous_RB\": 0.9988299613832265,\n", + " \"f1Q_simultaneous_RB_std_err\": 7.009610434945902e-05,\n", + " \"fActiveReset\": 0.9995,\n", + " \"fRO\": 0.966\n", + " },\n", + " \"44\": {\n", + " \"T1\": 2.6937126983872517e-05,\n", + " \"T2\": 2.0058863708211373e-05,\n", + " \"f1QRB\": 0.998490711844746,\n", + " \"f1QRB_std_err\": 0.000602630733595396,\n", + " \"f1Q_simultaneous_RB\": 0.9962682763825296,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.0004107302229225073,\n", + " \"fActiveReset\": 0.9990000000000001,\n", + " \"fRO\": 0.9655\n", + " },\n", + " \"45\": {\n", + " \"T1\": 2.3553494302719358e-05,\n", + " \"T2\": 2.3478809380639128e-05,\n", + " \"f1QRB\": 0.998490711844746,\n", + " \"f1QRB_std_err\": 0.000602630733595396,\n", + " \"f1Q_simultaneous_RB\": 0.998265226734818,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.00013589547866016462,\n", + " \"fActiveReset\": 0.9845,\n", + " \"fRO\": 0.959\n", + " },\n", + " \"46\": {\n", + " \"T1\": 3.360270709285018e-05,\n", + " \"T2\": 4.707365629485934e-05,\n", + " \"f1QRB\": 0.998490711844746,\n", + " \"f1QRB_std_err\": 0.000602630733595396,\n", + " \"f1Q_simultaneous_RB\": 0.998290083542375,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.0001463840213334363,\n", + " \"fActiveReset\": 0.9995,\n", + " \"fRO\": 0.9624999999999999\n", + " },\n", + " \"47\": {\n", + " \"T1\": 2.8278175313367626e-05,\n", + " \"T2\": 1.7466412887046843e-05,\n", + " \"f1QRB\": 0.998490711844746,\n", + " \"f1QRB_std_err\": 0.000602630733595396,\n", + " \"f1Q_simultaneous_RB\": 0.9983356451379131,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.0007003713725584009,\n", + " \"fActiveReset\": 0.9795,\n", + " \"fRO\": 0.862\n", + " },\n", + " \"5\": {\n", + " \"T1\": 3.40211720875061e-05,\n", + " \"T2\": 2.105699681420164e-05,\n", + " \"f1QRB\": 0.998504263416883,\n", + " \"f1QRB_std_err\": 0.000200939668822899,\n", + " \"f1Q_simultaneous_RB\": 0.9971416754515394,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.00034525701239362835,\n", + " \"fActiveReset\": 0.972,\n", + " \"fRO\": 0.969\n", + " },\n", + " \"6\": {\n", + " \"T1\": 4.871283497376311e-05,\n", + " \"T2\": 9.278934231473249e-06,\n", + " \"f1QRB\": 0.998504263416883,\n", + " \"f1QRB_std_err\": 0.000200939668822899,\n", + " \"f1Q_simultaneous_RB\": 0.9929097864624989,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.00040551667952023335,\n", + " \"fActiveReset\": 0.9965,\n", + " \"fRO\": 0.959\n", + " },\n", + " \"7\": {\n", + " \"T1\": 9.911977762167012e-05,\n", + " \"T2\": 2.5374050749130526e-05,\n", + " \"f1QRB\": 0.998504263416883,\n", + " \"f1QRB_std_err\": 0.000200939668822899,\n", + " \"f1Q_simultaneous_RB\": 0.9978264215783317,\n", + " \"f1Q_simultaneous_RB_std_err\": 0.00033349189260763917,\n", + " \"fActiveReset\": 0.9985,\n", + " \"fRO\": 0.937\n", + " }\n", + " },\n", + " \"2Q\": {\n", + " \"0-1\": {\n", + " \"fCPHASE\": 0.7763724037798118,\n", + " \"fCPHASE_std_err\": 0.01379082038692462,\n", + " \"fCZ\": 0.7997759468323796,\n", + " \"fCZ_std_err\": 0.017176534029159585,\n", + " \"fXY\": 0.763267205439229,\n", + " \"fXY_std_err\": 0.023993559718540655\n", + " },\n", + " \"0-7\": {\n", + " \"fCPHASE\": 0.8270610883403271,\n", + " \"fCPHASE_std_err\": 0.011211008565517551,\n", + " \"fCZ\": 0.8401416306100571,\n", + " \"fCZ_std_err\": 0.016962559542142933,\n", + " \"fXY\": 0.7578675326804956,\n", + " \"fXY_std_err\": 0.006126945357529014\n", + " },\n", + " \"1-16\": {\n", + " \"fCPHASE\": 0.7746379258633798,\n", + " \"fCPHASE_std_err\": 0.01142700194686404,\n", + " \"fCZ\": 0.899299787737425,\n", + " \"fCZ_std_err\": 0.005781351497590761,\n", + " \"fXY\": 0.8828137889343295,\n", + " \"fXY_std_err\": 0.009758253387935725\n", + " },\n", + " \"1-2\": {\n", + " \"fCPHASE\": 0.8195164948970153,\n", + " \"fCPHASE_std_err\": 0.010343503913744693,\n", + " \"fCZ\": 0.8559500323790885,\n", + " \"fCZ_std_err\": 0.009689108970533782,\n", + " \"fXY\": 0.8333311691030765,\n", + " \"fXY_std_err\": 0.009818945489903674\n", + " },\n", + " \"10-11\": {\n", + " \"fCPHASE\": 0.958248490528094,\n", + " \"fCPHASE_std_err\": 0.006368479522265316,\n", + " \"fCZ\": 0.9660116970706635,\n", + " \"fCZ_std_err\": 0.004952523151035132,\n", + " \"fXY\": 0.9532359030302566,\n", + " \"fXY_std_err\": 0.01656970326807716\n", + " },\n", + " \"10-113\": {\n", + " \"fCPHASE\": 0.9697514348649786,\n", + " \"fCPHASE_std_err\": 0.006345733734434074,\n", + " \"fCZ\": 0.9810906952855609,\n", + " \"fCZ_std_err\": 0.005894540319366325\n", + " },\n", + " \"10-17\": {\n", + " \"fCPHASE\": 0.9673607629625731,\n", + " \"fCPHASE_std_err\": 0.007271182330613821,\n", + " \"fCZ\": 0.9814000623530871,\n", + " \"fCZ_std_err\": 0.003319405699737674,\n", + " \"fXY\": 0.9844098134425155,\n", + " \"fXY_std_err\": 0.002940224000330911\n", + " },\n", + " \"100-101\": {\n", + " \"fCPHASE\": 0.8544945418269007,\n", + " \"fCPHASE_std_err\": 0.014635874950143618,\n", + " \"fCZ\": 0.8624566845873372,\n", + " \"fCZ_std_err\": 0.013147841145117294,\n", + " \"fXY\": 0.9661667727532866,\n", + " \"fXY_std_err\": 0.00643194962992653\n", + " },\n", + " \"100-107\": {\n", + " \"fXY\": 0.965652401058054,\n", + " \"fXY_std_err\": 0.006700403493129104\n", + " },\n", + " \"101-102\": {\n", + " \"fCPHASE\": 0.9253392338552215,\n", + " \"fCPHASE_std_err\": 0.010174571794415383,\n", + " \"fCZ\": 0.9309248611771053,\n", + " \"fCZ_std_err\": 0.009743687235107799,\n", + " \"fXY\": 0.9546266092405655,\n", + " \"fXY_std_err\": 0.007116731033231077\n", + " },\n", + " \"101-116\": {\n", + " \"fCPHASE\": 0.850083371337259,\n", + " \"fCPHASE_std_err\": 0.010226121062972186,\n", + " \"fCZ\": 0.8426432690682515,\n", + " \"fCZ_std_err\": 0.015080620616848107,\n", + " \"fXY\": 0.855209800470653,\n", + " \"fXY_std_err\": 0.012052821403240252\n", + " },\n", + " \"102-103\": {\n", + " \"fCPHASE\": 0.9381005383228259,\n", + " \"fCPHASE_std_err\": 0.009362934491253846,\n", + " \"fCZ\": 0.9454447462393043,\n", + " \"fCZ_std_err\": 0.011596002842565152,\n", + " \"fXY\": 0.896818767655995,\n", + " \"fXY_std_err\": 0.005337928724449812\n", + " },\n", + " \"102-115\": {\n", + " \"fCPHASE\": 0.9617890973330837,\n", + " \"fCPHASE_std_err\": 0.006479030097577062,\n", + " \"fCZ\": 0.9819975101120063,\n", + " \"fCZ_std_err\": 0.005956479169053484,\n", + " \"fXY\": 0.9552490304456913,\n", + " \"fXY_std_err\": 0.009770939135667463\n", + " },\n", + " \"103-104\": {\n", + " \"fCPHASE\": 0.7922806945408476,\n", + " \"fCPHASE_std_err\": 0.008445124691607082,\n", + " \"fCZ\": 0.8247029607810051,\n", + " \"fCZ_std_err\": 0.0072750414810744376\n", + " },\n", + " \"104-105\": {\n", + " \"fCPHASE\": 0.8198667556359116,\n", + " \"fCPHASE_std_err\": 0.014265382305603922,\n", + " \"fCZ\": 0.8310429774956914,\n", + " \"fCZ_std_err\": 0.010345064558244495,\n", + " \"fXY\": 0.7139201611117955,\n", + " \"fXY_std_err\": 0.012502342058483077\n", + " },\n", + " \"105-106\": {\n", + " \"fXY\": 0.808903653746803,\n", + " \"fXY_std_err\": 0.011472511021314842\n", + " },\n", + " \"106-107\": {\n", + " \"fXY\": 0.8604769619387905,\n", + " \"fXY_std_err\": 0.0052811008094954814\n", + " },\n", + " \"11-12\": {\n", + " \"fCPHASE\": 0.8284362581833649,\n", + " \"fCPHASE_std_err\": 0.014963256917417263,\n", + " \"fCZ\": 0.874031662208736,\n", + " \"fCZ_std_err\": 0.012708685491227967,\n", + " \"fXY\": 0.857077540132403,\n", + " \"fXY_std_err\": 0.009653884089069475\n", + " },\n", + " \"11-26\": {\n", + " \"fCPHASE\": 0.7945781058413346,\n", + " \"fCPHASE_std_err\": 0.01738335199265962,\n", + " \"fCZ\": 0.9114101103304919,\n", + " \"fCZ_std_err\": 0.008401037905799496,\n", + " \"fXY\": 0.9064106558493861,\n", + " \"fXY_std_err\": 0.0044790185504478995\n", + " },\n", + " \"110-111\": {\n", + " \"fCPHASE\": 0.8571270912261933,\n", + " \"fCPHASE_std_err\": 0.02328595632138461,\n", + " \"fCZ\": 0.9156048014676357,\n", + " \"fCZ_std_err\": 0.018779479820499594,\n", + " \"fXY\": 0.9845950941682098,\n", + " \"fXY_std_err\": 0.002393737345119687\n", + " },\n", + " \"110-117\": {\n", + " \"fCPHASE\": 0.9349811954878483,\n", + " \"fCPHASE_std_err\": 0.012333411731912604,\n", + " \"fCZ\": 0.9120708501248699,\n", + " \"fCZ_std_err\": 0.006036036174429833\n", + " },\n", + " \"111-112\": {\n", + " \"fCPHASE\": 0.7897674844727159,\n", + " \"fCPHASE_std_err\": 0.021593223728520614,\n", + " \"fCZ\": 0.786001957800004,\n", + " \"fCZ_std_err\": 0.018987804399868947\n", + " },\n", + " \"111-126\": {\n", + " \"fCPHASE\": 0.8975375601603361,\n", + " \"fCPHASE_std_err\": 0.005310822274286927,\n", + " \"fCZ\": 0.8865729341626316,\n", + " \"fCZ_std_err\": 0.004710071024107654,\n", + " \"fXY\": 0.895486722516142,\n", + " \"fXY_std_err\": 0.004558161341105508\n", + " },\n", + " \"112-113\": {\n", + " \"fCPHASE\": 0.8366427228708132,\n", + " \"fCPHASE_std_err\": 0.009207714482851657,\n", + " \"fCZ\": 0.8285944335119297,\n", + " \"fCZ_std_err\": 0.010605098095459828\n", + " },\n", + " \"113-114\": {\n", + " \"fCPHASE\": 0.9013396634652495,\n", + " \"fCPHASE_std_err\": 0.004723841032926851,\n", + " \"fCZ\": 0.9058829809512586,\n", + " \"fCZ_std_err\": 0.0049348030008950754,\n", + " \"fXY\": 0.8892818227246524,\n", + " \"fXY_std_err\": 0.00593436616144358\n", + " },\n", + " \"114-115\": {\n", + " \"fCPHASE\": 0.9518215204308558,\n", + " \"fCPHASE_std_err\": 0.009367816061441792,\n", + " \"fCZ\": 0.8640708046448279,\n", + " \"fCZ_std_err\": 0.006506034899975081,\n", + " \"fXY\": 0.9742348543832899,\n", + " \"fXY_std_err\": 0.0064269976917201484\n", + " },\n", + " \"115-116\": {\n", + " \"fCPHASE\": 0.523010822425996,\n", + " \"fCPHASE_std_err\": 0.011305142767665567,\n", + " \"fCZ\": 0.6433453494014704,\n", + " \"fCZ_std_err\": 0.007729457830927353,\n", + " \"fXY\": 0.8303670462501238,\n", + " \"fXY_std_err\": 0.0072951374839695\n", + " },\n", + " \"116-117\": {\n", + " \"fXY\": 0.8081282834291598,\n", + " \"fXY_std_err\": 0.009248179917826713\n", + " },\n", + " \"12-13\": {\n", + " \"fCPHASE\": 0.9098187512103828,\n", + " \"fCPHASE_std_err\": 0.004460194373547715,\n", + " \"fCZ\": 0.9184960369268488,\n", + " \"fCZ_std_err\": 0.0099054655547212,\n", + " \"fXY\": 0.9459054914322903,\n", + " \"fXY_std_err\": 0.006506716589968954\n", + " },\n", + " \"12-25\": {\n", + " \"fCPHASE\": 0.9236445497724098,\n", + " \"fCPHASE_std_err\": 0.010422534823876868,\n", + " \"fCZ\": 0.956876314583782,\n", + " \"fCZ_std_err\": 0.005147205414384091,\n", + " \"fXY\": 0.9595276421594074,\n", + " \"fXY_std_err\": 0.004697169442879545\n", + " },\n", + " \"120-121\": {\n", + " \"fCPHASE\": 0.9724510810789062,\n", + " \"fCPHASE_std_err\": 0.006359563929590788,\n", + " \"fCZ\": 0.8631796989815732,\n", + " \"fCZ_std_err\": 0.011498181419440312,\n", + " \"fXY\": 0.807314332558257,\n", + " \"fXY_std_err\": 0.009212582549657618\n", + " },\n", + " \"120-127\": {\n", + " \"fCPHASE\": 0.8281706975866637,\n", + " \"fCPHASE_std_err\": 0.010762336565404238,\n", + " \"fCZ\": 0.84485548709443,\n", + " \"fCZ_std_err\": 0.009564166643094554,\n", + " \"fXY\": 0.9534548657462306,\n", + " \"fXY_std_err\": 0.007502441274313336\n", + " },\n", + " \"121-122\": {\n", + " \"fCPHASE\": 0.9779449245611389,\n", + " \"fCPHASE_std_err\": 0.00321555006971085,\n", + " \"fCZ\": 0.9805622512602565,\n", + " \"fCZ_std_err\": 0.0036830116857406534,\n", + " \"fXY\": 0.9863439905718718,\n", + " \"fXY_std_err\": 0.0021929549677415735\n", + " },\n", + " \"121-136\": {\n", + " \"fCPHASE\": 0.8098707174001626,\n", + " \"fCPHASE_std_err\": 0.012853579209191472,\n", + " \"fCZ\": 0.7699802312432049,\n", + " \"fCZ_std_err\": 0.017267497524222932,\n", + " \"fXY\": 0.8384422804366891,\n", + " \"fXY_std_err\": 0.010147751935342834\n", + " },\n", + " \"122-123\": {\n", + " \"fCPHASE\": 0.937357617686919,\n", + " \"fCPHASE_std_err\": 0.00939912831199345,\n", + " \"fCZ\": 0.8815524561989441,\n", + " \"fCZ_std_err\": 0.008480397986493988,\n", + " \"fXY\": 0.9741196796192496,\n", + " \"fXY_std_err\": 0.006193099065228869\n", + " },\n", + " \"122-135\": {\n", + " \"fCPHASE\": 0.9182574716275873,\n", + " \"fCPHASE_std_err\": 0.01286706498568653,\n", + " \"fCZ\": 0.9725646101843854,\n", + " \"fCZ_std_err\": 0.004492391909803522,\n", + " \"fXY\": 0.9934253815026672,\n", + " \"fXY_std_err\": 0.0028792157099703903\n", + " },\n", + " \"123-124\": {\n", + " \"fCPHASE\": 0.8492931442511754,\n", + " \"fCPHASE_std_err\": 0.031004090293481966,\n", + " \"fCZ\": 0.8664474564223329,\n", + " \"fCZ_std_err\": 0.023255647164247936,\n", + " \"fXY\": 0.9401736453909559,\n", + " \"fXY_std_err\": 0.04070115958035782\n", + " },\n", + " \"124-125\": {\n", + " \"fCPHASE\": 0.8641742689070019,\n", + " \"fCPHASE_std_err\": 0.02402116379629908,\n", + " \"fCZ\": 0.9068567966666606,\n", + " \"fCZ_std_err\": 0.018202299777250797,\n", + " \"fXY\": 0.9825352266625644,\n", + " \"fXY_std_err\": 0.014897986475736964\n", + " },\n", + " \"125-126\": {\n", + " \"fXY\": 0.9813003917048223,\n", + " \"fXY_std_err\": 0.005559145592461952\n", + " },\n", + " \"126-127\": {\n", + " \"fCPHASE\": 0.9745331151895578,\n", + " \"fCPHASE_std_err\": 0.009359252573522455,\n", + " \"fCZ\": 0.8793618775433184,\n", + " \"fCZ_std_err\": 0.006695940122690195,\n", + " \"fXY\": 0.9668765736966178,\n", + " \"fXY_std_err\": 0.005853541285615184\n", + " },\n", + " \"13-14\": {\n", + " \"fCPHASE\": 0.7837615985673496,\n", + " \"fCPHASE_std_err\": 0.00908752641394308,\n", + " \"fCZ\": 0.8315238558646783,\n", + " \"fCZ_std_err\": 0.012010271578784785,\n", + " \"fXY\": 0.800259464244921,\n", + " \"fXY_std_err\": 0.011110703319397196\n", + " },\n", + " \"130-131\": {\n", + " \"fCPHASE\": 0.9413132909026445,\n", + " \"fCPHASE_std_err\": 0.01050444955915992,\n", + " \"fCZ\": 0.8862554889222829,\n", + " \"fCZ_std_err\": 0.0051953836198194644,\n", + " \"fXY\": 0.9395038571114049,\n", + " \"fXY_std_err\": 0.016999792672854355\n", + " },\n", + " \"130-137\": {\n", + " \"fCPHASE\": 0.8418467568637378,\n", + " \"fCPHASE_std_err\": 0.011088492558938921,\n", + " \"fCZ\": 0.8757446914456515,\n", + " \"fCZ_std_err\": 0.006339604508984277,\n", + " \"fXY\": 0.7944576754693613,\n", + " \"fXY_std_err\": 0.012704236992361957\n", + " },\n", + " \"131-132\": {\n", + " \"fCPHASE\": 0.8913027282304402,\n", + " \"fCPHASE_std_err\": 0.005481261683822204,\n", + " \"fCZ\": 0.9565301378063831,\n", + " \"fCZ_std_err\": 0.007864985557707309\n", + " },\n", + " \"131-146\": {\n", + " \"fCPHASE\": 0.8733060321478731,\n", + " \"fCPHASE_std_err\": 0.005949741659402286,\n", + " \"fCZ\": 0.9011285801602571,\n", + " \"fCZ_std_err\": 0.005194802020184583,\n", + " \"fXY\": 0.8564730019976278,\n", + " \"fXY_std_err\": 0.006164869768927831\n", + " },\n", + " \"132-133\": {\n", + " \"fCPHASE\": 0.9812340862372804,\n", + " \"fCPHASE_std_err\": 0.006221735981265064,\n", + " \"fCZ\": 0.961489096421248,\n", + " \"fCZ_std_err\": 0.005595017974007847,\n", + " \"fXY\": 0.8963849546365421,\n", + " \"fXY_std_err\": 0.004935487928777466\n", + " },\n", + " \"132-145\": {\n", + " \"fCPHASE\": 0.9644419975773634,\n", + " \"fCPHASE_std_err\": 0.010644384024561587,\n", + " \"fCZ\": 0.8104456962207611,\n", + " \"fCZ_std_err\": 0.033870877151205014,\n", + " \"fXY\": 0.9713715904204685,\n", + " \"fXY_std_err\": 0.006464308653195267\n", + " },\n", + " \"133-134\": {\n", + " \"fCPHASE\": 0.927056258887286,\n", + " \"fCPHASE_std_err\": 0.011065076067329795,\n", + " \"fCZ\": 0.9718460039041158,\n", + " \"fCZ_std_err\": 0.005199061355339969,\n", + " \"fXY\": 0.9700129621217839,\n", + " \"fXY_std_err\": 0.007373351483482338\n", + " },\n", + " \"134-135\": {\n", + " \"fCPHASE\": 0.8744313951307033,\n", + " \"fCPHASE_std_err\": 0.008194397597764571,\n", + " \"fCZ\": 0.9676929508718168,\n", + " \"fCZ_std_err\": 0.005648190952410153,\n", + " \"fXY\": 0.961740734720578,\n", + " \"fXY_std_err\": 0.007447518372240999\n", + " },\n", + " \"135-136\": {\n", + " \"fCPHASE\": 0.7971073508124374,\n", + " \"fCPHASE_std_err\": 0.011735508876552973,\n", + " \"fCZ\": 0.8408275305884331,\n", + " \"fCZ_std_err\": 0.007212224456289056,\n", + " \"fXY\": 0.8677123316203673,\n", + " \"fXY_std_err\": 0.006244440129244054\n", + " },\n", + " \"136-137\": {\n", + " \"fCPHASE\": 0.8753046561279557,\n", + " \"fCPHASE_std_err\": 0.0067721728899041355,\n", + " \"fCZ\": 0.9017382193254191,\n", + " \"fCZ_std_err\": 0.0051398528656538935,\n", + " \"fXY\": 0.8286533687844194,\n", + " \"fXY_std_err\": 0.00920180462421984\n", + " },\n", + " \"14-15\": {\n", + " \"fCPHASE\": 0.7347089036988828,\n", + " \"fCPHASE_std_err\": 0.023687657983137406,\n", + " \"fCZ\": 0.8418633824262307,\n", + " \"fCZ_std_err\": 0.014331996820317223,\n", + " \"fXY\": 0.8136652246747742,\n", + " \"fXY_std_err\": 0.020637007100079662\n", + " },\n", + " \"140-141\": {\n", + " \"fCPHASE\": 0.9628397465967972,\n", + " \"fCPHASE_std_err\": 0.007075298725525275,\n", + " \"fCZ\": 0.9114260784276592,\n", + " \"fCZ_std_err\": 0.01189091970009422,\n", + " \"fXY\": 0.9839770710884982,\n", + " \"fXY_std_err\": 0.006119446836053626\n", + " },\n", + " \"140-147\": {\n", + " \"fCPHASE\": 0.8806720573955389,\n", + " \"fCPHASE_std_err\": 0.0078108726281292005,\n", + " \"fCZ\": 0.877365684977122,\n", + " \"fCZ_std_err\": 0.008189813681220515,\n", + " \"fXY\": 0.9505083892856538,\n", + " \"fXY_std_err\": 0.0075048361769578355\n", + " },\n", + " \"141-142\": {\n", + " \"fCPHASE\": 0.9758554188494014,\n", + " \"fCPHASE_std_err\": 0.00354957160059855,\n", + " \"fCZ\": 0.9861329308272369,\n", + " \"fCZ_std_err\": 0.0031677280969711822,\n", + " \"fXY\": 0.8011115752049046,\n", + " \"fXY_std_err\": 0.00906455301175025\n", + " },\n", + " \"142-143\": {\n", + " \"fCPHASE\": 0.9156898344550045,\n", + " \"fCPHASE_std_err\": 0.00452021977061543,\n", + " \"fCZ\": 0.8668728269448149,\n", + " \"fCZ_std_err\": 0.010376280237484404,\n", + " \"fXY\": 0.9083287740968627,\n", + " \"fXY_std_err\": 0.014456691615067399\n", + " },\n", + " \"143-144\": {\n", + " \"fCPHASE\": 0.8804572346295748,\n", + " \"fCPHASE_std_err\": 0.0214993421388247,\n", + " \"fCZ\": 0.9168389872501961,\n", + " \"fCZ_std_err\": 0.012153685231816464,\n", + " \"fXY\": 0.928899043563923,\n", + " \"fXY_std_err\": 0.013782460855314657\n", + " },\n", + " \"144-145\": {\n", + " \"fCPHASE\": 0.9395760087297282,\n", + " \"fCPHASE_std_err\": 0.009408591391284958,\n", + " \"fCZ\": 0.8797440089127171,\n", + " \"fCZ_std_err\": 0.009596281960738503,\n", + " \"fXY\": 0.8929118950612976,\n", + " \"fXY_std_err\": 0.006623673522961696\n", + " },\n", + " \"145-146\": {\n", + " \"fCPHASE\": 0.9248967242677248,\n", + " \"fCPHASE_std_err\": 0.012372216008812402,\n", + " \"fCZ\": 0.9250826853297689,\n", + " \"fCZ_std_err\": 0.01184069809947199,\n", + " \"fXY\": 0.8247601945398406,\n", + " \"fXY_std_err\": 0.00957548802252057\n", + " },\n", + " \"146-147\": {\n", + " \"fCPHASE\": 0.8274787219159552,\n", + " \"fCPHASE_std_err\": 0.012916145303183676,\n", + " \"fCZ\": 0.8069355268652384,\n", + " \"fCZ_std_err\": 0.011974372157029201,\n", + " \"fXY\": 0.8526092049762855,\n", + " \"fXY_std_err\": 0.006987348271687152\n", + " },\n", + " \"15-16\": {\n", + " \"fXY\": 0.8342063795719767,\n", + " \"fXY_std_err\": 0.015643734481094754\n", + " },\n", + " \"16-17\": {\n", + " \"fCPHASE\": 0.8302206036484925,\n", + " \"fCPHASE_std_err\": 0.012869544844258486,\n", + " \"fCZ\": 0.9354482252356635,\n", + " \"fCZ_std_err\": 0.010176135830908704,\n", + " \"fXY\": 0.9821198689331644,\n", + " \"fXY_std_err\": 0.0035208616911067054\n", + " },\n", + " \"17-114\": {\n", + " \"fCPHASE\": 0.9143187311641693,\n", + " \"fCPHASE_std_err\": 0.003664382124684018,\n", + " \"fCZ\": 0.8955019395295634,\n", + " \"fCZ_std_err\": 0.007905097371167706,\n", + " \"fXY\": 0.9021621509273128,\n", + " \"fXY_std_err\": 0.003882192037505257\n", + " },\n", + " \"2-15\": {\n", + " \"fCPHASE\": 0.853592786441325,\n", + " \"fCPHASE_std_err\": 0.0173218640579643,\n", + " \"fCZ\": 0.8424210536372618,\n", + " \"fCZ_std_err\": 0.01942728529736507,\n", + " \"fXY\": 0.8433415527455612,\n", + " \"fXY_std_err\": 0.01568790471734529\n", + " },\n", + " \"2-3\": {\n", + " \"fCPHASE\": 0.8779216546510856,\n", + " \"fCPHASE_std_err\": 0.008984824164987791,\n", + " \"fCZ\": 0.9480866054086365,\n", + " \"fCZ_std_err\": 0.010319346614322746,\n", + " \"fXY\": 0.9795288135184532,\n", + " \"fXY_std_err\": 0.003958747950871068\n", + " },\n", + " \"20-123\": {\n", + " \"fCPHASE\": 0.8431036186470358,\n", + " \"fCPHASE_std_err\": 0.006169724764577705,\n", + " \"fCZ\": 0.8933816092239404,\n", + " \"fCZ_std_err\": 0.0046623328964517175,\n", + " \"fXY\": 0.8252419892398489,\n", + " \"fXY_std_err\": 0.009394429704878264\n", + " },\n", + " \"20-21\": {\n", + " \"fCPHASE\": 0.7899019718604859,\n", + " \"fCPHASE_std_err\": 0.009411264368555643,\n", + " \"fCZ\": 0.8703538536793619,\n", + " \"fCZ_std_err\": 0.007022811723452874,\n", + " \"fXY\": 0.8158581549695172,\n", + " \"fXY_std_err\": 0.006946473176179534\n", + " },\n", + " \"20-27\": {\n", + " \"fCPHASE\": 0.8763753230954336,\n", + " \"fCPHASE_std_err\": 0.00625207371316308,\n", + " \"fCZ\": 0.799166480232074,\n", + " \"fCZ_std_err\": 0.011411993102178204,\n", + " \"fXY\": 0.7669325786102402,\n", + " \"fXY_std_err\": 0.008614043444124643\n", + " },\n", + " \"21-22\": {\n", + " \"fCPHASE\": 0.8835474050687498,\n", + " \"fCPHASE_std_err\": 0.0060384365641641055,\n", + " \"fCZ\": 0.9675174474620992,\n", + " \"fCZ_std_err\": 0.006112861032233331,\n", + " \"fXY\": 0.9593856978684502,\n", + " \"fXY_std_err\": 0.004675001579611297\n", + " },\n", + " \"21-36\": {\n", + " \"fCPHASE\": 0.9616282669985771,\n", + " \"fCPHASE_std_err\": 0.009142346642293296,\n", + " \"fCZ\": 0.9871653545386891,\n", + " \"fCZ_std_err\": 0.003026822786756953,\n", + " \"fXY\": 0.9618414413527681,\n", + " \"fXY_std_err\": 0.007531528854368184\n", + " },\n", + " \"22-23\": {\n", + " \"fCPHASE\": 0.8797682013391236,\n", + " \"fCPHASE_std_err\": 0.006863178602224026,\n", + " \"fCZ\": 0.9433671108935797,\n", + " \"fCZ_std_err\": 0.008139329201793282,\n", + " \"fXY\": 0.9652840558375136,\n", + " \"fXY_std_err\": 0.006241995575404114\n", + " },\n", + " \"22-35\": {\n", + " \"fCPHASE\": 0.9080011737139104,\n", + " \"fCPHASE_std_err\": 0.004355936765447585,\n", + " \"fCZ\": 0.9112749783878215,\n", + " \"fCZ_std_err\": 0.006986762028397102,\n", + " \"fXY\": 0.9806907358502073,\n", + " \"fXY_std_err\": 0.004704057188026671\n", + " },\n", + " \"23-24\": {\n", + " \"fCPHASE\": 0.9569750181774397,\n", + " \"fCPHASE_std_err\": 0.007574992417364864,\n", + " \"fCZ\": 0.9681453299247146,\n", + " \"fCZ_std_err\": 0.00508749895754165,\n", + " \"fXY\": 0.8416917105635126,\n", + " \"fXY_std_err\": 0.006732002502778592\n", + " },\n", + " \"24-25\": {\n", + " \"fCPHASE\": 0.8658350938592758,\n", + " \"fCPHASE_std_err\": 0.021909272442443176,\n", + " \"fCZ\": 0.984128639829115,\n", + " \"fCZ_std_err\": 0.0026998808555934325,\n", + " \"fXY\": 0.9827905160840157,\n", + " \"fXY_std_err\": 0.0034710695867806503\n", + " },\n", + " \"25-26\": {\n", + " \"fCPHASE\": 0.8374713018133112,\n", + " \"fCPHASE_std_err\": 0.010468040876200317,\n", + " \"fCZ\": 0.8018425294114914,\n", + " \"fCZ_std_err\": 0.014235856445919192,\n", + " \"fXY\": 0.9052719848120904,\n", + " \"fXY_std_err\": 0.005569411999606964\n", + " },\n", + " \"26-27\": {\n", + " \"fCPHASE\": 0.9484835812485717,\n", + " \"fCPHASE_std_err\": 0.007829961706098426,\n", + " \"fCZ\": 0.9012630325528697,\n", + " \"fCZ_std_err\": 0.004691716240046407,\n", + " \"fXY\": 0.953585694103604,\n", + " \"fXY_std_err\": 0.010932206430380766\n", + " },\n", + " \"27-124\": {\n", + " \"fCPHASE\": 0.8638133235975534,\n", + " \"fCPHASE_std_err\": 0.021794684669212708,\n", + " \"fCZ\": 0.8787593624565879,\n", + " \"fCZ_std_err\": 0.023267015943500925,\n", + " \"fXY\": 0.8732572235376224,\n", + " \"fXY_std_err\": 0.04702368958531526\n", + " },\n", + " \"3-4\": {\n", + " \"fCPHASE\": 0.8236032034332953,\n", + " \"fCPHASE_std_err\": 0.009637889740194503,\n", + " \"fCZ\": 0.9631654556896767,\n", + " \"fCZ_std_err\": 0.006883806965521097,\n", + " \"fXY\": 0.8160515267766147,\n", + " \"fXY_std_err\": 0.012395715402937168\n", + " },\n", + " \"30-133\": {\n", + " \"fCPHASE\": 0.850145462488844,\n", + " \"fCPHASE_std_err\": 0.01168941595728125,\n", + " \"fCZ\": 0.835269201359459,\n", + " \"fCZ_std_err\": 0.011802776547716056,\n", + " \"fXY\": 0.8451511697574544,\n", + " \"fXY_std_err\": 0.007428569073776654\n", + " },\n", + " \"30-31\": {\n", + " \"fCPHASE\": 0.7959482238289587,\n", + " \"fCPHASE_std_err\": 0.009599101830901808,\n", + " \"fCZ\": 0.8347314059950581,\n", + " \"fCZ_std_err\": 0.007943197234786764,\n", + " \"fXY\": 0.8741391749172258,\n", + " \"fXY_std_err\": 0.005827549306131333\n", + " },\n", + " \"30-37\": {\n", + " \"fCPHASE\": 0.8145099941776652,\n", + " \"fCPHASE_std_err\": 0.009368198118349361,\n", + " \"fCZ\": 0.8635580585784683,\n", + " \"fCZ_std_err\": 0.00810366449996026,\n", + " \"fXY\": 0.90240849694021,\n", + " \"fXY_std_err\": 0.005049518848030976\n", + " },\n", + " \"31-32\": {\n", + " \"fCPHASE\": 0.8122877362351132,\n", + " \"fCPHASE_std_err\": 0.012044800753909436,\n", + " \"fCZ\": 0.8399060477451475,\n", + " \"fCZ_std_err\": 0.014714830688181652,\n", + " \"fXY\": 0.8302699874100965,\n", + " \"fXY_std_err\": 0.013009830172898642\n", + " },\n", + " \"31-46\": {\n", + " \"fCPHASE\": 0.9639175020002607,\n", + " \"fCPHASE_std_err\": 0.00556452031578792,\n", + " \"fCZ\": 0.9899490016021413,\n", + " \"fCZ_std_err\": 0.002117361396498773,\n", + " \"fXY\": 0.9893403896755063,\n", + " \"fXY_std_err\": 0.0022178340508080896\n", + " },\n", + " \"32-33\": {\n", + " \"fCPHASE\": 0.8902505914708183,\n", + " \"fCPHASE_std_err\": 0.006294531513856973,\n", + " \"fCZ\": 0.9358403617020014,\n", + " \"fCZ_std_err\": 0.009388054807090016,\n", + " \"fXY\": 0.9546362970029817,\n", + " \"fXY_std_err\": 0.007553442226022641\n", + " },\n", + " \"32-45\": {\n", + " \"fCPHASE\": 0.872231361471259,\n", + " \"fCPHASE_std_err\": 0.01121985823707833,\n", + " \"fCZ\": 0.9738444794692535,\n", + " \"fCZ_std_err\": 0.0043942654522665485\n", + " },\n", + " \"33-34\": {\n", + " \"fCPHASE\": 0.7958929831240406,\n", + " \"fCPHASE_std_err\": 0.015425462116718731,\n", + " \"fCZ\": 0.8651742677416149,\n", + " \"fCZ_std_err\": 0.007592588486357907,\n", + " \"fXY\": 0.8835390987642395,\n", + " \"fXY_std_err\": 0.0043867947035354325\n", + " },\n", + " \"34-35\": {\n", + " \"fCPHASE\": 0.859602533039039,\n", + " \"fCPHASE_std_err\": 0.009138076035450015,\n", + " \"fCZ\": 0.9715705945287438,\n", + " \"fCZ_std_err\": 0.006301031003720571\n", + " },\n", + " \"35-36\": {\n", + " \"fXY\": 0.9774969885122631,\n", + " \"fXY_std_err\": 0.0033829465454611072\n", + " },\n", + " \"36-37\": {\n", + " \"fCPHASE\": 0.9092561183890484,\n", + " \"fCPHASE_std_err\": 0.0058376807088631735,\n", + " \"fCZ\": 0.9784518885903303,\n", + " \"fCZ_std_err\": 0.003029130589787604,\n", + " \"fXY\": 0.9875603191593725,\n", + " \"fXY_std_err\": 0.002358423302265576\n", + " },\n", + " \"37-134\": {\n", + " \"fCPHASE\": 0.9146399454060954,\n", + " \"fCPHASE_std_err\": 0.004337076992693843,\n", + " \"fCZ\": 0.934092256502296,\n", + " \"fCZ_std_err\": 0.008770591000249005,\n", + " \"fXY\": 0.8682740375243889,\n", + " \"fXY_std_err\": 0.006471746052616916\n", + " },\n", + " \"4-5\": {\n", + " \"fCPHASE\": 0.8552743505131355,\n", + " \"fCPHASE_std_err\": 0.007608179558157967,\n", + " \"fCZ\": 0.9706519855005057,\n", + " \"fCZ_std_err\": 0.005554291023953174,\n", + " \"fXY\": 0.8624177383174734,\n", + " \"fXY_std_err\": 0.006925013192967286\n", + " },\n", + " \"40-143\": {\n", + " \"fCPHASE\": 0.7600839684763812,\n", + " \"fCPHASE_std_err\": 0.01455730512726115,\n", + " \"fCZ\": 0.8104453814594197,\n", + " \"fCZ_std_err\": 0.00992447081179879,\n", + " \"fXY\": 0.905776157678926,\n", + " \"fXY_std_err\": 0.005978628164178389\n", + " },\n", + " \"40-41\": {\n", + " \"fCPHASE\": 0.7616214479970531,\n", + " \"fCPHASE_std_err\": 0.0153397409764428,\n", + " \"fCZ\": 0.7990943294436262,\n", + " \"fCZ_std_err\": 0.010747152786691874,\n", + " \"fXY\": 0.8988201697808387,\n", + " \"fXY_std_err\": 0.0052605650112824524\n", + " },\n", + " \"40-47\": {\n", + " \"fCPHASE\": 0.7168934897637623,\n", + " \"fCPHASE_std_err\": 0.02194610037601451,\n", + " \"fCZ\": 0.9032407469051222,\n", + " \"fCZ_std_err\": 0.02019307343891585,\n", + " \"fXY\": 0.9786320871734574,\n", + " \"fXY_std_err\": 0.005267238871515598\n", + " },\n", + " \"41-42\": {\n", + " \"fCPHASE\": 0.8604180987325472,\n", + " \"fCPHASE_std_err\": 0.00925843597058478,\n", + " \"fCZ\": 0.9533150920640057,\n", + " \"fCZ_std_err\": 0.01097766567033766,\n", + " \"fXY\": 0.9586422965574871,\n", + " \"fXY_std_err\": 0.007132225169109244\n", + " },\n", + " \"42-43\": {\n", + " \"fCPHASE\": 0.8423849056255256,\n", + " \"fCPHASE_std_err\": 0.010008919179737015,\n", + " \"fCZ\": 0.917858001758817,\n", + " \"fCZ_std_err\": 0.012413160703071257,\n", + " \"fXY\": 0.8141502882786736,\n", + " \"fXY_std_err\": 0.01184872526534798\n", + " },\n", + " \"43-44\": {\n", + " \"fCPHASE\": 0.7537923626609487,\n", + " \"fCPHASE_std_err\": 0.015080828085127,\n", + " \"fCZ\": 0.8611710085628796,\n", + " \"fCZ_std_err\": 0.008865627688122714,\n", + " \"fXY\": 0.942283542329304,\n", + " \"fXY_std_err\": 0.009503765439193682\n", + " },\n", + " \"44-45\": {\n", + " \"fCPHASE\": 0.8299030141719563,\n", + " \"fCPHASE_std_err\": 0.009857478899323988,\n", + " \"fCZ\": 0.9557288578270758,\n", + " \"fCZ_std_err\": 0.006702511019316729,\n", + " \"fXY\": 0.8996048966729704,\n", + " \"fXY_std_err\": 0.004152212435951456\n", + " },\n", + " \"45-46\": {\n", + " \"fCPHASE\": 0.9675162959658308,\n", + " \"fCPHASE_std_err\": 0.008914968542324951,\n", + " \"fCZ\": 0.965380988480898,\n", + " \"fCZ_std_err\": 0.00600956773698424,\n", + " \"fXY\": 0.9811754888501525,\n", + " \"fXY_std_err\": 0.002809467046863083\n", + " },\n", + " \"46-47\": {\n", + " \"fCPHASE\": 0.9550132096198518,\n", + " \"fCPHASE_std_err\": 0.011101139047072738,\n", + " \"fCZ\": 0.9334902005702788,\n", + " \"fCZ_std_err\": 0.013121527876568584,\n", + " \"fXY\": 0.9598039171384231,\n", + " \"fXY_std_err\": 0.008923248606730105\n", + " },\n", + " \"47-144\": {\n", + " \"fCPHASE\": 0.8982407044055271,\n", + " \"fCPHASE_std_err\": 0.00621785488733503,\n", + " \"fCZ\": 0.9394007045007381,\n", + " \"fCZ_std_err\": 0.010877234167113965,\n", + " \"fXY\": 0.7767641365585107,\n", + " \"fXY_std_err\": 0.0173400113341025\n", + " },\n", + " \"5-6\": {\n", + " \"fCPHASE\": 0.8856589225078974,\n", + " \"fCPHASE_std_err\": 0.007252911389298091,\n", + " \"fCZ\": 0.9548890325016192,\n", + " \"fCZ_std_err\": 0.0053040819246874624,\n", + " \"fXY\": 0.9708587201438419,\n", + " \"fXY_std_err\": 0.004633224705448535\n", + " },\n", + " \"6-7\": {\n", + " \"fCPHASE\": 0.8390933924372902,\n", + " \"fCPHASE_std_err\": 0.009445019626481147,\n", + " \"fCZ\": 0.9418483009558972,\n", + " \"fCZ_std_err\": 0.01218466822075986,\n", + " \"fXY\": 0.9661361224326979,\n", + " \"fXY_std_err\": 0.009003517168496214\n", + " },\n", + " \"7-104\": {\n", + " \"fXY\": 0.6631486133799958,\n", + " \"fXY_std_err\": 0.010365519549584151\n", + " }\n", + " }\n", + "}\n" + ] + } + ], + "source": [ + "# the IonQ device\n", + "device = AwsDevice(\"arn:aws:braket:us-east-1::device/qpu/ionq/Harmony\")\n", + "\n", + "# the Rigetti device\n", + "device = AwsDevice(\"arn:aws:braket:us-west-1::device/qpu/rigetti/Aspen-M-3\")\n", + "\n", + "execution_windows = device.properties.service.executionWindows\n", + "connectivity_graph = device.properties.paradigm.connectivity\n", + "calibration = device.properties.provider.specs\n", + "\n", + "print(f'The availability windows for {device.name}:\\n{execution_windows}\\n')\n", + "print(f'The connectivity graph of the qubits for this device:\\n {connectivity_graph}\\n')\n", + "print('Calibration data:\\n', json.dumps(calibration,sort_keys=True,indent=2))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Each device has more properties to explore. To learn more, view the [Amazon Braket schemas documentation](https://amazon-braket-schemas-python.readthedocs.io/en/latest/_apidoc/braket.device_schema.html)." + ] + } + ], + "metadata": { + "kernelspec": { + "name": "python3", + "language": "python", + "display_name": "Python 3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.7" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} \ No newline at end of file diff --git a/0_TO_ORGANIZE/Getting_notifications_when_a_task_completes/Getting_notifications_when_a_task_completes.ipynb b/0_TO_ORGANIZE/Getting_notifications_when_a_task_completes/Getting_notifications_when_a_task_completes.ipynb new file mode 100644 index 000000000..7ab69ee49 --- /dev/null +++ b/0_TO_ORGANIZE/Getting_notifications_when_a_task_completes/Getting_notifications_when_a_task_completes.ipynb @@ -0,0 +1,253 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Getting notifications when a task completes" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# Use Braket SDK Cost Tracking to estimate the cost to run this example\n", + "from braket.tracking import Tracker\n", + "t = Tracker().start()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This notebook walks you through how to set up notifications for completion of Amazon Braket tasks through the Amazon Simple Notification Service (SNS). Active notifications may be useful in situations where a large wait time is expected, such as when a submitted task is large and takes a while to complete, or when a task is submitted to a device outside of its availability window. In such a setting, a user may not want to wait for the task to complete, and would prefer to move forward and receive an alert once the task is complete.\n", + "\n", + "## The workflow\n", + "\n", + "Amazon Braket tasks leverage Amazon S3 as an intermediate storage device. This allows you to leverage the built-in event architecture of S3 to generate active push notifications. All you need to do is subscribe an SMS capable endpoint (for example, an email address or a cell phone number) to an SNS Topic, and tie that SNS Topic to the S3 bucket of interest.\n", + "\n", + "See the architecture diagram for a full picture of the sequence of events:\n", + "\n", + "
    \n", + "\n", + "
    " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Instructions\n", + "\n", + "### Optional Step: Create a KMS customer master key (CMK)\n", + "\n", + "Security is a priority at AWS. Therefore, nearly all AWS Services integrate with AWS Key Management Service (KMS) to allow data to be encrypted in transmission and at rest. In particular, Amazon S3 and SNS are integrated with KMS. To leverage this capability, follow the quick summary provided here. First, create a custom key through the KMS console, by following these instructions:\n", + "\n", + "https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html#create-symmetric-cmk\n", + "\n", + "**NOTE: When creating the key, you don't need to explicitly allow any IAM users, roles, or services to have access to the key.**\n", + "\n", + "After the key is created, you must edit the default Key Policy to include S3 and SNS services as Principals that can encrypt and decrypt data. Add the following permission within the \"Statement\" list (remember to replace the <CMK ARN> into the ARN of the key)\n", + " \n", + "``` \n", + "{\n", + " \"Sid\": \"Allow access for S3 and SNS (as Service Principals)\",\n", + " \"Effect\": \"Allow\",\n", + " \"Principal\": {\n", + " \"Service\": [\n", + " \"s3.amazonaws.com\",\n", + " \"sns.amazonaws.com\"\n", + " ]\n", + " },\n", + " \"Action\": [\n", + " \"kms:GenerateDataKey*\",\n", + " \"kms:Decrypt\"\n", + " ],\n", + " \"Resource\": \"\"\n", + "}\n", + "```\n", + "\n", + "### Step 1: Create an Appropriate S3 Bucket\n", + "\n", + "You can create an S3 bucket to receive the Amazon Braket task results. To accommodate certain IAM permissions, Amazon Braket expects your bucket name to begin with \"amazon-braket-\" and generally follow this naming convention:\n", + "\n", + "`amazon-braket-`\n", + "\n", + "If you don't specify the S3 location, default S3 folder, where all inputs and outputs for your tasks are saved, follows the convention `amazon-braket--`. \n", + "\n", + "### Step 2: Create an SNS Topic\n", + "\n", + "Amazon Simple Notification Service (SNS) acts as the event broker that receives notifications from S3 (along a given Topic) and routes them out to any subscriber, for example, an email address. You must create that SNS Topic to serve as the central communications channel. See the following instructions:\n", + "\n", + "https://docs.aws.amazon.com/sns/latest/dg/sns-tutorial-create-topic.html#create-topic-aws-console\n", + "\n", + "**NOTE: If you created a CMK in the optional step, make sure you enable encryption on the SNS Topic, and select the CMK you created from the dropdown menu.**\n", + "\n", + "You should already have created an S3 bucket \"amazon-braket-<bucket name>\" for this workflow. Now you must add permissions to the SNS Topic so it can receive events from the bucket. To do so, edit the Topic's \"Access Policy\" to paste the following permission (under the \"Statement\" list). Replace the contents in <>. \n", + " \n", + "```\n", + "{\n", + " \"Sid\": \"allow-S3-access\",\n", + " \"Effect\": \"Allow\",\n", + " \"Principal\": {\n", + " \"AWS\": \"*\"\n", + " },\n", + " \"Action\": \"SNS:Publish\",\n", + " \"Resource\": \"arn:aws:sns:::\",\n", + " \"Condition\": {\n", + " \"StringEquals\": {\n", + " \"aws:SourceAccount\": \"\"\n", + " },\n", + " \"ArnLike\": {\n", + " \"aws:SourceArn\": \"arn:aws:s3:*:*:amazon-braket-\"\n", + " }\n", + " }\n", + "}\n", + "```\n", + "\n", + "### Step 3: Subscribe an endpoint to the SNS Topic\n", + "\n", + "Follow the instructions here to subscribe an endpoint to an SNS Topic:\n", + "\n", + "https://docs.aws.amazon.com/sns/latest/dg/sns-create-subscribe-endpoint-to-topic.html\n", + "\n", + "SNS > Subscriptions > Create subscription > choose the Topic ARN from the dropdown menu > choose the protocol from the dropdown menu (SMS for cell phone number and Email for email address) > fill in the details of the endpoint\n", + "\n", + "**NOTE: SNS is not a free service. Check the pricing [here](https://aws.amazon.com/sns/pricing/). Sending text messages to non-US cell phone numbers might be expensive. On the other hand, the default spending limit for SMS messages is 1.00 USD per month. You can [request](https://aws.amazon.com/premiumsupport/knowledge-center/sns-sms-spending-limit-increase/) a limit increase through the support center.**\n", + "\n", + "After this step is completed, you should see the endpoint listed under the SNS > Subscriptions tab in the console. To test functionality, go to the subscribed Topic and publish a test message by choosing \"Publish message\". If the endpoint is subscribed properly, you will receive a message immediately, containing the message title and text you provided. If you do not receive a text, double check the instructions in this step\n", + "\n", + "### Step 4: Create an S3 Event and tie it to the SNS Topic\n", + "\n", + "Follow the instructions provided here to create a new S3 Event:\n", + "\n", + "https://docs.aws.amazon.com/AmazonS3/latest/user-guide/enable-event-notifications.html#enable-event-notifications-how-to\n", + "\n", + "Open the Amazon S3 console > choose the bucket `amazon-braket-` > Properties > choose Create event notification under Event notifications > Enter event name, prefix, and suffix > choose event type > choose SNS topic as the destination > select the SNS topic created in Step 2 from the dropdown menu.\n", + "\n", + "**NOTE 1: AWS recommends that you filter the S3 events by prefix to prevent unnecessary notifications. For the purpose of this tutorial, you can add a prefix filter on `sns-testing/` , which is used as the destination in the following cell for Braket task outputs.**\n", + "\n", + "**NOTE 2: If the SNS Topic ARN does not appear in the dropdown menu, it is likely that the appropriate permissions were not added to the Topic Access Policy - review Step 2.**\n", + "\n", + "### Step 5: Test the setup with a Braket task\n", + "\n", + "Now the pipeline is configured and ready to test. To test it, run the following code to kick off an Amazon Braket task. After the task state registers as \"COMPLETED\", within a few seconds you should receive a message stating that a file has been added to the S3 bucket. Your task is done." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from braket.circuits import Circuit\n", + "from braket.aws import AwsDevice\n", + "\n", + "n_qubits = 10\n", + "n_shots = 100\n", + "\n", + "device = AwsDevice('arn:aws:braket:::device/quantum-simulator/amazon/sv1')\n", + "# ##\n", + "\n", + "def ghz_circuit(n_qubits: int) -> Circuit:\n", + " \"\"\"\n", + " Function to return simple GHZ circuit ansatz. Assumes all qubits in range(0, n_qubits-1)\n", + " are entangled.\n", + "\n", + " :param int n_qubits: number of qubits\n", + " :return: Constructed GHZ circuit\n", + " :rtype: Circuit\n", + " \"\"\"\n", + "\n", + " circuit = Circuit() # instantiate circuit object\n", + " circuit.h(0) # add Hadamard gate on first qubit\n", + "\n", + " for ii in range(0, n_qubits-1):\n", + " circuit.cnot(control=ii, target=ii+1) # apply series of CNOT gates\n", + " return circuit\n", + "\n", + "\n", + "# Define circuit\n", + "ghz = ghz_circuit(n_qubits)\n", + "\n", + "# Kick off single task execution\n", + "task = device.run(ghz, shots=n_shots)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "'QUEUED'" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "task.state()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Task Summary\n", + "{'arn:aws:braket:::device/quantum-simulator/amazon/sv1': {'shots': 100, 'tasks': {'COMPLETED': 1}, 'execution_duration': datetime.timedelta(microseconds=112000), 'billed_execution_duration': datetime.timedelta(seconds=3)}}\n", + "Note: Charges shown are estimates based on your Amazon Braket simulator and quantum processing unit (QPU) task usage. Estimated charges shown may differ from your actual charges. Estimated charges do not factor in any discounts or credits, and you may experience additional charges based on your use of other services such as Amazon Elastic Compute Cloud (Amazon EC2).\n", + "Estimated cost to run this example: 0.004 USD\n" + ] + } + ], + "source": [ + "print(\"Task Summary\")\n", + "print(t.quantum_tasks_statistics())\n", + "print('Note: Charges shown are estimates based on your Amazon Braket simulator and quantum processing unit (QPU) task usage. Estimated charges shown may differ from your actual charges. Estimated charges do not factor in any discounts or credits, and you may experience additional charges based on your use of other services such as Amazon Elastic Compute Cloud (Amazon EC2).')\n", + "print(f\"Estimated cost to run this example: {t.qpu_tasks_cost() + t.simulator_tasks_cost():.3f} USD\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.8.10 ('venv': venv)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + }, + "vscode": { + "interpreter": { + "hash": "590fab68195cf107911461461f81d5c472d3d6127f579badfcfad30f03e5cab2" + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/0_TO_ORGANIZE/Getting_notifications_when_a_task_completes/sns_task_notification.png b/0_TO_ORGANIZE/Getting_notifications_when_a_task_completes/sns_task_notification.png new file mode 100644 index 0000000000000000000000000000000000000000..7ddcdd27a504b979dce90c06946acf7a6ebf6d49 GIT binary patch literal 205854 zcmeEuWmr`0+V;>Ok|HQMAf+%MC=D`5gQRqdbR*p-AXr-Lw9%Qw|Mq` z_k(-y_y70f?2Lgd`Bqc-?K_E032!uS3i4J@tZgB7z z1iEizDl9B7DJ%?@x3xAhwJ-#MB!Xk&Fx1|55PPr0DiLaciJpGt68eq~BYYhS1}o#o zz)%ULK4A&{>V5XC(vjd-NI?i=H8FI=H^^L@sK#8KIXf>eGb)k2Pv3y&6O$fxUzk@ip&*=^FE(ej1uR5(;Rxm4wkC>Gbqb`@5nm zV;4IV@Q>pkxt${wS2yLW*rNB4KoaPS%wJ#2gQ^~bYDK_NB*@VFezu7@{_GD!sma>E z`oWBUaEteJDJNwtZ=vu?VrjL9fncWY_52v1Efq%Nhgi006kBbusf^dbL?8;3b|GXo zT}&RV{as(*j%O*@;{@wn;2q!Y-t%UoUcpUcobi3qD%{E^m z(Hl5X3o?_IJYK{!^|bgTmJ$OAo)rqnMN6iCx=3f*%0l?G`2hzfS33j4PaIo#QrEzz z{Dm%zW#zSsX9tlyq!$%GX{OVzMt{wJS87)RJvWP>r6VrkG(Zv6d0(c1QOZJWr;p*V z*ohi*1BZ>%m>OhHyo!y0e3s~6?Yc+gxA#8dJr=7G-0Rl5UUe=PbS4Nw(!xhqgJPKzf4Oh#^F6=jE7`T;i3sQw%#R$5 zTtM0}8}!?U@~Jz$@B3X0S_1j|Vb~O_4}EADZ(h4n z`#!@c#tWW))7SZO&aX`v_-VBm?D4JSBBR?I_6_f^dLKV|Nnq^pn9T~$(skjhGq?;F zvhZe-sB&J%h7y7-acbM@RNaUpKzJU5rIAaKOz^Gp8Ot0!KJ-q&J=+y3-t#=X23q{g4q zXvy8xGSxx>8s-wcN^t!}eyRfQKJe<2(m}yz+}zm_Jg;Cz-(C~Op5^q~ujroRcBgoR zWCPbqizdl2tXvoJwnm|-On>8zR)iG(oCa?e1sRHoiIFZuE`eogVdHwE+Ylw83i@HsvRC46Hy#aPrT9_qq90OYzJ9%miNYqt zOu+XOZ4WvoflnCz6O1K68X3F@Rul>D7O5BRjEHG>HDFToy9^>1lBHRJIWBVUgVtVO zzkZeWNJG3*9ZON_V+YC^@_)Ri!tG-#>f|!`$p2gVS;f^zV!=~ z>CeW-)csIjUyB)6x~+tbhm(w{DtMmbYA! z@q+a3(J4zUrS-4EdAwc9%NIVf&!1G{Ut;k$bHB#bd-gS2UT92+`wcga(_4l)oCpa6 zLW-bz8?H=q_OMakzl><|f(h#2z<`t@by-r*A z#5@AhLAi)&%d0NMLahpOiuxQ?2uqE;V5}zM3lXFXr}_RSi#gpQ>!kvV0`F4~C4nC( z9IynDo{Zjf6~&G0tQ@DD!m_fmyzJOzQHRg+X=`sR_ji zS&bK4oLdi*Wh=4*`-j&24>Jx)&!3)qoby=*z!N#;G_wW7Youy)E<%p6DMG@Nam9_l z$rj7{_X;IT^G;P0X}f6`u;@C$tzxzbrV^{`T<_OKxPEX&bCo`H+(;gB%aj|e7{wbU zS??R2$@G%CAwba|dtP}TX@RfRvDH*83u&OS$=euaE^k#dn%0xnCO^~P_57Djf?muV zTMI6IYnk!>m$PoeZj^4aZalGNG4dx71Mky$)0xDq!vY@%J_`NR_37lXF4y(DW_B#D zju+~BgYRtnh`1a$Da?6??W5LAhqm?5TaW{=0%CCZo^PtY_}x9u++-0j&RH62RJTmL z9I?!P;IN$4T?6?-Oif%xoC^upv{z?m_G6}t&4tLRUH7sZd{8^flTu;IZR_lQ)+uFL zKK!HSN8dyf?|Ai3*VH2cvL84IdW2EAOsLG~{EV$fhHEf}UEJ)Ad0!srM(>oUu7^Yq{+l3pauSm0!uttp17iv!5-(j1^uG6d) zJUcya_gHtYcDM9+;lXt}Z9rDEFfKi2e1+-x)zj`W{JieuWRLYwaQ4R7+Z?LXxb1D6 zPA(QKW=VC#*v|{2s^lno67(?oaT#6qld)%CsI(|9pZ}y6c~tUb@o8IdRM&Wm3&A?& zGduzE^Vp5Pqv4Lc%o&9HNYS zAMBbr3#5C9_mNJK%7n^((xJL~-pV6JIrI{p;)QGX4>l+Lt@jzlI3K{_Bo)uLb!vq# zqfb*?3ENsf=aXL0>KQb5e|!=A>8E6H&4U?Qe|m^?b=2mUyf;>o1CkvQIg&1kq_NfP z<@%FBA4*%bC0@uxedoxG8hktG^!+3pkE+4Q-8jHW%(OKO3->{$3^&(+{rl^m`cd}u zdkhrav<8_*+r5|VpBGdQ+)AC*$x2*NwVE`V?DT?c%8R6l7&V@{CQy8-W4};5SJpza z1R>#!*Lvu$grBDyW)63|yrAly@1Ec#i%;gLF%0iXI-6HX15}!fnSvdSE^CcakbNHZ0-r&6^#_N3>6?L)V!>EqvlvYSy%h*a)GcZ z@?hrkW&Qreb;h_fBKC|KQI=GxRejkSGW)PbWj&u+=gegIi}F#fdTy6WgU$=no~nC= zAwA|f<}v1c&-9;>jgA*+)^9Jk?wxNae^tKV{9>tAJGUh^*UFUmnseBab4IKFtcAEE zR#Wpy#fU0GRn_8&71PAAfm`SC3&A3<>~X#7boaKblFf?#W@J1*~_{!#J8?F# z;UI18zH`NeW_>;#Tld1HVng8KDjqL~D&<(_O5$AYtYhu%(8_9`(*^eVg`qo-*DRxV zQ;3l<%I>HvXw?+-oTcTU#rY`NIt{$;whr>S`MK^k2i-$T!{z+3z+3Uy`>JT7&mS%f zlBXDsdJS4%<5A)ejo4cI3K#X`qHM0YzE)iZ!4g2Hv^zUHh_RU)tZ9W}1n8xl!VHJ9 zKjsd)rjnDkjoa|Ys@dFc^?{xQ3!@NumszxWs~fZ+#b8PCYdn1*@CY$flQfc%0X+k* zF+r$Eq#!il3JG|% z5CSjfH01xe8x59*@;}$e^T2N)p|`@4lECL%eOp6AD?1Zw`-cml+c~jpB-HIdAY!`P z7m}nR?Jh9?sHu{gy_(D$UVUpz7Ci&&_l7LamNvKZfcTwxflEt6dp)qTrG=Fpud@Kn zUw7~V*SBA@(t!WE#okc80dX)|S9X`&WN+{hx#H{`l_$ z|5{W1?=`tzaNk|>&M*HQ$;d$F0!?%z;5Gw28e~kcH|W2;A+hiLZ;OL`z5tW6secLjuOorkpx)hX|J%l(;7kyb?Hgix zn*Y8qGA2IwfbzdmeLH2)Q>Zt2lz;I5w(ncAG5(M2Kl%56(*Ezd_J2zLr=9?I^MAJe z-#yF!xwQX0ivIubCk>lJcr+Ik3qfqFxG0XVikByv#_;V# ztz%DCsmkj^NXuQOrTZYuM)pX@p9Oas9(nO@;(f+pGje%x*_JJ6uaM3;>ei9k0J+4n zgI->hqESqHO;bI;zC809u$bdnXHCvl(EQTiwOMF=eLdAY^ZfEE*9&@j(?>i_aU2(j z^YHS-T1~Kx4eSlI#liiSTzQl3(`CpZAKq^!Zu$$UGopbjfG~g$EiE!27wip$g=B*a;&?8})E;){93HT!;kY4S=XOBon z81IE<`@{Lo+IGTwbbs<$oIEr8omzAD;-W3}gv#ssvVraNqV1;3`JjPG|IOTv?)6Q} zjaT~hI}vSrkuWhxQ3vBFm6n&yRnt-6h56T?y6ERstrtpV9W##rAmSrM1cnxfxI2b{ zkP-CnkZiHHeDWy#wXKmV9@exL$vr#PZFi+aU}(5~^}`mXS(uK_Zd)}OkKNlf0tUCXDr8U(130Tcq#)zFjO{kWL6Cy3T8nf z0at8UC5Lh>4qrF0EFO8quIh-u7aUA&>H-}~HncaFMIh#(7rHhZa0>*BBAk$zg>B@F z6pDzO72@hcl%+~CRNv4Y2<~z=KKT<5K_k4eVfne?xk73$;|WmlC6JMj7impUagmTv z2_F<;hc0i`5)#K=p&wCy4=yllVj+bGdxl#y71zVnDowtnURP(2vB+B>u}V6UK+Y$y zBOGiECTEgz%PkT^HXFqrj0+0DdcuLp?w}UNr|(V*i$9xDU%0mdN0%fW)H_M3r>O~0 z5PoE&e7S+zsix}e*6QOz9o-9bMr7YR&HhmIA|=^CS9lB{Anq~*p9|-irp#%vR;_AFhV^Z(^_;i z#d%m|@)Hpv12>(9Zz_xq1&bnzm!_(D`yfQbQfl1vlz*;Hh&+Na?(y*(hAkF}4j6VH z0CFAu_sCI@F==UMV~SQYH=Mublgztbg@k5_T9+8Kn|G0jHhMPZ_OZN#^Egfs=6I3! zi;U@xU`J~cl8-yjUu1n0wXb;|{s%~PMlQf839lyfO9NP`cx!9Qb~eueTl?%iic*zG zvTrtiucpm6)b@(eDzEbm@eHno?&s%p|f;K#36x5)%Y z!zFA0eN|{~j@bVbWrzUNi|aiPfkxi0qwZ(JjR}^o_8x{>jT9uJa_k;G(Pdpf>U=v! zTs!JHqvw@4JxEL)_>#ymz66r<{*pNik$EHxR!7BzMP<-&;{sq=vyp{4!5qhctk!$9_0oikecKhgrVFnk zT2uDzd(F|$$>|p~HN)jx#n`YTe-c`R(GiW9>M_lt1k9rDi=`iL2bry#8n>1 zzsbu4$rUVa{yhBOJQg+#;TZa{soK}5g3jz=jpbOy=s>Zxyzm?hy}@&l?8<`48L0?6 zoI`?z)B?fVx6zd+?Gjo=!20P}CCurj3bkFd?9-niNj->b;DF9q419J=SfLCz4JtmP zXrnKJSfjbQQ{t4Z*sz|3C48~@*x;?!I}7TfYZ5qy_UJm;%|EIx<)>8&T?=R5$e@B| z(+u3Q1D^5Vh)VDcoc+-?5tH#8WX`fN6H#<_{Zw!6o%5e)ND346=-`XT`aHcWotm=` zR1t_w7(`##;A4VeLEalac}TY4Jmnx1olhGWwT{1v^|ulRH`-Hdp)0s0c30=sYenw$ zjH<1I7bTawEmEU)XFF}=Ps`1Qqeo}lRYwZ6SCI8XJrcPrX)x^9z^SZSGzTQ^bFt;w z+>g2=ht8=AB|pfgxGsxU^awa1w9ijAAo&__*bimf#WrQZuHS1nQ57?8x*LuzdSx}p z`-28fA%NGESX5Fc{==2DVf}q5bKyo6aP()Q(iI zyqEwS$4Ep$gCg$Qw6an6rCM*zq7;ulRIuuLf_i`Z_hZ{Nm{(0S7Za1_vioxdv)|cz zriJA8Kle(EdRPmT{4Eb^U&uua=(lzCV^BqyMy14QJDJk@6;>-ud!BgIwPQ)h##rEF z)JSX(vM#m72)YEWFbt`XJjq7d=XV9SA$pku@A{$mC+|`ZHmO{}#2ESBEH|(*rbc_;kjOr+qgB?v^S4|1k zy}Yz!9GZ3&^1Qgh<4F^zs+jb=D2t4175qkhAZ{CU%w50Pxv`YoF{Jf4G%m&C&9UY1 z>+@942<8#W?oP|Kr zHxZyaa*Z24liCYu*N*x^$eMT}7zL&`3S<-SO*Y$go z+@=HHa>%^~c}h$=*m*V%qZX@~SYnWjwVC_E+|*K>&t0mnQV2AN(_`J)uVl8uE_2D< z4Rk{@mNJYf<2*DgVB>Zq?I?Hx&q|j)GcN`;v^B>XC~}qeHKcG1%wb!knQ!80c4R$O z*GF?%Rka<49W8U2Ra4mX1KuQYE0mO!EFL4QS-WIPA$NS|pbkKU1qW;@u(C{0R~Fw# z=@wFCjLfSMKpU~f{6$OQQ)M(CLqCNo(*)ZhJTyCgktES2BX$^gNXc)G5j!OoXZO}T z`>!M8Qdut?d9+5cx?rJwLrcBUh#d+Rxldj~0eE%F6BSdc)f5A&(=J<2)h|X}dFINn z7lSCLmcCwCM;YrnD_hlWy{c$XA?5%4m`7=Sv~b0DGgY-PLUKnYiotAxY}C&if&xK&DoT6k`fJro3lQz??pxOy!NZ$HVUVtL;>Soa+j54CxhNep8cc! zLc>&#;|N>|K8ZG5iYZ&Z?MnSaBRH?sMJlhu4`!`Od18nLZLX&VT~8v16JpY7#v?;I zj>Yz%hpS75Yl_xkVudj!X4ED)1j{VBoX%f z6f(*NQbGZo{8?epXV|9#FbHJ${`fG}amhlF{qO$M4sj}2(&n@Mj!l;m=MKdVru&jD z=SNFp`r*<1ILF6)vl1kma71AY|IP0w`}HHzlrI-G&SoyG+ZjriJ7Kxjk(%X3`&ey9 zv9eR)u}tW?jK)c}zDafif(FatcJ|sE(&R7=j@+(2k8Aq6@J;Gu-m>A8EFlu!RF8qB zlG!1D7VmP0Dsf#ZJSHj$G<1k5c^e(!N(wj+ThEvp{V;gn40|3Z=^;LDgcU z^!K#1G!wq-pz;p7IGtxLfp{kjmPalldFr;kJjPussa{{ZTp*-%ub)4%pDU*VkLJ7; z_q;k9T@`)i;J(`b)%Mpz)k;IpyQvS3XslI_Q7bwpYW#-xd7MHJHwJ z6w~y|Ec?(#S;XN%+~8Y(Z&kZYWxGfa*zP5GDbh=3?~ko+&0Veb6VEq1O^n zfKiSQD07?t3S%Rl-(f z)pqs9<@okl69!c@bsXM@6>EW%hKp@Jp5-t4leJ=Dq>_a?b&K98xcy|9*NnRE$5rk> zd=3W0sUUd#yU^gRpRRj{r&&vRrG3A_)%`tioo>sCvIv2b$+s#6T2FOZH0cE|PyO7l zj_y@0#cD3LCR#=FmT#DOC-DowcB)o%AUQ&Ki)ve4FYmY)sRv*vi%ifNrcw%^-%I1A z0B#!-L#inWpMzcwAlLCiRMrZHD{v1O1AR{#_Sa2n`))v$ErN z<)rO_=3{wvaYqfB*7ahtyw{K7cQ2W2rEco?PojDw>7*N?wH-}qhZqD3hjgRf%JJ$< zJDZnW9_UuM`hU`PdXM-a=zK9#p)Bok7T;#jQL;3+^7F-2Jj*1UgxH2v{du~Ht9qE4 zX^34PpQ@vIZ6Z_Z?yzdt()q^CmhZ@_$EkpU4D(&sXotcW5Ky1o+1Xe zAA?N7V(V4lLb#xgj@K5)xW~zqw&W+k3OceC(zWC^30oY;8ub3~P^R>X!;G9L$kSv*z{$DsH3` zOmL@FBZiW*nA%Um5za>;nFroAw58CXO3PbpC|b^^Iw&@U;iR0h_eqRhJ5!3Jhq+4$*S5Xyl%~3K6oIXdwF5#!n2)i<1)IHF0&ng}~!*6Qu(7!e34xBn@Yqf?iF7>zX4?Pxp*XlErYI~QM~ zN`%OdaKPeNbqg|{C9G8(QlG7+fBtUNlTb3_c~PYw&uN)J?z;LFaOq<;Ytto{xl8*M z>EV$TN3BlRHnqnro-%GEc$DmF0Rr6J9vgzz)BL70^>vyC$D88?Z6*GPh4tqNf=HdD+UNa4zvrV59<21SI&iQ;>($qP=hUg=7}Uhi z#2cqP%~i=)^t#~;n5O4*SZD6zf6;{2%=xQ%E&zvYO-(IJ@CjgxB^B=$_Zm^~qUFkr zk2|uG6qR&&iSBjGTpx3}?9@HAs#|?%HvEIme6)ZL8ZM?s{&zs&!;Q9Sm*Np{Zvcfy zmW^0AZ61JhOuY#L)ZWm?w}>b7cLqJLXzt*o1imCnT}sDayGdO1|{v!jDvg z`R^wN$CG{E9k(dToNSHbPmeEj+GgARCAqeWYge|zj?i677dIZx0HI%uv_3?C;41CP z(0}CoYImV(+8+CdLqnL8C1YLqI`zfYkjDDDHe6$Kw2YtTZ!qp$kv+sbojuL5OZ=%+cOIxW$tIHI^4c8h~ zfy|ySG#0v_;ceCh}Dq z`If7$*YhiswUN3+HB;;jw4|uFqMkz~4@Y&}^07Zdz#i9UE0aI!Tu&mMraiMn`V6tX z@-146=32lttY`=PSMbw9s<;1Bs52l(|%o^Z2sCLBi|ZpHXt{>c+_#J&#~nsg$f) zDXu?`q1WneU@n``pW8l@%5GpU+N{+QIdjQR9Hd1%d4~L({Cz_SL!V!rXE(T>%0f2*4*|M;u5mhiyY=Wq80Le?bNMK*8+TWbebVJd~+9_*E+s=&dH``5ugrBtXigDbKG2Qje}?|$C&o(C+!}h@`y@5KlK~F%GYhE z&zmXIv8rD)!m+T1iBr0WuneZOU^og$T%R<=zc2R!yt;^KrL^$bULcjWz>MqBdQD0l z0C&9aQ}U0^B)MJB`r$3Y5!O*1JF+ADRGG_jWmZ!YmQ1|ukm7IkMJc_GlknCnHhA6I z{_#XiQ9ot7L)muOu<3E2M;YrlUxB;*AR( zGimi%->Zu}3)h8u6kP7cDU1F~`Zr&|Dumy~`zQ;hNY*_!FTVx4ZC8mG)UQ9oDay?r zZ(UXY^yE$!4f+(hKtG(NMdnb-=RGHK3{Y9t!dl%VL_&qj0jVvGvaJG&pq7LcSC5b8 z!#}>#-FsakgrZ1-YEEO?D(9zJ!!Vu8n5@Y&O7 zb32%1{N|OVhE#*ToAia_MSJhjx>P-7Tgbzi_9?vZk;EfNSl&{8oq^~05fpAq@Y(DX zQ7bCl(WAXdRp+)nSykE{&o{ckc6p4TTRs{ftCvaQ9vBvf%O8Gv(F@CJ`y9u_aap@j zP$Pw!ODuMCy6}0ht_J;>ms!2!dv<_LaM*e%pwwcmW>_H?+YP!KayNQ7V8{`=V<<@+ zKYaDb^K6MEr?AfT$V+S=uP#1is=Kg^dPL?hkE<+ZpnZspdfH|oY(n@fvxjr2)L1Sa z2+(S%Q)1Q`@4=3^QwO}Ahe+GCYaAUMGOj@5%?DjKAF2${O3M~o#m38=j_QO1JC#+n zz9O-64Iu8PV%rtBe;GvW3qr{n_oQ)Z zw9AgQp1QC8G+~j1$ZRavLyv<3cNJNuP%YF4f`9D0l=iF1YElrlVJDB|Si@iw*~FTz zq9kl$7NaA1Vu!&vby`>DX1`_{x+RzYR7(_hYg##Bv$$r`Wk#5NIe0~Cvmwt6Y~7#s zd;R44`eG;I9fHqjXElVXXI(RY?v}H}GUPdR)~u93zdd)q6tv8ANUZ+)+??bYmB-TL<#BBDulF)rKDeegavh5KY?ZeiO!C-ic~535 z2wUn$7^e&;uHuYc(z{Y^$Q)jR&Yt0n<;Q)1;QYAxow#Jlt9I(K6r(B?^GsQ*v3AW} z=dPkR#-d#kemsOumk`+DXEWadr%2-lfag8P$36CT*f7Z1fwa`>h@q*;SwRXVM0_kgyiQI zrXSBZkBaSIoiHt}HXQXozc4y$V6uW$%p@)s&N@c%c?BR^k6-bhOdd?=J9_gSCvcdl z<8C)w<>GBom`RMR_e@z-UToKB7p?8s{TgKgj%1lh=^BFRan}Rh4HP9t@xS@y_>5OCoXty zoxbJSelDwaa2Nz)K9uiNJSGr(XV$gNJu0ro{>)2oF$`B63WmlEfIrW=* zxqUb!H(K3P)Aeji!GeyAUM_`MoczPbhIW9&OeOdQl^R$HXnvNKKO}|rr8)3ahoXTw)a%sGZsb1BMlJB+pNMino?fu8UaAWKd=JxNLw*&7zdC(Kz?VZh1`$-?N=oG*A z$JV-f=s5N@_IO)+q4UM*P>R>JOR*v;@tDTrPXH2M3p>7!TpP*?^)E{`hg$lf{l4Yo zLNVng@_;Kff^Fhm)5+1O?hbss@`HZyJ`wSBZ>r$T5v8YMmzh=uqOZ5t@hIMDkhGIi z&3fIgm#0l(#ZcL<&d9|@jDtVBM(5^;dDP75GRe){Xu<6&e1v0 zD9|Uf@<&Z_9!O^Vm$1%JZ=g0At)1Azj61ifz$=|k+G2~|wK@pfFW-1qbOkp$({1N5 zmR((z1CXhq-e-rb6xj~T?Ux3mdzq>GhPj*(KEsqgN*Mm084!G18wtQ6ZJ(BLjH^4D z5Oy>jgH~vhL;5avA5?k$)Zbqt37y<~X(6vmU&k(Vo?=@tEwQ7CWs*&STcvK*CQWSN zg@v8Fw-NX8bUu_-tN(}Fn1x!oS9F9^RRC&W0a)1yd3`0LU77exk3< z&s<~PUbB+oR!uqKSo(^L6Jk9#!`QdHRk;v8Xq3tsS;MI6d9|gQxQH$Yg_FE6?v17t zaFePJ=;Kr?w99p=Rm{KgA#JZm?Ym=5KUslxxQ2()H1Y#Le&ivf_ZlDit_H0ZRCP-4 zO3bOThPAgk~qJ%>>g-SvnxHMaE(e+eAV;*LOu^P7hWBkpPDv52EOYUlVDC9~; zMCa_SB|Pykce>JQux7}h`Jk{J2%y(^e_iYh)ntuO>aY%7UwmcR*h)X8_XOPP^>JJg zH`HyzliggUTM=hkh**%);kUwmN^HuQy08s)^i|Vq^^K|xtLCioR?lJ>0>J^m^SPG5E+B!lVpU=sUw!bIS#NGjMk9A@o#}$amrf;ouh~^e z(=?c&EU@@UgXLbhgE}H5X381JuWB>8pDo4JEae5-++1J%aur4td0x4y?zk*wM-Vtg#@1}(O-;NzOAhoqq;M7YFainp4ZR2oy4#C%;H(-SnE zwzsZZQ-@cCt>Uo=poO>_`%b z#^URPy5kAy1TO1sE27GAF?-+g!kD(A=hfvS(eS0K&{4Ini=oW`j}c)+r<0mV_Z>VA z5XCZE&~#L)qsC|Y{6E@NZi~Msy!ht*8-^_!@a7}5@Qrr8E@> zY$%8;+Mv#p9(z5KJGQ@=J^gb#0}+>Rs`~WY+TO+@>e7Fb(?ZYdr)HbZ_)BXxH)fBU z=pvgp{C5`wA=9DeVU%2GiQz30veZJsk8jIEN{vL{slXtw^mR`|u;SbGomN zwC7evKob&$Q~ZbD=_HsJU5HXa5sY8F+t%X7HI)-O43$7952N1P#{QkWBoM-%0xt5_ zebS}^QTu*5miR{yat5Xv&Z5y)wW*_donM{BSg5Nu+r0|-$;8g%P3wNmiRKxYSR>0@ zIAk^GhOR=n7*msEvHhL?w2lRvp!*0J-|C^|I6#!Uddi(F4IriWNZ7Eg0}`$QCQiNk zJ_ZDU%wl6_xdEA3-R21jIAE5$$U0;P&3a^Z3k4NLHJAOP)BZtMM4cl?`o@B|aE__< ziNrCq_VZ@!NXzPi+{6!EB9z*!Mu;-p;B7A~peJJ1`Oog}Z$LSX+`owtS&|;8CmY~2 z&jCiVhRg!BLO=-7H}(^@W3!bvIpXyJ;3WG~aWV?pGln9@Is$)V}^VB|L(TfOzmnp8Z5(Z9SUT#}44Y zz%>igXA;oUbkMW;y&UR_E8b(1erZZyEC-lj!xivZm$Pob81k(9Ns{|-)oD@ASZ z@YgxhzT{rK*nnrV+px95{GJ0MAvT>TN+Q0y6@xsWd1>4X{PxFl{Tb9G=Ru&kpTTm- z<{c0}(gF4a>3B}@cM2G|l8`}qwUS{}^Wk?qHJ~bwx4PA7U@FL3YTuRZY}x-H(tDTZ zGZzwa2NQ5#tz}CDwRa;i>ZHFYbf=eWK1)Uu{GR>pR=_Ytz{s8sYmr+709{YUYJPUr znBVl-id1n0k=s!ED0&{${J~cl=mIQJRNwhdkdVtzq0<-LC7SsMY_dR6y zUTJ@o`A0950bak=OgRt(`=ixjV_!J(MmHNbeZ3n}|7GyUJaSAArGhBiUts}u9|qX{ z;7c?NUl8)%y-IBCx)MwU6doP+Sm8f7AE^N(Sy4#ALkf&JWFdZC5&#cBSvbm)`urxw zMD=w=)-%)3aC~8V_y?z;5g-9rDB~j`@Y=1vERf^|1EQ4y(o~xjGJ3AyII&;ucZ!36 zC!j-}T;Uf`wE7lD*z-%s=nJsB01ob~P$(~^ja~$9eml=ybps*)0?22AzXRL}fW>9u z#B1jvzo@cz}Gvd}<|E|SPUo;P_R4cuBf zkyt7UhM=CBzSVg7gyD~bDJBu12_y=)O*_B^gLae+6o~f{0G-IdVx#&~F(J2#sp9sb zEdI9TQGKgtoCZdGtC*rMYzhCJ-Khs5|Bcsk> z{$=s+vPBlU%EiWFdu-kg!OH4|DekIo--ZuVU$i#`0H9~ zdZ;TXVa_;6QBZMVlhN1pi)KZ*H0$Q$s6p0DkRq#};zpZ_TiBVI^CMAY4u z03_59R7PbrktR%JNd|z&_A<>#K=H>EsM`HitG=s2P%}VaS^pu9-%#05qea@g&JE;4 zgT#C9;eQC(`@)D9zdw=bqm*X!*&mdGke`B~c#A|Pw76{gx7rC`&6(lSEI!_+`5B>mLGIj@toF zbxlx zFooI#S!WJqDf2wIE97Ci zR${oXWB_`H%Jg_3sDtX>6KZRd)k$P`t;^sWh{B(}c$jBJ=@vM|#LjaQK+_}u*3jG& z`*ZVv=DLD4aSVX1-)gSut=Xvbbaa4Wj{z4NKhT>*_s7iPpwt8QtbCrK-?u)bj&mW1 zpxqgXg_->t0=j$rVt$VY?i|b$;z=&M1)RCdiw5}Z_mQ0R2=K820W&u$<2DYyJ7VpY z3EPnFvy2kJkv*%RYzv15+yflhSDZf6yQT=8xQFV8RJ`A&X9mu)B(r;;!vu`1wrq=d z0xJeK{TOkW#C>jeH*{$^d(mlX%y(+fE~g8JNE_zpeNQ>?`ti^Xo$9*T10!Fej*<-q$zo7anI@CxWzTf=myX1T0A$ z9DTBG&IH*?KbS{B8?Uj6WlrLba7RY4T}cAI!cGO>mST${Eb^KV^;^;_=h*aT*ITu& z6ytA!zOx4#(O&}YvLq4H8L7lGGcCQJp1oEiZ66RjQv(h+GH?RRH#SR#l3mTRHw~-v z3;8TD)yFhYcqK?X*IlYmX%~W6Md0$PFZ3-V+U-w>V$=M)taRZ?VPp4kd>y82`c-yU zHpmlqWFpggPE`8a+MNyRPYe*n5QL+{EYXts_FvHQz$*`z;GIZ_0F zRj}fke_EhE69v+qieuwXfwbpmAZ)6H!6@4iEssvByXwz1!nfTrkBLX#jT}LbFCh&_ z7}mdOw31ioDruTvAF(0*I1=(VAG*dY$SfYPK#xZbecw;{Nc-01uTETltJc>Xz)rCg zs35b3YqpY2+28OEZ?$0OhjL}=FI9PAH}C?WSCtl2h`YD08NF5vd+b5drw-Y85pj#e;a>0uX9sFr6SdrE*F`XWTF0YG#vV8=Brr6); z0UU;UniMA%){*l)8QAs&$5V!n&~t3(nK$MGC{_jX)M1uFHaic{r5xqmzzq1PBu85C zqvcjAe${r#m<8E@&!kLG4h8e)sH+aLVir=yUf!{TwI_{rR)bj(o~XlH+il=n`h+jx z2AmKfmh*d_?Juj4+m>z9!JK!+tn&IRy}qjV{=WqPsSrAEokoj25+$h z!zlD`gE4&yq%O)VRAisY0O$PBcWNFSRCY=4R8D0Jb4|Hg|r8-v)|Ujy&#`Y4`!Rcy-%F{ ztAwc1#T}8jT17~#aZbYoQ|ns_5vVDdLF_6lyo8QWwnrB+x@p1xezFt>zr}or%%z`$ zP+(>p(ulWE@DOTcQT7<|joBI3V3(AFfguAW*c@+hbJL3a@TYpR?7Z6ige_ug1 zkWy26FI{B*FLw;|c+T4CJS!(|OEA6lkR$U+tjMNdAXS4T@L8Ta3Eeo#J*z*nD?(8X zmW7eoX*OkWqP>_rN?(a$Idz7K^^kZqspzBqG-VBEwgGk0!s*p%axdS>le5@Pt(1r?pY{~2#f^HR~viJba3ZY#gO1S$}L z5i*C%vcXkvcxB57iCfA(ioz0CGxQH^W&alQ67B45%oN|}vP9c$L@?$ENXN25Uj`LF zoA%a|Hp>7g#^J%2oShBpiwi2%4gwF^2xf@r-dWqud6cxru^Biuhij&*HyfyNk@2XA zsbOIwFDlMFxr;`;S@AK~S!Ir%P&T|g5(QfJU2c(Z7KED+AogveFHhKKEZD-~#PqKa zS3+Y`xp|(w6I%FD_`pO*Q{FSI{EE6Z&GC&I()M(~QPxn53I0p_0VGlx&U`N1W&Xihm)d9i!zf?`xQO23{*m|eDZ8~aAA0pH?asI}yK12_9rPmaGJQpQ{waA(S3@)?Mk;U~nBm#;c zzu@Kyc#Ejk0V`?zv%wJgY|`+*JMl6HD+7^7Vnbg_&#(VC3So`&2C+;dX=-Nw;K;wl{}e_Nd& zt+vf+HXAAUbJV-%(r#cmnZfkMqB|G_cu>gopHHlb0CDQ=BOw5^qi*yU{lytYf{GVS zz9m`v+$V9)&Lq6IB~j2$2Pz5_~AzCeZn-IjIB zCn=*m>MsFrj>lY0UlI}vZP7J+A#FFr>%QxZ6dMatTU?DMMOYz;aZyqq0Q!lnp|~>- z)avKS;@OWH*o~)G_LoL=fo8Y-SceTRsiSq}49{fV!7|eaYrj1OdA=ij1~ZlI#uT-H zW}Jrz?=CHz#nP9Uy|SxD&d^WD%K!6!0kAl4^U0T#*p(griVhK2m6}9gZuwl^hGyuD zdJ4fkjRk-ENX0je+YS%<^>O{5Dt~z|(>7=14V)F|FKu~K=f8KnHSB)S*Xi3wQgt&h zRuOaVk#TK&gBYOBTi_)PdUJ0hRHf%6)~=6N`Fi>SGhc!9Fm{10169jAZ;KSy1(KqO zk&2AL=XiObSS~f(9uYvtDkxX4vzPp_Z27R>QbW?y(}$_=omaitj+%7%nuBw9>Atj@ z0fX8(&2p=v$+sC4o;0tS#opAE*W$fj|F#*hybH2D(GPyN<4-`WfZ7g(Zh}wIVm;5w zwVW0xSh(RRWmMH4Taa?zI*FUsJ3ScB@$~5E=!h-%%8wd0|9@0{Wk3{e_O%QkC0$Am z-5?-cLw86wBHdj>iIjlS(jna~&5%lW=OEqPG4PJN``i7$-{uoDJaO+i=bn3?fVkxX zlYw4LQmIxX@Lg@?RExA*^G1^0Zd^tpTiaFediTcz(IufqkDZ=^YT&9vuf#aKZp7pS zdCd1E7a5~}HznruB-{v^4yFY97H~kL(h{I~+RyX*Kn+9z$Wm(E{|G#z0m4Iu)$=%F zv%S#*3BUp_a2OIr+UH3i8wWVVFFP-(4J@VXv=GfzXc(yMdzBv`FR1$xKdgPc6yMs~ zvh#^j-TKx@-}=nE?YpL%1a}V2X$5axCOpV+jC#josF9ZWky>ZNVkTcSceW?FKyJP4 zmgV5#xqN9))F?V$&9wbs*~#d^%jRdDlK(+y3d&}3HL5LIlu~JsuwUZK{=DAZ8?6O> zL?2rv(*JJ+0!SX=xlWiTR*}ejQOw2%&jv&H>pj;l zfg+oV4OCwkZ&-`5#1rf7+FG`;W2|dxHoV z_^T`0vvr@@zyAO)3=NJnV$X=iA(WU@RlaK7vD}+1fe|HhIP@BvD8<=Tc1ZGW+NfHR zSCaX~WdvTA6jby+(&C&Vs0A>Uw*eFmiEv)%#PENu8aNuC#(e$`zxZE2m;rwO7)Puq zY%IR2!u&i;QU`{TNcOg_p+X(HrhM@uzHMb(~kX=_B%T zXy^(y=P%WCW(laHzRxh4)fX@BHYS&oN$jk;&+zh^U*efMw>_Ss-tHO?Z%h4)FKuP4wM%Galr5gOVW*KXq@W=S#dxH40%m>=dq<4@9or^J|mM zX05J5-)dAv7`$Hj_Zx*Q`wV$Z-kd-N9Zc-KACUg7P5$&J{dm-bWT?814=)D-Yt#t> zus2yDchFoU$9Cd5ak?{!fKOzv%xy3?OXU6X$w>Z5-qkRGS)Uk(7bba$k7G_$I0QJ4 z@r7q}CRW$Y5Yv~9u|aA6vl*Wyhr4k^wJw9ryF+*-tJe6~?&(kzd$Aj;O~bNpPrA$! zXb@*%U)o4%1Ps2;CLB(p@ugtxIfl$ERYY&yE3Kg{8L|KOyb z!k0H`ph~Q6?~uzMw&c_?BrZ$FfP6=_=OU-`M&z-QYekflMF=hn7gxO{DqjRp`LyK=t{?t8WTj4k#= zd%#=nB@Xj-5@l#TTI?rQPPO6y&GHuHsSW;ogOVly-|f_?Stg&t@augJ7M;q(y3yCb zxu=UsSFv!7v34cPF@ql#thNK?Z=AkAJk57Cpw0izX)V9xz-e^gE+;Jd1TT`Q27hRM zV+<%@WNtw@&vPQ`|9W?KZ6||fY4fQ(n-~53iuMZeHx^Iu`JV!Wpm6)}DScLZ&Rz93h#q^6-7-;U-n4gbU9B$-5RN}k40jZaR8k3qm zkD8=yFBVD@=97{Cc1$S!jg-?QWQu4(V$X&wV-XfcpEi3uWZMmsMi|&Vduoo;?Aqw@E*~m+!WG4HZw60mZetQ zZ?tI@Xc9NrN2a~)9i$VsP|;|n_T(W$XrpPe*=}`VF{*x4n|t!TMbQ6tOUv*i*yFxh64 zkSN4+BcK|S2B$TKQ!brv;6Bg{gl`$8MNNl8Ra@2-t+pMS;DAR)n?{p#SF!JCV;#(V zE0uivQ%=I!fwqZ1omy3!PZG#!+2OEs-Eyfej1tL;&YQa}_o|l1JIg45l2QAaC@E05 zP2AT2DgOzJ8vD_N$IFE9IfG3%z(OXd6-Q+23)!BVT7y`bVHS*}9{~X+&|Q5c5JiKMUabLgq?4#ebn?9jXejV3f22dJkVtn$q!fIn&0(W=s+2H%5=PzW}~6%_4-;it*R`4k=Gu#Sd#rw#344OXC=dP(;?v5 zBEqU_=NvRJIvN*>me|f%6Q^!GZ}8{7@7(+j+q6WTjyA@`2qNWuSQYS$amVHRK4;fo zdNZd>%c3vM({hXZAL)bK<#TNa9?@3tu=amIEzkz3jiP@I?W-`{5G6j~YFKAoRcPiVx17#2uYG7;XitB|8V`rao5- zeFe&8=T${l=XMF3X{0C4kgPrt*A91)9~zG+!|{alfBd-}h;uyO45-ZlJULBtcOy{_ z3VSA%0-vsvo?eZP#Ed3*o`SVz7Ck_wZx8?RQp)^99)Vu)Z(ryn8C|XSh@J&%<%a?5pn4kkwlA;Lf0 zd>1<0P`n0jFav+V)JMbu4?+y99LWV7Kqh>9Stv65JT^Q>8Rg`%_K1SIF%}&tb?Kdw zXb5w-Qiz)o9HKcqu{X?|9E8Sd-PDBo5oW`ha2BZKa7Vy@0$_VuefnV>pPbB~gVnA! zD)#WxRcwE#s#%&|C5^SKoHg~LOR7Y#&hkIOLp2?bZz+qX{r;X*pk;LrJYgbj_ojpR zrtmKTWizd5B2&<9GX8zDW8<_}eJS?N;GRO=P@iU2oX8d>xz2I*19|Y)zD8+(yRRO0 zcr9h5Ef61=EW&Q^pE`a}KEAU^>{TyMvs)qEN{z)LLh}oOP(@w10I(>ObfNsWmaA!7 z@k)3$VXQ@Jd*oRO>v&PR_bZuxCE)tVyOAa)IeYGrc_eLD^}61XK++YizQ3&MfTfqUt9?QZwxiHNTz2TSqfe~2fR~l*MF1LdnJXn7t7YXN-#LcL#5YB1th&< zNW9+Y{{;QYVNkb~k7Ucs~gTp2X22rA#&X^Jpb;2}qe0!_kY1qOe7i)#eY$A0|t&Yl=WZEZEn_M6fN zc@3Wkzjt<(89q-qHy6cjDq?z-&Fk^!i-b!nD)7}hLQ-E?IxJnt$B<=Q^-8(6a5;(o_Jo6Y*NUN*{i3+6iUeYVvlaY#tr(dgF1xy$d>Y(s>10?v)WdHsH0KK(0VI3P|se2GQf4FbpI)6sjK|3=L(sisd@grkyZmqgW?~4^Q{iN@5|h;%@W_iW}O4;5M#D$L$gIS#;932RK4L%{ZqAM zqhFMhLg7l7uF~t;%h;S{WL8vB8DF3QQ)GxQ@BpmmQkkp+bbW#x6aZD1_+BT`2yXYA zl7FuCl{~^KSBAm%tNkuC$}G!^fZ8cbKh zs+WsA;@xyY>Mf!4C&WhPMdXN+b!JKL7U&o&ZeB$O=+Ff|5ylHB_M8uI0`xj2?rEbk zRv2Wl=C;<~EdNU%m97uJXe&7@@BXjX05pjH^Kg2KeYp8p{xgw1Txexth4(k$7COUY zu+NcWWeU;{G63M8QgVDbV8;Ypuk?KKoNxJ!1kAT^Hd(wjY7tOex5FN*G1jakSz7JB zH?5LI!JRvN)Ae#lfUbZQFVGKrQ^8ndV?L^>};#q1B+n46yBnWyn3ad2i zHnS?d0;V=Ug3i*!0Qv?ZtUKgo2p$g=;oXg5-x;zwIHpNYkT+|}%68JzG7G1bt59iVCzYAe&9laGN7&#p zQZwpg8d{WDMs=VKRBW8*>tn|CRej+AQSiE!f33zNLh3iDx1j$Ijmi%Pl|_rtYFZ<> zZu*s@lo)^7%TuYA#rVuN{}Wl__0~pn?c3@hB8S+=1L^QQ4CQ+F+0Es6=V_ z=a553*nqF|X%)N|F}!3^D??E-N>vdb$pVg$o)e}fi%g+ z9^pdQy{+#O#jS3VN6D`%oI9kvnnZYFWA?1N+`c#2GOXU4x3k{2sCkx>$D*LU)5txKHB(-tn zfs8Y>|48h(JTHP7AG?Z>x%OuO2Wm7M&yXt%n3)GptSm0@fkOB{HCqrE1Aa9n@jGH) zwci>tF*3Sm`tx?E#L%|gZ@QY(mAr?fy&@OYS7Z;_{E6USU<_#yoJxvfB{g+3b)UWp z1WC#?ei_qGeCLZ_UMDa7&^V*OT6R!y{!~`B1DCGs3Nj_{Zs#j8Vgi+wM%M`#FS8h1 z-!VT-vRcegEKvYC=CXzs5%uhV9MO4~p(~)13BHS~&+j+UFg=gzx{|_#dUuAbObA=J z2*2&4m@hO^-3WA}t4~i)66$27(O~W)ng1H{sXaAdaayaCF3_+4L{{qrf~FECWt5uw zX!;TwoNTdS5<}A&?CR-VcX;(&ecd6CvOA&Dc^liCjplU>A_Br_*|Y?8WSx0CuGpT#U>#DRkIDQA^%RV>vJHu zb=gwo`ZFA5zEwKY5?W2>dWx`UaLbGdC82HmE#0iR6?x#8P+(#UtT1stsZ~Vuu{`Xl zExSgC!vF-GZtBpERCd-^11$Kf$!HwPi5`Itu^G$)t`gZj7N8Deb;#nZBA=$rfj7eW z8+`*^U%as_yc;UrJq$QjE|88O{*4P<3WHNT$R;6@`IwA&^HCdHa&psg+_&0~1y>|z z;F2cN-Mw{UauY4VcPy#G&&7PJzUP^KcORwYeBq<6Lb}BVM$rbycXSeZg}xg?#l$gw zQu@%C2u&kx+G6G}@qRnOV5tiE&A$}Kn#wn_O7>qrJV+m&MCLWd6rFM#F%ewTRb=JF z*LvkXwdv^JYi`Qd@4Gj7g4oC5B+?oU13teA5y4fu-EN*3a0a)z^zHmom#2tgx#^A6vW4&#{e1a+_A<7$LJZQ#L3E6Q^r-+1f( z8s_;NSVZNh0B5=b0Bm$q#_Wpu+WN{Mh!SOZHHj@(N)%rdt|j?U3U!0=;eJ55u{ z;*#Xu-tyVPaA(7aE`K&v>nK^aDY~DmSqZ2O+_|pRNf60*%p~7RHVH_e8%p|XZ69b; zB_6Emcq&yixI@H@U9N+mD{38G`An~c4>G}Gl2wjwSgyQvf4Cy6*S|bZnkG8%z0B#$ znxQybZ93t(UMgxf^c#J#U^mulpkH8E)VSvway>m$*>Z0sNu$4DcGG))e1N|!3h~jm zlrUMy?pX0!Ri>BSZbr_fXsEyZjeN6d!%sH5IAH2yEvL0mQ%D}l=Xb3ocRZc`N6$xi zDX>CcyirNpFEe;W#yCYESoNrLKw^i`4tmRalx8^~hO*g|HsFY`ay^rGvDun^Nzc); zf-6}n=dhyM*7Idz!+gGok^^8j_8bR1%sWdb)-`qsP*s9OLm@)>Z!-2uAL5!;v_5E=;ICd5B%m z0Bd)-i&vk$X9AIZ!u7=h`-?jMrRZ@9=cNwC?Mo`fR#~tYT{M!8;L=q~LyOvd!aXQS z^x%(JiyVB+(IS|g0=wmfBA~@%C3dO3qs>9mYx`=wLDuQ{Df8=9L1SR%MrggDxXxL! zmlh&*L?-E+StH}>wS$3YBU_z|5QD$P^UD=cnm)U!D={Zua2xNc@)T}kw3mAW=ZT*? zx8wN6#L;jHZ_mOd|KZz4F@wIN)lvDK@cJ*6D?M;>#_k5|KCwwlGHLR<~xF)gE z$g8L(M7HW}NoX@WzX*Ts0VZ=~s zXF}uJqk~t$=T1v_y|XEg%))L2SZ1QLH>81?f4yhT9vZjH0kMk6hwNATvvKgk-S^hxK)J%PTe*Pe4KJfX3}ndj$}K|9Qb?GTc!^F? z16j@iR`abeyxeD`mnV|AntmPBb~z}O`n*8Qyd4^>PoecxC=y=<+bP&mCvMhx7H4m{ z{5U38{aQd4gTdiBNvK8KWXaX|SFy(7rhOqyRcmZOx%$1)!~sWXg8gaog>kbF0;YBk zyKcP&VN4kP-8j6KG+_dWU&5>9?|Y6k=y&zzf% zVROz!Kg#uu7`rk)3HvzI>$b9cEbcWr#X5`YdX9er`v>TvpLeV0=_k3{;>JD)5lh6<_7 zHEuxyR|M~qEhf%V%QHKcs@OH!0*#~_tso_t*&<6|@GEWhF0l8~pT!=T6+frvj>r4- zw##jTJG&#n#_UB8+ku55G7j0R-TlR>3SD_@W1Mon3B_uLnifk~*0!^sNYaV-fQ?_Wc>lu}_b7AG8DxqOa78D^90*U-lz9OqDd#U;aT>i zLp*Rr;?p4%>)#ze=3hVQAnKjK-rm4M#uniIERueFlgW4t<#gIMQI#35W&G1Wl zFh`-KvQ2A1!-1-ogZ}xncPJd8!(Ekz1DKu1QOL7ZtH8Ns=T@aOVJ!x*i&S{SL;ttu z`|zJO3vJ$At`r78y-SweAK-?@g{Kn>Q^%7$tOOy)cI{G~)dpzvmS6vy#yj_W8;u}n z#ZkSy#?~G&!(fXC>AQT)!83?&e+evRg5zx|gY**nRJtmKe>YstvFh{Z78Y_Q7QP`b zE`UFBF~N(}-|!9Ncwi3PuN|W|RBcTpC}BrES4kKfp!yw++3J?#|+1H~vOu`e+_OTS2dpftdB zMyPFn|7bjAp!crCY9#F@^ee^9=a;Hwh7n&81&?WnvwU*jL3x@1j2#5hp4!o@NQO-%rC;q&^)KH88z`FQvb43Xmkb!_`QelMDi|D(ANSBIN7hRiouPk7x0Waa;`D!Ytn-aOx)x|T#4?lGiGpv3MI6RpCk)n#J*ts3v}ZjU@)PA`#qTsLus?S85fPfo&bQYBmQuj_oFIBPrsKUU};TJmBw>w<9A)B#qFn&4$9z(Rp9vi2?#_*1t5fgXycOX&9+E`lp^)4$mr|~^PMQXfpz13 zO~i7TxnC=bX6aK#-%#{tyja2)9^v&eHh9Wrj2&sKwA3?pXex5q-HK+AP&g8pm{*>!n`@gbec51ooVXB$qW5jKE9w1^B6r2rA)VyLdY z4(D^;*xAD1iFMwglyR-p-gG4)h0VmTD*5v^BUWjoMmiSsbFS+&5IqJ4i=M9cMo`-$ zF^Z^VC@1c3HmAm%p5R{u8WDL?UNEymbDNxp_e&ByU-xjM&*^S=$j652`D=TzksqhlNUo`QEG1#$i`&j z(=5e-rO&8jVm>5pA7#e9LYlLHZ!u)>!vD2+pFyY8Y83(a^hAF5Ymb%+xjR4lI<)=v zo2^dR8tar1aR)MngR)4bOm;f5mswZ8Vr~~&5eb!Au>?Yt z)B-HBcX)QQ{#DmFGiBPneHW|JPkuhiL^j8$3~GEtfsU(D;xr5_Gg46~#}dg!l+rn$ zk(D~E=f3|E#p#d1KRXO{z3W6HmKkmg&T8w)a#?}T5r3W;Wk>e8vjpz4#=uu&S!l;dZPwZFX2>S=tqVK&b zMBUuGFs(Vu%Q%=SVM_jt97KWm1tc0kQunKyS~p2^n+kql;pg@bGGGufRZeS_pdUN7 z`g6jrj|#AEePL@|YN%X`=Zg_IS>`DM@_@a*#?ZnX#U)b1Gs9DhP{gG=V-SjDGe4SyiTB||rt(5bnSClZIk|2hbZ28iT}#Q}08&kB5hc(*)sdsc+GPrN~Y z!`r=-U@U9xO4KLyf-_?IBs53&2FAf$>U-Qm?gq_@J*Ls5M;9xWK+^=IYW1;n+(pDo zX!j};4xtREy$yQA!R^YSompw#Gl<#X{bJ?RmeA+-p>GtCq~xrIf*iT@ace8unu_9t(wjmf)VEN?lP#n-%pV`qa`+VBG#rMEln| z0#Uucfv&*Hnxw0!=I4iW@LjN^MSd(vA2WH@coKK z2S@;m0FfDk0Z7}!&#&B zas?ateCNf9vuj)uzJ&%R%>qAHTEoX`Eb32O++bQggL)VjB>dolg^UH7|h>m@|$&(9SUCtJziO1FcqnVPM4_?7Jq8B-j{OGb6*~+q(U$ph}do@h+UwV)E}YdM{+Tp%54oZCtx>h`GRAIn&dA` z8aLy3UczCsNeZwv6W{#NTb`3>FZ*FNs3QXPSW259}M3442l0p^Y<` zHp+RJ9_Pky=kKf>6_ zb4PK;6Uiz-4dpVnE1^QYB}Jf$g?;m8r;O=9&7xo3U<*7_lWT)*GrqH18uIj;CLHk@C~3YJ#Q9$Mt*bE^`&05^IC4wQ-V!~5*YZaVKE6P; z*2ZFgB%bsK*LzjbYV^(TZ)#AZsy`UN^!VnZn$BrLH&OQ`G!#L8yh8@_wF*VQ5-=)M zdYq#{N$u~!g0BxUpaqcXCg$zvVd;*iSH+~KI*&N(+La<}X&gv5^wUc;j||8j16LqA!ceZc>v^g2~W`68R*_T0JLP_mz}aAn-sG&u90ty_b=pf9dK;TQzP=@^yogu0zJ?=~ZV=kM%?$ehTPXs#*9F!vE+m zp<&!JCHE%7_->aJrTu9HfyHMA(~lkyc;xY6!x6lE!gW+FUn7o|V>hX=fJ49(wTW#vsGo%d|^qtVnG1+=To#r7giBhlHptjR6w7Jg12#QdO$hnuqi%jMHcw6ePx4Mf)vTIJspJe&x{)zXl2aeHO%(CDQy+sT6oHVE zGPm{ZMzN^y?R-*mbuzIf!B?1!VzS0~9P>=7e@1)Q+Y~p?wFY70i%7zgj7Udm`O4JX zS%*xpdd65~$T4095a$ajY7p6%GNK=xZh#ug7*R>lI0jq_qUafufY)lXgaf8x{@av1 z*>*K^&SuTEAF@lv$1{}EVugD@_*da)JRZDzCgY$h!!7pl<*rR}DSk)&^SgA(x^zvz z3?7eCg-}`$e%z@tfK(=tRU1{T{OR2c&MV~FZ}BHb=fFECpE+TTv$F6vOyLE7B<$(N zl94(#sy^~9X>nnZNw2%oFw9oNTW@lw2A(VH>?q?qH}TKN1fy2sOY}K#==pgsyKmz) z-6##I*>~0@g$6?Qcvt6_$BSAOUu@r$;$4M?>BjPh@9>YB5_m{h&X9-RfZm%Y(!p1?bA?->aXX5^(%#J<0#AGAHod z*OB}w78MghS;%nUSg7p4ytRF=yypC}GB^F^;_Igiy5%9~D%OOCWCW9%SE^C1Fm;o^T8#{$C=m7=hB7ojJ zr{UgnqDt2-(iv=8;rMecny_R-oVKbmR}G87G!d~GpgUke=wy?s?(p^@@u}y<5v6#8 z69G~cH~A?iA)Z#TS^fPXwrr3-BNf!BG31A06i&$03IF45`uip*A8Dp{AmIRiF}v?z zNxL<`FlO?oqz`Ei6gOOIQo8hs9RvS~SVgoSO{rnRg`{fAa`?AqZB4a09z-O4 zuIRm@3JN|P65S!`=_(OnZ+_6%NsapV8UJL3x=TbP1$_7c(tc1`bg#I5cf%C>&`ubR zq2r#t(Rd$Lq(DK+(rLT-4DrGA3`aK2(H{1t^DvdfJWuo#Jk+hRM<|7A4p>vXtr83x zo+YOyKu?iQ0J&kpQ~FL?!RTE?gAHXUJZr~W*-(@}-{TW788Yq!51J$GJVQRwvt>z@ zi(v8CY4+8|SX$M}+8m<+4%y1^gCh4Y@*}3t06`uHfwZmYM#^Kf#|4Tyr+1M&)k{aa zQ+eF$yEBYF7n|Ze_a0vx<&7a)K(`Iueei&nr(fMn!SrkU$880m9}|H{4Mki#mDKA5 zqbzmWRrQ6iu0*o2gxb%nOhgrKj9QY`{0=HMPJ_?m$y9W#RLp5FYq+>a&Boi?{BT*o zVnl`UyFQa*bEe4W(|c~FG|d;sYzHC^^jCn_K@<}-yYQBGTCjz55Lu@pQx3*o^a(`0 z{RFydQMNvjLaN1AQZ;eY2zy%36Wrcl5LWiu z-md=QpY{IJtFHa^C^cTHJ@t$h+dM$LCp-wNDlNx@2 zeOTJ>^%#QhZbGobWW1-ve1~BzBk~Qzo!wNp{GLRKO=A&?I`7m)6XH|vKWe$|b%V%j zn;1=~H%9!^MbK~mqoe9n7a{N#Cr5HH{V?6xUqCEFV@z_ z2+kB5aaxYv)LZ0)?0+_%;dXF$>U!S5FjN&&^w3oF=!VID%dmfpR&5ktlR#eam=yfe zkSSxLVK!a-`g2#NFusIyAZy46aU=|2?-jaYjZVeHC*jyV8*!r`!?<)L&561AIcbxn zPw2*<36VaN!FM6pFKC1d;*tRES`Lk3BEwW98kNY@=NZP+FWi`K@F!mMG#A3cd~dX9 zHr^?kdaNNRM~SeYn;)a9ZNl^ALwfkY>DRNBBZ+>*yBMc$Q+n6n-F%Fyks6lCn}VVq zwTHs51JE7%zI6cZq_QKX^mLC618_hoHVmaURM*yoVrzJKev;P;XP5IslR9uLRT!`p z0vb(~j(v}e@UNwGeHA1J=bO}m?p0MpMENO3HN$Qg81&^l#B?PeJ|+(sQ-__&rI;^j4iMpYJZ ziM9soGkPtsip4@VoX!a}q#L`iWK}&-Nf*GLDjdse#bLQFbj9DW5mV=I#@WRciAUYk zND&DYjvY!u&*-F6|1ZkKz!@j(Pg8BCyj&)Q`dqt`ew*&irz(UcxrlYD#>e^VGDoD} z9E*j>X6;vI8UH*tLRwXPJu>}x<+hIp(V25ct0g55P|P)dJ88Y6G z#^(v7*NcPXCka9|Uv*BIx&bz#Gm@)QW@^oA!l0=dAoe+Fm+AbQvOyt+5i9CcP zfWM_)i;b|s$)g<4Vouo~0k#C(QK>tG==uX=DH+yNmwZh9LvpI_mW@lZ&aoedwEwdz8G0%XJ?9+ky$R2tgpt zcY3;v*qgW?;f?+*^y27$V_>WhPPN-M53{K$G$9cROlH=Muj@>b{WQBl$tcU?(wH>G72 z|Ad1B&=Y;R5Zy_f=y$M1m3Oxhw#RAa^6c+r^^o#J@n`8IP^M~EXPS)R8+oLxKJSGW zYO}2{9ND)nKVUz8OHx9r3k@ZfIt`KxKO5i3bO#8e6Z9WG6G<~~dKZN)YT0`?`|r1& z2HSgavS9tP$n#H7``O0rU+-#(6X3h;_gyN6ud_r%CN;Iaph5t5m-AEnF1eU8x;a(s zNV5dq_kShTX8fRISlGtkcb47Bb{+~_FyEF>Q>EsJf>i08gVHQkyPmF8eA@h0L8!EL z@9{}{%h!kkS}&60W*#I6#Z~6KNqtuk_Ut4!(q`3K6lPe*&e5LtO9Xa`{w!+xDDQZuRZXvd_DgXHGma{qeoMzB7HC((;j?*5}p< zfjYs2{S}Lzx#`hwvsqco&HZbH(oxN2*2z`AHfE-n<58*xuoL{oC}!x1v0k1+l58bG|GVBSog@ym4_B@x>SlCEb*znxK3-9*6|3#HeE)rM@@wr>$BFGF02)w7yQAoiv`LsrU-wx#)g8QjmV1QMM0Fo+qlC8IV6fx>EjDP z0Gb6r{3~1w5N~U;Ox5T94mx3UtkA%ZTFrJ$s;(7|zBYRJFqL!^D+SiWa)`vTFpC4k z+lzD|)h=~+W6;&u7RB#|ez0OjQ?BLO4Q5~zhXRDiJXL;t6yFf!C1A7eIyWKvlE*sp znCjCMhpD=9@{spAtGA4xKT%EmbWyr{B+oR{iM-b*Q0jhBHiIF(AsM0ZyZ$>opW))Aw6LCTxuInM z;BGRI1S@;?^uz+wievIA-f~E)5v|KnZpNd*I0g#0V?%YKrWSp1EDK zcLIkkq{KTlkU~J$1WYA6+<->t0-26kRjx%{VG373(-jc_ejFewT9EHY_ESpy-FwAd7K`Auko22FVBcowIH$nF90( z`sod+(d7Tl=s)4`yIl)!`<*hiKU*X$DkkSMNcnpD0K8U>`7~}d83;KYhW!_Bri;hq zFW0Lx2>NGAHAgkc7AEG!wQ+@>JWadyy)$UIX2mOQob~#{K0mGb;tI>ZB#-E)-NRcMY+nI>2KhR$!?cv&`Cf9H zS9iNu;HyQSG}DiQLH1PT@Y6eU5T}2=-4R13Stlz*O`Dkbi?rj+TdvVHm21u?!EbB> zLA|73US9NJBEm^N&V^1}azugX@g(jo0dwq~GMKri036B2S{NT1swEt&@tfhb>h%|j zpbZ8UvsrWM*x!f(uakARY5#S8)u^f+c8uGEywI@7MGH}XgX^g$${rGm)!M(RUT9ME zPfrrV_Z;Yk2iY1T`mwJ}=uaZnN&@p53Eh1yR9V9xgt6eR`-O}?0&w&$*nytN92 z?ptOcdWc!h^FiP(kZSaRb4n=%wdjH-w_B~gJgs1VFguVSXt;RLKTFIsxdsU#2A(Gu zXj1ayt5ARS_U2q?VwZAERE`M;QE}Yd)U!-A`ucZkvff&w`LF1m?l{@u;>JNDT9mNm zcwZJfv3k472$3=AMR$&1Qqt0)4$ye#$-hqKFnDR#aj*N$?ZUx*B!{+r-@m!GpoV=- z{~SaRwA_Ht6^o{1niVXX^m>oNT z1h~B@hQ*Rsc}=AQW~WR6g7P!@_m|8Y_>6OBJCyB|jsYBk^}a~R=Q~<&!S@Wc#`vK% zsz|QEDAVmz8rYlDzpx@UhIhg1EfFyZjY2*Yuen&XMHYx88a?>p*`(nju7ZGJ%Jgra z_?7+Nlh-M1?3IR7&if`GZdO$urR6W!<9`IXBH_tb2Eu3e863W3Db)Z#P)HZmDl%@Q zj>OEf&$d*t?29;6vK4P1r_AlmO-=Jqj=Lku+v_8d;}UQ3>^c90`Dt5J;L6PH#(x3U z?EW(gpw%#H%IqmTafT((7OZM%6>Myx7)mu9={mFB! z-*i4HO%a%KarW_F$fzpJ(l`$}jL1=~scmv9vJNJ(M|cd~)nT6UFc@v5i$N=s*p0|m zD{ezL3K(0iq#4u=Lrjy2p#w~U=+*dxh(2LB{Rj>Asp!ds{e3D~y%_`W+>9<~!wSDN z;!&TdV`Y_d?l@hBIHXP|pHoJ)64^7&@KVQ4W9E)+zoJ5B(u>p3*lq!Y^daBz5@TlG zTFG;*||1 zJtZxd22OMX7i-4MsH`=o_)NmRsiOl|j(_=@ysyNng?xxlUU_qi5~HS2n9MO8$w0EC z)>ujyI_2{*dH^amkhVT`vf&cumzY`e4nsw*xQrS061Aj(rmW zTi1}s%#aQ(MdY9ZZy7g<~;8jaOI7T$vXKh>%ILkg%;k)r=`1b^nv242@t zJyqs1mD!+&1UF+4v+(@dHqk)~%J{}oVW8X3F|~l;;(CP~<8nEVCVXp+vSrb>al=D_ z-TM58>ZiRVy7@T>%7#?i*ChYDQxX`7W?ozEtxC`z)aZ=|S36N}kr6UM(OnfhWoFB# z2mx<2UdodOIkaA{tq4R7bgwtnvNhFP(%!o}?bL-zn;WSE@e%egf((Nn6Eam$w7pGD zapmP7=4q0dWS+tUCI6hUNqs(9_$m7P*9|#;i1wvs#>Z$a3<&yE`F=Q3*|(1-RoVF+ zzA?71FT}}yBfmO+9hS~QAAi(h=M&HwagYmbdPy4hyUGJyOFoP5#D&Sk92WlSoQgi6 zh3MN;Mn_m|h(e~RBWKR_eBAFD?YbcFS8Cj_2?XcPT7nG+k^MDjp}f zP4h`c4a=>bJk~&zaHggk=@lZAVevLisF4Cv-&Mz!}^0jZ<5Qd1|Y zH(bY3NL)-2&$`J0TT(jMWP)GA7uE1Y4CE@+fd@oH7kgsJM29Q2qPWzqugg&{fpDT8 zyYuU-R5Mq+6o>Ad-ZmZlVztv$-&GmCRw5$uu$}F^U7Kk4qGjU_?OX_a`h6HWblNkP zPOzq5tBWhV#DfvPJJXuIo=Xc(@A!XYy>(cWU)1-jFerjbhvd*8-3>!GD&37pcjwUE zASm74(j_^hASGQxcQ?E@zvrCmyw7$1V+Jk;_PzIt@A|B@&-mJZ(uHMofA|gotDhD< z02St>tx6+;ou!B?onWJ1T1koCJzs)1a{E8gvZ>jMbsv}KjP{kBh0TxLlamPBIA)_S zj`oU&jO!)S-|4v|aQ5t>u5B|-ha-tOAE8nweadh)T-ADgnQj*!o^qsNPSmW5@23e8H;BNi+HZSXY^#Q)z#fR)X(NTd_e)~9L z?JM)5&wu@^|HRAB#Yik}jk}40?=YM`$f6&k1Com%NVeoA*zXk5o=fMA2{A%`OH5<(OT<42*8V!9qN18oJPCn~ zlELgDel=BK1oum9Al9!}dCq_T)B8YV2z)@<4;gL&l&ju$efZ%iE1$*m;J_$!W5u}! zVQU*rM(Oc>u&vr5bqg0)4{gmf;Cn&;YL8}? z&KuOet3d%M-vc|p&(fi2kP>d>PU^5gs!@yG2aUTB#Et`}wMkxGO>5L@%;Mpz4#;l= zHIC4_Ecb5oM8=9kkA&gvgHH#8)VU}(bTRuGHBXdDf^N0vp09=OmSh5d1tV47US+5u zo1o!JmjG-=AmCAWL0&clm%YDpt9O4M;iT`87knof%O(vQC=E;M9DZ~lfA=_*vc#@y zrJBdmv2`SeSJuZo$S1ZR9KFZ(W~A*nrt2P&tzng9s&cHvmrumOc)j}GiZs*6y=bS+ z&2gV4T2z*c3`_!>1z8a+o*MfC&R;V0yI!BoT563uoEi<@U^dzhXslDdGl3Arbuk>1 zLQSYw;vvT}1%hV$Hqz|cpwn}8OAehyAl5P=s24;QTMJVD#D8-#Gm=t!%$_FXskX?? z*W_%shu`972@(Gxd|te5t1~Bqbkh%V0K)_LnM?>SK}gj zG>laPz#%-Y<6)kA!7IKod5Zrsn_kF2Ekw8Fsd3qOUfh`~5#!YxbS7jMNtdio4l={5 z??(&oyI-&{qarWo?}b4gp#lsrLU?z!yAmPW{Ak!`+WD-cXe6loGcQm;miYd;*079R zq+c+FhI(HMP287+(D=8Et$T8j`*&Qp@z`7ef@O`Sfco!0Z>gCHmtV8VdYMkm^N)WobExC-PCXuOuBKn zZZz;|wkkzBHPUu0l7~o8tfyK@dgrk}W{Fr-Z$R->rr?fvT73Ko<+FgXM{u?@G*8a$ zl<0VkzZ#jW!qdZv=Twpwh0mOdd8w^!7^?5e_qnO=U9M-IqMPSTfq$R|0nkNFkis*rvax=r(`ic4x_HFBWp4NwTR4&yVm`4|EWgq&Ft~Fw zD6LQn&hi9jVxXedGKBU#(;fw4ozgk#g=)@`q|~6A4%{NoCyeW(K^!NWWdg=S+q|9^ zv#c&(k>S!xU`uf@GYyi1Y65L+!=bCuDJH+*n#FG&rE?`4q0FHhImlD7z4)4?TeUaO zu1dS&;b=D8ZP~`9gwhYZXXI1DRia9J*w`Chh2FN5{J_-OAV7lmlxyY~7Fe%DrI5Vh zc@>$zEh45m00X@5WjJ$%O$|jzVD!m=bfJI~HNpEhXD(k>BeH*OK&!Qop~Sgw?iZri z%yKTsFBm8FX2&CtPCIhhmH*_h@I4Pv9@FMU_93Yie)y%r1hr+y<6>B)kHgAe)f&6J zuXT)4A+JTp%b@ROLiZ2Y2j0szghY>s4$$)+_^^e0(ql{~gbKLE1@v}hW0=sSeu*e+ ztJtS6mXpc({;N^e)*qtwtP`tc(Rx2aDEb)aNHzMaeLfq|g{06G^vd{Ey0xZvRLiIX z)+DeqbRgy_m0)1Fzmpkh8qdiIS>q!}b~I{A0#fz=opfh1VSe6j?`kiJeG*vd z3Pf9j>2>*Ydj=T~`}3qxbr{#@8`Q46hHN z-ZCq%3G>IbqfORk^B1Rh)1`g-_M$ldk1i-2XOgAKH?ZIShE31HnrG(SpGZeM84RFy z@A$0kHBF1NHEljaq#9dL z&CpKgsp;95ivrnHH0lTsgN@_ko4lT=*L=Ugs+BQn?}e=$jc(1vum85m=_$R_kD{tb zm)>#cWpG>FVZmk=$7^Ny4jVPvR6n_nfSKdDGicMz5_6QwDlKO z&&aH5QJuU7kOfDT{4|mD29mL39`}^%Y=c!I|Ai3@=hYE-a#0FT{o3q7T9MUkBZBjrN60u?S8aF$lD#beEDr54G zlq9~fi=cUl)z@naWZn$PTE=kUgRo`KvH zlddA2zVI(!+GpkRxDP4Go4JpsWh@9;C#{caSK}nP2>v>Dc>-!u+0qJ#w`w)WCA&zQ z^9FtB0^@dg05gLwTCub64og1MOYS z?H|uQl52FjVRLz`CQ+yT$(^Z=@^bDi9zcXnVN}q^wozm#A29eSenfD;^_ufL1E@bl zT8B4N>L8D|V1%1%^I=R>RDH5U7r=a?!;!0kdRNBbP@PhOJ~TpncmBxEOL*VxrI7i!E*P?xVrO0M6}a#x<>_MfB(%a(Mub$4LM(}| zZ@Cq7rIvofzkgxrKvK@_rgPWt%ap30O}Q~`t?B+Y2L>%_d2sbddS12%H+N)xWqPF( z4m{fw6d+Pn_(g;n3A}Lg2Lh{%EVySn!Nt$N#&$0G^(%TdC7((3eIKE_Rg#E`PNF}* zdG!BymduT(%x*bV$;L?oAfr(vFxCl8C=l#xPt%BszYoBH7Cm;`?_;}zKP6Lo{BG`J zV+J-mj0nL7HR6YfA*&7p16xSJjh1@lj5rbi>w0y}X;Fe650#o(`@dliNIqtgT5r6F!ZU`Om;W|(vr@RAJ zV5FWL;C}&rBh=4|fh~|$8ONrn?SnPB`OE;ytDG=7Jm&BtHO4RA)6H#2YsB`u0-3aW zb?81iXT{CQ_kaGUAc+T@fbK(Khq%`Ot0+%JYC>3C>xv3ZyEn%853B2}#wuh1++l!& zx2e*z6LkmGTTvjL7MT|*;Nk+31j(n`i!3bIe+8GIprIZVlfGMvvfy^x-Y!K-%Wr|f zZv-hm=h(@5hU)VeE^Xz(O)oh~KVKtq}G6})GF-EAeVa0jFD zv(hY$mZ9{Fh*f!GK67&iF0Qt>qkF}R@}C;$&`c7vH1M(b9JIPi zYh}b&DKS$M+ZP*#U%NRxC~a$%awUD0HdsYULSgrnq_ZF5t--(t4hzOkbvFr$FB zW+KDKkLEE%OSZ1`2E@WHINtuS>8Coi-|T;7saC%>^Rmm8Xt~dOu?IP2zF%D{b0!jJ?U12yEcIvfu$;;HRY^B?0i__{DQh z`+^R&l!(U(AMMu;@=r#h7A|)iiQflWbvt>9LoHkzBuF)~IZ|A>WsoI$6ga~@<&TEa zqQ^w>Be*$m$XdiPQ-PfXXF zLN-BN+9nP@?XAs(OouM%U0Y;O8v5QxVd>jO(nRoqZ5xqH!!_-W^At&z)%$}pOezhN z$*xT}K z_kZCD?qFjRfieJ*UCl>LyjR*9cBl1%Li?T;Rj+IQKUPfl^X$I~^$wn@Z^YHrvQ%K74xemJE2ZX2@|W&j@BMSr!*=U9CY3E8T32 zAO8muckt1rs7x6aEM2-uei~1&Zs_rY=@Ih(=CsU?4F0yzp?@ZU(ZITlfK=|Mkq9O7 z^R6LA2#1hxsxmOhH?V19#o8E(0Avvgu=mrW-O8>xSg>J{_!|Xc4Xo99qSG+pf1>T( zoeS#SGVa5ZW`A>#;g$q_R|5eKz43ZOyRPXekOFkv)*NjO%A=>*FqeDRsL8+L<8!nF z%kzlcc4AA3tTeV;f3BX(EeM){qK`egeV8Btfc!N1^f{jI`B{Dh{nJkN;m5OO5H1e~ zB*wH*1A4mHHn6{AErR>*c~c-BeeBGgd6G#=ns}DfIWmzkLTbWx5)P7sVnt9SBXCkT z#UTI!gwUi|Zh_B?i@T|lCoitrW`h-9hY8&m!xW^BCC&q`Rs^E*B@-VcHf?orV9eJt zJ%?#K6&c&KM5F`0rdZ@YZZM%-NrDYW3&5sbma0Y4phoPgfn5naqY`_Qu~Fcb_5^x9 z{n5U3h9vz%4N6vK7z8AZ4Q{kB1{9MkDJdW=pLhMtcH&#jBidz8R7~&r-dZl~ z`A9CGcF)9+xBm~IoqBW!>|_6L+6e_plxN8>@%%Z%WSuhSdc-&Ze4Ig$QKI-wtMpV# z56)d~Dym9i`tPa2VI<2Q=NZ@`^y)i)hZ208Xk2TsZ9|FN7m=n+ogqrH(Bk~WjMtzH-l&4MWA;*6P z#4Of_eO%9doy+thuXf+n-aGkU<(6P(%IDj4s4%yEJX8z2%Q3Ev%47zDvSO`}2h~tW zJ&;b=|51I9@Cs z!4+shwESTonx>MTHZ{~u0u$KwSMO4t0aAH`$B%;UB&E@w!nn~b7Q3ug zvqxRp5&NyC65{wQAy&+8Khr0Gin@abl8KiH*cx!viiCts@gv9rXT$6o4L0ewMuP6A zDnG(IfeDXUS{D}QDN$JE+6{eWnzc2&Y&%Q)$j7;w@?3+!m4}+ex&4YOzoq6{5;W6< zok3fQq%LR`j?K6FR|Dd&XDaQK-jau#Kcr}Ep52G=Zc@mk&tdoSKIHfsdOQ zeyQc_LyNflMQCoO1ad;E*;GD!y#d{?!-BT@F)(~gbqenE99ploiAYH28`~X4ud^*l z=$GvL{)qT$B($4Kjb`F$=yO+Vm^gv!2RzgeVz+ic5K-UIHNQ;sW%`SM)Pos^=EcH; zfF)G3{s-|q+9=T z!4LNuTLvK%mr={$Vs~n{En><;{$suplTM>wR}d=wbkSnML6zIdnu^6h@j{^AqbAu$ zrFi;l)7jLbCxCAGw?4oSHTct3u`{uOdIIA}`T|cVvoX(JOI7Ah>y$ohiH2{oUxp`c z%`3h%Ow56_a6GVrrUM`ha=IxgDEWQ+)1#`KW(#*~HFGpr1A|iOYkv`fcmWVNCkL43 zV7`srpdp?u5$~-e+7Xb;T%@YWl_hmNUzLBOSm}#@Ij*~r;Pv^5+ z2#PzJ7m3EE)#wao-wG2bFupV)`AY`6Io%#yhX*j|ZS{n|J282Oyr4c4PExLvseS4) zd!gsBXo6SsxAHm81zTw9xSKpU>6$QVZ zasWVEsGn3;{|nh1*Lx1S*dWOJ|EIqPQV-73){yTl|5akVQ1x<_E!gRYBS5^*r)01o z0wBf}U+6PI$W|Q`lzxu&CmO&3O#cjJ&IG%@3Z_%yX$z}ZSm~514NK%C`9)#nAwU#N zeNht!5fahsKU=5GCY9(zc>VEes(N)+iXE3d@}V<2Jw%7nZ;YkDjOSyrV!G9|=g3k= zaFKil$B159zN<(l-t+!I;xtd7LUt>Ke1)DS0BJquK4Ke|dmY`F`sXz~kUuJr2Z@6- z`2u)t--+Eg0MMCEDSa&}z&MT`w|nqi81g?VTOZirpRePtl7LE5l z>e%a;p@I&89T7h+zCq9o1;QXr5|acu!{&}m8J8@TV&!;Aum zrlBe{I=Tvs%*zXe=}M|@E4xUq>L278)7 zED(=#DLF_0R@#9c!3N2p+yYSWfmV|{qO^RS55z!MTX%o-#H7<5ViM1+LF`mu>R8@S z&dX+L9(c*{&8`k}=GLA(+g@1AMR;*;Z-e)+a%m#%LNq_;t?JRa&tytTL}0`~AG3Bd zWxE2!j(uTuVq!D{**$>Drz?dP8G zx9GJ!(d>EA(>k~JH?|vWYLU^WjMLnBy~cY&uNla2hrN0IRc6}7lbg64GQacQ=luf5 zra!M~`nK%y4*6KCyCdNKB&P;oh)u{ev?2-LOEmd@YsW1OMxnCCmoQ;&GImq_>Wvda`sg(7&9a#L*ZWJ5Qes&Q-@{!U zmg>+fOIfKch;30Vm*z%ro|wRXml6fI-0KGO#WvovY*Kp{Ti$Z&}WXVeHN;wvNBVeAW}`>WON#*;q61a9Y!OkrQ4 zX4k#G4tL|jg{E!Ee#zM?!+@H$l`G(8_ulRC+^KvdRJ<&?EhZ-`kzQFG7M}&TI;&Zw zS(74^Q<{Espy?1516ETFtCom`0(-SH3KFx8!Q->W@l}BuK~o@hu@MFZA~R%!R|r3! z=7N6b7NS6{UXWK7NEyJ0_}{17d^=r>JQoSr>E3&kQloAxid?wY=3wsw)we+ zzpx_eE6#;3r}g%QM&BjAT)U%x*n!)r0QDlPXcr^?xf72~g@H%|_Zol(zO($tay$@u zCu=Fh-U0MawweS8Jlq_=#d=jR6;rw8tmubq()8yHN7S4K*@W;p!y>HvYcGk64`TB+ z>yqhU`6>=}6s*r@L57=86lD88JzAu|^XyKmNj>*jy-s@Zid2f@Ph}Oo(%D;+8MTx5 z=@h@jx6>RC&@{iE7Ci;-6v?mkh_~n+OmYK8gkW+ftP_cMUYAL`ED`B|K4<|ab^%#D z?)9ntB_snt^>QFC>*RoJ4Xh77GA+{SHvVLLJ|DF-rXV7&J0~4N+KWotw{fi}oj<+1 zztkWvhux~xlR6mfzdk{xdVhQ1vq~GQezX^nNu<%dls)e{R?Jcp@ok0@#Ax$rC+2?W zJsxgl?fShbu3lVg*e+MOnONawwrm^Gr!9}j2qe^a?ZprNmuPwW-4olylj@V#mQKDl zzyD>dHdf~yIbJyp_gpaa6wzyAx&P&0WpH3XPC>yE(j zZ!2)e{P_2u%H9JDKK<$2Ge^8NHEudo?Q)S8BR@E+jr-qE7JWf%^SCIGE0bu~`#PEy zmd@{*1FW$|i%WU4-C`GlMzvRv5~;o|nG|oBpX{iJB`pZZ?)?AD?p`63L4;gRIX2~S z5oSBZ_5SNgkdE}TF=Rz@wovQ8UIiR9J|Qm`DMG1FVb9(&Pb~AKzpFm-)tnLeNn~`| zG>aP-)f&Z6cy@aCm+}SY4wQN(p8(iKx;R^DzeO<_ef*seiT_-ZHIIv0_jSyEA~@#g zdzi+r#?J*Q5*LnQ?R!0k8>QlIpQ5Q+-l2Nbqx7~pvzh4$c-atLlFp3PwMSt--c)>5 zj0`C3m!%a~p72f=w59^!YLQM-;B4-rC7MR6V0;^2Ba>BZkoDH&TO%I)$@2@KjP=B` zMS~{udq8ZN8V!fq0v9U$X~M3f3U7dWva#3uqQqiI1Q!-JhQ6bzSL!PC5uSZ#^0uV$ zaBueZ^g17xDoM|VY<{Fy13u%`1n6~Z^@=GLnh6#|aNzTi3pIMK0xV%6)p!y7=Zd9q zUUnnisFBC^1No?GBs|X@J>}Y7;BjF~rM=fy5O0*LTL_QZ)$>!daznZ|tRM$tR+W-@ zW}6MG_bw)Z6=~7)RG5oEd803PP{8N+J#H1AW3?z<0Ix5`wlF6y*P2IvY@tKb+KkLD z+}Qo}@j>-{+3X4=n~=fH%%G7*p{DFTeeBJncA%){t70cgWRqun#_U7l-?#>3C%_3F zbv(6OxU9k7Br>V;O)HMX}WU)AJ z3vMVn$=1z+g0)j#P8J&nJ-)UFR|u3AxLv%NINC>0g< zXB2ybpa=ET;p`Eky7`=0j;j(_sC zVm?)9{X+R8{3PIVFqe-#BF}_Jrv!3cbjI_!*}$7DRY&{DWi4Cly@o0ZrjhK{>Cb_1 z&3H(2_(N=@AetKJPytUAs&RVlj}6^qXL$d4IV6NbKtU)C3z9%_f(Oo`;|s-1c1m$3 zlDC9%dxn_GLWdm**@mJ!KDCThHRB-8Q7OP&kMmGF4koKkXWTfWBTV}D?R5k?aGrFi zhlDm0!sNa>+vol)Z#Fnn^J$&VRvA1J`ZRmQrn#h#6T{ijvh72l!9sZ! zSjW8zZ0mPgO6usx%)myu!?XRsh=HK*b3>)o;1fCe?b~D#hR^K|O#|D%B3x3^m{%8j z>y_5?lf@T%GwbblhwMy+x6R+i$?It7QJ6A)A9P?PCMv z!%94VraI$(GQ3?0trJl;|2e#(Op2i>RCSI8&7t6Sla|##1HS+~Kl1HEsovfhh2oJE}>R{(f}m+Z@ztR2B4J zq`Tohsmd36V5$>G)p{BFYwEFn0#tmz(x>gEoZeWh)1N{t# z5?u?+ljZBh4ov9q0rqNHwi_A!sO}4*Je|V}4gAC6bU@dsX*mBQuVvMr+$OG}{A=e= zh_V1f;i*0b63`cu90z)7`%G47_vHB`lXvzU2wp7&0D?{9-9{ztBhs|)_I#=IYS*=O z_bZ8Gg00z8qXRAS#9|w9H;@g3KFMn|V*hRt;T@%&nM%?E#dHf5sdK-VDFj$zM^nfE zH--i{foS9Y=K<8pWK3`1ozX$(npVW?u&qfN6o>6G(%AV8M>~ zn00@@IPprw@?Cskd1N@{3XD*h{CMLN98vzGNt6xa(D$0P)Pn3H zRo)W?i(A9Y8$2GMLBaFM#psIlos{BE9)pYlEXN=TK4LL>DV{BQ_+5-Z zM#9xv@8vfS_yuAhm2@)atrGIPs0fc@faLpR$Vib7?L1lUPqICs$@I#x(0M|cEM8*L zZ87Q!d=tK}u+ZCb)E)u+z&b3BB201OJL|*tTpZ?hwZ6k|e z#ru|zI0UgiFp2JYo9;&Y^|3q|EaxBPEE#04NT9LR!42LfgOT!}D$u?x>!2@NuegL^ z!kN8#scluHIZ)sgn%?~Cje141-EJ#Vh$7$bHwW)CU4M&QVwJHJP~ScjL=+j11RdMa zYb_g#?X|G&M2IXt9v5N_wY#omM(jgHx{CG^dDUN&505G`>^>A|-`^m^~2N zn7^vB1}UYdzb58^oIJL7hw+dProWGx(?r+&9ZZ&fZ>ekO1uDBwq-(RMY2jvql>+Am z&I6dot!qr_7q1Y2kfLX)&C~vT`^&!rmwc`YwQ>R!Y+3^qnUg_%h8EYOzA!8ryUTse z#E+`7nrg?ET0!$HJHug@OuEg1Y^H-*M!n&*>J>U#3h>qebO4qaz!mSp06Fj?d>QYy z1F}!EPai~N&Sf_pI81K;3tjWX4S*D&GWtgeGW-Mx#4y3U##(@)@3z+O!h`8%vRIaq zYTP@$TRH5e71o&F|LvxX+%c@vRP;NkleKs~=Ia=!^jEy__;$Ji0AdL@K4fZRTR(HV zmlk)Rbte=42L@Sk^Q}@&|KPQKl)@2OF(^8wqmX=nq^r?1$;KpSf76Lc*&_Owwimqa zh%w9boEHxV0TRik7Fw7j@In9r!GP7(j!k~LCE|UX544D*E#vW8JFT2S%0~(7YP-fF?`j|!c}`!h-RZN;os!1$USt;T7$c8tY{@3 z`+7sc6*|fL6yYzaXwCIj5yC5a=M)qfG_cU7iT`}Seo2Titoh|usjDSIUFVy zgzCumN(&wZlM9*fGuVfBg`>Ro$Jllo!Zm-uhOENXL){^NmvfL9i+m`?vYOvkP3`5|YRR7Z6cD!GG(tWVFJ>aon~`5ENY_1<3y*TarHo0ec1+ zp%`4{d}q_j2AG*eAQ_?PLFB~=g{v?@vW5r~Q(_W_#rQ(#P$P#GZx*OlZa&Pc)M&GE z@(nAfnbj|+S^c?kzZd=j-hzLG{qu+HK4QJ0Ois=(9-&}}@Tu^f|-~P7d^!om`_K$s~jD1yH?9GOY zVUZ?XgnW`CKHQ+`&yXR$sT)vv1&AzOZG$AmXB~?l135WLA|#slcszu(DI4Y8yI#N; zeJ;Z{U5t%qL?#mQ!cY3BretCrlksJHp}3YH#Qy1Yi1}nnU4QL#gWhRW)a1~iqX@c) zVnX12bGq>j2vO>X)A=8EODo52$EPhG@tE!-{E_G;A`;~(#wa{M(dj%vvw%%9XUInc zf_h}d|4nqf-Xa((6A&{P8wTLi@@!E$)FroR*Qw*YPy7FB`hy5hwT=%_+ppF&Cm&03 z7=W&6F?mT$(0vGCT^_r&fG+{WKonxlAT3nVgm5)p0K`hUCIj(}E{wQ;1SUvGeZ|Gu zM$C67&D{>0wrY^+cBpv~0JV_&qiRK-Vu#SJ^V<(>lrl*>6NR~-GKFL@mVRk-1OE^A zz{S3sF>S2-*v71tA**+=kZ?wSkS{ZE#w1YZD1KnW`u_kCJJH5a(qN8WKH-1qivR1E zi(LSxNQYFTp#l0cI4IvLVX$nEC)tXJrd@<8#vh!k<$jdZy#>?{xH+S}Nc^OZ-v3s< z3UMP0Hs3>qTFvFhb%I_Z1JNwP^HTAE{0)s+ZI=YZosZr}vArYx*FhQ+=iOUxJwIM$ zhJti_B7^>DVsUI-(FE!!R)fwLReyQyZ-B(F%3|u{{q=ebkIO#3Vme>Y^|f1gJ{e!a zuP*C`#pK53k_P+rK5U_`R;C}P^tG{tRXBj0AnJDQECKQq0@nE^_+5vx{QPe1df#0d_COG<=1RBC9EDL@-LGxT0w zXVGHg?oBX_U63esu(~J~h%MyBLj>KkQw0h?qJEF1{rus6;k@ouS4*CiKg0rVFQ%x- z*{3|$PC3Y>64cd?=+)b0rpzac;?#g7AqrHwOS(op<=z)q*>!`$=)=I)d*dA1 zDL?Mo{p#IdxH#7<(CfAA+I4?sD7*{=KstF4Zr zU(r-U{o{X=?qUfs{+-S+mER<^{rWE1nnYO0?1&4B2Op16hfLcKtCmlsSk9f)CNhmi zINX%T?eQJ{xEwCBoV(N4U&iwo4=OGtxYJaAP4^pc1lTXXfG2#j^Pc;k4al{JDS0pi@)K#H@ylN0d?!mKbe(@4d-n;hXFB_dTk}x z<6iNqqf#*>s$9fg2c!H)lp80nIDGz=;Oy(}uc`s>IKSwrvccibz$?UAY^ zLjvQThwZP0?~en<%azb+KIQaV_Ll5#a7d9Hp47(}pXBsfEH;sqHto$+#sJ0m`1tu? zv&@5H?Dev@TaB9KBbJ>O2QZlQTOyuVY}lO)@dF-D9QaR%X2d3P^*BY$`R0=6p{lIS zp?3Jy^BlzBb(*K&X(_9;>IHdM#L}q$W2=c?UP63KP5l4sM7gmTIu{Vh(w8S1)t`i* z9T+aHAYbgtv|ya=KX>h3Fs5*U-y)rP+Cox%g(&mWa#SR^`8d-t5Siet6a=vN4!6brFt3 z|M8;OK0|+?Wu{!*db%uCvi?mNv!#hd_MF30ViDuOuV-I1;JN-zlP0!nI%iHH?Yh98 zZ%Un<;}=baTbE!TpvEm;gt|Fjb<3*P=-TNkf1Lk1;!MTdD;ZdGM?mirb>exxUmVvK zct=25^)dC|r>W$9{CFL?y?6B49}wqKEjY<3esNjPeX}Ouf4zS%U-xe!{vPCAuljqG2Zg&Zux0p=C9TjPkHP4gtasV;MZl^cpZV1>z77%DwK(-(SL*HslzO$S zdV4IlKc-JEG!7DM1uYYHSEz*sJnfgBWS>F%GcxqXw~;qhiJ{MN)F)&XbJ))a2%~DL z$`?4PJ1$LXm$t2f+SZP`t2LmG%T$~YQpetCbq6=(H%j`n1cpV+J#9bIRdjG)339Jq zpY)R!HfGF)v73z+o#0#6mrGYh;tMSZ`gA-##H*MhB)-uu9VsCOQsMzlAF;v3z<*g6 zlsW%sQE^#LywWu|M+qz8v-{LyuRCr_?D-bem3;TSl>}btg>$GKIUA+6rgEO5sO8zN zjaFc_;YyrSw{H&EXSRD!rU(>1RXhUM<%RA9o^;%w${p+!W=?NOT%<@Vj${N(Zj>nI z%O)*6;J=nv`wrxiBWD9NnH-9xGiG5BwUobZc}j{73QO0~5EbA0s%=JG+;%Zq#^)#y zhVk!wOR?O2UTG5 zBR>rhN-7k=uMfTTAW+8ND9;KhF7CNL?Q`=#x&|^WD(ctYI>XsWYBzwgrTUl0hl~EJ z?AzO`qoa&xx#7!W-zf)kmT|~?jqBf{SDZoy^I?du(XtE!g6S|1;(S>`IaFf2F7`;H zQc~z-<{Y{N6({?tnm7?NbC2GeQi-%T58~!1^~x5hG-1jn(*FKFuw;NfYZ0m3Kkx(; z##N|7)`g@W%B*N%0W-Q$<*Y8T3P{>cc2C7g{z#}wYaK)17T`i&R|l>oC>W*NfAb^w z^s0@hwCcTRWt7PSMDm*Xu7D`k2+(?EDheq z168+u52;&)pS&YK z@Js5NwZsUxpBAm}sS)EQ(rOZ!DQ2p!3*Y|B)ev){4h?Q@#XQ=lV)CJkaMb++hU=Vet;=h`U`FPG!T~ z7zz&xQeTlV1&kaF2iXpoTO`$+r8r`NFYIMdky0zKgbqW7y3vg7jqvo$aRvrzj@>}f z1;$oxN#?$F0MlD+8Ed;qN;BPE4R|!w$G$QlN3?&RI#Ter^8hA#fvYgGekwjcZU8C6 zMmX2k{W^s3@hinYvrKQb-q91+?J*Hesw!QCCow%3fjeR8p8MIRf?-S+1A{d0pc>u) zDoqxJ(&u8iutY^4O^O(kt447!P17Ub7K-z{UR4yg734#fTHR}txow3wT}+|~ic5fi zAQyX_W4Yz9nSP)#Y+0pJPj`xp+3?D|zMaKLCQWCw2+}^@{3H36M8K`;`FJ%1A^nnJ z3?tDFp{!pE4GXis`mRBjrX`>gH`NuX3cwV#e?9Ks>>3#}-FqC&Id8z6O=};UHusQF zu%)XX4#n*d2D=Kca;StlmU2St?Q zL)g)OHGtsE9}ghkzCHFl)rnA0-#U7@{lBvSULR4Ke)abQI@hC|&2?#0_3kj5(PQ2G+*E?T$2|ICnQf}8cSx&TcD0UP8%hL8g(coKbX zDS~#2b`HLRVY5AO^JgK@bm#-68Uj2fUHFP7s3b9quHZM`Hw(CRM1^jP1EZ?O@1cRq zP>3Q>q{?#**5cvgBTz2LD}dN^6Hy51wc>yJWm$L&7k72uoqTz-T5=^0&#_r--c5n2 zp*NL9hhZzk{fklkLo~#?n=3tTq;fSwIdG#QcB|a%WS++7jN-gE)xD|kGjc*kPt)Cd zf15SQDH^N8-q4iEox5~>61xLvYFZ@_FhLGQS96}Y%f*HzeWbf@5^@I>7Cm0f=+is1 zUd>0xZ&w@rjKDz4)XxBZ9*bP@2ZzkmmUwU!t-HYvn<>Nv{7*LQNl`gRi0imr62*i( zRaG!o-$yw#@!#zhq8m_!Q>_tIOi5|2noB#0$-CH{C`6NsS$qsx52mp>p`Nvln zp&prdt@PyVSRhQYSX3Fu)SBlr!-H_1$ug&ir00O7_UN!*cQBz<_bnUaWb3iecDdbY zL49wrr9nGrq0v5plHQbZ+;S{SB>wDPk}ej9X-r8O?E84LWno1kT#axO#l2*g>3i_Y zknVP>I+*L*SQh2X+S*zjpkLEX(U%r<0B)CZ2CJh9$P%XTCBm^4<5Hsc?EmuCm}l{M zbn)aedV&epD|MRw@*Mb>BGnl6m@8&{j9mmqpipxnvAK?xSa|D1Ty`R&HTEl`z(J7% zO5NT|JS%~IWkj3xH)k7i*~i4JMuE+Jdzn1rOBX(jbMaJib$5p?e*}F_^8)%bq6ilA zchP5U(@p_U7$zXpPm5v_13oKKa-|5%pp6ymlKc4FBz7nUKzZ6g8R7&o>TSu)en|xV z<6C3N{3&LFugyo5>fat@;PjPz%cgz2;2$YATZMMg74MS&*n3ihQ`>@@X>syr8Q?8C z3#{#JN$Me+`)0{Ij2lGDJeUG|dx65w5|2E}secZ?X#oIQW~$2{YiXwuLV;8>-t+JS z7rIcc&F#%FS7g1|Jf*wL!*VNcV>tfHlA9Z2;LX-wdU(rTg`Cd-U5SHdz@*o~ubG9J zN~}_8PV;o~SS;9QCCrxjeAn2xAfyIUehlL!#Mf`_TnqbiZ7q~*tH92+ExLRCB#sU2 z@82S%-YF`A3D35CnDttVrvHUPRsPXo-U2bau3=wh+_LY}B0hQdj9wkCWJj2=_6M#+ zlpS((oDrFG4;johr!VmlfZdJ#`P~2EVICkE9wcG&NCaCz0sv>0%i<4H346fzSA3s| zJK;^Xoc}V>mjPBoCfq*OKBsV*e1@;C(4La%N&ggn*NUHTLP3wZmhfyyd-S30lOe>y5x89I1<=kix_$ZXo1yD$*uvH66mukLTjD4|@Y2ux;Cj zu6#}mGXy;sp7xj8=Dml*b(rMOgQWtM2_w{MOx^%%>Ku-4+F>YrScvmcL;6BJRxcHq zJKPLZL()=+0`CExz90{|I$Yd~b_G&-twP20y8D~6Qnxa-(t5-0R}@4ep&`P)#TYP` z7F~5EtUf>-n4pDbSPc2}C(wMF4##CIIX06|z=FLRmFzH)$ysz5Vzfz{<>$92`-v9i z8)_hb<5=x+VZlA%wK0ej70+p5+wo8@`Q{w3=fFwXI7~>|ErV@d%(r`c#(SLh@q?PL z2rD=}YZ_eO+cHN4vey4)3l47(h|(V7f&P5~7mS#H^jdXAmzC<3dUpL5GsWd(go;c0n1V2BuGgoK zg2!!i+;ct`@jOE9%_26vpi>-#`0;)|zQEq%!i?nN#iOn0=*fq}mLr6D@3p^iPcq0S zp9jSvS0L{P=AQ1ighhNat^*lO54i&+Oh$RBV$;8~gr371HCmuAVfvW6J(PSiJQOKq$Ko(AhxLZj68%BL&gU$)CP>{h`^0a96(l!3jcNq4@rD=Yc)(qf(HEFer$ z=&U22Kcu~PFP)F$gvOX1cn|qy`#_&F=@qV%3$o|QOub>l#6CL+g#tkmjMvv<X>p zCb*ixVLyRtOcSjV=YZwEs%*fX9wB980~g1};WLeG%uE0I`lJ)n_y{E8xl?YF5#qkp z4^>&^dTo-_pETcl0Tw%;eY~fH8T-wPfXjC8qq9;pH$bT}W%;V_DVIo_t=BQ5>zaPm zjV5dok7fNyEs*Q=nBz4d2cQ|TD@#=y^>R#KOwuVMERK`FKB|Z94fk*e1_D)bf=EIE zH@iq(%GsTRG@QqBtzV}?59bppkF8)IQb_x^N7Z%y5+Q^4p$r;T z5OiO40&W|Iq>rk6L`LibowYLPlA^dwI=$z9D1isDnLf8NRX1_K zE_f3U+MG=cr4uMcS{3_0Y`t|@6kPQ0D=^3)AOlF(5Q2oHbPWv>DyXC&jiiKh4UNF2rUvK3#GIy+SlI+_<8(%o@eT@OenNr0X|R&K63nkLNx=) zlC>6bWUg`}K`=N(aAg?hD9@&u3ZaukvV_d4c{S6zU9?+(`$wzD&sXn!qiEv$FvoZF zC~zxhu1DU!hKRpgXH`*;)=Y;-g*1_!HQ~%pfstH&f`HTQNlf+v+i{E%iv@L}*j7k{ zB@aJ@ieii5LrNcV%lVgeBjmrp;C%&F{(3bw1yS_3v1`_yLSFwCR{U=lJBKyp*AOf< z$g+S{rMJWV>b}AQN3p99)%0O4{>dv$q%=ydoT*_73z~9LCN7syj?D!7x_UXYVIiPpewgw9j_CCN*kcjE9uG|#-S16*6WOYK2 z9O6tPiMmjGae#<9+2Xqj4Pb)FL56TV`=D=}O?^EdRp>w;K1$fXgKWY{i7SKgJromD z1*jOu-_IhwS)@!2S(^XEOWlrWvSU?6SqM`}&?%@to{GvIa2YjX^Vvq*l|o5hE}oT_ zTa8wveln+drjDPs8Ch)kA@d;tV9b-;^dSv)Xp<}p>cfYql5`R@Ui23t%x-FpxFv&h&l=Bfsgj|E$l55cc|K+(vgMA&yeB=qVB>MDWce(Uqdsvo|R_7D?;P8`N_60 zg5m25A(x2nxoe7uV|u=Bi5%eca4$6D3>@nfQ3fp9{x2~Q8T19eULv<1vqh}&ffB{+?tKBd0fQ4UXS@I9N?5$jozEu$s+GulZ5LcSUG1 z``$AMp+ky>n(UQ(!dHlz*oHCJB?FesZD&CkI_NKs*xZhl1KTVax|_ghP(!2>!;L`p zRx2idaPC~HBN*+u)vdHp0PnBR-1CK2N zTRd>_FVc=R>ZNIl)WwlEBHd?SRTkT3e+WtF<}i^J;X|;qx;jNZbo9`*MB(J5_hh); zPvzxzg`?`d1ygc_9Jm5;@lirLzd;D%#27=OtPf&|eGRvFycT9I=aYZ#9W>#xtler!JOwV-!R#%;F3i&3c*O1aH zHq54PVVaHSdTnAdqs~56FBn9G3=Btz1Q)}Rl74Nsa`ngKSIOJF?OX)F4wRQ~YDXxM z)+-UsA*T-dg2z{b<-UObjetoD#AINa(f{%p2&)fiM;uXuy`u8h7fVUahUdpyT*NY$ z;i1)Etad?>gpCztkT&qx(npGAwIc!8o}HkYDYPe;ATz2wP+wsi7x{WqR8`F&l0kK! zKYXODSK6RMkqm9l-t~clh0@qLVn|t_QOso-4R*(U019BgNntIj+b;z*49$+cZ*R(S zN=?rmuiCHzBRp{-wx~$_cMLt(#z?kF6dI5m%vNddUh-MCg_8{A>G0l9jeTfrRM>d! zb>BHffV3rbn@a(Kv}-&`;s~3H(5|>Hmd2l*1jfScAFGG&|vGW zud>IzCwE+*xdXV{qBmVitM>UD4@Gy>exIsjPUB&GKHjtKq+mE|4H;z$DfJ)Sw1x&l zu`XlZw1W*thzypyMgilcFa(fVd6L;62`py??h&G zrgQo#EVNHtkb{>b08ik-%e`4-zRm2zywQ9dr@VJ?iF%M)*htAewSKiRQgB4W#4V5# z2D_KCu8XB5g3^%kOObrz{M3ITTEuHt`uOu<@~2NUXX;5(X=9W&8P}=>a1Ud zFMzN#dhWdR#}oXr(QzHNrp-?ME;uzC^!}H7`ZL8Q@{SkBTl@>KWBC)A&dyGTx`d!g z8X+4Gcw#+EtmFU=HN((>`CyL5bc$7au0SrB1#ddh>LDv}W`_CREnxvy8PpBlrWDj* z^9e&wBP;A`^~(N>kY|C2QHHBJm!j%+g9cNLhE>7);EH<~ z^b#wVOFop)L}#3~MGgWfHGJEQtH0w9YK%ox1_r!4zjmZGBv-2TR9+pd^d@EG+OBA7 z*y#LnvnL{Nc4M0{!$u@>Xy>Q^sP*s?RCGRY71e3=ev_eLmTdpp9?2?xTOeWi%ohkm zo?K9fx|`|n8`r4PHAPa|^+B|(TqExiVeqZ9-B#iy0EG_w^)e%;k4WnKYcWE?j^)CR ziTi6@i3<<_Xd&#=AoKroTviWhPlE*}qJ+SrVn>2-_%K)zSzj;A5B{zwAykxjaocDI ztMzWsBeFOZXf=#Nm0^DWwk3;E(RZWjI3X!1&A83KW)BD&%Oiq|MUOscU;Ug7uWp`J zWlzgW|9Ra27j5YX-bbw8zGA;%K>z3k?`awJ65=#7!qCm4=}&b)-R<2DNkP!cP^(!v zo#-}cL$W0y3o9mNC9NMoI7vk9e`l>wkOzA~jSNoa@W2Mg@pvZl( zv8jDillHg&{rdJ<&a?0Y%jG}iF(=<7iP}pV!`uU`6xfG|-=>cRc8Ti9|I>qY8~-~nnewkk>OuzGXCDB_Gog7INmqN3kaYXq_JAHNUY0Yl z=z;A>A^!7v@WVQ{lk2PsjUEvnZm{FrCWKC;;q9+D|H)N(bRxrwioD0xE5Ax0YiC-J zYut!@WIO#lJ|TVyXgtN1`l65H^%utOUEgA*fBLQ>r*h5Mi|f*6Uc!HTKh zF{=or#-3X!|I7T}g5Hg~bseQNLXNj>Re(!|PO5<>s)%ol*t+t ztA4S1sq#lGk7*Jc`||>lh**KR-(_Y}c!JAgAJBS-#~VnxabpGWYUVzgh2)j0(Mau7 zI;;LDK%(i!I>vhR$Y*fG#Bc9k>@+g2dV$NjlqNCP0npUQ!c_&oe)^OTeH~or(wzT^~zI!v`^+1;DHn|M<;mJv@k*?(* zA_6*P*Et3^gVsPj=83uZ)psX}1-fbB%YZ7vT(yg0*fYL2IPuYLC)*`33eT8#WA{!W z&LMZmoh?2+foFKFbMP-1st{IHn$FkwMm|YYN~py`MqS}ZqE6_)MqFGv^+TLjdR_&- zn*vo>!RUhyg$-tYzvtuMTn#%(?@P96#!zF@IFAkn@BGRPQu1^hhQC<--u;S{?NQ@1 z?LBD{QXcmCDk*w+o@AMj9P1O`n(y&dD{!Mg{IuD|%p@x)t!r3S41-&r|h(9b@$}zJc zw_jq|6utu9!|QjphLnOKqDsk;0oK_%d^5+UOes?U%xLQT;=WVQkNW4;9oM5*&~ZtH zKJtcvf{9RyZd12i~_UV_5j;Yz3Ux$4gHXUCB}@N#>N4(t8< z#rzXEDGMltCl&)Sz{dYK3BZ)RiasUQi32TdZ5E;J06sYUTUsFjZ{5=cmIM{cRCCt* zhwmx4);HT~Q-WQ_2u?h~+5Ugy%58!F6IV>l?)O}M0wZLRwb;rXMz}Fi;D4@Noq?v(HlzGfEp4 zz2ZI5`=&&sSMOD^IZ>~s`KChTwt&RIT~@pgAo`1SQfZaQDPrw$eSW6=5hxRz*gL;F zK>yPs@AnKIg5};(PXB8^iP(l~(A1;S|5Xv(!R|exz1;9sIjhgq=FodykULy14hO=R zkga&jzxwF&VOyH)TuCbb)a6A;`>sh!^^RiTlEtbNimcP%ym%^Ajx)=)_xX-w-6wk{ z?mKI|0UDFwwkTB$VB(&b-!b38k}un`rN2Xgt#X=U+dLIoduMSZe}wK`y#^xD3A%vB$Ae8&%PSmk%sZ4zyjS-V`eP=i&DGs(2GuJrWf+Qvb* ziC$3JFT5+~@#m`#xY@b6?gjaN2A;qaDF1BK#eGwQ0h^7iGcT#qZGG(7N~{jsQXm13 z=;GPufL*4(3gw^qx(RFxVMj?eFS>EWeB9C87?tC}!e=EdiNcFQ_s?j1g&ok7#Hy6_5rFT{HER3k*r1o*qA!*w zmljF!kTkduhHBOVxl*o9Q97OHVw~Q)QE{)wEG6jyDv7o4Hr_W{P3#1~ginQoxCt`f zS;jLxttR2au6aA-|GAzCg@TT?FrQQr;Y&cq({Lk%A^gLK!_^$x-_cV$D|aTVQTD?> zKTZL7OzU>hip2}R%ROaJ(2@{h!U5(*b5_`nCjO45C6MII0&E$-{OKKri&$zwB_rQ0 zp;JqbeIRo-Z2dRG6&O>D7#G=Qv)6b#FFgs&+utv70%R!Bd844}_JXLJF*dbcy#)|( z0`A*}vUHMf`oD%4`W_8?ncw8U?^(LvZBh7H4M<&J5V8f@&9>+eoamsa6ldGN7HKha zywA$YdT{&u!mzA|pE*qq_&Kr;lm{rpZY~dkqybKu1hBN+zlN+g3ye1~k1WWRTf8XL zbz|K4WxhVkLMSmGwwRN{XFVH`9-oEZGKF{f;wY<<1s8)qXGDs;$dnJTZT##|tGY!a zY?pkvZejdGVTN^bMe&=-N+<#ig9g!-k7G=(P=o`lDdU;16qktE9dBb;%Jz{^U2TWX zT8#9$weQm1XZ_{rMKer`$#|s0U7Yd<2~VWgJ|fuOG@P$2?8JuXl!T2r^TRTxzJ_dc zc#~hX?ww*a(+>KtF38uK%`ba=d#BKD$RaE@evOV7uo% z-k04tp7c=>()~3bxZ{>C%RWWQ99LyGdVUR&D`6 zKc0Ry$PE`yBeU9+?>{#}5$spqhX)fzF))g*lk4=*Nz<~P|5C9_MIhv>$2b1X$muTf z?&myYfYu#P*nWb<&anUsXbn>yF-wjjVNvoReAq1Xhz?%YNs9)ssHX|Mkg`sQPgvZz@hvdwrc-fz4;qQ| z>OX?<^`W0w#j3Vyw6au4q#Xa9s~@>p8grLsgT8tFnJ==wN2uiuU*3jOY)Rin6G~R; zHF!9C{>nv9$aMFL@muNmA0M7MuCEOmE6MB*6(<>WM$-rlI9)=Q0}sIOv0-@n7%ufQ z!+YCvJUW<7T{AHGU0}6av#6xy($Ju0f+Mr4p(enf#8#$UEKUkv1$uZ3_&57x2lfVq z@xMC_sT2stUAY;VbbJFPfE}(ETrSf(KCt!oyf|K$-74Nwp5Tvztxj;gcv+|(1fGB@ zR>``stOV{D;+l!iAYnBcwH!^0p7oPDcvA9405Ttd0LhTWYyeiDdMw^K!{)=c;wWYn z^OLEeT)l?+$||clNwweU*j)~4Uv)$s8~=)LLg^$=>{x&(Xo7_kW1s%|Y4l~UKRsEW zT_Zg!xnDc6Q{4{)`Q!);6kbSgD{P*AcVabKo%pq>QMon$&S%F4{0WbJfC>M^{}T7=kdOvMoW>K|V-lzwheEh|fcdIiiq3tGN!DyzgR5jQ)uZaS{S?Y zN5gxgz|;i>d972$6>PD~t2LiiBENUtd-IWH>0K6EJcCY(@3TBqEJ+1JDOtZ=;qu~p zH9{Z)t_`4VoME00@4$YvAuX;$`YFEOrgH}l9Obx|So8>6tl2R;1+yfc!N6XY@mMkP zD|3HxW8#_B+(v^v2kttp!sxYty}>6k7S3MKjP|{%@QpX5+y4bZAE+*r;4-8XV;M(; z+>$4omFYyoDXs3aLlwe&$3#+SI|SG06Xr{%+-H2TdCjH#!J-6>ZXiN!9^l)DpHqP% z;ncg)S3YV_q^}mWkyeU*6CmBu$O@BSqZP5g7uplf^TB_KT<7bb1c{roUUmGF3&HN+Ln}F2`F3N)vakcauPbtrV^%Yy-MB;< zzQ-x$4*&FjJ+c|1N@-Y8OB1gk`DE7F(0cgEWwO*FvgZbT$6;|s_ntm;0;=fk_D^ zse~Yi>)fzDUxtyt)J94a1urp9tCJ$!C$&<~{J-6YB-xe6r>jn?P-5Xb8}E#Rc&PGs zPF+f?`RU0C8(jn-j`QmMfyXI(6$aIbdx1ql!l=NX(hv7T0pbTDm~@P`ROxK z)f4LufQB&)ZFy^f;S5{a^-4!yICc>^D`j3X?4A}VNsBHH^-BXT6q+bC=%+gJHEb4&3KGM%K(>#)`zbdUH+ym>Hl)`GZr!>yH5Y$5w*XI)q{dUD z0PLD6Lx*5oW?l_{Ri4I6XZynExusyHh5o0EAwx@F5iT#4w?-8+$3m!4OULoLjdMo#3wrNXm2it#gplMDi zK=tsPkd8@%b~u44*PX#(kF6Ih=p88b^#o&^0ai+!Ml0+A0($R}($umU*eSS-SeN)O zpY#UG47Q520=2_o*~Y_F^y>G~kyG?B0${VTLFXo|r7;HR>qVcl)-0xe+(nnR1K|xS zG^Ws?XL|I=1270*!?sT(C-Ow{YTnN3S*2w=1MNtSj!5s?oofv`UnNUZTRgD^(%XfSwLRL)}g>>=@T~3R{yqbqQ}~uc781J6@d}o$uX2Q@vpHWW9HlPQAWR zIlCtS4NfW@{?QD62XzxXCZ^dXy20NBBWDDPYztkg_)zo9yLEtEPYLByjc`0z^FLGT z>#50N{r;e23Mj@e(=v00Kb?5sEhlLNlDRk%-=Ab`6XVD1X5F2*ING2bN~k{ZH&%6X zoUR*}sIgGn>N=01m++#7F5BNP0adYYGU0LCP?Hkz5_a&I-G6zbGPL{CFPL%pzxg8u z)DdO1XVwU~JVOzIOtVFw$-3Hyc zU*{I5K%B)kuM;q|2^4D7eUWKbvsuN-8Z|3N@a-oW9R7*NPFG4}`Rvr6{Ek{^{~{X{ zc+4Q>&r9Q8DKpM46t|p0whm8z(b_0SxPiogoT8Jez;5z^^Abpg7*{2 zy)4V>=^B^sC!j^g^C+f>5>>g=aN)og!wx`fv%ZlU7b{{Dp>p4=^P^<7i>49pi?*JS z(|cSm)hFW!doNbM#eO`^#@hp?@G=uJy>c&H!4s)@gt(p4hVJmasy&*HU{9x7tzFCc z9C+;(pA2XS+dDhkQd4V?R6`?t-0^{L+4CA}I-zQIu zTM8rw7kip(JYOOo#k+7(Cg;tPC5x-tM;1!sd*GlXfv>6gIEjZoYM~RDc@Mv*xzQ+z zQ4BkR4(JM><8do5eCL--f=Z>vAYo*M5-{zK4gXwRG?!h4O1ZnNDJah&WXN|tr>&dGuR$&{3~~`eu7%K( zDk?O-+fFw|Dx(=8mc0hyRA`oLy@hjuYU3hMV$zojx;2Ud!*;&Wxg7Ru=q zdUXJIZZruz>5HT2%nSyaeN8C%nX7@RBZok)Cqt1Z-&;U4_Sbp!49|V#f<0AL7 z!$&J@b#_4AeXIzG{ixl?NgP{9$jhq^I+v&p6s+F@pzG7wNk%kdi1BOUdarNwuHV-T z4U_SIb2tp<5Sjn#yGQ3T^vuHbu3kH5j;5FBg^P**)A^r~0-{Nvo+vm`o_wHV!U%cCdGtDUKhHGU8Pu4+?JQYGn?Nr=)TBJ@{ z(!(kkMTApF_hZZoI)WSN%vlA(;|;nRMvgKX3l~cKuFj{^ z>bDQ6q`P?u*Iv{sy?Z4>4jjtahy0CF>K#CB{7idDlGy!cPO<4mN~}&x;}bC8=qR#E~8Ogekf2&h5uH)<>=C>##^7o#9atn zpH|x;lMl;b#h}yhBe2gGid7tdd(iz!O3mwN^L}e6kp#B@*|YGi1Jb?1l)oXkfPoM7HgNSH0c_$epTtWWOxnCWP5|G_l zDOdM4`IN6;^Eg3Z#$zG6xj2M?@{Y5r%ARTaQsty$0%+Ypf8fww1b%x`wpx-6RVi0t zwN?)pP(pt&b91dT?SJE&BH~_{#T2YB#p->%^2!}35)JGWNopaR4}7jl_Q6>Qo*0n! z^^qlKc2O~GwGi+UPJkj@0j$MT$qq^oY6h~Qlf^FH#x}#3e>j7EC(FF6%Eg!Nt=*FJ zI3$qw;DgYT?Z5Kgs;I3JJ1DaHJ=TJvU|qawDSq3lk;W+q6F0jKJkw&$4o~%%k654c z1%;f`e}OC|-brIj>XQXk)10iQVA_a29xpU09a*LPugIPqhBpAfogqD^7;b9cw?uos?1|bpzrT>HH7+O2jY7BwD<{T100LIjR z68_06uLWX%VUt>MkL#{=$fC1gvBTvC(dH(@s7>9~!f_c3I zW2`mkpO%FiyY{!kQ8Rtl{fr!n2>5p^^hX^d4q)_{_C5dZK!5hGlh@g~>m@wf%nUAK zJEH!wMgClYRnK9nx`ZuAQ_X-K4Eu;HFMsrLufKz_YoX)!td!`KM7Kho#m1>*_T&4D`-&YT&zEtNjN)L-be<$d&cz@ zzF3F1cE(D+^~l^|<}hxkLm{p~VsurQDf;spY~1txPwPhRKsYI zdS#ZLyMaed`ti6!83WmB-mhw1_Yklhoqr%1EHp!icN}6N^98D}8TnoZgcXzVZ-J=f z?Dd6M;jKDti#$ZQ+}g=mofc|t|Lb%<(ro=I638R_#`T|hmz+|}w@bGbXOVQ;y^#Q+ zu>5J(UR`3w6xq-|F9p&ReqT&i=aJpUaGsU=XMZeSyWvjhaw|a6`6b|CPe`0hx!}~z z0AKmb-;S6Co00sbdN6X4p~VieWg@ZXZ`ER%G>%D#(ybWKr)oAB6NZ!k>%vmJWIIXE z7JAPWQp*(Fey0t=AY&TvyueQN@Xq;FT_PrB=G(Z;=navL`o zg05$FZIU8NbE`JLr%kg7y^;s&)JJU(-VBHevz37I#5z~*%YvWW29=V@Wjl&$A`?|J zUdlYxvzK3@*+&gsG+5gd;_aqRe|-RTgB;M>yiP+JlnJLI8{=I^*4h6ubmf=VH9to1 z1i~oR!rQ%vKkDFz>-Z;EvwAg}Q@1d$miKmo&oFmnfK`!xxc$!{l#rVAP`Au78Vu>d zpXOH$SDn%}OInsk{^`>4+am*b&s(J<95Vdrpov? zTmrha6!c|d^iO;bA#F2;?6R%1tZ(X=sIXnCUYI&Zs%|CMInK1ar6PcrQIK9gl)YTa ze+&c^h6qIoLudBD9=D-nlrXAG!*$c^jIc@rfT6;SD=jvj63{C+3uXo2ivzro`?fRG z@qG%Yftf;9k##=9;+`~+QZQ+&tr05x4jjfYUTii*mr;V(oInH^=Y~?DyJnj=DOZqF_(=>ZeN_m!@v6ug|0l#X znDCSh@Lv8cOzP4N(tt*YfSj)R8gi4pUmhI}6nEow3l;j|EA{yY_JWq(PvvM$B){6I z`m#I@VThka`na5{Yo%1P!=luu;+hJpPKzE#AweesI!CF z{{}*TGI0+qu92vG1>0iYSK@!95DddsKhBUPH0i&^fUcLb&P@4W4CTwDm-0}3kZ>=% zBY)@JI(xs_e7!aCqSbdeiD6jGtWLrrJ?hIvs0n7a?V`-hS*#`#7j}(U{QBP%dE&)T z03^!uz3`HC{8#yc2XN{2ADD{;UlrEUK=#YKnYc9_JWG8p{!X*H5>ED)zY!$*CVL-D z5TjhTWXin2bP0t`{W_5n@Ib#VSiv)evji(z)K7z|ApWw@?sLmPL}(rw(7!KVt?vD+ zc4A2Z?G0{BXVdtqhg9Zb&!FZs4ouvK$Kzp4Fir@FX~SE5W|%9L9ROPD2D*!ohZ~ry z$TK=15}9hr#Jx{ro$#OfiVQdaXx3D9!+#pKWg6XT?g0dnIp|R1v7D z=7fBDIX5u5oeSGume70%QxkTc3#mCkINT*(6x&5O0BjsgJduX%j}$ys5tQD=Kpn2S zH39_0=Bz7`!NsR+RL39Pac3_kZHhF=SkUgO$J?w#-fO;8w2h32mJvZQbM3NU(1 z&ZkmSx@3M8dK3uppP0FU#}Jy7u=~cAH|D3+UH;*kSd`NZ@WBg7g@KCnTn< zTE#ae7&By7Cg*?18`3+#i5li^!?!4>wgulFmjZ)Q*H`LH%|A3~sBP-$XR`!<9NLr# z-~BhmSa-1NzMp>GdRH+j`r$2TzEQ=Wpp}xsC0j56PVgJJ!(MI7fmk8qxohta0ODyp3LRr0J4OV(Y+RD!;tEQYI6QcLP~~`Ay8vSM=Bt8$WIt~hNDHE#jG9vy!utr;xa@cO5N;i#xLs-8Y^hjUWRfKGXBk2UU zKWJ49P9|)NJV9Z0cu#pQIWdu9j5hk!%SG=# zepdFn8`fV1n5x|=MhW_ywEb7kwuAMBFi=Fiyu*(D%WdnpwrSxYbdqt`!=W7({y(L} zo)`aOCX3`WghDvNjJNvZ+2Qf%mOz1tiT`vR)Y0b^57Iezbc zZ87R?WlVJ;kvhDnDf2zeo#CA4Ri!}Q@|PHaUfa>;3j@%OKNUb5R* zd86wd;JIBFq>T#Wxmjj+tluTViUgd&)BnX8>@I}O^%|Q}JB%<;Kyn)QGNb%Q+TU&X zY-KyY`*m^Ya!d#BdRdUT*NUf7!AVa1GAde)58~&u%B?z6nKEPfK7dyB z7#2&a9z?-#7B1JqZvHwx>z)>@Fd~CyK5mZd%CK0S5cEM9CEY#Gg*7v9aNy%#Wj z$9*$e{%7d~?j&Bo*_5(P__db+_37DezpK|K?Gz!l;guK#T&>6#;1)LXE>}Noo zr%6zhsw*J@hC|JCA7xnRgffgd+Kox(^Wd)tL0!}<`o+O*o8i39 z)4c`I;?;wHzHdJ9=(T%vE6=m|)wLOa>9%}20qk!|Phi)(VvQchR(K!W!%%&YwV(`sM zUUAvT_1098fUT%Ch;h=^t9D;7ZVds_ocl-hT_J2SBX_u;mx%qfeC<^K6L2h=hXvvb z?`aQgkD2}X-TPqBa24Z)|6d>#Ez(fekBLHNNa;8Lp_$`PgKzM!?H7@w0Q6a1X#p#T zrpA6Xqf z!d_}nVb4=_|9roXHz$sNuKN7KxJ}$wQzk<9Sce5p{24MD>&!tRbFbZxHR>bX?^{=4 z*W!t0515o>ICVRapAI9ipL#s?9oo?>SB(Cxry#S^nVI@^eWe&3GD3!BnAB)?J6j*0 z15jT`1cRv7C!wG0LE6!XyKDC1`IcY^ts2=9Q$taFTDUhi=y!gm^`UdRMeDQ*LnJ0) z8jyfR_Jh?0jJ9w#XOR4{chcFVpj+k#EQ(UkLCZH2<+*h3Q%+!#g(g&w2@G>34bFuH z=cAqJ-eK~*QegerJA$b@a0k~!U$TM$e`%+fmv`y0;_IITB!66FhNEPpzBGkCyuOR= znN&wm3Z5U)zu1znITRFdK2(tO)keUr*bf}zORSRWj{Yp-kfLKgr2im3XDnl?rA_y# zgl`grZ+B`{x&6JGctaG%2-F?1Ob#2SlM7hzK*;bnfuCzLmt+5$-I!x%Ry3ORjf)aN zO_kLs%)mZ}9OP6-*vL9((2A6Phj=m7k(5B32iMmxl2KAkpwjV<$J6b1s&4VB+42R# zr*IUbBHsO1vTi?)wFV0^Xi-?z9hmRp* zIkhBQ={~>u=tkIs%vQcil{xxa;X@4ClbWdhwEnO5sO&cjUIJM&X_@8yQ5eMPl%;6} za+AZ7ZE_jSaf<>n-Qt0;T0w4tXZsR}_&3Z445%Q^!sd=R9t2iR2BH$gi&NugfQ;V> z#@oLKy5Cl2o`F6o>bKffK;VSM+@hr5KK^@{X_lfw>UVCDJLR+kvz)%7PZc^0s3>!z)Dj|o*X{P$K|t~vLZ zx_Dph_j^!%$s(1b+Ch3j)?2p(VpJ7mpSS2M&)bk^SkQg1Fqd`G*iYIlj9GZlNW64j zSnc4Vk^6y)I)|Z_uGveR$7QEL`8(m&>&W;qI^|zex__S1`d+CXes$Xtoy#R1`3X(Z zY|ziGEK@s7tw{U$fRmJE$n^UIX5xL%XkpV2nMVDoj9yxe6Mx)3g!|o(a>_kuX``BM z@if+c&rbd@IHZMqBo-d5$O1Sh;>F@=wz4i*xCC}(uS8uHT%>Ii|KaR-q}0nE=pw$y zbE_whFHHDLSx^}P$_GFCpDd(gxM+z>ND%YJvqeLxkamrDKxd)eVqmj5hjA1B(?UFk z1V)N0<}F@ngK3`|g7F&LD#LecV*3LdjE~bk4Vw?4y!YH5E`RyuTRn<`VY zo?$(mj~8;jk*U5UeD5(+YrCqw|55*Boi(Vtk0f8CnJT{MLn`5@Rl2s2Ma?stc+%P^ zwavx(fcf8pJ7Q8_@jm{PF(uG{ejE2EJzdCPxLAej+YxLHa}Uc_nsGd5AG`sEfD%0HL^{O+(`N@w_x4fI6*Gq@F;((` z4pIY;XLsdv`^rw}+Yr)Et;45K1BW)iJ2n_^L%0dBJC8$(mV1ds9Yc#%l%WLROhdKP zAJHIF*^56t#TdqFkg4C)w3=;UF(nRXapLoK9Q~ww7eTM& zoub9&_)3SMsp&16njc#!Avmzl7C&ICBV^#U%s~VuZF)gqLh|!-LfG#<95H$(ZggsV z>tbOT6S+#jz_*cD`FsT~+mEsqmnOyEXO%x9EVxZB2QR%*3+wR6%Upq;4|Gi0Vhr@p z@0v2=;cr;qQUPx;(W|U*^5@IHf!hZ?C~!ab{J2Qg8S~Gg>@(qSenPxX{q>WKUv@hC zwCC@P?mhl2ikG@gzObHJ7ydLYwk%Tf_k_Hehl07566?0h?N}AbWZEloFMUGu>A_+O z$`)+Z!y%k;Io;qR>6BNPrRBpu+nvU`Z`q;Vw{kkKm%;e7+KYf??w^E;rjE#GRxcJ3 zgOrWbO*vg_-6+D~;$**BRYq#!??LWnkZf_@Ou_>#^2NqW6ROb#e~1@x>h-aGY?N{8kBL z`q+B#A^a=7PyUKf3HtYqu$J&AUJ3c&@_(Cq#OeIh^Lb#yf2%xCG9vJQqh_r(IphDK zElP-tk3LGfjtw8>mEa=NEm1m~7MpT)^K@QtGkX+0M;gGUp9Cy2>m2`jj3 znh7xqc(B3AfIDRs*v5%Tus5NnpDhh^gReB{87|U&_cT)W2PUBq3&9k?5=rXu^fa}1Jny``IR`*-gZJ{F3>)WBuBW%4A z!i^3(Qnbp~(Z#lfrT*s!h`SrU0>3a+@a*;WLd~oUY~KE9;F|F-hkBpG&ZPYdCAPDp z#mSVirOzod3$*`O*WMY3jF)-GO27AP! zGnB_y%aeKnW+NxH*VP9xw3sgD{AG>7s;o-`oqP{|PrEj%!-K_7c@v%eC{_D&LgiQG z*Pyl#S7gFlqRYE zm`=~o&!Fe!(|y$X1%sS5!$hCl`GA_K#2u2zL}J4(-Ld667D@-`AN zU3niaRzouH5YEIvRWx=#wDmSV`Qy{|m`?jtK4>prd?u^gvt8N3=OSwQ&5wtkSqHOb z8y;IS9$P%JAPUQrdQsspFos^qntbaN6l(it-XjD3TWF&sV+hG}2|5317nSX^uH>|k z8djPo_p1zaq8c^$9e@BjA)q_+1o}B($ z9|eZ!R>i~65vX~HSUF=9(q|_i91qxt1Y5oWt(adJEa7Qhkz-HWWTL`A@5)AXL~mE| zvxWOoL1(1L4J8VQ6W{9t)rOseq=O|hiY{EKT3X}^-zah1O3}@w^21-YCJBYqPuqWW zNPn0uk{J`?J#zVrxZ>5IjuyQjN_%#k!VV(s{}mNnO^|pbW~}-gV^GPplmu}9Re6Z=@Dws{nEkYLR^A>+&DyM6v zVs9;xFmPDSZH~`FqckN;klEN;1uxV?MV7u*`!wrew)m^5f@d(7CV04tnY&XVye)fl-;OI>?q2Ym=QBUuT`p>Jn_X9=d&Je7} zvyvZ9m&L9;@SwRGL@tvMwdtwMZl6i0Q9BOP61R~@6=|wNE zNx>o=lD}6SiMOXK8FqGQK7Mi8-bywa7y4sGX5*~4fXo%;Hf$x<2>C4|GH}!{g#Bwy zubaaEDl<(tnsL3i?)O_QYdKe1WxBgph9W-kcVe{i{wpDF5D?fBN1q97aLy2PN2k zzpK8FuS;1NC~@B|z^QMA;^c{6#t&9khq9&0XE9+*qA_!oe`Iv{z5dep;^5&3WinXE z@f%BIS2>g?5odFnrO;x*jMo}wys)7cFOMWnbNiim%G2M^#0|%sMg4f@4gl3^388V zr<~Ob@t{sIVHJsRn5a%C1YK2g_0KF*m|#{AI%GGm+1c~rcrwUHRzZUBit+t5?_>0v z0?qiiSfcn+OdCrdcE8p3Wr(vy$98;NI+F%X2AuZ^wKja2{I@CHa7rc()%T^l{q0ss z>4BGvV!~+F=;7Y5{Je$F!_+Dl8&6%E9(XOB&oMqwkP7BA%7~ys+pS*veLh#M_$l&8 zsqBZ*dRy$yS=aU9JQ#cTb!MC_PVMY5o_6EGgS(qw^+;+y6lQt0ajB9Km>QP*#SAji z{g`p-E?N&ef(K>dw7FSc(XIB*l=P4c|4?qmb;=*wFmSie$W-{>cp){C?hmcG5;ZoH zY?IXB)XWho`JR`ck;j>a=j*-&pVB{3y))d;7fbwIq|XlyY_0P{##!eMI>z`< zF!zRcw_PyC5TFK$V%yp6V8qo@+BJv2!(LA|WeF4CR zzDrJS8dqWHVstXE%1f`-`5#QoA0D)mk7;M9#6117x}cpQ8efeYsa|Akk-!lV%+o6T zR6pyJf*^tM^8K21O+!W_x%cbrH=kpiB*oo6**!XM9!{F>_KqY|smTh~evTa$@HX@> z&3vHSPprapGgZkA6&h?_Q=*dQ+kciN-~M6SlAjazz@USCcjB1=BDfTs5HrTC- zEKDTl8eI=U8M6s`7AB$(1n}pi2lgH;Qg%jK`6ucjm~wOd2lRBkR(19r?7xaS_0Lj< zO@8LpKzY5hJ^Sd^jSHmB3O4r!rjcY0fv8V?{XV1^+Hn;gMxHdY`-DhuZy>lM+m(X_ zwctdozG4K@ZMs|7o*H0)jgvR+WP)Sks&0IPLnJAaFu#lP;yLW~ASsi+ zUh7{5ki)6RDZkkOi4s1>)&8(K56gy)u-)-+xmrpzc)a>YmXhRrgz~BP#!{!VPnv!T zvhtH1MnM>a=Lcah7$U5ywRX0lc&^~Bk;TtaI#X|xF3(n8dcI-CUyMJ?8NEl1tp~_c zb|Bvg7q0=J%oT9Q`X6x=D88!kN!%CO%QPV0)^BpSZPd1z-S&O^^w5xYI6FB__We47 zG>eL+rjPe=f7oZHJ1_TN;IjM@-{26@nksu%mGDEB;97foIIZ^o;p(iz@eJSp|LE?T z?(Xh39n;-RGu`osX&%j(j_ICho8i&T;Kp z1dOjc=sDEq7)oE%n&iQpLo}t>`4qdce8aDI>fklYa5)!##FWA!(;Yv(ALD)~P{2;Kt^IFTku zZS?;0t^)HtdvLVP{d5=He#Pt+N?hIA40>W~s0Skk@^~(g<#2l@1yFIa{G@y25+#aUeVeZAt+eNpok?I(#S1{D?mc8{d`01; z4CV|7j!oS$%;0B>Jmp!e3}^@t3chs&w;;EV0+5@-jdsVlGtBa!$BJ_JYpJlK#Cv2y z{9zXg-O6|5k?&bP1lr~`ypv?5?eHt-F#$TZKbg7)q8i>XkCQBBeSZpwT71|1nn~V@ z3w!7U_{9>oTaGHlOqBcq;R!#JqZ))r+s4ucnkCfIjk7-Z07deLwlQ=d(+CsTIvj#j z2LeALi9sqf{Kmu}e;27wfc^*!@B)5Hpj_6d(rv{ibnm6UvjJICoj&7nL)wSbU@C{l zIh2ePavjCH-3-4`zi$#5WTM+UxTi{od$#@O@(EdU1cJr=mecfHq{>q8BV;2bJblm> zAF6Ir zyixU@u(vcstQwjTgQ<+I*{W3!V-!o(=131TMuk3R^?WvpP);4epY);cUy5HJ?(5a6 zC;rlks|T-0^;;Aho=4We0R8_8HNaN%Ob7vHi0=}Mk+Mf3O!LAD-}K4~lUo8q+ftfB zUY7_7JTS%QlQE864ly z*dCUc4Z0<9jW1JMF&fic=pWsJuW3iJvWf{v6;qmY-Q7$5Ld%D*ZGS7?-+QwZ_)IZ; z#)H~p-9H^jhc6$PS1VEyeMPuW1OE3jWcM6ix0F>`*t?&9YysAjtaD|~YxnX@&f@eU zJ#?dX8y?I!s0zV($@$`sgc^t|UWZ0F`OL@IU|10G>TZkxjemUYeFfn(M7<3gDJO~}tv{jD!PS;$7P5XgX#(>Qnj7>-j)ck;f5N)*n#}616o13rWUgx%o zX4s!`tOyqATn*=B^_M0U5hj!tM2fRkndj_QFfK;r zXhqy2KRaY0n;r{s%qFdO=H_qU{nWxL0YxYwZMP&>fXxzUiU=td;6b8b9z^MbSq$7u z#&I5MpiQczD*I%@LQiVK^fn3By#`fyV%VlalBkO*cRhH_Azam{s--1F4n1N2CYpIz z&0zwWVCbZ)CTOuus2NyQuvpuJR{)^{8CX+{ui~E|ApVU$k-y=;Cnn|(py@$Y|9JD) zuAS(el>D5VdnShqgrT9iO7lKq*iamBH*UV&06-~jGRW~n zgE>eZey3WSjWteKepK~ljDMojUfp*;Joc2RPAzf8#p1&wJ*fQCq(Qtw@V?w$bGl7$ z_9Xn{6bwELL=zX-*JTtOe=KQgPs-bAR^JJ;+%drYN*siFNQK&uQeTP7&0~^hv1eDa zKIB}^zTdaqtbATYvmlytGL|ylqW;i___4c?V(D`@F znw{QqD!XuRHE%NAM*+U2SIgNT!OVe2@;IFUCBn!vK6Z%{G7Etvi5n+kpA2R2g{#M-B4!M~R=VOc( zx<%u&n`TaARU19X%zay?I@L9+}?a3a@_SjJ#<<~c3Ao_gcyO=&Y8Nm1%!2yWAWHszm zb>cwV!$(D4eWY)&KcJ!Ad_av5e=iG6)bVaxZ}M-(f!-x|IgFu#>teuNsoaogT13E8 zY=@u;t}zB-Z6`Q&$#Ies&vF|$;bX=x-nV~cXIxEi}ja6Q2W;x zhYu*%i{m8qw50XO0VF-r;xR?l_L`M}FN?~>u8*!&rQLVmuI*AKa2FIlFPpLC`}Vr7 zW+t`k_|%#ek%|{U>OxlHwT`owo2=)>47r~Xhvt7soGd2SXqs1f1*o@HbO#qaav#B+ z;LL{{qm~7A>M#dym8oCLGFmfaOYZhbJg+yXR*%{&c2L?r)Kg{0Mopkxc(b*piyepw zU*|~&K}MH}L`Eid;*pbc8}hNaqX{^@t1H8V3`6v-b}t!~Y-u4VD)#XKR9Ga`YU(wd z$ws){Q|pYpW3RhS(88IfrQ4_7M|CkUAl+_)YXEavxD>_nw$R<=H@mZh-87;jygIdS z@?ezv$9cT`cBGd4O<7sHyQgb`qk#StXq}d=`%_6hp8NPuPUNYeutp9RATwDB?}b8UIkr5DYjp zOlsW*-h&Jxm|;jQg|$sky*P4f3CNjI8q&4KTvIsE)hEAy>E6cdf-4sBWn-*|-!y1o zs*Jf?L*bDA{`hm#ldhzacfj97%Zx`&~x?W2qwue(R*FEB*O z+rjN7Mba)*Dqp|8vNx#n0kFZ!^PdCe%{6R~XMEi0$;KoyUqUBwn>5v3`EzIoqf!*> zpySoOplcR6S}*4AsX#5Z9I;L@rI=+=7kY-YSVl6#JUVV~91aw-7!uNfP1s-NP;$>h z2Y^GOF9mW8UrVPcJCx^>*@yW!S&M_FjHW=Wu5iut?41jND%IdK-5im>x?<5dJ=9t7 z9tCp>Hup}aha!dcjm27LzpTp)8fmG5>oF_R;@_n9`6;Ju4@sJm{!^N$dzOKzFmZ)% zOK#KryK{($5kOAn^|$bbL~X_QIDNi)@mq!1uE!#|;E3Ai`u=Zu1PWAv=hL~9qku)` zM)ZqO#z?mH^wU@4{%4@L@PGMb5dT_S-~(R&+q@>Xa@l~0^Y1lIZe98U&dY4GgP4Oy z>Iyp%^4gZj$CThYItb2>Er$!KbxB2p23zSDfz(ECJgACmv6#~4`?v?z-VbSVsk}|b zamP7c&D&qqQ<7FSEW2JleK~1vN$PjsGSD)wy2b;LM4=m@UsO^Pc?;6`-NYD}ae`O- zGXVGg=4#L3QnMF&7g(S3;>LNZfQ{cZR4I-^oAsa6dqt*TeuBd|{dz`SQSthx#qN29 zXAoF5mnmxq_3yosk{^|)S#P-1d(HWKFlNZKlkayU`a$;}jDE52L({A$Nox`h!H+Aj zd?2=@??Lm{#CwsmH|id9yoU|E-lVhL+3p6qD#aCkAFuk8!K>)-=N7L5w9Bgi{f%~G z{p%)gbm&qoHuz%2JDtAwxoT2Fp&!w_6>-u$SZ~XCW0h{2^lW?feEVDM6of8R_{t_n zDB#Oh9i0Thp6761zqojC^5fH%lN4RWG+WO77?Xp))-0Lf54r%efQ~wPd@K%$e@;Jt z)8%()Xsr9&HqF(VYC9d%`o78!qFps@ua61z>hXmaq@G|f37i#gviw7NzWPgH`wdVt z2MMYM|9^14%-_hk(7>;*@I^{nvlW8vmHn+i;k+lKk=MOqac%t#%^9Y>bGojsw?}}) zGFjM!{`?aW3+f!Jt+c*!313sLntHvG8``H_r4R|OA%lt;F7HhY556i6lSZ+U*R+`8r=)Clko~ z5?BInz+E@;dF~TCO`A7rDX2Hj-jl{Rk0sg}St&_-mZ)M7$u&`~+~xqa$vL}yhYA5C ze=)J#^}EHf>=B}tQ>NbMuR2Lg0g-ICyJ=+1^`SFMVF>0i75JN+kh;JI#~A#!XA7o! z{Q^=(jKlde(&KD2z&bL4V6gB?jr{R?M+x%!gybP~q99iDEeZbo)YygvWxHf_upfTb z0T~|I9v~Y)|9qs4HOu%D9v}(`(PO8fnWZo7D7l;yY1^zZ8fE;$@f{cx$s;9J{adNO zgjIzG_e{Kns@=EbHx-Ks;0_2>tq3UZN4~5)hlR7F!nXfjWU-$0og7_Wj23!&qY!1g z2{vhDmoeCQY?}t6M%RK+pHH`je=s8(08XH+LCu>*X0AAwf!78cPn+2hHk|*3?lrm~URdX3FnI)-(D_heFgl-%aX9dx4h@mxr`G9TPcg|? zN$8m(;qz^tn7|{mn2HirXeKR8TDf{wG-V(xCtn$~iuNLha|5(E5Gf$CT3(TV8Uo;5F29CmSi zPC>wRm2NW0UoHu7^W1=zWBTKOR7O_4Q8YGTWv1L|0}ZLG<%QNtjPnYzR@zVdND2hJ zk@5J8a{8iUqRV&TOLk(WoV7HpaWW_RcQY~Y;)NqA<#oMH(?V)sg^9DL_l5DmU%HeE zLEnRrPn%zJ{@nmSf(Arj{m0$xE5!HVk`F!sZ4Xs7KZeP)9cxj`H<792A3HyskzfF| zL@QvQ9;&(F&b&8e{@qiMj*`0HI%SzB8EdNlYmsrzG*PAH&m~c{nLdl@O}M}#x9_LN zXH4fIY)oGp(HyIfa~~p`Q+HE5$s>D){hsX#IR>Z`59zR>zlChCiIw32IF%aqk1fr3 zKnD$c)j=(#`pBX@LW$(5V<|$vO+cB!LAueoHb5p$tJRVI?snY4l^hZ{?=SEQs+ieN z_iUi}w{0%&nwi^SLy5MO49?5tqVN|0!?OHB-i8gZb}<5C@A6WD9jmH5Yn>S~v3=fa z573Voxi%yA*wCSDB#)v;dgSTSPDkW;KK}st)O}zPV6WwL@xPTd=z}wC*M$^txYCM8 z4^PXBMO%h1MC5s!>Dmun#Mjc9Dz!Tbcr;Wb729H<-hXrQHS1Ews9b%;%Vlj`#twR1WxUIBV+~Uu~Wd$J%mHDc%nSuHwXZ zbG%%Fh9P+uhDl>Rg-;mg7pdlDK)(BYVl>T@kD*s|-YtZ10U>ZZ$+!bbF6cX<7c73c zcRC4l^leraMaam2w~CU?Rp2#?1fXu&*|v~F6m@_XCw1Rtm1Z(2L~(>tn}bd-hd7D= zh6ql09H2}#nS%nT?0_9j+M_s`wsHofsx7$m48_;Qgriy^LUGXV&{qkWnN{mUm5&t} zvrUwCyUpdbv`qJrES3!|BzXUa-(}i9zl(|a$4fx5Nw|SJ^T7WI3!|SNeKLJ5z5S>( z<~U6}55Ym3JAzORl}xG}6BoLS-1NY*JFa503jqTf8)&VdcV>Q@&xBqH(2%!mzU|a_ zMR8$bzBKo9OAk233y2cyIK z8%S2_0hd0aO!FB3CnJ^nuR#5}FTil(frrn?-dc(`z(0}+Fb(%PK@46(7^pdvPI*Te?j&` z8yyZ&U2-q<^0#YBiILBDs-ODL|6rCRE=(1p%7ZVf1(^Qzaxny|P8h_xk`cSeURlQl z{H%y-_;ABoQ_#H2p56ne@Exu_9~}@M{*T8=`j#e`YG5rdlFNb)d7DvQW5({iI?8r@ z-9DS-^JVi~rMAj?u&oEvo?)-QQ!sDr`jGGHjIc2&5K+hChDeTnt@joZdNo-JtvaW_ z_Ed0SLS-G6{QvmjZPj$Z$r#ia_Zl+vzry^5exqx1ng(8{WyAoX9KTSy>1z8Jd|de5 zD^YEpuP!jv2gvVsq_rPaxN^~(;eBQqvoiJ*u*)uGcKJhtaNno}#!sGzjOehm!hu&) z;d#WI?hC>ja09u7$R(#rB*sfks6knL(WD>p{}sH9$syc3apqULj;vIh*IE*wet93a z;ddR$mbyw}CDXYX5eqXtEFS-Pb(=O`IWhD}!`3Z_Uss?@6u-#})RnBF)VhML(XQye z)a(*b6Lc=~v+oyN@e0n;GW$%fbG~ zSf-?KwE3R0iF-&^$-H zzm}wej8d91aW^PMBf(_7;zNN;NGl5f63iD(Ys(x9EX0VJQj>jvnvXz==T)K8|w_navq13w9gP*S}a4KHja7s`omUM00C?c)32T z_+tOGUn1n0JLX9-jU+jrAccqu_{)F}y`lpU7>EE^uzqgohVNhdcP}a$p7Wrhpse2A&`e-Y&I53g zUInNhNx-i9BP9BKy$5scVWb12ceM0HjEP{BGVKOcErR+32;TKrSSqvD2m{tX%%6%9 zR1vx{vLo*D@X!coa=|y75yU^eWiJa>qh3AR8kfKQ9Ce~{4AgG+#;onzU z_!(HOV7?1=^yZ3?nd6m`=gD@A#=8=2%GREiAvCtuZ$KDuD?}gbUG9DFDENTP2pEJp z0W2hdb%~7uul@!K-V2T#-H%d_I2#uqUoO$cZ*$YI2@^sB;?T+Y^$Hq==`}bz$f(&e z0mCGFWP_hKusJBfE&;j9kFiBAeSqzkTsG|$4s(|fHZVA1*C+d>?hkt~ zy~`6~&h2)Dhe?#RED)&D$p+A0|F75D7&-oj$0;$K|D@heDLt7tb6m)3Y&G8ZB+Nov z<<;A)lV@q^dBt*-T7`5{cM%L8CBp-8D*Z4?L1p+E1mkm#Wzgaf;CgIV(Xn3T>-rO8 z@xZtKk%6(yKFiT1(q&Q`vt%MfeDn} zfxHv#`;<*VJD)c0hLDOSUREP0C)LHI?rgbx5=_M&F1q2cJ^+z_AqonpTQq;cN?% zjXH=?Ym@xWFJ{%QLA_L2T5-MAeo^I3$97+2iu6aSyiMmXp8u{g6`xX)aC3Ef<)Zu% zQTYs{9&mjp{x|K8` z?+U7Yme*QcGYPnQUFt*PzAUd;QL*|_KUpBhKOj;gdi>WbP2D;J2-N?vCGBColp8l) zcKdFHUw_`-GY^?ZwE{*EWB*9*kDIj9qo?LS-4ZU?qIvMJd?4MfFb_%jb2OLQW}ct^ z6ee_u46vS*sRSiSe^Dt!_WFg5(=F~_J@OB)sl#i{SLEiq^8!Z4QTR26% z;pY4|_dv$?C<28S(SyW_O2f|zqEls00fpi6!6kz4xK_*{a02SIZ2IZ=QH+?hnf9AD zfV)55;eZA;`1NBP)!&4WB7G~-ImVP;AgH5c(-q6C=ZjYnjntvcJ02M$KN#>)q>jVO z%dx4Ny^cP<#PFNy`0`Jyh2|JNpj7Yv%JW}J3#J>ANK;OurEJ*0g zmQhYu`A)g0)oa$3_S-vjIhr@2xClxYcDPe&N?z|Ddpy^3QCKz+4#o!ZNZ+pq-{c2Q zwEsq1ZU3DooE5##zyD8Kj>?X5VyQfaj-^r zepbsfscNHkx$1heT`2K~m>|)$%THEzU1JD4K zi|wvY_%Mu+G@2ccq%c}+blB(bG}#K8dNE?P;qrCqQAu7HpO5cjFN|;``^3* zFt^2+R0;(?T$(CHNa=}WBs93^ecPUuhad~2&Td6PLk>J=~6+=^~vWz(`8M{0UaO>T?2 zChl6P`z%WhPfL*ruX96^QmGkJ8d2Na@Dp0Ec6ZnL0g9Zin}V86`Ay`i=u5RD$J_np z`*@$VUuSXpVxcqh&aq=ofvBX`%WaA_KC(tio`-$Z0p@;~Hifv(2fg9Q+keQ<1+)x= zz+}hP9z$f{V%m*|t^vvLq}jC}5tkpR!dAbn<|<0({RoFYmn{s`Jo|NbVKf_eyV~HsSYisQpZy=OjS7nm==C-t7+QOWb z2J-S59=ys?Ut5bh#C@|J`qp9tDxmZdjckLz!y`Syb8c{;-%!$_=bmH5IQ;H1Ek;*4 z>nGzUm2BB?1azjM9J)HPddsmYwW=d5m4O8f9WU(YecSi$G5Lq{45Vn9&6En{vs8)M zdb4)IxWkiI@|5I{wskRP zi1x@^>%C`0v~39_Du&ELz*M>(&Z>0Pu1@i4Bxdg=&2BJwq2GHZ;t_>$(2abd+6HpS zi2jZEghFx}v=H&Aw-Bu1&mQowQhg}f1Co)aA^WMPp~v5q4OkZM1M!&sdMO;ZKf0;7 zV0ciyxHC*=%b>Zec44Rl=^0(q!up3=7maszS5R%hpKD8SS9Qj!MR}vYN4*1-Ga4B)S&#IP1I8Zu!=|Yx7r5?PftVi*O z+h*-fN6F|?#n$k?x1WDU4+e1$l}%-X)z3?Gbe_(#w9YV*ZCcE2F}H=~skHG>m-#9h z7hI&0lJtlTz9S|eZE3c}ZRTI|^TU&P-bGQ@UrQgKhlwp0hAzcy*ao1K2gwN^VWm_;As0@E8)XAkfQ8&KzX! ze^04AHbt_~eY+rW+TBHWN%J-U35V?$>sN0gw(4rF8iNK9s(?uNFKn0$nt250uwQ|O z-rk|Ux*b}jzNIL1MP*&*p}%ti&BI&ZwO!5Lr>=_n?v4rDO?3P7UaVbA+!g}>kJd2Y zM~b^CY;sTA;_)*q?hbJkIU>3=Ldd~@9K+!6a%HSk1NfMw5nrSa?ow9=Hhz zOf`N?F#38dh)#!wNn{}{8Ry99>X~?yFVYxR%KT24!l;B;@L_owIVJ2wvXT1Cl%bG6 zLmKesC@cz^g&yd{=X9kZkmLZ*+P59=coFD$9_hl+J7IfFpq13 z8-s=Ng-6dmM)fKee5Wm&S7L-VM^IcglJGKpudo=Wi)qOCX>%>LG{DyP<9FrUb1N7$s=WcD%mt%9qdq*ssaOPw8`?L> z&MY~E-|)iL+;ZFCq$t>09d%f9XE3qux>CCbrMIfC>n4mF)u_GIh={Y+TrU&*@Eqz)PZ z9TLvG_OB(k?OX{knr$kgDh(6*xASSs=X3{u@Z2|7I%K&fAGef5ycH#z(~v1`32*OZ z(I-2AWKH`!Y_5vFRa3)JRyG$P=0h0~TrB-QJuelqLr1#fIY+hFmos`B|! z;2SB7VYdL;Byf|-x{PEX$S3B~Sc7OT5|7SJ0;tTrpU9i6=2?JV8&cS#W8F5sfM&BE z(UIrBzF=QP-$!!hzw4waCnZgEyf(X}jB{ry4=NF<`1p7G(U8X$cwQC>t?W?r4ql~C z3%fRhb9);MZ^3LI1j7fq9e$6xtCh#B^_cmt3hkC>^0(3ARmzB+_q(!8F?kU2 z3BP^K?FY;|4v^CiT?n_HicJwgS7}g81c$s}ctcWiU8(^^&?Bxi>wPWn#MY9b$V+U5gYJOF!e>g z`AgGJ9&LPV*idW_`tI94a}#&umX%QrOvvi{LjjcvKJ6s}d1Q%VE^$gQ7*eN*MwhG5 zC1jmt|5*)GD>nIn+bfarInyNu`tN|aiE}NQ=$b}jEuYT2O4zf|nI~5?4uLH!2p?|A z5qKM6P7S4qicO-8uxw7(@?>WAIY2(SA|W14Jz*{ca)VCYcD-N1K%R&f)X;-Rd9M)l(FWQ4f@ zd*%f5bgXbwQ}XUw+^ly~a9D1?Do-ie4#}oK;3C-n&-e|u*uBkCxSMAxxj^X7)n}WX zs(FA%vcHB+SYZ~vN5ytC3wOr_;t>_{Q!Z!w9hL*X%Z%l#ny!~9>?XuDtt0BIP&Ncb z|A${`B5mW9ybTw7Jg>=a0kd8535sj*dUB1!`dDqYifY~7udZ1))V#Rxf<#@7-it%f zUN8+}h1sX>r15@i?GSC?xQRnNKb8O5CSo&TkX2C2{Mj)?L8x@)G1oE zeE6r*8&59>GSt+E^ZXQs#iXS}$chi!j>xSm(I)}p?GYOtDVx5*s>h@JLxfM0%!t(= zY(6#D(NnJ@5)W#EZoz;cvVb6F@=IA9%w4HZm0cV=cTQg&KBJ6e#^$s91yd^8^sdyd zIEbT9v9g1S)69Xh)%Y;zc&Y*8Y|W@GDV+y{W2)z`;d!icupM@`ZOJr;0g$9JbXLBD zY0-*h+FexPmqVnlf<2Ba@^z8(oUJ3VictMU^1048UG4J6W<${BfbThC-=7xohmErB zwCChi+PwnrDv!qK@K%tl0k)JxYgr=Lq#^U`YAr%s8-i8A9T}Xn7Fx^Q5PMU=cmVmy zH>DGpKa_*e<1@({Zb&^aD@zyIa=HOVU^?)WU&H7VHQQ}?&q{Zj3f50)37z}iD9fB% z>GH_4@hWwfi1RjHtV^+H>)h5{TAqy^)h_&-;XC%nnJc58-x`<~2^&Bjb!xUKwFor` zT~;tR)!(njTl7y9H;>$JA|h=2%h`Ewxb2RXvzwzr;c9-uu}u+k@(IwC#-UhRn%k3E zG$wGp*{EOfDCky%PH|%ZxXLP6&y1~Uq36DIyA65XQs}QNlP!6|+ zVSltt!2g?d>HY6F#{~S)sn5Tr!PE?^V)XBbd{u2J^wml8@@kqk%KA|auQ2LXzeejw zRN!&izGM!ZuWXCb=Ve6QLKEu81{pN@9&D13u78)gS6#u^&V?WyB0zG^mq0a33gJ`7 zD=Ah~lli>{4C=wg0voxo+rIb1jL`13wlqN77?fL4{ca>B4k?gBj?Wyo`SSYM2LJQe z8WC2x$DWQk2Tg|s=Q$sbu9~bB;(8?K&#>}@OOLYSRN>7!rWM~<`%7i+0PMjGK%0Z5 zfF_a#h$8a9Y$KhBJ~9ND%9pAvo2A6<1oP~Er?Y$hU^9#5FRo2kA8Y?DzA`w?Q$0Fq zb!y?<7U8|7!0RQ^01clOE&Ht?QKy$|Qzf0z1_cOuBH)O*Ko~(-FX|Xb`%Zm)OKQlJNOgf&=qNoiL!xr((HU-PkRHb3)5BF` zGkqSo-Xh#g+KNYOY7weqm}F8h!uCb6L`DgTWqY_EA>L3920q3croM%VDp6Ynnvr3={SoK`y;u56mzPP?Gh>BW z52fnDRd3xNz!nW_4P5nB7{9+>YknC5myLmw%$?33H)5BO&Y&={=R5E}D&Q90L;8zn zEDb?KGDhuEU@3dmpT~%ss(kVA+c57=+xUvkisz)*+mjQo&vRlupUgP-ovf%t4QgN% z$RX+Q?<0ii2Vgdsj?%LY;S!n%g=zu_=+jx~*$W=OyI6$j)$ar0g;{IYWjJF7TxI*L6pdZ+yr<;DN6cvk(`+Cfv#*tA z%yl@VUh|TSq$bv{(mV*%L@FekJFefSrq_iEEDOb2@EHopEQ$pt$!(M!Xa4i%`n$p4 zle0FGIY|PguN&k2Yu6;i(mFQ@Lv^~|tZx>4VSTq9f9geB&Qq4UvwN*iv5=crohCbI}7X%_I?ABy#Gt1&w$?x`nRj*Fhg$7t9Rf{{!(UTdeHp{le`Vot%*`crC!P_+ z*b)jNQj-_s?u!3NzT;o->X;P^o0jrm7CxvX12qY3fB(m)kn$E_NFm%h<|Cvx0pq;p zJKyl6_s%9rHI!!u=?>s;D!OeU_m0b25C*+@xeF`JLRG1LlZtc9u3OzR*Zv3Nj4@Ly z%>P1k&31C@r8rl!GC)_O((hhvL<77}hQ20ILlICX$HS{5QD8Z*y+gVMcajAjAirDc z3p_SdP>p9gmh2tCew386Ih)btxyiBx;(bM5yyD*{ZeMEWs(5G>-@R|MZVrL#1hEI;*LX$l9&1!$TGtCh=iagBN|6SildP z1krXZOLqb*Do*ouWfH-2SLFB|*2NF^bVIszbQ!F=Vtsj}U*DFU-l~p$mdiiJPw$u) zmK_dOULnmmvF3r-#%YIZOyiVPKHgsSOmb63qZ+z-YVB?&j8Q@J^S8puLcFo4I0?K( zG3>N#P9T+#BAKh+k;bT1rXPSc*=TY3jj-lTBo>wkD#nqU;fKI6FyABK{s=^@j{mOb z$PyKWVg!R8&xCBx2HjPi2vC-0@#H#3H`hldGSLg!{Pml&jiOgi{h!N^@$aU(iw5hy z)}e3Z)VfgNbYQ)A#Q7|VzAcfvv0yQrIi;fy>h~<=9Ac1l{>D_xKyytyPvm^J^%ia- z5{akly@7%}Bu$*7W>LABUc;_NkbBfTeNz-5GR%®c0@ZdsQo4k+W^s`~$u9 zkx?v_Ga?h6pNVeeqJIbch>pBUN^OB8bERZYg}*tM(x*!#WK5Vq{TBtT&;T`Qlft<} z@nf0k2fZ;QrRx`zf=~pV{@puYcjv?5o`I9fSqE!39TxDxOZSBZ(Zi$NN}QnH-?ZS5 zWpR%e75-`W=WHOGi`6@;!ua3E`N*~|O|KQ(Fd>v;@)l-yyai`7Wl+suW%s%34eEWV zW`xL0t*3%;qeDN9rr%g3GmpoyPB2QIG1fL~-GB8H20%ZlIJK(bc<<0xs%qFw&(>OX zJO6NNFh?mst3t?zr8M9X;(t(7YHg{xwQK-t|GDO|V(A3laszL1H8MTxUHf1GPgMy7 z?H&GxldKfc;e$u#_Ph3WAqjL&@VAr2qULuyBU`vR0)+fSe4!diRnoUR%o?d!5-yR?eC6}G21Ygd~}Iu|eIvjKi6HWb>(sB2U@c;f>( z)k}TbO`}usxXY8YWC{M#&Go;?21Qb=bvYhTjhc5Tjq#_M=j`>FQnjf+ln32wDqZAI_TZS@ z?bqPFRPcCjq-OpLr*J{&qU*LTE-@9japmQKFz-9;Q|qMUSfPM`51V>{Bp7~=_!k2S`9<~eWj2;jAFsI-*Q8yPf50MR7*PSOi6gQ9nW2qwnfvYC+4)C- z^FP(_ApsYnlZ5?^?*#liTw2LjnpKaKT=LyZSfex<`rPL_8#^jRue3Qs57hx{(KJ%6 z0%=Ba$*81pj}zQ1<)NBmgI3S8!Hc58-J>J?xzPRRo`zF4uCKD<=Z>=TL%$$vg4gAL z)y#DWSA>K0yXRdkHe0-12Cjj-7FjjItr)leG~8Ws@cpRm$$<_0gpP5zk%JU%gvMiNEryc7<8k8JmBuOKkIwU53g<-JYtHIwkj}6cNr0PsJ&TBwU;C{m}v^;^o9fwv=7dfCA=Qvh0 zE;86ZRP`pEX0rTwtHqV8z6zoaI=x9B@VcQAuEo(D*6(Kc>jRdX!ul{kreU0`tVtU> z=!ybP*5pHT1_9&li77Gu(nk4)@}PI6KG8i|cL~=7$P>~Ks}CdC1^?T0hi z@bBE|SnBZcO4feiq=vKy!^0O~iwJ2+_vu`p1R2ENp@7yR2ls7N~we*fZPwSMWs*|VZ1;bvv_WgPU*rmMXh?@O0uvAVyU%^%cU*5j)bfoaFK(mw7tZtgcLcqY51?K7 z=Y3`Qf?=+$K~h`dYGmif5;{_>eyky+Dk~!|Ai3~H9G(23a&a!}@sh;f1y6ulPp1vp zM$3IR|L^U*%Sh~&DyR1>kS-xHtN(6NU}eq9NcoX)qd9O=A|osE9ZlB(&VKcie&;*A zq=$MpyrzQC^-w`V!2){Emm+i)C;-Nqn))Rn@uGS0=p_1Y8=>upElDg@VKf zoG{*?sQZE#%P{4*yFka6pjzL-I4++ahyU!Vplv_$ldR9L>Js3OScqYt-83WZ2Y!3emP?DH^JIpz45MfFhfZv0y$ zg~Plwvj>!b>$D(Gvj`J&=XcVXq<3PZpIcturJcvIR60W!6ZPViW5uB3P-r^wX)v{$ z^)X6RbE%GpLpuWZjqu5S_b^<&HT^s`;h*w-w1%>ao>78a*7{ykV1OTcB1wQC;`ycs z4{+9f)R;__;$or2e)#4%U>#`YezcvxdGO6m(;?VV>ZF_GPnw!SOBezq*`C7K0g$>k z-lBc5`c9d+vi}yLRvp0=%#kcc@3a6Q)<6)_g*K1}m~<6Ys0IPqtR)JGhsd(P2z1xr z!{SQNd#acc+Vh+rbn&Et%Ai|sWO&kXMd>l^f9b*R5K^!JAdg49JCl?!=StE1sSJ$d zm1{N$3P;T#c&Re9>78Cbs~=G#VX$o#QLPM6t#S&nT32oo{i!$)eF+5$N9p8>rSg+v z>?e0^MkVw4id1*t5NXNrl9f^KSa27Iy-8I1JI#@rAf?{K#+k|^;aGI(P13No)rxm` zFD$ks`9r(QLcycBOI$^G|75~46@R`(enG(9{671lkdeX@_{sUf?^`&2Brc3*Sa<*x zamj#`Fd;6sz!$U$i}J#z0%H5R#9!F4i-%>&Vk6!ko7;VPwDrmsc85Bz0A2X z`nYF)rS)8nao6r+U2sceB~Bb3o#J-;g@Vb}{L(gjC3G2%&XNBRRtiC(745E5z=m?| zc|V@$`qTMT=;8RJ^vp(S>`UiH0uTFqiQd^vk)>$JN63iFX~;AA;mhwJsp4+Sobg%9 z$^pISg0G=r>Yp1*V0TcBtYbj-lUTYvtF#}~H*)%f$7?B0jqD_{P(HBQt2dDBpeO!p zObin?uOkV|ZTW~~j{Gl|&HUwvH8``btI7rQjtmL8inQKO?+w*@*h$bX%0fq&P=O%A zhAH_Mb6630ksbr8dgrju_wF@(=NKQ{y!O5kY@ne{4Q*c}BL6K8lG-zIdkD@_4ZYD` z>h$eh@Ju^({VWO{X8&~1%>?cL;+|$Z7Fo$x$5!y-QYY6A^7!)+1Gpk&n6#duPVcwz z?hMgeR_d&CT2nlF7BM1f45w$1(t13)hY&B!!$K80hX|!4K1DfqzqaZ2*!lp%cN#*j zaydeW*nLZlVcRq;l>Xv6uxjy<%n=ThQ=nYX%RiyrVQ72q3ga4gF`-~SocoVKd5FO| z_Frb#=3%d5w9^a2p>R&bPFDz#l9xtRI9rGPfVPwc!jZ1&qesfv9$cAy6oLSu4}%63 ze=&$lKj)G{9)YleX?KgnF3HtCkmsRo6ft?=?{qLSS7cmN}>383qlwOoAT+#kSf(Yle zYv^_V(kt%tJqj;~_eKZ{kDc-AOJ1h3J@Hz)pXQqTcHR!EU{`%va)2Y56=1T}*R1uC z%KwWmCxg~D#?5w!9z!67Ak7i}=E@TUtpZ_s60(7j?sA(PE_~*Tui9(3Pgd%(9CcM6 z-)Bwaqpib|i`*cF<-G@O$3-JS(9G~yiwfBbErehk!)GzyjZeylJTrwQzgWOE;QeGE ze@6EE6YX+0Sp^cUKe$VBI_C*8{F`ali(Ht;B`IYRVs9h%vV?irRZe!UP)srAlylA? zeqeHkh&@@(&9fE~d24wz#p<@*4_edw(xh5o^1RfAGKNQ|s}Z75f9%Hj?Q)~|x{sKz z&TKi9zhu_!p9f6nUy>X#U{RCh7 zHh4_d@k0pS?_pTz88Ec$v<6{o2KHnzOqjc|(#ELps6=D<(0c){-DW-5?dns3tjmgb ze*zCn!DI`lsqI94z2(mGdXmTT(74HeMIAwa^F!a@p>DD$UCA8?LK~O1ZVM$drB?9t5D` zsdV7}ho`Ubit7Eo9%ASQ3F+?c9!k2UyG6RBVQ8fr1O${2L|TxPhM~Jt7*e{Vd9R=E z`n`VuYZmw1`#fjwv-dudP3bslUruKPhXWWVuYTgI^eZI>jh0y!;f94{aE@h&2`5Ey zq@?@14Z5A+O!BO-QD5Pp+6L+D=Q+V|*iql^Uq81owEntt`2NfyPthgs{KWwThy9{V zZN|*S;&TjzeIP4v&Y2>MllIFw$f!ekA9l_23i(mHN#-buPhk2tmBX~++l0L7P%y*9 zGs@%6mxqn?D0k|U;PVExzaiuJI=!&rUx_(v19iMXKFQFHSU@=69hO&Cbep){J zbb%G0iWILMx}!->O=xS1SgVE8sPBS0~9aae7Z@s?~^ip02D;X_BmSA1U-os+#`%;>&iO?|MkQR`Kbes6$?O zR_45N<;&THNgItUvqc%9r$+3f(Hqn`lulp%M5#OrI5FfGA}xnLU8F+Vt0)pAGW*Q0 z7Q@NgKG1B85R z9M~HaR+rbi@S2ZvqH>r2y>g38ztp^D(?zZN9HN390yw$(0~OItcK{8^tjo=`=hybf z^0vDjMMH{Mf$s*Y$L;N(@&cw(I^KN)c-_*2_T5K^*WfRof|#(fovWG=X-^$9(@c@^ z`TAezD_x3GTa~_9gM&hk!RqlnU;o1+`!ZolThx*mN zB^k}wQnMCd89C~VlHaM8Oji#?X=Y0Ml6C7J%1c8K2+j?R6;T5Og^wP&&oat6uxx6N zOL7ObnyuOyf590*u=p_NoZ3JQ-4c(Bis(E{?gOlzmq+MY6LBI;Kqwui@=tt29UpT~ z^nv~#?86JW(T}*;H0-Q6SgL$y89(9D(j)UoyeV#4zh zOas$-W&JAiN}K#Jo>l)SvS*R!i8Epw?<(QRRvZwYpOCYmrc~hHhM>s{CABI3qN$@> zHRZ2Ad0jp5QkY-rW5c4p-jrzg6fl5CS6C$J>BxWH+a9@D88r#fb)57Ep+6S=m6Eaf zB=i}&70UUe^{x%Md4r(|Of6^pgNg0r0hN|RXrjX6tGieM4SO{4-=5}X=P#NXPMcZL z3zpT!j0Nf32`b)DuM~v|x5V=J-PjVH}(}Gw9US#?b4Lmai!38P$2xMftjNdJoW+y>MUpIx0y+iMnD~U_Q|zv z?l@<7duZ5X_n@Nm;@+I$cYAA1Vy9JzxzoD{p4?L;g-jOv&b4I3x|>pq+G&>`R-0$&NG-I zh55)ACMug0VzDz0Aviv^GAn&VaZuJ@(l_G$f&He2C){rvt^HEgh`gq8j=Ackqy@7ly;bt2uai@wDvXx|KgPO;A` zZM_0hcZd7d4WD8uFAs3Z!=qKhJ!hNI!-HMDGDy#@M|a+H$TfX9A$fJ`LN|sBd%;f? zfT{T4`Fk*=dBc`aWm8GbAYwc;^aCvPG%H0R={m2Ts332-o11y=uWCe&RC%bxE={wl z#W?oxAB#u^dZLWTLKy5mtvHp?lirsi7BvH$95)bLXKV~ilHfHUW?~AlN>oprqV$@> zN91G!w`AV&tBihZPN-?OYsc4?VQ^w}O{e@EA}qf}5L`799zvpOZyal#%hXtnVA#AP z2w~|mjn}8BISs;F*uL20N<=SBo!|hg=c~S`XP^rjeygkVmC~A~08nn9`t1YWLNa8F z$teLj)-D4%rzP?#Hq&jwZiRM0CWkw!HNWv|P^Z+KeNb(cjy;C1iZ|{vcbIbknD9wY zG+D9oU`sPI`96CE~w98TyR&7x~o?rJeEJ3;ui2770 zO-M1Ks%h7uCx>LM1AqGw6onHgKNUS=qmFnrQ9t%pvsbS-DZK1lUMcOag~YUOgyp@$ zwFRz88yb?t$x0%pFzYu6zVVlQ(7dRurjwA%hLO$?^!w>)pNLL?Zr~6$^NmX9R3(}1 zRxj$;OyS*Pwvk|hKDbmxu6xcS@i`rjqg8vf1w9Vt`jJtRCwR?Dam!z1#n|<#MXrUv zZ>`2q`J^N-)VtWIIs^_h&p16 zmyXgPhkoPyOYPD|yEdCfE0?}HsdB9`?mvx@KE{IAzZqCfhJF;awG|7V=1{#?zs1ux zeF_QD5;M(Ijg;V)jm-w?s1Sto-S40Bsm+9@QE5kZp_IT8$cc)E9SHuho0*WBLbhnH z8#FE~<0u5x1<>3BTi%?t%dNJF!@xUN?Mhz&2m6S5RV-SyJu_k-%ET<6Ss5Or{~O}A zy(3}{#c@}s!l;2(bGN5IZAGEW{nHpz09^;*jpXAyRo6J=)8x@(6hGI)ZS+8}GoUx1 z?)PA*Op$rv)JV>fVf-kkz(pSLA#z$LA*hI9?}J{e*lmeN0XKtTW9;F2o!VT-3~x+O zJinIVvK%shw(Hz0`isOPF^-R7 z>J13?u+>KY6LijO5yXl6H<$nyB2PSi_lkf31Lu%Jf)UdrNp7mn3Uashu#1SiE@j&h z$#e2@hE@6H{JAoUtYXl)oYLB}RB>(km4c{)Xg0fPKtTBGYKn}XPn0Pfe&iQ@{Bkki zaBb0(Ug*mCJTmyBZ|SS;6m+r$i*Dv|Urd#Tp}cAelYomq$w4>kctTGXgRtZG)A$ZR z!|L%)&c*jTSS1{MIVykxa@Dug9sJRW6dVnU)%#<2Sr1Sfv;Py5MS{_2ej-5C{6+(4 z0yi^>atN@j@Vl7;xYmH&?c$5oQnIhflWnZt!)PL?r=6r5gc~f9Y4|$fg;j_h$i)a8 z7aw)}h%mdwj_yf8WImYp1qr9P@2L-&_AjeAn9>S9oyC8C92Z%<-j;u-f5ia%Ie>pn_#@%yZgcJ4rtQg+dgCuX*{kH}M`C zE%I59QT911X)$-WN`8jX^1 z3>~aRn#BtHN8f&;Zkyx2r5RM6SKRJ7sfX|C`57hM5>V73klL(8EDQ!+n4a7~e?&YG zUp=BmjqeE%b$Yib6_}*Ki=zi{XsQ+7$A_fxF*N_sWRec3NknBe8^Pd!nvS?;>&*l6 zEKtF-sUV%dhqcv-=5NCd1b{~FjDA61aKt$Ja+aIovwmztCoMp{fB?RZh9u0E~{0B=N)yGIO1s%$U;P|3o)}cS%zMtJtxVI-qVc2hiDcZLk=dt+Q z=&0d5OUgk>fQT=W3)_#}{EedMQa&0-b(ax>A)yJWdX18|x4q!RVSiE(jdDf}E$g0e z=ym$x!xQBe2bNfXm=~*F%b=sq?oL*3(kHhjgtc!ZOG+$)diR=SYFJiQ63OT^nsR7y zzfo$UAAp1aQ(Y;^uh_O@`msbsI8eSJGdCM+)ad-r0+7C6I#_IIvD1mRI|Iiu56@0- z5NwTm>&v%R+Zh?7fYh8NQdoYwsy;8E)cgs(AEn@~x(HdXRehzIL+kKqPIl>OyBiVv zJ~>OA_vLT)S4jo2XCi;8VDRU;Kx*Y@X2tio;;>morA~ZJX{ON}fpkkenV<{a)jNS- zf>G+HRgT!8+f5r>i?g21W8f)bl*u?3{ zwlMXQ(c*I4&iZzW^JH@%NUJLZ>@@JHB!u6^B~rqfpevy|rO08Fnn!jBaOtH*bCdrm zHd??Uq^CCP{SYqi>A+W(Nx#O2rZWBj@%L*}-#voI_v~J<`V(&;e&v)%=H&-NB^u#m zg~)&X%mI#Z2@|B}0;MNrJ~;d00L=l3UZJjac(XBK{F#qOi2sNUl_eRZn1@(2p0P3@ z)*>h^#y5W>S!aEr@ut!s?k=CzXaSn&Bf)~bMEJ^Q`+_Z83;%UgHhY*6;&4d7Z;($3 zi6@a=dco_Ws+racJM_$o*lRdhM*ANUrJ?Y@j840+lvzxShJM~uq`N(l(BloPO9iRv zgxrb51R-7B5vG+a+DJp`*c{n^WtcsGiapML@_H z4O0YOng`l+Iru?=kkp5mUfgyRJSzQ0@kh z1)V3$DIL`GN2X}or8X#eAU;$9VR|LH#=TiR`#f4g+B2O0$vO`OZIm~2a0PwLRsCUi@-ov-YKPNWNJ2BM)(t7I6-y=QdQ`FV5WT22dW-(%g-+G(|9_XI%F%aA?5_5yD+l-6w_G30#cj8a0LQg-WqCuIHQr@)nfs{T8b_C$ZCS|PqiVVVfdmq5ssVcEV!z#bY% zlyTPe%kJc|&1@aeNQ6yZX~YIy)v%O>|vI93FA=iaa+n&=H4ZE}sM|$SJQX#r&qv#8)Sd)X|E&8RF38Nr z^xMK3Dd|SZ-(xk6f?%q1uWV;bjOv(?*1fw`&uL^ietzH08e8~Yts{ECS;sBOb`nIM z=|&vQU?crHs!F*t$*o0#CF_%`#FzEw4vtiKfXNW*h&_n=hr|H zlJ~=$ZGgKqn&=C`MSul|(Sm%^MzxWJC?@N{21k>rUq*$MSwHC|;T5vlr|m4d5^eNM zR(fXXiw@_BborbgC20dp0ifg_;Lm7y=RMNhbZ~Bw&Gm@c5qjvV^W_6xq0en+jQuh_ z;K}#sjA;0a%%#YD*%|fr{4&zyH=zJiN$S8vW|95b&lY_ee)-=)n0z*#ekEpFOJX)i9aLLIF^*MH?iWN@0(7Vo`lwT zKP7h;pnB&p2*OXXRa3AM>RGRzR<#10~Nna|T z8m_*EUO6b7~dhFwu^VgA8+>X+}|&>cpOf2dVd-^;ErEThY(*)WdwRx*9d$}@yz5lO&f zhZIydSfpc0OUdCk3Gx#mfwHOFmaLg%##F~|^n)oI zd+ieMon%18&vwOcW{BhdsS&orB;&)^p&j1>@Y}ZS{Yu^n6I<+K5G)ojk(taZ*{+-0 z^>Oi%C1)KDuEYK^I}AY9Fgr!FZYgvx`>pebe)-(>PEDIE0(Sw<6Vf~fb z)uiw33>vm?qLIl33)cQNb;PtJUQ6sbDwjF=@7ptKr9agqq6X!STuIxlh_; zQj)4dC&B$EnI z!IE2?=E&=|i}3pcv)f)Ml?vl<=S2$5BwfEBWTr(s!JvrXTXr=plwspIHp3QVL-=wK+feQcc`gzL-Ohpb`PEHJ?7TUw0!n|K4o#r~P`Ap!9Q>pLcZV zI26%v<-K9Q%a{hwMMOj&Rjn;=w}r(0OF!$xqBQ)xhYis(U9Fe%L%DxX|6=wW;8P~t zlqj|$_Xduc+|#oidlY4Cb+c)fh1d)V32V>IV$%IrjjX7b%on#k9TBj zthD9l9y-<2Z!8YV+%Ws; z=T}HBShj+hinx@=2dw3eEArz247(&YYWNP8utErV@`|s`Epb>+#N_HQe|M-hiMZ4s z-@UlyCL*h89JGweOP9%ckv?g&LP&@jy*Ed?sA$m9?_*yxxs|}o~OR3D0BKeb9(?~zh6nR?Lzf%0%I6H?3 zc0dThX#hj97%*u$`ib*sh8Mkvv#0OrJ{)$1k0A&)m)Yn*)9hdqVfr$b1kK2Wzt6M1 znO=i0>}iz*^kl3CX0s#~szL^Sd9H|3deGJZE3tkJzg?<_^1$>wd>#RP>_ASxB)q3PlJUeatSs!=R{)m6Z!oc@`;K1r3}r_r54fjK805~ z3+k6ECOd;(ijg%+wX_@({%+rO<`B*6pk}+zO_qNS8Ya14# zM0#-J1@D46*uXwE06sGxN=>*J{kPIL=!-1TBvrK&$B%w;4OlS?}#AziU$@!2Vf zqL@1}?o?GM?yd8qA9UIY94HhuOYJFwYX`kZZrUD;R1Xn z@Bb|4R*Xp^-+tp<=n+FKrtc|v_{ z)9{-9z$`Mb5(4z4);zP-j<%9}_Bb|zRsbPBpI!|yX6GA$c+Yx}Rqzo`aPc=pn6?oV zk9bne?|0cfmp>HhNr{!onBF(cf~?nZ$yEL{A45BRs%mte;heWdO@8JPk#;PYK_Uay4UYl_J#!cw{6e1ZNZq_z z?-x>8z4dOaHgWDF{C$M$-J60zb0*jP&^x7v}gSRc3zaDS@B}iayVlFJ|OCf zlm@5)hvmG#e+OaFfF{0caZHNwKlpxvg;CqrwvA6F)#Lmn@GW7%W!u>)&G~hDnZ!8( zWR+(il%E@oNn!i;KDC4owDzEODgVns#I8AwbwnJbFTEnAZ7j&kpDj0dZ~e~D{1MBG z?~UIr8M^2F3;zpKDI!hoEF;k3uAo4VVxt9aH7IQPt-#e zQQk;2F|~Y?zl|(whDYjx-cO*%)by>hjBX50oY_KoKOk#(XwFZr;J1NR$VNhuJh;>< z*BB&WTKDd_m+>6~w~5BV+D&}A^l#ZLmBt`Jv5tp|DA)2DV!G6VL z)DE0xmI##epJN_N9gp4m0g7e2%dB*-ijx@g z(Dj%0<1KcWQCpq{QS-rJVbE!CCId}S-}`%l5*39J@HwxYb=t4i=;JIFp?&e)V&snv z0`Y#MJLIo-KjqPwRf`%96l6x)jffkGF;?JKZ#f)CfAPrYfKu!VFT5K!rlI1rWF|iI zGq{-h8iNXgm^Z4tlDGvXL>KmAs-MP*wLr~sB%gkS0&oUi@6$e-2=YV&)gks`yrCPu z!a7xxz{|OONfM;tEhm;|RN2G})w;Vp|J!s?-8awoX!yN&IFVX9iiBrxZ?)nf=oE6y zI6Ky^Y=G`qms9owon%uAUqSa04FuJ6j`OQ1W7VjKxrTrTD23nb`WGkPMeN zec*KSB*<>}JDM^}5A%zm`|Xr#bR8zLwN7q3B~Qnc!6c^LAufN$maC86AegrEDM@;q z1~#l7P5o?HLn7v;GPF$-#aktnVW7)Ucq0($w+KkY>zJ?BAvHZZ@$6rzPJ9=xfl}dc zZg9Ok>ZQYRbLDEigxS#B4o+q8IiL1So%b>|JKGI@2cNGa0;-c`oZLODu{S`;I)d9r zJjRMhRNjQ<9Mhvd5R5}HU92l*W(e6agwv7ryPFVG0$9l*AA`5NbQ`TO9j`aYjXRD) z`E4KLX^oHPF38x;ewNR)o++cJvsHT|=QlUv#7x;;42-KDbf5Sj5Tc=M->|nRWz6|P zgd%B=jHGeT5~))rs?69rydMdRf19Okgqh-C7N`xXENi&FYzdcm?6URarWc{r@v~r) zH9LHj*cQ+1S*XV7hhzmtT^jkJ?#g?hUf_@M_3Kcn@4f2Wj*sz}6psMPk-WlH@nzf0 zng}gly6JuOijq>v5AIh|yCCP!9Y2_}b)K0boY621hwJxWA;KI_A^9T6R4^vupAH!f zvHwg#L?6M2V%#UC&zlt|#ew5t6vW$~=9yv2oEk9kG+9@CM6Ezv;r!uv6$0qIIVC}f zm3qe|SphAUS=a0KI?ZTb^(oP==p*fYezX8jpa07O;F3#KL4X_^@qo@<#t#SDhM4Eg z(rMwLgY{~K;k?E-f} z*UM#_m0cPX&urf0k2S7ZdDC5Dq8c8k{^3KWw=DVb3Mg{itjV!VEmoAKDSv*P(9d!= zX)kh6z57(`W*VhnDWr4|p^GC+=foj3G*SGA=(tG(d6tNA-i6~z94kdfuuhurXNb76 zP^g$jkQKCA6b=lne=+D)a^DMcrDo8(&GwOHFg){NYo{h!dfh&RVl!}Pz-K(8d$P2YVYN@9UIa7R+ zXjMLX^_4-4RXcR1!bRx>w8XVA;a3QB@Jpj{4*ig|DD_Kw03rf6$0lW+7=X5W5FgZb zc{+J#N>@w@7t2Ykg5VTA+&1~4I!~VHJq9m=HzgJ+zdo0ZCeD;e2nfm1p;60-1(2O6 z3l|>xb0SS$Em?jadHynbCuObX3QOt_QpvLS(#B3g_k!YT@EF04mP2nf%x zSwS#bKPrAIul3y2Vk1g5EfpnTw2a<7*_aDBOl=W98M=QS%qUf7oI*^(p}+z8XJ8>g zgHplCs&M{|3=OaDtFwlW5=C3HM7K;~ z=c*P3esv7#5f5gxo7)}xG6Spjx**g!OYhK)=h&ZD8L;*>wI_Rw^y!d_pFDmAHJzD~ zT5|dZ#VM2L@E+|KA&S9hASa!OZnA$i>UrmCh`Wt#&(lhHfS70bo(ZWEm2U*T*h>my zU63CK{^>)`I^a_T7!nl7j;dkE({j2A=0lr%?TZoriHLtcg2Q(84#qJK8^1YtA zJm;Eb*)YLvsQ3>}7r2yBw^La*Kc;eD25VE@f6M4Wk!xnB&&EqvsQ>l4F-9Cu{+M4% z_u7udVGJ2Q*8$#kb8v|HVQGR0yVU5eDMk4U)S0fz_HkB02ZSDf8SEh>lelJYofS6HEP!ACr z^hF>Xm5rc=(+vTM#_P>*hgNm}+Ro}>eHfIvR&ylP?v8IBE05GnlxR91T^@S7 zIk%8$!(LDEj8yh@R8(_9WF`+^Lu>H}C~CPD6;*T*k z2ISR3HOFPf1#X$}hCV=Pbh^}V{L?G|C7VagGjxY+(bxe4LCCnw_;5EPJG^;-IyKD% zFtyl9f!Fo~nU`G9Xto~umbcnJr_X-T;^6tpEHoJbsGkXt1#TO(!G1opc7^75Cr#vi z`?B#BJPh@nu`0JaUsda?p5;Gi>Z|{uZw+}c9rPyatHo)Fg{m8fyVeFFvi*M-b4BEHV|B{toqCu-p%w;0e87z;vNaebkGI)zmQ0#H`KcG zc95pF<||;qZfX0hF4R7)`R?&j^!(K?Y6+)R0Yf%XDj4Q{qfW3-mvXRw-xE@C=~|0u zei3bjQdi0{I8j|ZfHPvLe1;IWIF7P@+bL$@#Y}A|T;X0gFzA=ga)dBvr~0K1fZ#8c z0TOBwtFzB z#rO66&q}g*LHBmI+CoQL!QLnP)MUqMg#LKsTTyZ-ei}Hh?A)U3fSSDM25i0`zl?k0(lLt>jA17W+x-Vdd~HEGGe+bN+kr z5s)d?93F#3y#mcSjF6MjZ4i4Iw8&AumqR&MV{TIkk3}&+)9Nu!Rtoai3?o5()7%+M zKRXInjik<`oTL9D8Hz@Zu?p>k$&}|@757`T(x9BJ6V=%Fu;}wGhXOc3nv&k=ekuXY zAOy>siC_4(7+?mn0BU(nJ%UiVH5;;>q=h`o+ARAi+1vB7M&lA1 z#(l;lSO%UkD1A!lHgblfCVqc`{e8&EWJt}{QRi!VGjIQaGOc3b_X+-DXhh{~9<)K1 zH>`jS2Y4BglRLz%3vz5U2%<5Mzn=VJOCX<<=BWHFsxYu-cab=9;jY#s*dy5kWBmY@x{(x6yGm^iYd}gzvjb0 zvi={Bo+=<^Q*SZhpqxzUGd0IKu(^bilLJor(evN1sT6F&Fzu?(!#_pjzBT;PV-xC7 zs-V%H&eyBAdu$z7xhvIcLZOMH4v?LW__)>$qZ_b=I}*nb-er>l!Q-`?3XwG+xnR~f zEXibY9~m@Eft4FBS;L1**1A&3+M^u6W)!b}nN9px2Fn&kyQeCd5QIdatB6Ws?*x~@ zV+YL~?qnoB%D1N_dC(9Nv-5j-a%T{uf-5IA$-Bde&s=qI;XhXSY^Jn8urve}V; z-e@IG0MFk#Jxy+XeF<8mPPV&v3YOm))$G7pYcRr~5f;OMO4zRuVGV6GZ@?sQnNNT7 zlGXVz+oO_poV+1VAJ!NLx}*z@%n@^ZVi7sj+d8TJMP6;T%ont8;%bJ@=^!hyEaT%p zsQpeQduk)7naKW{Ql@8OKb{}{`FOsJLj-vp3|&UTyAT;%oOe50LOYPNr^cGmJjmcE z0Ywf3)=|OELSkH=0ZH%#qW$DxAJb!sGusE^y~mq4KulV4&H+f$m+Fj^1;UQ%6*(*= zl3Uqs05--CUP_euvL0a0xIwmHseO~U$cW7^hHh^V#@^$6Hp(QFV}yN^7hz0iXRpkE zB6g}Nv^`v+bNY&#{Mb>M90})3H7yEDcM8Z4AZN~~_|h&*xZU73t+RO9r?mJujLWtT zD+XE4-FUs8iqgXBwf{ulp%y{di<(v7-Y=zW(J{4$)DEG0nkp%N?eZ%-PNjd&2W>j+ zBs=vp(hZYAH7B|q`xgtT#STxa?};wu7HU#mPGb0?kEmnL5TA+UtR?JTF2looWry#| zt~d198XUU~1(b+3L%y*KkQ^yj;mM+?wj8mQS>36rYnT8Cmca%DwN$S$S7bFnv`spX zebPF7JFkd$hPO);(S>C|K#)#Bo48(%fU~=y!mF+#e=O+!N@Sl1Q5rr!zulVWucw5e z*dp>pU1ceZOP7 zHKi|gd!6+@5)b#I&X_nWzy18#^QjeYIw8pM5-aOW%drB?0xh7iPncT%P71`PH zeM?N5R;IJf#mE|WiDXXbVV{Yu4={<11doU%*`O+-dqisWx(R3 zM8y$kD|i2;zWU=iOIsXnR^wOsZEZicn5Hux;cbOn8W{CSI?I*Q9>=!3`h{tJ3p3l_ zj%*wr(z=_y-|(3CG2#p=6-+T%SE5_=p_%1gY_1Q!;%((yqDCOm{FADq+y+RVac4*a ztA?91Rm&_Y=sXAnlS4&-G*ZF*Yw{RJ-GKQTKp!FFbodPeMgX__fRF2W`B_Rk$Dc5~ zrxc>_zGB)FxXmV*qj&Os?!+zR55G#Xh8a7zIR+bko@u}3Eq^yB?cHVl(w3TECnU`b z^H=(MXn-c4P^Df?)>dH(8Y~mS{>j(7D*~z7$fYhC9|JLYJUc=|cb3HXqk`D{tJl&d zW<80O=o8;?6I03{TzfQN0iy1=UJAxL0<}YfskK9jABi0UJr$a;TUf=Zia zA{B}b205N6Jeqi*^%yeGx!5@s)<<2r#Cv|e+>063|6&0SM+0pefC_{I9?rZDU#rW= z@>Amc_}Ys-@-;GCco7oJrqgStX^=GSg1Fn-;3dR3^7F<+*_;PLFQJr#-=VS9_)}Ti zWk@N95n&&SZ#I|ZuZf-Sg@8INqCIm}Xu$KyLs|Y+2a>R@8Xw+~+&8^TqLFr$5vZ1lwE5V zssxNXN0ZV+gH&1NB-`~AM|t&2VQ--+%b_Hur7YV?NR;t(Z{V@a7IhN=2PJ~W;j*u3 zD$XI6!0S#$r6Fuh*#4 zQVyg#?_&c++xgA!!;JAw*wpQU3ONGbLJgPjiA_k8>RO6yPsJx)H?!AGmR#hB3;v>;Zp+YQwW((qoFnoDx(W#kTw_Y}284$aWrlMz)>|uUTj+ zeBQ{=ESAjjLECYfM)d6;kWcc?7mRUy+#TWO+5!1D@=NvCcai5+A1G}SZw6^>%Cu+Sk z7ZpJNSdKl)y0`yz;k6#o)Q3VZa=-$SuM^LtI>6P-FEhe)rx^40)0|A0Vb~%w^FUyla1LeSv2p{1@Rj0@*+tKCq> zh5IkayD2@RZiEF{*G??5krfbcM7FB8R$({?O966-_v5WWd*-7dH*|wvQ2A2K5>@Rj zyX!mqu;t`H56ByXpJPLQAj@K(#u67YiauW!f@8bCKqtx@K_aT=(Q9BYBSJ>4%Gxki zMeu`+6baV`YKiBNa0{ENWG}peKosue5KsIK0liCUzyiLn{QX-B&h~-P2#1g7T@pL| zGq}C(qe1>F0}N(W^_;;>1>;JvnRDfsRg(#-K!7n+Kttr$O1s1{G=cknua*b2DtqUQ$celQ#puv@F z+xqyJiU4hVDKw$l72^95&8^E{zr>U7uLVgu;lU2hmbtI2PphcH!k2D4&%K*OP9ilnP z3M1!2m>p?bIXz+0l1sXm_P)6;C0(C(h8wXD7Ahi6?XNU>a&p1hl-wh9HsM-8Oy%De zu;&g$f~qgmPb1I(-=#SqU*!HzzDQQVQ@ZG5KDizrG)037anli}MGF!#C%B@X5|mBytcuaoZ%db7m($ zj&{WoZ4m&p!B(z=-cMqda$*1Q#yYsFM$om^5_3?CSN4wF`sK7G~P%goeu|$zR zATuegOM^tvcRg1LKsD^-jP+Urj%Gfz?DvPDM$eL%Ose43&gX5y1jZL6aIC`7p*`HNBYY(JOE7?Z}- z=?e@NQuD?01S+A(C?{68eDO{sQ9({XDfR-GzPqh4R%A3lCQYCPS3&5G9gfDAf9W~| zZtTqsnL?vaak976A{>ruOAR_;soV}R_~MJq+$(O7HAbh}+tp>G)W#$)?8rh;@=Bcy zMC_+}vWiBKZNF&9ZfkPTqpD$hCX!!2K?I%fBjZ1XnXI~mFsE*aIa!MS=mW42qR8#o zw@GS6ios0yzV+}2bj6=BveyWpR`XW1mMNXWQY{gL^XW;F{u7vmz9j;|EdXRV*!Gxz zASfNP)c6M_h~uB-kT+S<#|y)dtRI4Nq|Epl1C$Qq_Ryk=wj=25?t{ulKeS|mHCfL^BUi+kh z4L2qV5nAOmZA(cFerzSx(rVNcOqD;B{TqWia*Z<)cGKyVY6fVq>2aJGNmg3_2Zo)1 z3E`>sxW`cGO-<(p>&Lnv8&Z!jLip$F0i17KpiXgX`%;FmzG2Dwus0e;PZ#{wc%jHY zt>L0En-mouE*-C{H`1sxPHKQL5~F*cLreMHsR2#EVs`}YM?FdLuvxC$wBDTp3>>G8s-=Y<%Ia@_Mv59+$Kz>b5!gfO3m$cy+8?9PY!@`veMxF-}}+$=6vF;v(dTN#ZfIH@x`?2KSj_Frj;XG=>=X z6?Z*DJdbG*>v%5-JdeZ-Y2)UcAL;$a5#_$H^63e0^v{nQ;t`OJ9H3X|MreweE$Y!VWtB(1bs7g z>Bq*DkwtcQ>qi&Uvc=1#iDYWW_@JtEztIg6=Pr3m{aWW3Uz}UK4X&At7))3lW;VvU%;j5>9uZjVX+npcF(zzyajqf{xbm2uaQQ^EzSIb-4NF{X^p8OvjLJ~0^Pz) zBb$#krL2HR8Eyzg`k*-|AkZ))LZsfgXMS6`a*np8D?OJxBG~>>D!OhQ#{syPaXWB_ zxhuNGPEIeJRQ&SkK>4B;-+Y6@|K}ng7zwkfUjNq+@iV0Fr;)TWtGw{zq;@j?$;kG| zWUr+2Zww1WRu~?=S^i%@AUqc=QoAwGl8}($#>Dw99t}u0{ArlKx2`@0l%}>d^sJbN zL<9(EB-91aF+e&8SlCN?r`Xb=)N%2H-V@9ebALxr^-1q;K=AS3g!PFzxL_fmjM$NL z$`fvvWE~J<6=pE9xGTBKlGzpJb+UFjG}6f{=>#%NOWXG$ol zB-Rxs7QL&-G72dYNtXLnk%bV7UD=2v_Z1b#EdaApo}>e`~^VVZX<=eylv5)xu^jU^xQq73_1-OyA5N?`-iwu7kaHZ~HjPs9Ew z1iR8%G`~C&*rX!U(Hu>!e{v&4c8dJ;hqykPgr}>VJDS?L77pz9H7TYRJF|W=Y=ZlX zjXy9Uo7I72=_3`Ar03@)(770_|Ad(;MK@aiN5GFG9*56qaGZ~q_9aZ)jJGlT+cVP@ z+&X0R_0#K>nV)z4DZuffk84W}teQ+H%3rLa7)6xsMiLFjBR2g;S|)^QIjp{EdYW-% z7)R?Nckypt5=PVAaLxeRG_E8?jj+gLV*?G$of_}>e z$iOE?kze}Y&SCmo>PdDDcm8BS{fywUN?baEdyAjpW@%0EEoe5vCGV-i74CNVLF^M_ zLrOI>0R>HgPw51lNC{wj(jRxlQXWwq9-W@xrqlgYl8*muQ)xf@*z7nrL@^B&X~$Pn zr7I`GUucs(G0AFLj(Ok;WjX~9)dtey=BChIWGOPDQ}u2S-@*UB9)s}cc2Uqm>)n7pV?v#s=AHXjh`vDY~lAmUrP18wKJckqJ|4GzSPZF>h#JWrE+wdith(c`FM2 z8Zapa;Y1VzEdxlED~!S%r&nc-sPHpA48i}DsU+8Q(sEa94J2VNH=`w$yCrHz)@6xU zwb;oXc93^oUQZt}+SLP^yhJQzfQ}=78eC8xD;cuFw%aMxHlw(8R=hn>IJ%U5Y-Clu z)n?&aQcRn@)_68sRZA#>PFE8a{GjEai1Rz2!KZ?;Iy$~1l+;|K{1?XT%V8;XamHG0 zljwU{mqXDC7Wuv&v(VT2*NYfGgPcn_oqg;~m9BGbrTAZ>0?NkW)Rp$fdI7rfKr9r< zFLY2s5eUjH(Z{@7KqT)MOMhXCE%kiQ$hOXf=E#DzYNEM_kRC1NkhhVwb45@rqn>g% zaG?-%JT>nncfLeob>)4HO3(Mrr0z9asI8gjz@o`(V2U#LShMsmj}#8X)?24w()WoD zLi}jPb2=A6a*UKN~6R3b;WsN)DIw_*6VKiFM60HSkS zmCOH<^w#-pp(BQl7Rmey@=5Z!cG>Erik2?vMO9+c9GgnwthT6mkwd!XDH)`8$9*jG z1Ugixb<0JMNAQN}$Jnus)b>=|;#cvlLddY+DUjSH;a)RX@sG`MQ&zUZf`0}M83VV} ze-Y(K#1m%;)Bu`4K*;!xacdcNIa1~wOsmVsCyIHhOxKMh{2k~X@MAY4TSAo4tP#Tl z^AS!quubUesHl3Rs}o^~tJ$c9=+9r?7nNLq4kG^K=qXgWP^Mp)P~|FKd=bR=|FceO z)PR3MGr}(tJlTx0fJ$(Rx9JjiD_@Yew7{KEQ)}K3dm8Y{*@oaeR~vIa(r)tYLnW$v zJoXKmZQ8)8tFmX1o$V$Mz`^0TeLG5RfV7!Fkx->mU9jMO9n&!<>sxXIL%3eVLmO*m z@H~DXVa!i;F(9b46Up8ac|!?V*rfhn)0Sfc2VZJ1J9KP5TL>9%L;gzut)~I5 zE*Pb=%}q-DEoDTlQ3_BlX9rOT`kk-}6+CppwSwq!eT512CQX|cI+HA9Uh*gDfbTaW zNLUQwW>9{j_14_kc@LiOGryz6wjEzer$5>u{C_Ud%AnQ4@dwLM*;7KYVX{vCW zxg7jL9nF%Rsj!okq1pYPm=+DVq)owzxPRjxwEo$tQl!aGEJO}*1bX2M6k^4Ii1WVh zh~$&IA6YLgb5Lbv$8XVbWhapJKrp(7#K=Gxz0)CUcsgU^tGHmgbPVp7iJLGGs1Ry@ z)69^O`%|)<;T855f-;GTzsXE1geB%q?D>RJ?>hTUYlOv;hqGqCBke52QSDC}Y~HP+ z7Oz}a8TlI(# zbqtgt{PW!P% zy(wXP809SVCiayO=!YJjB8p?Azbqw3RuI$o!esH)ehvbQiv_Bk{trGo-z4{7wYz_PTlgsit7WGNymN#xinnW8$4GmehleD>$E!1)DZS1f; zZ?B;@*kR2y#-!G2pYOrIq_n?VHUx>EcS-E2DmIg*jYS#sIoshtK`I>P?QaV3l6}!} zWQAaUBqS%G^@GxlLhdV69R<3F<9C(ZEkZe-N3B-A>cJ0Z^z2OUB6rQbs%hS#aKbE0 z?VhyJ$V%rs!$|lWFZw3-tRHI0M+nmtg;FsaTGS$6UG$F=?C!gWj1dGLnSyRQ+eK4< zf`gEdXkr(+U_;h3ohbxe*-C2ss7M$F9T7X>@q~WryO(H?t&eP)YR#L3TL~BjU~G`KU>`2JygV@lnL zoJu=yx)T}|dv?Le`wn`Ms!yVw`4eCqCsp=8kQhQ)_Ra(e+DgP{xuc3$HU36lKSYUH2nyZs_q@rU zoNK~V>EV<=ta3U~2F(i?9@XJOP;G^;bLU^v+++)bIp+Qv zyk+h4SF@1eSd!eAt5Dn|ui-wV^BPe2&!Ib)kbPRufD$pkcTV7l2XbT&V5n<8M=ZrV zY0E^~)n_PEN^qn=2r6AO`x(E_ofR1o+j?#|Zps*e0FT$dpHdd|p+&_*5jRoIFOe9y zO+x+g;qx^4f4}@Prg~ zvCLX5&GvcGAeugQSfAe4#z-wg+Sl!$SI2*p3o>K3X4h2khfyUOa}w+Ru3n}bOqKZC zo}T(Tv#Ypsy%25Smym^+s|4hpf%rQtrd(&FC^rt-YLK!~vMp>e>SN=M*^97nUvAR~ z52AUs$l(`%3qM!*j&{O|>2AmUAY-LjesYup?o@rQPjYCBb|m&M@(=Fb8^`6(3IAJd zCv33LiWYh>n}7F;8?D-ZYb+~T2u)d;lXzSO*Ekd>F0}y64?_BbZa+WUGeN;Y9?fI; zgcNbxV*eeJ{n+b?1;csmv->j)p~F8$<70f$%6lBSUJFFoGNV0#X@v(6MUcSzpjvIf zosoz73w3-SRi`k^AS1*<$t3Hdgj=OReRo(bJx?Uo6ieO_!u-Ku=$r&_{Vn2=bcmuP z7ZH*K6fevL<(&gKLLA!wZ@&n3sfPzAM#|VW!HUCV2kqWJUc-_+keZDnK9M+$U*BO3 z$eb#6cwFRd)UJne`}#KQOow7BRdp^mOy}_8#XEkY?%S-iDk6gINCFNb*Xv$B_@b+~ zRg!7On+?U0>rJczYW{*GD_$jrv7oE(I~hO>j4xSM2!0E?A&1G6chZK7Y0CbE5R)Mb zWZ~AkD&X;Bpg3o`;ji{+P9O6YO#YfD#{wdN!j*J3S%T=9sJyWGc#EuX5e5D41d@@a z5R$P;LNd@N>d=t*PYj^1{(+EKbSzV=O7_^oIdT0tr;5pe>6OVm+>3luxxGF*@Pd^T zwLSs-+FQ?v`n{p_6c|_#dukAcmm@eLADO(5zihI_}KR*uXDSiLj|Hw zc%zN9-*!k4pb>7`0Mmst-M_ouC&>q6{kE9MPWNCnTk(8M1UAPnrs7f_51s_x36y9h zpCNa#oU4(g_N&RH^r=k3hYN_x2P^P^M5)~lx=wEYoR@@D@=yP>^a5-@Rspgz<;2dG zn_UPX_DyuILg(73TyBD%pOhHY z&c`I31?q}vi@UE-MU)_@?P$c#i3T27C+%C=FWJB*aYRGSAn^VJ*!`{aC6x8WhPn9_ zU_{iUpm(EKA(30?V)~uw8?}x`WQ{3Ut%rM{sUJ$Ks3*LKvUx>xR7n-dR_RBD20~b9 zR?26A)Y&MG5PfbfzjHi8fhETgw@U@kmcPU)EYrH=M)$GpFwH-^3c7klTOC zI)o5cn&tFDT?ZM>G&%4%bKdKK@nur z;YFZ>gl1nSGMjDw{$0mUpSh1(MO9m07n{lnNI)?*(*ev0_#B7>iZ*L$rKN>+X;_T- z=5zNg4`9GV9*rz@!>?L{&F4zP95K)k^y&zqSo&^3N=$!R#D2jbJ99>{pT&=(lz>fy zKvRo=Uk3PlQtyY`bAkmgx0Du6`PR+2G*)fk!%PY6CE6k8&c^^7YafJFQG0|U1w6p& zoOw9#Vf=(hf|{#$gfhUgz7zGZo8iiY5Q`lhe_%;vgr#4F{S46uyo+OKtM`X$^YH_X zz;KJ!|DJ&(>KXC4%%;S7p`0>Epilwju$eX%8^k$k^g>Y2LK(#|uzlG$_e$iw{K})H zsCv5Auv|vP*PM3n&L~b8IFNc(O&Vb+Kq`J=f@ve z(imXg14uJyVv_Cd)K_asUu?hds|dx4p~<5ntg{dTeQpeahrzUe7>6hCHMyz-n6Yox;oQc-EL zdga$4XnwRbG6k6zzWkJz_#h1W3%&4%M?f9GKg(N7B)+yq|L|#{KxePY0Ot z%5kdj#DQN{B1Eus+H9+(O+tm92LDr_k0&2W}TR(a!AYUQrFgn(FkP~|^&Y9?4Z*FV)Scwsas+(8o0vFlxV_7L%H zFGLnw9fc6-q4wh_Y@AK5kS(zyCo};%6Hn6#2E&GEn3;9woW_}fV_LrU>wH4S;$pAj zGX;pOap&%Mb`q6D8^U_QQL<5q^eEld{pFV>`$YU#d5O;dG6}7q%Q_%XuK%Z7zS1P9U#le!l=0<5|J$LQ;a41 zF6;?sLqpmG=FgmLQ=5yt@6TvG@4hLU-|oLEakl7TUBLlnd*JbZM1g3qkM;s;N}(kD54lXNAjr*t3tvZ(@BF;x*umao18@; zOPeRsLMTz7)OwRh9I@fVBS1P!UMzAsx54dw&CaOX%&+5n^Y^@;p6YC~koIt{Di9+7 zL1me`(q@tO$CtVv+```1_MV$@Qul;%>HKlGmxoNt?Mp`ol3=cHv%4)<%X#HGc1eDI z9u%GHb+fv8%Pn3qNx(DRz+LwQVlM-sGr;B2=n7UqgbMN>Iiuy8lZqzK;al;Jr;|;F ziag!dWZ@NMxRUV{>t#vCypY+>)S9gr5^m>8wgWRozRHYq2xRSG)3%x|7h}A3$bw9&d)!E-Z&gycprV<<@o|k7}|`oK*e}Bt)@3+ARI9 z6O^Gr9(|v(SdV(btnypdqN+$NG@9F}*SQJaq|;za5k&?B0&niniOGNI!6GCsyN*mE z=q=j`lNs8y?YKXHE1nTq3nR+4V_yTE#}kp7>(8np99R`wn@!#Cf`*HElArQAc?;iY zW3f=KKWL2f@E+c6=GLqCGk~)E9viiv9H_20H)2@mFv{@X$mstztg~AYHh1E&oQeI6 zLQp;O_o7J&;0PIuOU0S`FsxwcIS0XVj#wRjp`*T%B z%csL>d|D)W-c_^9&joeVwYAB!&__K@Zi2<=1pMw(k}n7LG?fOuagw1X9@cVUa2@ec{%*~ z#XK`V3MLitZM5?_AD24ivzlSvKWaLv9!Ox?_Ob1FnCGjrogVl}H9FmaA3F1I?gMd~ z>If~b{VJ4!ZyWOY#9O4{%C70Kp7}I2&Ix5zz5L^UnP#zQdn=xJ!noxDgM@yh95tH` zaLLVdFCh@-{n3}6P6nShkBxo50{`*Y&ft9UR;4h~<$Om;30~#?rh=UyGFcnt6OW}o zly~zrSTx$iO6YRVNPV_k2iW;fq@0stJH!mi-M{Mw%anaLqWHd$6L-l%f29j4J)~|2 z-!ack)fh`;imJnm}4l zR&|^{KSm^zY18I#p|0$bVnItm!&8!uYl>b|Yd1I8{57OUxo^_% zd^SmNOF^$Jg7vrbdDD_@3h9|y)6A0Fib(>a+9zisY3a&2t1k=tD{Ue%({<|8mTD~z zMs^HX-9o+5Emh+3e)5sfP|Cnk^+PYMyGtfOd6r+RiWg>s^3Rdr3SDmP!?UX|`q6iM zM|}X`iCcVaq*7nnqepSme}fMXr1G7sc#cl}LqQ}%kJ9VtX@9ojYM|EA zME5$EnGp2C5e7DH-jSLQ_Ku+v@olbi+LjmYtw|mPpe3xUkB2*LL-7F$OiTd6^cqr0 zpA|P&_AUd~K9@xQ64&@mYz7B4hczmtvsT^yt8VG%U691`GecJOD#IQV$FVXkz6$vh z?ViohCw|IIz7@AV2;5k$LVfslBSyqKf;oE0YR&4i?7LN>8n6)!WauA)z_{_Wm6r``PXe_jSW(wMds|%eoiySI+ zTdHNxR}-wS7`R>>*u0(`A-?=tf80jxVQ1+D5Nd^Kr9iIug}k%pJrZi;@EXm%<)S#7 z^^aa7cB9_sOacP)3TWM|x8DVjvbaVCRSsBmn}hVKEM|8y+w@ykkvmC!0$C643_}Lu z=@l+7DehV^C`VkW1bS=i;#^3)6z5GkdY38!D6eV8@K8=!+_+%rn@JVuKz)@BzNV$V zqHCqM8t_7~U-^68y9`W)!hR`VOsJ3(YXOwU*vys}?hfA%d&mM)9SuVewch`q!Gyc5Fe&TeB$(T_EDnu}izQXfY z`MT5Zp25t3fe00&5_+Z1{ydhV%&(|XIK8O4us*9S)3%>jnye!k+OKs==$iav{X5qr zN~$|x@D}tY4Jru_AHv8oUm$qyo@OflPrh!jNG>h0k$;s#^wXRR``SAt&(nVTmTL0Q zd4=yJ;c?Z!_!}+&cY2$!=5O@iu^+Hn8!tE48G?#MJU740(r0*y-zpZ0bFr0W-j_+f z(9OLt(u^CU8%>mM0@|^PIb`sr)kzt2cM!G{!KHY&$#Q8!vgunSpV9o#NnhKV+2{Jk zJ)z4rogjtaQ7B8d?j8Nw?Izae5LN)7_YO?;?)pruly@CQ>&po>zCjwcirBzTTEY*OC;U7Jl0{Mn z%2UAF`N3E|88Yt>%ti1kHe=A?ekf?h!~|#9-!UDz`8ur|1EnKUv)$|Rz`*C)`dg_! z0mD=Vj~B6*NRzloa~7A^(ag`#UqJ@~I(hH9kqg&*qBJi5Cg~lq@EJFaQ-xKczOY%5 zar#7!9I;=~*5Ua#L8IC4pJO@7IuU``5ud2%wI{*irpN#?-hytI2l|}P&EKRMulr7a z5>T!C8y7417|jIho*7-N&G8AajGh{1i&i)Nl1ItGfHTxAqi|-H>J}6*;5N^8d<>ecL8Tt8nWPvGk^?JAXj!{`c8|JEES?WdcmM9VM z#rN-oS}uuYQ6+Y1uuHq)&9bQ`H@l7(4}d9QmClpeXfkGlyV*gP7yKbK zV69oaAN{>Aa|%R1ih>5okXf-tQC+LsltsN@;LYQ%p9XMqOpOzm1eM zCA?I`7&N~@1lVP>eb!VoCp$fAmO4=T!lbG76^LKuXt}&Y23FBSs#%!Cx3%*HS_u(H zgg*q1-+?pi_tu-x&%DWpgaX7Rei6UU6$R4dp1ESOdW z)}yYlShe(;HXLuz@9#!;?PuJpkF+xng;KUPUO{=UajArd)c-aF_fJ&n=44+>_@-HsUSKLDaQ=Z=LA!i|7Izc>tByyU7P+Rq495;VVN zvG%*$hwE_HZpVo~6MwT#)d2L#2~vbCxI`wg7*ZJF5#Q6WmLF%aSwujw8p`SBE}|+JQ6xWUDxk-QW7>r>2=H&|xAK^F>ZTooirYeWR>Ek9k;m zcI4MV^`K^S|M)}!GqY>FK*vkI%tfe{Ci{qdD{vw@XJn|IT81Ke=536ZJzFBKA75Ip zwL~TlvF;BrRh;u8c^!PzqxSL-r}&DzI7Hd1Ab1jVj`uLM2ea0t8_E<~v|J{4Phltf zCx80TJj09TP;G!E*yr@k8rN9R59O42^rKeQ+eIb8SQoq&O>(cp8roO_lp!8%iy!Iw ziCXgpT_GM>e!|zQfw8G44--2{dcG$!^R!rpsdp7ZA+BKzcaK@IiesKZvpVo*;SXpq z+0W$9nlat!i#TEdEO)Ge65cAk<*WB(vPJp6tOO{g@PMqAK|;Fahs!fi{7ROQ%l_4` zI_v3o=$d(S-JA%(b;Yp(AMW9fU;4SGS4Q}9f0nJ7Zly>6x7+a%y_u-yuTmgp-~Qcb z*Zqe>5UEcIzufG*A{ez@`i=29oYOlsMPS|q&E$*tXnCmD3*z+mN_&e%F&gOLiJ@Hp zS2#1=kTJZ&t4AUpf6o9)Ii%#Zb~jbobYIPeg|wT9KEm#fuLejJ3^rO`!e5bP$^?+i zc6Gv1CRK#7uy66<=Ci#oy1B!afD8s6M0(@)$3ZHw|Lq92e$3n?e}kx;E+}Q+Ft?P! z4D5U$AYC30kQ`>eN@{5#R^T}{XQQ%}xSeC*ij$U6(v99Ito|TL?3W%Nw*%2}J@<{9 zjp_CS&PJ2AOYYna3RV|>Z z7yxA8iEouUPc!DGia(3d(M6G=>WYurijcyrlkR$Wqc)K)Qm`C#uFtZV0M>G zIuEjW`?>miu;z#>ekXA}#|)R>vf%s0rlsm&lJO14*ir!Oucr?!b`pv2s$6^w+@7#$ zSTQAHQkQk6ZKWY5sEv0Qj}T6(^ABGh!k~m>TsJ2yvTBs4^YPLWuY0Wplaz8Ec-Rv3 zv__nnxPNIX^~m%!#1sDfc68E@xpF6s_cS1My>9rgdsU_RI4xU$q?0L7jn7=4Y?Spx zkld-)ga|#<&Y{0wEs3uB@Z@)YA|)aq1dasYY^&kf{)fAo-dh}PF((AXOpI4qaZxpQ zWq``OX{Fm+nN)6^s?RvKmTt$ui*D2EY%7=+-wtjFB0Q#Lk`0K>qhPf!M6Pjnjn6@GH#Z>hP!`QZ5KPZPTaD@AeC zO$PyAS`V6im;~yZpiG9b827F%%C+icuVbN#k6;7XJwXpt@&>@p_REZpjRDctO%D`J ziJ9Z!7v)|+ZEw)Pj9vXB4KqZzV?<<}80%nu*8jU29?vy+KQMC`0cdXgyfz>tWoQI1IR|`SHY9-3k1eskk zCiN*ou{JNg@4_*PTkL5ExY|f7H-r~lu!vZ@Z+~do&RCslADA3cZF^koP3ztrRQX$< zZ4Dc=7Ft7g-~i_`&j8 z9GF2bDB&#>Rz}<}O^Hpqj5(PwNQ?ETT@F9OvH6x)i8=x-;JAdy9>>cq${`p`#EygM zQ0hfWrIaq|_Q?k4-3i@{F{LI~8>_X>VD*iNmohCKfoL9S-J+bA+l}?;l|nB9eHSkQ z?9P2(-)tn5%9CX3Y{pE7T8PVQK-71k)*@3_2^ynU>TA1?n*c>)V7fecn5~~&CT7*1 zdj}xRCIOd#4RxTj880H=Kxvq%?^pbuUX0o#RxQd&ORw_JUTLbV_^qUE%TV9d@5@l< z3AxLrp`yuog?&CugIXrVClR2z>D`~?(g5&safE{RN$xWgKI?8!m=FI@Sm6QQPCG{| z9-FS1rg2Qdr?;T0NPnM)7?bCn^KQ-m>W=-&zBE*?nvlOWhzfjOExy|Fj{ z?FoJQrfX9P5RX(F9sdfB6ZK09aH9ZDG@MbrSbBTrebU_E`_Un!Lc!evJ>Q!IWn~HFUs#t_ zxX`^C?g^Hf$f7-4nR;33&?qJ4J^P7_R@*57#cJz7H%FOHP2#o}v5rFzQTOu5scbN( zD^4~H86DpbJrq<}O#L&NpUU&d=&EYAv=U7o1i_*!r1f%xD8_3`w=vyWPWrUQ(e^ zynG$moQ|qYf=~BCVCsXRWXzkm?Kc@WzX%E7btA=6E=;pUXFvJ!e-MojTRbQMyyCNR zF`I>zK&~j_VSta|Beg_OGVmv`^N~Q-DfK5S%Y^PCX$?E|z(`Qyfce~S zJp)Q-o@FI!53bfKk9XXEj%sWbC_wA5Arwx-66SP)wJDxbmj9Bf*cix8Hw`mBPmqK# znbP4`+E_mDjv$+z{qV=1Kz4-d^{S$v%BXK*fQZTX5#U$2)`LTKx6A^_62Zn}0yLccl>OMuQkr@1 z>8!=l@!;F2m4BFGgXbKr)&Xb!X)PgE>ZLtvw5){-W|<0gBc)P3SV>={=`XAK&I{Z8 z^0OXqqj?|e66+uOPFnRb78!C_E3wi9TFtv^*z)9uj|(k{YM#UyX)}}xqM_|{u@00z z2)z!!q2m9jWXM4o{6P}LX0fm@<%c7Qfthcb*23ZN)Qzn)x- z(914(xmAM~_RI=DY$E^_b3B-bHHWT_t>~5~?Gyi3_-8WhGvP~Vw3CP73Yp!|GOIVt zAtwrwe(oQI>Aq=Yy0N%4-6CNW;5ENt30Fh01~O$zZZyZzOwz%{L=0h(}-x0_{A4ljLnnI4If9fW7OT5^NDwDr8RN?}9 zMD50qzTK%@P9%v86^+jLL7T3ghAF4+?KeLQL`o#Ju@gz`~eZ(SW&gL{3;2)H(qfazT+pJWsYV%j{i3jJ=#C=^7ZC4x&d!nA-$=hRnM-0qzhpzYlZdk$k%L&*gp4V_(Q2p0TAcT|l`B732QND{R+ z%39O_!68Bkq(Hn26l@0@0=7qawbmQ7C-s75&L*Be22mI_PHQU{@#KTstXH6~3Re_D zqYI@qBbeBJh2QF4ne)pj>flH|Lvh@{^m(mY56DUXK}#$UYoi3{mjvQS#wQ`fcob-A z z3f;u}zsjJ~t{mdGplAswAntk3ZJA8luD8jEoL7W6nBp%$?v>Bt%}UT6HKkbNNK*D6 z4VgYO<6bKqTydzqeep7fymhhpTZqEGLbH78x!-N9nkscURP#i`WJLT~j8Yk1XFx-Q zY1^Lct7%5y*eRmWB1)+LuL$ZC%h@ABl6pmbCRnd%!6=0rPezi5c<(&qiY4H^Umyer zLpwk`3$vwI6g5QZ3gCRhG{)p3oF8-@5XS*X)8cX8D7Rr8?ySZccLu<0A5$K7QrRsu zc;uy?5v21{-2O{L_k3t*x%#b<|D*1d<`HhTtFL?R~uqe?8MNl*q zEe|`w2M7Q+05_F`#hF01m(Zxi?}j|NMh3j;hl>#tSN zEkI;RJfzvRegxPu9YvMf6+e;TWMQ47tm|Yc+7BlF?|@%}{rx?-hF@2+mP4LpG!K)#E1-Y)z2S8!>dF<~9-+m)yK2bW1_a2R`oX*L z0+)&bE#%Ir+w}{o@u9!*=Eq241J^&w^v;w$YbPUGKmVrc0+Zrywu-_nz!9Xvc(hX& z5)s0AGi6#Hbt}#)TB%&yV#f|!89>TAzG&B$A&?ex@(EI5dczd)i=T|c8%5~;pT0o7 zUkDDxr&lS^kb~bYRwW+-(OlzfiD1?UE2VxzUo@sl7b}wlz--n?D!>tz#2c%#HFRFB zTU3GpDS#4(tY!Xx6izluH5=L564ld*O0Dw-eJNqN73I<@#b&!iFeYK)tr<^28td*S z9;WFNuz26rc3W#+Osj9G@3j*Pg~Iy*Awx$&|J_;cJ!zpYLWJ4kHHLUFVBAe}*z!<# z6&Q9Y5C8_svEV}aw7nKe`q!_=Ml#-)Xg4|{l~rRHYcHA(rGJc-TBx^qIh@Q9s9yHv z4V%~>TRtB^S1<*{dWOEyS7KB-W|G2PUZ1GFK8$C?;;{pR3Mt`$P$V)9lMz%E;tzhNYCB?*8HlbSRyDFgfjHF&2;F77=Z!uguAroDD{m|rJ)dt*;ap&&#j{u9;Cn8Cm_ zWdnso_O0wRW4gq}sI6pDmK#L^ixQ1v2>RIlXzStmbni_N>gnU{74ExC-}EpN)9yef zLyE;__l_V@?Zwl}fQ0{0 z%mGmddk5LJ)N#pW42W}Pg|fAsb6x;IT=wUsCby#gczT(60P`u<|L{b5NkA{3-|FL` zBrVUk>`nkM;NN-U0~F9~oWBV$LH|ckr3g`ZAwkWHIDou;I$jhM2v0z< zk*|&@8*l+N)f%#7vRj*R=f&TcEMwv6T(X3{2`;zh5Ah;inXUH@loS_`QsTy7>5xE9 zr>b7A=!TOckSuLd(d3|d-j|};yahGZ>;*Gjc*MUKxWAhB1`KrXkCTAgxObwcc4Bly z#xI{9bGyF_eK#$@T#9P-cfmV-iN-}>-Z)VrE$Z;Q(80@crIcjpU7l~X zy43B2#s%B&G^-cTEiP#zYN`2EiN?k-w?8#z3cEd9!)gDecmTmG4QM3td8|Ne=NQ0j zNb*jQMhn10sN{&ce@KjTJzkb8%JO}ucRW#II-DBhdiWjiocsvdjFr z@}7wA*$l|SS7c|?y{O!F!>S9vt+=G5jQsdUZV~wM$H;BW&zQ6nZ&E4zt3z* zz)~I$cvCE$W2oA!_>obmmYax4JN+vmv!nzTQPLQx19?&nR679jvP5>Pu%KXKeCpMA z$LnVl!k+#uIq|#gYY)z=ikt=HAGdlQm4l}0!QE{8&vW%6{TZy4wY3GO1

    itY)If zJc-f%Wc-T1jc)tc{qM~1IK|ntac|jZDct7&2+C$4#8p1LK@C?dUuv^W1{0OKLa;3W zhW~tsYjo^Yj3BKpT;%DTYq}(!CsMJ&b_rom>1Z-h_?IL<9H z)M8Ue1Lx0RJOhFUNUW(3(P5H(jJI< z-Rg`>v!jyV z#QgadETdG$HJbO6^>@Dv*~`J9V_dD-F_q&K2x_I#Z5Pv=)xuMaou0>13=6PC4Yn&u z+P2+L#1iq`#_b;_vS@XSktU4-mByGDu8_Fj<4w`#n%Gyst4X5VAoz)cRm!5&}4&dBoH$`cgPqTu6SEyn)J<_O5=r zNp+)kVg85a*`3Du;TBP?MPE$qReReyMS3r82=%)I6xwd`Q?XZ}vFwo?+i>B5N;|lr z7`YSb$6|BL?#bk{1N;#l3^g5F#@^*2qE8vDG~8qvlL4&7zEv!E&Q0zQ@)BWC|@e&YRB>==AZ6dd=HwRFb z@9{LVlkX0~ewYRnBNaW_O_1u35BPv&+?SEz^nJ zf}1|y8;U;)Kuy1ix*x4*xxiuf#~`vUl8>OnbpM<5AayjJ!;4M!<^U`bX3=1Rugd*~ zCg6zs4D~`zwF-OQ=`u&W&~CWSP>)-idy4Rvi|F$z`2;Kr_t}q)dll*fS>RP~>tPz^ z>!~SH_>EH-#r#h|lR91~m-e5kQ0=F>hmAJ?tDCp`BRSsBulG1#sA+f%RvHnHd!=15 zTlx*M0E)mE>v#66{_Zc2=c-hq2NT$&L~QTl7}ZPP_FbP~8FT=^%q@1a$?rU%bpa}M z36=jO&x_(%@@FZgW-=uAzo*$r#nO{`MTzkK= z^jNNQUWrl&k*cx`$3(HGu$+9Pq;2S-VdiY+$?J6I;bg?qY;=6XV>Rdoa|asj~a&(kZ!gcjs=(SMZU6PA`{D__mr7S~ntT!(K_O1!Mni&+z=tB5)$qDLpqzzQ~ zu19mlCWw7SLGt0EKuKmd8P$6qxO{u?*|*YZT!JTU%qT+-GkyzRyn73@LO}Gtx!+y1 zIq>sT%)a9cDOQ)F^~V_Dp#*sV-7C@LdH2Rsi1Y%G{k`SjNNF-@uHkGB^_XDsc(K?Y zzmog@xOox_W(STK;)rb#{oo2z{h6ctGrofnhd>@ft!UwjXvs*Iom@dQ)%-wrd=|zn z1Gsonq?GLwbqr%63PPl9pt!F->lJ4Kz*Lwu1W+hgKLc1X1 zI${(RXZ5%mhl~PBK`!*?%86T|Qz_%xlNh0%KHx`T?}&pClUFJLy?odTtz724kuRni zRp@iV7i%rVrhjT|3ois!?Xr%149fN=aU4u!vDlp`&?N_qi~OB)7$ynp0n4CmUo`Bw zjn%Bf^G!5BszG7;B@+hiqdb76KgTuJ6<08#HhY$bXc$^Wi28l)cVM)uZxO3LWnT=? zMYIr15Ky)fem|8rz4P-^ewuyHX=0$1{vKwE)34dia9oT3aB*yUdlaKac>J{}VqaUH z=#%<@jLXDjR+BGHP$dMEvUE=;^6y2$Tjh777e4}aK0v|7Cs0?QH34JX=+_sr1hBT( zVO=etKF8pIx%ah3{JC-6@zcNvCMsDL*e*yrdn8(P==0y~* z(U4fa$*_y$%*;GbMsG_9f1>AiTZ*N04Jmn&wuafe(W2@eru5X_z*5$go_J010-iW^^80;c$R=70JQTeEf+u$0f zSA^nFjl6)}!xhPHhNQjqWLK)u9UpE1X$ z5_1FaRD|Jmp@{=+OoXrlyfO5M1C9Z!aLSD@Dux5P{8i&&^E)cP(2GA|>#e^@>3d~Sg2IFeT#J0>-P2Q*q4kG+~22E<~Sl-~b7j0-!gi|+why`l_0 z0l{wVSEAjWDkIgO>MXYa!7EOD5?dsjLVMR34I8SP1zu9@0*dpsjo4TsTcx4{zsc+N zWgZWjqq;k{6mY-6M$Tq&;!lk5H#gfA z-zy3o=Wz*VpkV*#z4_}Gzv%N#l*iOpQ|Iupobw@g+(afY=ZlCZp$4y=*0cX313q%2 zDua&rXs<*A;*`etztl@{B+jh(kA|;7nDyt4oEd~!gTX*Q0GRr36xXTbrq-B-K(<;CyUO2HT!pk?rws9tr>f9 z_Hl!9&L0n%N^~Y|RilK06kI$#EkzdoZO@+eUt*K2$h&E~tT3om`EIbC?`hRo>_@ll z!j>CU_L<`wRO%9V zgCzPFXyGD6GD8?{O|MuP!f+uFz-eSLmpTLP9;EF-%V{*f&uujS+N0gdSNG+f-^L`( zew=%6gg_<-F4g-N`a*O+RO>OLnyk=z`g+VP=ucL4_ujX%P{;`}S6>FWDpO52Vskqg zM9J*-(&_Bn??u(r#w|t)19z=F(H$9U=}g_F(ww*5@@>~Mw0Sl?E{Rnr-1w`P-RN42 z9M)oEDH&;lckQdPPR4Sn3o3o1_hf{%?bPgfup6?>`(6h+SU|lwTPU z0zugbfiZlAa=!uq-Z-k30+FG-lPtkEuk8=HMvKgjyt!WIeZx7-^U}4D0zf~o1LG#! zGO|5$BrD6^_^{mZ^SP0RH1)AxjWLrQdFZdLC968$6hmPFwQM&cY#1z92UR5I7no*~ z*mAZ-h1C0(&;4iF*cLD&VC@@y^!TYKfyR3Zqa-o}$^F$o9fVLnAH(XIs6&kTKk1W2`L;Qz7pmqBs0QMV`>ys_XAym5yBfrQ}hL4&)yB{;#|-GjTk6D+v9 z6Wras@8aFxt?%r6&o63Kbrs#un$NT`=9mF8M6KqFeQ?*4htB4E8Rd#_{+|eX3Oquj ze#&k|5@kNXLvN%{*KuFi9Q<;p+x~eXdue2mJZ^oi z5u3TXO)Hi;h}FSg4dDagxd$5elxCe-1LnZwXJ3nIAa?k}_>2MbyZrrcyD_nW&~FE> z07jtqMSzf!^J8V^aN(`MTlipll20C8i4M5h0kpk8@w_vZT7;Y;A2d_>jNovB8C-;V zfSuJbB%ZCUG5S$kr>guCs=y9&TOsbHaeev;<=PfVE|j%+dev`%0839uET0xv3g^l5 zqJN!U-@JqU@uxLhdih|DbZ69h^BJF#_)7dDx6ZZ*&H1UgvszO+On1p7TE$SC)=iz3 z%Wgs$o!|~HtHp0vG~;;@9agw?V-*SkkGK00jux|^YB-!9|8bxIXwJ|Q$Olw^Ta_%m zIZ;5G;BC+oOhsjg!FwYRxd1LQ5CtQlee9Z-{$-P698O|WNvoD+vg?T+A5eb zuFOA=_J{WeE+~XTBU|0!zcYIo2>o17(>{pO?f~Iy1{h}^aeNn&@#xk0%i{G6%l%&Z zry;@Gjbn-CPL9?h+SJ{a?ONd(XXWPO3JJfvgAtU@VN`qULtK;FcS6OZz>{M8a@@th zMzywA3OC0tP&M)~CrId?GgG%5$|$;_9)~;WYcf&{%0me9+r)40vIf(v;c+46zyjN)?xGpKcrwx8j5yu0Y`D1 zUM(*TgkrD=AUHrSl69$82C*at=+OKrF+V3KB3b19YSZ9m?-!j(+3>liq7$E=wym-D z+bmGqFNLX{3;(^Y(e8X7%Iw{~bl-N`;q$zR}XU220K;Tqd&?j6o zGLV3Iwg049fI(FlB z<$-3#uZeMCW2I}+!saUy5##29a9k?^zcZffXv?2nS*4qb9$d?5cLtyyovx(R|Dv5V z(M6sb%Wd!Ok;MmjJz75Tf7&QNsN3lO$JgZ=+j1xV=vj0dRJ0K$0<9?~i>cm9@tM-pOkNC1JQMi`Jks1c^+*|Gg~ zOEjvZYZgIDy64;*pAYk`(xDK;Q?m(+$wiL#|}JN$LLq9K*O*G&ueP zQ3Bo(k*$C7arL7HK5U2k1~FLj%n$$%ASfVq3csU6A-|fF$sNq(Wy!`P$Xrb)IX&0H zEk9=@8OZ2OOrS>d({{yZNn>uO2qR*9UsZV7eq8L~&6}{H>b?{3d5U+Q7gzq)hz(;6 znv5e6QWqSHcFHbWty%Gx{I=;ZQE&6{yxQ;Q^F8aA#HmiF++rZ*5pe>FoQd;;7jwBO z8?Fk)3r4r>`MNA>Vs58&lQC@(_C3bUTg74lA*jQJ2Auki4X^mlr~flK_m<{7|KIus zDgRnaU)~CKEplLNTMN2y7Tf3J8w&qHKm`X#=70g+k7&5yXLMv0r95=CyC(+%t}7^& zvrV{bi>ap8h|e{Zyiqa-q8(PcENsEt&-djlN>I*1VjepFirx&BG{63A7^c=95?`E( zb`^2cOfQ1My25b5w# z0;StO6F2kIt-f!szi!r|iany$h8iXzCyR1%YcJk^G@2uObeoEVdTTZ#R>~yx&Wu|# zYyb%KzgO#HCjJgc2>{O4G@xk!bgiGvN?t+**2uhFNiuq-0gnEez+58E+i!<;VD_1| zcq=Bk0Fd4{lW_`2>$l;3IBfUet{*$*B)j>+pL(DC5+4?8eR(}HGp|7Wu$!#%wCWd( ziNE+n7C>=lO1tXMsM}1)O6Ai>lSQX-FTmjwH^Z1357P#Zj!$>-fySq59e>ex zf7R|7hKP=cS4ClMq8S!<48kPJ1DO*gOKT<&6>~ytNAvg_ZA=yLwAIdt4p+-zzLz?< zIeo8x(?R(^OckmBMOGEKJS+f?EhmsASj}C6(iFeH^)1QX@Oz1m#nFJ<1CaA18k_RI zzR=?$B3@7buTg(SqKjo3{&1|b)2mZbG@Si?pfJ05j7laKEz=jqiR)zz5+rJUh+?Ss2K4k_jD7s{ZS(b@{q-*8p6aO}|A$Ez70M8r9(f1!>7mS| zD$2$oRP}Co;aX7uAlM2xKg}XcTlr>hbB~H32g{p`4*BB^7 zPyLPoeBS}nHxf`LYLOF-?wi^DA^3I@PL56pYD)P4i&JDRShAsU$94vis+akFR>Z$hg@L3a>rk*E2Onzxs+ZEC)E09Jh_ao&-I^KzS zYqzOA95;fuprqK=zwL3gEYo^hORoEOLejnehqDmRg(y!Ke;J4@am*II&yD-i%}iW` z@;a}Lnj5p4OWH26O}Mb~AiTu`+V?ihHeJWLt$_*bfH&okOQ=*n^G{dRe=S;mvRowWX3=tez4J;3{rRPtHiTlTkYrP3vy05^u#ix*u?AlTq%dOIX`1(?uST>g0Df=RNQk=b0le zzSpo1pK8)x3N=)U>yz=4}Cl?gDsFl z1ztr2=353cw@TWFNP+w|oxe}P9T@S#ev8qjO-ZjGqx!rqu?dY7+ASjXi-f0}*Tp##lo%;p+8|j|J-<=ktZmm1$kS${v6I9A?#$Aog3FBX`TZxLccN z^@ihXqtpwdLuxkQhN}HK4|f9vaOaXLQNZ6&+lOXolGU`Bl9PM!-V1rU1lSQ1!7zU{Fbu7&M~1M z&6OlR28iw_oe=KF(D52C=~gIHxt0Ix*PpaxaNP?_I-mf?OX`GIOK!{;PAV5gp&Fmw zKTEgw|C1<|c~8N+e5GAtuVKx<2#Ix?T-~Zn;uK78^Ze&QubJbU8BX$6e_4@LA;Gd? z<%7AXj9{EeKNY!*)`V3fA2}dN4&$M^Y+iavoKthU%apNEgx2ehvf^Dv&ZnuerF^=< zm2xCY6`V+g6C^`>(Ms6yxWPKw3vzp|QcM)$?!(TF()L@`+SPWSqgbD133oAhDT6wZ zNRu~fi$V<;33?_iUAJQ9&i0%UUFLha+mG5J@uBplVLNBf7&nWDi1^V~u@@~J)5vGh zApzj1CHjfnC)gS{u=vKilEF}cZa}tdJ+_LV=qqg8RnNVSN3wbVm)5 zc5eU4^Z_>Guzxa~tP~i3p{BC?n&B4C3AqC1DEm|7K5qLZWQ_d{CBtBw_myehESxkq z9vji3?3Zhs5As}T`F4G0#Sy&p2~am1`+ODS>^51s{0GlBXS_aY>O0=rzNQReV?{pA z+Fo+MOeiI`MAm_y>SMyu8&?T{{7NbP1GG4suCinU>^ZjSKq~UBZT0?bJBF|SsPbs> zd{A}_qjUSFKU@~z^i1S%(to5HzQHIEx>t(XB;9sr6G_OJ4O)E=*mxW*pov1Btwjzw)obju^wFF;yQ^!kqcw01!!1@QmzvS{WB^dx3UT4Jn>? zdzPlFeVfy0%ToxmIs`*j>!a^5)7N$@N4Ms2#tsMGw~Tl}Sb!&*cXe!CdsMpW%O4#{ z3D32m7s(1;#u2HJmR8~_SoS04rXM6Qn4N_<0JPYq2pUw@;}lq3ZI=UfZXOA?D5m@ zz$y^UVTm*b2=y)gzfA}N@m~%f-)58)I2 zgFLyT`>REo-#afbBCwBu(9MqyHoTH%+yr%9eWiA`lktS_c1-*F>h@;c?cl#wGfNY5 zn9Oc?Vd1Jc;j0?c#7xRL+0r2pfW4_ zsE_HpuRYr((G^X>)&0!6-jupFGU-_TJLsLW?_Jw$H(?1^{DpQrun|*2dCT}{Ub_?p zBgssM0&F=(T|sJO20P?PAy@~WHLQ4Rb~s1A&oB5{R#f+4rNdY?L^p`>M~d{F(tPUH zT%5Dr%O#GC+4$$B`!dnp|J+eWr{N;^7>T*8t$|G-(`=pFSEv2bL!(gi-(~;tk&2pX zdS+f+0Uzigbz>;U;rN_`!LV$nO3wi~|8F%OyU$*6L6b*-yrAeMw$EGIc*gl783B;1 zpEUv1TTC!#{Q(f{;(p}ve3Wa^L4zGs+YJgP9Ty>+yy*=JgoA;LTp8v(rK87_=94bI zSQF>XHjKLMCoaaV91}-~I9i?Y_y$&9k2spbIG*P8q+yVMiEGU;!%xqfK2MGepvow} zca8bTInQ}00uZ+L|M!sF!V!%&__{m|5H7r{E#u1ZlY_?@!z7^jEzaDXM#vzK4kL_K zn@>OZ8tLYRqMOv}B5xM02mUV2jax74(;hqQkCbFqHkkoK4@Sp=ScJqolpuY^jNeiixPhJ4ybEDyJq267RrnDQa;8BTG%* zPgnN~NJ)LmHkScgg2K#*1nbo?KxohonLX_yd#)Q$TJ^O5FC19v#^ff;&`;2|%x;Oh zmA}WL+?Xxg4~Ty*yW=Z3$x$S_xok&=B-dPK!ZvXfZsA#`rQPB&o;M>m=r3rxWPb12ENzc4l?EN&)K2 zxyDWR%nq3!f8ZB~VI6vIXG(9t{|pv`@E*PAxu+W-uh=ifp-H)9C%Sr=%}%(BuK#3m z8v(Oh>nd**{>#O;h?tT?tz0IZcT6EkKbV~jOh%3}rQi9(8w z{Rql|#124&etA{fDFJ$u|9_MpZvYLG@v}QZ)BTN61CI?ceM|#wcU$_hUxuFuM z0bKA7ZxIH6+>a-4np8)UhCKQooKM?Q-E80%Ho~PqU`{6FF*3uYgC#$|P;&Y7%V&;q zcMfgkD@=NgBG{9qj<`g~HJ$a^L+wS4;frZ}Y2VtAQjwhy2EQg6v1ImgM!VJ+%X8a| zJMM3VhSdMbua3#8Hf#QPNPhf8-Eh!`Jcj$k*4xW^<{~Whj(ohD(02jPb!G!a3ncra z0F{sPB+cqI&sW#UHCTDT_0+wMW;WR}Ft|8O=9>+5Y!}t?D8k&hMiY}^gg72)+Ps?> zOHA*u=O5jVo?Hb5F~DRS&_ z0sv+}4s-PpkC3k*q>~!k?f-Czux?nr&Ga>?>-K+S#+t6RgBhD#Nz<^3H$W z;=QI&j@gMGQAdCUgn%gC#OteDsLH@a+#Z2O;| zqDA5g;H5mSDM$m%NMjC8UJ3Op3@>~65=$>Ou%=30MM$9o1-=y={5KW>w67k;WYY=AmDJfeF$A=G?SeVi}b4g|@p1 zMS8_5HQZJ!=tbsaGT0igXZ==`<-0!sZ%T_dU=Z#z*1)k35!gSV^0^Oy;x`M&tNJhA z>oaUCnRAI+QFrGAnsOBK&GQQ7hbG>XAFe_k8}mOo;RX$@(*s_kQ1XuHJnLO^}qkn1VYvAX8~4BjAxoJX;JCA)n@x))PT{7+JzUXD)KW-XEu4pkRzRN0|jxRTa+Bw448#MN;um-1aB|m%wHZ)@mfb=gW=g&YrfE39($v{I* z-L>-L<2=iL+P^w$kM2Mf3d9zX`*u>Ako~O9Z5Z^h`4+vyG0&Z^Lf1F2ma>iJI6eqf}bhM98EsK=v z`rH-g>li5MBB{n*&U0|m7C0VJ53H{JN;sG(^w=soB*eyQgLYj$S9vlIue-^D-jn6Z zqSn3Bl+i|e85S*|Q4xa(eyB}XNl*Ox!o5(i?$eXm1=m) z_W^WepOC#?4I>y9`j8g;KfzD*{~w8B#Lv_T2j?zR+kiTUXDj#1AH!Uk3xqYcQ~+8f z4^syYUq<}=K0pXOu6`3~M_29#G`~a#B~98I^eCAgPhk%Fcks02UMjpcDK$rm)*ci2 zrtqR!!Fu6%WRPz5D15pwm?9*fzxns1-RCyjsPFI5QfRk+4gRejOdx*6P}t6vFcPqL zb>Ko%FM-T#c&XeBeexWUC-hw1H3Sayh@u@UN`p-OqH^JRxdzhg8pQ>p)5Y0~#EKU* z-_?#>b01`e)$zs2k0WA>m+sR%4B|m&|K+$ELA21;B*SB~3?tiYm2KQ)gK8bubTjO; zjr@zyQ8&nZKn>*gfJUFMU)8ef$?y`zZcHn5sb-QRzn;u41L6Hpoi%CecJdFX@$)4o zZ6CY(yB)SP;GrMPqr7c$Q2&=kBf8vK+z!;H7z0g7DXr4Uv!!oS4qu>vUPtCTqBjl~ zl<8X)HAV;sW4eVWzBEPCJmRj}@4WmJ#)_m!rvoUJ(yM*?7`zh%A|QSH9MNm^ZfIDx z{g64-uYmF?kp_9xbXD=))FYEFvchDusBKHWdX!Q@^$k;d$`gl>Jpfi9BNZSy;= zSlN+xv}u8{JW7)vKQ$bIjXpTf+)-h-B-82sQ2B767;gNW=i|!+>|s*LOj!w=e4=<> zPfA7vWqT4JkRkQU$pX$az?(S-k2x=d*~XQaiaLJ+hlx2mWJ?U#V`n++ zBnGUy(TqEkyq(fH`NgSxvst_!enaMhr*GcnZoypk?RKL>CrcP$rbbG(QHz5=zLd_J z?OuLPVXZ2X^}B`I!s&r&erlRy?9S~sLIUY05r)y(%Of*-_Ah==efE8?eYKoa_Zn46 zRVxegS740Kzjx4g(pE_G(Vetk-sA;s<&!US>HMKl+RWnvx(|PYP2nGyOtSxEY0(hA z2qY!4`!K3fpGklCLE61DGLh5dy^&#b8Q^lWQtJP_^DDk@!x9FT89pTp!li_ZwCQl= zh9LWad@1RpSZRSQV<*iDJ?WLo;l=yNtjy&-#wf;wQ(K^7x)~Yu{bLt`22nSp#cuWb=pPvnzp_=FsUuY})^)Tuwt!0wB{2`|2&#v2czU0ogVu zLuUSZgb54`Nvm)B3wUPZ41YxKgoI&bic1AU+aaY`A_~WRD^HI9Q!2ZLIRJM28fhgJ zoE!eBX4$Buw>l2sFQj1H8xA|Qn668ds0;H(vm3_gMkVP2lc#pP(5Q^_ROt1fBk!Y> zAThY{p}eBSb@DyB1{Ny^D~az)Mz_CMJZ^6=j*E+~4*iz&9`ysnNw0rw*-#g)A|hhz zHo!I`(?o~et=ij2aXW;U35(O-tYg%?C&Hd>dL_WJ{=Hvds*5zi`5Ea&Y(k0obeu6= zoqs^5HL{o*hu1m_`08o9zDGfPXni?r`6L6rPCs9N8bEWgN&@d-Nu zCR$%d!%Oxv?~dG`nRplrw$~R)MF8C#iIx-lVsTh06qRw@H#E!OOdCCu82uh6K}Tqx zH#;c)$?ISGY8oswEQkzmSK#(EgN=P}+1+{k!O3aN%)iZ7^-2)5{mArHN=!_HgeO`M z3}MrjGR&Schdll4XenPm$M^{Sa9&-T80bxA7mhw5`Dw47X6;aykUjg9(*6* ztxT`2l!5=e#^-b*DVLy=yS!2SGw>3fk5tgpAJ+GhQimY|IedeH6f-)g=~8!IvXQ-V zS=_|a#7aV)!Y`v)O;i!$pRJUqrZxDitX~s}1uFs8_3F=ca2T}+2K17)@>J&{V93^m z)Lb}RAYC_zNr=V*t`D15s{HNcbL*4~9e-SRmLhQm+kKB`@Aq`@YhPM5q8U{tuMZuK z%Y<>)9c=VDPTk#ET-HRn>~IX-!mvU zy)>&$aav_7$Y${Fe!Z*lMMLmV%+V^A znnJKo2t=rPJMYuu2Suk}HUAM{s)%)T1SugBW#EDTM=j0G#XchZr~$T{oCi zjxb&{_>tEMk4_wu0yhAec>`y2sqe34&JV=hKS?$2cbij%>2#Iu1ce{!CH`EJI<*_{ z7SO8hZi}dXk(6rS79C2T)e4;{-#>JrcknRUa^&EDvcLTW`q%ChMk)8Aq*yQ(TbDqX zmH8r+!+QMgh~4$qy!JL+6-dto3>~BcS3bFiUdpyo=c+}oK?V{9B*8vyaIDe)2tG?mse{6zd4f#p$mG#M=YO*2y{-iK4(%GP zg3xh6Of%Il=B`NkF*In~iGa`@m#`Q){G|`TVTPcSF_H*@!p>>Y2N0<9j~ZbCp75@2 zfrtNx0pr^+WJ56I{^%#*jHx<+fAF&TlM+r0Op53>H;4WaHWCpUm+&aL(^EcQHG)sc zsqjRxW<3PTR$>$h5y4t1nZE7vWb1M#+&R9eNaxnb^|D1WV34OaADyh~1Id8!smouA z=reke#1uMlWGKvmZLuESGfm?NL5osskvc(9On`u-My{9MnMx}0Mp*(U#{OdUs+<29V#9=DK8IGEi zj)tK|1;^3vE}M&F)r{gr66xs`sKO+F1}K6v7^Gt~a4=5E*;>^tHX<;B((0XcAcC+}$f*+{A6*FGu#PUHPhMnB!I{;+AIxGz zphJJZ$DV!IChI8p75D*~7rom6IXJYD3Em<2Hy8UnI;|S)h(gi&xs4Ax?lMMqjxdP< zxKS8o``pe2Od5VH3PO%;ryv1FdBg5VVHVN!F`)W$T@jG=H<)tnt^{!>TTlBo&IK~4 z^QC|_UU$1b9-sb50xtwrS+;;o4@3m$0_fQ*Z}3`e$l z{dQcqL@FUOWS2|kQSrRrW1wOlFw&Z73A*MrH4{wHa}z>=3at77tbe=~Xh6pexZ3`8 zJBn6gcj3@{c!`{6@DLZdAVC$)OE<(KW9GLaXh%4?gKzGyXGzjjuhF#te9q>}cE3 zU+qoG$mBag_jhWVj4%5zXZ-@yKF{6B7*F4u<}^iE_<5s$L38myvqqc#>d;+f8~|qO zEo}urVY-E6@D7p`(P+W@8+d?^x?fP2e)CacpbtJC;okhgOB`vc10DT$G1jdOUk#vd zELF=`erq}=H6WTw$|$c0Qes& zytJxJDSy@hH?7;NB5;jYW0zTrdQu_A;Xu?>`c8U0X(4&Phx55`8s5#H)m8nT*pJL< zrWgy~JB_JX`SN#a6!BEa=?7I@W3k!=c`7~LhM66=DS_j_Aa*;yq_87JtJzS+tv=~I zqqN78a1NMa^P1DNl$wLBOk?LwdKbuP`M-nP8*VmE>5i>myaZ~swb%VBbQDx$whT1C zm!-(V@GdI$pcXm3^2_kAeDauew{C`Sl2BZt!wamV_wIP5`6YH3Zz`NghEHpXNpG|4 z$6keTAI0hpV6^Yzf^cA#{Yju#F}leYh1C4lLfFGleW1lUcU|EST+(jw$m-;4e)1fl zxV{zxwe$uC=rik4D-1#M1T-1r`P_7ukXp3B9|T~9%V^$1EyP(M<>p{E{KEjh+^fV; z!m1Z2%yJe6pEX(<-^W8hAS!DDv`z7DJe2@Cu(MjQ6CSr8{;thTyT!>T+|w($Ob)*5 zor-s*_756rHnG%sE?JEkE@6UsGdg2w<&m%^kMcN-foM2}-2qbRf!lA>_;rKj- zOK7Lq>mr?oh85SHI7Jf58Y*EuFCc~_Qhr`xg$~>Q9)M62P_;n%t)I<{J-9^m-@U}2 zrw3=$e|DI-%J>sUnC4z$r9Es%2A_lJA|WoSSYcVze3uPY z5XblQih-7ANX=)LABu$}?d13!=x`jgwG2JXkPhb^<^x?lAuk#;qR*o+i)5Ig%cmgy z7{EQmp?7y1fP*&iKc%7i_zD8=P#kTqlG=-fCBjRo;cOwl@gy%VA=YP5!y`rwy>=%n z+1WD5CG-70F9}6vxQwJmGv?ikUGewa66V+>4&QUl=Afft%s6GKMF(R_z6OxZD}Au@ z?fQMtRS)rU<8Ys>W}OXjcp-ZewGi_o#e^r_+B335pmMpQdiTX#JfYA%1*qe@z+9)2 z+xV$6Pw@MslG#$J-nehEnl?n>(bP}Zt;U(+!QL1H;-D;!&j5GIS6l!Aw+&A}n?pJP z&F6RV@{XTw-|!y$TI?t0#6s$?XFAU4(QLg#lB-e?d14Q4itSp~#mWUO%Cz4_$uEq! z`KJo3kBpgka#XD~n5E}Ol8ldV2QF{IjOF@Bg7@y={UX=r5nu`z45oHwN_RFJRHc>q z7NbdDKH>*p0WP*le*sjiR2qsg5O9SJSDxBomcj!W;%4(2bcl{6N5!-ly!q8CN$gL` z6)ysp8S($qdfwJ_H#JQN!5YmDsnjT1tTGTTvZ- zi6|}$bN$&7Q$G6MLWfEDi$Q9c>w~mpPw0ViU(3uv$ZC}5%yigqRg6CS?5QkI%-%YL zUUgjVuA!h@Fe9hb&@GQDy_P*Z?xJ)e)#vb-&PZkBbU*7VVHPtd{sk|mbf?`3wC^J{ zVX})$Ug%dk+^PvD@<_EaAIrlLDI(=w7kHvWq-YClV9>kCjR}F(!ko}t*m7BmRv>J2 zXff~}{{(|dc}!R1t0pd!B(`8O!=3j$sn>eqa2i+aTBzS=Cz9r%#fr|-btX^3vOwas zo|h+nQxAGc{$I*Ox4geZU1?^=K2+)IZ8gKS7K1=qg5neX zcH^_{OB9`~5^YU>f%%_b^2=6zRm<#KCw)Rp`F@>3521r~ZAF2dCJI8|=+$*X`xE*+ z?L(sIBIn1p*1L!h9JnyIWneShOxNig1M^JtBndzp#I22kbH6pwzfy?CHrmGC&{+y< zohfLSNFgv$n%>UpVv%uSg&Qc&dQYX$G>ami(KR&*oG7Er}N40DGY^d9_A$BR8p}R5=<{7{gskf zxr{>YW^FECM(np@z^Y}^L8y;C4^ zP1M-zRW`AdecGqMI=Ze(hk=01P!Gk$-et4L@87@%`3*X{>cA`zXt!fl3CnC7m(H4$ zOKBHr)>&iG{kkYttke097!?w`YRM@*6y-IT808rsPTX4Dx%drcLW5~&(o3#GV=vgu zjn7=w>>~l}NAvQ#6pR5ReUMEH+J{Kd>xLn2mZ-#7s?Y#Ev=Jj9TGE1GpL;DL3WoUW zSlV);7&X#CK2XI9?V*41m`d*K*V0_&=D0A=YQJnZ`D?Ci)hCZs0V-bLyN|yeqwOGj z#H+sX9fWF=Hl1}nI7!r z#)e5b3Y75r2Xf$n6&CXGJBwi3#$uRP41dyCw5a9l*hWejc^BsXdVm#FALZAD^INX& z3AXq0=aeh_kg|T*NHU3IJMb18tfVn)BTf9cLl+&89GlM8EW8eA;lqSGPNYVEck4YReYp$u

    }6&$fFq?|K|uIJ)UpFYh8Nz(QKzRcv-_CU2?*WKJwvcXZYYH^b) z5>TA;zgF+ANuc>2xTWa#VZbwk7v6u2H|$?}J<)<5d48~RoZmquQi+!zWPNKhY(~N* zT-_On5KONLlQjZxXmBY?I8v2$UK&lBj4w+O`bWx5;oKtr_F^EYWMd!!e#E)a^Jza( zMrock5)~XGAJ9c^5F64n?^mspbae~B>JjV zJv7J4NhoVSn`vSaOOOk8ohKnj(`AMU+%<59U?RwXrs*dPU^MKqh+wOM_MNYc7BZOJ z2$K&Y;Zf1+k3Zar+;cf-LJOo*Uxf2y7<0UNlp-Qk2|De3KxO0Fot#ItEzujuckC_q zF4glkf>Z%Nm&7SL9(t35S$Wda+R7d$V96(kJ&V2i2=p?xyyn9n(KuAm+rMl z3f;IxoiGLPDF9FtQJ%Rq1&#hE6ho|>zpmP&|9S@Zp!f zAsieG5J+)joHWp5KLFshZ?B9v_2Ga>3gJXYK=FF^T8bZ{`?xk(RwoN$t^*Vkh^86{ za^AC!$9I%)f3PD`6!>N z0OH4|0s^tj5!opk>5~yuuZ4uNho6NQ2y(t<;&HS6)zTfMS271*)xRH)5N5%R~mcA_dTlt>YI<_1A`g`lg@ zAk+;kW1ZT*x>Ks*=fZ}#F_S|OI070|l(ErK5UmWy$h*UR)tpzKU&c&obrqY=m3Gy| z$-(!5Y-tp0`CgaHV?hzm`kc&etz0px&m|YLGEF+QeHt8cydzhPfh8)8BNmRtqlZ9h z$45KRpqCi);pRIRvUbM;5vu?MnV%oM@RZGJds?ml2E2$Rj3_bR!61m>LlEuy23GPr zczK>4i5^WB&28Hcg1oZ5Wv0mh!&X2nDl?QF-* zUD{ba?sbh%jE#J?6@qrVlnc*=WVa}tOsz_bM<@n z<~=y=a`m)pSuPZnV)X?1C4RKNfFS3qBU()%Dh{{PDkD~RzWeGVq}EP9g3uP&^zTFC zhh?EV0&HQlM326n#3xh8A5Z#ttfVHY?*1*$n73Mo~Z zktOiCsChrrih(PZ6!{Q+2FCzafVN;%;X8B581^TG>^}3#?-rQbWd!M}g4WT3n7pKI z|Cqg1ujhV3#2(BZTqLp#hPFl9-NLbK+MU>hz`I(c>c=|J+$C?0WEzeG%l_A#oYRWp zL{ic0!S85QtHbXu*TVzppHtL(w#J0qPt8ewbzp7{L_O#qlZ_$fZ_UUxy$)J~$pXw)-Oq>xJ@p=?7^VX|ENRdPZGfx%Yvl5rimZxCJnz`b z>&6T$MC@QEegQmmSN?8vACzLpGSkO}D2&J};l!k)h+q-_-;dj`_YgX``})VeB)%k0 zo4sCKMxk*`VooV=$bsAQljYTk{&bNR8qa<6@yRk4-&UIcb9xCh=Nsuf`-B{91Uo!v zXK1S*hv9f`wG%MhR4UX!FrKefba~eq{suQsy&-XHJTGSzTn_2eSFI)fK*0NXxg%)8 zQJo&##Tij*vCTrLyK^=2d9iu+NT?W6+bhL7J=wuTxVWi5Yyt0jGeTaiC@;Isq6*j{ zer2k?20LyF?U^<>w9dHf(gUAYX};RZ@Il06$tA!~MaZR#5g_)SpM=>K`?EAcOy>-u9WZ_j=dv-` z0_i2>E**foP1={pquk-J7Na*B;kCEeMh#XMZxIX^Y(z@r;T|+bI=GC5r4-u#Uri8X zMofg+b(D^xVj)#lUXz&&TG3tvm(5mR+-D>t5@3`>KL>&W2$S=_52aY20^oC4950yC zZ;0dUcRaAqt`TPi?Dh9;{?9XM4&_Ht+9mmJ(^j{d->c|a5Z>Aj)4|1ot5s=!1xm5* zm0gHc**=(%H`RPU2yQw7#zxnFe2vH;2n6d0V7Id1Vnem>Bp%sf^Qb7O9FqwO{{KaU zfQ|kMv2p+!*fLzIFAHkf1c@~;&H4>e2`D*=0JJp>rLRx^+PRdG0*sZcoid?Nb-YfQ zqK_fumMa@iyAx@-M2STupeqbUZt>wz=%E|8&fA(o4VsOdr@`rxMX`~Y+4%H#!4Hye(}Y0tP?@a_odd%@1t3s8nziIN8-CJQLeQ> zqpO@;56Y3vn*I8b>bJ0xd02|sC*+ksa9Ga;;Q1dOxb2u89XbZe{gLqk#2lgg!gp8x zbJi<>siSVS!UWzp`x9_jxyP;I7240uu+h9AEXn zF-)JE6d2)9Z3YO}_9_zS1A0bl9y{gm3i0c@nnfAp>qd3iN1!6CaNaW6_ka zTljy6GDh|MNFL6?MSBVun*g9A{dO6M{~bug!wm{Wk{*?M$Ex{BB0lrkUOgK8%fOID z2Jn?q0aOV?ywQjq*(){Z4yr_908Jn@t6mFOd)G|4RUDyGIu7_^4(Cq6Uzb>!0lxI>9~t7BU&KL+kO8K@gMSyWaw3XU zuy*F_;vVDE5x$y41XR91Ijy0r^!&<+0gk{AwZY(XMry&zwB{UxjLu=7&L|uUC$8ggEr_ZmcAAE68p`NJ9l*c0_ zhr-}wF69RJP5Z<2Z-}?fM%(%CUq-&D5FQchWnk?ovH#|h_!V7D|uA80{p9Dv!;QXM#Aa(bZjQl`SvR0!}E$^kPheTWqixK*}n@sB6R{t zOd`~)EP&DG+qCgcu-=EjA!WQxm?NQ7@Bdr^0OFQDrVY1|fOfRX5YK(4=$U6JQJ60E z;(G5P!HNYvKqMVDc?q-~5hc&%5>QMNpC_>-np*zMYo)YzD5T`^zB=M)?YbsIQ%-&-8jXL+of6K#7!NzK` z#f6g#;h-!)C47tH00>b#np#@=pklKh0tHf1=Cr42%`WS7{jD+~yBT&Jutf5`(#cT) z`PS>3poRq3;_anydYY=<)yXFF;`7f2_?vIM2P^+;aXx-}34r7? zE^6)oed)Ik<5T;D@l4Rc^KD#-C2(4$pg>!_iv(^)!z9lYa2gBrOEOCBMs!stDvOps zt_6f!fRj?T|1k?V5o^&~$FuvMim8@{2)Xf7DZtP|S=;|9z7~*sv!+XCy>ekC!Q4*M zmUsrFpGF&Tg15(VL|(EQef;8_M^CqBv%n5_<3(9XyK>sATK_&-_)SSD_aWXV z@yn@eR7_-n1(I&CPc#7oW94k_9GF#E-Zk50tCp}DPuGe%iK7uwp(6iN>vduy!(eC~ z-vD)y5pWaUQ@@h5R4xP++uNERsx?~ z;JWgvSK7mXRgncQHUpnUp7JvFB2A%N2Bn+V{;oR-X+br6)nYEWk&M=L!VfcS8)7sjE;)x@&uS{ZWy`nF(o*aPVO&WR8_FQWW)p038wtURAX2`3 zfh!6Pf8<$QXaX3bZw3TDM;3ky{v?d|as?NMb$G!S7bkg*N;NKb;0>mKTOStR9e)7` zGon?iRp_wW`jffyl8!)7#q?vS&);Gam*Z=I(}3bls8nkmlhg75Tj;}w;8|^}&0!(Z zmtzt{^w;P6)OHvwP(C%zWEYn*$A?_Ie)aL!2rI3_DxT-uc1P?=SM!#<&H%fSj|D@4 zeLv9^KdWK|#S#}G)tp>1stit^i$y^Sw(Nciwo1)BTD+;TY`IsykMBVO+3*k;&A2;) zNw(3gr37ix?!fkOL~FJ(JhkOQC0L8D$y3`=6o88I&hxt~y5L)-+dH<&d2?SW$0ZGC ztJXvkV{{t4$`^SUBwJmQi%$(uM6AC)2UHwrH7P?b$1?H5J4O_O{Cw|5o^Zl$kw>|p zvqVDkW3AUd@733?dC~e262}7pdk_Ir);VEQr*HO7_Q{j}gwIv3aN=&8%d_1XyPmcQ zX;N9Jb9NV3SJ@!X`E2S`z{U0b$N=wg7Woh0Jw{8bUKC$&slx1d@eT|BB}qh47&F5C zUWhazVw0FFA2NG%-$J|Soy*dS`r17%^{MKy?R8oN{r(7T7*hOH6u)mf1FG2Ywng|->*E@sLZs3MKx-Op0b+;p zz6iLvbSgZ zLtc3|4K?mw?L@ZZ>y1a*o;)(%-yH4AH|!5$zDP>goYzR|N4IFfJUqZkhD?&Y_~&nqf(pZ@c(gkGY^1Ks!{ioGA0Sz~2OCSPNn|CCb5f$Nb_50A$^U{Ns)zW)!BulUJ zRs2tv%)$6oNx@wFT|?aGTjSF0{X{Z>>z{g89-TtBcN>DDVY(%|4p(!BC2gh4#;JS=zp#mIs3ZePK}plhx_wVeR$=WD6gy zCNm2Z*m~m6_NK(ZdZsLzjVLv`v@qz1qz|RGQg9q&&^CepG$hV63=;4_eF_aQGOv-% z`>AuQ$wS+utL-c!k2v}#y%`hxRq z!~=&8r+zpJnN?e0#Dop>+*{LmIaLDz$Hftc2{)a39Od@&{o}RppJCjnZ#ThgWmL=L z>)Gww4*9^%iUr4(=PHikej{KCBcb^_T&0nFvqA9storBCYWIi-7Eji(?q9V5e2($C zYU@;B+BxG9DeL3s5qD3c8=^Ig}AOngE zK_nEOgGM9+bNHU@+JHKL=G~nbZ9{r3Fol{%rGHou*apbhALwlZD;>QXS`R6Oe-Zsz zXgKR#Y4&com^F<}i1OHVs@{{mO)S~2VgpFzd;=jq-d8@0Ct9kq`iVh@lSJu0`c(){7`w<=u9N4j9|9?yM*snD`Qy;K3JJ7n> zp1e$651q%&mF2pH2VXMr)lG@WBgaS*fW9tD?OmOjhicavM6kn_Ba}M#yTp_`p99_ z^bI;&6v+kH0N|ydj`z%MM>Y5Q?B-K=X-^xYLhcWpz8#XLi*7^X?eTm$8say4_+-{x zQyLSG*Q%pM0g#5Hh!I4>)UMlZ!ood$H8XX$TOs_r*~^mmhN`lGm`E8<7WZ&j!*M!D;U&jF32^xOUaxR`rVZ7$mRmaXj3M$5rTp}rIPhjqnhN)u zv|`UnZDDQ}Xw17DMvU9&tkMfSk72zRiyl}MGp4a!c!T3tdVR60(xyG*w5$_=nb(_& z!S&A?`GlOizbd8lqp(0OKV-$;P1SMJCe3P>av%6GGyV*EVN#d_ZRpXkk-EC2Ug(2w zT;)Z5apNYVltks|V69LUepD}fY(q=6+*LV#UQqsbn{=By%xRsqhEB|YkW3vFoPb)v z?s1TXEa~-Yl9YYx-BmtQ&7_}~SwbVIUn->#&Lr{M6&)p;zcSxU^g{pgx!A3;)zgnS z8mCdJh;W)2iQ(q#HMKO1Y?URA5S*RAx}6;>e#3Kr@**z?e*t-GJi8@pNq;#qubw7N zI-kf?bd5nWRbY_zAB>Ja6d4X(c@G-PAVz~Zd^KCQpP0nmGjxP}&O`wOTFya!^jbyM z&(+%`NIRFpByuC$)(_oCv7|sT!qa~9lU6=Q9^YR|@OG&Fu>B=iOl8R_MshU10P0CO zcURRl_VKb{Dkq6(MPw{eM#}M-rw1!mUle-n(s(c!8qz& zbTMBuPJw`?Znyf}nC=d>O=kSllD8uKkJsvgQNq?qn9@tM#3X$(T4$G> zuX*iq;_8EN6{WFVn@1ES@wBOwzAi0*O0Zde@p^B*j?1)W($5a1%xFsHI1isdtUde) z+>FBj$IDBhSnx`ShiVE?j1Tlvta~b86umIi>mkfOBwVQuX#08|zoQw@+K*VH>l3u1 zY*HmuF?EaVi?tLTO}HcJp!^=GBa+~av-?`1Yo2qtj!6ESR;=;^v&76t>%sm5zu9(w zbaG?$a@cGPhB$qub|NXf#yBN=vtFstz!mnZ&qT(@<=N%HdU%QYKkX8~@T2skGf`YG{5Y$*jw_dmV8GdDej@Ixo@a5~<*L&b8T zzEHA-xf>6Q*ua4PIphm>lt;+!v5gM<^bEA#Q%aS34P@;Ndi_+f`CG zS2oO-^8UVr`jimVnOz+JP|7xhob)(aON45s$K^M$Uo4=3cAlI%Kyh?yp>em2oP z!6?dDgV?ld1@UHYN7c7xCNmZJBb~F;y|RO@cwU+}vNwkWeSb(nuAfZfq>Ve)zOu z^sU1LteuLii?=dYxHZlxm6F;_RQ)f^!>zh%ZuBPbmFCm*aUC#>9&m8}tfz&%@`A>5 z1jcm@H%I-w^$$da@80wMnLtB`Fr^Ec${fnAL{%=)3Q zc#tqRmFV5q=^>BE^>iuk+0&=LZz(BZVsm&)gkINLQ0p0pTV4|jJxDMi>1ejY1Piuw1ac!eO;H%Tbjth54|WCuk9lnQ)qhnYs}oU7K}!gr_D@kLKRe z(FEs90t}&GVA)g}4J)K0?JJkrzbd!>JkSf-QHllGKZ%g1y@`uNl+M8GBmr| zW1$WHe7F#W!ibhtVt0p+Fclk)KD;ENG~Oj}YLwJkP=A%(XEeAdkg;0SqBK!F9brRV z5&pPy$GTPR{z2$+_luU{x(SW6G$V80a6G?g;$}R~bV}#Uu5pPEO||s+);PLjS|{9} zE^5V|oja|gCe^D84w3}7CD)L-eL0%zo^3Ix^Ez|+YzeW^P*gfMNMP&xmbRUtBRkysM23#!>`}ghSA+E{9^PTqhstT10b9A(!N}mSm1r^Qm4M$Cfc>frXsZ${` zswjBg=tCf2lahUcy@6^AFglzWU01hM-yPrub4bOjia4IzQ-d`PjZ75@I(xkavoCk; zK)B`Z&LtMR2|KK#4d(DkoU;kV>zpn3Z1M8C7+lq$osL9me?j!6ose#*X0*)YCx?bc zipA4lTGn|)iv?$=-P2nTPVYPY=_f6W%aQs1u!D4Gc_Ln22T!jq?1tTisiqdYf&fQ) zPG3Qzy6~NlbP`_YpOxn3*sxxfsF?s!Fb~Kz5*#=5EqUPfBqYuLTt%u9#^DXl;{`+S z46SFKNehdOZq-geHlo;eRwLVMU0sOn(hs_{%P&1#XKW*R_VVG< z#ZE!a9k|0*<&AuTDDWAUg|brTaGq_-Y{zWDc>P1{Z2&3X{OjJ+*2h0n8L8x0zV`rc z5p_Y6K#Gszf18Ca$VX~lKktc{hL4`^IW;VZypSz^T@_MdqFHPDI3AChD1wV}4kaxR z9O=>9V*HV!K02p&q?j){B;&=)I8HSX6jjvt`6USdpbm+l;p0^ne!Qwoe)bQfBmmIT z)vF$L1CX1p=AbY^db&M!p7l0}TNkM6wx7Yj3i*4%;?n-R>wa&*ABoCPpp zwuZhYCU(cNXzSAe zD{AOG>J!2&*z5N@AQEmgb_}OQD7P<^!~aYgBuCD?sPuHbokU~f~b=_hzFz#L6VP3Dw5T8$U#RSUFMFS-dmUBJ*__wFYz<7n*9`W~&q zaRs10VguP)-=ccBJrAQ9w05|s3RM-p6zqlU8|nexr}h0fd%gQ#${X~*G7WwG^(Wlm z=}!09!PXOrL@vz*b7Lt76Cb z{WCGZ&IYSuSxS{}{0U-{IDcK(F{!>3RXuv@10*^t97H0BOZDrVOVZggggvxKt!a0v z#QQ>8w86@w$ko)|Cm~=&l8;zJdLf=nIc>u}-huD_h$#Y--s!X0V%9<{ezoJ=r&7(! z$6$0EF^8obFLiD*S87xxAEWw)m=(-D#h+^u9(U4ZD^+o`ii^m;^(DuJaFC(6i%FxA{e$o(aT!v!$X|7F-@Am>GNs2ql**`y6l~Q(`SKOcOTEH?(f(ZpRmV#tt*a7bUs2;(_Brhpi)$-hoz0kjv{mk^CJBEEbWfs0 z-{#&9+mvHu3_ne``$T7dG9=xa|B}1A&PHL7`i#_Acl*6BXpKJ{)>{8qT{DcxmfP^B zXT_=cpZ2~htjTWM8UhFyK?Dhcl+Z*lAR;IdN@xNiB2uJC?_EOgO=@T&9q9rB(u)Gp zyC6sxX-eqVM8d%#UFY4s5rSUpCX=g_lu`hlAyW(upfB4fEjq3q%-2l1=eF*%0X8Z>TG^Ar z`m}0S;`O6(w?%UuX`RXuM_S1Y+oMs5AZ7T+E*w@mUL!b=Zz#%$=}iN`C#~M+VlOE0 zuJcW#Uo2debON?mw%7j+!;r3Q=gRgxW%StgLXnUW7}z=k!r_roj0O)&5$9UsF0kL5 z=6g(sbG3asD56oP+39NdZ2=<3SF#Y`ueH&>uq#8$aH-rMhvnk;fZs{#GpVRirC2O~O_pwL5#S1!dNQ>K(3Z3kX^ zIQ?MRH4Tv)A2n3pj((A*ozth>Y&-0y3~%shvUPSSWiMqg@RpDwl2#wF*!&o{yOs`ZYT5Fz0R_q&yB2dT7R<^ZX*&3(oGMTSqkC~%y zJ?|tjeJ+)8h~1m2l-P*AQHrt)o!r7%`kqHK5An!LHnDti!QHf@)zqw{fLJaB?It^lm`Oy zmt6KYhL-hcKQwLFR<^eSRO#SZ8RA_POC#iyDyOu%>B&H)aysTz$1q&?_VgXrm)i8p zqhmsRQZVq-=2iZTl_)xvX%kH%Y zG2}%c#{v&72JHRE6gl#Rsxas~Q0XSAG?46mrhG|JTCvdAAo?1s$s5&3y|Jam81{(E z^KVtAwugA|lhc4ON0`0rmeL1FKm%A;=|a9y7bL-aJ4kr`PV&m?gx;=C@Qdr1QX9e< z70;v|YgIm$VPQ4}t>?6j7Pll3;Z1yTKDs*YO$udZDmu^2+d^tZxC`3}Nqu$heD$Pc zWn*LexhQFpy5snA4X*e>A;1Fg!E5?+D-IoHPS@67Z@=>MD^7PNtTBK3JMT|HVZmBc zUPcr)2R(v|60|aG1k>Jq=%eVK+~k9&W^7b=8(T%J8xRZ&G5$$gsgdr#SQcw`eFP8t z7|SG+EvrxB?23_>%1Gse;*5^JVKq*l$M%`7>2UxQ`g+n! z29?*!fe>R^`hG&}q*sgc;h@OBgK}e=c5_At>DIdlh&5oi z^{u|;iP7JtY8D*kjiDo=;p=02wq6#mx=po3c=(gd-9ty6o|T{f1v~T77r}d=swi>v z{YF=Zc>F!fBKAC21(^ujpS9S57|dk3TWkT>e#ta*pnEy+BqXb>FBlH^hG6)_WLabP z?1o^N&y#P2t^F#f85YRoim`<5L!yEG%x!7EPl6@ZyKZbP5H3X6ac@X2BdpbB#bRiw z<{4GQoDW{oBDEh2k&{I9UoIZJ^t_>Uv6TZBrhW6O(GCC-!kKH8;)UZI@wslJj)6Q7 z!!+9lDVmoJrlH_*s z<6m1n)7UaHY}xg#;^tfm_NN$SMO zQo+d$9@#Fd=>3liV^P)`r{{Zaj&remrU0abl0!D(NnvyEIx*Wj0K4 z{D*x>!#JIw``SKcm2RK9b~n_`Aa1Z+BPnuYKX6sk<#c1bwO_+suhChzgAz9nv<8O2 zje4WLW_Tbd)^(eMq|k{}VzM>0ZGauzYEQY8#L*_m8~(`=yH*ojwETD}bf}s)Op8;g z2v3hTo;`$T&p$tzNy&8!SQ zcxth>n>k3;*>xkdi^Sz5W;Up)Za?KMz}uW3}8Z zCJrgaYuGj}bREkk1C)~%oE{svT(6+eYDWfG*qdEX{{CegM_Cb)D&yXaZjcUi40efG z)@51qmwW2=N-B7xuO!Ax**e7C&`k4TzTo+JohXJfw^9o2S(iM z|FUNP^BhG&Lg0j5PK-Yvp5*_AEDYb8q$)b&@pPQ;!#MC&pC`!adE?T!i`(&+Ghw^; z0aJl=ya5DUyS%uOygEf<{!wL16ZITqLi`MHz;#;uVc(k}WBfIaN7Z7V+`u&s)H9`k z=AvYn`6IpcmpbcDF4J7%ViEM~#&3HR0@Cb372hJ?{u}flosb z{}Ipa+43@UN586HpDtAIEM+juaIUbK=Tdw>Ch3kv@EH)d!_pYM$MB29o=5vn&A(pQ z7=Ob=&^j+nr+d!T{vabT!H#u>%O~&^KCVmd20TehG0UH|!qhjr%soHfuY;(Nxa|xX z+5l$n8|5R_`HXmrR4HnbeEZcgB^Yo3!vKSh_Cp30HK}(hyVcIcn^g((qmHX4c;p(D z)>?ddX!d$jJv}C=pMpENk7v7*Say8Oh~7>e5 z`X}zbAj8$8$k%mzN!WTP*nyd2;YT@5Fzubz@<#6Am210L%iqljTkA|c`GIM&QC&UW z)_2{stbQ6#iep{V!5%t}d*;4)=(vQSxoc-}!QUS}uTf8-tzdF;D&CL?x*lxFLABgJ z@YycB6Nw`z2Rz9%(6-P)K>$5PP?)c!Gv2%fNN~gY>J>IAfM37h2DDj{3xHEahM%tM ztlX#(S4YX=l7*$^*l#J>qcSa%^}o*#Jc_JSBt)9J|;HE^_=36Orx;Achpy&U>6pB{FR<$pAFu^ZNS$k7&hE9hqaGd z`5wt0W*>luj!m}Kwpv)NF>WmQRbsl!VXJ<}ctfwE^id>=Iz&vjF&he{fVQ5T-Xr4? zx$tNH`~Tj_zVsx0kfNs_nw25}JNk!(VzyRiZBC$j>H9)p{ zi3BcO_)XFI8`<0AY{OD%>^S44Y5Rvxuq3&J^Vuy)PSpR}9Y0M5P*Aqz6yW(~VV(K6 zX9GSRk!+)Op;mRI`UC%(U!ceI8(f;jHpmiaQzxtAiSXP6^ic^w3Vl|0u%SLU%YVhV>+J(kq}|ffJ8CapNLDjRM?@}z@-*N`=In|hT@P%|h?o}wbtkm|R#ljH zC(!#eKz|FsO`fk;oS?%$&TOO62W?(d$PgR*Oaq7};YHC~4 zZjeNTrL{+=0mqv}i!bhP4AZezL1J|T2OS)-FNFU3`z>(x4jhH+rGbJGTUl9Amslh+ z+!4zqwN`jiVZ2)T-u=|i2%K34DTk$wo3IiCqQh%5PM}{#X1pbb)P&kTILB0VYa1^2 z_OTkQ3AA0~1x-39;})*^}oG!KW#mvJTOe7 zKuZ|*?R0v;z#S~kv}T0zA=@Ev0muTyRX!!BD*qVG6enF84cw`2MjSG+e1SvMSd(B_ zyF_FG zFjPIhC|{B={dtByV%^CN#eD@6i5A3eWNbU-*6m|b4hAKQ1sx+gPocK z;xW+kh6teD)h7$L_|Or@ycn)bzI@ChpYg|$w-hq~D{7=c-3J$ox-oS(;0=qd;0MZh znLYIp)z%-m<&W?Pnf6ACyL!f44{y#A-T$Tv3o`|h3~|*Rpz!D&6L7xCqUM}$@T_$$&t;Flr()RMJ>-2CnvGw1DufK=& zgA|^Z7~xR6!oK6>kK=RTir&3J#5}6~JcsT^z@rs*$xn!b>jo+T@Md^xVtgK0vn(LX z063r!lWTj-Y|N-Dg|u>%J5vfMW=B-GtPS4a+0=IhCQ$-y{7fjVM1IF3yH$Zfpm==d z;NTE$4VrIXBL{-cQELZ#1cPgeh>uH@Uk(`^^e=G(IuY0i;){3+*hGL9} zQ$K1MsNTNYc0!Tm!5_^2Gv7#{_u_aiL8aP)B~j{T#jfJD8S|n0V%yW3l5Q5-_~S)w zEm7%u%l_iVtlb@)9AQp9k{Z0m_%nGk)=~NE_sxe=``00VP4E5~nU}6tTAxBTwtZ-G zqzJLe!%V?i%+?>oswgPHn<_%UZ^y-kXJr`E*lORgKmfg5osD+g$`h|TAMrR2s)T>h zp8uqN`n~(VLjncLyc+?h=Q{#_*||WTxc7u+FJ^01;j22(srT;*RLfo}J(Itr9DAYr zdZ+N#$pqYqdTV`XHgOW}w2yO7@WNkpWB=ZH2?RjBQgk)O@I5(FUD-yT0+xm|Q$OKm zr@bx^i2)yO1DH7cS`+Puujxg3p6UR)>s&d7hK@aR`dh^UqH{(83zGE^Fo?5L#3YP` zQQmV++!J|2KH{@>+)j@nmPn=R3TA;s|9r>3CWT* zhh`Ej4$99UROZrI<=;Q*&sMtg2TuGC+bLX;0F*DtgXWlW3EtzOx0|QXS8V05A8^82 zmnT;;M=N*aZEWZVD^w=3m-#uWap{Qdo20q>j!0O{-LtINT? zaUSzPm7-UMTItCWP=n(?M6LW@v#V)neeZVsqT6FMNP*&efSlV5Z6lAVs$PYv*hNa1vF(Q1=^H?|hj9O260V zKUWq(G2NbM?JI+Rb_Gz(hFsk;&VvS;r;pDGVNr0=E1xXzra;4kZ-A@LyBCK6Z6RK# z5MR6zk3xa);!g0;Nz8jwxHvGD&sFV6MkeCvx>E02R+Z za^QoyD3E7JsiWuE;kbQ}awo=P`ebRaE)B#yyygn=HagW0S^47Bl@YI?7!PW*OXuC^ zBsRESs=osqMc{{XsbLK=n+i-Op4yZffl%qn_Ud>N@UvZzYq=U$NmhPIwa^8x)TIAQ z8a0yAyB73g$P(FZUcym9gbm|$_=r2h!t4P8g6`Hgp7)}p#DN(Qo_}XOJ}c#oyB!AC zH#7)DElmhmJ}3vA#1f}%6E>Bick1?l(%uIc=@Sr$7IiayD)8_y6K(UjUgpsubp7{ABy3$)K`BA?z_)l95@i5A!Jk2~ zKVF8Z{vJ)>83>%P9}V*9G!i%gy(Rwuy9nCB!T4Y@bezW>C|VVO5#Xqs;R>>^%JhDz z5v}25whVfmvx67ydK699R$D`%&e5U%xXVfK4e|tgx`K4_K5L zDmps@9jy)Mtdy-;BRC3-zDqzLTN)9yBN0OVt5oc1zJ|c@g)K7onhB>#U~}^h6mFjZ ztHk%<*rdAj)J51&r=nGeR3XT?{^868+j2kex!{Xo9wVifmw&>YrqdXV=Id2b{Ao@9 zIlw;K2#D`Q^NOf{)3Q21(E|Tc0l>TtnA!PZn&0gWBv*A7h(yN&O7gh$@acMyviSR! zPsUv~i4u6*RydS{l!U$*J$zbf^09kR(^Y(v0+B55 zekv1Ntd|aiqhYw0E~PU;&`mMTZ0}n}hohQ<2!im?RWr+TbKR3R@+a4g+bft;UQwIk zowJQ&VaNYQl)26JIO728Nx*7|g#Hr@Q$^9K`3|H+-T5^qkD4$PgM8qam}%bKt=0s5 zQy@CBJG7c??%pGu>}NRBK69J&-DC$7PTSPfG`}-yKQ2>bslozUg@l|TUO>DwumN;f zF%~t)c9mVgyXhc+Jq${Y=vcWuQ%F^!h+&S=GwSm|V*n`(k=Q29VX_ zD&WwbOnKL^$8~pi2t=qU9basRH0tdBtP|Y=im2CnL{Z#M zTSjr5+Flmz7-l#|tn#fZ{3FVm(XWb2iwZUwuKJ-;bLM@eP!mz1EV&bi`G6_ zO)mjam1o@P%JXY?%p%PSxLi+yahChf1H})Lyk6r?Si#ZNV zEZ?93IiFu6E0;LpIJbCP=@lvZ1NlFvE+AGhgVeFZPYg@wMzJsOWuB8bs1RR3}r2LceD8PiRys+`+0>zN4FD?+` z2Y7EvC07Abs}HTiPi*z1iZOqRN?lQL6T)m3*jLlRyzYA`8)$%;XFqMYlu9v}1rj*g zt6}N(XTjMN+(}Mfy0=KY7{Ybq!kHBKA0M7tj3gtF4NC;v&+pb9;8=65S}|@;VdLu5VSEY zOk9EH7mI&l4Kpxkj;^p<&Tb;*Tn$04ti5NeTVa|@z*tK>z?}lgP7e@SODX0krd!tR z52OW`THl4X_+6$+4K#c38Q5gsif3SK?*UW{$!5qt4Q+2Slo)#UZ)-6U3M8w8`AMTm zrS#R|O_4tGVjsWc?b?IWEyank^b7I3%TvTwu12#KXV9wge0}U7(%{2yUgtkV!C1I1 zqySG<@tTO_U{|VdR)n_dc#b5nyNSDKl=t{Sp*xBQ4g}K!_OQi4OO&Qdp(oDRsF*}3 zZ8}h)8`CU`dyNM`G3^Mmz?!McLPxc1sX12KR=?`;hNpd%ksyzb%~s5LIH60)>gjQ@ z^$r4Fyri)(LwZ#`DwHzkgNy7cO_JpgX& z*nZ5xRUO;GpZmop+_C^~-;U4rphOMji&u1={0|G5zh9O}&>38af0_0jpuEk~m*0a< zS&R%MlM8~L?!_oKa9;eD+20WYy#h@J^AcKE*8#mte!NWhkZjL0o#T+sOPGMtEXsf>(iL{aeO7lo)T6 z(+g>Fz0NmWg;V#SAJD~BdXJ7B^5_hdezJR8uu_QAeRWsk6FDzo!}1JcJVODEJzuC^ z{?dQ3wd}H<#d14jXlPeARKNhgn@qbLgb7TrdORrkyWKI@(6ctX^^?GrLlW`}h+qRZ zroT!E9qr+eBY$U_J#I$krL55npkw+X>t_@ zut5K1n*dVg9+TGO)sN4-UTiRGlwo6B)Ad53IpGSE=^j6?){dH}2@pUupm2jfYh;V>SiB^7JaM&EkxA{;| z@OZ2H=p!p%c92cr`74)R0stbdG#f$XKW8(mpX7JN%)-1JiL$T8qYKP(DvgGS-fU+v zm?=)^y!I=_9-K6X1?Tdcj%TMZkMK)Jb!_#0y3#k(3G1N;#tVOj0RHpx6%#;-=pDb` zok^`3tM;C$+NC!?K0xwWZ7^YK8E~YzrhnnSj0k zo4nTXdGD4G*T=YG5qMKQu>B9;i@)!lD7XzF3Pn7so0Rh0?bn1jpZ(6;ifocBWim{| zM7&7VvqrVy3?wus@Y4s*iODu{gNx1Kx0f4ug+Ot}#L=w32{3iey8=FN1u1S9w2sf6 zNU$;d^uxl{6VeJhAAJJ^X_xmJlWubGw4g89||Mj9d?>7Mf#u;&W!4PZUd{_s3 zp&M9WJ2)4H{$IbGWZ?`ZIiU2|J`d?T`xPE^VErF^2>)hKpZBv~{dcJTJ5>KVCI7ps geviZd*BkKka(^{O=2HfVHWv7k5`Q9=C!*!`KmF6yl>h($ literal 0 HcmV?d00001 diff --git a/0_TO_ORGANIZE/Noise_models/Noise_models_on_Amazon_Braket.ipynb b/0_TO_ORGANIZE/Noise_models/Noise_models_on_Amazon_Braket.ipynb new file mode 100644 index 000000000..195e13aae --- /dev/null +++ b/0_TO_ORGANIZE/Noise_models/Noise_models_on_Amazon_Braket.ipynb @@ -0,0 +1,916 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "74154c03-d48f-4f41-867b-5e30254ce31a", + "metadata": {}, + "source": [ + "# Noise models on Amazon Braket\n", + "\n", + "\n", + "This notebook introduces noise models on Amazon Braket. We show how to create noise models containing different types of noise and instructions for how to apply the noise to a circuit.\n", + "In the next notebooks, we will show how to construct a noise model from device calibration data for real quantum processing units (QPUs). \n", + "\n", + "**Before you begin**: We recommend being familiar with noise channels in Braket. For an introduction see [Simulating Noise On Amazon Braket](https://github.com/aws/amazon-braket-examples/blob/main/examples/braket_features/Simulating_Noise_On_Amazon_Braket.ipynb).\n", + "Additionally, users should be familiar with [Running quantum circuits on QPU devices](https://github.com/aws/amazon-braket-examples/blob/main/examples/getting_started/2_Running_quantum_circuits_on_QPU_devices/2_Running_quantum_circuits_on_QPU_devices.ipynb)\n", + "\n", + "### Table of Contents\n", + "- What is a noise model?\n", + "- Introduction to Noise Models\n", + " - Adding noise to a noise model\n", + " - Applying noise models to circuits\n", + " - Qubit noise\n", + " - Readout noise\n", + " - Filtering noise models\n", + " - Saving and loading noise models" + ] + }, + { + "cell_type": "markdown", + "id": "0c874b33-fa75-4d0f-80d4-46de40a14aa5", + "metadata": {}, + "source": [ + "## What is a noise model? \n", + "\n", + "Quantum devices and QPUs are subject noise on qubits and gate operations due to imperfect control.\n", + "The presence of noise deteriorates the quality of a quantum computation, especially when creating highly-entangled states. \n", + "Understanding the source and magnitude of this noise is essential to debugging and improving quantum computers. \n", + "\n", + "\n", + "The general noise on a quantum device is modelled as a noise channel (see [Simulating Noise On Amazon Braket](https://github.com/aws/amazon-braket-examples/blob/main/examples/braket_features/Simulating_Noise_On_Amazon_Braket.ipynb)). The size of the full noise channel for a QPU scales exponentially with the number of qubits. Accordingly, it is essential to place assumptions on the noise channel to make it practical to simulate and debug circuits of interest.\n", + "\n", + "\n", + "A noise model encapsulates the assumptions on quantum noise channels and how they act on a given circuit. \n", + "Simulating this noisy circuit gives information about much the noise impacts the results of the quantum computation. \n", + "By incrementally adjusting the noise model, the impact of noise can be understood on a variety of quantum algorithms. \n", + "\n", + "Finding realistic and accurate noise models for quantum devices is a active field of research. \n", + "While simple models that treat each qubit or gate independently are useful, the effects of non-local crosstalk are often the most important when using multi-qubit devices. " + ] + }, + { + "cell_type": "markdown", + "id": "4d832c58-4505-4dc4-9ebc-239dd3c203da", + "metadata": {}, + "source": [ + "## Introduction to noise models\n", + "\n", + "Noise models are contained in the Amazon Braket SDK, within the circuits module. The following lines of code import the required features:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "e5e15fcd-55a2-4168-acc6-a38100f94511", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "from braket.aws import AwsDevice\n", + "from braket.circuits import Circuit, Gate, Noise, Observable\n", + "from braket.circuits.noise_model import (GateCriteria, NoiseModel,\n", + " ObservableCriteria)\n", + "from braket.circuits.noises import (AmplitudeDamping, BitFlip, Depolarizing,\n", + " PauliChannel, PhaseDamping, PhaseFlip,\n", + " TwoQubitDepolarizing)\n", + "from braket.devices import LocalSimulator" + ] + }, + { + "cell_type": "markdown", + "id": "f3489d3f-672a-42a2-a852-1a2f7a2631d2", + "metadata": {}, + "source": [ + "### Adding noise to a noise model\n", + "\n", + "A noise model consists of a list of noise model instructions. Similar to circuits, we can add `NoiseModelInstructions` to model. First, we start we an empty noise model:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "901c7adc-8924-451d-8120-4ec7cb2c8ba8", + "metadata": {}, + "outputs": [], + "source": [ + "noise_model = NoiseModel()" + ] + }, + { + "cell_type": "markdown", + "id": "3b0a0113-c368-4073-9d5e-65280c5c2379", + "metadata": {}, + "source": [ + "A `NoiseModelInstruction` consists of two pieces of information: (1) what noise channel to apply, and (2) when to apply it. Common noise channels are available in the Braket noise module (see [**Simulating Noise On Amazon Braket**](https://github.com/aws/amazon-braket-examples/blob/main/examples/braket_features/Simulating_Noise_On_Amazon_Braket.ipynb)). The information about when to apply the noise is contained a `Criteria` object. Criteria can depend on qubits, gates, or measured observables.\n", + "\n", + "For example, consider applying depolarizing noise with probability $p=0.1$ noise after every Hadamard gate (`Gate.H`). \n", + "The depolarizing channel maps a state $\\rho$ to the maximal mixed state $I/d$ with probability $p$, i.e. $\\rho \\rightarrow (1-p)\\rho + \\frac{p}{3}\\left(X\\rho X + Y\\rho Y + Z\\rho Z\\right)$. In Braket, we denote this as `Depolarizing(0.1)`. \n", + "The condition to apply the noise only depends on the gate, so it is created with `GateCriteria(Gate.H)`.\n", + "The default behavior for gate criteria is to apply to all qubits, which is specified by setting `qubits=None`. \n", + "We can specify only a subset of qubits with `GateCriteria(gates=Gate.H, qubits=[0,1])` which will only apply noise to qubits 0 and 1. \n", + "Similarly, we can apply the same noise channel to a set of gates with `GateCriteria(gates=[Gate.H, Gate.S], qubits=[0])` which applies noise to both the Hadamard and phase gate on qubit 0. " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "92a8f43c-94c9-4987-bef1-3f28d8c533c3", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Gate Noise:\n", + " Depolarizing(0.1), GateCriteria({'H'}, None)\n" + ] + } + ], + "source": [ + "noise_model = NoiseModel()\n", + "noise_model.add_noise(Depolarizing(0.1), GateCriteria(Gate.H))\n", + "print(noise_model)" + ] + }, + { + "cell_type": "markdown", + "id": "4afee7ff-30fa-4101-870e-f4fac4beea1e", + "metadata": {}, + "source": [ + "Great! We added depolarizing noise on gate $H$ to the noise model.\n", + "\n", + "**Note**: Be careful adding noise to the model. If we repeat the `noise_model.add_noise()` twice with the same noise and criteria, we will get two entries in the noise model!\n", + "\n", + "Similar to a circuit with instructions, we can see the list of noise model instructions with:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "d04178e2-5074-4519-be0e-21819517ef76", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[NoiseModelInstruction(noise=Depolarizing(0.1), criteria=GateCriteria({'H'}, None))]" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "noise_model.instructions" + ] + }, + { + "cell_type": "markdown", + "id": "00d55a98-320c-4eab-9011-c4186c611596", + "metadata": {}, + "source": [ + "Here, we only have one instruction which applies depolarizing noise after every $H$ gate." + ] + }, + { + "cell_type": "markdown", + "id": "134c59eb-617f-4230-8a6d-c1f8e715d6bb", + "metadata": {}, + "source": [ + "### Applying noise models to circuits\n", + "\n", + "Noise models encapsulate all the information about the noise we wish to apply to circuits. \n", + "This lets us apply noise channels across different circuits with minimal repetition.\n", + "\n", + "For example, consider the circuit:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "07513636-a747-4c67-935c-4640f38a7dc9", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : |0|1|\n", + " \n", + "q0 : -H-Y-\n", + " \n", + "q1 : -S-X-\n", + " \n", + "q2 : -H-Z-\n", + "\n", + "T : |0|1|\n" + ] + } + ], + "source": [ + "circ = Circuit().h(0).s(1).h(2).y(0).x(1).z(2)\n", + "print(circ)" + ] + }, + { + "cell_type": "markdown", + "id": "46f9c503-a8f3-4daa-be2c-907900af61aa", + "metadata": {}, + "source": [ + "We can apply the noise model to the circuit with `noise_model.apply(circ)` to produce the noisy circuit." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "d94f3908-6e96-4878-9566-6d04ba5feaab", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : | 0 |1|\n", + " \n", + "q0 : -H-DEPO(0.1)-Y-\n", + " \n", + "q1 : -S-----------X-\n", + " \n", + "q2 : -H-DEPO(0.1)-Z-\n", + "\n", + "T : | 0 |1|\n" + ] + } + ], + "source": [ + "noisy_circ = noise_model.apply(circ)\n", + "print(noisy_circ)" + ] + }, + { + "cell_type": "markdown", + "id": "85424a62-4ec0-420b-ac2a-ba5e3ccfd81d", + "metadata": {}, + "source": [ + "Notice how depolarizing noise is applied after every Hadamard gate, just like it was specified in the noise model.\n", + "\n", + "We can also apply multiple noise models to a circuit. For example," + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "9def4229", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : | 0 |1|\n", + " \n", + "q0 : -H-BF(0.2)---DEPO(0.1)-Y-\n", + " \n", + "q1 : -S---------------------X-\n", + " \n", + "q2 : -H-DEPO(0.1)-----------Z-\n", + "\n", + "T : | 0 |1|\n" + ] + } + ], + "source": [ + "noise_model_2 = NoiseModel().add_noise(BitFlip(0.2), criteria=GateCriteria(Gate.H, 0))\n", + "\n", + "noisy_circ_2 = noise_model_2.apply(noisy_circ)\n", + "\n", + "print(noisy_circ_2)" + ] + }, + { + "cell_type": "markdown", + "id": "beab4c73", + "metadata": {}, + "source": [ + "Notice that the most recently applied noise model inserts noise directly after the target gate(s)." + ] + }, + { + "cell_type": "markdown", + "id": "f1058f37-b3f5-48b6-b28f-fad69f1c988a", + "metadata": {}, + "source": [ + "### Modeling qubit decoherence by gate noise\n", + "\n", + "Let's add a few more types of noise to the model.\n", + "This time we will add amplitude dampening noise after every single-qubit gate, but only on qubit $0$.\n", + "This is intended to mimic the effect of the |1⟩ state decaying into the ground state |0⟩." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "f2325d73-b9dc-4014-b34f-5886dae4968f", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Gate Noise:\n", + " Depolarizing(0.1), GateCriteria({'H'}, None)\n", + " AmplitudeDamping(0.1), GateCriteria(None, {0})\n" + ] + } + ], + "source": [ + "noise_model.add_noise(AmplitudeDamping(0.1), GateCriteria(qubits=0))\n", + "print(noise_model)" + ] + }, + { + "cell_type": "markdown", + "id": "79acfb26-8e71-485b-8c9e-9ff2c1411696", + "metadata": {}, + "source": [ + "Let's also add a highly-specific type of noise.\n", + "Consider adding a Pauli channel noise after the `X` gate only on qubit `1`." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "65b88f6d-66e6-4000-8578-441fc213a70e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Gate Noise:\n", + " Depolarizing(0.1), GateCriteria({'H'}, None)\n", + " AmplitudeDamping(0.1), GateCriteria(None, {0})\n", + " PauliChannel(0.1, 0.2, 0.3), GateCriteria({'X'}, {1})\n" + ] + } + ], + "source": [ + "noise_model.add_noise(PauliChannel(0.1, 0.2, 0.3), GateCriteria(gates=Gate.X, qubits=1))\n", + "print(noise_model)" + ] + }, + { + "cell_type": "markdown", + "id": "7e220eca-f370-45b3-8cd1-6fa0aa2a32d8", + "metadata": {}, + "source": [ + "Now we have a noise model containing three terms.\n", + "\n", + "- depolarizing(0.1) after every Hadamard gate\n", + "- amplitude dampening(0.1) after every gate on qubit 0.\n", + "- Pauli channel(0.1, 0.2, 0.3) after an $X$-gate on qubit 1.\n", + "\n", + "Let' apply it to previous circuit:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "40ff7893-f45d-45d7-a77e-c247c5932559", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : | 0 | 1 |\n", + " \n", + "q0 : -H-DEPO(0.1)-AD(0.1)-Y-AD(0.1)---------\n", + " \n", + "q1 : -S-------------------X-PC(0.1,0.2,0.3)-\n", + " \n", + "q2 : -H-DEPO(0.1)---------Z-----------------\n", + "\n", + "T : | 0 | 1 |\n" + ] + } + ], + "source": [ + "print(noise_model.apply(circ))" + ] + }, + { + "cell_type": "markdown", + "id": "685f8ed8-fcac-4cc2-8e57-411dde73dbb9", + "metadata": {}, + "source": [ + "Take a minute to double check that this is correct.\n", + "\n", + "**Note**: If two or more criteria apply to the same gate and target qubits, then the order of the noise instructions in the noise model matters. In the above example, the Hadamard gate on qubit 0 has two types of noise applied after the gate. Since depolarizing noise appeared first in the noise model, it was applied first. The next criteria had amplitude dampening, so it was applied *after* the depolarizing noise. " + ] + }, + { + "cell_type": "markdown", + "id": "38445cb5-dec1-4980-a213-603697ae9bf3", + "metadata": {}, + "source": [ + "### Readout noise\n", + "\n", + "Similarly, we can also add readout noise to circuits. By default, circuits at the end of a Braket circuit are measured in the $Z$-basis.\n", + "\n", + "Let's add a bit flip readout noise with probability $0.01$ on qubits 0 and 1." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "aa01c6db-1fb3-4d4f-bae0-155a6b28e518", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Readout Noise:\n", + " BitFlip(0.01), ObservableCriteria(None, {1, 2})\n" + ] + } + ], + "source": [ + "noise_model = NoiseModel()\n", + "noise_model.add_noise(BitFlip(0.01), ObservableCriteria(qubits=[1, 2]))\n", + "print(noise_model)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "833d5002-88ac-476b-9a60-614ae26c07b7", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : |0|1|\n", + " \n", + "q0 : -H-Y-\n", + " \n", + "q1 : -S-X-\n", + " \n", + "q2 : -H-Z-\n", + "\n", + "T : |0|1|\n" + ] + } + ], + "source": [ + "print(noise_model.apply(circ))" + ] + }, + { + "cell_type": "markdown", + "id": "d2b98157-ad3a-4b34-9831-85abc09f19e7", + "metadata": {}, + "source": [ + "### Observable Criteria\n", + "\n", + "Readout noise can also depend on the measurement basis. For single-qubit measurements, those would be measuring the in $X$, $Y$, or $Z$ basis. In Braket, measurements in other basis are defined with observables at the end of a circuit (see [Braket result types](https://docs.aws.amazon.com/braket/latest/developerguide/braket-result-types.html)).\n", + "\n", + "For example, lets' measure $X$ on qubit 0, and $Z$ on qubit 1." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "a4fba08d-947c-4703-872c-f2600f0100af", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : |0|1|Result Types|\n", + " \n", + "q0 : -H-Y-Sample(X)----\n", + " \n", + "q1 : -S-X-Sample(Z)----\n", + " \n", + "q2 : -H-Z--------------\n", + "\n", + "T : |0|1|Result Types|\n" + ] + } + ], + "source": [ + "circ.sample(Observable.X(), target=0)\n", + "circ.sample(Observable.Z(), target=1)\n", + "print(circ)" + ] + }, + { + "cell_type": "markdown", + "id": "b3f66148-38db-4a65-9545-ba30e366c30b", + "metadata": {}, + "source": [ + "Noise models can also contain instructions based on which observable is present.\n", + "\n", + "For example, let's add a phase flip error on qubit 0 when we measure in the $X$-basis. Let's also add a bit flip channel when measuring in the $Z$-basis." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "d04ce147-f881-41f2-94b9-fa6ccfdfcdea", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Readout Noise:\n", + " PhaseFlip(0.02), ObservableCriteria({'X'}, {0})\n", + " BitFlip(0.01), ObservableCriteria({'Z'}, {1})\n" + ] + } + ], + "source": [ + "noise_model = NoiseModel()\n", + "noise_model.add_noise(PhaseFlip(0.02), ObservableCriteria(Observable.X, 0))\n", + "noise_model.add_noise(BitFlip(0.01), ObservableCriteria(Observable.Z, 1))\n", + "print(noise_model)" + ] + }, + { + "cell_type": "markdown", + "id": "82153657-56b2-4c24-bdb7-dd2dd79a6b61", + "metadata": {}, + "source": [ + "Let's apply this noise model to a circuit.\n", + "The circuit is the same as above, but this time we measure `Observable.X` on qubit 0." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "d0e9a783-558e-4e86-abe0-4dc095c4b25d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : |0| 1 |Result Types|\n", + " \n", + "q0 : -H-Y-PF(0.02)-Sample(X)----\n", + " \n", + "q1 : -S-X-BF(0.01)-Sample(Z)----\n", + " \n", + "q2 : -H-Z-----------------------\n", + "\n", + "T : |0| 1 |Result Types|\n" + ] + } + ], + "source": [ + "noisy_circ = noise_model.apply(circ)\n", + "print(noisy_circ)" + ] + }, + { + "cell_type": "markdown", + "id": "dd08b5d3-f87d-4155-9721-cc9145b05035", + "metadata": {}, + "source": [ + "Take a minute to double check that all the terms in the noise model are applied in the correct place in the circuit." + ] + }, + { + "cell_type": "markdown", + "id": "ce8555fe-f8f1-49e6-ac9d-5f9a8a7a410e", + "metadata": {}, + "source": [ + "### Filtering noise models\n", + "\n", + "We can reduce the size of the noise model by selecting only noise and criteria relevant to our interest.\n", + "For instance, we might only care about noise affecting qubit 0.\n", + "\n", + "Let's start with a large noise model:" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "bf87cb71-0a83-46c0-9d7e-13402dff3cf0", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Gate Noise:\n", + " Depolarizing(0.1), GateCriteria({'H'}, None)\n", + " Depolarizing(0.1), GateCriteria(None, None)\n", + " AmplitudeDamping(0.1), GateCriteria(None, {0})\n", + " PauliChannel(0.1, 0.2, 0.3), GateCriteria({'X'}, {0})\n", + "Readout Noise:\n", + " PhaseFlip(0.02), ObservableCriteria({'X'}, {0})\n", + " BitFlip(0.01), ObservableCriteria({'Z'}, {1})\n" + ] + } + ], + "source": [ + "noise_model = NoiseModel()\n", + "noise_model.add_noise(Depolarizing(0.1), GateCriteria(Gate.H))\n", + "noise_model.add_noise(Depolarizing(0.1), GateCriteria())\n", + "\n", + "noise_model.add_noise(AmplitudeDamping(0.1), GateCriteria(qubits=0))\n", + "noise_model.add_noise(PauliChannel(0.1, 0.2, 0.3), GateCriteria(Gate.X, qubits=0))\n", + "noise_model.add_noise(PhaseFlip(0.02), ObservableCriteria(Observable.X, 0))\n", + "noise_model.add_noise(BitFlip(0.01), ObservableCriteria(Observable.Z, 1))\n", + "print(noise_model)" + ] + }, + { + "cell_type": "markdown", + "id": "47619c82-60dc-4000-9886-865dc043213c", + "metadata": {}, + "source": [ + "Now we filter the noise model by `qubit=0` which returns a *new* noise model with only the noise affecting qubit 0. " + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "9b15f5fb-f1d7-4fb5-aadf-c6e85e2cb291", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Gate Noise:\n", + " Depolarizing(0.1), GateCriteria({'H'}, None)\n", + " Depolarizing(0.1), GateCriteria(None, None)\n", + " AmplitudeDamping(0.1), GateCriteria(None, {0})\n", + " PauliChannel(0.1, 0.2, 0.3), GateCriteria({'X'}, {0})\n", + "Readout Noise:\n", + " PhaseFlip(0.02), ObservableCriteria({'X'}, {0})\n" + ] + } + ], + "source": [ + "reduced_noise_model = noise_model.from_filter(qubit=0)\n", + "print(reduced_noise_model)" + ] + }, + { + "cell_type": "markdown", + "id": "925c0e6d-598b-4428-a254-b1d26ed2f3e6", + "metadata": {}, + "source": [ + "Likewise, we can scope the noise model to only include noise that references a specific gate.\n", + "Below, we filter by gate = `Gate.H`. Notice that qubit criteria, which doesn't depend on gate, is also included." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "11e6967a-37b7-499a-98c4-81c13535d484", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Gate Noise:\n", + " Depolarizing(0.1), GateCriteria({'H'}, None)\n", + " Depolarizing(0.1), GateCriteria(None, None)\n", + " AmplitudeDamping(0.1), GateCriteria(None, {0})\n" + ] + } + ], + "source": [ + "reduced_noise_model = noise_model.from_filter(gate=Gate.H)\n", + "print(reduced_noise_model)" + ] + }, + { + "cell_type": "markdown", + "id": "f79279ba-634c-4f26-a698-1796a75912d6", + "metadata": {}, + "source": [ + "Similarly we can also filter by the type of noise, for instance to get only bit flip channels, we do:" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "12a0ffb0-3217-45a3-84e7-562d8378b350", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Readout Noise:\n", + " BitFlip(0.01), ObservableCriteria({'Z'}, {1})\n" + ] + } + ], + "source": [ + "reduced_noise_model = noise_model.from_filter(noise=BitFlip)\n", + "print(reduced_noise_model)" + ] + }, + { + "cell_type": "markdown", + "id": "c414a99d-1a7a-4761-839a-0a60d239d664", + "metadata": {}, + "source": [ + "We can also combine filters to get more specific reductions." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "bfe264f4-12fb-4b16-bd6a-093c7b80a22a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Gate Noise:\n", + " Depolarizing(0.1), GateCriteria({'H'}, None)\n", + " Depolarizing(0.1), GateCriteria(None, None)\n" + ] + } + ], + "source": [ + "reduced_noise_model = noise_model.from_filter(gate=Gate.H, qubit=1)\n", + "print(reduced_noise_model)" + ] + }, + { + "cell_type": "markdown", + "id": "1b9ed8de-e9aa-4ca1-b2c0-fda6892c4dbd", + "metadata": {}, + "source": [ + "If we don't filter by anything, the returned model will be the same as the original." + ] + }, + { + "cell_type": "markdown", + "id": "16e40060-d791-4b0d-88e1-c8912c3192f1", + "metadata": {}, + "source": [ + "### Saving and loading noise models\n", + "\n", + "Noise models can be converted to Python dictionaries. This makes it easy to save and load models." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "25865b8e-68f2-4d55-a225-275ec0d16978", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'instructions': [{'noise': {'__class__': 'Depolarizing',\n", + " 'probability': 0.1,\n", + " 'qubit_count': 1,\n", + " 'ascii_symbols': ('DEPO(0.1)',)},\n", + " 'criteria': {'__class__': 'GateCriteria', 'gates': ['H'], 'qubits': None}},\n", + " {'noise': {'__class__': 'Depolarizing',\n", + " 'probability': 0.1,\n", + " 'qubit_count': 1,\n", + " 'ascii_symbols': ('DEPO(0.1)',)},\n", + " 'criteria': {'__class__': 'GateCriteria', 'gates': None, 'qubits': None}},\n", + " {'noise': {'__class__': 'AmplitudeDamping',\n", + " 'gamma': 0.1,\n", + " 'qubit_count': 1,\n", + " 'ascii_symbols': ('AD(0.1)',)},\n", + " 'criteria': {'__class__': 'GateCriteria', 'gates': None, 'qubits': [0]}},\n", + " {'noise': {'__class__': 'PauliChannel',\n", + " 'probX': 0.1,\n", + " 'probY': 0.2,\n", + " 'probZ': 0.3,\n", + " 'qubit_count': 1,\n", + " 'ascii_symbols': ('PC(0.1,0.2,0.3)',)},\n", + " 'criteria': {'__class__': 'GateCriteria', 'gates': ['X'], 'qubits': [0]}},\n", + " {'noise': {'__class__': 'PhaseFlip',\n", + " 'probability': 0.02,\n", + " 'qubit_count': 1,\n", + " 'ascii_symbols': ('PF(0.02)',)},\n", + " 'criteria': {'__class__': 'ObservableCriteria',\n", + " 'observables': ['X'],\n", + " 'qubits': [0]}},\n", + " {'noise': {'__class__': 'BitFlip',\n", + " 'probability': 0.01,\n", + " 'qubit_count': 1,\n", + " 'ascii_symbols': ('BF(0.01)',)},\n", + " 'criteria': {'__class__': 'ObservableCriteria',\n", + " 'observables': ['Z'],\n", + " 'qubits': [1]}}]}" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "noise_model.to_dict()" + ] + }, + { + "cell_type": "markdown", + "id": "57170712", + "metadata": {}, + "source": [ + "To save the Python dictionary as a json file in a local directory, we use the json package." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "b9564451-7ab5-415b-8fa3-beb79b2aeb33", + "metadata": {}, + "outputs": [], + "source": [ + "import json\n", + "\n", + "# save to local file\n", + "json.dump(noise_model.to_dict(), open(\"model_dict.json\", \"w\"))\n", + "\n", + "# Load from local file:\n", + "model_dict = json.load(open(\"model_dict.json\"))" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "340c6010-0e8e-45c0-8a08-5956860c7a48", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Gate Noise:\n", + " Depolarizing(0.1), GateCriteria({'H'}, None)\n", + " Depolarizing(0.1), GateCriteria(None, None)\n", + " AmplitudeDamping(0.1), GateCriteria(None, {0})\n", + " PauliChannel(0.1, 0.2, 0.3), GateCriteria({'X'}, {0})\n", + "Readout Noise:\n", + " PhaseFlip(0.02), ObservableCriteria({'X'}, {0})\n", + " BitFlip(0.01), ObservableCriteria({'Z'}, {1})\n" + ] + } + ], + "source": [ + "print(NoiseModel().from_dict(model_dict))" + ] + }, + { + "cell_type": "markdown", + "id": "87aec0e3", + "metadata": {}, + "source": [ + "## Summary\n", + "\n", + "In this section, we showed how to construct custom noise models in Braket containing qubit, gate, and readout noise. We showed how to apply noise models to circuits, construct smaller noise models by filtering, and how to save/load models." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.5" + }, + "toc-autonumbering": false, + "toc-showcode": false, + "toc-showmarkdowntxt": false, + "toc-showtags": true + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/0_TO_ORGANIZE/Noise_models/Noise_models_on_Rigetti.ipynb b/0_TO_ORGANIZE/Noise_models/Noise_models_on_Rigetti.ipynb new file mode 100644 index 000000000..abdabc763 --- /dev/null +++ b/0_TO_ORGANIZE/Noise_models/Noise_models_on_Rigetti.ipynb @@ -0,0 +1,1058 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "74154c03-d48f-4f41-867b-5e30254ce31a", + "metadata": {}, + "source": [ + "# Noise models on Rigetti\n", + "\n", + "This notebook shows how to construct a noise model from device calibration data for Rigetti Aspen-M-3. We compare the measurement outcomes of circuits run on a noisy simulator with the same circuits run on quantum processing units (QPUs), to show that simulating circuits with noise models more closely mimics QPUs.\n", + "\n", + "**Before you begin**: We recommend being familiar with [Noise models on Amazon Braket.](https://github.com/aws/amazon-braket-examples/blob/main/examples/braket_features/Noise_models/Noise_models_on_Amazon_Braket.ipynb)\n", + "Additionally, users should be familiar with [Running quantum circuits on QPU devices](https://github.com/aws/amazon-braket-examples/blob/main/examples/getting_started/2_Running_quantum_circuits_on_QPU_devices/2_Running_quantum_circuits_on_QPU_devices.ipynb). \n", + "\n", + "### Table of Contents\n", + "\n", + "- Noise model for Rigetti\n", + " - Loading device calibration data\n", + " - Comparing noisy simulator results to QPU results\n", + " - Smaller noise models compared to QPU results" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "e5e15fcd-55a2-4168-acc6-a38100f94511", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "from braket.aws import AwsDevice\n", + "from braket.circuits import Circuit, Gate, Noise, Observable\n", + "from braket.circuits.noise_model import (GateCriteria, NoiseModel,\n", + " ObservableCriteria)\n", + "from braket.circuits.noises import (AmplitudeDamping, BitFlip, Depolarizing,\n", + " PauliChannel, PhaseDamping, PhaseFlip,\n", + " TwoQubitDepolarizing)\n", + "from braket.devices import LocalSimulator" + ] + }, + { + "cell_type": "markdown", + "id": "d4da3e37-e93c-4273-98bc-d67b26b8c822", + "metadata": {}, + "source": [ + "Braket provides access to hardware providers' reported calibration data. \n", + "This can be used to construct noise models to approximate the behavior of the QPU when running circuits on a noisy simulator.\n", + "In this tutorial, we focus on local noise models with no crosstalk interactions. Real devices can have crosstalk and unexpected effects that can further degrade the results.\n", + "\n", + "The Aspen-M-3 calibration data is available on the Braket devices page. Under qubit specs, the calibration data include the qubit index, with corresponding values for the $T_1$, $T_2$, fidelity from randomized benchmarking (fRB), fidelity from simultaneous randomized benchmarking (fsRB), readout fidelity (fRO), and active reset fidelity.\n", + "Under \"edge specs\", the data includes the RB fidelity for C-Phase, XY, and CZ gates for each connected edge in the device topology." + ] + }, + { + "cell_type": "markdown", + "id": "38001b96-faf7-49f0-b5a5-2d52820fcfc9", + "metadata": {}, + "source": [ + "**One-qubit calibration data (Qubit specs)**\n", + "

    \n", + "\n", + "\n", + "**Two-qubit calibration data (Edge specs)**\n", + "
    " + ] + }, + { + "cell_type": "markdown", + "id": "276d680f-887d-4929-bcaa-e276a6303496", + "metadata": {}, + "source": [ + "We can programmatically access all the calibration data with the Braket SDK. First we load the AwsDevice using the ARN for Rigetti Aspen-M-3." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "a55ea9d5-05f3-4da5-a305-a391e914d012", + "metadata": {}, + "outputs": [], + "source": [ + "aspen_m = AwsDevice(\"arn:aws:braket:us-west-1::device/qpu/rigetti/Aspen-M-3\")" + ] + }, + { + "cell_type": "markdown", + "id": "a8a42ae1-51ac-4bf1-bd6a-81ffd982b5f8", + "metadata": {}, + "source": [ + "The properties dictionary contains keys \"provider\" and \"specs\", with \"1Q\" and \"2Q\" keys for the one- and two-qubit calibration data. " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "153b5b63-8205-4a7e-bb18-0305ef428f36", + "metadata": {}, + "outputs": [], + "source": [ + "aspen_m_specs = aspen_m.properties.dict()[\"provider\"][\"specs\"]\n", + "\n", + "one_qubit_data = aspen_m_specs[\"1Q\"]\n", + "two_qubit_data = aspen_m_specs[\"2Q\"]" + ] + }, + { + "cell_type": "markdown", + "id": "661cca17-01fa-40be-bd3e-741bacc74ce4", + "metadata": {}, + "source": [ + "The keys of the \"1Q\" dictionary is the qubit number. \n", + "For Aspen-M-3, there are 79 qubits indexed by the first digit representing the octagon (0 to 4, and 10 to 14)\n", + "and the second representing the qubit in that octagon (0 to 7). We can get all qubit indices with `one_qubit_data.keys()` or with `aspen_m.topology_graph.nodes`.\n", + "\n", + "The keys of the \"2Q\" dictionary are the connected qubit pairs separated by a hyphen. \n", + "For example, if qubit 0 and 1 are connected the key is \"0-1\".\n", + "\n", + "\n", + "#### One-qubit noise \n", + "\n", + "Let's look at the one qubit calibration data for qubit 0." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "8d4ecc35-f4dc-49d8-b6ff-adaee560ac4b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'T1': 2.4443429874176914e-05,\n", + " 'T2': 1.627681336532139e-05,\n", + " 'f1QRB': 0.9985669301541129,\n", + " 'f1QRB_std_err': 0.0004092835114091019,\n", + " 'f1Q_simultaneous_RB': 0.9977676229871197,\n", + " 'f1Q_simultaneous_RB_std_err': 0.00021522363993495725,\n", + " 'fActiveReset': 0.9905000000000002,\n", + " 'fRO': 0.9795}" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "one_qubit_data[\"0\"]" + ] + }, + { + "cell_type": "markdown", + "id": "4b676762-e642-4a98-89e3-86d79367071a", + "metadata": {}, + "source": [ + "For each qubit, there are various metrics of the quality:\n", + "\n", + "- **T1**: Thermal relaxation time is related to the time it takes for the excited state, |1⟩, to decay into the ground state, |0⟩. The probability of remaining in the excited state is $p(|1⟩)\\sim e^{-t/T_1}$\n", + "\n", + "- **T2**: The dephasing time, is the decay constant for the scale for a |+⟩ state to decohere into the completely mixed state. $p(|+⟩)\\sim e^{-t/T_2}$ \n", + "\n", + "- **Fidelity (RB)**: Single-qubit randomized benchmarking fidelities. RB fidelity quantifies the average gate fidelity where the average is over all Clifford gates. RB describes an *effective* noise model with gate-independent depolarizing noise on each Clifford gate.\n", + "\n", + "- **Fidelity (sRB)**: Single-qubit simultaneous randomized benchmarking fidelities. These are extracted by running single-qubit RB on all qubits simultaneously. Note that we expect the sRB fidelity to be lower than standard RB fidelity due to non-local crosstalk type noise on the device. \n", + "\n", + "- **Active reset fidelity**: Single-qubit active reset fidelities represents the accuracy to which qubits are reinitalized into the ground state |0⟩.\n", + "\n", + "- **Readout fidelity**: Single-qubit readout fidelities describes the probability of a bit flip error before readout in the computational basis. The readout fidelity is related to the probability of correctly measuring the ground state and excited states respectively, e.g. $f_{RO} =\\frac{p(0|0)+p(1|1)}{2}$" + ] + }, + { + "cell_type": "markdown", + "id": "296708a3-771e-42b4-9ba8-f3db1a02970b", + "metadata": {}, + "source": [ + "Now that we know how to extract and use the calibration data, we can build a simple noise model. For every qubit we will add:\n", + "- amplitude dampening noise with probability $p= 1-e^{-t/T_1}$ for every gate\n", + "- phase dampening noise with probability $p= 0.5(1-e^{-t/T_2})$ for every gate\n", + "- depolarizing noise with probability $p=1-f_{sRB}$ (from simultaneous RB fidelity) for every gate\n", + "- readout bit flip noise with probability $p=1-f_{RO}$ to measurements \n", + "\n", + "Technically, the sRB fidelity already includes effects from $T_1$/$T_2$, however to be explicit we add these as separate terms. In a sense, this model might overestimate the noise on the QPU. \n", + "\n", + "For the dampening noises, we first need the gate times to model $T_1$ and $T_2$ errors.\n", + "From the Braket Aspen-M-3 device page: \"These gates offer fast (40ns and 180ns) 1Q and 2Q gate times.\"" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "cd27adfb-f7d6-4583-b854-794e38152c90", + "metadata": {}, + "outputs": [], + "source": [ + "# median 1q and 2q gate times\n", + "gate_time_1_qubit = 40e-9\n", + "gate_time_2_qubit = 240e-09" + ] + }, + { + "cell_type": "markdown", + "id": "5769f2f4-de1c-4b47-9e4e-fd8d39b9e975", + "metadata": {}, + "source": [ + "To create the noise model, we iterate over all qubits keys in `one_qubit_data`" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "508070bc-b1d2-4737-a2fc-d7711e419996", + "metadata": {}, + "outputs": [], + "source": [ + "noise_model = NoiseModel()\n", + "\n", + "# Single-qubit noise\n", + "for q, data in one_qubit_data.items(): # iterate over qubits\n", + "\n", + " # T1 dampening\n", + " t1 = data[\"T1\"]\n", + " damping_prob = 1 - np.exp(-(gate_time_1_qubit / t1))\n", + " noise_model.add_noise(AmplitudeDamping(damping_prob), GateCriteria(qubits=int(q)))\n", + "\n", + " # T2 phase flip\n", + " t2 = data[\"T2\"]\n", + " dephasing_prob = 0.5 * (1 - np.exp(-(gate_time_1_qubit / t2)))\n", + " noise_model.add_noise(PhaseDamping(dephasing_prob), GateCriteria(qubits=int(q)))\n", + "\n", + " # 1q RB depolarizing rate from simultaneous RB\n", + " depolar_rate = 1 - data[\"f1Q_simultaneous_RB\"]\n", + " noise_model.add_noise(Depolarizing(depolar_rate), GateCriteria(qubits=int(q)))\n", + "\n", + " # 1q RB readout\n", + " readout_value = 1 - data[\"fRO\"]\n", + " noise_model.add_noise(BitFlip(readout_value), ObservableCriteria(qubits=int(q)))" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "9d20d24c-17e2-4bba-b317-fb2d156bedb0", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of terms in noise model is: 320\n", + "Number of parameters in noise model is: 320\n" + ] + } + ], + "source": [ + "num_params = sum(len(item.noise.parameters) for item in noise_model.instructions)\n", + "print(f\"Number of terms in noise model is: {len(noise_model.instructions)}\")\n", + "print(f\"Number of parameters in noise model is: {num_params}\")" + ] + }, + { + "cell_type": "markdown", + "id": "790c62f7-776a-4e4c-9405-7b7a14eee5b0", + "metadata": {}, + "source": [ + "#### Two-qubit noise \n", + "Next we consider adding two-qubit noise to the model. \n", + "\n", + "Let's first look at the data provided in the Aspen-M-3 device calibration data. On the first connect, \"0-1\", the properties are:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "626cbe56-3649-48eb-a2a1-f669eb790b47", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'fCPHASE': 0.8991973184700036,\n", + " 'fCPHASE_std_err': 0.019391126441846068,\n", + " 'fCZ': 0.9406104552003762,\n", + " 'fCZ_std_err': 0.011069113247524152,\n", + " 'fXY': 0.8365560014004874,\n", + " 'fXY_std_err': 0.014585224789608713}" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "two_qubit_data[\"0-1\"]" + ] + }, + { + "cell_type": "markdown", + "id": "4bcd3be4-a6e4-4cf3-841e-1a451e01803a", + "metadata": {}, + "source": [ + "Here, we see the fidelity per gate (CPhase, CZ, or XY) and the associated standard error. \n", + "\n", + "Next we loop over the entries in the `two_qubit_data` dictionary and add two-qubit depolarizing noise to the model. Notice that Aspen-M-3 has symmetric connections (\"0-1\" and \"1-0\") so we need to add noise in both directions." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "80f57550-6549-46b6-9a6d-ff7f0f03e90d", + "metadata": {}, + "outputs": [], + "source": [ + "# Two-qubit noise\n", + "for pair, data in two_qubit_data.items(): # iterate over qubit connections\n", + "\n", + " # parse strings \"0-1\" to integers [0, 1]\n", + " q0, q1 = (int(s) for s in pair.split(\"-\"))\n", + "\n", + " if \"fCPHASE\" in data:\n", + " phase_rate = 1 - data[\"fCPHASE\"]\n", + " noise_model.add_noise(\n", + " TwoQubitDepolarizing(phase_rate),\n", + " GateCriteria(\n", + " Gate.CPhaseShift, [(q0, q1), (q1, q0)]\n", + " ), # symmetric connections\n", + " )\n", + "\n", + " if \"fXY\" in data:\n", + " xy_rate = 1 - data[\"fXY\"]\n", + " noise_model.add_noise(\n", + " TwoQubitDepolarizing(xy_rate), GateCriteria(Gate.XY, [(q0, q1), (q1, q0)])\n", + " )\n", + "\n", + " if \"fCZ\" in data:\n", + " cz_rate = 1 - data[\"fCZ\"]\n", + " noise_model.add_noise(\n", + " TwoQubitDepolarizing(cz_rate), GateCriteria(Gate.CZ, [(q0, q1), (q1, q0)])\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "82376d08-84bc-4249-9c8d-d7aacdb73113", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of terms in noise model is: 612\n", + "Number of parameters in noise model is: 612\n" + ] + } + ], + "source": [ + "num_params = sum(len(item.noise.parameters) for item in noise_model.instructions)\n", + "print(f\"Number of terms in noise model is: {len(noise_model.instructions)}\")\n", + "print(f\"Number of parameters in noise model is: {num_params}\")" + ] + }, + { + "cell_type": "markdown", + "id": "5913a8a2-a9de-4e32-a35d-c48191891b1f", + "metadata": {}, + "source": [ + "### Compare circuits run on device vs simulator with a noise model\n", + "\n", + "Let's just look at the first 5 qubits. Note that to ensure the noise model applied T1 and T2 noise during the time between gate, we manually add identity gates to each moment." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "6fabbd05-b480-43c6-b43a-d396d81bd687", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : | 0 | 1 |2|\n", + " \n", + "q0 : -Rx(0.50)-Rx(3.14)-C-\n", + " | \n", + "q1 : -Rz(0.50)-Rx(3.14)-Z-\n", + " \n", + "q2 : -Rz(0.50)-Rx(3.14)---\n", + "\n", + "T : | 0 | 1 |2|\n" + ] + } + ], + "source": [ + "from braket.circuits import Circuit, Noise\n", + "\n", + "np.random.seed(42)\n", + "\n", + "circ = Circuit().rx(0, 0.5).rz(1, 0.5).rz(2, 0.5).rx(0, np.pi).rx(1, np.pi).rx(2, np.pi).cz(0, 1)\n", + "print(circ)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "e2af07ed-33de-4709-9e7c-5e3c3caaa751", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : | 0 | 1 | 2 |\n", + " \n", + "q0 : -Rx(0.50)-AD(0.0016)--PD(0.0012)-DEPO(0.0022)-Rx(3.14)-AD(0.0016)--PD(0.0012)-DEPO(0.0022)-C-DEPO(0.059)-\n", + " | | \n", + "q1 : -Rz(0.50)-AD(0.00086)-PD(0.0015)-DEPO(0.025)--Rx(3.14)-AD(0.00086)-PD(0.0015)-DEPO(0.025)--Z-DEPO(0.059)-\n", + " \n", + "q2 : -Rz(0.50)-AD(0.0018)--PD(0.0011)-DEPO(0.0041)-Rx(3.14)-AD(0.0018)--PD(0.0011)-DEPO(0.0041)---------------\n", + "\n", + "T : | 0 | 1 | 2 |\n" + ] + } + ], + "source": [ + "noisy_circ = noise_model.apply(circ)\n", + "\n", + "print(noisy_circ)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "9304dcf1-a1e8-4e41-a6b5-769841f4eefe", + "metadata": {}, + "outputs": [], + "source": [ + "simulator = LocalSimulator() # noise free simulator\n", + "task = simulator.run(circ, shots=100_000)\n", + "free_probs = task.result().measurement_probabilities" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "0e1d9cfe-03d6-406b-b4ab-89166a907681", + "metadata": {}, + "outputs": [], + "source": [ + "noisy_simulator = LocalSimulator(\"braket_dm\")\n", + "noisy_task = noisy_simulator.run(noisy_circ, shots=100_000)\n", + "noisy_probs = noisy_task.result().measurement_probabilities" + ] + }, + { + "cell_type": "markdown", + "id": "b3f370bd-a8b3-4d5b-a724-da549fc4c81f", + "metadata": {}, + "source": [ + "
    \n", + "\n", + "
    \n", + "Note: Running the circuit below will result in charges on your AWS account.\n", + "
    " + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "c8f4664a-0527-46fb-87f2-2a0c85f0bd79", + "metadata": {}, + "outputs": [], + "source": [ + "aspen_m_task = aspen_m.run(circ, shots=100_000, disable_qubit_rewiring=True)\n", + "aspen_m_result = aspen_m_task.result()\n", + "aspen_m_probs = aspen_m_result.measurement_probabilities" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "1676a45c-5ef8-49cc-b227-69f69fa2004a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    aspen-mnoisy_simfree_sim
    0000.001360.00016NaN
    1110.683400.857210.93927
    1100.076190.00635NaN
    0110.129670.074110.06073
    1010.073660.04401NaN
    1000.007770.00023NaN
    0100.013030.00045NaN
    0010.014920.01748NaN
    \n", + "
    " + ], + "text/plain": [ + " aspen-m noisy_sim free_sim\n", + "000 0.00136 0.00016 NaN\n", + "111 0.68340 0.85721 0.93927\n", + "110 0.07619 0.00635 NaN\n", + "011 0.12967 0.07411 0.06073\n", + "101 0.07366 0.04401 NaN\n", + "100 0.00777 0.00023 NaN\n", + "010 0.01303 0.00045 NaN\n", + "001 0.01492 0.01748 NaN" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "free_sim = pd.DataFrame.from_dict(free_probs, orient=\"index\").rename(\n", + " columns={0: \"free_sim\"}\n", + ")\n", + "noisy_sim = pd.DataFrame.from_dict(noisy_probs, orient=\"index\").rename(\n", + " columns={0: \"noisy_sim\"}\n", + ")\n", + "aspenm = pd.DataFrame.from_dict(aspen_m_probs, orient=\"index\").rename(\n", + " columns={0: \"aspen-m\"}\n", + ")\n", + "df = aspenm.join(noisy_sim).join(free_sim)\n", + "df" + ] + }, + { + "cell_type": "markdown", + "id": "472e6850-2603-4174-bf92-b04eb0c38c2f", + "metadata": {}, + "source": [ + "We can compute the fidelity between the free simulation and Rigetti, as well as the noisy simulation and Rigetti. " + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "5b7d1740-cb46-433e-8c2b-7e8b7c10fb4e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Total fidelity between Aspen-M and noise-free simulator is 0.8899252242353248\n", + "\n", + "Total fidelity between Aspen-M and noisy simulator is 0.9627231692802513\n" + ] + } + ], + "source": [ + "def fidelity(p, q):\n", + " return np.sum(np.sqrt(p * q))\n", + "\n", + "\n", + "f_free_aspen = fidelity(df[\"free_sim\"], df[\"aspen-m\"])\n", + "f_noisy_aspen = fidelity(df[\"noisy_sim\"], df[\"aspen-m\"])\n", + "\n", + "print(f\"\\nTotal fidelity between Aspen-M and noise-free simulator is {f_free_aspen}\")\n", + "print(f\"\\nTotal fidelity between Aspen-M and noisy simulator is {f_noisy_aspen}\")" + ] + }, + { + "cell_type": "markdown", + "id": "fd4d88b7-015e-445b-ba26-1bdbc6a2bd16", + "metadata": {}, + "source": [ + "To better visualize, we can also plot the output probability distributions from each circuit:" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "9329ed72-2f30-4383-b48f-0d50e1a5dd11", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsIAAAF+CAYAAACI8nxKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABHBklEQVR4nO3dd5hU5fnG8ftZwF167x1BOgKhCQqrIkUEDGoUCQiKirGAMSooEsSoYEURgyY/qgVULIiIRCJWECkrCBsiEKqAiLI0qfv+/jhnx9lemN1lOd/Pde117Zz6zDtnZu555z1nzDknAAAAIGii8rsAAAAAID8QhAEAABBIBGEAAAAEEkEYAAAAgUQQBgAAQCARhAEAABBIBGEgD5jZADNblN91pGRmh8ysXoS3aWY2zcx+MbPlkdx2Nut4wMz+mUvbXmJmQ3Nj23kpL49LM7vIzDbk0rbHmtkrubHt/GZm083sb/ldB3C2IgijQDGz681shR/gdpnZh2Z2YX7XlRnn3KvOuW75XUdKzrkSzrnNEd7shZIuk1TDOdcuwtvOMufcY865fA+rZrbFzLrmdx1pycvj0jn3uXOuYV7sKyNnY7A0s1gzc2Z2f37Xkhb/g6Mzs/NTTH/Hnx6bwbovm9kGM0s0s8G5XCoCiCCMAsPM/ixpoqTHJFWWVEvSi5L65mNZmTKzwvldQx6rLWmLc+5wWjMD2B45RludecysUH7XkIYbJP0saVB+F5KB/yqsPjMrL+kCSXszWe9bSX+StCr3SkOQEYRRIJhZaUnjJN3unHvbOXfYOXfCOfe+c+5ef5loM5toZj/4fxPNLNqfF2tmO8zsPjP70e9NvtLMLjez/5rZz2b2QNj+xprZW2Y2x8wOmtmq8N4MMxtpZpv8eevN7Pdh8wab2Zdm9qyZ7ZM01p/2RdgyzsyGmdn3ZrbfzCabmfnzCpnZ02b2k5n9z8zu8JdPMxT5PY5/MbM1Zpbg1xwTNv9mM9vo38d5ZlYtRR31/f8v9+/LQTPbaWZ/CVvuCjOL82v9ysxapFPLTZL+KekCv9f+4bC2v9/MdkuaZmZRYW24z8zeMLNyYdvp4O9nv5l9m0mP0f1+vQf9nqNLwx7DV/z/6/j3dYiZbTdv2MYwM2vrt9t+M3shxeP/StjtpPVTPQZmdq6Z/du/Hz+Z2atmVsafN0veB7b3/fa4z5/ex8zW+ftdYmaNUzye95vZGkmH03vcw5ZPat97wo7tIWHzS5vZTDPba2ZbzWy0mUX580LHpXme9bdxwMzWmlkzv432WFgANLN+ZvZtOvWkeRwl1Znift7rt/9hM/s/M6ts3rc8B83sYzMrm9a6Yeun2dNuZm+a2W7zng+fmVlTf/otkgZIus9/PN73pzf2H4f9/uPSJ2xb083s72a2wMwOS7o4o8fDX+c5/zg7YGYrzeyisHlj/eN9pn8/15lZm7D5rcx7vTloZnMkxaS5k9+WLy7pakm3S2qQYlsxZvaKf2zuN7NvzKyyP2+JmT1uZsv9Ot+zLD4H/XUfMe917qCZLTKzCpk0y6uSrg07jvpLekfS8YxWcs5Nds4tlnQ0k+0DOeOc44+/M/5PUg9JJyUVzmCZcZKWSaokqaKkryQ94s+L9dcfI6mIpJvl9US8JqmkpKaSfpVU119+rKQT8t5gikj6i6T/SSriz79GUjV5HyavlXRYUlV/3mB/X3dKKiypqD/ti7BanaT5ksrIC0p7JfXw5w2TtF5SDUllJX3sL5/mfZe0RdJyv55ykuIlDfPnXSLpJ0mtJUVLmiTpsxR11Pf/3yXpIv//spJa+/+3kvSjpPaSCsnrfdoiKTqdelLe16S2n+DXUFTScP+xquFPe0nS6/7y1SXtk3S5376X+bcrprGvhpK2S6rm364j6dywx/CVsOlO0hR5waKbvDfWd+UdL9X9+9gl5bop1i/s314iaaj/f32/xmh5x91nkiameHy6ht0+T97xcpm8Y+s+SRslnRO2fJykmpKKZuG5kdS+4/ztXS7piKSy/vyZkt6Td5zXkdczd1PKx0pSd0kr5R2TJqmxfjum10vqGbbPdyTdk0496R1HsZJ2pGiXZfK+3Ulq/1XyjrcYSf+W9Ne01k3Zrmk8Xjf69zda3rdIcWHzpkv6W9jtIn77PyDpHHnPmYOSGoYtnyCpk7zjMSYLj8kfJZWX9/y/R9LupPX8Wo/6j1MhSY9LWubPO0fSVkl3+3VdLe916G8Z7Gug3+aFJL0vaVLYvFv9acX8+b+TVCrsGN4pqZmk4pLm6rfnS4bPQX/dTfKO5aL+7fEZ1LhE0lBJi+QfR/Jesy6QtENSbBba9AtJgzNbjj/+svtHjzAKivKSfnLOncxgmQGSxjnnfnTO7ZX0sLw3iSQnJD3qnDshabakCpKec84ddM6tk/dmHz6GbaVz7i1/+WfkvTl3kCTn3JvOuR+cc4nOuTmSvpcUPh72B+fcJOfcSefcr+nUO945t985t03SJ5Ja+tP/4Ne1wzn3i6TxGTeNJOl5v56f5b3xJW1rgKSpzrlVzrljkkbJ662tk8Y2TkhqYmalnHO/OOeSvoq8RdJLzrmvnXOnnHMzJB1LaossSpQXao757TFM0oP+fTwmLxxc7fd+/lHSAufcAr99/yVphbw35ZROyQs7TcysiHNui3NuUwZ1POKcO+qcWyQvjL7uHy87JX0uL4Rli3Nuo3PuX/592yvvWOmSwSrXSvrAX+eEpKfkhYmOYcs875zbnsGxk9IJecf+CefcAkmHJDX0e9+ukzTKP863SHpayZ8X4dsoKamRJHPOxTvndvnzZsh7XOT3GnaX9yEyvVrSOo7SMsk5tyes/b92zq12zh2VF7az/XhIknNuqn9/k46t8837ViktHSSVkPd8PO6c+7e8D6n9w5Z5zzn3pX88Ztoz6Zx7xTm3z3/+Py3vGA0fH/2Ff3yfkjRLv73udJAXgCf6j+Vbkr7JZHc3SJrjb+s1SdeZWRF/3gl5r531/efuSufcgbB1ZznnvnPeMKaHJP3BP2ay8hyc5pz7r3+MvqHfXnMyMlPSIDNrJKmMc25pFtYBchVBGAXFPkkVMvmauJq83pQkW/1poW34bxaS1/srSXvC5v8q7w0xyfakf5xzifJ6LqpJkpkNst+GCuyX16tSIa11M7A77P8jYfuulmL9091WqE2cc4fktWX1NLZxlbw3uq1m9qmZXeBPry3pnqT76t/fmpKqmXfVgUP+34cZ1Lc3RYCoLemdsO3Fywu1lf1516TY34WSqqbcqHNuo6QR8sLOj2Y228KGfqQh5eOd0eOfJf7X+bP9YQAHJL2i5MdCSikfk0R5j3H4Y5KVxzzcvhQfEpOOgQryglXK50Wqx98PgC9ImiyvLV82s1L+7Fck9fa/hv+DpM/DQnJK6R1HacmNx6OQmY03b9jNAXk9x1L6j0k1Sdv9xyFJyjbK1uNh3lCleH9oxn5JpVPsP+XzNcZ/basmaadzzqWoJb391JQ3VONVf9J78j6w9/Jvz5L0kaTZ5g0XeyIsJKe8X1vlHSsVlLXnYJqvOWY2Jew14QEl97a8Hvc7/NpS3p9DYX+10rvfQCQRhFFQLJXXC3llBsv8IO8FPEktf1pO1Uz6x7wxlTUk/WBmtSX9Q96LeXnnXBlJ38n7OjlJ+BtZdu3y95WqjhxI1iZ+kCkv7yvRZJxz3zjn+sobKvCuvF4eyXuzfNQ5Vybsr5hz7nXnXXWghP/XM4M6UrbHdnlfkYZvM8bvGdwur6cqfF5x51yaPePOudeccxf699PJG4Jxug7L+zo5SZUMln3M329z51wpeb1pGR0LKR8Tk/cY78xgnZz6SV6vYMrnRarHX5Kcc887534nqYm8r73v9afvlPcc7CevNzlViAnbRnrH0elI9nj4vZYV01n2enkn0HaVF0DrJK2WVGKK5X+QVNN/jidJ2UZZfjz88cD3yfvAUNZ/fUhQ8mMiPbskVfePifBa0jNQ3vv4++aNv98sLwjfIEl+r/LDzrkm8r5xuELJT6gLf22pJe9Y+UnZfA6Gc84NC3tNeCzFvCOSPpR0m9I4hsLWK+G8b8qAXEcQRoHgnEuQN753snknuRUzsyJm1tPMnvAXe13SaDOr6J+4MUZeT1ZO/c68k4IKy+t1PCZvTGNxeW+MeyXJvBOTmp3GflJ6Q9JwM6tu3klXp3NJpNclDTGzluadOPiYvK+ft4QvZGbn+L27pf2v6w/IG84geaF/mJm1N09xM+tlZiVPo64pkh71P1TIf8ySrv6R1PvY3e/dizHvZKkaKTdiZg3N7BL/vh2V14uYmHK5HIiT1NnMavlfqY/KYNmS8oYiJJhZdfnhMcweSeHXan5DUi8zu9TvnbtH3rH1VXo7MO+ErenZvRP+NyBvyGvrkn57/1lpPC/MOymuvV/TYXntGd6WM+UFvObyevbSqjOj4+h0/Fder2kvv77R8oYbpKWkvPbcJy88P5ZifsrH42t5PZr3+a8psZJ6yxs+lSbzTjLcksH+T8p7fShsZmMklUpn2ZSW+uve5dfST8mHXKV0g7whYC3D/q6SdLmZlTezi82suf/B4YC8oBv+ePzRzJqYWTF5Y8zf8o+ZLD8Hc+ABeWPxt2RlYf+YipH3QaKIXwvZBRHDwYQCwx9r92d5b4J75fVa3CGv10mS/iZvHNsaSWvlnXhzOtcLfU/eeM5f5PW89PN7WNbLG2e5VN6banNJX57GflL6h7yTStZIWi1pgbw3x1MZrZQW59zH8sb+zZXX23SuvDGjaRkoaYv/dfIweeOL5ZxbIe/kwhfktcVGeSdZnY7nJM2TtMjMDsr7gNHe3992eT16D+i3x/lepf16FS1vDPVP8r6qraSMQ2uW+GMi58h7DFbKGzOanoflnYyYIOkDpQ6Jj8v7gLbfzP7inNsgr9d4kl93b0m9nXMZnT1fUzk/xu6UF2w3yzvh6DVJU9NYrpS8Y+8XeV+T75P0ZNj8d+QPafF79tKT5nF0OvwPwn+Sd0WSnfLuz450Fp8pr/6d8sb9L0sx///kjWHeb2bv+u3eW1JPeY/Hi5IGOef+k0FJGT0eH0laKC+8b5X3gSJLQyv8WvrJe379LO/1J70PHR3kPR6TnXO7w/7myXuO9pf3TcZb8kJwvKRPlbwndpa8kwF3y+tJvsuvIzvPwWxx3rkMX2S+ZMgieR9wO0p62f+/8+nWASSx5EORAEjeJY7knWDyxzOglp6Spjjname6MM46ZnaOvGuptvB7WfOzlk2SbvU/YAWWeb/GN9w5F5/fteSUmS2Rd5WIXPn1RaCg4GLtwBnGzIrKOwFmkbyTx/4qrzcOAeT3EjbOdMFcZmZXyRsS9O/8riW/uTPwVyIB5AxBGDjzmLyv2+fI+xrwA3njnYF84fceNpE0MMXVFQCgQGNoBAAAAAKJk+UAAAAQSARhAAAABFK+jRGuUKGCq1OnTn7tHgAAAAGxcuXKn5xzqX6IJ9+CcJ06dbRixYr82j0AAAACwszS/LlyhkYAAAAgkAjCAAAACCSCMAAAAAKJH9QAAADIAydOnNCOHTt09OjR/C7lrBUTE6MaNWqoSJEiWVqeIAwAAJAHduzYoZIlS6pOnToys/wu56zjnNO+ffu0Y8cO1a1bN0vrMDQCAAAgDxw9elTly5cnBOcSM1P58uWz1eNOEAYAAMgjhODcld32JQgDAADgjHfjjTeqUqVKatasWcS2yRhhAACAfFBn5AcR3d6W8b0iur0zzeDBg3XHHXdo0KBBEdsmPcIAAAABcuWVV+p3v/udmjZtqpdfflmnTp3S4MGD1axZMzVv3lzPPvusJCk2NlbDhw9Xy5Yt1axZMy1fvlySdPjwYd14441q166dWrVqpffee0+SNH36dPXr1089evRQgwYNdN9996W5/+nTp+vKK6/UZZddpjp16uiFF17QM888o1atWqlDhw76+eef01yvc+fOKleuXETbgh5hAACAAJk6darKlSunX3/9VW3bttXvfvc77dy5U999950kaf/+/aFljxw5ori4OH322We68cYb9d133+nRRx/VJZdcoqlTp2r//v1q166dunbtKkmKi4vT6tWrFR0drYYNG+rOO+9UzZo1U9Xw3XffafXq1Tp69Kjq16+vCRMmaPXq1br77rs1c+ZMjRgxIi+agh5hAACAIHn++ed1/vnnq0OHDtq+fbuOHz+uzZs3684779TChQtVqlSp0LL9+/eX5PXGHjhwQPv379eiRYs0fvx4tWzZUrGxsTp69Ki2bdsmSbr00ktVunRpxcTEqEmTJtq6dWuaNVx88cUqWbKkKlasqNKlS6t3796SpObNm2vLli252wBhCMIAAAABsWTJEn388cdaunSpvv32W7Vq1UrHjh3Tt99+q9jYWE2ZMkVDhw4NLZ/yKgxmJuec5s6dq7i4OMXFxWnbtm1q3LixJCk6Ojq0bKFChXTy5Em98847atmypVq2bKkVK1akWi4qKip0OyoqSidPntT27dtD60yZMiXX2oOhEThjNJ/RPEfrrb1hbYQrAQDg7JSQkKCyZcuqWLFi+s9//qNly5bpp59+UmJioq666io1bNhQf/zjH0PLz5kzRxdffLG++OILlS5dWqVLl1b37t01adIkTZo0SWam1atXq1WrVunu8/e//71+//vfh24nDcHISM2aNRUXF3da9zUrCMIAAAAB0aNHD02ZMkWNGzdWw4YN1aFDB+3cuVOxsbFKTEyUJD3++OOh5WNiYtSqVSudOHFCU6dOlSQ99NBDGjFihFq0aKHExETVrVtX8+fPz/Xa+/fvryVLluinn35SjRo19PDDD+umm246rW2acy5C5WVPmzZtXFL3OCDRIwwAOLvFx8eHhhAUBLGxsXrqqafUpk2b/C4lW9JqZzNb6ZxLdUcYIwwAAIBAYmgEAAAAUlmyZEl+l5Dr6BEGAABAIBGEAQAAEEgEYQAAAAQSQRgAAACBRBAGAABAIHHVCAAAgPwwtnSEt5cQ2e1JGjNmjDp37qyuXbtGfNuSNG/ePK1fv14jR47Mle1nhiAMAACANI0bNy5Xt9+nTx/16dMnV/eREYZGAAAABMSWLVvUuHFj3XzzzWratKm6deumX3/9VXFxcerQoYNatGih3//+9/rll18kSYMHD9Zbb70lSRo5cqSaNGmiFi1a6C9/+YsOHjyounXr6sSJE5KkAwcOJLud0vPPPx9a/7rrrpMkTZ8+XXfccUdoX7fddps6dOigevXqacmSJbrxxhvVuHFjDR48OFfagyAMAAAQIN9//71uv/12rVu3TmXKlNHcuXM1aNAgTZgwQWvWrFHz5s318MMPJ1tn3759euedd7Ru3TqtWbNGo0ePVsmSJRUbG6sPPvhAkjR79mz169dPRYoUSXO/48eP1+rVq7VmzRpNmTIlzWV++eUXLV26VM8++6z69Omju+++W+vWrdPatWsVFxcX0XaQCMIAAACBUrduXbVs2VKS9Lvf/U6bNm3S/v371aVLF0nSDTfcoM8++yzZOqVLl1ZMTIxuuukmvf322ypWrJgkaejQoZo2bZokadq0aRoyZEi6+23RooUGDBigV155RYULpz06t3fv3jIzNW/eXJUrV1bz5s0VFRWlpk2basuWLad5z1MjCAMAAARIdHR06P9ChQpp//79ma5TuHBhLV++XFdffbXmz5+vHj16SJI6deqkLVu2aMmSJTp16pSaNWuW7jY++OAD3X777Vq1apXatm2rkydPpltbVFRUsjqjoqLSXP50EYQBAAACrHTp0ipbtqw+//xzSdKsWbNCvcNJDh06pISEBF1++eV69tln9e2334bmDRo0SNdff32GvcGJiYnavn27Lr74Yk2YMEEJCQk6dOhQ7tyhbOCqEQAAAPkhFy53llMzZszQsGHDdOTIEdWrVy803CHJwYMH1bdvXx09elTOOT3zzDOheQMGDNDo0aPVv3//dLd/6tQp/fGPf1RCQoKcc7rrrrtUpkyZ3Lo7WWbOuXzZcZs2bdyKFSvyZd84MzWf0TxH6629YW2EKwEAIPLi4+PVuHHj/C4j4t566y299957mjVrVn6XIintdjazlc65NimXpUcYAAAAOXLnnXfqww8/1IIFC/K7lBwhCAMAACBHJk2alGra7bffri+//DLZtOHDh2c4hji/EIQBAAAQMZMnT87vErKMq0YAAAAgkAjCAAAACCSCMAAAAAKJMcIAAAD5IKeXDU0PlxPNPnqEAQAAAuT5559X48aNNWDAgDzbZ8eOHfNsX9lBjzAib2zpnK1Xt1Zk6wAAAKm8+OKL+vjjj1WjRo3QtJMnT6pw4dyLhV999VWubft00CMMAAAQEMOGDdPmzZvVs2dPlS5dWgMHDlSnTp00cOBA7d27V1dddZXatm2rtm3bhq4FfPjwYd14441q166dWrVqpffeey/d7a9bt07t2rVTy5Yt1aJFC33//feSpBIlSkiSlixZoi5duqhv376qV6+eRo4cqVdffVXt2rVT8+bNtWnTptxvhDD0CAMAAATElClTtHDhQn3yySd64YUX9P777+uLL75Q0aJFdf311+vuu+/WhRdeqG3btql79+6Kj4/Xo48+qksuuURTp07V/v371a5dO3Xt2lXFixdPc/vDhw/XgAEDdPz4cZ06dSrVMt9++63i4+NVrlw51atXT0OHDtXy5cv13HPPadKkSZo4cWIetISHIAwAABBQffr0UdGiRSVJH3/8sdavXx+ad+DAAR06dEiLFi3SvHnz9NRTT0mSjh49qm3btqlx48aptnfBBRfo0Ucf1Y4dO9SvXz81aNAg1TJt27ZV1apVJUnnnnuuunXrJklq3ry5Pvnkk4jfx4wQhAEAAAIqvFc3MTFRy5YtU0xMTLJlnHOaO3euGjZsmOn2rr/+erVv314ffPCBLr/8cr300ku65JJLki0THR0d+j8qKip0OyoqSidPnjydu5NtBGEAAIB8cKZd7qxbt26aNGmS7r33XklSXFycWrZsqe7du2vSpEmaNGmSzEyrV69Wq1at0tzG5s2bVa9ePd11113atm2b1qxZkyoIn0k4WQ4AAAB6/vnntWLFCrVo0UJNmjTRlClTJEkPPfSQTpw4oRYtWqhp06Z66KGH0t3GG2+8oWbNmqlly5b67rvvNGjQoLwqP0fMOZcvO27Tpo1bsWJFvuwbuSyHl09rnsPLp51pn6gBAEhLfHx8muNqEVlptbOZrXTOtUm5LD3CAAAACCTGCAMAACBbPvroI91///3JptWtW1fvvPNOPlWUMwRhAACAPOKck5nldxmnrXv37urevXt+l5FKdof8MjQCAAAgD8TExGjfvn3ZDmvIGuec9u3bl+rybxmhRxgAACAP1KhRQzt27NDevXvzu5SzVkxMjGrUqJHl5QnCAAAAeaBIkSKqW7dufpeBMAyNAAAAQCARhAEAABBIWQrCZtbDzDaY2UYzG5nG/Fpm9omZrTazNWZ2eeRLBQAAACIn0yBsZoUkTZbUU1ITSf3NrEmKxUZLesM510rSdZJejHShAAAAQCRlpUe4naSNzrnNzrnjkmZL6ptiGSeplP9/aUk/RK5EAAAAIPKyEoSrS9oednuHPy3cWEl/NLMdkhZIujOtDZnZLWa2wsxWcOkQAAAA5KdInSzXX9J051wNSZdLmmVmqbbtnHvZOdfGOdemYsWKEdo1AAAAkH1ZCcI7JdUMu13DnxbuJklvSJJzbqmkGEkVIlEgAAAAkBuyEoS/kdTAzOqa2TnyToabl2KZbZIulSQzaywvCDP2AQAAAGesTIOwc+6kpDskfSQpXt7VIdaZ2Tgz6+Mvdo+km83sW0mvSxrs+CFtAAAAnMGy9BPLzrkF8k6CC582Juz/9ZI6RbY0AAAAIPfwy3IAAAAIJIIwAAAAAokgDAAAgEAiCAMAACCQCMIAAAAIJIIwAAAAAokgDAAAgEAiCAMAACCQCMIAAAAIJIIwAAAAAokgDAAAgEAiCAMAACCQCMIAAAAIJIIwAAAAAokgDAAAgEAiCAMAACCQCMIAAAAIJIIwAAAAAokgDAAAgEAiCAMAACCQCMIAAAAIJIIwAAAAAokgDAAAgEAiCAMAACCQCMIAAAAIJIIwAAAAAokgDAAAgEAiCAMAACCQCMIAAAAIJIIwAAAAAokgDAAAgEAiCAMAACCQCMIAAAAIpML5XQDOXHVGfpCj9bbERLgQAACAXECPMAAAAAKJIAwAAIBAIggDAAAgkAjCAAAACCSCMAAAAAKJIAwAAIBAIggDAAAgkAjCAAAACCSCMAAAAAKJIAwAAIBAIggDAAAgkAjCAAAACCSCMAAAAAKJIAwAAIBAIggDAAAgkAjCAAAACCSCMAAAAAKJIAwAAIBAIggDAAAgkAjCAAAACCSCMAAAAAKJIAwAAIBAIggDAAAgkLIUhM2sh5ltMLONZjYynWX+YGbrzWydmb0W2TIBAACAyCqc2QJmVkjSZEmXSdoh6Rszm+ecWx+2TANJoyR1cs79YmaVcqtgAAAAIBKy0iPcTtJG59xm59xxSbMl9U2xzM2SJjvnfpEk59yPkS0TAAAAiKysBOHqkraH3d7hTwt3nqTzzOxLM1tmZj3S2pCZ3WJmK8xsxd69e3NWMQAAABABkTpZrrCkBpJiJfWX9A8zK5NyIefcy865Ns65NhUrVozQrgEAAIDsy0oQ3impZtjtGv60cDskzXPOnXDO/U/Sf+UFYwAAAOCMlJUg/I2kBmZW18zOkXSdpHkplnlXXm+wzKyCvKESmyNXJgAAABBZmQZh59xJSXdI+khSvKQ3nHPrzGycmfXxF/tI0j4zWy/pE0n3Ouf25VbRAAAAwOnK9PJpkuScWyBpQYppY8L+d5L+7P8BAAAAZzx+WQ4AAACBlKUeYSCSEp3TbfOP6q34k/r5V6dPbiim2DrpH4ou0emHmT/owDcHdOrwKdW5v45KNC6RhxUDAICzET3CyHMLvj+paXEn9H7/otp1Twl1rFkow+UPrjmo/Z/vV+0RtdVwYkMVa1AsjypFOOecxo4dq2rVqqlo0aKKjY3VunXrMl3vueeeU6NGjVS0aFHVqFFDt99+uw4dOhSaf/DgQY0YMUK1a9dW0aJF1bFjR33zzTcR2TcAABkhCCPPbfw5UVVLmjrWLKwqJaJ0TiHLcPnje46rcJnCKtagmIqUKaKowqkP2+PHj+dWufA98cQTevrppzVp0iR98803qlSpki677DIdPHgw3XVee+013XfffXrwwQcVHx+vmTNnasGCBRo+fHhomaFDh+qjjz7SjBkztHbtWnXr1k1du3bVzp2/XaUxJ/sGACAzBGHkqcHv/qq7PzqmbQlO9vAB1ZmYcZDZ8Y8d2v36bp3Yd0LfDf5OG+7ZIEna/Phm/TDjB+2avUsVK1ZUp06dJEnr169Xr169VLJkSVWqVEn9+/fX7t27k21z2rRpatKkiWJiYnTeeefp2WefVWJiYpbqf+aZZ9SiRQsVL15c1atX19ChQ7V///7Q/ISEBA0cOFCVKlVSTEyM6tWrp4kTJ4bmm5leeOEF9erVS8WKFVPt2rX1yiuvJNvHzp07dd1116ls2bIqW7asevXqpe+//z40f+zYsWrWrJlmz56tc889VyVLltSVV16pn376KUv3ISecc5o4caJGjhypq666Ss2aNdOMGTN08OBBvfbaa+mu99VXX6lDhw4aOHCg6tSpo0suuUSDBg3S119/LUn69ddfNXfuXI0fP16xsbGqX7++xo4dq/r16+vvf//7ae0bAIDMEISRp57rEaMxnc9RjVKmXfeU0Dc3F89w+aoDqqpi34oqXK6wGk5sqHP/em5o3v6l+yUnff7555o5c6Z27dqlzp07q1mzZlq+fLk+/vhjHTp0SH379g0F3X/84x964IEHNG7cOMXHx+vpp5/WhAkT9OKLL2ap/qioKE2cOFHr1q3Ta6+9puXLl+vOO+8MzR89erTWrl2r+fPna8OGDZo6daqqV0/+i+R//etf1adPH8XFxemWW27RoEGDtGLFCknSkSNHdPHFFysmJkaffvqpli5dqqpVq6pr1646cuRIaBtbtmzRnDlz9M4772jRokVavXq1HnzwwQxrb9q0qUqUKJHuX9OmTdNd93//+592796tbt26haYVLVpUnTt31ldffZXuehdeeKHi4uK0bNkySdK2bds0b948XX755ZKkkydP6tSpU4qJiUm2XtGiRfXFF1+c1r4BAMgMJ8shT5WOMZWMNhUyqUqJzD+HFSpWSIViCsnMVKRMkWTzilQooqr9q6pRo0aSpDFjxuj888/XhAkTQsvMnDlT5cqV04oVK9SuXTs98sgjeuKJJ3T11VdLkurWrauRI0fqxRdf1B133JFpPSNGjAj9X6dOHT3xxBPq27evZsyYoaioKG3dulWtW7dWu3btJEm1a9dOtY1+/frp1ltvlSQ9+OCD+uSTTzRx4kS98sormj17tpxzmjZtmsy8ISMvvfSSKlWqpPnz5+sPf/iDJC9ATp8+XaVLl5Yk3XLLLZo2bVqGtS9YsEAnTpxId36RIkXSnZfUq165cuVk0ytXrpxsCENK1113nfbt26fOnTvLOaeTJ09q4MCBoceoZMmSuuCCC/S3v/1NzZo1U5UqVfT6669r6dKlql+//mntGwCAzBCEUWAVrVM02e2VK1fqs88+U4kSqa8osWnTJtWtW1fbt2/Xrbfeqttuuy007+TJk/IuhZ25f//733r88ccVHx+vhIQEnTp1SsePH9fu3btVrVo13Xbbbbr66qu1cuVKXXbZZerdu7e6dOmSbBsXXHBBqtsffPBB6D7873//U8mSJZMtc+TIEW3atCl0u3bt2qEQLEnVqlXTjz/+mGHtaYXy3Pbpp5/qkUce0Ysvvqj27dtr48aNGj58uP76179q3LhxkqRZs2bpxhtvVI0aNVSoUCG1bt1a/fv318qVK/O8XgBAsBCEUWBFRSfvUU5MTFSvXr301FNPpVq2cuXKoaEFU6ZMUceOHbO9v61bt6pXr166+eabNW7cOJUvX16rVq1S//79Qyfr9ezZU1u3btWHH36oxYsXq1evXrrmmmsy7a0Nvw8tW7bU7NmzU80rV65c6P+Uvbdmluk456ZNm2rr1q3pzq9du3a6V2KoUqWKJGnPnj2qVatWaPqePXtC89IyevRo9e/fX0OHDpUkNW/eXIcPH9bQoUM1ZswYFS5cWOeee64+/fRTHT58WAcOHFDVqlV17bXXql69eqe1bwAAMkMQxlmjdevWeuONN1S7du00v+YvWbKkqlWrpk2bNmnQoEHZ3v6KFSt0/PhxPfvssypUyLvk2/z581MtV6FCBQ0cOFADBw5Uz5491b9/f02ZMkXR0dGSpGXLlunGG28MLb9s2TI1btw4dB9ef/11VahQQWXKlMl2jRk5naERdevWVZUqVfSvf/1Lbdu2lSQdPXpUn3/+uZ588sl01zty5EiorZIUKlQozR744sWLq3jx4vrll1/00Ucf6YknnjitfQMAkBmCMM4at99+u/7xj3/o2muv1f3336+KFStq8+bNeuONN/T000+rZMmSevjhh3XnnXeqTJkyuvzyy3XixAmtWrVKO3fu1KhRozLcfoMGDZSYmKiJEyeqX79+WrZsWbIrQkjeOOXWrVuradOmOnnypN5++23Vq1cvFIIl6e2331bbtm0VGxurt956S4sXLw5dRWHAgAF66qmn1LdvX40bN061atXS9u3b9d5772nYsGFq0KBBjtvndIZGmJlGjBihxx57TI0aNdJ5552nv/3tbypRooSuv/760HKXXnqp2rVrp8cff1yS1Lt3bz3zzDNq06ZNaGjEQw89pCuuuEKFC3svPx999JESExPVqFEjbdy4Uffee68aNWqkIUOGZGvfAABkF0EYZ41q1arpyy+/1KhRo9SjRw8dPXpUtWrVUrdu3UJBdOjQoSpevLiefPJJjRo1SkWLFlXTpk2zdKJcixYt9Nxzz2nChAkaPXq0OnbsqKeeekrXXnttaJno6Gg9+OCD+t///qeYmBh16NBB77//frLtjB07VnPnztVdd92lihUratq0aaGezmLFiumzzz7TyJEjdc011yghIUHVqlXTxRdfrLJly0awtbLvvvvu06+//qrbb79dv/zyi9q3b69FixYlG8+8adMm1axZM3R79OjRMjM99NBD2rFjhypUqKDevXvr0UcfDS2TkJCgUaNGaceOHSpXrpyuuuoqPfroo8l6qLOybwAAssuyepJQpLVp08YlXTIKZ6Y6Iz/I0XpbYnLWS9e8bq3MF0rD2hvW5mi9/GBmevPNN0NXrQAAALnPzFY659qknM51hAEAABBIDI1AvtqWkKgmkw9Jkn6NWp9qfv3H6uuc8ufkSS2vvvpq6Pq+KWV0RQUAAFAwEYSRr6qVNMUN8677e3mNqqnmp/wRjdzUp08ftW/fPs15GV1RITvyaygSAABIjSCMfFU4ylS/nPcLatGVozNZOneVLFmSk68AAAgQxggjzyU6p1vf/1Xlnzgoe/iAlmw5mev7XLJkicxMP/30U67vKy+tWLFCZqYtW7ZkeZ3BgwfriiuuyL2iAAAoIAjCyHMLvj+paXEn9H7/otp1Twl1rFko85VOU8eOHbVr1y6VL18+1/eFs8fcuXPVpEkTRUdHq0mTJnrnnXcyXeeNN95Qy5YtVaxYMdWuXTvNH/04fvy4xowZo7p16yo6Olq1atXS888/H5r/5ptvqk2bNipTpoyKFy+uli1basaMGRG9bwAAhkYgH2z8OVFVS5o61sy7w++cc87h53iRLUuXLtW1116rhx9+WP369dPbb7+ta665Rl9++WW6Y8k//PBDXX/99Xr++efVo0cPxcfH6+abb1bRokWTXav6uuuu044dO/Tyyy+rQYMG2rNnj3799dfQ/PLly2v06NFq1KiRihQpovnz5+umm25SxYoVdfnll+f6fQeAoKBHGHlq8Lu/6u6PjmlbgpM9fEB1Jh7MdJ3Nj2/WDzN/0O63div+jnjF3xmvXbN3ySX+duLZL7/8ohtuuEFly5ZV0aJF1bVr12RXeUg5NCIhIUEDBw5UpUqVFBMTo3r16iX7lbiEhATdcsstqlSpkkqWLKkuXbooq9e9nj59ukqUKKEPP/xQjRo1UrFixdSnTx8lJCTorbfeUoMGDVS6dGkNHDgwWfg5duyYRowYocqVK4d+jOOLL75Itu2FCxeqUaNGiomJ0UUXXaT//ve/qfb/1VdfqUuXLipWrJiqV6+u2267TQcOHMhS7SktXLhQF110kcqWLaty5cqpe/fuio+PT7bMuHHjVLt2bUVHR6tKlSrJfr46NjZWw4YN0/Dhw1W2bFmVLVtW9957rxITE0PLHD9+XPfff79q1KihYsWKqW3btvroo49C85Meu8WLF6t9+/YqVqyY2rRpo1WrVuXoPmXVxIkTdfHFF+vBBx9U48aN9eCDDyo2NjbVrwmGmzVrlnr37q0//elPqlevnnr16qVRo0ZpwoQJoRMlFy1apMWLF2vBggW67LLLVKdOHbVv316xsbGh7VxyySW68sor1ahRI5177rkaPny4WrRooc8//zxX7zMABA1BGHnquR4xGtP5HNUoZdp1Twl9c3PxLK23f+l+WZSp3uh6qjawmvYt2qeE5Qmh+YMHD9bXX3+t9957T8uXL1exYsXUo0ePZEEz3OjRo7V27VrNnz9fGzZs0NSpU1W9enVJ3pUdevXqpZ07d2r+/PlavXq1OnfurEsuuUS7du3KUr3Hjh3T008/rVdffVWLFy/WihUrdNVVV2nGjBmaO3eu3n33Xc2fP18vvvhiaJ377rtPc+bM0dSpU7V69Wo1b95cPXr0CO1z+/btuvLKK3XZZZcpLi5Od955p+67775k+127dq26deumPn366Ntvv9Xbb7+tuLg43XjjjVmqO6XDhw9rxIgRWr58uZYsWaLSpUurd+/eOn78uCRv6MBTTz2lF198Ud9//73mz5+vdu3aJdvGq6++qsTERC1dulQvvfSSXn755WRhcsiQIfr000/12muv6bvvvtMNN9yg3r1769tvv022nVGjRmn8+PFatWqVypcvrwEDBmR4FY5hw4apRIkSGf5t27Yt3fWXLl2qbt26JZvWvXt3ffXVV+muc+zYMcXExCSbVrRoUe3YsUNbt26VJL377rtq27atnnnmGdWoUUMNGjTQXXfdpUOHDqW5TeecFi9erA0bNqhz587p7hsAkH0MjUCeKh1jKhltKmRSlRJZ/xwWXS1alftV9v6vEq2fP/1Zh9cfVpkOZfT9999r3rx5+vTTT0NBYdasWapVq5ZeffVVDR06NNX2tm7dqtatW4dCW+3atUPzPvnkE8XFxWnv3r0qWrSoJOmRRx7R+++/r1mzZqUKn2k5efKkJk+erIYNG0qSrr/+ej377LPas2ePKlSoIEnq27evPvnkE91zzz06fPiw/v73v+uf//ynevXqJUmaMmWK/v3vf2vy5Mn629/+pr///e+hsaRmpkaNGum///2vHnroodB+n3zySV177bW65557QtP+/ve/q1WrVvrxxx9VqVKlLLe5JF111VXJbk+bNk2lSpXS8uXLdeGFF2rr1q2qWrWqunXrpiJFiqhWrVpq0yb5D/dUrVo1Vc3PPPOM/vznP2vTpk16/fXXtWXLFtWq5f2y4B133KGPP/5YL730UrIPCo888oguvvhiSdKYMWN04YUXaufOnapRo0aatY8bN05/+ctfMrx/1apVS3fe7t27Vbly5WTTKleurN27d6e7Tvfu3TVixAgtWrRIXbt21caNG/X0009Lknbt2qU6depo8+bN+uKLLxQdHa25c+dq//79uvPOO/XDDz/orbfeCm0rISFB1atX17Fjx1SoUCFNnjxZPXv2zPD+AACyhyCMAiGmZvJetiJliujkAe9qE/Hx8YqKitIFF1wQml+6dGk1b95c69en/pEOSbrtttt09dVXa+XKlbrsssvUu3dvdenSRZK0cuVKHTlyRBUrVky2ztGjR7Vp06Ys1RsdHR0KwZIXoKpUqRIKwUnTkurbtGmTTpw4oU6dOoXmFypUSBdccEFomfj4eHXo0EFmFlom/D4n1b5x40bNmTMnNC2p13TTpk3ZDsKbNm3SQw89pK+//lp79+5VYmKiEhMTQz2p11xzjZ577jnVrVtX3bt3V48ePdSnTx9FR/92Kby0an7ooYd04MABrVq1Ss45NWnSJNl+jx07pksuuSTZtBYtWoT+TwqwP/74Y7pBuFKlStm+v6fr5ptv1qZNm9S3b1+dOHFCpUqV0vDhwzV27FhFRXkf/BITE2Vmeu2111S6dGlJ0gsvvKDu3btrz549ofBdsmRJxcXF6dChQ1q8eLH+/Oc/q06dOrr00kvz9D4BwNmMIIwCwQpZ6olZ+G2K8AAWrmfPntq6das+/PBDLV68WL169dI111yjadOmKTExUZUrV05zPGapUqWyVG/hwsmfWmaW6kc5zCzZWNns3oe0JCYmaujQobr77rtTzUsa+pEdV1xxhWrUqKGXXnpJ1atXV+HChdWkSZPQ0IiaNWtqw4YNWrx4sT7++GPdc889evjhh/X111+rePHMh70khcJvvvkmVfsk9cYnCZ+f1CYZtd+wYcP0yiuvZLj/9evXh3qiU6pSpYr27NmTbNqePXsyPOnSzDRhwgQ99thj2r17typWrKjFixdLkurVqyfJ6yGvXr16KARLUuPGjSVJ27ZtCwXhqKgo1a9fX5LUsmVLxcfH67HHHiMIA0AEEYRR4DVu3Dg0BjVpaMSBAwe0du1aDRkyJN31KlSooIEDB2rgwIHq2bOn+vfvrylTpqh169bas2ePoqKiQuElt5177rk655xz9OWXX+rcc8+VJJ06dUpLly7V9ddfL8m7n3PnzpVzLhQEly1blmw7rVu31rp160IB6nTs27dP//nPf/Tiiy+GhiSsWrVKJ08mv+5zTEyMevXqpV69emnkyJGqUqWKvvzyy9D42q+//jpVzdWqVVOpUqXUqlUrOee0e/fu0D4i5XSHRlxwwQX617/+pXvvvTc07V//+pc6duyY6b4LFSoU+uDx+uuv64ILLgh9w9CpUye9+eabOnTokEqU8H5VMemkx/AhOiklJibq2LFjme4bAJB1BGEUeA0aNFDfvn1166236uWXX1aZMmX04IMPqlSpUqEQmdKYMWPUunVrNW3aVCdPntTbb7+tevXqKTo6Wl27dlWnTp3Ut29fPfHEE2rUqJF2796thQsXqmvXrrrooosifh+KFy+u2267Tffff78qVKigunXrhsYU/+lPf5Lk9XA+/fTTGjFihP70pz9p7dq1mjJlSrLt3H///erQoYOGDRumW2+9VSVLltR//vMfvf/++3rppZeyVVPZsmVVoUIF/eMf/1DNmjW1c+dO3Xvvvcl6u6dPn66TJ0+qffv2KlGihObMmaMiRYqoQYMGoWV++OGHZDU/+eSTGj16tCTpvPPO04ABAzR48GA9/fTTat26tX7++WctWbJE9erVU79+/XLapKc9NGL48OHq3Lmzxo8fryuvvFLvvPOOPvnkk2RX8hg1apSWL18e6vX96aef9Oabbyo2NlbHjh3TtGnT9Oabb+rTTz8NrXP99dfrkUce0ZAhQzR27Fjt379fw4cP19VXXx2q99FHH1X79u1Vr149HTt2TAsWLNCsWbM0adKkHN8fAEBqXDUCZ4Vp06apXbt26tOnj9q1a6cjR45o4cKFqb5eTxIdHa0HH3xQ559/vjp16qSDBw/q/fffl+R9vb1gwQJdcskluvnmm9WwYUP94Q9/0IYNGzLsQTxdEyZM0LXXXqshQ4aoZcuWWrNmjRYuXKiqVatKkmrVqqW3335bCxcu1Pnnn69nn31W48ePT7aNFi1a6LPPPtOWLVvUpUsXnX/++Ro1alSqk76yIioqSnPmzNGaNWvUrFkz3X777XrkkUeSjf8tU6aM/u///k8XXXSRmjVrprlz5+rtt99W3bp1Q8sMGDBAp06dUvv27XXzzTfrpptuSjZ0Y9q0aRoyZIjuu+8+NWrUSFdccYU+++yzDHtH80LHjh01e/ZsTZ8+XS1atNDMmTM1Z86cZNcQ3rVrV6px4zNnzlTbtm3VqVMnrVu3TkuWLEl2JY0SJUro448/VkJCgtq2bas//OEP6tKli6ZOnRpa5tChQ7rtttvUtGlTderUSXPnztXMmTM1bNiw3L/jABAgltHlh3JTmzZtXFavy4r8UWfkBzlab0tM2r2wmWleN+2xmplZe8PaHK2H3BcbG6tmzZrphRdeyO9SAAABZmYrnXNtUk6nRxgAAACBxBhh5KttCYlqMtn7IYFfo1Jf6qz+Y/V1Tvlz8rqsDPXs2TPdX/h64IEH9MADD+RxRTmzbdu2VJctC5fRFRUAADgbEISRr6qVNMUN886cv7xG1VTzi5QpkmpafvvnP/+Z7i/WlStXLo+ryblq1aopLi4uw/mna8mSJae9DQAAcgtBGPmqcJSpfjnvslrRlaMzWfrMkJPr8Z6JChcuHJHLrAEAUFAxRhgAAACBRBAGAABAIBGEAQAAEEgEYQAAAAQSQRgAAACBRBAGAABAIBGEAQAAEEgEYQAAAAQSQRgAAACBRBAGAABAIBGEAQAAEEgEYQAAAAQSQRgAAACBRBAGAABAIBGEAQAAEEgEYQAAAAQSQRgAAACBRBAGAABAIBGEAQAAEEgEYQAAAAQSQRgAAACBRBAGAABAIBGEAQAAEEgEYQAAAARSloKwmfUwsw1mttHMRmaw3FVm5sysTeRKBAAAACIv0yBsZoUkTZbUU1ITSf3NrEkay5WUNFzS15EuEgAAAIi0rPQIt5O00Tm32Tl3XNJsSX3TWO4RSRMkHY1gfQAAAECuyEoQri5pe9jtHf60EDNrLammc+6DjDZkZreY2QozW7F3795sFwsAAABEymmfLGdmUZKekXRPZss65152zrVxzrWpWLHi6e4aAAAAyLGsBOGdkmqG3a7hT0tSUlIzSUvMbIukDpLmccIcAAAAzmRZCcLfSGpgZnXN7BxJ10malzTTOZfgnKvgnKvjnKsjaZmkPs65FblSMQAAABABmQZh59xJSXdI+khSvKQ3nHPrzGycmfXJ7QIBAACA3FA4Kws55xZIWpBi2ph0lo09/bIAAACA3MUvywEAACCQCMIAAAAIJIIwAAAAAokgDAAAgEAiCAMAACCQCMIAAAAIJIIwAAAAAokgDAAAgEAiCAMAACCQCMIAAAAIJIIwAAAAAokgDAAAgEAiCAMAACCQCMIAAAAIJIIwAAAAAokgDAAAgEAiCAMAACCQCMIAAAAIJIIwAAAAAokgDAAAgEAiCAMAACCQCMIAAAAIJIIwAAAAAokgDAAAgEAiCAMAACCQCMIAAAAIJIIwAAAAAokgDAAAgEAiCAMAACCQCMIAAAAIJIIwAAAAAokgDAAAgEAiCAMAACCQCMIAAAAIJIIwAAAAAokgDAAAgEAiCAMAACCQCMIAAAAIJIIwAAAAAokgDAAAgEAiCAMAACCQCMIAAAAIJIIwAAAAAokgDAAAgEAiCAMAACCQCMIAAAAIJIIwAAAAAokgDAAAgEAiCAMAACCQCMIAAAAIJIIwAAAAAokgDAAAgEAiCAMAACCQCMIAAAAIJIIwAAAAAokgDAAAgEAiCAMAACCQshSEzayHmW0ws41mNjKN+X82s/VmtsbMFptZ7ciXCgAAAEROpkHYzApJmiypp6QmkvqbWZMUi62W1MY510LSW5KeiHShAAAAQCRlpUe4naSNzrnNzrnjkmZL6hu+gHPuE+fcEf/mMkk1IlsmAAAAEFlZCcLVJW0Pu73Dn5aemyR9eDpFAQAAALmtcCQ3ZmZ/lNRGUpd05t8i6RZJqlWrViR3DQAAAGRLVnqEd0qqGXa7hj8tGTPrKulBSX2cc8fS2pBz7mXnXBvnXJuKFSvmpF4AAAAgIrIShL+R1MDM6prZOZKukzQvfAEzayXpJXkh+MfIlwkAAABEVqZB2Dl3UtIdkj6SFC/pDefcOjMbZ2Z9/MWelFRC0ptmFmdm89LZHAAAAHBGyNIYYefcAkkLUkwbE/Z/1wjXBQAAAOQqflkOAAAAgUQQBgAAQCARhAEAABBIBGEAAAAEEkEYAAAAgUQQBgAAQCARhAEAABBIBGEAAAAEEkEYAAAAgUQQBgAAQCARhAEAABBIBGEAAAAEEkEYAAAAgUQQBgAAQCARhAEAABBIBGEAAAAEEkEYAAAAgUQQBgAAQCAVzu8CACC76oz8IEfrbRnfK8KVAAAKMnqEAQAAEEgEYQAAAAQSQRgAAACBRBAGAABAIBGEAQAAEEgEYQAAAAQSQRgAAACBRBAGAABAIBGEAQAAEEgEYQAAAAQSQRgAAACBRBAGAABAIBGEAQAAEEgEYQAAAAQSQRgAAACBRBAGAABAIBXO7wKAIKgz8oMcrbdlfK8IVwIAAJIQhAEEx9jSOVwvIbJ1nGH4oAYgqBgaAQAAgEAiCAMAACCQCMIAAAAIJIIwAAAAAomT5QAgE81nNM/RemtvWBvhSgAAkUSPMAAAAAKJIAwAAIBAIggDAAAgkAjCAAAACCROlgMA5Ay/1AeggKNHGAAAAIFEEAYAAEAgEYQBAAAQSARhAAAABBJBGAAAAIFEEAYAAEAgEYQBAAAQSARhAAAABBI/qAEAAID0ncU/nkMQBgAAZ6Q6Iz/I0XpbxveKcCVnhxy3Z0yECzmDZGlohJn1MLMNZrbRzEamMT/azOb48782szoRrxQAAACIoEx7hM2skKTJki6TtEPSN2Y2zzm3PmyxmyT94pyrb2bXSZog6drcKBgAgDNZTnrd6MEE8kdWhka0k7TRObdZksxstqS+ksKDcF9JY/3/35L0gpmZc85FsFYgeM7icVkAAOS3rATh6pK2h93eIal9ess4506aWYKk8pJ+ikSRWcVYIgAAAGSVZdZpa2ZXS+rhnBvq3x4oqb1z7o6wZb7zl9nh397kL/NTim3dIukW/2ZDSRsidUdyUQXlcaA/y9GekUNbRhbtGVm0Z+TQlpFFe0ZWQWnP2s65iiknZqVHeKekmmG3a/jT0lpmh5kVllRa0r6UG3LOvSzp5axWfCYwsxXOuTb5XcfZgvaMHNoysmjPyKI9I4e2jCzaM7IKentm5aoR30hqYGZ1zewcSddJmpdimXmSbvD/v1rSvxkfDAAAgDNZpj3C/pjfOyR9JKmQpKnOuXVmNk7SCufcPEn/J2mWmW2U9LO8sAwAAACcsbL0gxrOuQWSFqSYNibs/6OSrolsaWeMAjWUowCgPSOHtows2jOyaM/IoS0ji/aMrALdnpmeLAcAAACcjbL0y3IAAADA2YYgDAAAgEAiCAMAACCQsnSyXBCZWTlJcs79nN+1AMg7ZlbCOXcov+sAEDlmVlner+BK0k7n3J78rAdnDk6WC2NmtSQ9IelSSfslmaRSkv4taaRzbku+FXeWMbNGzrn/5HcdBYmZmaR2Cnsxl7Sca3ZHlpltc87Vyu86zhZ8sMg5wtvpM7OWkqbI+6GvpB8DqyHvPf5PzrlV+VPZ2cXM1jrnmud3HTlBj3BycyRNlDTAOXdKksyskLxLw82W1CH/SjvrLJJE2MgiM+sm6UVJ3yv5i3l9M/uTc25RvhVXAJnZn9ObJalEXtYSAOvFcz1b0gtvZrZfhLfsmi7pVufc1+ETzayDpGmSzs+PogoiM+uX3ixJVfKylkgiCCdXwTk3J3yCH4hnm9kj+VRTgWVmz6c3S1KZPCzlbPCcpK4pv5Uws7ryrvHdOD+KKsAek/SkpJNpzOPciWzig0XETRfhLVKKp2xHSXLOLTOz4vlRUAE2R9KrktL6FjImj2uJGIJwcivN7EVJMyRt96fVlPfz0avzraqCa4ikeyQdS2Ne/zyupaArLGlHGtN3SiqSx7WcDVZJetc5tzLlDDMbmg/1FHR8sIgswlvkfGhmH0iaqeTv64MkLcy3qgqmNZKecs59l3KGmXXNh3oigiCc3CBJN0l6WMnHYSb9jDSy5xtJ3znnvko5w8zG5n05BdpUSd+Y2WwlfzG/ThybOTFE0r505rXJy0LOEnywiCzCW4Q45+4ys56S+ir5+/pk/1dzkXUjJB1IZ97v87COiOJkOeQa/8obR51zR/K7lrOBmTVW6hfzec659flXFSCZWUNJPzvn9qYxrzIneWVfOuFtHuENiCyCcBgzKyyvR/hKJX/xeU/S/znnTuRTaQDyiJm97Jy7Jb/rAJC7eK5nT1hG+r2kav7kAp+RCMJhzOx1eZdUmaHfxmPWkDdGuJxz7tp8Ku2sY2YfOud65ncdZwPaMvuSrhOe1ixJ3zrnauRlPQWdmZWWNEpeJ0IleSfT/CjvDXK8c25/vhVXAIW1Z19JlUV75hjP9cg5WzMSY4ST+51z7rwU03ZIWmZm/82PggoyM2ud3ixJLfOwlAKPtoy4vZK2ymu/JM6/XSlfKirY3pB3vfVY59xuSTKzKvLeIN+Q1C0fayuIktrz4hTtOVi0Z3bxXI+cszIjEYST+9nMrpE01zmXKElmFiXvOsK/5GtlBdM3kj5V8hegJGXytpQCj7aMrM2SLnXObUs5w8y2p7E8MlbHOTchfIIf4CaY2Y35VFNBll57jjezIflUU0HFcz1yzsqMRBBO7jpJEyRN9i9cLnkh4xN/HrInXt61ML9POYMXoGyjLSNroqSyklK9Ocr7dUlkz1Yzu0/SjKQT4/xfRRus3656gKyjPSNnoniuR8pZmZEYI5xCOmfmv+eci8+/qgomM7ta0lrn3IY05l3pnHs376sqmGjLyDOzRkr7rHye69lkZmUljZTXnklfN++Rd+nJ8c65AttblB9oz8jiuR45Z2NG4kLnYczsfkmvyRs/9LX/J0mvm9nIfCusgHLOvZVWcPOVzdNiCjjaMrL83rbZ8oaaLPf/TDzXc8Q594tz7n7nXCPnXDn/r7Fz7n55J9AhG2jPyOG5Hjlna0aiRziMP9i7acpLgJjZOZLWOeca5E9lZx8z2+acq5XfdZwNaMvs47medzg+I4v2zB6e65FztrYlY4STS5R3bbytKaZX9echG8xsTXqz5F0SCFlEW0Ycz/UI4viMLNozoniuR85Z2ZYE4eRGSFpsZt/rtxMSakmqL+mO/CqqAKssqbtSn01qklL97DIyRFtG1gjxXI8kjs/Ioj0jZ4R4rkfKCJ2FbUkQDuOcW2hm50lqp+QDwb9xzp3Kv8oKrPmSSjjn4lLOMLMleV5NwUZbRhDP9Yjj+Iws2jNCeK5HztnalowRBgAAQCBx1QgAAAAEEkEYAAAAgUQQBgAAQCARhAEAABBIBGEAAAAE0v8DCU8ZI5UhbHIAAAAASUVORK5CYII=", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "%matplotlib inline\n", + "\n", + "df.plot.bar(\n", + " title=\"Comparing noise-free simulator, noisy simulator, and Aspen-M\",\n", + " figsize=(12, 6),\n", + ")\n", + "\n", + "text = f\"f_free_aspen = {f_free_aspen:.3f} \\nf_noise_model_aspen = {f_noisy_aspen:.3f}\"\n", + "plt.text(1, 0.5, text, fontsize=14)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "aa8ffab8-e062-4c33-9c9d-4a312cd76b63", + "metadata": {}, + "source": [ + "We confirm that the simulator with a noise model is closer to the distribution produced by Aspen-M-3." + ] + }, + { + "cell_type": "markdown", + "id": "c4571a5e-2f8d-4767-b28e-a527d2490830", + "metadata": {}, + "source": [ + "### Smaller, reduced noise models\n", + "\n", + "The full Rigetti Aspen-M-3 noise model contains due to non-uniform qubit noise. We can obtain simpler, smaller noise models by coarse graining the model above.\n", + "\n", + "Here, we consider taking the average over all qubits for the $T_1$, $T_2$, depolarizing, and readout depolarizing rates. This is a substantially smaller noise model, but may be less accurate. \n", + "\n", + "We use the `from_filter` function to extract all instructions with amplitude dampening noise in the model. We then compute the mean of the error probabilities. " + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "eac8479f-4b29-42d8-a15a-ba10aae82d3f", + "metadata": {}, + "outputs": [], + "source": [ + "avg_t1 = np.mean(\n", + " [\n", + " n.noise.parameters\n", + " for n in noise_model.from_filter(noise=AmplitudeDamping).instructions\n", + " ]\n", + ")\n", + "avg_t2 = np.mean(\n", + " [\n", + " n.noise.parameters\n", + " for n in noise_model.from_filter(noise=PhaseDamping).instructions\n", + " ]\n", + ")\n", + "avg_depo = np.mean(\n", + " [\n", + " n.noise.parameters\n", + " for n in noise_model.from_filter(noise=Depolarizing).instructions\n", + " ]\n", + ")\n", + "avg_readout = np.mean(\n", + " [n.noise.parameters for n in noise_model.from_filter(noise=BitFlip).instructions]\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "d1a64cae-226c-45d2-9af3-4b5b7a36c7a4", + "metadata": {}, + "source": [ + "Now we construct a new noise model with the mean values above:" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "e49eb24c-5f24-4084-9d4c-c2e7e82fc259", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Gate Noise:\n", + " AmplitudeDamping(0.0019483910859341453), GateCriteria(None, None)\n", + " PhaseDamping(0.0018677309884621795), GateCriteria(None, None)\n", + " Depolarizing(0.007153677053977023), GateCriteria(None, None)\n", + "Readout Noise:\n", + " BitFlip(0.053481250000000015), ObservableCriteria(None, None)\n" + ] + } + ], + "source": [ + "simple_noise_model = NoiseModel()\n", + "simple_noise_model.add_noise(AmplitudeDamping(avg_t1), GateCriteria())\n", + "simple_noise_model.add_noise(PhaseDamping(avg_t2), GateCriteria())\n", + "simple_noise_model.add_noise(Depolarizing(avg_depo), GateCriteria())\n", + "simple_noise_model.add_noise(BitFlip(avg_readout), ObservableCriteria())\n", + "\n", + "print(simple_noise_model)" + ] + }, + { + "cell_type": "markdown", + "id": "b44bbbd1-fb65-4b8f-8dfa-0ea5aa7979b2", + "metadata": {}, + "source": [ + "We can see the resultant circuits contain qubit-independent noise:" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "c83e96f6-54b0-445b-bcdd-8a7a16691b62", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : | 0 | 1 | 2 |\n", + " \n", + "q0 : -Rx(0.75)-AD(0.0019)-PD(0.0019)-DEPO(0.0072)-C-AD(0.0019)-PD(0.0019)-DEPO(0.0072)-I--------AD(0.0019)-PD(0.0019)-DEPO(0.0072)-\n", + " | \n", + "q1 : -I--------AD(0.0019)-PD(0.0019)-DEPO(0.0072)-Z-AD(0.0019)-PD(0.0019)-DEPO(0.0072)-Rx(0.50)-AD(0.0019)-PD(0.0019)-DEPO(0.0072)-\n", + " \n", + "q2 : -Rz(0.50)-AD(0.0019)-PD(0.0019)-DEPO(0.0072)-I-AD(0.0019)-PD(0.0019)-DEPO(0.0072)-I--------AD(0.0019)-PD(0.0019)-DEPO(0.0072)-\n", + "\n", + "T : | 0 | 1 | 2 |\n" + ] + } + ], + "source": [ + "simple_noisy_circ = simple_noise_model.apply(circ)\n", + "print(simple_noisy_circ)" + ] + }, + { + "cell_type": "markdown", + "id": "e2c20b79-cbf2-4897-80b3-452c78d56a03", + "metadata": {}, + "source": [ + "We run the circuit on a noisy simulator below" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "a1bb19e8-6824-4a50-b9fb-ae06c14359b6", + "metadata": {}, + "outputs": [], + "source": [ + "simple_noisy_task = noisy_simulator.run(simple_noisy_circ, shots=100_000)\n", + "simple_noisy_probs = simple_noisy_task.result().measurement_probabilities" + ] + }, + { + "cell_type": "markdown", + "id": "76418e5c-be5b-4b3a-8916-c0f56f003cd7", + "metadata": {}, + "source": [ + "and add it to the previous dataframe" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "b4d27a95-612d-4dea-9f6a-98d4525b0a70", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    aspen-mnoisy_simfree_simsimple_noisy_sim
    0000.533020.745440.813800.78149
    1000.117480.131510.124860.13176
    0100.246810.087060.053380.06130
    1100.056870.027420.007960.01061
    0110.018190.00055NaN0.00096
    1110.004770.00021NaN0.00015
    0010.018920.00650NaN0.01179
    1010.003940.00131NaN0.00194
    \n", + "
    " + ], + "text/plain": [ + " aspen-m noisy_sim free_sim simple_noisy_sim\n", + "000 0.53302 0.74544 0.81380 0.78149\n", + "100 0.11748 0.13151 0.12486 0.13176\n", + "010 0.24681 0.08706 0.05338 0.06130\n", + "110 0.05687 0.02742 0.00796 0.01061\n", + "011 0.01819 0.00055 NaN 0.00096\n", + "111 0.00477 0.00021 NaN 0.00015\n", + "001 0.01892 0.00650 NaN 0.01179\n", + "101 0.00394 0.00131 NaN 0.00194" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "simple_noisy_sim = pd.DataFrame.from_dict(simple_noisy_probs, orient=\"index\").rename(\n", + " columns={0: \"simple_noisy_sim\"}\n", + ")\n", + "df = df.join(simple_noisy_sim)\n", + "df" + ] + }, + { + "cell_type": "markdown", + "id": "b1699bc2-712f-4a99-b9d6-0a0920114a13", + "metadata": {}, + "source": [ + "We compute the fidelity between the simple noise model and the QPU:" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "d7710e0b-29ac-4968-aa00-e23cb8b32269", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Total fidelity between Aspen-M and full noise model is: 0.9582415634979304\n", + "\n", + "Total fidelity between Aspen-M and simple noise model is: 0.9401126418474742\n", + "\n", + "Total fidelity between Aspen-M and noise-free is: 0.915784824249657\n" + ] + } + ], + "source": [ + "f_simple = fidelity(df[\"simple_noisy_sim\"], df[\"aspen-m\"])\n", + "\n", + "print(f\"\\nTotal fidelity between Aspen-M and full noise model is: {f_noisy_aspen}\")\n", + "print(f\"\\nTotal fidelity between Aspen-M and simple noise model is: {f_simple}\")\n", + "print(f\"\\nTotal fidelity between Aspen-M and noise-free is: {f_free_aspen}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "e36e19d0-664a-4cb4-a2e3-0061cd60a6c1", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsIAAAF+CAYAAACI8nxKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABPN0lEQVR4nO3deZxOdf/H8ddnDMbW2PdtZBuMdchSUcmSEG2WMJWKUNwlKql0Ky1KpNTdbUnu4qZCFG0iKUbGOnVbmixRKEtkne/vj+ty/WbGzLhwzYyZ6/18PObxmOuc7znnc84crvf1vb7nHHPOISIiIiISbEKyugARERERkaygICwiIiIiQUlBWERERESCkoKwiIiIiAQlBWERERERCUoKwiIiIiISlBSERSRbMLOeZrY4k7f5mJm9nUHrXmJmfTNi3ZcKM2tlZjuzug4RkbQoCIsEGTPrYWaxZvaXme02s0/M7MqsrutcnHMznHNtMnmbzzrnsjysmlmCmbXO6joygnlsM7NNWV1Laswsxsycmb2SYnpn7/Sp6Sx7m5l9a2ZHzWxJRtcqIudPQVgkiJjZP4BxwLNAKaAi8DrQOQvLOiczC83qGrKrbHDsrgZKAlXMrHFWF5OGrcBtKY5lH+B/51juDzz/3sZkUF0icpEUhEWChJmFA6OAAc65D5xzR5xzJ51z851zQ71t8prZODP71fszzszyeue1MrOdZvaImf3u7U2+ycxuMLP/mdkfZvZYku09ZWazzWymmR02sx/MrF6S+cPNbKt33iYz65JkXoyZLTezV8xsP/CUd9o3Sdo4M+tnZpvN7ICZTTQz887LZWZjzWyfmf1sZgO97VMNhWY2zMx2eWv5ycyuS7IP73p/r+xdx51mtsPM/vRuv7GZrfPW8FqK/X83yevKadVgZpeb2Zdmtt9b8wwzK+ydNx3PB5b53l78R7zTO5nZRu92l5hZZJL1JXj3aR1wxMxC09rHVGrpYGZrzOyQdz+fSmUf+pjZdm+tjyeZn8/MpnqPzSbAn2DbB5gLLPT+nrSWGG9v8WHv37FnkunLzew1MztoZj8m3R8zCzezf3vP0V1m9k8zy5Vk2W/M7CVvnT+bWftz1LgHWA+09a6jKNAcmJfeQs65z51zs4Bf/TgOIpIFFIRFgkczIAz4MJ02jwNNgfpAPaAJMCLJ/NLedZQDRgL/Au4AGgFXAU+YWUSS9p2B/wJFgf8AH5lZbu+8rd5lwoGngXfNrEySZa8AtuHpuR6dRr034glbdYHb8AYV4B6gvXc/GgI3pbXDZlYDGAg0ds4V8q4jIa323rqqAbfj6e17HGgN1MbTa9gynWXTLAN4DigLRAIVgKcAnHO9gO1AR+dcQefcC2ZWHXgPGAyUwBMi55tZniTr7A50AAoDl5/HPh4BenuX6wD0N7ObUrS5EqgBXAeMTBLCn/Ru63LvNvqQDjPLD9wCzPD+dDuzD2ZWABgPtPfW3ByIS7L4FXjOoeLe7X7gDagAU4FTQFWgAdAG6Jti2Z+8y74A/PvMh6h0vIPnuAB0wxPej59jGRG5xCkIiwSPYsA+59ypdNr0BEY55353zu3FE1B7JZl/EhjtnDsJvI8nSLzqnDvsnNsIbMIToM9Y7Zyb7W3/Mp4Q3RTAOfdf59yvzrlE59xMYDOe4H3Gr865Cc65U865v9Ood4xz7oBzbjvwFZ7gC55Q/Kpzbqdz7k/S/2r6NJAXqGVmuZ1zCc65rem0f8Y5d8w5txhPaHzPe7x2AcvwBK/z4pzb4pz7zDl33HvcXwbSC9S3Awu8y5wEXgLy4QmLZ4x3zu3wHju/99E5t8Q5t977d1mHJ3CnrOVp59zfzrm1wFr+/29+G57z4w/n3A48QTY9XfGEycXAAiA3nvB9RiJQx8zyOed2e8+xM34Hxnm/1ZiJJ9h2MLNSwA3AYO+3Hr8Dr+AJr2f84pz7l3PuNDANKIPnA1d6PgRameebld54grGIZHMKwiLBYz9QPK3hAV5lgV+SvP7FO823Dm94ADgTTn9LMv9voGCS1zvO/OKcSwR2nlmfmfU2szjvV/sHgDp4gvVZy6ZjT5LfjybZdtkUy6e5LufcFjw9q08Bv5vZ+2ZWNq32nL2/6e2/X8yslHe7u8zsEPAuyY9FSsn+Tt5juwNPT/0ZSY+93/toZleY2VdmttfMDgL9UqnF3+Oe9FxKTR9glvfDzjFgjncazrkjeAJ/P2C3mS0ws5pJlt3lnHMptlUWqIQnUO9Ocm69iWcc8ln1O+eOen8taGZXeYef/GVmSUM33g8UC/B8Q1LMObc86Xwzm5Rk2ccQkWxBQVgkeKzA0/t2UzptfsUTJM6oyMWNb6xw5hczCwHKA7+aWSU8wyoG4gkVhYENeIYInJE05Jyv3d5tnVVHapxz/3HOXYln3x3w/EVs+4wjQP4kr0un0/ZZ73ajnHOX4Rlukt6xSPZ38n6tXwHYldYy57GP/8Ez9rWCcy4cmJSilvTsJvmxrphWQzMrD1wL3GFme8xsD55hEjeYWXFvzYucc9fj6bH9Ec85c0a5FMMZzpyrO/Cc58Wdc4W9P5c552qfq3jn3DLv8JOCabR/B3gIzweVlMv2S7Lss+falohcGhSERYKEc+4gnnG9E81zkVt+M8ttZu3N7AVvs/eAEWZWwhtGRpLKm/55aGRmXb290IPxBJTvgAJ4wtheADO7E0+PcKDMAh40s3Lei86GpdXQzGqY2bXmuSjwGJ5e3cQA1BAHXG1mFb1fpz+aTttCwF/AQTMrBwxNMf83oEqS17PwDAO4zjvm+iE8x/bb1FZ+nvtYCPjDOXfMzJoAPdLbyRRmAY+aWRFv0B2UTtteeO66UAPPkJb6QHU83xp09/aSd/aOFT6O5/gkrbkk8ID3HL4Vz9jqhc653XiGWow1s8vMLMQ8FyNeyNjtlL4Grgcm+NPYPBdthgGhQIiZhSUZIy8ilwAFYZEg4pwbC/wDz9e7e/H0ng0EPvI2+ScQC6zDc5X8D95pF2ounq+3/8QTfLp6x3RuAsbi6aX+DYgClqe5lvP3LzxhaB2wBs/FZKfwjJVNKS+eMcT78HxlXpL0Q6tfnHOfATO9NawGPk6n+dN4Luo7iOfr9w9SzH8OzweUA2b2sHPuJzy9xhO8dXfEczHdiTTWfz77eD8wyswO4/kgNCu9/UxlP34BfsZz/Ken07YP8Lpzbk/SHzw90H3wvD/9A08v7x94xin3T7L893guWtyH52LKW5xz+73zegN58IxZ/xOYjadX+aI4jy+cc3/4uUgvPB863sBzYejfJO/VFpEsZsmHWImIBIZ5brtV1Tl3xyVQS3tgknOu0jkbyyXPzGKAvt6hHiIiF0w9wiKS45jnfrY3mOf+ueXw3F4rvdvGiYhIEFIQFpGcyPB8Tf8nnqER8Xi+5hcREfHR0AgRERERCUrqERYRERGRoKQgLCIiIiJBKb0nTGWo4sWLu8qVK2fV5kVEREQkSKxevXqfc65EyulZFoQrV65MbGxsVm1eRERERIKEmaX6yHcNjRARERGRoKQgLCIiIiJBSUFYRERERIJSlo0RFhEREcksJ0+eZOfOnRw7diyrS5EMFBYWRvny5cmdO7df7RWERUREJMfbuXMnhQoVonLlyphZVpcjGcA5x/79+9m5cycRERF+LaOhESIiIpLjHTt2jGLFiikE52BmRrFixc6r119BWERERIKCQnDOd75/YwVhEREREUnTXXfdRcmSJalTp05WlxJwGiMsIiIiQafy8AUBXV/CmA4BXd+lJCYmhoEDB9K7d++sLiXg1CMsIiIikgluuukmGjVqRO3atXnrrbc4ffo0MTEx1KlTh6ioKF555RUAWrVqxYMPPkj9+vWpU6cOK1euBODIkSPcddddNGnShAYNGjB37lwApk6dSteuXWnXrh3VqlXjkUceSXX7U6dO5aabbuL666+ncuXKvPbaa7z88ss0aNCApk2b8scff6S63NVXX03RokUz4IhkPfUIi4iIiGSCyZMnU7RoUf7++28aN25Mo0aN2LVrFxs2bADgwIEDvrZHjx4lLi6OpUuXctddd7FhwwZGjx7Ntddey+TJkzlw4ABNmjShdevWAMTFxbFmzRry5s1LjRo1GDRoEBUqVDirhg0bNrBmzRqOHTtG1apVef7551mzZg1DhgzhnXfeYfDgwZlxKC4Z6hEWERERyQTjx4+nXr16NG3alB07dnDixAm2bdvGoEGD+PTTT7nssst8bbt37w54emMPHTrEgQMHWLx4MWPGjKF+/fq0atWKY8eOsX37dgCuu+46wsPDCQsLo1atWvzyyy+p1nDNNddQqFAhSpQoQXh4OB07dgQgKiqKhISEjD0AlyAFYREREZEMtmTJEj7//HNWrFjB2rVradCgAcePH2ft2rW0atWKSZMm0bdvX1/7lHc/MDOcc8yZM4e4uDji4uLYvn07kZGRAOTNm9fXNleuXJw6dYoPP/yQ+vXrU79+fWJjY89qFxIS4nsdEhLCqVOn2LFjh2+ZSZMmZdjxuFRoaMQ5RE2L8qvd+j7rM7gSERERya4OHjxIkSJFyJ8/Pz/++CPfffcd+/btIzExkZtvvpkaNWpwxx13+NrPnDmTa665hm+++Ybw8HDCw8Np27YtEyZMYMKECZgZa9asoUGDBmlus0uXLnTp0sX3+swQjPRUqFCBuLi4i9rX7ERBWERERCSDtWvXjkmTJhEZGUmNGjVo2rQpu3btolWrViQmJgLw3HPP+dqHhYXRoEEDTp48yeTJkwF44oknGDx4MHXr1iUxMZGIiAg+/vjjDK+9e/fuLFmyhH379lG+fHmefvpp7r777gzfbmYw59y5G5m1A14FcgFvO+fGpJhfEZgGFPa2Ge6cW5jeOqOjo92ZbvpLmXqERUREsr/4+HjfMIJLXatWrXjppZeIjo7O6lKypdT+1ma22jl31gE95xhhM8sFTATaA7WA7mZWK0WzEcAs51wDoBvw+gXWLiIiIiKSKfwZGtEE2OKc2wZgZu8DnYFNSdo44MyljuHAr4EsUkRERCRYLFmyJKtLCBr+3DWiHLAjyeud3mlJPQXcYWY7gYXAoNRWZGb3mlmsmcXu3bv3AsoVEREREQmMQN0+rTsw1TlXHrgBmG5mZ63bOfeWcy7aORddokSJAG1aREREROT8+ROEdwFJH01S3jstqbuBWQDOuRVAGFA8EAWKiIiIiGQEf4LwKqCamUWYWR48F8PNS9FmO3AdgJlF4gnCGvsgIiIiIpescwZh59wpYCCwCIjHc3eIjWY2ysw6eZs9BNxjZmuB94AY58992UREREREsohfD9Tw3hN4YYppI5P8vgloEdjSRERERDLIU+EBXt/BgK5u5MiRXH311bRu3Tqg6z1j3rx5bNq0ieHDh2fI+rMLPVlORERE5BIzatSoDF1/p06d6NSp07kb5nCBumtE0IuvGen3j4iIiASXhIQEIiMjueeee6hduzZt2rTh77//Ji4ujqZNm1K3bl26dOnCn3/+CUBMTAyzZ88GYPjw4dSqVYu6devy8MMPc/jwYSIiIjh58iQAhw4dSvY6pfHjx/uW79atGwBTp05l4MCBvm3179+fpk2bUqVKFZYsWcJdd91FZGQkMTExGXxkspaCsIiIiEgm2Lx5MwMGDGDjxo0ULlyYOXPm0Lt3b55//nnWrVtHVFQUTz/9dLJl9u/fz4cffsjGjRtZt24dI0aMoFChQrRq1YoFCxYA8P7779O1a1dy586d6nbHjBnDmjVrWLduHZMmTUq1zZ9//smKFSt45ZVX6NSpE0OGDGHjxo2sX7+euLi4gB6HS4mCsIiIiEgmiIiIoH79+gA0atSIrVu3cuDAAVq2bAlAnz59WLp0abJlwsPDCQsL4+677+aDDz4gf/78APTt25cpU6YAMGXKFO688840t1u3bl169uzJu+++S2ho6qNiO3bsiJkRFRVFqVKliIqKIiQkhNq1a5OQkHCRe37pUhAWERERyQR58+b1/Z4rVy4OHDhwzmVCQ0NZuXIlt9xyCx9//DHt2rUDoEWLFiQkJLBkyRJOnz5NnTp10lzHggULGDBgAD/88AONGzfm1KlTadYWEhKSrM6QkJBU2+cUCsIiIiIiWSA8PJwiRYqwbNkyAKZPn+7rHT7jr7/+4uDBg9xwww288sorrF271jevd+/e9OjRI93e4MTERHbs2ME111zD888/z8GDB/nrr78yZoeyId01QkRERIJPgG93dqGmTZtGv379OHr0KFWqVPENdzjj8OHDdO7cmWPHjuGc4+WXX/bN69mzJyNGjKB79+5prv/06dPccccdHDx4EOccDzzwAIULF86o3cl2LKueexEdHe1iY2OzZNvnI2palF/tZj3n/9cGkT/GX2g5IiIicgHi4+OJjMxZd26aPXs2c+fOZfr06VldyiUltb+1ma12zkWnbKseYREREZFsZtCgQXzyyScsXLjw3I0lTQrCIiIiItnMhAkTzpo2YMAAli9fnmzagw8+mO4Y4mCnICwiIiKSA0ycODGrS8h2dNcIEREREQlKCsIiIiIiEpQUhEVEREQkKGmMsIiIiAQdf2+P6q/1fdYHdH2SOYIzCD8V7n/biIoZV4eIiIgEjfHjx/PGG2/QsGFDZsyYkSnbbN68Od9++22mbCs7Cs4gLCIiIpLJXn/9dT7//HPKly/vm3bq1ClCQzMujikEp09jhEVEREQyWL9+/di2bRvt27cnPDycXr160aJFC3r16sXevXu5+eabady4MY0bN/bdC/jIkSPcddddNGnShAYNGjB37tw0179x40aaNGlC/fr1qVu3Lps3bwagYMGCACxZsoSWLVvSuXNnqlSpwvDhw5kxYwZNmjQhKiqKrVu3ZvxBuASpR1hEREQkg02aNIlPP/2Ur776itdee4358+fzzTffkC9fPnr06MGQIUO48sor2b59O23btiU+Pp7Ro0dz7bXXMnnyZA4cOECTJk1o3bo1BQoUSHX9Dz74ID179uTEiROcPn36rDZr164lPj6eokWLUqVKFfr27cvKlSt59dVXmTBhAuPGjcuEI3FpURAWERERyWSdOnUiX758AHz++eds2rTJN+/QoUP89ddfLF68mHnz5vHSSy8BcOzYMbZv305kZORZ62vWrBmjR49m586ddO3alWrVqp3VpnHjxpQpUwaAyy+/nDZt2gAQFRXFV199FfB9zA4UhEVEREQyWdJe3cTERL777jvCwsKStXHOMWfOHGrUqHHO9fXo0YMrrriCBQsWcMMNN/Dmm29y7bXXJmuTN29e3+8hISG+1yEhIZw6depidifbUhAWERGRoHMp3e6sTZs2TJgwgaFDhwIQFxdH/fr1adu2LRMmTGDChAmYGWvWrKFBgwaprmPbtm1UqVKFBx54gO3bt7Nu3bqzgrCcTRfLiYiIiGSh8ePHExsbS926dalVqxaTJk0C4IknnuDkyZPUrVuX2rVr88QTT6S5jlmzZlGnTh3q16/Phg0b6N27d2aVn62Zcy5LNhwdHe1iY2OzZNvncx/hKD/vIzzrOf+/Uoj8Md7vtiIiInLx4uPjUx1bKzlPan9rM1vtnItO2VY9wiIiIiISlDRGWERERCSbWLRoEcOGDUs2LSIigg8//DCLKsreFIRFREREsom2bdvStm3brC4jx9DQCBEREREJSgrCIiIiIhKU/ArCZtbOzH4ysy1mNjyV+a+YWZz3539mdiDglYqIiIiIBNA5xwibWS5gInA9sBNYZWbznHO+ZwE654YkaT8ISP1uzyIiIiKXgPiagb2Vmm6Nmj350yPcBNjinNvmnDsBvA90Tqd9d+C9QBQnIiIiklP17duXTZs2nbuhHwoWLBiQ9ZzLyJEj+fzzzzNs/fPmzWPMmDEZtv6U/LlrRDlgR5LXO4ErUmtoZpWACODLNObfC9wLULGifw+qEBEREcmJ3n777awu4byNGjUqQ9ffqVMnOnXqlKHbSCrQF8t1A2Y7506nNtM595ZzLto5F12iRIkAb1pERETk0nTkyBE6dOhAvXr1qFOnDjNnzqRVq1acecpuwYIFGTp0KLVr16Z169asXLmSVq1aUaVKFebNmwfA1KlT6dy5M61ataJatWo8/fTTqW7rxRdfpHHjxtStW5cnn3wyzZoSEhKIjIzknnvuoXbt2rRp04a///4bgLi4OJo2bUrdunXp0qULf/75JwAxMTHMnj0bgOHDh1OrVi3q1q3Lww8/zOHDh4mIiODkyZMAHDp0KNnrlMaPH+9bvlu3br59HDhwoG9b/fv3p2nTplSpUoUlS5Zw1113ERkZSUxMzPkc/jT5E4R3ARWSvC7vnZaabmhYhIiIiEgyn376KWXLlmXt2rVs2LCBdu3aJZt/5MgRrr32WjZu3EihQoUYMWIEn332GR9++CEjR470tVu5ciVz5sxh3bp1/Pe///UF6TMWL17M5s2bWblyJXFxcaxevZqlS5emWdfmzZsZMGAAGzdupHDhwsyZMweA3r178/zzz7Nu3TqioqLOCt379+/nww8/ZOPGjaxbt44RI0ZQqFAhWrVqxYIFCwB4//336dq1K7lz505122PGjGHNmjWsW7eOSZMmpdrmzz//ZMWKFbzyyit06tSJIUOGsHHjRtavX09cXFya++Uvf4LwKqCamUWYWR48YXdeykZmVhMoAqy46KpEREREcpCoqCg+++wzhg0bxrJlywgPD082P0+ePL5wHBUVRcuWLcmdOzdRUVEkJCT42l1//fUUK1aMfPny0bVrV7755ptk61m8eDGLFy+mQYMGNGzYkB9//JHNmzenWVdERAT169cHoFGjRiQkJHDw4EEOHDhAy5YtAejTp89ZYTo8PJywsDDuvvtuPvjgA/Lnzw94xj1PmTIFgClTpnDnnXemue26devSs2dP3n33XUJDUx+t27FjR8yMqKgoSpUqRVRUFCEhIdSuXTvZcblQ5wzCzrlTwEBgERAPzHLObTSzUWaWdBBHN+B955y76KpEREREcpDq1avzww8/EBUVxYgRI84aa5s7d27MDICQkBDy5s3r+/3UqVO+dmfapPXaOcejjz5KXFwccXFxbNmyhbvvvjvNus5sByBXrlzJtpWe0NBQVq5cyS233MLHH3/sC/EtWrQgISGBJUuWcPr0aerUqZPmOhYsWMCAAQP44YcfaNy4carbTnocktaa8rhcKL8eseycWwgsTDFtZIrXT110NSIiIiKZILNvd/brr79StGhR7rjjDgoXLnzBF8p99tln/PHHH+TLl4+PPvqIyZMnJ5vftm1bnnjiCXr27EnBggXZtWsXuXPnpmTJkn5vIzw8nCJFirBs2TKuuuoqpk+f7usdPuOvv/7i6NGj3HDDDbRo0YIqVar45vXu3ZsePXrwxBNPpLmNxMREduzYwTXXXMOVV17J+++/z19//eV3jYHiVxAWERERkQu3fv16hg4dSkhICLlz5+aNN97g4YcfPu/1NGnShJtvvpmdO3dyxx13EB0dnWx+mzZtiI+Pp1mzZoDnIrx33333vIIwwLRp0+jXrx9Hjx6lSpUqvuEOZxw+fJjOnTtz7NgxnHO8/PLLvnk9e/ZkxIgRdO/ePc31nz59mjvuuIODBw/inOOBBx6gcOHC51VjIFhWjWSIjo52KQd4Z5qnws/dxisqwr/bvM16zv/ued10W0REJHPFx8cTGRnYh2hktqlTpxIbG8trr72W1aWka/bs2cydO5fp06dnyfZT+1ub2WrnXHTKtuoRFhEREZGAGDRoEJ988gkLFy48d+NLgIKwiIiISDYQExNzQffP3b9/P9ddd91Z07/44guKFSsWgMr+34QJE86aNmDAAJYvX55s2oMPPpjuHSUyi4KwiIiIBAXn3Fl3WQgGxYoVC8g9dy/UxIkTM21b5zvkN9BPlhMRERG55ISFhbF///7zDkqSfTjn2L9/P2FhYX4vox5hERERyfHKly/Pzp072bt3b1aXIhkoLCyM8uXL+91eQVhERERyvNy5cxMREZHVZcglRkMjRERERCQoKQiLiIiISFBSEBYRERGRoKQgLCIiIiJBSUFYRERERIKSgrCIiIiIBCUFYREREREJSgrCIiIiIhKUFIRFREREJCgpCIuIiIhIUFIQFhEREZGgpCAsIiIiIkFJQVhEREREgpKCsIiIiIgEJQVhEREREQlKCsIiIiIiEpQUhEVEREQkKCkIi4iIiEhQUhAWERERkaCkICwiIiIiQUlBWDJdYmIi9913H8WKFcPMWLJkSUDbi4iIiPjDryBsZu3M7Ccz22Jmw9Noc5uZbTKzjWb2n8CWKTnJwoULmTJlCvPnz2f37t00b948oO0vRdu3b6djx44UKFCA4sWL88ADD3DixIl0l9m6dStdunShRIkSXHbZZdx222389ttvydqMHj2aFi1aUKBAAcwszXW9++671K9fn7CwMIoXL07v3r0Dsl8iIiLZ2TmDsJnlAiYC7YFaQHczq5WiTTXgUaCFc642MDjwpUpOsWXLFsqUKUPz5s0pXbo0efLkuej25wqVWen06dN06NCBw4cPs2zZMt577z1mz57NQw89lOYyR44coU2bNjjn+PLLL1m+fDknTpygY8eOJCYm+todP36crl27Mnjw4DTXNX78eIYOHcrDDz/Mhg0b+Oqrr+jcuXMgd1FERCRbCvWjTRNgi3NuG4CZvQ90BjYlaXMPMNE59yeAc+73QBcqOUNMTAzTpk0DwMyoVKkSCQkJ592+VatWREZGUqBAAaZNm0blypVZtWoVmzZtYujQoSxdupR8+fJx3XXX8corr1C6dGnfOqdMmcKLL77Itm3bqFixIv379+fBBx8kJCRjRgotXryYjRs38ssvv1ChQgUAXnjhBfr27cvo0aO57LLLzlpm+fLl/Pzzz8TGxlKkSBEApk2bRpEiRfjyyy9p3bo1AKNGjQJg9uzZqW77wIEDPProo3z00Udcf/31vulRUVEB3UcREZHsyJ93/nLAjiSvd3qnJVUdqG5my83sOzNrF6gCJWd59dVXGTlyJOXLl2f37t2sWrXqgtu/++67OOdYtmwZ77zzDrt37+bqq6+mTp06rFy5ks8//5y//vqLzp07+3pR//Wvf/HYY48xatQo4uPjGTt2LM8//zyvv/56mjUsW7aMggULpvvz7LPPprn8ihUriIyM9IVggLZt23L8+HFWr16d6jLHjx/HzAgLC/NNCwsLIyQkhG+++SbdY5bU4sWLOX36NL/99hu1atWiXLlydOnShW3btvm9DhERkZzKnx5hf9dTDWgFlAeWmlmUc+5A0kZmdi9wL0DFihUDtGnJTsLDwylUqBC5cuVK1kt7Ie0jIiIYO3as7/XIkSOpV68ezz//vG/aO++8Q9GiRYmNjaVJkyY888wzvPDCC9xyyy2+dQwfPpzXX3+dgQMHplpDdHQ0cXFx6dZZtGjRNOft2bOHUqVKJZtWvHhxcuXKxZ49e1JdpmnTphQsWJChQ4f69mf48OGcPn2a3bt3p1tLUtu2bSMxMZF//vOfjBs3jqJFizJq1CiuueYa4uPjyZ8/v9/rEhERyWn8CcK7gApJXpf3TktqJ/C9c+4k8LOZ/Q9PME7W3eecewt4CyA6OtpdaNEiAI0aNUr2evXq1SxdupSCBQue1Xbr1q1ERESwY8cO7rvvPvr37++bd+rUKZxL+3TMly8fVatWDVzhfihRogT//e9/6d+/P6+//johISF0796dhg0bntcQjsTERE6ePMn48eNp06YNADNmzKB06dLMnz+f22+/PaN2QURE5JLnTxBeBVQzswg8Abgb0CNFm4+A7sAUMyuOZ6iEvnuVDFWgQIFkrxMTE+nQoQMvvfTSWW1LlSrF0aNHAZg0adJ53Xli2bJltG/fPt02jz32GI899liq80qXLs3y5cuTTdu3bx+nT59Ot1e8TZs2bN26lX379hEaGkrhwoUpXbo0VapU8bv2MmXKAFCr1v9f3xoeHk7ZsmXZvn273+sRERHJic4ZhJ1zp8xsILAIyAVMds5tNLNRQKxzbp53Xhsz2wScBoY65/ZnZOEiKTVs2JBZs2ZRqVIlcufOfdb8QoUKUbZsWbZu3Xpetw+72KERzZo145///Cc7d+6kfPnyAHz22WfkzZv3rF7t1BQvXhyAL7/8kt9//51OnTr5XXuLFi0A+Omnn3zb/uuvv9i9ezeVKlXyez0iIiI5kV9jhJ1zC4GFKaaNTPK7A/7h/RHJEgMGDOBf//oXt99+O8OGDaNEiRJs27aNWbNmMXbsWAoVKsTTTz/NoEGDKFy4MDfccAMnT57khx9+YNeuXTz66KOprvdih0a0adOG2rVr07t3b8aOHcv+/fsZOnQo99xzj++OEStXrqR379688847NGnSBPDc3aJmzZqULFmSFStW8OCDDzJkyBBq1KjhW/f27dv5448/fHfeOBPYq1atSsGCBalevTqdO3fmwQcf5M0336RIkSI8+eSTlCxZkhtvvPGC90lERCQn0JPlJMcoW7Ysy5cvJyQkhHbt2lG7dm0GDBhA3rx5yZs3LwB9+/Zl8uTJTJ8+nXr16nHVVVfx1ltvERERkWF15cqViwULFpA/f35atGjB7bffzs0335xsCMfRo0f56aeffMM3wNOL26VLFyIjIxk1ahSPP/74WcM+Ro4cSYMGDRg6dCgADRo0oEGDBsTGxvraTJ8+nWbNmtGxY0datGjBsWPH+OKLL3ShnIiIBD1L7yKhjBQdHe2SvllnqqfC/W4aFeHf3S1mPXfK73VG/hjvd1sRERERuThmtto5F51yunqERURERCQoKQhLltq+fXu6D6rQnQ1EREQkowTqgRoiF6Rs2bLp3pGhbNmymVeMiIiIBBUFYclSoaGhmf6wChERERHQ0AjJAomJidx3330UK1YMM2PJkiUXvK4lS5ZgZuzbty9wBaahVatWaT6GOatcijUFwo033khMTIzf7RMSEjAzsuwCXBERyZYUhCXTLVy4kClTpjB//nx27959Xk95S6l58+bs3r2bYsWKBbDC7OODDz7gueeey+oygsbXX39No0aNCAsLo0qVKkyaNOmcy3zxxRc0b96cQoUKUbp0aYYNG8apU6nfZWbz5s0UKlQo1ceEX8i2RUQkfQrCkum2bNlCmTJlaN68OaVLlyZPnjwXvK48efJQunRpzCyAFWYfRYsWpVChQlldRlD4+eefueGGG2jevDlr1qzh0UcfZdCgQcyZMyfNZdauXcsNN9zA9ddfz5o1a5g5cybz5s1j+PDhZ7U9ceIE3bp14+qrrw7ItkVE5NwUhCVTxcTEMGTIELZv346ZUbly5XMus3TpUpo2bUrBggUJDw+nSZMmbNiwATh7aMTUqVMpWLAgn3zyCTVr1iR//vx06tSJgwcPMnv2bKpVq0Z4eDi9evXi77//9m2jVatW9OvXjwcffJAiRYpQpEgRhg4dSmJiYpp1nThxgmHDhlG+fHny589P48aNWbRokV/H4UzdX3zxBVdccQX58+cnOjqaH374IVm7Dz74gKioKPLmzUuFChUYPXo0Se/9nXJoxAcffEDdunXJly8fRYsWpWXLlvz222+++fPnz/f1KkZERPD4449z4sQJv2quXLkyo0aNIiYmhkKFClGhQgVmzpzJgQMH6NatGwULFqRatWosXrw42XJLly7liiuuICwsjFKlSjFkyJBk2zx69CgxMTEULFiQUqVK8eyzz5617Ys51oEyadIkypYty4QJE4iMjOSee+6hT58+Zz3kJKmZM2dSq1Ytnn76aapWrUrLli154YUXmDhxIocPH07WdtiwYdStW5dbb701INsWEZFzUxCWTPXqq68ycuRIypcvz+7du1m1alW67U+dOkXnzp258sorWbt2Ld9//z2DBw8mV65caS5z/Phxxo4dy4wZM/jiiy+IjY3l5ptvZtq0acyZM4ePPvqIjz/+mNdffz3ZcjNmzCAxMZEVK1bw5ptv8tZbbzFu3Lg0t3PnnXfy9ddf85///IcNGzbQp08fOnbsyNq1a/0+Ho8++ihjxozhhx9+oFixYvTs2dMXdFevXs2tt95K165dWb9+PWPGjOG5557jtddeS3Vde/bsoVu3bvTp04f4+HiWLl1Kr169fPMXLVpEz549GThwIBs3bmTy5MnMnj2bxx57zO96x40bR5MmTfjhhx+47bbb6NOnDz169OCGG24gLi6Oq6++mjvuuINjx44BsGvXLtq3b0+DBg1Ys2YN//73v3nvvfeSPc764Ycf5rPPPmPOnDl88cUXrFmzhqVLlwb8WD/77LPp3qqvYMGCLFu2LM3lV6xYQZs2bZJNa9u2LbGxsZw8eTLVZY4fP05YWFiyafny5ePYsWOsXr3aN23BggV8/PHHTJgwIWDbFhERPzjnsuSnUaNGLss8eZnfP3Wm1vHrZ1ONmn7/BLsXX3zRVapUya+2+/fvd4BbsmRJqvO/+uorB7i9e/c655ybMmWKA9yPP/7oa/PQQw+5kJAQXxvnnOvTp4/r0KGD73XLli1dtWrVXGJiom/aM88848qVK5eszYABA5xzzm3ZssWZmfvll1+S1dO5c2fXv3//c+7Xmbo//fRT37RvvvnGAW7Hjh3OOed69OjhrrnmmmTLPfnkk2nWtHr1age4hISEVLd51VVXuVGjRiWb9uGHH7oCBQok2++0VKpUyXXr1s33+vDhww5wgwYN8k37+eefHeBWrVrlnHPusccec1WrVnWnT5/2tZkyZYrLkyePO3LkiDt8+LDLkyePe/fdd5OtNzw83PXp08c559+xTrnd1Ozfv99t3rw53Z+jR4+muXy1atXc008/nWza119/7QD366+/prrMokWLnJm56dOnu5MnT7qdO3e6q666ygHuP//5j3POuV27drkyZcq47777znd8ChQocNHbFhGR/wfEulTyqHqE5ZJWtGhRYmJiaNu2LR06dODll18+50M28ubNS40aNXyvS5UqRenSpSlevHiyab///nuy5Zo2bZpsrHGzZs3YtWsXhw4dOmsbP/zwA845atWqlaxHccGCBWzdutXv/atbt67v9zP3TD5TV3x8PC1atEjW/sorr0yzpnr16tG6dWvq1KnDzTffzBtvvMHevXt981evXs3o0aOT1dujRw+OHDnCnj17zrveggULkj9/fqKionzTSpUqddY+NG3alJCQ//+v5sorr+TEiRNs2bKFrVu3cuLECZo1a5ZsvUnXGahjXbRoUapWrZruT758+fxenz/atGnDSy+9xIABAwgLC6N69erccMMNAL5j0qtXL/r3788VV1wR0G2LiMi5KQjLJW/KlCl8//33XH311cybN48aNWqkOz40NDT57bHNjNy5c581Lb3xv+eSmJiImbFq1Sri4uJ8P/Hx8UyePNnv9SSt60wI96eu1C4OzJUrF4sXL2bx4sXUrVuXf//731SrVs03fCAxMZEnn3wyWb3r1q1j8+bNlChR4rzrPVNHIPchNYE61hc7NKJ06dLJxlsD/Pbbb4SGhib7kJXSP/7xDw4cOMD27dvZt28fnTt3BqBKlSoAfPnllzz99NOEhoYSGhrK3XffzZEjRwgNDeWtt966qG2LiEj69EANyRbq1atHvXr1GDZsGO3bt2fatGm0bds2oNv4/vvvcc75Atp3331H2bJlueyyy85q26BBA5xz7Nmzh2uuuSagdZwRGRnJ8uXLk0375ptvKF++fJp3ijAzmjVrRrNmzRg5ciS1a9dm5syZ1KtXj4YNG/Ljjz9m6gNMIiMjmTVrFomJib4e0G+++YY8efJw+eWXk5iYSO7cufnuu+98wfDIkSNs2LCByy+/HAjcse7Xrx+33XZbum3KlSuX5rxmzZrx4YcfJpv22WefER0dfdYHhJTMzNfj/95771GhQgUaNmwIwPr165O1nTt3LqNHj2blypW+ei5m2yIikjYFYbmk/fzzz7z55pt06tSJcuXKsW3bNtatW0f//v0Dvq1ff/2VwYMHc//997N+/XpefPFFRowYkWrb6tWr07NnT2JiYhg7diwNGzbkjz/+YMmSJVSpUoWuXbtedD0PPfQQjRs35qmnnqJHjx6sWrWKsWPHpnpXBfAE988//5y2bdtSqlQp1qxZw44dO6hVqxYAI0eO5MYbb6RSpUrcdttthIaGsmHDBlauXMkLL7xw0fWm5v7772fcuHHcf//9PPjgg2zbto3hw4czcOBA8ufPD8Ddd9/NsGHDKFGiBGXLlmXUqFGcPn3at45AHeuiRYtStGjRC96Xfv368dprrzF48GDuu+8+li9fztSpU3nvvfd8bV577TVee+01fvzxR9+0F198kXbt2hESEsIHH3zAmDFjmDVrlu+Czzp16iTbTmxsLCEhIcmm+7NtERE5fwrCcknLnz8///vf/7j11lvZt28fpUqVomfPngwbNizg2+rZsyenT5/miiuuwMy4++67GTJkSJrtp0yZwujRo3nkkUfYuXMnRYsWpUmTJgHrIW7YsCH//e9/efLJJ3n22WcpVaqUL0SmJjw8nOXLlzNhwgQOHDhAhQoVeOKJJ7jjjjsAz10GFixYwDPPPMNLL71EaGgo1atXP68nuJ2vcuXK8cknnzB06FDq169P4cKF6dGjR7Iw/9JLL3HkyBG6dOlC/vz5GTRoEEeOHEm2now+1v6IiIhg4cKFDBkyhDfeeIOyZcsyfvx4br75Zl+bffv28dNPPyVb7pNPPmH06NEcP36cevXqMXfuXNq3bx/wbYuIyPkzl+SepJkpOjraZdnjUJ8K97tpVERFv9rNei71J0WlJvLHeL/bSuZo1aoVderUSfPWZCIiIpJ9mdlq51x0yum6WE5EREREgpKCsGSp7du3p3sV/7lulXap6tevX5r71K9fv6wu7yzLli1L9+8gIiKSE+WoMcKVhy/wq11C2LnbSOYoW7YscXFx6c7PDEuWLAno+kaNGsXDDz+c6rzU7kKR1aKjo9P9O4iIiOREOSoIS/YTGhqaqbfzyiwlS5akZMmSWV2G3/Lly5cj/w4iIiLp0dAIEREREQlKCsKS6RITE7nvvvsoVqwYZhbwYQmpWbJkCWbGvn37MnxbmSk2NhYzIyEhwe9lYmJiuPHGGzOuKBERkWxCQVgy3cKFC5kyZQrz589n9+7dNG/ePMO32bx5c3bv3k2xYsUyfFsCx48fZ9CgQRQvXpwCBQrQqVMndu7cme4yhw8fZvDgwVSqVIl8+fLRvHlzVq1alaxNTEwMZpbsp2nTpsna7Nmzh169elG6dGny589PvXr1mDFjRsD3UUREsj8FYcl0W7ZsoUyZMjRv3pzSpUuTJ0+eDN9mnjx5KF26tO/xyZKxBg8ezJw5c3jvvfdYtmwZhw4d4sYbb0z2xLiU+vbty6JFi5g2bRrr16+nTZs2tG7dml27diVr17p1a3bv3u37WbhwYbL5vXv3Jj4+nrlz57JhwwZ69+5Nr169WLp0aYbsq4iIZF8KwpKpYmJiGDJkCNu3b8fMqFy58jmXadWqFffffz+PPfYYxYsXp2TJkjz88MMkJib62vz555/06dOHIkWKkC9fPlq3bs3GjRt981MOjTh48CC9evWiZMmShIWFUaVKFcaNG+drf/DgQe69915KlixJoUKFaNmyJf4+AGbq1KkULFiQTz75hJo1a5I/f346derEwYMHmT17NtWqVSM8PJxevXrx999/+5Y7fvw4gwcPplSpUoSFhdG0aVO++eabZOv+9NNPqVmzJmFhYVx11VX873//O2v73377LS1btiR//vyUK1eO/v37c+jQIb9qD4SDBw/y73//mxdffJHrr7+ehg0bMn36dNatW8fnn3+e6jJ///03c+bMYcyYMbRq1YqqVavy1FNPUbVqVd54441kbfPmzUvp0qV9Pykfm/ztt98yYMAArrjiCqpUqcJDDz1EhQoVWLlyZYbts4iIZE8KwpKpXn31VUaOHEn58uXZvXv3WV99p2XGjBmEhoby7bff8tprrzFu3Dhmzpzpmx8TE8P333/P3LlzWblyJfnz56ddu3bJgmZSI0aMYP369Xz88cf89NNPTJ48mXLlygHgnKNDhw7s2rWLjz/+mDVr1nD11Vdz7bXXsnv3br/qPX78OGPHjmXGjBl88cUXxMbGcvPNNzNt2jTmzJnDRx99xMcff8zrr7/uW+aRRx5h5syZTJ48mTVr1hAVFUW7du1829yxYwc33XQT119/PXFxcQwaNIhHHnkk2XbP9KR26tSJtWvX8sEHHxAXF8ddd93lV91npHdP4YIFC6b7iODVq1dz8uRJ2rRp45tWoUIFIiMj+fbbb1Nd5tSpU5w+fZqwsOT3NsyXL99ZHwa++eYbSpYsSfXq1bnnnnv4/fffk82/8sormTVrFvv37ycxMZG5c+eyd+9eWrdufV7HQEREcj7dPk0yVXh4OIUKFSJXrlyULl3a7+Vq1arFqFGjAKhevTr/+te/+OKLL+jevTubN29m3rx5fP3111x99dUATJ8+nYoVKzJjxgz69u171vp++eUXGjZsSJMmTQCoVKmSb95XX31FXFwce/fuJV++fAA888wzzJ8/n+nTp58VPlNz6tQpJk6cSI0aNQDo0aMHr7zyCr/99hvFixcHoHPnznz11Vc89NBDHDlyhDfeeIO3336bDh06ADBp0iS+/PJLJk6cyD//+U/eeOMNKlasyPjx4zEzatasyf/+9z+eeOIJ33ZffPFFbr/9dh566CHftDfeeIMGDRrw+++/+31Lt3PdU/jMcUnNnj17yJUrl28/zyhVqhR79uxJdZlChQrRrFkz/vnPf1KnTh1Kly7Ne++9x4oVK5Ld1q1du3Z07dqViIgIEhISGDFiBNdeey2rV68mb968AMyaNYtu3bpRvHhxQkNDyZs3L++99x7169f3a99FRCR4KAhLtlC3bt1kr8uWLevrCYyPjyckJIRmzZr55oeHhxMVFcWmTZtSXV///v255ZZbWL16Nddffz0dO3akZcuWgKdH8+jRo5QoUSLZMseOHWPr1q1+1Zs3b15fCAZPCCxdunSycFiqVClffVu3buXkyZO0aNHCNz9Xrlw0a9bM1yY+Pp6mTZsmG+ecdJ/P1L5ly5ZkveXOOd82/A3CWXFP4enTp3PXXXdRvnx5cuXKRcOGDenevTurV6/2tenWrZvv96ioKBo1akSlSpVYsGABXbt2BTy9/fv27ePzzz+nePHifPTRR/Tu3ZulS5dSr169TN8vERG5dPkVhM2sHfAqkAt42zk3JsX8GOBF4MxVLa85594OYJ0S5HLnzp3stZklGyOclrQujmvfvj2//PILn3zyCV988QUdOnTg1ltvZcqUKSQmJlKqVCmWLVt21nL+PhUuNDT5Py0zC/g+pCYxMZG+ffsyZMiQs+adGfrhj3M9Vvmqq67ik08+SXVe6dKlOX36NPv27Uv2YeK3337jqquuSnOdl19+OV9//TVHjhzh0KFDlClThttvv50qVaqkuUzZsmUpX748mzdvBjxhf8KECcTFxflCb7169Vi2bBkTJkzg7bf135KIiPy/cwZhM8sFTASuB3YCq8xsnnMuZVfbTOfcwAyoUSRdkZGRJCYmsmLFCt/QiEOHDrF+/XruvPPONJcrXrw4vXr1olevXrRv357u3bszadIkGjZsyG+//UZISEi6ISyQLr/8cvLkycPy5cu5/PLLATh9+jQrVqygR48egGc/58yZg3POF46/++67ZOtp2LAhGzduvOge3YsZGtGoUSNy587NZ5995qt9586dxMfH+3WrvAIFClCgQAH+/PNPFi1axAsvvJBm23379rFr1y7KlCkDwNGjRwFPb3pSuXLl8utDh4iIBBd/eoSbAFucc9sAzOx9oDOQ+nfOIpmsWrVqdO7cmfvuu4+33nqLwoUL8/jjj3PZZZf5glhKI0eOpGHDhtSuXZtTp07xwQcfUKVKFfLmzUvr1q1p0aIFnTt35oUXXqBmzZrs2bOHTz/9lNatW6fbq3mhChQoQP/+/Rk2bBjFixcnIiLCN6b4/vvvB6Bfv36MHTuWwYMHc//997N+/XomTZqUbD3Dhg2jadOm9OvXj/vuu49ChQrx448/Mn/+fN58802/67mYIB0eHs7dd9/NI488QsmSJSlWrBj/+Mc/qFu3brIL1mrWrMnAgQMZONDz+XnRokUkJiZSs2ZNtmzZwtChQ6lZs6bvw8xff/3FU089xc0330yZMmVISEjg0UcfpWTJknTp0sW3zqpVq3L//ffz0ksvUaxYMT766CM+++wz5s6de8H7JCIiOZM/d40oB+xI8nqnd1pKN5vZOjObbWYVUluRmd1rZrFmFrt3794LKFckdVOmTKFJkyZ06tSJJk2acPToUT799NM0ey7z5s3L448/Tr169WjRogWHDx9m/vz5gGcowsKFC7n22mu55557qFGjBrfddhs//fQTZcuWzbB9eP7557n99tu58847qV+/PuvWrePTTz/19XZWrFiRDz74gE8//ZR69erxyiuvMGZMslFK1K1bl6VLl5KQkEDLli2pV68ejz76KKVKlcqwulMzbtw4unTpwu23306LFi0oWLAg8+fPT9ZT+9NPPyV70t/BgwcZOHAgNWvWpHfv3lx55ZUsWrTIN6QkV65crF+/ns6dO1O9enX69OlDjRo1WLFiBYUKFQI8Q2gWLlxIiRIl6NixI3Xr1uWdd95hypQpdOzYMVOPgYiIXPrszIU0aTYwuwVo55zr633dC7gi6TAIMysG/OWcO25m9wG3O+euTW+90dHRzt/7svqr8vAFfrVLCEu9lzA1UREV/Wo367lTfq8z8sd4v9uKiIiIyMUxs9XOueiU0/3pEd4FJO3hLc//XxQHgHNuv3PuuPfl20CjCy1URERERCQz+BOEVwHVzCzCzPIA3YB5SRuYWZkkLzsB6vIUv2zfvj3dBzds3749q0s8S/v27dOs99lnn83q8kRERMRP57xYzjl3yswGAovw3D5tsnNuo5mNAmKdc/OAB8ysE3AK+AOIycCaJQcpW7ZsuncoyMgxuRfq7bffTvOJdSkf9ysiIiKXLr/uI+ycWwgsTDFtZJLfHwUeDWxpEgxCQ0Oz5OENF+N87scrIiIily5/hkaIiIiIiOQ4CsIiIiIiEpQUhEVEREQkKCkIi4iIiEhQUhAWERERkaCkICwiIiIiQUlBWERERESCkoKwiIiIiAQlBWERERERCUoKwiIiIiISlBSERURERCQoKQiLiIiISFBSEBYRERGRoKQgLCIiIiJBSUFYRERERIKSgrCIiIiIBCUFYREREREJSgrCIiIiIhKUFIRFREREJCgpCIuIiIhIUFIQFhEREZGgpCAsIiIiIkFJQVhEREREgpKCsIiIiIgEJQVhEREREQlKCsIiIiIiEpQUhEVEREQkKCkIi4iIiEhQUhAWERERkaDkVxA2s3Zm9pOZbTGz4em0u9nMnJlFB65EEREREZHAO2cQNrNcwESgPVAL6G5mtVJpVwh4EPg+0EWKiIiIiASaPz3CTYAtzrltzrkTwPtA51TaPQM8DxwLYH0iIiIiIhnCnyBcDtiR5PVO7zQfM2sIVHDOLUhvRWZ2r5nFmlns3r17z7tYEREREZFAueiL5cwsBHgZeOhcbZ1zbznnop1z0SVKlLjYTYuIiIiIXDB/gvAuoEKS1+W9084oBNQBlphZAtAUmKcL5kRERETkUuZPEF4FVDOzCDPLA3QD5p2Z6Zw76Jwr7pyr7JyrDHwHdHLOxWZIxSIiIiIiAXDOIOycOwUMBBYB8cAs59xGMxtlZp0yukARERERkYwQ6k8j59xCYGGKaSPTaNvq4ssSEREREclYerKciIiIiAQlBWERERERCUoKwiIiIiISlBSERURERCQoKQiLiIiISFBSEBYRERGRoKQgLCIiIiJBSUFYRERERIKSgrCIiIiIBCUFYREREREJSgrCIiIiIhKUFIRFREREJCgpCIuIiIhIUFIQFhEREZGgpCAsIiIiIkFJQVhEREREgpKCsIiIiIgEJQVhEREREQlKCsIiIiIiEpQUhEVEREQkKCkIi4iIiEhQUhAWERERkaCkICwiIiIiQUlBWERERESCkoKwiIiIiAQlBWERERERCUoKwiIiIiISlBSERURERCQoKQiLiIiISFDyKwibWTsz+8nMtpjZ8FTm9zOz9WYWZ2bfmFmtwJcqIiIiIhI45wzCZpYLmAi0B2oB3VMJuv9xzkU55+oDLwAvB7pQEREREZFA8qdHuAmwxTm3zTl3Angf6Jy0gXPuUJKXBQAXuBJFRERERAIv1I825YAdSV7vBK5I2cjMBgD/APIA16a2IjO7F7gXoGLFiudbq4iIiIhIwATsYjnn3ETn3OXAMGBEGm3ecs5FO+eiS5QoEahNi4iIiIicN3+C8C6gQpLX5b3T0vI+cNNF1CQiIiIikuH8CcKrgGpmFmFmeYBuwLykDcysWpKXHYDNgStRRERERCTwzjlG2Dl3yswGAouAXMBk59xGMxsFxDrn5gEDzaw1cBL4E+iTkUWLiIiIiFwsfy6Wwzm3EFiYYtrIJL8/GOC6REREREQylJ4sJyIiIiJBSUFYRERERIKSgrCIiIiIBCUFYREREREJSgrCIiIiIhKUFIRFREREJCgpCIuIiIhIUFIQFhEREZGgpCAsIiIiIkFJQVhEREREgpKCsIiIiIgEJQVhEREREQlKCsIiIiIiEpQUhEVEREQkKIVmdQEiwaDy8AV+t00Y0yEDKxEREZEz1CMsIiIiIkFJQVhEREREgpKCsIiIiIgEJQVhEREREQlKCsIiIiIiEpQUhEVEREQkKCkIi4iIiEhQUhAWERERkaCkICwiIiIiQUlBWERERESCkoKwiIiIiAQlBWERERERCUoKwiIiIiISlBSERURERCQo+RWEzaydmf1kZlvMbHgq8/9hZpvMbJ2ZfWFmlQJfqoiIiIhI4JwzCJtZLmAi0B6oBXQ3s1opmq0Bop1zdYHZwAuBLlREREREJJD86RFuAmxxzm1zzp0A3gc6J23gnPvKOXfU+/I7oHxgyxQRERERCSx/gnA5YEeS1zu909JyN/BJajPM7F4zizWz2L179/pfpYiIiIhIgAX0YjkzuwOIBl5Mbb5z7i3nXLRzLrpEiRKB3LSIiIiIyHkJ9aPNLqBCktflvdOSMbPWwONAS+fc8cCUJyIiIiKSMfzpEV4FVDOzCDPLA3QD5iVtYGYNgDeBTs653wNfpoiIiIhIYJ0zCDvnTgEDgUVAPDDLObfRzEaZWSdvsxeBgsB/zSzOzOalsToRERERkUuCP0MjcM4tBBammDYyye+tA1yXiIiIiEiG0pPlRERERCQoKQiLiIiISFBSEBYRERGRoKQgLCIiIiJBSUFYRERERIKSgrCIiIiIBCUFYREREREJSgrCIiIiIhKUFIRFREREJCgpCIuIiIhIUFIQFhEREZGgpCAsIiIiIkFJQVhEREREgpKCsIiIiIgEJQVhEREREQlKCsIiIiIiEpQUhEVEREQkKCkIi4iIiEhQUhAWERERkaCkICwiIiIiQSk0qwuQHOCp8PNoe9CvZvE1I/1eZeSP8f5vX0RERMRLPcIiIiIiEpQUhEVEREQkKGlohGSqqGlRfrWblcF1iIiIiKhHWERERESCkoKwiIiIiAQlDY2QNFUevsCvdglhGVyIiIiISAZQj7CIiIiIBCUFYREREREJSn4FYTNrZ2Y/mdkWMxueyvyrzewHMztlZrcEvkwRERERkcA6ZxA2s1zARKA9UAvobma1UjTbDsQA/wl0gSIiIiIiGcGfi+WaAFucc9sAzOx9oDOw6UwD51yCd15iBtQoIiIiIhJw/gyNKAfsSPJ6p3eaiIiIiEi2lakXy5nZvWYWa2axe/fuzcxNi4iIiIgk408Q3gVUSPK6vHfaeXPOveWci3bORZcoUeJCViEiIiIiEhD+BOFVQDUzizCzPEA3YF7GliUiIiIikrHOGYSdc6eAgcAiIB6Y5ZzbaGajzKwTgJk1NrOdwK3Am2a2MSOLFhERERG5WH49Ytk5txBYmGLayCS/r8IzZEJELtZT4X62O5ixdYiIiORwerKciIiIiAQlBWERERERCUoKwiIiIiISlBSERURERCQoKQiLiIiISFBSEBYRERGRoKQgLCIiIiJBSUFYRERERIKSgrCIiIiIBCW/niwnItlbfM1Iv9pF/hifwZWIiIhcOtQjLCIiIiJBST3CIpLtVB6+wO+2CWM6ZGAlIiKSnSkIi2RTUdOi/G47KwPrEBERya40NEJEREREgpKCsIiIiIgEJQVhEREREQlKCsIiIiIiEpQUhEVEREQkKCkIi4iIiEhQUhAWERERkaCkICwiIiIiQUlBWERERESCkp4sJyI521PhfrY7mLF1iIjIJUc9wiIiIiISlBSERURERCQoaWiEiIiIXJIqD1/gd9uEMR0ysBLJqRSERUSCnL9hQ0FDRHIaDY0QERERkaCkHmERERGRVMTXjPSrXeSP8RlciWQUv4KwmbUDXgVyAW8758akmJ8XeAdoBOwHbnfOJQS2VBGRrOfvGyPozVFE5FJ3ziBsZrmAicD1wE5glZnNc85tStLsbuBP51xVM+sGPA/cnhEFi4hkhKhpUX61m5XBdYjIBdI9w+UC+NMj3ATY4pzbBmBm7wOdgaRBuDPwlPf32cBrZmbOORfAWkVERC55uvhQLlU6N8/mTxAuB+xI8noncEVabZxzp8zsIFAM2BeIIkVE5BLgb48b+N3rpqEmIpegIPq3bufqtDWzW4B2zrm+3te9gCuccwOTtNngbbPT+3qrt82+FOu6F7jX+7IG8FOgdiQDFUeBPpB0PANHxzKwdDwDS8czcHQsA0vHM7Cyy/Gs5JwrkXKiPz3Cu4AKSV6X905Lrc1OMwsFwvFcNJeMc+4t4C1/K74UmFmscy46q+vIKXQ8A0fHMrB0PANLxzNwdCwDS8czsLL78fTnPsKrgGpmFmFmeYBuwLwUbeYBfby/3wJ8qfHBIiIiInIpO2ePsHfM70BgEZ7bp012zm00s1FArHNuHvBvYLqZbQH+wBOWRUREREQuWX7dR9g5txBYmGLayCS/HwNuDWxpl4xsNZQjG9DxDBwdy8DS8QwsHc/A0bEMLB3PwMrWx/OcF8uJiIiIiORE/owRFhERERHJcRSERURERCQoKQiLiIiISFDy62K5YGRmRQGcc39kdS0iZ5hZKTxPcgTY5Zz7LSvrEUmPmRV0zv2V1XWIiKRFF8slYWYVgReA64ADgAGXAV8Cw51zCVlWXDam8HbxzKw+MAnPw2rOPNCmPJ7z9H7n3A9ZU1n2ZWYGNCHJuQms1D3QA8fMtjvnKmZ1HTmJmdV0zv2Y1XXkBGa23jkXldV15BTZ9YOveoSTmwmMA3o6504DmFkuPLeGex9omnWlZT9phTczO4DC2/maCtznnPs+6UQzawpMAeplRVHZlZm1AV4HNpP8g0VVM7vfObc4y4rLZszsH2nNAgpmZi1BYjGgDxd+MrOuac0CSmdmLUFgE9nw3FQQTq64c25m0gneQPy+mT2TRTVlZ1NReAuUAimPI4Bz7jszK5AVBWVzrwKtU37LY2YReO6ZHpkVRWVTzwIvAqdSmafrUC6AmY1PaxZQOBNLyQlmAjOA1L7pCcvkWrK9nPjBV0E4udVm9jowDdjhnVYBz+Oj12RZVdmXwlvgfGJmC4B3SH5u9gY+zbKqsq9QYGcq03cBuTO5luzuB+Aj59zqlDPMrG8W1JMT3Ak8BBxPZV73TK4lu1sHvOSc25Byhpm1zoJ6srsc98FXQTi53sDdwNMkHzd45jHScn4U3gLEOfeAmbUHOpP83JzoffKjnJ/JwCoze5/k52Y39G/9fN0J7E9jXnRmFpKDrAI2OOe+TTnDzJ7K/HKytcHAoTTmdcnEOnKKHPfBVxfLSYZKI7zNU3iTrGZmkaR+bm7KuqpEfHctOuacO5rVtYgkZWY1gD+cc3tTmVcqO14MryCchJmF4ukRvonkb45zgX87505mUWkiaTKzt5xz92Z1HSIp6dyUrJbkfb0LUNY7We/r4qMgnISZvYfndlTT+P/xg+XxjBEu6py7PYtKy5bMLBx4FE+vWyk8Fyv8juc/oDHOuQNZV132cua+1qnNAtY658pnZj05mZl94pxrn9V1ZBc6NzOXzs/zo/f1wEryvn4TUJIc8L6uMcLJNXLOVU8xbSfwnZn9LysKyuZm4bkH8zXOuT0AZlYaiPHOa5N1pWU7e4Ff8ISLM5z3dcksqSgbM7OGac0C6mdiKTmBzs0A0/kZUHpfD6wz7+utUryv9yGbvq8rCCf3h5ndCsxxziUCmFkInvsI/5mllWVPlZ1zzyed4P2HM8bM7syimrKrbcB1zrntKWeY2Y5U2kv6VgFfkzy8nVE4c0vJ9nRuBp7Oz8DR+3pgpfW+/ryZ3ZVFNV0UBeHkugHPAxO9D30Az386X3nnyfn5xcweAaadGUDvfcpcDP9/pb74ZxxQBDgrbOB5GqKcn3g897jenHKGwtt5G4fOzUDT+Rk4el8PrBz3vq4xwimkcSX5XOdcfNZVlT2ZWRFgOJ7jeeYr0t/w3I5ujHNOn8bPg5nVJPW7HOjcPE9mdguw3jn3UyrzbnLOfZT5VWVfOjcDS+dnYOl9PXBy4vt6trz5cUYxs2HAf/CMb/ve+wPwnpkNz7LCsinn3J/OuWHOuZrOuaLen0jn3DA8A+3FT95P4O/j+ap0pffH0Ll5QZxzs1MLGV5FMrWYbE7nZuDp/Awcva8HVk58X1ePcBLegfO1U95OxczyABudc9WyprKcx8y2O+ey3TPJs4rOzcyjc/P86NzMXDo/z4/Oz8yTXc9NjRFOLhHPfQZ/STG9jHeenAczW5fWLDy3UxP/6dwMIJ2bAaVzM8B0fgaUzs8AyonnpoJwcoOBL8xsM/8/6LsiUBUYmFVFZWOlgLacfWWuAWc9OlTSNRidm4GkczNwBqNzM9B0fgbOYHR+BlKOOzcVhJNwzn1qZtWBJiQfVL/KOXc66yrLtj4GCjrn4lLOMLMlmV5NNqZzM+B0bgaIzs0MofMzQHR+BlyOOzc1RlhEREREgpLuGiEiIiIiQUlBWERERESCkoKwiIiIiAQlBWERERERCUoKwiIiIiISlP4P7V4/b/1UwdwAAAAASUVORK5CYII=", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df.plot.bar(title=\"Comparing simulators and Aspen-M\", figsize=(12, 6))\n", + "text = f\"f_free = {f_free_aspen:.3f} \\nf_simple_noise_model = {f_simple:.3f} \\nf_noise_model = {f_noisy_aspen:.3f}\"\n", + "plt.text(1, 0.5, text, fontsize=14)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "6da72e22-a594-41e7-a4e2-cb82cfe0726a", + "metadata": {}, + "source": [ + "We see that compared to the full noise model, the simple model is less accurate, however, it is still a significant improvement over the noise-free case and has far fewer parameters in the model. " + ] + }, + { + "cell_type": "markdown", + "id": "b2c6b2ba-cb54-43f6-9a89-e29066b5192a", + "metadata": {}, + "source": [ + "## Summary\n", + "\n", + "In this notebook, we showed how to construct a noise model for Rigetti Aspen-M-3 based only on the available calibration data.\n", + "We used a coarse assumption of gate-independent single-qubit depolarizing noise and gate-dependant two-qubit noise. Our qubit-dependent model could be improved in many ways. We could add gate-dependence noise, or change the depolarizing channel to Pauli channels. " + ] + } + ], + "metadata": { + "interpreter": { + "hash": "a86a9ff96c3b20b9c94872c880ce00e370ced2a9959f9303c435918fb220e358" + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.5" + }, + "toc-autonumbering": false, + "toc-showcode": false, + "toc-showmarkdowntxt": false, + "toc-showtags": true + }, + "nbformat": 4, + "nbformat_minor": 5 +} \ No newline at end of file diff --git a/0_TO_ORGANIZE/Noise_models/aspenm_edge_specs.png b/0_TO_ORGANIZE/Noise_models/aspenm_edge_specs.png new file mode 100644 index 0000000000000000000000000000000000000000..e8b1e15dc21c61cbd9d6d6d41913b546c8ad42a3 GIT binary patch literal 46592 zcmc$_WmsLw(l(512o4GE?iw6|ySrNm?yehxySoJo?(V^zKyY_=_ity;nK{WbyuUxL zyb$8k7uDYu_SWZS10S*fe1Ox;@Tuev-1O!4I1OyZZ1`2owhrwI~1O#r~R8UY( zTu_ie&d&Oisf95Jh*)rZBD9jCI+o9g`yL@7A#AkFu5^?P$R4YYuLDwi6asRC1RN2O8k7y1Q0EWis7eBi5(>6Ma3%_h1HI0GL0&yr=4un?vFDRT=k|;Cm*=ev z_pv*CkWHjAp_sRdp#4ZD;$7e^>Xo)gnWpe#PnDL#W+10*{7`h+0Sdw1pM&vZUy z+nNceZO=~+-so7m1RJ0rqy%Z*iDyhmR-(Ps8A2(LAo~no+0_zAlUEmDm~+K^VGw0( z2GP8eS98Th6v-`#x;&BCAV6f-?eZu=qDqi?s8bVtZwdVgEoiqxyJ2<+4@Xh$?qG;* zI}gLchGFqUX3;7WLHIur49ncdj>Wa#$|~IM*eRlME6?PvdI~d%bF%NeET+8BzTZ3F zd)M1f0GkI`>mL@nKGD(mRN>nrej!+(-kn*KX_U>)V3y*_lzD5qZSU!aZa%paC}m&O zpP6$S+Y_Aj2{24=kdl|Y7NRzwfM0I9En%`gIQbRLE!!vOG?O|kEP2~P{_@c@Ax{`$ zZ1$GoQo*%>$Q$sX!=0?G{pVmntI?- z=>sSJYC8Sls1+X!GNvpNN^47LK~Qg;_r+QeGFuXnE`Em5+0)y_ ztq?os8;K+;LGeoxf|wzGatLS!%|ZhiU+j#PtS)fa4aS5*0)=Go;T#8r>OfN?YUBV@ zT@5zEf%qsu5(FL!iU=bB73FKJN2&%7C%`xhRtJ!%fd1*rX#;};O1ld20i4c0Ou+tM%70zGn+ zO0dd;SL0*jw!3c}VD|%#1wF@+E}`z<^{|)c~># zq1wTED$wwr7hD%`($RV<>4F9+CqY3bfoL3TkmDhj{mn&*Ng_leoa$qIj+tEeH#Q~m zeT*VZ*0B38yPUU~&!_JakL6QmQd6J{OkLc~$;wV|l( zhcwPnu$=(-9$Q=WhL4MH7X=ng7o`_Lj)`?(%R}pX9yT`43_N(-aJ)gh;k;2_aQH;B zP{Ls7zQ}=PMhVVJ%}RbI)*^p{)Eh)4g!&bmF(yeuOR|K34P^`!A9;m}l5&rlgPK+j zg>s8hnF3d(>D$kO%U~hmah3TX8vY2XXpT05hqpY`enZLgk+uKk@dz z!D;u1kSdW18s`jx#!FK9vEYm(ZHsP9!hNo-sjl(j46)+B$-dY<*md9A*#mz=)AglO zKbI-wec(IoFl6PFqE@q-eY+{Dso0`cDYVI?0sVYtcIHTi6DGc~iHt2)Ne1(-l3sOo z6HmEGr3)q0Z|H@rg-h}eC8G*Ain5CI^49X+C4gy$8MUlRDZ~0+*KmF5fc#=I*=n(i zplxtkwIMBPEpvaB(rM*Vc}v_Q5X<1}w@20UU7S+5vgu0cOzDc8f=v$E&f3vd$;YNk zm^8`>nAGXYot%AGKPD&Of5sjtA2{xX@1^dF?(H0~@A0t_U{xT*APm0Yd?WJ45n<=dk$i5bD?IgrINLNYffcuxsG_@ZlSc&yw=^) zTA#jR#nO8WaLh2K-zpf`r7B7;T4dS!!D>+pi7NE?OQAk8QU<{Jr4oX>r7C#3-a1n){7@ zoC_ynnA6DUdf34l!#WTA5Rx*GS_gE~FUnaVII{%D)-aoX+38vsbsxCdOgsyOu<}*t zyfCWYoY?F{tB)(C6#R&&-)N(@NnC{1DuW=k6njrd%VOz0@8TxqrU=DL%(&5zL?(lp zIrMWtD`SqfG73$?EwPDasm?(Ni)M-3&nVQWRQ*k^d=nLWyf^vDkkeS%;By0w+uV;W zs-d2t^6jJ@i+Y1`b&8^xZH`W?XQ^!6mKUPR{sB^IM{b`h$ z{LvY|e7c1@IraG`A-xlBJ6RA6N%dL>j!Yx}?!J^{Yg%YM#rZ3a3nyEu-#=^!Y zb+mI%g^O(-V@~T%ch}1yQ6bZ~0bF&5w+fUcEs9&(Q#Fd_I|1qVPG`pYp>XiqNXoLNncy$$&-7@Dct4;I#!%cGgId{ZZrv#Kp82VQ5-%T1?E_E$1jSI{+Y zEv$U7HxUG(QQt0q*mVC^`=hF|DR@rF;~h={zSo)k`j~Sh1peNKLEib>&>!?%kv}5Q zSp`QpMu=&@CoE4lOdoFu^l{B=Ekrz-T^&55x{(*j6lE-Wgt!!~{=D5=oXk0jxn5(Y zG`Z(WaNy>~cE7%EgxqNwh0bhu>3sPG;pGDF`a7MyFHHd*6&;2 zv{!r2Fk-RYZ+iAVR3ZxFPw`EA8hGzN;#}O_%~sJj(4*^)wAFdSKVN_5HuTW?9&bmk z35v$Fx@iQmd?|2{XJ|p9z<5tC}%(8ru_2}_bGew{@shx#)=6;G=S&!;Ze5792YCT>~0(A^r{%E ziGPxo2B898!+?MWnu0(8uRwucEZ`Re1Ux1H1RD4k1^5-p0{goaLOl!o?`u$;Uk?f> z3W|#Z|0){V85>*Kf3|k8o~IK64mD${q~@R|EyZbQZAqtZWNlzf=VEE|s|yIX3n%c> z(%3bt;wVg2m8yy230}(GA0RaKG zozW*w1tF3Db_f2)L-g6f!G@Eb-r3oi&Y79c+RlWYk%NPSo`H#;iHR2Y1g*WRm4m(u zt(86Te+Kz`93f+SLpxI&2UBY+f?wn68(2F!@DLIGn&_XO|IlgdV*0;F0tL+r$4&o_(s<#% zj@^)gfbfHe3kfK>fF7npro|~^_98AV;i61Xk}hRYP!i;U`Nn;8w%vHS;p*9Bd$e^Y!`=#wkFR~_BOxdX!D}BE zN-%j{Dt6{r5ZI{KKA*vqs!sj*!AM^F5c2y-Bp~_p6N&jiy!Mg6@Pc~nK7<$n1dQAO z3K)_)#Ou?_4SXMajT|72UqAr6gmO@!|A(DZe!Yd!rSpr&p7oQH6GBq!Kv6JwuViez z)Dbp!0Rq*GmKbVlUV1wQQx^gx9ybS5r4w9Am0Z0bmP8;Ao&6vGAhd%AltRtT@j*%< zUu>I~@FYMIOs?v1rJY)LR;Q3oZ*CGrBk>-zZdZzD25vUUh6bn1 zwG(U~yD8tZnfV^hId>RiEyG|#)LE|(#*#_LD;Gb*Vj~z(e}4nm8Ot1Mb-&@M+v)TR zJipvyj@(OHg#_%G4hU(k>XkbavT2Tx%C9RHjXOOnw@TH0*cN!-~6xp=9DwRoNcy6@tSe~`3ZgF?V_ zvq}5rSfXZ=qg6RR#>&ZEJAHhYXe4}G)ook8M6y-@;y(3{ufmh2Ssux^T~eJl_s6a7 zD5Mf-@nrr=RJtN&GeuT@0ZdSD@e0RmTfNdX?r--d3nsogl6!Ky&wtRo@3%YkJ^&p{ z;~~c!)s1Sf-4J_zykj|8sJ9+E=6T2!i~fkhr^7wfxRM|k7_sXv9Eu^2@8iS%q}GkELwH(!Vw%*#tQcgBa%?)<0elZ~xG-*jyLg7fjy>)IB@V896C>bWBYy?(8@(3|5XTY$a4;2{AWCsqC6(E#V&#ArOs0# zZOq-D)*X*@yD`>o0he$Bbsa;K%)IZ$(0IQ&X=V3xkC4oJU~*UEY0lxj7IXRjHoc9{ zshgm)+v9dO*lzb!zEGvnm*pFF1zb3U$!L0FB$v}vZ1oq|b;$y!Qc~|_EzXn9F44`B zCPe3K?nb-8arq6)V~8cUH&Nf@bNah~tUy+N2BiKdX}s9nJ&Q#VEX^<(j*@ZnzVcu6 zKIL!nT9OUFLX{Xq8&Gb9z9K1=1GJnA7u3~FIc{PzuR$A^+DlI%OWU;D2S!?6X|*`0 zH*!ixU+mCJu+)A?<&&kmTc4EeR&Hf9gj)G7%IEU#-uiI%gj6Q&gMfyEv^o>QyVFvO zxhm<2Jjr6Ri8J5axeEQ*FgzX=nM_{lt)awtwMv7+jY%dOJ-&e`!d97ft0lK&rY%tp zx635D0>^{MT#;}yfx++o(y44i-~B_452lY|NF~XP85QMI*sY1UoDSm{4SOZmzWZN- zU2l(QlDeK7t*a#zG-1#`3vL%TZZz6s=IV7mPE>6{$8b5*C0>1%M%#g?JDN3C%n!rj z94|a~JnS~r=mhhpZR=wQ@j0BW6%7b`SFFo!y+oKN(W0*ki^gt9{!Gx?=3r%MocO^v z^R~q3J%?Gz8+^vWw`1q%-UF2zQp4Ukm-JY7# z?oYx7^0nb@d|?xF!m#+1%LBT2)`IO6KiD09xh+(-c_Dvp;*JZxemB=bgQt)KD6L5dh8;GboW@&9*n0wVir@2IDB$W^>|Wd z&m1}>+koAgaglyvc(B*I67B8`k)>re#Mu=1dalD8imqH?)_Cc(* z0uI3K@lNj=p9GK!pUjk>*f>ev&+geiQHXSlB7rPA5YOBk_HJ>^$@Q|r+JU$41A~pZ zZ!>7FXuYgsiYclnRC3MD(GOv-d)t3VBds8Oq}em`~XW78mHvDzfa>xR{7ZHltF)a{E%ueAdYfl_nhzdl;9R;(CKv z)}fY8VX1R3(ryNG+3t_lRw>uXE|F%NTk0FAF=f801qHwF|0;Zu>-kW3kAp!SVR!G~ z<4dbtq{L)0`o?&qN+(|?T`%#?O`X*e0XF+Hv1>dgxY5D1<^7blwj4wR9*<0c`D_KC zM7Ld|{-(6Ph}o&kaV&y=Ux_mBi$V?mX}V6GL41uohB-V2eRZB67-|ev#Y@GK z9CR=W+0TOBr~bvz(voa5rP6P*?f6{6l(v3U>eBQ5r&v>ofjCSKUq%zS)tS_vZZapD zrUK6+;PNlUQ&lD!ez@N+`}&9G3UuWwRM^0ZXHquDmC7l98cy4&YZ4F)5Koom9E3mz zU69w~xDW|uI(IwvJr{qFjmNmmmsvk~QPRxmD216O*N*#CBXOl6VgA4m<;|{T)}pMr zBY?fn`k4ls4a$M!GydS0jw4u0%Z0L7Uh8K8Nz=Ke^b+lQfy|9|puaNkAk8;!oQ;5A zXOUCtB;|Vt?=@pA^`zfKhdCC?$>se++tlSq6-o-PE#`MGu44#^fsWVhkF^vHcmTR{TJV-*U&=T+} z&XqeRksDW{c*t+_P-zU(V+wMKKx*KweX405PP-`PWlx|dBa@zIDaSSh+r@yZxexAvES0w1qw4GapwfCdATuY%XrfhTfhau-!q2ddqIM`N?_7w7pBAK=1 zvl?0HLd~RU2Jcm3xI}RXU$?^D-HfY-sqcYdpY%^l=|UDKnA~Q^g|~N2Cc5d?Q~Ru( z>4h+rdQQi143t{+UO86K!*c|;=QAbBsy4V+8;F&kslG*Qer1aNlBNQO7x$z7g?)Z- zML zDfBe>&L_|Qmxp(G&w^U$L6!Urj4X?__!zupn;9YUumEaItsoTY8DGP%fkb9mU)TdY*+IGxNBHQKe7#g^S3SgWcp>a0{;TXQsc zCte=k#mhkZ!_vr=C@4Z2-g|XBGkMM%<*kL0AIy}*DfS^!-DI{KO$K;7C{VaZSuZ9< zpZDy5wgr4%Xq@bG&@A0b-e4@M_90M#&w#cBOh7Sh1>#>7-yxdTQB88!)VfrDy|4Q5 zE|taO_ehQa5Je!zHqHcsnx(r#UxyA`jM^;&K%%Kghl3rDSpoXK6nznpX@!4j$`lf@>6SmV;e-4Zt8YWIcu`jaX z$#aUd17)e(p?i8F2tgm+dcSrX-nvh{%4k}ex4;)gSCtSsO?)7x=V~i_un9kb$oY5? zHijm(O2?PQYEkaf@NMVy4%I2G@0Lt5laANZ6?r-$qyDP?s?_!2Trs@~V%XeT8QqsW z27|@WVGf|4)3XI2fv@52bOv9b#->yv$m|Y7R?NieNwu94v_OA+pZwTG zlS;%M8DhFGWu{V00vmsh>L~gNR!-7gprh!$<4kbAScaCD?qy&dNpK;jh{Xv6&U5Mlw z^mqrNcuVJxc6{Mb9s)~l-NTo|p~)VQC@A5esnjPl$Vxq--p23#_&N}tIvP*=fQXk6 zp?fKJ25-F!i;6}Gld>m;^Z*%xq^5AW&nMLE_~!VfcIlWs2yokz=sBgv8LyI*L{MxB z7Ehk9rB<)EXuV#q*MsZpf(YXfx??eSY(Ee~nM0sPpV6whbFI)SAuN!kRg-NxbZy3+ zA!1e7QSA3{1EbQK|9pBrpF04}nUHI0JyVuRU7x)Orb?)`F;k+h*$h#t)7ne&qg*%y z?MJy>w^GTjM}3wC)tl}NU~H$`4xoBF2!)$QDH49xu<$n(YSAL_q~jMasor{g%A$jAhaBw-KK>isf^Pocz8YiyrS! zp$mO~$sb88)_$m9t**54WrD2IpJaQ_ekb~bD~W_}rK4)8VlaX=Gh>=kr0Ov<&VKpy zDanc2?b{&Jv_Y+zitJT^t??NWoDPE`O1Bw)4yC0VaE2_1%m`L%H5%flsc@BYvfoknxmrHrgXF>9 zd=5XPyw(t#>3EyqDZrjoKBr}TzgeQ|;19p+lnEl>&2C{mT|ms5RaPca^YWE4FDW{QYS>q~;x_ya zw$ABz`iQ!A>CE*>wbczBUC}s?mU4oC|ER`vvX)xzYJVy>5pEBJ(Mmt)#`kfuU`(OY zc4pW8w%qlCtj^FribCGN62VW~hX9BT#LA@4n`08kLRBi#X*GP?s9U|Q9^*8-Azr*u zno-qtoD2c0F}&CYDK4mADa($d$v9xW60KA9z(6|b54y`(Ya&#&egwHE$(rO{35htx|5*fV_PBgq@#>c6uzg@meI>H%7-2->T&E@Kyii zer*h-&Hhv=EzD)eY9*;8S}fGnfvGf=M_ZXrYms3>M>=$sxG*399>I5tC?N!Sk^_3C zs9O!k67J3P7dtzsdxsRJ((>XL^&E5>xiX8T8Wqh>0zKOG!gqjcJi8&kMk5(?Pi!)4 zY&I*E?Lb-Oz9afnuy$bJWWwBY7XJs9^)Vf!M6AhcTE=?F<0B-Cr<03 z^yZtxIzLueWWFuvt!?o7{1=(bcnfuA^H6O2l@p7 z2U6MV!?0MjbQj7nM#6K&QT4(j`FpjS91%ddM!yfWG z+#GAO7BrP=yA1POqeK{#l|U-qY_&k<64^4ezBT=gA8UH+&=f9Rxi^R{f)SwNnT>i`LGW zJ>+yPdz=*1i3oAqWFx?~cC4!lKIkMw3*JLEVkFbu<{I7I50%YZz{7=>ExGUVsfFrs zZQ@Amoj&;LTD<8igqhqWCmV;K}5tq|G z*VbVC4=WCs{!OW@SpWgU(QYMbjb@~Br>{F{oG*+o3p({o6w6?V&FHY{eaclkq6W(( zzzX@a-e~XqT<9);U7c_wg{_Wki}8=m;ZYZ+1CHduT>TQl84eCIkH;sm+8fWi{2%78so?}kmnTMX7Dv1XJ8T77p@=XDFF-9jDb zE&o1ukIGFiw;q=+p#kfdhUQ!^zC4iuL6-=v7Vd9Av#< zTw2Lm!39k=_#t?rzg*q>ew(+`6=3$HyX3&KCO+BqLK@jS;sejjM|B0t(le~ua<|fY z^ZADNdEj+Oeu&GeOU=9P_Fnhu+oMm)%QVUgnWFO6R1gc!f9<1nAayQX>9A;IvjM|J zdhaiuP6;&I-d~8s$x8?~l}UJrEBk;6}~zCFO2+w{TY@TV3QMr>Re}B>scCzeNpT5Ca0~47d3e;(u&& zf2U#AB7qrzwG$r0&_AHazd`r!1i%cy_tn(zWUnU(_<(7hFYPyBv}C`{4igAbv9KLq zJkzB=G-vdSlAs2Nar)+Ygt^25uRYo{&%!v@KX@XjLY}R&uYctBuDpGC5Umr9L>p^f zO>B%_=ODfi+#ZZowc8rOOhy*!HwpC3lW%p-Rg3l|Jof-j4kLo`@lWjjKdd3m!H#QF zRC$BlKEBF0;YXlc{*|x!n{Og6Am2m}Rg(%)g|GBm*OKQn5}$YOLV%TCo-oq95X`fr>6DI_;CB9GA5J@?A+uIvF1BHm?nwHT%i~YY5q_P- zy#xM|iCfi9r6lItVNN$59O~_+#Wb3Ck&Epw{AMbp6jRiRGd+vV-nvkcIP{<4Ndz8U zCZ4LDVi@$nJdY3gC_sCq?&Xh{n+vS_LeLd?P3NR)nPXLK!f^PMWimMmPK1L|gn7-T z<={3)Xfw{k<={e@O~wv9b9kwRElrzm?o<>=WXY1JOkAI~E$a@Z{hCgGMzKq_5GoeD~ES=)LIh<3T z$P*_vpSFytFIKMlwDIS5_6uO<|3J7JODZYGv#@Q+b+yTwJLsNlH(jzq!{vP9nM}mJ z?Oz2ph(jD0finq*VgFoJPOVZJ?;4sQ9%3}$i^l4_OjPRfemp1i^5Gud_4G9QvFS9D zV6OyIZ!MZmnrd&NFkAtw7R~#mph|DRF5T#E#k|HhPvEG&W}U(`rklxg)LP?ioh~zT z1=aO(x3b3StnKpfzK}!#E&#oV#^n6yw9@YQyKpczdBoDu;arv2jEv=#Za5YCW$Rb} zi-o*S;9i)uDftaeS8mzkQ2@2{cJ9o2e5|8ISdz3!VO@zranL{>l~l}A?x#|@f=)G9 z`3GAA$(Zh7iyhJsjD$)FQ^-8|v#(M(GN1@_#H= zf2|SU@j=UJ)faizfoj~`uf?9XB>FU*G|^(qGmuH1NTY;$5w7XnkID+@?!MSSTu!8% z+}U>sO?U<(A*FFTOMJ22!6@?~_+LxtP{?H{EO{-8$`P;_Rbt4csY;cXkqryJ4SdT? zxqLXdpU9P=L^x<8R%bFESHbM+lS)Xfw~~Bxv8}}x`AGrVl$&h7Gtlmi*gshyOR7=x zS)oqJwotLS>CLxrCaGg(})M_o3&dOB?;^f~Dp0Ix_E!F9m(dOm09xF?i zijLvc#+vg!4N}qRDC(hVZT2jpwd|EnCM=*imS8mO9#KqEdCe_)Usmi7_S0*n@|N8=Nuy(l2~s4p(>^?jS?>Fubu9 zL9RJApd*sHHIL93w_1lw-eTS&H1#fG|6Z})!px4D=~i_buh0-?dYwmK?oNmsbO+Ie zCO+k%6ILu!7l`DT@sIOGos#X z8>%A4VyY%88m2Dk}yA*yyXRcsVZ`Kc8P2Qg_(og*PzKcBs?I-G`Utr{ZjT{X@Qz+0+ z#y*Qv7`SiYv|aT^Fl#T3Y&&EYYeWc-g_hU@qmEl0%rE7t1%p4Pivpq_a3!i?{GE`E zHfL3hxw^O)>ef1qZrZE&u^fhOwn`NQ>0GL06oUDqX~h?vSiRkB05D3!`x*hQ^0X=C zog*x}vvc&jsuO~};`M$00o67sadXrw#>HTTCKp*h5+{4mOk5Z=mokWxwJGx%?WJwU zza5-^{0;zv6oC+}`uX-CC3d~V3>>JG)5(&1))Ea0Sx|XA8Vvuv)rc7ixs%1fnFdBU zXkh@q3aou zgj-<-$P@VaS)Np9v7xRGhr{ioW-^U79#Rlm8G&3)5=dbXAJ|ZYLQhD4CKVJM1RO>~ zWkZaR8H%nJr4$=wF`gPnOWC|1w~B3V#pmqD^C91!K{LbB&B0{ti1ZJ6@ha0E84)*l zA4tZOY*cJGzAeV-`GZrZhwV+e4gwcKnS=Xkqd|&MgMtRC4sBi!43V((5*i)@G50OD zjZ*$(h@tdUVBTK0c*azcvYQo91$AawvR+iC?S4&ZtoH_8lq~UZ7JZfMGP80FMbiZ_qb}TL-I)-V($_e3RWx_DMfN+RY9@|?ELZ$4w(y<+kfcCM8}dQ63lcu zKOr)g3e8qRjLZvRKRp_njl3^JX;-!kra!xq6|Edi)+1sHONHcCgg&hCnV%XtwvwE( z)b!fKW_Zb?NvjH3M=A7RkQPVvT%6$XV5d8q+j?XSou!%Ol;K2gD7L63Qu4(l0AQhy z0AU-Cc$0Pc?sSQwXEoX5Nm%r#%OpHHB0eo&2Jrw$Sl>L2t?8p?-**%h2|mIffqD1ZsW)KZc#2l$a9@ z(Z^XM%mb3%%|7L~*~JQQ786uZE=FYS@~4*@50E&=p@SPZwkVf=RgvhHKNE_=XEHzb zXhlCatHln(xH?PnWw;8r4}q^}WJyF9AbcnQ{YA!(2_*cO;? zHPJDg%X9AfVAj&)r>C#l@o<>^#f{B_(4-$N&L`U!_|i6;{!haAOxtbgCkCO{Z`Z7nygE3z7}HMlgKyGH#- zApe)=GfT2s+bkFN4HN_02L5|y^mh2cK@tI~S5h85VZS-r72=t^%?O3O-g~(mGf2x; zp9TuKtksjD(W4_RlfgJDGMJFicSK428;D!)0mWmBuI=XVV2fR&G*NZy8#nUyx3JQssr9PgSb8c{58DDN_~Hf5YR^PYFxs)+QIkE!AX6 z0M=-HR!v`ecsuwkD0*1(_ARAxS7%pW4VNtA7KTwb1M^OqPIiM@?)vNpCLuR&(Ylgk z$GItLRU73mLkBQ#9w)8gYip5FdXy6=q?e0xCJjyUm?h>QA(NF=N|(OHL(2`nQ7z*U z;g#oF*Hgt;^R0sX%Qhc-d zqJJmVGYPO>`x-Dy(|iL7!5%;z-P|--`0k^ejl;=P>2pa3ClsSQ4&(w8zA~N0?eN;& zDTj{%Bp@`LVBB^urUwY!vYM^l^k{XI3A$Kyn*bItAwqB)cnK-!+Q@+g49o*}693+G zBVdHiE-nLU2H15|)yJcYvc$7{al4bkPw4qRC`sp5E`%YgQDs@qYWGrA zYTFt=PuP;`-0GQ-mi(zLwv7T6%bNqS^Q|Y-CY>g*Wj1m&$+S7P_?ZZ5t43mp zD%71NuH3j?2CyggMCh9R4et?fdE_;RJ!aYi3l3ZU9d#l>!Ma!utnaZ>-U(m+ zeynB_S`EjGUB-()?JydV-B7*l?|ZV``f%=aH8>h`f%Wf~>H`7NdIC-M*)T9pP#%o> z#(6FI`RC0`8Mu|$(6dJAQaaK?z`s{bVBC&$4f92kRC2bfALCWLLC6V=_k<2@uJi2A z%BjD@cCii#9|;U<1iasi(f(IL;}Z!C+s}}3s$U&E$|oL(g{WY0|Bhw+Q|(9qiVv)3 zTqpkU>ECkgLjx)qlrze^mqA0s$Zl{7y#ff9dJ3W;GyJ26>%^|MI8)a;#2&6^Qcs z8nV6KT=9!53BSHq5f+kFVxUMoAo?s`Z`LCPaup91`6}=v)*%Y^qjkjjdV+M$bGL%q z^LlupMC$j~0to;k6pEz`x9z6Qlq-V^$O!poCvHPM)ffPSl$@HdmUwKi^(>F)_hAiUT&gf|3=#W5CRg^uexQZWe7IFYdR%({DmMrwg-BE zy(V}7!>@vAhEuW%*gr=7d#bg}U!dL#&nD{sZ2vzz{`LC{DA*5OM{G9h1xjGF5L3NF zzgxtVD@jcniXM$(jpj9_T3R37t;dgfN`s<>w#1ENi_-3%}}A z#epzOlzYqHl>Z-g2v*bCzQcb)^-dz~lSzwtbhQ`Hv&$p(Y+}*K27?^JA9|S%!JyFR zthYWAF1!}cVo@2+x&HR**oa`i4%tozgs`xHC2|vf!LXrIvB~FjO?6 zNz$aS__I(;91}cGs!55GRAo5nIAn|GHO2vALaXuJMu7Mb`3jGTs>aR!gsD%Jz8hm) z9yD{hLk88K&*EaC!gJ;+`!v%ZDUNsfWs)$3fBST561U-A9ei#g|f znUvP-AbxH%Mz$5&N|>xvl1Q^RDLKV1DQ;n`Z+HJ4(sJossS%}gp;C}qM~cTpxebBK z8Fn!YSTMWiV8b|H=bTBS-7GVGGHY5L1}Gl)FIJ5^C(Fnh9cgwxFsM6OAjft-s>)+F zzW6gE_BY09hvGsifq}Y-p+a2-aV!{Rk4e`gv3`ADXusod7{6HF`YBPSPewdWO!vb3 zUg>zLoj$Q#JMn=^BrKY_Xf#x{e1B5Y`FLM7x6y7RK&45m$w?Z2qxWto(b0>-2(PGt z-uZZG#!5_F8FwtB)kc28|CH}_)kvDJcPSV`qagWce z?So6AiB$;&Ur|3dJ6+^=N1#i76$z)Bv0C~$gWR_@^4)*4Okt2lw_Tu2tDUeghBUUA z-O4NvZoM3BC{q@?UpkEd5J!o%%4ErxB z)P`gJW4<>PYL#Ss<-W@w704uuboB?oLeZ;Bt1IoqGe|nBwt7o7V?OBnpg_J4+mZ|+ z5x10xM*~R2YdV8#g~mW`PocjqZcr4tzpSwt`e@Esj!XuAcJNL>PYO+~J`9Il_=Fct zP(5^WAb#?Iok%C`1Lqj9@Ztz;jMwc^t?qc4_(z;V9{;G1-3j#!VJw~s-3uOP?gddk z9E}FjyBW3oRhO|fVhzezF-je)mDYkuth~YWjte0(Xkxh67g;sfmZ~HgOHH=eV7}oA z;7Xub^3?$s%sGwx`I*V!(5N-f{yRjcsun?pL`bf9P4U>*sbXN{TA|cgCNQS7)}wqF zx4VynB21};_syraZ!GQC%JEs1NUKj}jBJ-Sj=2Dc80EaAPfSxAhhj{Hq#V?PYlX*< zyqR6Tt5g`|k4U?h{aWZk->5T0Wviq~@v3={oJ!EB`>>W(vE8+F^#Kt=Pk^!{5JbDg zkI-z<)rA5AMTJVM^Fyj-gF%e3-D<%QH?)+Bxk0%y8Cn_KXEO`ThC`nkkd>*Q@{OcW zE9{X62a`FfBf8E{It4jpB=c)bYkeUkl7V&HFktf;tuEqDhb!gfiAt5~3Z%06setrg zf?gCd$tDNRC-0rH1MR@a_?Vzqy)S++0;Ha?v9V&$AaC7T4J@T{45G^{HGuEd`INcF z+BvW!bUj=c9t#wcz@o85y%Co18?EopwhY$L^skUs{PIc~-Jfj98V~`g@-`5TL`Zc0 z|J&P$xBx2&7AU(2S7gZnYD4Qj%ZDViJ{&ED_$t!I;hHMs zM%51`qN){k+(TFir~uBp<9#9bZ1@`BFmelgA<VvX8o2g~h^M zc^sYku(m?|jX`e^VUH3`0{i(Ey0`I<|Hok_z&OdNcdZd4B3x*~;MP#mWTKmYeDGY^ zT^^jlr`OgXP?S?&{v^37mmfN0f0TLshE0k8+OY5HD&$|ak+tw&8}<>dq5JQC%0H;{ zcamROxXp#{BCk5GU)X>78uiX$N3YHf6Z^|o`QNJrwBjP3$jAgjShMWFQ8qqu8xu(Beug;9H$iKa%He{gdwXVrJ zEc`$B>35cqQ$dcnh_4@p3SM=iVMu?mg7R7A@9}=`OM+DS>qt@MiY_niYYPHD1v1cU zisP@wdQD4!AZefuf}Wnw_x=&=?-w6~fjY>BNSS)oXA-gi5+-zblPD|t8e>QjzY>C^ z<0S$AGx`4wPGIoMoik`}_uzb$GC3mPStts?C)Pi>{o5x3iVS#2>)~l@@^$T_0FC1# zEKBh}8vHG0K?#}#5*9prLZ2D&DrIrM{7{K3b%a+1+D!%|tlP``&f!(cvV{olOPieq z3#ne$7e5$sBL83K29a;hZjD|Yg9M2aVwVn$Gff@-RT3b69bkj-_PcX=wR^T8P^sf< z!y5mS_CLX(4+PN%plpb4v4{I!w>I2g*7nw9`qkwSsq>e$b*|{~;=M}QE)r0w4j-y9 zUezhguLEo_&rla zxP0nH19IL5w4femr(yBetdAdz4amr>-05$u|30e+P==u=he@%onSc+31;j_;fvSU* zB_^|B7uWO6;L`OdZnYMp!kYVrR$!KtK&&znpYN?5Z3Cv)onsq~T0_6F9Wa|`w>M#& zc%$1Bet}8Xf3Y)`j^VlXUD$N)9(AtDICb)&MGR~d#^pYZYY6p6S$3vc%`M_xjlJr7 z7NexqX3w*A(x?4>_2}mv-JQlJOXsENvnBVNP2kA_CsUp4Zf(BZLW@hv^!8o4Nt4m* zxVRhO`tuzGRQJBbc7uE%AUu`3Zh2)zH*&7daz$U#eQQt|h!0h#2X=Q3U8>`peCg)u zU=ky60UjXWq7w`ZkD~*gAQ{oD8_W@n1Sagv>6mrfJcMruU!I)jjj`+vC%0)iOF6vJ z?Wt>SVy`m?%iC!grd+N#ZO@hNibSmwFX+qR4A;d3JIF~T{Q{)(Ec}ZEo}CUCx6l@+ zEx9feC&%bFfo0<*m&eTfC?rAjXX`yvR~z#|Cw*e+ZsD7?IIde)i;#Iefu&ow!Lc$6 zJNxTn?T=&^OBCvD*lZs|Fz9LXQ5$VH@(-8lSCnn(Jw1U{;R-EA9Lepg&IQJK(y1cj z0Xm-0ztVi^`D;C=(yP;@3lo~H?aDtc5FN;9(YCwQViT-yw>vq9fhv&%arM)`*9H*KH`Uo<5IY6nQ@) zf)5M%MR`0ktNoDAChE#A2*gS6Y*s7koYtb}9lF)R6P>7|kmu z&g0IJUUNC|$R78h1X$%IQH@c0X`Q<9uE6@mdNb8JaCW~Jw2#Z_g9}P8OapfD74~WA zQo}H(NVDsON)X?`Py{`&%AM?8HH}t{kU>vG9!Ah{ze%QZ>_=gV`Ec42gg#$}`zWBr zY0z`=EVsB8%a~iWg*2k~n*FNkw??Ba!Q8AojXXm}Bi|X#WLF*vjxD%!x9`nfa=qA` z-e^VlezKGt0!KL&B4{dr7(K>U#2R5SRgl~eIhk9MNhJ$ka{Zhp^2COzsX;8B^za^q5uYEo)I;i~K+`)fm~IB5^vLO@V~##&j89 z&9=K;Jw~Ejsf_w{0?{OWzS;7n0Cz!r5`%UtGS7Rk`K0AY4PvZ|5%f{6O>>7wJc%Ov zr(1CVi}{2a@L(jtEu%B(yY5USKCBbgZ`8t}Xw#;N&ZV_y@VU!!RSd?UP0`k-{mDvE zAR7Lj+^=oV+IcJui1cV>MFnH^XxTnBU5-26x!s9#cwR(%$g}xf7NyNO8Y~k6RE1Wb zfYDQ!x_z!--qMg5Ix#39mWxlA)IqAD-D8?xV2Js zsoxq1r+A!m2Q2s8WOFjwJY)jReSJ$8Xa$9L?TwVuDHB?n5Z{@G#Akf7O80F0O@Q=4 z+gmtBiA2goI;HUtV$V*dMqMiHyiv`e& zOS*RL{W%+lBsJu@S}F_o?~YAu0x$D>qz06aQr!oU`3lWK&-(l9>BZ)E|0sL`y~@Co zq?03YbfG_L0eDLb0?#9p+3!+qH-|fGTK1(Mr=;-Mt%CKkdvGAK`<7h^8X^^eQz{x( z*KPdTuZ0|w`r7){?}Ak#Fe;ZtQ{ml;BW*06qP;8h9lujuUtXbBtJAX|{}npGlfO$M zTj(@zrk8v-vP%DG6rZ{5=^M-!;AEXq^M&BfAxXLd1HYWe0R+N`zdhL%o# zh+s%-PG)*7wvxy3l)daKT17A@R&SJ|T03hUn>I@|dbnHRxCIIsItnPkTf>nwX%fn# zM!&?P7N*)=7EtPZ4#}(i7B3(bnK`Ct0k3vvhNOrD<64lN==r}#d14BR_r@~Gxr7Z z80?7!eF}9$Yswmd+#+WFbIfY1ljR`eQ#YQFT+^+$c9TtFe!uuw&l@OEW}@PiRL3vx zBAef_qC>N+P^C;k?@hB_k6tt7wN>Zd^1K_Yuwed*5|O5LRA1|`X;dPW()*qjzwVcv zu%JAY+?froF?01=H8~UUyx2(}h(=SLT=PBog2bHAQ%>y8NCeIc+CdC>{O$_N~PD!u#oi=qlT2)2=OuyO% z^7@3WXiypPcJn8{|0)B2=H~3Oh-qcnf8$P512klHioPrNDnYlB9Ss|(OmYO=XJr-O z8cC&MDZ0yTo^$8w@(@P-X9i=e8I@aUI;Fxt+tMwl!lQxUBB$N41IL_X$QZ}9HII^) z0YB66biV0)6<$0=`b^_H(*2YAK+;WU5;zb1@??5#tqXIgT*r~LzZ5rFJvv;~4m15( zaK@-N<{BG%)kC6;b7^HtgI7$$7Nc|aZS|Lf{%@U)RL3TB!(^0wOYG)FCZk(y4#Fgo zshpLiYTZowm#Hr-w#9;>frewVmQBy_7}O0!#&YZr?VEL9e+wwles}##9%6Iv@ZtDr zV>YZIXHShH6eVR!1-z6eA|TK#N({H!$r^LGc3tj|5b$oVj_rvHo~zc@*4M0e%ihu# zi;ewbr{OLNRFkkL%6;`OB6WS813f7j^yPB+ExEb}UL)OKDQB89sl*y+o%{?m69;#X zM{f5`h9;%0{z}z45`XM7)mw)Xg8KQitWwcuWMuLd#lwq9Nz!OlPW|X7*&lkFJog=K zsl~BgmxG08(7#wLx=cyb@_RmRfOI@-_G@9kxmR8+^SA8f^Mml;M}G6m$pIKL)OiZE z$bp={+AjKSRBK2X)!2?^tBPpifHc?u)hXLYq)IeIy+1M53wkX?c`w=RZpU&+zGDY9 zc?bSLTwRhxNO57CHZsLSs`VqCMxOut#ZNhL9*>I}J;wD$@7PKi#37kn)FQN(VMLOz66I|?-Uz?wOF`3KyQ?vf;YMj;zA z#aV-wLuEgaiTLLADvFY%tvb=?rUdQE`LDH~x_!;Js^oi2HiMrO%YUk&7*qmpSF=}v z*~_?DcLvL8%C?b-bhg8Dy{nzkjxrKRXpKTcEO@Z)%O)S@9~`I$!v4-rLIY_&pchB! zSJ3e1W;FZU`#+lnfr1}^gBO0z=l{Bck#;nh)PCr-;{XTME=ppS;k)(sV3Q258#_D4EB;DB#O@aO_`j zyd2STI;C6nL9F$H?Jq2b0~9^w2;7P!BSUzn?LAq6oL-Y(<2bp8&0(rJ2A*yEkCv+b_v2s!$@Ht5(;h*Ku5v za5xtAl6NkjEmgAQDgt8knOo3jk~MOU4Z{cR#31okGi~Q?01cB&HS7;Z^nAV8N zV4+F)*76ZSzHbmf)KpScm_?j z<4Ksr&lSRoeL?}_0TJ;kN5g|S0qD>{&(f*P2);FBa}d7;9d$Z16w~jI<+UW;Z;w>z zR2q`>fO)#B;*G!UN#<)htaM_mpoN`zV+e_M1tEjV88b_m{c>SEG44wN1E+zh5tcj% zV)=FESS7B);v#`Ih?2y?X69cKPN(BN;DHcO84m< z7j0)A7P?+GT+KIhI=y)H^ia75rmUmNGbruzrKY3(B>4gd(r;wCkE#Z0jK+p^L z+*e*%4&Pmse{uthXttBr*<4M=sH=0bx(%H+m=Q3|Tp4oS;%roX9qtSxps>g22ZFqz% zX!!glEfM(&-`MD{K?B1g?;)34^7X#63l|KUbx?jCiG@=zl6XR)CbIbA^SNyyC)4dt zW@}+Q$MsUCQk0c@MDfQcITkphftDB}xs2BcNyC`v4q`o-wfI};hLQ>{Jlt}YFlR916l8mZ>1}fPa{9^eQpJV^CdKiKf8_Dm@GE~jNP=v^6 zuZf%US_~r$V?jqU3>-TuV_K?oeQQ$px=LjGJCjV&hG(`Y&F5jokjLS%YjWB3(DAT< zA$aPZfvVB`B+*Z972R*w4O7VM3!V;pxlhHAY|@2v&%XXAnK9l{k#Mx@&Hh-@LWSPI zy_B4mbd0pAuMwC`CQM79{NG{jzX} zj2&u;9{8wGw8{5KJc>|X2x~%=V+zATl=2j{-mywFTEwX74^_Ttga)M6lua29xa0H% zQNho#XzIC=w1StS+FeSn9EKJ}$;7xU{jM-qbk=+F=*5Q_u-tgt@)Um~O zK0lP&aJy=MHj(}bicBT$Vgi+$q@2)gjoj6{Q<*jVQsVJOr^^rwP*ICWWp5^y92%&l zGCZ-Ud!GiCa=ON@ZhVfRne8BffHDXVfF^~j;EyVgqr*4b)A&pD@EcXY!hIJx`sN^# z^ap{_z)kKRA$G|FQFk$R(1e_kue=WI`|u)NfKw&$!>NHT)G9ogf{FQPf+i8PK8t66 zeb@D!HWPbm`BZkoplSf~ih1;#Z`#@UpM_XL!Ea}@T=Xr96FHYb4BA~^+Y6Z9Ubzm7 zR{1u!EPBkrcSXAQ#>D|jbrVZ{s3T)D) z)8!Mk-zm6dchkF?ouqQu>POk@UT)luNcPNV{FW+;T^{%#6^La0o`M@-%zq3bG+qyc zrmClnwvGWIRkh+5Y~~d7e1eYrsv#3dB>?q^HjWPFGq&7Mo0{X%`9(%O5opXSf6G&h zGRcEImuK>5z5Dre{;}kUqD-ZVmM#G{3Z>GNRE=h+9XInUi}}}Xh}3UM*Etb`&_xJU zskC}J^xpYdedM@q%1?!-!(PV8l#&n?K)9gHEA-PIyeX@WqhPM5cAtY5KB zJL#kHaN;2B&!gu9bEm=|^tL#Jik9|L{6#vR%F(IwbW{$*--iojQU(&FTP>9PXaaER zp_o^4d0nk4k-l_={7c?bt+sp1cej07cj3BtQ*Kl`mbrjL2!Iwt2$~5NRUZbmm|-B56_UgG)KtIH)JS@fZMXbj5f>M;FL+A( zBZ>>HN{xp!(@C*B@k761Qd|t=JYu*;PE{1e{tWcsd(OJUMXBo z>G>VdK1Jy}yEmDhugkd0q+>7_ zstY2;E_WOz?<^CNFr&fQ&`Q*J-DpF%&sk8#i&;Pug@w##{49q7gRT%`h_$4cbsJRk z7ElghB%2pIREWwX&zLMdkixjq&^I!07?6ySgJPsJY7j%9lddFG@-j`?tmi3`llHej zYDy~I^{&ur&|T!Z7?9X{`(KhxfGn zpipli^a?DWRFKz4wZfV^r>GJ$S%hYbk$Q8HVZ0V(uI-nQ2+Kh(%zpaWd-cdnx$ze1 z%s2E}EkVl}DcD`45yF@Eb2@ifxFpUhO3Gt)*AAK75O^dV=~{p2)bm4jvqP-6e=EB* zO$VG1Ye=0503tEmNpwz1y&LKlvU899=u%Ho7OoIFP#buoseo$y9Z!wkdIdYd^Y_)k z4PWxlkgpI`|CW5|J_mj*P52y6zkYunU#;)Ts10%bJMKj?d^TheW9ewu^~}xriqz$N zU|++%U72<%8u&1I9qIzIAW7QN*nt$Mt^HfFP^~^}Ib(PlRg0N4C1y|*eW_?{iWbC5 zi=By@d%ck_%4;i%wK6r}u+#+#n{@lG=_y)Mujx?a+l6^mk57Uno2y{n>M$(dmOS-~ z;Rs^O)r~P#(Tr=X2#Z1D!uGbJuFm!2XbM9N@%CHC^WY0-iz}P%BH2Zs3`OvAk}gP* z3|E7D#wvpwRlCU+$7h60o}rv?uU}gV+OW?K_Y7)TjTU1vN5EVDev6uw_P_=pA!1bg@@F6>| zMGlu|8mA3L&lvPXDcS~R{Bb3dlLgNNRrYC@e?uJZ82R{Gp$LuBWp2q7<;#!DuyCJk zYQ~0R=_i*%7t0^x!6f$XTcz@Vl98@w*!!6pW(n8DWISEIa&Iy9Nk{MD$XmG^L^nBQ z@P=}XLR+8Zh#3Avh}G{v(L+LEYK-Cbo*;qe~nI1w3A0F)OO?(_eIdZRSO+THj@;*dP` z^i}4*ARh6#8@!7=)_JFr^7%nique2EwHewp$VS)egttEt8l$y*?qA*~mzB8HR4^jD zxVWe2o+-aOsQ(FlwueSxhPZ~3$@$2;e%bJGB(X=3)yhB|OPem1Y`$xvA)p#y=>fMU z8IiAfdnqpU;%Two+A?+djJif@pBBP)IdeNGe}@0Ex%tQS7co)l8=`!5yGd{Ob);dspb5ep4-8Fp=THUr#^ zMj=kis+jjb>8Q$UaoIjG4fF<^C~e!?4=Vc^-<-1+z(&Q^z(H?5jA&0A(gQe;;LIjH zB@(p#~$`>=CQh*C=dn(uedQ$jVm|n za|`7QBH9P!TC9rGFT1BIilw#A3axBKy9=Jzu6REzPGu%=@Df?mD)LV!Wj?GWhmWGT zeF==+e!Rxnox%d}>brN#;oCHYb#*Lx-xwft=dd%%)vDux6o35LnxJ|Ll4j%F2s~B~ zg2)V^F=FuSO#8FU*Zg#a)w^*9qPdw7Ev7Mq9r<>bFU)i5AF;q#r4?3bF%xMrn%A3T9e%jKU% z>xYPHbsCZ!RrCr@!Yo7K#1x@9P#VW9K{ww&r(h%v9gu*P%IkiJb8TeydVS~2sM`z4 zB*)gxO7GDgcXo?P(}siMQAzLZF73K@Kx&9+f0C(@xlyOy3*e}(7v%Cb(8omwVXsow zCMqV6CA&24&ZRUjCLc!CS-=!XVU4e3T$c^;sX9~6IclKB7M)GJ);)ji3Dl`dy0me< z_J_(syZEAZd~=B7#S|d<3NC-ErH8nt7!JuoNrwL1HT+L1v8QI^ViC(4J+O-k{Q@iw z6fR!6EW(Mc^N7;Q4Wl5&k?o-ax>@amj4+MiTe7CoIEK{_lNQd7B1tR+f_SKm)OaJx zTd|UMaH|dWsWhYr+)0ODsIvw=izppc>J0KhTLW}#04wrTL{Xs?QN%zX3y3X(qL6e* z_aTxQ@Yp=6P5wf+JXQxgN$R+4WZY=@Dyb25(}h*TXspft&g_$ATK{wm1)*{+*nrMw z|Hb<6*xC6-JcSkkx7&?`NRQeH+pIjDb{;n?1XrG;ao561_1DZuER5}EL=1PCKh(0g z1r1ei)A`EgopUysO++^a{Yi$PO1;K9&LA%OnvrgsQHaw_*n4Q3l^<*FcE+YA)7pMO=d4ZCAL=u~UeDjjjzkaxc|38Vaqf=}n5hP;|n(3Uku4HH&d zr20T@F$qQ8fqTJCe?232+Q_E_P#mDAvh`%8qQAK+gc#A_i1$82L^H2))1pOwaMOM; z{_7)98>Y`IxbP6e@P2In3Ua(}5TiI}iZ1s)6HEl?aes1Mp~hY{Kzg-^NdB~s`H7k7=?3MsU?E>GKbT=KRBDdGpN;75UN9d{PFi?8JFxt$*luW8WZtY_Bp1ZW?Bn?g{1x9e8#L5Xm~rB|2fE zP5*2d?$zDl48g+?4~_~=*L?G#I#X#~gk`bk zdam?3hNJy-(M3qnMjZk<>U%{0E@=ru@`^&B#>ZNX`K*qjt;TQhx%ll(pAeNkFvt0$ zKzZF0{c;8^RYo#$8IAQeLI)rNxGE!Yk=z|QmhdzI>kPe+Q1ok#qKhUuWEREVF^lA* z#=^h|byH=3SU0Vjhn_-6>Z5~tWMbZ*Ny4``$l^7Dy)Dq5wO?&H8k?I&m2+=@_jGBA z6uA3Y&&r(78Yc%P#c=Aan5snp^wChe&fj1hDPbBlqSO!j{ z#sI3DQME0Qm}1KvX3Mg}_=)c7V>D3Ymg#$5Mi74jP8+I`Q8Ek>qUf(MJJkZgn z_Qa*tGr%QMb4_eNDPR>7@iR?=ANgUu zuPXTRru__|ov%l1zz@+(to~Zu{`9A$jR1$|*je8c@DoJ2Hu8QM;*(G2qo~lxa~Vyd zBy}iGwf~qHrU;S$7u*q1i*HmzN_yO(zqi-{%hKh*W$(b*)w2><+t1PXAxZL-!6J#1 z`P$7;FQ|p7>Iq5xHXj94++}^XykTPpEe+oN%s((MYpokodBG3Y$+Gp#TIaohojI7_ zz7Hk;!xAOwQZ;$Yd!UAF`SY~ydTOitV@~d;$ybR_r9G=PH$}nr|Gf2E$Ovk52BFD< zAT86OF4-aZvlYg|UFn_yr3eyEP3 zPv7=ulK_ec!`Za+?g#&S*f=`j7>WfZrkQ03jacdV+PT{JmWS{2x_mkII6A|cHewO zQxi74#m1v*cxH%kC*Lk%Fv;cVxZ#33^V;0{F7m<~g}{>A3lyJ|$4`=C$fRj(QbUpC zVh9DQDqCTZ4=6~!*dI0ZY829Iv;?mk;j4MAe`0Xin5zLDd!Qx@s%9&ntKK%A+X#@U;ow#+zQmlZbJ}QPGyC$Vmh+xng$@X`AQ;>(s)r<$ za0)-;6C&q~ZGyn?!Koy6;9Qm+=TMhi)GJ2BHS}h>g_5>g0&9$AvY;d$`$HvSf(==r zg9?@#A_tL+d9O)L%?>e$uKzmi3ZW+yLP`QI+xSEp`9lvVhu&w2K{*H0(mjOOi=_Sc zIdjJjj2uBK!}7|_qHfJbujpl4>n28IYNLVM)0uwDA3-(WALbfis=hmjhlMa#NC(cK z^c>-D6X-u3q>erx(bnwL$o)G}R)t@vER+xU@o>NapVf?Hf%+odLm2dGHWYVAQHh`B zeC73hI7hdj5r{)T5Sx|Vo8Q21?1OJZIj~cG!~yT+2~;PW29f{W@%2A{@8N=oD%&RD z+WYUO&;RBSC3#j<<_bxymbNFnymxL9Kc5X^7;zxM@E%1CaS+( zDk%S|D$&Tny&K%NcFx~ zG|Y8fsfd1LtXmzH9t8ui^ZsDaZPLl$e3t<2*GV^KoR1AiDxdnQG@mchHLh1O zEjaDOe}sfxS#vkx2Jn`>_bkRKSxUboB-6S4@)_Y_-oUZ=<<;AQN6&}*`nLCu4p*~u zp3RfqZ30XBQ#62o^33sTfX{GDZXBSLZU3n>_)}wbi@(;Lm#to<0PWjw#xM{Q}I}#onb=vgnV%+nRhy{(3 z&h#CHRF@~%jCL&A*$CxpeuW60o~?PuGzVrCyytK{`<-UPreS`^2$hDSl$g$?RUFNe zz>K4efP)D1#~tO_&q|`igD1y>f+t7+MirEoKp7tBA3z8lo-q6RTy8wH)Y+M>%YPH| z`s8_6T+&`*{(+|MIY%par8n2FmG+yI>B~{wp=IhV;^%&48{A$@5 z$(DaMoa~Zkxf=837T?(#l>TfVm@eGU-XUPp(qs+L`D3)m#UXDAdV97u`8n;DmFS(u zV|}=a<9ht0NzYDKyYzyJoi=)6+48`d3ABn|)4zCT;03G3GZHLF10J!0in{ORZgn<~ zpGGq{%3p4-nITM(AmQWu`2vXe+$3KCH>zX7Q=Q8w#8QW8`Hg3N_siS!`E-}A^`q~U zUa3k^8^3y2mP{_MB4E;>(rv#_$n;xHYJR$la0%kM-jfcKTPw6o44tkvfnU1VRS&$s z2L613cfLxSna}MkVZJg$Is#T{BoI2%#UP&Xm_n&VK?G<+5a?D&;>VvWlm11IDeXGI z9wixgXvQ1pFv!=Y(*LwbB6xOfIZxM$YMa-o6W)p%x-22mqEpM{U2Vk*735%9S;GkA zGHWxPt~C9#8H^;A&fGq_*{skWP8S2PnrrC}kIP%)gD;4T_&Sl$ zUs~*=@jH7?sk%Z*=oA;#=qo(KKmN@sZ&}=)N(nUbX6kdD<|OIwe}|`AjlD;c>BDpY zdvJ9QTZ0Mv#V}BUN?n3-YI6M;?)(1N&ghgiF3ZckxxPCUX@ksht7;1XmBJdWCwnG zo$l5rnNgRb?H7xhHeYPIwFcmj=`Ew>5?r0hHJ;blo}F@#JTK#dw(=^w#ZzfiuP}&g zwj)Ka4eaJWa}b@6xd24|)Quy-V)JsXbIC;ZeS8v~uGGxx)hPlVSwPy?o(b$QOitVN zEy-lg#9>_M9z3SAcWZs;Ct=p9ur$LSl)J|1?F>UEIAk7|V=pcwE})&h zzBd`2#iN7P+NTTeLwE4` z-a&J28Q&{v{{zF>?s`)l(?73V>DMUu#pJ*#=w> z*=M6y7(S$U08e}@(%ml;=)eOd9~>E^X8C5Df;y7753zdUwjy`6wUprb8I(5G4OtZB2_5cNz6d7#x5vS z8BY`iu77!=IfsCDQ-v4*#dfS4V-1@Kx1mf2NHmAPb$7+y-J6l-vrdiw{HZqfevOR? ztxiiEu^-FS2ZZ?d*K-kp;oOd5x!_!YJsCSG6p8Kkllqb+a#)5|Mhb0s*iy<`7Xtve zOJ?&XyW(G@eUU^5A+vkbjsp!Zz7l(KM-uXTjK~GO(@qQ+nVDSnJ@R^+n1+t^x5bD9 z$%!=C5A4Gld(&mIu#F9wJk~LS4&gNKO)&731gl!G<48~wViX2T)LWO)yM$L02HzQ_ zzRbL^20=z+GojF&iz16Gyt*M)Kr=m|*RqOf6 z>ZNZ+s;__b0ZU*;1c7aJD%(wJ5bU7F*hu|uPW!IvKZgROA z0?ZdU`4k5F>GajymZQ>aY07 z6b4nGr$<8gM+}IU8IgFKiro&TK{k1YMt*S5P>tX|Ti zaPp8j9O+a$fg;y&vo=cfvE2hWzTb5UBlmbS)Sj%hN1@?`IY!r2VWI9jd%e%+3n#_%a!)Y`ca(szdJ{$H>Qn658t-_Ii0FXRp4IP)r_Z8))~Ac4j+PBHTsI)UivzT%M&go2ypF%(4_1;4 zqG2xrvV zHBy6ir2mP11VFpah(RSFDK?_B&k*st#gh-URT~Dixv?7SRR_@{BCSv?5&qvaORTJOx(rRA}M1T(`q7jS~C+7sQ!j9MI;y0rPK9dl#I;qifu#=9}FKLC?@$g zPf_`Bv9-Mk7uy=HRHAt0PFFH~d8{32`Fg}r8A5QTV$`8W6}@bADiI@Lts{uabzm+_^v z5i&rN&|J7gGzyX$2AC#SC|Hd57)H~`f?N(~_2@m?Z16lE8+myl;i(Y5W&-p>$9^xX zoKx*%uwP8tUY; zU$xfc`m_64%zc@!U>H6ndkYU1kBEAopq!L^?!vXp|#lb=@uz4dwP3Tu7fH=8ArVI1^kuYvpxFb@7br4lGSCvsPmq4 zQPbFDaUD-wA}}lV4JmB}0%;SO{H|?;d~Q0Vv8bz8@4q=O^(aw)2nTDiD8T1-@V7c! zMmRc|?Vqp_K|)O|8`RXVdi-_s%?e_FCKm%1{(;mruE(4+WbfYD0v!uDU-tecRPvisOMpQuhML1Z)yz>al|K*yX+&8^Z8Wa*?J#BatJz4Q!#`nR6aP|lBi`#`JI|7Q9mfiEZrf(b^RYwoEoO~>m8**KY{jcst#+&Z-ViiO=IjsH!Sg#enu>#R(vc9j6j--C}B!W3vsu& z+FMSi_pPG?@*5&0svT5~3#uUPCV}POgdbF6i<^J+AGT9&(`Et}n{`xfHGL1VKpha! ziowiCG^z7>S+iak*Uz|CwRTtW!u;Q3Or-x@e)$E_-3OQC&afmY_=o8foH>AD^Fy z*S)9oc<0rXwAYJ8?^kw6ex5qTiy#QOeW|vusvj?)eo%pkjjR}zQM>bw5dP8M05#tJT1uHfZXv9Rj53NL8nnmcC#{@k#zR<3hibQ5T~a0 zO8Y2`zGhI7fLRG@fP4iB%1a@MZ~zBl3QUK}_4j}&=#e3&A+(cbuy4sH`{W|A$LLdu zOBn<Mn2mN!Jv-6=4cS`LmHvNlVUqc(ASdE35kx+0~BRO(%2p<=MnGP~Bv|oHqkK zr#r1_UNshsS{2$5V~Y+WTGr#Bv(5L?%XGub6=`$YTQRToUg11&ji$4QJ(&iO@N_&o{E6Q15n`?S zq(X8ej4No>uxkBe8AqcgRPMAJk+Dx*-4M5p;AeKmojNSbAyf6MxYG$(ymJOQjZO9le-a!h0P{EIi#SGBs0ztkOE zVhbaNo*yBg1_B?QAtuwTd$s)-q6^O%>go}UP>-ohdeZ@eg6yKDw zV-%h;NyB_~4cG*2=YhVOS8a0dM!hDzGr)D9F6J&TH1~q+XP<8nB@UpMG4|q!W z))cg3n9kxGm1etLbQFn(VWJ_$4s;LlPK4m{G!-au9jLN++mU^FxU3}q7~92W4iv@Q zR&<`D%{s}cKV;WoNr!sfwiL;@jiWr6Oi%{+<@N}e{l2PHZOI1{W@9{POXj}i|6$(4 z0)~zZ!=G*U&t`uD8OY0<3&EVKW}5qb#j}yRHVH#b&ckGa}|!owrFHz1-!orJ3SwjWo^G?~O&0QL=?i|uD4xlzwL@9MsvsT8aUZDf1mOqnW4 z>mzZ(0m+pl3{`@ESR-fpno6+;#8Rzx^)iB+`KKf|y2&qMlNjFTM6bJmbN>%Ns55W_ z;g%=^`~MMMKpL?4k6yp{PC>uphBt@^(r zIR?G}+S0)Pzw`fPXi(|lUnr=?bN$}vxa{B1PLaAjuZv%97xe$?G1F59vw%HG$Dhkyj;>q)1mHCXNPR8Z@Doo4F>mkY6A7YMI1JPzj2Z`Xvy-~s-@Jr| zq6p4ahdcxCQO+@r#;-L*(pelM*tLQA{V`x&y*k224*BIFF^k`IjE3Wi4u-#cp+fmF zaGx76aqfI=R#Ldj{=3~kWFZd}d`$XN^*xi{OHOagqW-Ji9QXl-uk)#+sE$l@??kD} zhw9Po-d%6X7tp&;Q%!!ytFs9uNRL0=$yXo*#&f7?u0BWeBHiYw;m2rqFHtA!|046q z5wF{i_k9JssX7>-2JLsb9M;vBNjQ$oyPfh`cgBUd9&sd8bJ@kHOiFRP9yO$R(i*Gv z!tMfyPIJ>^=hjQ-#7Z~QsJI?oxt>$dr`y*ozViZ!SKf|-H;5kN9k&qt^-q zX1$KWt0CJy@BK;LtLbrjiGN>2ll+fRuYZ8@o%Y-}-q30L8(Wm&fOrQsvQUg4-h5N) z)gsC~4jbZlf6iqklW6m0GWcc3)GNrfIjd3!!ZE}(O(WG#O_r{(5;&~Y9s!*RY7Cz~ ztJ^_@k33c=N4{7FpBZQ3v8Op~3_u5%E+@gGbJ_7*uKo&8)d3J0bf|)+QmJ(_xMTtC z$vs(~*F~ZwcGC@#qKE2r!Jknt1lRoDU$1l?ot97jb-N5g5u}~dudp&6$>u8|au)-t z(B#z%Rm`r(9ZaC-n>ZkI47ft?5?d~}0K2#A03-Mmllm75onXRv(YqNs!LYdE?O`dtdpk%8^^Xa4Oe#F1+fBhG-^3q1IMSZsZ_?) zJ6mn($t)g|vDw4rg~eLifU3&;`6jJ?Glw zXciBBf8D#$Zx1cD1IT(S-pr<+f^CvaBolcf%leA7Znd1ip!-oiim*fHt~tNBju$Ii z&ATO|)`i*aq1d_^1UmV?v=5khcIV2p=QIj{{a-~cTadAH86z&?!v|U)$!{VmUM}^c zf)~P{`0T#t$yly7g#1%F@ruZV_@1BJ`ve`{VE z`K+XW$?(m7ag(!?dr+hl?W>sI=_WS|x)Sw(3xt^(b)kW;fjj zon+~j(fy;=?Gm^0mpQoWRm*qtCzV^R;(62@phoyM&IszYXv|EUL}!PN#1QcbpqP)J z9?o|*4^Lov?p_8%oryu1j-}kIRO*eFTTZF{+A38jEz4Fr8D%48r?AR}jp)$0#zHxA zfhidHdw(<(ok`sMqOh*MFMv7>`llCUp19h{ND7!;i&izZRQv z+B|$#(#s3BoH0LgZSPtmDqW1gD*rO2(YELb_=D#fnCI;;p!$Ik6dRUE!*KAn=6}r*Ok3b;Mkt4>iZax{2AyW&~8Qr?P{~w z(yF&_Z-Z^q&6;-SK!`iL(EIhBH6Sh(;nhOs742$o)c81dy2MYyT=?!>$e`pglK)15 zw{<_q`^9t=<@xRyar*u3J}*0$OWrQ}{bpv$4S&LBT-`@R4^)(bNO(~^*|3=YZx)gw zjrGLodUb0~mGs;UgdU(}IK?(@>Zc`l!9$y9X0=9D^$#}}aqeX2&pB7jhUNk7MFH#M z=Ps>VX04a-Lb+5;Aq_Temj~MCRm%*!ej|#MsQi`zcT-#D5+%vWuV|7pv%;f@B*z3uSWVccQ$%OGeQNwpXu;W0nt?} zS0fl4BTQB|PjgCK&7dnWGVs^ei|+<8ab52wB&otumjD; zo#5j(#=+~iM`y7V9d_S`KVeTMhvr7qjTEXuMe8d~_Nip{C_j?+GdJA2$p@uMeR|o% zp%{3AI|7R8wf(VvXEYw~EICa*5M@HI*t=K*v$7o+>e~3zzaca1B>Rd!guO#0iSLMVoFickuBAt2bDUOLYOsuq@-%PB_+U-`{%?TtfNDM4dqM2) zg#4;DLb!7%--(L?Gt9=aj&G|PeuuEQ20xK!oXR2X^8@->lVo!yRtNqLA~@|VWCBeWi6D!zJC*~K?%j|wqEPqLBPQ}()<)UTqC(fB@6%B1~~BVo5n12lZqe|o+FqXD4s?~dP=H?kYx7y8V z@dq;*`?v$ zEhlmTm=a&^p^g?RZ84|yN8$|8UePsNgu|o4$)FI8@^pHFkt(>mmYQ^r=It4>+i&6; z%Tql$dSvJGE+#accj~87$5ZtyrhCKHq4%H?CD+yYWi?<&1BGF+cr9uZX%f-B^WWvM6VZ<{0FIJz4{*U&~GAgR?ZP)@s ziXbJSQqn0PDJ9(@0s}}W14u|SG)RepNDo~iAtBu*C|yb;$e?tWFu)M+9{<1ftpEF4 zetSQ>Umg}8SnI5_m^u5LefGZY>%Q;%o|DbNxCa{o`b7yo#9xLrYk$=R2SGYsznDS8 zDhQ6wZ;3yBrKQu(K*w8IaP4ppvNEL`X0c;fA?IC+t@c>M z+VCIF9#9^WB5jGNw*4WuzY<+OP_r9Y`yL|6@hTrat{T4|~< ztgo8ZP72%G4p-C&hj#3Px~KkkKe50dvs&8&gT!eZywqthHwvmR4~*pNyV=f`XZBh2 z?Dy*BZ#Yy}m0A8cfWM_FX|@hv$bOY2xo6szk2YultG@()U-(+pC%WrtbTsDXN3Mgi zXR`t7yC&_j*gqA(iWWOkXHL7IQ-CtxsrjPFedC+SQ5wp9sZZFh^lA$3$ zKfDExcyZ}U&Mg1CmtQZQ4umf$LfOU|ESos^;Wt;FgsW_7EKY!d%2gP6L!-n9%i{5N zT^V7cDR6}A!MDDbx(s0d#HSTn8PZN2`><81tM~_SGb2cG6VP@GO1zGP`^RSXTOv;f z7tzZH>5y#^Y@PS-MWtirMXmk-^0Puks_Yj*tlhTAZ}@O8SiH9KOCQQJ zRFTMU`9V(gvtD-N_p%oRkvGyIzm%ufqB%x8Qe?AHYw$U3_WnrgCU1yFbEkm%H6|wu zGW?UuGsGn;4}UO{JaneT9BW~eWFK#zQ|CoiQEH8uUSz}Tou~@l@N?6J2`A!wsn$c+ zTdV4!D*_Rpw#4R2AJ*ji^qW_>)^s<|HkuH?(I@99WJu8va$C+?wvhfqg=L>8(gEdn zIxQ#_xKtxyyzin z$g?%m(vUG!$0~}SakDVU*SLLPtf)C`K*>B`Kkdjz=6Ata7^(H}A-5=UU9`vCg%lnfx+WK+|t-O9eI{VxjZc@e|=^kpc)p$rRboW5^V!_zvhvV5StQZ*%V;0j-A?NlJnKHQo#Xizbh{{Z_+& zX2zr;O4|1dvH~ae3yYsOY0;6^AXjI=!*j(Ms8QDUey>*9Ck|dWsh}!5Yje z-{Rw5GYp&}u=NAs1FJLN`1cFLWE;y*1ZwR%3!bJVS>lbKU5{LY&JdWD90lJiG*lku zH*J1T!hlMlB?)EE;$aKHKb#c4s9G5qt@iOi#;`@*ge2~qw%YN|1(GB84}WFQ38=59 zElZ-<`S1D$Pp49_YZ0Zd*NQBomhquJM*;n9Vegvg#!1%aA| zt3xzU>({%FQXbY)IHs@k#G0O0RNIX{K=7KsW_f_LT#X5$Bh{Z+Rm8f$K$P{WPU6gJ zN>C;+ik5RJlXC-AB<8YB6<8_slh^!FD|M+!omqUkKP!u*Y3-YVOyM7!i}l)pS3w>| z3F2*&XJDCD&>{0d0mil~wO8JFlw{OyR5n$ z)wub|B|9oOcIv@AJx7ouO1I*I#`GyfGB1x z-V#=dNb>62Sy}v`hgD|920ma<3F-1GI$l7Xq}RMW*{|9nhZ>O;c%o=lcogT&UZq-_ z9=a`gfJpzR%XFvH3{^e~&K(o3965>yPt{YTHR& z*X3SzTq3HZ3mm-u4|)YH>${$=^W9l2$({jAMZ$3314#oNHjVUOWsNGffGWilWCm#Y z{NCJ1T$wNvZ8b{-_)CS+;QA-o0>i92h#<>9_&I3P6;IS?g=gapI$k)YA$N|pSdgxg zuF~yjmUOG%v5r6V0dXdJB(EQCdchpyw)2L*V5{?79l^~XV~YCj;q<4zY~TQ=o!R}TB9+?8{V-(g?b`(p2B9ew8UcDv}nZQCK5 zE2s-6jwb(Rlf^$Nt(hP0ruO|eX@7s&L~Z{|LHYysvdsuTX0NurSw{+Z&MZTntp8`_ z=G=XOgF6i@9*uv*|EwnE^ml= za|sHs$@|{-j%p~si*T5(Hv=tGH|zSyStHaVC^?(=rIV!$&3{1%$-VLp!1el+_HV`v zPc^BwV@Dwa+b|;heD}?e@NR}-c0IPJq^rw*^E2{GXD0`O&-)-deFL<8h5+SmGr;8-Sj@-bN)!ZuD?+uEXZN5QvbAh+B^W%kG4gAtbv!CdzZeI z1WjL>Wu8}ZY5JhH*k|CIF<}gYQSLG}azGzkJc$@q?IwAi(QCE`@*@g^3xLg$=afai ze~$9SJ?xI6Hl!OXUeKTL4#uLY-<(E=zy?oWWh`Ot1i0cKCdq{jvO*F6;?i8)p8v7t zsYH#a^(}J&qn|8I0()fD4TC|}P8?2Hd$8ijkfglGooFIzE{?hx>PGjIN@)~O+U;-a zN=>d-Ea)GhHoqxW+VpevgZ{L1{4H$U2!G}idf$5^R?5-ziFyUv>SgplHk znh&q<$fG`Huzj(=6+GsJz3_zIwN0MUJ1ld`&PL}~| z$g=1)6V`+$ca&6t`VO0!C|hbh-qXw~3Zjm{Sk+W`fwZheZRO8;AKH#o=T$q*J@PqP zEmFLDQ7KoxP*J#;s2{!KB6MouLD%!s{3ylqTpHy#q!eW;?3p-#mb4Ho1Lj;UOGdx8Y_xcK-CuoH;s#s`lffYtnTnXMtMWV zpGo4MTjM{t+O=;W;rp=P_N=(3kWfzQGTX-HRexsPUb?KOpzQV0`Z=3c>aVoCmG+~s z0Sk?d>GGf4ZHJ6x9yx*5Jf53^N_#o34M1RrrwWaYGl-Px2Q zXVn_Sg5dAO7zHG;x<@!OJP+5blj2y)!m8oZ&TiQe7d$0yY9+H6BbioT{yX<=#vk?SEwHBRoZ2c++HVPPquVZ}o>leP ze|&JfR*pW#(;mC?Oqy=- z9!FtsRTzyHIP!I&wTzT}k5!^u17}a=l)Ot_1(mnE4Z zbsm;NskCFCSd|$aE%2uc39U`O$>Q&Mma9W1WV@_SY!FMZA?o+R8r{@}p5ta<-|fe} zD#s&b-0a+%Vl_njftUiMsj$EBEVYiJ_VAvc@Rv#qW18B7a_kqWR6OJ|pDP^I*#XQXMzoye=vw<6 zve6MFCeZOh@3tLrGP&`HJ0!M~sei6}j^vY{qo3E95IY6Iz0SylAqe@a*AO`~KG?}) zm8TN?LopKiT;eXwVo0vLCLtD_X3d3sqRtba#eg*m!%pPZ*P-Yq$!JtNq%JPni3juG zhmm%U=N=7jfs0NT#}ehGT@i{jq`jKr5LB?w% zp#rrE_AK&^?)q1>3SdeZa?1OI!G-%sA!kr(L81h%#H>j-j%OL|1F!6w;_hpV#%A5K z4gCdK&LPb^*eT48o3ACSl+yYkjCbTxK5ad}B6SSLpublCkh_RJ$6q z!LEkO*7*X~TRHMU-em1-Ym|}9 z63MDy@RNdF+pgNXzxF$O<%oIVLshh%0g~^l7Z0U(*eUvGJE!#w)Lu3KQ%up0w`7&Z z%?MlM^?~z@$y+jH-!cpO^~c~Q-Z-bI#FvK~>zr&;j6yaVX^X6 z#tf`}c_rR`w8HVA8c^mHGGi56+JA@5cjH!8+Ku;}a>VG1@f&X2B9-G6y4r38?|hUq zjAHIIOnGi9>H6im`0=QjxX-Hc32aZ2vFk3Pt$V6wl#$D^p}t7Gm6ff-WmLsN1se9u&xMS4!*{&D9dU z9>y2ZHiWnxqYtjN&mz5}#@TP*o98{Ty+l%e}!GOpA3sq@jMQPWm(RJ&^sXpL~yjF|`DIpD6|FXFqopR-FHrUi#!T|oDG$9QGs ztMjuar(vz>+9huB-Or95bT3f^Oq!|pT+fbO%1RSTt;B$E|K{C9VZ6;iIx7GUF?<={ zi#a!5dT@{L6AKX&Or78lxpqf?-gG8Aao*Oj9c>Jo{~-A9Y-wm{Q{_yK2a}a|pG~Z~axuzJ>_oRyoi)cdj$yCgPhb=zi zvWgh)E}@5m`;n>@+V&ukzqKjBTQYD>L%8xlvFNA|qQ|4c8~-VXUd`p&*W9S5XM}uinqCjQK($PXI0I{1eF7KVS3{ zC8B(_oA>*NXCOKZJKnQfd(5-OH7`P!xi6WiW!Zm=#>w>LJR<)IyJ6iPw0yr0i9>le zAf3?(`$Wd2sm-YcQ!Da)RGP>JS>VUy+uUSex5MJH9hK`Z4pq$EshvGW%YSlJ>QTqT zIC^qNz1USV@3bkuJwFws!HSXe78F(v;pD2d^0<1Pha=KsgcyAFcCr_v4>-iKdycox zaMymU@V4wGCYg^|0x$f%<;r%WhLc5GYa=WB1VjdKOV~j21FAd1gCdzz$~C@y`d1bUMV^q!>r7o6A~p?;e~K>J~CvaJNX*n2TOq}#_-nu%NDKsqh`s{m=+%m=+hoTSHr^mIFA?myp z)mPMW*)%h`w3A!E125V(WzwnFzsG&7!MR=XWMNnawmF4b6v%x)3~~^R3zAKlJx&U0 zeh5)2m7li1SO*+oU7OUuKFNN3%*STC(?<<{8r*B^%Fo8K`A9%=fe55rQLlv}~Qjn;1Dn6Ix&QKAdWuP&A|?@rp#nDv#$`Llg6h&Z#1*tO%=s zlmW3YQ?LgfD@8)N4BqNk{Ob1nUHH@ZVx&`jeb*%`g>3g)@{*$SkmS+Y_-ANpXCm12 zeYm7{FXEOoG`mgr&S8*le6i>{NjhAJeQ?TU;?y~ zg>9d{-NAzp=+u6y;Khc2`?T3bxS%qaC9ld$*~zdGFm%+o7xj({Lvp`3W0yOB{`7Ny ziTm_D4G&bSK6ajMLoQJmk;q@7yzBB(ubXt;mcu^>;CkVz=2$D64wDPR^us%Ijrwll zb_j=~&D%Mzl<5$=7Rscd3`bj|$l!iMzJ7n}7x=7k!p`#2e*DC%llZ#V!bunmIwLws z&!u=MG=2IjBuenuHPRjUbvvAJ{rI3bTE+DAs$lILa~K;w&i@UQsE%>UExfY6Cb=Bx zv1w=KbIf`1?uRCUac{a;ewpSvam?)^kxwrI%ig-P1n;)g^{3uj=tOZl`6WJ>ICMlI zYyHEG<#HtvEJK;XAi@q>othWs=*t=rN6J(m!h@?AJnv5)(2>{2L$(F%!=>tcan9;H zD5?6XG4lPkB$gQBt$hMRYk+FW{RNM%8|mf5d!`0%-#Cn8964!A?6Ge@IgQeSzx=)C zffzG4B9?nd6DiV9nA#>-m-cc=4nGQ)6i(rqI{!|(x_f;U>3H5c*|2xWJM0F6V9DB7 zT=ziD(RKHktPX5m0+x;K(2|DHu>eu)V|ML~he%_DkV|ofVVT(>or;mGNSM*vQ$Xhx zeD3XrP^sUl`f@+YC~nc|gD8yMZ@(RN6;BU5Ilw|GTGU@#IfBn!2y4)T8S(%7zhXXwEEMCjm$W*HApWMi k&uf9hOaGs~bkHSEDPib_>Sch^74V~~sHN~x&La5#0N!*eHUIzs literal 0 HcmV?d00001 diff --git a/0_TO_ORGANIZE/Noise_models/aspenm_qubit_specs.png b/0_TO_ORGANIZE/Noise_models/aspenm_qubit_specs.png new file mode 100644 index 0000000000000000000000000000000000000000..a88a337c5da02663a796aac146a37af6097b06e0 GIT binary patch literal 57279 zcmdqIWl)^U);0_Tf`;HE!QDN$I}Gmb?(R--f?IHcySo$I0|a-M!3l2PWIy}l?3}~% z>wBx-s+YQ_rkS?8SFi5A*0olL%1VpAf%^al1_t&Uwm&`I`=Ec&!QTW2Bf(GWNjhUhvKH;5$`DF{0z073W>rljNnTro zVagTrhj}Y)JA~$wyp}62qCjRv*zJYH0tqIwVV_3<7F~+WO_iGDe?t&RU`ewR-UG8s za5#o)e+xro*LC>$^9U@i$Q)W#5*VK`{)qHl+<1J)jg0)wuDt>pm(pzRnwK!6I0x(Q z^HRz)&HMfH{dau>_^^3?>jNV~S0~!)#+ClP;unGiYCV~?nTB7v=*?5y7&C9ob{xDu zp<7Jt21`0r4`k+?#`T7#8T*aU>8Io+uZO7)%Hvg-?Ep+RhNiO7+`szfoMuve{+zsH zDfjciEHO_Qa(wQF{HMHIBcYEUTc-zUc}MmY!hGfdx*eKDO+bua*g_N2EqsqQ6OU0< z*wPJzPRILH^1wFYVGU%7Sls+d%v@;lpVfyjy$jS^wqvDl6b|($S;;L^{OC?!5e#%g z=yf8_z0%Nq6`ekaLOq^B-bbboON5>WQ=_Uq5P@3Brk^ownOIg=MgxX=?Q$U2`X;kA z3F+d;XIck3`}kENmwZE!B*oW!5(Hr8Z;c&;TEMf=z`iea#Yxl@IPQgFzD5FvqW9(a z4*t3mO_i{T9YSR-)DRm|fS)+zRXF%t82;DM{zkeas_=094090met=5oAO0M+FxcQU zYmjWOXnm>HUN^qN_1C5c)AmO`#r@2W6!2*P2}eHIk$`9bqB?LcnsW;}kZ)ZUJ02#F zPhSkNEMSJeSC&E%R!Q*k`}lXeJp@PCgP>zUukT1dU*93*=%S4H*6A6zB8~*Lt?9C% zXhRlsN~~)(f~`QRbTXgvH@@e2rQ>(f*>)=7iUuVMASVU9H44?w@s#~q=&HyF2vd)s z6iCQ1myIZ7Q6xLSD8^*|d>7D{y>E)KfN~UuC?xvTZ7*+cdM{!R;E2=w-V4zSemNMI z-={m8LH!;4XZWB`p}o1fiF$Ah+h4rC7<{?-!ubV!#Df}RxF}IHDyhZ7bnLiUHNwMO%2hX;s z&q?jMZ>eu#Z*v&6<^jn$BP!ZCnt4m5o(i|rZVH1xSe z=t%|TmypWTh+Ty2yrNMZ)}+$32vjbcQ7V(O!Z`x73cW%+s#)mfki?NmS4?M2SKttA zcGPmwim^^UHe1G|R!YRAN>}RQ=>IS=H3|PC4yXil+K<>z-4os41+wn*vfzKHd=vX- z2!R7Z1i|Ue?)&nOmh_&wLiGAruo3lGP9MDJSr{T2v~8C3xlFT-zcCClo6)-&0$48T zwanEG+!qln`dB2G7LA;{u~}T`F;i5MbsBtWuxW%aTBw^%42(I)F~-Z2mkq?Le^!sw zTUH*{=&J{+Zfn%3wxt-bk$FoGrj4<$mg1C7m0hdz)_$FboZnikoo}sTZrGkzo?oda zTD)B>tFox`u(Hvkt6a768TUJ;AJ=OW4DMDDB@-<&$k~jJ`>K#VC0&5a@(HJJWuSfU zv)z@m_NM2z+qm!?iNs;#BwkG#ttrj7jfi8+$y8rjT&z1%+p%WL7RqMRw=?#hay%-6 zGoWX4`ZkLS{K!@vGIt&5m?{)2K5199mbK-r^tbZfG~Se+n_UavzP`b@b-tZ=$bO)F z%(wyG7u>MkL_xAamcp36?SXs^od|hlTg%QR&22(FKw+x%y-8QzR>;=qbPDML$xLjK z%T@b(YuN?vC~FE`#wrS&0Q*-BLA>DP0Gc=VPTs{9{lvW1gle8V%r{)J(lx?w^$OLz)+44h;?Yd%j=2{Ljr~VJ0 zn4v6QpF^A<%%IHXm$fC@r0b+STWgIp*FzlnxB5SwK(t$sE7HbeT$Q?Lb?kclyv{yp zVVSd=u2rzu4NAvz zK66=KI%;aMi@M6#;Lh|xdvvYf$ZBrtYs_!O&`8y~x3u}WGL|{VJAE=Wr_y=?^ger9 zX+CXsxRk!Ugsw%jwD!f?dLsypinzkIIZaFl(Nh~``3%1qma{>l&QhfMyqkO$!mM;fpgg<=XeDu zzPI1j-@)q2`}hQeo`2hiyTkpBi_%@vOY=zxC_ZXq+`)Xwag}j+any46abv&RTl;x< z)u_YgJ-MrhxAK$bwcBIX(OM|M^H(f7jP`e~6mIM+nm2C~d=5R0?hcZ8xt<$2P&gS+ z)$iONM*A8LY_2$9o$=E5Ie5UnxV@dLrfZ}_*BNcE_kw@A zGUYPx)clrUPo@Em#<;d+2)1%4dbi02w#N#FPn&j7K?ap_NA`vIG}E;hIulJ4%-jPk zL=&8EfEmnLk&uRFBh&u@Ge8chjmr1v5N%V3P@=vj{apB*Pd%=GbJIo&yfXppw9e4e zv((x1!Gb3CP!MdvA^+|U_A4%AR`VFg0K=Bt(-GGxYx2SEv*PBe34M$o_s#u-Os@sb zhlKLm9T4bMHc}NgmXZRa1f^lXz=O@eAVDc`(B}i_0|xdgHV6zF^o;`g2xUS1D;H8d z>(#%~;2OUQ@+%06i-W!u4D5}JtQ|~k9FyE*xKWST8_~L2 z+5V~m#^uTZN?I8?>fyUuSz0@AxN;NzRe}SQ{`E5*A^u-Q94)vBRi$L{1#Rq&@L6c- zY3T`h;PCPBx$F&%Ipl>z{;m%CkDJic(b1NJj?Tr!h1P|M*2dn1j)9$>osOQ7j**cD zRD#CA&Dv4VmB!kE=zkjdS35#R4hHsSwvJ{t*7(2L)zi0ea^xl?{MFI#zyEnpBUiJ3 z_hjwx_pm?%r2Caa$3RO@_q%OSRjyyZa>$yw8d<6dnOT9v1L}i^=_4!GU*-QR=ifd4 zqo(S=Ycen}eEetCe`NhzlQz~QT&gb|N0dq zXdXB&y5Ez=11DSBN(2VR2PQ7WujmSXm=2Yu)Qj2wc6k{GPOQN3Q|_r~Grw7ttN`q* zS5UCXd5}Uv!mfbq%>7Cdm$P<0v z)uo+l9Lq-}TWO0-p_*%&rIdO};-@Nu@BMHy*{o(jq0t<$O1%LI4b6MSiD~>FB3(oG z%>%4q5ArBb63X=@}hp1g;z!Iqyt6j&#Da1ijgwF_LI1(+5%jJqhD=asGLi;Wm z_K)(vg%%<^@vY>4nbdEgVCXdKkg@Z>OaGZbr)hotqBe-(r@_chph)8po`QdWjc1z>0L+2)s{^tQf2klH z{MI|1BOaj|u_v&0w%Kogu|pFz-Q;y2$>n)7V8B6Ii5wz>^dHN>PX-JppWR_+XehyF z0i8HcA}PLDsYI+m`iR8a^F-&7)pCxU$@l^PXrV5KQi+m1kjZMnrMOkc==zu&Kyi^E z?QnC->yM}wLl{V`-RdfRy$N`R!Djmz<@s~pv>@5ht14ZwLY`ryo@VhmR!XCOc%Nx^ z>-KIuaDEJ(A+>XWu5VbUnqcEGyt*_XXyg_bs zImuXpuUDh;v-1oWpc3EcSyw@F2xEXO*KEtLNG>slWA`}rN5EkLWTibH^lJYBLDDdiOB zil+m1jmnj_kW+~@(P-!~HJ|zc?76zHyt_=!C3?fQ^8{|~an;6djmkfN;8qU9pr8)N z9G%*4aXz8JVzo*%mP#GK%n=<}>9`gzVZphq?{Kk+Q!J8q8<|~&{642tDz9L2aT}sH z*=*$CQ?vE-hngV~Kt9QyY={h28xGpUa(l37ja>p~w{Le-hwd)1wuAAE#jlUGw!Q_z zPgbmQy5HxDZzfa|fAxI46q;{!3$Hbukj%5ut=Me$x(6vJZnet^kDEx_=38twJ~*_2 ziUvG3TUkVGHvIj`JSE^ch42`r`k;SAMeBL~PAO5JD?eh1l#h~akAd?+ZuVzr42+s=GbM-|Vy zNh%pbVAJv5+{;qqlv8AQkFIaf;qt@a>A2`{>utwiY~C;=FyDuD$|SMLe&_rBH);yT zt+g&e`D{fuv&HtBwnpO6II*#4_gtyCzV-~JKec2T#&Wq?O9j?iKxEJ#okAgBF)Z%R zeX%bh^%4zFBqDEkv%mfeyzOmQ^Th#Gz0%X2MS*;$Wr9Y7_5RUvbDQO=r?OLF)myZ8 zNpw0fx5ae2hDp`Z{Va~n*hX6e4C?!zE@#WNk}`cVa?mKR>+T`0)M`zuBr~{#rPDde z4ji=m!)_n1NjR{`Bh~8;vX*j`_apHpCBM+C)fYt)ZCxELPPV#Xl{s=aA2uE;93xK^ z_*67BQL5M=e9xS=U^N$h75_#wD!me~*Vl!2QW<{DM@6kuv%|Z){SA|9Mxmy_+71-E z-FfZ9#fe-~{*2%{l%K!hc>|M^I{D`DQX3WT6PHR$^d4j)UL$eDvvG48my<|VV{L1M*AO_A5;>llegOlUTp*I3=E?u9aT!y=S@CW;?Fp75_cy_h%VPQL!0HJ!Vs?i6ai|jvx9x9OA=sb7vnOTm(p;fH|%g z)41nTKVju_zcYP}93tn}Eu%MjAW!Bovn)JPz0teUY%3SfxntZ+wUe*XeBbu4dvNJ) z{>X0svr)U}_R0JQ{jFOcv0q+*Ql-^Fzy#yjF!F*H)Z&cQQg&P;6?|CoHkC5aaeT{1 zz0c-6uSGa4@$y8R?C&7RJU*jMO4qsfeTmv@^hlO(PDRHfSNw|rUH z{powBGH%gq=(o7$*MyDl2Lg=$?~{QyE^w*I^O987dOU34IDby zbVG+1Ghjyfw_9&nJ^IrA#Kf48^0{JP8}OC=bC#46VWQL6t&Z^{7nf$Zx`|-gv{8yarZ_M_r;*#?OXJrPjxGeOgr^%2@hthb#F(aw=acM=Q#F zy0~0r^VJDR(+&Z+stZ5&CN!el10X%FpUS4X7@_5x?1d@Rssnl=uvB`(#B(}oJrv4U z*nPdvxf4X;C>v-VFhTeM$zUFZPFu4mE1pOvF^RnKj+umE76_ZR6^Xk`H?_>SrQimt)ckVL;<=iG z_+uh;@Q8BXveG#KEy|;g9xcTirDKm)Rhv7iHHS6XP+<|=1gy1V>708ao1Yh!+&cDM zsZQYo1a?BIao>O3@?v*6ZmrpJU;Zi>e91FbyDh7`B%5!-nsB>e1Mib$&2708{uYlX z`jV1^;|W<~o6N``rWbZ5>fYSH+(IO;NzitARHJ^7&q*P;RJDonN3>(en;Ng+QAqRA zh0A8#?@NMf`aiPd6uR8wqkMYui{wf&Ivr8$H7VSp`|kyLXJ&XX1xDyh#&4B&$Vm_a z|1ieBrSe5$&pRcyI3Lx!0Hoggl(+^XA$(kqB9<}-mJ(?P^D-Kb>`roQ2)iCVDQh`=f2oZ zNB_;fODiV4Pus6qR)i>uDuv7r{2n^ zyh@GQXi&c*zsWSK6+j;qb*KlErkX0JCT!rvxtkHuC`TIq;{3)YYD!}GMDh-he7Vj$3HwAwl+qjUrUEuth zv8&!1hT|vv<&D<73ETVy`W z^eg^HD=#Wnj0caOUurg{LzwHwJgzL&xDo^T+C*kb-+H8TiT|3mkAWM&_z&Bd`e;hB zm1>Kk;zngbV7<|6x~aoROSSkRb@~wvjAla!EsPD7pCnRN_#ZzOYDn}31N3A}X8QBZ zJayjAm}?t*f~9XK5O}$x6T5t^Cl@c2goh+UX!>Pr<0cd} zmi5FZWm=ggRiZ3q`e>d^>BG#4$y1@IaP{l@I&;yZ(B+ZC#ReUlvadmvf|4J^wucfN z!E}YR8sHvgs*6nbqfIg>vdTR*L_e224lIA3#qy?S3KKy0;8 zD_sP5wfs%kH5)&J6^Aw=f`d8dAVj&wg|%kMIapd53}(?WK;ZP#`*S) zRL67uWW8WLnIhMyIiTr_NQ8QzT+C8} z#ZZ*hRMF}qITnl6bT`W;mtdBxU+H3{aC^!}skdDj0!_Ml@svym4#6y=PAOOB&B9PE zZJyi3t3+k{KVlajXWP`KyqGMtVEASNF@Nk)vnI~POB_HszXv+i^PvL+IocopJu z4I6G}mZXzhnBx#S3&yJZJMl9iG8o&qcde6IV`nmOZuJQN!B5#rg8?EkxLb-Mtr^in zoTIb`C+n@KZlCVW+;6lGlf|G)du#`gdN}+Dp#UGmmZGIOIRMcq%q76Jx_6IcF2|bY zs@vnb??+AMF|_a9iTTc2PS^CV2lkgD>#WxGWN z&%ePxD*$50+#NtR^H!Wp&;gh1wM|F**QsPz`giVkQ!>1hi|bDvrW5*p_Wg_YP6QJV z{n%8+q0)3Bh>XuLR=#ZHUOGN%cuaQ&@8&65Q51Mp^WbxErDy}u9 z?!R|t47u-?%|e1}5)=x`ekTd7(1&&do%$3QPo3`|a=713eEWpy?knJrr_j6y!sVF@sO{wiGX2hGK&h#Z2)+unK(p!2KV45+>dA~YC`-M+)i z@lh;Ro>gzIqABiZhht(9g2tYYN-JxUsb9xS7en7rpa_x&O6Rg}r*LIopb^20K6zI!QtHF3;N^Rji7JgoKXts_ znn?#>&=Kw-2+ou@ym^dpQw`?JqJCeh->J)XiaI0!gL6V{u1IAPhOzZ2CN%3uQ*L8- zdcWM-GQGhNTa)WqwR~S5qSFd@LIQ=t>s$M+{$^Sg#mqNDJgB?93QduhAvD7kKRv}i z{3yv=*uWXgizh3Jzl@4O=?yCc8no7?_@A5RYR0Ihkfg@w)kkcKe?@LHeu6=-^ELJsr z3*NKLKTt$e zA(N}&pSJY8xk?B3x;!7j^Nz*yc~GNND$PpTEJTI(Gj3BJJ@`@wUDqq_LMoerf102) zc)tB5MqSWK%0?2msyzDxPr3Fohx^4YQU5>(;HyEzuK$}nMO}K;T|UGjg7vYWo3I1) z#7uJ~s$pBBFc?4i*ZpDma;WXNRKiO5bZ~#1w?bqPA!>|1PuObpmNE6Zq0&wcrSNDU zL#F+GY(z%vmNJJ|P{ooNo6xA_WpSw_$jH@@1{xg)_1%BIKXEvtCHY3%DgP}%^VFIy zpU|(96iHOgKY(rX#s&YhgUjd1pM}alHPQ}NpxotnDJG6g#tbSrhdq`8oyV}!wd&ZU zo?Tk68OEnuF>wtLX@;Hj6|KqXB9TSLQR%hk>zImyRIs3a4zIgfIIg^p`$KoV$xS&1 zx0UiVKmoSS{+6NMsohJU;RP|=r0N~jZUNA zZh70<_MmlY=EU=LeG|^rjmef%hsKbGAU@rKq=!%e8b{<=?xV=G*L345*0O=E6aJxF zzxVDNfN!~Ad+et7A29s4D`t()Hw*(BUz7NyQQ?E@z{*Z+P_ZA2{z1(AZVCkMOzptF z{RtO-%j`4(^M<8?>*gd^?DmHNQ==*sT1lURpV3XWn-)*5(mCzdzVk|7 zJ5a+cVPEuDZ+2{Y8_z4K^~+?$a=M(PY)Kd7bfi!dwZE%qV4s1ak`ui+QKhRn{BqWG z!S4@*wtwz=wa>amq}J#dXuwDt_g~IFNHD*f_L(yf$<26^gFM;TQPasT*p z7@|nFK7MN`X1T(1>B#e;$E*p-aY75F?P$CXi&*ZP5QtYYi!v*N#a;5jmnF~o{2;Si z2ST}6#uTw+Nl~juHabzsGNN82CS&PItlGzvZVtN$b)!jvbyzIJC&SP2Ac!yViGw*$ z`{;lpHMPNd5HuK!A5gJ`ZjA3w`-Wo~jo{i2523?+>BywxKrHXUXebIvytWocq5IAx zAaX*-hp1mBZE|s=CzOcJ$&{ow91TV0K0+Q4j!Gs2eB9`ZC;_S!7*EqHHG*L7i2UpT zc;0|G5^uZb(-~6w&dFo&H}dgHuPw5ZprKcAh%QD)xA(rD*HhR{E_AB0&%gNZRTYnb zp;z#189DtjfVf@Y!L5vlH$_=0v+^w9y~hIhi5KDf$%44019j~dyKt{Ir+l-`JNcrA zn)A^H-aP}xFxIqBQLnG#EY+$9ikY#tZky{$TkJCayO%6m9);2)1h9uvvHA*?WX;gkEYqloa)nk8*Nd1tX|R3aIz<(eOelagK{jXIEuLg zh|Cx3m~}sRz8jzZzBm+5i9z`WgDU|_SO<{z;15yYvFogUTXR%VIop|b8&2FVzxAU~ zenMXjl}yr2cIJmid9yK;wsRL|`J~|_3X;wE4Y;rzdn3RQ)iUSsuofpE$Gy%; zd-Qph&;MjKi5Z|K^2e6-*Tw0l;khiOI+-hQkT4f2QxzW<6JE z7t3R%zMp@E!)#rB5dFF&^7)mPcH+qUJf*3=STYqvD=&ugVR8HI17`6I>LTaC5Ul=u zmAm79_Vd}}j_vjCU=ZQPRis{(*806L!}DhTogX~H)9ME{MK$1$mgP3H z6cwi|2{bBd9Cg+yC$+4D7WZWlx2*HQSc;ssF;3^Bg!jCUgmiT_B*O5#20AvzwukVT z&tHdyZ<%~Ds6tW6Cc~iP`rdb6Vl@mk!Sk#0`#aih-kMJ~Oe$58e|a{mDN$6OL8&WI znbBNT?AJqAZCqnRDd8ZN-z9CTHf?h5HeS}3GD#0+1bY_AI&HKA{a@|2sG}Y#E6fm3 zYc(OH(cxRs@@U%%QUl}a_`~_?ffX<4I*3;@G|Fxb&%lL^osz++?ZRFs3O#?wg*!+L z3fY^^YDf%Hq(-neAOm6ctJ0K+_3$@l$YIfW6Yv%SY{_m|B2^F3;RScbp0dOuTXe8(u3 zG)j#+c{jJVSqa9%6N^}UeowX2d&V*ZKXg&?yuzEUW$?*%BZa|O_PAQbbX~DP6AAIC zqy->iMcs#4rC{8!w?wKeVSYdWzwOy1dQmwwLbIbKjV;5i_e=%H{v52rc8YzJ*=ljo z7$%Mik#NFffki)yx*j-d`ZSQ$EKjIKnQl*-0ga_lVn0^6E_OSUsK1t3ARIFzsf^Rv ztO2?7-e6jNFz3o=cT}ZTpl>Ua-Qe|LF*Vm=(u!r#xgqaZ8~@*S5)krv-V1~^Ze_=+;Pi=-)p5! z(T6UVcGkV}Lm5w4!+x#Rx@FEZ``^cjkOBm<{)Bw4F1T8US&1@SR=3B+j@6NU45P4p zSs|b7*nb(_;E01$)4=}6dSG(?9SbwjCcW8iaf-oFUO~oSNN~uc)a--2oRQCDRNsk@Qa~%~^n??f9FSdp##`KFC zhdP(N8!<#8Qgf+!P{eGu1uk+S0#T@4%Qag_hn34GFcd-@AOhcPEUWe^sezWX99$P9 zWw|8(e0}#0qobr+8rr~hyq8O(2SFlW;iK6h&@;WO?lps*ecE=Mrq-vV@_@QxyTnA` zZ*2EFk^R=sw!zfz5>{k&zTF|p`IR5KZ_M?In}P;h=l1sIc>hp`XjH1yIwSK8l5GTk z!8<^VEJ`)Zb&fDWPBT7RDW{)2pop-?eX1HEV4cXW$CI{LP6Ie!52STD=O9-GJ&N5iPS@N|lkB~qvHNj`Y6tR_B za}S1?NPmZ!J-X=JEExnuf#dzt%K3#v`E-#_H74x$&y|*wMS?#(ha`cMKyT>tQGgpk zK&H#~%yx=VzFKt`F5q8)Bv_Qm;K<>u+Og>93VB?|4Txl<7DwWnrc|j|M(Pprn}(!D zWi%G6C^JFw{8?!~!T0{1GuvLQeYdPPOChwrp{`=u&XCdT{ZfD30$YCn>Q_cQ31mr{ zDl-Tn%M+E>Qe|JnvNytYeFi?``Al>ZS19K6n9B7>j@<+lF*&l=C+PX;g)(e(cQLxp zdFc7K>NgsgAjC*?bJWL}daG5cGMWq_QD#WZ$$u;F3gLeyhr&DvG2rr9&tBGoo}sPr zexwsuDm4UxfH$i`H7{o{R2?V^0qhVVxhm3#ge`kzw_ zD5Yqq>5KKU*4nd98ODY=^a-}r5OC;?pqPdqW~t3Qoy=D1sZ^*35J|)?MkGpA=2?96 zm1e2+@*G|}Y3+TTgK|hJeT^5Lb!0K}onIw;iu}GAPu3>iwRSP~rT+?m>UAH?0)C!I z%Ze9zoTZ?mC$b&1-*z{iv<3VZtVeo;xjE!O15v5=uV@8sSSPEb9B_yXAL8G;qeFD` z$@zpN`8$ckK*0OmIhmVMz3vhBLxFm>x!%VaipU4_R{Qfcg;4lQe|(C`L~eY1U^B_6 zC+=kVJO{CVD-V79FdWM0cK5cKC_JuRpErCY;$&Y6kfAfSeqv5?dsuS;rrXOWW zQg3y*ogWn6v+ir8BN#aXe~7?gj#Ml=J0H)Jd0gWm7$itlYz`pp+hNP>j+R}NtF#1x{KVy=m1}s$(DB2)4@uEfD*IfnY=EkW4K8YyAmS@yy{@W=qjm`pUW=39(r>>N=qiAhr>g zvXICzk8%~yvPs$hbfNrZyMYVfOWWF3R$svQ_~i+ud@TCb_$ljCgmiHZ$sp)DO*+eG zs>tFG8(%f$m1*8Z^irO@#mYk?JNtRsIl!v5P>zUrRLD1a8D|Op+4dN zac_%9G2QI5fB_^1d?A)ddKFwL2YqbR=9w-|DeeQZ3W6RKI6RDM&kbcIgkL!NM(?}# zAAd5TN3#UuP7Ib_IK%b!85u3d3qoZ@Sn~TW3JskPx>FavI`~O^%nGxX%Hy>lySwa8 z-I%zB0lgjjUi!nLomD3anP`2fIl5K`Uk*Z+dwrS5C?1H`V&3FC`=UwL) zP=`pTNjQc~|9W9G{eC)yVC5TSm~u!QSy7U319g?#X7!UfiiRENyw5rMudO-8AcwvL zARdc~?N-D>xv?<@U?GTb2w0{*GkaFgQ4fq$Murhsdi>n0`ca~_oH7D*BmbBoRJ88Y zr%fC{70Ki_dB^se*m(qX7DZ&#KRivz)~d0Yr*uDURM5?2857W+%4#!sacRyeG3NB! zIR2fONaG7os}<_AqtmKVrx4mWP^FKN(^gCZPs&|QD*I6`6XGQJ-;f%FtwOXRA=D>O z+GML)emC~dL{+-)Y7SzrvoDwTe+lR>SWXYJ&l!l>USu@z!Fhif_hfv>AWq>oAMlSv z5XgEDf_y>uewAJ$14W%aKn^VblkfO_CW>_;Wo3gLVe$WETm40iJP`8L6$ERWMT(3rd-wvJyMFtIL( z0@4?IVORW1D&8odG0FHYrN2BV1du=wV5R>TdB}jqbORgR^4~D+uR#%j1VYe7@v=N_ z#PQoJ?lZYuq@9m>@!#TcpEJY%!N?%Jg6RpzQURcOir5>DVZVwD3jWtTJ|Ul~O+b)H zqz@$!yG`akP5XNM^A#XJ`lW&xk!mMkktyt6&A`zAWCmb@XKDrO4hoP+xTe3}`A1le zp9I)RK&?IE(nWvD-(~5*GePmO8gF()Ue+T&8Q-wPPTpWHh?geC&r|@EZE8=b`sT&# zPBK1WiM32Y+&?3I|K_*&K7u4C@sS<5^z}=!<6Ha1`JIjvME#4B`?rdMe!)*c3c*vm zoNF{{v0P{tl+NJE2_FG@{S?VH)Q5OAD65M*?fQ+*An?NwGI) z8-YdNwk>9frPJ7ANsWf+7aRRw)~*am)b&>tunNWl>poF{Dnh6{<+`C*ZVikwMZZ|1 z^;q88YN)U;JZ&wv(JfX<{ZV+s<)5IpGdIZ~FGQ-1N667762A{2*NiRy+}l^M-(GMk z03_bO#T^KXNClAsE3L9EiDR$Bk}Z=N0oeht%SOXiFD{X)0KR}eQ@^?}x$2(>lXB<0 z>9f{N{6YS}ohBRhzLqQXeQZY765j@IM6 zCN(SmO!x|$gSucWJ?`6WM&f}{W`ZW=l|;tje4cb(SgfjA3O28Uh(;5aqP4I^z17qZ zroxzb-D>j@CnT-twf`q4jz%o2`8H9EGHoJ@2CD{*fljME$?s5ko#LeA4x3}?9I2o; z9=OBdJlvODd3i(X;ekLdHf8X$(QDfPtN|d|opwq~h^=SwxSas~`V>EZD14pVSEVeH z-*;cRch=NQ0&`t-N%|G7Q(03eWYb9yz3XXYqZjxS^>WOYMh*#+GT zT9#V9G%A7@-%`ut@5|@SC_HGk+6$wQ0f_B3`x3%cD)ufzfbvC(;!R)Cm?UP(5#jTDNh0{cDAg*GThv^sHW{~3(2bxGy$wBY zWiaa|wylA%=8D#Eu}q|z$t_UA*A(k>G`mE@psCbk5ahwKNcw4Ji9wrGp`Gx9!YT~y zP?uVlF<0C|rPL5cu2i#4&w&YmSzSTv%lq;&$lwd0Ql~HeUe0}Q_)T$B&k9S*pu%tSg{OzSWmzRbwb(AUC*f zSm*v4=!I+ml}H1VXhE$=-vR98FZ&{%7f&~9z4XH@LVw$Rz@C!18u`ySr+-QzYGSfR z0y>%AC`h@UZ(Scf?*yrFXUXT3@0URw>>-`}&0`yCqr^}wRix!{M5jq!*9#&X{WIxL zF(Ym1Uir|9L;}0`$?bYL{rmAy)bsH()P*t_AOk`zYydpe=!8PS_V=osg|IyHWJYy0 zhy9e%BXTLg;`j0Ec>UM*r+W;c1sfe`o|F~Da!y}g)=p~(Wb+A#TJePG!PE-Jq)4k2 z_)?8uk)_WJt3_50w|mRrvEooQ+&%jFqa=;Uf+&{{tL zNvt|Y1Ty;b{(w##m~I9eMOr}^$MDX&@vTu*z&u1!78@mvejOXCWpL;A02Y5TOr*rW zk)7Y1wC+`G-ej)w=v<^Wg5kv{5)qHk5P0MwVGsAhlD>+xS;Q;=) zN(E`9vL8B}W0{|npAQlRZ{6*~y;tS|EWq@)^$yekz(HpEby4R6! z5>S&F)UuZOg6|ivRHc?dqb`I?K8*3-rutvIiV%jMsosP>B1R$&h_+-1_mqMhO931E2$r7{2&Q#7HzCu!%w=15YLVQUgdKAXEq2Q_}~EuYKVl7m@(M zC!yh~Z-AJWvLOjU*bCyUv})|d&L?7h$HNj`?KX!-7aMZ6`K#prSu92rglJq@bARh? zNDnL`qW2+uNZjt&;MgPd)_RU;`{9_^?*#`+=)-`MtNjaa2}Xtl^Zz}nc2p4F+VF^3 zihKDS*Cz#EaP1qp7|J31H)j1e@CkwVHBfLz4DlDG#PmyuOyg8hVK23g5BJN33H4o# z_yrM0^NoN|x5Nln1sCPN`}^&y1NryyLD^`0CNcjM&hIqCFXYT{(RyC^Pci&XXZwP( z<-pQ~Up~1dL8I#Ve{j%z4<)SDLi|^JcB=FB+zdMni zC)WtQI4kb}AawlBUEfXh_f-5d5%UXM515Rhyl8gllY`cU{$A*|-iymdhzFESn8_~j zqVqT8D`-iEekDr`etE^-{>t{;p^kZJ==eb(V~HdvLlqa}MP1zbh0Fgh4cgCEsTSl| zn=K%6JzewjJlmeF2F1-J-LE!+0=TqVcI-VYmn+vAgeU7fY?_>a^)fJ|l6N92?|+ta zfxN{9k4dVunx`*qo)AI@^FQM`Z|7LUu7e0MCJ zHGG}1m%C2oWOjRZz9UG&d!^pRr+k9RWDJmG-DWtIPqQw+I~Ol5*~UYs2@|`vwg$tV zu+qvaB-RD~rKrJbYV|&{;W`;i=$)<7(*ZEF+WIj_tn9kYJc!#?mDEgeL^PV1)PAk@I)tjuM^(y~? z&7z*m{im4iQu&tnicu6E@7GnMGf#RHWJys^9`zvak0WSjLQ_g5GkeznTbPe$8WaAA zgVEPK@x{ys15;38fKd5ur~XIrc*5(GRm?PBt3~I=t=VcNk0Rxq^5LTiFTr4GEoLHH z`v;qu?1;8Iet!NGs7cV3v6=Rjd4zbX6Ur+JdEz9)!B`H74LhxvZ-It=*StfMMn0~R zSc@pG4r9(o3p7@XE{U3MnK6XDLwgp_pu2Xoa%X8xLa5eQ>Yy+;1FUXFT*-`MBG<+> zZO5fi_K)bxjdnHC7Ky<=JbFBv224jMM;76sjI4BZZM@3`~ck-2NMJFz8|Ij8m5*rIr( z_1Gzun%EdXv$F2j;e>)y{Oe-q9s9YY9|T7@d&kK1QPEWRvf<*@^WBqdZu|GrI`49| zVM@8|#^VA3J8aVp&~+ow)jIi#u4l;f(Q-PcM2finVX8KdgH-pU=J8?BeZTGq(Q#ZY zBfe+WZW>;f_gZas-OI+A^~~<=evX!_%Fmku&E7}NUQI^fI~+1guEmNT(kz9DOURcH z2HKID=xk04j*s+iO)4%b;#}nwnnl@YblQ?Uw~hge6>o5v!Zsk~oW_Epu!)4j&=M>9 zBVt(ZTS*;uX`@|!gvU{>v)@Na3Z*e^d8<<3f=vG66Y)m6vmIjv6z!?8r7&ilN&(LaxPWmURUuZ~?KHo)=F96AIdw}K>Ll(ZeT^cEbVmJ zMOsfdrc4DBFS*C_(wwqe z9l9!guI8zcyO*;~7fxiakMI&-b@Mzfd4EJDl}zMnau6R&V?PAaZ;pDA{y?0tB_Le% zIZ!P6$=>7j0bon61CjR%ymz#qTeO+mz^7D|;`V}@X0zk&|6}eggX##vcERB82?Pro z+zAjIf(H%m5`qVJcMI+=3GVLh!QBq-esDd=4&S|>+^y{X+p7ITO-)m0rl;-ge&qcU zanF#q*2qn^yIO)fBZbvDy9W!@j{sw56(Q!l>XBTz_WB*h;Of%Hqf|8 z@#A*Hyqg6*@ue-y*8=N&5BhPgQj&ZI`4ff_^vR!MqB<|TEFCEiW$kLRDLgBs7v_g9 zR$;}r*6B&rZ?(J}%v3rb!5807n~c^Z~v{t?iGW=)yt z9Z!j*S)>yG-Y;IO41MLvL65SI!Q9<=+;ezV8G0Tijyl5d*li=?(vrcpa+|PsqyeZM zm^y-xBObh>8+$lgGITg=q2o2U#~qeFOmDr)_mCL?iMR4>LUmSW zev>}I#8Wx*Uhtf-%+(tZj|mgn8QAw%jvIeh0X~@Ycdl{i40mF=wzRo9plOKL)$s&)ygT4 z7;Y8iPgdN3F%l(bF^xwco%icqZlc@WQnJ+h&mmuTl;P+84c9oorTCfpVG_CKcxrZscU zm^7sNli#Yo%IZj{Ul2&M#<#hR@;rS+cinn|Lq?`xx$kf5p}YHnZh?cy02|GfIr{mA zc_5;J3XLPmnW^^W=0tPYT?GDcZ|nh$P{ebAP7SPa{bfmA*E27vb)m`Mi-g@OA`_Iq z3B75DLSRa^MOBfC+Ry5{bf zmcF2e$G3hp9eYO0)m9bj9`4>2LJ(rT#u5^Cr@8$V-j)Mluj8-!b((hF0@GmAES8M{ zK@bWkTEzxKs6{Ua1Px-JTJI1kNSZ-di1_X(>+=z}ej`-^B4}9^|0T0Bv3uU?=fD#z z33*27^|PN7s(_1CB*e{c%zJLUB+nDG8&Q$9*HUe7z`r5LP67dwehAP zv_mBDiVb1VI)2nmKvY8HW>E%rew6I+-DixzGhUd7!y{N+V%09k3lO2_bsO%jqPle> zPlMX5BT`8uur?n;IL2r%xS+$ROWAJ?)hvf|xs;ZdY#4Le)=15Kw0ZJdf%be+CpdYi#e7gBPrNhu+@i`TDQTr|BL|%O|y& zoUS!zaMyd&jDqM;ylJS*{I(<@)+^0{l#nHS zyy!jidDP25k|Ni!Znm&vj>y{>uOSc&#z3(OeF-yI_DW<{vmi9Cz`SN%@#E}#DVJ_c z$1~_74wYOLRn_>G1^b7)#}3L zhK8n$xnD7t<3A2^@IIqQ{nWDDi zZ&u!O%(rd2t|A@#U(S&NVdAOjUutRn^;ee4d%~JC99)aytT6Uz*8QtS0RFCc-rZ2JIo${(@KT&gsBavBQ>Q^e|9?YUgVB+j?^aY0Ix=hy40 zeik@>&KxxFW9gi2T1)s9hn~HxF{YN7^qT%K5-!zR(R!}AiA<2Wo%%;zb3V$vfZZ+O zQod@8WTSx>s-^*r`m=6t9|eg2?`KW#P=TF2V0<9XW`gBQ>F;Eq8vbKW;48@f+2u)m>SU%^;MCI5B9J(25*%j8 z=EyQFlfrhW;gQW{NeAc~9vZ_hCZ=0TTOhw^2V}}*49ZX~un|FIL-Mhdq3s=8_{eZk zSnBeBbODnU_L8d^j~|0&r6gp4{B7z4ag}%=a%t6ma%}wpJxta^v{OQE0F#p2ZhHcf zcKfXj^NrxSXBkCpa5U<{H18<6MIr+z>re`M9c}+M|LI8bM3W=e?2@zEb3jiq&rYns zsCPF(SeP@*;__lUv@eEYz#+C=M_1W6-Sx}I@f3;{T~6li-<)<`7SJ|TKGi$dYVN!% z!FwaLiHI7Z73I6b^vJK0eiprqGcnw+A*;-{6MCxA=z6&42@`+S^K^pQ?rRK44plI~ zf)n}OB&{ay=Ntz_1rvWo4qO%6($VlA>pks{R2hFvMBh3}U=znA&|4C7c+lFvoi?s1 zN~Q)NA0!anAx6m?8XjOMo6C~Fqf^1CLv7%s0E1d;ENTJu1!&XQ|BxX^iOW>q`^gBF zx&LH#9^i@Z0^jbgs56vp<9pW1`WQWE~W$ikCb?^7W!HB=mXf#WWUj(06bhN_Bh;^5L z%XEbaZochOJm11tOOhjAI{0}*_YwYk+C~Y{$U0exD$^`;p69BIY~L{*;}*3{;=@Huxl*gSK5F(O9dg}Dh#8cY+o2pA{4)>;a#Z#O*q)!kamQU_s z&U3XZiagIR+|)UN8rZM+Js)NUn|l-+6@)EU{KnvTc&77ZYU8BisOp@Ix-Q>jBv;H{ z!yh55i-}}k4FeJl{x-pR+ITLPL}6jXzR>F?V`L!&)T8rBjMHZ-G-!Kra8yi+;B%>o z8iQ8uJ9hQYIXpEAszSJhdkxQiFW2g{g^~Eg%*zzd%Jc49;%E*8CW3d_P+_(-LKEe( zT4KTI~=t`^6T6CnvyHDCC+5-0O4`5EFTGS zOpSe5l%9AtW~XabL3x(%>DBzLXzSLF+R!I$i4eko%e_*|ox!-JA2{abp3V*p9Zl9e zH&r$|jc!gJtZo6*N3)txG)M?VhQ8kk=gG9sNKG*+6?|PTnU28if7or$VJtk~D|J%9 zF&(WV`Z^*p^qrvwUVmb+KJ)E;NaxV_fblJVTj2yjQIR&m_QUghZ9=;0xT;5bPz=;} z^loan7s*k<&2G`o>R{N~l@A!hr$BRI<38g^+G!#a3fwpJ_k zO|aanz02B~wM5&<7SIvl!U#5Qx0tBI8>&5VvfXNwG8@vNx6#eSC}I?}VF_IFiC1OnbHF zZOLWf5#vZTF|#Eel_Uz=>c4J;#|$;EVlsf&CEb}#c4{%ozl?~-tWiwDHuiSTG|J`u zhS)frOO=lXM|^I*103rFWOb2754M189F&G8WNqB zM7*0{){W{nvW*|4DcY~reWTFl|EwkLk5zrE&9;ix`epFzEp2Hq=Fy%ZFk%B?v`>rY ziwjmj>uv`wCz|rD-`exgT%Xn7!R7O>TX?x3z4b!eZ?I|`g@$Ezx&^}p53OqI!PW)< zr&SA95jAF)xYr3!$+{#C=dr(XjNQ>m_#D(bd{UXc_k}uxz1rx838Cm6V&!RXyEFNl z58VAqo^0g5NI=`J+Ax1Hsh4PA`W?H)t=z7y@g#r%5ITgPx|GHv*q-8yMH9) zcDlgS-g>!1lheBR9kaS#yEgX`Xd<3{+o^v1uxrYfV+2ID}8*i zrhR@+SjaaLf4N8CVOvRdcPyjD4Oz@Mldq``+Gdf2e*61`7z9sGorT;ra&!)y#PogXqRdgF`LZn;+sg0C6hBAprgtUvFBWlu*rV{04U6^6S`-`~#ErzZqM z(y^Q&Er*6F7z;o+Ol9qzpSfxj)6mkamF2!V2Xo3&NeZpUG7yZ?S}~`vfkU+O{jdEL z-_h?zVfQYCf?T>x^0!4c-vSBON=e$|o~<$FR2MRM9i!zkT96r@F>g^~g|D?D2ulsQ zCmruQc$aYICYFUTU8Yiq_-%$Cb~LVeyVi8z}XZq+jkeMhtdKe{FbznpDQ zKsZhP@EFrezB4|`r#Y*YJ*PYQ3;Cf43-e^SR@I*N;#VN9@4k6)=li^RXb2%c`YDmg zZlX+XOx&*D`LgmzI4x~qX5;LeE19|63=*)8sLT{d?PAx)H@hAH|o~zXE)fHWXjhWDFmBL4eLa1l>CCYgM1na_bU-n+k8USOB?O|lSoln)_6^k7++GsVF_RlyIT zq4U&WZ^5zj@{WnF5t7|C)tXI(H-GehyN|2oNlmL(13qDvp?($C3hgcw{d|O{?7O-O zI(2Z3+``#1qCQF`xnC0$0nz`Ei&h_<(8NT|5HZv^_T6?1wmRDHr;2C$A}hT+%|n_> zKOwEY`M3nLs~UCpNP4Xdc|+r!B$NKRV*T{3_bW(xr)V3$`v8pU9B$u+*zD&frrk$+s(FB)d+S(iaQiCA)B( zA0rx$U>vUO4xI5Q_vK6I2wCx4=pE?c_9OjU#jL24fz#@|zExoR4)CAfEVp!3N^E)3 zxvm1LQ61$liN^?(M#&4{@^n5D$hUSCrVWnh zq$}5369D}oI=66IlsA4(fXrVbE&BU5nZ%l?1v;OJD#15F zYmbVJ%n)^~$XJ11M(kV8h=%-<+?}Rpg)6^V3&N({ zru}+1#O-+6RY><)wUK81h#Que$6;3nzYs$kH=Um%8lHHtekj46z^~T9o-u4RVvsMn{r1Fhfs!?rFV401kjtIf~6t$hL_A zTb-68>~^ro@`{NA^z(jF4<=f>1}9v@7mGKcG%GZi7(1q9%CB{+d0Sy-{922y59mc} zIRxW7NxZMxr+<#vABX>v+Lt-&LMJ((qEQp>b?m8`;-j_|ASvFXgFQOWqL#O+d;58_ zMhpcV>$x#{w+wWE@Z<}F;JED|YTA!R5`pCRMpHe=tcep%v1`%znMK;V=GmjdPjQnh z5-(Bs^}r*XYAQAIk`sErmsC9&@Zn+K@Eq!f*5fUuNFl|#=R^KHe@y4_bS$0tg@Bp8LEx9+0RJ{Y@a@F3mCjjmfZS^d5J_k zNp^}>hp`r3Yg5HC{^(`yfc#gQ*=a)QvC$$84CW1?Wi#mhaY6vKqY#Q&Sfa+B` z#{@CBQcBhbJop@+v|^RVCOKIF`I6f)%VMQ~H#sh2cjO$!YSS&kwgHWLdNez2RRP`b zTV4+v5?SVXjFEW0d6VMlbD)hJC+On!Su?WOIGVahO(3(_T=j>?*+)yDPv* zv7pLPH0M`qNtDxV(^SzYNzMX{HU~BfRce|C`z?8EsDFvEyWsh?=0bDyd>wl<#IN4J z?envE?`I$7&ZwO?x^E30D_f=AMmPub;{MKcxTC2ct|kku8&NCc8z{5ZOG z)Szr#?{o|FjiZ{gA(H26m$4{^C`MHLw`c-5&B@S&m*f%VjwGi zx1(lsh4%8kU$}{`9b;3hZ!1TY0C+LtyC5QT{C86gdu!&>?`C8IuwYsRmK(MFY|Pex ztznpDDH;PL_3_`17NmMvEWZaFb*p8>h;d+hAUr6rVUr>0p*7bo@NRD2oldZ|{nC#C zQfvFA#7nx5F6WMwIu6xelgcRL+Eem7e&IKKpm#QL>=|C`J=Zf2dk33Zrrs2ErC=+M ziSTBsaq<%6hsS(_m>=Qf*GMl;rm@$g`G6m`@ui9witBtN5ZF{GU|gcA(O34+2$Oi; zWvU+U!&-US9Fw4XstxQ4*=SNA(uKIc1Ivbp_$SNm9#t099~`#(x0;NmQoOf?XP(DY zKMf~3FRK5$UnXw!u-?{nv!0&`X6Nx&e=uyDGidWo{_x%vC8I8pF|{btRD#%n_|(?L zBbl^Fnn=g?bCupOCr7bBWU<<~s%L+Mg@J18gi-&ysuNj>W^@1n+!) zVa2fY9VzdSkN(7hD&S`f0u^CT4E2iDN!- z5Jjn1h4ohLh&QCA-e`s7a*oryzG-Pqg=BcTre~2gY@-3AOtMdd?lK=s3hc>=v z?z7>3+ILZw-nW+d;xLQ=>d`g~SczWO+Ud5fPV92MJHcF_>*lCv(2yk!It8y(v{HBW#YwNd7 z6&vU+0oCMqV#S|5Le9bp2>~19*ie15_gO@m%7~?U*~z|&D9k~=bbKbh&bxo6xkVU4 z-_o)$WQ-oK#ZZAjebPw@?mA-%w;z`)Fd1+#q}BZ1(+|#s6{!TZ@+t#h6_fGyyCcpc zK5;zZ0<*nH*_$_sb0_jVr?T$Otradx@H|j1zghg&(^#HX8m$tvIH^1x(k~u7E{<@R zzfsF)PG!6|87J``t0}leC|Qc69jH1nxWCC*GVqf~yUNVBF>JOWlLXTyAsF5p0A4JS zfV++vU|f4Ooaacmd(MWQ#5(|is{f6)agS<2q{dtdXk%QaIkT?X4Yj34JSWm1;T;25 zlMo3<2p1rGIqT(3Q(3Q0Clhg7>8dX0x@;WV_~nBh$TBXB!4th;fQtLLEvQZ<4rPrmrf!?MzRa zlX01~Lt50~5ec6@x9@xFNY#$9v6Hwn_W6#Q`W;yT@Qw4aVag*PKkp+yl~N=Cz&JbJ z&g54zgW|ri{gI)OI%l=*0VQZ^7$0tY=CF#KE|7IPU^;D#s*~NgM-=e|?5GZ&iw!~h ztwfq9#}cvzOp(kP7HZ5%njFOz-YvLgpx_}aG%AUkpG*l1lBjT~x}qa6yvp#}h+=Ps zuzS0@)S3bE$G+u6_xDd^M?HPbI3rmRv2aHPB?hx+eLczXn$vayk4R_ffr8U#f3Ya8 z8WpQaz0xo3%IW;^3B3&++H_ej;@No-#CFQyV3+CFgOtpn zdO8h#0|a`a#zdZri+GF%UTRF5d1~FxGspSa%Ypkz*M_-ih=0wEg{3tJEz{)P)`WQ*>Ky_4$ZjLIqg&-WQ3YHmKb zt=-)~FnO{nSzJvfTAZ8_EHnpPUz^X!r{QFzN}DN|%BMX$p=9xw{pmP+zxGSJZqNT} zG#+<1r#p94p!o9rKBD8dlslfaix5(BPNYP%Q^cF zmqEJ|#l;%;c?C0Q1F~fXO(G0jPz%M-)$pX~2&;~Rb|iYLwsn&ayPy1~?@Y<yq;py2d_IhVCHx|X) zMu*+>Y*m<@kIp|%r5V~MNhn)yUE|-+n8m>S2qf7f^>n1(%gf=_BK7>V_j0@?$d|-}I&saY~ira}Z=sAJ$73$iS(l-cl zGK%NOoYHDA6g)m1ZlCk`1H>Y48Nb=GY^YFKvuud5U0iH%hw;sAs3`vAH(7OZ=niAQ zJdb!&A-~pW%Zwd@1pD0r5{0xkw#a(cbQJ#U$g%ZVr)C3}5UQT`v^>DZp7^5tbN(x% z)OSIabb^up`|V=by~Owt`)-!u2Qs8yPUzN(zIyhttq4=-pGvD(`G5L&=T0i z@Tv>L!ovA4M(qD_;p6-&z>36C`X{F_+D8K5db)`A!v0U1;(uSS69b&X)~#OU|GxE~ zQl-~B>oEY2^aB>_KgB+8kX$4Hb=T=<)_4CR6#~VSfFJSB#SVS7`?zjYAj|*5uk^x0 zpFeT`UBi85>JcC&L%2D)qE1tYF;9 zfya894DiDwy*`#Q6h|7cPrr&uqS4is-x8u1Lc)Wt{NWpJ7BBCn@|S?gl`SshBT$(t z4+?T;pfcG*d_7@rD#p*q2R$T7&k!r05LUSjBYL9VRJ@!S4yON!eEr#ZT~7_bYo3l; zK0Thye=V|^0&yZ%FU48CT?v;SEmMkGOI{~QX&x*UsT^wLy;gm(c?@%Ld$0BI_kr<2 zVpYpYSq`I|MmGO6M)0ML4kI2#@gm@Sdm7#~&z+mjfcyxkXBflOh8p^~#$DA9xea-r zd6PSKqex0j8rX$rm>rp_Oe|rad2dk#qs++&AH6P{oTV;UMNj=N&bM6@8eVtRd};i7 zlnS<5a@uY5aSiD)-&5kG{>I z1^VY?JQ)Sd#gnJ$mE!*_hI(bDzu~tn<^0cjb-pa}V%%jFzeIJ=6R7U1i5rtq1Ymz5 zm=gLywOFEvzsMUvj=cEe2c-rY{zo*8-ychkW3UO>4le<%+k6vv@AAn*;MS{st>WRq zTW?_NDARq8KWmTwHvHB#%l?0o=3_~qkTql1cnu=|=iUFhW>SQHTdSSR9J%;^y4C$} zg1w{{ERCs@*J%LvKP4EAl1RBcH%r!dW^*Z)|Kj9BVN2@5G9kT>Ypw2G{y&z+|I(&( z_DT6j2Q!V`_G|yMVJJm_H>B)I>Sp+7!)T`iZ`kyCjnMv|ogx|)Nns)uRS&u5pPjwFOn&;iON%qFxJzDizMS*ADE zt8|CENP~qRyD=Iz_F?JfP|4+by6usf5+y%_4avn5hGyC;BI`L_4YIX!%EgQ-0c`~x zie3A7K0q>clY*|8t-v}M!<#izyd(rDZ!3C56ypl9s#LyJ+Wt)}JLPA6X6 zA99pq?v){+e~51ZH|e=u9lNix{<7=~rq9#9Z~3vhgwh>^oU|Gc8pnaY+4M43u0_Hb z5r23$EiduoEUYJfQo2XHx2F=|>c2XHdcknp?Ij^6&<(G)K{f+>NIkp$IM0x5d|lO) z(!}x_o60Y(4iWLB#GLOdYtUVQg86`S9Wi#-yTsC>Zp5$fk!}6 zMkjfe>S#N%-@$p@;C=Ft7F)#-B0Fmo@-Lf+-;fVu|r={e$& zs$dI*b$scR%Fv9@=V`l3(v87xrwM8jN2g*bB2OXBOtGPPd=lojokkDgDMR&EPXiSE zzrd7d6*y<+S%2!Nf2Uj@Dv`FT39bwaUZu2B`}Sg+duLi+A2+y$dzA=!t#V>Fa&8_T4lxmdM@Am!`OjrPdt|zEjgCt3V|w zK0UgJ^3V117q8xK3$#nQ7g&K`o6d>iNc_Wv7h|SGb;x_X($E2@YrgGvaA^61mm1{J zU#{Y=4kt%LQ@QP_>Zo@!ehcU{Sot&P-X+Fa6~g%uq0U%0#m6^khg|P zWM^R2cXVvS987@mY1PlDQa;@~dIl46l_mmqY@taVyj?(gBZOHbAo~$E>I~hA#w4-K zNeswWeJFr;l7mJ%B5gR6q~Y*(`^J7rkC;Pz_y?d;$Q63_0HSoZBAr`SjpiR!Z<$qR zh?U{uyoT*_oveF;BBlz>Uelk{5b?VyM`nG-xt^a)xVltgNX zY_i_`vk698K>e_ntLE;I(_rfDKt$qS*!)%j9al?0c$6*FBN2|etXM6xz6$w(Tx)v$ zBU*1i;(!m~aK_@j=}c~5K8Nd2?F1=Q#Z|bQ?s|$7F-%}sB5HD^Q0pD-;>O>YEEwbH zB1EgddY>nXq;E-yWK-*q<2x=_eZIAz+1=V3253R$hC1U7CJVPG!nNku7++azU9}PV z%6~q6yEj+yf-Q!<+MBc_J>IlNxnT6%a@$Oq6inG_+5;h83KxAC9a&01{vu` z6pkOzl$%?A*<(l#$gR{8HK&mA&mh$6+RmfAc7x4UB=WPPD#HgW-4D;jTUG&3hsL#2 z(7MlZxh#nQ;q<`$c&^R)&B>R-&>8eQMx5UV_>8=xw|d@B?+$mC(-!T}3_m##am~2j zd3Dda18rREG>#|%bLY>R$}hZD9EYSSxh_b$J}W>bT~$vF&cXr}oE;Xp-?vQXXTV}h zcgjOJ9YKU3W58*D-jxUxHqp+-*Y;rV1EjvkbgEof728V(anteeW#w-f=%oTyekIug)G9 zd?7!qMkB;flLY?`R4)IC-%w-7&TY9$|P1zo+jC2cM==+_1!i%qKdkDzw zY7A{Idn>nj{XMhkED{l_lX}MEd2lFr!<){lC@nun;BVYa)a?>Kx_@{gWOwq@$Ioi> z_8wGB3%7srI^vx56XLGh-6ap4ZDt>-&XG;ylm?_CmI`gFimio-Jz0^xW)>-&J*FxS zik4xVWm@ooeG$Ow!VFDJ1PvIAs(Gz>Kr*%xX_crL4O^T}aGAZS6+_^z`IJiu`84Hq z-!Cv{8mrbib;_sM2$nl6{?eo(v0na?QALDk^fvX|Z{rtV|3l@?Wv-AkX{IL8*Bz3U z%oDEpW8$9ai7pUpzMe~NPQzd{I+={b=j|gb}dMNHM*ycCotLmiUpU(js$~el&r3 z*t5Bho&NBnLLJZg3V%vuUjY6<)taxUYBrc#!LKz8S8f=PH>WEIC*xzM@EG|yt?KBS zU&pNinm7la5JYF?MlBx4pVY*>d?gth6IU)IGH)PngcR5uL8z>n$dT0WyO^3{T7H30 zw>8ErVZs(q502@LR>O@*ao6>7WfIF{k)D&AfEj9*HY;lBkZ}H~!uD)6~+7ykNHB z$4&UeJnI$}9>MulvY*CRDviqzp#{VZ8$Ch$+4HuaP0rm+XxJ<8$>>Lx8&-kr!pk3Z zcpN9(=`p9$>|cZ(ml=Qf+CQM$I#!qESi0oA%iH1DnpM-HZZrPe@DpozvwS>LmP$6I z*xkva32eXE;O(uTzDgO{nU|zXS7$Lh!?CB%sa`(<;D1PonZ#Vz9ZBA~1u+xk3;5jY+&LL_rAV8wfWRYqO&x@Ddx|n&P-!WY>*Y4bpz$eG@)>+(1_U73 zKmfACI(%4FN(k9hX{DEIoN8a0w!77F?stDgbG;Nl8F#G{L^6BXH1b2ITo)$oB47m4 z2~OsIYib!CjPpLo#IfQ6`6KD?wr<($z{1qyj;4Li%xJk%a9U~R+iMi7*0=ml&t6%g zS5Xg^z+y_zx*A&cN@LJuQR|Pur*&2-rdc?4{Ego^?Sk{!626?}J%eYndEoKFLjM!&U_yDqx)Lve|%hp}hzGp13mjfTmac;yABE z7)5;3X?Ewr{=|vf`jo${QRSD<75(D)_ZZVfq@&5+HrbtHk2uoXou3)uMaT(-L%kfpI$#LlJbCDXhcm ztlWiW3{!QAD+5dn$oDx3p%Z(;{^&;4-|rh!1^@!fLE9{meXzXYO_m=L|L8_8mfRNz z$BavYiQtK@X(|w8Zhrx0{_O^Sq$k;phqt;<4$LnTCTE$iD?*7UreZClG9t)@AT=F;foGZ0eyfDR( zEArZ>5ioX|9*Y+6mmzvd&Do65slX#(Oag=up&A_(E|m`3b~PF&op?c#)a?FVO^c|r z1nHY^9Gj8zYf!w|!KyX;8P1NF0K*Pl@4%p^b4l7{uF+`3r_CjFX=f`+Fos~Z1SD}z z;On!}`5xxzagUSH>TV&YdGH+1VoogNW3vp(@E5o1V{^{3QcO-FPNG1wsX_zwmnb#Q zVn2eCCrnNSWJiyi1L{1LuzWW*1*e?fthQ4}#rH;VwEFGWEu)7~DNaB4BhVr&Gj{uf zPO;NSJ6i56yRf6GYYL9~Gw+^LIV>qL#Tz+9N%=fm4PXxDavFZJAFS#=a8fs+oR3u- zkJ6QNsOPNl)mrNxBYnNO1)+A5q?Lg*z*vl9I#WWjipCYo$@=Y#Xjr`L7ScmUadc!S7Vk5?#({m9pLo2 zlM+jkibEsKnbLkY)-n)acUM%ealM>3M=RL0>dD=vpP5N*@c8nY2-A8z?cJwJ6xioU z4LOJQBnF*w@BQ>IHi3{15xIn>8HUi#QkokZpBIF^8+YGC*txBN)DNp+8Bk(-S^XqX zK*9^vayw{$GPx#1F0C-3g=sjtn6lA}%6j>F+s!6M^~ivnh7vV*Nk9O2aASA;{_eX| zspc#KF_-2Tjt?h-vO-k{dLrOMe=v8}DFYusxiDp70wZFj~C$+Y!J8>;)ZNALckE=^X76cy3KF>R3)wt||M3N%^Xq9nuTK(d&s`GGv z!H$MbNdWF=ueWQHuACLk`v#_eli7cJ^%IJ)H`5ze2cZq_5IIUDDX??}o~KmDB1 zo@OBo1ktoMBL?s~{sl){B|`0o%6{gCJvBIP3?--;jT?sr)t%-#)l?-tY>3jP&l#-= zmK&#pUgk;x@~+SJr5Rhh^~n*RX1#k$a#qG_38C{@(Zh-Osq`aV(AH-%3bIbJOBEzE z*theNV8lP;vV0lrESxl)eYt=3FLmyG8Z#cvEP4KHhDd$7UQ3=18-U|_M*JP`>Gj|s ze9lL}8rXIp2FGj0pIkuogyIg?Y)DsAyT7Iq_p!RY0y#NFPlQU1ps5i96J?jvJ}MZHa62p@j>d6=bccz$ z$)oC5dfLh;+J@}+VOl}_nLKa5hTpz?gsQk1ly~2J)_uI9ZGAY)dq zpUdk{aViC3EekxF$LgXe>zCTMCq%_3m!?n6Zru?@BXHg<5rq84i3y)nAwkSs$dnf> z#-zFPFyhik?!k?t?qPdJ;$;&dUE*cx$Ua6i8za4;N;CK81Bbzva+6l;CIrT;-55JQ zZ2WH9HvITQe)kVY)^LO|n$!7?CP^2LGt||Ea|4XHkyzdKvL$jN#`WRkEZ3C!Fl=H?5Pc3fuM8Y4Xqb3` z?;Cw}{M5R|_x(;RfH&He#`~9&V8L$(BlY#8aW;S-<33?(|cr_=z zbU+7TNU_4Uf*J(c+>#mJDGp8~Nl4Cv+iJ6}JD*gpveAX?8oc+{T(9?9L0Rfc9d9rH z+=;}6cYcf>qU7X2UHFZjPBCyDD*Nj^2UCb5BF?JY(Jn{y@`}f0KUyC~wlrnn0P9l~ zPN#d9K6%#5AEVvTReNlsD9@K_t-X?T*LuhRs*Vk0NM^=O>(LihE-T^tvfg zS7SEH`uX8%VJkut8B{j~AR}ch+teYB`Q8)P?VFAXC*>{oQ7<}m)>7e z%P^&&W$EJObJGqR*t2%0lU2s~6n>fR*}cifo;nzsng#hiP4>l@$@s2-WE35$@ca_} zIP21mhBQp_tc~^t(;aTIjtE;|&3cVgj~m{X^CR81-Q8QhhAG~HOC6am@qlWd7UW=)X`K->?+m2pjKm$#C_bt~s&q zUeSfwBYorlLKObz1(WeBx-eoL<@!$tQc2ZUbV0SkKjoi*QDZW2c5lbp!N2=Y8&OgX ztnBQM8g1ytLI1MVS^rKYBs~28@)7<&u6PlkXL4iR%ldcKNqv8atjGGW4pMQAApSqJ zVlQl?!#=r}>j=-k{z2%19Ka?n+(<^y{#D#5Ci99--0iR){S$l`412{Ujyzeo{#lI2 z`if0#CJmJS8FFUGa@=fF4!@B(lff6G+`T?Reod7#By`JlMO{$V6iGVTN9R0#15FQ3(-Yw~rV1 zPp@W*l(4p@MYgXFroXZJRNxspL*MnE>0%o)Z9DI(y1B9 zC#&)NmGHg?LKbZ*JS;Cr9Mi>&9%r|68k-apads&a#0rZ}#7E=2V&8GKzsMCbP;a@E zXMFMyOW`bVnWRUjT+HBp3r0aUwC1z~F*qIxG6B#74P4mUq%j@$zu*=3(uP{EO*2ns z7cQ`%bKf=CT{_nw$M~U?4nu&!a6mTP?CgN=_@(NjCjM>DLd0$`iFbUk#hl72K;qZ2F^)%E zl6Aor(qnvZ+W@MQ`{L6jZ1ixpk@br0*m;(FJRm@rJBT7e&>yobU(&q{U6@@2C3`IY zBw(TX41{NpCX^`8-afl*;rgA94HNM>NID%qcF`xhBos}+CNjP#9Kpns#OK&yvQ1g$D_*U>ycSR4qa9d0lCLVHG~OUAyWo=7j&zUa)>#INvh3_hSVu+Vq$3 zk??q^gPiwE*PvIqhah_;^ROQ|fIv$wh2~pvX)A}dSG0Fy8V@Ab~DyuIZNr)SDT8&YeGP@OC+; z?e%|&1rF+5U4b;-3$JKU64l`wi|4y73^Rxf0=4J5Kk4~(t6OZEsq0lCpF#G7fF9c&h&(t( z;uTLJ5$PiKyMxT<*KSe4(y+5udy>b!l|!OtZY!-drkSN0EpiW6grwfj_XQ57FX51Hv~ysU{1gOQ@d$H0sXT;m0KIoc`B92Nvp?w?!-~hq@?d*oziAbrrZV`C|c6hM- zWn6}=n)b^kheAM zrds6AQE;Re2FkV@DCT{&Jp8}Pd+WHUx;<{27*ZO84nYv41f(0JLzHerhAt@q=@RMg zk_Ksz?vn0~p}V^V-aX#l=iKMKp7;It`FtM#+V0WWGi&czd+l}ouI~z554q`-O9YW# zNjs|8%^3&C0}#f!{=Xnh;S&x^HO6>WFvfCVlpFL+^-8K_dxf-&m zrc_X0(`08*Y!@+SB=cl(Oaa@6Fm>B?(}rJTSgRQ_jPoG@AUsOGDPzcJ=H_3#2E8#y zk|y1L0^mW>PyDeaKeY9KUe+`pU#A0Nfdtzb#jdV4bSnf$8q8>GX2#+tv}`)oCVF0= z-O>U>#7GkEqRE^nfz?cXusNhrbjP3FqzJEqSDEZPlbLF9LVl3LVHsf6HRNz zSR%t&ypaW%t=lqz3B-+^W9utPW0%Dog@^l2c2w{XP@nlbul{f;;q) z9q|;4{3WZkOgF2i%Yn=Dp>N}n0}56n-<8vDlP{2i&~sKE2O^nh$1*xLqki=I79V1i zHZre_0EQ#FJezviWwl+w$zG2;z-3t#o!5M^IfM$jjX9DG(w0IJuVKYkj}F!6reCi>IwjoVM;Fw>cajdS$Xyo%KPc>5ln%#%RtU z7r`&W1AarKR%=%?(;w8h()16)^Rj&9H{j7@7l^8{KcuH()D+Bu@Gd+G+G00OIC;WQ zCgsyWl%C^OuFpTn?F@8`)uCffN;?Qub-4Q`HRXLh3yO4l6&`cKtuui0n0Zude?VG1 zfJW>YqH+H%goAAW3zG^od8`N82uYk}y{@#`wgMel8dY{_q~MzL?2Nu@=+|{EG)c3_ z1r{cs*@Hcq^6UBBopbDt_m!COxC2+AnmZRw#Xu{ka<#Ek;be0!>KpGAPmUt_2EUN| zRk~4<`;LS9oGTu;Tb~v22WZqN2yQcxL!XI+n|_dkO^kC@7Za_TM$7I7>JGY2%CTSo zt1-L5QMaGs-3s%SUfzm1d+xYJYbIR?F(Y-@LlDc|q3L~Jdz9Zxjr&IO__*_Ch18#p z;=qlx6-RPxBppU>BzRk^KG6E2w3qn_i~99!DpFCmjT3qq>me5(H#qk0^SgWi(EsYm zU=yl_3f@DmRpfGKa<_`N`vsq^hQ9NS^~llA^oiv}aF=K2srUqIl(v$Z`l|F!6wcbw z;LC*W7k^B}j94yq>-ogqY3TtW?hG3Mt^!M@w`zsF{dnOp=CM8ICI%jGdnew&p^`Sj zYr9S|?jc+cbkwF(c;Zx@MD29SWj^LFw~yJMUIoWs|Dr=ALlj=zpAOUJe$$~36GAUA zkZ1JLvxPiwKdxXpDN`A4m95pT4%(Ui0z+v!h9C_EHTuiba#Cd%lj|ULqN-ccwIufM zNWCDSyAx#K)Tpy;u)V*F$l{2zJ)?go4-`T&a55<8e+WBa>jN36vCO@$ohz9X@XW^@Hb zqLAl4bvjus9T<2uaUAsJc^Au&r4QZv?X=>?YaU~#d5i3zG&xiwKx4@@#FJUnDd$J`Y41O?lUw}3Rki^W)>G;?#us&U-q zP6D{c!VB&N@P?`(`>)|x%>Eb_NSeiVpxRZ*0XkCSdyAIV4m^!el2=4F?(xvMMI)au zVVPma-Ko4IE2g(%#h2I`uZFTaSsjS*B&C51QSg*;h(p_wy?RJRzng^pI3vEj0>$lG zY&bccp3-Izf7Omd|cMd?CN())V_b^xyDHDc3Qgs!mHu6UgJWAd@(piwU{ud zwrN(c#?!@$tV&n9T(xn-656d@dmcqQQ^AhlA!8VWtJNZ8K}`CVeVM8s@B0|IMs|O$ z=EK$3&@o7#$IdvE9Hh>ctq@b@IA<86*^bE|192!&9JM^adOWVvFe92>ejCnI>iLzk zFG+oLB^s%Eh1b0wRbLb!XYM8+5VFM!z+$#~QR(-nj&d!~>ZpdVZ?kp(M)O!fHNc+{kh)CxjW9)e&TmdesJW7oMUV_jcrN=*B&vIA<4DdA775W#+k|B z_Z&imc+8&e&5P2)aai0*AKsOMupxLe`EMe_c+5tk@@mQMWy-ZaLhhjHQs_LL;Ik0NH>B%G<>91KNm@FJt9Z|Y3pO?6!iV9O z-c-~D+(#?fZ12}%6Eh`>1!~D3ocpw-jWU=WS1KA++-9;j0oND9NVZf4n~Y`E=ms*< zR45X1;z%;LtN6uzi3^x-_*|XzH1nk)%6e3M^2fx;Y%1Rtmf+3i0+*_Rd^E4Jh2L!I zTd7FVf3PX?pZ{W0*p%m8#sHhDDR}!@{qQ{TqfrNX!g*SY=!$Rfs$R@yUYOzBlp;@a zM_ucBrV8A4h~rwc>bBmKn~aA{<{TXCq&ibaj?lB|dEs$jAT=%Npy#@6XMI(=b5+bb z=r?^mPs3f}m@^?fnj=3}HksvOl^CQW5kin}SYfsiLjT-Dg@nT}^N42XyA)MRAICX) zOXr5|!e<%67414qAClsr&vF+_^qScfvoC(`SMiA&6u>y3S1XJInxx5!?x4HuExI(P zh|?_HQI4kYP1J~ zfRd|4Kz0e^)?sh%ssH)?b6`zi`p~h@YVNZ=p@L{nk}QGJD%>ww{GK?j>)*ML$07@# zwbh`-4+YKKA)c2_)$D1i*SrsKgIxN3f7}e9ys-m)$Uf=JlXfvgjwK15kvIXgAPYqE z>&v@g)hu9GM6)=4C(QDt^yfDu+se7dvvuN`CSW11G3p=uhqJWku1p6~6pw*t{C1HS zxccc{O+$S&U^ceSDO|V32cjU;^qoofJO|#N!c=jBkl+XbR~{39Qt`-Kb|i2G`&ozj zuRdYhQ)7K-8AHmJvZ*FY-~s;}BZjJ3Hd#RQ<62)H+xjM-d)dc$%YlGt5u$t0x0en% z5wFZtxbCgbjO`_DqR6fX!m0rpl9si(4sbDRLu(E zQ@WgAdRsfjMSXAwm{+Bz&dF6*nd2mfc8D*;3W+Xy|GS2pWW)2E5sCLwh%=Jq7he|)5Oqq0GtzBy;|2&CAF<%UA@2B5vYzvyCj2J?C&^&zLlR9;y zqWPP=&p(_ikv%>7_hieMANz&?r6!^HnR_fikX#cuxvhqa$wu)M;Pcj7rbB34)J zU@?~oM}zXi3Sud*P^$#B!FKoY_H-baIQM6xl_f@BDN=3o%^*h8GDdKl#b=mJWU(pJ zn>GOi2P!Zufpoj-I`EZqhr4^+J1YH=?BG$AVd6>ma~BVf$}htSK39FaD8|A42Gv>l z92mvaVFa)_hNSF(0MdeR-;JcpJx+*6BCp;LK2 z_&$u4K?~Dy3yS#uMR05N@ODrbYw# zKp~mFf+2g}6W*_;C~y(EN$!K}Pq;)Lk}B?^dB`(^bM-A7Dl-)|Q)wkH26%fD`?0Hf zqw+@CQ`2v_rYf8;X%;&!19DQLUj)NF*sdE77DtRJ5VE-Ny>qqKMc!@uI5;0&!Dbj6 zib;HwuLTCdt0oHjCl42@>eGK5D-nh+24xNLGK4noI@GWl zo~qeddkKB$tf;QsZ$@y7n{IQXmWeIIG0&Vh@8$>*8ifvgecYff^&UI36AZ?^sjfGT zv0daXlgN<}4fbSjm5=AqjzxIHpeCeJbSoA+tCt$|1`#tSrQybxXU7!?m04!QJf(k! z6EXI(%YB7wqf3_1e)IY&T+Wrk0RAej=HvT;H#gzPkd^T zW~^~EgsXX7J7piCZ}i2BhWd2%z2HFUq)6^egbTUoOhHv6I!{)oA8j-+S_>fLGb`~y zMqsgSx;^eKEZ3Reg9GX5tkslH7o(a8-xzl}lvDTJwtN^!Qomqmz441d1$}8E<7H~N z;VZriohUAt9J(*r+5;Y)c?ZhDgUY-yljDW&dTsoX5GaaydZ7*a%oJ5E!#~E&#)dOy zD1-c3O8Y1Dyq>xY5U?N#u#krHJLVYO1=?LbT8S-8fFRlCGjqCt1~unX0;Ct1En zZSSEYcpf5?#rwka1}Nju-DB44grFM-K4kh%93M*bO66<3R7$g=Km@Hn$Utv_{yRTCRvn7a#HxjOz?0iv-IN7yN>Z9_KgYO}*1> zM#=nSCGmx`dP6?;4P37f5as$pnuQFlZsQaY`X2!cPB{~J%Fz>EAERo=hIXEL-V{jY zgzSx_-gnUAXaMtER+k?$+HOqC0~k3@S-U>L5TEJt=4w69`?#5t`A^BzS68N_t#vbltu?vip6c&&U{V&3wQLd-n8PeVFixFP>CFG*nN zeEM_AIU)A-$=M_%e`t8Yz(l;NXrqbpg16vZT{ciFtgxOKtY1ja2{Hh1$SW`JwxmKm2vgO>+g*ERPAGsxs)J@|2!3j|e;o zaC*EFA;bW>t)Mk-D^cg2ag#;$A-cHmS`)hTOJuirHcnPlC_LP#H^@JRIpvR(phG1Q zY7-$`i+Iz;80)*jm4O+||AQzY%a`R+XT3l9H6}||%Y8%w>~6T0GNnbH!_IW27cW2t zU5(WVnjN92fS&ZEs=6$W(;iEw-cc{UUc@W+7y9ICT^x7XqzAG_z(pRNE(2o{^`*o6 z=~l~IX7*8F(G%s$=^CA1T4N(vkPy=tg^;B5hMJS;4C0sEw!ZA_tRyh6L!rD}J>Q?t z=~em0IN2=j=zw{CmD4eO$G+V%#enUyt2Yrx69*SFM|yJ>XNvCWp37~!9(2WYF1@c+ z)5jpi(qw&rag^R4-raXOjR_JRJ*}0f1!~S!Jabg1)SwyBbV)yap1rliQsb%UHGU~n zKsy(K9>sjSFvRn7{XvsqC|%oRf;@Lj(onlN+=1ET{=5cl*W1(;x}_OUb#)E`Tg+~&J>7s`1W^6NFv0p%@o0fzW>Nnk+(rV( zOhEW0!Jl{=VAKLQvLg@&`bSVI*$k6?K6|}q`4eV^2c`;ygae;YUjLD{g?T6dL-9*c zhu;7AU;xT|%q(*HN61P6p9;XZBebtA|0J{j-fo70KpmgWzn570uR{m`40aj+q4yu< ztFZsy=9aWy-Be5!Cj1`_E(zEkG6W z&)s3I-W8DkKi(U5Ev0-R_~-Hdv3(1>mj2KD(*N+ncCJ{ExfB)ww7Fr`I#qw$CKj;0 z8m&Wt6BbFUATH;fGK`i4xF*hUu?JhDIogg#g}2$uYysmPfk)HjMo8|ZaqVtYxwHm! zw56+nWYto2}K4=Ji236~| z-7L3uPj9TW9{fg()-FOZVKu8TGdx3EEZ`g4l)Ax&0qktvA^wup@MWzgy!CE&FfaO^MC#HEi&TJNkJm1S_`$<)Ehnpp zPC3mU0PS%p93DF&5cSfgy3wrlKpveRcxUyp=cb+lvI(U{>K4V7Wv%-0oSG!eyXuW` z-*i*@T6KRqic5IA%wh-~DZv%yW0@iWO6`@3-YS1w9bgXSw4^*}tfGD%bOWBh#(cZC zG!wz50MCd5q^DyM?cM{j+qD4tLwfK?FKy*EN0{r)IjU4 zF#HYl#^`kWq`pjo-=lT~MsznnUGc(e$6PGj3+>l#xOKaV3U|k>Am>5S!h0|3&zf7j ziHal!8$+nJLvV|OMvjA771vt)4cB)$N$(|NegRV#vR-<~6Zo%TWXV%?(2c_1#Yv2Ia6UP0Ej^Qx7b2bC~DprLtu`c<;Z^++_$3& zBLxziw5C8|1PL#42)0roB@o#cOBdO>#pd{n6q7-dm*$H#tArmjf9{ofG4^ry(uOn_ z@=?Yno?SnPg!6(K!%ZrLls9`29rL~;p>m`|k|dgIWmAc3(-CHv@^a4ddTo8Qa0hXwy`akSjCKVca8k3 zH9%}KD{GL>h-Y_N-=cjMNmq5U&NzhTc}vr0 zQ5EyC)mLL8jp3CglZ)G2KIC0)Q-izx7y)A>zl&Ws!qrK4#IxQ^hxx7#TM->^>(vyA zWs7yzxRvwAg!dL;Y!-18#%4zXvVbdh`1h5IrhaIuAX2_HF5q-VSAQ#-+U0^L39IL@ zm`JJ_DSgLjGFt0<%IQjj`fkV)23>Ck_Kj``QJ}Xc%rlM$3zd;tu4h-J{f|`JgCpN> z0kbZ0yl9s+df>!}KA3g(OH|7ijs0M9=Pqvy;JE0?_2NdX8@7g9Q7V92uQW40>jeeX z+U3SB_-7mOWL|$}>m}siBSrM2l5oR{6VCotP3gWQl*2UdT~c8Vjbi02m)^DnDfid` z#;Nd<^(dg4Z986{UR|*1E$Z2`Ax?SZ9ga7ydS}UNWt^p1;?v04%;~)hmiR?P#jWuH zB3eq(6!m$f!8BffnQ7+A|2EUcKdx{Q1a6Ii-u#$f!`phqq`^9rEA>FG z7Xyb~`upwNU^;&qgnmXc19xqa1>v2cISmsZG+AW32T$yB&>(2|3&A!w?f#lM(4gj9qb@n1vQ(Jo>PzJztEd>p!22b2kx}KVu zjpaW%&AlPZC1Z(H7Pbtx6zLKUgg7arI^A9dlqlYw2egW3Q=wf_z?hPy2^QE%@YXnM zPW5V`q`Y;%q@oK~4X_e5(!y~DK3&zV2=QCOEN6>ZjtF|?Pp`9vPSaYy8tGcH>n-{} zlNgFf<5pO7zptao|AERbn-+2p1Au{gFaTHs0Kfs-j{`A~zV%jfh>hD1!UR+n6geVZ zhh3$c{?}hOAKeST$1V)C0B;4nQmfS`dg?l83zmxvVxnunjC@2W_J@~B9 zQ-utp;z%TzurKc&AduOC4FSMb20SpN=}EXlmG4+xm|6zew~t~#!fctp(JE*LCDr}z zb$b@ScnOVKf{!4Bl;+KqpJ!F8vH0}!(2$gf_bsQwmq>Yp>ml@`27 zPcomYR$p&u5Q;s~YeK3L))qAW`G%0+)aOGrkN5106jCB4ma2INGd@ACC?-wCUg{XB zRy}T!WDC2qUHO^R^v05JkqUhB{e#CLS7`tQ~yyRC~9$OrCK5lJx6Lt+z z+g=^oI7tC9Q3F49w83*zg}JK})6{yP7XEJEXjmR0;Mro1>x=i-%(|{;_CtUnFPmyu zu(k6k-gH+J=F2g zY!%i}?1jt_F-V3~HQ3F*RZV$3^kUgfHRwOo7q!Fr!vE|IvwSj#sCW~{fb&kX^U`h2 z$GysX+c~`!s2P|A!~6KOEwnCECI`#e3Q5G-c3*I}Z52SF+^&Ar#|FKTm{#ob?9Az2 zH5lOOrx-CE+Nu1BvI(rp7be#q=Qql%?%jyBi(#}7zbWl!eYgyBgOcfFJ{?feHsxbO35`ywr7x9TeIuvLrm*HA4U#H{>Q1DV!(7MQ@kR$?bBMcVJd z^Y*Q)G0PpTemk>u{^;nO0AK7(bU=|gJY*DBduSR2j^deS1w+{k`v@EaIh)pM+HAF7 z(ed5?CY^bDI3cBD-5i4T5zS4)FprrG<}o{+nx>i)u;P-CqcE^-W`QM7(bi}nw2%<*{;fzVJE_Dj$$aj$P4cD*X%U4{VnVQwDRVl2B zW%`2fgeaugHPSFW8yHet*XigKpIZ6}z&lC3RAjMTII3ZKJJUz-!+3#u;o$rjJJ@4j zt54l_HIG(P#?RK9!7)y9D_yut$adJPrp#>PvC~dJr;^Jz+gP&w%?b%h7Qn)#|3Jv; z5QW~K=IVtRI#2YRg9o{NzRq5S(KowaQznCk(GXa1Z5y+R9Wa^Z_x<%(lKHM;fm*KU zbCm=RC#{P;f?E;y`B@Yb-_cI%r%Ro70oScSLu`f!EO8*#=R_0}%IA*tu%P*2fuCPCb^i zJG*i8>C!V|!t)UdZ8i)~_1v1{o)?w2o><~bt-c@;j=!LysJD#9J8+uZ3J1ras@@CX3J)pX-5i>lYP^vFHvBCIMoJq$Hd<#Z^K-;{V9qarJpuvgc;}9Dio$6i(aMAt z?|`VYR~Iq)X3*g&?nXhdnc+$2D-A&gC1JNDINUSt?NCeY6kCa4qppAlHfBqsJu=K# zK^s=26l1TQzN_6~+2^ZgBrIs|@eyN9vTtlNX6|v&%FTM$vcmcpDhZ5n*OFR?{ai2l z-9SUmwcspyELVX8sYMY$eH3_YrXX?x-no|i>;5Bn>I6$=z&kXB?0;7izIfWcpt+f< zPcC}ud9){nUnWL`BAn}W)SnI&?8y&}>7jZ>J|S=ez{sOg7w+^w3wS?hG!D z7Lh!aE9_w`KL;b8S*D%!GBgvLl$fo3BM+!>$DYg>;oa}DxA-~s#k)W>kKKqo?~!mltcgj1K+VSKdYu^8 z!;ovE{ut$Ap#N{*?R5i~&_mu`7)o&+BE!z5N_LlcQL7k`IFYq*pw(%=leW*)cn zt_c zf{}X=_da!0kb>tfU7UhJP^L3tj(iZlw`?#B#lig zr04q0MK=b&se{zX0pR5Q|U;+|%H^_QDo8BrhDLT!1qUyUHA-KaesTNSTlc$&QXF3MbG+R(lH{jEO4nm_g(Fz%!Ys zl7)d+0QEA}g?11%EH??>-M-s18SONo;3nH(pzRCaV%cPAUYwtHWws8DcO)qwvlJ)4 zo6x%txPvasXOvl{PcC;@s#u_2xIIZN)G2JCm_vJ&B?HNqnWtzj?=(mFjzEB_UFwcf z!6?9@@l_^Oa zUtQh5U#$!Zj(vUCgW&0Y>bm^JxnAKmeZcGRu|r+#10R++;r2W=!``SLQm-3g*l)h~ zC9{d{luE)M5x>L_UMNgk3hPPwE3Q6w`aZKc_%Zr3#@=H_u~0JO{v5Saw`5A5A}yQ=+s>LI{u=oUwp4$vGol~=W)vG zgZdY1JyF9Mu9Ots;!{B;Ha9zZ9-8atBdpd#INc`5Z@9q3ruPJ4FbgyRjU+Fm0mqtw zA%+&y+s(wVLrFPLo@XGZ2LpFp^7=rTXPr`Zj#=TNvQlzaTN#z+cCUN=!F7f*N5*J9r z1qH7#^2~F7mx~7<%Q*`**aNHB%bm~iYeDFc!w1ltZ5?u80w~61zla*A{=It$&-!z1 zl8sw6@9UADt4N9G4yKq1NEFnGhJJcBsx`#6(vHcs=SDq-GtE& zX~^J7;6wRwOW6C84h^;;1N1@OV9KD_raDp&YmA#xz(y3eY^*6+?TLT4C%G~3bqy(j ze2Bw7QNx~C5{z#J1GKjj^;g$&#tl}Wu--mSeYv%squ%En4ZcEc3F_q=`DaDakFqS2 zH73-Hag0TjNeq$C=J&GQ+Gqw@Fy)+lY}~DM)(9hcM~(WFbaJT_1ztv~uPm9)(D{o8 zswRKOUUR2DB*!`2Moepj4S^wnsy99yj2fv3-u=dR_wY{zj_1fgK-H?3Vd+xL1}h+7`WwjFR51623hs|kZJQG| zhu6Xa7@27!D5>swmlx? z%BszGiTEnXr+NWd3J)KKb5bvQH$Ou?u|l=G3~I-3jzBcV6Mn`=hZ%#rJ6)%G5!_-< zA-4-EnO;d3^|!axcQmgSl{*HseaECy^VO;1E~OPXw!~)JJ zVsoL;qjgNsL(mBd)@xyzdr@P%#yX?f^3`=|f$(jYxpQ;Lpe4J$Nc;-%j3HQ`mC%0D ztf-qLDc;uc(%~ZBmAcHZf7>|I7c&k{LTLqDk|&d%wzkN@HH7vRV5-2trVFWEUsjk(H%wd3h$m>X1_$AvcfWL z>%Cm{0V6Qg$=5z@&~sCn-Qe}riOZX1X?xXLe@h(Uo(A|ubWaQ}%|u#59vqVux_Y@+ z2>6n_`=tL>?e1E>MGT*oS<9eYA4y16>CT~3{UQa$B1VR}u5VY+LA$=;C2p6SE!rNw zuM5+>BpiS#^tu1cFg&TBHs>8uBXocGGsFPcO3c4h!T;Qld6gq zf6fCG!h>mj0Ya>Q6cXWqygpyUe~^-YezJ%!0926zMRfo9oq-n_5dRBr{r+p17|;w- zPs3#Ys1ka>+KBLfwh^G=;dy=lq5}UEJ1Hdmp!c7Vg8$g2#`RQ^2qBaEmKlffXQY^E zjt~n9lA1=n-1#$Aq%c9X-g+}){ek|^N2dVV8RyTf@qbf00~{{`l{)f|mMI1Bq8jo) zFQb2NQv|?7MKOx_|8aia3>}k4d$Jh~^u)6nJr&?j&~2Agg5uNL zC`Dat=@!rWo~YO+V$yB=;$spS=lzPv9x|D$3wn3A<5S&x9YLoLaZyrmdoC3MLf@6} zG$+(kyQGtr@PWXSzRnSy%kDr`XPrB@lol3h9BGOcuNZ*LN!J`ZcHEeaXIpHteL8sh zce>%~&*VWMgz$H~Av=ht+n`fEtVcONAF>jx`LphT(WXPd3c5NvxLjIwumYoB6hud= zI;4!RzeYy@q-?~9GG&%Q^DaFb(cOob(=B3__w}p+JOriAm8se}DF(7iHYGLN(iF1zp;zLvQe}pGmGQ1JH#wH+P zhvWZzNoz7!k)@UTBK5B2u9sPYYUEhj3I@7d10_d^1R?2|JB?(&wZFZG6L)Q)f<0}o zc1)AQoAeY-Af+;I;?aYBZei7RY3Atzms>eh!ou|hbvFG{r zO>yI0CveL=0Pz{M+z_)^f0>}=e8g0AAQ*E>Bb!80eEUu7yLOepsiN=&t^95F)j8gN zhsIq)4>_wRgzvILKj8pyFj0F{zu$U2J@ErEvA};$90bD1&>zzkK^PjfE2LQ5uIIds(@7h+d+=g82fD=doI!_&2IxW1*iL7kk!}&gF)-fLL9edLZva)2_%7W zttT2yngOUg^uBDf{Rhn=Iv-awSoLjTmiluXpHib*xe5`7DUBQvXH=uB^Uo@XW%z>Y zjZFSnUZ&G%r|_Um0B32G4Lg|v|GZA)>~X_tucLvQmOmDG%n?3~RPs!y`~UvNn|7Hd5)r%x!xf#0RO0y*-~jfQf-M%U@rtMlXq;5r1}TrhpMi z1}Cd@Er)4C;fneZ(M15Vb}yy6Mdw&}l$--G+;;C^h^N}gH!)-Oz zKcW&{KA*sX5_xE}KB1<&agw~*hw;25=uN#!XzFQwkMSm(6S-`fw*SEKT?BTfXq{1} zUQ6PKk=4mFQp>p#jWVNN8lAhAyZ~V0PVR^0EDhrI#mj@!Uxi|fE5sA7OoYXaGi(hJ z&!mCaC?6U`6wF}>EtkD}5%NcNO~`u^E9+$&U4_^DNKUnu@9FN{dLTRRj3j{swM^@D z5e>Ic612w;J9`GBl{KUmz3@D&kB7U6WQG$1e^$`pBe`;y&%T3$!()~b6IMbvt>G}A z%Z2g@LU|mKBfq)6cipFvzVW45R2CdeU{jr~0HWR`-Pu&USdd(I?6yWsng)^u1z`jC zHk+`-=X+0lJi^bP%>a|=bk?GGt)7aL6cJG`wzi_E?R`jqyErdyNuNNa0MO^C=?Dx6dw(0)ZErWWh0;Ak{1Q`z5q z8mA3OtOT9}tO278ZLz_h&8@M``e<&dx~%kc+LHOKq=l6Wj9 zylPueQ%@acPC41<03HBjxxC;nX5FS1lTkweo?o*2bYX#r?x&lI_H0B%@IWr!2zOwi zC=e#I`l(;HddjJ|G}FKANVYD-v-PzMav$7)6mvv}vHZ3zkh@hZDg3^uyuOE=%%{v! zY2YkASCH3!YoAXr2C^ge%@=g{3<2Waq}&wGxiMgyG6j@1?8S0pQ9gETVrqX8Hgz6w z=JZ@~L01yNZQCeF$`l|@QNe!^r!g3D0-nH9@1ArChf9v|=b=)6+6s%l)>CQh@y3?% zme}cjfOyl9i2Gyd(?wq$*3w4GUz>=XpzcjeFN5$7eh+b>73WBqWMwvN-aamJ6 z5XAxfRFh_VZlS-j4VB97n}vhlwf5O*+IBySmCTEH_8}1MLAl8&m`*uA^K4=VP|A7$ zo1Rk8w+{~)Nm`#%$B^XC+YcjpI73|0uYm0`yWD04Y^Ysip7dh`K*g{20U*U?BJ>`+ zKL@b6ZvHyA-B#>XdOr@PmT)|Np!5l!Sp1GlOpy31F7aY_+AKM#K-C%b)9Iw{8gn_y zh?j4m;Suivw+#H!#s;q#msyaWT-k@g40kp0FKfi-chF}t7Azar&fdf(2?jt}xV>1h_XwJ{^qWxoh(uo41As$ZGgEIfBk5+u@P%o7`-lob zu46{fd$7P*`>(so2ujmf-b#g#XzIqrgs#DVh9g=Y%Gvp32ks(aMd;C z(_-9R5xucb_r#kOC>6kd)^qbfs#yW5)qbkmcnw6At}Rr>+w`c6P9CwQ1LyzTe}#fM z|5Sm&6U0nfhP{8NrCJG~PxZ#j_k}^94de1fHQjYqQ1!^MP+79&6Dc!vi8u6wQHV)3 zb4^r>&%cij>sSK?MsF$maJR6`+r>0=&X#%C_VKXejuM9|Jod5FV z%G0!FcIxm=SEGOnN0sW=N{JUMZ|tqcYYQtZ$F+K*8?^l}FZ|IGJ@{wSBO7P0&vuNd z>*RSG2!m?mVs?tyM7-LT&*bNA-sU$P^E>V+9E?=v@C|2Y;oj=dm-kUTL^hqxl8zn{ zUX?8W&Qz)XG?v$q=_L{4w)^cRT0`yqi8Qu8pv|JUY6u=x;M-r8P||-6IZI9_`_zxR ztM>-w_Hc!1Yb4KmLDMsAA?XG?f5VdULDHzvmluLR_-fi*rW;1ugve;#5}rv5X5HvI zZ)Lr$Q;{R&wfx3J%%HjMFuwtk87$ca(y~Yd83Jw&GeYf|pYBS4PR_FJozD_sk&#Mo zzDWKfGV%q^s!u{=gUcqU<)8V76^7|F6UPV2cOs+M4Hq{qqAN!!pgT;2%M`F|Dudxc zwaoXlvQvvH>5YvUf7j2(O-$@>-p|s`ikAQ=ztlLe!TOCz? zQPK8^lJ#?Gw$se#A(l z)u28oXf(mzA}dMl{T~SFJ3IIuDefI*4rVgDw}`Q%9#|8qkUCNT9o$E78;`a*Ds+)< z6o0V-1T79VFxA>SG0})kNg!&_<78^P$`ix@!wtE%M#RKLSVSXR{X!mQYD6&(kKMt9 zx(>nVxAOR$Hv*KWenO96sHf(xZGGBEK6RL%jD=Ugq({l=+g>@V{V}L; z2b!t6em?sF0B7Q9ENDVb9H2bs2jl8e@xX)8{Q$OH;pU^+87gFt+?T zvT`PZCwV$Tnfu%zW8!=-B?eeMaC6=6=7PLB%&GDD=nrobyZn>H{`3&l?p90#Xq#+4!G&6e+sv%o~Ab1do@Uj)hb9?#vOgEq3j>S|x z{iwMN$L>3j8{NXgE5qYIx>YvGZ(ScIT7p zWW)XhWgztr$4)kvU%2~Dr$1=$zJ8=U=xMZKYN*t3OWNzo?ToDBf7o47FuUt)d+or_ ze@#5sTZe>CXjY#AlKfj=L(-sUaU1CcVyfo=aZ0`>wqhTG@EDD4j9OE4aOJi)u~J8N z-$3t;*XTEl5`!_;E(7rCOMN{MMZ(#O)QycB=E69O%{l02!ZE-iHhi=(q`>pRD4HMg z!*bF%#!_S%lA$4pv!!m#NS4)jmNY@1ruSj)rxGhTxz7mutYoOS842QCrgq&UYuEmc zs4b}b{n=edc+CR*Tr;>{6+rGG+A*-Gd)R_I_A?Y|=>8a|0nm9oc(S^(kTT>D-ZgoD~r=sb70N+pf!alP`;QaR)90$lV(53mADW=gYr{&jQmlvZ`R0)G4*c-G!L*n1eh0-iyi)ws}0O&$j zHyNnulJ}uobL=M3YTy8Ig_B=QtPX_u>HsEP9hd>q74C(M@Z4WN!x-`^U52Jf(ohH3 z5(efjmI{9D<$$FdC4fi!SOY&#*9alU^E#w~+ZxF@J;==18x( zP=Ogoem~1SRdEJpgMd43D~%{HTmBFO&UU>oUB;h6u{~SolFN7*zgf15n^JhZjNJLq zZJrAs@#JQ|L4tPhy0YXLhLXEt?uDOcg1F+K|s)X;DRzn=ejxGq{_~tlG?ff8qrr3$L|N zw)j@>YdQ*oGLj%q-d;@tt1Yk+Q;z%CWJC|(EAYQiO~~*mtp~~Y0;%S?Uf+3x9#54S zz98|cnpctb@l)7|;Oz11nrN@JR5((M+zW~2o`afVDlgeqoTGOr&KC2=)|wQ7z1WpR7(c0fZXJ%-r>O*7`5{7yaW_62|=*5I7wA8e-pwU<7DYY`mrH<_+SV>-g%XsApGJxqG# zQsme2@k_0}DU$ESJENK=PQf+iO?Z9FdY}V;4s_t|zCwzlx_+=aP<9TYpHokE$HR-a zG6`a$HGxYA#r@(U;^7|tj;&1cq`NoJZ3lHr?oy$_uNHTO$Q%d^n*I1U2zlzt>^4Il z;(ZrfmC~9TKC}`DER0dyWwCUrf8$S8bDpqbY|@I~99|B_Svy4FB#|=-{Wf21QciYe z=Cqt^L^5c8u09O1!JxRc-en6KjvJ!#wK-MiGKeVx^~IkF53(h1-nMx9ulq7zEzOHO`5ug@Uqf&tXE4%Aw?iHTeWoir|XW< z0b**?=fZ6G!L8TOz#V5S*R2NEi$+EFr&iaC7J!=MXu##VSIdVjhAMLD}7A05v2@8uzOh3xd47(Tk7ojgfc zXoW*?o!m%HwhBI>+P>Le2<0&+M zYNYQ2b=MW#Qk5EbTHQG^JKNd&uZLIn&mCU(oT z_mk;rk&bVI>mD;$^DB^8L9*S~&tR7on{hrqOftBk?s>@1#g{ZEzrs|hJy6S&pJo|`XSsLnL{ zy%(8ln|}Om#Md%H^@d1~YXrKW#(UQq4rk)bx;5Od49dn$q4M9 zTie Circuit: + """Phase estimation circuit. + + Args: + n_qubits (int): Number of total qubits in the circuit. + phase (float): Phase in radians. + + Returns: + Circuit: Circuit for phase estimation. + """ + n_precision_qubits = n_qubits - 1 + + q_precision = range(n_precision_qubits) + q_query = [n_precision_qubits] + + circ = Circuit() + circ.h(q_precision) + circ.x(q_query) + + for i, qubit in enumerate(reversed(q_precision)): + circ.add(_custom_control_phase(qubit, q_query, phase * 2**i)) + + iqft_circuit = _inverse_quantum_fourier_transform_circuit(n_precision_qubits) + circ.add(iqft_circuit) + + return circ + + +def _custom_control_phase(control: int, target: int, angle: float) -> Circuit: + """Custom control phase shift using CNots and Rz rotations. + + Args: + control (int): Control qubit + target (int): Target qubit + angle (float): Angle of controlled-phaseshift. + + Returns: + Circuit: Circuit for control phase shift. + """ + circuit = Circuit() + circuit.rz(control, angle / 2).cnot(control, target) + circuit.rz(target, -angle / 2).cnot(control, target).rz(target, angle / 2) + return circuit + + +def _inverse_quantum_fourier_transform_circuit(n_qubits: int) -> Circuit: + """Inverse quanutm Fourier transform (iQFT). + + Args: + n_qubits (int): Number of qubits. + + Returns: + Circuit: inverse QFT circuit. + """ + qft_circ = Circuit() + qubits = list(range(n_qubits)) + + for i in range(n_qubits // 2): + qft_circ.swap(qubits[i], qubits[-i - 1]) + + for k in reversed(range(n_qubits)): + for j in reversed(range(1, n_qubits - k)): + angle = -2 * np.pi / (2 ** (j + 1)) + qft_circ.add(_custom_control_phase(qubits[k + j], qubits[k], angle)) + + qft_circ.h(qubits[k]) + + return qft_circ diff --git a/0_TO_ORGANIZE/utils_qaoa.py b/0_TO_ORGANIZE/utils_qaoa.py new file mode 100644 index 000000000..344ba2c7c --- /dev/null +++ b/0_TO_ORGANIZE/utils_qaoa.py @@ -0,0 +1,315 @@ +# IMPORTS +import numpy as np +from braket.aws import AwsDevice +from braket.circuits import Circuit, Observable, circuit, FreeParameter, QubitSet +from braket.devices import LocalSimulator +from scipy.optimize import minimize + + +# function to implement evolution with driver Hamiltonian +@circuit.subroutine(register=True) +def driver(beta, n_qubits): + """ + Returns circuit for driver Hamiltonian U(Hb, beta) + """ + # instantiate circuit object + circ = Circuit() + + # apply parametrized rotation around x to every qubit + for qubit in range(n_qubits): + gate = Circuit().rx(qubit, beta) + circ.add(gate) + + return circ + +# helper function for evolution with cost Hamiltonian +@circuit.subroutine(register=True) +def cost_circuit(gammas, n_qubits, ising, device): + """ + returns circuit for evolution with cost Hamiltonian + """ + # instantiate circuit object + circ = Circuit() + + # get all non-zero entries (edges) from Ising matrix + idx = ising.nonzero() + edges = list(zip(idx[0], idx[1])) + + # apply ZZ gate for every edge (with corresponding interaction strength) + for (ii, qubit_pair) in enumerate(edges): + circ.zz(qubit_pair[0], qubit_pair[1], angle=gammas[ii]) + + return circ + + +# function to build the QAOA circuit with depth p +def circuit(params, device, n_qubits, ising): + """ + function to return full QAOA circuit; depends on device as ZZ implementation depends on gate set of backend + """ + + # initialize qaoa circuit with first Hadamard layer: for minimization start in |-> + circ = Circuit() + H_on_all = Circuit().h(range(0, n_qubits)) + circ.add(H_on_all) + + # setup two parameter families + circuit_length = int(len(params) / 2) + gammas = params[:circuit_length] + betas = params[circuit_length:] + + # add QAOA circuit layer blocks + for mm in range(circuit_length): + circ.cost_circuit(gammas[mm], n_qubits, ising, device) + circ.driver(betas[mm], n_qubits) + return circ + +def cost_H(ising): + idx = ising.nonzero() + edges = list(zip(idx[0], idx[1])) + + H = [] + # apply ZZ gate for every edge (with corresponding interaction strength) + for qubit_pair in edges[1:]: + # get interaction strength from Ising matrix + int_strength = ising[qubit_pair[0], qubit_pair[1]] + H.append(2*ising[qubit_pair[0], qubit_pair[1]] * Observable.Z() @ Observable.Z()) + targets = [QubitSet([edge[0], edge[1]]) for edge in edges] + return sum(H, 2*ising[edges[0][0], edges[0][1]] * Observable.Z() @ Observable.Z()), targets + +def form_inputs_dict(params, ising): + n_params = len(params) + params_dict = {} + idx = ising.nonzero() + edges = list(zip(idx[0], idx[1])) + split = int(n_params/2) + for i in range(split): + params_dict[f'beta_{i}'] = 2 * params[split + i] + for j in range(len(edges)): + params_dict[f'gamma_{i}_{j}'] = 2 * ising[edges[j][0], edges[j][1]] * params[i] + + return params_dict + +def form_jacobian(n_params, gradient, ising): + # fix jacobian + jac = [0.0] * n_params + idx = ising.nonzero() + edges = list(zip(idx[0], idx[1])) + split = int(n_params/2) + for i in range(split): + # handle betas + jac[split + i] += 2 * gradient[f'beta_{i}'] + # handle gammas + for j in range(len(edges)): + jac[i] += 2 * ising[edges[j][0], edges[j][1]] * gradient[f'gamma_{i}_{j}'] + + return jac + +# function that computes cost function for given params +def objective_function(params, qaoa_circuit, ising, device, tracker, verbose): + """ + objective function takes a list of variational parameters as input, + and returns the cost associated with those parameters + """ + + if verbose: + print("==================================" * 2) + print("Calling the quantum circuit. Cycle:", tracker["count"]) + + # create parameter dict + params_dict = form_inputs_dict(params, ising) + # classically simulate the circuit + # set the parameter values using the inputs argument + # execute the correct device.run call depending on whether the backend is local or cloud based + task = device.run( + qaoa_circuit(**params_dict), shots=0, poll_timeout_seconds=3 * 24 * 60 * 60 + ) + + # get result for this task + result = task.result() + energy = 0.0 + idx = ising.nonzero() + edges = list(zip(idx[0], idx[1])) + for (term, edge) in zip(result.values, edges): + energy += 2*ising[edge[0], edge[1]]*term + + # get metadata + metadata = result.task_metadata + + tracker["opt_energies"].append(energy) + + # store optimal (classical) result/bitstring + if energy < tracker["optimal_energy"]: + tracker.update({"optimal_energy": energy}) + + # store global minimum + tracker["global_energies"].append(tracker["optimal_energy"]) + + if verbose: + print("Energy expectation value (cost):", energy) + + # update tracker + tracker.update({"count": tracker["count"] + 1, "res": result}) + tracker["costs"].append(energy) + tracker["params"].append(params) + + return energy + +# The function to execute the training: run classical minimization. +def train( + device, options, p, ising, n_qubits, opt_method, tracker, params0, verbose=True +): + """ + function to run QAOA algorithm for given ising matrix, fixed circuit depth p + """ + print("Starting the training.") + + print("==================================" * 2) + print(f"OPTIMIZATION for circuit depth p={p}") + + if not verbose: + print('Param "verbose" set to False. Will not print intermediate steps.') + print("==================================" * 2) + + # initialize + cost_energy = [] + + # set bounds for search space + bnds_gamma = [(0, 2 * np.pi) for _ in range(int(len(params0) / 2))] + bnds_beta = [(0, np.pi) for _ in range(int(len(params0) / 2))] + bnds = bnds_gamma + bnds_beta + + tracker["params"].append(params0) + + gamma_params = [[FreeParameter(f"gamma_{i}_{j}") for j in range(len(ising.nonzero()[0]))] for i in range(p)] + beta_params = [FreeParameter(f"beta_{i}") for i in range(p)] + params = gamma_params + beta_params + H, targets = cost_H(ising) + qaoa_circ = circuit(params, device, n_qubits, ising) + for (term, target) in zip(H.summands, targets): + qaoa_circ.expectation(observable=term._unscaled(), target=target) + + print('Initial energy: ', objective_function(params0, qaoa_circ, ising, device, tracker, False)) + # run classical optimization (example: method='Nelder-Mead') + result = minimize( + objective_function, + params0, + jac=False, + args=(qaoa_circ, ising, device, tracker, verbose), + options=options, + method=opt_method, + bounds=bnds, + ) + + # store result of classical optimization + result_energy = result.fun + cost_energy.append(result_energy) + print("Final average energy (cost):", result_energy) + result_angle = result.x + print("Final angles:", result_angle) + print("Training complete.") + + return result_energy, result_angle, tracker + +# function that computes cost function and gradient for given params +def objective_function_adjoint(params, qaoa_circuit, ising, device, tracker, verbose): + """ + objective function takes a list of variational parameters as input, + and returns the cost associated with those parameters + """ + + if verbose: + print("==================================" * 2) + print("Calling the quantum circuit. Cycle:", tracker["count"]) + + # create parameter dict + params_dict = form_inputs_dict(params, ising) + # classically simulate the circuit + # set the parameter values using the inputs argument + # execute the correct device.run call depending on whether the backend is local or cloud based + task = device.run( + qaoa_circuit, shots=0, inputs=params_dict, poll_timeout_seconds=3 * 24 * 60 * 60 + ) + + # get result for this task + result = task.result() + gradient = result.values[0] + energy = gradient['expectation'] + # get metadata + metadata = result.task_metadata + + tracker["opt_energies"].append(energy) + + # store optimal energy + if energy < tracker["optimal_energy"]: + tracker.update({"optimal_energy": energy}) + + # store global minimum + tracker["global_energies"].append(tracker["optimal_energy"]) + + if verbose: + print("Energy expectation value (cost):", energy) + + # update tracker + tracker.update({"count": tracker["count"] + 1, "res": result}) + tracker["costs"].append(energy) + tracker["params"].append(params) + jac = form_jacobian(len(params), gradient["gradient"], ising) + return energy, jac + + +# The function to execute the training: run classical minimization. +def train_adjoint( + device, options, p, ising, n_qubits, opt_method, tracker, params0, verbose=True +): + """ + function to run QAOA algorithm for given, fixed circuit depth p + """ + print("Starting the training.") + + print("==================================" * 2) + print(f"OPTIMIZATION for circuit depth p={p}") + + if not verbose: + print('Param "verbose" set to False. Will not print intermediate steps.') + print("==================================" * 2) + + # initialize + cost_energy = [] + + # set bounds for search space + bnds_gamma = [(0, 2 * np.pi) for _ in range(int(len(params0) / 2))] + bnds_beta = [(0, np.pi) for _ in range(int(len(params0) / 2))] + bnds = bnds_gamma + bnds_beta + + tracker["params"].append(params0) + + gamma_params = [[FreeParameter(f"gamma_{i}_{j}") for j in range(len(ising.nonzero()[0]))] for i in range(p)] + beta_params = [FreeParameter(f"beta_{i}") for i in range(p)] + params = gamma_params + beta_params + qaoa_circ = circuit(params, device, n_qubits, ising) + + H, targets = cost_H(ising) + qaoa_circ.adjoint_gradient(observable=H, target=targets, parameters=[]) + + print('Initial energy: ', objective_function_adjoint(params0, qaoa_circ, ising, device, tracker, False)[0]) + # run classical optimization (example: method='Nelder-Mead') + result = minimize( + objective_function_adjoint, + params0, + jac=True, # objective function will return both f and its jacobian + args=(qaoa_circ, ising, device, tracker, verbose), + options=options, + method=opt_method, + bounds=bnds, + ) + + # store result of classical optimization + result_energy = result.fun + cost_energy.append(result_energy) + print("Final average energy (cost):", result_energy) + result_angle = result.x + print("Final angles:", result_angle) + print("Training complete.") + + return result_energy, result_angle, tracker diff --git a/modules/0_Getting_Started/0_Getting_started/0_Getting_started.ipynb b/modules/0_Getting_Started/0_Getting_started/0_Getting_started.ipynb new file mode 100644 index 000000000..22fe34775 --- /dev/null +++ b/modules/0_Getting_Started/0_Getting_started/0_Getting_started.ipynb @@ -0,0 +1,127 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Getting started with Amazon Braket\n", + "\n", + "In this hello-world tutorial we prepare a maximally entangled Bell state between two qubits. We then run our circuit on a local simulator and obtain the results." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# general imports\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "# AWS imports: Import Braket SDK modules\n", + "from braket.circuits import Circuit\n", + "from braket.devices import LocalSimulator" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Build a circuit\n", + "\n", + "Let's build a Bell state with two qubits. By calling `Circuit()` we create an empty circuit, and we can just add gates to the circuit. " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# build a Bell state with two qubits. Here 'cnot(control=0, target=1)' can be simplified as 'cnot(0,1)'\n", + "bell = Circuit().h(0).cnot(control=0, target=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Submit the circuit to the local simulator and obtain the results\n", + "\n", + "Here we submit our circuit to the local simulator and obtain the results." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Counter({'00': 502, '11': 498})\n" + ] + } + ], + "source": [ + "# set up device\n", + "device = LocalSimulator()\n", + "\n", + "# run circuit\n", + "result = device.run(bell, shots=1000).result()\n", + "# get measurement shots\n", + "counts = result.measurement_counts\n", + "# print counts\n", + "print(counts)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEGCAYAAACKB4k+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAQjUlEQVR4nO3df6xfd13H8edrHQwYI67srpZ2owtpjB2wIXWAiAFGWAWlCzrsFG1gsSZOZdHEdJgI/mgcCSoTmbHyq/xcKoirIwJNZS6oo+ugjHZjrmFzq61tt4nbBActb/+4p599d3vv3Ze1537v7n0+kptzzud8zvm+u9z2tXM+5/s5qSokSQI4adQFSJJmD0NBktQYCpKkxlCQJDWGgiSpOXnUBRyPM844o5YtWzbqMiTpSeWWW265r6rGJtv3pA6FZcuWsWPHjlGXIUlPKkn+Y6p93j6SJDWGgiSpMRQkSY2hIElqDAVJUmMoSJKaXkMhyd1Jvp5kZ5IdXdvCJFuT3NktTx/of2WSPUnuSHJRn7VJko41E1cKr6qq86tqZbe9HthWVcuBbd02SVYAa4BzgVXANUkWzEB9kqTOKG4frQY2deubgIsH2q+tqkeq6i5gD3DBCOqTpHmr7280F/CFJAX8dVVtBBZV1X6Aqtqf5Myu7xLgpoFj93Zt0ry1bP1nR12CZqm7r3p9L+ftOxReXlX7un/4tyb5xjR9M0nbMa+FS7IOWAdw9tlnH1dx/oXTVPr6CyfNdr3ePqqqfd3yIPAZxm8HHUiyGKBbHuy67wXOGjh8KbBvknNurKqVVbVybGzS+ZwkSU9Qb6GQ5NQkpx1dB14L7AK2AGu7bmuB67r1LcCaJKckOQdYDmzvqz5J0rH6vH20CPhMkqOf84mq+lySm4HNSS4D7gEuAaiq3Uk2A7cBh4HLq+pIj/VJkiboLRSq6pvAeZO03w9cOMUxG4ANfdUkSZqe32iWJDWGgiSpMRQkSY2hIElqDAVJUmMoSJIaQ0GS1BgKkqTGUJAkNYaCJKkxFCRJjaEgSWoMBUlSYyhIkhpDQZLUGAqSpMZQkCQ1hoIkqTEUJEmNoSBJagwFSVJjKEiSGkNBktQYCpKkxlCQJDWGgiSpMRQkSY2hIElqDAVJUmMoSJIaQ0GS1BgKkqTGUJAkNb2HQpIFSb6a5Ppue2GSrUnu7JanD/S9MsmeJHckuajv2iRJjzUTVwpvA24f2F4PbKuq5cC2bpskK4A1wLnAKuCaJAtmoD5JUqfXUEiyFHg98P6B5tXApm59E3DxQPu1VfVIVd0F7AEu6LM+SdJj9X2l8B7gd4HvD7Qtqqr9AN3yzK59CXDvQL+9XdtjJFmXZEeSHYcOHeqnakmap3oLhSQ/AxysqluGPWSStjqmoWpjVa2sqpVjY2PHVaMk6bFO7vHcLwfekOR1wNOAZyX5GHAgyeKq2p9kMXCw678XOGvg+KXAvh7rkyRN0NuVQlVdWVVLq2oZ4wPI/1RVbwa2AGu7bmuB67r1LcCaJKckOQdYDmzvqz5J0rH6vFKYylXA5iSXAfcAlwBU1e4km4HbgMPA5VV1ZAT1SdK8NSOhUFU3ADd06/cDF07RbwOwYSZqkiQdy280S5IaQ0GS1BgKkqTGUJAkNYaCJKkxFCRJjaEgSWoMBUlSYyhIkhpDQZLUGAqSpMZQkCQ1hoIkqTEUJEmNoSBJagwFSVJjKEiSGkNBktQYCpKkxlCQJDWGgiSpMRQkSY2hIElqDAVJUmMoSJIaQ0GS1BgKkqTGUJAkNYaCJKkxFCRJjaEgSWoMBUlS01soJHlaku1JvpZkd5I/6NoXJtma5M5uefrAMVcm2ZPkjiQX9VWbJGlyfV4pPAK8uqrOA84HViV5KbAe2FZVy4Ft3TZJVgBrgHOBVcA1SRb0WJ8kaYLeQqHGPdxtPqX7KWA1sKlr3wRc3K2vBq6tqkeq6i5gD3BBX/VJko7V65hCkgVJdgIHga1V9WVgUVXtB+iWZ3bdlwD3Dhy+t2ubeM51SXYk2XHo0KE+y5ekeafXUKiqI1V1PrAUuCDJ86fpnslOMck5N1bVyqpaOTY2dqJKlSQxZCgkeVuSZ2XcB5J8Jclrh/2QqvoWcAPjYwUHkizuzruY8asIGL8yOGvgsKXAvmE/Q5J0/Ia9UnhrVT0IvBYYA94CXDXdAUnGkvxQt/504DXAN4AtwNqu21rgum59C7AmySlJzgGWA9t/gD+LJOk4nTxkv6O3dl4HfKiqvpZksts9gxYDm7oniE4CNlfV9Un+Ddic5DLgHuASgKranWQzcBtwGLi8qo78gH8eSdJxGDYUbknyBeAc4MokpwHfn+6AqroVeNEk7fcDF05xzAZgw5A1SZJOsGFD4TLGv2vwzar6dpJnM34LSZI0hww7prC1qr7SDRgf/b/9P++vLEnSKEx7pZDkacAzgDO66SiOjiM8C3hOz7VJkmbY490++jXgCsYD4BYeDYUHgff1WJckaQSmDYWquhq4OslvVtV7Z6gmSdKIDDXQXFXvTfITwLLBY6rqIz3VJUkagaFCIclHgecBO4Gj3x0owFCQpDlk2EdSVwIrquqYuYgkSXPHsI+k7gJ+uM9CJEmjN+yVwhnAbUm2M/7yHACq6g29VCVJGolhQ+GdfRYhSZodhn366J/7LkSSNHrDPn30EI++8OapjL9a83+r6ll9FSZJmnnDXimcNrid5GJ8f7IkzTlP6HWcVfX3wKtPcC2SpBEb9vbRGwc2T2L8ewt+Z0GS5phhnz762YH1w8DdwOoTXo0kaaSGHVPwhTqSNA8MNaaQZGmSzyQ5mORAkk8nWdp3cZKkmTXsQPOHgC2Mv1dhCfAPXZskaQ4ZNhTGqupDVXW4+/kwMNZjXZKkERg2FO5L8uYkC7qfNwP391mYJGnmDRsKbwXeBPwXsB/4ecDBZ0maY4Z9JPWPgLVV9d8ASRYC72Y8LCRJc8SwVwovPBoIAFX1APCifkqSJI3KsKFwUpLTj250VwrDXmVIkp4khv2H/U+Bf03yKcant3gTsKG3qiRJIzHsN5o/kmQH45PgBXhjVd3Wa2WSpBk39C2gLgQMAkmaw57Q1NmSpLnJUJAkNYaCJKnpLRSSnJXki0luT7I7ydu69oVJtia5s1sOPup6ZZI9Se5IclFftUmSJtfnlcJh4Heq6keBlwKXJ1kBrAe2VdVyYFu3TbdvDXAusAq4JsmCHuuTJE3QWyhU1f6q+kq3/hBwO+PTbq8GNnXdNgEXd+urgWur6pGqugvYA1zQV32SpGPNyJhCkmWMT4vxZWBRVe2H8eAAzuy6LQHuHThsb9c28VzrkuxIsuPQoUN9li1J807voZDkmcCngSuq6sHpuk7SVsc0VG2sqpVVtXJszFc6SNKJ1GsoJHkK44Hw8ar6u675QJLF3f7FwMGufS9w1sDhS4F9fdYnSXqsPp8+CvAB4Paq+rOBXVuAtd36WuC6gfY1SU5Jcg6wHNjeV32SpGP1OdPpy4FfBr6eZGfX9nbgKmBzksuAe4BLAKpqd5LNjE+lcRi4vKqO9FifJGmC3kKhqr7E5OMEABdOccwGnH1VkkbGbzRLkhpDQZLUGAqSpMZQkCQ1hoIkqTEUJEmNoSBJagwFSVJjKEiSGkNBktQYCpKkxlCQJDWGgiSpMRQkSY2hIElqDAVJUmMoSJIaQ0GS1BgKkqTGUJAkNYaCJKkxFCRJjaEgSWoMBUlSYyhIkhpDQZLUGAqSpMZQkCQ1hoIkqTEUJEmNoSBJagwFSVLTWygk+WCSg0l2DbQtTLI1yZ3d8vSBfVcm2ZPkjiQX9VWXJGlqfV4pfBhYNaFtPbCtqpYD27ptkqwA1gDndsdck2RBj7VJkibRWyhU1Y3AAxOaVwObuvVNwMUD7ddW1SNVdRewB7igr9okSZOb6TGFRVW1H6Bbntm1LwHuHei3t2uTJM2g2TLQnEnaatKOybokO5LsOHToUM9lSdL8MtOhcCDJYoBuebBr3wucNdBvKbBvshNU1caqWllVK8fGxnotVpLmm5kOhS3A2m59LXDdQPuaJKckOQdYDmyf4dokad47ua8TJ/kk8ErgjCR7gXcAVwGbk1wG3ANcAlBVu5NsBm4DDgOXV9WRvmqTJE2ut1Coqkun2HXhFP03ABv6qkeS9Phmy0CzJGkWMBQkSY2hIElqDAVJUmMoSJIaQ0GS1BgKkqTGUJAkNYaCJKkxFCRJjaEgSWoMBUlSYyhIkhpDQZLUGAqSpMZQkCQ1hoIkqTEUJEmNoSBJagwFSVJjKEiSGkNBktQYCpKkxlCQJDWGgiSpMRQkSY2hIElqDAVJUmMoSJIaQ0GS1BgKkqTGUJAkNYaCJKmZdaGQZFWSO5LsSbJ+1PVI0nwyq0IhyQLgfcBPAyuAS5OsGG1VkjR/zKpQAC4A9lTVN6vqu8C1wOoR1yRJ88bJoy5ggiXAvQPbe4GXDHZIsg5Y120+nOSOGaptrjsDuG/URcwWedeoK9Ak/B0dcJy/o8+dasdsC4VM0laP2ajaCGycmXLmjyQ7qmrlqOuQpuLv6MyYbbeP9gJnDWwvBfaNqBZJmndmWyjcDCxPck6SpwJrgC0jrkmS5o1Zdfuoqg4n+Q3g88AC4INVtXvEZc0X3pLTbOfv6AxIVT1+L0nSvDDbbh9JkkbIUJAkNYbCPJTkg0kOJtk10HZJkt1Jvp/Ex/40cpNNeZNkYZKtSe7slqePus65xlCYnz4MrJrQtgt4I3DjjFcjTTDNlDfrgW1VtRzY1m3rBDIU5qGquhF4YELb7VXlt8M1W0w15c1qYFPXZxNw8Yjqm7MMBUmz0WRT3iwBFlXVfoBueeYIapvTDAVJs9HjTnmjfhgKkmajqaa8OZBkMUC3PDiC2uY0Q0HSbDTVlDdbgLVdn7XAdSOqb87yG83zUJJPAq9kfCriA8A7GB94fi8wBnwL2FlVF42qRinJ64D38OiUNxuSPBvYDJwN3ANcUlUPTHMa/YAMBUlS4+0jSVJjKEiSGkNBktQYCpKkxlCQJDWGgua1JMsGZ4sdaH9/NwEbSd4+xHmuSPKMafa380mzmY+kal5Lsgy4vqqeP02fh6vqmY9znruBlVV13yT7FlTVkeMsVZoRXilIcHKSTUluTfKpJM9IckOSlUmuAp6eZGeSjyc5Nclnk3wtya4kv5Dkt4DnAF9M8kUYD5Ikf5jky8DLjp5vYN+G7hw3JVnUtT+v2765O/bhrn1xkhu7GnYlecVo/jNpPjAUJPgRYGNVvRB4EPj1ozuqaj3wnao6v6p+ifH3UOyrqvO6q4vPVdVfMD4vz6uq6lXdoacCu6rqJVX1pQmfdypwU1Wdx/j7K361a78auLqqfrw731G/CHy+qs4HzgN2nrg/uvRYhoIE91bVv3TrHwN+cpq+Xwdek+RdSV5RVf8zRb8jwKen2Pdd4Ppu/RZgWbf+MuBvu/VPDPS/GXhLkncCL6iqh6apTzouhoJ07JTMUw60VdW/Ay9mPBz+JMnvT9H1/6YZR/hePTqYdwQ4edrixl+K9FPAfwIfTfIr0/WXjoehIMHZSV7WrV8KTLzd870kTwFI8hzg21X1MeDdwI91fR4CTjvOOm4Cfq5bX3O0MclzgYNV9TfABwY+UzrhDAUJbgfWJrkVWAj81YT9G4Fbk3wceAGwPclO4PeAPx7o849HB5qfoCuA306yHVgMHL019UpgZ5KvMh4aVx/HZ0jT8pFUaZbovufwnaqqJGuAS6tq9ajr0vwy7b1MSTPqxcBfJgnj77R464jr0TzklYIkqXFMQZLUGAqSpMZQkCQ1hoIkqTEUJEnN/wOJsD3A1LLD/gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot using Counter\n", + "plt.bar(counts.keys(), counts.values());\n", + "plt.xlabel('bitstrings');\n", + "plt.ylabel('counts');" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "conda_braket", + "language": "python", + "name": "conda_braket" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.7" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/modules/0_Getting_Started/1_Running_quantum_circuits_on_simulators/1_Running_quantum_circuits_on_simulators.ipynb b/modules/0_Getting_Started/1_Running_quantum_circuits_on_simulators/1_Running_quantum_circuits_on_simulators.ipynb new file mode 100644 index 000000000..044bcb0c9 --- /dev/null +++ b/modules/0_Getting_Started/1_Running_quantum_circuits_on_simulators/1_Running_quantum_circuits_on_simulators.ipynb @@ -0,0 +1,537 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Preparing a GHZ state and running the circuit on simulators" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# Use Braket SDK Cost Tracking to estimate the cost to run this example\n", + "from braket.tracking import Tracker\n", + "t = Tracker().start()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This hello-world tutorial prepares a paradigmatic example for a multi-qubit entangled state, the so-called [GHZ state](https://en.wikipedia.org/wiki/Greenberger%E2%80%93Horne%E2%80%93Zeilinger_state) (named after the three physicists Greenberger, Horne and Zeilinger). The GHZ state is extremely non-classical, and therefore very sensitive to decoherence. Therefore, it is often used as a performance benchmark for today's hardware. Moreover, in many quantum information protocols it is used as a resource for quantum error correction, quantum communication and quantum metrology. \n", + "\n", + "Amazon Braket offers several classical simulators including a local simulator and three on-demand simulators: a full state-vector simulator SV1, a density matrix simulator DM1, and a tensor-network simulator TN1. You can seamlessly swap between different devices without any modifications to the circuit definition, as shown below, by just re-defining the device object. For additional information about simulators, see the [Amazon Braket Dev Guide](https://docs.aws.amazon.com/braket/latest/developerguide/braket-devices.html#choose-a-simulator)." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# general imports\n", + "import matplotlib.pyplot as plt\n", + "# magic word for producing visualizations in notebook\n", + "%matplotlib inline\n", + "import time\n", + "import numpy as np\n", + "\n", + "# AWS imports: Import Braket SDK modules\n", + "from braket.circuits import Circuit, Observable\n", + "from braket.devices import LocalSimulator\n", + "from braket.aws import AwsDevice" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Problem: Prepare a GHZ State" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Goal: Prepare an $N$-qubit GHZ state: \n", + "$$\\left|0,0, ...\\right> \\rightarrow \\left|\\mathrm{GHZ}\\right> = \\frac{1}{\\sqrt{2}}\\left(\\left|0,0, ...\\right> + \\left|1,1, ...\\right>\\right).$$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The GHZ state is a quantum superposition of all subsystems being in state 0 with all of them being in state 1 (as often discussed in the famous Gedanken experiment of a cat being dead and alive at the same time). The GHZ state is a maximally entangled quantum state. \n", + "\n", + "To prepare this state, build and run the following circuit using a single-qubit Hadamard gate (denoted as H) acting on the first qubit followed by a series of two-qubit CNOT gates: " + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "\n", + "
    " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Setup Circuit" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# function to build a GHZ state\n", + "def ghz_circuit(n_qubits):\n", + " \"\"\"\n", + " function to return a GHZ circuit ansatz\n", + " input: number of qubits\n", + " \"\"\"\n", + "\n", + " # instantiate circuit object\n", + " circuit = Circuit()\n", + " \n", + " # add Hadamard gate on first qubit\n", + " circuit.h(0)\n", + "\n", + " # apply series of CNOT gates\n", + " for ii in range(0, n_qubits-1):\n", + " circuit.cnot(control=ii, target=ii+1)\n", + "\n", + " return circuit" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# define circuit\n", + "n_qubits = 10\n", + "ghz = ghz_circuit(n_qubits)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : |0|1|2|3|4|5|6|7|8|9|\n", + " \n", + "q0 : -H-C-----------------\n", + " | \n", + "q1 : ---X-C---------------\n", + " | \n", + "q2 : -----X-C-------------\n", + " | \n", + "q3 : -------X-C-----------\n", + " | \n", + "q4 : ---------X-C---------\n", + " | \n", + "q5 : -----------X-C-------\n", + " | \n", + "q6 : -------------X-C-----\n", + " | \n", + "q7 : ---------------X-C---\n", + " | \n", + "q8 : -----------------X-C-\n", + " | \n", + "q9 : -------------------X-\n", + "\n", + "T : |0|1|2|3|4|5|6|7|8|9|\n" + ] + } + ], + "source": [ + "# print circuit\n", + "print(ghz)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Local Simulator" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "First, the circuit is run locally using the local simulator." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# set up device: Local Simulator\n", + "device = LocalSimulator()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Counter({'1111111111': 505, '0000000000': 495})\n" + ] + } + ], + "source": [ + "# run circuit\n", + "result = device.run(ghz, shots=1000).result()\n", + "# get measurement shots\n", + "counts = result.measurement_counts\n", + "# print counts\n", + "print(counts)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEGCAYAAACKB4k+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAATKUlEQVR4nO3dfZBdd33f8fcHGUwguLFs2RGSGzmp+mAnMSmKAqXJBMzYDmkjl+JUtAQVPFVn6hSYNtPKybTQB01Nm5Y6Ic6MwpMIJK4KpVbIFKIqpm5SjCyDsS07jgV2bNWqJRsMNiEKsr/94/7256vV7uoG6eyute/XzM4953t+59zv9az3o/Nwz0lVIUkSwPMWugFJ0uJhKEiSOkNBktQZCpKkzlCQJHVnLHQDJ+Pcc8+tNWvWLHQbkvSccvvttz9WVStmWvacDoU1a9awd+/ehW5Dkp5TkvzRbMs8fCRJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSd2goZDkwSR3Jbkjyd5WW55kV5L72+vZY+OvTbI/yX1JLh+yN0nS8ebjG82vrqrHxua3ALur6rokW9r8P09yEbARuBh4KfA/k/zFqnp6HnqUFqU1W357oVvQIvXgdT85yHYX4vDRBmB7m94OXDlWv7GqjlTVA8B+YP0C9CdJS9bQoVDA7yS5PcnmVju/qg4CtNfzWn0V8PDYugda7RhJNifZm2Tv4cOHB2xdkpaeoQ8fvaqqHklyHrAryR/MMTYz1I57gHRVbQO2Aaxbt84HTEvSKTRoKFTVI+31UJJPMDoc9GiSlVV1MMlK4FAbfgC4YGz11cAjQ/bn8VrNZqjjtdJiN9jhoyQvTvKSqWngMuBuYCewqQ3bBNzUpncCG5OcmeRCYC2wZ6j+JEnHG3JP4XzgE0mm3uc3qupTSW4DdiS5GngIuAqgqvYl2QHcAxwFrvHKI0maX4OFQlV9GbhkhvrjwKWzrLMV2DpUT5KkufmNZklSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gYPhSTLknwhySfb/PIku5Lc317PHht7bZL9Se5LcvnQvUmSjjUfewpvB+4dm98C7K6qtcDuNk+Si4CNwMXAFcANSZbNQ3+SpGbQUEiyGvhJ4H1j5Q3A9ja9HbhyrH5jVR2pqgeA/cD6IfuTJB1r6D2F/wz8M+CZsdr5VXUQoL2e1+qrgIfHxh1otWMk2Zxkb5K9hw8fHqZrSVqiBguFJH8DOFRVt0+6ygy1Oq5Qta2q1lXVuhUrVpxUj5KkY50x4LZfBfxUktcBLwTOSvIR4NEkK6vqYJKVwKE2/gBwwdj6q4FHBuxPkjTNYHsKVXVtVa2uqjWMTiD/blW9CdgJbGrDNgE3temdwMYkZya5EFgL7BmqP0nS8YbcU5jNdcCOJFcDDwFXAVTVviQ7gHuAo8A1VfX0AvQnSUvWvIRCVX0G+Eybfhy4dJZxW4Gt89GTJOl4fqNZktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJK6wUIhyQuT7EnyxST7kvyrVl+eZFeS+9vr2WPrXJtkf5L7klw+VG+SpJkNuadwBHhNVV0CvAy4IskrgC3A7qpaC+xu8yS5CNgIXAxcAdyQZNmA/UmSphksFGrkqTb7/PZTwAZge6tvB65s0xuAG6vqSFU9AOwH1g/VnyTpeIOeU0iyLMkdwCFgV1V9Dji/qg4CtNfz2vBVwMNjqx9otenb3Jxkb5K9hw8fHrJ9SVpyJgqFJG9PclZG3p/k80kuO9F6VfV0Vb0MWA2sT/L9c73NTJuYYZvbqmpdVa1bsWLFJO1LkiY06Z7CW6vq68BlwArgLcB1k75JVT0BfIbRuYJHk6wEaK+H2rADwAVjq60GHpn0PSRJJ2/SUJj6V/zrgA9W1ReZ+V/2z66QrEjyXW36O4DXAn8A7AQ2tWGbgJva9E5gY5Izk1wIrAX2TPpBJEkn74wJx92e5HeAC4Frk7wEeOYE66wEtrcriJ4H7KiqTyb5LLAjydXAQ8BVAFW1L8kO4B7gKHBNVT39Z/9IkqRv16ShcDWjy0q/XFV/nOQcRoeQZlVVdwI/NEP9ceDSWdbZCmydsCdJ0ik26eGjXVX1+XZuYOoP+3uGa0uStBDm3FNI8kLgRcC57ZvHU+cRzgJeOnBvkqR5dqLDR/8QeAejALidZ0Ph68CvDNiXJGkBzBkKVXU9cH2Sf1xVvzxPPUmSFshEJ5qr6peT/DVgzfg6VfXhgfqSJC2AiUIhya8D3wfcAUxdJlqAoSBJp5FJL0ldB1xUVcfddkKSdPqY9JLUu4HvHrIRSdLCm3RP4VzgniR7GD0nAYCq+qlBupIkLYhJQ+FdQzYhSVocJr366H8N3YgkaeFNevXRkzz7bIMXMHqK2jeq6qyhGpMkzb9J9xReMj6f5Ep8VKYknXa+rcdxVtV/B15zinuRJC2wSQ8fvX5s9nmMvrfgdxYk6TQz6dVHf3Ns+ijwILDhlHcjSVpQk55TmPOBOpKk08NE5xSSrE7yiSSHkjya5ONJVg/dnCRpfk16ovmDwE5Gz1VYBfxWq0mSTiOThsKKqvpgVR1tPx8CVgzYlyRpAUwaCo8leVOSZe3nTcDjQzYmSZp/k4bCW4GfBv4fcBB4A+DJZ0k6zUx6Seq/ATZV1VcBkiwHfpFRWEiSThOT7in84FQgAFTVV4AfGqYlSdJCmTQUnpfk7KmZtqcw6V6GJOk5YtI/7P8R+D9JPsbo9hY/DWwdrCtJ0oKY9BvNH06yl9FN8AK8vqruGbQzSdK8m/gQUAsBg0CSTmPf1q2zJUmnJ0NBktQZCpKkzlCQJHWDhUKSC5LcnOTeJPuSvL3VlyfZleT+9jr+/Ydrk+xPcl+Sy4fqTZI0syH3FI4C/7Sq/grwCuCaJBcBW4DdVbUW2N3macs2AhcDVwA3JFk2YH+SpGkGC4WqOlhVn2/TTwL3MnoWwwZgexu2HbiyTW8AbqyqI1X1ALAfWD9Uf5Kk483LOYUkaxjdK+lzwPlVdRBGwQGc14atAh4eW+1Aq03f1uYke5PsPXz48JBtS9KSM3goJPlO4OPAO6rq63MNnaFWxxWqtlXVuqpat2KFz/mRpFNp0FBI8nxGgfDRqvpvrfxokpVt+UrgUKsfAC4YW3018MiQ/UmSjjXk1UcB3g/cW1X/aWzRTmBTm94E3DRW35jkzCQXAmuBPUP1J0k63pC3v34V8DPAXUnuaLWfB64DdiS5GngIuAqgqvYl2cHo/kpHgWuq6ukB+5MkTTNYKFTV7zHzeQKAS2dZZyvekluSFozfaJYkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpG6wUEjygSSHktw9VlueZFeS+9vr2WPLrk2yP8l9SS4fqi9J0uyG3FP4EHDFtNoWYHdVrQV2t3mSXARsBC5u69yQZNmAvUmSZjBYKFTVLcBXppU3ANvb9HbgyrH6jVV1pKoeAPYD64fqTZI0s/k+p3B+VR0EaK/ntfoq4OGxcQda7ThJNifZm2Tv4cOHB21WkpaaxXKiOTPUaqaBVbWtqtZV1boVK1YM3JYkLS3zHQqPJlkJ0F4PtfoB4IKxcauBR+a5N0la8uY7FHYCm9r0JuCmsfrGJGcmuRBYC+yZ594kack7Y6gNJ/lN4MeBc5McAN4JXAfsSHI18BBwFUBV7UuyA7gHOApcU1VPD9WbJGlmg4VCVb1xlkWXzjJ+K7B1qH4kSSe2WE40S5IWAUNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUrfoQiHJFUnuS7I/yZaF7keSlpJFFQpJlgG/AvwEcBHwxiQXLWxXkrR0LKpQANYD+6vqy1X1p8CNwIYF7kmSlowzFrqBaVYBD4/NHwB+ZHxAks3A5jb7VJL75qm30925wGML3cRikXcvdAeagb+jY07yd/R7Zluw2EIhM9TqmJmqbcC2+Wln6Uiyt6rWLXQf0mz8HZ0fi+3w0QHggrH51cAjC9SLJC05iy0UbgPWJrkwyQuAjcDOBe5JkpaMRXX4qKqOJvlZ4NPAMuADVbVvgdtaKjwkp8XO39F5kKo68ShJ0pKw2A4fSZIWkKEgSeoMhUVmptt8JFmeZFeS+9vr2WPjr21j70ty+Vj95Unuast+KUla/cwk/6XVP5dkzdg6m9p73J9k01j9wjb2/rbuC1o9bdv7k9yZ5K/O9TlO9Fn03JDkA0kOJbl7rHZVkn1Jnkmybqx+TpKbkzyV5L3TtrM1ycNJnppW/7Ekn09yNMkbpi37VJInknxyWv1n2+9aJTl3rP6Xk3w2yZEkP3eizzHXZ1kqDIVFZI7bfGwBdlfVWmB3m6ct2whcDFwB3NC2AfCrjL7kt7b9XNHqVwNfraq/ALwHeHfb1nLgnYy+LLgeeOfYH+x3A+9p7//Vtg1an1Pb39ze80S3K5nxs+g55UM8+/s05W7g9cAt0+p/AvwL4Oc43m8x+l2b7iHg7wO/McOy/wD8zAz13wdeC/zRtPpXgLcBvzjDOh/i+M8Bs3+WJcFQWFxmu83HBmB7G7MduLJNbwBurKojVfUAsB9Yn2QlcFZVfbZGVxJ8eNo6U9v6GHBp24u4HNhVVV+pqq8Cu4Ar2rLXtLEzvf+Ha+RW4Lvae891u5LZPoueI6rqFkZ/bMdr91bVcXcXqKpvVNXvMQqH6cturaqDM9QfrKo7gWdmWLYbeHKG+heq6sEZ6oeq6jbgW5N8jrk+y1JhKCwuM93mYxVw/tT/PO31vBOMX9Wmp9ePWaeqjgJfA86ZY1vnAE+0sbNua4b3n6nOHJ9F0iJgKCwuJ7zNx4Tj59rOn3WdU7ktSYucobC4zHabj0fbYRna66ETjD/QpqfXj1knyRnAn2O0Cz3bth5jdFjojLm2NcP7z3a7ktk+i6RFwFBYXGa7zcdOYOpqoE3ATW16J7CxXVF0IaMTvnvaYZknk7yinRN487R1prb1BuB323mHTwOXJTm7nWC+DPh0W3ZzGzvT+7+5XYX0CuBr7b3nul3JbJ9F0mJQVf4soh/gdcAfAl8CfqHVzmF0pc797XX52PhfaGPvA35irL6O0VUUXwLey7PfXn8h8F8ZnZTeA3zv2DpvbfX9wFvG6t/bxu5v657Z6mF0ldGXgLuAdXN9jhN9Fn+eGz/AbwIHGZ28PcDoarS/1aaPAI8y+gfF1PgHGe2NPtXGXNTq/77NP9Ne39XqP9zmvwE8Duwb29b/Bg4D32xjLm/1t7X5o4z2St/X6t/d6l8HnmjTZ832OVp91s+yFH68zYUkqfPwkSSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0FLWpI10++S2ervm7qJX5Kfn2A770jyojmW9+1Ji5mXpGpJa7cO/2RVff8cY56qqu88wXYeZPQ9jcdmWLasqp4+yValeeGeggRnJNnengnxsSQvSvKZJOuSXAd8R5I7knw0yYuT/HaSLya5O8nfSfI24KXAzUluhlGQJPnXST4HvHJqe2PLtrZt3Jrk/Fb/vjZ/W1v3qVZfmeSW1sPdSX50Yf4zaSkwFCT4S8C2qvpBRt98/UdTC6pqC/DNqnpZVf09Rvfff6SqLml7F5+qql9i9C3aV1fVq9uqLwburqofqdGto8e9GLi1qi5hdM/+f9Dq1wPXV9UP8+y9ogD+LqNv1b4MuAS449R9dOlYhoIED1fV77fpjwB/fY6xdwGvTfLuJD9aVV+bZdzTwMdnWfanwNSTw24H1rTpVzK6jQgc+4CZ24C3JHkX8ANVddzzBKRTxVCQjr+t96wn2qrqD4GXMwqHf5fkX84y9E/mOI/wrXr2ZN7TwBmzjJt6z1uAHwP+L/DrSd4813jpZBgKEvz5JK9s028Eph/u+VaS5wMkeSnwx1X1EUaPeJx6LvWTwEtOso9bgb/dpjdOFZN8D3Coqn4NeP/Ye0qnnKEgwb3ApiR3Astpz5oesw24M8lHgR8A9iS5g9Edav/t2Jj/MXWi+dv0DuCfJNkDrGT0VDyAHwfuSPIFRqFx/Um8hzQnL0mVFon2PYdvVlUl2Qi8sao2nGg96VSa81impHn1cuC97cFITzB6voU0r9xTkCR1nlOQJHWGgiSpMxQkSZ2hIEnqDAVJUvf/AdbQ4VZ2egO8AAAAAElFTkSuQmCC", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot using Counter\n", + "plt.bar(counts.keys(), counts.values())\n", + "plt.xlabel('bitstrings')\n", + "plt.ylabel('counts')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As opposed to quantum hardware where only measurement shots can be obtained, with a classical simulator you can access the full state vector, amplitudes and expectation values of certain observables by assigning the corresponding result types. To do so, append the result types to the circuit before submitting it to run. This can be very useful for debugging. \n", + "\n", + "The example code below outputs the state vector, the expectation value of $Z\\otimes Z\\otimes Z$, and the amplitude of the $|111\\rangle$ state of a three-qubit GHZ state. \n", + "\n", + "To reiterate, the following output is expected:\n", + "$$\\left|\\mathrm{GHZ}\\right> = \\frac{1}{\\sqrt{2}}\\left(\\left|0,0,0\\right> + \\left|1,1,1\\right>\\right) = \\left[\\frac{1}{\\sqrt{2}},0,0,0,0,0,0,\\frac{1}{\\sqrt{2}}\\right],$$\n", + "\n", + "for which $\\left=0$ and $\\left<111|\\mathrm{GHZ}\\right>=\\frac{1}{\\sqrt{2}}$." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : |0|1|2| Result Types |\n", + " \n", + "q0 : -H-C---Expectation(Z@Z@Z)-\n", + " | | \n", + "q1 : ---X-C-Expectation(Z@Z@Z)-\n", + " | | \n", + "q2 : -----X-Expectation(Z@Z@Z)-\n", + "\n", + "T : |0|1|2| Result Types |\n", + "\n", + "Additional result types: StateVector, Amplitude(111)\n" + ] + } + ], + "source": [ + "# define circuit\n", + "n_qubits = 3\n", + "ghz = ghz_circuit(n_qubits) \n", + "\n", + "# add the state_vector ResultType\n", + "ghz.state_vector()\n", + "# add the Z \\otimes Z \\otimes Z expectation value\n", + "ghz.expectation(Observable.Z() @ Observable.Z() @ Observable.Z(), target=[0,1,2])\n", + "# add the amplitude for |111>\n", + "ghz.amplitude(state=[\"111\"])\n", + "# print circuit including requested result types\n", + "print(ghz)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Final EXACT state vector:\n", + " [0.70710678+0.j 0. +0.j 0. +0.j 0. +0.j\n", + " 0. +0.j 0. +0.j 0. +0.j 0.70710678+0.j]\n", + "Expectation value : 0.0\n", + "Amplitude <111|Final state>: {'111': (0.7071067811865475+0j)}\n" + ] + } + ], + "source": [ + "# run the circuit and output the results\n", + "task = device.run(ghz, shots=0)\n", + "result = task.result()\n", + "\n", + "# print results\n", + "print(\"Final EXACT state vector:\\n\", result.values[0])\n", + "print(\"Expectation value :\", np.round(result.values[1], 5))\n", + "print(\"Amplitude <111|Final state>:\", result.values[2])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Clearly the expected results with perfect correlations between the three qubits making up the GHZ state are obtained.\n", + "\n", + "Note that you can only request state vector and amplitude when shots = 0 for a classical simulator. When shots = 0 for a simulator, you get the exact values of probability, expectation values, and variance, as derived from the full wave function. When shots > 0, you cannot access the full state vector, but you can get approximate expectation values as taken from measurement samples. Note that Amazon Braket also supports probability, sample, expectation, and variance as result types for QPU devices." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### The On-Demand Simulators" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Apart from the local simulator, you can also run your circuit on an on-demand simulator. This approach adds some latency overhead, but is beneficial for larger circuits by leveraging the optimized cloud hardware infrastructure. Moreover, all your results will be stored reliably in S3.\n", + "\n", + "Amazon Braket provides three on-demand simulators:\n", + "* SV1\n", + "\n", + " State vector simulator supports simulations of circuits with up to 34 qubits, calculates and keeps track of the full state vector evolution.\n", + "* TN1\n", + "\n", + " Tensor-network simulator represents each gate in a circuit as a tensor. TN1 can simulate a larger number of qubits for circuits with local gates or other special structure as compared with SV1 and DM1, but typically is slower for circuits with long-range or all-to-all gate structure.\n", + "* DM1\n", + "\n", + " Density matrix simulator stores the full density matrix of the system and sequentially applies gates and noise operations of the circuit." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# set up the on-demand simulator SV1\n", + "device = AwsDevice(\"arn:aws:braket:::device/quantum-simulator/amazon/sv1\")" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Counter({'111111111111111': 506, '000000000000000': 494})\n", + "Counts for all-zero bitstring: 494\n", + "Counts for all-one bitstring: 506\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEGCAYAAACKB4k+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAATSUlEQVR4nO3df5Bd9Xnf8fcHYeOYmIYfgsgSjXBGbSMSY8cywXWTiU0GiNNENDWp3LrW2ExpG9LY02Zakcy0blpNcSZNS+I4GcU/ImI7RLHropKJHVWB0rQGIWwMCEJQDAUVFQkcbHAcYuGnf9zvfrla7a4uRmd3pX2/Zu7cc5/zPec+h9nho/PjnpOqQpIkgJMWugFJ0uJhKEiSOkNBktQZCpKkzlCQJHUnL3QDL8ZZZ51Vq1evXug2JOm4cueddz5RVctnmndch8Lq1avZvXv3QrchSceVJP9ntnkePpIkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpG7QUEjycJJ7ktyVZHernZFkR5IH2/vpY+OvSbI3yQNJLh2yN0nSkebjF81vqqonxj5vAnZW1bVJNrXP/yrJWmADcD7wSuC/J/lrVfXcUI2t3vR7Q61ax7mHr/2RhW5BWhALcfhoPbC1TW8FLh+r31BVz1bVQ8Be4MIF6E+SlqyhQ6GAP0hyZ5KrWu2cqtoP0N7PbvWVwKNjy+5rtcMkuSrJ7iS7Dx48OGDrkrT0DH346I1V9ViSs4EdSf54jrGZoXbEA6SraguwBWDdunU+YFqSjqFB9xSq6rH2fgD4FKPDQY8nWQHQ3g+04fuAc8cWXwU8NmR/kqTDDbankORU4KSqerpNXwL8PLAd2Ahc295vbItsBz6e5JcYnWheA+waqj/peODFEJrNUBdDDHn46BzgU0mmvufjVfXpJHcA25JcCTwCXAFQVXuSbAPuAw4BVw955ZEk6UiDhUJVfRG4YIb6k8DFsyyzGdg8VE+SpLn5i2ZJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoGD4Uky5J8PslN7fMZSXYkebC9nz429poke5M8kOTSoXuTJB1uPvYU3g3cP/Z5E7CzqtYAO9tnkqwFNgDnA5cBH0iybB76kyQ1g4ZCklXAjwAfHCuvB7a26a3A5WP1G6rq2ap6CNgLXDhkf5Kkww29p/CfgX8JfGOsdk5V7Qdo72e3+krg0bFx+1rtMEmuSrI7ye6DBw8O07UkLVGDhUKSvw0cqKo7J11khlodUajaUlXrqmrd8uXLX1SPkqTDnTzgut8I/FiStwAvA05L8lHg8SQrqmp/khXAgTZ+H3Du2PKrgMcG7E+SNM1gewpVdU1Vraqq1YxOIP9hVb0d2A5sbMM2Aje26e3AhiSnJDkPWAPsGqo/SdKRhtxTmM21wLYkVwKPAFcAVNWeJNuA+4BDwNVV9dwC9CdJS9a8hEJV3QLc0qafBC6eZdxmYPN89CRJOpK/aJYkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpG6wUEjysiS7knwhyZ4k/7bVz0iyI8mD7f30sWWuSbI3yQNJLh2qN0nSzIbcU3gWeHNVXQC8BrgsyUXAJmBnVa0BdrbPJFkLbADOBy4DPpBk2YD9SZKmGSwUauSZ9vEl7VXAemBrq28FLm/T64EbqurZqnoI2AtcOFR/kqQjDXpOIcmyJHcBB4AdVXU7cE5V7Qdo72e34SuBR8cW39dq09d5VZLdSXYfPHhwyPYlacmZKBSSvDvJaRn5UJLPJbnkaMtV1XNV9RpgFXBhku+e62tmWsUM69xSVeuqat3y5csnaV+SNKFJ9xTeVVVfAS4BlgPvBK6d9Euq6ingFkbnCh5PsgKgvR9ow/YB544ttgp4bNLvkCS9eJOGwtS/4t8CfKSqvsDM/7J/foFkeZJva9PfAvwQ8MfAdmBjG7YRuLFNbwc2JDklyXnAGmDXpBsiSXrxTp5w3J1J/gA4D7gmySuAbxxlmRXA1nYF0UnAtqq6KclngW1JrgQeAa4AqKo9SbYB9wGHgKur6rkXvkmSpG/WpKFwJaPLSr9YVX+e5ExGh5BmVVV3A6+dof4kcPEsy2wGNk/YkyTpGJv08NGOqvpcOzcw9T/2/zRcW5KkhTDnnkKSlwEvB85qvzyeOo9wGvDKgXuTJM2zox0++sfAexgFwJ08HwpfAX51wL4kSQtgzlCoquuA65L8s6r6lXnqSZK0QCY60VxVv5LkbwKrx5epqusH6kuStAAmCoUkvwV8J3AXMHWZaAGGgiSdQCa9JHUdsLaqjrjthCTpxDHpJan3At8+ZCOSpIU36Z7CWcB9SXYxek4CAFX1Y4N0JUlaEJOGwnuHbEKStDhMevXR/xi6EUnSwpv06qOnef7ZBi9l9BS1r1bVaUM1Jkmaf5PuKbxi/HOSy/FRmZJ0wvmmHsdZVf8VePMx7kWStMAmPXz042MfT2L0uwV/syBJJ5hJrz760bHpQ8DDwPpj3o0kaUFNek5hzgfqSJJODBOdU0iyKsmnkhxI8niSTyZZNXRzkqT5NemJ5o8A2xk9V2El8N9aTZJ0Apk0FJZX1Ueq6lB7/SawfMC+JEkLYNJQeCLJ25Msa6+3A08O2Zgkaf5NGgrvAn4C+H/AfuCtgCefJekEM+klqf8O2FhVfwaQ5AzgFxmFhSTpBDHpnsKrpwIBoKq+BLx2mJYkSQtl0lA4KcnpUx/ansKkexmSpOPEpP9j/4/A/07yCUa3t/gJYPNgXUmSFsSkv2i+PsluRjfBC/DjVXXfoJ1JkubdxIeAWggYBJJ0Avumbp0tSToxGQqSpM5QkCR1hoIkqRssFJKcm+TmJPcn2ZPk3a1+RpIdSR5s7+O/f7gmyd4kDyS5dKjeJEkzG3JP4RDwL6rqu4CLgKuTrAU2ATurag2ws32mzdsAnA9cBnwgybIB+5MkTTNYKFTV/qr6XJt+Grif0bMY1gNb27CtwOVtej1wQ1U9W1UPAXuBC4fqT5J0pHk5p5BkNaN7Jd0OnFNV+2EUHMDZbdhK4NGxxfa12vR1XZVkd5LdBw8eHLJtSVpyBg+FJN8KfBJ4T1V9Za6hM9TqiELVlqpaV1Xrli/3OT+SdCwNGgpJXsIoED5WVf+llR9PsqLNXwEcaPV9wLlji68CHhuyP0nS4Ya8+ijAh4D7q+qXxmZtBza26Y3AjWP1DUlOSXIesAbYNVR/kqQjDXn76zcC/xC4J8ldrfazwLXAtiRXAo8AVwBU1Z4k2xjdX+kQcHVVPTdgf5KkaQYLhar6I2Y+TwBw8SzLbMZbckvSgvEXzZKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1A0WCkk+nORAknvHamck2ZHkwfZ++ti8a5LsTfJAkkuH6kuSNLsh9xR+E7hsWm0TsLOq1gA722eSrAU2AOe3ZT6QZNmAvUmSZjBYKFTVrcCXppXXA1vb9Fbg8rH6DVX1bFU9BOwFLhyqN0nSzOb7nMI5VbUfoL2f3eorgUfHxu1rtSMkuSrJ7iS7Dx48OGizkrTULJYTzZmhVjMNrKotVbWuqtYtX7584LYkaWmZ71B4PMkKgPZ+oNX3AeeOjVsFPDbPvUnSkjffobAd2NimNwI3jtU3JDklyXnAGmDXPPcmSUveyUOtOMlvAz8InJVkH/BvgGuBbUmuBB4BrgCoqj1JtgH3AYeAq6vquaF6kyTNbLBQqKq3zTLr4lnGbwY2D9WPJOnoFsuJZknSImAoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoWXSgkuSzJA0n2Jtm00P1I0lKyqEIhyTLgV4EfBtYCb0uydmG7kqSlY1GFAnAhsLeqvlhVfwncAKxf4J4kack4eaEbmGYl8OjY533A940PSHIVcFX7+EySB+aptxPdWcATC93EYpH3LXQHmoF/o2Ne5N/od8w2Y7GFQmao1WEfqrYAW+annaUjye6qWrfQfUiz8W90fiy2w0f7gHPHPq8CHlugXiRpyVlsoXAHsCbJeUleCmwAti9wT5K0ZCyqw0dVdSjJTwGfAZYBH66qPQvc1lLhITktdv6NzoNU1dFHSZKWhMV2+EiStIAMBUlSZygcQ0k+nORAknvHalck2ZPkG0nWjdXPTHJzkmeSvH/aejYneTTJM9PqP5Dkc0kOJXnrtHmfTvJUkpum1X+q3TKkkpw1Vv8bST6b5NkkP3O07VjM26IXZqZbySQ5I8mOJA+299PHxl/Txj6Q5NKx+uuS3NPm/XKStPopSX6n1W9PsnpsmY3tOx5MsnGsfl4b+2Bb9qWtnrbuvUnuTvK9c23HYt6W40ZV+TpGL+AHgO8F7h2rfRfw14FbgHVj9VOBvwX8E+D909ZzEbACeGZafTXwauB64K3T5l0M/Chw07T6a9tyDwNnjdXPBl4PbAZ+5mjbsZi3xdcL+htdBvwp8CrgpcAXGN1S5heATW3MJuB9bXptG3MKcF5bdlmbtwt4A6PfF/0+8MOt/pPAr7fpDcDvtOkzgC+299Pb9Olt3jZgQ5v+deCftum3tHWn/S3dPtd2tHmLcluOl5d7CsdQVd0KfGla7f6qOuJX11X11ar6I+AvZph3W1Xtn6H+cFXdDXxjhnk7gadnqH++qh6eoX6gqu4Avj7JdizmbdELMtutZNYDW9uYrcDlbXo9cENVPVtVDwF7gQuTrABOq6rP1uj/ftdPW2ZqXZ8ALm7/8r4U2FFVX6qqPwN2AJe1eW9uY2f6/utr5Dbg29p3z3VLnMW6LccFQ0FaWma6lcxK4Jyp8G7vZx9l/Mo2Pb1+2DJVdQj4MnDmHOs6E3iqjZ11XTN8/0x1FvG2HBcMBWlpOeqtZCYcP9d6Xugyx3Jdc1nobTkuGArS0jLbrWQeb4dRaO8HjjJ+X5ueXj9smSQnA3+F0eHI2db1BKPDQifPta4Zvn+2W+Is1m05LhgK0tIy261ktgNTV9BsBG5s09uBDe0qnPOANcCudljm6SQXtePo75i2zNS63gr8YTtW/xngkiSntyuCLgE+0+bd3MbO9P3vaFchXQR8uX33XLfEWazbcnxY6DPdJ9IL+G1gP6OTt/uAK4G/06afBR5n9IczNf5hRv/qeKaNGb96Yh+jk7D7gPe2+uvb568CTwJ7xtb1P4GDwNfamEtb/afb50OM/sXywVb/9lb/CvBUmz5ttu1o9UW5Lb5e8N/pW4A/YXT1zc+12pnATuDB9n7G2Pifa2MfoF2V0+rrgHvbvPfz/B0SXgb8LqMTubuAV40t865W3wu8c6z+qjZ2b1v2lFYPowdv/SlwD4df9XbEdizmbTleXt7mQpLUefhIktQZCpKkzlCQJHWGgiSpMxQkSZ2hoCUtyepMuxtsq38wydo2/bMTrOc9SV4+x/y+Pmkx85JULWntVsg3VdV3zzHmmar61qOs52FG19A/McO8ZVX13ItsVZoX7ilIcHKSre1+/Z9I8vIktyRZl+Ra4FuS3JXkY0lOTfJ7Sb6Q5N4kfy/JTwOvBG5OcjOMgiTJzye5HXjD1PrG5m1u67gtyTmt/p3t8x1t2WdafUWSW1sP9yb5/oX5z6SlwFCQRs+I2FJVr2b0C++fnJpRVZuAr1XVa6rqHwCXAY9V1QVt7+LTVfXLjH5h/aaqelNb9FRGz6P4vhrdVnzcqcBtVXUBcCvwj1r9OuC6qno9h98v5+8z+vX4a4ALgLuO3aZLhzMUJHi0qv5Xm/4oowcGzeYe4IeSvC/J91fVl2cZ9xzwyVnm/SUw9VS5Oxk9OAhGD3n53Tb98bHxdwDvTPJe4Huq6ohnTUjHiqEgHXlr41lPtFXVnwCvYxQO/yHJv55l6F/McR7h6/X8ybzngJNnGTf1nbcyehre/wV+K8k75hovvRiGggR/Nckb2vTbgOmHe76e5CUASV4J/HlVfRT4RUaPLYXRk+Je8SL7uA34u216w1QxyXcAB6rqN4APjX2ndMwZChLcD2xMcjejZ+7+2rT5W4C7k3wM+B5gV5K7GN1x89+Pjfn9qRPN36T3AP88yS5Gz7WeOjT1g8BdST7PKDSuexHfIc3JS1KlRaL9zuFrVVVJNgBvq6r1R1tOOpbmPJYpaV69Dnh/e9DLU4zu1y/NK/cUJEmd5xQkSZ2hIEnqDAVJUmcoSJI6Q0GS1P1/8UcT5WYTgWsAAAAASUVORK5CYII=", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# define a 15-qubit GHZ circuit\n", + "n_qubits = 15\n", + "ghz = ghz_circuit(n_qubits)\n", + "\n", + "# run GHZ circuit on SV1\n", + "result = device.run(ghz, shots=1000).result()\n", + "counts = result.measurement_counts\n", + "print(counts)\n", + "\n", + "# plot using Counter\n", + "plt.bar(counts.keys(), counts.values())\n", + "plt.xlabel('bitstrings')\n", + "plt.ylabel('counts')\n", + "\n", + "# print counts of all-zero-string\n", + "print('Counts for all-zero bitstring:', counts['0'*n_qubits])\n", + "# print counts of all-one-string\n", + "print('Counts for all-one bitstring:', counts['1'*n_qubits])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The following example demonstrates that TN1 can easily simulate GHZ circuits with up to 50 qubits due to the sparse, nearest neighbor gate structure." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "# set up the on-demand simulator TN1\n", + "device = AwsDevice(\"arn:aws:braket:::device/quantum-simulator/amazon/tn1\")" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Counter({'00000000000000000000000000000000000000000000000000': 510, '11111111111111111111111111111111111111111111111111': 490})\n", + "Counts for all-zero bitstring: 510\n", + "Counts for all-one bitstring: 490\n" + ] + } + ], + "source": [ + "# define a larger GHZ circuit\n", + "n_qubits = 50\n", + "ghz = ghz_circuit(n_qubits)\n", + "\n", + "# run the same circuit on TN1\n", + "result = device.run(ghz, shots=1000).result()\n", + "counts = result.measurement_counts\n", + "print(counts)\n", + "\n", + "# print counts of all-zero-string\n", + "print('Counts for all-zero bitstring:', counts['0'*n_qubits])\n", + "# print counts of all-one-string\n", + "print('Counts for all-one bitstring:', counts['1'*n_qubits])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "__NOTE__: Use unique task ID to look up task details in AWS console." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of qubits: 50\n" + ] + } + ], + "source": [ + "# print unique TASK ID (task = execution of individual circuit)\n", + "task_id = result.task_metadata.id\n", + "# recover other metadata information such as number of qubits\n", + "n = result.task_metadata.deviceParameters.paradigmParameters.qubitCount\n", + "# print('Task ID:', task_id)\n", + "print('Number of qubits:', n)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Task Summary\n", + "{'arn:aws:braket:::device/quantum-simulator/amazon/sv1': {'shots': 1000, 'tasks': {'COMPLETED': 1}, 'execution_duration': datetime.timedelta(microseconds=37000), 'billed_execution_duration': datetime.timedelta(seconds=3)}, 'arn:aws:braket:::device/quantum-simulator/amazon/tn1': {'shots': 1000, 'tasks': {'COMPLETED': 1}, 'execution_duration': datetime.timedelta(seconds=5, microseconds=317000), 'billed_execution_duration': datetime.timedelta(seconds=5, microseconds=317000)}}\n", + "Note: Charges shown are estimates based on your Amazon Braket simulator and quantum processing unit (QPU) task usage. Estimated charges shown may differ from your actual charges. Estimated charges do not factor in any discounts or credits, and you may experience additional charges based on your use of other services such as Amazon Elastic Compute Cloud (Amazon EC2).\n", + "Estimated cost to run this example: 0.03 USD\n" + ] + } + ], + "source": [ + "print(\"Task Summary\")\n", + "print(t.quantum_tasks_statistics())\n", + "print('Note: Charges shown are estimates based on your Amazon Braket simulator and quantum processing unit (QPU) task usage. Estimated charges shown may differ from your actual charges. Estimated charges do not factor in any discounts or credits, and you may experience additional charges based on your use of other services such as Amazon Elastic Compute Cloud (Amazon EC2).')\n", + "print(f\"Estimated cost to run this example: {t.qpu_tasks_cost() + t.simulator_tasks_cost():.2f} USD\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.15" + }, + "vscode": { + "interpreter": { + "hash": "590fab68195cf107911461461f81d5c472d3d6127f579badfcfad30f03e5cab2" + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/modules/0_Getting_Started/1_Running_quantum_circuits_on_simulators/circuit.png b/modules/0_Getting_Started/1_Running_quantum_circuits_on_simulators/circuit.png new file mode 100644 index 0000000000000000000000000000000000000000..309975b4f2f7390858bedf80ee9ae3f88f896371 GIT binary patch literal 151019 zcmeFZgi?`f-^Kf`#2h=}OCy4oE*A|i4q z5z(n96sLhtZV>ZbA|g7cVXv%wPhDA=?Vg*9t-X^C5s}*KI0N#Bke17-#(L_|APP0g z+Sk`>)hILWQb*qWL7~o;@$DV;o#p1zGexF%zJwILxlwgl$>~+qz}=GS_?M^R;yg+$ zlxMWg%vX*1uKCU#&WMYchJEdby7DH}vr!)eh<8#*Ch)iHX=#5$}`gnp$G&nd6UdqnFaQP9AKN-Iiu0;-H#57nGbvzCld1PFr_B z{sK`q`C_5nv}T+)?YGk+@7TWSadzlU(Q5vCh^2hmQXo8bMv&-kNR75E!U^w#2e~HS`#m4e-nG<%fTRALcOGXWX5-IP&riZ z?we+ga(Rc=1h_>f5uK$0v7p!)OUSDRPLyyrqrXayRPtG2lWWinsWilg4O5QTmz+>3 zN9*26EAq!Vp$!B366@9O*z)BU#G-(OXctuwLh*$y<^I(e}I4gP3?TA zfPzjOn&unkHl?h6r0R_{YWat6m98-66tPtE#d6p$ewWF{U)x|DGw2zX3X|8qG^=uB zN1qzedX`qK&f7x4B+?;3P9=#o;X?;qXY*`W7-a4_{WItn;*9mzkS|fhIYCZr&TICI zLFhiwiKpb&Y-cHg-l~YsN4-yq`r=4(gCy`a2ifK|Gy0@=o|UpznM&rBX`6*}MzjsDGQO!< zN_Epn){{OClw&k|KH=Kn?>biRgvQaOQp-?Wpu|$91P?*Je=l8Id=&IJolb=U+n2ln z!+d73-ub4yPSkt>^_a_<#KiT&mDge9^*>VYwRKw;6%c$^(f#XMSaHvb24^%FR48+# z{MPbTvR0(OyT67DnT=xX2FkREe4B3jcOGq!yD>G%i3GMOip>@#uV%bv`R zjRKacao*5N^7@7E>!BMT{oL3h_E|T)lisyzx0)`QR+}p3&27GT(YnVz{zptl>}%v5 zJfDQ$)>%Un%D`!gctk#em#B5^)q(g|ATlG(Jl5#2oGm58Y+{fu`&b0@LyFT6dOe{El;n}S#SI%1Ax~_H# zVv%syRle=ZIUy!KqU>~LK5|E;OFt+op0Zd-{vc2KLgPwubVlH5+qleUQUe`&Z>lHt z#$6F?6qFh4=e}JjQF5ZO`*wcg7D<#42jgp1y(o8%vr%kktR+gRc~teUKWMhiqQak& z4o+6;xW>{9no_y6)* ziqvjG!1a{sq`DMqT6pL8gz*RaR5dh;FU-HQj@RzflcZQ^xN_~&d=91z=KFf?Hc!U0 zPhqZ+u8ay=rookWu1BetaX)Fu6^?tSm3-Iawu#QLvJzLa>Klg^(F%PsG5?ltROaF=}|Bp;TlW3Ex0nU*z{i^keQBl>0?&X&#D z8#qcjn0E(cD0i3iKU(^uo2MtQYp@uuo~xSh-Z8hWduE}dzi>c4%NJ6q6OkclB&aW_ zABnU zk<%-uYeNn~u7g!HZ{u!CO0DUekqA#M&(7trWz_E7-JM-8mU*gMRJ|+?EJf0^EdI=J zW~{84=j{}^lsnq}+6l?Jc7k>#TTkY~X@Y6$*g4o8REOO&P@hcCm@JxJ4Ydvry=o{| zYCru}S0b}VrSOV}Z6CdX4%P%)SmdR$6meCy%Gru_o=J786cxG)fZ3^9cGI-@s_^YsSliZn4XU0!CQO%#TK9xi6d}jGv>AA^M{io&6 zRZv|fb2%H(>S=9<^eQnA{v6VLn<}JcYX9-9tC4a^*Q>75u3e$yPg$Qnemb1cpD>)* znW&{nr9oadVyBGKjpDuT;)eO`=gd;+Rj~I%+Dhkc_j}s+AKzb9k-gjY-ncPisxjPH zeAPJ=7Rr&sbNQQ_mBIJXx5x;@RWEP3$9}{6iyJzVs!g5YiZNf*-X(n!oq$=YO_qL> zRi{#alT~4zGOga?(Xys@8={}%u6;%PQAhCEJg&USzF9FnBR5<{S>5YLbl5+ZlcuHf z+==c*8YQBg3 z^OsLk7@SG7J#Ago?iYV4vixSg@kNf0)H|=FCvR@FEjKTR4X(La!Yk&^P3KInwy@7- z&#^?$Yr1jd<|OLyCJ$Wmh>zEh%{|mI7p*n8%sIrRIvq2E!Jl?*2+*BK-@mny&h{z2 zYWz5Kn&I&5&Kb@Z^mZ~B6S*yWUGMHrfHC;0Bzg37mJ7S%i)ih^ww%*C}Y zC9w(zHjykoOFo6ZRDHRaF90cI^GNfxVarjps^Xoad*&ZaZ}QgSGfyIz=qKKOdyAv5 z7Bs8e*Gx=b_Cq=P+{Nc|9&yeEG9E)_bVxNt6DkC^j4B>UKSo*O!!F(8^(^Q!HZ0rh z{`feb(EzERP#A!;T}*;sx_XHTtB1Wg;Hj@-AW@7otn?eny{X&3vlzK3FP63NvVWQin=|hu7 z_<3eQnNjRb*ot(N$E5C1Uxh3;cXExV!%^ODuWoK9fswG(BDyTv)Ok8t-mPP8IAcp; z4k6%e3ay#<*%)_8MYA~VIk?nJ`{&_H*Jk3wg;|=4$V{ali*GL$V?SdBOd?RDkJ%R* z3lTBSo};wGPdsJ!cH73z2CSh)PXs2M2jxe6FYRfqVF_&;=DsquG7$_?<3#w!x~9&82^vL^Gs_g2|CcZR#a^fD({O|qJHW_KR?YMk^PB4=MTyd@1hb>dOt zb=w82IoK9tplQa09wjtRX&IZFj2&0{xEzkf)k+4Sr=EAd6lH}dD6FJyyxz{+L{81c z3+kG$Qca&fr{*J)>cIQ7KFHRVWZglQX!}0Vm4pexqxT2NxwLouB_3Q`Py2Mh_kmWB zh;dvCWja?z@`;|RTE9Pv>_+9{>v|#&FIGmzD7&iaJQQ^Oo3gi}&^qoMk=|LNG#gUV z<0bOb3N9~NMo*`ER2}%`UA!*G_&|NQsoI&Hk||1*;_{9oGwHYf=GMo?HlNbrBg z1|F3IKb5&>?``As@Qyvq#u*OGp&%?JEg|>wfnR?0pDF+HsNr886%!Kq>!W}9)xRE< z69l*Lmo5EyUOztt4ou;UoZ$Z)zQP$rm;oCRkrI*mom=<4iI+zVKbiLXa}#Vhl+r1$ zQL3j?a%2#b{b>Agg=B+Tw*E0!Wp7+wes03_wFsa2mjUxlt1pWdKNc-6WXL|}wU-_F z23dc~VkLBi^z`|3!`rm4Zc#*jyYc8`%k)HH-%WZ>+wQa7{_@9$+P!4|U9&@^$C^UH zni+a0DD7lQkB^Lknoa2`5i!X>|Ipw z8I^6~IcRg-dxQVlKWs9cmxKgY^a*zZ7$^iXZaj9Nk2+kfZbQN6LbixlE(ICV?oZOA zA4ho{KO)+9I1{kMzy^Sf2o+0s|e-$|9;j=)xaE{r)txF^Bv$f+&awm@=2bM*R0vmhrNs!wk9(e{W4fcZrEtE@l*{{C-MLz#CT1 zJW>41#{VIH<=kLPPq`l3|NDT`RrK^}h3Ty|?*D#6z$pRdNmd34E@k}vl(;EFze}c&W-$?dl*i&L1s67(wQhjpd zj<YQJby2ZFlKS`#NmNcWV_-@SSZ7y}4}}$}d~b3fA0<7ce!Fa2|em zncwKXz-Oh)3ZJ<38-5q6-PO_ypYHB&OwBl&9~z<7>JD3F*J>aNJ9#>Boq>cc8%&b8 zO-Hgci^Jr&)9en`Tu>3;qSJbEj6SJc9z&x|{CE0iDg%}(TVa(W`pUR^XsdiQ%903XX+70`uJ-V#7r!ehg1Rrgd#uD%sv;yC?-HxrtSNxXa{BQp z!^C%`oRc#QS+hU+)@E;Ygfr8g?uXG|GS07g{)%Z(1qp7$DU-RQ(Gs{Q@WN&qnOykV z;`w>$Okrw2CgCGZ*Q6;-cR$wW)A zJ3uz^fR)%Zg|p0LCz$EYe$Gy&|J}mQp}!12lKNIT7EoPtu$VuCpGzygHlHYJr;&O% z*cqU&TF!N&cDb~z_01*T#pVG`!P+u~u`nw%u=BQl19MYl9Cxbsd+WaCJV-9E^oExg z5_pSiO07@+KQ2ng!h#eR`iDP$CPDLdr@ZfO?D63qHtHj{PHI8M{Ew%efTh`NOn$eS zX^pcvKG?C@n#JsNQ)nu#2VHPqZnrb0d?xxv!d#RbhKu%G#g*rq1Rn2@;KJ>PsQ(hw z{^QbroKzzc*z>@S&pzjC7$fRikfo}Lg*ra;#XJw2143`F1!vu zizx4NP1T{CY^SS+4OO^pVI;AtDmAvTu-y1lXD`QUAtd6$m?YzsUsA>O=IUU(Ywh7G zcmeaen)Vb~*X@+a5|-atD?6{yJ)Q|;m)Zy6fH?-NKWB~gU8}9^SW5b`6(%|QAyW@q zWNKVgyNffj^j_%67AMnsJ<(2#ps66IV*W5TH#bu4m5_Ec%{`OJdJM(4+bKYv<7xnx zl!l#HsqH6GOJ&+1BVtWD*kNiGz8G@-)pKVXfTv+lzh6_P)KQn~6y~vOcdbD_rFtvY}4Wx*=zK>bIarrq9%r^)GHj!XU+tkteu$F9geKUTQ!CE>mn(o={y4n zTWNymZB6ujpfNIdJ_tnI^^vGgJg<|Zzw%hs09$cuI4>FNyNb&7o0A>O+xp7&t`-cb zfaU6`qDDQirXHy{GV}@`Ph!oZh7cJnY_?fT331OGa4T`Xj-xVqbHB&3)$3-zTPE4* zKhoDoabyTearDuQAl5>B!f7@xMKLe{->j;j7jUu{h(6jBJaGeah2yw%zVnf1J|`nyW2Tx^+{ymSB~6Q-a6-VAWFRuj#7%Z4T=dD_$NZv?LF*9#+nF*( zlG*Pdw$d|kl}>|tL&6p(W?~7yjcXEQ2QumYb17a9PY=Re{H8{tkd$_iXHsyC?esFY z!p7@pk*|~%+{Uz@ZCA1F=MRx-#|6pqz7w?uC`qIVs| zl~`E!wJRb@itS{FDq#8W4z7nCYU80lw3K{-dE(my(KUtC-ph4kJkE*ofj3AbZRBF>lke3m5o7J()9>D{FEMo1RdhMk7$*|H5f@B7*zaD z4#xzWB3K3II@8iNcrXD)pC{kQSXR<-q{(^}aU^4I;DC71={+>6_Md9>*9-eHPPq+x zJrzsRFXbmddFU1}RPBe)1?OBA2fFfZd!f|1OEQiPc zXc*qv?{BBbP>Aqxw5zf%8Uo_fKojBk(2?i}NP)4Y)t>$SV5Ew7N?q8kjQ}S<4Pmo6 zf~a4UT%Bf2STZcq3MfRF}}&FU4dbs4MM{6c!6Pp_HMFc+eN z>K^dJ06YPqH1Wxo+y8W*LAo^HR^gqt zR6l~VTxvENtLLt#v@TeWetM+LB7eAgR`iIAr4^_I@~_#~DI6{%%dKQn+HQ zP(ny>3K4n|>h5c9*!hM@i0#S~9H(~j%JRBX8$BVW*I_N<`btC8+y96K=~B;E19w`f z8gaF7Vx}dAducwc@wHmsL~t^XmRv7QVHixj&I|yA${U{ae|+FkG!(ks5*?-X@&aoS zXT0J;cSQX6xAf>-tC|f$o}U)E`|X*fqUxe>Z4D)al_u~HQzuxrKbhy$Dg&l=Au?DW=>V{z^7DmxmRcLixt|Lh6eN@34)QFQwo z|HjQK>o{;Ibm^VKM_M=Y?pIjf!2xBr1b zKaJc%p97yD`p9h%X{W=olBBCD$}$l{HQ#RI3nW}D4P+ry$IhpfIX89-NL`LhjE6fv z&pE`HO_F)UXD(&OC_YjmL*pt+Vp`_il1{3Q_{+vH<-$994pP`A6Fa^0*RjpR+r2k# zB`eK>Q4wC0YaN)+39DME7+O3+=G}<0;D)u9k@8^1ppe_ca*EwOP)H6tw2ViRHw*?* z*%^JZR9Ie12WxXAqY$H4L#@ZE>DX_|ZK6aZ4W`%BruHP4rjgFKab!rmeEZlNpaklV z+5vu?8$WXXhYI)!cb8YK@Is_EG_lx9Hk-~ZXG<#6t{2tU!kIF-kj$v~Mm)t>NAcL5 zzuXVV$?a0U$y>9#XbR)a^!!q3B9kYjd#2(m=oVC)KMyS*OdS8<`z7 zc;?EP(|$HLA?9q@Xp>IbPqy|ZYmDY_`F0PWRASjt$*_F{H3K`WHrAth);=LINg;8S zdd^^bJ|H@@6q)&hZ-~QM!~Td+BzV_4i#tM!Iw^f+`g0nE_cfj><)x{j zH^N+E0VKaTAaMCd$$^jCdnL~rk1KmvmIk0Czari4s_DffxZ$0&j-1eQYU?|TTdDz`WE%%jK4URNpxfLDuVGB;DG zhkRT4jZA%rr(!)6$%!oty^r}&8N1*TjKmD2EW+&}R}15VOBqZN-E}|);JL&t^05*E zbEshLq`ATwxUAHL1Jh_jOkuI!aRLg_DhUR5DxcD6pW4+Gtg2t1l{zP^09YUS^I2Rm<< z0WoZKRAR9(=q=6GM4qk6U6y=g$P1$shUgJS7xz20aMv4~15P1+vXc6MEm0X`^>% z=)pR!O~OW@t-XA-qr8;9$&!`qz;yge5b2B{VN$RaTen+&AT690=3CD30YlhIl)JS; zU$_2Z(-*zxyR#P7T~;e|cK7e}(79@*u~TIX{9<)AkF{@q#l&9kpy<{1q7tu2S&6s+ zMXtH4NIsitS03shh+UK?NLpwrEVon{39Eb}kny;6bFT5dt)}yPquM7P=fmOhK&2w&A2gi4-@r=v zbQE#2q3Dn|ao?4}c+lp+I2kXyS)Cf))Twylci!n_T8EI;;R|y=YS*fb`FqjWMg2K_ z1LG8k894x=2-UdlmP5Aa4VF4eh-@tfwHCS8Rm|6JvNB3t$TOd#=Fx=;&clc30RO=% z4@bk#u8;hEtwxL8{p@0keufSe12%ZaY)*P`S)m5yoNXFd=?shYz5T?I=}mVr`CIx7_6s+<7np*qF4!F{_Ub>Lrf-`_%h_;?~$|v$Ts_H%VaZ(y` za(7apw%%6C*Nf>LG_OdbjpTvXxXrZUUZ>pKU7u*M=}eUuCrjeUimB{%~SVV9dJ zGMrD9EvRV|C95KV;2zpBKPZ=kIVCkhmx{szjOTp`ryuv``Y`jsp|Q9UE7fBhUwZ1Q zLcz~&={Zj%%8V{#))DEbT?9eZbI%0(ik~=rO)TTVF4)2}Jl+CHu)oV2z)YS~7Wb3c z>W*(Tu?n8dppO#VPLB7monMhZV&ki|TXsN%;b`vUC~c|cGrz$$$*F!`LGG7RGrrHC>j*=E z1G?)SSkv%3<#m2=YXkC4i|kz;!&yJH07^NL%B$h3r`^ZPh#ojw6*lS`RpJqywhA7Q^>I(3)lfwXxI zsuCfwbfon(Nfk*{PWN?i_0EtE<*a*>ho!sYZn+P&b?PsI3#>GKe~Hf9?t%ajnCeW1lOK`(B1hJ01H|;yKSm8RN!t& z#hYPU`E{^ym#(YANbea6LJZq|ypWv`4-}sjPD2%iS<{c>K`<16c(5J#P>zb9tqhcM zS|&!6|;}j2uMuRv2luZuw%d4YO;%U>=e+$90pDU3F}UfOTZRlrp=t- zR!eCaiAzI6PL9zhdzddZ5~E_W1jy@)|dp`U_X(9?tD7?$LVnN|oz_!vPE>$2)nqX*HI( z0VjoB6It4>oLE=EHm2OK4R_#^wuHg^!SnsepCQv_j6rpmoBJ-CAM_+FUZgK{zPCI_ z>OJ|Idr=JsfNDE%(ehvT*RBN6KDpjuK6Kl%^qfb%R{1P3khp*)E2D!ca=xPL(eA5T zSoH;=LjW?ISE$GnqHJ2tKmEjnfXvSuimNA}~KZ z8Gl%6El?c#q1hyGp$7Tqg;Pv3Zh^hLYCie|rC(rHTV)b}pRob(a?_VB<IU<-cq>uK5Wiwj-5 zIFEQLQEw;n4B!&dByF6@%CyXvyJ8Bz4mt&t?qaei2hCNOM_e1umz&JIpf`Ic`-QGU zVW$rwUXaq_S^M%Qe4vvqjCCZ52rkFO&$K0AY09?dI@elEitQm^2Sb-(;*tl^oSF_w zh;+~QOHkz026K?^#b)UC$yOjiXRy}S>v&mq{xnEiEZ)EkxBpC||2sOpOHwiia+eMF zStVbZF6}$1r#0R?Tgt91Eo7idgs0c83hN;zXM8I0x;~*A)vtx$-M= zK?&vosCY?j&KD*wje;mD0LQ?UJ31O3Z4`S=&BgM|2ON2;4<(sKh=?n-^5<&tpq;KM zS-1tgy!zzBv@oAd5S>)uPQE$+;oe%>(RkslU#hx$rw*>CYiWu+@qAAt#?re$ky_X- zO{vYzI3e2`r~{vE&ts3Ma2YcLR;eGc(Vi$;et#HXOpH44l0a5t1$VohtK{6OekDma zALD$w)ufom1E}~yM=3eGf1XSA zb$Bya-+bwvIy`Y zgl|=CmKK1t-mbk`OE_54@~ZUSn8f8|YbL~-mF3y9%c)yDCEHycF%CHBO{2oh51#fX zs2q)xD}Inn6ieOu6;DVnR~jQLD@6Q281&GLcyHTApnqtp+%*MoA@M8>bATZTB*;h( zmRL0zbsX-!<=+qgX@`d6%Y#VqAI(Qd3{bWF5V7+i!I=Roq^YG09|PLkoEpk7Y_Yky zUQwWg%X~FiX2-*)wb@IIWf?iM2OL@Kf;qq7unr>yjj1x!+39t+X;A zVkk9)37>P4-8wT0I)}TB$~7CZet_oFP%+AyF8Q+oGhpkdr40e%UTiNbdb%p|X$5vB zEG^(*A-V$WriLh?#Z`+pXTqA&gcRwZ*CP>vSN*rU-6p@i<|?KlK)|}sXE84~#Mym) zJdHv1Z}&*CovCCF)D}-yZK-7jDc@nFUFiW@u>ydC!MZ|KHJg9o%Mc1~C+)L2eJ{N1 z-Lju|3UE-F*CWwec!Xm25t8yYknt}9!SBAC8tNFJp9<~sj@zXXcsn}gy^mUd20;Fx zqj0-zr-06vk6Xf+t36k4=8;+as`GmHFkKKR*-9zxxX(aEzk0kU@|bK$KI+d4O;7pY zAG7voQhc@}#aPq8d91D$6d0ZEFRt0t@Y!tP2I;Sm3Q-r!OT|EkVX=Qo>z^>)`Se~pL_<%#5e!!Nwuvr=K9%WVxz`CWjm?SqKb?;{N+_^m%x~tjJqo48k z>tq?vtraJI^p(D?qLEB)SD-OAYV>;-A=l)6u)Xj|;ZD;psObDF(B2tnVs*0$Wqjy5 zBoL&<>}O6~*y+OFYaP-iRXCV)^&@F_tfdJJSM@6=YGE0KqC*c?8_)%Sxx^#Z0a@GO`Fbk2$=+O2Q`0thbtb{wOuyL7RHV{8 z-hG-g8K?x^hcDb_Xn9V4As&6yhUVje+X1tECcEmlUY`>*;>u#<62Zm(Koskk@58g@ zrC9G|rU(S!+QhseemTE=*Pjp>CANUs5f|h5;A-ueuxkHyWbH8sG;mONzOrs}J(G1^ zLxcIkRy57t$%Z1K31}?*vhyXysgM~~e^->9RvniN+>&gwQ`kz3=2^_C-UcjcT{P3x z=u~+*FmJL%`>(98WRS23K|%H&8!#T=kiba@(A4F*3~L|zpbXshpl;AC0X4jL-ur7f1NEXbrtS{KK5i`@c{Z^#-7<@ z^%3~91VM8JY5;bdP0mzFPfg5v zlPl&1TeTiY%x18#e#_|ckUr*@Y z8Lmq7*v2F6BZu9%b;$@@mT3n5*ov9%LZD+L)3Kidx&gH8oOvrFfHUuak_J-9 zsJEp(7%iVFDYIcyK^;nXI%X$#Fgog^*Qk#j9w6*SN&!lxh`bEdIO;X#Ka-c6>VPU9 zmWzG53rH^3aN;G2FXsN2o&Eb1h4_Bfu6H_sx^3}BKiT`Kxk*h`&)Yb;H0tu0?5j+~ zuzZ@b1hXghsL40Hi+-Q%jV0sT6+eTm70_ZaUbMTj0Tx(FLvM8@QUjg!ZPQ#x|!u2uYr9+x3o3>`dK*`bX=!`t(e23ZLxdr1c{*Kw5k^Y-E z{JF|=nPAXNd@hmF>0=$cxZizeO1V$_bT)%-jPdWz@H70 zl`UMupiMW4B~{br}R1$W`d0|fQ@O9;7kJD=pce$yFh}U zrZ$nOa&Sio)_h(QXb*W&J}v)9_z;uy(t`zcN*zO73~l(rs}73PlC~ez;*Vgtq_|~4 z_LrqA8=7Bx+@o_vtC(1(0nR=Te#|20{i)*G;j4z-m7yi9_SL0*tEI+HCJCn-U`sp{ zty>SYlp&hqXae@c2#lh852UXYWiDg7g_(RN+ zuF4KzIQL_r6M(@@u_?b*cp5K40_I@FJBsTh!6)y5JseOVNY)a+ zPa9I`uNd*$!pyuiKe9Y#mhInr_>&L)t4{zrrIs~YBcIA*5*%5E<3K@PO83I&tFjkh zb*xNXo}1R$>@u8OqU07bADRRxZ6F=O>_*izT{%_+5Q_pNLNjp&W_gF^6;6gM@(9}K zT1Ij4-FHLB3MXv7G+bpv+JGL`;(+A2XG8OL#3#wM=AC7LSrDgY@hxPk-V07=$io#b zp10bITZ6~wsqD<=WB~Qg?CE5aT#TZuS@Cfi6IL7Bxyyg(aTd>)D4o4^7{f&R64r7O zYE8EC@j<>H6>~+*lJ{S?1V-0zfNkI4uPCVpl}#Px3E?RlkDyj$u-PU+)n&ru>vLk< ztDB17P4ZB)BMgQ*sOK7StFA~GMIGC2JGG8-7HBm&%`&xrns*QG6!UR$8Z!W$bY3xN zI5H;cBOTyEt`h7}$b$@eO`IE00?E)nL3T-DbMMEfRX^#^F=MXur=E}dGK_+2s=S+p zuL=nOTrNMTe@avgBnVwiwYvWIYS;Zf$Pl;_aztfj{1IUtEy>=6&-y&?myWb2$ker4 zt01jc2MdiWJvsTbq^CmDaX{re5_o&w-NDBF?m2hYa=3miD2_Phjnw@JB%+h${nqpL z9?p8LYW=|(wI8!0mmC3jd~Wo2aDV&d&vLv#qse8~409u8!-gO-d1Hp2?gLl*^0(;7?Y=w+*h71pD0*gx!q|Il>4 zS+mt4yA;OR;BFHBOM%zL59T6xBoB`tfadkz6Wdx1GZm@g-YT!#?$P9|ci@h9zmp3& z_znnP%onC(uK-9Rd?j+Vks@bV6j+ZXj|~DDv9pB5PU++x356HUf0IU@2W;V7sgiTE zG@$TFSt@_fLI}OD71;|QA#@kHg|wB1Zi;EA$2#6eo}qv4r%;xnBzQ{1w9(XSb1Mv$$L5^lQy=4&+~L`=G6dIWgRs(585G&D_T_m%==e$T#ITO4-2codmvHGJVb5)l8Bds%iLfvx!(%=xTT$`7Mvgd^I5j8@4C%4iYC$&R1H+rEL;K&1+r|1tp#xcJI}i z371{H!N8+*&$0eF!gv)d)d0o6lm?-)s%*AR4N9f z*+XU+*SfF$)WR^>qznFTLPXOxx50PVvcG_Pd%M--8Ig; z43=gOdk(?MzfJ!*t}Jgj*_$P61H*Y!6v~C}V(ymjRAboAXVK1o@s>JlnGgUvySM^K zv?d{>+}+Jdd4VrNiTo1kW-IJZ^Ec5aM^)_vmh?SpUULTp;`8Jbc%&feN)3pa2w76{t!r&hakq)$!;l?BT zu|D0sTtL$5h%P3>(KX+{%y1VGm1~v%y{xi-v`$viar(+C;KR`(P5*!_=bhcQQ9{ge zXVt7$EwvUOwHC($F|baS+mU3jo#F7p$@+zv*ML$}aykH!1;fRku^$|-wX1bNQL;jtEq69N2W+H29A z&=zRu(#7;muPISgk{IUfRQ7B6{)bMw3n?x*mXcSrbR3>`Xp$09AzUgp^NQ7XxnvXL z5`bI=^q$stdfemPZ;ydu!=W*Pr!>$q+5^$FIX(2p@s9b)4$g2OEPOsTx_v$`)?WJ_ z;)`^qyCeXJ6rpC5j269Rnk-F0bGX7B6sm_2XUo)Qk~|#-^KTvDPBulk*{GwA&G=AU zIa;U+36Q2B0{VRMBHdc4YrDcCB$PIA$hhL6-AO?KP$Z>?%l5h*y$#$DY$XSz&^`I6 zQt~ruR=*JZF%<17(>sR#KA-@2q{>4)UCVGhI1!+&^S5@hV-81s*9zHTqLXtWOwJ#& zBe@xay589V!o*cxb9}48;{0H{GJ-d-I z`pruQCc2~(p-GF4uSOCp`VYaBpAIKM4S+?WN0~!D$}9nZAD<@yJ(QzGWdcBQbLu5t z&v=aF1Oj=FAoe?e*8NN%4^O#?S}6El1wgT*;*%Zp;+hqj)zLZq$lzqry#J;o3f28< z^$XCLbyQHe6ay-zI~#pGgf^88K_B!N$AbaQRW!xW{1AuLxIOSww+Ha^_xR5z(x_QA z^pkxCtKby#3v%m9_(OnXXY8;gbBuQv^9KyI&<3Z6le%RuDU;DlLpa*%#Ok8K$dSz< zdQ*zs4l*j0GTzFBg-j}fH!2g8(TCNXTQ4lyglZ4H3LxdZP76lyWcz9go z2*LP7C34^%C({TEY4P`s@B@`~4>ZHQT(?*T?<+{2jIJG$dGsb&bO*>7E^#YihNyA|9cOK3}f19HESi24i zP8QSiJm!GY2>Fqq@@{a3|7^ibo^=J6)h6`{!=4;0o79*2+xs=LWA?7Mh@z zQzDiGP)HxRYZs{Ra_%FBEa7{>v7zQ+~ z0VJ4M5>SqpA}Wz-3DoPxq(8{Y8PpNoN@1Lt_eH&6Ups@VdAO5(V06u(RJ*{ucOyA` z!})ZUz4Glz7Fo}}C^TMrW$^Q3EB=Y(aKW?SL7vN1QpufV1OVR$zz*Io z@NlGzhZxq%RGCC4iOnnH+3MWADRy;8WsD9GnH-G<0x|%Bli9HmxW*b!!|56yst zMLLKEZmR~~CyZYpqz5=-<{tl?I*}tpsbgdvHE+;RRDo5rA&J z+142y>+r|x&%x;n%dJ(E9(3PwVt67#^)$G>&6Z|A3^p#b3_l0;lR!N3t#mR~!Q|9D z#=W1azBU8W^C3EH#8Bs}8frr~(=pA1!5Jul9Uy^`H6}92bM7PfHRJj6upafOaEX*s2c5BMp-c&r9JK+P>jBSV;RrWERIX|1w2F0U>Ozxw<#PI)mQC)&0r1V`9<30AV;Zvbf8skaPQ48DJ-1`7ms!#h0ASYv?f4uann~mx& z^$CjsVChGW6-z7;OJe(L9sZU7ccd%PEiJsa{=mOtaj&QpJ4+O1Q_ww`hjFn z;9+H;vCAe@!oXe9D9&{s49uW2w}Pcvex19OVukv@0hNFEGFKi11)Ya7ar1d?N5rHIxv>C1v~KmpgL@~G-iD;nGbxX?gvBLOGfh@ z0pW4YJyM)WLK43{L}kN9=BZhEo}nzztHhq#OcV}e(j$>)H>67@0A`_#AKj}n*j*bN z+jMDlZ+8=Itbh%*g3@%Oo_$c+m)yw>VD zC<`zgRs;a9ySYH!8QrbMkQb?45o+|Wj_^#D`+BOpZ>v>=ygrD@$J?lbSfb|Gp5-?q z=ZhMjwz`xr^h-mTAS9uRq-QVleZcZQ!gw<%(!G-pI#K{cl@$trY&fD1&5I%yl6-1i zw4`{lr6>rhCyl}jFg2y%D_3nv;*N_ShRMoN4D2@TBd>&g=lWCsw%(v_I$*i@WI&$T zR$lXX_Nw3EN~L3BGZ~V{C7A{y(@^C{;*<)wwdrLw3PhwRJ9g7wrDb+Dc{n!4b$5-h zy4Fg1LGB*ld%f;OSTVr~n8t)T@P?JRxB5d7uhn6%Ii0jsxkY=`OnH3Lu1%H`E;h;& z%+vf)Nwi0Xm4nd|*$2wA8l7r@@M2UOk+jkPU`OpHY?ll-s}ohHTsqk!RIq0dxMRRM zq2WB)@(LFk+csS61OBCi@&fzTsM&J;dW~H?pvf4ZmViNnk(6PgSbz%w>RJCREqfP0 zy$i@A>b9K`mj%s^QYB{Qz_!D>uC=WA0m2A2wguGU+HB}RJR(YWAC-~WAC28wKg4M? z1HbrR$pKJ2P*6at=aV}&LQ^$(T0ox9GsMQZxE)^(aLh8ad2g#L?SB>+(Mr!S;Co&1 zbXsgl=nX5?0xoK;{$M|t_-zlTUXe)&_*brW7@#Gb34tVuWvjuT>!_55o0q1=_Ud#Y zXmf!-4^ep7u@#mskqPZBI+7dgxzU|=hMK2oj3R(`nS)3J0kkPaM(4q@Q$nlaLNOg% zmmzVzqn$kLSHTB=(B9s?Of40Jrm6gT>X?!N-Qub}S(wjzbH!OE}0K8E0Myhizsyhd$r4QlZ zQtS_zBFOUb3Y?LmlNB4{V{=j1qN>G@n=Lv4r3DX5-rL}NLLF*nlN=YH0O|#w6ml;o zL}LZ-3d2xNaM_>^t_P|!b-1z8(&@wBbe!1fmt*2H6IXt2%OX|1kW0vf#LDF})YIDe z12kvy7XV#p4S31kR7B?n0%)S`A$lS#a|;$aN(kCG{NT^Z9?+ekCqQ^Muu~^Z!L$J* zhh2*9 zLR`#TQzg%krtkk_?@i;O?At$JM1>ZSB#Em<4AO-NVO&ZjLKyo}jD5?#Gg=i|G|H|- z%vi$M*EVXb*>_5kT?yHrHyZ|mU@>+qJ}^yewIwHy8G;GTtpEA#NE1J`iDS-k-$Y2qOfmF0fd zGNWuWmqhb6o%!A$0~WsBAdVefv@V3SRdtcu=tAo0&i?|@JdENFWuFrHteO6BF3_g? z88!`!J-4nuhJ&^dA)mPkVdU`o=oYzJbKB!JNRc;NsZmZsI9+&XoGRM(f7HGG;52a5 zJ%gr)YE3m+?KrQGk#`HN#3uWo1X2wt{WBjKV$!D5m{qe+uQ@ole>l|Nd%jkC`r^-O zlKcc6g0HFX#bwzT`Ke1shW{#v__KxFap zkeL7M*Wso?q@@LXAwlSI(B~E|wrL@JZ-rwQ#5BJpiS-spQlY(8{~XrC?{I0z3!E1J zbJY^6;GtWBo-~a@XCKmRI%BKUR2MCoX^1rKK&JTd_uiWyuH2`qfvibc*+$-f$E z^bmveu7^ieI^FJqv`o%fKEW40yy4S=y<_Gk;QFG=S`8ag7RHy)C|zYz83-KM3d<0Y=-Qnn+EgPW>H*16|nZ z3rl^MK2nG|Hl?5k#Jq?f1uu3hSN;zL$^;z>u`(VG2<}E%=?Y(p>a_-F^Zq(fUn(22 z(he|-p^=gtq`)@o=T_8f2T4|qg>CKUyX3-&m8yFbEXq2 zw?>dwWu(Ir!D{bQVmteBQ81(6(T7|OLss2Py_{sEYG!`<`PI!__Jb<{=_gxy`5xH;VuE%|T$=F+-vQjLcVqjZib4Ul)PV?F!K}#}N>~2WbVBEuo zwg_txV&sQ5IQi`J=0U@kTM;F8I&uJFvKG;*MCnHbD~VG)Yfr$%ZREe$&1NA(J=Z^7 zW|D9N1}y^_f?a5f4DISwk=tILNE+kJZZ(M;IL@_K)8LF5;R%A)i+?>qMab#dOA#Np zWV+`ak>np>E5tljsL=B*E=2}nPRX$8P5$*~t{4zRJv9TWfF2g4Q{G+AR2)kcm7klM zEDQuF5|NTrtGn|UZKCCd$r$T@DI@&x;cyHH(7R)qVK>&o9n+We_m1w#Vw(W_ML8tM z2OJK(!7XE{O-^geL`zrBqW=CH$Br`UsD7@~*BoG1iLVdK`(>YQ!#;5bkvOS;{zFHg zqhSmZw513b=;y!4BkRA_Qi1Ca&w-XMoOz?wLCNg(Yd@vIm4WUmm{hy7{;zc)1O~Rs z(^Fr!j~B#sV~qK=Kf4__T?S$n-m~FK)JHtfMF$TA`<47D*({$pK);s9Fpg6frvXtc z_WfQ+bo$$X6RyF`_FU*apuq8wT{=!tC8oR#uoJJFlHdOR z)WC|3K)rKv>amRZ+WT>QeXpCBvFP`4cnLqCwpV&s#9u$#+wKRs_(dt@QMy z93{sp>ieV*CcL~jBxH}k52*hNlWb6hWsr2Ur-sSsTX1kDwvl>%KQ{1poxq2b$M|WS z`hfKcu(}FI&vgE|6Cpvc6Wi;u%_w9IJH0`FTwB>LgZ_O0Xwy?LT1Dr*+?2CWVa3dU z@mS|j-`hXYa+hH1xno?ClBh$l5Q4)HGF)=!ubFAU%uY(#hfuz#7=z<@OlD&Cufy;F ze02As3*T|PKNhIr8c5~byVGy?|1sP^G#fmZZMzzEBX&w4QyUMF-t)(AP1V66y5#+l zL|xsAo$%W#({B-!QT_bTfS5ozIjJZrj?0t)V^Gs3dsAoo<5=Q4K!ocu%1f#1^C=h( zgY5Y{wm*gtSn(L1dpbC6Emr_h#wwi0iB*@!SN?h~xJApqki|hiB*3Abop#;$$1f{R z!7op~7neD;_Bxyf;(9c%G93MryDGs1_IKHtk93JLWi%H&Hy<~Y{>Ni!aC<-^e6HK; zP`@ZT04F!!-2N{?0|%eh{x=67ZNdcV=KhltiN8rNsJv}(a>M#hd%UJR_XP;V=c!oD zlT^KlN8xBaF_9vHJO70(J2`e)#&B)2KV`_&6t;Jr&xm*oWo8x4u(okU_#=NP zU0S*x7=pWITORd`ucttG_9%3HC&K$x*b)$#j1KHQOHm;SJcvwQ%SqTwnZVBvkgudC zg>&gq7q_AUk)Ek14Ya>L6M2*((93b(Wg9+BSso<=7{Xh*)i5NS{`Jv2cY_w|j}iQZ z)TQAZ{5C?|n5r+=Yy=)`MCRFRmDKlr3WL+wb1_%@w}--CR=C1&o7i*YD6hlGZ3n%- zRqX~JRiJ*pA_@*!bb=?vqy<(afHgj5WvTLKr#(&s1R`uC(xaO)iG6TxKA(zp*zmny zhw{&Wh|YrH-ck!oroQh10fwuI&)!2B)!GgtOl3Kvj+4~Cm);BK@#IeX%YUpGZ-X1` zT3hfqWzzyH#*m#@96~cw7JTgkaPuvAP({*oBVw$B!auRB{ov;dad%i?VlS=TZ&OC_ z;t)*iY5e)BKY;?9Zo65X=ih2y5eB<8Yn-~a=zQdeMWp@Jj7Kjm zcsM^NI_C%I9g9mmc`E{3)`**jimdK&?v}yLF@BhP4{#K(zUesLhSMM{GO5-El<}_3 zWP%Zr1(vqe@c(y8;mQ|?<*2^p36E+94*rJ2&IkKw)%cx0yxvATe)&J+u`4j{QuVy8 zf1RHXpv~TdrhN~dHMh5y2L!x%@jad@McjwEkF$STB9;fif&ZKp)0qB6Is5U!9>&MA z)c)n3kzl#=0zXp&6x?~l&_Ae423#g}XOX>MuLlkcG$oT)N+$jT?pnU>&*jdzZ}H9lFr{ zSBTVWfw1x<*Yme*pPr)q^AACT`xeKRk4mcWMh%&Pus=2FPA!o2ggB{jK=fA#ZCrZC zvvU4B`%B34C*6yuCzsm(STW&0I|i<5R_rFd@G|D6_*E6x5dpt&u=^c#rGC6<9qJdg2T;#~C6tfnwx_zY4gVm=lHOX3`sY6+4JQE-ZcpbeLlJ$PKRCk$ zJas`5RDJeyvV0ss2fmkO$fk)2euu3v*k}m zW#>j%esm09DD@GCvky{~YaYuua!K9GBii8Nu5f zpeRW7<%xeXQLaA;isI;y@)_#PYLKXev&m~8Wdc7xBqYMj!kjyIQog`-Y=h^zcaQ&d z7!E_eaNPCPkCx8w!%EnScy=$sAD#YVxHLFEcrG7*9L1^OJ#2?et&7v`*dM>GNB|#f z!%U5}By|k`!f$Uq`_X~nu*qvQ}sz9uVQ)%$kT$9-jju9BUNdLtUQ+ zHaHAE&+QIUe)IDK?le3%oK=rXNeo0ju)(WCrU2_xC6o?8kul8`=n*Ll{wX4TLdiEb|Jiqo28$*d)MwrBI38gBG25vZw#RE3PKURzeHw;VmM9{*II%hwA(EB`b+f}Io z_45_ta2zERK5wUt4X1#_^bK_nX8&B?M4;W~ZV{U-pqwZrW!T_5(mh-L3=cn>2M8Z#CaF$P1q%{R(;s~M&)N^x1YqAkFtOmKF<#0Dt{TAr&da|D`x6Ph za|fK23vhzSRf=A_Bbl;zt~WMD`(s0`eA;^Z#%W+HNA=DDTVfjQbyKITn0VxPX%I zl_4=7qQ@`F7!bBOmh};Uuzq-KuG?kOE9U6MM+mv)fp?<_>FCzx=_ix`&_WVE@O#Zf)JHU0Def>ZZO*I#(t z5~k@G4Q_GEU;qdD9R{#v_fd7EO6&}Me|Hnym-Z!ET6))Gl^W{e<;&OSGTK(jMTnRf zw?ap%gk!Ja_r6Wwf@nMPK5u%cdj~}%e+Vn?EztUhwa&YfC=2PwHw9Gu_blW6@({2A zLcw@!9xiZ!27<|meRbE{CHs7HmH^-}YF({KCzWV*ALE4k#umX|P;?pc;cFs<`#kkGBq%$& zDHg5FaqymBKW+mV;h=Gz>VGEfEHOGGOcS% zWl9e@x_wS}x%aM306j^6uIL+ZuB5&jLkP2=cl(Uw$!cS#XAB44St?~&$U_mv(fcV# z#d*D_rV4%tW}7hGT?SnNs%_&h!vVbvAb?$Uz5a{igVXV=zJ<`lU47ubVPkM@*WUy9 zE0vZIPmi4RGT?%0-j*YP^@aB3yIz(ux%&+fuzBH^RkO*m#I&@@V_^Y`+&jsKH`!Y$ zW-2<~IJIqCGyerOq0=fZp*|AD9X&ZdXIDA`&Phm}ZoT};f=xE+Iy-w-pz=1B<2Mc~ zIx6y*?v$omH?}Ze$Wi%OZtiTM$47z5KB>8y8eugrS&q8tV|{&di?y}Ojfx5lH8m<- z;zR)QtvV6?z%i|=J=VETAUoBo9 z(3knpXIq!77Vj`WKTmHnz`Z|Ck%pF@1^vr^aHlqkUw>(w9lnt_kcRHZe;%JkCxrk8 z-WJOKIk~oNMHO~>dU~O)$sz5!@@>GtXaMNKbbvy(W@FFTLe%ZUZ%XW&(d@{9POqns zm3ie-%Je>Lk8CHO%7gx1m-#PP8K2oS!Q!;W>L+UP?&X3VSD!{-dQM z{c|j3jFs{odVwK~TjrxOCqfUF=RBx<|CxSIh#oc)#fIrfhn8MWe8{TSnu&g41Q+H`1h4Y7QSMVj^1k7|8lz=^*a;Bl&aB_ zJbvaPW#1kN>yuu)Pju_0@5vc?+nIERgX`Z5mqT|QA%o@}Q05R+CnnfIi-BfQAJc7& zJO3q}XXj_g`Xmz{-7i9&t08HJS$S}k*!$XtL| zUQD_%7|At=9g9 z2G_Y=y+K3aH9%$Splj8y%`z_=_qyGkV4jtI+_B)@dQFp#l9FR>niAScenkEENArwY z<~sn>(Z-=udhyz3E(-ug&H*1@9?(JGRW*oR z_rmh8<>F;Q26XX3`zh*xidfbAnxQt_VeI*i!JybZJyzO{pd9^3w36v)FBlpL^Vck+ z&8gv|2Mv<0JnpY;sf|<38v*Ga1wow|>u4H}pVb_^3Dx}pQ8U3VVjhXqyyKAJr)(Q$ zW@e*=Je^GABV^Rsyz!E-H9@6HKr{41brz{x#!|%?$HLFg{}fC>Cj-~qSce%Fi^cak z;DzHP?4y|Lws1=~fAt_Nk|X*axJDd3RK6#(56>7A9c?@EkhtkQ-pTl>DGnjQz}KbV zCzDm9$3DGH%#a_SD_`~F0y7|Bb|3fmFfKzdXs;W#f06p#ZBbeVCQ#gyK{@30+U}NE zF?APb=P|%PW+P28Gf~==cGBx|vSKr8S*x<#Di>4H=|Ln=F1cWrJ1;Y`jRA+S8?F-& zGaW$0@!oIjOns^d(olmPnO_`t4CtCD7}(ObZtjfZ`>mASplCVX1Z1bY``hg(-{HP) z1b6B=9`Ga`mg7xo^10w^VQfyIW{AdV&~g042#|XjRdz~BN=b4CT#f|0Kq>96M`-(N zTe#C;7_Cp#cr2#@uU$|}JCn+N)F}aI9qPeX^lEdF&~r4wc8?U? zyLYc0K+^IBWh8&{+1XCZxRbvapr1SSo{=RX^vQD<>Z06XRTt<%xN9?(9Iy+u5;o1R z`Fwi~X1MykU0sZXgUW>csK^|k zI{7BcBRUyFli;@PdTsW;@KVXzF{JML!yUY6u8|kjb^lPld&#Dob>Ye~kU!l=%;Q}K z%dTA8p=^tC0D%|T)mMgcRT-Ga%5#udtJt44ztB05Xpn1zH7at=0;i%AzE*wK?m6&f zuo|PTZVH^LnW|Oh2yGf#dL3onl;bc}Ohc<*&ht;+R?2t0Np$3rrRB*0$I0?l|HkY} zS?{k;d4TrEyD_-N z`B6b6fP%RwbRvfpAZNn+_U)VS@nWUChB^ee8BD)?H)9@kc)a6uGVWtf5owr(%R0Ki zl(S`ILfh8tw}D$-A)I1qpfDqZ6py@n?mP7;{>*Nj4;nkhN!CqpkCnwN(ifix?c_26 zE55Jt3(N865!9TZg8mF6M&c0lEz}VZ(X!ltLgH#Q-M5TupZ7UMV{lw7{k|9|Kn zUr6P&>Rh`Nsz6zRQ@Itu;%sC(TR0S#16}q9YxZidHUT?o4Ky&GWj^PWCu*TUjuS4I zhv{CLJt#jPyqQ~C{5+2-!+QXJA6XnVS+zk>ivKTfgq&Kde%dD@#N2U4Zi(2W=B)YYkDH z?3dU3W`Siu7v{0{i=yjb|l#O#$OaWh}6`I;LIkWk<;6r8nmkR8AOFE!E;ghJy!px{; zx_++m(Q5e{m@%=nqj1{+2Yh-RCM#b!3`kaYVr6|=UEIiZTBft$t4ZLGp1l`4TzH$N zgr%9aYS0>favoHb$51!0&R=F{XU7N3pDE|qv7-|@-%oNl@qn*sb!+s#dzAcN0|w{r z2vY;85ArZT`&h8zziPyvuDEw2M3M3LQVb}Fb%F~dy0EtURqjB zt*!~^N?1NJev2lHbIpT)4^1cdFE6+inz&_804YfaU@gaB=iDWr(^sMgea_+{M0xA{ zUSys{>j|tawz?_~*r5BMDdPlCwZ|VI?~WC>zUv3ZC>II;F0F5oJCgAclRRs7UgV;o zF%foVqCnt`Hyi|a2%5i$n9Lio@k0*fz-U)~=BRMZ<2QohOFJJArf@E2f%!&H zK>o_E zrIJiLuC*DjjcDWLGYOrvoqz-{MyL5#I?VDPPCYp`>7;R>j|=+-@@_34BbE@6IZFm= zt=E^_0C}<z)2emA~EG19N{kUU-s4+@r1BD>((?IRXo=|rHJ8dHdy7pVtT1`WGC0;^&{4e zFPn>14m3l1%g5ex=gwUKug!IErkOeP7w21!7BArs#6(61*fMj)9lG0*Z=Ha^!CNJ*`=s62zQ_lw1;;eKb?skKIRK_Lx}P$WI`KH4tP=+ z+Y{0Ya2i`%ZCd?->%UuN1^C(u^p;S|C1zDyy0Wo1W1%ByFK56$%KAP&WeR@EEFgp1 z!4k6Obw3cr-WWYen9eiTdm_*&ZX(2&HZ&5o)2q$MqoY=`&khdr7gFoX)A%xsL^^@y z-~V;|Sx;F9=4H4)R~xM*le1~pt=9$a+;r=vQ}}PSwKeLfbRbOQ3;k^aRH}Bn+-T+f(9|BcPcJ(I>-+YBJd{5QDuYCMuc+ z-9xQ;_6Fd@L{~etY>t5xU6HAEw%sMd?(M>721D^Dh|zLPJ8cba+_;hU^l8J@O`QJ) z=AjZwIMzkkU?I}y`&$=rRQF=vqKJyL-N%#KY!=T{EUaxcj+a>oJbOsaejr46j$f;*h1-|*G~kTN}!0YCOb} zLX#epj$%vWLV?3sX5U@#wl+j3*o?s#&(1ZvN~qb$V5NQGDCVObtll9s!8A1@QHZ(r zsgA@e=&LlkYL8OpvE_v9LpGui!9g5{xW|3rt9Aa_bREf!(CZyJd#RdT zZ;TvM!{vJ_hJOV(&moVpC#QYSb2ByYF*jay>#Lr;pRob)d?bT4*`x+S@7`sN7PAZs z-TCkH*qkb#t@TuIouZ+KSvRT#Vrc7tf#GFOV3XZ92%QUSbg|W2c8R~{I~!wVRvD7D zN7lOlP0ZGHyQDmLrDdHv*GjQ;x#2%Kvr-SaKr`wjG?Szr+LxNj_ z0;h+}87Nx`LBVP~e;nwz>g%7{vj*^um068$Mcb0>v`dq-E6Lf~EOX$IWrKGfX;GhP zSlFm_^&5n8$=Fo!i(sZ~E@xC^E%eyLl0T^jVn)veVxA3x^cSD2Iik(!ID}=Clw5Hd9Aw(E|%m^?f%PR^WJvGc?+0aVB&x)#tz&c zT!8valtWy~?yR5`ltHrI1lhe5&a`2nwCw${tM`JEnQEZ7wF@s>Je(Y@k~2CZ#SjFy zPF>J%0|Hf3&>x@2%rG5BS|1%C<=nlQXGTV|HHgd&&SR0C{x}cC&Z84X=%h2F+n7ia)cxE#c9PT5->5ef00ULVO;^ zjvt~Pp|wvqPr9nk?j5Ah?m`_dWGihEQEWe9 zdls2xj?n*hS9bHxc+xGl=tGXOgZ+YrqhhYlwZzhpM`76o`b z>VL6S-Zi{e%jiI_x?nIE_(EmAH+1(u%kjJ%BE@TTw2}AlXp~gq24H1O&1Wg@R7kDJPIKbh=WqZNO9%WpBZ&VUj0+`8C6wLC4*zgpxYAUKCij z8SXZ`0G{gf;Z9PIX5yHH)sTC)Ft6I$5T$ zf#6o>;KY0l)H*OG7a(;l23eA(o;P)FZ5ILj~k!|Lm|_8Y+I50_{c)o$ZjEJMcPhtg-(92 zm$TY@VCbEPmW<`#_Og7q@TL96&6{RC0|)9!d^TKXW9Ij1x{&#%U$ z)v`NR;_ZI*Oye9>v>&2L>6SLp6Ho~#73fQJX?t1})-vgB^*%FWpPMkzmfWt$cB*+_ zmx*;QEv*Ap&h+6sR z1wD=`NM96d%hp~{6dTqaQNiisF&Pf^2DQzOZ5gr54bWoP+oP^EPXZ|}GA1!~vnGV5 zQlpcp9qL!uVig5;vO0c>u>t)&5%X{F=z0G-K^gJ9dJW-=Y0EmcYY@1=PWuF%F~=9E2uaRVUYK?D@}s7S z%1}=)ykde1?5d8*w^d6dJK^2@p`_O3om_yzP&K_r$<{_lff`1d#Rd@d&%SzC5tW^z zy+w~Re-r(CMyp5T5TA`fM$iSPmz$wsis@MPPDe$KL`FtVEMUStfuzt5Vw1dRhoUz| zl9&>S(0t)z)MWhku!+Tx)`Y>Tdc*OSx!k2!_HdP`szROXJzV1^3w%st&B7PO(Y7nI zKrUhEg<`l!H2A3dOb7c8WiShAuYVb=a&IxMpqP(K;z$9T*3>@@?i(G7gRo;8if7~q z+|Q}6^C$v6sB?uJZxArkG9{l#kRpdILqoqx_`P;VO>DqjSDb1A~KxOGDV z|GP59qOhjb6Q6^Y@k!DyA47&8=1D>&H5+i-T}XWfI^0Pz69q54=O*lJ?!TZ)!}m`c z;{!A4NGRGQ&e!A{>Zen_DAMZJ9&S}Ef8uQAo*k6P)QqArD4R@I-ec?2Jfxz~9A(HW zSP>l`KS`Gxh4p*){EFbR`^k`<3V{;%4S4KN4;1~0UQ1c4MYV*?C1{Ho(y|fW_Ueuh ze>#o*y-TDooMILswQ;gtVrb$lA5%o=ZmDdgp=FJwl`C%XGmc8Da|p&}_SpuW2cl0~ zn4T;hF+LP^NET|8i?*|X(^%N02v1=`o<3i|Q( z&gqVI{m(8LUCs68tg7~H{!jy4Vd| z$Z_MqV%S!FCqND;Ub8Os5wr!{oR7sD}nS4U# z&P2bRm!9e_%qtp(>j6N;-w79-ZJ3i>4XYOXEc2V5M??qPfMOwZJpWAhknF52aA77` z)y*O>D4QJ8vadHA|CU%|%%JI}uzOM#zs!_!EhAe->yREt_lVSE?C8}2h^SO0Z}OXH z>#6pxiKWIi_3B`V6#|krE7`5O$w`{OzWq7^F44_)(Tc57k}cSm2z4lZF#1LZqTA=5 zEY+K{(UQyW_q`B!YW{}R2YBKkvkbnV+rp$$dceKU>0?Gl@^Z87X06a%lEL|6zQru_ zS6_hlKf1Cv3EBeZjh03p_6dgR!UcuT&IoHhGm(8SY(lHwvt8?|t*WDqKt(sO(&~IX zig~0g8v^z!W-8h2#MTu`An|B_g3AGHy?5+Q0hc@=3dley-!mjn5`%8N2_g;l@wD`5 zf7GSb&wO}8j_L9%;>f@ZXWZ6X6-WU}r+fil3J`}w{39~~XYD7m7Mh^T%NNnZYynLpydX2S|ekm^ksCybxf06q)?9L|i-bSX!$4Wee8q|XtVHF`ZPA#Ggw zgwa-2F(?M}=;LKt{RMc9w6s2uciXQ166%}mfEbC>+*pwl3$m~eJc_nM@Af#mlg)?2PjNTkm2T^#kewog^`OGmHzXg)dr@5#wq+H)ZypNPSzZN@0 zfN;HTo>Uf_)yxWua@ZG7DK0GSO>jwqs87$@I(3K-SVikQN!A1N-rJ2&MaT-C3?hBx zvmgwfa(B-gYTMf}S37;FghdyJ)VP6o0n6h%g)5$z9u2cg-utCNS>DM5bz1L_vOm)tKM5&1 zJ3tC$45hWE(o6vbgJG)KavfDKfBO$T&fDzpocJNF?%iF6?nkDnE@aQ4Y>oCg!bD=3 zh?JC698VWq?ev_HHjd}R6=>M_G=IN*=@nduV7stdIjPt}52O*C$aT5McpXK$)@0_V z-#w*G+edGut*j#1vz=y!sUdkfIXq&VJ%K%1`LLi<)D4>Sh$owFDO_4#_{C-fz?1-D zYGYzz>aI=jT)(iJqG_*31uozS>`Eml!EE&eRavW2`47fMUu`x#E-u{#XNE-S21MWfmRj^FsX% z@z`e_?O)gvW_ER!X|1<{B$#2a*~}v-RTLVeI~;R>#0(szA<^K{yemU%z88+45g?2* z=Oc8DjpLZ}PRRO*cdQ7upQ`wLGe8R5s652=WsLf~B0OATl76xzJ8!`6>QImX;${3S z|2Mg?UN@PugLK^N*Cw@M)+zrUr95V8Q1Jb@mIZno7hPFwnoU#YBCgtH)7WQoskQW= zg(WrCr-NO67DL#ipPmV(D(OSqIH#-cmgSJ_h3l zdOd6%aA(x_`pp^XV0lYU-jMwrY4-eJe>6?{p+oGCXHZ557mjmg9FY}&<6tFln8=&1 zLsKX{s`C-4U#BBVX@9)vE^yk@A&Cgrir;N`Bt1GHwidXdSr{N4bo;P+vfXRQztLZ8 zvvG@l6IV)3cUc8U?181;{foUuM!U)xwEL0N3uNGU-_f&_Pa1$IGK)gdG;Z`{IgijU z1zyB#^M4;8T@I7KchAuq4C+mIb`}GNF-xg^bHqF~1^vu%;vQuix2tB7BO@^X6f&Ok^3>`VnDAxv0yu1CYtkwYn zTngKxeL)%f>PbTJ)8)0D_#Tx9#xwYCOK1rhG^bVXu~Tl|C(-k|Q%?4rY_a}wruWPU za`C-OB#(Ys_HnI8%Gj23Ez=S`azZ?7r}@;iz@Qwci+w(}L390M)E#k{1vhbPi>RjG z9xm4y$O!D;)Ig9IpzTcH8T{6j$(RM`=BEJPs|--2iPvUG2FmE72r1fbUkT2&XMPvv z>oI{Mbfj~cDuH>2#OPcV1vRcZx|K^YNfS$=vaJAuWXPhQ)C|DA_sZOwnDnA-3h?7O zZvstvwpFPTXlLu^Trcig)Q|W^@Q$}QDnkU5ema~_Cq88=y3B{PJ2jB?uDtxxl%h`7 zsmLeiIiuQT9D9!;8dBFic$unLkx%~#_Y=XSkb;$r)?2aJ>!_N5m^pKjyu7?3?%a7t z_YC|67d_H}0|yRy8a261QSw8)*XaOHuA&>HHKZXOZ~>NE)xAvR_Uwpck~R^;xQ+yB z-8p>SMjMkO%r6|7ibQ}%3KCpgS9|6g#1!Z?df!KRR zpYMjTR^mH80$2iSoIM%$q*^VN&z$K=bHMj8HPuXzJ*lufUcLmIy}@-?wBG9uoeL46 zca<}`Kh&%sy=9@7e^K8rWMDIPKjG!S!YAJk)6W%x4J@=d5iB}=smOy#E&yDghp3+2 z&1TQssU;yKIrE0zw<+yRlK;#p@kS}1(nC3nu59UG4>M|@{CQJ#Im7j$(N`~?hX5}! z@b~vm5LG-IbM&2q_ilOrV{hMmII?ETc~dI@>7klr0R{9X6z{_~_M38`I(ficH{T(4 zwBroR95bJv+t-LmTeo4$rjN82 zh-*;hez(qm4g0zb(0R%JNeWV1Gvodv$+>-aedjS7 zXOPe%CY7Qcnr^gzAS}?{3~-;zwqn3;rvq+6+xQO12a|uLs8uQ8(GDrZ@E;XyG4ImB z&NJ~?H6-AmM$v(-&VZbCv!m)Qh|{ASj-lu>c^z1;DnGN1ZcEc+yIhOq`nfi|6?9Df z=W-LjY*42)l--GEQ>T#(DODECpDPi(PKRPF2Sdc`Al((RmdpE|k)uCr3Vsm={+B*} z)=;xR|7Ke6wYv=H79NRM*$d$eR!y-Af=5oY!*ykj0BCm|ZjeriqBYXh{iM8T&Gn0K z_?u3myaK#`#M_WaJOAQp+<`Fm7;VQC*YyHy4A!}RWak<3l_L5_=H)IDS86Ngvf(PtoeXDVJX)o3|A48Bj;NfHt*$ebG@?2Fu*D_VIKn z!(;MELP-8s&%t2=FJ}YQ-5jW$XsYSMl1nd8iWR>)`)f&mB!$zt?T5ODN~!mHG&?%I znzgF444lyWC!*^Vq2Gg3P+0iL%$7!VQ{4_yuw7%JtkB;jr9Ym24l#B1knm+)|BrUB zF6ZN6)WsMfnzV7v1TAb>(-COunDnl50L5`OUTz!{4q!iEJ|;naA=#~GxbtAdP09jO zs=B}DS9KT~IqXY{!jzYjX{;a}m+|#s`p)Z6J<&@dKT@4(D7woKsNH+Chm(Zl=!6aO z3V73la#3Ds&Q+JzZ_bX1**)h$n3LtMwgngp1nG@lNoMmxYen%#`<%W_od+dbg@0qq zK4%!-?)~-CJHAG3U*Q`8kfqm$($Uc4N=R5BA=tRB$)f&tud?iVAfd_wi7v3kWtM!K zXM+RjHZ(A7=fdh(dhGrl+T75$GZFq*y*{nJ0&%_O#nB4B_-jPj^ zjA5r~3Hx+a;}wm)o?fJYRVvzsa4o1zKTn57w=0pxURum5cXN@H768tmo^Wxo1E7D1 zGVrnLQTSe&1H5;$Rz@VnJ~tmX1qi2v%SRQ>D|b8-0Ura=;H|>xB+tx~RmqiOcYijXcSb=(kchS4J>bn?i$@S08Jev1Bb$-P7VW&#g%!#07<*{?_f83a3lTu zns?co09I%jKt7poMZX>XEl3VTJJYHLWjZX?K`g;w!G2q7N4n@qK?`!S*d>V_3EH>w z-h02w%&zQ|kZsg{{|!k-`z^Y|flrJD+y=K>tuJOaE!(OoxA%idCZSvr=gts8kxjHJ z16Y!D(1>w2-%8!J5ZuBgQ8O*8;r$Q+Z{?VQ%C!Ln?WS$}=mV>x$&r5mwU!+B%+60~ zh(y@L_SogK=OWp~WTUuUdxO^a!Lda6@lyQG*-JGmzq&@~eg@yBOBmWtq}X!GrG)hY zQw-{bHsmXEY;C=_Ux1)?lRm?41UY!<(*~N zJo7MVlM(8k-kSELS4BV5i{ zxesLxz<;T^>-QCidaa1E>j0|2cS#8@8X9*59eu~z|K$j5m2R0v0bT&FlR;jgHW=^< z(McaXM`X-==yH&u1C;Nnnd4RD^p^NZX~1+mpA6&M@TvHI*mOX^jmrVVd*?G&HJ|Ts z)mbn6NBmRKhv>4A%45k79I+H&(izL#NXQ?jB7V2SZ_^MkJ4 z2^t@-Ef4^(+{6%^yCq!>KmdhYvs@cnWF4s9lt==j@8`PBWxV^rWGsL0Ewc~@dHq&pR{ z1e?4}QENeqP!vCr%Zco&%_4?Z)GGw~_v=1pY6^PTtdTomH0jEMlkHhA;1*?5^5Yiu z!$;-i`}FpY6hBo;B{gdv+I+P7p zMvEG0awoJnx0I`tnhI{g+JA*~hwCLJKW9x@t%ytr%b*}NK=)GrTK07y+y3PJowCsEI$B&n%}{4 zhSLc^&DjcR(6%zZQ(Z=p_AUE|AT?h+I!rE!pZndkY;2B2(#Bc+=C}69cB>ZLkbEHi zqLf4ucSyEX-N^n`dn*c?6TzcjPF6&+E?5Uoe5>GUBw;B7Jq_h2qd?4J5--U?Zse*0 zG%*RJV%SxB*X-Ft_6GVgC~^Bt#Pb!U?qa&cTBSX|< zy=#lYyG#eZyy~ummdi3hw@l0%_@wvVJG%0pCG0^mW}k7m9NbtXe73}!=b-4vBdg4= z;CpU=+~Q`es{~mT)dz?FX8lB1vR5CMHLg%u=+{|G!H zRCQRP@@zXpO-c51tz-!HTej>QQ5;H3m2=#jm`Z5pM~@!aKGx{5<&4NfQ~69~)%+g! z=wbcL3oXgK6Om<4@_W6B#aGW(y?oCb^|W?v@4h=tfqe|V90}|XM0Kuh;{1Xa(r5S= zz$}gkbPpR`y+Mn(j(e20*t&_YEkDh-^@>Fe@bWfdr;`&)va*kDkI}x3!CCe=X~h!} z?*8S|*dWAp5tho1P)&3?g?dFr&A!-a( ziF+O+(5c42vbyRc*7vp<(;Aui!^PG4z?$&>J*f+gF@QVCqq@Cc{SC&D3 z-C|j`6ir8Z_3G7~t#TtJM_Pt5Od__dm_&UlbnKJUtiI!^=x52EaNv?e+}VOS1QRH` zH1#5*IZKDpt$Z>|)DoD!ckpfhwv5j5`|T8=8ITHlZfMjpk?SHrK`!FX)NX2R2npy> z*8^;HI`jZGyQC2mtB-n4B?uc8H47_7lCo6bf(RWacj%|g_~1myvCK^;(_wDw>5-VW z3-S`P{ZOh&a-?o8;>fnawHyzNJFT|lTY9<7>HV=LshL)8b(>!}==iT*7%CZzzu7qn zO&uQ3d^49@y}Y1O-7|B&&Bs%2H{HVOakd~H&wkqK#ga*`8LMSGTvuGO0zPzO}*j_PDDwZK1$sB0@9V+19wAxZ^?khgP#5R z@{^@2p{t|iE5xo|Kz+(PqPi$pmLF!V|DXO*n)Ez9j(F56u|G-lEPD(TmNErTLxaV? z2zJkC{@)&}a~4-b)$x7?E0y;gjzbO^>E1I(Dy`sEcR*~YGI)1J4m(7c8-)~Zk7_Am zd!1UAtQoA3#=nKs@pF@j0A1E=%P{J3Z}#0RM7tKvZhV4Qq7&7Sk=4t zw>a<_+mv4*<}uR)XxHdwFa{|8J5hDB17q8*v;~SEJ=&`i)g1nuJ1U?Q7O?vbv%*A-ux_pb;T^?ss=1yF^7yo#tkRNC>!^*l@7&ooiH&2<3e4bXsn;HN^q-FIYll?5Ut#_}r4Xmc zoT!SLx#s)Vu802jOMp&Gk2=6|9W;x$z$qDUv5|uAhUI76f?;MRq5)OmMa-_#UmS{Gag1?W#S*bU=j%} zxy1e25Vlpbo;_LKePZq9HU_-V>a~8$ZY#jzOxFZ8+lpD#IN`cGd*$TQ)P`!I zp6B0QSJb|qp;!F;G;~zQ5qYGX&CSbY;`q0DD}-CNcq^@5jq`lZ=rNv5IO)#`aO+s+ zI;2t6+-q?#;VJj;8s`WD;2%TBqb-hr$?jqh)2{OzB;zxn+t!-hQyXJ<`gCwLLEQ<% z(MnDzb$S=XOdctOQ(AB>8`I+Aj`R%9d9~VQujFRgr%b3}QM-?MHee@FrVvS3V;Q0$ zP_JficRN472Jbtrgbwe5E}lW}a|6EHMpQbkODv|oO=zMm9oe5VtG#fdy43144rnilJ93?KOt4d;if84F|pF#=hNG^HMm8Q zxrtf}a6zd#0=`VO(KK4>dh79JWpOeeE~zV?JjkZD_saou$zQXTykF^tZ>b~)tJA9D z_qWzqU|RsJ+6h!81A9;h(#r8k1pjQZmUggttvDbrMyGT2&gm))AfO!M0suf4u|Lp` zECVsnym3gik8Q`Ar~Ho93a%Kh4g*?*E5rm=$4R77S+rmL9}&F@(cYm;OEI&OHj9Rl z1GzqP4mw^Zhdvl9%F41YRn?#2*RLPlb&l;n@l>727N+Jy(9svhBX2Co5_J!HBqfV0 z#*VZZ4)6&OZ_rTPu^;}&ZaUoNhRSdFPC3 zT^96DMg<76q}?4u{J3X&%REoYk6a9-zW4{~=q#>*!D`w4f$KUIj&Y=Y6RIvz4m)ku zyY>#1I<*8~N?pTyPEB{oWy!AT3bYZEITjm9eoJUe%f=3bLVcnG!S)3?Xp9IDrpd>L zA~cxmMv5PrM%BH777eaR;`=zw%13k;g2#@@*D&AN){xuv^!y8zJ6$ zP05&ewWbdkPu}h z{p?NZ3^@Y~qyf6C{ikR4Vk%T*dvi$8Or+mT%Nad&-;Fl%OkfdYb^5wOK%wPS`^@kW}BDdJ}@DcyCbkKWMSgzzU(=- z{j^P(yNuOi9cUbA*_OTUOe{GmP0iF!j}E+ile|P=o#aR1^Do;hW$e0VVjy zg52qkVqSVGG$`)=quYLigimC-XO;HCUQzrH4krrdgqqRzah#7f}99uCr< zM+E?X^-^zO#PgV)mw#LEyWF`56TheB2xU8HH#q?b&_!ZbS&&Y|P*Ezs?Lvn~pMY`U z?s^3Ds^kn6uK>*7Og1-+xF_+>Bmc~&-PeUJ)O zpjM|NHUp3Xhg=$SmM~@zLx_7RyC(*ySSgy!xDn3!;pwMG-Hr{II39e@p**#l+$AF7R{}8Zi zWjSwZ^R+?hg-G9`F5Unqu6q0SeD73)Uzp*v9p2{dulHccY*iNoDPDSd`aw>pvI8M6 z@*rRD+DYyTXxF$@7#h}3w>z8!3qMhG`a1t|+)Ezwdq+fN4A)~yXhK(t&>t`u z-c_a`dcTN|>eJ*~9i!Zdw#c>KBto?{Xv?4?*@sc}hk?yG`Mg42*-mqYSiD;o-{M_x zBkINe0-Fzlh`kdNZ=Av&jrvKJ05lY9wZq12uE~aHY7(2B8KlIZ{ zn6mN^mu<26bWMkjT~7(H=0^^i@H%#L{`7{t`w}e!0IcI3px4l#8oTfQ4z`cffQM_a zE!{ZK=!@!poe-r0?YkVbAw4G&&J=so8hX^`C`i!8S94s{@K?kq#N|PPT&4xF=aIY& z1b-f$39SEsKnD?>3vbPbW^4}Tsssm+h?0lBnT9yP-?_f@^%ZnvB-+2m3kl#(Ki+Y7 zwdN9MZqXE7BY-N&-@!wG{W_U3CFj&;i&TiL>UED1L5EB7b~fORcAIX$y#!ea!9#U% z2t`(4)I6_sXI~R3!25HB(TXb%geVMHEwX|B|8(V`ito0+X1@g-DV_PTf-t7hXyr7O!3=9`X@@L$~Yp9=7k4G|4qbX%?a& z!q_m4jHkR0Kp-at3Vzl5_U$V>^=hf(;wBmr9Zg)LIHC1Xy8_&FI>Occ%`4U>ZxZd~ zDv^B9k>-WMVNf1exZrc$O>#tL8hW^$Kg#7yTJL(&wLRHCXQ@37PQdf*I&ow|E2H&S z2(cKP;{#djT`z5OAK$q0effNH-Fns^uPa|QgYyL{Hx1aepfQL16oA>NP=e9XTd@=? zLPM6L+y@YI?xp)vWOi%ixepu7AoYd;b@IMEiw$YtFQ)j^`Q8*(C0EKI^r$0%N|Un! znv@*Mo?V$lc@Qef4iXOr<0)*{dOOW1=4sgSuFxA?X*+V6OM!OQJw5K}fHt2<91oc5?5()XoI;t-l@P6L8c4JK@`?EuCUoG!*HO zd_mEcU&fv%EoFVduMi&<+G|dP%6Nd*fI)_J^+CBKq++O^RI|>YDEnt|Y9ZH+Aw^cI zO?71Nbj?U>&K`?ni@6ixJVFwzn0{aN^|yA;O5Y<^_l{@8yKLcEduA<=2_4%lJV?YxD7-L`d4t_K1$lOEF!(Zb*X&2=o4Y_qgMmfVJi4PV5nWoI)fCEzFRKV$@&#jDOelnjsLwjp7ng z1|ICzY106n`p{|m<-hH3S+@W93dh9dwCoMF%~eMtvX)wYq!wPSRPE9{)b8cEMo2MC z=?b`#yD-M8yOJ3vfj_(12+paQ+P zMpgS_WAWz~aTYNPpcW!| zIXMO*AFD{=BQJ~o@ROyR_nYyrb9Sl{msUe`joY-s6Y|8@N!WT^ zovV8PenL0T_3J%=G*NxWZ=2;legT-S32*0GQ#PZ?4loxfELHafZvJIip6mM>xjzUP zfI*&Gv~?|8&yHImn>V>HnK+aVkA*VTSNgc^Z{F}bJSVxbi=5wgz6(E7;Wv9c{8kOb1f?u@TSqp8tSx*ukRJT5X!4O2`Y~DFqzR29EqAOLg3BR z1^b=@`o_r(-kP~wrblAevs{rq@npTK0W0>wPr!rUJvcNZ{p({c4HDo?TLac^A3~xi zD{B&8dB4bQg@{>HK|IO7vpa=h`*n@X43SR zKHe28_N>{|74U>V2eVi@cvsXEg>>f1z5BSOV+RQhUU(Tg600QQ0b z(Ze8kmW6WdeGk`h(s|}#lDHQV7XfXjU3JDDoXnkUKYZ?8bB=B1TKXmUOXxG)z+qp1 zn&R(|f#n0-(F=;|gvlR((|+zVQFokON*2||5sVTNgMyD0Fs|I6-e30`R5AGcSlz}P zxiY3eywM&8>_sAZljLXPAoX{z5=E+^GJ5B;A-4(>-y7{pDr6?{u+C}fe$8@C(pIat2!Mtt*Wg7T4+9rGW6SxUJ{x5nA1VSu2FmR@hL8fY*MwDk zno{6n>)vro;kf0pU!l|D{gBu|+Ay$7#U^~IGM3D7?%cWD$C(^dYbz@nA}dvfX-EU; zco-~WK$VV9qMa+X9FD5g zUTE)}ix&HfV)+kV$QJjmxKE{Z3%1k2g^%@w7ewwWf3b9Xhjzri8bF7obAGrJiOb14 zP{o^8$ka(bM)d{-rSo0>sGWmEJQ2It4LoH{y29M!qDun}yCL|S8fw%x%Yu$@#1JHY z+zG{PcB}sAdOr%tUGywG#@?>Y~ zrzN~bp{|ZJqgp`t;>(q02(D8h8QUpgvpHj=DJ90I??C4Tl~E8SGq}3kr1*{FkBuiu z`H?%;o|MSmgx$d@OqceTc{$RgmQIvC2iT-?C+N&oRaa*rc}1w1bLzx9rpMt&z-SYp ztd(uwC<;{EuRVZbFow+fzE5F!%8am=CiCExE4U_Lm;W=3Fbj6F7gxnXWn)p#DW_zP z7zHXjyKl=Hj>%6N`fk$-hmG_CA!R64+u!6b?Oyb*{Mfi+=@l2u#g<;2_s&`*a5<`5 zYGid$RI31dtIpV8wEYl4R&8$2atN<_g}PzGRAXniDhKd%>A^3C>8>koJot-j4w}m@ z!-!p7B9?k)V@C5S@`^E(iUA!p28u3kp%87kXM7!V=gJ>e_pXh`HRFG;$)fe^hP}Og zp4EJ6={5^l8^Qry)q!N<3Su}uN&*iDp?2ruE~fPRko8mC74?CAZH>6+b9NPh{5Bl3 zJFBwAauU?$A{{-xR(2rS*wzow<;nwUtd&XQD@Pz)o5ZJiRwMOmh-;6W=us1J>)_cz za@D-Yc8|67Z%lFjh#_pL2f<1+OOlydyGejAi~`XaHxTo=v1W@CV%IoA%_#m(UF9lP zdjPifC}lvg6iFAYq>5@C0FR2!k=6S96N*_8MK64y09k-csiX+GqhNXlIAVm#hmEJQ zh^4dSswl`V#lmt%eG*p1z)lzZji;9U(f0K}|Tk(_ao z#r|ll?5-0Hm8%)D9VSvH>@|&*Vk>_aZ@AdV{y+naABHZ)8NWHYq!wBHBb+fk&v4X2 z2Z4i;IP({kJ1_OumZHjo+U_-=S8PSK7l5*AimR+$V#XABSZ9t`q6taq{|uBamMWlG z4H&H`HGchF{bZ)hD{V-Ov;F*QPDG2#i3wf)IgpJ-H&$W66qiqSl>HTQ{M&rQ<6s@x z&tGO=I>8`I0J*FysR4SgsLC$^b_q#ZPN$068ivLR+5R-ARL&$SQ!3|0ZCgRY3p`0w zm1N`egl&6%mL0!n(17(QDp=4P3ALaAdZ!r-Gz~Q7+Bz$_sfT-S^O_`&)K0!E{Eh^b zJjX%5Y(Hh=>&Es|N;mOttlEkvp5(WdGU_GFLSdTPS#guHRBjkc^Y^R}#YcsQ+ccTD z1p55=bQ9G{_2>0_{mBYEBB0Ea>y=P}n7?O~sYyxVQ#!Ov&;C(VTr;Ok_gGt78v)D~ z)yU)hQ<_9XMG@`gRgoF#^T&_c;q2r)26M^c=AjnU?b!k_VtvfWzR`O=O5uX;+J6;IU@(;`nZk3E_~T*sKz zHs2giNY`Al0q_@o0P>jljt9bjcQD`NU zwC@~UOCCvo8bDeh4njEt;Cqt^873^=dqNzwui!FS?0oz-&=~y4Ff4HWsrSF-iQqWr ziq-;Mzy2^ugKmTL&cR5uBFNd#9z=0Ar(DSy_{+GdbTjKYUXu~f3GkYLNY&~s5-*t0 z3frqfBUglXK9PWNAhuilCIy!a1pJkd1VL)0+PKp1_sPtnEgrk?mFMT)UL-hdg4bg< zRz!dcC_^W&`UZIka`EvoP-1llZVHd{JHFeCegC26I#zQ+yaCCOXbhq)$Q!^`wj9_^ zzGDu3VCaP;?=sQ#x&4!c;an-Oz#7#hzYfmTow{fum&^f9(4o+IUita4;VqSnHXfCO^A+cnSQTj3q zlQO89$FKg` z+v7EcK@6kkXyk_PXEp!e!d#w99wpibJ`XV>_s;~5G!xer3_!6Kd{qrE#@lz zcqUen3!7hEE#HYP)w@9&oxQr&P?+KCKUm=F#g>(VOI0Lvk6%$`e>H)j%nlZd6<)JG z(L5(_;+p`m9NjfnY}iPV5LU)E!B&R=W$Z`w$Pl}QyeoMd3ULgP{7f(f}TX%+VC z=m5VGRFK__`4}&x3Oi@@$GWq|O93f33DN`zO>4wRsAD%gS3n5Z`|Yl&Gy>)(V_{l| zt%HBXam+>Fmjc+~-glN_pOlGo1irrR>)0mjIx^vQqqq9Ekl`xKKX9Fg*Tk&s@2G_N z*xz3n)_o|r=at^?oxONMeEEd%gHzkzOk!UL8_OXWIYruklEGsGx|_vzaF#0-TOVV> zo#ukO;R)I|gGEX1fXhd<1zf`ZD3Hu`;qoVLU0#O0%U9^~KR5l?w{fruUNGG~iv5SR zuxI#5SKmwiVdYTd)=-2T?fiyR)<2AZkiY*HFpATkL{d31A48iLou{rfTMwZByz~eB2FA#dRRv5wmH84#L8`b`hto!+gv{Qs9A`5$Mja$9(>OSte2!Iv=?eK@z{A z3X4&W_HL+og+_`qoDb;afvD(EoJ|Gx-bG=^}l>I5%T4Aa1=Nur8a8;kf#v zVrzyG#f0xI-Hv}?cI}DC)#ZcS1*p)a|wI;glbjb^^FMG zp1O)T#BXxp-tQ>mCI5&!&^8fLKz>Nz1Bv|a+y4cEd~yaZ-x9;s#Bg~oKD0Y-SG?6& zG7#vm;q@?>Q*P@D>{Vba%N_0t@0Cj_#NuB@+u%{Tg(tDFBDk3VI0sjm#u@TY|8+vK zy|=MO3D#u=^3Tgc@s-y5(R+>}i! z+>8wm0#?G;b1&a%V~oY6;eGAj^cdH~aQiuM`>x7cl9#4K{EJBpLOb*Ln)}AsZPFqF zo9EbmrQbc@|7=9O3phtPzE2Ab4_gg3A?o%R_O-w-z;$l*$d--&g?V3aI>ChWTey%J zE^`-|kaKhLSWpNTOb^bi8{^4cj=2gGDHp{7CI^o>;V^5-1`!z1z(amN!%}WTCgkp8 z*(vPl&(wf%XGAA&4$MU$)Y5~^ncH~I``2;(_kab!+~by9uV-!82-hF~3@znukD8_O zFM0=Wg5YL`4vHo7U@tFJi9*@lH33yvlk)@*Hi1JB7mj^_LLnQ#CY-v{_x=nv06|N+ z?CY2y_F0*56tp&Csm%=AObc$F#b>OI;q>GC(cO6Jz?jrOFZ3n~ZoW|Q^vG{t@gMhP zkG`H2d}Af{<`quDQoc@*XAIj5(J}9c**k?bbeU%G^|>3Hf5Z8I8Ma;EdyCl^Hb*Hu z=~eb|hFB908ge87Lh=l;>1$-7X2)_}88%Hn`ns#)nq&sQa|~9-)?3tM-Jc5p7VspB zVs>uf=fmQzT@zqwZeDcR$8h;0>*4a-lzm2)x<+XK{801v4|D#n(O>_^y;s1!Uzk0g z_gfa?-z`WALg%Bx(?u5ZqeAQ9^jVI-yug^e{e{B2hu)4RzuTLOn~F;t9yR3R#l4uT zfOY-fw{9B&Pg?b;nIT?dBE`avT&?zIHRe6x%T|JUoz-VzVz_z`TKD58Tm&(n3wgr5 zKb@kTx58Y73HR4dxc3cS<|dMu_rV2YS6kR(U6$%si^q!e1BIsEO8O(%Q_S`p?p;Ji z9*cE@RbWPkmFZ><#%YpR)(XXHgsiA0V$T@cH8b!epX9!*!rUZ22_Ch4dfn$~22b+j z7<~QocadC%2B$rG*2%i_SfmRRZX7-9Wv?e~YcS7R>j}?FjT&ditQc&CS(NhcS@}!5 z;+K7j1ji;@+QpCrL)fsEO|Sdm#?0Zm-aji9u(!S8f0S3ae3ry41J+P2UR`K896rmg ztru=#R)7hYwiRx@`SK|f?5}b`W4%Rnz{LrB>!e(?2}~4EIbjbU8;p!08W_lnV4mL} zzm0<>N+l{_XWQ>F8vk0wS9CZaO6mvFZTWo z9pLv!f(keSlcSxZhYVTM+}zycW^E@Oy~>p?LFY(YM@PdVY4imER7SE6wL*CmmBEQH zaRW`<;v2cqTmE0K<0fnucQ&bA*jRxpK#%!4IZ}YUR~8`q0IqUCrA27(>YV5v7_isR z{{fwO0pFES)Xh=ynKl4gr8tO|Ea%+x`AQ2K!Usdr+8m8TRpS}T0{^G$Jc1Kd@dg?u zXlUGoB5rkc7~yMoWu+QlrL44crh}eifaLcZuXpU)WelCJGbhf49;FVopph?7nQt3} zd0zZVuNh;Ber}=Iz~sKtMr_CpEO@+>m5h`-v_S#Hy&R1bA?WJnUM$bb%8CcMbgC}5 zp;ZXb$Zd@}-2vD(iMToxHh7l&;T6nEa{}|;=e6rW&HgCPebDD1!z+PwuhDHy)OVzkN|4##*CY5w!rw_4>yMnWpvPS$C}|{3*6L$#%^UZ;@dAz8EktlRyuBc!f4S zJ?$Qy1vPKUYlH~%&=u6tKZF_QL>@Fc%uQ0h=fh}Gz6Q@|?}miaNIr${q5YOnV`|ob z;DnC8{-t3zE34-Mz(f1bzzRwfd1DTRXk?@RDa%*)iw6|RWiO4Gcp-G)?2qvWN=_0Y zGuT@j=7EHAm(Uh$frcyK&MW8~IHD~NOkxDLLX+{%NLkBNxlZ)gC9fKTBa8Yn$w$sZ zGxqt57g1Dq0@AXIfM^Ej8WD)3B~0z45sP-$QguiIMEfeb;q~R zTAfRV)###0j>F>GtT9N^`}vI*8d25&R+nSV0AOvNUScjKC*EJyK(&=>3DBrkm_^za ze5eD!JdJ2Dhcy)j*wib{3`w=ZTob^GXCHl0JDm*xVyB(SYFo$$Cy>-;q#{VBHmw)9 z8qKhJMzDIVo>EF!@U{>aGYRnCUNAR$2+$E3(BCsWeE2Xqc^h~h!~o;72cJbd2Fx62 z)~?L8b|jywy%KG#;3eA}$Ac5oq6SmnqM0}d`irOu%F}hhZFjoEKu*57x&I)qyMx{c zLV_Tft_ThOp{--sc)b>d+5eRgGLeGTYJKg{RGw=v1x&!y4Df*CX)zK+fJ>wUwTCu0 z)j4|QBx{Dzl+0$SGgk#NWQ2o^J^d73P~SENml;u>liloj&%qEBm<`x^&(f|4gmRjU zJUsGd+7SL8u<1z}t=tD0iXld*8pI*)jm{Iq>Zb3k!p>y5UBy z%PEbZS$z`m2*m6jK@`E^uzlmBX~~1S!a+V2-=~bHXn;CEoDnH=8L!KYi3Bt_JGYjw z)iD)0XEd9*-Enc;Ba&6S^xizC$A{sEyCBLc4Q$2&H}SE{SapjHq?FNkEaM{2ECPXG zsD1?@T4>O-GkLflOqKqK{$P#!xxM^DCZC`cK)3Z)p-^en)zxlN7M(EecBW^`f-P)i z6^*PL!vF&q27BQCpBZo(86j8OpEl7`vDOv;zpFf_x5sLYp%JT}hG4{=1w=U#`Po|! z-)Kf=x^m`J#J+zh6^XC1pGK8c*{(Trce3mJ-Ce@MG$1vj$qazGvVlqWnJ^;0{#<)=^Mb%A&XThD0Ypr!QR0Ejg^&|TZC>J1F+w?Rj$_N^6$A2 z|EB3(=qU4RG-C_0LbW8EX!K0??L94sV+xkv9f;QcHu|p;wDdkDSzojdY*c+9HF@c7 zok4eVr<=X8r)Pe3^noTA>}D;xlCrNH813x)qx6ImkQL_SMn*wVqL!LDY z@#wUQ1!Klu!KSOL+l=7C`Yi^q?+$V{+*mDO4}*N3DNgr4b)q^Zh0+4g-LmvcMuN6T zO(Wz0=r5c4{KX+rJ>qQrW&%`;MHfO3=uS;m{U z* z!$8o1kyKFgJ38=Deh(%;=^)5=j8( zlDRkm5EvH-gx|3Jjs2~jFR7v)g@7}c+rBso6o!#>ObpG+gdXU~CPuBalevn}^znut zq_HoUc>xza>uk+XtVKN#t&l0Ov(1R+4kqRCa~C%%Byr7B9}ZgXDIB{JxKV27&N9O@ zm&C*OQ|WTV$h8LmDK&G`@5c&#BO|LjMaa54Lg+TRWnp}a6R`zfTF~@Y^Ai3KCBQqN zSx9_x&~D_Hq~O1{At3b?WLm?1^L>6vpw`LL?;#WV)(0d@hhdgq4xk3>TN1`Uo{f8R zLC4{GIuiYXDWuBj0D@(Cw2{0q+q1l6ws+4ksPJp7dF_CGVA4)lYmL2^8Ehe!APG{< z<`iGL7>ZKP6ke|TzC$z+Hk>wJ4M=j8o9yS`BODZ^BorF<7@+BMXe20PVn%SVqJReN zK-n`3bd3CcR3o#84DRs!Qzqu&z@3iR{DzAy4iB1zQSxZo1`VK5ior=;&S=JD(s=HL z9$XD|;-Koa&VU!(6&kx`$R0qBn!LJY_SMdl56z<$JQn2R5)&&?kTFvqGk*@UU!vy* zQ*2bs=DoYC{pq*Y^^mJKHZ~$D6C|MibswcjB;z{xae3rl!*q{q>4wO+4JW#H0IvAd>#!lo;jdWKNVHnfhODp z%YqjRJ+|7qej=j~+okO`jQxk1=;Kp_&XuX(oZA7{{*aZn_wU_< zyRn*@+V>pGfrW9S?%c13`vL#zgTUJW>})|Y^gyN1=q#R`27%pdz?J3*62bM%94O0@ z^T0;QJ5uqt)i*aaG$6Vp<=L}0p%Wm2k_xfAF$BwpzU@xc+e@as5xuZDB@%QbTjNiO zU>ifK=a?k|pN=^}qOv~W4N*@oOmSiMd$Mb?wN1I#?OxcNF@cX;VLG}EBGIyXI*DGG zTVyLGo7hbk;IJ3N$MQPVCLX3}X%B)b(o60V4jbNM0isxgz>5K`^`mO$Y{iP4(vt|q@AAi!Ax^2??%6% zaHR<#G7KZ9r%^QrH54x;rR#L0*umfY-rrhtXUDH1Ju(m^7H-?|RV`nlRXZ1Yo?Fsd zY?9B*B4HOO?kGGlGX4rdv*a_vPs_O&>}%Zd#J{qo_Dec`(UWJ?&M?j7YMJUB|iZcz=9S+8XC!R-&2#96O@`y0(!Gu{9z=f%TYYbeY zv;8{Aq@6``WYA1csPGxCFx2ntW-0wW81tqoMdhjwqF8L zGSMtsUPg)KX$S=t$@$u!M^3;HE0?oWbU}~Oz;j_1M&{>QVJ^9ixYkCl1p$^m3tR?^%r=l@H z5DA`{Xwz9r3}FYoZR(K$N!`zS5>}3`u9SO5fMZIOn4w(2foyFxF36 zh4O@eModTispx@2x^v7zGBSxv%yc+#*k! zE?XMLvFP2mNsNIPFZfuV=>EAe^VnBJdxZFHM`?*VP7jDi_WGovmIG(7GZ+_k6 z_W8?~{4Lkta@aPmCE&>pTK;5iQ)~n!WXf9eSkVE1zvnY{658LI>99UQn_3UmoXa?QZ}Z1N*bj>g{c*hCtEXYf+;ZUyCKK9V?y93%y$}sV9RwGIqMu3)?}*g zASJA_l@Zf(SdV;<(vPlXeChT?L!y4(S;|Zz?WJgpG*q4BjP(S%z*obWI@AuyK)&*7 zky@xI=n$K1J79)kGvxUvqhH|#`og@|PI!cBQ`yFV0#Kl3DCOm*1k<`Ms{_d51g5S) zGT;Tm@nWr&{;qK3Q<$++8sgS-rqf$)4v%l$Yf;9cUp@`#pF7mBOXQxDs*O?%cvBi; z7z*IGc5t~dQw|xpbua3^5)CmH zD(p@i$5lU;0JR+9yYv;yD8^*%H$Zj|`MSYqdv?)QA}WhVScVRMOfsYtJv)_v`-GTK z8;j#i7i8}iKf{6$j->ccJ8UvA2IiD$#^J`%k3%$2<;*KSGtr^(BjtUS$gIssu9WQ= zLwX*FHg`>T8Rfqkw z-Hw+F=}evpKV(=PONg+#US$+a&6y>8kILQFo9l)aO-Zo6I?v07ahT&gv|Mqf{T72|+00=QbN<-a@`oOgJ>@xb<`>7GjUp=b#wSnBg7Sh z8&H3_<^}1cDQt3Ir&LN<1p9hZPl4@W*@J@XJ}F&QT(|K(6tApn9(@%x^B7Js%-qzU zq$JI7R(MDW?6z6HNykh}z^gTt8D7th?s3BaCDVv;pS|v4-S`FvEE3c@+`9s$D@1dRlre~XR zNN@oiHkFsA6-`5i)gdP}H0UkDaoM}dh73EGHD1IcPAC7t;a2Kw&U6*@AzbGAzKo7z z;U!=~U`Q^(JW)u8^c5Vqh6P1|!eIdQjvnfxM(67p6k?>^0jLJoZ(#*tjxRVf)*3f12u%UShIce=89MQLD_VA2m+rCDf37rSh%!CcMcgyOR31DiS#|5hVLsa+~I{Ce?m5_NA-`Al~t_F9u{ zM~>pjZZ=8_vo3rO2IxR;ZdZKyU>t1e=gLhEJBg`5$$Zz;Ry(xAI798cbJb4>I_$!f zn;8(aA`(@Bx~LUU6#VrZhFzhP*M2j|*ucORs*&uC>{FiW9sjK6lYVgR2NwX|@1KU7 z-|Z0x6DnIjjY7Ak%yrupOjC%%1?Bgzj+#pQ8xkl`gZa|x`r0}4Emff$rkdn^Qk2Ek zJH|!0#{KoA41w_K2<`_(?a(02|B|%24T^t=CP5kW91fH%)OvLQO7eWMvJw=S#2`O) zoYl-GRdIVnf!m<9kv@#Onri9qLTYpVdcvWGIxjfa1O@;3Q+Qnt+gp*~S}#lXJ(<6I zC2#HaV@G=F#|NIY)c4(Kkb%JrU;wi&^pxk3-p>a;Fa8E2CQimFGi+@ZQoxE#An0U+ z+sF@@1VPTG_cDV7l^523)y z5xFkCxx6FxrPd!rV>L2E^cv%(qZGiWekaG$ng`_M1Tu&7q!?;Se@SxH`Rhe%hcZ#~ zGoTh&==3?OQpoOEmcn^azRiEf(}Q_F#=m%BCbwO`^edW`uA1a#*;?<~&S4Ar;8*H< z0u$Z|2Js+-v%iCvNaD-sg1+?`Nd-0@xZ%ZHfJ>7%7M^$*M5^z-L;9x3QE4^|T_ zEnc&!kP?!ep1!a7(`782F~EZqusk!8Vgxznv3Ihg%?{VlsCbRR+G*>8Y<**u6zWaF zyU+1)DOb9IzJ;cszTA;kDVdXH_a&u_1_jpqi2Q+o#HTMU#qLm5U9hcst}2|UbJE33 zQz@0k(R>)#rZK0`LdTg}H;wZ8E!1Dc8@a1it@-J2(XhnV=anICUa5kiGrpd6+ooDU zXx*`fLuyzMcjvCcHxBJAr_%|MW!j;Ff-tL4c-JnoO9s`C2=ciJjs!Os{LTmU(+85(){uF|A^mJE(sQ)8Pc&B6_X|Oi3i3E6;c3eW~7XX; zIhkZ#XK(HBJ&Q<4RPPO&J9B^ZyTlwtyAsVuox5wTH5~Mgw;RchjXq8Max+()4v=4E@AnzdZ=& z!X%bLf-KwC*NUXEKM181f+`k+8vP@gp3Ipg-xZ3rsAAT?!M(3D5~FYg&Efg7l@?Rq(VVLlR<3kq?t2w^2T>(25E z2Q5?n0;RQlHyDWH&G`jU%cX2;Sd_R%|4iWkStSm8Pp|iyn3xzPEp2?c5^E-h&HelL z4=W8A#U%w%n6iGpwXVKMIG^MIT4vpxO^uP93fae4g9Q#yK}X4CLy~3U`!uR!B85V% z{?v?-L*@#|^X&#DS-W2RiGO-vM>>T!-ww9XU7(>I-N6*Ple^(_kWo1UB}rv-SiU~cDrc}MyDq+eo&QT2)cuuw)FfP?CW+m1D*Kw z$MEk8Hkm|cC9d3`bm5D)EDaN4l)-6%+KJ;Sm*IudVw)!S&kV@tr?|E3w!FTgvCw)> zgT750zG*EprRGyg&(KQS!GVFc{4_Ze6ERtlRf2z=y~Zz)Cf&+|2a1j_LuEfqrjn+atce1{Ji+3k=-t4KHoA=z0L20pr)GR0r zb&O_ZO?o3$J!Z74 zh?RHlW_(;BT~$+)4Q8sqH?O23zLW{Z7_ZvD;Z{cK3@zps@BZzc<<>vk8UnP>sikec6&3pAb46a(N%lkQKBTHAE;I2s5dKeQG&6BPs{E|mBR9oJ8aYIk2j242x>7JA zm$tv7`?b#$`^>ZjUomHJU&FXW7FQT-^r7l~RaFL1ay^P;M4S_1zNVx^h)i{UoN1U6 z2J_}}$)}UeR?*`!rn!37L7vzq7 z4ffAcM~oc?c-F7aU;QHdut-hyU)Ts!i*2)#_kMFcIZ@?-+-k{T=a7qIn*VePCQ9>) z!~zAC4VW{dX)eeAj9tbSa2>m?Hr(Q=v0wkPX%)c?&!4PbJI-6{$@(fkTdO*@Q8B?J zLm>t=jX?Y1l4&4|q^Rgc6^bhWYD&p5pWOmMeVWZ6ojT|;p50E4`C6a} zL`vZ}H618u^*&en{_g&+YKLmem|Z2b7cet zkWiAbAZ+Syyi7m(WT>O|OG`?HIyS)s*-Dj&N`5cS^kHybFF(|S?4oVa_0UE8hJYp|S{@!bh=eG;&Cw<@}AzQib>V z*$^Ligqb_tb_IPs5Y}yyPHdYx4zt`j#6Tqb=@qwA47(u^S9&EKxV}b^T`ZFnUKcpU zd&}X;n{oYtf$uQxqM2vJOU7q(U|^uI!x~e-6XME1hDJt;usx+nA-)vXpk+6Ba6U45 zkCy+?s8ne-8gB+2Jr^{7neULpj`J`z%1&Zeb<1;XU9nC?%g}J+UJ)HUdE?#8l;xXO zT#S7)-lQ0_Ao;e}qFuC)tZLz;>L*J=Wr`)ZA zAkT9lJ{W^cSpr~(6w1@|N`?|s3k#TpWy>=+ZrsR{DdBA!C&<=TR)4J5X}aUtvuBr0 zqlzyi9B3BTwJ<*)6J(T8_5s9e*Mb4ti`;u zz@W%E89VF@J?>|CMD5w))oH$$Tv21#ZaERnaXdyzj!Q~ z7aos;6c8amn=Q)q=4ij#Mt!tr^Dc!Y2G16@N!k^BSnML6ciYPbn z^DAmLX4q)TF*UlZ=*Zp4m0bKKYu%gL+vc786t5%_^TU5?5BF;SdDLT%;!a4kh+R9d z`w@T!GiJs`=XgdgE1u8&r3FwE9<*g>^QTpJ0Y8CoY_d?FsgG2cK3stmD4~)id!hS{ zzwqNjKSavh6CmPgMzw%aDNNRL))>zl(qNVc(AZA?)1A9v$8-P;1@3e76no|cP)}hF zPuVRYkp-jTjZ{=ra4&z95a?B!fZvT)aJv|q9Xa}Zv;)%Pwkb8g3^KYZ}te7!TQ~Mi|%@z9E+TFMo zupLv!1EFpmMg3HFvekgt+uJ+&t!fXNU2~ScJ{N%Piq!?6tgp=a2bZvb)MrObfiFfsd$)4xBBJwCUXH!ZTk~5Bi|=r)&EcG>*Z;3UT?MQ%)#GDc@r$UEZ1- zQn9*Y{35fQ?mlss?|@QD7K}K688tOoGB#O)6g5HeWv%;wj0x)_&(p-!hro z4RVK@Zfi7!0ep}el9`=NMQUTP8Jch{Nc804UzSNwgS1f0Y4XXyHhccZa+QgN@N~SM zQO-}vOmP-y`J&=zX=&M9IV<`IWZv)1)H(QRFcWiaYV9W-q1%AQ^i{79yG4BpU;|{3 zJd!^Qj(R>N8bgP|5vBov@T|XWfpjv4rew4`cD@CMghR*5(pUK>0J2{@75}uZ_t%Lu zgyt1e%mYc2zHm#Js^nyzEGkm>9#UcpDBUTA>t249(W`KJkn?jXHZ%dhvi^7LKfC(k`PH45xn zQL_|K19GAM#S^IdI@irtGPcSVDNrq9Okk|*t&3-iCwy`;CxZ0>ea7A?v1c;|M1ViS z`e1nXsH6IAc+DFV0bh0TWje0zic`{6*oSmyUWfxA?gVfKs8xhT#94z&u+-;qG zNSRxJv=fy}K{UpKZ+#V#t7$mhG@ZdgvCMmUa029L&i-7V>;7kD!ggCoM18Beha0*)> z{#KpuESes;g?-4~6miBM2^MjuF!SvaY_kfNnmK^52Y ztI+c>4gI3sJv`cC+N2!m_#s20;}bC@$HUnJ*c*T3>5ZPy{p#j_H!$q@}Q&hh&~#k?-9*gN6}yMxNchK6<^Eb273vzkj! zh#Zk2>ioRMCbg!pkK}<#Rk+yh`!8>@m*0>QKY%ZWlGDtNN_YC#{-&%UJADFyb+&_L zrXy=ed($ zVThIzb1`)^aJq`Le7U#J4pXe-P7_9zkc^|ywjID#ezEeAxvH08LRf7OXDt$S1&R#{ z$G^wBg}Q1)s_+Lv$s~${gChx2er^YY#s6o8t3k+?uAm9gipJm@P zsA!m072VTT_|@p5i%WY;Zro~hH%+jDVKFhzNLi;e;}|Y@lT78six+Y8X-|K;eZw|N zVz;w``klryqaxI_A1v`GicxLdeWC5!3y8m`=S?M=r)maW7&h^fGjKaZBz*+O`}+NX zez`4HNnC`%4KH~vBt#zi2;JoBNtLt=CmX867?V$ zVqRv%`Q((k`c*9dFyH_x0^Wl;JgG2WuN2hpokVs+y9|^+2NWD&04*nb;h~RkyE<}7NofSl7Km@PPS!(U;C+dThlC_Y22;hosc znZ$lXI+k#&6UsRGA?ZIok41j<1R+@+t=5AliDKzge*(MkoRdPjv4AaW2IwNmvSxh} zarOoS3&jkntGxRic*elPI)X0W&J_$fCIy$c|Cy3b?BeWoC;155qMJeal4_fCP8!Ym z&}WJwEBRjlL!;P>AwB9~fjW62OeMGoXb-3L#QLBnfIMi#eF2M`6c-oQKC&qejcvX3 zK0iNy@R&IHS=t_v)yF+7DPCk+hUf(oGqcf=qZv1NYk^{>{F!vVAZ%s|e@2@?=>6$dH>L4B%MSYr z4{{ti7)y}<1PNy=8jlv4q_Irf4UN*XgQAyXlem$aKkq%K&f<28L#t~bzuONavRUvo zKB_EzeNxTyLH)iAh?=U~2oXCeMdY=mFxdEZ#VGI8k{lhxsTX#Jpi*!gJzqjX(*?*j z4uq?PleedaAz8nkIqt+YG!Ophq;ML6SV{gm6JLzYbGQPIqlVWZ0_};s%a>fkB*=ZK zFYEQgpYN+c+W3gx^6kyEpK+x1dtbnCj2suv@fLm#!RVqsKXk<9yik#YDDVC1gKf3p z^$f5xD5q>Xy#+LDS3c)mJu@QHrE-}OdFnrH57m0WyN`yNTdt#=PrL})B zcxN-w>{0;?vq%meCG1uY&6bXpuZ^r|5(vTcRuJizix+B=d=3&V&|#$^)nW;W;g*0N zILFP21Tq4~CO3>j!_@d_k}`Kf;TQm3+c%|hoM@DGk%Pg)BP9#I1<*7)Q?aMv>7&MR zD%(Y~2!5yO%)|bz z#MIGS(^bI7OzwRAwo@3(>h9JT62%#fCpM(0aqc;jKau}RH^Z9uyrgmVd(_*lU)3CT z4M13lg=5gA8=5LvC_>;B=_o=gZ;ie52;eEtfs8SmafRk!2ME7)&LPgI&uw6Uc2Qdq zO#d+Zub>mxXO%D--)mK9eazE$Z%~I8o?rY~;L}zjostk- z0`lnOq@;=2q+*+a0}KVa%e<<8$MfsF>;d>}RLX<2N^XaCz3WjB2$<{j{+(rt;EF5v zM}@QLF%7nA4mQn?Tq?-`bYAn^U3>*$Ke;X!k)w_adb~MyXT#d;SY3y`FW)plWACJt zhnrKhro%|$xpmQ#w$qarB>r4!u9JA5jr4yS!pG%S>Rvs|`>`fcrb?GP!u_egat{C0 z-<=W&&kEAfp2>uyQ7S}z?6y5qVy~kAv=gtwai@7}2X0M3oG_BtCs+@1m@5il-~ zI)oiF%7mU!vThnRP(aZ$^Z&8;-f=m%;rqBEqaM3~q^yP{vmw=OXGEmZ5~V#zLpwLJ zN`*u_RJ8Z4L0J{i-b2x*L1@tW9#?rh-IdSx`^WE(-yffUo>x!q-uLys#(ACRaUSP! zs-`Oj(~64=BBP@p1I8vzzgcup@})^G&gDrs6CHcckg9<04;N;q#ARR1fkoP)~6Q{s;3N&?-9KwPnb!0C@%oH_d zF=cy8+M>mT;qnXca12(J1W6m{i3p8}xmPlDX_1cXeVBm$sR=0@Os6qS3;Tc_Z9R_; zk}VaiyCfT^Q#j#Fq@|RZ^2vIi#3ES^SVh~9VWz)IA@3q3mm}hb3@fgLr&`x9nL+` zas5@XsY68nL*mr+;dvb;KL!fV8H~9^^B50t<}<55Hw4%wczqKz?;jtyzS#@}#Iwue zNb{{-#(jGY1hCS{V$i%;{A) zPD=A)G$!-W2f#0u25wFGT%{+zP+^uq4PkL3uM!W2nDA2Un|R&%$**GfYH>^1mH*)C zEQ5Ccm#OI3HYOmbQ|1YqtnxhEEL=Hml|@9p1=yA-RagjxjmY-Twvh*-7~hkIRtw`k z=l^tIt+YI;FLZrDS!KNUPEx4Xv9&BJ=4csfM@4F9zf)t)XqN{!2>*;rB({hFRdxJuxjAGnHZfvpZ348vQSugSA4JG-XZQy1k85}*PCk$~5Yu z*?K<9T4yt;q$@}pEV2lX%lvgnetP)AxL;hMvtrL{Leq7>hErBbCQ=FnZ4@;1y?L`P z>bB$P5lsT6E(siQ_1nu7W`0wOQ@WrpP3)@!!Z??bs(;>E^nGW3d-Z->;3`{nz|lZ; z9isQ!TM6w8T39*O>tWiQ@olC7Zn#Q(G={#=s!Yu6n_boXTUz74(`#h397P@192-G*6qK8`=7DOKvfS`T z^b6(4t>G1EW2SG(6e8u0Zd#pf&5s;^e7ww^qMXoqI{jYCAp&fI0 z*8THQevP1@S!hmfpi zL(P>mMT8K6mDDekjgZRc@Xd|M^T+HhQ(lx%-=Ag!FP>0mZ{NA&Q>yYAFgxiS$CLn1 zd;KoP%hSDIjz$0}#nbh8KBGFgRj0tF%bMt1lXB~lOE6W7HkB=jV(C2d)lc})-o>rT zhTT7K!@YYv#XT?Z(-*=Fbcp|zKV~iuK|5so*C2)5B;08O&+p+@y?zA|ota^a-p11? z+L)gEVk!M%waj0Dm<$~X-WC=WNeY_)Z6Y*D@eiAW{JC9YMTbc(T5X<{=E&@dJDJGCx-qqnFbH zMvVI^o{0aWa9|OVtOsBE5{gS z9`Hl&2+qLI7PpC{LG57oW6Q4}wnnShY1+nA#9x)GBh|gMGmU#ml~VHtg+NC%fl`JK z*DUpfzOdyLQO1%8Xv0gq=UzZO9As^{hPk6N{g6&kfs-PU_iT&;V+;FmFBnof>BSM9 zxFeDG6Wng~imI@%u$HuYmTKzvQOx#Dnza83U*DM66ce^zzqG43RNhOn%Js`4Zn}!2 zayDoVG{+Zlvoo`>L?Wkk`}1L4wdVw-jYO8IG<5!}_7zR_qkXM8lNrN!emt8z`>v;L zrvZ40v9))c+D*;jc^GtCe(oook3h1xZmqqEf zmlZpYq)}FpLRJbYB1ky-Yx{*=(;fx|l_LnK{ug^Qi>yp`l-DtVR z;`;Q`HsxWrpGzMwbku`T3-cBu+T=TKqd7a2cQf?5+fcS+0$b%@7NxC;0szpV+c9VU zeHouQud38p0R$ZGLCNqAbpB2|J9N2-llbzaXyQv}4JzMV`P2>_I`R49XE$cppfglb z)UIY-54S-j=0;Jw*e1FeV3>0M0L4BKVP&~}&wJg;Q~&w;Bn=JZQVwUS+@c|}HA}a$ zTfPJ6H)2Du~(=y^xRt zv|W?JpP0fABLXDXcQf&l1qYY5!zQ(XzMTL)f;^#t`mUseDfy&!0_BgK1KPqX=uz<((-Xu3yH*vk zMtolweN)9uG5GpyZYiVB?qS521^w&b!N<6Fvsxp~H0Xy#A#E8*`x_yIp=Q!f9#D#T z95B@19CeCK_+GG5ZN>a$mumAj$gl0odG=lKXg34J zq;vI5DOI8Jd>os9F;+AU&CY3jm3xT5(fV3B{v}2#Id@CAxi?;*!C#LxTdpQR&vn;i zn0b^~4$^3bBu(=kh>D1KXD?1i{~nXC;mxk5KXyHtQed+J1}Kprq8Pg7DL6l{-*cF8f$4K)GqObr_`7KRv?9fHXWCw%smWv6f*EL-kCVHyI zE;7s`-8T32>lj^s>q~{1gQw|vMKc85iwh;bpf;#gF4U+1lpG^qCTrY}oc6gQ>-Ua? zLomd$hJ46Z<_u^owTzi%z0AfmZ}i%^TQM$r{j2|bo+?VOVGC=X=)ia?rg+``d{9U| zr8vQ8e}qWawECw99|b!&{CulX2_zx{8~*zt{jcB1sU%`GoFCegmyfxAXYisbO>x7n zQwXn+e_MaMN8xyQ*{XJ*D?&g@OrCZr6803zPefCXE_s8-h_9bZ(r*FL>HLq1kC&1n zZ4%ZnF){ha@80xPp|!xEDYA4`$rmf5SSee@cwY^>&Yi00W(~h+^M~byDe(ulbY8@s zUD2_<_1v5>5(XRRV`GKq>C+-gm4oe92D+jmx78Z#pHcyWucT<%2k-*ER!8I+1uDc=OT+Zwr z1CUR*6UwjKq?bN8ot}CEa6>Pdg1cTlv?{}yLls4!TcoYJJ}aQP#p3}KozXTKmLA={ z{X%nE!LMCUJjF^?o(n(yag%g~Q9N|$qxgK4JZ*^OL?v{gqlF2wuWqHgGb~2mz>^r~ zLg@7R0!cplO4WJ0kHh|U-*NnT$3!P0Y=dqa)w$tqh@ln7^!MOUHb?lt*id+Ckb4hVtD{x~(MhrWK^+?|3rcc8s? zFfzwq625wClXWSew+ckeZ5o4(8l=1CI<~@0)vNW`A{@DcJ&r?<(HZbAqj_|Q#f9|m zeqYMLR24!l(NL7mj6nt(>MuTDH5ew*-+QieTZ%(($wCvu;p+wNa+DWFkn}fS={q2O zLq84gUwjG?Zr(Vfltw+8oX_GGL{#6BXZaXd=|6=B9d}@#F=g^1y54#L9-r5sQC{~4pZVa*Cuc*OXGii7A^WK^wZ7^_xy zR6AI@|LgY0O>NjD`{O+)JH27nB|0>HKIuO>NdpwL0@_r$WLnvn7$TVRqf6((&8yDz znWj0@6DcYx-VjZ(?}(B9`R1USO!(ST4SBhvfLe$X$D%*Hxz01OXht=d20kmQwLe=d za(m+->2ye9ffH7!gMKD2xY!Y`UfPG{Qea;<3XY*w^5n0_Qh18Tj_DFWSun+>>$5g7 zn}XN-z6=e1A&o}Pwfgysn`KH3{E!zE7Csw%gX}WWF4o)PpjISOgKMJ^1Ca_~qB?^+ zquNaNcy0Z`0|#iNa&Yi-^k8<#ey?p}trtFu(p`o5+b|6FZLyqmzdc8>nzHehCHhE# z)1b+$Pvk~ObD1q(rNJ;A(ZoFm!@a&Vn6yNSI8~eGAMojssAlM^*zBE#nGvPlx3$#O z)#XCqFjc~(_?W%l4gEh^OUFsIKwrCRvv4=P#hEkx0_oCAy0?Z*`YJv2UD_CKyrQZq z=hywHR3}1ks(bbfn;s@o?Cbh@pD^2ZznoxzmKSZQ6`1*Lggy)QvIX@q;h;5 z*G4_L9Y*$LFUAxoloHv(ff;88M&H2aD2r#9e=5x21+XaH`+T-hOa8s?R*j)brmG~8 zXLSd5!6IHyfup9vz(YenGD z^fd}Q>Z76ejHES@=BzsuAp)rU7(G?ixEzrS@6z9}e*OJrM~(LIFAC#}G$SouPyl#} zwC_P`T^SdoI*1xj@Y=7Fb5~(cJrZ1A*>d!_JmivzXqUrwS9*Y$XUuENi~P)mp* zEtQ;#nRQfCawBGoqDbHWclAHZTNLDdwsoe@Swc5-Vs*Ib0TiTDNEpOgN*a$dB@!t5 z?H%E1lB88;^*@EA>Iaa;z^8+baikoXDG|}a^nG%ipN4yq$2<0CIVONhT7{F-M!4P2 zQi5f-wxKu+yGf!W>1EEAQWqV1*YO;sg}?~9Z*I_CX^{Nn$w#d|n%P<0JAn)@@dZf# zx}ubLA$_7AbTf-26~OkXf|{ElIsu>A+CYfq;^N6GFVA=*_3^G`xYp+y5;zh^m~iGo zY)xd>hWiwGr{i|C(7q1+fm6&`^!Y%z=S1N9slaaf+65fzbJ_ESM@4c>nhU-IT~a~nR4OFIr#_yDqYoz z9Bb{W0bEv9PprSU2@lo@8$lJ$bC^rhpB$)grOkyd<(jbV+!Cd6s?QWay3BG4pO3D* z_He&fozBZNL_=%t8hvUj#sw%}p{4OjD<`vL^JA5>7Im+#l8&#O8+2T{5apL>yT4Sf zJNi6)+tJAI@PN8H&9k$awG9mn+DMMVMr@V(7E~Li-KlB!eN0rrzOU(_&)lS?)$3Av$q__ZTFZZ z1zWYM!}dFu&)CgQg<+c9_my64_#DN9Saq^#`R@DO+pEVu+ukus{O+wU)n$?f#gB{{4ON)D6^lZi9zBbm zOrH;-{)(?qu)W#4!;i6obqWH~EqxmzD`oTcer)fIHa~#KKfXDUmSL*W<(-)VS_+X^ zoe|CYBIKDhZtDuc_T;Kcd+md}WQ={IQ#(?UetizFkBHCBR$Ru-)%T|Pm;WRN#wpX$ zsp1^@Ve{_5EDZ9gqcL7Sif?Eol%Myx!&+sTh_Ll7-XpUuD~m`9W;9H0zSj;y=)y8lRUiea&^IH6gplWkc?3#dqlc`mc1EV#&4ArQzwhJh%Gn$qQ9kc7quxh-m6gQwQVW?ny z)+$KStofbSe8-_4$AI=568eQf3)Y{Mp#_+nb;;U5w`hSUF!q;gYF3W^2I~14xZ76X zcApE}{EcE^8dT;w(V|@^(j9(Kv7Tz(mJLCY#wccFYxXre@XlXS;xIpv_0Wy6 z1>H^%NI=I!>($C}D{O;HUqgP$!F;zwLqb5C{zE_Zq7d1)-8cQ#Ywv~Sx%mXPZ>OPA3P$TOqH-vGDMP_*Q6Iq6if@t}` zRCtJ%ku>y_R0=AI2K6NS81hqFy1U>q#pM+?Lq5n2#J8O|t`etdCOd}@+rRIkF2obq zZeW_XoNkqF&XW-|LQ$C}{^pRXs!t?M)^Uk_aF4u<&oKax(jQxY*r!N2#e_f{>3Yuc`!*~cJq2|0kB9LzGcs2Ca=iXJ=CA2L$M1?mC6>4m z0&)Mt=gzF*3C#K5Va@s9*&5j<|GT$F4$J?Z#NVFK{~Cx9gZ=+o13^(R4bh}?r$$ze zYo(l$5(hFcL@kOCCF&6(6rj{;0bq%L(B>F^>iw{6X(0=b$9;c%F%P$M={xTnjLh*E zdr##@JVR;Q89c?Ff8g%grA@hhoQN;4AzavvDw6mf z3-omUa{&!4ÝOqOE2F!t$`bI*`OuM56&>>2^ki5r#)fl{rWj`xQ&Gy*VOV?R{Ye+)=rXHVh1qEdXm=Tla{obxPz4?p`f_kdw8d(4P-jM-N3Ycg{74r^C zb{(m992$r{{``DIVkdBvxYA6%Jjui@H8Cf)(+VwtId@j%Ify`q%P%rU@~2uYy6OIV zxu3od0BOhU+PVMzYUJOt4;%*}Vx8k)e-a|gcxl8fa|z|FcxmLL$jHd++HXB~8eCOV zSNCh*1A+bGw$@$3KSujjO9Q*M|M{AKf8f`mveJlZerIpJo35ZPk8rH)z$FoBr&8DcRd76jgR@kv(Hq=h-x-LW2tAs4@VslXWlf zKfa0SDN+zF3CkWQhM$%eTmR+15%5Q0Oi78GHjI4^(5Lw?hA(Ka=s{0vxH?-d2~#?nXIwMl9Vm0J1wPMQM`Zy7Lt)okiXYI;FKg zRZ{-ogGOb)w^Rl5biKE0C{E~-`LU?Uoym9hPC3<<`oti_v0`EhzjpVfMDT6V4(^S6}1uZ#jR zTp~tCUAQDf4#!mblhUpV`@DH%GeAR{KyB8YeC=+@ z6pqlu1;^~9;29=J{-fXM@2?DOW15nnJ+yq%m{*^}uS*4wA`{xQTu7a~Q{j4?u`Kch zk-hb0dfKjjwaT+O_0qpjIY$vdM7u9kC3ElC=d>KBBB;)YP>!#Az&)TxV-&Hk^f@U3ZqPkIV-$U#xAng`!G{|0pD98;EkW62Wzh$Mq zX_J?3CPdgc5a>B4+*A}(jgsEfB>V4+92=+L3#bLIaF)$(I;mR!5cMaPYN>6F8A zK9!sgm3|SuzZ>0mWS1J-1dC*yuh`~Mx#G{BPB{wPH{-*S-D3wf+R##dGPg*}rzMIa zv-RgM$N%vE`YfE?$K5((&+dOl2479#V41F$x}ds#{I`(b1X?iyxf7@fdN+J7Ht!4! zlkfN(@|VE{QikmcTAsf`cX>_7NW`Ld405n1snJKGf4+4myBIXz*k7jskI~`j&c z;`x(X+lhSv*J<6^j_Tg>EGbVW8mjgioeXK@1?DiSNKg6mCiFji5N1TRTxa1v;S9i; za~zRDtwRd$I?@Y?0v^W98xtx1Vy2pEXWp#r^vbj21tI)aB+dBqq5yJTQ%t8!NyrEd z_M%(h{|pf)6MBxYLTO%OOINXcEOdV$#HxFFT0GxuA*MufoD8F%iV*v-Isv4uEk8F7 zI|h{Jcr26PBhpcOg1t+5%Vhbbh6~b@a_qSwCGlt_a~e|!F?LBu z7Z9Dk922ym-=~x#vatyxe1%R4T*SBB=zq$to|Cv_Kxw#!pSc?Dm$Smb_=zzLs?HS8 zHR_8Xtvuu%>HD5$thzz>>_8TZT41cYRcn7K?)Tmp+B)sSRr0X>P)0UCo3o;H80e_i z7oUd?Jlp#}Op|`CnA^0@SN4cLcQw*x}(>lkIwM^9ri z2Yj^a*z+44y23TIm+JXXdjf~eC<1i0)1}>Fd0Lx9h{e(KgV$kkEO+7wqt0U$gQOSD zpxfWJ<0|TmvcSqZBkhdj;44(V4BVA=bZEmF@2TH}PWE`37oMhlAonkaX&$@P&&E6T z9O=C~pTGk&MMm(Z*PFTw=laXi{U-qL1+CcDc$2zG4$m@wfJbq5N_vleD>8#4E4x{P zCy{0FXP)B{fgt2CTKlJ2ewYsKlmSJxT&Tu~8)FXRfRTm>MuFG%jve@+|S_K%z|(@rh=TtV>R zS&PN;Q=H8#yAgZDD?9_k%B`}p()W7q>EZ9&g!`#fPyEir6SQ~Nap1C@P;A{*d4V=P z3n`NN8@rcWWfN3nJ+Zk7vq+6&o0IQp{7Ke#!Y5>~Th(3V(}V~=S*I8Ke>ia*yMls@ z4S15$U2(7Jn89pW_`W7=q8bxkULMqEkZ&X*(5iQzD;}&w`fxXqr-+4s(t}e!Z;`Lv zyB|-`WZIxM;S=WQ9s7Xv!BrA!R9>d(?Pk_fid0cZ(Dx!3a`rC#tw^xQp$Y%i!;QkM zR~D(N^m<10v8S8K8Ablc$v0pROlM#VChxvdIhu`3VB_R;7>Q9M)%e&2>aV@H#ZL3E zuTeXi)SctB+H?2;4A=~l`D^~N(+k;9!mn*q^F$mv*GE!r>FG4+Gm*L>Z}GRohRS_6 z{(ecg=KhIyQ@##0LAn(&Zk3(AfZE-r-od^vcV5U{zd`2gZ!XoyGV&W!5p%FPIF@eA zf)<;HXt#jU&GS8{ZIP zRlZZ(@Wa0vh~+b@U8zn zra>9WhUU);I42z4zn^o0FUcO}%e$TK$ozRQ@mp9fZp=I5WvI+rykf>2eolOMg-7L% zi3h%f5%c46?ONT?_p^Y-k052R`%unJOcv8T{=uQ`Y>$qH`~?HgVJR*y-hr$8JD=y* zg#s5l(3apF?V_O`^4T8Iuv~VAr<(o@Z1fNOLC>HzANMuR{Z?P?9zy0LJW)xTAN=1o z=3K{jJF(&=<05$JQwhHxLH)+IK*G}Kp9O0J^CvZ~&H8^_AXF%4q63JtXl%XCMx>Qw z!u3Y3HX9s+!f-Fp=O(%^Df1aow(N@H*xi66yv4#3q`lW^?fQpX>PZ6Mi60mfzdUBx zi@hdc;u$_N9PglBL=(g=CtuA-xmlPIgFm7KV#wFPIX?B z!VeWnrPp40eiEVwB-#@mK|rvfe?PjVFz)2QR6TvsG@*x0UC(+~#8`!P&GOkf1}ATO zW^MF4_;z>giEa0qw8?Jd=fii4D^#gXJa%42{h^BRsFbkNTXiaJyM4`a3u=<~JGjc; znncw^knF6i6hGnVr&O>6iDU`9gO;Gc#hr+j)f@-9DhA`(*aofB=j_}x1D5OXGsov| z3&o(9vnrB4*@uD(G-u*w#x;WK-Y{+@3uFz&HhsMHq~fb zvQ9hOBc{hF)qz!QKW-s4T!?0ere657>U2L)bLX`n)>J$D-l7wYlh&g)wLsbJlSf|& zTRbG{cdH?XS^z2F1J;*(NYG3v!_uUdRu%ngGw3%~Am^0AB?%h83h%@X=z;K%a$-uP z<4I=EQ^}2=_NtO`5}V>yPo3~2GB9!pt;JF5tx6xL62qZCvi&eM%A%>-FG!S-!(= z2Wi4P`F@|&;OpH|^GM?-Ep+0%p;$N!n*@qs_3DZX_y6TZ7g7_>bjQ72TbbEk-e-cRkbL$fDoT6!2vpNN87D5e5tm|w$XCIIZkrX?nf-4eORw(#poSQ zW*|W^FfC1rWwm8{B^yd$TtSA?jV?AQI(8+p#9Rv5a#p|?&fp$p3OoLMoAf2EPZOm> z1?q<0#0vCQH%oDdzBiZO?;|2~_-HHHG=D#q343^$<`eIpB&h=+yni%Sb7!|bvmODZ zNGu9Ic^0HP3G%3Xjwix+exfsW_f^WTFUOd5iVP|d&+w6izfAhwLWSMG8t=d`tYXo@ zY}AQ0ddT00QbqWZFXCjg<zm{59T#-0hv5+-OWaHFEsl`p_sO4`vX;!@#$FFxZ=0O*@8xQgPgyO^+5_8h4qstf3}w)V~!@ zUkuu&BaNdT2=#I%nto$jXS-C9K}ABGU}Oj=lLmHm^8>CNboh4bhKgB8X%>NGJyM>z za!JIkVbovQ4um0g_U8C9S6j$h05>k3dSmBz>Se31C#b zXO{l$NCLa>oKudVtF&pr?`+Lg;-IP?@=-~DI7xKi+g?LgRI$E7!w)Smtk$8(sEtFd z&{0}`E#RI4Z`Bd!nVAQ!5oN9{6%V5uRlXt>e47ECFHgSb_Lf9Duz~rP`=Y|LCK}vr zmc@e|Uk2Aift$7fdL;_Sg)+>RFfguM>h5q=8$~WR9IUm0cg7l&gq0`g%Wvs?H9z+B z#}@?0xbR)3?@h?2-fWKRb7oo*)w3}tk%wr9*WElJ`4C#eOCjyo!FB##< zR)ocH9J5*qid$LOX_5Dx5WiKXbfUqGuHcKp8c-%INKnGhs2>eDCQBze;fzS)#e+lb z)u2?+bd9wb+ToacTP%?2Gk-Xc8tEaFeej|+`I7-g8@`0ve6DeZWu>6IB9*jts>rT@ zu@lKz?!>0=mYFaQa)?ijQ!eAk@W?SU3Y?U+eI1gYnB4v9!ql19iYt>sLUxI%GG}bs zh4(VQ2k(d_R+8M`bd&AQM=h?g0)nI*lL8TV-X33LgX&LGK1ZeD zc!L5@dxqb!k-Wg);lC?{`#_7X1E2LlWVo)|VeC$cs$1(42Uzo$D0K2MFgC7scd%ah zbn);wKAdD=Xn(Veo}EO-=y8=&DY}j+45;L(vsc_-)I8{!m+$#zw!8j3elu#5Vji>Z z+x}^6xWppdWnnhU4LP*C$agO-T?lk;$+nU!Ok@ z$6}v{?>N_%Kac`9^9Rr@)O@|~aHqljAyU04^Mp{qP{WaD+#K@DD1o;b74vEH-hINu z_?I&{s;+sU>9cCg6jMG}AxmOOQchk@P?wjVPrN)dGXfFIx!Ddu+2O#I zLat5;E0t9)02rV=1Y#)RS3Y^%j`+zY^RdlCKtAqxqU3|ca7=wc)MBjc=1K9KM7=pL zzb+{#TRR3rdVL#?f>Pt!1@vn^d|&&X$rd2U*=jY}NY|<}&lvC!9eZ9bjDTkA6N|kjpP+zb_pUud?w%U8SUjSnb zG1ufOhQn`^)0hh+fbxb}&r~fgc*AK7$sB$Rt!m%#Nn|NTUsTkN`Hvnwx&r?5EA+;_ z;}oIKUEz5t0md4?av^r89=73aC8sFIQS;jUl3v)=T!Miardc*AB$mnE6Nq@lFly{` z85p@)hb>xwlq5Rz(pqZM9k-yQD;A(;Ij(_e2M24l;=zdVr#6ZvgE0LV1%{rPZUG!|#kkrz`% zHkBz>;FWB2f~H8jMpZR)++pwZSd1JJSrPv2GO|5z((8@RZY0NZ1}^mj6pMZ1_V1x7Q{r}p2ElUX7cdU? zl^5LaKsZAEHun*KK&ZFC*e&`ya&1{etxuh8o-jY>OI3+x#m<;?K9z{lF?majs`%FYzGDu@lR&=6v@!b22ht zpf<2){l>)u!;#ce7wWJce+0>IgBP@ABRL5NkBesURA}}L1U^01-9>B1wyDmKw zFV{KBa;%pqW4-b4XBF|;)i>skJY?L6pIyag16n>x41YEm=B-gNcbpIY``v`d;_lpk zfSeO$lK=f%WXizU4#SfqX%j^(s5P#Ix2c0V<1%j}d&qbWJ~~rx&9K$Lo3&0G=V1Ld zwdOIHS+0LRTVf9Q-7!{5#zwY@XSQV#W;QjmLY}PM4s4jY;RXjLURpryDvQsqiuOT# z8<>v`v+Yh**Iy7?aZHxj?u@mBjp1<@gMG!Ulk}Gn z43H5x&U7KCK9~S-CD{u_$F0@yrfpEf_OABKe1;L`x04V;n9A^H@6r80DVTDYA{Zp3 zqL4!p{anjoFBj}S`@6@oG1+s6<5E&q_yzSXcRB4F;`RJ-0{>dZ=d*jd;o@=Fo9-|C_+gJ1`Nm zPM8y#rw1AB>bE9^|NZmm1l{$44b$C!iPD>&MR_`Tjd(HLxV;`&Tt zZToR_zH2OBKJkg9`p(cZ^^HHjU>5#%uMF;nZ5iv2kR=&CslRRAOk!w-SuJ}3sMBk5@r{Kjn z9^EBaDRmYSe3ok;RZVQ{D4pbT%nRb5l^1$1z#ME=hq3$g zYRLrCN{&_|FBU9Wq1ukP;AdbI-bVWV<@8QjkLeoVArlEi1Lpp=8Q1Rx8UreOM8YU( ztJ=)RhN7erbI)r&Y^BGq0S`D->{)y^y{=?U20@(fb7W7O_{w8o9A#}MQKu4bD$r^i zW#;#rZd{2sliw^wXbIF1d{*{Tugl27j~hn9RxFuFVDd%$yY@0{+gsawcqe{0b6;X` zbw3fy$uEit`#pIR%x~a(tnOo<{F&sG)36cZgq~jg3u35?ZCkAzM?eQ^A+T9bhnYEJ zX7%443_^o*{hFygV%UnTWQPZ8dNcoJu*CaOuWu6|gT0SkdqrUr-^7QZMUmVNw`*Tw zBe)w=ZG?QJae38c6j_U5l>OL-5`nty+`r@i9gCyK z$HkVShi);n_-h~2@N^ZtzuKKFGCX&ZUx|9Fb$aXpr$)_3Fre{-lyRU;^Odu3+5$o! z16U)CXZ;7;oi7IKkfvvRyn1`yi$5Ph&FRH?AA{tfbF3fZ?XYfQvO+}oQ8b_KO# z?pM*~4%41-_Jk5O1$2sdxo-6Cc5U{zT|?po5M^9g*DiJhIL4=XC{-uN+p5{`Y+at? zpjowfku1rRqbYTtu!6Y~{TXRCY$mBo+BESe4M(sCec3Z($R3=Ght0Znd^+8eh}G$s^C&vn z4W*V@gwKjBQv0G8DDjMAe*+K-dN+Gg?!u2JZsCzt+P?Vn*8vC*95=07Mn5W?qC3-r zJTnF4WQDF39gAxhKV0s!trAF@kZaZCPb#?Sc40g>1#VMG)OnU%rng_68+Uxwm&+YG zG#3&0jls4@w~upK1VqjKN}Mrsf7l5>-PT+(Hx_uEP^J9dajvv6EA}e^I|$1*&YgDs z@tZaKww^+b&9e6!n1)NlSk<2i2eFRim8iM%!8py0x6mE;Hc?Eg1O>H_8z&%b3yRBA zGriB(0Bg&HSR<~Bo964_^)18thaSlmBNj;-gBmo@+%ayB*UVoaX=85JvYk6yv5?k$ z4=9*3a(25=e#ey1PBj<8<|H$`Hh3fP%*+XW_2r)T<94UqW=4W$6TTBzR=$awP2Rpn ztrjPT+Uc$De8o2umJK7f7cfzca@uCZ+iixoE0I+)rX~>E9zdoF=fiW|Vc}8N5|~92 zB~5Z}bo)yJ3#}tOWs(&9RRa%-dS;GZREDYeg1gJfK1={5ph`qkX`BPVywsiX66hnD z08%)xyY0ibRkCLKn`SOFg|5iSrN#!QjCLw7by&UsJlu#mGD5DyDN0J(8 z?F8)=?&nL<94!;NAWI0_aT>SXT5@La%7#alI>m-Yb~a1(Bqx2#7SuulvfJPI$lGbS zZw>_}Yskb-L+oHeZorlWSeGoZ6qYgPh!PmY1PT%xRI%NFIb;#uCh&`E5DD1?*p&lR zk!u7)X?G@R1cGXiY?Sg^G+AwH^S;J>y>jobY0o~)n4_1736JE(dBp_vBRyQ|HqHi| zqwwbA`iaQsBz96K?QD@g-=QD=VlCo_8_HUn2jy1x;`gH+6ppTnHBeZuq1O zRkEwxK|LMuZs-ly;`uUyF9>W%%JR0AW3qNYK?n(M`jpk z3jB7)FjWH5@Zg}IXDuWs%S7%+D~ZfD8y+OFX#pIdo#BsuPWVXzQ^Nfi@e-*oaAC8k zs?7h7&pG3$R>|0;HfLb1Jn`OAb;fHB15%|!P#Od+4u z+kr7mcX>SSei``|iWd1SZ@vBSXAj`BzV3N{`>Y^|qgUQ7!oLHvMI60~Mu1m(uW4k) zvM^)S>s&iXsC5RolBZTl4#Au!c(+OtI;8dv=h)*Am3dnHl%=l;|MQ-kw__*d%2^!5 zbN(+`YNT)Aj9+Po{No&cf_@xl+Qc={*AKfpLaq|E?INyg2SMx}rs@7A%-KUW*iG#XdU)>!&@g?R*Dshd;TlZ$xQXcsJ|d(= z@Uk?Vv7cd=3;wdj8OYK7ord%yl*JWCAO9sbt|KF;uJm4rZ{4hl-Bt0T<1Z+j6U6M$7VzB0fp858Xyx`NF%ribw1{c?{x2fl@;_G zeWNf|_xr9~vY)7z5TMUYwfYMga{5N%hCkRSHT+o}JU3_3&%5-G`?D$u1c@uXCQcG6 zjmr^72dMb`1;;mc$MSMb`6NO%*mi8Nh3xM=Cf;Cy_Sj&L^YTi_M|JU0ai!YozkF1l z+?O6WA`Y`xK`KmBb3Tt3RryOv68FGf)N zC^Ymciu6dBuq^Ts*CvA_L4lC@_CiYWAF6Sco;q2~YPb((s*5K7#es31SN_!Y>}vIt zjf4VX^*u*4ULlTC)Wk(dm3H#Ek;+1!J6sImVPTqIKRjQDmLm~t-#`P1kAd!Y@;dmZ z3qUpqI$k!6fCdX-ljo!?+%&NbBg7=!LNUw^fje4`|xOb-%Knani?Y zS1GT!Q=GnbJET^TX*|!e<_bU$J{D7_#GDzw2*&u6a8SaR>>8Kg9+}eiIWqTJQ71Rd z-zL0<8t9Qm*b_0TdZ07yNoG=OWKS3orG}D_rv`aowiCBLUhy?*+H$gZt`8e3Zy0Wo zH}%_LY3Pp0$VumCq9$mxL8*=nI*L0;O~<>+h0&^y*MOFz!Tj=6(E@Z&j%R;O_NK3W zcg1kdRYlo{QEiyN)u04ZUt76=7~KgTzj1jCc(cQ>M!|0GoIyL_B$@z*Q0-a!?smp6 zD~R^rIA2N9u>_{!{`q=$Tz3{BewOaYAvTT);4ORLm5>n&JLVgxXXcluo;^i7+zoYZ zS71EihT8og1!sX9F5$Aw$w#0U+8-xfP+wyU9q28{9czLwaKqoPQb5!^Xh8GSlg>=Y zFRRgNjTe0Zg?o8BH5JFF?RMHhQ02eL7`s9cDS#;v#B*acixP#3RjON!cdtt2z}r^x z$(5wNRiBWoh<{EwfIg9HSWa?VeW0R%WzaoweNCdFQqWV~DzhUB3K`fFnvnN4C2}yf zPeR-+5HpjyU9D)=bKRdy1fi}wm*6Q67}{|T<8DV_{ZFvJ2;mWl>_(w!&Wrb~U(tGY zxrlM4hZB)-eAjeyuo`7KJ`Zo6|FCkO=Z=)T*64KqM7y+)mpJ3>4KB~*EN$u=0dF=F z=gZWyV+Z|R_wV%jt#DV&L;;M?x>GeztRRJ=1?(vn{1cIBAZ)T#WS65aTGm2c-?^Xi z5-K-2-9;C8arW1s!fjZjV(+b(9+J06qHq(bXM_yMCd<90m&BREcE7AF_7;zfQBN_~ zA2tXm8|wWYFjO64Z(dZB`bmnwP|!bI?$DE3n;|Ruo|Qx0{7}%>^5OINo)4G5lb-CIjz z+TQ<6KuEd3N3lI5X5-Vs&+pBHo|+Y9SEBucZnz;x^=!~=Ra|{EhKH04=_j5xbY(3L zVM`Qfk=@#kK6M4dgu4wo@2)g_9KJ-O5H(poP3HT{rOyH;MlUo3rJ&R1Z}riMBTn&I z0zcSMf8s92nZoti=6X^z)-a*jRlqv7aH`S0N z5H%Oxp`~kh>R*N^F{LoO0PzwORK)$7vW(C>5ifdI`92>u9Aa1X(NKd$O zAWh$`k}w!a8Ka79m5YxX?zj9KxZYfg&4nj4B_PgH3_5)nUqRPN(4S}@<$NJR-gbG# zA-#kV!fBGUbWPHS^Mv6157*|60HRdw++4+Cg~D}xY)zQ`ilmZ1-R{nL+HiAUoO>6s zNAC)k(1gTqHp9j)cS^*id92zri_3JNt4#NRP;$)(b&)6{_4TX$<)Cw|aA(X!-Hx!K zzHj$FoJ`|RKY1&!^A*K3(Zux!p0@!Utg3#IlsrxJu?;O!$koTTqad#+EfKheD|#P_7Rw*psj{=Gu=|;QqAs%zPLP|9kfXd{ zJsf~p3l#cJ6%>jm4DA^*y9^P6Ou|rnadC#STwk?WUdBLAZ9pQW2GD=JTg4M=vtecs zjCC)hL46{2{s5iF`)TeBGBNo!ShCif5yJBLnd0JcKmT&L97>mC_0jw~&rG!Le%-yF z=MuSLBXiK4uLSTXMQOxCB2~(ko`lDSyoMP1 zYI!DMyVhaiuKzf8cCod-X?1zEyifD@JZa*-1?X=wR$1z!m@Q&KaI5evQh-L7m39NI z8g76An{>3#$ZPeG>-m4?)3EN~Nh}!nINNbSdT)ks+<;Dz)T11(TfDN@@*KM3ap)78 z4S>A*qz0)GcCt3q$g1=eK=ZjhQnv;B*mXfbDk{+X_bpKEC%s>rR;!OvtzEu-dY?dnZ7Q6LYu?>d^cE@K4@W7ofLbo$nEK! z?#T`<_b$hk77g{f4J`=OK4W3g6`N;2e6bh1q}TRs7Eq}wNNCik>pVm2)kfCpYC6c@2wvE-S=GdO65{H_Wl${Hq#gOKjjrQM|n!dPgiE zs-tm}EFofXUCID{|8Oy!N_)TX&^KYz=S&>a^*Kwv5lq$_cbUkkhJXHIj4uzDv8C1y zm^i-TB=I$U~Qv|ZY#>;bFl;s7JB7p29YdwpvAbzByUuO~9hyHq|^mw&EhEtG=L>5Xka zSPT8Fo4jr)HjLB`Sdie}THI&EFCKefRrq7z02u`oLBn^*^*X1h$fEw>DpIOM32%+{( z_f!*;O{Uv>I>D2klCAtKn&x5FmE$+zD2QXGI@sSV?G`Z5rW*@&Hr|&NM1=vny{osf zER7xVxofVTrX|a*XG#d3R~W)gC0uXfOcBv*R`@DhDyga*Ogm3?Tv!Z^_mqAxjhO$SJcm#HggecKz{>Y zJ!ft2t{}xCSuTCYkE}1Gzr9}GiSR(wA}o)*;|EY?+kfLK=n%_Hs(;eH-HtxF^>}E6ujJ-?A&PfG%=SiRbQV|#OBXpj1K-|E(TCMn)FMJ9 zaaCH+(=QpY*W96ziNg@j|K(&+pCL;bcRL=I{EHUUaIPOaq@chC$5_h_Rm(XlpF+Ou zYv_r%8W( zC_V5AVRLyWx8GL_1FeBNXW>jz^a3q{pECk}4#QLvsu})?JV4Uc=Po3+0p8)A#2(|e zZ=}9WRooVw<(&p*YGJ!?s4nK#xK&&y*1p>ocfha!=TOVVXvA`y(E2@&7Afgh5##%Q z^*S}Yu;9S8UtN;+7nlIAT1rFhloHWSL@8=2Al~1oDr+cRX;+f3hotTuO6sD%hcqTcw9W_`cKYOBf3*OR zQTJwUJRsia(VMN5HV>ILi(7*0zORpN$}Ff}lCV?H)UG)2{{3aSTfV>R#Z)W|ts!+M z4{URYq>yrW{fzm%uTXE;U)6hPha*n<2QjK8Q-Z) z+cKH!lQ1_?AR(7`ERZCbNbbW`mr--3yVN+@`mXT!H-)t5^G z0wP7QyYek`i|%FY`dM4C(r1}df`0UeA76$@4THf`TwzmN?<&ek_f(saXw&FW86x9F zTk?D`MUa>gnU?TLIt~rmt`RBx&UYK~UI8W2guDfb?2Ooq1-@|QmvUc0rdc;#9NdQ4 z+MM^G0JE7T43)25PKk{RR34WUT1+(I4H`U=K~IJT`{Er1O;)))L7ZGys(R`=!W(v- zo!Vx$$bi{Ia-Tq`6Xz}|B$x6%S0cW{d*=IK8cn3iO-$%m%HXfo#CVhGZ&0q_kx22m zle`4-EmbYHD9Wk`AXn9oF4O~gS8D~nu6(m1QKSaC_OZ1*HmLYtKEQiOK2q|Uk*3K+ zgJYE^LQ~4qAH(z*F&xy2--0N%uDj}#8}=uW8`64sySlHjxURRij^sYm`WuCJoAph9 z$aG8^lfFE0%doZ+D6ht|^op24DM)D>vT~yt$k-N!xPK#tK`MBE+CJNy5PK^aOpk$` z%YUxcNZW#v?ggKO1xE@=#=pt++R(nF8-p>s=+58N1!7Tzsd<^ha%u zvsg2##&r8;m<0P-F7fi3pMx!+yu z56-+I+s309yKn`?XsXe9WtVm9M64cb!CeVDP`E-;|KN~b?x#J2dj^ecylKkbC42mW zYOdAK)G~507MVPC^0qdft2@uFaG!%cBQs#@$FQ`?HK@R)X-%!ItNY!?njVJ^mtD<+ z9p9hCep$5jWx%Z^ht35&>YioL86oVH_)Shbwka6BY($yLSJP>=|ED)i$!9vk6)L`~ zL{hGKYrRmIr#%$8j3Ffu^=M^{)_FTscpO=-cS64VY%=tegfNh&j}K?+&r4roSG7X= zWhd=>(@g$qqIGV!%-x*Ac`&c_f>@2#ODiAVJ*3+#>Fb>HGJLjP&c1N=S--ZE4d#-X zBeislJo<0J_KQ=@m-GUZiih}wDx}7m{n1Y9J(Bu)6%ad;3|}o7u=t$B{mMEqOT8m8 zLFX)UeZ@lpo_ZpttGKyxUmMy89h?1;w5{hk!zeIQZ}~$G-OGd@V9**ENJF28D1&Z1 zC@LqmsrkCi6|T!JK4YZFfB!EJh4J%(N3=wUaD88F0dKP1S)>2H{-81&ZHH+=@`sp! z*@|5eO&m+m|4nzgBf8(&qGZDu(j_yRSGm?1UbNpeiQ2-PF#BaxxJ68u{6W9XjZHSB zZ#>JclKNwj>?k3uX4?WhFb2xtsUMC!eyH^cP2Gs_zpPcX;DwFsU1eok5=gf&uve1W zA8J)a&^PR*OhT`f;s3}ydbgp#$E7dC_4P(R_i?VYdfXahBgd zI`8hDAU&nPBNHvrXiK|PtMKXvw9QjGZh0?rXCjShQz*wLt2jlIE*{z0dy9n6=2!<# zIx?iBVXJ=oL6)BXWT%i6O+#pMMa3zUL;@Z&eJt=qwsBhMc@5)-fq~ByBUQA))>#vz z;9L*>kqT7(v6jN0qb0hz{~hmtBPTyG@&|77Aj0-+!B#V+(Rpc!L+=T+h_~9C_teH% zSpMPl~QOGw!>x3w)RhAlUsktTLpMRnJ(A2E-^OG$sXbv$)oBE6? z!C=O{G>9o*Bzd> z-bp%tFsD5%+tQPwD@th?68c}Xz9*!wky6gSkMx!7T=e> zaAJ9{pbpUAxNF)4sk>d%UibbV+TJs+$!zTxh6swFf=V0dV-I4bC!~ zqjdbU7W`KzmT3jtdk8+V_CrrBpPg_T(~6MyE`{ceMPikHKa^JK0ISz%>Z#e;AqrPU^+3vInl@DJ55B1QRPPu-A#(a|1&M zuuTMs+@WM_2odw@ud7YKjNbSpsY*;sb0()j2cGal+1CPsY{V%|aweoUuOqbdL{b#h z>LjSPO{-iTG$KR+>m7(wN1;!&;q#L#d#B3>|fu>yBG zT&1>W2k7c|K}Y*rYIc)eW@l%o)cvd=XC*G8h3r}Tp{t9)A|D=##$F<*f@2rumr}K8 zTJZqEN+Jz!sjHf#pGn~-e!mO4AU|lrb^b-3i%xm6bRi_D{CofZ>rZ{AzR*GJ1dEUf z!k;D8$=Cd7MoIRuYTA&s4n7OUHqqXe;8fF4N8qY-pZF^@VHpj#WV2odnHp0N^)K2} zj~2%!5kj!^T^ED-&7nhnrDL?L{{uFk8mGiw1T`8R42vYN{e(hI<76EHOLvP8F+>+} zZ@eXUkn&)QWVVVJSbs~#U@c8@HfhSc)lmtvyWFc$!buDO~9o%n`^@ z*Nian2@=TAH@W132!jFCX?B{v9Z_Qo^JAw zS~%0muE3m$yjLQ4uoxl6lG!kHX_(WFDC*?=DFB%AiN`4QobJXg{uNrw8SkXB-TEdvGAdi|DA*rNy4g-N^irp`^Md9l zjlyqv(*cVDv@4~R`#dhv+)Jk}di`*sVl-SIIj)z`?qG|)UjSu5x9hdCAla6|rh=iQ z&6i-Jl>xO;QNd%!RQaAv$5BnuqepWQV`XsHD-N*L{mA?>F=_7)2oZW8bipB~s`O=+ zSi$x8 z16j+|oD8(O?qYTGG}%pyE7ffiF+KyWGxIJvTFSc147?sAEY(x!`?EggzT?p1Dk6kq z`#caM7H`%FfM!x?o|o@fo!#>9NBN(R+ogT!UdwK{^Mf1UvM_Yo$p zdU@(x?Ny~3BZ)_pLKo51k3D}3Ff7aM5jP7N{YXeY8d`a%n9RKY2+Qva<<5+x9#sp= z7*|uS=Y;RJR%(|BK8R9H8}zt3>PQQzqK7p4367x2)LT-JqgYZfG8HUhST&eZREA%-E7{%tEg}7faMEu)3JW zrsCh3UTJYwWI3w&73=DrqcrP6aH(|%IDeNv3M5$q#PsqTv5N<(Cvy51=Kt_*WBq+J z1{-1Q{~D5=f>bw6843}1j3>cjyi=pZ_tya|hS2u8utE`MXx0>vc;FC@jeYq~-qW^5 z&Gv^zp6>Q6eNPhIs-}JBlIr+$^z6C8lWnq(I zPmG@bYT8wRjo#LYt86?obSNM@qrE1=ru0W(*nj{(*NJ2!%P%hvAC?&wvXSW;GGtV- zPj3GNN|t&b-VPOMGU{9MaIJ#Da?vsDH-ZTP)d%@a`#9K7%(;sO@`Po#g$^fPLw-sf z22oCOMEX?dPP8&Ep6J)Aag^1AOv?wis&UtnFw#|8XBCZ&$`JS`slom5Vd{EI?t>f zfEah+twsFS^6|mgnS9IkqwPal_5qpal`t2q0J0rivh=f-+cG{X&`2^Wrh)?f%EGG` z)h)dyKWv%(xchnsI1%X?8x;@R@}YikPhv5|c|*sX`(7fWJoc5PzgUlv2ecGS2^78> zTe6=Pxge;WNFQbAz!q9mn9CmMWY?cjXcs!d>gJg907dBtc9f}JX zj-qx==%f+64_)P36M1t9!{b^P+2?>5>58tG` z(_w-2-z^1oBKhWYT5q3h@@Ft;7@Y0fddNggW>5%p9%rG?lfNS_C@UtnL)7s)7CSfL zz3RTWGFN5;>M(iGh|j4?=-iCLF?(<|(kcz`-hk?{W;r+WSdWoZdPAU*a95KNU+g#< zL}1^ttk6vP>4rat4<^r^qc(5JMmx+r#!yw6|H?N0v-kh`Q;0dEBUkHE(DovJNq%*B zB#uD6;3-M56v<|28j-nG7vY-frN0i_mckYKp3k{Wy(XFtyQ)_)3-f9vp(4|}{Q2ixluY3eYv0xbktAMH zYK$r-`T0+mP(tA@Wf6-(h8(Vl;)PZ%3{li&K!57JkER&62Ax8A?(Sb+c=HnO^=(tr zq7x(R0@$Xo(9o*xIpU`8Th@-X7~wh;%@zc~KHLwz75;?;04Q_8M`bvn3BAlRrMCr5 z5;JaU%%q=;VUt^vZq7=T%?IIoiaTHRTV2)bd|LhcMfB1~Fbvm?WUgwfb!IAN^4Q%- z3uN-oBE({~s4i+b$*5KbrfgR49P6~1Xj%8R90NJe1qWj9%ROZ}-hk2j0N&w9%;lGb;q6cY%UF3ND@5jR2{o9ck<0oJ^xf&6(TSAhRnQ{>Z3 zUxtMhT9uD_S+ge~6MZ^N^fN$vXpun5c$FX>l?t^Eg4)pr8^`v_d;#B=EWZ!LV0BIE z6o{@`gPxPbstlYDMQ5vL2%4b{SInTrRRZ6J8DBh^A5X=JZoxM0fSM%7xiRz)uy}Ud z|BE$QS2v#8JT>XE-X=p`qaDdUqr+JbA?xLE^h~C?i;P%sn)!&H3v{9eozh$5H1e@v zmOIK?Yw2Ejy>6%K&@>Aa-f41fA@bCT;G~r2r(sc0I6hBL^D-x>y!s{p27vZBR zl0;C#Ugk?XRwg$F#UJ#IUY=E!%I~IFnFKf1_a>UCIMEWvEukFch0tY9`>QcjM2gv`aU~`VJygyei#Yi&v#(H2z z)&N5^Y7@n%Fh7yIT2f&cq=a)%DwN{l%BE<-;|f0NC`|zkp5x5fcmo30H4x(ze1SuMrqbaHQOo&A_w{Jz&u->;i>Y=n8*EU zW^azQ=Oq{Xxj}V*8#GEMNNrjih?;FV(&LmIB3ry87T!+y#CR*2&u)`v*FFpn6MX8g z)AW+sPa-9nR|}leRSgWImAB# z3z$)A0Emhe?5pqV<1)_<&aKm`on+#?0&u^AU_XO65KN7MFyh`V@P=9v=(z{Q(QMFS zMstiq9dOLJwKdm=aEHr^rua1G7@!XGz;?H&>%hoj#qZ^VeMBEkECJl^9}!>H+iLPz zSuC@LL=Yx}WG0!U04-PxU5x#gpbM*ink2b{5KBr;9ikDKoVxtit{szkPCL?G61k_* z@71I*k?mihiMd?8DYrVI{_qwn=VrMsuy}77t+6}C(+11fw&{N7!1-LtQ9g;okY_LARh|Z|I^g1;AZ2=#NuF z7Rns@kqJFRFut%hpxkP!wO=nZ-D1)>eRpNawILD4NK}6->F6)b4*l$Kze}!wTBZq< zTm??&;-aA;c^O0fw9jl+3`#DLV1A9hUYQBQu4))L+=-8mH}2d&TX_&w3JpU)H%}u8 zu9$?1Q%#bbUk~gtJW0j%LA?Nz`s4btV4=4#nE3wvN5E&O7*5|(b=|RcHM>tNhLr;D z?eO%FAeFtGCU0^5ebrRX-qbIn=hFnRhiEy&p*!_-cgxRXjlf9dC{^`@!Rs*4m~Mmu z?1Gy9>m3C4*($iU6%FSZ&0;6B#rRuxHd=Irb9#bax}@7LGv}F*+_;`G@Rk@y?|zfM z-UY>r#8{kAxiFjqVY*VKeaO+f)jIJx#O-3pkjDA*SwjcJ!tbcsH$D*SdYqSLT&$vg z9{uSo`~xFS*U8;Np1+=f74&`U-i~))w`MnVC8XiCaUVaT8ZGk-R@INh)U|FguzHeQ z>XrzCnF(ji5O+{OKxIV2qk~j-5zzDaR9BZXHa0eT!ed1~$FGfiZJ~ahuH1*6r|*8d zR3Vuq9i43N{r&s*51q;4!QyH;8InXJB~4nwr=RA^BQOCix=C^o%xwPU&1$dhw?Bqe z-ScqLc51BNrT%F!PE{$}q|Nbg>!C9B(b-#GHH&}7kb{$MXo%or8N}85Q>qi~_V0-h zd@+(Y)3D{jNHF+}95`#UL^NFf0!VYm+HVDTd4U}zUc0cLm~@S_ljH{ZV(7#cy={Ad<7MPG)Y?s`OMDETdRe&9rSB0^ps58P$A?V-Zj z#{+YP2@sGfhDYjlA3AbG+%rS`I?}~RExI)=SQp1(Cd23`kBxwC{T|k}VM~Q-k_;e$cY+1idpW(bE1b9F2BEL$PRy z-g9bd&tNtpp{?H)j-S?BJLLZ-qcP)SG-S%om{bpaZ@_3)D5{sUa^Akr!s=0VJEf8g z>e_rKZr+Em-4qvKuX>y)Sp)3-tA*zaa|Q?I|KElFGhT*BBcDwX@Q;3kHj7|Y)m3iR zVCZW7tyAR5+!Ah?3zHlG!1Nsv=fOkf!)7j#Cc0i9^xqrAq$_-!kwnlX&*Bs;3d0~H zFWjUx{$@) zg9ux2h2qk1$r%%I=q=fWl4oOMaV{lBQvY%8JDN6gHmfDfN$|)33&_z_ATA>#F>G6c z z-edSy-(pIo5KRXbil(04Sn7=yR)?xaD2 z<~z_&CbyY6mfnS@5eNaqqf&t*5=)0qiq4K4%1 zSp#hL53OH};fEMBF~l3+9W)yWj-MbIx?1)Xq%!pRwv_a;J9@=93MS9Jd z6Gm7ICB21UpJVWt@|v*yWNji!f#&i0he^WpqVxov>kjdB;B4m`xhtRXWy!sKpGjoz zhQKdg3)kh|?)|BcA+oQ!Ocy7diouQ$=k;e8`^k$2(@Z0EuTpykDAu=c$K!iTyU}QL zSHR2MhFy>fX6*na$NXWqW+3-Qcl-#rbvT;L`H+_R$1$N#<+h!-*qDF{|NZBSbRii>Y4YexW?v1K-_RIv-{$$d zW)Y+ALlDhsR#PB4T67z56=sM!iG`IPuNU>n{lyWS)-Vu zy=9%8gHyHf`JouFjJ_+PTM=qIjAe`*-v562Wn6OmHTAR-V$xC{1ax76<3^Z~%365y z_R01pP3+jS=}SJ6(3bd0I48HCO|x*1VZcI}vVv(TKh=$|>edmx_vnuUTuo+5fcY>X+;4T& z;huJ=7`o^Sm``ef{jhcMU|L?1(IeXV>w>+#pbK&6)$QM2F_(9!{?P_%Ff3*-ehr#S zu_6VdrHQ^sT!^GWD1o5I)p)?-oX6m}!~{1<_gzxy0Ct2xs)1p(3Rm`zLrpjgxQ^|F zIzIv#zXmBNAl6&mue|Q89j+Len#E!`6o<`AhTf42uBwm|3eIcGZ8s~au$q5g*m3C7 zP&fr@9V#RZC<=p6pPwJ9<;1qplVJ4mYPajM^|n#3EW;nWCn3@8Qx{r-DX$%MzFJWO zTR?m2qj9v5qU^2ON+wt7=b`?Z1k!rW3*~+ezDxzcdNjSeXpXk!rPs4$Hz&XZ*lilU zl~*;rPU_2ej4^T*{6oqjt~ZaKK&s);Y=b%bMF~b7e#0!JT;MK%nO%ES`E}o2uTR^> zejgf2AhDSzoB)U=?PvJar}yXqN=Q|BiClpRC0HDW&dedAu)5(CL61+qbpLAmQm#ea zPMdDX&`CjD{0GC`-|eSbE@@%w2qhT=GYM{e-*-1$nX?Ipt|=Yra@n@D4kUpi#3%6L zF6P^Sz5olBrr0VwWrIyBCDt1I;*W+M`M{}Kdg}HUPAUCc$LGr3TLq*Y(*HPhCx7Y7 zqFUEIOfAy?BKT?Iv_3|RLOo3p8WAN=^CjhE45_F(S`UWpb{hmB2{ZiG`Z!_t$vy>S z&{TJhNVkmIlCuf1!J{blhm~A)5nubtoWEcMnyy=iwa?o2F)-2%4Y#3FFKZaJ{PwWd zFgO=9r#{?Q`{hfjQ;3yE*-CHg=+Peg{5p9Q?YXo~&sn~e%c6bhV(5ejkd~-m!&T%q zj9p(qx{Ven+vQ!FqW7welL%lPC~Ntb&N_zpr87Ky53YprS`Rk{?331<8MCtq)lXH1 zR#_haA;uhl%Fbe8Gs;(SNy!2}6#hJDN53Ke29F6 zGnv^fCHogD5njBj+qAn6k3@=WOTk3`urt6TO80-4V8u(w9dde8DzKdZiBOf|)`J zF;>MlIy3hUB}NHnZpP=l48)vAXs&g#ne!fzT)`lG{OzquT)w zI=#sqdNJ+KlH4R4Wx@tN5HXk2_|h&E_(&@gd>-x3M|}}TlHnqto82qg9dt3(!wld` zsWGWd`b#{%np=O<@*?HFYRD3JiWfqqcAUrJb)cs+6sUr=WbuE`>d6&CsIsfPz?HRN zvQJ)KUaVw--1hG8GLBBTmxHIzL6b)B*tCPjm}Hl{*TpqkVT??B*pl2deYFSw4DT4! zU@n07_r9<0ScdUxsy*eAB1I#zW=G*5Kw$NlN$p;T8r3niyF3`{$OMeKy3S@#^WM@D zSwK`Ld@)-7>W4x9by8|>PNxO)o)~yAkCRX$4oNkJN`}9X3wM4G_K+J$&*U3^+OE4NscH%|Ui25ARFhLbKexQ5%ltm*oFR4s zA?_~kdW5Ts7@NJ>pkAIr=jP@voc*#8a$~-X;5bwBw4H38F+45spO@kvf4cOl9FnE3 zY#W17Kyns|dQ26{qw~~nwfuV4Chm)gNir~ z)6#f2W>N=Gok({f!9GIGz`;OD?Glw@-(j4NeVsNvX~6wuQ)^Ww)ZoS)`m_DJeXm7I zcbYtvy#u&6<=S7*eq7X)i}TSYXZ`pT&@AiKCbW&waC0_65F62J-jYxtkJ_WzMB|wU zWhp%_JjituUs_sPs=&Dp9)v_1*B-A~$r=FT{_mxUZb!8|IjUyQ^>Uqs(V6Zr1}o5w<8KSS0u(= z#E$lM+?^fMZsC$*H3vV5=PS04b9j3I@NYmpy)Ad7+c>En$Az z?HhzbJrURxexmwGWVR$PUK3y~(p#29Kq8hrN8MmGZl4)Xun6 z|DAel-(jboGha79npLUNgc*AipscE{WK0iCjSuGH;?f@?!uC`CYFvX7yR;@L4_I)$8-J>B% ztj-|DpX)Jym**#XA34^LJA9KIZXOb(%VkF2uB zDFyAh?ds~9;PV;*O09LeK4ts(Wp#Dw;f!|K9FcAypeZ1T#TPpe2QL^660fq=TeFINCg7A*N-Ta~v$}K64*4umb#7E`*N4 z;U8B7W(vK5*k}b*)bTIJRhS}a7p8j%C@uS58auC;TNV!|X9oxmbjc;UMWnE=^X1Hv zF;+UcJtgk$a&QcCwr)DzaPYymU=5z%_wQHHA4p%8y|sVkx?PRGtibs5MBRSE zbjnm1Fuy2ZQ8Hdny(rdqNkdkYn55ZA(<^38aOml=EC6}U?t-O+Z6#3+bV%j7GtHX* zoLjsJ5W-Yt0-AJ8zp(X=%=;flCE8P}K_SGY{dP{BWc>q<-$X!xQaYNNL&YIh;D)Wb zq4NSPm?mrs+J$`USB7LYtLe;ReXeZCejMJVShqwN?p6a3Q-!uZV?whVb|_)`=@w58 zA%J%He_A+qaj<#ikgDLRJ5Q)yR`T=ff#H5DV1}=f3shUGp>Uz?Nt(`v*1QDv-39Ze zGiIo2zNh)p+GvLs*GZSh2?B3Vm^=_Q3Urpw^Vh|6K0LbA=#lotyvJi&Wlm-Ym=Wf9 z_Z04G*4sQs^+qy9mP;)F8JnNcDbvf!gpLWldE^$>(kO>H>Xd0P7Y~mvbpD9%v6qO% zyU_mVCSP{5N4jC+Qly@-O8LW)xKSqmOo9P+KVF)6$3)4%zAr2+i~@Zj{o32zsb@^N zIERq}j&#>*(PKTVG0eeD&vCs;s>`Uimo(6rM z4g=KL8v?HcRzz8x*}?c;;196WneZy>LSXK5pMYjOsAG~yh}ER3y?ZO2Y@wTBq$L)t z&GG3yrVmBo4I6qy{?@-x-T;6a&o5+2EyD$d#^NlPJlXXVQ>#_|t;Uq;FiFq-9=ek? z2VHkJ3&=a&o<@ET}S_rirdVe*2S|JGIJ)085DOoZhgWd4Yfd9 zkK3qNOK~jZlfOo--+Smu55G;Gu0P!ShBHN#s||3kj{3(+G^MOMj)R>A^{T(}5tffk ztv@sr@MAOY!f4@=H^f>))5a({wV>>x@2op^W_y`s=@^WBss0%>9RlhMb0(o#WsdXJ z_L>h3EaEufNk;sj06E~DqORxs?Ixjv03Wj}!)WvqPtacZQBIHW+>frN@tmsmT{{S@ z>{K<2E%*~={T5JxJe5g@xYYs34!!T;L%cy1%^IhP$7Kv+1T^`u4b~m$9~=vQQIu44 zU%z@)<7#&-=3#H@+)KjjOnm!i7*FbNAwQK{_;mXSD}GQ6;?HbBgJ*r+8xkgryL#$n ze%*DH)V%p|WB$i-9**&dP-<7G000_)5DK{IQ&Mi7ZriJK{WZ%j-M5XBQ1G}Uo# zVs38-FAPNAtNdcyUw6)AX1)3< zi&NP2ziAO+1JBe+Ml6FM*biXSK8i=qA$Ual!1xiJ!S^HX6^z8=|hqg`{ zSVrxB$_mQY`0%HpD;!N+=UC0j-iG!A1kw~tQLf51&3LcJlPI4+L4PL~;%$3Hhh+-L z56psaLjho>lLWD5FAtr5uE5C;HfUqu=i;Qk>`G6g7#stErT)>HQO7Dei}-NKgIy?v zUBUua2b-F=Gy$!Gl$7+TuGV(`=j~Bo&nz;0X=spIR;XNOP{+b_p$~{=&h||fG|9Bv zgVjN^K#MC#?kyJF9ZD^!_>xXv1sajn42=v5O@B1#s{_a9MB7pfz!7vX6FEu6y*KbR z3n%x2G|)xonJ%z#DT~OLp8fECWf(pz3rfnCEwVwgDSOt=v~C=WIdfhJp|?m_yd3`G zXz&X%qHOT*e3RhAHvJqL311hxZF_-MX^xo6>hpYlkSDdI?Yn}IN8r)fDjLiu7ZAPE z>`=Ko>D^}e00q$A4N}Sg6f_L4=@8(@*`ERL^Yu_9*4;$KqVCvB@qsLhwNu(lj}f~* zD^Q3U=TB_ktdai{ASBuVYHL5IXy@KaO+`OJ8tqmPwVe7Zm>W!x_7Tv)xXD>jid{`F zF|ECpD)YA9lT0jTEe>D7jh7BROh6?%$+-S}FG|9VJ^;R9A@TleCRvrq6z;XRq!}GE z{r0K+NL!`n)kZ{kp%yvIo=7#8ri`$4WjJsR5IAYzM=3Pl&%In(`-<~ z`H0n5&;B-yvrMnyo}JT4f4U>?=|PUwmQy`@3rH7G7UsoJCyO3FoB?LkRZH@ye7~rcagnM-Dwtv(df0TtLRto<%DQaY25O0 z4v7}t4sQV_j(>+sGdTK|%%A;e#prUSt=9ha3cS0%P}xwCf+oRXTBjfo2U1S`Lx*MW zetXznsp#&`OHDN>_2@)O6og&^qfS>r87}mX89S)HbbwbeJea=;1_}44O2Sxq+WHL{ zQ5120zPdBS+#P^jzq>omQt$!Xp`zJpz>iP8eI>H}oN?%S(MyNPp~t?b*fo`GckNp6 zu%yOErQrZuSF{*l~z1wC zs=E;$z^L=Mr||YY z;-BCwM{l$wdlW>CS#XIfI^0uCfa=`=<_fb}(aT?R;h{u3JgV50kV}MCd=An}NWDD+ zQ;oCi(dau|lwJ_AN+<}_<}hRPJzmmIsd$XPWdPx(ss1jNaBYI-rR_8YDJ-=pu)OR0Kq4R__$dy)Tnk%T79aTMc z`0(Y9a5p%qFz5BGOSt;x`Q-0_d6z7kH@jID+{NtgTAfixUETux9IQ~LML!?g9mj|j z?-rHIX_D$Y4tJ(1c7od+$XTZ>#?W9=Z@$8uBQ*}3(kr&V$DBz;As zK=hlg#7=(%01OhPIzZ>g4EpO{U6FT!E-&)80b)pW7NoN}0I#hK^RvVV$9wz%|Dy%a z++b;ljd^eD1g#9XY4n-n)=I+WzQ@bjpI_{M^S}waj{Ra-G0YZpiG=;{t(WHps@KQe`oWWeDD_S>X3p z7`T29y+0j(Ku0NI;xX4T*Py+h#Dd`>;Gq-cbtgi~CKqPPF7#N(@vhD&H`-x$AWI_y z?Wm`NJD7C#atzJsSn9c0+cHxQ$~gF^hvQ~|ntGz{SPXkO%$%tp^$mT`%+c*Xr^S0y zD9%Y2l;F9YE&!@|SHLcuGt>O1lL&Wtje}~I>VrPS)s}qaFI4S*3zL+?gCJHC{km|c z++_Ktt;1>f@!92H`7ycr%YFCQ^-dQ7-35@=)BCX3COb@?cH&BZa;ZPItiR`e!%iuj z*>Ax>`4k&*E(6odNSeLOl@0Fad60za!MfOZVaNY_;F3cZ&CrNTETlMRXeMCWwdOi7GVy9$H3N3Yk%fPXt_!Ai1qK-OuJ#;DbxCo@r`&N6x0#@7{8|Neg?1Xgdp|Fs`yB4fe?|x5yWy+W>nx zitEj*V}`jE6^cB~V3bS|^j@;7{rq{VA$Z@JUH(xDEauRLxCLca4kF5vi-@WIQGe~t z$*R)n$cYXB0qVKa_PM(3K^@-B^2J^3w#?T+)G-W(@AtV+JJtqGF`!mB8y#GbiG%mb zuy-yJ&EP(E&$+~5_tPQ07?WR}mhWE5xh}t)9mIR$Ph)?J;+gF4c;iE@YPYAAkCog4 z>6Hm9;4N+)ejADaJM>Q%8GS%OyH!{BZWf7!?S6j=cYkF~YRyjJn4o(VD(l=o7^LlN z)Nn-zU7mofb`*OeQS$?euEA72tSz*tj~;Hv9@wuqko_bT5*K z(IIDc7&oZdKZM}@7Hhnhl-O?Y(Kj5;7`vo{VBVcbN zEZ3GTJvJY2P8d3Za9fuF!j?PXIpLmKm<4HLE&<~?XGz88ylnHxLIkG9aAgaj$YXp; z{HZU3V{<|(#iSWM0(M<z1(nnjmS5 z0as2qM>v0;XRCf8y^HUc*w4GyUaU(gdsxq_&I5 z6rmF$7sAzVYZD1Jq^7o!$(`X6mU`rrp(!jg9rk8-Vf8qI!T?1}_1XAio}b~>Gy&S` zlkO^KrjrNy+UIntF&(yj%q(V`yjeQe*(8i`J_^{h8DI@GoiKsOD_!*+fXr^!cq8;* zui7U8L6ib|k9ZJkPKePYxh$WQCppECsHyNRKxB*p)a#qja=6P?15hx>!AmR)?J}T? zVur+@tkx+rsCDe4s!cdP^tWdb ziocQOJ4Yz04u7()k41MfvvGI8y~mm+4)(wDw5`wr^h-?d_ zT+P$RVn{|#NK-m~3ZiogsN8gZNYMj`rxh|J9)lTS9<&7kQK_un1xG1@?bbp`+mOuH z&F7GZVBy@?9c$N>45$wrjm6n}m4dU8+YOC>e1qI#3Xq?^`Ulr_ZpxYN2Ix_Qy(859 zM<+{0Q;YOQO|Zij%lLx#L^=%y8T7cPa+!I(UWn#IpUxka);$SB6ZrfI3&XSUSW5L; zrMMM%y8n6a!NnzheqV=@cE7#lm+l=Xx1q)eoTz@h&aZc0F9xYYHR=F%4a%S$LaV=( zq}r|Q3Fa5#VsfF)19}j6AW_eHL-7qzK=BBO-raX=#Zs5;&^ieTHwEfsUqWBoR$(ka z$ZJGVJLg2(3hX@r02Guc!X3bbtGR!Bru0?`&;k)M+XMqJ7nvwOOTwNB+=_d)8=kB# z5z~P6!qh4oC_R0s4i>P4ZOMXGbSK!TTcwq)6vEBN4G~2Qu0nuM}dCC8K!pGi}c6CbrHjq zKP;nq0FwOXtv1JG5vH)$(yQ0Ing>juD3b!}vn=aeN0uNA;0^H5%t@We(D{i@LbAZC zVxAF2Ni#Okc38a8SYSa$tJj)%c6&_Mf!Eh*qyS;N59FN4OwCVX_#(oW-sjJENkyj) zy?|(+2AO+-Y9Vx%IKN0ry|p%rW6*)Mhhs4j(a|}L9h#~}#x z=j?bpx2|&&go{zEyb@9*6d5u@3cPvrP@I7s{V`zcT4Dvtz)g#so(mM~%&aUGk#w{p zY@`hUc%8Ai2x*@yfpC&chd7#Bjo0K`Ei2fhMjS$_6}Mj_w7p$#wWnC{!;e9`lc5_2uk9e{3yIStx*M-?(Xx zq9!Iq7)MUr^O(YJX|0uZffU+{%wK*(IzdcLb)rA2t*up|KQ^JZIWL#x_*z-JX8aU;{yUmo)PapHc_vtCR2KSaA9 z6FiVt90b#z5|1E*G4rGP=sPW94GYvO!fG>Cx)zO&x>ufp+)|E7o97Xh`FSy6f04%yv?15pm-`Zgw})k{mpS~sljoJ;sx(RWsCDR~D2MoO&+c3&DE-yQU`b*S3*O|` z$D5nTz(_i{-Fe-E@YjF%tq&jWC9n7-EdypuCOcQwAwK-;NA2T-bGA67dOU=4D@S7j z%X9L^AOGF}K0aCMcF-FxaLY=O*IjQg{dYsb%pVr7>szCK>QCt8?{tz3T<<6Ri;&UC z537+7!f}UgFv4N5YiLBXOc3!)RYJRPQQ5do9<)sr|h%pL}3r zPWjXy&_!NRv|QAajTR#uat#Rw>aQG46=7p`)2!B$virOD6{8KSvF6^*&I+D~c%L2I z=Ps<#6Z=n}EFbx@?e3HEt85&N3#+^*6xVwkkWCQIgijA1d&f=>-re|MwlULW-3S5y z0W%2!n}5mVlb{|X*6t-+R?ls?7M2j?ygQ`x5+JAi?*BhTowfgoK3(Ma&Nd!T-v>AL z#r;9^wg2A#e98|VI57)Bor+Y5=D8#(-Hq3B=^d;^{o!W<ad+QWW<@h) z_n!$H+q%(OIHX}?0>(owdIf;K+v+Zc4flL94P&pvPYevZqO&S^?xIr(z~W~Fm)66( z{e5uCO;L4Q%{?V=J-Fxd|0y&vDfrMjh57ea^CH#4<;nFh!2kOASE#S&Mr$i8VxA*I zw_U-B8*U~`b`b0jwfYSS{=kT*p3dUh=nOOXiX(ZLN_vW<7~~P=#<$})J~_#|;Kw5D z(|#%h`OUH|C-0_>w%-SKL@Zd=Jb$kbd^+P17 z(HpIt!8aFK3^gLF>Kk&s^9J8+{3GFo;o~JScXs1pa7?|^YPDXu_xGxV|A2iw7*}n- zgvMY-+xJ%HZ@l{O{qXU3PD}|$vp|^qhB>}%r_#?L&4ZtsAW#a|>7; z{BO<)JQCO+6ZFye&cXF+Y2+XEon(dMTU;ag#Qh?MuR89_I*PFWdR0V_)BAA8fufsC z*~Kgye@hQB%wrQnA;Hb<$Zy2$H)Xrww`BB&i_~FQbFXP1GX5Q_T)&|C>+Ao)4NG~z z&Jb}u8Sd$oGunS_bkuz?1b9B)TBxD`eqQo@91{F;FDnZ6 zLGGp_B(UwldU&RPC%gS{cDK(>-JbZr_u{{I%C{U2*XhZC5CJn`h%XHHgf`xnrGs#j zRt0und|3=D|LJu0f63amGldgk@b^U0w=&&8kS`~%Xs&~R``6J3+3H&c+~b5}+)RG3 zBEI`^A9*)gk}nIJI95UVG+#fD5`%N3kEG9*AdwAU1GQad7CR`1wA0f*@W2kOoVdll z;SOCwcBnZ(-c|-)kNk7hJ{vB_40(ffYGlUTl`(v?d%v!1cv=7TG6`3fT?4}c=^ZQU z;F!gYL{ zz>4SonC+`4?yzt8O;y=cW%+28e1(yFW43pT+z!}q7j2P!(W^N{b3cdSo53+GZdkTp?x6&3eem?B={6JOjR#kgfII!X^OuL0@=dMr{nAPvHlJ!$Q3kTF$R?9_Linw zh8u1>3-YG=ZILZ6x{BfJyI0e=;ZJ%9o`Tb?N@t`OFJbs1P3odHOq6^%;cE)B^WB@} zfQQDX|IS8l0fVm*^5MKSkJP*%HK`Q^Dd-JWUfvE7a(1TQ*j5ZO4ZH|1`~OmvBUMu# zR6ojT5SQFMwbub<|0_CT!jUKVj*({c4S0fI-pxF@(P9{UHIM^9j!ilC0!2SnV3!-T zVQK4w0eBX|)P`YS3be~T$*rv&NFQ|$(Mblv=it^EkXWZ6U{w&NXoDWx92w-fN88h) zzr$nzgqFHtB2lCZjo7p8l>#i;{^h+MH-0X^%I)Bw{&)CZV-FGPzUGY^H=$Xc2TgFK zS;lsUs~jByeW?_-+oLqvU!9}F?-3}wYn2Y*%kxrFj?9q})D{krRZ^vbcjIHv!{x}_ z1%da0c%GQNd@pmJn;hH!-XllO`okC>Kb(IC@MoM2Sxuq4O#*Rcz>TCK7z60^HmAlR zWDi8^9_*B~kvRp3R!D+&HZp>MSztZ3dsj!ovg&!aO-$L(RlC+n6?EX7yR zT+t{gNP~MY727wy;9@&f54nTTEEQ;eAdgcIuur<8HuejmDv)#7`t!m`@CKWYD9acd zvyw8UgMBIf^f=5MN`DBfNHCIO)AVuW^PrTN57b1SXmY^c$Iq0e0XjzeiTo5-|h9dUtUe zV5{FDXiI?DaydsJqhK~=5IQn~IYVmIT@cR@kacVIL`HV4!DmA8uOtjf)x;R5wiNAI zn3qw2V0kq(_Xx|rU1rfE*Ty$)t~^Zj@#}!zY@w|aO#F|I6}wE`Br0$g1KXx93}$3N z<8yqMGUSF(w!k2{&Jz^UbfMFIRqQ?j?xB?8Ffu?dat9I_qCKQ(XlS!14yEmBE~n>- z#1qa|i)d(cn*v2j(m&tL<7BPj%1@p-57N2O8?~l&*B3wSefqjOE+b2r<2vM_QLK3z zW**lv^m)S}-T6f3;W zMKpLEm5BcZsEkpO)B&6?9j+I0yP-ipt|LCtRnP(+Y*r9QG_lyw*0Y6fhz*S1B=Jfw zGBbxcF>Mw`!2_oo?(J%lak+5*S9un7quYj1zF(k?Jf^C6^e-go@U@f45?)$aD`}Hh zV?_Sd0thMDfQjV!f(%t5Y|2)4xQJfotfx&8?vQb@7sOu9fX%ZIGR1IDqKFVPa{;Uh z;A=$FY!+tbRFD@$aPq0Uq?)ApdJ`Q<1|<|Q1fJl>s<`)h&J`?MFKMj^>BB`D5pQdP;?XGIdsL~4M9)ohPcU^0JN0z<^IL$J zSvkq%=33@SD?ZMDCw%Dfr$0Y&&x$ean%ytLCbP7cZ7UKmU z*Iue+3?8pi4u@j4^E6A|qJ|&S1c`gj~Ezs z)RjrYT#66juiwEYQ(`YXE=QkOp1XMOo6(jy1}*zRTB2c@7sAb@bUXLb3C3K_7Do-R z9TzDy?dc(qo5@E+_@$ImDT2;)ibTh_cG!6c8J8V0&R{o+88NwtmM0#$*5IF9NB{*3 z5J3r8);Eq*{E8s^vGqgWzrP{eh?A|rHULof;w9b1eDZ?=5Qc(hWrScTk@kPud((KR z`?r7iq^4ygZIY~=ZJI)-vW6^)&JtnNVT^4IAs;Ly$Nqv^*7v$=`@~>~?eCLtjriZbp8x(krK$D1Z0uv{h&q9^Ys3X| z--)k{&=3@ZqlF_lQ%eDpNV?1sD0Tb&7dbO{D7&j3@@s&s%$QE8GYlSsl^+QxAu|xL z-U_6Uzp?fi#)X%o>-F6ip@U$A=3@Qe78d%vFY{subfbq_F#}gwUN_q8V4UWTk3$Z= z9ZO`0K#nJrjZ0ER34HxX!b-kW+qt*Ke5UB-t-1Y7dQQ1#VnhMlI-uya2K#9b(U&}; zL@W3U4^qVb%>~fkjFDaFGuNQ1I5`pV0=FpJwtC7RyN8(mb2LwWSyuOliz++XH=>)b zD{$3cTAcizsc{xAs4>v3W&)|B6|Lb%pqwVYd2?p6B{_Ac*t`2`_bfBkajmB!nhm(c zwt@)B5y-t_Q?M{Sfv>r_7wd*ZVW6^#hP$&HCC?T_R!KXQc4=2tI!LR-C^jgQ!x9LI zJBLA%9K`mheSV^9*8#ZXWJiA`(4V0qDX)y?xZtA4Y? zI2f$i+b9{O!-FvjU}CBEb%zYBd{MLyVmv@n`Oqx%^(r7=%Q ztzpFC0?MEyCZzY~;1k3a8ig1w7koT)Wz@miWq~7|Uv^iS20*)!4MxnxWG0AGTEX+; zTL4&X?2*`Z8a%0%LFzq|vAU2!Fg0~TTA-Mb7KhWv9t5%l21fUFN1b5V1xKGza(@{B z#89ypCNv)^wBI)rw$_R+etWFNgoUn2YjWY0<>O1lLcTAD_V51y7r+(Zw|G6RLYHA0 zu#f9v75E%I@-K`ffilQRoHq3cw%qM-^#4TOjQm#dgCC}HcDjFv$pHz* z5m9O12W6TecQ&%*D32pw$;r;XkmkEA@xE5M{fTJ!bzZvwW=V-W<8P23bfphu;p`#Y zZ7+Hs-?hOpji^Hb>s+WYDYYl}|AO+eb0XU9?0=V%|K$mZ_{dJK)Z2q{K`X&gTF6sS zuhyHKS44h6H_k~(NpXGq{nqZP@&+qeu%xd6i8?wgU=Q4jv-SupISceb8W`1#TdNSo z6X#4XD)DtQ9we}w!_u*~b!{L;=m0+P%Hh{81ko_FYrPm>P-+~534)kw>*`??uy8Pz z$j|W5l|)xC38@Lkej)A@?6|k^zHsPb=6Ctj5c3@Wh#F!TdE=h*rvd=B>z`%1eq-@@ zgWh?t1L0Hx6LcEV0zUnv?R<$kYPK?924+D`#^)_DcLD@{we-n61CL#SF~|$d`SRt0 zerJhGuL>nKbxR)E2pEbs=uF!Q_8`%YoX7CDLNW1=QPAr8nTUt4Az1sbdb$ah2_koW z*ubk%hf0|HOw3(eRO?q&II`N%@^Nc6N5--zh%bvAf~;oFWQ?P2~!(=vxkH#g39C zJ~(#@IUG>A*Ux-pf4CFO#uleD0ugDR(~y@k+yjFX6A|~?$#}{rggQ~BD<)h;0P?%V z6Q;VBbJ3r#`hd2Mjs+MVB>6A>s)7O`xWgJzKGIxELUZKskJ?>DtyhcBQDK%X z7MJDtLTJM!U0sJVzs?CnvIn+u(Z5U}Qy04pRC{FnR`-Lev63;}XUpn1vmJJUP`5>x z3Oeec5xTH1k)gdUS@sGt76iW5Z(?nJ&CZkxSCZ9B28?_rH9t@)3QTVH=yl02OtP)+ z&>%z+yn4DuO#2_q0fG~jF;daU5@oq)4z0$_t%Ob9sL zCcc;nkTr6(?VTTvnXAxeuU(n1Pl#84b68>!N+_gS<#8V+6r8)`?&fw(L7@|q$Jyyr zQks#JRH<2)`WCOax&#cr^nhLzPy=krsu73}XYs~+_6I{5C@jqin}oynKwagW-A@y9(AL7TC+Qn}d8UBlad~ zedn+k+MA`ql5*}`pS_j<;^g^E+oR01lxTuN&C~G_)$|yVwwtBvrJcJ*RhU5BVq6l2 z>j&8?#+quJeQZ^{QD!aHFdX*FN8cP;R3rNDg$6%`3|l$(nLIhKz!^pqAauqUUc zUKLt_8RZ#SeY!cMI$hkXbhJJv?3WHER{mkwA^Voc9PkWFC=3Yi-@vL@YuFPEqc8K1 z9uAYJBA4M>uP|Fs-3Ao6!(aq0!XduDOiceRF?7WK{L80L2fUx5MpM9qyX6(YChiKR zKVKc`U%e=urw)$%Hp8=>;HK)(_&RiCJ^*wd`gqD)1NMtq z3fMeWyO}#8abJ32lJKaoF#Y{_xC9us_TnW!LpZ^LAFi0^+ja&2Et~OJXTxI++56@A(j%;hUkn(%h=PvL7^Az{9|%Qg?oIIv}ze(oHtxO0WK0&R6&EMg00Hz3Zre*n*t` zWIRl-wsf=HCJSF;^B7rza+(TMZq3s_rWL6lP(?TS$FLysooV~ekx7^DkCRQzjHve3 zsFBr#;7{(2J|;qtw16WH=ve8P{<~s0Zo)P8%5sbE0bqJ(!tK(AG`0}*KmcJ3lsYeI zb2Ke!GXdY!EpuAVh2P6&=VgcSHkgWezB++h3v}rnO<3USg8L-MBsSA836EA-U|5Wk zwol$gnFaijbH>u z%iz6{e*E}>W~`zkhz1RMUl-}O@0l)ICLNz7oAPpn##AkSA`xoVCcqd!#@#%P>BGe-fCG}l&L!x3Vgdk>QI`6wvw;wfoy!e|b0Cx301jCu z{*le|l1COIw*!abZy75mFanEUP87oa-RuJLHZ4R zvb~Nx#J=!JJH7DTA$;&)1s;M>vTiCy_`Ftnyl*6l{;id4P7h0&cc6=TL+e8T*G!xV z6_7k1$s+Om5KHhoB%5k7Q-cWfQjmHkaotz3iY5N+-Walf?d9A%F81N|MF2BPhrVX~ z61jd2JhM&owK6<*SbG<|&OhVq%3lzUlhBJy3^~KSiM;68xsSu+HNJfWDoayy+?K%2 zbBb~Fu*6GH!LJm@oO_z?bLos$NV4cJur};`yl;gR6Gx97ikoKK z3Qky?pa~WhX8zMpYj(n8wreV)xz6C}ll^D!+g@!nY!H}pjGv4x;*F@^`YTBweDbh~ zueA|w#}+B@9juk^ZiV$v8pxu`2^NMsu}cOv%o`iG*)xV;rpX$ehNg?rBD1XycN_mM z88$xhRe^H-MU zekE16@ugg)Yf`{XGdJ3upcVNhF|qKc-oCWK+jy;6bl_#3_&!jCWmoGH`xhSR8BqKo zou-KEI+K6n(NoS}R<4P&XpKIW1-VPn7wR(_^Y8N6(r`BV;QtZw1z7nMErp?)v(iSOaZ3dkJIXyIl-U^=jXLwL z+BLV#fnfMgi(D2!qg*3>IjFnMSX;Y?$v@&1`p)N)G6`G79{1N@r{&L`QPvAzCmO?- zxyM~S|tRC27{gD0PYTl`_LJy-f=s{p+b)4s`85FJnzH~o6vv-z+ z@j{t**_Rn^@;&a6+w^iv9>`OlUp3nkmi3JV%k2O;NX`Y_v>ts^a#he~L=*WP{{3XN zxBBY)(A>}8w#(>qZw?n!kh3ZtQBuB~jcH}ue|lx47?QA+~tDgs`=*(?Z&uC zG48_>OZ$3?gJu8{gdnG_4E6%2MKk>C;d4Q`xhLx{jqzFIKj)KeVc@)AK^oHmBocn1 ztIBDI2AqZ(b_#%T735mhu=yM8szz9Qt(uXcVOxVH%QvX8Ef}>)TVI&IP4K=VnRwaW zp3J~)E|v$6-#n@M^^ljP$elvV`PR!5;g!sloM*y~$(lI~^(NgHSAllsBQG;VipwZ=(| zWoEoeCK6qFjBc6n$rh))JaRB0^gUXA_{J6q{sr0Y#VL3DQa1_5R^=mK3FQ!RN#R5aFy)UWP=|RoLj~#WqfBGY3_P1OmNSO!>3OZ zO3N{z`@FU{HH4s?6@GLt7=|>2l&Sqy<6>pn-U3Ha3u!m(fxKJ;zn<^sr@@qvmxr zHSVNv$%(YHK)ZljjA<@3F|h@qmerDy)E>1{HK!bqGU3v)`Xrq&shC#f`>!^?9wN^#fukjely z>rBPkkJN?vCM>q_+$L_b6=Wj1%ByttACFE)J#8ACJ1c3pRvH4(wdZy>Ox*%=j-)N` z9k%Q}c^j}1nbrJ~ER3gxl#sOetzvyWWr}=wV=giNA0@PFCm5O_P@0YCoHUJhAk7F0Z zpY-9rZ8!W8#D^SL2ktL#pLgd1?(t|*a!4NhKCwqBmZ=g)GUme-x<7H~aHD7o+$B7D zxZ7MyHn|$V&%S`mT-77je|dd-X}Eg1D>(VQCivr&FN_Z9Tl3Lu83;X?ao4pW7j)BdBe~Gu7m1 zQ4oKEM8811&wPWA&>AU>fAI1h>Pll_AQF|=(h!ivk5+6FRZ5>sc#t%umz+`Ukg0ZPR!V`VsJC3Z_D~z(_Fby+YPx#jvPs^$QpdjnR`$MjQs4}27y_o ze{R&{*fAFCpx}?&TH(R`6hs&cLr%(j4!7UV(GK5fFA@i7E;<^s7m~G4cPQ{wKWDt& zk6t@1Z2xB45B`7gRqxnjOUo0oE$2_0x1hd)$Fj+)Hn?Ry`72$Q!`>rx-ien5E)W4R z3u-5YhM*A(iG7oO1Ew+9r)*mAkq~_ns(vi!QeFkAJLXHBj*!427-8cE8a921uIFNBj(p}=qMF5ygV)~&6zL9JDY2_Lh zi&8SD-UD53I%H4q>BJDZy{S%}%+njkn)b*0%rHY6r=o+$(-@Jai<*W{*oj}#pLdLQ zUyi!g)$@F)M!okfqjuXSZOiGaXUvO(14jf)!?ox+rd9f0%Ni?A0E9wqehveOPq4!! z8+^k!;69l54;^oLu-NYludLto#Lh=8BmUwGEVCq=1IkF>q|1hC=hx4BKjv6~BcH>) z&Q!ykxVJjGx|Y$Nx}BE1nty(sUdID$q+`!j{0lx{K5@#5jcExz0u{3nIPD$D#3!cv z1j4$Yb61N5tC#-=14SY8ivwu;DRRt+Z%?@ZsG|VR(-p>N^`om>DQ0LOf555f>ip;1jiHU{^C{_Dqe0rGqOk&{-*CC2m|?7=$i9@SviIO8 zQDgeee73-rvgNWrYiZlH}xJ z%=pQ(TB0}4#y0jqzWVkK$-|Q+YT~vCCX~Ipi?aI)vL?R zTeaGdxvxV0+kd~oHmEIL^_D#2ToMo3|4&|plKBGf>FN1t`dU`0Qo-=Ig^A>{k5Hor zFVnSj^&5RcbLG+v1YgC5`~c=IH!u+aL`}(ELS(YqUx<7)%q=MPE+hc9eL#*VNX+NC2J?S&)g!^OanirFZ})+x+I{=G*y7>uv|{5fm4D6!y@f30${_ivloH`nz&oEc~2_{Qf{NYY;!C+i)Rm4gwm3nizcz1b)L2Kn^P zf82}D;y(MZxJi)4c1{;=WfIKlnrw+74d$x7DeO#xFzw#dnUuRN+EqMZ{g?QxHIJoY znQ)Ht&uR9hKJu$Q2jUM->pWI747{vT6MEw$I{7IT%GilG((vvoY=nm&c`|H3#(nU9 z%ET-z4LY21%b=Mqde?HaBz)jkCTq1AB45X%)(;a$-aC!mhgYCrzZ%qjAdlUQ?kBLh z0StQqAf@bRcTZqsAuG*vx3gz&I{3bL`jorLUwtC-^7;SpjR^M~+}7@-^w_lp_-ay$+*f{*xcqz2)BHU4ujjD!*bi?^ z>=2}(xDn`-g~kbwTj7UWV3PU6>;|Xy7d-bK+D_eHGN4cwz1k=`81nU~Ze!+4>YUZ*7`;?Z)B&iOB1d4xMoYJ<`Q zy>!>g@Q-^%i}aD`jRY+dk>g?D-iwt4ssY?=BzLVK+cNT5x?0`m&v)7asIP1}1>Od* z+UsvK?E$mS%!$&)x)X7tugTYeU3zr)%yll`FNUASVg>EU_Sh2&JVGV8FOCzufXR!L@rn#ckRvaqLnV z@v`<$O^zRPg!rS#h#BU~9phb%H1&~D2UF=q>2AohR|Fb*&){)RPt_Y7I(+Ni&U^;@ zbEk2=vA5$5n&e9p;AnMYnLT;2OJk))cMCvIx!}7Z&0BCR_cT?SFyNF*_S`Qk)v`9| z|5tG9res@DJtbdoFo`nxXfyGPinl(TCGz^7c<84GGvLuG=0548Uf^3l;(zQxI4T=2 z!xyeYUQX@w$MnU0x-R5x_|xSo&6O_6R965;igiW^4fcv1_wR3krL*pZ*aHns{LmIl zYPO^XdN^T2B=1m}d`J0hSb-6Jn?-oeojdnS9=e?H?F~M|#;fe~9ELBtoxjm`j&~IY zI4p6K5c*(05)%_Mg0mYTgtct7#sAt{>k6Ai-4w4((+=_=o|_VIx$&M++GfaZ9ARey zeWZAD5n3_6leQ5#w<{DA?5grubVG3#?6|EC?Rjb6WALqbD24Mr5;X1n%#88EroOr8 z+jqBfk5h&k9c~oQmULB34*iL{+ZwLk0*+qn zMt2})GuWElLl5{UdvAVz&WZ;zS38;o+mCALy2i0Hwdw5-$L>(~;!tpUuNAc8;G1qh zBob*{(Xl%kITM9XM5~U4X}yrq$p|3`T@9_UmrR{^rH{)*tK!Q+H3J}~Hf0;p?4!N& zv2|2AmcQL)Eb80`_L&0f>CC)ZCi{tu*#jehLzop$R>!iN7-fjkW@6qOdQihW$2~|~ zOS>-$7u~TepsD>VD!sq!wvDy5VW(8pzf0@1?lr$WDixx+(L_y)ON1XE6I3J`KK)Gz zwyehHd&w0_4V>zk+T7)!b?`hLEaCn#pUGDfKR&OXd5*y9k(b%7ofYlI=COwp&>5Vg zZoFak0|4K0WlBA70bXBFm&J%QUX76}%yVFjFN7|6=wkeM8is2$#(?-RW|T2eGtv$p+& z;8&@t=-(c5KYN|J7)<;d#FufWjss^r4w{43{ZD z_$k9lcK28qUD}kM<8xQJJSX;1qhG$gbL#K66JDdv0W<$?V)B1?97?(z$+nsT3baaC zI~en5XD}Ya(skI7$iI5+ux;ICYctc(@ak7sEH)K>x6f`PbCdG^ybaJiqxIMos4SAx zE|nlVphinJM+A z4#rOp52h@syi~*gtoR9@1-~9h;V$SYjYv)@1pz(%ika!6rMC;p=aXwz;vNIm6bX1H znb6mIZCD5bumsItDEtAaHM~n-RF2W5z(MmeXk=bO`#)YZQ@QYW31lgeAff?@8Yv1J zoo;J(HJo37toYR54aT|A6NKM&Tlr;v79C%>DOFwlfB)|PLu20N#a_LynSMf#n*=it zh_p_Q*NH}Nk81@AX)7#9Y5kV+$L%3lvrF*!$$axdi2h*ku6! zU&3H=VRBx7c$2SBv@b!x_-O)$Z&G(95lcMVgf))opxQmyKh!nde4Ds}Je_N$DFJP` z{?ouvIXYklyitlGo_iSSFo7@F{JPaagkQmLE)y{%fIi)?VoKdZ&>+v+*R`YU$k5z{ zQ@e$xzzb3O`xtCmIyatK)IN2Es#{lA7k;iHJ!)gk+OwQe+z-sI2Hbvao47Bp$CHzj zkHbnlR!8@c#4yKtcS;%Ivbc_GLQ%etVX`|KtFD|H``Ge}(Kas^$NiMKO3uCt%v7-wH z*?hnH#PC+`Or!y{KKOZW!_6A4C*{{Lk3AH2{&Ie~2u`@85JDdNRvJ8XN0`(R58mkS z)g{|>*}6C8%K3&qi_V>cYDhe;s4=U8joQ68Pr_=q&mhr~>eovzQ>nJ)WCf5&>g`TnNl0w$#T zRS6=iUcl$VTIu$^Ai@Q#ICm2KAqE7L#ys`}ZVXy=qBxc`v$C$xS2a=MUZU3}Gbp7E z&07uKX@atDA5R|14l%?JkZ%~7T_(SPplZxJvUwOD7^X5F!%rwHqDPLnRweqU^y#yu zg)ps_RGxCIU3`MAc=iAx19Z&=9s8e!N^IqR4b(5vmwkKJi#(@XsfZtLg97edr<2tvwLw^N8=#oU4ARz?|@g6}qn^V+2KU zHBcho7j0jh`q95Y1!0d|l9p-m%dA*a?depU4?SGzd;IcIeu9w=tLNpwTP0J|ScDN^ zNWcc3-uC2Zvc?#sOK4OFNx?pTGEV7`9+!AIk1e?#4Mo6xSE$!hyNA1>XIg3N6I_6` ztw_Y_;v4NviJ?@i@w&9|>8acAweV!}C4w2Ds1Z&@KXL!jIJ`3npEgV*gCLf#hTQh< zAgWL?>rjvjL07kbx5Ky*ra~@hu(p5v()x>GfvisIL-yeV#28mlORRZ!rV} zB@^C!;9g|{*6&nj2y>5+DA#PR+DY+;IA8jr(c=@~bok4@#s)?Y!}(hINZVMRc2?l( z&?b>Hx(CzP^UdjTARqERvd?m92jf$?OKw3D1TWrHAUATDpt8n~Q zbE?8l>zIGN!r4O%;^E`K%Zq%!7pq9Us9QHd?lJH$qlX**?j1h=8nm=dG>=<5n zNb+nr|Bs~hH?*v%hFY_Ln%Zvb(b?qV1nK7idUowkdQQIG1}RSKpEPo`zLse6Y(A5plC3`$DY@Oss zF&2(^!B#u>fO~2USIOWrJfjYnyw5_2m6E|$sj-L#=|4@^Pro-Jd1oYWgieV z**CTdIx`Z0z|cPYD7^TZwk_R9ir0vr!krhO(z(&A!}XSfa|d9gXNnK@E%-Jbh2=2dYCe5n%BupStN+UUcPD!_ zApxHYTxz>b1^?;H(vnX9a&9&VyPihA1q-SPqKyMn^JW<+t1Pc6G}jeC8aX`e+7!t0qBfdX6uqzoJwIq%&t1%!Z7tTMi|qHU}p0 z$OIj+6us|4t4al;CK38S1x9aZ5{gQQFD~7MlxHw#W&@jP)=C|E|IS;=tCubcs`^Q- zZ9k#(0&Ba{2ISOdcWEUzC2s%8tlMTfa^UME3_+ip`wX5pbriarY}Du8xPcGOx+ipR zh5$xgr+vvj1dc&rjhF_Wa@cU87&X-0k&_TWxhOnj7YbAVzrQT4>TTBk^tZi&L2=v$ z%vj^t9uF}DEd#-|4SHi5;oP$UG=&|BI%aqoC8&HFHpH7FyInwK(`gU8{UAe)FX6oF z%91xkbh&DY4;|T!$s3+lFn{+K&sX^5`>#o@P5)A2-(*|;5ya@lg|@Vd>QA2_#R%#v zRQ}1Beq`aDohw6d?E#B-NBAmZ-RsFdo=}oO+N+Tjr{x>~d5|X0V67qj&u{oKE?A^7 zdB1=AhJtdB!NlWKh*{Xvm}9th>9Y3ZrPVo@=V^I5p$%V$0 z(bl}88b1n^&=Kz4>5?n<8TAvI=&N5h3o4LSu*UBA*g>b$ow&%+^o|_zYZ63b{ik=) zxE|PY_Q)RM&q-&($UOSetIIVl9DgSA{{BWd<-$K9h9C#*7|M55`-b_B7gmAtw7w(9 zR7uegw1w9>TqnPs(>>3IZyZ*Att169r`ppo4X4es;@g`p!1 z%KJFp?dn*D;34Ptd2$yAcUK{~7diyHj~SRl*ELg8`&2E(Coe88=vcMxXCZO$51f}1 ziRc7wB&jXC;v`pEY^%0xA(IO^95fFWf?B-4L^g3|(G6tcl<#WyW7 z0;sSx*G{(qcK8Q)Mlw_*zHVs2q<~S4!U9TOxn1Hv%|_ZKo};*Qi%SUn5&i}f^<)rI zeJ18Rjm6sPU`T)`?V7DjVu7X!8?Ki)abgT4C6cx0_{e)Ms9B-Nw~?vm8owJ4S>Chc z#@IXc!a{=x)%bf_I(s=R=!<++Efhbjvg>d{QI}b&Z!Fj^4?Z=hEkN=rm^qy+fw7ng z`vW7W{#3`dY}Zpgoohc0!V$TDLMTAKiL;_uaz8)^0Y#TWfj4_^aM0+UrAZZZJAZP! zfY|@+yN90e;!wf^WH*2=r{Bg8c$N+}^aK%v)>9|wTEfpX^SIPI&l>_hc&J

    QDrD zjg%{te+9!HgfkvVe#*Ue_Y3P7+uKU;YdAu&0UEB`#*Fxq%U}T{)}h0{kTX=${F4}&xm9_OB*-_Jrglg-On`AL$M8DW~PdpV& zF&wA`hJqryr{v5rxp#JaO$W20fYrrrWRRg+cd9+-iWZ#O?~dTqlhhH8-lEf)v`0T) zyx>Q64l&NteHHhlAjVAh)ri%YbJ{k7&<5(smW?P&Pzr@6cgYxP_I*!y_i$~!<2E4} z`U4>6GDgk^_whIO5Z-@&vPRqpkU6B+br1FW<$81afrMdEffKY}0T33{2G%|%I_Ca& zgrX2>TlNl}DI+OKcaV%+)I+i@vd!P^59m9Ak0TZtrB{4($X+saTw@M=HZO2kQh%KF8H*vsG*CRP$D8Jv!;d zi-3j?Q`nU2>7z}d5K=Q!eKeyL7GGNB>k{u$tpVRdf${kfgCE=m+#{LkdSF5z?c zVnyhaG5{tT$+E2`h<^k-li34zfe3y6;vv2ILp>FPPu4zowkm9xbR?07ZTveFX^3*R zLIi7}@{oXnIfGKzoT97$v8?=PeX7Hy?J+y^+EzO*NT$a@#?a9IQ(#Nf;J|AD%pNPA zI!K2vu+vyqGcO&mey{w-w2M0UTwDx6E<-5vAu;lcYFZc_Ck*?q<#xb=-f*Tqo>%PY zSo?muO%2Mv{c3si%I@^qF*y6iH65#S4^}gw!+fUFevR)=N1s9Of7^!KbAH5Zm3fm($SL|&vjc3+3+6Q?508QRR5VtF3G%5_Z<}tY zJ+lb}dVIP%tUPIRefLn^Wt7uL_U6bdB9oAQIoBsF3R;koHXF5w28nQ^&MSk?$Wwpc zTT?xeIV9dITW&9F16F2VQm5-{s!WS~j=jUuFeQWN>gxJwB<{!ASAi?ufBb}Cy{0_D zw!1P)>GzzRF>5KiQe3(cXg)`wPnE`G+FO!_4KUDR+lHn zpv%ewe)J7ThmO~39KJ|N=+F-^Zm6SKXEWp0a`!XvfDZG{VrjMs_S?1i1!NQfxkx69 z#Fa@Wat9?gYs$&j!yiCf#BBkcr@gXgKP&z;Pg3y4$Y_TyE@PQ@EQvoDX(9 zNdEjM)sT@#v=H6zitHM`6WtE6`k{lMcS0r;BkW3e2Xa_CL)#^}&^GXQOm{1g{>C6W zFB5IfOE4kv?=NP!ml@U|NgC>NK^^%Hh*jqD%@MTshP6lJtv*E*IG+|6Hhw%U2~q;u zK?;_Lxecmz}w8ASO=HB(_qI(?>UvXEs>+&F5=G#Kao>$Q3{POOUStD}z zzwRsHHvmAteHFlD0xNs)O=p&+`X^Z}Nuf061PYJ`2dNHUSfUNx!`5AMa7~@JMk+*z z?|GQh{GzOv>?gVLCz4dX$N@NaHq`eM-+dmwW8i0MF4x7#zFlzrx=-3pd8dMRY&7og0Os$Q{k~g07J`t|GD1&Ba2quO^ zCeX`Vz~{u5tgA{KnOgc?U)<6R38=1&%W^J)OMK74LBi@{YUuyK+yBev<6~kFksE{( zbj0uaV;KT?yTx~91pwWQfLrH}zEYmai_j!sXqv&>#P|tH?N9cl&7{Hi0oHE_NQGs; zA#hjE=s`>HC)8CCGL9fdFbg&dYEz1YyZ^6jceXtYVt()PV3?pNSKsAn#u##{K!iuX z3Ak1?*}%X|odohUDM+g2`5VRIT)K2grBs?JzEB86(TQcSNg741FvOX*e|~&eHSf{Z z)}a^3YUX_#a$|r_(cdJIU&d*Lgp6eSIosG-JfFfnzQHg_x51rle2@eWJ(?}DKs%FZ z(FaYWBMjx9fDRhv*o2`zSPcgeXzD2VLSBebrg<=ePxD}F+tmFq_e4wBYwuvX z+(O~^*c|vEG3-~*PJ*S?p?d1zg|)9TCE?E)6gSjP0 zq#XnOttTk~sw4?p$NL%L6Jm@RF*z*Y9Jcj{g93Hm2GO-pRv$8edKOaUqWY9f)Eax} z1?EI36)^3wWEBY>9Z`aEnh=p+2+-Zq`9Z!INSH##g2ylutUIuzzstJC}(c7l5;2?nx8~>$C zow>Tl?gzDaMcr7(0&Qel?-Z^CB{dY5!n#(O8KbfoCI;Gn;}RFy(lq1oU{kc!rD zur~f9K|V@}n?YpV(1K=@k3=78|qO1^9^NTNJEa2+kC<@c4*T;WCsqT=&7d<#b z_f|`wxxZPwLYqVQ+bf3(7E=n;ZfP|oZVGuxFM)96dR7lI zj=1NsYA@hj{~af5fcGa8-bI_uAbJ;k-_JuDZMpDFTn~s^v3i)oz05N97IW2!&!0cL zPUvn+jr>CHqAx5c>~?*oVpZD?#e0?s1Xq*e=;<`SRVA@L9kMTI;nz>IdhFQNm#p8_ zOn!v#O~nzAbR7ikE*8lQ-yL>^xO*H}tmEXj&tfkG0QqpRPQ{sRV1Ect^I2TQf1qbx zRN_vt7bt;;mZw3?th8e)0jD2Ya7Rk7mVz_Hf3XkfLUseP?$0fy8q=q0Wrf(8G5udm zS-sWZ8@n3(GT^~UDzpQq1}lVNqIgq)wEE;y@gk>CQa4z}LL%<_g{dEwXwT>Vjhra4 zF8C(AXDPjKR@x9~0F1c{+y?GGjfyJ9F%e+`Vy`(IxtZf#wDwt2M2w`v;9wTMy$|Rm zMA&X4=UwQ3Y~V;aDRxi}*NAUA35hv*+pm>yuf-z%;|vv78blNZl`<1(R>lX@aE_AB zWAKx8JRp-GU{7~7OxpDhdmHG%4WPuB?4jgUV6CX=S^=?(IXunHR+w*_ zv|!z4lr-E5_IHLb7$t%)mf2E;*%|*;$8Et(Xd0=KbFAZ3ga_HN7Ls1bfYcWcerpvN$1$vZG{>`_piEJtIaNtSB8K*7#g4~i4f}bPXx5Ck!ZAv#e)%0M+ ziB9GYcKnhdbt)OGuZ;9>l(D?+)`P!Xc^bq?o>qi~ZptK~hJCeV#bjf$R7Gu!blE~e z \\rightarrow \\left|\\mathrm{Bell}\\right> = \\frac{1}{\\sqrt{2}}\\left(\\left|0,0\\right> + \\left|1,1\\right>\\right).$$" + ] + }, + { + "attachments": { + "image-2.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABjIAAAIICAYAAADE9HcQAAAMSmlDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnltSSWiBCEgJvYkivUgJoUUQkCrYCEkgocSYEETsyLIKrl1EwIauiii6FkBsiLrWRbG7locFlZV1sWBD5U0K6Lrfe+975/vm3j9nzvlPydx7ZwDQqeFJpbmoLgB5knxZfEQIa0JqGov0GKBAC2gDFjDi8eVSdlxcNIAyeP+7vL0BEOX9qouS65/z/1X0BEI5HwAkDuIMgZyfB/EBAPASvlSWDwDRB+qtZ+RLlXgSxAYymCDEUiXOUuMSJc5Q40qVTWI8B+JdAJBpPJ4sCwDtZqhnFfCzII/2LYhdJQKxBAAdMsSBfBFPAHEkxCPy8qYpMbQDDhnf8GT9jTNjiJPHyxrC6lpUQg4Vy6W5vJn/Zzv+t+TlKgZj2MFBE8ki45U1w77dypkWpcQ0iHskGTGxEOtD/F4sUNlDjFJFisgktT1qypdzYM8AE2JXAS80CmJTiMMluTHRGn1GpjicCzFcIWihOJ+bqPFdJJSHJWg4a2TT4mMHcaaMw9b4NvBkqrhK+1OKnCS2hv+WSMgd5H9TJEpMUeeMUQvEyTEQa0PMlOckRKltMJsiESdm0EamiFfmbwOxn1ASEaLmx6ZkysLjNfayPPlgvdgikZgbo8FV+aLESA3PLj5Plb8RxM1CCTtpkEconxA9WItAGBqmrh27LJQkaerFOqX5IfEa31fS3DiNPU4V5kYo9VYQm8oLEjS+eGA+XJBqfjxGmh+XqM4Tz8jmjY1T54MXgmjAAaHwiVPAkQGmgWwgbu9p6oG/1DPhgAdkIAsIgYtGM+iRopqRwGsCKAJ/QiQE8iG/ENWsEBRA/echrfrqAjJVswUqjxzwBOI8EAVy4W+FyksyFC0ZPIYa8T+i82GuuXAo5/6pY0NNtEajGORl6QxaEsOIocRIYjjRETfBA3F/PBpeg+Fww31w38Fsv9oTnhA6CA8J1wmdhNtTxcWy7+phgXGgE0YI19Sc8W3NuB1k9cRD8ADID7lxJm4CXHAPGImNB8HYnlDL0WSurP577r/V8E3XNXYUVwpKGUYJpjh876ntpO05xKLs6bcdUueaMdRXztDM9/E533RaAO9R31tii7D92BnsBHYOO4I1ARZ2HGvGLmJHlXhoFT1WraLBaPGqfHIgj/gf8XiamMpOyl3rXbtdP6nn8oWFyvcj4EyTzpSJs0T5LDZ88wtZXAl/5AiWm6ubKwDK74j6NfWaqfo+IMzzX3XFhwAI4A4MDBz5qos6DMD+JQBQb37VOWTAd/EIAM5W8RWyArUOV14IgAp04BNlDMyBNXCA9bgBL+APgkEYGAtiQSJIBVNgl0VwPcvADDAbLACloBwsB2tAFdgItoAdYDfYB5rAEXAC/AougMvgOrgDV08XeA56wVvQjyAICaEjDMQYsUBsEWfEDfFBApEwJBqJR1KRdCQLkSAKZDayEClHViJVyGakDvkFOYScQM4hHcht5AHSjbxCPqIYSkMNUDPUDh2F+qBsNApNRCejWeh0tAgtQZeilWgtugttRE+gF9DraCf6HO3DAKaFMTFLzAXzwThYLJaGZWIybC5WhlVgtVgD1gL/56tYJ9aDfcCJOANn4S5wBUfiSTgfn47PxZfgVfgOvBE/hV/FH+C9+BcCnWBKcCb4EbiECYQswgxCKaGCsI1wkHAaPk1dhLdEIpFJtCd6w6cxlZhNnEVcQlxP3ENsJXYQHxH7SCSSMcmZFECKJfFI+aRS0jrSLtJx0hVSF+k9WYtsQXYjh5PTyBJyMbmCvJN8jHyF/JTcT9Gl2FL8KLEUAWUmZRllK6WFconSRemn6lHtqQHURGo2dQG1ktpAPU29S32tpaVlpeWrNV5LrDVfq1Jrr9ZZrQdaH2j6NCcahzaJpqAtpW2ntdJu017T6XQ7ejA9jZ5PX0qvo5+k36e/12Zoj9Tmagu052lXazdqX9F+oUPRsdVh60zRKdKp0Nmvc0mnR5eia6fL0eXpztWt1j2ke1O3T4+hN1ovVi9Pb4neTr1zes/0Sfp2+mH6Av0S/S36J/UfMTCGNYPD4DMWMrYyTjO6DIgG9gZcg2yDcoPdBu0GvYb6hh6GyYaFhtWGRw07mRjTjsll5jKXMfcxbzA/DjMbxh4mHLZ4WMOwK8PeGQ03CjYSGpUZ7TG6bvTRmGUcZpxjvMK4yfieCW7iZDLeZIbJBpPTJj3DDYb7D+cPLxu+b/jvpqipk2m86SzTLaYXTfvMzM0izKRm68xOmvWYM82DzbPNV5sfM++2YFgEWogtVlsct/iDZchis3JZlaxTrF5LU8tIS4XlZst2y34re6skq2KrPVb3rKnWPtaZ1qut26x7bSxsxtnMtqm3+d2WYutjK7Jda3vG9p2dvV2K3Y92TXbP7I3sufZF9vX2dx3oDkEO0x1qHa45Eh19HHMc1ztedkKdPJ1ETtVOl5xRZy9nsfN6544RhBG+IyQjakfcdKG5sF0KXOpdHoxkjoweWTyyaeSLUTaj0katGHVm1BdXT9dc162ud0brjx47unh0y+hXbk5ufLdqt2vudPdw93nuze4vPZw9hB4bPG55MjzHef7o2eb52cvbS+bV4NXtbeOd7l3jfdPHwCfOZ4nPWV+Cb4jvPN8jvh/8vPzy/fb5/eXv4p/jv9P/2Rj7McIxW8c8CrAK4AVsDugMZAWmB24K7AyyDOIF1QY9DLYOFgRvC37KdmRns3exX4S4hshCDoa84/hx5nBaQ7HQiNCy0PYw/bCksKqw++FW4Vnh9eG9EZ4RsyJaIwmRUZErIm9yzbh8bh23d6z32DljT0XRohKiqqIeRjtFy6JbxqHjxo5bNe5ujG2MJKYpFsRyY1fF3ouzj5sed3g8cXzc+OrxT+JHx8+OP5PASJiasDPhbWJI4rLEO0kOSYqktmSd5EnJdcnvUkJTVqZ0Thg1Yc6EC6kmqeLU5jRSWnLatrS+iWET10zsmuQ5qXTSjcn2kwsnn5tiMiV3ytGpOlN5U/enE9JT0nemf+LF8mp5fRncjJqMXj6Hv5b/XBAsWC3oFgYIVwqfZgZkrsx8lhWQtSqrWxQkqhD1iDniKvHL7MjsjdnvcmJztucM5Kbk7skj56XnHZLoS3Ikp6aZTyuc1iF1lpZKO6f7TV8zvVcWJdsmR+ST5c35BnDDflHhoPhB8aAgsKC64P2M5Bn7C/UKJYUXZzrNXDzzaVF40c+z8Fn8WW2zLWcvmP1gDnvO5rnI3Iy5bfOs55XM65ofMX/HAuqCnAW/FbsWryx+szBlYUuJWcn8kkc/RPxQX6pdKiu9+aP/jxsX4YvEi9oXuy9et/hLmaDsfLlreUX5pyX8Jed/Gv1T5U8DSzOXti/zWrZhOXG5ZPmNFUErdqzUW1m08tGqcasaV7NWl61+s2bqmnMVHhUb11LXKtZ2VkZXNq+zWbd83acqUdX16pDqPTWmNYtr3q0XrL+yIXhDw0azjeUbP24Sb7q1OWJzY61dbcUW4paCLU+2Jm8987PPz3XbTLaVb/u8XbK9c0f8jlN13nV1O013LqtH6xX13bsm7bq8O3R3c4NLw+Y9zD3le8Fexd4/fkn/5ca+qH1t+332NxywPVBzkHGwrBFpnNnY2yRq6mxObe44NPZQW4t/y8HDIw9vP2J5pPqo4dFlx6jHSo4NHC863tcqbe05kXXiUdvUtjsnJ5y8dmr8qfbTUafP/hr+68kz7DPHzwacPXLO79yh8z7nmy54XWi86Hnx4G+evx1s92pvvOR9qfmy7+WWjjEdx64EXTlxNfTqr9e41y5cj7necSPpxq2bk2523hLcenY79/bL3wt+778z/y7hbtk93XsV903v1/7L8V97Or06jz4IfXDxYcLDO4/4j54/lj/+1FXyhP6k4qnF07pnbs+OdId3X/5j4h9dz6XP+3tK/9T7s+aFw4sDfwX/dbF3Qm/XS9nLgVdLXhu/3v7G401bX1zf/bd5b/vflb03fr/jg8+HMx9TPj7tn/GJ9Knys+Pnli9RX+4O5A0MSHkynmorgMGBZmYC8Go7APRUABiX4f5hovqcpxJEfTZVIfCfsPosqBIvABrgTbld57QCsBcOu1bVkQQot+qJwQB1dx8aGpFnurupuWjwxEN4PzDw2gwAUgsAn2UDA/3rBwY+b4XJ3gagdbr6fKkUIjwbbPJQoivMwvngO/k3W0t/bkC6aqwAAAAJcEhZcwAAFiUAABYlAUlSJPAAAAGeaVRYdFhNTDpjb20uYWRvYmUueG1wAAAAAAA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA1LjQuMCI+CiAgIDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+CiAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAgICAgIHhtbG5zOmV4aWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vZXhpZi8xLjAvIj4KICAgICAgICAgPGV4aWY6UGl4ZWxYRGltZW5zaW9uPjE1ODY8L2V4aWY6UGl4ZWxYRGltZW5zaW9uPgogICAgICAgICA8ZXhpZjpQaXhlbFlEaW1lbnNpb24+NTIwPC9leGlmOlBpeGVsWURpbWVuc2lvbj4KICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+Cs9pX6MAAEAASURBVHgB7N15sJTVmTjgoyguoILgAiICyia4BFDBFZeoMTEazTKJMUslU0kqNZlkJjWZqplKZf6YmqnJL1VZJlMpzTIxMZqJa9w1xg0UFxAFRBFkUZRF2VQQRfPLeyZ9B6+379rL193Pqerce3v5zjnPadPN937nfXf5059b0ggQIECAAAECBAgQIECAAAECBAgQIECAAAECBRTYtYBjMiQCBAgQIECAAAECBAgQIECAAAECBAgQIECAQBYQyPBGIECAAAECBAgQIECAAAECBAgQIECAAAECBAorIJBR2KUxMAIECBAgQIAAAQIECBAgQIAAAQIECBAgQEAgw3uAAAECBAgQIECAAAECBAgQIECAAAECBAgQKKyAQEZhl8bACBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAYEM7wECBAgQIECAAAECBAgQIECAAAECBAgQIECgsAICGYVdGgMjQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEBDK8BwgQIECAAAECBAgQIECAAAECBAgQIECAAIHCCghkFHZpDIwAAQIECBAgQIAAAQIECBAgQIAAAQIECBAQyPAeIECAAAECBAgQIECAAAECBAgQIECAAAECBAorIJBR2KUxMAIECBAgQIAAAQIECBAgQIAAAQIECBAgQEAgw3uAAAECBAgQIECAAAECBAgQIECAAAECBAgQKKyAQEZhl8bACBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAYEM7wECBAgQIECAAAECBAgQIECAAAECBAgQIECgsAICGYVdGgMjQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEBDK8BwgQIECAAAECBAgQIECAAAECBAgQIECAAIHCCghkFHZpDIwAAQIECBAgQIAAAQIECBAgQIAAAQIECBAQyPAeIECAAAECBAgQIECAAAECBAgQIECAAAECBAorIJBR2KUxMAIECBAgQIAAAQIECBAgQIAAAQIECBAgQEAgw3uAAAECBAgQIECAAAECBAgQIECAAAECBAgQKKyAQEZhl8bACBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAYEM7wECBAgQIECAAAECBAgQIECAAAECBAgQIECgsAICGYVdGgMjQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEBDK8BwgQIECAAAECBAgQIECAAAECBAgQIECAAIHCCghkFHZpDIwAAQIECBAgQIAAAQIECBAgQIAAAQIECBAQyPAeIECAAAECBAgQIECAAAECBAgQIECAAAECBAorIJBR2KUxMAIECBAgQIAAAQIECBAgQIAAAQIECBAgQEAgw3uAAAECBAgQIECAAAECBAgQIECAAAECBAgQKKyAQEZhl8bACBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAYEM7wECBAgQIECAAAECBAgQIECAAAECBAgQIECgsAICGYVdGgMjQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEBDK8BwgQIECAAAECBAgQIECAAAECBAgQIECAAIHCCghkFHZpDIwAAQIECBAgQIAAAQIECBAgQIAAAQIECBAQyPAeIECAAAECBAgQIECAAAECBAgQIECAAAECBAorIJBR2KUxMAIECBAgQIAAAQIECBAgQIAAAQIECBAgQEAgw3uAAAECBAgQIECAAAECBAgQIECAAAECBAgQKKyAQEZhl8bACBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAYEM7wECBAgQIECAAAECBAgQIECAAAECBAgQIECgsAK7FXZkBkaAAAECBDoQuPHGG9Ntt92WNm3a1MGj7iJAoLcC48aNS5deemkaO3Zsbw/hdQQIECBAgAABAgQIECBAoCoCAhlVYXVQAgQIEKiWwNNPP51uuumm9NJLL1WrC8cl0JICJ554YjrvvPMEMlpy9U2aAAECBAgQIECAAAECxRYQyCj2+hgdAQIECLQT+NOf/pRKt3YP+ZMAgT4IxH9XGgECBAgQIECAAAECBAgQKKKAGhlFXBVjIkCAAAECBAgQIECAAAECBAgQIECAAAECBLKAQIY3AgECBAgQIECAAAECBAgQIECAAAECBAgQIFBYAYGMwi6NgREgQIAAAQIECBAgQIAAAQIECBAgQIAAAQICGd4DBAgQIECAAAECBAgQIECAAAECBAgQIECAQGEFBDIKuzQGRoAAAQIECBAgQIAAAQIECBAgQIAAAQIECOyGgAABAgQINJPA+eefn84999w0ePDgZpqWuRDos8AzzzyTrrzyyrR06dI+H8sBCBAgQIAAAQIECBAgQIBALQUEMmqprS8CBAgQqLrAxIkT04c//OE0fPjwqvelAwKNJDB79ux0++23C2Q00qIZKwECBAgQIECAAAECBAhkAYEMbwQCBAgQaCqBXXbZJe2666751lQTMxkCfRSI/y40AgQIECBAgAABAgQIECDQiAL+RduIq2bMBAgQIECAAAECBAgQIECAAAECBAgQIECgRQQEMlpkoU2TAAECBAgQIECAAAECBAgQIECAAAECBAg0ooBARiOumjETIECAAAECBAgQIECAAAECBAgQIECAAIEWERDIaJGFNk0CBAgQIECAAAECBAgQIECAAAECBAgQINCIAgIZjbhqxkyAAAECBAgQIECAAAECBAgQIECAAAECBFpEQCCjRRbaNAkQIECAAAECBAgQIECAAAECBAgQIECAQCMKCGQ04qoZMwECBAgQIECAAAECBAgQIECAAAECBAgQaBEBgYwWWWjTJECAAAECBAgQIECAAAECBAgQIECAAAECjSggkNGIq2bMBAgQIECAAAECBAgQIECAAAECBAgQIECgRQQEMlpkoU2TAAECBAgQIECAAAECBAgQIECAAAECBAg0ooBARiOumjETIECAAAECBAgQIECAAAECBAgQIECAAIEWERDIaJGFNk0CBAgQIECAAAECBAgQIECAAAECBAgQINCIAgIZjbhqxkyAAAECBAgQIECAAAECBAgQIECAAAECBFpEQCCjRRbaNAkQIECAAAECBAgQIECAAAECBAgQIECAQCMKCGQ04qoZMwECBAgQIECAAAECBAgQIECAAAECBAgQaBEBgYwWWWjTJECAAAECBAgQIECAAAECBAgQIECAAAECjSggkNGIq2bMBAgQIECAAAECBAgQIECAAAECBAgQIECgRQQEMlpkoU2TAAECBAgQIECAAAECBAgQIECAAAECBAg0ooBARiOumjETIECAAAECBAgQIECAAAECBAgQIECAAIEWERDIaJGFNk0CBAgQIECAAAECBAgQIECAAAECBAgQINCIAgIZjbhqxkyAAAECBAgQIECAAAECBAgQIECAAAECBFpEQCCjRRbaNAkQIECAAAECBAgQIECAAAECBAgQIECAQCMKCGQ04qoZMwECBAgQIECAAAECBAgQIECAAAECBAgQaBEBgYwWWWjTJECAAAECBAgQIECAAAECBAgQIECAAAECjSggkNGIq2bMBAgQIECAAAECBAgQIECAAAECBAgQIECgRQQEMlpkoU2TAAECBAgQIECAAAECBAgQIECAAAECBAg0ooBARiOumjETIECAAAECBAgQIECAAAECBAgQIECAAIEWERDIaJGFNk0CBAgQIECAAAECBAgQIECAAAECBAgQINCIAgIZjbhqxkyAAAECBAgQIECAAAECBAgQIECAAAECBFpEQCCjRRbaNAkQIECAAAECBAgQIECAAAECBAgQIECAQCMKCGQ04qoZMwECBAgQIECAAAECBAgQIECAAAECBAgQaBEBgYwWWWjTJECAAAECBAgQIECAAAECBAgQIECAAAECjSggkNGIq2bMBAgQIECAAAECBAgQIECAAAECBAgQIECgRQQEMlpkoU2TAAECBAgQIECAAAECBAgQIECAAAECBAg0ooBARiOumjETIECAAAECBAgQIECAAAECBAgQIECAAIEWERDIaJGFNk0CBAgQIECAAAECBAgQIECAAAECBAgQINCIAgIZjbhqxkyAAAECBAgQIECAAAECBAgQIECAAAECBFpEQCCjRRbaNAkQIECAAAECBAgQIECAAAECBAgQIECAQCMKCGQ04qoZMwECBAgQIECAAAECBAgQIECAAAECBAgQaBEBgYwWWWjTJECAAAECBAgQIECAAAECBAgQIECAAAECjSggkNGIq2bMBAgQIECAAAECBAgQIECAAAECBAgQIECgRQQEMlpkoU2TAAECBAgQIECAAAECBAgQIECAAAECBAg0ooBARiOumjETIECAAAECBAgQIECAAAECBAgQIECAAIEWERDIaJGFNk0CBAgQIECAAAECBAgQIECAAAECBAgQINCIAgIZjbhqxkyAAAECBAgQIECAAAECBAgQIECAAAECBFpEQCCjRRbaNAkQIECAAAECBAgQIECAAAECBAgQIECAQCMKCGQ04qoZMwECBAgQIECAAAECBAgQIECAAAECBAgQaBEBgYwWWWjTJECAAAECBAgQIECAAAECBAgQIECAAAECjSggkNGIq2bMBAgQIECAAAECBAgQIECAAAECBAgQIECgRQQEMlpkoU2TAAECBAgQIECAAAECBAgQIECAAAECBAg0osBuPR30O++8k+655540b968NG7cuHTyySenIUOG9PQwTfP87du3p4ceeigtWrQoTZ48OU2dOjUNHDiwaeZnIgQIECBAgAABAgQIECBAgAABAgQIECBAoJ4CPQ5kPPXUU+nyyy9Ps2bNSgceeGD63ve+l2bOnJl22WWXes6jbn0/9thj6Uc/+lGaO3duGjt2bPqXf/mXNGPGjJb1qNtC6JgAAQIECBAgQIAAAQIECBAgQIAAAQIEmlKgx4GM5557Li1evDitXr06vfTSS2nlypXprbfeSv37929KoK4mtXDhwjR//vzssGbNmnTHHXekMWPGpIMPPrirl3qcAAECBAgQIECAAAECBAgQIECAAAECBAgQ6EKgxzUyNmzYkLZt25YPG2mmNm3alN54440uumneh0eOHJn23XffPMFIM3XnnXem5cuXN++EzYwAAQIECBAgQIAAAQIECBAgQIAAAQIECNRQoMeBjAha7Nixo22I8ffbb7/d9ner/XLcccfllFK77757nvqCBQtyvYytW7e2GoX5EiBAgAABAgQIECBAgAABAgQIECBAgACBigv0OJDxpz/96V2DiL/b3/euJzT5H1HofPr06emggw7KM3399dfT7Nmzc+qtJp+66REgQIAAAQIECBAgQIAAAQIECBAgQIAAgaoL9DiQUfURNVgHUeQ8ip2PGjWqbeT3339/Ti/VygGeNgy/ECBAgAABAgQIECBAgAABAgQIECBAgACBPggIZPQBr/TSiRMnpqOOOioNHDgw3/X888+nefPmpagnohEgQIAAAQIECBAgQIAAAQIECBAgQIAAAQK9F9it9y+t3ytjp8OLL76Y0zetW7cuvfzyy/n25ptvpn322Sftv//+aejQoemII45II0aMSHvssUdVB7vXXnulk08+Od1zzz3p6aefTm+99Va677770jnnnJMi9ZRGgAABAgQIECBAgAABAgQIECBAgAABAgQI9E6goQIZEbSI+hOzZs1KS5YsyTseoiZFFNaOWxQdj6BFBBb23nvvNHjw4JzyacaMGemMM85Ihx56aNptt+pM+ZRTTkljxozJ43rnnXfSI488kp599tk0efLkVCoE3rsl8ioCBAgQIECAAAECBAgQIECAAAECBAgQINC6AtU5q19hz0jRdOedd6abb745PfHEEylSN7366qtpzz33TOPGjUvHHnts3oGxY8eOFMGO2K0RQYTNmzfn59x7773p2muvTe9///vTRRddlAMau+5a2axaw4cPT9OmTUuPPvpoWr9+fdq4cWOaM2dOiiBKBFA0AgQIECBAgAABAgQIECBAgAABAgQIECBAoOcChQ9kzJ8/P11xxRU5kLFs2bL0xhtv5NRRH/vYx9LZZ5+dxo4dm9M3xS6M2AkROzMiyBHBjti5cdNNN+XC28uXL08LFy5MDz30UPrc5z6XTj311LaaFj1ne+8r+vXrl0477bR066235kBGpL+KAEopcPLeV7iHAAECBAgQIECAAAECBAgQIECAAAECBAgQ6EqgsIGMCATcfvvt6fLLL8/1JmKHQ9w3ZcqU9NnPfjadddZZafTo0TmNVEeTjDoV06dPz8GFn/3sZ+mBBx7IwY3YLRFBjS9/+cvpwgsvrGgNi6lTp6bx48enBQsWpO3bt+d6GfF77BgpFQLvaKzuI0CAAAECBAgQIECAAAECBAgQIECAAAECBDoWqGx+pY776PG9sbMi0kh973vfS3fccUeuhRFBjNhF8a1vfStdeuml6cgjjywbxIgOoy7FYYcdlj70oQ+l73znO+nDH/5w2m+//fKOjnnz5qXvfve7eafHmjVrejy+ci+I45944olp2LBh+Snbtm3LAZQXXnih3EvcT4AAAQIECBAgQIAAAQIECBAgQIAAAQIECHQiUMgdGffcc0/6z//8z/Tggw+mCAZEmzhxYvrSl76UPvCBD6R99tmnkym9+6GooxG1K775zW/mlFN/+MMfcjDjmWeeyX3su+++6eKLL06DBg169wt7+dfMmTPT7373u7RixYp8hEhv9dxzz+VaHpWuy9HLIXoZAQIECBDIAnHhQKRijID7m2++mSJN4m677ZZvcUHAzre4P/6O58TnWVxgEK+P+lRxi52Q7W9x/9tvv52fd9BBB6VRo0alvffeu0v9uMhg5cqVOV1k9NXRmOK+/v3758diTHGLFv3FrbMxxWMx9vg+ESkq40IEjQABAgQIECBAgAABAgQIECiuQOECGVGk++c///m7ghhxgiHSSUWx7p4EMUrscXLjmGOOSV/5yldyIfDHH388n4CJFFMRMDnggAPysaPORl/b4YcfnvuKPqLYeBQef+yxx9Jxxx2X++nr8b2eAAECBAhUSmDu3LnpsssuyykR4+R/BA12vpWCFqWfpcd22WWX/DlaCmZEUCBupaBF+9/jefFZ+0//9E9552K8vlxbvXp1+v73v59mz56dAyPx3FK/pXHs/HPnx+OY0XdpXKXxlH6WxlV6PC52+MY3vpEvkqjEd4Byc3I/AQIECBAgQIAAAQIECBAg0DeBQgUyXnvttZzu6e67707xe6nFLodzzjknDR06tHRXj3/GSY9ITRXHiatPo1ZGnMiIGhZRh2PkyJG5lkWPD9zuBXvssUfuJ+YQgYw4eRJFv8877zyBjHZW/iRAgACB+gosWbIkxc7Bp59+uuoDiVpR8dnbVYsLAB566KF86+q5lXg8dmXGThKBjEpoOgYBAgQIECBAgAABAgQIEKiOQKECGffdd1+67bbb3nWiY8CAAflKySOOOCJ1dgVnd3jiJMoFF1yQi4eXTqZEoCH6veuuu9KIESP6FCwpjSHqZMR448RQpK+Imhzx+1FHHZUi0KERIECAAIEiCEyZMiV97GMfS0899VRO5RjppbZu3ZpTMa5duzbXqIrPse62IUOGpEghFekaY7dDKRVV/B61rSZNmtTlZ/no0aPTRz7ykfyZ/Prrr+eUV5FmMi5wiM/udevW5fu6O6ZIIXnwwQen/fffPwcrYkylVFWHHnpoOumkk7qV7qq7/XkeAQIECBAgQKAoAnHxZun7XVy4Ed+DIs1npOfs6/mVoszROAgQIECgdQQKE8jYuHFjuuGGG1LUrojUD6UWKZne9773pQhoVKIdffTROc3TokWL8o6JOOarr76arr766nx/7NqIFBZ9aQceeGA6/vjj08MPP5xeeuml3E9cXXryySenUX/OD64RIECAAIEiCER9iL/+67/On1MRsIjgfvwjN/7BG4GD2MH405/+NEW6xHisXItA/UUXXZR3NpaCGBEsiN2Q8Y/k+D2CHN3ZWRnPueSSS/JFDDGW0pji9whsvPzyy+nKK6/MFyFE0KVci52Wsdti+vTpud/YcRH/eC+lqYqfkboyAi8xPo0AAQIECBAg0MgC8T0p6nMuXrw4f4eLmmNxAUh8p4vvdnGeJb7/xPehuMgzzlvE96D4zjR+/Ph8MWbcrxEgQIAAgaIKFOZf7lHgO07875xSKtBid0N8sFbqaoE4kRHFv2+//fa2QEb0s3DhwpwCKoqKx4d5X1p8OZj553RYv//973MgI44V6aXiqleBjL7Iei0BAgQIVFIgTuDHroS4ddQiUBBBjNhV2P7zufT82EHx1a9+Ne+iiCBEfAb2tcUOirh11CKgERcJRGrIcoGMCKZ88YtfTJdeemne2SFQ0ZGk+wgQIECAAIFGF4jvZ/Gd6MEHH0zz589Pq1atyhd9RJrreCy+K8V3p/attDMjAhexezW+w0WGimOPPTafg4kLQON+jQABAgQIFEmgEIGMN954I91555356oGdcSINUwQWIh1EJVt8OMcJktj9UWpxhcIf//jHXMuir4GMOGZcnRppNJ588sn85WHZsmXpiSeeyLtL4gpQjQABAgQIFF0g0g5s3769w38Al8YetafOPvvsfFVf6b5q/ox/eHc1phNOOCGde+65+UKISgRWqjkfxyZAgAABAgQI9FQgdqjGxaBxgWZpB0ZP0m9GcCOCHXFbvXp17j6+Y0Xa7euuuy5NmDAh1xc988wzc63PSl1Y2tN5ej4BAgQIENhZoBCBjMjNHbf2V1bGTozhw4fn/I07D7qvv48ZMyYdcsgheUvlzlcnxBUMcdVpXH0Q+bz70uLKhsi7ff/996elS5fmky7xe3wREMjoi6zXEiBAgECtBOIftrH7IYL9HbXY5Thjxoz8Wd3R49W4Lz6343N106ZNZQ8fY4odkIIYZYk8QIAAAQIECDSgQKTFjgswIy33o48+mpYvX/6e8yi9nVZ8x3rxxRfzLS7IfOSRR3IN06hdFhknBg8e3NtDex0BAgQIEKiIQCECGbNmzUorV65MUYhq5xZXAURO7Uq3KG4VgYyou7HziZD4UjBnzpwUdTIqkQLqtNNOy7U3YjdGzC22e8bvscsk8oZrBAgQIECgyAJxhV9c3df+87k05sMPPzwddthhKXZQ1qpF3Y4IsMSujI5apEGIz1n/2O5Ix30ECBAgQIBAIwpEzbAIXERtz0hbHRd1RE2MarVt27blnR4rVqzIaUYjkBE1zCK7RV8v+qzWmB2XAAECBJpfoO+JrPtoFFsZozbG2rVr33OkyNFYrbyMkT6qowLisWsiPqwr0WJHyZQpU9pOpsTJoLiqYf369ZU4vGMQIECAAIGqCsRuyc4+syZPnlyzlFKliZaCK6W/2/+M4Ers5lQXo72MvwkQIECAAIFGFIg0Updddln653/+53TFFVfk9NXVDGLsbBQBjagn+utf/zr9wz/8Q/r5z3+eooi4RoAAAQIE6iFQ90BG1I0opV5qDxAFp2L3RDXagQce2GEgI8YSJ27KFTXtyVgix2TsyoiARrR33nknXz1RqUBJT8biuQQIECBAoCcCO3bsyFfixT+ey7VJkyblvMnlHq/G/fEZXbQxVWOejkmAAAECBAgQiAs4/v3f/z1973vfy2mrN27cWHanbDW1IpPF7Nmz8zhiPIsWLcrnN6rZp2MTIECAAIH2AnUPZERdinIR/SjyXetARqSqiDoZr7zySnurXv19/PHHp3HjxuV6HHGAyDUZX0biygaNAAECBAgUVSByJEcap3IpnKIW1NixY9OgQYNqNoUIrnT1GV2P4ErNAHREgAABAgQItIzA3Llz03/8x3+kX/7yl+m5555LO9f3rAdCXJgZ44jdGf/6r/+a5s2blyLllUaAAAECBGolUPdAxrPPPps2bNjQ4XwjkFGt/IuROzuKlHbUYldGuTF19PzO7os5TJ8+PUUqq2ix0yOuZIgTRBoBAgQIECiqQCmFU7n6GKNHj07Dhg2raQqnqI3xwgsvlA2uRDrKSC1VrbSURV0r4yJAgAABAgSaSyAugPzBD36Qi3rHTtRy38fqMeu46PPmm29O/+///b+0YMECOzPqsQj6JECAQIsK1DWQsWXLlnxCf+vWre/h79+/f079VK0c11EfI1I/ddQikBFbNivRdtlllxSFsXYuHn7fffel5cuXF+rLSCXm6hgECBAg0DwCkTKgs/oY9dj5EMGVGFO5f8xHEKPWwZXmWXEzIUCAAAECBIogsHLlyvSTn/wk3XLLLSlSOhWxvfrqq+m2227L41y2bFkRh2hMBAgQINCEAnUNZKxatSqncIotiu1b7MSIQEMEAqrRImVVuUBGXO0ZJ0oihUUl2oQJE9JRRx2VIg1HtPhi8vjjj1csWFKJMToGAQIECBAoCZTqY3SWZrEegYyuio/XY0wlMz8JECBAgAABAn0V2Lx5c/rFL36Rd2JUKktEX8dU7vVxYeq1116brr766vTSSy+Ve5r7CRAgQIBAxQTqGsiI/Irldj6UAhkVm2m7A3UWyIj6FRFsiKsMKtEihdXJJ5+cRowYkQ8XuS1jV0bkHtcIECBAgEDRBCL9YQT133jjjQ6HVo/6GJGDWX2MDpfDnQQIECBAgEATCMR3nWuuuSb99re/TWvXrm2IGUXaqwi83HXXXRU7f9IQEzdIAgQIEKiLQF0DGXEiP6446KjFyf9qpZWK/joLZMTjcQKnUoGMON4pp5yS83bvuuv/kj/88MMp6oPUu2BXjE0jQIAAAQI7C3RVH2PMmDE1T+FUKj5eLriiPsbOK+h3AgQIECBAoNEEopbmlVdemQtqd5S1oqjzWbFiRbrsssvS/PnzFf8u6iIZFwECBJpEoK6BjEhZEbsfOmp77LFH6tevX0cPVeS+OH5ngZIYW0e1O3rb+fDhw9PUqVPT0KFD8yHi+BHMWLduXW8P6XUECBAgQKAqApHCqbPPp3qkcIrdGDEm9TGqsuQOSoAAAQIECNRRIFIz/epXv0pz585Nb775Zh1H0vOu47vZY489ln7zm9+kCGpoBAgQIECgWgJ1DWRE4apyV1ZGEKO0e6Eak48gRmfH72xsvRlPzCeKfo8cOTK/PD7s7733Xh/0vcH0GgIECBComkCkNYgdGZ3VxzjyyCPTgQceWLUxdHTgCK5E+oJyrR7BlXJjcT8BAgQIECBAoLsCsfvi+uuvT3fffXeKuhON2LZv357rekQK7UpmtmhEC2MmQIAAgeoJ1DWQEWml4gOvoxZBhmoV+o7+4vid9VHpQEb0OWXKlBSFv2M3SLQ4KbNw4cL02muv5b/9DwECBAgQqLdAVymcSvUx9ttvv5oNNf6BH8EVgYyakeuIAAECBAgQqJHAggUL0k033ZTTW9eoy6p0s2bNmnTVVVelJUuWVOX4DkqAAAECBOoWyNixY0eO1JfbNtlZkKFSyxa7JMoFS6oRyIiTPjNmzMh5xWMOkbpq1qxZafXq1ZWakuMQIECAAIE+CXRVH+Pwww+veX2MSLcQdbXKpaNUH6NPS+7FBAgQIECAQJ0E4rzIDTfckObNm9cU9TPnzJmT7rnnnk539taJWrcECBAg0AQCdQtkxC6EOCFRLtd1uQBDJc07Sy9VjUBGjD3SS40ePbptGg888EDDFfNqG7xfCBAgQKDpBBYtWpTWr19fdl71SCv1zDPPqI9RdkU8QIAAAQIECDSqwJNPPpkiHVNnKT0baW5xnufGG29MS5cubaRhGysBAgQINIhA3QIZsRshrj4o12qxIyOCJeUCJhFk6Wx85cbd1f1xJesxxxyTSik5YjdGFPTasGFDVy/1OAECBAgQqKpAqT5G0VI4RSrGzoIr6mNU9W3h4AQIECBAgECVBO6444709NNPp/gO1izt8ccfz8W/G7XeR7Osg3kQIECgGQXqFsiIIEHkvC7XahXIKNd/V+Mr97qu7o/6GKeeemo69NBD81Ojn7gCY+XKlV291OMECBAgQKCqAkWsjxE7N9XHqOqyOzgBAgQIECBQB4FIm/nwww93erFGHYbV5y5ff/31dO+99+a0oH0+mAMQIECAAIGdBFo+kFFuR0a1Ahlhf+KJJ6YjjjgiRWqraI899lguiFWuXkh+kv8hQIAAAQJVFihifYy1a9emVatW5bpSHU1ffYyOVNxHgAABAgQIFF3g0UcfTcuWLatKJoh6z/3BBx9My5cv7/Ti1XqPUf8ECBAg0HgChQ1kdJb2qRbM1QxkHHDAAen4449P8TNa1ON46KGHUhQz1QgQIECAQL0EipjCKepjRDCjXE2tehQfr9f66JcAAQIECBBoHoFHHnkkRarpZmzx3S2+V27evLkZp2dOBAgQIFAngboFMiIHZL1TS3Vm3tX4OnttV49F2qzTTz89jRo1qu2psfVyxYoVbX/7hQABAgQI1FKgyPUxOqvZEcXHSxcG1NJLXwQIECBAgACB3gpEjcxnn302NWsdifheuXDhwrRu3breEnkdAQIECBB4j0BdAxnlrq58zyirdEf0X24MEWQp91glhjN58uQUJ1/23nvvfLj4EvPkk0/W9YtMfNmIwuO33nprTuMRf2sECBAg0BoCUR8jUji98cYbHU544MCBOS3ifvvt1+Hj1bgzPoeLuEukGnN1TAIECBAgQKB1BOIixjjJ38z/5o5dta+88krrLKqZEiBAgEDVBf63SEPVu3lvB12ljuosyPDeo/Xuns6CFeVqZ/Sup/e+Kk4InXTSSbnQ99KlS/OJowceeCCdeeaZOcDx3ldU95642vV3v/tduv7663OxsUsvvTRdcskl6aCDDqpux1U6eqxtnJR77bXXqtSDwxIgUC+B9evXN2Uu4Xp5lvp9+umn8z+oywXx65HCKdZ65cqVndbHiJpTUSdD67vAtm3bsvegQYP6fjBHIECAAAECBMoKzJkzp+l3K0SwZtGiRWn//fcv6+ABAgQIEGgOgSFDhqTBgwe31YOu1qzqFsiIQtfVDhZ0hRZXP5Q7YdOvX78UKaCq2U499dR09dVX5wJfMY7Zs2fn38ePH5+i/1q1efPmpV/+8pfplltuyVfjvvXWW2natGk5CNCogYy4ovgnP/lJiiJjGgECzSUQJ7bl2638msY/NCNwUK5NmjSp5imclixZkv+RXy4VZT2CK+V8muH+5557Ln33u98VGGqGxTQHAgQIECi0QNSQeOGFFwo9xr4OLtJn/ehHP0pXXXVVXw/l9QQIECBQcIFPf/rT6SMf+UgOZlRzqHUNZHQWKCgXYKgkRmc7MmoRyBg5cmR63/vel9M5xZbLNWvWpEcffTQXAq92ACG+OEUaqQiexNUgjz/+eC46XnKvZrHzSq5huWNFkGrBggXpnnvuKfcU9xMgQIDAXwTi/zMXL16cOqtFETvc/vjHP6YIfteqRTD6+eefL9ud+hhlaXr1QAQI47uBRoAAAQIECBDoq0CcU4h/k2sECBAg0PwCkXXozTffrPpECxvI6CzIUCmVzvqIHSOdBVoqMYbdd989nXbaaemOO+7IuSNjPFH0+0Mf+lBFUjrFFRARIIlUEa+++mq+qjWCJZEDPfJVLl++PJ8g2rRpU1Pn5qzEWjkGAQIEmlngpZdeyp8H5epjxNwj6B3pp6r92bizc3w+dZZbuR67RHYen98JECBAgAABAgQIECBAgACB2gjULZDR1Y6HuDo0TuxXs8Xug9IOhPb91CKQEX0ef/zxady4cTl3ZKR0mj9/fr4q9uijj0577rln+2H16O8IkFx77bU5VUhExV5//fWcLipODEVgI44fO0IioNHs21p7BOfJBAgQaDGB2I0RBSfLfSYGRzwet6K0ffbZJxcfVx+jKCtiHAQIECBAgAABAgQIECBAoHoCdQtkxEn0CBaUa9UOZESQpLNAyR577FGTOhVR+Gr69OnpoYceylfDRoDhkUceyTs1Ro0aVY6nW/dHHvlIyxFX2kYL82HDhqUpU6akiRMn5joYEyZMSN/5znfS6tWrOz2B1a0OPYkAAQIEGlLgqaee6jRIMXny5Py5sffee9dsfhFkf+KJJ8rWQ4ki3wcffHCn3yVqNlgdESBAgAABAgQIECBAgAABAlUVKB9JqGq3KcWVlBEsKNcin2JnV4aWe113749ASWfHjys8Oxtfd/vp6nlR8Hz48OHZo/TcqF8Ruyf62k4//fQ0aNCgFJYDBw7Mfey333658MrQoUNz+qoIbsR9GgECBAi0pkCpPkZnKZwuuOCCdPHFF6cBAwbUDOm///u/UxT7LlfYPepjHHjggTUbj44IECBAgAABAgQIECBAgACB+gnULZDRv3//fGI96kRESqX2rdrFpmM3RmeBjAgAxEn+WrTIOb5zgdW4yjR2avS1HXPMMfkK2shnHkGZ2AETgRONAAECBAiUBGLXXtROinpKHbUIdkcawkh5GGkha9Hi83nLli05DWK5/tTHKCfjfgIECBAgQIAAAQIECBAg0HwCdQtkxAn1UrCgo0BG3BdXiVardbUjI07c1CKQ8fzzz6e5c+emKMwdLa4unTZtWoodE31tMf5azKGv46zG6yN4M2LEiDR+/PhqHN4xCRCoo0D8/+XGjRvzbrM6DqNpuo5gemf1MUopnGoVxAjYNWvWpBUrVpQNrqiPUZ2331577ZW/h7Tqd4fqqDoqAQIECBB4r0DsOI3dsB2dC3nvsxv3nkMOOSRnh2jcGRg5AQIECHRHIM5j1+KcQd0CGYFQCmREXYj27Y033qjqSapI3RQFsMu1CGTUIrVU1LBYunRp21yj+PfYsWNT7FTRei8QJ2G+/OUvp49+9KO9P4hXEiBQSIGrrroqXXfddfkff4UcYIMNatGiRWn9+vVlR12PnQ+l4Eq5Wlal4EpntbbKTsgDZQXGjBmTvvKVr6RI26URIECAAAEC1ROYNWtW+sUvfpGiJliztsgy8Td/8zcpznFoBAgQINDcAocddliKMg3VbnUNZAwePLjsjoGtW7dW9eqETZs2pQiWlGsxtrgysZpt+/bt6f77789FvqOfiFzNnDkzxeJrfRMIy6OOOqpvB/FqAgQKKfDwww+nSE+o9V2gVB9j5/SG7Y8aJ7UPOOCA9ndX9e8IrsQukXJNfYxyMn27Py7imDp1apo+fXrfDuTVBAgQIECAQKcCceHdbbfd1tSBjJEjR6YTTzwxnXLKKZ1aeJAAAQIECHRXYNfuPrEazxs2bNi7ilzv3Ee9AxmxBTJSV1SzPfXUU2nhwoVthb1jJ0bkIK9FBKua83JsAgQIEGgMga7qY8Tn0eGHH17Tz6XYhRGfj50FV+qxS6QxVtQoCRAgQIAAgUYQiO9XQ4YMaeoalpWq/dkI62mMBAgQIFAbgboGMuLDO3Y+dNSi2HfsWKhWnYzIr15uR0ZczT9q1KgUVyZWs9177735CoxS0fG4UiHSOkR9B40AAQIECFRboJTCqfQ51L6/UgqnWuS6LPW9du3aXHw8LmjoqKmP0ZGK+wgQIECAAIFGEoggRpwPqfbFk/U0iQwJUQNUI0CAAAEClRKo6xnz+OCOYiBR+LujVs1dGZ0FMiKFxkEHHVTV1CVxpWmkR4kTNtHiC8xJJ52UYieIRoAAAQIEaiEQOx86q49Rj7RSEVyJz8ZywZX47nDwwQcn9TFq8Q7RBwECBAgQIFANgbhIZMqUKfk7TTWOX+9jRqAmvkeWu3C13uPTPwECBAg0pkBdAxmRsiLyJg4cOLBDvc6CDR2+oAd3Ro2Mbdu2dfiK0aNHpyhMVS7A0uGLenjno48+mpYsWdJWcPzYY49NEyZMKFszpIeH93QCBAgQINCpQHdSONUjkFHE4uOdQnqQAAECBAgQINALgagfEfUxq3neoRfDqshLpk2blrNNuPCkIpwOQoAAAQJ/EahrICNSKEVdiHJR+rhK9PXXX6/KYnUWJIn0TuXGVInBxMmjSCu1YsWKtsOdfvrpKQIoGgECBAgQqIVAd+pjRGqpWtZt6m5wRZqCWrxD9EGAAAECBAhUUyCCGMcdd1yulVHNfmp97AhenHHGGTldd6371h8BAgQINLdAXQMZQTtu3LiyH9zr1q1L5XJk93VZYkdGRzUy4mqIaudyXLZsWXriiSfS5s2b8zRGjBiRt5XGLhCNAAECBAjUQqCr+hgR1K91Cqc1a9aklStXlv3sVx+jFu8MfRAgQIAAAQK1ENh9993TBz7wgVwroxb91aqPOJ8SAZpBgwbVqkv9ECBAgECLCNQ9kHH00Ufn9FIdFRKNQEatd2QceuihadKkSVW9AvWBBx5IEcyIK0+jzZgxI+9Mse2yRf6rM00CBAgUQKCIKZy6Cq5EfYxhw4apj1GA948hECBAgAABAn0XiBTTUSuzmhkh+j7K7h8hzmmcf/75uT5GZODQCBAgQIBAJQXq/skS6SFOOOGE1FGaiLgy87XXXqvkfPOxYpfHhg0b0vbt299z7OnTp+dcjh0FVt7z5F7cEYGZWbNmpdWrV+dX9+/fP5122mkpAigaAQIECBCohUAE0hcvXpxefvnlst3Voz5GV8XH40KDAw44oOyYPUCAAAECBAgQaCSBqBd68cUXp4kTJzZFrYypU6emSJs9dOjQRloGYyVAgACBBhGoeyAjAgbvf//7c/CgvVnUkIiTLKWdC+0f7+3fkbaio+PG1QNxNUQ1gwrz58/PJ49KhcbjRNHkyZPLFjzv7Ry9jgABAgQIlBPoqj5G/KM66mPst99+5Q5R8fvVx6g4qQMSIECAAAECDSDwvve9L33wgx/Mu04bYLhlhxgpQD/xiU+kyLpRrQtDy3buAQIECBBoCYG6BzJCOU7mx5bK9gVFo4bEs88+m7Zs2VLRxXjmmWfSK6+88p5jRuHxuNozTuBUq0WR7+XLl7cd/tRTT81FvqM2h0aAAAECBGohUMQUTmvXrk2rVq1SH6MWbwB9ECBAgAABAoUR2GuvvXIAIFJO77nnnoUZV08Hct555+WLVJslTVZP5+/5BAgQIFB9gUIEMvbee+90xhln5FoZO085rs5csGBBipMblWxPPvlkh8c8++yzc62KagUVXnzxxfTYY4+1BVGiuHd8WYliqhoBAgQIEKiVQKRwijpU5Vo90kpFcCU+7//0pz91OCz1MTpkcScBAgQIECDQBAKjR49On//85/NFntU6H1FNptiF8alPfSrv6G3E8VfTxrEJECBAoHIChQhkxHROPvnkvBtijz32eNfsZs+enXcwVCq9VAQTIr3Txo0b39VP5KQ866yzqhpUeOihh/IOkx07duS+p02blsaNG5eiToZGgAABAgRqIdCdFE71qEVRxOLjtVgPfRAgQIAAAQIEojB2ZGv45Cc/WdVU19WQjnoYn/vc53Ka7kbeUVING8ckQIAAgcoKFCaQEcU7P/axj+UdETtPMdJMPPjgg2n9+vU7393r36PQdqSWeuutt9qOEbUxPvKRj6QoTFWtoEL0d9999+W0GdFxfFGZOXNmGjVqVNs4/EKAAAECBKotsGbNmvxZVKrV1L6/etTHiF0Y3Sk+fuCBB7Yfrr8JECBAgAABAk0hEDUmIpBx/vnnp8je0AgtAheXXHJJuvDCCxtmzI3gaowECBAg0LFAYQIZsf3wzDPPTOecc04aMmRI22hj98JNN92UFi5cmN5+++22+3vzS5y8ueWWW1IUEd+5xZUPkc+xmidI4gRNpMl67bXXctexdTTqgtSykOrOc/Y7AQIECLSmQFf1MeLzadiwYSmC/LVqkVJq5cqV6mPUClw/BAgQIECAQCEFDjnkkPTlL385p94eMGBAIcdYGlRcnBkBjM9+9rN5F4mUUiUZPwkQIECgWgKFCWTEBAcNGpQ+85nP5DRTO29JjCDA7373u/cEIHqCEqk0rr/++hQ7MrZu3dr20vHjx6cvfOEL6Zhjjkn9+vVru7/Sv8RujCjyXcr9fdJJJ6XI913NPis9B8cjQIAAgcYXKGIKp66CK+pjNP77zgwIECBAgACB7glE2uuvf/3r+bxI+9Tb3TtC9Z8VQYu4CDWCLjHeWl4AU/3Z6YEAAQIEiipQqEBGIEWB0b/9279NJ5xwQtp9992z2/bt29MNN9yQrr322k6Lk3aGfPvtt6crr7wyPf/8821Pix0YX/ziF9P73//+FKk0qtWiHsecOXNS7AiJFsXNTznllDRixIhqdem4BAgQIEDgPQIR1I+LAzpL11iPQt9RfLyzMdWjZsd78NxBgAABAgQIEKiBQFzseNxxx6VvfetbeWdGnD8oUovxRUaLb3zjG3mcO1+EWqRxGgsBAgQINJ9A4QIZEcmfMWNG+uY3v5mmT5/eVrMi0k5cdtll6de//nWK37vbIh3VHXfckX7wgx+kxx9/vK02RgQRvva1r6VPfOITKYpTVbM99thjuS5HBGSiHX300Tlgs9dee1WzW8cmQIAAAQLvEoiAeqRwKlcfI1IYjB07Nu+QfNcLq/hH7FSMQMbLL79ctpcIrlQz/WPZjj1AgAABAgQIEKiDQNTujCwO3/72t9PHP/7xd6XfrsNw2rqMOh6XXnpp+sd//Mc8vqIFWdoG6hcCBAgQaEqB2iXA7gFfRPTPOOOMvHPhhz/8Ybr77rtzbYlly5alH//4x/kkTORhnDx5clugo6PDxwmb6667Ll111VU5iFFKKTVhwoS8BTKKix988MGpmrkc4wTNvffe+660WKeddlqKHOTV7LcjD/cRIECAQGsLdJXCqR71MdatW6c+Rmu/Lc2eAAECBAgQ6EAgghmxM2Pw4ME5fdMVV1yRL5CMOqL1aHFhyac//el0wQUXpCOOOKLTczH1GJ8+CRAgQKD5BQoZyAj2Uvql+NCOHQxXX311eu655/ItdmU88cQTOT3TlClTclDg0EMPTVFsKnZrrFq1KqfOeOihh9IjjzySXnjhhbwTI640/cAHPpA++clPpijwHUXFqx1MiLoYsRNk06ZN+d0UgZP4MlLtXSDN/9Y1QwIECBDoqUBXKZzqkVbqmWeeyWkjI+1VR23MmDE1Lz7e0TjcR4AAAQIECBCotUCkcYq6np///OfTUUcdla655pp0yy239ChLRV/HHOcuPvjBD6aLLrooZ8+I8yhx7kUjQIAAAQK1FihsICMgokbGsccemw466KB0/PHHp3vuuSfdf//9OQVF6Wc8FsGOfffdNwclXn/99bR58+acazuu8ox0Tvvtt1868cQTcx7H2A0RVw/UKq1TFBePnSSR4ipa1P4YN25cW/2PfKf/IUCAAAECVRaIz6HupHA64IADqjySdx++iMXH3z1CfxEgQIAAAQIE6isQ38/OOuusfC4jzmlEDdH77rsvbdiwoWoDi/Mo0deFF16Y00gddthhqajFx6uG4MAECBAgUCiBQgcyQip2TAwfPjzFB3cENeIqgEiN8fDDD6cFCxakl156KaekiABGXM0ZaakisBFXCUTqqbhq4ZhjjslbMQ8//PAUOR2rvQujtMKRg/yBBx7IO0Livqj/MXPmzDRy5MjSU/wkQIAAAQI1EYjdirGzsZRmsX2nEeCPQPugQYPaP1S1v0v1MTor9F2PXSJVm7ADEyBAgAABAgR6KRAXekYts0MOOSRFZoo4J3LnnXfmiz3jIs5yu1t72l1cLBr1Oc4555x8IWZcCBrZLTQCBAgQIFBvgcIHMkpA8aEdBbrj9r73vS+dfvrpeTvla6+9louWvvrqqylOiERKqrjFCZm4giCKg8ZWyMgvWev25JNP5qtfS0VV4wRRBFYimKIRIECAAIFaCsybNy8H1uOzsqMW/yiOz8z4vK1Vix0iixcvLhtcic/uqNsRn+caAQIECBAgQIDA/6bhjos24zvSjBkz0rPPPptih+v8+fPzLS5eicwU3W3x3S92W0RK77h4NI4dAZNRo0blAEatLgTt7ng9jwABAgRaV6BhAhk7L1EEKiJndtxKrVTwKnJIFuWDNop8R42M0kmjqMsRY5ZPsrRqfhIgQIBALQTis+jGG2/MOxjL9RdB9lqmC4idIdddd10O+Je7gjDGE5/58dmuESBAgAABAgQI/J9A7JKInatRQ+Pkk09Oa9asyRd7rl69Otcfu/3229OcOXNSXPzZUYtdF2eeeWaKzBWRBSPqecYtdudGNgmNAAECBAgUTaBpPp2K9kEbXyIeffTR9PLLL+c1L9XpGDZsWNHeA8ZDgAABAk0m8Oabb+Z/tK5duzZFMe2bbroppx4o9w/ZmP7KlSvTzTffnHc0xhV4UXuqkrszokZHBC8i9UEEViIVQuR37iyt1BtvvJF+//vf5x0ZEydOzKkjY5dGUS5YaLK3jekQIECAAAECDSgQF3xEau24TZo0KcX3wMgKsWnTppyOu9z3v0hP9alPfSrv7IjvfL5fNeDiGzIBAgRaTKBpAhlFW7fIV7lkyZL01ltv5aFFOqwJEybkGh5FG6vxECBAgEBjCkRw4JZbbkmzZ8/OAYI48R/3xS7F+PyJ+lERUI8UA1u2bOl0klEs8te//nWaNWtWvhIvak7FRQKxizCCBwMHDkyf+MQn0vHHH9/lzo2oD/WHP/wh9xv/kI4dF3ErjSn+Yb1ixYq0cePGTvM5x/MjCLNw4cKcJjLGFP/QjjHFz0gjGfmbzzjjjJrW9ugU0oMECBAgQIAAgToKxPe20ne3zrJBxPeo2JEbz9UIECBAgEAjCAhkVGGV4gTSvX9OKxUnjkotanrEFa4aAQIECBColEDsZvif//mfdOutt+YdGBHEKJemqTt9RiqCuJVaXJkXt7jSL/6RG7sLS+kHSs9p/zPSKV5//fXpyiuvzIGK+EwspVhs/9zu/B2BmNLuxnh+aUylYEYERWpdpLw74/YcAgQIECBAgEA9BUrfmeo5Bn0TIECAAIFKCghkVFLzL8eKNB4LFixIUYA82siRI3OB8v333/8vz/CDAAECBAj0XSBO5kfworTrIXZQlG6xY6H9LR6LoES8rrRLIl5fCoDEz9gFESkJIgARP+PvuD92ZER6xLh6r7NW+kdzvDb6KI0nfrYfT/y985jiuDuPJX6PW2mHSWk8Maa4L2poRJHyGJtGgAABAgQIECDQfYG+XGjS/V48kwABAgQIVE5AIKNylm1Huv/++9Nzzz3XdlXsiSeemI444ojCFivt6AtM3NfR/W2T9AsBAgQI1F1g8ODB6e///u/Txz/+8fyZE0GECFKUghU7/x73lR6Pn6X/n4+fEXAo/dw5wBG/lwILUXR78uTJuXZGVxP/whe+kGbOnJkDIaU+Yyztx1O6L37G86KVxlIaT+lnaRyl4EY8L3aJxG4M9ae6WhGPEyBAgAABAq0mUPpuVW7e8R0rbhoBAgQIEGgUAYGMCq/U5s2b04MPPphefPHFfOS4WvTUU09Nhx56aIV7qszhtm/fnq+2bf8FJvKsx9WuGgECBAgUVyB2NEybNi3fijTKI488MsVNI0CAAAECBAgQqI9ABDK6CmbUZ2R6JUCAAAECvRPYtXcv86pyAvPmzUuRWioCBNEmTZqUbwMGDCj3krreHwVin3/++feMYf78+WnZsmX5atr3POgOAgQIECBAgAABAgQIECBAoGEF2l/M2LATMXACBAgQaBkBOzIquNTxRSCKfK9YsaLtqKeddloaM2ZMXa6EeP3119PixYvThg0b2lKGxC6LyKW+cePGPM4IZETgpX1bvnx5+rd/+7c8nyjsOmTIkJwXPa7+LaUAiaKv48ePT4MGDWr/cn8TIECAAAECBAgQIECAAAECdRLoajdGnL8QzKjT4uiWAAECBHolIJDRK7aOX7Rq1aoUOzIicBBt6NChafr06enAAw/s+AVVvnf9+vXp8ssvT4899ljuqZT3vBTMiDRYW7Zs6TCFVBRUffjhh3MgJAIVUdx15yBGfCmK3SaRm10go8oL6fCLMVNXAABAAElEQVQECBAgQIAAAQIECBAgQKAHAlJL9QDLUwkQIECgIQQEMiq4TLG7YenSpbkwahz2uOOOy0VIoxhpPVqkt4qi40899VQOQkQgYrfddmu7RQAidlpEAdhSYdgYZ6m4axRUjaBH3CLoET/feuuttp9R/2Pr1q31mJo+CRAgQIAAAQIECBAgQIAAgV4K2I3RSzgvI0CAAIG6CQhkVIg+imM/8MADbfUmIv3SzJkz02GHHVahHnp+mOHDh6dvf/vb6eWXX24LVMS42t/iSo1SuqjSl5nS7o34u/T7zj8jyBGBkHHjxvV8YF5BgAABAgQIECBAgAABAgQIVE1Aaqmq0TowAQIECNRJQCCjQvALFy5MixYtatuhEHUljjnmmBR1JOrV9tlnn3TKKafUq3v9EiBAgAABAgQIECBAgAABAnUS6CqYUadh6ZYAAQIECPRKYNdevcqL3iNw33335TROpR0NEUCIYEbsdNAIECBAgAABAgQIECBAgAABArUSEMSolbR+CBAgQKBWAs6yV0A6impHYez4GW3AgAHp5JNPToccckgFju4QBAgQIECAAAECBAgQIECAAIHKCZQuwqzcER2JAAECBAhUV0AgowK+jzzySFqyZEl6880389EipdTEiRPTXnvtVYGjOwQBAgQIECBAgAABAgQIECBAoPsCXe3IiECGYEb3PT2TAAECBOovIJDRxzWIotf33ntvWrlyZduRTj/99DRq1Ki2v/1CgAABAgQIECBAgAABAgQIEKiVQAQyugpm1Gos+iFAgAABApUQ6HEgo33Nh/i7lT8cn3322fTEE0+kLVu25PUYPnx4mjZtWho6dGgl1scxCBAgQIAAAQIECBAgQIAAAQIVFbAbo6KcDkaAAAECNRDocSAj6j/079+/bWjx9+677972d6v9ErUxVqxYkd5555089enTp6cjjjgi7bbbbq1GYb4ECBAgQIAAAQIECBAgQIBAAQS6uuBUaqkCLJIhECBAgECPBHocyBg8eHDac889cyfxwTho0KC2v3vUc5M8eceOHW1BjAjqnHXWWemwww5rktmZBgECBAgQIECAAAECBAgQINBoAnG+pqtgRqPNyXgJECBAoLUFerxt4Oijj04zZsxImzdvzgWtx48f39K7D8Iighd77713djnttNPSwIEDW/tdZfYECBAgQIAAAQIECBAgQIBAYQWklirs0hgYAQIECJQR6HEgI2pAfO1rX0sXXXRRrgMxduzYModujbsjjdTXv/719MlPfjKFzciRI1310BpLb5YECBAgQIAAAQIECBAgQKCQAl3txpBaqpDLZlAECBAg0IlAjwMZ/fr1yzsxJk6c2MlhW+ehqBcyYcKEfGudWZspAQIECBAgQIAAAQIECBAgUFQBqaWKujLGRYAAAQK9FehxjYzeduR1BAgQIECAAAECBAgQIECAAAECBAgQIECAAIGeCghk9FTM8wkQIECAAAECBAgQIECAAAECDSygRkYDL56hEyBAoEUFBDJadOFNmwABAgQIECBAgAABAgQIEGhOATUymnNdzYoAAQKtLCCQ0cqrb+4ECBAgQIAAAQIECBAgQIBA0wmokdF0S2pCBAgQaHkBgYyWfwsAIECAAAECBAgQIECAAAECBFpJQGqpVlptcyVAgEBzCAhkNMc6mgUBAgQIECBAgAABAgQIECBAIAtILeWNQIAAAQLNJiCQ0Wwraj4ECBAgQIAAAQIECBAgQIBASwtILdXSy2/yBAgQaEoBgYymXFaTIkCAAAECBAgQIECAAAECBAh0LCC1VMcu7iVAgACB4goIZBR3bYyMAAECBAgQIECAAAECBAgQINBjAamlekzmBQQIECBQcAGBjIIvkOERIECAAAECBAgQIECAAAECBHoiILVUT7Q8lwABAgQaQUAgoxFWyRgJECBAgAABAgQIECBAgAABAhUSkFqqQpAOQ4AAAQI1ExDIqBm1jggQIECAAAECBAgQIECAAAEC1ReQWqr6xnogQIAAgdoKCGTU1ltvBAgQIECAAAECBAgQIECAAIGqCkgtVVVeBydAgACBOggIZNQBXZcECBAgQIAAAQIECBAgQIAAAQIECBAgQIBA9wQEMrrn5FkECBAgQIAAAQIECBAgQIAAgaYQUCOjKZbRJAgQINBSAgIZLbXcJkuAAAECBAgQIECAAAECBAg0u4AaGc2+wuZHgACB1hMQyGi9NTdjAgQIECBAgAABAgQIECBAoIkF1Mho4sU1NQIECLSogEBGiy68aRMgQIAAAQIECBAgQIAAAQKtKSC1VGuuu1kTIECgkQUEMhp59YydAAECBAgQIECAAAECBAgQINBOQGqpdiD+JECAAIGGFxDIaPglNAECBAgQIECAAAECBAgQIECAwP8JSC31fxZ+I0CAAIHmEBDIaI51NAsCBAgQIECAAAECBAgQIECAQLcEpJbqFpMnESBAgECBBAQyCrQYhkKAAAECBAgQIECAAAECBAgQ6KuA1FJ9FfR6AgQIECiagEBG0VbEeAgQIECAAAECBAgQIECAAAECfRCQWqoPeF5KgAABAoUUEMgo5LIYFAECBAgQIECAAAECBAgQIECgOgJSS1XH1VEJECBAoHoCAhnVs3VkAgQIECBAgAABAgQIECBAgEAhBQQzCrksBkWAAAECZQQEMsrAuJsAAQIECBAgQIAAAQIECBAg0IgC3amR0YjzMmYCBAgQaF0BgYzWXXszJ0CAAAECBAgQIECAAAECBJpQQI2MJlxUUyJAgECLCwhktPgbwPQJECBAgAABAgQIECBAgACB1hKQVqq11ttsCRAg0AwCAhnNsIrmQIAAAQIECBAgQIAAAQIECBD4i0B3UksJZni7ECBAgEAjCQhkNNJqGSsBAgQIECBAgAABAgQIECBAoAsBqaW6APIwAQIECDScgEBGwy2ZARMgQIAAAQIECBAgQIAAAQIEei9gN0bv7bySAAECBOojIJBRH3e9EiBAgAABAgQIECBAgAABAgSqIiC1VFVYHZQAAQIE6iggkFFHfF0TIECAAAECBAgQIECAAAECBCotILVUpUUdjwABAgTqLSCQUe8V0D8BAgQIECBAgAABAgQIECBAoIYCUkvVEFtXBAgQIFARAYGMijA6CAECBAgQIECAAAECBAgQIECgGAJSSxVjHYyCAAECBConIJBROUtHIkCAAAECBAgQIECAAAECBAjUXUBqqbovgQEQIECAQIUFBDIqDOpwBAgQIECAAAECBAgQIECAAAECBAgQIECAQOUEBDIqZ+lIBAgQIECAAAECBAgQIECAAIHCC6iRUfglMkACBAgQaCcgkNEOxJ8ECBAgQIAAAQIECBAgQIAAgUYWUCOjkVfP2AkQIECgIwGBjI5U3EeAAAECBAgQIECAAAECBAgQaFABNTIadOEMmwABAgTKCghklKXxAAECBAgQIECAAAECBAgQIECg+QSklmq+NTUjAgQINLuAQEazr7D5ESBAgAABAgQIECBAgAABAi0lILVUSy23yRIgQKAlBAQyWmKZTZIAAQIECBAgQIAAAQIECBBoFQGppVplpc2TAAECrSMgkNE6a22mBAgQIECAAAECBAgQIECAAIEktZQ3AQECBAg0moBARqOtmPESIECAAAECBAgQIECAAAECBDoRkFqqExwPESBAgEBDCghkNOSyGTQBAgQIECBAgAABAgQIECBAoGMBqaU6dnEvAQIECDSugEBG466dkRMgQIAAAQIECBAgQIAAAQIEeiwgtVSPybyAAAECBOosIJBR5wXQPQECBAgQIECAAAECBAgQIECgkgJdpZaqZF+ORYAAAQIEaiGwWy060QcBAgQIEKiVwJw5c9IhhxyShg0bVqsu9UOgIQQefPDBtHr16oYYq0ESIECAAAEC1RWIHRl2ZVTX2NEJECBAoLICAhmV9XQ0AgQIEKizwNy5c9MLL7yQ9txzzzqPRPcEiiXwyiuvpLhpBAgQIECAQPMLqJHR/GtshgQIEGg1AYGMVltx8yVAgECTC7z22mspbhoBAgQIECBAgAABAh0L2I3RsYt7CRAgQKC4AmpkFHdtjIwAAQIECBAgQIAAAQIECBAg0GOBrmpkSC3VY1IvIECAAIE6Cwhk1HkBdE+AAAECBAgQIECAAAECBAgQqKSA1FKV1HQsAgQIECiCgEBGEVbBGAgQIECAAAECBAgQIECAAAECNRKQWqpG0LohQIAAgYoJCGRUjNKBCBAgQIAAAQIECBAgQIAAAQL1F5Baqv5rYAQECBAgUFkBgYzKejoaAQIECBAgQIAAAQIECBAgQKCuAlJL1ZVf5wQIECBQBYHdqnBMhyRAgAABAlUTGD9+fDrvvPPShg0bqtaHAxNoRYEJEyak/fffvxWnbs4ECBAgQKDlBKSWarklN2ECBAg0vIBARsMvoQkQIECgtQROPvnkNHHixLRjx47WmrjZEqiywN57750OPvjgKvfi8AQIECBAgEAtBKSWqoWyPggQIECglgICGbXU1hcBAgQI9FnggAMOSHHTCBAgQIAAAQIECBDoWEBqqY5d3EuAAAECjSugRkbjrp2REyBAgAABAgQIECBAgAABAgQIECBAgACBphcQyGj6JTZBAgQIECBAgAABAgQIECBAgMD/CaiR8X8WfiNAgACBxhAQyGiMdTJKAgQIECBAgAABAgQIECBAgEC3BNTI6BaTJxEgQIBAAwkIZDTQYhkqAQIECBAgQIAAAQIECBAgQKArATUyuhLyOAECBAg0moBARqOtmPESIECAAAECBAgQIECAAAECBPogILVUH/C8lAABAgTqIiCQURd2nRIgQIAAAQIECBAgQIAAAQIEqiMgtVR1XB2VAAECBOonIJBRP3s9EyBAgAABAgQIECBAgAABAgQqLiC1VMVJHZAAAQIE6iwgkFHnBdA9AQIECBAgQIAAAQIECBAgQKCWAlJL1VJbXwQIECBQCQGBjEooOgYBAgQIECBAgAABAgQIECBAoCACUksVZCEMgwABAgQqJiCQUTFKByJAgAABAgQIECBAgAABAgQI1F9Aaqn6r4ERECBAgEBlBQQyKuvpaAQIECBAgAABAgQIECBAgACBQgtILVXo5TE4AgQIEOhAQCCjAxR3ESBAgAABAgQIECBAgAABAgQaVaCr1FKNOi/jJkCAAIHWFRDIaN21N3MCBAgQIECAAAECBAgQIECgBQViR4ZdGS248KZMgACBBhYQyGjgxTN0AgQIECBAgAABAgQIECBAgEB7ATUy2ov4mwABAgQaXUAgo9FX0PgJECBAgAABAgQIECBAgAABAj0QsBujB1ieSoAAAQKFEBDIKMQyGAQBAgQIECBAgAABAgQIECBAoDICXdXIkFqqMs6OQoAAAQK1ExDIqJ21nggQIECAAAECBAgQIECAAAECVReQWqrqxDogQIAAgRoLCGTUGFx3BAgQIECAAAECBAgQIECAAIF6CkgtVU99fRMgQIBAbwQEMnqj5jUECBAgQIAAAQIECBAgQIAAgYIKSC1V0IUxLAIECBDotYBARq/pvJAAAQIECBAgQIAAAQIECBAgUDwBqaWKtyZGRIAAAQJ9ExDI6JufVxMgQIAAAQIECBAgQIAAAQIEGkpAaqmGWi6DJUCAAIE/CwhkeBsQIECAAAECBAgQIECAAAECBJpIQGqpJlpMUyFAgACBLCCQ4Y1AgAABAgQIECBAgAABAgQIEGgiAamlmmgxTYUAAQIEsoBAhjcCAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUFgBgYzCLo2BESBAgAABAgQIECBAgAABAgQqL6BGRuVNHZEAAQIEqisgkFFdX0cnQIAAAQIECBAgQIAAAQIECNRUQI2MmnLrjAABAgRqICCQUQNkXRAgQIAAAQIECBAgQIAAAQIEaiWgRkatpPVDgAABArUSEMiolbR+CBAgQIAAAQIECBAgQIAAAQIFEJBaqgCLYAgECBAg0CMBgYwecXkyAQIECBAgQIAAAQIECBAgQKDYAlJLFXt9jI4AAQIEei4gkNFzM68gQIAAAQIECBAgQIAAAQIECBRWQGqpwi6NgREgQIBALwUEMnoJ52UECBAgQIAAAQIECBAgQIAAgUYUkFqqEVfNmAkQINDaAgIZrb3+Zk+AAAECBAgQIECAAAECBAg0mYDUUk22oKZDgAABAkkgw5uAAAECBAgQIECAAAECBAgQINBEAlJLNdFimgoBAgQIZAGBDG8EAgQIECBAgAABAgQIECBAgEALCUgt1UKLbaoECBBoEgGBjCZZSNMgQIAAAQIECBAgQIAAAQIECIRAV6mlKBEgQIAAgUYTEMhotBUzXgIECBAgQIAAAQIECBAgQIBAHwRiR4ZdGX0A9FICBAgQqLmAQEbNyXVIgAABAgQIECBAgAABAgQIEKiegBoZ1bN1ZAIECBCoj4BARn3c9UqAAAECBAgQIECAAAECBAgQqIuA3Rh1YdcpAQIECPRBQCCjD3heSoAAAQIECBAgQIAAAQIECBAomkBXNTKkliraihkPAQIECHQlIJDRlZDHCRAgQIAAAQIECBAgQIAAAQINJCC1VAMtlqESIECAQLcEBDK6xeRJBAgQIECAAAECBAgQIECAAIHmEJBaqjnW0SwIECDQSgICGa202uZKgAABAgQIECBAgAABAgQINL2A1FJNv8QmSIAAgZYTEMhouSU3YQIECBAgQIAAAQIECBAgQKCZBaSWaubVNTcCBAi0poBARmuuu1kTIECAAAECBAgQIECAAAECLSogtVSLLrxpEyBAoIEFBDIaePEMnQABAgQIECBAgAABAgQIECDQXkBqqfYi/iZAgACBRhcQyGj0FTR+AgQIECBAgAABAgQIECBAgMBOAlJL7YThVwIECBBoCgGBjKZYRpMgQIAAAQIECBAgQIAAAQIECHRPQGqp7jl5FgECBAgUR0AgozhrYSQECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAOwGBjHYg/iRAgAABAgQIECBAgAABAgQINLKAGhmNvHrGToAAAQIdCQhkdKTiPgIECBAgQIAAAQIECBAgQIBAgwqokdGgC2fYBAgQIFBWQCCjLI0HCBAgQIAAAQIECBAgQIAAAQLNJ6BGRvOtqRkRIECg2QUEMpp9hc2PAAECBAgQIECAAAECBAgQaCkBqaVaarlNlgABAi0hIJDREstskgQIECBAgAABAgQIECBAgECrCEgt1SorbZ4ECBBoHQGBjNZZazMlQIAAAQIECBAgQIAAAQIECCSppbwJCBAgQKDRBAQyGm3FjJcAAQIECBAgQIAAAQIECBAg0ImA1FKd4HiIAAECBBpSQCCjIZfNoAkQIECAAAECBAgQIECAAAECHQtILdWxi3sJECBAoHEFBDIad+2MnAABAgQIECBAgAABAgQIECDQYwGppXpM5gUECBAgUGcBgYw6L4DuCRAgQIAAAQIECBAgQIAAAQKVFOgqtVQl+3IsAgQIECBQCwGBjFoo64MAAQIECBAgQIAAAQIECBAgUBCB2JFhV0ZBFsMwCBAgQKBbAgIZ3WLyJAIECBAgQIAAAQIECBAgQIBAYwiokdEY62SUBAgQINB9AYGM7lt5JgECBAgQIECAAAECBAgQIECg4QXsxmj4JTQBAgQItJyAQEbLLbkJEyBAgAABAgQIECBAgAABAs0s0FWNDKmlmnn1zY0AAQLNKSCQ0ZzralYECBAgQIAAAQIECBAgQIBAiwpILdWiC2/aBAgQaGIBgYwmXlxTI0CAAAECBAgQIECAAAECBFpHIHZavPXWW2nbtm1px44dZScej23ZsiXftm/fnt55552yz/UAAQIECBAogsAuf/6Q+1MRBmIMBAgQIECAAAECBAgQIECAAAECnQu8+eabacOGDWnNmjX5tnbt2rbfX3755RzEePXVV9Pjjz+e1q9f3+HB9tprr3T00Uengw46KPXr1y/1798/DR48OB144IHp4IMPzvfHz7jFfXvvvXfadVfXwnaI6U4CBAgQqImAQEZNmHVCgAABAgQIECBAgAABAgQIEOiZQOyUiEDFkiVL0jPPPJOWLl2aXnjhhbRp06b02muvtd1ef/31/PvWrVs73YlRrvcIUuyxxx5p4MCBacCAAfln/F66RUBj9OjRafz48WnChAlp5MiRKYIhGgECBAgQqJWAQEatpPVDgAABAgQIECBAgAABAgQIEOhCIHZVPP3002nBggVp4cKFaeXKlXlnRdwfOzEigNFZ2qguDt/jh6PeRgQtBg0alIYMGZKGDh2aDjnkkBzUOOqoo1LcRowYkXd19PjgXkCAAAECBLopIJDRTShPI0CAAAECBAgQIECAAAECBAhUWiCCEitWrMipoObOnZt3X7z44otp3bp1+Ra7LIqWFXznVFSRnip2axxzzDFp2rRpaeLEiWnfffetNJPjESBAgECLCwhktPgbwPQJECBAgAABAgQIECBAgACB2gpEyqjYaTFnzpz04IMP5rRRq1evTi+99FIuwP3222/XdkB97C1qaEQtjWHDhuWgxtSpU9NJJ52UJk2alNNT9fHwXk6AAAECBJJAhjcBAQIECBAgQIAAAQIECBAgQKAGAlHLInZd3HXXXWnevHnpueeeSxHAiHRRRdt10VuO2K0RQY1DDz00BzJmzpyZ4hZBDgXDe6vqdQQIECAgkOE9QIAAAQIECBAgQIAAAQIECBCoosArr7ySHnjggXTHHXek+fPn56LdGzduTI2286KnRLFTIwqDR4HwCGace+65acyYMWn33Xfv6aE8nwABAgRaXEAgo8XfAKZPgAABAgQIECBAgAABAgQIVEcgUkXdfffd6c4778wBjOXLl6fYlVHN3Rf9+vVLu+22Wy4IXi5QEjsjooB3tDfffDM/t5pjivEMHz48Fwg/9dRT0/nnn5+DG3vssUd14B2VAAECBJpOQCCj6ZbUhAgQIECAAAECBAgQIECAAIF6CkSx7ghe3H777TmAsWrVqrRt27aKDSkCA0OGDMnBgUjZFEGC0m3w4MHp1VdfTT/+8Y9zAfGOOt1///3T1772tXTsscfmXSGR2mrt2rUpxh2pruJn3OK+GHelghwRQIm0U+PHj887NC644IJ05JFHJgGNjlbJfQQIECCws8BuO//hdwIECBAgQIAAAQIECBAgQIAAgd4JvPzyyzmAcfPNN6fHHnssPf/88+mNN97o3cH+8qo4+X/QQQelcePGpYkTJ6bDDz88By0GDRqU9t1331xMe5999kmlWwQF1qxZk6655pqy/cZzTjjhhJzqKZ701ltv5Z0iEQDZ+bZly5a0bt26tGLFilyQfPHixblIeW/nFEXOY2wRIHn66afTvffem84666x00UUXpbFjx0o5VXbFPECAAAECAhneAwQIECBAgAABAgQIECBAgACBPghs3bo1n5S/9tpr00MPPZQihVRvT/bHMCJIEbsWjj766HwbNWpU3slwwAEHpNhxMXDgwJw+qtyQd9lll3IP5ftjh8XOuyyiZkX0GbedWzwndmRs3rw5RZAmbi+88EKKgMaTTz6ZbxGYiEBIT1ocN4IZESRZsmRJuv/++9OHPvShdOGFF6YRI0YoCt4TTM8lQIBAiwgIZLTIQpsmAQIECBAgQIAAAQIECBAgUFmBOCEfxbt/+9vfpj/84Q9510KkaepNi10Xkerp+OOPT5MnT06HHnpo3okRqZiiaHbszOhui0BGV8GM7hwrjhF9xy1SWEWLmhobNmxo21nxzDPPpLlz56aHH34479zYvn17dw6dnxN+UUekFNCYPXt2+qu/+qt0+umnvyeo0u2DeiIBAgQINKWAQEZTLqtJESBAgAABAgQIECBAgAABAtUUeOWVV9L111+fYhfGo48+mjZu3JgidVJP2oABA3LwYubMmWnKlClp1J93XsSOhKhhEXUwqtUigNDb1r9//3TwwQfnWxxjxowZOUVV7NRYtGhReuCBB1IEJGKnRnc9oij5ypUr8y6N2O0Ru1ouvfTSnEqrmg69NfA6AgQIEKi9QPU+FWs/Fz0SIECAAAECBAgQIECAAAECBKoqEEGA2IFwxRVX5GLecQI+din0pEWh7tNOOy2dc8456aijjkpjxozJxbsrddK+q90YMYe+BDN2nmvU6Yhb1PCYNm1aOvPMM9Ozzz6b00XdeuutadmyZd1OPRXpuBYsWJB3aSxcuDB97nOfS2effbbdGTuD+50AAQItKiCQ0aILb9oECBAgQIAAAQIECBAgQIBAzwQibdSNN96YrrzyyjRnzpy0adOmHgUEhg4dms4444x03nnnpalTp6bRo0fntE1dBR56NsqU00pV+pjdGUMENI488sgc1IgdJueee266++670+9///u0dOnSbgc0ohZHpOpatWpVioDGZz7zmRzs6Ul6re6M13MIECBAoHEEBDIaZ62MlAABAgQIECBAgAABAgQIEKiTQBTwjl0Y11xzTd5x0JNaEJEqKgIYUdD6uOOOyymkou5EvVqldmOUG3/sLIkaH4ccckgObMQujQhMRBAodmjs2LGj3Evb7o8C4pGqKlJ4RUHwL33pS2n69Olpr732anuOXwgQIECgdQQEMlpnrc2UAAECBAgQIECAAAECBAgQ6KFAnPSfNWtW+tnPfpbuvPPOXMehu7UfBg4cmKL+xYUXXphPwpd2YPRwCD1+ej12Y3Q0yNhBEcGMKBQeOzWiiPdtt92Wd2jEbovuOEatjZtuuik9//zz6Qtf+EL68Ic/nGJni0aAAAECrSUgkNFa6222BAgQIECAAAECBAgQIECAQDcFombDDTfckH7+85/nVFKvvvpqt165++6758DFxRdfnE499dQ0duzYFEGNorRK1sjozpxKAY0oEj5x4sQc3IndGRHUWLduXZeH2Lp1a3r44YdTpJxasWJF+vznP593tRQlYNPlBDyBAAECBPosIJDRZ0IHIECAAAECBAgQIECAAAECBJpNIFIa/epXv8rppJ566qnU3VRSEyZMSB/96Edzkeoo5L3ffvvlmhW19IkT/EU8yd+vX7902GGH5R0akyZNygXPr7766vTggw+mqD/SWXv77bdziqmf/vSn6cUXX0xf/epXc6H0ShVI76xvjxEgQIBA/QUEMuq/BkZAgAABAgQIECBAgAABAgQIFEhg5cqV6fLLL09XXXVVLjjdnZoOUQcjamBcdNFF6YQTTkgHHHBAihP3RWzVrpHR1Zz79++fC4IPHz48HX300enWW29NEdCIWhhdWb/00ku5Tsn69evTN77xjTRjxoy0xx57dNWlxwkQIECgwQUEMhp8AQ2fAAECBAgQIECAAAECBAgQqJzA4sWL03/913+la6+9tlv1MCJt0vHHH58uueSSdNZZZ6Wog1HvE+td7caodWqpcqsT6bamTp2aRowYkaZMmZJ+85vfpNtvvz1t2LCh3Evy/Zs3b0533XVX2rJlS/q7v/u7XEh9wIABnb7GgwQIECDQ2AICGY29fkZPgAABAgQIECBAgAABAgQIVEhg/vz56Yc//GEuRh0n07vauTBkyJC8A+PjH/94mjZtWl3SSHU09aKmluporHHfQQcdlFNxjRkzJgc0fvnLX6YIKHW2O2Pbtm1p9uzZKX5GLZNzzz037bPPPuW6cD8BAgQINLiAQEaDL6DhEyBAgAABAgQIECBAgAABAn0XmDt3bvr+97+fbr755vT/27vvKKnqNP/jz5JjkzM0OTSSk2QaFFRQUdQZwyI66BjHcUd3PGf/2t2zf+w5jsczZkfFLCgqKCoCJrLknHOGJufs7zefr1ttd1H3VoeqrltV7+85PXTdW3XD65ZT1ff5Ps9z7NixqBvs3LmzjRkzxpWTUt8HlUtKlhEtQJOI81CDdDUCV0ku9RlRL4wffvjBZV14Hc/Fixdt8eLF9r//+7+m31XaKyMjw+vpLEcAAQQQSGIBAhlJfPE4dAQQQAABBBBAAAEEEEAAAQQQKL7AsmXL7Pnnn3dBDJUt8hu64X7DDTfYfffdZwMHDjT1xohWyslve/FYF+14glJaKtK5165d24YOHerKTbVu3dqVm9qzZ0+kp7plagKuTJpnn33WVOZrxIgRZGZ4arECAQQQSF4BAhnJe+04cgQQQAABBBBAAAEEEEAAAQQQKKbA2rVrXTmpr7/+2qIFMapVq2Z33XWXy8RQk+pKlSoVc+/xeXmylZYKV1B2i3xr1KhhmZmZ9tprr7lSU7/88kv4U91jLV+5cqX97W9/c/1Jhg0bZvTMiEjFQgQQQCBpBQhkJO2l48ARQAABBBBAAAEEEEAAAQQQQKA4Alu3brWXXnrJpkyZErWcVP369W3s2LE2evRoUy8HZWYk6whiaalwSwVjFMS4++67rW7dui5jRuW/VEIq0lAwQ5kZCmZUrFjRsrOzrUKFCpGeyjIEEEAAgSQUIJCRhBeNQ0YAAQQQQAABBBBAAAEEEEAAgeIJ7Nu3z830//zzz+3w4cO+G9MN9UcffdTdVG/UqJErYeT7ggSvTObSUuF0Kt01fPhwVy5K5aPmzZtn58+fD3+ae6wyU4sWLbLnnnvOZWT06dPHypTh1ldELBYigAACSSZQKsmOl8NFAAEEEEAAAQQQQAABBBBAAAEEiiWgElLjxo2zCRMmWE5Oju+2FMT405/+ZPfee6/r26A+DEEfyV5aKty3SpUqNnjwYPuP//gP69evn29jdWVszJkzxzVuX7VqlXmVowrfB48RQAABBIItQFg62NeHo0MAAQQQQAABBBBAAAEEEEAAgRgKaDb/hx9+aO+//76pibRfmSWVk3rkkUfsnnvuMf0eLdMhhocZ1035nXNcd1yMjatM1IABA+zSpUt24cIF+/nnn93vkTZ57tw5mzFjhtWqVcuefvppa9OmTaSnsQwBBBBAIIkEgj+NIIkwOVQEEEAAAQQQQAABBBBAAAEEEAiugG7gf/nll/b222+b+mP4zdbXTfA//vGPKRfECO7ViX5k5cuXt0GDBtlTTz1lXbt2tdKlS3u+6OTJkzZp0iQXtFLAioEAAgggkNwCBDKS+/px9AgggAACCCCAAAIIIIAAAgggUECBuXPn2ltvvWWrV6/2bBqtTWVkZLjG3mPGjDH1xEi2TIxox6uATjJmZejaqJH3tddea3/5y1+sQ4cOvv1KDh06ZO+884599dVXUZu5a9sMBBBAAIHgChDICO614cgQQAABBBBAAAEEEEAAAQQQQCBGAlu2bLE333zT5s+fbyo95DVUwmj06NF2//33W9OmTX1vlHttI9HLU61HRrinemaoAfjjjz9urVu3Dl+d7/HOnTtdU3f1zfBqEp7vBTxAAAEEEAikAIGMQF4WDgoBBBBAAAEEEEAAAQQQQAABBGIlcOLECTczf9q0aabfvYZKFd1xxx32wAMPWKtWrXxLF3ltIxmWJ2s2Rl5bZc3ceuut7lop4OQ3lIHz6quvGs2//ZRYhwACCARboNDNvlU/8scff7SlS5e6Zkn9+/d3zZOCfZrxOzpF8zWbY82aNS6lsXv37qaZAQwEEEAAAQQQQAABBBBAAAEEEEi8gO5jfPbZZ+4nJyfH94Cuv/56e/DBBy0rK8vKlCn0LRPfbZfkylQuLZXXUX1M1Ij94MGD9u6779qBAwfyrs79XQ3CZ82aZR988IHVrl3bmjVrlruOXxBAAAEEkkOg0BkZa9eutTfeeMP+/ve/23/913/ZypUrk7auYiwu0eLFi+3FF1+0Z5991v7nf/4n7T1iYco2EEAAAQQQQAABBBBAAAEEEIiVwLx581zDZ5WW8mvu3atXL9fcWxMU1VQ6mUeql5bKe20aNGjggk8KQilLw2ucOnXKPvnkE/v222/pl+GFxHIEEEAgwAKFDmRs3brV1q1bZ3v27LEVK1bYjh07fBtkBfjcY3JoSk9cvny5c5g9e7YpTdVrBkBMdshGEEAAAQQQQAABBBBAAAEEEECgQAL79u2z9957zxYtWmQXLlzwfE3z5s1dEGPQoEFWqVIlz+elyopUKC2V91q0bNnS9cvo27evbxBK74dx48bZkiVLTFkaDAQQQACB5BEodCDjyJEjdvbsWXeGmslw7Ngx3yZZyUNRtCPNzMzMjfirzNT06dNt27ZtRdsYr0IAAQQQQAABBBBAAAEEEEAAgZgI6Eb1xIkT3d/pfn0xNIv/vvvuc82jq1WrFpN9J3oj6VJaKuSs8+3cubM99thjruy33/lrUq5KTGmiLgMBBBBAIHkECh3IOHfuXL6otR5fvnw5ec44xkfas2dPa926tZUtW9ZtWY2j1C/jzJkzMd4Tm0MAAQQQQAABBBBAAAEEEEAAgYIKqKTU559/7ipKeL2mVKlSdvvtt7sG3/Xq1fN6WtItT6fSUqGLo/sy2dnZdu+99/r2wFBmzldffWUzZsygxFQIj38RQACBJBAodCAjPP1Qj8OXJcF5x+wQ1Viqd+/eFvrCc/r0aZs7d67vF6WY7ZwNIYAAAggggAACCCCAAAIIIIDAFQKHDh2y8ePH27Jly/JNxgx/Yv/+/V2zaJUmUlAjXUaq3sepUqWKC0oNHz7catSo4Xk59f54//33XZ9Tv74pnhtgBQIIIIBAiQukz6d0nGg1y0ER/2bNmuXuYdasWa68VKp+Mcg9UX5BAAEEEEAAAQQQQAABBBBAIIACmnH/ww8/2MmTJz2PrkmTJjZmzBhTpYVy5cp5Pi8ZV/iVVtL5pPKkVDX/Hjt2rLuuoeoZka6h+p1OnjzZdu/eHWk1yxBAAAEEAiZAICMGFyQrK8s6duxoivxr7Nq1y5YuXWrqJ8JAAAEEEEAAAQQQQAABBBBAAIGSE9iwYYO7Qb1jxw7PChK6wf373//ehg4dalWrVi25g2NPJSLQoUMHF6Rq1aqV5/7U51SlxxYuXGj6nYEAAgggEGyBMsE+vMhHp5kDe/fudeWbcnJyTCmB+lGdQ30BqVmzptWuXdv0gdW4cWMrX7585A3FaGnFihVN6ag//vijrV+/3i5evGgzZ8606667zlR6ioEAAggggAACCCCAAAIIIIAAAvEXUA/PSZMm2aJFi3xvTg8aNMhuvfVW0+z9VBzp2CMj73VUoOr666+3JUuWmO4bHT58OO/q3N81EVXBjKuuuso0SZWBAAIIIBBcgaQKZOjDR/0n5syZYxs3bnQZD+pJocba+tEXFgUtFFioVKmSq4eokk99+vSxIUOGmNJGy5SJzykPGDDAWrRo4Y5L9RUV0d+0aZNpFoBfKmNw3xocGQIIIIAAAggggAACCCCAAALJJaCeGGrirPsHXkPBi7vvvts6deoUt3sEXvsOyvJ0KIWtSa6jR492fTB++umniL1SdP9G75drr73WMjMzrXLlykG5RBwHAggggECYQHzu6oftpLgPVaJp+vTpphqXK1ascKWbVOeyQoUK1qZNG+vSpYvLwLh06ZL7sqJsDQURjh8/7p6jD6zPPvvMpYyOGjXKBTRi3cSrYcOG1qNHDzfr4+DBg3b06FH7+eefXRBFARQGAggggAACCCCAAAIIIIAAAgjET0DVEb744gtbtWpVxJvW2rMyFUaOHGnKyAiVh47fESVuy+ncIyOvujItbrvtNtu6dav7ybsu9LsqfOh9o3s6Cm4xEEAAAQSCKRD4QIaaL7333nsukLFlyxY7d+6cKx11xx132LBhw6x169aufJOyMBRJV2aGghxKD1TmxpQpU1zj7W3bttnq1att/vz5dt9999nAgQNj+qWldOnS7ovQN998YwpkaHaDAiihwEkwLz9HhQACCCCAAAIIIIAAAggggEBqCOj+wezZs337Vaq/5c033+zKUKfGWUc+i3QvLRVSUYUMXW9V99i/f7+7ZxRal/ffWbNmucoaqrSRygGuvOfM7wgggECyCQQ2kKFAwLfffmtvvPGG6zehDAct69atm2vYpLS/5s2buzJSkdA1E6N3794uuPDWW2+5LzMKbijIoKDGww8/bLfccktMe1h0797d2rZt62Z/qFGU+mVoJogyRvggjHSVWIYAAggggAACCCCAAAIIIIBA8QVUavrrr7+2devWubLTkbaom9qabKi/3cuVKxfpKWmzLB1KS4UupkqJKStDFT50jybSOHbsmGliqu4jqUQ4AwEEEEAgeAKlgndI5jIrVEbqueees2nTprnZFPqQVRbFM88842octm/f3jOIoXPSF5SmTZvajTfeaP/5n//pIvDVqlVzGR1Lly61Z5991mV6KCIfq6Ht9+3bN7dZ2NmzZ10AZffu3bHaBdtBAAEEEEAAAQQQQAABBBBAAIEwAU0knDdvnmdTZz29Z8+ern9mrVq1wl6deg8pLfXbNZVFdna29e/f3zIyMn5bEfabsjIU7FAlEAYCCCCAQPAEAhnI+PHHH+2ll15yX0JUKkojKyvLHnroIbvhhhtcE++CUqqPhuocPv3006aG3HqsElQbNmxw+9CMDUXeYzX04agG46Gh8laqxah9MhBAAAEEEEAAAQQQQAABBBBAIPYC3333nauKoMyMSKN8+fKuN4Z6Jqg0dKoPSkvlv8LVq1d3179Vq1b5V+R5dPjwYdP9qD179uRZyq8IIIAAAkERCFwgQ026x40b54IYymjQUKbDmDFjXLPuqlWrFtpOX1I6d+5sjzzyiCmTIzQzQSWmFDBR1D20r0JvPOwFLVu2dPvSMWuo8fjixYt9Z4WEbYKHCCCAAAIIIIAAAggggAACCCBQQIEDBw64Hgj612uonJQqKOiGNsNc6e50c+jTp4/16tXL/O4r/fDDD6b7UkxGTbd3B+eLAALJIBCoQMapU6dcuafvv//e9HtoKMvhuuuus9q1a4cWFfpfBTNUmirvdlSuSvUR1YdDGRqxGJrlof00adLEbU6zQdT0e8eOHbHYPNtAAAEEEEAAAQQQQAABBBBAAIE8AvPnz3fZGBcuXMiz9LdfdT9g+PDh1q5dOytVKlC3QX47yBj/FprA6bVZ3Q9Jpz4ZclBZKVX5UL9Vr6HeqgsXLrRDhw55PYXlCCCAAAIJEgjUJ/jMmTNt6tSpriF3yKNy5crug0bpf9E+iEOv8fpXDbdHjhxprVu3zn2KAg3a74wZM2L2QaVZHjreMmV+7aWunhyq16kG4AwEEEAAAQQQQAABBBBAAAEEEIiNwMWLF105IL/JgwpgXH311YUqUx2bo0vcVigtFdlefTI6duzoyo5HesalS5eivp8ivY5lCCCAAALxFwhMIOPo0aM2efJklxmRN4VPzbi6du1qCmjEYnTq1Mk1+AqVftI2T548aRMmTLDVq1fHJH2wbt26Ll2xTp067pCPHz9umiGyb9++WJwC20AAAQQQQAABBBBAAAEEEEAAgX8KrFu3zlVa0N/1XuOaa66xNm3apEVvDC+DSMvTMSujZs2aNmjQIGvYsGEkErdMk1H1vqLptycRKxBAAIGECAQmkKGGSgsWLMhXUkoiym7IzMwsdjZGSLdixYqu+Xf9+vVDi9y/CmKoBNTBgwfzLS/KA6WqZmdnW9OmTXNfrm1v37499zG/IIAAAggggAACCCCAAAIIIIBA8QTmzJlj6n/pVSZJEwx1XyH8HkDx9pocryYrI/J1GjJkiKui4VVm7MSJE/bzzz/b/v37I2+ApQgggAACCREIRCBDUe7p06fb1q1b8yGo30RWVpYpYh7L0aVLlyu+xKiWppo6+aWjFuYYlKqoxuKVKlVyL9uyZYutWLHClJ3BQAABBBBAAAEEEEAAAQQQQACB4gmot6YmRPrdcFZJKZWWKleuXPF2loKv9gr+pOCp5jslTZbt0aOH770mBch27tyZ73U8QAABBBBIrEAgAhlr1641/Zw5cyafhj5clO4X6y8cLVq0sEaNGlnZsmXz7W/58uWul0Us0gfVj6Nfv3656YrqjzFr1ixT4ygGAggggAACCCCAAAIIIIAAAggUT2DNmjW2efNmzxJAavKtMkJ5qyUUb4/J9epofUbTsbSUrqDuBQ0cONBV//C6ops2bXL3h06fPu31FJYjgAACCJSwQCACGYp0KxMifDaAZk3UqlUr5iTKklAgI7zvhmpqxjJ9UF+YmjdvnlsWa968eabMDDUYZyCAAAIIIIAAAggggAACCCCAQNEF9Pf77t27PTegSYzqk5mRkeH5nFReQWkp76urfqytWrW6YoJr6BWa4Lp48WLfbJ/Qc/kXAQQQQKBkBBIeyFCpJaWCHjhw4Iozbty4cdy+cNSrV++KQIYOQFkTseploYySbt26WY0aNdy55eTk2MKFC2PSh+MKLBYggAACCCCAAAIIIIAAAgggkCYCZ8+etWXLlkW8lxAi6N27t8vG8OqFEHpeuv4bPpk0nRx0n6Z79+6mHipeQ/dv9u7d67Wa5QgggAACJSyQ8ECG+kYoFVSll8JH7dq1c3tMhK8r7uO6detGDGToWFTmSrU2izuUrqisDAU0NH755RfXUDxWgZLiHh+vRwABBBBAAAEEEEAAAQQQQCAZBVT6R39bR7qXoPMpU6aMqT+GqjGk66C0lPeVl02fPn1ME2i9ht5jaiTv9R7zeh3LEUAAAQTiI5DwQIb6Ung15lKT71Cz7FifvlcgQx9Q69evt8OHD8dkl7169bI2bdrkpiuuXLnS1q1bZ5o9wkAAAQQQQAABBBBAAAEEEEAAgcILKBtj3759ni9UmWf9LR5eUtrzBSm4gtJS/hdVZceaNWuWe78m/Nnq47p69Wo7dOhQ+CoeI4AAAggkQCDhgQxFuI8cORLx1BXIqFChQsR1xV2oNMKKFStG3IyyMryOKeILfBbqHJTOqlJWGsr0mDt3LumJPmasQgABBBBAAAEEEEAAAQQQQMBPQJMEI5WoDr1GZZ412z5aVkLo+en4bzqXltL1Vu+Ujh07mu7beA1VEfF7n3m9juUIIIAAArEXSGgg48SJE+6GvqLc4aNcuXJu5oTSQeMxNCtDpZ8iDQUyjh49GmlVoZfpS1N2draL8odePHPmTJeemO5fGkIe/IsAAggggAACCCCAAAIIIIBAQQU0Q37Lli128uRJz5cokFG/fn3P9emwIloQR/ck0vm+hHz0PmnQoIHn20EZGQQyPHlYgQACCJSoQEIDGTt37nQlnNQ7InwoE0OBhmgfvOGvK+hjlazyCmTs3r3bNeS+dOlSQTfn+7x27dq5KH+VKlXc83bs2OGaksUqWOK7c1YigAACCCCAAAIIIIAAAgggkEICGzdudDeXI91L0GnWqlXLWrdu7Wbcp9BpF/pUdD8lXvdUCn0wAX2Bykv5BbxycnJM93AiTcAN6ClxWAgggEDKCiQ0kLF161bPzIdQICNe8n6BDPWv0AeV3+yOwhyXSlj1798/t4nUxYsXTVkZu3btKsxmeC4CCCCAAAIIIIAAAggggAACaS+gvpZ+fQvatm3rZtmXLl067a38ANI5GyPkoiBGs3/2yfDqpaIJrgqcxar8eGi//IsAAgggUHiBhAYydCP/+PHjEY9aN//jVVZKO/QLZGi9sjJiFcjQ9gYMGGAtW7a0UqV+JV+wYIGpP4iCGgwEEEAAAQQQQAABBBBAAAEEECiYgG4sHz582PPJ7du3tzp16niuZwUCIQHdd1IVDb8+Gbp34/d+C22LfxFAAAEE4iuQ0ECGPgiU/RBplC9f3uI5e0Lb9wuU6NhimTrYsGFD6969u9WuXdudrravYIbSFBkIIIAAAggggAACCCCAAAIIIBBd4Ny5c1ErKCgjI/S3d/Qtpu4zopWVSvceGaErH+39oj6qZGSEtPgXAQQQSJxAQgMZx44dM30JiTQUxAhlL0RaX9xlCmL4bd/v2Iqyb52Pmn5nZma6l+sLw08//WTbt28vyuZ4DQIIIIAAAggggAACCCCAAAJpJ7B3715XVsqrp6V6UzZt2tRCPSrTDijPCdMjIw+Gz6/qp+KXkaFqIgpkePVk8dk0qxBAAAEEYiiQ0ECGykqdP38+4ukoyBBt9kDEFxZwobbvt49YBzJ0WN26dXMpi8oG0Vi7dq2tXr3aTp065R7zPwgggAACCCCAAAIIIIAAAggg4C2gfpb6e91rNGnSxJWVimeFB699J9tyemT8esUaNWrk3jNeVTtUrUMBtFhW7Ui29wrHiwACCARBIGGBDM2eUA+KCxcuRHTwCzJEfEERFuqLjVewJB6BjGrVqlmfPn1c0zEdrj4E58yZY3v27CnC0fMSBBBAAAEEEEAAAQQQQAABBNJLQP0sT5w44XnSatysv70Z5nm/I2RDaalfJSpUqGCNGzf2zOKRU7T3XciUfxFAAAEE4ieQsECGshDUH8NrBoBXgCGWFH7lpeIRyNCxq7xU8+bNc09j9uzZtnXrVlIUc0X4BQEEEEAAAQQQQAABBBBAAIHIApoIqEmRXkMZGQQyftWhtJTXu+TK5SoDnpGRceWK/1uijAy/953nC1mBAAIIIBAzgYQFMpSN4FXTUmdXEhkZfh/qCrL4HV9Rr0DLli2tc+fOuV+s9CVsyZIlNI4qKiivQwABBBBAAAEEEEAAAQQQSBuBAwcO+JZnVpmgqlWrpo1HcU7Ua2JpcbaZrK9t2LChbyBj//79vu+7ZD1vjhsBBBBIJoGEBTIUJPBrlFRSgQyvixXt+LxeF225+mMMHDjQNEtEQ/uZOXOmqc4nAwEEEEAAAQQQQAABBBBAAAEEIgvoHsLBgwdddYfIzzCrX7++Z4kgr9ek6vJolS4oLfXblY/2vsnJybHTp0//9gJ+QwABBBAocYG0D2R4fbDHK5ChK9y3b19r1aqVhRpJLV682DZu3OjZL6TE3xXsEAEEEEAAAQQQQAABBBBAAIGACahEtcr76O/1SEO9DmrWrGmaQMj4tUeG1z0PfPIL1KtXzypXrpx/YZ5Hhw8f9g2g5XkqvyKAAAIIxEkgsIEMv7JPcbLIt9l4BjLq1KljvXr1Mv2roX4c8+fPt3379uU7Bh4ggAACCCCAAAIIIIAAAggggMCvAkePHvW9mazeGLoZrQoPjOgClJb6zahWrVpWsWLF3xaE/RbtvRf2dB4igAACCMRBIGGf7pcvX054aSk/z2jH5/faaOv0pWrw4MHWrFmz3Kf+9NNPtn379tzH/IIAAggggAACCCCAAAIIIIAAAr8JHD9+3M6fP//bgrDfatSoYcrKYPwqQDZGwd8J6qtSqVIlzyDYuXPnXGkp3StiIIAAAggkRqBMYnZrpv/zT3T0368epGpvxvP4OnToYO3bt7cVK1aYGp9v2rTJVq5caV27dvVtMBWr66UP4b1795rqPOrLoJqbK/22SpUqpi9/jRs3dsfBTJZYibMdBBBAAAEEEEAAAQQQQACB4giotNSFCxc8N5GRkUFZKU+dK1f43RO58tmpvUSlv3U/pGzZshGDZbpHpB4Zev/5ZW6kthJnhwACCCRWIGGBjGilo0riA9UvWBHvmQv6gOzXr59r9L1582ZTYGH27Nl2zTXXuABHPN4W2seSJUts3rx5tnr1ahfI0AexlquUVunSpa1cuXLuQ1nBDGWMdOzY0fr372/Nmzd3H+jxOK54bFOBsq1bt7qyXfHYPttEAAEEEEAAAQQQQAABBBAoWYFly5b5/o2nvwM1SVA3oxlmhw4d8p2guW3bNlPPTnqK/PpuUaDMbzLn+vXrbcGCBb69NHjfIYAAAuko0KBBA1OvoXh//iYskKFod7yDBdHeOH5ZIbqp7/cBFm3bBVk/cOBAmzBhgm3ZssV9uZg7d677vW3bti6oUJBtFOQ5Fy9edMGLyZMn28KFC23Hjh3uC41ScnWOepMpkCGP0NByBVvq1q3rAhrq6TFy5Ejr1KlTUqTq6tzeeustFxwKnRP/jxuR6AAANeNJREFUIoAAAggggAACCCCAAAIIJK+A+kvu2rXL8wT0t/Xzzz/Pjeb/E5KHV2N0PeXjjz+2H374Ie73PjwvWMBWqNy3X8bPpEmT3L0V3S9iIIAAAgj8JnDffffZbbfdZjVr1vxtYRx+S2ggwy9QEM+yTiFHv4yMkghkZGZmulJSypI4fPiw7d+/3xYtWuQagSuKFYuhGRjjx4+3Tz/91JWuUgkpBUpuvvlm968ajquGqD6sjxw5YuvWrXONx/XviRMn3I++/CxfvtzmzJljo0aNcm/MRo0aJTwQ5eejoIzOQdknDAQQQAABBBBAAAEEEEAAgdQXUKBDP4yCCehvff0wCiagQId+GAgggAAC+QWGDBlimkgf7xHYQIZfkCFWKH77UMaIX6AlFsegTIhBgwbZtGnTXCBDx6Om3zfeeKNLxynuPnbv3m2vvPKKm2WhWSvdu3d3QYgePXpY06ZNrXbt2q6ZlYI22reCHAp87Ny507788kuXLaJtKKik5QpkKJtjw4YN9thjj1lWVlbcjYprwOsRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEklsgYYGMaBkPmlGvm+vxHH59OEoikKFzU8mmNm3a2Jo1a1zkSpkPyiQobgmngwcP2uuvv27vvvuum5GiTIoxY8ZY7969rXr16ldkUyhoU7lyZfejTBH1x9BxaRtqQq6omq6HAhkqh6Wgx1NPPeX6ecQ74BPP9wDbRgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEAi2QKlEHZ7KGSlY4DXiHcjQTXm/QImaXZVE3UPVDlNwoX79+o7i5MmTro+FykwVdchOtS5VUkqZFKNHj7a//vWvNnjwYFMT72i9SbS+SZMm9rvf/c7++7//27p165Yv8+Lo0aOmfhvvvPOOb33Soh4/r0MAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAICSQsEBG1apVTcECr6GGVPHsk6Gb/X7bz8jI8D0+r+Mu7HIFDRo2bGjyCI0DBw7Y6dOnQw8L/a96bqgJlbIn+vXrZ/fcc0+RMjyqVatmqnGmZi06xrxDdUeVmTFz5kw7depU3lX8jgACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAzAQSFsgoV66cu3mvPhGRhgIZfhkTkV5TmGXatl8gQ+WXlDVSEmP9+vUucyK0r1atWhW5y7vOS/0tVA5Kjbz/9V//1bp06eKb/RLab6R/ZaBAhvpr6JrlHXv37nVNxGkOlleF3xFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRiKeBd2ymWe4mwLWUihIIFkbqaa5myJuI1omVkKBuhJAIZasKtDIojR464U61bt66pGbcacRdlKAtj6dKlbnsqV6WeGypfpcwMBTaKMtQYXA3I1cdj8+bNuZtQIEgNwBWIad++vXkFpXJfUIK/qCyYAkKyZCCAAAIIIIAAAggggAACCCS/wPHjx23Pnj125syZiCejv+MbNWpklSpVirg+3Rbq/sDhw4c9J4mqP6buPdD38td3xu7du039Rr3uRTVu3NjdVymJMuTp9l7lfBFAILkF9NlbEveFExbI0OUJBTLUFyJ8nDt3zpSVEa+h0k0XLlzw3Ly+APmVvvJ8YSFXzJs3zwUHQueq5t+tW7cu8sVXJoa+2CkzQ19YPvnkE/vpp5/spptusgceeMCaN29eyCM01yukT58+7gth3kCGNqQSUwrE9O/f360v9Mbj9AJdO52vmpwzEEAAAQQQQAABBBBAAAEEkl9Af3u+8sortmHDhogn06JFC3vsscesXbt2Eden28LnnnvOpk6darq/EmncfvvtNnz48BKZxBlp/0Fb9vzzz9s333xjZ8+ejXhoqlYxYsQIAmURdViIAALpLKBey3nbJsTLIqGBDDWe9sp60AyLSJkasYLQDXivD3PtQ8dWsWLFWO0u4nbOnz9vs2bNym2Yrah+dna2KQOiqEMZHpqloqHtq9+GftT0u3Pnzq7XRVECNDqmUKPwvCW59Lu+RCpoouhbUIYss7KygnI4HAcCCCCAAAIIIIAAAggggEAMBDQh0mtoNqj+Duzbt6/XU9Jq+UcffeQmJnqdtAI/vXv3tsqVK3s9Ja2Wjxs3zjN7RRB6b2kSZ7zvFaUVOieLAAIIFEIgYT0ydIwNGjTwjNYkOpChm/LxjiStXbvWVq9endvYW5kYnTp1MjUaL+o4ceKEC2CEv37fvn22adOmIjfm1hcblb2KFHjKycnJPYfw/fIYAQQQQAABBBBAAAEEEEAAgVgIVKlSxbdygtffw7HYN9tIbQFVyTh16pTnhFqVR9f7L7x3aGqrcHYIIIBAsAQSGsho2bKlm+UfiUQfIsoo8KpNGOk1hVl29OhRz4wMzeZv1qyZqbxUPIdKPm3bti236fiAAQNMMyKKU5/SL5NEH7hFreWoD+169epFnKnhZxlPP7aNAAIIIIAAAggggAACCCCQPgLRSkBHq7yQPlK/nqn+jvcbqrCQt+KC33NTfZ1KnmtCrcp0RxrKwlDvlaLeU4m0TZYhgAACCBROIOGBDDWW8vpwjWdWht/NdzXF1k37eEbaVeppwYIFruyTLpmyP9SQu7jlmTp27OiOPfxtoMbfChxpBkFRh0p9RfpQV+DF6xoWdV+8DgEEEEAAAQQQQAABBBBAAIG8An7lqfU8/Z2v+wjcnP9VTX+n87d63neQ9+8ql+3VG0OvUkkzSkp5+7EGAQQQKAmBhAYyVEIpMzPT8+a6X7ChuDiaqeH1IaWG2DVr1ozrB/6iRYts48aNuQ3Hu3Tp4hqSRSrdVJhzVWmq0aNH21VXXWVlyvzaAkUNVx566CHr2bNn7rLCbFPPVQBj//79EUtT6ToWpe9GYY+B5yOAAAIIIIAAAggggAACCKSvgCbmaRJg6G/dcIkLFy64/o1+/TDDX5POjwn4/Hb1Dx486Fsyu1atWjT5/o2L3xBAAIGECCS02bdm8qsvhGZVKI0vfIQ+SPyaeYW/pqCP/YIkKu+kY4rXUFBAZaW2b9+eu4vBgwebAijFHQoq3H777da2bVtbt26dC0Bou926dTNlZRR1yEszFCI1YFegpDh9PYp6TLwOAQQQQAABBBBAAAEEEEAgfQRU1kcVFDQzPtI9BN2YP3DggLshzex5izo5U14EM37978dr4mbovy71DKUpekiDfxFAAIHECCQ0kKFTbtOmjSmyvXPnzisE1ERaaaHxGF61M5V2qfJM+pCK19iyZYutWLHCjh8/7nbRuHFjF2hQFkgsho5dgZGrr77abU5f4Ipbx3H37t0ms0hfcjp06BBXr1iYsA0EEEAAAQQQQAABBBBAAIHkF9AEPWVmRApk6Oz27Nnj1qmMdbqPaKWlIv19n65mofeN1/nrfUcgw0uH5QgggEDJCCS0tJROUaWQVF4q0o12BTJOnz4dFwmvjAxlF6gsUzwzDGbPnm0KZoT6TfTp08dlpnilxxYFQNku+nKnn0i2hd2m+nnogz18NPtnU3Rle8QzgyV8nzxGAAEEEEAAAQQQQAABBBBIT4GGDRu68lJeZ79r167cSYNez2E5AuECmlwbmmwavk6Po73vIr2GZQgggAACsRVIeCBD2QPKHIiUAREtta+oFMryOHLkiJ0/f/6KTfTu3dtUWioWN/+v2Pg/FygwM2fOnNyggBqKDxo0yBRACepQQEmlsPbu3ZvvEBUsueWWW0z9PWIZhMm3Ex4ggAACCCCAAAIIIIAAAggg8H8CqmjgN/FQJZxVTYBBaamCvgd0b0hVKE6dOuX5Er3vqlWr5rmeFQgggAAC8RdIeCBDAYOhQ4e64EH46eoLyKFDh3IzF8LXF/Xxjh07Im5XN+P79esX16DC8uXLXe+KUKPx9u3bm0ozKXMiqGPmzJmuFFZ4w7TOnTvbDTfcUKzeG0E9Z44LAQQQQAABBBBAAAEEEEAgeAJNmzb1vaGsmfXq7xiqgBC8Myi5I6K0VMGsNWlTPVovXboU8QUqKaWMDPquRORhIQIIIFBiAgkPZOhMdTNfs/rDZ1UorW/Tpk124sSJmIJs2LDBfbEJ36gaj6usVDyDCsps2LZtW+6uBw4c6Jp86wtGEIeyMb7++ut8jcl1nPoAV1Pxrl27WtmyZYN46BwTAggggAACCCCAAAIIIIBAignohrL6X3hVUVAVBE1e9OqhkWIcvqcT1PsMvgedgJW676SqHV5D2Rjq7er1nvN6HcsRQAABBGIrEIhARqVKlWzIkCGuV0be09MMilWrVtmBAwfyLi727ytXroy4zWHDhrleFfH6sFeUf/HixblBFDX3Vn8MNY0K4tBshE8++cSUkZG36boCF3feeacrK6UPcwYCCCCAAAIIIIAAAggggAACJSGgSXXKygifCBnatxpYe01eDD2Hf38VkBUNv829X1QNxGu0bNmSvqBeOCxHAAEESlAgEIEMnW///v1dNkT58uXznf7cuXNdBkOs0kIVTFB5JzX7zjuysrLs2muvjWtQYf78+S7DJJSu2KNHD2vTpo2pT0YQhwIYH3/8cW4/Dx2jZiAoE+ORRx6xVq1amfpkMBBAAAEEEEAAAQQQQAABBBAoKQH9Ha2JgV5j7dq1rlSQ13qWIxAS0L2mdevWufLjoWXh/+r9xiTOcBUeI4AAAiUvEJi70HXq1LE77rjDZUTkZVB9y3nz5sXsS4gabWt2xsWLF3N3o94Yt956q3Xv3j1uQQXtT4EBnY+GAgDZ2dnWrFkz9zho/6PUyrffftsFfUJWylS56aab7NFHH7VOnTrFzSpoFhwPAggggAACCCCAAAIIIIBAcATatm3rykt5HZFuTO/fvz/t+2REqzZBNoaZJruqP2uoj2n4e0r3bvR+I5ARLsNjBBBAoOQFAhPI0AfsNddcY9ddd12+DwhlL0yZMsVWr15tly9fLpaQvshE6vegPhXDhw+3unXrFmv7fi/WFymVyTp16pR7WvPmzV1fkGrVqvm9LCHr5PT666/b9OnTc49X5aRGjRplTz75pAv4hGfOJORA2SkCCCCAAAIIIIAAAggggEDaCbRr1879/e51o14VGDZu3Gjqu5nOQz5eRunskvfcda9J90C8gjoqBZ6ZmUmj77xo/I4AAggkSCAwgQydf/Xq1e3ee+91ZaYqVKiQS6IgwMSJE69oOJ37hAL8onTBSZMmmTIy8vZ7UGR97Nix1rlz57g2blI2hpp8hz4c+/XrZ6qzGLRmUfrC99ZbbznvUI3IqlWr2v33329//etf7eqrr+YDvADvN56CAAIIIIAAAggggAACCCAQHwGVlVKpY68+Gfr7f9myZRF7Y8bniJJzq7o/EbpHkZxnUPyjXrp0qe3bt89zQ+3bt7d69eoREPIUYgUCCCBQcgKBCmTotPUh8ec//9ndMFcWgMb58+dt8uTJ9tlnn1lOTo5bVtj/+fbbb+3DDz+0Xbt25b5UGRgPPPCADR061KpUqZK7PNa/KDjw888/uyi/tq3m5gMGDLDGjRvHelfF2p6O8x//+IcrKbVnzx73hUazDx5//HGXidG1a1fLG2Aq1s54MQIIIIAAAggggAACCCCAAAJFEFC5n44dO/pWVVi8eHG+fo9F2E3SvyRaNka6BzGUsaPKGYcPH/a81pr0qkAGAwEEEEAg8QKBC2SoX0WfPn3s6aeftt69e+f2YThw4IC7yf7BBx8UalaFylFNmzbN/v73v7sZGaF+DwoiPPHEE/b73//et7ZmLC6RvkCpL4cCMhrqL6GATcWKFWOx+Zhs48iRI66c1BtvvOEyX+SmY1QWxsMPP+yakocCSzHZIRtBAAEEEEAAAQQQQAABBBBAoIgC3bp1M0288xrqT6m/w0Plnb2el8rLKS3lf3VVVkr9MUL3icKfrYmcHTp0iPs9o/D98hgBBBBAILJAmciLE7tUHxZDhgxxmQsvvPCCff/99+7Lx5YtW+zll1+2HTt22JgxY9wHSrly5TwPVnUOP//8cxs/frwLYoRKSqmepm7Oq7m4vvhEm6XguYMCrNAMh59++ilfWaxBgwaZemTEc78FOLTcp2j2gXpiqKSUbHXM6leibJVrr73W9SwJyrHmHjS/IIAAAggggAACCCCAAAIIpK1A69at3d/VCxcuzJ00mBdDEwm1ThUY9FzGlQLpnpExf/78fFU7woXatGnj3mNUpgiX4TECCCCQGIFABjJEESq/VKNGDZfBMGHCBNu6dav7UVbGihUrXHkmzcJQUKBJkyam9FJlbmjmhfpq6ENJX1x2797tIuyVK1e2G264we666y5Tg+9atWrFPZigvhiqzXns2DF3hRU46dmzZ2Ai+uqDEQpiyE1NvG+77TbXE0PHGc+SW4l5y7NXBBBAAAEEEEAAAQQQQACBZBfQPYMuXbrYjz/+6Hkzet68eW6ynvpppOPkvGjnrEBGugYzVFp7yZIldvDgQc//FHRPpFGjRp7rWYEAAgggULICgQ1kiEGljPTFRPUIe/Xq5b6gzJo1y9auXWuhf7VOwQ41+dKH9OnTp011DvVhpH4amoVRrVo169u3rw0fPtyUDaEvMSVV1knNxZVJolJNGmqWrah+EMo0yUhBjHHjxrkvd7Vr13aZLqNHj3bHqKAGAwEEEEAAAQQQQAABBBBAAIEgCqgctW405+2Fmfc4VXFAkyB79Ohh1atXz7sqLX7XPZJowYy0gIhwkgpibNq0yS5cuBBhrbky53rfNGjQIOJ6FiKAAAIIlLxAoAMZ4tCHbsOGDa1OnTouqDFq1Chbv369LViwwDVl2rdvn7sJrwDGL7/84ppRK7ChbAvVMlQDMDVnysrKspYtW1rVqlVL7IP87NmzNnv2bJcRonNR/4/s7GzLzMzUw4QOBTFee+01F8RQJoaCOw8++KArt6X+IaVLl456fCrVpVkMclcQpKSCQ1EPjCcggAACCCCAAAIIIIAAAgikvID+5lfZKFVBCPWkzHvSukmtv8lVXiodAxl5LSL9nq7ZGDrv8BLg4T6agNq2bVtXLSR8HY8RQAABBBIjEPhARohFGQy6wa6frl272uDBg10ZKTXuUsDg5MmTLiVS6aX60U11ZWLUrVvX3WT366UR2kes/125cqXLHtHxaeiDUIEVBVMSOZSp8uqrr9rbb7/tZq5olsEjjzxiI0aMcFYFnbExd+5c++ijj1w5qscee8ydWyLPi30jgAACCCCAAAIIIIAAAgikj4D+tlb1BlVsUPZFpKGS0xs3bnSTG4NQGSHSMcZrWbS/7dO1tJTKli9dujS3BHgk/379+lmzZs1KbCJspGNgGQIIIIBAfoGkCWTkPWwFKlq0aOF+QssvXbrkflUmQbQP69Br4v2vIvzqkRGa5aC+HDpu9fJI1FAPkVAQQ9ks1113nT300EMuU0SBn8IMBWpmzJjhvhB6pWMWZns8FwEEEEAAAQQQQAABBBBAAIHCCOjv7IkTJ3oGMlSNQJPwVOZZvTXTbQTl/kiQ3HWvRmWlQiXAw49NvUL79OlDWalwGB4jgAACCRZI3B31GJ+4yjbpJygf0vv377dFixaZmmlrhPp0JLK+oo7p5ZdfdpkY+jJ3xx132DPPPOPSbAsbxNA5KUijJubKklGPEgYCCCCAAAIIIIAAAggggAACJSmgygedOnXy/JtUEws1AW/z5s25kwxL8vgSua+g3B9JpEH4vlUeWxk8u3fvDl+V+7hbt27Wrl07V7o8dyG/IIAAAggkXCBlAhkJlww7APXwUPrqxYsX3RqVw0rkB6GyLxTEeOedd+zEiRN2//3321NPPWVqjqYMl8IOBWjUUE1lswhkFFaP5yOAAAIIIIAAAggggAACCMRCoEKFCq7CgF+2hYIYKjF1+PDhWOwyZbYRqh6RMidUgBOZN2+eqbrEuXPnIj5bwR+VMm/evHnE9SxEAAEEEEicAIGMONirzJVSFdVEOzT0Qaj6iokYeYMYCqyoH8YTTzzhelqUL1++SIe0evVq03bV6JtARpEIeRECCCCAAAIIIIAAAggggEAMBPr37+8aM6tKQ6ShRuBff/21y8qItD5Vl0XLyEi3HhmnT5+2qVOnmnpkeA3dt+nZs6fVrFnT6yksRwABBBBIkACBjDjAb9iwwVatWuUakGvzmZmZrkF5Ij4I9+7day+++KK9++67pobnTz75pD388MPWqlUrK2qjM30JVGquSkupuZoaqmsWDAMBBBBAAAEEEEAAAQQQQACBkhaoU6eOqTmzXynn5cuX25w5c+zIkSMlfXgJ258CGdGCGQk7uATsWNkYqp5x8uRJz71nZ2f7BsU8X8gKBBBAAIG4C0SerhD33ab2DlRvURF+ZSto9O3b1wUO1Ii8JMeePXvspZdesvfff99lT3Tu3NnUJ+Ojjz4q8JcZzdDQeSjLRAGMM2fOuL4fapam2pItW7Z0/T/4clSSV5Z9IYAAAggggAACCCCAAAIIhARKlSpl1113ncu6UO+DSCWT9LfspEmTXMBDJZb5G9YiOoVMU+1fBS+++OILVwI80vtD56vJp6qm0ahRo1Q7fc4HAQQQSAkBAhkxvozHjx83RfmVCaGh0k0DBw40v3qdMT4Etzl9ecsbxNAHtTIoFMgozBc2vU4/oWCGSlOplqQCG1pOWal4XD22iQACCCCAAAIIIIAAAgggUBiB1q1buyCFyiDn5OREfKmyMr777jtr0aKF1atXL+JzUmlhtL/9Q3/vp9I5e53Ljz/+aJqQ6ZeNoRJlmgBasWJFr82wHAEEEEAggQIEMmKMv3TpUlNpKWUvaFx11VXup3LlyjHek/fm1IRb5aQ+/PBDl4mhLycax44dcz/eryz8GgIZhTfjFQgggAACCCCAAAIIIIAAArEVUCnlm266yXTD+uDBgxGzDZSVMXHiRFNGxpAhQ6ykqybE9oyjb02BjGjBjOhbSf5naELn559/bps2bYr4vtAZZmRk2IgRI1yQK/nPmDNAAAEEUlOAHhkxvK4KGKjJ9/bt23O3OmjQIPdBWFJfHvQB/corr9gHH3yQL4iRe0Ax/oVARoxB2RwCCCCAAAIIIIAAAggggECRBDp06GD6G7x27dqer1+/fr1NnjzZdu7c6fmcdFkRmvSYyuerc/zyyy9t9uzZpmbfXkOVNHr16mUlOQnV61hYjgACCCAQWYBARmSXIi3VFyFlZISah+nLk2Z6qBl2SQ014VbdRwU0SuJLCYGMkrqy7AcBBBBAAAEEEEAAAQQQQMBPQCWBbr31VsvKyvLMRFC5ZP3NHO3Gtt9+kmVdtAmVumdQEvcNEum1YsUK1xtF5be9Ro0aNWzkyJGut2k0M69tsBwBBBBAIP4CBDJiaKx6i5s3b7bLly+7rfbs2dPatGljSnEtqaH9Hzp0qES+jGimgoI0FSpUKKnTYz8IIIAAAggggAACCCCAAAIIeAooK0ONvxs0aOD5HPW0fP/9923t2rUl8rez54HEeYVuyqfzjXn1w/joo49s0aJFduHCBU/tYcOGWd++fa1KlSqez2EFAggggEDiBeiREaNroAbYmtGh/hQapUqVsuzsbGvatGmM9lCwzdxxxx3WvXv33B4dBXtV0Z6lAI1SL3WuDAQQQAABBBBAAAEEEEAAAQQSLVC+fHm7/fbbbd68ea5XhjIwwoeyEObPn2+ffvqp1a9f35o0aRL+lLR4nOrZGFOmTLFvvvkmt2pGpIuamZlpt9xyizVv3jzSapYhgAACCARIgEBGjC7G6tWrbc2aNabmYRotW7a0zp07W7Vq1WK0h4JtRrNP9MNAAAEEEEAAAQQQQAABBBBAIB0FWrRoYbfddptt3LjRNXiOZKB+CR9//LFdddVVNmrUqLSdjZ+qwQyV/VY2hqpWeJ2jJmWqFJmyMVSWjIEAAgggEGwBptLH6PrMnDnTtm7dmvsBOWDAABfMIFshRsBsBgEEEEAAAQQQQAABBBBAAIECCJQpU8ZGjBjhqiRkZGR4vkJ9Lt98801btmxZbolozycn4YpoZaW8bvAn4anmO+SDBw/au+++67Juzp8/n29d3gcqB37TTTf5liHL+3x+RwABBBBIrACBjBj460NywYIFLm1Vm1PviP79+1ujRo1isHU2gQACCCCAAAIIIIAAAggggAAChRFQP8fRo0e7igVeEwx1I1/9E8aNG+dm7hdm+8nw3HTskaFeGOPHjzeVlTp69KjnZVKD77vvvtu6detmZcuW9XweKxBAAAEEgiNAICMG12LhwoUuZTXUPEolpbKyskhNjIEtm0AAAQQQQAABBBBAAAEEEECgKAI9evQw9ZH064Ghfpe66T1x4kTbv39/UXaTtK9JxYyMqVOn2ocffuj6l3qdnwI8I0eOdE3hq1evnrTXjwNHAAEE0k2AQEYxr/jly5ftp59+sh07duRuafDgwdasWbPcx/yCAAIIIIAAAggggAACCCCAAAIlK6C+B2r8PWTIEKtatarnzg8fPmzvvPOOTZs2zU6cOOH5vGRbUZDSUl43+5PtXHW8yq556623bNWqVXbp0iXPU1CA684773T3baIZeW6EFQgggAACJS5Q6EBGeEqmHqfz//Fv2rTJVqxYkftlp2HDhqYPxdq1a5f4xWSHCCCAAAIIIIAAAggggAACCCDwm4BKPo8dO9a6du1qpUuX/m1F2G/qefnyyy/b3Llzza+vQtjLAv1Q92rS5X7Ntm3b7B//+IfNnj3bzp4963ldVHJszJgxdvXVV1v58uU9n8cKBBBAAIHgCRQ6kKH+D+XKlcs9Ez1O53qC6o2xfft2++WXX5xJ7969rVWrVqbmYgwEEEAAAQQQQAABBBBAAAEEEEicgG7ka7Lh/fff7/5W9zoSZSYsX77cXnjhBVu6dGlKNv8OP/dUycY4dOiQvfHGG/bVV1/ZsWPHwk8z97HuXSkTY/jw4VatWrXc5fyCAAIIIJAcAoUOZKghUoUKFdzZ6QuB6gmGHifHKcf2KJWuGApiKKhz7bXXWtOmTWO7E7aGAAIIIIAAAggggAACCCCAAAJFEtDM+xtvvNFGjRpl9erV89zGxYsXbdasWfbiiy/a2rVrLdlv9EfLxtD5Jfs5njp1yt5++22bMGGC5eTkeF5brbjuuutcg2/1TIlm47shViKAAAIIJESg0GkDnTp1sj59+tjx48ddQ+u2bdumdfaBLBS8qFSpknMZNGiQValSJSEXk50igAACCCCAAAIIIIAAAggggMCVAir/rKwM9bf88ssvTTfAI40zZ87YN99842bs/+Uvf7HWrVtHelpSLNPN+lS+Ya8SYGrsrf4mO3fuzJ1kGunidOnSxf7whz9Yx44d0/oeViQbliGAAALJIlDoQIZ6QDzxxBNuJoO+CCTzh3osLpLKSD355JN21113mWwyMzNT+otCLMzYBgIIIIAAAggggAACCCCAAAIlLdCyZUt79NFHbf/+/a6XgjIwIg1N3Pz000/dJMXHHnvMmjVrFulpSb8smbMxVB1j4sSJri+GepdevnzZ83qoT8oDDzxgmniqSagMBBBAAIHkFCh0IEPNsbKystxPcp5ybI9a/ULatWvnfmK7ZbaGAAIIIIAAAggggAACCCCAAAKxEihVqpT17NnTHn/8cTt69KitWLHCcxa/+i5otr9KSOsmeOPGjWN1GCW2nWjZGMlaWkrlvSdNmmSvvPKKrVmzxrwCUoLOyMhwmTgjR440lUpnIIAAAggkr0Che2Qk76ly5AgggAACCCCAAAIIIIAAAgggkM4Cmoyo8tAPPfSQKUPDb+zbt8/GjRtn48ePtwMHDvg9NbDrogUzAnvgHgem4MvUqVNdEGPZsmWm8lJeQ9da1TPuueceV0Ej1Sy8zpvlCCCAQKoKEMhI1SvLeSGAAAIIIIAAAggggAACCCCAwBUCVatWdeWy77333qiZFrt27bLXXnvNPvroo6jNpK/YUYIXpNqNewUxpk+fbi+88IItXLjQzp075yms7BtlYYwdO9YFrPSYgQACCCCQ3AL8P3lyXz+OHgEEEEAAAQQQQAABBBBAAAEECilQp04dGzNmjP3ud7+zunXr+r5669at9vLLL9vbb79te/fu9X1uMq1Mph4Z6oHx1Vdf2d/+9jebO3euqSm73xg6dKg98sgjrrl32bJl/Z7KOgQQQACBJBEodI+MJDkvDhMBBBBAAAEEEEAAAQQQQAABBBDwFGjSpIk9/PDDdvLkSdfcW30zvMaWLVvs1VdftWPHjtmDDz5ozZs3t6BnPEQ7vmTpkaHMCzVff/31123JkiV29uxZr8vklvfv39/UpL1Xr15WoUIF3+eyEgEEEEAgeQQIZCTPteJIEUAAAQQQQAABBBBAAAEEEEAghgKtWrWyJ554ws3wnzJlip04ccJz6zt27LB33nnHlZh69NFHrXPnzlamTHBvqyiQES2Y4XmyAVlx8OBB++CDD+zdd9+19evX+/bE0CH36NHD/vSnP1l2drZr1B6Q0+AwEEAAAQRiIBDcT9wYnBybQAABBBBAAAEEEEAAAQQQQAABBLwEdKO/ffv29tRTT9nFixddI2llaHiN/fv322effWZqBK5sjsGDB5t6biTjCHppqdWrV7tm65MnTzb1Krl06ZIvswJLf/7zn23YsGFJe018T5CVCCCAQJoLEMhI8zcAp48AAggggAACCCCAAAIIIIBAOguoEXSnTp3s3//9310Gw9SpU30zM44fP24//PCDKaihLIE777zTVKYqaNkP0Y4nqKWlVEpq2rRp9t5779nMmTPtyJEjFi3o0rVrV3vyySdtxIgRVr169XR+O3PuCCCAQMoKEMhI2UvLiSGAAAIIIIAAAggggAACCCCAQEEESpcubboZ/swzz1j58uXtyy+/dP0wvF57/vx5W758uR06dMjWrFlj999/v1199dVWsWJFr5eU+HIFMqIFM0r8oKLsUI3Vx48fb5MmTbK1a9dG7YehzcldmRg33HADQYwovqxGAAEEklmAQEYyXz2OHQEEEEAAAQQQQAABBBBAAAEEYiKgYIbKEykzo0qVKjZx4kRTjwavoSwBlTz6/PPPbePGjXbbbbfZHXfc4bIzlOUR9BEty6Ekj//MmTM2Y8YMmzBhgsvCyMnJscuXL/segoI0Q4YMcY29r7nmGsvIyPB9PisRQAABBJJbgEBGcl8/jh4BBBBAAAEEEEAAAQQQQAABBGIkoADEVVddZf/2b/9mtWrVcs29FazwG6dOnbKFCxfanj17bPHixXbXXXdZ9j+bTVerVs3vZXFfFy0bIwilpXQMK1assE8++cS+/fZb27Bhg2u8Hg2nXLlydvPNN9tDDz1kvXv3doGnaK9hPQIIIIBAcgsQyEju68fRI4AAAggggAACCCCAAAIIIIBADAUUAGjVqpX98Y9/tHr16tlrr71m69at880Q+OWXX1x2hkpS6bnKEFDvDPXeqFChQgyPruCb0nlEC2YUfGuxf+bu3bvtiy++sK+++soFgNQLQ47RhgJEd999tyvn1bFjx4T5RjtO1iOAAAIIxFaAQEZsPdkaAggggAACCCCAAAIIIIAAAgikgEDjxo1ddkX9+vXt5Zdftvnz55saUfuNs2fP2sqVK0036ZWdcf3119uoUaNcYKRMmWDdgklUaSkFLFRGavLkyfbzzz+7TJaLFy/6seaua968ud13330uSKTfy5Ytm7uOXxBAAAEEUlsgWJ+iqW3N2SGAAAIIIIAAAggggAACCCCAQBIJ1KxZ0zWRVjDjzTfftClTptjhw4ejnoFu1s+dO9e2bNlis2fPdtu46aabLDMz09SLIyijJIMZJ0+edP0vlIUxb94827ZtW4GaectKmSV9+/a1sWPHuuCQMmWSoQ9JUK4zx4EAAgikggCBjFS4ipwDAggggAACCCCAAAIIIIAAAgjERaBSpUquD0Pt2rWtTZs2rm/G5s2bo5ZBUpmkvXv3mhpXq9zU999/7wIaw4cPN2V7xPtGfLSyUiUVxFAPEQV1VHZLWS2bNm0yLSvoqFq1qt1yyy02evRou/rqq2nqXVA4nocAAgikmACBjBS7oJwOAggggAACCCCAAAIIIIAAAgjEVkBZFG3btrU//OEPrkyUsjN0c/706dNRd3Tp0iXbsWOHC2qsWrXKpk2bZkOHDjUFNJo0aRK3DI1E98hQBsacOXNcD4wFCxa4AIaWFSaAosDRvffea7feequ1bNnSypcvH9WbJyCAAAIIpKYAgYzUvK6cFQIIIIAAAggggAACCCCAAAIIxFhAJY1uvPFGa9asmX3yySf28ccfu34YBbk5rz4QKqek/hkrVqywqVOn2oABA1xQIysrq8SbVhfkmIvCp/NTOS1loCxbtsyUvVLYAIYapA8bNszuuecey87ONmXDxDuDpSjnymsQQAABBEpOgEBGyVmzJwQQQAABBBBAAAEEEEAAAQQQSHKBihUrWo8ePUxBjc6dO9t7773nSiYVtFxSKKCxa9cud6P/q6++sk6dOrnyVX369HFZGuXKlSu2UkFKS8UqmKG+IQpaqPfF0qVLbcOGDabzO3PmTKEyMHTSyny58847TT1FFOBRaS8GAggggAACBDJ4DyCAAAIIIIAAAggggAACCCCAAAKFEFCQQI27VfKoXbt29s0337gMDd3AVympggw9b8+ePe5n+fLl9t1337kghm7kK0DSrVs3d1O/SpUqBdncFc+JZ2mpy5cv286dO23lypUucLF27VqXbaLghRqdF9Qg70HXqlXLldsaNWqUC+rUqVMnbmW38u6X3xFAAAEEkkOAQEZyXCeOEgEEEEAAAQQQQAABBBBAAAEEAiZQuXJl6969uwtAqBH1lClT3I/KK6nZd0GHSi8pCKKfn3/+2WV71K9f3zUFV2Djqquusvbt21uLFi1ilqFQmGwMBS727dvnmpYraKHm5du3b3d9P/bv329Hjx4tUvBCPsq4GDhwoN12222u1FbTpk1LvMxWQa8Tz0MAAQQQSJwAgYzE2bNnBBBAAAEEEEAAAQQQQAABBBBIcgFlPqjM1DXXXOMyKAYPHmxff/21ffvtt6ab/IUJGIhCJar0s2XLFitTpozVqFHDlJ2gnwYNGrhMkEaNGpl+GjZs6H7q1q3rbv7nLSeV9/dIxDqu8GNTwEIZFXv37nWBC/2rrBFlX+jfnJwcO3jwoB06dMjOnj17xesj7cdrmfpgKPhzyy23uACGAjZFzT7x2gfLEUAAAQRSR+Bf/vmh9f9S53Q4EwQQQAABBBBAAAEEEEAAAQQQQCBxAhcuXLAdO3a4kksKZkyfPt0FNAqToeF19ApsVK1a9YqfatWqmYIZaoqtLBH18VC/ihkzZpj6V0QaQ4YMMQVdlBGhoIQCGApUKLvixIkTLpiiTBH9HD9+3M6fP1+swEXoGHRsvXr1cj0w+vbt6/pg6PijBV5Cr+dfBBBAAIH0FCCQkZ7XnbNGAAEEEEAAAQQQQAABBBBAAIE4CujGvzIZVqxYYd9//73L0FAPCWU9xHqUKlXKBS8UJFCjcAU8Tp8+7QIQXv0qFDxQUERDDcjPnTvnXuP1/OIec0ZGhilwccMNN7hAhjIwdAw6dgYCCCCAAALRBAhkRBNiPQIIIIAAAggggAACCCCAAAIIIFBEAWVoqGeG+krMmjXLpk6dahs3bnQZDkXcZFK9TOWw1ANj6NCh1rVrV2vZsqUpqEEGRlJdRg4WAQQQSLgAgYyEXwIOAAEEEEAAAQQQQAABBBBAAAEEUl1AmRjqmbFp0yZXdkpBjfnz57t+E7EoOxUkP/W/6Nixow0aNMj1wVCzcjXxVhkrBgIIIIAAAkURIJBRFDVegwACCCCAAAIIIIAAAggggAACCBRBQK1Kjx07ZioztXXrVld6auHChbZkyRLXSDtZgxrqzdGuXTtXNqp79+6u8Xnz5s1dk3KVu2IggAACCCBQHAECGcXR47UIIIAAAggggAACCCCAAAIIIIBAEQWUpaFm3Hv37nWBjQ0bNtjKlStdcGPz5s125syZIm45/i9Tb4tGjRpZhw4drHPnzqasi2bNmrll9evXN2VlUD4q/teBPSCAAALpIkAgI12uNOeJAAIIIIAAAggggAACCCCAAAKBFVAmxokTJywnJ8eVoFJfDfXSUG+NtWvX2rZt21wz7kSdQOnSpa1hw4Yu06J9+/aWlZXlykWpB0a9evWsVq1artF4oo6P/SKAAAIIpLYAgYzUvr6cHQIIIIAAAggggAACCCCAAAIIJKHAxYsXXQmqgwcPupJTCnAoc2PPnj2uebgCHfpR341z586ZSlbFYpQpU8Zq1qzpMisaN25soR9lXyhgUadOHfdTu3Ztq1ixIlkXsUBnGwgggAACUQUIZEQl4gkIIIAAAggggAACCCCAAAIIIIBAYgVUhkqlppS1oZ+TJ0+6f48fP25HjhxxP6dPn7azZ8+6wIb+zfv7hQsXTFkVKvmkAET4v1pWvXp1l1mhfzMyMtxP1apVc/8tW7YsgYvEvg3YOwIIIJC2AgQy0vbSc+IIIIAAAggggAACCCCAAAIIIJDsAsrEOH/+vAtaKFhx6dKl3B9ldeR9rL4WyrjQj4ISod9Dj0PBDQU8GAgggAACCARJgEBGkK4Gx4IAAggggAACCCCAAAIIIIAAAggggAACCCCAAAL5BErle8QDBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBAAgQyAnQxOBQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDIL0AgI78HjxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBAAgQyAnQxOBQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDIL0AgI78HjxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBAAgQyAnQxOBQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDIL0AgI78HjxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBAAgQyAnQxOBQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDIL0AgI78HjxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBAAgQyAnQxOBQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDIL0AgI78HjxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBAAgQyAnQxOBQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDIL0AgI78HjxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBAAgQyAnQxOBQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDIL0AgI78HjxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBAAgQyAnQxOBQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDIL0AgI78HjxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBAAgQyAnQxOBQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDIL0AgI78HjxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBAAgQyAnQxOBQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDIL0AgI78HjxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBAAgQyAnQxOBQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDIL0AgI78HjxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBAAgQyAnQxOBQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDIL0AgI78HjxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBAAgQyAnQxOBQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDIL0AgI78HjxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBAAgQyAnQxOBQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDIL0AgI78HjxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBAAgQyAnQxOBQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDIL0AgI78HjxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBAAgQyAnQxOBQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDIL0AgI78HjxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBAAgQyAnQxOBQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDIL0AgI78HjxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBAAgQyAnQxOBQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDIL0AgI78HjxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBAAv8fnC6ToQlC/5kAAAAASUVORK5CYII=" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To this end, we build and run the following circuit using a single-qubit Hadamard gate (denoted as ```H```) acting on the first qubit followed by a two-qubit ```CNOT``` gate: \n", + "

    \n", + "\n", + "
    " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Setup Circuit" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "# define circuit\n", + "bell = Circuit().h(0).cnot(0, 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : |0|1|\n", + " \n", + "q0 : -H-C-\n", + " | \n", + "q1 : ---X-\n", + "\n", + "T : |0|1|\n" + ] + } + ], + "source": [ + "# print circuit\n", + "print(bell)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "### Local Simulator" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "First we run our circuit locally, using an exact state-vector simulator. This local simulator is the preferred choice for fast experiments with low to intermediate qubit numbers ($N<20-25$) and essentially unlimited circuit depth. " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "# set up device: Local Simulator\n", + "device = LocalSimulator()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Counter({'11': 506, '00': 494})\n" + ] + } + ], + "source": [ + "# run circuit (execute single TASK)\n", + "result = device.run(bell, shots=1000).result()\n", + "# get measurement shots\n", + "counts = result.measurement_counts\n", + "# print counts\n", + "print(counts)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEGCAYAAACKB4k+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAQLklEQVR4nO3de6xlZXnH8e8PRrygyG1KYYY6VEhbUgvSCULVRiEqYCvEguJ1ipNOk2IrsUlF/6jWYAJpLYK2JFNRBu+ItVA0KkEssSnoIHeodUogMAIz3KGICj79Y7/zsh3ODBtn1tmHOd9PsrPf9ax3r/0MOeGXddlrpaqQJAlgu2k3IEmaOwwFSVJnKEiSOkNBktQZCpKkbsG0G9gSu+++ey1ZsmTabUjSM8qVV155d1UtnGndMzoUlixZwurVq6fdhiQ9oyS5dVPrPHwkSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEndoKGQ5JYk1yW5OsnqVts1ycVJftTed2n1JDkzyZok1yY5aMjeJElPNhu/aH51Vd09tnwycElVnZrk5Lb8PuBIYL/2ehlwVnuX5qUlJ39t2i1oDrvl1NcPst1pHD46GljVxquAY8bq59bI5cDOSfacQn+SNG8NHQoFfCvJlUlWtNoeVXVHG98J7NHGi4Dbxj57e6v9kiQrkqxOsnr9+vVD9S1J89LQh49eUVVrk/wacHGS/x5fWVWV5Gk9JLqqVgIrAZYuXeoDpiVpKxp0T6Gq1rb3dcBXgYOBuzYcFmrv69r0tcDeYx9f3GqSpFky2J5Ckh2B7arqoTZ+LfBh4EJgGXBqe7+gfeRC4N1JvsjoBPMDY4eZtjpP4mlzhjqJJ811Qx4+2gP4apIN3/P5qvpGku8D5yVZDtwKvKnN/zpwFLAGeAQ4YcDeJEkzGCwUqupm4IAZ6vcAh89QL+DEofqRJD01f9EsSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEnd4KGQZPskVyW5qC3vk+SKJGuSfCnJDq3+7La8pq1fMnRvkqRfNht7Cu8BbhpbPg04var2Be4Dlrf6cuC+Vj+9zZMkzaJBQyHJYuD1wCfbcoDDgPPblFXAMW18dFumrT+8zZckzZKh9xQ+BvwN8Iu2vBtwf1U91pZvBxa18SLgNoC2/oE2/5ckWZFkdZLV69evH7B1SZp/BguFJH8ErKuqK7fmdqtqZVUtraqlCxcu3JqblqR5b8GA23458IYkRwHPAXYCzgB2TrKg7Q0sBta2+WuBvYHbkywAXgjcM2B/kqSNDLanUFXvr6rFVbUEOB74dlW9DbgUOLZNWwZc0MYXtmXa+m9XVQ3VnyTpyabxO4X3Ae9NsobROYOzW/1sYLdWfy9w8hR6k6R5bcjDR11VfQf4ThvfDBw8w5xHgeNmox9J0sz8RbMkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWDhUKS5yT5XpJrktyQ5O9afZ8kVyRZk+RLSXZo9We35TVt/ZKhepMkzWzIPYWfAodV1QHAgcARSQ4BTgNOr6p9gfuA5W3+cuC+Vj+9zZMkzaLBQqFGHm6Lz2qvAg4Dzm/1VcAxbXx0W6atPzxJhupPkvRkg55TSLJ9kquBdcDFwP8C91fVY23K7cCiNl4E3AbQ1j8A7DbDNlckWZ1k9fr164dsX5LmnYlCIcl7kuyUkbOT/CDJa5/qc1X1eFUdCCwGDgZ+e8vahapaWVVLq2rpwoULt3RzkqQxk+4pvKuqHgReC+wCvAM4ddIvqar7gUuBQ4GdkyxoqxYDa9t4LbA3QFv/QuCeSb9DkrTlJg2FDcf2jwI+U1U3jNVm/kCyMMnObfxc4DXATYzC4dg2bRlwQRtf2JZp679dVTVhf5KkrWDBU08B4Mok3wL2Ad6f5AXAL57iM3sCq5Jszyh8zquqi5LcCHwxySnAVcDZbf7ZwGeSrAHuBY5/mv8WSdIWmjQUljO6rPTmqnokyW7ACZv7QFVdC7x0hvrNjM4vbFx/FDhuwn4kSQOY9PDRxVX1g3ZugKq6h9FvCSRJ25DN7ikkeQ7wPGD3JLvwxHmEnXjiUlJJ0jbiqQ4f/TlwErAXcCVPhMKDwCeGa0uSNA2bDYWqOgM4I8lfVtXHZ6knSdKUTHSiuao+nuQPgCXjn6mqcwfqS5I0BROFQpLPAC8GrgYeb+UCDAVJ2oZMeknqUmB/f0wmSdu2SS9JvR749SEbkSRN36R7CrsDNyb5HqPnJABQVW8YpCtJ0lRMGgofGrIJSdLcMOnVR/8xdCOSpOmb9OqjhxhdbQSwA6OnqP1fVe00VGOSpNk36Z7CCzaM2yMyjwYOGaopSdJ0PO3HcbZnL/8b8Lqt344kaZomPXz0xrHF7Rj9buHRQTqSJE3NpFcf/fHY+DHgFkaHkCRJ25BJzyls9oE6kqRtw0TnFJIsTvLVJOva6ytJFg/dnCRpdk16ovnTwIWMnquwF/DvrSZJ2oZMGgoLq+rTVfVYe50DLBywL0nSFEwaCvckeXuS7dvr7cA9QzYmSZp9k4bCu4A3AXcCdwDHAn86UE+SpCmZ9JLUDwPLquo+gCS7Av/AKCwkSduISfcUfm9DIABU1b3AS4dpSZI0LZOGwnZJdtmw0PYUJt3LkCQ9Q0z6P/aPAv+V5Mtt+TjgI8O0JEmalkl/0XxuktXAYa30xqq6cbi2JEnTMPEhoBYCBoEkbcOe9q2zJUnbLkNBktQZCpKkzlCQJHWDhUKSvZNcmuTGJDckeU+r75rk4iQ/au+7tHqSnJlkTZJrkxw0VG+SpJkNuafwGPDXVbU/cAhwYpL9gZOBS6pqP+CStgxwJLBfe60AzhqwN0nSDAYLhaq6o6p+0MYPATcBixg9xnNVm7YKOKaNjwbOrZHLgZ2T7DlUf5KkJ5uVcwpJljC6V9IVwB5VdUdbdSewRxsvAm4b+9jtrbbxtlYkWZ1k9fr164drWpLmocFDIcnzga8AJ1XVg+PrqqqAejrbq6qVVbW0qpYuXOhzfiRpaxo0FJI8i1EgfK6q/rWV79pwWKi9r2v1tcDeYx9f3GqSpFky5NVHAc4GbqqqfxxbdSGwrI2XAReM1d/ZrkI6BHhg7DCTJGkWDHn765cD7wCuS3J1q30AOBU4L8ly4FZGT3QD+DpwFLAGeAQ4YcDeJEkzGCwUquq7QDax+vAZ5hdw4lD9SJKemr9oliR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkbrBQSPKpJOuSXD9W2zXJxUl+1N53afUkOTPJmiTXJjloqL4kSZs25J7COcARG9VOBi6pqv2AS9oywJHAfu21AjhrwL4kSZswWChU1WXAvRuVjwZWtfEq4Jix+rk1cjmwc5I9h+pNkjSz2T6nsEdV3dHGdwJ7tPEi4Laxebe32pMkWZFkdZLV69evH65TSZqHpnaiuaoKqF/hcyuramlVLV24cOEAnUnS/DXboXDXhsNC7X1dq68F9h6bt7jVJEmzaLZD4UJgWRsvAy4Yq7+zXYV0CPDA2GEmSdIsWTDUhpN8AXgVsHuS24EPAqcC5yVZDtwKvKlN/zpwFLAGeAQ4Yai+JEmbNlgoVNVbNrHq8BnmFnDiUL1IkibjL5olSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKmbU6GQ5IgkP0yyJsnJ0+5HkuabORMKSbYH/gk4EtgfeEuS/afblSTNL3MmFICDgTVVdXNV/Qz4InD0lHuSpHllwbQbGLMIuG1s+XbgZRtPSrICWNEWH07yw1nobT7YHbh72k3MFTlt2h1oBv6NjtnCv9EXbWrFXAqFiVTVSmDltPvY1iRZXVVLp92HtCn+jc6OuXT4aC2w99jy4laTJM2SuRQK3wf2S7JPkh2A44ELp9yTJM0rc+bwUVU9luTdwDeB7YFPVdUNU25rPvGQnOY6/0ZnQapq2j1IkuaIuXT4SJI0ZYaCJKkzFOahmW4n0k7wX9FqX2on+6WpSPKpJOuSXD9WOy7JDUl+kcRLUwdiKMwzm7mdyGnA6VW1L3AfsHx6XUqcAxyxUe164I3AZbPezTxiKMw/m7qdyGHA+W3OKuCY6bQnQVVdBty7Ue2mqvIOBgMzFOafmW4nsgi4v6oe26gmaZ4xFCRJnaEw/2zqdiI7J1mwUU3SPGMozD+bup3IpcCxbc4y4IIp9SdpivxF8zyU5CjgYzxxO5GPJPlNRieddwWuAt5eVT+dXpeaz5J8AXgVo9tl3wV8kNGJ548DC4H7gaur6nVTanGbZShIkjoPH0mSOkNBktQZCpKkzlCQJHWGgiSpMxQ0ryVZMn4nzrH6J9uNAknygQm2c1KS521mfd+eNJd5SarmtSRLgIuq6nc3M+fhqnr+U2znFmBpVd09w7rtq+rxLe1Vmg3uKUiwIMnnktyU5Pwkz0vynSRLk5wKPDfJ1W3Ojkm+luSaJNcneXOSvwL2Ai5NcimMgiTJR5NcAxy6YXtj6z7StnF5kj1a/cVt+bokpyR5uNX3THJZ6+H6JK+czn8mzQeGggS/BfxzVf0O8CDwFxtWVNXJwE+q6sCqehuje/z/uKoOaHsX36iqM4EfA6+uqle3j+4IXNHmfXej79sRuLyqDmD0bIA/a/UzgDOq6iWM7lS7wVuBb1bVgcABwNVb6x8ubcxQkOC2qvrPNv4s8IrNzL0OeE2S05K8sqoe2MS8x4GvbGLdz4CL2vhKYEkbHwp8uY0/Pzb/+8AJST4EvKSqHtpMf9IWMRQk2PjE2iZPtFXV/wAHMQqHU5L87SamPrqZ8wg/rydO5j0OLNjEvA3feRnwh4zuXHtOkndubr60JQwFCX4jyaFt/FZg48M9P0/yLIAkewGPVNVngb9nFBAADwEv2MI+Lgf+pI2P31BM8iLgrqr6F+CTY98pbXWGggQ/BE5MchOwC3DWRutXAtcm+RzwEuB7Sa5mdOfOU8bmfGPDieZf0UnAe5NcC+wLbDg09SrgmiRXAW9mdO5BGoSXpEpzRPudw0+qqpIcD7ylqo6edl+aXzZ7LFPSrPp94BNJwuh5Ae+abjuaj9xTkCR1nlOQJHWGgiSpMxQkSZ2hIEnqDAVJUvf/Yi8fay6i/hwAAAAASUVORK5CYII=", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot using Counter\n", + "plt.bar(counts.keys(), counts.values())\n", + "plt.xlabel('bitstrings')\n", + "plt.ylabel('counts')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "### Quantum Hardware: Rigetti" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next we submit our circuit to the superconducting quantum chip provided by Rigetti. Depending on our position in the queue, we may have to wait for some time till our circuit is actually run. However, thanks to asynchronous execution, we can always come back and recover the results by providing the unique ID associated with every task. " + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Status of task: CREATED\n" + ] + } + ], + "source": [ + "# set up device\n", + "rigetti = AwsDevice(\"arn:aws:braket:us-west-1::device/qpu/rigetti/Aspen-M-3\")\n", + "\n", + "# create a clean circuit with no result type attached.(This is because some result types are only supported when shots=0)\n", + "bell = Circuit().h(0).cnot(0, 1) \n", + "\n", + "# add the Z \\otimes Z expectation value\n", + "bell.expectation(Observable.Z() @ Observable.Z(), target=[0,1])\n", + "\n", + "# run circuit \n", + "rigetti_task = rigetti.run(bell, shots=1000)\n", + "\n", + "# get id and status of submitted task\n", + "rigetti_task_id = rigetti_task.id\n", + "rigetti_status = rigetti_task.state()\n", + "# print('ID of task:', rigetti_task_id)\n", + "print('Status of task:', rigetti_status)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "The task is submitted and we can regularly (or irregularly) check the status of this task by executing the following cell. You may easily build logic around this query to wait for this task to complete before your code proceeds. " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Status of (reconstructed) task: COMPLETED\n" + ] + } + ], + "source": [ + "# print status\n", + "status = rigetti_task.state()\n", + "print('Status of (reconstructed) task:', status)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "### Quantum Hardware: IonQ" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we submit our example Bell state circuit to IonQ. We set the device as AwsDevice(\"arn:aws:braket:us-east-1::device/qpu/ionq/Harmony\"). This task may not readily be executed but enter a queue for this specific machine. While we can interrupt our kernel (and work on something else), we can always recover our results using the unique ID of this task." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Status of task: CREATED\n" + ] + } + ], + "source": [ + "# set up device\n", + "ionq = AwsDevice(\"arn:aws:braket:us-east-1::device/qpu/ionq/Harmony\")\n", + "\n", + "# run circuit\n", + "ionq_task = ionq.run(bell, shots=1000)\n", + "\n", + "# get id and status of submitted task\n", + "ionq_task_id = ionq_task.id\n", + "ionq_status = ionq_task.state()\n", + "# print('ID of task:', ionq_task_id)\n", + "print('Status of task:', ionq_status)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Status of (reconstructed) task: COMPLETED\n" + ] + } + ], + "source": [ + "# print status\n", + "status = ionq_task.state()\n", + "print('Status of (reconstructed) task:', status)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Quantum Hardware: Oxford Quantum Circuits" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, we submit our circuit to the superconducting quantum computer provided by Oxford Quantum Circuits (OQC). The task runs asynchronously. We can retrieve the result when the task is completed." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Status of task: COMPLETED\n" + ] + } + ], + "source": [ + "# set up device\n", + "oqc = AwsDevice(\"arn:aws:braket:eu-west-2::device/qpu/oqc/Lucy\")\n", + "\n", + "# run circuit\n", + "oqc_task = oqc.run(bell, shots=1000)\n", + "\n", + "# get id and status of submitted task\n", + "oqc_task_id = oqc_task.id\n", + "oqc_status = oqc_task.state()\n", + "# print('ID of task:', oqc_task_id)\n", + "print('Status of task:', oqc_status)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "### Task Recovery" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "By simply grabbing the unique task ID associated with the quantum tasks we have submitted above, we can recover this task at any point in time and (once the status is completed) visualize and analyze the corresponding results. Note that apart from other metadata, you can retrieve the compiled circuit that was actually run on the Rigetti device. More information about the compiling process can be found [here](https://pyquil-docs.rigetti.com/en/v2.22.0/compiler.html#partial). " + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Status of (reconstructed) task: COMPLETED\n", + "\n", + "\n", + "1000 shots taken on machine arn:aws:braket:us-west-1::device/qpu/rigetti/Aspen-M-3.\n", + "\n", + "The compiled circuit is:\n", + " DECLARE ro BIT[2]\n", + "PRAGMA INITIAL_REWIRING \"PARTIAL\"\n", + "RESET\n", + "RZ(pi) 12\n", + "RZ(-pi/2) 13\n", + "RX(-pi/2) 13\n", + "XY(pi) 13 12\n", + "RZ(pi/2) 13\n", + "RX(pi/2) 13\n", + "RZ(-pi/2) 13\n", + "XY(pi) 13 12\n", + "RX(-pi/2) 12\n", + "MEASURE 12 ro[1]\n", + "MEASURE 13 ro[0]\n", + "\n", + "Measurement counts: Counter({'11': 458, '00': 421, '10': 81, '01': 40})\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAQw0lEQVR4nO3dfYxnVX3H8fdHFnxGHnZDYZc6RogtqQXtxkKtjUK1CK1QioqPW912mxSrxCZ16x/VVposbS1FbU0oKAtalWJbKBgpQSjRCrrIg8DGsiUQFoFdebaICn77x++sTsed5cfu3P2d2Xm/ksmce+753f3uzWQ+ufeeOTdVhSRJvXnapAuQJGlrDChJUpcMKElSlwwoSVKXDChJUpcWTbqAHbF48eKampqadBmSpB1w7bXXfqeqlszsn9cBNTU1xbp16yZdhiRpByS5Y2v93uKTJHXJgJIkdcmAkiR1yYCSJHXJgJIkdcmAkiR1yYCSJHXJgJIkdcmAkiR1yYCSJHVpXi91pPlhavUlky6hS7evOXbSJUhd8wpKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1KUF/0Zd3/Y6O9/4KmmSvIKSJHXJgJIkdcmAkiR1yYCSJHXJgJIkdcmAkiR1afCASrJbkuuSXNy2X5DkmiQbknwuyR6t/+lte0PbPzV0bZKkfu2MK6j3AOunbZ8GnF5VBwEPACtb/0rggdZ/ehsnSVqgBg2oJMuAY4Gz2naAI4EL2pC1wPGtfVzbpu0/qo2XJC1AQ19B/R3wJ8CP2va+wINV9Xjb3ggsbe2lwJ0Abf9Dbfz/k2RVknVJ1m3evHnA0iVJkzRYQCX5TWBTVV07l8etqjOranlVLV+yZMlcHlqS1JEh1+J7OfC6JMcAzwD2BM4A9kqyqF0lLQPuauPvAg4ENiZZBDwPuG/A+iRJHRvsCqqq/rSqllXVFHAS8KWqegtwBXBiG7YCuLC1L2rbtP1fqqoaqj5JUt8m8XdQ7wPem2QDo2dMZ7f+s4F9W/97gdUTqE2S1Imd8rqNqroSuLK1bwNetpUxjwGv3xn1SJL650oSkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuDRZQSZ6R5GtJbkhyc5I/b/0vSHJNkg1JPpdkj9b/9La9oe2fGqo2SVL/hryC+j5wZFUdChwGHJ3kcOA04PSqOgh4AFjZxq8EHmj9p7dxkqQFarCAqpHvts3d21cBRwIXtP61wPGtfVzbpu0/KkmGqk+S1LdBn0El2S3J9cAm4DLgf4AHq+rxNmQjsLS1lwJ3ArT9DwH7buWYq5KsS7Ju8+bNQ5YvSZqgQQOqqp6oqsOAZcDLgJ+bg2OeWVXLq2r5kiVLdvRwkqRO7ZRZfFX1IHAFcASwV5JFbdcy4K7Wvgs4EKDtfx5w386oT5LUnyFn8S1JsldrPxN4NbCeUVCd2IatAC5s7YvaNm3/l6qqhqpPktS3RU8+ZLvtD6xNshujIDy/qi5Ocgvw2SSnAtcBZ7fxZwPnJdkA3A+cNGBtkqTODRZQVXUj8JKt9N/G6HnUzP7HgNcPVY8kaX5xJQlJUpcMKElSlwwoSVKXDChJUpcMKElSlwwoSVKXDChJUpcMKElSlwwoSVKXDChJUpfGCqgk70myZ0bOTvKNJK8ZujhJ0sI17hXUO6vqYeA1wN7A24A1g1UlSVrwxg2oLa9ePwY4r6puntYnSdKcGzegrk3yH4wC6tIkzwV+NFxZkqSFbtzXbawEDgNuq6pHk+wLvGOwqiRJC964V1CXVdU32qvbqar7gNMHq0qStOBt8woqyTOAZwGLk+zNT5477QksHbg2SdIC9mS3+P4AOAU4ALiWnwTUw8DHhitLkrTQbTOgquoM4Iwkf1RVH91JNUmSNN4kiar6aJJfAaamf6aqzh2oLknSAjdWQCU5D3ghcD3wROsuwICSJA1i3Gnmy4FDqqqGLEaSpC3GnWZ+E/AzQxYiSdJ0415BLQZuSfI14PtbOqvqdYNUJUla8MYNqA8OWYQkSTONO4vvP4cuRJKk6cadxfcIo1l7AHsAuwP/W1V7DlWYJGlhG/cK6rlb2kkCHAccPlRRkiQ95Ve+18i/Ab8x9+VIkjQy7i2+E6ZtPo3R30U9NkhFkiQx/iy+35rWfhy4ndFtPkmSBjHuMyhfTihJ2qnGegaVZFmSf02yqX19PsmyoYuTJC1c406S+CRwEaP3Qh0A/HvrkyRpEOMG1JKq+mRVPd6+zgGWDFiXJGmBGzeg7kvy1iS7ta+3AvcNWZgkaWEbN6DeCbwBuAe4GzgR+N2BapIkaexp5n8BrKiqBwCS7AP8DaPgkiRpzo17BfWLW8IJoKruB14yTEmSJI0fUE9LsveWjXYFNe7VlyRJT9m4AfVh4KtJPpTkQ8B/AX+1rQ8kOTDJFUluSXJzkve0/n2SXJbk1vZ979afJB9JsiHJjUleuiP/MUnS/DZWQFXVucAJwL3t64SqOu9JPvY48MdVdQijlc9PTnIIsBq4vKoOBi5v2wCvBQ5uX6uAjz/F/4skaRcy9m26qroFuOUpjL+b0Yw/quqRJOuBpYzW8HtlG7YWuBJ4X+s/t6oKuDrJXkn2b8eRJC0wT/l1G9sjyRSjSRXXAPtNC517gP1aeylw57SPbWx9M4+1Ksm6JOs2b948XNGSpIkaPKCSPAf4PHBKVT08fV+7WqqtfnAWVXVmVS2vquVLlriYhSTtqgYNqCS7MwqnT1fVv7Tue5Ps3/bvD2xq/XcBB077+LLWJ0lagAYLqPZq+LOB9VX1t9N2XQSsaO0VwIXT+t/eZvMdDjzk8ydJWriG/FumlwNvA76Z5PrW935gDXB+kpXAHYyWUAL4AnAMsAF4FPAdVJK0gA0WUFX1ZSCz7D5qK+MLOHmoeiRJ88tOmcUnSdJTZUBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6ZEBJkrpkQEmSumRASZK6NFhAJflEkk1JbprWt0+Sy5Lc2r7v3fqT5CNJNiS5MclLh6pLkjQ/DHkFdQ5w9Iy+1cDlVXUwcHnbBngtcHD7WgV8fMC6JEnzwGABVVVXAffP6D4OWNvaa4Hjp/WfWyNXA3sl2X+o2iRJ/dvZz6D2q6q7W/seYL/WXgrcOW3cxtb3U5KsSrIuybrNmzcPV6kkaaImNkmiqgqo7fjcmVW1vKqWL1myZIDKJEk92NkBde+WW3ft+6bWfxdw4LRxy1qfJGmB2tkBdRGworVXABdO6397m813OPDQtFuBkqQFaNFQB07yGeCVwOIkG4EPAGuA85OsBO4A3tCGfwE4BtgAPAq8Y6i6JEnzw2ABVVVvmmXXUVsZW8DJQ9UiSZp/XElCktQlA0qS1CUDSpLUpcGeQUnaOaZWXzLpErp1+5pjJ12CdoBXUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLi2adAGS1Lup1ZdMuoRu3b7m2MGO7RWUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLXQVUkqOTfCvJhiSrJ12PJGlyugmoJLsBfw+8FjgEeFOSQyZblSRpUroJKOBlwIaquq2qfgB8FjhuwjVJkiYkVTXpGgBIciJwdFX9Xtt+G/DLVfWuGeNWAava5ouAb+3UQoe1GPjOpIvYxXmOh+c5HtaueH6fX1VLZnYumkQlO6KqzgTOnHQdQ0iyrqqWT7qOXZnneHie42EtpPPb0y2+u4ADp20va32SpAWop4D6OnBwkhck2QM4CbhowjVJkiakm1t8VfV4kncBlwK7AZ+oqpsnXNbOtkveuuyM53h4nuNhLZjz280kCUmSpuvpFp8kST9mQEmSumRATdDWlnZqk0SuaX2faxNGtB2SfCLJpiQ3Tet7fZKbk/woyYKYqjuUWc7vPkkuS3Jr+773JGvcFczye+JdbbuSLJ50jUMxoCZkG0s7nQacXlUHAQ8AKydX5bx3DnD0jL6bgBOAq3Z6Nbuec/jp87sauLyqDgYub9vaTtv4PfEV4NeBOyZY3uAMqMmZbWmnI4EL2pi1wPGTKW/+q6qrgPtn9K2vql1p9ZGJ2dr5ZfQzvLa1/fndcVv9PVFV11XV7ZMtbXgG1OQsBe6ctr2x9T1YVY/P6JPmi/2q6u7WvgfYb5LF7AJm+z2xIBhQkgZRo79h8e9YtN0MqMmZbWmnvZIsmtEnzRf3JtkfoH3fNOF65rsFvQScATU5sy3tdAVwYhuzArhwQvVJ2+MiRj+34M/vXFjQS8AZUBPSnjNtWdppPXB+W9rpfcB7k2wA9gXOnlyV81uSzwBfBV6UZGOSlUl+O8lG4AjgkiSXTrbK+Wtr5xdYA7w6ya2MZpmtmWSN891svyeSvLv9HC8Dbkxy1iTrHIpLHUmSuuQVlCSpSwaUJKlLBpQkqUsGlCSpSwaUJKlLBpQ0B5JMTV/Ve1r/WW1xT5K8f4zjnJLkWdvY/+PjSbs6p5lLcyDJFHBxVf3CNsZ8t6qe8yTHuR1YXlXf2cq+3arqiR2tVZovvIKS5s6iJJ9Osj7JBUmeleTKJMuTrAGemeT6NubZSS5JckOSm5K8Mcm7gQOAK5JcAaNQS/LhJDcAR2w53rR9f9mOcXWS/Vr/C9v2N5OcmuS7rX//JFe1Gm5K8orJnCZpPAaUNHdeBPxDVf088DDwh1t2VNVq4HtVdVhVvYXRe5S+XVWHtquuL1bVR4BvA6+qqle1jz4buKaN+/KMf+/ZwNVVdSij91v9fus/Azijql7MaPXrLd4MXFpVhwGHAtfP1X9cGoIBJc2dO6vqK639KeBXtzH2m4yWBDotySuq6qFZxj0BfH6WfT8ALm7ta4Gp1j4C+OfW/qdp478OvCPJB4EXV9Uj26hPmjgDSpo7Mx/ozvqAt6r+G3gpo6A6NcmfzTL0sW08d/ph/eQh8hPAolnGbfk3rwJ+jdFq2Ockefu2xkuTZkBJc+dnkxzR2m8GZt6S+2GS3QGSHAA8WlWfAv6aUVgBPAI8dwfruBr4ndY+aUtnkucD91bVPwJnTfs3pS4ZUNLc+RZwcpL1wN7Ax2fsP5PRytOfBl4MfC3J9cAHgFOnjfnilkkS2+kURivi3wgcBGy5ffhK4IYk1wFvZPSsSuqW08ylXUz7O6rvVVUlOQl4U1UdN+m6pKdqm/esJc1LvwR8LEmAB4F3TrYcaft4BSVJ6pLPoCRJXTKgJEldMqAkSV0yoCRJXTKgJEld+j8xvRiUGpE/9gAAAABJRU5ErkJggg==", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# recover task\n", + "task_load = AwsQuantumTask(arn=rigetti_task_id)\n", + "\n", + "# print status\n", + "status = task_load.state()\n", + "print('Status of (reconstructed) task:', status)\n", + "print('\\n')\n", + "# wait for job to complete\n", + "# terminal_states = ['COMPLETED', 'FAILED', 'CANCELLED']\n", + "if status == 'COMPLETED':\n", + " # get results\n", + " rigetti_results = task_load.result()\n", + " # print(rigetti_results)\n", + " \n", + " # get all metadata of submitted task\n", + " metadata = task_load.metadata()\n", + " # example for metadata\n", + " shots = metadata['shots']\n", + " machine = metadata['deviceArn']\n", + " # print example metadata\n", + " print(\"{} shots taken on machine {}.\\n\".format(shots, machine))\n", + " \n", + " # get the compiled circuit\n", + " print(\"The compiled circuit is:\\n\", rigetti_results.additional_metadata.rigettiMetadata.compiledProgram)\n", + " \n", + " # get measurement counts\n", + " rigetti_counts = rigetti_results.measurement_counts\n", + " print('Measurement counts:', rigetti_counts)\n", + "\n", + " # plot results: see effects of noise\n", + " plt.bar(rigetti_counts.keys(), rigetti_counts.values())\n", + " plt.xlabel('bitstrings')\n", + " plt.ylabel('counts')\n", + " plt.tight_layout()\n", + " plt.savefig('rigetti.png', dpi=700)\n", + " \n", + "elif status in ['FAILED', 'CANCELLED']:\n", + " # print terminal message \n", + " print('Your task is in terminal status, but has not completed.')\n", + "\n", + "else:\n", + " # print current status\n", + " print('Sorry, your task is still being processed and has not been finalized yet.')" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Status of (reconstructed) task: COMPLETED\n", + "1000 shots taken on machine arn:aws:braket:us-east-1::device/qpu/ionq/Harmony.\n", + "Measurement counts: Counter({'11': 501, '00': 456, '01': 25, '10': 18})\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAAR0UlEQVR4nO3dfcyddX3H8fdHis8oBboOW/Q2StzIHOgaB1MXhamIm2UOFJ/osFuXDKeEJbPzj+kWTTB7YKibWSdK8WkqztGBEQniiEbQooggc3QEQivQioA6ZAp+98f53XpW23qg93Wf3937/UpOzu/6Xr9z9dsrJ/nkerivk6pCkqTePGzaDUiStCsGlCSpSwaUJKlLBpQkqUsGlCSpS0um3cDeOOSQQ2pmZmbabUiS9sLVV1/97apatnN9QQfUzMwMmzdvnnYbkqS9kOSWXdU9xSdJ6pIBJUnqkgElSeqSASVJ6pIBJUnqkgElSeqSASVJ6tKgAZXk5iRfT3JNks2tdlCSS5Pc2N6XtnqSvDPJliTXJnnmkL1Jkvo2H0dQz6+qo6pqVVteD1xWVYcDl7VlgBcDh7fXOuA989CbJKlT0zjFtxrY2MYbgRPH6ufXyJXAgUkOnUJ/kqQODP2oowI+k6SAf6qqDcDyqrqtrb8dWN7GK4Bbxz67tdVuG6uRZB2jIyye+MQnDti6JI3MrL942i106+azXjLYtocOqOdU1bYkvwBcmuQ/x1dWVbXwmlgLuQ0Aq1at8vfqJWkfNegpvqra1t63A58EngXcMXvqrr1vb9O3AYeNfXxlq0mSFqHBAirJY5IcMDsGXghcB2wC1rRpa4AL23gTcGq7m+9o4J6xU4GSpEVmyFN8y4FPJpn9dz5cVZ9O8mXgY0nWArcAL2/zPwWcAGwB7gVOG7A3SVLnBguoqroJOHIX9TuB43ZRL+D0ofqRJC0sPklCktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1KWhf/K9ezPrL552C926+ayXTLsFSYuYR1CSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuDR5QSfZL8tUkF7XlJye5KsmWJB9N8vBWf0Rb3tLWzwzdmySpX/NxBPVG4Iax5XcAZ1fVU4G7gLWtvha4q9XPbvMkSYvUoAGVZCXwEuC9bTnAscAFbcpG4MQ2Xt2WaeuPa/MlSYvQ0EdQfw/8GfDjtnwwcHdV3d+WtwIr2ngFcCtAW39Pm///JFmXZHOSzTt27BiwdUnSNA0WUEl+G9heVVfP5XarakNVraqqVcuWLZvLTUuSOrJkwG0/G3hpkhOARwKPA84BDkyypB0lrQS2tfnbgMOArUmWAI8H7hywP0lSxwY7gqqqP6+qlVU1A5wCfLaqXg1cDpzUpq0BLmzjTW2Ztv6zVVVD9SdJ6ts0/g7qTcCZSbYwusZ0bqufCxzc6mcC66fQmySpE0Oe4vuJqvoc8Lk2vgl41i7m3AecPB/9SJL655MkJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0aLKCSPDLJl5J8Lcn1Sf6y1Z+c5KokW5J8NMnDW/0RbXlLWz8zVG+SpP4NeQT1v8CxVXUkcBRwfJKjgXcAZ1fVU4G7gLVt/lrgrlY/u82TJC1SgwVUjXy/Le7fXgUcC1zQ6huBE9t4dVumrT8uSYbqT5LUt0GvQSXZL8k1wHbgUuC/gbur6v42ZSuwoo1XALcCtPX3AAcP2Z8kqV+DBlRVPVBVRwErgWcBv7S320yyLsnmJJt37Nixt5uTJHVqXu7iq6q7gcuBY4ADkyxpq1YC29p4G3AYQFv/eODOXWxrQ1WtqqpVy5YtG7p1SdKUDHkX37IkB7bxo4AXADcwCqqT2rQ1wIVtvKkt09Z/tqpqqP4kSX2bKKCSvDHJ4zJybpKvJHnhz/nYocDlSa4FvgxcWlUXAW8CzkyyhdE1pnPb/HOBg1v9TGD9Q/kPSZL2DUt+/hQAXldV5yR5EbAUeC3wAeAzu/tAVV0LPGMX9ZsYXY/auX4fcPKE/UiS9nGTnuKbvd37BOADVXX9WE2SpDk3aUBdneQzjALqkiQHAD8eri1J0mI36Sm+tYyeBnFTVd2b5GDgtMG6kiQtepMeQV1aVV9pt4tTVXcyehyRJEmD2OMRVJJHAo8GDkmylJ9ed3ocP30ChCRJc+7nneL7I+AM4AnA1fw0oL4LvHu4tiRJi90eA6qqzgHOSfInVfWueepJkqTJbpKoqncl+Q1gZvwzVXX+QH1Jkha5iQIqyQeApwDXAA+0cgEGlCRpEJPeZr4KOMJn40mS5sukt5lfB/zikI1IkjRu0iOoQ4BvJPkSo59yB6CqXjpIV5KkRW/SgHrrkE1IkrSzSe/i+4+hG5Ekadykd/F9j9FdewAPB/YH/qeqHjdUY5KkxW3SI6gDZsdJAqwGjh6qKUmSHvRPvtfIvwEvmvt2JEkamfQU38vGFh/G6O+i7hukI0mSmPwuvt8ZG98P3MzoNJ8kSYOY9BqUP04oSZpXE12DSrIyySeTbG+vTyRZOXRzkqTFa9KbJN4PbGL0u1BPAP691SRJGsSkAbWsqt5fVfe313nAsgH7kiQtcpMG1J1JXpNkv/Z6DXDnkI1Jkha3SQPqdcDLgduB24CTgN8fqCdJkia+zfyvgDVVdRdAkoOAv2EUXJIkzblJj6B+dTacAKrqO8AzhmlJkqTJA+phSZbOLrQjqEmPviRJetAmDZm/Bb6Y5ONt+WTg7cO0JEnS5E+SOD/JZuDYVnpZVX1juLYkSYvdxKfpWiAZSpKkefGgf25DkqT5YEBJkrpkQEmSumRASZK6ZEBJkro0WEAlOSzJ5Um+keT6JG9s9YOSXJrkxva+tNWT5J1JtiS5Nskzh+pNktS/IY+g7gf+tKqOAI4GTk9yBLAeuKyqDgcua8sALwYOb691wHsG7E2S1LnBAqqqbquqr7Tx94AbgBXAamBjm7YROLGNVwPn18iVwIFJDh2qP0lS3+blGlSSGUYPl70KWF5Vt7VVtwPL23gFcOvYx7a22s7bWpdkc5LNO3bsGK5pSdJUDR5QSR4LfAI4o6q+O76uqgqoB7O9qtpQVauqatWyZf6oryTtqwYNqCT7MwqnD1XVv7byHbOn7tr79lbfBhw29vGVrSZJWoSGvIsvwLnADVX1d2OrNgFr2ngNcOFY/dR2N9/RwD1jpwIlSYvMkL/p9GzgtcDXk1zTam8GzgI+lmQtcAujn5IH+BRwArAFuBc4bcDeJEmdGyygqurzQHaz+rhdzC/g9KH6kSQtLD5JQpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1KXBAirJ+5JsT3LdWO2gJJcmubG9L231JHlnki1Jrk3yzKH6kiQtDEMeQZ0HHL9TbT1wWVUdDlzWlgFeDBzeXuuA9wzYlyRpARgsoKrqCuA7O5VXAxvbeCNw4lj9/Bq5EjgwyaFD9SZJ6t98X4NaXlW3tfHtwPI2XgHcOjZva6v9jCTrkmxOsnnHjh3DdSpJmqqp3SRRVQXUQ/jchqpaVVWrli1bNkBnkqQezHdA3TF76q69b2/1bcBhY/NWtpokaZGa74DaBKxp4zXAhWP1U9vdfEcD94ydCpQkLUJLhtpwko8AzwMOSbIVeAtwFvCxJGuBW4CXt+mfAk4AtgD3AqcN1ZckaWEYLKCq6pW7WXXcLuYWcPpQvUiSFh6fJCFJ6pIBJUnqkgElSeqSASVJ6pIBJUnqkgElSeqSASVJ6pIBJUnqkgElSeqSASVJ6pIBJUnqkgElSeqSASVJ6pIBJUnqkgElSeqSASVJ6pIBJUnqkgElSeqSASVJ6pIBJUnqkgElSeqSASVJ6pIBJUnqkgElSeqSASVJ6pIBJUnqkgElSeqSASVJ6tKSaTcgae/MrL942i106+azXjLtFrQXPIKSJHXJgJIkdclTfBqcp6B2zdNP0p55BCVJ6pIBJUnqkgElSeqSASVJ6lJXAZXk+CTfTLIlyfpp9yNJmp5uAirJfsA/AC8GjgBemeSI6XYlSZqWbgIKeBawpapuqqofAv8CrJ5yT5KkKUlVTbsHAJKcBBxfVX/Qll8L/HpVvX6neeuAdW3xacA357XRYR0CfHvaTezj3MfDcx8Pa1/cv0+qqmU7FxfcH+pW1QZgw7T7GEKSzVW1atp97Mvcx8NzHw9rMe3fnk7xbQMOG1te2WqSpEWop4D6MnB4kicneThwCrBpyj1Jkqakm1N8VXV/ktcDlwD7Ae+rquun3NZ82ydPXXbGfTw89/GwFs3+7eYmCUmSxvV0ik+SpJ8woCRJXTKgpmhXj3ZqN4lc1WofbTeM6CFI8r4k25NcN1Y7KMmlSW5s70un2eNCt5vv8OvbciU5ZNo9LmS7+Q6fnOT6JD9Osk/fbm5ATckeHu30DuDsqnoqcBewdnpdLnjnAcfvVFsPXFZVhwOXtWU9BHv4Dn8B+C3glim2t684j5/9Dl8HvAy4Yt67mWcG1PTs7tFOxwIXtDkbgROn097CV1VXAN/Zqbya0X4F9+/e2uV3uKq+WlU3T7e1fcOuvsNVdUNV7UtP0NktA2p6VgC3ji1vbbW7q+r+nWqaO8ur6rY2vh1YPs1mFrjdfYelOWFAadGq0d9Y+HcWUqcMqOnZ3aOdDkyyZKea5s4dSQ4FaO/bp9zPQubjyTQoA2p6dvdop8uBk9qcNcCFU+pvX7WJ0X4F9+/e8vFkGpQBNSXtOtPso51uAD7WHu30JuDMJFuAg4Fzp9flwpbkI8AXgacl2ZpkLXAW8IIkNzK60+ysafa4kO3uO5zkDUm2MjqiujbJe6fZ50K2q+9wkt9t+/cY4OIkl0y3y+H4qCNJUpc8gpIkdcmAkiR1yYCSJHXJgJIkdcmAkiR1yYCS5kCSmfEnTo/V39seoEqSN0+wnTOSPHoP63+yPWlf523m0hxIMgNcVFW/soc536+qx/6c7dwMrKqqb+9i3X5V9cDe9iotFB5BSXNnSZIPJbkhyQVJHp3kc0lWJTkLeFSSa9qcxyS5OMnXklyX5BVJ3gA8Abg8yeUwCrUkf5vka8Axs9sbW/f2to0rkyxv9ae05a8neVuS77f6oUmuaD1cl+S509lN0mQMKGnuPA34x6r6ZeC7wB/Prqiq9cAPquqoqno1o9/4+VZVHdmOuj5dVe8EvgU8v6qe3z76GOCqNu/zO/17jwGurKojGf020B+2+jnAOVX1dEZPGJ/1KuCSqjoKOBK4Zq7+49IQDChp7txaVV9o4w8Cz9nD3K8zeuTSO5I8t6ru2c28B4BP7GbdD4GL2vhqYKaNjwE+3sYfHpv/ZeC0JG8Fnl5V39tDf9LUGVDS3Nn5gu5uL/BW1X8Bz2QUVG9L8he7mXrfHq47/ah+ehH5AWDJbubN/ptXAL/J6Inj5yU5dU/zpWkzoKS588Qkx7Txq4CdT8n9KMn+AEmeANxbVR8E/ppRWAF8DzhgL/u4Evi9Nj5ltpjkScAdVfXPwHvH/k2pSwaUNHe+CZye5AZgKfCendZvYPR07w8BTwe+lOQa4C3A28bmfHr2JomH6AxGT8S/FngqMHv68HnA15J8FXgFo2tVUre8zVzax7S/o/pBVVWSU4BXVtXqafclPVh7PGctaUH6NeDdSQLcDbxuuu1ID41HUJKkLnkNSpLUJQNKktQlA0qS1CUDSpLUJQNKktSl/wPTBohoWth8XAAAAABJRU5ErkJggg==", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# recover task\n", + "task_load = AwsQuantumTask(arn=ionq_task_id)\n", + "\n", + "# print status\n", + "status = task_load.state()\n", + "print('Status of (reconstructed) task:', status)\n", + "\n", + "# wait for job to complete\n", + "# terminal_states = ['COMPLETED', 'FAILED', 'CANCELLED']\n", + "if status == 'COMPLETED':\n", + " # get results\n", + " results = task_load.result()\n", + " # print(rigetti_results)\n", + " \n", + " # get all metadata of submitted task\n", + " metadata = task_load.metadata()\n", + " # example for metadata\n", + " shots = metadata['shots']\n", + " machine = metadata['deviceArn']\n", + " # print example metadata\n", + " print(\"{} shots taken on machine {}.\".format(shots, machine))\n", + " \n", + " # get measurement counts\n", + " counts = results.measurement_counts\n", + " print('Measurement counts:', counts)\n", + "\n", + " # plot results: see effects of noise\n", + " plt.bar(counts.keys(), counts.values())\n", + " plt.xlabel('bitstrings')\n", + " plt.ylabel('counts')\n", + " plt.tight_layout()\n", + " plt.savefig('bell_ionq.png', dpi=700)\n", + " \n", + "elif status in ['FAILED', 'CANCELLED']:\n", + " # print terminal message \n", + " print('Your task is in terminal status, but has not completed.')\n", + "\n", + "else:\n", + " # print current status\n", + " print('Sorry, your task is still being processed and has not been finalized yet.')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "We have successfully recovered the results associated with the tasks that were queued up for the quantum hardware providers. Because of noise (decoherence) and other imperfections we cannot fully recover the exact results we have seen when using the classical simulator. To deal with that, in the fullness of time we will be able to use error correction techniques. As long as error correction is not available, it is important to benchmark our quantum results using classical simulators, whenever possible. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "# APPENDIX" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "# set up device\n", + "rigetti = AwsDevice(\"arn:aws:braket:us-west-1::device/qpu/rigetti/Aspen-M-3\")\n", + "\n", + "# run circuit\n", + "task = rigetti.run(bell, shots=1000)\n", + "print('Information on task:\\n', task)\n", + "print('==================================' * 2)\n", + "\n", + "# get status of submitted task\n", + "status = task.state()\n", + "\n", + "# wait for job to complete\n", + "terminal_states = ['COMPLETED', 'FAILED', 'CANCELLED']\n", + "while status not in terminal_states:\n", + " status = task.state()\n", + " print('Status:', status)\n", + " # time.sleep(60)\n", + "\n", + "print('Status:', status)\n", + "\n", + "# get results\n", + "rigetti_results = task.result()\n", + "print(rigetti_results)\n", + "\n", + "# get measurement counts\n", + "rigetti_counts = rigetti_results.measurement_counts\n", + "print(rigetti_counts)\n", + "\n", + "# plot results: see effects of noise\n", + "plt.bar(rigetti_counts.keys(), rigetti_counts.values())\n", + "plt.xlabel('bitstrings')\n", + "plt.ylabel('counts')\n", + "plt.tight_layout()\n", + "plt.savefig('rigetti2.png', dpi=700)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Task Summary\n", + "{'arn:aws:braket:us-west-1::device/qpu/rigetti/Aspen-M-3': {'shots': 2000, 'tasks': {'COMPLETED': 2}}, 'arn:aws:braket:us-east-1::device/qpu/ionq/Harmony': {'shots': 1000, 'tasks': {'QUEUED': 1}}, 'arn:aws:braket:eu-west-2::device/qpu/oqc/Lucy': {'shots': 1000, 'tasks': {'CREATED': 1}}}\n", + "Note: Charges shown are estimates based on your Amazon Braket simulator and quantum processing unit (QPU) task usage. Estimated charges shown may differ from your actual charges. Estimated charges do not factor in any discounts or credits, and you may experience additional charges based on your use of other services such as Amazon Elastic Compute Cloud (Amazon EC2).\n", + "Estimated cost to run this example: 12.25 USD\n" + ] + } + ], + "source": [ + "print(\"Task Summary\")\n", + "print(t.quantum_tasks_statistics())\n", + "print('Note: Charges shown are estimates based on your Amazon Braket simulator and quantum processing unit (QPU) task usage. Estimated charges shown may differ from your actual charges. Estimated charges do not factor in any discounts or credits, and you may experience additional charges based on your use of other services such as Amazon Elastic Compute Cloud (Amazon EC2).')\n", + "print(f\"Estimated cost to run this example: {t.qpu_tasks_cost() + t.simulator_tasks_cost():.2f} USD\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.8.10 ('venv': venv)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + }, + "vscode": { + "interpreter": { + "hash": "590fab68195cf107911461461f81d5c472d3d6127f579badfcfad30f03e5cab2" + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} \ No newline at end of file diff --git a/modules/0_Getting_Started/2_Running_quantum_circuits_on_QPU_devices/bell_circuit.png b/modules/0_Getting_Started/2_Running_quantum_circuits_on_QPU_devices/bell_circuit.png new file mode 100644 index 0000000000000000000000000000000000000000..64f3fa4d823c4d25c13841915d45e79c8ac54947 GIT binary patch literal 50249 zcmeFZby!r}_dgB@f}p@iqqIl~NJ+z}lptNw5|Yy0j*1KoN+?p&At2Ii(4B%vcO%mM z-Dl8yz249L@Av!feV@ns40HB5d+)VZyw+>2GXY8p(idLO!@(v)nJypag@q#jzhg-F6RJhT_|OEi~>wFD(*Uj7fcb&{z@Igk00qQTt#Q_DaO8=9EI>0BVRPOQhr+0R=b5y(wbIY z_3Fe-__%a>hV`uR;K!Rp&Gb`Ie4lGZT3(T+)$t-duTXFm5H8(5)W4?m^>(m|WMI>k zVo}SM7{~jaXhcSu=$yQ`MyklqjOAS2l-^S50&#d;x^(7m1QK6ouIpWi^k*~|urleL zG{&}15B~gR_r`aV>@wK{)xfwbCC^TxWtym_eO0f>-c_CpR>rGq<|4GZ-4;1_MIy`k z`fGX^lWCV!I#P4i_Dn&d(nVPEY-74f%cm*6?e`*k_p1l#BVJxg`KZ2^Tqkp(lS51~ zsuot)e(RjDMYuF`BBAKLAUHW?dLC8fwa6TH?~2~nMULiX7F1Nxiq0jeJ&(9;nQX>Hal77?|5 zJQI(wO=$6O5J6Hr^AX9h5g)8Dm@#~BUBUc8S4-IcmXH{JG)I@azlg!DUWmmScKJKz zqzECF!-TD0iySvGJB7$I%60MN4a2;0JLb9LEaThqMN%o`(+?KTYhV0~d{ZZ5B+w1x z|9HmUSAZ+wJf>q5^zLYoVj0r~U-&T}I;qQLs|F4u z=_ogI5>buZ%MKDc|KXSsP07}$ zU(n=(>pBivhsHX|dyHayO?{k4xK86l56-tC`0O5Sm7#Nv6Fk02PL5}ElU@c(^?r<` zooMTa^Vct3LrY7#d=1+QPBMs7@`&m_{~&hk2bdkkAuh+G)^VY-Gn$HIZulM_b-Kc6 zan8MAIA2Fz0DlNGtGlp%6C>jK70Li zC3B|z%PXJJ(*3x&bC+`T*B!+g@$Be7*;#a}M{S4}9#;bS9Fyima+Fjj+l|4Q8^xCKMw^-gheivdF zZbvC5ulKZ6f};ZvzMyU zBh4`3!PYtn$BT$!;_J- zD`%^p?LVV_*8I%xS^qQX3&O9+dqbNa%yP$Y?Qq#%7suzh)Ifdpa*5l$&+phik5XLV z$GvfpGKyk_tHNfp`{jenrg6qqpURqd6VBO8nsASrJZnDtqW7xk=L^pc2<8YlFV)!Y zuBB&Yy|AcSxYo;_P9}fQ*49qnmTJ1xrVzXJlBfMidttlgYZ{)llKb~CwUO)^I+sg# zpFC(XDs<3_daL?YUrx1EM$T`>wAH26hs`tRN{&&EsK(CQtS@3;UVX{Q{r1+=`r5;W zuWcn+rF$dMMoY$Q@Aa%a8@A))tMvj$!d&ECI+sJ1%eN)Bx3*oW=J9Xh_flC>?y2<;R=JL^sv*L@^^Z;x{G?$!6u=> z)LJ6%EvAE%Z>01{<&ry__K|5S4(JZ#=DA8Og;5JvxH+}XYuYH-c$Hd~TCF27(KaRHdj%L;-6Q^o>Pri~LaDC#^X%xYIhdYk-5P$x>3069`4es*!_va_E z`p=4-le|Fes?gT zF`+fFHBk*qfEChfGn|W1j$os=b!ad1vY{$xz@ojh&(5FFwe;jD5#5VQnNc z`Mys04*s3M)Dn~U={wEN&1)*RR5j9_6v+7uJD%cYUCo;8o8?u}b{HxtstGV88o0Y0 zJ1v;y)DzOY{Q{3E@wE{*qiaidmXNBu>P`kxk7|!=y6Sz znPDz%j_UcmoWqrj^jC^(abM`1qoZYoGY;epc&ar?8NXeXo_;aYzIWE{vybvb((cXm zB-(dL72`+2(-a4ITeysVWM)F`x*{7E%5L4Ah2OOfwX6%-%{X5k-N*Orm@RJ_4lcLe zcsm!>wiHXl<=cp{_&5%$mZXw2|C&$X^#_J>0b0$6&!xpB4wVeD^;p@e_fk&6E|E}9vKK;flg;IA zpN>}1kM3;y97@eXjhI}YLes@qM-pn1O9LtctY2I-q%?2j7iyJyjbyMY_irtRFN*S| z^95Or=90aweNX3h`?FMG$jl{in~Sy;#eznT#<_ad^`w*0kJ%MVuG)%j6n1txf4f@} zWqVMi_rBUu`Y=@0dDPiiSl*Q*M|z25Yozk(N=22hldIzsxzDqrZK5-tANA`;#eMFa z%rw+wdRrfOZ}VS%C#vKaZvXBr%p&gV;I}K5iw_m7R|R;tm2`r9TR(ngAg~oTa!=jQ zoalbgnAs>Bdf_ss(C7fG^@?DG^Q7{(z7k<3rno8>%fqbgUgeC=W6I;DW}ao9#?G^G zq7EHv!*4dk=3aBS>6ur}yRVPiCe%_r+_AK+n)c4xd%rdl9m+-3n1`t+XwSE~m_JZ9 zz@ZyfK5Eaf(2)E3g^kPT#bFN@;hpW)F+88OTAmY*37fB?Bc3EX@@oUft?LG!Le)ZH zVmRJ*>xQ2`3y1B7C5T6hANQ&MczT>VnN{CgVP?}A>g4ZgaBMtDqt}_%dEhB~(sxie z>-Rb6j4#%SbAjtE+X1<+tq4sy{Y$l@#|=~RItIF9N2Ttz2V+sy{64i)Pdfd1XjH|- zRub0(HnV;dPR&JgDjTfgPhU7MU7@|-|b(^yvT`0IWAwWH&=x5jtsw2qdx+ZxpXn$Bbu`-4JBoSSw&@5x%v0H+iv35 zzYm>9Q^7+^d~oK>(GvDqFZR_xWmXCv%<2t<H2;V+RX6CktB}TIjikMz+pQqV)98M1TEvy3Pk~7JtuVzsc*8{8@aeJiA7;r8I+JqZiz2R4pi4lyo1fg2*I8~%0a?j<3GLvw9i55`^(~N>7_JECU$Pg&?X)mRK|_P1-I2Jd=7zpJ;{GnO|CPXa z3NuI2<8cgnjFziqm`Wc>Vluh7DBHOMxa1gB@38W{GP%n4D*Kh}gX5R6SN^Z1zUiHS#FI^jI9T@4%S{(ND-0KkRwCHW$ z@tN~>-Rn)%>A@kSg+D?=$H4s82Q1>j;z!2ZSN@Mnr-R|7giYV2{_A#3TsGQp<-s(r z>;LrtIPGW8|9fiieCD^0;8KP$4Ilosu3sxfoL~FDmW{fc^bP}q!cUL#48wnH4il5R z3j4nvjrfF%V?yj=aX$F}6bzUFY@GUk8~;-R|2y&jsrnxh`2W|&D@j~T&Pt(th!A1f zdc&n&>(Y_v8`eX8A5&K8;YpsoSWhSu#H=%CmtOWg; z8U3MGQ9RzJVj+FAM~+iH2d|N_>p2Eff}4@hTGa+7x3i1W=NA8Vuy8{xOm5st-k$>dKb+t4v(wSMFFx$eB_?)=?hNy~ zeIGZCjV>pgFZ{sMDe@w(>PJhF(?X9JO)L68p8#hEkGIUqg~T|P{D#aiZTrX9e~TkY68Ly+lQ;4&em}C`2JNO}5^&lSNzx(SbH6S8uiN2| z;0z$n@J?n^@ccs*e-Ac?fdePiGVi_e+g-m;5yDIx-u*uz{7(oN|I-9u7ylE&|AcVr z%>O^ogby~NRGY$URWDY{=Ms2rN2_>khRd9OG&5z;-F~*Yd0l?vaOGQRhCj6jGrM*X zvwVVxpnSX#--XKp?<{7`=zohee>-$qcv1p}D87lvR-fv^k5*2_Leq9xY-+dr`=dKG zF{T}HuUx)9i1Fx1vGEq)9yDH%7T;Hn6?V0O;LCoD?_LbAaYJzQR_3=`^Dlpo1Ak8z ztCG}+2%byux$V(!(%iiQ6`P>5{kLCRY&zI)ip(;|WKVU&E?*3&y< zzP<{a{VnJTH_q4oewx1pet`IJOg7Q;H+uqzn9@^1g;;?mTp!yy+~~}3-;z zNzpN?$p&+GICIC?j59t5an`)-CxI(FrNzGvDCMKQq<$4=3Og^WZ6+v+WiinW@99>KY|7xY_^r}+4H?DP{% zY$_zZ!JvQ@A@_+OHI$3K)+|h&d{vV8OQ;SpRTuzJq}!vOYY+sC`(e=#OtBEm(;)-& z-F(Qpbn)(9q^iOlppMN`9^kBd7{WxJCxC_Wy8oC~W5pb;WciIf?fGyNQDEE{O8hZ&Fc)_7Y5Qybxw&D_ zwd#c-t9`j-K3lrNn*RJ*P9xAgpj^!~^2&9$8 zRQdxz{*9=T<}mySOxhB~#r5p#Nd&_S9)5kl*>K5rx=)$rV6d_0t65@vLnzhjUjBNH z;K6e+VIKM>7+6rbeXl(K%%^XyF`SBcWE^)1L^qZ8hv&p%6hycBN@7Vx%{$*wSj1|EOtLeHOu_})5>I%-T||~9QHX_ft*C=)>R|_+r#`1S|T^U zcKY0icmASfu{qx@7@{WqB3Ou|H$$=WqhI3Dve^Oxo4V;^$RIoHW(cS6UhBdqJkGb~ z7lN`>Gt$?m8Z)r)NK=8&n)9Go_gp4tA;DNPf4lmh6p0XN=0l&f(1ZE)>ViW09vSa7 z&oMdIVSDL3KiJLSLCN)8TW>Z!kA<{_CWf$Um+FxCDIE2N{#4Oon{Nox*1YC~7e3P* z+YQ;)9{mUng=}EWXQ$FVqcN7x%0r~affG5E=r$Q(G5F4KkL6p5bt`%#nZDbbVYy+& z-|Xri(AbGysfmhWXV_73zw_jR3E&_ zOo0`%)$Fy~&PJ;G?tZ3mxIXpDETP$Z8F-e3$skUJCuc8s?BIFs4Ya-D>4g?oWKb+ueH0C&VvHAh9(UA33#ee@S_8uudnFkCv7TMqHXPOe&{GI6F&}} ztDDo(y-%1Qwy$O%6d%4~Ykva#S$v{v*G=p+YdR_xudeC`@k0q>X~fzcfXvh zIX*g=Yc#rRA4GaopIgXPZ_Ks5D+Xg>ow|h?@`rvf=fNj1D3ntV=EP6-Dj$>EKc?%s zBU!MTfXOAhZ0|7j(m3>v!Cs4|1KsyV8efsbM*+mDuI=_%`8BlW-6y zmOSW2Ozpc|(AZ<&NELIiu(V#CfSO88_WtT{`NI2Fj#d`f)U+?=1(%wr$E0bAX^l`+ zIuz8#HI-1JwMk2oJQ$mDU)MTNJlRxqpEIhe(bcK;aNa-OsZBKPOo%_jus*C(n`Xa! z=s4Fn^|IU5LN{$a(kHq>-9v=KWw(L9CW7;MW}WLJ2S*3-f1EENZ5Kb{78bX@=Sp$h z>cVQ}n!>tgRy~KmV}~Hq1uCH;C(SV5hC5+0@+6G`If^M7QgKa4N>XKi7%6)^-Z7i6DYqG>)Mp3bBuSP3!%Y`i_qoi9QvJX9Bd9*S~&K z55hyE_LzU;wX|3sj%oxR8jO@Z%|PIL639y6*r^zvN4UEqUe^I!VLLBT8Yg_tSVQYUgeE}%)riq)e-b&%2 z=Ac42U53v6`$z1Iqn$BvY&N62X=>__BNtjoeNhp$nq7J1PW^MMNz54b>!u3_db(w> zu_yHHW~p<_OM6ktZQTM;3`ugv#3gDP1dg?0;@KsYzC2_fK^iH`D}Y~i(s0bxlBv8m zy9L{OlO=qAgh-KlGtf+H)s~ZGAg1o=$jp)bZ zuxrSX@b$3iUD3yvN4{!Nbe2y)m-``ko-4ZN<>U^|Lr}eKU1(v;ZzH3V=t|QKijOY% zW(3ed`PiU6?8J>TEh{iFqJkTPlS}NE;dM1(tc$WNI&uIY4m%ybq3jqd;!(a^zZ1i_G(Do91xi{x@ulD3<&5@QNlw=`oGFuZ7T+`&i z4xNme3a!F;W8Tv;=RSHRLg0SY2ah+(HxCDIuJ`Br@U0~yX(hbQZWq_%2SP)VU}Wbc zESnra97*?D4>Gt5kzk`=>6E%7QV&kC078lkxn{N=KmQS%=I+K^r(%vqZVQ>WMC_8= zwHmg1*NpAlA|3_|vI0-On$MEY0*%8&ZzMhmz=KcuoJxrJP7<&&{!urE5%;2z?ZJOIR#W}i7cHiNx;Udl>|ohT-C&`{@;KPn&6O{mNI`%u-gC8l z?-o)PQzKiDrt#`8JflYIlG#w7WREblz?M?%v6Zr8cuZvvxu#XI8e_?!6<~}U@-MH` z4Uma$wDCCRcFOAA8|roU5JTzypcb^Brgo~*ZB2~^h2V+L{&R;R!UPrhwP6%ISE(GD z=-lOIIy9N;NY2~$Tj+Wd?o}Q1Otw60s`NfN+Q~?hi0C?$8YovRszl>9?bjr~gpp^#%G{%8c;g8851c?0H32zcSwLTQ@ zIs^MoN|;z|G^fFF!Ul77yoOh!$9g^420KTS*K~xm!-d{VJyHs$vjo(`-)?)NXh_0L zB%BU|0s?ewnt6AXk(P6$n&=V=E3&1`HYAAP%*uj|fbdt-Es#LnET5g3a_y$Y?x z{6_pzZR{nU4QmChSAIORLS+<5Am;fQ=#C5kRpXrn1}j44GHA%+qVy$OawHVzU0q&q zsCMd2WT)22;Hpfc_h}jeXf28McR0Ed)}1msRAkN)^1+tH*568I;;Gp*-ZoiCF@(eT z+UP4K4LJATetAh114W-$gQT^9w+H6LIut248itCk#vD_dy6@#y1xJWwr(jGLSka5U zW$QMQZjNM89a2cIYfdW5HayzjiV~rRmB9|!bp|0fau3;X|>-@ zg2!c-XVu73s)K7!i8zE5F_Kp$M$biSf6n)K&Z(Y6b9%GC|Gd%iLt^xhOs4%MgA<{n z&*F!-_xCz|6Oxf-rx<#XPH6`&)fd8?rf*3=h?QZqBf&QWAlINFEknaaCYu%#zLn;C z^o=IVEyzbwMXsanOa`LLS@1iG4U^@k0%gJwc3E!HoU9j5Xf3|;;_6IQ^9*%wpU?-1Cvbc;b|MOau2zd2ew*QYE*TH`is@g}gDhr4z(^#Bl)Yt+Kl^Kj zF^a%MY-2bRm`LaaI>3&Yf9Nd%teK4zqR6lMA?ul=f8>3*-k4!O)iC36+5S-zABBO` zWXsu~Hm6SOa7CIj!+|9(nY3@Pz_>T*<`c^semHqfTNHX>4^UZ?SLbzNDB!j!>NJ=byyRw!e;{pNTq^nk6HUT0>!{*lUnD zc1?IOge&JB21N)92S&Q|8EHzDb2)DwcB}>o-c1w}m1NB^FX&~+GeHtboU-T4*>Dy= z)$)Dv6zMR9&(AL8Sm0)4hO7f*8+jp5La0TCT|KubQc{m?>L;rnD@V)m=%zGydY+lWz^~5q^v!S1tE#lO|00@-b>w%bths)UX3--#N^*Y`#c5yfWg@%Fd!9L{b1{ zJPRe?Y+9#uOCD;${LSy89`_W(`GUz??PAspyFm896`kceB>XleMs_#-1NCyalXyCXV)20fYba_%g^(!E*aOrJ@OsQe$|mGt z;Ean{BnAb^Ym3S=&ZJGqeG=G1WX^fkZhF7|W~RhAsbKO50H$=+fp=rl z9~ok9jRC3v-(MqapFHA;mUl3I%;)%@K7$CS&NbdDul(xKc4@7=)j*y#l0tGQ2d8S- zc|eau*tds}h+hWECo_ZKdS@u?>BaK|<}>S?Pb|}-0*{68OzNiWF)~y@h#6(chRh}cVTV!N^SIP2^LNZQK0@5 z@hPjYGs7d*E^vgL>*^L)_WNmk*;8ZdQ>InnIa<`Lm35r!khiVbGo_O5*~pu!{0c&G zw9m%tu~ZyObCmp&v>|non8A2%sc(u{?t@*$}x;`?Ag*{~+$3o#zkwkG#_WBiB;%P()WEVdT=qhg;=oyHNd zb3j9;zJDgjclQpKDJ66+Zb?f~qe)SeTdn`8t?`(XRZSQ8hr@xV8zA1|nQME6q6rmT zx4#5vmqMeuFfp8gR&qQQpi|};a4tu?&Dbss%8DUysbJ9_xe#j63TsLNk?-)&Bpa5O zsth1INm{@pW!H}Ul5b$(qQ51>w$;YdnHi?+BKa3E$o>Gho>%l#s%9*rmn>}T6XpO> zaaS&e!#dUQ5~`xci-eD0P!wFE%M)WBuqQs5NF(luH!G!ty8#5Q*3!g59RtXy+^Lh`Qf~!Y?6xFl- zISvEgqb(<(zOzM1-eND$oE}y@rnXqPvW>JZ|I+Tn_TIQICiEiKHK&t2I z%lJG$Id#D5q|8R%!Npbs>FPNeGZiXS@&?|)p=!g@rv^u?H{LBxBi|a$o+En|>Ct%v zA!ESqtZh#AdxR;UppMlI!|#HLQ}lKgX4K}?fBus@FiJD|u(jgY2xzap8vVES-Cv%RI^rnH$d6)^y&OOFwJb=j~W-@>{K(DghiyPA~6u)c*-Szs4{4`ZM>S3iY z1@lGW#4btJ>u(W$9Y>D->Gp$2u;Rx!qssZi}s#7P@$?>HBEP)@nk>W0Dz5v(3DWof=jJ zoOq|6JLO$FJ!x_q0VyDzq>XoyYI>8i?m9dh^?go{s$Zr9`4cm-unv~8{(O*SnEp>pIE+l z040t8(uj;zRc5-qRQUmL-tTt+G}`yMF8z~-Zovi2QO1HRo5VZQ?qo>|kOpurjiYSI z93KIt>mQ$Bm-au&`|=htjavi#_@qvLq?+Q9!iK&12DQX2N!ec^y3lE>Uvmz_fGhNC zq1oJ6V;D_h@`-ja#F?RBRyv*uLI))yU%p&|=GoUTkna9Q#$llb19Kzd^Ul-d~y znM!89@@CDl#6@4zdVUgNz(Mjr^fB9vSM0}XzETvk)hS>1qOW(%c}b_hk^{oVxznmrkOQ#Hp- z5N(`DnVHG%XI_yq6Xv#rHIWNCn0SmGjK=f|)Brt#(_!^n3*qpJ~+q|Cxe zsOzT<6F+w25Yl(ZH!awZ%`+@FmJGN2_!w&;!E=>mhj<4d& zZ}%neE;Y?xYf@r~>exq8F~nnOvvNHHH44#qmm!OVP~p|4at31&<;{cJH2X@DDnj)n zgfQ9wHCTSlzGY1|-($vzGonA#ISgt<5@~_xRaNI^-_~ghLc~z4)_7WseoG?u%%XAK zFvC36LPqw{*Rn!KFEQt6opS0*2^Z?bv0qs0mpu;Q^s$F`_lNqI3Gpf{YZlh8KIy@K zx_tz}OmAx6!*z?{GJ8Q+lT@czabKSr*6sO}Fa?nBnjIK!&9C8v>jLc+RF{#c*9Yz} zj)PUz-?Tk3=bFJ(=3I!u5EvFytM}Ej(jwHQ$wg2Nfs96zCWV>J z=VnxV5JO}!`63ey~t!rL(X{49+{H9ZxSKW2r-NyO1-u<_fxmrKWd%D=Y&T;{l+jbl^ijmkEP(xCuo#uCR- zHvZTNq}mziXU_JWU#LAfs8uCC;LsctT{OPzHjd!C6c&o|@~5B#atDb0bI{4w`kr_h zi7rY=$fj-Q4%Md{^Glfl76z^E&ark;lVFV_qQ9(#*Tr(Pn98w@YY%s*$&C8ut3h-k z1kq_a7Kv#zpx>tu=pjp0jN>9r`ANo|+=9-kdve1aL?*!tM&-wSjm%6_KBw;VXTC_= z<%K%Lb6YC!l2YJO!(^HP8ad9z3=9gxK(*GPGE}+aTsm_b6?+~>{0(dEKq?|{Yp!GM zwm11xZyS~v+<1)YkPwk&d3luU9ARb({17yYhg{mQDHOs_v8V{W?_svZCCd_LNm7S1 z2pKpDn+C|i06>W^9RrMQRIPu}qO1R6rVuMivE1_E%K{-I@2KMO+}8>(?IhgB7rbKT zZ$3;xE(i^9lBVr29+-@~3GfO+2^Zw9$nBL7{?W|EJJ~WL#8~fIi*Zc)=!@0*-rcKk zviPQ(vbzHyo$9h$w+AO7lVQ!_3};4|&t^)sI8qb%av4NUUInY3>xlCnjj!M3`%f-d zLOvOA1P`S3!r}?i#%0U3HNgMPic4A)n$A4H0yV7{H9w;AQ)RxT{nWL7qL+MD8mN>g z`RcvGk|yqTe%}p#mJWLq((W3@@TYRQ7s!2~-v;==^VA|`%b^HRt<%_Ad@BF?MjB3Z zq!m|58FxXf^}+Va!tudcr({h^B2u?KPLQX5(#o3%rxg?jvu&~0Eio{0S-t~=lOdy+ zxuut+Mq@m;`D`VOlBt+LVEoaxtLD}kPF@{HgoC_yumiVur8vjrOCe{=STS#pG5qQN zQzM3FfV#v8=zIIphX{^fkWMF36yb_@Xkm%hb_+*or<3OWfmN{r%Fat50j~_yT^p9J zK0{G}#jT>LRtRE`s>Q@7KWo2gVwq)d%aABu18418~fA_)O3;}KV@wS z_SMv?;AUt~S6thwc3BzH^%CJQpU=z+>y8Ngi^;r*q?L*z$l9)dvBev3{+#j|wbNuT z>SE>+#m4SzZR@TB_t?>M0hzAFpvsv^)2Sd_ZSsrXwS zr)LcE4Ln394Qz`m$9?n-+2`ygxpev0(S`D5-&5)1@NYq0!WWilMa!VVEUAZdP~I<- z-P{^5$Zs)nCcP4{sW8)^7VxpIIYox87}UT@KF9m)FR)-RpK>snesEWSV=c3^zgREY z*h$7d)~>p}dGplusHxIECI=k^x_ME`?LL;?%Q*UR_6-z*dak(#UuYmP@s>g&xG4R2BMeCFSgs z!}{`_aWf#t6UC+(eY6Z>8R^=2Z&V(Dj!{fF=)E)2iw#PEx@;+=NB!Ah0*M#VV{bk= z+n+6W1dW0R;q-}y+i!MD&uywukz53+SgxzdWl;FB=t;e!UX8H@(q9=^8P`;=pmW!xKpWyzWL+9)uJX?%9!QqT6v zw=u`%h2D%g-B2nljnR#1{b3m5l~$o?T7Qn_oaWBjm^g%5em@q>9tbGu`|QoUAL&mK zlhUkjoVxYo48B0p@=MX5Y%-zw6+|W(L>y;;*nC4WHyEl1%e)qKn(va*K5NVf1+TNP zOix+{jI&Tp-SK-;wN_s^^2N2Zc)S&wwUx1mlH`=BhW<15d=h+5a6z%4lPOHruVG4} zd%F2WE2+rZ%H`@%l(UH>n$H%KI!qB-G=@U#48HRE0m$nFvd;YM-MB#ey=JGH)BF1q znzl-XOZUqj_>;51#n%HAQ=2N3bMbDsx~!sX%lsUo0-O7mpu%ipbjvoDWXiKTh(s)T z_*JF5-fi}kSq~e?9TJSCCf3V_cofFfawH?x04rBYb=;?_*bcnz4gX)ptW-y=05~Oi zP~uPlT4Rg$OKbdKgI4*~4rsJ03TuGN^rO&J#C8~UpPLC%d(9}Xp*Xj;hjL}!h+CN4 zP$uNmKw&nmO(Co(nAf5E?*7fd7nh1st(|OUh&u~h1Ie3-J=3XA0n7o!btax1&TU90 z^b64_%cl?et!F8Ev#!ls*R5;zHWWavH^~9R567g=NkMFHy6Tb<$amcamZAEq>vc8O zYBfwE`s!W~zsLF&r&C3i-WFz4szC|r5BwKY!YJs??~m%7sgfsKROsF7efHSiP|L zc0t$-6--!>tLLuB?)VcZ{tAzcERCgfxuiyWfHsJsP*^b+s8xog0-)xHTFqI?!+Hapazbf~44-46nRM_(gSk9>qh%x4^dT|$%hlh8-U zkf$T$yGkE!f4n!B(KOnH!;V1~qw8>|;`=AOOQvlh|oM*JieI4n^$|hPb|z0%EUw4Jy3rKr`H7D0@McpWNuYi+f!R- z6AWqrEl1uxcbL+ecJ$iC*hH}#q1cFMAY(Sd&B%jT9^T`Fj`OEz7O{FxVrVJf_h@Oa zO6H*N+lcV3twfTWL1j36k2$zTwe`_dkG?J-AX5)yRmy}*(Mlq^YmdIw$}`2;-5LTO zxbPeBW4#bJmRG$!q!9GN<(U`g`OW~w$}M_wxM8grL`80JI7!xfFm`fGoW+~npG@5t zC+MiMj1xdw->xV)6UhsZsHO8l8A@*Bq8PBgu%I(Sas&6mZjC8>RTXmer%FAoZYC8c&a4u&E-4jc>os-BJxaUad*&3N=f}zta6Z7bT1>`MLY2FbpLWG1Hlf2kl|K%PEnt-sJFPjq; zAJ7(6L=1VnM<1}o!o~KQ71No&Q%Tn6P~AmVkQWe{fCB5@2r=TtF1N~x9&P){7rxt& z*ygh!nt3roV-e~IvS46XQJ1!ciUOQsqum0(2tmTkVtA^3U_}Dti+iCeOJ4bGtWzs{ z=_a$Bq(S55IS#Sij|AyK92LxFoyZMl`&G$P;8{${{E(J`Hd(5nppp7DzR-M<6I6f$ zc|6mI@5zxMmgIt&2Kui6W&A~JB0Jx#rrHUCUY~4{=dLt0$oj@H(ObU1^5;c1 z!m-W{p{2K891I;65*NCGdT?3~zI$VNCTN4Xd%%xO|7EWXRNKwUtZ&SDHvR#!JSAqt zEf9cNUGAQz5fiD$cE#kIWPKzPvJRyzP%9bGNS2ILBpN{T6c$_L8_c;yp*C(5l;@G<}~43lQo$qT#mDCybjY%J*tOL>_ErhgCR!(3knM& zO$)p;VB=x%1HiKliK`XY%7Mtpwy77UN3Z_+-I-snYIv{^l6gq67eX1Oq-mf4lLP1@ zoDCA4qVI61)bSkB)4fKyCD;KvAid~Jb#W-avY&SUDcK@EVROsE*WXZKRZML|Km-E1 z?!q$w1w;o$gOXPcivm(YHoL6;+^e$3w1H0=G@6m!^lIuf#LWp2EoROl~2=hzIIR4xbR%Bq`a z802@gHIqOP6XsOLWTiKA8J5je`_AehLpt;1Mxd8;NN~@cl+0F`akS$5B1<0>smhKy zSvU{M1Z~3Pty^R_x3$ypknwZ_daio-yD^oIuQw1S?yY}4?Yx0JbeT;K_oc#;rHy+;W9zD}=8#;FRtKUIYcGkBD>T#0fT6t|# z!IDAEyhHHy<#9_CTQ6Yn;#_$fNZgb?v!7S;BuhzSa?)?z1mY*THSM~3Ew}HIZB>NN z$-&qh6$KHKLR%Jtag3BQ$364+r6CJHvH1mNLNYH2%at-fiL%u1d}zWgu;@*X3#}a9 zsg+UOLcywK5Q!nxAie(XpL*BPsOu9MRQjN@~eV zIqRrw!WdV=ZX7VPcM8oqJJ25stkdk&bJXu12J9=tl){M5=#)HMaC)wM?FST7K+mH_ z%|%X2g?dShf}rblKpH*vR)sRz_i#%4M~G6}YT=ce1abP^s)MP|CEjo@!qOHWH>#S$0d0I+DDf*fbKpY`U9xvX_YJRiz?_ z)iKAUX9;^tu|6(~($;-NR$A7>c^q-65>IXcTej2Ugr|oE@?5C4Dn#J!-D_$09-a)Z z9#SD*_N+Fz`B>adyDx<)X{nc5B|No#8S=YO2oc4S9ecGXc-H&0Z$TEk1f{03!Pywd zON~c*O-A{V$WT)RgCpVxXjVJn?EL-&(t4atJz9lX>F>!!OLQ(ukv0X!Z;sfhgOVhw z@`~i>^$lcwlKd!5L@0dLeEg(66sxeFvH2+$j zIQaewDW~`s9mDzJyd}R>TrFW+X7A*DG_*7iM(~0eTS=%vk!6220NnI;gw~)F-vZ*r zKb#?0-o;X{aRrbY^+pF&c3jPh+^HgNL-O8(e86=-HDWdI-3fn3+AA0&%EQicv{GIy zfg@KVUhC1OwBRj#58_hQ{PkM^Kdl&2c}ODI7%FmGXsxO!v_uD9X=E+CTTp4Z(34hv z-SYA_sK~ZT%A}B6h-#;n1}0BIy`%WIBxsFFM_jBbCDG_zv?b67RSXBo&9cg@h}A-p zq=)I}Vd7&T5i3blJ~0Mt%+||T6c{_Db08B%L+IlUhIGpbaH3L$igUn1kz#?y;@>}< zvEI5$f7AmtOoLW$jW^UDJ}*I|T!yXh!MBB(7y}zTwYsvQu}Rqwm5R)sm{&ckA-k2E z2OZ)JO)x|_IG!!9`})6dJ2VxvQ8jtEWma~#&~@mKzB|C!ZheP3>OqT><+nG4&Wxdg zvoDFAuPpX&gJyiE7M6^@9M7Ylgu-6}11HD&QaQtL0d;6No3i%@^s8HfMj7m&{E}B8 zjp_mnj=V3m>~u=W{L(sT4aFA;>oTK?d{8pi!033d2^R{qlr~)6rLYD)z6($w^uO#N zgB7|;_}7F#KOkDpMRI(4I}D>jRXA|eG{FWiYQjW*$Y{Sex#O|X&cD%3pVkMx5esN? zbwr9V=Fj8(OXNuh7r-iznlmvK$~?$imB{6CDU8vVqR{s zpb9`Kt>LR#O)Z6m`aYpAr@4@z; zi!{Vajb>f$At#4UC=v#3+Y;`zVr3vlrst%bcZSPld63)RCZv)fqz}aPt<7ddA8x;P z5U}*Nx+vvrqyPE9q;PPq4dL3^;jN}h(50>bc-R>V;4E5&xvnb24K^F<%)QAZ;|4jH zmsPyhYnDGWLrD!iD=n~syFn7tm1>fC`;g#Km+8~~p}*AUw-1N}5KlMN+BP70{PsOM z#)WH1Qc`C)6W#!qmm~?^*4B2KkbnKV6@UerE1>gn$2#h@2Z9T^*MJJPX_5l4`kKrq>-qS=g`!OGx_l5vmBpU{GnWNO$||o?3sS2H zpjMRbTfy;vs1;@Ecl%j^H67A zyg%0U2wsYr8ofyRf(b=QAb=!ri^!k-%OlR`JnB>NCfW3W?q`k#>+ja6bNj~@A+dN9 zg3}>z(?_-4`4NNPbeMimPWpWOk`@6u|Kc0j`xEloOMsnv&-729YhBJVe&f8=8 z$FDGeOG$XZJ}S_Dpkgs^91z-P_E+eC9y+E6=Y4*uwUw&p(1I5kz)$_qxK{rekukF& zD^kBl6^R-Jeyl)Q+Dq?W&thcZfs7j&{o3{i(K0Tn06`Tlklra2&*0P>owEL&} z|26X?_zVQR%ob$+9Dw+Qml>hF%g7B!ogNoW_Cjm#T{UEI!!W+5Z47-J_tkeIs`YXke{OFLJc_9-@ z$$h#0uX7fH0TUv+On|b-+hFCq)9)$%W!_1U>lJdb=R`d$4?JutFFxX5>fizS@v!D9 zlvox)2vVNI>Jt6eK|jaPON-7nF$hJO8m1-PI~{hRpLN;Hs1Jap=%Mq!{2XKl8aW(W zx0C2FsR6%PidiV_dZO#V{Rzt^r1B!Pq@T#_ltXO^~VyEXv zg$F=&L69eErZNo6{|ZouJWCT0@QhVBq5BX*!0`Lr(VhPFR%B)>@NZFlPS+siV}1pUUY0GSB|ve}>3h5&<}qRFKEll4RI)K=;6t zW+447XXH18H0u9x_TKSWx9|UWiL%PbUdhUq)e%HGP}tDDU-Mk-lCcSq}r zq2>2W?CU<#?4mbNb4xfOw*HlKZS*JR3w%&K@C~^Sio`Hq7X>R;()|VDWaBPt0s?wM z_HNf7Z#Ss{Cp|=W5aR)ZxgZ4kpPO#)FMKl*&$P*UP6Cyo+Ps8^6KVYsgU?_;&e2q)px&#FE1$pj~X z(kbD<;mc))PdVz)MmlDO5Z$Rx zj`LqYCUX)6q1F*H=luo^n?^M`uUjej65n?W#rz97tiVvodHa1Ukc@+4aMfRzn&R|dNfTjDn2@a6J#}G^yQi6nn2_=btZz5PARpgjW*Ihy$<4c2_Y$_e+ zeS7VYuNx8y-t@#EWGGuO-)?C?gb#em5BXHb1Aff;pDcl+R5(@jFCXOpUITp@tZrZ# zn+&Fh#}fuN8JDDfV1Lla!(#bs@!rFP&*CsL7ux-kfgLLgA7azGu8grIV4A<}MectN z&5Q}27i-3^fT1S;|5dc&Eq->i+l$w_61Qq*%KdOq6fI2%kD) zqHnJd;Gd?HTO5j()IY`PDln z`|Z3?448R^(&S9c_~jVi$Ne>K%y6Y(RKlMOV)2pj{->q&=eSS=5L~h$AZOx9d z`$v|Y2zkc8fpT^ze9Cih<)8kR|JEt{vCj~d2MRiZ2qDv1+uhcS7Bx^Sl(vYKNH9=k=H?q!1w%{iXzqeZx2_NRrwil1>FRg{tDNxF1=D0iqXZ*A9o?3EU}MoEK*YZh++Ab^o#%oM z$mRSEF_^-zF7f%yANaCJvPsSo71k{~jQwUr6Tk1g-`?=s>M{}( z@6Tf1LL0W~kipUcWmc3SF3dmGj8OzKPaU4{ee>F`Y=6xKG7H~uW*h!Zzl)I!ua&19 zZ@)um5z|WjqR`NJrPi_-%-8iozugq8_1r{egt!(@XYZbpb&$a zjd+Nvf5LjL6H!Bq;?<2s7zo8sP(-@eN`{bn*zYaiMu-eOQY=`*RRWz226O0$F-Mdl zOn>WDNTUovyT$zX`l9)}`*`M{TfyOX`kxA1Bs}+DKlSIEPhMekQoX#r++_~E5(rxt z(Q|S&l^#4L!q4RMNwYtj_r%EefV5#5Y@VaQ81g5ie&T^JwX6t0REqaP{KsGXDi<6}acvwqe3=wtJt3daqKO76fYa*qiW zmGDHMV$cD99cf1~AFX?24iJ03(9`dj1n~cfRP^IZwPg32^F!}BBHi+%STRq%@CIM? zvJ&qbs4Uy|IH5ded7v7{6ATo~@#F@ibrRv_BE_UG<(0*sdKd$Q{RCt(F)8UE#{`vp z6icy{$w?RK7&RZRa>Xb1AQUV~Br0@F0I9BxQb?S@dGDS#jlohO zl=(jv&i@^~?9?|vTYAC(`vs$swef3WB6W!Nyv_CC(qE}rQZJR6@$X&r{fTQ556lj8 z;E$MtILN|O%HQ9p50MkP=<^avSjE6Q4m{3*bp%M;&2N2W`^Y5xI<1k4e?Qn32S~Err;Ki#qHX^&<{^_m#*PtQ3cNh;*PU2Lb}}$T_2q=kHyjYa#>f~2{P%AhE^nuuF&t*1x%+ngc{@U zNt!YPw5H@Qsyfy0^;`ZgHC2%LvKp!oPKu}n^U?*oDT3*NitWwS#8m_u1 z9mZzESM~EspicwR;b}|q>>*0_rWW0KKWY*dO(-K_O3wixt>gfWTA3uwGVJ)nC$G07 zSi@t$ii?}B#O=5AXieV>r%%;aLTPR!6Qo#)Tzjshn@=kMaU*;h)3x~Y43xE?4m|vb zBGQg}U^XAFz&*?ssxr|4u zcLEJP$$+u};k}=;8GOd%sC2X6=kO7`p9ViZ#FzuO-n=`>S+6eSe)eq=$FsSgnS441 zzCfFe1F-QYwCO-ngZiSh>TI`0v6-S9@IsZaSq!pdoJCXFH-JR)i#ND;j-*nH7j*FA z~mcGl!U>vlj5wxCm@W%txW?e3q?ps;oc6h^ubeovS55ENUHqW91Z zQSzzR6x?`mH!A75C?Ff83?T#nh7R~6?AbJ+|IQ`bjho3J{zKz#1;yAm^hT6?ZH@`0Qd~`+)+(`3h0SLQY*V_~DLJ?N`Jf(qOt^6u37Smv zgD@z>AI2s7DT?f8h%Qx+j=jS0-HxYP#NnKrSX7D~n@ClfBRzFqs#+_<$uNS}dzSkV z%_*dQdcvxXHyHQ26fwJ#86x{Pcx_-l6l*j*ms80_TH+_4=hQW%tZrUdy=vhevey*t z2+!9t&2QWP{K*tl{Bjb~tploPQS(*5KI$~4RF<4NdV=m*>P|gEYP|_ig!l@6}5V2@yvpSo{^A}|DgAwu(#t0GUuV2~x86X~SVEPzS z{me)546PaK(m#DNvMT3sQcd0?R9CN^Ur7@xN=VaSnO-?e@5Gz>dP@Cxq_tBBDu!ed z!KuaaUz#RA#>*cLW+xQ`kc)2c(GWFBHzEiS9nf3hXz2zN0p;{~Ezld-{5>I_lW_Q)fl2m~-y)&6$Km4`H~Z(7jDLeLLcF(oyfc8&SE{{o zmdP4nSS9g-9+bluP1B6*dx{GuXP_vX?P!r>mv?fiH1kG6ED{}MUXOW#QB?rt0a1h< zIe2Yp8%oGGprcH^zsUI7W@YVGrH-s8gmMWr4H&*vM=!+U!PQSyAz zJC=$VBGK~dY#)c049`<2lAoUgi!xquXRov9HQ3dAe97PThwh$~&p58m7locYHKHL?K`VAszh}BMN!57ws`F*j-Tt9h-m@1&8U;lQ*4UtckMvg^ZlaC_dK|Ou=3w_T)7)xD_cZFJ!FX)ul`dedN7y9=4$CTFK zkXMo3%FGefelBL__cK%6R}US=CYCigj72Tyv3S7&n;3=s$AAB@*Ssk*Zk>hr$610f zl4psw;+q$oL8SS|6gYK4D-93TTAFR$7d0s7T>O-@I6KRG3Umj+P)@fflmJyeGOquX z>CN=43S$ebg6pwhf4`{wu&jGXVr1fC@e&Jpx*j~e*?sPU-JcJ}41qoK4QLbTUd$=1 z-RV!o;m=jgGlA_9-CBo!IxQc`Np8Qe=;~S&8HKNoc6#h#*`0kmCME{SM9P(vYkx0Y zTUQ=3S2#P- zXC-5(@l8~oYkVqt^(z0$1N`vB76Ih-d|AjC!@}=V220BPJ<;&1QM}oKvi7!R2+i8( zK+2?sw(Ix`v~`1xvF*+d=ej+%<%eB({YR(LHwVrkVUP7Y>b&yfX+SqKooG)Y@{Vi@;QVh$A;!?4vBs*z5l_7q0W*_sstLKub_UQ zapOkFLMd4tqWoqAT$sX{fn+g4iBrvbTAYJrFzM%9e%{&&-CZY|=_yRIHFPw#0(w%T zu#J9+MWkzF8ve+!P|SS#@t`y=_4Wj$N$!83FBQJoxm^fr%ob{QYjPeH>&LK0K6Qg& zb{0C*`L`K(x=#BCQ1>WoB-raX>jVYoUGIhvWfn9DoW8xo*@E3Tv=DyIb$;+-9KWIe z=Umm+M6XSAOJJX;XT2muHZbEOY(Mc}#z$u_svOu=xCK5oU%fZRqgNpbirX|?Z~M}t z@DmBdIVkIJ=RZI4GC~@gpp~sp`KG9`ZlzNRJlVZw61uO>nRl{K7Aw68^o8q28N&v# zumzrMZQfnRWrP|2^B*+I7h<=5ZQE*N$huaoXz~?|jf`G541;myU#XKVy&h!NnCEjt zz{Gg6KRbL4y3;H{Lsb8{WWb4%+)T0$ zgOG-}4K&l9&`(%c{For3tL(he_S1qiaRKKt=1XzY5BUb6^e9f?|78=9-x;vp8Lh)R zFX#;!Y34|^zdZR6=v%G=KTiX?zC5l`x>_?+N1d@eC!?or+%^ay*}N9V*Rk^vzQ3mP z3TfJEw<9zHV8*bulRMgKRK=H|>!TPX-6~AvKs4F8?Wvz0iQeh5$V9X1sJ? zo6n3njG2bNMk8D0GjHetOttwlXU;UP`9PbFn>)m+JX~C@5X~<0oE))^9&1tI<%#T3 z^t|5vaQo}qd#gaH>i0czY^mVmw(jwFrfspt(2n8z8B7;YhodS(^f43sL^8R9ni^W! zNJl4vBul8}D6zIrWV8gTu=7N& zX%$=bb*{8d4wMzz63Z_HK!Vr@Xv}p@n!W8fM#ApE_#N0-POGz;&i=8@cV>I}N7yu* zB^8UA+dh2w5WJrEp&JYlq`=nF15|}q4w!;xxRWv~z||WXney`F7ka!~vo&wumX@cQ zNAcA2j2rV5_>{5dzvjT#Ass*k(B`;dsZ=0;-8_}|2*o6oW{Q9KWZXe>@3Y&?)-mrq#)FGpkc6<#F1UKwn><6G-B0uD(H=e1z^9W1zhy*Qwx!dV|IDWg&*y zV7|PK4t*cZ`qs5^miV(quJgh$#pXNv&1LgA5$A#h%8X}o@yAc^GZsE?$gu)W&=)~h z*#NlPC4~k;Z-d>PZQWO9k!(t6W?h-w;l>=Lj6eeUyV{|dvAFSBByO8kr zHa|Th8d?A%dFM<%P$|PbpW`jAVtmx<>yc`m8|h2wD#E)AB2LdM3sR=3!wXV26K*74 zhS?aVHy3WjY%(l16eIIdN)|YGmz-wJ0)Jc1_LsB*XlF5f=G~r=`s3lgPfkMb-n~kR zYQx48?f9e>Z?~aCZ5RRv3s4K}Fz{y9yv>`#Ri~G|5N`PD@gwDLB2{$qzWQ2s(rgdtNnYpk+fCmJj&ka;K=4~}s@-A0$ zdQ5tzxnIJ!;m2%7KMvw`lz%KA;7#tlh~OZFi1U0r7ri62&cnWY{~VNh3p}0{oh6e~ zH}UtQlP6O7(E!bFI^XBOR`r35iZvt@PJpxa0e97KGb00%_xZ;i;9m{#jm(_xVX>#Y zkvq#Le)YlMe%}XWfjhbL7E~iWw^Va$$DyfawgsKlpm|m7u>&6uxsu`oLS0+cwcc9q z+DcP0t?0E8XgM!$p~)={Z#i60HSu8qImbnK*yqAhP;a2A+tRjb(SPQA3gIyxppVB{ z_NEutLd;hwpcLLAd@>CT4Daiokj<6z3F6zZHzg-Gz;U)J8??K2-Ce_BVR)#&)OyCm zJ6kbg)7Xsdp@7UfV~|6nhX4L?FXE_Jz+SE`g{dho>IyH-j_Z%L%B~%1jpU-7;xK>3 zO)r1#0dJ=KBMvS}axsTcw$2Mqv(L;8a_59m@V{HoK>=b|@L`I5CuIakCiDZyVg@}hyHiX*A&j%9rU!Ag62zGryRkE! z%1fDBn;SS^rr8TZO}dAS*XD;__TvofH)4l;&mLA_i9c_fXsT=~T5Z~%Sm14vuT}C+ zFTst7gJ)$xI8xflsT2wlBLV^fUfLw9aYX`TvuIXg%mzgL#Kxj-T8F%K4itv$^slIJ z$}@u%1C8p_l_0yUb8^8?DL2%AnobOg0-64UZqG?o0HeFJ)e&@Dde~5S`CInU?vS}V0O9kis-Pp2)9CC@|uZ`Ef1Gxd`o?5Va8|q`O z4(mT}cWq~jy04CDwiIF_N(mBN9Y#roipF5t2|ub9vkr9T`)B-yIL@DDkjG7AYxux65-RqPfmF1%uUc@_uw=MGz){Fd2^>kzDXnm)L1?HBN8q>8b4 z5UxTx_nHBBv&S+!K7x~d(*N9hovC>T`^m1XP;i8;zvsEOp%pQ6OX<3dLYeciiN|1Y z7>Tn{4FH7clxIOGKfLU2#@_l3u9A8MXyF+#AW$)#IgAU>{7APM$_fbKF()4P%Oy5!b7HAB8DbN++QsqRK zNqC7gQSDO1zL_e~93qm-5~H?5YjUV=plekNQ-*V)p`jQ;X;;w)lYm!D;8FG_ZH`_hhELKZ!k*EL_}FKVAkmYM4Vj{LwQI>v;bHbPO7-N@QpV)#m|)nF~T{s4n|8biY%mM*Pkk`)TB<8ogv|ZZR~p= z7n?0C#a|v8#hTQWdu{Y40gjHo238j{2v6GoTh%W9bUnxR{q5K`G#2 zUg|ehlUWE2SAVsO4}f$(v#n3Y-dd92N-;_*&O-~t00hIoPG^rusi{SA7%;Scf(hoT zsmqSajJ>pxkw)=@Dk3+#VKkCc)s7EBtH=2oFW*HZygj(vM)9)CGTEdyhwiA!aYROO zsu$=iIz{;vuHx^cf6e(J!m1E8_bDx4p_&b+$!UHtX2EeUN0NPxV#GpH1mSJqK(ZzI zi|ItnQ_k?w!7Vi}K(|X1kmz4?wi`?11<}&noyR_hrs>yul}`muhw@u~;a2|6e$WY$ z-Mj@kPpRuKlXg;+#Ztb&71umgGTYGRm1#3inXZ?`5e3QfIB?-fhwARniqyDs)^=+F zH-25k>eck0vS}G1J_9=k8?gI3f;M?Tt8S^o}d|-s}}q%EE)tn(fZF~!C-1r zSVHYC^8=wUmFdAn`h>H*wlzOgDSAFxE@=8`OnCUWjd&G333HBxygaYxU}7r_{46KQ zW4~6oEEyf*?k7cd+J8cb@t}AjL1S^Se0*%I_uT^m!_I*3_}moxhZ4qy1y;QT>Pym9(Zo!XLzQK%4L_$J z5WDGB?9htE2qn-tBxNEgA_J$Mj$YWD8e z?-z2-f3I+yks&mi)KK{$UvloTNJK&Qb3z;;00hS=d(fBFe4mUmoGQd1WPj`zMrs_D z&8yzpS1Y2Ee}Mv9P>#5NE`Rz=a&g33WVAw(nCJDAX4U?~h88RfD-6Hf=vy&p$S5;r z6iP0_Ka`#>pkK{uB-N-hN}fUkic$tQsWcizSG%ng!RZ{!M->pr5~YuSGHO@FU&Td@#vm_)C0GGMj^ z3ySfZFQN2n5T_+w>?Uu@MyFh5hsFpEK6dn-MQoAy_F|}@cDLSfiMQtGhGSk@k0hi;d zB#Z7zuGJxXi}8|D){OBx9O`-hn$*E>X*%V0Hb3rnN_^)R;*!irVmgi^5W*lzW3HMK zJ#|ePoc80T0KLohKdwh7KAYF4xx(-p+|FO#3nhUgB6Ax7a83oEoE*_G$>W z_UDMgu3#Yn{`qL;p=%xHUjUraDzlk08O-W1r`%L=5NFj}Q^EH|k~v>;O_Y}>0VewEi{{n6G?)MTQ0GNj=CM>pnOEMc%|E9z zQt=A#WvjJ~rH^#5{U`HNzb^Wsr!t6qw>*ojyF|tVDji zR*bsB`TLp|f%Rh~bv}$e$`#gu@)yI6*d{iQ;L{%-z36^rV2vPRvezKy68I*`nc?b6 zB%w!P-2AV!NR_J+Vz|PI+w_81^`-}|> z>ZyvT2&ea7l>hl=CUDxP8{z({UY6usCHgMZFAp@zwphq(_-*>Z8h}|*IH&HN%I_i zR!)`dTfwyFS3it~D;KZnHbwli+-JgGp!|!7yHCBhJnEzFb2^I5Ydm9=q^aX&UX==< zQT8_tp%4S9h?)|az4SWHUwaE8lP0WK+-$jUJxSz5dwotRj_9czYZ>P}k{BL-cRX-c zJ2i-~b}eCoKyxnv7xcZ4BM=e%RkcgWRGpNX+UwLbe$hI;zG5K?Oh-OQewXV%UuLyx ze!?mg!pX^AxDO?grA6Z7^(a%dm}H2$GlQ?*z0qxHV1BnW=6NAfy|QIA1i+?dq0&gy zHiQ=0Vrlo0~el}0Pw#M`kV_{GF^paU5FFRy3k)f+K&CSg(;Wnz>RV**eXxZ=j z784n{c)n=l3QOS{EVI?O1mxrajU3!f*9*1&$v(dHx)JhO;{B89gO@E;(y}$Vup%p2 zeF7x9&0|qb>m^tHdqjymmI%OUw?jM>?|nP*Y5>ux)#J(IuAH?PvsWj__`;X4w&>>F zqNcJwm!kp@TpNNP6WGp6@uGwHz07lKbzI~q!+wYE^QI8%YAC}>bwc7zuC-kh6NC5 z0O5Kyn6(31*`@Hf!N%Wye_LcQ54Cu7;$DLvlf-ui{9cRzfOfm3<<@Ub)H#{ABY4w! zN(k)9*b9igjycB=mjPzDEHcU04V)}9cYobl0c&$!}hIs>)a?uM~V zdMT+X0-m#|!4VEJ%Se+SJ@T1PgJdCwVAE$7sxp?#)et-?-?|NF$f-@Z=k=khmxn3( z8v(lo_KRyN#08X19mifq=hf3`fHmKvupZ7Ot!HToK<^7SPp$YjoJio%%z0na_fO}%I!DY0)KDX zC?+(mY*}v#@rU z!g>HlQ~b_XRNUFye!yL<_bi84q+qKW@EP80beJ{S*hNs|b9nn0kjnuG9j(Ef&l3bI z**S)|J>>{H9oo@hhoe3HC4UBsW_pU>ZcKIt2yRO0)6;{)ZZkZTbodD;cSC8zCl4JG z{w^map|a1BvlRMlUYiF9^B4AV*$U(!?ZH2GPd*7yH*^pkhtf$Y)K*W=uZdme(|Dtn zJy@pS(4H>$bg-Iyh;MKI{ANR1;roF1U;;9VzpZc6d0jJOe9wm_ZZEoV`f6=Z&=XuE zBk(awN-a+=c&xve8>t-uOn!{Umn)F`aSAmRFulsa`E*AXDB*G7$U}MAWUY`UB+oxv z>^TH+27m|I2RE)P0BLJ5wB|Rre$60~Ri()U+u44A^Yxe70m%fEN|UxoqG7qtPH%_S6DNFUns(?6exY*A}|rp?)$eMPu^y zhe%-z2r+<3G^S;aKxHKDS|i827+}HHAQ2cCXPlzRHB{;BEb)**)J+2t!F&jv3SuJt z&h?l1(cybQ-MXs=inGx?sn+b->ErlD>~V&`Fa>x&R8vh&Z7?{{^34n;EI5Fr!1jBh zjoJ0oM6rs6aWji_UY-}^nZi=+m79_KF?%8Y)ftnIA!=b^x53N0cZ>)G)@p6whQ@-p z@YL&paPg+b!f}6QLJvH)R5%o6Uui|ytX$( zMxl6E5c;6yI=N%hjS^l}CHWXKz+y|Gsl5=Xs4AaaFsqg;t^u@pwQ^+psw4(B)x@XMBPgTbNoLJBQOM6g}xW|NHbU%0?!q}HB$H`9dYQbU!b zkk`s!(+YB^%V_RW8nY7^f)%uJ=Ty%~q~+Al_&|trE>Hkkg^o9UZZw2w zq&yDID0}=3`9pKKE6Wup!%iRVSDVfK4C_jf(LT?{Qu_v~IM(fnqE2uWAD&68{SE|0 zBS;$pUyBVFV8%8+ z2Omh%lQr-Tp&tOt$D*Q^)EuF~o&#-g(wI7G^IZw;Rp2%ZARs!V^T94=xoZ3db+}l@ zB#s&n!6k4f>$SQLu+_CPrT7vGC$6@*br3$5jiGtz*KypXkjQ>cvJr_5H0F3moxqpd z!d)aS*3a^@y&zHKIFgzzNzD+Ok(x4>H{$Qry<7=VT|tkuB9_plOmy1MD%SGl${Hz7 zv(!m#v_JQ&q9Q-L3wz~`|F$!V5L@VUr={7s?41+9#whGj?zGqd4#pT8n_EILmN@wK zQmFpAi?ZfNh0>n?DCjOt>}G3DYFf2GonqBL8$b0(>J(E8`_Ehjswv?Inn)$4J&3UFhwYc=F*#K#mjmR* zz_;?0O|1jj;<_MHpmI_t-&3hmuchNjGq?3o~+Xn7^S#o;PV%RBT!Wa_Z;qhf_9ObL|i1_DS3 zM=fpM2{u*pA8B(IuK%L2-^xPVAqiDlD(@oR!Pl358p@gYmnn3f@`2%G`#X!`2o!qvt-; zN){@~3Chd6ZoNDTf69)BWWFj_I0OZ|e*LJ>f06R~LTt{rmD3sii2Qoc%&{G)0$Kq} zru=wgC739hC(@ilD$ndy&2xbUI-shqYi!)|yB|yXxH?ifn1PbTe9=2A<#yFWNNPZG zO?m1PMaF{6?NHwd3>@>HxEamatH&JB|=JU8OCi^?q^+9cBa_F`n3+F<*VPFp$ zjWW(adOj*2LpBkI#a>U3&xxGLFQwMnz;H?+K$%rSrYUG_Oy<~hO^}R9_?CKd`UOwX zK)37rXOz(sTjk4Daxx)7u})F!p=S`B`Ba{6n{|DB>7ue8wxHMcLZjuV$z(0>3SkC^ zo9sO#*YmBz1vDc?*`_Nqn4_o~jwBa$x0IH7$|99siD0Bt&eHYGu)v<)f3R7khUoMO zO16|{XbM?w{}5f@aJba6-};9B*Ff#YyHEjQdnK!H2T?e&dZEU%7svNS(_@q!*rLWJ zQc!N4h3NPDmz*HSicqtR45n?*qym$awcwtO8PBVX@2>?Qh!m*PIA51}nnWd~#TI>CFa9!Zz?1q-q_eSvybv81GDS_@e5pxiyZ_S+Y+zG21c(8gNP z)Z7S7t6pHL_BY1((U;`1E{u|WM_T9}MjR&LDJje*YgxKrH}(+Ff}KEx<@uoj6)jGR z^Sgz;>*AE`XQ752KbY)86NnV3$xwLHXp~&W3&23*7Kq8Y5oO)$+oA^4_nXU39!SJ~ zdSm69eLcU3W{p=>@R2aj@vAxJU@NQ2j=&8Yq}2-$2mB~cB*zSFkrEl$;d?2P0To{* z)~BWkn&3w}LCSYMlq-vX_%Ye2pZ~tKGDF#u{BCKyRd*o}owf)HwQ=%-9QI7vhTswl z$kbfk7X#gB0I0m^=fkuTqNX7Pf1h1O7c5ZsU#U)c9jouHeH^_U@$Ar2_wuYqf9Jc64Y<2MhfD=&gd zq85Pn_gp6FPX3MhpaStG{fjpBT~rm(VAC)6N#61bph^>40_!LUbS40 zd~x%IdW1L9Lm@#Xyr$+&C>)GG+F^Ac)UWFz!o$m^DzGTw&ciG&t_&jk12qKJ)5&s< zEiJf7xYYe+G#c&-dW50@-rnS4fW5U<>#H2EvjlF>lbU3`3m6WlJerZ%moUK=A)TC) zf@;ODgdITBbdO3t@4P~O9qoEXckSl{N(TK7f?|YVrf?lZX1Mx06=O#=c z7S$>5-*;`qiRjZz7}-yLhuceDg3*fEG&;L4h9G9=IJ`}t|HxO*5CHiCm9QSSC}v{P zj_ORL`n>c##rWIq^mYTw$2;U0?3$I2_*rF#<8=2+k@?r}jittn(VnfK;aWd??IDe| zrBefdq4v&c!&GopQl8_&u&9j$&fHDk!wI4OScibN0}z4W+6A-SwC)xtsSn_IUQugN zDWA%Wn}s{5N?@;<=M^1e4jN*`l5SSKO5o)zxVF+^lPYlr|{gzJXu!TDPQfWaFTR?{Rk zy_PIS4!D0A#P}4JTV8x$C^;gV0Va)b*FxA>`eA^-ZB%ogo*7$)s{8=h9{W)B@pQ=Q zjA09;6Rh7i{m3$g>f_iqU3cdK0jKivms<7g8d!w6reSc!eFA#SQ;NmDTZD&|}AoGd{t`E8!{peGPrFtvvEzU0=UHJcA zibGh^#OU%QFpHaNsv1=;cWb;trF#`RYgx3;$y6NUk9e8ZLX7}wRbOJ4b5Te47!-?G zz63_u`qBWs&O*FiI$Z5Ov3eVdXg-zAJ8(rBnT6Ve7DX_RZ3rK+lA1cjiwK_yk#Al_ z2vlXICfvN?HK-iE04xETX}%O61t2{czT9|bg%I@$;=4h_^_zhHSf-&01;P}WjeQb; zb&bF8H0^#`MKb6nL1>^*^^0cuW=`#U$?=5h#ORh*4xVvuM<@$y^Iute^e!p?Q9S)6 zhlg9DY5&Hmj76xJrpG5MRZdYr&)eM?&~*9fhg{k_-`W_(qdg14g{AZ&PQ5^47(6Cl zZa03JNX_wt`0j6eT5+!`0)zYV@;Ql_HXrlKU)QWl#btagzlZg_gD@b;Ym-A?^Eu!T zF>Xe6_O&<{iU+gIR(;(JveP5196wB}r&>iKbfy(FnYhv4kVOrn@XD*a160m*T-n;*q0z~3I5L-&jBU(*JlM3Dl$6ug0Ze3$X%;Tf zD5bS|{dT@$hFAIC0`&gWi#|)Pp~`J@1-_*71M&+~5G>we+MK>ef^X2IpipHC+@_wB zl8w~uPqZJow!Tu|7v&gHc8K2N)vf4-8@?u81>FGDvnfj4G*ACNR%JHv93@k6R8U3B z9nfs2pI;@~cgY-Xrh~R|;>;c#jxNITJ#O?+A|q(IUTOu`ePw#QCiz3Ga4WDYEK|Ho zZoEAqywMo|HYZEL@x;pQbT69N2a5Sx!ZVN(Aq>Qb<0*Xntg2t++Ug_aQk4{FETSL_ zBW@9DmX!zsmS{PjGu-><6vK%Vnn)r5pxxj?m2wW@0IO>L>wBtrpp^}eK zk9Gvu0DhDYW}G*h-=dpcyVk3kN8`mCVdMTX+oVdo!b1&wwZBJW6}eudSP^^{P&sl| z*tDgkr3iMT7Jwz!X7Bw5#@0FaRjX){RC~qU(Ain5)(;=L-`_uh!w)Kw!jyGrHh(`6 zBC+*kuCk1s(?Bx_ar5B(oS{i*r%s%n?kA~86m;glh#vD(dX>-45A{BFRSDdc^bhWx z6>|Bt&8m8w^hc;&d6>2n3;L)oE&L??`b{j>2mFk-IuDBn{T_Lqlo|MIG7qJx2`kQM0xq9;~9;KTH$aabVjc$t?=nFFI6^)VxpN2%hByZrr*=y zB(dYkHFTG3R+ePD(L~{BV#z*kaG?pJaFr#mvXpPqJ3<@_lMm0n)eyU77*d$HU&gQv z{@hpZa3>dL0S|S9TrL>(^ry-X&1&H;YwYnI*)VW^GR7HKSl_%4Rj9tQwLB%MnRAB< z6JOv_$PUtjPX6nbb5m#7Pjy1GRGIW+ikMh)%ln%SEJZb`A&B0pQw-InfHT4&MA&Sd zRs^(l9Tz!d)7XBrJW&iKJs5^@B)1%cTz~0zoXSZ8;ls8FnDmtJ+R{2{d13P4DY2>Bez~dQif2R)GIDKpWZWHEIN$FSk!pYgd&Glexf(0A<`M5iF_|V zb}XfckF3rGwAc}r48rptK>8IdLNW=X-<`lQ>qaXWzXDxGwb1?fX5E!!AaNGF^U*JT z;77&D?+C;yjadQXQj%PTaDg)_J||;<8);BjTsN&Yh27myVMVHg($vBiuIIb(n z-wqPM7N|8W&k`zc`Qw?B?aOB3Y_l~ifrYqkerLJ^f@M=8Ds#sJ+t6GSv_6w z29mI-KlxGPiM+<1)##(jO}vW`52{T~O}CELU)FEJM{Kq4YXYgn0^+ry%+(Vrwu&TP z#$0C0a|1m%C%PY2u{0)%y3YdFuxM?>d&Kyr!~9@h_nGg|lFRusn!2r{!TnRG zb+2nqSwv;_KS4-*+v4kXDo@m-JomB3?_)!W$rw2%trh5nd$O!gm&<0M5~1@(k~M0B z_6yUc2iKM7^l@M|MhVohE_ZH8PUJObkf)&&D9A7N{7?<{ZX+W;$@2#(Wkq`1psPuKnn~ zuRWeF_WP$~^rIBMGc-^KvKJpNAMg8FX_r25=lfV9xU86b1q5ZVk;r%8URgzc7 zBO>|lj!G%ZG=!a&e4d`iR<|0IW~%^|wYNc&+HyOlW>+SlJHQ5bR)Om^9n>a9M!gS7 zn03OqHrk&FBA}d-vJV3_e^miKRd(|lq`UTIm%vG_NoXkPGb|t81`WGjxMwkp?_sz* ziht(;+(|6aN4M`RgkvL>#Z6j-XOakAqh8et2*G}SaB3soL6anQ`B}?Eo;`H&^H~F~ zk!dobCmAUOA+Ry)MZC{58X6c(o>&u_6pf;pcs^5}Ha5B+8!*-S)Wj{D+DY!X@He%g zt2jdPqu20!gPv3r%_7VGN96$cJgmM5yS=rgW$A+yy4+~Hjc%@?bj0h4v2HP5WQ8f3 zbnQ6lREa@7eh;nmcv&^1BEnXns8LX6E+klJ{m)YEAWLQT-0d;+a+bn%zLohf+%5>H z4CU|gE|az&Z)wl(`9&o)8K;7&LtUKOA9?Q8+0qh9$?z6Ax&gm zDtk5ITj%<~rX}lFuxUS{nG7dMvrInP z8~Z6`hl~c2?;`N+mN1^6RrHHCxW$J43xK+V4D>kes-F@w4h1XmITq|ImL0|>6@QV?P$Q9lqRYv4?zO%fdnh@irhtbKv@A{=`YnfL!m*4-f zKo~E_NRI>l^ET*>$5{`){v_-YVwCKK2U+(^+r=}Zw^s@VAMV>^TrB6LjQcGFA$|T zlpCO7_ggNDk&%&0%@t4H5szOA&}^n@^T@3I%$aY2X2uy+Hb2jN1DfO*QgDOLgP9^5 z0O*r!b%&2}9`ou_IKL5fx^>ILYp>t*IoNHg^%+S!z<7DBRpXQw9s<8p8|sz@FC5Qd zhKZr{{QJ)X60~?DfUK2)IC?-9W!B$532E7c$vmaWR`bt6huQEHJ)~HAJ~Hx>+j91V zvC_Q-r2PSMYZItXuXr#Zbk@Vze#}UVN{<0(y6_qccVCug%>YP4Rw2ljC+^R;MkXPd z9ZS@0`Rq#g@{DhaS9HacDADh*a`i#Ty>9)`#5lPb?Us;)bs4Hk4hr9( z*)OrUC-eyNqMZt`$oz%t;6UcGlDvu_=NYpx|Cg}vzi0}qT*)=ZEPjg`H4*1&mE=x* zgm!H!r0|F2dpCe#vr%QFtr*s+q<4Pn>70&ZRZD>@-0@`vF|5;6Cu_Sh+GhqtP8`;( zQ>k5T?(dmCR$lZZO2$P#lOgNZ?jnY<04m~J##wM+GKuPesvW&vZ*-6o{xi-;UM!Se zVX;E0BmCrkIYOhAH9+VNov66#L~EQ7R*4I)64HK0waqmTLe zVQP8$Y?rULHgs&TZe2`-zCO6}%o<@d0N>R`PdooL zegvY%A~Da+UZ^JOO3uLSW;(9=a+6gdokI51LS|vAz*#v>`7~i4ZGq9}O(YiQ?(^q_ zD`kkcP&ogFIT%8TUZ}c#H<{gq`_Nv3TfXY1rNrIUwy9EcyO8vj#cci#8*m{%BpA_5 zjY6wS{SHVnXn-f}+GJ2;p~V=jW+vE2{%$A)Yp`LvSA)y)E5MDL_eqPa=*HMnCx}2| zte}xddGqlV?hm~OV_}{S=<0U|i70D884IHQ1kN%YR~Y;aw4EWAdL;dT(mlnLxm+!G z%qxBsdP6{N3;6uqqV;M#`hK}(-)uQTboo}SORiitW@q@0kwL$mWZO$P!h<*M678%) zwYIOoluvjWR2u(}#d=A~u9_RM0^SHgZbZOPAZ&1ZirP(Hv(j35*%>w$sO}g#Qn8jM znDtRLYiY@kSD#UcH9}Yo`I@g9s<4#&J~lPoiMar0T_{q1k1@?sh)QucVp+(s8~ZQF z_~)mvk65um*-ITnqRU|%lJ9Mi25+!jrUENcL!b7KGcm7}O=0KXX@ojKkC`a-joQ_A^(j>%J%umYp06&W+=E5p*aHXU9+g zF|-KoNNWR)oV4t=^uk_6Kg#s}V0RpTxPuK*zwzVIdEEgXXM*GTEUocvxHaty&hzDG z81oCA&A-K6?exV%81{LD!*Go*I_m~Kt)NNJ_PlfLD=@N~HEw{btRjX1(oAcp)vtKk z2;^VSWT2k*T|^EcT(Nc@X@Jb(s2rh!2tahHiMgQM8D4cevE>qS(0y5;nKU$rHtZG28B>3_Y(68--3s=m5v{aUCdRa=O#%L-$)(8p${i%hmV^MIa=SX*YwR)kRTFMoik%=NwSpyJ5VUNS0sfLXxkj|JwU z=uD!^ySAT60>*&}7w*2ZpAm7IeF5NmW8^b8*v|-kP%ZQN9osziFcO|;-&~6hYu*Li zWeZfdW4_Y7MnozH{>}Ck-`nrdU8!!?N-W;Tgr#s+8F2 zJEYYDuWc2sk?8~LqRVV4{T0`en zILo0skM9-MHE&Q%0hZ!zId=t*n_-c#J5jL&u#tY9Ka>^vchv5Kxd)Sqpf`U+)vwuKeF`~~ospp;Zvhb%a${#7wAjo+ zrbNLr*$K#~`%?26YfyVo15%)amx%p5^5_<15BFVbeRNsCPj8NCUja z99-S!uzj{l&wb~&E8HvlK-aFFDGC#TM$gFizW zV+(pKMF2v{%mt*hHS5Muogch&L?Vd2<~dTEdx8YY0{WtG>DPWQW5ASr%fIC$hhQ2a zc7P-Xp+^f-xDQ8O-URZ3HJAve0qe3pxUcYAkzm9)$ubE~YYI!~F1+|T!v;dcxVOG* z0&XS*zgr9tzD)dUXvuQuX!@Ygy{{_;vwhi!37LoGOYa}R zZkc<`SMvgdZ(4ACx(OshKKWxw!6l?+Toa$cH{aio5xMaN^WZu)m=Y_|KAOK%BiNtm zJ}8)XT_Tina2Z%X@G%t5Pemr&g~L7oIjzpE^y@LVhWzAI%sFtl zRb(uX8UO<7Uyp)o;x=FYD1e@qayXZsyt3&dK>v;Vx8Gk$n^7YvHOIQG@8HfP#p?#> zK{#CP?04wtEQZdHUSRU1CHmTYX-^R8fs1ktU@%Stuc4^K4IF~*$IR?$Ecd9-+)Q-X z=8Jg1579q#!E5`*y0*&4u)={Zfw!;t8YW=;B!x&0T_D(qSl)C$h>cZV2gV;cFbQ?i z$x0dW1w@jN3gtsUSYX=#eV}Pk5=t@Yu%NLt>Uo3Ra4r_GXrQok9%|8BG9JZ6O048{ zXd)6EM-``Qnmmxi3h;1EWQi71Qu{(WD7KQnn3TJFpdzC6O|DLORY7b zk2U~?qC*q}R~f!O01q+(YBIs+}ye5XFg?O~|tnJ|d%s)Bg(gM-jO zu?E{zEy}=6c`=?~URI%Tv(k$Sr~G1}7%^v7`VKX+{gL1tXe>Ht=;X|+i&LWNs+D>V`O~Bm(VqK&IN8>ZAI}-TuM@eK!9LMqi3vRAZ@_kJ)_iql zzl9){wetnoUn`VB^#5z`YNML2qp(h=GC-Yx0=__|IGBPCUq}Qu*a#=ppP?WqjL?BE zyn|qxazLfhgK!j-6$F1&&On%=NkbIy1ZqoCh(Z$&Cel#z1$Ce((DNIV3f1R6uut3B z&UW|T-E;4K?sM6uyV68|Pi0k~Pj?mW8yt%RU>QBp_{^`4ulj|7bvUCFqC34(Ne z$hy5|h0DHu^6*ff`fk4~L9aEl_UQsB0QGgM&ak4OsU-6n`g{dji}JB4Rn0B99xwPz zY-c?tF9&CnU6*ZZK*_v-=@ZyecuaW`oXKizt_eCwQ<}7Akaic3b5xkC@tVTQK4U770bB`V_ zb5>k#Kwq|n#~C$lS}5Tgw`0{q{#UPd>zRJ;GPCg6DNKrUG1T?5!t=ZI?A#pe_f&bL zA-k9FfNHXB2aywp_h{zK%INHLuU@Qtywni=dQ|OS&IB7_7`3WT)E?ch%N$wJph858n>eeZY6*aAsobzZs(J*2yPK)~mxyL4`-mDdZ zQEn1{x3Lr9qV6i7$}TBm>|6e-^A3qWUv7F&jPcnIblppc^j;*!i}Ngtssj@QcN$o`Y@dPh*V5XX{3=4yEh9 zpU~*;=)2SWUTqzr`4<+#b(HN;GSvDXh|VbQQ;u6wQ$WYo)U}-MuOt2>moV`DAba z41(=Xd5C2PGcsD$qJq(G@S`GB*vh&sdHYhkb+ze{QUc}`67-(iSo)C(si`NT*kMT-dQy zCDVN;mGDC*>#mk3wt5L?-q!nvOBcjkkt{x%pMILoL4JHDfecS$=sRjD=`$dDpQ%dj zseSnpIhKd7iOq{6!-UT({gAqDKIBU$*z=0aJ8^Gyh2b?ve515dFrM`t z^)a^xePY@l40W|bLeE)!KhCNsT(Bk!+2%Xjiz+6nRaaA!CeY2UsjlY@nM?YF_hUvb z1FEJeM_n8sj(FqeAI5kwQrx<&dc^4VYn?5eJE7A1Sb6nI0C%$ literal 0 HcmV?d00001 diff --git a/modules/0_Getting_Started/3_Deep_dive_into_the_anatomy_of_quantum_circuits/3_Deep_dive_into_the_anatomy_of_quantum_circuits.ipynb b/modules/0_Getting_Started/3_Deep_dive_into_the_anatomy_of_quantum_circuits/3_Deep_dive_into_the_anatomy_of_quantum_circuits.ipynb new file mode 100644 index 000000000..32fd68226 --- /dev/null +++ b/modules/0_Getting_Started/3_Deep_dive_into_the_anatomy_of_quantum_circuits/3_Deep_dive_into_the_anatomy_of_quantum_circuits.ipynb @@ -0,0 +1,1681 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Anatomy of Quantum Circuits and Quantum Tasks in Amazon Braket" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# Use Braket SDK Cost Tracking to estimate the cost to run this example\n", + "from braket.tracking import Tracker\n", + "t = Tracker().start()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this tutorial we discuss in detail the anatomy of quantum circuits in Amazon Braket's SDK. Specifically, we learn how to build (parametrized) circuits and display them graphically, how to append circuits to each other, and discuss the associated circuit depth and circuit size. Finally we show how to execute our circuit on a device of our choice (defining a quantum task). We then learn how to efficiently track, log, recover or cancel such a _quantum task_. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## IMPORT STATEMENTS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "First we import some modules we will need." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# general imports\n", + "import asyncio\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "# magic word for producing visualizations in notebook\n", + "%matplotlib inline\n", + "import string\n", + "from datetime import datetime\n", + "import logging\n", + "\n", + "# AWS imports: Import Braket SDK modules\n", + "from braket.circuits import Circuit, Gate, Instruction, circuit, Observable, FreeParameter\n", + "from braket.circuits.serialization import IRType\n", + "from braket.aws import AwsDevice, AwsQuantumTask\n", + "from braket.devices import LocalSimulator" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## CIRCUIT DEFINITION" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us get started a sample circuit for four qubits (labelled q0, q1, q2 and q3) consisting of standard single-qubit ```Hadamard``` gates and two-qubit ```CNOT``` gates; for a full list of available gates see below. We can then visualize our circuit by simply calling the ```print``` function. " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : |0| 1 |\n", + " \n", + "q0 : -H-C---\n", + " | \n", + "q1 : -H-|-C-\n", + " | | \n", + "q2 : -H-X-|-\n", + " | \n", + "q3 : -H---X-\n", + "\n", + "T : |0| 1 |\n" + ] + } + ], + "source": [ + "# define circuit with 4 qubits\n", + "my_circuit = Circuit().h(range(4)).cnot(control=0, target=2).cnot(control=1, target=3)\n", + "print(my_circuit)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here, time is sliced up into moments. The circuit above consists of just two moments. First, we apply a ```Hadamard``` gate to every qubit in moment 0 and then we apply two ```CNOT``` gates. Since the latter can be run in parallel as they involve different sets of qubits, they only use up one moment of time. For better readability they are displayed next to each other with some small offset. " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MomentsKey(time=0, qubits=QubitSet([Qubit(0)]), moment_type=, noise_index=0)\n", + "MomentsKey(time=0, qubits=QubitSet([Qubit(1)]), moment_type=, noise_index=0)\n", + "MomentsKey(time=0, qubits=QubitSet([Qubit(2)]), moment_type=, noise_index=0)\n", + "MomentsKey(time=0, qubits=QubitSet([Qubit(3)]), moment_type=, noise_index=0)\n", + "MomentsKey(time=1, qubits=QubitSet([Qubit(0), Qubit(2)]), moment_type=, noise_index=0)\n", + "MomentsKey(time=1, qubits=QubitSet([Qubit(1), Qubit(3)]), moment_type=, noise_index=0)\n" + ] + } + ], + "source": [ + "# show moments of our quantum circuit\n", + "my_moments = my_circuit.moments\n", + "for moment in my_moments:\n", + " print(moment)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Instruction('operator': H('qubit_count': 1), 'target': QubitSet([Qubit(0)]))\n", + "Instruction('operator': H('qubit_count': 1), 'target': QubitSet([Qubit(1)]))\n", + "Instruction('operator': H('qubit_count': 1), 'target': QubitSet([Qubit(2)]))\n", + "Instruction('operator': H('qubit_count': 1), 'target': QubitSet([Qubit(3)]))\n", + "Instruction('operator': CNot('qubit_count': 2), 'target': QubitSet([Qubit(0), Qubit(2)]))\n", + "Instruction('operator': CNot('qubit_count': 2), 'target': QubitSet([Qubit(1), Qubit(3)]))\n" + ] + } + ], + "source": [ + "# list all instructions/gates making up our circuit\n", + "my_instructions = my_circuit.instructions\n", + "for instruction in my_instructions:\n", + " print(instruction)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, let us build a parametrized circuit where we have to supply numerical parameter values to fully define the circuit, as is the case for example for single-qubit rotations (as described [here](https://github.com/aws/amazon-braket-sdk-python/blob/main/src/braket/circuits/gates.py#L578)) and the two-qubit ```cnot``` as described in the source code [here](https://github.com/aws/amazon-braket-sdk-python/blob/main/src/braket/circuits/gates.py#L701). The specific parameter values are shown in circuit diagram. " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : | 0 | 1 |2|\n", + " \n", + "q0 : -Rx(0.15)-C-----\n", + " | \n", + "q1 : -Ry(0.20)-|-C-X-\n", + " | | \n", + "q2 : -Rz(0.25)-X-|---\n", + " | \n", + "q3 : -H----------X-X-\n", + "\n", + "T : | 0 | 1 |2|\n" + ] + } + ], + "source": [ + "# define circuit with some parametrized gates \n", + "my_circuit = Circuit().rx(0, 0.15).ry(1, 0.2).rz(2, 0.25).h(3).cnot(control=0, target=2).cnot(1, 3).x([1,3])\n", + "print(my_circuit)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can also create a `Circuit` with gates which depend on a `FreeParameter`, the value of which can be set later, either by fixing it in the circuit itself, or when the circuit is run on a device." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : | 0 | 1 |2|\n", + " \n", + "q0 : -Rx(alpha)-C-----\n", + " | \n", + "q1 : -Ry(beta)--|-C-X-\n", + " | | \n", + "q2 : -Rz(gamma)-X-|---\n", + " | \n", + "q3 : -H-----------X-X-\n", + "\n", + "T : | 0 | 1 |2|\n", + "\n", + "Unassigned parameters: [alpha, beta, gamma].\n" + ] + } + ], + "source": [ + "# define circuit with some parametrized gates and free parameters\n", + "alpha = FreeParameter('alpha')\n", + "beta = FreeParameter('beta')\n", + "gamma = FreeParameter('gamma')\n", + "my_circuit = Circuit().rx(0, alpha).ry(1, beta).rz(2, gamma).h(3).cnot(control=0, target=2).cnot(1, 3).x([1,3])\n", + "print(my_circuit)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "__GATE SET__: Below we list all gates currently available in our SDK. Moreover, we can build custom gates as shown below for a general single-qubit rotation. " + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['CCNot', 'CNot', 'CPhaseShift', 'CPhaseShift00', 'CPhaseShift01', 'CPhaseShift10', 'CSwap', 'CV', 'CY', 'CZ', 'ECR', 'GPi', 'GPi2', 'H', 'I', 'ISwap', 'MS', 'PSwap', 'PhaseShift', 'PulseGate', 'Rx', 'Ry', 'Rz', 'S', 'Si', 'Swap', 'T', 'Ti', 'Unitary', 'V', 'Vi', 'X', 'XX', 'XY', 'Y', 'YY', 'Z', 'ZZ']\n" + ] + } + ], + "source": [ + "# print all available gates currently available within SDK\n", + "gate_set = [attr for attr in dir(Gate) if attr[0] in string.ascii_uppercase]\n", + "print(gate_set)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# helper function to build custom gate \n", + "def u3(alpha, theta, phi):\n", + " \"\"\"\n", + " function to return matrix for general single qubit rotation\n", + " rotation is given by exp(-i sigma*n/2*alpha) where alpha is rotation angle\n", + " and n defines rotation axis as n=(sin(theta)cos(phi), sin(theta)sin(phi), cos(theta))\n", + " sigma is vector of Pauli matrices\n", + " \"\"\"\n", + " u11 = np.cos(alpha/2)-1j*np.sin(alpha/2)*np.cos(theta)\n", + " u12 = -1j*(np.exp(-1j*phi))*np.sin(theta)*np.sin(alpha/2)\n", + " u21 = -1j*(np.exp(1j*phi))*np.sin(theta)*np.sin(alpha/2)\n", + " u22 = np.cos(alpha/2)+1j*np.sin(alpha/2)*np.cos(theta)\n", + " \n", + " return np.array([[u11, u12], [u21, u22]])" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : |0|1|\n", + " \n", + "q0 : -U-C-\n", + " | \n", + "q1 : -H-X-\n", + "\n", + "T : |0|1|\n" + ] + } + ], + "source": [ + "# define and print custom unitary\n", + "my_u3 = u3(np.pi/2, 0, 0)\n", + "# print(my_u3)\n", + "# define example circuit applying custom U to the first qubit\n", + "circ = Circuit().unitary(matrix=my_u3, targets=[0]).h(1).cnot(control=0, target=1)\n", + "print(circ)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here, in the circuit diagram our custom unitary is depicted with the general symbol ```U```. \n", + "In addition, we can use Braket's `circuit.subroutine` functionality, which allows us to use custom-built gates as any other built-in gates. " + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# helper function to build custom gate\n", + "@circuit.subroutine(register=True)\n", + "def u3(target, angles):\n", + " \"\"\"\n", + " Function to return the matrix for a general single qubit rotation,\n", + " given by exp(-i sigma*n/2*alpha), where alpha is the rotation angle,\n", + " n defines the rotation axis via n=(sin(theta)cos(phi), sin(theta)sin(phi), cos(theta)),\n", + " and sigma is the vector of Pauli matrices\n", + " \"\"\"\n", + " \n", + " # get angles\n", + " alpha = angles[0]\n", + " theta = angles[1]\n", + " phi = angles[2]\n", + " \n", + " # set 2x2 matrix entries\n", + " u11 = np.cos(alpha/2)-1j*np.sin(alpha/2)*np.cos(theta)\n", + " u12 = -1j*(np.exp(-1j*phi))*np.sin(theta)*np.sin(alpha/2)\n", + " u21 = -1j*(np.exp(1j*phi))*np.sin(theta)*np.sin(alpha/2)\n", + " u22 = np.cos(alpha/2)+1j*np.sin(alpha/2)*np.cos(theta)\n", + " \n", + " # define unitary as numpy matrix\n", + " u = np.array([[u11, u12], [u21, u22]])\n", + " # print('Unitary:', u)\n", + " \n", + " # define custom Braket gate\n", + " circ = Circuit()\n", + " circ.unitary(matrix=u, targets=target)\n", + " \n", + " return circ" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : |0|1|\n", + " \n", + "q0 : -U-C-\n", + " | \n", + "q1 : ---X-\n", + "\n", + "T : |0|1|\n" + ] + } + ], + "source": [ + "# define example circuit applying custom single-qubit gate U to the first qubit\n", + "angles = [np.pi/2, np.pi/2, np.pi/2]\n", + "angles = [np.pi/4, 0, 0]\n", + "\n", + "# build circuit using custom u3 gate\n", + "circ2 = Circuit().u3([0], angles).cnot(control=0, target=1)\n", + "print(circ2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## CIRCUIT DEPTH AND CIRCUIT SIZE" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can get the circuit depth (the number of moments defining our circuit) with ```circuit.depth``` as shown below. " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : | 0 | 1 |2|\n", + " \n", + "q0 : -Rx(0.15)-C---X-\n", + " | \n", + "q1 : -Ry(0.20)-|-C---\n", + " | | \n", + "q2 : -Rz(0.25)-X-|---\n", + " | \n", + "q3 : -H----------X---\n", + "\n", + "T : | 0 | 1 |2|\n", + "\n", + "Total circuit depth: 3\n" + ] + } + ], + "source": [ + "# define circuit with parametrized gates \n", + "my_circuit = Circuit().rx(0, 0.15).ry(1, 0.2).rz(2, 0.25).h(3).cnot(control=0, target=2).cnot(1, 3).x(0)\n", + "circuit_depth = my_circuit.depth\n", + "print(my_circuit)\n", + "print()\n", + "print('Total circuit depth:', circuit_depth)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The total circuit depth of the circuit above is three (moments 0, 1, 2). It is three because we have added a single qubit ```X``` gate applied to qubit 0 in the final layer. However, note that gates are applied as early as possible in time, provided that this is not in conflict with any other gate that has to be applied before. See below an example where we add one qubit to which we only apply one single qubit ```X``` gate. This circuit is shallower as its circuit depth is only two. The ```X``` gate is applied to qubit 4 as early as possible even though we have applied the corresponding command at the end of our circuit definition. " + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : | 0 | 1 |\n", + " \n", + "q0 : -Rx(0.15)-C---\n", + " | \n", + "q1 : -Ry(0.20)-|-C-\n", + " | | \n", + "q2 : -Rz(0.25)-X-|-\n", + " | \n", + "q3 : -H----------X-\n", + " \n", + "q4 : -X------------\n", + "\n", + "T : | 0 | 1 |\n", + "\n", + "Total circuit depth: 2\n", + "Number of qubits: 5\n", + "Circuit size: 10\n" + ] + } + ], + "source": [ + "# define circuit with parameterized gates \n", + "my_circuit = Circuit().rx(0, 0.15).ry(1, 0.2).rz(2, 0.25).h(3).cnot(control=0, target=2).cnot(1, 3).x(4)\n", + "# get circuit depth\n", + "circuit_depth = my_circuit.depth\n", + "# get qubit number\n", + "qubit_count = my_circuit.qubit_count\n", + "# get approx. estimate of circuit size\n", + "circuit_size = circuit_depth*qubit_count\n", + "# print circuit\n", + "print(my_circuit)\n", + "print()\n", + "# print characteristics of our circuit\n", + "print('Total circuit depth:', circuit_depth)\n", + "print('Number of qubits:', qubit_count)\n", + "print('Circuit size:', circuit_size)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the example above we have also introduced the concept of __circuit size__. Intuitively, the circuit size is a metric that reflects the complexity of our circuit. The circuit size accounts for both quantity (the number of qubits) and quality (as captured by the depth of the circuit); here we have used a very simple definition multiplying the qubit number with the circuit depth (that is the area of our diagram). In practice, in the absence of quantum error correction, on real quantum machines the depth is limited by noise so we can only faithfully run circuits whose depth is within the quality bounds of our machine. Simply speaking, this means: The larger the circuit size, the harder it is to simulate on a classical device and the more powerful the quantum machine is that is able to faithfully execute this circuit. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## APPENDING CIRCUITS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can extend existing circuits by adding instructions or just appending circuits to each other, as shown below. In the most simple and straightforward fashion we can just append gates to existing circuits (for example, ```my_circuit.y(4)```). " + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : | 0 | 1 |\n", + " \n", + "q0 : -Rx(0.15)-C---\n", + " | \n", + "q1 : -Ry(0.20)-|-C-\n", + " | | \n", + "q2 : -Rz(0.25)-X-|-\n", + " | \n", + "q3 : -H----------X-\n", + " \n", + "q4 : -X--------Y---\n", + "\n", + "T : | 0 | 1 |\n", + "\n", + "Total circuit depth: 2\n", + "Number of qubits: 5\n", + "Circuit size: 10\n" + ] + } + ], + "source": [ + "# simple circuit extension by appending gates (here Y on qubit 4)\n", + "my_circuit = my_circuit.y(4)\n", + "# get circuit depth\n", + "circuit_depth = my_circuit.depth\n", + "# get qubit number\n", + "qubit_count = my_circuit.qubit_count\n", + "# get circuit size\n", + "circuit_size = circuit_depth*qubit_count\n", + "# print circuit\n", + "print(my_circuit)\n", + "print()\n", + "print('Total circuit depth:', circuit_depth)\n", + "print('Number of qubits:', qubit_count)\n", + "print('Circuit size:', circuit_size)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Alternatively, we can define a gate as an ```Instruction``` and use the ```add_instruction(...)``` method to add this gate to an existing circuit object." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : | 0 | 1 |2|\n", + " \n", + "q0 : -Rx(0.15)-C---C-\n", + " | | \n", + "q1 : -Ry(0.20)-|-C-X-\n", + " | | \n", + "q2 : -Rz(0.25)-X-|---\n", + " | \n", + "q3 : -H----------X---\n", + " \n", + "q4 : -X--------Y-----\n", + "\n", + "T : | 0 | 1 |2|\n", + "\n", + "Total circuit depth: 3\n", + "Number of qubits: 5\n", + "Circuit size: 15\n" + ] + } + ], + "source": [ + "# add instruction to circuit\n", + "gate_instr = Instruction(Gate.CNot(), [0, 1])\n", + "my_circuit = my_circuit.add_instruction(gate_instr)\n", + "# get circuit depth\n", + "circuit_depth = my_circuit.depth\n", + "# get qubit number\n", + "qubit_count = my_circuit.qubit_count\n", + "# get circuit size\n", + "circuit_size = circuit_depth*qubit_count\n", + "# print circuit\n", + "print(my_circuit)\n", + "print()\n", + "print('Total circuit depth:', circuit_depth)\n", + "print('Number of qubits:', qubit_count)\n", + "print('Circuit size:', circuit_size)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can append entire circuits to each other with ```add_circuit()```. " + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : | 0 | 1 | 2 | 3 |\n", + " \n", + "q0 : -Rx(0.15)-C---C--------Rz(0.10)-\n", + " | | \n", + "q1 : -Ry(0.20)-|-C-X--------Rz(0.20)-\n", + " | | \n", + "q2 : -Rz(0.25)-X-|-------------------\n", + " | \n", + "q3 : -H----------X-Rz(0.30)----------\n", + " \n", + "q4 : -X--------Y---Rz(0.40)----------\n", + "\n", + "T : | 0 | 1 | 2 | 3 |\n", + "\n", + "Total circuit depth: 4\n", + "Number of qubits: 5\n", + "Circuit size: 20\n" + ] + } + ], + "source": [ + "# append two circuits with add_circuit() functionality\n", + "my_circuit2 = Circuit().rz(0, 0.1).rz(1, 0.2).rz(3, 0.3).rz(4, 0.4)\n", + "my_circuit.add_circuit(my_circuit2)\n", + "\n", + "# get circuit depth\n", + "circuit_depth = my_circuit.depth\n", + "# get qubit number\n", + "qubit_count = my_circuit.qubit_count\n", + "# get circuit size\n", + "circuit_size = circuit_depth*qubit_count\n", + "# print circuit\n", + "print(my_circuit)\n", + "print()\n", + "# print characteristics of our circuit\n", + "print('Total circuit depth:', circuit_depth)\n", + "print('Number of qubits:', qubit_count)\n", + "print('Circuit size:', circuit_size)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Again, note that the single qubit rotations we have appended to our circuit are applied as early as possible. This helps keeping the circuit as short as possible, as required in the presence of decoherence. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## CIRCUIT EXECUTION AND TASK TRACKING" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, let us run our circuit on a device of our choice. We do so by defining a classical ```device``` object below and calling the method ```device.run(my_circuit)```. Additional _task creation_ arguments can be provided to the ```run()``` method of the device object; in particular the optional “shots” argument refers to the number of desired measurement shots (default = 1000).\n", + "\n", + "The command ```device.run(...)``` defines a task (with a unique task ID), the status of which can be queried and tracked with ```task.state()``` as shown below. Once the task completes (which may take some time, specifically for the QPU devices, depending on the length of the queue), one can retrieve the results from the S3 bucket as specified below; you can check for \"Task Status” under Tasks within your Braket console. Note that ```task = device.run()``` is an _asynchronous_ operation. This means you can keep working while the system in the background polls for the results. You can always check the task status with ```task.state()```. When you call ```task.result()```, this becomes a blocking call that will throw an error if within the timeout period you will not get a result. We show below how to set this timeout period. \n", + "\n", + "By calling ```result()``` on a task, you get the quantum task result by polling Amazon Braket to see if the task is completed. Once the task is completed, the result is retrieved from S3 and returned as a ```QuantumTaskResult```. As opposed to ```async_result()```, this method is a blocking thread call and synchronously returns a result." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "# Create the device. The experiment value must be unique among any devices in use at the tim\n", + "device = AwsDevice(\"arn:aws:braket:::device/quantum-simulator/amazon/sv1\")\n", + "\n", + "# set up the device to be the Rigetti quantum computer\n", + "# device = AwsDevice(\"arn:aws:braket:us-west-1::device/qpu/rigetti/Aspen-M-3\")\n", + "\n", + "# set up the device to be the IonQ quantum computer\n", + "# device = AwsDevice(\"arn:aws:braket:us-east-1::device/qpu/ionq/Harmony\")\n", + "\n", + "# set up the device to be the Oxford Quantum Circuits (OQC) quantum computer\n", + "# device = AwsDevice(\"arn:aws:braket:eu-west-2::device/qpu/oqc/Lucy\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can check out the set of gates this device supports as follows: " + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Quantum Gates supported by this device:\n", + " ['ccnot', 'cnot', 'cphaseshift', 'cphaseshift00', 'cphaseshift01', 'cphaseshift10', 'cswap', 'cy', 'cz', 'ecr', 'h', 'i', 'iswap', 'pswap', 'phaseshift', 'rx', 'ry', 'rz', 's', 'si', 'swap', 't', 'ti', 'unitary', 'v', 'vi', 'x', 'xx', 'xy', 'y', 'yy', 'z', 'zz']\n" + ] + } + ], + "source": [ + "# show the properties of the device\n", + "device_properties = device.properties\n", + "# show supportedQuantumOperations (supported gates for a device)\n", + "device_operations = device_properties.dict()['action']['braket.ir.jaqcd.program']['supportedOperations']\n", + "# Note: This field also exists for other devices like the QPUs\n", + "print('Quantum Gates supported by this device:\\n',device_operations)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "__POLLING PARAMETERS__: With the ```run(...)``` method we can set two important parameters: \n", + "* ```poll_timeout_seconds``` is the number of seconds you want to wait and poll the task before it times out; the default value is 5 days (that is $\\sim 5*60*60*24$ seconds). \n", + "* ```poll_interval_seconds``` is the frequency how often the task is polled, e.g., how often you call the Braket API to get the status; the default value is 1 second. " + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Status of task: CREATED\n", + "Status: CREATED\n", + "Status: CREATED\n", + "Status: QUEUED\n", + "Status: QUEUED\n", + "Status: QUEUED\n", + "Status: RUNNING\n", + "Status: RUNNING\n", + "Status: RUNNING\n", + "Status: RUNNING\n", + "Status: COMPLETED\n", + "Counter({'00010': 503, '00000': 488, '11100': 5, '01010': 2, '01000': 2})\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEGCAYAAACKB4k+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAATPklEQVR4nO3df7DldX3f8edLVjASkYXdbnGXZjEybZhakOxYbJKOwoiISZakaMgP2eK22x/Y6NiZZk1mmrRjZrBtaiG0ZrZiXIyJEq1li1ZDEUrTKeii/KaGK8VhN8Cu/JQgRvDdP85nP5xd7t09K/d7z929z8fMmfP5fr6f87mfzz3n7mu/P873m6pCkiSAl0x7AJKkxcNQkCR1hoIkqTMUJEmdoSBJ6pZNewAvxooVK2rt2rXTHoYkHVJuueWWb1XVytnWHdKhsHbtWrZv3z7tYUjSISXJN+da5+4jSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSd2goZDk/iR3JLk1yfZWd1ySa5Pc256Xt/okuSzJTJLbk5w+5NgkSS+0EFsKb6qq06pqXVveDFxXVScD17VlgLcCJ7fHJuDDCzA2SdKYaXyjeT3wxlbeCtwA/Fqrv7JGd/25KcmxSU6oqgeHGMTazZ8botupuP+St017CJIOE0NvKRTwJ0luSbKp1a0a+4f+IWBVK68GHhh77Y5Wt5ckm5JsT7J99+7dQ41bkpakobcUfrKqdib5K8C1Sf7v+MqqqiQHdT/QqtoCbAFYt26d9xKVpHk06JZCVe1sz7uAzwKvBx5OcgJAe97Vmu8EThx7+ZpWJ0laIIOFQpKjk7xiTxk4G7gT2AZsaM02AFe38jbgwnYW0hnAE0MdT5AkzW7I3UergM8m2fNz/rCqvpDkK8BVSTYC3wTe0dp/HjgXmAGeBi4acGySpFkMFgpVdR9w6iz1jwBnzVJfwMVDjUd7O1zOvvLMK2l++Y1mSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqBg+FJEck+VqSa9rySUluTjKT5FNJjmz1R7XlmbZ+7dBjkyTtbSG2FN4D3DO2/EHgQ1X1GuAxYGOr3wg81uo/1NpJkhbQoKGQZA3wNuAjbTnAmcCnW5OtwHmtvL4t09af1dpLkhbI0FsK/wH4F8D32/LxwONV9Wxb3gGsbuXVwAMAbf0Trf1ekmxKsj3J9t27dw85dklacgYLhSQ/Deyqqlvms9+q2lJV66pq3cqVK+eza0la8pYN2PdPAD+b5FzgZcAxwKXAsUmWta2BNcDO1n4ncCKwI8ky4JXAIwOOT5K0j8G2FKrq/VW1pqrWAhcAX6qqXwauB85vzTYAV7fytrZMW/+lqqqhxidJeqFpfE/h14D3JZlhdMzgilZ/BXB8q38fsHkKY5OkJW3I3UddVd0A3NDK9wGvn6XNM8DbF2I8kqTZ+Y1mSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqBguFJC9L8uUktyW5K8m/avUnJbk5yUySTyU5stUf1ZZn2vq1Q41NkjS7IbcUvgucWVWnAqcB5yQ5A/gg8KGqeg3wGLCxtd8IPNbqP9TaSZIW0GChUCNPtcWXtkcBZwKfbvVbgfNaeX1bpq0/K0mGGp8k6YUGPaaQ5IgktwK7gGuBbwCPV9WzrckOYHUrrwYeAGjrnwCOn6XPTUm2J9m+e/fuIYcvSUvOoKFQVc9V1WnAGuD1wN+Yhz63VNW6qlq3cuXKFz1GSdLzJgqFJO9JckxGrkjy1SRnT/pDqupx4HrgDcCxSZa1VWuAna28Ezix/bxlwCuBRyb9GZKkF2/SLYV3VdWTwNnAcuCdwCX7e0GSlUmObeUfAt4M3MMoHM5vzTYAV7fytrZMW/+lqqoJxydJmgfLDtwEgD0HfM8FPl5Vd01wEPgEYGuSIxiFz1VVdU2Su4FPJvkA8DXgitb+CuDjSWaAR4ELDmYikqQXb9JQuCXJnwAnAe9P8grg+/t7QVXdDrxulvr7GB1f2Lf+GeDtE45HkjSASUNhI6PvGtxXVU8nOR64aLhhSZKmYdJjCtdW1VfbAWOq6hFGXzCTJB1G9rulkORlwMuBFUmW8/yxhWN4/vsFkqTDxIF2H/0j4L3Aq4BbeD4UngQuH3BckqQp2G8oVNWlwKVJ/llV/e4CjUmSNCUTHWiuqt9N8neAteOvqaorBxqXJGkKJgqFJB8HfhS4FXiuVRdgKEjSYWTSU1LXAaf4DWNJOrxNekrqncBfHXIgkqTpm3RLYQVwd5IvM7p5DgBV9bODjEqSNBWThsJvDTkISdLiMOnZR/9z6IFIkqZv0rOPvs3obCOAIxndWvMvquqYoQYmSVp4k24pvGJPuV0yez1wxlCDkiRNx0HfjrNG/ivwlgHGI0maokl3H/382OJLGH1v4ZlBRiRJmppJzz76mbHys8D9jHYhSZIOI5MeU/CGOpK0BEx0TCHJmiSfTbKrPT6TZM3Qg5MkLaxJDzT/PrCN0X0VXgX8t1YnSTqMTBoKK6vq96vq2fb4GLBywHFJkqZg0lB4JMmvJDmiPX4FeGTIgUmSFt6kofAu4B3AQ8CDwPnA3x9oTJKkKZn0lNR/DWyoqscAkhwH/DtGYSFJOkxMuqXwt/YEAkBVPQq8bpghSZKmZdJQeEmS5XsW2pbCpFsZkqRDxKT/sP8O8H+S/HFbfjvw28MMSZI0LZN+o/nKJNuBM1vVz1fV3cMNS5I0DRPvAmohYBBI0mHsoC+dLUk6fBkKkqTOUJAkdYOFQpITk1yf5O4kdyV5T6s/Lsm1Se5tz8tbfZJclmQmye1JTh9qbJKk2Q25pfAs8M+r6hRG93O+OMkpwGbguqo6GbiuLQO8FTi5PTYBHx5wbJKkWQwWClX1YFV9tZW/DdwDrGZ0x7atrdlW4LxWXg9c2e4BfRNwbJIThhqfJOmFFuSYQpK1jC6LcTOwqqoebKseAla18mrggbGX7Wh1+/a1Kcn2JNt379492JglaSkaPBSS/DDwGeC9VfXk+LqqKqAOpr+q2lJV66pq3cqV3tJBkubToKGQ5KWMAuETVfVfWvXDe3YLteddrX4ncOLYy9e0OknSAhny7KMAVwD3VNW/H1u1DdjQyhuAq8fqL2xnIZ0BPDG2m0mStACGvNLpTwDvBO5Icmur+3XgEuCqJBuBbzK6eQ/A54FzgRngaeCiAccmSZrFYKFQVX8KZI7VZ83SvoCLhxqPJOnA/EazJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1g4VCko8m2ZXkzrG645Jcm+Te9ry81SfJZUlmktye5PShxiVJmtuQWwofA87Zp24zcF1VnQxc15YB3gqc3B6bgA8POC5J0hwGC4WquhF4dJ/q9cDWVt4KnDdWf2WN3AQcm+SEocYmSZrdQh9TWFVVD7byQ8CqVl4NPDDWbkerkyQtoKkdaK6qAupgX5dkU5LtSbbv3r17gJFJ0tK10KHw8J7dQu15V6vfCZw41m5Nq3uBqtpSVeuqat3KlSsHHawkLTULHQrbgA2tvAG4eqz+wnYW0hnAE2O7mSRJC2TZUB0n+SPgjcCKJDuA3wQuAa5KshH4JvCO1vzzwLnADPA0cNFQ45IkzW2wUKiqX5xj1VmztC3g4qHGIkmajN9oliR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWLKhSSnJPk60lmkmye9ngkaalZNu0B7JHkCOA/Am8GdgBfSbKtqu6e7sh0uFm7+XPTHsK8uf+St017CDrMLJpQAF4PzFTVfQBJPgmsBwwFaR4dLqH4gwTi4TJ3GO4/BKmqQTo+WEnOB86pqn/Qlt8J/O2qevc+7TYBm9riXwe+vqADPXgrgG9NexBT4tyXrqU8/0Nh7j9SVStnW7GYthQmUlVbgC3THsekkmyvqnXTHsc0OPelOXdY2vM/1Oe+mA407wROHFte0+okSQtkMYXCV4CTk5yU5EjgAmDblMckSUvKotl9VFXPJnk38EXgCOCjVXXXlIc1Hw6ZXV0DcO5L11Ke/yE990VzoFmSNH2LafeRJGnKDAVJUmcoTGi2S3C0g+I3t7pPtQPkJDmqLc+09Wtb/fFJrk/yVJLL9+n/x5Pc0V5zWZIs9BznMh9zb+ve3+q/nuQt++t/sUjy0SS7ktw5Vvf2JHcl+X6SdWP1B/3+JjkuybVJ7m3Pyxdudgc2x3v/7rZcSVaMtU2b20yS25OcPrbuC0keT3LNPv3P+jlaDOZx7hva+3tvkg1j9Yvzb76qfBzgwejA9zeAVwNHArcBpwBXARe0Nr8H/JNW/qfA77XyBcCnWvlo4CeBfwxcvs/P+DJwBhDgvwNvnfa853nup7TXHgWc1Po8Yq7+pz3vsfn/XeB04M6xuh9j9MXJG4B1Y/UH/f4C/wbY3MqbgQ9Oe84TvPevA9YC9wMrxtqf2+aWNtebx9adBfwMcM0+P2PWz9G0H/M1d+A44L72vLyVl+/vMzHth1sKk+mX4KiqvwT2XILjTODTrc1W4LxWXt+WaevPSpKq+ouq+lPgmfHOk5wAHFNVN9Xo03LlWF/TNi9zb/WfrKrvVtX/A2Za33P1vyhU1Y3Ao/vU3VNVL/gm/Q/4/o7/vsZ/j4vBrO9NVX2tqu6fpf164MoauQk4ts2dqroO+PZ44/a5mOtzNG3zNfe3ANdW1aNV9RhwLXDOYv6bNxQmsxp4YGx5R6t7vKqe3adur/Zt/RPA8Qfof8cs/S8G8zX3ufqZq/5wsr/3d1VVPdjKDwGrFnJgB3Cw783Btj+euT9H0zZfc99f/aL8mzcUpEWi/Y/Rc8Q1VYbCZOa6BMexSZbtU7dX+7b+lcAjB+h/zSz9LwbzNfe5+lkKlzfZ3/v78J5dLO151wKPbX8O9r052PaPMPfnaNrma+77q1+Uf/OGwmTmugTH9cD5rc0G4OpW3taWaeu/1P4XOKu2++DJJGe0/awXjvU1bfM1923ABe3spJOAkxkdaDvsL29ygPd3/Pc1/ntcDA72vdkGXNjOxDkDeGJs19gLtM/FXJ+jaZuvuX8RODvJ8nZm2dnAFxf13/y0j3QfKg9GZxf8GaMzEn6j1b2a0T9sM8AfA0e1+pe15Zm2/tVj/dzP6MDlU4z2I57S6tcBd7b+L6d923wxPOZx7r/R+vg6Y2dazNb/YnkAfwQ8CHyvvV8bgZ9r5e8CDzP6I/+B3l9G+9WvA+4F/gdw3LTnPMF7/6ttbs8Cfw58pNWH0Y2yvgHcwd5nZv0vYDfwnfbat+zvc7QYHvM493e1+c0AF43VL8q/eS9zIUnq3H0kSeoMBUlSZyhIkjpDQZLUGQqSpM5Q0JKWZO34FVDH6j+S5JRW/vUJ+nlvkpfvZ33vT1rMPCVVS1pGl/a+pqr+5n7aPFVVP3yAfu5ndG76t2ZZd0RVPfcihyotCLcUJFiW5BNJ7kny6SQvT3JDknVJLgF+KMmtrc3RST6X5LYkdyb5hSS/CrwKuD7J9TAKkiS/k+Q24A17+htb99utj5uSrGr1P9qW70jygSRPtfoTktzYxnBnkp+azq9JS4GhII3ujfCfqurHgCcZ3RMCgKraDHynqk6rql8GzgH+vKpObVsXX6iqyxh9u/VNVfWm9tKjGV1T/9QaXU573NHATVV1KnAj8A9b/aXApVX1Wva+guYvMfrW9GnAqcCt8zd1aW+GggQPVNX/buU/YHSjnLncAbw5yQeT/FRVPTFHu+eAz8yx7i+BPXcgu4XRTVsA3sDoUg8AfzjW/ivARUl+C3htVe11XwJpPhkK0gsvV72/ixf+GaM7sd0BfCDJv5yj6TP7OY7wvXr+YN5zwLI52u35mTcyugPcTuBjSS7cX3vpxTAUJPhrSd7Qyr8E7Lu753tJXgqQ5FXA01X1B8C/ZRQQMLqr2Cte5DhuAv5eK1+wpzLJjwAPV9V/Bj4y9jOleWcoSKOrtl6c5B5G99H98D7rtwC3J/kE8Frgy0luBX4T+MBYmy/sOdD8A3ov8L4ktwOvYXTXOoA3Arcl+RrwC4yOPUiD8JRUaZFo33P4TlVVkguAX6yqRXO/ai0N+92XKWlB/ThwebvpyuOMrsMvLSi3FCRJnccUJEmdoSBJ6gwFSVJnKEiSOkNBktT9f6GUUlYZBFrxAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# define task (asynchronous)\n", + "task = device.run(my_circuit, \n", + " poll_timeout_seconds = 100, \n", + " shots=1000)\n", + "\n", + "# get id and status of submitted task\n", + "task_id = task.id\n", + "status = task.state()\n", + "# print('ID of task:', task_id)\n", + "print('Status of task:', status)\n", + "\n", + "# wait for job to complete\n", + "while status != 'COMPLETED':\n", + " status = task.state()\n", + " print('Status:', status)\n", + "\n", + "# get results of task\n", + "result = task.result()\n", + "\n", + "# get measurement shots\n", + "counts = result.measurement_counts\n", + "\n", + "# print counts\n", + "print(counts)\n", + "\n", + "# plot using Counter\n", + "plt.bar(counts.keys(), counts.values());\n", + "plt.xlabel('bitstrings');\n", + "plt.ylabel('counts');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The on-demand simulators SV1 and DM1 also support running parametrized tasks. The value of any free parameters can be fixed when the circuit is run using the optional `inputs` argument to `run`. `inputs` should be a `dict` of `string`-`float` pairs." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : | 0 | 1 |2|\n", + " \n", + "q0 : -Rx(alpha)-C-----\n", + " | \n", + "q1 : -Ry(beta)--|-C-X-\n", + " | | \n", + "q2 : -Rz(gamma)-X-|---\n", + " | \n", + "q3 : -H-----------X-X-\n", + "\n", + "T : | 0 | 1 |2|\n", + "\n", + "Unassigned parameters: [alpha, beta, gamma].\n", + "Status of task: CREATED\n", + "Status: CREATED\n", + "Status: CREATED\n", + "Status: CREATED\n", + "Status: QUEUED\n", + "Status: QUEUED\n", + "Status: RUNNING\n", + "Status: RUNNING\n", + "Status: RUNNING\n", + "Status: RUNNING\n", + "Status: RUNNING\n", + "Status: COMPLETED\n", + "Counter({'0101': 501, '0100': 485, '0000': 7, '0001': 4, '1110': 2, '1111': 1})\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEGCAYAAACKB4k+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAS4ElEQVR4nO3df7DldX3f8edLVjASkYXdUtzFLEYmDRMLkh27NkknwoiITZamaMgP2eK22x/Y6NiZFpOZxnZ0BtukFkJquhXjYkyUaCxbtBoGMTSdgi7Kb2q8oTiwQXblpwQxgu/+cT774bDcu5zN3u85d+8+HzNnzvf7+X7O974/95y7r/3+ON9vqgpJkgBeMOsCJElLh6EgSeoMBUlSZyhIkjpDQZLUrZh1AQdi1apVtW7dulmXIUkHlZtuuulbVbV6vmUHdSisW7eOHTt2zLoMSTqoJPnGQsvcfSRJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWDhkKSe5LcluTmJDta2zFJrkny9fa8srUnyaVJ5pLcmuS0IWuTJD3XNLYUXldVp1bV+jZ/EXBtVZ0EXNvmAd4InNQeW4APTqE2SdKYWew+2ghsa9PbgHPG2q+okRuAo5McP4P6JOmQNfQ3mgv44yQF/Neq2gocV1X3t+XfBI5r02uAe8dee19ru3+sjSRbGG1J8PKXv3zA0g8+6y76zKxLmMg9F79p1iVIWsDQofCTVbUzyd8Arknyf8cXVlW1wJhYC5atAOvXr/e2cZK0iAbdfVRVO9vzLuDTwGuAB/bsFmrPu1r3ncAJYy9f29okSVMyWCgkOTLJS/ZMA2cCtwPbgU2t2ybgqja9HTi/nYW0AXh0bDeTJGkKhtx9dBzw6SR7fs7vV9XnknwZuDLJZuAbwFta/88CZwNzwBPABQPWJkmax2ChUFV3A6fM0/4gcMY87QVcOFQ9kqTnd1DfT+FAeKaOJD2Xl7mQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1A0eCkkOS/LVJFe3+ROT3JhkLsknkhze2o9o83Nt+bqha5MkPds0thTeAdw1Nv9+4ANV9UrgYWBza98MPNzaP9D6SZKmaNBQSLIWeBPwoTYf4HTgk63LNuCcNr2xzdOWn9H6S5KmZOgthf8M/Gvg+23+WOCRqnqqzd8HrGnTa4B7AdryR1v/Z0myJcmOJDt27949ZO2SdMgZLBSS/H1gV1XdtJjrraqtVbW+qtavXr16MVctSYe8FQOu+yeAn01yNvAi4CjgEuDoJCva1sBaYGfrvxM4AbgvyQrgpcCDA9YnSdrLYFsKVfXuqlpbVeuA84AvVNUvAdcB57Zum4Cr2vT2Nk9b/oWqqqHqkyQ91yy+p/BvgHclmWN0zODy1n45cGxrfxdw0Qxqk6RD2pC7j7qq+iLwxTZ9N/Caefo8Cbx5GvVIkubnN5olSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJ3WChkORFSb6U5JYkdyT5d639xCQ3JplL8okkh7f2I9r8XFu+bqjaJEnzG3JL4bvA6VV1CnAqcFaSDcD7gQ9U1SuBh4HNrf9m4OHW/oHWT5I0RYOFQo083mZf2B4FnA58srVvA85p0xvbPG35GUkyVH2SpOca9JhCksOS3AzsAq4B/hx4pKqeal3uA9a06TXAvQBt+aPAsfOsc0uSHUl27N69e8jyJemQM2goVNXTVXUqsBZ4DfC3FmGdW6tqfVWtX7169QHXKEl6xkShkOQdSY7KyOVJvpLkzEl/SFU9AlwHvBY4OsmKtmgtsLNN7wROaD9vBfBS4MFJf4Yk6cBNuqXwtqp6DDgTWAm8Fbh4Xy9IsjrJ0W36B4DXA3cxCodzW7dNwFVtenubpy3/QlXVhPVJkhbBiufvAsCeA75nAx+tqjsmOAh8PLAtyWGMwufKqro6yZ3Ax5O8F/gqcHnrfznw0SRzwEPAefszEEnSgZs0FG5K8sfAicC7k7wE+P6+XlBVtwKvnqf9bkbHF/ZufxJ484T1SJIGMGkobGb0XYO7q+qJJMcCFwxXliRpFiY9pnBNVX2lHTCmqh5k9AUzSdIyss8thSQvAl4MrEqykmeOLRzFM98vkCQtE8+3++ifAu8EXgbcxDOh8Bhw2YB1SZJmYJ+hUFWXAJck+ZdV9VtTqkmSNCMTHWiuqt9K8neBdeOvqaorBqpLkjQDE4VCko8CPwzcDDzdmgswFCRpGZn0lNT1wMl+w1iSlrdJT0m9HfibQxYiSZq9SbcUVgF3JvkSo5vnAFBVPztIVZKkmZg0FN4zZBGSpKVh0rOP/mToQiRJszfp2UffZnS2EcDhjG6t+ZdVddRQhUmSpm/SLYWX7Jlul8zeCGwYqihJ0mzs9+04a+S/A28YoB5J0gxNuvvo58ZmX8DoewtPDlKRJGlmJj376GfGpp8C7mG0C0mStIxMekzBG+pI0iFgomMKSdYm+XSSXe3xqSRrhy5OkjRdkx5o/l1gO6P7KrwM+B+tTZK0jEwaCqur6ner6qn2+AiwesC6JEkzMGkoPJjkl5Mc1h6/DDw4ZGGSpOmbNBTeBrwF+CZwP3Au8I8GqkmSNCOTnpL674FNVfUwQJJjgN9gFBaSpGVi0i2Fv70nEACq6iHg1cOUJEmalUlD4QVJVu6ZaVsKk25lSJIOEpP+w/6bwP9J8odt/s3A+4YpSZI0K5N+o/mKJDuA01vTz1XVncOVJUmahYl3AbUQMAgkaRnb70tnS5KWL0NBktQZCpKkbrBQSHJCkuuS3JnkjiTvaO3HJLkmydfb88rWniSXJplLcmuS04aqTZI0vyG3FJ4C/lVVnczofs4XJjkZuAi4tqpOAq5t8wBvBE5qjy3ABwesTZI0j8FCoarur6qvtOlvA3cBaxjdsW1b67YNOKdNbwSuaPeAvgE4OsnxQ9UnSXquqRxTSLKO0WUxbgSOq6r726JvAse16TXAvWMvu6+17b2uLUl2JNmxe/fuwWqWpEPR4KGQ5AeBTwHvrKrHxpdVVQG1P+urqq1Vtb6q1q9e7S0dJGkxDRoKSV7IKBA+VlV/1Jof2LNbqD3vau07gRPGXr62tUmSpmTIs48CXA7cVVX/aWzRdmBTm94EXDXWfn47C2kD8OjYbiZJ0hQMeaXTnwDeCtyW5ObW9qvAxcCVSTYD32B08x6AzwJnA3PAE8AFA9YmSZrHYKFQVX8KZIHFZ8zTv4ALh6pHkvT8/EazJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1g4VCkg8n2ZXk9rG2Y5Jck+Tr7Xlla0+SS5PMJbk1yWlD1SVJWtiQWwofAc7aq+0i4NqqOgm4ts0DvBE4qT22AB8csC5J0gIGC4Wquh54aK/mjcC2Nr0NOGes/YoauQE4OsnxQ9UmSZrftI8pHFdV97fpbwLHtek1wL1j/e5rbc+RZEuSHUl27N69e7hKJekQNLMDzVVVQP01Xre1qtZX1frVq1cPUJkkHbqmHQoP7Nkt1J53tfadwAlj/da2NknSFE07FLYDm9r0JuCqsfbz21lIG4BHx3YzSZKmZMVQK07yB8BPA6uS3Af8OnAxcGWSzcA3gLe07p8FzgbmgCeAC4aqS5K0sMFCoap+YYFFZ8zTt4ALh6pFkjQZv9EsSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6lbMuoBxSc4CLgEOAz5UVRfPuCRpUa276DOzLmEi91z8plmXoBlZMqGQ5DDgt4HXA/cBX06yvarunG1lkhZiyC0/SyYUgNcAc1V1N0CSjwMbAUPhEOU/OJqFQ/1zl6oaZMX7K8m5wFlV9Y/b/FuBv1NVb9+r3xZgS5v9EeBrUy1031YB35p1EYtsuY1puY0Hlt+Yltt4YOmN6YeqavV8C5bSlsJEqmorsHXWdcwnyY6qWj/rOhbTchvTchsPLL8xLbfxwME1pqV09tFO4ISx+bWtTZI0JUspFL4MnJTkxCSHA+cB22dckyQdUpbM7qOqeirJ24HPMzol9cNVdceMy9pfS3K31gFabmNabuOB5Tem5TYeOIjGtGQONEuSZm8p7T6SJM2YoSBJ6gyF55HkrCRfSzKX5KLW9vY2X0lWjfVNkkvbsluTnDa2bFOSr7fHplmMZayWxRrT55I8kuTqWYxjrI4PJ9mV5PaxtjcnuSPJ95OsH2s/Nsl1SR5Pctle63lfknuTPD7N+uezwHt0YpIbW9sn2gkZJDmizc+15evG1vPu1v61JG+YzWgWZzz7eu+mbRE/cz+e5LY21kuTZJrjmFdV+VjgweiA958DrwAOB24BTgZeDawD7gFWjfU/G/ifQIANwI2t/Rjg7va8sk2vPJjH1JadAfwMcPWM36e/B5wG3D7W9qOMvtz4RWD9WPuRwE8C/wy4bK/1bACOBx5fop+7K4HzWp/fAf55m/4XwO+06fOAT7Tpk9trjwBObOs87CAez4Lv3UH8mftS+9yl/Z29cZbjqiq3FJ5Hv/RGVf0V8HFgY1V9tarumaf/RuCKGrkBODrJ8cAbgGuq6qGqehi4BjhrSmPY22KNiaq6Fvj2tApfSFVdDzy0V9tdVfWcb7tX1V9W1Z8CT86z7Iaqun+4Sic273sEnA58svXZBpzTpje2edryM9r/ODcCH6+q71bV/wPm2rqnbVHGs6/3btoW4zPX/o6Oap+7Aq7gmd/BzBgK+7YGuHds/r7Wtr/993c9Q1qsMWk4C/3OH6mqp/Zqe1b/tvxR4Nh9rGfaFms8y80aRuPeY0n8bRkKkqTOUNi3/b30xkL9l9IlPBZrTBrOQr/zo5Os2KvtWf3b8pcCD+5jPdO2WONZbnYyGvceS+Jvy1DYt/299MZ24Px2xs4G4NG2j/rzwJlJViZZCZzZ2mZhscak4Sz0Hl0HnNv6bAKuatPb2zxt+RfaPurtwHntbJ4TgZMYHdictsUaz7LS/o4eS7KhHQM6n2d+B7Mz6yPdS/3B6OybP2N09sSvtbZfYbT/7yngLxjdJQ5GZxD8dut7G88+A+FtjA70zQEXLJMx/S9gN/Cd9to3zGg8fwDcD3yv1bEZ+Adt+rvAA8Dnx/rfw+gg4eOtz8mt/T+0+e+35/cssffoFYz+UZ8D/hA4orW/qM3PteWvGFvPr7V1fI0ZntmyiOOZ9707iD9z64Hb2+/lMtpVJmb58DIXkqTO3UeSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFHdKSrBu/0uVY+4eSnNymf3WC9bwzyYv3sbyvT1rKPCVVh7R2Wearq+rH9tHn8ar6wedZzz2MvsPxrXmWHVZVTx9gqdJUuKUgwYokH0tyV5JPJnlxki8mWZ/kYuAHktzc+hyZ5DNJbklye5KfT/IrwMuA65JcB6MgSfKbSW4BXrtnfWPL3tfWcUOS41r7D7f525K8N+2+DkmOT3J9q+H2JD81m1+TDgWGgjS6Bv5/qaofBR5jdD1/AKrqIuA7VXVqVf0So0ue/0VVndK2Lj5XVZcy+hb466rqde2lRzK698QpNbps8rgjgRuq6hTgeuCftPZLgEuq6lU8++qZv8jo27GnAqcANy/e0KVnMxQkuLeq/neb/j1GN0RZyG3A65O8P8lPVdWjC/R7GvjUAsv+Cthzt7qbGN3cCOC1jC7vAPD7Y/2/DFyQ5D3Aq6pq5vew0PJlKEiw94G1BQ+0VdWfMbrj1m3Ae5P82wW6PrmP4wjfq2cO5j0NrFig356feT2jO33tBD6S5Px99ZcOhKEgwcuTvLZN/yKw9+6e7yV5IUCSlwFPVNXvAf+RUUDA6A50LznAOm4A/mGbPm9PY5IfAh6oqv8GfGjsZ0qLzlCQRlcQvTDJXYzuof3BvZZvBW5N8jHgVcCXktwM/Drw3rE+n9tzoPmv6Z3Au5LcCryS0R3HAH4auCXJV4GfZ3TsQRqEp6RKS0T7nsN3qqqSnAf8QlVtnHVdOrTsc1+mpKn6ceCydsOVRxjdg0OaKrcUJEmdxxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1P1/FeJIo+PLcmYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# define circuit with some parametrized gates and free parameters\n", + "alpha = FreeParameter('alpha')\n", + "beta = FreeParameter('beta')\n", + "gamma = FreeParameter('gamma')\n", + "my_circuit = Circuit().rx(0, alpha).ry(1, beta).rz(2, gamma).h(3).cnot(control=0, target=2).cnot(1, 3).x([1,3])\n", + "print(my_circuit)\n", + "# define task (asynchronous)\n", + "task = device.run(my_circuit, \n", + " poll_timeout_seconds = 100, \n", + " shots=1000, inputs={'alpha': 0.1, 'beta': 0.2, 'gamma': 0.3})\n", + "\n", + "# get id and status of submitted task\n", + "task_id = task.id\n", + "status = task.state()\n", + "# print('ID of task:', task_id)\n", + "print('Status of task:', status)\n", + "\n", + "# wait for job to complete\n", + "while status != 'COMPLETED':\n", + " status = task.state()\n", + " print('Status:', status)\n", + "\n", + "# get results of task\n", + "result = task.result()\n", + "\n", + "# get measurement shots\n", + "counts = result.measurement_counts\n", + "\n", + "# print counts\n", + "print(counts)\n", + "\n", + "# plot using Counter\n", + "plt.bar(counts.keys(), counts.values());\n", + "plt.xlabel('bitstrings');\n", + "plt.ylabel('counts');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "__TASK METADATA__: You can access a range of metadata associated with your ```task``` object, as shown below. " + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1000 shots taken on Thu, 10 Nov 2022 17:19:03 GMT.\n" + ] + } + ], + "source": [ + "# get all metadata of submitted task\n", + "metadata = task.metadata()\n", + "# example for metadata\n", + "shots = metadata['shots']\n", + "date = metadata['ResponseMetadata']['HTTPHeaders']['date']\n", + "# print example metadata\n", + "print(\"{} shots taken on {}.\".format(shots, date))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "__TASK RECONSTRUCTION__: Imagine your kernel dies after you have submitted the task, or you simply close your notebook. As recovery method, here is how you can reconstruct the ```task``` object (given the corresponding unique arn). You can reconstruct the ```task``` object using `task = AwsQuantumTask(arn=...)`; then you can simply call `task.result()` to get the result from S3. " + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Status of (reconstructed) task: COMPLETED\n" + ] + } + ], + "source": [ + "# restore task from unique arn\n", + "task_load = AwsQuantumTask(arn=task_id)\n", + "# print status\n", + "status = task_load.state()\n", + "print('Status of (reconstructed) task:', status)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Counter({'0101': 501, '0100': 485, '0000': 7, '0001': 4, '1110': 2, '1111': 1})\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEGCAYAAACKB4k+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAS2ElEQVR4nO3df7DddX3n8edLIlipSCBZFhNssDJtmVqQ3nHjtt2pMCLSH2G7aOkPyWJ2sz9wq+PO7GI7s+qOzuDudi2U1m5WrMHaKtVasqzVMoil7SxoUH6z1lsWh6RIIj+liBV87x/nkw+HcG84ae73npub52PmzPl+P9/P+d73555z88r3x/l+U1VIkgTwvGkXIElaOgwFSVJnKEiSOkNBktQZCpKkbsW0CzgQq1atqnXr1k27DEk6qNx0003fqKrVcy07qENh3bp1bN++fdplSNJBJcnX5lvm7iNJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkbNBSS3JPktiQ3J9ne2o5Jck2Sr7bnla09SS5NMpvk1iSnDVmbJOnZFmNL4TVVdWpVzbT5i4Brq+ok4No2D/B64KT22Ax8YBFqkySNmcbuow3A1ja9FThnrP2KGrkBODrJ8VOoT5IOWUN/o7mAP01SwP+oqi3AcVV1X1v+deC4Nr0GuHfstTta231jbSTZzGhLgpe+9KUDln7wybsz7RImUu/0xk7SUjV0KPx4Ve1M8g+Aa5L83/GFVVUtMCbWgmULwMzMjP+6SNICGnT3UVXtbM+7gE8BrwLu37NbqD3vat13AieMvXxta5MkLZLBQiHJkUletGcaOBO4HdgGbGzdNgJXteltwPntLKT1wCNju5kkSYtgyN1HxwGfSrLn5/x+VX0myReBK5NsAr4GvLH1/zRwNjALPA5cMGBtkqQ5DBYKVXU3cMoc7Q8AZ8zRXsCFQ9UjSXpuB/X9FA6EZ+pI0rN5mQtJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJ3eChkOSwJF9OcnWbPzHJjUlmk3w8yeGt/Yg2P9uWrxu6NknSMy3GlsJbgbvG5t8HvL+qXg48BGxq7ZuAh1r7+1s/SdIiGjQUkqwFfgr4YJsPcDrwidZlK3BOm97Q5mnLz2j9JUmLZOgthd8A/gPw3TZ/LPBwVT3Z5ncAa9r0GuBegLb8kdb/GZJsTrI9yfbdu3cPWbskHXIGC4UkPw3sqqqbFnK9VbWlqmaqamb16tULuWpJOuStGHDdPwb8bJKzgRcARwGXAEcnWdG2BtYCO1v/ncAJwI4kK4AXAw8MWJ8kaS+DbSlU1Tuqam1VrQPOAz5XVb8EXAec27ptBK5q09vaPG3556qqhqpPkvRs0/iewn8E3p5kltExg8tb++XAsa397cBFU6hNkg5pQ+4+6qrq88Dn2/TdwKvm6PME8IbFqEeSNDe/0SxJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqBguFJC9I8oUktyS5I8m7W/uJSW5MMpvk40kOb+1HtPnZtnzdULVJkuY25JbCt4HTq+oU4FTgrCTrgfcB76+qlwMPAZta/03AQ639/a2fJGkRDRYKNfJYm31+exRwOvCJ1r4VOKdNb2jztOVnJMlQ9UmSnm3QYwpJDktyM7ALuAb4a+DhqnqyddkBrGnTa4B7AdryR4Bj51jn5iTbk2zfvXv3kOVL0iFn0FCoqqeq6lRgLfAq4AcXYJ1bqmqmqmZWr159wDVKkp42USgkeWuSozJyeZIvJTlz0h9SVQ8D1wGvBo5OsqItWgvsbNM7gRPaz1sBvBh4YNKfIUk6cJNuKby5qh4FzgRWAm8CLt7XC5KsTnJ0m/4e4LXAXYzC4dzWbSNwVZve1uZpyz9XVTVhfZKkBbDiubsAsOeA79nAR6rqjgkOAh8PbE1yGKPwubKqrk5yJ/CxJO8Bvgxc3vpfDnwkySzwIHDe/gxEknTgJg2Fm5L8KXAi8I4kLwK+u68XVNWtwCvnaL+b0fGFvdufAN4wYT2SpAFMGgqbGH3X4O6qejzJscAFw5UlSZqGSY8pXFNVX2oHjKmqBxh9wUyStIzsc0shyQuAFwKrkqzk6WMLR/H09wskScvEc+0++lfA24CXADfxdCg8Clw2YF2SpCnYZyhU1SXAJUn+XVX95iLVJEmakokONFfVbyb5x8C68ddU1RUD1SVJmoKJQiHJR4DvB24GnmrNBRgKkrSMTHpK6gxwst8wlqTlbdJTUm8H/uGQhUiSpm/SLYVVwJ1JvsDo5jkAVNXPDlKVJGkqJg2Fdw1ZhCRpaZj07KM/G7oQSdL0TXr20TcZnW0EcDijW2v+bVUdNVRhkqTFN+mWwov2TLdLZm8A1g9VlCRpOvb7dpw18sfA6waoR5I0RZPuPvq5sdnnMfrewhODVCRJmppJzz76mbHpJ4F7GO1CkiQtI5MeU/CGOpJ0CJjomEKStUk+lWRXe3wyydqhi5MkLa5JDzT/LrCN0X0VXgL8r9YmSVpGJg2F1VX1u1X1ZHt8GFg9YF2SpCmYNBQeSPLLSQ5rj18GHhiyMEnS4ps0FN4MvBH4OnAfcC7wzweqSZI0JZOekvqfgY1V9RBAkmOA/8YoLCRJy8SkWwo/sicQAKrqQeCVw5QkSZqWSUPheUlW7plpWwqTbmVIkg4Sk/7D/uvA/0nyh23+DcB7hylJkjQtk36j+Yok24HTW9PPVdWdw5UlSZqGiXcBtRAwCCRpGdvvS2dLkpYvQ0GS1BkKkqRusFBIckKS65LcmeSOJG9t7cckuSbJV9vzytaeJJcmmU1ya5LThqpNkjS3IbcUngT+fVWdzOh+zhcmORm4CLi2qk4Crm3zAK8HTmqPzcAHBqxNkjSHwUKhqu6rqi+16W8CdwFrGN2xbWvrthU4p01vAK5o94C+ATg6yfFD1SdJerZFOaaQZB2jy2LcCBxXVfe1RV8HjmvTa4B7x162o7Xtva7NSbYn2b579+7BapakQ9HgoZDke4FPAm+rqkfHl1VVAbU/66uqLVU1U1Uzq1d7SwdJWkiDhkKS5zMKhI9W1R+15vv37BZqz7ta+07ghLGXr21tkqRFMuTZRwEuB+6qqv8+tmgbsLFNbwSuGms/v52FtB54ZGw3kyRpEQx5pdMfA94E3Jbk5tb2q8DFwJVJNgFfY3TzHoBPA2cDs8DjwAUD1iZJmsNgoVBVfwFknsVnzNG/gAuHqkeS9Nz8RrMkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWDhUKSDyXZleT2sbZjklyT5KvteWVrT5JLk8wmuTXJaUPVJUma35BbCh8Gztqr7SLg2qo6Cbi2zQO8HjipPTYDHxiwLknSPAYLhaq6Hnhwr+YNwNY2vRU4Z6z9ihq5ATg6yfFD1SZJmttiH1M4rqrua9NfB45r02uAe8f67Whtz5Jkc5LtSbbv3r17uEol6RA0tQPNVVVA/T1et6WqZqpqZvXq1QNUJkmHrsUOhfv37BZqz7ta+07ghLF+a1ubJGkRLXYobAM2tumNwFVj7ee3s5DWA4+M7WaSJC2SFUOtOMkfAD8JrEqyA3gncDFwZZJNwNeAN7bunwbOBmaBx4ELhqpLkjS/wUKhqn5hnkVnzNG3gAuHqkWSNBm/0SxJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqVky7gHFJzgIuAQ4DPlhVF0+5JGlB5d2ZdgkTqXfWtEvQlCyZUEhyGPBbwGuBHcAXk2yrqjunW5mk+Rhyy8+SCQXgVcBsVd0NkORjwAbAUDhE+Q+OpuFQ/9ylaml8oJOcC5xVVf+izb8J+EdV9Za9+m0GNrfZHwC+sqiF7tsq4BvTLmKBLbcxLbfxwPIb03IbDyy9MX1fVa2ea8FS2lKYSFVtAbZMu465JNleVTPTrmMhLbcxLbfxwPIb03IbDxxcY1pKZx/tBE4Ym1/b2iRJi2QphcIXgZOSnJjkcOA8YNuUa5KkQ8qS2X1UVU8meQvwWUanpH6oqu6Ycln7a0nu1jpAy21My208sPzGtNzGAwfRmJbMgWZJ0vQtpd1HkqQpMxQkSZ2h8BySnJXkK0lmk1zU2t7S5ivJqrG+SXJpW3ZrktPGlm1M8tX22DiNsYzVslBj+kySh5NcPY1xjNXxoSS7ktw+1vaGJHck+W6SmbH2Y5Ncl+SxJJfttZ73Jrk3yWOLWf9c5nmPTkxyY2v7eDshgyRHtPnZtnzd2Hre0dq/kuR10xnNwoxnX+/dYlvAz9yPJrmtjfXSJNP/5lxV+ZjnweiA918DLwMOB24BTgZeCawD7gFWjfU/G/gTIMB64MbWfgxwd3te2aZXHsxjasvOAH4GuHrK79M/AU4Dbh9r+yFGX278PDAz1n4k8OPAvwYu22s964HjgceW6OfuSuC81ud3gH/Tpv8t8Dtt+jzg42365PbaI4AT2zoPO4jHM+97dxB/5r7QPndpf2evn+a4qsothefQL71RVX8HfAzYUFVfrqp75ui/AbiiRm4Ajk5yPPA64JqqerCqHgKuAc5apDHsbaHGRFVdC3xzsQqfT1VdDzy4V9tdVfWsb7tX1d9W1V8AT8yx7Iaqum+4Sic253sEnA58ovXZCpzTpje0edryM9r/ODcAH6uqb1fV/wNm27oX24KMZ1/v3WJbiM9c+zs6qn3uCriCp38HU2Mo7Nsa4N6x+R2tbX/77+96hrRQY9Jw5vudP1xVT+7V9oz+bfkjwLH7WM9iW6jxLDdrGI17jyXxt2UoSJI6Q2Hf9vfSG/P1X0qX8FioMWk48/3Oj06yYq+2Z/Rvy18MPLCP9Sy2hRrPcrOT0bj3WBJ/W4bCvu3vpTe2Aee3M3bWA4+0fdSfBc5MsjLJSuDM1jYNCzUmDWe+9+g64NzWZyNwVZve1uZpyz/X9lFvA85rZ/OcCJzE6MDmYluo8Swr7e/o0STr2zGg83n6dzA90z7SvdQfjM6++StGZ0/8Wmv7FUb7/54E/obRXeJgdAbBb7W+t/HMMxDezOhA3yxwwTIZ058Du4Fvtde+bkrj+QPgPuA7rY5NwD9t098G7gc+O9b/HkYHCR9rfU5u7f+lzX+3Pb9rib1HL2P0j/os8IfAEa39BW1+ti1/2dh6fq2t4ytM8cyWBRzPnO/dQfyZmwFub7+Xy2hXmZjmw8tcSJI6dx9JkjpDQZLUGQqSpM5QkCR1hoIkqTMUdEhLsm78Spdj7R9McnKb/tUJ1vO2JC/cx/K+Pmkp85RUHdLaZZmvrqof3kefx6rqe59jPfcw+g7HN+ZYdlhVPXWApUqLwi0FCVYk+WiSu5J8IskLk3w+yUySi4HvSXJz63Nkkv+d5JYktyf5+SS/ArwEuC7JdTAKkiS/nuQW4NV71je27L1tHTckOa61f3+bvy3Je9Lu65Dk+CTXtxpuT/IT0/k16VBgKEija+D/dlX9EPAoo+v5A1BVFwHfqqpTq+qXGF3y/G+q6pS2dfGZqrqU0bfAX1NVr2kvPZLRvSdOqdFlk8cdCdxQVacA1wP/srVfAlxSVa/gmVfP/EVG3449FTgFuHnhhi49k6Egwb1V9Zdt+vcY3RBlPrcBr03yviQ/UVWPzNPvKeCT8yz7O2DP3epuYnRzI4BXM7q8A8Dvj/X/InBBkncBr6iqqd/DQsuXoSDB3gfW5j3QVlV/xeiOW7cB70nyn+bp+sQ+jiN8p54+mPcUsGKefnt+5vWM7vS1E/hwkvP31V86EIaCBC9N8uo2/YvA3rt7vpPk+QBJXgI8XlW/B/xXRgEBozvQvegA67gB+Gdt+rw9jUm+D7i/qv4n8MGxnyktOENBGl1B9MIkdzG6h/YH9lq+Bbg1yUeBVwBfSHIz8E7gPWN9PrPnQPPf09uAtye5FXg5ozuOAfwkcEuSLwM/z+jYgzQIT0mVloj2PYdvVVUlOQ/4haraMO26dGjZ575MSYvqR4HL2g1XHmZ0Dw5pUbmlIEnqPKYgSeoMBUlSZyhIkjpDQZLUGQqSpO7/A/pGSKOESAmwAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# get results of task\n", + "result = task_load.result()\n", + "\n", + "# get measurement shots\n", + "counts = result.measurement_counts\n", + "\n", + "# print counts\n", + "print(counts)\n", + "\n", + "# plot using Counter\n", + "plt.bar(counts.keys(), counts.values(), color='g');\n", + "plt.xlabel('bitstrings');\n", + "plt.ylabel('counts');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "__TASK CANCELLATION__: Finally, we can also cancel existing tasks by calling the ```cancel()``` method." + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Status of task: CREATED\n", + "Status of task: CANCELLING\n" + ] + } + ], + "source": [ + "# define task\n", + "task = device.run(my_circuit, shots=1000, inputs={'alpha': 0.1, 'beta': 0.2, 'gamma': 0.3})\n", + "\n", + "# get id and status of submitted task\n", + "task_id = task.id\n", + "status = task.state()\n", + "# print('ID of task:', task_id)\n", + "print('Status of task:', status)\n", + "\n", + "# cancel task \n", + "task.cancel()\n", + "status = task.state()\n", + "print('Status of task:', status)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## DEMONSTRATION OF RESULT TYPES: Expectation Values and Observables " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So far, we have only taken measurements in the computational basis. However, it is also possible to measure in other bases, as well as estimate important statistics like expectation value and variance. We do this by adding `ResultType`s to our circuit; in the following example, we will make measurements in the basis of the observable $X_{0}Y_{1}$ (this is the tensor product $X(0) \\otimes Y(1)$):" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : | 0 | 1 | Result Types |\n", + " \n", + "q0 : -Rx(0.15)-C---Expectation(X@Y)-Variance(X@Y)-Sample(X@Y)-\n", + " | | | | \n", + "q1 : -Ry(0.20)-|-C-Expectation(X@Y)-Variance(X@Y)-Sample(X@Y)-\n", + " | | \n", + "q2 : -Rz(0.25)-X-|--------------------------------------------\n", + " | \n", + "q3 : -H----------X--------------------------------------------\n", + " \n", + "q4 : -X-------------------------------------------------------\n", + "\n", + "T : | 0 | 1 | Result Types |\n" + ] + } + ], + "source": [ + "# define example circuit\n", + "circ = Circuit().rx(0, 0.15).ry(1, 0.2).rz(2, 0.25).h(3).cnot(control=0, target=2).cnot(1, 3).x(4)\n", + "# add expectation value\n", + "obs = Observable.X() @ Observable.Y()\n", + "target_qubits = [0, 1]\n", + "circ.expectation(obs, target=target_qubits)\n", + "# add variance\n", + "circ.variance(obs, target=target_qubits) \n", + "# add samples\n", + "\n", + "circ.sample(obs, target=target_qubits)\n", + "print(circ)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "_Note_: `sample` is only valid when `shots>0`.\n", + "\n", + "As shown above, results types are part of the `print` information. We now run this circuit on the local simulator above and output these results. " + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Expectation value for : 0.08\n", + "Variance for : 0.9936\n", + "Measurement samples for X0*Y1: [-1. 1. -1. 1. 1. 1. -1. -1. -1. 1. 1. 1. 1. -1. 1. 1. -1. -1.\n", + " -1. -1. -1. -1. 1. 1. 1. -1. -1. -1. 1. -1. 1. 1. -1. 1. -1. 1.\n", + " -1. 1. 1. -1. -1. -1. 1. 1. 1. -1. 1. 1. -1. 1. 1. -1. 1. 1.\n", + " 1. 1. -1. -1. 1. 1. 1. -1. 1. -1. 1. 1. 1. -1. -1. 1. -1. -1.\n", + " -1. -1. 1. 1. -1. -1. 1. 1. 1. -1. 1. -1. -1. -1. -1. 1. 1. -1.\n", + " 1. 1. -1. 1. -1. -1. 1. 1. 1. 1.]\n" + ] + } + ], + "source": [ + "# set up device\n", + "device = LocalSimulator()\n", + "# run the circuit and output the results specified above\n", + "task = device.run(circ, shots=100)\n", + "result = task.result()\n", + "print(\"Expectation value for :\", result.values[0])\n", + "print(\"Variance for :\", result.values[1])\n", + "print(\"Measurement samples for X0*Y1:\", result.values[2])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can verify that we get the same estimate for the expectation value if we compute it by hand from the samples:" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Expectation value from samples: 0.08\n" + ] + } + ], + "source": [ + "samples = result.values[2]\n", + "sum_of_samples = samples.sum()\n", + "total_counts = len(samples)\n", + "expect_from_samples = sum_of_samples/total_counts\n", + "print('Expectation value from samples:', expect_from_samples)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So far, we have measured only one observable, namely $X_{0}Y_{1}$. However, it is possible to measure multiple observables at once, provided that any observables with overlapping qubits have the same factor acting on each qubit:\n", + "\n", + "
    \n", + "Note The following code requires amazon-braket-sdk>=1.5.0 and amazon-braket-default-simulator>=1.1.0\n", + "
    " + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Expectation value for : -0.022\n", + "Expectation value for : -0.668\n", + "Expectation value for :: -0.024\n" + ] + } + ], + "source": [ + "circ = Circuit().rx(0, 0.15).ry(1, 0.2).rz(2, 0.25).h(3).cnot(control=0, target=2).cnot(1, 3).x(4)\n", + "circ.expectation(Observable.X() @ Observable.Y(), target=[0, 1])\n", + "circ.expectation(Observable.Z() @ Observable.H(), target=[2, 4])\n", + "# Overlaps on qubits 1 and 4, but Y and H are the same factors that have been applied to each, respectively\n", + "circ.expectation(Observable.Y() @ Observable.X() @ Observable.H(), target=[1, 3, 4])\n", + "\n", + "# run circuit\n", + "task = device.run(circ, shots=1000)\n", + "result = task.result()\n", + "print(\"Expectation value for :\", result.values[0])\n", + "print(\"Expectation value for :\", result.values[1])\n", + "print(\"Expectation value for ::\", result.values[2])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This is possible because we only need to measure in at most one basis for each qubit. For instance in the example above, on qubit 1 we only measure in the Y basis." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### RESULT TYPES FOR ```shots=0```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "Note This section requires amazon-braket-sdk>=1.8.0 and amazon-braket-default-simulator>=1.3.0\n", + "
    \n", + "\n", + "In all examples discussed so far we have set the parameter `shots>0`, thereby mimicking the behavior of actual quantum hardware. However, on a classical simulator we do have access to the full state vector when `shots=0`. We will illustrate this functionality in more detail in this section. \n", + "\n", + "Note that the full state vector and amplitudes can only be requested when `shots=0` for a classical simulator. \n", + "When `shots=0` for a simulator, probability and expectation values are the exact values, as derived from the full wavefunction. \n", + "When `shots>0` we cannot access the full state vector, but we can still get approximate expectation values as taken from measurement samples. Note that probability, sample, expectation, and variance are also supported for QPU devices.\n", + "\n", + "In the following example we output the state vector, the exact expectation values of $Y_{1}X_{2}$ and $Z_{0}Z_{1}$, the amplitude of the state $|00000\\rangle$, and the marginal probability of qubit $3$. Notice in particular that the two observables share qubit $1$ but don't have the same factor acting on it; this is allowed because simulators can directly compute expectation values using the state vector, and don't have to measure in a common basis." + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : | 0 | 1 |2| Result Types |\n", + " \n", + "q0 : -Rx(alpha)-C----------------------Expectation(Z@Z)-\n", + " | | \n", + "q1 : -Ry(beta)--|-C-X-Expectation(Y@X)-Expectation(Z@Z)-\n", + " | | | \n", + "q2 : -Rz(gamma)-X-|---Expectation(Y@X)------------------\n", + " | \n", + "q3 : -H-----------X-X-Probability-----------------------\n", + "\n", + "T : | 0 | 1 |2| Result Types |\n", + "\n", + "Additional result types: StateVector, Amplitude(0000)\n", + "\n", + "Unassigned parameters: [alpha, beta, gamma].\n" + ] + } + ], + "source": [ + "# add result types\n", + "circ = my_circuit\n", + "# add the state_vector ResultType available for shots=0\n", + "circ.state_vector() \n", + "# add single qubit expectation value\n", + "obs1 = Observable.Y() @ Observable.X()\n", + "circ.expectation(obs1, target=[1, 2])\n", + "# add the two-qubit Z0*Z1 expectation value\n", + "obs2 = Observable.Z() @ Observable.Z()\n", + "circ.expectation(obs2, target=[0,1]) \n", + "# add the amplitude for |0...0>\n", + "bitstring = '0'*circ.qubit_count\n", + "circ.amplitude(state=[bitstring]) \n", + "# add marginal probability \n", + "circ.probability(target=[3])\n", + "print(circ)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As shown above, results types are part of the `print` information. We now run this circuit on the local simulator above and output these results. " + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "This program uses OpenQASM language features that may not be supported on QPUs or on-demand simulators.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Final state vector:\n", + " [ 6.97129718e-02-0.01053609j 6.97129718e-02-0.01053609j\n", + " 0.00000000e+00+0.j 0.00000000e+00+0.j\n", + " 6.94804402e-01-0.10500941j 6.94804402e-01-0.10500941j\n", + " 0.00000000e+00+0.j 0.00000000e+00+0.j\n", + " 0.00000000e+00+0.j 0.00000000e+00+0.j\n", + " -5.27243703e-04-0.00348856j -5.27243703e-04-0.00348856j\n", + " 0.00000000e+00+0.j 0.00000000e+00+0.j\n", + " -5.25485051e-03-0.0347692j -5.25485051e-03-0.0347692j ]\n", + "Expectation value 0.0\n", + "Expectation value : -0.9751703272018153\n", + "Amplitude <00000|Final state>: {'0000': (0.06971297180671754-0.010536085195500033j)}\n", + "Marginal probability for target qubit 3 in computational basis: [0.5 0.5]\n" + ] + } + ], + "source": [ + "# set up device\n", + "device = LocalSimulator()\n", + "# run the circuit and output the results specified above\n", + "task = device.run(circ, shots=0, inputs={'alpha': 0.1, 'beta': 0.2, 'gamma': 0.3})\n", + "result = task.result()\n", + "print(\"Final state vector:\\n\", result.values[0])\n", + "print(\"Expectation value \", result.values[1])\n", + "print(\"Expectation value :\", result.values[2])\n", + "print(\"Amplitude <00000|Final state>:\", result.values[3])\n", + "print(\"Marginal probability for target qubit 3 in computational basis:\", result.values[4])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## ADVANCED LOGGING" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Below we provide an example for advanced logging. Here, we change the ```poll_timeout_seconds``` and ```poll_interval_seconds``` parameters, such that a task can be long-running and the task status will be continuously logged to a file. You can also transfer this code to a python script instead of a Jupyter notebook, and the script can run as a process in the background so that your laptop can go to sleep and the script will still run. These advanced logging techniques allow you to see the background polling and create a record for later debugging. " + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Task info will be logged in: device_logs-20221110121905.txt\n" + ] + } + ], + "source": [ + "# set filename for logs\n", + "log_file = 'device_logs-'+datetime.strftime(datetime.now(), '%Y%m%d%H%M%S')+'.txt'\n", + "print('Task info will be logged in:', log_file)\n", + "\n", + "# create new logger object\n", + "logger = logging.getLogger(\"newLogger\") \n", + "# configure to log to file device_logs.txt in the appending mode\n", + "logger.addHandler(logging.FileHandler(filename=log_file, mode='a'))\n", + "# add to file all log messages with level DEBUG or above\n", + "logger.setLevel(logging.DEBUG) " + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : | 0 | 1 |\n", + " \n", + "q0 : -Rx(0.15)-C---\n", + " | \n", + "q1 : -Ry(0.20)-|-C-\n", + " | | \n", + "q2 : -Rz(0.25)-X-|-\n", + " | \n", + "q3 : -H----------X-\n", + " \n", + "q4 : -X------------\n", + "\n", + "T : | 0 | 1 |\n" + ] + } + ], + "source": [ + "# define circuit\n", + "circ_log = Circuit().rx(0, 0.15).ry(1, 0.2).rz(2, 0.25).h(3).cnot(control=0, target=2).cnot(1, 3).x(4)\n", + "print(circ_log)\n", + "# define device\n", + "device = AwsDevice(\"arn:aws:braket:::device/quantum-simulator/amazon/sv1\")\n", + "# define what info to log\n", + "logger.info(\n", + " device.run(circ_log, \n", + " poll_timeout_seconds=1200, poll_interval_seconds=0.25, logger=logger, shots=1000)\n", + " .result().measurement_counts\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Task arn:aws:braket:us-west-2:746192259860:quantum-task/b03f8639-b1f3-458e-89e3-0fb47e292e14: start polling for completion\r\n", + "Task arn:aws:braket:us-west-2:746192259860:quantum-task/b03f8639-b1f3-458e-89e3-0fb47e292e14: task status CREATED\r\n", + "Task arn:aws:braket:us-west-2:746192259860:quantum-task/b03f8639-b1f3-458e-89e3-0fb47e292e14: task status QUEUED\r\n", + "Task arn:aws:braket:us-west-2:746192259860:quantum-task/b03f8639-b1f3-458e-89e3-0fb47e292e14: task status RUNNING\r\n", + "Task arn:aws:braket:us-west-2:746192259860:quantum-task/b03f8639-b1f3-458e-89e3-0fb47e292e14: task status RUNNING\r\n", + "Task arn:aws:braket:us-west-2:746192259860:quantum-task/b03f8639-b1f3-458e-89e3-0fb47e292e14: task status COMPLETED\r\n", + "Counter({'00001': 496, '00011': 495, '01001': 3, '10111': 3, '01011': 2, '10101': 1})\r\n" + ] + } + ], + "source": [ + "# print logs\n", + "! cat {log_file}" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEGCAYAAACKB4k+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAATOElEQVR4nO3df7CmZX3f8fdHVjASgYXdbHCXZjEyTZhakG4tNkknwkR+tMnSFA0mkS3Sbttgo0MzzSaZaWhHZzRtaiG2ZrZiXIxJNFrLllp1i1iaTkAW5afUcKQ47AbYFWGVIEbw2z+e61w8nD1n96yc+zxnz75fM8+c+77u67nP9zrPs3y4f6eqkCQJ4EWTLkCStHQYCpKkzlCQJHWGgiSpMxQkSd2KSRfwQqxatarWr18/6TIk6bBy++23f62qVs+27LAOhfXr17Nz585JlyFJh5UkX51rmbuPJEmdoSBJ6gwFSVJnKEiSukFDIcmDSe5OckeSna3txCQ7ktzffq5s7UlyTZKpJHclOWvI2iRJ+1uMLYXXVdWZVbWhzW8Bbqyq04Ab2zzABcBp7bUZeN8i1CZJGjOJ3UcbgW1tehtw0Vj7dTVyC3BCkpMnUJ8kHbGGDoUCPpPk9iSbW9uaqnq4TT8CrGnTa4GHxt67q7U9T5LNSXYm2bl3796h6pakI9LQF6/9eFXtTvIDwI4k/3d8YVVVkkN6oENVbQW2AmzYsMGHQUjSAho0FKpqd/u5J8kngNcAjyY5uaoebruH9rTuu4FTxt6+rrUN46rjB1v1grpq3yH0XYZjkrSoBtt9lOTYJC+bngZeD9wDbAc2tW6bgOvb9Hbg0nYW0tnAvrHdTJKkRTDklsIa4BNJpn/PH1TVp5LcBnw0yeXAV4E3tv6fBC4EpoCngMsGrE2SNIvBQqGqHgDOmKX9MeDcWdoLuGKoeiRJB+cVzZKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqRu8FBIclSSLya5oc2fmuTWJFNJPpLk6NZ+TJufasvXD12bJOn5FmNL4W3AfWPz7wbeU1WvBB4HLm/tlwOPt/b3tH6SpEU0aCgkWQf8XeD9bT7AOcDHWpdtwEVtemObpy0/t/WXJC2SobcU/gPwL4HvtvmTgCeq6pk2vwtY26bXAg8BtOX7Wv/nSbI5yc4kO/fu3Ttk7ZJ0xBksFJL8PWBPVd2+kOutqq1VtaGqNqxevXohVy1JR7wVA677x4CfSXIh8BLgOOBq4IQkK9rWwDpgd+u/GzgF2JVkBXA88NiA9UmSZhhsS6Gqfq2q1lXVeuAS4LNV9QvATcDFrdsm4Po2vb3N05Z/tqpqqPokSfubxHUKvwpcmWSK0TGDa1v7tcBJrf1KYMsEapOkI9qQu4+6qvoc8Lk2/QDwmln6PA28YTHqkSTNziuaJUmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpGywUkrwkyeeT3Jnk3iT/urWfmuTWJFNJPpLk6NZ+TJufasvXD1WbJGl2Q24pfBs4p6rOAM4Ezk9yNvBu4D1V9UrgceDy1v9y4PHW/p7WT5K0iAYLhRp5ss2+uL0KOAf4WGvfBlzUpje2edryc5NkqPokSfsb9JhCkqOS3AHsAXYAXwGeqKpnWpddwNo2vRZ4CKAt3wecNGR9kqTnGzQUqurZqjoTWAe8BviRF7rOJJuT7Eyyc+/evS+4RknScxbl7KOqegK4CXgtcEKSFW3ROmB3m94NnALQlh8PPDbLurZW1Yaq2rB69erBa5ekI8mQZx+tTnJCm/4+4KeA+xiFw8Wt2ybg+ja9vc3Tln+2qmqo+iRJ+5tXKCR5W5LjMnJtki8kef1B3nYycFOSu4DbgB1VdQPwq8CVSaYYHTO4tvW/FjiptV8JbPleBiRJ+t6tOHgXAN5SVVcnOQ9YCbwZ+BDwmbneUFV3Aa+epf0BRscXZrY/DbxhnvVIkgYw391H06eGXgh8qKruHWuTJC0T8w2F25N8hlEofDrJy4DvDleWJGkS5rv76HJGVyU/UFVPJTkJuGy4siRJkzDfLYUdVfWFdmopVfUYo1tRSJKWkQNuKSR5CfBSYFWSlTx3HOE4nrsSWZK0TBxs99E/Ad4OvBy4nedC4RvAewesS5I0AQcMhaq6Grg6yT+vqt9ZpJokSRMyrwPNVfU7Sf42sH78PVV13UB1SZImYF6hkORDwA8DdwDPtuYCDAVJWkbme0rqBuB070UkScvbfE9JvQf4wSELkSRN3ny3FFYBX0ryeUaP2QSgqn5mkKokSRMx31C4asgiJElLw3zPPvpfQxciSZq8+Z599E1GZxsBHA28GPiLqjpuqMIkSYtvvlsKL5ueThJgI3D2UEVJkibjkB/HWSP/FThvgHokSRM0391HPzs2+yJG1y08PUhFkqSJme/ZRz89Nv0M8CCjXUiSpGVkvscUfKCOJB0B5nVMIcm6JJ9Isqe9Pp5k3dDFSZIW13wPNP8esJ3RcxVeDvy31iZJWkbmGwqrq+r3quqZ9vogsHrAuiRJEzDfUHgsyS8mOaq9fhF4bMjCJEmLb76h8BbgjcAjwMPAxcA/HKgmSdKEzPeU1H8DbKqqxwGSnAj8O0ZhIUlaJua7pfDXpwMBoKq+Drx6mJIkSZMy31B4UZKV0zNtS2G+WxmSpMPEfP/D/tvAnyb54zb/BuCdw5QkSZqU+V7RfF2SncA5relnq+pLw5UlSZqEee8CaiFgEEjSMnbIt86WJC1fhoIkqRssFJKckuSmJF9Kcm+St7X2E5PsSHJ/+7mytSfJNUmmktyV5KyhapMkzW7ILYVngH9RVaczenTnFUlOB7YAN1bVacCNbR7gAuC09toMvG/A2iRJsxgsFKrq4ar6Qpv+JnAfsJbRw3m2tW7bgIva9Ebguva4z1uAE5KcPFR9kqT9LcoxhSTrGV0BfSuwpqoeboseAda06bXAQ2Nv29XaZq5rc5KdSXbu3bt3sJol6Ug0eCgk+X7g48Dbq+ob48uqqoA6lPVV1daq2lBVG1av9u7dkrSQBg2FJC9mFAgfrqr/0pofnd4t1H7uae27gVPG3r6utUmSFsmQZx8FuBa4r6r+/dii7cCmNr0JuH6s/dJ2FtLZwL6x3UySpEUw5E3tfgx4M3B3kjta268D7wI+muRy4KuMntMA8EngQmAKeAq4bMDaJEmzGCwUqupPgMyx+NxZ+hdwxVD1SJIOziuaJUmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSd1goZDkA0n2JLlnrO3EJDuS3N9+rmztSXJNkqkkdyU5a6i6JElzG3JL4YPA+TPatgA3VtVpwI1tHuAC4LT22gy8b8C6JElzGCwUqupm4OszmjcC29r0NuCisfbrauQW4IQkJw9VmyRpdot9TGFNVT3cph8B1rTptcBDY/12tbb9JNmcZGeSnXv37h2uUkk6Ak3sQHNVFVDfw/u2VtWGqtqwevXqASqTpCPXYofCo9O7hdrPPa19N3DKWL91rU2StIgWOxS2A5va9Cbg+rH2S9tZSGcD+8Z2M0mSFsmKoVac5A+BnwRWJdkF/CbwLuCjSS4Hvgq8sXX/JHAhMAU8BVw2VF2SpLkNFgpV9aY5Fp07S98CrhiqFknS/HhFsySpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKlbUqGQ5PwkX04ylWTLpOuRpCPNkgmFJEcB/xG4ADgdeFOS0ydblSQdWVZMuoAxrwGmquoBgCR/BGwEvjTRqjQ5Vx0/6Qrm56p9h9B3mY1puY0HlueYDkGqapAVH6okFwPnV9U/avNvBv5WVb11Rr/NwOY2+1eBLy9qoQe2CvjapItYYMttTMttPLD8xrTcxgNLb0w/VFWrZ1uwlLYU5qWqtgJbJ13HbJLsrKoNk65jIS23MS238cDyG9NyGw8cXmNaMscUgN3AKWPz61qbJGmRLKVQuA04LcmpSY4GLgG2T7gmSTqiLJndR1X1TJK3Ap8GjgI+UFX3TrisQ7Ukd2u9QMttTMttPLD8xrTcxgOH0ZiWzIFmSdLkLaXdR5KkCTMUJEmdoTCL2W630Q6A39raPtIOhpPkmDY/1ZavH1vPr7X2Lyc5b6z9A0n2JLnncBpTkpOS3JTkySTvnbH+dyZ5KMmTExzPW9t8JVk11jdJrmnL7kpy1tiyTyV5IskNM9Y/67oOkzFtSnJ/e20aa1/sz2i/73mSE5PsaLXtSLKytf9Ikj9N8u0kvzJjPbPe/maxP6MFHM+s//6TvCHJvUm+m2Ryp69Wla+xF6OD3F8BXgEcDdzJ6LYbHwUuaX1+F/hnbfqXgN9t05cAH2nTp7f3HgOc2tZ5VFv2d4CzgHsOszEdC/w48E+B9874HWcDJwNPTnA8rwbWAw8Cq8b6Xwj8DyCtzlvHlp0L/DRww4zfMeu6lvqYgBOBB9rPlW165WJ/RnN9z4HfAra06S3Au9v0DwB/E3gn8CsH+7tM6DN6weOZaz2t/UcZXZD7OWDDYnxGs73cUthfv91GVf0lMH27jXOAj7U+24CL2vTGNk9bfm6StPY/qqpvV9X/A6bauqmqm4GvL8ZgmgUZU1X9RVX9CfD0zF9QVbdU1cNDDmLMrOOpqi9W1YOz9N8IXFcjtwAnJDm51X0j8M2ZbzjAuoayUGM6D9hRVV+vqseBHcD5sOif0Vzf8/HvVv/OVdWeqroN+M6M/nN9dxf9M1qg8cz577+q7quqid+hwVDY31rgobH5Xa3tiap6Zkbb8/q35fuAkw6wnklYqDEtFYf6t11Kn8VcFmpMS32sa8aC6RFgzUH6L7fxLHmGgqSJqNE+k2VzTvxyGY+hsL+5brdxQpIVM9qe178tPx547ADrmYSFGtNScah/26X0Wcxloca01Mf66PSuu/Zzz0H6L7fxLHmGwv7mut3GTcDFrc8m4Po2vb3N05Z/tv0fw3bgknYmz6nAacDnF2kMMy3UmJaKQ70lynbg0nbGztnAvsXctz5PCzWmTwOvT7KynQnz+ta2VIx/t8a/c3NZ6re/OdTxLH2TOsK9lF+Mzuz4M0ZnPfxGa3sFo/+oTwF/DBzT2l/S5qfa8leMrec32jq+DFww1v6HwMOMDkLtAi4/jMb0IKODZE+22qfPBPmtNv/d9vOqCYznl9vvfgb4c+D9rT2MHuD0FeBuxs7sAP43sBf4VnvveQda12Eypre0z24KuGysfbE/o/2+54yOTd0I3A/8T+DE1vcHW59vAE+06ePm+rtM4jNawPHM+u8f+Ptt/tvAo8Cnh/7OzfbyNheSpM7dR5KkzlCQJHWGgiSpMxQkSZ2hIEnqDAUd0ZKsn3m3ytb+/iSnt+lfn8d63p7kpQdY3tcnLWWekqojWka3Bb+hqv7aAfo8WVXff5D1PMjoWoGvzbLsqKp69gWWKi0KtxQkWJHkw0nuS/KxJC9N8rkkG5K8C/i+JHe0Pscm+e9J7kxyT5KfS/LLwMuBm5LcBKMgSfLbSe4EXju9vrFl72zruCXJmtb+w23+7iTvmH7uQZKTk9zcargnyU9M5s+kI4GhII3uYf+fqupHGV2B+kvTC6pqC/Ctqjqzqn6B0W2o/7yqzmhbF5+qqmsYXVH7uqp6XXvrsYyecXBGjW43Pu5Y4JaqOgO4GfjHrf1q4OqqehWjK1un/Tyjq1vPBM4A7li4oUvPZyhI8FBV/Z82/fuMHiQ0l7uBn0ry7iQ/UVX75uj3LPDxOZb9JTD9pLfbGT0oBuC1jG4vAvAHY/1vAy5LchXwqqra7/kP0kIxFKT9b3c854G2qvozRk/Nuht4R5J/NUfXpw9wHOE79dzBvGeBFXP0m/6dNzN6Wtdu4INJLj1Qf+mFMBQk+CtJXtumfx6YubvnO0leDJDk5cBTVfX7wL9lFBAwenrby15gHbcA/6BNXzLdmOSHgEer6j8D7x/7ndKCMxSk0V1sr0hyH6PnGr9vxvKtwF1JPgy8Cvh8kjuA3wTeMdbnU9MHmr9HbweuTHIX8EpGT7wD+EngziRfBH6O0bEHaRCekiotEe06h29VVSW5BHhTVW2cdF06shxwX6akRfU3gPcmCaN78L9lwvXoCOSWgiSp85iCJKkzFCRJnaEgSeoMBUlSZyhIkrr/D2IMATS1j9ajAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# parse log file for arn\n", + "with open(log_file) as openfile:\n", + " for line in openfile:\n", + " for part in line.split():\n", + " if \"arn:\" in part:\n", + " arn = part\n", + " break\n", + "# remove final semicolon in logs\n", + "arn = arn[:-1]\n", + "# print(arn)\n", + "\n", + "# with this arn we can restore again task from unique arn\n", + "task_load = AwsQuantumTask(arn=arn)\n", + "\n", + "# get results of task\n", + "result = task_load.result()\n", + "\n", + "# get measurement shots\n", + "counts = result.measurement_counts\n", + "\n", + "# plot using Counter\n", + "plt.bar(counts.keys(), counts.values(), color='tab:orange');\n", + "plt.xlabel('bitstrings');\n", + "plt.ylabel('counts');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "--- \n", + "## APPENDIX" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### APPENDIX: SDK version" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Version: 1.33.2.dev0\r\n" + ] + } + ], + "source": [ + "# print version of SDK\n", + "! pip show amazon-braket-sdk | grep Version" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### APPENDIX: ADVANCED FUNCTIONALITY WITH ASYNCHRONOUS EXECUTION" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "__ASYNCHRONOUS EXECUTION__: When replacing the ```result()``` call on the task object above with ```async_result()```, we can get the quantum task result asynchronously. Consecutive calls to this method return the result cached from the most recent request. See [here](https://github.com/aws/braket-python-sdk/blob/master/src/braket/aws/aws_quantum_task.py#L206) for source code implementation. \n", + "\n", + "While ```result()``` is a blocking call that waits for the result, ```async_result()``` is a non-blocking call. For example, in Jupyter as shown here, if you run ```result()```, the notebook will stop and wait at this cell for a certain polling time (set as ```poll_timeout_seconds``` with default of 5 days) till the polling returns the result object or times out. If you run ```async_result()```, the notebook immediately goes to the next cell, _not_ waiting for polling to complete. Calling `result()` on the `async_result` object before it has completed, an `asyncio.exceptions.InvalidStateError` will be raised. This is expected behavior. Later, you can call ```result()``` and get the actual result from the task. \n", + "\n", + "Alternatively, we have provided a basic `asyncio` waiter function `wait_on_result()`, which will create a blocking call, wait for the result, and then return that result for downstream use. We have defaulted the notebook to leverage this call in favor of avoiding the `InvalidStateError`, but we have left the non-blocking `async_result.result()` call example as an option." + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [], + "source": [ + "# asyncio waiter function to leverage Task.async_result() object\n", + "async def wait_on_result(async_result):\n", + " print('Waiting on task.')\n", + " await async_result\n", + "\n", + " print(f'Final task state: {async_result._state}')\n", + " res = async_result.result()\n", + " \n", + " return res" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [], + "source": [ + "# example with async_result - immediately returns asyncio Future object\n", + "async_result = device.run(circ2, shots=100).async_result()" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Waiting on task.\n", + "Final task state: FINISHED\n", + "Counter({'00': 100})\n" + ] + } + ], + "source": [ + "# async_result.result() then returns the actual result (once completed)\n", + "# Non-blocking call. Will raise an InvalidStateError if this is run before async task is complete:\n", + "# async_res = async_result.result()\n", + "# Blocking call, leveraging asyncio.run and await\n", + "async_res = asyncio.run(wait_on_result(async_result))\n", + "# get measurement shots\n", + "counts = async_res.measurement_counts\n", + "print(counts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "One can also define custom callbacks to be invoked when the Future is completed. " + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [], + "source": [ + "# async_result returns back a Future. \n", + "# Details on Future: https://docs.python.org/3.8/library/asyncio-future.html#asyncio.Future\n", + "future = device.run(circ2, shots=100).async_result()\n", + "\n", + "# this is invoked when the Future is done. i.e. task is in a terminal state.\n", + "# This will print out to STDOUT when its done.\n", + "def call_back_function(future):\n", + " print(f\"Custom task Result: {future.result().measurement_probabilities}\")\n", + "\n", + "# attached the callback function to the future.\n", + "future.add_done_callback(call_back_function)" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Task Summary\n", + "{'arn:aws:braket:::device/quantum-simulator/amazon/sv1': {'shots': 4200, 'tasks': {'COMPLETED': 4, 'CANCELLING': 1, 'CREATED': 1}, 'execution_duration': datetime.timedelta(microseconds=175000), 'billed_execution_duration': datetime.timedelta(seconds=12)}}\n", + "Note: Charges shown are estimates based on your Amazon Braket simulator and quantum processing unit (QPU) task usage. Estimated charges shown may differ from your actual charges. Estimated charges do not factor in any discounts or credits, and you may experience additional charges based on your use of other services such as Amazon Elastic Compute Cloud (Amazon EC2).\n", + "Estimated cost to run this example: 0.02 USD\n", + "Custom task Result: {'00': 1.0}\n" + ] + } + ], + "source": [ + "print(\"Task Summary\")\n", + "print(t.quantum_tasks_statistics())\n", + "print('Note: Charges shown are estimates based on your Amazon Braket simulator and quantum processing unit (QPU) task usage. Estimated charges shown may differ from your actual charges. Estimated charges do not factor in any discounts or credits, and you may experience additional charges based on your use of other services such as Amazon Elastic Compute Cloud (Amazon EC2).')\n", + "print(f\"Estimated cost to run this example: {t.qpu_tasks_cost() + t.simulator_tasks_cost():.2f} USD\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.15" + }, + "vscode": { + "interpreter": { + "hash": "590fab68195cf107911461461f81d5c472d3d6127f579badfcfad30f03e5cab2" + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} \ No newline at end of file diff --git a/modules/1_Continue_Exploring/A_qtm_hw/analog_hamiltonian_simulation/00_Introduction_of_Analog_Hamiltonian_Simulation_with_Rydberg_Atoms.ipynb b/modules/1_Continue_Exploring/A_qtm_hw/analog_hamiltonian_simulation/00_Introduction_of_Analog_Hamiltonian_Simulation_with_Rydberg_Atoms.ipynb new file mode 100644 index 000000000..d85066581 --- /dev/null +++ b/modules/1_Continue_Exploring/A_qtm_hw/analog_hamiltonian_simulation/00_Introduction_of_Analog_Hamiltonian_Simulation_with_Rydberg_Atoms.ipynb @@ -0,0 +1,575 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "47503455", + "metadata": {}, + "source": [ + "# Introduction of analog Hamiltonian simulation\n", + "\n", + "Analog Hamiltonian Simulation (AHS) is a quantum computing paradigm different from gate-based computing. AHS uses a well-controlled quantum system and tunes its parameters to mimic the dynamics of another quantum system, the one we aim to study. \n", + "\n", + "In the gate-based quantum computation, the program is a quantum circuit consisting of a series of quantum gates, each of which acts only a small subset of qubits. In contrast, an AHS program is a sequence of time-dependent Hamiltonians that govern the quantum dynamics of all qubits. The comparison can be seen in the following figure, where the left side shows a typical quantum circuit, and the right side illustrates that, during AHS, the effect of the evolution under a Hamiltonian can be understood as a unitary acting simultaneously on all qubits.\n", + "\n", + "Digital quantum circuit | Analog Hamiltonian Simulation\n", + ":-------------------------:|:-------------------------:\n", + "\"digital | \"analog\n", + "\n", + "(\"Digital quantum circuit\" and \"Analog Hamiltonian Simulation\" figures by [QuEra Computing Inc.](https://www.quera.com/) are licensed under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/))\n", + "\n", + "In this notebook, we focus on running Analog Hamiltonian Simulations with Rydberg atoms. Also, we will use `matplotlib` package and `ahs_utils.py` module in the current working directory for visualization purposes." + ] + }, + { + "cell_type": "markdown", + "id": "b327221a-aee8-4621-b657-ea85c750a09f", + "metadata": {}, + "source": [ + "# AHS with Rydberg atoms\n", + "\n", + "An Analog Hamiltonian Simulation **program** is fully specified by its quantum register and (time-dependent) Hamiltonian." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "8a93745e-02b0-4cd8-9926-c1d4aae14aa2", + "metadata": {}, + "outputs": [], + "source": [ + "from braket.ahs.hamiltonian import Hamiltonian\n", + "from braket.ahs.atom_arrangement import AtomArrangement\n", + "from braket.ahs.analog_hamiltonian_simulation import AnalogHamiltonianSimulation\n", + "\n", + "register = AtomArrangement()\n", + "H = Hamiltonian()\n", + "\n", + "ahs_program = AnalogHamiltonianSimulation(\n", + " hamiltonian=H,\n", + " register=register\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "2871eb36-e6ef-4519-84f6-a40d492c4987", + "metadata": {}, + "source": [ + "In order to run AHS program with Rydberg atoms, we will first have to understand what type of Hamiltonian can Rydberg atoms simulate." + ] + }, + { + "cell_type": "markdown", + "id": "65319098-d1b9-4bb5-8777-878938c51018", + "metadata": {}, + "source": [ + "## Introduction to Rydberg Hamiltonian\n", + "\n", + "Depending on the atomic states we use for the Rydberg system, its Hamiltonian could take different forms. Here we shall focus on the following type of Hamiltonian\n", + "\n", + "\\begin{align}\n", + "H(t) = \\sum_{k=1}^N H_{\\text{drive}, k}(t) + \\sum_{k=1}^N H_{\\text{shift}, k}(t) + \\sum_{j=1}^{N-1}\\sum_{k = j+1}^N H_{\\text{vdW}, j, k},\n", + "\\end{align}\n", + "\n", + "where $j, k=1,2,\\ldots N$ index the atoms (qubits) in the program register. We describe the nature and effect of each term in the Hamiltonian in the following sections, using a triangular array as an example." + ] + }, + { + "cell_type": "markdown", + "id": "bdc99a17-a873-4b80-a41b-a8fb3df46ba9", + "metadata": {}, + "source": [ + "### Register\n", + "\n", + "First, we need to define a quantum **register**, 2-dimensional layout of neutral atoms, on which this Hamiltonian will act." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "cf3738c1-38a4-4b54-8537-33f16d3acba2", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "\n", + "# e.g. three atoms in an equilateral triangle, with pairwise\n", + "# separation equal to 5.5 micrometers\n", + "a = 5.5e-6 # meters\n", + "\n", + "register.add([0, 0])\n", + "register.add([a, 0.0])\n", + "register.add([0.5 * a, np.sqrt(3)/2 * a]);" + ] + }, + { + "cell_type": "markdown", + "id": "b549d2ca", + "metadata": {}, + "source": [ + "The atom arrangement can be visualized in the following way" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "70fcb4f0", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcQAAAG2CAYAAADhtfbVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAXWElEQVR4nO3dcZBUhX3A8e/vOOAQjBpdxEoo2CAKGZBwcZySdlJo0dQEOs10JqQ2dKJlTGyRpkynTWbi2MkfmcShJpM6lopSp03UTNR00kmMYgjJJCQeCghegFSNvVrlUCmgHgj36x+7KuKd7MHuewf7/czccLv79t3vNma/93bfvheZiSRJra6t7AEkSRoODKIkSRhESZIAgyhJEmAQJUkCoL3sASRJ5di4ceP49vb224D3cepvIPUDWw8dOnTNnDlzdg20gEGUpBbV3t5+24QJEy6uVCovtbW1ndKfwevv74/e3t7pzz333G3AwoGWOdX/IpAkDe59lUpl76keQ4C2trasVCr/R3VreOBlCpxHkjS8tLVCDF9X+10H7V7TghgRt0fErojY2qD1TYqIH0REd0Q8ERGTG7FeSZKguVuIa4ArGri+O4GvZObFwKXAgG+KSpKaZO3asXz0o1OYMeNiPvrRKaxdO7YRq/3iF784/oILLpjxrne965LPfe5zEwA++9nP/sYXvvCFcwE+9rGPTb7jjjvOqnd927dvHzV16tQZQ52jaTvVZOb6o7fiIuK3gH8CKsArwF9k5i+Pta6ImA60Z+aDtXXvb/zEkqRB/fVf/wa33nouBw60kQnd3WN46KEzufba5/nHf3z2RFa9evXqyve+972dF1100cFGjXs8in4PcRXwV5k5B1gB3FLn/S4E9kTEvRHxWER8JSJGNG1KSdKb1q4dy623nktfXzWGAJlBX18bt9567olsKX7iE5+Y1NPTM3rhwoXvvfHGG8d/8pOfnPROy//4xz8+7QMf+MC0GTNmXPzBD35w6q9//euRr18/bdq06ZdccslFK1euHH88sxQWxIgYB/w28K2I2AT8M3Be7bY/joitA3w9ULt7O/A7VCP6AeAC4M+Lml2SWtrNN4/nwIGBe3HgQHDzzccVIIBvfOMbz4wfP/61H/3oRzvOOuusw++07IEDB2LZsmWTvvOd7/zXtm3bupcsWbJ7xYoV5wNcffXVk1euXPnMpk2bjvmq42CK/BxiG7AnMy85+obMvBe49x3u2wM8lplPAkTE/cBlwOrGjylJeosnn+xgsFMFZgZPPdVRxBhbtmwZvXPnzjHz5s27EKC/v59KpfLaCy+8MGLfvn0jrrzyyv0An/rUp154+OGHzxjq+gsLYmbujYinIuJPMvNbERHAzMzcXMfdHwHOiohKZvYC84Cupg4sSaq64II+urvHkBlvuy0imTKlr4gxMjPe+973vnr0VuDu3btHVJNyYup6yTQino6IxyNiU0TUFaKI+CbwM2BaRPRExNXAnwJXR8RmYBuwqJ51ZeZhqi+Xro2Ix4EA/qWe+0qSTtDy5bsYPXrgTcTRo5PlywvZ63/mzJl9L774YvtDDz00FqovoXZ1dXWcc845h8eNG3f4gQceGAewZs2adx/P+oeyhfh7mbm73oUzc/EgNx3XRzFqe5jOPJ77SpJOwPz5L3Pttc/X9jINMoOIZPTo5Nprn2f+/JeLGKOjoyPvuuuu/1q2bNmkffv2jTh8+HB8+tOffr6zs7Nv9erVT19zzTWTx4wZ0z9v3ry9x7P+yMFeFz5yoYingc6hBFGSNLxt3rz56VmzZtX/vL527Vhuvnk8Tz3VwZQpfSxfvquoGDbK5s2bz5k1a9bkgW6rN4hPAS8BCfxzZq4aYJmlwFKAsWPHzrnoootOZGZJUpN9+ctfZsKECYX8rAMHDhyaPXt2PfuMNNU7BbHel0znZuazETEeeDAifpmZ649coBbJVQCdnZ3Z1eU+L5I0nHV3d3PxxRcX8rO2bt1a6ofu61HXTjWZ+Wzt313AfVQPnSZJOsnV8yrhqaK/vz+onhdxQMcMYkSMjYjTX/8eWAA05IDdkqTydHR08MILL7REFGvnQzyDd+hXPS+ZngvcV/uMRzvwjcz8fmNGlCSVZeLEifT09NDb29v0n/Xcc8+1Hz58+Jym/6DB9QNbDx06dM1gCxwziLWjw8xq5FSSpPKNHDmSKVOmFPKzpk+f/nhmdhbyw46TJwiWJAmDKEkSYBAlSQIMoiRJgEGUSrVjxw4WLVpEpVLh3e9+N5dffjnbt28veyypJRlEqUR79uxh4cKFbN++neeff55LL72URYvqOgmMpAar61imQ+Wh26Tj8+KLL3L22Weze/duzj777LLHkRomIjb6sQtJdVu/fj0TJkwwhlIJDKLUDBs2wOLFMGdO9d8NG455l56eHq677jpWrlxZwICSjmYQpUa74QaYPx/uvhsefRTuuad6+YYbBr1Lb28vCxYs4DOf+QyLFw92bm1JzWQQpUbasAFuugleeQVef3++v796+aabBtxSfOmll1iwYAELFy7k85//fMEDS3qdQZQa6atfhVdfHfi2vr7q7UfYu3cvl19+OXPnzuVLX/pSAQNKGoxBlBppx443twyP1t8PO3e+5ar77ruPRx55hDvuuINx48a98fXMM88UMKykIxlEqZEuvBDaBvm/VVtb9fYjLFmyhMzk5ZdfZv/+/W98TZo0qYBhJR3JIEqNdP310NEx8G0dHbBsWbHzSKqbQZQa6bLLYMUKOO20N7cU29qql1esqN4uaVg65gmCJQ3RjTfChz9c3YFm506YOrW65WgMpWHNIErNcNllBlA6yfiSqSRJGERJkgCDKEkSYBAlSQIMoiRJgEGUJAkwiJIkAQZRkiTAIEqSBBhESZIAgyhJEmAQJUkCDKIkSYBBlCQJMIiSJAEGUZIkwCBKkgQYREmSAIMoSRJgECVJAgyiJEmAQZQkCTCIkiQBBlGSJMAgSpIEGERJkgCDKEkSYBAlSQIMoiRJgEGUJAkwiJIkAQZRkiTAIEqSBBhESZIAgyhJEmAQJUkCDKIkSYBBlCQJMIiSJAEGUZIkwCBKkgQYREmSAIMoSRJgECVJAgyiJEmAQZQkCRhCECNiREQ8FhHfbeZAkiSVYShbiNcD3c0aRJKkMtUVxIiYCFwJ3NbccSRJKke9W4g3A38L9A+2QEQsjYiuiOjq7e1txGySJBXmmEGMiI8AuzJz4zstl5mrMrMzMzsrlUrDBpQkqQj1bCHOBRZGxNPAXcC8iPi3pk4lSVLBjhnEzPz7zJyYmZOBjwMPZ+ZVTZ9MkqQC+TlESZKA9qEsnJnrgHVNmUSSpBK5hShJEgZRkiTAIEqSBBhESZIAgyhJEmAQJUkCDKIkSYBBlCQJMIiSJAEGUZIkwCBKkgQYREmSAIMoSRJgECVJAgyiJEmAQZQkCTCIkiQBBlGSJMAgSpIEGERJkgCDKEkSYBAlSQIMoiRJgEGUJAkwiJIkAQZRkiTAIEqSBBhESZIAgyhJEmAQJUkCDKIkSYBBlCQJMIiSJAEGUZIkwCBKkgQYREmSAIMoSRJgECVJAgyiJEmAQZQkCTCIkiQBBlGSJMAgSpIEGERJkgCDKEkSYBAlSQIMoiRJgEGUJAkwiJIkAQZRkiTAIEqSBBhESZIAgyhJEmAQJUkCDKIkSYBBlCQJMIiSJAEGUZIkwCBKkgQYREmSAIMoSRJgECVJAgyiJEmAQZQkCagjiBHRERG/iIjNEbEtIm4sYjBJkorUXscyB4B5mbk/IkYCP4mI72XmhibPJklSYY4ZxMxMYH/t4sjaVzZzKEmSilbXe4gRMSIiNgG7gAcz8+cDLLM0Iroioqu3t7fBY0qS1Fx1BTEzD2fmJcBE4NKIeN8Ay6zKzM7M7KxUKg0eU5Kk5hrSXqaZuQdYB1zRjGEkSSpLPXuZViLizNr3Y4DfB37Z5LkkSSpUPXuZngf8a0SMoBrQezLzu80dS5KkYtWzl+kWYHYBs0iSVBqPVCNJEgZRkiTAIEqSBBhESZIAgyhJEmAQJUkCDKIkSYBBlCQJMIiSJAEGUZIkwCBKkgQYREmSAIMoSRJgECVJAgyiJEmAQZQkCTCIkiQBBlGSJMAgSpIEGERJkgCDKEkSYBAlSQIMoiRJgEGUJAkwiJIkAQZRkiTAIEqSBBhESZIAgyhJEmAQJUkCDKIkSYBBlCQJMIiSJAEGUZIkwCBKkgQYREmSAIMoSRJgECVJAgyiJEmAQZQkCTCIkiQBBlGSJMAgSpIEGERJkgCDKEkSYBAlSQIMoiRJgEGUJAkwiJIkAQZRkiTAIEqSBBhESZIAgyhJEmAQJUkCDKIkSYBBlCQJMIiSJAEGUZIkwCBKkgQYREmSAIMoSRJgECVJAgyiJElAHUGMiPdExA8jojsitkXE9UUMJklSkdrrWOYQ8DeZ+WhEnA5sjIgHM/OJJs8mSVJhjrmFmJn/m5mP1r7fB3QD5zd7MEmSijSk9xAjYjIwG/j5ALctjYiuiOjq7e1t0HiSJBWj7iBGxDjg28DyzNx79O2ZuSozOzOzs1KpNHJGSZKarq4gRsRIqjH898y8t7kjSZJUvHr2Mg1gNdCdmSubP5IkScWrZwtxLvBnwLyI2FT7+sMmzyVJUqGO+bGLzPwJEAXMIklSaTxSjSRJGERJkgCDKEkSYBAlSQIMoiRJgEGUJAkwiJIkAQZRkiTAIEqSBBhESZIAgyhJEmAQJUkCDKIkSYBBlCQJMIiSJAEGUZIkwCBKkgQYREmSAIMoSRJgECVJAgyiJEmAQZQkCTCIkiQBBlGSJMAgSpIEGERJkgCDKEkSYBAlSQIMoiRJgEGUJAkwiJIkAQZRkiTAIEqSBBhESZIAgyhJEmAQJUkCDKIkSYBBlCQJMIiSJAEGUZIkwCBKkgQYREmSAIMoSRJgECVJAgyiJEmAQZQkCTCIkiQBBlGSJMAgSpIEGERJkgCDKEkSYBAlSQIMoiRJgEGUJAkwiJIkAQZRkiTAIEqSBBhESZIAgyhJEmAQJUkCDKIkSYBBlCQJMIiSJAEGUZIkoI4gRsTtEbErIrYWMZAkSWWoZwtxDXBFk+eQJKlUxwxiZq4HXixgFkmSStOw9xAjYmlEdEVEV29vb6NWK0lSIRoWxMxclZmdmdlZqVQatVpJkgrhXqaSJGEQJUkC6vvYxTeBnwHTIqInIq5u/liSJBWr/VgLZObiIgaRJKlMvmQqSRIGUZIkwCBKkgQYREmSAIMoSRJgECVJAgyiJEmAQZQkCTCIkiQBBlGSJMAgSpIEGERJkgCDKEkSYBAlSQIMoiRJgEGUJAkwiJIkAQZRkiTAIEqSBBhESZIAgyhJEmAQJUkCDKIkSYBBlCQJMIiSJAEGUZIkwCBKkgQYREmSAIMoSRJgECVJAgyiJEmAQZQkCTCIkiQBBlGSJMAgSpIEGERJkgCDKEkSYBAlSQIMoiRJgEGUJAkwiJIkAQZRkiTAIEqSBBhESZIAgyhJEmAQJUkCDKIkSYBBlCQJMIiSJAEGUZIkwCBKkgQYREmSAIMoSRJgECVJAgyiJEmAQZQkCTCIkiQBBlGSJOAkD+KmTZuYM2cOp512GnPmzGHTpk1ljyRJLWfp0qVMmzaNtrY21qxZU/Y4x+2kDeLBgwdZtGgRV111FS+99BJLlixh0aJFHDx4sOzRJKmlzJo1i1tuuYX3v//9ZY9yQk7aIK5bt45Dhw6xfPlyRo8ezbJly8hMHn744bJHk6SWct111zF//nw6OjrKHuWEnLRB3LZtGzNnziQi3rhu5syZbNu2rcSpJEknq5M2iPv37+eMM854y3VnnHEG+/btK2kiSdLJrK4gRsQVEbE9In4VEX/X1Ik2bIDFi2HOnOq/GzYMuNi4cePYu3fvW67bu3cvp59+elPHk6SWUOdz8ankmEGMiBHAPwEfBqYDiyNielOmueEGmD8f7r4bHn0U7rmnevmGG9626IwZM9iyZQuZ+cZ1W7ZsYcaMGU0ZTZJaxhCei08l9WwhXgr8KjOfzMyDwF3AooZPsmED3HQTvPIKvB65/v7q5ZtuettfJx/60IcYMWIEX/va1zhw4ABf//rXAZg3b17DR5OkljHE52Ko7vXf19dHZvLaa6/R19dHf39/wYOfuHqCeD7w30dc7qld11hf/Sq8+urAt/X1VW8/wqhRo7j//vu58847OfPMM7n99tu5//77GTVqVMNHk6SWMcTnYoAFCxYwZswYfvrTn7J06VLGjBnD+vXrmzxo47XXsUwMcF2+baGIpcBSgEmTJg19kh073vxr5Gj9/bBz59uunj17Nhs3bhz6z5IkDew4novXrVvX3JkKUs8WYg/wniMuTwSePXqhzFyVmZ2Z2VmpVIY+yYUXQtsg47S1VW+XJDVXCz8X1xPER4CpETElIkYBHwf+o+GTXH89DPahzo4OWLas4T9SknSUFn4uPmYQM/MQ8JfAA0A3cE9mNv7T75ddBitWwGmnvfnXSVtb9fKKFdXbJUnN1cLPxZGDvVZ8Ajo7O7Orq+v47rxhQ/VN2507YerU6l8rp/D/AJI0LDX4uTgiNmZmZwMnbLjhF0RJ0innZAjiSXvoNkmSGskgSpKEQZQkCTCIkiQBBlGSJMAgSpIEGERJkgCDKEkSYBAlSQIMoiRJgEGUJAlo0rFMI6IX+PUJruYcYHcDxjmZtfpj0Oq/P/gYgI/BqfL7/2ZmHsfJcovTlCA2QkR0DfcDwTZbqz8Grf77g48B+Bi0+u9fJF8ylSQJgyhJEjC8g7iq7AGGgVZ/DFr99wcfA/AxaPXfvzDD9j1ESZKKNJy3ECVJKoxBlCSJYRrEiLgiIrZHxK8i4u/KnqdoEXF7ROyKiK1lz1KGiHhPRPwwIrojYltEXF/2TEWLiI6I+EVEbK49BjeWPVMZImJERDwWEd8te5YyRMTTEfF4RGyKiK6y5znVDbv3ECNiBLAD+AOgB3gEWJyZT5Q6WIEi4neB/cCdmfm+sucpWkScB5yXmY9GxOnARuCPWuy/gQDGZub+iBgJ/AS4PjM3lDxaoSLis0An8K7M/EjZ8xQtIp4GOjPzVPhg/rA3HLcQLwV+lZlPZuZB4C5gUckzFSoz1wMvlj1HWTLzfzPz0dr3+4Bu4PxypypWVu2vXRxZ+xpef702WURMBK4Ebit7FrWG4RjE84H/PuJyDy32ZKg3RcRkYDbw85JHKVzt5cJNwC7gwcxstcfgZuBvgf6S5yhTAj+IiI0RsbTsYU51wzGIMcB1LfWXsaoiYhzwbWB5Zu4te56iZebhzLwEmAhcGhEt8/J5RHwE2JWZG8uepWRzM/P9wIeB62pvp6hJhmMQe4D3HHF5IvBsSbOoJLX3zb4N/Htm3lv2PGXKzD3AOuCKcicp1FxgYe09tLuAeRHxb+WOVLzMfLb27y7gPqpvKalJhmMQHwGmRsSUiBgFfBz4j5JnUoFqO5SsBrozc2XZ85QhIioRcWbt+zHA7wO/LHWoAmXm32fmxMycTPU54OHMvKrksQoVEWNrO5UREWOBBUBL7nlelGEXxMw8BPwl8ADVnSnuycxt5U5VrIj4JvAzYFpE9ETE1WXPVLC5wJ9R3SrYVPv6w7KHKth5wA8jYgvVPxIfzMyW/OhBCzsX+ElEbAZ+AfxnZn6/5JlOacPuYxeSJJVh2G0hSpJUBoMoSRIGUZIkwCBKkgQYRElqaY0+mUBETIqIH9QOzv9E7WhTJwWDKEmtbQ2NPejDncBXMvNiqgcS2NXAdTeVQZSkFjbQyQQi4rci4vu1Y6j+OCIuqmddETEdaM/MB2vr3p+ZrzR+6uYwiJKko60C/ioz5wArgFvqvN+FwJ6IuLd2Hsuv1E7pd1JoL3sASdLwUTuo/m8D36oeRRGA0bXb/hj4hwHu9j+ZeTnVpvwO1TPUPAPcDfw51UMxDnsGUZJ0pDZgT+1MK29RO9D+Ox1svwd4LDOfBIiI+4HLOEmC6EumkqQ31E619lRE/AlUD7YfEbPqvPsjwFkRUaldngc80YQxm8IgSlILG+RkAn8KXF07sPg2YFE968rMw1Tfc1wbEY9TPb/tvzRn8sbz4N6SJOEWoiRJgEGUJAkwiJIkAQZRkiTAIEqSBBhESZIAgyhJEgD/D67isa8F1YpSAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from ahs_utils import show_register\n", + "\n", + "show_register(register)" + ] + }, + { + "cell_type": "markdown", + "id": "8096aa7e-4925-4317-ba85-d69d97b9150f", + "metadata": {}, + "source": [ + "### Driving field\n", + "\n", + "The first term of the Hamiltonian represents the effect of a **driving field** that addresses the atoms simultaneously and uniformly\n", + "\n", + "\\begin{align}\n", + "H_{\\text{drive}, k}(t) = \\frac{\\Omega(t)}{2}\\left(e^{i\\phi(t)}|g_k\\rangle\\langle r_k| + e^{-i\\phi(t)}|r_k\\rangle\\langle g_k|\\right) - \\Delta_\\text{global}(t)n_k,\n", + "\\end{align}\n", + "\n", + "where $\\Omega$, $\\phi$, and $\\Delta_\\text{global}$ to denote the **amplitude** (Rabi frequency), laser **phase**, and the **detuning** of the driving laser field. Here $n_k = |r_k\\rangle\\langle r_k|$ is the number operator of atom $k$; the kets $|g_k\\rangle$ and $|r_k\\rangle$ denote the ground and Rydberg states, respectively. The $\\Omega$ part of the driving term is identical to a uniform (time-dependent) _transverse_ magnetic field, whereas the $\\Delta_\\text{global}$ part implements the effect of a _longitudinal_ magnetic field, in a spin-model representation.\n", + "\n", + "For the purpose of this example, we choose a constant Rabi frequency equal to $\\Omega_\\text{max}=2.5\\times10^6$ rad/s, with the phase and global detuning set to zero. The duration of the program is set to $\\frac{\\pi}{\\sqrt{2}\\Omega_\\text{max}}$, which will be explained in the next section. " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "784fd2a4-7bd7-4f67-90c1-4b3664515cfb", + "metadata": {}, + "outputs": [], + "source": [ + "from braket.timings.time_series import TimeSeries\n", + "from braket.ahs.driving_field import DrivingField\n", + "\n", + "# e.g. trapzoid amplitude time series\n", + "Omega_max = 2.5e6 # rad / seconds\n", + "\n", + "# e.g. the duration of the program\n", + "t_max = np.pi/(np.sqrt(2)*Omega_max) # seconds\n", + "\n", + "# e.g. constant Rabi frequency\n", + "Omega = TimeSeries()\n", + "Omega.put(0.0, Omega_max)\n", + "Omega.put(t_max, Omega_max)\n", + "\n", + "# e.g. all-zero phase and detuning\n", + "phi = TimeSeries().put(0.0, 0.0).put(t_max, 0.0) # (time [s], value [rad])\n", + "Delta_global = TimeSeries().put(0.0, 0.0).put(t_max, 0.0) # (time [s], value [rad/s])\n", + "\n", + "drive = DrivingField(\n", + " amplitude=Omega,\n", + " phase=phi,\n", + " detuning=Delta_global\n", + ")\n", + "\n", + "H += drive" + ] + }, + { + "cell_type": "markdown", + "id": "613d27bb-c88e-4325-8263-c6e935eab0cf", + "metadata": {}, + "source": [ + "### Shifting field\n", + "\n", + "The second term in $H(t)$ represents the effect of a **shifting field** that detunes atoms according to a non-uniform pattern.\n", + "\n", + "\\begin{align}\n", + "H_{\\text{shift}, k}(t) = -\\Delta_\\text{local}(t)h_k \\,n_k,\n", + "\\end{align}\n", + "\n", + "where $\\Delta_\\text{local}(t)$ is the time-dependent **magnitude** of the frequency shift, and $h_k$ is the atom-dependent **pattern**, which is a dimensionless number between 0 and 1. This shifting term is identical to a non-uniform (and time-dependent) _longitudinal_ magnetic field in a spin-model representation.\n", + "\n", + "For the purpose of this example, we choose a shifting field that strongly detunes the top atom in the triangular lattice." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "4783bb48-31f4-4213-873b-879ad641b092", + "metadata": {}, + "outputs": [], + "source": [ + "from braket.ahs.field import Field\n", + "from braket.ahs.pattern import Pattern\n", + "from braket.ahs.shifting_field import ShiftingField\n", + "\n", + "# e.g. constant strong shifting field\n", + "Delta_local = TimeSeries()\n", + "Delta_local.put(0.0, -Omega_max*20) # (time [s], value [rad/s])\n", + "Delta_local.put(t_max, -Omega_max*20)\n", + "\n", + "\n", + "# e.g. the shifting field only acts on the third atom, \n", + "# which is the top atom in the triangular array.\n", + "h = Pattern([0, 0, 0.5])\n", + "\n", + "shift = ShiftingField(\n", + " magnitude=Field(\n", + " time_series=Delta_local,\n", + " pattern=h\n", + " )\n", + ")\n", + "\n", + "H += shift" + ] + }, + { + "cell_type": "markdown", + "id": "3c2f1d9a", + "metadata": {}, + "source": [ + "The driving field and the shifting field can be inspected with the following utility function" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "4cfd6e37", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAAHwCAYAAABZrD3mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABQeElEQVR4nO3de5ycdXn//9eVM2EDCYRTCJBAgIgcQhIgilWCWgGtqBUKRUUqUgUPRVtLW1tR689DW08FD4hUaCn8ipWCFBSrHBQTZXfJumRZkl2yCdmsLEs2bjZ7nJ3r+8fMxs2yh8nuXHPvzLyfj8c8duee+3DNewLXfu77nvs2d0dERESKy7SkCxAREZH9pwYuIiJShNTARUREipAauIiISBFSAxcRESlCauAiIiJFqOwauJndZmatZvZ0jvNfamZ1ZrbRzP4zuj4REZFcWLl9D9zMXgt0Ane4+6njzHsi8F/A+e7ebmaHu3trIeoUEREZS9mNwN39cWDn0GlmdoKZ/cjMqszs52a2PPvS+4Gb3b09u6yat4iITAll18BHcQvwYXdfBfwl8I3s9JOAk8zsCTNbb2YXJFahiIjIEDOSLiBpZlYBvBq4x8wGJ8/O/pwBnAicBywGfm5mp7r7rgKXKSIiso+yb+Bk9kLscvcVI7y2HVjv7v3AFjN7lkxDf7KA9YmIiLxM2e9Cd/cOMs35EgDLOCP78v8Aa7PTF5LZpf5cEnWKiIgMVXYN3MzuAtYBJ5vZdjN7H3AF8D4zqwE2AhdnZ/8x8JKZ1QGPAH/l7i8lUbeIiMhQZfc1MhERkVJQdiNwERGRUlBWJ7EtXLjQlyxZkrf19fX1MWvWrLytT/alfGMp31jKN1Y55VtVVdXm7ocNn15WDXzJkiVUVlbmbX2tra0cfvjheVuf7Ev5xlK+sZRvrHLK18y2jjRdu9BFRESKkBr4JPT09CRdQklTvrGUbyzlG0v5qoFPyvz585MuoaQp31jKN5byjaV8gxq4mXWM89htZpsitl1IL7zwQtIllDTlG0v5xlK+sZRv3Elsje5+5lgzmNlTQdsumGOPPTbpEkqa8o2lfGMp31jKN24X+h/naZ4pbdOmot+JMKUp31jKN5byjaV8g6/EZmYHAt3unjazk4DlwEPZm4MU3OrVqz2fXyMTERGJZmZV7r56+PTok9geB+aY2dHAT4GrgO8Fb7Ngqqqqki6hpCnfWMo3lvKNpXzjR+DV7r7SzD4MHODuXzKzp3I4Pn4McAdwJJAGbnH3r40w33nAV4GZQJu7v26s9WoELiIixSapEbiZ2avI3O3rf7PTcjlxLgV83N1fAawBrjOzU4ateD7wDeCt7v5K4JK8VZ0j/QUYS/nGUr6xlG8s5Rs/An8d8HHgCXf/opkdD/yFu39kP9dzH3CTu/9kyLRrgUXu/slc16MRuIiIFJuCjsDN7G/M7Ex3f8zd3+ruXwRw9+cm0LyXAGcCvxr20knAAjN71MyqzOw9oyx/jZlVmlllS0sLbW1ttLS00NzcTHt7O42NjXR3d1NXV0c6naa6uhr4/V931dXVpNNp6urq6O7uprGxkfb2dpqbm1m3bh1tbW00NTXR2dlJfX09qVSKmpqafdYx+LO2tpbe3l42b95MR0cH27Zto7W1ldbWVrZt20ZHRwebN2+mt7eX2traEddRU1NDKpWivr6ezs5Ompqa8vqeBjOaCu9p3bp1JfeeptLntH79+pJ7T1Ppc/rlL39Zcu9pKn1Ov/rVr0ruPY32OY0mZARuZpcBFwBnADXAQ8DD7t6+n+upAB4DPufuPxj22k3AauD1wAHAOuDN7j7qdwvyPQJPpVLMmFFW94MpKOUbS/nGUr6xyinfgo7A3f1ud39v9mS1rwHHAz8ws8fN7B/M7Ozx1mFmM4H/Bu4c3ryztgM/cvc97t5G5oz3M/L4NsbV0NBQyM2VHeUbS/nGUr6xlG8BroXu7k+5++fdfS3wFmAjcPVYy5iZAd8FnnH3L48y233AH5jZDDObC5wDPJPH0se1ePHiQm6u7CjfWMo3lvKNpXyDLqVqZu8Y42V392vGWcW5wLuBWjPbkJ32t8Cx2RV8y92fMbMfAb8h81WzW9396clVvn/a2tqoqKgo5CbLivKNpXxjKd9YyjfuWuh/lP15OPBq4GfZ52uBR4GRdonv5e6/AGy8jbj7PwH/NOEqJ6nc//FEU76xlG8s5RtL+QY1cHe/CsDMHgBOcfeW7POjgJsjtpmE/v5ErghbNpRvLOUbS/nGUr7xx8CXDDbvrBfIfP2rJKTT6aRLKGnKN5byjaV8YynfuF3ogx41sx8DdwEOXAY8ErzNgpk7d27SJZQ05RtL+cZSvrGUb/AI3N0/BHybzNe7VpC5pvmHI7dZSDt37ky6hJKmfGMp31jKN5byjR+Bk/0O95gnrRWrRYsWJV1CSVO+sZRvLOUbS/kGj8DNbI2ZPWlmnWbWZ2YDZtYRuc1C2rJlS9IllDTlG0v5xlK+sZRv/M1MKskc976HzGVP3wMsc/e/C9voGPJ9KdV0Os20aeHXwilbyjeW8o2lfGOVU75J3U4Ud28Aprv7gLv/G5nvgpeEDRs2JF1CSVO+sZRvLOUbS/nGj8AfB94A3Ar8FmgB3uvuBb1m+SDdTlRERIpNUiPwd2e38SFgD3AM8MfB2ywY3VA+lvKNpXxjKd9YyjdwBG5m04Hb3f1dIRuYAI3ARUSk2BR8BO7uA8BhZjYrahtJG7xhvMRQvrGUbyzlG0v5xh8D/zawErifzC50AMa4RWgonYVeXJRvLOUbS/nGKqd8kzoGvgN4ILudeUMeJaG+vj7pEkqa8o2lfGMp31jKN/hKbO7+6cj1J23p0qVJl1DSlG8s5RtL+cZSvkEjcDO7MR/zTHU7duxIuoSSpnxjKd9YyjeW8o0bgV89ziVTjcwV2m4M2n5BHHLIIUmXUNKUbyzlG0v5xlK+ccfAv8O+x7yHPyqy8xS1rq6upEsoaco3lvKNpXxjKd+gEXipH/seVC5nQCZF+cZSvrGUbyzlW4BroZeymTNnJl1CSVO+sZRvLOUbS/mqgU9KZ2dn0iWUNOUbS/nGUr6xlK8a+KQsXLgw6RJKmvKNpXxjKd9Yyje4gZvZSWb2UzN7Ovv8dDP7ZOQ2C2n79u1Jl1DSlG8s5RtL+cZSvvEj8O8AfwP0A7j7b8h8fawkLFu2LOkSSpryjaV8YynfWMo3voHPdfdfD5uWGm8hMzvGzB4xs2fMbKOZfXSEec4zs9+Z2Ybs4x/yVnWONm7cWOhNlhXlG0v5xlK+sZRv8KVUgTYzOwFwADN7J9CSw3Ip4OPuXm1m84AqM/uJu9cNm+/n7v6W/Jacm6qt7azfeSCpre2sOm5BEiWUvDPOOCPpEkqa8o2lfGNN1Xyrtraz/rmXWHP8oeG9IbqBXwfcAiw3s2ZgCzDu/cHdvYVso3f33Wb2DHA0MLyBJ6JqazuXfnsdA2lnmsHyI+cxb46+0pBvnZ27qagomXvfTDnKN5byjTUV893d00/9b3fjDrNnTuPOq9eENvHQXeju/py7vwE4DFju7q9x96b9WYeZLQHOBH41wsuvMrMaM3vIzF45yvLXmFmlmVW2tLTQ1tZGS0sLzc3NtLe309jYSHd3N3V1daTT6b33mK2qqgIy95xNp9PU1dXR3d1NY2Mjj2zczkA6cxvWtMPOzh4GBgbo6urC3dmzJ/P1hs7O3fv83LNnD+5puru7GRgYoLe3l/7+fvr7++nt7WVgYIDu7m7c0+zZs2eUdXTi7nR1dTEwMEBPTw/9/f309fXR19dLKpWip6ebdDq990pFg1+3+P26Ms+7urpIp9P09HSTSqXo6+ulr6+P/v5+enqSf0+zZs0uufc0lT6n2bPnlNx7mkqf06xZs0ruPU2lz2n27DlT7j3t2tNL2jO7nPtSaZ7Y9AK1tbXA73vK4M+amhpSqRT19fV0dnbS1NQ0an8aTcj9wM3sY2O9nuv9wM2sAngM+Jy7/2DYawcBaXfvNLOLgK+5+4ljrS9f9wOv2trOFbeup68/zawC/JVVrqqqqli1alXSZZQs5RtL+caaivkO9ob+VJqZM/LXG0a7H3hUA/9U9teTgbOA+7PP/wh43N2vzmEdM8ncS/zHuTR8M2sCVrt722jz5KuBQ2GPc4iISHGI6A2jNfCQXeju/uns9dAXAivd/ePu/nFgFbB4vOXNzIDvAs+M1rzN7MjsfJjZ2WTey0v5eg/jWXXcAl67sFvNO9DgrieJoXxjKd9YUzXfVcct4Lq1ywrSG6JPYjsW6BvyvA9YksNy5wLvBmrNbEN22t9m14e7fwt4J/BBM0sB3cBlHrE7YQwnnXRSITdXdpRvLOUbS/nGUr7xDfzfgV+b2b1kjuu/HbhjvIXc/Rdk7hk+1jw3ATflo8iJ2rZtGyeeOOZhd5kE5RtL+cZSvrGUb3ADd/fPmdlDwB9kJ13l7k9FbrOQjjjiiKRLKGnKN5byjaV8Yynf+GuhHwu0AfdmHy9lp5WEXbt2JV1CSVO+sZRvLOUbS/nG70L/X7JXYQMOAJYCzwIjfme72MyZMyfpEkqa8o2lfGMp31jKN34X+mlDn5vZSuDPI7cpIiJSDgp6P3B3rybzvfCS0NPTk3QJJU35xlK+sZRvLOUbPAIfdkW2acBK4MXIbRbS/Pnzky6hpCnfWMo3lvKNpXzjR+DzhjxmkzkmfnHwNgvmhRdeSLqEkqZ8YynfWMo3lvKNP4mtzt3vGTrBzC4B7hll/qJy7LElc0L9lKR8YynfWMo3lvKNH4H/TY7TitKmTZuSLqGkKd9YyjeW8o2lfONuZnIhcBFwKfD/D3npIOAUdz877xvNQT5vZiIiIlIIBb2ZCbADqAR6gKohj/uBNwVts+AG7+sqMZRvLOUbS/nGUr5BI/C9Kzeb4e6psA3sJ43ARUSk2BR0BG5m/5X99Skz+83wR8Q2k6C/AGMp31jKN5byjaV8446BH+XuLWZ23Eivu/vWvG80BxqBi4hIsSnoCNzdW7I/t470iNhmEmpqapIuoaQp31jKN5byjaV840bgu/n9TUwgc29vH/zp7gflfaM5yPcIPJVKMWNG9Ffpy5fyjaV8YynfWOWUb6FH4PPc/aAhj3lDf0ZsMwkNDQ1Jl1DSlG8s5RtL+cZSvvFXYhu8A9lryIzAf+HuT0Vvs1AWL16cdAklTfnGUr6xlG8s5Rt8JTYz+wfgduBQYCHwPTP7ZOQ2C6mtrS3pEkqa8o2lfGMp31jKN34Efjlwprv3AJjZF4Bq4B+Dt1sQFRUVSZdQ0pRvLOUbS/nGUr7x10JvAuYMeT4baAzeZsH09/cnXUJJU76xlG8s5RtL+caPwHuBjWb2EzLHwN8I/MLMvg7g7h8J3n6odDqddAklTfnGUr6xlG8s5RvfwO/NPgY9Gry9gpo7d27SJZQ05RtL+cZSvrGUb3ADd/fbI9eftJ07d7JgwYKkyyhZyjeW8o2lfGMp3/iz0N9iZk+Z2U4z6zCz3WbWkcNyx5jZI2b2jJltNLOPjjHvWWY2YGbvzG/141u0aFGhN1lWlG8s5RtL+cZSvvEnsX0VuBI4dD8v5JICPu7urwDWANeZ2SnDZzKz6cAXgR/nseacbdmyJYnNlg3lG0v5xlK+sZRvfAN/Hnja9/N6re7e4u7V2d93A88AR48w64eB/wZaJ1voRCxfvjyJzZYN5RtL+cZSvrGUb3wD/wTwoJn9jZl9bPCxPyswsyXAmcCvhk0/Gng78K1xlr/GzCrNrLKlpYW2tjZaWlpobm6mvb2dxsZGuru7qaurI51OU11dDfz+VnXV1dWk02nq6uro7u6msbGR9vZ2mpubWbduHW1tbTQ1NdHZ2Ul9fT2pVGrvRfYH1zH4s7a2lt7eXjZv3kxHRwfbtm2jtbWV1tZWtm3bRkdHB5s3b6a3t5fa2toR11FTU0MqlaK+vp7Ozk6ampry+p4GM5oK72ndunUl956m0ue0fv36kntPU+lz+uUvf1ly72kqfU7r168vufc02uc0mpCbmexdudnDQCdQC+w959/dP53j8hXAY8Dn3P0Hw167B/gXd19vZt8DHnD374+1Pt1OVEREik1Bb2YyxCHu/g53/5S7f3rwkcuCZjaTzO7xO4c376zVwN1m1gS8E/iGmb0tX4XnQjeUj6V8YynfWMo3lvKNH4F/AfiZuz+8n8sZmWuo73T3v8hh/u+hEbiIiJSgpEbg1wE/MrPu/fkaGXAu8G7gfDPbkH1cZGYfMLMPxJacu8FjLBJD+cZSvrGUbyzlGzwCn2ryPQJPp9NMmxb9N1D5Ur6xlG8s5RurnPJNagSOmS0ws7PN7LWDj+htFkp9fX3SJZQ05RtL+cZSvrGUb/ClVM3sauCjwGJgA5mLsqwDzo/cbqEsXbo06RJKmvKNpXxjKd9Yyjd+BP5R4Cxgq7uvJfN97heDt1kwO3bsSLqEkqZ8YynfWMo3lvKNb+A97t4DYGaz3b0eODl4mwVzyCGHJF1CSVO+sZRvLOUbS/nGN/DtZjYf+B/gJ2Z2H1AyfzZ1dXUlXUJJU76xlG8s5RtL+cbfTvTt2V9vNLNHgIOBH0Vus5DK5QzIpCjfWMo3lvKNpXyDG/hQ7v5YobZVKDNnzky6hJKmfGMp31jKN5byLbPvgZvZi8DWPK5yIdCWx/XJvpRvLOUbS/nGKqd8j3P3w4ZPLKsGnm9mVjnSl+slP5RvLOUbS/nGUr4FuJCLiIiI5J8auIiISBFSA5+cW5IuoMQp31jKN5byjVX2+eoYuIiISBHSCFxERKQIqYGLiIgUITVwERGRIqQGLiIiUoTUwEVERIqQGriIiEgRUgMXEREpQmrgIiIiRUgNXEREpAipgYuIiBQhNXAREZEipAYuIiJShNTARUREipAauIiISBFSAxcRESlCauAiIiJFSA1cRESkCKmBi4iIFCE1cBERkSI0I+kCCmnhwoW+ZMmSpMsQERHJWVVVVZu7HzZ8eqIN3MwuAL4GTAdudfcvDHvdsq9fBHQB73X36uxrTcBuYABIufvq8ba3ZMkSKisr81Z/a2srhx9+eN7WJ/tSvrGUbyzlG6uc8jWzrSNNT6yBm9l04GbgjcB24Ekzu9/d64bMdiFwYvZxDvDN7M9Ba929rUAlv0xPT09Smy4LyjeW8o2lfGMp32SPgZ8NNLj7c+7eB9wNXDxsnouBOzxjPTDfzI4qdKGjmT9/ftIllDTlG0v5xlK+sZRvsg38aOD5Ic+3Z6flOo8DD5tZlZldM9pGzOwaM6s0s8qWlhba2tpoaWmhubmZ9vZ2Ghsb6e7upq6ujnQ6TXV1NQBVVVUAVFdXk06nqauro7u7m8bGRtrb22lubqahoYG2tjaampro7Oykvr6eVCpFTU3NPusY/FlbW0tvby+bN2+mo6ODbdu20draSmtrK9u2baOjo4PNmzfT29tLbW3tiOuoqakhlUpRX19PZ2cnTU1NeX1PgxlNhffU0NBQcu9pKn1OjY2NJfeeptLntGnTppJ7T1Ppc3ruuedK7j2N9jmNxtx91BcjmdklwJvc/ers83cDZ7v7h4fM87/A5939F9nnPwU+4e5VZrbI3XeY2eHAT4APu/vjY21z9erVns9j4L29vcyePTtv65N9Kd9YyjeW8o1VTvmaWdVI53klOQLfDhwz5PliYEeu87j74M9W4F4yu+QLatOmTYXeZFlRvrGUbyzlG0v5jjECN7OVOSzf7+61E9qw2QxgE/B6oBl4EvhTd984ZJ43Ax8icxb6OcDX3f1sMzsQmObuu7O//wT4jLv/aKxt5nsELiIiEm20EfhYZ6E/Rqap2hjzLAWWTKQgd0+Z2YeAH5P5Gtlt7r7RzD6Qff1bwINkmncDma+RXZVd/Ajg3sy3zJgB/Od4zTtCVVUVq1atKvRmy4byjaV8YynfWMp37BH4z9z9/DEXzmGeqUQjcBERKTb7fQw8l8ZcTM07wuDZhBJD+cZSvrGUbyzlm8NZ6GZ2LrDB3feY2buAlcDX3H3EK8NMZRqBi4hIsZnMWejfBLrM7AzgE8BW4I4811eUBr8jKDGUbyzlG0v5xlK+uTXwlGeG6ReTGXl/DZgXW1ZxeOUrX5l0CSVN+cZSvrGUbyzlm1sD321mfwO8C/jf7DXMZ8aWVRwaGhqSLqGkKd9YyjeW8o2lfHNr4H8C9ALvc/ffkrmU6T+FVlUkFi9enHQJJU35xlK+sZRvLOU7RgM3sx+b2fXAfHf/srv/HMDdt7m7joEDbW2J3QitLCjfWMo3lvKNpXzHHoFfCbQDN5pZtZl908wuNrOKAtU25VVUKIpIyjeW8o2lfGMp3zGuxJbdXf494HtmNo3MpUwvBD5hZt3Aw+7+pYJUOUX19/cnXUJJU76xlG8s5RtL+Y59KdW93D0NrMs+/sHMFgJviiysGKTT6aRLKGnKN5byjaV8YynfMRq4mf0rmXtuj8jdPxJSURGZO3du0iWUNOUbS/nGUr6xlO/Yx8ArgSpgDpmrr23OPlYAA+GVFYGdO3cmXUJJU76xlG8s5RtL+Y59DPx2ADN7L7DW3fuzz78FPFyQ6qa4RYsWJV1CSVO+sZRvLOUbS/nm9j3wRex75bWK7LSyt2XLlqRLKGnKN5byjaV8Yynf3E5i+wLwlJk9kn3+OuDGsIqKyPLly5MuoaQp31jKN5byjaV8cxiBu/u/kfkK2b3Zx6sGd6+Xuw0bNiRdQklTvrGUbyzlG0v55nA7UQAzWwCcSOaENgDc/fHAukLodqIiIlJsJnw7UTO7Gngc+DHw6ezPG/NdYDHSDeVjKd9YyjeW8o2lfHMYgZtZLXAWsN7dV5jZcuDT7v4nhSgwnzQCFxGRYjPhETjQ4+492ZXMdvd64OR8F1iMqqurky6hpCnfWMo3lvKNpXxzG4HfC1wF/AVwPpkbnMx094vCq8uzfI/A0+k006bl8jeQTITyjaV8YynfWOWU74RH4O7+dnff5e43An8PfBd4W94rLEL19fVJl1DSlG8s5RtL+cZSvuN8Dzx7F7LfuPupAO7+WEGqKhJLly5NuoSSpnxjKd9YyjeW8h1nBJ69C1mNmR1boHqKyo4dO5IuoaQp31jKN5byjaV8c7sS21HARjP7NbBncKK7vzWsqiJxyCGHJF1CSVO+sZRvLOUbS/nm1sA/HV5Fkerq6mLBggVJl1GylG8s5RtL+cZSvjk0cB33Hl25nAGZFOUbS/nGUr6xlO8Yx8DN7IHxFs5lnlI2c+bMpEsoaco3lvKNpXxjKd+xR+CvMbP7x3jdgFPyXE9R6ezsZOHChUmXUbKUbyzlG0v5xlK+Yzfwi3NYvi9fhRSjcv/HE035xlK+sZRvLOU7xi50d38sh8e6QhY71Wzfvj3pEkqa8o2lfGMp31jKN7drocsoli1blnQJJU35xlK+sZRvLOWbcAM3swvM7FkzazCzG0Z43czs69nXf2NmK3NdthA2btyYxGbLhvKNpXxjKd9YyjfBBm5m04GbgQvJnAx3uZkNPynuQuDE7OMa4Jv7sWyoqq3t/GLngVRtbS/kZsvKGWeckXQJJU35xlK+saZqvlVb27n5kYaC9IZxvweevR/48FuW/Q6oBP7R3V+a4LbPBhrc/bnsdu4mc+Jc3ZB5Lgbu8Mwt09ab2XwzOwpYksOyYaq2tnPpt9cxkHamGSw/ch7z5ugrDfnW2bmbiop5SZdRspRvLOUbayrmu7unn/rf7sYdZs+cxp1Xr2HVcXEXm8llBP4Q8L/AFdnHD4HHgd8C35vEto8Gnh/yfHt2Wi7z5LIsAGZ2jZlVmlllS0sLbW1ttLS00NzcTHt7O42NjXR3d1NXV0c6nd57j9mqqiogc8/ZdDpNXV0d3d3dNDY28sjG7QykM3/TpB12dvYwMDBAV1cX7s6ePZ1A5h/Y0J979uzBPU13dzcDAwP09vbS399Pf38/vb29DAwM0N3djXuaPXv2jLKOTtydrq4uBgYG6Onpob+/n76+Pvr6ekmlUvT0dJNOp+nq6souO7yezPOuri7S6TQ9Pd2kUin6+nrp6+ujv7+fnp7k39OsWbNL7j1Npc9p9uw5JfeeptLnNGvWrJJ7T1Ppc5o9e86Ue0+79vSS9syIty+V5olNL1BbWwv8vqcM/qypqSGVSlFfX09nZydNTU2j9qfR5HIp1XPd/dwhz2vN7Al3P9fM3pXD8qOxEaYNH+mPNk8uy2Ymut8C3AKZ+4EP/+rB4KX4Tjklswd+5crMYfZVq1bt83zw9RNOOIG1M9q5dd12+vrTzJo5jZvfdVboX1nlqqqqau/nIPmnfGMp31hTMd+qre1ccet6+lNpZs6YxrknHcFp2d4wWOvgz8FDAMuXLwegoqLiZesb71KxuTTwCjM7x91/BWBmZwODW0rlsPxotgPHDHm+GBh+e5nR5pmVw7JhVh23gDuvXsP6515izfGHqnkHmWr/cZYa5RtL+caaivkWujfksgv9auBWM9tiZk3ArcD7zexA4POT2PaTwIlmttTMZgGXAcOv/HY/8J7s2ehrgN+5e0uOy4ZaddwCXruwW8070OCuJ4mhfGMp31hTNd9Vxy3gurXLCtIbcrmZyZPAaWZ2MGDuvmvIy/810Q27e8rMPgT8GJgO3ObuG83sA9nXvwU8CFwENABdwFVjLTvRWibqpJNOKvQmy4ryjaV8YynfWMo3t7PQZwN/TObM7xlmmcPP7v6ZyW7c3R8k06SHTvvWkN8duC7XZQtt27ZtnHjiiUmWUNKUbyzlG0v5xlK+uR0Dv4/M18aqgN7YcorLEUcckXQJJU35xlK+sZRvLOWbWwNf7O4XhFdShHbt2sVBBx2UdBklS/nGUr6xlG8s5ZvbSWy/NLPTwispQnPmzEm6hJKmfGMp31jKN5byzW0E/hrgvWa2hcwudCNzePr00MpERERkVLk08AvDqyhSPT09SZdQ0pRvLOUbS/nGUr5jNHAzO8jdO4DdBaynqMyfPz/pEkqa8o2lfGMp31jKd+xj4P+Z/VlF5sYlVUMelcF1FYUXXngh6RJKmvKNpXxjKd9YyneMEbi7vyX7c2nhyikuxx57bNIllDTlG0v5xlK+sZRvjvcDN7OjzezVZvbawUd0YcVg06ZNSZdQ0pRvLOUbS/nGUr6ZS6OOPYPZF4E/IXOv7YHsZHf3twbXlnerV6/2ykrt/RcRkeJhZlXuvnr49FxG4G8DTnb3i9z9j7KPomveEQbv6yoxlG8s5RtL+cZSvrmNwB8CLnH3zsKUFEcjcBERKTaTGYF3ARvM7Ntm9vXBR/5LLD76CzCW8o2lfGMp31jKN7cR+JUjTXf320MqCqQRuIiIFJsJj8Dd/faRHjFlFpeampqkSyhpyjeW8o2lfGMp39xG4FuAl83k7sdHFRUl3yPwVCrFjBm5XI1WJkL5xlK+sZRvrHLKdzLHwFcDZ2UffwB8HfiP/JZXnBoaGpIuoaQp31jKN5byjaV8c9uF/tKQR7O7fxU4P760qW/x4sVJl1DSlG8s5RtL+cZSvjncjczMVg55Oo3MiHxeWEVFpK2tjYqKiqTLKFnKN5byjaV8Yynf3G4n+i9Dfk8BW4BLY8opLuX+jyea8o2lfGMp31jKN7cG/j53f27oBDPTDU6A/v7+pEsoaco3lvKNpXxjKd/cTmL7fo7Tyk46nU66hJKmfGMp31jKN5byHWMEbmbLgVcCB5vZO4a8dBAwJ7qwYjB37tykSyhpyjeW8o2lfGMp37FH4CcDbwHmA3805LESeH94ZUVg586dSZdQ0pRvLOUbS/nGUr5jjMDd/T7gPjN7lbuvK2BNRWPRokVJl1DSlG8s5RtL+cZSvrkdA3/JzH5qZk8DmNnpZvbJ4LqKwpYtW5IuoaQp31jKN5byjaV8c7uU6mPAXwHfdvczs9OedvdTC1BfXuX7UqrpdJpp03L5G0gmQvnGUr6xlG+scsp3MpdSnevuvx42LZWfsorbhg0bki6hpCnfWMo3lvKNpXxza+BtZnYC2RuamNk7gZbQqorEypUrx59JJkz5xlK+sZRvLOWbWwO/Dvg2sNzMmoG/AD4YWVSx0A3lYynfWMo3lvKNpXxzOAa+d0azA4Fp7r47tqQ4+T4GLiIiEm2/j4Gb2ceGPoA/B94/5HnZq66uTrqEkqZ8YynfWMo3lvIdYwRuZp/K/noymXuB3599/kfA4+5+dXx5+aWz0IuL8o2lfGMp31jllO9+j8Dd/dPu/mlgIbDS3T/u7h8HVgGTuhGrmR1iZj8xs83ZnwtGme8CM3vWzBrM7IYh0280s2Yz25B9XDSZeiaqvr4+ic2WDeUbS/nGUr6xlG9uJ7EdC/QNed4HLJnkdm8AfuruJwI/zT7fh5lNB24GLgROAS43s1OGzPIVd1+RfTw4yXomZOlS3ZQtkvKNpXxjKd9Yyje3Bv7vwK+zo95PAb8Cbp/kdi8eso7bgbeNMM/ZQIO7P+fufcDd2eWmjB07diRdQklTvrGUbyzlG0v55tDA3f1zwFVAO7ALuMrdPz/J7R7h7i3Z9bcAh48wz9HA80Oeb89OG/QhM/uNmd022i54ADO7xswqzayypaWFtrY2WlpaaG5upr29ncbGRrq7u6mrqyOdTu89MWLwKwrV1dWk02nq6uro7u6msbGR9vZ2mpubcXfa2tpoamqis7OT+vp6UqkUNTU1+6xj8GdtbS29vb1s3ryZjo4Otm3bRmtrK62trWzbto2Ojg42b95Mb28vtbW1I66jpqaGVCpFfX09nZ2dNDU15fU9DWY0Fd6Tu5fce5pKnxNQcu9pKn1OqVSq5N7TVPqcpk2bVnLvabTPaTQ5f41sf5nZ/wFHjvDS3wG3u/v8IfO2u/s+TdjMLgHeNHiynJm9Gzjb3T9sZkcAbWQuLvNZ4Ch3/7Pxasr3SWzNzc0cffTR488oE6J8YynfWMo3VjnlO9pJbKPejWyy3P0NYxTzgpkd5e4tZnYU0DrCbNuBY4Y8XwzsyK77hSHr+g7wQH6q3j/lcgZkUpRvLOUbS/nGUr65HQOPcD9wZfb3K4H7RpjnSeBEM1tqZrOAy7LLkW36g94OPB1Y66hmzpyZxGbLhvKNpXxjKd9YyjdwF/qYGzU7FPgvMme4bwMucfedZrYIuNXdL8rOdxHwVWA6cFv2eDxm9u/ACjK70JuAPx88pj7Odl8EtubxrSwksytfYijfWMo3lvKNVU75Hufuhw2fmEgDLxVmVjnScQnJD+UbS/nGUr6xlG9yu9BFRERkEtTARUREipAa+OTcknQBJU75xlK+sZRvrLLPV8fARUREipBG4CIiIkVIDVxERKQIqYGLiIgUITVwERGRIqQGLiIiUoTUwEVERIqQGriIiEgRUgMXEREpQmrgIiIiRUgNXEREpAipgYuIiBQhNXAREZEipAYuIiJShNTARUREipAauIiISBFSAxcRESlCauAiIiJFSA1cRESkCKmBi4iIFKEZSRdQSAsXLvQlS5YkXYaIiEjOqqqq2tz9sOHTE23gZnYB8DVgOnCru39h2OuWff0ioAt4r7tXZ19rAnYDA0DK3VePt70lS5ZQWVmZt/pbW1s5/PDD87Y+2ZfyjaV8YynfWOWUr5ltHWl6Yg3czKYDNwNvBLYDT5rZ/e5eN2S2C4ETs49zgG9mfw5a6+5tBSr5ZXp6epLadFlQvrGUbyzlG0v5JnsM/Gygwd2fc/c+4G7g4mHzXAzc4RnrgflmdlShCx3N/Pnzky6hpCnfWMo3lvKNpXyTbeBHA88Peb49Oy3XeRx42MyqzOya0TZiZteYWaWZVba0tNDW1kZLSwvNzc20t7fT2NhId3c3dXV1pNNpqqurAaiqqgKgurqadDpNXV0d3d3dNDY20t7eTnNzMw0NDbS1tdHU1ERnZyf19fWkUilqamr2Wcfgz9raWnp7e9m8eTMdHR1s27aN1tZWWltb2bZtGx0dHWzevJne3l5qa2tHXEdNTQ2pVIr6+no6OztpamrK63sazGgqvKeGhoaSe09T6XNqbGwsufc0lT6nTZs2ldx7mkqf03PPPVdy72m0z2k05u6jvhjJzC4B3uTuV2efvxs4290/PGSe/wU+7+6/yD7/KfAJd68ys0XuvsPMDgd+AnzY3R8fa5urV6/2fB4D7+3tZfbs2Xlbn+xL+cZSvrGUb6xyytfMqkY6zyvJEfh24JghzxcDO3Kdx90Hf7YC95LZJV9QmzZtKvQmy4ryjaV8YynfWMo32Qb+JHCimS01s1nAZcD9w+a5H3iPZawBfufuLWZ2oJnNAzCzA4E/BJ4uZPEAp512WqE3WVaUbyzlG0v5xlK+CTZwd08BHwJ+DDwD/Je7bzSzD5jZB7KzPQg8BzQA3wGuzU4/AviFmdUAvwb+191/VNA3wO+PZUgM5RtL+cZSvrGUb4LHwJOQ72PgIiIi0abiMfCip78AYynfWMo3lvKNpXw1AhcREZnSNAIPMPgdQYmhfGMp31jKN5by1Qh8UlKpFDNmlNX9YApK+cZSvrGUb6xyylcj8AANDQ1Jl1DSlG8s5RtL+cZSvmrgk7J48eKkSyhpyjeW8o2lfGMpXzXwSWlrS+xGaGVB+cZSvrGUbyzlqwY+KRUVFUmXUNKUbyzlG0v5xlK+auCT0t/fn3QJJU35xlK+sZRvLOULo57CZ2Yd4yxrQIu7n5TfkopHOp1OuoSSpnxjKd9YyjeW8h2jgQON7n7mWAub2VN5rqeozJ07N+kSSpryjaV8YynfWMp37F3of5zD8rnMU7J27tyZdAklTfnGUr6xlG8s5TtGA3f358ZbOJd5StmiRYuSLqGkKd9YyjeW8o2lfMdo4Ga228w6RnsUssipasuWLUmXUNKUbyzlG0v5xlK+OVxK1cw+A/wW+HcyJ65dAcxz9y/Fl5df+b6UajqdZto0ncgfRfnGUr6xlG+scsp3MpdSfZO7f8Pdd7t7h7t/kzI/9j1ow4YNSZdQ0pRvLOUbS/nGUr65jcB/CdwM3A04cDlwnbu/Or68/NLtREVEpNhMZgT+p8ClwAvZxyXZaWVPN5SPpXxjKd9YyjeW8tXtREVERKa0CY/AzWyOmV1nZt8ws9sGHzFlFpfq6uqkSyhpyjeW8o2lfGMp39x2of87cCTwJuAxYDGwO7KoYrFixYqkSyhpyjeW8o2lfGMp39wa+DJ3/3tgj7vfDrwZOC22rOJQX1+fdAklTfnGUr6xlG8s5ZtbAx+85csuMzsVOBhYElZREVm6dGnSJZQ05RtL+cZSvrGUb24N/BYzWwB8ErgfqAO+GFpVkdixY0fSJZQ05RtL+cZSvrGU79h3I8PMpgEd7t4OPA4cX5CqisQhhxySdAklTfnGUr6xlG8s5TvOCNzd08CHClRL0enq6kq6hJKmfGMp31jKN5byzW0X+k/M7C/N7BgzO2TwEV5ZESiX6/AmRfnGUr6xlG8s5TvOLvSsP8v+vG7INEe705k5c2bSJZQ05RtL+cZSvrGUbw4jcHdfOsKj7Js3QGdnZ9IllDTlG0v5xlK+sZTv2PcDXznewrnMU8oWLlyYdAklTfnGUr6xlG8s5Tv2CPzfzGzB0OPewx/AdwtV6FS0ffv2pEsoaco3lvKNpXxjKd+xj4EfDFQBNsY8L+a3nOKybNmypEsoaco3lvKNpXxjKd8xRuDuvsTdjx/lGPjg4+xCFjvVbNy4MekSSpryjaV8YynfWMo3t6+RhTGzC8zsWTNrMLMbRnjdzOzr2dd/M/SY+3jLFsIZZ5yRxGbLhvKNpXxjKd9YyjfBBm5m04GbgQuBU4DLzeyUYbNdCJyYfVwDfHM/lg1VtbWdv/uPx6ja2l7IzZaVqqqqpEsoaco3lvKNNVXzrdrazs2PNBSkN+TyPfAoZwMN7v4cgJndDVxM5lrrgy4G7nB3B9ab2XwzO4rMzVTGWzZM1dZ2Lv32OgbSzl0bf8nyI+cxb46+kxiicl3SFZQ25RtL+caaYvnu7umn/re7cYfZM6dx59VrWHXcgrDtjTsCz+7GfpeZ/UP2+bFmlo9j30cDzw95vj07LZd5clkWADO7xswqzayypaWFtrY2WlpaaG5upr29ncbGRrq7u6mrqyOdTu+9SfzgX3fV1dWk02nq6uro7u6msbGRRzZuZyDtAKQddnb2MDAwQFdXF+7Onj2Z7yd2du7e5+eePXtwT9Pd3c3AwAC9vb309/fT399Pb28vAwMDdHd3455mz549o6yjE3enq6uLgYEBenp66O/vp6+vj76+XlKpFD093aTT6b2XGhz8vuTv15V53tXVRTqdpqenm1QqRV9fL319ffT399PTk/x7+t3vfldy72kqfU4dHb8rufc0lT6nzL/f0npPU+lz6ujomHLvadeeXtKeudJZXyrNE5teoLa2Fvh9Txn8WVNTQyqVor6+ns7OTpqamkbtT6PJZQT+DSANnA98BtgN/DdwVg7LjmWks9s9x3lyWTYz0f0W4BaA1atX+/DvDi5YkPnr6JRTMnvgV67MHGZftWrVPs8HXz/hhBNYO6OdW9dtpz+VZuaMadz8rrNC/8oSEZGpr2prO1fcun5vbzj3pCM4LdsbBnvK4M/BY/jLly8HoKKi4mXrG+xPo8nlGPg57n4d0AOQvTPZrFzezDi2A8cMeb4YGH5/uNHmyWXZMKuOW8CdV6/hitMPDt9FUs4G/3KVGMo3lvKNNRXzHewNH/vDkwvSG3IZgfdnTxpzADM7jMyIfLKeBE40s6VAM3AZ8KfD5rkf+FD2GPc5wO/cvcXMXsxh2VCrjlvAqUeexezZswu52bJy0kknJV1CSVO+sZRvrKma76rjFhRsUJfLCPzrwL3A4Wb2OeAXwP832Q27e4rMrUp/DDwD/Je7bzSzD5jZB7KzPQg8BzQA3wGuHWvZyda0v7Zt21boTZYV5RtL+cZSvrGUL1jmBO9xZjJbDryezLHnn7r7M9GFRVi9erVXVlbmbX0dHR0cdNBBeVuf7Ev5xlK+sZRvrHLK18yq3H318Om5nIV+ArDF3W8GngbeaGbz819i8dm1a1fSJZQ05RtL+cZSvrGUb2670P8bGDCzZcCtwFLgP0OrKhJz5sxJuoSSpnxjKd9YyjeW8s2tgaezx5zfAXzN3a8HjootS0RERMaSSwPvN7PLgfcAD2Sn6bJjQE9PT9IllDTlG0v5xlK+sZRvbg38KuBVwOfcfUv2q1v/EVtWcZg/f37SJZQ05RtL+cZSvrGUbw4N3N3r3P0j7n5X9vkWd/9CfGlT3wsvvJB0CSVN+cZSvrGUbyzlm8OFXMzsRODzZO76tfesAXc/PrCuonDssccmXUJJU76xlG8s5RtL+ea2C/3fyNzGMwWsBe4A/j2yqGKxadOmpEsoaco3lvKNpXxjKd8cLuSS/QL5KjOrdffTstN+7u5/UJAK8yjfF3IRERGJNuELuQA9ZjYN2GxmHzKztwOH573CIjRVbyhfKpRvLOUbS/nGUr65jcDPInO98fnAZ4GDgS+5+/rw6vJMI3ARESk2Ex6Bu/uT7t7p7tvd/Sp3f0cxNu8I+gswlvKNpXxjKd9Yyje3EfhJwF8BxzHkrHV3Pz+2tPzTCFxERIrNZI6B3wNUA58k08gHH2WvpqYm6RJKmvKNpXxjKd9Yync/zkIvUD2h8j0CT6VSzJgx7lfpZYKUbyzlG0v5xiqnfPd7BG5mh5jZIcAPzexaMztqcFp2etlraGhIuoSSpnxjKd9YyjeW8h37SmxVgAOWfT50t7kDZX8ltsWLFyddQklTvrGUbyzlG0v5jtHA3X1pIQspRm1tbVRUVCRdRslSvrGUbyzlG0v55nYt9DnAtcBryIy8fw58y93L/l5u5f6PJ5ryjaV8YynfWMo3hwZO5trnu4F/zT6/nMy10C+JKqpY9Pf3J11CSVO+sZRvLOUbS/nm1sBPdvczhjx/xMx0/j6QTqeTLqGkKd9YyjeW8o2lfHP7HvhTZrZm8ImZnQM8EVdS8Zg7d27SJZQ05RtL+cZSvrGUb24N/Bzgl2bWZGZNwDrgdWZWa2a/Ca1uitu5c2fSJZQ05RtL+cZSvrGUb2670C8Ir6JILVq0KOkSSpryjaV8YynfWMo3t5uZbB3rUYgip6otW7YkXUJJU76xlG8s5RtL+eZwKdVSku9LqabTaaZNy+UohEyE8o2lfGMp31jllO9kbmYio9iwYUPSJZQ05RtL+cZSvrGUr0bgIiIiU5pG4AF0Q/lYyjeW8o2lfGMpX43ARUREpjSNwANUV1cnXUJJU76xlG8s5RtL+WoEPinldBZkEpRvLOUbS/nGKqd8p9QI3MwOMbOfmNnm7M8Fo8x3gZk9a2YNZnbDkOk3mlmzmW3IPi4qXPW/V19fn8Rmy4byjaV8YynfWMo3uV3oNwA/dfcTgZ9mn+/DzKYDNwMXAqcAl5vZKUNm+Yq7r8g+HixE0cMtXapbpkdSvrGUbyzlG0v5JtfALwZuz/5+O/C2EeY5G2hw9+fcvQ+4O7vclLFjx46kSyhpyjeW8o2lfGMp3+Qa+BHu3gKQ/Xn4CPMcDTw/5Pn27LRBHzKz35jZbaPtggcws2vMrNLMKltaWmhra6OlpYXm5mba29tpbGyku7uburo60un03hMjBr+iUF1dTTqdpq6uju7ubhobG2lvb6e5uRl3p62tjaamJjo7O6mvryeVSlFTU7PPOgZ/1tbW0tvby+bNm+no6GDbtm20trbS2trKtm3b6OjoYPPmzfT29lJbWzviOmpqakilUtTX19PZ2UlTU1Ne39NgRlPhPbl7yb2nqfQ5ASX3nqbS55RKpUruPU2lz2natGkl955G+5xGE3YSm5n9H3DkCC/9HXC7u88fMm+7u+/ThM3sEuBN7n519vm7gbPd/cNmdgTQBjjwWeAod/+z8WrK90lszc3NHH300ePPKBOifGMp31jKN1Y55TvaSWy53I1sQtz9DWMU84KZHeXuLWZ2FNA6wmzbgWOGPF8M7Miu+4Uh6/oO8EB+qt4/5XIGZFKUbyzlG0v5xlK+ye1Cvx+4Mvv7lcB9I8zzJHCimS01s1nAZdnlyDb9QW8Hng6sdVQzZ85MYrNlQ/nGUr6xlG8s5ZvQ98DN7FDgv4BjgW3AJe6+08wWAbe6+0XZ+S4CvgpMB25z989lp/87sILMLvQm4M8Hj6mPs90XgXzeAnUhmV35EkP5xlK+sZRvrHLK9zh3P2z4xLK6kEu+mVnlSMclJD+UbyzlG0v5xlK+upSqiIhIUVIDFxERKUJq4JNzS9IFlDjlG0v5xlK+sco+Xx0DFxERKUIagYuIiBQhNXAREZEipAYuIiJShNTARUREipAauIiISBFSAxcRESlCauAiIiJFSA1cRESkCKmBi4iIFKGya+BmdpuZtZrZuPcQN7OvmNmG7GOTme0qQIkiIiLjKrtLqZrZa4FO4A53P3U/lvswcKa7/1lYcSIiIjkquxG4uz8O7Bw6zcxOMLMfmVmVmf3czJaPsOjlwF0FKVJERGQcM5IuYIq4BfiAu282s3OAbwDnD75oZscBS4GfJVSfiIjIPsq+gZtZBfBq4B4zG5w8e9hslwHfd/eBQtYmIiIymrJv4GQOI+xy9xVjzHMZcF1hyhERERlf2R0DH87dO4AtZnYJgGWcMfi6mZ0MLADWJVSiiIjIy5RdAzezu8g045PNbLuZvQ+4AnifmdUAG4GLhyxyOXC3l9vp+iIiMqWV3dfIRERESkHZjcBFRERKgRq4iIhIESqrs9AXLlzoS5Ysydv69uzZw4EHHpi39cm+lG8s5RtL+cYqp3yrqqra3P2w4dPLqoEvWbKEysrKvK3v0Ucf5bzzzsvb+mRfyjeW8o2lfGOVU75mtnWk6dqFLiIiUoTUwEVERIqQGriIiEgRKqtj4CIiU1l/fz/bt2+np6cn6VKmvIMPPphnnnkm6TLyas6cOSxevJiZM2fmNL8auIjIFLF9+3bmzZvHkiVLGHJzJRnB7t27mTdvXtJl5I2789JLL7F9+3aWLl2a0zLahS4iMkX09PRw6KGHqnmXITPj0EMP3a+9L2rgIiJTiJp3+drfz37KNnAz+0szczNbOMrr15vZRjN72szuMrM5ha5RRKTcfe9732PHjh17n3/1q1+lq6srfLtbt27lgAMOYMWKFXun/ehHP+Lkk09m2bJlfOELXxh3He7ORz7yEZYtW8bpp59OdXX1uMts2bKFc845hxNPPJE/+ZM/oa+vb8T5pk+fzooVK1ixYgVvfetb906/4oorOOSQQ/j+978//pscx5Rs4GZ2DPBGYNsorx8NfARY7e6nAtPJ3LNbREQKKB8NfGBgYELbPuGEE9iwYcPedVx33XU89NBD1NXVcdddd1FXVzfm8g899BCbN29m8+bN3HLLLXzwgx8cd5t//dd/zfXXX8/mzZtZsGAB3/3ud0ec74ADDmDDhg1s2LCB+++/f+/0O++8c5+GPhlTsoEDXwE+AYx1q7QZwAFmNgOYC+wYY14RkZJUtbWdmx9poGpr+6TX1dTUxPLly7nyyis5/fTTeec737m3GX/mM5/hrLPO4tRTT+Waa67B3fn+979PZWUlV1xxBStWrOBrX/saO3bsYO3ataxduxaAhx9+mFe96lWsXLmSSy65hM7OTiBzZczPfOYzvOY1r+Gee+5hyZIlfOpTn2LlypWcdtpp1NfX71ftv/71r1m2bBnHH388s2bN4rLLLuO+++4bc5n77ruP97znPZgZa9asYdeuXbS0tIw6v7vzs5/9jHe+850AXHnllfzP//zPftWZT1PuLHQzeyvQ7O41ox0PcPdmM/tnMiP0buBhd394lPVdA1wDcMQRR/Doo4/mrdbOzs68rk/2pXxjKd9YE8n34IMPZvfu3QB88eFG6l/oHHsbvSmebd2DO5jByYcfSMXs0f+3vvyICv76D08Ys+Znn32Wf/3Xf+Wmm27i2muv5Stf+Qof+chHuPLKK7n++usBeP/7388999zDhRdeyJlnnsk//uM/snLlSgC+/OUv88Mf/pBDDz2UpqYmPv3pT3Pvvfdy4IEH8pWvfIXPf/7z3HDDDbg7ZsZDDz0EZEa2FRUVPPbYY3znO9/h85//PDfddBPV1dXcdttt3HTTTfvUmk6nSafTe/NqaGjgyCOP3Pv80EMPpbKycu/zkWzdupVDDz107zxHHXUUmzZtoqKiYsT5X3rpJQ466CC6u7sBmD9/Ps8///yI2+jp6WHlypVMnz6dj33sY7zlLW/Z+1p/fz/d3d2jLpfrv5tEGriZ/R9w5Agv/R3wt8AfjrP8AuBiYCmwC7jHzN7l7v8xfF53vwW4BWD16tWez2vnltO1eJOgfGMp31gTyfeZZ57Z+9WombNmMn369DHn7+zrw7P7Kd2hsy/NwXNHX2bmrJljfvWqoqKCY445hje+8Y0AXHXVVXz9619n3rx5PPzww3zpS1+iq6uLnTt3smLFCubNm8f06dM58MAD967XzKioqGDevHk89thjPPvss1xwwQUA9PX18apXvYp58+ZhZrznPe/ZZ7k//dM/Zd68eZx77rk8+OCDzJs3j9e97nW87nWve1mt06ZNY9q0aXuXnzNnDjNn/v79HXDAAcyePXvM9zt9+nTmzp27d57p06fvrX0kPT09+2yzoqKC6dOnjzj/tm3bWLRoEc899xznn38+Z599NieckPnjaebMmRxwwAEjLjdnzhzOPPPMUWseKpEG7u5vGGm6mZ1GpikPjr4XA9Vmdra7/3bIrG8Atrj7i9nlfgC8GnhZAxcRKUaf+qNXjjtP1dZ2rrh1Pf2pNDNnTONrl53JquMWTGq7w/d8mhk9PT1ce+21VFZWcswxx3DjjTfm9HUnd+eNb3wjd91114ivD7+b2OzZs4FMI02lUvtV9+LFi3n++ef3Pt++fTuLFi3K6zILFy5k165dpFIpZsyYMeb8g9OPP/54zjvvPJ566qm9DTxfptQxcHevdffD3X2Juy8BtgMrhzVvyOw6X2Nmcy3zr+31QGldkkdEZByrjlvAnVev4WN/eDJ3Xr1m0s0bMiPHdevWAXDXXXfxmte8Zm+zXrhwIZ2dnfucQT1v3rx9dgUPfb5mzRqeeOIJGhoaAOjq6mLTpk2TrnEkZ511Fps3b2bLli309fVx99137z1Z7KabbnrZLniAt771rdxxxx24O+vXr+fggw/mqKOOAuD1r389zc3N+8xvZqxdu3bv+7/99tu5+OKLX7be9vZ2ent7AWhra+OJJ57glFNOyev7hSnWwMdiZovM7EEAd/8V8H2gGqgl8z5uSbA8EZFErDpuAdetXZaX5g3wile8gttvv53TTz+dnTt38sEPfpD58+fz/ve/n9NOO423ve1tnHXWWXvnf+9738sHPvABVqxYQXd3N9dccw0XXngha9eu5bDDDuN73/sel19+Oaeffjpr1qzZ75PTKisrufrqq8edb8aMGdx000286U1v4hWveAWXXnopr3xlZi9GfX09hx566MuWueiiizj++ONZtmwZ73//+/nGN74BZI6vNzQ0cMghh7xsmS9+8Yt8+ctfZtmyZbz00ku8733ve1mdzzzzDKtXr+aMM85g7dq13HDDDSENHHcvm8eqVas8nx555JG8rk/2pXxjKd9YE8m3rq4u/4Xshy1btvgrX/nKRGvIVW1tbc61vvnNb/be3t79Wvf1118/0dLGdeWVV/o999wz4msj/RsAKn2EnjahY+Bm9o4cZutx9wcnsn4REZGxTJ8+nd/97nesWLFi73fBR/PAAw/s17pPPfVUvvzlL0+iutFdccUV/PKXv9z7VbTJmOhJbN8B7gPGuu7bawE1cBGRIrFkyRKefvrppMvIyfAT0IrFnXfembd1TbSBP+TufzbWDGamM8JFRESCTOgkNnd/Vz7mERGRfbmPdQFKKWX7+9lP6ix0M7vEzOZlf/+kmf3AzFZOZp0iIuVqzpw5vPTSS2riZciz9wOfMyf3+3JN9kIuf+/u95jZa4A3Af8MfBM4Z5LrFREpO4sXL2b79u28+OKLSZcy5fX09OxXsysGc+bMYfHixTnPP9kGPngLmTcD33T3+8zsxkmuU0SkLM2cOZOlS5cmXUZRePTRR3O+5GipmuyFXJrN7NvApcCDZjY7D+sUERGRcUy22V4K/Bi4wN13AYcAfzXZokRERGRsE72QSyXwBPAQ8KC79wC4ewsw+s1URUREJC8mOgJfA9wLnAc8ZmYPmtlHzeykvFUmIiIio5rQCNzdU8Cj2QdmdhRwIfCPZnYisM7dr81TjSIiIjJMXu4Hnt11fhtwm5lNA16Vj/WKiIjIyCZ6DPyHwKhXGnD3t064IhERERnXREfg/5z9+Q7gSGDwuueXA02TrElERETGMdFj4I8BmNln3f21Q176oZk9npfKREREZFST/R74YWZ2/OATM1sKHDbJdYqIiMg4JnsS2/XAo2b2XPb5EuDPJ7lOERERGcekGri7/yj7tbHl2Un17t47+bJERERkLPn4GtmJwMnAHOAMM8Pd78jDekVERGQUk2rgZvYpMldjOwV4kMzFXH4BqIGLiIgEmuxJbO8EXg/81t2vAs4AZk+6KhERERnTZBt4t7ungZSZHQS0AsePs4yIiIhM0mSPgVea2XzgO0AV0An8erJFiYiIyNgmPAI3MwM+7+673P1bwBuBK7O70ifMzG40s2Yz25B9XDTKfBeY2bNm1mBmN0xmmyIiIsVmwg3c3R34nyHPm9z9N/koCviKu6/IPh4c/qKZTQduJnPS3CnA5WZ2Sp62nZOqre080NhH1db2Qm5WRESmsKqt7dz8SENBesNkd6GvN7Oz3P3JvFSTu7OBBnd/DsDM7gYuBuoKsfGqre1c+u11DKSdHzT8kuVHzmPenJmF2HRZ2bWrm28+uy7pMkqW8o2lfGNNxXx39/RT/9vduMPsmdO48+o1rDpuQdj2JtvA1wJ/bmZbgT2AkRmcnz7J9X7IzN4DVAIfd/fhf8ocDTw/5Pl24JyRVmRm1wDXABxxxBE8+uijkywNHmjsYyCduRlb2qG1vZOBA2zS65V9DQwMsGvXrqTLKFnKN5byjTUV832p28m2Bvr609z1f0+y+4RZYdubbAO/cCILmdn/kbmL2XB/B3wT+CyZ25V+FvgX4M+Gr2KEZUe8vam73wLcArB69Wo/77zzJlLyPuYtbeeBpvX09aeZNXMa374q9q+scvXoo4+Sj89LRqZ8YynfWFMx36qt7Vxx63r6U2lmzpjG5W84a+qOwN196wSXe0Mu85nZd4AHRnhpO3DMkOeLgR0TqWUiVh23gDuvXsNd//dk+AckIiLFYbA3rH/uJdYcf2h4b5hQAzezandfOdl5RlnuKHdvyT59O/D0CLM9CZyYvftZM3AZ8Kf7u63JWHXcAnafMEvNW0RE9lp13IKC9YWJjsBfYWZjnXFuwMETXPeXzGwFmV3iTWTvbmZmi4Bb3f0id0+Z2YeAHwPTgdvcfeMEtyciIlJ0JtrAl48/CwMTWbG7v3uU6TuAi4Y8f5DM9ddFRETKzoQa+ESPfYuIiEh+TPZa6CIiIpIANXAREZEiNKkGbmZfzGWaiIiI5NdkR+BvHGHahC7uIiIiIrmb6PfAPwhcC5ww7Otk84An8lGYiIiIjG6iXyP7DfBHwBeAvx4yfbe775x0VSIiIjKmiTbwr7v7KjM7SV8pExERKbyJNvB+M/s34Ggz+/rwF939I5MrS0RERMYy0Qb+FuANwPlAVf7KERERkVxM9EpsbcDdZvaMu9fkuSYREREZx0TPQv+Eu38JuNrMXnYfbu1CFxERiTXRXejPZH9W5qsQERERyd1Ed6H/MPvz9vyWIyIiIrmY6AgcADM7CfhLYMnQdbn7+ZMrS0RERMYyqQYO3AN8C7iVCd7/W0RERPbfZBt4yt2/mZdKREREJGcTPQv9kOyvPzSza4F7gd7B13U5VRERkVgTHYFXAQ5Y9vlfDXnNgeMnU5SIiIiMbaJnoS/NdyEiIiKSu0ndD9zMLjGzednfP2lmPzCzM/NTmoiIiIxmUg0c+Ht3321mrwHeBNxO5qx0ERERCTTZBj741bE3A9909/uAWZNcp4iIiIxjsg282cy+DVwKPGhms/OwThERERnHZJvtpcCPgQvcfRdwCPuekb7fzOxGM2s2sw3Zx0UjzHOMmT1iZs+Y2UYz++hktikiIlJsJnUhF3fvAn4w5HkL0DLZooCvuPs/j/F6Cvi4u1dnT6KrMrOfuHtdHrYtIiIy5RXl7m53b3H36uzvu8ncHe3oZKsSEREpHHN/2e28E2VmNwLvBTrI3K704+7ePsb8S4DHgVPdvWOE168BrgE44ogjVt199915q7Wzs5OKioq8rU/2pXxjKd9YyjdWOeW7du3aKndfPXx6Ig3czP4POHKEl/4OWA+0kbmi22eBo9z9z0ZZTwXwGPA5d//BSPMMtXr1aq+szN8tzB999FHOO++8vK1P9qV8YynfWMo3Vjnla2YjNvDJ3sxkQtz9DbnMZ2bfAR4Y5bWZwH8Dd+bSvEVERErJlDsGbmZHDXn6duDpEeYx4LvAM+7+5ULVJiIiMlVMuQYOfMnMas3sN8Ba4HoAM1tkZg9m5zkXeDdw/lhfNxMRESlViexCH4u7v3uU6TuAi7K//4Lf3wlNRESk7EzFEbiIiIiMQw1cRESkCKmBi4iIFCE1cBERkSKkBi4iIlKE1MBFRESKkBq4iIhIEZpyNzOJZGYvAlvzuMqFZK7bLjGUbyzlG0v5xiqnfI9z98OGTyyrBp5vZlY50gXmJT+UbyzlG0v5xlK+2oUuIiJSlNTARUREipAa+OTcknQBJU75xlK+sZRvrLLPV8fARUREipBG4CIiIkVIDVxERKQIqYFPgJldYGbPmlmDmd2QdD2lxMyOMbNHzOwZM9toZh9NuqZSZGbTzewpM3sg6VpKjZnNN7Pvm1l99t/xq5KuqZSY2fXZ/zc8bWZ3mdmcpGtKihr4fjKz6cDNwIXAKcDlZnZKslWVlBTwcXd/BbAGuE75hvgo8EzSRZSorwE/cvflwBko57wxs6OBjwCr3f1UYDpwWbJVJUcNfP+dDTS4+3Pu3gfcDVyccE0lw91b3L06+/tuMv/zOzrZqkqLmS0G3gzcmnQtpcbMDgJeC3wXwN373H1XokWVnhnAAWY2A5gL7Ei4nsSoge+/o4HnhzzfjhpMCDNbApwJ/CrhUkrNV4FPAOmE6yhFxwMvAv+WPURxq5kdmHRRpcLdm4F/BrYBLcDv3P3hZKtKjhr4/rMRpum7eHlmZhXAfwN/4e4dSddTKszsLUCru1clXUuJmgGsBL7p7mcCewCdJ5MnZraAzB7PpcAi4EAze1eyVSVHDXz/bQeOGfJ8MWW8CyeCmc0k07zvdPcfJF1PiTkXeKuZNZE5/HO+mf1HsiWVlO3Adncf3Gv0fTINXfLjDcAWd3/R3fuBHwCvTrimxKiB778ngRPNbKmZzSJzAsX9CddUMszMyBw/fMbdv5x0PaXG3f/G3Re7+xIy/3Z/5u5lO4LJN3f/LfC8mZ2cnfR6oC7BkkrNNmCNmc3N/r/i9ZTxSYIzki6g2Lh7ysw+BPyYzBmQt7n7xoTLKiXnAu8Gas1sQ3ba37r7g8mVJLJfPgzcmf0D/zngqoTrKRnu/isz+z5QTeYbK09RxpdU1aVURUREipB2oYuIiBQhNXAREZEipAYuIiJShNTARUREipAauIiIyH4ys9vMrNXMns7Dutaa2YYhjx4ze9u4y+ksdBERkf1jZq8FOoE7sjdWydd6DwEagMXu3jXWvBqBi5Sp7G0vrx3yfFH2O7b53s6NZtZsZp8ZY54TsiOPznxvXySCuz8O7Bw6Lfvv+EdmVmVmPzez5RNY9TuBh8Zr3qAGLlLO5gN7G7i773D3dwZt6yvu/g+jvejuje6+ImjbIoVyC/Bhd18F/CXwjQms4zLgrlxm1JXYRMrXF4ATsle8+wmZ+9w/4O6nmtl7gbeRudrgqcC/ALPIXCWvF7jI3Xea2QnZ5Q4DuoD3u3v9WBs1s9eRuWc2ZG4E9NrsrWNFilb2BkyvBu7JXOUVgNnZ194BjLQHqtnd3zRkHUcBp5G50ue41MBFytcNwKmDI9/s7VuHOpXM7VznkDkm99fufqaZfQV4D5nbkt4CfMDdN5vZOWRGHOePs92/BK5z9yey/9Pryc/bEUnUNGDXSHuSsjdlyuXGTJcC92Zv1JLTBkVERvKIu+929xeB3wE/zE6vBZYMG3FsAL4NHJXDep8AvmxmHwHmu3sq/6WLFFb2tsdbzOwSyNyYyczO2M/VXE6Ou89BDVxERtc75Pf0kOdpMnvv9o44hjxeMd5K3f0LwNXAAcD6CZ7oI5IoM7sLWAecbGbbzex9wBXA+8ysBthI5t7lua5vCZlbVT+W6zLahS5SvnYD8ya6sLt3mNkWM7vE3e/J3t7xdHevGWs5MzvB3WvJ3HHuVcByYMzj5iJTjbtfPspLF0xwfU3A0fuzjEbgImXK3V8CnjCzp83snya4momMOP4iu80aoBt4aILbFilrupCLiIQysxuBTnf/5xzm7XT3iviqRIqfRuAiEq0TuCaXC7kALxSsKpEipxG4iIhIEdIIXEREpAipgYuIiBQhNXAREZEipAYuIiJShP4f4BbpBWaCxwUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from ahs_utils import show_drive_and_shift\n", + "\n", + "show_drive_and_shift(drive, shift)" + ] + }, + { + "cell_type": "markdown", + "id": "e0cff122-476f-45fd-bafe-c86b63f22deb", + "metadata": {}, + "source": [ + "### Rydberg-Rydberg interaction\n", + "\n", + "Finally, the third term in $H(t)$ is the van der Waals interaction between all pairs of Rydberg atoms,\n", + "\n", + "\\begin{align}\n", + "H_{\\text{vdW}, j, k} =V_{j,k} \\,n_j\\, n_k = \\frac{C_6}{R_{j,k}^6} \\,n_j\\, n_k,\n", + "\\end{align}\n", + "\n", + "where $C_6$ is a fixed interaction coefficient, and $R_{j,k}=|{\\bf x}_j-{\\bf x}_k|$ is the distance between atoms $j$ and $k$. This interaction shifts the frequency of the Rydberg level of all atoms that are close to an atom that is already in its Rydberg state. While the overall coefficient, $C_6$ is a fixed value (determined by the nature of the ground and Rydberg states), the strength of this interaction can be tuned by adjusting the pairwise distance $R_{j,k}$ between atoms." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "12529050-720f-450a-84e8-d266d1c9ac48", + "metadata": {}, + "outputs": [], + "source": [ + "# Note:\n", + "# The van der Waals interaction term is implicitly assumed in the current version of the AHS module,\n", + "# its strength (C6 / R_{j,k}^6) is calculated (if using the local simulator) from the atomic positions \n", + "# of the register, hence there is no need to specify it explicitly." + ] + }, + { + "cell_type": "markdown", + "id": "9de2469a-7326-4cce-9382-45668759ecc6", + "metadata": {}, + "source": [ + "**Introduction to Rydberg blockade**\n", + "\n", + "For the interaction coefficient, the value of $C_6$ depends on the atom species, and the states used in the simulation. Here we shall take the value \n", + "\n", + "\\begin{align}\n", + "C_6 = 5.42\\times 10^{-24} ~\\text{rad}~ \\text{m}^6/\\text{s}\n", + "\\end{align}\n", + "\n", + "for $|r\\rangle = |70S_{1/2}\\rangle$ of the $^{87}$Rb atoms. For the typical scenario, where atoms are separated by $4\\times10^{-6}$ meters, the van der Waals interaction strength is $V_{jk}=1.32\\times10^9 \\text{rad}/\\text{s}$, which is much larger than the typical scale of the Rabi frequency (around $6\\times10^6 \\text{rad}/\\text{s}$). As a result, when the separation of two atoms is within certain distance, it is nearly impossible to drive them to the Rydberg state simultaneously. \n", + "\n", + "This is called the Rydberg blockade phenomena, illustrated in the figure below (Source: [Browaeys and Lahaye](https://arxiv.org/abs/2002.07413)), where $R$ is the separation between the atoms, and $E$ indicates the energies or frequencies of the different two-atom states as $R$ changes. The vertical arrows indicate the effect of a uniform driving field (with Rabi frequency $\\Omega$) that successfully transitions the atoms from the $|gg\\rangle$ ground state to the 1-atom excited state $|\\psi_+\\rangle = (|gr\\rangle + |rg\\rangle)/\\sqrt{2}$ (independent of $R$), but fails to get from there to the doubly-excited state $|rr\\rangle$, if $R$ is smaller than $R_b = (C_6 / \\Omega)^{1/6}$, the blockade radius.\n", + "\n", + "Note: In the presence of both global Rabi frequency and detuning, it is more accurate to estimate the blockade radius with $R_b = (C_6 / \\sqrt{\\Omega^2+\\Delta^2})^{1/6}$, see [Pichler, et. al.](https://arxiv.org/abs/1808.10816).\n", + "\n", + "\"drawing\"" + ] + }, + { + "cell_type": "markdown", + "id": "8eae4fdd-9b85-42fd-b7ae-aad65f6fb30b", + "metadata": { + "tags": [] + }, + "source": [ + "### Full program\n", + "\n", + "The fully-specified program can be inspected with the following command." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "98489138-a878-4514-8d3b-b36f19337eda", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'braketSchemaHeader': {'name': 'braket.ir.ahs.program', 'version': '1'},\n", + " 'setup': {'ahs_register': {'sites': [[Decimal('0'), Decimal('0')],\n", + " [Decimal('0.0000055'), Decimal('0.0')],\n", + " [Decimal('0.00000275'), Decimal('0.000004763139720814412')]],\n", + " 'filling': [1, 1, 1]}},\n", + " 'hamiltonian': {'drivingFields': [{'amplitude': {'time_series': {'values': [Decimal('2500000.0'),\n", + " Decimal('2500000.0')],\n", + " 'times': [Decimal('0.0'), Decimal('8.885765876316732E-7')]},\n", + " 'pattern': 'uniform'},\n", + " 'phase': {'time_series': {'values': [Decimal('0.0'), Decimal('0.0')],\n", + " 'times': [Decimal('0.0'), Decimal('8.885765876316732E-7')]},\n", + " 'pattern': 'uniform'},\n", + " 'detuning': {'time_series': {'values': [Decimal('0.0'), Decimal('0.0')],\n", + " 'times': [Decimal('0.0'), Decimal('8.885765876316732E-7')]},\n", + " 'pattern': 'uniform'}}],\n", + " 'shiftingFields': [{'magnitude': {'time_series': {'values': [Decimal('-50000000.0'),\n", + " Decimal('-50000000.0')],\n", + " 'times': [Decimal('0.0'), Decimal('8.885765876316732E-7')]},\n", + " 'pattern': [Decimal('0'), Decimal('0'), Decimal('0.5')]}}]}}" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ahs_program.to_ir().dict()" + ] + }, + { + "cell_type": "markdown", + "id": "bf450c2f", + "metadata": {}, + "source": [ + "# Running AHS program with local simulator" + ] + }, + { + "cell_type": "markdown", + "id": "ecfcc7bc", + "metadata": {}, + "source": [ + "The AHS program defined above realizes the maximally entangled state for a pair of atoms, out of the three atoms in the triangular array. To see that, recall that we have subjected the top atom in the triangular array (labeled as atom 2) with a strong detuning $H_{\\text{shift}, 2}(t) = -\\frac{1}{2}\\Delta_\\text{local}n_2$ where $\\Delta_\\text{local}=-10\\Omega_\\text{max}=-2.5\\times10^7$ rad/s. Since $\\Delta_\\text{local}$ is much bigger than any other energy scales in the system, including the Rabi frequency, it is energy unfavorable for atom 2 to be excited to the Rydberg state (note the minus sign in $H_{\\text{shift}, 2}(t)$). Hence atom 2 remains in the ground state throughout the evolution, and can be neglected in the following analysis.\n", + "\n", + "Since the other two atoms are subjected with only the driving field with zero detuning and phase, the constant Hamiltonian reads\n", + "\\begin{align}\n", + "H = \\frac{\\Omega}{2}\\sum_{k=0}^1\\left(|g_k\\rangle\\langle r_k| + |r_k\\rangle\\langle g_k|\\right) + V_{0,1}{n}_0{n}_1,\n", + "\\end{align}\n", + "where $k=0,1$ are the indices for the two lower atoms in the triangular array. More concretely, in the basis of $\\left\\{|gg\\rangle, |gr\\rangle, |rg\\rangle, |rr\\rangle\\right\\}$, the Hamiltonian takes the following matrix representation\n", + "\\begin{align}\n", + "H = \n", + "\\begin{bmatrix}\n", + "0 & \\frac{\\Omega}{2} & \\frac{\\Omega}{2} & 0 \\\\\n", + "\\frac{\\Omega}{2} & 0 & 0 & \\frac{\\Omega}{2}\\\\\n", + "\\frac{\\Omega}{2} & 0 & 0 & \\frac{\\Omega}{2}\\\\\n", + "0 & \\frac{\\Omega}{2} & \\frac{\\Omega}{2} & V_{0,1}\n", + "\\end{bmatrix}.\n", + "\\end{align}\n", + "Since the two atoms are separated by $d_{0,1} = 5.5\\times10^{-6}$ meters, the interaction strength between them reads\n", + "\\begin{align}\n", + "V_{0,1}=\\frac{C_6}{(d_{0,1})^6} = \\frac{5.42\\times10^{-24}}{(5.5\\times10^{-6})^6}\\approx1.96\\times10^8 \\text{ rad/s},\n", + "\\end{align}\n", + "which is much greater than the Rabi frequency. Hence the two atoms are in the Rydberg blockade regime, and the state $|rr\\rangle$ is very unlikely to be excited (assuming the initial state is $|gg\\rangle$). Hence we can neglect the $|rr\\rangle$ state, and the Hamiltonian is simplified to be\n", + "\\begin{align}\n", + "H = \n", + "\\begin{bmatrix}\n", + "0 & \\frac{\\Omega}{2} & \\frac{\\Omega}{2} \\\\\n", + "\\frac{\\Omega}{2} & 0 & 0 \\\\\n", + "\\frac{\\Omega}{2} & 0 & 0 \n", + "\\end{bmatrix},\n", + "\\end{align}\n", + "and the final state of the evolution can be solved to be\n", + "\\begin{align}\n", + "|\\psi\\rangle = e^{-iHt}|gg\\rangle = \n", + "\\begin{bmatrix}\n", + "\\cos\\frac{\\Omega t}{\\sqrt{2}}\\\\\n", + "\\frac{i}{\\sqrt{2}}\\sin\\frac{\\Omega t}{\\sqrt{2}}\\\\\n", + "\\frac{i}{\\sqrt{2}}\\sin\\frac{\\Omega t}{\\sqrt{2}}\n", + "\\end{bmatrix}.\n", + "\\end{align}\n", + "Hence if the system evolves for a duration $T=\\frac{\\pi}{\\sqrt{2}\\Omega}$, which is indeed the duration of the AHS program defined in the previous section, we will arrive at a maximally entangled state between the two atoms\n", + "\\begin{align}\n", + "|\\psi\\rangle = \\frac{1}{\\sqrt{2}}(|gr\\rangle+|rg\\rangle).\n", + "\\end{align}\n", + "\n", + "Before submitting the AHS program to a QPU, it is useful to run the program on the local simulator to check if the simulation result meets one's expectation. " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "9967419e", + "metadata": {}, + "outputs": [], + "source": [ + "from braket.devices import LocalSimulator\n", + "device = LocalSimulator(\"braket_ahs\")" + ] + }, + { + "cell_type": "markdown", + "id": "da67bcf1", + "metadata": {}, + "source": [ + "We can run the AHS program just like running a quantum circuit on other Braket devices. Below we have explicitly specified the values of `steps` and `shots`, which are the number of time steps in the simulation and the number of sampling for the final stats, respectively. One could increase the accuracy of the result by increasing the values of these arguments, at the expense of longer runtime. " + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "6a510997", + "metadata": {}, + "outputs": [], + "source": [ + "result = device.run(ahs_program, shots=1000, steps=100).result()" + ] + }, + { + "cell_type": "markdown", + "id": "85747c3e", + "metadata": {}, + "source": [ + "To confirm that we indeed arrive at a maximally entangled state, we first collect the measurement results, followed by counting the number of occurrence of $|gr\\rangle$ and $|rg\\rangle$ respectively." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "7a906e64", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'ggr': 1, 'grg': 484, 'rgg': 515}" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "def get_counters_from_result(result):\n", + " post_sequences = [list(measurement.post_sequence) for measurement in result.measurements]\n", + " post_sequences = [\"\".join(['r' if site==0 else 'g' for site in post_sequence]) for post_sequence in post_sequences]\n", + "\n", + " counters = {}\n", + " for post_sequence in post_sequences:\n", + " if post_sequence in counters:\n", + " counters[post_sequence] += 1\n", + " else:\n", + " counters[post_sequence] = 1\n", + " return counters\n", + "\n", + "get_counters_from_result(result)" + ] + }, + { + "cell_type": "markdown", + "id": "7143ac6b", + "metadata": {}, + "source": [ + "The simulation outcome indeed confirms our expectations\n", + "1. It is very unlikely to excite the 3rd atom to the Rydberg state because of the strong local detuning. \n", + "2. Due to the Rydberg blockade, it is very unlikely to excite the 1st and 2nd atoms to the Rydberg states simultaneously.\n", + "3. By appropriately tuning the Rabi frequency and the duration of the AHS program, we can arrive at a maximally entangled state for the 1st and 2nd atoms. Since our simulation is noiseless, the discrepancy from ideal 50%-50% split is attributed to statistical sampling (aka \"shot noise\").\n", + "\n", + "In summary, in this notebook, we have introduced Analog Hamiltonian Simulation (AHS), a different quantum computing paradigm, and showed how to run an AHS program with Rydberg atoms using Braket's local AHS simulator." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1e9f5dac", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + }, + "varInspector": { + "cols": { + "lenName": 16, + "lenType": 16, + "lenVar": 40 + }, + "kernels_config": { + "python": { + "delete_cmd_postfix": "", + "delete_cmd_prefix": "del ", + "library": "var_list.py", + "varRefreshCmd": "print(var_dic_list())" + }, + "r": { + "delete_cmd_postfix": ") ", + "delete_cmd_prefix": "rm(", + "library": "var_list.r", + "varRefreshCmd": "cat(var_dic_list()) " + } + }, + "types_to_exclude": [ + "module", + "function", + "builtin_function_or_method", + "instance", + "_Feature" + ], + "window_display": false + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/modules/1_Continue_Exploring/A_qtm_hw/analog_hamiltonian_simulation/01_Introduction_to_Aquila.ipynb b/modules/1_Continue_Exploring/A_qtm_hw/analog_hamiltonian_simulation/01_Introduction_to_Aquila.ipynb new file mode 100644 index 000000000..ffd85f996 --- /dev/null +++ b/modules/1_Continue_Exploring/A_qtm_hw/analog_hamiltonian_simulation/01_Introduction_to_Aquila.ipynb @@ -0,0 +1,888 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "92c948f0-6dd3-4955-b4eb-2926a79ecf7e", + "metadata": { + "tags": [] + }, + "source": [ + "# Introduction to Aquila\n", + "\n", + "In the previous notebook, we have introduced the concept of Analog Hamiltonian Simulation (AHS) and how to run an AHS program on the neutral atom local simulator. In this notebook, we illustrate how to run an AHS program on QuEra's Aquila, a Rydberg based QPU, via Amazon Braket. \n" + ] + }, + { + "cell_type": "markdown", + "id": "f4df5b53", + "metadata": {}, + "source": [ + "## QuEra's Aquila\n", + "\n", + "In order to use the Aquila device, let us first connect to it, and query its parameters with its unique Amazon Resource Number (ARN)." + ] + }, + { + "cell_type": "markdown", + "id": "57ac4e1c", + "metadata": {}, + "source": [ + "
    \n", + "Note: You need to pip install the Braket SDK. If you are new to Amazon Braket, make sure you have completed the necessary Get Started steps. If you are using a Braket hosted notebook instance, this SDK comes pre-installed with the notebooks.\n", + "
    \n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "6f3c3385", + "metadata": {}, + "outputs": [], + "source": [ + "# Use Braket SDK Cost Tracking to estimate the cost to run this example\n", + "from braket.tracking import Tracker\n", + "tracker = Tracker().start()" + ] + }, + { + "cell_type": "markdown", + "id": "7175daec", + "metadata": {}, + "source": [ + "In this notebook, we will use `matplotlib` package and `ahs_utils.py` module in the current working directory for visualization purposes and other functionalities." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "3cd780d0", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'braketSchemaHeader': {'name': 'braket.device_schema.quera.quera_ahs_paradigm_properties',\n", + " 'version': '1'},\n", + " 'lattice': {'area': {'height': Decimal('0.000076'),\n", + " 'width': Decimal('0.000075')},\n", + " 'geometry': {'numberSitesMax': 256,\n", + " 'positionResolution': Decimal('1E-7'),\n", + " 'spacingRadialMin': Decimal('0.000004'),\n", + " 'spacingVerticalMin': Decimal('0.000004')}},\n", + " 'performance': {'lattice': {'positionErrorAbs': Decimal('1E-7')},\n", + " 'rydberg': {'rydbergGlobal': {'rabiFrequencyErrorRel': Decimal('0.02')}}},\n", + " 'qubitCount': 256,\n", + " 'rydberg': {'c6Coefficient': Decimal('5.42E-24'),\n", + " 'rydbergGlobal': {'detuningRange': (Decimal('-125000000.0'),\n", + " Decimal('125000000.0')),\n", + " 'detuningResolution': Decimal('0.2'),\n", + " 'detuningSlewRateMax': Decimal('2500000000000000.0'),\n", + " 'phaseRange': (Decimal('-99.0'),\n", + " Decimal('99.0')),\n", + " 'phaseResolution': Decimal('5E-7'),\n", + " 'rabiFrequencyRange': (Decimal('0.0'),\n", + " Decimal('15800000.0')),\n", + " 'rabiFrequencyResolution': Decimal('400.0'),\n", + " 'rabiFrequencySlewRateMax': Decimal('250000000000000.0'),\n", + " 'timeDeltaMin': Decimal('5E-8'),\n", + " 'timeMax': Decimal('0.000004'),\n", + " 'timeMin': Decimal('0.0'),\n", + " 'timeResolution': Decimal('1E-9')}}}\n" + ] + } + ], + "source": [ + "from braket.aws import AwsDevice \n", + "from pprint import pprint as pp\n", + "\n", + "device = AwsDevice(\"arn:aws:braket:us-east-1::device/qpu/quera/Aquila\")\n", + "capabilities = device.properties.paradigm\n", + "pp(capabilities.dict())" + ] + }, + { + "cell_type": "markdown", + "id": "ea413e47", + "metadata": {}, + "source": [ + "The preceding numbers represent numerical capabilities and constraints for which AHS programs can be run on Aquila. In the following sections, we will go through these device capabilities and build an AHS program that complies with these constraints." + ] + }, + { + "cell_type": "markdown", + "id": "a0b5f568", + "metadata": {}, + "source": [ + "## Building an AHS program for Aquila\n", + "\n", + "We have seen the basic components of an AHS program in the previous example, including the register, the driving and shifting fields. In order to run an AHS program on Aquila, however, these components have to meet certain requirements. Particularly, the first version of Aquila does not support shifting field. In this section, we introduce other constraints via building up a valid program for Aquila step by step. " + ] + }, + { + "cell_type": "markdown", + "id": "6535a209", + "metadata": {}, + "source": [ + "### Register\n", + "In contrast to the local simulator which can only simulate a handful of atoms (qubits), Aquila can simulate systems with a few hundred. The coordinates of the atoms (qubits), however, have to meet certain constraints. We can check the requirements as follows" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "edf0d67c", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'area': {'height': Decimal('0.000076'), 'width': Decimal('0.000075')},\n", + " 'geometry': {'numberSitesMax': 256,\n", + " 'positionResolution': Decimal('1E-7'),\n", + " 'spacingRadialMin': Decimal('0.000004'),\n", + " 'spacingVerticalMin': Decimal('0.000004')}}\n" + ] + } + ], + "source": [ + "lattice_constraints = capabilities.lattice\n", + "pp(lattice_constraints.dict())" + ] + }, + { + "cell_type": "markdown", + "id": "7dadd661", + "metadata": {}, + "source": [ + "The detailed description of these sections can be inspected as follows" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "409362f9", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " The area of the FOV\n", + " Attributes:\n", + " width (Decimal): Largest allowed difference between x\n", + " coordinates of any two sites (measured in meters)\n", + " height (Decimal): Largest allowed difference between y\n", + " coordinates of any two sites (measured in meters)\n", + " \n", + "\n", + " Spacing or number of sites or rows\n", + " Attributes:\n", + " spacingRadialMin (Decimal): Minimum radial spacing between any\n", + " two sites in the lattice (measured in meters)\n", + " spacingVerticalMin (Decimal): Minimum spacing between any two\n", + " rows in the lattice (measured in meters)\n", + " positionResolution (Decimal): Resolution with which site positions\n", + " can be specified (measured in meters)\n", + " numberSitesMax (int): Maximum number of sites that can be placed\n", + " in the lattice\n", + " \n" + ] + } + ], + "source": [ + "print(lattice_constraints.area.__doc__)\n", + "print(lattice_constraints.geometry.__doc__)" + ] + }, + { + "cell_type": "markdown", + "id": "b15d2f13", + "metadata": {}, + "source": [ + "As we can see, the requirements for the setup in an AHS program can be summarized as follows\n", + "1. The number of sites in the setup cannot be greater than `capabilities.lattice.geometry.numberSitesMax`\n", + "2. The atoms have to be separated by at least `capabilities.lattice.geometry.spacingRadialMin` meters\n", + "3. The rows in the setup have to be separated by at least `capabilities.lattice.geometry.spacingVerticalMin` meters\n", + "4. The resolution for the coordinates of the atoms cannot be greater than `capabilities.lattice.geometry.positionResolution` meters\n", + "5. The setup cannot be wider than `capabilities.lattice.area.width` meters\n", + "6. The setup cannot be taller than `capabilities.lattice.area.height` meters\n", + "\n", + "Below, we demonstrate a valid setup that meets these requirements, which has 105 atoms grouped as 35 equilateral triangles that are well separated from each other." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "487a6b5e", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcQAAAG2CAYAAADhtfbVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABWhUlEQVR4nO3dd3gU5frG8e+7CRB6kQAqIhZCUxGCil2xYfdYEDzH7rH8LNi72HsDux67Hns/VhSxoEEMAoKAoAhI7zUkIdnn98ebmCAlm2Rmk1nuz3XlEvLOvPvM7bLP7OzMrDMzRERENnWxmi5ARESkNlBDFBERQQ1RREQEUEMUEREB1BBFREQASK/pAkREpGaMGjWqVXp6+tPADqT+G6Q4ML6oqOis7Ozs+etbQA1RRGQTlZ6e/nSbNm06Z2ZmLonFYil9DV48HncLFizoMnfu3KeBo9a3TKrvEYiIyIbtkJmZuTzVmyFALBazzMzMZfh3w+tfJon1iIhI7RLbFJphqZJt3WDfC60hOueedc7Nd86ND2i+YufcmJKfD4KYU0REpFSY7xCfB/oEON9qM9u55Ge9x39FRCREQ4c25Mgjt6Fr184ceeQ2DB3aMIhpb7vttlbbbrtt1yZNmux87bXXtgG49NJLtxg4cGBrgOOOO679c8891zzR+X799de6HTp06FrZOkI7qcbMvnHOtS//O+fcdsCjQCaQB/zbzCaFVYOIiATkkku24IknWlNQEMMMJk6szxdfNOPcc+fx4IOzqzP1M888k/nJJ59M6dSpU2FQ5VZFsj9DfAq40MyygcuBxyqxboZzLtc5N8I5d0wo1YmIyLqGDm3IE0+0Jj/fN0MAM0d+fownnmhdnXeKJ510UruZM2fWO+qoo7a/+eabW51yyintNrb8t99+22CXXXbp2LVr18577bVXh+nTp9cp/X3Hjh277Lzzzp0eeOCBVlWpJWkN0TnXCNgDeNM5NwZ4Eti8ZOxY59z49fx8Vm6KdmbWEzgJGFTyblNERMI2aFArCgrW3y8KChyDBlWpAQG88sorM1q1arXm66+/nty8efPijS1bUFDgLrroonbvv//+77/88svEU089deHll1++JcCZZ57Z/oEHHpgxZsyYKh91TOZ1iDFgqZnt/PcBM3sHeGdjK5vZ7JL/TnXOfQV0B34PvkwREVnL1KkZbOirAs0cf/yRkYwyfv7553pTpkyp37t37yyAeDxOZmbmmkWLFqWtWLEi7fDDD18JcMYZZyz68ssvm1Z2/qQ1RDNb7pz7wzl3gpm96ZxzwE5mNraidZ1zzYE8MytwzrUE9gTuCbtmEREBtt02n4kT62Pm1hlzzthmm/xklGFmbvvtt1/993eBCxcuTPMtpXrCvOziVSAH6Oicm+mcOxP4J3Cmc24s8AtwdILTdQZyS9YbBtxlZhPCqFtERP7m4ovnU6/e+t8i1qtnXHzxem+FFrSddtopf/HixelffPFFQ/CHUHNzczNatmxZ3KhRo+LPPvusEcDzzz/foirzh3mWaf8NDFX6Ugwz+x7YsXoViYhIlRxwwCrOPXdeyVmmDjOHc0a9esa5587jgANWJaOMjIwMe+21136/6KKL2q1YsSKtuLjYnXfeefN69uyZ/8wzz0w766yz2tevXz/eu3fv5VWZ39mGjguLiEhKGzt27LRu3botTHiFoUMbMmhQK/74I4Nttsnn4ovnJ6sZBmXs2LEtu3Xr1n59Y6E0xJYtW1r79ut9PBERqSXuuece2rRpk5THKigoKOrevXuF54yEbWMNMZRDpu3btyc3NzeMqUVEJCATJ06kc+fOSXms8ePH1+hF94nQzb1FRDZhm9LHZvF43OG/F3G91BBFRDZRGRkZLFq0aJNoiiXfh9gU2OAXTugLgkVENlFt27Zl5syZLFiwIPTHmjt3bnpxcXHL0B9ow+LA+KKiorM2tIAaoojIJqpOnTpss802SXmsLl26jCu5/WatpUOmIiIiqCGKiIgAaogiIiKAGqKIiAighigiIgKoIYqIiABqiCIiIoAaooiICJBKDXHECOjfH7Kz/X9HjKjpiqJJOQZDOQZDOQZDOSbGzAL/yc7OtqQaONCsQQMz58zALBbzfx84MLl1RJ1yDIZyDIZyDEYtyRHItRD6TZA/0W+IOTn+fy7Yt+xhOezqNwv873NykldLlJXL8Qv2t5/ophyrolyOH9HHJpKlHKuiXI7vcLRNZWvlWBXlcnyVvjab1jWWYxQaYvQPmQ4eDKtXs4Y0DmQoB/AlRaWblZ/vx6ViJTmuoj59+IzeDOOv+98rx8SV5LiQFhzJh+zPV2VjyjFxJTlOY2uO5V0OZGjZmHJMXEmOY9mR/rzGIQwpG1OO64h+Q5w8Gcx4gvMoIIM8GvIcZ/ixeBymTKnZ+qKiJMdBXEIRdVhKc96grx9TjokryfFeriROGnPZnE/o48eUY+JKcryLq3EYU9mO79jDjynHxJXkeDdXk0Yxv9CVMXTzY8pxHdFviFlZLHCtGMgtHMgQ9uFrruUOltAMYjHIyqrpCqMhK4s/XTvu4FqO5S16MIrLuY9VNFCOlZGVxWTXkQe5hFN5jix+5WIGUUgd5VgZWVmMdj14irP5Px5lK2ZwIQ9TTEw5VkZWFt+6fXiVk7iU+2nBYi7iIX/0RzmuK4zjsMn+DPHs9KctnUKbQCcbw04Wo8guZLA+a6iMnBw7Me0NyyDPptHOhrOHgdn13KIcKyH+fY4dGvvUmrDU5tLKPuEQA7N7uFw5VkL8+xzbM/adtWKuLaWJvc4JBmZPcLZyrISi4TnWzY21dkyzVdS3/3CmgdmrnKjPENfzE/mGmJtr5ii2S9MH+7OnwP6PRy2NNfbzOY8krY6o++or/2y4qc6tf+X4L16yeqy23y98sKbLi4z//c/n+ECdK//K8Ug+sEYst9mX3FPT5UXGyy/7HJ+pe65ZLGZxsH0ZZpuxwBZdcWdNlxcZjz3mc3yz7klmsZgVEbNsfrQt3UxbcfVtSa1FDTFk8bjZ7rubtWpltvTzkWb9+pllZ9vCf5xlLZoU2v77+2Vk49asMdtpJ7OttzbLGzbirxxnHX2eNaxfZEcfXdMVRkN+vtl225l17mxW+G1ZjlMOH2B16xTbKafUdIXRsHy52eabm/XsaVb8Xc5fOY7tc6XFYnG74IKarjAaFi40a9HC/Ovg92U5fnfgDQZm116b3HrUEEP20kt+C559dt2xv/aM3kxKKZH26KM+q7feWnfsrrv82KefJr+uqLnzTp/VkCHrjl1zjR/7/vvk1xU1V1/ts1rf0bzzz/dvvH/+Ofl1Rc3//Z9ZWtr6szr5ZLO6dc1++y159aghhqh0L3KXXcyKi9cdLyoy69bNrF07s1WrQi8nshYuNGve3Kx37/W/m87PN9t+e7OOHc0KCpJfX1TMnGnWsKHZMcesf3zFCrMttzTLzl7/81W8yZP9C/Wpp65/fNEi/65nv/109GdjxozxOw4XXrj+8VmzzBo1MjvqqOTVpIYYoquu8tWPGLHhZb7+2i+jG1ts2Lnn+r3IceM2vMyHH/oc778/eXVFzUknmdWrZzZ16oaXeeUVn+N//pO8uqLmiCPMGjc2mz17w8s8/rjP8fXXk1dXlMTjZnvvbbbZZmaLF294ubvv9jl+8kly6lJDDMnkyWZ16piddlrFy/brV/EL1abqp5/83ZwuuqjiZQ87zL9QzZkTfl1R8+23/l/SDTdsfLl43GyvvcxatjRbsiQppUXKRx/5HO+9d+PLFRWZ7byz2VZbma1cmZzaouTVV32OTz658eXy8806dEje0R81xJAcfrhZkyZmc+dWvOyff/qzi489NtSSIqeyL86lOyGnnx56aZFS/sU5kUPzo0f7Q1kDBoRdWbQUFFTuxTnRnZBNzcqV/tB8jx7+uVmRjz/2Od53X/i1qSGGoCqH726/3a/z+eehlRU5VTl8l8hh6k3NE09YpQ/flR6mHj8+vLqipiqH7xI5TL2pue46n+Pw4Ymvk8hh6iBEoSE6X2ewevbsabm5uYHPW1AAO+wA6ekwdizUrZvYevn50LUrZGTAmDFQp07gpUXKypXQqRO0aQM//ABpaYmtt2IFdOwIbdv6b4+JRf8+R9WyeLG/0ccOO8CwYeBcYustXOjX69EDPv888fVS1ezZ/nnVuze8/37i682a5dc7+GB4553w6ouK33+HLl2gb1946aXE1/vtN//62L8/PP98aOXhnBtlZj3De4QAJNI1gWbAW8AkYCKw+8aWD+sdYuklAJ99Vvl133/frztoUPB1Rc211/osvvuu8utu7FKXTc0FF/jDn2PHVn7dRx7xOb79dvB1RU11LgG44w7b4KUum5qjj/ZnOs+aVfl1N3apS1CIwDvERBviC8BZJX+uCzTb2PJhNMRZs/z/7KpeJB6Pmx1yiFnTpmbz5gVZWbRMmeJffE4+uWrrr3UzhKXB1hYlY8f6ZljVi8TL3wxhU74s6LvvrFoXia9eXe5mCIXB1hYln37qc7zrrqqtv2KF2RZblNwMIaTLglKiIQJNgD/AH15N5CeMhvivf/nPC37/vepzTJxolp5uduaZwdUVNUce6a8/qspeZKncXH926qWXBldXlMTjZvvu609rX7So6vP8dbu8mwIrLVKKivx1mVtu6V+Qq+qDD3yODzwQXG1RUlDgT0bafnt/5mhV/XW7vGeCq628VGmIOwMjgeeB0cDTQMP1LHc2kAvktmvXLtAghw/3lV53XfXnuuwy/2I+cmT154qa0jPK7r67+nP9+99+52LChOrPFTWvv+5zfOKJ6s914olmGRlm06ZVf66o+c9/fI6vvFK9eeJxsz59Ej/zPNXcd5/P8cMPqzdPPG62xx5mmZnhXBaUKg2xJ1AE7Fby98HArRtbJ8h3iEVF/hTitm2DueZo2TKz1q3NevXatO4YUlBglpXlT22vzl5kqfnzzZo1Mzv44E3rjiErV/pLLHbeObHT2isyY4ZZ/fpmxx9f/bmiZMkSf8nP3nsH8/yZNMlfFnTGGdWfK0rmzPFniB52WDDzjRrl3zBcckkw85WXKg2xDTCt3N/3Bj7a2DpBNsSnnvJVvvZaYFPa88/7OV94Ibg5a7t77/Xb/PHHwc350EN+zvfeC27O2u6GG/w2f/ttcHPeequfc+jQ4Oas7QYM8J/Bjh4d3JxXXOFz/OGH4Oas7U47ze8ITJ4c3JznnOOP/vzyS3BzmqVIQ/TbwbdAx5I/3wTcu7Hlg2qIixf7vch99gn2XUhxsdluu5m1aePfMaa62bP954ZHHBHsvGvWmHXtarbNNmZ5ecHOXRtNneo/xz7ppGDnXb3aZ9i1q8801Y0b56/DPO+8YOddtsz/m95tt03j6M+IEf4V/Kqrgp13wQJ/9OfAA4N93U2lhrhzyeeDPwPvAc03tny1GmJOydeU9OhhF3b4xGKxuI0ZU/XpNmTkSL/1l58066/Hs379UueLR8vleEr7r61unWKbMiX4hxk61Od469kzUj7HY7YcaQ3rF9nMmcE/zHvv+RwHX/JHSucY797DercaZ80br7GFC4N/mBde8Dk+t+tjqZeh2V85FnfPtl1aTLHNWxbY8uXBP8zDD/sc39nrvsByTJmGWNmfKjfEgQP9fdacs5/ZwdJYY/+X/kRod+c+Y+dRlk6hTaSTjyIW848f9buBl8vxe3oZmF2dfm9o23V85/FWn1U2g61SNsfPOMjA7M46N4SyXfG42cHbTrGmLLH5ZKZsjm9xrIHZo3UGhLJdxTfcaL1iI6w1c2wpTVInQ7O1cnyG0w3MXqp7Rijbtub6m2wHN97aM9XyyAgkRzXEysjJ8YGDxcH2Z6i1YKEtpIX/fdB7eTk5Nrd+e2vCUjuETywOPg4I5/GSpVyOxTjL5kfbgpm2goah5Tgto6NlkGcn8mpZhimUYyHp1okJth1TLJ+6oeU4IaO7pVNo/+bJlMxxFfWtHdNsJ8bYGtKC366SxxpJT3MU22XcmxoZmq2V4xKaWibzbHe+869bIeX4JfsZmN3C9YHkGIWGWHtu3da/P7z+OphxOP/jY46gA5PZgtl+PLOVvy9RUCZMgAXzmUlbfmd7juR9PuAYPxaL+fsfvfpqcI+XLOVyPIghfMFBdGICrZnvx0PKcRpbM51tOI43eYu+fixFctyHr/iWfdmBcWzGIj8eUo6/sx0zaUt/XuUV/unHUiTHXnzPD+xON0bTjGV+PMgcSzIE+JWOzKMVE+hKJ36NdoawVo49GMVoutODUTRmpR8PKccJdGExzZnKdrTjz2rlGIVbt6XXdAF/mTzZ74MADVlFK+axeWkzBFi9OtjHW50HwJbMYjlNaEC5+eNxmDIl2MdLlnI5NmE5rZlb1gwhtBzb8SeraEg9CsvGUiTH5ixhc2aXNUMILcetmUY+9UinqGwsRXJsySK25M+yZgjB5liSIcC2TKURK6jDGv+LKGcIa+WYyXzaMaOsGUJoOW7H7zSjBY6SN05Rz7EiYbztrNIh0379/HHq8oeKSn9iMbP+/Ss/Z216vGRRjsFQjsFI5nalaoZmKZEjEThkWnsaYrlj5Ov8hPSZTVIfL1mUYzCUYzCSuV2pmqFZSuSohlhZpWdRle6dhH2GWLIfL1mUYzCUYzCSuV2pmqFZ5HOMQkOsPSfVlBoxAgYP9sepO3SAAQOgV69gC6zJx0sW5RgM5RiMZG5XqmYIkc4xCifV1L6GKCIiKScKDXET/85zERERTw1RREQENUQRERFADVFERARQQxQREQHUEEVERAA1RBEREUANUUREBFBDFBERAdQQRUREADVEERERQA1RREQEUEMUEREB1BBFREQANUQRERFADVFERARQQxQREQHUEEVERAA1RBEREUANUUREBFBDFBERAdQQRUREADVEERERQA1RREQEUEMUEREB1BBFREQANUQRERFADVFERARQQxQREQHUEEVERAA1RBEREUANUUREBFBDFBERAdQQRUREADVEERERQA1RREQEUEMUEREBID2RhZxz04AVQDFQZGY9wyxKREQk2RJqiCX2N7OFoVUiIiJSg3TIVEREhMQbogFDnHOjnHNnr28B59zZzrlc51zuggULgqtQREQkCRJtiHuaWQ/gUOB859w+f1/AzJ4ys55m1jMzMzPQIkVERMKWUEM0s9kl/50PvAvsGmZRIiIiyVZhQ3TONXTONS79M3AwMD7swkRERJIpkbNMWwPvOudKl3/FzD4NtSoREZEkq7AhmtlUoFsSahEREakxuuxCRESEVGqII0ZA//6Qne3/O2JETVcUTcoxGMoxGMoxGMoxMWYW+E92drYl1cCBZg0amDlnBmaxmP/7wIHJrSPqlGMwlGMwlGMwakmOQK6F0G+C/HG+zmD17NnTcnNzA593vUaMgAMOgLy8dccaNIChQ6FXr+TUEmXKMRjKMRjKMRi1KEfn3Cir5ffBjv4h08GDYfVqDDiHJ7iAh/irxefn+3GpWEmOcRz/4iWu5o6yMeWYuJIci4lxLG9xO9eWjSnHxJXkuIZ0DuUjHuKCsjHlmLiSHPOpx/4M5XlOKRtTjuuIfkOcPBnMmEMbnuFMnuIcFrGZH4vHYcqUmq0vKkpy/IP2vMJJDOZiltPYjynHxJXkOI4deJdjuZuryKeeH1OOiSvJMYdefMph3MpAikjzY8oxcSU5fsbBfEVvBnIrcZwfU47riH5DzMqCWIxruZMYceLEuJ7b/Fgs5selYiU5XsF91COffOpzG9f7MeWYuKwszMW4nPtpxApW0IT7ucyPKcfEZWURd2lczv00ZzELyeRxzvNjyjFxWVmscXW5ljvJZB5/0o6XONmPKcd1hfHBZFJPqsnJsZx6+xqYXc0ddjEPmKPYRtHdf3Cck5O8WqIsJ8eG1DvCwOwOrrYzeNrqUGCTyFKOlZGTY2/V7W9g9ijn2fG8YQ1YaTNoqxwrIyfHnq17joHZi/zTDuIza8Zim09L5VgZOTn2YJ0rDMze5SjrxffWmjm2jMZJz5EInFQT+YZYXGzWc4uZtoWbZStcY1tKE2vFXNsj9r3Fb9DZaIkqLDTr1HK+bed+s3yXYfPItCYstT6xz5RjJaxaZdau6RLbyf1sa1wdm0Y7yyDPTkx7Q2dHVsLSpWatGq7w/45dzCbQydIptH+nPaMcK2HePLMm9Vb7f8cuZj+SbY5iuzz9QZ1lup6fyB8yfe45yJ29JffeuIpGJx5O0+wO3Lnre3wf351XOt5c0+VFxiOPwKSFmQy6Zw31TjyGVtntuLn7+3waP5gPd1GOibr3XpixrBkPPRIj/cTj2Do7k6t3+IjXi0/g697KMVE33wwL8hrx8LMNcSf2pXN2Qy7qOISn46cz6ijlmKhrr4W84gwGvdIKd2JfembDmdt+xSC7iEn9leM6wuiyyXqHuGSJWWam2Z57msXjZb8vLjbr2dNs883Nli9PSimRNneuWZMmZoceunaOhYVmnTubbbut2erVNVdfVEybZpaRYXbiiWv/Pi/PbOutzXbayWzNmhopLVJ++cUsPd3s7LPX/v3SpWatWpntvvvaz1NZv5Ej/aWHl1++9u/nzTNr2tTs4IOTmyMReIcY6YZ48cX+f/hPP607lpPjt+7qq5NSSqSdcYZZnTpmkyatOzZkiM/xjjuSX1fUHH+8Wf36ZjNmrDv21ls+x0cfTX5dURKPmx14oFmzZmbz5687/uyzPseXXkp+bVFSXGzWq5dZ69Zmy5atOz5okM/x/feTV5MaYoh++cUsLc3snHM2vMypp5rVrWs2eXLo5UTWDz/4Z8EVV2x4mX/8w3/+/uefyasraoYO9Tneeuv6x+Nxs969zZo3N1u4MLm1Rcm77/ocH3po/ePFxWa77KKjPxV54QWf4/PPr3+8sNCsS5fkHv1RQwxJPG52wAF+L3LBgg0vN3u2WePGZocfHmo5kVVcbLbrrmZt2qx/L7LU1Klm9eqZnXRS8mqLksJCs65dzbbZZuMvLuPH+524c89NXm1Rkpdn1r69z3Jjh5ZHjPCvXFdembzaomTZMv/OcLfd/L/xDfn8c5/j7bcnpy41xJC8846v/OGHK1723nv9sh9+GGpJkfTccz6bF16oeNkbbvDLfvtt6GVFzuDBPpv33qt42QEDNnyYf1N3660+xy+/rHjZ007zh/l//TX8uqLm8sv9c2zkyIqXPfbY5B39iUJDjNy9TFevhi5doHFj+OknSK/gGx0LC2GnnfxNGcaNg3r1QikrcpYtg44dYdttYfhwf43uxuTlQadOsNlmkJsLaWnJqbO2W7AAOnSA3XaDTz8F5za+/NKlfvlOneCbbypeflPx55/++XjEEfDGGxUvP2+ev6Z8r73go4/Cry8qJk2CHXeEU0+Fp5+uePlp06BzZ/jHP+CVV8KtLQr3Mo3cO8Sbb/Z7kcOGJb7OJ5/4de6+O7SyIueyy/xe5I8/Jr7OG2/4HB9/PLy6oubf//ZnRE6YkPg6//mPz/GVV8KrK2r69vUnJE2blvg699+voz/lxeNmhxzizxifNy/x9W680ef49dehlWZm0XiHGKmGWHpae9++lV/3qKPMGjUymzUr+LqiZuJE/yJ+1lmVWy8eN9tvP7MWLcwWLQqntijJzfU7FZdeWrn1iorMsrPNttzSbMWKcGqLkmHD/CvRzTdXbr2CArNOncy2394sPz+U0iLlgw98jg8+WLn1Vq0ya9cu/MuC1BADdsIJfi9y+vTKr/vbb/6M05NPDr6uKInH/fVHTZtWbi+y1M8/+69TO//8wEuLlHjcXw/XurW/Pq6yvv/e/+u79trga4uSNWvMdtzRX6eZl1f59T/7zOd4112BlxYpq1f7M0Y7d/YneVXWm2/6HB97LPjaSqkhBujLL321t9xS9TmuvdbP8d13wdUVNe+95zMYNKjqc1xwgW+KY8cGV1fUvPiiz/G556o+xymn+J20KVMCKytyHnnE5/j221Wf4+ijzRo2NJs5M7CyIuf2232OQ4ZUbf143Gz//f3Rn7AuC4pCQ4zESTVFRdC9O6xcCRMmQP36VZtn5Up/MkPr1jBy5KZ3Ykh+vj8hqX59GDMG6tSp2jyLF/sTGnbYAYYN2/RODFmxwm9/u3aQk1PxCUkbMmeOn2f//eGDD4KtMQoWLvTb36MHfP551Z9HU6f65/Xxx8PLLwdbYxTMnOlPSDrkEHjnnarPM26cf5095xx49NHg6iulk2oC8vDDfu/nnXeqP9crr/i5nnqq+nNFzW23+W3//PPqz/XEE36u11+v/lxRc+WVftt/+KH6c91zj5/r44+rP1fUnHuuvy5z/Pjqz3XddT7H4cOrP1fU9O/vrxOeOrX6c114oT/6M2ZM9ef6OyLwDrHWN8QFC/wF+AceGMx99+Jxs733NmvZ0mzx4urPFxUzZvjrjY49Npj5iorMunc322ors5Urg5kzCn791V//dvrpwcxXUGCWleV/CgqCmTMKfvrJn5A0YEAw861cada2rX9OFhUFM2cUfPONfxW/4YZg5lu82L827rNP8Pc5VUMMwNlnV/609oqMHu33gi66KLg5a7t+/fwZun/8Edycw4f7Z9D11wc3Z2132GH+tPa5c4Ob8+OPfY733hvcnLVZPG62117+xvxLlgQ372uv+RyffDK4OWuzoiKzbt38TumqVcHN+9RTPsdXXw1uTjM1xGobNcrvRV5ySSDTreW88/zhmnHjgp+7tvn6a/9/+sYbg5/7n//0h2t+/z34uWubDz/0OT7wQPBzH3mkvyxo9uzg565t/vtfn+PTTwc7bzzu39lsttmmcfTn8cd9jm+8Eey8RUVmPXr4y4KCPPqjhlgVOTlm/fpZvHsP26PlJGvVvKBKp7VXZOFCf6Pl/bOXWvzEfv4Z0K9f6nwTd0mOa7rvYjs1m2bt2uQHuhdZauZMf4bfMfss8vmlaI75O+9m2zeabZ3br6rSae0VmTLFn3F6yqHzUzrHFd32tC3qL7KenVds9D6bVTVmjFksFrcLOnyaehma/ZXjwp32txZ1l9t+PZaG8hVOpUd/ruvyTmA5qiFW1sCB/oMu5+xlTjIwe6buuaF9s/Ojh/7PwOxNjvdRxGL+8aP+jdzlcnyU8/w21j0ptO26s/cQA7PPODhlc7yTq/xp7fWOCG27rtnzawOz79k9ZXO8htv9NtbbL5ztGjjQ/i/9CYtRZD+zQ+pkaLZWjv/HI34bM3YJLcd/pb1idcm339g2kBzVECsjJ8cHDracRrY5s6wnI60Y538f9F5eTo6tqd/YdmKMtWOaraK+jwPCebxkKZfjQlpYcxbZ/gy1eFjblZNj+fWb2XZMsU5MsELSUy7HmWxhDVlhx/BOeNuVk2Mr6mfaFsy0bH70z/sUy3EK21ld8u0Ung9nu0oeayEtrAULbT++9M/7qGdotlaOY9jJYhTZBTwUao6z2NwassKO5t1AnotRaIgV3Bo7iQYP9nfuBvrwKXPYgjbMpTdfQh5wVBPoEuDjTWgCqz/AEWcGW3MIn/It+/qx/HxfT69eAT5gkpTL8RA+YwnNWUFj9mdYiDm+S31WM54dOZRP+IKD/FiK5Hgon5BHA+awOfuFmuMbNGUZo+jJEXzIxxzux1IkxyP4kCLSmEKHcHKc0ATy/J2+N2MRX7E/n9KHQ/k02hnCWjkew7vEiDOa7qHn2Ip5vM8xfM/u7EFO9HOsQO1piJMn+30QoDujWUZTmrC8bLzkyRCY1XkANGMZXRlPN8aWjcXjMGVKsI+XLOVy3I0fKKAeDVlVNh5SjpuxiC6MpwsTysZSJMc9+Q6ADPLLxkPKsRXzcRgdKJdbiuS4H19RjwLqUlg2HmSOJRkCbM5sOjCZQ/jM/yLKGcJaOR7IF/zIrqRTVDYeUo5tmUkXJrA7Of4XUc+xImG87azSIdN+/fxx6tK35uV/YjF/9WmQkv14yaIcg6Ecg5HM7UrVDM1SIkcicMi09jTEcsfI1/kJ6TObpD5esijHYCjHYCRzu1I1Q7OUyFENsbJKz6Iq3TsJ+wyxZD9esijHYCjHYCRzu1I1Q7PI5xiFhlj7bu49YoT/0HbKFP/V4gMGhPsBbrIfL1mUYzCUYzCSuV2pmiFEOsco3Ny79jVEERFJOVFoiFX84hoREZHUooYoIiKCGqKIiAighigiIgKoIYqIiABqiCIiIoAaooiICKCGKCIiAqghioiIAGqIIiIiQCUaonMuzTk32jn3YZgFiYiI1ITKvEMcAEwMqxAREZGalFBDdM61BQ4Hng63HBERkZqR6DvEQcCVQHxDCzjnznbO5TrnchcsWBBEbSIiIklTYUN0zh0BzDezURtbzsyeMrOeZtYzMzMzsAJFRESSIZF3iHsCRznnpgGvAb2dcy+HWpWIiEiSVdgQzewaM2trZu2BfsCXZvav0CsTERFJIl2HKCIiAqRXZmEz+wr4KpRKREREapDeIYqIiKCGKCIiAqghioiIAGqIIiIigBqiiIgIoIYoIiICqCGKiIgAaogiIiKAGqKIiAighigiIgKoIYqIiABqiCIiIoAaooiICKCGKCIiAqghioiIAGqIIiIigBqiiIgIoIYoIiICqCGKiIgAaogiIiKAGqKIiAighigiIgKoIYqIiABqiCIiIoAaooiICKCGKCIiAqghioiIAGqIIiIiQCo1xBEjoH9/yM72/x0xoqYriiblGAzlGAzlGAzlmBgzC/wnOzvbkmrgQLMGDcycMwOzWMz/feDA5NYRdcoxGMoxGMoxGLUkRyDXQug3Qf44X2ewevbsabm5uYHPu14jRsABB0BeHmtIB6AORX6sQQMYOhR69UpOLVFWLsdC0nEoxypRjsEol2MBdUgjTjrFfkw5Jq5cjvnUpQ5FpBH3Y0nO0Tk3ysx6JuXBqij6h0wHD4bVqzFgO36nExP5q8Xn5/txqVhJjsXEaMssshlVNqYcE1eSYz51acUC9uWrsjHlmLiSHJfShBYs5gj+VzamHBNXkuMsNqc5S+nPK2VjynEd0W+IkyeDGd+yN3/Sjqlsz0h29WPxOEyZUrP1RUVJjp/ShwW04he6Mp6ufkw5Jq4kx3c5lmU040d25Q/a+zHlmLiSHF+jP3k04mv2Yw5t/JhyTFxJji/zL/Kpz2f0YQnN/JhyXEf0G2JWFkWuDhfyMG2ZQRvmcCEPE8dBLAZZWTVdYTRkZVHgMriYQXRgMk1ZxgAG+3fbyjFxWVmsdI25gnvZkbHUo4DLuN+PKcfEZWWx2G3GddzOrowgToxruNOPKcfEZWUx223JbdzAvgxjJY24kZv9mHJcVxgfTCb1pJqcHHuszkUGZm9ynL3EPw3MnuF0/8FxTk7yaomynBy7s84NBmafcZA9ynkGZm9xrHKsjJwcuyb9HgOz7+lld3KVgdkQDlSOlZGTY+enP25prLGf2cGu5o6/MlWOlZCTY/9Ke8Xqsdp+Y1v7Px75K9Nk50gETqqJfENcuNCsRf1V1js2zOIuZnGwPRhumcy3JVfekbQ6om7mTLOGdfLtmLT3zWIxKyJm3Rht7dx0W3XNrTVdXmRMmWJWN22NnZL2slksZvnUte2YYp3cRCu87qaaLi8yxowxi7liuzD9UbNYzFbQ0LZgpmXHRlnxDTfWcHXRMXy4f5W/Lv0us1jMFtHcWrDQ9ot9ZfEbdJbp338if8j0hhtgWWEDBr/YHHdiX1x2Ng8f/CELXUtuWXNNTZcXGVddBUWxetz/+lbQty9p2d15qPf7zLB23FP3+pouLzIuvRTq1k/nrvc6Qd++1MvekUF7v8Mk68Qjm91Y0+VFghlcdBE0bxHj5o92gb59aZTdiXt7vcOoeA+e2/qmmi4xEoqLfY5bbgnXDNkf+valRfa23N7zPb6K78tbO95c0yXWPmF02WS9Qxw92l9Sc9FF646dfbZZerrZL78kpZRIK92LvP76dcf69TPLyDD744+klxU5H3/sc7znnrV/H4+bHXqoWZMmZnPn1kxtUfLaaz7HJ59c+/fxuNmee5plZpotWVIjpUXKU0/5HF99de3fFxWZdetmttVWZqtWJa8eIvAOMbINMR4323tvs5YtzRYvXnd8/nyzZs3MDjzQLyvrV1Rk1r27Wdu2ZitXrjs+Y4b/qOG445JfW5QUFJhlZfmfgoJ1xydNMqtTx+yMM5JfW5SsXOmfi927++fm3/30k7++/OKLk19blCxe7F8b9957/a9/33zjX/2TeW2+GmKIXn3VV//UUxte5qGH/DLvvht6OZH15JM+o9de2/Ayt93ml/nii+TVFTX33usz+vjjDS9zxRV+mR9+SF5dUXP99T6j4cM3vMw555ilpenoz8ZcdJE/ejZ69IaX6d/frF49s6lTk1NTFBpiJO9Us2oVdOwIrVvDyJGQlrb+5YqKYOed/fITJkD9+qGVFEmLF/uzrrt2ha++AufWv1x+PnTp4m9sMXo01KmT1DJrvTlzfI777w8ffLDh5Vas8Mu1awc5Of6sdykzdap/nh1/PLz88oaXW7gQOnTwt+X8/PMNP283VePH+9e9s8+Gxx7b8HIzZ/rX0T594O23w68rCneqieQ7xOuu83uR331X8bJffumXveWWUEuKpAsu8HuRY8ZUvOx77/kcBw8Ov66oOeUUs7p1/RmmFXnxRZ/jc8+FXlbkHHOMWcOG/oznijz8sM/x7bfDrytK4nGz/fc3a9HCn4Ffkdtv9zl+/nn4tRGBd4iRa4i//eZffE4+OfF1TjjBrH59s+nTQysrcn7+2TfD889PbPl43OyQQ8yaNvWfz4r3/ff+X9E11yS2fHGx2e67m7VubbZ0abi1Rclnn/kc77orseXXrDHbcUezrbc2y8sLtbRIefNNn+NjjyW2/OrVZtttZ9ali1lhYbi1qSGG4KijzBo1Mps1K/F1pk3zDbFv39DKipR43Gy//fxe5KJFia83caI/c/ess8KrLUqKi82ys8222MJsxYrE1/vxR39iyGWXhVdblBQUmHXqZLb99mb5+YmvN2yYfwW7+ebQSouUVavM2rXzZ5Cu74SkDfngA5/jgw+GVZmXEg0RyABGAmOBX4CbK1onrIb4ySe+4rvvrvy6N9/s1x02LPCyIueNN3wWjz9e+XUvu8y/mP/4Y/B1Rc3TT/sc//vfyq971ll+52LixODripr77/c5fvhh5dft29dfFjRtWvB1Rc2NN/ocv/66cuvF42Z9+vjLgubNC6U0M0udhuiARiV/rgP8APTa2DphNMSCArOOHc06dKjcXmSpvDx/eGXHHf3hlk3VqlX++qPK7kWWWrbMH+7bfXf/DmlTtWSJvx5ur72qdlnPvHn+8PPBB2/alwXNmWPWuLHZYYdVbf3p0/3RnxNOCLauqPnjD79j0K9f1dafNMnvoJ15ZqBlrSUKDbHC89xKtmVlyV/rlPwEf2pqBR5+GH79FQYNgnr1Kr9+/frwwAMwbhw88UTg5UXGXXfBn3/6PDd0du7GNGni58jJgf/+N/j6ouKmm2DRIp9jVc5ybNUKbrkFhgzZ+Jmpqe7aa/1ZzA8+WLX127WDa66BN9+EL78MtrYouewyf9byPfdUbf2OHeHii+HZZ+HHHwMtLVoS6ZpAGjAGWAncvYFlzgZygdx27doFtE/hle5FHn549eaJx80OOMBfsL9gQTC1RcnUqf66o/79qzdPcbHZrruatWljtnx5MLVFyfjx/jq4c8+t3jyFhWZdu5pts40/uWFT88MP/hjVlVdWb568PLP27X2Wm+LRn88/9znedlv15ik9+tOrVzhHf4jAO8TKLQzNgGHADhtbLuhDpqed5u/yMXly9ecqfTE755zqzxU1//iHv+vMn39Wf66gXsyipnSnqnnzYHaqvvgimBezqAl6p+qdd3yODz1U/bmipLDQnyEa1E7V88/7HF94ofpz/V3KNUS/TdwIXL6xZYJsiCNG+CqvuiqwKW3AAH9iyE8/BTdnbTdkiM/x9tuDm/P00/2Oyq+/Bjdnbff22z7HRx4Jbs7jjvM7KjNmBDdnbffccz7HF18MZr543N+msVmzTeuyoEGDfI7vvRfMfMXF/h1imzb+HWOQUqIhAplAs5I/1we+BY7Y2DpBNcTiYrNddqn8ae0VKT0hYs89N40TGgoLzTp39tcbBXlobu5cf2baoYduGjmGdWJWdU+IiJqlS81atfInZgX5vJkwwZ8YcvbZwc1Zm5WemHXIIcHmOHKkf8Nw+eXBzWmWOg1xJ2A08DMwHhhY0TrVaog5Of6VoUcPe2bXJwzMXn656tNtSOkp8y/fNPmvx7N+/VLni0fL5fhA9xcM/PVGQXvgAZ/j/+6dmPI53rTDmwZmX30V/MPcdJPP8atHx6d8jpd2/NCci1tubvAPc8kl5uc++JrUy9BsrRzP3HaopacVh3Lpzplnmp/7sEsDyzElGmJVfqrcEAcO9MeOnLMlNLVM5tkese9D+SLL4mKznlvMtM3dbFtOYx9FLOYfP5m3gA9DuRzn0sqasNT6xD4LJcfCQrPOLefZdu43y6deyuY4jXaWQZ6dmPZGKNuVl2e2ddPFtpP72daQnrI5TqCTpVNo/057JpTtWnrl7daKebY731k8lTI0WyvHkfQ0R7Fdlj4olG2bd9nd1oSldgifBJajGmJl5OT4wP33g9ol3G+OYhtFd//7oPfycnLs+3r7GZhdzR1/Pa5BOI+XLH/L8QyetnQKbRJZoeU4pN4RBmZ3clXK5ng8b1h9VtkM2oaW41t1+xuYPcp5KZljHOxgPrWmLLH5tAx+u0oe6xlONzB7iX+mRoZma+VYjLNefG+tmWPLaBxajg8ywB9Z4ohAcoxCQ6w933bRvz+8/jqYcTIv8DL/YnPmksVkP57Zyt8KPygTJsCC+UyiE/NpxSm8yPOc7sdiMejbF159NbjHS5ZyOfbjFV6nP22ZwXZM9eMh5TieriyhBafzHE/zbz+WIjkex1u8w3G05w+2ZrofDynHsXRjJY04k2d4gvP8WIrkeCTv8yFHsT1T2JJZfjzIHEsyBBhFD+LEmMvmNGZltDOEtXI8hE8ZwiF0ZBJtmOvHQ8jRcOTSk3TWMI82ZFBQrRyj8G0XtecLaCZP9vsgwGy2IJ0ituGPsvHVq4N9vNV5AGzLVNIoZjZblI3F4zBlSrCPlyxr5bgldSmgfemLOISW4/b8jsOYQ5uysRTJcRZbkMFqtuLPsvHQcvwNwzE3BXOczZY0YBVbMLtsPMgcSzIE6MBvFFGH0XT3v4hyhrDO87Exy8uaIYSSo8PYnt8oIINf6OrHop5jRcJ421mlQ6b9+vnj1CVvzZfTqOxteixW/avJN/J4az1WWI+XLMoxGMoxGMnMMdn/z5IpBXIkAodMa09D/NtnNqF/hpLsx0sW5RgM5RiMZG5XqmZolhI5qiFWVulZVKV7J2GfIZbsx0sW5RgM5RiMZG5XqmZoFvkco9AQa89JNaVGjIDBg/1x6g4dYMAA6NUr2AJr8vGSRTkGQzkGI5nblaoZQqRzjMJJNbWvIYqISMqJQkOsPWeZioiI1CA1RBEREdQQRUREADVEERERQA1RREQEUEMUEREB1BBFREQANUQRERFADVFERARQQxQREQHUEEVERAA1RBEREUANUUREBFBDFBERAdQQRUREADVEERERQA1RREQEUEMUEREB1BBFREQANUQRERFADVFERARQQxQREQHUEEVERAA1RBEREUANUUREBFBDFBERAdQQRUREADVEERERQA1RREQEUEMUEREB1BBFREQANUQRERFADVFERARQQxQREQHUEEVERAA1RBEREUANUUREBEigITrntnLODXPOTXTO/eKcG5CMwkRERJIpPYFlioDLzOwn51xjYJRz7nMzmxBybSIiIklT4TtEM5tjZj+V/HkFMBHYMuzCREREkqlSnyE659oD3YEf1jN2tnMu1zmXu2DBgoDKExERSY6EG6JzrhHwNnCxmS3/+7iZPWVmPc2sZ2ZmZpA1ioiIhC6hhuicq4Nvhv81s3fCLUlERCT5EjnL1AHPABPN7IHwSxIREUm+RN4h7gmcDPR2zo0p+Tks5LpERESSqsLLLsxsOOCSUIuIiEiN0Z1qREREUEMUEREBUqkhjhgB/ftDdrb/74gRNV1RNCnHYCjHYCjHYCjHxJhZ4D/Z2dmWVAMHmjVoYOacGZjFYv7vAwcmt46oU47BUI7BUI7BqCU5ArkWQr8J8if6DTEnx//PBRvGvvYNe/rNAv/7nJzk1RJl5XL8hINtJNnKsSrK5fguR9k4uijHqiiX42ucYFPYTjlWRbkcX+Bf9idb1FiOUWiI0T9kOngwrF5NIen04VMOYQhFpZuVn+/HpWIlOa6kAUfyIQfxBVY6phwTV5LjfFpyHO9wIEPLxpRj4kpynEp7+vE6BzGkbEw5Jq4kx9F041RepA+flo0px3VEvyFOngxmPMb5FJDBahrwNP/2Y/E4TJlSs/VFRUmOD3AZRdRhGc14lf5+TDkmriTHe7iKOI55tOEjSi7bVY6JK8nxTq7FEWca2/INe/sx5Zi4khzv4hrSKGICXfmJ7n5MOa4j+g0xK4v5rjU3cjOH8An7MYzruJ3FNIdYDLKyarrCaMjKYrprz51cwwm8Tk9+5AruZSUNlWNlZGUxyXVmMAM4nefoxEQuZhAF1FWOlZGVRa7bhWc4kwt5mHZM50Iepog05VgZWVl85fbnDU7kSu4hkwVcyMP+6I9yXFcYx2GT/RnimWnPWR0KbBJZ9jM7WBpr7P94RJ81VEZOjh2f9rbVZ5VNZyvLYTcDs2u4XTlWQvz7HDs49rk1ZYnNp6UN4UADszu5SjlWQvF3ObZ7LMdaM8eW0dje5DgDs0c5TzlWwppvc2xHN87aM9XyyLBnON3A7GVO0meI6/mJfEMcOdLMUWxXpD/gz54Cu5CHLEaRjTn70aTVEXVDh/pnw611bvorx1N53uqSb1MuGFTT5UXGe+/5HAfXueyvHI/hXWvICpt58b01XV5kvPCCz/H5uv82i8UsDtabL6w5i2zh5XfWdHmR8fDDPsd36p5oFotZMc524Qfb3M225VfdltRa1BBDVlxstttuZm3amC37YqRZv35m2dm2+NgzbbOmhbbPPmbxeFJKibQ1a8y6djXbZhuz1V+N+CvH2Uefa40brLEjjqjpCqNh9WqfYdeuZoXfluX4+xEXWb26xfbPf9Z0hdGwbJn/N73bbv6dYmmO4/pcbmlpcTvvvJquMBoWLDBr1szswAP9kYvSHEccdJ2B2VVXJbceNcSQPf+834IXXlh37Mkn/dhrryWllEh76CGf1bvvrjt2771+7KOPkl5W5Nx2m8/qiy/WHbv+ej82fHjy64qaK67wWY0cue7YRRf5N96jRye9rMg55xyztDSzX35Zd+y008zq1DGbPDl59aghhmjZMrPWrc169fLvFP+uqMise3eztm3NVq4MvZzImj/f70UedND6300XFJhlZZl16OD/LOs3Y4b/SOa449Y/vnKlfy527+6fm7J+kyb5F+ozzlj/+OLFZi1bmu29t47+bMxPP/nr8C++eP3jc+aYNW5sdvjhyatJDTFEl1/u/4evby+y1PDhfguvvz70ciLr7LPN0tPNJkzY8DKffOJzvOee5NUVNf36mWVkmP3xx4aXee01n+OTTyatrEiJx8369DFr0sRs7twNL/fUUz7HV19NXm1REo+b7bmnWWam2ZIlG17uvvt8jh9+mJy61BBDMnGifxE/88yKl/3nP83q1TP7/fdQS4qk3Fy/U3HJJRUve+SRZo0amc2eHX5dUfPVV/5f0o03bny5eNxs333NNtvMbNGiZFQWLf/7n8/xgQc2vlxRkVmPHmZbbmm2YkVyaouSl1/2OT799MaXKygw69jRH/3Jzw+/LjXEEMTjZocc4vci582rePmZM80aNjQ7+ujQSoqkeNxs993NWrUyW7q04uWnTDGrW9fslFPCry1K1qwx22kns623NsvLq3j5sWP9Z2AXXBB6aZGSn2+23XZmnTubFRZWvHzp0Z9rrw2/tihZvtxs883NevZc/0dJf1d69Ofuu8OvTQ0xBB984Kt+8MHE17nzTr/Op5+GVlbkvPSSz+SZZxJf55pr/Drffx9eXVHz6KM+k7feSnyd88/3TfHnn8OrK2pK/40OGZL4Ov/6l99J++238OqKmquvrvy/0aOO8kd/Zs0Kry6zaDRE5+sMVs+ePS03NzfwefPzoWtXyMiAMWOgTp3E1isogB12gLQ0+PlnqFs38NIiZcUK6NgR2rb13wITS/B+RStXQqdO0KYN/PCDz3NTtmgRdOgA3bvDF1+Ac4mtt3ixX2+nneDLLxNfL1XNmuWfjwcdBO++m/h6s2f79Xr3hvffD6++qJgyxb/O9esHL7yQ+Hq//+5fV084AV56Kbz6nHOjzKxneI8QgDC6bFjvEG+/3e/9fP555df98EO/7v33B19X1Fx1lc9ixIjKr/vKK37d//wn+Lqi5rzz/Gnt48ZVft3HH/c5vvFG8HVFzUkn+c/5p06t/Lp33+1z/OST4OuKmiOO8GeOVuVz/uuus9AvCyIC7xAj0xD//NOf1n7ssVWf47DD/BNmzpzg6oqaX3/1p7WfdlrV1o/Hzfbay5/6vrEz2FLd6NH+sOdFF1Vt/aIis27dzLbaatO+LOjbb/2r0A03VG39/Hx/UkhW1qZ9WdBHH/kc763izZBWrvQnKfXoEd5lQWqIAerfv+LT2itS3WaQCoLYKShtBgMGBFVVtJTfKVi8uOrzfPNN9ZpB1BUVme28s98pWLWq6vNUtxlEXVA7Ba++6nN86qngaitPDTEgpS8cQXzB85VXWpUPF0Zd6WHj++6r/lznnusPF44fX/25oibIw8bVOVwYdU884XN8/fXqz3X44ZvuZUFBHTaOx/0ND6q7o7chaogBKH9oqTp7kaWWL/f3Sdxll8ROS04V+flm22/vrzsK4tDSggVmzZubHXDApnXHkBUr/KGl7OxgDi2VXhb0j39Uf64oWbTIX4+5777BPH8mT/ZHf049tfpzRcmsWX5H4Mgjg5mvuh8FbIwaYgDCOPngxRf9nM8+G9yctd1ddwWzF1neI4/4Od9+O7g5a7trr/Xb/N13wc15xx1W6UsOou6CC/wL79ixwc1ZerLYpvTNUCef7C89mTIluDmrc7LYxqghVtPChWYtWpjtt1+w70KKiyt3UXrUzZrl34UcdVSw865ZY7bjjv6i9CDevdd2v/3mX3xOPjnYeVevrtxF6VFXenOC888Pdt7KXpQedd9951/Br7km2HkXLvRHf/bfP9jXXTXEqsgp+ZqSHj3s/7b/zGKxeCgXMP/4Y8lty/rN/uvxrF+/1Nm9LJfjP7f+1urWKQ7lAuZhw/yz6KazZqR8jkdukWuNGhSFcgFz6Q0nHrjoj5TOMd69h+2b+Yu1aFIYyu3rSm848fQuT6RehmZ/5VjUvaf1aP67bdGyIJTb15XecOLNPR8ILEc1xMoaONBfW+GcjWEni1FkF6Q/FszZNOtxVvdcS6fQfqGLjyIW848f0uMlTbkch7OHv8VV+t2hbVffLuMsgzybxtYpm+PH9PG3uKpzXSjbFY+b9dlusjVhqc2ldcrm+DonGJg9XufCcHK8YaDtEfveMplnS2iaOhmarZXjU5xlYPbfuqeFsm1rrr/JdnI/Wzum2SrqB5KjGmJl5OT4wMHiYPvwlW3GAltMM//7oPfycnJsfv121pQldiBDLA4+Dgjn8ZKlXI5FxKw7o2xL/rSVNAgtxxkZHaw+q+x43ijLMIVyLKCOZTHJOvCr5VM3tBwnZXSzOhTYGTydkjmupIFtxXTbmZ+siFjw21XyWKPobo5iu5gHUiNDs7VyXEwza8l824tv/OtWSDl+zd7+pvXcGEiOUWiItefWbf37w+uvgxmH8RGfcBhZ/MrmzPHjma2gS5fgipwwARbMZxZb8hsdOIL/8T+O8mOxGPTtC6++GtzjJUu5HA/gc77kQDozgVbM9+Mh5TidrZnGNhzL27zN8X4sRXLcm68Zzj7syM+0YLEfDynHqWzLn7TjRF7lNU7yYymS427kMJJe7MxomrLMjweZY0mGAJPJYi5tGM8OdGFitDOEtXLszk+MYWeyGUUjVvrxkHKcQGcWsxm/sT3tmV6tHKNw67b0mi7gL5Mn+30QoAnLac1c2pQ2Q4DVq4N9vNV5AGzBbJbTmEasKBuLx/2NAaOoXI7NWUIbZpc1Qwgtx634kzwaUJ+8srEUybEli9iCmWXNEELLcWumk0896lFYNpYiObZiAW2ZUdYMIdgcV5c997bhDxqzgvqUzB/lDGGtHNswl62ZXtYMIbQct2MqLVhMHdb4X0Q9x4qE8bazSodM+/Xzx6nLHyoq/YnF/K1qgpTsx0sW5RgM5RiMZG5XqmZolhI5EoFDprWnIZY7Rr7OT0if2ST18ZJFOQZDOQYjmduVqhmapUSOaoiVVXoWVeneSdhniCX78ZJFOQZDOQYjmduVqhmaRT7HKDTE2nNSTakRI2DwYH+cukMHGDAAevUKtsCafLxkUY7BUI7BSOZ2pWqGEOkco3BSTe1riCIiknKi0BAT/K50ERGR1KaGKCIighqiiIgIoIYoIiICqCGKiIgAaogiIiKAGqKIiAighigiIgKoIYqIiABqiCIiIkACDdE596xzbr5zbnwyChIREakJibxDfB7oE3IdIiIiNarChmhm30D5rwoXERFJPYF9huicO9s5l+ucy12wYEFQ04qIiCRFYA3RzJ4ys55m1jMzMzOoaUVERJJCZ5mKiIighigiIgIkdtnFq0AO0NE5N9M5d2b4ZYmIiCRXekULmFn/ZBQiIiJSk3TIVEREBDVEERERQA1RREQEUEMUEREB1BBFREQANUQRERFADVFERARQQxQREQHUEEVERAA1RBEREUANUUREBFBDFBERAdQQRUREADVEERERQA1RREQEUEMUEREB1BBFREQANUQRERFADVFERARQQxQREQHUEEVERAA1RBEREUANUUREBFBDFBERAdQQRUREADVEERERQA1RREQEUEMUEREBUqkhjhgB/ftDdrb/74gRNV1RNCnHYCjHYCjHYCjHxJhZ4D/Z2dmWVAMHmjVoYOacGZjFYv7vAwcmt46oU47BUI7BUI7BqCU5ArkWQr8J8sf5OoPVs2dPy83NDXze9RoxAg44APLy1h1r0ACGDoVevZJTS5Qpx2Aox2Aox2DUohydc6PMrGdSHqyKon/IdPBgWL0aA07nGc7hCf5q8fn5flwqVpJjHMeJvMpl3Fc2phwTV5JjEWkcyfvcxI1lY8oxcSU5FlKHA/mc+7mkbEw5Jq4kx9VksBff8B/OLBtTjuuIfkOcPBnMmM3mvMQpPMsZLCDTj8XjMGVKzdYXFSU5TmUb3qQvj/F/LKOJH1OOiSvJcRw78CFH8gCXspoMP6YcE1eS43fswVAO5E6uYQ3pfkw5Jq4kx884mO/Ym1u4kTjOjynHdUS/IWZlQSzG1dxNjGIAruN2PxaL+XGpWEmOl/EAGaymgHrcwkA/phwTl5WFuRiX8iCNWc4KmnAvV/gx5Zi4rCyKXTpXcB8tWMgiMnmU8/2YckxcVhaFrh5XczetmctMtuJ5TvNjynFdYXwwmdSTanJybHi93gZm13GrXca95ii2H8n2Hxzn5CSvlijLybFP6h1tYHY3V9i/edLSKbQJdFKOlZGTY2/U/aeB2eOcY315zTLIs2m0U46VkZNj/6l7noHZf+lnffjYmrDU5pGpHCsjJ8fur3OVgdn/OMz2YLhlMs+W0DTpORKBk2oi3xCLisx6bD7LtnQzbaVrZMtobK2ZY71iI6z4hhuTVkfUFRSYZW22wDq4yZbvMmw+La0pS+zg2OcWv0Fn9SVq5UqzrZossW5urBW5dJvOVlafVXZ82ts6O7ISliwxa9lgpe0VG25xF7NJZFk6hXZG2vPKsRLmzDFrXHe1HRb7xCwWs1F0N0exXZL+kM4yXc9P5A+ZPvMM/DRnC+67OY+GJx5Bk+ws7tr1XUbEd+Pl7W+q6fIi46GHYPKilgy6r5h6Jx5DZvbW3NLjPYbED+T9HjfXdHmRcffd8OfyZjz8WBppJx5Pu+xWXLPDh7xVfCxf7qscE3XjjbA4vyEPP9cYd2JfOmY35uJOn/Js8amMPFw5JuqaayDfMnjw1TbQty89smP8e7svedjOZ8KJynEdYXTZZL1DXLzYbLPNzPbe2yweL/t9cbHZrruatWljtmxZUkqJtNmzzRo1Mjv88LV/X1ho1rWrWfv2Znl5NVNblEydalavnln//mv/Pi/PZ9i1q9maNTVTW5SMG2eWlmZ27rlr/37ZMrPWrc12283/G5eNGzHCHwO88sq1fz9/vlmzZmYHHLD262bYiMA7xEg3xAsv9NeYjh697tgPP/itu+KKpJQSaaeealanjtnkyeuOffGFz/HWW5NeVuT84x9mDRuazZy57ti77/ocH3oo6WVFSjxu1ru3WfPmZgsWrDv+/PM+x+efT35tUVJcbLbLLv5NwfLl644/9JDP8Z13kleTGmKIfv7Z70Wed96Glzn9dP9CP2lS6OVEVk6OfxZcddWGlznuOLP69c1mzEheXVEzZIjP8Y471j8ej5sddJDfM58/P7m1Rclbb/kcH3lk/ePFxWa9evl3ijr6s2HPPutzfPHF9Y+vWWO2ww7JPfqjhhiSeNxs//3NWrQwW7hww8vNnWvWpIlZnz7JPTQQFcXFZj17mm2xhdmKFRtebto0s4wMsxNPTF5tUVJYaNa5s9l225mtXr3h5SZMMEtPNzv77OTVFiWrVpm1a2e2004bP7Q8cqS/C9nllyevtihZutSsVSuz3Xff+Ovel1/6DnDLLcmpSw0xJG++6St/7LGKl33gAb/sBx+EWlIkPf20z+bllyte9qab/LJffRV+XVFTmefYJZf4F/Pc3PDriprKPMfOPNPvXEycGH5dUVOZ59gJJ/ijP9Onh19XFBpi5O5lmpcHnTtD8+YwahSkpW18+TVroFs3KCiAX36BjIxQyoqcpUv9NbkdOsDw4eDcxpdfvdrn3rSpzz09PSll1nrz5vkc99gDPv644hyXLfPLb7cdfPddxctvKqZPh06d4Oij4bXXKl5+/nz/3O3VCz79VDmWmjDBv96dfjo89VTFy0+f7v9dH3kkvP56uLVF4V6mkXuHeOONfi/y668TX6eiz3c2RRdf7PciR41KfJ3Sz3cefTS8uqLmjDMq/zn1M8/4HF96Kby6oub44yv/OfWDD/oc338/tLIiJR43O/BAs6ZNK/c59c03+xyHDQurMo8IvEOMVEP84w//WVa/fpVf95hj/I0Z/vwz8LIi55df/AlJlf0sq6IzADc1VT2TufQMwM03X/8ZgJuaqp7JXPrZ7bbbbvyz201F6ZnMgwdXbr28PLOttzbbccdwLwtKmYYI9AF+BX4Drq5o+bAa4rHH+qZWlbMdf//dXyN20knB1xUl8bi//qiqZztu6BqxTU1xsb8erqrXupZeI7axs3s3BaXXum6zTdWaWunRn9tvD762KCl/rWthYeXXf/ttn+PDDwdfW6mUaIhAGvA7sC1QFxgLdNnYOmE0xM8/99XedlvV57j+ej/HN98EV1fUlD7xq3M93EUX+cOtP/0UXF1R89xzPscXXqj6HKed5g+3/vprYGVFzuDBPsd33636HP/4R9V3lFPFLbf4HIcOrdr65XeUwzr6kyoNcXfgs3J/vwa4ZmPrBN0QCwvNunSp/qGRVavMttrKrFs3fw/UTU3poZEddqjeoZElS8xatjTba69N83KWpUv9dXC9elXvjilz5pg1bmx22GHB1RYl8+f7z7sOPrh6z6PqfJSSCqZP95+/Hn989eYp/SjlnHOCqevvotAQE7mX6ZbAn+X+PrPkd2txzp3tnMt1zuUuWLCg0if3bMxjj/mzpx58sHpniTZoAPfdB2PHwn/+E1x9UXHvvf6ssoceqt5Zos2awZ13+rNTEzkjMNXceqs/y/Hhh/036FRVmzb+np0ffwwffRRcfVFx3XWwahUMGlS9s0Tbt4crr/TPxW++Caq66LjiCjDzr23V0aULXHihPzt19OhgaoucijomcALwdLm/nww8vLF1gnyHOG+e34s85JBg3o3E42b77usv6l+0qPrzRUXpxfUnnBDMfEVFZtnZZltuufGL+lPNxIn++rezzgpmvoICs06dzLbf3iw/P5g5oyA31x92v/TSYOYrPfpT0UX9qWbYMH+c76abgplvyRKzzEyzPfcM/ugPEXiHWOsPmZ51VvAX4I4d6++Bev75wc1Z25VegDttWnBzfvedfwZde21wc9Zm8bg/vNe0qd9RC8pnn/kc77oruDlrs3jc30WlVSt/+Dkob7xhCd+wIxWsWePPDN1662Bvv1Z6w47//je4Oc1SpyGmA1OBbSg7qabrxtYJqiH++KPfi7zsskCmW8v55/umOHZs8HPXNqW3aLr55uDnPvlks7p1zaZMCX7u2ub9932OgwYFP/fRR/sbg8+aFfzctc2LL/ocn3022HnjcbP99qv4lo6p4pFHfI5vvRXsvIne0rGyUqIh+u3gMGAy/mzT6ypavloNMSfHrF8/K+6ebb02+9VatygI5Sa+ixb5fzj77LzM4if2M+vRw38qnyrfxF2S45ruu9gOTafb1m3yQ7mJ76xZ/qujjtxrkc8vRXNcvXMv27bhXOuyzaoqndZekdLLgv55yPyUznF5t72sTcZi26XzilC+wunnn81isbidt/2Q1MvQ7K8cF+zU25rXXWG9s5eGcmLb99/77nB15/cCyzFlGmJlf6rcEAcO9OdPO2cvcLKB2XN1zw7tm50fP+wDA7PXONFHEYv5x4/6N3KXy/EhLjAwe7tuv9C26+4DPjMw+5hDUzbH27jWwOzzeoeHtl3X7fWVgdlw9kzZHK/kLgOzEfX2CWe7Bg60C9IfsxhFNppuqZOh2Vo5nsPjlsYaG5fRM7QcT0l72eqSb5PZPpAc1RArIyfHBw62jMbWhtm2GzlWjPO/D3ovLyfHiuo3sp35ydoyw1biH9sgnMdLlnI5zqelNWOxHcDnFg9ru3JyLL9+M+vAr5bFJCugTsrlOIO21oCVdixvhbddOTm2sn5La8sM684oKyKWcjn+SgerQ4GdxrPhbFfJYy2iuW3GAtubr/3zPuoZmq2V40/sbI5iu4hBoeY4mzbWmGV2BB8E8lyMQkOsPbdoHjzY30Ea6MMnzGVztmA2vfkS8oCjmkCXAB9vQhNY/T8AZrIVffiEb9nXj+Xn+3p69QrwAZOkXI6H8glLacZymrA/w0LM8V0yyGccO3EYH/MFB/mxFMnxMD5iNRnMYkv2CzXHN2nMckbTgyP5Hx9zuB9LkRyP5APixPiVrHBynNAE8vz1K5uxiG/Zh0/pw6F8Gu0MYa0cj+Ud0ihiFNmh55jJAj7kSL5nd/YgJ/o5VqD2NMTJk/0+CJDNT6ygCY1ZUTZe8mQIzOo8AJqyjB0Yx86MKRuLx2HKlGAfL1nK5bgbIyikLg3IKxsPKccWLKYr4+jCL2VjKZLj3nxLDCOD/LLxkHJsxQJijKcD5XJLkRz3Zxj1yacua8rGg8xxddnzvA1zyGIyffjU/yLKGcJaOR7MEEayK+kUlY2HlGNbZtKV8exOjv9F1HOsSBhvO6t0yLRfP3+cuvStefmfWMysf//Kz1mbHi9ZlGMwlGMwkrldqZqhWUrkSAQOmdaehljuGPk6PyF9ZpPUx0sW5RgM5RiMZG5XqmZolhI5qiFWVulZVKV7J2GfIZbsx0sW5RgM5RiMZG5XqmZoFvkco9AQna8zWD179rTc3NyqrTxihP/QdsoU/5XYAwaE+wFush8vWZRjMJRjMJK5XamaIUQ6R+fcKDPrGWCFgat9DVFERFJOFBpiNe7VLyIikjrUEEVERFBDFBERAdQQRUREADVEERERQA1RREQEUEMUEREB1BBFREQANUQRERFADVFERARQQxQREQFCupepc24BMD3wiRPTElhYQ48dtlTdtlTdLtC2RVGqbhfU7LZtbWaZNfTYCQmlIdYk51xubb+BbFWl6ral6naBti2KUnW7ILW3LQg6ZCoiIoIaooiICJCaDfGpmi4gRKm6bam6XaBti6JU3S5I7W2rtpT7DFFERKQqUvEdooiISKWpIYqIiJBCDdE518c596tz7jfn3NU1XU+QnHPPOufmO+fG13QtQXLObeWcG+acm+ic+8U5N6CmawqCcy7DOTfSOTe2ZLturumaguacS3POjXbOfVjTtQTJOTfNOTfOOTfGOZdb0/UExTnXzDn3lnNuUsm/t91ruqbaKCU+Q3TOpQGTgYOAmcCPQH8zm1CjhQXEObcPsBJ40cx2qOl6guKc2xzY3Mx+cs41BkYBx0T9/5tzzgENzWylc64OMBwYYGYjari0wDjnLgV6Ak3M7IiaricozrlpQE8zS6kL851zLwDfmtnTzrm6QAMzW1rDZdU6qfIOcVfgNzObamaFwGvA0TVcU2DM7BtgcU3XETQzm2NmP5X8eQUwEdiyZquqPvNWlvy1TslP9Pc8Szjn2gKHA0/XdC1SMedcE2Af4BkAMytUM1y/VGmIWwJ/lvv7TFLghXVT4pxrD3QHfqjhUgJRckhxDDAf+NzMUmK7SgwCrgTiNVxHGAwY4pwb5Zw7u6aLCci2wALguZLD3E875xrWdFG1Uao0RLee36XMHnmqc841At4GLjaz5TVdTxDMrNjMdgbaArs651LiULdz7ghgvpmNqulaQrKnmfUADgXOL/m4IurSgR7A42bWHVgFpNR5FkFJlYY4E9iq3N/bArNrqBaphJLP2N4G/mtm79R0PUErOTT1FdCnZisJzJ7AUSWftb0G9HbOvVyzJQXHzGaX/Hc+8C7+45iomwnMLHeU4i18g5S/SZWG+CPQwTm3TckHxv2AD2q4JqlAycknzwATzeyBmq4nKM65TOdcs5I/1wcOBCbVaFEBMbNrzKytmbXH/zv70sz+VcNlBcI517Dk5C5KDikeDET+zG4zmwv86ZzrWPKrA4BIn7gWlvSaLiAIZlbknLsA+AxIA541s19quKzAOOdeBfYDWjrnZgI3mtkzNVtVIPYETgbGlXzeBnCtmX1ccyUFYnPghZKzn2PAG2aWUpcnpKjWwLt+P4104BUz+7RmSwrMhcB/S94wTAVOr+F6aqWUuOxCRESkulLlkKmIiEi1qCGKiIighigiIgKoIYqIiABqiCIim7SgvzzAOVdccnP0Mc65SF3+prNMRUQ2YUF/eYBzbqWZNap+Zcmnd4giIpuw9X15gHNuO+fcpyX3dP3WOdephspLKjVEERH5u6eAC80sG7gceKwS62Y453KdcyOcc8eEUl1IUuJONSIiEoySm+3vAbxZctcegHolY8cCt6xntVlmdkjJn9uZ2Wzn3LbAl865cWb2e9h1B0ENUUREyosBS0u+rWUtJTfg3+hN+MvdIH2qc+4r/Ne6RaIh6pCpiIj8peQr2P5wzp0A/ib8zrluiazrnGvunCt9N9kSf7/iyNxIXA1RRGQTVvLlATlAR+fcTOfcmcA/gTOdc2OBX4CjE5yuM5Bbst4w4C4zi0xD1GUXIiIi6B2iiIgIoIYoIiICqCGKiIgAaogiIiKAGqKIiAighigiIgKoIYqIiADw/1pIHM9tJNLpAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "from braket.ahs.atom_arrangement import AtomArrangement\n", + "from ahs_utils import show_register\n", + "\n", + "separation = 5e-6\n", + "block_separation = 15e-6\n", + "k_max = 5\n", + "m_max = 5\n", + "\n", + "register = AtomArrangement()\n", + "for k in range(k_max):\n", + " for m in range(m_max):\n", + " register.add((block_separation*m, block_separation*k + separation/np.sqrt(3)))\n", + " register.add((block_separation*m-separation/2, block_separation*k - separation/(2*np.sqrt(3))))\n", + " register.add((block_separation*m+separation/2, block_separation*k - separation/(2*np.sqrt(3)))) \n", + "\n", + "show_register(register, show_atom_index=False, blockade_radius= 1.5 * separation)" + ] + }, + { + "cell_type": "markdown", + "id": "62acf66e", + "metadata": {}, + "source": [ + "In the above figure, each blue link connects a pair of atoms that blockade each other. Since the triangles are well separated from each other, and the driving field (see below) is acting on all atoms uniformly, effectively we are repeating the same experiment on the same setup (an equilateral triangle) 35 times in one shot. If the setup of interest is small and contains only a few atoms, we could try to fit in a few identical copies of the setup in the bounding box while avoiding the interference between them. In this way, we are effectively taking more shots for the AHS program of interest." + ] + }, + { + "cell_type": "markdown", + "id": "75e18060", + "metadata": {}, + "source": [ + "### Driving field\n", + "\n", + "Recall that Aquila can simulate the following Hamiltonian \n", + "\n", + "\\begin{align}\n", + "H(t) = \\sum_{k=1}^N H_{\\text{drive}, k}(t) + \\sum_{j=1}^{N-1}\\sum_{k = j+1}^N H_{\\text{vdW}, j, k}.\n", + "\\end{align}\n", + "Here the second term is the van der Waals interaction term which is fixed once the setup is defined. The first term is the driving field,\n", + "\\begin{align}\n", + "H_{\\text{drive}, k}(t) = \\frac{\\Omega(t)}{2}\\left(e^{i\\phi(t)}|g_k\\rangle\\langle r_k| + e^{-i\\phi(t)}|r_k\\rangle\\langle g_k|\\right) - \\Delta_\\text{global}(t)n_k,\n", + "\\end{align}\n", + "which act on all the atoms in the setup. Here $n_k = |r_k\\rangle\\langle r_k|$ is the number operator of atom $k$. The specification of the driving field has to satisfy several conditions, which can be queried as follows" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "91e004b1", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'c6Coefficient': Decimal('5.42E-24'),\n", + " 'rydbergGlobal': {'detuningRange': (Decimal('-125000000.0'),\n", + " Decimal('125000000.0')),\n", + " 'detuningResolution': Decimal('0.2'),\n", + " 'detuningSlewRateMax': Decimal('2500000000000000.0'),\n", + " 'phaseRange': (Decimal('-99.0'), Decimal('99.0')),\n", + " 'phaseResolution': Decimal('5E-7'),\n", + " 'rabiFrequencyRange': (Decimal('0.0'),\n", + " Decimal('15800000.0')),\n", + " 'rabiFrequencyResolution': Decimal('400.0'),\n", + " 'rabiFrequencySlewRateMax': Decimal('250000000000000.0'),\n", + " 'timeDeltaMin': Decimal('5E-8'),\n", + " 'timeMax': Decimal('0.000004'),\n", + " 'timeMin': Decimal('0.0'),\n", + " 'timeResolution': Decimal('1E-9')}}\n" + ] + } + ], + "source": [ + "rydberg = capabilities.rydberg\n", + "pp(rydberg.dict())" + ] + }, + { + "cell_type": "markdown", + "id": "4b67aec2", + "metadata": {}, + "source": [ + "`c6Coefficient` is the constant for the interaction strength between two Rydberg atoms. The detailed description for the `rydbergGlobal` section can be inspected as follows" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "d0bca3f4", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Parameters determining the limitations on the driving field that drives the\n", + " ground-to-Rydberg transition uniformly on all atoms\n", + " Attributes:\n", + " rabiFrequencyRange (Tuple[Decimal,Decimal]): Achievable Rabi frequency\n", + " range for the global Rydberg drive waveform (measured in rad/s)\n", + " rabiFrequencyResolution (Decimal): Resolution with which global Rabi\n", + " frequency amplitude can be specified (measured in rad/s)\n", + " rabiFrequencySlewRateMax (Decimal): Maximum slew rate for changing the\n", + " global Rabi frequency (measured in (rad/s)/s)\n", + " detuningRange(Tuple[Decimal,Decimal]): Achievable detuning range for\n", + " the global Rydberg pulse (measured in rad/s)\n", + " detuningResolution(Decimal): Resolution with which global detuning can\n", + " be specified (measured in rad/s)\n", + " detuningSlewRateMax (Decimal): Maximum slew rate for detuning (measured in (rad/s)/s)\n", + " phaseRange(Tuple[Decimal,Decimal]): Achievable phase range for the global\n", + " Rydberg pulse (measured in rad)\n", + " phaseResolution(Decimal): Resolution with which global Rabi frequency phase\n", + " can be specified (measured in rad)\n", + " timeResolution(Decimal): Resolution with which times for global Rydberg drive\n", + " parameters can be specified (measured in s)\n", + " timeDeltaMin(Decimal): Minimum time step with which times for global Rydberg\n", + " drive parameters can be specified (measured in s)\n", + " timeMin (Decimal): Minimum duration of Rydberg drive (measured in s)\n", + " timeMax (Decimal): Maximum duration of Rydberg drive (measured in s)\n", + " \n" + ] + } + ], + "source": [ + "print(rydberg.rydbergGlobal.__doc__)" + ] + }, + { + "cell_type": "markdown", + "id": "a0f2d5a4", + "metadata": {}, + "source": [ + "As we can see, the requirements for the driving field in the AHS program can be summarized as follows\n", + "\n", + "1. The Rabi frequency $\\Omega(t)$ has to be within the range `rydberg.rydbergGlobal.rabiFrequencyRange`, in the unit of rad/s\n", + "2. The resolution for the Rabi frequency cannot be greater than `rydberg.rydbergGlobal.rabiFrequencyResolution` rad/s\n", + "3. The slew rate for the Rabi frequency cannot be greater than `rydberg.rydbergGlobal.rabiFrequencySlewRateMax` (rad/s)/s\n", + "\n", + "4. The phase $\\phi(t)$ has to be within the range `rydberg.rydbergGlobal.phaseRange`, in the unit of rad\n", + "5. The resolution for the phase cannot be greater than `rydberg.rydbergGlobal.phaseResolution` rad\n", + "\n", + "6. The detuning $\\Delta(t)$ has to be within the range `rydberg.rydbergGlobal.detuningRange`, in the unit of rad\n", + "7. The resolution for the detuning cannot be greater than `rydberg.rydbergGlobal.detuningResolution` rad\n", + "8. The slew rate for the detuning cannot be greater than `rydberg.rydbergGlobal.detuningSlewRateMax` rad/s\n", + "\n", + "9. The duration of the driving field cannot be less than `rydberg.rydbergGlobal.timeMin` seconds\n", + "10. The duration of the driving field cannot be more than `rydberg.rydbergGlobal.timeMax` seconds\n", + "11. The time points have to be separated by at least `rydberg.rydbergGlobal.timeDeltaMin` seconds\n", + "12. The resolution for the time points cannot be greater than `rydberg.rydbergGlobal.timeResolution` seconds\n", + "\n", + "Besides, there are a few additional requirements\n", + "1. The Rabi frequency $\\Omega(t)$ has to start with 0 rad/s\n", + "2. The Rabi frequency $\\Omega(t)$ has to end with 0 rad/s\n", + "3. The phase $\\phi(t)$ has to start with 0 rad\n", + "4. All the fields in the driving field have to have the same duration" + ] + }, + { + "cell_type": "markdown", + "id": "cbf846fd", + "metadata": {}, + "source": [ + "In this example, we are interested in driving the atoms with constant Rabi frequency $\\Omega_\\text{const}=1.5\\times10^7$ rad/s for a duration of $T_\\text{const}=\\frac{\\pi}{\\sqrt{3}\\Omega}\\approx2.09\\times10^{-7}$ seconds such that each atom has average Rydberg density equal to 1/3. Since the Rabi frequency corresponds to blockade radius $R_b\\approx8.44\\times10^{-6}$ meters, which is greater than the sides of the equilateral triangles ($5\\times10^{-6}$ meters), the atoms of the same triangle blockade one another. On the other hand, $R_b$ is smaller than the distance between nearest atoms of neighboring triangles, which is around $10\\times10^{-6}$ meters, hence the neighboring triangles are not interacting with each other, as desired. \n", + "\n", + "However, for the AHS program submitted to Aquila, the Rabi frequency cannot be a constant because of the constraint that it has to start and end with 0 rad/s. Hence we will need to create a time series $\\Omega(t)$ such that $\\int_0^T\\Omega(t)dt=\\Omega_\\text{const}T_\\text{const}=\\frac{\\pi}{\\sqrt{3}}$, while satisfying $\\Omega(0)=\\Omega(T)=0$. This could be achieved via the utility function `rabi_pulse` below where we demonstrate how to create the desired driving field for Aquila." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "11bd0f7e", + "metadata": {}, + "outputs": [], + "source": [ + "from braket.timings.time_series import TimeSeries\n", + "from braket.ahs.driving_field import DrivingField\n", + "from ahs_utils import rabi_pulse, constant_time_series\n", + "\n", + "omega_const = 1.5e7 # rad / s\n", + "rabi_pulse_area = np.pi/np.sqrt(3) # rad\n", + "omega_slew_rate_max = float(rydberg.rydbergGlobal.rabiFrequencySlewRateMax) # rad/s^2\n", + "\n", + "time_points, amplitude_values = rabi_pulse(rabi_pulse_area, omega_const, 0.99 * omega_slew_rate_max)\n", + "\n", + "amplitude = TimeSeries()\n", + "for t, v in zip(time_points, amplitude_values):\n", + " amplitude.put(t, v)\n", + "\n", + "detuning = constant_time_series(amplitude, 0.0) \n", + "phase = constant_time_series(amplitude, 0.0) \n", + "\n", + " \n", + "drive = DrivingField(\n", + " amplitude=amplitude, \n", + " detuning=detuning, \n", + " phase=phase\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "3efaeb42", + "metadata": {}, + "source": [ + "We can inspect the driving field in the following way " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "5db7e231", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAHwCAYAAABpICzHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABoB0lEQVR4nO3deXhU5dn48e8dEkAEBESRRRYVpLiggCxt39auorXaxSq4L4i22r2vrW/7a23ft63dW1uriPuu3a1abWu11pYticRIjCSBEAmRGAmGkHUy9++PmWiIWYbJ2Z6T+3Ndc4XJzJzzfD2JT84s54iqYowxxphoygl7AMYYY4zpnU3UxhhjTITZRG2MMcZEmE3UxhhjTITZRG2MMcZEmE3UxhhjTIQNuolaRG4XkVoReTGD+/5MRDamL5tFZHcAQzTGGGPeJIPtc9Qi8h6gEbhbVY/dj8d9FjhRVS/1bXDGGGNMN4Nuj1pVnwV2df2eiBwpIk+ISIGI/EtEZvfw0OXAA4EM0hhjjEnLDXsAEXELcKWqlonIIuDXwPs7bxSRacAM4B8hjc8YY8wgNegnahEZCbwT+I2IdH57WLe7LQN+q6odQY7NGGOMGfQTNamn/3er6gl93GcZcFUwwzHGGGPeMuheo+5OVRuArSLyKQBJmdt5u4gcDYwF1oQ0RGOMMYPYoJuoReQBUpPu0SKyXUQuA84DLhORImATcGaXhywHHtTB9vZ4Y4wxkTDoPp5ljDHGuGTQ7VEbY4wxLhlUbyYbP368Tp8+3ZNlJZNJcnLi9XeONbkjjl3W5AZr8kdBQUGdqh7S022DaqKePn06+fn5YQ/DGGOM2YeIbOvttnj9WRSggoKCsIfgOWtyRxy7rMkN1hS8SL6ZTERuB04Hans6HreInAz8Cdia/tbvVfU7/S13wYIFanvUxhhjokZEClR1QU+3RXWP+k5gaT/3+ZeqnpC+9DtJey3qf4Flw5rcEccua3KDNQUvknvUACIyHXi0jz3qr6jq6fuzTNujNl5Zv/V1/lFay7ypYzluykFhD8cErHj7G7xU08C7Zx7C/Gljwx6OiYG+9qhdfjPZkvQBSnaQmrQ3BbnyoqIi5s6d2/8dHWJNmfl7yU4uvzufaP6Ja4J04zMVPHD54l4na/udckPUm1zdox4NJFW1UUROA36hqjN7Wc5KYCXApEmT5hcVFdHe3k4ymWTEiBHs2rWLSZMmsXXrVmbPns3GjRuZN28eBQUFzJ8/n8LCQk444QRKS0uZMWMGO3bsYNy4cezZs4e8vDzy8vJobGxk/PjxbN++naOOOopNmzYxd+7cN5fR+bW4uJhZs2ZRVVXFhAkT2L17N8OHDwegpaWFMWPGsHPnTqZOncrmzZs57rjj3raMoqIijjnmGMrLy5kyZQp1dXWMHDnSmgJqqqrbw4rflLO7OZH6+QI+fMwEjhjezLRp09i2bRvTpk3jle3bmTRpErW1tYwdO5bGxkaGDxtGR0cHSVWGDh3K3r17GTNmDHV1dUw87DCqXnmFaVOnvrmMbVVVTD38cGpefZXx48eze/duDjzwQNra2gDIy82lpbWVkSNHUl9fz6GHHsqOHTs4fMqUt5aR/rq9uprDJkzg9V27GD16NM1NTeTm5QGQaG/ngBEjaGho4OBx43h1506mTJ78tmVYU6rpj+vLWF/d+uYfakuPHMGvL3vv2372mpqaABg2bFhsfp+syb+mUaNG9bpH7eRE3cN9K4EFqlrX1/28fOq7tLSU2bN7Om21u6ypb6/sauLcW9fy+p42Eqp0dCTJy83hvhW971H5xbZVeAq21XPerWtpSyRRhQPyhnDPikU9/gy40rQ/rMkfsXvqW0QOA3aqqorIQlJvins9yDFMmTIlyNUFwpp6V1m3l3NXr2VvWwcPXrGY9g5l7ZbXWXzEwaG8RmnbKjzzp43lvhWLWbvldY46dCTff/wlLrhtHbdffBKLjzh4n/u60rQ/rCl4kZyo0yfOOBkYLyLbgW8BeQCqejNwFvBpEUkAzcCyoE+a0fnUS5xYU8/Ka/dw7up1JJLK/Zcv4phJqTePhfkmIttW4Zo/beyb2//Ew8dw7q3ruPiO9ay+cAH/NfOtg0u51JQpawpeJCdqVV3ez+2/An4V0HB6FOWNmi1reruXaho4/9Z1iAgPrlzMrAmjPBrZwNi2io5DRw/nwZWLOf/WdVx2Vz43nz+P98+eALjb1BdrCl5UP0cdee3t7WEPwXPWtK8Xq99g+eq15A3J4eErojNJg22rqBk/chgPXL6YWRNGcsU9BTzx4quA2029sabg2USdpWQyGfYQPGdNb3m+qp7lq9dy4NBcHr5iCUccEq2/uG1bRc/YA4dy34rFHDv5IK66v5A/F+1wvqkn1hQ8m6izNGLEiLCH4DlrSlm/dRfn37qOcQcO5eErlzD14Oj9d7FtFU0HHZDHPZctYv7UsXz+wed5aktj2EPyXBy2U3dRb7KJOku7du0Kewiesyb4T3kdF92+nsMOGs7DVyxh8pgDfBrZwNi2iq6Rw3K589KTWHLkwXzrsXIeWF8V9pA8FZft1FXUm2yiztKkSZPCHoLnBnvTMy/XcsmdG5g6bgQPrlzChNHDfRzZwAz2bRV1I4bmcttFJ/Huow7m2t8Xc9d/KsMekmfitJ06Rb3JJuosbd26tf87OWYwN/1106usvLuAow4dyQMrF3PIqGE+j2xgBvO2csXwvCF8ZdEoPjRnAt96ZBO3PFsR9pA8EbftBNFviuyRyfzg5ZHJkskkOTnx+jtnsDY99kINn3/weY6ZfBB3X7KQg0bkBTS67A3WbeWaZDJJh8IXHtrIYy/U8OUPzeKzH+jxaMfOiOt2CrvJxdNcRt7GjRvDHoLnBmPTH57fzmcfKOTEqWO49zI3JmkYnNvKRRs3biRvSA6/OOcEPnHiZH7yt838+MmXcXkHKa7bKcpsj9oMWg9veIWv/v4FlhxxMLdetIARQyN5/B8TEx1J5et/KObBDa+w8j1HcO2psxGRsIdlIsL2qH0Q9RONZ2MwNd2zppJrfvcC75l5CLdffJJzk/Rg2lYu69o0JEf43seP48Il07jl2S1c98gmkkn3dpTivp2iyPaozaBz67+28H+PvcQH33EoN543j2G5Q8IekhlEVJXvPvYStz63lWUnHc73Pn4cOTm2Zz3Y2R61DwoLC8MegucGQ9ONT5fzf4+9xGnHHcavz5vv7CQ9GLZVHPTUJCJ8/SPv4Kr3HcmDG17hK78pItER7SNjdTVYtlOU2B51lqLwLkGvxblJVfnZ38u44akyPnbCJH78qbnkDnG3Nc7bKk76a/rlU2X85G+bOf34ifzsnBPIc+BncjBupyDYHrUPSktLwx6C5+LapKr84ImXueGpMs5eMIWfnH2C05M0xHdbxU1/TZ/9wEyuPXU2j75Qw1X3FdKa6AhoZNkbjNspbLZHnaXm5mYOOCCah5fMVhybmpqa+NFTW7nj35Wcv3gq3znj2Fi8HhjHbTWYm+7891au+3MJ7zv6EG46fz7D86L7ksxg3k5+sj1qH+zYsSPsIXgubk3JpHLNw89zx78rufRdM/jfM+MxSUP8thUM7qaL3zWD7338OJ7Z/Bor7sqnqS3h88iyN5i3U1h8mahFpKGfyx4R2ezHuoMybty4sIfguTg1dSSVa373Ao+W7ubTJx/J/zv9HbH6zGqctlWnwd507qKp/Oisufynoo6L79hAY2s0J+vBvp3C4NcedYWqju7jMgrY69O6A9HU1BT2EDwXl6ZER5IvPrSR3xZs57KFh3HNKUfHapKG+GyrrqwJzpo/hZ8vO5GCbfVccNs63mhu92lk2bPtFDy/JupPenSfyAr7HYJ+iENTWyLJZx94nkeKdvDVpbNZsWRS7CZpiMe26s6aUs6YO4kbz53Hi9VvcP6t69jd1ObDyLJn2yl4voxOVbcAiMiBIpKT/vcsETlDRPK63sdVeXluHBN6f7je1NLewafvLeAvL77KN0+fw6dPPtL5pt7Escua3rL02MNYdcF8Xt65h2W3rOX1xlaPR5Y9207B8/vPiGeB4SIyGXgKuAS40+d1BqKxsTHsIXjO5abmtg4uvzufp0pr+b+PHcul754BuN3Ulzh2WdO+3j97ArdeuIDK1/dyzi1rqW1o8XBk2bPtFDy/J2pR1SbgE8AvVfXjwByf1xmI8ePHhz0Ez7natLc1wSV3rue58jp+eNbxnL942pu3udrUnzh2WdPbvWfWIdxx8UJ27G7m7FVr2LG72aORZc+2U/B8n6hFZAlwHvBY+ntunf2gF9u3bw97CJ5zsamhpZ0Lb1/Phsp6fn7OCZy94PB9bnexKRNx7LKmni058mDuuWwhrze2cfaqNbyyK9w3Ptl2Cp6vBzwRkfcCXwb+rao/EJEjgC+o6ud8W2kfvDzgSSKRIDc3Fn9zvMm1pjea2rnw9nVs2tHADctP5LTjJr7tPq41ZSqOXdbUt6JXdnPh7es5cOgQ7rt8MTPGH+jJcveXbSd/BH7AExG5VkROVNV/quoZqvoDSL2BLKxJ2mubNm0Kewiec6lp1942lq9ey0s1e7j5/Pk9TtLgVtP+iGOXNfVt7uFjuP/yRbQkkpyzag3ltXs8W/b+sO0UPF/2qEVkGbAUmAsUAX8B/qqq9Z6vbD/YaS7j4bU9rZx361q2vd7ELRcu4L2zDgl7SMYEZvPOPZy7eh2qyr0rFvGOiaPDHpLxQOB71Kr6oKperKonAr8AjgB+LyLPisg3RWShH+sNUtRPNJ4NF5pefaOFc25Zwyu7mrnjkpP6naRdaMpGHLusKTOzJozi4SsWkzckh+Wr11K8/Q3P19EX207BC/SkHCIyGvgQcIqqrgxsxWm2R+227fVNnLt6Hbv2tnHHJSdx0vRoH/bPGD9Vvd7E8tVraWhp565LFzJv6tiwh2QGIIzXqD/R0wX4IKBhTNJei/pfYNmIctO21/dyzqq17G5q494VizKepKPcNBBx7LKm/TP14BE8fOUSxh04lAtuXcf6rbt8W1dXtp2C59dr1Hek/3ko8E7gH+nr7wOeUdVPeL7SDNgetZsqXmvk3NVraUskueeyRRw7+aCwh2RMZOxsaOHc1WvZsbuFWy9awLuOivZngk3PwniN+hJVvQRQYI6qflJVPwkc48f6wlBcXBz2EDwXxaaXX93DOavW0pFUHly5ZL8n6Sg2eSGOXdaUnQmjh/PgyiVMHTeCS+7cwNMv1/q6PttOwfP7c9QvquqxXa7nAC90/V6QvNyjbm1tZdiwYZ4sKyqi1vRi9RtccNs6hubmcN+KxRx16Mj9XkbUmrwSxy5rGphde9u44LZ1bN65hxvPnceHjznMl/XYdvJH4HvUXTwjIk+KyMUichGpo5M97fM6A1FVVRX2EDwXpaaNr+zm3NVrGTE0l4evWJLVJA3RavJSHLusaWDGHTiU+1csZs6kg/jMfYU8+sIOX9Zj2yl4vk7Uqno1sIrU56lPAG5R1c/29zgRuV1EakXkxV5uFxG5QUTKReQFEZnn6cAzMGHChKBX6buoNOVX7uL8W9cxZsRQHrpiMdMOzv4ITFFp8locu6xp4A4akce9ly3kxKlj+NwDz/OH570/NKZtp+D5fhJOVf29qn4xfflDhg+7k9QBU3pzKjAzfVkJ3DSwUe6/3bt3B71K30Wh6T8VdVx4+3oOHTWMh65YzJSxIwa0vCg0+SGOXdbkjVHD87jr0oUsPuJgvvRwEQ9t8HZv0bZT8HydqEVksYhsEJFGEWkTkQ4Raejvcar6LNDXZw3OBO7WlLXAGBHp+RiSPhk+fHiQqwtE2E3/3Pwal9yxgSljD+DBKxYz8aADBrzMsJv8Escua/LOiKG53H7xSbxn5iF89XfF3LOm0rNl23YKnt971L8ClgNlwAHACuCXHix3MvBKl+vb0997GxFZKSL5IpJfU1NDXV0dNTU1VFdXU19fT0VFBc3NzZSUlJBMJiksLATe+lxdYWEhyWSSkpISmpubqaiooL6+/s3l1NXVUVlZSWNjI6WlpSQSCYqKivZZRufX4uJiWltbKSsro6GhgaqqKmpra6mtraWqqoqGhgbKyspobW19812I3ZdRVFREIpGgtLSUxsZGKisrY9H01xd3sOLO9cw4eAQ/XDqZnNZG55v82k7V1dXs2rXLmqypz6bKijJ+9onZvHPaKP7fnzbx08c2Ot8Ux+3U2dQXv9/1na+qC0TkBVU9Pv29/6jqOzN47HTg0Z7eIS4ijwHfV9Xn0tefAq5R1T4/te7lu76rqqqYOnWqJ8uKirCa/lJcw2cfeJ5jJo3mrksXMmbEUM+WHcftBPHssiZ/tCWSfOGh53m8+FX++5Sjuep9Rw1oeVFo8loUmvp617ff5/VqEpGhwEYR+SFQA3hxbrbtQNcTD08B/HmLYy/GjBkT5OoCEUbTnzZW86WHizjh8DHccclJjB6e5+ny47idIJ5d1uSPobk53LDsRPKGFPGjJ1+mtb2DL35oFiKS1fKi0OS1qDf5/dT3Bel1XA3sJTW5ftKD5T4CXJh+9/di4A1VrfFguRnbuXNnkKsLRNBND+e/whce2shJ08dy96ULPZ+kIZ7bCeLZZU3+yR2Sw0/PPoGzF0zhhn+Uc/0TpWT7bGpUmrwU9Sbf9qhFZAjwXVU9H2gBvr0fj30AOBkYLyLbgW8BeQCqejPwOHAaUA40AZd4OvgMhP00iR+CbLpv3Ta+/ocX+a+Z47nlggUcMHSIL+uJ43aCeHZZk7+G5AjXf+J4hubmsOqfW2htT/Ktj87Z7z3rKDV5JepNvu1Rq2oHcEj6qe/9fexyVZ2oqnmqOkVVb1PVm9OTNOl3e1+lqkeq6nGqGvgBvDdv3hz0Kn0XVNPtz23l6394kQ/MPpTVF/o3SUM8txPEs8ua/JeTI/zvmcdy6btmcOd/Kvn6H18kmdy/PeuoNXkh6k1+v5lsFTCP1FPVezu/r6o/9W2lfbCTcoTv5n9WcP1fSll6zGHcsPxEhub6/lF+Y0w3qsoPn3yZm56p4Kz5U/jBJ49nSE52r1kbb4R5CNEdwKPp9YzqcnFe1E+Llg0/m1SVX/y9jOv/UsoZcyfxq3ODmaTjuJ0gnl3WFBwR4ZpTjuYLH5zJbwu288WHNtLekczosVFtGoioN/m6Rx01tkcdDlXlR0++zK/tr3djIuemZyr4wRP2LFfYAt+jFpHrvLhPlEX9L7Bs+NGkqvzfYy/x62cqWL5wKj8MeJKO43aCeHZZUzg+ffKRfPP0OTyx6VWuvLeAlvaOPu/vQtP+inqTL3vU6Xdq9/U6tACXq+psz1feB9ujDlYyqXzzkRe5d20VF79zelbvMDXGBOPetdv4xh/9/ySG6VkYr1GvZt/XpLtfRqbv46zOQ8vFiZdNHUnl2t8Xc+/aKq547xGhTdJx3E4Qzy5rCtf5i6fxw7OO57nyOi65cz17WxM93s+lpkxFvcleo85SIpEgN9fvA7sFy6umREeSr/ymiD9u3MHnPjCTL35wZmh70nHcThDPLmuKhv6OFuhiU3+i0BTmu75jq7y8POwheM6LpvaOJJ978Hn+uHEH/33K0XxpAIcq9EIctxPEs8uaouHMEybzq+UnUvTKbs6/dR27m9r2ud3Fpv5Evckm6ixNmTIl7CF4bqBNrYkOPn1vIY8Xv8o3PvKOAR/83wtx3E4Qzy5rio5Tj5vIzefPp7RmD+euXsfrja1v3uZqU1+i3mQTdZbq6urCHoLnBtLU0t7ByrsL+PtLO/nOmcew4r+O8HBk2YvjdoJ4dllTtHxwzgRWX7SAitcaWb56LbV7WgC3m3oT9SZfJ2oRmSUiT4nIi+nrx4vIN/xcZ1BGjhwZ9hA8l21TU1uCS+/cwLNlr/GDTx7HhUumezuwAYjjdoJ4dllT9Lx31iHccclJvLKrmWWr1vLqGy3ON/Uk6k1+71GvBq4F2gFU9QVgmc/rDER7e3vYQ/BcNk17Wtq56Pb1rN3yOj89ey7nnBStg9vHcTtBPLusKZreeeR47r5sIbV7Wjl71RqqXm8Me0iei/p28nuiHqGq67t9r+f3/DsmmczscHsu2d+mN5rbueC29TxftZtfLp/Hx0+M3us8cdxOEM8ua4quk6aP494Vi9jd1Manf7uZyrq9/T/IIVHfTn5P1HUiciSgACJyFhDoeaP9MmLEiLCH4Ln9aarf28a5q9eyaccb/Pq8eXzk+Ik+jix7cdxOEM8ua4q2Ew4fw/2XL6Y1oZxzyxrKa+OzZx317eT3RH0VsAqYLSLVwBeAT/u8zkDs2rUr7CF4LtOm1/a0snz1WspqG7nlwgV8+JjDfB5Z9uK4nSCeXdYUfcdOPogfn3Y4HUll2S1rePnVPWEPyRNR306BHPBERA4EclQ11K3q5QFPmpubOeCAAzxZVlRk0rSzoYVzV6+lenczt110Eu86anxAo8tOHLcTxLPLmtzQ3NxM9Z4Ozrt1LW2JJPdctohjJx8U9rAGJArbKYyTcnyp6wW4Ari8y3Xnbd26NewheK6/purdzZy9ag2vvtHC3ZcuivwkDfHcThDPLmtyw9atWznq0JE8fMUSRgzN5dzVa9n4yu6whzUgUd9Ofp2U41vpfx4NnAQ8kr7+UeBZVV3h+Uoz4OUedTKZJCcnXh9D76up6vUmlq9eS0NLO3ddupB5U8cGPLrsxHE7QTy7rMkNXZu21zdx7up17Nrbxh2XnMRJ08eFPLrsRGE7Bb5HrarfVtVvA+OBear6ZVX9MjAfiN5bg7OwcePGsIfgud6atrzWyNmr1rC3LcH9KxY7M0lDPLcTxLPLmtzQtWnK2BE8fMUSDh01jAtvW89/yqN94JDeRH07+foatYiUAnNVtTV9fRhQFPTpLTvZaS733+adqUMIqir3rljEOyaODntIxpiIqd3Twvm3rmPb603ccuEC3jvrkLCH5JwwT8pxD7BeRK5LPx2+Drjb53UGIuonGs9G96aSHQ0su2UtOQIPXbHYyUk6jtsJ4tllTW7oqenQUcN5cOUSjjxkJJfflc/fS3aGMLLsRX07+f6ubxGZB/xX+uqzqvq8ryvsg+1RZ+6F7bu54Lb1HDh0CPddvpgZ4w8Me0jGmIjb3dTGRbevZ9OOBn65/EROPS6ax1eIotD2qEVkKlAH/CF9eT39PecVFhaGPQTPdTYVbKvnvNXrGH1ALg9dscTpSTqO2wni2WVNbuiracyIodyzYhFzDx/D1Q88z582Vgc4suxFfTv5/Rp1MemjkgEHADOAl1X1GN9W2gd713ffkskk6yvrufTODUwYPZz7Vixi0hi3PwMax+0E8eyyJjdk0rS3NcFld21g3dZd/OCTx3P2gsMDGl12orCdQtujVtXjVPX49GUmsBB4zs91BqW0tDTsIXju/n88z8V3rGfSmAN4aOVi5ydpiOd2gnh2WZMbMmk6cFgud1y8kHcfNZ5rfvsC967dFsDIshf17RTonxCqWkjqc9XOmzFjRthD8NQ/SnfynadrmX7wgTy4cjGHjh4e9pA8Ebft1CmOXdbkhkybDhg6hNUXLuADsw/lG398kduei+5BRaK+nfx+jbrrEcq+IiL3A6/5uc6g7NixI+wheOaJF1/linsKmD52KA9cvpjxI4eFPSTPxGk7dRXHLmtyw/40Dc8bwk3nz2fpMYfxv4+WcNMzFT6OLHtR305+71GP6nIZBjwGnOnzOgMxbpybR+Dp7s9FO7jq/kKOm3wQt553PGMPHBr2kDwVl+3UXRy7rMkN+9s0NDeHX517ImfMncQPnijl53/fTBDnmNgfUd9OuT4vv0RVf9P1GyLyKeA3vdzfGU1NTYwd684Runry24LtXPPbIhZMH8ftF5/EG3VuffYxE3HYTj2JY5c1uSGbptwhOfzsnBMYmpvDz/9eRmsiyTWnHI2I+DTK/RP17eT3HvW1GX7POWG/Q3Cg7l9XxX//toh3Hjmeuy5ZyMhhuc439SSOTRDPLmtyQ7ZNQ3KEH37yeM5dNJWbnqngfx99KTJ71lHfTr7sUYvIqcBpwGQRuaHLTaOBhB/rDFpeXl7YQ8janf/eynV/LuF9Rx/CTefPZ3jeEMDtpt7EsQni2WVNbhhIU06O8N2PHcuw3Bxu//dW2jo6+M4Zx5KTE+6eddS3k19/RuwA8oEWoKDL5RHgFJ/WGajGxsawh5CVW56t4Lo/l/DhORO4+YK3Jmlwt6kvcWyCeHZZkxsG2iQifPP0OVzx3iO4d20VX/v9C3Qkw92zjvp28mWPWlWLgCIRuU9VY7EH3d348dE/F3N3v3yqjJ/8bTOnHz+Rn51zAnlD9v07zcWm/sSxCeLZZU1u8KJJRPja0tkMyx3CDU+V0ZZI8uNPzSV3SDhPQUd9O/nyX0VEHk7/83kReaH7JcNlLBWRl0WkXES+1sPtJ4vIGyKyMX35pqcR/di+fXuQqxsQVeXHT77MT/62mU/Mm8wvlp34tkka3GrKVBybIJ5d1uQGr5pEhC99aBb/fcrR/HHjDj734PO0dyQ9Wfb+ivp28uUQoiIyUVVrRGRaT7erap+HqRGRIcBm4EPAdmADsFxVS7rc52TgK6p6eqbj8vIQoolEgtxcv980P3Cqyvcef4nV/9rKspMO53sfP67X14NcadofcWyCeHZZkxv8aLr1X1v4v8de4oPvmMCN553IsNwh/T/IQ1HYToEfQlRVa9Jft/V0yWARC4FyVd2iqm3Ag0Ts89ebNm0Kewj9SiaVbz2yidX/2spFS6b1OUmDG037K45NEM8ua3KDH00r/usI/vfMY/j7Szu5/O4CWto7PF9HX6K+nfx66nuPiDR0uezp+jWDRUwGXulyfXv6e90tEZEiEfmLiPR4og8RWSki+SKSX1NTQ11dHTU1NVRXV1NfX09FRQXNzc2UlJSQTCbfOoNU+vykhYWFJJNJSkpKaG5upqKigvr6esaPH0/n8iorK2lsbKS0tJREIkFRUdE+y+j8WlxcTGtrK2VlZTQ0NFBVVUVtbS21tbVUVVXR0NBAWVkZra2tFBcX97iMoqIiEokEpaWlNDY2UllZ2WPT3qYmPn37s9y9ZhtnzDqQ6844huefL3S6KY7bKZum6upqDj30UGuyplg1nT1vIp9dNI5/lb3GWTf8g6a2hPNN+7Od+qSqkbsAnwJu7XL9AuCX3e4zGhiZ/vdpQFl/y50/f756JT8/37Nlea090aFffPB5nfbVR/VHT5RqMpnM6HFRbspWHJtU49llTW7wu+n3ha/ojK89qmfd9G9taG7zdV2dorCdgHztZe7y9TSXACIyD3g3qdNdPqeqz2fwmCXAdap6Svr6tQCq+v0+HlMJLFDVut7u4+Vr1FHV3pHkiw9t5NEXavjyh2bx2Q/MDHtIxhizXx57oYbPP/g8x0w+iLsvWchBI6L9OWcvhHaay/Q7se8CDgbGA3eKyDcyeOgGYKaIzBCRocAyUp/B7rrswyR9/DkRWUiq5XUvx9+XzqcvoqQ10cFV9xXy6As1/M9ps/d7ko5i00DFsQni2WVNbgii6SPHT+TX582jZMcbnHvrWur3tvm6vqhvJ1/3qEXkJeBEVW1JXz8AKFTVd2Tw2NOAnwNDgNtV9bsiciWAqt4sIlcDnyZ1pLNm4Euq+p++lhnnPeqW9g4+fW8BT7/8Gt8+4xgueuf0sIdkjDED8vTLtVx5TwHTDz6Qe1cs4pBR8TmzX3eh7VEDlUDXExsPAzI6z5mqPq6qs1T1SFX9bvp7N6vqzel//0pVj1HVuaq6uL9J2mudbxCIgqa2BCvuyueZza/xvY8fl/UkHaUmr8SxCeLZZU1uCLLpfUcfyu0Xn0TVribOuWUNr77R4st6or6d/N6j/iNwEvA3Uq9Rfwh4DqgFUNXP+bbyHni5R93a2sqwYeH/ddfYmuDSOzeQX7mLH541l7PmT8l6WVFp8lIcmyCeXdbkhjCa1m/dxSV3rGf8qGHcf/liJo85wNPlR2E7hblH/Qfgf4CngWeArwN/4a1jfzurqqoq7CHwRnM7F9y2joJt9fx82YkDmqQhGk1ei2MTxLPLmtwQRtPCGeO4Z8Uidu1t4+yb11D1epOny4/6dvL9Xd9R4uUedUNDA6NHj/ZkWdnY3dTGBbetp/TVBn65fB5Ljz1swMsMu8kPcWyCeHZZkxvCbCre/gYX3L6O4blDuP/yRRxxyEhPlhuF7RTmu75PF5HnRWTXfh7wJPJ2794d2rrrGltZdstaXt65h1UXzPdkkoZwm/wSxyaIZ5c1uSHMpuOmHMQDly+mvSPJ2avWsnnnHk+WG/Xt5PdT3z8HLgIOVtXRqjpKVWPx5+Xw4cP7v5MPahtaWHbLWipf38ttFy3g/bMneLbssJr8FMcmiGeXNbkh7KZ3TBzNQ1csJkdg2S1r2bTjjQEvM+ym/vg9Ub8CvKiD6fl1H+3Y3czZq9awY3czd16ykP+aeUjYQzLGmMAddegoHr5iCcNzczh39TqKXtkd9pB85fdEfQ3wuIhcKyJf6rz4vM5AtLT48zGB3ryyq4mzV63h9cY27rlsIYuPONjzdQTdFIQ4NkE8u6zJDVFpmj7+QB66YgmjD8jl/FvXUbBtV9bLikpTb/yeqL8LNJH6LPWoLhfnjRkzJrB1ba3byzmr1rCnJcF9ly9i/rRxvqwnyKagxLEJ4tllTW6IUtPh40bw0MoljB81jAtuW8/aLdkdnDJKTT3xe6Iep6qfUNVvqeq3Oy8+rzMQO3fuDGQ95bV7OGfVGloSSR64fDHHTxnj27qCagpSHJsgnl3W5IaoNU0acwAPrVzMpDEHcPEd6/lX2Wv7vYyoNXXn90T9dxH5sM/rCMXUqVN9X8dLNQ2cs2otCjy0cjFzJvn7PrwgmoIWxyaIZ5c1uSGKTYeOHs6DKxcz/eADueyufJ56af8m3ig2deX3RH0V8ISINMft41mbN2/2dfnF299g+eq15A3J4aGVi5k5wf9XDPxuCkMcmyCeXdbkhqg2jR85jAdXLuboCaO48t4CnnixJuPHRrWpkx3wJIIKq+q56Pb1jB6exwOXL2bqwSPCHpIxxjihoaWdi29fT9H2N/jZOSdwxtxJYQ8pI2EeQhQRGSsiC0XkPZ0Xv9cZBL9Oi7Z+6y4uuHUd4w4cysNXLgl0ko76qd6yEccmiGeXNbkh6k2jh+dx92WLmD9tLF948Hl+W7C938dEvcnvk3KsAD4PTAE2AouBNar6ft9W2oeo71H/u7yOFXflM2nMcO6/fDETRkf7Q/jGGBNVzW0dXH53Pv+uqOO7HzuOcxdF+3XoMPeoP0/q7FnbVPV9wInA/r8lL4K8/gvs6ZdrueTODUw7eAQPXbEklEk66n9VZiOOTRDPLmtygytNBwwdwq0XLeDkWYfwP38o5s5/b+31vlFv8nuPeoOqniQiG4FFqtoqIhtV9QTfVtqHqO5R/3XTq1x1fyFHHzaKey5dxNgDh4Y9JGOMiYW2RJLPPlDIk5t2cu2ps7nivUeGPaQehblHvV1ExgB/BP4mIn8Cdvi8zkAUFRV5spxHX9jBZ+4r5JhJB3HfisWhTtJeNUVJHJsgnl3W5AbXmobm5vCrc+dx+vET+f5fSrnhqbK33SfqTYG961tE3gscBDyhqm2BrLQbL/eoE4kEubm5A1rGH57fzpcfLmL+tLHcfvFJjBqe58nYsuVFU9TEsQni2WVNbnC1qSOp/Pdvi/h9YTVXv+8ovvzhWYgIEI2mUN/13UlV/6mqj4Q1SXutvLx8QI9/aEMVX3q4iMVHHMxdly4MfZKGgTdFURybIJ5d1uQGV5uG5Ag/Pmsuy046nF89Xc73Hn+Jzh3VqDe592dRREyZMiXrx96zppL/96dNvHfWIay6YD7D84Z4OLLsDaQpquLYBPHssiY3uNyUkyN87+PHMSw3h9X/2kprIsl1Hz0m8k02UWeprq6OkSNH7vfjbv3XFv7vsZf44DsmcON5JzIsNxqTNGTfFGVxbIJ4dlmTG1xvyskRrjvjGIblDeGWZ7fQlkhy+YmjIt1kE3WWstmoNz5dzo+efJmPHDeRny87gbwhgb3ykJEo/6BmK45NEM8ua3JDHJpEhGtPnc2w3Bx++Y9yGvaO54Zp08iN2P+TO9lEnaX29vaM76uq/Oxvm7nhH+V87IRJ/PhTcyP5A7E/Ta6IYxPEs8ua3BCXJhHhyx8+mqFDcvjJ3zYjD23k5+dEbwcKbKLOWjKZzOh+qsr1T5Sy6p9bOHvBFL7/ieMZkiM+jy47mTa5JI5NEM8ua3JD3Jo++4GZtDQ1cuO/d9CWSPKrc6P1kiQE+K7vuBkxov9jcKsq3/5zCav+uYXzF0/l+ghP0pBZk2vi2ATx7LImN8SxacW7p/PtM47hbyU7ueKeAlraO8Ie0j5sos7Srl27+rw9mVS+/scXufM/lVz27hn875nHkhPhSRr6b3JRHJsgnl3W5Ia4Nl30zul8/xPH8c/Nr3HZXRtoakuEPaw32USdpUmTej91WuqD9S9w/7oqPnPykXzjI+9484P1UdZXk6vi2ATx7LImN8S5afnCqfz4rLmsqXidi2/fQGNrNCZrm6iztHVrzwd4b+9I8oWHNvK7wu188YOz+O9TjnZikobem1wWxyaIZ5c1uSHuTZ+cP4VfLDuRgqp6LrhtHW80h//mucAOIRoFXh5CNJlMkpOz7985bYkkn3vgeZ7Y9CpfXTqbT58czYO/96anJtfFsQni2WVNbhgsTU+8+CqffSC4kyVF4hCicbNx48Z9rre0d3DlvQU8selVvnn6HOcmaXh7UxzEsQni2WVNbhgsTUuPPYxVF8xn885Glq9eS11ja/ADS7M9ag80t3Ww8p58/lVWx/997FjOXzzN83UYY4wJ3nNlday4ewNTxo7g/hWLOHT0cF/WY3vUPug80fje1gSX3Lme58rr+NFZxzs9SUf95OnZiGMTxLPLmtww2JrePXM8d12ykJrdzZy9ag07djcHOLKUyO5Ri8hS4BfAEOBWVb2+2+2Svv00oAm4WFUL+1qm13vUDS3tXHLHBja+spufnj2XM0+Y7NmyjTHGREfBtnouvn09B43I44HLF3P4OG8/T+7cHrWIDAFuBE4F5gDLRWROt7udCsxMX1YCNwU1voJt9Xzlrn/y8Rv/TdEru/nV8hNjMUkXFvb5d46T4tgE8eyyJjcM1qb508Zy3+WL2NOS4OxVa3j0hR3c+HQ5BdvqfR9fJPeoRWQJcJ2qnpK+fi2Aqn6/y31WAc+o6gPp6y8DJ6tqTW/L9WKPumBbPeeuXktrInUYvWtPnc0V73XvjWM9GSzv5oyDOHZZkxsGe1PJjgbOuWUNe1oS5AgMzc3hvhWLmT9t7IDG4NweNTAZeKXL9e3p7+3vfRCRlSKSLyL5NTU11NXVUVNTQ3V1NfX19VRUVNDc3ExJSQnJZPLNv6w6X7MoLCwkmUxSUlJCc3Mzj+eXvTlJ5wANjY1UVlbS2NhIaWkpiUSCoqKifZbR+bW4uJjW1lbKyspoaGigqqqK2tpaamtrqaqqoqGhgbKyMlpbWykuLu5xGUVFRSQSCUpLS2lMr3ugTRUVFdTX17NhwwY6/xtZU3Sbqquryc/PtyZrsqYQmuZMGs37ph8AQFKhPZHkycKKATf1Jap71J8CTlHVFenrFwALVfWzXe7zGPB9VX0uff0p4BpV7fVdAV7tUZ+3ei1tHUnP/pKKiubmZg444ICwh+GpODZBPLusyQ3W9NYzq4mOJHmDeI96O3B4l+tTgB1Z3MdzqdcpFnPJgkNiNUkD7Njh+3++wMWxCeLZZU1usKbUPHD/5Yv50oePDmQeiOppLjcAM0VkBlANLAPO7XafR4CrReRBYBHwRl+vT3tp/rSxHDF6JmPHxmeSBhg3blzYQ/BcHJsgnl3W5AZrSpk/bWxgO2qR3KNW1QRwNfAk8BLwsKpuEpErReTK9N0eB7YA5cBq4DNBjrGpqSnI1QXCmtwRxy5rcoM1BS+qe9So6uOkJuOu37u5y78VuCrocXWK27sewZpcEscua3KDNQUv2qOLsLy8vLCH4Dlrckccu6zJDdYUvEi+69svIvIasM2jxY0H6jxaVlRYkzvi2GVNbrAmf0xT1UN6umFQTdReEpH83t5K7yprckccu6zJDdYUPHvq2xhjjIkwm6iNMcaYCLOJOnu3hD0AH1iTO+LYZU1usKaA2WvUxhhjTITZHrUxxhgTYTZRG2OMMRFmE7UxxhgTYTZRG2OMMRFmE7UxxhgTYTZRG2OMMRFmE7UxxhgTYTZRG2OMMREW2fNR+2H8+PE6ffr0sIdhjDHG7KOgoKCut7NnDaqJevr06eTn53uyrIKCAubPn+/JsqLCmtwRxy5rcoM1+UNEej0F86A6hOiCBQvUq4naGGOM8YqIFPR2qk17jTpLBQUFYQ/Bc9bkjjh2WZMbrCl4tkdtjDHGhMz2qH1QVFQU9hA8Z03uiGOXNbnBmoJne9RZSiQS5ObG67141uSOOHZZkxusyR+2R+2D8vLysIfgOWtyRxy7rMkN1hQ8m6izNGXKlLCH4Dlrckccu6zJDdYUPJuos1RXVxf2EDxnTe6IY5c1ucGagmcTdZZGjhwZ9hA8Z03uiGOXNbnBmoJnE3WW2tvbwx6C56zJHXHssiY3WFPwbKLOUjKZDHsInrMmd8Sxy5rcYE3Bs4k6SyNGjAh7CJ6zJnfEscua3GBNwbOJOku7du0KewiesyZ3xLHLmtxgTcELdaIWkaUi8rKIlIvI13q4XUTkhvTtL4jIvG63DxGR50Xk0eBGnTJp0qSgV+k7a3JHHLusyQ3WFLzQJmoRGQLcCJwKzAGWi8icbnc7FZiZvqwEbup2++eBl3weao+2bt0axmp9ZU3uiGOXNbnBmoIX5h71QqBcVbeoahvwIHBmt/ucCdytKWuBMSIyEUBEpgAfAW4NctCdZs+eHcZqfWVN7ohjlzW5wZqCF+ZEPRl4pcv17envZXqfnwPXAKG8XW/jxo1hrNZX1uSOOHZZkxusKXhhTtTSw/e6nyGkx/uIyOlArar2exJREVkpIvkikl9TU0NdXR01NTVUV1dTX19PRUUFzc3NlJSUkEwmKSwsBN46P2lhYSHJZJKSkhKam5upqKigvr6eCRMm0Lm8yspKGhsbKS0tJZFIvHkmls5ldH4tLi6mtbWVsrIyGhoaqKqqora2ltraWqqqqmhoaKCsrIzW1laKi4t7XEZRURGJRILS0lIaGxuprKy0pkHWVF1dzcSJE63JmqwpRk19Ce3sWSKyBLhOVU9JX78WQFW/3+U+q4BnVPWB9PWXgZOBzwEXAAlgODAa+L2qnt/XOr08e1ZBQQHz58/3ZFlRYU3uiGOXNbnBmvzR19mzwpyoc4HNwAeAamADcK6qbupyn48AVwOnAYuAG1R1YbflnAx8RVVP72+dXk7UxhhjjFcieZpLVU2QmoSfJPXO7YdVdZOIXCkiV6bv9jiwBSgHVgOfCWWwPeh8WiVOrMkdceyyJjdYU/BC26MOg5d71MlkkpyceB0vxprcEccua3KDNfkjknvUristLQ17CJ6zJnfEscua3GBNwbOJOkszZswIewiesyZ3xLHLmtxgTcGziTpLO3bsCHsInrMmd8Sxy5rcYE3Bs4k6S+PGjQt7CJ6zJnfEscua3GBNwbOJOktNTU1hD8Fz1uSOOHZZkxusKXg2UWcp7HcI+sGa3BHHLmtygzUFL7e3G7qfUrIX7apa7OF4nJGXlxf2EDxnTe6IY5c1ucGagtfrRA38k9TRwno63nanGcB0LwfkisbGRsaPHx/2MDxlTe6IY5c1ucGagtfXRL1BVd/f14NF5B8ej8cZUd6o2bImd8Sxy5rcYE3B6/WJ+f4m6UzvE1fbt28PewiesyZ3xLHLmtxgTcHr9xCiIvIuYKOq7hWR84F5wC9UdVsQA/SSl4cQTSQS5Ob29YSEe6zJHXHssiY3WJM/BnoI0ZuAJhGZC1wDbAPu9nB8Ttq0aVP/d3KMNbkjjl3W5AZrCl4me9SFqjpPRL4JVKvqbZ3fC2aI3rHTXBpjjImige5R7xGRa4HzgcdEZAgQ7feyB6CgoCDsIXjOmtwRxy5rcoM1BS+TPerDgHNJvQv8XyIyFThZVZ17+tv2qI0xxkRRVnvUIvKkiHwRGKOqP1XVfwGoapWLk7TXov4XWDasyR1x7LImN1hT8Hrdo07vSS9NX2YB64AngKdUtdGTlYssBX4BDAFuVdXru90u6dtPA5qAi1W1UEQOJ/WGtsOAJHCLqv6iv/XZHrUxxpgoymqPWlVfVdU7VXUZsIDUxDgfeFJE/i4i1wxwUEOAG4FTgTnAchGZ0+1upwIz05eVpN6BDpAAvqyq7wAWA1f18FhfFRfH78ip1uSOOHZZkxusKXgZHYlcVZOqukZVv6mq7wKWAdUDXPdCoFxVt6hqG/AgcGa3+5wJ3K0pa4ExIjJRVWtUtTA9tj3AS8DkAY5nv8yaNSvI1QXCmtwRxy5rcoM1Ba+v16h/KSI39HQBvqmq9w1w3ZOBV7pc387bJ9t+7yMi04ETST01H5iqqqogVxcIa3JHHLusyQ3WFLy+9qjzgQJgOKmjkZWlLycAHR6su6eTfXR/wbzP+4jISOB3wBdUtaHHlYisFJF8Ecmvqamhrq6Ompoaqqurqa+vp6KigubmZkpKSkgmkxQWFgJvvbmgsLCQZDJJSUkJzc3NVFRUUF9fD0Dn8iorK2lsbKS0tJREIkFRUdE+y+j8WlxcTGtrK2VlZTQ0NFBVVUVtbS21tbVUVVXR0NBAWVkZra2tbz4V030ZRUVFJBIJSktLaWxspLKy0poGWVN1dTVDhgyxJmuyphg19SWTj2c9DXxYVdvT1/OAv6rq+/p8YD9EZAlwnaqekr5+LYCqfr/LfVYBz6jqA+nrL5P6aFhNehyPAk+q6k8zWaeXbyarqqpi6tSpniwrKqzJHXHssiY3WJM/BnrAk0nAqC7XR6a/N1AbgJkiMkNEhpJ63fuRbvd5BLhQUhYDb6QnaQFuA17KdJL22vDhw8NYra+syR1x7LImN1hT8DI5Cvn1wPPpPWuA9wLXDXTFqpoQkauBJ0l9POt2Vd0kIlemb78ZeJzUR7PKSX0865L0w98FXAAUi8jG9Pf+R1UfH+i4jDHGmCjpd6JW1TtE5C/AovS3vqaqr3qx8vTE+ni3793c5d8KXNXD456j59evA9PS0hLm6n1hTe6IY5c1ucGagpfRx7OAVqAGqAdmich7/BuSG8aMGRP2EDxnTe6IY5c1ucGagtfvRC0iK4BnST1F/e301+v8HVb07dy5M+wheM6a3BHHLmtygzUFL5M96s8DJwHb0u/0PhF4zddROSDsdwj6wZrcEccua3KDNQUvk4m6RVVbAERkmKqWAkf7O6zo27x5c9hD8Jw1uSOOXdbkBmsKXiafo/4DqXdbfwF4P6nXqfNU9TTfR+cxOymHMcaYKBrQ56hV9eOqultVrwP+H6nPL3/M0xE6KOqnRcuGNbkjjl3W5AZrCl6fe9QikgO8oKrHBjck/9getTHGmCjKeo9aVZNAkYhE+5X2EET9L7BsWJM74thlTW6wpuBl8hr1P0i963s9sLfz+6p6hr9D857tURtjjImigR7r+9vA6cB3gJ90uQxqnWdViRNrckccu6zJDdYUvH73qOPEyz3qRCJBbm4mh0p3hzW5I45d1uQGa/JHVnvUIvJoBgvu9z5xVV5eHvYQPGdN7ohjlzW5wZqC19efEO8Wke6nnexKgDkej8cZU6ZMCXsInrMmd8Sxy5rcYE3B62uiPjODx7d5NRDX1NXVMXLkyLCH4Slrckccu6zJDdYUvF4nalX9Z5ADcU2UN2q2rMkdceyyJjdYU/AyPc2l6aa9vT3sIXjOmtwRxy5rcoM1BS/UiVpElorIyyJSLiJf6+F2EZEb0re/ICLzMn2s35LJZNCr9J01uSOOXdbkBmsKXmgTtYgMAW4ETiX1prTlItL9zWmnAjPTl5XATfvxWF+NGDEiyNUFwprcEccua3KDNQWv34laRIrTe7NdL/8SkZ+JyMEDWPdCoFxVt6hqG/Agb38D25nA3ZqyFhgjIhMzfKxvCrbV86t/lFGwrT6oVQZi165dYQ/Bc341FWyr58any0P7GbBtFa5Mt79LTZmyppQg/x+QySe8/wJ0APenry9Lf20A7gQ+muW6JwOvdLm+HViUwX0mZ/hYXxRsq+fsVWvoSCp35L/G7MNGMWp4XhCr9l0ymSQnpzbsYXjKj6Y9Le2UvrqHpEKOEMrPgG2r8OzP9nelaX9Y01s/A6owLC+H+1YsZv60sb6NL5Onvt+lqteqanH68nXgZFX9ATB9AOuWHr7X/TBpvd0nk8emFiCyUkTyRSS/pqaGuro6ampqqK6upr6+noqKCpqbmykpKSGZTFJYWAi8dZD2wsJCkskkJSUlNDc383h+GR3J1KqSCrv3ttLS0kJHRwdNTU2oKnv3NgLQ2Lhnn6979+5FNUlzczMdHR20trbS3t5Oe3s7ra2tdHR00NzcjGqSvXv39rKMRlSVpqYmOjo6aGlpob29nba2NtraWkkkErS0NJNMJmlqako/tvt4UtebmppIJpO0tDSTSCTYu7eRtrY22tvbramPpjea2kj/CJBUaGhJBNrU1tbK3r17Y7WdXGqqa2jaZ/vXNTQ53xTH7eRn0+vpnwEF2hNJniysoLa2ltraWqqqqmhoaKCsrIzW1laKi4uBt+aUzq9FRUUkEglKS0vfHFtvMtmjHikii1R1HYCILAQ638ueyODxvdkOHN7l+hRgR4b3GZrBYwFQ1VuAWyB1CNHx48fvc/vYsam/gubMSb3EPW9e6v1q8+fP3+d65+2nLZjJfRtfpz2RJC83h1+et8DXv6SClPqrMl4fBPCjqWBbPefduvbNn4FfLDsx8J8B21bh6b79b7pwUa/b35Wm/WFNb/8ZOGXekRx66L4/A6NHjwbguOOOA96aUzq/zp07F4DZs2f3v0JV7fNC6sxZxcBWoBJ4gdRrxAcCZ/f3+D6WmwtsAWaQmniLgGO63ecjpJ56F2AxsD7Tx/Z0mT9/vnohv3KX/s+9/9T8yl2eLC8qCgoKwh6C5/xqyq/cpb/6R1loPwO2rcKV6fZ3qSlT1pTi9f8DgHztZe7K+KQcInIQqZN47M7oAZkt8zTg58AQ4HZV/a6IXAmgqjeLiAC/ApYCTcAlqprf22P7W5+d5tIYY0wUDeg0lyIyTETOBa4CPici3xSRb3oxMFV9XFVnqeqRnROtqt6sqjen/62qelX69uM6J+neHhukqJ9oPBvW5I44dlmTG6wpeP3uUYvIE8AbQAGpd38DoKrOnZPa9qiNMcZE0YD2qIEpqnqOqv5QVX/SefF4jM7pfHd4nFiTO+LYZU1usKbgZbJHfQvwS1UtDmZI/vFyj9re+eiGODZBPLusyQ3W5I+B7lG/GyhIH1f7hc4jlXk7RPeUlpaGPQTPWZM74thlTW6wpuBl8jnqU30fhYNmzJgR9hA8Z03uiGOXNbnBmoLX6x61iIxO/3NPL5dBbceOHo+v4jRrckccu6zJDdYUvL72qO8HTif1bu/uh+1U4AgfxxV548aNC3sInrMmd8Sxy5rcYE3B63WPWlVPT3+doapHpL92Xgb1JA28eTzZOLEmd8Sxy5rcYE3By+Q1akRkMjCt6/1V9Vm/BuWCsN8h6Adrckccu6zJDdYUvH4nahH5AXAOUMJbBzxRYFBP1Hl58Ti1ZVfW5I44dlmTG6wpeJn8GfEx4GhVPU1VP5q+nOHzuCKvv9OSucia3BHHLmtygzUFL5OJegsQ7T83QtD9dJlxYE3uiGOXNbnBmoKXyUTdBGwUkVUickPnxe+BRd327dvDHoLnrMkdceyyJjdYU/AyOYToRT19X1Xv8mVEPvLyEKKJRILc3Izei+cMa3JHHLusyQ3W5I8BHUJUVe/q6eL9MN2yadOmsIfgOWtyRxy7rMkN1hS8TPaot5J6l/c+XPwstZ3m0hhjTBQN9KQcC4CT0pf/Am4A7h3ggMaJyN9EpCz9dWwv91uaPhlIuYh8rcv3fyQipemThPxBRMYMZDzZiPqJxrNhTe6IY5c1ucGagtfvHnWPDxJ5TlXfnfVKRX4I7FLV69MT8FhV/Wq3+wwBNgMfArYDG4DlqloiIh8G/qGqifTnvOn++J7YHrUxxpgoGtAetYjM63JZICJXAqMGOKYzgc7Xue8i9Vnt7hYC5aq6RVXbgAfTj0NV/6qqifT91gJTBjie/Rb1v8CyYU3uiGOXNbnBmoKXyWvUT3e5mgC2Aj9R1ZezXqnIblUd0+V6vaqO7Xafs4Clqroiff0CYJGqXt3tfn8GHlLVfp+Otz1qY4wxUTTQ16gvU9X3pS8fUtWVQFsGK/27iLzYw+XMTMfdw/f2+atCRL5O6o+H+/oYx0oRyReR/JqaGurq6qipqaG6upr6+noqKipobm6mpKSEZDJJYWEh8NZfWIWFhSSTSUpKSmhubqaiooL6+nrWrFlD5/IqKytpbGyktLSURCJBUVHRPsvo/FpcXExraytlZWU0NDRQVVVFbW0ttbW1VFVV0dDQQFlZGa2trRQXF/e4jKKiIhKJBKWlpTQ2NlJZWWlNg6ypurqatWvXWpM1WVOMmvqSyR51oarO6/a9AlWd3+cD+17my8DJqlojIhOBZ1T16G73WQJcp6qnpK9fC6Cq309fvwi4EviAqmZ06hMv96hbW1sZNmyYJ8uKCmtyRxy7rMkN1uSPrPaoRWS2iHwSOEhEPtHlcjEwfIBjegToPJDKRcCferjPBmCmiMwQkaHAsvTjEJGlwFeBMzKdpL1WVVUVxmp9ZU3uiGOXNbnBmoLX16FYjgZOB8YAH+3y/T3A5QNc7/XAwyJyGVAFfApARCYBt6ZPAJIQkauBJ4EhwO2q2vmp9F8Bw4C/iQjAWlW9coBj2i8TJkwIcnWBsCZ3xLHLmtxgTcHrdaJW1T8BfxKRJaq6xsuVqurrwAd6+P4O4LQu1x8HHu/hfkd5OZ5s7N69m9GjR4c9DE9Zkzvi2GVNbrCm4GXyZrLXReQpEXkRQESOF5Fv+DyuyBs+fKDP/kePNbkjjl3W5AZrCl4mE/Vq4FqgHUBVXyD1erExxhhjfJbJRD1CVdd3+16ix3sOIi0tLWEPwXPW5I44dlmTG6wpeJlM1HUiciTpzzCnD0RS4+uoHDBmzJiwh+A5a3JHHLusyQ3WFLxMJuqrgFXAbBGpBr4AfNrPQblg586dYQ/Bc9bkjjh2WZMbrCl4GZ+UQ0QOBHJUdY+/Q/KPHfCkb9bkjjh2WZMbrMkf2R7w5EtdL8AVwOVdrg9qmzdvDnsInrMmd8Sxy5rcYE3B63WPWkS+lf7n0aTORf1I+vpHgWc7T5bhEjsphzHGmCjKao9aVb+tqt8GxgPzVPXLqvplYD4hnFYyaqJ+WrRsWJM74thlTW6wpuBlclKOUmCuqramrw8DilR1dgDj85TtURtjjImigZ7m8h5gvYhcl346fB1wl5cDdFHU/wLLhjW5I45d1uQGawpeRu/6FpF5wH+lrz6rqs/7Oiqf2B61McaYKBroHjWqWqiqv0hfnJykvdZ5QvE4sSZ3xLHLmtxgTcHL+HPUceDlHnUikSA3t6+zhLrHmtwRxy5rcoM1+WPAe9Tm7crLy8MeguesyR1x7LImN1hT8GyiztKUKfH7hJo1uSOOXdbkBmsKXigTtYiME5G/iUhZ+uvYXu63VEReFpFyEflaD7d/RURURMb7P+p91dXVBb1K31mTO+LYZU1usKbghbVH/TXgKVWdCTyVvr4PERkC3AicCswBlovInC63Hw58CKgKZMTdjBw5MozV+sqa3BHHLmtygzUFL6yJ+kze+iz2XcDHerjPQqBcVbeoahvwYPpxnX4GXEP69JtBa29vD2O1vrImd8Sxy5rcYE3BC2uinqCqNQDpr4f2cJ/JwCtdrm9Pfw8ROQOoVtXQ3lOfTCbDWrVvrMkdceyyJjdYU/B8m6hF5O8i8mIPlzP7f3RqET18T0VkBPB14JsZjmOliOSLSH5NTQ11dXXU1NRQXV1NfX09FRUVNDc3U1JSQjKZpLCwEHjrSDWFhYUkk0lKSkpobm6moqKC+vp6Ghsb6VxeZWUljY2NlJaWkkgk3vxMXucyOr8WFxfT2tpKWVkZDQ0NVFVVUVtbS21tLVVVVTQ0NFBWVkZrayvFxcU9LqOoqIhEIkFpaSmNjY1UVlZa0yBrqq6uprm52ZqsyZpi1NSXUD5HLSIvAyerao2ITASeUdWju91nCXCdqp6Svn5t+qZHSb2u3ZS+PgXYASxU1Vf7Wq+Xn6OuqKjgyCOP9GRZUWFN7ohjlzW5wZr8EcXPUT8CXJT+90XAn3q4zwZgpojMEJGhwDLgEVUtVtVDVXW6qk4n9ZT4vP4maa9NmjQpyNUFwprcEccua3KDNQUvrIn6euBDIlJG6p3b1wOIyCQReRxAVRPA1cCTwEvAw6q6KaTxvs3WrVvDHoLnrMkdceyyJjdYU/DsEKJZSiaT5OTE63gx1uSOOHZZkxusyR9RfOrbeRs3bgx7CJ6zJnfEscua3GBNwbM9amOMMSZktkftg6ifaDwb1uSOOHZZkxusKXi2R22MMcaEzPaofdD5Yfo4sSZ3xLHLmtxgTcGzPeosReFdgl6zJnfEscua3GBN/rA9ah+UlpaGPQTPWZM74thlTW6wpuDZRJ2lGTNmhD0Ez1mTO+LYZU1usKbg2USdpR07doQ9BM9Zkzvi2GVNbrCm4NlEnaVx48aFPQTPWZM74thlTW6wpuDZRJ2lpqam/u/kGGtyRxy7rMkN1hQ8m6izFPY7BP1gTe6IY5c1ucGaghft0UVYXl5e2EPwnDW5I45d1uQGawreoPoctYi8BmzzaHHjgTqPlhUV1uSOOHZZkxusyR/TVPWQnm4YVBO1l0Qkv7cPp7vKmtwRxy5rcoM1Bc+e+jbGGGMizCZqY4wxJsJsos7eLWEPwAfW5I44dlmTG6wpYPYatTHGGBNhtkdtjDHGRJhN1MYYY0yE2URtjDHGRJhN1MYYY0yE2URtjDHGRJhN1MYYY0yE2URtjDHGRJhN1MYYY0yE2URtjDHGRFhu2AMI0vjx43X69OlhD8MYY4zZR0FBQV1vp7kcVBP19OnTyc/P92RZBQUFzJ8/35NlRYU1uSOOXdbkBmvyh4hs6/W2wXSs7wULFqhXE7UxxhjjFREp6O2c2PYadZYKCgrCHoLnrMkdceyyJjdYU/Bsj9oYY4wJme1R+6CoqCjsIXjOmtwRxy5rcoM1Bc/2qLOUSCTIzY3Xe/GsyR1x7LImN1iTP2yP2gfl5eVhD8Fz1uSOOHZZkxusKXg2UWdpypQpYQ/Bc9bkjjh2WZMbrCl4NlFnqa6uLuwheM6a3BHHLmtygzUFzybqLI0cOTLsIXjOmtwRxy5rcoM1Bc8m6iy1t7eHPQTPWZM74thlTW6wpuDZRJ2lZDIZ9hA8Z03uiGOXNbnBmoJnE3WWRowYEfYQPGdN7ohjlzW5wZqCZxN1lnbt2hX2EDxnTe6IY5c1ucGaghfqRC0iS0XkZREpF5Gv9XC7iMgN6dtfEJF53W4fIiLPi8ijwY06ZdKkSUGv0nfW5I44dlmTG6wpeKFN1CIyBLgROBWYAywXkTnd7nYqMDN9WQnc1O32zwMv+TzUHm3dujWM1frKmtwRxy5rcoM1BS/MPeqFQLmqblHVNuBB4Mxu9zkTuFtT1gJjRGQigIhMAT4C3BrkoDvNnj07jNX6yprcEccua3KDNQUvzIl6MvBKl+vb09/L9D4/B64B+ny7noisFJF8Ecmvqamhrq6Ompoaqqurqa+vp6KigubmZkpKSkgmkxQWFgJvnfassLCQZDJJSUkJzc3NVFRUUF9fz3/+8x86l1dZWUljYyOlpaUkEok3D/DeuYzOr8XFxbS2tlJWVkZDQwNVVVXU1tZSW1tLVVUVDQ0NlJWV0draSnFxcY/LKCoqIpFIUFpaSmNjI5WVldY0yJqqq6tZs2aNNVmTNcWoqS+hnZRDRD4FnKKqK9LXLwAWqupnu9znMeD7qvpc+vpTpCbnicBpqvoZETkZ+Iqqnt7fOu00l8YYY6Ioqifl2A4c3uX6FGBHhvd5F3CGiFSSesr8/SJyr39Dfbuon2g8G9bkjjh2WZMbrCl4Ye5R5wKbgQ8A1cAG4FxV3dTlPh8BrgZOAxYBN6jqwm7LORnbozbGGOOwSO5Rq2qC1CT8JKl3bj+sqptE5EoRuTJ9t8eBLUA5sBr4TCiD7UHn6x9xYk3uiGOXNbnBmoIX2h51GLzco04mk+TkxOt4Mdbkjjh2WZMbrMkfkdyjdl1paWnYQ/CcNbkjjl3W5AZrCp5N1FmaMWNG2EPwnDW5I45d1uQGawqeTdRZ2rGj+xvU3WdN7ohjlzW5wZqCZxN1lsaNGxf2EDxnTe6IY5c1ucGagmcTdZaamprCHoLnrMkdceyyJjdYU/Bsos5S2O8Q9IM1uSOOXdbkBmsKXrRHF2F5eXlhD8Fz1uSOOHZZkxusKXg2UWepv4Oou8ia3BHHLmtygzUFzybqLI0fPz7sIXjOmtwRxy5rcoM1Bc8m6ixt37497CF4zprcEccua3KDNQXPDiGapUQiQW5urifLigprckccu6zJDdbkDzuEqA82bdrU/50cY03uiGOXNbnBmoJne9TGGGNMyGyP2gdRP9F4NqzJHXHssiY3WFPwbI/aGGOMCZntUfsg6n+BZcOa3BHHLmtygzUFL9Q9ahFZCvwCGALcqqrXd7td0refBjQBF6tqoYgcDtwNHAYkgVtU9Rf9rc/2qI0xxkRRJPeoRWQIcCNwKjAHWC4ic7rd7VRgZvqyErgp/f0E8GVVfQewGLiqh8f6qri4OMjVBcKa3BHHLmtygzUFr9cPjolIQz+PFaBGVWdlue6FQLmqbkmv70HgTKCky33OBO7W1G7/WhEZIyITVbUGqAFQ1T0i8hIwudtjfTVrVrbZ0WVN7ohjlzW5wZqC19cedYWqju7jMgrYO4B1TwZe6XJ9e/p7+3UfEZkOnAis62klIrJSRPJFJL+mpoa6ujpqamqorq6mvr6eiooKmpubKSkpIZlMUlhYCLz1mkVhYSHJZJKSkhKam5upqKigvr6e4uJiOpdXWVlJY2MjpaWlJBIJioqK9llG59fi4mJaW1spKyujoaGBqqoqamtrqa2tpaqqioaGBsrKymhtbX3zL7zuyygqKiKRSFBaWkpjYyOVlZXWNMiaqqur2bRpkzVZkzXFqKkvvb5GLSJHdO7t9vrgDO7Tx2M/BZyiqivS1y8AFqrqZ7vc5zHg+6r6XPr6U8A1qlqQvj4S+CfwXVX9fX/r9PI16oaGBkaPHu3JsqLCmtwRxy5rcoM1+SOr16gzmYCznaTTtgOHd7k+BdiR6X1EJA/4HXBfJpO013bv3h30Kn1nTe6IY5c1ucGagtfrRC0ie0SkobeLB+veAMwUkRkiMhRYBjzS7T6PABdKymLgDVWtSb8b/DbgJVX9qQdj2W/Dhw8PY7W+siZ3xLHLmtxgTcHr9c1k6degEZHvAK8C95B6A9l5wKiBrlhVEyJyNfAkqY9n3a6qm0TkyvTtNwOPk/poVjmpj2ddkn74u4ALgGIR2Zj+3v+o6uMDHZcxxhgTJZmcLuQUVV3U5fpNIrIO+OFAV56eWB/v9r2bu/xbgat6eNxzpP5oCE1LS0uYq/eFNbkjjl3W5AZrCl4mn6PuEJHzRGSIiOSIyHlAh98Di7oxY8aEPQTPWZM74thlTW6wpuBlMlGfC5wN7ExfPpX+3qC2c+fOsIfgOWtyRxy7rMkN1hQ8OylHllpbWxk2bJgny4oKa3JHHLusyQ3W5I8BHUJURIaLyFUi8msRub3z4v0w3bJ58+awh+A5a3JHHLusyQ3WFLx+96hF5DdAKamnu79D6l3fL6nq5/0fnrfspBzGGGOiaKAn5ThKVf8fsFdV7wI+Ahzn5QBdFPXTomXDmtwRxy5rcoM1BS+TPer1qrpQRJ4FPkPqM9XrVfWIIAboJdujNsYYE0UD3aO+RUTGAt8gdaSwEuAHHo7PSVH/Cywb1uSOOHZZkxusKXh97lGLSA5wlqo+HNyQ/GN71MYYY6Io6z1qVU0CV/syKsd1nv4sTqzJHXHssiY3WFPwMnmN+v8BzcBDdDn/tKru8ndo3vNyjzqRSJCbm8kRWN1hTe6IY5c1ucGa/DHQ16gvJXW87WeBgvRl0D9/XF5eHvYQPGdN7ohjlzW5wZqC1++fEKo6I4iBuGbKlClhD8Fz1uSOOHZZkxusKXh9nY96Xn8PzuQ+cVVXVxf2EDxnTe6IY5c1ucGagtfXHvUdInIyfZ9O8jbgRC8H5IqRI0eGPQTPWZM74thlTW6wpuD1NVEfROr16L4m6te8HY472tvbwx6C56zJHXHssiY3WFPwen3qW1Wnq+oRqjqjj8vCgaxcRJaKyMsiUi4iX+vhdhGRG9K3v9D1qfb+Huu3ZDIZ9Cp9Z03uiGOXNbnBmoKXybu+fSEiQ4AbgVOBOcByEZnT7W6nAjPTl5XATfvxWN8UbKvngaJdFGyrD2qVgRgxYkTYQ/CcX00F2+q58eny0H4GbFuFK9Pt71JTpqwpJcj/B4T5wbGFQLmqbgEQkQeBM0kdorTTmcDdmvqw91oRGSMiE4HpGTzWFwXb6jl71Ro6ksqv/1XF7MNGMWp4nt+rDURLSzPDhx8Q9jA85UfTnpZ2Sl/dQ1IhRwjlZ8C2VXj2Z/u70rQ/rOmtnwFVGJaXw30rFjN/2ljfxhfaHjUwGXily/Xt6e9lcp9MHguAiKwUkXwRya+pqaGuro6amhqqq6upr6+noqKC5uZmSkpKSCaTFBYWAm8d+7WwsJBkMklJSQnNzc08nl9GRzJ1kJikwu69rbS0tNDR0UFTUxOqyt69jQA0Nu7Z5+vevXtRTdLc3ExHRwetra20t7fT3t5Oa2srHR0dNDc3o5pk7969vSyjEVWlqamJjo4OWlpaaG9vp62tjba2VhKJBC0tzSSTSZqamtKP7T6e1PWmpiaSySQtLc0kEglAaGtro7293Zr6aHqjqY30jwBJhYaWRKBNbW2tiEistpNLTXUNTfts/7qGJueb4rid/Gx6Pf0zoEB7IsmThRXU1tZSW1tLVVUVDQ0NlJWV0draSnFxMfDWnNL5taioiEQiQWlp6Ztj602/e9QiIqTOQX2Eqn5HRKYCh6nq+v4e29+ie/he98Ok9XafTB6b+qbqLcAtkDoy2fjx4/e5fezY1F9Bc+aknjmfNy/1Mvj8+fP3ud55+2kLZnLfxtdpSyQZmpvDL89b4OtfUkEqKSl5szMu/Ggq2FbPebeupT2RJC83h18sOzHwnwHbVuHpvv1vunBRr9vflab9YU1v/xk4Zd6RHHrovj8Do0ePBuC441Jnhe6cUzq/zp07F4DZs2f3u75MDiF6E5AE3q+q70ifSeuvqnpSxlU9L3cJcJ2qnpK+fi2Aqn6/y31WAc+o6gPp6y8DJ5N66rvPx/bEq0OIFmyrZ01FHUuOHB+bSRpSb6jIyQnzSRbv+dVUsK2etVteZ/ERB4fyM2DbKlyZbn+XmjJlTSle/z9goIcQXaSqVwEtAKpaDwwd8KhgAzBTRGaIyFBgGanTaHb1CHBh+t3fi4E3VLUmw8f6Zv60sbxzzJ5YTdIAGzduDHsInvOraf60sVz1vqNC+xmwbRWuTLe/S02ZsqaUIP8fkMke9TrgncAGVZ0nIoeQ2qMe8IFOROQ04OfAEOB2Vf2uiFwJoKo3p592/xWwFGgCLlHV/N4e29/67DSXxhhjomige9Q3AH8ADhWR7wLPAd/zYmCq+riqzlLVIzsnWlW9WVVvTv9bVfWq9O3HdU7SvT02SFE/0Xg2rMkdceyyJjdYU/D63aMGEJHZwAdIvYnrKVV9ye+B+cH2qI0xxkTRgPaoReRIYKuq3gi8CHxIRMZ4O0T3dH6MK06syR1x7LImN1hT8DJ5jXojsIDUO62fAP4MHK2qp/k9OK95uUdt73x0QxybIJ5d1uQGa/LHQF+jTqpqAvgE8AtV/SIw0csBuqi0tDTsIXjOmtwRxy5rcoM1BS+TibpdRJYDFwKPpr8Xj2NmDsCMGTPCHoLnrMkdceyyJjdYU/AymagvAZYA31XVrSIyA7jX32FF344dO8IeguesyR1x7LImN1hT8Po9hKiqlgCf63J9K3C9n4Nywbhx48IeguesyR1x7LImN1hT8DJ51/dMEfmtiJSIyJbOSxCDi7LOA7/HiTW5I45d1uQGawpeJk9930HqPNAJ4H3A3cA9fg7KBWG/Q9AP1uSOOHZZkxusKXiZjO4AVX2K1Ee5tqnqdcD7/R1W9OXlxe/9dNbkjjh2WZMbrCl4mUzULSKSA5SJyNUi8nHgUJ/HFXn9nT/URdbkjjh2WZMbrCl4mUzUXwBGkHpD2XzgAuAiH8fkhO7ntY4Da3JHHLusyQ3WFLx+J2pV3aCqjaq6XVUvUdVPqOraIAYXZdu3bw97CJ6zJnfEscua3GBNwcvkEKKzgP8GptHl41yq6tzr1F4eQjSRSJCb2++n25xiTe6IY5c1ucGa/DHQQ4j+BigEvkFqwu68DGqbNm0KewiesyZ3xLHLmtxgTcHLZI+6QFXnBzQeX9lpLo0xxkRRVnvUIjJORMYBfxaRz4jIxM7vpb8/kAGNE5G/iUhZ+uvYXu63VEReFpFyEflal+//SERKReQFEflDGKfdjPqJxrNhTe6IY5c1ucGagtfrHrWIbAUUkB5uVlU9IuuVivwQ2KWq16cn4LGq+tVu9xkCbAY+BGwHNgDLVbVERD4M/ENVEyLyg/SAvko/bI/aGGNMFGW1R62qM1T1iPTX7pesJ+m0M4G70v++C/hYD/dZCJSr6hZVbQMeTD8OVf1r+tSbAGuBKQMcz36L+l9g2bAmd8Sxy5rcYE3By+RY38NF5Esi8nsR+Z2IfEFEhg9wvRNUtQYg/bWnA6hMBl7pcn17+nvdXQr8pbcVichKEckXkfyamhrq6uqoqamhurqa+vp6KioqaG5upqSkhGQySWFhIfDWhissLCSZTFJSUkJzczMVFRXU19dz2GGH0bm8yspKGhsbKS0tJZFIUFRUtM8yOr8WFxfT2tpKWVkZDQ0NVFVVUVtbS21tLVVVVTQ0NFBWVkZrayvFxcU9LqOoqIhEIkFpaSmNjY1UVlZa0yBrqq6uZtKkSdZkTdYUo6a+ZPJmsoeBPbx1asvlpJ6q/lQ/j/s7cFgPN30duEtVx3S5b72q7vM6tYh8CjhFVVekr18ALFTVz3a5z9eBBcAntL8QvH3qu7i4mOOOO86TZUWFNbkjjl3W5AZr8kdfT31n8sGxo1V1bpfrT4tIUX8PUtUP9jGgnSIyUVVrRGQiUNvD3bYDh3e5PgV486ShInIRcDrwgUwmaa/NmjUr6FX6zprcEccua3KDNQUvk89RPy8iizuviMgi4N8DXO8jvHUY0ouAP/Vwnw3ATBGZISJDgWXpxyEiS4GvAmeoaijnJ6uqqgpjtb6yJnfEscua3GBNwctkol4E/EdEKkWkElgDvFdEikXkhSzXez3wIREpI/Wu7usBRGSSiDwOkH6z2NXAk8BLwMOq2vmp9F8Bo4C/ichGEbk5y3FkbcKECUGv0nfW5I44dlmTG6wpeJk89b3U65Wq6uvAB3r4/g7gtC7XHwce7+F+R3k9pv21e/duRo8eHfYwPGVN7ohjlzW5wZqC1+9ErarbghiIa4YPH+gb36PHmtwRxy5rcoM1BS+Tp76NMcYYExKbqLPU0tIS9hA8Z03uiGOXNbnBmoJnE3WWxowZE/YQPGdN7ohjlzW5wZqCZxN1lnbu3Bn2EDxnTe6IY5c1ucGagmcTdZamTp0a9hA8Z03uiGOXNbnBmoJnE3WWNm/eHPYQPGdN7ohjlzW5wZqC1++xvuPETnNpjDEmirI6zaXpW9RPi5YNa3JHHLusyQ3WFDzbozbGGGNCZnvUPoj6X2DZsCZ3xLHLmtxgTcGzPWpjjDEmZLZH7YOion5Pye0ca3JHHLusyQ3WFDzbo85SIpEgNzeTk4+5w5rcEccua3KDNfnD9qh9UF5eHvYQPGdN7ohjlzW5wZqCZxN1lqZMmRL2EDxnTe6IY5c1ucGaghfKRC0i40TkbyJSlv46tpf7LRWRl0WkXES+1sPtXxERFZHx/o96X3V1dUGv0nfW5I44dlmTG6wpeGHtUX8NeEpVZwJPpa/vQ0SGADcCpwJzgOUiMqfL7YcDHwKqAhlxNyNHjgxjtb6yJnfEscua3GBNwQtroj4TuCv977uAj/Vwn4VAuapuUdU24MH04zr9DLgGCOXdcO3t7WGs1lfW5I44dlmTG6wpeGFN1BNUtQYg/fXQHu4zGXily/Xt6e8hImcA1ara73vqRWSliOSLSH5NTQ11dXXU1NRQXV1NfX09FRUVNDc3U1JSQjKZpLCwEHjrA/CFhYUkk0lKSkpobm6moqKC+vr6N5dTV1dHZWUljY2NlJaWkkgk3nyrf+cyOr8WFxfT2tpKWVkZDQ0NVFVVUVtbS21tLVVVVTQ0NFBWVkZrayvFxcU9LqOoqIhEIkFpaSmNjY1UVlZa0yBrqq6uZteuXdZkTdYUo6a++PbxLBH5O3BYDzd9HbhLVcd0uW+9qu7zOrWIfAo4RVVXpK9fQGov+6vA08CHVfUNEakEFqhqvy8yePnxrPr6esaO7fGldWdZkzvi2GVNbrAmf4Ty8SxV/aCqHtvD5U/AThGZmB7cRKC2h0VsBw7vcn0KsAM4EpgBFKUn6SlAoYj09EeBb3bt2hXk6gJhTe6IY5c1ucGaghfWU9+PABel/30R8Kce7rMBmCkiM0RkKLAMeERVi1X1UFWdrqrTSU3o81T11SAG3mnSpElBri4Q1uSOOHZZkxusKXhhTdTXAx8SkTJS79y+HkBEJonI4wCqmgCuBp4EXgIeVtVNIY33bbZu3Rr2EDxnTe6IY5c1ucGagmeHEM1SMpkkJydex4uxJnfEscua3GBN/rBDiPpg48aNYQ/Bc9bkjjh2WZMbrCl4tkdtjDHGhMz2qH0Q9RONZ8Oa3BHHLmtygzUFz/aojTHGmJDZHrUPOo96EyfW5I44dlmTG6wpeLZHnaUovEvQa9bkjjh2WZMbrMkftkftg9LS0rCH4Dlrckccu6zJDdYUPJuoszRjxoywh+A5a3JHHLusyQ3WFDybqLO0Y8eOsIfgOWtyRxy7rMkN1hQ8m6izNG7cuLCH4Dlrckccu6zJDdYUPJuos9TU1BT2EDxnTe6IY5c1ucGagmcTdZbCfoegH6zJHXHssiY3WFPwoj26CMvLywt7CJ6zJnfEscua3GBNwRtUn6MWkdeAbR4tbjxQ59GyosKa3BHHLmtygzX5Y5qqHtLTDYNqovaSiOT39uF0V1mTO+LYZU1usKbg2VPfxhhjTITZRG2MMcZEmE3U2bsl7AH4wJrcEccua3KDNQXMXqM2xhhjIsz2qI0xxpgIs4naGGOMiTCbqHsgIktF5GURKReRr/Vwu4jIDenbXxCReZk+NiwZNJ2XbnlBRP4jInO73FYpIsUislFEvDmhtwcyaDpZRN5Ij3ujiHwz08eGJYOm/+7S86KIdIjIuPRtUd1Ot4tIrYi82MvtLv4+9dfk4u9Tf00u/j711+TG75Oq2qXLBRgCVABHAEOBImBOt/ucBvwFEGAxsC7Tx0a46Z3A2PS/T+1sSl+vBMaH3ZFF08nAo9k8NqpN3e7/UeAfUd5O6XG9B5gHvNjL7U79PmXY5NTvU4ZNTv0+ZdLU7b6R/X2yPeq3WwiUq+oWVW0DHgTO7HafM4G7NWUtMEZEJmb42DD0Oy5V/Y+q1qevrgWmBDzG/TWQ/9bObqdulgMPBDKyAVDVZ4FdfdzFtd+nfpsc/H3KZDv1xtnt1E1kf59son67ycArXa5vT38vk/tk8tgw7O+4LiO1h9NJgb+KSIGIrPRhfNnItGmJiBSJyF9E5Jj9fGzQMh6XiIwAlgK/6/LtKG6nTLj2+7S/XPh9ypRLv08Zi/rvU26YK48o6eF73T/D1tt9MnlsGDIel4i8j9T/WN7d5dvvUtUdInIo8DcRKU3/pRqmTJoKSR0/t1FETgP+CMzM8LFh2J9xfRT4t6p23VuI4nbKhGu/Txlz6PcpE679Pu2PSP8+2R71220HDu9yfQqwI8P7ZPLYMGQ0LhE5HrgVOFNVX+/8vqruSH+tBf5A6qmusPXbpKoNqtqY/vfjQJ6IjM/ksSHZn3Eto9vTdBHdTplw7fcpI479PvXLwd+n/RHt36ewXySP2oXUswxbgBm89caIY7rd5yPs++aX9Zk+NsJNU4Fy4J3dvn8gMKrLv/8DLHWk6TDeOqjPQqAqvc2c3U7p+x1E6nW3A6O+nbqMbzq9v0nJqd+nDJuc+n3KsMmp36dMmtK3R/73yZ767kZVEyJyNfAkqXcz3q6qm0TkyvTtNwOPk3qnajnQBFzS12NDyNhHhk3fBA4Gfi0iAAlNnU1mAvCH9PdygftV9YkQMvaRYdNZwKdFJAE0A8s09Zvn8nYC+DjwV1Xd2+XhkdxOACLyAKl3DI8Xke3At4A8cPP3CTJqcur3CTJqcur3CTJqAgd+n+wQosYYY0yE2WvUxhhjTITZRG2MMcZEmE3UxhhjTITZRG2MMcZEmE3UxhhjTC/6O7HHfi7rfV1OArJRRFpE5GP9Ps7e9W2MMcb0TETeAzSSOh79sR4udxypjyROUdWmvu5re9TGDCIiMkZEPtPl+iQR+a0P67lORKpF5Dt93OfI9F5Fo9frN8Yr2sOJPdI/u0+kjwP+LxGZncWizwL+0t8kDTZRGzPYjAHenKhVdYeqnuXTun6mqt/s7UZVrVDVE3xatzF+ugX4rKrOB74C/DqLZbztsKW9sSOTGTO4XA8cKSIbgb8BN5I6x/CxInIx8DFSR5c6FvgJqUNCXgC0Aqep6i4ROTL9uENIHUnsclUt7WulIvJe4Bfpqwq8R1X3eJtmjP9EZCSp843/Jn3kMoBh6ds+AfT0LFK1qp7SZRkTgeNIHc2tXzZRGzO4fA04tnNPVkSmd7v9WOBEYDip18++qqonisjPgAuBn5Pam7hSVctEZBGpvYn397PerwBXqeq/0/+ja/Emx5jA5QC7e3o2SFV/D/w+g2WcDfxBVdszXaExxnR6WlX3qOprwBvAn9PfLwamd9ub2AisAiZmsNx/Az8Vkc8BY1Q14f3QjfGfqjYAW0XkUwCSMnc/F7OcDJ/2BpuojTH7au3y72SX60lSz8C9uTfR5fKO/haqqtcDK4ADgLVZvvnGmMClT+yxBjhaRLaLyGXAecBlIlIEbALO3I/lTSd1WtB/ZvoYe+rbmMFlDzAq2weraoOIbBWRT6nqbyT1It3xqlrU1+NE5EhVLQaKRWQJMBvo83VtY6JAVZf3ctPSLJdXCUzen8fYHrUxg4iqvg78W0ReFJEfZbmYbPYmvpBeZxGpUyT+Jct1GzPo2AFPjDGeE5HrgEZV/XEG921U1ZH+j8oYN9ketTHGD43AykwOeALsDGxUxjjI9qiNMcaYCLM9amOMMSbCbKI2xhhjIswmamOMMSbCbKI2xhhjIuz/A4BVLhX0C/e1AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from ahs_utils import show_global_drive\n", + "show_global_drive(drive);" + ] + }, + { + "cell_type": "markdown", + "id": "9c84b2ad", + "metadata": {}, + "source": [ + "Here we used constant-zero phase and detuning, but, for more involved programs, its time series can be customized similarly to how we set the amplitude of the Rabi frequency here." + ] + }, + { + "cell_type": "markdown", + "id": "7d37e943", + "metadata": {}, + "source": [ + "### AHS program\n", + "\n", + "We can assemble the register and Hamiltonian to an AHS program " + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "4d5ab540", + "metadata": {}, + "outputs": [], + "source": [ + "from braket.ahs.hamiltonian import Hamiltonian\n", + "from braket.ahs.analog_hamiltonian_simulation import AnalogHamiltonianSimulation\n", + "\n", + "ahs_program = AnalogHamiltonianSimulation(\n", + " register=register, \n", + " hamiltonian=drive\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "6bbedb27-3568-4803-a1ed-7b26dc60c946", + "metadata": {}, + "source": [ + "### Task \n", + "\n", + "Before submitting the AHS program to Aquila, we need to discretize the program to ensure that it complies with resolution-specific validation rules. " + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "59fb7f60", + "metadata": {}, + "outputs": [], + "source": [ + "discretized_ahs_program = ahs_program.discretize(device)" + ] + }, + { + "cell_type": "markdown", + "id": "09b11fc2", + "metadata": {}, + "source": [ + "We note that the number of shots has to be within the range specified by `device.properties.service.shotsRange`. " + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "46d2da98", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(1, 1000)" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "device.properties.service.shotsRange" + ] + }, + { + "cell_type": "markdown", + "id": "4895c99a", + "metadata": {}, + "source": [ + "The AHS program can be submitted to the device to create a quantum task on the Braket service." + ] + }, + { + "cell_type": "markdown", + "id": "825eda10", + "metadata": {}, + "source": [ + "
    \n", + "Note: Some atoms may be missing even if the shot was successful. We recommend comparing pre_sequence of each shot with the requested atom filling in the AHS program specification. \n", + "
    " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "0e6528d5", + "metadata": {}, + "outputs": [], + "source": [ + "n_shots = 100" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "c395c2a1-8ce2-4521-8d92-16efad87ac9e", + "metadata": {}, + "outputs": [], + "source": [ + "task = device.run(discretized_ahs_program, shots=n_shots)" + ] + }, + { + "cell_type": "markdown", + "id": "60c6be46", + "metadata": {}, + "source": [ + "The task metadata can be inspected in the following way" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "158f1044-4cfa-4fc1-a26e-5581900f8783", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ARN: arn:aws:braket:us-east-1:545821822555:quantum-task/0f934b5d-fc5c-4b77-85c0-7ef0d2a8cf41\n", + "status: CREATED\n" + ] + } + ], + "source": [ + "metadata = task.metadata()\n", + "task_arn = metadata['quantumTaskArn']\n", + "task_status = metadata['status']\n", + "\n", + "print(f\"ARN: {task_arn}\")\n", + "print(f\"status: {task_status}\")" + ] + }, + { + "cell_type": "markdown", + "id": "54a39bff", + "metadata": {}, + "source": [ + "It is suggested to save the task ARN for retrieving the task result in a later time. For example if the saved task ARN reads `arn:aws:braket:us-east-1:545821822555:quantum-task/12345`, the task can be retrieved as follows.\n", + " \n", + "```\n", + "from braket.aws import AwsQuantumTask\n", + "task = AwsQuantumTask(arn=\"arn:aws:braket:us-east-1:545821822555:quantum-task/12345\") \n", + "```\n", + "\n", + "\n", + "\n", + "Alternatively, we can access the tasks through [the tasks page of Amazon Braket console](https://us-east-1.console.aws.amazon.com/braket/home?region=us-east-1#/tasks)." + ] + }, + { + "cell_type": "markdown", + "id": "d496c2bb-89ec-4475-bf7d-ae75ef13cdde", + "metadata": {}, + "source": [ + "## Analyzing the result from Aquila\n", + "\n", + "The results (once the task is completed) can be downloaded directly into an object in the python session." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "d8176e09-deeb-485d-96e9-5046f9d03fc5", + "metadata": {}, + "outputs": [], + "source": [ + "result = task.result()" + ] + }, + { + "cell_type": "markdown", + "id": "ae5eac68", + "metadata": {}, + "source": [ + "The call `task.result()` is blocking execution until the task is completed and results are loaded from Amazon Braket. After the task is completed, the measurement result is saved in `result.measurements` which is a list of `ShotResult`, as shown below." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "afb85bab", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "ShotResult(status=, pre_sequence=array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", + " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", + " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", + " 1, 1, 1, 1, 1, 1, 1, 1, 1]), post_sequence=array([0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1,\n", + " 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1,\n", + " 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0,\n", + " 1, 0, 1, 1, 1, 1, 1, 1, 0]))" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "result.measurements[0]" + ] + }, + { + "cell_type": "markdown", + "id": "91a9823b", + "metadata": {}, + "source": [ + "`ShotResult` contains three pieces of information\n", + "\n", + "1. `status` indicates if the shot is successful\n", + "2. `pre_sequence` contains the measurement result *before* running the AHS program. Here `0` indicates an empty site, while `1` indicates a filled site with an atom in the ground state\n", + "3. `post_sequence` contains the measurement result *after* running the AHS program. Here `0` indicates an empty site, or an atom in the Rydberg state, while `1` indicates an atom in the ground state\n" + ] + }, + { + "cell_type": "markdown", + "id": "88687ac9", + "metadata": {}, + "source": [ + "
    \n", + "Note: Some atoms may be missing even if the shot was successful. We recommend comparing pre_sequence of each shot with the requested atom filling in the AHS program specification. \n", + "
    " + ] + }, + { + "cell_type": "markdown", + "id": "c0d7eade", + "metadata": {}, + "source": [ + "To confirm that at the end of the AHS program, the average Rydberg density for the atoms in the triangles are around 1/3 for each atom, we can first collect the measurement result and aggregate over all triangles" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "4ed4a31c", + "metadata": {}, + "outputs": [], + "source": [ + "from ahs_utils import get_counts\n", + "\n", + "counts = get_counts(result)\n", + "average_density = [0, 0, 0]\n", + "average_num_triangles = [0, 0, 0, 0]\n", + "for key, val in counts.items():\n", + " for i in range(0, 3*k_max*m_max, 3):\n", + " short_seq = key[i:i+3]\n", + " for j in range(3):\n", + " if short_seq[j]==\"r\":\n", + " average_density[j] += val \n", + " \n", + " \n", + " average_num_triangles[short_seq.count('r')] += val\n", + " \n", + " \n", + "average_density = np.array(average_density) / (k_max * m_max * n_shots)\n", + "average_num_triangles = np.array(average_num_triangles) / n_shots" + ] + }, + { + "cell_type": "markdown", + "id": "15d35f76", + "metadata": {}, + "source": [ + "Note that although we only perform 100 shots for the given AHS program, since we have made the full usage of the area in the Aquila device, effectively, we have made 3,500 shots for the experiment of interest! We can plot the result as follows" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "8fa10c84", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmcAAAEICAYAAAAa+FMDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAApLklEQVR4nO3deZxcVZ3+8c+TICLIIiYispiIQYdhtwFZRBZxkF1Fh8iigGZQEXTUMf5ERHFmcEEdVwwQQGURWRQhCuiwyCBLAkiAsESMEgETBNkXQ57fH/c2lE0vt9N1q6q7nvfrVa+627n1rSZ1+N5zzz1HtomIiIiIzjCu3QFERERExPOSnEVERER0kCRnERERER0kyVlEREREB0lyFhEREdFBkpxFREREdJBakzNJu0q6Q9J8SdP72b+/pJvL19WSNmnYt0DSXEk3SZpdZ5wRERERnUJ1jXMmaTxwJ7ALsBC4Hphq+7aGY7YB5tl+SNLbgGNsb1XuWwD02H6g6mdOmDDBkyZNat6XiIiONmfOnAdsT2x3HM2Q+iui+wxUhy1X42duCcy3fTeApLOAvYHnkjPbVzccfw2w9kg+cNKkScyenUa2iG4h6Y/tjqFZUn9FdJ+B6rA6b2uuBdzTsL6w3DaQQ4FfNKwbuETSHEnTBiokaZqk2ZJmL168eEQBR0RERLRbnS1n6mdbv/dQJe1IkZxt17B5W9v3SnoFcKmk221f+YIT2jOAGQA9PT2ZiyoiIiJGtTpbzhYC6zSsrw3c2/cgSRsDJwF72/5r73bb95bvi4DzKW6TRkRERIxpdSZn1wNTJE2WtDywH3BB4wGS1gXOAw60fWfD9pUkrdy7DLwVuKXGWCMiIiI6Qm23NW0vkXQ4cDEwHphp+1ZJh5X7TwCOBl4OfFcSwBLbPcAawPnltuWAM2z/sq5YIyIiIjpFnX3OsD0LmNVn2wkNy+8H3t9PubuBTfpuj4iIiBjrMkNARERERAdJchYRERHRQZKcRURERHSQWvucdbJJ0y9qdwgdYcFxu7c7hIiIIY2FOjv1bVSVlrOIiIiIDtK1LWcRnWYstAw0Q1oXIqLbpeUsIiIiooMkOYuIiIjoIEnOIiIiIjpIkrOIiIiIDpLkLCIiIqKDJDmLiIiI6CBJziIilpGkmZIWSbqlz/aPSLpD0q2Svtyu+CJidEpyFhGx7E4Fdm3cIGlHYG9gY9v/DHy1DXFFxCiW5CwiYhnZvhJ4sM/mDwLH2X66PGZRywOLiFEtyVlERHOtD7xJ0rWSrpC0xUAHSpomabak2YsXL25hiBHRyZKcRUQ013LAy4A3Ap8Ezpak/g60PcN2j+2eiRMntjLGiOhgSc4iIpprIXCeC9cBS4EJbY4pIkaRJGcREc31U2AnAEnrA8sDD7QzoIgYXZZrdwAREaOVpDOBHYAJkhYCnwNmAjPL4TWeAd5r2+2LMiJGmyRnERHLyPbUAXYd0NJAImJMyW3NiIiIiA6S5CwiIiKig+S2ZozIpOkXtTuEjrDguN3bHUJERIwRaTmLiIiI6CBJziIiIiI6SJKziIiIiA6S5CwiIiKigyQ5i4iIiOggSc4iIiIiOkiSs4iIiIgOkuQsIrqepJUkjSuX15e0l6QXtTuuiOhOSc4iIuBKYAVJawG/Bg4GTm1rRBHRtZKcRUSAbD8BvAP4lu23Axu0OaaI6FK1JmeSdpV0h6T5kqb3s39/STeXr6slbVK1bEREE0nS1sD+QO+cZJneLiLaorbkTNJ44DvA2yiuQKdK6nsl+gfgzbY3Bo4FZgyjbEREs3wU+DRwvu1bJb0GuKy9IUVEt6qz5WxLYL7tu20/A5wF7N14gO2rbT9Url4DrF21bEREs9i+wvZewLfL9bttHzFUOUkzJS2SdEs/+z4hyZIm1BByRIxhdSZnawH3NKwvLLcN5FDgF8tYNiJimUnaWtJtwLxyfRNJ361Q9FRg137Otw6wC/CnZsYZEd2hzuRM/WxzvwdKO1IkZ59ahrLTJM2WNHvx4sXLFGhEdL1vAP8C/BXA9u+A7YcqZPtK4MF+dn0d+A8GqLciIgZTZ3K2EFinYX1t4N6+B0naGDgJ2Nv2X4dTFsD2DNs9tnsmTpzYlMAjovvYvqfPpmeX5TyS9gL+XCZ4Qx2bi8uIeIEhk7Oyc/6yuB6YImmypOWB/YAL+px7XeA84EDbdw6nbEREE90jaRvAkpaX9AnKW5zDIWlF4DPA0VWOz8VlRPSnSsvZfElfGe7TkraXAIcDF1NUcmeXT0EdJumw8rCjgZcD35V0k6TZg5UdzudHRAzDYcCHKfq2LgQ2LdeHaz1gMvA7SQsoWv1vkPTK5oQZEd2gyjg+G1O0XJ1UTm8yEzjL9iNDFbQ9C5jVZ9sJDcvvB95ftWxERB1sP0AxxtlIzzMXeEXvepmg9ZTnj4ioZMjkzPajwInAiZK2B84Evi7pHOBY2/NrjjEiohaSvsUgnfaHGk5D0pnADsAESQuBz9k+ualBRkTXGTI5K/uc7U4x19wk4HjgdOBNFC1b69cYX0REnWaPpLDtqUPsnzSS80dEd6pyW/MuipGyv2L76obt55QtaRERo5Lt09odQ0REX1WSs4NsX9W4QdK2tv+vygjaERGdTtLPeeHtzYcpWta+b/up1kcVEd2qytOa3+xn27eaHUhERBvdDTxG2b8WeAT4C0W3jRPbGFdEdKEBW84kbQ1sA0yU9O8Nu1YBlnXss4iITrSZ7cZuGj+XdKXt7SVlGJ+IaKnBWs6WB15KkcCt3PB6BNi3/tAiIlpmYjkoNvDcANm9E5Y/056QIqJbDdhyZvsK4ApJp9r+YwtjiohotY8DV0n6PcXcvpOBD0laCchDAxHRUoPd1vyG7Y8C35b0gnGAbO9VZ2AREa1ie5akKcDrKZKz2xseAvhG2wKLiK402NOaPyzfv9qKQCIi2uwNFGM5LgdsLAnbP2hvSBHRjQa7rTmnfL+id5uklwHr2L65BbFFRLSEpB9SzIt5E/BsudlAkrOIaLkqMwRcDuxVHnsTsFjSFbb/fbByERGjSA+wge0Bp3KKiGiVKuOcrVpOcv4O4BTbbwDeUm9YEREtdQvwynYHEREB1WYIWE7SmsC7gc/UHE9ERDtMAG6TdB3wdO/GPPgUEe1QJTn7AnAxcJXt6yW9hmK+zYiIseKYdgcQEdFryOTM9k+AnzSs3w28s86gIiJaqfHBp4iIdqvyQMBE4AM8/4g5ALYPqS+siIjWkfRGijmD/4lidpTxwOO2V2lrYBHRlarc1vwZ8BvgVzz/iHlExFjybWA/irsEPcBBwJShCkmaCewBLLK9YbntK8CeFNM+/R442Pbf6gk7IsaiKk9rrmj7U7bPtn1u76v2yCIiWsj2fGC87WdtnwLsUKHYqcCufbZdCmxoe2PgTuDTzYwzIsa+KsnZhZJ2qz2SiIj2eULS8sBNkr4s6WPASkMVsn0l8GCfbZfYXlKuXgOs3fRoI2JMq5KcHUmRoD0l6RFJj0p6pO7AIiJa6ECKfmaHA48D69CcB58OAX7RhPNERBep8rTmyq0IJCKiXWz/sVx8Evh8M84p6TPAEuD0QY6ZBkwDWHfddZvxsRExBgzZcqbCAZI+W66vI2nL+kOLiKiXpLPL97mSbu77GsF530vxoMD+g00JZXuG7R7bPRMnTlzWj4uIMabK05rfBZYCOwHHAo8B3wG2qDGuiIhWOLJ836NZJ5S0K/Ap4M22n2jWeSOie1RJzrayvbmkGwFsP1R2nI2IGNVs3ydpPHCy7WHPGSzpTIqnOidIWgh8juLpzBcDl0oCuMb2Yc2LOiLGuirJ2d/Lysvw3KC0S2uNKiKiRWw/K+kJSavafniYZaf2s/nkJoUWEV2qSnL2TeB84BWS/hPYFziq1qgiIlrrKWCupEspntYEwPYR7QspIrpVlac1T5c0B9gZELCP7Xm1RxYR0ToXla9GA3bkj4io04DJmaTVG1YXAWc27rP94AtLRUSMSqvZ/p/GDZKOHOjgiIg6DTaUxhxgdvm+mGIakrvK5Tn1hxYR0TLv7Wfb+1odREQEDNJyZnsygKQTgAtszyrX3wYM+6mmiIhOI2kq8B5gsqQLGnatDPy1PVFFRLer8kDAFo2Pgdv+haRja4wpIqJVrgbuAyYAxzdsfxRY5kFoIyJGokpy9oCko4AfUXSQPYBcUUbEGFBO2/RHYOt2xxIR0avKxOdTgYkUw2mcXy73N7ZPRERERIzQkMmZ7QdtH2l7M9ub2/5o1Sc1Je0q6Q5J8yVN72f/6yX9VtLTkj7RZ9+Ccr67myTNrv6VIiIiIkavKi1ny6ScVeA7wNuADYCpkjboc9iDwBHAVwc4zY62N7XdU1ecEdG9JP26fP9Su2OJiOhVpc/ZstoSmG/7bgBJZwF7A7f1HmB7EbBI0u41xhERMZA1Jb0Z2Kuso9S40/YN7QkrIrpZncnZWsA9DesLga2GUd7AJZIMfN/2jGYGFxEBHA1MB9YGvtZnn4GdWh5RRHS9IZMzSd/sZ/PDwGzbPxusaD/bhjMdyra275X0CuBSSbfbvrKf+KYB0wDWXXfdYZw+Irqd7XOAcyR91naGCIqIjlClz9kKwKYUswPcBWwMrA4cKukbg5RbCKzTsL42cG/VwGzfW74vonhKdMsBjpthu8d2z8SJE6uePiLiObaPlbSXpK+Wrz3aHVNEdK8qtzVfC+xkewmApO8BlwC7AHMHKXc9MEXSZODPwH4UI3EPSdJKwDjbj5bLbwW+UKVsRMRwSfpvigvA08tNR0ra1van2xhWRHSpKsnZWsBKFLcyKZdfZftZSU8PVMj2EkmHAxcD44GZtm+VdFi5/wRJr6SYv3MVYKmkj1I82TkBOF9Sb4xn2P7lsnzBiIgKdgc2tb0UQNJpwI1AkrOIaLkqydmXgZskXU7Rj2x74L/KFq1fDVawnI9zVp9tJzQs309xu7OvR4BNKsQWEdEsq1EM7wOwapUCkmYCewCLbG9Yblsd+DEwCVgAvNv2Q02ONSLGsEH7nEkaB8wDtgF+Wr62s32S7cdtf7L2CCMi6vffwI2STi1bzeYA/1Wh3KnArn22TQd+bXsK8OtyPSKiskFbzmwvlXS87a2BwZ7MjIgYtWyfWd4d2ILiDsGnypb9ocpdKWlSn817AzuUy6cBlwOfalasETH2VbmteYmkdwLn2R7OUBgREaOG7fuAC5pwqjXKc2H7vnI4oH5lKKCI6E+V5OzfKR4CeFbSkxRXlba9Sq2RRUSMceXg2jMAenp6cvEbEUCF5Mz2yq0IJCJijPiLpDXLVrM1gUXtDigiRpchB6FV4QBJny3X15HU74CwERGjjaRxkm5p4ikvAN5bLr+X9NeNiGGqMkPAd4GteX4A2ceA79QWUUREC5Vjm/1O0rA7fUk6E/gt8DpJCyUdChwH7CLpLorBuo9rasARMeZV6XO2le3NJd0IYPshScvXHFdERCutCdwq6Trg8d6NtvcarJDtqQPs2rmJsUVEl6mSnP1d0njKScslTQSW1hpVRERrfb7dAURE9KqSnH2TYuLxNST9J7AvcFStUUVEtJDtKyS9Gphi+1eSVqSYdi4iouWqPK15uqQ5PN9Mv4/tefWGFRHROpI+QDHe2OrAehRzCp9Abk9GRBtUeSAAoPcqchzwkvrCiYhoiw8D21LM64vtu4ABB4+NiKhTlaE0jqaYgmR1YAJwiqTc1oyIseRp28/0rkhajrKfbUREq1XpczYV2Mz2UwCSjgNuAL5YZ2ARES10haT/B7xE0i7Ah4CftzmmiOhSVW5rLgBWaFh/MfD7WqKJiGiP6cBiYC7wb8As8uBTRLTJgC1nkr5F0az/NMX4P5eW67sAV7UmvIiI+tleKuk04FqKeu4O27mtGRFtMdhtzdnl+xyKoTR6XV5bNBERbSBpd4qnM38PCJgs6d9s/6K9kUVENxowObN9WisDiYhoo+OBHW3PB5C0HnARkOQsIlpusNuacxnkaSXbG9cSUURE6y3qTcxKdwOL2hVMRHS3wW5r7lG+f7h8/2H5vj/wRG0RRUS0iKR3lIu3SpoFnE1xUfou4Pq2BRYRXW2w25p/BJC0re1tG3ZNl/R/wBfqDi4iomZ7Niz/BXhzubwYeFnrw4mIqDbO2UqStrN9FYCkbYCV6g0rIqJ+tg9udwwREX1VSc4OBWZKWpWiuf9h4JBao4qIaCFJk4GPAJNoqBdt79WumCKie1VJzm6yvYmkVQDZfrjuoCIiWuynwMkUswIsbcYJJX0MeD/FRe1c4ODemVYiIgZTJTmbL+kcYKbteXUHFBHRBk/Z/mazTiZpLeAIYAPbT0o6G9gPOLVZnxERY1eV5GxjikrlZEnjgJnAWbYfqTWyiIjW+R9JnwMuoZgVBQDbN4zgnMtRzNX5d2BF4N6RhRgR3WLI5Mz2o8CJwImStgfOBL5etqYd22dsoIiI0Wgj4EBgJ56/relyfdhs/1nSV4E/AU8Cl9i+pO9xkqYB0wDWXXfdZfmoiBiDhkzOJI0HdgcOpugsezxwOvAmismB168xvoiIVng78BrbzzTjZJJeBuwNTAb+BvxE0gG2f9R4nO0ZwAyAnp6ezOUZEUC125p3AZcBX7F9dcP2c8qWtIiI0e53wGo0b1aAtwB/sL0YQNJ5wDbAjwYtFRFBxT5nth/rXZG0GvBh2/9p+4jaIouIaJ01gNslXc8/9jlb1qE0/gS8UdKKFLc1dwZmjzjK0qTpFzXrVG2z4Ljd2x1CRMcabG7NdYDPAq+SdD5FX7NjgYOAM1oTXkRES3yumSezfW3ZL/cGYAlwI+Xty4iIoQzWcvYD4ArgXGBX4BrgVmAj2/e3ILaIiJawfUUN5/wcTU76IqI7DJacrW77mHL5Ykl/Abaw/fQgZSIiRh1Jj1I8nQmwPPAi4HHbq7QvqojoVoP2OSufOFK5ej+woqSVAGw/WHNsEREtYXvlxnVJ+wBbtieaiOh24wbZtyowp+G1CkX/iTlU7NgqaVdJd0iaL2l6P/tfL+m3kp6W9InhlI2IqIvtn7KMY5xFRIzUgC1ntieN5MTl+GjfAXYBFgLXS7rA9m0Nhz1IMcXJPstQNiKiKSS9o2F1HNDD87c5IyJaqspQGstqS2C+7bsBJJ1FMSjjcwmW7UXAIkl9n6kesmxERBPt2bC8BFhAUedERLRcncnZWsA9DesLga1aUDYiYlhsH9zuGCIietWZnKmfbVVvE1Qum7npImKkJE0EPkAxRd1z9aLtQ9oVU0R0r0rJmaTtgCm2TykrsZfa/sMQxRYC6zSsrw3cWzGuymUzN11ENMHPgN8AvwKebXMsEdHlqkx8/jmKzrGvA06hGP/nR8C2QxS9HpgiaTLwZ2A/4D0V4xpJ2YiI4VrR9qfaHUREBFRrOXs7sBnFMBrYvlfSyoMXAdtLJB0OXAyMB2bavlXSYeX+EyS9kmJYjlWApZI+Cmxg+5H+yg7/60VEVHKhpN1sz2p3IBERVZKzZ2xbkgF6B6GtoqzoZvXZdkLD8v0UtywrlY2IqMmRwP+T9DTwd4p+r84MARHRDlWSs7MlfR9YTdIHgEOAE+sNKyKidfrOEBAR0U5DJme2vyppF+ARin5nR9u+tPbIIiIiIrpQpac1y2QsCVlEREREzao8rfkoLxxj7GGKjvwf7x3FPyIiIiJGrkrL2dcoxhg7g6KT7H7AK4E7gJnADnUFFxHRKss4nuNg51sNOAnYkOIC9xDbv21KsBExpo2rcMyutr9v+1Hbj5SDvu5m+8fAy2qOLyKiduV4jp8CPl1u6h3PcST+B/il7dcDmwDzRni+iOgSVZKzpZLeLWlc+Xp3w76MyB8RY8Hbgb2Ax6EYzxFY5ic4Ja0CbA+cXJ7vGdt/G3mYEdENqiRn+wMHAouAv5TLB0h6CXB4jbFFRLTKM7ZNecE5nPEcB/AaYDFwiqQbJZ3UhHNGRJcYMjmzfbftPW1PsD2xXJ5v+0nbV7UiyIiImvUdz/FXjGw8x+WAzYHv2d6MokVuet+DJE2TNFvS7MWLF4/g4yJiLKnytOYKwKHAPwMr9G63fUiNcUVEtEwN4zkuBBbavrZcP4d+krOyD+8MgJ6ennQTiQig2tOaPwRuB/4F+ALFbc50bI2IMaWZ4znavl/SPZJeZ/sOYGfgtmacOyLGvirJ2Wttv0vS3rZPk3QGxYTkERFjQk3jOX4EOF3S8sDdwMEjizIiukWV5Ozv5fvfJG0I3A9Mqi2iiIjWa/p4jrZvAnqaFmFEdI0qT2vOkPQy4CjgAoqm+S/VGlVERGtlPMeI6BiDtpxJGgc8Yvsh4EqKx8MjIsaapeUYjueU6/s27EtH/YhoqUFbzmwvJWOZRcTYl/EcI6JjVOlzdqmkTwA/phw9G8D2g7VFFRHRQmWH/z0H2J3xHCOipaokZ73jmX24YZvJLc6IGCMynmNEdJIhkzPbk1sRSEREG2U8x4joGEM+rSlpRUlHSZpRrk+RtEf9oUVEtMxrbX8WeNz2acDuwEZtjikiulSVoTROAZ4BtinXFwJfrC2iiIjW6zue46pkPMeIaJMqydl6tr9MWXnZfpJikMaIiLEi4zlGRMeo8kDAM+Xj5AaQtB7wdK1RRUS0SMZzjIhOU6Xl7Bjgl8A6kk4Hfg38R51BRUS0SsZzjIhOU+VpzUskzQHeSHE780jbD9QeWURE62Q8x4joGEMmZ5IuAM4ELrD9+FDHR0SMQhnPMSI6RpU+Z8cD/wocJ+k6iivLC20/VWtkEREtkvEcI6KTDNnnzPYVtj9EcQU5A3g3xfxzERFjQsZzjIhOUuWBAMqnNd8JHAZsAZxWZ1ARES2W8RwjomNUmSHgxxTTmOwEfIdi3LOP1B1YREQL1TKeo6Txkm6UdOFIzxUR3aNKn7NTgPfYfhZA0raS3mP7w0OUi4gYLeoaz/FIiovbVZpwrojoElX6nP0S2EjSlyQtoGjqv73uwCIiWugYmjyeo6S1KeboPGnE0UVEVxmw5UzS+sB+wFTgrxRPacr2ji2KLSKiJWoaz/EbFAneygMdIGkaMA1g3XXXHeHHRcRYMVjL2e3AzsCetrez/S3g2daEFRHROuV4jm8FLrd94UgTs/JJz0W25wx2nO0Ztnts90ycOHEkHxkRY8hgydk7gfuByySdKGlnhtlBVtKuku6QNF/S9H72S9I3y/03S9q8Yd8CSXMl3SRp9nA+NyJimI4H3gTcJuknkvaVtMIIzrctsFfZFeQsYCdJP2pCnBHRBQZMzmyfb/tfgdcDlwMfA9aQ9D1Jbx3qxJLGUzzd+TZgA2CqpA36HPY2YEr5mgZ8r8/+HW1varun4veJiBi2Zo/naPvTtte2PYmie8j/2j6gKcFGxJhX5YGAx22fbnsPYG3gJuAFrWD92BKYb/tu289QXD3u3eeYvYEfuHANsJqkNYf1DSIimiDjOUZEp6g0CG0v2w/a/r7tnSocvhZwT8P6wnJb1WMMXCJpTtlpNiKiFnWO52j78vLiNiKikirjnC2r/vqneRjHbGv7XkmvAC6VdLvtK1/wIXnaKSJGLuM5RkTHGFbL2TAtBNZpWF8buLfqMbZ73xcB51PcJn2BPO0UESOV8RwjopPUmZxdD0yRNFnS8hSdYi/oc8wFwEHlU5tvBB62fZ+klSStDCBpJYpH3G+pMdaI6EKS1pd0tKR5wLcpLhhle8dy+KCIiJar7bam7SWSDgcuBsYDM23fKumwcv8JwCxgN2A+8ARwcFl8DeB8Sb0xnlFe2UZENNPtwG8oxnOcDyDpY+0NKSK6XZ19zrA9iyIBa9x2QsOygRf06bB9N7BJnbFFRFA8nbkfxXiOv6R4qnzEE55HRIxEnbc1IyI62kjHc4yIqEOSs4joeiMYzzEioumSnEVENBjmeI4REU2X5CwiIiKigyQ5i4iIiOggSc4iIiIiOkiSs4iIiIgOkuQsIiIiooMkOYuIiIjoIEnOIiIiIjpIkrOIiCaTtI6kyyTNk3SrpCPbHVNEjB61zq0ZEdGllgAft32DpJWBOZIutX1buwOLiM6XlrOIiCazfZ/tG8rlR4F5wFrtjSoiRoskZxERNZI0CdgMuLaffdMkzZY0e/HixS2PLSI6U5KziIiaSHopcC7wUduP9N1ve4btHts9EydObH2AEdGRkpxFRNRA0osoErPTbZ/X7ngiYvRIchYR0WSSBJwMzLP9tXbHExGjS5KziIjm2xY4ENhJ0k3la7d2BxURo0OG0oiIaDLbVwFqdxwRMTql5SwiIiKigyQ5i4iIiOggSc4iIiIiOkiSs4iIiIgOkuQsIiIiooMkOYuIiIjoIEnOIiIiIjpIkrOIiIiIDpLkLCIiIqKDJDmLiIiI6CBJziIiIiI6SJKziIiIiA6S5CwiIiKigyQ5i4iIiOggSc4iIiIiOkiSs4iIiIgOUmtyJmlXSXdImi9pej/7Jemb5f6bJW1etWxERCdLHRYRy2q5uk4saTzwHWAXYCFwvaQLbN/WcNjbgCnlayvge8BWFctGRHSk1GHRDJOmX9TuEEZkwXG7tzuEUavOlrMtgfm277b9DHAWsHefY/YGfuDCNcBqktasWDYiolOlDouIZVZbyxmwFnBPw/pCitaxoY5Zq2JZACRNA6aVq49JumMEMbfaBOCBdgagL7Xz05smf8fmGW1/y1fXFMZIVarDOrz+qvXfQgf+Zmr/t99t37kDvy90QB3XR791WJ3JmfrZ5orHVClbbLRnADOGF1pnkDTbdk+74xjt8ndsnvwtm6ZSHdbJ9Ve3/Vvotu8L+c6drM7kbCGwTsP62sC9FY9ZvkLZiIhOVaX+i4joV519zq4HpkiaLGl5YD/ggj7HXAAcVD61+UbgYdv3VSwbEdGpUodFxDKrreXM9hJJhwMXA+OBmbZvlXRYuf8EYBawGzAfeAI4eLCydcXaRh15O2MUyt+xefK3bIIxUod127+Fbvu+kO/csWT325UrIiIiItogMwREREREdJAkZxEREREdJMlZG2Ral+aQNFPSIkm3tDuW0UzSOpIukzRP0q2Sjmx3TNE+3VY/dWM90m2/eUkrSLpO0u/K7/v5dsc0lPQ5a7FyWpc7aZjWBZiaaV2GT9L2wGMUs0xs2O54RqtyVo41bd8gaWVgDrBP/k12n26sn7qxHum237wkASvZfkzSi4CrgCPLmYk6UlrOWi/TujSJ7SuBB9sdx2hn+z7bN5TLjwLzKEa4j+7TdfVTN9Yj3fabL6eIfKxcfVH56uiWqSRnrTfQlFURbSdpErAZcG2bQ4n2SP3UZbrlNy9pvKSbgEXApbY7+vsmOWu9ylNTRbSSpJcC5wIftf1Iu+OJtkj91EW66Tdv+1nbm1LM1rGlpI6+hZ3krPUyrUt0nLIfxrnA6bbPa3c80Tapn7pEt/7mbf8NuBzYtb2RDC7JWetlWpfoKGVn2ZOBeba/1u54oq1SP3WBbvvNS5ooabVy+SXAW4Db2xrUEJKctZjtJUDvtC7zgLNH4bQuHUHSmcBvgddJWijp0HbHNEptCxwI7CTppvK1W7uDitbrxvqpS+uRbvvNrwlcJulmiguQS21f2OaYBpWhNCIiIiI6SFrOIiIiIjpIkrOIiIiIDpLkLCIiIqKDJDmLiIiI6CBJziIiIiI6SJKzGJKkx4Y+6h+O30HSheXyXpKm1xPZgJ8/UdK1km6U9KaKZd4n6VV1xxYR/0iSJR3fsP4JScc06dynStq3Geca4nPeJWmepMv6bJ8k6clyqIrbJP2gHPy16nnfJ+nb5XJLvssgsewjaYN2fX63SXIWtbJ9ge3jWvyxOwO3297M9m8qlnkfkOQsovWeBt4haUK7A2kkafwwDj8U+JDtHfvZ9/ty2qCNKGZceHcTwhuWYX6XgewDJDlrkSRnUVnZIna5pHMk3S7p9HKkaSTtWm67CnhHQ5nGK781JJ0v6Xfla5ty+wGSriuvLr9fTlA7vrxSvEXSXEkf6yeeV0v6taSby/d1JW0KfBnYrTzfS/qUOVrS9eV5Z6iwL9ADnN5bRtLOZcvbXEkzJb24LL9A0n9J+q2k2ZI2l3SxpN9LOqw8Zk1JV5bnuqVq611El1oCzAD6+43/Q2tRbyt+WRddIelsSXdKOk7S/mU9MlfSeg2neYuk35TH7VGWHy/pK2VdcLOkf2s472WSzgDm9hPP1PL8t0j6UrntaGA74ARJXxnoS9p+FrgOWKusX85vOO8uks4rlw8uY72CYrDYRsv8XSSNk/RdSbdKulDSrP5a4iR9oDzX7ySdK2nFsq7eC/hKWa+tJ2lTSdeUn3m+pJeV5S+X9PWyDpwnaQtJ50m6S9IXy2NWknRR+Rm3SPrXgf5uXct2XnkN+gIeK993AB6muPobRzGq9nbACsA9wBSKiZPPBi4sy7wP+Ha5/GOKCXYBxgOrAv8E/Bx4Ubn9u8BBwBsoRnHujWG1fuL6OfDecvkQ4Kd9P7OfMqs3LP8Q2LNcvhzoKZd7v8/65foPGuJeAHywXP46cDOwMjARWFRu/zjwmYbvuXK7/xvmlVenvoDHgFXK39aqwCeAY8p9pwL7Nh5bvu8A/I1i5PcXA38GPl/uOxL4RkP5X5b11RSKuUNXAKYBR5XHvBiYDUwuz/s4MLmfOF8F/Kn8rS8H/C+wT7nvufqjT5lJwC3l8grAZcDGZT15OzCx3HcGsGf5fXo/Y3ng/3i+/hzRdwH2BWaV5V8JPNT4t22I+eUNy18EPjLAf4ubgTeXy19o+JtfDnyp4b/FvQ3/nRYCLwfeCZzYcK5V2/3vsNNeaTmL4brO9kLbS4GbKCqf1wN/sH2Xi1/ajwYouxPwPSiuIm0/THEL8g3A9ZJuKtdfA9wNvEbStyTtCjzSz/m2pqjUoEi0tqsQ/44q+qPNLeP5536OeV35fe4s108Dtm/Y3zvX4FzgWtuP2l4MPKVi/rbrgYNV9JvZyPajFeKK6Fq2H6G4CDpiGMWut32f7aeB3wOXlNvnUtRLvc62vdT2XRT1yuuBtwIHlXXOtRQJw5Ty+Ots/6Gfz9sCuNz2YhfTXJ3OP9YLA1mv/Jy/An+yfXNZT/4QOKCsM7YGfgFs1fAZz1Bc0DYayXfZDvhJWf5+ikSxPxuWrXNzgf3pp46UtCrFBfMV5abB6shbG/473Q2sU25/i6QvSXpT+f+CaJDkLIbr6YblZymuIAGWdR4wAafZ3rR8vc72MbYfAjahuAr7MHBShXMNGoOkFSha5va1vRFwIsWVZ38xDab3b7CUf/x7LAWWs30lRUX1Z+CHkg6qEHtEt/sGRd+tlRq2LaH8/5QkUbQm9er722v8XS7XsK9vvWCK3/hHGuqdybZ7k7vHB4hvqHphIL19zl4LvFHSXuX2U4ADgKkUSdOSAeLtG3vf9arfpWr8pwKHl3Xk5+m/jhzKUHXknRQX5XOB/y5vDUeDJGfRDLcDkxv6eUwd4LhfAx+E5/pJrFJu21fSK8rtq6voSzYBGGf7XOCzwOb9nO9qYL9yeX/gqiHi7K1kHpD0Uopm/l6PUtye7P0+kyS9tlw/ELiCiiS9muIW54nAyQPEHhENbD9I0SWiceLxBRT/EwfYG6j8pGODd5X9rdajaJW/g2Ji9w+qfHJS0vqSVhrsJBStUm+WNEFFB/upDKNesH0fMB34dLl+L8Utv6MoEqLez9hB0svL2N7VxO9yFfDOsvwaFLc9+7MycF95vv0btj9XR5YtXQ/p+f60w60jXwU8YftHwFdJHfkCyw19SMTgbD8laRpwkaQHKCqBDfs59EhghqRDKVrdPmj7t5KOAi6RNA74O0VL2ZPAKeU2KCu0Po4AZkr6JLAYOHiIOP8m6USKq7UFFLcfe51K0aH3SYpbDAcDP5G0XHncCUP8GRrtAHxS0t8p+tOk5SyimuOBwxvWTwR+Juk6igu5gVq1BnMHReKwBnBYWV+dRHHr84ayRW4xxdOIA7J9n6RPU9wOFDDL9s+GGctPgWPKW3m/obg1OtH2bQ2fcQxFf977gBso+q0247ucS9Ft5BbgTopEsL/biZ8t9/2Roq7svWg9CzhR0hEUF7bvpagzV6S4XTlo/dvHRhQPFyylqPM/OIyyXUHFre+IiIhoJRVPst9o++QWfd5LbT8m6eUUT45uW/Y/iw6TlrOIiIgWkzSHoiXw4y382AvLBxCWB45NYta50nIWERER0UHyQEBEREREB0lyFhEREdFBkpxFREREdJAkZxEREREdJMlZRERERAf5/xilsHl9RiGJAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 4))\n", + "ax1.bar(range(len(average_density)), average_density)\n", + "ax1.set_xticks(range(3))\n", + "ax1.set_xticklabels(range(3))\n", + "ax1.set_xlabel(\"Indices of atoms\")\n", + "ax1.set_ylabel(\"Average Rydberg density\")\n", + "\n", + "ax2.bar(range(len(average_num_triangles)), average_num_triangles)\n", + "ax2.set_xlabel(\"Number of Rydberg atoms\")\n", + "ax2.set_ylabel(\"Average number of triangles\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "e73773e1", + "metadata": {}, + "source": [ + "In the left panel, we show the average Rydberg density for each atom in the triangles. We see that indeed the average Rydberg density for the atoms in the triangles are around 1/3 as expected. In the right panel, we show the number of triangles with certain number of Rydberg atoms (0, 1, 2 or 3) averaged over the shots. It can be seen that almost no triangle has more than 1 Rydberg atoms since the atoms in the same triangle blockade each other. \n", + "\n", + "In summary, in this notebook we have demonstrated how to connect to QuEra's Aquila device, and define a valid AHS program for the device. " + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "9180c117", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Task Summary\n", + "{'arn:aws:braket:us-east-1::device/qpu/quera/Aquila': {'shots': 100, 'tasks': {'COMPLETED': 1}}}\n", + "Note: Charges shown are estimates based on your Amazon Braket simulator and quantum processing unit (QPU) task usage. Estimated charges shown may differ from your actual charges. Estimated charges do not factor in any discounts or credits, and you may experience additional charges based on your use of other services such as Amazon Elastic Compute Cloud (Amazon EC2).\n", + "Estimated cost to run this example: 1.30 USD\n" + ] + } + ], + "source": [ + "print(\"Task Summary\")\n", + "print(tracker.quantum_tasks_statistics())\n", + "print('Note: Charges shown are estimates based on your Amazon Braket simulator and quantum processing unit (QPU) task usage. Estimated charges shown may differ from your actual charges. Estimated charges do not factor in any discounts or credits, and you may experience additional charges based on your use of other services such as Amazon Elastic Compute Cloud (Amazon EC2).')\n", + "print(f\"Estimated cost to run this example: {tracker.qpu_tasks_cost() + tracker.simulator_tasks_cost():.2f} USD\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a9a8a075", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + }, + "varInspector": { + "cols": { + "lenName": 16, + "lenType": 16, + "lenVar": 40 + }, + "kernels_config": { + "python": { + "delete_cmd_postfix": "", + "delete_cmd_prefix": "del ", + "library": "var_list.py", + "varRefreshCmd": "print(var_dic_list())" + }, + "r": { + "delete_cmd_postfix": ") ", + "delete_cmd_prefix": "rm(", + "library": "var_list.r", + "varRefreshCmd": "cat(var_dic_list()) " + } + }, + "types_to_exclude": [ + "module", + "function", + "builtin_function_or_method", + "instance", + "_Feature" + ], + "window_display": false + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/modules/1_Continue_Exploring/A_qtm_hw/analog_hamiltonian_simulation/02_Ordered_phases_in_Rydberg_systems.ipynb b/modules/1_Continue_Exploring/A_qtm_hw/analog_hamiltonian_simulation/02_Ordered_phases_in_Rydberg_systems.ipynb new file mode 100644 index 000000000..84c5b9fcb --- /dev/null +++ b/modules/1_Continue_Exploring/A_qtm_hw/analog_hamiltonian_simulation/02_Ordered_phases_in_Rydberg_systems.ipynb @@ -0,0 +1,606 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "9f82bf0f", + "metadata": {}, + "source": [ + "# Ordered phases in Rydberg systems\n", + "\n", + "In this example notebook, we show how one can prepare ordered phases in Rydberg systems, focusing on the 1D $Z_2$ phase and the 2D checkerboard phase. We will use an adiabatic time-evolution to prepare these many-body ground states.\n", + "\n", + "## Adiabatic evolution\n", + "\n", + "The adiabatic theorem of quantum mechanics states that \n", + "\n", + ">A physical system remains in its *instantaneous* eigenstate if a given perturbation is acting on it slowly enough and if there is a gap between the eigenvalue and the rest of the Hamiltonian's spectrum. (Born & Fock, 1928)\n", + "\n", + "In other words, a slow-enough change in the parameters of the Hamiltonian will not induce transitions between its ground state and excited states: If the system starts in the ground state of the Hamiltonian at the beginning, it will smoothly transition into the ground state of the Hamiltonian at the end.\n", + "\n", + "The adiabatic theorem plays a key role in preparing the desired many-body ground states in the Rydberg system, the Hamiltonian of which can be expressed as\n", + "\n", + "\\begin{align}\n", + "H(t) = \\sum_{k=1}^N \\frac{\\Omega(t)}{2}\\left(|g_k\\rangle\\langle r_k| + |r_k\\rangle\\langle g_k|\\right) - \\Delta_\\text{global}(t){n}_k + \\sum_{j=1}^{N-1}\\sum_{k=j+1}^N V_{jk}{n}_j{n}_k,\n", + "\\end{align}\n", + "\n", + "where, for simplicity, we set the phase and the shifting field (See notebook 00 for detailed description of this Hamiltonian) to be zero throughout this notebook. We schedule the driving amplitude $\\Omega(t)$ to start from zero ($\\Omega(t=0)=0$). Hence, with negative detuning ($\\Delta_\\text{global}(t=0)<0$), the initial state where all atoms are in the ground state ($\\langle n_k\\rangle =0$) is the lowest energy eigenstate of the Hamiltonian, the many-body ground state.\n", + "\n", + "To arrive at a target Hamiltonian where the excited states of the atoms are favored, we ramp up the detuning $\\Delta_\\text{global}$ from large negative to large positive. During the ramp, we apply a large driving amplitude $\\Omega$ to open an energy gap between the first excited state and the ground state. According to the adiabatic theorem, if the ramping is slow enough, the system remains in the many-body ground state throughout the evolution. At the end of the AHS program, the Rabi frequency will be turned off and since $\\Delta_\\text{global}>0$, all the atoms tend to stay in the Rydberg state to lower the energy of the system. However, due to the strong Rydberg interaction, only one atom can be excited to the Rydberg state within its blockade radius.\n", + "\n", + "For a 1D chain of atoms, if we adjust the separation between the atoms such that only neighboring atoms are within the blockade radius, then we will arrive at a state where every second atom is excited, this is called the \"$Z_2$ phase\". For a 2D square array of atoms, a similar \"checkerboard phase\" emerges. The common feature of these phases is that the atoms are excited to the Rydberg states in an alternative pattern, complying with the blockade constraint, as shown in the figure below. In the figure, the shaded circles show *half* of the blockade radius such that sites with overlapped circles blockade each other. We show configurations, with black and white sites represent Rydberg and ground state atoms respectively, that comply with the blockade constraint. \n", + "\n", + "![Blockade_examples.png](Blockade_examples.png)\n", + "\n", + "We will realize these phases in this notebook. To begin, we import the necessary packages." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "9124196d", + "metadata": {}, + "outputs": [], + "source": [ + "# Use Braket SDK Cost Tracking to estimate the cost to run this example\n", + "from braket.tracking import Tracker\n", + "tracker = Tracker().start()" + ] + }, + { + "cell_type": "markdown", + "id": "156c4218", + "metadata": {}, + "source": [ + "In this notebook, we will use `matplotlib` package and `ahs_utils.py` module in the current working directory for visualization purposes and other functionalities." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "08909afa", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "from braket.ahs.atom_arrangement import AtomArrangement\n", + "\n", + "from braket.ahs.analog_hamiltonian_simulation import AnalogHamiltonianSimulation\n", + "\n", + "from ahs_utils import show_register, show_global_drive, show_final_avg_density, get_drive \n", + "\n", + "from braket.devices import LocalSimulator" + ] + }, + { + "cell_type": "markdown", + "id": "5b5eee4d", + "metadata": {}, + "source": [ + "## 1D $Z_2$ phase \n", + "\n", + "Here we consider a 1D chain of 9 atoms with neighboring atoms separated by $6.1\\mu m$. The setup of the system can be generated as follows" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "6702f2b8", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdwAAAG2CAYAAADVzDfJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAeAUlEQVR4nO3dfXBVhbnv8d8TEAKJCEoAebuAAgqdyEt0tChMtb5b6LT3WtN7Kp7qUEa9wul1LFbHaTt1hvFOKVbp4VKs4px6bevLyLQoR1AppyNqQF5E3lJBjYAEqAIKwSTP/SMbDWGTt73zrB3y/czsSfZaa+/1uAx82Xuv7G3uLgAA0Lbykh4AAICOgOACABCA4AIAEIDgAgAQgOACABCgc9IDAABOXatXr+7TuXPnhZK+plP/QV6tpHeqq6tvGz9+/J6GKwkuAKDNdO7ceWG/fv3OLyoq+mdeXt4p/XuotbW1VllZOWr37t0LJU1uuP5U/9cGACBZXysqKjpwqsdWkvLy8ryoqOhT1T2aP3F98DwAgI4lryPE9pjUf2vathJcAAACEFwAQO5YvrxA3/rWUI0efb6+9a2hWr68INO7/OUvf9ln2LBho3v06DHmpz/9aT9J+vGPf9z/gQce6CtJ3/3ud4c8/vjjvZp7f1u2bOkyfPjw0S2dg5OmAAC54d/+rb/mz++rqqo8uUubNnXTsmU9NX36x/r1r3e29m4fe+yxohdffHHbeeeddzSb47YUj3ABAMlbvrxA8+f31ZEjdbGVJHfTkSN5mj+/b2sf6X7/+98fXFFR0XXy5Mnn/vznP+9z8803D25s+5UrV3a/8MILR44ePfr8Sy+9dPj7779/2rHlI0eOHDVmzJjz5syZ06c1sxBcAEDy5s7to6qq9E2qqjLNnduqyD311FMf9OnT54sVK1Zs7dWrV01j21ZVVdldd901+IUXXvjHxo0bN02dOnXv3XffPUCSbr311iFz5sz5YO3atZtbM4fEU8oAgFzw3nv5OtnHxbqbtm/Pb+sR1q9f33Xbtm3dLr/88hGSVFtbq6Kioi/27dvX6eDBg52uv/76Q5L0wx/+cN8rr7xyRkvvn+ACAJI3bNgRbdrUTe52wjoz19ChR9p6BHe3c88993DDR7F79+7tZHbiWC3FU8oAgOTNnLlHXbumf4jbtatr5swT3iox24qLi4/s37+/87JlywqkuqeYy8rK8nv37l1TWFhYs3Tp0kJJeuKJJ85szf0TXABA8q644jNNn/6x8vNrZVYXXjNXfn6tpk//WFdc8Vlbj5Cfn+9PP/30P2bNmjVw5MiRo0aPHj1qxYoVhZL02GOP7bjrrrsGjxkz5rxu3bq16o08zE/2nDkAABlat27djgsuuGBvs2+wfHmB5s7to+3b8zV06BHNnLknIrbZtG7dut4XXHDBkIbL22Vwe/fu7UOGDEl6DABAEx566CH169cvZF9VVVXVY8eOXReys0acLLjt8qSpIUOGqKysLOkxAABN2LRpk84///yQfb3zzjuJvrFFU3gNFwDQptrjM6mtVVtba6r7XNwTEFwAQJvJz8/Xvn37OkR0U5+He4akd9Ktb5dPKQMA2oeBAweqoqJClZWVbb6v3bt3d66pqend5js6uVpJ71RXV9+WbiXBBQC0mdNOO01Dhw4N2deoUaM2uHtJyM5agaeUAQAIQHABAAhAcAEACEBwAQAIQHABAAhAcAEACEBwAQAIQHABAAhAcAEACEBwAQAIQHABAAhAcAEACEBwAQAIQHABAAhAcAEACEBwAQAIQHABAAhAcAEACEBwAQAIQHABAAhAcAEACEBwAQAIQHABAAhAcAEACEBwAQAIQHABAAhAcAEACEBwAQAIQHABAAhAcAEACEBwAQAIQHABAAhAcAEACEBwAQAIQHABAAhAcAEACEBwAQAIQHABAAhAcAEACEBwAQAIQHABAAhAcAEACEBwAQAIkJXgmtk1ZrbFzMrNbFaa9WZmv0mtX29m4xqs72Rmb5vZX7IxDwAAuSbj4JpZJ0nzJF0raZSkUjMb1WCzayUNT12mSfr3ButnSNqU6SwAAOSqbDzCvUhSubu/5+5HJT0taUqDbaZIetLrrJLU08zOliQzGyjpekkLszALAAA5KRvBHSDpw3rXK1LLmrvNXEn3SKptbCdmNs3MysysrLKyMqOBAQCIlo3gWppl3pxtzOwGSXvcfXVTO3H3Be5e4u4lRUVFrZkTAIDEZCO4FZIG1bs+UNLOZm4zQdJkM9uhuqeiLzez/8jCTAAA5JRsBPctScPNbKiZdZF0k6TFDbZZLOnm1NnKF0v61N13ufu97j7Q3YekbveKu/9LFmYCACCndM70Dty92szulLRUUidJv3f3jWY2PbV+vqQlkq6TVC7pc0n/mul+AQBoT8y94cutua+kpMTLysqSHgMAkEPMbLW7lyQ9x8nwTlMAAAQguAAABCC4AAAEILgAAAQguAAABCC4AAAEILgAAAQguAAABCC4AAAEILgAAAQguAAABCC4AAAEILgAAAQguAAABCC4AAAEILgAAAQguAAABCC4AAAEILgAAAQguAAABCC4AAAEILgAAAQguAAABCC4AAAEILgAAAQguAAABCC4AAAEILgAAAQguAAABCC4AAAEILgAAAQguAAABCC4AAAEILgAAAQguAAABCC4AAAEILgAAAQguAAABCC4AAAEILgAAAQguAAABCC4AAAEILgAAAQguAAABCC4AAAEILgAAAQguAAABCC4AAAEILgAAAQguAAABCC4AAAEILgAAAQguAAABCC4AAAEILgAAAQguAAABCC4AAAEILgAAAQguAAABCC4AAAEyEpwzewaM9tiZuVmNivNejOz36TWrzezcanlg8zsVTPbZGYbzWxGNuYBACDXZBxcM+skaZ6kayWNklRqZqMabHatpOGpyzRJ/55aXi3pf7v7+ZIulnRHmtsCANDuZeMR7kWSyt39PXc/KulpSVMabDNF0pNeZ5WknmZ2trvvcvc1kuTuByVtkjQgCzMBAJBTshHcAZI+rHe9QidGs8ltzGyIpLGS3ki3EzObZmZlZlZWWVmZ6cwAAITKRnAtzTJvyTZmVijpWUkz3f1Aup24+wJ3L3H3kqKiolYPCwBAErIR3ApJg+pdHyhpZ3O3MbPTVBfbP7j7c1mYBwCAnJON4L4labiZDTWzLpJukrS4wTaLJd2cOlv5YkmfuvsuMzNJj0na5O5zsjALAAA5qXOmd+Du1WZ2p6SlkjpJ+r27bzSz6an18yUtkXSdpHJJn0v619TNJ0j6gaQNZrY2teyn7r4k07kAAMgl5t7w5dbcV1JS4mVlZUmPAQDIIWa22t1Lkp7jZHinKQAAAhBcAAACEFwAAAIQXAAAAhBcAAACEFwAAAIQXAAAAhBcAAACEFwAAAIQXAAAAhBcAAACEFwAAAIQXAAAAhBcAAACEFwAAAIQXAAAAhBcAAACEFwAAAIQXAAAAhBcAAACEFwAAAIQXAAAAhBcAAACEFwAAAIQXAAAAhBcAAACEFwAAAIQXAAAAhBcAAACEFwAAAIQXAAAAhBcAAACEFwAAAIQXAAAAhBcAAACEFwAAAIQXAAAAhBcAAACEFwAAAIQXAAAAhBcAAACEFwAAAIQXAAAAhBcAAACEFwAAAIQXAAAAhBcAAACEFwAAAIQXAAAAhBcAAACEFwAAAIQXAAAAhBcAAACEFwAAAIQXAAAAhDcJqxdu1bjx49X9+7dNX78eK1duzbpkRo1bdo0jRw5Unl5eXriiSeSHqdRW7du1ZQpU1RUVKQzzzxTV199tbZs2ZL0WI3au3evJkyYoLPOOks9e/bUJZdcor///e9Jj9UsixYtkplp4cKFSY/SJDNTQUGBCgsLVVhYqNtuuy3pkRpVU1Oj+++/X/3799fpp5+usWPH6pNPPkl6rLRWrlz55XE9djEzPfvss0mP1qhXXnlF48aNU48ePTRs2DAtWLAg6ZFazt3b3WX8+PEeoaqqygcPHuxz5szxI0eO+MMPP+yDBw/2qqqqkP23xqOPPurLli3z8ePH++OPP570OI164403fOHChb5v3z4/evSo33///T5y5Mikx2rU4cOHffPmzV5TU+O1tbX+/PPPe69evfyLL75IerRG7d+/30eOHOmjR4/23/3ud0mP0yRJvm3btqTHaLb77rvPv/GNb/iOHTu8trbWN2zY4IcPH056rGZ59dVXvbCw0A8dOpT0KCd19OhR79Gjh8+fP99ra2v9zTff9IKCAl+7du1x20kq8xxo1MkuiQ/QmktUcJcuXer9+/f32traL5cNGjTIX3zxxZD9Z2LChAk5H9yG9u3b55J87969SY/SLDU1Nb548WKX5B9//HHS4zTqRz/6kc+bN88nTZpEcLNs//79XlBQ4OXl5UmP0iq33HKL33LLLUmP0ajdu3e7JP/ss8++XFZSUuJPPfXUcdvlenB5SrkRGzduVHFxsczsy2XFxcXauHFjglOduv72t7+pX79+Ouuss5IepUnFxcXKz8/X5MmTddttt6lPnz5Jj3RSb775psrKyjR9+vSkR2mRiRMnql+/fvrOd76jHTt2JD3OSW3YsEGdO3fWM888o379+mnEiBGaN29e0mM1y+eff65nnnlGU6dOTXqURvXt21elpaV6/PHHVVNTo9dff13vv/++Lr300qRHaxGC24hDhw7pjDPOOG7ZGWecoYMHDyY00amroqJCd9xxh+bMmZP0KM2yfv16HThwQE899VRO/6GvqanR7bffrkceeUR5ee3nj/uKFSu0Y8cObd68Wf3799cNN9yg6urqpMdKq6KiQp9++qm2bt2q7du365lnntHPfvYzvfzyy0mP1qRnn31WvXv31qRJk5IepUmlpaX6xS9+oa5du+qyyy7Tgw8+qEGDBiU9Votk5U+gmV1jZlvMrNzMZqVZb2b2m9T69WY2rrm3bROrVkmlpdL48XVfV61Ku1lhYaEOHDhw3LIDBw7o9NNPj5jyK82cN2e0cN7KykpdddVVuv3221VaWho0ZAOtOMb5+fkqLS3V7NmztW7duoAh62nmvL/97W9VXFysSy65JHa+dFpwjCdOnKguXbqoZ8+eevjhh7V9+3Zt2rQpcFg1e95u3bpJkh544AF169ZNxcXFuummm7RkyZLIaVv1M7xo0SLdfPPNxz2LF6qZM2/evFnf+9739OSTT+ro0aPauHGjHnroIf31r38NHjhDmT4nLamTpH9IGiapi6R1kkY12OY6SS9KMkkXS3qjubdNd8noNdwHHnDv3t3drO4l7Ly8uusPPHDCpkuXLvUBAwYc9xru4MGDY1/DbcG89SX2Gm4L592/f7+PGTPGf/KTnwQPWk8rj/Ex55xzjj/33HNtPGQ9LZh3ypQp3rNnT+/bt6/37dvXTzvtNO/Ro4ffcccdcfO2cOaGqqurvaCgwNetWxcwaEoL5i0vL3dJ/v7773+57M477/SZM2fm5LzHfPDBB96pU6fkXntuwcx//vOffcyYMcctmzFjxgk/x8rx13CzEdxLJC2td/1eSfc22Ob/Siqtd32LpLObc9t0l1YH9/XX6/6HSideunevW1/PsbOU586d60eOHPFHHnkk9izlFs57bObDhw/717/+dV+wYIEfPnzYa2pqcnLeTz/91C+88ML4v/zra+HMr7/+uq9cudKrqqr8888/99mzZ3thYaF/9NFHOTnvP//5T9+1a9eXl0suucR/9atf+SeffBIzbytmfuedd/ztt9/26upqP3jwoM+YMcNHjBjhR48ezcl53d0vu+wynzZtmh85csTfffddLyoq8mXLluXsvO7uDz74oF922WUxMzbUwpnLy8u9oKDAly9f7rW1tV5eXu7nnHOOL1iw4LjtOkJw/7ukhfWu/0DSow22+YukS+tdXy6ppDm3TXdpdXBvuumrf001vOTl1a1vYM2aNT5u3DjPz8/3sWPH+po1a1q376B5J02a5JKOu7z66qs5Oe8TTzzhkrx79+5eUFDw5aX+I4Vcm/m1117z4uJiLyws9F69evnEiRN9xYoVOTtvQ4mcpdzCmZcvX+4jRozw7t27e1FRkU+ZMsW3bt2as/O6u1dUVPjVV1/tBQUFPnToUJ8/f35Oz+vuPnLkSF+4cGHcnPW1YuY//vGPPnr0aC8sLPQBAwb4Pffcc8KDiVwPbucsPCud7sl/b+Y2zblt3R2YTZM0TZIGDx7ckvm+snVr3f/SdGprpW3bTlg8duxYrV69unX7y1Qr5n3ttdfadqbGtHDeqVOnJn92ZAtnnjRpUvzrtfW14meivkR+Plo48+WXX57sG6C04hgPGDBAL730UhsPdhKt/JnYvHlzGw7VhFbMfOONN+rGG29s48HaVjZOmqqQVP9UsYGSdjZzm+bcVpLk7gvcvcTdS4qKilo36YgR0snO1MzLq1ufS5i37bW3mdvbvFL7m5l52157nDkbMn2ILKmzpPckDdVXJz6NbrDN9Tr+pKk3m3vbdJeo13ATx7xtr73N3N7mdW9/MzNv22ujmZXjTyln507qzkLeqrozju9LLZsuaXrqe5M0L7V+g6SSxm7b1CUrZynn5fmXrxe04IzUcMzb9trbzO1tXvf2NzPztr02mDnXg2t1M7YvJSUlXlZW1vo7WLVKevjhutcJhg+XZsyQLr44ewNmG/O2vfY2c3ubV2p/MzNv28vyzGa22t1LsjhhVnXM4AIATjm5Htz2815vAAC0YwQXAIAABBcAgAAEFwCAAAQXAIAABBcAgAAEFwCAAAQXAIAABBcAgAAEFwCAAAQXAIAABBcAgAAEFwCAAAQXAIAABBcAgAAEFwCAAAQXAIAABBcAgAAEFwCAAAQXAIAABBcAgAAEFwCAAAQXAIAABBcAgAAEFwCAAAQXAIAABBcAgAAEFwCAAAQXAIAABBcAgAAEFwCAAAQXAIAABBcAgAAEFwCAAAQXAIAABBcAgAAEFwCAAAQXAIAABBcAgAAEFwCAAAQXAIAABBcAgAAEFwCAAAQXAIAABBcAgAAEFwCAAAQXAIAABBcAgAAEFwCAAAQXAIAABBcAgAAEFwCAAAQXAIAABBcAgAAEFwCAAAQXAIAABBcAgAAEFwCAAAQXAIAABBcAgAAZBdfMzjSzl81sW+prr5Nsd42ZbTGzcjObVW/5/zGzzWa23syeN7OemcwDAECuyvQR7ixJy919uKTlqevHMbNOkuZJulbSKEmlZjYqtfplSV9z92JJWyXdm+E8AADkpEyDO0XSotT3iyR9O802F0kqd/f33P2opKdTt5O7/6e7V6e2WyVpYIbzAACQkzINbl933yVJqa990mwzQNKH9a5XpJY19ENJL55sR2Y2zczKzKyssrIyg5EBAIjXuakNzGyZpH5pVt3XzH1YmmXeYB/3SaqW9IeT3Ym7L5C0QJJKSkr8ZNsBAJCLmgyuu3/zZOvM7GMzO9vdd5nZ2ZL2pNmsQtKgetcHStpZ7z6mSrpB0hXuTkgBAKekTJ9SXixpaur7qZJeSLPNW5KGm9lQM+si6abU7WRm10j6iaTJ7v55hrMAAJCzMg3ubElXmtk2SVemrsvM+pvZEklKnRR1p6SlkjZJ+pO7b0zd/lFJp0t62czWmtn8DOcBACAnNfmUcmPcfZ+kK9Is3ynpunrXl0hakma7czPZPwAA7QXvNAUAQACCCwBAAIILAEAAggsAQACCCwBAAIILAEAAggsAQACCCwBAAIILAEAAggsAQACCCwBAAIILAEAAggsAQACCCwBAAIILAEAAggsAQACCCwBAAIILAEAAggsAQACCCwBAAIILAEAAggsAQACCCwBAAIILAEAAggsAQACCCwBAAIILAEAAggsAQACCCwBAAIILAEAAggsAQACCCwBAAIILAEAAggsAQACCCwBAAIILAEAAggsAQACCCwBAAIILAEAAggsAQACCCwBAAIILAEAAggsAQACCCwBAAIILAEAAggsAQACCCwBAAIILAEAAggsAQACCCwBAAIILAEAAggsAQACCCwBAAIILAEAAggsAQACCCwBAAIILAEAAggsAQACCCwBAAIILAECAjIJrZmea2ctmti31tddJtrvGzLaYWbmZzUqz/m4zczPrnck8AADkqkwf4c6StNzdh0tanrp+HDPrJGmepGsljZJUamaj6q0fJOlKSR9kOAsAADkr0+BOkbQo9f0iSd9Os81Fksrd/T13Pyrp6dTtjvm1pHskeYazAACQszINbl933yVJqa990mwzQNKH9a5XpJbJzCZL+sjd1zW1IzObZmZlZlZWWVmZ4dgAAMTq3NQGZrZMUr80q+5r5j4szTI3s+6p+7iqOXfi7gskLZCkkpISHg0DANqVJoPr7t882Toz+9jMznb3XWZ2tqQ9aTarkDSo3vWBknZKOkfSUEnrzOzY8jVmdpG7727BfwMAADkv06eUF0uamvp+qqQX0mzzlqThZjbUzLpIuknSYnff4O593H2Iuw9RXZjHEVsAwKko0+DOlnSlmW1T3ZnGsyXJzPqb2RJJcvdqSXdKWippk6Q/ufvGDPcLAEC70uRTyo1x932SrkizfKek6+pdXyJpSRP3NSSTWQAAyGW80xQAAAEILgAAAQguAAABCC4AAAEILgAAAQguAAABCC4AAAEILgAAAQguAAABCC4AAAEILgAAAQguAAABCC4AAAEILgAAAQguAAABCC4AAAEILgAAAQguAAABCC4AAAEILgAAAQguAAABCC4AAAEILgAAAQguAAABCC4AAAEILgAAAQguAAABCC4AAAEILgAAAQguAAABCC4AAAEILgAAAQguAAABCC4AAAEILgAAAQguAAABCC4AAAEILgAAAQguAAABCC4AAAEILgAAAQguAAABCC4AAAEILgAAAQguAAABCC4AAAHM3ZOeocXMrFLS+1m4q96S9mbhfk5VHJ+mcYyaxjFqGseoac05Rv/N3YsihmmNdhncbDGzMncvSXqOXMXxaRrHqGkco6ZxjJp2KhwjnlIGACAAwQUAIEBHD+6CpAfIcRyfpnGMmsYxahrHqGnt/hh16NdwAQCI0tEf4QIAEILgAgAQoEMG18yuMbMtZlZuZrOSnifXmNnvzWyPmb2T9Cy5yswGmdmrZrbJzDaa2YykZ8o1ZpZvZm+a2brUMfp50jPlIjPrZGZvm9lfkp4lF5nZDjPbYGZrzaws6Xky0eFewzWzTpK2SrpSUoWktySVuvu7iQ6WQ8xsoqRDkp50968lPU8uMrOzJZ3t7mvM7HRJqyV9m5+jr5iZSSpw90Nmdpqk/5I0w91XJTxaTjGzH0sqkdTD3W9Iep5cY2Y7JJW4e7t/Y5CO+Aj3Iknl7v6eux+V9LSkKQnPlFPc/W+S9ic9Ry5z913uvib1/UFJmyQNSHaq3OJ1DqWunpa6dKx/4TfBzAZKul7SwqRnQdvriMEdIOnDetcrxF+UyICZDZE0VtIbCY+Sc1JPl66VtEfSy+7OMTreXEn3SKpNeI5c5pL+08xWm9m0pIfJREcMrqVZxr+60SpmVijpWUkz3f1A0vPkGnevcfcxkgZKusjMeIkixcxukLTH3VcnPUuOm+Du4yRdK+mO1Ete7VJHDG6FpEH1rg+UtDOhWdCOpV6XfFbSH9z9uaTnyWXu/omk1yRdk+wkOWWCpMmp1yiflnS5mf1HsiPlHnffmfq6R9LzqntZsF3qiMF9S9JwMxtqZl0k3SRpccIzoZ1JnRD0mKRN7j4n6XlykZkVmVnP1PfdJH1T0uZEh8oh7n6vuw909yGq+3voFXf/l4THyilmVpA6KVFmViDpKknt9rcnOlxw3b1a0p2SlqruRJc/ufvGZKfKLWb2/yS9LmmkmVWY2a1Jz5SDJkj6geoelaxNXa5Leqgcc7akV81sver+ofuyu/OrL2iJvpL+y8zWSXpT0l/d/aWEZ2q1DvdrQQAAJKHDPcIFACAJBBcAgAAEFwCAAAQXAIAABBcA0Gay/WEoZlZT7zcD2tWvdHKWMgCgzWT7w1DM7JC7F2Y+WTwe4QIA2ky6D0Mxs3PM7KXU+yOvNLPzEhovFMEFAERbIOl/uft4SXdL+m0LbptvZmVmtsrMvt0m07WRzkkPAADoOFIf+PF1SX+ue4dUSVLX1LrvSPpFmpt95O5Xp74f7O47zWyYpFfMbIO7/6Ot584GggsAiJQn6ZPUp0gdJ/UhII1+EEi9DzN4z8xeU91HY7aL4PKUMgAgTOpjLLeb2f+Q6j4IxMwuaM5tzayXmR17NNxbde9p/m6bDZtlBBcA0GZO8mEo/1PSrakPJdgoaUoz7+58SWWp270qaba7t5vg8mtBAAAE4BEuAAABCC4AAAEILgAAAQguAAABCC4AAAEILgAAAQguAAAB/j+szHaytjfCiwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "register = AtomArrangement()\n", + "separation = 6.1e-6 # in meters \n", + "num_atoms = 9\n", + "\n", + "for k in range(num_atoms):\n", + " register.add([k * separation, 0])\n", + " \n", + "show_register(register)" + ] + }, + { + "cell_type": "markdown", + "id": "33174b8a", + "metadata": {}, + "source": [ + "In order to prepare the $Z_2$ ordered state for the atomic chain, we shall design an AHS program that drives the system adiabatically. As described above, we start from $\\Omega(t=0)=0$ with $\\Delta(t=0)<0$, followed by turning on $\\Omega(t)$ and ramping up $\\Delta(t)$. We will turn off the driving amplitude at the end of the program. This program can be specified as follows." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "12184869", + "metadata": {}, + "outputs": [], + "source": [ + "time_points = [0, 2.5e-7, 2.75e-6, 3e-6]\n", + "amplitude_min = 0\n", + "amplitude_max = 1.57e7 # rad / s\n", + "\n", + "detuning_min = -5.5e7 # rad / s\n", + "detuning_max = 5.5e7 # rad / s\n", + "\n", + "amplitude_values = [amplitude_min, amplitude_max, amplitude_max, amplitude_min] # piecewise linear\n", + "detuning_values = [detuning_min, detuning_min, detuning_max, detuning_max] # piecewise linear\n", + "phase_values = [0, 0, 0, 0] # piecewise constant\n", + "\n", + "\n", + "drive = get_drive(time_points, amplitude_values, detuning_values, phase_values)" + ] + }, + { + "cell_type": "markdown", + "id": "ee92d637", + "metadata": {}, + "source": [ + "We can plot the waveforms of these driving fields to make sure that they are correctly specified." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "e8d369e3", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAHwCAYAAABpICzHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABwDklEQVR4nO29eXycV3m3f91avO+WV8m75Rg7iWPZJA6xAwlLlgIhDrQJlK1J84YSur0tJaVvS2kptH1fWqCUtSnQH0uhcUIIWQghwXaIk1hjyYoVxZJsWdZYtixbsjzWOpr798eMgiJkbTPPMnPu6/OZjzQzz5xzru8z9tF5lnNEVTEMwzAMI5zkBd0AwzAMwzAujnXUhmEYhhFirKM2DMMwjBBjHbVhGIZhhBjrqA3DMAwjxFhHbRiGYRghxrmOWkTuF5EWEXlpDNv+i4hUpB6HRaTdhyYahmEYxquIa/dRi8i1QAz4jqpeOo7PfQzYrKq/51njDMMwDGMIzo2oVXU3cHbwayKyRkQeF5FyEdkjIuuH+egdwPd9aaRhGIZhpCgIugEh4evAPapaKyJXAf8OXD/wpoisAFYBvwiofYZhGIajON9Ri8gM4A3Aj0Rk4OXJQza7HfgfVe33s22GYRiG4XxHTfLwf7uqXjHCNrcDH/WnOYZhGIbxa5w7Rz0UVe0AjorIewAkyaaB90XkEmAu8FxATTQMwzAcxrmOWkS+T7LTvUREmkTkTuB9wJ0iUgkcAm4Z9JE7gB+oa5fHG4ZhGKHAuduzDMMwDCObcG5EbRiGYRjZhFMXkxUVFenKlSszUlZvby+TJk3KSFnZiusZmL/5u+wPlkEm/cvLy1tVdcFw7znVUa9cuZL9+/dnpKxYLMaMGTMyUla24noG5m/+LvuDZZBJfxE5drH37ND3BGltbQ26CYHjegbmb/6u43oGfvlbRz1BXP4rcgDXMzB/83cd1zPwy9866gnS19cXWN3lx9r48tN1lB9rC6wNEGwGYcD8zd91XP9/0C9/p85RZ5JEIhFIveXH2njfN/bRE0+Qnyf87rbllMydFkhbzp07x+zZXYHUHQbM3/xd9ofgMmhq6+T/29dIQpVJBXl8965tbFkx1/d2+NUPWEc9QaZNC6Zz3HfkDD3xBArEE8q3fnXR6w984kTA9QeN+buN6/4QdAZ98QT7jpwJpKP2qx+wjnqCnD17lrlz/f9ibFs9HxFQhSkFeXzjg1u5Ytkc39sBcPToUVatWhVI3WHA/M3fZX8ILoOK4+188P4XSCgUFuSxbfV839sA/vUDoeyoReR+4O1Ai6peOsz7bwJ+DBxNvbRLVT/tWwOBpUuX+lndq2xcOou8PKGsZA733fy6QP6KHKB05TKmTikMrP6gMX/zd9kfgstgR+kC7nnjav79mSN8buflgf0/6Fc/ENaLyb4F3DjKNntU9YrUw9dOGpJ/SQbBC0fPEu9X7r1+baCdNASXQVgwf/N3nSAzeN+2lQC0xnoCa4Nf/qHsqFV1N3A26HaMxPr16wOpd29dK5Py87hqVTCHegYTVAZhwfzN33WCzKB4zlRWL5jOntrg7uX2yz+UHfUYuVpEKkXkMRHZ6HflFRUVflcJwO7Dp9m6ci5TJ+UHUv9ggsogLJh/RdBNCBTX/SH4DK4tXcDzR8/QE+8PpH6//LO1o44AK1R1E/Al4KGLbSgid4vIfhHZ39zcTGtrK83NzUSjUdra2qivr6erq4vq6moSiQSRSASA8vLyZEWRCIlEgurqarq6uqivr6etrY1FixYxUF5DQwOxWIyamhri8TiVlZWvKWPgZ1VVFT09PdTW1tLR0UFjYyMtLS20tLTQ2NhIR0cHtbW19PT0UFVV9RtltJzvpubkea5ZM4+amhpisRgNDQ0Zc4pGo+NyKisrS9sJoLKykng8Hgqn8eynjRs35pzTePbTvHnzcs5pPPtpYOXBXHIa735at25doE4b5+fT3ZfgmZeOB/LdmzlzZsacRkRVQ/kAVgIvjXHbBqBotO22bNmimWL//v0ZK2us7Ioc1xV/8YhWNbX7XvdwBJFBmDB/83edoDM4392na+77qX720ZcDqT+T/sB+vUjflZUjahFZLCKS+v1KkkcGzvjZhi1btvhZHQB7Drcyb/okNiyZ5XvdwxFEBmHC/M3fdYLOYMbkAspWzGVv3elA6vfLP5QdtYh8H3gOuEREmkTkThG5R0TuSW3ybuAlEakEvgjcnvqLxDcGDqv4haqyp66V7WuLyMsTX+u+GH5nEDbM3/xdJwwZXFtaxEvRDs4EcPW3X/7ic/8WKFu3btVMLXOZSCTIy/Pv75yakx3c+K97+Kd3X85vb13mW70j4XcGYcP8zd9lfwhHBhXH23nXl5/lC7dfwS1XFPtadyb9RaRcVbcO957b37I0qKmp8bW+PYeTtyDsKC3ytd6R8DuDsGH+5u86YcjgsuLZzJ5ayN4AbtPyy9866gni97R5u2tPU7pwBktmT/W13pFwffpE8zd/1wlDBvl5wva1ReypbcXvI8R++VtHPUFOnPBvIvruvn5eOHqW7SEaTYO/GYQR8zd/1wlLBttLizjZ0U396VFuc8owfvlbRz1B5s2b51td+xva6IknuLZ0gW91jgU/Mwgj5m/+rhOWDLavTQ5idh/29/C3X/7WUU+Qzs5O3+raU3uawnzhqtXh+EcxgJ8ZhBHzN3/XCUsGy+ZNY3XRdPbU+nubll/+1lFPED+vdNxT28qWFXOZNilci50FfbVn0Ji/+btOmDLYXlrEviNnfZ1O1C//8KScZRQW+rO02+nzPVQ3d7AjZIe9wb8Mwor5m7/rhCmDHaUL6OrrJ3Ks3bc6/fK3jnqCjDo3a4Z4ti55ziVs56fBvwzCivmbv+uEKYNtq+dRkCe+Hv72y9+TjlpEOkZ5nBeRw17U7RdFRf5cgb2ntpW50wrZuDQc04YOxq8Mwor5m7/rhCmDmVMK2bx8Dnvr/LugzC9/r0bU9ao6a4THTOCCR3X7QlNTk+d1qCp7ak9zTYimDR2MHxmEGfM3f9cJWwY7ShdQFT3H2Qu9vtTnl79XHfVtGdomtKxdu9bzOg6fitFyvidUs5ENxo8Mwoz5m7/rhC2DHaVFqP76lKHX+OXvSUetqkcARGS6iOSlfl8nIu8UkcLB22Qrhw4d8ryOgXMt20N4fhr8ySDMmL/5u07YMri8ZA6zphT4Np2oX/5eX0y2G5giIsXAU8CHgW95XKcvbNq0yfM69tS2smbBdIrnhGfa0MH4kUGYMX/zd52wZZCfJ1yztog9tad9mU7UL3+vO2pR1U5gJ/AlVb0V2OBxnb5QXl7uafndff08f/RMKG/LGsDrDMKO+Zu/64Qxgx2lCzhxrpv6095fBuWXv+cdtYhcDbwP+GnqtXDN2jFBvF4wPHKsje6+RGjPT0Pwi8YHjfmbv+uEMYOB/zP3+nCbll/+XnfUfwzcBzyoqodEZDXwtMd1+oLXf0ntrm2lMF/Ytnq+p/WkQxj/mvYT8zd/1wljBsvmTWPl/Gns8eE8tV/+4sVxfBG5D3hcVQ9kvPA02Lp1q+7fvz/oZoyJ3/riHqZPLuCH/+vqoJtiGIaRVfyfh17igUgTFX/9NiYVZMe8XiJSrqpbh3vPK4OjwB+JyAER+ZaI/I6IzPWorkCoqqryrOwzsR4Onejg2hAf9gZvM8gGzN/8XSesGWwvLaKzt58DjW2e1uOXvyfni1X1B8APAERkM3AjsEtE8oGfkxxtv+BF3X6xbt06z8oemFknzBeSgbcZZAPmb/6uE9YMrl4zn/w8YU9tK1d5ePrQL3/Pjwmo6gFV/ayqXge8HTgE3OV1vV7T2NjoWdl7aluZPbWQS4tne1ZHJvAyg2zA/M3fdcKawawphWxeNsfzeb/98vdkRC0iO0d4W1X1bi/q9ZNFixZ5Uq6qsre2le1ri8gP4bShg/Eqg2zB/M3fdcKcwfbSIr7wVC3tnb3MmTbJkzr88vdqRP2O1ONO4D9I3p71PuCbwO96VKevtLe3e1JuXUuMkx3dob4tawCvMsgWzL896CYEiuv+EO4MdpQuSE0nesazOvzy92oK0Q+r6ocBBTao6m2qehuw0Yv6gmDKlCmelDtwS8H2LOiovcogWzB/83edMGewqWQ2M6cUeHr42y9/r89Rr1TV5kHPTwHhvPogJOypPc3qoumUzJ0WdFMMwzCyloL8PN6wZj57alt9mU7US7zuqJ8RkSdE5EMi8kGSs5PlxIQn3d3dGS+zJ97PviNns+KwN3iTQTZh/ubvOmHPYEfpAqLtXRxt9WY6Ub/8PZ3OU1XvTV1YtiP10tdV9UEv6/SLOXPmZLzMyLF2uvr6Q7ta1lC8yCCbMP85QTchUFz3h/BncG3q/9I9ta2sXjAj4+X75e/H7Vm7VPVPUo+c6KQBTp06lfEy99SepiBP2LZ6XsbL9gIvMsgmzN/8XSfsGSyfP43l87ybTtQvf087ahHZJiIvikhMRHpFpF9EOrys0y+WL1+e8TL31LZStnwuM6cUZrxsL/Aig2zC/M3fdbIhgx2lRTxX30pffyLjZfvl7/WI+t+AO4BaYCrJiU6+5HGdvnD48OGMlnf2Qi8vnTiXFVd7D5DpDLIN8zd/18mGDHaULuBCbz8HGtszXrZf/n4c+q4D8lW1X1X/E7hutM+IyP0i0iIiL13kfRGRL4pInYgcFJGyTLd7NC677LKMlvdsXSuqZM2FZJD5DLIN8zd/18mGDK5eM5888WbZS7/8ve6oO0VkElAhIv8kIn8CTB/D575Fcn7wi3ETUJp63A18Jd2GjpdML2+2p/Y0s6YUcHnJnIyW6yVhXOLOT8zf/F0nGzKYPbWQK5bNYbcH56n98ve6o35/qo57gQvAMuC20T6kqruBsyNscgvwHU2yD5gjIksy0N4xk8kFwwemDb0mC6YNHUwYF433E/M3f9fJlgx2lC7gYFM75zr7MlquX/6eddSplbI+o6rdqtqhqn+rqn+aOhSeLsXA8UHPm1KvDdeOu0Vkv4jsb25uprW1lebmZqLRKG1tbdTX19PV1UV1dTWJRIJIJAL8+i+lSCRCIpGgurqarq4u6uvraWtrY8+ePQyU19DQQCwWo6amhng8TmVl5WvKGPhZVVVFT08PtbW1dHR00NjYSEtLCy++0siJc928ftkMamtr6enpeXX5tKFlVFZWEo/HqampIRaL0dDQkDGnaDQ6Lqfy8vKLOrW0tNDY2EhHR0dWOY20n4Y6vfDCCznnNJ799Mtf/jLnnMazn5588smccxrvftq3b19WOO0oLSKhsLfudEb30zPPPJMxp5EQL2dsEZEngHeoau8EPrsSeERVLx3mvZ8Cn1XVvannTwEfV9URj0Ns3bpV9+/fP96meM5/PnuUv/1JNXs+fh3L5tmMZIZhGJmkrz9B2aef5O2blvLZneE8ry4i5aq6dbj3vD703QA8KyL/R0T+dOCRgXKbSB5GH6AEOJGBcsfMwF9amWBvbSsr50/Luk46kxlkI+Zv/q6TLRkU5udx9Zr57Kk9ndHpRP3y97qjPgE8kqpn5qBHujwMfCB19fc24NyQOcU9Z+PGzKwv0htP8NyRM+zIktnIBpOpDLIV8zd/18mmDHaUFtHU1sWxM50ZK9Mvf0876tR56d94jPY5Efk+8BxwiYg0icidInKPiNyT2uRR4AhQB3wD+APPJC5CXV0mTrVDpLGNzt7+rLota4BMZZCtmL/5u042ZbDj1elEM3ebll/+nsz1LSKfUtVPTXQbVb1jpM9q8tjFRyfcwAxQUlKSkXL21raSnydsWzM/I+X5SaYyyFbM3/xdJ5syWDF/GsvmTWV3bSvvv3plRsr0y9+rRTnuGmWqUAFuBz7lUf2e09rayowZ6U/yvqf2NJuXzWFWlkwbOphMZZCtmL/5u+wP2ZWBiLB97QIeqTxBX3+Cwvz0Dyj75e/Voe9v8Npz0kMfM1LbZC2Z2DltF3o5GD2XleenITMZZDPmb/6uk20ZXFtaxPmeOJXH2zNSnl/+noyox3IeOtvp60v/xvlf1Z9Blaya33swmcggmzF/83edbMvgDWuKyBPYXdvK1pXpr1Lol7/nc33nKolE+iux7Kk9zcwpBWwqmZ2BFvlPJjLIZszf/F0n2zKYPa2Qy0vmZGzeb7/8raOeINOmpXfPs6qyp7aVa9YUUZCBcyVBkG4G2Y75m7/rZGMG15YWUXG8nXNd6Y+G/fLPzh4iBJw9O9JU5KNztPUC0faurD3sDelnkO2Yv/m7TjZmsGPdAhIKz9Wnv0iHX/6edtQisk5EnhpYrlJELheRv/KyTr9YunRpWp/fk1rJ5dosvZAM0s8g2zF/83edbMzgimVzmDG54NX/g9PBL3+vR9TfAO4D+gBU9SDJ27KynqNHj6b1+T21p1kxfxrL52ffoaMB0s0g2zF/83edbMygMD+PbavnZ6Sj9svf6456mqq+MOS1uMd1+sL69esn/Nm+/gTP1Z9h+9rsPewN6WWQC5i/+btOtmZw7boiGs92cuzMhbTK8cvf6466VUTWAAogIu8GfJ2T2ysqKiom/NkDje1c6O3P2vunB0gng1zA/CuCbkKguO4P2ZvBwCAp3VG1X/5ed9QfBb4GrBeRKPDHwEc8rtMXysrKJvzZvbWnyRO4OgunDR1MOhnkAuZv/q6TrRmsKppO8Zypac/77Ze/14tyHFHVtwALgPWqul1VG7ys0y8GFv+eCLtrW7li2RxmT82+aUMHk04GuYD5m7/rZGsGIsK164r4Vd0Z4v0TvxfaL3/J5NqcrxY6yprTqvr5jFc6BrZu3ar79+8PoupXOdfZx+a/+xkfu76UP3nrukDbYhiG4So/PdjMR78X4YGPvIEtK+YG3RxEpFxVtw73nlcj6oE5vbeSPNRdnHrcA2zwqE5fiUQiE/rcr+pbSShZuazlUCaaQa5g/ubvOtmcwTVr5yOS3rKXfvl7MqJ+tXCRnwG3qer51POZwI9U9UbPKh2BTI6oE4kEeXnj/zvnvl1VPFJ5gshfvzUjq7cEyUQzyBXM3/xd9ofsz+CWLz9LQZ7wwEfeMKHPZ9I/iBH1AMuB3kHPe4GVHtfpCzU1NeP+THLa0NNcvWZ+1nfSMLEMcgnzN3/XyfYMdqxNTifa0T2x6UT98ve6t/gv4AUR+ZSI/A3wPPAdj+v0hVWrVo37M8fOdNLU1pUTh71hYhnkEuZv/q6T7RnsKC2iP6E8V39mQp/3y9/rq74/A3wYaAPagQ+r6j94WadfnDhxYtyfGTgXku33Tw8wkQxyCfM3f9fJ9gw2L5/L9En5Ez5P7Ze/J+tRDyAiy4FW4MHBr6lqo5f1+sG8eeNfy3R3bSvL5k1lRRZPGzqYiWSQS5i/+btOtmcwqSA5nejeCU584pe/14e+fwo8kno8BRwBHvO4Tl/o7Owc1/Z9/Qn21Z9h+9oFiIhHrfKX8WaQa5i/+btOLmSwo7SIhjOdNJ4Zv4tf/l4f+r5MVS9PPUqBK4G9XtbpF+O90q/yeDvne+JcmyPnp2H8GeQa5m/+rpMLGexYlzwVuadu/Ie//fL3NWVVjQCv97NOrygsHN+sYrtrW8kTeMOa3Omox5tBrmH+5u86uZDB6qLpLJ09ZUKHv/3y93o96j8d9PgzEfkekN7kqiEhFouNa/u9tae5vGQOs6dl/xd7gPFmkGuYv/m7Ti5kICLsKF3As3Wt455O1C9/r0fUMwc9JpM8Z32Lx3X6QlHR2EfG57r6qDjenlOHvWF8GeQi5m/+rpMrGexYV0RHd5yD0XPj+pxf/l531NWq+repx2dU9bvAOzyu0xeamprGvO1zA9OGrsuN27IGGE8GuYj5m7/r5EoG16wpQoRxH/72y9/rjvq+Mb6Wdaxdu3bM2+6pbWXG5AKuWDbHuwYFwHgyyEXM3/xdJ1cymDt9EpcVzx73/dR++XvSUYvITSLyJaBYRL446PEtIO5FnX5z6NChMW+7p7aVbatzY9rQwYwng1zE/M3fdXIpgx2lRUQa2zk/julE/fL3quc4AewHuoHyQY+HgRs8qtNXNm3aNKbtjp25QOPZTq5dlxvncgYz1gxyFfM3f9fJpQy2r11Af0LZd+TsmD/jl78nHbWqVqrqt4E1qvrtQY9dqtrmRZ1+M9YFw/ekznlsX5t7HXW2LhqfKczf/F0nlzIoWzGHaeOcTtQvf68Off8w9esBETk49DHGMm4UkVdEpE5EPjHM+28SkXMiUpF6/HVGJUZhy5YtY9puT+1piudMZVXRdI9b5D9jzSBXMX/zd51cymByQT7bVs9/dXA1Fvzy9+rQ9x+lfr6d5FXeQx8jIiL5wJeBm4ANwB0ismGYTfeo6hWpx6cz0vIxMpa/pOL9CX5Vd4Zr1xXlzLShg8mlv6Yngvmbv+vkWgbb1xZxtPUCx8+ObWrQrB5Rq2pz6uex4R5jKOJKoE5Vj6hqL/ADQnb/9Vj+kqpsOsf5njjb1+bWbVkD5NJf0xPB/M3fdXItg4FrifbWjW1UndUjahE5LyIdgx7nB/8cQxHFwPFBz5tSrw3lahGpFJHHRGTjRdpyt4jsF5H9zc3NtLa20tzcTDQapa2tjfr6erq6uqiuriaRSBCJRIBf/6UUiURIJBJUV1fT1dVFfX09bW1tPPfccwyU19DQQCwWo6amhng8TmVlJQA//OVBRGD6heS9dlVVVfT09FBbW0tHRweNjY20tLTQ0tJCY2MjHR0d1NbW0tPTQ1VV1WvaMfCzsrKSeDxOTU0NsViMhoaGjDlFo9FRnQa3p6qqKuecxrOfKioqcs5pPPvp2WefzTmn8eynp556KuecxrufIpFITjnlX2hl0czJ/LT8yJic9uzZkzGnkRBVHXGDIBCR9wA3qOpdqefvB65U1Y8N2mYWkFDVmIjcDHwhtfDHRdm6davu378/I23s6elh8uTJI25z21d+RTyh/Pij12SkzrAxlgxyGfM3f5f9ITcz+PMfVfKz6lNE/s9byc8b+ZRlJv1FpFxVtw73nuc39opImYj8oYh8TEQ2j/FjTcCyQc9LSN7y9Sqq2qGqsdTvjwKFIuLbpdWNjSMvqd3RnZw2dEcOXu09wGgZ5Drmb/6uk4sZ7Fi3gHNdfVSNYTpRv/y9XpTjr4FvA/OBIuBbIvJXY/joi0CpiKwSkUnA7STvwR5c9mJJXaElIleSdDmTyfaPxKJFi0Z8/7n6M/QnlB05Nr/3YEbLINcxf/N3nVzMYPva5HSiew6PfpuWX/5ej6jvAF6vqn+jqn8DbAPeN9qHVDUO3As8AbwM/FBVD4nIPSJyT2qzdwMviUgl8EXgdvXxOH57e/uI7++pPc30SflsXj7XnwYFwGgZ5Drm3x50EwLFdX/IzQzmTZ/ExqWz2DOGC8r88i/wuPwGYArJGcoguYJW/Vg+mDqc/eiQ17466Pd/A/4tI62cAFOmTBnx/b2paUMnFeTWtKGDGS2DXMf8zd91cjWDHaUL+MbuI8R64syYfPFu0i9/r3uRHuCQiHxLRP4TeAmIDcz97XHdgXH8bCcNZzpz+rC3YRhGrrKjtIh4QtlX79vZ1BHxekT9YOoxwDMe1+cb3d3dF31vYGabXFvWcigjZeAC5m/+rpOrGWxZMZephfnsrWvlLRsufh7aL39PO+rUfN85yZw5cy763p7a0yydPYXVOTht6GBGysAFzH9O0E0IFNf9IXczmFyQz1Wr57F7lHm//fL3+qrvt4vIARE5O84JT0LPqVOnhn29P6E8W9fKjtIFOTlt6GAuloErmL/5u04uZ7CjdAFHTl8g2t510W388vf6HPW/Ah8E5qvqLFWdqaqzPK7TF5YvXz7s6web2unojrMjB5e1HMrFMnAF8zd/18nlDAauMdo7wqjaL3+vO+rjwEt+3jblF4cPHx729T21rYjANWtyv6O+WAauYP7m7zq5nEHpwhksmjWZ3SOspuWXv9cXk30ceFREfknyCnAAVPXzHtfrOZdddtmwr++pPc1lxbOZO32Szy3yn4tl4Armb/6uk8sZiAg7Shfw85dP0Z/QYacT9cvf6xH1Z4BOkvdSzxz0yHqGW97sfHcfBxrbnbktK9eWuBsv5m/+rpPrGewoLaK9s49DJ4afTtQvf69H1PNU9W0e1xEIwy1vtu/IWeIJzdllLYeSa0vcjRfzN3/XyfUMrkmt1bCntpXLS+b8xvtZvczlIH4uIjnZUQ/3l9Se2tNMm5RP2Yo5/jcoAHL9r+nRMH/zd51cz6BoxmQ2Lp3F7ovM++2Xv6fLXIrIeWA6yfPTfYAAGtSV35lc5nI4rv+/z7Bi/jT+88NXelaHYRiG4R+ffexl7t97lIq/fhvTR5hONF0CW+YydTtWnqpOzbXbswYWFB/g+NlOjrReYEepG4e94TczcA3zN3/XcSGDa0sX0NevPH/0N6cT9cvf63PUiMhcoJTkBWUAqOpur+v1mo0bN77m+d7USivXOnD/9ABDM3AN8zd/13Ehgy0r5jKlMI/dh1u5fv1rpxP1y9/rmcnuAnaTXK7yb1M/P+VlnX5RV1f3mud7a1tZPGsKaxbMCKhF/jM0A9cwf/N3HRcymFKYz5Wr5r86GBuMX/5eX0z2R8DrgWOqeh2wGRh9Ne4soKSk5NXf+xPK3rpWdpQW5fy0oYMZnIGLmL/5u44rGVxbWkRdS4zmc6+dTtQvf6876m5V7QYQkcmqWgNc4nGdvtDa+uu/rqqi5zjX1Zfzq2UNZXAGLmL+5u86rmQwcO3RniGzlPnl73VH3SQic4CHgCdF5MfACY/r9IUZM359iHtgLthr1swPqjmBMDgDFzF/83cdVzJYt2gGC2dO/o2O2i9/r5e5vDX166dE5GlgNvC4l3X6RV9f36u/765t5dLiWcyfMTnAFvnP4AxcxPzN33VcyUBE2F5axDOvnCaRUPJS04n65e/1iPpVVPWXqvqwqvb6VaeXJBIJAGI9cSLH2py6LWuAgQxcxfzN33VcyuDa0gWcvdBLdfOvV2r2y9+3jjrXmDZtGgDPHzlDPKHsWOvObVkDDGTgKuZv/q7jUgYD04nuHrTspV/+1lFPkLNnzwLJiwumFOaxZeXcgFvkPwMZuIr5m7/ruJTBgpmTed2SWew5/Ovz1H75W0c9QZYuXQok/7ratno+kwvyA26R/wxk4Crmb/6u41oG15YWUX6sjc7eOOCfv3XUE+To0aNE27s4cvoC2x087A3JDFzG/M3fdVzLYHtpEb39CZ4/mhxJ++VvHfUEWb9+/au3ZV3r2P3TA6xfvz7oJgSK+Zu/67iWwetXzmNyQd6rh7/98reOeoJUVFSwu7aVRbMmU7rQjXsJh1JRURF0EwLF/CuCbkKguO4P7mWQnE50HnvrkoM0v/yto54gm67YzLN1rWxfu8CpaUMHU1ZWFnQTAsX8zd91XMxgR2kRh0/FOHmu2zd/66gnyP889TztnX1OrZY1lFxfNH40zN/8XcfFDH49nehp3/yto54grQXJDvoaRy8kA9iyZUvQTQgU8zd/13Exg/WLZ1I0YzJ761p98w9tRy0iN4rIKyJSJyKfGOZ9EZEvpt4/KCK+HoN5LHKUDUtmUeTYtKGDiUQiQTchUMzf/F3HxQxEhB2lReytbWW/yyNqEckHvgzcBGwA7hCRDUM2uwkoTT3uBr7iV/uerWulurWX0kVuXkQ2wBVXXBF0EwLF/K8IugmB4ro/uJvBjtIizlzo5eHjkyg/1uZ5faHsqIErgTpVPZKaG/wHwC1DtrkF+I4m2QfMEZElXjes/FgbH/7PF0goPFZ10pedFFZqamqCbkKgmL/5u46rGcyaUgjAf+1r5H3f3Od5PxDWjroYOD7oeVPqtfFug4jcLSL7RWR/c3Mzra2tNDc3E41GaWtro76+nq6uLqqrq0kkEq8eyhm4SCASiZBIJKiurqarq4tH99fS268AxBMJfvFSIw0NDcRiMWpqaojH41RWVr6mjIGfVVVV9PT0UFtbS0dHB42NjbS0tNDS0kJjYyMdHR3U1tbS09NDVVXVsGVUVlYSj8epqakhFovR0NCQtlN9fT1tbW1Eo1EGMhqL06pVq3LOaTz7qbi4OOecxrOfCgsLc85pPPspFovlnNN499PChQtzzmks+2l3ZS0ACvTFEzwRqU/baSREVUfcIAhE5D3ADap6V+r5+4ErVfVjg7b5KfBZVd2bev4U8HFVvehJg61bt+r+/fvTalv5sTbe94199MYTTCrM47t3bWPLCvfm+Qaor69nzZo1QTcjMMzf/F32B3czKD/Wxnu/sY++/gSTCjLTD4hIuapuHe49T9ejToMmYNmg5yXAiQlsk3G2rJjLd39/G08fauK6jSXOdtIA8+bNC7oJgWL+5u86rmawZcVcvudjPxDWQ98vAqUiskpEJgG3Aw8P2eZh4AOpq7+3AedUtdmPxm1ZMZc7Ns1zupMG6OzsDLoJgWL+5u86LmfgZz8QyhG1qsZF5F7gCSAfuF9VD4nIPan3vwo8CtwM1AGdwIf9bGNeXlj/xvEP1zMwf/N3Hdcz8Ms/lB01gKo+SrIzHvzaVwf9rsBH/W7XAIWFhUFVHRpcz8D8zd91XM/AL/9QXkzmFSJyGjiWoeKKgNZRt8ptXM/A/M3fZX+wDDLpv0JVh12K0amOOpOIyP6LXaHnCq5nYP7m77I/WAZ++bt9gsEwDMMwQo511IZhGIYRYqyjnjhfD7oBIcD1DMzfbVz3B8vAF387R20YhmEYIcZG1IZhGIYRYqyjNgzDMIwQYx21YRiGYYQY66gNwzAMI8RYR20YhmEYIcY6asMwDMMIMdZRG4ZhGEaIsY7aMAzDMEKMddSGYRiGEWKc66hF5H4RaRGRl8aw7b+ISEXqcVhE2n1oomEYhmG8inNTiIrItUAM+I6qXjqOz30M2Kyqv+dZ4wzDMAxjCM6NqFV1N3B28GsiskZEHheRchHZIyLrh/noHcD3fWmkYRiGYaQoCLoBIeHrwD2qWisiVwH/Dlw/8KaIrABWAb8IqH2GYRiGozjfUYvIDOANwI9EZODlyUM2ux34H1Xt97NthmEYhuF8R03y8H+7ql4xwja3Ax/1pzmGYRiG8WucO0c9FFXtAI6KyHsAJMmmgfdF5BJgLvBcQE00DMMwHMa5jlpEvk+y071ERJpE5E7gfcCdIlIJHAJuGfSRO4AfqGuXxxuGYRihwLnbswzDMAwjm3BuRG0YhmEY2YR11IZhGIYRYpy66ruoqEhXrlyZkbJ6e3uZNGlSRsrKVlzPwPzN32V/sAwy6V9eXt6qqguGe8+pjnrlypXs378/I2XFYjFmzJiRkbKyFdczMH/zd9kfLINM+ovIsYu9Z4e+J0hra2vQTQgc1zMwf/N3Hdcz8MvfOuoJ4vJfkQO4noH5m7/ruJ6BX/5OHfrOJH19fUE3IXBcz8D8zd91gszgsapmnq0/w6XFs1i/eJbv9dec7KDiyCnesy2fLSvmelqXddQTJJFIBN2EwHE9A/M3f9fxO4O2C7385OAJvvPcMepaYr7WfTEeeqmV7961zdPO2jrqCTJt2rSgmxA4rmdg/ubvOn5k0BtP8IuaFnZFmnj6lRb6+pUFMycjgAJ5ArduLubtly/1vC0DPHLwBLsiURToiyfYd+SMddRh5OzZs8yd6+3hjrDjegbmb/4u+4N3GagqFcfb2RWJ8pODJ2jv7GPBzMl86A0ruXVzCV19/bzvm/voiycoLMjjvVet8Pzw82BmTS3kp1XN9Kbq37Z6vqf1hXYKURFpAM4D/UBcVbcOeV+ALwA3A53Ah1Q1MlKZW7du1UzdntXV1cXUqVMzUla24noG5m/+LvtD5jOItnfx0IEoD0SaOHL6ApML8rhh42J2lhWzfW0RBfm/vv65/Fgb+46cYdvq+b520oPr3/vKSbZfsjgj9YtI+dB+boCwj6ivU9WLXf9+E1CaelwFfCX10xeOHj3Khg0b/KoulLiegfmbv8v+kJkMYj1xHqtqZlckynNHzgBw1ap53HPtGm68bDGzphQO+7ktK+YG0kEPrn/qhWY2+NCGsI+ot16soxaRrwHPqOr3U89fAd6kqs0XKzOTI+pEIkFentt3t7megfmbv8v+MPEM+hPKs3Wt7Io08fihk3T3JVg5fxo7y0q4dXMxy+Zlx/n/TH4HRhpRh/lbpsDPRKRcRO4e5v1i4Pig502p116DiNwtIvtFZH9zczOtra00NzcTjUZpa2ujvr6erq4uqqurSSQSRCLJo+fl5eUARCIREokE1dXVdHV1UV9fT1tbG7/61a8YKK+hoYFYLEZNTQ3xeJzKysrXlDHws6qqip6eHmpra+no6KCxsZGWlhZaWlpobGyko6OD2tpaenp6qKqqGraMyspK4vE4NTU1xGIxGhoaMuYUjUbH5VRRUZFzTuPZT+Xl5TnnNJ79tHfv3pxzGs9+euqpp3LOabz76cUXXxyXU3ldM/f94Hm2feZJPnD/C/z85ZO849KFfOHty3j8Y1dz3cJuls2bljX/nnbv3p2x/TQSYR5RL1XVEyKyEHgS+Jiq7h70/k+Bz6rq3tTzp4CPq2r5xcrM5IjaMAzDGJ3WWA8PV5xg14EmXop2UJAnvOmShdxWVsz1r1vI5IL8oJsYCrJyRK2qJ1I/W4AHgSuHbNIELBv0vAQ44U/rfv1Xkcu4noH5m7/rXCyD7r5+fnqwmTu/9SJX/cNTfPqRavJE+NQ7NvD8X76Zb35wKzddtiTrO2m/vgOhHFGLyHQgT1XPp35/Evi0qj4+aJvfAu4ledX3VcAXVXVoZ/4abERtGIbhDapK+bE2HohEeeTgCc53x1k8awq3lhWzc3MxpYtmBt3EUJONV30vAh5M3oFFAfA9VX1cRO4BUNWvAo+S7KTrSN6e9WE/GxiJRCgrK/OzytDhegbmb/4u+0Myg6IV69l1oIkHD0Q5dqaTqYX53HTpYnaWlXD1mvnk50nQzfQMv74DoRxRe4Vd9Z1ZXM/A/M3fVf+O7j5+erCZB8qb2H+sDRF4w5r57Nxcwo2XLmb65LCOATOLX1d9u5GmB9TU1Dh/D6XrGZi/+bvkH+9PsKe2lQciTfys+hS98QTLZhfy8Rsv4V1XFLN0jnuTv/j1HbCOeoKsWrUq6CYEjusZmL/55zqqSnVzB7siUX5cEaU11svcaYW898rl7CwrZu28SU7Pee7Xd8A66gly4sQJ1qxZE3QzAsX1DMzf/HPV/1RHNz+uiLIrEqXm5HkK84U3r1/EbVtKeOO6BUwqSB7ura+vz9kMxoJf3wHrqCfIvHnzgm5C4Liegfmbfy7R1dvPz6pP8kAkyt7a0yQUNi+fw9+961LecfkS5kyb9BufybUMxotf/tZRT5DOzk7nV85xPQPzN/9s908klBcazvJAeROPvXSSWE+c4jlT+eh1a7l1czGrF8wY8fO5kEE6+OVvHfUEcfVqz8G4noH5m3+2cuR0jAcPJA9tR9u7mDG5gJsvS95SdeXKeeSN8ZaqbM4gE/jlbx31BCksHH5FF5dwPQPzN/9sor2zl58cbGZXpIkDje3kCWwvXcDHb7yEt21YzNRJ458lLNsyyDR++VtHPUFisRhFRUVBNyNQXM/A/M0/7P698QTPvNLCrkiUX9S00Nuf4JJFM/nLm9dzyxXFLJo1Ja3ysyEDL/HL3zrqCeLyl3MA1zMwf/MPI6rKwaZz7Io08XDlCdo6+yiaMYn3X72CnWXFbFgyi9Ssj2kT1gz8wi//CXXUIjKWOdP6VLVqIuVnA01NTaxfvz7oZgSK6xmYv/mHyf9EexcPpW6pqmuJMakgj7dtWMRtZSXsKC2iID/z51PDloHf+OU/oSlEReQ88CIw0p9lq1R15QTb5QmZnEI0Ho9TUOD2AQnXMzB/8w/a/0JPnMdfOsmuA038qv4MqvD6lXO5rayEmy5bwuyp3p5DDUMGQZJJfy+mEH1RVa8fpdJfTLDsrODQoUNs2rQp6GYEiusZmL/5B+Hfn1Ceqz/Drkjylqquvn6Wz5vGH725lFs3F7Ni/nTf2mLfAX/8bVEOwzCMLKD21HkeiER56ECUkx3dzJxSwNsvX8ptZcVsWTE3Y+edjWAYaUSd1kkLEbkmtV40IvK7IvJ5EVmRTpnZgi0abxmYv/l7zZlYD//57FHe8aW9vPVfdvONPUfYuHQWX35vGS9+8i18dudlbF05L7BO2r4D/vinNaIWkYPAJuBy4L+A/wB2quobM9O8zGIjasMwwk5PvJ9fvNzCA5Eoz7zSQjyhXFo8i52bS3jnFUspmjE56CYaHuDZiBqIa7KnvwX4gqp+AZiZZplZget/SYJlYP7mnylUlfJjbXzywSqu/MxTfOS7EQ42tXPn9lU88cfX8sjHdvB721eFrpO270B2jKh/CTwOfBi4FjgNVKjqZZlpXmaxEbVhGGHi+NnO1FSeTTSc6WRKYR43bkxO5XnN2iLyxziVp5H9eDmi/h2gB7hTVU8CxcA/p1lmVlBVlbO3iI8Z1zMwf/OfCB3dffz3i4389teeY8c/Pc3nnzzMktlT+ed3X87+v3or/3r7Zq5dtyArOmn7DvjjP9H7qJ8gOZJ+TFVrMt4okWXAd4DFQAL4euqw+uBt3gT8GDiaemmXqn56pHIzOaLu6elh8uRwHYbyG9czMH/zH6t/vD/BnrpWdkWi/OzQSXriCVYXTee2LSXccsVSSuZO87i13mDfgcz5e3Ef9QeBG4FPicg64HmSHfdTqhqbYJmDiQP/W1UjIjITKBeRJ1W1esh2e1T17Rmob9w0NjZSWloaRNWhwfUMzN/8R/N/ubmDXZEmHqo4wenzPcyZVsjvvH4ZO8tK2FQyO+tvqbLvgD/+E+qoU4e5vwV8S0TygKuAm4CPi0gX8DNV/aeJNkpVm4Hm1O/nReRlkofVh3bUgbFo0aKgmxA4rmdg/uY/HC3nu3m44gQPRKK83NxBYb5w3SUL2VlWwvXrFzKpIHeWhrTvgD/+aX9jVDWhqs+p6l+r6jXA7UA0/aYlEZGVwGaSo/ahXC0ilSLymIhsvMjn7xaR/SKyv7m5mdbWVpqbm4lGo7S1tVFfX09XVxfV1dUkEgkikQjw66v5IpEIiUSC6upqurq6qK+vp62tjaNHjzJQXkNDA7FYjJqaGuLxOJWVla8pY+BnVVUVPT091NbW0tHRQWNjIy0tLbS0tNDY2EhHRwe1tbX09PS8eu5jaBmVlZXE43FqamqIxWI0NDRkzCkajY7Lqb29PeecxrOfTp8+nXNO49lPdXV1Oec0nv1UUVHxqlNnTx9f+ekLvP+b+9j2D0/x9z99GUnE+d9vWsZj/2szf3ltEdtXzuBI3eFQO413P508eTL0+8nL794rr7ySMaeRmOg56i8BF/2gqv7huAsdvp4ZwC+Bz6jqriHvzQISqhoTkZtJ3h424jGITJ6jbmlpYeHChRkpK1txPQPzd9v/5KlTHLtQwK5IlEermjnfE2fp7CncWlbMrZtLWLtwRtBN9BzXvwOZ9PfiHPVAb3cNsAH479Tz9wAZubFMRAqBB4DvDu2kAVS1Y9Dvj4rIv4tIkaq2ZqJ+wzCM4WhovcCuA1H+Z38jJ871MH1SPjddtoSdZcVsWzWfvCy4WtvILiZ6jvrbACLyIeA6Ve1LPf8q8LN0GyXJKyz+A3hZVT9/kW0WA6dUVUXkSpKH8c+kW/dY6e7u9quq0OJ6Bubvjv+5zj4eqTrBrkiU8mNtiMDWkhl8/MbX8baNi5g2yc0VpFz6DgyHX/7pfruWkpyJ7Gzq+YzUa+lyDfB+oEpEKlKv/SWwHEBVvwq8G/iIiMSBLuB29XGFkTlz5vhVVWhxPQPznxN0Ezylrz/BL185za4DTfy8uoXe/gSlC2fwiZvW864ripkmvcyaNSvoZgZKrn8HRsMv/3Q76s8BB0Tk6dTzNwKfSrNMVHUvI691jar+G/Bv6dY1UU6dOuX8P1LXMzD/3PNXVV6KdvBApImfVJ7gzIVe5k+fxPu2Lee2shI2Lp316i1VtbXHc85/vOTid2A8+OWf9jKXqUPQV6WePp+6dSuU2IQnmcX1DMw/d/xPnut+dSrP2pYYk/LzeOuGRewsK+badQsozP/NG2RyyX+iuJ6BXxOeZOKGvh6S9zy3AetE5NoMlBl6Dh8+HHQTAsf1DMw/u/07e+M8eKCJ9//H81z9uaf4x8drmD21kH+49TJe/ORb+PL7ynjz6xYN20lD9vtnAtcz8Ms/3UU57gL+CCgBKoBtwHOqen1GWpdhbFEOw3CbRELZd+QMD0SiPPZSM529/SybN5Wdm0u4dXMxK4umB91Ew1G8HFH/EfB64JiqXkdyYpLTaZaZFbi+vBtYBuafPf51LTH+6fEatv/jL3jvN5/nZ4dO8s5NS/nRPVez+8+v40/eum7cnXQ2+XuF6xlkyzKXL6rq61NXZl+lqj0iUqGqV2SqgZnERtSG4Q5nL/Tyk8oT7Io0Udl0jvw84drSInaWlfDWDYuYUpgfdBMN41W8HFE3icgc4CHgSRH5MXAizTKzAtf/kgTLwPzD598T7+fxl07y+9/Zz5Wf+Tl/8/Ah+vqVv/qt1/Hcfdfznx++kndsWpqRTjqM/n7jegZZMaJ+TUEibwRmA4+ram9GCs0wNqI2jNxDVak43s6uSJSfHDxBe2cfC2ZO5tbNxdy6uZjXLXH39iEje/BiClFSq2YdVNVLAVT1lxMtKxuprKxk06ZNQTcjUFzPwPyD9W9q6+ShA1F2RaIcab3A5II8bti4mJ1lxWxfW0TBRa7WzhRB+4cB1zPwyz/dc9TfBe5T1cbMNck7MjmijsfjFBS4OW3gAK5nYP7++5/v7uOxl06yK9LEviPJCRGvWjWP28pKuOmyxcycUuhbW1zf/2AZZNLfkxF1iiXAIRF5Abgw8KKqvjPNckNPXV0d69evD7oZgeJ6Bubvj39/Qtlb18quSBNPHDpJd1+CVUXT+d9vXce7NhezbN40z9swHK7vf7AM/PJPt6P+24y0IgspKSkJugmB43oG5u+t/ysnz/NApImHDkRpOd/D7KmFvHtLCTvLSti8bM6rU3kGhev7HywDv/zT6qhdOy89mNbWVmbMyP31ZkfC9QzMP/P+p8/38HDqlqpDJzooyBPedMlC3r2lmOvWL2RyQXhuqXJ9/4Nl4Jf/hDpqEXlEVd+e7jbZjMtfzgFcz8D8M+Pf3dfPz18+xa5IlF8ePk1/Qrm8ZDafescG3rFpKfNnhHMuadf3P1gGfvlPdES9XUQeHuF9ATZMsOysoK+vL+gmBI7rGZj/xP1Vlf3H2tgVaeKRg82c746zZPYU7r52NTs3F1O6aGYGW+oNru9/sAz88p9oR33LGLYJ5b3UmSKRSATdhMBxPQPzH7//sTMX2BWJ8uCBKI1nO5k2KZ8bL13MbWUlbFs9n/y8YM87jwfX9z9YBn75T6ijdvnc9ADTpgVzpWmYcD0D8x+b/7muPh6tauaB8ib2H2tDBK5ZU8Qfv6WUGzYuZvrk7Ly9x/X9D5aBX/7Z+S8kBJw9e5a5c+cG3YxAcT0D87+4f19/gj21p3kgEuXJ6lP0xhOsXTiDv7hxPe/avJQls6f63NrM4/r+B8vAL//QdtQiciPwBSAf+Kaqfm7I+5J6/2agE/iQqkb8at/SpUv9qiq0uJ6B+b/WX1U5dKKDXZEoD1dGaY31Mm/6JN575XJ2lhVzWfHswG+pyiSu73+wDPzyD2VHLSL5wJeBtwJNwIsi8rCqVg/a7CagNPW4CvhK6qcvHD16lA0bcvp6uVFxPQPzT/qf6uh+dSrPV06dZ1J+Hm9+3UJ2lpXwxnULmFTg7VSeQeH6/gfLwC//dKcQrQKGFnAO2A/8vaqemWC5VwOfUtUbUs/vA1DVzw7a5mvAM6r6/dTzV4A3qWrzxcrN5BSiiUSCvLzc/A9orLiegcv+Xb39PP5SM7sORHm2rpWEQtnyOewsK+Htly9hzrRJQTfRc1ze/wO4nkEm/b2cQvQxoB/4Xur57amfHcC3gHdMsNxi4Pig50385mh5uG2KgYt21JmkoqKCsrIyP6oKLa5n4Jp/IqE8f/QsuyJNPFrVzIXefornTOXe69Zya1kJq4qmB91EX3Ft/w+H6xn45Z/unwLXqOp9qlqVenyS5Kj2H4GVaZQ73ImsoSP3sWyDiNwtIvtFZH9zczOtra00NzcTjUZpa2ujvr6erq4uqqurSSQSRCLJ09wD64xGIhESiQTV1dV0dXVRX19PW1sbixYtYqC8hoYGYrEYNTU1xONxKisrX1PGwM+qqip6enqora2lo6ODxsZGWlpaaGlpobGxkY6ODmpra+np6aGqqmrYMiorK4nH49TU1BCLxWhoaMiYUzQaHZdTWVlZzjmNZz9t3Lgx55yG208PP/M8//eJV7jq75/gjm/s46cHo7ztdQv4wjtX8uCdl3HHZbOY1NOeVU6Z2E8DRyNzyWm8+2ndunU55zSe/TRz5syMOY1Euoe+K4G7VfX51PMrgW+o6iYROaCqmydYbugPfZeXl7Nly5aMlJWtuJ5BLvu3XejlkYMneCASpeJ4O3kCO0oXsLOsmLdtWMzUSfk57T8WXPcHyyCT/iMd+k63o349cD8wg+QItwO4CzgE/Jaq/nCC5RYAh4E3A1HgReC9qnpo0Da/BdxL8qrvq4AvquqVI5WbyY7aMHKN3niCp19pYVekiV/UtNDXr6xfPJPbykq45YqlLJw1JegmGkbO4tk5alV9EbhMRGaT7PTbB709oU46VW5cRO4FniB5e9b9qnpIRO5Jvf9V4FGSnXQdyduzPjzR+iZCJBJx+twMWAa54K+qHGw6x65IEw9XnqCts4+iGZP54NUr2VlWwoalsy762VzwTwfX/cEy8Ms/3RH1ZOA2kuejX+30VfXTabfMA+yq78ziegbZ7B9t70rdUtVE/ekLTC7I420bF7OzrJgda4soyB/dK5v9M4Hr/mAZZMtV3z8meTtWOdCTZllZRU1NjdP3D4JlkG3+sZ44j790kl2RJp47cgZVuHLlPH5/x2puvnwJs6YUjqu8bPPPNK77g2Xgl3+6HXWJqt6YkZZkGatWrQq6CYHjegbZ4N+fUH5V38quSJTHXzpJV18/K+ZP44/fvI5bNxezfP7E5yrOBn8vcd0fLAO//NPtqH8lIpepalVGWpNFnDhxgjVr1gTdjEBxPYMw+x8+dZ4HIk08dCDKqY4eZk0p4NayYm4rK6Zs+dyMTOUZZn8/cN0fLAO//NPtqLcDHxKRoyQPfQugqnp52i0LOfPmzQu6CYHjegZh82+N9fCTyhPsikSpip4jP0+47pIF/M07Srh+/UKmFOZntL6w+fuN6/5gGfjln25HfVNGWpGFdHZ2Or1qDFgGYfDv7uvnFzXJW6qeeeU08YRyWfFs/uYdG3jHpqUUzZjsWd1h8A8S1/3BMvDLf0IdtYjMUtUO4HyG25M1uHyl4wCuZxCUv6oSaWzjgUiURypP0NEdZ9Gsydy5YxU7N5dwyeKZvrTD9r/b/mAZ+OU/0RH194C3k7zaW3ntdJ4KrE6zXaGnsHB8V8jmIq5n4Lf/8bOd7IpE2XWgiWNnOplamM+NlyZvqXrDmiLy8/xdQtL2v9v+YBn45T+hjlpV35766ewlf7FYjKKioqCbESiuZ+CHf0d3H48ebGZXJMoLDWcRgatXz+dj15dy46WLmTE5uJVqbf+77Q+WgV/+af8rF5FiYAWvnfBkd7rlhh2Xv5wDuJ6BV/7x/gR76lp5oLyJJ6tP0RNPsHrBdP78hkt41+ZiiudM9aTe8WL7321/sAz88k+roxaRfwR+B6gmudwlJA9953xH3dTUxPr164NuRqC4nkGm/atPdLAr0sRDFSdojfUwZ1ohv/P6ZewsK2FTyeyM3FKVSWz/u+0PloFf/ulOIfoKcLmqZsWsZJmcQjQej1NQENxhxzDgegaZ8G/p6ObHFSd4INJEzcnzFOYL169fyM6yEq67ZCGTCsJ7sY7tf7f9wTLIpP9IU4im+7/AEcDJqwkOHTo0+kY5jusZTNS/q7efH1dE+eD9L7Dts0/xmUdfZkphPn93y0Ze+Mu38LX3b+WGjYtD3UmD7X/X/cEy8Ms/3RH1A8Am4CkGzfWtqn+YftMyjy1zaQRFIqG80HCWXZEmHq06SawnTvGcqdy6uZhby4pZs2BG0E00DCNAvFyU4+HUwzlcXzAdLIOx+B9tvcCDkSZ2HYjS1NbF9En53HzZEnaWlXDVqnnk+XxLVSax/e+2P1gGfvmnNaLONmxEbfhBe2cvjxxsZlekiUhjO3kC16wt4rayEt62cRHTJrl7Ts8wjOHx7By1iBwVkSNDH+mUmS2Ul5cH3YTAcT2Dwf59/QmerD7FR/6/cq78zFP81UMvEeuJc99N6/nVJ97Mf915Fe/aXJxTnbTtf7f9wTLwyz/dc9TzBz2dArwHmKeqf51uw7zARtRGJlFVqqLn2BWJ8nDlCc5e6GX+9EncckUxO8uK2bh0VuhuqTIMI5x4do5aVc8MeelfRWQvEMqOOpNUVVVx2WWXBd2MQHE1g+ZzXTx4IMr3f1XP8Y44kwryeOuGRdxWVsyO0gUU5of7au1M4er+H8B1f7AM/PJPd8KTskFP84CtQForAojIPwPvAHqBeuDDqto+zHYNJBcF6QfiF/tLxCvWrVvnZ3WhxKUMLvTEeeLQSXZFojxb34oqlC2fzR+8ZTk3X7aE2VPdu0vRpf0/HK77g2Xgl3+6J8z+36Df48BR4LfTLPNJ4D5VjadmPrsP+IuLbHudqramWd+EaGxspLS0NIiqQ0OuZ9CfUPYdOcMDkSYef+kknb39LJs3lT+8vpSdZcX0nj1BaenyoJsZGLm+/0fDdX+wDPzyT7ejvlNVX3PxmIiktVCHqv5s0NN9wLvTKc8rFi1aFHQTAidXM6hrOc8DkSgPHYjSfK6bmZMLuOWKpewsK2HrirmvnnfuKMxN/7GSq/t/rLjuD5aBX/7pnkz7nzG+NlF+D3jsIu8p8DMRKReRuy9WgIjcLSL7RWR/c3Mzra2tNDc3E41GaWtro76+nq6uLqqrq0kkEkQiEeDXV/NFIhESiQTV1dV0dXVRX19PW1sbR48eZaC8hoYGYrEYNTU1xONxKisrX1PGwM+qqip6enqora2lo6ODxsZGWlpaaGlpobGxkY6ODmpra+np6aGqqmrYMiorK4nH49TU1BCLxWhoaMiYUzQaHZdTe3t7zjidvdDL3/33bt75b3t5y+d38/XdR1g+K59/ftd6dn3wEv5k+2JWTItz/PjxV51Onz4daievv3t1dXU55zSe/VRRUZFzTuPdTydPnsw5p/Hsp1deeSVjTiMxoau+RWQ9sBH4J+DPB701C/hzVd04yud/Diwe5q1PquqPU9t8kuQ57506TCNFZKmqnhCRhSQPl39stFW7MnnVd0tLCwsXLsxIWdlKtmfQE+/n6ZoWHohEebqmhXhC2bh0FjvLSnjnpqUsmDl5xM9nu3+6mL/b/mAZZNLfi6u+LwHeDswheeHXAOeB3x/tw6r6lpHeF5EPpsp/83CddKqME6mfLSLyIHAlDqzaZaSHqnLgeDu7Ik38pLKZc119LJg5md/bvoqdZcWsXzwr6CYahmG8hgl11KlR749F5GpVfS6TDRKRG0lePPZGVe28yDbTgTxVPZ/6/W3ApzPZjtHo7u72s7pQkk0ZHD/byUMHouw6EOVo6wWmFOZxw8bF7Cwr4Zo18ymYwC1V2eTvBebvtj9YBn75p3sx2RkReQpYpKqXisjlwDtV9e/TKPPfgMnAk6mLdvap6j0ishT4pqreDCwCHky9XwB8T1UfT8tknMyZM8fP6kJJ2DM4393HY1UneSDSxPNHzwKwbfU8PvKmNdx06WJmTknvlqqw+3uN+c8JugmB43oGfvmn21F/g+Q56q8BqOpBEfkeMOGOWlXXXuT1E8DNqd+PkFy1KzBOnTrFrFluHyYNYwbx/gR761rZFYnyxKGT9MQTrCqazp+9bR3v2lxMydxpGasrjP5+Yv5u+4Nl4Jd/uh31NFV9Ycg0ifE0y8wKli939/7ZAcKUQc3JDnalbqlqOd/D7KmF/PbWZewsK+aKZXM8mcozTP5BYP5u+4Nl4Jd/uh11q4isIXmrFCLybqA57VZlAYcPH3Z66jwIPoPT53v4cUWUXZEo1c0dFOQJ161fyG1lxVy3fiGTC/I9rT9o/6Axf7f9wTLwyz/dRTlWA18H3gC0kZyZ7HdVtSEjrcswtihH9tPd18+T1afYFWlid20r/QllU8lsdpaV8I5NS5k3fVLQTTQMwxg3ni1zqapHUrdaLQDWq+r2sHbSmcb15d3AvwxUlReOnuUTDxzk9X//cz72/QPUnDzP/7p2NT//02v58b3b+eAbVvreSbv+HTB/t/3BMgj1Mpci8qcjva+qn59wizzERtTZxbEzF3ggEuXBA00cP9vFtEn53HTpEm4rK2bb6vnk5dkSkoZh5AZejKhnph5bgY8AxanHPcCGCZaZVbj+lyR4k8G5zj6+93wj7/7Kr3jjPz/Dl35Ry8r50/mX39nE/r96C//vtzfxhrVFoeikXf8OmL/b/mAZhHpE/eqHRX4G3Kaq51PPZwI/UtUbM9S+jGIj6nDS159g9+HT7IpEefLlU/TGE6xdOIPbykp41+alLJk9NegmGoZheIpn56iB5STXjR6gF1iZZplZwcBk7S6TTgaqykvRc/ztTw6x7R+e4s5v7+e5I2d475XL+cm923nyT67lI29aE+pO2vXvgPm77Q+WgV/+6Y6oP0ly/ekHSd6idSvw36r62cw0L7NkckQdj8cpKEj37rbsZiIZnDzXzUMVUXZFmjh8Ksak/DzesmEhOzeX8MZLFlA4gak8g8L174D5u+0PlkEm/b1YlAMAVf2MiDwG7Ei99GFVPZBOmdlCXV0d69evD7oZgTLWDDp74/zs0CkeiDSxt64VVdiyYi6fufVS3n7ZUmZPS28qz6Bw/Ttg/m77g2Xgl3/afwqoagSIZKAtWUVJSUnQTQickTJIJJR9R8+wKxLlsapmLvT2UzJ3Kh+7bi23lpWwqmi6jy31Bte/A+bvtj9YBn75u3vMIk1aW1uZMWNG0M0IlOEyqGuJ8eCBJh6MRDlxrpsZkwt4++VL2VlWzOtXzgvF1dqZwvXvgPm77Q+WgV/+1lFPEJe/nAMMZNB2oZefHDzBA5EolcfbyRO4dt0CPnHz63jr6xYxdZK3U3kGhevfAfN32x8sA7/8raOeIH19fUE3IVB64wmefPk0Tx9t4OlXWujrV163ZBZ/9Vuv452blrJw1pSgm+g5rn8HzN9tf7AM/PK3jnqCJBKJoJvgO6pKZdM5dkWaeLjyBO2dfRTNmMyH3rCSWzeXsGGpW8vdufgdGIz5u+0PloFf/tZRT5Bp0zK3rnHYibZ38dCBKA9Emjhy+gKTC/J428bFvK10NjdtXklBFt1SlUlc+g4Mh/m77Q+WgV/+1lFPkLNnzzJ37tygm+EZsZ44j1U1sysS5bkjZwC4ctU8/te1q7npsiXMmlJIfX29s5005P53YDTM321/sAz88reOeoIsXbo06CZknP6E8mxdK7siTTx+6CTdfQlWzp/Gn751HbduLmbZvNf+9ZiLGYwH8zd/13E9A7/8QzccEpFPiUhURCpSj5svst2NIvKKiNSJyCf8bufRo0f9rtIzXjl5ns8++jJv+NxTfOD+F/hFTQu3lZXwwEfewNN/9ib+8M2lv9FJQ25lMBHM3/xdx/UM/PJPawpRLxCRTwExVf2/I2yTDxwG3go0AS8Cd6hq9UhlZ3IK0UQiQV5e6P7OGTOtsR4erjjBrgNNvBTtoCBPeNMlC7itrITr1i9kSuHot1RlewbpYv7m77I/WAaZ9PdyUY6guBKoU9UjqtoL/AC4xc8GVFRU+FldRuju6+enB5u581svctU/PMWnH6lGEP7mHRvY95dv5psffD03XbZkTJ00ZGcGmcT8K4JuQqC47g+WgV/+Ye2o7xWRgyJyv4gMd6a+GDg+6HlT6rXfQETuFpH9IrK/ubmZ1tZWmpubiUajtLW1UV9fT1dXF9XV1SQSCSKR5GyoA+uMRiIREokE1dXVdHV1UV9fT1tbG4sWLWKgvIaGBmKxGDU1NcTj8VdXVBkoY+BnVVUVPT091NbW0tHRQWNjIy0tLbS0tNDY2EhHRwe1tbX09PRQVVU1bBmVlZXE43FqamqIxWI0NDSM6NTf3893f7aP+3ZVUfbpJ/jo9yIcONbKXdtX8ZV3FvPDu7Zw7eIE+X2dRKPRcTmVlZUF4jSe/TRep/Hsp40bN+ac03j207x583LOaTz7aeBoZC45jXc/rVu3LuecxrOfZs6cmTGnkQjk0LeI/BxYPMxbnwT2Aa0kV+P6O2CJqv7ekM+/B7hBVe9KPX8/cKWqfmykejN56Lu8vJwtW7ZkpCwvaDzTya4DTTx4IMqxM51MLcznpksXs7OshKvXzCc/A1N5hj0DrzF/83fZHyyDTPqPdOg7dOeoByMiK4FHVPXSIa9fDXxKVW9IPb8PYLTlNTPZUYeRju4+Hj2YvKXqhYaziMAb1sxn5+YSbrx0MdMn20X+hmEYYSSrzlGLyJJBT28FXhpmsxeBUhFZJSKTgNuBh/1o3wADh1WCJt6f4OmaFu79XoStf/9zPrGrijMXevjzGy7h2b+4nu/etY3btpR40kmHJYOgMH/zdx3XM/DLP3QjahH5L+AKkoe+G4D/parNIrIU+Kaq3pza7mbgX4F84H5V/cxoZWdqRP1sXSt7a0+zdeU8Li+Zk3Z54+VgUzu/fOU0Zzt72XfkLK2xHuZOK+Sdm5ays6yEy0tmI+L9KlV2xaf5m7+7/mAZ+HXVd+g6ai/JREddfqyN3/nac8QT4cjtqlXzuHP7Kt50yUImFfj7D6a6upoNGzb4WmeYMH/zd9kfLINM+o/UUdtJy3Gy78gZEqk/bgR484ZFvHHdAt/q/+Xh0zxVfQoF8lPLSb5t43DX5XnPqlWrAqk3LJi/+buO6xn45W8d9TjZtno+kwry6I0nmFSQx0feuIYtK/yb63bDklnsrT1NXzxBYUEe21bP963uoZw4cYI1a9YEVn/QmL/5u+wPloFf/tZRj5MtK+by3bu28fShJq7bWOJrJz24/n1HzrBt9Xzf6x/MvHnzAqs7DJi/+buO6xn45W8d9QTYsmIuiws6KS4OppPcsmJuoB30AJ2dnU6vnGP+5u+yP1gGfvm7e7lemrh8peMArmdg/ubvOq5n4Je/2ymnQWFhYdBNCBzXMzB/83cd1zPwy9+p27NE5DRwLEPFFZGc6tRlXM/A/M3fZX+wDDLpv0JVh72FyKmOOpOIyP6L3fPmCq5nYP7m77I/WAZ++duhb8MwDMMIMdZRG4ZhGEaIsY564nw96AaEANczMH+3cd0fLANf/O0ctWEYhmGEGBtRG4ZhGEaIsY7aMAzDMEKMddSGYRiGEWKsozYMwzCMEGMdtWEYhmGEGOuoDcMwDCPEWEdtGIZhGCHGOmrDMAzDCDHWURuGYRhGiLGO2jAMwzBCjHXUhmEYhhFirKM2DMMwjBBjHbVhGIZhhBjrqA3DMAwjxFhHbRiGYRghxjpqwzAMwwgx1lEbhmEYRoixjtowDMMwQox11IZhGIYRYgqCboCfFBUV6cqVKzNSVm9vL5MmTcpIWdmK6xmYv/m77A+WQSb9y8vLW1V1wXDvOdVRr1y5kv3792ekrFgsxowZMzJSVrbiegbmb/4u+4NlkEl/ETl2sffs0PcEaW1tDboJgeN6BuZv/q7jegZ++VtHPUFc/ityANczMH/zdx3XM/DL3zrqCdLX1xd0EwLH9QzM3/xdx/UM/PK3jnqCJBKJoJsQOK5nYP7m7zquZ+CXv3XUE2TatGlBNyFwXM/A/M3fdVzPwC9/66gnyNmzZ4NuQuC4noH5m7/ruJ6BX/7WUU+QpUuXBt2EwHE9A/M3f9dxPQO//K2jniBHjx4NugmB43oG5m/+ruN6Bn75i6r6UlEY2Lp1q2ZqwpNEIkFentt/57iegfmbv8v+YBlk0l9EylV163DvuZtwmlRUVATdhMBxPQPzrwi6CYHiuj9YBn7524jaMAzDMALGRtQeUF5eHnQTAsf1DMzf/F3H9Qz88g90RC0iNwJfAPKBb6rq54a8L6n3bwY6gQ+pamTQ+/nAfiCqqm8frT4bURuGYRhhJJQj6lQn+2XgJmADcIeIbBiy2U1AaepxN/CVIe//EfCyx00dlkgkMvpGOY7rGZi/+buO6xn45R/koe8rgTpVPaKqvcAPgFuGbHML8B1Nsg+YIyJLAESkBPgt4Jt+NnqAK664IohqQ4XrGZj/FUE3IVBc9wfLwC//IDvqYuD4oOdNqdfGus2/Ah8HAplstqamJohqQ4XrGZi/+buO6xn45R9kRy3DvDb0hPmw24jI24EWVR31TL6I3C0i+0Vkf3NzM62trTQ3NxONRmlra6O+vp6uri6qq6tJJBKvHsoYuEggEomQSCSorq6mq6uL+vp62tramDp1KgPlNTQ0EIvFqKmpIR6PU1lZ+ZoyBn5WVVXR09NDbW0tHR0dNDY20tLSQktLC42NjXR0dFBbW0tPTw9VVVXDllFZWUk8HqempoZYLEZDQ0PGnKLR6LicVq1alXNO49lPxcXFOec0nv1UWFiYc07j2U+xWCznnMa7nxYuXJhzTuPZT0DGnEYisIvJRORq4FOqekPq+X0AqvrZQdt8DXhGVb+fev4K8CbgD4H3A3FgCjAL2KWqvztSnZm8mKy+vp41a9ZkpKxsxfUMzN/8XfYHyyCT/qG8mAx4ESgVkVUiMgm4HXh4yDYPAx+QJNuAc6rarKr3qWqJqq5Mfe4Xo3XSmWbevHl+VhdKXM/A/M3fdVzPwC//wDpqVY0D9wJPkLxy+4eqekhE7hGRe1KbPQocAeqAbwB/EEhjh6GzszPoJgSO6xmYv/m7jusZ+OVf4EstF0FVHyXZGQ9+7auDflfgo6OU8QzwjAfNGxGX57cdwPUMzN/8Xcf1DPzydzvlNCgsLAy6CYHjegbmb/6u43oGfvlbRz1BRrtKzwVcz8D8zd91XM/AL3/rqCdIUVFR0E0IHNczMH/zdx3XM/DL3zrqCdLU1BR0EwLH9QzM3/xdx/UM/PK3ZS4nSDwep6Ag0GvxAsf1DMzf/F32B8sgk/5hvY86qzl06FDQTQgc1zMwf/N3Hdcz8MvfRtSGYRiGETA2ovYA1xdMB8vA/M3fdVzPwC9/G1EbhmEYRsDYiNoDXP9LEiwD8zd/13E9AxtRe4CNqA3DMIwwYiNqDxhYY9RlXM/A/M3fdVzPwC9/G1FPkJ6eHiZPnpyRsrIV1zMwf/N32R8sg0z624jaAxobG4NuQuC4noH5m7/ruJ6BX/7WUU+QRYsWBd2EwHE9A/M3f9dxPQO//APtqEXkRhF5RUTqROQTw7wvIvLF1PsHRaQs9foyEXlaRF4WkUMi8kd+t729vd3vKkOH6xmYf3vQTQgU1/3BMvDL/6KTlIpIxyifFaBZVddNpGIRyQe+DLwVaAJeFJGHVbV60GY3AaWpx1XAV1I/48D/VtWIiMwEykXkySGf9ZQpU6b4VVVocT0D8zd/13E9A7/8RxpR16vqrBEeM4ELadR9JVCnqkdUtRf4AXDLkG1uAb6jSfYBc0Rkiao2q2oEQFXPAy8DxWm0xTAMwzBCyUgd9W1j+PxYtrkYxcDxQc+b+M3OdtRtRGQlsBl4frhKRORuEdkvIvubm5tpbW2lubmZaDRKW1sb9fX1dHV1UV1dTSKRIBKJAL++kT0SiZBIJKiurqarq4v6+nra2tpobm5moLyGhgZisRg1NTXE43EqKytfU8bAz6qqKnp6eqitraWjo4PGxkZaWlpoaWmhsbGRjo4Oamtr6enpefWy/6FlVFZWEo/HqampIRaL0dDQkDGnaDQ6Lqfu7u6ccxrPfjp//nzOOY1nPzU1NeWc03j2U01NTc45jXc/tbe355zTePbTsWPHMuY0EoHdniUi7wFuUNW7Us/fD1ypqh8btM1Pgc+q6t7U86eAj6tqeer5DOCXwGdUdddodWby9qyOjg5mzZqVkbKyFdczMH/zd9kfLINM+k/o9iwROS8iHRd7ZKBdTcCyQc9LgBNj3UZECoEHgO+OpZPONKdOnfK7ytDhegbmb/6u43oGfvlf9GKy1DloROTTwEngv0heQPY+YGYG6n4RKBWRVUAUuB1475BtHgbuFZEfkLyI7JyqNouIAP8BvKyqn89AW8bN8uXLg6g2VLiegfmbv+u4noFf/mO5PesGVf13VT2vqh2q+hXSOzcNgKrGgXuBJ0heDPZDVT0kIveIyD2pzR4FjgB1wDeAP0i9fg3wfuB6EalIPW5Ot03j4fDhw35WF0pcz8D8zd91XM/AL/9Rz1GLyK9I3kb1A0CBO4CPquobvG9eZrFFOQzDMIwwku4Uou8Ffhs4lXq8h988RO0cri/vBpaB+Zu/67iegS1z6QE2ojYMwzDCSFojahGZIiIfFZF/F5H7Bx6Zb2Z24fpfkmAZmL/5u47rGYRmRC0iPwJqSB7u/jTJq75fVlXf59dOFxtRG4ZhGGEk3XPUa1X1/wAXVPXbwG8Bl2WygdnIwIw1LuN6BuZv/q7jegZ++Y9lRP2Cql4pIrtJ3h51EnhBVVf70cBMkskRdTwep6DgorehO4HrGZi/+bvsD5ZBJv3THVF/XUTmAn9FcgKSauAfM9KyLKauri7oJgSO6xmYv/m7jusZ+OU/4p8CIpIHdKhqG7AbyLpRtFeUlJQE3YTAcT0D8zd/13E9A7/8RxxRq2qC5OxhxhBaW1uDbkLguJ6B+Zu/67iegV/+Yzn0/aSI/JmILBOReQMPz1sWcmbMmBF0EwLH9QzM3/xdx/UM/PIfy1nw30v9/Oig1xTHD4P39fUF3YTAcT0D8zd/13E9A7/8R+2oVXWVHw3JNhKJRNBNCBzXMzB/83cd1zPwy3+k9ajLRvvwWLbJVaZNmxZ0EwLH9QzM3/xdx/UM/PIf6Rz1f4rI3MHnpYc+SK4J7SRnz54NugmB43oG5m/+ruN6Bn75j3ToezZQDsgI25zObHOyh6VLlwbdhMBxPQPzN3/XcT0Dv/wvOqJW1ZWqulpVV43wuDKdykXkRhF5RUTqROQTw7wvIvLF1PsHBx9qH+2zXnP06FG/qwwdrmdg/ubvOq5n4Jf/WG7P8gQRyQe+DNwEbADuEJENQza7CShNPe4GvjKOz3pG+bE2fnGykPJjbX5V+Rv1f/npusDqH2D9+vWB1h805m/+rhNkBkH/P+hnPxDkJK1XAnWqegRARH4A3EJyitIBbgG+o8kJyfeJyBwRWQKsHMNnPaH8WBu//bXn6E8oeXKY9YtnMnNKodfVvsr57j5qTp4noZAn+F7/YGKxmNP3UZq/+bvsD8FlEPT/g4Prn1JYx3fv2saWFXM9qy+wETVQDBwf9Lwp9dpYthnLZwEQkbtFZL+I7G9ubqa1tZXm5mai0ShtbW3U19fT1dVFdXU1iUSCSCQC/Hqd0UgkQiKRoLq6mq6uLh7dX0t/IrmQSUKh/UIP3d3d9Pf309nZiapy4UIMgFjs/Gt+XrhwAdUEXV1d9Pf309PTQ19fH319ffT09NDf309XVxeqCS5cuDBsGWc6OklVT0LhbKybvr4+ent76e3tIR6P093dRSKRoLOzM/XZoe1JPu/s7CSRSNDd3UU8Hqe3t4fe3l76+vrG5DRjxoyMOF24EENV6ezspL+/n+7u4JzGs5+mT5+Wc07j2U8FBQU55zSe/ZScTiK3nMa7n6ZOnRqI09lY92v+H2zv7PX1uzf4/+G+eIInIvW0tLTQ0tJCY2MjHR0d1NbW0tPTQ1VVFfDrPmXgZ2VlJfF4nJqamkHfqeEZdUQtIkJyDerVqvppEVkOLFbVF0b77GhFD/Pa0KW8LrbNWD6bfFH168DXIbl6VlFR0Wvenzs3+VfQhg3JI+dlZcnT4Fu2bHnN84H3b95ayncrztDbl2BSYR5fet9WT/+SGkr5sTbe98199MUTFBbk8eXffb2v9b+mLeXlbNlydSB1h4Gk/zVBNyMwkv5bgm5GYLjuDwMZbPe/3iH/D37pvVsC+X+4ty9Z/w1la1i48LX1z5o1C4DLLkuuCj3wXRn4uWnTJmBspw/GsszlV4AEcL2qvi61ktbPVPX14/AartyrgU+p6g2p5/cBqOpnB23zNeAZVf1+6vkrwJtIHvoe8bPDkallLsuPtbHvyBm2rZ4fSCcZdP2GYRhBE/T/g5muP91lLq9S1Y8C3QCplbQmpd0qeBEoFZFVIjIJuJ3kMpqDeRj4QOrq723AOVVtHuNnPWPLirlcPbsjsE5yy4q5fPS6tYF30gOnCVzF/M3fdYLMIOj/B/3sB8ZyMVlf6iprBRCRBSRH2GmhqnERuRd4AsgH7lfVQyJyT+r9rwKPAjcDdUAn8OGRPptum8bDFVdc4Wd1ocT1DMz/iqCbECiu+4Nl4Jf/WEbUXwQeBBaKyGeAvcA/ZKJyVX1UVdep6hpV/Uzqta+mOmk0yUdT71+mqvtH+qyf1NTU+F1l6HA9A/M3f9dxPQO//Ec9Rw0gIuuBN5O8iOspVX3Z64Z5QabOUQN0dXUxderUjJSVrbiegfmbv8v+YBlk0j+tc9QisgY4qqpfBl4C3ioiczLSsizmxIkTQTchcFzPwPzN33Vcz8Av/7Ec+n4A6BeRtcA3gVXA9zxtVRYwb968oJsQOK5nYP7m7zquZ+CX/1g66oSqxoGdwBdU9U+AJd42K/wM3FTvMq5nYP7m7zquZ+CX/1g66j4RuQP4APBI6rVg5qwMEXl5QU7qFg5cz8D8zd91XM/AL/+x1PJh4GrgM6p6VERWAf+ft80KP4WFzv+t4nwG5m/+ruN6Bn75j9pRq2q1qv7hwOxgqnpUVT/nfdPCzWhzs7qA6xmYv/m7jusZ+OU/lrm+S4HPklxOcsrA66q62sN2hZ6hc4a7iOsZmL/5u47rGfjlP5ZD3/9Jch3oOHAd8B3gv7xsVDbQ1NQUdBMCx/UMzN/8Xcf1DPzyH8uiHOWqukVEqlT1stRre1R1hy8tzCCZnPAkHo9TUBDkct7B43oG5m/+LvuDZZBJ/3QX5egWkTygVkTuFZFbgYUZaVkWc+iQr1OLhxLXMzB/83cd1zPwy38sI+rXAy8Dc4C/A2YD/6Sq+zxvXYbJ5IjaMAzDMDJFWiNqVX1RVWOq2qSqH1bVndnYSWea8vLyoJsQOK5nYP7m7zquZ+CX/1hG1OuAPwdWMOgqcVW93tumZR4bURuGYRhhJN1z1D8CIsBfkeywBx7pNGieiDwpIrWpn8OuvC0iN4rIKyJSJyKfGPT6P4tIjYgcFJEHg1gkxPW/JMEyMH/zdx3XMwjTiLpcVbdktFKRfwLOqurnUh3wXFX9iyHb5AOHgbcCTcCLwB2qWi0ibwN+oapxEflHgKGfHw4bURuGYRhhZEIj6tSodx7wExH5AxFZMvBa6vV0uAX4dur3bwPvGmabK4E6VT2iqr3AD1KfQ1V/llooBGAfUJJme8ZNVVWV31WGDtczMH/zdx3XM/DLf6RD3+XAfuCDJA91/yr12sDr6bBIVZsBUj+Hu92rGDg+6HlT6rWh/B7w2MUqEpG7RWS/iOxvbm6mtbWV5uZmotEobW1t1NfX09XVRXV1NYlEgkgkAvz6kEYkEiGRSFBdXU1XVxf19fW0tbUxc+ZMBspraGggFotRU1NDPB6nsrLyNWUM/KyqqqKnp4fa2lo6OjpobGykpaWFlpYWGhsb6ejooLa2lp6enle/AEPLqKysJB6PU1NTQywWo6GhIWNO0Wh0XE7r1q3LOafx7KeVK1fmnNN49tPUqVNzzmk8+6m7uzvnnMa7n4qLi3POaTz7qaCgIGNOIzHqoe+JIiI/BxYP89YngW+r6pxB27ap6mvOU4vIe4AbVPWu1PP3A1eq6scGbfNJYCuwU8cgkslD37W1tZSWlmakrGzF9QzM3/xd9gfLIJP+Ix36Hstc31OAPwC2AwrsAb6qqt0jfU5V3zJCmadEZImqNovIEqBlmM2agGWDnpcAJwaV8UHg7cCbx9JJZ5pFixb5XWXocD0D8zd/13E9A7/8x3LV93eAjcCXgH8juThHunN9P0zykDqpnz8eZpsXgVIRWSUik4DbU59DRG4E/gJ4p6oGsnJ5e3t7ENWGCtczMP/2oJsQKK77g2Xgl/9YJim9RFU3DXr+tIhUplnv54AfisidQCPwHgARWQp8U1VvTl3RfS/wBJAP3K+qA/O1/RswGXhSRAD2qeo9abZpXEyZMmX0jXIc1zMwf/N3Hdcz8Mt/LB31ARHZNjAbmYhcBTybTqWqegZ48zCvnwBuHvT8UeDRYbZbm079hmEYhpEtjKWjvgr4gIg0pp4vB14WkSpAVfVyz1oXYgau+HQZ1zMwf/N3Hdcz8Mt/LB31jZ63IguZM2dO0E0IHNczMP85QTchUFz3B8vAL/+xLMpxbKSHH40MI6dOnQq6CYHjegbmb/6u43oGfvmP5apvYxiWL18edBMCx/UMzN/8Xcf1DPzyt456ghw+fDjoJgSO6xmYv/m7jusZ+OXv2cxkYcQW5TAMwzDCSLrLXBrD4PrybmAZmL/5u47rGYRmmctcwkbUhmEYRhixEbUHuP6XJFgG5m/+ruN6Bjai9gAbURuGYRhhxEbUHjCwTqnLuJ6B+Zu/67iegV/+NqKeIPF4nIKCsUzslru4noH5m7/L/mAZZNLfRtQeUFdXF3QTAsf1DMzf/F3H9Qz88reOeoKUlJQE3YTAcT0D8zd/13E9A7/8raOeIK2trUE3IXBcz8D8zd91XM/AL/9AOmoRmSciT4pIbern3Itsd6OIvCIidSLyiWHe/zMRUREp8r7Vr2XGjBl+Vxk6XM/A/M3fdVzPwC//oEbUnwCeUtVS4KnU89cgIvnAl4GbgA3AHSKyYdD7y4C3Ao1DP+sHfX19QVQbKlzPwPzN33Vcz8Av/6A66luAb6d+/zbwrmG2uRKoU9UjqtoL/CD1uQH+Bfg4EMhl64lEIohqQ4XrGZi/+buO6xn45R9UR71IVZsBUj8XDrNNMXB80POm1GuIyDuBqKqOehObiNwtIvtFZH9zczOtra00NzcTjUZpa2ujvr6erq4uqqurSSQSRCIR4NczzkQiERKJBNXV1XR1dVFfX09bWxuxWIyB8hoaGojFYtTU1BCPx1+9t26gjIGfVVVV9PT0UFtbS0dHB42NjbS0tNDS0kJjYyMdHR3U1tbS09NDVVXVsGVUVlYSj8epqakhFovR0NCQMadoNDoup2nTpuWc03j2U0FBQc45jWc/nTt3LuecxrOfGhsbc85pvPtJRHLOaTz76cyZMxlzGgnP7qMWkZ8Di4d565PAt1V1zqBt21T1NeepReQ9wA2qelfq+ftJjrL/AngaeJuqnhORBmCrqo56Vj+T91HX19ezZs2ajJSVrbiegfmbv8v+YBlk0n+k+6g9u1NdVd8yQoNOicgSVW0WkSVAyzCbNQHLBj0vAU4Aa4BVQKWIDLweEZErVfVkxgRGYenSpX5VFVpcz8D8zd91XM/AL/+gDn0/DHww9fsHgR8Ps82LQKmIrBKRScDtwMOqWqWqC1V1paquJNmhl/nZSQMcPXrUz+pCiesZmL/5u47rGfjlH8gUoiIyH/ghsJzkVdvvUdWzIrIU+Kaq3pza7mbgX4F84H5V/cwwZTUQwKHvRCJBXp7bt6G7noH5m7/L/mAZZNI/dFOIquoZVX2zqpamfp5NvX5ioJNOPX9UVdep6prhOunUNivH0klnmoqKCr+rDB2uZ2D+FUE3IVBc9wfLwC9/W5TDMAzDMAImdCPqXMD1BdPBMjB/83cd1zPwy99G1IZhGIYRMDai9oCBm+ldxvUMzN/8Xcf1DPzytxH1BHH9akewDMzf/F32B8sgp6/6zgVqamqCbkLguJ6B+Zu/67iegV/+1lFPkFWrVgXdhMBxPQPzN3/XcT0Dv/yto54gJ06cCLoJgeN6BuZv/q7jegZ++VtHPUHmzZsXdBMCx/UMzN/8Xcf1DPzyt456gnR2dgbdhMBxPQPzN3/XcT0Dv/yto54gLl/pOIDrGZi/+buO6xn45e92ymlQWFgYdBMCx/UMzN/8Xcf1DPzyd+o+ahE5DRzLUHFFgO+LgYQM1zMwf/N32R8sg0z6r1DVBcO94VRHnUlEZP/Fbk53BdczMH/zd9kfLAO//O3Qt2EYhmGEGOuoDcMwDCPEWEc9cb4edANCgOsZmL/buO4PloEv/naO2jAMwzBCjI2oDcMwDCPEWEdtGIZhGCHGOupREJEbReQVEakTkU8M876IyBdT7x8UkbIg2ukVY/B/k4icE5GK1OOvg2inV4jI/SLSIiIvXeT9XN//o/nn+v5fJiJPi8jLInJIRP5omG1y9jswRv9c/w5MEZEXRKQylcHfDrONt98BVbXHRR5APlAPrAYmAZXAhiHb3Aw8BgiwDXg+6Hb77P8m4JGg2+phBtcCZcBLF3k/Z/f/GP1zff8vAcpSv88EDjv2f8BY/HP9OyDAjNTvhcDzwDY/vwM2oh6ZK4E6VT2iqr3AD4BbhmxzC/AdTbIPmCMiS/xuqEeMxT+nUdXdwNkRNsnl/T8W/5xGVZtVNZL6/TzwMlA8ZLOc/Q6M0T+nSe3XWOppYeox9CpsT78D1lGPTDFwfNDzJn7zSzqWbbKVsbpdnTos9JiIbPSnaaEhl/f/WHFi/4vISmAzyRHVYJz4DozgDzn+HRCRfBGpAFqAJ1XV1+9AQaYKylFkmNeG/iU1lm2ylbG4RUjOURsTkZuBh4BSrxsWInJ5/48FJ/a/iMwAHgD+WFU7hr49zEdy6jswin/OfwdUtR+4QkTmAA+KyKWqOvi6DU+/AzaiHpkmYNmg5yXAiQlsk62M6qaqHQOHhVT1UaBQRIr8a2Lg5PL+HxUX9r+IFJLspL6rqruG2SSnvwOj+bvwHRhAVduBZ4Abh7zl6XfAOuqReREoFZFVIjIJuB14eMg2DwMfSF31tw04p6rNfjfUI0b1F5HFIiKp368k+Z0643tLgyOX9/+o5Pr+T7n9B/Cyqn7+Ipvl7HdgLP4OfAcWpEbSiMhU4C1AzZDNPP0O2KHvEVDVuIjcCzxB8gro+1X1kIjck3r/q8CjJK/4qwM6gQ8H1d5MM0b/dwMfEZE40AXcrqnLIHMBEfk+yatai0SkCfgbkheT5Pz+hzH55/T+B64B3g9Upc5RAvwlsByc+A6MxT/XvwNLgG+LSD7JP0J+qKqP+NkP2BSihmEYhhFi7NC3YRiGYYQY66gNwzAMI8RYR20YhmEYIcY6asMwDMMIMdZRG4ZhGMZFkFEWpplAectF5GephU6qUzO+jYh11IZhGIZxcb7Fb05wkg7fAf5ZVV9Hcj2FltE+YB21YTiEiMwRkT8Y9HypiPyPB/V8SkSiIvLpEbZZk1oWMXaxbQwjaIZbmCb13X1cRMpFZI+IrB9LWSKyAShQ1SdTZcdUtXO0z1lHbRhuMQd4taNW1ROq+m6P6voXVb3o2sSqWq+qV3hUt2F4ydeBj6nqFuDPgH8f4+fWAe0isktEDojIP6cmUhkRm5nMMNzic8Ca1CxTTwJfJrmW8KUi8iHgXSRnobsU+H8k1yF/P9AD3KyqZ0VkTepzC0jOwvT7qjp0SsXXICJvBL6QeqrAtallEw0jq0gtUPIG4EepmVMBJqfe2wkMdxQpqqo3kOxzd5BchawR+G/gQySnab0o1lEbhlt8Arh0YCQ7zIUsl5L8T2QKyekQ/0JVN4vIvwAfAP6V5GjiHlWtFZGrSI4mrh+l3j8DPqqqz6b+o+vOjI5h+E4e0D7c0aDUoiXDLdwyQBNwQFWPAIjIQ8A2Rumo7dC3YRiDeVpVz6vqaeAc8JPU61XAyiGjiQrgayTnQh6NZ4HPi8gfAnNUNZ75phuG96SW+TwqIu+B5MIlIrJpjB9/EZgrIgtSz68Hqkf7kHXUhmEMpmfQ74lBzxMkj8C9OpoY9HjdaIWq6ueAu4CpwL6xXnxjGEGTWpjmOeASEWkSkTuB9wF3ikglcAi4ZSxlpda1/jPgKRGpIrmO9TdG+5wd+jYMtzgPzJzoh1W1Q0SOish7VPVHqeUNL1fVypE+JyJrVLWK5CpMVwPr+c2lAg0jdKjqHRd5a0K3bKWu+L58PJ+xEbVhOISqngGeFZGXROSfJ1jMREYTf5yqs5LkUoiPTbBuw3AOW+bSMIyMIyKfAmKq+n/HsG1MVWd43yrDyE5sRG0YhhfEgLvHMuEJcMq3VhlGFmIjasMwDMMIMTaiNgzDMIwQYx21YRiGYYQY66gNwzAMI8RYR20YhmEYIeb/B9Yk8l13kD3CAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "show_global_drive(drive);" + ] + }, + { + "cell_type": "markdown", + "id": "ecd5fce7", + "metadata": {}, + "source": [ + "Finally, we construct out AHS program from the atomic registers, and the Hamiltonian defined above. " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "ef5318d9", + "metadata": {}, + "outputs": [], + "source": [ + "ahs_program = AnalogHamiltonianSimulation(\n", + " register=register, \n", + " hamiltonian=drive\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "37e89b67", + "metadata": {}, + "source": [ + "Before running the program on Quera's Aquila device (See notebook 01), we can first run it on the local simulator to make sure the outcome is the expected $Z_2$ state. Below we have explicitly specified the values of `steps` and `shots`, which are the number of time steps in the simulation and the number of sampling for the final stats, respectively. One could increase the accuracy of the result by increasing the values of these arguments, at the expense of longer runtime. " + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "18447781", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAX70lEQVR4nO3de7QddX3+8fdDIhUQBEq0GqIJgihVbkZuEYtQ23CTtrKUcPuBaBZdUNH2p9AuQJdVFxVwKYrEQBMQqVgRaqqpYP1JkCI2J5IC4WYaESJYgiA3EUjy/P6YOXR7ss8+k8vMPufM81rrrLPnuj9nVrKfPd/vzHdkm4iIaK/N+l1ARET0V4IgIqLlEgQRES2XIIiIaLkEQUREy03sdwHra4cddvDUqVP7XUZExJiyZMmSR21P6rZszAXB1KlTGRgY6HcZERFjiqSfD7estqYhSfMkPSLpzmGWS9JFkpZLul3S3nXVEhERw6uzj+ByYGaP5YcCu5Q/s4FLaqwlIiKGUVsQ2L4JeKzHKkcBX3HhVmBbSa+qq56IiOiun1cNTQYe7JheWc5bh6TZkgYkDaxataqR4iIi2qKfQaAu87oOfGR7ru3ptqdPmtS10zsiIjZQP4NgJTClY3pH4KE+1RIR0Vr9DIIFwInl1UP7AU/YfriP9UREtFJt9xFI+hpwELCDpJXAx4CXANieAywEDgOWA78BTq6rloiIGF5tQWB71gjLDZxW1/tHREQ1Y+7O4o0x9azvNPp+9593eKPvFxHNGi+fKRl0LiKi5RIEEREtlyCIiGi5BEFERMslCCIiWi5BEBHRcgmCiIiWSxBERLRcgiAiouUSBBERLZcgiIhouQRBRETLJQgiIlouQRAR0XIJgoiIlksQRES0XIIgIqLlEgQRES2XIIiIaLkEQUREyyUIIiJabmK/C4j+m3rWdxp7r/vPO7yx94pNq8l/J5B/K03KGUFERMslCCIiWi5BEBHRcgmCiIiWSxBERLRcgiAiouUSBBERLZcgiIhouQRBRETLJQgiIlqu1iEmJM0EPg9MAC6zfd6Q5S8Hvgq8pqzlAtvz66wpoooMuxFtUtsZgaQJwMXAocBuwCxJuw1Z7TTgLtt7AAcBF0ravK6aIiJiXXU2De0DLLe9wvbzwNXAUUPWMbC1JAEvAx4DVtdYU0REDFFnEEwGHuyYXlnO6/RF4I3AQ8AdwBm21w7dkaTZkgYkDaxataqueiMiWmnEICibeDaEuszzkOk/BZYCrwb2BL4oaZt1NrLn2p5ue/qkSZM2sJyIiOimyhnBcknnd2nfH8lKYErH9I4U3/w7nQxc68Jy4GfAG9bzfSIiYiNUCYLdgfuAyyTdWjbTrPOtvYvFwC6SppUdwMcAC4as8wBwCICkVwK7AisqVx8RERttxCCw/ZTtS20fAHwU+BjwsKQrJO3cY7vVwOnA9cDdwD/bXibpVEmnlqv9PXCApDuA7wNn2n50I/+miIhYDyPeR1D2ERxO0YwzFbgQuAo4EFgIvH64bW0vLNfpnDen4/VDwJ9sQN0REbGJVLmh7KfAD4Dzbd/SMf8aSW+vp6yIiGhKlSA40fbNnTMkzbD9H7Y/WFNdERHRkCqdxRd1mfeFTV1IRET0x7BnBJL2Bw4AJkn6645F21CMHRQREeNAr6ahzSmGfZgIbN0x/0ng6DqLioiI5gwbBLYXAYskXW775w3WFBERDerVNPQ52x+iGPZh6NAQ2H5XnYVFREQzejUNXVn+vqCJQiIioj96NQ0tKX8vGpwnaTtgiu3bG6gtIiIaUGX00RslbSNpe+C/gPmSPlt/aRER0YQq9xG83PaTwF8A822/BfjjesuKiIimVAmCiZJeBbwH+HbN9URERMOqBMEnKEYQXW57saSdKMYfioiIcWDEsYZsfwP4Rsf0CuDddRYVERHNqTIM9STgAxRDUL+4vu331VdWREQ0pcroo98Cfgj8O7Cm3nIiIqJpVYJgS9tn1l5JRET0RZXO4m9LOqz2SiIioi+qBMEZFGHwW0lPSnpK0pN1FxYREc2octXQ1iOtExERY1eVISYk6XhJ55TTUyTtU39pERHRhCpNQ18C9geOLaefBi6uraKIiGhUlauG9rW9t6TbAGw/LmnzmuuKiIiGVDkjeEHSBMDw4g1ma2utKiIiGlMlCC4CrgNeIelTwM3Ap2utKiIiGlPlqqGrJC0BDgEE/Jntu2uvLCIiGtHrmcXbd0w+Anytc5ntx+osLCIimtHrjGAJRb+AgNcAj5evtwUeAKbVXVxERNRv2D4C29Ns70TxLIIjbe9g+/eBI4BrmyowIiLqVaWz+K22Fw5O2P434I/qKykiIppU5T6CRyWdDXyVoqnoeOBXtVYVERGNqXJGMAuYRHEJ6XXl61l1FhUREc2pcvnoYxQjkEZExDhU5YwgIiLGsVqDQNJMSfdKWi7prGHWOUjSUknLJC2qs56IiFhXlc7iDVKOT3Qx8E5gJbBY0gLbd3Wssy3F6KYzbT8g6RV11RMREd2NGASSLuoy+wlgwPa3emy6D7Dc9opyP1cDRwF3daxzLHCt7QcAbD9StfCIiNg0qjQNvRTYE/hp+bM7sD1wiqTP9dhuMvBgx/TKcl6n1wPbSbpR0hJJJ3bbkaTZkgYkDaxatapCyRERUVWVpqGdgYNtrwaQdAlwA0WTzx09tlOXee7y/m+hGNBuC+BHkm61fd/vbGTPBeYCTJ8+feg+IiJiI1QJgsnAVhTNQZSvX217jaTnemy3EpjSMb0j8FCXdR61/QzwjKSbgD2A+4iIiEZUaRr6DLBU0nxJlwO3ARdI2gr49x7bLQZ2kTStfKLZMcCCIet8CzhQ0kRJWwL7AhniOiKiQT3PCCRtRvHBfABF56+Av7M9+M3+I8Nta3u1pNMpBq2bAMyzvUzSqeXyObbvlvRd4HaKp55dZvvOjf2jIiKiup5BYHutpAtt70/x7X29lIPVLRwyb86Q6fOB89d33xERsWlUaRq6QdK7JXXr/I2IiDGuSmfxX1N0EK+R9CxF85Btb1NrZRER0Ygqg85t3UQhERHRHyM2DalwvKRzyukpkvapv7SIiGhClT6CLwH7UwwHAfA0xRhCERExDlTpI9jX9t6SbgOw/Xh5X0BERIwDVc4IXihHEjWApEkU1/xHRMQ4UCUILqJ4ROUrJX0KuBn4dK1VRUREY6pcNXSVpCUUA8MB/JntDAMRETFOVH0wzZYUw0SYYpTQiIgYJ6pcPnoucAXFMwh2AOZLOrvuwiIiohlVzghmAXvZ/i2ApPOAnwCfrLOwiIhoRpXO4vspnlI26PeA/66lmoiIaNywZwSSvkDRJ/AcsEzS98rpd1JcORQREeNAr6ahgfL3EorLRwfdWFs1ERHRuGGDwPYVTRYSERH90atp6A7Wfdj8i2zvXktFERHRqF5NQ0eUv08rf19Z/j4O+E1tFUVERKN6NQ39HEDSDNszOhadJek/gE/UXVxERNSvyuWjW0l62+CEpAMonlgWERHjQJUbyk4B5kl6OUWfwRPA+2qtKiIiGlMlCJba3kPSNoBsP1F3URER0ZwqTUPLJZ0PTE4IRESMP1WCYHfgPuAfJd0qaXZ5dhAREePAiEFg+ynbl9o+APgo8DHgYUlXSNq59gojIqJWVYahniDpXZKuAz4PXAjsBPwrsLDm+iIiomZVOot/CvwAON/2LR3zr5H09nrKioiIplQJgt1tPz04IWlb4DTbn7L9wdoqi4iIRgzbNCRpiqS5wNWSTpG0paQLKc4QXtFYhRERUateZwRfARYB3wRmArcCy4A32/5lA7VFREQDegXB9rY/Xr6+XtL/AG+1/Vz9ZUVERFN69hFI2g5QOflLYEtJWwHYfqzm2iIiogG9guDlFE8nU8e8n5S/TXEJaUREjHHDdhbbnmp7J9vTuvxUCgFJMyXdK2m5pLN6rPdWSWskHb0hf0RERGy4KkNMbBBJE4CLgUOB3YBZknYbZr1/AK6vq5aIiBhebUEA7AMst73C9vPA1cBRXdb7K4orkx6psZaIiBhGnUEwGXiwY3plOe9FkiYDfw7MqbGOiIjooVIQSHqbpJPL15MkTauyWZd5HjL9OeBM22tGeP/ZkgYkDaxatapKyRERUdGIQ0xI+hgwHdgVmA+8BPgqMKPXdhRnAFM6pncEHhqyznSKO5cBdgAOk7Ta9r90rmR7LjAXYPr06UPDJCIiNkKVsYb+HNiL8tJR2w9J2rrCdouBXcqzh18AxwDHdq5g+8UzC0mXA98eGgIREVGvKkHwvG1LMsDgDWUjsb1a0ukUVwNNAObZXibp1HJ5+gUiIkaBKkHwz5K+DGwr6QMUD66/tMrObS9kyDMLhgsA2ydV2WdERGxaIwaB7QskvRN4kqKf4Fzb36u9soiIaESVMwLKD/58+EdEjENVrhp6inUv+3wCGAD+xvaKOgqLiIhmVDkj+CzFZZ//RHFvwDHAHwD3AvOAg+oqLiIi6lflhrKZtr9s+ynbT5bX9B9m++vAdjXXFxERNasSBGslvUfSZuXPezqW5eauiIgxrkoQHAecQDEo3P+Ur4+XtAVweo21RUREA6pcProCOHKYxTdv2nIiIqJpVa4aeilwCvCHwEsH59t+X411RUREQ6o0DV1JcZXQnwKLKAaPe6rOoiIiojlVgmBn2+cAz9i+AjgceHO9ZUVERFOqBMEL5e9fS3oTxUPtp9ZWUURENKrKDWVzJW0HnA0sAF4GnFNrVRER0ZieQSBpM+BJ248DNwE7NVJVREQ0pmfTkO215F6BiIhxrUofwfck/V9JUyRtP/hTe2UREdGIKn0Eg/cLnNYxz6SZKCJiXKhyZ/G0kdaJiIixa8SmIUlbSjpb0txyehdJR9RfWkRENKFKH8F84HnggHJ6JfDJ2iqKiIhGVQmC19n+DOWNZbafpXhATUREjANVguD5cshpA0h6HfBcrVVFRERjqlw19HHgu8AUSVcBM4CTaqwpIiIaVOWqoRskLQH2o2gSOsP2o7VXFhERjajyPIIFwNeABbafqb+kiIhoUpU+gguBA4G7JH1D0tHlw2oiImIcqNI0tAhYJGkCcDDwAWAesE3NtUVERAOqdBZTXjV0JPBeYG/gijqLioiI5lTpI/g6sC/FlUMXAzeWo5JGRMQ4UOWMYD5wrO01AJJmSDrW9mkjbBcREWNAlT6C70raU9IsiqahnwHX1l5ZREQ0YtggkPR64BhgFvAr4OuAbL+jodoiIqIBvc4I7gF+CBxpezmApA83UlVERDSm130E7wZ+CfxA0qWSDiGDzUVEjDvDBoHt62y/F3gDcCPwYeCVki6R9CdVdi5ppqR7JS2XdFaX5cdJur38uUXSHhv4d0RExAYa8c5i28/Yvsr2EcCOwFJgnQ/1ocob0C4GDgV2A2ZJ2m3Iaj8D/sj27sDfA3PXr/yIiNhYVYaYeJHtx2x/2fbBFVbfB1hue4Xt54GrgaOG7O8W24+Xk7dSBE1ERDRovYJgPU0GHuyYXlnOG84pwL91WyBptqQBSQOrVq3ahCVGRESdQdCtY9ldV5TeQREEZ3Zbbnuu7em2p0+aNGkTlhgREZXGGtpAK4EpHdM7Ag8NXUnS7sBlwKG2f1VjPRER0UWdZwSLgV0kTZO0OcXNaQs6V5D0Goq7lE+wfV+NtURExDBqOyOwvVrS6cD1wARgnu1lkk4tl88BzgV+H/iSJIDVtqfXVVNERKyrzqYhbC8EFg6ZN6fj9fuB99dZQ0RE9FZn01BERIwBCYKIiJZLEEREtFyCICKi5RIEEREtlyCIiGi5BEFERMslCCIiWi5BEBHRcgmCiIiWq3WIiYjYOFPP+k6j73f/eYc3+n4xOiQIYtTIh15Ef6RpKCKi5RIEEREtlyCIiGi5BEFERMslCCIiWi5BEBHRcgmCiIiWSxBERLRcgiAiouUSBBERLZcgiIhouQRBRETLJQgiIlouQRAR0XIJgoiIlksQRES0XIIgIqLlEgQRES2XR1VGxJjT5GNN2/BI0wRBn+T5vBExWqRpKCKi5RIEEREtV2sQSJop6V5JyyWd1WW5JF1ULr9d0t511hMREeuqLQgkTQAuBg4FdgNmSdptyGqHAruUP7OBS+qqJyIiuqvzjGAfYLntFbafB64GjhqyzlHAV1y4FdhW0qtqrCkiIoaQ7Xp2LB0NzLT9/nL6BGBf26d3rPNt4DzbN5fT3wfOtD0wZF+zKc4YAHYF7q2l6OHtADza8HuOdjkm3eW4rCvHZF39OCavtT2p24I6Lx9Vl3lDU6fKOtieC8zdFEVtCEkDtqf36/1HoxyT7nJc1pVjsq7RdkzqbBpaCUzpmN4ReGgD1omIiBrVGQSLgV0kTZO0OXAMsGDIOguAE8urh/YDnrD9cI01RUTEELU1DdleLel04HpgAjDP9jJJp5bL5wALgcOA5cBvgJPrqmcj9a1ZahTLMekux2VdOSbrGlXHpLbO4oiIGBtyZ3FERMslCCIiWi5BMIKRhsloG0lTJP1A0t2Slkk6o981jRaSJki6rbw/pvUkbSvpGkn3lP9e9u93Tf0m6cPl/5s7JX1N0kv7XRMkCHqqOExG26wG/sb2G4H9gNNyTF50BnB3v4sYRT4PfNf2G4A9aPmxkTQZ+CAw3fabKC6iOaa/VRUSBL1VGSajVWw/bPsn5eunKP5zT+5vVf0naUfgcOCyftcyGkjaBng78I8Atp+3/eu+FjU6TAS2kDQR2JJRct9UgqC3ycCDHdMryYfeiyRNBfYCftznUkaDzwEfBdb2uY7RYidgFTC/bC67TNJW/S6qn2z/ArgAeAB4mOK+qRv6W1UhQdBbpSEw2kjSy4BvAh+y/WS/6+knSUcAj9he0u9aRpGJwN7AJbb3Ap4BWt3HJmk7ihaFacCrga0kHd/fqgoJgt4yBEYXkl5CEQJX2b623/WMAjOAd0m6n6L58GBJX+1vSX23Elhpe/Bs8RqKYGizPwZ+ZnuV7ReAa4ED+lwTkCAYSZVhMlpFkijafe+2/dl+1zMa2P5b2zvankrxb+T/2R4V3/T6xfYvgQcl7VrOOgS4q48ljQYPAPtJ2rL8f3QIo6QDPQ+v72G4YTL6XFa/zQBOAO6QtLSc93e2F/avpBil/gq4qvwStYLRO4RMI2z/WNI1wE8orr67jVEy1ESGmIiIaLk0DUVEtFyCICKi5RIEEREtlyCIiGi5BEFERMslCGJMkfT0eq5/0OBooJLe1fQIspImSfpxOczCgRW3OUnSq+uuLWJQ7iOI1rC9gOZvCDwEuMf2/1mPbU4C7iR3sUdDckYQY1L5Tf/GjvHuryrv1hx8hsQ9km4G/qJjm5MkfbF8/UpJ10n6r/LngHL+8ZL+U9JSSV8unzEwQdLl5Rjyd0j6cJd6Xivp+5JuL3+/RtKewGeAw8r9bTFkm3MlLS73O1eFo4HpFDdiLZW0haRDyjOKOyTNk/R75fb3S/q0pB9JGpC0t6TrJf334LPBJb1K0k3lvu6selYS7ZIgiLFsL+BDFM+K2AmYUT7o41LgSOBA4A+G2fYiYJHtPSjGwFkm6Y3Ae4EZtvcE1gDHAXsCk22/yfabgfld9vdF4Cu2dweuAi6yvRQ4F/i67T1tPzt0G9tvLcem3wI4wvY1wABwXFmDgcuB95bvPRH4y459PGh7f+CH5XpHUzwn4hPl8mOB68t97QEsHeZ4RIslCGIs+0/bK22vpfiAmwq8gWJgr5+6uG1+uMHfDgYuAbC9xvYTFM04bwEWl8NnHEIRMCuAnSR9QdJMoNtoq/sD/1S+vhJ4W4X631H2H9xR1vOHXdbZtfx77iunr6AY53/QYFPXHcCPbT9lexXwW0nbUoyXdbKkjwNvLp8hEfE7EgQxlj3X8XoN/9vntaHjpgi4ovz2vqftXW1/3PbjFN+mbwROo9rDZ3rWUJ65fAk4uvymfynQ7bGF3YZC7zR4DNbyu8djLTDR9k0UwfEL4EpJJ1aoPVomQRDjzT3ANEmvK6dnDbPe9ymbWMo+gG3KeUdLekU5f/uy7X8HYDPb3wTOoftwyrfwv48dPA64eYQ6Bz/0Hy2f7XB0x7KngK07/p6pknYup08AFo2w7xdJei3FsxIupRg1tu1DQUcXuWooxhXbv5U0G/iOpEcpPpDf1GXVM4C5kk6hOJv4S9s/knQ2cIOkzYAXKM4AnqV40tbgF6e/7bK/DwLzJH2E4slcPUfatP1rSZdSNOncT9GEM+hyYI6kZymanE4GvqHi8YaLgTkjHIZOBwEfkfQC8DSQM4JYR0YfjYhouTQNRUS0XIIgIqLlEgQRES2XIIiIaLkEQUREyyUIIiJaLkEQEdFy/x/DZrxFO0GLtgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "device = LocalSimulator(\"braket_ahs\")\n", + "result = device.run(ahs_program, shots=1000, steps=100).result()\n", + "show_final_avg_density(result)" + ] + }, + { + "cell_type": "markdown", + "id": "daf77070", + "metadata": {}, + "source": [ + "We see that the average Rydberg density approximately forms the $Z_2$ pattern. The discrepancy can be attributed to finite size of the system and nonadiabaticity throughout the evolution. We expect that as one increase the system size and the duration of the AHS program, the final Rydberg density will approach the ideal $Z_2$ pattern.\n", + "\n", + "The $Z_2$ phase can be characterized by the density correlation $g_{ij}$ of the $i$-th and the $j$-th atom, which is defined as\n", + "\n", + "\\begin{align}\n", + "g_{ij} = \\langle n_i n_j\\rangle - \\langle n_i\\rangle\\langle n_j\\rangle,\n", + "\\end{align}\n", + "\n", + "where $\\langle\\cdot\\rangle$ is the average over the shots." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "4ba0163e", + "metadata": {}, + "outputs": [], + "source": [ + "def get_density_correlation_Z2(result):\n", + " post_sequences = np.array([list(measurement.post_sequence) for measurement in result.measurements])\n", + " return np.cov(post_sequences.T)\n", + "\n", + "gij = get_density_correlation_Z2(result)" + ] + }, + { + "cell_type": "markdown", + "id": "c405519e", + "metadata": {}, + "source": [ + "The Rydberg density correlation function can be visualized as follows." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "dd0c5d4a", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAT4AAAEWCAYAAAD/x/trAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAgrElEQVR4nO3deZhdVZnv8e8vI/MUEEMGg8pwcWAwAl5AUEADLYL2cKGVVkTBvjI5NIL2FZyu+Fwa0dYWIyCjoDKJiiCiDCogCSAQBkXGIpGQIDLZJCHv/WOvwk1xqmqf1F6nzqn9+zzPeWpP513rnFS9WXvtvddSRGBm1iTjRrsCZmad5sRnZo3jxGdmjePEZ2aN48RnZo3jxGdmjePEN0KSHpC0R1o+XtI5o12nfpJC0qszxt9F0j254nfKSP/dJC2QtFt9NbLcGpn4UrL6q6SnJf1J0hmS1hrtevWaiLguIrboXy//JzBWpd+VL5S3RcRrIuLqUaqSrYJGJr5kn4hYC9gG2BY4dnSr82KSJox2HXpRq+9N0vjRqIt1ryYnPgAi4k/AFRQJEEl3SNqnf7+kiZKWSOrff6CkByUtlfTpFiFXk/Q9SU9JulnS1qVYm0i6UNJjku6XdERp3/GSLpB0jqQngfdL2lTStSnWzyV9Y6hTMkn/JmmRpIWSPjBg32RJJ0p6SNKjkk6RtHrat5ukPkkfl7Q4xTio9N69Jd2Z6vGIpE+U35eWzwZmAj9KLemjJf1E0uED6nGbpP0Gqf/Okn4j6QlJD0t6f9q+rqSz0vf2oKR/lzQu7Xu/pF9L+oqkx4HjU6vsm5Iuk/QM8JahvvsW9fhBOhP4S/r+X5O2HwK8Bzg6fcYfpe3l7o7Jkk5O/wYL0/LkKt+zdVBENO4FPADskZanA7cDX03rRwPfKx27L3B7Wt4KeBp4MzAZOAlYUYp1PLAc+AdgIvAJ4P60PA6YD3wGmAS8ErgPePuA9+6Xjl0duB44MR2/M/AkcM4gn2kO8CjwWmBN4LtAAK9O+08GLgU2ANYGfgR8Ke3bLX2Oz6W67g08C6yf9i8CdknL6wPbld7X1+p7Tev/BNxYWt8aWApMalH/mcBTwAGpDlOAbdK+s4AfpnrPAn4PHJz2vT/V/XBgQvrezgD+AuyUvss1Knz355Tq8oFU1uT0vd1a2ncG8IUhfp8+B9wAvAzYCPgN8Pkq37NfHcwBo12BUfnQxS/q0+kPLYCrgPXSvk3S9nXS+gXA0Wn5M8D5pThrAst4ceK7obR/XH/SAHYAHhpQj2OB75Tee21p38z0R7JGads5DJ74TgdOKK1vnj7bqwEBzwCvKu1/E3B/Wt4N+CswobR/MbBjWn4IOLT/OykdsxtDJ77JwOPAZmn9ROC/Bqn/scDFLbaPB54DtiptOxS4Oi2/v8X3egZwVmm9ync/2Pe6Xvoe1y3FHirx/RHYu7Tv7cADVb5nvzr3avKp7n4RsTbFL+OWwIYAEbEQ+DXw95LWA/YCzk3v2QR4uD9ARDxD0YIpK+9fCfSl970C2CSdxj0h6QngU8DGrd6b3vN4RDw7yP6BNhmw/8HS8kakVk+p7MvT9n5LI2JFaf1ZoP+Cz99TtE4elHSNpDcNUY8XRMRzwPeB96ZT0wOAswc5fAZF0hhoQ4pWWvnzPAhMK623+l7K26p890DRHyjpBEl/TF0OD5TqUcUmLeq6SWl9qO/ZOqTxHegRcY2kMyhaI/ulzWcCH6T4fq6PiEfS9kXA/+h/r6Q1KE7JymaU9o+jOJVeSNF6uz8iNhuqOqXlRcAGktYoJb8ZLd5TPr68f2ZpeQlFS+M1pc9SWUTcBOwraSJwGEUya1WXVkP9nEmR7H4FPBsR1w9SzMPA9i22L6HoAngFcGfaNhMof45W5Za3Pczw332/f6bo3tiDIumtC/yZotU8WFllC1NdF5TqurBCudZBTW7xlZ0M7Kl0AQO4BNgOOJKif6nfBcA7Uif8JIq+moHf4RskvVvF1cWjKE7TbgB+Czwp6ZOSVk8ti9dKemOrCkXEg8A8is76SamVtU+rY5PvU1wQ2Sol5ONKsVYC3wa+IullAJKmSXr7kN9KcdwkSe+RtG5ELKfoZ3x+kMMfpeg/K3+O64GVwH8weGsPilb1HpL+SdIESVMkbRMRz6fP9kVJa0t6BfAxitP+qtr57tem+DdbStFK/r/DfcYBzgP+XdJGkjak6B7pmns7reDEB0TEYxQJ7v+k9b8CFwKbAheVjlsAfITiwsEiipZA34BwPwT+V9p3IPDuiFie/oD3obh6fD9FS+ZUihbFYN5D0Re3FPgC8D2KP8pWn+GnFAn8F8C96WfZJ9P2G9Ip3M+BLajmQOCB9L4PA+8d5LgvUfzRP9F/5Tc5C3gdQySAiHiI4nT64xT9grdSXAyB4sLFMxQXJH5F8f2fXrHutPndn0VxevoIRQvzhgH7TwO2Sp/xkhbv/wLFf1i3UVw0uzltsy6i1MFqA0j6DLB5RAz2R95xkr4H3B0Rxw17cBeR9C/AIRGx82jXxQzc4mtJ0gbAwcDcUa7HGyW9StI4SXMo+p4uGc06tSuddv9vRvm7NCtz4htA0ocoOsN/GhHXjnJ1Xg5cTXHrzdeAf42IW0a1Rm1IfYiPUfSLfXeUq2P2Ap/qmlnjuMVnZo3TVffxbbjBBjFrxlC3qo3MspiYLTbAJC3PGh9ghfJ+hgmsGP6gEYjxeX/lNOxtdnUUouGP6VIPPPAAS5YsGdEHmCPFkorHzocrImLOSMrLoasS36wZM5h32WXZ4vfFtOEPGoHpEx/NGh9g6YSXPGxQqykveRClXs+tNfB+73pNbn23T61i0uSs8XMm79lvbHnbaFuWAPPGVTtZ1MqVVZ946aiuSnxm1iMqJj5Wrsxbj1XkxGdm7ZGqJ74u5cRnZu1z4jOzRpFgQm+njt6uvZmNDrf4zKxR3MdnZo3U44kva+0lzZF0j6R7JR2Tsywz65D+Fl+VV5fK1uJTMaXfN4A9Kcasu0nSpRFx59DvNLOu18VJrYqcp7rbA/dGxH0Aks6nGFbJic+sl42Bq7o50/Y0XjzhSx8vniAGKOYqlTRP0rzHluZ9XMrMatLjp7o5a9bqQeiXPIQYEXMjYnZEzN5oSt7nOM2sBu7jG1IfL56Jq3+2MTPrdV2c1KrImfhuAjaTtCnFxC37U0zdZ2a9zomvtYhYIekw4ApgPHB6mqXMzHrZGLi4kbX2EXEZkG+APTPrPD+5YWaN1OOJr7drb2ajo6arusM93SXpPZJuS6/fSNq6VZx2ucVnZu2p6VS34tNd9wO7RsSfJe1FMT/zDiMt24nPzNpXz6nusE93RcRvSsffQHFb3Ig58ZlZe9q7qruhpHml9bkRMTctt3q6a6jW3MHATyvXcwhOfGbWvuotviURMXuQfZWe7gKQ9BaKxLdz1YKH0lWJb1lMzDoF5HQ9ki02wKMvfRS5dhtnnv5xKXkfG5ySefrH58g79SPA5Mxz90bLfNBF6rudpdLTXZJeD5wK7BURtfwBdFXiM7MeUU/iG/bpLkkzgYuAAyPi93UUCk58Ztaumlp8gz3dJenDaf8pwGeAKcB/SQJYMcSpc2VOfGbWvppuYG71dFdKeP3LHwQ+WEthJU58ZtYeP6trZo3U44+sOfGZWXs8SIGZNZITn5k1To8nvmy1l3S6pMWS7shVhpmNgv6LG1VeXSpn2j4DmJMxvpmNBk82NLiIuFbSrFzxzWwUdXFSq6J726Jm1p18VXfkJB0CHAIwbdrMUa6NmVXS44lv1GtfnlB8gw02Gu3qmFkV7uMzs0YZA4+s5byd5TzgemALSX2SDs5Vlpl1kK/qDi4iDsgV28xGWRcntSp6u71qZqPDic/MGsW3s5hZIznxmVmjjIGrur1dezMbHW7xmVmjuI+vXpO0nOkTH80WP/e8txuf8eWs8QH+c41PZo1/+Grfzhr/ms0/lDX+ruOuyxof4Oltd8kafy09ky/4ypX1xHHiM7NGcYvPzBrJFzfMrFHc4jOzRnLiM7NGcYvPzBrJic/MGseJz8waxY+smVnjjIE+vpwjMM+Q9EtJd0laIOnIXGWZWYd5BOZBrQA+HhE3S1obmC/pyoi4M2OZZtYJXZzUqsg59PwiYFFafkrSXcA0wInPrJeNgVPdjvTxSZoFbAvc2GLfC/Pqzpw+vRPVMbOR6vHEl732ktYCLgSOiognB+4vz6u70QYb5K6OmY1U/1XdKq9hQ2mOpHsk3SvpmBb7t5R0vaTnJH2iro+QtcUnaSJF0js3Ii7KWZaZdVANLT5J44FvAHsCfcBNki4dcB3gceAIYL8RF1iS86qugNOAuyLipFzlmFmH1Tev7vbAvRFxX0QsA84H9i0fEBGLI+ImYHmdHyHnqe5OwIHAWyXdml57ZyzPzDqlnsQ3DXi4tN6XtmWX86rurwDlim9mo6S9q7obSppXWp8bEXP7I7U4PkZUt4r85IaZta/6I2tLImL2IPv6gBml9enAwpFUqyonPjNrT3338d0EbCZpU+ARYH/gn+sIPBwnPjNrXw2JLyJWSDoMuAIYD5weEQskfTjtP0XSy4F5wDrASklHAVu1ujWuHU58ZtaeGp/ciIjLgMsGbDultPwnilPgWjnxmVn7evzJDSc+M2uPn9Wt1wpNZOmEjbPF35il2WJD/sm+AQ5f+dWs8b+1Mu/oYYdyTdb416zcNWt8gF1zTvgNPB1rZou9sq5bdz0QqZk1ilt8ZtZITnxm1ihu8ZlZIznxmVnjOPGZWaN4ekkzaxz38ZlZIznxtSZpNeBaYHIq54KIOC5XeWbWQT2e+IatvaTPS5pQWl9H0ncqxH4OeGtEbA1sA8yRtOMq19TMukN9Q8+Pmio1mwDcKOn1kt5GMYbW/OHeFIWn0+rE9OrI6KpmllGNs6yNlmFrFhHHSrqKYk7cPwNvjoh7qwRPsyjNB14NfCMihpxXd/r0mW1U3cxGTRe35qqocqr7ZuCrwOeAq4GvS9qkSvCIeD4itqEYT2t7Sa9tccwL8+pOmbJRO3U3s9HS46e6VdqiJwL/2D/XpaR3A78AtqxaSEQ8IelqYA5wxyrU08y6xRi4naVK7d9UnuA3TQy+03BvkrSRpPXS8urAHsDdq1hPM+smPd7iq1KzV0m6StIdAJJeD/xrhfdNBX4p6TaKCyJXRsSPV72qZtYVxsBV3Sqnut8G/g34FkBE3Cbpu8AXhnpTRNwGbDviGppZ9+niK7ZVVKn9GhHxW+lFc/+uyFQfM+t2Y6CPr0riWyLpVaR78CT9A7Aoa63MrLs1IPF9BJgLbCnpEeB+4L1Za2Vm3asJLb6IuA/YQ9KawLiIeCp/tcysq43VxCfpY4NsByAiTspUJzPrZmN8PL61088tgDcCl6b1fShGXTGzphqrLb6I+CyApJ8B2/Wf4ko6HvhBnsqsYErGuW+XMiVbbIDDV/t21vjQgXlvbz40a/yvL/9W1viH8fWs8QEWbX5Y1vhTxz2aLfa455ePPEgT+viAmcCy0voyYFaW2phZb2hA4jsb+K2kiyluaXkXcFbWWplZdxvriS8ivijpcmDntOmgiLglb7XMrGs15FQX4FaKm5YnAEiaGREP5aqUmXWxMX5VFwBJhwPHAY8CzwOiOOV9fd6qmVnXakCL70hgi4jId7nVzHpHQ051Hwb+krsiZtZDGpD47gOulvQTipnTAD+5YdZoPZ74qtT+IeBKYBLF0xz9r0okjZd0iyQPQmo2FtQ4EKmkOZLukXSvpGNa7Jekr6X9t0naro6PUOV2ls+OsIwjgbuAdUYYx8y6QU1XddMsjN8A9gT6gJskXVqe6gLYC9gsvXYAvpl+jshQgxScHBFHSfoRLebDjYh3Dhdc0nTg74AvAi0HPTCzHlTPqe72wL1pBCgknQ/sC5QT377AWRERwA2S1pM0NSJGNCboUGn77PTzxBHEPxk4miFOjcvz6s6cPn0ERZlZpwQa/qDChpLmldbnRsTctDyN4uJpvz5e2pprdcw0RjgY8lCDFMxPP69ZlcCS3gEsjoj5knYbopy5FAOdMnubbV7SsjSz7rNyZeVDl0TE7EH2tcqeA3NAlWPalvP2652Ad0raG1gNWEfSORHh0ZvNelhEW4lvKH3AjNL6dGDhKhzTtmzXpCPi2IiYHhGzgP2BXzjpmfW+CFixotprGDcBm0naVNIkijxx6YBjLgX+JV3d3RH4y0j79yBvi8/Mxqg6WnwRsULSYcAVwHjg9IhYIOnDaf8pwGXA3sC9wLPAQSMvudqzurOBTwOvSMerqFNUflY3Iq4Grl61KppZt6npVJeIuIwiuZW3nVJaDooJz2pVpcV3LsWE4rcDNX1cM+tVNfbxjZoqie+xiBh43m1mDdaExHecpFOBq3jxs7oXZauVmXWtprT4DgK2BCbyt1PdAJz4zBqo/6puL6uS+LaOiNdlr4mZ9Yxeb/FVuY/vBklbZa+JmfWMlSurvbpVlRbfzsD7JN1P0cfX9u0sVcX4CTy3Vr65b6f8rYsyi2s2/1DW+ACHskpPEFaWfd7b5/4ja/yvjPt41vgAHx3ZY6LDWrRyarbYy5k44hhN6eObk70WZtZTxnzii4gHJW0N7JI2XRcRv8tbLTPrVmOhxTdsH5+kIyluYn5Zep2TZl4zs4aq6VndUVPlVPdgYIeIeAZA0peB64H/zFkxM+tOY6HFVyXxiWI+3X79c+uaWUM1IfF9B7hR0sVpfT/g9Gw1MrOu1ogWX0ScJOlqittaBBwUEbfkrpiZda8xn/gknR0RBwI3t9hmZg3TlEfWXlNeSVPCvaFKcEkPAE9R9AuuGGLsfTPrIWO2xSfpWOBTwOqSnuRvFzSWkSYHqugtEbFk1atoZt1kLPTxDXofX0R8KSLWBv5fRKwTEWun15SIOLaDdTSzLjPmn9WNiGMlrU8xk/lqpe3XVogfwM8kBfCt0nyaLyjPqztjxsyq9TazUdTNSa2KKhc3PggcSTGt263AjhQ3ML+1QvydImKhpJcBV0q6e2DCLM+r+4Y3zPa8umZdbkyf6pYcCbwReDAi3gJsCzxWJXhELEw/FwMXA9uvYj3NrEvUOL3kqKmS+P47Iv4bQNLkiLgb2GK4N0laU9La/cvA24A7RlJZM+sOY76PD+iTtB5wCcXp6p+pNpP5xsDFkvrL+W5EXL6K9TSzLtLNSa2KKhc33pUWj5f0S2BdYNgEFhH3AVuPrHpm1m3GQh9flRbfCyIi7/C/ZtYTGpX4zMwa1+IzM4PuvmJbhROfmbXFLT4zayQnPjNrFLf4aiaCyRnnvn2OydliA+w67rqs8QGuWblr1viH8fWs8XPPe/vRZV/OGh+g7/lPZo0/XY9kiz2R5bXEceIzs0ZpykCkZmYv4hafmTXKWOjjqzJIgZnZi3RikAJJG0i6UtIf0s/1BznudEmLJVUeBMWJz8za0t/i68DoLMcAV0XEZsBVab2VM4A57QR24jOztnUo8e0LnJmWz6SY0/sl0uDGj7cT2H18ZtaWDl7V3TgiFhVlxqI0knstnPjMrG1ttOY2lDSvtD63PPeOpJ8DL2/xvk+veu2GlzXxpQFMTwVeSzHx0Aci4vqcZZpZXm1e1V0y1HzaEbHHYPskPSppamrtTQUWt1fTweXu4/sqcHlEbEkxKOldmcszsw7oUB/fpcD70vL7gB+OOGKSLfFJWgd4M3AaQEQsi4gncpVnZp3TocR3ArCnpD8Ae6Z1JG0i6bL+gySdRzHz4xaS+iQdPFzgnKe6r6SYje07krYG5gNHRsQz5YPK8+rOnDEjY3XMrA6durgREUuB3VtsXwjsXVo/oN3YOU91JwDbAd+MiG2BZ2hxH05EzI2I2RExe6ONNspYHTOrQwfv48smZ+LrA/oi4sa0fgFFIjSzHufEN4iI+BPwsKT+OXh3B+7MVZ6ZdU6vJ77c9/EdDpwraRJwH3BQ5vLMLLOxMEhB1sQXEbcCg97DY2a9yYnPzBrFA5GaWSO5xWdmjeI+PjNrJCc+M2sUt/jMrJGc+MysUXxVt24SMSnfpN+TiWyxAZ7edpes8QF21TPDHzQCizY/LGv8j7Ioa/zck30DTI+Hs8Z/OPIN1rEsJtYSxy0+M2sU9/GZWSM58ZlZ4zjxmVmj+OKGmTWO+/jMrJGc+MyscXo98eWcZW0LSbeWXk9KOipXeWbWGWNhzo1sLb6IuAfYBkDSeOAR4OJc5ZlZ53RzUquiU6e6uwN/jIgHO1SemWXiq7rV7Q+c16GyzCyzXm/x5ZxeEoA00dA7gR8Msv8QSfMkzXvsscdyV8fMRmgs9PFlT3zAXsDNEfFoq52eUNys9/R64uvEqe4B+DTXbMzwDczDkLQGsCdwaM5yzKyznPiGEBHPAlNylmFmneWrumbWSG7xmVmjuI/PzBrJic/MGsUtPjNrJF/cMLNGGQstvk48uWFmY0wnntyQtIGkKyX9If1cv8UxMyT9UtJdkhZIOrJK7K5r8Snj3LeBssUGWCvznLcAT8eaWeNPHdfyycLaLFo5NWv86Xoka3zIO+8twIyV+QYxmsSyEcfoYIvvGOCqiDhB0jFpfeDEySuAj0fEzZLWBuZLujIi7hwqsFt8Zta2Dj2ruy9wZlo+E9hv4AERsSgibk7LTwF3AdOGC9x1LT4z635tJLUNJc0rrc+NiLkV37txRCyCIsFJetlQB0uaBWwL3DhcYCc+M2tLm4+sLYmI2YPtlPRz4OUtdn26nTpJWgu4EDgqIp4c7ngnPjNrS519fBGxx2D7JD0qaWpq7U0FFg9y3ESKpHduRFxUpVz38ZlZ2zrUx3cp8L60/D7ghwMPkCTgNOCuiDipamAnPjNrW4cS3wnAnpL+QDG83QkAkjaRdFk6ZifgQOCtpRkd9x4usE91zawtnbqdJSKWUkxUNnD7QmDvtPwraP8+NSc+M2tbrz+5kXsE5o8CHwQCuB04KCL+O2eZZpbXWBiINFsfn6RpwBHA7Ih4LTCeYppJM+txnmxo+PirS1oOrAEszFyemWXmQQqGEBGPACcCDwGLgL9ExM8GHud5dc16T6+3+HKe6q5P8azdpsAmwJqS3jvwOM+ra9ZbPKH40PYA7o+IxyJiOXAR8D8zlmdmHbJiRbVXt8rZx/cQsGOaW/evFPfjzBv6LWbW7cZCH1+2xBcRN0q6ALiZYsysW4CqozKYWRdz4htCRBwHHJezDDPrLLf4zKyRnPjMrHGc+MysUcbCI2tOfGbWFvfxmVkjOfGZWeP0euJTRL55bNsl6TGgnUlFNwSWZKqO44/9+J0oo9vivyIiRvRsqKTLU7lVLImIOSMpL4euSnztkjRvqBmcHN/xR7uMXo8/VnnODTNrHCc+M2ucXk98uZ/9dfyxHb8TZfR6/DGpp/v4zMxWRa+3+MzM2ubEZ2aN05OJT9IcSfdIulfSMRniny5psaQ76o6d4s+Q9EtJd0laIOnImuOvJum3kn6X4n+2zvilcsZLukXSjzPEfkDS7ZJulVT7ALaS1pN0gaS707/Dm2qMvUWqd//rSUlH1RU/lfHR9G97h6TzJK1WZ/yxruf6+CSNB34P7An0ATcBB0TEnTWW8WbgaeCsNDVmrSRNBaZGxM2S1gbmA/vV9RkkCVgzIp6WNBH4FXBkRNxQR/xSOR8DZgPrRMQ7ao79AMXUpFlu/pV0JnBdRJwqaRKwRkQ8kaGc8cAjwA4R0c7N+UPFnEbxb7pVRPxV0veByyLijDriN0Evtvi2B+6NiPsiYhlwPsWkRrWJiGuBx+uMOSD+ooi4OS0/BdwFTKsxfkTE02l1YnrV+j+cpOnA3wGn1hm3EyStA7wZOA0gIpblSHrJ7sAf60p6Jf1Tt07AU7e2rRcT3zTg4dJ6HzUmjU6TNAvYFrix5rjjJd0KLAaujIha4wMnA0cDuZ7aDOBnkuZLOqTm2K8EHgO+k07VT5W0Zs1l9NsfOK/OgFWnbrXB9WLiU4ttvXW+nkhaC7gQOCoinqwzdkQ8HxHbANOB7SXVdsou6R3A4oiYX1fMFnaKiO2AvYCPpO6HukwAtgO+GRHbAs8AOfqKJwHvBH5Qc9xKU7fa4Hox8fUBM0rr0+nBZn7qe7sQODciLspVTjqFuxqo80HxnYB3pn6484G3SjqnxvhExML0czFwMUUXR136gL5SK/gCikRYt72AmyPi0ZrjeurWEerFxHcTsJmkTdP/qPsDl45yndqSLj6cBtwVESdliL+RpPXS8uoUfyh31xU/Io6NiOkRMYvi+/9FRNTW4pC0ZrroQzoFfRtQ2xX2iPgT8LCkLdKm3YHaLo6VHEDNp7nJC1O3pt+l3Sn6ia2inhuPLyJWSDoMuAIYD5weEQvqLEPSecBuwIaS+oDjIuK0GovYCTgQuD31wwF8KiIuqyn+VODMdEVxHPD9iKj9lpOMNgYuLv6mmQB8NyIur7mMw4Fz03+e9wEH1Rk8zSe9J3BonXHBU7fWoeduZzEzG6lePNU1MxsRJz4zaxwnPjNrHCc+M2scJz4zaxwnvoaQ9KlMcWdL+lqb7zle0idy1MesCie+5siS+CJiXkQckSO2WS5OfGOMpEvSg/0L+h/ul3QCxUget0o6N237WBrL7Y7+seIkzUrj052atp8raQ9Jv5b0B0kveWxM0m794/Glltzpkq6WdJ+kI0rHfVrFGIo/B7YobX+VpMtTna+TtKWkCZJukrRbOuZLkr6Y7Uuz5okIv8bQC9gg/Vyd4jGvKWn96dIxbwBuB9YE1gIWUIwQM4viSYDXUfynOB84nWJgiH2BS1qUtxvw47R8PPAbYDLFhNNLKYbE6i9vDWAd4F7gE+k9VwGbpeUdKB5/A3gNxWNYe1I8mTBptL9bv8bOq+ceWbNhHSHpXWl5BrAZRQIq2xm4OCKeAZB0EbALxTPP90fE7Wn7AuCqiAhJt1MkxuH8JCKeA56TtJji8bNdUnnPpriXpp9rUTxc/4P0eBoUSZOIWCDpbOBHwJuiGHvRrBZOfGNIOjXcgyJRPCvpaqDVkOSthvbq91xpeWVpfSXVfl/K73++9J5Wz0aOA56IYvisVl4HPEGRPM1q4z6+sWVd4M8p6W0J7FjatzwNhQVwLbBfGt1jTeBdwHUZ63Ut8C5Jq6dRV/YBiGIMwvsl/SMUo9ZI2jotvxuYQjFS8tf6R5sxq4MT39hyOTBB0m3A54HyHBtzgdsknRvFsPdnAL+lGPn51Ii4JVelUnnfA26lGIOwnGTfAxws6XcUfY37StoQOAE4OCJ+D3wd+Gqu+lnzeHQWM2sct/jMrHGc+MyscZz4zKxxnPjMrHGc+MyscZz4zKxxnPjMrHH+P9I8dAN012soAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.imshow(gij, cmap='bwr', vmin=-0.25, vmax=+0.25)\n", + "plt.xticks(range(num_atoms), [f'{i}' for i in range(num_atoms)])\n", + "plt.xlabel(\"atom index\")\n", + "plt.yticks(range(num_atoms), [f'{j}' for j in range(num_atoms)])\n", + "plt.ylabel(\"atom index\")\n", + "plt.title('Rydberg density correlation')\n", + "plt.gca().set_aspect('equal')\n", + "plt.colorbar()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "276bb5b6", + "metadata": {}, + "source": [ + "For more explanation and interpretation of the Rydberg density correlation functions, see \"Probing many-body dynamics on a 51-atom quantum simulator\" by [Bernien et al. (2017)](https://arxiv.org/abs/1707.04344). " + ] + }, + { + "cell_type": "markdown", + "id": "fc7d3074", + "metadata": {}, + "source": [ + "## 2D checkerboard phase \n", + "\n", + "In two dimension, Rydberg system can exhibit the checkerboard phase, which is analogous to the $Z_2$ phase in 1D. For simplicity, here we create a $3\\times 3$ square lattice." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "22477060", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAc4AAAG2CAYAAAD2l2YcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAjXUlEQVR4nO3de3BV9b338c83BAgxAgoBCkhBBQR8gpjowXqtTAW0wvFyrNgqp4WH0mLRWma0lwfnVDv1dHw8WCuHQxFQZ6q13uqhqHOUoziFPDWcgQgiF0ExpUq4KCImmOT7/LG3Nsad7PXb7Gt4v2b2JGv9fnvt72/yy/rstffaa5u7CwAARFOU6wIAACgkBCcAAAEITgAAAhCcAAAEIDgBAAhQnOsCAAD5bd26df2Ki4uXSDpdnf+Aq0XSxqamppmVlZV7EnUgOAEAHSouLl4yYMCAUeXl5QeKioo69WcYW1parL6+fvS77767RNKURH06+zMHAMDRO728vPxgZw9NSSoqKvLy8vIPFDu6Ttwni/UAAApT0bEQmp+Kj7XdfMxpcJrZUjPbY2Yb07S9ZjNbH789k45tAgDQWq6POJdLmpTG7X3s7mfEbwlfmwYAZNiLLx6nyy8fpjFjRunyy4fpxRePO9pN3nnnnf1OPvnkMT179jzjJz/5yQBJuuWWWwbOnz+/vyRdddVVQ5ctW3ZC1O1t2bKl2/Dhw8ekUktOTw5y99VmNrT1OjM7RdL9ksolHZb0v939jRyUBwAI9cMfDtSiRf3V2Fgkd2nz5h564YXemj37Pf3bv+1OdbMPPPBA+bPPPrvttNNOO5LOclOR6yPORBZL+oG7V0qaJ2lhwH1LzKzGzKrN7B8zUh0AILEXXzxOixb1V0NDLDQlyd3U0FCkRYv6p3rked111w2pq6vrPmXKlFP/5V/+pd8NN9wwpKP+r7zySulZZ501csyYMaPOO++84W+//XbXT9ePHDly9BlnnHHaPffc0y+VWqQ8C04zK5P0FUl/MLP1kv5D0pfibVea2cYEt+dbbWKIu1dJuk7SgvjRKwAgGxYs6KfGxsS50thoWrAgpbD63e9+t6tfv36fvPzyy1tPOOGE5o76NjY22ty5c4f88Y9/fHPTpk2bp0+fvnfevHmDJGnGjBlD77nnnl3r168/qlcx8+1znEWS3nf3M9o2uPuTkp7s6M7uvjv+c4eZvSRpnKQ3018mAOALduwoUXtfVelu2rmzJNMl1NbWdt+2bVuPiy++eIQktbS0qLy8/JN9+/Z1+fDDD7tcdtllhyTpO9/5zr5Vq1b1SuUx8io43f2gme00s39y9z+YmUmqcPcNye5rZidIOuzujWbWV9K5kn6V6ZoBAHEnn9ygzZt7yN2+0GbmGjasIdMluLudeuqpH7c9qty7d2+XWKQcvVx/HOURSWsljTSzOjObIembkmaY2QZJmyRNjbi5UZJq4vf7b0l3ufvrmagbAJDAzTfvUffuiQ85u3d33XxzwkvYpVNFRUXD/v37i1944YXjpNhLtzU1NSV9+/ZtLisra37++efLJGn58uUnpvoYuT6rdlo7TcEfUXH3NZL+19FVBABI2YQJH2n27PfiZ9Wa3E1mru7dXbNnv6cJEz7KdAklJSX+6KOPvjl37twhH374YZfm5mb73ve+915VVVXDAw888NbMmTOH9ujRo+Xiiy8+mOpjmLf3evSnHcyWSvq6pD3u3u4liMzsLEnVkr7h7o+nWhAAIL9s2LDhrbFjx+6NfIcXXzxOCxb0086dJRo2rEE337wnG6GZThs2bOg7duzYoYnaogTnBZIOSXqoveA0sy6S/ktSg6SlUYKzb9++PnRowpoAAHnkV7/6lQYMGJCVx2psbGwaN25c0vNaMq2j4Ez6Um2iixQk8ANJT0g6K2pRQ4cOVU1NTdTuAIAc2bx5s0aNGpWVx9q4cWPOL3CQzFGfHGRmgyRdIWlRhL6z4hcoqKmvrz/ahwYAZEmyVyc7k5aWFlPsezkTSsdZtQsk3eruHX4oVZLcfbG7V7l7VXl5eRoeGgCQaSUlJdq3b98xEZ7x7+PsJandLx9Jx1m1VZIejX8+pq+kS82syd2fTsO2AQA5NnjwYNXV1SkbrxS+++67xc3NzX0z/kDta5G0sampaWZ7HY46ON192Ke/m9lySSsITQDoPLp27aphw4Yl75gGo0ePfi1+6dS8lTQ44xcpuEhSXzOrk3S7pK6S5O5J39cEAKAziXJWbXsXKUjU95+PqhoAAPJcXn07CgAA+Y7gBAAgQKcPzq1bt2rq1KkqLy/XiSeeqIkTJ2rLli25LgsIZmY67rjjVFZWprKyMs2c2e5Jf0BeWrVqlc4880z17NlTJ598shYvXpzrklLS6YPz/fff15QpU7Rlyxa99957OvvsszV1atQvXAHyy4YNG3To0CEdOnRIS5YsyXU5QGSffPKJrrjiCn33u9/VBx98oN///ve65ZZbtGFDzq+uF6zTB+fZZ5+tGTNm6MQTT1TXrl31wx/+UFu2bNG+fftyXRoAHDP279+vgwcP6vrrr5eZ6ayzztKoUaP0+uuF9+2PnT4421q9erUGDBigPn365LoUINgFF1ygAQMG6Morr9Rbb72V63KAyPr3769p06Zp2bJlam5u1tq1a/X222/rvPPOy3VpwQo3OKurpWnTpMrK2M/q6qR3qaur05w5c3TPPfdkoUAggoB5/PLLL+utt97SG2+8oYEDB+rrX/+6mpqaslgskEDAHJ42bZp+/vOfq3v37jr//PP1i1/8QieddFIWi00Td8/JrbKy0lM2f757aam7mbvkXlQUW54/v9277Nmzx0eNGuV33nln6o8LpFMK8/hTTU1NXlpa6rW1tVkoFGhHwBzevHmz9+jRw5977jlvbm72N954w0899VRfsWLF5/pJqvEc5VLUW+EdcVZXS3ffLR0+LH16weGWltjy3XcnfLZz4MABXXLJJZoyZYp++tOfZrlgIIEU5nFbZnZMXHQbeSpwDm/cuFEjR47UxIkTVVRUpJEjR+qyyy7Ts88+m4Pij07hBee990off5y4raEh1t7KwYMHNXHiRJ177rm66667slAgEEHgPN60aZPWr1+v5uZmHTp0SD/60Y80aNCgrH1HIvAFgXN43Lhx2rZtm1atWiV315tvvqkVK1Zo7NixWSg2vQovOLdu/fuzm7ZaWqRt2z636qmnntKrr76qZcuWffb5t7KyMu3atSsLxQLtCJzH7733nr7xjW989vm3t956SytWrFDXrl2zUCyQQOAcPuWUU7R06VLNnTtXPXv21IUXXqirrrpKM2bMyEKx6ZWOrxXLrhEjpPXrY3+YtoqKYu2tTJ8+XdOnT89ObUBUgfP44osv5sIdyC+Bc1iSrrnmGl1zzTWZry3DCu+I86abpJKSxG0lJdLcudmtB0gF8xiF7hiew4UXnOPHS/PmSaWlsWc1UuxnaWls/fjxua0PiIJ5jEJ3DM9hy9VZeVVVVV5TU5P6BqqrY28+b9smDR8ee/bTif9Q6KSYxyh0aZ7DZrbO8/yLrAs3OAEAnU4hBGfhvVQLAEAOEZwAAAQgOAEACEBwAgAQgOAEACAAwQkAQACCEwCAAAQnAAABCE4AAAIQnAAABCA4AQAIQHACABCA4AQAIADBCQBAAIITAIAABCcAAAEITgAAAhCcAAAEIDgBAAhAcAIAEIDgBAAgAMEJAEAAghMAgAAEJwAAAQhOAAACEJwAAAQgOAEACJA0OM1sqZntMbON7bR/08xq47c1ZjY2/WUCAJAfohxxLpc0qYP2nZIudPcKSXdIWpyGugAAyEvFyTq4+2ozG9pB+5pWi9WSBqehLgAA8lK63+OcIenZ9hrNbJaZ1ZhZTX19fZofGgCAzEtbcJrZVxULzlvb6+Pui929yt2rysvL0/XQAABkTdKXaqMwswpJSyRNdvd96dgmAAD56KiPOM1siKQnJV3v7luPviQAAPJX0iNOM3tE0kWS+ppZnaTbJXWVJHdfJGm+pD6SFpqZJDW5e1WmCgYAIJeinFU7LUn7TEkz01YRAAB5jCsHAQAQgOAEACAAwQkAQACCEwCAAAQnAAABCE4AAAIQnAAABCA4AQAIQHACABCA4AQAIADBCQBAAIITAIAABCcAAAEITgAAAhCcAAAEIDgBAAhAcAIAEIDgBAAgAMEJAEAAghMAgAAEJwAAAQhOAAACEJwAAAQgOAEACEBwAgAQgOAEACAAwQkAQACCEwCAAAQnAAABCE4AAAIQnAAABCA4AQAIQHACABCA4AQAIADBCQBAAIITAIAABCcAAAEITgAAAhCcAAAEIDgBAAhAcAIAEIDgBAAgQNLgNLOlZrbHzDa2025m9msz225mtWZ2ZvrLBAAgP0Q54lwuaVIH7ZMlDY/fZkn696MvCwCA/JQ0ON19taT9HXSZKukhj6mW1NvMvpSuAgEAyCfpeI9zkKR3Wi3Xxdd9gZnNMrMaM6upr69Pw0MDAJBd6QhOS7DOE3V098XuXuXuVeXl5Wl4aAAAsisdwVkn6aRWy4Ml7U7DdgEAyDvpCM5nJN0QP7t2vKQP3P1vadguAAB5pzhZBzN7RNJFkvqaWZ2k2yV1lSR3XyRppaRLJW2XdFjStzNVLAAAuZY0ON19WpJ2lzQnbRUBAJDHuHIQAAABCE4AAAIQnAAABCA4AQAIQHACABCA4AQAIADBCQBAAIITAIAABCcAAAEITgAAAhCcAAAEIDgBAAhAcAIAEIDgBAAgAMEJAEAAghMAgAAEJwAAAQhOAAACEJwAAAQgOAEACEBwAgAQgOAEACAAwQkAQACCEwCAAAQnAAABCE4AAAIQnAAABCA4AQAIQHACABCA4AQAIADBCQBAAIITAIAABCcAAAEITgAAAhCcAAAEIDgBAAhAcAIAEIDgBAAgAMEJAEAAghMAgAAEJwAAAQhOAAACEJwAAASIFJxmNsnMtpjZdjO7LUF7LzP7TzPbYGabzOzb6S8VAIDcSxqcZtZF0v2SJksaLWmamY1u022OpNfdfaykiyT9XzPrluZaAQDIuShHnGdL2u7uO9z9iKRHJU1t08clHW9mJqlM0n5JTWmtFACAPBAlOAdJeqfVcl18XWu/kTRK0m5Jr0m6yd1b2m7IzGaZWY2Z1dTX16dYMgAAuRMlOC3BOm+zPFHSekkDJZ0h6Tdm1vMLd3Jf7O5V7l5VXl4eWCoAALkXJTjrJJ3UanmwYkeWrX1b0pMes13STkmnpadEAADyR5TgfFXScDMbFj/h51pJz7Tps0vSBEkys/6SRkrakc5CAQDIB8XJOrh7k5ndKOl5SV0kLXX3TWY2O96+SNIdkpab2WuKvbR7q7vvzWDdAADkRNLglCR3XylpZZt1i1r9vlvSJektDQCA/MOVgwAACEBwAgAQgOAEACAAwQkAQACCEwCAAAQnAAABCE4AAAIQnAAABCA4AQAIQHACABCA4AQAIADBCQBAAIITAIAABCcAAAEITgAAAhCcAAAEIDgBAAhAcAIAEIDgBAAgwDERnLNmzdLIkSNVVFSk5cuX57oc4Kg8+OCDMjMtWbIk16UAkb3yyisqKyv73M3M9MQTT+S6tGDHRHCOHTtWCxcu1JlnnpnrUoCjcuDAAf3yl7/UmDFjcl0KEOT888/XoUOHPrutWLFCZWVlmjRpUq5LC1ac6wKyYc6cOZKkkpKSHFcCHJ0f//jHmjt3rh577LFclwIclQcffFBXX321jjvuuFyXEuyYOOIEOoO//OUvqqmp0ezZs3NdCnBUDh8+rMcff1zTp0/PdSkpITiBAtDc3Kzvf//7uu+++1RUxL8tCtsTTzyhvn376sILL8x1KSkp3P/A6mpp2jSpsjL2s7o61xUB4SLO44ULF6qiokLnnHNOlgsEkkhhX/zggw/qhhtukJllocAMcPec3CorKz1l8+e7l5a6m7lL7kVFseX58zu827nnnuvLli1L/XGBdAqYx1OnTvXevXt7//79vX///t61a1fv2bOnz5kzJweFA3Ep7It37drlXbp08e3btydsl1TjOcqlqLfCOzmoulq6+27p8OG/r2tpiS3ffbc0ebI0fvzn7nLkyBG1tLTI3fXJJ5+ooaFB3bp14yUv5E7gPF6+fLkaGho+W77yyit19dVXa8aMGdmsGvi7FPbFkvTwww/rK1/5ik455ZQsFptehZcc994rffxx4raGhlh7G5dccol69OihNWvWaNasWerRo4dWr16d4UKBDgTO4969e2vAgAGf3bp166aePXuqV69eWSgWSCCFfbEkPfTQQwV7UtCnCu+Ic+tWyT1xW0uLtG3bF1a/9NJLma0JCJXCPG6NOY2cS3EOv/HGGxksKjsK74hzxAipvZdYi4pi7UC+Yx6j0B3Dc7jwgvOmm6T2LmRQUiLNnZvdeoBUMI9R6I7hOVx4wTl+vDRvnlRa+vdnO0VFseV58xK+GQ3kHeYxCt0xPIfN23uNOsOqqqq8pqYm9Q1UV8fefN62TRo+PPbspxP/odBJMY9R6NI8h81snbtXpbHCtCvc4AQAdDqFEJyF91ItAAA5RHACABCA4AQAIADBCQBAAIITAIAABCcAAAEITgAAAhCcAAAEIDgBAAgQKTjNbJKZbTGz7WZ2Wzt9LjKz9Wa2ycxeTm+ZAADkh6Tfx2lmXSTdL+lrkuokvWpmz7j766369Ja0UNIkd99lZv0yVC8AADkV5YjzbEnb3X2Hux+R9KikqW36XCfpSXffJUnuvie9ZQIAkB+iBOcgSe+0Wq6Lr2tthKQTzOwlM1tnZjck2pCZzTKzGjOrqa+vT61iAAByKEpwWoJ1bb9SpVhSpaTLJE2U9H/M7Atf/+3ui929yt2rysvLg4sFACDXkr7HqdgR5kmtlgdL2p2gz153/0jSR2a2WtJYSVvTUiUAAHkiyhHnq5KGm9kwM+sm6VpJz7Tp80dJ55tZsZmVSvoHSZvTWyoAALmX9IjT3ZvM7EZJz0vqImmpu28ys9nx9kXuvtnMnpNUK6lF0hJ335jJwgEAyAVzb/t2ZXZUVVV5TU1NTh4bAJCfzGydu1fluo6OcOUgAAACEJwAAAQgOAEACEBwAgAQgOAEACAAwQkAQACCEwCAAAQnAAABCE4AAAIQnAAABCA4AQAIQHACABCA4AQAIADBCQBAAIITAIAABCcAAAEITgAAAhCcAAAEIDgBAAhAcAIAEIDgBAAgAMEJAEAAghMAgAAEJwAAAQhOAAACEJwAAAQgOAEACEBwAgAQgOAEACAAwQkAQACCEwCAAAQnAAABCE4AAAIQnAAABCA4AQAIQHACABCA4AQAIADBCQBAAIITAIAABCcAAAEITgAAAhCcAAAEiBScZjbJzLaY2XYzu62DfmeZWbOZXZ2+EgEAyB9Jg9PMuki6X9JkSaMlTTOz0e30+1dJz6e7SAAA8kWUI86zJW139x3ufkTSo5KmJuj3A0lPSNqTxvoAAMgrUYJzkKR3Wi3Xxdd9xswGSbpC0qKONmRms8ysxsxq6uvrQ2sFACDnogSnJVjnbZYXSLrV3Zs72pC7L3b3KnevKi8vj1giAAD5ozhCnzpJJ7VaHixpd5s+VZIeNTNJ6ivpUjNrcven01EkAAD5IkpwvippuJkNk/RXSddKuq51B3cf9unvZrZc0gpCEwDQGSUNTndvMrMbFTtbtoukpe6+ycxmx9s7fF8TAIDOJMoRp9x9paSVbdYlDEx3/+ejLwsAgPzElYMAAAhAcAIAEIDgBAAgAMEJAEAAghMAgAAEJwAAAQhOAAACEJwAAAQgOAEACEBwAgAQgOAEACAAwQkAQACCEwCAAAQnAAABCE4AAAIQnAAABCA4AQAIQHACABCA4AQAIADBCQBAAIITAIAABCcAAAEITgAAAhCcAAAEIDgBAAhAcAIAEIDgBAAgAMEJAEAAghMAgAAEJwAAAQhOAAACEJwAAAQgOAEACEBwAgAQgOAEACAAwQkAQACCEwCAAAQnAAABCE4AAAIQnAAABCA4AQAIQHACABCA4AQAIECk4DSzSWa2xcy2m9ltCdq/aWa18dsaMxub/lIBAMi9pMFpZl0k3S9psqTRkqaZ2eg23XZKutDdKyTdIWlxugsFACAfRDniPFvSdnff4e5HJD0qaWrrDu6+xt0PxBerJQ1Ob5kAAOSHKME5SNI7rZbr4uvaM0PSs4kazGyWmdWYWU19fX30KgEAyBNRgtMSrPOEHc2+qlhw3pqo3d0Xu3uVu1eVl5dHrxIAgDxRHKFPnaSTWi0PlrS7bSczq5C0RNJkd9+XnvIAAMgvUY44X5U03MyGmVk3SddKeqZ1BzMbIulJSde7+9b0lwkAQH5IesTp7k1mdqOk5yV1kbTU3TeZ2ex4+yJJ8yX1kbTQzCSpyd2rMlc2AAC5Ye4J367MuKqqKq+pqcnJYwMA8pOZrcv3Ay+uHAQAQACCEwCAAAQnAAABCE4AAAIQnAAABCA4AQAIQHACABCA4AQAIADBCQBAAIITAIAABCcAAAEITgAAAhCcAAAEIDgBAAhAcAIAEIDgBAAgAMEJAEAAghMAgAAEJwAAAQhOAAACEJwAAAQgOAEACEBwAgAQgOAEACAAwQkAQACCEwCAAAQnAAABCE4AAAIQnAAABCA4AQAIQHACABCA4AQAIADBCQBAAIITAIAABCcAAAEITgAAAhCcAAAEOCaCc/369aqsrFRpaakqKyu1fv36XJcEBNm7d6/OPfdc9enTR71799Y555yjP//5z7kuCwjS3Nysn/3sZxo4cKCOP/54jRs3Tu+//36uywrW6YPzyJEjmjp1qr71rW/pwIEDmj59uqZOnaojR47kujQgsrKyMi1dulT19fU6cOCAbr31Vl1++eVqamrKdWlAZLfffrvWrFmjtWvX6uDBg3r44YdVUlKS67KCdfrgfOmll9TU1KSbb75Z3bt319y5c+XuWrVqVa5LAyIrKSnRyJEjVVRUJHdXly5ddODAAe3fvz/XpQGRHDhwQAsWLNBvf/tbffnLX5aZ6fTTTyc489GmTZtUUVEhM/tsXUVFhTZt2pTDqoDUVFRUqKSkRFOmTNHMmTPVr1+/XJcERPLaa6+puLhYjz/+uAYMGKARI0bo/vvvz3VZKSnOdQGZdujQIfXq1etz63r16qUPP/wwRxUBqautrVVDQ4Oeeuop3m5AQamrq9MHH3ygrVu3aufOndq2bZsmTJigESNG6Gtf+1quywsS6YjTzCaZ2RYz225mtyVoNzP7dby91szOTH+pbVRXS9OmSZWVsZ/V1Qm7lZWV6eDBg59bd/DgQR1//PEZLxFIKuI8bq2kpETTpk3TXXfdpQ0bNmShSKADEedwjx49JEnz589Xjx49VFFRoWuvvVYrV67MZrVpkTQ4zayLpPslTZY0WtI0MxvdpttkScPjt1mS/j3NdX7e7bdLEyZIv/+99D//Iz32WGz59tu/0HXMmDGqra2Vu3+2rra2VmPGjMloiUBSAfM4kU8++UQ7duzIcJFABwLmcEVFhSR97m2zguXuHd4knSPp+VbLP5b04zZ9/kPStFbLWyR9qaPtVlZWekrWrnUvLXWXvngrLY21t9LY2OhDhgzxBQsWeENDg993330+ZMgQb2xsTO3xgXQInMdr1671V155xRsbG/3w4cN+1113eVlZmf/1r3/N0QBwzAucw+7u559/vs+aNcsbGhr89ddf9/Lycn/hhRc+10dSjSfJpVzforxUO0jSO62W6+LrQvukx733Sh9/nLitoSHW3kq3bt309NNP66GHHlLv3r21dOlSPf300+rWrVtGygMiCZzHjY2NmjNnjvr06aNBgwZp5cqV+tOf/qSBAwdmoVgggcA5LEmPPPKI3n77bfXp00eXXXaZ7rjjDk2YMCHDhaZflJODEh1Xewp9ZGazFHspV0OGDInw0Als3Rp7TpNIS4u0bdsXVo8bN07r1q1L7fGATAicxxdeeCHvZyK/pLAvHjRokJ577rkMF5Z5UY446ySd1Gp5sKTdKfSRuy929yp3ryovLw+tNWbECKmonbKLimLtQL5jHqPQHcNzOEpwvippuJkNM7Nukq6V9EybPs9IuiF+du14SR+4+9/SXGvMTTdJ7X1gtqREmjs3Iw8LpBXzGIXuGJ7DSYPT3Zsk3SjpeUmbJT3m7pvMbLaZzY53Wylph6Ttkn4r6fsZqlcaP16aN08qLf37s52iotjyvHmxdiDfMY9R6I7hOWze3mvUGVZVVeU1NTWpb6C6Ovbm87Zt0vDhsWc/nfgPhU6KeYxCl+Y5bGbr3L0qjRWmXeEGJwCg0ymE4Oz016oFACCdCE4AAAIQnAAABCA4AQAIQHACABCA4AQAIADBCQBAAIITAIAABCcAAAEITgAAAhCcAAAEyNm1as2sXtLbadhUX0l707CdfMKYCgNjKgyMqTB8OqYvu3uKX9icHTkLznQxs5p8vyBwKMZUGBhTYWBMhaGQxsRLtQAABCA4AQAI0BmCc3GuC8gAxlQYGFNhYEyFoWDGVPDvcQIAkE2d4YgTAICsITgBAAhQMMFpZpPMbIuZbTez2xK0m5n9Ot5ea2Zn5qLOEBHG9M34WGrNbI2Zjc1FnSGSjalVv7PMrNnMrs5mfamIMiYzu8jM1pvZJjN7Ods1hoow93qZ2X+a2Yb4mL6dizqjMrOlZrbHzDa2016I+4dkYyrE/UOHY2rVL7/3D+6e9zdJXSS9KelkSd0kbZA0uk2fSyU9K8kkjZf0/3JddxrG9BVJJ8R/n9wZxtSq3ypJKyVdneu60/B36i3pdUlD4sv9cl13Gsb0E0n/Gv+9XNJ+Sd1yXXsHY7pA0pmSNrbTXlD7h4hjKqj9Q5Qxxfvk/f6hUI44z5a03d13uPsRSY9Kmtqmz1RJD3lMtaTeZvalbBcaIOmY3H2Nux+IL1ZLGpzlGkNF+TtJ0g8kPSFpTzaLS1GUMV0n6Ul33yVJ7p7v44oyJpd0vJmZpDLFgrMpu2VG5+6rFauxPYW2f0g6pgLcP0T5O0kFsH8olOAcJOmdVst18XWhffJJaL0zFHvGnM+SjsnMBkm6QtKiLNZ1NKL8nUZIOsHMXjKzdWZ2Q9aqS02UMf1G0ihJuyW9Jukmd2/JTnkZUWj7h1CFsH9IqlD2D8W5LiAiS7Cu7edoovTJJ5HrNbOvKvaPcV5GKzp6Uca0QNKt7t4cO5jJe1HGVCypUtIEST0krTWzanffmuniUhRlTBMlrZd0saRTJP2Xmb3i7gczXFumFNr+IbIC2j9EsUAFsH8olOCsk3RSq+XBij0TDu2TTyLVa2YVkpZImuzu+7JUW6qijKlK0qPxf4q+ki41syZ3fzorFYaLOvf2uvtHkj4ys9WSxkrK1+CMMqZvS7rLY286bTeznZJOk/SX7JSYdoW2f4ikwPYPURTE/qFQXqp9VdJwMxtmZt0kXSvpmTZ9npF0Q/zsufGSPnD3v2W70ABJx2RmQyQ9Ken6PD56aS3pmNx9mLsPdfehkh6X9P18+6doI8rc+6Ok882s2MxKJf2DpM1ZrjNElDHtUuwIWmbWX9JISTuyWmV6Fdr+IakC3D8kVSj7h4I44nT3JjO7UdLzip1xtdTdN5nZ7Hj7IsXOwLpU0nZJhxV7xpy3Io5pvqQ+khbGn4E1eR5/e0DEMRWUKGNy981m9pykWkktkpa4e4en2+dSxL/THZKWm9lrir3Meau75+3XWJnZI5IuktTXzOok3S6pq1SY+wcp0pgKav8gRRpTQeCSewAABCiUl2oBAMgLBCcAAAEITgAAAhCcAAAEIDgBAElFvUB7wPaa41+MsN7M2n4cKq9xVi0AICkzu0DSIcWu+Xt6GrZ3yN3Ljr6y7OOIEwCQVKILtJvZKWb2XPwaza+Y2Wk5Ki+rCE4AQKoWS/qBu1dKmidpYcB9S8ysxsyqzewfM1JdhhTElYMAAPnFzMoU+07QP7S6IHv3eNuVkn6e4G5/dfeJ8d+HuPtuMztZ0ioze83d38x03elAcAIAUlEk6X13P6Ntg7s/qdh1dNvl7rvjP3eY2UuSxin2Bet5j5dqAQDB4l8xt9PM/kmS4hfQHxvlvmZ2gpl9enTaV9K5kl7PWLFpRnACAJKKX6B9raSRZlZnZjMkfVPSDDPbIGmTpKkRNzdKUk38fv+t2FfYFUxw8nEUAAACcMQJAEAAghMAgAAEJwAAAQhOAAACEJwAAAQgOAEACEBwAgAQ4P8D0x7RdR4oP5gAAAAASUVORK5CYII=\n", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "register_2D = AtomArrangement()\n", + "separation = 6.7e-6 # in meters \n", + "\n", + "for k in range(3):\n", + " for l in range(3):\n", + " register_2D.add((k * separation, l * separation))\n", + "\n", + "show_register(register_2D)" + ] + }, + { + "cell_type": "markdown", + "id": "eb0fcacf", + "metadata": {}, + "source": [ + "We will use the same driving field as the one for generating the $Z_2$ phase. We then assemble the 2D array with the driving field, and run the AHS program on the local simulator. " + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "df3a2aae", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAX20lEQVR4nO3dfbQddX3v8feHRCogCJSj1SSaIBSNCogRhKhFqG1AHtrKVcKDF0Sz6IKKtlfBLkCXrS6uiAtRJAYaQKRiRahRU8F6JUgRzYlGQuTBNCLEYEkEISDylM/9Y+bg9mSffSYJM/vkzOe11ll7z+P+nlnJ+ez5/WZ+I9tERER7bdXvAiIior8SBBERLZcgiIhouQRBRETLJQgiIlpuYr8L2Fi77LKLp06d2u8yIiK2KEuWLFlre6Dbsi0uCKZOncrg4GC/y4iI2KJI+sVIy9I0FBHRcgmCiIiWSxBERLRcbUEgab6k+yXdNsJySbpA0gpJt0rap65aIiJiZHWeEVwGzOqx/BBg9/JnDnBRjbVERMQIagsC2zcCD/RY5UjgCy7cAuwo6UV11RMREd31s49gEnBvx/Sqct4GJM2RNChpcM2aNY0UFxHRFv0MAnWZ13VMbNvzbM+wPWNgoOv9EBERsYn6GQSrgCkd05OB1X2qJSKitfp5Z/EC4FRJVwH7AQ/Zvq+P9bTW1DO+2dhn3X3OWxv7rM2RY7KhJo8JbBnHZbwck9qCQNKXgAOBXSStAj4MPAfA9lxgIXAosAL4LXBiXbVERMTIagsC27NHWW7glLo+v5vxkt4REc+m3FkcEdFyCYKIiJZLEEREtFyCICKi5RIEEREtlyCIiGi5BEFERMslCCIiWi5BEBHRcgmCiIiWSxBERLRcgiAiouUSBBERLZcgiIhouQRBRETLJQgiIlouQRAR0XIJgoiIlksQRES0XIIgIqLlEgQRES2XIIiIaLkEQUREyyUIIiJaLkEQEdFyCYKIiJZLEEREtFyCICKi5RIEEREtlyCIiGi5BEFERMslCCIiWi5BEBHRcrUGgaRZku6UtELSGV2WP1/S1yX9RNJySSfWWU9ERGxo1CCQNGFTdlxudyFwCDAdmC1p+rDVTgF+ansv4EDgPElbb8rnRUTEpqlyRrBC0rld/oiPZl9ghe2Vtp8ArgKOHLaOge0lCXge8ADw1EZ+TkREbIYqQbAncBdwiaRbJM2RtEOF7SYB93ZMryrndfos8ApgNbAMOM32+uE7Kj9zUNLgmjVrKnx0RERUNWoQ2F5n+2LbBwAfBD4M3Cfpckm79dhU3XY3bPovgaXAi4G9gc92Cxnb82zPsD1jYGBgtJIjImIjVOojkHSEpGuBTwPnAbsCXwcW9th0FTClY3oyxTf/TicC17iwAvg58PKNqD8iIjbTxArr/Az4LnCu7Zs75l8t6U09tlsM7C5pGvBL4GjgmGHr3AMcDHxP0guBPYCVVYuPiIjNVyUI3mn7ps4Zkmba/i/b7x1pI9tPSToVuA6YAMy3vVzSyeXyucA/AZdJWkbRlHS67bWb+stERMTGqxIEFwD7DJv3mS7zNmB7IcOaj8oAGHq/GviLCjVERERNRgwCSfsDBwADkv6+Y9EOFN/wIyJiHOh1RrA1xbX9E4HtO+Y/DBxVZ1EREdGcEYPA9iJgkaTLbP+iwZoiIqJBvZqGzrf9Popr+4df/4/tI+osLCIimtGraeiK8vWTTRQSERH90atpaEn5umhonqSdgCm2b22gtoiIaECVO4tvkLSDpJ2BnwCXSvpU/aVFREQTqgw693zbDwN/A1xq+7XAn9dbVkRENKVKEEyU9CLg7cA3aq4nIiIaViUIPkoxTMQK24sl7Uox/lBERIwDow4xYfsrwFc6plcCb6uzqIiIaM6oQSBpAHgPMLVzfdvvqq+siIhoSpVB574GfA/4T+DpesuJiIimVQmCbW2fXnslERHRF1U6i78h6dDaK4mIiL6oEgSnUYTB7yQ9LGmdpIfrLiwiIppR5aqh7UdbJyIitlxVhpiQpOMknVVOT5G0b/2lRUREE6o0DX0O2J/fP3j+EeDC2iqKiIhGVblqaD/b+0j6MYDtByVtXXNdERHRkCpnBE9KmgAYnrnBbH2tVUVERGOqBMEFwLXACyR9DLgJ+HitVUVERGOqXDV0paQlwMGAgL+yfXvtlUVERCN6PbN4547J+4EvdS6z/UCdhUVERDN6nREsoegXEPAS4MHy/Y7APcC0uouLiIj6jdhHYHua7V0pnkVwuO1dbP8xcBhwTVMFRkREvap0Fr/O9sKhCdv/AfxZfSVFRESTqtxHsFbSmcAXKZqKjgN+XWtVERHRmCpnBLOBAYpLSK8t38+us6iIiGhOlctHH6AYgTQiIsahKmcEERExjiUIIiJaLkEQEdFyo/YRSLqgy+yHgEHbXxtl21nAp4EJwCW2z+myzoHA+cBzgLW2c2lqRESDqpwRPBfYG/hZ+bMnsDNwkqTzR9qoHLH0QuAQYDowW9L0YevsSPG8gyNsvxL4Xxv9G0RExGapch/BbsBBtp8CkHQRcD3wFmBZj+32BVbYXlludxVwJPDTjnWOAa6xfQ+A7fs3+jeIiIjNUuWMYBKwXcf0dsCLbT8NPD7Kdvd2TK8q53X6U2AnSTdIWiLpnd12JGmOpEFJg2vWrKlQckREVFXljOATwFJJN1AMOvcm4OOStgP+s8d26jLPXT7/tRRDXG8DfF/SLbbv+oON7HnAPIAZM2YM30dERGyGnkEgaSvgduAAiqYeAf9oe3W5ygd6bL4KmNIxPRlY3WWdtbYfBR6VdCOwF3AXERHRiJ5NQ7bXA+fZvs/212z/e0cIjGYxsLukaeUzjo8GFgxb52vAGyVNlLQtsB9F8EREREOq9BFcL+ltkro19Yyo7Fw+lWIY69uBf7O9XNLJkk4u17kd+BZwK/BDiktMb9uo3yAiIjZLlT6Cv6foIH5a0mMUzUO2vcNoG5bDVy8cNm/usOlzgXMrVxwREc+qKoPObd9EIRER0R+jNg2pcJyks8rpKZL2rb+0iIhoQpU+gs8B+1Pc/AXwCMUdwxERMQ5U6SPYz/Y+kn4MYPvB8iqgiIgYB6qcETxZjhtkAEkDwPpaq4qIiMZUCYILKB5R+UJJHwNuAj5ea1UREdGYKlcNXSlpCcUwEAB/VV7/HxER40CVPgKAbSmeKWCKMYEiImKcqHL56NnA5RTPINgFuFTSmXUXFhERzahyRjAbeI3t3wFIOgf4EfDPdRYWERHNqNJZfDfFU8qG/BHw37VUExERjRvxjEDSZyj6BB4Hlkv6djn9FoorhyIiYhzo1TQ0WL4uobh8dMgNtVUTERGNGzEIbF/eZCEREdEfvZqGlrHhoyWfYXvPWiqKiIhG9WoaOqx8PaV8vaJ8PRb4bW0VRUREo3o1Df0CQNJM2zM7Fp0h6b+Aj9ZdXERE1K/K5aPbSXrD0ISkAyieWBYREeNAlRvKTgLmS3o+RZ/BQ8C7aq0qIiIaUyUIltreS9IOgGw/VHdRERHRnCpNQysknQtMSghERIw/VYJgT+Au4F8k3SJpTnl2EBER48CoQWB7ne2LbR8AfBD4MHCfpMsl7VZ7hRERUasqw1BPkHSEpGuBTwPnAbsCXwcW1lxfRETUrEpn8c+A7wLn2r65Y/7Vkt5UT1kREdGUKkGwp+1HhiYk7QicYvtjtt9bW2UREdGIEZuGJE2RNA+4StJJkraVdB7FGcILGqswIiJq1euM4AvAIuCrwCzgFmA58Grbv2qgtoiIaECvINjZ9kfK99dJ+h/gdbYfr7+siIhoSs8+Akk7ASonfwVsK2k7ANsP1FxbREQ0oFcQPJ/i6WTqmPej8tUUl5BGRMQWrtcw1FMbrCMiIvqkyhATERExjtUaBJJmSbpT0gpJZ/RY73WSnpZ0VJ31RETEhmoLAkkTgAuBQ4DpwGxJ00dY7/8C19VVS0REjKxSEEh6g6QTy/cDkqZV2GxfYIXtlbafAK4Cjuyy3t9R3Ktwf8WaIyLiWVRl0LkPA6cDHypnPQf4YoV9TwLu7ZheVc7r3Pck4K+BuaPUMEfSoKTBNWvWVPjoiIioqsoZwV8DRwCPAtheDWxfYTt1medh0+cDp9t+uteObM+zPcP2jIGBgQofHRERVVUZdO4J25ZkgKEbyipYBUzpmJ4MrB62zgyKsYwAdgEOlfSU7X+v+BkREbGZqgTBv0n6PLCjpPdQPLj+4grbLQZ2L/sTfgkcDRzTuYLtZ/oaJF0GfCMhEBHRrFGDwPYnJb0FeBjYAzjb9rcrbPeUpFMprgaaAMy3vVzSyeXynv0CERHRjCpnBJR/+Ef9499lu4UMe4rZSAFg+4SN3X9ERGy+UYNA0jo27OR9CBgE/sH2yjoKi4iIZlQ5I/gURSfvv1JcCXQ08CfAncB84MC6iouIiPpVuXx0lu3P215n+2Hb84BDbX8Z2Knm+iIiomZVgmC9pLdL2qr8eXvHsuFNRhERsYWpEgTHAsdTDAHxP+X74yRtA5xaY20REdGAKpePrgQOH2HxTc9uORER0bQqVw09FzgJeCXw3KH5tt9VY10REdGQKk1DV1BcJfSXwCKKoSLW1VlUREQ0p0oQ7Gb7LOBR25cDbwVeXW9ZERHRlCpB8GT5+htJr6J4qP3U2iqKiIhGVbmhbJ6knYAzgQXA84Czaq0qIiIa0zMIJG0FPGz7QeBGYNdGqoqIiMb0bBqyvZ7cKxARMa5V6SP4tqT/I2mKpJ2HfmqvLCIiGlGlj2DofoFTOuaZNBNFRIwLVe4snjbaOhERseUatWlI0raSzpQ0r5zeXdJh9ZcWERFNqNJHcCnwBHBAOb0K+OfaKoqIiEZVCYKX2f4E5Y1lth+jeEBNRESMA1WC4IlyyGkDSHoZ8HitVUVERGOqXDX0EeBbwBRJVwIzgRNqrCkiIhpU5aqh6yUtAV5P0SR0mu21tVcWERGNqPI8ggXAl4AFth+tv6SIiGhSlT6C84A3Aj+V9BVJR5UPq4mIiHGgStPQImCRpAnAQcB7gPnADjXXFhERDajSWUx51dDhwDuAfYDL6ywqIiKaU6WP4MvAfhRXDl0I3FCOShoREeNAlTOCS4FjbD8NIGmmpGNsnzLKdhERsQWo0kfwLUl7S5pN0TT0c+Ca2iuLiIhGjBgEkv4UOBqYDfwa+DIg229uqLaIiGhArzOCO4DvAYfbXgEg6f2NVBUREY3pdR/B24BfAd+VdLGkg8lgcxER486IQWD7WtvvAF4O3AC8H3ihpIsk/UVD9UVERM1GvbPY9qO2r7R9GDAZWAqcUWXnkmZJulPSCkkbbCPpWEm3lj83S9prY3+BiIjYPFWGmHiG7Qdsf972QaOtW96JfCFwCDAdmC1p+rDVfg78me09gX8C5m1MPRERsfk2Kgg20r7ACtsrbT8BXAUc2bmC7ZttP1hO3kJxxhEREQ2qMwgmAfd2TK8q543kJOA/ui2QNEfSoKTBNWvWPIslRkREnUHQ7Qojd11RejNFEJzebbntebZn2J4xMDDwLJYYERGVBp3bRKuAKR3Tk4HVw1eStCdwCXCI7V/XWE9ERHRR5xnBYmB3SdMkbU1xl/KCzhUkvYRiuIrjbd9VYy0RETGC2s4IbD8l6VTgOmACMN/2ckknl8vnAmcDfwx8ThLAU7Zn1FVTRERsqM6mIWwvBBYOmze34/27gXfXWUNERPRWZ9NQRERsARIEEREtlyCIiGi5BEFERMslCCIiWi5BEBHRcgmCiIiWSxBERLRcgiAiouUSBBERLZcgiIhouQRBRETLJQgiIlouQRAR0XIJgoiIlksQRES0XIIgIqLlEgQRES2XIIiIaLkEQUREyyUIIiJaLkEQEdFyCYKIiJZLEEREtFyCICKi5RIEEREtlyCIiGi5BEFERMslCCIiWi5BEBHRcgmCiIiWSxBERLRcgiAiouVqDQJJsyTdKWmFpDO6LJekC8rlt0rap856IiJiQxPr2rGkCcCFwFuAVcBiSQts/7RjtUOA3cuf/YCLytdooalnfLPRz7v7nLc2+nmbIsekuyaPy5ZyTDZHbUEA7AussL0SQNJVwJFAZxAcCXzBtoFbJO0o6UW276uxrjEh/8EjYqxQ8Te4hh1LRwGzbL+7nD4e2M/2qR3rfAM4x/ZN5fR3gNNtDw7b1xxgTjm5B3BnLUWPbBdgbcOfOdblmHSX47KhHJMN9eOYvNT2QLcFdZ4RqMu84alTZR1szwPmPRtFbQpJg7Zn9Ovzx6Ick+5yXDaUY7KhsXZM6uwsXgVM6ZieDKzehHUiIqJGdQbBYmB3SdMkbQ0cDSwYts4C4J3l1UOvBx5qQ/9ARMRYUlvTkO2nJJ0KXAdMAObbXi7p5HL5XGAhcCiwAvgtcGJd9WymvjVLjWE5Jt3luGwox2RDY+qY1NZZHBERW4bcWRwR0XIJgoiIlksQjGK0YTLaRtIUSd+VdLuk5ZJO63dNY4WkCZJ+XN4f03rlDaJXS7qj/Peyf79r6jdJ7y//39wm6UuSntvvmiBB0FPHMBmHANOB2ZKm97eqvnsK+AfbrwBeD5ySY/KM04Db+13EGPJp4Fu2Xw7sRcuPjaRJwHuBGbZfRXERzdH9raqQIOjtmWEybD8BDA2T0Vq277P9o/L9Oor/3JP6W1X/SZoMvBW4pN+1jAWSdgDeBPwLgO0nbP+mr0WNDROBbSRNBLZljNw3lSDobRJwb8f0KvJH7xmSpgKvAX7Q51LGgvOBDwLr+1zHWLErsAa4tGwuu0TSdv0uqp9s/xL4JHAPcB/FfVPX97eqQoKgt0pDYLSRpOcBXwXeZ/vhftfTT5IOA+63vaTftYwhE4F9gItsvwZ4FGh1H5uknShaFKYBLwa2k3Rcf6sqJAh6yxAYXUh6DkUIXGn7mn7XMwbMBI6QdDdF8+FBkr7Y35L6bhWwyvbQ2eLVFMHQZn8O/Nz2GttPAtcAB/S5JiBBMJoqw2S0iiRRtPvebvtT/a5nLLD9IduTbU+l+Dfy/2yPiW96/WL7V8C9kvYoZx3MHw5B30b3AK+XtG35/+hgxkgHep2jj27xRhomo89l9dtM4HhgmaSl5bx/tL2wfyXFGPV3wJXll6iVjN0hZBph+weSrgZ+RHH13Y8ZI0NNZIiJiIiWS9NQRETLJQgiIlouQRAR0XIJgoiIlksQRES0XIIgtiiSHtnI9Q8cGg1U0hFNjyAraUDSD8phFt5YcZsTJL247toihuQ+gmgN2wto/obAg4E7bP/vjdjmBOA2chd7NCRnBLFFKr/p39Ax3v2V5d2aQ8+QuEPSTcDfdGxzgqTPlu9fKOlaST8pfw4o5x8n6YeSlkr6fPmMgQmSLivHkF8m6f1d6nmppO9IurV8fYmkvYFPAIeW+9tm2DZnS1pc7neeCkcBMyhuxFoqaRtJB5dnFMskzZf0R+X2d0v6uKTvSxqUtI+k6yT999CzwSW9SNKN5b5uq3pWEu2SIIgt2WuA91E8K2JXYGb5oI+LgcOBNwJ/MsK2FwCLbO9FMQbOckmvAN4BzLS9N/A0cCywNzDJ9qtsvxq4tMv+Pgt8wfaewJXABbaXAmcDX7a9t+3Hhm9j+3Xl2PTbAIfZvhoYBI4tazBwGfCO8rMnAn/bsY97be8PfK9c7yiK50R8tFx+DHBdua+9gKUjHI9osQRBbMl+aHuV7fUUf+CmAi+nGNjrZy5umx9p8LeDgIsAbD9t+yGKZpzXAovL4TMOpgiYlcCukj4jaRbQbbTV/YF/Ld9fAbyhQv1vLvsPlpX1vLLLOnuUv89d5fTlFOP8Dxlq6loG/MD2OttrgN9J2pFivKwTJX0EeHX5DImIP5AgiC3Z4x3vn+b3fV6bOm6KgMvLb+97297D9kdsP0jxbfoG4BSqPXymZw3lmcvngKPKb/oXA90eW9htKPROQ8dgPX94PNYDE23fSBEcvwSukPTOCrVHyyQIYry5A5gm6WXl9OwR1vsOZRNL2QewQznvKEkvKOfvXLb97wJsZfurwFl0H075Zn7/2MFjgZtGqXPoj/7a8tkOR3UsWwds3/H7TJW0Wzl9PLBolH0/Q9JLKZ6VcDHFqLFtHwo6ushVQzGu2P6dpDnANyWtpfiD/Kouq54GzJN0EsXZxN/a/r6kM4HrJW0FPElxBvAYxZO2hr44fajL/t4LzJf0AYonc/UcadP2byRdTNGkczdFE86Qy4C5kh6jaHI6EfiKiscbLgbmjnIYOh0IfEDSk8AjQM4IYgMZfTQiouXSNBQR0XIJgoiIlksQRES0XIIgIqLlEgQRES2XIIiIaLkEQUREy/1/FsOz4JqEm4IAAAAASUVORK5CYII=\n", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "ahs_program_2D = AnalogHamiltonianSimulation(\n", + " register=register_2D, \n", + " hamiltonian=drive\n", + ")\n", + "\n", + "result_2D = device.run(ahs_program_2D, shots=1000, steps=200).result()\n", + "show_final_avg_density(result_2D)" + ] + }, + { + "cell_type": "markdown", + "id": "08e49477", + "metadata": {}, + "source": [ + "We see that the overall pattern mimics the checkerboard pattern, but the central site suffers strong discrepancy. This is due to the finite size of the system and the finite duration of the AHS program, which cause non-adiabatic errors.\n", + "\n", + "For more explanation and interpretation of the 2-d results, see \"Quantum Phases of Matter on a 256-Atom Programmable Quantum Simulator\" by [Ebadi et al. (2020)](http://arxiv.org/abs/2012.12281). " + ] + }, + { + "cell_type": "markdown", + "id": "68ffc633", + "metadata": {}, + "source": [ + "## Realizing $Z_2$ and checkerboard phase on a QPU\n", + "\n", + "In previous sections, we have demonstrated two AHS programs for realizing many-body ground states. The results from the local simulator show that the results of the programs meet our expectations. Here we will run the same AHS program on the Aquila device. " + ] + }, + { + "cell_type": "markdown", + "id": "525d3c27", + "metadata": {}, + "source": [ + "
    \n", + "Note: Some atoms may be missing even if the shot was successful. We recommend comparing pre_sequence of each shot with the requested atom filling in the AHS program specification. \n", + "
    " + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "31901542", + "metadata": {}, + "outputs": [], + "source": [ + "from braket.aws import AwsDevice \n", + "device = AwsDevice(\"arn:aws:braket:us-east-1::device/qpu/quera/Aquila\")" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "07a73135", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAXM0lEQVR4nO3de5QlZX3u8e/DECIgCBxGozA4gxLUKKCOKKBGISYoCklkKTc9IsoyCyKaHAVz0LhM4iIiLkXRcTBcVBSPKMdRiXg5ghLFzKAoctMJIox4GRQBicrtd/6oamx7+lIDU7t7ur6ftXrtXZdd+zd7Tfez632r3jdVhSRpuDaZ7QIkSbPLIJCkgTMIJGngDAJJGjiDQJIGbtPZLmB9bb/99rV48eLZLkOSNiqXXXbZzVW1cLJtG10QLF68mFWrVs12GZK0UUnyw6m22TQkSQNnEEjSwBkEkjRwBoEkDZxBIEkDZxBI0sAZBJI0cAaBJA2cQSBJA7fR3VksSXPF4hM+O9L3u/6kA3o5rmcEkjRwBoEkDZxBIEkDN6g+gvnSnidJG5JnBJI0cAaBJA2cQSBJA2cQSNLAGQSSNHAGgSQNnEEgSQNnEEjSwBkEkjRwBoEkDVyvQZBk/yTXJlmd5IRJtj8kyaeTfDvJlUmO7LMeSdK6eguCJAuA04DnAo8DDk3yuAm7HQNcVVW7A88CTkmyWV81SZLW1ecZwZ7A6qq6rqruBM4FDpqwTwFbJQnwYOAXwN091iRJmqDPINgBuHHc8pp23XjvAR4L3ARcARxXVff2WJMkaYI+gyCTrKsJy38BXA48AtgDeE+Srdc5UHJ0klVJVq1du3ZD1ylJg9ZnEKwBFo1b3pHmm/94RwKfrMZq4AfAYyYeqKqWV9XSqlq6cOHC3gqWpCHqMwhWArskWdJ2AB8CrJiwzw3AfgBJHgbsClzXY02SpAl6m6Gsqu5OcixwIbAAOKOqrkzyqnb7MuCfgLOSXEHTlHR8Vd3cV02SpHX1OlVlVV0AXDBh3bJxz28C/rzPGiRJ0/POYkkaOINAkgbOIJCkgTMIJGngDAJJGjiDQJIGziCQpIEzCCRp4AwCSRo4g0CSBs4gkKSBMwgkaeAMAkkauBmDoJ2EXpI0T3U5I1id5OQkj+u9GknSyHUJgt2A7wEfSHJpO3/wOvMKS5I2TjMGQVXdXlWnV9XewOuBfwR+nOTsJI/uvUJJUq869REkOTDJ+cC7gFOAnYFPM2H2MUnSxqfLVJXfB74MnFxVXxu3/rwkz+ynLElzzeITPjvS97v+pANG+n5D1iUIXlpVl4xfkWSfqvqPqnp1T3VJkkakS2fxqZOse/eGLkSSNDumPCNIshewN7Awyd+N27Q14L0FkjRPTNc0tBnw4Hafrcatvw04uM+iJEmjM2UQVNXFwMVJzqqqH46wJo3YKDsB7QCU5p7pmobeWVWvAd6TpCZur6oD+yxMkjQa0zUNfah9fPsoCpEkzY7pmoYuax8vHluXZFtgUVV9ZwS1SZJGoMudxRcl2TrJdsC3gTOTvKP/0iRJo9DlPoKHVNVtwF8DZ1bVk4E/67csSdKodAmCTZM8HHgR8Jme65EkjViXIHgLcCGwuqpWJtmZZvwhSdI8MONYQ1X1ceDj45avA17YZ1GSpNGZMQiSLAReCSwev39Vvby/siRJo9Jl9NFPAV8Fvgjc0285kqRR6xIEW1TV8b1XIkmaFV06iz+T5Hm9VyJJmhVdguA4mjD4TZLbktye5La+C5MkjUaXq4a2mmkfSdLGq8sQE0lyRJI3tsuLkuzZ5eBJ9k9ybZLVSU6YYp9nJbk8yZVJLp5sH0lSf7p0Fr8XuBfYF/gn4FfAacBTpntRkgXtfs8B1gArk6yoqqvG7bNNe/z9q+qGJA+9P/8IaUNzjgYNSZc+gqdW1THAbwCq6haa2ctmsifN3cjXVdWdwLnAQRP2OQz4ZFXd0B77Z50rlyRtEF2C4K72233BfTeY3dvhdTsAN45bXtOuG++PgW3bEU4vS/LSDseVJG1AXZqGTgXOBx6a5F9o5is+scPrMsm6iTOdbQo8GdgP2Bz4epJLq+p7v3eg5GjgaICddtqpw1tLkrrqctXQOUkuo/ljHeAvq+rqDsdeAywat7wjcNMk+9xcVXcAdyT5CrA78HtBUFXLgeUAS5cuXWfaTEnS/Tdl01CS7cZ+gJ8BHwU+Avy0XTeTlcAuSZYk2Qw4BFgxYZ9PAc9IsmmSLYCnAl1CRpK0gUx3RnAZTVNOgJ2AW9rn2wA3AEumO3BV3Z3kWJohrBcAZ1TVlUle1W5fVlVXJ/kc8B2afocPVNV3H9g/SZK0Pqabs3gJQJJlwIqquqBdfi4dZyhrX3PBhHXLJiyfDJy8fmVLkjaULlcNPWUsBACq6t+BP+2vJEnSKHW5aujmJCcCH6ZpKjoC+HmvVUmSRqbLGcGhwEKaS0jPb58f2mdRkqTR6XL56C9oRiCVJM1DXc4IJEnzmEEgSQNnEEjSwM3YR5Dk1ElW3wqsqqpPbfiSJEmj1OWM4EHAHsD325/dgO2Ao5K8s7fKJEkj0eU+gkcD+1bV3QBJ3gd8nmbCmSt6rE2SNAJdzgh2ALYct7wl8Iiqugf4bS9VSZJGpssZwduAy5NcRDPo3DOBtybZEvhij7VJkkZg2iBIsgnNsNB700w9GeAfqmpsXoHX9VueJKlv0wZBVd2b5JSq2otm7gBJ0jzTpY/g80lemGSyqSclSRu5Ln0Ef0fTQXxPkl/TNA9VVW3da2WSpJHoMujcVqMoRJI0O2ZsGkrjiCRvbJcXJdmz/9IkSaPQpY/gvcBewGHt8q+A03qrSJI0Ul36CJ5aVU9K8i2AqrolyWY91yVJGpEuZwR3JVlAM00lSRYC9/ZalSRpZLoEwak0U1Q+LMm/AJcAb+21KknSyHS5auicJJcB+7Wr/rKqru63LEnSqHTpIwDYAhhrHtq8v3IkSaPW5fLRNwFn08xBsD1wZpIT+y5MkjQaXc4IDgWeWFW/AUhyEvBN4J/7LEySNBpdOouvp5mlbMwfAv/VSzWSpJGb8owgybtp+gR+C1yZ5Avt8nNorhySJM0D0zUNrWofL6O5fHTMRb1VI0kauSmDoKrOHmUhkqTZMV3T0BW0dxNPpqp266UiSdJITdc09Pz28Zj28UPt4+HAf/dWkSRppKZrGvohQJJ9qmqfcZtOSPIfwFv6Lk6S1L8ul49umeTpYwtJ9qaZsUySNA90uaHsKOCMJA+h6TO4FXh5r1VJkkamSxBcXlW7J9kaSFXd2ndRkqTR6dI0tDrJycAOhoAkzT9dgmA34HvAvyW5NMnR7dmBJGkemDEIqur2qjq9qvYGXg/8I/DjJGcneXTvFUqSetVlGOoFSQ5Mcj7wLuAUYGfg08AFM7x2/yTXJlmd5IRp9ntKknuSHLye9UuSHqAuncXfB74MnFxVXxu3/rwkz5zqRe08x6fRDFK3BliZZEVVXTXJfv8KXLi+xUuSHrhOfQRVddRYCCTZJsn/BqiqV0/zuj2B1VV1XVXdCZwLHDTJfn8LfAL42fqVLknaEKYMgiSLkiwHzk1yVJItkpxCc4bw0A7H3gG4cdzymnbd+PfYAfgrYNl0B2o7qFclWbV27doOby1J6mq6M4IPAjcB7wYeD1wKPAJ4QlUd1+HYmWTdxEHs3gkcX1X3THegqlpeVUuraunChQs7vLUkqavp+gi2q6o3t88vTPJT4ClV9duOx14DLBq3vCNNsIy3lOaMA5r5kJ+X5O6q+r8d30OS9ABN21mcZFt+983+J8AWSbYEqKpfzHDslcAuSZYAPwIOAQ4bv0NVLRn3XmcBnzEEJGm0pguCh9DMTja+ieeb7WPRXEI6paq6O8mxNFcDLQDOqKork7yq3T5tv4AkaTSmG4Z68QM9eFVdwIR7DaYKgKp62QN9P0nS+uty+agkaR4zCCRp4AwCSRq4TkGQ5OlJjmyfL2yvBJIkzQNdBp37R+B44A3tqj8APtxnUZKk0elyRvBXwIHAHQBVdROwVZ9FSZJGp0sQ3FlVRTs8xNgNZZKk+aFLEPyfJO8HtknySuCLwOn9liVJGpUZ5yOoqrcneQ5wG7Ar8Kaq+kLvlUmSRqLLxDS0f/j94y9J89CMQZDkdtYdPvpWYBXw91V1XR+FSYLFJ3x2pO93/UkHjPT9NDd0OSN4B83w0R+hGYDuEOCPgGuBM4Bn9VWcJKl/XTqL96+q91fV7VV1W1UtB55XVR8Dtu25PklSz7oEwb1JXpRkk/bnReO2TWwykiRtZLoEweHAS2gml/9p+/yIJJsDx/ZYmyRpBLpcPnod8IIpNl+yYcuRJI1al6uGHgQcBfwJ8KCx9VX18h7rkiSNSJerhj4EXAP8BfAWmqaiq/ssSsPkpZLS7OjSR/DoqnojcEdVnQ0cADyh37IkSaPSJQjuah9/meTxNJPaL+6tIknSSHVpGlqeZFvgRGAF8GDgjb1WJUkamWmDIMkmwG1VdQvwFWDnkVQlSRqZaZuGqupevFdAkua1Ln0EX0jyv5IsSrLd2E/vlUmSRqJLH8HY/QLHjFtX2EwkSfNClzuLl4yiEEnS7JixaSjJFklOTLK8Xd4lyfP7L02SNApd+gjOBO4E9m6X1wD/3FtFkqSR6hIEj6qqt9HeWFZVv6aZoEaSNA90CYI72yGnCyDJo4Df9lqVJGlkulw19Gbgc8CiJOcA+wAv67EmSdIIdblq6PNJLgOeRtMkdFxV3dx7ZZKkkegyH8EK4KPAiqq6o/+SJEmj1KWP4BTgGcBVST6e5OB2shpJ0jzQpWnoYuDiJAuAfYFXAmcAW/dcmyRpBLp0FtNeNfQC4MXAk4Cz+yxKkjQ6XfoIPgY8lebKodOAi9pRSSVJ80CXM4IzgcOq6h6AJPskOayqjpnhdZKkjcCMncVV9TngCUn+Ncn1NMNLXNPl4En2T3JtktVJTphk++FJvtP+fC3J7uv7D5AkPTBTnhEk+WPgEOBQ4OfAx4BU1bO7HLjtXD4NeA7N+EQrk6yoqqvG7fYD4E+r6pYkzwWW0zRDSZJGZLqmoWuArwIvqKrVAEleux7H3hNYXVXXta89FzgIuC8Iqupr4/a/FNhxPY4vSdoApmsaeiHwE+DLSU5Psh/rN9jcDsCN45bXtOumchTw75NtSHJ0klVJVq1du3Y9SpAkzWTKIKiq86vqxcBjgIuA1wIPS/K+JH/e4diThUZNumPybJogOH6KWpZX1dKqWrpw4cIOby1J6qpLZ/EdVXVOVT2fpunmcmCdjt9JrAEWjVveEbhp4k5JdgM+ABxUVT/vUrQkacPpMsTEfarqF1X1/qrat8PuK4FdkixJshlNx/OK8Tsk2Qn4JPCSqvre+tQiSdowOt1ZfH9U1d1JjgUuBBYAZ1TVlUle1W5fBrwJ+B/Ae5MA3F1VS/uqSZK0rt6CAKCqLgAumLBu2bjnrwBe0WcNkqTprVfTkCRp/jEIJGngDAJJGjiDQJIGziCQpIEzCCRp4AwCSRo4g0CSBq7XG8o0tcUnfHak73f9SQeM9P2kPo3y92cIvzueEUjSwBkEkjRwBoEkDZxBIEkDZxBI0sAZBJI0cAaBJA2cQSBJA2cQSNLAGQSSNHAGgSQNnEEgSQNnEEjSwBkEkjRwBoEkDZxBIEkDZxBI0sAZBJI0cAaBJA2cQSBJA2cQSNLAGQSSNHAGgSQNnEEgSQNnEEjSwBkEkjRwBoEkDZxBIEkDZxBI0sD1GgRJ9k9ybZLVSU6YZHuSnNpu/06SJ/VZjyRpXb0FQZIFwGnAc4HHAYcmedyE3Z4L7NL+HA28r696JEmT6/OMYE9gdVVdV1V3AucCB03Y5yDgg9W4FNgmycN7rEmSNEGqqp8DJwcD+1fVK9rllwBPrapjx+3zGeCkqrqkXf4ScHxVrZpwrKNpzhgAdgWu7aXoqW0P3Dzi95zr/Ewm5+eyLj+Tdc3GZ/LIqlo42YZNe3zTTLJuYup02YeqWg4s3xBF3R9JVlXV0tl6/7nIz2Ryfi7r8jNZ11z7TPpsGloDLBq3vCNw0/3YR5LUoz6DYCWwS5IlSTYDDgFWTNhnBfDS9uqhpwG3VtWPe6xJkjRBb01DVXV3kmOBC4EFwBlVdWWSV7XblwEXAM8DVgP/DRzZVz0P0Kw1S81hfiaT83NZl5/JuubUZ9JbZ7EkaePgncWSNHAGgSQNnEEwg5mGyRiaJIuSfDnJ1UmuTHLcbNc0VyRZkORb7f0xg5dkmyTnJbmm/f+y12zXNNuSvLb9vfluko8medBs1wQGwbQ6DpMxNHcDf19VjwWeBhzjZ3Kf44CrZ7uIOeRdwOeq6jHA7gz8s0myA/BqYGlVPZ7mIppDZreqhkEwvS7DZAxKVf24qr7ZPr+d5pd7h9mtavYl2RE4APjAbNcyFyTZGngm8G8AVXVnVf1yVouaGzYFNk+yKbAFc+S+KYNgejsAN45bXoN/9O6TZDHwROAbs1zKXPBO4PXAvbNcx1yxM7AWOLNtLvtAki1nu6jZVFU/At4O3AD8mOa+qc/PblUNg2B6nYbAGKIkDwY+Abymqm6b7XpmU5LnAz+rqstmu5Y5ZFPgScD7quqJwB3AoPvYkmxL06KwBHgEsGWSI2a3qoZBMD2HwJhEkj+gCYFzquqTs13PHLAPcGCS62maD/dN8uHZLWnWrQHWVNXY2eJ5NMEwZH8G/KCq1lbVXcAngb1nuSbAIJhJl2EyBiVJaNp9r66qd8x2PXNBVb2hqnasqsU0/0f+X1XNiW96s6WqfgLcmGTXdtV+wFWzWNJccAPwtCRbtL9H+zFHOtD7HH10ozfVMBmzXNZs2wd4CXBFksvbdf9QVRfMXkmao/4WOKf9EnUdc3cImZGoqm8kOQ/4Js3Vd99ijgw14RATkjRwNg1J0sAZBJI0cAaBJA2cQSBJA2cQSNLAGQTaqCT51Xru/6yx0UCTHDjqEWSTLEzyjXaYhWd0fM3Lkjyi79qkMd5HoMGoqhWM/obA/YBrqup/rsdrXgZ8F+9i14h4RqCNUvtN/6Jx492f096tOTaHxDVJLgH+etxrXpbkPe3zhyU5P8m325+92/VHJPnPJJcneX87x8CCJGe1Y8hfkeS1k9TzyCRfSvKd9nGnJHsAbwOe1x5v8wmveVOSle1xl6dxMLCU5kasy5NsnmS/9oziiiRnJPnD9vXXJ3lrkq8nWZXkSUkuTPJfY3ODJ3l4kq+0x/pu17MSDYtBoI3ZE4HX0MwVsTOwTzvRx+nAC4BnAH80xWtPBS6uqt1pxsC5MsljgRcD+1TVHsA9wOHAHsAOVfX4qnoCcOYkx3sP8MGq2g04Bzi1qi4H3gR8rKr2qKpfT3xNVT2lHZt+c+D5VXUesAo4vK2hgLOAF7fvvSnwN+OOcWNV7QV8td3vYJp5It7Sbj8MuLA91u7A5VN8Hhowg0Abs/+sqjVVdS/NH7jFwGNoBvb6fjW3zU81+Nu+wPsAquqeqrqVphnnycDKdviM/WgC5jpg5yTvTrI/MNloq3sBH2mffwh4eof6n932H1zR1vMnk+yza/vv+V67fDbNOP9jxpq6rgC+UVW3V9Va4DdJtqEZL+vIJG8GntDOISH9HoNAG7Pfjnt+D7/r87q/46YEOLv99r5HVe1aVW+uqltovk1fBBxDt8lnpq2hPXN5L3Bw+03/dGCyaQsnGwp9vLHP4F5+//O4F9i0qr5CExw/Aj6U5KUdatfAGASab64BliR5VLt86BT7fYm2iaXtA9i6XXdwkoe267dr2/63Bzapqk8Ab2Ty4ZS/xu+mHTwcuGSGOsf+6N/czu1w8LhttwNbjfv3LE7y6Hb5JcDFMxz7PkkeSTNXwuk0o8YOfShoTcKrhjSvVNVvkhwNfDbJzTR/kB8/ya7HAcuTHEVzNvE3VfX1JCcCn0+yCXAXzRnAr2lm2hr74vSGSY73auCMJK+jmZlr2pE2q+qXSU6nadK5nqYJZ8xZwLIkv6ZpcjoS+Hia6Q1XAstm+BjGexbwuiR3Ab8CPCPQOhx9VJIGzqYhSRo4g0CSBs4gkKSBMwgkaeAMAkkaOINAkgbOIJCkgfv/kNpkRQEvGtgAAAAASUVORK5CYII=\n", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "result_1D_aquila = device.run(ahs_program, shots=100).result()\n", + "show_final_avg_density(result_1D_aquila)" + ] + }, + { + "cell_type": "markdown", + "id": "69fc4e5d", + "metadata": {}, + "source": [ + "We can calculate the density correlation function for the result obtained from Aquila" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "e07e91f5", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAT4AAAEWCAYAAAD/x/trAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAg9UlEQVR4nO3de5gdVZnv8e8vN0hCIJCA5gqoTBAvAYygA3pQQQMDgo46Msoo4lHneIHxCjoK3o74yGHEGUcmAwgIIoqgURFFBBEFJAEEAqIIBJpEQlBu4Rrynj9qNVO0u7trp2vt3rvr93me/XTd9rvW3ul+s2pV1VqKCMzMmmTcaFfAzKzTnPjMrHGc+MyscZz4zKxxnPjMrHGc+MyscZz4RkjS7ZL2TsvHSDpjtOvUT1JIek7G+C+TdHOu+J0y0n83SSsk7VVfjSy3Ria+lKwekfSQpD9JOlXSZqNdr14TEb+MiAX96+X/BMaq9LvyufK2iHheRFwySlWyjdDIxJccEBGbATsDuwBHjW51nk7ShNGuQy9q9b1JGj8adbHu1eTEB0BE/An4CUUCRNINkg7o3y9poqS1kvr3HyJppaR7JX2iRchNJZ0t6UFJV0taWIo1W9J3Jd0j6TZJHyjtO0bSOZLOkPQA8HZJ20u6NMX6maSvDnVKJukjklZLWiXpHQP2bSLpOEl3SLpb0omSJqd9e0nqk/QhSWtSjENL791P0o2pHndJ+nD5fWn5G8B84AepJf1RST+S9P4B9bhO0kGD1H9PSb+WdJ+kOyW9PW3fQtLp6XtbKelfJY1L+94u6VeS/k3Sn4FjUqvsa5LOl7QOeMVQ332LenwnnQncn77/56Xt7wLeAnw0fcYfpO3l7o5NJH05/RusSsubVPmerYMionEv4HZg77Q8F7geOCGtfxQ4u3TsgcD1aXkn4CHg5cAmwPHA+lKsY4AngDcAE4EPA7el5XHAcuBTwCTgWcCtwGsGvPegdOxk4HLguHT8nsADwBmDfKbFwN3A84GpwDeBAJ6T9n8ZWApsBUwDfgB8Ie3bK32Oz6S67gc8DGyZ9q8GXpaWtwR2Lb2vr9X3mtbfBFxZWl8I3AtMalH/+cCDwMGpDjOAndO+04Hvp3pvB/weOCzte3uq+/uBCel7OxW4H9gjfZdTKnz3Z5Tq8o5U1ibpe7u2tO9U4HND/D59BrgC2AbYGvg18Nkq37NfHcwBo12BUfnQxS/qQ+kPLYCLgOlp3+y0ffO0fg7w0bT8KeBbpThTgcd5euK7orR/XH/SAHYH7hhQj6OAr5fee2lp3/z0RzKltO0MBk98pwDHltb/Jn225wAC1gHPLu1/KXBbWt4LeASYUNq/BnhJWr4DeHf/d1I6Zi+GTnybAH8GdkjrxwH/OUj9jwLOa7F9PPAYsFNp27uBS9Ly21t8r6cCp5fWq3z3g32v09P3uEUp9lCJ74/AfqV9rwFur/I9+9W5V5NPdQ+KiGkUv4w7AjMBImIV8Cvg7yVNB/YFzkzvmQ3c2R8gItZRtGDKyvs3AH3pfdsCs9Np3H2S7gM+Djyj1XvTe/4cEQ8Psn+g2QP2rywtb01q9ZTKviBt73dvRKwvrT8M9F/w+XuK1slKSb+Q9NIh6vGUiHgM+Dbw1nRqejDwjUEOn0eRNAaaSdFKK3+elcCc0nqr76W8rcp3DxT9gZKOlfTH1OVwe6keVcxuUdfZpfWhvmfrkMZ3oEfELySdStEaOShtPg14J8X3c3lE3JW2rwae2/9eSVMoTsnK5pX2j6M4lV5F0Xq7LSJ2GKo6peXVwFaSppSS37wW7ykfX94/v7S8lqKl8bzSZ6ksIq4CDpQ0EXgfRTJrVZdWQ/2cRpHsLgMejojLBynmTmC3FtvXUnQBbAvcmLbNB8qfo1W55W13Mvx33+8fKbo39qZIelsAf6FoNQ9WVtmqVNcVpbquqlCudVCTW3xlXwb2UbqAAXwP2BU4nKJ/qd85wP6pE34SRV/NwO/wRZJer+Lq4hEUp2lXAL8BHpD0MUmTU8vi+ZJe3KpCEbESWEbRWT8ptbIOaHVs8m2KCyI7pYR8dCnWBuC/gX+TtA2ApDmSXjPkt1IcN0nSWyRtERFPUPQzPjnI4XdT9J+VP8flwAbg/zF4aw+KVvXekt4kaYKkGZJ2jogn02f7vKRpkrYFPkhx2l9VO9/9NIp/s3spWsn/d7jPOMBZwL9K2lrSTIruka65t9MKTnxARNxDkeA+mdYfAb4LbA+cWzpuBfBeigsHqylaAn0Dwn0f+Ie07xDg9RHxRPoDPoDi6vFtFC2ZkyhaFIN5C0Vf3L3A54CzKf4oW32GH1Mk8J8Dt6SfZR9L269Ip3A/AxZQzSHA7el97wHeOshxX6D4o7+v/8pvcjrwAoZIABFxB8Xp9Ico+gWvpbgYAsWFi3UUFyQuo/j+T6lYd9r87k+nOD29i6KFecWA/ScDO6XP+L0W7/8cxX9Y11FcNLs6bbMuotTBagNI+hTwNxEx2B95x0k6G/hdRBw97MFdRNI/Ae+KiD1Huy5m4BZfS5K2Ag4DloxyPV4s6dmSxklaTNH39L3RrFO70mn3/2GUv0uzMie+AST9b4rO8B9HxKWjXJ1nApdQ3HrzFeCfI+KaUa1RG1If4j0U/WLfHOXqmD3Fp7pm1jhu8ZlZ43TVfXwzp06N7aZPzxb/0S1nZYsNsOnEwe7yqM+GzM/bj1PeM4An1mv4g0ZgotYPf9BIjcvbXgjli79y5e2sXbt2RP8Ii6VYW/HY5fCTiFg8kvJy6KrEt9306Sx7z3uyxb/pDZ/MFhvgubPvzxof4JFJQ939MnKTJzyRNf7qtROzxp81aeCDNBlMmZI1/GPjJmeL/bd/u2jEMdYCyyomf23YUPWJl47qqsRnZj2iaqt3w4a89dhITnxm1h4p++l+bk58ZtY+Jz4zaxQJJvR26ujt2pvZ6HCLz8waxX18ZtZIPZ74stZe0mJJN0u6RdKROcsysw7pb/FVeXWpbC0+FVP6fRXYh2LMuqskLY2IG4d+p5l1vS5OalXkPNXdDbglIm4FkPQtimGVnPjMetkYuKqbM23P4ekTvvTx9AligGKuUknLJC27Z926jNUxs9r0+Kluzpq1ehD6r56Aj4glEbEoIhZtPXVqxuqYWS3cxzekPp4+E1f/bGNm1uu6OKlVkTPxXQXsIGl7iolb3kwxdZ+Z9TonvtYiYr2k9wE/AcYDp6RZysysl42BixtZax8R5wPn5yzDzDrMT26YWSP1eOLr7dqb2eio6arucE93SXqLpOvS69eSFraK0y63+MysPTWd6lZ8uus24H9FxF8k7UsxP/PuIy3bic/M2lfPqe6wT3dFxK9Lx19BcVvciDnxmVl72ruqO1PSstL6kohYkpZbPd01VGvuMODHles5BCc+M2tf9Rbf2ogYbGq3Sk93AUh6BUXi27NqwUPpqsT36Jazsk4B+dxzPpstNsAPds47fSXAAVteljX+b6fV8ns1qIWPXpk1/s3TR9z9M6wFc/M+Uz5hUr7YqmNa4/puZ6n0dJekFwInAftGRC3zh3ZV4jOzHlFP4hv26S5J84FzgUMi4vd1FApOfGbWrppafIM93SXpPWn/icCngBnAf6porq4f4tS5Mic+M2tfTTcwt3q6KyW8/uV3Au+spbASJz4za4+f1TWzRurxR9ac+MysPR6kwMwayYnPzBqnxxNfttpLOkXSGkk35CrDzEZB/8WNKq8ulTNtnwoszhjfzEaDJxsaXERcKmm7XPHNbBR1cVKronvbombWnXxVd+QkvQt4F8CsWfNHuTZmVkmPJ75Rr315QvGtttp6tKtjZlW4j8/MGmUMPLKW83aWs4DLgQWS+iQdlqssM+sgX9UdXEQcnCu2mY2yLk5qVfR2e9XMRocTn5k1im9nMbNGcuIzs0YZA1d1e7v2ZjY63OIzs0ZxH1+9Np34JM+dfX+2+LnnvT3gfdtmjQ/wkTetzBr/SzO/mDX+9ft9LGv8F2y+Omt8ACbNzBp+/KMZ5+3dsKGeOE58ZtYobvGZWSP54oaZNYpbfGbWSE58ZtYobvGZWSM58ZlZ4zjxmVmj+JE1M2ucMdDHl3ME5nmSLpZ0k6QVkg7PVZaZdZhHYB7UeuBDEXG1pGnAckkXRsSNGcs0s07o4qRWRc6h51cDq9Pyg5JuAuYATnxmvWwMnOp2pI9P0nbALsCVLfY9Na/u/HnzOlEdMxupHk982WsvaTPgu8AREfHAwP3leXW3njEjd3XMbKT6r+pWeQ0bSosl3SzpFklHtti/o6TLJT0m6cN1fYSsLT5JEymS3pkRcW7Ossysg2po8UkaD3wV2AfoA66StHTAdYA/Ax8ADhpxgSU5r+oKOBm4KSKOz1WOmXVYffPq7gbcEhG3RsTjwLeAA8sHRMSaiLgKeKLOj5DzVHcP4BDglZKuTa/9MpZnZp1ST+KbA9xZWu9L27LLeVX3MkC54pvZKGnvqu5MSctK60siYkl/pBbHx4jqVpGf3DCz9lV/ZG1tRCwaZF8fUL6VYy6waiTVqsqJz8zaU999fFcBO0jaHrgLeDPwj3UEHo4Tn5m1r4bEFxHrJb0P+AkwHjglIlZIek/af6KkZwLLgM2BDZKOAHZqdWtcO5z4zKw9NT65ERHnA+cP2HZiaflPFKfAtXLiM7P29fiTG058ZtYeP6tbrw0azyOTtsgW/4AtL8sWG/JP9g3wpaULssb/h51vzhr/7GeeljX+j7d5W9b4APvudm/W+PdPyPfo5pNRU8LyQKRm1ihu8ZlZIznxmVmjuMVnZo3kxGdmjePEZ2aN4uklzaxx3MdnZo3kxNeapE2BS4FNUjnnRMTRucozsw7q8cQ3bO0lfVbShNL65pK+XiH2Y8ArI2IhsDOwWNJLNrqmZtYd6ht6ftRUqdkE4EpJL5T0aooxtJYP96YoPJRWJ6ZXR0ZXNbOMapxlbbQMW7OIOErSRRRz4v4FeHlE3FIleJpFaTnwHOCrETHkvLrz5s1vo+pmNmq6uDVXRZVT3ZcDJwCfAS4B/kPS7CrBI+LJiNiZYjyt3SQ9v8UxT82rO3Pm1u3U3cxGS4+f6lZpix4HvLF/rktJrwd+DuxYtZCIuE/SJcBi4IaNqKeZdYsxcDtLldq/tDzBb5oYfI/h3iRpa0nT0/JkYG/gdxtZTzPrJj3e4qtSs2dLukjSDQCSXgj8c4X3zQIulnQdxQWRCyPihxtfVTPrCmPgqm6VU93/Bj4C/BdARFwn6ZvA54Z6U0RcB+wy4hqaWffp4iu2VVSp/ZSI+I30tLl/12eqj5l1uzHQx1cl8a2V9GzSPXiS3gCszlorM+tuDUh87wWWADtKugu4DXhr1lqZWfdqQosvIm4F9pY0FRgXEQ/mr5aZdbWxmvgkfXCQ7QBExPGZ6mRm3WyMj8c3Lf1cALwYWJrWD6AYdcXMmmqstvgi4tMAkn4K7Np/iivpGOA7OSozTsHkCU/kCA3Ab6ftmS02wJdmfjFrfOjAvLdLJ2eN/9nnP5I1/idn5L9VtO+R/bPGnzvx7myxx2+o4e+rCX18wHzg8dL648B2WWpjZr2hAYnvG8BvJJ1HcUvL64DTs9bKzLrbWE98EfF5SRcA/eeJh0bENXmrZWZdqyGnugDXUty0PAFA0vyIuCNXpcysi43xq7oASHo/cDRwN/AkIIpT3hfmrZqZda0GtPgOBxZExL25K2NmPaAhp7p3AvfnroiZ9ZAGJL5bgUsk/Yhi5jTAT26YNVqPJ74qtb8DuBCYRPE0R/+rEknjJV0jyYOQmo0FNQ5EKmmxpJsl3SLpyBb7Jekraf91knat4yNUuZ3l0yMs43DgJmDzEcYxs25Q01XdNAvjV4F9gD7gKklLy1NdAPsCO6TX7sDX0s8RGWqQgi9HxBGSfkCL+XAj4rXDBZc0F/g74PNAy0EPzKwH1XOquxtwSxoBCknfAg4EyonvQOD0iAjgCknTJc2KiBGNCTpU2v5G+nncCOJ/GfgoQ5wal+fVnT/f8+qa9YJAwx9UmClpWWl9SUQsSctzKC6e9uvjr1tzrY6ZwwgHQx5qkILl6ecvNiawpP2BNRGxXNJeQ5SzhGKgUxa96EV/1bI0s+6zYUPlQ9dGxKJB9rXKngNzQJVj2pbz9us9gNdK2g/YFNhc0hkR4dGbzXpYRFuJbyh9wLzS+lxg1UYc07Zs16Qj4qiImBsR2wFvBn7upGfW+yJg/fpqr2FcBewgaXtJkyjyxNIBxywF/ild3X0JcP9I+/cgb4vPzMaoOlp8EbFe0vuAnwDjgVMiYoWk96T9JwLnA/sBtwAPA4eOvORqz+ouAj4BbJuOV1GnqPysbkRcAlyycVU0s25T06kuEXE+RXIrbzuxtBwUE57VqkqL70yKCcWvB2r6uGbWq2rs4xs1VRLfPREx8LzbzBqsCYnvaEknARfx9Gd1z81WKzPrWk1p8R0K7AhM5H9OdQNw4jNroP6rur2sSuJbGBEvyF4TM+sZvd7iq3If3xWSdspeEzPrGRs2VHt1qyotvj2Bt0m6jaKPr+3bWap6Yr1YvXZi3WGfsvDRK7PFBrh+v49ljQ9w9jNPyxo/+7y3X5udNf7hbxzxTf3DOmHqxVnjr3zWK7LFfjxG/vfVlD6+xdlrYWY9ZcwnvohYKWkh8LK06ZcR8du81TKzbjUWWnzD9vFJOpziJuZt0uuMNPOamTVUTc/qjpoqp7qHAbtHxDoASV8ELgf+PWfFzKw7jYUWX5XEJ4r5dPv1z61rZg3VhMT3deBKSeel9YOAU7LVyMy6WiNafBFxvKRLKG5rEXBoRFyTu2Jm1r3GfOKT9I2IOAS4usU2M2uYpjyy9rzySpoS7kVVgku6HXiQol9w/RBj75tZDxmzLT5JRwEfByZLeoD/uaDxOGlyoIpeERFrN76KZtZNxkIf36D38UXEFyJiGvCliNg8Iqal14yIOKqDdTSzLjPmn9WNiKMkbUkxk/mmpe2XVogfwE8lBfBfpfk0n1KeV3fOHM+ra9YLujmpVVHl4sY7gcMppnW7FngJxQ3Mr6wQf4+IWCVpG+BCSb8bmDDL8+ouXLjI8+qadbkxfapbcjjwYmBlRLwC2AW4p0rwiFiVfq4BzgN228h6mlmXqHF6yVFTJfE9GhGPAkjaJCJ+BywY7k2Spkqa1r8MvBq4YSSVNbPuMOb7+IA+SdOB71Gcrv6FajOZPwM4T1J/Od+MiAs2sp5m1kW6OalVUeXixuvS4jGSLga2AIZNYBFxK7BwZNUzs24zFvr4qrT4nhIRv8hVETPrHY1KfGZmjWvxmZlBd1+xrcKJz8za4hafmTWSE5+ZNYpbfDWbqPXMmnRvtvg3T989W2yAF2y+Omt8gB9v87as8T8544dZ4+ee9/aEC4a9t37ELnvjzVnj77n+j9liT4rHaonjxGdmjdKUgUjNzJ7GLT4za5Sx0MdXZZACM7On6cQgBZK2knShpD+kn1sOctwpktZIqjwIihOfmbWlv8XXgdFZjgQuiogdgIvSeiunAovbCezEZ2Zt61DiOxA4LS2fRjGn919Jgxv/uZ3A7uMzs7Z08KruMyJidVFmrE4judfCic/M2tZGa26mpGWl9SXluXck/Qx4Zov3fWLjaze8rIkvDWB6EvB8iomH3hERl+cs08zyavOq7tqh5tOOiL0H2yfpbkmzUmtvFrCmvZoOLncf3wnABRGxI8WgpDdlLs/MOqBDfXxLgf5Hld4GfH/EEZNsiU/S5sDLgZMBIuLxiLgvV3lm1jkdSnzHAvtI+gOwT1pH0mxJ5/cfJOksipkfF0jqk3TYcIFznuo+i2I2tq9LWggsBw6PiHXlg8rz6s6fOzdjdcysDp26uBER9wKvarF9FbBfaf3gdmPnPNWdAOwKfC0idgHW0eI+nIhYEhGLImLR1jNmZKyOmdWhg/fxZZMz8fUBfRFxZVo/hyIRmlmPc+IbRET8CbhTUv84Qa8CbsxVnpl1Tq8nvtz38b0fOFPSJOBW4NDM5ZlZZmNhkIKsiS8irgUGvYfHzHqTE5+ZNYoHIjWzRnKLz8waxX18ZtZITnxm1ihu8ZlZIznxmVmj+Kpu3caNgylTsoVfMHfd8AeNxKSZeeMD++6Wb8J1gL5H9s8a/4SpF2eNn3uyb4A9L/5s1vhXvvqT2WKvW79JLXHc4jOzRnEfn5k1khOfmTWOE5+ZNYovbphZ47iPz8wayYnPzBqn1xNfzlnWFki6tvR6QNIRucozs84YC3NuZGvxRcTNwM4AksYDdwHn5SrPzDqnm5NaFZ061X0V8MeIWNmh8swsE1/Vre7NwFkdKsvMMuv1Fl/O6SUBSBMNvRb4ziD73yVpmaRl96xdm7s6ZjZCY6GPL3viA/YFro6Iu1vtfNqE4jPzP+RvZiPX64mvE6e6B+PTXLMxwzcwD0PSFGAf4N05yzGzznLiG0JEPAzMyFmGmXWWr+qaWSO5xWdmjeI+PjNrJCc+M2sUt/jMrJF8ccPMGmUstPg68eSGmY0xnXhyQ9JWki6U9If0c8sWx8yTdLGkmyStkHR4ldhd1eILjeOxcZOzxZ8wKVtoAMY/mnneXuD+CXlvi5w7seWThbVZ+axXZI2/5/o/Zo0Peee9Bdj9N/+eLfbUdWtGHKODLb4jgYsi4lhJR6b1jw04Zj3woYi4WtI0YLmkCyPixqECu8VnZm3r0LO6BwKnpeXTgIMGHhARqyPi6rT8IHATMGe4wF3V4jOz3tBGUpspaVlpfUlELKn43mdExGooEpykbYY6WNJ2wC7AlcMFduIzs7a0+cja2ohYNNhOST8Dntli1yfaqZOkzYDvAkdExAPDHe/EZ2ZtqbOPLyL2HmyfpLslzUqtvVlAyw5KSRMpkt6ZEXFulXLdx2dmbetQH99S4G1p+W3A9wceIEnAycBNEXF81cBOfGbWtg4lvmOBfST9gWJ4u2MBJM2WdH46Zg/gEOCVpRkd9xsusE91zawtnbqdJSLupZiobOD2VcB+afkyQO3GduIzs7b1+pMbuUdg/hfgnUAA1wOHRsSjOcs0s7zGwkCk2fr4JM0BPgAsiojnA+Mpppk0sx7nyYaGjz9Z0hPAFGBV5vLMLDMPUjCEiLgLOA64A1gN3B8RPx143NPm1b3nnlzVMbMa9XqLL+ep7pYUz9ptD8wGpkp668Djnjav7tZb56qOmdXEE4oPbW/gtoi4JyKeAM4F/jZjeWbWIevXV3t1q5x9fHcAL0lz6z5CcT/OsqHfYmbdbiz08WVLfBFxpaRzgKspxsy6Bqg6KoOZdTEnviFExNHA0TnLMLPOcovPzBrJic/MGseJz8waZSw8subEZ2ZtcR+fmTWSE5+ZNU6vJz5FxGjX4SmS7gFWtvGWmcDaTNVx/LEfvxNldFv8bSNiRM+GSroglVvF2ohYPJLycuiqxNcuScuGmsHJ8R1/tMvo9fhjlefcMLPGceIzs8bp9cSX+9lfxx/b8TtRRq/HH5N6uo/PzGxj9HqLz8ysbU58ZtY4PZn4JC2WdLOkWyQdmSH+KZLWSLqh7tgp/jxJF0u6SdIKSYfXHH9TSb+R9NsU/9N1xi+VM17SNZJ+mCH27ZKul3StpNoHsJU0XdI5kn6X/h1eWmPsBane/a8HJB1RV/xUxr+kf9sbJJ0ladM64491PdfHJ2k88HtgH6APuAo4OCJurLGMlwMPAaenqTFrJWkWMCsirpY0DVgOHFTXZ5AkYGpEPCRpInAZcHhEXFFH/FI5HwQWAZtHxP41x76dYmrSLDf/SjoN+GVEnCRpEjAlIu7LUM544C5g94ho5+b8oWLOofg33SkiHpH0beD8iDi1jvhN0Istvt2AWyLi1oh4HPgWxaRGtYmIS4E/1xlzQPzVEXF1Wn4QuAmYU2P8iIiH0urE9Kr1fzhJc4G/A06qM24nSNoceDlwMkBEPJ4j6SWvAv5YV9Ir6Z+6dQKeurVtvZj45gB3ltb7qDFpdJqk7YBdgCtrjjte0rXAGuDCiKg1PvBl4KNArqc2A/ippOWS3lVz7GcB9wBfT6fqJ0maWnMZ/d4MnFVnwKpTt9rgejHxqcW23jpfTyRtBnwXOCIiHqgzdkQ8GRE7A3OB3STVdsouaX9gTUQsrytmC3tExK7AvsB7U/dDXSYAuwJfi4hdgHVAjr7iScBrge/UHLfS1K02uF5MfH3AvNL6XHqwmZ/63r4LnBkR5+YqJ53CXQLU+aD4HsBrUz/ct4BXSjqjxvhExKr0cw1wHkUXR136gL5SK/gcikRYt32BqyPi7prjeurWEerFxHcVsIOk7dP/qG8Glo5yndqSLj6cDNwUEcdniL+1pOlpeTLFH8rv6oofEUdFxNyI2I7i+/95RNTW4pA0NV30IZ2Cvhqo7Qp7RPwJuFPSgrTpVUBtF8dKDqbm09zkqalb0+/Sqyj6ia2inhuPLyLWS3of8BNgPHBKRKyoswxJZwF7ATMl9QFHR8TJNRaxB3AIcH3qhwP4eEScX1P8WcBp6YriOODbEVH7LScZPQM4r/ibZgLwzYi4oOYy3g+cmf7zvBU4tM7gaT7pfYB31xkXPHVrHXrudhYzs5HqxVNdM7MRceIzs8Zx4jOzxnHiM7PGceIzs8Zx4msISR/PFHeRpK+0+Z5jJH04R33MqnDia44siS8ilkXEB3LENsvFiW+MkfS99GD/iv6H+yUdSzGSx7WSzkzbPpjGcruhf6w4Sdul8elOStvPlLS3pF9J+oOkv3psTNJe/ePxpZbcKZIukXSrpA+UjvuEijEUfwYsKG1/tqQLUp1/KWlHSRMkXSVpr3TMFyR9PtuXZs0TEX6NoRewVfo5meIxrxlp/aHSMS8CrgemApsBKyhGiNmO4kmAF1D8p7gcOIViYIgDge+1KG8v4Idp+Rjg18AmFBNO30sxJFZ/eVOAzYFbgA+n91wE7JCWd6d4/A3geRSPYe1D8WTCpNH+bv0aO6+ee2TNhvUBSa9Ly/OAHSgSUNmewHkRsQ5A0rnAyyieeb4tIq5P21cAF0VESLqeIjEO50cR8RjwmKQ1FI+fvSyV93CKuzT93Izi4frvpMfToEiaRMQKSd8AfgC8NIqxF81q4cQ3hqRTw70pEsXDki4BWg1J3mpor36PlZY3lNY3UO33pfz+J0vvafVs5DjgviiGz2rlBcB9FMnTrDbu4xtbtgD+kpLejsBLSvueSENhAVwKHJRG95gKvA74ZcZ6XQq8TtLkNOrKAQBRjEF4m6Q3QjFqjaSFafn1wAyKkZK/0j/ajFkdnPjGlguACZKuAz4LlOfYWAJcJ+nMKIa9PxX4DcXIzydFxDW5KpXKOxu4lmIMwnKSfQtwmKTfUvQ1HihpJnAscFhE/B74D+CEXPWz5vHoLGbWOG7xmVnjOPGZWeM48ZlZ4zjxmVnjOPGZWeM48ZlZ4zjxmVnj/H9YXnYdKN8/jAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "gij_aquila = get_density_correlation_Z2(result_1D_aquila)\n", + "\n", + "plt.imshow(gij_aquila, cmap='bwr', vmin=-0.25, vmax=+0.25)\n", + "plt.xticks(range(num_atoms), [f'{i}' for i in range(num_atoms)])\n", + "plt.xlabel(\"atom index\")\n", + "plt.yticks(range(num_atoms), [f'{j}' for j in range(num_atoms)])\n", + "plt.ylabel(\"atom index\")\n", + "plt.title('Rydberg density correlation')\n", + "plt.gca().set_aspect('equal')\n", + "plt.colorbar()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "fcc2c8b3", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAXOUlEQVR4nO3df/St9Zz38eerE6NS0nQY6uScSDRUcpQKQ40RUjOjRT9wS7TMqhEzN2VGsdwzlluySJGT6QfTyC3cQiM/bkVj0IlIJc4kdcSokUqDfr3vP67rmD3f8/1xnVPX3t/zvZ6Ptb5r7+u6Pvva7+9e53zf+/M7VYUkabg2mnQAkqTJMhFI0sCZCCRp4EwEkjRwJgJJGriNJx3Autp6661r6dKlkw5DkjYol1122c1VtXi6axtcIli6dCkrV66cdBiStEFJ8uOZrtk0JEkDZyKQpIEzEUjSwJkIJGngTASSNHAmAkkaOBOBJA2ciUCSBs5EIEkDt8HNLJak+WLpcZ8d6/td9/bn93JfawSSNHAmAkkaOBOBJA2ciUCSBs5EIEkDZyKQpIFz+KjGOgSur+FvktafNQJJGjgTgSQNnIlAkgbORCBJA2cikKSBMxFI0sANavjoQlkpUJLuT9YIJGngTASSNHAmAkkauEH1EUhaf/axLVzWCCRp4HpNBEn2S3JNklVJjpvm+kOSfDrJd5JcmeTwPuORJK2tt0SQZBFwKvBcYCfgkCQ7TSl2FHBVVe0CPBM4KckD+4pJkrS2PmsEuwOrquraqroTOBc4cEqZAjZPEuDBwC+Au3uMSZI0RZ+JYBvghpHj1e25UacAjwduBK4Ajqmqe6feKMmRSVYmWXnTTTf1Fa8kDVKfiSDTnKspx88BLgceCewKnJJki7VeVLWiqpZX1fLFixff33FK0qD1OXx0NbBk5Hhbmm/+ow4H3l5VBaxK8iPgccA3e4xLmpO7tmlI+qwRXArskGRZ2wF8MHD+lDLXA/sCJHk4sCNwbY8xSZKm6K1GUFV3JzkauBBYBJxRVVcmeXV7/TTgfwFnJbmCpinp2Kq6ua+YJElr63VmcVVdAFww5dxpI89vBP6kzxgkSbNzZrEkDZyJQJIGzkQgSQNnIpCkgTMRSNLAmQgkaeBMBJI0cCYCSRq4ORNBu6+AJGmB6lIjWJXkxGk2lZEkLQBdEsHOwA+ADyb5ers3wFpLRUuSNkxzJoKqur2qTq+qvYA3AG8Gfprk7CSP6T1CSVKvOvURJDkgySeB9wAnAdsDn2bKgnKSpA1Pl9VHfwh8GTixqr42cv68JM/oJyxJ0rh0SQQvq6pLRk8k2buq/qWqXtNTXJKkMenSWXzyNOfee38HIkmajBlrBEn2BPYCFif5q5FLW9DsOCZJWgBmaxp6IPDgtszmI+dvAw7qMyhJ0vjMmAiq6mLg4iRnVdWPxxiTJGmMZmsaendVvRY4JUlNvV5VB/QZmCRpPGZrGvpw+/jOcQQiSZqM2ZqGLmsfL15zLslDgSVV9d0xxCZJGoMuM4svSrJFkq2A7wBnJnlX/6FJksahyzyCh1TVbcCfA2dW1ZOBP+43LEnSuHRJBBsneQTwIuAzPccjSRqzLongrcCFwKqqujTJ9jTrD0mSFoA51xqqqo8BHxs5vhZ4YZ9BSZLGZ85EkGQx8Cpg6Wj5qnpFf2FJksaly+qjnwK+CnwRuKffcCRJ49YlEWxaVcf2HokkaSK6dBZ/Jsnzeo9EkjQRXRLBMTTJ4DdJbktye5Lb+g5MkjQeXUYNbT5XGUnShqvLEhNJ8pIkx7fHS5Ls3n9okqRx6NI09D5gT+DQ9vhXwKm9RSRJGqsuo4b2qKrdknwboKpuSfLAnuOSJI1JlxrBXUkWAQW/m2B2b69RSZLGpksiOBn4JPCwJH8PXAK8rcvNk+yX5Jokq5IcN0OZZya5PMmVSS6erowkqT9dRg2dk+QyYF8gwJ9W1dVzva6tRZwKPBtYDVya5PyqumqkzJY0fRD7VdX1SR62fr+GJGl9zbZn8VYjhz8HPjJ6rap+Mce9d6dZsfTa9jXnAgcCV42UORT4RFVdD1BVP1+38CVJ99VsNYLLaPoFAmwH3NI+3xK4Hlg2x723AW4YOV4N7DGlzGOBByS5CNgceE9VfWjqjZIcCRwJsN12283xtpKkdTFjH0FVLauq7Wn2InhBVW1dVb8P7A98osO9M91tpxxvDDwZeD7wHOD4JI+dJpYVVbW8qpYvXry4w1tLkrrq0ln8lKq6YM1BVf0z8EcdXrcaWDJyvC1w4zRlPldVd1TVzcBXgF063FuSdD/pkghuTvKmJEuTPCrJ3wL/0eF1lwI7JFnWzjs4GDh/SplPAU9PsnGSTWmajubsiJYk3X+6TCg7BHgzzRDSovnWfshcL6qqu5McTdO0tAg4o6quTPLq9vppVXV1ks8B36WZm/DBqvre+v0qkqT10WX46C9oViBdZ22T0gVTzp025fhE4MT1ub8k6b7r0jQkSVrATASSNHAmAkkauDn7CJKcPM3pW4GVVfWp+z8kSdI4dakRPAjYFfhh+7MzsBVwRJJ39xaZJGksugwffQywT1XdDZDk/cDnaRaTu6LH2CRJY9ClRrANsNnI8WbAI6vqHuC3vUQlSRqbLjWCdwCXtwvDBXgG8LYkmwFf7DE2SdIYzJoIkmxEs+TDXjTLSgf4m6pas2bQ6/sNT5LUt1kTQVXdm+SkqtqTZl0gSdIC06WP4PNJXphkumWlJUkbuC59BH9F00F8T5Jf0zQPVVVt0WtkkqSx6LLo3ObjCESSNBlzNg2l8ZIkx7fHS5Ls3n9okqRx6NJH8D5gT5qN5gF+BZzaW0SSpLHq0kewR1XtluTbAFV1S7vjmCRpAehSI7grySLajeeTLKbZTUyStAB0SQQn02xT+fAkfw9cAryt16gkSWPTZdTQOUkuA/ZtT/1pVbnBvCQtEF36CAA2pdmAvoBN+gtHkjRuXYaPngCcTbMHwdbAmUne1HdgkqTx6FIjOAR4UlX9BiDJ24FvAX/XZ2CSpPHo0ll8Hc0uZWv8HvBvvUQjSRq7GWsESd5L0yfwW+DKJF9oj59NM3JIkrQAzNY0tLJ9vIxm+OgaF/UWjSRp7GZMBFV19jgDkSRNxmxNQ1fQziaeTlXt3EtEkqSxmq1paP/28aj28cPt42HAf/YWkSRprGZrGvoxQJK9q2rvkUvHJfkX4K19BydJ6l+X4aObJXnamoMke9HsWCZJWgC6TCg7AjgjyUNo+gxuBV7Ra1SSpLHpkggur6pdkmwBpKpu7TsoSdL4dGkaWpXkRGAbk4AkLTxdEsHOwA+Af0jy9SRHtrUDSdICMGciqKrbq+r0qtoLeAPwZuCnSc5O8pjeI5Qk9arLMtSLkhyQ5JPAe4CTgO2BTwMX9ByfJKlnXTqLfwh8GTixqr42cv68JM/oJyxJ0rh06iOoqiPWJIEkWyb5W4Cqes1sL0yyX5JrkqxKctws5Z6S5J4kB61T9JKk+2zGRJBkSZIVwLlJjkiyaZKTaGoID5vrxkkWAacCzwV2Ag5JstMM5f43cOF6/g6SpPtgthrBh4AbgfcCTwC+DjwSeGJVHdPh3rsDq6rq2qq6EzgXOHCacn8JfBz4+boELkm6f8zWR7BVVb2lfX5hkn8HnlJVv+14722AG0aOVwN7jBZIsg3wZ8A+wFNmulGSI4EjAbbbbruOby9J6mLWPoIkD02yVZKtgJ8Bm44czyXTnJu6rPW7gWOr6p7ZblRVK6pqeVUtX7x4cYe3liR1NVuN4CE0u5ON/kH/VvtYNENIZ7MaWDJyvC1NU9Oo5TR9EABbA89LcndV/d857i1Jup/Mtgz10vt470uBHZIsA34CHAwcOuU9lq15nuQs4DMmAUkary7zCNZLVd2d5Gia0UCLgDOq6sokr26vn9bXe0uSuustEQBU1QVMmX08UwKoqpf3GYskaXpdJpRJkhawTokgydOSHN4+X9y2+0uSFoAui869GTgWeGN76gHAP/YZlCRpfLrUCP4MOAC4A6CqbgQ27zMoSdL4dEkEd1ZV0U4GS+LG9ZK0gHRJBP8nyQeALZO8CvgicHq/YUmSxmXO4aNV9c4kzwZuA3YETqiqL/QemSRpLDrNI2j/8PvHX5IWoDkTQZLbWXuxuFuBlcBfV9W1fQQmSRqPLjWCd9EsFvdPNAvQHQz8AXANcAbwzL6CkyT1r0tn8X5V9YGqur2qbquqFcDzquqjwEN7jk+S1LMuieDeJC9KslH786KRa1ObjCRJG5guieAw4KU0W0n+e/v8JUk2AY7uMTZJ0hh0GT56LfCCGS5fcv+GI0katy6jhh4EHAH8IfCgNeer6hU9xiVJGpMuTUMfphkl9BzgYpotJ2/vMyhJ0vh0SQSPqarjgTuq6mzg+cAT+w1LkjQuXRLBXe3jL5M8gWZT+6W9RSRJGqsuE8pWJHko8CbgfODBwPG9RiVJGptZE0GSjYDbquoW4CvA9mOJSpI0NrM2DVXVvThXQJIWtC59BF9I8j+TLEmy1Zqf3iOTJI1Flz6CNfMFjho5V9hMJEkLQpeZxcvGEYgkaTLmbBpKsmmSNyVZ0R7vkGT//kOTJI1Dlz6CM4E7gb3a49XA3/UWkSRprLokgkdX1TtoJ5ZV1a9pNqiRJC0AXRLBne2S0wWQ5NHAb3uNSpI0Nl1GDb0F+BywJMk5wN7Ay3uMSZI0Rl1GDX0+yWXAU2mahI6pqpt7j0ySNBZd9iM4H/gIcH5V3dF/SJKkcerSR3AS8HTgqiQfS3JQu1mNJGkB6NI0dDFwcZJFwD7Aq4AzgC16jk2SNAZdOotpRw29AHgxsBtwdp9BSZLGp0sfwUeBPWhGDp0KXNSuSipJWgC61AjOBA6tqnsAkuyd5NCqOmqO10mSNgBd+gg+l2TXJIfQNA39CPhE75FJksZixlFDSR6b5IQkVwOn0KwxlKp6VlW9t8vNk+yX5Jokq5IcN831w5J8t/35WpJd1vs3kSStl9lqBN8Hvgq8oKpWASR5Xdcbt6OMTgWeTZNELk1yflVdNVLsR8AfVdUtSZ4LrKDpj5Akjcls8wheCPwM+HKS05Psy7otNrc7sKqqrq2qO4FzgQNHC1TV19r9kAG+Dmy7DveXJN0PZkwEVfXJqnox8DjgIuB1wMOTvD/Jn3S49zbADSPHq9tzMzkC+OfpLiQ5MsnKJCtvuummDm8tSepqzpnFVXVHVZ1TVfvTfGO/HFirvX8a09UeatqCybNoEsGxM8SwoqqWV9XyxYsXd3hrSVJXXZaY+J2q+kVVfaCq9ulQfDWwZOR4W+DGqYWS7Ax8EDiwqv5jXeKRJN1365QI1tGlwA5JliV5IHAwcP5ogSTb0QxFfWlV/aDHWCRJM+i0xMT6qKq7kxwNXAgsAs6oqiuTvLq9fhpwAvD7wPuSANxdVcv7ikmStLbeEgFAVV0AXDDl3Gkjz18JvLLPGCRJs+uzaUiStAEwEUjSwJkIJGngTASSNHAmAkkaOBOBJA2ciUCSBs5EIEkDZyKQpIEzEUjSwJkIJGngTASSNHAmAkkaOBOBJA1cr8tQS+ti6XGfHev7Xff254/1/aT5yhqBJA2ciUCSBs5EIEkDZyKQpIGzs1jSBmecAwuGMKjAGoEkDZyJQJIGzkQgSQNnIpCkgbOzeEKcRStpvrBGIEkDZ41AmsesOWocrBFI0sCZCCRp4EwEkjRwJgJJGjgTgSQNnIlAkgbORCBJA2cikKSBMxFI0sCZCCRp4HpNBEn2S3JNklVJjpvmepKc3F7/bpLd+oxHkrS23hJBkkXAqcBzgZ2AQ5LsNKXYc4Ed2p8jgff3FY8kaXp91gh2B1ZV1bVVdSdwLnDglDIHAh+qxteBLZM8oseYJElTpKr6uXFyELBfVb2yPX4psEdVHT1S5jPA26vqkvb4S8CxVbVyyr2OpKkxAOwIXNNL0DPbGrh5zO853/mZTM/PZW1+JmubxGfyqKpaPN2FPpehzjTnpmadLmWoqhXAivsjqPWRZGVVLZ/U+89HfibT83NZm5/J2ubbZ9Jn09BqYMnI8bbAjetRRpLUoz4TwaXADkmWJXkgcDBw/pQy5wMva0cPPRW4tap+2mNMkqQpemsaqqq7kxwNXAgsAs6oqiuTvLq9fhpwAfA8YBXwn8DhfcVzH02sWWoe8zOZnp/L2vxM1javPpPeOoslSRsGZxZL0sCZCCRp4EwEc5hrmYyhSbIkyZeTXJ3kyiTHTDqm+SLJoiTfbufHDF6SLZOcl+T77b+XPScd06QleV37/+Z7ST6S5EGTjglMBLPquEzG0NwN/HVVPR54KnCUn8nvHANcPekg5pH3AJ+rqscBuzDwzybJNsBrgOVV9QSaQTQHTzaqholgdl2WyRiUqvppVX2rfX47zX/ubSYb1eQl2RZ4PvDBSccyHyTZAngG8A8AVXVnVf1yokHNDxsDmyTZGNiUeTJvykQwu22AG0aOV+Mfvd9JshR4EvCNCYcyH7wbeANw74TjmC+2B24Czmybyz6YZLNJBzVJVfUT4J3A9cBPaeZNfX6yUTVMBLPrtATGECV5MPBx4LVVdduk45mkJPsDP6+qyyYdyzyyMbAb8P6qehJwBzDoPrYkD6VpUVgGPBLYLMlLJhtVw0QwO5fAmEaSB9AkgXOq6hOTjmce2Bs4IMl1NM2H+yT5x8mGNHGrgdVVtaa2eB5NYhiyPwZ+VFU3VdVdwCeAvSYcE2AimEuXZTIGJUlo2n2vrqp3TTqe+aCq3lhV21bVUpp/I/+vqubFN71JqaqfATck2bE9tS9w1QRDmg+uB56aZNP2/9G+zJMO9D5XH93gzbRMxoTDmrS9gZcCVyS5vD33N1V1weRC0jz1l8A57Zeoa5m/S8iMRVV9I8l5wLdoRt99m3my1IRLTEjSwNk0JEkDZyKQpIEzEUjSwJkIJGngTASSNHAmAm1QkvxqHcs/c81qoEkOGPcKskkWJ/lGu8zC0zu+5uVJHtl3bNIaziPQYFTV+Yx/QuC+wPer6n+sw2teDnwPZ7FrTKwRaIPUftO/aGS9+3Pa2Zpr9pD4fpJLgD8fec3Lk5zSPn94kk8m+U77s1d7/iVJvpnk8iQfaPcYWJTkrHYN+SuSvG6aeB6V5EtJvts+bpdkV+AdwPPa+20y5TUnJLm0ve+KNA4CltNMxLo8ySZJ9m1rFFckOSPJ77Wvvy7J25L8a5KVSXZLcmGSf1uzN3iSRyT5Snuv73WtlWhYTATakD0JeC3NXhHbA3u3G32cDrwAeDrwBzO89mTg4qrahWYNnCuTPB54MbB3Ve0K3AMcBuwKbFNVT6iqJwJnTnO/U4APVdXOwDnAyVV1OXAC8NGq2rWqfj31NVX1lHZt+k2A/avqPGAlcFgbQwFnAS9u33tj4C9G7nFDVe0JfLUtdxDNPhFvba8fClzY3msX4PIZPg8NmIlAG7JvVtXqqrqX5g/cUuBxNAt7/bCaafMzLf62D/B+gKq6p6pupWnGeTJwabt8xr40CeZaYPsk702yHzDdaqt7Av/UPv8w8LQO8T+r7T+4oo3nD6cps2P7+/ygPT6bZp3/NdY0dV0BfKOqbq+qm4DfJNmSZr2sw5O8BXhiu4eE9N+YCLQh++3I83v4rz6v9V03JcDZ7bf3Xatqx6p6S1XdQvNt+iLgKLptPjNrDG3N5X3AQe03/dOB6bYtnG4p9FFrPoN7+e+fx73AxlX1FZrE8RPgw0le1iF2DYyJQAvN94FlSR7dHh8yQ7kv0TaxtH0AW7TnDkrysPb8Vm3b/9bARlX1ceB4pl9O+Wv817aDhwGXzBHnmj/6N7d7Oxw0cu12YPOR32dpkse0xy8FLp7j3r+T5FE0eyWcTrNq7NCXgtY0HDWkBaWqfpPkSOCzSW6m+YP8hGmKHgOsSHIETW3iL6rqX5O8Cfh8ko2Au2hqAL+m2WlrzRenN05zv9cAZyR5Pc3OXLOutFlVv0xyOk2TznU0TThrnAWcluTXNE1OhwMfS7O94aXAaXN8DKOeCbw+yV3ArwBrBFqLq49K0sDZNCRJA2cikKSBMxFI0sCZCCRp4EwEkjRwJgJJGjgTgSQN3P8HR85nv4iJ7RkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "result_2D_aquila = device.run(ahs_program_2D, shots=100).result()\n", + "show_final_avg_density(result_2D_aquila)" + ] + }, + { + "cell_type": "markdown", + "id": "1c5e689d", + "metadata": {}, + "source": [ + "In summary, in this notebook we have demonstrated how to realize the 1D $Z_2$ phase and 2D checkerboard phase via adiabatic transition on the Rydberg systems. These are interesting many body phases in their own right, and serve as the starting points for the more involved use cases. " + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "eba213ef", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Task Summary\n", + "{'arn:aws:braket:us-east-1::device/qpu/quera/Aquila': {'shots': 200, 'tasks': {'COMPLETED': 2}}}\n", + "Note: Charges shown are estimates based on your Amazon Braket simulator and quantum processing unit (QPU) task usage. Estimated charges shown may differ from your actual charges. Estimated charges do not factor in any discounts or credits, and you may experience additional charges based on your use of other services such as Amazon Elastic Compute Cloud (Amazon EC2).\n", + "Estimated cost to run this example: 2.60 USD\n" + ] + } + ], + "source": [ + "print(\"Task Summary\")\n", + "print(tracker.quantum_tasks_statistics())\n", + "print('Note: Charges shown are estimates based on your Amazon Braket simulator and quantum processing unit (QPU) task usage. Estimated charges shown may differ from your actual charges. Estimated charges do not factor in any discounts or credits, and you may experience additional charges based on your use of other services such as Amazon Elastic Compute Cloud (Amazon EC2).')\n", + "print(f\"Estimated cost to run this example: {tracker.qpu_tasks_cost() + tracker.simulator_tasks_cost():.2f} USD\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a6a296d5", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + }, + "varInspector": { + "cols": { + "lenName": 16, + "lenType": 16, + "lenVar": 40 + }, + "kernels_config": { + "python": { + "delete_cmd_postfix": "", + "delete_cmd_prefix": "del ", + "library": "var_list.py", + "varRefreshCmd": "print(var_dic_list())" + }, + "r": { + "delete_cmd_postfix": ") ", + "delete_cmd_prefix": "rm(", + "library": "var_list.r", + "varRefreshCmd": "cat(var_dic_list()) " + } + }, + "types_to_exclude": [ + "module", + "function", + "builtin_function_or_method", + "instance", + "_Feature" + ], + "window_display": false + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/modules/1_Continue_Exploring/A_qtm_hw/analog_hamiltonian_simulation/03_Parallel_tasks_on_Aquila.ipynb b/modules/1_Continue_Exploring/A_qtm_hw/analog_hamiltonian_simulation/03_Parallel_tasks_on_Aquila.ipynb new file mode 100644 index 000000000..0a8ab4415 --- /dev/null +++ b/modules/1_Continue_Exploring/A_qtm_hw/analog_hamiltonian_simulation/03_Parallel_tasks_on_Aquila.ipynb @@ -0,0 +1,569 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "43ae51e2", + "metadata": { + "tags": [] + }, + "source": [ + "# Parallel tasks on Aquila\n", + "\n", + "For tasks with few qubits in the register, we can use parallel execution that makes use of full area allowed by the QPU. In this tutorial we go through the previously explored checkerboard preparation but now we take advantage of the full area. \n", + "\n", + "We will break up the register into __batches__ which will run in parallel." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "8af10669-31a2-4eef-993c-6fb2f29c698f", + "metadata": {}, + "outputs": [], + "source": [ + "# Use Braket SDK Cost Tracking to estimate the cost to run this example\n", + "from braket.tracking import Tracker\n", + "tracker = Tracker().start()" + ] + }, + { + "cell_type": "markdown", + "id": "f31e9ade-6b2d-4727-bd4e-cc6a8bbb302e", + "metadata": {}, + "source": [ + "## Defining batches\n", + "\n", + "First, we will define a _single_ batch containing a 3x3 square grid of atoms" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "e5598963", + "metadata": {}, + "outputs": [], + "source": [ + "from braket.ahs.hamiltonian import Hamiltonian\n", + "from braket.ahs.atom_arrangement import AtomArrangement\n", + "from braket.ahs.analog_hamiltonian_simulation import AnalogHamiltonianSimulation" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "4a9c026d", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "\n", + "# distance between atoms\n", + "distance = 6.7e-6\n", + "\n", + "# number of atoms in a batch\n", + "Lx = 3\n", + "Ly = 3\n", + "\n", + "register = AtomArrangement()\n", + "\n", + "for ix in range(Lx):\n", + " for iy in range(Ly):\n", + " pos = (ix * distance, iy * distance)\n", + " register.add(pos)" + ] + }, + { + "cell_type": "markdown", + "id": "fa2efd6c", + "metadata": {}, + "source": [ + "## Bounding box\n", + "\n", + "Next, we define a bounding box by calculating its width and height of the batch. This will prove useful in setting up multiple batches in parallel." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "db0da94b", + "metadata": {}, + "outputs": [], + "source": [ + "x_min = min(*[site.coordinate[0] for site in register])\n", + "x_max = max(*[site.coordinate[0] for site in register])\n", + "y_min = min(*[site.coordinate[1] for site in register])\n", + "y_max = max(*[site.coordinate[1] for site in register])\n", + "\n", + "single_problem_width = x_max - x_min\n", + "single_problem_height = y_max - y_min" + ] + }, + { + "cell_type": "markdown", + "id": "08ff59e6", + "metadata": {}, + "source": [ + "### Calculating batch placement\n", + "\n", + "To prevent entanglement via the Rydberg interaction between batches, we need to place them far apart. Each batch needs an area occupied by its bounding box plus a padding that ensure proper separation.\n", + "\n", + "We pick the distance between the batches to be $3 \\times d$, where $d$ is the distance between neighboring atoms in a single batch. This means the ratio between intra- and inter-batch interaction strengths (using the van der Waals formula, $V = C_6/d^6$) is at most $\\frac{1}{3^6} \\approx 0.001372$.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "36a82617", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "from braket.ahs.atom_arrangement import AtomArrangement, SiteType\n", + "from braket.aws import AwsDevice\n", + "import json\n", + "\n", + "qpu = AwsDevice(\"arn:aws:braket:us-east-1::device/qpu/quera/Aquila\")\n", + "\n", + "# get values from device capabilities\n", + "field_of_view_width = qpu.properties.paradigm.lattice.area.width\n", + "field_of_view_height = qpu.properties.paradigm.lattice.area.height\n", + "n_site_max = qpu.properties.paradigm.lattice.geometry.numberSitesMax\n", + "\n", + "# set distance between batches to be 3 x d\n", + "interproblem_distance = 3 * distance\n", + "\n", + "# setting up a grid of problems filling the total area\n", + "n_width = int(float(field_of_view_width) // (single_problem_width + interproblem_distance))\n", + "n_height = int(float(field_of_view_height) // (single_problem_height + interproblem_distance))" + ] + }, + { + "cell_type": "markdown", + "id": "8f83106e", + "metadata": {}, + "source": [ + "## Generating registers for all batches\n", + "\n", + "We now loop create the total set of registers that will run on the QPU. \n", + "\n", + "We will keep track of which set of registers (by atom number) belongs to which batch using a dictionary called `batch_mapping`.\n", + "\n", + "We stop generating batches once we have reached the maximum number of sites allowed by the QPU. In this case we check to make sure we can fit the necessary number of atoms into a batch in case the number of atoms per batch is not a factor of `n_site_max`. " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "ab083fd7", + "metadata": {}, + "outputs": [], + "source": [ + "batch_mapping = dict()\n", + "parallel_register = AtomArrangement()\n", + "\n", + "atom_number = 0 #counting number of atoms added\n", + "\n", + "for ix in range(n_width):\n", + " x_shift = ix * (single_problem_width + interproblem_distance)\n", + "\n", + " for iy in range(n_height): \n", + " y_shift = iy * (single_problem_height + interproblem_distance)\n", + "\n", + " # reached the maximum number of batches possible given n_site_max\n", + " if atom_number + len(register) > n_site_max: break \n", + "\n", + " atoms = []\n", + " for site in register:\n", + " new_coordinate = (x_shift + site.coordinate[0], y_shift + site.coordinate[1])\n", + " parallel_register.add(new_coordinate,site.site_type)\n", + "\n", + " atoms.append(atom_number)\n", + "\n", + " atom_number += 1\n", + "\n", + " batch_mapping[(ix,iy)] = atoms" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "9fab538e-e7fb-4d24-8458-d8de0a38446c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{(0, 0): [0, 1, 2, 3, 4, 5, 6, 7, 8],\n", + " (0, 1): [9, 10, 11, 12, 13, 14, 15, 16, 17],\n", + " (1, 0): [18, 19, 20, 21, 22, 23, 24, 25, 26],\n", + " (1, 1): [27, 28, 29, 30, 31, 32, 33, 34, 35]}" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Key indicates the position of the batch itself on a unitless grid, \n", + "# with dictionary value being the atom number\n", + "batch_mapping" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "b26b7e0a", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAc4AAAG2CAYAAAD2l2YcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAj4klEQVR4nO3df3BU9b3/8dc7BAgx/FASoIIIKvAFbCgmOli0WGkVtMKteq1prfQWSm1R/MUdte3grdqObf1avK3WUgXUmfqjVi1DUearqDiVtMZbQH7IDxE19CoBEaSYQJL3949dbIwbdj+bzZ7d8HzM7GTPOZ895/2Z/WRfe86ePWvuLgAAkJqCqAsAACCfEJwAAAQgOAEACEBwAgAQgOAEACBAYdQFAABy26uvvtqvsLDwPkknq/PvcDVLWtvY2DijoqJiR6IGBCcA4LAKCwvvGzBgwMiysrLdBQUFnfo7jM3NzVZXVzfq3XffvU/SlERtOvs7BwBA+51cVla2t7OHpiQVFBR4WVnZHsX2rhO3yWI9AID8VHAkhOYh8b62mY+RBqeZLTCzHWa2NkPrazKzVfHb4kysEwCAlqLe41wkaVIG1/eRu38ufkt4bBoA0MGee+4oXXDBUI0ePVIXXDBUzz13VHtXedttt/U74YQTRvfq1etzP/jBDwZI0nXXXXfs3Llz+0vSRRddNGThwoVHp7q+jRs3dhs2bNjodGqJ9OQgd19hZkNazjOzEyXdLalM0n5J33H31yMoDwAQ6tprj9W99/ZXQ0OB3KUNG3ro2Wf76Ior3tMvf/mPdFd7//33lz377LObTjzxxIOZLDcdUe9xJjJf0lXuXiFpjqR7Ah5bZGY1ZlZtZv/WIdUBABJ77rmjdO+9/VVfHwtNSXI31dcX6N57+6e75/n1r399cG1tbffJkycP+/GPf9zv8ssvH3y49i+99FLxqaeeOmL06NEjzzjjjGFvvfVW10PzR4wYMWrEiBGj7rzzzn7p1CLlWHCaWYmkz0v6g5mtkvRbSZ+JL7vQzNYmuC1rsYrj3b1S0tclzYvvvQIAsmHevH5qaEicKw0Npnnz0gqr3//+92/369fv4Isvvrjp6KOPbjpc24aGBps9e/bgP/3pT2+sW7duw7Rp03bOmTNnoCRNnz59yLx5897euHHj+nTqOCTXvsdZIOkDd/9c6wXu/oSkJw73YHffHv+71cxekDRW0huZLxMA8ClbtxaprZ+qdDe9+WZRR5ewZs2a7ps3b+5x9tlnD5ek5uZmlZWVHdy5c2eXDz/8sMvkyZP3SdK3v/3tXcuXL++dzjZyKjjdfa+ZvWlm/+7ufzAzk1Tu7quTPdbMjpa0390bzKxU0nhJP+/omgEAcSecUK8NG3rI3T61zMw1dGh9R5fg7nbSSSd9tGrVqk+cG7Nz584umdpG1F9HeVjSSkkjzKzWzKZL+oak6Wa2WtI6SVNTXN1ISTXxxz0v6XZ3b9fuOAAgwDXX7FD37ol3Obt3d11zTcJL2GVSeXl5/fvvv1/47LPPHiXFDt3W1NQUlZaWNvXs2bNp2bJlJZK0aNGiY9LdRtRn1Va1sSj4Kyru/rKkz7avIgBA2iZO/KeuuOK9+Fm1JneTmat7d9cVV7yniRP/2dElFBUV+SOPPPLG7NmzB3/44Yddmpqa7Hvf+957lZWV9ffff/+2GTNmDDEznXXWWXvT3YZ5W8ejDzUwWyDpK5J2uHublyAys1MV23u81N0fT7cgAEBuWb169bYxY8bsTPkBzz13lObN66c33yzS0KH1uuaaHdkIzUxavXp16ZgxY4YkWpZKcH5B0j5JD7YVnGbWRdL/k1QvaUEqwVlaWupDhiSsCQCQQ37+859rwIABWdlWQ0ND49ixY5Oe19LRDhecSQ/VJrpIQQJXSfqjpFNTLWrIkCGqqalJtTkAICIbNmzQyJEjs7KttWvXHsjKhtqh3ScHmdlASV+V9JsU2s6MX6Cgpq6urr2bBgBkSbKjk51Jc3OzKfa7nAll4qzaeZJucPc2N3KIu89390p3rywrK8vApgEAHa2oqEi7du06IsIz/nucvSW1+eMjmTirtlLSI7GvXKpU0nlm1ujuT2Vg3QCAiA0aNEi1tbXKxpHCd999t7Cpqam0wzfUtmZJaxsbG2e01aDdwenuQw/dN7NFkpYQmgDQeXTt2lVDhw5N3jADRo0a9Vr80qk5K2lwxi9ScJakUjOrlXSzpK6S5O73dmh1AADkmFTOqm3rIgWJ2n6rXdUAAJDjcurXUQAAyHUEJwAAATp9cG7atElTp05VWVmZjjnmGJ177rnauHFj1GUBwcxMRx11lEpKSlRSUqIZM9o86Q/IScuXL9cpp5yiXr166YQTTtD8+fOjLiktnT44P/jgA02ZMkUbN27Ue++9p9NOO01Tp6b6gytAblm9erX27dunffv26b777ou6HCBlBw8e1Fe/+lV997vf1Z49e/Too4/quuuu0+rVkV9dL1inD87TTjtN06dP1zHHHKOuXbvq2muv1caNG7Vr166oSwOAI8b777+vvXv36pvf/KbMTKeeeqpGjhyp9evz79cfO31wtrZixQoNGDBAffv2jboUINgXvvAFDRgwQBdeeKG2bdsWdTlAyvr376+qqiotXLhQTU1NWrlypd566y2dccYZUZcWLH+Ds7paqqqSKipif6urkz6ktrZWs2bN0p133pmFAoEUBIzjF198Udu2bdPrr7+uY489Vl/5ylfU2NiYxWKBBALGcFVVlW655RZ1795dZ555pn7yk5/ouOOOy2KxGeLukdwqKio8bXPnuhcXu5u5S+4FBbHpuXPbfMiOHTt85MiRftttt6W/XSCT0hjHhzQ2NnpxcbGvWbMmC4UCbQgYwxs2bPDi4mJ/5plnvKmpyV9//XU/6aSTfMmSJZ9oJ6nGI8qlVG/5t8dZXS3dcYe0f7906ILDzc2x6TvuSPhuZ/fu3TrnnHM0ZcoU/fCHP8xywUACaYzj1szsiLjoNnJU4Bheu3athg8frnPPPVcFBQUaMWKEzj//fD399NMRFN8++Recd90lffRR4mX19bHlLezdu1fnnnuuxo8fr9tvvz0LBQIpCBzH69at06pVq9TU1KR9+/bp+uuv18CBA7P2G4nApwSO4bFjx2rz5s1avny53F1vvPGGlixZovLy8iwUm1n5F5ybNv3r3U1rzc3S5s2fmPXkk0/qlVde0cKFCz/+/ltJSYnefvvtLBQLtCFwHL/33nv62te+9vH337Zt26YlS5aoa9euWSgWSCBwDJ944olasGCBZs+erV69emnChAm66KKL8vL7yJn4WbHsGj5cWrUq9sS0VlAQW97CtGnTNG3atOzUBqQqcByfffbZXLgDuSVwDEvSJZdcoksuuaTja+tg+bfHefXVUlFR4mVFRdLs2dmtB0gH4xj57ggew/kXnOPGSXPmSMXFsXc1UuxvcXFs/rhx0dYHpIJxjHx3BI9hi+qsvMrKSq+pqUl/BdXVsQ+fN2+Whg2LvfvpxE8UOinGMfJdhsewmb3qOf5D1vkbnACATicfgjP/DtUCABAhghMAgAAEJwAAAQhOAAACEJwAAAQgOAEACEBwAgAQgOAEACAAwQkAQACCEwCAAAQnAAABCE4AAAIQnAAABCA4AQAIQHACABCA4AQAIADBCQBAAIITAIAABCcAAAEITgAAAhCcAAAEIDgBAAhAcAIAEIDgBAAgAMEJAEAAghMAgAAEJwAAAZIGp5ktMLMdZra2jeXfMLM1Zvaamb1sZmMyXyYAALkhlT3ORZImHWb5m5ImuPtnJd0qaX4G6gIAICcVJmvg7ivMbMhhlr/cYrJa0qAM1AUAQE7K9Gec0yU93dZCM5tpZjVmVlNXV5fhTQMA0PEyFpxm9kXFgvOGttq4+3x3r3T3yrKyskxtGgCArEl6qDYVZlYu6T5Jk919VybWCQBALmr3HqeZDZb0hKRvuvum9pcEAEDuSrrHaWYPSzpLUqmZ1Uq6WVJXSXL3eyXNldRX0j1mJkmN7l7ZUQUDABClVM6qrUqyfIakGRmrCACAHMaVgwAACEBwAgAQgOAEACAAwQkAQACCEwCAAAQnAAABCE4AAAIQnAAABCA4AQAIQHACABCA4AQAIADBCQBAAIITAIAABCcAAAEITgAAAhCcAAAEIDgBAAhAcAIAEIDgBAAgAMEJAEAAghMAgAAEJwAAAQhOAAACEJwAAAQgOAEACEBwAgAQgOAEACAAwQkAQACCEwCAAAQnAAABCE4AAAIQnAAABCA4AQAIQHACABCA4AQAIADBCQBAAIITAIAABCcAAAEITgAAAhCcAAAEIDgBAAhAcAIAECBpcJrZAjPbYWZr21huZvbfZrbFzNaY2SmZLxMAgNyQyh7nIkmTDrN8sqRh8dtMSb9pf1kAAOSmpMHp7iskvX+YJlMlPegx1ZL6mNlnMlUgAAC5JBOfcQ6U9E6L6dr4vE8xs5lmVmNmNXV1dRnYNAAA2ZXVk4Pcfb67V7p7ZVlZWTY3DQBARmQiOLdLOq7F9KD4PAAAOp1MBOdiSZfHz64dJ2mPu/9vBtYLAEDOKUzWwMwelnSWpFIzq5V0s6SukuTu90paKuk8SVsk7Zf0Hx1VLAAAUUsanO5elWS5S5qVsYoAAMhhXDkIAIAABCcAAAEITgAAAhCcAAAEIDgBAAhAcAIAEIDgBAAgAMEJAEAAghMAgAAEJwAAAQhOAAACEJwAAAQgOAEACEBwAgAQgOAEACAAwQkAQACCEwCAAAQnAAABCE4AAAIQnAAABCA4AQAIQHACABCA4AQAIADBCQBAAIITAIAABCcAAAEITgAAAhCcAAAEIDgBAAhAcAIAEIDgBAAgAMEJAEAAghMAgAAEJwAAAQhOAAACEJwAAAQgOAEACEBwAgAQgOAEACAAwQkAQACCEwCAAAQnAAABCE4AAAKkFJxmNsnMNprZFjO7McHywWb2vJn93czWmNl5mS8VAIDoJQ1OM+si6W5JkyWNklRlZqNaNfuRpMfcfaykSyXdk+lCAQDIBanscZ4maYu7b3X3A5IekTS1VRuX1Ct+v7ekf2SuRAAAckcqwTlQ0jstpmvj81r6L0mXmVmtpKWSrkq0IjObaWY1ZlZTV1eXRrkAAEQrUycHVUla5O6DJJ0n6SEz+9S63X2+u1e6e2VZWVmGNg0AQPakEpzbJR3XYnpQfF5L0yU9JknuvlJSkaTSTBQIAEAuSSU4X5E0zMyGmlk3xU7+WdyqzduSJkqSmY1ULDg5FgsA6HSSBqe7N0q6UtIySRsUO3t2nZndYmZT4s2ul/QdM1st6WFJ33J376iiAQCISmEqjdx9qWIn/bScN7fF/fWSxme2NAAAcg9XDgIAIADBCQBAAIITAIAABCcAAAEITgAAAhCcAAAEIDgBAAhAcAIAEIDgBAAgAMEJAEAAghMAgAAEJwAAAQhOAAACEJwAAAQgOAEACEBwAgAQgOAEACAAwQkAQACCEwCAAEdEcM6cOVMjRoxQQUGBFi1aFHU5QLs8+OCDMjPdd999UZcCpOyll15SSUnJJ25mpj/+8Y9RlxbsiAjOMWPG6J577tEpp5wSdSlAu+zevVs//elPNXr06KhLAYKceeaZ2rdv38e3JUuWqKSkRJMmTYq6tGCFUReQDbNmzZIkFRUVRVwJ0D433XSTZs+ercceeyzqUoB2eeCBB3TxxRfrqKOOirqUYEfEHifQGfztb39TTU2NrrjiiqhLAdrln//8px5//HFNmzYt6lLSQnACeaCpqUnf//739etf/1oFBfzbIr898cQTKi0t1YQJE6IuJS35+x9YXS1VVUkVFbG/1dVRVwSES3Ec33PPPSovL9e4ceOyXCCQRBqvxQ888IAuv/xymVkWCuwA7h7JraKiwtM2d657cbG7mbvkXlAQm54797APGz9+vC9cuDD97QKZFDCOp06d6n369PH+/ft7//79vWvXrt6rVy+fNWtWBIUDcWm8Fr/99tvepUsX37JlS8Llkmo8olxK9ZZ/JwdVV0t33CHt3/+vec3Nsek77pAmT5ZavSs/cOCAmpub5e46ePCg6uvr1a1bNw55ITqB43jRokWqr6//ePrCCy/UxRdfrOnTp2ezauBf0ngtlqSHHnpIn//853XiiSdmsdjMyr/kuOsu6aOPEi+rr48tb+Wcc85Rjx499PLLL2vmzJnq0aOHVqxY0cGFAocROI779OmjAQMGfHzr1q2bevXqpd69e2ehWCCBNF6Lpdj3kPP1pKBD8m+Pc9MmyT3xsuZmafPmT81+4YUXOrYmIFQa47glxjQil+YYfv311zuwqOzIvz3O4cOltg6xFhTElgO5jnGMfHcEj+H8C86rr5baupBBUZE0e3Z26wHSwThGvjuCx3D+Bee4cdKcOVJx8b/e7RQUxKbnzEn4YTSQcxjHyHdH8Bg2b+sYdQerrKz0mpqa9FdQXR378HnzZmnYsNi7n078RKGTYhwj32V4DJvZq+5emcEKMy5/gxMA0OnkQ3Dm36FaAAAiRHACABCA4AQAIADBCQBAAIITAIAABCcAAAEITgAAAhCcAAAEIDgBAAiQUnCa2SQz22hmW8zsxjbaXGJm681snZn9PrNlAgCQG5L+HqeZdZF0t6QvS6qV9IqZLXb39S3aDJN0k6Tx7r7bzPp1VMEAAEQplT3O0yRtcfet7n5A0iOSprZq8x1Jd7v7bkly9x2ZLRMAgNyQSnAOlPROi+na+LyWhksabmZ/MbNqM5uUaEVmNtPMasyspq6uLr2KAQCIUKZODiqUNEzSWZKqJP3OzPq0buTu89290t0ry8rKMrRpAACyJ5Xg3C7puBbTg+LzWqqVtNjdD7r7m5I2KRakAAB0KqkE5yuShpnZUDPrJulSSYtbtXlKsb1NmVmpYodut2auTAAAckPS4HT3RklXSlomaYOkx9x9nZndYmZT4s2WSdplZuslPS/pP919V0cVDQBAVMzdI9lwZWWl19TURLJtAEBuMrNX3b0y6joOhysHAQAQgOAEACAAwQkAQACCEwCAAAQnAAABCE4AAAIQnAAABCA4AQAIQHACABCA4AQAIADBCQBAAIITAIAABCcAAAEITgAAAhCcAAAEIDgBAAhAcAIAEIDgBAAgAMEJAEAAghMAgAAEJwAAAQhOAAACEJwAAAQgOAEACEBwAgAQgOAEACAAwQkAQACCEwCAAAQnAAABCE4AAAIQnAAABCA4AQAIQHACABCA4AQAIADBCQBAAIITAIAABCcAAAEITgAAAhCcAAAEIDgBAAhAcAIAEIDgBAAgQErBaWaTzGyjmW0xsxsP0+4iM3Mzq8xciQAA5I6kwWlmXSTdLWmypFGSqsxsVIJ2PSVdLemvmS4SAIBckcoe52mStrj7Vnc/IOkRSVMTtLtV0s8k1WewPgAAckoqwTlQ0jstpmvj8z5mZqdIOs7d/3y4FZnZTDOrMbOaurq64GIBAIhau08OMrMCSXdKuj5ZW3ef7+6V7l5ZVlbW3k0DAJB1qQTndknHtZgeFJ93SE9JJ0t6wcy2SRonaTEnCAEAOqNUgvMVScPMbKiZdZN0qaTFhxa6+x53L3X3Ie4+RFK1pCnuXtMhFQMAEKGkwenujZKulLRM0gZJj7n7OjO7xcymdHSBAADkksJUGrn7UklLW82b20bbs9pfFgAAuYkrBwEAEIDgBAAgAMEJAEAAghMAgAAEJwAAAQhOAAACEJwAAAQgOAEACEBwAgAQgOAEACAAwQkAQACCEwCAAAQnAAABCE4AAAIQnAAABCA4AQAIQHACABCA4AQAIADBCQBAAIITAIAABCcAAAEITgAAAhCcAAAEIDgBAAhAcAIAEIDgBAAgAMEJAEAAghMAgAAEJwAAAQhOAAACEJwAAAQgOAEACEBwAgAQgOAEACAAwQkAQACCEwCAAAQnAAABCE4AAAIQnAAABCA4AQAIQHACABCA4AQAIADBCQBAgJSC08wmmdlGM9tiZjcmWH6dma03szVm9pyZHZ/5UgEAiF7S4DSzLpLuljRZ0ihJVWY2qlWzv0uqdPdySY9L+nmmCwUAIBekssd5mqQt7r7V3Q9IekTS1JYN3P15d98fn6yWNCizZQIAkBtSCc6Bkt5pMV0bn9eW6ZKeTrTAzGaaWY2Z1dTV1aVeJQAAOSKjJweZ2WWSKiX9ItFyd5/v7pXuXllWVpbJTQMAkBWFKbTZLum4FtOD4vM+wcy+JOmHkia4e0NmygMAILekssf5iqRhZjbUzLpJulTS4pYNzGyspN9KmuLuOzJfJgAAuSFpcLp7o6QrJS2TtEHSY+6+zsxuMbMp8Wa/kFQi6Q9mtsrMFrexOgAA8loqh2rl7kslLW01b26L+1/KcF0AAOQkrhwEAEAAghMAgAAEJwAAAQhOAAACEJwAAAQgOAEACEBwAgAQgOAEACAAwQkAQACCEwCAAAQnAAABCE4AAAIQnAAABCA4AQAIQHACABCA4AQAIADBCQBAAIITAIAABCcAAAEITgAAAhCcAAAEIDgBAAhAcAIAEIDgBAAgAMEJAEAAghMAgAAEJwAAAQhOAAACEJwAAAQgOAEACEBwAgAQgOAEACAAwQkAQACCEwCAAAQnAAABCE4AAAIQnAAABDgignPVqlWqqKhQcXGxKioqtGrVqqhLAoLs3LlT48ePV9++fdWnTx+dfvrp+stf/hJ1WUCQpqYm/ehHP9Kxxx6rnj17auzYsfrggw+iLitYpw/OAwcOaOrUqbrsssu0e/duTZs2TVOnTtWBAweiLg1IWUlJiRYsWKC6ujrt3r1bN9xwgy644AI1NjZGXRqQsptvvlkvv/yyVq5cqb179+qhhx5SUVFR1GUF6/TB+cILL6ixsVHXXHONunfvrtmzZ8vdtXz58qhLA1JWVFSkESNGqKCgQO6uLl26aPfu3Xr//fejLg1Iye7duzVv3jz97ne/0/HHHy8z08knn0xw5qJ169apvLxcZvbxvPLycq1bty7CqoD0lJeXq6ioSFOmTNGMGTPUr1+/qEsCUvLaa6+psLBQjz/+uAYMGKDhw4fr7rvvjrqstBRGXUBH27dvn3r37v2Jeb1799aHH34YUUVA+tasWaP6+no9+eSTfNyAvFJbW6s9e/Zo06ZNevPNN7V582ZNnDhRw4cP15e//OWoywuS0h6nmU0ys41mtsXMbkywvLuZPRpf/lczG5LxSlurrpaqqqSKitjf6uqEzUpKSrR3795PzNu7d6969uzZ4SUCSaU4jlsqKipSVVWVbr/9dq1evToLRQKHkeIY7tGjhyRp7ty56tGjh8rLy3XppZdq6dKl2aw2I5IGp5l1kXS3pMmSRkmqMrNRrZpNl7Tb3U+S9EtJP8t0oZ9w883SxInSo49K//M/0mOPxaZvvvlTTUePHq01a9bI3T+et2bNGo0ePbpDSwSSChjHiRw8eFBbt27t4CKBwwgYw+Xl5ZL0iY/NWt7PK+5+2Juk0yUtazF9k6SbWrVZJun0+P1CSTsl2eHWW1FR4WlZudK9uNhd+vStuDi2vIWGhgYfPHiwz5s3z+vr6/1Xv/qVDx482BsaGtLbPpAJgeN45cqV/tJLL3lDQ4Pv37/fb7/9di8pKfHt27dH1AEc8QLHsLv7mWee6TNnzvT6+npfv369l5WV+bPPPvuJNpJqPEkuRX1L5VDtQEnvtJiujc9L2MbdGyXtkdQ3vShP4q67pI8+Srysvj62vIVu3brpqaee0oMPPqg+ffpowYIFeuqpp9StW7cOKQ9ISeA4bmho0KxZs9S3b18NHDhQS5cu1Z///Gcde+yxWSgWSCBwDEvSww8/rLfeekt9+/bV+eefr1tvvVUTJ07s4EIzL6snB5nZTEkzJWnw4MHprWTTpth7mkSam6XNmz81e+zYsXr11VfT2x7QEQLH8YQJE/g8E7kljdfigQMH6plnnungwjpeKnuc2yUd12J6UHxewjZmViipt6RdrVfk7vPdvdLdK8vKytKrePhwqaCNsgsKYsuBXMc4Rr47gsdwKsH5iqRhZjbUzLpJulTS4lZtFkuaFr9/saTl8WPVmXf11VJbX5gtKpJmz+6QzQIZxThGvjuCx3DS4Ix/ZnmlYicAbZD0mLuvM7NbzGxKvNn9kvqa2RZJ10n61FdWMmbcOGnOHKm4+F/vdgoKYtNz5sSWA7mOcYx8dwSPYeuoHcNkKisrvaamJv0VVFfHPnzevFkaNiz27qcTP1HopBjHyHcZHsNm9qq7V2awwozL3+AEAHQ6+RCcnf5atQAAZBLBCQBAAIITAIAABCcAAAEITgAAAhCcAAAEIDgBAAhAcAIAEIDgBAAgAMEJAEAAghMAgACRXavWzOokvZWBVZVK2pmB9eQS+pQf6FN+oE/54VCfjnf3NH+wOTsiC85MMbOaXL8gcCj6lB/oU36gT/khn/rEoVoAAAIQnAAABOgMwTk/6gI6AH3KD/QpP9Cn/JA3fcr7zzgBAMimzrDHCQBA1hCcAAAEyJvgNLNJZrbRzLaY2Y0Jlnc3s0fjy/9qZkMiKDNICn26zszWm9kaM3vOzI6Pos4QyfrUot1FZuZmlvOnn6fSJzO7JP5crTOz32e7xlApjL3BZva8mf09Pv7Oi6LOVJnZAjPbYWZr21huZvbf8f6uMbNTsl1jqBT69I14X14zs5fNbEy2awyVrE8t2p1qZo1mdnG2agvi7jl/k9RF0huSTpDUTdJqSaNatfm+pHvj9y+V9GjUdWegT1+UVBy//73O0Kd4u56SVkiqllQZdd0ZeJ6GSfq7pKPj0/2irjsDfZov6Xvx+6MkbYu67iR9+oKkUyStbWP5eZKelmSSxkn6a9Q1Z6BPn28x5iZ3hj7F23SRtFzSUkkXR11zolu+7HGeJmmLu2919wOSHpE0tVWbqZIeiN9/XNJEM7Ms1hgqaZ/c/Xl33x+frJY0KMs1hkrleZKkWyX9TFJ9NotLUyp9+o6ku919tyS5+44s1xgqlT65pF7x+70l/SOL9QVz9xWS3j9Mk6mSHvSYakl9zOwz2akuPcn65O4vHxpzyo/Xh1SeJ0m6StIfJeXs/1G+BOdASe+0mK6Nz0vYxt0bJe2R1Dcr1aUnlT61NF2xd8y5LGmf4ofIjnP3P2ezsHZI5XkaLmm4mf3FzKrNbFLWqktPKn36L0mXmVmtYu/8r8pOaR0m9P8t3+TD60NSZjZQ0lcl/SbqWg6nMOoCkJyZXSapUtKEqGtpDzMrkHSnpG9FXEqmFSp2uPYsxd71rzCzz7r7B1EW1U5Vkha5+/81s9MlPWRmJ7t7c9SF4ZPM7IuKBecZUdeSAfMk3eDuzbl8wDBfgnO7pONaTA+Kz0vUptbMChU7vLQrO+WlJZU+ycy+JOmHkia4e0OWaktXsj71lHSypBfi/xQDJC02synuXpO1KsOk8jzVKvb50kFJb5rZJsWC9JXslBgslT5NlzRJktx9pZkVKXYR7pw9fJZESv9v+cbMyiXdJ2myu+fy612qKiU9En99KJV0npk1uvtTkVbVSr4cqn1F0jAzG2pm3RQ7+WdxqzaLJU2L379Y0nKPf9Kco5L2yczGSvqtpCl58LmZlKRP7r7H3UvdfYi7D1Hsc5lcDk0ptbH3lGJ7mzKzUsUO3W7NYo2hUunT25ImSpKZjZRUJKkuq1Vm1mJJl8fPrh0naY+7/2/URbWHmQ2W9ISkb7r7pqjryQR3H9ri9eFxSd/PtdCU8mSP090bzexKScsUO+NqgbuvM7NbJNW4+2JJ9yt2OGmLYh8+Xxpdxcml2KdfSCqR9If4O7C33X1KZEUnkWKf8kqKfVom6RwzWy+pSdJ/5vK7/xT7dL2k35nZtYqdKPStXH4jamYPK/bmpTT+uezNkrpKkrvfq9jntOdJ2iJpv6T/iKbS1KXQp7mKncdxT/z1odFz/NdFUuhTXuCSewAABMiXQ7UAAOQEghMAgAAEJwAAAQhOAAACEJwAgKRSvUB7wPqazGxV/JZXZ9xzVi0AICkz+4KkfYpd8/fkDKxvn7uXtL+y7GOPEwCQVKILtJvZiWb2jJm9amYvmdn/iai8rCI4AQDpmi/pKnevkDRH0j0Bjy0ys5r4DyP8W4dU10Hy4spBAIDcYmYliv0m6KErm0lS9/iyCyXdkuBh29393Pj94919u5mdIGm5mb3m7m90dN2ZQHACANJRIOkDd/9c6wXu/oRi19Ftk7tvj//damYvSBqr2A+s5zwO1QIAgrn7XsV+DejfJSl+Af0xqTzWzI42s0N7p6WSxkta32HFZhjBCQBIKn6B9pWSRphZrZlNl/QNSdPNbLWkdZKmpri6kZJq4o97XtLt7p43wcnXUQAACMAeJwAAAQhOAAACEJwAAAQgOAEACEBwAgAQgOAEACAAwQkAQID/D3f1u1MTI85oAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcQAAAG2CAYAAADhtfbVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA4D0lEQVR4nO3df3TU9Z3v8ecnQA0hIQJJSIEqaCFSehMgQMEgUF0Ltprcbq8tWauy1lILW7CVypVa3Lasl+76A9qtR1mBYNVqKXrW7SnLWSI/lBLaqECDGhA0NiqBQEJAyO/3/WNCSiA/ZoaZ+c6Mr8c53wMz3/nxeme+k9d8v5NMnJkhIiLySZfgdQAREZFooEIUERFBhSgiIgKoEEVERAAVooiICAC9vQ4gIiLeeO211zJ69+79JPB54n8HqRUoa25uvjM3N/dIZxdQIYqIfEL17t37yczMzNHp6ek1CQkJcf07eK2tre7o0aOfO3z48JNAfmeXifdXBCIi0rXPp6en18V7GQIkJCRYenr6CXx7w51fJoJ5REQkuiR8EsrwrLZZu+y9sBWic26Nc+6Ic64sRLfX4pzb3ba8FIrbFBEROSuce4hFwKwQ3t4ZMxvbtnR6/FdERMKouLgfN900gjFjRnPTTSMoLu4XiptdtmxZxhVXXDGmf//+Y5csWZIJ8IMf/GDI0qVLBwN87WtfG7527doB/t5eeXn5p0aOHDkm0Bxh+6EaM9vunBt+7nnOuSuBXwHpwGng22b2drgyiIhIiHz/+0N4/PHBNDQkYAZvvdWXzZsv5a67qnj00Q8v5qZXr16dvnnz5v1XXnllU6jiBiPS7yGuAr5nZrnAIuCxAK6b6Jwrdc6VOOf+d1jSiYjIhYqL+/H444Opr/eVIYCZo74+gccfH3wxe4r/8A//cFllZeUlN9xww8if/OQnGbfddttl3V3+lVdeSZo4cWLWmDFjRk+dOnVkRUVFn7PnZ2VlfS4rK+tzjzzySEYwWSJWiM65ZOBqYL1zbjfwBPDptnV/75wr62TZdM5NXG5mE4B/AFa07W2KiEi4rViRQUND533R0OBYsSKoAgJ49tln38/IyGjatm3b/gEDBrR0d9mGhga3YMGCy/7zP//z4L59+966/fbbqxctWjQU4Fvf+tbwFStWvF9eXv5msFki+XuICUCtmY09f4WZvQC80N2VzeyDtn8POee2AuOAg6GPKSIiHRw6lEhXfyrQzPHuu4mRiLF3795LDhw40Pfaa68dBdDa2kp6enpTdXV1r5MnT/a64YYbTgHccccdx15++eXUQG8/YoVoZnXOuXedczeb2XrnnAOyzWxPT9d1zg0ATptZg3MuDcgD/jXcmUVEBLjiinreeqsvZu6Cdc4ZI0bURyKGmbnPfvazZ3bv3t3hZ0+qq6t7heL2w/lrF78BdgJZzrlK59y3gFuAbznn9gD7gAI/b240UNp2vS3AcjMLerdYREQCcPfdR7jkks53ES+5xLj77k4/Ci3UsrOz648fP9578+bN/cB3CLW0tDQxLS2tJSUlpWXTpk3JAEVFRQODuf1w/pRpYRerAv5VDDP7I/C/Li6RiIgE5brrPuauu6rafsrUYeZwzrjkEuOuu6q47rqPIxEjMTHRnnvuuYMLFiy47OTJk71aWlrcd7/73aoJEybUr169+r0777xzuHOOGTNm1AVz+866Oi4sIiJxbc+ePe/l5ORU+32F4uJ+rFiRwbvvJjJiRD13330kUmUYKnv27EnLyckZ3tm6sBRiWlqaDR/e6f2JiEiU+Nd//VcyMzMjcl8NDQ3N48aN6/FnRsKtu0IMyyHT4cOHU1paGo6bFhGREHnrrbcYPXp0RO6rrKysMSJ3dBH04d4iIp9gn6S3zVpbWx2+v4vYKRWiiMgnVGJiIseOHftElGLb30NMBbr8gxP6A8EiIp9Qw4YNo7KykqNHj4b9vg4fPty7paUlLex31LVWoKy5ufnOri6gQhQR+YTq06cPI0aMiMh9fe5zn/tL28dvRi0dMhUREUGFKCIiAqgQRUREABWiiIgIEOOFOHfuXLKyskhISKCoqKjDurKyMmbOnElaWhq+P6wR3bqb5VzXXXcdzjmam5sjFy5A3c1y1113kZyc3L5ccsklpKSkeBNUYs7+/fspKCggPT2dgQMHMnPmTMrLy9vXNzQ08P3vf58hQ4YwYMAA5s2bR1OTp3+EvUvV1dXk5eUxaNAgLr30UqZMmcKOHTva169bt47c3Fz69+/PsGHDuPfee6Pyed/THEVFRfTq1QtgnHPuVNsyw6O43YrpQszJyeGxxx5j/PjxF6zr06cPX//611m9erUHyQLX3SxnPfPMM1H75D5Xd7M8/vjjnDp1qn0pLCzk5ptv9iClxKLa2lry8/MpLy+nqqqKSZMmUVDwtz+as3z5ckpLSykrK2P//v28/vrrLFu2zMPEXUtOTmbNmjUcPXqUmpoaFi9ezE033dReeqdPn2bFihVUV1eza9cuiouLeeihhzxOfaGe5gCYMmUKwBtmlty2bPUqb7fMLORLbm6uRVJeXp6tXbu203UHDhww35ixoatZamtrbeTIkbZz504DrKmpKfLhAtTd42JmdurUKUtOTratW7dGLpTElWPHjhlg1dXVZmaWm5trv/3tb9vXP/PMMzZs2DCv4vmtpaXFXnrpJQOsqqqq08s8/PDDduONN0Y4WWA6m2Pt2rWWl5dnQKmFoW9Cuej3EGPEkiVL+O53vxuxD+KNhA0bNpCens60adO8jiIxavv27WRmZjJo0KD28+ycT10xMyorKzlx4gSpqQH/AfWIyM7O5u2336apqYk777yTjIyMTi+3fft2xowZE+F0/utujjfeeAMgxzm3H/g18P/MLOqO/0bfIdOSEigshNxc378lJV4nCl6IZiktLWXHjh1873vfC3HAAIThcVm3bh233XZbTLzHK2EWxPZVWVnJ/PnzeeSRR9rPmzVrFitXruTo0aMcPnyYX/ziF4Dv8GPEBDjL3r17qaur49lnn2Xq1KmdXmbNmjWUlpayaNGicCTuXIjmmDZtGmVlZQB7gK8BhcAPw5g8eOHY7Qz6kOnSpWZJSWbOmYFZQoLv9NKl3V4tKg+ZhmiWlpYWmzhxYvthxXfffTfyh0zD8LhUVFRYQkKCHTx4MAyBJaYEsX0dOXLERo8ebcuWLetw/unTp23+/Pk2ZMgQGzFihD344IPWp08fa2lpCfcUPkE+V8666qqrbPfu3R3Oe/HFFy0jI8P27t0bjsSdC8MctB0yBWYDr1kUHCI9f4meQty50/cFhwuXpCTf+i5EXSGGcJaamhpzztngwYNt8ODBlpaWZoANHjzYtm/fHlOznGvZsmV2zTXXhCm0xIwgtq/jx4/b2LFjbfHixT3e/BNPPGGTJ08OR/ILXcRz5awrr7zSXnjhhfbTGzdutLS0NNu1a1c4k3cUhjnMOhTiN4DXLQoK8Pwleg6ZrlwJZ850vq6+3rf+PI2NjdTX12NmNDU1UV9fT2ur7y97mBn19fU0Nja23UQ9DQ0NYYvfQQhnSU1N5cMPP2T37t3s3r2bP/zhDwC89tprfOELXwjnFD4hflzOeuqpp5gzZ04YAktMCXD7qqurY+bMmeTl5bF8+fILrvLBBx/w4YcfYmaUlJTws5/9jJ/85CfhSH6hAGcpKSnh1VdfpbGxkTNnzvDzn/+cqqqq9uf1yy+/zC233MKGDRuYNGlSuNP/TYjn2LhxI1VVVQA4564Cfgz8ZxgnCF44WjaoPcTx4zt/RXJ26eQ2p0+fbkCHZcuWLWb2t0OL5y6XX3554LmCEeJZzhXxQ6ZhmOWPf/yjJSUlWV1dXWRmkOgV4PZVVFRkgCUlJVm/fv3al4qKCjMz27Ztm11++eXWt29fGzVqlD399NNRO8vWrVstOzvbkpOTbcCAATZt2jTbtm1b+/oZM2ZYr169Osw5a9asmJvjnnvusYyMDANagEPAT4E+FgV7hOcv0VOIs2f7jlN39gAkJJgVFgZ+m17RLCL+iaftK15mCdMcxMCvXUTPIdOFCyExsfN1iYmwYEFk81wMzSLin3javuJllniZIwjRU4iTJ8OiRZCUBAltsRISfKcXLfKtjxWaRcQ/8bR9xcss8TJHEJxvTza0JkyYYKWlpcFduaTE96btgQMwcqTv1UqsPgCaRcQ/8bR9xcssIZ7DOfeaRfkfCI6+QhQRkbgTC4UYPYdMRUREPKRCFBERQYUoIiICqBBFREQAFaKIiAigQhQREQFUiCIiIoAKUUREBFAhioiIACpEERERQIUoIiICqBBFREQAFaKIiAigQhQREQFUiCIiIoAKUUREBFAhioiIACpEERERQIUoIiICqBBFREQAFaKIiAigQhQREQFUiCIiIoAKUUREBFAhioiIACpEERERQIUoIiICqBBFREQAFaKIiAigQhQREQFUiCIiIoAKUUREBFAhioiIACpEERERQIUoIiICxHghzp07l6ysLBISEigqKrpg/aOPPkpmZib9+/fnjjvuoKGhIfIh/dTdLM899xxZWVmkpqaSkZHB7bffTl1dnTdB/dDT43Lo0CFuvPFGUlJSSEtL49577418SIlJ+/fvp6CggPT0dAYOHMjMmTMpLy9vX29m3H///QwdOpTU1FRmzJjBvn37PEzcterqavLy8hg0aBCXXnopU6ZMYceOHe3ry8rKmDlzJmlpaTjnPEzavZ7mOJdzrtg5Z8653hGO6ZeYLsScnBwee+wxxo8ff8G6TZs2sXz5coqLi6moqODQoUM88MADHqT0T3ez5OXlsWPHDk6cOMGhQ4dobm7m/vvv9yClf7qbpbGxkeuvv55rr72Ww4cPU1lZyTe/+U0PUkosqq2tJT8/n/Lycqqqqpg0aRIFBQXt69evX8+aNWt45ZVXOH78OFOmTOHWW2/1MHHXkpOTWbNmDUePHqWmpobFixdz00030dzcDECfPn34+te/zurVqz1O2r2e5jjHQKCPBxH9Z2YhX3Jzcy2S8vLybO3atR3OKywstPvuu6/99ObNm23w4MERzRWMzmY518mTJ+3WW2+1G264IXKhgtTZLE888YRNnTrVm0ASd44dO2aAVVdXm5nZ8uXL7eabb25fX1ZWZpdccolX8fzW0tJiL730kgFWVVXVYd2BAwfM9606+nU1R21trQH1wGTAgN4Whu652CWm9xC7s2/fPnJyctpP5+TkUFVVxbFjxzxMFbxXX32V1NRUUlJS2LBhA3fffbfXkYJSUlLC8OHDueGGG0hLS2PGjBn85S9/8TqWxKjt27eTmZnJoEGDAJg9ezYHDx5k//79NDU1sW7dOmbNmuVxyu5lZ2eTmJhIfn4+d955JxkZGV5HCkp3cyxZsgTgCHDYq3z+iL5CLCmBwkLIzfX9W1IS1M2cOnWK1NTU9tNn/3/y5MmQxPRLiGYBmDp1KidOnKCyspIf/vCHDB8+PHQ5/RGiWSorK3nuuedYsGABH374IV/5ylcoKCigsbExxIElpgSxfVVWVjJ//nweeeSR9vM+/elPM3XqVLKysujbty/r16/n0UcfDWfyCwU4y969e6mrq+PZZ59l6tSpEQrphxDNUVpaevY9xSPhDRwC4djtDPqQ6dKlZklJZs6ZgVlCgu/00qXdXq2zQ3PZ2dn2/PPPt5+urq7ucGgl7EI4y/l27txp48aNC2HYHoRwlvz8fJsxY0b76dbWVuvfv7/t3r07HMklFgSxfR05csRGjx5ty5Yt63D+j370I5syZYr99a9/taamJlu7dq0NHz7cPv7443BP4RPkc+Wsq6666oLngieHTEM0R0tLi02cONG2bt1qQCkwnHg4ZOqc6+Wce8M59/uwNHNJCTz0EJw+DWa+81pbfacfeijgPZIxY8awZ8+e9tN79uxh8ODB7YdWwirEs5yvubmZgwcPhiCoH0I8S3Z2dlT/xJxEWBDbV01NDV/60pfIz8/nRz/6UYd1u3fv5hvf+AbDhg2jd+/ezJkzh5qaGt58882onOV8TU1NHDp0KMxBexDCOerq6igtLeUb3/gGQA7w57aLVDrnrgnTBEEL5JDpQuCtcAVh5Uo4c6bzdfX1vvXnaWxspL6+HjOjqamJ+vp6WltbAbjttttYvXo1b775JrW1tSxbtow5c+aELX4HIZ7lmWee4f333wegoqKCH/3oR1x33XVhi99BiGf55je/SUlJCZs3b6alpYUVK1aQlpbG6NGjwzmFRKsAt6+6ujpmzpxJXl4ey5cvv+AqEydOZP369VRVVdHa2sqvf/1rmpqa+OxnPxuO9B0FOEtJSQmvvvoqjY2NnDlzhp///OdUVVXxhS98AfAdvauvr29/O6G+vj4yvzoWwjlSU1P58MMP2b17N8A+4MttV8sFdoVthmD5sxsJDAOKgWuB3/d0+aAOmY4f79s172rp5DanT59u+Ha/25ctW7a0r3/44YctIyPDUlJSbM6cOVZfXx94rmCEeJYlS5bY0KFDLSkpyYYOHWrf/va3I3foNwyPy4YNG+zKK6+0lJQUmz59upWVlUVmFok+AW5fRUVFBlhSUpL169evfamoqDAzszNnzti8efMsMzPTUlJSbNy4cbZx48aonGXr1q2WnZ1tycnJNmDAAJs2bZpt27atff277757wfPo8ssvj7k5ziIGDpn6W4i/w9foM7oqRGBu28Cll112WeAPwuzZvuPUnT0ACQlmhYWB36ZXNIuIf+Jp+4qXWcI0B1BqUVB63S09HjJ1zt0IHDGz13rY01xlZhPMbEJ6erof+6bnWbgQEhM7X5eYCAsWBH6bXtEsIv6Jp+0rXmaJlzmC4M97iHlAvnPuPeA54Frn3NMhTzJ5MixaBElJkNAWKyHBd3rRIt/6WKFZRPwTT9tXvMwSL3MEwfn2ZP28sHMzgEVmdmN3l5swYYKVlpYGl6ikxPem7YEDMHKk79VKrD4AmkXEP/G0fcXLLCGewzn3mplNCGHCkIu+QhQRkbgTC4UY0CeOm9lWYGtYkoiIiHgo+j66TURExAMqRBEREVSIIiIigApRREQEUCGKiIgAKkQRERFAhSgiIgKoEEVERAAVooiICKBCFBERAVSIIiIigApRREQEUCGKiIgAKkQRERFAhSgiIgKoEEVERAAVooiICKBCFBERAVSIIiIigApRREQEUCGKiIgAKkQRERFAhSgiIgKoEEVERAAVooiICKBCFBERAVSIIiIigApRREQEUCGKiIgAKkQRERFAhSgiIgKoEEVERAAVooiICKBCFBERAWK8EP/rv/6Lz3/+8yQnJ3P11Vfz5ptveh0paHPnziUrK4uEhASKioo6rFu3bh25ubn079+fYcOGce+999Lc3OxNUD90N0tRURG9evUiOTm5fdm6dasnOSX27N+/n4KCAtLT0xk4cCAzZ86kvLy8ff1dd93VYdu65JJLSElJ8TBx16qrq8nLy2PQoEFceumlTJkyhR07dnS4zKOPPkpmZib9+/fnjjvuoKGhwaO0Xetpjueee46srCyAsc65I865dc65/p4F7kbMFuKBAwe45ZZbePzxx6mtreWmm24iPz8/qouiOzk5OTz22GOMHz/+gnWnT59mxYoVVFdXs2vXLoqLi3nooYc8SOmf7mYBmDJlCqdOnWpfZsyYEdmAErNqa2vJz8+nvLycqqoqJk2aREFBQfv6xx9/vMO2VVhYyM033+xh4q4lJyezZs0ajh49Sk1NDYsXL+amm25q/x62adMmli9fTnFxMRUVFRw6dIgHHnjA49QX6mmOvLy8swW5G7gC6A0s8yxwd8ws5Etubq6F2y9/+Uv78pe/3H66paXFEhMTbfPmzWG/73DKy8uztWvXdnuZhx9+2G688cbIBLoInc2ydu1ay8vL8yaQxJ1jx44ZYNXV1ResO3XqlCUnJ9vWrVs9SBaYlpYWe+mllwywqqoqMzMrLCy0++67r/0ymzdvtsGDB3sV0S+dzXEWUAokA08Bf7AwdM/FLjG7hwi+Mj/3/2ZGWVmZh4kiY/v27YwZM8brGEF74403SEtLY9SoUfzsZz+L2b168d727dvJzMxk0KBBF6zbsGED6enpTJs2zYNk/svOziYxMZH8/HzuvPNOMjIyANi3bx85OTntl8vJyaGqqopjx455FbVbXc0B8OqrrwKMBU4CXwNWeJGxJ9FXiCUlUFgIubm+f0tKOr3Y3/3d37Ft2za2bt1KY2MjDz74II2NjZw+fTrCgbvh5yyBWLNmDaWlpSxatCgEAQMQolmmTZtGWVkZR44cYcOGDfzmN7/h3/7t30IcVmJOENtXZWUl8+fP55FHHul0/bp167jttttwzoU6bfcCnGXv3r3U1dXx7LPPMnXq1PbzT506RWpqavvps/8/efJkeHKfL0RzAGdP7waGAf8GvBeWzBcrHLudQR8yXbrULCnJzDkzMEtI8J1eurTTi69fv97GjBljAwcOtAULFtiYMWPsqaeeCu6+Qy3AWc7q7pDpiy++aBkZGbZ3794wBO5GGGY56ze/+Y2NHz8+hGEl5gSxfR05csRGjx5ty5Yt63R9RUWFJSQk2MGDB8OVunNBPlfOuuqqq2z37t1mZpadnW3PP/98+7rq6uouDw+HXAjnOAso9f3DZOB1i4JDpOcv0VOIO3f6vuBw4ZKU5FvfjZqaGuvXr5+99dZbgd93qF3ELF2VyMaNGy0tLc127doVxuCdCMMs53ruueds3LhxIQ4tMSOI7ev48eM2duxYW7x4cZc3u2zZMrvmmmvCmfxCF/k9zMzsyiuvtBdeeMHMfO8hLlmypH1dcXFxZN5DDPEcZ51TiFOBExYFBXj+Ej2HTFeuhDNnOl9XX+9bf57XXnuNlpYWjh49yty5c8nPz+eqq64Kc1A/BDFLY2Mj9fX1mBlNTU3U19fT2toKwMsvv8wtt9zChg0bmDRpUjiTXyjEs2zcuJGqqioA3n77bX72s591+ClB+YQJcPuqq6tj5syZ5OXlsXz58i5v9qmnnmLOnDkhDOqHAGcpKSnh1VdfpbGxkTNnzvDzn/+cqqoqvvCFLwBw2223sXr1at58801qa2tZtmxZZGYK8RzPPPMM77//PgDOucuBfwGKwzhB8MLRskHtIY4f3/krkrNLJ7eZl5dnycnJNmDAAJs7d66dOnUq8PsNhyBmmT59ugEdli1btpiZ2YwZM6xXr17Wr1+/9mXWrFkxOcs999xjGRkZlpSUZCNGjLAf//jH1tjYGJlZJPoEuH0VFRUZYElJSR2eDxUVFe2X+eMf/2hJSUlWV1cX1bNs3brVsrOz27+HTZs2zbZt29bhMg8//LBlZGRYSkqKzZkzx+rr62NujiVLltjQoUMNaAEqgVXAIIuCPcLzl+gpxNmzfcepO3sAEhLMCgsDv02vaBYR/8TT9hUvs4RpDtoOmUbzEj2HTBcuhMTEztclJsKCBZHNczE0i4h/4mn7ipdZ4mWOIERPIU6eDIsWQVISJLTFSkjwnV60yLc+VmgWEf/E0/YVL7PEyxxBcL492dCaMGGClZaWBnflkhLfm7YHDsDIkb5XK7H6AGgWEf/E0/YVL7OEeA7n3GtmNiGECUMu+gpRRETiTiwUYvQcMhUREfGQClFERAQVooiICKBCFBERAVSIIiIigApRREQEUCGKiIgAKkQRERFAhSgiIgKoEEVERAAVooiICKBCFBERAVSIIiIigApRREQEUCGKiIgAKkQRERFAhSgiIgL4UYjOuUTn3J+cc3ucc/uccz+JRDAREZFI6u3HZRqAa83slHOuD/Cqc26jmZWEOZuIiEjE9FiIZmbAqbaTfdoWC2coERGRSPPrPUTnXC/n3G7gCPA/Zrark8vMdc6VOudKjx49GuKYIiIi4eVXIZpZi5mNBYYBk5xzn+/kMqvMbIKZTUhPTw9xTBERkfAK6KdMzawW2ALMCksaERERj/jzU6bpzrlL2/7fF7geeDvMuURERCLKn58y/TSwzjnXC1+B/tbMfh/eWCIiIpHlz0+Z7gXGRSCLiIiIZ/RJNSIiIqgQRUREABWiiIgIoEIUEREBVIgiIiKAClFERARQIYqIiAAqRBEREUCFKCIiAqgQRUREABWiiIgIoEIUEREBVIgiIiKAClFERARQIYqIiAAqRBEREUCFKCIiAqgQRUREABWiiIgIoEIUEREBVIgiIiKAClFERARQIYqIiAAqRBEREUCFKCIiAqgQRUREABWiiIgIoEIUEREBVIgiIiKAClFERARQIYqIiAAqRBEREUCFKCIiAqgQRUREABWiiIgIoEIUEREBVIgiIiKAClFERARQIYqIiAAqRBEREUCFKCIiAqgQRUREABWiiIgIoEIUEREBVIgiIiKAClFERARQIYqIiAAqRBEREUCFKCIiAqgQRUREABWiiIgIoEIUEREBVIgiIiKAClFERARQIYqIiAAqRBEREUCFKCIiAqgQRUREABWiiIgIoEIUEREBVIgiIiKAClFERARQIYqIiAAqRBEREUCFKCIiAvhRiM65zzjntjjn3nTO7XPOLYxEMBERkUjq7cdlmoF7zOx151wK8Jpz7n/M7M0wZxMREYmYHvcQzewjM3u97f8ngbeAoeEOJiIiEkkBvYfonBsOjAN2dbJurnOu1DlXevTo0RDFExERiQy/C9E5lwxsAO42s7rz15vZKjObYGYT0tPTQ5lRREQk7PwqROdcH3xl+IyZvRDeSCIiIpHnz0+ZOmA18JaZPRL+SCIiIpHnzx5iHnArcK1zbnfb8uUw5xIREYmoHn/twsxeBVwEsoiIiHhGn1QjIiKCClFERARQIYqIiAAqRBEREUCFKCIiAqgQRUREABWiiIgIoEIUEREBVIgiIiKAClFERARQIYqIiAAqRBEREUCFKCIiAqgQRUREABWiiIgIoEIUEREBVIgiIiKAClFERARQIYqIiAAqRBEREUCFKCIiAqgQRUREABWiiIgIoEIUEREBVIgiIiKAClFERARQIYqIiAAqRBEREUCFKCIiAqgQRUREABWiiIgIoEIUEREBVIgiIiKAClFERARQIYqIiAAxXIj79++noKCA9PR0Bg4cyMyZMykvL/c6VtCcc/Tr14/k5GSSk5O58847vY4UtJdffpnx48fTv39/rrjiClatWuV1JIkT/jzvH330UTIzM+nfvz933HEHDQ0NHqXtXk+zPPfcc2RlZZGamkpGRga33347dXV1HibunD+PyaFDhwA+65w76Zyrds79qydhexCzhVhbW0t+fj7l5eVUVVUxadIkCgoKvI51Ufbs2cOpU6c4deoUTz75pNdxgtLU1MRXv/pVvvOd73DixAmef/55fvCDH7Bnzx6vo0kc6Ol5v2nTJpYvX05xcTEVFRUcOnSIBx54wMPEXetplry8PHbs2MGJEyc4dOgQzc3N3H///R4m7lxPczQ2NnL99dcDnAQygWHA096k7YGZhXzJzc21SDt27JgBVl1dHfH7DgXADhw44HWMi3b48GED7OOPP24/b8KECfbss896mEri1fnP+8LCQrvvvvva12/evNkGDx7sVbyAdPc97OTJk3brrbfaDTfc4EGywJw/xxNPPGFTp041oNTC0DehXGJ2D/F827dvJzMzk0GDBnkdJWjTpk0jMzOTv//7v+e9997zOk5QBg8eTGFhIWvXrqWlpYWdO3dSUVHB1KlTvY4mcej85/2+ffvIyclpX5+Tk0NVVRXHjh3zKqLfOvse9uqrr5KamkpKSgobNmzg7rvv9i6gn86fo6SkhOHDhwOMbDtcutU597+8zNilcLTsRe0h7txpNnu22fjxvn937uzxKn/9619tyJAh0bcXEsAs27Zts4aGBqupqbH58+fbmDFjrKmpKYJhexDALC+99JJlZGRYr169rFevXrZq1aoIBpWYFKLn/RVXXGEbN25sP93Y2GiAvfvuu+FI3bkwfA+rrKy0Bx54wMrLy0OdtmshmuP666+33r17G7Af+BTwQ+AQ8CmLgr3Cc5foKsSlS82Sksyc80VLSPCdXrq0y6scOXLERo8ebcuWLQvuPsMliFnOam5utqSkJNu7d28EgvohgFneeustS0pKsv/+7/+2lpYWe/vtt+2zn/2s/f73v/cguMSEED7vs7Oz7fnnn28/XV1dHdm3UsL4PWznzp02bty4UCfuXAjnyM/PtxkzZrQfMgUccALIsSgowXOX6CnEnTt9X3C4cElK6vTVyfHjx23s2LG2ePHiwO8vnIKY5VzNzc3Wr18/27NnT4QCdyPAWdavX29jx47tcN7ChQtt/vz5kUwtsSLEz/vCwkJbsmRJ++ni4uLIvYcY5u9hr7zyivXv3z8cyTsK8Rz333+/ffGLX1QhBmT27L+9Gjl/SUjwrT/HiRMnbOLEidH5jTbAWcrKyuyNN96w5uZmO3nypC1cuNBGjRpljY2NHg1wjgBneeedd6xfv35WXFxsra2t9s4779iVV15pTzzxhEcDSFQL8fN+48aNNnjwYNu3b5/V1NTYF7/4xci9YA7xLE8//bRVVFSYmdl7771n06ZNs69+9athHyPUc7z99tvWt29fA8qBXsD3gYM6ZNqd8eM7fwDOLufdZlFRkQGWlJRk/fr1a1/ObkCeCnCW4uJiGzVqlCUlJVl6eroVFBTY/v37PQp/ngBnMTN7/vnnbcyYMZacnGxDhw61e++911paWjwIL1EvDM/7hx9+2DIyMiwlJcXmzJlj9fX1MTnLkiVLbOjQoZaUlGRDhw61b3/725E59BuGx2TDhg0G1AN1wFZgjEVBAZ6/RE8hzp7te/XR1auSwsLAb9MrmkXEP/G0fcXLLGGaA/3aRQAWLoTExM7XJSbCggWRzXMxNIuIf+Jp+4qXWeJljiBETyFOngyLFkFSEiS0xUpI8J1etMi3PlZoFhH/xNP2FS+zxMscQXC+PdnQmjBhgpWWlgZ35ZISWLkSDhyAkSN9r1Zi9QHQLCL+iaftK15mCfEczrnXzGxCCBOGXPQVooiIxJ1YKMToOWQqIiLiIRWiiIgIKkQRERFAhSgiIgKoEEVERAAVooiICKBCFBERAVSIIiIigApRREQEUCGKiIgAKkQRERFAhSgiIgKoEEVERAAVooiICKBCFBERAVSIIiIigB+F6Jxb45w74pwri0QgERERL/izh1gEzApzDhEREU/1WIhmth04HoEsIiIingnZe4jOubnOuVLnXOnRo0dDdbMiIiIREbJCNLNVZjbBzCakp6eH6mZFREQiQj9lKiIiggpRREQE8O/XLn4D7ASynHOVzrlvhT+WiIhIZPXu6QJmVhiJICIiIl7SIVMRERFUiCIiIoAKUUREBFAhioiIACpEERERQIUoIiICqBBFREQAFaKIiAigQhQREQFUiCIiIkCMF+LcuXPJysoiISGBoqIir+OExFNPPYVzjieffNLrKEF55ZVXSE5O7rA459iwYYPX0SROdPe8b2ho4Pvf/z5DhgxhwIABzJs3j6amJm+C9mD//v0UFBSQnp7OwIEDmTlzJuXl5e3r161bR25uLv3792fYsGHce++9NDc3e5i4cz3NUVRURK9evQDGOedOtS0zPIrbrZguxJycHB577DHGjx/vdZSQqKmp4cEHH2TMmDFeRwnaNddcw6lTp9qX3//+9yQnJzNr1iyvo0mc6O55v3z5ckpLSykrK2P//v28/vrrLFu2zIOUPautrSU/P5/y8nKqqqqYNGkSBQUF7etPnz7NihUrqK6uZteuXRQXF/PQQw95mLhzPc0BMGXKFIA3zCy5bdnqRdYemVnIl9zcXIukvLw8W7t2bUTvMxy+853v2K9+9SubPn26/cd//IfXcUJizpw5NmfOHK9jSBzq7Hmfm5trv/3tb9tPP/PMMzZs2LAIJwvOsWPHDLDq6upO1z/88MN24403RjhV4M6fY+3atZaXl2dAqYWhb0K5xPQeYjz505/+RGlpKXfddZfXUULm448/5ne/+x23336711HkE8TMOvy/srKSEydOeJjIP9u3byczM5NBgwZ1uT4Wjh51Nscbb7wBkOOc2++c+7Fzrse/tOSF6CvEkhIoLITcXN+/JSVeJwqen7O0tLQwb948/v3f/52EhOh7SICgHpcXXniBtLQ0pk+fHoGAEtNC9LyfNWsWK1eu5OjRoxw+fJhf/OIXgO/wY8QEMUtlZSXz58/nkUce6XT9mjVrKC0tZdGiRaFO27UQzTFt2jTKysoA9gBfAwqBH4Yp9cUJx25n0IdMly41S0oyc84MzBISfKeXLu32alF5yDSAWX7xi1/YP/7jP7afjrpDpkE+Ltddd50t7eEyIqF83p8+fdrmz59vQ4YMsREjRtiDDz5offr0sZaWljAOcI4gZjly5IiNHj3ali1b1un6F1980TIyMmzv3r3hSn2hMMxB2yFTYDbwmkXBIdLzl+gpxJ07fV9wuHBJSvKt70LUFWKAsxQUFNill15qgwcPtsGDB1ufPn2sf//+Nn/+fI8GOEeQj8v7779vvXr1snfeeSfCgSWmhPl5/8QTT9jkyZNDHLoLQcxy/PhxGzt2rC1evLjTm9y4caOlpaXZrl27wp3+b8Iwh1mHQvwG8LpFQQGev0RPIc6e/bdXI+cvCQm+9edpaGiwM2fO2NVXX22rVq2yM2fORO6VYHcCnKWmpsY++uij9mXKlCn28MMPW21trUcDnCOIx8XM7F/+5V/smmuuiXBYiTkhft5XVlbaBx98YK2trbZz504bNmyYbdq0KSpnOXHihE2cOLHLF77FxcU2cOBA27ZtWyTS/02I5/jDH/5ghw8fNqAUuAooAx6wKCjA85foKcTx4zt/AM4undzm9OnTDeiwbNmyJfD7DrUgZjlXVB0yDXKWrKwse/LJJyMcVmJOiJ/327Zts8svv9z69u1ro0aNsqeffjpqZykqKjLAkpKSrF+/fu1LRUWFmZnNmDHDevXq1WHdrFmzYm6Oe+65xzIyMgxoAQ4BPwX6WBQU4PlL9BTi7Nm+Vx9dvSopLAz8Nr2iWUT8E0/bV7zMEqY50K9dBGDhQkhM7HxdYiIsWBDZPBdDs4j4J562r3iZJV7mCEL0FOLkybBoESQlwdlfPUhI8J1etMi3PlZoFhH/xNP2FS+zxMscQXC+PdnQmjBhgpWWlgZ35ZISWLkSDhyAkSN9r1Zi9QHQLCL+iaftK15mCfEczrnXzGxCCBOGXPQVooiIxJ1YKMToOWQqIiLiIRWiiIgIKkQRERFAhSgiIgKoEEVERAAVooiICKBCFBERAVSIIiIigApRREQEUCGKiIgAKkQRERFAhSgiIgKoEEVERAAVooiICKBCFBERAVSIIiIigApRREQEUCGKiIgAKkQRERFAhSgiIgKoEEVERAAVooiICKBCFBERAVSIIiIigApRREQEUCGKiIgAKkQRERFAhSgiIgKoEEVERAAVooiICKBCFBERAVSIIiIigApRREQEUCGKiIgAKkQREREgxgtx9+7d5ObmkpSURG5uLrt37/Y6UlCqq6vJy8tj0KBBXHrppUyZMoUdO3Z4HStoLS0t3H///QwZMoSUlBTGjRtHbW2t17EkTsydO5esrCwSEhIoKirqsM7MuP/++xk6dCipqanMmDGDffv2eRO0B/v376egoID09HQGDhzIzJkzKS8vb19fVlbGzJkzSUtLwznnYdLu9TTHuZxzxc45c871jnBMv8RsITY2NlJQUMA3v/lNampquP322ykoKKCxsdHraAFLTk5mzZo1HD16lJqaGhYvXsxNN91Ec3Oz19GC8sADD/DHP/6RnTt3UldXx69//WsSExO9jiVxIicnh8cee4zx48dfsG79+vWsWbOGV155hePHjzNlyhRuvfVWD1L2rLa2lvz8fMrLy6mqqmLSpEkUFBS0r+/Tpw9f//rXWb16tYcpe9bTHOcYCPSJcLzAmFnIl9zcXAu3TZs22ZAhQ6y1tbX9vM985jO2cePGsN93OLW0tNhLL71kgFVVVXkdJ2DHjx+3fv362TvvvON1FIlzeXl5tnbt2g7nLV++3G6++eb202VlZXbJJZdEOFlwjh07ZoBVV1d3OP/AgQPm+1YdGzqbo7a21oB6YDJgQG8LQ/dc7BKze4j79u0jOzu7w6GE7OzsqD084o/s7GwSExPJz8/nzjvvJCMjw+tIAfvLX/5C7969+d3vfkdmZiajRo3iV7/6ldex5BNi9uzZHDx4kP3799PU1MS6deuYNWuW17H8sn37djIzMxk0aJDXUS5KZ3MsWbIE4Ahw2Ktc/ojK47j+OHXqFKmpqR3OS01N5eTJkx4lunh79+6lvr6eF198MSYP/QJUVlZy4sQJ9u/fz7vvvsuBAwe47rrrGDVqFNdff73X8STOffrTn2bq1KlkZWXRq1cvPvOZz/Dyyy97HatHlZWVzJ8/n0ceecTrKBelszlKS0vP/kzEEc+C+cmvPUTn3CznXLlz7h3n3P8Na6KSEigshNxc378lJZ1eLDk5mbq6ug7n1dXVkZKSEtZ4AfFzlnMlJiZSWFjI8uXL2bNnTwRC+snPWfr27QvA0qVL6du3L9nZ2cyePZs//OEPkUwrsSaI50pnfvrTn/LnP/+Zv/71r9TX1/PAAw9w7bXXcvr06RAH7kaAsxw9epQvfelLzJs3j8LCwgiF9EMI5mhtbWXevHmsXLkyEokvXk/HVIFewEHgCuBTwB7gc91dJ+j3EJcuNUtKMnPODMwSEnynly694KKbNm2yoUOHdngP8bLLLoue9xADmKUzV155pb3wwgthDumnAGZ55513DLCKior28773ve/Z3XffHcnEEkuCfK509h7iV77yFVuxYkWH81JTU+3Pf/5zqFN3LsBZjh8/bmPHjrXFixd3eZOevIcYojlqamrMOWeDBw82oAk4iu89xMPANRYF7xueu/hTiFOATeecvg+4r7vrBFWIO3f6vuBw4ZKU5Ft/joaGBrvssstsxYoVVl9fb7/85S/tsssus4aGhsDvO9QCnGXnzp32yiuvWENDg50+fdqWL19uycnJ9sEHH3g0QIdwAc1iZnbNNdfY3Llzrb6+3t58801LT0+3zZs3exBeol4Q21dDQ4OdOXPGrr76alu1apWdOXPGWlpazMzsn//5ny0vL88OHz5sLS0t9tRTT1lSUpLV1NRE3SwnTpywiRMn2vz58zu9udbWVjtz5ozt27fPADtz5ozV19fH1Bytra320Ucf2UcffWTAbmBiWyEOBT5lUVCC5y7+FOL/AZ485/StwL93d52gCnH27L+9Gjl/SUjwrT/P66+/buPHj7fExEQbN26cvf7664HfbzgEOMvWrVstOzvbkpOTbcCAATZt2jTbtm2bR+HPE8TjUllZaTNnzrR+/frZiBEj7PHHH/cguMSEILav6dOnW9s31fZly5YtZmZ25swZmzdvnmVmZlpKSoqNGzcuckeNApylqKjIAEtKSrJ+/fq1L2ePrrz77rsXzHn55ZfH3BxnAaXAcKL4p0ydL2fXnHP/B5hlZne2nb4V+IKZ/dN5l5sLzAW47LLLcisqKvw7ZntWbi68/nr360tLA7tNr2gWEf/E0/YVL7OEaQ7n3GtmNuEikoWdPz9U8wHwmXNOD2s7rwMzW2VmE8xsQnp6euBJRo2ChC7iJCT41scKzSLin3javuJllniZIwj+FOKfgZHOuRHOuU8Bs4GXQp5k4ULo6tNMEhNhwYKQ32XYaBYR/8TT9hUvs8TLHEHosRDNrBn4J2AT8BbwWzML/W+/T54MixZBUtLfXp0kJPhOL1rkWx8rNIuIf+Jp+4qXWeJljiD0+B5iMCZMmGClwR4rLymBlSvhwAEYOdL3aiVWHwDNIuKfeNq+4mWWEM8RC+8hRl8hiohI3ImFQozZzzIVEREJJRWiiIgIKkQRERFAhSgiIgKoEEVERAAVooiICKBCFBERAVSIIiIigApRREQEUCGKiIgAKkQREREgTJ9l6pw7CgT4F4IvkAZUhyDOJ4W+XoHR18t/+loFRl+vzl1uZkH8sdzICUshhoJzrjTaPwg2mujrFRh9vfynr1Vg9PWKXTpkKiIiggpRREQEiO5CXOV1gBijr1dg9PXyn75WgdHXK0ZF7XuIIiIikRTNe4giIiIRo0IUEREhSgvROTfLOVfunHvHOfd/vc4TzZxza5xzR5xzZV5niXbOuc8457Y45950zu1zzi30OlM0c84lOuf+5Jzb0/b1+onXmaKdc66Xc+4N59zvvc4igYu6QnTO9QJ+BdwAfA4odM59zttUUa0ImOV1iBjRDNxjZp8DJgPztW11qwG41sxygLHALOfcZG8jRb2FwFteh5DgRF0hApOAd8zskJk1As8BBR5nilpmth047nWOWGBmH5nZ623/P4nvG9dQb1NFL/M51XayT9uin8LrgnNuGPAV4Emvs0hworEQhwJ/Ped0JfqmJSHmnBsOjAN2eRwlqrUdAtwNHAH+x8z09eraCuBeoNXjHBKkaCxEkbByziUDG4C7zazO6zzRzMxazGwsMAyY5Jz7vMeRopJz7kbgiJm95nUWCV40FuIHwGfOOT2s7TyRi+ac64OvDJ8xsxe8zhMrzKwW2ILer+5KHpDvnHsP39s81zrnnvY2kgQqGgvxz8BI59wI59yngNnASx5nkjjgnHPAauAtM3vE6zzRzjmX7py7tO3/fYHrgbc9DRWlzOw+MxtmZsPxfc962cy+6XEsCVDUFaKZNQP/BGzC90MPvzWzfd6mil7Oud8AO4Es51ylc+5bXmeKYnnArfheve9uW77sdago9mlgi3NuL74Xqv9jZvp1Aolb+ug2ERERonAPUURExAsqRBEREVSIIiIigApRREQEUCGKiHyihfoPBDjnWs75Ke6Y+pU5/ZSpiMgnmHNuGnAKeMrMLvqTiJxzp8ws+eKTRZ72EEVEPsE6+wMBzrkrnXP/7Zx7zTn3inPuKo/iRZQKUUREzrcK+J6Z5QKLgMcCuG6ic67UOVfinPvfYUkXJr29DiAiItGj7cPvrwbW+z7tEIBL2tb9PfDTTq72gZnNbPv/5Wb2gXPuCuBl59xfzOxguHOHggpRRETOlQDUtv2Vkw7aPhC/2w/FN7MP2v495Jzbiu/PrMVEIeqQqYiItGv7k2jvOuduBt+H4jvncvy5rnNugHPu7N5kGr7PD34zbGFDTIUoIvIJ1sUfCLgF+JZzbg+wDyjw8+ZGA6Vt19sCLDezmClE/dqFiIgI2kMUEREBVIgiIiKAClFERARQIYqIiAAqRBEREUCFKCIiAqgQRUREAPj/QUQwZgvVoTwAAAAASUVORK5CYII=\n", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# [Optional] We visually inspect the register\n", + "from ahs_utils import show_register\n", + "\n", + "show_register(register)\n", + "show_register(parallel_register)" + ] + }, + { + "cell_type": "markdown", + "id": "8e30df2e-45fc-4a41-8000-4ee88a3a1519", + "metadata": {}, + "source": [ + "## AHS program for creating the checkerboard phase" + ] + }, + { + "cell_type": "markdown", + "id": "46bae3ef-1c23-43df-b153-a527d64eea3d", + "metadata": {}, + "source": [ + "We use the same values and timings for the Amplitude, Phase, and Detuning from the [Ordered phases in Rydberg Systems](./02_Ordered_phases_in_Rydberg_systems.ipynb) example " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "5a31ab21", + "metadata": {}, + "outputs": [], + "source": [ + "from ahs_utils import get_drive\n", + "\n", + "time_points = [0, 2.5e-7, 2.75e-6, 3e-6] # s\n", + "\n", + "amplitude_min = 0\n", + "amplitude_max = 1.5708e7 # rad / s\n", + "\n", + "detuning_min = -5.49778714e7 # rad / s\n", + "detuning_max = 5.49778714e7 # rad / s\n", + "\n", + "amplitude_values = [amplitude_min, amplitude_max, amplitude_max, amplitude_min]\n", + "detuning_values = [detuning_min, detuning_min, detuning_max, detuning_max]\n", + "phase_values = [0, 0, 0, 0]\n", + "\n", + "drive = get_drive(time_points, amplitude_values, detuning_values, phase_values)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "9993d59b-7a20-4098-b99c-dcf4e3d1b0ad", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAHwCAYAAABpICzHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABxYklEQVR4nO29e3zcVZ3//3ynSe8tvaTXBHpNKS1QmlYoQlHACyqCFFTUdb3Asrriuj/3puvqIurqXl13va0X1st3vaxSsCKIiAgtUqCZNoSG0EnaNGSaNk2TNp0mmWQy798fMwOhpLnO5zJz3s/HYx7JzHzmc87z9fkkZ87nco6oKoZhGIZhhJOioCtgGIZhGMaZsYbaMAzDMEKMNdSGYRiGEWKsoTYMwzCMEGMNtWEYhmGEGGuoDcMwDCPEONdQi8hdItIqIs+OYNkvi8iezGOfiBz3oYqGYRiG8SLi2n3UInIFEAd+oKrnj+JzHwXWq+oHPaucYRiGYZyGcz1qVX0MaB/4moisEJFfi0iViGwXkdWDfPRdwI99qaRhGIZhZCgOugIh4VvAh1Q1KiKXAF8Hrsq+KSJLgGXA7wKqn2EYhuEozjfUIjIdeDXwMxHJvjzptMVuBn6uqv1+1s0wDMMwnG+oSR/+P66qFw2xzM3AR/ypjmEYhmG8hHPnqE9HVTuBAyLydgBJsy77fuZ89WzgiYCqaBiGYTiMcw21iPyYdKN7rog0i8gtwHuAW0SkGtgLXD/gIzcDP1HXLo83DMMwQoFzt2cZhmEYRj7hXI/aMAzDMPIJpy4mKy0t1aVLl+ZkXb29vUycODEn68pHXPcHy8D83fYHyyCX/lVVVW2qOm+w95xqqJcuXcquXbtysq54PM706dNzsq58xHV/sAzM321/sAxy6S8iB8/0nh36HiNtbW1BVyFQXPcHy8D83fYHy8Avf2uox4jL3yLB/MEyMH+3/cEy8MvfGuox0tfXF1jZVQc7+Noj9VQd7AisDkH6hwXXMzB/t/3B/g/65e/UOepckkqlAim36mAH7/72TnqTKSYUCX+06RzKZ0/1vR4nTpzgrLO6fS83TLiegfm77Q/BZdDc0cX/29lESpWJxUX8762b2LBktu/18KsdsIZ6jEyd6n/jCLBz/zESyfTOkUwp3/vDGa8/8IFDAZYdFlzPwPyNYDPoS6bYuf9YIA21X+2ANdRjpL29ndmz/d8xXrX0pTInFxfx7fdt5KKzZ/lejwMHDrBs2TLfyw0Trmdg/m77Q3AZ7HnhOO+76ylSCiXFRWxaPtf3OoB/7UAoG2oRuQu4FmhV1fMHef+1wC+AA5mXtqrqnb5VEFi8eLGfxb1I8YT0ZQVvXbeI9796WSDfIgEqlp7NlMklgZQdFlzPwPzd9ofgMthcMY9bLl/Gt7cf4N/evi6w/4N+tQNhvZjse8A1wyyzXVUvyjx8baQh/U0yCLbva0ME7rzu/MB2TgjOP0y4noH5u+0PwWbwnkuWANB+qjewOvjlH8qGWlUfA9qDrsdQrF69OpByt0ePckHZWcyeFuxoQEH5hwnXMzB/t/0h2AyWzJ1K+ewpPBYN7l5uv/xD2VCPkEtFpFpEHhCRtX4XvmfPHr+L5GRPH7tfOM7milLfyz6dIPzDhusZmP+eoKsQOEFmICJsrpjHzoZj9PUHcxeOX/752lBHgCWqug74L+DeMy0oIreJyC4R2dXS0kJbWxstLS3EYjE6OjpoaGigu7ub2tpaUqkUkUgEgKqqqnRBkQipVIra2lq6u7tpaGigo6ODBQsWkF1fY2Mj8Xicuro6kskk1dXVL1tH9mdNTQ2JRIJoNEpnZydNTU20trbS2tpKU1MTnZ2dRKNREokENTU1r1jHEw3H6E8pr14+h7q6OuLxOI2NjTlzisViI3bKzro2XieA6upqkslk4E6j3U5r164tOKfRbKc5c+YUnNNotlP2b6CQnEa7nVatWhWo0wWlEziZSLKj9oVA9r0ZM2bkzGkoQjvNpYgsBe4b7GKyQZZtBDaq6pDHQDZu3Ki5Guu7qqqKDRs25GRdI+XT9z7L3ZFm9nzmDUwsDvY7VhD+YcP1DMzfbX8IPoMTXX2s/9xvuP2qCj7++lW+l59LfxGpUtWNg72Xlz1qEVkoIpL5/WLSHsf8rEMQO+f26FE2LZ8beCMNwfiHDdczMH+3/SH4DM6aWsKF5bPYET0aSPl++Qf/H38QROTHwBPAuSLSLCK3iMiHRORDmUVuAp4VkWrgP4Gb1edDA9nDKn7xQnsXjce6QnF+Gvz3DyOuZ2D+bvtDODK4oqKUPS8c50S3/8OZ+uUf2kPfXpDLQ9+pVIqiIv++5/zoySb+7p4afvvx17ByfvAD4fvtH0Zcz8D83faHcGTwdGM7b//mE3zzjyq55vxFvpadS/+CO/QdBurq6nwtb3v0KIvOmsyKedN8LfdM+O0fRlzPwPzd9odwZHDR2bOYPqk4kNu0/PK3hnqM+DlsXn9Keby+jc0VpWROzQeO60MngmVg/m77QzgyKJmQHkJ0RwANtV/+1lCPkUOH/BuI/pnm43T2JNlcMc+3MofDT/+w4noG5u+2P4QngytWldLU3sXBY6d8Ldcvf2uox8icOXN8K2t7ND1s6GUrw3EhGfjrH1Zcz8D83faH8GRweeZ/o9+Hv/3yt4Z6jHR1dflW1o5oG+cvPos5AQ8bOhA//cOK6xmYv9v+EJ4MlpVOo2zWFN9v0/LL3xrqMeLXlY4ne/qINHWE5rasLEFf6RkGXM/A/N32h/BkICJcsaqUP9QfI+njcKJ++Ycj5TykpMSfqd127m8nmdJQnZ8G//zDjOsZmL/b/hCuDDZXzONkIkl183HfyvTL3xrqMTLc2Ky5Ynv0KFNKJlC5ZJYv5Y0Uv/zDjOsZmL/b/hCuDF69Yi4i6Wt6/MIvf08aahHpHOZxUkT2eVG2X5SW+nMoeke0jU3L5zCpeIIv5Y0Uv/zDjOsZmL/b/hCuDGZNnciF5bN8baj98veqR92gqjOHeMwA/L2OPsc0Nzd7XsYL7V3sbzsVusPe4I9/2HE9A/N32x/Cl4Hfw4n65e9VQ31jjpYJLStXrvS8jB316W+GYbuQDPzxDzuuZ2D+bvtD+DK4fGUp/SnliQZ/5mjyy9+ThlpV9wOIyDQRKcr8vkpErhORkoHL5Ct79+71vIwd0TYWzpwcirG9T8cP/7Djegbm77Y/hC+D9efMZtrECeyo9+c2Lb/8vb6Y7DFgsoiUAb8B3gt8z+MyfWHdunWerr8/pewI2bChA/HaPx9wPQPzd9sfwpfBxOIiLl0x17fz1H75e91Qi6p2AVuAr6vq24G1HpfpC1VVVZ6uvyZ2ghPdfVwewsPe4L1/PuB6Bubvtj+EM4PLV5Zy8FgXTce8H4zEL3/PG2oRuRR4D/CrzGvhunx5jHg9Yfj2felDN5eHaNjQgQQ9YXwYcD0D83fbH8KZweZV6Ytvt/tw+Nsvf68b6r8APgnco6p7RWQ58IjHZfqC19+ktte3cX7ZTOZOn+RpOWMljN+k/cb1DMzfbX8IZwbLM8OJbt/n/eFvv/xFVXO/UpFPAr9W1d05X/k42Lhxo+7atSvoagxLPJHkos/+hj+5Yjl/e83qoKtjGIaRV3zi7mf4VU0Luz/9eoon5Me4XiJSpaobB3vPK4P9wMdEZLeIfE9E3ikisz0qKxBqamo8W/fOhmPpYUNDetgbvPXPF1zPwPzd9ofwZnB5RSkne5I8EzvhaTl++Rd7sVJV/SnwUwARWQ9cA2wVkQnAb0n3tp/yomy/WLVqlWfr3lHfxuSSIjYsDe93Gy/98wXXMzB/t/0hvBlctqI0PZzovjYqz/Hu/6hf/p4fE1DV3ar6RVW9ErgW2Avc6nW5XtPU1OTZuh+LHmXT8rmhGzZ0IF765wuuZ2D+bvtDeDOYPW0iF5adxXaPp730y9+THrWIbBnibVXV27wo108WLFjgyXpjx7vZf/QU7774HE/Wnyu88s8nXM/A/N32h3BncHlFKd98dD8ne/qYMdmbWa788veqR/3WzOMW4Lukb896D/Ad4IMelekrx48f92S92YnPr1gVvvG9B+KVfz7hegbmfzzoKgROmDPYXDHP8+FE/fL3agjRD6jqB4ASYI2q3qiqN5Ie7CQ8E5iOg8mTJ3uy3seibSyYOYmKEA4bOhCv/PMJ1zMwf7f9IdwZVJ4zm6kTJ3g6Splf/l6foz5bVVsGPD8ChPuYboD0p5TH69u4fOW8UA4bahiGkS9MLC5i0/K5np+n9gOvG+qHReRBEXm/iLyf9Ohkv/W4TF/o6enJ+TqfjZ3geFcfV6wK721ZWbzwzzdcz8D83faH8GewuaKUxmNdvNDuzXCifvl72lCr6u3AfwPrMo9vqepHvSzTL2bNmpXzdWantbwsxPdPZ/HCP99wPQPznxV0FQIn7BlsrsgMJ+rR4W+//P24PWurqv5/mcc9XpfnF0eOHMn5Oh/bd5S1i2dSGtJhQwfihX++4XoG5u+2P4Q/gxXzprH4rMmeHf72y9/ThlpENonI0yISF5FeEekXkU4vy/SLc87J7an2U4kkkaaO0M6WdTq59s9HXM/A/N32h/BnICJcXlHK4/Vt9KdyP1y2X/5e96i/CrwLiAJTSA908jWPy/SFffv25XR9Tx44Rl+/ckVFuG/LypJr/3zE9QzM321/yI8MNlfMo7MnyTPNx3O+br/8/Tj0XQ9MUNV+Vf0f0sOJDomI3CUirSLy7BneFxH5TxGpF5FnRKQy1/UejgsuuCCn63tsX2bY0CXhHTZ0ILn2z0dcz8D83faH/MjgspWZ4UQ9OE/tl7/XDXWXiEwE9ojIP4vI/zfCMr/H0A36m4CKzOM24BvjrehoyfX0ZtujR7l42Vwml4R32NCBhHF6O79xPQPzd9sf8iODOdMmcv7is9jhQUPtl7/XDfV7M2XcDpwCzgZuHO5DqvoY0D7EItcDP9A0O4FZIrIoB/UdMbmcMPzQ8W4ajp7iijw5Pw3hnDDeb1zPwPzd9of8yWBzRSmRpg5O9vTldL1++XvWUGdmyvpHVe1R1U5V/ayqfjxzKHy8lAEvDHjenHltsHrcJiK7RGRXS0sLbW1ttLS0EIvF6OjooKGhge7ubmpra0mlUkQiEeClb0qRSIRUKkVtbS3d3d00NDTQ0dHB9u3bya6vsbGReDxOXV0dyWSS6urql60j+7OmpoZEIkE0GqWzs5OmpiZaW1u5P7IfgPWLphCNRkkkEi9On3b6Oqqrq0kmk9TV1RGPx2lsbMyZUywWG7HTQw89NKRTa2srTU1NdHZ25o3TcNvpdKennnqq4JxGs50effTRgnMazXbK/g0UktNot9POnTvzwmlzxTySKeWJhracbqff//73OXMaClHN/ZVwL65cZAdwlar2juGzS4H7VPX8Qd67D/iSqu7IPH8Y+FtV3TXUOjdu3Ki7dg25SCDc/qMITx1o58m/u9pGJDMMw8gxiWQ/F332Id6+sZw7r39FkxIKRKRKVTcO9p7Xh773A4+LyKdF5OPZRw7WGyN9GD1LeeY138h+0xovqeywoRWledVI58o/n3E9A/N32x/yJ4NJxRPYtHxOzs9T++XvdUPdANyXKWfGgMd42Qb8cebq703AidPGFPectWvX5mQ9ew910tHVlze3ZWXJlX8+43oG5u+2P+RXBpsr5rG/7VROhxP1y9/rIUQ/O9hjuM+JyI+BJ4BzRaRZRG4RkQ+JyIcyi9xPurdeD3wb+DPPJM5AfX0uTrXDY5kRc/Jh2NCB5Mo/n3E9A/N32x/yK4PsHArZoZpzgV/+xV6sVETuUNU7xrqMqr5rqM9q+sT6R8ZcwRxQXl6ek/Vsjx7lvEUzmTcj/MOGDiRX/vmM6xmYv9v+kF8ZrJg3nYUzJ7Mj2sa7Ls7NiGJ++XvSUAO3DjNUqAA3A3d4VL7ntLW1MX36+OaM7upNUnWwgw9etixHtfKPXPjnO65nYP5u+0N+ZSAibK4o5Te1R+hPKROKxn9NkF/+Xh36/jYvPyd9+mN6Zpm8JRcb58n97fT164szvOQT+fLH6SWuZ2D+bvtD/mWwedU8TnT3URM7kZP1+eXvSY96JOeh852+vvHfOP9Y9CiTiovYuDQ/hg0dSC788x3XMzB/t/0h/zK4bMVcAHZEj3LR2bPGvT6//D0f67tQSaVS417H9mgbFy+bkzfDhg4kF/75jusZmL/b/pB/GcydPonzy2byWI5u0/LL3xrqMTJ16tRxfb7lRDf1rfG8uy0ry3j9CwHXMzB/t/0hPzPYXDGPyMEO4onkuNfll7811GOkvX2oociHJzuTS77MP3064/UvBFzPwPzd9of8zGDzylKSKeXJ/cfGvS6//D1tqEVklYg8nJ2uUkQuFJG/97JMv1i8ePG4Pr892kbp9EmsXpiL8V/8Z7z+hYDrGZi/2/6QnxlsWDqbySVFOZn20i9/r3vU3wY+CfQBqOozpG/LynsOHDgw5s9mhw29Is+GDR3IePwLBdczMH+3/SE/M0gPJzr3xcGmxoNf/l431FNV9anTXhv/iYEQsHr16jF/tralk/ZTvWxelZ+HvWF8/oWC6xmYv9v+kL8ZbK6Yx/6jp4gd7x7Xevzy97qhbhORFYACiMhNgK9jcnvFnj17xvzZfB02dCDj8S8UXM/A/PcEXYXAydcMNmeuDdoxzl61X/5eT3O5HPgW8GqgAzgA/JGqNnpW6BCEZZrLd397J+2nevn1X1wRdFUMwzCcQ1XZ9MWH2bh0Dl97d2XQ1QECnOZSVfer6uuAecBqVb08qEY612Qn/x4tXb1JdjV2cMWq/LwtK8tY/QsJ1zMwf7f9IX8zSA8nOo/H69voT429s+qXv1eTcgw653T2wilV/XcvyvWTDRs2jOlzTx5op7c/xeV5fNgbxu5fSLiegfm77Q/5ncHmilJ+XtXM3kMnuLB81pjW4Ze/Vz3q7JjeG4EPA2WZx4eAcBxnGCeRSGRMn9u+r42JxUVcvGxOjmvkL2P1LyRcz8D83faH/M4ge43QeG7T8svf63PUjwFvUdWTmeczgF+paiAnZ3N5jjqVSlFUNPrvOW/48qMsmDmZH95ySU7qERRj9S8kXM/A/N32h/zP4C3/uZ3pk4r56Z9eOqbP59I/sHPUwAKgd8Dz3sxreU9dXd2oP3P4RA/7jsTz/rA3jM2/0HA9A/N32x/yP4PLK0qJNHVwaozDifrl73VD/QPgKRG5Q0TuAJ4Evu9xmb6wbNno55DenrkVIB+ntTydsfgXGq5nYP5u+0P+Z3BFxTz6+pUnD4xtOFG//L2+6vsLwAdI35rVAXxAVf/RyzL94tChQ6P+zI76/B42dCBj8S80XM/A/N32h/zPYMOS9HCij+0b23lqv/w9ueo7i4icA7QB9wx8TVWbvCzXD+bMGd3FYKmUsiPaxhWr5lFUlJ/Dhg5ktP6FiOsZmL/b/pD/GUwumcAly+a+eLRztPjl7/Wh718B92UeDwP7gQc8LtMXurq6RrV8bUsnx071FsT5aRi9fyHiegbm77Y/FEYGmytKaTh6ikNjGE7UL3+vD31foKoXZh4VwMXAE16W6RejvdIvewvA5jyd1vJ08vlKz1zhegbm77Y/FEYG2WuGdozhNi2//H1NWVUjQH7fl5ShpKRkVMvvqD/K6oUzmD9zskc18pfR+hcirmdg/m77Q2FksGrBdObPmDSm2bT88vd6PuqPD3j8lYj8CMjvqw8yxOPxES/b3dvP0wc6CuawN4zOv1BxPQPzd9sfCiMDEeHyilIer28jNcrhRP3y97pHPWPAYxLpc9bXe1ymL5SWjrzRffLAMXr7U2zO8/G9BzIa/0LF9QzM321/KJwMrqiYR0dXH3sPdY7qc375e91Q16rqZzOPL6jq/wJv9bhMX2hubh7xsjuimWFDl+b3FZIDGY1/oeJ6Bubvtj8UTgbZ4URHe/jbL3+vG+pPjvC1vGPlypUjXnZ7tI1XLZ3NlIkTPKyRv4zGv1BxPQPzd9sfCieDeTMmcd6imaO+oMwvf08aahF5k4j8F1AmIv854PE9YGxjtYWMvXv3jmi5I509PH/kZEGMRjaQkfoXMq5nYP5u+0NhZXBFRSm7DrbT1TvyJsovf6961IeAXUAPUDXgsQ14o0dl+sq6detGtNyOArstK8tI/QsZ1zMwf7f9obAy2JwdTnR/+4g/45e/Jw21qlar6veBFar6/QGPrara4UWZfjPSCcO3R49SOn0i5y2c6XGN/CVfJ4zPJa5nYP5u+0NhZbBx6WwmFReN6jy1X/5eHfr+v8yvu0XkmdMfI/j8NSLyvIjUi8gnBnn//SJyVET2ZB635lxiGEYyYXgqpeyob+OylaUFMWzoQPJ5wvhc4XoG5u+2PxRWBpNLJnDxsjmjOk/tl79Xh74/lvl5LemrvE9/nBERmQB8DXgTsAZ4l4isGWTRn6rqRZnHd3JW8xEykm9Szx3upC3eW3Dnp6GwvkmPFdczMH+3/aHwMriiYh7R1jgtJ0Y2nGhe96hVtSXz8+Bgj2E+fjFQr6r7VbUX+AkhvPd6JN+kCvX8NBTWN+mx4noG5u+2PxReBptXpf9Xbx9hrzqve9QiclJEOgc8Tg78OczHy4AXBjxvzrx2OjdmDqX/XETOHqIut4nILhHZ1dLSQltbGy0tLcRiMTo6OmhoaKC7u5va2lpSqRSRSAR46ZtSJBIhlUpRW1tLd3c3DQ0NdHR08MQTT5BdX2NjI/F4nLq6OpLJJNXV1QD8qmo/qxZMpzmavjKwpqaGRCJBNBqls7OTpqYmWltbaW1tpampic7OTqLRKIlEgpqampfVI/uzurqaZDJJXV0d8XicxsbGnDnFYrFhnbLrePjhhwvOKftzpE579uwpOKfRbKfHH3+84JxGs52yfwOF5DTa7RSJRArKaVL3MUqnT+T+qv0jctq+fXvOnIZCVEc3ZJrXiMhNwDWqemvm+XuBS1T19gHLzAXiqpoQkT8F3qmqVw237o0bN+quXbtyUs9EIsGkSZPO+H5PXz8XfvY3vHfTEj597WBH7vOb4fxdwPUMzN9tfyjMDD7+0z38ft9Rdn3qdcNeW5RLfxGpUtWNg73n+aQcIlIpIn8uIh8VkfUj+EgMGNhDLs+89iKqekxVE5mn3wF8P/7S1DT0lNpPHWinN5kqyMPeMLy/C7iegfm77Q+FmcHmVaW0n+qltmX44UT98vd6Uo7PAN8H5gKlwPdE5O+H+djTQIWILBORicDNpO+/HrjeRQOeXgc8l7taj4wFCxYM+f726FEmTijikmVzfaqRvwzn7wKuZ2D+bvtDYWaQHU50JOep/fL3ukf9HuBVqvoPqvoPwCbgvUN9QFWTwO3Ag6Qb4P9T1b0icqeIXJdZ7M9FZK+IVAN/DrzfM4MzcPz48SHf3x5tY2OBDRs6kOH8XcD1DMz/eNBVCJxCzGD+jMmsXjiD7SO4n9ov/2KP138ImEx6hDJIz6AVO/PiaVT1fuD+0177zIDfP0nAY4ZPnnzmeaVbO3uoO3ySv71mtY818peh/F3B9QzM321/KNwMrlg1j+893kh3b/+QnS2//L3uUZ8A9orI90Tkf4BngePZsb89LjswdtQX7m1ZhmEYhc7milJ6+1M8eeBY0FUBvO9R35N5ZPm9x+X5Rk9Pzxnf2x5tY+60iaxZVFjDhg5kKH9XcD0D83fbHwo3g1ctncPE4iK2R9t47bnzz7icX/6eNtSZ8b4LklmzZg36uqqyPVqYw4YO5Ez+LuF6BuY/K+gqBE6hZjC5ZAKXLJsz7Hlqv/y9vur7WhHZLSLtoxjwJC84cuTIoK/XHT5JWzxR8Ie9z+TvEq5nYP5u+0NhZ7C5opR9R+IcPnHmXrNf/l6fo/4P4H3AXFWdqaozVLUgjgefc845g76e/QZWiON7D+RM/i7hegbm77Y/FHYGl69M/w/PXnM0GH75e91QvwA8q2Eb/iwH7Nu3b9DXt0fbqJg/nYVnFebVkFnO5O8Srmdg/m77Q2FnsHrhDEqnTxry8Ldf/l5fTPY3wP0i8iiQHUkMVf13j8v1nAsuuOAVr/X09fPUgXbec8mSAGrkL4P5u4brGZi/2/5Q2BkUFQmbK0p5bN9RUikd9Jojv/y97lF/AegifS/1jAGPvGew6c2ebmwnUcDDhg6k0Ka3GwuuZ2D+bvtD4Wdw+cpSjp3q5bnDg19a5Ze/1z3qxap6vsdlBMJg05ttj7ZRMkG4ZPmcAGrkL4U2vd1YcD0D83fbHwo/g2yna3u0jbWLz3rF+3k9zeUA7heRN3hcRiAM9k3qsX1H2bhkDlMnev39J3gK/Zv0SHA9A/N32x8KP4P5M4ceTtQvf68b6g8DvxaR7kK7Pev0b1KtJ9PDhmYnHi90Cv2b9EhwPQPzd9sf3Mhgc0UpTzd20N3b/4r3CqJHnbkdq0hVpxTa7VnZCcWzPJ4dNnRlYd+WleV0fxdxPQPzd9sf3Mjg8op59CZTPNXY/or3/PL3/BitiMwGKkhfUAaAqj7mdbles3bt2pc9376vjdlTS1i7uCC+hwzL6f4u4noG5u+2P7iRwcXZ4UT3HeU1q17eEfPL3+uRyW4FHiM9ZeVnMz/v8LJMv6ivr3/xd1Vle30bl1fMK+hhQwcy0N9VXM/A/N32BzcymDJxAhcvnTPo/NR++Xt9jvpjwKuAg6p6JbAeOO5xmb5QXl7+4u/PHznJ0ZMJNq904/w0vNzfVVzPwPzd9gd3Mri8opTnj5yktfPlw4n65e91Q92jqj0AIjJJVeuAcz0u0xfa2l76drV9X/r3yx24fzrLQH9XcT0D83fbH9zJYOBtWgPxy9/rhrpZRGYB9wIPicgvgIMel+kL06dPf/H37fVtrJw/ncWzpgRYI38Z6O8qrmdg/m77gzsZnLdwJqXTJ77iNi2//L2e5vKGzK93iMgjwFnAr70s0y/6+vqA9LChT+4/xrsuLtzB6Qcj6+8yrmdg/m77gzsZFBUJl60sZUf9sZcNJ+qXv9c96hdR1UdVdZuq9vpVppekUikAdjV2kEimuMKR+6ezZP1dxvUMzN9tf3Arg80V82iLJ6g7fPLF1/zy962hLjSmTp0KpKe1LJkgXLJsbsA18pesv8u4noH5u+0PbmXw0nnqlw5/++VvDfUYaW9P3/y+PdrGhiWzmTap8IcNHUjW32Vcz8D83fYHtzJYMHMy5y6Y8bL5qf3yt4Z6jCxevJijJxPUtnSyucKN0cgGsnjx4qCrEDiuZ2D+bvuDexlcXlHKkwfa6elLDyfql7811GPkwIEDLw0b6tBtWVkOHDgQdBUCx/UMzN9tf3Avg80VpenhRA+ke9J++VtDPUZWr17N9mh22NBXTn9W6KxevTroKgSO6xmYv9v+4F4Glyyby8QJRS8e/vbL3xrqMbJ79262R4/y6pWlTHBk2NCB7NmzJ+gqBI7rGZj/nqCrEDiuZTBl4gQ2Lp3NY/vSF5T55W8N9RiZXraK1pMJrnDwsDdAZWVl0FUIHNczMH+3/cHNDDZXzKPucHo4Ub/8raEeIz96ZDeQngLNRQp9wviR4HoG5u+2P7iZQfaapB31bb75W0M9Rhq7J7N83jTKHBo2dCAuTBg/HK5nYP5u+4ObGaxZNJO50yayI9rmm39oG2oRuUZEnheRehH5xCDvTxKRn2bef1JElvpVt56+fp5oOMoVjvamASKRSNBVCBzXMzB/t/3BzQyyw4k+FnW8Ry0iE4CvAW8C1gDvEpE1py12C9ChqiuBLwP/5Ff9fvJUE739sOisyX4VGTouuuiioKsQOK5nYP4XBV2FwHE1g80VpbTFE2xrnkTVwQ7PywtlQw1cDNSr6v7M2OA/Aa4/bZnrge9nfv85cLWIeH75ddXBDj73q+cA+PJD+3zZSGGkrq4u6CoEjusZmL/b/uBuBrOmTATgB08c5D3f2el5OxDWhroMeGHA8+bMa4Muo6pJ4ATwigG3ReQ2EdklIrtaWlpoa2ujpaWFWCxGR0cHDQ0NdHd3U1tbSyqVevFQTvaQRiQSIZVKUVtbS3d3N/fvitKfUgB6+1P87tkmGhsbicfj1NXVkUwmqa6uftk6sj9rampIJBJEo1E6OztpamqitbWV1tZWmpqa6OzsJBqNkkgkqKmpGXQd1dXVJJNJ6urqiMfjNDY2jtupoaGBjo4OYrEY2YyGc4rH4wXnNNrtVFZWVnBOo9lOJSUlBec0mu2U/RsoJKfRbqf58+cXnNNIttP2Z6IAKNCXTPFgpGHcTkMhqjrkAkEgIjcB16jqrZnn7wUuUdXbByzzbGaZ5szzhswyZ5zJe+PGjbpr165x1a3qYAfv/vZO+pIpJpYU8b+3bmLDktnjWmc+0tDQwIoVK4KuRqC4noH5u+0P7mbwYjvQn2JicW7aARGpUtWNg70X1pkkYsDZA56XZ14bbJlmESkmPdf1Ma8rtmHJbH70J5t4ZG8zV64td7KRBpgzZ07QVQgc1zMwf7f9wd0M/G4Hwnro+2mgQkSWichE4GZg22nLbAPel/n9JuB36tPhgQ1LZvOudXOcbaQBurq6gq5C4Liegfm77Q9uZ+BnOxDKHrWqJkXkduBBYAJwl6ruFZE7gV2qug34LvBDEakH2kk35r5RVBTW7zj+4Lo/WAbm77Y/WAZ++YeyoQZQ1fuB+0977TMDfu8B3u53vbKUlJQEVXQocN0fLAPzd9sfLAO//EN5MZlXiMhR4GCOVlcKnPHCNQdw3R8sA/N32x8sg1z6L1HVQUfRcqqhziUisutMV+i5gOv+YBmYv9v+YBn45e/2CQbDMAzDCDnWUBuGYRhGiLGGeux8K+gKBIzr/mAZmL/hega++Ns5asMwDMMIMdajNgzDMIwQYw21YRiGYYQYa6gNwzAMI8RYQ20YhmEYIcYaasMwDMMIMdZQG4ZhGEaIsYbaMAzDMEKMNdSGYRiGEWKsoTYMwzCMEONcQy0id4lIq4g8O4JlvywiezKPfSJy3IcqGoZhGMaLODeEqIhcAcSBH6jq+aP43EeB9ar6Qc8qZxiGYRin4VyPWlUfA9oHviYiK0Tk1yJSJSLbRWT1IB99F/BjXyppGIZhGBmKg65ASPgW8CFVjYrIJcDXgauyb4rIEmAZ8LuA6mcYhmE4ivMNtYhMB14N/ExEsi9POm2xm4Gfq2q/n3UzDMMwDOcbatKH/4+r6kVDLHMz8BF/qmMYhmEYL+HcOerTUdVO4ICIvB1A0qzLvp85Xz0beCKgKhqGYRgO41xDLSI/Jt3onisizSJyC/Ae4BYRqQb2AtcP+MjNwE/UtcvjDcMwjFDg3O1ZhmEYhpFPONejNgzDMIx8whpqwzAMwwgxTl31XVpaqkuXLs3Junp7e5k4cWJO1pWPuO4PloH5u+0PlkEu/auqqtpUdd5g7znVUC9dupRdu3blZF3xeJzp06fnZF35iOv+YBmYv9v+YBnk0l9EDp7pPTv0PUba2tqCrkKguO4PloH5u+0PloFf/tZQjxGXv0WC+YNlYP5u+4Nl4Je/U4e+c0lfX1/QVQgU1/3BMjB/t/0h2Ax+9cwhntjfzvllM1m9cKbv5dcd7qR6/xFu2jSBDUtme1qWNdRjJJVKBV2FQHHdHywD83fbH/zP4Fg8wbbqQ/zwiYPsbzvla9ln4p5n2/jfWzd52lhbQz1Gpk6dGnQVAsV1f7AMzN9tf/Ang56+fn5X18rWSDO/f/4oyZSyYOYkBFCgSOCG9WVce+Fiz+uS5b5nDrE1EkOBvmSKnfuPWUMdRtrb25k929vDHWHGdX+wDMzfbX/wLgNVJdLUwd2RGPdVH6KzJ8mCmZO4ZfMytqwvJ55I8p7v7KQvmaKkuIh3X7LE88PPA5k5pYRf1bTQmyl/0/K5npYX2iFERaQROAn0A0lV3Xja+wJ8BXgz0AW8X1UjQ61z48aNmqvbs7q7u5kyZUpO1pWPuO4PloH5u+0Puc/ghfYutkZibN3dzMFjXUwpmcA15y9kS2UZr15RyoSiF6cipupgBzv3H2PT8rm+NtIDy9/x/GEuP3dhTsoXkarT27ksYe9RX6mqZ7r+/U1AReZxCfCNzE9fOHDgAGvWrPGruNDhuj9YBubvtj/kJoPOnj7uf6aFrZEYTzW2IwKXLp/LR6+q4JrzFzJ90uDN1IYlswNpoAeWP+VUC2t8qEPYe9Qbz9RQi8h/A79X1R9nnj8PvFZVW860zlz2qFOpFEVF7t7d5ro/WAbm77Y/jD2DZH+K7dE27o4081DtERLJFMvnTePGynLetr6Msln5caQil/vAUD3qMO9lCvxGRKpE5LZB3i8DXhjwvDnz2ssQkdtEZJeI7GppaaGtrY2WlhZisRgdHR00NDTQ3d1NbW0tqVSKSCR99LyqqgqASCRCKpWitraW7u5uGhoa6Ojo4A9/+APZ9TU2NhKPx6mrqyOZTFJdXf2ydWR/1tTUkEgkiEajdHZ20tTURGtrK62trTQ1NdHZ2Uk0GiWRSFBTUzPoOqqrq0kmk9TV1RGPx2lsbMyZUywWG7HTww8/XHBOo91OVVVVBec0mu20Y8eOgnMazXbK/g0UktNot9PTTz89Kqenoof4mx/v5OIvPMQHvvc0jz3fyg3rFvBf153N/R/ZxBWl3ZTNmpI3f0+PPfZYzrbTUIS5R12mqjERmQ88BHxUVR8b8P59wJdUdUfm+cPA36rqGbvMuexRG4ZhGMPT2tnDL/Yc4u5IM3WHT1IyQbhq9Xy2VJZz5bnzmVgc5v6if+Rlj1pVY5mfrcA9wMWnLRIDzh7wvDzzmi9kvxW5iuv+YBmYv9v+cOYMunv7+cWeGO+76yk2ffFhvnD/c0wumcDnrl/LU3/3Ov77vRt549qFed9I+7UPhLJHLSLTgCJVPZn5/SHgTlX99YBl3gLcTvqq70uA/1TV0xvzl2E9asMwDG9IpZSnGtvZGmnm/prDxBNJymZN4Yb1ZdxQWcaKeW4PNzoc+XjV9wLgnvQdWBQDP1LVX4vIhwBU9ZvA/aQb6XrSt2d9wM8KRiIRKisr/SwyVLjuD5aB+bvtD+kMZp29int2x9gaiRE73s20iRN48wWL2FJZziXL5lA04JaqQsOvfSCUPWqvsKu+c4fr/mAZmL+7/se7evnlMy1srWpm9wvHKRK4vGIeN1aW8YY1C5kycULQVfQFv676DmuPOvTU1dU5fQ+l6/5gGZi/W/69yRS/f76VrZEYD9cdoa9fWTKrhL9782quv6iMBTMnB11F3/FrH7CGeowsW7Ys6CoEiuv+YBmYf+H7qyrPNJ9ga6SZbdWH6Ojqo3T6RP740qVsqSxj2awSp8c892sfsIZ6jBw6dIgVK1YEXY3AcN0fLAPzL1z/Q8e7M+edm2k4eoqJxUW8Yc0CbqwsZ3NFKcUT0od7GxoaCjaDkeDXPmAN9RiZM2dO0FUIFNf9wTIw/8LyjyeS/PrZw2yNNPPE/mOowsVL5/Anm5fzpgsWcdaUkld8ptAyGC1++VtDPUa6urqcnjnHdX+wDMw///37U8ofGtrYGonx62cP093Xz5K5U/mLq1dxw/oyzpk79GHtQshgPPjlbw31GHH1as8srvuDZWD++eu/78hJ7o40c+/uGEc6E8ycXMwNlWXcWFlG5TmzydwaOyz5nEEu8MvfGuoxUlLyysNALuG6P1gG5p9f/m3xBNv2HGLr7maejXUyoUi48tx5/MNby7lq9Xwml4z+lqp8yyDX+OVvDfUYicfjlJaWBl2NwHDdHywD8w+/f09fPw8/18rWSDO/33eU/pRyQdlZ/MNb1/DWdYspnT5pXOvPhwy8xC9/a6jHiMs7J5g/WAbmH05/VaXqYAd3R2Lc98whTvYkWTBzErduXsaNleWsWjAjZ2WFNQO/8Mt/1A21iIxkvLQ+Va0ZQ33yhubmZlavXh10NQLDdX+wDMw/XP5Nx7rSt1TtbubgsS6mlEzgmvMXsqWyjFevKGWCB0N5hi0Dv/HLf9RDiIrISeBpYKitvkxVl46jXp6QyyFEk8kkxcXuHpBw3R8sA/MP3r+zp4/7n2lhayTGU43tiMCly+eypbKca85fyPRJ3tYvDBkESS79cz2E6NOqetUwBf5uDOvNK/bu3cu6deuCrkZguO4PloH5B+Of7E+xPdrG3ZFmflN7hN5kihXzpvHXbzyXt60vo2zWFN/qYvuAP/42KYdhGEbIUVVqWzrZGonxiz0x2uK9zJ5awnXrFrOlspwLy88a8S1VRjgZqkc95pvAROSyzFzRiMgfici/i8iSsa4v33B90njX/cEyMH/v/Y909vCtxxp401e285b/3MEPnmhk45I5fOu9G3jy717HZ68/n3VnzwqskbZ9wB//MfeoReQZYB1wIfA94DvAO1T1NTmrXY6xHrVhGGGnu7ef39Qe5u5IjB3Ro6QU1p8ziy2V5Vx7wSJmT5sYdBUND/CkRw0kNd3KXw98VVW/BuTuuv+QY98k3fYHy8D8c+efSilPNBzjr39WzcbPP8THfrKHhtY4H7lyJb/7y9dwz59dxns3LQldI237QPh71I8CvwY+AFwBtALVqnpB7qqXW6xHbRhGmGg4GueeSIx7dseIHe9m+qRi3nzBQrZUlnPx0jkUeXBLlRFOvOpRvxNIALeo6mGgHPiXcawvr6ipKejbxIfFdX+wDMx/bP4dp3r54RONvO1rj3P1vz3K139fz8r50/nKzRfx9Kdexz/ftI5Ny+fmRSNt+4A//mO5j/pB0j3pB1S1LucVEjkb+AGwAFDgW6r6ldOWeS3wC+BA5qWtqnrncOvOZY86kUgwadL4ht/LZ1z3B8vA/Efu35tM8cjz6aE8f1fXSl+/snrhDG6sLOf6ixYzf+Zkj2vrDbYP5M4/1/dRvw+4BrhDRFYBT5JuuH+rqqfGXs0XSQJ/qaoREZkBVInIQ6pae9py21X12hyUNyaampqoqKgIqvjAcd0fLAPzH9pfValuPsHWSDO/rD5ER1cfpdMn8b5Ll7Klspw1i2f6WFtvsH3AH/9RN9SZw9zfA74nIkXAJcCbgL8RkW7gN6r6z2OtkKq2AC2Z30+KyHNAGXB6Qx0oCxYsCLoKgeK6P1gG5j+4f+x4N/fujnF3pJn9R08xqbiIN6xND+W5eWUpxRMKZ2pI2wf88R/XHqOqKVV9QlU/o6qXATcDsdxUDURkKbCedK/9dC4VkWoReUBE1g6xjttEZJeI7GppaaGtrY2WlhZisRgdHR00NDTQ3d1NbW0tqVSKSCQCvHQ1XyQSIZVKUVtbS3d3Nw0NDXR0dHDgwAGy62tsbCQej1NXV0cymaS6uvpl68j+rKmpIZFIEI1G6ezspKmpidbWVlpbW2lqaqKzs5NoNEoikXjx3Mfp66iuriaZTFJXV0c8HqexsTFnTrFYbMROe/bsKTin0W6no0ePFpzTaLZTfX19wTmNZjtl/wYikQid3b18ZduTvPObj3P5l37Hvzz4PDNL4JNXn8ODH17PX146m1eVTaU+ui/UTqPdTocPHw79dvJy33v++edz5jQUYzlH/V+kzx0Piqr++ahWeOZypgOPAl9Q1a2nvTcTSKlqXETeDHxFVYc9/pDLc9Stra3Mnz8/J+vKR1z3B8vAdf+Ww0eIdhaxNdLMr/cepqcvxdK5U9lSWc4N68s4e87UoKvoOa7vA7n0z/U56mxLdxmwBvhp5vnbydHhaREpAe4G/vf0RhpAVTsH/H6/iHxdREpVtS0X5RuGYZyJ5w+fZGukma1VL3D0VB8zJxdzY2U5WyrLqTwnuFHCjMJlLOeovw8gIh8GLlfVZOb5N4Ht462QpPfy7wLPqeq/n2GZhcARVVURuZj0Ifxj4y17NPT09PhZXOhw3R8sA5f8j55MsK36EFsjzew91ElxkXDJOdO5820XcOXq+UwumRB0FQPBpX1gMPzyH8/8XLOBmUB75vn0zGvj5TLgvUCNiOzJvPZ3wDkAqvpN4CbgwyKSBLqBm9Xn2UVmzZrlZ3Ghw3V/sAwK3b+nr5/fPneErZEYj+47Sn9KubD8LO546xreum4xJakEM2fm/5Xb46HQ94Hh8Mt/PA31l4DdIvII6bmprwDuGG+FVHUHQ891jap+FfjqeMsaD0eOHHH6j9R1f7AMCtFfVdl1sIOtkWbue6aFkz1JFs6czG1XLGfL+jIqFrw0SnI02lRw/qOlEPeB0eCX/7imucwcgr4k8/TJzK1bocUGPMkdrvuDZVBI/gePnWJrZijPpvYupk6cwDXnL+TGynI2LZ/LhEFGCSsk/7HiegZ+DXgy3hv6EqTvee4AVonIFeNcX96wb9++oKsQKK77g2WQ7/4nuvv40ZNN3PSNP/Caf/k9//m7KGfPmcK/vX0dT3/qdfz7Oy7ispWlgzbSkP/+ucD1DPzyH8+kHLcCHyM9xvceYBPwhKpelbPa5RiblMMw3KavP8X26FHujsR4qPYIvckUK+dPZ0tlGW+7qIzFs6YEXUXDUbzqUX8MeBVwUFWvJD0wyfFxrC+vsOnd3PYHyyBf/FWVZ2MnuPOXtVz6xYf54Pd28UTDMd598Tlsu/0yHvr/ruDPXrty1I10vvh7iesZ5MM0l0+r6qsyV2ZfoqoJEdmrqmccJSxorEdtGO5wpLOHe3fH2BqJ8fyRk0ycUMTV581nS2U5r1k1j4nFhTOUp5H/eNWjbhaRWcC9wEMi8gvg4DjWl1fYN0m3/cEyCKN/V2+Se3fHeO93n+TSLz7MFx+oY9qkCXz+befz1Keu5ht/tIHXr1mQk0Y6jP5+43oGoe9Rv2wlIq8BzgJ+raq9416hR1iP2jAKj1RK2XngGFsjMR6oaeFUbz/ls6ewZX0ZN1SWs6x0WtBVNIxhyfUQoojIBGCvqq4GUNVHx1G/vKS6upp169YFXY3AcN0fLIOg/etb49yzu5l7IjEOnehh+qRirr1wMVsqy3jV0jkUneFq7VwRtH8YcD0Dv/zHc476F8BHVbUpt1Xyjlz2qJPJJMXF4xkvJr9x3R8sgyD8O0718stnDnF3JEb1C8cpErhi1Ty2VJbz+vMWMGWif0N5ur79wTLIpX/Oe9QZZgN7ReQp4FT2RVW9bhzrzBvq6+tZvXp10NUIDNf9wTLwyz+R7OeRuqNsjTTzyPOt9PUr5y2ayd+/5TyuW7eY+TMne16HwXB9+4Nl4Jf/eBrqT+esFnlIeXl50FUIFNf9wTLw0l9V2fPCcbZGYvzymUMc7+pj3oxJvP/VS7lhfTlrFgc/bKXr2x8sA7/8x9xQu3heeiBtbW1Mnz496GoEhuv+YBl44d/c0fXiLVX7204xqbiIN65dyJbKMi5fWUrxhPDcUuX69gfLwC//UTfUInKfql473mXyHZd3TjB/sAxy5X+yp48Hnj3M1kgzO/enJ+O7ZNkcPvSaFVxzwUJmTi7JSTm5xvXtD5aBX/5j6VFfLiLbhnhfgDVjrE/e0NfXF3QVAsV1f7AMxuPfn1J21LexNdLMg3sP09OXYlnpNP7y9at42/oyzp4zNYc19QbXtz9YBn75j6Whvn4Ey4T2XupckUqlgq5CoLjuD5bBWPzrDneyNRLj3t0xWk8mOGtKCTdtKGdLZTnrz56FiLe3VOUS17c/WAZ++Y+6oXb93HSWqVPD/43fS1z3B8tgpP5HTyb4xZ70eefalk6Ki4TXnjufGyvLuOq8+Uwq9u+Wqlzi+vYHy8Avf3dvgBsn7e3tzJ49O+hqBIbr/mAZDOXf09fPb587wtZIjEf3HaU/pVxYfhZ3vHUNb123mLnT838OY9e3P1gGfvmHtqEWkWuArwATgO+o6pdOe38S8ANgA3AMeKeqNvpVv8WLF/tVVChx3R8sg9P9VZVdBzvYGmnmvmdaONmTZNFZk7ntiuVsWV9GxYIZAdXUG1zf/mAZ+OUfyoY6M0Tp14DXA83A0yKyTVVrByx2C9ChqitF5Gbgn4B3+lXHAwcOsGZNwV8zd0Zc9wfLIOt/8NgptkZibN3dzAvt3UydOIFrzl/IjZXlbFo+lwkeD+UZFK5vf7AM/PIfzxCiNcDpHz4B7AI+r6rHxlwpkUuBO1T1jZnnnwRQ1S8OWObBzDJPiEgxcBiYp0MI5XII0VQqRVFReO7p9BvX/cHtDE509XHfMzHu2X2IXQc7EIHLVpSypbKMN65dyLRJoewD5BSXt38W1zPIpb9XQ4g+APQDP8o8vxmYSrrB/B7w1nGsuwx4YcDzZuCSMy2jqkkROQHMBdrGUe6I2bNnD5WVlX4UFUpc9wf3MujrT/HYvqNsjcR46Lkj9CZTrJw/nb+9ZjVvW7+YRWdNCbqKvuLa9h8M1zPwy388XwVep6qfVNWazONTwGtU9Z+Apbmp3vgRkdtEZJeI7GppaaGtrY2WlhZisRgdHR00NDTQ3d1NbW0tqVSKSCQCvDTPaCQSIZVKUVtbS3d3Nw0NDXR0dLBgwQKy62tsbCQej1NXV0cymaS6uvpl68j+rKmpIZFIEI1G6ezspKmpidbWVlpbW2lqaqKzs5NoNEoikaCmpmbQdVRXV5NMJqmrqyMej9PY2Jgzp1gsNmKn7IGLQnIa7XZau3ZtwTmdvp1UlZ/9dief/eVeNt75ILd8fxc79h3h7esX8d83LufH713D286dSirenjdOudpO2b+BQnIa7XZatWpVwTmNZjvNmDEjZ05DMZ5D39XAn6jqU5nnryJ90dc6EdmtquvHtGLy49B3VVUVGzZsyMm68hHX/aGwMzh8ood798TYGmlm35E4EycU8bo189myvpzXnDuPkglFBe0/Elz3B8sgl/5DHfoeT0P9KuAuYDrp0cg6gVuBvcBbVPX/xlZdyDS8+4CrgRjwNPBuVd07YJmPABeo6ocyF5NtUdV3DLXeXDbUhlFodPUmeXDvYbZGYuyob0MVNiyZzZbKMq69YDFnTQ3nUJ6GUQh4co5aVZ8GLhCRszLPTwx4e8yNdGZdSRG5HXiQ9O1Zd6nqXhG5E9ilqtuA7wI/FJF6oJ30OXLfiEQiTp+bcd0fCiODVErZuf8Yd0diPPBsC129/ZTPnsJHr6rghvVlLCuddsbPFoL/eHDdHywDv/zH06OeBNxI+nz0iw2+qt6Zk5p5gF31nTtc94f8zqC+Nc7WSDP37o5x6EQPMyYV85YLF7GlspyNS2ZTNIJbqvLZPxe47g+WQT5c9f0L0rdjVQGJcawnL6mrq3P6/kHX/SH/Mmg/1csvqw+xNdJMdfMJJhQJV1SU8sk3n8fr1yxgcsnohvLMN/9c47o/WAZ++Y+noS5X1WtyVpM8Y9myZUFXIVBc94f8yCCR7OeRulbujsR4pK6VZEpZs2gmf/+W87juosXMnzF5zOvOB38vcd0fLAO//MfTUP9BRC5Q1Zqc1SaPOHToECtWrAi6GoHhuj+ENwNVZfcLx9kaaeaX1S2c6O5j3oxJfPDyZdywvozzFs3MSTlh9fcL1/3BMvDLfzwN9eXA+0XkAOlD3wKoql6Yk5qFnDlz5gRdhUBx3R/Cl8EL7V3cuzvG1t0xDrSdYlJxEW9cu5AtlWVcvrKU4gm5PZcYNn+/cd0fLAO//MfTUL8pZ7XIQ7q6upyeNcZ1fwhHBid7+njg2cPcXdXMkwfaAbhk2Rw+/JoVvOmChcyY7N0tVWHwDxLX/cEy8Mt/1A21iMxU1U7gpAf1yRtcvtIRzB+CyyDZn+LxhmNsjTTz4N7D9PSlWFY6jb98/Sretr6Ms+f4M0eu6/uA6/5gGfjlP5Ye9Y+Aa0lf7a2kD3lnUWB5DuoVekpK3B78wXV/8D+DusOdbI3EuHd3jNaTCc6aUsJNG8rZUlnO+rNnIeLvLFWu7wOu+4Nl4Jf/qBtqVb0289Ppy/3i8TilpaVBVyMwXPcHfzJoPdnDtj2H2BqJUdvSSXGRcOXq+dxYWcaVq+czqXh0t1TlEtf3Adf9wTLwy39cc9GJSBmwhJcPePLYeCuVD7i8c4L5g3cZ9PT181DtEbZGmnks2kZ/SllXfhafvW4tb123mDnTJnpS7mhxfR9w3R8sA7/8x9xQi8g/Ae8EaklPdwnpQ99ONNTNzc2sXr066GoEhuv+kNsMUill18EOtkaa+dUzLZxMJFl01mT+9IrlbKksY+X8GTkpJ5e4vg+47g+WgV/+4xlC9HngQlXNm1HJcjmEaDKZpLh4XAck8hrX/SE3GTS2nWLr7hj37G7mhfZupk6cwJvOX8SNlWVsWj53REN5BoXr+4Dr/mAZ5NJ/qCFEx3PJ2n7A2SsJ9u7dO/xCBYzr/jD2DE509fG/Tx7kxm/8gdf+6+/5r99FWTp3Gl9+5zp2/f3r+Ld3rOPVK0tD3UiD7QOu+4Nl4Jf/eHrUdwPrgIcZMNa3qv55bqqWe2yaSyMo+vpTPPr8Ubbubua3ta309qeomD+dGzeUc/1Fi1l01pSgq2gYRoB4NSnHtszDSWzCdLf9YfgMVJVnY53cHWnml9WHOHaql7nTJvKeTedwY2U5axfP9P2Wqlzi+j7guj9YBn75j7lHnY9Yj9rwg5YT3dy7Oz1LVbQ1zsQJRbx+zQK2VJZxxap5lOR4KE/DMPIfT85Ri8gBEdl/+mPs1cwvqqqqgq5CoLjuDy/P4FQiydZIM3/0nSd59Zd+xz/9uo6zppTwjzdcwNOfeh1fe08lV5+3oKAaadf3Adf9wTLwy38856jnDng6GXg7MEdVP5OLinmB9aiNXNKfUnbuP8bdkWZ+/exhunr7OXvOFLasL+eG9WUsLZ0WdBUNw8gTPDlHrarHTnvpP0SkCghtQ51LampquOCCC4KuRmC47F/fepK7IzF+9lQjbV39zJhUzPUXLWZLZTkbl8zO6/POo8HlfQDMHywDv/zHM+BJ5YCnRcDG8awvs85/Ad4K9AINwAdU9fggyzWSnhSkH0ie6VuIl6xatcrvIkOFa/7tp3r5ZfUh7o4080zzCSYUCZtXzuWmjWfzuvMWMLkkuKE8g8K1feB0XPcHy8Av//E0rP824PckcAB4x/iqw0PAJ1U1mRn57JPA355h2StVtW2c5Y2ZpqYmKioqgio+cFzwTyT7eaSulbsjMR6payWZUtYunsmnr13DdesWc/xwExUVi4OuZmC4sA8Mhev+YBn45T+ehvoWVX3ZxWMiMq6JOlT1NwOe7gRuGs/6vGTBggVBVyFQCtVfVYk0HWdrpJn7nmnhRHcf82dM4pbLl3FDZRmrF858cdlJWpgZjJRC3QdGiuv+YBn45T+eS1B/PsLXxsoHgQfO8J4CvxGRKhG5baiViMhtIrJLRHa1tLTQ1tZGS0sLsViMjo4OGhoa6O7upra2llQqRSQSAV66mi8SiZBKpaitraW7u5uGhgY6Ojo4cOAA2fU1NjYSj8epq6sjmUxSXV39snVkf9bU1JBIJIhGo3R2dtLU1ERrayutra00NTXR2dlJNBolkUhQU1Mz6Dqqq6tJJpPU1dURj8dpbGzMmVMsFhux0549ewrK6YX2Lj7xw0e58l9/z43f+AN3R5rZuHgy37z5fH76ngpu2TiXOUU9L3M6evRoqJ283vfq6+sLzmk02yn7N1BITqPdTocPHy44p9Fsp+effz5nTkMx6qu+RWQ1sBb4Z+CvB7w1E/hrVV07zOd/Cywc5K1PqeovMst8ivQ57y06SAVFpExVYyIyn/Th8o+OZNauXF713drayvz583OyrnykEPw7e/p4oKaFuyMxnjrQDsCm5XO4sbKca85fyIzJQ4+QWwgZjAfzd9sfLINc+uf6qu9zgWuBWaQv/MpyEviT4T6sqq8b6n0ReX9m/VcP1khn1hHL/GwVkXuAi3Fk1i5jfCT7U2yvb2NrJMZv9h4mkUyxvHQaf/WGVbxtfRnls6cGXUXDMIyXMeqGOtPr/YWIXKqqT+SyMiJyDfA3wGtUtesMy0wDilT1ZOb3NwB35rIeI6Gnp8fvIkNFvvk/19LJ1kgz9+45xNGTCWZNLeEdG89mS2UZF509a0y3VOVbBrnG/N32B8vAL//xXEx2TEQeBhao6vkiciFwnap+fhzr/CowCXgo849zp6p+SEQWA99R1TcDC4B7Mu8XAz9S1V+Po8wxMWvWLL+LDBX54N96sodtew5xdyTGcy2dlEwQrjx3Plsqy7ly9TwmFY/vlqp8yMBLzH9W0FUIHNcz8Mt/PA31t0mfo/5vAFV9RkR+BIy5oVbVlWd4/RDw5szv+0nP2hUoR44cYebMmcMvWKCE1b+nr5/f1B5ha6SZx/YdJaWw7uxZ3Hn9Wq69cDFzpk3MWVlhzcAvzN9tf7AM/PIfT0M9VVWfOu2QYXKc9ckbzjnnnKCrEChh8k+llKcb29kaiXF/TQsnE0kWnzWZD792BTesL2fl/OmelBumDILA/N32B8vAL//xNNRtIrKC9K1SiMhNQEtOapUH7Nu3z+mh88Lgf6DtFPdEmtm6O0ZzRzfTJk7gTRcsYktlGZuWzaWoyNuhPMOQQZCYv9v+YBn45T+eSTmWA98CXg10kB6Z7I9UtTFntcsxNilH/nO8q5f7nmlha6SZSNNxigQuW1nKjZXlvGHtAqZOHNcotoZhGIHgyTSXqro/c6vVPGC1ql4e5kY619j0bv759yZTPFR7hA//vyou/sLD/P29zxJPJPnkm1bzh09czQ9vuYS3rS/zvZG2fcD8Xcf1DEI7zaWIfHyo91X138dVIw+xHnX+oKrUxE6wNRJjW/Uh2k/1MnfaRK6/qIwtlWWsXTzTmVmqDMMofHLdo56ReWwEPgyUZR4fAiqH+FxBYd8kvfE/dLybr/++ntd/+TGu++rj/OipJi5dMZe73r+RnX93NZ956xrOLzsrFI207QPm7zquZxDaHvWLHxR5DHiLqp7MPJ8B/EpVr8hh/XKK9ajDyalEkl8/e5itu5v5Q8MxVOFVS2ezpbKcN1+wiLOmDD2Up2EYRr7jyTlq0gOP9A543pt5zQmyg7W7ynj9+1PKjmgbH//pHjZ+/rf85c+qeaG9m49dXcGjf/1afvahV/Oui88JdSNt+4D5u47rGfjlP54e9adIzz99T+altwE/VdUv5qZquSeXPepkMklxsbtXGI/VP3rkJHdHYty7O8bhzh5mTC7m2gsXc2NlGRuWzA7FIe2RYvuA+bvsD5ZBLv1zPSkHAKr6BRF5ANiceekDqrp7rOvLN+rr61m9enXQ1QiM0fgfiyfYVn2IrZEYNbETTCgSXrtqHp++dg1XnzefySXjG8ozKGwfMH+X/cEy8Mt/XF8FVDUCRHJUl7yivLw86CoEynD+iWQ/Dz/XytZIM79//ijJlLJ28Uw+fe0arlu3mHkzJvlUU++wfcD8Xcf1DPzyd/eYxThpa2tj+nRvhqbMBwbzV1UiTcfZGmnml9WH6OxJMn/GJG65fBk3VJaxemFhjQls+4D5u+wPloFf/tZQjxGXd054uf8L7V3cszvG1kgzjce6mFxSxDVrF7KlspzLVpYyweOhPIPC9gHzdx3XM/DL3xrqMdLX1xd0FQKlI97DwweauDsS46kD7QBcunwuH7lyJW+6YBHTJxX+ruX6PmD+bvuDZeCXf+H/N/WIVCoVdBV8J9mfYnt9G1sjMR58toXefmX5vGn89RvP5fqLFlM+e2rQVfQVF/eBgZi/2/5gGfjlbw31GJk61Z1GqfZQJ1sjzdy75xBt8QSzppZww7oFvOvSFawrD8coYUHg0j4wGObvtj9YBn75W0M9Rtrb25k9e3bQ1fCM1s4efrHnEHdHmqk7fJKSCcJVq+ezpbKcK8+dzwsHD7Di7FlBVzNQCn0fGA7zd9sfLAO//K2hHiOLFy8Ougo5p7u3n9/UHmZrJMb26FFSChedPYvPXb+Way9czOxpE19cthD9R4vrGZi/2/5gGfjlP54hRD1BRO4QkZiI7Mk83nyG5a4RkedFpF5EPuF3PQ8cOOB3kZ6QSik79x/jb35ezau+8Fs+9pM91LfG+bPXruThv3wN937kMt576dKXNdJQOP7jwfUMzN9tf7AM/PIf8xCiXiEidwBxVf3XIZaZAOwDXg80A08D71LV2qHWncshRFOpFEVFofueM2L2H41nbqmKETvezbSJE3jzBYvYUlnOJcvmUDTMLVX57p8LXM/A/N32B8sgl/5eTcoRJBcD9aq6X1V7gZ8A1/tZgT179vhZXE443tXLD3ce5IavP85V//YoX3uknhXzp/OVmy9i19+/nn95+zouXTF32EYa8tM/17iegfnvCboKgeN6Bn75h7Whvl1EnhGRu0RksDP1ZcALA543Z157BSJym4jsEpFdLS0ttLW10dLSQiwWo6Ojg4aGBrq7u6mtrSWVShGJpEdEzc4zGolESKVS1NbW0t3dTUNDAx0dHSxYsIDs+hobG4nH49TV1ZFMJl+cUSW7juzPmpoaEokE0WiUzs5OmpqaaG1tpbW1laamJjo7O4lGoyQSCWpqagZdR3V1Nclkkrq6OuLxOI2NjUM69fQm+eYv/8CHfljFxs8/xKfvfZZjJ+J88k3n8v0bz+a/33UB58/ooedUJ7FYbMRO2SMxQTiNZjuNxmm022nt2rUF5zSa7TRnzpyCcxrNdsr+DRSS02i306pVqwrOaTTbacaMGTlzGopADn2LyG+BhYO89SlgJ9AGKPA5YJGqfvC0z98EXKOqt2aevxe4RFVvH6rcXB76rqqqYsOGDTlZV65RVZ5pPsHWSDPbqg/R0dVH6fSJXH9RGVsqy1izaOa4b6kKs79fuJ6B+bvtD5ZBLv2HOvQdunPUAxGRpcB9qnr+aa9fCtyhqm/MPP8kwHBTbOayoQ4jh453vziUZ8PRU0wsLuINaxZwY2U5l1eUUjIhrAdQDMMw3CavzlGLyKIBT28Anh1ksaeBChFZJiITgZuBbX7UL0v2sErQnEok+XlVM+/+9k4u+6ff8S8PPs+caRP54pYLePpTr+Or767kytXzc95Ih8U/SFzPwPzd9gfLwC//0PWoReSHwEWkD303An+qqi0ishj4jqq+ObPcm4H/ACYAd6nqF4Zbd6561I8+38rO/cfYuHQOF5bPGvf6Rsszzcd5cO9hjnT28NSBDrr7+jlnzlS2VJZxw/oylsyd5nkdXL/aEywD83fbHywDv676Dt2AJ6r63jO8fgh484Dn9wP3+1WvLFUHO/jA954mpcCj+/0u/hW8/rwF/OlrlrNhyWxfh/Ksq6tjzZo1vpUXRlzPwPzd9gfLwC//0DXUYWfn/mNkD0IIcPWaBbxm1Tzfyn9031Eerj2CAhMELjpnFhuXzvGt/CzLli3zvcyw4XoG5u+2P1gGfvlbQz1KNi2fy6SSInqTKSYWF/Hh16xgwxL/xrpds2gmO6JH6UumKCkuYtPyub6VPZBDhw6xYsWKQMoOC65nYP5u+4Nl4Je/NdSjZMOS2fzvrZt4ZG8zV64t97WRHlj+zv3H2LR8ru/lZ5kzx/9efNhwPQPzd9sfLAO//K2hHgMblsxmYXEXZWXBNJIblswOrIHO0tXV5fSsOWAZmL/b/mAZ+OXv7uV648TlKx3B/MEyMH+3/cEy8Mvf7ZTHQUlJSdBVCBTX/cEyMH+3/cEy8Ms/dPdRe4mIHAUO5mh1paSHOnUV1/3BMjB/t/3BMsil/xJVHfQWIqca6lwiIrvOdHO6C7juD5aB+bvtD5aBX/526NswDMMwQow11IZhGIYRYqyhHjvfCroCAeO6P1gG5m+4noEv/naO2jAMwzBCjPWoDcMwDCPEWENtGIZhGCHGGmrDMAzDCDHWUBuGYRhGiLGG2jAMwzBCjDXUhmEYhhFirKE2DMMwjBBjDbVhGIZhhBhrqA3DMAwjxFhDbRiGYRghxhpqwzAMwwgx1lAbhmEYRoixhtowDMMwQow11IZhGIYRYqyhNgzDMIwQYw21YRiGYYQYa6gNwzAMI8RYQ20YhmEYIcYaasMwDMMIMcVBV8BPSktLdenSpTlZV29vLxMnTszJuvIR1/3BMjB/t/3BMsilf1VVVZuqzhvsPaca6qVLl7Jr166crCsejzN9+vScrCsfcd0fLAPzd9sfLINc+ovIwTO9Z4e+x0hbW1vQVQgU1/3BMjB/t/3BMvDL3xrqMeLyt0gwf7AMzN9tf7AM/PK3hnqM9PX1BV2FQHHdHywD83fbHywDv/ytoR4jqVQq6CoEiuv+YBmYv9v+YBn45W8N9RiZOnVq0FUIFNf9wTIwf7f9wTLwy98a6jHS3t4edBUCxXV/sAzM321/sAz88reGeowsXrw46CoEiuv+YBmYv9v+YBn45W8N9Rg5cOBA0FUIFNf9wTIwf7f9wTLwy19U1ZeCwsDGjRs1VwOepFIpiorc/Z7juj9YBubvtj9YBrn0F5EqVd042HvuJjxO9uzZE3QVAsV1f7AMzH9P0FUIHNcz8MvfetSGYRiGETDWo/aAqqqqoKsQKK77g2Vg/m77g2Xgl3+gPWoRuQb4CjAB+I6qfum09ycBPwA2AMeAd6pq44D3zwFqgTtU9V+HK8961IZhGEYYCWWPWkQmAF8D3gSsAd4lImtOW+wWoENVVwJfBv7ptPf/HXjA67oORiQSCaLY0OC6P1gG5u+2P1gGfvkH1qMWkUtJ94TfmHn+SQBV/eKAZR7MLPOEiBQDh4F5qqoi8jbgMuAUEPe7R21XO7rtD5aB+bvtD5aBC1d9lwEvDHjenHlt0GVUNQmcAOaKyHTgb4HP+lDPQamrqwuq6FDguj9YBubvtj9YBn755+tXoTuAL6tqfLgFReQ2EdklIrtaWlpoa2ujpaWFWCxGR0cHDQ0NdHd3U1tbSyqVevFQRvYigUgkQiqVora2lu7ubhoaGujo6GDKlClk19fY2Eg8Hqeuro5kMkl1dfXL1pH9WVNTQyKRIBqN0tnZSVNTE62trbS2ttLU1ERnZyfRaJREIkFNTc2g66iuriaZTFJXV0c8HqexsTFnTrFYbMRO8Xi84JxGu53KysoKzmk026mkpKTgnEaznbJ/A4XkNNrtNH/+/IJzGs12AnLmNBR5eegbeAw4O7PYLCAFfEZVvzpUmbk89N3Q0MCKFStysq58xHV/sAzM321/sAxy6T/Uoe/inJQwNp4GKkRkGRADbgbefdoy24D3AU8ANwG/0/Q3i83ZBUTkDtLnqIdspHPNnDlz/CwudLjuD5aB+bvtD5aBX/6BHfrOnHO+HXgQeA74P1XdKyJ3ish1mcW+S/qcdD3wceATwdT2lXR1dQVdhUBx3R8sA/N32x8sA7/8g+xRo6r3A/ef9tpnBvzeA7x9mHXc4UnlhsHlKx3B/MEyMH+3/cEy8Mvf7ZTHQUlJSdBVCBTX/cEyMH+3/cEy8MvfGuoxMtxVeoWO6/5gGZi/2/5gGfjlbw31GCktLQ26CoHiuj9YBubvtj9YBn75W0M9Rpqbm4OuQqC47g+Wgfm77Q+WgV/+Ns3lGEkmkxQXB3otXqC47g+Wgfm77Q+WQS79wzqEaF6zd+/eoKsQKK77g2Vg/m77g2Xgl7/1qA3DMAwjYKxH7QE2Ybrb/mAZmL/b/mAZ+OVvPWrDMAzDCBjrUXuAfZN02x8sA/N32x8sA+tRe4D1qA3DMIwwYj1qD8jOMeoqrvuDZWD+bvuDZeCXv/Wox0gikWDSpEk5WVc+4ro/WAbm77Y/WAa59LcetQc0NTUFXYVAcd0fLAPzd9sfLAO//K2hHiMLFiwIugqB4ro/WAbm77Y/WAZ++QfaUIvINSLyvIjUi8gnBnl/koj8NPP+kyKyNPP660WkSkRqMj+v8rvux48f97vIUOG6P1gG5n886CoEjusZ+OV/xkFKRaRzmM8K0KKqq8ZSsIhMAL4GvB5oBp4WkW2qWjtgsVuADlVdKSI3A/8EvBNoA96qqodE5HzgQaBsLPUYK5MnT/azuNDhuj9YBubvtj9YBn75D9WjblDVmUM8ZgCnxlH2xUC9qu5X1V7gJ8D1py1zPfD9zO8/B64WEVHV3ap6KPP6XmCKiLh7RYNhGIZRsAzVUN84gs+PZJkzUQa8MOB5M6/sFb+4jKomgRPA3EHqEFHVxGCFiMhtIrJLRHa1tLTQ1tZGS0sLsViMjo4OGhoa6O7upra2llQqRSQSAV66kT0SiZBKpaitraW7u5uGhgY6OjpoaWkhu77Gxkbi8Th1dXUkk0mqq6tfto7sz5qaGhKJBNFolM7OTpqammhtbaW1tZWmpiY6OzuJRqMkEokXL/s/fR3V1dUkk0nq6uqIx+M0NjbmzCkWi43Yqa6uruCcRrudTp48WXBOo9lOzc3NBec0mu2U/RsoJKfRbqfjx48XnNNottPBgwdz5jQUgd2eJSI3Adeo6q2Z5+8FLlHV2wcs82xmmebM84bMMm2Z52uBbcAbVLVhuDJzeXtWZ2cnM2fOzMm68hHX/cEyMH+3/cEyyKX/mG7PEpGTItJ5pkcO6hUDzh7wvDzz2qDLiEgxcBZwLPO8HLgH+OORNNK55siRI34XGSpc9wfLwPzd9gfLwC//M15MljkHjYh8DmgBfkj6ArL3AItyUPbTQIWILCPdIN8MvPu0ZbYB7wOeAG4CfqeqKiKzgF8Bn1DVx3NQl1FzzjnnBFFsaHDdHywD83fbHywDv/xHcnvWdar6dVU9qaqdqvoNXnnR16jJnHO+nfQV288B/6eqe0XkThG5LrPYd4G5IlIPfBzI3sJ1O7AS+IyI7Mk85o+3TqNh3759fhYXOlz3B8vA/N32B8vAL/9hz1GLyB9I30b1E0CBdwEfUdVXe1+93GKTchiGYRhhZLxDiL4beAdwJPN4O688RO0cNr2b2/5gGZi/2/5gGdg0lx5gPWrDMAwjjIyrRy0ik0XkIyLydRG5K/vIfTXzC/sm6bY/WAbm77Y/WAah6VGLyM+AOtKHu+8kfdX3c6r6Me+rl1usR20YhmGEkfGeo16pqp8GTqnq94G3AJfksoL5SHbEGldx3R8sA/N32x8sA7/8R9KjfkpVLxaRx4A/Aw4DT6nqcj8qmEty2aNOJpMUF5/xNvSCx3V/sAzM321/sAxy6T/eHvW3RGQ28PekByCpJT2LldPU19cHXYVAcd0fLAPzd9sfLAO//If8KiAiRUCnqnYAjwF514v2ivLy8qCrECiu+4NlYP5u+4Nl4Jf/kD1qVU0Bf+NLTfKMtra2oKsQKK77g2Vg/m77g2Xgl/9IDn3/VkT+SkTOFpE52YfnNQs506dPD7oKgeK6P1gG5u+2P1gGfvmP5Cz4OzM/PzLgNcXxw+B9fX1BVyFQXPcHy8D83fYHy8Av/2EbalVd5kdF8o1UKhV0FQLFdX+wDMzfbX+wDPzyH2o+6srhPjySZQqVqVOnBl2FQHHdHywD83fbHywDv/yHOkf9PyIye+B56dMfpKehdJL29vagqxAorvuDZWD+bvuDZeCX/1CHvs8CqgAZYpmjua1O/rB48eKgqxAorvuDZWD+bvuDZeCX/xl71Kq6VFWXq+qyIR4Xj6dwEblGRJ4XkXoR+cQg708SkZ9m3n9SRJYOeO+TmdefF5E3jqceY+HAgQN+FxkqXPcHy8D83fYHy8Av/5HcnuUJIjIB+BrwJmAN8C4RWXPaYrcAHaq6EvgymRHRMsvdDKwFrgG+nlmfL1Qd7OB3h0uoOtjhV5GvKP9rj9QHVj7A6tWrAys7LLiegfm77Q/BZhD0/0E/24EgB2m9GKhX1f0AIvIT4HrSQ5RmuR64I/P7z4GviohkXv+JqiaAAyJSn1nfE15XuupgB+/47yfoTylFso/VC2cwY3KJ18W+yMmePuoOnySlUCT4Xn6WeDzu/D2Urmdg/m77Q3AZBP1/cGD5k0vq+d9bN7FhyWzPygusRw2UAS8MeN6ceW3QZVQ1CZwA5o7wswCIyG0isktEdrW0tNDW1kZLSwuxWIyOjg4aGhro7u6mtraWVCpFJBIBXppnNBKJkEqlqK2tpbu7m/t3RelPpScySSkcP5Wgp6eH/v5+urq6UFVOnYoDEI+ffNnPU6dOoZqiu7ub/v5+EokEfX199PX1kUgk6O/vp7u7G9UUp06dGnQdxzq7yBRPSqE93kNfXx+9vb309iZIJpP09HSTSqXo6urKfPb0+qSfd3V1kUql6OnpJplM0tuboLe3l76+vmGd0rfS58bp1Kk4qkpXVxf9/f309ATjNNrtNG3a1IJzGs12Ki4uLjin0Wyn7N9AITmNdjtNmTIlEKf2eM/L/g8e7+r1dd8b+H+4L5niwUgDra2ttLa20tTURGdnJ9FolEQiQU1NDfBSm5L9WV1dTTKZpK6ubsA+NTgjmT1LSM9BvVxV7xSRc4CFqvrUkB8cBhG5CbhGVW/NPH8vcImq3j5gmWczyzRnnjeQnmLzDmCnqv6/zOvfBR5Q1Z8PVWYuZs+qOtjBe76zk96+FBNLijz/JnWm8vuSKUqK/S//xXpUVbFhwwbfyw0Trmdg/m77Q3AZBP1/0It2YKjZs0bSUH8DSAFXqep5mZm0fqOqrxpnpS4F7lDVN2aefxJAVb84YJkHM8s8ISLFpKfYnAd8YuCyA5cbqsxcTXNZdbCDnfuPsWn53GAayYDLNwzDCJqg/w/muvzxTnN5iap+BOgByMykNXHctYKngQoRWSYiE0lfHLbttGW2Ae/L/H4T8DtNf7PYBtycuSp8GVABjKuHPxo2LJnNpWd1BtZIblgym49cuTLQRjp7isBlXM/A/N32h2AzCPr/oJ/twEh61E8CrwaeVtVKEZlHuke9ftyFi7wZ+A9gAnCXqn5BRO4EdqnqNhGZDPwQWA+0AzcPuPjsU8AHgSTwF6r6wHDl5apHDemh44qKgjzFHyyu+4NlYP5u+4NlkEv/8fao/xO4B5gvIl8AdgD/mIuKqer9qrpKVVeo6hcyr31GVbdlfu9R1ber6kpVvTjbSGfe+0Lmc+eOpJHONXV1dX4XGSpc9wfLwPzd9gfLwC//YXvUACKyGria9ChlD6vqc15XzAty2aPu7u5mypQpOVlXPuK6P1gG5u+2P1gGufQfV49aRFYAB1T1a8CzwOtFZFZOapbHHDp0KOgqBIrr/mAZmL/b/mAZ+OU/kkPfdwP9IrIS+G/gbOBHntYqD5gzZ07QVQgU1/3BMjB/t/3BMvDLfyQNdSoz2MgW4Kuq+tfAIm+rFX6yN9W7iuv+YBmYv9v+YBn45T+ShrpPRN4F/DFwX+Y1/8esDBkuX+kI5g+Wgfm77Q+WgV/+IynlA8ClwBdU9UDmvuUfelut8FNS4vZ3Fdf9wTIwf7f9wTLwy3/YhlpVa1X1z1X1x5nnB1T1n7yvWrgZbmzWQsd1f7AMzN9tf7AM/PIfdvYsEakAvkh6KsrJ2ddVdbmH9Qo9paWlQVchUFz3B8vA/N32B8vAL/+RHPr+H+AbpEcAuxL4AfD/vKxUPtDc3Bx0FQLFdX+wDMzfbX+wDPzyH8kQolWqukFEalT1goGv+VLDHJLLAU+SySTFxUFO5x0srvuDZWD+bvuDZZBL//EOIZoQkSIgKiK3i8gNgNuzpQN79+4NugqB4ro/WAbm77Y/WAZ++Y+kR/0q4DlgFvA54Czgn1V1p+e1yzG57FEbhmEYRq4YV49aVZ9W1biqNqvqB1R1Sz420rmmqqoq6CoEiuv+YBmYv9v+YBn45T+SHvUq4K+BJQy4SlxVr/K2arnHetSGYRhGGBnvOeqfARHg70k32NnHeCo0R0QeEpFo5uegM2+LyPsyy0RF5H2Z16aKyK9EpE5E9orIl8ZTl7Fi3yTd9gfLwPzd9gfLIEw96pxf4S0i/wy0q+qXROQTwGxV/dvTlpkD7AI2AgpUARuABHCJqj4iIhOBh4F/HMmc1NajNgzDMMLImHrUmV7vHOCXIvJnIrIo+1rm9fFwPfD9zO/fB942yDJvBB5S1XZV7QAeAq5R1S5VfQRAVXtJ9/bLx1mfUVNTU+N3kaHCdX+wDMzfbX+wDPzyH+rQdxXpHu37SB/q/kPmtezr42GBqrZkfj8MLBhkmTLghQHPmzOvvUhmXuy3ku5VD4qI3CYiu0RkV0tLC21tbbS0tBCLxejo6KChoYHu7m5qa2tJpVJEIhHgpUMakUiEVCpFbW0t3d3dNDQ00NHRwYwZM8iur7GxkXg8Tl1dHclkkurq6petI/uzpqaGRCJBNBqls7OTpqYmWltbaW1tpampic7OTqLRKIlE4sUd4PR1VFdXk0wmqaurIx6P09jYmDOnWCw2Yqfu7u6Ccxrtdlq6dGnBOY1mO02ZMqXgnEaznXp6egrOabTbqaysrOCcRrOdiouLc+Y0FMMe+h4rIvJbYOEgb30K+L6qzhqwbIeqvuw8tYj8FTBZVT+fef5poFtV/zXzvBj4JfCgqv7HSOqUy0Pf0WiUioqKnKwrH3HdHywD83fbHyyDXPoPdeh7JGN9Twb+DLic9Lni7cA3VbVnqM+p6uuGWOcREVmkqi0isghoHWSxGPDaAc/Lgd8PeP4tIDrSRjrXLFgw2EEAd3DdHywD83fbHywDv/xHctX3D4C1wH8BX838Pt5pLreRPqRO5ucvBlnmQeANIjI7c1X4GzKvISKfJz3wyl+Msx5j5vjx40EVHQpc9wfLwPyPB12FwHE9A7/8RzJI6fmqumbA80dEpHac5X4J+D8RuQU4CLwDQEQ2Ah9S1VtVtV1EPgc8nfnMnZnXykkfPq8DIiIC8FVV/c446zQqJk+ePPxCBYzr/mAZmL/b/mAZ+OU/koY6IiKbsqORicgljPNiMlU9Blw9yOu7gFsHPL8LuOu0ZZoBGU/5hmEYhpEvjKSh3gD8QUSaMs/PAZ4XkRpAVfVCz2oXYrJXfLqK6/5gGZi/2/5gGfjlP5KG+hrPa5GHzJo1K+gqBIrr/mAZmP+soKsQOK5n4Jf/SCblODjUw49KhpEjR44EXYVAcd0fLAPzd9sfLAO//Edy1bcxCOecc07QVQgU1/3BMjB/t/3BMvDL3xrqMbJv376gqxAorvuDZWD+bvuDZeCXv2cjk4URm5TDMAzDCCPjnebSGASb3s1tf7AMzN9tf7AMQjPNZSFhPWrDMAwjjFiP2gPsm6Tb/mAZmL/b/mAZWI/aA6xHbRiGYYQR61F7QHaeUldx3R8sA/N32x8sA7/8rUc9RpLJJMXFIxnYrTBx3R8sA/N32x8sg1z6W4/aA+rr64OuQqC47g+Wgfm77Q+WgV/+1lCPkfLy8qCrECiu+4NlYP5u+4Nl4Je/NdRjpK2tLegqBIrr/mAZmL/b/mAZ+OUfSEMtInNE5CERiWZ+zj7Dcu/LLBMVkfcN8v42EXnW+xq/kunTpwdRbGhw3R8sA/N32x8sA7/8g+pRfwJ4WFUrgIczz1+GiMwB/gG4BLgY+IeBDbqIbAHi/lT3lfT19QVVdChw3R8sA/N32x8sA7/8g2qorwe+n/n9+8DbBlnmjcBDqtquqh3AQ2TmxhaR6cDHgc97X9XBSaVSQRUdClz3B8vA/N32B8vAL/+gGuoFqtqS+f0wsGCQZcqAFwY8b868BvA54N+AruEKEpHbRGSXiOxqaWmhra2NlpYWYrEYHR0dNDQ00N3dTW1tLalUikgkArw04kwkEiGVSlFbW0t3dzcNDQ10dHQQj8fJrq+xsZF4PE5dXR3JZPLFe+uy68j+rKmpIZFIEI1G6ezspKmpidbWVlpbW2lqaqKzs5NoNEoikaCmpmbQdVRXV5NMJqmrqyMej9PY2Jgzp1gsNmKnpqamgnMa7XYqLi4uOKfRbKcTJ04UnNNotlP2b6CQnEa7nUSk4JxGs52OHTuWM6eh8Ow+ahH5LbBwkLc+BXxfVWcNWLZDVV92nlpE/gqYrKqfzzz/NNAN/Ba4U1WvE5GlwH2qev5I6pTL+6gbGhpYsWJFTtaVj7juD5aB+bvtD5ZBLv2Huo/aszvVVfV1Q1ToiIgsUtUWEVkEtA6yWAx47YDn5cDvgUuBjSLSSLr+80Xk96r6Wnxk8eLFfhYXOlz3B8vA/N32B8vAL/+gDn1vA7JXcb8P+MUgyzwIvEFEZmcuInsD8KCqfkNVF6vqUuByYJ/fjTTAgQMH/C4yVLjuD5aB+bvtD5aBX/6BDCEqInOB/wPOAQ4C71DVdhHZCHxIVW/NLPdB4O8yH/uCqv7PaetZSkCHvlOpFEVF7t6G7ro/WAbm77Y/WAa59A/dEKKqekxVr1bVClV9naq2Z17flW2kM8/vUtWVmcf/DLKexpE20rlmz549QRQbGlz3B8vA/PcEXYXAcT0Dv/xtUg7DMAzDCJjQ9agLAZsw3W1/sAzM321/sAz88rcetWEYhmEEjPWoPSB7M72ruO4PloH5u+0PloFf/tajHiN2taPb/mAZmL/b/mAZFPRV34VAXV1d0FUIFNf9wTIwf7f9wTLwy98a6jGybNmyoKsQKK77g2Vg/m77g2Xgl7811GPk0KFDQVchUFz3B8vA/N32B8vAL39rqMfInDlzgq5CoLjuD5aB+bvtD5aBX/7WUI+Rrq5hZ9gsaFz3B8vA/N32B8vAL39rqMeIy1c6gvmDZWD+bvuDZeCXv9spj4OSkpKgqxAorvuDZWD+bvuDZeCXv1P3UYvIUdKzdeWCUqAtR+vKR1z3B8vA/N32B8sgl/5LVHXeYG841VDnEhHZdaab013AdX+wDMzfbX+wDPzyt0PfhmEYhhFirKE2DMMwjBBjDfXY+VbQFQgY1/3BMjB/w/UMfPG3c9SGYRiGEWKsR20YhmEYIcYaasMwDMMIMdZQD4OIXCMiz4tIvYh8YpD3J4nITzPvPykiSwOopmeMwP/9InJURPZkHrcGUU+vEJG7RKRVRJ49w/siIv+ZyecZEan0u45eMgL/14rIiQHb/zN+19FLRORsEXlERGpFZK+IfGyQZQp2Hxihf6HvA5NF5CkRqc5k8NlBlvG2HVBVe5zhAUwAGoDlwESgGlhz2jJ/Bnwz8/vNwE+DrrfP/u8Hvhp0XT3M4AqgEnj2DO+/GXgAEGAT8GTQdfbZ/7XAfUHX00P/RUBl5vcZwL5B/gYKdh8YoX+h7wMCTM/8XgI8CWw6bRlP2wHrUQ/NxUC9qu5X1V7gJ8D1py1zPfD9zO8/B64WEfGxjl4yEv+CRlUfA9qHWOR64AeaZicwS0QW+VM77xmBf0Gjqi2qGsn8fhJ4Dig7bbGC3QdG6F/QZLZrPPO0JPM4/SpsT9sBa6iHpgx4YcDzZl65k764jKomgRPAXF9q5z0j8Qe4MXPI7+cicrY/VQsNI82okLk0c1jwARFZG3RlvCJzOHM96R7VQJzYB4bwhwLfB0RkgojsAVqBh1T1jPuAF+2ANdTGePklsFRVLwQe4qVvlYYbREiPUbwO+C/g3mCr4w0iMh24G/gLVe0Muj5+M4x/we8DqtqvqhcB5cDFInK+n+VbQz00MWBgD7E889qgy4hIMXAWcMyX2nnPsP6qekxVE5mn3wE2+FS3sDCSfaRgUdXO7GFBVb0fKBGR0oCrlVNEpIR0I/W/qrp1kEUKeh8Yzt+FfSCLqh4HHgGuOe0tT9sBa6iH5mmgQkSWichE0hcJbDttmW3A+zK/3wT8TjNXFBQAw/qfdi7uOtLnsFxiG/DHmSt/NwEnVLUl6Er5hYgszJ6LE5GLSf9PKZQvqmTcvgs8p6r/fobFCnYfGIm/A/vAPBGZlfl9CvB6oO60xTxtB4pztaJCRFWTInI78CDpK6DvUtW9InInsEtVt5HeiX8oIvWkL7q5Obga55YR+v+5iFwHJEn7vz+wCnuAiPyY9FWtpSLSDPwD6YtJUNVvAveTvuq3HugCPhBMTb1hBP43AR8WkSTQDdxcQF9UAS4D3gvUZM5RAvwdcA44sQ+MxL/Q94FFwPdFZALpLyH/p6r3+dkO2BCihmEYhhFi7NC3YRiGYYQYa6gNwzAMI8RYQ20YhmEYIcYaasMwDMMIMdZQG4ZhGMYZGG5imjGs7xwR+Y2IPJeZ7GTpcJ+xhtowDMMwzsz3eOUAJ+PhB8C/qOp5pOdTaB3uA9ZQG4ZDiMgsEfmzAc8Xi8jPPSjnDhGJZe41PdMyKzLTIsbPtIxhBM1gE9Nk9t1fi0iViGwXkdUjWZeIrAGKVfWhzLrjqto13OesoTYMt5hFeko+AFT1kKre5FFZX1bVM85NrKoNmfGTDSPf+BbwUVXdAPwV8PURfm4VcFxEtorIbhH5l8xAKkNiI5MZhlt8CViRGWXqIeBrpOcSPl9E3g+8DZgGVAD/Snoe8vcCCeDNqtouIisyn5tHeiSuP1HV04dUfBki8hrgK5mnClyRmTbRMPKKzAQlrwZ+NmAmy0mZ97YAgx1FiqnqG0m3uZtJz0LWBPyU9GiO3x2qTGuoDcMtPgGcn+3JDnIhy/mk/4lMJj0k5t+q6noR+TLwx8B/kO5NfEhVoyJyCenexFXDlPtXwEdU9fHMP7qe3OgYhu8UAccHOxqUmbRksIlbsjQDe1R1P4CI3AtsYpiG2g59G4YxkEdU9aSqHiU9p+4vM6/XAEtP603sAf6b9FjIw/E48O8i8ufArMycvYaRd2Sm+TwgIm+H9MQlIrJuhB9/GpglIvMyz68Caof7kDXUhmEMJDHg99SA5ynSR+Be7E0MeJw33EpV9UvArcAU4PGRXnxjGEGTmZjmCeBcEWkWkVuA9wC3iEg1sBe4fiTrUtV+0keXHhaRGkCAbw/3OTv0bRhucRKYMdYPq2qniBwQkber6s8y0xteqKrVQ31ORFaoag3pWZheBazmlVMFGkboUNV3neGtMd2ylbni+8LRfMZ61IbhEKp6jHSP9lkR+ZcxrmYsvYm/yJT5DNAHPDDGsg3DOWyaS8Mwco6I3AHEVfVfR7BsXFWne18rw8hPrEdtGIYXxIHbRjLgCXDEt1oZRh5iPWrDMAzDCDHWozYMwzCMEGMNtWEYhmGEGGuoDcMwDCPEWENtGIZhGCHm/wcosfe3ms+9iQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from ahs_utils import show_global_drive\n", + "\n", + "# [Optional] We visually inspect the time series\n", + "\n", + "show_global_drive(drive);" + ] + }, + { + "cell_type": "markdown", + "id": "e8d1fc59-54e2-4518-a65b-ddd2fdcb1f0e", + "metadata": {}, + "source": [ + "We now construct the AHS program to be run. Note that we create two programs and execute them to allow us to compare the accuracy of our results, with `parallel_ahs_program` being run on Aquila and `ahs_program` just being simulated with the local simulator. " + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "20d44c2e-cdc5-44e3-9592-f934999cf914", + "metadata": {}, + "outputs": [], + "source": [ + "parallel_ahs_program = AnalogHamiltonianSimulation(\n", + " register=parallel_register, \n", + " hamiltonian=drive\n", + ")\n", + "\n", + "ahs_program = AnalogHamiltonianSimulation(\n", + " register=register, \n", + " hamiltonian=drive\n", + ")\n", + "\n", + "ahs_program = ahs_program.discretize(qpu)\n", + "parallel_ahs_program = parallel_ahs_program.discretize(qpu)" + ] + }, + { + "cell_type": "markdown", + "id": "d6c6e1ed-c726-4d46-b5f3-749f9eb07ec0", + "metadata": {}, + "source": [ + "## Run on simulator" + ] + }, + { + "cell_type": "markdown", + "id": "69aad79a-a494-463f-911f-2e7fc71d0ff7", + "metadata": {}, + "source": [ + "First, we run a non-parallelized register on the local simulator, and sample 400 shots. Below we also explicitly specified the values of `steps`, which are the number of time steps in the simulation." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "88cdddd1", + "metadata": {}, + "outputs": [], + "source": [ + "from braket.devices import LocalSimulator\n", + "sim = LocalSimulator(\"braket_ahs\")\n", + "\n", + "sim_result = sim.run(ahs_program, shots=400, steps=100).result()" + ] + }, + { + "cell_type": "markdown", + "id": "b8d716b5-acbb-48a4-909d-4d5470d246d9", + "metadata": {}, + "source": [ + "We compute the average Rydberg density on the 9 sites." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "025f3a2f-d0c0-493e-b6d6-7fd15b7ee348", + "metadata": {}, + "outputs": [], + "source": [ + "from ahs_utils import get_avg_density\n", + "\n", + "sim_density = get_avg_density(sim_result)" + ] + }, + { + "cell_type": "markdown", + "id": "b27fd6ec-c677-4c18-aee3-533f6faeb24d", + "metadata": {}, + "source": [ + "## Run on Aquila\n", + "\n", + "Next, we run a the parallelized register on the QPU. This time, we only need to run 100 shots to get to the same statistical certainty, because we are running four batches in parallel in each shot." + ] + }, + { + "cell_type": "markdown", + "id": "767ec35c-b9f2-4027-a2b6-ea10a3c40512", + "metadata": {}, + "source": [ + "
    \n", + "Note: Some atoms may be missing even if the shot was successful. We recommend comparing pre_sequence of each shot with the requested atom filling in the AHS program specification. \n", + "
    " + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "fc86d8ac-9ea0-4005-b156-e271782e3377", + "metadata": {}, + "outputs": [], + "source": [ + "# This cell submits the task, waits for its completion, and gets the results.\n", + "# To check the status of the task, go to the Amazon Braket tasks page at\n", + "# https://us-east-1.console.aws.amazon.com/braket/home?region=us-east-1#/tasks\n", + "\n", + "qpu_result = qpu.run(parallel_ahs_program, shots=100).result()" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "5a799030", + "metadata": {}, + "outputs": [], + "source": [ + "# collecting QPU Data\n", + "\n", + "all_sequences = []\n", + "for measurement in qpu_result.measurements:\n", + " # iterate over key and values\n", + " for (ix,iy),inds in batch_mapping.items():\n", + " batch_sequence = list(measurement.post_sequence[inds])\n", + " all_sequences.append(batch_sequence)\n", + "\n", + "all_rydberg = 1 - np.array(all_sequences)\n", + "qpu_density = all_rydberg.mean(axis=0)" + ] + }, + { + "cell_type": "markdown", + "id": "19f42800-41ee-4ca4-960c-2da6495d5777", + "metadata": {}, + "source": [ + "After running the separate programs, we can analyze the results.\n", + "\n", + "We average the data across all the batches that ran in parallel across multiple shots, represented visually as a single batch versus the simulator result which just ran a single batch." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "8f897f5b-2c9f-4bc7-9f71-b2ab227b1e9e", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAswAAAFJCAYAAACPRHvsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAB6qklEQVR4nO3dd1xT1/sH8M/NYu8hS1HEAbgFR+uuq1axVYuzbrFb7bD91dbaqdWqtdUOrLMqaO23dVutW+vCbXEgojIcgOwAWef3ByUVSUIiIbm5PO++8qpJ7nhCcp88OfeccznGGAMhhBBCCCFEJ5G1AyCEEEIIIYTPqGAmhBBCCCHEACqYCSGEEEIIMYAKZkIIIYQQQgyggpkQQgghhBADqGAmhBBCCCHEACqYTXDt2jW0adMGLi4u+Pbbb60djtadO3fg7OwMtVqtdxlnZ2fcvHnTglHVXT169MDPP/8MAFi9ejW6dOli1Hrjx4/Hhx9+CAA4cuQImjVrZvbYOI7DjRs3dD73aNy1yZS/CSFCtn79evTt27dWtv1oPqkrLJXDSN1kdMHco0cPeHh4oKysrDbj4bX58+ejZ8+eKCwsxJtvvlnl+R49esDe3h4uLi5wdXVF+/btMW/evFr/mzVo0ABFRUUQi8XaOB5PGkVFRQgJCanVOIj5dO3aFdeuXbN2GEari1/OhBjj6NGjeOqpp+Dm5gZPT088/fTTOH36NABg9OjR2LNnj5UjrJ1Cs2HDhnBwcICzszP8/Pwwfvx4FBUVmXUfhtAPc2JuRhXMt27dwpEjR8BxHLZu3Wr2IFQqldm3WRtu376NiIgIg8ssXboUhYWFuHv3LhYuXIiEhAQMGDAAdH0Y3Wzlva9ga/ESQqynoKAAAwcOxBtvvIGHDx8iIyMDH3/8Mezs7KwdmtkwxqDRaHQ+t23bNhQVFeH8+fM4d+4c5s6da+HoCDEfowrmtWvXolOnThg/fjzWrFkDACgrK4O7uzsuX76sXS4rKwsODg548OABAGD79u1o06YN3N3d8dRTT+HixYvaZRs2bIivvvoKrVq1gpOTE1QqFebNm4fGjRvDxcUF4eHh+P3337XLq9VqvP322/D29kajRo2wdOlScBynLWDy8/MxadIk+Pv7IzAwEB9++KG2i8KNGzfQvXt3uLm5wdvbG8OHD9f7Wrdu3YqIiAi4u7ujR48euHLlCgCgV69eOHDgAF5//XU4Ozvj+vXrBv9mTk5O6NGjB7Zu3Yrjx49jx44dAACNRqN9nV5eXoiJicHDhw8BlP8w4TgOa9asQYMGDeDt7Y0vvvhCu81Tp04hMjISrq6uqFevHt56661K66lUKsyaNQtHjhzRxvn6668DqHwqvqysDO+88w4aNGiAevXq4eWXX0ZJSQkAIDs7GwMHDoS7uzs8PT3RtWtXvclw2rRpqF+/vrY1/ciRI5Xery+//FL7frZv3x5paWnaWJYtW4YmTZqgSZMmAIDly5cjNDQUnp6eiI6ORmZmJoDyZDxjxgz4+vrC1dUVLVu21H7mdu7cifDwcLi4uCAwMBBff/21zjhXr16Np59+Gq+//jrc3NzQvHlz7Nu3T/v8qlWrEBYWBhcXF4SEhOCnn37SPnfw4EEEBQXhq6++gp+fHyZMmIDc3FwMHDgQPj4+8PDwwMCBA5Genm7w81Dh6tWr6NOnDzw9PdGsWTNs2rRJ53IV+wWAjRs3wtnZWXuzs7NDjx49ABh+LwFgwYIF8Pf3R0BAAFauXFltfCkpKejQoQNcXV0xePBg7WcTAF588UX4+fnBzc0N3bp1wz///AMAiIuLw/r16zF//nw4Oztj0KBBAIC0tDQMGTIEPj4+8PLy0n4WK7zzzjvw8PBAo0aNsGvXLu3j5jqWCbG2iu+JkSNHQiwWw8HBAX379kWrVq0AVG0F5TgO33//PZo0aQIXFxd89NFHSElJwVNPPQVXV1fExMRAoVDoXLdifV1drgzlLH3fGX///TeioqLg5uaGqKgo/P3339rt9ejRA7NmzcLTTz8NR0fHarv7+fn5oV+/fjh//rz2sRMnTuCpp56Cu7s7WrdujYMHD2qfW716NUJCQuDi4oJGjRph/fr1AIA5c+ZgzJgx2uUe/e571JUrV/Dyyy/j+PHjcHZ2hru7u8H4CDEKM0Ljxo3ZsmXLWGJiIpNIJOzevXuMMcYmTJjAPvjgA+1yS5cuZf369WOMMXb27Fnm4+PDTpw4wVQqFVu9ejULDg5mpaWljDHGgoODWevWrdmdO3eYXC5njDG2adMmlpGRwdRqNUtISGCOjo4sMzOTMcbYDz/8wMLCwlhaWhp7+PAhe+aZZxgAplQqGWOMPf/88yw2NpYVFRWx+/fvs6ioKPbjjz8yxhgbMWIE+/zzz5larWYlJSXsyJEjOl/ntWvXmKOjI9uzZw9TKBTsq6++Yo0bN2ZlZWWMMca6d+/Oli9frvfvpO/5rl27spkzZzLGGPvmm29Yx44dWVpaGistLWWxsbFsxIgRjDHGUlNTGQA2efJkJpfL2fnz55lMJmNJSUmMMcY6derE1q5dyxhjrLCwkB0/frzSehV/C11xAGDJycmMMcamT5/OBg0axHJyclhBQQEbOHAge//99xljjL3//vts6tSpTKFQMIVCwQ4fPsw0Go3O1/vLL7+w7OxsplQq2ddff83q1avHSkpKGGOMzZ8/n7Vo0YJdvXqVaTQadv78eZadna2NpXfv3iwnJ4fJ5XK2b98+5uXlxc6cOcNKS0vZ66+/zrp27coYY2z37t2sXbt2LDc3l2k0GpaUlKT9TPj5+bHDhw8zxhh7+PAhO3PmjM44V61axcRiMVu0aBFTKBQsISGBubq6spycHMYYY9u3b2c3btxgGo2GHTx4kDk4OGi3deDAASYWi9nMmTNZaWkpk8vlLDs7m23evJkVFxezgoICNmzYMDZ48GCdn4NVq1axp59+mjHGWFFREQsKCmIrV65kSqWSnT17lnl5ebF//vmHMcbYuHHj2KxZs7T7DQwMrPJa8vPzWfPmzbWfbUPv5a5du5ivry+7dOkSKyoqYiNHjqz0OXhc9+7dWUBAgHb5IUOGsNGjR2ufX7FiBSsoKGClpaVs2rRprHXr1trnHo2dMcZUKhVr1aoVmz59OisqKqp03K1atYpJJBIWFxfHVCoV+/7775m/v7/2c2aOY5kQPsjPz2eenp5s7NixbOfOnezhw4eVnn80PzBWnhujo6NZfn4+u3z5MpPJZKxXr14sJSWF5eXlsbCwMLZ69Wqd61asX3F8P3pMmpKzGGMsJyeHubu7s7Vr1zKlUsk2bNjA3N3dtTm8e/furH79+uzy5ctMqVQyhUJR5bUHBwezvXv3MsYYS0tLYy1atGBvvvkmY4yx9PR05unpyXbs2MHUajXbs2cP8/T0ZA8ePGBFRUXMxcWFXb16lTHGWGZmJrt8+TJjjLGPP/64Uk4y9N2n6+9DSE1UWzAfOXKESSQSlpWVxRhjrFmzZmzRokWMMcb27t3LQkJCtMs+9dRTbM2aNYwxxl5++WX24YcfVtpW06ZN2cGDBxlj5QfTihUrDO67devW7I8//mCMMdazZ0/tl2bFvisOlHv37jGZTKYtvBljbMOGDaxHjx6MMcZeeuklNmXKFJaWlmZwf59++il78cUXtffVajULCAhgBw4cYIw9ecE8fPhwNnnyZMYYY82bN2d//fWX9rnMzEwmkUiYUqnUHvyPxhkVFcXi4+MZY+WF9+zZs7XvRQVTCmaNRsMcHR3ZjRs3tM/9/fffrGHDhowxxj766CMWHR2tt6gyxN3dnZ0/f54xVv5eV7x3jwPA9u3bp70/ceJE9u6772rvFxYWMolEwlJTU9m+fftYkyZN2PHjx5lara60nfr167Mff/yR5efnG4xr1apVlQoyxsr/rhU/Ph43ePBg9s033zDGygtXqVSq/SGgy7lz55i7u7v2vr6knZCQwLp06VJp3djYWDZnzhzGWPUFs1qtZs899xx7+eWXGWOs2vdywoQJ7L333tM+d+3atWoL5keX/+eff5hUKmUqlarKsrm5uQwAy8vLqxJ7RRze3t7az+SjVq1axRo3bqy9X1xczACwu3fvmu1YJoQvkpKS2Lhx41hgYCATi8Vs0KBB2kYnXQXz0aNHtffbtWvH5s2bp73/1ltvsWnTpulct2J9XQXz4wzlLMYYW7t2LYuKiqq0TqdOndiqVau0y3/00UcGX3dwcDBzcnJizs7ODADr1asXy83NZYwxNm/ePDZmzJhKy/ft25etXr2aFRUVMTc3N7Z58+ZKeYAxKpiJdVXbJWPNmjXo27cvvL29AQCjRo3Sdsvo2bMn5HI5Tp48iVu3buH8+fN44YUXAJT39124cCHc3d21t7S0NO2pdgCoX79+pX2tXbtW24WjortHdnY2ACAzM7PS8o/++/bt21AqlfD399euO3XqVG3XkPnz54Mxhg4dOiAiIkLvqenMzEwEBwdr74tEItSvXx8ZGRnV/ZkMysjIgKenpzbWF154QRtnWFgYxGIx7t+/r13ez89P+29HR0ftQIkVK1bg+vXraN68OaKiorB9+3aTY8nKyoJcLkf79u21MfTv3x9ZWVkAgHfffRehoaHo27cvQkJCMG/ePL3b+vrrrxEWFgY3Nze4u7sjPz9f+36lpaWhcePGetd99P17/O/u7OwMLy8vZGRkoFevXnj99dfx2muvwdfXF7GxsSgoKAAA/Pbbb9i5cyeCg4PRvXt3HD9+XO/+AgMDwXGc9n5wcLD2s7hr1y506tQJnp6ecHd3x86dO7WvAwB8fHxgb2+vvS+XyzF16lQEBwfD1dUV3bp1Q15ensFZSoDy9/7kyZOVjon169fj3r17BterMGvWLBQWFmpnaKnuvXz8mHn0b6zP48srlUpkZ2dDrVbj/fffR+PGjeHq6oqGDRsCQKW/06PS0tIQHBwMiUSi8/nHP+NA+cBUcx3LhPBFWFgYVq9ejfT0dFy+fBmZmZmYPn263uXr1aun/beDg0OV+08ycM7UnPV4TgbK88Gj34WPf3/r8scff6CwsBAHDx7E1atXtfni9u3b+PXXXyvlwqNHj+Lu3btwcnLCxo0b8eOPP8Lf3x/PPfccrl69avJrJsTcDBbMJSUl2LRpEw4dOgQ/Pz/4+flh8eLFuHDhAi5cuACxWIyYmBjEx8cjPj4eAwcOhIuLC4Dyg2nWrFnIy8vT3uRyOUaOHKnd/qMFzO3btzFlyhQsXboUOTk5yMvLQ4sWLbSD5fz9/Sv1E63oD1uxLzs7O2RnZ2v3VVBQoO1j6efnh+XLlyMzMxM//fQTXn31VZ39vAICAnD79m3tfcYY0tLSEBgYaNIf9VFpaWk4c+YMunbtqo11165dlf4upaWlRu2jSZMmiI+Px4MHD/Dee+9h2LBhKC4urrLco3/Xx3l7e8PBwQH//POPdv/5+fnaJOzi4oKFCxfi5s2b2Lp1KxYtWlSpv2+FI0eOYP78+di0aRNyc3ORl5cHNzc37ftVv359pKSk6I3j0Rgf/7sXFxcjJydH+zd58803cebMGSQlJeH69etYsGABACAqKgpbtmzBgwcP8PzzzyMmJkbv/jIyMioNvLxz5w4CAgJQVlaGoUOH4p133sH9+/eRl5dXZZDm43/PhQsX4tq1azh58iQKCgpw+PBhAKh2YGf9+vXRvXv3Su99UVERfvjhB4PrAUBCQgLi4+OxefNmSKVSANW/l/7+/pWOkzt37lS7n8eXl0ql8Pb2xoYNG7Blyxb89ddfyM/Px61btyq95sf/RvXr18edO3dMHiRprmOZED5q3rw5xo8fX2nsz5NycnKCXC7X3jf0w7u6nPX48ft4TgbK88Gj31OGvmce1717d4wfPx7vvPMOgPLj/KWXXqqUC4uLi/H+++8DAPr164e9e/fi7t27aN68OaZMmWLyazYlPkKMYbBg/uOPPyAWi5GUlITz58/j/PnzuHLlCrp27Yq1a9cCKG9x3rhxI9avX49Ro0Zp150yZQp+/PFHnDx5EowxFBcXY8eOHSgsLNS5r+LiYnAcBx8fHwDlA7EeTSoxMTFYsmQJMjIykJeXh6+++kr7nL+/P/r27Yu3334bBQUF0Gg0SElJwaFDhwAAv/76q7bY9vDwAMdxEImqvvSYmBjs2LED+/btg1KpxMKFC2FnZ4ennnrKqD/mo+RyOQ4dOoTBgwejQ4cOGDBgAADg5ZdfxqxZs7TJKCsrC1u2bDFqm+vWrUNWVhZEIpF2EIOu11GvXj29gzBEIhGmTJmCGTNmaFvtMjIy8OeffwIoH6h548YNMMbg5uYGsViscx+FhYWQSCTw8fGBSqXCp59+qm35BYDJkyfjo48+QnJyMhhjuHjxInJycnTGNHLkSKxatQrnz59HWVkZPvjgA3Ts2BENGzbE6dOncfLkSSiVSjg5OcHe3h4ikQgKhQLr169Hfn4+pFIpXF1ddcZZ4cGDB/j222+hVCrx66+/4sqVKxgwYAAUCgXKysrg4+MDiUSCXbt2VTvNU2FhIRwcHODu7o6HDx/ik08+Mbh8hYEDB+L69ev45ZdfoFQqoVQqcfr0ae3AUn3OnTuHN954A3/88Yf2+ACqfy9jYmKwevVqJCUlQS6XGxXnunXrtMvPnj0bw4YNg1gsRmFhIezs7ODl5QW5XI4PPvig0nqPf+Y6dOgAf39/vP/++yguLkZpaSmOHTtW7f7NdSwTwgdXr17FwoULtZ/ZtLQ0xMfHo1OnTjXeduvWrfHPP//g/PnzKC0txZw5c/QuW13Oevz4HTBgAK5fv44NGzZApVJh48aNSEpKwsCBA5843unTp2Pv3r24cOECxowZg23btuHPP/+EWq1GaWkpDh48iPT0dNy/fx9btmxBcXEx7Ozs4OzsrD3G27Rpg8OHD+POnTvIz883OOtGvXr1kJ6erh0kSUhNGfymWbNmDSZMmIAGDRpoW5j9/Pzw+uuvY/369VCpVOjYsSOcnJyQmZmJZ599VrtuZGQkli9fjtdffx0eHh4IDQ3F6tWr9e4rPDwcb7/9Njp37ox69erh0qVLePrpp7XPT5kyRTu6uG3bthgwYAAkEol27uG1a9dCoVAgPDwcHh4eGDZsGO7evQsAOH36NDp27AhnZ2dER0djyZIlOuckbtasGdatW4c33ngD3t7e2LZtG7Zt2waZTGb0H/T111+Hi4sL6tWrh+nTp2Po0KHYvXu39oCfNm0aoqOj0bdvX7i4uKBTp044efKkUdvevXs3IiIi4OzsjGnTpiEhIQEODg5Vlps2bRo2b94MDw8PnfNFf/XVVwgNDUWnTp3g6uqK3r17a+f8TU5ORu/eveHs7IzOnTvj1VdfRc+ePatso1+/fujfvz+aNm2K4OBg2NvbVzpF99ZbbyEmJgZ9+/aFq6srJk2aVGn2hkf17t0bn332GYYOHQp/f3+kpKQgISEBQPm0TFOmTIGHhweCg4Ph5eWFd999FwDwyy+/oGHDhnB1dcWPP/6oHUmtS8eOHZGcnAxvb2/MmjULmzdvhpeXl/YiNDExMfDw8MCGDRsQHR1t4F0oT/wlJSXw9vZGp06d0L9/f4PLV3BxccGePXuQkJCAgIAA+Pn54b333qt2nu4tW7YgNzcXXbp00c6UUXGsGXovn332WUyfPh29evVCaGgoevXqVW2ML730EsaPHw8/Pz+UlpZqu3+MHTsWwcHBCAwMRHh4eJUv/EmTJiEpKQnu7u54/vnnIRaLsW3bNty4cQMNGjRAUFAQNm7caNTfyRzHMiF84OLigpMnT2q/Jzt16oQWLVpg4cKFNd5206ZNMXv2bPTu3RtNmjQxOOdwdTnr8e8MLy8vbN++HQsXLoSXlxfmz5+P7du3a7tmPgkfHx+MHTsWn376KerXr48tW7bgyy+/hI+PD+rXr48FCxZAo9FAo9Fg0aJFCAgIgKenJw4dOqQ9C9enTx8MHz4crVq1Qvv27Q0W8L169UJERAT8/PxqFDchFThW3Xlkntq1axdefvnlKqeNCHnc6tWr8fPPP+Po0aPWDoUQQgghNshmzmWWlJRg586dUKlUyMjIwCeffKIdYEgIIYQQQkhtsZmCmTGGjz/+GB4eHmjbti3CwsLw6aefWjssQoiNmDhxInx9fdGiRQudzzPG8OabbyI0NBStWrXC2bNnLRwhIYSQR/Epb5u9YDb04hYuXAiO4/RORWWIo6MjTp8+jcLCQjx48ACrVq2Cq6urOUImAjd+/HjqjkEwfvx47N69W+/zu3btQnJyMpKTkxEXF4dXXnnFgtFZT23lbEIIqSk+5W2zF8z6XlxaWhr27NmDBg0amHuXhBBSrW7dumnnQ9dly5YtGDt2LDiOQ6dOnZCXl6cdbChklLMJIXzFp7xt9oJZ34ubMWMG5s+fT3MjEkJ4KSMjo9JML0FBQTW+aJEtoJxNCLFVlszbui/DZWZbtmxBYGAgWrdubXA5b29v7RXEqpOVlVVpTlproBgoBopBdwzFxcU1Oo0vdg0GU+mehlCfsEY+laZZjI2NRWxs7BPHUJdRzqYYKIa6F8OtW7eeOG/XhZxd6wWzXC7Hl19+We3FIIDyq/g8ytAfLzIyEomJiWaJ8UlRDBQDxfCfuLg4xMXFITs7u8bznjJVKeyajzBpHQfR3zV67YGBgZWudJienl6jq3zaKsrZFAPFUHdiiIuLw4wZM+Dj41PleDaFNXI2YNm8XesFc0pKClJTU7UtFenp6WjXrh1OnToFPz+/Ssv6+PgY/OMpVBpczSxArlwJpUdjXErLR3igK8QiOmXId4VlKtwtKINcoYadRAQvRyl8XeysHRYxwq3sYtzNK4VCpYGzvQSNfZ3g7lj1Yj4VxVJkZGTNd8oBsHBXgOjoaCxduhQjRozAyZMn4ebmBn9/f4vGwAfmzNmMMSSl3MP9nEIUwgMnLt5Ci1B/ODvSsc93jAHs3/8D5YejFQ5L8gTuZhcg5U4WCuVlcHa0Q3CAJxr4eehcNjY2FnFxcUhMTKxZ7rbSh8OSebvWC+aWLVtqL9sLAA0bNkRiYqJJLVCZuSVY9/cdbPj7Dhgrf0+KwoZj9A8nIROLMK5rQ4zsXB/eVIDxCmMMN7Ll2HklC5fvFkIi/u9gUmsY/FzsMCDcF5FBrpCIbWaGwzqhTKnGrkv3sfzgTaQ/LIH0kfdHodKgZ7gPJnVriFb13WsvCM68n4mRI0fi4MGDyM7ORlBQED755BMolUoA5ZesHzBgAHbu3InQ0FA4Ojpi1apVZt2/rTBHzi4oKsWGXYlYvPYAcvKLIRGLUIgwDH4zDiq1GsP7t8cbI7shLMSv+o0Ri9IwQK0B1HouaSbmAImICme+0Wg0OJh4A4vWHsTR8zdhL5OAobyOLVOo0KZ5IN4e2wvPPh0GcW1935o5ZwP8yttmL5h1vbhJkyY90bYYY5i/4xpWH7kNMECh1vz3pNQBxWVqFEONH/al4Id9KZjevwmm9GhksUEqfOhrw9cYispUWHgwFZn5ZVCoNWAAlJrKGfhOXilWn0rHukQOb/VohBAvR7PGYGlCiSExNRcvrz4LtYZBrlADAEqVmkrL7Ll0H4euZCMi0BU/jm8LFwdppRji4uJqHIfJ38jVXLM0Pj6+mt1xWLZsmWn7FABz5mwA+GP/RUz6eD0ADvJSxX9PcBIUFJcCAH7ZdgoJu86g39NhWP3ZGNjJLDKcRjDHaG3EwBig1JQXzIaoGaBWAxIOkIjNG4OlCSWG9Pt5eO71OGRm5aFIXn7MlSlUlZY5cfE2JszeAFcnO+xYOhXNG9UzawwAzJ6zAX7lbV5dGvvRvjyMMby94QL2XH6Akn+/tKvjIBVjZOf6mDU4rDbDJNXIL1Fizp83UFCq1NtK8TiZuLxobu7rXLvBEYMOXc3Cm+vOVymQ9ZGJOfi522Pz653h5vhf0VzTfnkiJz/YRYwxaZ0IzUGr90esax5/n1f9cQJvf/07SsqURq3vYCdFyyYB2PPTaxYrmklVjAEKtVH1SyViDpDWoGgmNXcrIwddxi9BXlEp1Orq8zbHAU4Odvgr7lW0blq5r29N8nZdyNm8PQ++eHcy9ly6b3SxDAAlSjXij9/B2qO3ai8wYpBSrcFX+2+aVCwDgELN8M2hW7hbUFp7wRGDrt4txLR1F4wuloHy9+1uXikmrkiEyohkbRKOM+1GrGrfyWsmFcsAUFKmxMXkTIyd9UstRkaqo9SYXiwD5a3NKjMf9sR4BUWl6DP1e+QWlhhVLAPlP46K5GV49tUfkZmVb96ABJ6zeVkw5xYr8PPBVJSY8MVdoUSpwYId11GqNL7QJuZz+k4+cuSmFcsVylQa/HbxvvmDIkaZv+MaSp7guFGqGW4+KMbBq2a8GhyH8v5wptyI1TDGMO2r30wqliuUlinx14mrOH8tvRYiI9XRsOq7YRii0vw3MJBY1so/TiAnXw7NE7yBRXIFFq49YL5g6kDO5uU5sF9Ppuv98VH2IAXZ+78Hx4kAkRg+faZB6v7YiEgO2HnhHoZE1r0poaxtx5UHKNPT5LBuXAd4h7YEADTu8hya9BxS6XkG4EJGAQrLVHCx4+VHU7Du5ZXidGquzucYY3jw1/cou58MplHDI3IIXMN7VlpGrlBj+cFU9I7wNVNEttkCUVed/ucO7mYV6HxOI38A5e39ACcCx4kgadgbIjv3SsuUKVT4dv0hrPx0tAWiJY+qrmHSw8UBUR06AgBGjX4J4ydW7d+uYeXdM4jlaDQaLFl/SOePVMYYVHf2Q1N8H2AaSPzaQ+xVuauqUqXGmq2n8Plrz8HBXlplG6YTfs7mXVWi0TCsPJyq97Sw2MkD/kM+g0jmCPnN08g9vg6+z75baRl5mRo/7U+hgtnCbueWIKtIofd5R09f9P9oheGNcMDhlId4LtxchRcxxvrjd/Q+p8i+DUX2bTQY8w00ZXLcXvNalYIZAK5kFuBWdjEaej/5XJ6V2GALRF31zbqDKNXTusxJnSBrOgScWAZ1XipUGcchC3m20jJqDcPv+y9g0btD4O7ioHM7xPwY0z8bRoWAwEDs2XfQ4DIqDUATHVnW/lPJKCop0/kcK8kBK8mBXfgoMLUCin/WVimYgfL69re/zmPMwCjzBCXwnM27V3cvvxSFpSq9z0ucPCGSlc+mwEmkgEj3iIObD4pRRt0yLOrag2KDp/ZK8rKx+9OJOLB4BoqydF+6UqlmOJehu6WK1J5DV7Og0HNmQOLsBU4sAVOroFGUQGSve2CmiANO39TdSv1EBN4fTkgOJ96ARs95eU7qBE7877zdInH52UEdZFIJziTp/+FGzM+YE/n3791Dn17dMfzFIbh969YTb4eY16HEG9oZMR7HyZwATgSmUQNqBSC217lckVyBnUevmC8ogeds3rUwF5QoITHiQiQaZSkeHlsLn77TdT4vlYiQX6KELw3htZiiMhVUBirmoUt2wd7VAxkXjuFY3Bz0m7Vc53LFJgz0JOZRYOBHqsjeGVKPQKT+PAlMWYp6/abrXE6pZigoMb0Pq26c4FsrhERfS9ejmFoJVcbfkDbso/t5xpBbYNqldUnNGNP3+OqNW/D29sbePX/i5dhJ2LVnn95t2WANZLPu5RTqf1JsD87eA4pLK8E0Skgb9tW7aHZesZkiEn7O5t2rE4u4an+tMrUKD7bPhXvUMMi8GuhehgESEe9enqBJRBwM5Ut71/IrDQW2fhrF2Xf1LiemrGtxhq6WKb91FqqiHDSashINJ/2M7MOroFFVbdkQcTDfBWgqrhol4NYKIanuaqtMo4by5g5I/CIhcvDSuQwHDlIJ5Wy+qbhgTZ++/XDnzm0rR0MqyAw0BmoKboMpiiBrNQl2LSdAlX4UTKO7UURmrmOuDuRs3mUnL2c7KA3MU8OYBg92LYBjaGc4hT6ldzm1hsHVgXcN6ILmai+BVM/ID2WpHBpNecvxwzvXYefirnc77vS+WZyXc9VLXf+HQWzvDE4khkjmAKZWAazqMSoVi6rZjokEPuJaSNxd9F90iDEGZepuiNwbQ+wRqn85MPh4utRGeESP6mqWoqIiqNXlefvSxYvw8tJ/tUcbrH9sWpCvu8EGCk5i9+/kCDKAqXWeTuA4INDX3XxBCTxn864y8XSWoZm/Cy6l6+7HWpz8N+Spp6GW56HoygHIvBvCu9crlZbhAHRr5k2XW7awNoGuWHcmU+dzeekpOLHiM0gcnMCBQ+dJH+lczl4iQrfGnrUZJtHhxaggJN8r0l7Z71GOwW1ReOUg7qx/C0ythHv7aIikVfvEqTQM3ZoZf/lkw4R/ek9IRg1oj+/iD1e5uhgAaHKToclPBVPKoc65CpGjN6QNqg4alUrE6BCh+4whqR3V1bhXkpLwxqtT4eziAo7jsPT7n3QuZ0QvSmJmQ3q3xvw1+3XOfy9ybQB1zlWUXYkHNGqI67UFJ646E4aTvQyjn2tvpoiEn7N5VzADwNReIXhv4yUUl1X98nZu2gXOTbsYXN9BJsaUno1qKzyih7uDFC38nXE+o2rfKp/Qlhg0d1O12+A4oF2ga22ERwwY2MYfX2zVPfiDE4nhN+Adg+uLOKB/y3pwdTDH9ESPbJTYhKkvdsF38Yd1Pif2bAqxZ1OD69vbSfDq8K6Q1ORay8RkHFd+iWuVnn6QUR064ETiuWq3Qz1pLK9ZQ19ENPbDmaS0Ks9xnAiykP7VbsPd1RFd2zU2X1ACz9m8/Jj3blHPqIF/+ng4SdEhhFopreHZ5r6QPeGEnBIRh16hXnRmwAocZGI83z5Qb5ea6sgkIozv2tB8AdWBSfCFJKieO7q2Dam2L7NeDJj0QmfzBkWMUtN0y0HwdRJvvT22J5wcnqwbnKO9FDPGdAdnrr40dSBn8zJiqViE78a2hb3U9PAcpOXrmu1DQEzS1McRnRt6mFw0izjAx0mGQWa78AUx1Vv9m8DX1d7kLz8HmRgjO9VHOJ0ZqNOWfTgcrs6mz6HsaC/FV9Oj4edNnx9rqGhlflI0EZX1DO7RAj2jmsDBzrQze3ZSMVo2CcDkIfQj1RS8LJgB4Omm3pgX09KkotlBKsay8e3QuoF77QVGDOI4DuMiA9E6wBV2RhbNEhEHbycZ3nsmBPaUfa3G1UGKdVOj4Otqb3RLs4NUhAGt6uG955qZPyCBj7gWmgZ+Hvjzx1fh4epgdEuzg50Ub4/thdgXDXezI7VLIn6yolkmptZlaxKJRFj35Uvo2DIYjkZerc/eTopmjephy5LJkEnN3CtX4DmbtwUzAAxqF4CVUyIR7O0IB5lY54EpFnGwl4rQ1M8Z8a91RPfmPpYPlFQiEnF49ekGGBjhC3uJCHZ6OrhJxRwkIg7tAl3xSf8mcDdn/1fyRAI8HLBlemd0a+YNmYH3zslODBd7Cab1a4IvhrWohTM6nOBP7wlRyyYBOL7ubXRu3Qj2MglkevokOzvawdfTGT98GIMPpvSzcJREF4kYMLZ9igMVy3xhJ5Ng27dT8PKLT8PRXqq3i4ajvRT2dhKM6N8Wh1a8AbcnOBtkmPBzNi8H/T2qY2Mv7Hu/G87fycPPB1Nx5Fo2Sv4dye8ok6BPC19M7N6ITgfzDMdxGBRRD/2b+yAxLR87r2ThXmEZlGoGsYiDi50YzzTxRvfGnnC15/3HsE5xd5Th+3HtkFVYhoQTadh4Mg25xUqoNAx2EhGa+DljcvdG6B3hC2lt9je3wRYIAgT7e2Jv3OtITc/BD5uOYMPOROQVlkLDNLC3k6JDRDDeGtsTvTs1g4jmyucVsai8CNaw8stdPz4WUMz9twzhD4lEjC/eGIgPJvfBr3vOY/G6g7h9NxdlChVkUjH8vV3x+oiuGDMwqnYvPS/wnG0TlQrHcWgb7IFl48ovfMH+nU+Q+inzn1QsQueGHujcsPy90zAGEb1vNsHHxQ5v9AnFG33K587VaBhElvymtMEWCPKfRkFemP/W85j/1vNgjIExRgWyDeC4/wpj4L/peylt85+Tgx3GD+6I8YM7AgA0Go1ljzmB52ybKJgfR4Wy7aJi2XZZtli2zT5uRDeO4yhv2yh622yXZYtl4edsmyyYCSF1gMBbKwghRFAEnrOpYCaE8JPAWysIIURQBJ6zqWAmhPCQ8C+zSgghwiH8nE0FMyGEnwTeWkEIIYIi8JxNBTMhhH8qLrNKCCGE/+pAzqaCmRDCQ8I/vUcIIcIh/JxNBTMhhJ8EfnqPEEIEReA5mwpmQgg/Cby1ghBCBEXgOZsKZkIIPwm8tYIQQgRF4DmbCmZCCP9wwu8PRwghglEHcjYVzIQQfhJ4awUhhAiKwHO22X8OTJw4Eb6+vmjRooX2sXfffRfNmzdHq1at8MILLyAvL8/cuyWEEPIEKGcTQkj1zF4wjx8/Hrt37670WJ8+fXD58mVcvHgRTZs2xdy5c829W0KIwHAcZ9KNPBnK2YQQcxB6zjZ7wdytWzd4enpWeqxv376QSMp7f3Tq1Anp6enm3i0hREA4CD/58gXlbEJITdWFnG3xHtorV67Es88+a+ndEkJsCfcEN1IrKGcTQqpVB3K2RQf9ffHFF5BIJBg9erTO57OyshAZGam9Hxsbi9jYWEuFRwipgbi4OMTFxQEoP5ZrxjZbIISGcjYhwma+vC38nG2xgnn16tXYvn079u3bp/eP6uPjg8TEREuFRAgxo0eLpUeLqCcl9OTLd5SzCRE+c+ZtoedsixTMu3fvxvz583Ho0CE4OjpaYpeEEBsn9OTLZ5SzCSGmEnrONnsf5pEjR6Jz5864du0agoKCsGLFCrz++usoLCxEnz590KZNG7z88svm3i0hRGCEPoCELyhnE0LMQeg52+wtzPHx8VUemzRpkrl3QwgRMhsdFGKLKGcTQmqsDuRsutIfIYR3uDowgIQQQoSiLuRsKpgJIbwk9ORLCCFCIvScTQUzIYSXhJ58CSFESISes6lgJoTwktCTLyGECInQczYVzIQQ/qkDA0gIIUQw6kDOpoKZEMJLQm+tIIQQIRF6zqaCmRDCO3VhxDUhhAhFXcjZVDATQnhJ6MmXEEKEROg52+xX+iOEEL7avXs3mjVrhtDQUMybN6/K83fu3EHPnj3Rtm1btGrVCjt37rRClIQQQgB+5WwqmAkh/MSZeKuGWq3Ga6+9hl27diEpKQnx8fFISkqqtMznn3+OmJgYnDt3DgkJCXj11VfN+YoIIUS4BJ6zqWAmhPAPV356z5RbdU6dOoXQ0FCEhIRAJpNhxIgR2LJlS+XdchwKCgoAAPn5+QgICKiVl0cIIYJSB3I29WEmhPCSqf3hsrKyEBkZqb0fGxuL2NhY7f2MjAzUr19fez8oKAgnT56stI05c+agb9+++O6771BcXIy//vrrCaMnhJC6Reg5mwpmQggvmZp8fXx8kJiYWKN9xsfHY/z48Xj77bdx/PhxvPTSS7h8+TJEIjoZRwghhgg9Z1PBTAjhndqYoigwMBBpaWna++np6QgMDKy0zIoVK7B7924AQOfOnVFaWors7Gz4+vqaNRZCCBGSupCzqdmEEMJPZh5AEhUVheTkZKSmpkKhUCAhIQHR0dGVlmnQoAH27dsHALhy5QpKS0vh4+NjtpdECCGCJfCcTS3MhBD+4cw/p6dEIsHSpUvRr18/qNVqTJw4EREREZg9ezYiIyMRHR2NhQsXYsqUKVi8eDE4jsPq1asFP7coIYTUWB3I2VQwE0J4qTaS3oABAzBgwIBKj3366afaf4eHh+PYsWNm3y8hhAid0HM2FcyEEF6ill1CCLEdQs/ZVDATQvhJ2LmXEEKEReA5mwpmQggvCb21ghBChEToOZsKZkII7xh7JShCCCHWVxdyNhXMhBBeEnryJYQQIRF6zqaCmRDCS0JPvoQQIiRCz9lUMBNC+EnYuZcQQoRF4DmbCmZCCC8JvbWCEEKEROg5my6NTQghhBBCiAHUwkwI4Z9auMwqIYSQWlIHcjYVzIQQ3uEACDz3EkKIYNSFnG32LhkTJ06Er68vWrRooX3s4cOH6NOnD5o0aYI+ffogNzfX3LslhAgKp53X09ibpQ0ZMgQ7duyARqOx+L7NiXI2IaTm+J+za8rsBfP48eOxe/fuSo/NmzcPzzzzDJKTk/HMM89g3rx55t4tIURgOM60m6W9+uqr2LBhA5o0aYL3338f165ds3wQZkA5mxBiDnzP2TVl9oK5W7du8PT0rPTYli1bMG7cOADAuHHj8Mcff5h7t4QQgeF7a0Xv3r2xfv16nD17Fg0bNkTv3r3x1FNPYdWqVVAqlRaP50lRziaEmAPfc3ZNWWSWjPv378Pf3x8A4Ofnh/v371tit4QQW2ViS4W1cm9OTg5Wr16Nn3/+GW3btsW0adNw9uxZ9OnTxzoBmQnlbEKISWwkZ9eExQf9GfplkZWVhcjISO392NhYxMbGWio0QkgNxMXFIS4uDkD5sVwTHACRiN8Z9YUXXsC1a9fw0ksvYdu2bdoCc/jw4ZXymK2jnE2IcJkrb9tCzq4pixTM9erVw927d+Hv74+7d+/C19dX53I+Pj5ITEy0REiEEDN7tFgyR8HI9xaIKVOmYMCAAZUeKysrg52dnc3nMcrZhNQN5szbfM/ZNWWRLhnR0dFYs2YNAGDNmjUYPHiwJXZLCLFhfO8P9+GHH1Z5rHPnzhaPozZQziaEmIrvObumzN7CPHLkSBw8eBDZ2dkICgrCJ598gvfffx8xMTFYsWIFgoODsWnTJnPvlhAiJDzu43bv3j1kZGSgpKQE586dA2MMAFBQUAC5XG7l6ExHOZsQUmM8ztnmYvaCOT4+Xufj+/btM/euCCECVT4JPj+z759//onVq1cjPT0db731lvZxFxcXfPnll1aM7MlQziaE1BSfc7a50JX+CCE8xN9TduPGjcO4cePw22+/YejQodYOhxBCeIC/OdtcqGAmhPASX3PvunXrMGbMGNy6dQuLFi2q8vyjrc6EEFJX8DVnmwsVzIQQXuJra0VxcTEAoKioyMqREEIIf/A1Z5sLFcyEEP7h8QCSqVOnAgA+/vhjK0dCCCE8weOcbS4WmVaOEEJMUTGAhM9TFM2cORMFBQVQKpV45pln4OPjg3Xr1lk8DkIIsTZbyNk1RQUzIYSX+H6Z1T179sDV1RXbt29Hw4YNcePGDSxYsMDygRBCCA/wPWfXFBXMhBDyBFQqFQBgx44dePHFF+Hm5mbliAghhNQW6sNMCOElU0/ZsVqKQ5+BAweiefPmcHBwwA8//ICsrCzY29tbOApCCOEHvufsmqIWZkIIL/H99N68efPw999/IzExEVKpFE5OTtiyZYvlAyGEEB7ge86uKWphJoTwD2cbUxRdvXoVt27d0nbPAICxY8daMSJCCLECG8nZNUEFMyGEd8pHXFs7CsNeeuklpKSkoE2bNhCLxQDKvzCoYCaE1DW2kLNrigpmQggP8X/aocTERCQlJfE+TkIIqX38z9k1RX2YCSG8xPf+cC1atMC9e/csv2NCCOEhvufsmqIWZkIIL/G9tSI7Oxvh4eHo0KED7OzstI9v3brVilERQoh18D1n1xQVzIQQ/rGBFog5c+ZYOwRCCOEHG8jZNUUFMyGEdyous8pn3bt3x+3bt5GcnIzevXtDLpdDrVZbOyxCCLE4W8jZly5dQsuWLZ94ferDTAjhJY7jTLpZ2vLlyzFs2DBMnToVAJCRkYHnn3/e4nEQQggf8D1nv/rqq+jQoQO+//575Ofnm7w+FcyEEF7i+wCSZcuW4dixY3B1dQUANGnSBA8ePLB8IIQQwgN8z9lHjhzB+vXrkZaWhvbt22PUqFHYu3ev0etTlwxCCC/x/fSenZ0dZDKZ9r5KpeJ9zIQQUltsIf81adIEn3/+OSIjI/Hmm2/i3LlzYIzhyy+/xJAhQwyuSy3MhBD+MbGlwhp5unv37vjyyy9RUlKCvXv34sUXX8SgQYMsHwghhFibDeTsixcvYsaMGQgLC8P+/fuxbds2XLlyBfv378eMGTOqXZ8KZkII73AwrS+cNVo25s2bBx8fH7Rs2RI//fQTBgwYgM8//9zicRBCiLXZQs5+44030K5dO1y4cAHLli1Du3btAAABAQFG5W7qkkEI4SW+n90TiUR4/vnn8fzzz8PHx8fa4RBCiFXxPWe/8MILeOmllyo9tmTJEkybNq3K47pQCzMhhJdEHGfSzVIYY5gzZw68vb3RrFkzNGvWDD4+Pvj0008tFgMhhPANX3N2hbVr11Z5bPXq1UavTy3MhBBigsWLF+PYsWM4ffo0GjVqBAC4efMmXnnlFSxevNiovnCEEEIsIz4+Hhs2bEBqaiqio6O1jxcWFsLT09Po7VDBTAjhJb6e3vvll1+wd+9eeHt7ax8LCQnBunXr0LdvXyqYCSF1El9z9lNPPQV/f39kZ2fj7bff1j7u4uKCVq1aGb0d6pJBCOGd8lHU5h9Asnv3bjRr1gyhoaGYN2+ezmU2bdqE8PBwREREYNSoUVWeVyqVlYrlCj4+PlAqlaa9UEIIEQA+5+zg4GD06NEDx48fR/fu3bW3du3aQSIxvt2YWpgJIbwkMnNrhVqtxmuvvYa9e/ciKCgIUVFRiI6ORnh4uHaZ5ORkzJ07F8eOHYOHh4fOC5E8OveyKc8RQoiQ8TVnd+nSBUePHoWLi0ulQp0xBo7jUFBQYFQ8VDATQnjJ3NMOnTp1CqGhoQgJCQEAjBgxAlu2bKmUfJcvX47XXnsNHh4eAABfX98q27lw4YL26n6PYoyhtLTUrDETQoit4GvOPnr0KIDyPss1YdEuGYsXL0ZERARatGiBkSNH0pcLIUQvUyfBz8rKQmRkpPYWFxdXaXsZGRmoX7++9n5QUBAyMjIqLXP9+nVcv34dTz/9NDp16oTdu3dXiUutVqOgoKDKrbCwUHBdMihnE0KMxdecXSElJQVlZWUAgIMHD+Lbb79FXl6e0a/PYi3MGRkZ+Pbbb5GUlAQHBwfExMQgISEB48ePt1QIhBAbwaF8InxT+Pj4IDExsUb7ValUSE5OxsGDB5Geno5u3brh0qVLcHd3r9F2bRHlbEKIsWwhZw8dOhSJiYm4ceMGYmNjMXjwYIwaNQo7d+40al8WbWFWqVQoKSmBSqWCXC5HQECAJXdPCLEhIs60W3UCAwORlpamvZ+eno7AwMBKywQFBSE6OhpSqRSNGjVC06ZNkZycbO6XZjMoZxNCjMX3nC0SiSCRSPD777/jjTfewIIFC3D37l3jX5/RS9ZQYGAg3nnnHTRo0AD+/v5wc3ND3759Ky1TXfM8IYS/4uLitMduVlZWzTZm4mhrY/rORUVFITk5GampqVAoFEhISKg0JycAPP/88zh48CAAIDs7G9evX9f2n6trKGcTInxmy9s2kLOlUini4+OxZs0aDBw4EABM6kZnsYI5NzcXW7ZsQWpqKjIzM1FcXIx169ZVWqaieb7iFhsba6nwCCE1FBsbqz12zXGpaFP7w1VHIpFg6dKl6NevH8LCwhATE4OIiAjMnj0bW7duBQD069cPXl5eCA8PR8+ePbFgwQJ4eXnV+LXYIsrZhAifOfM233P2qlWrcPz4ccyaNQuNGjVCamqqUZfE1r4+xhgzeuka+PXXX7F7926sWLECQPklCk+cOIHvv/9eu0xkZGSN+7MQQqyvpseyR8Nw9PzoF5PWufPDVIvmj8enKAIANzc3REZGYuHChTbfMk05m5C6pSbHsy3k7Jqy2KC/Bg0a4MSJE5DL5XBwcMC+ffsQGRlpqd0TQmwMX68aVWH69OkICgrCqFGjwBhDQkICUlJS0K5dO0ycOFF7mtBWUc4mhJiC7zn72LFjmDNnDm7fvg2VSqWdh/nmzZtGrW+xgrljx44YNmyY9soqbdu2pdN3hBC9zD2np7lt3boVFy5c0N6PjY1FmzZt8NVXX+HLL7+0YmTmQTmbEGIKvufsSZMmYfHixWjfvj3EYrHJ61v0wiWffPIJPvnkE0vukhBig4zt42ZNjo6O2LRpE4YNGwYA2Lx5M+zt7QHw/4vDWJSzCSHGsIWc7ebmhmefffaJ16cr/RFCeEnE8+y7fv16TJs2Da+++io4jkOnTp2wbt06lJSUYOnSpdYOjxBCLIrvObtnz5549913MWTIENjZ2Wkfb9eunVHrU8FMCOElPqdetVqN77//Htu2bdP5fJcuXSwcESGEWBefczYAnDx5EgAqDTTkOA779+83an0qmAkhvMTnbg1isRhHjx61dhiEEMIbfM7ZAHDgwIEarU8FMyGEPIG2bdsiOjoaL774IpycnLSPDxkyxIpREUII0eX+/fv44IMPkJmZiV27diEpKQnHjx/HpEmTjFqfCmZCCO9wMO7SqdZUWloKLy+vSqfzOI6zeMH88OHDapcRiURwd3ev/WAIIXWSLeTs8ePHY8KECfjiiy8AAE2bNsXw4cOpYCaE2DAjL51qTatWrbJ2CACAgIAABAQEwNA1qNRqNe7cuWPBqAghdYoN5Ozs7GzExMRg7ty5AMqvJGjK9HJUMBNCeInnuRfXr1/HK6+8gvv37+Py5cu4ePEitm7dig8//NCicYSFheHcuXMGl2nbtq2FoiGE1FV8z9lOTk7IycnRFvYnTpyAm5ub0euLaiswQgipCe7fFgtjb5Y2ZcoUzJ07F1KpFADQqlUrJCQkWDyO48ePm2UZQgipCb7n7EWLFiE6OhopKSl4+umnMXbsWHz33XdGr08tzIQQ3rGF/nByuRwdOnSo9JhEYvmUWnGxFADIzc1FWloaVCqV9rF27dpVWoYQQszNFnJ2u3btcOjQIVy7dg2MMTRr1kzb4GEMmymYFWoNzmcU4uLdQhQrVODAwdlOjLaBrmjp7wIJ39+pOqygVIXzGfnILCxDmUoDqYiDu4MUbQJd4e9ix/t+T3UVYww3suU4fPMhsooUUKoZHGRiNPF2RPfGnnB3MD7RPAm+fy68vb2RkpKijXPz5s3w9/e3WjwfffQRVq9ejcaNG2tjMmWOUXNjDNAwQM3K/11BxAESEf9P39ZlBUWlWL8zETuOJOFhfjEkYjH8vF0w5rkoDOgSBonE9MsKE8vQMEClBhjKjzuOKy9mJeLaL2j5nLNzcnKwYcMGXL16FUB5V7aAgAB4enoavQ3eF8wFpSrsS85GYnoBAEChrjyw5WaOHL9duo/OwW7o2dgLjjI6kPkiI78Ux1JzkZ5fAqD8i7NCZkEZrmcVw9lOjE7BHoio58zrg60u0TCGozcfYufVbBSWqqBUMzx61KVky7H7ajaa+zrh+Rb1EOzpUCtx8P3TsGzZMsTGxuLq1asIDAxEo0aNsH79eqvFs2nTJqSkpEAmk1ktBqD8S1qlqXy8P0rNALX6v8KZ2jr443bmQ3zx8x78uvc8RJwI8lJFpecPnL4BqUSM14Y/jRkv9YSjvXU/a+Q/ag2g1FT+cQr8d1+tKs+pUjEgrqXOuHw9lK9cuYJevXqhX79+aNu2LRhjOH36NL788kvs378fzZs3N2o7vC6Y7xeW4YfjaShVqvUm3zI1A8Bw5GYezmcW4pXODeDpWLstX6R6FzILsP9GDlQa3W8cA6DUMOSWqPDX9Wyk5sgxIMwXYvr2tCqlWoOfjqfhyv2iKj9OK1S8p5fvFeF6VjHGRgaiY7C7WePgOP5fZjUkJAR//fUXiouLodFo4OLiYtV4WrRogby8PPj6+lotBsYAxb+tW9XR/LusVFR7X+DEeKf/uYOBb8ShuKQMaj3HfpG8DADw9doD+O2vi9j9w8vw9bTu554ASnX5j9TqMJQfc2JNeeFszhTL55z90UcfYcmSJYiJian0+G+//YZZs2bht99+M2o7vE1TD+VKLPv7DooV+ovlR6kZQ36pCkuP3UZRmar6FUit+edeocFi+XFKDcONHDl2XnlgcGosUrs0jOGHv9OQZKBYfpxCzbAmMQPnMgrMHg/HmXaztJycHLz55pvo2rUrevTogWnTpiEnJ8fygfzr//7v/9C2bVv069cP0dHR2pulmFIsP0qpKS+eifVcvnEXz776IwqKSvUWy48qLVPhRloWek1ZhsLiUgtESPQxtlh+lJqVr2dufM3Zly5dqlIsA8DQoUNx+fJlo7fDyxZmxhhWnkpHqdK0TwFjQLFCjV/OZOKVpxrUUnTEkNwSJfZczza6WK6g0jCk5Mhx6W4hWgW41lJ0xJB913Nw7UERlEYWyxWUaoafT6ThiwFNzdqvme9ddEaMGIFu3bppWyfWr1+P4cOH46+//rJKPOPGjcN7772Hli1bQiSyfFuISmN6sVxBoQbszNziRYyjUqkx6M04FJcoql/4EUqVBun38/DKF79i3Zcv1VJ0xBCNxvRiuYKalXfjMOfZHb7m7EevxGrKc4/jZcF8O68UuSXKJ0q+GgbcyStFVpECPs7Uv8rSzqTnQ/OErcRKDcOJO3lo6e/C2wNPqDSMYffVLKNblquuDxy88RDPt6xntpj4/hG4e/cuPvroI+39Dz/8EBs3brRaPI6OjnjzzTetsm/G9PdZNpaaARKev+dCtOvYFRTJTSuWK5QpVNh++B88eFhIXTOswMQ2RZ3rm7dgNt+2zOnBgwdYtGhRlccZY8jKyjJ6O7zsknEo5aHeVq7Nsydh2ejOOL7xB73raxjD0dTqLxdLzEup1uDy3UKDp1ez0lLxfu9mSL2UqPN5uUKNjIKyWoqQ6JN0r+jf8QBV5aanYPsnE7D9kwnY+uFo/DKpS5VlVBqGAyZ0w6kOBw4izrSbpfXt2xcJCQnQaDTQaDTYtGkT+vXrZ/E4KnTt2hX/93//h+PHj+Ps2bPamyWoDXxxDxrQD/X9fTDvy8+feBuk9ixce0DbN1kXTelDlCYuhqYwXefzIg5Y9cfJ2gqP6FExC40uV5KS0K93D/Tr3QM9unZGkJ+XydswFZ9z9pQpU1BYWFjlVlRUhMmTJxu9Hd61MJeqNLj6oFhv63K/N7/A7fN/ozDnvt5taBhwOr0Ag1vU420ndCG6kS2vdpjsvl+WIqR1B73PKzUM59LzEeRG88Za0r7kHJTpObfnEdQYAz8uvwz0zeO7kXn5lM7lNKy88G4VYIaWJiv1SzaGi0v5GRDGGL755hu89FL56Wi1Wg1nZ2d8/fXXVomr4mp/J06c0D5mqWnlDLUu/xC3Agf2/YWMDN0FVwWG8s8Qjfu1nPT7ebhwLcPgMqrMExC5BOl9vqRMhR83H8N7E3ubOzxigKEfmGHh4fjzr4MAgN9+3YSDB/XnAJUakJmjEuRxzv7444/Nsh3eFcyFpSqDCdPF28+o7Wg0DGUqDRykNM2cpRSUqqAy8M15J+k8nD29wVXTvzK3RGnu0Eg1soqMOyV748gOtIqeoPM5tYYh5wlP7erC1245hYWF1g5BpwMHDlR5LDU11SL7NtRIFRSkv9iqsh0G/s5NJUB37uXCTiZBqUL3QHlN0V1wUiewak5GZz0sAmOMt8esEBnbMhy/YR3eemem3ufNOd5W6O8/7wpmhVrz7x+9Zm+jiOOgUDPU8rUVyCMUao3Bd23f+u8RM/MrbP/hS4PbUdKQeYtTGHE+vLQwD3mZqajXrK3O59WMQfGkI1B04GV/MaDabg7t2rWzUCSVffrpp5Xuq9VqrF271mJFM7E98moG+qnunoC0UX8o7xwyuJyGMajVGrqgCc/k5OTg+rWr6PzU0xbZH19ztrnwrmC2l4jMMrWYmjHYS4T+9vGLnUQEEaf7l++V4wcQ1LQlnNw8qt2OjCZltTh7iRiA4ekYb/69G4069dXbiiAWcbA30xkdDvxtrXj77bcBAKWlpUhMTETr1q3BGMPFixcRGRmJ48ePWyWuR0d7K5VKHD58WOdUSoRUcHGy19vIoc67CZGjHzhJ9RcmkohFVCzz0OZfN+KFoS9aJJfyOWebC+8KZjd784TkIBVDJhb2m8c3Pk4yiEUcNDq6ZWSmJOHmhRP4eeYZ3Eu9jqw7NzF69rfw8AustJwIgJ+LnYUiJhWCPe1xr6isylWiHnXj6A50nfqJ3udFHIdAN+G/dxVdH4YMGYKzZ8+iZcuWAIDLly9jzpw5VouropCvMHPmTHTooH+8gDnV/JxgOeq/bFmh9b2h0NMdg8kfQFOYBsW1TGhKsqEsfQhZ44Hg7KpO+9koUPegMlJ7RKLyK2YasjF+Pb7/8WfD26lDx5yumTLc3NzQvn17tGnTptr1eVcwS8QiRAa54sSdfJ0tlX9+9xEyr5yDWqXA/eTLeP7DZVW3IeLQpaGH4H/t8E2wpwMkIk7nDCfPjHkNz4x5DQCwcd676PDc8CrFMgCIRBzaB9E8zJbWu4k3zqYX6J1WruB+GjQqBTyCQvRuw0kmRmMvR7PFxPdEfu3aNW2xDJRfae/KlStWjKiy3Nxc1Ktnvmn+DJGI9E9x9erUKThx4m+UlZXhzJlE/PrbHzqXK2+hqrUQiQ5e7k7o+1RzbDv0T5Uzu5KATkBAJwCA4uZuSHxa6CyWnRxkmDGmhyXCJY8Qc4Ch0T6pN2+irKwMzcPCDG7HnCfi+Z6zExMTkZiYiEGDBgEAtm/fjlatWuHHH3/Eiy++iJkz9ff1BnhYMANAl0aeOJVWoHM+335vfGbUNjoFu5k7LFINEcehfZAbTtzOMzi92PD3F+h9zttJBk9Hmj/b0oI9HeDlKMPdQt3TS7nWq4/n5+qfY1gm5tC/mbdZf6TyPfm2atUKkydPxpgxYwCUX7ikVatWVounZcuW2r8/Ywy3bt2Cl5eX9vGLFy/W2r4NvVff/7TcqG1QDzrrmD6mB/advG7wwiWykP56n2OMIaaf7nENpPZwXHnRrG+cfaOQEBw7oXv61goiM89swfecnZ6ejrNnz8LZ2RkA8Mknn+C5557D4cOH0b59e9ssmH2cZQj1csSNHLnJ87pKRRxaB7jA2Y6XL03wWvu74vSdfKie4AStRMSha6Pq+ziT2vFCq3r4+UTaE128RCoWoVNDd7PFUn7pVH5n31WrVuGHH37AkiVLAADdunXDK6+8YrV4tm/fbrV9V/flXe364P+XrVB1ahmMpsE+uHzjHpQq066X7GgvxWvDu8LRnho5rEEiBtSGh54YZM5JxGwhZz948AB2dv91G5RKpbh//z4cHBwqPa4Pb6vKMe0DsOTILTwsURo9ob1ExMHP1Q5DWxk39RwxP0eZGMNa+2Hj+bsm/diRiDg83dADDT3Nd0qfmKZtoCv6NPXG3uvZJhXNdhIR3unRyOxTOPK9gNq7dy+mTZuGGTNmWDsUAEBwcLBV9y8RAUzzZBdCkNFlsa2G4zhsWTIFncYswoOHRVAZ+YXrYCdF13aNMecV/a3PpHaJuPJjR2Ha7xwAgFRk/hzL95w9evRodOzYEYMHDwYAbNu2DaNGjUJxcTHCw8OrXZ+3J8HsJCK80SUYAS72Rg3ek4k5NPJ0wMud60PC93dN4AJc7TG8tT/sxCKIq/kW5FBeLHcL8USHBu4WiY/oN7iFL54L84FMzFVbwEhFHJxkYszs2QhB7ua/0AzHmXaztI0bN6JJkyaYOXMmrl69avkA/mXMNHaWmOqO48q/hE0da03FsvX5eDjj2JrpCAnygpND9a3FTg4yDOwWgV+/ngBRNfPqk9olFpUfQ6aQispbp82NzzmbMYbx48cjLi4O7u7ucHd3x48//ojZs2fDyckJ69evr3YbvG1hBspnunjt6Qa4eLcQB1IeIrtIUT7f478tGGJR+eUYA1zt0KOxJyL8nOnKfjwR4GaPSR3r40JmAc6k50PDWKVWS6mIAwPQzMcJkfXd4Oss/NkVbAHHcRgQ7osIfxfsuZqNcxkF4Dho3zsO5T9mpWIOvZt6o1uIR610fyo/Rc/vY3ndunUoKChAfHw8xo8fD47jMGHCBIwcORIuLma42qGRrly5YrDvNGMM+fn5FomF48pP84oZoKqmtVnC/ZvD+f021xl+3q448ctb2LTnHL5esx93swpQplRpW5zt/r0cXOdWDfHWSz3Ru1NT3p+CryvEIsCOK79qn6GTg2KuvFCujTZFvudsjuMwYMAAXLp0CZGRkU+0DV4XzED53K5tA13RNtAVdwvKcPVBEYoVanAcB2eZGOH1nOHjTP2n+MhJJsZTDT3QqYE7bj6UI6tIgRKlGjKJCK72EjTzcYYdjfThpWAPB0zpXB/FZSqcSS/AQ7kSpSoNXOzEaODhgIh6zhDV8pkcW/hkuLq6YtiwYSgpKcE333yD33//HQsWLMCbb76JN954wyIxGNO6LRZbdo7cilPFjJV/gVeM3+a4fwcagQplPnKwl2JcdAeMHRSFxKQ0HEy8gezcIsgkYvh6uSC6RwsE+3taO0yig4grv8Q1Y+U/VDX/HncVrbliC7Tq8j1nt2vXDqdPn0ZUVNQTrW/RgjkvLw+TJ0/G5cuXwXEcVq5cic6dOxu9vr+rHfxdqSXS1ohEHEK9nRDq7VT9woRXnOwk6NbYOl+QfC+otm7dilWrVuHGjRsYO3YsTp06BV9fX8jlcoSHh1usYK7Nvss1zdkcV96STGwLx3GIimiAqIgG1g6FmKiiOLbGZWT4nrNPnjyJdevWoWHDhnByctJezt3YGYQsWjBPmzYN/fv3x+bNm6FQKCCXyy25e0KIjeA4jten9wDgt99+w4wZM9CtW7dKjzs6OmLFihVWisq8KGcTQoxhCzn7zz//rNH6FmtBz8/Px+HDhzFp0iQAgEwmg7u7u6V2TwixMXweQKJWq7Fw4UJtsaxQKBAXF4ewfy8S8Mwzz1g2oFpAOZsQYgo+52yg/GxcWloa9u/fj+DgYDg6OkKjMXIaNliwYE5NTYWPjw8mTJiAtm3bYvLkySguLq60TFZWFiIjI7W3uLg4S4VHCKmhuLg47bGblZVV4+2JONNulpKQkABPT0+0atUK3bt3x549exASEoJdu3YZNdK6tnz33XfIzc012/YoZxMifObM23zN2RU++eQTfPXVV5g7dy4AQKlUai88ZQyLFcwqlQpnz57FK6+8gnPnzsHJyQnz5s2rtIyPj4/20oWJiYmIjY21VHiEkBqKjY3VHrs+Pj412lbFiGtTbpby+eef48yZM8jMzMTixYsxaNAg/PDDD/j9998tMn2bPvfv30dUVBRiYmKwe/fuKpc6NhXlbEKEz1x5m885u8Lvv/+OrVu3wsmpfDxVQEAACgsLjV7fYgVzUFAQgoKC0LFjRwDAsGHDcPbsWUvtnhBiY/h6ek8mkyE0NBRA+ajrJk2aYNCgQZYLQI/PP/8cycnJmDRpElavXo0mTZrggw8+QEpKyhNtj3I2IcQUfM3ZFWQyGTiO006H+PgZs+pYbNCfn58f6tevj2vXrqFZs2bYt2+fUVdWIYTUQVY6ZWeMBw8eYNGiRdr7eXl5le6/9dZb1ggLQPnAGz8/P/j5+UEikSA3NxfDhg1Dnz59MH/+fJO2RTmbEGI0HufsCjExMZg6dSry8vKwfPlyrFy5ElOmTDF6fYvOkvHdd99h9OjRUCgUCAkJwapVqyy5e0KIDeHAz+w7ZcqUSqfxHr9vLUuWLMHatWvh7e2NyZMnY8GCBZBKpdBoNGjSpInJBTNAOZsQYjy+5uwK77zzDvbu3QtXV1dcv34dn376Kfr06WP0+hYtmNu0aYPExERL7pIQYoPK+8NZOwrdPv74Y2uHoNPDhw/xv//9r8q8zCKRCNu3b3+ibVLOJoQYg885+1EtW7ZESUkJOI5Dy5YtTVqX7xdmIYQQYoRPPvlE70VMKqa7I4SQuurnn39Ghw4d8L///Q+bN29Gp06dsHLlSqPX5/2lsQkhdZMttFYQQggpx/ecvWDBApw7dw5eXl4AgJycHDz11FOYOHGiUetTwUwI4SXOGsOoCSGEPBG+52wvLy+4uLho77u4uGiLZ2NQwUwI4R0+94d7dEYMXaw5SwYhhFiDLeTs0NBQdOzYEYMHDwbHcdiyZQtatWpl9HaoYCaE8I+V5uk0RsWMGNeuXcPp06cRHR0NANi2bRs6dOhgzdAIIcQ6bCBnN27cGI0bN9Y+PnjwYJO2QwUzIYSXauNKULt378a0adOgVqsxefJkvP/++zqX++233zBs2DCcPn0akZGRlZ6rmCWjW7duOHv2rPYU35w5c/Dcc8+ZPWZCCLEFfM/ZNUUFMyGEd2rj9J5arcZrr72GvXv3IigoCFFRUYiOjq5yMY7CwkIsWbJEe4U7fe7fvw+ZTKa9L5PJcP/+ffMGTQghNoDPOXvQoEEG+1dv3brVqHhoWjlCCC+Z+zKrp06dQmhoKEJCQiCTyTBixAhs2bKlynIfffQR3nvvPdjb2xvc3tixY9GhQwfMmTMHc+bMQceOHTFu3LgnfbmEEGLT+Jqz33nnHbz99tto1KgRHBwcMGXKFEyZMgXOzs6VumhUh1qYCSE8xEFk5qtGZWRkoH79+tr7QUFBOHnyZKVlzp49i7S0NDz33HNYsGCBwe3NmjULzz77LI4cOQIAWLVqFdq2bWvWmAkhxDbwN2d3794dAPD2229XuhDToEGDqnTfMIQKZkII73AwfQBJVlZWpeQXGxuL2NhYo9fXaDR46623sHr1aqPXkcvlcHV1xYQJE5CVlYXU1FQ0atTIlLAJIcTm2ULOLi4uxs2bNxESEgIASE1NRXFxsdH7o4KZEMI/nOn94Xx8fAxexjkwMBBpaWna++np6QgMDNTeLywsxOXLl9GjRw8AwL179xAdHY2tW7fqbIX45JNPkJiYiGvXrmHChAlQKpUYM2YMjh07ZlrghBBi62wgZy9evBg9evRASEgIGGO4ffs24uLijI6XCmZCCC+Ze8R1VFQUkpOTkZqaisDAQCQkJGDDhg3a593c3JCdna2936NHD3z99dd6T9n9/vvvOHfuHNq1awcACAgI0E5fRAghdQ3fc3b//v2RnJyMq1evAgCaN28OOzs7o+OhQX+EEN6pOL1nzgEkEokES5cuRb9+/RAWFoaYmBhERERg9uzZRo+SfpRMJgPHcdrR16ac2iOEECGxhZzdvn17rFixAg0aNEDr1q1NKpYBamEmhPBUbczpOWDAAAwYMKDSY59++qnOZQ8ePGhwWzExMZg6dSry8vKwfPlyrFy5ElOmTDFXqIQQYlP4nrM3btyIVatWISoqCpGRkZgwYQL69u1r9CW9qWAmhPASX68aVeGdd97B3r174erqimvXruHTTz9Fnz59rB0WIYRYBd9zdmhoKL744gt89tln2L59OyZOnAixWIwJEyZg2rRp8PT0NLg+FcyEEN7hYBv9xfr06UNFMiGkzrOVnH3x4kWsWrUKO3fuxNChQzF69GgcPXoUvXr1wvnz5w2uSwUzIYR/OBh9msxaXFxcqsTo5uaGyMhILFy4UDt1ESGECJ4N5Oz27dvD3d0dkyZNwrx587R9mDt27GjU7EZUMBNCeInfqReYPn06goKCMGrUKDDGkJCQgJSUFLRr1w4TJ06stj8dIYQICd9z9q+//lqpIUOj0SA+Ph6jR4/G//73v2rXt4UWdEII4Z2tW7di6tSpcHFxgaurK2JjY/Hnn39i+PDhyM3NtXZ4hBBCABQUFGDu3LlYtGgR9u7dC8YYvvvuO4SEhGDTpk1Gb4damAkhvMOhdkZcm5OjoyM2bdqEYcOGAQA2b94Me3t7APw/NUkIIebE55z90ksvwcPDA507d8by5cvxxRdfgDGGP/74A23atDF6O1QwE0J4iZ+p9z/r16/HtGnT8Oqrr4LjOHTq1Anr1q1DSUkJli5dau3wCCHEovias2/evIlLly4BACZPngx/f3/cuXNH28BhLCqYCSG8xNPGCq2QkBBs27ZN53NdunSxcDSEEGJdfM3ZUqlU+2+xWIygoCCTi2WACmZCCC9xvO/WUFpaihUrVuCff/5BaWmp9vGVK1daMSpCCLEG/ubsCxcuwNXVFQDAGENJSQlcXV3BGAPHcSgoKDBqOzTojxDCOxVzeppys7SXXnoJ9+7dw59//onu3bsjPT0dLi4uVoiEEEKsi885W61Wo6CgAAUFBSgsLIRKpdL+29hiGaCCmRDCUxzHmXSztBs3buCzzz6Dk5MTxo0bhx07duDkyZMWj4MQQviA7zm7pqhgJoTwEmfizdIq+sW5u7vj8uXLyM/Px4MHD6wQCSGEWB/fc3ZNUR9mQgj/2MBVo2JjY5Gbm4vPP/8c0dHRKCoqwmeffWbtsAghxPJsIGfXFBXMhBDeqegPx1cajQaurq7w8PBAt27dcPPmTWuHRAghVsP3nG0OFn99arUabdu2xcCBAy29a0KIDeFzfziRSIT58+dbdJ/WQjmbEGIMPudsc7B4wbxkyRKEhYVZereEEBvD9/5wvXv3xtdff420tDQ8fPhQexMaytmEEGPwPWfXlEUL5vT0dOzYsQOTJ0+25G4JITaI40y7WdrGjRuxbNkydOvWDe3bt0f79u0RGRlp+UBqEeVsQoix+J6za8qifZinT5+O+fPno7CwUOfzWVlZlb5wYmNjERsba6nwCCE1EBcXh7i4OADlx3JNlPeH43dGTU1NtXYItY5yNiHCZq68bQs5u6YsVjBv374dvr6+aN++PQ4ePKhzGR8fHyQmJloqJEKIGT1aLJmjpZXvLRByuRyLFi3CnTt3EBcXh+TkZFy7dk0wfX0pZxMifObM23zP2TVlsS4Zx44dw9atW9GwYUOMGDEC+/fvx5gxYyy1e0KITeFM/s/SJkyYAJlMhr///hsAEBgYiA8//NDicdQWytmEEOPxP2fXlMUK5rlz5yI9PR23bt1CQkICevXqhXXr1llq94QQG8P3/nApKSmYOXOm9gImjo6OYIxZPpBaQjmbEGIKvufsmhL6tHmEEFIrZDIZSkpKtNMjpaSkwM7OzspREUIIqQ1WuXBJjx490KNHD2vsmhBiA2xhAMmcOXPQv39/pKWlYfTo0Th27BhWr15t7bBqBeVsQoghtpCza4qu9EcI4R8bOGXXt29ftG/fHidOnABjDEuWLIG3t7e1wyKEEMuzgZxdU1QwE0J4ie/Jd9CgQRg1ahSio6Ph5ORk7XAIIcSq+J6za4r6MBNCeInvI67feecdHDlyBOHh4Rg2bBg2b96M0tJSi8dBCCF8wPecXVPUwkwI4R0OgIjn+bR79+7o3r071Go19u/fj+XLl2PixIkoKCiwdmiEEGJRtpCza4oKZkIIL9lCC0RJSQm2bduGjRs34uzZsxg3bpy1QyKEEKuwhZxdE1QwE0J4ie/94WJiYnDq1Cn0798fr7/+Orp37w6RiHq5EULqJr7n7JqigpkQwkt8b62YNGkS4uPjIRaLAQBHjx5FfHw8li1bZuXICCHE8vies2uKCmZCCO/YQn+4fv364dy5c4iPj8emTZvQqFEjDBkyxNphEUKIxdlCzq4pKpgJITzE31HU169fR3x8POLj4+Ht7Y3hw4eDMYYDBw5YOzRCCLES/uZsc6GCmRDCPzyeBL958+bo2rUrtm/fjtDQUADA4sWLrRwVIYRYEY9ztrnQCBVCCC9xJt4s5X//+x/8/f3Rs2dPTJkyBfv27QNjzIIREEII//A1Z5sLFcyEEN4p7w/HmXSzlOeffx4JCQm4evUqevbsiW+++QYPHjzAK6+8gj179lgsDkII4Qs+52xzoYKZEMJLfG+tcHJywqhRo7Bt2zakp6ejbdu2+Oqrr6wQCSGEWB/fc3ZNUcFMCOEnG8q+Hh4eiI2Nxb59+6wbCCGEWIsN5ewnQYP+CCG8JPQR14QQIiRCz9nUwkwIIYQQQogB1MJMCOElGxwTQgghdZbQczYVzIQQXhJ47iWEEEERes6mgpkQwk9Cz76EECIkAs/ZVDATQninfBC1wLMvIYQIRF3I2VQwE0L4pw5cZpUQQgSjDuRsKpgJIbwk8NxLCCGCIvScTQUzIYSfhJ59CSFESASes2keZkIID3Em/2eM3bt3o1mzZggNDcW8efOqPL9o0SKEh4ejVatWeOaZZ3D79m1zvzBCCBEg4edsKpgJIbzEcabdqqNWq/Haa69h165dSEpKQnx8PJKSkiot07ZtWyQmJuLixYsYNmwYZs6cWUuvjhBChEXoOZsKZkII73BPcKvOqVOnEBoaipCQEMhkMowYMQJbtmyptEzPnj3h6OgIAOjUqRPS09PN9IoIIUS46kLOpoKZEMJPJmbfrKwsREZGam9xcXGVNpeRkYH69etr7wcFBSEjI0Pv7lesWIFnn33WvK+JEEKESuA5mwb9EUJ4ydQ5PX18fJCYmGiWfa9btw6JiYk4dOiQWbZHCCFCJ/ScbbEW5rS0NPTs2RPh4eGIiIjAkiVLLLVrQogNMnd/uMDAQKSlpWnvp6enIzAwsMpyf/31F7744gts3boVdnZ25nxJNoVyNiHEFELP2RYrmCUSCRYuXIikpCScOHECy5Ytq9J5mxBCKpi7P1xUVBSSk5ORmpoKhUKBhIQEREdHV1rm3LlzmDp1KrZu3QpfX18zvhrbQzmbEGIKoedsixXM/v7+aNeuHQDAxcUFYWFhBvuiEELqsFoYQSKRSLB06VL069cPYWFhiImJQUREBGbPno2tW7cCAN59910UFRXhxRdfRJs2baok57qEcjYhxGh1IGdzjDFWa1vX49atW+jWrRsuX74MV1dX7ePBwcHw8fHR3o+NjUVsbKylwyOEPIG4uDjtoI2srKwazYcZ0bodNu08YtI64wZ3N1t/OFIZ5WxChMlcebsu5GyLD/orKirC0KFD8c0331RKvIB5O4ATQizr0WIpMjLSytEQc6GcTYhwUd42nkULZqVSiaFDh2L06NEYMmSIJXdNCLEhHIwbFEJqF+VsQogx6kLOtljBzBjDpEmTEBYWhrfeestSuyWE2CiB517eo5xNCDGF0HO2xQb9HTt2DL/88gv279+PNm3aoE2bNti5c6eldk8IsTXmHnJNTEI5mxBiEoHnbIu1MHfp0gVWGF9ICLFRpk6CT8yLcjYhxBRCz9l0pT9CCC8JvT8cIYQIidBzNhXMhBBeEnjuJYQQQRF6zqaCmRDCT0LPvoQQIiQCz9lUMBNCeKd8TIjAsy8hhAhEXcjZVDATQviHE35/OEIIEYw6kLOpYCaE8JLAcy8hhAiK0HM2FcyEEH4SevYlhBAhEXjOpoKZEMJDnOD7wxFCiHAIP2dTwUwI4SWh94cjhBAhEXrOpoKZEMI7NnrlVEIIqZPqQs6mgpkQwk9Cz76EECIkAs/ZVDATQnhJ6P3hCCFESISes0XWDoAQQgghhBA+oxZmQggvCX0ACSGECInQczYVzIQQXhJ47iWEEEERes6mgpkQwj914DKrhBAiGHUgZ1PBTAjhKYFnX0IIERRh52wqmAkhvMNB+K0VhBAiFHUhZ1PBTAjhJYHnXkIIERSh52wqmAkhvCT01gpCCBESoedsKpgJIbwk9EnwCSFESISes22qYGaMITO3BLnFCog4Dh5OMvi524MT+s8aAVCoNXhYrIRcqYadWAR3RymcZGJrh0WMkCdXIquwDAqVBs72Evi72UMmscA1j+iwFoQHDwvx4GEhlCo13J0dUN/PAxIJHft8xxjAHrlfF/qoCoW8VIH0e3kolJfB2VEGf283uDrb1/6OBf75sImCuaBEic0n0/DTvht4WFQGibj8y1qp0iDAwwGv9mmCwZGBcJDZxMupU+4WlOHPq1k4cjMXACDiyhOxSsMQ4eeM58J9EVbPiX708IxGw3A8JQcrDt/CmVu5kElE4MBBzRg4AMOiAjGmcwMEeTrWWgz0ibBdKpUa2w5dxsI1+3EpOQN2Mgk4cFCpNbCTSfDq8K6YPPQp+Hm7WjtU8pjy/AyoWdXnOAASUXkep5TNP5dvZOLb9Yfw697zkIhFEHEcNIxBqVJjQNdwTBvdAx1aBNfa963QPxK8rzBXHEjBvK1JEHEc5Ap1+YNKjfb51KxifLz5Ej7efAlfDm+NoR3rWylS8qhSlRrLjtzB5XuF0GiYzuR7IbMQVx8Uw81egnd7hcDf1c7ygZIqrt8rxMtrzqKgRKU95pRqdaVl4k+kYePJdPRo7oN5L7aAndS8LYYcfSHbrCNnbmDEzFVQKNUokpcBABTK/z4/8lIFFq7Zh6/X7MOkFzpj/lvPQyy2wBkLYpChQlm7DP77+pWKAHrb+OFhfjFi3l2Fs0lpUKjUUKs1VZbZsv8S/jx2FSFBXvj9mykIqudu1hjqQs7m9cf9s/9dxlfbrqBUqfmvWNZBrlBDrlDj/YQL+H5vsgUjJLrIFWp8vCsZl+8VQqnWXSxXKFNpkFWkwOxd13HrodxyQRKdzt/Jw6gfT+FefpnBY06pZihTaXDwahZG/3QKJQaWfVKcif8R69ty4CIGvxmHh/lybbGsS6lChTKFCqu3nMCLb6/Q+QVPLIex8kLYUK5+nFIDqMx/2BMT3c8pRKfRC3H60m2UlCn1HksaxiAvVeBK6n10Gv01UtKyzB6L0HM2bwvmFQdT8MvRWyZ9EZcq1fhm5zVsSUyvxciIIWoNw4L9N3G/UAGlkdmXAShRajD3r5vIKVbUboBEr9s5ckxZdcZgofy4MpUGKQ+K8ca689BoTPi2NQZn4o1Y1clLtzDxo3UoKVMavY68VIlDicl4c97mWoyMVEelAZ7k8FUxgH7rWE9JqQL9X/ked7MLoDDy14tarUFuQQn6xC5DTl6xeQMSeM7mZcFcVKrEvC1XnqjVqkSpxgcbL0BJR7FVnE3Px528UqieIPuWKNXYfOFeLURFjPH1rutPdMyVqTQ4fycPJ1IemjUegedewXlz7q+QlxpfLFeQlyoRvzMR127dr4WoSHUYM61l+XFKTfk2iOX9sv007tx9CJWJ9Y6GMeTkF2PJ+oNmjUfoOZuXBfP/TqUZ7AtTfGUfHvz2Hh789j4UWSlVnldrGPZcpMLLGrb98wBlqqoHr7KkCH9+MhZ7v5iE3R+Pxr1/TlZZRsOAE7fzTGrhJOaRU1SGI9ez9bYyldxNxp34/8Pt9e/i/v6fqzwvV6ix4nCqWWOq6BNn7I1Yz6XkTCTf1n+KV5X9D8qubkTZ1Y3QyB9UeV6pUmNp/OHaDJHooSNdaxUUFKBH16fQ95ke6NK5Aw7s36dzOaqXLY8xhkVrD+j9kaopvg/F9d+guPYrlGlVjy2FUo24zcegNGO/GqHnbIsWzLt370azZs0QGhqKefPm6VyGMYYf/rqht6VLU1qEoos74PP85/DsMwN5R6p+eReXqakvsxVk5pciLa9U53MSO0f0+XAl+sxagadf+wrnNi7RuZyI43D0pnlbKkn1fj2dofcXP1MrkXVwBQKHfITg0QtQr9dkncuduZ2Hu3ref9OZ2hvOBrOvDTAmZwPAt+sP6j0lzFSlUD84D1nTYZA26g/lnYNVllGpNdiw4zSKS/T3eybmV13rsrOzM/46cBh79h3EL+sT8OEH7+tczlDRTWrH3xdSkZ1XpPM5plFDlX4U0saDIGv2IqT1u+lcTq1h2HrwkpkiEn7OtljBrFar8dprr2HXrl1ISkpCfHw8kpKSqix3L78UWQX6k6biQTLsAsLBiaWQuNYDU5SAqav+wrqclgcFHcUWdfluod6mBk4kgkhcPimLsqQIHvWb6lyuTKXByTv5tRUi0WPP5fs6zwwAgDzjCjiZAzK3zsPtDTMhT9OdYMUchxMpOWaJp2LOVyG3VvCdsTkbAHYfu6J/sFHxPYhcAsGJxBDZuQEaBZhGVWU5iViM05fvmPU1EMOqaxkWiUSQSMrzdkFBAVq2bKVzOXMPXyDV23PsCuSlusf8sOK7gFgK5c2dUFzbDE2h7nFdRfIybDlw0Szx1IWcbbGC+dSpUwgNDUVISAhkMhlGjBiBLVu2VFkur1gJqYGLImhKC8DZOWnvc3ZO0JQWVllOKhYhX04DyCypsEwNpYHMKX94H3s+G4/9X72CoMheepcrKqv6ZUpqV0GJ/r6nqsIclD24iYDo9xAwaCbu7vwGTEenRZVGg3wD2yG2xdicDQBFcgNnFtSlgPiRKSPFdoBaV6MIw8N8Mw9CIgYZ0/c4IyMDvbp3waABfRH9/As12hYxn3s5hXr/5kxRBCbPgjTk2fKzOrf/0pmzASDroe5WalKVxQrmjIwM1K//3xzJQUFByMjIqLRMVlYWRo4YjuIi/UlTZOcCVvbf86ysGCJ7F93L2uJPGBtW3Z/b0bMe+n60Gv0/WYfEtXMNbIfeN0sz9CcXO7jAITAcYjsnSF28IXZ0g1pe9SyAWq3B4kWLEBkZiaws809ZRCzL2JwdGRmJsjIDXSnE9pULZHVZ5QJai4NIxMthNXVaYGAg9h86iiN/n8KMaa9bOxzyL4PfkxJ7cM4B4MR24GTOgMQBUJXoXDQzMxORkZGUt43Aq+zk4+ODvTt+h9TeQe8ysnpNUXb3CphaBVVhFjiZAzixtMpyKg2Dq2PVx0ntcbGTQCbWfRCrlf+19ksdnCGxd9K5HAC42tFlcy3Nw1Gm9zmHgOZQPEwH06ihLpNDXZwHsUPVH6n2Mgk+++h9JCYmwsfHp8YxCf30nhD4+PggMTERvl7uepcROflBU5QJxtRgigJAJAMn0n3NLC+32rtyJKmquuPm0R9CLq6ucHHW3ThlzLaIeQX4uEIk0v1HFzn5gZXmgjENmFoBKOWARPelsdu3DkNiYqJZ8rbQc7bFrvQXGBiItLQ07f309HQEBgZWWc7H1R4NvZ1w/V7VbhYAILJ3hnOLZ5H1xywAHNy76h6A1LGxF6R0GSKLahvkig1nMnU+l5d+A2fWfw2RSASNWo3IMe/qXM5eIkKXEM/aDJPoEN3WHykPilCirNoPVWzvDM/2g3F7/btgahV8ek4CJ6r6o0alYejSxNtsMdnioBAhMTZnA8DQPm2wfPPfOkfccxJ7iH1aQ3GtfK5laf0eevfZsVXDGsVMTFPdEfbP5cuY+c4MiMViqFQqLFj0jc7l9NRtpBYN7tkKS9Yf1DlLBiexh6ReGyiu/QowDSRBXcFxVeshZ0c7DO/XzmwxCT1nW6xgjoqKQnJyMlJTUxEYGIiEhARs2LBB57Kv9m2CWRsvoLhM96hrp/DecArvrXdfTnZivNwn1CxxE+N5O8nQ1NcJ/9yr2ifKq1E4+n64stptMACdgt3NHxwxaHC7ACzcrX9mGbeWveHWUv8xx3FAt2be8HTW31JtEhttgRASU3L2ayO6YeX/jkNfD3aJdwQk3hF69yWTijF56FOQSS32lURQfoyJOf0zZbRr3x5/Hah+uj8Dw45ILWndLBANA72QlKJ7Cl2xVzjEXuEGt+FgJ0Wfzs3ME1AdyNkW+5hLJBIsXboU/fr1Q1hYGGJiYhARoTuBPtc2ADWZ1tpRJkH35r5PvD55cgPDfWH3hNlTIgK6N/aAjLKvxbnYS9G/Zb0n/uKzl4gxoUtDs8Vj6gT4As/TVmFKzg4J8ka78PpP/IUp4jhMjelSg2jJk6ppuuVALczW8s7YXnByeLJGCns7Kd4Y1c1s4wbqQs62aGUyYMAAXL9+HSkpKZg1a5be5eylYiwY3Qb2UtP7stpLRfhmbDu9fXtI7Wrh74wWfs56+zLrwwFwtZfihVZ+tRMYqdZb/ZvC1UFqciKzl4rQJ8IXbRq4mTcgoWdfG2BszgaAZbOGw8lB12A+wxztZXh73DNo4OfxpGGSGuA4QFKD4+cJvqaJmQzr2xatmwXCzsQzMxKxCMH+Hnh1eFfzBiTwnM3bprxB7QLxfnSYSUWzvVSEr0a2Qbcwal22Fo7j8HrXYDT2djS6aBZzgIu9BB/2aQwXOzolay0+LnZYMyUKrg5SiI38wWkvFaFDiCc+Hxph9tlNhD4JvtA0b1QPf3wba1KLl6O9FKMGRGJWbL9ajIxURyIuz8OmkoqoddmapBIxfl88Bc0a+cLeyO9OmVSMwHru2P3Dq0/0A9cQoeds3hbMADCpZ2MsGdsWHk5SOBn4MDjZieHraoeVUztiSIf6epcjliEVi/D+M43RvbEnpGJOb+Es5gCpmEOojxO+fK4pfF3Me/AS0zX2dcb/3uiM8AAX2EtF0Ddu1kEqgp1EhJEd6+P7l9pCUgsDbIU+4lqInm4TgkOrpqNZQ184Ocj0Tu3p7CCDk4MMs18egG//bxhNJckDUrFpLc0yMfTmB2I5rs72OLjiTTzfsxXsZBK9hbNMKoadTIJeUU1xYt3b8PN2NXssQs/ZvG/OG9A2EH1b+WPfP/fx495knL2Vq/1yVqk16NzEG6/0aYKuzXyoGwaPiEUcxnUIwrDWfjiU8hA7r2ShoFQFsYiDRsMgFnHo1tgT/Zr7wN+VCmU+8Xe3x8ZXO+HG/SKs/fs2tp27C/W/75lSrUE9V3tM6BqM59sFwtm+9lIIHc22KSLUH+c3/x8S/7mDb9YdwNYD5VeGFIs4KJRqNA32xdvje2Fo7zZwsDfTIFFiFhIxIGblV+5TaapeCVDElfd55mCbBY9QOdjLsOqzMZg3vRArfj+O7zceQV5BCaRSEVQqDRzspZg85Cm8HNOlVrs+Cf4jwXikffv21S6jVKlZTmEp+2ZZHFOpNRaISr+ffvrJqvu3tRjKVGqWJ1cwuULFNBrzvne29HewtRg0Gg0rLFGyrIJSVqpQGRWDMceyIW3btWfFCo1JN2P2uWvXLta0aVPWuHFjNnfu3CrPl5aWspiYGNa4cWPWoUMHlpqaWqPXIXTG/M3VajXLLZCzr79ZxsoUSgtEpZ9Qj9HaikGjqXyzRgy1SagxaDQaVlxSxu5m5bMieWm137cVMdQkb9eFnG1zJ1QkYhE8ne3wy8qfjO5nWVvi4uKsun9bi0EmFsHNQQoHqdjsp2Bt6e9gazFwHAdnewm8XexgZ8SYAnPFYO7+cGq1Gq+99hp27dqFpKQkxMfHIykpqdIyK1asgIeHB27cuIEZM2bgvffeM8trqctEIhHcXRwQ/8tKq08bJ9RjtLZiqM1T6Lb0d7C1GDiOg6O9DH7ernBysKv2+5ZytnFsrmAmhAhfxSlfc/aHO3XqFEJDQxESEgKZTIYRI0Zgy5YtlZbZsmULxo0bBwAYNmwY9u3bB8b0TFJLCCEEQN3I2bzqw3zr1i1ERkYatWxWVpbRy9YWioFioBh0x1BcXFyjbfj4eKNLJ9NeR0lJSaXXHhsbi9jYWO39jIwM1K//36DgoKAgnDx5stI2Hl1GIpHAzc0NOTk58PY23xUMhYRyNsVAMQgnhlu3bj3xNupCzuZVwZydnW3tEAghPLB7925rh0CMQDmbEALUjZxNXTIIIXVCYGAg0tLStPfT09MRGBiodxmVSoX8/Hx4eXlZNE5CCCH8y9lUMBNC6oSoqCgkJycjNTUVCoUCCQkJiI6OrrRMdHQ01qxZAwDYvHkzevXqRXMEE0KIFfAtZ9tcwbx79240a9YMoaGhmDdvnlViSEtLQ8+ePREeHo6IiAgsWbLEKnGo1Wq0bdsWAwcOtMr+ASAvLw/Dhg1D8+bNERYWhuPHj1s8hsWLFyMiIgItWrTAyJEjUVpaWuv7nDhxInx9fdGiRQvtYw8fPkSfPn3QpEkT9OnTB7m5uRaP4d1330Xz5s3RqlUrvPDCC8jLy7N4DBUWLlwIjuN4c9peIpFg6dKl6NevH8LCwhATE4OIiAjMnj0bW7duBQBMmjQJOTk5CA0NxaJFi6yWY4TG2nmbLzkbsH7eppxNOZty9hOqtQnraoFKpWIhISEsJSWFlZWVsVatWrF//vnH4nFkZmayM2fOMMYYKygoYE2aNLFKHAsXLmQjR45kzz33nMX3XWHs2LFs+fLljDHGysrKWG5urkX3n56ezho2bMjkcjljjLEXX3yRrVq1qtb3e+jQIXbmzBkWERGhfezdd9/VzhM5d+5cNnPmTIvH8OeffzKlsnyu25kzZ1olBsYYu3PnDuvbty9r0KABy8rKqtUYCL/xIW/zJWczZv28TTmbcjbl7CdjUy3MxkwxYgn+/v5o164dAMDFxQVhYWHIyMiwaAzp6enYsWMHJk+ebNH9Pio/Px+HDx/GpEmTAAAymQzu7u4Wj0OlUqGkpAQqlQpyuRwBAQG1vs9u3brB09Oz0mOPTm8zbtw4/PHHHxaPoW/fvpBIysfydurUCenp6RaPAQBmzJiB+fPnU3cGwou8zYecDVg/b1POppxNOfvJ2VTBrGuKEWskvUfdunUL586dQ8eOHS263+nTp2P+/PkQiaz3FqampsLHxwcTJkxA27ZtMXny5BpPJ2aqwMBAvPPOO2jQoAH8/f3h5uaGvn37WjSGCvfv34e/vz8AwM/PD/fv37dKHBVWrlyJZ5991uL73bJlCwIDA9G6dWuL75vwD9/ytrVyNmD9vE05uzLK2eUoZxvHpgpmvikqKsLQoUPxzTffwNXV1WL73b59O3x9fdG+fXuL7VMXlUqFs2fP4pVXXsG5c+fg5ORk8f6Jubm52LJlC1JTU5GZmYni4mKsW7fOojHownGcVX+pf/HFF5BIJBg9erRF9yuXy/Hll1/i008/teh+CTGGtXI2wI+8TTlbP8rZlLOrY1MFszFTjFiKUqnE0KFDMXr0aAwZMsSi+z527Bi2bt2Khg0bYsSIEdi/fz/GjBlj0RiA8paioKAgbUvNsGHDcPbsWYvG8Ndff6FRo0bw8fGBVCrFkCFD8Pfff1s0hgr16tXD3bt3AQB3796Fr6+vVeJYvXo1tm/fjvXr11v8CyAlJQWpqalo3bo1GjZsiPT0dLRr1w737t2zaByEP/iSt62ZswF+5G3K2ZVRzqacbQqbKpiNmWLEEhhjmDRpEsLCwvDWW29ZfP9z585Feno6bt26hYSEBPTq1csqv9D9/PxQv359XLt2DQCwb98+hIeHWzSGBg0a4MSJE5DL5WCMYd++fQgLC7NoDBUend5mzZo1GDx4sMVj2L17N+bPn4+tW7fC0dHR4vtv2bIlHjx4gFu3buHWrVsICgrC2bNn4efnZ/FYCD/wIW9bO2cD/MjblLMro5xNOdsk1h1zaLodO3awJk2asJCQEPb5559bJYYjR44wAKxly5asdevWrHXr1mzHjh1WieXAgQNWnSXj3LlzrH379qxly5Zs8ODB7OHDhxaPYfbs2axZs2YsIiKCjRkzhpWWltb6PkeMGMH8/PyYRCJhgYGB7Oeff2bZ2dmsV69eLDQ0lD3zzDMsJyfH4jE0btyYBQUFaT+XU6dOtXgMjwoODqYR18TqeZtPOZsx6+ZtytmUsylnPxmOMcasXbQTQgghhBDCVzbVJYMQQgghhBBLo4KZEEIIIYQQA6hgJoQQQgghxAAqmAkhhBBCCDGACmZCCCGEEEIMoIKZEEIIqcNu3boFBwcHtGnTxizbKykpQZs2bSCTyZCdnW2WbRJibVQwE0IIIXVc48aNcf78ebNsy8HBAefPn0dAQIBZtkcIH1DBTAghhAjU6dOn0apVK5SWlqK4uBgRERG4fPmywXVu3bqFFi1aaO9//fXXmDNnDgCgR48emDFjBiIjIxEWFobTp09jyJAhaNKkCT788MPafCmEWJXE2gEQQgghpHZERUUhOjoaH374IUpKSjBmzJhKxfCTkMlkSExMxJIlSzB48GCcOXMGnp6eaNy4MWbMmAEvLy8zRU8If1DBTAghhAjY7NmzERUVBXt7e3z77bc13l50dDQAoGXLloiIiIC/vz8AICQkBGlpaVQwE0GiLhmEEEKIgOXk5KCoqAiFhYUoLS01ah3GmPbfSqWy0nN2dnYAAJFIpP13xX2VSmWGiAnhHyqYCSGEEAGbOnUqPvvsM4wePRrvvfeeUevcvn0bWVlZ0Gg0OHz4MNRqdS1HSQi/UcFMCCGECNTatWshlUoxatQovP/++zh9+jT2799f7XpeXl4YO3YsIiMj0aJFC6xduxYpKSkWiJgQfuLYo+ddCCGEEFKn3Lp1CwMHDtTOnvH4/SfVsGFDJCYmwtvb2xxhEmJV1MJMCCGE1GFisRj5+flmv3CJUqmESERlBhEGamEmhBBCCCHEAPrpRwghhBBCiAFUMBNCCCGEEGIAFcyEEEIIIYQYQAUzIYQQQgghBlDBTAghhBBCiAFUMBNCCCGEEGLA/wMNPMSWWLR2OgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "from ahs_utils import plot_avg_density_2D\n", + "\n", + "# Compare results side-by-side\n", + "fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(12,5))\n", + "\n", + "# plot density of all batches that ran in parallel with geometry and averaged values of single batch\n", + "\n", + "plot_avg_density_2D(qpu_density, parallel_register, batch_mapping=batch_mapping, custom_axes = ax1);\n", + "ax1.set_title(\"Averages of Densities across parallelized batches\");\n", + "\n", + "# plot density of simulator result\n", + "plot_avg_density_2D(sim_density, register, custom_axes = ax2);\n", + "ax2.set_title(\"Simulator Result\");\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "9c1e79d8-c9ff-4d5d-8b4f-3aa0e0b7d7cb", + "metadata": {}, + "source": [ + "As we can see from the results, the simulated single batch result and the results from the batches running in parallel line up with what we expect for the checkerboard phase." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5974573a-2a03-46bc-aad9-9a39fefb906a", + "metadata": {}, + "outputs": [], + "source": [ + "print(\"Task Summary\")\n", + "print(tracker.quantum_tasks_statistics())\n", + "print('Note: Charges shown are estimates based on your Amazon Braket simulator and quantum processing unit (QPU) task usage. Estimated charges shown may differ from your actual charges. Estimated charges do not factor in any discounts or credits, and you may experience additional charges based on your use of other services such as Amazon Elastic Compute Cloud (Amazon EC2).')\n", + "print(f\"Estimated cost to run this example: {tracker.qpu_tasks_cost() + tracker.simulator_tasks_cost():.2f} USD\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + }, + "varInspector": { + "cols": { + "lenName": 16, + "lenType": 16, + "lenVar": 40 + }, + "kernels_config": { + "python": { + "delete_cmd_postfix": "", + "delete_cmd_prefix": "del ", + "library": "var_list.py", + "varRefreshCmd": "print(var_dic_list())" + }, + "r": { + "delete_cmd_postfix": ") ", + "delete_cmd_prefix": "rm(", + "library": "var_list.r", + "varRefreshCmd": "cat(var_dic_list()) " + } + }, + "types_to_exclude": [ + "module", + "function", + "builtin_function_or_method", + "instance", + "_Feature" + ], + "window_display": false + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/modules/1_Continue_Exploring/A_qtm_hw/analog_hamiltonian_simulation/04_Maximum_Independent_Sets_with_Analog_Hamiltonian_Simulation.ipynb b/modules/1_Continue_Exploring/A_qtm_hw/analog_hamiltonian_simulation/04_Maximum_Independent_Sets_with_Analog_Hamiltonian_Simulation.ipynb new file mode 100644 index 000000000..3ccb95418 --- /dev/null +++ b/modules/1_Continue_Exploring/A_qtm_hw/analog_hamiltonian_simulation/04_Maximum_Independent_Sets_with_Analog_Hamiltonian_Simulation.ipynb @@ -0,0 +1,578 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Maximum Independent Sets with Analog Hamiltonian Simulation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Introduction to the maximum independent set problem" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this notebook, we'll demonstrate how to set up a unit disk graph and solve for its maximum independent set using the Amazon Braket analog Hamiltonian simulation (AHS) local simulator. This code can then be generalized to run on the actual AHS device, QuEra's Aquila.\n", + "\n", + "Finding a maximum indepenent set (MIS) is a common problem in graph theory with many real-life applications. What is an \"independent set\", let alone a \"maximum\" one? Consider a graph with vertices $V$ and edges $E$. An independent set is any subset $V_{is}$ of $V$ such that no pair of vertices in $V_{is}$ are connected by an edge in $E$. The *maximum* independent set is the largest such subset. Let's make this a little more concrete with a visual example." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "![Raw graph](py_graph.png)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can select vertices to be part of the maximum independent set:" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "![MIS graph](mis_graph.png)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this example, we see that the vertices in the MIS (the red ones) are not connected by any edge. We can also see there is no way to add another vertex to the set without it being connected to another vertex already present. We can also determine that no larger independent set can be found through brute-force enumeration of all possible independent sets (not shown)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finding maximum independent sets is a problem with many applications. Consider, for example, a business owner who wants to put branches of their chain store on as many street corners as possible so that potential customers never have to walk very far to find a location. However, the owner doesn't want to have multiple branches at the same intersection — this is inefficient. Maximizing the number of branches in a city, given its particular street grid, while avoiding opening branches which are too close together is an example of the MIS problem. There are many other applications, including to \"knapsack packing\" style problems, routing, and others." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Unit disk graphs" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A unit disk graph is a graph in which, if and only if any two vertices are within a unit disk radius of each other, they are connected. This type of graph is very well suited for AHS devices because it can be simulated with no overhead — the number of atoms needed in the trap corresponds exactly to the total number of vertices in the graph. The phenomenon of Rydberg blockade enforces the condition that vertices connected by an edge cannot both be in the independent set." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "vscode": { + "languageId": "python" + } + }, + "outputs": [], + "source": [ + "# necessary imports\n", + "import networkx as nx\n", + "\n", + "from braket.ahs.hamiltonian import Hamiltonian\n", + "from braket.ahs.atom_arrangement import AtomArrangement\n", + "from braket.ahs.analog_hamiltonian_simulation import AnalogHamiltonianSimulation\n", + "\n", + "from braket.timings.time_series import TimeSeries\n", + "from braket.ahs.driving_field import DrivingField\n", + "from braket.ahs.shifting_field import ShiftingField\n", + "from braket.ahs.field import Field\n", + "from braket.devices import LocalSimulator\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import time\n", + "import numpy as np\n", + "\n", + "from scipy import optimize" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "vscode": { + "languageId": "python" + } + }, + "outputs": [], + "source": [ + "# constants\n", + "atoms_w = 3\n", + "atoms_l = 4\n", + "blockade_radius = 7.5\n", + "np.random.seed(92)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This function generates both the `AtomArrangement`, which will be passed to the simualtor or AHS device, and the graph it corresponds to. We set up the atoms in a square grid, such that nearest- (horizontal or vertical neighbors) and next-nearest-neighbors (diagonal neighbors) are within the unit disk range. In the graph this means the next-nearest-neighbors are connected by an edge. We perform a random dropout on this square grid — removing some of the atoms — to generate a more interesting graph." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "vscode": { + "languageId": "python" + } + }, + "outputs": [], + "source": [ + "def generate_unit_disk(atoms_l: int, atoms_w: int, scale=4.0*1e-6, dropout=0.45):\n", + " atom_list = []\n", + " edge_dict = {}\n", + " atom_to_edge = {}\n", + " for ii in range(atoms_l):\n", + " for jj in range(atoms_w):\n", + " atom_list.append((ii*scale, jj*scale))\n", + " atom_to_edge[(ii*scale, jj*scale)] = ii*atoms_w + jj\n", + " edge_dict[ii*atoms_w + jj] = []\n", + " if jj < atoms_w - 1:\n", + " edge_dict[ii*atoms_w + jj].append(ii*atoms_w + jj + 1)\n", + " if ii < atoms_l - 1:\n", + " edge_dict[ii*atoms_w + jj].append((ii+1)*atoms_w + jj)\n", + " if ii < atoms_l - 1 and jj < atoms_w - 1:\n", + " # nearest neighbor\n", + " edge_dict[ii*atoms_w + jj].append((ii+1)*atoms_w + jj + 1)\n", + " if jj > 0 and ii < atoms_l - 1:\n", + " # nearest neighbor\n", + " edge_dict[ii*atoms_w + jj].append((ii+1)*atoms_w + jj - 1)\n", + "\n", + " graph = nx.from_dict_of_lists(edge_dict)\n", + " \n", + " # perform dropout\n", + " new_len = int(np.round(len(atom_list) * (1 - dropout)))\n", + " atom_arr = np.empty(len(atom_list), dtype=object)\n", + " atom_arr[:] = atom_list\n", + " remaining_atom_list = np.random.choice(atom_arr, new_len, replace=False)\n", + " \n", + " dropped_edge_dict = {}\n", + " atoms = AtomArrangement()\n", + " for atom in remaining_atom_list:\n", + " atoms.add(atom)\n", + " graph.remove_nodes_from([atom_to_edge[atom] for atom in set(atom_list) - set(list(remaining_atom_list))])\n", + "\n", + " return atoms, graph" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "vscode": { + "languageId": "python" + } + }, + "outputs": [], + "source": [ + "atoms, graph = generate_unit_disk(atoms_l, atoms_w)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's plot the graph:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "vscode": { + "languageId": "python" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAADnCAYAAAC9roUQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA3mUlEQVR4nO3dZ1gUV9sH8P9SFGygNHtFRaWJFEss2IgaSxQVS2IBjbEbW4yxl7TH2IIxr4JYaIo9YkXBgor0XYImiCgoKBaasLDsnvdDHnxEipTdmS3377r4EJg555bD3Dk7Z849AsYYAyGEEE5o8R0AIYRoEkq6hBDCIUq6hBDCIUq6hBDCIUq6hBDCIUq6hBDCIUq6hBDCIUq6hBDCIUq6hBDCIUq6hBDCIUq6hBDCIUq6hBDCIUq6hBDCIUq6hBDCIUq6hBDCIR2+AyBEFb3MK0RQVBruZ+QgR1yMRno6sGjaCON7tIRRg7p8h6fxlHl8BFTEnJCqi0vNgmdoEsL+zgQAFBbL3v1MT0cLDMCAziaY298cNq0M+QlSg6nC+FDSJaSKjtxJwZbg+xAXS1HZVSMQAHo62lg93AJTe7blLD5NpyrjQ0mXkCr494JORIFE9vGD/0tfVwurh3ehxMsBVRofWkgj5CPiUrOwJfh+tS5oACiQyLAl+D7i07IUExgBoHrjQwtphHyEZ2gSxMXSMt/P8P0Whc8eQKClDQDQbmiEFrP/KHWMuFiKPaFJ2DvVnpNYNVFF41Oc9RyvLu1B0dP7gI4u6nfug8aDZ78bL4Cf8aGkS0glXuYVIuzvzArvETYZOgcNbVwqPJ8x4NqDTLzKK+R91VwdVTY+ry7tgXY9Q7RccBgy8Vs8D/weudHn0Mh+1Ltj+Bgfur1ASCWCotJq3YYAQFB07dshZVU2PsXZz1G/yycQ6NSBdoPG0G/XA5KXT8ocx/X4UNIlpBL3M3JKPXb0oazQg0jdORkZh5dD/Di+3GPExTLcT89VVIgarbLxaWQ/Cm//ug6ZRIzi3JcoSI6Efju7MsdxPT50e4GQSuSIiyv8WWPnGdA1agWBti7eJl7Hi+Ob0GzGLug2blbmWN9jJ7DDrbsiQ9VIJuPWoF5Hp3J/ptfKCnmxF5H66wSAyVDfchD0O/Uq99gcsUSRYZZCM11CKtFIr+J5Sd3mnaFVtx4EOrpoYDUIdVt0QcHDyHKPnTJ+LBhj9CXnr8njPy/3982YDM+PrkW9zr3ReulxtFzkB5k4D1mhByoYZ93q/3HUECVdQiph0bQR6upU8TIRCACUXdHR09GCRbOG8g2MAKh4fGQFuZDmZKKh3WcQ6OhCW78RGlgPLvd/ilyPDyVdQirh2qNlud+XifNQkBwFVlwEJpMiL+EaClNF5d4zZABc7cpvh9ROReOjXc8AOgZmyI0JBpNJIRPnIU8YAl3TdmWO5Xp86J4uIZUwql8H7ermI7GoDgRa/5ujMJkUWdePQPI6DRBoQdeoJUzGfg9do9IXr0AAOHc2ocfFFKS+tgzGkhdIY01KjQ8AmIxdjddX/g85d4IALW3otbZCk0GzSh3Dx/jQNmBCKvDo0SPMnj0bzyV6KPzkaxRKq3+p6OtqI3B2T1i3NJR/gBru+vXr8PDwQMeeg/GwzUiIK3nKpCJ8jA/dXiDkA1KpFLt27YKDgwMGDx6M6CsnseazrtDXrd7l8u/efgtKuHKWk5ODuXPnYvLkyfj5559x7tAefD+ii8qMD91eIOQ9iYmJcHd3h7a2Nm7duoXOnTsDwLuiKFuC70MskZazXPY/AgCsuAifGOZgas9hCo9ZkwQHB2POnDkYOnQoRCIRDA0NAZQenwJJMf4dhfJRlTFClIBEIsHPP/+M7du3Y+PGjZgzZw60tMrOnOLTsvD1b6eQjiaoo6tb6iNtSb1W584mGNlBDzNGD8TZs2fh5FT+c6Sk6l6+fIklS5bg1q1b2LdvHwYNGlTucfFpWZiw3gvFpp2ho61d4fjMHWDO2ycQmukSjRcVFYWZM2eiefPmiI6ORuvWrSs8totZfSQfXIWT568gLkcP99NzkSOWoJGeLiyaNYSr3f/eTPDHH39gwoQJiIqKgrGxMVf/HLXCGMPRo0exePFiTJo0CUKhEPXr16/weN3cdOQEb0NMYhJOxaVXOj68YYRoqPz8fLZixQpmamrKDh06xGQy2UfPOX36NOvTp0+V+1i2bBlzcXFhxcXFtQlVIz19+pSNGjWKde3ald2+fbtK5yxbtox9++23Co6sdmghjWik69evw8bGBikpKYiPj8cXX3wBgaDi+4AlvLy8MHPmzCr388MPPyA/Px+bN2+uTbgahTGG/fv3w8bGBra2toiOjkbPnj0/ep5EIsHhw4cxY8YMDqKsBb6zPiFcys7OZl9//TVr3rw5O3nyZLXOffbsGTM0NGS5ubnVPq9Zs2bswoUL1TpPEz18+JANHDiQ2dvbs7i4uGqde+LECda3b18FRSY/NNMlGiM4OBiWlpYoKiqCSCTCmDFjqnX+4cOHMXbsWDRo0KBa5zVr1gx+fn6YNm0anjwpW1qQ/PuY3vbt2+Ho6Ihhw4bh9u3bsLa2rlYb3t7e1foUwhu+sz4hipaZmcmmTp3K2rVrxy5fvlyjNmQyGevUqRO7detWjeP48ccfmZOTEyssLKxxG+pIKBQyJycn1r9/f/bPP//UqI2nT58yQ0NDlpeXJ+fo5I9mukRtMcYQGBgIKysrGBsbQygUYvDgwTVqKzw8HAKBAL16lV8asCpWrFgBMzMzLF26tMZtqJOioiJs2LABzs7OmDFjBq5evQpzc/MatXXo0CG4urpW+mSDsqBHxohaevbsGb7++mskJSXh5MmTVVqIqYyXlxfc3d2rtNhWEYFAgIMHD8Le3h4BAQFwc3OrVUyq7N69e5g5cybatGmDmJgYtGxZ84IzjDF4e3vj0KFDcoxQgfieahMiTzKZjO3bt48ZGxuzNWvWMLFYXOs2c3JymKGhIUtPT5dDhIzFxMQwY2NjlpCQIJf2VMnbt2/Z0qVLmZmZGfPz86vSY3ofc/36ddalSxe5tMUFmukStZGcnIxZs2YhOzsbISEh1V6IqcjRo0fRv39/NG3aVC7t2dra4qeffsK4ceMQERGBhg01o9ZuaGgoPDw84OjoCKFQCBMTE7m0K49PIZziO+sTUlvFxcXs119/ZUZGRuznn39mEolEru337t2bnT59Wq5tMsbYzJkz2cSJE1VmhlZTWVlZbPbs2axly5bszJkzcm07OzubGRgYsOfPn8u1XUWihTSi0kQiEfr06YPTp0/j9u3bWL58OXR05PcBLjExEY8ePcLw4cPl1maJ3377DQ8ePMBvv/0m97aVxdmzZ2FpaQmBQACRSISRI0fKtf3AwEAMHDgQpqamcm1XofjO+oTURGFhIVu/fj0zNjZme/fuZVKpVCH9LF++nK1cuVIhbTPGWFJSEjMxManyNldV8eLFCzZp0iTWoUMHdvXqVYX107NnT/bnn38qrH1FoKRLVE5ERASztLRkI0aMYKmpqQrrp6ioiJmZmbH79+8rrA/GGDt16hRr1aoVe/HihUL74YJMJmO+vr7MzMyMLVu2jL19+1ZhfSUkJLDmzZvL/XaSotFCGlEZ+fn5WLt2LQ4fPozt27dj0qRJCl08OXfuHDp27Piupq6ijB49GuHh4ZgyZQrOnz8PbW1thfanKGlpafj666+RkpKCM2fOwNHRUaH9eXl5Ydq0aXK9ncQFuqdLVEJoaCisra3x9OlTiEQiTJ48WeGr1VxuK92yZQuKioqwceNGTvqTJ5lMhj/++APdu3eHg4MDoqKiFJ5wi4qKcOTIEeUvblMevqfahFSmZOW7RYsWCnmCoCI1LW5TG+np6ax58+bs/PnznPVZW//88w8bMGAAc3R0ZEKhkLN+jx8/zvr168dZf/JEM12itEpWvgEgISEBo0aN4qzvQ4cOYdy4cdUublMbTZs2hb+/P6ZPn47Hjx9z1m9NFBcX4z//+Q969uyJUaNGITw8/N1YcUFlituUh++sT8iHuFr5rkhJcZvw8HDO+2aMsV9++YU5ODjIZTedIsTFxTF7e3s2cOBA9vDhQ877T0tLY40bN1aJ4jbloZkuURqMMfj5+cHKygrNmzdHfHw8nJ2dOY/j1q1b0NLSqnW9hppaunQpWrZsiW+++YaX/itSWFiIdevWYdCgQfjqq69w5coVtG/fnvM4VKm4TXlUa9mPqC2uV74rw/e2UoFAgAMHDsDe3h6+vr6YMmUKL3G8786dO3B3d4e5uTliY2PRokULXuJg/y1uc+TIEV76lwu+p9pEs0mlUrZ3715mbGzM1q9fz3ut2ZycHGZgYMAyMjJ4jYMxxmJjY5mxsTETiUS8xZCXl8eWLFnCmjZtygICAnjfshwWFsa6du3Kexy1QTNdwpukpCTMmjUL+fn5uHbtGqcLMRUJDAyEs7MzzMzM+A4FNjY2+OWXXzBu3Djcu3eP88I4ISEhmDVrFvr06QOhUKgUbzTm+1OIXPCd9YnmkUgk7JdffmFGRkZs27ZtSvWm3F69erGzZ8/yHUYpHh4ebPz48ZzN7t68ecM8PDxYq1at2Llz5zjpsypKituo+s49WkgjnIqPj0evXr0QHByMu3fv4ptvvlGaHViJiYlISUnBp59+yncopezevRtJSUnYtWuXwvs6ffo0LC0toaurC5FIpJBCPzUVEBCAQYMGya0kJG/4zvpEM4jFYrZ27VpmbGzM9u3bp5T35JYuXcq+/fZbvsMo18OHD5mJiUmt3tFWmYyMDDZhwgTWsWNHFhYWppA+asvR0VGpZt41RTNdonB37tyBnZ0dYmJiEBsbCw8PD6W7JyeRSHD48GGl3Vbavn17eHl5YeLEiXjx4oXc2mWM4ciRI7C2tkbbtm0RFxeHfv36ya19eRGJREhLS8PQoUP5DqXWaCGNKMzbt2+xZs0a+Pn5YefOnZgwYYLSJdsSf/75Jzp37oxOnTrxHUqFRo4cifDwcEyePBkXL16s9W2ZJ0+eYM6cOXj69CnOnTsHe3t7OUUqf97e3pg+fbrKFbcpD810iUKEhITAysoKL168gEgkwsSJE5U24QKqs61006ZNkMlkWL9+fY3bkMlk+P3339GjRw/07t0bkZGRSp1wVbq4TXn4vr9B1Mv7K9+qUlz66dOnzNDQUGW2lWZkZLAWLVrU6P7mgwcPWN++fVmvXr1U5sWYQUFBrH///nyHITc00yVy8+HK94gRI/gOqUpUbVupmZkZAgICMGPGDKSkpFTpnOLiYvz000/o3bs3XF1dcePGDXTt2lWxgcqJqnwKqTK+sz5RfSUr3+bm5iw0NJTvcKpFJpOxjh07quTrcrZt28Z69OjBCgoKKj0uNjaW2dnZscGDB7Pk5GSOopOPkuI2inwDBddopktqjH2w8h0fH4/+/fvzHVa13Lx5Ezo6OnBycuI7lGpbsmQJ2rZti8WLF5f7c7FYjO+//x5DhgzB/PnzcenSJbRr147bIGvp4MGDGD9+POrVq8d3KHKj+kuBhBclK99paWlKv/JdGVXeVioQCODt7Q17e3scPnwYX3zxxbufhYeHw93dHV26dEFcXByaNWvGY6Q1I5PJ4O3tDT8/P75DkS++p9pEtUilUubp6cmMjY3Zpk2beC9QUxsl20qfP3/Odyi1Eh8fz4yNjVl8fDzLzc1lCxcuZM2aNWPHjh1Tyk0oVRUaGsq6deum0v+G8tBMl1TZ33//DQ8PD0gkEoSFhanMQkxFAgMDMXDgQJiamvIdSq1YWVlh27ZtGD58OLS0tODs7AyhUAgjIyO+Q6sVVf4UUhm6p0s+6v2V73HjxuHmzZsqn3CB/13Uqu7Nmze4du0asrKy0Lp1axw4cEDlE252djbOnDmDqVOn8h2K3FHSJZWKi4uDk5MTrly5gnv37mHRokVKU6CmNhISEpCamgoXFxe+Q6mVEydOwNLSEg0aNEBycjLy8/OxY8cOvsOqtYCAAAwePFj1i9uUh+/7G0Q5FRQUsNWrVzNjY2Pm5eWldvfVvvnmG7Zq1Sq+w6ix9PR0Nm7cONa5c2d248aNd99PTk5mpqam7ObNmzxGV3sODg4sODiY7zAUgma6pIzw8HB0794dCQkJiIuLw8yZM9XqvpoqbytljOHgwYOwtrZGp06dEBsbi08++eTdz9u1awdvb2+4ubnJtTAOl4RCIZ49e6YWxW3KQwtp5J28vDysXr0ax44dw65duzBu3Di1SrYl/vzzT1hYWKBjx458h1ItKSkp+Oqrr/DixQtcvHgR3bt3L/e4ESNGYNq0aZg0aRIuXbqkcreDSorbqFrcVUUzXQIAuHTpEqysrJCVlQWhUAhXV1e1TLiA6m0rlclk2L17N+zt7TFgwABERERUmHBLbNiwAQKBAGvXruUoSvkoKiqCr6+vSn4KqTK+728Qfr1+/ZpNnz6dtW7dmp0/f57vcBSuZFupqhS3SUxMZH369GF9+vRhiYmJ1Tr3+fPnrGXLluzMmTMKik7+jh07xgYMGMB3GApFM10NduLECXTr1g3169eHSCRSutfUKIKqFLeRSCTYunUrPvnkE7i5ueH69euwsLCoVhumpqYIDAyEu7s7kpOTFRSpfKnap5Aa4TvrE+6VrHx36tSJXb9+ne9wOCOTyZi5uTm7c+cO36FUKjo6mtna2jIXFxeWkpJS6/a2b9/O7OzsPloYh2+pqalqV9ymPDTT1SDsvZXvjh07Ii4uDn379uU7LM7cuHEDderUgaOjI9+hlEssFmPVqlVwcXHB4sWLcf78ebRp06bW7S5atAgdOnTAwoUL5RCl4hw8eBATJkxQq+I25aGnFzTE+yvfFy5cgJ2dHd8hcU6Zt5XevHkT7u7usLa2Rnx8PJo2bSq3tgUCAfbv3w8HBwccPHgQ06ZNk1vb8lJS3CYgIIDvUBSP76k2USypVMp27drFjIyM2NatW1lRURHfIfEiKyuLGRgYsBcvXvAdSik5OTls3rx5rHnz5uz48eMK7UsoFDJjY2MWFxen0H5q4urVq8zKykrtNuGUh2a6auz+/fvw8PAAYww3b96s9kKMOgkMDMSgQYOUalvphQsX8NVXX2HQoEEQiURo3LixQvuztLTE9u3bMW7cOERGRsLAwECh/VVHyQKaMn4KkTu+sz6Rv6KiIrZlyxZmZGTEdu/ezaRSKd8h8c7R0bFG7xRThJcvX7Ivv/yStW3bll26dInz/ufMmcPGjh2rNLPKN2/eMAMDA5aZmcl3KJyghTQ1ExMTA0dHR4SFhSEyMhLz58+HlpZmD7NIJEJaWhrv20oZYwgKCoKVlRUMDQ0hFAoxZMgQzuPYsWMHnjx5gl9//ZXzvssTEBCAIUOGwNjYmO9QuMF31ifyUVBQwL799ltmYmLCfHx8lGYWowyWLFnCvvvuO15jePbsGfv888+ZhYUFu3XrFq+xMMZYSkoKMzU1VYpHBu3t7TViY04JzZ4CqYmbN2/CxsYGSUlJiI+Px7Rp0zTj3lgV8F3chjEGb29v2NjYoFu3boiJiUHv3r15ieV9bdq0gY+PDyZNmoSMjAze4oiPj0dGRgYvM36+0EKaCsvNzcWqVatw4sQJ/Pbbbxg7dizfISmds2fPomvXrjA3N+e870ePHmH27Nl48+YNLl++DBsbG85jqMywYcMwc+ZMuLm54cqVK9DR4T4dqHtxm/LQTFdFXbhwAZaWlsjPz0dCQgIl3Arwsa1UKpVi586dcHBwwJAhQ3Dnzh2lS7gl1q1bhzp16uD777/nvO/CwkL1L25THr7vb5DqKVn5btOmDbt48SLf4Si1kuI2XG4rTUhIYL169WJ9+/ZlDx484Kzf2njx4gVr1aoVO336NKf9Hj16lDk7O3PapzKgma6KYB+sfItEIt5X45XdwYMHMX78eE62lUokEmzevBn9+/fHF198gdDQUHTq1Enh/cqDiYkJAgMD4eHhgYcPH3LWr0YUtykP31mffNz7K9+q/hoWrkilUtahQwd29+5dhfcVGRnJrK2t2bBhw9jjx48V3p+i7Ny5k9na2rL8/HyF9/XkyRPWpEkTTvpSNjTTVWLsvZXvrl27IiYmBn369OE7LJVw/fp16Ovrw8HBQWF9FBQUYOXKlRg+fDiWL1+Oc+fOoXXr1grrT9EWLFiATp06YcGCBQrvy8fHBxMnToS+vr7C+1I29PSCkipZ+X79+jUuXboEW1tbvkNSKYreVhoWFgYPDw/06NEDQqEQpqamCumHSyWFcRwdHXHgwAGFLXDJZDIcOHAAR48eVUj7So/vqTYprbi4mO3YsYMZGRmxH3/8kUkkEr5DUjmKLG6TnZ3N5syZw1q0aMFOnTol9/aVgUgkYsbGxiwmJkYh7YeEhDBra2uN3cBDM10l8tdff8HDwwM6OjoIDw9XmYUYZRMQEIDBgwfLvbhNcHAw5syZAxcXF4hEIhgaGsq1fWXRrVs37Ny5E66uroiMjJT7v1OjituUh++sT/4tULNp0yZmZGTEPD09qUBNLTk4OLDg4GC5tZeZmcmmTJnC2rdvz65cuSK3dpXdvHnz2OjRo+U6Iy0pbvPy5Uu5talqaCGNZ5GRkbC3t8etW7cQHR2NuXPnanyBmtoQCoV49uyZXB6nY4whMDAQVlZWMDU1RXx8PAYNGiSHKFXDtm3bkJ6ejl9++UVubfr7+2Po0KEwMjKSW5sqh++sr6ny8/PZ8uXLmampKTt8+LDG3t+St8WLF7PVq1fXup20tDQ2atQo1rVrV3b79m05RKaaHj9+zMzMzFhoaKhc2uvRowe7cOGCXNpSVTSl4kFYWBisra3x+PFjCIVCTJ06VXPvb8lRUVFRrbeVMsawb98+2Nraonv37oiOjkbPnj3lGKVqad26NQ4ePIjJkycjPT29Vm3FxcXhxYsXGDx4sJyiU020kMahnJwcrFy5EmfOnIGnpyfGjBnDd0hq5cyZM+jWrRs6dOhQo/MfPnyIWbNmITc3F1evXoWVlZWcI1RNLi4umDVrFtzc3BASElLjwjiaWNymPDTT5UhwcDAsLS0hkUiQkJBACVcBarqtVCqV4tdff4WTkxNGjBiB27dvU8L9wJo1a6Cnp4fvvvuuRucXFhbCz88P06dPl29gqojv+xvqrmTlu127dhq18s211NTUGhW3EQqFzNHRkfXv35/9888/CopOPWRmZrLWrVuzkydPVvvcwMBANnDgQPkHpYJopqsg7IOVb6FQqFEr31wr2VZa1eI2RUVF2LBhA5ydneHu7o6rV6/yUnNXlRgbG+Po0aOYPXs2kpKSqnWul5cX3N3dFRSZiuE766sjWvnmllQqZe3bt2cRERFVOv7u3bvM0tKSffbZZyw1NVXB0amf3bt3MxsbmyoXq3n8+LHGFrcpD8105Yi9t/Jta2ur8SvfXAkLC0P9+vVhb29f6XH5+flYtmwZRo0ahe+++w5nzpxBy5YtOYpSfcybNw9dunTBvHnzqnS8j48P3NzcNLK4TXno6YUPvMwrRFBUGu5n5CBHXIxGejqwaNoI43u0hFGDuhWe9/7Kd0hICKytrTmMWnOUNz6xoeFwmz6r0sfurl27hlmzZsHJyQlCoVDuW4Q1iUAgwL59++Do6FjqtkF5Y9PZrCG8/Y7huK8Pv0ErEQFjjPEdhDKIS82CZ2gSwv7OBAAUFsve/UxPRwsMwIDOJpjb3xw2rQzf/azk1Sxbt27Ft99+i8WLF/Pyril1V9n4MEkh6urpwdnCtMz4ZGdnY8WKFQgODsaePXswcuRIrkNXW4mJiejXrx88A/7ElWfa5Y6Nrta/Bd6HWrXEvAGlx0ZTUdIFcOROCrYE34e4WIrKfhsCAaCno43Vwy0wtWdbiEQiuLu7Q19fH/v376eFGAWp6ficPXsWc+fOxYgRI/DTTz/BwMCAu6A1xGLP4ziVogWBTh1Ulkg+HBtNpvFJ998LOhEFEtnHD/4vPV0tdGfJuLJ3PTZv3oxZs2ZRvQQFqdH46Gih+fPbSL3mj3379mHAgAGKC1CD1WRs9HW1sHp4F41OvBqddONSs+C27w4KJNJ338uJOou3whAUZaagfpf+MP5sSbnnCmQS7JvYFYPtqPyiopQ3PiUkr5/imdd81LfoA+ORy8r8XJtJ4e/hCEfzplyEqnEqGpsn21xL/TcrLkLD7sPRZOicd9/T19VG4OyesG5pyEWoSkejp2eeoUkQF5f+o9FpYASD3hPRwHpI5Sdr6yLorxwFRkfKG58Sry/tRd1mHSs8V6alDe87aYoKTeNVNDatlwa9+2q54AgEOnVQz+KTUseIi6XYE1q953zVicYm3Zd5hQj7O7PMPcJ6nXujXqde0NJvVOn5jAHXHmTiVV6hAqPUXBWNDwC8/SsMWnr1odfGpsLzaXwUp7KxeV/+g1vQrmeAuq26lfq+po+NxibdoKjaz4IEAIKiaTalCBWNj6wwH1k3fNF44Md3N9H4KEZVr508YQjqWw4s91E+TR4bjU269zNySj3aUhPiYhnup+fKKSLyvorGJ+v6YTSwGQqdRh9/zpbGRzGqcu0UZ79AYaoI9a3K3/quyWOjsUk3R1wsl3Z8j52AQCCgLzl/+R07WeZ3XfQ8GeLHcWjkMJrGR8nG5kN5oquo27IrdA0rXsjMEUuqPI7qRGOTbiM9+WxgmDJ+LBhj9CXnr8njPy/zuxY/EaI4+znS9sxA6u6pyIk4ifwH4Ug/sIjGh+ex+dBb0VU0sBxY6TGN9HQ/foGpIY3dOmXRtBHq6mSU+ZjEZFKg5IvJwIqLAC1tCLTKFl7W09GCRbOGXIWsUcobnwa2Lqjfpd+7/86JOIHi7Odo4lJ+DQAaH8Wo6NopIU5LhDTvVZmnFt6nyWOjsTNd1x7lFzrJvhWAJ/8Zi5w7QXibcA1P/jMW2bcCyj2WAXC1o4IpiuDaoyUYK708rqWrB+0Gjd99CXT1INCpA+165e80o/FRjIqunRJvRSGo16k3tOpWXGZTk8dGY2e6xg3qon8nE1xOfI73r23DvlNg2HfKR88XCADnziaVFsEhNRd39yaKHscCLawAQflzg8rGicZHcSq6dkoYfTq/0vM1fWw0dqYLAPMGmENPp2bva9LT0cbcAVRrQd6ysrLg4eGBGTNmYMVnNtCvU7P7fjQ+ikXXTs1pdNK1aWWI1cMtoK9bvV/Dv/vHLTR2G6OinDp1CpaWlqhbty5EIhHmThxB46Ok6NqpOY29vVCipPDGluD7KCiSVPhRFqBKSYry/PlzLFiwALGxsfDz80O/fv9bLHt/fD5aZQwMrLgIiwbT+HCh1NhIpFRlrIo0eqZbYmrPtjgyoweKU6JRR1sAPZ3SvxY9HS3U1dGCS1czBM7uqfF/NPLCGMPhw4dhbW2N9u3bIy4urlTCLTG1Z1sEzu4Jl65mqKujVfH4dGsKZ1kczmxbBpmsdhtfSNWUjI253lsIZFK6dqpAo6uMvS8oKAienp4IOnsBQdFpuJ+eixyxBI30dGHRrCFc7Sp/cwSpnidPnmDOnDl49uwZvLy80KNHjyqd9yqvsNLxkUgkcHZ2xqefforvv/9ewf8KUsLOzg7fb/oRmQ070LXzMYwwxhgbNmwYO3ToEN9hqD2pVMo8PT2ZsbEx27x5MysqKpJ7H2lpaaxp06bs8uXLcm+blBUdHc1at27NpFIp36GoBJrpAkhLS4O1tTXS0tKq/ApvUn0PHjzArFmzUFxcDC8vL3Tp0kVhfV29ehVTpkzBvXv36OWTCrZgwQIYGRlh/fr1fIeiEuieLv59W+nEiRMp4SpIcXExfvzxR/Tp0weurq64ceOGQhMuAAwcOBALFy7EhAkTUFRUpNC+NJlYLIa/vz9mzJjBdygqQ+OTrkwmw4EDBzBz5ky+Q1FLsbGxcHJywtWrVxEZGYmFCxdCW7tmz3dW18qVK2FkZIQVK1Zw0p8mOnXqFLp37442bdrwHYrK0PikGxYWhvr168Pe3p7vUNSKWCzG6tWrMXToUCxYsAAXL15E27ZtOY1BS0sLhw4dwpkzZ3D06FFO+9YU77+CnVSNxj+n6+3tjZkzZ0IgKFtomdRMeHg43N3d0aVLF8TFxaFZs2a8xdK4cWMEBQXBxcUF1tbWsLCw4C0WdZOSkoKYmBiMGTOG71BUikYvpGVlZaFt27ZISkqCsbEx3+GovLy8PHz33XcICgrC7t27MW7cOL5Demffvn3YsWMH7t69iwYNGvAdjlpYv349Xr16hd27d/MdikrR6NsLAQEBGDJkCCVcObh06RKsrKyQk5MDkUikVAkXADw8PODg4ICvvvqqTPUyUn20FlJzGp106X5U7b1+/RozZszA7NmzsXfvXvj4+KBJkyZ8h1WGQCDAnj17IBKJ8Pvvv/MdjsoLCQmBkZERunfvzncoKkdjk258fDwyMjIwZMhHXrVOKnT8+HFYWlqiQYMGEAqFcHFx4TukStWrVw9BQUFYt24dIiIi+A5HpXl7e9OEpYY09p7u4sWL0bBhQ2zatInvUFRORkYG5s+fD5FIhP379+OTTyp+Q4AyOnHiBL755htERUXByMiI73BUzuvXr9G+fXs8evQIjRs35jsclaORM93CwkL4+vrSA93VxBiDj48PrK2t0alTJ8TGxqpcwgWAsWPHwtXVFVOnTqXCODXg5+eH4cOHU8KtIY1MumfOnIGVlRXat2/PdygqIyUlBZ9++il27tyJixcvYuvWrdDT0+M7rBr74Ycf8PbtW2zevJnvUFSOl5cXLaDVgkYmXbofVXUymQy7d++Gvb09nJ2dERERoRaLJ7q6uggMDMQff/yBS5cu8R2OyoiJicGbN28wcGDlb/olFdO4e7qpqamwtbVFWloa9PX1+Q5HqSUmJsLDwwNaWlrYv38/OnfuzHdIchcaGgo3Nzfcu3cPrVq14jscpTd//nyYmJhg3bp1fIeisjRupltS3IYSbsUkEgm2bt2Kvn37YvLkyQgLC1PLhAsAAwYMwJIlSzB+/HgqjPMRBQUF8Pf3x/Tp0/kORaVpVNKlB7o/Ljo6Go6Ojrh+/TqioqIwb948aGmp95/JihUrYGZmhmXLlvEdilI7deoUevToQcVtakm9r6YPhIaGomHDhlV+S4EmKSgowKpVqzBs2DAsWbIE58+f15iLSyAQ4ODBgzh37hwCAgL4Dkdp0WYi+dCogjdU3KZ8N2/ehLu7O6ytrREfHw8zMzO+Q+KcoaEhgoKCMHToUNjY2Ci83q+qSUlJQWxsLBW3kQONWUgrKW7z8OFDeiD+v3Jzc7Fq1SqcPHkSv/32Gz7//HO+Q+Kdl5cXtm3bhoiICCqM855169bhzZs32LVrF9+hqDyNub3g7++PoUOHUsL9r/Pnz8PS0hIFBQUQiUSUcP/L3d0dPXv2xKxZs6gwzn9JpVIcOHCAbi3IicYkXbof9a9Xr17hyy+/xNy5c+Hl5QUvLy/aWfQBT09PJCYmwtPTk+9QlEJISAhMTExgY2PDdyhqQSOSblxcHF68eIHBgwfzHQpvGGM4duwYLC0t0aRJEwiFQo3+fVRGX18fQUFB2LhxI+7cucN3OLyjzUTypRH3dBctWgQDAwNs3LiR71B4kZ6ejrlz5+LBgwfw8vJCr169+A5JJZw+fRoLFy5EVFSUxtZcfvXqFTp06EDFbeRI7We6hYWF8PPz08gHuhlj8Pb2ho2NDSwtLRETE0MJtxpGjx4NNzc3TJkyBVKplO9weOHn54cRI0ZQwpUjtU+6p0+fhrW1tcYVt0lOTsbQoUOxZ88eXL58GZs2bULdunX5DkvlbNmyBYWFhRpZApQxRsVtFEDtk66m3Y+SSqXYsWMHHB0dMXToUNy5c4cWQGpBR0cHAQEB2LdvHy5cuMB3OJyKiYlBdnY2nJ2d+Q5Fraj15ognT57g3r17OHnyJN+hcOKvv/6Cu7s76tSpg/DwcHTq1InvkNRC06ZN4e/vjwkTJiAiIgKtW7fmOyROeHl5YcaMGWq/DZxrav3b9PHxgZubm9oXtykqKsKmTZvQv39/TJs2DdeuXaOEK2f9+vXD0qVLMX78eBQWFvIdjsIVFBQgICBAI9dCFE1tk66mFLeJjIyEg4MDbt++jejoaMyZM4dmJgqybNkyNG/eHEuXLuU7FIU7efIkHBwcNGZWzyW1vTqvXbsGAwMD2NnZ8R2KQuTn52PFihUYMWIEVqxYgXPnzlE9WAUTCAQ4cOAALly4AD8/P77DUShaQFMctU266lzcJiwsDDY2NkhNTYVQKMSUKVPU8t+pjAwNDXH8+HEsWrQICQkJfIejEI8ePUJ8fDxGjx7NdyhqSS03R7x58wbt2rVTu+I2OTk5WLlyJc6ePYs9e/Zg1KhRfIeksXx8fPDjjz/i3r17aNiwId/hyNXatWuRnZ2NnTt38h2KWlLLma6/vz9cXFzUKuGeO3cOlpaWkEqlEIlElHB5Nn36dPTt2xceHh5qVRhHKpXCx8eHbi0okFomXXUqbvPy5UtMnToVCxcuhI+PD/7v//4PhoaGfIdFAOzevRv//PMPdu/ezXcocnPlyhWYmprSs90KpHZJNzY2FpmZmRg0aBDfodQKYwwBAQGwtLSEmZkZ4uPj6Q2sSkZPTw9BQUHYvHkzbt++zXc4cqFpm4n4oHb3dBcuXIjGjRtjw4YNfIdSY0+fPsXcuXPx8OFDeHl5wcnJie+QSCXOnj2LefPmISoqCiYmJnyHU2MlxW1SUlLo05QCqdVMVywWq3RxG8YY9u3bB1tbW3Tv3h3R0dGUcFXAyJEjMWXKFEyePFmlC+P4+vris88+o4SrYGqVdE+fPg1bW1u0a9eO71Cq7eHDhxg0aBD27duHq1evYv369ahTpw7fYZEq2rRpE6RSqcp+wiopbkO3FhRPrZKuKv7RSKVS/Prrr3BycsKIESNw+/ZtWFlZ8R0WqSYdHR34+/vD29sb58+f5zucaouKikJubi769+/PdyhqT20K3jx+/BhRUVE4ffo036FUmUgkgru7O+rVq4c7d+7A3Nyc75BILZiZmcHf3x+urq6IiIhQqVfYl2wmoi3kiqc2v2EfHx9MmjRJJYrbFBUVYcOGDXB2doa7uztCQkIo4aqJvn37YsWKFXB1dVWZwjgFBQUIDAzEtGnT+A5FI6hF0lWl4jYRERHo0aMHIiMjERMTg9mzZ9PsQs188803aN26NZYsWcJ3KFVy4sQJODo6Uu0OjqjF1X716lU0btxYqYvb5OfnY+nSpRg1ahRWr16NM2fOoGXLlnyHRRSgpDDOlStXcOTIEb7D+SgqbsMttUi6JfejlNW1a9dgZWWFjIwMiEQiuLm5UYEaNdeoUSMcP34cS5YsgUgk4jucCiUnJ0MoFNK2cg6p/OaIkuI2ycnJaNKkCd/hlJKdnY3ly5fj/Pnz+P333/HZZ5/xHRLh2KFDh7Blyxbcu3cPjRo14jucMtasWYPc3Fzs2LGD71A0hsrPdP38/PDpp58qXcI9e/YsLC0toaWlBZFIRAlXQ3355ZcYMGAA3N3dla4wTklxG1V7zFLVqXzSVbZnczMzMzFp0iQsWbIEhw8fxt69e2FgYMB3WIRHO3fuRHJystKVSrx8+TKaNWtGz4VzTKWTbkxMDF69eqUUxW0YY/D19YWVlRVatWqF+Ph4DBgwgO+wiBIoKYzzww8/4NatW3yH846yr4WoK5W+p7tgwQIYGRlh/fr1vMaRmpqKr7/+Gk+ePIG3tzfs7e15jYcop3PnzmHOnDmIioqCqakpr7G8fPkS5ubmePz4MX0S45jKznTFYjH8/f0xY8YM3mKQyWTYu3cv7Ozs4OTkhMjISEq4pEIjRozAl19+qRSFcXx9fTFy5EhKuDxQ2aR76tQpdO/enbetlv/88w8GDhwIHx8fhIaGYs2aNVSghnzUxo0bwRjDunXreIuBitvwS2WTLl9/NMXFxfjll1/Qq1cvjBkzBrdu3UK3bt04j4OoJm1tbfj7++PgwYM4d+4cLzFERkbi7du36NevHy/9azqVLHiTkpKCmJgYjBkzhtN+4+Pj4e7uDgMDA0RERKB9+/ac9k/Ug6mpKQIDA/H555/j7t27aNu2Laf9U3Ebfqnkb72kuI2enh4n/RUWFmLt2rUYPHgw5syZg8uXL1PCJbXSu3dvrFq1Cq6urhCLxZz1m5+fT8VteKZySZfr4ja3b99G9+7dER8fj9jYWLi7u9MWXiIXixYtQvv27bF48WLO+jxx4gR69uxJdT94pHJJNyQkBEZGRujevbtC+3n79i0WL16MsWPHYsOGDTh58iSaN2+u0D6JZhEIBNi/fz+uXbuGQ4cOcdInFbfhn8olXS4e6L5y5QqsrKzw+vVriEQijB8/nma3RCFKCuMsXboUQqFQoX09fPgQCQkJVNyGZyq1OeL169do3769worbZGVlYenSpbhy5Qr27t2LYcOGyb0PQspz5MgRbNy4Effu3VPYs7Pff/898vPz8euvvyqkfVI1KjXT9fPzw7BhwxSScE+dOoVu3bpBT08PQqGQEi7h1NSpUzFo0CDMnDlTIYVxSorb0K0F/qlU0lXEs7nPnz/HhAkTsGLFCvj7+8PT01MpS/AR9bdjxw48efIE27dvl3vbly5dQosWLWBpaSn3tkn1qEzSjYmJwZs3bzBw4EC5tMcYw6FDh2BtbY0OHTogLi6OHhYnvKpbty6OHTuGn376CTdv3pRr21TcRnmozD3d+fPnw8TERC7bJ588eYKvvvoK6enp8PLyQo8ePeQQISHycf78ecyaNQtRUVEwMzOrdXuZmZno2LEjFbdREiox0xWLxQgICMD06dNr1Y5MJoOnpyfs7OzQt29f3Lt3jxIuUTrDhg3DzJkzMWnSJBQXF9e6PV9fX4waNYoSrpJQiaR78uRJ2NnZ1aq4zYMHD9C/f3/4+vrixo0b+O6776CrqyvHKAmRn3Xr1kFHRwdr166tVTtU3Eb5qETSrc0fjUQiwY8//og+ffpgwoQJuHHjBrp06SLnCAmRL21tbfj6+uLIkSM4e/Zsjdu5d+8eCgoKaL1CiSh9wZuUlBTExsZi9OjR1T43JiYG7u7uMDY2RmRkJOeFRQipDRMTEwQGBmLMmDG4fft2jep9lCyg0eYe5aH0M90DBw5g8uTJ1SpuIxaLsXr1ari4uGDhwoW4ePEiJVyiknr16oXVq1dj/Pjx1S6Mk5+fj6NHj1JxGyWj1ElXKpVWu7jNrVu3YGtri/v37yM+Ph7Tp0+n/8sTlbZgwQKYm5tj4cKF1Trv+PHj6NWrF1q0aKGgyEhNKHXSDQkJgYmJCWxtbT96bF5eHhYuXIjx48djy5YtOH78OJo2bar4IAlRsJLCODdu3ICPj0+Vz6MFNOWk1Em3qg90X7p0CZaWlsjJyYFIJMK4ceM4iI4Q7jRs2BBBQUFYvnw54uLiPnp8UlISEhMT8dlnn3EQHakOpVhIe5lXiKCoNNzPyEGOuBiN9HTQupEOLobewu+//17hea9fv8bSpUtx7do1/PHHH3BxceEwakK41a1bN+zcuROurq6IjIx899xteddPSmw4xk+dQe/tU0K87kiLS82CZ2gSwv7OBAAUFsve/UwHMkhlDEOtmmNuf3PYtDIsde7x48exYMECuLq6YuvWrWjQoAGXoRPCm/nz5+Pp06dYt8sbe0Iflnv9sOIi1KlTBwO7mJV7/RD+8JZ0j9xJwZbg+xAXS1FZBAIBoKejjdXDLTC1Z1ukp6dj/vz5SEhIgJeXF/r06cNd0IQogcLCQti7LUaBxXBIBVrVun4I/3i5p/tvwk1EgaTyhAsAjAEFEim2BCdi3vYA2NjYwMLCArGxsZRwiUY6FpOOIsuRKEblCRcoff0cuZPCSXykcpzPdONSs+C27w4KJNJS35cW5OJV8E6IU2Kgpd8IjftPQ/1uA0qfLC3Cfz5tAdeBjtwFTIgSqej6AYC3f4Uh65Y/pDmZ0K7fGEYjFkOv1f9KOerraiNwdk9YtzTkMGLyIc4X0jxDkyAuLvsH8/rS7xBo66LlgiMoep6MF0EboGvaDnVM/ldvQaBTB1eeacGVy4AJUSIVXT8Fj2LwJtQHJqNXok7zTpDmvS5zjLhYij2hSdg71Z6LUEkFOL298DKvEGF/Z5b5SCQrEiP/QTgM+02FVh196LXqhnrmTnibcK3UcYwB1x5k4lVeIYdRE6IcKrp+ACD7pi8M+kxC3RYWEAi0oNPQGDoNjUsdQ9ePcuA06QZFpZX7/eLXTyHQ0oJuk//tnNE1bQdJ5uMyxwoABEWX3w4h6qyi64fJpChMT4IsPxtP985Cmuc0vL70O2SSssmVrh/+cZp072fklHqspYRMUgBB3XqlvqdVtx5kRQVljhUXy3A/PVdhMRKirCq6fqRvswBZMfIf3ILZ1J/QbMYuFD1PRnZ4YJlj6frhH6dJN0dcfkFmLV19sMLSCZYV5kOrjn4F7UjkHhshyq6i60egWxcA0LDHSOg0aALtegZo6DAGBQ8jK2iHrh8+cZp0G+mVv26n06QFmEwKyeun775X9OIRdE3KL1reSI+KjxPNU9H1o63XANof3L+tvB26fvjEadK1aNoIdXXKdqlVRw/1OvdC1g1fyIrEEKf9hfyku6jfzbnMsXo6WrBo1pCLcAlRKhVdPwDQwGowcqP+hPRtFqTiPORGnkY9c4cyx9H1wz9On9N9mVeIPj9dLf++VFWe0wVQV0cL4SsHwqhBXQ4iJkR5VHb9MGkxXl/5P7z9KwwCHV3Ut+iLxs4zINApXXuBrh/+cb45YvbhSFxOfP7RnTTlEQgAl65m9Jwh0Vh0/ag+zrcBzxtgDj0d7Rqdq6ejjbkDzOUcESGqg64f1cd50rVpZYjVwy2gr1u9rvV1tbB6uAVtYSQaja4f1cdLPd2Sakc1qTJGiKaj60e18VpPNz4tC3tCk3DtQSYE+PfB7RJ6OlpgAJw7m2DuAHP6PzQhH6DrRzXxmnRLvMorRFB0Gu6n5yJHLEEjPV1YNGsIV7uWtMpKyEfQ9aNalCLpEkKIplDqF1MSQoi6oaRLCCEcoqRLCCEcoqRLCCEcoqRLCCEcoqRLCCEcoqRLCCEcoqRLCCEcoqRLCCEcoqRLCCEcoqRLCCEcoqRLCCEcoqRLCCEcoqRLCCEcoqRLCCEc+n9T1tN10ETM0AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "pos = {ii: (ii/atoms_w,ii%atoms_w) for ii in graph.nodes()}\n", + "nx.draw(graph, pos=pos, ax=ax, with_labels=True)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we can define our loss function. For this problem, we'll use the Quantum Adiabatic Algorithm to train variational parameters. These parameters encode the shape of the global detuning waveform `Delta`. We'll train 3 variational parameters. As these parameters change, so too does the shape of the global detuning waveform." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "vscode": { + "languageId": "python" + } + }, + "outputs": [], + "source": [ + "def loss_piecewise_linear(atoms: AtomArrangement, x: list):\n", + " assert len(x) == 3\n", + " Delta_start = -13 * 2 * np.pi * 1e6\n", + " Delta_0 = 11 * 2 * np.pi * 1e6\n", + " Delta_end = 11 * 2 * np.pi * 1e6\n", + "\n", + " Omega_max = 2.5e7 # 4 * 2 * np.pi * 1e6\n", + " T_max = 0.6 * 1e-6\n", + "\n", + " Deltas = TimeSeries()\n", + " Deltas.put(0.0, Delta_start)\n", + " Deltas.put(0.05 * 1e-6, Delta_start)\n", + " Deltas.put(0.2 * 1e-6, Delta_0 * x[0])\n", + " Deltas.put(0.3 * 1e-6, Delta_0 * x[1])\n", + " Deltas.put(0.4 * 1e-6, Delta_0 * x[2])\n", + " Deltas.put(0.55 * 1e-6, Delta_end)\n", + " Deltas.put(T_max, Delta_end)\n", + " \n", + " # keep amplitude (Rabi frequency) constant once we turn it on\n", + " Omegas = TimeSeries()\n", + " Omegas.put(0.0, 0.0)\n", + " Omegas.put(0.05 * 1e-6, 0.0)\n", + " Omegas.put(0.1 * 1e-6, Omega_max)\n", + " Omegas.put(0.5 * 1e-6, Omega_max)\n", + " Omegas.put(0.55 * 1e-6, 0.0)\n", + " Omegas.put(T_max, 0.0)\n", + "\n", + " # do not use the phase parameter\n", + " Phi = TimeSeries().put(0.0, 0.0).put(T_max, 0.0)\n", + "\n", + " # for this problem, our Hamiltonian has no shifting field\n", + " H = DrivingField(amplitude=Omegas, phase=Phi, detuning=Deltas)\n", + "\n", + " \n", + " program = AnalogHamiltonianSimulation(hamiltonian=H, register=atoms)\n", + " device = LocalSimulator(\"braket_ahs\")\n", + " \n", + " # if you want to use Aquila, uncomment these lines\n", + " # keep in mind that you may have to modify the fields\n", + " #device = AwsDevice(\"arn:aws:braket:us-east-1::device/qpu/quera/Aquila\")\n", + " #program = program.discretize(device)\n", + " \n", + " # run the AHS program and extract measurements\n", + " results = device.run(program, shots=1000, steps=100).result()\n", + " \n", + " \n", + " r_counts = []\n", + " \n", + " # states are one of:\n", + " # 'e' - empty\n", + " # 'r' - Rydberg\n", + " # 'g' - groundstate\n", + " states = ['e', 'r', 'g']\n", + " for shot in results.measurements:\n", + " pre = shot.pre_sequence\n", + " post = shot.post_sequence\n", + " state_idx = np.array(pre) * (1 + np.array(post))\n", + " state_labels = [states[s_idx] for s_idx in state_idx]\n", + " r_count = np.count_nonzero([sl == 'r' for sl in state_labels])/len(atoms)\n", + " r_counts.append(r_count)\n", + "\n", + " # the mean density of Rydberg states - this will be our cost\n", + " # higher is better, as it corresponds to a larger independent set\n", + " density_sum = np.mean(r_counts)\n", + " \n", + " return -density_sum, results, Deltas" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "vscode": { + "languageId": "python" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Initial density: -0.3674285714285714\n", + "Final density: -0.37371428571428567\n", + "Final values: [0.10333333 0.76 0.82666667]\n", + "Time to run AHS with local simulator: 19.06173086166382\n" + ] + } + ], + "source": [ + "start = time.time()\n", + "# initial waveform parameters\n", + "x0 = [0.1, 0.8, 0.8]\n", + "initial_rydberg_density, initial_registers, initial_Deltas = loss_piecewise_linear(atoms, x0)\n", + "print(f\"Initial density: {initial_rydberg_density}\")\n", + "# perform optimization\n", + "optresult = optimize.minimize(lambda x: loss_piecewise_linear(atoms, x)[0], x0, method='Nelder-Mead', options={'maxiter': 10})\n", + "final_rydberg_density, final_registers, final_Deltas = loss_piecewise_linear(atoms, optresult.x)\n", + "print(f\"Final density: {final_rydberg_density}\")\n", + "print(f\"Final values: {optresult.x}\")\n", + "stop = time.time()\n", + "print(f\"Time to run AHS with local simulator: {stop-start}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now let's visualize the solutions generated by the AHS program, to verify that they are independent sets and to see how large they are." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "scrolled": false, + "vscode": { + "languageId": "python" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Independent set of 0-th most likely outcome\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAADnCAYAAAC9roUQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA4jUlEQVR4nO3dd3hURdvA4V9CSAgtgTSadJCSBoQAIr2JKCCEjlISEGlSFF5EmqDCy4eAiKKQEFoKnfDSey9JSNuISAu9Sid9M98fa5SShJTdPVvmvq5cCufszBM2+2TOzJnnWAghBJIkSZJeWCodgCRJkjmRSVeSJEmPZNKVJEnSI5l0JUmS9EgmXUmSJD2SSVeSJEmPZNKVJEnSI5l0JUmS9EgmXUmSJD2SSVeSJEmPZNKVJEnSI5l0JUmS9EgmXUmSJD2SSVeSJEmPZNKVJEnSI5l0JSmP7t+HOXOgRg0oXRpKloRy5aBvX4iMVDo6iT//hOHD4a23wM4O7O2hcmX4z3/g2jWlo8NCFjGXpNy5exdGjoStW8HCApKSXj5eqBDY2Gg+3wsXQtu2ioRpvqKiNMk2JgbS0yEt7eXjNjaa/zZrBr/8AtWr6z9GZNKVpFy5eFHzWb13T/N5fhNbW03iHTJE97FJwI4d4OMDiYlvPtfSEooXhz17wNtb97G9QiZdSXqDu3fBwwPu3IG8fFpsbWHFCujRQ3exScDx45rLilcvPd6kRAk4fRpq1dJNXNmQSVeS3qBLF81A6tWr1dywtYUbN6BUKe3HJaG57ChXTnMJklcWFlCnDqhU2o8rB3IhTZJycPs27NqVXcJtCRQBiv/99fZrZ1hYwPLluozQzG3bBsnJWR5KAN4HSgFlgJHASzNDQsDly3pf/ZRJV5Jy8NtvmsSZvZ+AZ39/nXvtaGIizJsHGRm6ic/s/fe/8PRploeGA87ALSAaOAT8/OpJycmaN0iPZNKVpBwsW5btQCrXnjyBM2e0E4/0gvv3cxylXgZ6orkWKQO8B8S/elJGBmzYoNffijLpSlIO/vrrTWdMAhyBpsDBLM+wtIRbt7QalgSalU1r62wPfw6EAInADWAHmsSbpWxGy7ogF9IkKQfW1jktoJ0C6gDWaD7eI9FcyFZ75bzHgC+wQTdBmql6wAHALpvjZ4H+QAygBgYAy4HXZouKFIErV8DZWUeRvkyOdCUpB8WK5XS0EVACsEHzkW4KbH/tLDs7O/bsWY8QQn5p8evMxYvYZfMGZQAdgG7Ac+A+8BCYmNXJqamaXWt6IpOuJOWgceO8nG0BvH7hmJwM9eppKyLpHxUrQuHCWR56AFxDc+1hAzgAg8jqVyJQtWqO0xTaJpOuJOXgyy81m5de9wjYBSSjuRFpDXAYzfjqX5aW8OGH4OCg2zjNkpUVjBjx7/beFzgCVYBf0Lw7j4AVgMerJxYvrqnJoEdyTleScpCRIXB0TOThw1cvY++huQv0D6AQUAuYCbR76ayiReHAAUV2m5qFpIsXsXr7bQqr1a8diwbGoJnTLQS0AhajuY3sH0WLajZWFC2q81gzyZGuJGXj8uXLdOjQHju76RQp8uotRU5AOPAUzTjqJK8m3CJFNNMTDRvqI1rzc/jwYTw6duRgpUpk2Nq+dtwTzf0kD9HM6a4ji4Q7ebJeEy7IpCtJr1Gr1fz44480bNiQtm3bcv7890yebJmnz6alZSpVqwq2bHnT5gopr548ecLw4cPp27cv//3vf2l37hyWTZvmLXkWLaopijFpku4CzYZMupL0grNnz9KsWTPWrVvHsWPHmDhxIlZWVnz9Ncydqxm9WltnfyO9hQUUKyawtY3B13dpNvPBUn5t374dV1dXUlNTUalUdO3aVTO3u307dOsGRYuitswhrRUurCmIMWKEZn+2Er8RhSRJIjU1VcyaNUs4ODiIxYsXC7VaneV5168L0bjxXmFjkyhKlhSiRAkhihcXomRJIYoUEaJzZyEOHxbizz/PCycnJ3Hy5Ek9fyem6d69e6J///6iSpUqYu/evdmfGBUltjk6inRra82bUrz4v29QsWJCjBwpxJ9/6i/wLFjpP81LkmGJjIxk8ODBlCtXjjNnzlCxYsVsz3V2TiMhoT/h4Qe4f78Wd+5obvMsVUozd1umTOaZ1fn111/p2bMnkZGRODo66uV7MTVCCNauXcuYMWPo06cPcXFxFMvh5umzNjb4FS7M1Zs34dQpePBAcwuJg4OmILKe52+zIpOuZLaSkpKYPn06gYGB/N///R/9+/fH4g2Xmzt27KBatWq4ub25ButHH33E8ePH6d+/P9u2baNQoULaCt0s3Lx5k88++4wLFy6wadMmGufipumAgAAGDBiAlYMDvP++HqLMOzmnK5mlw4cP4+HhQUJCArGxsXz88cdvTLgA/v7+DB48ONf9fP/99yQmJjJr1qyChGtWhBAsW7YMDw8PPD09OXPmTK4SblpaGqtWrWLQoEF6iLIAFJ3ckCQ9e/z4sfjss89EuXLlxKZNm/L02ps3bwp7e3vx9OnTPL+ubNmyYufOnXl6nTm6ePGiaN26tfDy8hIxMTF5eu3GjRtFs2bNdBSZ9siRrmQ2slz5zoNVq1bRrVs3iufxloSyZcsSFBTEgAEDuHr1ap5eay7UajXz58/H29ubjh07cuLECdzd3fPURkBAQJ6uQhSjdNaXJF17ceV7z549+WojIyND1KxZUxw7dizfccyePVs0atRIpKSk5LsNUxQXFycaNWokWrRoIc6fP5+vNm7cuCHs7e3Fs2fPtByd9smRrmSyhBCEhobi5uaGo6MjcXFxtM3nc9GPHz+OhYUFTZo0yXc8EyZMwMXFhfHjx+e7DVOSmprKjBkzaNWqFYMGDWL//v1Uz+dj0VeuXImPj0+OdzYYCnn3gmSS8rPynRN/f398fX1ztdiWHQsLC1asWIGXlxchISH07t27QDEZs/DwcAYPHkylSpWIioqiQoUK+W5LCEFAQAArV67UYoQ6pPRQW5K0KSMjQyxdulQ4OjqKKVOmiOTk5AK3+eTJE2Fvby9u3bqlhQiFiIqKEo6OjiI+Pl4r7RmT58+fi/HjxwsXFxcRFBQkMjIyCtzm4cOHRe3atbXSlj7Ika5kMi5dusSQIUN4/Pgx+/bty/NCTHbWrl1LixYtKPPvzocC8fT0ZM6cOXTv3p3Tp09TokQJrbRr6A4ePIifnx/e3t7ExcXh5OSklXa1cRWiV0pnfUkqqPT0dPHDDz8IBwcH8d///lekpaVptf133nlHbNmyRattCiHE4MGDRa9evYxmhJZfjx49EkOHDhUVKlQQYWFhWm378ePHws7OTty5c0er7eqSXEiTjJpKpaJp06Zs2bKFEydO8OWXX2Jlpb0LuLNnz3L58mXe18Hupp9++olz587x008/ab1tQ7F161ZcXV2xsLBApVLx4YcfarX90NBQWrdujbOenm+mFUpnfUnKj5SUFDF9+nTh6OgolixZkm2BmoL68ssvxcSJE3XSthBCXLhwQTg5OYkTJ07orA8l3L17V/Tp00dUq1ZN7N+/X2f9NG7cWPzvf//TWfu6IJOuZHROnz4tXF1dRadOncS1a9d01k9qaqpwcXERf/zxh876EEKIzZs3i7feekvcvXtXp/3oQ0ZGhlizZo1wcXERX3zxhXj+/LnO+oqPjxflypXT+nSSrsmFNMloJCYmMnXqVFatWsX8+fPp06ePThdPtm3bRo0aNXj77bd11gdAly5dOH78OP369WPHjh1GWxjn+vXrfPbZZyQkJBAWFoa3jp9R5O/vryluo8XpJH2Qc7qSUTh48CDu7u7cuHEDlUpF3759db5arc9tpd9++y2pqal88803eulPmzIyMvj111+pV68eDRs2JDIyUucJNzU1ldWrVxt+cZusKD3UlqScZK58ly9fXid3EGQnv8VtCuLWrVuiXLlyYseOHXrrs6DOnz8vWrZsKby9vUVcXJze+t2wYYNo3ry53vrTJjnSlQxW5so3QHx8PJ07d9Zb3ytXrqR79+55Lm5TEGXKlCE4OJiBAwdy5coVvfWbH+np6fzf//0fjRs3pnPnzhw/fvyf90ofjKa4TVaUzvqS9Cp9rXxnJ7O4zfHjx/XetxBCzJ07VzRs2FAru+l0ISYmRnh5eYnWrVuLixcv6r3/69evi1KlShlFcZusyJGuZDCEEAQFBeHm5ka5cuWIjY2lVatWeo/j2LFjWFpaFrheQ36NHz+eChUqMG7cOEX6z05KSgrTpk2jTZs2fPrpp+zdu5eqVavqPQ5jKm6TFeNa9pNMlr5XvnOi9LZSCwsLli9fjpeXF2vWrKFfv36KxPGikydP4uvrS/Xq1YmOjqZ8+fKKxCH+Lm6zevVqRfrXCqWH2pJ5U6vVYsmSJcLR0VFMnz5d8VqzT548EXZ2duL27duKxiGEENHR0cLR0VGoVCrFYnj27JkYO3asKFOmjAgJCVF8y/KhQ4dEnTp1FI+jIORIV1LMhQsXGDJkCImJiRw4cECvCzHZCQ0NpVWrVri4uCgdCh4eHsydO5fu3bsTHh6u98I4+/btY8iQITRt2pS4uDiDeKKx0lchWqF01pfMT1pampg7d65wcHAQ8+bNE+np6UqH9I8mTZqIrVu3Kh3GS/z8/ESPHj30Nrp7+PCh8PPzE2+99ZbYtm2bXvrMjcziNsa+c08upEl6FRsbS5MmTdi+fTunTp1i3LhxBrMD6+zZsyQkJPDee+8pHcpLFi1axIULF/jxxx913teWLVtwdXWlcOHCqFQqnRT6ya+QkBDatGmjtZKQilE660vmITk5WUydOlU4OjqKpUuXGuSc3Pjx48V//vMfpcPI0sWLF4WTk1OBntGWk9u3b4uePXuKGjVqiEOHDumkj4Ly9vY2qJF3fsmRrqRzJ0+epH79+kRFRREdHY2fn5/BzcmlpaWxatUqg91WWrVqVfz9/enVqxd3797VWrtCCFavXo27uzuVK1cmJiaG5s2ba619bVGpVFy/fp327dsrHUqByYU0SWeeP3/OlClTCAoKYuHChfTs2dPgkm2m//3vf7z99tvUrFlT6VCy9eGHH3L8+HH69u3Lrl27Cjwtc/XqVYYNG8aNGzfYtm0bXl5eWopU+wICAhg4cKDRFbfJihzpSjqxb98+3NzcuHv3LiqVil69ehlswgXj2VY6c+ZMMjIymD59er7byMjI4JdffqFBgwa88847REREGHTCNeriNllRen5DMi0vrnwbS3HpGzduCHt7e6PZVnr79m1Rvnz5fM1vnjt3TjRr1kw0adLEaB6MuX79etGiRQulw9AaOdKVtObVle9OnTopHVKuGNu2UhcXF0JCQhg0aBAJCQm5ek16ejpz5szhnXfewcfHhyNHjlCnTh3dBqolxnIVkmtKZ33J+GWufFevXl0cPHhQ6XDyJCMjQ9SoUcMoH5czb9480aBBA5GUlJTjedHR0aJ+/fqibdu24tKlS3qKTjsyi9vo8gkU+iZHulK+iVdWvmNjY2nRooXSYeXJ0aNHsbKyolGjRkqHkmdjx46lcuXKjBkzJsvjycnJfP3117Rr146RI0eye/duqlSpot8gC2jFihX06NGDokWLKh2K1hj/UqCkiMyV7+vXrxv8yndOjHlbqYWFBQEBAXh5ebFq1So+/vjjf44dP34cX19fateuTUxMDGXLllUw0vzJyMggICCAoKAgpUPRLqWH2pJxUavVYvHixcLR0VHMnDlT8QI1BZG5rfTOnTtKh1IgsbGxwtHRUcTGxoqnT5+K0aNHi7Jly4p169YZ5CaU3Dp48KCoW7euUX8PWZEjXSnX/vzzT/z8/EhLS+PQoUNGsxCTndDQUFq3bo2zs7PSoRSIm5sb8+bN4/3338fS0pJWrVoRFxeHg4OD0qEViDFfheREzulKb/Tiynf37t05evSo0Sdc+PdDbewePnzIgQMHePToERUrVmT58uVGn3AfP35MWFgY/fv3VzoUrZNJV8pRTEwMjRo1Yu/evYSHh/P5558bTIGagoiPj+fatWt06NBB6VAKZOPGjbi6ulK8eHEuXbpEYmIiCxYsUDqsAgsJCaFt27bGX9wmK0rPb0iGKSkpSUyePFk4OjoKf39/k5tXGzdunJg0aZLSYeTbrVu3RPfu3cXbb78tjhw58s/fX7p0STg7O4ujR48qGF3BNWzYUGzfvl3pMHRCjnSl1xw/fpx69eoRHx9PTEwMgwcPNql5NWPeViqEYMWKFbi7u1OzZk2io6N59913/zlepUoVAgIC6N27t1YL4+hTXFwcN2/eNIniNlmRC2nSP549e8bkyZNZt24dP/74I927dzepZJvpf//7H7Vq1aJGjRpKh5InCQkJfPrpp9y9e5ddu3ZRr169LM/r1KkTAwYMoE+fPuzevdvopoMyi9sYW9y5JUe6EgC7d+/Gzc2NR48eERcXh4+Pj0kmXDC+baUZGRksWrQILy8vWrZsyenTp7NNuJlmzJiBhYUFU6dO1VOU2pGamsqaNWuM8iok15Se35CU9eDBAzFw4EBRsWJFsWPHDqXD0bnMbaXGUtzm7NmzomnTpqJp06bi7NmzeXrtnTt3RIUKFURYWJiOotO+devWiZYtWyodhk7Jka4Z27hxI3Xr1qVYsWKoVCqDe0yNLhhLcZu0tDS+++473n33XXr37s3hw4epVatWntpwdnYmNDQUX19fLl26pKNItcvYrkLyRemsL+lf5sp3zZo1xeHDh5UOR28yMjJE9erVxcmTJ5UOJUdnzpwRnp6eokOHDiIhIaHA7c2fP1/Ur1//jYVxlHbt2jWTK26TFTnSNSPihZXvGjVqEBMTQ7NmzZQOS2+OHDmCtbU13t7eSoeSpeTkZCZNmkSHDh0YM2YMO3bsoFKlSgVu9/PPP6datWqMHj1aC1HqzooVK+jZs6dJFbfJirx7wUy8uPK9c+dO6tevr3RIemfI20qPHj2Kr68v7u7uxMbGUqZMGa21bWFhwbJly2jYsCErVqxgwIABWmtbWzKL24SEhCgdiu4pPdSWdEutVosff/xRODg4iO+++06kpqYqHZIiHj16JOzs7MTdu3eVDuUlT548ESNGjBDlypUTGzZs0GlfcXFxwtHRUcTExOi0n/zYv3+/cHNzM7lNOFmRI10T9scff+Dn54cQgqNHj+Z5IcaUhIaG0qZNG4PaVrpz504+/fRT2rRpg0qlolSpUjrtz9XVlfnz59O9e3ciIiKws7PTaX95kbmAZohXIVqndNaXtC81NVV8++23wsHBQSxatEio1WqlQ1Kct7d3vp4ppgv3798Xn3zyiahcubLYvXu33vsfNmyY6Natm8GMKh8+fCjs7OzEvXv3lA5FL+RCmomJiorC29ubQ4cOERERwciRI7G0NO+3WaVScf36dcW3lQohWL9+PW5ubtjb2xMXF0e7du30HseCBQu4evUqP/zwg977zkpISAjt2rXD0dFR6VD0Q+msL2lHUlKS+M9//iOcnJxEYGCgwYxiDMHYsWPFV199pWgMN2/eFB999JGoVauWOHbsmKKxCCFEQkKCcHZ2NohbBr28vMxiY04m8x4CmYijR4/i4eHBhQsXiI2NZcCAAeYxN5YLShe3EUIQEBCAh4cHdevWJSoqinfeeUeRWF5UqVIlAgMD6dOnD7dv31YsjtjYWG7fvq3IiF8pciHNiD19+pRJkyaxceNGfvrpJ7p166Z0SAZn69at1KlTh+rVq+u978uXLzN06FAePnzInj178PDw0HsMOenYsSODBw+md+/e7N27Fysr/acDUy9ukxU50jVSO3fuxNXVlcTEROLj42XCzYYS20rVajULFy6kYcOGtGvXjpMnTxpcws00bdo0rK2t+frrr/Xed0pKiukXt8mK0vMbUt5krnxXqlRJ7Nq1S+lwDFpmcRt9biuNj48XTZo0Ec2aNRPnzp3TW78FcffuXfHWW2+JLVu26LXftWvXilatWum1T0MgR7pGQryy8q1SqRRfjTd0K1asoEePHnrZVpqWlsasWbNo0aIFH3/8MQcPHqRmzZo671cbnJycCA0Nxc/Pj4sXL+qtX7MobpMVpbO+9GYvrnwb+2NY9EWtVotq1aqJU6dO6byviIgI4e7uLjp27CiuXLmi8/50ZeHChcLT01MkJibqvK+rV6+K0qVL66UvQyNHugZMvLDyXadOHaKiomjatKnSYRmFw4cPY2trS8OGDXXWR1JSEhMnTuT999/nyy+/ZNu2bVSsWFFn/enaqFGjqFmzJqNGjdJ5X4GBgfTq1QtbW1ud92Vo5N0LBipz5fvBgwfs3r0bT09PpUMyKrreVnro0CH8/Pxo0KABcXFxODs766QffcosjOPt7c3y5ct1tsCVkZHB8uXLWbt2rU7aN3hKD7Wll6Wnp4sFCxYIBwcHMXv2bJGWlqZ0SEZHl8VtHj9+LIYNGybKly8vNm/erPX2DYFKpRKOjo4iKipKJ+3v27dPuLu7m+0GHjnSNSC///47fn5+WFlZcfz4caNZiDE0ISEhtG3bVuvFbbZv386wYcPo0KEDKpUKe3t7rbZvKOrWrcvChQvx8fEhIiJC69+nWRW3yYrSWV/SFKiZOXOmcHBwEIsXL5YFagqoYcOGYvv27Vpr7969e6Jfv36iatWqYu/evVpr19CNGDFCdOnSRasj0sziNvfv39dam8ZGLqQpLCIiAi8vL44dO8aZM2cYPny42ReoKYi4uDhu3rypldvphBCEhobi5uaGs7MzsbGxtGnTRgtRGod58+Zx69Yt5s6dq7U2g4ODad++PQ4ODlpr0+gonfXNVWJiovjyyy+Fs7OzWLVqldnOb2nbmDFjxOTJkwvczvXr10Xnzp1FnTp1xIkTJ7QQmXG6cuWKcHFxEQcPHtRKew0aNBA7d+7USlvGSg6pFHDo0CHc3d25cuUKcXFx9O/f33znt7QoNTW1wNtKhRAsXboUT09P6tWrx5kzZ2jcuLEWozQuFStWZMWKFfTt25dbt24VqK2YmBju3r1L27ZttRSdcZILaXr05MkTJk6cSFhYGIsXL6Zr165Kh2RSwsLCqFu3LtWqVcvX6y9evMiQIUN4+vQp+/fvx83NTcsRGqcOHTowZMgQevfuzb59+/JdGMcci9tkRY509WT79u24urqSlpZGfHy8TLg6kN9tpWq1mh9++IFGjRrRqVMnTpw4IRPuK6ZMmUKRIkX46quv8vX6lJQUgoKCGDhwoHYDM0ZKz2+YusyV7ypVqpjVyre+Xbt2LV/FbeLi4oS3t7do0aKFOH/+vI6iMw337t0TFStWFJs2bcrza0NDQ0Xr1q21H5QRkiNdHRGvrHzHxcWZ1cq3vmVuK81tcZvU1FRmzJhBq1at8PX1Zf/+/YrU3DUmjo6OrF27lqFDh3LhwoU8vdbf3x9fX18dRWZklM76pkiufOuXWq0WVatWFadPn87V+adOnRKurq7igw8+ENeuXdNxdKZn0aJFwsPDI9fFaq5cuWK2xW2yIke6WcnIgMePITERhMj1y8QLK9+enp5mv/KtK+np8PAhpKZq/nzo0CGKFSuGl5dXjq9LTEzkiy++oHPnznz11VeEhYVRoUIFPURsWkaMGEHt2rUZMWJElsdTUjTvj1qt+XNgYCC9e/c2y+I2WVI66xuM1FQhQkOFqF9fCEtLIQoXFsLKSghrayF69xYiPDzHl1+4cEG0atVKeHl5iZiYGD0FbT4ePhRi/nwhKlQQwsJC87ZYWgphby9EnTpbxdSpy3J8/f79+0W1atVE3759dVKTwdw8ffpU1K5dWyxbpvl3v3RJiDFjhChZUvO+WFtr3qdKlTJE6dJTxcGDZxSO2HDIpCuEEL/9pvn0lighhGZs+/KXpaUQRYsKUaeOELGxL700PT1dzJs3Tzg4OIi5c+fKAjValpoqxIgRQhQponkLsnp7IFnY2GSIjh2F+Ouvl1//6NEjMXToUFGhQgURFhamzDdhon7//XdRunQt4e39WBQpokm0Wb0/FhbPha1thhg3Toj0dKWjVp5MuhMn5vRpfv2rWDEhDh0SQsiVb11LShKiefPcvz3W1kJUrCjE9eua14eFhYkKFSqITz/9VDx69EjZb8YEXb4shL19ooCUXL0/RYsK0b695hepOTPvpDt/ft4S7t9fGcWKicXDhwtHR0exZMkSWaBGB9RqIT74QAhb27y9PVZWQlSunCZ8fAaL6tWriwMHDij9rZikv/7S/IKztMzb+2Nrq5mtM+dd7xZC5GGlyJTcuQOVK0Ny8kt//RMQCMQBff7+/1dlABfs7CiqUsmFGB3ZuhX69IHnz7M74zzgBvgAq185lkyjRsfYv7+JXp6PZo4+/xyWLPl3MfNfxV/5cxIwHFj0z98UKwZbtoC53kFpvncv/PYbZFHvoBzwNZDTviZLoEZqKhWePtVRcNKcOTklXIARQHaP4inCuXNtKFxYJlxdSEqCgICsEi7Asxe+7gC2QI+Xznj+HP7v/3QdpeEyz6SrVsOPP2p+el7RDegKvKnwnEVaGixcqIPgpIsXITIypzNCAHsg+6GSWq0ZTUnal/un7KwHnIFmrx05eBBu3NBeTMbEPJPumTOamwkLIj0d1q3TTjzSS7Zs0dwqnbUnwFRgXo5tPH0Kq1ZpOTAJgJUr4dmz3Jy5AvgEeP2K0tJSM4Vkjswz6d67p3nXC0pOL+jE7dvZXboCTAF8gbfe2M6dO1oMSvpH7v5drwKHgAFZHk1Ohvv3tRiUETHP0o7ZD6PyJD0tjcKyDq4OzAW+yOLvo4G9QFSuWjl1KhwLC2/thSX9TQXUfcM5K4F3gSpZHhXi3x1r5sY8k27p0nna3psdq5IlEY8fayEg6UVz5sDXX2tmcF52EEgAKv7952eAGvgdOPNaO++915AdO8zz5hxdatYMjh5901krgf9ke9TGRvMxNEfmOb1Qv362o910IBnNR1n99/+/9tkHzfREu3a6itCstWsH1tZZHRkKXEQz4o0GhgGdgF2vnVm8OHTrprMQzdpHH0HOd+IdB27w6l0LL7KwMN+Pj3km3SJFYPBgKFz4tUOz0NzkMhvN3Z+2f//da2xt4YusLoGlgqpfX3ML9euKAmVe+CoOFAFef9R6Rgb07au7GM3ZoEFvmqFbgeY+oBLZnuHqCrVqaTkwI2GeSRdg9GjI4rEh0wHxytf0rF5ftiw0aqS7+MzcBx/EY2GR4426aN6ZVzdGgJUVfPyx5iZ8SftKldJcRWS/Fv0rkP2tI8WLw8SJuojMOJhv0q1WTfMrOz87lmxt4ddfs9xcIRXMo0eP8PPzIyioC5UqqbO6GHmjkiVhyhTtxyb969tvoUT2A9lsWVtD3brQpYv2YzIW5pt0ARYt0uxFzEvitbXV7H9s3Vp3cZmpzZs34+rqio2NDfHxZwgPL0mFCtnN72ZFTbFiavbvh/LldRmpVLky7N6tSby5HXvY2ECVKrBzp+ZqxFyZb+2FTGo1jBsHv/1GWloahbO7j6V4cc31VFAQdOqk3xhN3J07dxg1ahTR0dEsW7aM5s2b/3Ps0SPo2hXCwzX7WXJ6e4oWfYaV1QfExm7AweFNewolbYiPh44d4eFDwbNngqzGcVZWmuWTZs1g/fr8jZBNiXmPdEEzr7twIalnz7LQxgZ1yZKaT7CdneY6tUgRzaz/L7/A3bsy4WqREIJVq1bh7u5O1apViYmJeSnhAtjba7aMnjihmae1tdV8aDPfHhsb6NBBs4vt9u3i9OpVn48//pgMLd2LLeWsbl1ISIBPPtmKs/Pv2Nho3hc7O837ZGurmcWLiIBdu2TCBTnS/cf69etZvHgxB3bvhkuXNM8bsbYGJyd46827n6S8uXr1KsOGDePmzZv4+/vToEGDXL3u2TO4cgWePNEslJUvDy8OatPS0mjVqhXvvfceX3/9tY6il15Vv3595syZg6dnO27e1Dzpys4OKlWSC5qvUbCspEHp2LGjWLlypdJhmDy1Wi0WL14sHB0dxaxZs0SqDipaX79+XZQpU0bs2bNH621Lrztz5oyoWLGirCudS3KkC1y/fh13d3euX78u66/q0Llz5xgyZAjp6en4+/tTu3ZtnfW1f/9++vXrR3h4uKx5rGOjRo3CwcGB6dOnKx2KUZBzumieVtqrVy+ZcHUkPT2d2bNn07RpU3x8fDhy5IhOEy5A69atGT16ND179iQ1++o5UgElJycTHBzMoEGDlA7FaJh90s3IyGD58uUMHpxT2XIpv6Kjo2nUqBH79+8nIiKC0aNHUyiLTSm6MHHiRBwcHJgwYYJe+jNHmzdvpl69elSqVEnpUIyG2SfdQ4cOUaxYMby8vJQOxaQkJyczefJk2rdvz6hRo9i1axeVs97bqzOWlpasXLmSsLAw1ua+8raUB/7+/vj6+iodhlEx41uUNQICAhg8eDAWcneZ1hw/fhxfX19q165NTEwMZcuWVSyWUqVKsX79ejp06IC7uzu1zHXDvw4kJCQQFRVF165dlQ7FqJj1QtqjR4+oXLkyFy5cwNHRUelwjN6zZ8/46quvWL9+PYsWLaJ79+5Kh/SPpUuXsmDBAk6dOkXx4q8+PFHKj+nTp/PXX3+xaNGiN58s/cOspxdCQkJo166dTLhasHv3btzc3Hjy5AkqlcqgEi6An58fDRs25NNPP8WMxxlaI9dC8s+sk66cjyq4Bw8eMGjQIIYOHcqSJUsIDAyktAFWp7awsODnn39GpVLxyy+/KB2O0du3bx8ODg7Uq1dP6VCMjtkm3djYWG7fvk07c62krAUbNmzA1dWV4sWLExcXR4cOHZQOKUdFixZl/fr1TJs2jdOnTysdjlELCAiQA5Z8Mts53TFjxlCiRAlmzpypdChG5/bt24wcORKVSsWyZct49913lQ4pTzZu3Mi4ceOIjIyUhXHy4cGDB1StWpXLly9TqlQppcMxOmY50k1JSWHNmjXyhu48EkIQGBiIu7s7NWvWJDo62ugSLkC3bt3w8fGhf//+sjBOPgQFBfH+++/LhJtPZpl0w8LCcHNzo2rVqkqHYjQSEhJ47733WLhwIbt27eK7776jSJEiSoeVb99//z3Pnz9n1qwsH8Yk5cDf318uoBWAWSZdOR+VexkZGSxatAgvLy9atWrF6dOnTWLxpHDhwoSGhvLrr7+ye/dupcMxGlFRUTx8+JDWsoh/vpndnO61a9fw9PTk+vXr2NraKh2OQTt79ix+fn5YWlqybNky3n77baVD0rqDBw/Su3dvwsPDeUuW8HyjkSNH4uTkxLRp05QOxWiZ3Ug3s7iNTLjZS0tL47vvvqNZs2b07duXQ4cOmWTCBWjZsiVjx46lR48esjDOGyQlJREcHMzAgQOVDsWomVXSlTd0v9mZM2fw9vbm8OHDREZGMmLECCyzf+yrSZgwYQIuLi588cUXSodi0DZv3kyDBg1kcZsCMu1P0ysOHjxIiRIlcv2UAnOSlJTEpEmT6NixI2PHjmXHjh1m8+GysLBgxYoVbNu2jZCQEKXDMVhyM5F2mFXBG1ncJmtHjx7F19cXd3d3YmNjcXFxUTokvbO3t2f9+vW0b98eDw8Pndf7NTYJCQlER0fL4jZaYDYLaZnFbS5evChviP/b06dPmTRpEps2beKnn37io48+Ujokxfn7+zNv3jxOnz4tC+O8YNq0aTx8+JAff/xR6VCMntlMLwQHB9O+fXuZcP+2Y8cOXF1dSUpKQqVSyYT7N19fXxo3bsyQIUNkYZy/qdVqli9fLqcWtMRskq6cj9L466+/+OSTTxg+fDj+/v74+/vLnUWvWLx4MWfPnmXx4sVKh2IQ9u3bh5OTEx4eHkqHYhLMIunGxMRw9+5d2rZtq3QoihFCsG7dOlxdXSldujRxcXFm/e+RE1tbW9avX88333zDyZMnlQ5HcXIzkXaZxZzu559/jp2dHd98843SoSji1q1bDB8+nHPnzuHv70+TJk2UDskobNmyhdGjRxMZGWm2NZf/+usvqlWrJovbaJHJj3RTUlIICgoyyxu6hRAEBATg4eGBq6srUVFRMuHmQZcuXejduzf9+vVDrVYrHY4igoKC6NSpk0y4WmTySXfLli24u7ubXXGbS5cu0b59e37++Wf27NnDzJkzsbGxUToso/Ptt9+SkpJiliVAhRCyuI0OmHzSNbf5KLVazYIFC/D29qZ9+/acPHlSLoAUgJWVFSEhISxdupSdO3cqHY5eRUVF8fjxY1q1aqV0KCbFpDdHXL16lfDwcDZt2qR0KHrx+++/4+vri7W1NcePH6dmzZpKh2QSypQpQ3BwMD179uT06dNUrFhR6ZD0wt/fn0GDBpn8NnB9M+l/zcDAQHr37m3yxW1SU1OZOXMmLVq0YMCAARw4cEAmXC1r3rw548ePp0ePHqSkpCgdjs4lJSUREhJilmshumaySddcittERETQsGFDTpw4wZkzZxg2bJgcmejIF198Qbly5Rg/frzSoejcpk2baNiwodmM6vXJZD+dBw4cwM7Ojvr16ysdik4kJiYyYcIEOnXqxIQJE9i2bZusB6tjFhYWLF++nJ07dxIUFKR0ODolF9B0x2STrikXtzl06BAeHh5cu3aNuLg4+vXrZ5LfpyGyt7dnw4YNfP7558THxysdjk5cvnyZ2NhYunTponQoJskkN0c8fPiQKlWqmFxxmydPnjBx4kS2bt3Kzz//TOfOnZUOyWwFBgYye/ZswsPDKVGihNLhaNXUqVN5/PgxCxcuVDoUk2SSI93g4GA6dOhgUgl327ZtuLq6olarUalUMuEqbODAgTRr1gw/Pz+TKoyjVqsJDAyUUws6ZJJJ15SK29y/f5/+/fszevRoAgMD+e2337C3t1c6LAlYtGgR58+fZ9GiRUqHojV79+7F2dlZ3tutQyaXdKOjo7l37x5t2rRROpQCEUIQEhKCq6srLi4uxMbGyiewGpgiRYqwfv16Zs2axYkTJ5QORyvMbTOREkxuTnf06NGUKlWKGTNmKB1Kvt24cYPhw4dz8eJF/P39adSokdIhSTnYunUrI0aMIDIyEicnJ6XDybfM4jYJCQnyakqHTGqkm5ycbNTFbYQQLF26FE9PT+rVq8eZM2dkwjUCH374If369aNv375GXRhnzZo1fPDBBzLh6phJJd0tW7bg6elJlSpVlA4lzy5evEibNm1YunQp+/fvZ/r06VhbWysdlpRLM2fORK1WG+0VVmZxGzm1oHsmlXSN8YdGrVbzww8/0KhRIzp16sSJEydwc3NTOiwpj6ysrAgODiYgIIAdO3YoHU6eRUZG8vTpU1q0aKF0KCbPZAreXLlyhcjISLZs2aJ0KLmmUqnw9fWlaNGinDx5kurVqysdklQALi4uBAcH4+Pjw+nTp43qEfaZm4nkFnLdM5l/4cDAQPr06WMUxW1SU1OZMWMGrVq1wtfXl3379smEayKaNWvGhAkT8PHxMZrCOElJSYSGhjJgwAClQzELJpF0jam4zenTp2nQoAERERFERUUxdOhQObowMePGjaNixYqMHTtW6VByZePGjXh7e8vaHXpiEp/2/fv3U6pUKYMubpOYmMj48ePp3LkzkydPJiwsjAoVKigdlqQDmYVx9u7dy+rVq5UO541kcRv9MomkmzkfZagOHDiAm5sbt2/fRqVS0bt3b1mgxsSVLFmSDRs2MHbsWFQqldLhZOvSpUvExcXJbeV6ZPSbIzKL21y6dInSpUsrHc5LHj9+zJdffsmOHTv45Zdf+OCDD5QOSdKzlStX8u233xIeHk7JkiWVDuc1U6ZM4enTpyxYsEDpUMyG0Y90g4KCeO+99wwu4W7duhVXV1csLS1RqVQy4ZqpTz75hJYtW+Lr62twhXEyi9sY222Wxs7ok66h3Zt77949+vTpw9ixY1m1ahVLlizBzs5O6bAkBS1cuJBLly4ZXKnEPXv2ULZsWXlfuJ4ZddKNiorir7/+MojiNkII1qxZg5ubG2+99RaxsbG0bNlS6bAkA5BZGOf777/n2LFjSofzD0NfCzFVRj2nO2rUKBwcHJg+fbqicVy7do3PPvuMq1evEhAQgJeXl6LxSIZp27ZtDBs2jMjISJydnRWN5f79+1SvXp0rV67IKzE9M9qRbnJyMsHBwQwaNEixGDIyMliyZAn169enUaNGREREyIQrZatTp0588sknBlEYZ82aNXz44Ycy4SrAaJPu5s2bqVevnmJbLc+fP0/r1q0JDAzk4MGDTJkyRRaokd7om2++QQjBtGnTFItBFrdRltEmXaV+aNLT05k7dy5NmjSha9euHDt2jLp16+o9Dsk4FSpUiODgYFasWMG2bdsUiSEiIoLnz5/TvHlzRfo3d0ZZ8CYhIYGoqCi6du2q135jY2Px9fXFzs6O06dPU7VqVb32L5kGZ2dnQkND+eijjzh16hSVK1fWa/+yuI2yjPJfPbO4TZEiRfTSX0pKClOnTqVt27YMGzaMPXv2yIQrFcg777zDpEmT8PHxITk5WW/9JiYmyuI2CjO6pKvv4jYnTpygXr16xMbGEh0dja+vr9zCK2nF559/TtWqVRkzZoze+ty4cSONGzeWdT8UZHRJd9++fTg4OFCvXj2d9vP8+XPGjBlDt27dmDFjBps2baJcuXI67VMyLxYWFixbtowDBw6wcuVKvfQpi9soz+iSrj5u6N67dy9ubm48ePAAlUpFjx495OhW0onMwjjjx48nLi5Op31dvHiR+Ph4WdxGYUa1OeLBgwdUrVpVZ8VtHj16xPjx49m7dy9LliyhY8eOWu9DkrKyevVqvvnmG8LDw3V27+zXX39NYmIiP/zwg07al3LHqEa6QUFBdOzYUScJd/PmzdStW5ciRYoQFxcnE66kV/3796dNmzYMHjxYJ4VxMovbyKkF5RlV0tXFvbl37tyhZ8+eTJgwgeDgYBYvXmyQJfgk07dgwQKuXr3K/Pnztd727t27KV++PK6urlpvW8obo0m6UVFRPHz4kNatW2ulPSEEK1euxN3dnWrVqhETEyNvFpcUZWNjw7p165gzZw5Hjx7VatuyuI3hMJo53ZEjR+Lk5KSV7ZNXr17l008/5datW/j7+9OgQQMtRChJ2rFjxw6GDBlCZGQkLi4uBW7v3r171KhRQxa3MRBGMdJNTk4mJCSEgQMHFqidjIwMFi9eTP369WnWrBnh4eEy4UoGp2PHjgwePJg+ffqQnp5e4PbWrFlD586dZcI1EEaRdDdt2kT9+vULVNzm3LlztGjRgjVr1nDkyBG++uorChcurMUoJUl7pk2bhpWVFVOnTi1QO7K4jeExiqRbkB+atLQ0Zs+eTdOmTenZsydHjhyhdu3aWo5QkrSrUKFCrFmzhtWrV7N169Z8txMeHk5SUpJcrzAgBl/wJiEhgejoaLp06ZLn10ZFReHr64ujoyMRERF6LywiSQXh5OREaGgoXbt25cSJE/mq95G5gCY39xgOgx/pLl++nL59++apuE1ycjKTJ0+mQ4cOjB49ml27dsmEKxmlJk2aMHnyZHr06JHnwjiJiYmsXbtWFrcxMAaddNVqdZ6L2xw7dgxPT0/++OMPYmNjGThwoPwtLxm1UaNGUb16dUaPHp2n123YsIEmTZpQvnx5HUUm5YdBJ919+/bh5OSEp6fnG8999uwZo0ePpkePHnz77bds2LCBMmXK6D5ISdKxzMI4R44cITAwMNevkwtohslg5nTv3IHbtyElBeztoXLl3N/QvXv3boYOHUrLli1RqVQ62SYsSUoqUaIE69evp2XLltSrVw8PD49/D6amQkICPHoENjbg4sKFZ884e/YsH3zwgVIhS9lQNOmmp8PWrTBnDkRHa35eLCxA88y+DFJT3+Grr/pn+/oHDx4wfvx4Dhw4wK+//kqHDh30Fbok6V3dunVZuHAhPj4+REREYPfkCSxeDEuWaD40mU+CSEnBpnRp5nh7Yy2n1gyOYjvSTpyALl0gORmePs36HEvLNKytC9OjByxbBi8+93HDhg2MGjUKHx8fvvvuO4oXL66fwCVJYaM/+4wPt2+n7Z07WIDm8jAL6mLFKFSkCGzaBM2a6TVGKXuKJN1du6BbN0hMzN35RYtC/fqwdy88eHCLkSNHEh8fj7+/P02bNtVtsJJkSNLSULdrR+qRI9hmZOTuNUWLQmgoyKkGg6D3hbSYGOjePfcJFzTnRkYKmjZNwN3dg1q1ahEdHS0TrmR+BgygUHh47hMuaD5AvXpBRITu4pJyTe8j3ebN4ciRrI48AHyB3YAj8D3Q96UzLC0TWbHiOv3719R1mJJkeKKi4N13sx2xhAAzgKtAGSAQeGlSoVEjOHlSx0FKb6LXke6lSxAent3REYA1cAdYA3wGxL9yji1btsiEK5mpefOynb/dA0wElgNPgcPAa/vXYmPh3DldRijlgl5HumPGwM8/Q1raq0eeA6UAFZCZVD8GygOzXzrTxgauXwdHR93GKkkG5dEjKFtWs/KchXfQXCfmeFeulRX4+cEvv2g/PinX9DrSDQvLKuEC/AkU4t+EC+DB6yNdTdLNenpCkkzYsWMv377zAjUQAdwDqgMVgJFA0qsnZt6jKSlKr0n38ePsjjwDXq31aYfmQull6enw8KF245Ikg/fgAWSzeHYHSAPWA0eAaCAKmJXVydndnynpjV6TrmW2vRUHnrzyd0+AEq+daWGRUzuSZKIsLTU//Fmw/fu/o4CyaJahxwHbszpZbpZQnF7TV6lS2R2pCaQD51/4uxig7mtnFiok53MlM+TomG3CLIVmSiFX6dTeXnsxSfmi16Tbvz9kXaGxGNANmIpmUe0YsAXNYtrL0tKgZUvdxShJBql588z98VkaBCwC7gIPgQXAa1shbGygXz8dBSjlll6T7tChkP29Ej+jmfp3BvoAv/DqSNfKCj7+GOSOX8ns2NrCoEGQzSOmpgAN0Vwz1gbqAZOzOvGzz3QVoZRLet8c0bkzbN+e4y/tbNnaQmQkyKftSGbpwgVwc8v2trEcWVpCmzawe7f245LyRO9LUosWQcmSeX9dsWKaX9Iy4Upmq3p1GDtWU0shr0qU0FQjkxSnSMGb6GjNvOzTp9neBfOSYsU0BXICA+WdC5KZEwKGDIHg4NwVMLGw0CTcffvAy0v38UlvpEgK8/SEM2c0/7W11czVZqV4cU3CnTwZVqyQCVeSsLCApUthxgzNByS7BY5ChTQjYnd3TaEbmXANhmL1dDPFxcH8+Zpf3Onpmp+V1FSoWRMmTtQUR8rP1ZQkmbykJFi3DmbPhj/+0OxYU6s1H6JevWDcOHjxCROSQVA86WYSQnO1lJKimfPNbvQrSVIW0tPhyRPNbWFFi8pNEAbMYJKuJEmSOZCzpJIkSXokk64kSZIeyaQrSZKkRzLpSpIk6ZFMupIkSXokk64kSZIeyaQrSZKkRzLpSpIk6ZFMupIkSXokk64kSZIeyaQrSZKkRzLpSpIk6ZFMupIkSXokk64kSZIeyaQrSZKkR/8PySxf/DS/jvYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Independent set of 1-th most likely outcome\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAADnCAYAAAC9roUQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA4jklEQVR4nO3dd3hU1dbA4V9CIISWQApVOkhJA0IAkd5EFBBCRykJiDQpCheRJqhw+RAQURQSQkuhEy6995KEtImItNCrdNIn+/tjjFImIWVmzpT9Pk+ee805s88Kk1nZZ5d1rIQQAkmSJMkgrJUOQJIkyZLIpCtJkmRAMulKkiQZkEy6kiRJBiSTriRJkgHJpCtJkmRAMulKkiQZkEy6kiRJBiSTriRJkgHJpCtJkmRAMulKkiQZkEy6kiRJBiSTriRJkgHJpCtJkmRAMulKkiQZkEy6kpRL9+/DnDlQowaUKgUlSkC5ctC3L0RGKh2dxJ9/wvDh8NZbYG8PDg5QuTL85z9w7ZrS0WEli5hLUs7cvQsjR8LWrWBlBUlJLx8vUABsbTWf74ULoW1bRcK0XFFRmmQbEwPp6ZCW9vJxW1vN/zZrBr/8AtWrGz5GZNKVpBy5eFHzWb13T/N5fhM7O03iHTJE/7FJwI4d4OMDiYlvPtfaGooVgz17wNtb/7G9QiZdSXqDu3fBwwPu3IHcfFrs7GDFCujRQ3+xScDx45rbildvPd6keHE4fRpq1dJPXFmQSVeS3qBLF01H6tW71Zyws4MbN6BkSd3HJaG57ShXTnMLkltWVlCnDqhUuo8rG3IiTZKycfs27NqVVcJtCRQGiv399fZrZ1hZwfLl+ozQwm3bBsnJWg8lAO8DJYEywEjgpZEhIeDyZYPPfsqkK0nZ+O03TeLM2k/As7+/zr12NDER5s2DjAz9xGfx/vtfePpU66HhgAtwC4gGDgE/v3pScrLmDTIgmXQlKRvLlmXZkcqxJ0/gzBndxCO94P79bHupl4GeaO5FygDvAfGvnpSRARs2GPSvoky6kpSNv/560xmTACegKXBQ6xnW1nDrlk7DkkAzs1moUJaHPwdCgETgBrADTeLVKovesj7IiTRJykahQtlNoJ0C6gCF0Hy8R6K5ka32ynmPAV9gg36CtFD1gAOAfRbHzwL9gRhADQwAlgOvjRYVLgxXroCLi54ifZns6UpSNooWze5oI6A4YIvmI90U2P7aWfb29uzZsx4hhPzS4deZixexz+INygA6AN2A58B94CEwUdvJqamaXWsGIpOuJGWjcePcnG0FvH7jmJwM9erpKiLpHxUrQsGCWg89AK6hufewBRyBQWj7kwhUrZrtMIWuyaQrSdn48kvN5qXXPQJ2AcloFiKtAQ6j6V/9y9oaPvwQHB31G6dFsrGBESP+3d77AiegCvALmnfnEbAC8Hj1xGLFNDUZDEiO6UpSNjIyBE5OiTx8+Opt7D00q0D/AAoAtYCZQLuXzipSBA4cUGS3qUVIungRm7ffpqBa/dqxaGAMmjHdAkArYDGaZWT/KFJEs7GiSBG9x5pJ9nQlKQuXL1+mQ4f22NtPp3DhV5cUOQPhwFM0/aiTvJpwCxfWDE80bGiIaC3P4cOH8ejYkYOVKpFhZ/facU8060keohnTXYeWhDt5skETLsikK0mvUavV/PjjjzRs2JC2bdty/vz3TJ5snavPprV1KlWrCrZsedPmCim3njx5wvDhw+nbty///e9/aXfuHNZNm+YueRYpoimKMWmS/gLNgky6kvSCs2fP0qxZM9atW8exY8eYOHEiNjY2fP01zJ2r6b0WKpT1QnorKyhaVGBnF4Ov79IsxoOlvNq+fTuurq6kpqaiUqno2rWrZmx3+3bo1g2KFEFtnU1aK1hQUxBjxAjN/mwl/iIKSZJEamqqmDVrlnB0dBSLFy8WarVa63nXrwvRuPFeYWubKEqUEKJ4cSGKFROiRAkhChcWonNnIQ4fFuLPP88LZ2dncfLkSQP/JObp3r17on///qJKlSpi7969WZ8YFSW2OTmJ9EKFNG9KsWL/vkFFiwoxcqQQf/5puMC1sDF8mpck4xIZGcngwYMpV64cZ86coWLFilme6+KSRkJCf8LDD3D/fi3u3NEs8yxZUjN2W6ZM5pnV+fXXX+nZsyeRkZE4OTkZ5GcxN0II1q5dy5gxY+jTpw9xcXEUzWbx9FlbW/wKFuTqzZtw6hQ8eKBZQuLoqCmIbODxW21k0pUsVlJSEtOnTycwMJD/+7//o3///li94XZzx44dVKtWDTe3N9dg/eijjzh+/Dj9+/dn27ZtFChQQFehW4SbN2/y2WefceHCBTZt2kTjHCyaDggIYMCAAdg4OsL77xsgytyTY7qSRTp8+DAeHh4kJCQQGxvLxx9//MaEC+Dv78/gwYNzfJ3vv/+exMREZs2alZ9wLYoQgmXLluHh4YGnpydnzpzJUcJNS0tj1apVDBo0yABR5oOigxuSZGCPHz8Wn332mShXrpzYtGlTrl578+ZN4eDgIJ4+fZrr15UtW1bs3LkzV6+zRBcvXhStW7cWXl5eIiYmJlev3bhxo2jWrJmeItMd2dOVLIbWme9cWLVqFd26daNYLpcklC1blqCgIAYMGMDVq1dz9VpLoVarmT9/Pt7e3nTs2JETJ07g7u6eqzYCAgJydReiGKWzviTp24sz33v27MlTGxkZGaJmzZri2LFjeY5j9uzZolGjRiIlJSXPbZijuLg40ahRI9GiRQtx/vz5PLVx48YN4eDgIJ49e6bj6HRP9nQlsyWEIDQ0FDc3N5ycnIiLi6NtHp+Lfvz4caysrGjSpEme45kwYQKlS5dm/PjxeW7DnKSmpjJjxgxatWrFoEGD2L9/P9Xz+Fj0lStX4uPjk+3KBmMhVy9IZikvM9/Z8ff3x9fXN0eTbVmxsrJixYoVeHl5ERISQu/evfMVkykLDw9n8ODBVKpUiaioKCpUqJDntoQQBAQEsHLlSh1GqEdKd7UlSZcyMjLE0qVLhZOTk5gyZYpITk7Od5tPnjwRDg4O4tatWzqIUIioqCjh5OQk4uPjddKeKXn+/LkYP368KF26tAgKChIZGRn5bvPw4cOidu3aOmnLEGRPVzIbly5dYsiQITx+/Jh9+/bleiImK2vXrqVFixaU+XfnQ754enoyZ84cunfvzunTpylevLhO2jV2Bw8exM/PD29vb+Li4nB2dtZJu7q4CzEopbO+JOVXenq6+OGHH4Sjo6P473//K9LS0nTa/jvvvCO2bNmi0zaFEGLw4MGiV69eJtNDy6tHjx6JoUOHigoVKoiwsDCdtv348WNhb28v7ty5o9N29UlOpEkmTaVS0bRpU7Zs2cKJEyf48ssvsbHR3Q3c2bNnuXz5Mu/rYXfTTz/9xLlz5/jpp5903rax2Lp1K66urlhZWaFSqfjwww912n5oaCitW7fGxUDPN9MJpbO+JOVFSkqKmD59unBychJLlizJskBNfn355Zdi4sSJemlbCCEuXLggnJ2dxYkTJ/R2DSXcvXtX9OnTR1SrVk3s379fb9dp3Lix+N///qe39vVBJl3J5Jw+fVq4urqKTp06iWvXruntOqmpqaJ06dLijz/+0Ns1hBBi8+bN4q233hJ3797V63UMISMjQ6xZs0aULl1afPHFF+L58+d6u1Z8fLwoV66czoeT9E1OpEkmIzExkalTp7Jq1Srmz59Pnz599Dp5sm3bNmrUqMHbb7+tt2sAdOnShePHj9OvXz927NhhsoVxrl+/zmeffUZCQgJhYWF46/kZRf7+/priNjocTjIEOaYrmYSDBw/i7u7OjRs3UKlU9O3bV++z1YbcVvrtt9+SmprKN998Y5Dr6VJGRga//vor9erVo2HDhkRGRuo94aamprJ69WrjL26jjdJdbUnKTubMd/ny5fWygiAreS1ukx+3bt0S5cqVEzt27DDYNfPr/PnzomXLlsLb21vExcUZ7LobNmwQzZs3N9j1dEn2dCWjlTnzDRAfH0/nzp0Ndu2VK1fSvXv3XBe3yY8yZcoQHBzMwIEDuXLlisGumxfp6en83//9H40bN6Zz584cP378n/fKEEymuI02Smd9SXqVoWa+s5JZ3Ob48eMGv7YQQsydO1c0bNhQJ7vp9CEmJkZ4eXmJ1q1bi4sXLxr8+tevXxclS5Y0ieI22siermQ0hBAEBQXh5uZGuXLliI2NpVWrVgaP49ixY1hbW+e7XkNejR8/ngoVKjBu3DhFrp+VlJQUpk2bRps2bfj000/Zu3cvVatWNXgcplTcRhvTmvaTzJahZ76zo/S2UisrK5YvX46Xlxdr1qyhX79+isTxopMnT+Lr60v16tWJjo6mfPnyisQh/i5us3r1akWurxNKd7Uly6ZWq8WSJUuEk5OTmD59uuK1Zp88eSLs7e3F7du3FY1DCCGio6OFk5OTUKlUisXw7NkzMXbsWFGmTBkREhKi+JblQ4cOiTp16igeR37Inq6kmAsXLjBkyBASExM5cOCAQSdishIaGkqrVq0oXbq00qHg4eHB3Llz6d69O+Hh4QYvjLNv3z6GDBlC06ZNiYuLM4onGit9F6ITSmd9yfKkpaWJuXPnCkdHRzFv3jyRnp6udEj/aNKkidi6davSYbzEz89P9OjRw2C9u4cPHwo/Pz/x1ltviW3bthnkmjmRWdzG1HfuyYk0yaBiY2Np0qQJ27dv59SpU4wbN85odmCdPXuWhIQE3nvvPaVDecmiRYu4cOECP/74o96vtWXLFlxdXSlYsCAqlUovhX7yKiQkhDZt2uisJKRilM76kmVITk4WU6dOFU5OTmLp0qVGOSY3fvx48Z///EfpMLS6ePGicHZ2ztcz2rJz+/Zt0bNnT1GjRg1x6NAhvVwjv7y9vY2q551Xsqcr6d3JkyepX78+UVFRREdH4+fnZ3Rjcmlpaaxatcpot5VWrVoVf39/evXqxd27d3XWrhCC1atX4+7uTuXKlYmJiaF58+Y6a19XVCoV169fp3379kqHkm9yIk3Sm+fPnzNlyhSCgoJYuHAhPXv2NLpkm+l///sfb7/9NjVr1lQ6lCx9+OGHHD9+nL59+7Jr1658D8tcvXqVYcOGcePGDbZt24aXl5eOItW9gIAABg4caHLFbbSRPV1JL/bt24ebmxt3795FpVLRq1cvo024YDrbSmfOnElGRgbTp0/PcxsZGRn88ssvNGjQgHfeeYeIiAijTrgmXdxGG6XHNyTz8uLMt6kUl75x44ZwcHAwmW2lt2/fFuXLl8/T+Oa5c+dEs2bNRJMmTUzmwZjr168XLVq0UDoMnZE9XUlnXp357tSpk9Ih5YipbSstXbo0ISEhDBo0iISEhBy9Jj09nTlz5vDOO+/g4+PDkSNHqFOnjn4D1RFTuQvJMaWzvmT6Mme+q1evLg4ePKh0OLmSkZEhatSoYZKPy5k3b55o0KCBSEpKyva86OhoUb9+fdG2bVtx6dIlA0WnG5nFbfT5BApDkz1dKc/EKzPfsbGxtGjRQumwcuXo0aPY2NjQqFEjpUPJtbFjx1K5cmXGjBmj9XhycjJff/017dq1Y+TIkezevZsqVaoYNsh8WrFiBT169KBIkSJKh6Izpj8VKCkic+b7+vXrRj/znR1T3lZqZWVFQEAAXl5erFq1io8//vifY8ePH8fX15fatWsTExND2bJlFYw0bzIyMggICCAoKEjpUHRL6a62ZFrUarVYvHixcHJyEjNnzlS8QE1+ZG4rvXPnjtKh5EtsbKxwcnISsbGx4unTp2L06NGibNmyYt26dUa5CSWnDh48KOrWrWvSP4M2sqcr5diff/6Jn58faWlpHDp0yGQmYrISGhpK69atcXFxUTqUfHFzc2PevHm8//77WFtb06pVK+Li4nB0dFQ6tHwx5buQ7MgxXemNXpz57t69O0ePHjX5hAv/fqhN3cOHDzlw4ACPHj2iYsWKLF++3OQT7uPHjwkLC6N///5Kh6JzMulK2YqJiaFRo0bs3buX8PBwPv/8c6MpUJMf8fHxXLt2jQ4dOigdSr5s3LgRV1dXihUrxqVLl0hMTGTBggVKh5VvISEhtG3b1vSL22ij9PiGZJySkpLE5MmThZOTk/D39ze7cbVx48aJSZMmKR1Gnt26dUt0795dvP322+LIkSP/fP/SpUvCxcVFHD16VMHo8q9hw4Zi+/btSoehF7KnK73m+PHj1KtXj/j4eGJiYhg8eLBZjauZ8rZSIQQrVqzA3d2dmjVrEh0dzbvvvvvP8SpVqhAQEEDv3r11WhjHkOLi4rh586ZZFLfRRk6kSf949uwZkydPZt26dfz44490797drJJtpv/973/UqlWLGjVqKB1KriQkJPDpp59y9+5ddu3aRb169bSe16lTJwYMGECfPn3YvXu3yQ0HZRa3MbW4c0r2dCUAdu/ejZubG48ePSIuLg4fHx+zTLhgettKMzIyWLRoEV5eXrRs2ZLTp09nmXAzzZgxAysrK6ZOnWqgKHUjNTWVNWvWmORdSI4pPb4hKevBgwdi4MCBomLFimLHjh1Kh6N3mdtKTaW4zdmzZ0XTpk1F06ZNxdmzZ3P12jt37ogKFSqIsLAwPUWne+vWrRMtW7ZUOgy9kj1dC7Zx40bq1q1L0aJFUalURveYGn0wleI2aWlpfPfdd7z77rv07t2bw4cPU6tWrVy14eLiQmhoKL6+vly6dElPkeqWqd2F5InSWV8yvMyZ75o1a4rDhw8rHY7BZGRkiOrVq4uTJ08qHUq2zpw5Izw9PUWHDh1EQkJCvtubP3++qF+//hsL4yjt2rVrZlfcRhvZ07Ug4oWZ7xo1ahATE0OzZs2UDstgjhw5QqFChfD29lY6FK2Sk5OZNGkSHTp0YMyYMezYsYNKlSrlu93PP/+catWqMXr0aB1EqT8rVqygZ8+eZlXcRhu5esFCvDjzvXPnTurXr690SAZnzNtKjx49iq+vL+7u7sTGxlKmTBmdtW1lZcWyZcto2LAhK1asYMCAATprW1cyi9uEhIQoHYr+Kd3VlvRLrVaLH3/8UTg6OorvvvtOpKamKh2SIh49eiTs7e3F3bt3lQ7lJU+ePBEjRowQ5cqVExs2bNDrteLi4oSTk5OIiYnR63XyYv/+/cLNzc3sNuFoI3u6ZuyPP/7Az88PIQRHjx7N9USMOQkNDaVNmzZGta10586dfPrpp7Rp0waVSkXJkiX1ej1XV1fmz59P9+7diYiIwN7eXq/Xy43MCTRjvAvROaWzvqR7qamp4ttvvxWOjo5i0aJFQq1WKx2S4ry9vfP0TDF9uH//vvjkk09E5cqVxe7duw1+/WHDholu3boZTa/y4cOHwt7eXty7d0/pUAxCTqSZmaioKLy9vTl06BARERGMHDkSa2vLfptVKhXXr19XfFupEIL169fj5uaGg4MDcXFxtGvXzuBxLFiwgKtXr/LDDz8Y/NrahISE0K5dO5ycnJQOxTCUzvqSbiQlJYn//Oc/wtnZWQQGBhpNL8YYjB07Vnz11VeKxnDz5k3x0UcfiVq1aoljx44pGosQQiQkJAgXFxejWDLo5eVlERtzMll2F8hMHD16FA8PDy5cuEBsbCwDBgywjLGxHFC6uI0QgoCAADw8PKhbty5RUVG88847isTyokqVKhEYGEifPn24ffu2YnHExsZy+/ZtRXr8SpETaSbs6dOnTJo0iY0bN/LTTz/RrVs3pUMyOlu3bqVOnTpUr17d4Ne+fPkyQ4cO5eHDh+zZswcPDw+Dx5Cdjh07MnjwYHr37s3evXuxsTF8OjD34jbayJ6uidq5cyeurq4kJiYSHx8vE24WlNhWqlarWbhwIQ0bNqRdu3acPHnS6BJupmnTplGoUCG+/vprg187JSXF/IvbaKP0+IaUO5kz35UqVRK7du1SOhyjllncxpDbSuPj40WTJk1Es2bNxLlz5wx23fy4e/eueOutt8SWLVsMet21a9eKVq1aGfSaxkD2dE2EeGXmW6VSKT4bb+xWrFhBjx49DLKtNC0tjVmzZtGiRQs+/vhjDh48SM2aNfV+XV1wdnYmNDQUPz8/Ll68aLDrWkRxG22UzvrSm704823qj2ExFLVaLapVqyZOnTql92tFREQId3d30bFjR3HlyhW9X09fFi5cKDw9PUViYqLer3X16lVRqlQpg1zL2MierhETL8x816lTh6ioKJo2bap0WCbh8OHD2NnZ0bBhQ71dIykpiYkTJ/L+++/z5Zdfsm3bNipWrKi36+nbqFGjqFmzJqNGjdL7tQIDA+nVqxd2dnZ6v5axkasXjFTmzPeDBw/YvXs3np6eSodkUvS9rfTQoUP4+fnRoEED4uLicHFx0ct1DCmzMI63tzfLly/X2wRXRkYGy5cvZ+3atXpp3+gp3dWWXpaeni4WLFggHB0dxezZs0VaWprSIZkcfRa3efz4sRg2bJgoX7682Lx5s87bNwYqlUo4OTmJqKgovbS/b98+4e7ubrEbeGRP14j8/vvv+Pn5YWNjw/Hjx01mIsbYhISE0LZtW50Xt9m+fTvDhg2jQ4cOqFQqHBwcdNq+sahbty4LFy7Ex8eHiIgInf+cFlXcRhuls76kKVAzc+ZM4ejoKBYvXiwL1ORTw4YNxfbt23XW3r1790S/fv1E1apVxd69e3XWrrEbMWKE6NKli057pJnFbe7fv6+zNk2NnEhTWEREBF5eXhw7dowzZ84wfPhwiy9Qkx9xcXHcvHlTJ8vphBCEhobi5uaGi4sLsbGxtGnTRgdRmoZ58+Zx69Yt5s6dq7M2g4ODad++PY6Ojjpr0+QonfUtVWJiovjyyy+Fi4uLWLVqlcWOb+namDFjxOTJk/PdzvXr10Xnzp1FnTp1xIkTJ3QQmWm6cuWKKF26tDh48KBO2mvQoIHYuXOnTtoyVbJLpYBDhw7h7u7OlStXiIuLo3///pY7vqVDqamp+d5WKoRg6dKleHp6Uq9ePc6cOUPjxo11GKVpqVixIitWrKBv377cunUrX23FxMRw9+5d2rZtq6PoTJOcSDOgJ0+eMHHiRMLCwli8eDFdu3ZVOiSzEhYWRt26dalWrVqeXn/x4kWGDBnC06dP2b9/P25ubjqO0DR16NCBIUOG0Lt3b/bt25fnwjiWWNxGG9nTNZDt27fj6upKWloa8fHxMuHqQV63larVan744QcaNWpEp06dOHHihEy4r5gyZQqFCxfmq6++ytPrU1JSCAoKYuDAgboNzBQpPb5h7jJnvqtUqWJRM9+Gdu3atTwVt4mLixPe3t6iRYsW4vz583qKzjzcu3dPVKxYUWzatCnXrw0NDRWtW7fWfVAmSPZ09US8MvMdFxdnUTPfhpa5rTSnxW1SU1OZMWMGrVq1wtfXl/379ytSc9eUODk5sXbtWoYOHcqFCxdy9Vp/f398fX31FJmJUTrrmyM5821YarVaVK1aVZw+fTpH5586dUq4urqKDz74QFy7dk3P0ZmfRYsWCQ8PjxwXq7ly5YrFFrfRRvZ0tcnIgMePITERhMjxy8QLM9+enp4WP/OtN+np8PAhpKYCmtUgRYsWxcvLK9uXJSYm8sUXX9C5c2e++uorwsLCqFChgiEiNisjRoygdu3ajBgxQuvxlBTN26NWa/47MDCQ3r17W2RxG62UzvpGIzVViNBQIerXF8LaWoiCBYWwsRGiUCEhevcWIjw825dfuHBBtGrVSnh5eYmYmBgDBW1BHj4UYv58ISpUEMLKSvO+WFsL4eAgttapI5ZNnZrty/fv3y+qVasm+vbtq5eaDJbm6dOnonbt2mLZsmVCCCEuXRJizBghSpTQvC2FCmnepkqVMkSpUlPFwYNnFI7YeMikK4QQv/0mhIODEMWLC6Hp2778ZW0tRJEiQtSpI0Rs7EsvTU9PF/PmzROOjo5i7ty5skCNrqWmCjFihBCFC2veAy3vTzKIDFtbITp2FOKvv156+aNHj8TQoUNFhQoVRFhYmEI/hHn6/fffRalStYS392NRuLAm0Wr7+FhZPRd2dhli3Dgh0tOVjlp5MulOnJjlh1nrV9GiQhw6JISQM996l5QkRPPmOX9/ChUSomJFIa5fF0IIERYWJipUqCA+/fRT8ejRI4V/GPNz+bIQDg6JAlJy9PYUKSJE+/aav6OWzLKT7vz5uUu4f39lFC0qFg8fLpycnMSSJUtkgRp9UKuF+OADIezscvf+2NiItMqVxWAfH1G9enVx4MABpX8Ss/TXX5q/b9bWuXt77Ow0o3WWvOvdSohczBSZkzt3oHJlSE5+6ds/AYFAHNDn7///qgzggr09RVQqORGjL1u3Qp8+8Py51sPnATfAB1j9yrFk4FijRjTZv98gz0ezRJ9/DkuW/DOX+YJir/x3EjAcWPTPd4oWhS1bwFJXUFru6oXffgMt9Q7KAV8D2e1rsgZqpKZS4elTPQUnMWdOlgkXYASQ1YN4CgNtzp2jSMGC+ojM4iUlQUCAtoQL8OyFrzuAHdDjpTOeP4f/+z99R2m8LDPpqtXw44+a355XdAO6Am8qPGeVlgYLF+ohOImLFyEyMsvDIYADkG1HSa3WdKckncv5U3bWAy5As9eOHDwIN27oLiZTYplJ98wZzWLC/EhPh3XrdBOP9LItWzRrpbV4AkwF5r2pjadPYdUqHQcmAaxcCc+e5eTMFcAnwOt3lNbWmhEkS2SZSffePc27nl9yeEE/bt/O6t6VKYAv8FZO2rlzR4dBSZly9s96FTgEDNB6NDkZ7t/XYVAmxDJLO2bRi8qt9LQ0Cso6uDo3F/hCy/ejgb1AVA7bCT91Cm/5/uiBCqj7hnNWAu8CVbQeFeLfHWuWxjKTbqlSudremxWbEiUQjx/rICDpJXPmwNdfa4ZwXnAQSAAq/v3fzwA18DtwRkszDd97D7Fjh/7itFDNmsHRo286ayXwnyyP2tpqPoaWyDKHF+rXz7K3m45myZH676/kv7/3GmtraNdOXxFatnbtoFCh1749FLiIpscbDQwDOgG7tLVRrBh066a3EC3ZRx9B9ivxjgM3eHXVwousrCz342OZSbdwYRg8GLQsKZqFZpHLbDTrP+3+/t5r7OzgC203wVK+1a+vWUP9iiJAmRe+iqFZHqb1QesZGdC3r/5itGCDBr1phG4FmnVAxbM8w9UVatXScWAmwjKTLsDo0aDlsSHTAfHK13Rtry9bFho10l98Fi7+gw94/obx2Om8vjECABsb+PhjzSp8SedKltTcRGQ9F/0rkPXKkWLFYOJEfURmGiw36VarpvmTnZcdS3Z28OuvWjdXSPnz6NEj/Pz86BIUhLpSJa13I29UogRMmaL74KR/fPstFM+6I5ulQoWgbl3o0kX3MZkKy026AIsWafYi5ibx2tlp9j+2bq2/uCzU5s2bcXV1xdbWljPx8ZQID4cKFbSO72qjBtRFi8L+/VC+vH6DtXCVK8Pu3ZrEm9O+h60tVKkCO3dqbkYsleXWXsikVsO4cfDbb6SlpVEwq3UsxYpp7qeCgqBTJ8PGaObu3LnDqFGjiI6OZtmyZTRv3vzfg48eQdeuEB6u2dCSzfvzrEgRPrCxYUNsLI6Ob9pTKOlCfDx07AgPHwqePRNo68fZ2GhuWJo1g/Xr89ZDNieW3dMFzbjuwoWknj3LQltb1CVKaBKsvb3mNrVwYc2o/y+/wN27MuHqkBCCVatW4e7uTtWqVYmJiXk54QI4OGj2jJ44oRmntbPTfGoz3x9bW+jQAbZsodjt29Tv1YuPP/6YDB2txZayV7cuJCTAJ59sxcXld2xtNW+Lvb3mbbKz04ziRUTArl0y4YLs6f5j/fr1LF68mAO7d8OlS5rnjRQqBM7O8FaO9j9JuXD16lWGDRvGzZs38ff3p0GDBjl74bNncOUKPHmimSgrXx5e6NWmpaXRqlUr3nvvPb7++ms9RS+9qn79+syZMwdPz3bcvKl50pW9PVSqJOczX6NgWUmj0rFjR7Fy5UqlwzB7arVaLF68WDg5OYlZs2aJVD1UtL5+/booU6aM2LNnj87bll535swZUbFiRVlXOodkTxe4fv067u7uXL9+XdZf1aNz584xZMgQ0tPT8ff3p3bt2nq71v79++nXrx/h4eGy5rGejRo1CkdHR6ZPn650KCZBjumieVppr169ZMLVk/T0dGbPnk3Tpk3x8fHhyJEjek24AK1bt2b06NH07NmT1CyK50j5l5ycTHBwMIMGDVI6FJNh8Uk3IyOD5cuXM3hwdmXLpbyKjo6mUaNG7N+/n4iICEaPHk0BLZtS9GHixIk4OjoyYcIEg1zPEm3evJl69epRqVIlpUMxGRafdA8dOkTRokXx8vJSOhSzkpyczOTJk2nfvj2jRo1i165dVNaytVefrK2tWblyJWFhYazNeeVtKRf8/f3x9fVVOgyTYsFLlDUCAgIYPHgwVnJ3mc4cP34cX19fateuTUxMDGXLllUslpIlS7J+/Xo6dOiAu7s7tSx1w78eJCQkEBUVRdeuXZUOxaRY9ETao0ePqFy5MhcuXMDJyUnpcEzes2fP+Oqrr1i/fj2LFi2ie/fuSof0j6VLl7JgwQJOnTpFsWKvPjxRyovp06fz119/sWjRojefLP3DoocXQkJCaNeunUy4OrB7927c3Nx48uQJKpXKqBIugJ+fHw0bNuTTTz/FgvsZOiPnQvLOopOuHI/KvwcPHjBo0CCGDh3KkiVLCAwMpJQRVqe2srLi559/RqVS8csvvygdjsnbt28fjo6O1KtXT+lQTI7FJt3Y2Fhu375NO0utpKwDGzZswNXVlWLFihEXF0eHDh2UDilbRYoUYf369UybNo3Tp08rHY5JCwgIkB2WPLLYMd0xY8ZQvHhxZs6cqXQoJuf27duMHDkSlUrFsmXLePfdd5UOKVc2btzIuHHjiIyMlIVx8uDBgwdUrVqVy5cvU7JkSaXDMTkW2dNNSUlhzZo1ckF3LgkhCAwMxN3dnZo1axIdHW1yCRegW7du+Pj40L9/f1kYJw+CgoJ4//33ZcLNI4tMumFhYbi5uVG1alWlQzEZCQkJvPfeeyxcuJBdu3bx3XffUbhwYaXDyrPvv/+e58+fM2uW1ocxSdnw9/eXE2j5YJFJV45H5VxGRgaLFi3Cy8uLVq1acfr0abOYPClYsCChoaH8+uuv7N69W+lwTEZUVBQPHz6ktSzin2cWN6Z77do1PD09uX79OnZ2dkqHY9TOnj2Ln58f1tbWLFu2jLffflvpkHTu4MGD9O7dm/DwcN6SJTzfaOTIkTg7OzNt2jSlQzFZFtfTzSxuIxNu1tLS0vjuu+9o1qwZffv25dChQ2aZcAFatmzJ2LFj6dGjhyyM8wZJSUkEBwczcOBApUMxaRaVdOWC7jc7c+YM3t7eHD58mMjISEaMGIF11o99NQsTJkygdOnSfPHFF0qHYtQ2b95MgwYNZHGbfDLvT9MrDh48SPHixXP+lAILkpSUxKRJk+jYsSNjx45lx44dFvPhsrKyYsWKFWzbto2QkBClwzFacjORblhUwRtZ3Ea7o0eP4uvri7u7O7GxsZQuXVrpkAzOwcGB9evX0759ezw8PPRe79fUJCQkEB0dLYvb6IDFTKRlFre5ePGiXBD/t6dPnzJp0iQ2bdrETz/9xEcffaR0SIrz9/dn3rx5nD59WhbGecG0adN4+PAhP/74o9KhmDyLGV4IDg6mffv2MuH+bceOHbi6upKUlIRKpZIJ92++vr40btyYIUOGyMI4f1Or1SxfvlwOLeiIxSRdOR6l8ddff/HJJ58wfPhw/P398ff3lzuLXrF48WLOnj3L4sWLlQ7FKOzbtw9nZ2c8PDyUDsUsWETSjYmJ4e7du7Rt21bpUBQjhGDdunW4urpSqlQp4uLiLPrfIzt2dnasX7+eb775hpMnTyodjuLkZiLdsogx3c8//xx7e3u++eYbpUNRxK1btxg+fDjnzp3D39+fJk2aKB2SSdiyZQujR48mMjLSYmsu//XXX1SrVk0Wt9Ehs+/ppqSkEBQUZJELuoUQBAQE4OHhgaurK1FRUTLh5kKXLl3o3bs3/fr1Q61WKx2OIoKCgujUqZNMuDpk9kl3y5YtuLu7W1xxm0uXLtG+fXt+/vln9uzZw8yZM7G1tVU6LJPz7bffkpKSYpElQIUQsriNHph90rW08Si1Ws2CBQvw9vamffv2nDx5Uk6A5IONjQ0hISEsXbqUnTt3Kh2OQUVFRfH48WNatWqldChmxaw3R1y9epXw8HA2bdqkdCgG8fvvv+Pr60uhQoU4fvw4NWvWVDoks1CmTBmCg4Pp2bMnp0+fpmLFikqHZBD+/v4MGjTI7LeBG5pZ/2sGBgbSu3dvsy9uk5qaysyZM2nRogUDBgzgwIEDMuHqWPPmzRk/fjw9evQgJSVF6XD0LikpiZCQEIucC9E3s026llLcJiIigoYNG3LixAnOnDnDsGHDZM9ET7744gvKlSvH+PHjlQ5F7zZt2kTDhg0tpldvSGb76Txw4AD29vbUr19f6VD0IjExkQkTJtCpUycmTJjAtm3bZD1YPbOysmL58uXs3LmToKAgpcPRKzmBpj9mm3TNubjNoUOH8PDw4Nq1a8TFxdGvXz+z/DmNkYODAxs2bODzzz8nPj5e6XD04vLly8TGxtKlSxelQzFLZrk54uHDh1SpUsXsits8efKEiRMnsnXrVn7++Wc6d+6sdEgWKzAwkNmzZxMeHk7x4sWVDkenpk6dyuPHj1m4cKHSoZgls+zpBgcH06FDB7NKuNu2bcPV1RW1Wo1KpZIJV2EDBw6kWbNm+Pn5mVVhHLVaTWBgoBxa0COzTLrmVNzm/v379O/fn9GjRxMYGMhvv/2Gg4OD0mFJwKJFizh//jyLFi1SOhSd2bt3Ly4uLnJttx6ZXdKNjo7m3r17tGnTRulQ8kUIQUhICK6urpQuXZrY2Fj5BFYjU7hwYdavX8+sWbM4ceKE0uHohKVtJlKC2Y3pjh49mpIlSzJjxgylQ8mzGzduMHz4cC5evIi/vz+NGjVSOiQpG1u3bmXEiBFERkbi7OysdDh5llncJiEhQd5N6ZFZ9XSTk5NNuriNEIKlS5fi6elJvXr1OHPmjEy4JuDDDz+kX79+9O3b16QL46xZs4YPPvhAJlw9M6uku2XLFjw9PalSpYrSoeTaxYsXadOmDUuXLmX//v1Mnz6dQoUKKR2WlEMzZ85ErVab7B1WZnEbObSgf2aVdE3xl0atVvPDDz/QqFEjOnXqxIkTJ3Bzc1M6LCmXbGxsCA4OJiAggB07digdTq5FRkby9OlTWrRooXQoZs9sCt5cuXKFyMhItmzZonQoOaZSqfD19aVIkSKcPHmS6tWrKx2SlA+lS5cmODgYHx8fTp8+bVKPsM/cTCS3kOuf2fwLBwYG0qdPH5MobpOamsqMGTNo1aoVvr6+7Nu3TyZcM9GsWTMmTJiAj4+PyRTGSUpKIjQ0lAEDBigdikUwi6RrSsVtTp8+TYMGDYiIiCAqKoqhQ4fK3oWZGTduHBUrVmTs2LFKh5IjGzduxNvbW9buMBCz+LTv37+fkiVLGnVxm8TERMaPH0/nzp2ZPHkyYWFhVKhQQemwJD3ILIyzd+9eVq9erXQ4bySL2xiWWSTdzPEoY3XgwAHc3Ny4ffs2KpWK3r17ywI1Zq5EiRJs2LCBsWPHolKplA4nS5cuXSIuLk5uKzcgk98ckVnc5tKlS5QqVUrpcF7y+PFjvvzyS3bs2MEvv/zCBx98oHRIkoGtXLmSb7/9lvDwcEqUKKF0OK+ZMmUKT58+ZcGCBUqHYjFMvqcbFBTEe++9Z3QJd+vWrbi6umJtbY1KpZIJ10J98skntGzZEl9fX6MrjJNZ3MbUllmaOpNPusa2NvfevXv06dOHsWPHsmrVKpYsWYK9vb3SYUkKWrhwIZcuXTK6Uol79uyhbNmycl24gZl00o2KiuKvv/4yiuI2QgjWrFmDm5sbb731FrGxsbRs2VLpsCQjkFkY5/vvv+fYsWNKh/MPY58LMVcmPaY7atQoHB0dmT59uqJxXLt2jc8++4yrV68SEBCAl5eXovFIxmnbtm0MGzaMyMhIXFxcFI3l/v37VK9enStXrsg7MQMz2Z5ucnIywcHBDBo0SLEYMjIyWLJkCfXr16dRo0ZERETIhCtlqVOnTnzyySdGURhnzZo1fPjhhzLhKsBkk+7mzZupV6+eYlstz58/T+vWrQkMDOTgwYNMmTJFFqiR3uibb75BCMG0adMUi0EWt1GWySZdpX5p0tPTmTt3Lk2aNKFr164cO3aMunXrGjwOyTQVKFCA4OBgVqxYwbZt2xSJISIigufPn9O8eXNFrm/pTLLgTUJCAlFRUXTt2tWg142NjcXX1xd7e3tOnz5N1apVDXp9yTy4uLgQGhrKRx99xKlTp6hcubJBry+L2yjLJP/VM4vbFC5c2CDXS0lJYerUqbRt25Zhw4axZ88emXClfHnnnXeYNGkSPj4+JCcnG+y6iYmJsriNwkwu6Rq6uM2JEyeoV68esbGxREdH4+vrK7fwSjrx+eefU7VqVcaMGWOwa27cuJHGjRvLuh8KMrmku2/fPhwdHalXr55er/P8+XPGjBlDt27dmDFjBps2baJcuXJ6vaZkWaysrFi2bBkHDhxg5cqVBrmmLG6jPJNLuoZY0L13717c3Nx48OABKpWKHj16yN6tpBeZhXHGjx9PXFycXq918eJF4uPjZXEbhZnU5ogHDx5QtWpVvRW3efToEePHj2fv3r0sWbKEjh076vwakqTN6tWr+eabbwgPD9fb2tmvv/6axMREfvjhB720L+WMSfV0g4KC6Nixo14S7ubNm6lbty6FCxcmLi5OJlzJoPr370+bNm0YPHiwXgrjZBa3kUMLyjOppKuPtbl37tyhZ8+eTJgwgeDgYBYvXmyUJfgk87dgwQKuXr3K/Pnzdd727t27KV++PK6urjpvW8odk0m6UVFRPHz4kNatW+ukPSEEK1euxN3dnWrVqhETEyMXi0uKsrW1Zd26dcyZM4ejR4/qtG1Z3MZ4mMyY7siRI3F2dtbJ9smrV6/y6aefcuvWLfz9/WnQoIEOIpQk3dixYwdDhgwhMjKS0qVL57u9e/fuUaNGDVncxkiYRE83OTmZkJAQBg4cmK92MjIyWLx4MfXr16dZs2aEh4fLhCsZnY4dOzJ48GD69OlDenp6vttbs2YNnTt3lgnXSJhE0t20aRP169fPV3Gbc+fO0aJFC9asWcORI0f46quvKFiwoA6jlCTdmTZtGjY2NkydOjVf7cjiNsbHJJJufn5p0tLSmD17Nk2bNqVnz54cOXKE2rVr6zhCSdKtAgUKsGbNGlavXs3WrVvz3E54eDhJSUlyvsKIGH3Bm4SEBKKjo+nSpUuuXxsVFYWvry9OTk5EREQYvLCIJOWHs7MzoaGhdO3alRMnTuSp3kfmBJrc3GM8jL6nu3z5cvr27Zur4jbJyclMnjyZDh06MHr0aHbt2iUTrmSSmjRpwuTJk+nRo0euC+MkJiaydu1aWdzGyBh10lWr1bkubnPs2DE8PT35448/iI2NZeDAgfKvvGTSRo0aRfXq1Rk9enSuXrdhwwaaNGlC+fLl9RSZlBdGnXT37duHs7Mznp6ebzz32bNnjB49mh49evDtt9+yYcMGypQpo/8gJUnPMgvjHDlyhMDAwBy/Tk6gGSejGdO9cwdu34aUFHBwgMqVc76ge/fu3QwdOpSWLVuiUqn0sk1YkpRUvHhx1q9fT8uWLalXrx4eHh7/HEtNhYQEePQIbG2hdGl49uwCZ8+e5YMPPlAsZkk7RZNuejps3Qpz5kB0tOYXxsoKNM/syyA19R2++qp/lq9/8OAB48eP58CBA/z666906NDBUKFLksHVrVuXhQsX4uPjQ0REBE+e2LN4MSxZovnMZD4IIiUFSpWyxdt7DlZW8rl9xkaxHWknTkCXLpCcDE+faj/H2jqNQoUK0qMHLFsGLz73ccOGDYwaNQofHx++++47ihUrZpjAJUlhn302mu3bP+TOnbaAFSkp2s8rWlRN4cIF2LQJmjUzaIhSNhRJurt2QbdukJiYs/OLFIH69WHvXnjw4BYjR44kPj4ef39/mjZtqt9gJcmIpKVBu3ZqjhxJJSPDLkevKVIEQkNBjjQYB4NPpMXEQPfuOU+4oDk3MlLQtGkC7u4e1KpVi+joaJlwJYszYACEhxfIccIFzeenVy+IiNBjYFKOGbyn27w5HDmi7cgDwBfYDTgB3wN9XzrD2jqRFSuu079/TX2HKUlGJyoK3n03uw5LCDADuAqUAQKBf8cVGjWCkyf1HKT0Rgbt6V66BOHhWR0dARQC7gBrgM+A+FfOsWPLFplwJcs0bx5Zjt/CHmAisBx4ChwGXt7BFhsL587pM0IpJwza0x0zBn7+WTMu9bLnQElABWQm1Y+B8sDsl860tYXr18HJSb+xSpIxefQIypbVTDxr9w6aO8Ws1+Xa2ICfH/zyi+7jk3LOoD3dsDBtCRfgT6AA/yZcAA9e7+lqkq724QlJMl/Hjr28eudlaiACuAdUByoAI4Gkl87KXKIpKcugSffx46yOPANerfVpj+Y26WXp6fDwoW7jkiRj9+ABZGRkdfQOkAasB44A0UAUMOu1M7NanikZjkGTrnWWVysGPHnle0+A4q+daWWVXTuSZJ6srTW/+9plrmQYBZRFMxE9Dtj+2pmyDInyDJq+SpbM6khNIB04/8L3YoC6r51ZoIAcz5Usj5NTdgmzJJohhTdnVAcH3cUk5Y1Bk27//qC9QmNRoBswFc2k2jFgC5rJtJelpUHLlvqLUZKMUfPmmdvjszIIWATcBR4CC4CXd0PY2kK/fnoKUMoxgybdoUMh67USP6MZ+HcB+gC/8GpP18YGPv4Y5I5fydLY2cGgQZD1E6amAA3R3DXWBuoBk18767PP9BWhlFMG3xzRuTNs3/6mv9ra2dlBZCTIp+1IlujCBXBzy27ZWNasraFNG9i9W/dxSblj8CmpRYugRIncv65oUc1faZlwJUtVvTqMHauppZBbxYtrqpFJylOk4E10tGZc9unT7JbB/KtoUU2BnMBAuXJBsmxCwJAhEBycs/olVlaahLtvH3h56T8+6c0USWGennDmjOZ/7ew0Y7XaFCumSbiTJ8OKFTLhSpKVFSxdCjNmaD4fWc1vFCig6RG7u2sK3ciEazwUq6ebKS4O5s/X/OVOT9f8sqSmQs2aMHGipjpSXm6nJMncJSXBunUwezb88Ydmx5parfkM9eoF48bBCw+YkIyE4kk3kxCa26WUFM2Yb1a9X0mSXpeeDk+eaJaFFSkiN0EYM6NJupIkSZZAjpJKkiQZkEy6kiRJBiSTriRJkgHJpCtJkmRAMulKkiQZkEy6kiRJBiSTriRJkgHJpCtJkmRAMulKkiQZkEy6kiRJBiSTriRJkgHJpCtJkmRAMulKkiQZkEy6kiRJBiSTriRJkgH9P0P5X/ycW918AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Independent set of 2-th most likely outcome\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAADnCAYAAAC9roUQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA4hUlEQVR4nO3dd3hUxRrA4V9CgISWQApVOkhJA5IAIr2JKCCEjlISEGlSFC4iTVDhchEQUbyQEFoKvVx67yUJaRsRaaFX6aRv5v6xRimbkLK7Z8u8z5NH4Zyd+cJmv8yZOfMdKyGEQJIkSTIIa6UDkCRJsiQy6UqSJBmQTLqSJEkGJJOuJEmSAcmkK0mSZEAy6UqSJBmQTLqSJEkGJJOuJEmSAcmkK0mSZEAy6UqSJBmQTLqSJEkGJJOuJEmSAcmkK0mSZEAy6UqSJBmQTLqSJEkGJJOuJOXW/fswezbUqAGlSkGJElCuHPTpA5GRSkcn/fEHDBsGb70F9vbg4ACVK8O//gXXrikdHVayiLkk5dDduzBiBGzdClZWkJT08vECBaBwYc0HfMECaNNGkTAtVlSUJtnGxEB6OqSlvXy8cGHNf5s2hV9+gerVDR8jMulKUs5cvKj5sN67p/lAv4mdnSbxDh6s/9gk2LEDfH0hMfHN51pbQ7FisGcP+PjoP7ZXyKQrSW9y9y54eMCdO5Cbj4udHSxfDt276y82CY4f11xVvHrl8SbFi8Pp01Crln7iyoJMupL0Jp07a0ZSr16u5oSdHdy4ASVL6j4uSXPVUa6c5gokt6ysoE4dUKl0H1c25EKaJGXn9m3YtUtrwm0B2ALF/vp6W9vrraxg2TJ9RmjZtm2D5GSthxKA94GSQBlgBPDSxJAQcPmywRc/ZdKVpOz897+axJmFn4Bnf32d03ZCYiLMnQsZGfqJz9L9+9/w9KnWQ8MAF+AWEA0cAn5+9aTkZM37Y0Ay6UpSdpYuzXIklWNPnsCZM7qJR/rH/fvZjlIvAz3QXI2UAd4D4l89KSMD1q836C9FmXQlKTt//pnt4YmAE9AEOJjVSdbWcOuWTsOS0CxsFiqU5eHPgVAgEbgB7ECTeLXKYrSsD3IhTZKyU6hQlgtop4A6QCE0H+4RaC5jq71y3mPAD1ivtyAtUz3gAGCfxfGzQD8gBlAD/YFlwGuTRba2cOUKuLjoKdKXyZGuJGWnaNEsDzUEigOF0XygmwDbtZxnb2/Puj17EELILx1+nbl4Efss3p8MoD3QFXgO3AceAhO0nZyaqtm1ZiAy6UpSdho1yvGpVoDWy8bkZKhXT1cRSZkqVoSCBbUeegBcQ3P1URhwBAai/ZciVatmO02hazLpSlJ2vvxSs3vpFY+AXUAymtuQVgOH0YyuXmJtDR9+CI6O+o3TEtnYwPDh/2zvfYETUAX4Bc378whYDni8emKxYpqaDAYk53QlKRsiI4NEJyeKPnz40t/fQ3MP6O9AAaAWMANo+2oDRYrAgQOKbDe1BEkXL2Lz9tsUVKtfOxYNjEYzp1sAaAksQnMb2d+KFNFsrChSRO+xZpIjXUnKwuXLl2nXvj3T7O3JsLV96ZgzEA48RTOKOomWhGtrq5me8PY2QLSW5/Dhw3h06MDBSpXIsLN77bgnmjtKHqKZ012LloQ7aZJBEy7IpCtJr1Gr1fz44494e3vTpk0bvj9/HutcfjhTra0RVavC5s3Zbq6Qcu/JkycMGzaMPn368O9//5u2585h3aRJ7pJnkSKamhgTJ+ov0CzIpCtJLzh79ixNmzZl7dq1HDt2jAkTJmBjYwNffw1z5oCtLRnZLbpYWSGKFiXGzo4lfn5a54OlvNu+fTuurq6kpqaiUqno0qWLZm53+3bo2hWKFEFtnU1aK1hQUw9j+HDN9mwlfiEKSZJEamqqmDlzpnB0dBSLFi0SarVa+4nXr4u9jRqJxMKFhShRQojixYUoVkzz/7a2QnTqJMThw+L8H38IZ2dncfLkScN+I2bq3r17ol+/fqJKlSpi7969WZ8YFSW2OTmJ9EKFNO9JsWL/vD9FiwoxYoQQf/xhuMC1sDF8mpck4xIZGcmgQYMoV64cZ86coWLFilmem+biQr+EBA6Eh1Pr/n3NrqjUVE0VMW9vKFMGgOrAr7/+So8ePYiMjMTJyclA3415EUKwZs0aRo8eTe/evYmLi6NoNvdOny1cGP+CBbl68yacOgUPHmjuIHF01NRDNvD8rTYy6UoWKykpiWnTphEUFMR//vMf+vXrh9UbLjd37NhBtWrVqOXm9sb2P/roI44fP06/fv3Ytm0bBQoU0FXoFuHmzZt89tlnXLhwgY0bN9IoB/dMBwYG0r9/f2wcHeH99w0QZe7JOV3JIh0+fBgPDw8SEhKIjY3l448/fmPCBQgICGDQoEE57uf7778nMTGRmTNn5idciyKEYOnSpXh4eODp6cmZM2dylHDT0tJYuXIlAwcONECU+aDo5IYkGdjjx4/FZ599JsqVKyc2btyYq9fevHlTODg4iKdPn+b6dWXLlhU7d+7M1ess0cWLF0WrVq2El5eXiImJydVrN2zYIJo2baqnyHRHjnQli6F15TsXVq5cSdeuXSmWyzsSypYtS3BwMP379+fq1au5eq2lUKvVzJs3Dx8fHzp06MCJEydwd3fPVRuBgYG5ugpRjNJZX5L07cWV7z179uSpjYyMDFGzZk1x7NixPMcxa9Ys0bBhQ5GSkpLnNsxRXFycaNiwoWjevLk4f/58ntq4ceOGcHBwEM+ePdNxdLonR7qS2RJCEBYWhpubG05OTsTFxdEmj49FP378OFZWVjRu3DjP8YwfP57SpUszbty4PLdhTlJTU5k+fTotW7Zk4MCB7N+/n+p5fCz6ihUr8PX1zfbOBmMh716QzFJeVr6zExAQgJ+fX44W27JiZWXF8uXL8fLyIjQ0lF69euUrJlMWHh7OoEGDqFSpElFRUVSoUCHPbQkhCAwMZMWKFTqMUI+UHmpLki5lZGSIJUuWCCcnJzF58mSRnJyc7zafPHkiHBwcxK1bt3QQoRBRUVHCyclJxMfH66Q9U/L8+XMxbtw4Ubp0aREcHCwyMjLy3ebhw4dF7dq1ddKWIciRrmQ2Ll26xODBg3n8+DH79u3L9UJMVtasWUPz5s0p89fGh/zy9PRk9uzZdOvWjdOnT1O8eHGdtGvsDh48iL+/Pz4+PsTFxeHs7KyTdnVxFWJQSmd9Scqv9PR08cMPPwhHR0fx73//W6Slpem0/XfeeUds3rxZp20KIcSgQYNEz549TWaEllePHj0SQ4YMERUqVBBbtmzRaduPHz8W9vb24s6dOzptV5/kQppk0lQqFU2aNGHz5s2cOHGCL7/8UlOgRkfOnj3L5cuXeV8Pu5t++uknzp07x08//aTzto3F1q1bcXV1xcrKCpVKxYcffqjT9sPCwmjVqhUuBnq+mU4onfUlKS9SUlLEtGnThJOTk1i8eHHWBWry6csvvxQTJkzQS9tCCHHhwgXh7OwsTpw4obc+lHD37l3Ru3dvUa1aNbF//3699dOoUSPxv//9T2/t64NMupLJOX36tHB1dRUdO3YU165d01s/qamponTp0uL333/XWx9CCLFp0ybx1ltvibt37+q1H0PIyMgQq1evFqVLlxZffPGFeP78ud76io+PF+XKldP5dJK+yYU0yWQkJiYyZcoUVq5cybx58+jdu7deF0+2bdtGjRo1ePvtt/XWB0Dnzp05fvw4ffv2ZceOHSZbGOf69et89tlnJCQksGXLFnz0/IiigIAATXEbHU4nGYKc05VMwsGDB3F3d+fGjRuoVCr69Omj99VqQ24r/fbbb0lNTeWbb74xSH+6lJGRwa+//kq9evXw9vYmMjJS7wk3NTWVVatWGX9xG22UHmpLUnYyV77Lly+vlzsIspLX4jb5cevWLVGuXDmxY8cOg/WZX+fPnxctWrQQPj4+Ii4uzmD9rl+/XjRr1sxg/emSHOlKRitz5RsgPj6eTp06GazvFStW0K1bt1wXt8mPMmXKEBISwoABA7hy5YrB+s2L9PR0/vOf/9CoUSM6derE8ePH/36vDMFkittoo3TWl6RXGWrlOyuZxW2OHz9u8L6FEGLOnDnC29tbJ7vp9CEmJkZ4eXmJVq1aiYsXLxq8/+vXr4uSJUuaRHEbbeRIVzIaQgiCg4Nxc3OjXLlyxMbG0rJlS4PHcezYMaytrfNdryGvxo0bR4UKFRg7dqwi/WclJSWFqVOn0rp1az799FP27t1L1apVDR6HKRW30ca0lv0ks2Xole/sKL2t1MrKimXLluHl5cXq1avp27evInG86OTJk/j5+VG9enWio6MpX768InGIv4rbrFq1SpH+dULpobZk2dRqtVi8eLFwcnIS06ZNU7zW7JMnT4S9vb24ffu2onEIIUR0dLRwcnISKpVKsRiePXsmxowZI8qUKSNCQ0MV37J86NAhUadOHcXjyA850pUUc+HCBQYPHkxiYiIHDhww6EJMVsLCwmjZsiWlS5dWOhQ8PDyYM2cO3bp1Izw83OCFcfbt28fgwYNp0qQJcXFxRvFEY6WvQnRC6awvWZ60tDQxZ84c4ejoKObOnSvS09OVDulvjRs3Flu3blU6jJf4+/uL7t27G2x09/DhQ+Hv7y/eeustsW3bNoP0mROZxW1MfeeeXEiTDCo2NpbGjRuzfft2Tp06xdixY41mB9bZs2dJSEjgvffeUzqUlyxcuJALFy7w448/6r2vzZs34+rqSsGCBVGpVHop9JNXoaGhtG7dWmclIRWjdNaXLENycrKYMmWKcHJyEkuWLDHKOblx48aJf/3rX0qHodXFixeFs7Nzvp7Rlp3bt2+LHj16iBo1aohDhw7ppY/88vHxMaqRd17Jka6kdydPnqR+/fpERUURHR2Nv7+/0c3JpaWlsXLlSqPdVlq1alUCAgLo2bMnd+/e1Vm7QghWrVqFu7s7lStXJiYmhmbNmumsfV1RqVRcv36ddu3aKR1KvsmFNElvnj9/zuTJkwkODmbBggX06NHD6JJtpv/973+8/fbb1KxZU+lQsvThhx9y/Phx+vTpw65du/I9LXP16lWGDh3KjRs32LZtG15eXjqKVPcCAwMZMGCAyRW30UaOdCW92LdvH25ubty9exeVSkXPnj2NNuGC6WwrnTFjBhkZGUybNi3PbWRkZPDLL7/QoEED3nnnHSIiIow64Zp0cRttlJ7fkMzLiyvfplJc+saNG8LBwcFktpXevn1blC9fPk/zm+fOnRNNmzYVjRs3NpkHY65bt040b95c6TB0Ro50JZ15deW7Y8eOSoeUI6a2rbR06dKEhoYycOBAEhIScvSa9PR0Zs+ezTvvvIOvry9HjhyhTp06+g1UR0zlKiTHlM76kunLXPmuXr26OHjwoNLh5EpGRoaoUaOGST4uZ+7cuaJBgwYiKSkp2/Oio6NF/fr1RZs2bcSlS5cMFJ1uZBa30ecTKAxNjnSlPBOvrHzHxsbSvHlzpcPKlaNHj2JjY0PDhg2VDiXXxowZQ+XKlRk9erTW48nJyXz99de0bduWESNGsHv3bqpUqWLYIPNp+fLldO/enSJFiigdis6Y/lKgpIjMle/r168b/cp3dkx5W6mVlRWBgYF4eXmxcuVKPv7447+PHT9+HD8/P2rXrk1MTAxly5ZVMNK8ycjIIDAwkODgYKVD0S2lh9qSaVGr1WLRokXCyclJzJgxQ/ECNfmRua30zp07SoeSL7GxscLJyUnExsaKp0+filGjRomyZcuKtWvXGuUmlJw6ePCgqFu3rkl/D9rIka6UY3/88Qf+/v6kpaVx6NAhk1mIyUpYWBitWrXCxcVF6VDyxc3Njblz5/L+++9jbW1Ny5YtiYuLw9HRUenQ8sWUr0KyI+d0pTd6ceW7W7duHD161OQTLvzzoTZ1Dx8+5MCBAzx69IiKFSuybNkyk0+4jx8/ZsuWLfTr10/pUHROJl0pWzExMTRs2JC9e/cSHh7O559/bjQFavIjPj6ea9eu0b59e6VDyZcNGzbg6upKsWLFuHTpEomJicyfP1/psPItNDSUNm3amH5xG22Unt+QjFNSUpKYNGmScHJyEgEBAWY3rzZ27FgxceJEpcPIs1u3bolu3bqJt99+Wxw5cuTvv7906ZJwcXERR48eVTC6/PP29hbbt29XOgy9kCNd6TXHjx+nXr16xMfHExMTw6BBg8xqXs2Ut5UKIVi+fDnu7u7UrFmT6Oho3n333b+PV6lShcDAQHr16qXTwjiGFBcXx82bN82iuI02ciFN+tuzZ8+YNGkSa9eu5ccff6Rbt25mlWwz/e9//6NWrVrUqFFD6VByJSEhgU8//ZS7d++ya9cu6tWrp/W8jh070r9/f3r37s3u3btNbjoos7iNqcWdU3KkKwGwe/du3NzcePToEXFxcfj6+pplwgXT21aakZHBwoUL8fLyokWLFpw+fTrLhJtp+vTpWFlZMWXKFANFqRupqamsXr3aJK9Cckzp+Q1JWQ8ePBADBgwQFStWFDt27FA6HL3L3FZqKsVtzp49K5o0aSKaNGkizp49m6vX3rlzR1SoUEFs2bJFT9Hp3tq1a0WLFi2UDkOv5EjXgm3YsIG6detStGhRVCqV0T2mRh9MpbhNWloa3333He+++y69evXi8OHD1KpVK1dtuLi4EBYWhp+fH5cuXdJTpLplalcheaJ01pcML3Plu2bNmuLw4cNKh2MwGRkZonr16uLkyZNKh5KtM2fOCE9PT9G+fXuRkJCQ7/bmzZsn6tev/8bCOEq7du2a2RW30UaOdC2IeGHlu0aNGsTExNC0aVOlwzKYI0eOUKhQIXx8fJQORavk5GQmTpxI+/btGT16NDt27KBSpUr5bvfzzz+nWrVqjBo1SgdR6s/y5cvp0aOHWRW30UbevWAhXlz53rlzJ/Xr11c6JIMz5m2lR48exc/PD3d3d2JjYylTpozO2raysmLp0qV4e3uzfPly+vfvr7O2dSWzuE1oaKjSoeif0kNtSb/UarX48ccfhaOjo/juu+9Eamqq0iEp4tGjR8Le3l7cvXtX6VBe8uTJEzF8+HBRrlw5sX79er32FRcXJ5ycnERMTIxe+8mL/fv3Czc3N7PbhKONHOmasd9//x1/f3+EEBw9ejTXCzHmJCwsjNatWxvVttKdO3fy6aef0rp1a1QqFSVLltRrf66ursybN49u3boRERGBvb29XvvLjcwFNGO8CtE5pbO+pHupqani22+/FY6OjmLhwoVCrVYrHZLifHx88vRMMX24f/+++OSTT0TlypXF7t27Dd7/0KFDRdeuXY1mVPnw4UNhb28v7t27p3QoBiEX0sxMVFQUPj4+HDp0iIiICEaMGIG1tWW/zSqViuvXryu+rVQIwbp163Bzc8PBwYG4uDjatm1r8Djmz5/P1atX+eGHHwzetzahoaG0bdsWJycnpUMxDKWzvqQbSUlJ4l//+pdwdnYWQUFBRjOKMQZjxowRX331laIx3Lx5U3z00UeiVq1a4tixY4rGIoQQCQkJwsXFxShuGfTy8rKIjTmZLHsIZCaOHj2Kh4cHFy5cIDY2lv79+1vG3FgOKF3cRghBYGAgHh4e1K1bl6ioKN555x1FYnlRpUqVCAoKonfv3ty+fVuxOGJjY7l9+7YiI36lyIU0E/b06VMmTpzIhg0b+Omnn+jatavSIRmdrVu3UqdOHapXr27wvi9fvsyQIUN4+PAhe/bswcPDw+AxZKdDhw4MGjSIXr16sXfvXmxsDJ8OzL24jTZypGuidu7ciaurK4mJicTHx8uEmwUltpWq1WoWLFiAt7c3bdu25eTJk0aXcDNNnTqVQoUK8fXXXxu875SUFPMvbqON0vMbUu5krnxXqlRJ7Nq1S+lwjFpmcRtDbiuNj48XjRs3Fk2bNhXnzp0zWL/5cffuXfHWW2+JzZs3G7TfNWvWiJYtWxq0T2MgR7omQryy8q1SqRRfjTd2y5cvp3v37gbZVpqWlsbMmTNp3rw5H3/8MQcPHqRmzZp671cXnJ2dCQsLw9/fn4sXLxqsX4sobqON0llferMXV75N/TEshqJWq0W1atXEqVOn9N5XRESEcHd3Fx06dBBXrlzRe3/6smDBAuHp6SkSExP13tfVq1dFqVKlDNKXsZEjXSMmXlj5rlOnDlFRUTRp0kTpsEzC4cOHsbOzw9vbW299JCUlMWHCBN5//32+/PJLtm3bRsWKFfXWn76NHDmSmjVrMnLkSL33FRQURM+ePbGzs9N7X8ZG3r1gpDJXvh88eMDu3bvx9PRUOiSTou9tpYcOHcLf358GDRoQFxeHi4uLXvoxpMzCOD4+PixbtkxvC1wZGRksW7aMNWvW6KV9o6f0UFt6WXp6upg/f75wdHQUs2bNEmlpaUqHZHL0Wdzm8ePHYujQoaJ8+fJi06ZNOm/fGKhUKuHk5CSioqL00v6+ffuEu7u7xW7gkSNdI/Lbb7/h7++PjY0Nx48fN5mFGGMTGhpKmzZtdF7cZvv27QwdOpT27dujUqlwcHDQafvGom7duixYsABfX18iIiJ0/n1aVHEbbZTO+pKmQM2MGTOEo6OjWLRokSxQk0/e3t5i+/btOmvv3r17om/fvqJq1api7969OmvX2A0fPlx07txZpyPSzOI29+/f11mbpkYupCksIiICLy8vjh07xpkzZxg2bJjFF6jJj7i4OG7evKmT2+mEEISFheHm5oaLiwuxsbG0bt1aB1Gahrlz53Lr1i3mzJmjszZDQkJo164djo6OOmvT5Cid9S1VYmKi+PLLL4WLi4tYuXKlxc5v6dro0aPFpEmT8t3O9evXRadOnUSdOnXEiRMndBCZabpy5YooXbq0OHjwoE7aa9Cggdi5c6dO2jJVckilgEOHDuHu7s6VK1eIi4ujX79+lju/pUOpqan53lYqhGDJkiV4enpSr149zpw5Q6NGjXQYpWmpWLEiy5cvp0+fPty6dStfbcXExHD37l3atGmjo+hMk1xIM6AnT54wYcIEtmzZwqJFi+jSpYvSIZmVLVu2ULduXapVq5an11+8eJHBgwfz9OlT9u/fj5ubm44jNE3t27dn8ODB9OrVi3379uW5MI4lFrfRRo50DWT79u24urqSlpZGfHy8TLh6kNdtpWq1mh9++IGGDRvSsWNHTpw4IRPuKyZPnoytrS1fffVVnl6fkpJCcHAwAwYM0G1gpkjp+Q1zl7nyXaVKFYta+Ta0a9eu5am4TVxcnPDx8RHNmzcX58+f11N05uHevXuiYsWKYuPGjbl+bVhYmGjVqpXugzJBcqSrJ+KVle+4uDiLWvk2tMxtpTktbpOamsr06dNp2bIlfn5+7N+/X5Gau6bEycmJNWvWMGTIEC5cuJCr1wYEBODn56enyEyM0lnfHMmVb8NSq9WiatWq4vTp0zk6/9SpU8LV1VV88MEH4tq1a3qOzvwsXLhQeHh45LhYzZUrVyy2uI02cqSrRUYGPH4MiYkgRM5fJ15Y+fb09LT4lW99SU+Hhw8hNVXz50OHDlG0aFG8vLyyfV1iYiJffPEFnTp14quvvmLLli1UqFDBABGbl+HDh1O7dm2GDx+u9XhKiub9Uas1fw4KCqJXr14WWdxGK6WzvrFITRUiLEyI+vWFsLYWomBBIWxshChUSIhevYQID8/+9RcuXBAtW7YUXl5eIiYmxjBBW5CHD4WYN0+IChWEsLLSvC/W1kI4OAhRp85WMWXK0mxfv3//flGtWjXRp08fvdRksDRPnz4VtWvXFkuXav7dL10SYvRoIUqU0LwvhQpp3qdKlTJEqVJTxMGDZxSO2HjIpCuE+O9/NR/e4sWF0IxtX/6ythaiSBEh6tQRIjb25demp6eLuXPnCkdHRzFnzhxZoEbHUlOFGD5cCFtbzXug7f2BZFG4cIbo0EGIP/98+fWPHj0SQ4YMERUqVBBbtmxR5pswU7/99psoVaqW8PF5LGxtNYlW2/tjZfVc2NlliLFjhUhPVzpq5Vl80p0wIbsP8+tfRYsKceiQ5rVy5Vu/kpKEaNYs5+9PoUJCVKwoxPXrmtdv2bJFVKhQQXz66afi0aNHyn4zZujyZSEcHBIFpOTo/SlSRIh27TS/SC2ZRSfdefNyl3D/SbwZYtiwRcLJyUksXrxYFqjRA7VaiA8+EMLOLnfvjY2NEJUrpwlf30GievXq4sCBA0p/K2bpzz81v+CsrXP3/tjZaabrLHnXu5UQuVkqMh937kDlypCc/OqRn4AgIA7o/df/vyoDe/sLqFRF5EKMnmzdCr17w/PnWZ1xHnADfIFVrxxLpmHDY+zf39ggz0ezRJ9/DosX/7OY+Y9ir/w5CRgGLPz7b4oWhc2bwVLvoLTYuxf++1/QXu6gHPA1kN3OJmtSU2vw9KlMuPoye3Z2CRdgOJDVo3hsOXeuNQULyoSrD0lJEBioLeECPHvh6w5gB3R/6Yznz+E//9F3lMbLIpOuWg0//qj54XldV6ALkH3pubQ0KxYs0H1sEly8CJGR2Z0RCjgAWQ+V1GrNaErSvZw/ZWcd4AI0fe3IwYNw44buYjIlFpl0z5zR3EuYH+npsHatbuKRXrZ5s+Zeae2eAFOAudm28fQprFyp48AkAFasgGfPcnLmcuAT4PVLSmtrzRSSJbLIpHvvnuZNz6+nT/PfhvS627ezunQFmAz4AW+9sZ07d3QYlPS3nP27XgUOAf21Hk1Ohvv3dRiUCbHI0o5Zj6JyJy0tHSurgrppTHrBHOALLX8fDewFonLUyqlT4VhZ+eguLOkvKqDuG85ZAbwLVNF6VIh/dqxZGotMuqVK5W57b1ZKlLDh8WOLvPlDr2bPhq+/1kzhvOwgkABU/OvPzwA18Btw5rV23nvPmx075Puja02bwtGjbzprBfCvLI8WLqz5HFoii5xeqF8/u9FuOpCM5sOs/uv/X/v0Y20NbdvqK0LL1rYtFCqk7cgQ4CKaEW80MBToCOx67cxixaBrV72FaNE++giyvxPvOHCDV+9aeJGVleV+fiwy6drawqBBUFDrzMBMNLe5zEJz/6fdX3/3Mjs7+ELbFbCUb/Xra+6hfl0RoMwLX8UAW+D1R61nZECfPvqL0ZINHPimKbrlaO4CKp7lGa6uUKuWjgMzERaZdAFGjQLtTw2ZBohXvqa9dlbZstCwof7is3QffBCPlVW2N+qieV9e3RgBNjbw8ceam/Al3StZUnMVkfVi9K9A1reOFCsGEyboIzLTYLFJt1o1zW/svGxYsrODX3/NanOFlB+PHj3C39+f4ODOVKqkzuJqJHslSsDkybqPTfrHt99C8awHslkqVAjq1oXOnXUfk6mw2KQLsHChZitibhKvnZ1m+2OrVvqLy1Jt2rQJV1dXChcuTHz8GcLDS1ChQlbzu9qoKVpUzf79UL68PiOVKleG3bs1iTeng4/ChaFKFdi5U3M1YqkstvZCJrUaxo7VbAtOS0tDrdY+tCpWTHM5FRwMHTsaOEgzd+fOHUaOHEl0dDRLly6lWbNmfx979Ai6dIHwcM2GlqxuMypWDIoUeYaNzQfExq7H0TH7HYWSbsTHQ4cO8PCh4NkzgbZxnI2NZv2kaVNYty5vI2RzYtEjXdDM6y5YAGfPplK48AJKlFBTrBjY22suU21tNZP+v/wCd+/KhKtLQghWrlyJu7s7VatWJSYm5qWEC+DgoNkyeuKEZp7Wzk7zoc18fwoXhvbtNbvYbt8uRs+e9fn444/J0NXN2FK26taFhAT45JOtuLj8RuHCmvfF3l7zPtnZaabxIiJg1y6ZcEGOdP+2bt06Fi1axO7dB7h0SfO4kUKFwNkZ3nrz5icpl65evcrQoUO5efMmAQEBNGjQIEeve/YMrlyBJ080C2Xly8OLg9q0tDRatmzJe++9x9dff62n6KVX1a9fn9mzZ+Pp2ZabNzWPurK3h0qV5ILmaxQsK2lUOnToIFasWKF0GGZPrVaLRYs0tYhnzpwpUvVQ0fr69euiTJkyYs+ePTpvW3rdmTNnRMWKFWVd6RySI13g+vXruLu7c/36dVl/VY/OnTvH4MGDSU9PJyAggNq1a+utr/3799O3b1/Cw8NlzWM9GzlyJI6OjkybNk3pUEyCxc/pguZppT179pQJV0/S09OZNWsWTZo0wdfXlyNHjug14QK0atWKUaNG0aNHD1Kzrp4j5VNycjIhISEMHDhQ6VBMhsUn3YyMDJYtW8agQdkVLZfyKjo6moYNG7J//34iIiIYNWoUBbTvStG5CRMm4OjoyPjx4w3SnyXatGkT9erVo1KlSkqHYjIsPukeOnSIokWL4uXlpXQoZiU5OZlJkybRrl07Ro4cya5du6isfW+v3lhbW7NixQq2bNnCmpxX3pZyISAgAD8/P6XDMCkWfIuyRmBgIIMGDcJKbi/TmePHj+Pn50ft2rWJiYmhbNmyisVSsmRJ1q1bR/v27XF3d6eWpW7414OEhASioqLo0qWL0qGYFIteSHv06BGVK1fmwoULODk5KR2OyXv27BlfffUV69atY+HChXTr1k3pkP62ZMkS5s+fz6lTpyhW7NWHJ0p5MW3aNP78808WLlz45pOlv1n09EJoaCht27aVCVcHdu/ejZubG0+ePEGlUhlVwgXw9/fH29ubTz/9FAseZ+iMXAvJO4tOunI+Kv8ePHjAwIEDGTJkCIsXLyYoKIhSRlid2srKip9//hmVSsUvv/yidDgmb9++fTg6OlKvXj2lQzE5Fpt0Y2NjuX37Nm0ttZKyDqxfvx5XV1eKFStGXFwc7du3VzqkbBUpUoR169YxdepUTp8+rXQ4Ji0wMFAOWPLIYud0R48eTfHixZkxY4bSoZic27dvM2LECFQqFUuXLuXdd99VOqRc2bBhA2PHjiUyMlIWxsmDBw8eULVqVS5fvkzJkiWVDsfkWORINyUlhdWrV8sbunNJCEFQUBDu7u7UrFmT6Ohok0u4AF27dsXX15d+/frJwjh5EBwczPvvvy8Tbh5ZZNLdsmULbm5uVK1aVelQTEZCQgLvvfceCxYsYNeuXXz33XfY2toqHVaeff/99zx//pyZM19/FJOUvYCAALmAlg8WmXTlfFTOZWRksHDhQry8vGjZsiWnT582i8WTggULEhYWxq+//sru3buVDsdkREVF8fDhQ1rJKv55ZnFzuteuXcPT05Pr169jZ2endDhG7ezZs/j7+2Ntbc3SpUt5++23lQ5J5w4ePEivXr0IDw/nLVnD841GjBiBs7MzU6dOVToUk2VxI93M4jYy4WYtLS2N7777jqZNm9KnTx8OHTpklgkXoEWLFowZM4bu3bvLwjhvkJSUREhICAMGDFA6FJNmUUlX3tD9ZmfOnMHHx4fDhw8TGRnJ8OHDsc76sa9mYfz48ZQuXZovvvhC6VCM2qZNm2jQoIEsbpNP5v1pesXBgwcpXrx4jp9SYEmSkpKYOHEiHTp0YMyYMezYscNiPlxWVlYsX76cbdu2ERoaqnQ4RktuJtINiyp4I4vbaHf06FH8/Pxwd3cnNjaW0qVLKx2SwTk4OLBu3TratWuHh4eH3uv9mpqEhASio6NlcRsdsJiFtMziNhcvXpQ3xP/l6dOnTJw4kY0bN/LTTz/x0UcfKR2S4gICApg7dy6nT5+WhXFeMHXqVB4+fMiPP/6odCgmz2KmF0JCQmjXrp1MuH/ZsWMHrq6uJCUloVKpZML9i5+fH40aNWLw4MGyMM5f1Go1y5Ytk1MLOmIxSVfOR2n8+eeffPLJJwwbNoyAgAACAgLkzqJXLFq0iLNnz7Jo0SKlQzEK+/btw9nZGQ8PD6VDMQsWkXRjYmK4e/cubdq0UToUxQghWLt2La6urpQqVYq4uDiL/vfIjp2dHevWreObb77h5MmTSoejOLmZSLcsYk73888/x97enm+++UbpUBRx69Ythg0bxrlz5wgICKBx48ZKh2QSNm/ezKhRo4iMjLTYmst//vkn1apVk8VtdMjsR7opKSkEBwdb5A3dQggCAwPx8PDA1dWVqKgomXBzoXPnzvTq1Yu+ffuiVquVDkcRwcHBdOzYUSZcHTL7pLt582bc3d0trrjNpUuXaNeuHT///DN79uxhxowZFC5cWOmwTM63335LSkqKRZYAFULI4jZ6YPZJ19Lmo9RqNfPnz8fHx4d27dpx8uRJuQCSDzY2NoSGhrJkyRJ27typdDgGFRUVxePHj2nZsqXSoZgVs94ccfXqVcLDw9m4caPSoRjEb7/9hp+fH4UKFeL48ePUrFlT6ZDMQpkyZQgJCaFHjx6cPn2aihUrKh2SQQQEBDBw4ECz3wZuaGb9rxkUFESvXr3MvrhNamoqM2bMoHnz5vTv358DBw7IhKtjzZo1Y9y4cXTv3p2UlBSlw9G7pKQkQkNDLXItRN/MNulaSnGbiIgIvL29OXHiBGfOnGHo0KFyZKInX3zxBeXKlWPcuHFKh6J3GzduxNvb22JG9YZktp/OAwcOYG9vT/369ZUORS8SExMZP348HTt2ZPz48Wzbtk3Wg9UzKysrli1bxs6dOwkODlY6HL2SC2j6Y7ZJ15yL2xw6dAgPDw+uXbtGXFwcffv2Ncvv0xg5ODiwfv16Pv/8c+Lj45UORy8uX75MbGwsnTt3VjoUs2SWmyMePnxIlSpVzK64zZMnT5gwYQJbt27l559/plOnTkqHZLGCgoKYNWsW4eHhFC9eXOlwdGrKlCk8fvyYBQsWKB2KWTLLkW5ISAjt27c3q4S7bds2XF1dUavVqFQqmXAVNmDAAJo2bYq/v79ZFcZRq9UEBQXJqQU9Msuka07Fbe7fv0+/fv0YNWoUQUFB/Pe//8XBwUHpsCRg4cKFnD9/noULFyodis7s3bsXFxcXeW+3Hpld0o2OjubevXu0bt1a6VDyRQhBaGgorq6ulC5dmtjYWPkEViNja2vLunXrmDlzJidOnFA6HJ2wtM1ESjC7Od1Ro0ZRsmRJpk+frnQoeXbjxg2GDRvGxYsXCQgIoGHDhkqHJGVj69atDB8+nMjISJydnZUOJ88yi9skJCTIqyk9MquRbnJyskkXtxFCsGTJEjw9PalXrx5nzpyRCdcEfPjhh/Tt25c+ffqYdGGc1atX88EHH8iEq2dmlXQ3b96Mp6cnVapUUTqUXLt48SKtW7dmyZIl7N+/n2nTplGoUCGlw5JyaMaMGajVapO9wsosbiOnFvTPrJKuKf7QqNVqfvjhBxo2bEjHjh05ceIEbm5uSocl5ZKNjQ0hISEEBgayY8cOpcPJtcjISJ4+fUrz5s2VDsXsmU3BmytXrhAZGcnmzZuVDiXHVCoVfn5+FClShJMnT1K9enWlQ5LyoXTp0oSEhODr68vp06dN6hH2mZuJ5BZy/TObf+GgoCB69+5tEsVtUlNTmT59Oi1btsTPz499+/bJhGsmmjZtyvjx4/H19TWZwjhJSUmEhYXRv39/pUOxCGaRdE2puM3p06dp0KABERERREVFMWTIEDm6MDNjx46lYsWKjBkzRulQcmTDhg34+PjI2h0GYhaf9v3791OyZEmjLm6TmJjIuHHj6NSpE5MmTWLLli1UqFBB6bAkPcgsjLN3715WrVqldDhvJIvbGJZZJN3M+ShjdeDAAdzc3Lh9+zYqlYpevXrJAjVmrkSJEqxfv54xY8agUqmUDidLly5dIi4uTm4rNyCT3xyRWdzm0qVLlCpVSulwXvL48WO+/PJLduzYwS+//MIHH3ygdEiSga1YsYJvv/2W8PBwSpQooXQ4r5k8eTJPnz5l/vz5SodiMUx+pBscHMx7771ndAl369atuLq6Ym1tjUqlkgnXQn3yySe0aNECPz8/oyuMk1ncxtRuszR1Jp90je3e3Hv37tG7d2/GjBnDypUrWbx4Mfb29kqHJSlowYIFXLp0yehKJe7Zs4eyZcvK+8INzKSTblRUFH/++adRFLcRQrB69Wrc3Nx46623iI2NpUWLFkqHJRmBzMI433//PceOHVM6nL8Z+1qIuTLpOd2RI0fi6OjItGnTFI3j2rVrfPbZZ1y9epXAwEC8vLwUjUcyTtu2bWPo0KFERkbi4uKiaCz379+nevXqXLlyRV6JGZjJjnSTk5MJCQlh4MCBisWQkZHB4sWLqV+/Pg0bNiQiIkImXClLHTt25JNPPjGKwjirV6/mww8/lAlXASabdDdt2kS9evUU22p5/vx5WrVqRVBQEAcPHmTy5MmyQI30Rt988w1CCKZOnapYDLK4jbJMNukq9UOTnp7OnDlzaNy4MV26dOHYsWPUrVvX4HFIpqlAgQKEhISwfPlytm3bpkgMERERPH/+nGbNminSv6UzyYI3CQkJREVF0aVLF4P2Gxsbi5+fH/b29pw+fZqqVasatH/JPLi4uBAWFsZHH33EqVOnqFy5skH7l8VtlGWS/+qZxW1sbW0N0l9KSgpTpkyhTZs2DB06lD179siEK+XLO++8w8SJE/H19SU5Odlg/SYmJsriNgozuaRr6OI2J06coF69esTGxhIdHY2fn5/cwivpxOeff07VqlUZPXq0wfrcsGEDjRo1knU/FGRySXffvn04OjpSr149vfbz/PlzRo8eTdeuXZk+fTobN26kXLlyeu1TsixWVlYsXbqUAwcOsGLFCoP0KYvbKM/kkq4hbujeu3cvbm5uPHjwAJVKRffu3eXoVtKLzMI448aNIy4uTq99Xbx4kfj4eFncRmEmtTniwYMHVK1aVW/FbR49esS4cePYu3cvixcvpkOHDjrvQ5K0WbVqFd988w3h4eF6u3f266+/JjExkR9++EEv7Us5Y1Ij3eDgYDp06KCXhLtp0ybq1q2Lra0tcXFxMuFKBtWvXz9at27NoEGD9FIYJ7O4jZxaUJ5JJV193Jt7584devTowfjx4wkJCWHRokVGWYJPMn/z58/n6tWrzJs3T+dt7969m/Lly+Pq6qrztqXcMZmkGxUVxcOHD2nVqpVO2hNCsGLFCtzd3alWrRoxMTHyZnFJUYULF2bt2rXMnj2bo0eP6rRtWdzGeJjMnO6IESNwdnbWyfbJq1ev8umnn3Lr1i0CAgJo0KCBDiKUJN3YsWMHgwcPJjIyktKlS+e7vXv37lGjRg1Z3MZImMRINzk5mdDQUAYMGJCvdjIyMli0aBH169enadOmhIeHy4QrGZ0OHTowaNAgevfuTXp6er7bW716NZ06dZIJ10iYRNLduHEj9evXz1dxm3PnztG8eXNWr17NkSNH+OqrryhYsKAOo5Qk3Zk6dSo2NjZMmTIlX+3I4jbGxySSbn5+aNLS0pg1axZNmjShR48eHDlyhNq1a+s4QknSrQIFCrB69WpWrVrF1q1b89xOeHg4SUlJcr3CiBh9wZuEhASio6Pp3Llzrl8bFRWFn58fTk5OREREGLywiCTlh7OzM2FhYXTp0oUTJ07kqd5H5gKa3NxjPIx+pLts2TL69OmTq+I2ycnJTJo0ifbt2zNq1Ch27dolE65kkho3bsykSZPo3r17rgvjJCYmsmbNGlncxsgYddJVq9W5Lm5z7NgxPD09+f3334mNjWXAgAHyt7xk0kaOHEn16tUZNWpUrl63fv16GjduTPny5fUUmZQXRp109+3bh7OzM56enm8899mzZ4waNYru3bvz7bffsn79esqUKaP/ICVJzzIL4xw5coSgoKAcv04uoBkno5nTvXMHbt+GlBRwcIDKlXN+Q/fu3bsZMmQILVq0QKVS6WWbsCQpqXjx4qxbt44WLVpQr149PDw8/jmYmgoJCfDoERQuDKVLc+HZM86ePcsHH3ygVMhSFhRNuunpsHUrzJ4N0dGanxcrK9A8sy+D1NR3+Oqrflm+/sGDB4wbN44DBw7w66+/0r59e0OFLkkGV7duXRYsWICvry8RERHYP3kCixbB4sWaD03mkyBSUihcqhSzfXwoJKfWjI5iO9JOnIDOnSE5GZ4+1X6OtXUahQoVpHt3WLoUXnzu4/r16xk5ciS+vr589913FCtWzDCBS5LCRn32GR9u306bO3ewAs3loRbqokUpYGsLGzdC06YGjVHKmiJJd9cu6NoVEhNzdn6RIlC/PuzdCw8e3GLEiBHEx8cTEBBAkyZN9BusJBmTtDTUbduSeuQIdhkZOXtNkSIQFgZyqsEoGHwhLSYGunXLecIFzbmRkYImTRJwd/egVq1aREdHy4QrWZ7+/SkQHp7zhAuaD1DPnhARob+4pBwz+Ei3WTM4ckTbkQeAH7AbcAK+B/q8dIa1dSLLl1+nX7+a+g5TkoxPVBS8+26WI5ZQYDpwFSgDBAEvTSo0bAgnT+o5SOlNDDrSvXQJwsOzOjocKATcAVYDnwHxr5xjx+bNMuFKFmru3Cznb/cAE4BlwFPgMPDa/rXYWDh3Tp8RSjlg0JHu6NHw88+QlvbqkedASUAFZCbVj4HywKyXzixcGK5fBycn/cYqSUbl0SMoW1az8qzFO2iuE7O9K9fGBvz94ZdfdB+flGMGHelu2aIt4QL8ARTgn4QL4MHrI11N0tU+PSFJZuzYsZdv33mBGogA7gHVgQrACCDp1RMz79GUFGXQpPv4cVZHngGv1vq0R3Oh9LL0dHj4ULdxSZLRe/AAslg8uwOkAeuAI0A0EAXM1HZyVvdnSgZj0KRrnWVvxYAnr/zdE6D4a2daWWXXjiSZKWtrzQ+/FnZ//XckUBbNMvRYYLu2k+VmCcUZNH2VLJnVkZpAOnD+hb+LAeq+dmaBAnI+V7JATk5ZJsySaKYUcpROHRx0F5OUJwZNuv36gfYKjUWBrsAUNItqx4DNaBbTXpaWBi1a6C9GSTJKzZpl7o/XaiCwELgLPATmA69thShcGPr21VOAUk4ZNOkOGQJZ3yvxM5qpfxegN/ALr450bWzg449B7viVLI6dHQwcCFk8Ymoy4I3mmrE2UA+YpO3Ezz7TV4RSDhl8c0SnTrB9e7a/tLNkZweRkSCftiNZpAsXwM0ty9vGsmVtDa1bw+7duo9LyhWDL0ktXAglSuT+dUWLan5Jy4QrWazq1WHMGE0thdwqXlxTjUxSnCIFb6KjNfOyT59meRfMS4oW1RTICQqSdy5IFk4IGDwYQkJyVsDEykqTcPftAy8v/ccnvZEiKczTE86c0fzXzk4zV6tNsWKahDtpEixfLhOuJGFlBUuWwPTpmg9IVgscBQpoRsTu7ppCNzLhGg3F6ulmiouDefM0v7jT0zU/K6mpULMmTJigKY6Ul6spSTJ7SUmwdi3MmgW//67ZsaZWaz5EPXvC2LHw4hMmJKOgeNLNJITmaiklRTPnm9XoV5IkLdLT4ckTzW1hRYrITRBGzGiSriRJkiWQs6SSJEkGJJOuJEmSAcmkK0mSZEAy6UqSJBmQTLqSJEkGJJOuJEmSAcmkK0mSZEAy6UqSJBmQTLqSJEkGJJOuJEmSAcmkK0mSZEAy6UqSJBmQTLqSJEkGJJOuJEmSAcmkK0mSZED/B4yGX/x4rAJ6AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Independent set of 3-th most likely outcome\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAADnCAYAAAC9roUQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA4j0lEQVR4nO3dd1yV5fvA8Q+IIi5Qliu35mCpgJq5V2apKW7LAZq5cpR+zVxppV9/pmaWpSAuhlv8uvcegKxDZi7cM7fsw/3740Q5ABnnnOeM+/168Sp9nvPcFx7Oxf3c43oshBACSZIkSS8slQ5AkiTJnMikK0mSpEcy6UqSJOmRTLqSJEl6JJOuJEmSHsmkK0mSpEcy6UqSJOmRTLqSJEl6JJOuJEmSHsmkK0mSpEcy6UqSJOmRTLqSJEl6JJOuJEmSHsmkK0mSpEcy6UqSJOmRTLqSlEf378OcOVCzJpQpA6VKQfny0LcvREYqHZ3En3/C8OHw1ltgawt2dlClCvznP3DtmtLRYSGLmEtS7ty9CyNHwtatYGEBSUkvHy9UCKytNZ/vhQuhbVtFwjRfUVGaZBsTA+npkJb28nFra81/mzWDX36BGjX0HyMy6UpSrly8qPms3run+Ty/iY2NJvEOGaL72CRgxw7w8YHExDefa2kJJUrAnj3g7a372F4hk64kvcHdu+DuDnfuQF4+LTY2sGIF9Oihu9gk4PhxzW3Fq7ceb1KyJJw+DbVr6yaubMikK0lv0KWLpiP16t1qbtjYwI0bULq09uOS0Nx2lC+vuQXJKwsLqFsXVCrtx5UDOZEmSTm4fRt27cou4bYEigIl/v56+7UzLCxg+XJdRmjmtm2D5OQsDyUA7wOlgbLASOClkSEh4PJlvc9+yqQrSTn47TdN4szeT8Czv7/OvXY0MRHmzYOMDN3EZ/b++194+jTLQ8MBJ+AWEA0cAn5+9aTkZM0bpEcy6UpSDpYty7YjlWtPnsCZM9qJR3rB/fs59lIvAz3R3IuUBd4D4l89KSMDNmzQ629FmXQlKQd//fWmMyYBDkBT4GCWZ1hawq1bWg1LAs3MZpEi2R7+HAgBEoEbwA40iTdL2fSWdUFOpElSDooUyWkC7RRQFyiC5uM9Es2NbPVXznsM+AIbdBOkmaoPHABsszl+FugPxABqYACwHHhttKhoUbhyBZycdBTpy2RPV5JyULx4TkcbASUBazQf6abA9tfOsrW1Zc+e9Qgh5JcWv85cvIhtNm9QBtAB6AY8B+4DD4GJWZ2cmqrZtaYnMulKUg4aN87L2RbA6zeOyclQv762IpL+UakSFC6c5aEHwDU09x7WgD0wiKx+JQLVquU4TKFtMulKUg6+/FKzeel1j4BdQDKahUhrgMNo+lf/srSEDz8Ee3vdxmmWrKxgxIh/t/e+wAGoCvyC5t15BKwA3F89sUQJTU0GPZJjupKUg4wMgYNDIg8fvnobew/NKtA/gEJAbWAm0O6ls4oVgwMHFNltahaSLl7E6u23KaxWv3YsGhiDZky3ENAKWIxmGdk/ihXTbKwoVkznsWaSPV1Jysbly5fp0KE9trbTKVr01SVFjkA48BRNP+okrybcokU1wxNeXvqI1vwcPnwY944dOVi5Mhk2Nq8d90CznuQhmjHddWSRcCdP1mvCBZl0Jek1arWaH3/8ES8vL9q2bcv5898zebJlnj6blpapVKsm2LLlTZsrpLx68uQJw4cPp2/fvvz3v/+l3blzWDZtmrfkWayYpijGpEm6CzQbMulK0gvOnj1Ls2bNWLduHceOHWPixIlYWVnx9dcwd66m91qkSPYL6S0soHhxgY1NDL6+S7MZD5bya/v27bi4uJCamopKpaJr166asd3t26FbNyhWDLVlDmmtcGFNQYwRIzT7s5X4jSgkSRKpqali1qxZwt7eXixevFio1eosz7t+XYjGjfcKa+tEUaqUECVLClGihBClSglRtKgQnTsLcfiwEH/+eV44OjqKkydP6vk7MU337t0T/fv3F1WrVhV79+7N/sSoKLHNwUGkFymieVNKlPj3DSpeXIiRI4X480/9BZ4FK/2neUkyLJGRkQwePJjy5ctz5swZKlWqlO25Tk5pJCT0Jzz8APfv1+bOHc0yz9KlNWO3ZctmnlmDX3/9lZ49exIZGYmDg4NevhdTI4Rg7dq1jBkzhj59+hAXF0fxHBZPn7W2xq9wYa7evAmnTsGDB5olJPb2moLIeh6/zYpMupLZSkpKYvr06QQGBvJ///d/9O/fH4s33G7u2LGD6tWr4+r65hqsH330EcePH6d///5s27aNQoUKaSt0s3Dz5k0+++wzLly4wKZNm2ici0XTAQEBDBgwACt7e3j/fT1EmXdyTFcyS4cPH8bd3Z2EhARiY2P5+OOP35hwAfz9/Rk8eHCu2/n+++9JTExk1qxZBQnXrAghWLZsGe7u7nh4eHDmzJlcJdy0tDRWrVrFoEGD9BBlASg6uCFJevb48WPx2WefifLly4tNmzbl6bU3b94UdnZ24unTp3l+Xbly5cTOnTvz9DpzdPHiRdG6dWvh6ekpYmJi8vTajRs3imbNmukoMu2RPV3JbGQ5850Hq1atolu3bpTI45KEcuXKERQUxIABA7h69WqeXmsu1Go18+fPx9vbm44dO3LixAnc3NzydI2AgIA83YUoRumsL0m69uLM9549e/J1jYyMDFGrVi1x7NixfMcxe/Zs0ahRI5GSkpLva5iiuLg40ahRI9GiRQtx/vz5fF3jxo0bws7OTjx79kzL0Wmf7OlKJksIQWhoKK6urjg4OBAXF0fbfD4X/fjx41hYWNCkSZN8xzNhwgScnZ0ZP358vq9hSlJTU5kxYwatWrVi0KBB7N+/nxr5fCz6ypUr8fHxyXFlg6GQqxckk5Sfme+c+Pv74+vrm6vJtuxYWFiwYsUKPD09CQkJoXfv3gWKyZiFh4czePBgKleuTFRUFBUrVsz3tYQQBAQEsHLlSi1GqENKd7UlSZsyMjLE0qVLhYODg5gyZYpITk4u8DWfPHki7OzsxK1bt7QQoRBRUVHCwcFBxMfHa+V6xuT58+di/PjxwtnZWQQFBYmMjIwCX/Pw4cOiTp06WrmWPsiermQyLl26xJAhQ3j8+DH79u3L80RMdtauXUuLFi0o++/OhwLx8PBgzpw5dO/endOnT1OyZEmtXNfQHTx4ED8/P7y9vYmLi8PR0VEr19XGXYheKZ31Jamg0tPTxQ8//CDs7e3Ff//7X5GWlqbV67/zzjtiy5YtWr2mEEIMHjxY9OrVy2h6aPn16NEjMXToUFGxYkURFham1Ws/fvxY2Nraijt37mj1urokJ9Iko6ZSqWjatClbtmzhxIkTfPnll1hZae8G7uzZs1y+fJn3dbC76aeffuLcuXP89NNPWr+2odi6dSsuLi5YWFigUqn48MMPtXr90NBQWrdujZOenm+mFUpnfUnKj5SUFDF9+nTh4OAglixZkm2BmoL68ssvxcSJE3VybSGEuHDhgnB0dBQnTpzQWRtKuHv3rujTp4+oXr262L9/v87aady4sfjf//6ns+vrgky6ktE5ffq0cHFxEZ06dRLXrl3TWTupqanC2dlZ/PHHHzprQwghNm/eLN566y1x9+5dnbajDxkZGWLNmjXC2dlZfPHFF+L58+c6ays+Pl6UL19e68NJuiYn0iSjkZiYyNSpU1m1ahXz58+nT58+Op082bZtGzVr1uTtt9/WWRsAXbp04fjx4/Tr148dO3YYbWGc69ev89lnn5GQkEBYWBjeOn5Gkb+/v6a4jRaHk/RBjulKRuHgwYO4ublx48YNVCoVffv21flstT63lX777bekpqbyzTff6KU9bcrIyODXX3+lfv36eHl5ERkZqfOEm5qayurVqw2/uE1WlO5qS1JOMme+K1SooJMVBNnJb3Gbgrh165YoX7682LFjh97aLKjz58+Lli1bCm9vbxEXF6e3djds2CCaN2+ut/a0SfZ0JYOVOfMNEB8fT+fOnfXW9sqVK+nevXuei9sURNmyZQkODmbgwIFcuXJFb+3mR3p6Ov/3f/9H48aN6dy5M8ePH//nvdIHoylukxWls74kvUpfM9/ZySxuc/z4cb23LYQQc+fOFV5eXlrZTacLMTExwtPTU7Ru3VpcvHhR7+1fv35dlC5d2iiK22RF9nQlgyGEICgoCFdXV8qXL09sbCytWrXSexzHjh3D0tKywPUa8mv8+PFUrFiRcePGKdJ+dlJSUpg2bRpt2rTh008/Ze/evVSrVk3vcRhTcZusGNe0n2Sy9D3znROlt5VaWFiwfPlyPD09WbNmDf369VMkjhedPHkSX19fatSoQXR0NBUqVFAkDvF3cZvVq1cr0r5WKN3VlsybWq0WS5YsEQ4ODmL69OmK15p98uSJsLW1Fbdv31Y0DiGEiI6OFg4ODkKlUikWw7Nnz8TYsWNF2bJlRUhIiOJblg8dOiTq1q2reBwFIXu6kmIuXLjAkCFDSExM5MCBA3qdiMlOaGgorVq1wtnZWelQcHd3Z+7cuXTv3p3w8HC9F8bZt28fQ4YMoWnTpsTFxRnEE42VvgvRCqWzvmR+0tLSxNy5c4W9vb2YN2+eSE9PVzqkfzRp0kRs3bpV6TBe4ufnJ3r06KG33t3Dhw+Fn5+feOutt8S2bdv00mZuZBa3Mfade3IiTdKr2NhYmjRpwvbt2zl16hTjxo0zmB1YZ8+eJSEhgffee0/pUF6yaNEiLly4wI8//qjztrZs2YKLiwuFCxdGpVLppNBPfoWEhNCmTRutlYRUjNJZXzIPycnJYurUqcLBwUEsXbrUIMfkxo8fL/7zn/8oHUaWLl68KBwdHQv0jLac3L59W/Ts2VPUrFlTHDp0SCdtFJS3t7dB9bzzS/Z0JZ07efIkDRo0ICoqiujoaPz8/AxuTC4tLY1Vq1YZ7LbSatWq4e/vT69evbh7967WriuEYPXq1bi5uVGlShViYmJo3ry51q6vLSqViuvXr9O+fXulQykwOZEm6czz58+ZMmUKQUFBLFy4kJ49expcss30v//9j7fffptatWopHUq2PvzwQ44fP07fvn3ZtWtXgYdlrl69yrBhw7hx4wbbtm3D09NTS5FqX0BAAAMHDjS64jZZkT1dSSf27duHq6srd+/eRaVS0atXL4NNuGA820pnzpxJRkYG06dPz/c1MjIy+OWXX2jYsCHvvPMOERERBp1wjbq4TVaUHt+QTMuLM9/GUlz6xo0bws7Ozmi2ld6+fVtUqFAhX+Ob586dE82aNRNNmjQxmgdjrl+/XrRo0ULpMLRG9nQlrXl15rtTp05Kh5Qrxrat1NnZmZCQEAYNGkRCQkKuXpOens6cOXN455138PHx4ciRI9StW1e3gWqJsdyF5JrSWV8yfpkz3zVq1BAHDx5UOpw8ycjIEDVr1jTKx+XMmzdPNGzYUCQlJeV4XnR0tGjQoIFo27atuHTpkp6i047M4ja6fAKFvsmerpRv4pWZ79jYWFq0aKF0WHly9OhRrKysaNSokdKh5NnYsWOpUqUKY8aMyfJ4cnIyX3/9Ne3atWPkyJHs3r2bqlWr6jfIAlqxYgU9evSgWLFiSoeiNcY/FSgpInPm+/r16wY/850TY95WamFhQUBAAJ6enqxatYqPP/74n2PHjx/H19eXOnXqEBMTQ7ly5RSMNH8yMjIICAggKChI6VC0S+mutmRc1Gq1WLx4sXBwcBAzZ85UvEBNQWRuK71z547SoRRIbGyscHBwELGxseLp06di9OjRoly5cmLdunUGuQkltw4ePCjq1atn1N9DVmRPV8q1P//8Ez8/P9LS0jh06JDRTMRkJzQ0lNatW+Pk5KR0KAXi6urKvHnzeP/997G0tKRVq1bExcVhb2+vdGgFYsx3ITmRY7rSG7048929e3eOHj1q9AkX/v1QG7uHDx9y4MABHj16RKVKlVi+fLnRJ9zHjx8TFhZG//79lQ5F62TSlXIUExNDo0aN2Lt3L+Hh4Xz++ecGU6CmIOLj47l27RodOnRQOpQC2bhxIy4uLpQoUYJLly6RmJjIggULlA6rwEJCQmjbtq3xF7fJitLjG5JhSkpKEpMnTxYODg7C39/f5MbVxo0bJyZNmqR0GPl269Yt0b17d/H222+LI0eO/PP3ly5dEk5OTuLo0aMKRldwXl5eYvv27UqHoROypyu95vjx49SvX5/4+HhiYmIYPHiwSY2rGfO2UiEEK1aswM3NjVq1ahEdHc277777z/GqVasSEBBA7969tVoYR5/i4uK4efOmSRS3yYqcSJP+8ezZMyZPnsy6dev48ccf6d69u0kl20z/+9//qF27NjVr1lQ6lDxJSEjg008/5e7du+zatYv69etneV6nTp0YMGAAffr0Yffu3UY3HJRZ3MbY4s4t2dOVANi9ezeurq48evSIuLg4fHx8TDLhgvFtK83IyGDRokV4enrSsmVLTp8+nW3CzTRjxgwsLCyYOnWqnqLUjtTUVNasWWOUdyG5pvT4hqSsBw8eiIEDB4pKlSqJHTt2KB2OzmVuKzWW4jZnz54VTZs2FU2bNhVnz57N02vv3LkjKlasKMLCwnQUnfatW7dOtGzZUukwdEr2dM3Yxo0bqVevHsWLF0elUhncY2p0wViK26SlpfHdd9/x7rvv0rt3bw4fPkzt2rXzdA0nJydCQ0Px9fXl0qVLOopUu4ztLiRflM76kv5lznzXqlVLHD58WOlw9CYjI0PUqFFDnDx5UulQcnTmzBnh4eEhOnToIBISEgp8vfnz54sGDRq8sTCO0q5du2ZyxW2yInu6ZkS8MPNds2ZNYmJiaNasmdJh6c2RI0coUqQI3t7eSoeSpeTkZCZNmkSHDh0YM2YMO3bsoHLlygW+7ueff0716tUZPXq0FqLUnRUrVtCzZ0+TKm6TFbl6wUy8OPO9c+dOGjRooHRIemfI20qPHj2Kr68vbm5uxMbGUrZsWa1d28LCgmXLluHl5cWKFSsYMGCA1q6tLZnFbUJCQpQORfeU7mpLuqVWq8WPP/4o7O3txXfffSdSU1OVDkkRjx49Era2tuLu3btKh/KSJ0+eiBEjRojy5cuLDRs26LStuLg44eDgIGJiYnTaTn7s379fuLq6mtwmnKzInq4J++OPP/Dz80MIwdGjR/M8EWNKQkNDadOmjUFtK925cyeffvopbdq0QaVSUbp0aZ225+Liwvz58+nevTsRERHY2trqtL28yJxAM8S7EK1TOutL2peamiq+/fZbYW9vLxYtWiTUarXSISnO29s7X88U04X79++LTz75RFSpUkXs3r1b7+0PGzZMdOvWzWB6lQ8fPhS2trbi3r17SoeiF3IizcRERUXh7e3NoUOHiIiIYOTIkVhamvfbrFKpuH79uuLbSoUQrF+/HldXV+zs7IiLi6Ndu3Z6j2PBggVcvXqVH374Qe9tZyUkJIR27drh4OCgdCj6oXTWl7QjKSlJ/Oc//xGOjo4iMDDQYHoxhmDs2LHiq6++UjSGmzdvio8++kjUrl1bHDt2TNFYhBAiISFBODk5GcSSQU9PT7PYmJPJvLtAJuLo0aO4u7tz4cIFYmNjGTBggHmMjeWC0sVthBAEBATg7u5OvXr1iIqK4p133lEklhdVrlyZwMBA+vTpw+3btxWLIzY2ltu3byvS41eKnEgzYk+fPmXSpEls3LiRn376iW7duikdksHZunUrdevWpUaNGnpv+/LlywwdOpSHDx+yZ88e3N3d9R5DTjp27MjgwYPp3bs3e/fuxcpK/+nA1IvbZEX2dI3Uzp07cXFxITExkfj4eJlws6HEtlK1Ws3ChQvx8vKiXbt2nDx50uASbqZp06ZRpEgRvv76a723nZKSYvrFbbKi9PiGlDeZM9+VK1cWu3btUjocg5ZZ3Eaf20rj4+NFkyZNRLNmzcS5c+f01m5B3L17V7z11ltiy5Ytem137dq1olWrVnpt0xDInq6REK/MfKtUKsVn4w3dihUr6NGjh162laalpTFr1ixatGjBxx9/zMGDB6lVq5bO29UGR0dHQkND8fPz4+LFi3pr1yyK22RF6awvvdmLM9/G/hgWfVGr1aJ69eri1KlTOm8rIiJCuLm5iY4dO4orV67ovD1dWbhwofDw8BCJiYk6b+vq1auiTJkyemnL0MiergETL8x8161bl6ioKJo2bap0WEbh8OHD2NjY4OXlpbM2kpKSmDhxIu+//z5ffvkl27Zto1KlSjprT9dGjRpFrVq1GDVqlM7bCgwMpFevXtjY2Oi8LUMjVy8YqMyZ7wcPHrB79248PDyUDsmo6Hpb6aFDh/Dz86Nhw4bExcXh5OSkk3b0KbMwjre3N8uXL9fZBFdGRgbLly9n7dq1Orm+wVO6qy29LD09XSxYsEDY29uL2bNni7S0NKVDMjq6LG7z+PFjMWzYMFGhQgWxefNmrV/fEKhUKuHg4CCioqJ0cv19+/YJNzc3s93AI3u6BuT333/Hz88PKysrjh8/bjQTMYYmJCSEtm3bar24zfbt2xk2bBgdOnRApVJhZ2en1esbinr16rFw4UJ8fHyIiIjQ+vdpVsVtsqJ01pc0BWpmzpwp7O3txeLFi2WBmgLy8vIS27dv19r17t27J/r16yeqVasm9u7dq7XrGroRI0aILl26aLVHmlnc5v79+1q7prGRE2kKi4iIwNPTk2PHjnHmzBmGDx9u9gVqCiIuLo6bN29qZTmdEILQ0FBcXV1xcnIiNjaWNm3aaCFK4zBv3jxu3brF3LlztXbN4OBg2rdvj729vdauaXSUzvrmKjExUXz55ZfCyclJrFq1ymzHt7RtzJgxYvLkyQW+zvXr10Xnzp1F3bp1xYkTJ7QQmXG6cuWKcHZ2FgcPHtTK9Ro2bCh27typlWsZK9mlUsChQ4dwc3PjypUrxMXF0b9/f/Md39Ki1NTUAm8rFUKwdOlSPDw8qF+/PmfOnKFx48ZajNK4VKpUiRUrVtC3b19u3bpVoGvFxMRw9+5d2rZtq6XojJOcSNOjJ0+eMHHiRMLCwli8eDFdu3ZVOiSTEhYWRr169ahevXq+Xn/x4kWGDBnC06dP2b9/P66urlqO0Dh16NCBIUOG0Lt3b/bt25fvwjjmWNwmK7Knqyfbt2/HxcWFtLQ04uPjZcLVgfxuK1Wr1fzwww80atSITp06ceLECZlwXzFlyhSKFi3KV199la/Xp6SkEBQUxMCBA7UbmDFSenzD1GXOfFetWtWsZr717dq1a/kqbhMXFye8vb1FixYtxPnz53UUnWm4d++eqFSpkti0aVOeXxsaGipat26t/aCMkOzp6oh4ZeY7Li7OrGa+9S1zW2lui9ukpqYyY8YMWrVqha+vL/v371ek5q4xcXBwYO3atQwdOpQLFy7k6bX+/v74+vrqKDIjo3TWN0Vy5lu/1Gq1qFatmjh9+nSuzj916pRwcXERH3zwgbh27ZqOozM9ixYtEu7u7rkuVnPlyhWzLW6TFdnTzUpGBjx+DImJIESuXyZemPn28PAw+5lvXUlPh4cPITVV8+dDhw5RvHhxPD09c3xdYmIiX3zxBZ07d+arr74iLCyMihUr6iFi0zJixAjq1KnDiBEjsjyekqJ5f9RqzZ8DAwPp3bu3WRa3yZLSWd9gpKYKERoqRIMGQlhaClG4sBBWVkIUKSJE795ChIfn+PILFy6IVq1aCU9PTxETE6OnoM3Hw4dCzJ8vRMWKQlhYaN4WS0sh7OyEqFt3q5g6dVmOr9+/f7+oXr266Nu3r05qMpibp0+fijp16ohlyzT/7pcuCTFmjBClSmnelyJFNO9T5coZokyZqeLgwTMKR2w4ZNIVQojfftN8ekuWFELTt335y9JSiGLFhKhbV4jY2Jdemp6eLubNmyfs7e3F3LlzZYEaLUtNFWLECCGKFtW8BVm9PZAsrK0zRMeOQvz118uvf/TokRg6dKioWLGiCAsLU+abMFG///67KFOmtvD2fiyKFtUk2qzeHwuL58LGJkOMGydEerrSUStPJt2JE3P6NL/+Vby4EIcOCSHkzLeuJSUJ0bx57t+eIkWEqFRJiOvXNa8PCwsTFStWFJ9++ql49OiRst+MCbp8WQg7u0QBKbl6f4oVE6J9e80vUnNm3kl3/vy8Jdy/vzKKFxeLhw8XDg4OYsmSJbJAjQ6o1UJ88IEQNjZ5e3usrISoUiVN+PgMFjVq1BAHDhxQ+lsxSX/9pfkFZ2mZt/fHxkYzWmfOu94thMjDTJEpuXMHqlSB5OSX/vonIBCIA/r8/f+vygAu2NpSTKWSEzE6snUr9OkDz59nd8Z5wBXwAVa/ciyZRo2OsX9/E708H80cff45LFny72Tmv0q88uckYDiw6J+/KV4ctmwBc11Bab6rF377DbKod1Ae+BrIaV+TJVAzNZWKT5/qKDhpzpycEi7ACCC7R/EU5dy5NhQuLBOuLiQlQUBAVgkX4NkLX3cAG6DHS2c8fw7/93+6jtJwmWfSVavhxx81Pz2v6AZ0Bd5UeM4iLQ0WLtRBcNLFixAZmdMZIYAdkH1XSa3W9KYk7cv9U3bWA05As9eOHDwIN25oLyZjYp5J98wZzWLCgkhPh3XrtBOP9JItWzRLpbP2BJgKzMvxGk+fwqpVWg5MAmDlSnj2LDdnrgA+AV6/o7S01AwhmSPzTLr37mne9YKSwws6cft2dreuAFMAX+CtN17nzh0tBiX9I3f/rleBQ8CALI8mJ8P9+1oMyoiYZ2nH7LtReZKelkZhWQdXB+YCX2Tx99HAXiAqV1c5dSocCwtv7YUl/U0F1HvDOSuBd4GqWR4V4t8da+bGPJNumTJ52t6bHatSpRCPH2shIOlFc+bA119rRnBedhBIACr9/edngBr4HTjz2nXee8+LHTvMc3GOLjVrBkePvumslcB/sj1qba35GJoj8xxeaNAg295uOpCM5qOs/vv/X/vsg2Z4ol07XUVo1tq1gyJFsjoyFLiIpscbDQwDOgG7XjuzRAno1k1nIZq1jz6CnFfiHQdu8OqqhRdZWJjvx8c8k27RojB4MBQu/NqhWWgWucxGs/rT5u+/e42NDXyR1S2wVFANGmiWUL+uGFD2ha8SQFHg9UetZ2RA3766i9GcDRr0phG6FWjWAZXM9gwXF6hdW8uBGQnzTLoAo0dDFo8NmQ6IV76mZ/X6cuWgUSPdxWfmPvggHguLHBfqonlnXt0YAVZW8PHHmkX4kvaVLq25i8h+LvpXIPulIyVKwMSJuojMOJhv0q1eXfMrOz87lmxs4Ndfs9xcIRXMo0eP8PPzIyioC5Urq7O6GXmjUqVgyhTtxyb969tvoWT2HdlsFSkC9epBly7aj8lYmG/SBVi0SLMXMS+J18ZGs/+xdWvdxWWmNm/ejIuLC9bW1sTHnyE8vBQVK2Y3vpsVNcWLq9m/HypU0GWkUpUqsHu3JvHmtu9hbQ1Vq8LOnZq7EXNlvrUXMqnVMG4c/PYbaWlpFM5uHUuJEpr7qaAg6NRJvzGauDt37jBq1Ciio6NZtmwZzZs3/+fYo0fQtSuEh2v2s+T09hQr9gwrqw+Ijd2Avf2b9hRK2hAfDx07wsOHgmfPBFn146ysNNMnzZrB+vX56yGbEvPu6YJmXHfhQlLPnmWhtTXqUqU0n2BbW819atGimlH/X36Bu3dlwtUiIQSrVq3Czc2NatWqERMT81LCBbCz02wZPXFCM05rY6P50Ga+PdbW0KGDZhfb7dsl6NWrAR9//DEZWlqLLeWsXj1ISIBPPtmKk9PvWFtr3hdbW837ZGOjGcWLiIBdu2TCBdnT/cf69etZvHgxB3bvhkuXNM8bKVIEHB3hrTfvfpLy5urVqwwbNoybN2/i7+9Pw4YNc/W6Z8/gyhV48kQzUVahArzYqU1LS6NVq1a89957fP311zqKXnpVgwYNmDNnDh4e7bh5U/OkK1tbqFxZTmi+RsGykgalY8eOYuXKlUqHYfLUarVYvHixcHBwELNmzRKpOqhoff36dVG2bFmxZ88erV9bet2ZM2dEpUqVZF3pXJI9XeD69eu4ublx/fp1WX9Vh86dO8eQIUNIT0/H39+fOnXq6Kyt/fv3069fP8LDw2XNYx0bNWoU9vb2TJ8+XelQjIIc00XztNJevXrJhKsj6enpzJ49m6ZNm+Lj48ORI0d0mnABWrduzejRo+nZsyep2VfPkQooOTmZ4OBgBg0apHQoRsPsk25GRgbLly9n8OCcypZL+RUdHU2jRo3Yv38/ERERjB49mkJZbErRhYkTJ2Jvb8+ECRP00p452rx5M/Xr16dy5cpKh2I0zD7pHjp0iOLFi+Pp6al0KCYlOTmZyZMn0759e0aNGsWuXbuokvXeXp2xtLRk5cqVhIWFsTb3lbelPPD398fX11fpMIyKGS9R1ggICGDw4MFYyN1lWnP8+HF8fX2pU6cOMTExlCtXTrFYSpcuzfr16+nQoQNubm7UNtcN/zqQkJBAVFQUXbt2VToUo2LWE2mPHj2iSpUqXLhwAQcHB6XDMXrPnj3jq6++Yv369SxatIju3bsrHdI/li5dyoIFCzh16hQlSrz68EQpP6ZPn85ff/3FokWL3nyy9A+zHl4ICQmhXbt2MuFqwe7du3F1deXJkyeoVCqDSrgAfn5+eHl58emnn2LG/QytkXMh+WfWSVeORxXcgwcPGDRoEEOHDmXJkiUEBgZSxgCrU1tYWPDzzz+jUqn45ZdflA7H6O3btw97e3vq16+vdChGx2yTbmxsLLdv36aduVZS1oINGzbg4uJCiRIliIuLo0OHDkqHlKNixYqxfv16pk2bxunTp5UOx6gFBATIDks+me2Y7pgxYyhZsiQzZ85UOhSjc/v2bUaOHIlKpWLZsmW8++67SoeUJxs3bmTcuHFERkbKwjj58ODBA6pVq8bly5cpXbq00uEYHbPs6aakpLBmzRq5oDuPhBAEBgbi5uZGrVq1iI6ONrqEC9CtWzd8fHzo37+/LIyTD0FBQbz//vsy4eaTWSbdsLAwXF1dqVatmtKhGI2EhATee+89Fi5cyK5du/juu+8oWrSo0mHl2/fff8/z58+ZNSvLhzFJOfD395cTaAVglklXjkflXkZGBosWLcLT05NWrVpx+vRpk5g8KVy4MKGhofz666/s3r1b6XCMRlRUFA8fPqS1LOKfb2Y3pnvt2jU8PDy4fv06NjY2Sodj0M6ePYufnx+WlpYsW7aMt99+W+mQtO7gwYP07t2b8PBw3pIlPN9o5MiRODo6Mm3aNKVDMVpm19PNLG4jE2720tLS+O6772jWrBl9+/bl0KFDJplwAVq2bMnYsWPp0aOHLIzzBklJSQQHBzNw4EClQzFqZpV05YLuNztz5gze3t4cPnyYyMhIRowYgWX2j301CRMmTMDZ2ZkvvvhC6VAM2ubNm2nYsKEsblNApv1pesXBgwcpWbJkrp9SYE6SkpKYNGkSHTt2ZOzYsezYscNsPlwWFhasWLGCbdu2ERISonQ4BktuJtIOsyp4I4vbZO3o0aP4+vri5uZGbGwszs7OSoekd3Z2dqxfv5727dvj7u6u83q/xiYhIYHo6GhZ3EYLzGYiLbO4zcWLF+WC+L89ffqUSZMmsWnTJn766Sc++ugjpUNSnL+/P/PmzeP06dOyMM4Lpk2bxsOHD/nxxx+VDsXomc3wQnBwMO3bt5cJ9287duzAxcWFpKQkVCqVTLh/8/X1pXHjxgwZMkQWxvmbWq1m+fLlcmhBS8wm6crxKI2//vqLTz75hOHDh+Pv74+/v7/cWfSKxYsXc/bsWRYvXqx0KAZh3759ODo64u7urnQoJsEskm5MTAx3796lbdu2SoeiGCEE69atw8XFhTJlyhAXF2fW/x45sbGxYf369XzzzTecPHlS6XAUJzcTaZdZjOl+/vnn2Nra8s033ygdiiJu3brF8OHDOXfuHP7+/jRp0kTpkIzCli1bGD16NJGRkWZbc/mvv/6ievXqsriNFpl8TzclJYWgoCCzXNAthCAgIAB3d3dcXFyIioqSCTcPunTpQu/evenXrx9qtVrpcBQRFBREp06dZMLVIpNPulu2bMHNzc3sittcunSJ9u3b8/PPP7Nnzx5mzpyJtbW10mEZnW+//ZaUlBSzLAEqhJDFbXTA5JOuuY1HqdVqFixYgLe3N+3bt+fkyZNyAqQArKysCAkJYenSpezcuVPpcPQqKiqKx48f06pVK6VDMSkmvTni6tWrhIeHs2nTJqVD0Yvff/8dX19fihQpwvHjx6lVq5bSIZmEsmXLEhwcTM+ePTl9+jSVKlVSOiS98Pf3Z9CgQSa/DVzfTPpfMzAwkN69e5t8cZvU1FRmzpxJixYtGDBgAAcOHJAJV8uaN2/O+PHj6dGjBykpKUqHo3NJSUmEhISY5VyIrpls0jWX4jYRERF4eXlx4sQJzpw5w7Bhw2TPREe++OILypcvz/jx45UORec2bdqEl5eX2fTq9clkP50HDhzA1taWBg0aKB2KTiQmJjJhwgQ6derEhAkT2LZtm6wHq2MWFhYsX76cnTt3EhQUpHQ4OiUn0HTHZJOuKRe3OXToEO7u7ly7do24uDj69etnkt+nIbKzs2PDhg18/vnnxMfHKx2OTly+fJnY2Fi6dOmidCgmySQ3Rzx8+JCqVauaXHGbJ0+eMHHiRLZu3crPP/9M586dlQ7JbAUGBjJ79mzCw8MpWbKk0uFo1dSpU3n8+DELFy5UOhSTZJI93eDgYDp06GBSCXfbtm24uLigVqtRqVQy4Sps4MCBNGvWDD8/P5MqjKNWqwkMDJRDCzpkkknXlIrb3L9/n/79+zN69GgCAwP57bffsLOzUzosCVi0aBHnz59n0aJFSoeiNXv37sXJyUmu7dYhk0u60dHR3Lt3jzZt2igdSoEIIQgJCcHFxQVnZ2diY2PlE1gNTNGiRVm/fj2zZs3ixIkTSoejFea2mUgJJjemO3r0aEqXLs2MGTOUDiXfbty4wfDhw7l48SL+/v40atRI6ZCkHGzdupURI0YQGRmJo6Oj0uHkW2Zxm4SEBHk3pUMm1dNNTk426uI2QgiWLl2Kh4cH9evX58yZMzLhGoEPP/yQfv360bdvX6MujLNmzRo++OADmXB1zKSS7pYtW/Dw8KBq1apKh5JnFy9epE2bNixdupT9+/czffp0ihQponRYUi7NnDkTtVpttHdYmcVt5NCC7plU0jXGHxq1Ws0PP/xAo0aN6NSpEydOnMDV1VXpsKQ8srKyIjg4mICAAHbs2KF0OHkWGRnJ06dPadGihdKhmDyTKXhz5coVIiMj2bJli9Kh5JpKpcLX15dixYpx8uRJatSooXRIUgE4OzsTHByMj48Pp0+fNqpH2GduJpJbyHXPZP6FAwMD6dOnj1EUt0lNTWXGjBm0atUKX19f9u3bJxOuiWjWrBkTJkzAx8fHaArjJCUlERoayoABA5QOxSyYRNI1puI2p0+fpmHDhkRERBAVFcXQoUNl78LEjBs3jkqVKjF27FilQ8mVjRs34u3tLWt36IlJfNr3799P6dKlDbq4TWJiIuPHj6dz585MnjyZsLAwKlasqHRYkg5kFsbZu3cvq1evVjqcN5LFbfTLJJJu5niUoTpw4ACurq7cvn0blUpF7969ZYEaE1eqVCk2bNjA2LFjUalUSoeTrUuXLhEXFye3leuR0W+OyCxuc+nSJcqUKaN0OC95/PgxX375JTt27OCXX37hgw8+UDokSc9WrlzJt99+S3h4OKVKlVI6nNdMmTKFp0+fsmDBAqVDMRtG39MNCgrivffeM7iEu3XrVlxcXLC0tESlUsmEa6Y++eQTWrZsia+vr8EVxsksbmNsyyyNndEnXUNbm3vv3j369OnD2LFjWbVqFUuWLMHW1lbpsCQFLVy4kEuXLhlcqcQ9e/ZQrlw5uS5cz4w66UZFRfHXX38ZRHEbIQRr1qzB1dWVt956i9jYWFq2bKl0WJIByCyM8/3333Ps2DGlw/mHoc+FmCqjHtMdNWoU9vb2TJ8+XdE4rl27xmeffcbVq1cJCAjA09NT0Xgkw7Rt2zaGDRtGZGQkTk5OisZy//59atSowZUrV+SdmJ4ZbU83OTmZ4OBgBg0apFgMGRkZLFmyhAYNGtCoUSMiIiJkwpWy1alTJz755BODKIyzZs0aPvzwQ5lwFWC0SXfz5s3Ur19fsa2W58+fp3Xr1gQGBnLw4EGmTJkiC9RIb/TNN98ghGDatGmKxSCL2yjLaJOuUj806enpzJ07lyZNmtC1a1eOHTtGvXr19B6HZJwKFSpEcHAwK1asYNu2bYrEEBERwfPnz2nevLki7Zs7oyx4k5CQQFRUFF27dtVru7Gxsfj6+mJra8vp06epVq2aXtuXTIOTkxOhoaF89NFHnDp1iipVqui1fVncRllG+a+eWdymaNGiemkvJSWFqVOn0rZtW4YNG8aePXtkwpUK5J133mHSpEn4+PiQnJyst3YTExNlcRuFGV3S1XdxmxMnTlC/fn1iY2OJjo7G19dXbuGVtOLzzz+nWrVqjBkzRm9tbty4kcaNG8u6HwoyuqS7b98+7O3tqV+/vk7bef78OWPGjKFbt27MmDGDTZs2Ub58eZ22KZkXCwsLli1bxoEDB1i5cqVe2pTFbZRndElXHwu69+7di6urKw8ePEClUtGjRw/Zu5V0IrMwzvjx44mLi9NpWxcvXiQ+Pl4Wt1GYUW2OePDgAdWqVdNZcZtHjx4xfvx49u7dy5IlS+jYsaPW25CkrKxevZpvvvmG8PBwna2d/frrr0lMTOSHH37QyfWl3DGqnm5QUBAdO3bUScLdvHkz9erVo2jRosTFxcmEK+lV//79adOmDYMHD9ZJYZzM4jZyaEF5RpV0dbE2986dO/Ts2ZMJEyYQHBzM4sWLDbIEn2T6FixYwNWrV5k/f77Wr717924qVKiAi4uL1q8t5Y3RJN2oqCgePnxI69attXI9IQQrV67Ezc2N6tWrExMTIxeLS4qytrZm3bp1zJkzh6NHj2r12rK4jeEwmjHdkSNH4ujoqJXtk1evXuXTTz/l1q1b+Pv707BhQy1EKEnasWPHDoYMGUJkZCTOzs4Fvt69e/eoWbOmLG5jIIyip5ucnExISAgDBw4s0HUyMjJYvHgxDRo0oFmzZoSHh8uEKxmcjh07MnjwYPr06UN6enqBr7dmzRo6d+4sE66BMIqku2nTJho0aFCg4jbnzp2jRYsWrFmzhiNHjvDVV19RuHBhLUYpSdozbdo0rKysmDp1aoGuI4vbGB6jSLoF+aFJS0tj9uzZNG3alJ49e3LkyBHq1Kmj5QglSbsKFSrEmjVrWL16NVu3bs33dcLDw0lKSpLzFQbE4AveJCQkEB0dTZcuXfL82qioKHx9fXFwcCAiIkLvhUUkqSAcHR0JDQ2la9eunDhxIl/1PjIn0OTmHsNh8D3d5cuX07dv3zwVt0lOTmby5Ml06NCB0aNHs2vXLplwJaPUpEkTJk+eTI8ePfJcGCcxMZG1a9fK4jYGxqCTrlqtznNxm2PHjuHh4cEff/xBbGwsAwcOlL/lJaM2atQoatSowejRo/P0ug0bNtCkSRMqVKigo8ik/DDopLtv3z4cHR3x8PB447nPnj1j9OjR9OjRg2+//ZYNGzZQtmxZ3QcpSTqWWRjnyJEjBAYG5vp1cgLNMBnMmO6dO3D7NqSkgJ0dVKmS+wXdu3fvZujQobRs2RKVSqWTbcKSpKSSJUuyfv16WrZsSf369XF3d//nWGoqJCTAo0dgbQ3OzvDs2QXOnj3LBx98oFjMUtYUTbrp6bB1K8yZA9HRmh8YCwvQPLMvg9TUd/jqq/7Zvv7BgweMHz+eAwcO8Ouvv9KhQwd9hS5JelevXj0WLlyIj48PERERPHliy+LFsGSJ5jOT+SCIlBQoU8Yab+85WFjI5/YZGsV2pJ04AV26QHIyPH2a9TmWlmkUKVKYHj1g2TJ48bmPGzZsYNSoUfj4+PDdd99RokQJ/QQuSQr77LPRbN/+IXfutAUsSEnJ+rzixdUULVqITZugWTO9hijlQJGku2sXdOsGiYm5O79YMWjQAPbuhQcPbjFy5Eji4+Px9/enadOmug1WkgxIWhq0a6fmyJFUMjJscvWaYsUgNBTkSINh0PtEWkwMdO+e+4QLmnMjIwVNmybg5uZO7dq1iY6OlglXMjsDBkB4eKFcJ1zQfH569YKICB0GJuWa3nu6zZvDkSNZHXkA+AK7AQfge6DvS2dYWiayYsV1+vevpeswJcngREXBu+/m1GEJAWYAV4GyQCDw77hCo0Zw8qSOg5TeSK893UuXIDw8u6MjgCLAHWAN8BkQ/8o5NmzZIhOuZJ7mzSPb8VvYA0wElgNPgcPAyzvYYmPh3DldRijlhl57umPGwM8/a8alXvYcKA2ogMyk+jFQAZj90pnW1nD9Ojg46DZWSTIkjx5BuXKaieesvYPmTjH7dblWVuDnB7/8ov34pNzTa083LCyrhAvwJ1CIfxMugDuv93Q1STfr4QlJMl3Hjr28eudlaiACuAfUACoCI4Gkl87KXKIpKUuvSffx4+yOPANerfVpi+Y26WXp6fDwoXbjkiRD9+ABZGRkd/QOkAasB44A0UAUMOu1M7Nbninpj16TrmW2rZUAnrzyd0+Akq+daWGR03UkyTRZWmp+9rOWuZJhFFAOzUT0OGD7a2fKMiTK02v6Kl06uyO1gHTg/At/FwPUe+3MQoXkeK5kfhwcckqYpdEMKbw5o9rZaS8mKX/0mnT794esKzQWB7oBU9FMqh0DtqCZTHtZWhq0bKm7GCXJEDVvnrk9PjuDgEXAXeAhsAB4eTeEtTX066ejAKVc02vSHToUsl8r8TOagX8noA/wC6/2dK2s4OOPQe74lcyNjQ0MGgTZP2FqCuCF5q6xDlAfmPzaWZ99pqsIpdzS++aIzp1h+/Y3/dbOmo0NREaCfNqOZI4uXABX15yWjWXP0hLatIHdu7Ufl5Q3ep+SWrQISpXK++uKF9f8lpYJVzJXNWrA2LGaWgp5VbKkphqZpDxFCt5ER2vGZZ8+zWkZzL+KF9cUyAkMlCsXJPMmBAwZAsHBuatfYmGhSbj79oGnp+7jk95MkRTm4QFnzmj+a2OjGavNSokSmoQ7eTKsWCETriRZWMDSpTBjhubzkd38RqFCmh6xm5um0I1MuIZDsXq6meLiYP58zW/u9HTND0tqKtSqBRMnaqoj5ed2SpJMXVISrFsHs2fDH39odqyp1ZrPUK9eMG4cvPCACclAKJ50MwmhuV1KSdGM+WbX+5Uk6XXp6fDkiWZZWLFichOEITOYpCtJkmQO5CipJEmSHsmkK0mSpEcy6UqSJOmRTLqSJEl6JJOuJEmSHsmkK0mSpEcy6UqSJOmRTLqSJEl6JJOuJEmSHsmkK0mSpEcy6UqSJOmRTLqSJEl6JJOuJEmSHsmkK0mSpEcy6UqSJOnR/wP7PF/84kYWNwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Independent set of 4-th most likely outcome\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAADnCAYAAAC9roUQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA4j0lEQVR4nO3dd1hUxxrA4R+IIjZQmi12jYWmImqMvcWYqFHsJhbQGFssiV5jbNEker1GjTExV0FsFLt47b0XQNoSY2zYa2wofZn7x4bEAkjZ3bNl3ufhSfScnflw2Y85M2e+YyGEEEiSJEl6Yal0AJIkSeZEJl1JkiQ9kklXkiRJj2TSlSRJ0iOZdCVJkvRIJl1JkiQ9kklXkiRJj2TSlSRJ0iOZdCVJkvRIJl1JkiQ9kklXkiRJj2TSlSRJ0iOZdCVJkvRIJl1JkiQ9kklXkiRJj2TSlaQ8evAA5s6FmjWhTBkoVQrKl4d+/SAiQunoJP74A0aMgLfeAltbsLODKlXgX/+C69eVjg4LWcRcknLn3j0YNQq2bQMLC0hKevl4oUJgba35fC9aBO3aKRKm+YqM1CTb6GhIT4e0tJePW1tr/tu8OfzyC9Soof8YkUlXknLl0iXNZ/X+fc3n+U1sbDSJd+hQ3ccmATt3grc3JCa++VxLSyhRAvbuBS8v3cf2Cpl0JekN7t0Dd3e4exfy8mmxsYGVK6FnT93FJgEnTmguK1699HiTkiXhzBmoXVs3cWVDJl1JeoOuXTUDqVevVnPDxgZu3oTSpbUfl4TmsqN8ec0lSF5ZWEDduqBSaT+uHMiFNEnKwZ07sHt3dgm3FVAUKPHX19uvnWFhAStW6DJCM7d9OyQnZ3koHngfKA2UBUYBL80MCQFXruh99VMmXUnKwX//q0mc2fsJePbX1/nXjiYmwvz5kJGhm/jM3r//DQkJWR4aATgBt4Eo4DDw86snJSdr3iA9kklXknKwfHm2A6lce/oUzp7VTjzSCx48yHGUegXoheZapCzwHhD36kkZGbBxo15/K8qkK0k5+PPPN50xGXAAmgGHsjzD0hJu39ZqWBJoVjaLFMn28OdAMJAI3AR2okm8WcpmtKwLciFNknJQpEhOC2ingbpAETQf71FoLmSrv3LeE8AH2KibIM1UfeAgYJvN8XPAACAaUAMDgRXAa7NFRYvC1avg5KSjSF8mR7qSlIPixXM62hgoCVij+Ug3A3a8dpatrS17925ACCG/tPh19tIlbLN5gzKAjkB34DnwAHgETMrq5NRUza41PZFJV5Jy0KRJXs62AF6/cExOhvr1tRWR9LdKlaBw4SwPPQSuo7n2sAbsgcFk9SsRqFYtx2kKbZNJV5Jy8OWXms1Lr3sM7AaS0dyItBY4gmZ89Q9LS/jwQ7C3122cZsnKCkaO/Gd77wscgKrAL2jencfASsD91RNLlNDUZNAjOacrSTnIyBA4OCTy6NGrl7H30dwF+jtQCKgNzALav3RWsWJw8KAiu03NQtKlS1i9/TaF1erXjkUBY9HM6RYCWgNL0NxG9rdixTQbK4oV03msmeRIV5KyceXKFTp27ICt7QyKFn31liJHIAxIQDOOOsWrCbdoUc30RKNG+ojW/Bw5cgT3Tp04VLkyGTY2rx33QHM/ySM0c7rrySLhTpmi14QLMulK0mvUajU//vgjjRo1ol27dly48D1Tpljm6bNpaZlKtWqCrVvftLlCyqunT58yYsQI+vXrx7///W/anz+PZbNmeUuexYppimJMnqy7QLMhk64kveDcuXM0b96c9evXc/z4cSZNmoSVlRVffw3z5mlGr0WKZH8jvYUFFC8usLGJxsdnWTbzwVJ+7dixAxcXF1JTU1GpVHTr1k0zt7tjB3TvDsWKobbMIa0VLqwpiDFypGZ/thK/EYUkSSI1NVXMnj1b2NvbiyVLlgi1Wp3leTduCNGkyT5hbZ0oSpUSomRJIUqUEKJUKSGKFhWiSxchjhwR4o8/LghHR0dx6tQpPX8npun+/ftiwIABomrVqmLfvn3ZnxgZKbY7OIj0IkU0b0qJEv+8QcWLCzFqlBB//KG/wLNgpf80L0mGJSIigiFDhlC+fHnOnj1LpUqVsj3XySmN+PgBhIUd5MGD2ty9q7nNs3Rpzdxt2bKZZ9bg119/pVevXkRERODg4KCX78XUCCFYt24dY8eOpW/fvsTGxlI8h5unz1lb41u4MNdu3YLTp+HhQ80tJPb2moLIep6/zYpMupLZSkpKYsaMGQQEBPCf//yHAQMGYPGGy82dO3dSvXp1XF3fXIP1o48+4sSJEwwYMIDt27dTqFAhbYVuFm7dusVnn33GxYsX2bx5M01ycdO0v78/AwcOxMreHt5/Xw9R5p2c05XM0pEjR3B3dyc+Pp6YmBg+/vjjNyZcAD8/P4YMGZLrfr7//nsSExOZPXt2QcI1K0IIli9fjru7Ox4eHpw9ezZXCTctLY3Vq1czePBgPURZAIpObkiSnj158kR89tlnonz58mLz5s15eu2tW7eEnZ2dSEhIyPPrypUrJ3bt2pWn15mjS5cuiTZt2ghPT08RHR2dp9du2rRJNG/eXEeRaY8c6UpmI8uV7zxYvXo13bt3p0Qeb0koV64cgYGBDBw4kGvXruXpteZCrVazYMECvLy86NSpEydPnsTNzS1Pbfj7++fpKkQxSmd9SdK1F1e+9+7dm682MjIyRK1atcTx48fzHcecOXNE48aNRUpKSr7bMEWxsbGicePGomXLluLChQv5auPmzZvCzs5OPHv2TMvRaZ8c6UomSwhBSEgIrq6uODg4EBsbS7t8Phf9xIkTWFhY0LRp03zHM3HiRJydnZkwYUK+2zAlqampzJw5k9atWzN48GAOHDhAjXw+Fn3VqlV4e3vneGeDoZB3L0gmKT8r3znx8/PDx8cnV4tt2bGwsGDlypV4enoSHBxMnz59ChSTMQsLC2PIkCFUrlyZyMhIKlasmO+2hBD4+/uzatUqLUaoQ0oPtSVJmzIyMsSyZcuEg4ODmDp1qkhOTi5wm0+fPhV2dnbi9u3bWohQiMjISOHg4CDi4uK00p4xef78uZgwYYJwdnYWgYGBIiMjo8BtHjlyRNSpU0crbemDHOlKJuPy5csMHTqUJ0+esH///jwvxGRn3bp1tGzZkrL/7HwoEA8PD+bOnUuPHj04c+YMJUuW1Eq7hu7QoUP4+vri5eVFbGwsjo6OWmlXG1cheqV01pekgkpPTxc//PCDsLe3F//+979FWlqaVtt/5513xNatW7XaphBCDBkyRPTu3dtoRmj59fjxYzFs2DBRsWJFERoaqtW2nzx5ImxtbcXdu3e12q4uyYU0yaipVCqaNWvG1q1bOXnyJF9++SVWVtq7gDt37hxXrlzhfR3sbvrpp584f/48P/30k9bbNhTbtm3DxcUFCwsLVCoVH374oVbbDwkJoU2bNjjp6flmWqF01pek/EhJSREzZswQDg4OYunSpdkWqCmoL7/8UkyaNEknbQshxMWLF4Wjo6M4efKkzvpQwr1790Tfvn1F9erVxYEDB3TWT5MmTcT//vc/nbWvCzLpSkbnzJkzwsXFRXTu3Flcv35dZ/2kpqYKZ2dn8fvvv+usDyGE2LJli3jrrbfEvXv3dNqPPmRkZIi1a9cKZ2dn8cUXX4jnz5/rrK+4uDhRvnx5rU8n6ZpcSJOMRmJiItOmTWP16tUsWLCAvn376nTxZPv27dSsWZO3335bZ30AdO3alRMnTtC/f3927txptIVxbty4wWeffUZ8fDyhoaF46fgZRX5+fpriNlqcTtIHOacrGYVDhw7h5ubGzZs3UalU9OvXT+er1frcVvrtt9+SmprKN998o5f+tCkjI4Nff/2V+vXr06hRIyIiInSecFNTU1mzZo3hF7fJitJDbUnKSebKd4UKFXRyB0F28lvcpiBu374typcvL3bu3Km3PgvqwoULolWrVsLLy0vExsbqrd+NGzeKFi1a6K0/bZIjXclgZa58A8TFxdGlSxe99b1q1Sp69OiR5+I2BVG2bFmCgoIYNGgQV69e1Vu/+ZGens5//vMfmjRpQpcuXThx4sTf75U+GE1xm6wonfUl6VX6WvnOTmZxmxMnTui9byGEmDdvnmjUqJFWdtPpQnR0tPD09BRt2rQRly5d0nv/N27cEKVLlzaK4jZZkSNdyWAIIQgMDMTV1ZXy5csTExND69at9R7H8ePHsbS0LHC9hvyaMGECFStWZPz48Yr0n52UlBSmT59O27Zt+fTTT9m3bx/VqlXTexzGVNwmK8a17CeZLH2vfOdE6W2lFhYWrFixAk9PT9auXUv//v0VieNFp06dwsfHhxo1ahAVFUWFChUUiUP8VdxmzZo1ivSvFUoPtSXzplarxdKlS4WDg4OYMWOG4rVmnz59KmxtbcWdO3cUjUMIIaKiooSDg4NQqVSKxfDs2TMxbtw4UbZsWREcHKz4luXDhw+LunXrKh5HQciRrqSYixcvMnToUBITEzl48KBeF2KyExISQuvWrXF2dlY6FNzd3Zk3bx49evQgLCxM74Vx9u/fz9ChQ2nWrBmxsbEG8URjpa9CtELprC+Zn7S0NDFv3jxhb28v5s+fL9LT05UO6W9NmzYV27ZtUzqMl/j6+oqePXvqbXT36NEj4evrK9566y2xfft2vfSZG5nFbYx9555cSJP0KiYmhqZNm7Jjxw5Onz7N+PHjDWYH1rlz54iPj+e9995TOpSXLF68mIsXL/Ljjz/qvK+tW7fi4uJC4cKFUalUOin0k1/BwcG0bdtWayUhFaN01pfMQ3Jyspg2bZpwcHAQy5YtM8g5uQkTJoh//etfSoeRpUuXLglHR8cCPaMtJ3fu3BG9evUSNWvWFIcPH9ZJHwXl5eVlUCPv/JIjXUnnTp06RYMGDYiMjCQqKgpfX1+Dm5NLS0tj9erVBruttFq1avj5+dG7d2/u3buntXaFEKxZswY3NzeqVKlCdHQ0LVq00Fr72qJSqbhx4wYdOnRQOpQCkwtpks48f/6cqVOnEhgYyKJFi+jVq5fBJdtM//vf/3j77bepVauW0qFk68MPP+TEiRP069eP3bt3F3ha5tq1awwfPpybN2+yfft2PD09tRSp9vn7+zNo0CCjK26TFTnSlXRi//79uLq6cu/ePVQqFb179zbYhAvGs6101qxZZGRkMGPGjHy3kZGRwS+//ELDhg155513CA8PN+iEa9TFbbKi9PyGZFpeXPk2luLSN2/eFHZ2dkazrfTOnTuiQoUK+ZrfPH/+vGjevLlo2rSp0TwYc8OGDaJly5ZKh6E1cqQrac2rK9+dO3dWOqRcMbZtpc7OzgQHBzN48GDi4+Nz9Zr09HTmzp3LO++8g7e3N0ePHqVu3bq6DVRLjOUqJNeUzvqS8ctc+a5Ro4Y4dOiQ0uHkSUZGhqhZs6ZRPi5n/vz5omHDhiIpKSnH86KiokSDBg1Eu3btxOXLl/UUnXZkFrfR5RMo9E2OdKV8E6+sfMfExNCyZUulw8qTY8eOYWVlRePGjZUOJc/GjRtHlSpVGDt2bJbHk5OT+frrr2nfvj2jRo1iz549VK1aVb9BFtDKlSvp2bMnxYoVUzoUrTH+pUBJEZkr3zdu3DD4le+cGPO2UgsLC/z9/fH09GT16tV8/PHHfx87ceIEPj4+1KlTh+joaMqVK6dgpPmTkZGBv78/gYGBSoeiXUoPtSXjolarxZIlS4SDg4OYNWuW4gVqCiJzW+ndu3eVDqVAYmJihIODg4iJiREJCQlizJgxoly5cmL9+vUGuQkltw4dOiTq1atn1N9DVuRIV8q1P/74A19fX9LS0jh8+LDRLMRkJyQkhDZt2uDk5KR0KAXi6urK/Pnzef/997G0tKR169bExsZib2+vdGgFYsxXITmRc7rSG7248t2jRw+OHTtm9AkX/vlQG7tHjx5x8OBBHj9+TKVKlVixYoXRJ9wnT54QGhrKgAEDlA5F62TSlXIUHR1N48aN2bdvH2FhYXz++ecGU6CmIOLi4rh+/TodO3ZUOpQC2bRpEy4uLpQoUYLLly+TmJjIwoULlQ6rwIKDg2nXrp3xF7fJitLzG5JhSkpKElOmTBEODg7Cz8/P5ObVxo8fLyZPnqx0GPl2+/Zt0aNHD/H222+Lo0eP/v33ly9fFk5OTuLYsWMKRldwjRo1Ejt27FA6DJ2QI13pNSdOnKB+/frExcURHR3NkCFDTGpezZi3lQohWLlyJW5ubtSqVYuoqCjefffdv49XrVoVf39/+vTpo9XCOPoUGxvLrVu3TKK4TVbkQpr0t2fPnjFlyhTWr1/Pjz/+SI8ePUwq2Wb63//+R+3atalZs6bSoeRJfHw8n376Kffu3WP37t3Ur18/y/M6d+7MwIED6du3L3v27DG66aDM4jbGFnduyZGuBMCePXtwdXXl8ePHxMbG4u3tbZIJF4xvW2lGRgaLFy/G09OTVq1acebMmWwTbqaZM2diYWHBtGnT9BSldqSmprJ27VqjvArJNaXnNyRlPXz4UAwaNEhUqlRJ7Ny5U+lwdC5zW6mxFLc5d+6caNasmWjWrJk4d+5cnl579+5dUbFiRREaGqqj6LRv/fr1olWrVkqHoVNypGvGNm3aRL169ShevDgqlcrgHlOjC8ZS3CYtLY3vvvuOd999lz59+nDkyBFq166dpzacnJwICQnBx8eHy5cv6yhS7TK2q5B8UTrrS/qXufJdq1YtceTIEaXD0ZuMjAxRo0YNcerUKaVDydHZs2eFh4eH6Nixo4iPjy9wewsWLBANGjR4Y2EcpV2/ft3kittkRY50zYh4YeW7Zs2aREdH07x5c6XD0pujR49SpEgRvLy8lA4lS8nJyUyePJmOHTsyduxYdu7cSeXKlQvc7ueff0716tUZM2aMFqLUnZUrV9KrVy+TKm6TFXn3gpl4ceV7165dNGjQQOmQ9M6Qt5UeO3YMHx8f3NzciImJoWzZslpr28LCguXLl9OoUSNWrlzJwIEDtda2tmQWtwkODlY6FN1Teqgt6ZZarRY//vijsLe3F999951ITU1VOiRFPH78WNja2op79+4pHcpLnj59KkaOHCnKly8vNm7cqNO+YmNjhYODg4iOjtZpP/lx4MAB4erqanKbcLIiR7om7Pfff8fX1xchBMeOHcvzQowpCQkJoW3btga1rXTXrl18+umntG3bFpVKRenSpXXan4uLCwsWLKBHjx6Eh4dja2ur0/7yInMBzRCvQrRO6awvaV9qaqr49ttvhb29vVi8eLFQq9VKh6Q4Ly+vfD1TTBcePHggPvnkE1GlShWxZ88evfc/fPhw0b17d4MZVT569EjY2tqK+/fvKx2KXsiFNBMTGRmJl5cXhw8fJjw8nFGjRmFpad5vs0ql4saNG4pvKxVCsGHDBlxdXbGzsyM2Npb27dvrPY6FCxdy7do1fvjhB733nZXg4GDat2+Pg4OD0qHoh9JZX9KOpKQk8a9//Us4OjqKgIAAgxnFGIJx48aJr776StEYbt26JT766CNRu3Ztcfz4cUVjEUKI+Ph44eTkZBC3DHp6eprFxpxM5j0EMhHHjh3D3d2dixcvEhMTw8CBA81jbiwXlC5uI4TA398fd3d36tWrR2RkJO+8844isbyocuXKBAQE0LdvX+7cuaNYHDExMdy5c0eREb9S5EKaEUtISGDy5Mls2rSJn376ie7duysdksHZtm0bdevWpUaNGnrv+8qVKwwbNoxHjx6xd+9e3N3d9R5DTjp16sSQIUPo06cP+/btw8pK/+nA1IvbZEWOdI3Url27cHFxITExkbi4OJlws6HEtlK1Ws2iRYto1KgR7du359SpUwaXcDNNnz6dIkWK8PXXX+u975SUFNMvbpMVpec3pLzJXPmuXLmy2L17t9LhGLTM4jb63FYaFxcnmjZtKpo3by7Onz+vt34L4t69e+Ktt94SW7du1Wu/69atE61bt9Zrn4ZAjnSNhHhl5VulUim+Gm/oVq5cSc+ePfWyrTQtLY3Zs2fTsmVLPv74Yw4dOkStWrV03q82ODo6EhISgq+vL5cuXdJbv2ZR3CYrSmd96c1eXPk29sew6ItarRbVq1cXp0+f1nlf4eHhws3NTXTq1ElcvXpV5/3pyqJFi4SHh4dITEzUeV/Xrl0TZcqU0UtfhkaOdA2YeGHlu27dukRGRtKsWTOlwzIKR44cwcbGhkaNGumsj6SkJCZNmsT777/Pl19+yfbt26lUqZLO+tO10aNHU6tWLUaPHq3zvgICAujduzc2NjY678vQyLsXDFTmyvfDhw/Zs2cPHh4eSodkVHS9rfTw4cP4+vrSsGFDYmNjcXJy0kk/+pRZGMfLy4sVK1bobIErIyODFStWsG7dOp20b/CUHmpLL0tPTxcLFy4U9vb2Ys6cOSItLU3pkIyOLovbPHnyRAwfPlxUqFBBbNmyRevtGwKVSiUcHBxEZGSkTtrfv3+/cHNzM9sNPHKka0B+++03fH19sbKy4sSJE0azEGNogoODadeundaL2+zYsYPhw4fTsWNHVCoVdnZ2Wm3fUNSrV49Fixbh7e1NeHi41r9PsypukxWls76kKVAza9YsYW9vL5YsWSIL1BRQo0aNxI4dO7TW3v3790X//v1FtWrVxL59+7TWrqEbOXKk6Nq1q1ZHpJnFbR48eKC1No2NXEhTWHh4OJ6enhw/fpyzZ88yYsQIsy9QUxCxsbHcunVLK7fTCSEICQnB1dUVJycnYmJiaNu2rRaiNA7z58/n9u3bzJs3T2ttBgUF0aFDB+zt7bXWptFROuubq8TERPHll18KJycnsXr1arOd39K2sWPHiilTphS4nRs3boguXbqIunXripMnT2ohMuN09epV4ezsLA4dOqSV9ho2bCh27dqllbaMlRxSKeDw4cO4ublx9epVYmNjGTBggPnOb2lRampqgbeVCiFYtmwZHh4e1K9fn7Nnz9KkSRMtRmlcKlWqxMqVK+nXrx+3b98uUFvR0dHcu3ePdu3aaSk64yQX0vTo6dOnTJo0idDQUJYsWUK3bt2UDsmkhIaGUq9ePapXr56v11+6dImhQ4eSkJDAgQMHcHV11XKExqljx44MHTqUPn36sH///nwXxjHH4jZZkSNdPdmxYwcuLi6kpaURFxcnE64O5HdbqVqt5ocffqBx48Z07tyZkydPyoT7iqlTp1K0aFG++uqrfL0+JSWFwMBABg0apN3AjJHS8xumLnPlu2rVqma18q1v169fz1dxm9jYWOHl5SVatmwpLly4oKPoTMP9+/dFpUqVxObNm/P82pCQENGmTRvtB2WE5EhXR8QrK9+xsbFmtfKtb5nbSnNb3CY1NZWZM2fSunVrfHx8OHDggCI1d42Jg4MD69atY9iwYVy8eDFPr/Xz88PHx0dHkRkZpbO+KZIr3/qlVqtFtWrVxJkzZ3J1/unTp4WLi4v44IMPxPXr13UcnelZvHixcHd3z3WxmqtXr5ptcZusyJFuFjIy4MkTSEwEIXL/OvHCyreHh4fZr3zrSno6PHoEqamaPx8+fJjixYvj6emZ4+sSExP54osv6NKlC1999RWhoaFUrFhRDxGblpEjR1KnTh1GjhyZ5fGUFM37o1Zr/hwQEECfPn3MsrhNlpTO+oYiNVWIkBAhGjQQwtJSiMKFhbCyEqJIESH69BEiLCzn11+8eFG0bt1aeHp6iujoaP0EbUYePRJiwQIhKlYUwsJC875YWgphZydE3brbxLRpy3N8/YEDB0T16tVFv379dFKTwdwkJCSIOnXqiOXLNf/uly8LMXasEKVKad6XIkU071PlyhmiTJlp4tChswpHbDhk0hVC/Pe/mg9vyZJCaMa2L39ZWgpRrJgQdesKERPz8mvT09PF/Pnzhb29vZg3b54sUKNlqalCjBwpRNGimvcgq/cHkoW1dYbo1EmIP/98+fWPHz8Ww4YNExUrVhShoaHKfBMm6rfffhNlytQWXl5PRNGimkSb1ftjYfFc2NhkiPHjhUhPVzpq5Zl90p00KacP8+tfxYsLcfiw5rVy5Vu3kpKEaNEi9+9PkSJCVKokxI0bmteHhoaKihUrik8//VQ8fvxY2W/GBF25IoSdXaKAlFy9P8WKCdGhg+YXqTkz66S7YEHeEu4/iTdDjBixRDg4OIilS5fKAjU6oFYL8cEHQtjY5O29sbISokqVNOHtPUTUqFFDHDx4UOlvxST9+afmF5ylZd7eHxsbzXSdOe96txAiL0tFpuPuXahSBZKTXz3yExAAxAJ9//r/V2Vga3sRlaqYXIjRkW3boG9feP48uzMuAK6AN7DmlWPJNG58nAMHmurl+Wjm6PPPYenSfxYz/1HilT8nASOAxX//TfHisHUrmOsdlGZ798J//wtZlzsoD3wN5LSzyZLU1JokJMiEqytz5+aUcAFGAtk9iqco58+3pXBhmXB1ISkJ/P2zSrgAz174ugvYAD1fOuP5c/jPf3QdpeEyy6SrVsOPP2p+eF7XHegG5Fx6Li3NgkWLtB+bBJcuQURETmcEA3ZA9kMltVozmpK0L/dP2dkAOAHNXzty6BDcvKm9mIyJWSbds2c19xIWRHo6rF+vnXikl23dqrlXOmtPgWnA/BzbSEiA1au1HJgEwKpV8OxZbs5cCXwCvH5JaWmpmUIyR2aZdO/f17zpBZWQUPA2pNfduZPdpSvAVMAHeOuN7dy9q8WgpL/l7t/1GnAYGJjl0eRkePBAi0EZEbMs7Zj9KCpv0tLSsbAorJ3GpBfMA77I4u+jgH1AZK5aOX06DAsLL+2FJf1FBdR7wzmrgHeBqlkeFeKfHWvmxiyTbpkyedvem51Spax48sQsb/7Qqblz4euvNVM4LzsExAOV/vrzM0AN/Aacfa2d995rxM6d8v3RtubN4dixN521CvhXtketrTWfQ3NkltMLDRrkNNpNB5LRfJjVf/3/a59+LC2hfXtdRWje2reHIkWyOjIMuIRmxBsFDAc6A7tfO7NECejeXWchmrWPPoKc78Q7Adzk1bsWXmRhYb6fH7NMukWLwpAhUDjLmYHZaG5zmYPm/k+bv/7uZTY28EVWV8BSgTVooLmH+nXFgLIvfJUAigKvP2o9IwP69dNdjOZs8OA3TdGtRHMXUMlsz3Bxgdq1tRyYkTDLpAswZgxk/dSQGYB45WvGa2eVKweNG+suPnP3wQdxWFjkeKMumvfl1Y0RYGUFH3+suQlf0r7SpTVXEdkvRv8KZH/rSIkSMGmSLiIzDmabdKtX1/zGzs+GJRsb+PXX7DZXSAXx+PFjfH19CQzsSuXK6myuRnJWqhRMnar92KR/fPstlMx+IJutIkWgXj3o2lX7MRkLs026AIsXa7Yi5iXx2thotj+2aaO7uMzVli1bcHFxwdramri4s4SFlaJixezmd7OipnhxNQcOQIUKuoxUqlIF9uzRJN7cDj6sraFqVdi1S3M1Yq7MtvZCJrUaxo/XbAtOS0tDrc56aFWihOZyKjAQOnfWc5Am7u7du4wePZqoqCiWL19OixYt/j72+DF06wZhYZoNLdndZlSiBBQr9gwrqw+IidmIvX3OOwol7YiLg06d4NEjwbNngqzGcVZWmvWT5s1hw4b8jZBNiVmPdEEzr7toEZw7l4q19SJKlVJTogTY2mouU4sW1Uz6//IL3LsnE642CSFYvXo1bm5uVKtWjejo6JcSLoCdnWbL6MmTmnlaGxvNhzbz/bG2ho4dNbvY7twpQe/eDfj444/J0NbN2FKO6tWD+Hj45JNtODn9hrW15n2xtdW8TzY2mmm88HDYvVsmXJAj3b9t2LCBJUuWsGfPQS5f1jxupEgRcHSEt968+UnKo2vXrjF8+HBu3bqFn58fDRs2zNXrnj2Dq1fh6VPNQlmFCvDioDYtLY3WrVvz3nvv8fXXX+soeulVDRo0YO7cuXh4tOfWLc2jrmxtoXJluaD5GgXLShqUTp06iVWrVikdhslTq9ViyRJNLeLZs2eLVB1UtL5x44YoW7as2Lt3r9bbll539uxZUalSJVlXOpfkSBe4ceMGbm5u3LhxQ9Zf1aHz588zdOhQ0tPT8fPzo06dOjrr68CBA/Tv35+wsDBZ81jHRo8ejb29PTNmzFA6FKNg9nO6oHlaae/evWXC1ZH09HTmzJlDs2bN8Pb25ujRozpNuABt2rRhzJgx9OrVi9Tsq+dIBZScnExQUBCDBw9WOhSjYfZJNyMjgxUrVjBkSE5Fy6X8ioqKonHjxhw4cIDw8HDGjBlDoax3pWjdpEmTsLe3Z+LEiXrpzxxt2bKF+vXrU7lyZaVDMRpmn3QPHz5M8eLF8fT0VDoUk5KcnMyUKVPo0KEDo0ePZvfu3VTJem+vzlhaWrJq1SpCQ0NZl/vK21Ie+Pn54ePjo3QYRsWMb1HW8Pf3Z8iQIVjI7WVac+LECXx8fKhTpw7R0dGUK1dOsVhKly7Nhg0b6NixI25ubtQ21w3/OhAfH09kZCTdunVTOhSjYtYLaY8fP6ZKlSpcvHgRBwcHpcMxes+ePeOrr75iw4YNLF68mB49eigd0t+WLVvGwoULOX36NCVKvPrwRCk/ZsyYwZ9//snixYvffLL0N7OeXggODqZ9+/Yy4WrBnj17cHV15enTp6hUKoNKuAC+vr40atSITz/9FDMeZ2iNXAvJP7NOunI+quAePnzI4MGDGTZsGEuXLiUgIIAyBlid2sLCgp9//hmVSsUvv/yidDhGb//+/djb21O/fn2lQzE6Zpt0Y2JiuHPnDu3NtZKyFmzcuBEXFxdKlChBbGwsHTt2VDqkHBUrVowNGzYwffp0zpw5o3Q4Rs3f318OWPLJbOd0x44dS8mSJZk1a5bSoRidO3fuMGrUKFQqFcuXL+fdd99VOqQ82bRpE+PHjyciIkIWxsmHhw8fUq1aNa5cuULp0qWVDsfomOVINyUlhbVr18obuvNICEFAQABubm7UqlWLqKgoo0u4AN27d8fb25sBAwbIwjj5EBgYyPvvvy8Tbj6ZZdINDQ3F1dWVatWqKR2K0YiPj+e9995j0aJF7N69m++++46iRYsqHVa+ff/99zx//pzZs19/FJOUMz8/P7mAVgBmmXTlfFTuZWRksHjxYjw9PWndujVnzpwxicWTwoULExISwq+//sqePXuUDsdoREZG8ujRI9rIKv75ZnZzutevX8fDw4MbN25gY2OjdDgG7dy5c/j6+mJpacny5ct5++23lQ5J6w4dOkSfPn0ICwvjLVnD841GjRqFo6Mj06dPVzoUo2V2I93M4jYy4WYvLS2N7777jubNm9OvXz8OHz5skgkXoFWrVowbN46ePXvKwjhvkJSURFBQEIMGDVI6FKNmVklX3tD9ZmfPnsXLy4sjR44QERHByJEjscz+sa8mYeLEiTg7O/PFF18oHYpB27JlCw0bNpTFbQrItD9Nrzh06BAlS5bM9VMKzElSUhKTJ0+mU6dOjBs3jp07d5rNh8vCwoKVK1eyfft2goODlQ7HYMnNRNphVgVvZHGbrB07dgwfHx/c3NyIiYnB2dlZ6ZD0zs7Ojg0bNtChQwfc3d11Xu/X2MTHxxMVFSWL22iB2SykZRa3uXTpkrwh/i8JCQlMnjyZzZs389NPP/HRRx8pHZLi/Pz8mD9/PmfOnJGFcV4wffp0Hj16xI8//qh0KEbPbKYXgoKC6NChg0y4f9m5cycuLi4kJSWhUqlkwv2Lj48PTZo0YejQobIwzl/UajUrVqyQUwtaYjZJV85Hafz555988sknjBgxAj8/P/z8/OTOolcsWbKEc+fOsWTJEqVDMQj79+/H0dERd3d3pUMxCWaRdKOjo7l37x7t2rVTOhTFCCFYv349Li4ulClThtjYWLP+98iJjY0NGzZs4JtvvuHUqVNKh6M4uZlIu8xiTvfzzz/H1taWb775RulQFHH79m1GjBjB+fPn8fPzo2nTpkqHZBS2bt3KmDFjiIiIMNuay3/++SfVq1eXxW20yORHuikpKQQGBprlDd1CCPz9/XF3d8fFxYXIyEiZcPOga9eu9OnTh/79+6NWq5UORxGBgYF07txZJlwtMvmku3XrVtzc3MyuuM3ly5fp0KEDP//8M3v37mXWrFlYW1srHZbR+fbbb0lJSTHLEqBCCFncRgdMPuma23yUWq1m4cKFeHl50aFDB06dOiUXQArAysqK4OBgli1bxq5du5QOR68iIyN58uQJrVu3VjoUk2LSmyOuXbtGWFgYmzdvVjoUvfjtt9/w8fGhSJEinDhxglq1aikdkkkoW7YsQUFB9OrVizNnzlCpUiWlQ9ILPz8/Bg8ebPLbwPXNpP81AwIC6NOnj8kXt0lNTWXWrFm0bNmSgQMHcvDgQZlwtaxFixZMmDCBnj17kpKSonQ4OpeUlERwcLBZroXomskmXXMpbhMeHk6jRo04efIkZ8+eZfjw4XJkoiNffPEF5cuXZ8KECUqHonObN2+mUaNGZjOq1yeT/XQePHgQW1tbGjRooHQoOpGYmMjEiRPp3LkzEydOZPv27bIerI5ZWFiwYsUKdu3aRWBgoNLh6JRcQNMdk026plzc5vDhw7i7u3P9+nViY2Pp37+/SX6fhsjOzo6NGzfy+eefExcXp3Q4OnHlyhViYmLo2rWr0qGYJJPcHPHo0SOqVq1qcsVtnj59yqRJk9i2bRs///wzXbp0UToksxUQEMCcOXMICwujZMmSSoejVdOmTePJkycsWrRI6VBMkkmOdIOCgujYsaNJJdzt27fj4uKCWq1GpVLJhKuwQYMG0bx5c3x9fU2qMI5arSYgIEBOLeiQSSZdUypu8+DBAwYMGMCYMWMICAjgv//9L3Z2dkqHJQGLFy/mwoULLF68WOlQtGbfvn04OTnJe7t1yOSSblRUFPfv36dt27ZKh1IgQgiCg4NxcXHB2dmZmJgY+QRWA1O0aFE2bNjA7NmzOXnypNLhaIW5bSZSgsnN6Y4ZM4bSpUszc+ZMpUPJt5s3bzJixAguXbqEn58fjRs3VjokKQfbtm1j5MiRRERE4OjoqHQ4+ZZZ3CY+Pl5eTemQSY10k5OTjbq4jRCCZcuW4eHhQf369Tl79qxMuEbgww8/pH///vTr18+oC+OsXbuWDz74QCZcHTOppLt161Y8PDyoWrWq0qHk2aVLl2jbti3Lli3jwIEDzJgxgyJFiigdlpRLs2bNQq1WG+0VVmZxGzm1oHsmlXSN8YdGrVbzww8/0LhxYzp37szJkydxdXVVOiwpj6ysrAgKCsLf35+dO3cqHU6eRUREkJCQQMuWLZUOxeSZTMGbq1evEhERwdatW5UOJddUKhU+Pj4UK1aMU6dOUaNGDaVDkgrA2dmZoKAgvL29OXPmjFE9wj5zM5HcQq57JvMvHBAQQN++fY2iuE1qaiozZ86kdevW+Pj4sH//fplwTUTz5s2ZOHEi3t7eRlMYJykpiZCQEAYOHKh0KGbBJJKuMRW3OXPmDA0bNiQ8PJzIyEiGDRsmRxcmZvz48VSqVIlx48YpHUqubNq0CS8vL1m7Q09M4tN+4MABSpcubdDFbRITE5kwYQJdunRhypQphIaGUrFiRaXDknQgszDOvn37WLNmjdLhvJEsbqNfJpF0M+ejDNXBgwdxdXXlzp07qFQq+vTpIwvUmLhSpUqxceNGxo0bh0qlUjqcbF2+fJnY2Fi5rVyPjH5zRGZxm8uXL1OmTBmlw3nJkydP+PLLL9m5cye//PILH3zwgdIhSXq2atUqvv32W8LCwihVqpTS4bxm6tSpJCQksHDhQqVDMRtGP9INDAzkvffeM7iEu23bNlxcXLC0tESlUsmEa6Y++eQTWrVqhY+Pj8EVxsksbmNst1kaO6NPuoZ2b+79+/fp27cv48aNY/Xq1SxduhRbW1ulw5IUtGjRIi5fvmxwpRL37t1LuXLl5H3hembUSTcyMpI///zTIIrbCCFYu3Ytrq6uvPXWW8TExNCqVSulw5IMQGZhnO+//57jx48rHc7fDH0txFQZ9Zzu6NGjsbe3Z8aMGYrGcf36dT777DOuXbuGv78/np6eisYjGabt27czfPhwIiIicHJyUjSWBw8eUKNGDa5evSqvxPTMaEe6ycnJBAUFMXjwYMViyMjIYOnSpTRo0IDGjRsTHh4uE66Urc6dO/PJJ58YRGGctWvX8uGHH8qEqwCjTbpbtmyhfv36im21vHDhAm3atCEgIIBDhw4xdepUWaBGeqNvvvkGIQTTp09XLAZZ3EZZRpt0lfqhSU9PZ968eTRt2pRu3bpx/Phx6tWrp/c4JONUqFAhgoKCWLlyJdu3b1ckhvDwcJ4/f06LFi0U6d/cGWXBm/j4eCIjI+nWrZte+42JicHHxwdbW1vOnDlDtWrV9Nq/ZBqcnJwICQnho48+4vTp01SpUkWv/cviNsoyyn/1zOI2RYsW1Ut/KSkpTJs2jXbt2jF8+HD27t0rE65UIO+88w6TJ0/G29ub5ORkvfWbmJgoi9sozOiSrr6L25w8eZL69esTExNDVFQUPj4+cguvpBWff/451apVY+zYsXrrc9OmTTRp0kTW/VCQ0SXd/fv3Y29vT/369XXaz/Pnzxk7dizdu3dn5syZbN68mfLly+u0T8m8WFhYsHz5cg4ePMiqVav00qcsbqM8o0u6+rihe9++fbi6uvLw4UNUKhU9e/aUo1tJJzIL40yYMIHY2Fid9nXp0iXi4uJkcRuFGdXmiIcPH1KtWjWdFbd5/PgxEyZMYN++fSxdupROnTppvQ9JysqaNWv45ptvCAsL09m9s19//TWJiYn88MMPOmlfyh2jGukGBgbSqVMnnSTcLVu2UK9ePYoWLUpsbKxMuJJeDRgwgLZt2zJkyBCdFMbJLG4jpxaUZ1RJVxf35t69e5devXoxceJEgoKCWLJkiUGW4JNM38KFC7l27RoLFizQett79uyhQoUKuLi4aL1tKW+MJulGRkby6NEj2rRpo5X2hBCsWrUKNzc3qlevTnR0tLxZXFKUtbU169evZ+7cuRw7dkyrbcviNobDaOZ0R40ahaOjo1a2T167do1PP/2U27dv4+fnR8OGDbUQoSRpx86dOxk6dCgRERE4OzsXuL379+9Ts2ZNWdzGQBjFSDc5OZng4GAGDRpUoHYyMjJYsmQJDRo0oHnz5oSFhcmEKxmcTp06MWTIEPr27Ut6enqB21u7di1dunSRCddAGEXS3bx5Mw0aNChQcZvz58/TsmVL1q5dy9GjR/nqq68oXLiwFqOUJO2ZPn06VlZWTJs2rUDtyOI2hscokm5BfmjS0tKYM2cOzZo1o1evXhw9epQ6depoOUJJ0q5ChQqxdu1a1qxZw7Zt2/LdTlhYGElJSXK9woAYfMGb+Ph4oqKi6Nq1a55fGxkZiY+PDw4ODoSHh+u9sIgkFYSjoyMhISF069aNkydP5qveR+YCmtzcYzgMfqS7YsUK+vXrl6fiNsnJyUyZMoWOHTsyZswYdu/eLROuZJSaNm3KlClT6NmzZ54L4yQmJrJu3TpZ3MbAGHTSVavVeS5uc/z4cTw8PPj999+JiYlh0KBB8re8ZNRGjx5NjRo1GDNmTJ5et3HjRpo2bUqFChV0FJmUHwaddPfv34+joyMeHh5vPPfZs2eMGTOGnj178u2337Jx40bKli2r+yAlSccyC+McPXqUgICAXL9OLqAZJoOZ0717F+7cgZQUsLODKlVyf0P3nj17GDZsGK1atUKlUulkm7AkKalkyZJs2LCBVq1aUb9+fdzd3f85mJoK8fHw+DFYW4OzMxefPePcuXN88MEHSoUsZUPRpJueDtu2wdy5EBWl+XmxsADNM/sySE19h6++GpDt6x8+fMiECRM4ePAgv/76Kx07dtRX6JKkd/Xq1WPRokV4e3sTHh6O7dOnsGQJLF2q+dBkPgkiJQXrMmWY6+VFETm1ZnAU25F28iR07QrJyZCQkPU5lpZpFClSmJ49YflyePG5jxs3bmT06NF4e3vz3XffUaJECf0ELkkKG/PZZ3y4Ywft7t7FAjSXh1lQFy9OoaJFYfNmaN5crzFK2VMk6e7eDd27Q2Ji7s4vVgwaNIB9++Dhw9uMGjWKuLg4/Pz8aNasmW6DlSRDkpaGun17Uo8exSYjI3evKVYMQkJATjUYBL0vpEVHQ48euU+4oDk3IkLQrFk8bm7u1K5dm6ioKJlwJfMzcCCFwsJyn3BB8wHq3RvCw3UXl5Rreh/ptmgBR49mdeQh4APsARyA74F+L51haZnIypU3GDCglq7DlCTDExkJ776b7YglGJgJXAPKAgHAS5MKjRvDqVM6DlJ6E72OdC9fhrCw7I6OBIoAd4G1wGdA3Cvn2LB1q0y4kpmaPz/b+du9wCRgBZAAHAFe278WEwPnz+syQikX9DrSHTsWfv4Z0tJePfIcKA2ogMyk+jFQAZjz0pnW1nDjBjg46DZWSTIojx9DuXKalecsvIPmOjHHu3KtrMDXF375RfvxSbmm15FuaGhWCRfgD6AQ/yRcAHdeH+lqkm7W0xOSZMKOH3/59p0XqIFw4D5QA6gIjAKSXj0x8x5NSVF6TbpPnmR35Bnwaq1PWzQXSi9LT4dHj7QblyQZvIcPIZvFs7tAGrABOApEAZHA7KxOzu7+TElv9Jp0LbPtrQTw9JW/ewqUfO1MC4uc2pEkE2Vpqfnhz4LNX/8dDZRDsww9HtiR1clys4Ti9Jq+SpfO7kgtIB248MLfRQP1XjuzUCE5nyuZIQeHbBNmaTRTCrlKp3Z22otJyhe9Jt0BAyDrCo3Fge7ANDSLaseBrWgW016WlgatWukuRkkySC1aZO6Pz9JgYDFwD3gELARe2wphbQ39++soQCm39Jp0hw2D7O+V+BnN1L8T0Bf4hVdHulZW8PHHIHf8SmbHxgYGD4ZsHjE1FWiE5pqxDlAfmJLViZ99pqsIpVzS++aILl1gx44cf2lny8YGIiJAPm1HMksXL4Kra7a3jeXI0hLatoU9e7Qfl5Qnel+SWrwYSpXK++uKF9f8kpYJVzJbNWrAuHGaWgp5VbKkphqZpDhFCt5ERWnmZRMSsr0L5iXFi2sK5AQEyDsXJDMnBAwdCkFBuStgYmGhSbj794Onp+7jk95IkRTm4QFnz2r+a2OjmavNSokSmoQ7ZQqsXCkTriRhYQHLlsHMmZoPSHYLHIUKaUbEbm6aQjcy4RoMxerpZoqNhQULNL+409M1PyupqVCrFkyapCmOlJ+rKUkyeUlJsH49zJkDv/+u2bGmVms+RL17w/jx8OITJiSDoHjSzSSE5mopJUUz55vd6FeSpCykp8PTp5rbwooVk5sgDJjBJF1JkiRzIGdJJUmS9EgmXUmSJD2SSVeSJEmPZNKVJEnSI5l0JUmS9EgmXUmSJD2SSVeSJEmPZNKVJEnSI5l0JUmS9EgmXUmSJD2SSVeSJEmPZNKVJEnSI5l0JUmS9EgmXUmSJD2SSVeSJEmP/g+Oml/8SUNx9gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from collections import Counter\n", + "\n", + "states = ['e', 'r', 'g']\n", + "state_labels = []\n", + "for shot in final_registers.measurements:\n", + " pre = shot.pre_sequence\n", + " post = shot.post_sequence\n", + " state_idx = np.array(pre) * (1 + np.array(post))\n", + " state_labels.append(\"\".join([states[s_idx] for s_idx in state_idx]))\n", + "\n", + "occurence_count = Counter(state_labels)\n", + "\n", + "most_frequent_regs = occurence_count.most_common(5)\n", + "for ii in range(len(most_frequent_regs)):\n", + " fig, ax = plt.subplots()\n", + " vert_colors = ['red' if (most_frequent_regs[ii][0][i] == 'r') else 'blue' for i in range(len(most_frequent_regs[ii][0]))]\n", + " print(f'Independent set of {ii}-th most likely outcome')\n", + " nx.draw(graph, pos = {ii: (ii/atoms_w,ii%atoms_w) for ii in graph.nodes()}, ax=ax, with_labels=True, node_color=vert_colors)\n", + " plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Indeed, the most likely solution is the maximum independent set. Other solutions are either missing vertices or invalid." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can also visualize the intial and final waveforms:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "vscode": { + "languageId": "python" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAERCAYAAABy/XBZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAt0klEQVR4nO3deXxU1f3/8dcnG2ELEPYQIGHf14AKgoBaARWsWisFaWkVSytof1XrUqvf2lqrFnfbInVBUBQs7rigIIIKJoDsm8gS1rAFQhayfH5/zIQGTIaQzORkZj7PxyOPZObeufc9gdzP3HPuPUdUFWOMMeEnwnUAY4wxblgBMMaYMGUFwBhjwpQVAGOMCVNWAIwxJkxZATDGmDAVdAVARF4QkQMisrYc6z4uIqu8X5tF5GgVRDTGmKAgwXYfgIgMBrKAGara7RxeNxnoraq/DFg4Y4wJIkF3BqCqi4HDJZ8TkbYi8qGIpInIFyLSqZSXjgFeq5KQxhgTBKJcB/CTacCvVXWLiJwHPAcMK14oIq2BZOAzR/mMMabaCfoCICJ1gAHAHBEpfrrGGatdD8xV1cKqzGaMMdVZ0BcAPM1YR1W1l491rgd+WzVxjDEmOARdH8CZVPUY8L2I/ARAPHoWLxeRjkAD4CtHEY0xploKugIgIq/hOZh3FJF0EfkVMBb4lYh8C6wDRpd4yRhgtgbb5U7GGBNgQXcZqDHGGP8IujMAY4wx/hFUncCNGjXSpKQk1zGMMSaopKWlHVTVxmc+H1QFICkpidTUVNcxjDEmqIjIjtKetyYgY4wJU1YAjDEmTFkBMMaYMGUFwBhjwpQVAGOMCVNWAIwxJkxZATDGmDAVVPcBGGNMdaCF+ezbsord65dScHhnleyzxZAJtGzX3a/btAJgjDG+FBVRdHArezd8SeZ3y6lxYBUtcrfQnJM0L15Fxecm/GHtrgFWAIwxJmBUITOd/F1pHNr8FQW70ojPXE8tPUELIF5j2BzRhq8ajCKqZV9adBlIUvtuRERGBjxajwBs0wqAMSZ8ZWXAnhWc3JnK8W3Lic1YTe38w0QD8RrJRm3FihqDONm0F/XbnUfHbin0aFiXErMPBjUrAMaY8JCbCXtWwu4V5O1MpSh9BTVz9gIQpcJBbcEa7U5GXBdiWvYlsfN5pLRtSo86Z84wGzqsABhjQs/JbNi3GnavQPespGBXGtFHvzu1eG9RU1ZrGzbIxeQ27kV8uxR6tUtkRKsG1K4RPofF8HmnxpjQVHASDqyHPSu8B/wVcGAjooUAZBDPqsJkvi26ju+iO1CjVR+6tE2iX3I8wxPqERMVvlfDWwEwxgSPokI4uOXUwZ49K9B9a5HCPACyIurybVEb0gquZHVRW/bX6Uxycjv6JcczKime9k3qEBERGu33/mAFwBhTPanCke0lDvYrYe+3cDILgJMRtdgS1Zav8y9lRUEbVmsyMQ2T6d+mIf2S4vlxUjyJDWqGTIdtIFgBMMZUD8f2nn6w37MScg4DUBgRw96a7VkZMYRF+Yl8W9SGHdKCzgn16dcjniuT4vlzUgMahnCHbSA4LQAiUh+YDnQDFPilqn7lMpMxpgpkH/Ye5FfAbu/3454rclQiyazbjs2xA1hS1JJPjyWyWVsScTKG3q3q079PPFclx9O7VQPqhFGHbSC4/u09CXyoqteKSAxQy3EeY4y/5WV5mm5KtNtzZPv/Ftdvy+46vVkRezUfHklgSVYCuTk1iIuNol9SPFcOiKdfUjzdW4R3h20gOCsAIhIHDAZ+AaCqJ4GTrvIYY/ygIA/2rT39YJ+xCc8JPmhcIkcbdGNjg1F8caIlb+1vzJ59MQA0i4ulX9t47k1qQL/keDo0qWsdtgHm8gygDZABvCgiPYE04FZVPVFyJRGZCEwEaNWqVZWHNMaUobAAMjae3m6/fx0U5XuW125MQbPepDf7ESsKkpl/qDmL90DegSIA2jauzeDunk/3/ZOtw9YFUVU3OxZJAb4GBqrqMhF5EjimqveV9ZqUlBRNTU2tsozGGK+iIji8zXOw995Ny77VkJ/tWV6jHiT0IrtxTzZGtGXxiVZ8ujuadXuPUaQQGSF0TYijX1K898s6bKuSiKSpasqZz7s8A0gH0lV1mffxXOAuh3mMMXBqQLT/ddKugD2rIC/TszyqJjTvifYZz6F63UjNT2bRgTos33GUbRs8J/A1ovLo3aomtwz1XINvHbbVk7N/EVXdJyK7RKSjqm4CLgbWu8pjTFjJz4Vju+HoTs/BPnOX5/vRnZ5mnRMZnvUioqBpV+h2NUUJvdleoxNLMxuybMcxvll5mP3H8oBM4mJP0C8pnuv6tbQO2yDiuiRPBmZ5rwDaBkxwnMeY4KcKOUdKP7gXPy4+wJ8iULc51G8J7S6FFn3Ib9qLNQWJLNuVzTfbD5OadphjuQeBgzSLi6V/ckP6W4dtUHNaAFR1FfCDdiljgkn2yQI+WrePkwVFVbI/KcqnZm4GtXP2UCtnL7Vy9lI7d++pn2vl7CW6MOe01xRExJJdszknajYnO34w2S2ac6JmAtk1m5FdsznZsU3RiGhUYffRHJavPMyqXQfJKzgAQJvGtRnZvbl12IYY12cAxgS1wiJl0swVfL75zE/UFVebHFrIQRLkIIlykAQ5RIIc9D53iGYcJlJOv3jjoMaxWxuxRxuyWzuyRxuxWxuxWxuyWxtxhLqQXdYB+4j3yyNCoGtCPcae15r+yQ1ISYqnkXXYhiQrAMZUwj8+3sTnmzO4/8ouXNa12dlfoEVEZGcQeSydyOPp3u+7iTqeTuSx3UQeTyeiuLO1+CURURTWSaAwLpHCuj3JjkuksK7nq6BuC4rqJqDRtWgMNAZ6VvI91asZHVZDIocz+1c2poI+WLOX5xZ9x5j+LZkwMNnzZH7u6e3uZ7a/H9sNhWfc71ijHtRLhPiWkHwB1GvpeVy/FdRLROo0JSoi0v5Yjd/Z/yljKmDTvuPcPudb+rSqz//1Og7TL4Uj35fduVovEVr0gS6jvAf4lp4O13qJEFvPyXswxgqAMecoMzufia+kUrtGFNNG1iNm9uVQoy50HPG/g3u9RM8Bvm4CRMW4jmxMqawAGHMOCouUKbNXsudoDnPGd6DR29dCRCT8/F2IT3Ydz5hzYgXAmHMw9RNPp+/fRnWg19LJcGyPHfxN0LICYEw5zV+zl2cXfseYfomM2fco7PwSrvkPtDrPdTRjKsTu1TamHDbtO87v53xL71b1eTB+Pqx+HYbeC92vdR3NmAqzAmDMWZTs9H0pZQdRn/8NelwPg+9wHc2YSrEmIGN8KNnp++7oaOp9dBu0GgCjngIbCsEEOSsAxvhQ3On75GX16bToBqjXAq6fBVE2NIIJftYEZEwZijt9J/Stz+h1t0FRIfzsDagV7zqaMX5hZwDGlKK40zelZR3uO/F3OPw93DAPGrV3Hc0Yv7EzAGPOcKrTNyaSGU1fJ2L753Dlk5A8yHU0Y/zKzgCMKaGwSLn1dU+n78ILvqVW6iwY9HvoPdZ1NGP8zgqAMSVM/WQTizZlMOOCfSSm/h26XAVD/+g6ljEB4bwJSEQiRWSliLznOosJb8Wdvrd3O8HgNfdCi77w439BhPM/E2MCojr8z74V2OA6hAlvxZ2+l7Y4yW/3/RFqN4Yxr0F0TdfRjAkYpwVARBKBy4HpLnOY8Fbc6dsk5iTPyd+R/BwY+wbUaeI6mjEB5foM4AngTqDM2bRFZKKIpIpIakaG/+ZdNQb+1+m7/2gWbzf9D9GHNsNPXoImnV1HMybgnBUAEbkCOKCqab7WU9VpqpqiqimNGzeuonQmXBR3+r7V7gPq7V4Elz8G7S52HcuYKuHyDGAgMEpEtgOzgWEiMtNhHhNmijt9n2qzjE47XoULboGUX7qOZUyVcVYAVPVuVU1U1STgeuAzVR3nKo8JL8Wdvjc23cyVe5+GjiPh0j+7jmVMlXLdB2BMlSvu9O0Vk8492Y8iTbvBNdM9UzsaE0aqxY1gqroIWOQ4hgkDxZ2++Uf38FK9x4iIrAc/ex1iaruOZkyVqxYFwJiqMvWTTSzbtIslTZ4hJucY3DAf4hJcxzLGCSsAJmzMX7OX5xZu4b0mLxJ/fCNc/yo07+k6ljHOWAEwYWHzfk+n79T4eXQ99gUMfxg6jnAdyxinrBPYhLzM7HwmzkhlbPRCfpz9JvS7Ec77tetYxjhnBcCEtOJO39aZy7mn6HlodwkM/7vN52sM1gRkQtzUTzaRvnklH9R+GonvCNe+CJH2394YsAJgQtj8NXuZvXAFH9d9nOiYmp7LPWPjXMcyptqwAmBC0ub9x7l7zjfMrvMU8XoEGfMB1G/lOpYx1YoVABNyMrPzufnl5TwS+S86FWyAn7wMiX1dxzKm2rFOYBNSijt9rzk+kx/pUrjkAeh6letYxlRLVgBMSJn6ySbit7zJLZH/hd7jYOBtriMZU21ZE5AJGfPX7OWbRe/xaux0tPUg5PLH7XJPY3ywAmBCwub9x3lqzoe8EfsEEfHJyE9fgagY17GMqdasCcgEvczsfH7/8kL+FfF3ateIJmLsG1CzgetYxlR7dgZgglphkfL/Zi/nj1kP0TLqEBFj3oH4Nq5jGRMUrACYoDb1442M+P5hzovcAFc9D60vcB3JmKDhswCIyAXAOGAQ0BzIAdYC7wMzVTUz4AmNKcP8NXvRL6ZybfRi9KK7kB7XuY5kTFApsw9AROYDNwIfAcPxFIAuwB+BWOBtERlV0R2LSEsRWSgiG0RknYjcWtFtmfCzef9xPpnzL+6MfoPCrtciQ+5yHcmYoOPrDOAGVT14xnNZwArv1z9EpFEl9l0A/F5VV4hIXSBNRD5R1fWV2KYJA5nZ+Tzx4iwej3iWkwn9ibnqWbvc05gKKPMMoPjgLyL3iUjLkstEZGLJdSpCVfeq6grvz8eBDUCLim7PhIfCIuXBmR/wYM5f0brNiRk7G6JjXccyJiiV5zLQycBHIjK0xHN+nU1DRJKA3sAyf27XhJ5n569gYvrd1IlWYse/CbUbuo5kTNAqTwHYjacP4GERucP7nN/Ot0WkDvAmcJuqHitl+UQRSRWR1IyMDH/t1gShj1bvpNfXt9I2Yh8xP5sJjTu4jmRMUCvXjWCquhO4COgiInOAmv7YuYhE4zn4z1LV/5ax72mqmqKqKY0bN/bHbk0Q2rzvGEff/B2DI9dQdMXjSJshriMZE/TKUwBSAVQ1V1UnAIuASt9jLyIC/AfYoKpTK7s9E7oys/P55IU/8VNZQFa/yUSn/Nx1JGNCwlkLgKredMbjZ1XVH7daDgRuAIaJyCrv10g/bNeEkMIi5aUXn2VS3kscbj2cOiP+7DqSMSGjzMtARWQNoGUtV9Ueldmxqi7Bj30JJjTNmvcONx14iMP1u9Jo7IsQYcNXGeMvvu4DuML7XfDc+Wufzk2VWrh8JT9afSt5MfVpeOObEFPLdSRjQkqZBUBVdxT/LCJ5JR8bE2hb0vfR/P2fExeRS9SEd5G6zVxHMibk2Pm0qXYys3LJeHEs7WUXuVe9QExCd9eRjAlJvvoA+pR4WFNEelOizb74Ll5j/KmwSPn635O4rDCVHef/mdY9reXRmEDx1QfwjxI/7wNKXqqpwLCAJDJhbeErD3HZ8f+yofU4Og+38QGNCSRffQBDy1pmTCCkLniDodseZUPcADqNf9J1HGNCnq8moKt9vbCsO3eNqYjt65fT6Ysp7IhOps2k2UikzVVkTKD5+iubC6zyfsHp1+wrYAXA+MWxjHRi5/yMbKlJnV+8SY1a9VxHMiYs+CoA1wA/BXoAbwOvqerWKkllwkZh3gkOPn81zYqOsX3UXLok2ny+xlQVX/MBzFPV6/EMAvcdnglglojIRVWWzoS2oiK++/c4kvI2s7zPI3TpO9h1ImPCSnnuA8gFMoFjQG0800EaU2nbXr+TDoc/44Pmv+GiUTbAmzFVzVcn8FBgDNAfWAA8qaqpVRXMhLYDae/SZtPzfBg7gkt/9WfEpnQ0psr56gP4FFgNLAFqAONFZHzxQlWdEuBsJkQV5WQS+f5tbNGW9Ljp39SItit+jHHB11/eL/ExGqgxFfXdq7+nTeEh0gbO4kcN7YofY1zxdSPYS1WYw4SJg2s+of2uObxf9xpGXmrDPBjjUpmdwCIyTUS6lbGstoj8UkTGBi6aCTWal0XR25PZoc3oecMj1u5vjGO+moCeA/4kIt2BtUAGniuA2gNxwAvArIAnNCFj6+t3075gL/P7/YcRTRu5jmNM2PPVBLQKuE5E6gApQHMgB88cvpuqJp4JFYc3fUHbba/wYc3LuWzkNa7jGGPwfQYAgKpm4ZkI3u9EZDjwJBAJTFfVhwOxH+OW5ueSO/c37NWGdBg3lYgIa/oxpjpwNiGMiEQCzwIjgC7AGBHp4iqPCZytc+8nIX8nK3s+QJsWNrOXMdWFyxnB+gNbVXWbqp4EZgOjHeYxAZC5LZXkTdP4tMbFDB9t1wwYU524LAAtgF0lHqd7nzuNiEwUkVQRSc3IyKiycMYPCvM5/vrNHNY4Wo55nKhIm4HUmOrE11AQT6jqbSLyLqXcEKaqoyq579IagkvbzzRgGkBKSordmBZEts77K+3ytvJu50e4Mqm16zjGmDP46gR+xfv9sQDtOx1oWeJxIrAnQPsyVez4rnW0Wvs0i6MHctm1N7mOY4wpha/LQNO83z8XkRigE55P6Ju8bfaV9Q3QXkSSgd3A9cDP/LBd41pRIYdfvYk4jaXxT54iJsqafoypjs76lykil+OZD+Ap4Blgq4iMqOyOVbUAuAX4CNgAvKGq6yq7XePed+//g9Y56/ii3R107tDOdRxjTBnKMwzjP4ChxbOBiUhb4H1gfmV3rqofAB9Udjum+sjet4UWaY/yVWQKP/rpLa7jGGN8KM+5+YEzpoLcBhwIUB4TzFTZN3MiJzWSWlc/RWyMDfNsTHVWnr/QdSLyAfAGnj6AnwDfiMjVAKpqk8MbAL7/+FnaZK3g3dZ/4MquXV3HMcacRXkKQCywH8/cwOAZFC4euBJPQbACYMg9tJMmX/2FtIjuXDz2DtdxjDHl4LMAiEgNVZ3g/Z5XVaFMkFElfcbNJGgReuVT1KoR7TqRMaYcztYH8C8RicUzNLQxpdqx6EXaZX7JZwk3k9K7j+s4xphy8jUhzGAgFfgCSPM+NuY0eUf30mDxn1gtHRl8w72u4xhjzoGvMwA547sxP7D9lVuoUZRD9vDHiasV6zqOMeYclFkAVPVzoB8wCEhR1cVVlsoEhV1LX6fjoQUsaPILzj9voOs4xphzdLY+gF+rag7wm6oIY4JHftYh6iy4k40kM3D8n13HMcZUwNkKwEUi8ivgtFk8ROSXgYtkgsHWV6ZQp+g4By+eSv26tV3HMcZUgK9O4IeAe4HuwKciMrnEYrvHP4zt+eZtOu9/jwXx13PhoGGu4xhjKsjXGcCVwDBVvQ3oC4wQkce9y6xjOEwV5mQSPf/3fEcLUsbbFM7GBDNfBSDKO2InqnoUT0GIE5E5QEwVZDPV0OZZv6dh4UHSBz1G4wZxruMYYyrBVwH4TkSKh39AVQtV9VfAJqBzwJOZamff6gV0Tp/DJ/WuZvCwSo8IboxxzFcBuB5YduaTqvpHTp/Jy4SBorwT8PYt7NKm9Bj/KCLWCmhMsPNVABYBs0Xk1yKSVHKBqu4OZChT/WycfRfNCvey5fyHaN6ooes4xhg/8DUlZIqItAZGAE+ISAtgCZ6JYD63weHCR8aGpXTc9gqf1hnJsOHXuI5jjPETn/cBqOoOVf2Xql4FDADeBS4BvhCR9yu6UxF5VEQ2ishqEZknIvUrui0TWJqfy8n/TuIA8XQc94Q1/RgTQso9W7eq5qvqZ6p6p6r2ByZWYr+fAN1UtQewGbi7EtsyAbTxjftpkb+Dtb0fILF5U9dxjDF+dNYJYUSkPfA3oAueyWEAVFXbVnSnqvpxiYdfA9dWdFsmcA5/l0a7Lc/zeezFXDzqBtdxjDF+Vp4zgBeBfwIFwFBgBjDTjxl+iY8J5kVkooikikhqRkaGH3drfNHCfI6/fjOZWodWY58gIsKafowJNeUpADVV9VNAvH0CDwBnvf9fRBaIyNpSvkaXWOdePIVlVlnbUdVpqpqiqimNGzcuR1zjD5v++xCtT25hRbd7SW7ZynUcY0wAlGdO4FwRiQC2iMgtwG6gydlepKqX+FouIj8HrgAuVlUtT1hTNY7uWk/yuqdZGjOQYVff5DqOMSZAynMGcBtQC5iCZ0ygccD4yuxURIYDfwBGqWp2ZbZl/KyokMOv3kSOxtDk+qeIiiz3dQLGmCBTnr/uJFXNUtV0VZ2gqtcAlW0TeAaoC3wiIqtE5F+V3J7xk03vTKVNzlqWdbiD9m3auY5jjAmg8jQB3Q3MKcdz5aaqdmSpho7t3UqrVY+yPKovQ6+b4jqOMSbAyiwAIjICGAm0EJGnSiyKw9Nxa0KJKvtnTqSZRhB37bPEREe6TmSMCTBfTUB7gDQg1/u9+Osd4LLARzNVafOHz9L+RBpLk6fQqZMN9mpMOPA1FtC3wLciMrN4XgATmrIP7iRh2V9ZGdmNIT+7w3UcY0wV8dUEtAZQ788/WO4dxsEEO1V2zvg1rbWAqNHPEBsT7TqRMaaK+OoEvqLKUhhntn72Mp2OLeWjlpO5rEdv13GMMVXIVxPQjuKfvcNCt1fVBSJS09frTPDIPbqPxl/8kXURHRg07j7XcYwxVeys9wGIyE3AXODf3qcSgbcCmMlUkW0zfkus5pA38klqxdZwHccYU8XKcyPYb4GBwDEAVd1COYaCMNXb91+8TpfDC/i82S/okzLAdRxjjAPlKQB5qnqy+IGIROHtHDbBKe/4IeI++wObJYnzxz/oOo4xxpHyFIDPReQeoKaIXIrnDuB3AxvLBNKWV26lXlEmRy99nLjatVzHMcY4Up4CcBeQAawBbgY+AP4YyFAmcHYsf5duB95lUaMx9B9w1lG9jTEh7KxX86hqkYi8BbylqjYjSxDLz86k5oe/43takPLzh13HMcY4VuYZgHg8ICIHgY3AJhHJEJE/VV08408bZt5Oo8KD7BvyKPXj4lzHMcY45qsJ6DY8V//0U9WGqhoPnAcMFJHfVUU44z/pqxbQY88bLGrwYy4YcrnrOMaYasBXARgPjFHV74ufUNVt+GFCGFO1CvOyiXh3Muk0ofv4f7iOY4ypJnwVgGhVPXjmk95+ABswJoise/UuEgr3sH3A32gcH+86jjGmmvBVAE5WcJmpRvauX0rX7TP4vM5IBl56jes4xphqxFcB6Ckix0r5Og5098fOReR2EVERaeSP7ZnTFeXnkf/f33CQBnQc/0Spo7oaY8KXr8HgAjollIi0BC4FdgZyP+Fs7et/okfBdhanPMPgJk1dxzHGVDPluREsUB4H7sSGlQiI/VtX0HnL8yytOZRBV4xzHccYUw05KQAiMgrY7Z117GzrThSRVBFJzciw+9DKQwvzOfHGzRyjNknjnramH2NMqQI2rr+ILACalbLoXuAe4Efl2Y6qTgOmAaSkpNjZQjmsnfsQ3U9uZlGPvzOkRUvXcYwx1VTACoCqXlLa8yLSHUjGM98weOYXWCEi/VV1X6DyhItDO9bRfsPTLKtxAYOvmug6jjGmGqvymb1UdQ0l5hMQke1ASmn3HJhzo0WFHH5tIlEaQ9MxzxIR6bKLxxhT3dkRIoSsfXsq7XPXsqLzHSQltXUdxxhTzTmf21dVk1xnCAVH92yl7bePsSK6D4OuneI6jjEmCNgZQChQZd/MmylSiLvuWaKiAnoLhzEmRFgBCAHrPvgnnbJTWd5uCu3ad3EdxxgTJKwABLljB3bS6psHWR3ZlQuv/4PrOMaYIGIFIJipsuuVSURrPjWufo6YaOddOsaYIGIFIIhtWPAyXY8v4cvWv6Zj116u4xhjgowVgCCVdWQfzZbex8aI9gwYe5/rOMaYIGQFIEhtm3ELtfUEBVc+TWyNGq7jGGOCkBWAILR58Rv0OPIJSxMm0K33Ba7jGGOClBWAIJNz7DANFv6B76Q1541/0HUcY0wQswIQZDa9MoX4oiNkDX+CWjVruY5jjAliVgCCyNav36NXxrssaTKGnucNcx3HGBPkrAAEibzsTOp89Dt2SAK9x//ddRxjTAiwAhAk1s+4nSZFGRwa9g/i6sa5jmOMCQFWAILA9ys+pefeOSyNv4o+g0a6jmOMCRFWAKq5/NwTRL83mX3SiO4/n+o6jjEmhFgBqOZWz7qbxKLdpF/4MPXrx7uOY4wJIVYAqrFda5fSc+crfBk3gv6XXOs6jjEmxDgrACIyWUQ2icg6EXnEVY7qqjA/j4K3fsthqUeHG55yHccYE4KcjB8sIkOB0UAPVc0TkSZne024WfXaA/Qt+J6v+z/D+Y3t12OM8T9XZwCTgIdVNQ9AVQ84ylEt7dmcRvfv/s2y2kM5b8Q413GMMSHKVQHoAAwSkWUi8rmI9CtrRRGZKCKpIpKakZFRhRHdKCooIHvOJLKoRdK4pxER15GMMSEqYE1AIrIAaFbKonu9+20AnA/0A94QkTaqqmeurKrTgGkAKSkpP1gealbOeYi++Zv4svcjDGje0nUcYwIqPz+f9PR0cnNzXUcJCbGxsSQmJhIdHV2u9QNWAFT1krKWicgk4L/eA/5yESkCGgGh/xHfh33fr6PrxqdIq3k+F4y6yXUcYwIuPT2dunXrkpSUZGe7laSqHDp0iPT0dJKTk8v1GldNQG8BwwBEpAMQAxx0lKVa0KJCjs6+mZNE0+xn/0Qi7ApdE/pyc3Np2LChHfz9QERo2LDhOZ1NuTrKvAC0EZG1wGzg56U1/4STlfMep1PeGlZ3vZMWrdq4jmNMlbGDv/+c6+/SyWWgqnoSsMtbvA6mb6Hjmkf5NqY3A6651XUcY0yYsHYGx7SoiH2zJoEq9X/6TyIi7Z/EmKo0YMCAs65z4403sn79egAeeuihc359nTp1KhYuwOxo49i37/+LbjnfsLLDrbRu29l1HGPCzpdffnnWdaZPn06XLl2AHxaA8ry+unLSBGQ8juzfSZu0v7A+qgvn//QPruMY49T/vbuO9XuO+XWbXRLiuP/Krj7XqVOnDllZWSxatIgHHniARo0asXbtWvr27cvMmTMREYYMGcJjjz3G3LlzycnJoVevXnTt2pVZs2aden1WVhajR4/myJEj5Ofn85e//IXRo0f79f34mxUAV1TZ+cpv6KQnib32OaKi7J/CGNdWrlzJunXrSEhIYODAgSxdupQLL7zw1PKHH36YZ555hlWrVv3gtbGxscybN4+4uDgOHjzI+eefz6hRo6p1J7cddRz59uOX6Zn1BUuSb+HCTr1dxzHGubN9Uq8K/fv3JzExEYBevXqxffv20wqAL6rKPffcw+LFi4mIiGD37t3s37+fZs1Kux+2erAC4MCxQ/tI/OpPbI5sR/+f3e86jjHGq0aNGqd+joyMpKCgoNyvnTVrFhkZGaSlpREdHU1SUlK1v8PZOoEd2DrjFuI0Cxn1LDExMa7jGGPOQXR0NPn5+T94PjMzkyZNmhAdHc3ChQvZsWOHg3TnxgpAFVu76A36ZH7C8sRf0L7n+a7jGGPO0cSJE+nRowdjx4497fmxY8eSmppKSkoKs2bNolOnTo4Slp8E0w24KSkpmpqa6jpGhWVlHib78RSyIuqQcOcyYmNruo5kjFMbNmygc2e7/NmfSvudikiaqqacua6dAVShjTNupaEeJnfkk3bwN8Y4ZwWgimxY+i4ph95hWbMxdEkZ6jqOMcZYAagKOVnHqLfg9+yS5vQa/3fXcYwxBrACUCXWvHIHCbqfo5dMpVbtONdxjDEGsAIQcJtTF5Cy73W+avhjug8c6TqOMcacYgUggPJyTxD7wa3sl4Z0HT/VdRxjjDmNFYAAWvXKPbQqSufARY8QVy/edRxjTCU98cQTZGdnn3o8cuRIjh49Wu7Xv/POOzz88MOVzjFkyBD8cUm8FYAA+W71Evqmz2B5veH0HHqN6zjGGD84swB88MEH1K9fv9yvHzVqFHfddVcAklWMjQUUAPkn8+DtyRyVODr+/GnXcYwJDvPvgn1r/LvNZt1hhO9P3FOnTuWFF14APBO/XHXVVQwfPpzzzjuPlStX0qFDB2bMmMH06dPZs2cPQ4cOpVGjRixcuJCkpCRSU1PJyspi+PDhXHjhhXz99df07NmTCRMmcP/993PgwAFmzZpF//79eemll0hNTeWZZ56hV69epzJs2rSJDz/8kJSUFCZPnsyaNWsoKCjggQceYPTo0eTk5DBhwgTWr19P586dycnJ8cuvx8kZgIj0EpGvRWSViKSKSH8XOQIl7dUHaFu4jZ0XPEi9+Cau4xhjypCWlsaLL77IsmXL+Prrr3n++ec5cuQImzZtYuLEiaxevZq4uDiee+45pkyZQkJCAgsXLmThwoU/2NbWrVu59dZbWb16NRs3buTVV19lyZIlPPbYYz+YRAZg1apVrFq1igcffJCUlBQGDBjAX//6V4YNG8Y333zDwoULueOOOzhx4gT//Oc/qVWrFqtXr+bee+8lLS3NL+/f1RnAI8D/qep8ERnpfTzEURa/2rExjT7fTyOt7hD6XjbedRxjgsdZPqkHwpIlS/jxj39M7dq1Abj66qv54osvaNmyJQMHDgRg3LhxPPXUU9x+++0+t5WcnEz37t0B6Nq1KxdffDEiQvfu3dm+fXupr9myZQt33HEHn332GdHR0Xz88ce88847PPbYYwDk5uayc+dOFi9ezJQpUwDo0aMHPXr08Mfbd1YAFCi+IL4esMdRDr8qLCggd+4kTkhNWt/wrOs4xpizKGsstDMncSnPpC4lh5KOiIg49TgiIqLUYaVPnDjBddddx/PPP09CQsKpPG+++SYdO3Y8ayZ/cNUJfBvwqIjsAh4D7i5rRRGZ6G0mSs3IyKiqfBXyzesP0bFgE9/1+SONmia6jmOMOYvBgwfz1ltvkZ2dzYkTJ5g3bx6DBg1i586dfPXVVwC89tprpyaFqVu3LsePH/fLvidMmMCECRMYNGjQqecuu+wynn766VOFaeXKladyzpo1C4C1a9eyevVqv2QI2BmAiCwASpsK517gYuB3qvqmiFwH/Ae4pLTtqOo0YBp4RgOtSJavXvwDzXe9X5GXnpM+hXtZVet8+l4xMeD7MsZUXp8+ffjFL35B//6ebsgbb7yRBg0a0LlzZ15++WVuvvlm2rdvz6RJkwDPUNAjRoygefPmpfYDlNeOHTuYO3cumzdvPtUBPX36dO677z5uu+02evTogaqSlJTEe++9x6RJk5gwYQI9evSgV69ep/JWlpPhoEUkE6ivqiqe85pMVT3rGAkVHQ56+ZuPE/X9ZxVIem4KouvS5id/o1FC64Dvy5hQUB2Hg96+fTtXXHEFa9eudR2lQs5lOGhXfQB7gIuARcAwYEsgd9b/mt8BvwvkLowxJui4KgA3AU+KSBSQC1ibiTGmWkhKSgraT//nykkBUNUlQF8X+zbGVC+qGpArXMLRuTbp21AQxhhnYmNjOXTo0DkfuMwPqSqHDh0iNja23K+xoSCMMc4kJiaSnp5Odb/EO1jExsaSmFj+S9CtABhjnImOjiY5Odl1jLBlTUDGGBOmrAAYY0yYsgJgjDFhysmdwBUlIhnAjgq+vBFw0I9xXLL3Uv2EyvsAey/VVWXeS2tVbXzmk0FVACpDRFJLuxU6GNl7qX5C5X2AvZfqKhDvxZqAjDEmTFkBMMaYMBVOBWCa6wB+ZO+l+gmV9wH2Xqorv7+XsOkDMMYYc7pwOgMwxhhTghUAY4wJU2FRAERkuIhsEpGtInKX6zwVJSIviMgBEQnqwcpFpKWILBSRDSKyTkRudZ2pokQkVkSWi8i33vfyf64zVYaIRIrIShF5z3WWyhCR7SKyRkRWici5TyNYjYhIfRGZKyIbvX8zF/ht26HeByAikcBm4FIgHfgGGKOq650GqwARGQxkATNUtZvrPBUlIs2B5qq6QkTqAmnAVUH6byJAbVXNEpFoYAlwq6p+7ThahYjI/wNSgDhVvcJ1nooSke1AiqoG/U1gIvIy8IWqTheRGKCWqh71x7bD4QygP7BVVbep6klgNjDacaYKUdXFwGHXOSpLVfeq6grvz8eBDUALt6kqRj2yvA+jvV9B+alKRBKBy4HprrMYDxGJAwYD/wFQ1ZP+OvhDeBSAFsCuEo/TCdKDTSgSkSSgN7DMcZQK8zabrAIOAJ+oarC+lyeAO4Eixzn8QYGPRSRNRIJ5ytk2QAbwordpbrqI1PbXxsOhAJQ211xQfkILNSJSB3gTuE1Vj7nOU1GqWqiqvYBEoL+IBF3znIhcARxQ1TTXWfxkoKr2AUYAv/U2nwajKKAP8E9V7Q2cAPzWjxkOBSAdaFnicSKwx1EW4+VtL38TmKWq/3Wdxx+8p+aLgOFuk1TIQGCUt+18NjBMRGa6jVRxqrrH+/0AMA9PU3AwSgfSS5xVzsVTEPwiHArAN0B7EUn2dqBcD7zjOFNY83ac/gfYoKpTXeepDBFpLCL1vT/XBC4BNjoNVQGqereqJqpqEp6/kc9UdZzjWBUiIrW9FxfgbS75ERCUV86p6j5gl4h09D51MeC3iyVCfkpIVS0QkVuAj4BI4AVVXec4VoWIyGvAEKCRiKQD96vqf9ymqpCBwA3AGm/bOcA9qvqBu0gV1hx42Xu1WQTwhqoG9SWUIaApMM/zOYMo4FVV/dBtpEqZDMzyfoDdBkzw14ZD/jJQY4wxpQuHJiBjjDGlsAJgjDFhygqAMcaEKSsAxhgTpqwAGGOMI/4c4FFEhnoHvyv+yhWRq3y+xq4CMuFIRBoCn3ofNgMK8dxy3w7PYHu/CcA+bwMOq+qMMpZfAfRT1fv9vW9TPQVqgEcRiQe2Aomqml3melYATLgTkQeALFV9LID7iAJWAH1UtaCMdcS7zkBff7QmtHjHw3qvuACISFvgWaAxkA3cpKrndHOhd/yji1R1rK/1rAnImBJEZEjxWPgi8oCIvCwiH3vHl79aRB7xjjP/oXc4C0Skr4h87h147CPvcNdnGgasKD74i8gUEVkvIqtFZDZ4RhbFM5RE0A7DbPxiGjBZVfsCtwPPVWAb1wOvnW2lkL8T2JhKagsMBboAXwHXqOqdIjIPuFxE3geeBkaraoaI/BT4K/DLM7YzEM+8B8XuApJVNa94KAmvVGAQ8EZA3o2p1rwDJA4A5njvZAao4V12NfDnUl62W1UvK7GN5kB3PKMf+GQFwBjf5qtqvoiswTOUSPGQAmuAJKAj0A34xPsHGwnsLWU7zfHMe1BsNZ7b+98C3irx/AEgwX/xTZCJAI56R5c9jXfQxPIMnHgdME9V88uzM2NM2fIAVLUIyNf/dZoV4fkAJcA6Ve3l/equqj8qZTs5QGyJx5fjaeftC6R5+wjwrpMTgPdhgoB3WPTvReQn4OkXEpGe57iZMZSj+QesABhTWZuAxsXztIpItIh0LWW9DXiuMEJEIoCWqroQzwQs9YE63vU6EKQjV5pz5x3g8Sugo4iki8ivgLHAr0TkW2Ad5zCDobdDuSXweXnWtyYgYypBVU+KyLXAUyJSD8/f1BN4/nBLmg+84v05EpjpXV+Ax0tM8zcUuDvQuU31oKpjylhUoTklVHU75zDjoV0GakwV8XYc36mqW8pY3hTP0MUXV20yE66sABhTRbyTejRV1cVlLO+Hp59hVZUGM2HLCoAxxoQp6wQ2xpgwZQXAGGPClBUAY4wJU1YAjDEmTFkBMMaYMPX/ASspI2Kn/YI3AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "ax.plot(initial_Deltas.times(), initial_Deltas.values())\n", + "ax.plot(final_Deltas.times(), final_Deltas.values())\n", + "ax.set_xlabel(\"Time (s)\")\n", + "ax.set_ylabel(\"Delta/2*pi (MHz)\")\n", + "ax.legend([\"initial\", \"optimized\"], loc=\"lower right\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "vscode": { + "languageId": "python" + } + }, + "source": [ + "## Conclusion\n", + "\n", + "In this example, we generated a unit disk graph and found its maximum independent set. Because we are using the Amazon Braket local AHS simulator, we are restricted to relatively small graphs of fewer than 15 vertices. QuEra's Aquila device, by contrast, can handle far larger graphs of up to 256 vertices. See the [Braket Developer Guide](https://docs.aws.amazon.com/braket/latest/developerguide/braket-get-started-hello-ahs.html) to learn more about working with Aquila and analog Hamiltonian simulation in general." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + }, + "varInspector": { + "cols": { + "lenName": 16, + "lenType": 16, + "lenVar": 40 + }, + "kernels_config": { + "python": { + "delete_cmd_postfix": "", + "delete_cmd_prefix": "del ", + "library": "var_list.py", + "varRefreshCmd": "print(var_dic_list())" + }, + "r": { + "delete_cmd_postfix": ") ", + "delete_cmd_prefix": "rm(", + "library": "var_list.r", + "varRefreshCmd": "cat(var_dic_list()) " + } + }, + "types_to_exclude": [ + "module", + "function", + "builtin_function_or_method", + "instance", + "_Feature" + ], + "window_display": false + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/modules/1_Continue_Exploring/A_qtm_hw/analog_hamiltonian_simulation/05_Running_Analog_Hamiltonian_Simulation_with_local_simulator.ipynb b/modules/1_Continue_Exploring/A_qtm_hw/analog_hamiltonian_simulation/05_Running_Analog_Hamiltonian_Simulation_with_local_simulator.ipynb new file mode 100644 index 000000000..d59bfa2c4 --- /dev/null +++ b/modules/1_Continue_Exploring/A_qtm_hw/analog_hamiltonian_simulation/05_Running_Analog_Hamiltonian_Simulation_with_local_simulator.ipynb @@ -0,0 +1,451 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "20e6ca17", + "metadata": {}, + "source": [ + "# Running analog Hamiltonian simulation with local simulator\n", + "\n", + "We recommend to test and debug an analog Hamiltonian simulation (AHS) program on the local simulator before submitting it to a QPU. In this notebook, we introduce several features of the local simulator that will be useful to streamline this testing process.\n", + "\n", + "To begin, we import the necessary packages." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "d1173d71", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import time\n", + "\n", + "from braket.ahs.atom_arrangement import AtomArrangement\n", + "from braket.ahs.analog_hamiltonian_simulation import AnalogHamiltonianSimulation\n", + "from braket.devices import LocalSimulator\n", + "\n", + "from ahs_utils import show_register, show_global_drive, plot_avg_density_2D, get_drive, get_avg_density" + ] + }, + { + "cell_type": "markdown", + "id": "e5e39b46", + "metadata": {}, + "source": [ + "## 2D checkerboard phase \n", + "We consider a $3\\times3$ square gird with 9 atoms. As shown in [this notebook](https://github.com/aws/amazon-braket-examples/blob/main/examples/analog_hamiltonian_simulation/02_Ordered_phases_in_Rydberg_systems.ipynb), we can realize the 2D checkerboard phase via adiabatically tuning the Rabi frequency and detuning. " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "06439adb", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAc4AAAG2CAYAAAD2l2YcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAjXUlEQVR4nO3de3BV9b338c83BAgxAgoBCkhBBQR8gpjowXqtTAW0wvFyrNgqp4WH0mLRWma0lwfnVDv1dHw8WCuHQxFQZ6q13uqhqHOUoziFPDWcgQgiF0ExpUq4KCImmOT7/LG3Nsad7PXb7Gt4v2b2JGv9fnvt72/yy/rstffaa5u7CwAARFOU6wIAACgkBCcAAAEITgAAAhCcAAAEIDgBAAhQnOsCAAD5bd26df2Ki4uXSDpdnf+Aq0XSxqamppmVlZV7EnUgOAEAHSouLl4yYMCAUeXl5QeKioo69WcYW1parL6+fvS77767RNKURH06+zMHAMDRO728vPxgZw9NSSoqKvLy8vIPFDu6Ttwni/UAAApT0bEQmp+Kj7XdfMxpcJrZUjPbY2Yb07S9ZjNbH789k45tAgDQWq6POJdLmpTG7X3s7mfEbwlfmwYAZNiLLx6nyy8fpjFjRunyy4fpxRePO9pN3nnnnf1OPvnkMT179jzjJz/5yQBJuuWWWwbOnz+/vyRdddVVQ5ctW3ZC1O1t2bKl2/Dhw8ekUktOTw5y99VmNrT1OjM7RdL9ksolHZb0v939jRyUBwAI9cMfDtSiRf3V2Fgkd2nz5h564YXemj37Pf3bv+1OdbMPPPBA+bPPPrvttNNOO5LOclOR6yPORBZL+oG7V0qaJ2lhwH1LzKzGzKrN7B8zUh0AILEXXzxOixb1V0NDLDQlyd3U0FCkRYv6p3rked111w2pq6vrPmXKlFP/5V/+pd8NN9wwpKP+r7zySulZZ501csyYMaPOO++84W+//XbXT9ePHDly9BlnnHHaPffc0y+VWqQ8C04zK5P0FUl/MLP1kv5D0pfibVea2cYEt+dbbWKIu1dJuk7SgvjRKwAgGxYs6KfGxsS50thoWrAgpbD63e9+t6tfv36fvPzyy1tPOOGE5o76NjY22ty5c4f88Y9/fHPTpk2bp0+fvnfevHmDJGnGjBlD77nnnl3r168/qlcx8+1znEWS3nf3M9o2uPuTkp7s6M7uvjv+c4eZvSRpnKQ3018mAOALduwoUXtfVelu2rmzJNMl1NbWdt+2bVuPiy++eIQktbS0qLy8/JN9+/Z1+fDDD7tcdtllhyTpO9/5zr5Vq1b1SuUx8io43f2gme00s39y9z+YmUmqcPcNye5rZidIOuzujWbWV9K5kn6V6ZoBAHEnn9ygzZt7yN2+0GbmGjasIdMluLudeuqpH7c9qty7d2+XWKQcvVx/HOURSWsljTSzOjObIembkmaY2QZJmyRNjbi5UZJq4vf7b0l3ufvrmagbAJDAzTfvUffuiQ85u3d33XxzwkvYpVNFRUXD/v37i1944YXjpNhLtzU1NSV9+/ZtLisra37++efLJGn58uUnpvoYuT6rdlo7TcEfUXH3NZL+19FVBABI2YQJH2n27PfiZ9Wa3E1mru7dXbNnv6cJEz7KdAklJSX+6KOPvjl37twhH374YZfm5mb73ve+915VVVXDAw888NbMmTOH9ujRo+Xiiy8+mOpjmLf3evSnHcyWSvq6pD3u3u4liMzsLEnVkr7h7o+nWhAAIL9s2LDhrbFjx+6NfIcXXzxOCxb0086dJRo2rEE337wnG6GZThs2bOg7duzYoYnaogTnBZIOSXqoveA0sy6S/ktSg6SlUYKzb9++PnRowpoAAHnkV7/6lQYMGJCVx2psbGwaN25c0vNaMq2j4Ez6Um2iixQk8ANJT0g6K2pRQ4cOVU1NTdTuAIAc2bx5s0aNGpWVx9q4cWPOL3CQzFGfHGRmgyRdIWlRhL6z4hcoqKmvrz/ahwYAZEmyVyc7k5aWFlPsezkTSsdZtQsk3eruHX4oVZLcfbG7V7l7VXl5eRoeGgCQaSUlJdq3b98xEZ7x7+PsJandLx9Jx1m1VZIejX8+pq+kS82syd2fTsO2AQA5NnjwYNXV1SkbrxS+++67xc3NzX0z/kDta5G0sampaWZ7HY46ON192Ke/m9lySSsITQDoPLp27aphw4Yl75gGo0ePfi1+6dS8lTQ44xcpuEhSXzOrk3S7pK6S5O5J39cEAKAziXJWbXsXKUjU95+PqhoAAPJcXn07CgAA+Y7gBAAgQKcPzq1bt2rq1KkqLy/XiSeeqIkTJ2rLli25LgsIZmY67rjjVFZWprKyMs2c2e5Jf0BeWrVqlc4880z17NlTJ598shYvXpzrklLS6YPz/fff15QpU7Rlyxa99957OvvsszV1atQvXAHyy4YNG3To0CEdOnRIS5YsyXU5QGSffPKJrrjiCn33u9/VBx98oN///ve65ZZbtGFDzq+uF6zTB+fZZ5+tGTNm6MQTT1TXrl31wx/+UFu2bNG+fftyXRoAHDP279+vgwcP6vrrr5eZ6ayzztKoUaP0+uuF9+2PnT4421q9erUGDBigPn365LoUINgFF1ygAQMG6Morr9Rbb72V63KAyPr3769p06Zp2bJlam5u1tq1a/X222/rvPPOy3VpwQo3OKurpWnTpMrK2M/q6qR3qaur05w5c3TPPfdkoUAggoB5/PLLL+utt97SG2+8oYEDB+rrX/+6mpqaslgskEDAHJ42bZp+/vOfq3v37jr//PP1i1/8QieddFIWi00Td8/JrbKy0lM2f757aam7mbvkXlQUW54/v9277Nmzx0eNGuV33nln6o8LpFMK8/hTTU1NXlpa6rW1tVkoFGhHwBzevHmz9+jRw5977jlvbm72N954w0899VRfsWLF5/pJqvEc5VLUW+EdcVZXS3ffLR0+LH16weGWltjy3XcnfLZz4MABXXLJJZoyZYp++tOfZrlgIIEU5nFbZnZMXHQbeSpwDm/cuFEjR47UxIkTVVRUpJEjR+qyyy7Ts88+m4Pij07hBee990off5y4raEh1t7KwYMHNXHiRJ177rm66667slAgEEHgPN60aZPWr1+v5uZmHTp0SD/60Y80aNCgrH1HIvAFgXN43Lhx2rZtm1atWiV315tvvqkVK1Zo7NixWSg2vQovOLdu/fuzm7ZaWqRt2z636qmnntKrr76qZcuWffb5t7KyMu3atSsLxQLtCJzH7733nr7xjW989vm3t956SytWrFDXrl2zUCyQQOAcPuWUU7R06VLNnTtXPXv21IUXXqirrrpKM2bMyEKx6ZWOrxXLrhEjpPXrY3+YtoqKYu2tTJ8+XdOnT89ObUBUgfP44osv5sIdyC+Bc1iSrrnmGl1zzTWZry3DCu+I86abpJKSxG0lJdLcudmtB0gF8xiF7hiew4UXnOPHS/PmSaWlsWc1UuxnaWls/fjxua0PiIJ5jEJ3DM9hy9VZeVVVVV5TU5P6BqqrY28+b9smDR8ee/bTif9Q6KSYxyh0aZ7DZrbO8/yLrAs3OAEAnU4hBGfhvVQLAEAOEZwAAAQgOAEACEBwAgAQgOAEACAAwQkAQACCEwCAAAQnAAABCE4AAAIQnAAABCA4AQAIQHACABCA4AQAIADBCQBAAIITAIAABCcAAAEITgAAAhCcAAAEIDgBAAhAcAIAEIDgBAAgAMEJAEAAghMAgAAEJwAAAQhOAAACEJwAAAQgOAEACJA0OM1sqZntMbON7bR/08xq47c1ZjY2/WUCAJAfohxxLpc0qYP2nZIudPcKSXdIWpyGugAAyEvFyTq4+2ozG9pB+5pWi9WSBqehLgAA8lK63+OcIenZ9hrNbJaZ1ZhZTX19fZofGgCAzEtbcJrZVxULzlvb6+Pui929yt2rysvL0/XQAABkTdKXaqMwswpJSyRNdvd96dgmAAD56KiPOM1siKQnJV3v7luPviQAAPJX0iNOM3tE0kWS+ppZnaTbJXWVJHdfJGm+pD6SFpqZJDW5e1WmCgYAIJeinFU7LUn7TEkz01YRAAB5jCsHAQAQgOAEACAAwQkAQACCEwCAAAQnAAABCE4AAAIQnAAABCA4AQAIQHACABCA4AQAIADBCQBAAIITAIAABCcAAAEITgAAAhCcAAAEIDgBAAhAcAIAEIDgBAAgAMEJAEAAghMAgAAEJwAAAQhOAAACEJwAAAQgOAEACEBwAgAQgOAEACAAwQkAQACCEwCAAAQnAAABCE4AAAIQnAAABCA4AQAIQHACABCA4AQAIADBCQBAAIITAIAABCcAAAEITgAAAhCcAAAEIDgBAAhAcAIAEIDgBAAgQNLgNLOlZrbHzDa2025m9msz225mtWZ2ZvrLBAAgP0Q54lwuaVIH7ZMlDY/fZkn696MvCwCA/JQ0ON19taT9HXSZKukhj6mW1NvMvpSuAgEAyCfpeI9zkKR3Wi3Xxdd9gZnNMrMaM6upr69Pw0MDAJBd6QhOS7DOE3V098XuXuXuVeXl5Wl4aAAAsisdwVkn6aRWy4Ml7U7DdgEAyDvpCM5nJN0QP7t2vKQP3P1vadguAAB5pzhZBzN7RNJFkvqaWZ2k2yV1lSR3XyRppaRLJW2XdFjStzNVLAAAuZY0ON19WpJ2lzQnbRUBAJDHuHIQAAABCE4AAAIQnAAABCA4AQAIQHACABCA4AQAIADBCQBAAIITAIAABCcAAAEITgAAAhCcAAAEIDgBAAhAcAIAEIDgBAAgAMEJAEAAghMAgAAEJwAAAQhOAAACEJwAAAQgOAEACEBwAgAQgOAEACAAwQkAQACCEwCAAAQnAAABCE4AAAIQnAAABCA4AQAIQHACABCA4AQAIADBCQBAAIITAIAABCcAAAEITgAAAhCcAAAEIDgBAAhAcAIAEIDgBAAgAMEJAEAAghMAgAAEJwAAAQhOAAACEJwAAASIFJxmNsnMtpjZdjO7LUF7LzP7TzPbYGabzOzb6S8VAIDcSxqcZtZF0v2SJksaLWmamY1u022OpNfdfaykiyT9XzPrluZaAQDIuShHnGdL2u7uO9z9iKRHJU1t08clHW9mJqlM0n5JTWmtFACAPBAlOAdJeqfVcl18XWu/kTRK0m5Jr0m6yd1b2m7IzGaZWY2Z1dTX16dYMgAAuRMlOC3BOm+zPFHSekkDJZ0h6Tdm1vMLd3Jf7O5V7l5VXl4eWCoAALkXJTjrJJ3UanmwYkeWrX1b0pMes13STkmnpadEAADyR5TgfFXScDMbFj/h51pJz7Tps0vSBEkys/6SRkrakc5CAQDIB8XJOrh7k5ndKOl5SV0kLXX3TWY2O96+SNIdkpab2WuKvbR7q7vvzWDdAADkRNLglCR3XylpZZt1i1r9vlvSJektDQCA/MOVgwAACEBwAgAQgOAEACAAwQkAQACCEwCAAAQnAAABCE4AAAIQnAAABCA4AQAIQHACABCA4AQAIADBCQBAAIITAIAABCcAAAEITgAAAhCcAAAEIDgBAAhAcAIAEIDgBAAgwDERnLNmzdLIkSNVVFSk5cuX57oc4Kg8+OCDMjMtWbIk16UAkb3yyisqKyv73M3M9MQTT+S6tGDHRHCOHTtWCxcu1JlnnpnrUoCjcuDAAf3yl7/UmDFjcl0KEOT888/XoUOHPrutWLFCZWVlmjRpUq5LC1ac6wKyYc6cOZKkkpKSHFcCHJ0f//jHmjt3rh577LFclwIclQcffFBXX321jjvuuFyXEuyYOOIEOoO//OUvqqmp0ezZs3NdCnBUDh8+rMcff1zTp0/PdSkpITiBAtDc3Kzvf//7uu+++1RUxL8tCtsTTzyhvn376sILL8x1KSkp3P/A6mpp2jSpsjL2s7o61xUB4SLO44ULF6qiokLnnHNOlgsEkkhhX/zggw/qhhtukJllocAMcPec3CorKz1l8+e7l5a6m7lL7kVFseX58zu827nnnuvLli1L/XGBdAqYx1OnTvXevXt7//79vX///t61a1fv2bOnz5kzJweFA3Ep7It37drlXbp08e3btydsl1TjOcqlqLfCOzmoulq6+27p8OG/r2tpiS3ffbc0ebI0fvzn7nLkyBG1tLTI3fXJJ5+ooaFB3bp14yUv5E7gPF6+fLkaGho+W77yyit19dVXa8aMGdmsGvi7FPbFkvTwww/rK1/5ik455ZQsFptehZcc994rffxx4raGhlh7G5dccol69OihNWvWaNasWerRo4dWr16d4UKBDgTO4969e2vAgAGf3bp166aePXuqV69eWSgWSCCFfbEkPfTQQwV7UtCnCu+Ic+tWyT1xW0uLtG3bF1a/9NJLma0JCJXCPG6NOY2cS3EOv/HGGxksKjsK74hzxAipvZdYi4pi7UC+Yx6j0B3Dc7jwgvOmm6T2LmRQUiLNnZvdeoBUMI9R6I7hOVx4wTl+vDRvnlRa+vdnO0VFseV58xK+GQ3kHeYxCt0xPIfN23uNOsOqqqq8pqYm9Q1UV8fefN62TRo+PPbspxP/odBJMY9R6NI8h81snbtXpbHCtCvc4AQAdDqFEJyF91ItAAA5RHACABCA4AQAIADBCQBAAIITAIAABCcAAAEITgAAAhCcAAAEIDgBAAgQKTjNbJKZbTGz7WZ2Wzt9LjKz9Wa2ycxeTm+ZAADkh6Tfx2lmXSTdL+lrkuokvWpmz7j766369Ja0UNIkd99lZv0yVC8AADkV5YjzbEnb3X2Hux+R9KikqW36XCfpSXffJUnuvie9ZQIAkB+iBOcgSe+0Wq6Lr2tthKQTzOwlM1tnZjck2pCZzTKzGjOrqa+vT61iAAByKEpwWoJ1bb9SpVhSpaTLJE2U9H/M7Atf/+3ui929yt2rysvLg4sFACDXkr7HqdgR5kmtlgdL2p2gz153/0jSR2a2WtJYSVvTUiUAAHkiyhHnq5KGm9kwM+sm6VpJz7Tp80dJ55tZsZmVSvoHSZvTWyoAALmX9IjT3ZvM7EZJz0vqImmpu28ys9nx9kXuvtnMnpNUK6lF0hJ335jJwgEAyAVzb/t2ZXZUVVV5TU1NTh4bAJCfzGydu1fluo6OcOUgAAACEJwAAAQgOAEACEBwAgAQgOAEACAAwQkAQACCEwCAAAQnAAABCE4AAAIQnAAABCA4AQAIQHACABCA4AQAIADBCQBAAIITAIAABCcAAAEITgAAAhCcAAAEIDgBAAhAcAIAEIDgBAAgAMEJAEAAghMAgAAEJwAAAQhOAAACEJwAAAQgOAEACEBwAgAQgOAEACAAwQkAQACCEwCAAAQnAAABCE4AAAIQnAAABCA4AQAIQHACABCA4AQAIADBCQBAAIITAIAABCcAAAEITgAAAhCcAAAEiBScZjbJzLaY2XYzu62DfmeZWbOZXZ2+EgEAyB9Jg9PMuki6X9JkSaMlTTOz0e30+1dJz6e7SAAA8kWUI86zJW139x3ufkTSo5KmJuj3A0lPSNqTxvoAAMgrUYJzkKR3Wi3Xxdd9xswGSbpC0qKONmRms8ysxsxq6uvrQ2sFACDnogSnJVjnbZYXSLrV3Zs72pC7L3b3KnevKi8vj1giAAD5ozhCnzpJJ7VaHixpd5s+VZIeNTNJ6ivpUjNrcven01EkAAD5IkpwvippuJkNk/RXSddKuq51B3cf9unvZrZc0gpCEwDQGSUNTndvMrMbFTtbtoukpe6+ycxmx9s7fF8TAIDOJMoRp9x9paSVbdYlDEx3/+ejLwsAgPzElYMAAAhAcAIAEIDgBAAgAMEJAEAAghMAgAAEJwAAAQhOAAACEJwAAAQgOAEACEBwAgAQgOAEACAAwQkAQACCEwCAAAQnAAABCE4AAAIQnAAABCA4AQAIQHACABCA4AQAIADBCQBAAIITAIAABCcAAAEITgAAAhCcAAAEIDgBAAhAcAIAEIDgBAAgAMEJAEAAghMAgAAEJwAAAQhOAAACEJwAAAQgOAEACEBwAgAQgOAEACAAwQkAQACCEwCAAAQnAAABCE4AAAIQnAAABCA4AQAIQHACABCA4AQAIECk4DSzSWa2xcy2m9ltCdq/aWa18dsaMxub/lIBAMi9pMFpZl0k3S9psqTRkqaZ2eg23XZKutDdKyTdIWlxugsFACAfRDniPFvSdnff4e5HJD0qaWrrDu6+xt0PxBerJQ1Ob5kAAOSHKME5SNI7rZbr4uvaM0PSs4kazGyWmdWYWU19fX30KgEAyBNRgtMSrPOEHc2+qlhw3pqo3d0Xu3uVu1eVl5dHrxIAgDxRHKFPnaSTWi0PlrS7bSczq5C0RNJkd9+XnvIAAMgvUY44X5U03MyGmVk3SddKeqZ1BzMbIulJSde7+9b0lwkAQH5IesTp7k1mdqOk5yV1kbTU3TeZ2ex4+yJJ8yX1kbTQzCSpyd2rMlc2AAC5Ye4J367MuKqqKq+pqcnJYwMA8pOZrcv3Ay+uHAQAQACCEwCAAAQnAAABCE4AAAIQnAAABCA4AQAIQHACABCA4AQAIADBCQBAAIITAIAABCcAAAEITgAAAhCcAAAEIDgBAAhAcAIAEIDgBAAgAMEJAEAAghMAgAAEJwAAAQhOAAACEJwAAAQgOAEACEBwAgAQgOAEACAAwQkAQACCEwCAAAQnAAABCE4AAAIQnAAABCA4AQAIQHACABCA4AQAIADBCQBAAIITAIAABCcAAAEITgAAAhCcAAAEOCaCc/369aqsrFRpaakqKyu1fv36XJcEBNm7d6/OPfdc9enTR71799Y555yjP//5z7kuCwjS3Nysn/3sZxo4cKCOP/54jRs3Tu+//36uywrW6YPzyJEjmjp1qr71rW/pwIEDmj59uqZOnaojR47kujQgsrKyMi1dulT19fU6cOCAbr31Vl1++eVqamrKdWlAZLfffrvWrFmjtWvX6uDBg3r44YdVUlKS67KCdfrgfOmll9TU1KSbb75Z3bt319y5c+XuWrVqVa5LAyIrKSnRyJEjVVRUJHdXly5ddODAAe3fvz/XpQGRHDhwQAsWLNBvf/tbffnLX5aZ6fTTTyc489GmTZtUUVEhM/tsXUVFhTZt2pTDqoDUVFRUqKSkRFOmTNHMmTPVr1+/XJcERPLaa6+puLhYjz/+uAYMGKARI0bo/vvvz3VZKSnOdQGZdujQIfXq1etz63r16qUPP/wwRxUBqautrVVDQ4Oeeuop3m5AQamrq9MHH3ygrVu3aufOndq2bZsmTJigESNG6Gtf+1quywsS6YjTzCaZ2RYz225mtyVoNzP7dby91szOTH+pbVRXS9OmSZWVsZ/V1Qm7lZWV6eDBg59bd/DgQR1//PEZLxFIKuI8bq2kpETTpk3TXXfdpQ0bNmShSKADEedwjx49JEnz589Xjx49VFFRoWuvvVYrV67MZrVpkTQ4zayLpPslTZY0WtI0MxvdpttkScPjt1mS/j3NdX7e7bdLEyZIv/+99D//Iz32WGz59tu/0HXMmDGqra2Vu3+2rra2VmPGjMloiUBSAfM4kU8++UQ7duzIcJFABwLmcEVFhSR97m2zguXuHd4knSPp+VbLP5b04zZ9/kPStFbLWyR9qaPtVlZWekrWrnUvLXWXvngrLY21t9LY2OhDhgzxBQsWeENDg993330+ZMgQb2xsTO3xgXQInMdr1671V155xRsbG/3w4cN+1113eVlZmf/1r3/N0QBwzAucw+7u559/vs+aNcsbGhr89ddf9/Lycn/hhRc+10dSjSfJpVzforxUO0jSO62W6+LrQvukx733Sh9/nLitoSHW3kq3bt309NNP66GHHlLv3r21dOlSPf300+rWrVtGygMiCZzHjY2NmjNnjvr06aNBgwZp5cqV+tOf/qSBAwdmoVgggcA5LEmPPPKI3n77bfXp00eXXXaZ7rjjDk2YMCHDhaZflJODEh1Xewp9ZGazFHspV0OGDInw0Als3Rp7TpNIS4u0bdsXVo8bN07r1q1L7fGATAicxxdeeCHvZyK/pLAvHjRokJ577rkMF5Z5UY446ySd1Gp5sKTdKfSRuy929yp3ryovLw+tNWbECKmonbKLimLtQL5jHqPQHcNzOEpwvippuJkNM7Nukq6V9EybPs9IuiF+du14SR+4+9/SXGvMTTdJ7X1gtqREmjs3Iw8LpBXzGIXuGJ7DSYPT3Zsk3SjpeUmbJT3m7pvMbLaZzY53Wylph6Ttkn4r6fsZqlcaP16aN08qLf37s52iotjyvHmxdiDfMY9R6I7hOWze3mvUGVZVVeU1NTWpb6C6Ovbm87Zt0vDhsWc/nfgPhU6KeYxCl+Y5bGbr3L0qjRWmXeEGJwCg0ymE4Oz016oFACCdCE4AAAIQnAAABCA4AQAIQHACABCA4AQAIADBCQBAAIITAIAABCcAAAEITgAAAhCcAAAEyNm1as2sXtLbadhUX0l707CdfMKYCgNjKgyMqTB8OqYvu3uKX9icHTkLznQxs5p8vyBwKMZUGBhTYWBMhaGQxsRLtQAABCA4AQAI0BmCc3GuC8gAxlQYGFNhYEyFoWDGVPDvcQIAkE2d4YgTAICsITgBAAhQMMFpZpPMbIuZbTez2xK0m5n9Ot5ea2Zn5qLOEBHG9M34WGrNbI2Zjc1FnSGSjalVv7PMrNnMrs5mfamIMiYzu8jM1pvZJjN7Ods1hoow93qZ2X+a2Yb4mL6dizqjMrOlZrbHzDa2016I+4dkYyrE/UOHY2rVL7/3D+6e9zdJXSS9KelkSd0kbZA0uk2fSyU9K8kkjZf0/3JddxrG9BVJJ8R/n9wZxtSq3ypJKyVdneu60/B36i3pdUlD4sv9cl13Gsb0E0n/Gv+9XNJ+Sd1yXXsHY7pA0pmSNrbTXlD7h4hjKqj9Q5Qxxfvk/f6hUI44z5a03d13uPsRSY9Kmtqmz1RJD3lMtaTeZvalbBcaIOmY3H2Nux+IL1ZLGpzlGkNF+TtJ0g8kPSFpTzaLS1GUMV0n6Ul33yVJ7p7v44oyJpd0vJmZpDLFgrMpu2VG5+6rFauxPYW2f0g6pgLcP0T5O0kFsH8olOAcJOmdVst18XWhffJJaL0zFHvGnM+SjsnMBkm6QtKiLNZ1NKL8nUZIOsHMXjKzdWZ2Q9aqS02UMf1G0ihJuyW9Jukmd2/JTnkZUWj7h1CFsH9IqlD2D8W5LiAiS7Cu7edoovTJJ5HrNbOvKvaPcV5GKzp6Uca0QNKt7t4cO5jJe1HGVCypUtIEST0krTWzanffmuniUhRlTBMlrZd0saRTJP2Xmb3i7gczXFumFNr+IbIC2j9EsUAFsH8olOCsk3RSq+XBij0TDu2TTyLVa2YVkpZImuzu+7JUW6qijKlK0qPxf4q+ki41syZ3fzorFYaLOvf2uvtHkj4ys9WSxkrK1+CMMqZvS7rLY286bTeznZJOk/SX7JSYdoW2f4ikwPYPURTE/qFQXqp9VdJwMxtmZt0kXSvpmTZ9npF0Q/zsufGSPnD3v2W70ABJx2RmQyQ9Ken6PD56aS3pmNx9mLsPdfehkh6X9P18+6doI8rc+6Ok882s2MxKJf2DpM1ZrjNElDHtUuwIWmbWX9JISTuyWmV6Fdr+IakC3D8kVSj7h4I44nT3JjO7UdLzip1xtdTdN5nZ7Hj7IsXOwLpU0nZJhxV7xpy3Io5pvqQ+khbGn4E1eR5/e0DEMRWUKGNy981m9pykWkktkpa4e4en2+dSxL/THZKWm9lrir3Meau75+3XWJnZI5IuktTXzOok3S6pq1SY+wcp0pgKav8gRRpTQeCSewAABCiUl2oBAMgLBCcAAAEITgAAAhCcAAAEIDgBAElFvUB7wPaa41+MsN7M2n4cKq9xVi0AICkzu0DSIcWu+Xt6GrZ3yN3Ljr6y7OOIEwCQVKILtJvZKWb2XPwaza+Y2Wk5Ki+rCE4AQKoWS/qBu1dKmidpYcB9S8ysxsyqzewfM1JdhhTElYMAAPnFzMoU+07QP7S6IHv3eNuVkn6e4G5/dfeJ8d+HuPtuMztZ0ioze83d38x03elAcAIAUlEk6X13P6Ntg7s/qdh1dNvl7rvjP3eY2UuSxin2Bet5j5dqAQDB4l8xt9PM/kmS4hfQHxvlvmZ2gpl9enTaV9K5kl7PWLFpRnACAJKKX6B9raSRZlZnZjMkfVPSDDPbIGmTpKkRNzdKUk38fv+t2FfYFUxw8nEUAAACcMQJAEAAghMAgAAEJwAAAQhOAAACEJwAAAQgOAEACEBwAgAQ4P8D0x7RdR4oP5gAAAAASUVORK5CYII=\n", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAHwCAYAAABpICzHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABwDklEQVR4nO29eXycV3m3f91avO+WV8m75Rg7iWPZJA6xAwlLlgIhDrQJlK1J84YSur0tJaVvS2kptH1fWqCUtSnQH0uhcUIIWQghwXaIk1hjyYoVxZJsWdZYtixbsjzWOpr798eMgiJkbTPPMnPu6/OZjzQzz5xzru8z9tF5lnNEVTEMwzAMI5zkBd0AwzAMwzAujnXUhmEYhhFirKM2DMMwjBBjHbVhGIZhhBjrqA3DMAwjxFhHbRiGYRghxrmOWkTuF5EWEXlpDNv+i4hUpB6HRaTdhyYahmEYxquIa/dRi8i1QAz4jqpeOo7PfQzYrKq/51njDMMwDGMIzo2oVXU3cHbwayKyRkQeF5FyEdkjIuuH+egdwPd9aaRhGIZhpCgIugEh4evAPapaKyJXAf8OXD/wpoisAFYBvwiofYZhGIajON9Ri8gM4A3Aj0Rk4OXJQza7HfgfVe33s22GYRiG4XxHTfLwf7uqXjHCNrcDH/WnOYZhGIbxa5w7Rz0UVe0AjorIewAkyaaB90XkEmAu8FxATTQMwzAcxrmOWkS+T7LTvUREmkTkTuB9wJ0iUgkcAm4Z9JE7gB+oa5fHG4ZhGKHAuduzDMMwDCObcG5EbRiGYRjZhFMXkxUVFenKlSszUlZvby+TJk3KSFnZiusZmL/5u+wPlkEm/cvLy1tVdcFw7znVUa9cuZL9+/dnpKxYLMaMGTMyUla24noG5m/+LvuDZZBJfxE5drH37ND3BGltbQ26CYHjegbmb/6u43oGfvlbRz1BXP4rcgDXMzB/83cd1zPwy9866gnS19cXWN3lx9r48tN1lB9rC6wNEGwGYcD8zd91XP9/0C9/p85RZ5JEIhFIveXH2njfN/bRE0+Qnyf87rbllMydFkhbzp07x+zZXYHUHQbM3/xd9ofgMmhq6+T/29dIQpVJBXl8965tbFkx1/d2+NUPWEc9QaZNC6Zz3HfkDD3xBArEE8q3fnXR6w984kTA9QeN+buN6/4QdAZ98QT7jpwJpKP2qx+wjnqCnD17lrlz/f9ibFs9HxFQhSkFeXzjg1u5Ytkc39sBcPToUVatWhVI3WHA/M3fZX8ILoOK4+188P4XSCgUFuSxbfV839sA/vUDoeyoReR+4O1Ai6peOsz7bwJ+DBxNvbRLVT/tWwOBpUuX+lndq2xcOou8PKGsZA733fy6QP6KHKB05TKmTikMrP6gMX/zd9kfgstgR+kC7nnjav79mSN8buflgf0/6Fc/ENaLyb4F3DjKNntU9YrUw9dOGpJ/SQbBC0fPEu9X7r1+baCdNASXQVgwf/N3nSAzeN+2lQC0xnoCa4Nf/qHsqFV1N3A26HaMxPr16wOpd29dK5Py87hqVTCHegYTVAZhwfzN33WCzKB4zlRWL5jOntrg7uX2yz+UHfUYuVpEKkXkMRHZ6HflFRUVflcJwO7Dp9m6ci5TJ+UHUv9ggsogLJh/RdBNCBTX/SH4DK4tXcDzR8/QE+8PpH6//LO1o44AK1R1E/Al4KGLbSgid4vIfhHZ39zcTGtrK83NzUSjUdra2qivr6erq4vq6moSiQSRSASA8vLyZEWRCIlEgurqarq6uqivr6etrY1FixYxUF5DQwOxWIyamhri8TiVlZWvKWPgZ1VVFT09PdTW1tLR0UFjYyMtLS20tLTQ2NhIR0cHtbW19PT0UFVV9RtltJzvpubkea5ZM4+amhpisRgNDQ0Zc4pGo+NyKisrS9sJoLKykng8Hgqn8eynjRs35pzTePbTvHnzcs5pPPtpYOXBXHIa735at25doE4b5+fT3ZfgmZeOB/LdmzlzZsacRkRVQ/kAVgIvjXHbBqBotO22bNmimWL//v0ZK2us7Ioc1xV/8YhWNbX7XvdwBJFBmDB/83edoDM4392na+77qX720ZcDqT+T/sB+vUjflZUjahFZLCKS+v1KkkcGzvjZhi1btvhZHQB7Drcyb/okNiyZ5XvdwxFEBmHC/M3fdYLOYMbkAspWzGVv3elA6vfLP5QdtYh8H3gOuEREmkTkThG5R0TuSW3ybuAlEakEvgjcnvqLxDcGDqv4haqyp66V7WuLyMsTX+u+GH5nEDbM3/xdJwwZXFtaxEvRDs4EcPW3X/7ic/8WKFu3btVMLXOZSCTIy/Pv75yakx3c+K97+Kd3X85vb13mW70j4XcGYcP8zd9lfwhHBhXH23nXl5/lC7dfwS1XFPtadyb9RaRcVbcO957b37I0qKmp8bW+PYeTtyDsKC3ytd6R8DuDsGH+5u86YcjgsuLZzJ5ayN4AbtPyy9866gni97R5u2tPU7pwBktmT/W13pFwffpE8zd/1wlDBvl5wva1ReypbcXvI8R++VtHPUFOnPBvIvruvn5eOHqW7SEaTYO/GYQR8zd/1wlLBttLizjZ0U396VFuc8owfvlbRz1B5s2b51td+xva6IknuLZ0gW91jgU/Mwgj5m/+rhOWDLavTQ5idh/29/C3X/7WUU+Qzs5O3+raU3uawnzhqtXh+EcxgJ8ZhBHzN3/XCUsGy+ZNY3XRdPbU+nubll/+1lFPED+vdNxT28qWFXOZNilci50FfbVn0Ji/+btOmDLYXlrEviNnfZ1O1C//8KScZRQW+rO02+nzPVQ3d7AjZIe9wb8Mwor5m7/rhCmDHaUL6OrrJ3Ks3bc6/fK3jnqCjDo3a4Z4ti55ziVs56fBvwzCivmbv+uEKYNtq+dRkCe+Hv72y9+TjlpEOkZ5nBeRw17U7RdFRf5cgb2ntpW50wrZuDQc04YOxq8Mwor5m7/rhCmDmVMK2bx8Dnvr/LugzC9/r0bU9ao6a4THTOCCR3X7QlNTk+d1qCp7ak9zTYimDR2MHxmEGfM3f9cJWwY7ShdQFT3H2Qu9vtTnl79XHfVtGdomtKxdu9bzOg6fitFyvidUs5ENxo8Mwoz5m7/rhC2DHaVFqP76lKHX+OXvSUetqkcARGS6iOSlfl8nIu8UkcLB22Qrhw4d8ryOgXMt20N4fhr8ySDMmL/5u07YMri8ZA6zphT4Np2oX/5eX0y2G5giIsXAU8CHgW95XKcvbNq0yfM69tS2smbBdIrnhGfa0MH4kUGYMX/zd52wZZCfJ1yztog9tad9mU7UL3+vO2pR1U5gJ/AlVb0V2OBxnb5QXl7uafndff08f/RMKG/LGsDrDMKO+Zu/64Qxgx2lCzhxrpv6095fBuWXv+cdtYhcDbwP+GnqtXDN2jFBvF4wPHKsje6+RGjPT0Pwi8YHjfmbv+uEMYOB/zP3+nCbll/+XnfUfwzcBzyoqodEZDXwtMd1+oLXf0ntrm2lMF/Ytnq+p/WkQxj/mvYT8zd/1wljBsvmTWPl/Gns8eE8tV/+4sVxfBG5D3hcVQ9kvPA02Lp1q+7fvz/oZoyJ3/riHqZPLuCH/+vqoJtiGIaRVfyfh17igUgTFX/9NiYVZMe8XiJSrqpbh3vPK4OjwB+JyAER+ZaI/I6IzPWorkCoqqryrOwzsR4Onejg2hAf9gZvM8gGzN/8XSesGWwvLaKzt58DjW2e1uOXvyfni1X1B8APAERkM3AjsEtE8oGfkxxtv+BF3X6xbt06z8oemFknzBeSgbcZZAPmb/6uE9YMrl4zn/w8YU9tK1d5ePrQL3/Pjwmo6gFV/ayqXge8HTgE3OV1vV7T2NjoWdl7aluZPbWQS4tne1ZHJvAyg2zA/M3fdcKawawphWxeNsfzeb/98vdkRC0iO0d4W1X1bi/q9ZNFixZ5Uq6qsre2le1ri8gP4bShg/Eqg2zB/M3fdcKcwfbSIr7wVC3tnb3MmTbJkzr88vdqRP2O1ONO4D9I3p71PuCbwO96VKevtLe3e1JuXUuMkx3dob4tawCvMsgWzL896CYEiuv+EO4MdpQuSE0nesazOvzy92oK0Q+r6ocBBTao6m2qehuw0Yv6gmDKlCmelDtwS8H2LOiovcogWzB/83edMGewqWQ2M6cUeHr42y9/r89Rr1TV5kHPTwHhvPogJOypPc3qoumUzJ0WdFMMwzCyloL8PN6wZj57alt9mU7US7zuqJ8RkSdE5EMi8kGSs5PlxIQn3d3dGS+zJ97PviNns+KwN3iTQTZh/ubvOmHPYEfpAqLtXRxt9WY6Ub/8PZ3OU1XvTV1YtiP10tdV9UEv6/SLOXPmZLzMyLF2uvr6Q7ta1lC8yCCbMP85QTchUFz3h/BncG3q/9I9ta2sXjAj4+X75e/H7Vm7VPVPUo+c6KQBTp06lfEy99SepiBP2LZ6XsbL9gIvMsgmzN/8XSfsGSyfP43l87ybTtQvf087ahHZJiIvikhMRHpFpF9EOrys0y+WL1+e8TL31LZStnwuM6cUZrxsL/Aig2zC/M3fdbIhgx2lRTxX30pffyLjZfvl7/WI+t+AO4BaYCrJiU6+5HGdvnD48OGMlnf2Qi8vnTiXFVd7D5DpDLIN8zd/18mGDHaULuBCbz8HGtszXrZf/n4c+q4D8lW1X1X/E7hutM+IyP0i0iIiL13kfRGRL4pInYgcFJGyTLd7NC677LKMlvdsXSuqZM2FZJD5DLIN8zd/18mGDK5eM5888WbZS7/8ve6oO0VkElAhIv8kIn8CTB/D575Fcn7wi3ETUJp63A18Jd2GjpdML2+2p/Y0s6YUcHnJnIyW6yVhXOLOT8zf/F0nGzKYPbWQK5bNYbcH56n98ve6o35/qo57gQvAMuC20T6kqruBsyNscgvwHU2yD5gjIksy0N4xk8kFwwemDb0mC6YNHUwYF433E/M3f9fJlgx2lC7gYFM75zr7MlquX/6eddSplbI+o6rdqtqhqn+rqn+aOhSeLsXA8UHPm1KvDdeOu0Vkv4jsb25uprW1lebmZqLRKG1tbdTX19PV1UV1dTWJRIJIJAL8+i+lSCRCIpGgurqarq4u6uvraWtrY8+ePQyU19DQQCwWo6amhng8TmVl5WvKGPhZVVVFT08PtbW1dHR00NjYSEtLCy++0siJc928ftkMamtr6enpeXX5tKFlVFZWEo/HqampIRaL0dDQkDGnaDQ6Lqfy8vKLOrW0tNDY2EhHR0dWOY20n4Y6vfDCCznnNJ799Mtf/jLnnMazn5588smccxrvftq3b19WOO0oLSKhsLfudEb30zPPPJMxp5EQL2dsEZEngHeoau8EPrsSeERVLx3mvZ8Cn1XVvannTwEfV9URj0Ns3bpV9+/fP96meM5/PnuUv/1JNXs+fh3L5tmMZIZhGJmkrz9B2aef5O2blvLZneE8ry4i5aq6dbj3vD703QA8KyL/R0T+dOCRgXKbSB5GH6AEOJGBcsfMwF9amWBvbSsr50/Luk46kxlkI+Zv/q6TLRkU5udx9Zr57Kk9ndHpRP3y97qjPgE8kqpn5qBHujwMfCB19fc24NyQOcU9Z+PGzKwv0htP8NyRM+zIktnIBpOpDLIV8zd/18mmDHaUFtHU1sWxM50ZK9Mvf0876tR56d94jPY5Efk+8BxwiYg0icidInKPiNyT2uRR4AhQB3wD+APPJC5CXV0mTrVDpLGNzt7+rLota4BMZZCtmL/5u042ZbDj1elEM3ebll/+nsz1LSKfUtVPTXQbVb1jpM9q8tjFRyfcwAxQUlKSkXL21raSnydsWzM/I+X5SaYyyFbM3/xdJ5syWDF/GsvmTWV3bSvvv3plRsr0y9+rRTnuGmWqUAFuBz7lUf2e09rayowZ6U/yvqf2NJuXzWFWlkwbOphMZZCtmL/5u+wP2ZWBiLB97QIeqTxBX3+Cwvz0Dyj75e/Voe9v8Npz0kMfM1LbZC2Z2DltF3o5GD2XleenITMZZDPmb/6uk20ZXFtaxPmeOJXH2zNSnl/+noyox3IeOtvp60v/xvlf1Z9Blaya33swmcggmzF/83edbMvgDWuKyBPYXdvK1pXpr1Lol7/nc33nKolE+iux7Kk9zcwpBWwqmZ2BFvlPJjLIZszf/F0n2zKYPa2Qy0vmZGzeb7/8raOeINOmpXfPs6qyp7aVa9YUUZCBcyVBkG4G2Y75m7/rZGMG15YWUXG8nXNd6Y+G/fLPzh4iBJw9O9JU5KNztPUC0faurD3sDelnkO2Yv/m7TjZmsGPdAhIKz9Wnv0iHX/6edtQisk5EnhpYrlJELheRv/KyTr9YunRpWp/fk1rJ5dosvZAM0s8g2zF/83edbMzgimVzmDG54NX/g9PBL3+vR9TfAO4D+gBU9SDJ27KynqNHj6b1+T21p1kxfxrL52ffoaMB0s0g2zF/83edbMygMD+PbavnZ6Sj9svf6456mqq+MOS1uMd1+sL69esn/Nm+/gTP1Z9h+9rsPewN6WWQC5i/+btOtmZw7boiGs92cuzMhbTK8cvf6466VUTWAAogIu8GfJ2T2ysqKiom/NkDje1c6O3P2vunB0gng1zA/CuCbkKguO4P2ZvBwCAp3VG1X/5ed9QfBb4GrBeRKPDHwEc8rtMXysrKJvzZvbWnyRO4OgunDR1MOhnkAuZv/q6TrRmsKppO8Zypac/77Ze/14tyHFHVtwALgPWqul1VG7ys0y8GFv+eCLtrW7li2RxmT82+aUMHk04GuYD5m7/rZGsGIsK164r4Vd0Z4v0TvxfaL3/J5NqcrxY6yprTqvr5jFc6BrZu3ar79+8PoupXOdfZx+a/+xkfu76UP3nrukDbYhiG4So/PdjMR78X4YGPvIEtK+YG3RxEpFxVtw73nlcj6oE5vbeSPNRdnHrcA2zwqE5fiUQiE/rcr+pbSShZuazlUCaaQa5g/ubvOtmcwTVr5yOS3rKXfvl7MqJ+tXCRnwG3qer51POZwI9U9UbPKh2BTI6oE4kEeXnj/zvnvl1VPFJ5gshfvzUjq7cEyUQzyBXM3/xd9ofsz+CWLz9LQZ7wwEfeMKHPZ9I/iBH1AMuB3kHPe4GVHtfpCzU1NeP+THLa0NNcvWZ+1nfSMLEMcgnzN3/XyfYMdqxNTifa0T2x6UT98ve6t/gv4AUR+ZSI/A3wPPAdj+v0hVWrVo37M8fOdNLU1pUTh71hYhnkEuZv/q6T7RnsKC2iP6E8V39mQp/3y9/rq74/A3wYaAPagQ+r6j94WadfnDhxYtyfGTgXku33Tw8wkQxyCfM3f9fJ9gw2L5/L9En5Ez5P7Ze/J+tRDyAiy4FW4MHBr6lqo5f1+sG8eeNfy3R3bSvL5k1lRRZPGzqYiWSQS5i/+btOtmcwqSA5nejeCU584pe/14e+fwo8kno8BRwBHvO4Tl/o7Owc1/Z9/Qn21Z9h+9oFiIhHrfKX8WaQa5i/+btOLmSwo7SIhjOdNJ4Zv4tf/l4f+r5MVS9PPUqBK4G9XtbpF+O90q/yeDvne+JcmyPnp2H8GeQa5m/+rpMLGexYlzwVuadu/Ie//fL3NWVVjQCv97NOrygsHN+sYrtrW8kTeMOa3Omox5tBrmH+5u86uZDB6qLpLJ09ZUKHv/3y93o96j8d9PgzEfkekN7kqiEhFouNa/u9tae5vGQOs6dl/xd7gPFmkGuYv/m7Ti5kICLsKF3As3Wt455O1C9/r0fUMwc9JpM8Z32Lx3X6QlHR2EfG57r6qDjenlOHvWF8GeQi5m/+rpMrGexYV0RHd5yD0XPj+pxf/l531NWq+repx2dU9bvAOzyu0xeamprGvO1zA9OGrsuN27IGGE8GuYj5m7/r5EoG16wpQoRxH/72y9/rjvq+Mb6Wdaxdu3bM2+6pbWXG5AKuWDbHuwYFwHgyyEXM3/xdJ1cymDt9EpcVzx73/dR++XvSUYvITSLyJaBYRL446PEtIO5FnX5z6NChMW+7p7aVbatzY9rQwYwng1zE/M3fdXIpgx2lRUQa2zk/julE/fL3quc4AewHuoHyQY+HgRs8qtNXNm3aNKbtjp25QOPZTq5dlxvncgYz1gxyFfM3f9fJpQy2r11Af0LZd+TsmD/jl78nHbWqVqrqt4E1qvrtQY9dqtrmRZ1+M9YFw/ekznlsX5t7HXW2LhqfKczf/F0nlzIoWzGHaeOcTtQvf68Off8w9esBETk49DHGMm4UkVdEpE5EPjHM+28SkXMiUpF6/HVGJUZhy5YtY9puT+1piudMZVXRdI9b5D9jzSBXMX/zd51cymByQT7bVs9/dXA1Fvzy9+rQ9x+lfr6d5FXeQx8jIiL5wJeBm4ANwB0ismGYTfeo6hWpx6cz0vIxMpa/pOL9CX5Vd4Zr1xXlzLShg8mlv6Yngvmbv+vkWgbb1xZxtPUCx8+ObWrQrB5Rq2pz6uex4R5jKOJKoE5Vj6hqL/ADQnb/9Vj+kqpsOsf5njjb1+bWbVkD5NJf0xPB/M3fdXItg4FrifbWjW1UndUjahE5LyIdgx7nB/8cQxHFwPFBz5tSrw3lahGpFJHHRGTjRdpyt4jsF5H9zc3NtLa20tzcTDQapa2tjfr6erq6uqiuriaRSBCJRIBf/6UUiURIJBJUV1fT1dVFfX09bW1tPPfccwyU19DQQCwWo6amhng8TmVlJQA//OVBRGD6heS9dlVVVfT09FBbW0tHRweNjY20tLTQ0tJCY2MjHR0d1NbW0tPTQ1VV1WvaMfCzsrKSeDxOTU0NsViMhoaGjDlFo9FRnQa3p6qqKuecxrOfKioqcs5pPPvp2WefzTmn8eynp556KuecxrufIpFITjnlX2hl0czJ/LT8yJic9uzZkzGnkRBVHXGDIBCR9wA3qOpdqefvB65U1Y8N2mYWkFDVmIjcDHwhtfDHRdm6davu378/I23s6elh8uTJI25z21d+RTyh/Pij12SkzrAxlgxyGfM3f5f9ITcz+PMfVfKz6lNE/s9byc8b+ZRlJv1FpFxVtw73nuc39opImYj8oYh8TEQ2j/FjTcCyQc9LSN7y9Sqq2qGqsdTvjwKFIuLbpdWNjSMvqd3RnZw2dEcOXu09wGgZ5Drmb/6uk4sZ7Fi3gHNdfVSNYTpRv/y9XpTjr4FvA/OBIuBbIvJXY/joi0CpiKwSkUnA7STvwR5c9mJJXaElIleSdDmTyfaPxKJFi0Z8/7n6M/QnlB05Nr/3YEbLINcxf/N3nVzMYPva5HSiew6PfpuWX/5ej6jvAF6vqn+jqn8DbAPeN9qHVDUO3As8AbwM/FBVD4nIPSJyT2qzdwMviUgl8EXgdvXxOH57e/uI7++pPc30SflsXj7XnwYFwGgZ5Drm3x50EwLFdX/IzQzmTZ/ExqWz2DOGC8r88i/wuPwGYArJGcoguYJW/Vg+mDqc/eiQ17466Pd/A/4tI62cAFOmTBnx/b2paUMnFeTWtKGDGS2DXMf8zd91cjWDHaUL+MbuI8R64syYfPFu0i9/r3uRHuCQiHxLRP4TeAmIDcz97XHdgXH8bCcNZzpz+rC3YRhGrrKjtIh4QtlX79vZ1BHxekT9YOoxwDMe1+cb3d3dF31vYGabXFvWcigjZeAC5m/+rpOrGWxZMZephfnsrWvlLRsufh7aL39PO+rUfN85yZw5cy763p7a0yydPYXVOTht6GBGysAFzH9O0E0IFNf9IXczmFyQz1Wr57F7lHm//fL3+qrvt4vIARE5O84JT0LPqVOnhn29P6E8W9fKjtIFOTlt6GAuloErmL/5u04uZ7CjdAFHTl8g2t510W388vf6HPW/Ah8E5qvqLFWdqaqzPK7TF5YvXz7s6web2unojrMjB5e1HMrFMnAF8zd/18nlDAauMdo7wqjaL3+vO+rjwEt+3jblF4cPHx729T21rYjANWtyv6O+WAauYP7m7zq5nEHpwhksmjWZ3SOspuWXv9cXk30ceFREfknyCnAAVPXzHtfrOZdddtmwr++pPc1lxbOZO32Szy3yn4tl4Armb/6uk8sZiAg7Shfw85dP0Z/QYacT9cvf6xH1Z4BOkvdSzxz0yHqGW97sfHcfBxrbnbktK9eWuBsv5m/+rpPrGewoLaK9s49DJ4afTtQvf69H1PNU9W0e1xEIwy1vtu/IWeIJzdllLYeSa0vcjRfzN3/XyfUMrkmt1bCntpXLS+b8xvtZvczlIH4uIjnZUQ/3l9Se2tNMm5RP2Yo5/jcoAHL9r+nRMH/zd51cz6BoxmQ2Lp3F7ovM++2Xv6fLXIrIeWA6yfPTfYAAGtSV35lc5nI4rv+/z7Bi/jT+88NXelaHYRiG4R+ffexl7t97lIq/fhvTR5hONF0CW+YydTtWnqpOzbXbswYWFB/g+NlOjrReYEepG4e94TczcA3zN3/XcSGDa0sX0NevPH/0N6cT9cvf63PUiMhcoJTkBWUAqOpur+v1mo0bN77m+d7USivXOnD/9ABDM3AN8zd/13Ehgy0r5jKlMI/dh1u5fv1rpxP1y9/rmcnuAnaTXK7yb1M/P+VlnX5RV1f3mud7a1tZPGsKaxbMCKhF/jM0A9cwf/N3HRcymFKYz5Wr5r86GBuMX/5eX0z2R8DrgWOqeh2wGRh9Ne4soKSk5NXf+xPK3rpWdpQW5fy0oYMZnIGLmL/5u44rGVxbWkRdS4zmc6+dTtQvf6876m5V7QYQkcmqWgNc4nGdvtDa+uu/rqqi5zjX1Zfzq2UNZXAGLmL+5u86rmQwcO3RniGzlPnl73VH3SQic4CHgCdF5MfACY/r9IUZM359iHtgLthr1swPqjmBMDgDFzF/83cdVzJYt2gGC2dO/o2O2i9/r5e5vDX166dE5GlgNvC4l3X6RV9f36u/765t5dLiWcyfMTnAFvnP4AxcxPzN33VcyUBE2F5axDOvnCaRUPJS04n65e/1iPpVVPWXqvqwqvb6VaeXJBIJAGI9cSLH2py6LWuAgQxcxfzN33VcyuDa0gWcvdBLdfOvV2r2y9+3jjrXmDZtGgDPHzlDPKHsWOvObVkDDGTgKuZv/q7jUgYD04nuHrTspV/+1lFPkLNnzwLJiwumFOaxZeXcgFvkPwMZuIr5m7/ruJTBgpmTed2SWew5/Ovz1H75W0c9QZYuXQok/7ratno+kwvyA26R/wxk4Crmb/6u41oG15YWUX6sjc7eOOCfv3XUE+To0aNE27s4cvoC2x087A3JDFzG/M3fdVzLYHtpEb39CZ4/mhxJ++VvHfUEWb9+/au3ZV3r2P3TA6xfvz7oJgSK+Zu/67iWwetXzmNyQd6rh7/98reOeoJUVFSwu7aVRbMmU7rQjXsJh1JRURF0EwLF/CuCbkKguO4P7mWQnE50HnvrkoM0v/yto54gm67YzLN1rWxfu8CpaUMHU1ZWFnQTAsX8zd91XMxgR2kRh0/FOHmu2zd/66gnyP889TztnX1OrZY1lFxfNH40zN/8XcfFDH49nehp3/yto54grQXJDvoaRy8kA9iyZUvQTQgU8zd/13Exg/WLZ1I0YzJ761p98w9tRy0iN4rIKyJSJyKfGOZ9EZEvpt4/KCK+HoN5LHKUDUtmUeTYtKGDiUQiQTchUMzf/F3HxQxEhB2lReytbWW/yyNqEckHvgzcBGwA7hCRDUM2uwkoTT3uBr7iV/uerWulurWX0kVuXkQ2wBVXXBF0EwLF/K8IugmB4ro/uJvBjtIizlzo5eHjkyg/1uZ5faHsqIErgTpVPZKaG/wHwC1DtrkF+I4m2QfMEZElXjes/FgbH/7PF0goPFZ10pedFFZqamqCbkKgmL/5u46rGcyaUgjAf+1r5H3f3Od5PxDWjroYOD7oeVPqtfFug4jcLSL7RWR/c3Mzra2tNDc3E41GaWtro76+nq6uLqqrq0kkEq8eyhm4SCASiZBIJKiurqarq4tH99fS268AxBMJfvFSIw0NDcRiMWpqaojH41RWVr6mjIGfVVVV9PT0UFtbS0dHB42NjbS0tNDS0kJjYyMdHR3U1tbS09NDVVXVsGVUVlYSj8epqakhFovR0NCQtlN9fT1tbW1Eo1EGMhqL06pVq3LOaTz7qbi4OOecxrOfCgsLc85pPPspFovlnNN499PChQtzzmks+2l3ZS0ACvTFEzwRqU/baSREVUfcIAhE5D3ADap6V+r5+4ErVfVjg7b5KfBZVd2bev4U8HFVvehJg61bt+r+/fvTalv5sTbe94199MYTTCrM47t3bWPLCvfm+Qaor69nzZo1QTcjMMzf/F32B3czKD/Wxnu/sY++/gSTCjLTD4hIuapuHe49T9ejToMmYNmg5yXAiQlsk3G2rJjLd39/G08fauK6jSXOdtIA8+bNC7oJgWL+5u86rmawZcVcvudjPxDWQ98vAqUiskpEJgG3Aw8P2eZh4AOpq7+3AedUtdmPxm1ZMZc7Ns1zupMG6OzsDLoJgWL+5u86LmfgZz8QyhG1qsZF5F7gCSAfuF9VD4nIPan3vwo8CtwM1AGdwIf9bGNeXlj/xvEP1zMwf/N3Hdcz8Ms/lB01gKo+SrIzHvzaVwf9rsBH/W7XAIWFhUFVHRpcz8D8zd91XM/AL/9QXkzmFSJyGjiWoeKKgNZRt8ptXM/A/M3fZX+wDDLpv0JVh12K0amOOpOIyP6LXaHnCq5nYP7m77I/WAZ++bt9gsEwDMMwQo511IZhGIYRYqyjnjhfD7oBIcD1DMzfbVz3B8vAF387R20YhmEYIcZG1IZhGIYRYqyjNgzDMIwQYx21YRiGYYQY66gNwzAMI8RYR20YhmEYIcY6asMwDMMIMdZRG4ZhGEaIsY7aMAzDMEKMddSGYRiGEWKc66hF5H4RaRGRl8aw7b+ISEXqcVhE2n1oomEYhmG8inNTiIrItUAM+I6qXjqOz30M2Kyqv+dZ4wzDMAxjCM6NqFV1N3B28GsiskZEHheRchHZIyLrh/noHcD3fWmkYRiGYaQoCLoBIeHrwD2qWisiVwH/Dlw/8KaIrABWAb8IqH2GYRiGozjfUYvIDOANwI9EZODlyUM2ux34H1Xt97NthmEYhuF8R03y8H+7ql4xwja3Ax/1pzmGYRiG8WucO0c9FFXtAI6KyHsAJMmmgfdF5BJgLvBcQE00DMMwHMa5jlpEvk+y071ERJpE5E7gfcCdIlIJHAJuGfSRO4AfqGuXxxuGYRihwLnbswzDMAwjm3BuRG0YhmEY2YR11IZhGIYRYpy66ruoqEhXrlyZkbJ6e3uZNGlSRsrKVlzPwPzN32V/sAwy6V9eXt6qqguGe8+pjnrlypXs378/I2XFYjFmzJiRkbKyFdczMH/zd9kfLINM+ovIsYu9Z4e+J0hra2vQTQgc1zMwf/N3Hdcz8MvfOuoJ4vJfkQO4noH5m7/ruJ6BX/5OHfrOJH19fUE3IXBcz8D8zd91gszgsapmnq0/w6XFs1i/eJbv9dec7KDiyCnesy2fLSvmelqXddQTJJFIBN2EwHE9A/M3f9fxO4O2C7385OAJvvPcMepaYr7WfTEeeqmV7961zdPO2jrqCTJt2rSgmxA4rmdg/ubvOn5k0BtP8IuaFnZFmnj6lRb6+pUFMycjgAJ5ArduLubtly/1vC0DPHLwBLsiURToiyfYd+SMddRh5OzZs8yd6+3hjrDjegbmb/4u+4N3GagqFcfb2RWJ8pODJ2jv7GPBzMl86A0ruXVzCV19/bzvm/voiycoLMjjvVet8Pzw82BmTS3kp1XN9Kbq37Z6vqf1hXYKURFpAM4D/UBcVbcOeV+ALwA3A53Ah1Q1MlKZW7du1UzdntXV1cXUqVMzUla24noG5m/+LvtD5jOItnfx0IEoD0SaOHL6ApML8rhh42J2lhWzfW0RBfm/vv65/Fgb+46cYdvq+b520oPr3/vKSbZfsjgj9YtI+dB+boCwj6ivU9WLXf9+E1CaelwFfCX10xeOHj3Khg0b/KoulLiegfmbv8v+kJkMYj1xHqtqZlckynNHzgBw1ap53HPtGm68bDGzphQO+7ktK+YG0kEPrn/qhWY2+NCGsI+ot16soxaRrwHPqOr3U89fAd6kqs0XKzOTI+pEIkFentt3t7megfmbv8v+MPEM+hPKs3Wt7Io08fihk3T3JVg5fxo7y0q4dXMxy+Zlx/n/TH4HRhpRh/lbpsDPRKRcRO4e5v1i4Pig502p116DiNwtIvtFZH9zczOtra00NzcTjUZpa2ujvr6erq4uqqurSSQSRCLJo+fl5eUARCIREokE1dXVdHV1UV9fT1tbG7/61a8YKK+hoYFYLEZNTQ3xeJzKysrXlDHws6qqip6eHmpra+no6KCxsZGWlhZaWlpobGyko6OD2tpaenp6qKqqGraMyspK4vE4NTU1xGIxGhoaMuYUjUbH5VRRUZFzTuPZT+Xl5TnnNJ79tHfv3pxzGs9+euqpp3LOabz76cUXXxyXU3ldM/f94Hm2feZJPnD/C/z85ZO849KFfOHty3j8Y1dz3cJuls2bljX/nnbv3p2x/TQSYR5RL1XVEyKyEHgS+Jiq7h70/k+Bz6rq3tTzp4CPq2r5xcrM5IjaMAzDGJ3WWA8PV5xg14EmXop2UJAnvOmShdxWVsz1r1vI5IL8oJsYCrJyRK2qJ1I/W4AHgSuHbNIELBv0vAQ44U/rfv1Xkcu4noH5m7/rXCyD7r5+fnqwmTu/9SJX/cNTfPqRavJE+NQ7NvD8X76Zb35wKzddtiTrO2m/vgOhHFGLyHQgT1XPp35/Evi0qj4+aJvfAu4ledX3VcAXVXVoZ/4abERtGIbhDapK+bE2HohEeeTgCc53x1k8awq3lhWzc3MxpYtmBt3EUJONV30vAh5M3oFFAfA9VX1cRO4BUNWvAo+S7KTrSN6e9WE/GxiJRCgrK/OzytDhegbmb/4u+0Myg6IV69l1oIkHD0Q5dqaTqYX53HTpYnaWlXD1mvnk50nQzfQMv74DoRxRe4Vd9Z1ZXM/A/M3fVf+O7j5+erCZB8qb2H+sDRF4w5r57Nxcwo2XLmb65LCOATOLX1d9u5GmB9TU1Dh/D6XrGZi/+bvkH+9PsKe2lQciTfys+hS98QTLZhfy8Rsv4V1XFLN0jnuTv/j1HbCOeoKsWrUq6CYEjusZmL/55zqqSnVzB7siUX5cEaU11svcaYW898rl7CwrZu28SU7Pee7Xd8A66gly4sQJ1qxZE3QzAsX1DMzf/HPV/1RHNz+uiLIrEqXm5HkK84U3r1/EbVtKeOO6BUwqSB7ura+vz9kMxoJf3wHrqCfIvHnzgm5C4Liegfmbfy7R1dvPz6pP8kAkyt7a0yQUNi+fw9+961LecfkS5kyb9BufybUMxotf/tZRT5DOzk7nV85xPQPzN/9s908klBcazvJAeROPvXSSWE+c4jlT+eh1a7l1czGrF8wY8fO5kEE6+OVvHfUEcfVqz8G4noH5m3+2cuR0jAcPJA9tR9u7mDG5gJsvS95SdeXKeeSN8ZaqbM4gE/jlbx31BCksHH5FF5dwPQPzN/9sor2zl58cbGZXpIkDje3kCWwvXcDHb7yEt21YzNRJ458lLNsyyDR++VtHPUFisRhFRUVBNyNQXM/A/M0/7P698QTPvNLCrkiUX9S00Nuf4JJFM/nLm9dzyxXFLJo1Ja3ysyEDL/HL3zrqCeLyl3MA1zMwf/MPI6rKwaZz7Io08XDlCdo6+yiaMYn3X72CnWXFbFgyi9Ssj2kT1gz8wi//CXXUIjKWOdP6VLVqIuVnA01NTaxfvz7oZgSK6xmYv/mHyf9EexcPpW6pqmuJMakgj7dtWMRtZSXsKC2iID/z51PDloHf+OU/oSlEReQ88CIw0p9lq1R15QTb5QmZnEI0Ho9TUOD2AQnXMzB/8w/a/0JPnMdfOsmuA038qv4MqvD6lXO5rayEmy5bwuyp3p5DDUMGQZJJfy+mEH1RVa8fpdJfTLDsrODQoUNs2rQp6GYEiusZmL/5B+Hfn1Ceqz/Drkjylqquvn6Wz5vGH725lFs3F7Ni/nTf2mLfAX/8bVEOwzCMLKD21HkeiER56ECUkx3dzJxSwNsvX8ptZcVsWTE3Y+edjWAYaUSd1kkLEbkmtV40IvK7IvJ5EVmRTpnZgi0abxmYv/l7zZlYD//57FHe8aW9vPVfdvONPUfYuHQWX35vGS9+8i18dudlbF05L7BO2r4D/vinNaIWkYPAJuBy4L+A/wB2quobM9O8zGIjasMwwk5PvJ9fvNzCA5Eoz7zSQjyhXFo8i52bS3jnFUspmjE56CYaHuDZiBqIa7KnvwX4gqp+AZiZZplZget/SYJlYP7mnylUlfJjbXzywSqu/MxTfOS7EQ42tXPn9lU88cfX8sjHdvB721eFrpO270B2jKh/CTwOfBi4FjgNVKjqZZlpXmaxEbVhGGHi+NnO1FSeTTSc6WRKYR43bkxO5XnN2iLyxziVp5H9eDmi/h2gB7hTVU8CxcA/p1lmVlBVlbO3iI8Z1zMwf/OfCB3dffz3i4389teeY8c/Pc3nnzzMktlT+ed3X87+v3or/3r7Zq5dtyArOmn7DvjjP9H7qJ8gOZJ+TFVrMt4okWXAd4DFQAL4euqw+uBt3gT8GDiaemmXqn56pHIzOaLu6elh8uRwHYbyG9czMH/zH6t/vD/BnrpWdkWi/OzQSXriCVYXTee2LSXccsVSSuZO87i13mDfgcz5e3Ef9QeBG4FPicg64HmSHfdTqhqbYJmDiQP/W1UjIjITKBeRJ1W1esh2e1T17Rmob9w0NjZSWloaRNWhwfUMzN/8R/N/ubmDXZEmHqo4wenzPcyZVsjvvH4ZO8tK2FQyO+tvqbLvgD/+E+qoU4e5vwV8S0TygKuAm4CPi0gX8DNV/aeJNkpVm4Hm1O/nReRlkofVh3bUgbFo0aKgmxA4rmdg/uY/HC3nu3m44gQPRKK83NxBYb5w3SUL2VlWwvXrFzKpIHeWhrTvgD/+aX9jVDWhqs+p6l+r6jXA7UA0/aYlEZGVwGaSo/ahXC0ilSLymIhsvMjn7xaR/SKyv7m5mdbWVpqbm4lGo7S1tVFfX09XVxfV1dUkEgkikQjw66v5IpEIiUSC6upqurq6qK+vp62tjaNHjzJQXkNDA7FYjJqaGuLxOJWVla8pY+BnVVUVPT091NbW0tHRQWNjIy0tLbS0tNDY2EhHRwe1tbX09PS8eu5jaBmVlZXE43FqamqIxWI0NDRkzCkajY7Lqb29PeecxrOfTp8+nXNO49lPdXV1Oec0nv1UUVHxqlNnTx9f+ekLvP+b+9j2D0/x9z99GUnE+d9vWsZj/2szf3ltEdtXzuBI3eFQO413P508eTL0+8nL794rr7ySMaeRmOg56i8BF/2gqv7huAsdvp4ZwC+Bz6jqriHvzQISqhoTkZtJ3h424jGITJ6jbmlpYeHChRkpK1txPQPzd9v/5KlTHLtQwK5IlEermjnfE2fp7CncWlbMrZtLWLtwRtBN9BzXvwOZ9PfiHPVAb3cNsAH479Tz9wAZubFMRAqBB4DvDu2kAVS1Y9Dvj4rIv4tIkaq2ZqJ+wzCM4WhovcCuA1H+Z38jJ871MH1SPjddtoSdZcVsWzWfvCy4WtvILiZ6jvrbACLyIeA6Ve1LPf8q8LN0GyXJKyz+A3hZVT9/kW0WA6dUVUXkSpKH8c+kW/dY6e7u9quq0OJ6Bubvjv+5zj4eqTrBrkiU8mNtiMDWkhl8/MbX8baNi5g2yc0VpFz6DgyHX/7pfruWkpyJ7Gzq+YzUa+lyDfB+oEpEKlKv/SWwHEBVvwq8G/iIiMSBLuB29XGFkTlz5vhVVWhxPQPznxN0Ezylrz/BL185za4DTfy8uoXe/gSlC2fwiZvW864ripkmvcyaNSvoZgZKrn8HRsMv/3Q76s8BB0Tk6dTzNwKfSrNMVHUvI691jar+G/Bv6dY1UU6dOuX8P1LXMzD/3PNXVV6KdvBApImfVJ7gzIVe5k+fxPu2Lee2shI2Lp316i1VtbXHc85/vOTid2A8+OWf9jKXqUPQV6WePp+6dSuU2IQnmcX1DMw/d/xPnut+dSrP2pYYk/LzeOuGRewsK+badQsozP/NG2RyyX+iuJ6BXxOeZOKGvh6S9zy3AetE5NoMlBl6Dh8+HHQTAsf1DMw/u/07e+M8eKCJ9//H81z9uaf4x8drmD21kH+49TJe/ORb+PL7ynjz6xYN20lD9vtnAtcz8Ms/3UU57gL+CCgBKoBtwHOqen1GWpdhbFEOw3CbRELZd+QMD0SiPPZSM529/SybN5Wdm0u4dXMxK4umB91Ew1G8HFH/EfB64JiqXkdyYpLTaZaZFbi+vBtYBuafPf51LTH+6fEatv/jL3jvN5/nZ4dO8s5NS/nRPVez+8+v40/eum7cnXQ2+XuF6xlkyzKXL6rq61NXZl+lqj0iUqGqV2SqgZnERtSG4Q5nL/Tyk8oT7Io0Udl0jvw84drSInaWlfDWDYuYUpgfdBMN41W8HFE3icgc4CHgSRH5MXAizTKzAtf/kgTLwPzD598T7+fxl07y+9/Zz5Wf+Tl/8/Ah+vqVv/qt1/Hcfdfznx++kndsWpqRTjqM/n7jegZZMaJ+TUEibwRmA4+ram9GCs0wNqI2jNxDVak43s6uSJSfHDxBe2cfC2ZO5tbNxdy6uZjXLXH39iEje/BiClFSq2YdVNVLAVT1lxMtKxuprKxk06ZNQTcjUFzPwPyD9W9q6+ShA1F2RaIcab3A5II8bti4mJ1lxWxfW0TBRa7WzhRB+4cB1zPwyz/dc9TfBe5T1cbMNck7MjmijsfjFBS4OW3gAK5nYP7++5/v7uOxl06yK9LEviPJCRGvWjWP28pKuOmyxcycUuhbW1zf/2AZZNLfkxF1iiXAIRF5Abgw8KKqvjPNckNPXV0d69evD7oZgeJ6Bubvj39/Qtlb18quSBNPHDpJd1+CVUXT+d9vXce7NhezbN40z9swHK7vf7AM/PJPt6P+24y0IgspKSkJugmB43oG5u+t/ysnz/NApImHDkRpOd/D7KmFvHtLCTvLSti8bM6rU3kGhev7HywDv/zT6qhdOy89mNbWVmbMyP31ZkfC9QzMP/P+p8/38HDqlqpDJzooyBPedMlC3r2lmOvWL2RyQXhuqXJ9/4Nl4Jf/hDpqEXlEVd+e7jbZjMtfzgFcz8D8M+Pf3dfPz18+xa5IlF8ePk1/Qrm8ZDafescG3rFpKfNnhHMuadf3P1gGfvlPdES9XUQeHuF9ATZMsOysoK+vL+gmBI7rGZj/xP1Vlf3H2tgVaeKRg82c746zZPYU7r52NTs3F1O6aGYGW+oNru9/sAz88p9oR33LGLYJ5b3UmSKRSATdhMBxPQPzH7//sTMX2BWJ8uCBKI1nO5k2KZ8bL13MbWUlbFs9n/y8YM87jwfX9z9YBn75T6ijdvnc9ADTpgVzpWmYcD0D8x+b/7muPh6tauaB8ib2H2tDBK5ZU8Qfv6WUGzYuZvrk7Ly9x/X9D5aBX/7Z+S8kBJw9e5a5c+cG3YxAcT0D87+4f19/gj21p3kgEuXJ6lP0xhOsXTiDv7hxPe/avJQls6f63NrM4/r+B8vAL//QdtQiciPwBSAf+Kaqfm7I+5J6/2agE/iQqkb8at/SpUv9qiq0uJ6B+b/WX1U5dKKDXZEoD1dGaY31Mm/6JN575XJ2lhVzWfHswG+pyiSu73+wDPzyD2VHLSL5wJeBtwJNwIsi8rCqVg/a7CagNPW4CvhK6qcvHD16lA0bcvp6uVFxPQPzT/qf6uh+dSrPV06dZ1J+Hm9+3UJ2lpXwxnULmFTg7VSeQeH6/gfLwC//dKcQrQKGFnAO2A/8vaqemWC5VwOfUtUbUs/vA1DVzw7a5mvAM6r6/dTzV4A3qWrzxcrN5BSiiUSCvLzc/A9orLiegcv+Xb39PP5SM7sORHm2rpWEQtnyOewsK+Htly9hzrRJQTfRc1ze/wO4nkEm/b2cQvQxoB/4Xur57amfHcC3gHdMsNxi4Pig50385mh5uG2KgYt21JmkoqKCsrIyP6oKLa5n4Jp/IqE8f/QsuyJNPFrVzIXefornTOXe69Zya1kJq4qmB91EX3Ft/w+H6xn45Z/unwLXqOp9qlqVenyS5Kj2H4GVaZQ73ImsoSP3sWyDiNwtIvtFZH9zczOtra00NzcTjUZpa2ujvr6erq4uqqurSSQSRCLJ09wD64xGIhESiQTV1dV0dXVRX19PW1sbixYtYqC8hoYGYrEYNTU1xONxKisrX1PGwM+qqip6enqora2lo6ODxsZGWlpaaGlpobGxkY6ODmpra+np6aGqqmrYMiorK4nH49TU1BCLxWhoaMiYUzQaHZdTWVlZzjmNZz9t3Lgx55yG208PP/M8//eJV7jq75/gjm/s46cHo7ztdQv4wjtX8uCdl3HHZbOY1NOeVU6Z2E8DRyNzyWm8+2ndunU55zSe/TRz5syMOY1Euoe+K4G7VfX51PMrgW+o6iYROaCqmydYbugPfZeXl7Nly5aMlJWtuJ5BLvu3XejlkYMneCASpeJ4O3kCO0oXsLOsmLdtWMzUSfk57T8WXPcHyyCT/iMd+k63o349cD8wg+QItwO4CzgE/Jaq/nCC5RYAh4E3A1HgReC9qnpo0Da/BdxL8qrvq4AvquqVI5WbyY7aMHKN3niCp19pYVekiV/UtNDXr6xfPJPbykq45YqlLJw1JegmGkbO4tk5alV9EbhMRGaT7PTbB709oU46VW5cRO4FniB5e9b9qnpIRO5Jvf9V4FGSnXQdyduzPjzR+iZCJBJx+twMWAa54K+qHGw6x65IEw9XnqCts4+iGZP54NUr2VlWwoalsy762VzwTwfX/cEy8Ms/3RH1ZOA2kuejX+30VfXTabfMA+yq78ziegbZ7B9t70rdUtVE/ekLTC7I420bF7OzrJgda4soyB/dK5v9M4Hr/mAZZMtV3z8meTtWOdCTZllZRU1NjdP3D4JlkG3+sZ44j790kl2RJp47cgZVuHLlPH5/x2puvnwJs6YUjqu8bPPPNK77g2Xgl3+6HXWJqt6YkZZkGatWrQq6CYHjegbZ4N+fUH5V38quSJTHXzpJV18/K+ZP44/fvI5bNxezfP7E5yrOBn8vcd0fLAO//NPtqH8lIpepalVGWpNFnDhxgjVr1gTdjEBxPYMw+x8+dZ4HIk08dCDKqY4eZk0p4NayYm4rK6Zs+dyMTOUZZn8/cN0fLAO//NPtqLcDHxKRoyQPfQugqnp52i0LOfPmzQu6CYHjegZh82+N9fCTyhPsikSpip4jP0+47pIF/M07Srh+/UKmFOZntL6w+fuN6/5gGfjln25HfVNGWpGFdHZ2Or1qDFgGYfDv7uvnFzXJW6qeeeU08YRyWfFs/uYdG3jHpqUUzZjsWd1h8A8S1/3BMvDLf0IdtYjMUtUO4HyG25M1uHyl4wCuZxCUv6oSaWzjgUiURypP0NEdZ9Gsydy5YxU7N5dwyeKZvrTD9r/b/mAZ+OU/0RH194C3k7zaW3ntdJ4KrE6zXaGnsHB8V8jmIq5n4Lf/8bOd7IpE2XWgiWNnOplamM+NlyZvqXrDmiLy8/xdQtL2v9v+YBn45T+hjlpV35766ewlf7FYjKKioqCbESiuZ+CHf0d3H48ebGZXJMoLDWcRgatXz+dj15dy46WLmTE5uJVqbf+77Q+WgV/+af8rF5FiYAWvnfBkd7rlhh2Xv5wDuJ6BV/7x/gR76lp5oLyJJ6tP0RNPsHrBdP78hkt41+ZiiudM9aTe8WL7321/sAz88k+roxaRfwR+B6gmudwlJA9953xH3dTUxPr164NuRqC4nkGm/atPdLAr0sRDFSdojfUwZ1ohv/P6ZewsK2FTyeyM3FKVSWz/u+0PloFf/ulOIfoKcLmqZsWsZJmcQjQej1NQENxhxzDgegaZ8G/p6ObHFSd4INJEzcnzFOYL169fyM6yEq67ZCGTCsJ7sY7tf7f9wTLIpP9IU4im+7/AEcDJqwkOHTo0+kY5jusZTNS/q7efH1dE+eD9L7Dts0/xmUdfZkphPn93y0Ze+Mu38LX3b+WGjYtD3UmD7X/X/cEy8Ms/3RH1A8Am4CkGzfWtqn+YftMyjy1zaQRFIqG80HCWXZEmHq06SawnTvGcqdy6uZhby4pZs2BG0E00DCNAvFyU4+HUwzlcXzAdLIOx+B9tvcCDkSZ2HYjS1NbF9En53HzZEnaWlXDVqnnk+XxLVSax/e+2P1gGfvmnNaLONmxEbfhBe2cvjxxsZlekiUhjO3kC16wt4rayEt62cRHTJrl7Ts8wjOHx7By1iBwVkSNDH+mUmS2Ul5cH3YTAcT2Dwf59/QmerD7FR/6/cq78zFP81UMvEeuJc99N6/nVJ97Mf915Fe/aXJxTnbTtf7f9wTLwyz/dc9TzBz2dArwHmKeqf51uw7zARtRGJlFVqqLn2BWJ8nDlCc5e6GX+9EncckUxO8uK2bh0VuhuqTIMI5x4do5aVc8MeelfRWQvEMqOOpNUVVVx2WWXBd2MQHE1g+ZzXTx4IMr3f1XP8Y44kwryeOuGRdxWVsyO0gUU5of7au1M4er+H8B1f7AM/PJPd8KTskFP84CtQForAojIPwPvAHqBeuDDqto+zHYNJBcF6QfiF/tLxCvWrVvnZ3WhxKUMLvTEeeLQSXZFojxb34oqlC2fzR+8ZTk3X7aE2VPdu0vRpf0/HK77g2Xgl3+6J8z+36Df48BR4LfTLPNJ4D5VjadmPrsP+IuLbHudqramWd+EaGxspLS0NIiqQ0OuZ9CfUPYdOcMDkSYef+kknb39LJs3lT+8vpSdZcX0nj1BaenyoJsZGLm+/0fDdX+wDPzyT7ejvlNVX3PxmIiktVCHqv5s0NN9wLvTKc8rFi1aFHQTAidXM6hrOc8DkSgPHYjSfK6bmZMLuOWKpewsK2HrirmvnnfuKMxN/7GSq/t/rLjuD5aBX/7pnkz7nzG+NlF+D3jsIu8p8DMRKReRuy9WgIjcLSL7RWR/c3Mzra2tNDc3E41GaWtro76+nq6uLqqrq0kkEkQiEeDXV/NFIhESiQTV1dV0dXVRX19PW1sbR48eZaC8hoYGYrEYNTU1xONxKisrX1PGwM+qqip6enqora2lo6ODxsZGWlpaaGlpobGxkY6ODmpra+np6aGqqmrYMiorK4nH49TU1BCLxWhoaMiYUzQaHZdTe3t7zjidvdDL3/33bt75b3t5y+d38/XdR1g+K59/ftd6dn3wEv5k+2JWTItz/PjxV51Onz4daievv3t1dXU55zSe/VRRUZFzTuPdTydPnsw5p/Hsp1deeSVjTiMxoau+RWQ9sBH4J+DPB701C/hzVd04yud/Diwe5q1PquqPU9t8kuQ57506TCNFZKmqnhCRhSQPl39stFW7MnnVd0tLCwsXLsxIWdlKtmfQE+/n6ZoWHohEebqmhXhC2bh0FjvLSnjnpqUsmDl5xM9nu3+6mL/b/mAZZNLfi6u+LwHeDswheeHXAOeB3x/tw6r6lpHeF5EPpsp/83CddKqME6mfLSLyIHAlDqzaZaSHqnLgeDu7Ik38pLKZc119LJg5md/bvoqdZcWsXzwr6CYahmG8hgl11KlR749F5GpVfS6TDRKRG0lePPZGVe28yDbTgTxVPZ/6/W3ApzPZjtHo7u72s7pQkk0ZHD/byUMHouw6EOVo6wWmFOZxw8bF7Cwr4Zo18ymYwC1V2eTvBebvtj9YBn75p3sx2RkReQpYpKqXisjlwDtV9e/TKPPfgMnAk6mLdvap6j0ishT4pqreDCwCHky9XwB8T1UfT8tknMyZM8fP6kJJ2DM4393HY1UneSDSxPNHzwKwbfU8PvKmNdx06WJmTknvlqqw+3uN+c8JugmB43oGfvmn21F/g+Q56q8BqOpBEfkeMOGOWlXXXuT1E8DNqd+PkFy1KzBOnTrFrFluHyYNYwbx/gR761rZFYnyxKGT9MQTrCqazp+9bR3v2lxMydxpGasrjP5+Yv5u+4Nl4Jd/uh31NFV9Ycg0ifE0y8wKli939/7ZAcKUQc3JDnalbqlqOd/D7KmF/PbWZewsK+aKZXM8mcozTP5BYP5u+4Nl4Jd/uh11q4isIXmrFCLybqA57VZlAYcPH3Z66jwIPoPT53v4cUWUXZEo1c0dFOQJ161fyG1lxVy3fiGTC/I9rT9o/6Axf7f9wTLwyz/dRTlWA18H3gC0kZyZ7HdVtSEjrcswtihH9tPd18+T1afYFWlid20r/QllU8lsdpaV8I5NS5k3fVLQTTQMwxg3ni1zqapHUrdaLQDWq+r2sHbSmcb15d3AvwxUlReOnuUTDxzk9X//cz72/QPUnDzP/7p2NT//02v58b3b+eAbVvreSbv+HTB/t/3BMgj1Mpci8qcjva+qn59wizzERtTZxbEzF3ggEuXBA00cP9vFtEn53HTpEm4rK2bb6vnk5dkSkoZh5AZejKhnph5bgY8AxanHPcCGCZaZVbj+lyR4k8G5zj6+93wj7/7Kr3jjPz/Dl35Ry8r50/mX39nE/r96C//vtzfxhrVFoeikXf8OmL/b/mAZhHpE/eqHRX4G3Kaq51PPZwI/UtUbM9S+jGIj6nDS159g9+HT7IpEefLlU/TGE6xdOIPbykp41+alLJk9NegmGoZheIpn56iB5STXjR6gF1iZZplZwcBk7S6TTgaqykvRc/ztTw6x7R+e4s5v7+e5I2d475XL+cm923nyT67lI29aE+pO2vXvgPm77Q+WgV/+6Y6oP0ly/ekHSd6idSvw36r62cw0L7NkckQdj8cpKEj37rbsZiIZnDzXzUMVUXZFmjh8Ksak/DzesmEhOzeX8MZLFlA4gak8g8L174D5u+0PlkEm/b1YlAMAVf2MiDwG7Ei99GFVPZBOmdlCXV0d69evD7oZgTLWDDp74/zs0CkeiDSxt64VVdiyYi6fufVS3n7ZUmZPS28qz6Bw/Ttg/m77g2Xgl3/afwqoagSIZKAtWUVJSUnQTQickTJIJJR9R8+wKxLlsapmLvT2UzJ3Kh+7bi23lpWwqmi6jy31Bte/A+bvtj9YBn75u3vMIk1aW1uZMWNG0M0IlOEyqGuJ8eCBJh6MRDlxrpsZkwt4++VL2VlWzOtXzgvF1dqZwvXvgPm77Q+WgV/+1lFPEJe/nAMMZNB2oZefHDzBA5EolcfbyRO4dt0CPnHz63jr6xYxdZK3U3kGhevfAfN32x8sA7/8raOeIH19fUE3IVB64wmefPk0Tx9t4OlXWujrV163ZBZ/9Vuv452blrJw1pSgm+g5rn8HzN9tf7AM/PK3jnqCJBKJoJvgO6pKZdM5dkWaeLjyBO2dfRTNmMyH3rCSWzeXsGGpW8vdufgdGIz5u+0PloFf/tZRT5Bp0zK3rnHYibZ38dCBKA9Emjhy+gKTC/J428bFvK10NjdtXklBFt1SlUlc+g4Mh/m77Q+WgV/+1lFPkLNnzzJ37tygm+EZsZ44j1U1sysS5bkjZwC4ctU8/te1q7npsiXMmlJIfX29s5005P53YDTM321/sAz88reOeoIsXbo06CZknP6E8mxdK7siTTx+6CTdfQlWzp/Gn751HbduLmbZvNf+9ZiLGYwH8zd/13E9A7/8QzccEpFPiUhURCpSj5svst2NIvKKiNSJyCf8bufRo0f9rtIzXjl5ns8++jJv+NxTfOD+F/hFTQu3lZXwwEfewNN/9ib+8M2lv9FJQ25lMBHM3/xdx/UM/PJPawpRLxCRTwExVf2/I2yTDxwG3go0AS8Cd6hq9UhlZ3IK0UQiQV5e6P7OGTOtsR4erjjBrgNNvBTtoCBPeNMlC7itrITr1i9kSuHot1RlewbpYv7m77I/WAaZ9PdyUY6guBKoU9UjqtoL/AC4xc8GVFRU+FldRuju6+enB5u581svctU/PMWnH6lGEP7mHRvY95dv5psffD03XbZkTJ00ZGcGmcT8K4JuQqC47g+WgV/+Ye2o7xWRgyJyv4gMd6a+GDg+6HlT6rXfQETuFpH9IrK/ubmZ1tZWmpubiUajtLW1UV9fT1dXF9XV1SQSCSKR5GyoA+uMRiIREokE1dXVdHV1UV9fT1tbG4sWLWKgvIaGBmKxGDU1NcTj8VdXVBkoY+BnVVUVPT091NbW0tHRQWNjIy0tLbS0tNDY2EhHRwe1tbX09PRQVVU1bBmVlZXE43FqamqIxWI0NDSM6NTf3893f7aP+3ZVUfbpJ/jo9yIcONbKXdtX8ZV3FvPDu7Zw7eIE+X2dRKPRcTmVlZUF4jSe/TRep/Hsp40bN+ac03j207x583LOaTz7aeBoZC45jXc/rVu3LuecxrOfZs6cmTGnkQjk0LeI/BxYPMxbnwT2Aa0kV+P6O2CJqv7ekM+/B7hBVe9KPX8/cKWqfmykejN56Lu8vJwtW7ZkpCwvaDzTya4DTTx4IMqxM51MLcznpksXs7OshKvXzCc/A1N5hj0DrzF/83fZHyyDTPqPdOg7dOeoByMiK4FHVPXSIa9fDXxKVW9IPb8PYLTlNTPZUYeRju4+Hj2YvKXqhYaziMAb1sxn5+YSbrx0MdMn20X+hmEYYSSrzlGLyJJBT28FXhpmsxeBUhFZJSKTgNuBh/1o3wADh1WCJt6f4OmaFu79XoStf/9zPrGrijMXevjzGy7h2b+4nu/etY3btpR40kmHJYOgMH/zdx3XM/DLP3QjahH5L+AKkoe+G4D/parNIrIU+Kaq3pza7mbgX4F84H5V/cxoZWdqRP1sXSt7a0+zdeU8Li+Zk3Z54+VgUzu/fOU0Zzt72XfkLK2xHuZOK+Sdm5ays6yEy0tmI+L9KlV2xaf5m7+7/mAZ+HXVd+g6ai/JREddfqyN3/nac8QT4cjtqlXzuHP7Kt50yUImFfj7D6a6upoNGzb4WmeYMH/zd9kfLINM+o/UUdtJy3Gy78gZEqk/bgR484ZFvHHdAt/q/+Xh0zxVfQoF8lPLSb5t43DX5XnPqlWrAqk3LJi/+buO6xn45W8d9TjZtno+kwry6I0nmFSQx0feuIYtK/yb63bDklnsrT1NXzxBYUEe21bP963uoZw4cYI1a9YEVn/QmL/5u+wPloFf/tZRj5MtK+by3bu28fShJq7bWOJrJz24/n1HzrBt9Xzf6x/MvHnzAqs7DJi/+buO6xn45W8d9QTYsmIuiws6KS4OppPcsmJuoB30AJ2dnU6vnGP+5u+yP1gGfvm7e7lemrh8peMArmdg/ubvOq5n4Je/2ymnQWFhYdBNCBzXMzB/83cd1zPwy9+p27NE5DRwLEPFFZGc6tRlXM/A/M3fZX+wDDLpv0JVh72FyKmOOpOIyP6L3fPmCq5nYP7m77I/WAZ++duhb8MwDMMIMdZRG4ZhGEaIsY564nw96AaEANczMH+3cd0fLANf/O0ctWEYhmGEGBtRG4ZhGEaIsY7aMAzDMEKMddSGYRiGEWKsozYMwzCMEGMdtWEYhmGEGOuoDcMwDCPEWEdtGIZhGCHGOmrDMAzDCDHWURuGYRhGiLGO2jAMwzBCjHXUhmEYhhFirKM2DMMwjBBjHbVhGIZhhBjrqA3DMAwjxFhHbRiGYRghxjpqwzAMwwgx1lEbhmEYRoixjtowDMMwQox11IZhGIYRYgqCboCfFBUV6cqVKzNSVm9vL5MmTcpIWdmK6xmYv/m77A+WQSb9y8vLW1V1wXDvOdVRr1y5kv3792ekrFgsxowZMzJSVrbiegbmb/4u+4NlkEl/ETl2sffs0PcEaW1tDboJgeN6BuZv/q7jegZ++VtHPUFc/ityANczMH/zdx3XM/DL3zrqCdLX1xd0EwLH9QzM3/xdx/UM/PK3jnqCJBKJoJsQOK5nYP7m7zquZ+CXv3XUE2TatGlBNyFwXM/A/M3fdVzPwC9/66gnyNmzZ4NuQuC4noH5m7/ruJ6BX/7WUU+QpUuXBt2EwHE9A/M3f9dxPQO//K2jniBHjx4NugmB43oG5m/+ruN6Bn75i6r6UlEY2Lp1q2ZqwpNEIkFentt/57iegfmbv8v+YBlk0l9EylV163DvuZtwmlRUVATdhMBxPQPzrwi6CYHiuj9YBn7524jaMAzDMALGRtQeUF5eHnQTAsf1DMzf/F3H9Qz88g90RC0iNwJfAPKBb6rq54a8L6n3bwY6gQ+pamTQ+/nAfiCqqm8frT4bURuGYRhhJJQj6lQn+2XgJmADcIeIbBiy2U1AaepxN/CVIe//EfCyx00dlkgkMvpGOY7rGZi/+buO6xn45R/koe8rgTpVPaKqvcAPgFuGbHML8B1Nsg+YIyJLAESkBPgt4Jt+NnqAK664IohqQ4XrGZj/FUE3IVBc9wfLwC//IDvqYuD4oOdNqdfGus2/Ah8HAplstqamJohqQ4XrGZi/+buO6xn45R9kRy3DvDb0hPmw24jI24EWVR31TL6I3C0i+0Vkf3NzM62trTQ3NxONRmlra6O+vp6uri6qq6tJJBKvHsoYuEggEomQSCSorq6mq6uL+vp62tramDp1KgPlNTQ0EIvFqKmpIR6PU1lZ+ZoyBn5WVVXR09NDbW0tHR0dNDY20tLSQktLC42NjXR0dFBbW0tPTw9VVVXDllFZWUk8HqempoZYLEZDQ0PGnKLR6LicVq1alXNO49lPxcXFOec0nv1UWFiYc07j2U+xWCznnMa7nxYuXJhzTuPZT0DGnEYisIvJRORq4FOqekPq+X0AqvrZQdt8DXhGVb+fev4K8CbgD4H3A3FgCjAL2KWqvztSnZm8mKy+vp41a9ZkpKxsxfUMzN/8XfYHyyCT/qG8mAx4ESgVkVUiMgm4HXh4yDYPAx+QJNuAc6rarKr3qWqJqq5Mfe4Xo3XSmWbevHl+VhdKXM/A/M3fdVzPwC//wDpqVY0D9wJPkLxy+4eqekhE7hGRe1KbPQocAeqAbwB/EEhjh6GzszPoJgSO6xmYv/m7jusZ+OVf4EstF0FVHyXZGQ9+7auDflfgo6OU8QzwjAfNGxGX57cdwPUMzN/8Xcf1DPzydzvlNCgsLAy6CYHjegbmb/6u43oGfvlbRz1BRrtKzwVcz8D8zd91XM/AL3/rqCdIUVFR0E0IHNczMH/zdx3XM/DL3zrqCdLU1BR0EwLH9QzM3/xdx/UM/PK3ZS4nSDwep6Ag0GvxAsf1DMzf/F32B8sgk/5hvY86qzl06FDQTQgc1zMwf/N3Hdcz8MvfRtSGYRiGETA2ovYA1xdMB8vA/M3fdVzPwC9/G1EbhmEYRsDYiNoDXP9LEiwD8zd/13E9AxtRe4CNqA3DMIwwYiNqDxhYY9RlXM/A/M3fdVzPwC9/G1FPkJ6eHiZPnpyRsrIV1zMwf/N32R8sg0z624jaAxobG4NuQuC4noH5m7/ruJ6BX/7WUU+QRYsWBd2EwHE9A/M3f9dxPQO//APtqEXkRhF5RUTqROQTw7wvIvLF1PsHRaQs9foyEXlaRF4WkUMi8kd+t729vd3vKkOH6xmYf3vQTQgU1/3BMvDL/6KTlIpIxyifFaBZVddNpGIRyQe+DLwVaAJeFJGHVbV60GY3AaWpx1XAV1I/48D/VtWIiMwEykXkySGf9ZQpU6b4VVVocT0D8zd/13E9A7/8RxpR16vqrBEeM4ELadR9JVCnqkdUtRf4AXDLkG1uAb6jSfYBc0Rkiao2q2oEQFXPAy8DxWm0xTAMwzBCyUgd9W1j+PxYtrkYxcDxQc+b+M3OdtRtRGQlsBl4frhKRORuEdkvIvubm5tpbW2lubmZaDRKW1sb9fX1dHV1UV1dTSKRIBKJAL++kT0SiZBIJKiurqarq4v6+nra2tpobm5moLyGhgZisRg1NTXE43EqKytfU8bAz6qqKnp6eqitraWjo4PGxkZaWlpoaWmhsbGRjo4Oamtr6enpefWy/6FlVFZWEo/HqampIRaL0dDQkDGnaDQ6Lqfu7u6ccxrPfjp//nzOOY1nPzU1NeWc03j2U01NTc45jXc/tbe355zTePbTsWPHMuY0EoHdniUi7wFuUNW7Us/fD1ypqh8btM1Pgc+q6t7U86eAj6tqeer5DOCXwGdUdddodWby9qyOjg5mzZqVkbKyFdczMH/zd9kfLINM+k/o9iwROS8iHRd7ZKBdTcCyQc9LgBNj3UZECoEHgO+OpZPONKdOnfK7ytDhegbmb/6u43oGfvlf9GKy1DloROTTwEngv0heQPY+YGYG6n4RKBWRVUAUuB1475BtHgbuFZEfkLyI7JyqNouIAP8BvKyqn89AW8bN8uXLg6g2VLiegfmbv+u4noFf/mO5PesGVf13VT2vqh2q+hXSOzcNgKrGgXuBJ0heDPZDVT0kIveIyD2pzR4FjgB1wDeAP0i9fg3wfuB6EalIPW5Ot03j4fDhw35WF0pcz8D8zd91XM/AL/9Rz1GLyK9I3kb1A0CBO4CPquobvG9eZrFFOQzDMIwwku4Uou8Ffhs4lXq8h988RO0cri/vBpaB+Zu/67iegS1z6QE2ojYMwzDCSFojahGZIiIfFZF/F5H7Bx6Zb2Z24fpfkmAZmL/5u47rGYRmRC0iPwJqSB7u/jTJq75fVlXf59dOFxtRG4ZhGGEk3XPUa1X1/wAXVPXbwG8Bl2WygdnIwIw1LuN6BuZv/q7jegZ++Y9lRP2Cql4pIrtJ3h51EnhBVVf70cBMkskRdTwep6DgorehO4HrGZi/+bvsD5ZBJv3THVF/XUTmAn9FcgKSauAfM9KyLKauri7oJgSO6xmYv/m7jusZ+OU/4p8CIpIHdKhqG7AbyLpRtFeUlJQE3YTAcT0D8zd/13E9A7/8RxxRq2qC5OxhxhBaW1uDbkLguJ6B+Zu/67iegV/+Yzn0/aSI/JmILBOReQMPz1sWcmbMmBF0EwLH9QzM3/xdx/UM/PIfy1nw30v9/Oig1xTHD4P39fUF3YTAcT0D8zd/13E9A7/8R+2oVXWVHw3JNhKJRNBNCBzXMzB/83cd1zPwy3+k9ajLRvvwWLbJVaZNmxZ0EwLH9QzM3/xdx/UM/PIf6Rz1f4rI3MHnpYc+SK4J7SRnz54NugmB43oG5m/+ruN6Bn75j3ToezZQDsgI25zObHOyh6VLlwbdhMBxPQPzN3/XcT0Dv/wvOqJW1ZWqulpVV43wuDKdykXkRhF5RUTqROQTw7wvIvLF1PsHBx9qH+2zXnP06FG/qwwdrmdg/ubvOq5n4Jf/WG7P8gQRyQe+DNwEbADuEJENQza7CShNPe4GvjKOz3pG+bE2fnGykPJjbX5V+Rv1f/npusDqH2D9+vWB1h805m/+rhNkBkH/P+hnPxDkJK1XAnWqegRARH4A3EJyitIBbgG+o8kJyfeJyBwRWQKsHMNnPaH8WBu//bXn6E8oeXKY9YtnMnNKodfVvsr57j5qTp4noZAn+F7/YGKxmNP3UZq/+bvsD8FlEPT/g4Prn1JYx3fv2saWFXM9qy+wETVQDBwf9Lwp9dpYthnLZwEQkbtFZL+I7G9ubqa1tZXm5mai0ShtbW3U19fT1dVFdXU1iUSCSCQC/Hqd0UgkQiKRoLq6mq6uLh7dX0t/IrmQSUKh/UIP3d3d9Pf309nZiapy4UIMgFjs/Gt+XrhwAdUEXV1d9Pf309PTQ19fH319ffT09NDf309XVxeqCS5cuDBsGWc6OklVT0LhbKybvr4+ent76e3tIR6P093dRSKRoLOzM/XZoe1JPu/s7CSRSNDd3UU8Hqe3t4fe3l76+vrG5DRjxoyMOF24EENV6ezspL+/n+7u4JzGs5+mT5+Wc07j2U8FBQU55zSe/ZScTiK3nMa7n6ZOnRqI09lY92v+H2zv7PX1uzf4/+G+eIInIvW0tLTQ0tJCY2MjHR0d1NbW0tPTQ1VVFfDrPmXgZ2VlJfF4nJqamkHfqeEZdUQtIkJyDerVqvppEVkOLFbVF0b77GhFD/Pa0KW8LrbNWD6bfFH168DXIbl6VlFR0Wvenzs3+VfQhg3JI+dlZcnT4Fu2bHnN84H3b95ayncrztDbl2BSYR5fet9WT/+SGkr5sTbe98199MUTFBbk8eXffb2v9b+mLeXlbNlydSB1h4Gk/zVBNyMwkv5bgm5GYLjuDwMZbPe/3iH/D37pvVsC+X+4ty9Z/w1la1i48LX1z5o1C4DLLkuuCj3wXRn4uWnTJmBspw/GsszlV4AEcL2qvi61ktbPVPX14/AartyrgU+p6g2p5/cBqOpnB23zNeAZVf1+6vkrwJtIHvoe8bPDkallLsuPtbHvyBm2rZ4fSCcZdP2GYRhBE/T/g5muP91lLq9S1Y8C3QCplbQmpd0qeBEoFZFVIjIJuJ3kMpqDeRj4QOrq723AOVVtHuNnPWPLirlcPbsjsE5yy4q5fPS6tYF30gOnCVzF/M3fdYLMIOj/B/3sB8ZyMVlf6iprBRCRBSRH2GmhqnERuRd4AsgH7lfVQyJyT+r9rwKPAjcDdUAn8OGRPptum8bDFVdc4Wd1ocT1DMz/iqCbECiu+4Nl4Jf/WEbUXwQeBBaKyGeAvcA/ZKJyVX1UVdep6hpV/Uzqta+mOmk0yUdT71+mqvtH+qyf1NTU+F1l6HA9A/M3f9dxPQO//Ec9Rw0gIuuBN5O8iOspVX3Z64Z5QabOUQN0dXUxderUjJSVrbiegfmbv8v+YBlk0j+tc9QisgY4qqpfBl4C3ioiczLSsizmxIkTQTchcFzPwPzN33Vcz8Av/7Ec+n4A6BeRtcA3gVXA9zxtVRYwb968oJsQOK5nYP7m7zquZ+CX/1g66oSqxoGdwBdU9U+AJd42K/wM3FTvMq5nYP7m7zquZ+CX/1g66j4RuQP4APBI6rVg5qwMEXl5QU7qFg5cz8D8zd91XM/AL/+x1PJh4GrgM6p6VERWAf+ft80KP4WFzv+t4nwG5m/+ruN6Bn75j9pRq2q1qv7hwOxgqnpUVT/nfdPCzWhzs7qA6xmYv/m7jusZ+OU/lrm+S4HPklxOcsrA66q62sN2hZ6hc4a7iOsZmL/5u47rGfjlP5ZD3/9Jch3oOHAd8B3gv7xsVDbQ1NQUdBMCx/UMzN/8Xcf1DPzyH8uiHOWqukVEqlT1stRre1R1hy8tzCCZnPAkHo9TUBDkct7B43oG5m/+LvuDZZBJ/3QX5egWkTygVkTuFZFbgYUZaVkWc+iQr1OLhxLXMzB/83cd1zPwy38sI+rXAy8Dc4C/A2YD/6Sq+zxvXYbJ5IjaMAzDMDJFWiNqVX1RVWOq2qSqH1bVndnYSWea8vLyoJsQOK5nYP7m7zquZ+CX/1hG1OuAPwdWMOgqcVW93tumZR4bURuGYRhhJN1z1D8CIsBfkeywBx7pNGieiDwpIrWpn8OuvC0iN4rIKyJSJyKfGPT6P4tIjYgcFJEHg1gkxPW/JMEyMH/zdx3XMwjTiLpcVbdktFKRfwLOqurnUh3wXFX9iyHb5AOHgbcCTcCLwB2qWi0ibwN+oapxEflHgKGfHw4bURuGYRhhZEIj6tSodx7wExH5AxFZMvBa6vV0uAX4dur3bwPvGmabK4E6VT2iqr3AD1KfQ1V/llooBGAfUJJme8ZNVVWV31WGDtczMH/zdx3XM/DLf6RD3+XAfuCDJA91/yr12sDr6bBIVZsBUj+Hu92rGDg+6HlT6rWh/B7w2MUqEpG7RWS/iOxvbm6mtbWV5uZmotEobW1t1NfX09XVRXV1NYlEgkgkAvz6kEYkEiGRSFBdXU1XVxf19fW0tbUxc+ZMBspraGggFotRU1NDPB6nsrLyNWUM/KyqqqKnp4fa2lo6OjpobGykpaWFlpYWGhsb6ejooLa2lp6enle/AEPLqKysJB6PU1NTQywWo6GhIWNO0Wh0XE7r1q3LOafx7KeVK1fmnNN49tPUqVNzzmk8+6m7uzvnnMa7n4qLi3POaTz7qaCgIGNOIzHqoe+JIiI/BxYP89YngW+r6pxB27ap6mvOU4vIe4AbVPWu1PP3A1eq6scGbfNJYCuwU8cgkslD37W1tZSWlmakrGzF9QzM3/xd9gfLIJP+Ix36Hstc31OAPwC2AwrsAb6qqt0jfU5V3zJCmadEZImqNovIEqBlmM2agGWDnpcAJwaV8UHg7cCbx9JJZ5pFixb5XWXocD0D8zd/13E9A7/8x3LV93eAjcCXgH8juThHunN9P0zykDqpnz8eZpsXgVIRWSUik4DbU59DRG4E/gJ4p6oGsnJ5e3t7ENWGCtczMP/2oJsQKK77g2Xgl/9YJim9RFU3DXr+tIhUplnv54AfisidQCPwHgARWQp8U1VvTl3RfS/wBJAP3K+qA/O1/RswGXhSRAD2qeo9abZpXEyZMmX0jXIc1zMwf/N3Hdcz8Mt/LB31ARHZNjAbmYhcBTybTqWqegZ48zCvnwBuHvT8UeDRYbZbm079hmEYhpEtjKWjvgr4gIg0pp4vB14WkSpAVfVyz1oXYgau+HQZ1zMwf/N3Hdcz8Mt/LB31jZ63IguZM2dO0E0IHNczMP85QTchUFz3B8vAL/+xLMpxbKSHH40MI6dOnQq6CYHjegbmb/6u43oGfvmP5apvYxiWL18edBMCx/UMzN/8Xcf1DPzyt456ghw+fDjoJgSO6xmYv/m7jusZ+OXv2cxkYcQW5TAMwzDCSLrLXBrD4PrybmAZmL/5u47rGYRmmctcwkbUhmEYRhixEbUHuP6XJFgG5m/+ruN6Bjai9gAbURuGYRhhxEbUHjCwTqnLuJ6B+Zu/67iegV/+NqKeIPF4nIKCsUzslru4noH5m7/L/mAZZNLfRtQeUFdXF3QTAsf1DMzf/F3H9Qz88reOeoKUlJQE3YTAcT0D8zd/13E9A7/8raOeIK2trUE3IXBcz8D8zd91XM/AL/9AOmoRmSciT4pIbern3Itsd6OIvCIidSLyiWHe/zMRUREp8r7Vr2XGjBl+Vxk6XM/A/M3fdVzPwC//oEbUnwCeUtVS4KnU89cgIvnAl4GbgA3AHSKyYdD7y4C3Ao1DP+sHfX19QVQbKlzPwPzN33Vcz8Av/6A66luAb6d+/zbwrmG2uRKoU9UjqtoL/CD1uQH+Bfg4EMhl64lEIohqQ4XrGZi/+buO6xn45R9UR71IVZsBUj8XDrNNMXB80POm1GuIyDuBqKqOehObiNwtIvtFZH9zczOtra00NzcTjUZpa2ujvr6erq4uqqurSSQSRCIR4NczzkQiERKJBNXV1XR1dVFfX09bWxuxWIyB8hoaGojFYtTU1BCPx1+9t26gjIGfVVVV9PT0UFtbS0dHB42NjbS0tNDS0kJjYyMdHR3U1tbS09NDVVXVsGVUVlYSj8epqakhFovR0NCQMadoNDoup2nTpuWc03j2U0FBQc45jWc/nTt3LuecxrOfGhsbc85pvPtJRHLOaTz76cyZMxlzGgnP7qMWkZ8Di4d565PAt1V1zqBt21T1NeepReQ9wA2qelfq+ftJjrL/AngaeJuqnhORBmCrqo56Vj+T91HX19ezZs2ajJSVrbiegfmbv8v+YBlk0n+k+6g9u1NdVd8yQoNOicgSVW0WkSVAyzCbNQHLBj0vAU4Aa4BVQKWIDLweEZErVfVkxgRGYenSpX5VFVpcz8D8zd91XM/AL/+gDn0/DHww9fsHgR8Ps82LQKmIrBKRScDtwMOqWqWqC1V1paquJNmhl/nZSQMcPXrUz+pCiesZmL/5u47rGfjlH8gUoiIyH/ghsJzkVdvvUdWzIrIU+Kaq3pza7mbgX4F84H5V/cwwZTUQwKHvRCJBXp7bt6G7noH5m7/L/mAZZNI/dFOIquoZVX2zqpamfp5NvX5ioJNOPX9UVdep6prhOunUNivH0klnmoqKCr+rDB2uZ2D+FUE3IVBc9wfLwC9/W5TDMAzDMAImdCPqXMD1BdPBMjB/83cd1zPwy99G1IZhGIYRMDai9oCBm+ldxvUMzN/8Xcf1DPzytxH1BHH9akewDMzf/F32B8sgp6/6zgVqamqCbkLguJ6B+Zu/67iegV/+1lFPkFWrVgXdhMBxPQPzN3/XcT0Dv/yto54gJ06cCLoJgeN6BuZv/q7jegZ++VtHPUHmzZsXdBMCx/UMzN/8Xcf1DPzyt456gnR2dgbdhMBxPQPzN3/XcT0Dv/yto54gLl/pOIDrGZi/+buO6xn45e92ymlQWFgYdBMCx/UMzN/8Xcf1DPzyd+o+ahE5DRzLUHFFgO+LgYQM1zMwf/N32R8sg0z6r1DVBcO94VRHnUlEZP/Fbk53BdczMH/zd9kfLAO//O3Qt2EYhmGEGOuoDcMwDCPEWEc9cb4edANCgOsZmL/buO4PloEv/naO2jAMwzBCjI2oDcMwDCPEWEdtGIZhGCHGOupREJEbReQVEakTkU8M876IyBdT7x8UkbIg2ukVY/B/k4icE5GK1OOvg2inV4jI/SLSIiIvXeT9XN//o/nn+v5fJiJPi8jLInJIRP5omG1y9jswRv9c/w5MEZEXRKQylcHfDrONt98BVbXHRR5APlAPrAYmAZXAhiHb3Aw8BgiwDXg+6Hb77P8m4JGg2+phBtcCZcBLF3k/Z/f/GP1zff8vAcpSv88EDjv2f8BY/HP9OyDAjNTvhcDzwDY/vwM2oh6ZK4E6VT2iqr3AD4BbhmxzC/AdTbIPmCMiS/xuqEeMxT+nUdXdwNkRNsnl/T8W/5xGVZtVNZL6/TzwMlA8ZLOc/Q6M0T+nSe3XWOppYeox9CpsT78D1lGPTDFwfNDzJn7zSzqWbbKVsbpdnTos9JiIbPSnaaEhl/f/WHFi/4vISmAzyRHVYJz4DozgDzn+HRCRfBGpAFqAJ1XV1+9AQaYKylFkmNeG/iU1lm2ylbG4RUjOURsTkZuBh4BSrxsWInJ5/48FJ/a/iMwAHgD+WFU7hr49zEdy6jswin/OfwdUtR+4QkTmAA+KyKWqOvi6DU+/AzaiHpkmYNmg5yXAiQlsk62M6qaqHQOHhVT1UaBQRIr8a2Lg5PL+HxUX9r+IFJLspL6rqruG2SSnvwOj+bvwHRhAVduBZ4Abh7zl6XfAOuqReREoFZFVIjIJuB14eMg2DwMfSF31tw04p6rNfjfUI0b1F5HFIiKp368k+Z0643tLgyOX9/+o5Pr+T7n9B/Cyqn7+Ipvl7HdgLP4OfAcWpEbSiMhU4C1AzZDNPP0O2KHvEVDVuIjcCzxB8gro+1X1kIjck3r/q8CjJK/4qwM6gQ8H1d5MM0b/dwMfEZE40AXcrqnLIHMBEfk+yatai0SkCfgbkheT5Pz+hzH55/T+B64B3g9Upc5RAvwlsByc+A6MxT/XvwNLgG+LSD7JP0J+qKqP+NkP2BSihmEYhhFi7NC3YRiGYYQY66gNwzAMI8RYR20YhmEYIcY6asMwDMMIMdZRG4ZhGMZFkFEWpplAectF5GephU6qUzO+jYh11IZhGIZxcb7Fb05wkg7fAf5ZVV9Hcj2FltE+YB21YTiEiMwRkT8Y9HypiPyPB/V8SkSiIvLpEbZZk1oWMXaxbQwjaIZbmCb13X1cRMpFZI+IrB9LWSKyAShQ1SdTZcdUtXO0z1lHbRhuMQd4taNW1ROq+m6P6voXVb3o2sSqWq+qV3hUt2F4ydeBj6nqFuDPgH8f4+fWAe0isktEDojIP6cmUhkRm5nMMNzic8Ca1CxTTwJfJrmW8KUi8iHgXSRnobsU+H8k1yF/P9AD3KyqZ0VkTepzC0jOwvT7qjp0SsXXICJvBL6QeqrAtallEw0jq0gtUPIG4EepmVMBJqfe2wkMdxQpqqo3kOxzd5BchawR+G/gQySnab0o1lEbhlt8Arh0YCQ7zIUsl5L8T2QKyekQ/0JVN4vIvwAfAP6V5GjiHlWtFZGrSI4mrh+l3j8DPqqqz6b+o+vOjI5h+E4e0D7c0aDUoiXDLdwyQBNwQFWPAIjIQ8A2Rumo7dC3YRiDeVpVz6vqaeAc8JPU61XAyiGjiQrgayTnQh6NZ4HPi8gfAnNUNZ75phuG96SW+TwqIu+B5MIlIrJpjB9/EZgrIgtSz68Hqkf7kHXUhmEMpmfQ74lBzxMkj8C9OpoY9HjdaIWq6ueAu4CpwL6xXnxjGEGTWpjmOeASEWkSkTuB9wF3ikglcAi4ZSxlpda1/jPgKRGpIrmO9TdG+5wd+jYMtzgPzJzoh1W1Q0SOish7VPVHqeUNL1fVypE+JyJrVLWK5CpMVwPr+c2lAg0jdKjqHRd5a0K3bKWu+L58PJ+xEbVhOISqngGeFZGXROSfJ1jMREYTf5yqs5LkUoiPTbBuw3AOW+bSMIyMIyKfAmKq+n/HsG1MVWd43yrDyE5sRG0YhhfEgLvHMuEJcMq3VhlGFmIjasMwDMMIMTaiNgzDMIwQYx21YRiGYYQY66gNwzAMI8RYR20YhmEYIeb/B9Yk8l13kD3CAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "register = AtomArrangement()\n", + "separation = 6.7e-6 # in meters \n", + "\n", + "for k in range(3):\n", + " for l in range(3):\n", + " register.add((k * separation, l * separation))\n", + "\n", + "\n", + "time_points = [0, 2.5e-7, 2.75e-6, 3e-6]\n", + "amplitude_min = 0 # rad / s\n", + "amplitude_max = 1.57e7 # rad / s\n", + "\n", + "detuning_min = -5.5e7 # rad / s\n", + "detuning_max = 5.5e7 # rad / s\n", + "\n", + "amplitude_values = [amplitude_min, amplitude_max, amplitude_max, amplitude_min] # piecewise linear\n", + "detuning_values = [detuning_min, detuning_min, detuning_max, detuning_max] # piecewise linear\n", + "phase_values = [0, 0, 0, 0] # piecewise constant\n", + "\n", + "\n", + "drive = get_drive(time_points, amplitude_values, detuning_values, phase_values) \n", + " \n", + " \n", + "show_register(register)\n", + "show_global_drive(drive)" + ] + }, + { + "cell_type": "markdown", + "id": "b90c4ceb", + "metadata": {}, + "source": [ + "The AHS program can be constructed by assembling the atomic register with the driving field." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "f1878620", + "metadata": {}, + "outputs": [], + "source": [ + "ahs_program = AnalogHamiltonianSimulation(\n", + " register=register, \n", + " hamiltonian=drive\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "a9ca31a1", + "metadata": {}, + "source": [ + "We can then run the program on the local simulator." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "a70c804e", + "metadata": {}, + "outputs": [], + "source": [ + "device = LocalSimulator(\"braket_ahs\")" + ] + }, + { + "cell_type": "markdown", + "id": "d760b11b", + "metadata": {}, + "source": [ + "Below we explicitly specify `shots=1000` and `steps=100` respectively." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "7a3ebaec", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The elapsed time = 7.236017227172852 seconds\n" + ] + } + ], + "source": [ + "start_time = time.time()\n", + "result_full = device.run(ahs_program, shots=1000, steps=100).result()\n", + "print(f\"The elapsed time = {time.time()-start_time} seconds\")" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "dac877bf", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAEHCAYAAABLKzaMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA4OElEQVR4nO3deVyU1f4H8M8zGyAqJkICIwrigiwiSy6ZmoWaKRaa4ZIbSpr9LG/aZt2ulbncymvavVzKTFOhrmaQC0XikuaGay4pISTgBgoi2zDL+f1BTI7M8gzM8szwffeaV8485znzHWC+c+Y8Z+EYYwyEEEKcksjeARBCCLEeSvKEEOLEKMkTQogToyRPCCFOjJI8IYQ4MUryhBDixCjJE0KIBc2YMQPe3t4IDQ3Ve5wxhnnz5iEoKAjh4eE4ceKEVeOxWpI39kI//PBDcByH0tJSaz09IYTYxbRp05CZmWnw+K5du5Cbm4vc3FykpKRgzpw5Vo3Hakne0AstLCxEVlYW/P39rfXUhBBiN4MGDUL79u0NHk9PT8eUKVPAcRz69euH8vJyXLt2zWrxWC3JG3qh8+fPx4oVK8BxnLWemhBCBKu4uBidOnXS3pfL5SguLrba80msVrMeGRkZ8PPzQ+/evY2W69ChA7p06WKyvlqFEjUKJdQahqrKSni2b4fWrVwsFG3zlJSUwMvLy95haAktHsC8mO5de8NazQOh/YyEFg9gvZg0jOFulQIqtRqMARKxCO5uLpBKjLdDS0pKUFVV1eyuX3HbzmCqGl5lgwO84Obmpr2flJSEpKQk3s+lbyUZazZ6bZbkq6ursWTJEvz4448my7q7u+vcv/eHqKhT4bu9Z/HRV3tx9UopxGIR1GoNFLU1gLs7al1leGniI5gyOhqeHu56areN6Oho5OTk2O357ye0eADjMTHGoFQDKo3+czkAUjEgFlnuDSK0n5HQ4gEsH9OlP0rw6dcHsHHncYjbiaBRMzAwiMUilCrVeLxvN7w8aTAe7t1F5/eckpKClJQUlJaWokOHDs2Og6lq4dIzgVdZN9EvzfoZyOVyFBYWau8XFRXB19e3yfWZYrMkn5eXh/z8fG0rvqioCJGRkTh69Cg6duyoU9bLy0vvD/Fy0S0Me+G/uFNZg8rqOt2DnASV1QpUVivw3udZWPL5T9j0wSQMH9DTaq+JWIdaw6BQGS/DANSpAU4NuEgZRNT951AYY3g35Uf8a/N+qNUaKA18mu888Bv25uRhQHgXpC1/Dq1cZQD+avhFR0dbJiAOgEhsmbpMiIuLw5o1a5CQkIAjR47Aw8MDPj4+Vns+myX5sLAw3Lx5U3u/S5cuyMnJ4f0p/PuVUgycsRp3qxTQmFg4s6ZWCQCY8MZGrFucgDFD9A9lIsKjUjPUqfmXZwBqlYArJXqHwRjDvBXbsHnXCdSa+DRnjKGqpg4/n7yMx5L+g+yUF+DmKrVOYHz/fkys2zthwgTs3bsXpaWlkMvlWLx4MZTK+pw0e/ZsjBw5Ejt37kRQUBBatWqFdevWNTNw46yW5PW90MTExCbVdbdKgWEv/JdXgr9XjUKJ6e+kITtlDiJ6+DXpuZvKnD46WxBaPEDjmDQa8xL8vRR/JvrmdN0I7WcktHgAy8T07/8dxOZdJ1D9Z2OMj9o6FS7+cRNT39mMb5ZP1YknJSWl2TEBHMDxHIdiIgWlpqYafyaOw6effsozrubjhLie/P39fsn/O4hFn+4y64+iAccBw/v3xLaPp1syRGIFtUoGTTP+GqUiQCqh1ryQ1SlV6DTiPVRU1TbpfFcXCQ59OQ89Ax7UPmaJ6wQi945wCX2OV9kQ9R7BXSsxRvAzXhlj+HjTfr0JXlN1A4pzm6A4vxl1F9KgqS3Xcz6wJ+d3XCutsEG0pKk0zHiC9/RohRGxj2JE7KNYv26t3jIqjf6RC0Q40veeg4YZuJoOQFmQBcXZr6A4uwHq0vONjqtUGqz5+qDlA+NQ35Lnc3Mwgo/44Kl83L5TrfcYJ3WHrOc4uPSaCLFPDFRFB/SXA/D5tsNWjJI0l8pEN42vrx8ys/YgM2sPpk7X3+3HgGZ9EyDW99FXexsPmviTproErLoULqHPQRb8rN73s0qtQWrmCVTV6K+j6bj6r/18bg5G8En+6LlCKJT6L85wstbgxH+Oi+fE4Ax8ytbWqbA3J89aIRILMJWcb9y4juGPD8GE8WPxR0FBk+sh9nUu77rBY5ysNSASg2nUgLoOkLjqLScWi5B7pcTywYnE/G4OxqaToZqi7E41VIYGS/+JqeugKvwZ0sAnDJYpv8tvogOxD1O9LOcv5aNDhw7I+vEHzHl+Jnb+8FOT6iH2o6hTGR84IXYF5/oA6s58DqZWQhowXG8xjuNwp7JpffqGmXHh1cEI/lW5uUqNfkNiGjWUv2dA4tsPolaGh2O6ygT/edaymfgW3DDUNnbYcBRe+cNwNY73bbrFkEpERq+ZaO4UgNVVQtZ7Flx6J0JVtB9Mo+dbPANkUgu3qDlQd429+HRoCzcXmd5jjDEo87ZD9EA3iNt3M1qP/MF2VoiOWIqxt05lZSXU6vpO+19/PQNPI3MrHO8t2HKIRCK0ddffBdOAk7jWd7uKZIBGrfermVKlhk+HtpYPkC682seYIaHQaPR312huX4Km/DLUpeehOJ8KZYH+r/Ct3WSY+XRfa4ZJmslYw+y3C+cxsH8Mhj02GAvmz8MnnyYbLCsW/F90yzZpZBSkEv2/bJFHFzDGoDi3CXXnN0HcMQqcuPHEp0C5J7r4Gl7lsWk4p03ygu/DaO/RCqMG9cK32b9Cc99VNbFnD4g9e5isw91NhsceMt7SJ/YlMtIEj455CIeOmt5YQcxZd6En0nxzxz+ML747An0zXjiOg6zrSKPnt24lwyvPDbF8YBwAseNdVOXDIT6W5k8eDBdp0z6P3FykeGniIIhEDvFSWyyO42BiwUGTLN1NSywvUO6JmBB/iJv4lUvEiRA/NMzCUf2J+uTtJ7KnHPMnDUIrM9escJFJEBksx4sJA60UGbEkqdh4i94YiQgQNfVkYlPrFiegXWtXs/Olm4sU/1sxBS5WGUThvN01DhPxW7NiMfPpfrwTvZuLFH16+GHbR9MN9gESYeE4Di4S8xO9RESteEfi5+2Bn5Jnw9PDHRKeLXo3FynWvzcBg6K6Wi8wasnbF8dxWP7SKKx+7Wl06tgO7m4yvT/v1m4ytHV3wf8lDMSP/3kebdyFsYkI4ach0fPpumlYU14m4agv3sH0DHgQRze+jNGDQ+Aqk8DNpXHjTSoRwVUmQb+wzshKno3Rg0KsG5STtuQFf+H1fhOfiMKEEZE4eCofKzftx+lLV1FVUwdXmQSdOrbDiwkD8dSQUMia2IdP7I/jOMgkgJQxqDX1a9I0XHNvGM7c0LVDyd1x+XRoi80fTMatO1X4Mv0YvtqRg9sV1VCrGdq4u+CJh3ti7viBCPJv/qYgJjloK50Ph8yEHMdhYJ9ADOwTaO9QiBVxHAeJGKDeNufm6eGOV6YMwStThtg3EAdcsoAPh0zyhBBiWc67rAEleUIIAai7hhBCnFbDevJOiJI8IYRQdw0hhDg5uvBKCCFOjPrkCSHESXHO211jtVc1Y8YMeHt7IzQ0VPvYwoUL0bNnT4SHh+Ppp59GeXm5tZ6eEELMQ8samGfatGnIzMzUeSw2NhZnz57FmTNn0L17dyxdutRaT08IIWbhOI7XzdFYLckPGjQI7dvrLuw/bNgwSCT1PUT9+vVDUVGRtZ6eEEJ4q18uwzmTvN365L/44gs8++yzeo+VlJQgOjpaez8pKQlJSUm2Co0QInApKSlISUkBUJ8vmo3jwDnpUtV2SfJLliyBRCLBpEmT9B738vJCTk6OjaMihDiKext+9zYIm8MRW+l82DzJr1+/Htu3b8fu3bud9odKCHE8zpqPbJrkMzMzsXz5cuzbtw+tWrWy5VMTQohRzprkrXbhdcKECejfvz8uXrwIuVyOtWvX4sUXX8Tdu3cRGxuLiIgIzJ4921pPTwgh/HFm3ByM1VryqampjR5LTEy01tMRQkiTcXDMkTN80IxXQggBIBI554xXSvKEEALn7ZOnJE8IIQ7a384HJXlCCIHztuSdsxOKEELM0HDh1VLLGmRmZqJHjx4ICgrCsmXLGh2/c+cORo8ejd69eyMkJATr1q2z9EvSoiRPCCEAOBHH62aKWq3G3LlzsWvXLpw/fx6pqak4f/68TplPP/0UvXr1wunTp7F371688sorqKurs8rroiRPCCGc5RYoO3r0KIKCghAYGAiZTIaEhASkp6frPh3H4e7du2CMobKyEu3bt9cu3mhp1CdPCCHg3ydvagHF4uJidOrUSXtfLpfjyJEjOnW8+OKLiIuLg6+vL+7evYuvv/7aakM4KckTQgj4J3lTCygyxkzW/cMPPyAiIgLZ2dnIy8tDbGwsHnnkEbRt29a8oHmg7hpCSItnyQuvcrkchYWF2vtFRUXw9fXVKbNu3TrEx8eD4zgEBQUhICAAv/32m8VfF0BJnhBC6llo7ZqYmBjk5uYiPz8fdXV1SEtLQ1xcnE4Zf39/7N69GwBw48YNXLx4EYGBgRZ8MX+h7hpCCOEst6yBRCLBmjVrMHz4cKjVasyYMQMhISFITk4GAMyePRtvv/02pk2bhrCwMDDGsHz5cnTo0MEiz98oHqvUSgghDsaSk6FGjhyJkSNH6jx276q7vr6++PHHHy32fMZQkieEEICWNSCEEGfmrMsaUJInhLR45ixZ4GgoyRNCCKglTwghTo3PujSOiJI8IYSAWvKEEOK8OOdN8lab8Tpjxgx4e3sjNDRU+9jt27cRGxuLbt26ITY2FmVlZdZ6ekII4Y0DwHH8bo7Gakl+2rRpyMzM1Hls2bJleOyxx5Cbm4vHHntM72L6hBBie5bdNERIrJbkBw0ahPbt2+s8lp6ejqlTpwIApk6diu+++85aT08IIWYRiTheN0dj0z75GzduwMfHBwDg4+ODmzdv2vLpCSFEPwftiuFDkBdeTS3KTwhp2VJSUpCSkgKgPl80Fwc4ZCudD5sm+QcffBDXrl2Dj48Prl27Bm9vb73lTC3KTwhp2e5t+N3bIGwOZ23J23Q9+bi4OKxfvx4AsH79eowZM8aWT08IIQbRhVczTZgwAf3798fFixchl8uxdu1avP7668jKykK3bt2QlZWF119/3VpPTwgh/PEcPumAOd563TWpqal6H2/YDYUQQoSCA2e1jbTtTZAXXgkhxNYcsZXOByV5QgiB8y5rQEmeEEIctL+dD+fshCKEEDPUr10jzNE1Z8+ebdb5lOQJIQTCHV0ze/ZsPPTQQ/j3v/+N8vJys8+nJE8IIRDu2jUHDhzApk2bUFhYiOjoaEycOBFZWVm8z6c+eUIIEfh68t26dcP777+P6OhozJs3DydPngRjDB988AHi4+ONnksteUJIiyfk9eTPnDmD+fPnIzg4GNnZ2fj+++9x4cIFZGdnY/78+SbPp5Y8IYRAuEsWvPjii5g1axY++OADuLm5aR/39fXF+++/b/J8askTQgiE25KPj4/Hc889p5PgV61aBQB47rnnTJ5PSZ4QQjjhXnjdsGFDo8e+/PJL3udTdw0hpMVrGCcvJKmpqdi8eTPy8/MRFxenffzu3bvw9PTkXQ8leUIIgfCS/IABA+Dj44PS0lK88sor2sfbtGmD8PBw3vVQkieEEAhvWYPOnTujc+fOOHToULPqoSRPCCEQXkt+4MCBOHDgANq0aaMTG2MMHMehoqKCVz2U5AkhRIALlB04cABAfR98c9DoGkJIi1e/aYgwR9fk5eVBoVAAAPbu3YtPPvnErDVsKMkTQggAEcfxutna2LFjIRaL8fvvvyMxMRH5+fmYOHEi7/MpyRNCCCw7GSozMxM9evRAUFAQli1bprfM3r17ERERgZCQEAwePNhgXSKRCBKJBNu2bcPLL7+MlStX4tq1a7xfF/XJE0JaPM6CC5Sp1WrMnTsXWVlZkMvliImJQVxcHHr16qUtU15ejhdeeAGZmZnw9/fHzZs3DdYnlUqRmpqK9evX4/vvvwcAKJVK3vFQS54QQgCIOH43U44ePYqgoCAEBgZCJpMhISEB6enpOmU2b96M+Ph4+Pv7AwC8vb0N1rdu3TocOnQIixYtQkBAAPLz8zF58mT+r4t3SQtauXIlQkJCEBoaigkTJqC2ttYeYRBCiJalLrwWFxejU6dO2vtyuRzFxcU6ZS5duoSysjIMGTIEUVFRepcuaNCrVy988sknmDBhAgAgICAAr7/+Ov/XxbukhRQXF+OTTz5BTk4Ozp49C7VajbS0NFuHQQghWhzqR9jw+a+kpATR0dHaW0pKik5djLHG9d/XFaRSqXD8+HHs2LEDP/zwA9577z1cunRJb2wHDx5EbGwsunfvjsDAQAQEBCAwMJD3a7NLn7xKpUJNTQ2kUimqq6vh6+trjzAIIUSL7+hILy8v5OTkGDwul8tRWFiovV9UVNQox8nlcnTo0AHu7u5wd3fHoEGDcPr0aXTv3r1RfYmJiVi5ciWioqIgFov5BXkPm7fk/fz8sGDBAvj7+8PHxwceHh4YNmyYThlTn5SEkJYtJSVFmx9KSkqaXyHPTbz5XJyNiYlBbm4u8vPzUVdXh7S0NJ0FxgBgzJgx+Pnnn6FSqVBdXY0jR44gODhYb30eHh544okn4O3tDU9PT+2NL5u35MvKypCeno78/Hy0a9cOzzzzDDZu3KhzIcHUJyUhpGVLSkpCUlISACA6OtoidVpqCLxEIsGaNWswfPhwqNVqzJgxAyEhIUhOTgZQvzF3cHAwRowYgfDwcIhEIsycOROhoaF663v00UexcOFCxMfHw8XFRft4ZGQkv3ia/5LM89NPPyEgIABeXl4A6hfE/+WXX8y6WkwIIZbEARad6DRy5EiMHDlS57HZs2fr3F+4cCEWLlxosq4jR44AgE7Dl+M4ZGdn84rF5kne398fhw8fRnV1Ndzc3LB7926LfRITQkhT2WPJAj727NnTrPMNJvnbt2+bPFkkEqFdu3ZmPWHfvn0xbtw4REZGQiKRoE+fPtqvXYQQYg/22tqPjxs3buDNN9/E1atXsWvXLpw/fx6HDh1CYmIir/MNJnlfX1/4+vrqHQ7UQK1W48qVK2YHvXjxYixevNjs8wghxFrssS4NH9OmTcP06dOxZMkSAED37t3x7LPPNj/JBwcH4+TJk0ZP7tOnjxmhEkKIcAkzxQOlpaUYP348li5dCqD+wq45QykNJnk+u5E0d8cSQggRCqFtGtLA3d0dt27d0sZ3+PBheHh48D7fYJJ3dXXV/rusrAyFhYVQqVTaxyIjI3XKEEKIo6ofXWPvKPT7+OOPERcXh7y8PDz88MMoKSnBli1beJ9vcnTN22+/jS+//BJdu3bVfpKYM3yHEEIEj7PPhiB8REZGYt++fbh48SIYY+jRowekUinv800m+W+++QZ5eXmQyWTNCtTSGGNQM0CjARj+XHuCAyQi4X7tIua7XVGDrXvOIf9qOSqqFPBq1wphQQ9i1MM9IJOaP8WbCJOGMag1AGP17+d7V3201ftZiHnj1q1b2Lx5M3777TcA9ddKfX190b59e951mEzyoaGhKC8vN7oUpi1pGINKDag0+o8r1YCYY5CKhTvulZh26tI1fJz6CzIO/AYxJ0K14q/1s1u3kkEs4jBrTDTmxD8E3w5t7BgpaaqGhppKDWjuG8Sn/vP/HACJiEEitm4SFmJ3zYULFzB06FAMHz4cffr0AWMMx44dwwcffIDs7Gz07NmTVz0mk/wbb7yBPn36IDQ0VGdKbUZGRtOjbyK1hkGh4lGOAWoVIBUxSCUC+80Rk/6VdgjvfrEHCqUaGg3DX2/5epXVdQCA1d8cxn+35eDbZQkY2LuzHSIlTcVY/Xv5/uTeqBwApaa+UeciZVYd5ii0lvzbb7+NVatWYfz48TqPb926FYsWLcLWrVt51WMyyU+dOhWvvfYawsLCIBLZb48Rvgn+XkoNwFQMMkr0DuOfGw9g2Vc/o4bHL1uhVEOhVGPMws34/qNJGBDmb4MISXPxTfA65wCoVQJuUma1ZCy0LPHrr7/qvcA6duxYvPnmm7zrMZnkO3TogHnz5pkXnYU1/FE0hUoDiDUMYqF9FyONZB39HUs3/IwaBf+tzQCgWqHE06+l4tdNL8L7AXcrRUcsRamne4avWiXgaoVEz3EQXI5wdzf8t2zs2P1MJvmoqCi88cYbiIuLa9IKaJagVBs+FvfkCJw+dQIvvDgPr73xlsHzxbTRoeAtXrvXaILXVJei7vinkIVPg8hDt3umTqXG5xnH8ebUQdYOkzQDY8zg9bQLF85j/ry5AACFQoHfcy+h8Fqp7vmo/4AQWyEfC6275ubNm/j4448bPc4YM2t5ZZNJvmHW6+HDh7WP2XIIpbE/CgD4z38/R3b2T7haXGSwjIbVX7AV6rRlAvxWUIJz+YY3MwYA1ZV9EHl00XusVqHCp1uO4LXJAyGmT3TBUhlpsAUH90JmVv1iXFu3fIN9e/TnGGs12oSWHmbNmoW7d+/qPTZz5kze9ZhM8vpWQMvPz+f9BM2lNvG1zk8u51WPSg3I7LIPFuEjedsxqIx8mmsqisDJWoNxht/ddSo1fjz6O57o33h3HSIMxhps90rbvAnzX9G/DK+G1Tf+LNny5sAJrhH4zjvvWKQek2nv3Xff1bmvVquxYcMGmyV6I+ujmaWpfYDENk5cvAaV2nAGUF3ZD2mPp6C8/IPBMrUKFS4UlFKSFyjGGPi8DW/duoVLF39D/wEPGyxj8S4bAa9C2Vwmk/y9HfxKpRL79+9vNKTHmiyV5C1VD7GOimqFwWPqW5cgauMLTtrKaB0qtQZ3KmstHRqxsa3/+xpPjx1n8z5yofXJW4rJJP/KK6/o3H/11VcRExNjtYDuZ7Gfu3P+/pyGu6vhadqs6ho05QWoq/gKmqobUFaXQhb8DDjXdjrlxCIOrVsJa2Y2Md/XaZvx6X8+s+lzcgDELTXJ36+srAwdO3a0Rix6mfqxz50zC0cOHYJCocCJ48fx9ZZtessJbHQUuU8P/w44dek6NHq+ckn8BwP+gwEAdRe3QdIxslGCBwA3Fym6+Dxg7VBJE9W3lI1/pc6/fBkKhQI9DWxq3cAa72eh5gh9I2w8PDwQFRWFiIgIk+ebTPJhYWHarzGMMRQUFMDT01P7+JkzZ8yP2gxiEe6f8KiD7ye+hAZcCNrzT8cg4+ffUFVrfIy8rMfTBo8xMIx+uIelQyMWJBEZv/gaEBiIA4eOGa3DWuvZCDXJ5+TkICcnB6NHjwYA7NixAzExMUhOTsYzzzyDV1991ej5JpP89u3bLRNpE3EcB4nI+DBKk3VAuL9AUu+hXn7o6NkaecVlTTpfKhFh6sg+cHWhIVRCJhXzH2FjrA5L42y4EJq5bt26hRMnTqB169YA6nfWGzduHPbv34+oqKjmJ/nOne2/JoikmX8YUisvbkSaj+M4vDFlEOat3IlqE615fSRiEeaOfcgKkRFL4jgOYo6ZHBpt8HxYr8Em1IbglStXdFYBlkql+OOPP+Dm5qYzQdUQg0k+MjISJ06cMHoynzKWIOI4SMXM6MxXQ8Qimu3qKCYOD8eeE/nYtveCzqqTpri5SJD86mgE+vFffpXYj0xSvzxBU/K8i9R6DTahtgMnTpyIfv36YcyYMQCA77//HhMmTEBVVRV69epl8nyDSf7ChQsIDw83eCJjDHfu3GlCyEB5eTlmzpyJs2fPguM4fPHFF+jfv7/Rc6Ti+os25iR6sQiQUSveYXAch+RX4yDiOGzde95ki57jAFeZBKvmj8T4x8NsFCVpLo7j4CplZid6V4n1NtvmAEgEmCcYY5g2bRpGjhyJAwcOgDGG5ORkREdHAwA2bdpksg6DSb5hkXpjzNlM9l4vvfQSRowYgS1btqCurg7V1dW8zpOKOYg4ZnKBIw71XTRi2kDE4UgkIvz39TjE9g3Csg37kX+1DHVKNdT3/MJdZRIwxvBoVAAWTRuM6GA/O0ZMmqIh0SuN7A3RQCyqfz9be0aqEFMFx3F46qmncPz4cURFRTWpDoNJ3lp98RUVFdi/fz++/PJLAIBMJjNr1ymxiINY9NfmIRqmuzOUVESbhTg6juPwzNAQPDM0BKcuXcPnGSfwe9EtVNcq0a61K2J6+SExLoo2C3FwHMdBJgGkjEHz5+YhDH+9nyUi2zXUOE54yxo06NevH44dO9bk+Uk2H4pw+fJleHl5Yfr06Th9+jSioqKwatUqs5bOBOo/1WktGucX0d0HaxY8ae8wiBXVX4y1/7UzgeZ47NmzB8nJyejSpQvc3d216/bwHb5u8zSpUqlw4sQJrF69Gn379sVLL72EZcuW4b333tOWKSkp0fY5AUBSUhKSkpJsHSohRKBSUlKQkpICAGYtu2uMUDsAdu3a1azzTX52rlmzBmVlTRu7rI9cLodcLkffvn0BAOPGjWs0QsfLy0s7ASAnJ4cSPCFER1JSkjY/eHl5Nbs+Dg1dwaZvtta5c2cUFhYiOzsbnTt3RqtWraDR8B9TbjLJX79+HTExMRg/fjwyMzPBmrnSV8eOHdGpUydcvHgRALB7925ew4AIIcRquPqWPJ+brS1evBjLly/H0qVLAdQvFDl58mTe55tM8u+//z5yc3ORmJiIL7/8Et26dcObb76JvLy8Jge9evVqTJo0CeHh4Th16pRZ+xUSQog1cDz/s7Vt27YhIyNDe93S19fX4GYi+vDqk+c4Dh07dkTHjh0hkUhQVlaGcePGITY2FitWrDA76IiICOTk5Jh9HiGEWIOQlz6RyWTgOE47yqiqqsqs80225D/55BPt+ggPP/wwfv31V/znP//B8ePHsXXr1qZFTQghAiPU7prx48fj+eefR3l5OT777DM8/vjjmDVrFu/zTbbkS0tL8e233zYaNy8Siey+eBkhhFiKUCdOLliwAFlZWWjbti0uXbqEd999F7GxsbzPN3v7v3sFm1jzmRBCHAEngHH6xoSFhaGmpgYcxyEszLwlPAT8sgghxHZEf856NXXjIzMzEz169EBQUBCWLVtmsNyxY8cgFouxZcsWg2U+//xzPPTQQ/j222+xZcsW9OvXD1988QXv10VzRgkhLZ4lL7yq1WrMnTsXWVlZkMvliImJQVxcXKOh4mq1Gq+99hqGDx9utL5//vOfOHnyJDw9PQHUry8/YMAAzJgxg1c81JInhBA0bBxi+mbK0aNHERQUhMDAQMhkMiQkJCA9Pb1RudWrV2Ps2LHw9vY2Wp9cLkebNn+t09SmTRt06tSJ9+uiljwhhICDiOcYeFPLrhQXF+skYblcjiNHjujUUVxcjG3btiE7OxvHjunf7rBhb1c/Pz/07dsXY8aMAcdxSE9Px0MP8d8gh5I8IaTFa1jFlo+GZVcM0bcqwP0jd15++WUsX77c6HLtDROeunbtiq5du2ofb9g8hC9K8oQQwgESC3XKy+VyFBYWau8XFRXB19dXp0xOTg4SEhIA1A9T37lzJyQSCZ566iltmXfeecci8VCSJ4S0eOa05E2JiYlBbm4u8vPz4efnh7S0NGzevFmnTH5+vvbf06ZNw6hRo3QSPACMHj3a6Nj9jIwMXvFQkieEEFhu5ymJRII1a9Zg+PDhUKvVmDFjBkJCQpCcnAwAmD17Nq96FixYAAD49ttvcf36de2iZKmpqejSpQv/eMwLnxBCnJMlJ7yOHDkSI0eO1HnMUHJv2CXvfoMHDwYAvP3229i/f7/28dGjR2PQoEG8Y6EhlISQFo9DfTLkc7O1kpISXL58WXs/Pz/frI1SqCVPCCGc9TcKb6qVK1diyJAhCAwMBAAUFBRod8Xig5I8IaTFq5/xKswkP2LECOTm5uK3334DAPTs2RMuLi68z6fuGkIIwZ8jbHjcbC06Ohpr166Fv78/evfubVaCByjJE0IIAMsta2BpaWlpKC4uRkxMDBISEvDDDz+YtQ0rJXlCCAGn3X3J1M3WgoKCsGTJEly6dAkTJ07EjBkz4O/vj3feeQe3b982eT4leUJIiyfk0TUAcObMGbzyyitYuHAhxo4diy1btqBt27YYOnSoyXPpwishhEC4F16joqLQrl07JCYmYtmyZdo++b59++LgwYMmz6ckTwghnHC3//vf//6nHT4J1K9Dn5aWhkmTJuHbb781eb7dumvUajX69OmDUaNG2SsEQggBIMzumoqKCixduhQff/wxsrKywBjD6tWrERgYiG+++YZ3PXZrya9atQrBwcGoqKiwVwiEEKIltJb8c889hwceeAD9+/fHZ599hhUrVqCurg7p6emIiIjgXY9dknxRURF27NiBRYsWaRfGJ4QQexJWigcuX76MX3/9FQAwc+ZMdOjQAVeuXNHZJYoPu3TXvPzyy1ixYgVEIv1P37DzSsPNnCm8hBDnl5KSos0P5qzjYozQxslLpVLtv8ViMQICAsxO8IAdWvLbt2+Ht7c3oqKisHfvXr1lTO28Qghp2e7dcu/erfiaigMgFlh3zenTp9G2bVsA9btN1dTUoG3btmCMgeM43l3dNk/yBw8eREZGBnbu3Ina2lpUVFRg8uTJ2Lhxo61DIYSQP3HgBNZho1arLVKPzbtrli5diqKiIhQUFCAtLQ1Dhw6lBE8IsTuhdddYCo2TJ4S0ePVDKB0wg/Ng1yQ/ZMgQDBkyxJ4hEELIn5Oh7B2EdVBLnhBCINxlDZqLkjwhpMWr3zTE3lFYByV5QggBBDe6xlIoyRNCCKhPnhBCnBq15AkhxElRnzwhhDgzjqPRNYQQ4sycM8VTkieEkD+7a5wzzVOSJ4QQUEueEEKcm5NmeUryhBAC6q4hhBCn5pwpnpI8IYTUc9IsT0meENLicaAZr4QQ4ryceD15m2//RwghQsTxvPGRmZmJHj16ICgoCMuWLWt0fNOmTQgPD0d4eDgGDBiA06dPW+Q16EMteUIIAQfOQk15tVqNuXPnIisrC3K5HDExMYiLi0OvXr20ZQICArBv3z488MAD2LVrF5KSknDkyBGLPP/9qCVPCCGw3EbeR48eRVBQEAIDAyGTyZCQkID09HSdMgMGDMADDzwAAOjXrx+Kioqs8ZIAUJInhBDeXTV82vrFxcXo1KmT9r5cLkdxcbHB8mvXrsUTTzzR5NhNsXmSLywsxKOPPorg4GCEhIRg1apVtg6BEEIa45nlS0pKEB0drb2lpKToVMMYa1y1ga8Ae/bswdq1a7F8+XJLvhIdNu+Tl0gk+OijjxAZGYm7d+8iKioKsbGxOv1VhBBia3yHUHp5eSEnJ8fgcblcjsLCQu39oqIi+Pr6Nip35swZzJw5E7t27YKnp6f5AfNk85a8j48PIiMjAQBt2rRBcHCw0a8yhBBiC5bqk4+JiUFubi7y8/NRV1eHtLQ0xMXF6ZS5cuUK4uPj8dVXX6F79+5WekX17Dq6pqCgACdPnkTfvn3tGQYhpKWz4Dh5iUSCNWvWYPjw4VCr1ZgxYwZCQkKQnJwMAJg9ezbeffdd3Lp1Cy+88IL2HGPfDpqDY/o6kGygsrISgwcPxqJFixAfH69zrHPnzvDy8tLeT0pKQlJSkq1DJIQIVEpKirYvvKSkBH/88Uez6gvpHYlvdv7Mq+zUMYOtlpCtwS4teaVSibFjx2LSpEmNEjxgus+LENKy3dvwi46ObnZ9HJx3xqvNkzxjDImJiQgODsbf/vY3Wz89IYTo5aQ53vYXXg8ePIivvvoK2dnZiIiIQEREBHbu3GnrMAghRJcl1zUQEJu35AcOHKh3HCkhhNgTbRpCCCFOzDlTPCV5Qgip56RZnpI8IaTFo01DCCHEmTnxpiGU5AkhBE7bW0NJnhBCLLlpiNBQkieEEFB3DSGEOC0HnefECyV5QggBnDbLU5InhBDQEEpCCHFq1CdPCCHOigNElOQJIcSZOWeWpyRPCGnxaNMQQghxck6a4x03yRffvIO12w7jyNkruFNZi1ZuMnT374BZ8f3Ru7uvvcMjFqJhDEo1wAAwVt/aEnGAROS863+3NGq1Bj8cuoiNu07gemkF1GoNPD3c8eQjwUgY3gfubjKbxOGsf04Ol+SPnr2C9z/Pwv4TlwEGKJQq7bFfTuUjNfMkuvi2x2vTh+KZx3s77VRlZ8YYg5pBm9x1jwEaBqg0gIhjkIoAsbNeMXNy1bV1WJ12AGu+PojaOiUqq+t0ju8/eRmvrtqOiU9E4rVpQyH39rBqPM6aKxwqya/POIb5H6WjRqHUe1ytYaiuVeL85RuYs2QLfjp8Cf9+YywkErGNIyVNxRhDnRpQ89g8TMMAhRqQMgap2DnfoM6qpKwSI178DJeLbqG2TqW3TFVNfdL/MuMYtv50BjtWz0SfHn5Wi8lZ/4JsvsdrU6VmnjCa4O9XXavE1p/OYM4HW2m7QQdhToK/l1IDKM09idjN3SoFhj6fjNwrJQYT/L1Uag3K7tZg2Asp+K3gplVi4jj+N0fjEEk+r7AUc5d+yzvBN6hWKPFt9hmkZp60UmTEklQa8xN8A6Wmvv+eCN+cpVtReKMcSpXGrPOqauow6qW1UKvNO48vjud/jsYhkvyarw9ApVbrPaYq+RWKcxuhOLcJmqrrjY5X1yqx9Ivd1JoXOMYYDL3nKyoqMHTQwxjx+KMYNKAv9mTv1ltOpf9PhAjIzduV2P7zeSgMtOA1lddRd+Fr1J1PhfKPPTrHGGO4U1mDrCOXrBMcx/PmYOyS5DMzM9GjRw8EBQVh2bJlRstW19Zhw/bjej/1maoW6uvHIQueAGnXJ6Es0P/mv1pyBznniywSO7EODWt8kbVB69at8WP2PmT+tAfrN6bi74ve0FtOxUAf5gL3+XeHDXZ5MI0aqsK9kHZ/CrJeEyDt/GijMpXVdfh44z6rxOakOd72SV6tVmPu3LnYtWsXzp8/j9TUVJw/f95g+Yx95yAyEKWm8ipEbTqBE4khcm0HaJRgmsYthFqFCslbfrHQKyDWYOybu0gkgkRSP0agoqICoWFhBstS17ywpWw9jFqF/lY8qywGRDIoc79H3flUaCoK9ZY7eq4Q10orLBwZBxHH7+ZobJ7kjx49iqCgIAQGBkImkyEhIQHp6ekGy/9xtQzVtQb64lW1gMTlr/tiWf1j99EwhtwrJc0NnViRxkRyvlpcjMeHPIK4J4cjbszTBstRQ164GGO4WVZl+HhdJVj1TUiDRkMaNArKy5l6v5m5SCUovFFu0dgaZrw644VXmw+hLC4uRqdOnbT35XI5jhw5olOmpKQE0dHRAIDroq7QiLror0ziCqgVf91X19U/pkdltULv48Qx+Pr54ae9P+OPggKMiH0UTzw5Sm85SvLCpahTgeOM/I4kruDa+IGTuABwAaRugKoakLrrluOAb/63DS9M/QpAfb4ghtm8Ja/vk/n+SQheXl7IyclBTk4OXnpxNsQGxkCLWvtCc7cITKMGU1QAIik4kf7Prbat3ZofPLELheKvD+g2bduides2Bss6YkurpXCRSYz2aYta+4LVlIExDZhaASirAYme9y1jmPDsWG2O8PLyskh81JK3ELlcjsLCv/raioqK4OtreBmCXgEPws1FprclzklcIfbug7oLqQA4SDsP1VuHVCJCZE/rTaIgzSfiDPennz93Fq8t+BvEYjGUSiVWfLTSaD1EmDiOQ2efB3C5+Lb+4xJXSDpGou78ZkCjgcR/CDiucTu0TqlGgG97y8fnkJdVTbN5ko+JiUFubi7y8/Ph5+eHtLQ0bN682WD54f17QGZkxqrEOxwS73CjzykWizDnmQFNjplYn1QMqA3Mi+kTGYUfs/mNqKAkL2wvTRyEN9fs1M5mvZ/YKxRir1CD54s4DiMG9ER7j1aWDcxBW+l82Ly7RiKRYM2aNRg+fDiCg4Mxfvx4hISEGCkvxgvPDoCrrOmfR+HdfNHN3zJf6Yh11I9caF4dEpHzrj/iLCYM7wONqavsRri5SPHypEEWjKieM194tcs4+ZEjR+LSpUvIy8vDokWLTJaf+VQ/SKVNW3/GzUWKv8+KbdK5xLakzfxrbO75xPrauLsgaWw/tHKVmn2uVCJC985eeCikk+nCTUAzXu3oQc822PbRdLiZ+YfRylWKNxMfx2N9u1spMmJJYhEHSRP/Il3E1Ip3FO/PGYG+of5wc+H/fpaIRfBs5470ldOt9numlrydPRwRgIx/JaJNKxe4SI133YhFHNxcpPjH7OFYMGWIbQK8T0pKil2e1xChxQPoj0km5sxukbuILbPcsNB+RkKLB7BMTBKJGNs+mo7H+3bjtVZ8K1cpAvza45d1/wevB1pbPJ4GlpzxampWP2MM8+bNQ1BQEMLDw3HixAmLvAZ9HCbJA8DAiACc+noBXpr4CDxau6J1Kxed461cpXCVSfBMbAT2fPYC/i/hETtFKrw3qNDiAQzHJBVzcJUAplYPlnCAm8Ry68kL7WcktHgAy8XkIpMgbelkfLk4AQPCO8NVJoHsni5ZkYiDu5sMAX7tseKlUTi8fh58OrS1WjwALJbl+czq37VrF3Jzc5Gbm4uUlBTMmTPHcq/jPg61njwA+Hq1xeI5I/DWrFh8v/8czv5+DaXlVdi25Wu889J8jH0sHA+0tfCVd2JzIo6Di+SvhcvYn2vbcABEovoPAOqecWwikQijHumFUY/0Ql5hKdL3ncON23ehVKrh3b41BkcFoV+Yv01+zxwst9PYvbP6AWhn9ffq1UtbJj09HVOmTAHHcejXrx/Ky8tx7do1+Pj4WCSGewkyyRcUFGhnvPIlKilB8pIXkbzESkGZ6d5Zu0IgtHgA4cVE8Zhmy5i28ChTUlKCqirDSyXw5eXVAQP78XtdNTU1Oj+DpKQkJCUlae/zmdWvr0xxcXHLSfKlpaX2DoEQ0oJkZmZarC4+s/r5lLEUh+qTJ4QQoeMzq9/cmf/NQUmeEEIs6N5Z/XV1dUhLS0NcXJxOmbi4OGzYsAGMMRw+fBgeHh5W6aoBnCDJm7MBiS0UFhbi0UcfRXBwMEJCQrBq1Sp7hwSg/op/nz59MGqU/tUbbam8vBzjxo1Dz549ERwcjEOHDtk1npUrVyIkJAShoaGYMGECamsbL1dtbTNmzIC3tzdCQ/+a0n/79m3ExsaiW7duiI2NRVlZmV3jWbhwIXr27Inw8HA8/fTTKC8vt1k8hmJq8OGHH4LjOEF09Rqa1Z+cnIzk5GQA9RNCAwMDERQUhFmzZuHf//639QJiDkylUrHAwECWl5fHFAoFCw8PZ+fOnbNrTFevXmXHjx9njDFWUVHBunXrZveYGGPso48+YhMmTGBPPvmkvUNhU6ZMYZ999hljjDGFQsHKysrsFktRURHr0qULq66uZowx9swzz7B169bZPI59+/ax48ePs5CQEO1jCxcuZEuXLmWMMbZ06VL26quv2jWeH374gSmVSsYYY6+++qpN4zEUE2OMXblyhQ0bNoz5+/uzkpISm8bkCBy6JW/uBiS24OPjg8jISABAmzZtEBwcjOLiYrvGVFRUhB07dmDmzJl2jQOo39lp//79SExMBADIZDK0a9fOrjGpVCrU1NRApVKhurraan2jxgwaNAjt2+uurJieno6pU6cCAKZOnYrvvvvOrvEMGzZMu0NXv379UFRk2y019cUEAPPnz8eKFStoSK0BDp3kDQ1DEoqCggKcPHkSffv2tWscL7/8MlasWAGRoX0Ubejy5cvw8vLC9OnT0adPH8ycOdMiQ+Cays/PDwsWLIC/vz98fHzg4eGBYcOG2S2ee924cUPbT+vj44ObN2/aOaK/fPHFF3jiiSfsHQYyMjLg5+eH3r172zsUwbL/u74ZmA2HIZmrsrISY8eOxb/+9S+0bdt4pp6tbN++Hd7e3oiKirJbDPdSqVQ4ceIE5syZg5MnT8Ld3d2u11LKysqQnp6O/Px8XL16FVVVVdi4caPd4nEES5YsgUQiwaRJk+waR3V1NZYsWYJ3333XrnEInUMneVsOQzKHUqnE2LFjMWnSJMTHx9s1loMHDyIjIwNdunRBQkICsrOzMXnyZLvFI5fLIZfLtd9uxo0bZ9V1O0z56aefEBAQAC8vL0ilUsTHx+OXX4Sx6fuDDz6Ia9euAQCuXbsGb29vO0cErF+/Htu3b8emTZvs3qDKy8tDfn4+evfujS5duqCoqAiRkZG4fv26XeMSGodO8nyGKtkaYwyJiYkIDg7G3/72N7vGAgBLly5FUVERCgoKkJaWhqFDh9q1pdqxY0d06tQJFy9eBADs3r1bZ7q3rfn7++Pw4cOorq4GYwy7d+9GcHCw3eK5V1xcHNavXw+gPrmOGTPGrvFkZmZi+fLlyMjIQKtW9l86JCwsDDdv3kRBQQEKCgogl8tx4sQJdOzY0d6hCYudL/w2244dO1i3bt1YYGAge//99+0dDvv5558ZABYWFsZ69+7NevfuzXbs2GHvsBhjjO3Zs0cQo2tOnjzJoqKiWFhYGBszZgy7ffu2XeP5+9//znr06MFCQkLY5MmTWW1trc1jSEhIYB07dmQSiYT5+fmxzz//nJWWlrKhQ4eyoKAgNnToUHbr1i27xtO1a1cml8u1f9fPP/+8zeIxFNO9OnfuTKNr9OAYo/3tCSHEWTl0dw0hhBDjKMkTQogToyRPCCFOjJI8IYQ4MUryhBDixCjJE0EpKCiAm5sbIiIiLFJfTU0NIiIiIJPJBLFCISG2RkmeCE7Xrl1x6tQpi9Tl5uaGU6dOCWImNCH2QEme2MyxY8cQHh6O2tpaVFVVISQkBGfPnjV6TkFBgc764R9++CH+8Y9/AACGDBmC+fPnY9CgQQgODsaxY8cQHx+Pbt264a233rLmSyHEYQhyj1finGJiYhAXF4e33noLNTU1mDx5st4NIMwhk8mwf/9+rFq1CmPGjMHx48fRvn17dO3aFfPnz4enp6eFoifEMVGSJzb197//HTExMXB1dcUnn3zS7Poa1ioKCwtDSEiIdmnewMBAFBYWUpInLR511xCbun37NiorK3H37l3e2+zdu/KGUqnUOebi4gIAEIlE2n833FepVBaImBDHRkme2FRSUhLee+89TJo0Ca+99hqvc/744w+UlJRAo9Fg//79UKvVVo6SEOdBSZ7YzIYNGyCRSDBx4kS8/vrrOHbsGLKzs02e5+npiSlTpiAqKgqhoaHYsGED8vLybBAxIY6PVqEkglJQUIBRo0ZpR93cf7+punTpgpycHHTo0MESYRLiMKglTwRFLBbjzp07Fp8MpVQqBbHHLSG2Ri15QghxYtS0IYQQJ0ZJnhBCnBgleUIIcWKU5AkhxIlRkieEECdGSZ4QQpzY/wOlwX3iaKk7zAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# show_final_avg_density(result_full)\n", + "plot_avg_density_2D(get_avg_density(result_full), register)" + ] + }, + { + "cell_type": "markdown", + "id": "0f8623ff", + "metadata": {}, + "source": [ + "## Run AHS program in the blockade subspace\n", + "\n", + "The above simulation is performed using the *full* Hamiltonian with size $2^{9}\\times 2^{9}$. However, because of Rydberg blockade, if neighboring atoms are within each other's Rydberg blockade radius $R_b$, they are very unlikely to be excited to the Rydberg states simultaneously. Given that (see [this notebook](https://github.com/aws/amazon-braket-examples/blob/main/examples/analog_hamiltonian_simulation/00_Introduction_of_Analog_Hamiltonian_Simulation_with_Rydberg_Atoms.ipynb))\n", + "\\begin{align}\n", + "R_b = \\left[\\frac{C_6}{\\sqrt{\\Delta^2+\\Omega^2}}\\right]^{1/6},\n", + "\\end{align}\n", + "\n", + "we have 6.752 $\\mu m$ < $R_b$ < 6.796 $\\mu m$ throughout the program, which is always larger than $6.7~ \\mu m$, the distances between neighboring atoms. Hence we can approximate the full Hamiltonian of the system with a smaller *effective* Hamiltonian. We can take advantage of this fact to speed up the simulation by setting the parameter `blockade_radius` as shown below." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "c92cd79b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The elapsed time = 0.3601689338684082 seconds\n" + ] + } + ], + "source": [ + "start_time = time.time()\n", + "result_blockade = device.run(ahs_program, shots=1000, blockade_radius=6.796e-6, steps=100).result()\n", + "print(f\"The elapsed time = {time.time()-start_time} seconds\")" + ] + }, + { + "cell_type": "markdown", + "id": "b6ce420c", + "metadata": {}, + "source": [ + "Indeed, the runtime for the simulation with the effective Hamiltonian is one magnitude less than the one with the original Hamiltonian. We can visually confirm that the checkerboard phase is created successfully using the Rydberg blockade approximation. " + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "4152af92", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAEHCAYAAABLKzaMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA4x0lEQVR4nO3deVzU1f4/8NdnVhZxQ0hgRERckEVkSTQzs1DzKpaa4ZYmxtXsVt6yzZZvi7m0eC1vlx9lLqVSuYS5YCaaaW64Zm6EoEAuoKCss57fH6MTyCyfgVk+M7yfPubxcGbO58z7A8x7zpzPWTjGGAMhhBC3JHJ2AIQQQuyHkjwhhLgxSvKEEOLGKMkTQogboyRPCCFujJI8IYS4MUryhBBiQ9OmTYO/vz8iIyONPs8Yw3PPPYewsDBER0fj6NGjdo3Hbkne3Il+9NFH4DgOZWVl9np5QghxiqlTpyI7O9vk89u2bUNeXh7y8vKQkZGBmTNn2jUeuyV5UydaVFSEHTt2IDg42F4vTQghTjNw4EC0b9/e5PNZWVl48sknwXEcEhMTUVFRgcuXL9stHrsleVMnOnv2bCxatAgcx9nrpQkhRLBKSkrQqVMnw32FQoGSkhK7vZ7EbjUbsWnTJgQFBaF3795my3Xo0AEhISEW66tTqlGr1ECr06G6qgq+7duhlZfMRtE2T2lpKfz8/JwdhoHQ4gH4x8Tq/4cD7NU8ENrPSGjxAPaLSccYKquV0Gh1YAAkIg7ennJIJebboaWlpaiurm5216+4dWcwTS2vsuFd/ODp6Wm4n5aWhrS0NN6vZWwlGXs2eh2W5GtqajBv3jz89NNPFst6e3s3uF//h6hUafDDL6fx8epf8VfRdYjFHLRaBmVdLeDthToPGZ5P6Y8n/xEH3zZedjkXPuLj45Gbm+u017+b0OIBzMekYwxqDYNKWy/J1yPiALmEg0RkuzeI0H5GQosHsH1M5y+V4b/f78c32cch9hNBdzvJi0UilGm0eDihK14Yfx/ui+7c4PeckZGBjIwMlJWVoUOHDs2Og2nqIO+Zwqusp+i3Zv0MFAoFioqKDPeLi4sRGBjY5PoscViSz8/PR0FBgaEVX1xcjNjYWBw6dAgdO3ZsUNbPz8/oD/FCyQ0MeXYZblbVoapW1fBJToKqGhWqalR476tdmPfVLqx+LwVD+3W32zkR+1BrGWrV5tfN0zGgVs3AAfCWASIRdf+5EsYY3v1yJ/7z7W/QanVQa3RGy2397Tx2Hy1A/6hgZM5LgZeH/pv6nYZffHy8bQLiAIjEtqnLguTkZCxduhQpKSk4ePAg2rRpg4CAALu9nsOSfFRUFK5du2a4HxISgtzcXN6fwn8WXceAp9NRWa2EzsLCmbV1agDA+DcysfytsRj1QK+mB04cSqXRoU7DvzwDUKViaEWJ3mUwxvDcxz9izfYTqFOa/2UzxlBdq8Kvxwvx0KxlyPl8OjzlUvsExvcboYV1e8ePH4/du3ejrKwMCoUC77zzDtRqfU6aMWMGhg8fjq1btyIsLAxeXl5Yvnx5MwM3z25J3tiJpqamNqmuyholhvxrGa8EX1+tUo2n3l2HnP9NR0x3+30dMsaaPjpHEFo8QOOYtDpmVYKvr1rF0ErevK4bof2MhBYPYJuYPl9/AGu2n0DN7cYYH3UqDc5dLMWUd77Hdx9MaBBPRkZGs2PSX+zhOQ7FQgpau3at+VfiOPz3v//lGVfzcUJcT/7ufr/09Qcw938/WfVHcQfHAUMTu2Pjh5NtGSKxg2qlDtpm/DXKJYDcwoU64lwqtQadRi7ErWplk473kEuw/8uZ6Bny98VfW1wnEHl3hDySX46I0O4S3LUScxw6uqYpGGP4ZM1eowleV3UF6gvZAMeB40SQhI2AyKPdXccDu3LzcbmsEgEdfBwVNrGSjjGzCf6edt6IT+gLAHhiwkQ8ObXxt0KVBpCJGQ3PFbCsPWfMfhtX52+DruoywHSQBCVC7NdwMqVGo8PS7/dj6Zxk2wbGgX9L3sUI/qz2nbiIG7eMD23iZK0g6zUe8qgpEAf2g+bSL8bLcRy+zDpkzzBJM6k05pvwAYFB2PJTDrb8lGM0wQP6b9HN+SZA7O/j1XtRVaMy+pyu+hpYTSnkvadBFjkZmou7G5XRaHVY+9MJVN898KLZOP3Xfj43FyP4JH/odDGUauMdtZysFTiJXH9HJAJn4pO4TqXB7iMX7BUisQGt8cEVBteuXsHwpAcx8YkxuHixsMn1EOf648JVk89xMh+AE4PptIBWBUg8jJYTi0TIK7pu++BEYn43FyP47pryWzXQmBhedQfTqqC5uBvSbiNNlqmorLN1aMSGLDXAfz97Ab4dOuDnHdvx7Iyn8eO2HcbrYbdnTBHBUao05gdOSDzAebaH6sjnYDoVpGEjjBbjOOBmFb+JS/xZceHVxQj+rDzlUrPfkJhOC/W5DZAo7oPIy/RMPA+Z4D/PiBm+t4faPpw0FEWXLposR/3xwiWViIzO9rxDV3EBTFkJWfwsyGOfgeZiDpjO+Ld4mdTG72cO1F3jLAEdfEyOi2WMQX0+C6L2PSD27WG2HsU9bewRHrERc0Pcq6qqoNVqAQCnfj8JX1/Tcytc7y3YcohEIrT2Nt4Fcwcn8dB3u4plgE6nHzlxF7VGiwBfOwyi4ET8bi5G8M3bUQ/0wr8XbzH6nO76WejK88DUVdCW/g6Rtz+kocMalWvlKcP0UQn2DpU0g1TMQaMz3so7d+Y0nv/XTPi08gHHcfjP0v+ZqcdeERJbmDgsBl/8cBhqjbbRc6K2odCWnoLy5ApAp4E4MAGcuHEDLzSoPUIC2zV6vHnct7tG8Em+fWsvjLg/HBt2nYLuriQg7hAOcYdwi3V4e8rwUEJXe4VIbEAi0rfCjaX5uIR7sffAEX51uODX6ZZk1thEfLUpF8ZmvHAcB1n3UWaPb+Upw4sT77d9YBwAsXu2EFzio2v2+Psgb2IfnKdciudT+kMkcolTbbE4joOsme8xuYQSvNCFBrVHQi8FxOKmvR9FIg6jB0XYOKrbqE/eeWJ7BmH2hPvg5WHdmhVymRixPQPx7Lj+doqM2JJMwkHcxPeQTAyIae0al7D8rbFo28rD6nzpKZfg+/kTILfLIArObfvkXSbiN6YNxvRRCfDiuTiRp1yKPt0DsfHDyZBK3PNrmLvhOA5eMs7sRVhjZGJqxbuSIL/W+HlpKnzbeEHCs0XvKZdi5duPY2CfLvYLjFryzsVxHBb+6xF8NicZne5pA29PmdGfdytPGVp7y/Gvcf3w09JU+HjJHR8saTKO4+At49d1wwHwkAAeUhH1xbuYniF+OLR8Fkbe3xMeMgk85Y1b51KJCB4yCRIjO2HH0mkYeb/l62/N4qYtecFfeL3bhGExGD+0N/aduIjFa/fiRN5lVNeq4CGTotM9bfDsuH549IFeth9HSxyG4zh4SDnIJQwaHaDUMDBm2BgKYtHfXTuU3F1XQAcfrHkvBddv1mDF5iP4etsx3LhZC61OBx9vOR7p1x2zxvZDWCdf+wfjoq10PlwyE3IchwExIRgQE+LsUIgdcRwHqVg/vJK4L982Xnhx4v32GTVjDRdcsoAPl0zyhBBiWzROnhBC3Bt11xBCiJty4/XkKckTQgh11xBCiJujC6+EEOLGqE+eEELcFOe+3TV2O6tp06bB398fkZF/b8Q7Z84c9OzZE9HR0XjsscdQUVFhr5cnhBDr0LIG1pk6dSqys7MbPJaUlIRTp07h5MmT6N69O+bPn2+vlyeEEKtwHMfr5mrsluQHDhyI9u3bN3hsyJAhkEj0PUSJiYkoLi6218sTQghv+t3/3DPJO61P/quvvsITTzxh9LnS0lLEx8cb7qelpSEtLc1RoRFCBC4jIwMZGRkA9Pmi2TgOnJsuVe2UJD9v3jxIJBJMnDjR6PN+fn7Izc11cFSEEFdRv+FXv0HYHK7YSufD4Ul+5cqV2Lx5M3bu3Om2P1RCiOtx13zk0CSfnZ2NhQsX4pdffoGXl5cjX5oQQsxy1yRvtwuv48ePR79+/XDu3DkoFAosW7YMzz77LCorK5GUlISYmBjMmDHDXi9PCCH8cVbcXIzdWvJr165t9Fhqaqq9Xo4QQpqMg2uOnOGDZrwSQggAkcg9Z7xSkieEELhvnzwleUIIcdH+dj4oyRNCCNy3Je+enVCEEGKFOxdebbWsQXZ2Nnr06IGwsDAsWLCg0fM3b97EyJEj0bt3b0RERGD58uW2PiUDSvKEEAKAE3G8bpZotVrMmjUL27Ztw+nTp7F27VqcPn26QZn//ve/6NWrF06cOIHdu3fjxRdfhEqlsst5UZInhBDOdguUHTp0CGFhYQgNDYVMJkNKSgqysrIavhzHobKyEowxVFVVoX379obFG22N+uQJIQT8++QtLaBYUlKCTp06Ge4rFAocPHiwQR3PPvsskpOTERgYiMrKSnz77bd2G8JJSZ4QQsA/yVtaQJExZrHu7du3IyYmBjk5OcjPz0dSUhLuv/9+tG7d2rqgeaDuGkJIi2fLC68KhQJFRUWG+8XFxQgMDGxQZvny5Rg9ejQ4jkNYWBi6dOmCs2fP2vy8AEryhBCiZ6O1axISEpCXl4eCggKoVCpkZmYiOTm5QZng4GDs3LkTAHD16lWcO3cOoaGhNjyZv1F3DSGEcLZb1kAikWDp0qUYOnQotFotpk2bhoiICKSnpwMAZsyYgTfffBNTp05FVFQUGGNYuHAhOnToYJPXbxSPXWolhBAXY8vJUMOHD8fw4cMbPFZ/1d3AwED89NNPNns9cyjJE0IIQMsaEEKIO3PXZQ0oyRNCWjxrlixwNZTkCSEE1JInhBC3xmddGldESZ4QQkAteUIIcV+c+yZ5u814nTZtGvz9/REZGWl47MaNG0hKSkK3bt2QlJSE8vJye708IYTwxgHgOH43V2O3JD916lRkZ2c3eGzBggV46KGHkJeXh4ceesjoYvqEEOJ4tt00REjsluQHDhyI9u3bN3gsKysLU6ZMAQBMmTIFP/zwg71enhBCrCIScbxursahffJXr15FQEAAACAgIADXrl1z5MsTQohxLtoVw4cgL7xaWpSfENKyZWRkICMjA4A+XzQXB7hkK50Phyb5e+65B5cvX0ZAQAAuX74Mf39/o+UsLcpPCGnZ6jf86jcIm8NdW/IOXU8+OTkZK1euBACsXLkSo0aNcuTLE0KISXTh1Urjx49Hv379cO7cOSgUCixbtgyvvvoqduzYgW7dumHHjh149dVX7fXyhBDCH8/hky6Y4+3XXbN27Vqjj9/ZDYUQQoSCA2e3jbSdTZAXXgkhxNFcsZXOByV5QgiB+y5rQEmeEEJctL+dD/fshCKEECvo164R5uiaU6dONet4SvKEEALhjq6ZMWMG7r33Xnz++eeoqKiw+nhK8oQQAuGuXbN3716sXr0aRUVFiI+Px4QJE7Bjxw7ex1OfPCGECHw9+W7duuH9999HfHw8nnvuORw7dgyMMXzwwQcYPXq02WOpJU8IafGEvJ78yZMnMXv2bISHhyMnJwc//vgjzpw5g5ycHMyePdvi8dSSJ4QQCHfJgmeffRZPP/00PvjgA3h6ehoeDwwMxPvvv2/xeGrJE0IIhNuSHz16NCZPntwgwS9ZsgQAMHnyZIvHU5InhBBOuBdeV61a1eixFStW8D6eumsIIS3enXHyQrJ27VqsWbMGBQUFSE5ONjxeWVkJX19f3vVQkieEEAgvyffv3x8BAQEoKyvDiy++aHjcx8cH0dHRvOuhJE8IIRDesgadO3dG586dsX///mbVQ0meEEIgvJb8gAEDsHfvXvj4+DSIjTEGjuNw69YtXvVQkieEEAEuULZ3714A+j745qDRNYSQFk+/aYgwR9fk5+dDqVQCAHbv3o1PP/3UqjVsKMkTQggAEcfxujnamDFjIBaL8eeffyI1NRUFBQWYMGEC7+MpyRNCCGw7GSo7Oxs9evRAWFgYFixYYLTM7t27ERMTg4iICDzwwAMm6xKJRJBIJNi4cSNeeOEFLF68GJcvX+Z9XtQnTwhp8TgbLlCm1Woxa9Ys7NixAwqFAgkJCUhOTkavXr0MZSoqKvDMM88gOzsbwcHBuHbtmsn6pFIp1q5di5UrV+LHH38EAKjVat7xUEueEEIAiDh+N0sOHTqEsLAwhIaGQiaTISUlBVlZWQ3KrFmzBqNHj0ZwcDAAwN/f32R9y5cvx/79+zF37lx06dIFBQUFmDRpEv/z4l3ShhYvXoyIiAhERkZi/PjxqKurc0YYhBBiYKsLryUlJejUqZPhvkKhQElJSYMy58+fR3l5OQYNGoS4uDijSxfc0atXL3z66acYP348AKBLly549dVX+Z8X75I2UlJSgk8//RS5ubk4deoUtFotMjMzHR0GIYQYcNCPsOHzr7S0FPHx8YZbRkZGg7oYY43rv6srSKPR4MiRI9iyZQu2b9+O9957D+fPnzca2759+5CUlITu3bsjNDQUXbp0QWhoKO9zc0qfvEajQW1tLaRSKWpqahAYGOiMMAghxIDv6Eg/Pz/k5uaafF6hUKCoqMhwv7i4uFGOUygU6NChA7y9veHt7Y2BAwfixIkT6N69e6P6UlNTsXjxYsTFxUEsFvMLsh6Ht+SDgoLw0ksvITg4GAEBAWjTpg2GDBnSoIylT0pCSMuWkZFhyA+lpaXNr5DnJt58Ls4mJCQgLy8PBQUFUKlUyMzMbLDAGACMGjUKv/76KzQaDWpqanDw4EGEh4cbra9NmzZ45JFH4O/vD19fX8ONL4e35MvLy5GVlYWCggK0bdsWjz/+OL755psGFxIsfVISQlq2tLQ0pKWlAQDi4+NtUqethsBLJBIsXboUQ4cOhVarxbRp0xAREYH09HQA+o25w8PDMWzYMERHR0MkEmH69OmIjIw0Wt+DDz6IOXPmYPTo0ZDL5YbHY2Nj+cXT/FOyzs8//4wuXbrAz88PgH5B/N9++82qq8WEEGJLHGDTiU7Dhw/H8OHDGzw2Y8aMBvfnzJmDOXPmWKzr4MGDANCg4ctxHHJycnjF4vAkHxwcjAMHDqCmpgaenp7YuXOnzT6JCSGkqZyxZAEfu3btatbxJpP8jRs3LB4sEonQtm1bq16wb9++GDt2LGJjYyGRSNCnTx/D1y5CCHEGZ23tx8fVq1fx+uuv46+//sK2bdtw+vRp7N+/H6mpqbyON5nkAwMDERgYaHQ40B1arRaXLl2yOuh33nkH77zzjtXHEUKIvThjXRo+pk6diqeeegrz5s0DAHTv3h1PPPFE85N8eHg4jh07ZvbgPn36WBEqIYQIlzBTPFBWVoZx48Zh/vz5APQXdq0ZSmkyyfPZjaS5O5YQQohQCG3TkDu8vb1x/fp1Q3wHDhxAmzZteB9vMsl7eHgY/l9eXo6ioiJoNBrDY7GxsQ3KEEKIq9KPrnF2FMZ98sknSE5ORn5+Pu677z6UlpZi3bp1vI+3OLrmzTffxIoVK9C1a1fDJ4k1w3cIIUTwOOdsCMJHbGwsfvnlF5w7dw6MMfTo0QNSqZT38RaT/HfffYf8/HzIZLJmBWprjDFodIBWx8Dw9zhXqVi4X7uI9W7cqsX6X86g4K8K3KpRwq+NF6K6+mNE/+6QSa2f4k2ESatj0GgB3e2BHhzHQSICxCLHvZ+FmDeuX7+ONWvW4OzZswD010oDAwPRvn173nVYTPKRkZGoqKgwuxSmI+kYg0rDoNIae5ahTgNIRAxyCQexQD+ZiWXH867gk28PYNPecxCLONQo/+4qbOUpg1i0FU8nx2Lmo/EI7ODjxEhJU91pqCnVDNpGg/gYlNAPa5SLGWQSfksKNJUQu2vOnDmDwYMHY+jQoejTpw8YYzh8+DA++OAD5OTkoGfPnrzqsZjkX3vtNfTp0weRkZENptRu2rSp6dE3kUbHUKMyPaTz73KARsUgFzPIpbRkvqv5z3cH8O6KPVCqtdDpGv++q2pVAIDP1h3C/8s6gg3zxmFAdLCjwyTNwJj+vazRWSoH1GkAlZbBW27fYY5Ca8m/+eabWLJkCcaNG9fg8fXr12Pu3LlYv349r3osJvkpU6bglVdeQVRUFEQi5yVMvgm+PqUWAHSU6F3Ih2v2YcE3v6G2XsvdFKVaC6Vai1GvZuLHRePRP7KTxWOI8zHGUK1i0FpI8PXpGFBVx9DKw36JXlgpHvj999+NXmAdM2YMXn/9dd71WEzyHTp0wHPPPWdddDamY9Yn+DuUWkAsYpCIhfYrJHfbcfgC5n+zj1eCr69GqcFjr32L31fNhH87bztFR2ylTm1dgr+DAahWMrSS277VzXEQXPeut7fpv2Vzz93NYpKPi4vDa6+9huTk5CatgGYLKo3pBP/YyGE4cfwYZs56DnNenWu0TJ2GoRUlecF7Z/kvZhO8rqYMqoNLIOuTClHbkAbPqTQ6fLn5GF6fPMDOUZLmYMzU9TTg7JnTePGFZwEAKqUSf/55HgXFDZcR1jFAqwMkdrjmLrTummvXruGTTz5p9DhjzKrllS0m+TuzXg8cOGB4zJFDKBljUJv4owCApf/7Ert3/Yy/7tpeqz79HwYT3Cc1+dvZi2X4o8D8H66mYBdEbbsYfa5OpcF/NxzGKxP6Qyym7jmhMtdg6xneC1u26/PKxvXfYc9u4wtzKTX2+WYusByPp59+GpWVlUafmz59Ou96LCZ5YyugFRQU8H6B5tLo9F/TTAlSKHjVo9IyeFKSF6z0H3KhMfMdXnerCJy8FZiZd6JKrcVPhy/gkcQwe4RIbEBppsFW37drV+P5fxtfhlej03fh2rJvngMnuLVr3n77bZvUYzHJv/vuuw3ua7VarFq1ymGJ3sjgiqbV04Q+QOI4R89fMZvkNYW7IQ0fA3XeVpNl6lQanLlYRkleoBhjMLPeocGN69eRd/4cEvvdZ7KMjtl4yKOAV6FsLotJvn4Hv1qtxp49exoN6bEnc6tgWlWPTWoh9nKrRmnyOW3ZWYh8gsBJvczWodHqcLOqztahEQfbsO47PPrYWPN95HZ4QwutT95WLCb5F198scH9l19+GQkJCXYL6G76HzylaHfn7WF6mjarugxdeQFUN1dAV3UF6poyyCKeAOfZrkE5sYhDKy9hzcwm1vv+2zX49HML+zrbOB9zAMQtNcnfrby8HB07drRHLEZZ+kr2r2fScOjAfiiVShw7kos1329sUj3EuXp08sXxvKuGae31SUIeBEIeBACoTq+DJDC+UYIHAE+5FCEd29o7VNJEHMeBAzPbZCssuAClUokePY1van2HPd7PQs0RxkbYtGnTBnFxcYiJibF4vMUkHxUVZfgawxhDYWEhfH19DY+fPHnS+qitILEwUOIzS5/4t8klAv0NEgDAPx+Nx6Z951FdpzZbTtZrrMnnGGMYeV93W4dGbEgmAcxNgwjpEord+w6ZrUMsss+EKKEm+dzcXOTm5mLkyJEAgC1btiAhIQHp6el4/PHH8fLLL5s93mKS37x5s20ibSKO4yAVmx9GaYmIE+4vkOjdGx6Ijr6tkF9S3qTjpRIRpjzSGx4yh29bTKwgk3BQmhlGyYc9Gmz67f+EmSSuX7+Oo0ePolWrVgD0O+uNHTsWe/bsQVxcXPOTfOfOnW0TaTPIxRzUjVcw4s3eixuR5uM4Dq9NGoDnlmSjxkJr3hiJWIRZox13rYg0jYjjIBHrV5xsCg6Wv903lVAbgpcuXWqwCrBUKsXFixfh6enZYIKqKSaTfGxsLI4ePWr2YD5lbEEk4uAh0a8waS2JCKCla1zDhKRI7DpagI17zjZYddIST7kE6S/9A6GBjfvpifB4STlU6ViThkd7y+3XYBNqO3DChAlITEzEqFGjAAA//vgjxo8fj+rqavTq1cvi8SaT/JkzZxAdHW3yQMYYbt682YSQgYqKCkyfPh2nTp0Cx3H46quv0K9fP7PHyCQiADqrEr1UBHhIqRXvKjiOQ/qcERCJOKz/5azFFj3HAR4yCZY8PwzjBkc4KErSXBzHwVuuX4fGmkTfSm6/5cM5ABIB5gnGGKZOnYrhw4dj7969YIwhPT0d8fHxAIDVq1dbrMNkkr+zSL051mwmW9/zzz+PYcOGYd26dVCpVKipqeF1nEwigljEoNSYX6JUxOn77SQO3HCA2IZELML/mzMCSQldseCbfSi4XA6VWgttvWzgIRODMeDBPiGYO+V+xPcMdGLEpClEHIdWcv0SBSqN+UHSMjEgl9p/RqoQUwXHcXj00Udx5MgRxMXFNakOk0neXn3xt27dwp49e7BixQoAgEwms2rXKbGIg5eMM2weor297AEHQCQCZGLaLMTVcRyHxx/shccf7IXjeVfw5eZj+LP4Bmrq1GjbygMJ4YFIHdGHNgtxcRzHwUPKQS7RN9pU2tszYpk+4UrFjtvpjeOEt6zBHYmJiTh8+HCT5yc5fCjChQsX4Ofnh6eeegonTpxAXFwclixZYtXSmYC+JeAhFeYvhdhOTLeOWDr7EWeHQeyIu71tp9TJK8UKNMdj165dSE9PR0hICLy9vcEYs2r4usOTvEajwdGjR/HZZ5+hb9++eP7557FgwQK89957hjKlpaWGPicASEtLQ1pamqNDJYQIVEZGBjIy9HNkrFl21xyhdgBs27atWcdbHHeydOlSlJc3beyyMQqFAgqFAn379gUAjB07ttEIHT8/P8MEgNzcXErwhJAG0tLSDPnBz8+v2fVx0HcF87k5WufOnVFUVIScnBx07twZXl5e0Fmx4qLFJH/lyhUkJCRg3LhxyM7ObvaCYR07dkSnTp1w7tw5AMDOnTt5DQMihBC74f6eNGnp5mjvvPMOFi5ciPnz5wPQLxQ5adIk3sdbTPLvv/8+8vLykJqaihUrVqBbt254/fXXkZ+f3+SgP/vsM0ycOBHR0dE4fvy4VfsVEkKIPXA8/znaxo0bsWnTJsN1y8DAQJObiRjDq0+e4zh07NgRHTt2hEQiQXl5OcaOHYukpCQsWrTI6qBjYmKQm5tr9XGEEGIPHITbJy+TyfSLu92+MlxdXW3V8RZb8p9++qlhfYT77rsPv//+O/73v//hyJEjWL9+fdOiJoQQgRFqd824cePwz3/+ExUVFfjiiy/w8MMP4+mnn+Z9vMWWfFlZGTZs2NBo3LxIJHL64mWEEGIrQp04+dJLL2HHjh1o3bo1zp8/j3fffRdJSUm8j7d6+7/6wsPNr/lMCCGugOP0SxgLVVRUFGpra8FxHKKioqw6VsCnRQghjiO6PevV0o2P7Oxs9OjRA2FhYViwYIHJcocPH4ZYLMa6detMlvnyyy9x7733YsOGDVi3bh0SExPx1Vdf8T4vWnybENLi2fLCq1arxaxZs7Bjxw4oFAokJCQgOTm50VBxrVaLV155BUOHDjVb34cffohjx47B19cXgH59+f79+2PatGm84qGWPCGE4M7GIZZvlhw6dAhhYWEIDQ2FTCZDSkoKsrKyGpX77LPPMGbMGPj7+5utT6FQwMfn73WafHx80KlTJ97nRS15QggBBxHPMfCWll0pKSlpkIQVCgUOHjzYoI6SkhJs3LgROTk5OHz4sNHXubO3a1BQEPr27YtRo0aB4zhkZWXh3nvv5X1mlOQJIS0eB/4LlN1ZdsUUY6sC3D1y54UXXsDChQvNLtd+Z8JT165d0bVrV8PjdzYP4YuSPCGEcIDERp3yCoUCRUVFhvvFxcUIDGy450Fubi5SUlIA6Iepb926FRKJBI8++qihzNtvv22TeCjJE0JaPGta8pYkJCQgLy8PBQUFCAoKQmZmJtasWdOgTEFBgeH/U6dOxYgRIxokeAAYOXKk2bH7mzZt4hUPJXlCCAFstmmIRCLB0qVLMXToUGi1WkybNg0RERFIT08HAMyYMYNXPS+99BIAYMOGDbhy5YphUbK1a9ciJCSEfzzWhU8IIe7JlhNehw8fjuHDhzd4zFRyv7NL3t0eeOABAMCbb76JPXv2GB4fOXIkBg4cyDsWGkJJCGnxOOiTIZ+bo5WWluLChQuG+wUFBVZtlEIteUII4WzXXWNrixcvxqBBgxAaGgoAKCwsNOyKxQcleUJIi6ef8SrMJD9s2DDk5eXh7NmzAICePXtCLpfzPp66awghBLdH2PC4OVp8fDyWLVuG4OBg9O7d26oED1CSJ4QQALZb1sDWMjMzUVJSgoSEBKSkpGD79u1WbcNKSZ4QQsAZdl+ydHO0sLAwzJs3D+fPn8eECRMwbdo0BAcH4+2338aNGzcsHk9JnhDS4gl5dA0AnDx5Ei+++CLmzJmDMWPGYN26dWjdujUGDx5s8Vi68EoIIRDuhde4uDi0bdsWqampWLBggaFPvm/fvti3b5/F4ynJE0IIJ9zt/77//nvD8ElAvw59ZmYmJk6ciA0bNlg83mndNVqtFn369MGIESOcFQIhhAAQZnfNrVu3MH/+fHzyySfYsWMHGGP47LPPEBoaiu+++453PU5ryS9ZsgTh4eG4deuWs0IghBADobXkJ0+ejHbt2qFfv3744osvsGjRIqhUKmRlZSEmJoZ3PU5J8sXFxdiyZQvmzp1rWBifEEKcSVgpHrhw4QJ+//13AMD06dPRoUMHXLp0qcEuUXw4pbvmhRdewKJFiyASGX/5Ozuv3LlZM4WXEOL+MjIyDPnBmnVczBHaOHmpVGr4v1gsRpcuXaxO8IATWvKbN2+Gv78/4uLisHv3bqNlLO28Qghp2epvuVd/K76m4gCIBdZdc+LECbRu3RqAfrep2tpatG7dGowxcBzHu6vb4Ul+37592LRpE7Zu3Yq6ujrcunULkyZNwjfffOPoUAgh5DYOnMA6bLRarU3qcXh3zfz581FcXIzCwkJkZmZi8ODBlOAJIU4ntO4aW6Fx8oSQFk8/hNIFMzgPTk3ygwYNwqBBg5wZAiGE3J4M5ewg7INa8oQQAuEua9BclOQJIS2eftMQZ0dhH5TkCSEEENzoGluhJE8IIaA+eUIIcWvUkieEEDdFffKEEOLOOI5G1xBCiDtzzxRPSZ4QQm5317hnmqckTwghoJY8IYS4NzfN8pTkCSEE1F1DCCFuzT1TPCV5QgjRc9MsT0meENLicaAZr4QQ4r7ceD15h2//RwghQsTxvPGRnZ2NHj16ICwsDAsWLGj0/OrVqxEdHY3o6Gj0798fJ06csMk5GEMteUIIAQfORk15rVaLWbNmYceOHVAoFEhISEBycjJ69eplKNOlSxf88ssvaNeuHbZt24a0tDQcPHjQJq9/N2rJE0IIbLeR96FDhxAWFobQ0FDIZDKkpKQgKyurQZn+/fujXbt2AIDExEQUFxfb45QAUJInhBDeXTV82volJSXo1KmT4b5CoUBJSYnJ8suWLcMjjzzS5NgtcXiSLyoqwoMPPojw8HBERERgyZIljg6BEEIa45nlS0tLER8fb7hlZGQ0qIYx1rhqE18Bdu3ahWXLlmHhwoW2PJMGHN4nL5FI8PHHHyM2NhaVlZWIi4tDUlJSg/4qQghxNL5DKP38/JCbm2vyeYVCgaKiIsP94uJiBAYGNip38uRJTJ8+Hdu2bYOvr6/1AfPk8JZ8QEAAYmNjAQA+Pj4IDw83+1WGEEIcwVZ98gkJCcjLy0NBQQFUKhUyMzORnJzcoMylS5cwevRofP311+jevbudzkjPqaNrCgsLcezYMfTt29eZYRBCWjobjpOXSCRYunQphg4dCq1Wi2nTpiEiIgLp6ekAgBkzZuDdd9/F9evX8cwzzxiOMfftoDk4ZqwDyQGqqqrwwAMPYO7cuRg9enSD5zp37gw/Pz/D/bS0NKSlpTk6REKIQGVkZBj6wktLS3Hx4sVm1RfROxbfbf2VV9kpox6wW0K2B6e05NVqNcaMGYOJEyc2SvCA5T4vQkjLVr/hFx8f3+z6OLjvjFeHJ3nGGFJTUxEeHo5///vfjn55Qggxyk1zvOMvvO7btw9ff/01cnJyEBMTg5iYGGzdutXRYRBCSEO2XNdAQBzekh8wYIDRcaSEEOJMtGkIIYS4MfdM8ZTkCSFEz02zPCV5QkiLR5uGEEKIO3PjTUMoyRNCCNy2t4aSPCGE2HLTEKGhJE8IIaDuGkIIcVsuOs+JF0ryhBACuG2WpyRPCCGgIZSEEOLWqE+eEELcFQeIKMkTQog7c88sT0meENLi0aYhhBDi5tw0x7tuki8pvYVlPxzCwT+KcLNKCS8PKboHd8DTj92L3t0CnB0esRGtjkGtZdDpAAb9G1EsAqQSzm3X/25ptFodth/IwzfZx3ClrBJarQ6+bbzwjwE9kTKkN7w9ZQ6Jw13/nFwuyR/6owjvf5WDPccKAcagVGsNz/128iLWbj+BkMB2eGXKA3j8oSi3narszhhj0OgApYbB2P4yWi2g0jKIOQa5lIPYXa+YubmaOhU++/Y3LP1uP+rUGlTVqBo8v+d4IV7+bBsmDI3BK1MegMK/jV3jcddc4VJJfuXmI5i9eAtqlWqjz2t1DDVKNU4XXMPMBT/g50N/4vOXR0EiETs4UtJUjDHUqfVJ3hItA2pUDHIJg0zi8J0sSTOUlldj2PNf4ULxDdSpNEbLVNfqk/6KzUewPucUtvxnKvr0CLRbTO6Z4p2wx2tTrd1+3GyCv1tNnRrrd57CzIVZtN2gi7Amwden1AAqaw8iTlNZo8TgZ75A3qUykwm+Po1Wh/LKWgz51zKcLbxml5g4jv/N1bhEks8vvo5ZizbxTvB31CjV2LDrFNZuP2GnyIgtqbXWJ/g7lBpAp6MPc1cwc8EPKLpaAbWVv+zqWjVGzF4JrdY+H+gcz3+uxiWS/NLv9kOj1Rp9TnP1BJQnV0B5cgV0VZcbPV9Tp8b8FbupNS9wjDGYatTdunULDw8agOFDBmPQgETs3rXTaDmVln7HQnetvAqb956FUmX8/ayrugzVH6uh+v1rqAsb/p4ZY7hZVYcdh/60T3Acz5uLcUqSz87ORo8ePRAWFoYFCxaYLVtTp8KqrUeNfuozTS20lw9DFjkZ0u6joL6w3Wgdf5XdQu6ZEpvETuxDx/SjZ4xp1aoVsn/eja0/5WD512vw9huvGy2n1oI+zAXuyx8Om+zyYDotNIU5kPYYC1nUZEhDHmpUpqpWhU9W/2qX2Nw0xzs+yWu1WsyaNQvbtm3D6dOnsXbtWpw+fdpk+U17zkBkYvSErvIviFp3AicSQ+TRDtCpwXSNm4N1Sg3S1x+w2TkQ21NpTCdnkUgEiUQ/RqDy1i1ERkWZLEtd88KWsfEQ6pTGv7KxymJALIP6/A9QnfoaupuXjJY7dLoYl8sqbRyZfkgun5urcXiSP3ToEMLCwhAaGgqZTIaUlBRkZWWZLH/xcjlq6kz0xWtqAYnH3/fFcv1jd9Exhryi680NndiRpe70v0pKMGTwQDw6chhGJD/a5HqI8zDGcK282vTzqkqw6quQdn8U0m6joM7fYvSbmVwqRtHVCpvGdmfGqzteeHX4EMqSkhJ06tTJcF+hUODgwYMNypSWliI+Ph4AcEXSHTpJV+OVSTwBjfLv+1ql/jEj7h6DS4TFUm4ODArCTzl7cPFiIf4xZDAeGT7CeD3szpQpIjRKlQYcB6NzHwAAEk9wrRXgJHJAIte/l9U1gMy7UdHv1m3EM1NWAdDnC2Kaw1vyxj6Z756E4Ofnh9zcXOTm5uL5WTNMTnYR+QRCd6sITKcFU94ERFJwIuOfW61byZsfPLEbc2lZqfz7g9zHpzVa+fiYLOuKX6dbCrlMYvb3LPIJAqu9AcZ0YBqlPsFLjTfaxj8xxpAj/Pz8bBIfteRtRKFQoKioyHC/uLgYgYGmJzj06uIPTw+p0ZY4J/GEOCAOqlNfAwCkXYYYrUMqESHWjpMoSPOJRYDO+IALnP7jFF57+UWIxWKo1Wos+PATk/XQ5Ffh4jgOnQPa4ULJDePPSzwgCYiH6vdVANNBEjIYHNe4HapSa9ElsJ3t43PTb4AOT/IJCQnIy8tDQUEBgoKCkJmZiTVr1pgsPzSxG2RmZqxK7omB5J4Ys68pFokwc0xiU0MmDiATc1CbGALZJzYO2T/v5lWP2CUGBbdcz6fch9c/z0Z1rfHrbGL/aIj9o00eL+I4DOvfHe1be9k2MBdtpfPh8LeERCLB0qVLMXToUISHh2PcuHGIiIgwU16MZx5PhIes6Z9H0d06oltwhyYfT+xPJOKa3QqXid13/RF3MX5ob+iaMQLKUy7BCykDbBfQbe584dUp7Z7hw4fj/PnzyM/Px9y5cy2Wnz7qXkilTVt/xlMuxVvTG4+3JcIjlzTvHSRt5vHE/ny85Eh7LAFeHlKrj5VKROje2Q/3RijsEBnNeHWqe9q3wsZFk+Ept+4Pw8tDitefGoSHEsLsExixKYmYg6yJa8l5ylxzDHNL9P6MIegb0Qmecv7fziViEXzbeCProyft9m2NWvJOdl/vztj0yZPw8ZJBbqFVLxZx8JRL8X9pD+OlSQMdFGFDGRkZTnldU4QWD2A8JrlUZHWi95RxkNjgiqvQfkZCiwewTUwSiRgbP5yMh+/txmuteC8PKboEtsNvy2bCr13D4ZS2/BnZcsarpVn9jDE899xzCAsLQ3R0NI4ePWqTczDGZZI8AAzoHYLja57H8yn3oU0rD7TyavgH4uUhhYdMgscfjsKu9Kfxr3H9nRSp8N6gQosHMB2TXCqCl4yDpdWDpWLAW26bBG8uHmcRWjyA7WKSyyTInJeCFW+PRf/oYHjIJJDVa7yJRBy8byf3Rf96BAeWP4OADo2Hztr0Z2SjLM9nVv+2bduQl5eHvLw8ZGRkYObMmbY7j7u41HryABDYoTXe+WcS3kgdjB9/PYNT+VdQVlGDjesy8fazszFmcCTatTY+tpa4DrGIg6eMA2MMaq1+1nL95yQiusjq6kQiEUYMCMeIAeHIL76OrD1ncPV6JdQaLfzbtcIDcaFIjOzkkN8zB9vNsag/qx+AYVZ/r169DGWysrLw5JP6rqfExERUVFTg8uXLCAiw/a52gkzyhYWFhhmvfIlKS5H+/nmkv2+noKxUf9auEAgtHkB4MVE8ljkypnU8ypSWlqK62vRSCXz5+XXAgER+51VbW9vgZ5CWloa0tDTDfT6z+o2VKSkpaTlJvqyszNkhEEJakOzsbJvVxWdWP58ytuJSffKEECJ0fGb1WzvzvzkoyRNCiA3Vn9WvUqmQmZmJ5OTkBmWSk5OxatUqMMZw4MABtGnTxi5dNYAbJHlrNiBxhKKiIjz44IMIDw9HREQElixZ4uyQAOiv+Pfp0wcjRhhfvdGRKioqMHbsWPTs2RPh4eHYv3+/U+NZvHgxIiIiEBkZifHjx6Ours7hMUybNg3+/v6IjIw0PHbjxg0kJSWhW7duSEpKQnl5uVPjmTNnDnr27Ino6Gg89thjqKiocFg8pmK646OPPgLHcYLo6jU1qz89PR3p6ekA9BNCQ0NDERYWhqeffhqff/65/QJiLkyj0bDQ0FCWn5/PlEoli46OZn/88YdTY/rrr7/YkSNHGGOM3bp1i3Xr1s3pMTHG2Mcff8zGjx/P/vGPfzg7FPbkk0+yL774gjHGmFKpZOXl5U6Lpbi4mIWEhLCamhrGGGOPP/44W758ucPj+OWXX9iRI0dYRESE4bE5c+aw+fPnM8YYmz9/Pnv55ZedGs/27duZWq1mjDH28ssvOzQeUzExxtilS5fYkCFDWHBwMCstLXVoTK7ApVvy1m5A4ggBAQGIjY0FAPj4+CA8PBwlJc7derC4uBhbtmzB9OnTnRoHoN+vdc+ePUhNTQUAyGQytG3b1qkxaTQa1NbWQqPRoKamxm59o+YMHDgQ7du3b/BYVlYWpkyZAgCYMmUKfvjhB6fGM2TIEMMOXYmJiSguLnZYPKZiAoDZs2dj0aJFNKTWBJdO8qaGIQlFYWEhjh07hr59+zo1jhdeeAGLFi2CSOT8X/eFCxfg5+eHp556Cn369MH06dNtMgSuqYKCgvDSSy8hODgYAQEBaNOmDYYMMb5ktaNdvXrV0E8bEBCAa9euOTmiv3311Vd45JFHnB0GNm3ahKCgIPTu3dvZoQiW89/1zcAcOAzJWlVVVRgzZgz+85//oHXr1k6LY/PmzfD390dcXJzTYqhPo9Hg6NGjmDlzJo4dOwZvb2+nXkspLy9HVlYWCgoK8Ndff6G6uhrffPON0+JxBfPmzYNEIsHEiROdGkdNTQ3mzZuHd99916lxCJ1LJ3lHDkOyhlqtxpgxYzBx4kSMHj3aqbHs27cPmzZtQkhICFJSUpCTk4NJkyY5LR6FQgGFQmH4djN27Fi7rtthyc8//4wuXbrAz88PUqkUo0ePxm+//ea0eOq75557cPnyZQDA5cuX4e/v7+SIgJUrV2Lz5s1YvXq10xtU+fn5KCgoQO/evRESEoLi4mLExsbiypUrTo1LaFw6yfMZquRojDGkpqYiPDwc//73v50aCwDMnz8fxcXFKCwsRGZmJgYPHuzUlmrHjh3RqVMnnDt3DgCwc+fOBtO9HS04OBgHDhxATU0NGGPYuXMnwsPDnRZPfcnJyVi5ciUAfXIdNWqUU+PJzs7GwoULsWnTJnh52XjTjiaIiorCtWvXUFhYiMLCQigUChw9ehQdO3Z0dmjC4uQLv822ZcsW1q1bNxYaGsref/99Z4fDfv31VwaARUVFsd69e7PevXuzLVu2ODssxhhju3btEsTommPHjrG4uDgWFRXFRo0axW7cuOHUeN566y3Wo0cPFhERwSZNmsTq6uocHkNKSgrr2LEjk0gkLCgoiH355ZesrKyMDR48mIWFhbHBgwez69evOzWerl27MoVCYfi7/uc//+mweEzFVF/nzp1pdI0RHGMm904nhBDi4ly6u4YQQoh5lOQJIcSNUZInhBA3RkmeEELcGCV5QghxY5TkiaAUFhbC09MTMTExNqmvtrYWMTExkMlkglihkBBHoyRPBKdr1644fvy4Tery9PTE8ePHBTETmhBnoCRPHObw4cOIjo5GXV0dqqurERERgVOnTpk9prCwsMH64R999BH+7//+DwAwaNAgzJ49GwMHDkR4eDgOHz6M0aNHo1u3bnjjjTfseSqEuAxB7vFK3FNCQgKSk5PxxhtvoLa2FpMmTTK6AYQ1ZDIZ9uzZgyVLlmDUqFE4cuQI2rdvj65du2L27Nnw9fW1UfSEuCZK8sSh3nrrLSQkJMDDwwOffvpps+u7s1ZRVFQUIiIiDEvzhoaGoqioiJI8afGou4Y41I0bN1BVVYXKykre2+zVX3lDrVY3eE4ulwMARCKR4f937ms0GhtETIhroyRPHCotLQ3vvfceJk6ciFdeeYXXMRcvXkRpaSl0Oh327NkDrVZr5ygJcR+U5InDrFq1ChKJBBMmTMCrr76Kw4cPIycnx+Jxvr6+ePLJJxEXF4fIyEisWrUK+fn5DoiYENdHq1ASQSksLMSIESMMo27uvt9UISEhyM3NRYcOHWwRJiEug1ryRFDEYjFu3rxp88lQarVaEHvcEuJo1JInhBA3Rk0bQghxY5TkCSHEjVGSJ4QQN0ZJnhBC3BgleUIIcWOU5AkhxI39f8s4oUI7bUO3AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_avg_density_2D(get_avg_density(result_blockade), register)" + ] + }, + { + "cell_type": "markdown", + "id": "4f058f7d", + "metadata": {}, + "source": [ + "In order to quantify the difference in the final average Rydberg densities from the two simulations, we can calculate the root-mean-square difference (RMS) defined as \n", + "\\begin{align}\n", + "\\text{RMS} = \\sqrt{\\frac{1}{N}\\sum_{i=1}^N(\\bar{n}_i^\\text{full}-\\bar{n}_i^\\text{blockade})^2}.\n", + "\\end{align}\n", + "Here $\\bar{n}_i^\\text{full}$ and $\\bar{n}_i^\\text{blockade}$ are the final Rydberg density at the $i$-th site for the simulation with the full Hamiltonian and the effective Hamiltonian respectively." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "cf902009", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The RMS_blockade for the final Rydberg densities = 0.016931233465600392\n" + ] + } + ], + "source": [ + "n_full = get_avg_density(result_full)\n", + "n_blockade = get_avg_density(result_blockade)\n", + "\n", + "RMS_blockade = np.sqrt(np.mean((np.array(n_full)-np.array(n_blockade))**2))\n", + "print(f\"The RMS_blockade for the final Rydberg densities = {RMS_blockade}\")" + ] + }, + { + "cell_type": "markdown", + "id": "b5663c2d", + "metadata": {}, + "source": [ + "Since the RMS is only around 1%, we are assured that the simulation with the effective Hamiltonian of smaller size gives quantitatively the same results as the one with the full Hamiltonian." + ] + }, + { + "cell_type": "markdown", + "id": "1a7270af", + "metadata": {}, + "source": [ + "## Tuning other parameters in the local simulator\n", + "\n", + "Another way to speed up the simulation, without using the blockade approximation, is to adjust other parameters of the local simulator, such as `steps`, the number of time points in the simulation. Previously, we have set `steps=100`, but it can be adjusted to be `40` as shown below. We expect that the less time point used in the simulation, the faster it will finish." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "49b3b95a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The elapsed time = 2.462913990020752 seconds\n" + ] + } + ], + "source": [ + "start_time = time.time()\n", + "result_reduced_nsteps = device.run(ahs_program, shots=1000, steps=40).result()\n", + "print(f\"The elapsed time = {time.time()-start_time} seconds\")" + ] + }, + { + "cell_type": "markdown", + "id": "61267635", + "metadata": {}, + "source": [ + "This indeed speed up the simulation as expected. We can confirm that the simulation produces result that is close to our expectation. " + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "32ad6d32", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAEHCAYAAABLKzaMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA4lklEQVR4nO3deVzU1f4/8NdnNjZBEyGBARVBRRaRRc28ZhZqXMVCM1xSUyPLbmlm+3JbzOVbek0rf5SZVsL1moa5kCguqbngbm6EoIAbKij7bOf3x8TEyAzzGZjlM8P76WMeD2fmfM7nPQzz5sz5nIVjjDEQQghxSiJ7B0AIIcR6KMkTQogToyRPCCFOjJI8IYQ4MUryhBDixCjJE0KIE6MkTwghFjRlyhT4+voiIiLC4POMMbz00ksICQlBVFQUjh49atV4rJbkm3qhn376KTiOw82bN611ekIIsYvJkycjKyvL6PNbt25FXl4e8vLykJaWhueff96q8VgtyRt7oUVFRcjOzkZQUJC1Tk0IIXYzcOBAtG/f3ujzmZmZmDhxIjiOQ79+/VBeXo6rV69aLR6rJXljL3TWrFlYuHAhOI6z1qkJIUSwSkpKEBgYqLsvl8tRUlJitfNJrFazARs3bkRAQAB69erVZLkOHTqgc+fOJuurVahQU6eCWqNBVWUlvNu3Qxs3mYWibZnS0lL4+PjYOwwdocUD8I+JNfwPB1ireSC0n5HQ4gGsF5OGMVRUK6BSa8AYIBFz8HCVQSppuh1aWlqKqqqqFnf9ir06galqeJUN6+IDNzc33f3U1FSkpqbyPpehlWSs2ei1WZKvrq7G3LlzsW3bNpNlPTw89O43/CHWKVT4ee8FfJZxAFdKbkMsEkGt0aCupgbw8ECtqxQvj47HxGG94N3WzVD1NhEXF4fc3Fy7nf9eQosHaDomxhgUKgalukGSb0DEATIJB4nIch8Qof2MhBYPYPmYLhTdxhc/H8UP2achFoug0TAwxiAWi3BTqcajsZ0xc3Q8HowI0Huf09LSkJaWhps3b6JDhw4tjoOpauHSI4VXWTfR/hb9DORyOYqKinT3i4uL4e/v3+z6TLFZks/Pz0dBQYGuFV9cXIyYmBgcOnQIHTt21Cvr4+Nj8Id48UoZhryyBneqalFZo9R/UiRFZY0ClTUKfLR6L+Z+vw8/vvc4hvbparXXRKxDpWaoUTa9bp6GAbVKBg6AuwwQiaj7z5EwxvDhqn34z0+5UKs1UKo1BsttOZiPXccvo394ADLeGwl3VymAvxt+cXFxlgmIAyASW6YuE5KSkrBs2TKkpKTg4MGDaNu2Lfz8/Kx2Ppsl+cjISNy4cUN3v3PnzsjNzeX9V/jP4tsY8OIqVFQpoDGxcGZNnQoAMPaDDVj55giMHNC9+YETm1KqNKhV8S/PAFQpGDwo0TsMxhheWroda7b/gVpF0282Y0BVrRK/nSrCI7PTkbNoLNxcpNYJjO83QhPr9o4dOxa7du3CzZs3IZfL8cEHH0Cp1DZKp0+fjsTERGzZsgUhISFwd3fHypUrWxh406yW5A290KlTpzarrorqOgyZvYZXgm+opk6FZ+b9gpz/tEV0aEfTB1iQOX10tiC0eIDGMak1zKwE31C1gsHDpWVdN0L7GQktHsAyMX2ZeQxrdvyB6jr+b3atQo3zl29j0vzNWPv+43rxpKWltTgm7cUenuNQTKSg9PT0ps/Ecfjiiy94xtVynBDXk7+332/5z0fw9je7UF2rbOIowzgOGNqnKzbMfdKSIRIrqK7TQN2C30YXCSAzcaGO2JdCqUbgU1/gbpWiWce7yiT4/Yun0SPIW/eYJa4TiDw6wiXiaV5lw9U7BXetpCk2HV3THIwxLFp70GCC11RcgfL8RoDjwHEiSMJGQeTW/p7jgZ1HC3H1ViX8vNvYKmxiJg1jTSZ43/s8EBffFwCQMm48Jk5u/K1QoQKkYkbDcwUsc18eNBrjb7Ty7AZo7hYDTANJp4EQ+/XWe16lVmPZhiNY9vIQywbGgX9L3sEI/lXtO1WE23cND23iZJ6QRT8Dl9jnIA76B1QXsw2X44BvfjlmzTBJCylVTTfh/fwDsGVbDrZsyzGY4AHtt+iWfBMg1vfZ2kONB038RVNxDazyOlz6/guyuOeg+rPxZEqVmiF9xxlU1Tbvm4BxnDZR8Lk5GMEn+UNnr6JOqTb4HOfiCU7ior0jkoDjDF8dr1Wosev4JWuFSCxAZXhwhc6N69fwWMLDGP/UKFy6VGi0nMZEPcS+/ig0Pp6dc/UCRGIwjRpQ1QFSd4PlxGIR8orLLB+cSMzv5mAE311TVlEDlZHhVfWYWgFV/q+Qho02Wqa8stbSoREbOn3uIrw7dMD27F/x4vRn8ctWw9/atBfmHa+11RrUKVRND5yQuIFz7wDF3gVgagWk4YY/zxwH3Kmss3B0Zlx4dTCCf1VuLpImvyExjRrKU2sg6TwIojb3Gy3nKhP83zPSBO+/hto+mjAUly8b/1ZG/fHCJZWIDc72rKe5dQGs7g5k/3gDLgNegyovC0xjeASOTGrhFjUH6q6xFz9vT6PjYhnTQPnHfyHyCYfYJ7zJeuQ+XtYIj1hIU5+dyspKqNXaLrvTp07C29v43ArB/0K3YiIRBy93lybLcBJ3cJwIELsATA2wxt/ilUoN/Lw9DBzdQpyI383BCL55O3JAN7yyzPBSCJobf0Bz6zyYohLqa8cgatMR0u5Jjcq1cZNi2vBoK0dKWkIm5lBjZNTFubNnMPNfz6NNG09wHIcly74yWo/E8bpMW5Xxj4bj683HoTRwEUbkHQr1tWOoO/QFoFFBHPggOHHjtaiC/duhc8d2Fo7MebtrBJ/k23u5YXj/bli/51yjoVfi+yMhvj/SZB0erjI8EtvFWiESCxCLtN+YDaX5uPg+2HvgiMk6LLmODbGOGY/H4NutJ2BofA3HiSCLaHr9mDZuUsx+qo/lA+MAiJ2zheAQf7pmjekLl2b2wbm5SPDyk31oyrvAcRyHlnazyiT0HgtdsH87xHf3g7iZn0eRiEPygG4Wjuov1CdvPzHdOmLWmL5wN3PNChepGDHd/PBisoUWMSJWJZNwEDfzMyQTo9mJg9jWyjf+iXZtXMzOl24uEvzv/cfhYpVBFJzT9sk7TMTvTByAacOj4e7C7w12c5Ggd2hHbJg7GlLqqHUIHMfBTcbB3FwtFVMr3pEEdPDE9s/GwtvLDRKef9XdXCRY9cZwDOxlxR3lqCVvXxzHYcHzj2DpzGEI9PWCh6vU4M+7jZsMXu4y/Cs5HtsWjYOniav5RFg4joO7jF/XDQftejWuUhH1xTuYHkHeOPTVJIzoHwpXmRhuBhpvUokIrjIJ+vX0R/anKRjRP8S6QTlpS17wF17vNS4hAmMfDce+U0VYvPYQTuRfR1WNAq4yCQJ92+LFUXF4fEB3y4+jJTbDcRxcpRxcJAwqDaBQMTCm2xgKItHfXTuU3B2Xn3cbrHknCbfu1uC7rFP4fttp3K6ohVqtgae7DI/1CcaMJ2IREnCf9YNx0FY6Hw6X5AHtB3tAVBAGRNFm4M6s/mKstLkd9cQheHu5YfaYPpg9xgqjZszhgEsW8OGQSZ4QQiyLxskTQohzo+4aQghxUk68njwleUIIoe4aQghxcnThlRBCnBj1yRNCiJPinLe7xmqvasqUKfD19UVERITusTlz5qBHjx6IiorCE088gfLycmudnhBCzEPLGphn8uTJyMrS34g3ISEBp0+fxsmTJ9GtWzfMmzfPWqcnhBCzcBzH6+ZorJbkBw4ciPbt2+s9NmTIEEgk2h6ifv36obi42FqnJ4QQ3rS7/zlnkrdbn/y3336Lp556yuBzpaWliIv7e3ng1NRUpKam2io0QojApaWlIS0tDYA2X7QYx4Fz0qWq7ZLk586dC4lEgvHjxxt83sfHB7m5uTaOihDiKBo2/Bo2CFvCEVvpfNg8ya9atQqbNm3Cjh07nPaHSghxPM6aj2ya5LOysrBgwQLs3r0b7u7utjw1IYQ0yVmTvNUuvI4dOxYPPPAAzp8/D7lcjhUrVuDFF19ERUUFEhISEB0djenTp1vr9IQQwh9nxs3BWK0ln56e3uixqVOnWut0hBDSbBwcc+QMHzTjlRBCAIhEzjnjlZI8IYTAefvkKckTQoiD9rfzQUmeEELgvC155+yEIoQQM9RfeLXUsgZZWVno3r07QkJCMH/+/EbP37lzByNGjECvXr0QHh6OlStXWvol6VCSJ4QQAJyI43UzRa1WY8aMGdi6dSvOnDmD9PR0nDlzRq/MF198gZ49e+LEiRPYtWsXZs+eDYVCYZXXRUmeEEI4yy1QdujQIYSEhCA4OBgymQwpKSnIzMzUPx3HoaKiAowxVFZWon379rrFGy2N+uQJIQT8++RNLaBYUlKCwMBA3X25XI6DBw/q1fHiiy8iKSkJ/v7+qKiowH//+1+rDeGkJE8IIeCf5E0toMgYM1n3r7/+iujoaOTk5CA/Px8JCQn4xz/+AS8vL/OC5oG6awghrZ4lL7zK5XIUFRXp7hcXF8Pf31+vzMqVK5GcnAyO4xASEoIuXbrg3LlzFn9dACV5QgjRstDaNfHx8cjLy0NBQQEUCgUyMjKQlJSkVyYoKAg7duwAAFy/fh3nz59HcHCwBV/M36i7hhBCOMstayCRSLBs2TIMHToUarUaU6ZMQXh4OJYvXw4AmD59Ot59911MnjwZkZGRYIxhwYIF6NChg0XO3ygeq9RKCCEOxpKToRITE5GYmKj3WMNVd/39/bFt2zaLna8plOQJIQSgZQ0IIcSZOeuyBpTkCSGtnjlLFjgaSvKEEAJqyRNCiFPjsy6NI6IkTwghoJY8IYQ4L855k7zVZrxOmTIFvr6+iIiI0D12+/ZtJCQkIDQ0FAkJCSgrK7PW6QkhhDcOAMfxuzkaqyX5yZMnIysrS++x+fPn45FHHkFeXh4eeeQRg4vpE0KI7Vl20xAhsVqSHzhwINq3b6/3WGZmJiZNmgQAmDRpEn7++WdrnZ4QQswiEnG8bo7Gpn3y169fh5+fHwDAz88PN27csOXpCSHEMAftiuFDkBdeTS3KTwhp3dLS0pCWlgZAmy9aigMcspXOh02T/P3334+rV6/Cz88PV69eha+vr8FyphblJ4S0bg0bfg0bhC3hrC15m64nn5SUhFWrVgEAVq1ahZEjR9ry9IQQYhRdeDXT2LFj8cADD+D8+fOQy+VYsWIF3njjDWRnZyM0NBTZ2dl44403rHV6Qgjhj+fwSQfM8dbrrklPTzf4eP1uKIQQIhQcOKttpG1vgrzwSgghtuaIrXQ+KMkTQgicd1kDSvKEEOKg/e18OGcnFCGEmEG7do0wR9ecPn26RcdTkieEEAh3dM306dPRp08ffPnllygvLzf7eEryhBAC4a5ds3fvXvz4448oKipCXFwcxo0bh+zsbN7HU588IYQIfD350NBQfPzxx4iLi8NLL72EY8eOgTGGTz75BMnJyU0eSy15QkirJ+T15E+ePIlZs2YhLCwMOTk5+OWXX3D27Fnk5ORg1qxZJo+nljwhhEC4Sxa8+OKLePbZZ/HJJ5/Azc1N97i/vz8+/vhjk8dTS54QQiDclnxycjKefvppvQS/ZMkSAMDTTz9t8nhK8oQQwgn3wuvq1asbPfbdd9/xPp66awghrV79OHkhSU9Px5o1a1BQUICkpCTd4xUVFfD29uZdDyV5QgiB8JJ8//794efnh5s3b2L27Nm6xz09PREVFcW7HkryhBAC4S1r0KlTJ3Tq1Am///57i+qhJE8IIRBeS37AgAHYu3cvPD099WJjjIHjONy9e5dXPZTkCSFEgAuU7d27F4C2D74laHQNIaTV024aIszRNfn5+airqwMA7Nq1C59//rlZa9hQkieEEAAijuN1s7VRo0ZBLBbjzz//xNSpU1FQUIBx48bxPp6SPCGEwLKTobKystC9e3eEhIRg/vz5Bsvs2rUL0dHRCA8Px0MPPWS0LpFIBIlEgg0bNmDmzJlYvHgxrl69yvt1UZ88IaTV4yy4QJlarcaMGTOQnZ0NuVyO+Ph4JCUloWfPnroy5eXleOGFF5CVlYWgoCDcuHHDaH1SqRTp6elYtWoVfvnlFwCAUqnkHQ+15AkhBICI43cz5dChQwgJCUFwcDBkMhlSUlKQmZmpV2bNmjVITk5GUFAQAMDX19dofStXrsTvv/+Ot99+G126dEFBQQEmTJjA/3XxLmlBixcvRnh4OCIiIjB27FjU1tbaIwxCCNGx1IXXkpISBAYG6u7L5XKUlJTolblw4QLKysowaNAgxMbGGly6oF7Pnj3x+eefY+zYsQCALl264I033uD/uniXtJCSkhJ8/vnnyM3NxenTp6FWq5GRkWHrMAghRIeDdoQNn3+lpaWIi4vT3dLS0vTqYow1rv+eriCVSoUjR45g8+bN+PXXX/HRRx/hwoULBmPbt28fEhIS0K1bNwQHB6NLly4IDg7m/drs0ievUqlQU1MDqVSK6upq+Pv72yMMQgjR4Ts60sfHB7m5uUafl8vlKCoq0t0vLi5ulOPkcjk6dOgADw8PeHh4YODAgThx4gS6devWqL6pU6di8eLFiI2NhVgs5hdkAzZvyQcEBODVV19FUFAQ/Pz80LZtWwwZMkSvjKm/lISQ1i0tLU2XH0pLS1teIc9NvPlcnI2Pj0deXh4KCgqgUCiQkZGht8AYAIwcORK//fYbVCoVqqurcfDgQYSFhRmsr23btnjsscfg6+sLb29v3Y0vm7fky8rKkJmZiYKCArRr1w5PPvkkfvjhB70LCab+UhJCWrfU1FSkpqYCAOLi4ixSp6WGwEskEixbtgxDhw6FWq3GlClTEB4ejuXLlwPQbswdFhaGYcOGISoqCiKRCNOmTUNERITB+h5++GHMmTMHycnJcHFx0T0eExPDL56WvyTzbN++HV26dIGPjw8A7YL4+/fvN+tqMSGEWBIHWHSiU2JiIhITE/Uemz59ut79OXPmYM6cOSbrOnjwIADoNXw5jkNOTg6vWGye5IOCgnDgwAFUV1fDzc0NO3bssNhfYkIIaS57LFnAx86dO1t0vNEkf/v2bZMHi0QitGvXzqwT9u3bF6NHj0ZMTAwkEgl69+6t+9pFCCH2YK+t/fi4fv063nrrLVy5cgVbt27FmTNn8Pvvv2Pq1Km8jjea5P39/eHv729wOFA9tVqNy5cvmx30Bx98gA8++MDs4wghxFrssS4NH5MnT8YzzzyDuXPnAgC6deuGp556quVJPiwsDMeOHWvy4N69e5sRKiGECJcwUzxw8+ZNjBkzBvPmzQOgvbBrzlBKo0mez24kLd2xhBBChEJom4bU8/DwwK1bt3TxHThwAG3btuV9vNEk7+rqqvt/WVkZioqKoFKpdI/FxMTolSGEEEelHV1j7ygMW7RoEZKSkpCfn48HH3wQpaWlWLduHe/jTY6ueffdd/Hdd9+ha9euur8k5gzfIYQQwePssyEIHzExMdi9ezfOnz8Pxhi6d+8OqVTK+3iTSX7t2rXIz8+HTCZrUaCWxhiDWgOoNQDDX3+JRYBEJNyvXcR85VUKbD5+FZdvVaOyVoX2bWQI8/fCoxH3QyahRVSdhUbDoNT8ve4Lx3EQiwCxBZcANkWIeePWrVtYs2YNzp07B0B7rdTf3x/t27fnXYfJJB8REYHy8vIml8K0JQ1jUKoApcbQk0AdALGIQSYGxAL9y0xM+6P4Dv5fTj62nboOEcehRqnWPefhIoaI4zDhwU6Y9I/OuL8tdRs6ovqGWp2aQdNoEB8D1NrGm0zMIBXzW1KguYTYXXP27FkMHjwYQ4cORe/evcEYw+HDh/HJJ58gJycHPXr04FWPyST/5ptvonfv3oiIiNCbUrtx48bmR99Mag1DDY+18tUaoEaj/eWQSQT2zhGT0nbmY/HWC1CoNAY+/EBVnTbhr9hdgO/3XsKKZ+PRpyv/lg2xP8YYalTaJN9kOQB1akChZnCXWXeYo9Ba8u+++y6WLFmCMWPG6D3+008/4e2338ZPP/3Eqx6TSX7SpEl4/fXXERkZCZHIfl+P+Sb4hhRqAKBE70i+3P4nlm37E7UGv6rpU6g0UKg0mPz/DmH19D6IC6ZE7wgYY6hRMqiNT8FpfAyAaoV1E73QssSpU6cMXmAdNWoU3nrrLd71mEzyHTp0wEsvvWRedBamYeYn+HoKNSASMUiE9l2MNLL7XCmWbvsTtQ26ZvioUarxzNeHsfOtQejg6WL6AGJXdSrzEnw9BqBGyeAutXyrm+OE173r4eHRrOfuZTLJx8bG4s0330RSUlKzVkCzhKY+848PH4bjx4/ihRkv4bU33zFYRqECJMK6bkwMWLTlfJMJXllWgpLvX0DHUZ/ANSBc/zm1Bmv2X8ZLQ0OtHSZpAcaY4etpAM6dPYNXXnoRAFCnqMOfeRdw6Yr+MsIapr2JrZCPhdZdc+PGDSxatKjR44wxs5ZXNpnk62e9HjhwQPeYLYdQMsaaTPJfLP8GO3O240pJsdEyGqa9ei/UIVIE+PN6BS5cq2iyTPnBDLgGGF6OtU6pwco9BZiRECK4Fhn5m7KJJnyPsJ7Ykq3NK+vXrcWeXYYX5qpTM7hb4T0WWI7Hs88+i4oKw5+JadOm8a7HZJI3tAJaQUEB7xO0lKkLMwFyOa96FGrAlUbcCdaq3y5B1UQCqLt2HmKP+wDO+JuoVGuw++wNDA6/3xohEgtQ8OyJ+2/6j5j5iuFleNV/DbW0ZMubAye4tWvef/99i9RjMsl/+OGHevfVajVWr15ts0RvaHSFPesh1nG66A5UTbxJ5Yf+iw4JM3F7zwqjZeqUGuRdr6QkL1CMMfD5GN66dQsXzp9Hv/4PGi1j8S4bAa9C2VImk3zDDn6lUok9e/Y0GtJjTU0sgmlePZaphlhJRZ3xK+vVBYfh4hsKsZtXk3WoNAwVNaomyxDhW79uLZ5IHt1kS90an2eh9clbiskkP3v2bL37r732GuLj460W0L0s9XN3zrfPebjLjP8qKkovorb4FK5tOAvlzUIoy4rhm/g6JF76E/TEIu1EKeLY1qavwbLlTe/rbOnPMwdA3FqT/L3KysrQsWNHa8RikKmf+4vPP4uDB36Hoq4OR48eQcb/NhgsR9fihK2rbxv8UXzHYLdauz5PAX2eAgCU/roYnhFDGiV4AHCVihHo7W7tUEkzcRwHDk132RRcvAiFog7dexje1PrvuiwbGyDcHGFohE3btm0RGxuL6Ohok8ebTPKRkZG6rzGMMRQWFsLb21v3+MmTJ82P2gwSkXapAmOWffU1r3qk1MATtIkDOmHbqWuoNnFlzmfoLKPPMQYkRFB/vJBJxU1ffO0SHIzd+w81WYeIs86EKKEm+dzcXOTm5mLEiBEAgM2bNyM+Ph7Lly/Hk08+iddee63J400m+U2bNlkm0mbiOA4SEYPK9ATIJuoQ7htItKI7tYOPlwsu3axu1vFSMYcxfQPhQn/NBU0q5qBozkyoBlysMEies+FCaOa6desWjh49ijZt2gDQ7qw3evRo7NmzB7GxsS1P8p06dbJMpC0gkwAqRQuOFwv3DSRaHMfhX0NC8e6606jhO86uAbGIw+SBnS0fGLEoUQsbbRy0116sQagNwcuXL+utAiyVSnHp0iW4ubnpTVA1xmiSj4mJwdGjR5s8mE8ZSxBxHFzEDHXmf/Yh+Wv5YSJ8yXEB2H/hJracuMpr7Zp6rlIRFqREoVMH/lO9if24SjhUKfgNp7yXm9R6q1EKtR04btw49OvXDyNHjgQA/PLLLxg7diyqqqrQs2dPk8cbTfJnz55FVFSU0QMZY7hz504zQgbKy8sxbdo0nD59GhzH4dtvv8UDDzzQ5DFSifaSjTmNPIkIcJFQK95RcByHBSlREIk4bD5+1WSLngPgIhXho9ERSIoJsE2QpMU4joO7TLsOjTnzV9ylnNVmM3MAJALME4wxTJ48GYmJidi7dy8YY1i+fDni4uIAAD/++KPJOowm+fpF6ptizmayDb388ssYNmwY1q1bB4VCgepqfv2wMgkHsUib6JuaCSvitBd4aAMRxyMRi7AwJQoP9fDB0m15uHyrGkoVg7rBhAkXiQgMwIOh3nh5WDf0Cmpnt3hJ84g4Du5S7RLCSnXT496lIu1n39ozUoWYKjiOw+OPP44jR44gNja2WXUYTfLW6ou/e/cu9uzZg++++w4AIJPJzNp1Sizi4Cb6a/MQNaDR/P0LUp/cae0Sx8ZxHIb39sfw3v74o/gO1uy/jILSKtQo1PBylyA6qB3G9e9Em4U4OI7j4CLhIBNr15VXav5u2XMcIBFxkNqoocZxwlvWoF6/fv1w+PDhZs9PMnucfEtdvHgRPj4+eOaZZ3DixAnExsZiyZIlZi2dCfzVT2/z6ImthcvbYu6YSHuHQayI4zhIxIDEGktLmhWHXU9v1M6dO7F8+XJ07twZHh4eunV7+A5ft3maVKlUOHr0KJYuXYq+ffvi5Zdfxvz58/HRRx/pypSWlur6nAAgNTUVqamptg6VECJQaWlpSEvTzoo1Z9ndpgi1A2Dr1q0tOt7kuJNly5ahrKysRSdpSC6XQy6Xo2/fvgCA0aNHNxqh4+Pjo5sAkJubSwmeEKInNTVVlx98fHxaXJ92aCbH62ZrnTp1QlFREXJyctCpUye4u7tDo+E/+sxkkr927Rri4+MxZswYZGVl6XZTb66OHTsiMDAQ58+fBwDs2LGD1zAgQgixGq5+Jq3pm6198MEHWLBgAebNmwdAu1DkhAkTeB9vMsl//PHHyMvLw9SpU/Hdd98hNDQUb731FvLz85sd9NKlSzF+/HhERUXh+PHjZu1XSAgh1sDx/GdrGzZswMaNG3XXLf39/Y1uJmIIrz55juPQsWNHdOzYERKJBGVlZRg9ejQSEhKwcOFCs4OOjo5Gbm6u2ccRQog1cBBun7xMJtMu7vbXleGqqiqzjjfZkv/888916yM8+OCDOHXqFL766iscOXIEP/30U/OiJoQQgRFqd82YMWPw3HPPoby8HF9//TUeffRRPPvss7yPN9mSv3nzJtavX99o3LxIJLL74mWEEGIpQp04+eqrryI7OxteXl64cOECPvzwQyQkJPA+3uzt/xoKC2t6zWdCCHEEHGe9hc8sITIyEjU1NeA4DpGR5s0bEfDLIoQQ2xH9NevV1I2PrKwsdO/eHSEhIZg/f77RcocPH4ZYLMa6deuMlvnmm2/Qp08frF+/HuvWrUO/fv3w7bff8n5dNGeUENLqWfLCq1qtxowZM5CdnQ25XI74+HgkJSU1GiquVqvx+uuvY+jQoU3W93//9384duwYvL29AWjXl+/fvz+mTJnCKx5qyRNCCOo3DjF9M+XQoUMICQlBcHAwZDIZUlJSkJmZ2ajc0qVLMWrUKPj6Nt7KsiG5XA5PT0/dfU9PTwQGBvJ+XdSSJ4QQcBDxHANvatmVkpISvSQsl8tx8OBBvTpKSkqwYcMG5OTk4PDhwwbPU7+3a0BAAPr27YuRI0eC4zhkZmaiT58+vF8ZJXlCSKvHgf8CZfXLrhhjaFWAe0fuzJw5EwsWLGhyufb6CU9du3ZF165ddY/Xbx7CFyV5Qgj5a2ljS5DL5SgqKtLdLy4uhr+/v16Z3NxcpKSkANAOU9+yZQskEgkef/xxXZn333/fIvFQkieEtHrmtORNiY+PR15eHgoKChAQEICMjAysWbNGr0xBQYHu/5MnT8bw4cP1EjwAjBgxosmx+xs3buQVDyV5QggBLLZpiEQiwbJlyzB06FCo1WpMmTIF4eHhWL58OQBg+vTpvOp59dVXAQDr16/HtWvXdIuSpaeno3PnzvzjMS98QghxTpac8JqYmIjExES9x4wl9/pd8u710EMPAQDeffdd7NmzR/f4iBEjMHDgQN6x0BBKQkirx0GbDPncbK20tBQXL17U3S8oKDBroxRqyRNCCGe57hpLW7x4MQYNGoTg4GAAQGFhoW5XLD4oyRNCWj3tjFdhJvlhw4YhLy8P586dAwD06NEDLi4uvI+n7hpCCMFfI2x43GwtLi4OK1asQFBQEHr16mVWggcoyRNCCADLLWtgaRkZGSgpKUF8fDxSUlLw66+/mrUNKyV5QggBp9t9ydTN1kJCQjB37lxcuHAB48aNw5QpUxAUFIT3338ft2/fNnk8JXlCSKsn5NE1AHDy5EnMnj0bc+bMwahRo7Bu3Tp4eXlh8ODBJo+lC6+EEALhXniNjY1Fu3btMHXqVMyfP1/XJ9+3b1/s27fP5PGU5AkhhBPu9n//+9//dMMnAe069BkZGRg/fjzWr19v8ni7ddeo1Wr07t0bw4cPt1cIhBACQJjdNXfv3sW8efOwaNEiZGdngzGGpUuXIjg4GGvXruVdj91a8kuWLEFYWBju3r1rrxAIIURHaC35p59+Gvfddx8eeOABfP3111i4cCEUCgUyMzMRHR3Nux67JPni4mJs3rwZb7/9tm5hfEIIsSdhpXjg4sWLOHXqFABg2rRp6NChAy5fvqy3SxQfdumumTlzJhYuXAiRyPDp63deqb+ZM4WXEOL80tLSdPnBnHVcmiK0cfJSqVT3f7FYjC5dupid4AE7tOQ3bdoEX19fxMbGYteuXQbLmNp5hRDSujXccq/hVnzNxQEQC6y75sSJE/Dy8gKg3W2qpqYGXl5eYIyB4zjeXd02T/L79u3Dxo0bsWXLFtTW1uLu3buYMGECfvjhB1uHQgghf+HACazDRq1WW6Qem3fXzJs3D8XFxSgsLERGRgYGDx5MCZ4QYndC666xFBonTwhp9bRDKB0wg/Ng1yQ/aNAgDBo0yJ4hEELIX5Oh7B2EdVBLnhBCINxlDVqKkjwhpNXTbhpi7yisg5I8IYQAghtdYymU5AkhBNQnTwghTo1a8oQQ4qSoT54QQpwZx9HoGkIIcWbOmeIpyRNCyF/dNc6Z5inJE0IIqCVPCCHOzUmzPCV5QggBddcQQohTc84UT0meEEK0nDTLU5InhLR6HGjGKyGEOC8nXk/e5tv/EUKIEHE8b3xkZWWhe/fuCAkJwfz58xs9/+OPPyIqKgpRUVHo378/Tpw4YZHXYAi15AkhBBw4CzXl1Wo1ZsyYgezsbMjlcsTHxyMpKQk9e/bUlenSpQt2796N++67D1u3bkVqaioOHjxokfPfi1ryhBACy23kfejQIYSEhCA4OBgymQwpKSnIzMzUK9O/f3/cd999AIB+/fqhuLjYGi8JACV5Qgjh3VXDp61fUlKCwMBA3X25XI6SkhKj5VesWIHHHnus2bGbYvMkX1RUhIcffhhhYWEIDw/HkiVLbB0CIYQ0xjPLl5aWIi4uTndLS0vTq4Yx1rhqI18Bdu7ciRUrVmDBggWWfCV6bN4nL5FI8NlnnyEmJgYVFRWIjY1FQkKCXn8VIYTYGt8hlD4+PsjNzTX6vFwuR1FRke5+cXEx/P39G5U7efIkpk2bhq1bt8Lb29v8gHmyeUvez88PMTExAABPT0+EhYU1+VWGEEJswVJ98vHx8cjLy0NBQQEUCgUyMjKQlJSkV+by5ctITk7G999/j27dulnpFWnZdXRNYWEhjh07hr59+9ozDEJIa2fBcfISiQTLli3D0KFDoVarMWXKFISHh2P58uUAgOnTp+PDDz/ErVu38MILL+iOaerbQUtwzFAHkg1UVlbioYcewttvv43k5GS95zp16gQfHx/d/dTUVKSmpto6REKIQKWlpen6wktLS3Hp0qUW1RfeKwZrt/zGq+ykkQ9ZLSFbg11a8kqlEqNGjcL48eMbJXjAdJ8XIaR1a9jwi4uLa3F9HJx3xqvNkzxjDFOnTkVYWBheeeUVW5+eEEIMctIcb/sLr/v27cP333+PnJwcREdHIzo6Glu2bLF1GIQQos+S6xoIiM1b8gMGDDA4jpQQQuyJNg0hhBAn5pwpnpI8IYRoOWmWpyRPCGn1aNMQQghxZk68aQgleUIIgdP21lCSJ4QQS24aIjSU5AkhBNRdQwghTstB5znxQkmeEEIAp83ylOQJIQQ0hJIQQpwa9ckTQoiz4gARJXlCCHFmzpnlKckTQlo92jSEEEKcnJPmeMdN8iU3K7Bi03EcPFuCO5V1cHeVolugN54dHo1eIffbOzxiIWoNg1LNoNEADNoPolgESCWc067/3dqo1Rr8evgifsg+jWu3KqFWM3i3dcM/HwhByuCe8HCT2SQOZ/11crgkf+jsFXy8ei/2nLgMAKhTqnXP7T9djPTtp9HZrx1eH/cAnhwU5rRTlZ0ZYwwqDVCnYjC0v4xaDSjUDGKOwUXKQeysV8ycXHWtEkvXH8ay9bmoVahQWaPUe37Pyct47asdGJcQgdfHPQC5j5dV43HWXOFQSX7V1pOY9UU2aupUBp9Xaxiq61Q4U3gTzy/KwvbcQnz5yjBIxDbf5ZA0E2MMtUptkjdFzYBqBYOLhEEmoffYkZSWV2PYnHRcvFKOWoXhz3PVX0n/u60n8dPuc9i84Cn0Du1otZicM8XbYY/X5krf/keTCf5e1bVK/LT7LJ5ftJW2G3QQ5iT4hupUgMLcg4jdVFTXYfDMH5BXdNtogm9IpdagrKIWQ2an49ylm1aJieP43xyNQyT5/JIyzPhPFu8EX6+6ToX1e84jffsfVoqMWJJSbX6Cr1enAjQa+mPuCJ5flIWiG3ehVJv3ZlfVKjD8jbVQm3kcXxzPf47GIZL8svW5UBn59Kuu5KLu8JeoO/wVNHdLGj1fXavEvB/3U2te4BhjMNaou3v3Lh4dNACJQwZj0IB+2LVzh8FyCjW9x0J3o6wKm/bn6V1La0hztxiKoyugOJIGZd4WvecYA+5U1SE7t8A6wXE8bw7GLkk+KysL3bt3R0hICObPn99k2epaJVZvO2Xwrz5TVkNdtB+y2FRII56C8vxGg3VcuVWJ3PNXLRI7sQ4N046eMaRNmzbI2r4LW7blYOX3a/D+O28ZLKdUg/6YC9w3m48bvcDJNCqo/syCNGqC9jMdmtioTGWNAovWHrRKbE6a422f5NVqNWbMmIGtW7fizJkzSE9Px5kzZ4yW37g/z+hQOc2dIojadQYnkkDk1h5QK8A0jZuDtXUqLM88arHXQCxPoTKenEUiESQS7RiBirt3EREZabQsdc0LW9rGY0b74dmdy4BYBuXpdCiOpEFTZrjFfujcFVy9VWnhyLRDcvncHI3Nk/yhQ4cQEhKC4OBgyGQypKSkIDMz02j5S1fLUV2nNPykqgaQuP19X+IKKKsbFdMwhrzi2y0NnViRqe70KyUlGDJ4IB4fMQzDkx5vdj3EfhhjuFFeZfz5urtgldcgjUiBNPwpKM+uN/jNzEUqQdGNuxaNrX7GqzNeeLX5EMqSkhIEBgbq7svlchw8qP/1q7S0FHFxcQCAa66R0Lj1MFyZxA1Q1f59X1ULSN0NFq2sUbQscGJVpnKzf0AAtuXswaVLhfjnkMF4LHG44XpY/ZQpIjR1SjU4jjPepSZ1B9c2CJzEVdtgk7oDyipA1qZR0bU/bcALP68EoM0XxDibt+QNvcH39tH5+PggNzcXubm5ePnF54xOdhG1DYSmvBBMowarLQfEMnAiw3+3vDxcWhw7sZ6m0nJdXZ3u/56eXmjj6Wm0rCN+nW4tXKTiJt9nkVcgWPVN7edZVadN8AYbbQxjn0zW5QgfHx+LxEcteQuRy+UoKirS3S8uLoa/v7/R8j07dYCbi9RgS5yTukMs7wfFkf8HgIO0+wiDdUjFIsRYcRIFaTmxCNAYHnCBM3+cxpuvzYZYLIZSqcT8/1tktB6a/CpcHMeh0/1tcfFqueHnpW6QBPaH4kgawDSQhAwDxzVuhyqUanTxa2f5+Jz0G6DNk3x8fDzy8vJQUFCAgIAAZGRkYM2aNUbLD+0TDJlUBNQYfl4SEA9JQHyT5xSLRXj+8diWhE2sTCbmoDQyBLJ3TCyytu/iVQ9Nbha2l5+Mx1tpu1BVa/g6m9gvBmK/GKPHizgOw/p2RXsvN6NlmsVBW+l82PwjIZFIsGzZMgwdOhRhYWEYM2YMwsPDjZcXi/DC43FwlYmbfc6orr4Ilbdv9vHE+kQirsWtcJnYedcfcRZjHwmHpgXDXN1cJJg5uo8FI9Jy5guvdmn3JCYm4sKFC8jPz8fbb79tsvy04dGQSpqX5N1cJHhv0oBmHUtsy0XSsk+QtIXHE+vzdHdB6ojecHcxvxNBKhGhW2B79Akz3r3bEjTj1Y7uv88DG+Y+CTczfzHcXSR4a8KDeCS2i5UiI5YkEXNo7hc2N5ljjmFujT6eNgh9ewaY9XmWiEXw9nJD5idjrPZtjVrydvZghBwb542Bp5sMLtKmM4FYxMHNRYJ/PzMQr6b0s1GE+tLS0uxyXmOEFg9gOCYXqcjsRO8m4yCxwBVXof2MhBYPYJmYJGIRNnw8Go/GdoGHq9RkeXdXKbr4tcX+LyfDp53+aBtL/owsOePV1Kx+xhheeuklhISEICoqCkePWm+ypsMkeQAYEBmI499Ow8uj49HWwwVt7tlMwN1VCleZGE8OCsPO/0zAv0Y1fUHWmoT2ARVaPIDxmFykIrjLOJhaPVgqBjxcLJPgm4rHXoQWD2C5mFxkEmS8/wS+e3ME+ocHwFUm0VsuWiTi4OEqRRe/dlg4fTAOfPUM/Lwbj5e36M/IQlmez6z+rVu3Ii8vD3l5eUhLS8Pzzz9vuddxD4daTx4A/Dt44oMpD+GdiQPwy/48nL5Yipt3qrHhf+l4/+WZGPVQD9zn6WrvMEkLiUUc3GTaiTNKNfQu1olF2j8AdJHVsYlEHIb3D8Xw/qHILylD5r4LuH67CkqVGr73eeCh6CD06xlgk/eZg+XmWDSc1Q9AN6u/Z8+eujKZmZmYOHEiOI5Dv379UF5ejqtXr8LPz88iMTQkyCRfWFiom/HKl6i0FMv/fRrLrRSTuRrO2hUCocUDCC8misc0W8a0jkeZ0tJSVFUZXyqBLx+fDhjQj9/rqqmp0fsZpKamIjU1VXefz6x+Q2VKSkpaT5K/edM6GwMQQoghWVlZFquLz6x+PmUsxaH65AkhROj4zOo3d+Z/S1CSJ4QQC2o4q1+hUCAjIwNJSUl6ZZKSkrB69WowxnDgwAG0bdvWKl01gBMkeXM2ILGFoqIiPPzwwwgLC0N4eDiWLFli75AAaK/49+7dG8OHG1690ZbKy8sxevRo9OjRA2FhYfj999/tGs/ixYsRHh6OiIgIjB07FrW1taYPsrApU6bA19cXERERusdu376NhIQEhIaGIiEhAWVlZXaNZ86cOejRoweioqLwxBNPoLy83GbxGIup3qeffgqO4wTR1WtsVv/y5cuxfLn2qmFiYiKCg4MREhKCZ599Fl9++aX1AmIOTKVSseDgYJafn8/q6upYVFQU++OPP+wa05UrV9iRI0cYY4zdvXuXhYaG2j0mxhj77LPP2NixY9k///lPe4fCJk6cyL7++mvGGGN1dXWsrKzMbrEUFxezzp07s+rqasYYY08++SRbuXKlzePYvXs3O3LkCAsPD9c9NmfOHDZv3jzGGGPz5s1jr732ml3j+fXXX5lSqWSMMfbaa6/ZNB5jMTHG2OXLl9mQIUNYUFAQKy0ttWlMjsChW/LmbkBiC35+foiJ0S6w5OnpibCwMJSUNN571paKi4uxefNmTJs2za5xANr9Wvfs2YOpU6cCAGQyGdq1a2fXmFQqFWpqaqBSqVBdXW21vtGmDBw4EO3b66+vlJmZiUmTJgEAJk2ahJ9//tmu8QwZMkS3Q1e/fv1QXFxss3iMxQQAs2bNwsKFC2lIrREOneSNDUMSisLCQhw7dgx9+/a1axwzZ87EwoULIRLZ/+2+ePEifHx88Mwzz6B3796YNm2aRYbANVdAQABeffVVBAUFwc/PD23btsWQIUPsFk9D169f1/XT+vn54caNG3aO6G/ffvstHnvsMXuHgY0bNyIgIAC9evWydyiCZf9PfQswGw5DMldlZSVGjRqF//znP/Dy8rJbHJs2bYKvry9iY4Wx1LJKpcLRo0fx/PPP49ixY/Dw8LDrtZSysjJkZmaioKAAV65cQVVVFX744Qe7xeMI5s6dC4lEgvHjx9s1jurqasydOxcffvihXeMQOodO8rYchmQOpVKJUaNGYfz48UhOTrZrLPv27cPGjRvRuXNnpKSkICcnBxMmTLBbPHK5HHK5XPftZvTo0VZdt8OU7du3o0uXLvDx8YFUKkVycjL2799vt3gauv/++3H16lUAwNWrV+Hr62vniIBVq1Zh06ZN+PHHH+3eoMrPz0dBQQF69eqFzp07o7i4GDExMbh27Zpd4xIah07yfIYq2RpjDFOnTkVYWBheeeUVu8YCAPPmzUNxcTEKCwuRkZGBwYMH27Wl2rFjRwQGBuL8+fMAgB07duhN97a1oKAgHDhwANXV1WCMYceOHQgLC7NbPA0lJSVh1apVALTJdeTIkXaNJysrCwsWLMDGjRvh7m54L2VbioyMxI0bN1BYWIjCwkLI5XIcPXoUHTvSLnB67Hzht8U2b97MQkNDWXBwMPv444/tHQ777bffGAAWGRnJevXqxXr16sU2b95s77AYY4zt3LlTEKNrjh07xmJjY1lkZCQbOXIku337tl3jee+991j37t1ZeHg4mzBhAqutrbV5DCkpKaxjx45MIpGwgIAA9s0337CbN2+ywYMHs5CQEDZ48GB269Ytu8bTtWtXJpfLdb/Xzz33nM3iMRZTQ506daLRNQZwjLVgmxZCCCGC5tDdNYQQQppGSZ4QQpwYJXlCCHFilOQJIcSJUZInhBAnRkmeCEphYSHc3NwQHR1tkfpqamoQHR0NmUwmiBUKCbE1SvJEcLp27Yrjx49bpC43NzccP35cEDOhCbEHSvLEZg4fPoyoqCjU1taiqqoK4eHhOH36dJPHFBYW6q0f/umnn+Lf//43AGDQoEGYNWsWBg4ciLCwMBw+fBjJyckIDQ3FO++8Y82XQojDEOQer8Q5xcfHIykpCe+88w5qamowYcIEgxtAmEMmk2HPnj1YsmQJRo4ciSNHjqB9+/bo2rUrZs2aBW9vbwtFT4hjoiRPbOq9995DfHw8XF1d8fnnn7e4vvq1iiIjIxEeHq5bmjc4OBhFRUWU5EmrR901xKZu376NyspKVFRU8N5mr+HKG0qlUu85FxcXAIBIJNL9v/6+SqWyQMSEODZK8sSmUlNT8dFHH2H8+PF4/fXXeR1z6dIllJaWQqPRYM+ePVCr1VaOkhDnQUme2Mzq1ashkUgwbtw4vPHGGzh8+DBycnJMHuft7Y2JEyciNjYWERERWL16NfLz820QMSGOj1ahJIJSWFiI4cOH60bd3Hu/uTp37ozc3Fx06NDBEmES4jCoJU8ERSwW486dOxafDKVUKgWxxy0htkYteUIIcWLUtCGEECdGSZ4QQpwYJXlCCHFilOQJIcSJUZInhBAnRkmeEEKc2P8H+nqIMU0QdnkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_avg_density_2D(get_avg_density(result_reduced_nsteps), register)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "4861e840", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The RMS_reduced_nsteps for the final Rydberg densities = 0.07180219742846002\n" + ] + } + ], + "source": [ + "n_reduced_nsteps = get_avg_density(result_reduced_nsteps)\n", + "\n", + "RMS_reduced_nsteps = np.sqrt(np.mean((np.array(n_full)-np.array(n_reduced_nsteps))**2))\n", + "print(f\"The RMS_reduced_nsteps for the final Rydberg densities = {RMS_reduced_nsteps}\")" + ] + }, + { + "cell_type": "markdown", + "id": "ff29f595", + "metadata": {}, + "source": [ + "We note that if the Hamiltonian is almost constant throughout the AHS program, simulation with smaller `steps`, such as `80` or `50`, is likely sufficient to give qualitatively good result, as demonstrated here. On the other hand, if the Hamiltonian is varying drastically throughout the program, one may need to have higher `steps` around 200 or more.\n", + "\n", + "We see that although the runtime is reduced compared to the simulation with default parameters, it is still much longer than the simulation performed with the effective Hamiltonian that uses blockade approximation. The reason is that the local simulator will need to construct Hamiltonian used for the simulation, and this takes majority part of the runtime. \n", + "\n", + "We also note that when the dimension of the Hamiltonian is larger than $2^{10}\\times2^{10}$, the AHS local simulator use `scipy.integrate.ode` as the backend solver and support the following arguments: atol, rtol, solver_method, order, nsteps, first_step, max_step and min_step. For more information, please refer to the following documentation page. \n", + "\n", + "When the dimension of the Hamiltonian is less than or equal to $2^{10}\\times2^{10}$, we use a solver based on the implicit Runge-Kutta method written in `numpy`, which is more efficient than the `scipy.integrate.ode` solver in this case. The solver based on `numpy` does not support the arguments listed above." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0e1b6a24", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + }, + "varInspector": { + "cols": { + "lenName": 16, + "lenType": 16, + "lenVar": 40 + }, + "kernels_config": { + "python": { + "delete_cmd_postfix": "", + "delete_cmd_prefix": "del ", + "library": "var_list.py", + "varRefreshCmd": "print(var_dic_list())" + }, + "r": { + "delete_cmd_postfix": ") ", + "delete_cmd_prefix": "rm(", + "library": "var_list.r", + "varRefreshCmd": "cat(var_dic_list()) " + } + }, + "types_to_exclude": [ + "module", + "function", + "builtin_function_or_method", + "instance", + "_Feature" + ], + "window_display": false + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/modules/1_Continue_Exploring/A_qtm_hw/analog_hamiltonian_simulation/Blockade.png b/modules/1_Continue_Exploring/A_qtm_hw/analog_hamiltonian_simulation/Blockade.png new file mode 100644 index 0000000000000000000000000000000000000000..7e74e309dac7ef39e61468799fec87d02ab8a7a3 GIT binary patch literal 76128 zcmce7Wmp``7A-Qs;Db91F2UV1_y8eDAUMH;J7EZfFu1!UxLa^{4;Ca40t5&W2*E8R zK(N=GbMHC#d+-07?;ED+?y9cZRkdpEy;nzSJyyZTp~gW$LBUsrE9#)2ph=^kpu@qK zz?p#$B9|yAI1Ba)3R0s}X?fay1eA!&+t9h8g952>>7 zRqUwC_xaZHU8d*M>#^*+TnP#kHLwczWMC@F2&s)K6Iv&g`w2GQvJec#D8dMxIQ#)w zL;rvR3X{;@>h~K{6piW@9(JpntE)RMF6r(RT$GduH$ly@3B^{jX?>GA7F?8BfkBsA zX?5vQA4rL60vZv0*5<7Jt@P;VlbEL&r;$;|atja?>9+%kMQE^Qx&0U?7cSy(+PK=- z2zFA&tngYa{oZxPm`w~%A))lgr~LgT5j~VBIQSN}r_U@)Zg~RgrDemDxqj?)mw=8Q zq(ljcKe(IH{Mo}Qq#&9+K&f31Bc?=FdTm~PRewg!{ao9_ZUGP1_sQ)O?gR|wDSrLk zWc~r^IM-T#S7o~qyi)MZms4@W{W7X8^&6(=2KB=7IS-V+4P;ovS&PYI^S72LN`m7}))X;J!WA>~2bn7D23{+PytO&K3*8|oU+%};M1 zGeowWmmIPx4o@wfx}vT9K|`W9G=F@7l3|0w5jwdTBa^tHivi1|(PtaYY0hV7poD>< z0x^XH3HVV;o}@~kimip}(t`S7q!C!rs1#rrTSDM>D8*(llNMTYAYC5XKKfN3qZ=tL zmd2W}I3aKF-WuCBCZQZ3B?@037(qD12=137jli*owI>i+qkfTlG=hE_ET0GFpjQjh zVI*P+_Q?0v!q&yngXwAUoH2XhND`Wcw&z`GF$jaYkg|OoZ}2{uJ1VU3DBl?%-$*5c&AcEGQo z)C;Rn{#3#!q69K13v}|Mzv`<1f2WHJ5Tk=}83!uL_H{ec-6X}z*La#en5Z>q7SKg<0 zLT@Hp3OyK(`{pK&pM^0=M-jHMR_~_NYTC-&>e*`Cin@#?ja?JnGH|s)a?Iq9+Ku;` z@-_Ku+&kKbkF}U6iA=C9K=c-@7DDSN`JryX{4h#(E)tE1!$A&9YJpsX$Cd16OtMVf ztcmbHEEF?nNeL+`TCm|m@p`GaH9IWAo;VXkEzL@``TSjU=^_vyGc_Y>)Sgo3+4WS({9X5pZ= zQK4?Rms+`sz3$rzr+2g^S>>JDm$j#Q-{r`%qUxe@aWspyY*fm&!T0Y-+k4gd6HXrSUjoE_taJE=;>Wi-^b%m@cD&`>7o+@k}CV^HkfDImf3`Q z#(<}t=kk`@57H?K*&j&qN}Fo3{3bQWo~Pk+WzBIf0-Fu|(tl$dSkSe{r9aM?e39KC zsnD)#N@$vY_~NT)J0E2Q9yxQc_GIe_<@Bc++}Y$Ey&dn}*uBhcl|71WvF(SVP-=dB z9lU0mMyeRfUFu1(agju)Ayny&ArXDx~9pMSpo`YLg#ci2Ub7ta!Z zB=b_{m$XFA=N!#0yiSCfh}o2(ZKd!W(cA-98rR5k)gu80{oK#8Roxt`D65vMj~|lt z*!AG_u;2c@wxzD-3+o&FP9KzkmByqzQz!t$S#JwRu zG!ReNeq)e=@JSpkAd9Z%oioX*yBH^a&zi-`p2V+Ory8Ct>)9{3(~f{6T+b|E()pcliSyjwI4wl|IHjN5*F@ z{jO4C3$6=I>y8377e1q?}heFglbPzaKuGstQ+2 zRrgf8YMEG_Yt63fLR@vwslPDc@#I))Np5}8+|VLj)ajePUd_`Xs}JUCf6(=S=7r*wbcXcg4&V&8rEZFTOK2~dEY$%aU?uo0Xzvp~;-VvSwx51k8eTI+37)irfvJLFXg4)-7J%xKPatf zH^{v`z|MY8!U^p(hNBq{K{!@9wN!ZWWtxR4q}q#h zX`&{>Z_le|w`?~DKVj=aV-58`+NT_`4lp$dFA2Z;*B!s_RX_P~vR<&7`g-+d?Ci7V zYsAg80I`_hvC-+vZxcf;)UJfxo``u-YS}-VuePpE>b?w?yNSoi!rAEO3j!=QGEGo@E$I7T2DCmEkM?*mgw?_f} z=bp#F@BJqM_}-WK`xiYa3XAZHD*iTJ{JVCqqShXTWB_Gi1eu`KAB5|Npu2?-T#0q`|)> zMZ^UEx8(m^`M*o*dD?g=xHIrb6*YB%Utp5me^85nKOBGm-XABR56C?Qeqku8igLOL)O}N|Hzax# zT}!xKa55#BHUzbJq3--P8bhwuqL2%&O^70f876MUKrjTA2?mNlA#xKyb7zs}H8Xu2 z`_DOkaKiC%@L!jqXu!R#^r*!2^LzsA@cR;fodRwU`u}_bvX&_4`r3bVbTkn@VogLr z!44b}GcfRp+cMs_@~<8($HEN2gz!m**Vl}$-Ipc%i%lOOu~9)}R^?`0?OEAGr^eP)Rt|Go?KYjOHhm!F zbGYn!i$&*^AndYiQ1P^iI$_a%wfj}Q)i8lV*~j4uy?3CH4;?J5tfRl?pYg@Z{^7um z7vq;^`%kylbU^*`h(J>pmuhQUTbvO>7E#34hUf7yR6@!*FLyaTU99kugnUn}C5}3O zqBS?jb!_8`D$s~JB~S_3jJcy>?YtBrk7I7GnIbUW58c3eNK>knfd%uE1VvjF^ zPL6u+()xn2K77)Ac)%zPRY*7Sh-8%hwKsq6ow@1_eF!!Dkj|Gb7mPVtnj7FyB!fkd z$a|C_tjgQIU4YZXe(J~6nefjn;-EkyQ$uuLe8b)O(oo86+&nIXO-XdVH?KJqM@J*P zgIgq%>wg-VxP5(lbu`oI>*>2woL;1nDVh`D`#)2Q0*S*a&DVJxR98GYIr$r!m6m2Z ztAUP1fJeP9x3OLL`tEipZo8~7PLSRzoYo_v^cnqs=Qb4WP${n;Oo$h0QHpLK=VSk+ zzW7m=xVEJCE~!`gNg}h#SebTVky14I=@5-8Wue_sx9_8Wrg$p}5{FruM$9FpQk%&6wATE)wx z2_V!Iqg{#r3o3+YWb%lF!}X%%$AXCo&K!wtv|POKXE3vCPN<|pI6*2f%v5B0_M#GC z*$6M<)z^1jjSip3a(NN>|Mmq9)c+U(xj{@9D6u(%bkrA$J-&~fUTnnETv5NqPt&h9 z;nX+vP8GJF8C>`=`%Zt#W%9=ZCj`Xp_{;O$RNIM+%g(UWf5+nr0+w1wP7vs*LTmGU zdi&bF_r^MXe-?S~%>|TaE-h?!GZJdbaZk|Ah0`NNqDjd2|c0rKbG71R2mOc81gsrrm_-lahA!P@{;9=d@FNub9FQnZB2w&L#y20$n`3Lr(4n$y@ zbyQWkZ<8wYzJrO6(HzQ4b6%?PcAe>Lxa*OsLZ}jod5oJ!fSD45`zO=2+rGMME5k7+ zq;y+Gn*E*4WTZN8+aM)3^P2h9?}LM_ z3$_2Te(rrCD6XV*oq4=iWc)Im_LA8( z$w55aRlUD|ysPOJTrr8I5#v4Z=+^wFF|ByWS^&53LRhfAjCJ8g5D-T)eQ0}V_SDeO zumm4OLn~w(6WQ~`s9!6A1;iQBcXkg>F@;^jy;lE>Meoi11`Ktbt7=){;urtT3#J4U z^1S|Rs1=TE^uN9QF=YJCu)(&Nn6;=jkPBb?EwFW{+J7pEJ%=Fvh3r8TGz&&)&mWUy zo1^k2ULCsCCWc{nRF=2biHB>la7Rcdgt(BL#|UmeL)Y3c5PAdb^a%hkW?UPma_QBF z_v-)CAgD3~ECEao4={@U?rMpbCtwYP634eJ$hA6mN(P=OeqIXNskmMQ6XZbMu1Z>E;Ty~wN*oKhdZG1r|NuNELBELr_}@(l&JU? z%x70eJ(<5(01KlN4?0<-je4a@N)*vRvCb|w;kw;)7 zMjz&niA;8YJC->uHjW}GiNlyK*_n8*jPt641O%Bx3Y|CK_dkG74l}$4xR{eW0@;U8 z|0>v|?%zrk@9QkGy1l*(+RW3kKt@!Wbs0gNj;9{pokh9;D`Yd}$z$vhPaNI@s0ctW z`40}iGz>57U+kj1kQ*r?XgS;5w0@Re8}~1+3xLLy5NQA$-CUig1N71ideFzfB9m~j zFq2z==yzdfWMs^{kb2Q!NAvnUStEYB&*p^uQ?Iju|BT?e0!q((!kEH0*CPymp1^Qk zdU<7;#6L76klN?>q{k~weS`j%gqH&CJCpQ9U?FVRk|Etu z_yyPDc zR13}nY>1ti8Si}q$36?W{!QbNWy&ao9mgX|hy6ct{3aLN=mRd+Jpg2*u?((-LPb8J zR2ns@-P3u)M!UqwsW6l9U%Q`i)euQ#n2EuJG-xc+7Qq>Ge@&<5V3d7N2>HD~B3Sns z<^=hEJ7?^g3hb`b1y<@yjL7hfQNRpL_hj`k@4Zj*fv;y79=IHg^PG4T@a_~(cio)s zCpHqShyvP*e|XEEc<^KVt<^p|(fNLk-=Tm`Ww>8Aj%d{_CI3yefE=ynSH(+8w z3XEOalmN;&X?MZ<$3*duE*!!1DpXwd9&uqH#z2H4U(a>@vhR;aCR zJEatkA$WzhWwo#FPOB_bG1jwLj#2-BeoxDh8w)CYh#$oK9>v>iynX=zc>n}{qrq98&-pYlcUr?a72N}7jZkF4klF81QZsounrN+v3vUNF-WA+s-uA}=EV}) z4WK^$3F__hZ0|Gylj>(Z-OnXpXhfz|7&;7U?$RHR^MZ(=>*Z@0=I4q~9irZ$Q2eix zks(&Ij4E`Zf{Gt`b^}aiO!5f&ax+gkodK|*T&XXq^9?u~K@1rR)%|kA@p@za}L^=MaqnH$}c|yY$s;k7^6!%?_ zkK|oqL(>jJ$@ymSyv}i+cLUjAF@Tv&WB+3^n@t1-PI$^B;xG#bb`D!Ji^?ecnj&^z zNH#DB4Q_9*TqS;FdB&taPLXR^bwgroc>%;S1D{^*jQ;htd%51bxqx|0BUDSOD4iMV z)H#MZm*cfQ<$~Z}gBi>tQ1Hk8P~2DtT+Goo51F`wN#!uYt`aQ2Em*~iAhC^`9F(Ri zXL`4;80CP$VyUgyW`dZ4d-W(cG3muuU!7-T-^F`^A_s;r6rMPFEJQGVQB_wL(maYN z^XtQ)piH-x9=#GY2@L^@@*eLar39U1*Rn|tFqAt;*dGh`ok2%?>w1Pd-cQi!kRpT_ zP0`hS!BIX82^HoOYiI=hQ4b+$u(90Nx123sUu629O{*xMVr3S~zWPJSBxE~Iso($$ zG@l9%fPv*wERKTng5f;V0H^(gDc!N`uty3m=@jh*R&EG|>u+Tc6DDc`h0~&X8h0W9 z&dcxz2`I$KO_)xteV^z?FFK*H<~~9#ToOkI>NIli!S>w#`7o%5q{hlz2Ye&v>LxLV zgd$+Q%_wfZe^A6|H5}(18iKV6sk7Uf%5`0?wCF+K36(jo=N4vRff7BuyKYc11%D=5 zpVe3M@Sub!G{aBf1aw@$3TYBJ1)BLpkwtk{2C5!xp~ZGC1~ zn;`8Ffg>Oikd`@u%E$6~@Q9(v0ZK9=*bT&Ha*HtckgKYhF^j*op&16u5dF>qeE6Og z^Z;orK8Ne*zi3}N3a}Hq*<@Ct2at`!uN^d;&@Dn$23d*=e^|RWFvxzg3`!J4Tsmb} zVUE@|{=efScR4(#u-UUi*E`hlfbqIbAtqWVP|A(XHCLVhTo!F441 zE7r&)Yr2VL5wG{|tovYdopT+`|0CuQZaM9&PHw=T^7{Zz0<;k$$?IDr`xxM&JdYrR z$JBW9sUh6>Sd`Dd`sCJqmy=>m1#VWoJ@2`DE0Fi9><%(eYB3PT`gQ0$0(K11Dxud_ z>M5H8__XUz`tVFCfqJe7lY>7k9#Moc=&XEkCU)u%K#{qda%<0a=%3c5xk#s}fw^N} zI+iyM>!=2W9+^WioZmT&&y@PBt0ousZF9$VI+n8x>qrrOBK)IMV8z*oQ?wJ&N&Zvs zb8fK?j*yu5M6+%e*=$__;T7Rt9l$izKR>4DMzYUo6hBHMW}a$l#d_a8AD~2|7Qmf) zX0Yo2Gq!khR7a$!xM;L7QeQ;AMfhi1vGUN?Z2^hS(F1k87h6KXwD0v7>aTPk>1(PkmOEL@;C+Bvtv!!OO}G6;XVk` zP7x*Zjhg;ATWJOO=S}}mVc1aGmU#VKm9hR|tjbST!-~1O+2#SA$l&08bI<+No}Q*x zSHJB-rUY!IL+ptk328z?0j{{(zpS7)i#b%8s6pyfpD!w&wy2eA|5Z22rR!vfCat1y z{CS@XiM3v_p6ri8V(Ps&R&nkSdg+vk&5@e&VA6NHQ_|xF53jq=50>U3?mg6NN{V?| zU`1MBMn;}f7%T0kMR|RY&{%m4vLr#3UVn%4VPdzqLk{H=Y)i<*bD4oq)(y1vXFn1Y@oB|B z>Rd4jQNSst>5Cq7D?(|(ilpn>G7ZJ;*25IWrVKovCBo5hf6IYPLQ%kA7BNKB+yY0= zQR?EJ0TA8E`2|ELuuN_6PS1eYih%>xw;jSv4i+pZ=CoN}I}!&gNnjjzmm6P}lCsRAI$JP_H%7+4)sGWL=w^22oD9#%F~GEIQZ_G?9p=*$*E+vHy7=j5o_SZFVeG6xK`*#)8w$8s09{ zqD?s0r<^1Z~dNc<5hkK`J`Prcx%9v~fOo=%#{QhCaV~qAl z98_ZL*l-f!`e5HeSGce6_du0jsK26LqFnM|m)Tvb?J^Jx{fZIndBVT;8UBIQ)a>v) zu-KNpW%gkCWGSLM*n*=fQj;e(e8Y~WrwyN4xOT<=r$#skJH%$DNHuJKox1Yfklv~N z(T3xK8tksM@v%<2w=3IyYFfa&x;4r$8I|SJfwTptrgfO8W~6f37l90e74^W z6MI)v(*Yt?qmM>*ojhWw7T!koRIDG<_aeTCQ{+BaAt#HVclIju8ZWeW>V| z2q%R3d@+*irWuv%$i(*{Q3SXj-RFHlv(#^jset$C8x2#k8&Lp5*TO?fs9vC#S-~8; zAh35~-dhi6Ajni1AAc*vgKuspsvNuPXwOX_{<7!|r=pjLs6Qg3uLG>}ylky5GQ7fE zCf{Rsp{_98+?*$0Ey!r%nVyd7hB4q32dopE+a8N7iE!6nT7?S1ieZb3Fc zb=4wkzseGWXpU0Wf^m)2qW9bq3mE~Gj_BB+s~NZzBzvWF4Jqrs_sdb>f zNPBN@*DO#SqV?WAy=)RVSoK&Ffr=+^Sm2drc|`qMa_tGNI_gz1{zLcMcD4KoyAb=} z8uqWO+MI+DUv=F;_F3bIXHU$Q7{^u7m8k`tUO(N}r?eT!qp~{Y6+i#IKZAD?;8%|1 z_Vx2+JS5yt<|iO$f)IeXvW^3L5q{9MozVcn5K8@Il9vIkCrY_uu4dwH77U8eT}a@S zL{4|tXNHB|+Bz7S_6oir1SZ^*a(Nhp=nKH2e=}_Y-GL=MEPH9*==XC%Ec|*Mw?d^1 zE&63=-$x3}_uqLg4wPEauD2Eyv1$y2#G_z(-=kxoKr9ruI`pJjIg9tREUw}XNo+Z$ zD)V7*3eJq+YpaVCpX$zBFv@+(;R1Co#E*U_&h|@_@N(CsKwo+R;Eiu_;%J+nyqBlz zj^Gcl0-|_%5Y#d;HqD&<%bc~2poj3s>xRJ#0_)sR>5QV87%XC>Rz*O+0N=t)Z!xts z>=WmkyjLr`Ia)EOX4l|< zfAg>#@iDn@ZJ2ft{L)7HU`-VXpbb(U)O~mBx7WH6C$vhFxxYq+*_?s>>fvX__3V5J z`8CP1Mgqz0yu7k!@vaNu1(=a2*{1(QR1ZwE5r5k!ax>{ zqhPbdhqy1ql$-%!$h&Pn16;VzW0_yNn%gLi`1R<5=Kw8CTa;Z43}4)yE}Wo5;?7a) z3<250X`?oeVn$d^=V{alN3bp);XAjT@N6oUfa&YE98sK8h3NO$p^psAErbDh(NT|I z5z*5;j_`fYXYi#@ktJdbe%MLtShn{Hb+Ynf|Q1lSY@>b$XVlz+STRozfGj zh{gE`w&&inSAGSXPk`it!y*to2yWBBk5Cf&5-n>N^>P+_5}i}cTv0WpY(B$IOI_QQ zTRZh_S$R-dil%U0W!b9|yE2frYC@S2f5Mh84-uFiEpg;XE$LYC8$yEZem<;W)9g^2 zW0m%R;~th#vOUhC^!Ticn6BgCpZP_9m8h?R$>+UFJFWAvXLLdqh|eEljD^ZN0zN zX(gf|m{M#-kz7<82*7Z;8}i#8JxpM>t_`0jGZ}RzqXI9t{m60bo8y`t)l{eDUu8kF zPz>a%TEqUZKuiRFfaWm8<`8W$`&7+I`jx_~q8ZfbiOTT`LQN|Hf0Rf01={m&+B#5u z6ZcSU0XZd#v4WnvQ^0#4jUZwMRmgRena04p%U?(r6b)62*0f@6D0NZSMYmVckY&A0 zk5qFV7tmGZ`YMo%KT*!M`}z6oqv;A4FO*&qrZp@e#uN}Zs2%|;VhqH00Wx3(yI^e! zx8Y-Rc2ud>e1-5R*=ebj=n|4~A{z1AT0<)Z_qP+vg9K}P6r~1LM{-xI5PYj`EsCc2r2F90eLP4z-BJ6BPP^qG zf#$2jEw^?J|Fn5P4rh>c6W~nhR@v@$;=e{x-NIhN($==?fc#%D;|NnssNdN(BXzHy zu7+~KhFmIET^I_sW@VN5k3AevZJ+(A+H~cnt>@326ik|w``{j87~vYTGOzeefQ9(p zdA7Ud&^D$L;)B0)ij1O$(C{%Ja_yVlB)&y3OCN<=%I>=GP@5VGx7FFDm`_Jc7t~qH zt08KuGgu6TGwM(L>wjR>a3hxG^z1h*dY<=uGxO#YTXEO2v3Gkott%Y{lH>B)uN$UD zE9KoR!2I~z*`F0nAQ))jIJXGY7g~Ss1NcLrl`t9K9D}B8?Kcx?0VTW zo+D#C3tn2twL4X_vO*&xnB{{?QAe8ACMulfyPL+u;*OZs76WqA3dXY363twfR$7yyJ>RF(4A@Yu#gVP^iQAt{e4711U^q7P9k0VmFy zY1p!H#oU)E8XPnGXmXzVgmPMm{*;6emT!`^N^D+=bePTH46O4zH`2-_=a#Rwo&EdX z?=x}$cg#kO9obt=Vd92l<|tNs$t^OpLb&QS9{&nh)ru(Xs}T=aq={NsXthEZ0~grf zL)+N~#56@}QjaRr+yv;k5omFYaazk4UXSBJ)Tma*Kbf&E?4jkCEn6O0*;# z_DNL;S_(4~ak&9`|GE%hjJT^rf9z6&VB{{HCqp-2!k|x#tVq6o$nGd}D;+%Y;SM@f zsjmq>QeHuxT&l)QX*{B4W};ogN+LX!=3h28`G*A*8Pejq>cWUcHNs3x&iqsAn83R) zqx>dL^}YENQ4Qq)khU`_d85`#HEI<-2nLjdu@pLsJ>Wy`@(_g*=SaH}sG^mbx2grPsC>DfitV+FQ6Ln4~F{gll z$|higv-B0S?ilZ0LzLlG3D%!7kD;2>x=uE%brH3AJ8yk5M_fapQBXy|>39k}GBP!F zOWHIPW#7PH$1cVZvMPhU03+h;zCu@97GY4pMsV-;K zmR6*kV}h}pRgz%rf8Wk4D6wytf```KP-g$<+w+|pEG1}!M z-_{-f1r@GM)S34h{!#R_%7~3d3S0B7`F9QNC}03mcxl7wmcVQFcZVHEzl(5cRSChG z_B&YeNLoQRW(@Qh#!kR5Vyj823E)2j!nqm3SXxvT3Mx;%U&jQw^MMIYAN7?{4VG8x z5I(a~peuSrt^Fkd{TE7uED+xP#*6PDvxStf4}@U}pq`-Z$h%b3lP-8@ycM*0Sf1G4 zX3X&FjEGg*1~v6ukq3ZZ?G7(m1UGXa5cHzjmvX8P)`zn~Ww4(kbwQczLuj8#i-_J6 z5pBMBxgJWv4X5NcLm103fi{d@;}#LWZ#r_N>8@7jz$NECE_*F(kjn_`uEu|1I^BIB zf*~Mh#sfba(-8*epKLvFSguCJiyfxZdYWpVztN((Cz{(w*~9HjWH{cqQjgh;a9GfZ_bKtgILi0e`Yk%kvY2 zU?u`H0o|7aC2J5N-53FF<-oI8$^8XrKGW_}OHHwM^nf5Kgd`U36cY)=Ej@5wh`uL_ zp?ce40daEO1ymTd#pN{PJX+cokE!VvGQ`~ribsWFhpAX-k2(6Y}SJ#A()>Q6XKaOucACV~3Pu0n@1L~_mKslvATWVSP4C?;4x$>YW^ z6!+HC3hr$(_{1+Rs@CeF;6SWq4=zE~BM&Cx;n zgtFYL;8;p7-qzMTKvctqNdTwAi;&xQn*iirbY6mJ9>Hq?wce;ZZ_9IBY??B$y&|Ux zP1Y^+t&)j5nR+dK0Z~(tKSn7iQT|n<;syb!rkN%vN+B?$RNUG?6U0P|>SU+&lTM+3BKmGvtc~!QQ52nTp`V^m3{|TVgaNsd*7q)Yzc%Q#55dr;n z1myd_$RYBcqVJ#+Ajy{t4Y#U1r)1`*+1$eO#h0(tPp^Xxl59-~N8U((6gYj!1aScv zMt`jM6*HQgB1#A>*_ocVl1^tea@@jUx@YW-Z$wr(o-^~Dt5j6HNF6?Lc_+^ zN9BF>=gfVxBj|?U+YykXEq^r7E7@n>R+fRcfHaUf`>61q+IqumlRMamP{7~dUO)!G z^9MB#dVy#Z@V(b{=%yXcQsj4jI0q;OgTin{DL-2U>=#Xo(b#DF< zWyR+-B%ShVSb8}<3*>ZsTcOfc!?d0;g{F=8dQ`g6@5}dLy->!G1HuC11_){k6iB58 zdyns#4)xhNAPE#Fj_6mYl&1P5x4DK!sNewM7+mKhMB;!5E2)Y&0b)=ZKKP{-HgOIp z7_nxS1LiGVYHLo@%JN@9EXr7>Urz^(j9+v@*BF!9!hjbfH`XMGz!(6Q(iIF%k zln_i#YN)`;WHu->Hkz+{A%Pqol*e|`^u=PNY?xsL!({SVz@<%tebAd;8QLB01pF>> zZ@B8Gp)KFLn{z2qAGqkX#%iGZfEhTF&)M>0ktzwZJy-c^(n_!euZ}9L36qbrbtK)! zh4mMzv_)=+Z~rekt_DDWHIYEDsSy0~V@~`H4%&+Wd@)MF3&0JhIz>kdS%5)VZ%NOh zuWgl9Vb2*L2 zxRN~w(ZApdvkB244eNK)A7+cvfVh0*cfi0#Z9^vV&Ol(H0zQW(KfUgH?rx?MaN&`> zt!rovm*1$*w9~$Q;GxTb^SA#lUD#zm8edI#I?ioXuRD&e+y*tR^_9H4{u%r3h2anV zW!k_az+iR-G{Jdttl(5KIQ|@#^@l4$VybJoZy*Za1pVdkhYQqII;uH6R)f^c^-VVt zz0XlycHo()^;q)gChK*-08JJ(vll!a>dpLx(?!XUp$a@`vG#{GqReBM&S&I4gDz5` zpI+5-NB@`C4CuTfz4u<`Dv#H>L==>xD;_8)vVsb@c(iFKrzbSLev+gnMaW)8yR;Y3 z-$^ipPYxUyY28OwN;bt)v)8sP^-$S zRLeD%Jaw4Z+IKSd-aW12qR!IP)zR6#QR36W4lhG(E_>Hm##j?WE1@H-6viRJ{nEZ| zGW9qj30wP$S(`JJqm4MV{jEN$WI;Lic*a8Z8Z|4_R)hb!-`C^r_VMTn3?;qC1w|v> z#S8k&H98NcQ9@1uVP5pmia;)ErSp8XsS-19wAu^BV$FifkBZ5uQOd34tgUeZWJ{<( zVq7}}W=%qWBe2xEHoy^-tPm>#(pmD3Sm3m37#J$&;+Xb-R4`Ol5H?(}OE$$8-{p4z5%y8Dnw0W0hgu$L4MSZACa6R& zb?XM<@Cpm=d?3pg3=r5;1yx%+GTxBy>So4lI!Enh6Nt(Rg^=W;r_R2Wty`gFSUmce zAIvBRZE?6ZGivb91uN3sGp`nFS~nI($Y{tg4Le+D7B(ln4)iTqR#Xm72zybRSdsA_ zPN1t{J$cf26i?dMkvkKo7t18`@{FH`Pt+*3lzCTx<#~>;t$ho1eV!=yOq=KP=`7=| zm+*3ES0E`@LQps3jZTdKvvZKO%0cw_HM%`}Ms;Wiz9Zo`3{LtYr-V(5F1=V*heDgJ z_$hQ;A~)uH)?xCQ$#d*--B?>)Ma9{pBaV2uR2+*9ndN`{T|X(mBCx1rLNOMmB$JNT z*41DAUO7HUU;1(hLkG+F8^kHe>Kv(GHZg1dbT)gLRzbe-x3UKyhe%bchVBIJ-m8DZ zD)VLVE7_?}3>RBm0T(Zv zc&sU2@Qt_$1wcPG`jvPji(e_Y==3*y(#{q|6tK*?u9a;>-hpWYrdjKibCa}ZxAlY( zS$AT?$Egd}pUoHHzR+UiE@%+Ff>mUOhlpw+qw}~Qcgsj4(_Hii;Hke~$SQLO-U)o! z6RAPJ%MB0B+YR0&&|#bS^!*i8JRpX3qXJCBYpnI`(-)ufD$9efTZjkW=dM_Hj>+RB zb1vdhu;cFx$hwHbrgv9(??o_}jk|QL8PdA5bnV;4ah@8-oPdrjzOD(?JxKDA)%FOG z#HCEoz-3X|jbz(Bv5tvYXF;CyCcL@N(461*a;53lIQPc%v`(!<=l2hLl~_{F58{CA z5G-P@Q_K3d+Vwx)s4B6Sh|wo@*7s+el4M$=2P#``NP9oYvKO1qdh|)3?r2!dk$tBN zOKKPK?IF$K3M-HsyKC7*A@LUDG9-WMId03<+xlT#~a6a%= zgVNKTUw?bY@XY)8YzCoNz{whOkUGRFIKv7k_~fI#6?NkQv#p6G1V!$hLWmP2593hM%) zp;?{*iGsI#vX`4ABs7>q?`toS6B>Ce7%L8L!77zh`0aLJidpOC>E`(S`Y6Dr>G$Lz zDU{ou`f_hxb!*Uq>5CsOpL#iWc?(|hAe#p69%54rZJkLPipl@+{ZKqY9O-f#pjn2- zJGczVRer)Va-TuA1TnJV7fHJ%VqzQCS%zL$_o*P|fZyyH3 zt>=vJ{H;yFSG|}VM$-FS=8+4mL~dk&J*$l#uO@RYG#Fz~anv>6&}7e^xH*^rjDxm;T<%TY-AvXL zJ+XvvwsQ{>HY;R2_)ylcrdKM_7^5!b6mg$+al0SE!)I37`jn$@1m$p^2Iz|$DS|3MuFa>u28O1BW`p7OsH#-Naq`)Efuem{Ur23QddFn?k#js>N{%CiTo zj^7~c>#FZ~Q-@^8!dAY{E7gJtEytl3X1TJj9*KHpEn!rD0XK%9*Qz$8(4n?=p?{F@ z+=36s(R~M84@<7d`hiiYNSN-u50?6Y{2~wc#Zgksm5T?2K2kGfjKmDm1j6s^qwHa( z48bZVhLB)>>27iPx+_OY^coO>I->0{O0X46(%X&sqm)y@3HD#Kd+k{22E+f1-K#+M zfh9unz_BVRxC?z2Ch@SwZOENz=X@&RqT(|Susi^;%6fW4{~P~Y)Bnuq7j zulWywsOT{kRi;z(r;I2~>i{LYe@g&(J(>>Vv*GuF6dw|#9pI#~FFviL-S{fjSZZ+f zLfi;`IP)w?DhB{=)g5q5&TY#6a+eD6?i`s@PQ=`vCUWl=;1oJLspi?9@ZM|MmtWuA z4CSSTjjoIwzqwZcY6Sq$H5P9%+gR(m{MFLg=#bLY|J@Uon<2BmAQ|Q$b!R#Vyt83{ zsw4vl+SsaszT%?onEIc*AHsbH2spixo001e0JWwfGy(u65Yaf?m20m`pY>=Xoo*oJ zVP#>_s_aMYVUjzd<8VM0d<1xmY{6KBX-C~Zac;}L&Q=;e!6cyN078msYN=e8s{%ED zD~XYTz;wa}S8sQV`>mHIT`gLNuX~sr3?;L zi3ugenTBb1g1O?3p$}*4Z9Y7L^xf;TiZp6}=rlR#wE^#J#AFJ4SWP45l*4L(DG5P- zWCX@p(uuj+=7CkNb&S4LPWB$|aEU~dj!UOXQk;{i!7y_V(XkTZ_u*GZykwPFYF1$O zcs70p-k5qTY@d|%a<@F@%|0xQ{qO4Tr=yWS^E+?vi3x;L3~8m&H%k4P_cCu4XOR(i z>?`b~JO$aG4nn7q*XTnLB{f|cP zwq%9_NfvXN?M?p=d+!+(W$^qD3X%muf&!9Rk|c=|mJGsz1j!i@keqWC1OdrQQZfRP zGYCk|86-=ToO90Htl#hN?tfMH=I-6qT@_VSZS6kKOixdD&!@XTW9tNbo(M`k<`5`= zWorw<1$g{rhdmc|Omy!8NY(!^EPqIn3LYVf(i#MCrHj&t;M8)FRQ6h1dB-ri;(0@5 z^Wf>TQk1X<7`XV}5#)mE9|n^*F=#N_RuJtD#=;^1bYdFEB-Wc3MYI@z3=jm`(#H8h zyZ72L&{$qvfwg4uhkBgsxk7A>Y+S<&cTG~{+WgilVOlwW;0a%Xj)x9GTy=25d-GvW zzrh2BXn(N$vj3kh9MND<8;Qx$96jOHGDr^R_>m@~@Otq#ehgjq`b(IFkE9`aq^#t- zNs;?*F54zrTArmNP`yqzNyAT9?f^=gHX}U#GrM5X4zO}6_J1^FhSWcNHiinw77q9l zo>4wy4_QBr8si!w8m}XqI5rbOdH40EkCJ(XBD|>LAgBYLxwr0;_crr0>3n;nBO;b(lG!#V&j`amuIH}9sFC>-(YH?{ zpLPc`shCuu5uUK&Jm=*WLy4xLVPze-W~KP=Oi>UP1Su46kJ{MxC}X8jNN;STebiaE z=o6jyf=q~<-1*qyf&ogDx#wwTxWjon?C8ui?NJtVeic*@#)7UmOnt3?HMNpdoIq$H z{mz)1xku`E)LJT^LswP_&tks5*leSRd7Y95Iz!=w$z+#i!;_pJK(@Gi$2BdO%;k?^ zxmPWi-q0g0*niqZh!B~RKrsV*a-GCcbAXq9G2VB^rg3g=ga6r}lGbBMYkqm@mt)$a zLTX@Y`#Aw*0+eLjzC37E0SX1`gb~{97m6Q2z5CpyPSf)z-!Iu+K?VFIZpX2XCCu4A zk=r|T5+3hgUf0L$@crzo0=kfbJ zdGE}9e9LWvhzWSznXQE%Wx28?YGf*9kIk!UV0KGXH7)l;i`d|D;hggH(Uw zdS7O~-jr+rgoErL9OU16zi3=C&E0U{k-)ig*i){a&5J7QqeL}s{ykMg!uHo&Hi1*Z zysUPHy(T^>2o#Oxjuz2ZA&CPX`L;r}h1_fqzE8LQ4V}9~(l7#ZIZ@awtUWsmrMd#c z#yV+waaLp%re-t{6IRGFB=dy(Ak0WGUo|I^Y`*5uM+^l_S?Rx1CPGZPgA>&^iauu| z_FBq;ODMccEuSvWTUthZ&LdTzn!?x;uO+hSQaxKBvd`AHNO@jE=4Q)$ufR{}mt6Iu z!GssUTnB(4g@L8;pUIYFLCm|3JA+*FE`A_U(kVdm-impLkx5P2hL{E>UCC1DI0X*U z!T^2ZbByozI%f3?=wicsG0y+P_}y zvGF!nBr%=ARd=tXXF^Q%Y4e`xZsj_T_DqW0vSg0W-O$GExg~I`EuZc=RGkbrX>WPx zYf~>W;ZXml>nWH8C=QLKQ0ptwI49!{!~GYqxz$FbosqotttXNx7B~?2S|Ca%sxY)NG%hfAZ@p4u-3{M!iL@rET4>3R#QA#H!E1&Wo~4}n zjtD%8y2s_8^~(V9GehOYYp?C8G#^Nty?z>UT7ToPIa3wNZS$LIV-)xu0dUO!x8C?bgT#?7Pq-7$CuMsQ zIh7%%28-#-1dyt8VwlxPWhtAUG@H}^Z~=%%I&i-~3VSurJvC6h_h*rK^+^!f`=fVy z9#`hCdzam~WEep11Q|Z?PmbbYK#svk5hrV`bl4=B=wGTF8;o*6%9s{bG|jg~vx%ad zA~IQ$Af1-P%AQ-t4=vw;e`h;=<|LqnX5iaUX*O-#1l2rqZgHbq#6MN&jT^y zNc;Bl(*4Ej4(;O#qhwf$r(ADH3Yl}X13V#t;rN+1EA0=3xU_rCMPha9aJW}j)!a%v zv%sV83_-s@)I@6d^Iz8>#$%vAEiD}RIz4Vzm`oR&0B6P*&|@=C&|A$74TzDS`Ps9~ z-oT=mZ+O($-`bvI$1ZZX@ssn12D|zA%}b_|y4og3y2Zn1O#1)2a&tAo*j_xn58e>^ zpJTI8h^5m?6BGT|#w&cR*#Td@GG#RAO{v%IF?&RCPu%F}>W}+d#VcLMs<9%iQ51aa z$*(ZC)3xJdY^M~mxU>KqeT<8~N=3UcDr_|nE+z=iGV+b4z7OWC@mU-Ct0 zBpi-pad@8X#*maWu;GfF*N52b2!#Qg)q4R-6;@ojVy7d{y;}t67crm0t%Ck7y*5IS zp|+}(`la4U#=_i^h5dSg%knbt6}DSQtzK8_FDi%R)4mLJa%1c;ZyucUBaw;1 z=qHMAqH!CwAzJ+WseK6FvE?|#v$tkOJ8QC;<|}JslM1OeV`8#kMueVrxPG_)={*yD z0E`RDgLobGs`7G(vZ zchXiGFRVG3=%3cFC|OcJFuY1H!_OIseHU*PH-_zQ1%EB&BlV8j>C}C_r@h4$mR-p` zI$-dew>v;x@I`FC_h9KlGM*Vt>=BaSI7c z71nDUx5TQq`tmsUZCg#^-|z0F7U~7+e4SVVG>dsu3sbBJ1D75Ko7A!j43emcJV7ep-XiuiJod%yleb z73Fg;rA4zSUaB4_8!;fDdZq94URj)wt#grG%cMsxbfqZkd# zTV?5cSi&p|Q%>q;?xT~HeZ9J@ncsD*G5d||rxQlwA570`%9NX2tnpKohnG-+s{saW z0T&4EE}c+f(pXqf{>b<1{#SdiPy)K!HJ^xIqKc^=w>Ttxi-yt%%}diVO6SL^2?lJ- zSEtd&16~v%f%vI1xsik*Mzv}%1h*7vIP=JJ;z2}-G=CtWZl+=webNAEH5hv zfX53K{f#)AlE&_tb&qs+l0-%jTHe|Q5-7VK1jO7km?!8nS*WUL?spBRZBO=PdtYC( z&WUZ?iIu2Se1^TU5C4^IV1K6Nb3!;T2lAMquRQ<7c(KnA){AE2=d~J5%;`h{Jje~I zkN>UawY2Qjt}7~GB>G6oqDpFPP^x<;?VK1(3b(vk^bgEe(X!tivYpI57W_tZ=jNZk zvZ4wyr}>>YUH~)kE|JZaRi+ct!zUo1eQbiC8mxo=IQXAX5ovq6R)QqkL^mkccmzYq zOF{SK>BB4>V&=oDbHyVqGTAjSVLeXNM1O6u~FH+D;W0guz z>h))8DC|WxO!+-Q$O!4*O!nHd_~=ZNnTRI3Mh_hGKcyLOQUt12o?oyb6cU6kj9|D# zSiZ(CHYTQWonQUl?@n(JzgwD`1I{{>+_}sLK3yzPDA9cR?-2DJ8H^)W^Tz=$r{mxw zc+-KibeDa&j$HO#8yWbncq_qn+JnI~aEv!Yq{6h-U-U2c-|lMkr1G|!*XXW3fIWxm zFEMLi9-Glr3*x7C>phPM`=`|50Hc0I3O%EWYBJ9>7Uooic$VZS;H%KBUWviS%GC_@ z!YHE;+Aq*Qjsl}cWr2Xi60@=PMT@*W>6Q=e-&@}_lp5i{W9)VU;V!FHNL|ZJR_%Jy z0AJKr9Q+L4@n77U^>05nn&L!Ki5WCiL#;^dkE(9?!|ah#%wDhWLvi(XPg?|O7BMN} zt^Vy1y#I9Y*~C^`k7+MohZ3$l8QCj_I<&;W8MP{gj%jCDRKCG$ImB@t<>e5(@TAJDa>Qc7JY_uzLr`*BSwN zNYRiGzCm_=rtnimQ0Qkr&Tk5q{`(Ukax>kkml6E79S%K-yxI_k%+kpK$Xq3RI^C6|f*x7aC)%M>koA8b_$v7TvV&Y~rUe0<;+BaBU><$8m*MzLlWXvMu_b z=k)>r!SW-b34Xkn7DX_l4(+DOQvJEnc$!T@?h$^plC1B zGM=-Nphy3}Z>3RC!sv*Q&?Qz|Z6xST6bLl2w%@M=2Qa*Tnm7s$O3gfA_%$DxBm|>x zSd-|EGsL!vs!B>}bhq2kKvpNR9Kzkz9rBcrMrs6jjX* zzrA^zBYWjso$tdu|91b308FstcNwfZ?VSzAMlC_uzR;hy>;G5da1)+NV~v`9 z^&?nQpPUY2iPzdi*Z5k#MAnrOeo*7-%`XT9I13P`$mefmd+rZugJKzqwY_26o@woq`Q%IUw3+T;$7-TS z`2X9n?7(u|(R6G>F;?!bVvL8pl(L~(sRALP30ce@u--$4XA`v-!2w+zp?!G>p&)jW zZf#*k3Sn3R7sd14H#`}7o#W;-o37#Ud;=7FXJ9O6L~A!-gV-UuyKQuaUk)&s9=gJh zcihx0-L=>mATWnXK}fB&pos|S=c$hDzVw#z%Y9(l9Ebp6Lv%gphha-)&3TQ$R)P@# z>~~)rW@9we`<>|ipnW3CE)VJZ!-2@S%A~8#fLL?_MeE5H4&VR5uZ$63%C~L&%S`1S zg)`}Wxjj!Vwch18C2nD{5j2sfT+sm9pt;ZNee#dj=i>uRToH7W*AJ9a!`^yJmEYM{ zMxQjzKvq{q$((J3s2AgNn0=&xKR>UP2cx=bGRZXzNLL};#CSGky^*#aDhkrSn<4{O{} zJLM0yt;snydvo)}=Wo7x0&~f=u=9`PKCGGryfHdjvHeT06*f8=vrNjJa3XwOquwjg zx~ysQpCzJs3QS?JUgE}c&9!ZIxx4j}{Matb9hq15YPK*N-{b=9ude%Z1zJ2TFmuOB z2m~Sn$f6oRWhB@N2#w$dgQKyQ`tAn(7s%1Jbxc>aaD>)u;Xu4MKH(?8mvST52{tFv0#1?xyexCbZt#`ioJRW-(-`WBE5?EHK1a9Ht}$H<3^O^d>{K3(2=r z$f;K)hp6FyPJZWVSVtf5CB&Nog#*bb#BqN_gHg6Cq2fZY$NdZ`rz?JtuJ{8j*v=*G z8YNG%xvpLR0O+g1iwuewO)z3KY#w|+tgPJWMW`lz8N{8qUFLOlz*;dAWTs6t%v*~B z?6Bz|-r(ShqR#t|dj|uNcc%UnkF#z&578nRm-qhrSK+1d3%RWU*ZYELheiS((|_<9 z86$XyWHSI@+i=A<@RWKK_Kr;8Lf&C(Q@su+1UdRTacJh=@4sgXYb$_VYm&{UfLOEU zCScJIV(^qv3TJhDJXZO8?rn-kQ>E2(LQHj8^Vapr;__MXQ=@#W{_r7QK(ztBk3z1@ zt4ZkR-*7L}nR`d`tuEP?E*lsQANcGVv8gvl+a%n zDQACa@9H98V36c+e%(r-(x+DzGoVwgUY-*%mv++5Ak%v)0m)NK`a=HhK|>5Uu|8$T z!9;GlISNJ8yhMOL^IFifgmq7e$% zHpE&R!C!ySKO4ARcJ1-8D3r1JVI*T;^%y>;gDw?rvF)$lV6r@6jh_%t4+xFoL5c4W z2W2XrpAyYG+Z9AnhvfR@dfKb!0@+Z7G0+}sD)YE8tw^Uj9#HCi)mT@9h7utZ)FhkM zEcIJO+Sz6mk*^s#Y`otz z$g%gB=cK&GRD4ocQBh&C^QVjx(6TZ8MlS~RdL;c{bUR0h5h3O4rvmUFTBVjb#tOcY zg{MvYLD{?*he6J!Tp9QXmD zmg}Db7Oiqg1kpv)?O76{N0bv#VHgcbm}@>MeZLSJz<~CYA3x`7^@l2BAzn#{$Rs~> zAfMvz5(;d4LS;!=g;ux+5E43Gx;>>p5p_e*fdL_efirU0B_OiP0u3LWrh{Y%oG?1f z?*bxeZ;=Ey?RO3RZ!IXLHp)p4^Y$lKy8Tb zBt<8bKQC~@2dg{#5F!@|eZq|ysUsXP%!7-c+C1?{ITaK=Dizo52_Q&+oc8DEh`nfC zp2+>n01H}@4|7#<44F?NOHXnD6P36d)*QXJgosF>+4ru>%>`?8S73~@9rpS&UeiZU|+u182Ak( zy1F5#SHjUEnaPm;oEQsV1``%uOss1z<&Q;Y$^DX3-p-_@5v9hA95Q)tg2=luJ#S9) zKKpjEGo^BObF64S^RuY_cu=rYt--43u=u}eX%@83q-vLNV-bFv`(&N7SptsvS2 zwnGXjSI$fo(Gh@xs7t%Nav)HXYYb4~D#Gb@@Xr0Hhao%`o&TqR(}w8sYIzHZvnw!s zbMTJlkK@h1-E6(N6_13~Pt~LAb$F36t%st&bqyG8AL%Tg+#S`qf>WQ{b!o@v(iMBjYHN1Dn! z*c!!`EXN3OQnXk6f2Y6?0v_x9)D-~kBHL(X8_UfSn2td=OYfV*u8~G>Pj^thANGVx zMgBs(U(fm9neBYwwQqX*Qm@C751o*w*C0Dv(Jx4{TWVIaj{-QeL7>73{&9wYo+f8U zls04oFmW*{LJtGpTFwDo?2P)BN8cM^UO5YEC17PH>RVPFi8;QVgbSV%mAMqp7>qo$ z;+DzaFl($yf{>4^FTrCZz7S(7$}E~JX9F*#f+d<=f7`>5M!dWVdK`KYOb}zbGCX2T zicHN?movbrHGbsa@}d($t#gH~#iDmimy5#`-`-C6%H)bUiWkH{svIYM9}-#U7b^iA zUMano_ZCriVvyx!P;EX+FX1-teXhq38lF}TyC@SBQUo|Ma&2pLRpeTi6SKp@L#Xc6 z&$=kh3Mp`uzBW|k5Yfo1tF6JRfzC874e1ZlRp%>lZ2bzF4;8M#5ykqnk zjA36hre)>jSq<9i1-~QmlpCvy3tlwoNbN@xMRCdQC6@K6l-x3g5kq~F;fc#5`7rUI zQM%2V7`luzr0;h*jU_mx0Fn`Hc5?^qg=mXCBcShHAWDpkj*d<$$^xmRBhLk|-WDX? zJKHePni(->fx#1Ms))=C2XtnSblcy)6I97jAkR}TO5{I3#dUf0^%xLZver=2={NNO z)*)_RzQ`TM@rfB^ zcFjl*pq95=%QS@!u+9GV$ue#GjB^Am0jVbA%5v_5@+myfD1o|WrXJl_E{&-AKk=+S{{h#Ckzy+Arr&m~y7)zt)pcm!*RgM-7H zCMsUa>xQkO^NKOkoD*wjo-(#qklzI7v(n zU;Fo_)BuL7$tbP|$V!eyS1RQOYUV@nak2qevYm9b@ODb40Ei183}2@bUNctt5t$gw z6Px`n4lA+=9W<(&s`ub4hf$c5@x{TS!$AvrA7BJojn}c^$U?`DXD+T0M??`47W&?& zYP8WX^`S22l6qyf`U7#rS<&OF?_@&jA6@B{8;3aUPOAaJJi1Kj z$atd&{?4exC$z7>^5PNVeQv9v{M;_{5UGyz1W7T!kFBmBk0Oc`k6XqIK@BQ{HT_-c zk^9+{X*S?%y@vg$?|OT30jN$BfZn}ryg8B^1+F!?zJEypY|Po(Vh%xOx!orYjhD(t zPg#|gjuY@RW=F~%T=JLJLMlbx!Xx+6S8|-%r0`Qm3|EOVB+>y5WtI_8IS0TTLh?L0 zLEi(WU2S8XMMpwH!s)W3Nt@v(#%^VVmxFd1byjILH4+sWqbNM}2Fv;u)GpJf4)~)! zLK(p)lrjI!798X{)#zOpJ-^U^DB&rtT_Zi_oklYB4?w#WZ$Kp?Qq_&B5e01nV~qTW zI&x$5NeR?fX1}Sv33>jkMaOA*Y&KD-^nC$hfFh_cPc{OV+Lq}tXXPq((5+C|Bc zgFZ4ms!ku~Hd~dNjDz=^Qi_>N;^>u4R5I@0X#Y5iKgk+lh83^gABNy-WcszgvZX!5 z!Ho|VgnD}Ir^@BGsU*woU5yzweKRQD1qcAA-LZV0U}Pu z$6gGy1}YgP5;3^LO0=}cj%B)ne-HsQ#VXVE-2=5}%CDRNGwMT387v6nT%GGPJbFB4 zV*bp9h7bY7uJZr>Z|fpf%3| zaCl{+98y5f3L3hnms?uLf6GDn2@EhcVoV3|d93ahPJPw%8jG2V6&mW7o>S6cb|t67 z(_A7L2LYJw*Lh_}rS!D*A=9JTlCqYeZ(LnsvhSK7@eo*fiux#}w+eu2ZX9ZU1ZyLt zJN0?+?+}JmU_saQ5IjikfVW{aO5*XM>L)xgHI!?zDDpr3e?IpB3J{xsN|TM>8Ly9! zlgR7dSt&V&gA8;rX9)%=#&^_l4Jv$!S?tq4fXvzmB6L8Q1d8e3+M-TJ7>PndWPmQx zIB4II?cB8cIam;F8!u2>II}LJ+C_+O&H%0A;hM$6d0Afy~NE1*1*cp$Ss^j9f_%isx zULH8s=vnJ$SomvWS+|~{p|+z;(mZzu+WVIg?jm0Y~d2h2ewwYO;;+&mBL)o z>f3*->o`}_UO1by&K$ooL2gv z-_`~Qsb2jN|AiFyv>Ri`;ft&w-XnCjB_(IjZ8b*B)K*Xc9H4TYi*+P7#%=2a;A0{{po>4-trp5g1e@xZH_D(G-SRmasr2tL}HO2M@_z^MEn=6S916cqda3_;WfM^Ba$rhPBen5;8JxKmrjVutvmLJfKxU8kr1WezE}611 zuAY4@wCYsxK3iD06E8tuBFlvqX68`?;eKoWTP&PzGwKH%p#F!*$M%m3fCqp*$A~a~4xj68-#67yIG+B;u*bnG!0j(h4omCCK4`CiaoE zzfRNxS&blz{@}Ox4Y{rI5u(8PLU7~Ra`SBzT1!+7OnJ{g+6CAS(| z1i>p^o;Qj8gcdIecD0T@Vb(k!Z9D?nUs+gTXDnMzz}>1;g5_Xw7Z!=T4eIjFp{_Ph z=LZhIVz|-bF)nIV+oVJ{eoSuOc&7ZkPE`A$II^pqj4t3w3;W6+HSI<~cujFl1nFRF z%%V2KMQZ^B-}rCGo??I+VokI2P?@1pTI8vNYJ-#g0$WeryT(R9_uZ+3t(oB)RSeq9 zt~>=xLXi={@4INe_5&KFQq$^{k~=x96DCgI&G$?f+osXU-Yw)P4vF+XWRve;RSzM> zgMRSeH!=ga<6_Fwm2np@ZZdG#7WOPym0CX$^B=VO>kZF1yqlsz)8g9bZVXeXHh-foVyn}=@m@qd&kfq~8D^{R#B=&xNBL*BKbe2D zCOe^eUvxhRv=557`5D&R&2(MlPGAxCbT5*aYEr#R03>TbvL{;g{-l)OR&)q6?5Zby9x z$qVV0DURDtqkNDgTh!O;Y@^|9RK@&UV>qWt@>Wa|>GgA$y`$^-&MHgTlJD&Y#?B;{ z-Lq}|+0on&IIxQngD}_aRNok^cwYT?s!hM>(Qo(X$vw||9#^RyV8eijQi^5NFOA_0^w}0rpp-&8- z972{3grq>?8`sqHs8RC*ZR%Y_n67GN@(ThsKMK4b&traG?nqanY{H~; zQ*?pSqk;Vhf9aICBqYL?sP%G2E9;3bs>`!K?Xt|Jx6LuX8Vs#wYlc_e9<5hk<9>@# z7-9S~jfS#8aFj|Tl2+h$Mg(*Z>u)Z zEOGXkZ`33`&}A~`J+@hms!_Z=&vwkie(nz0GM2rYSrntPz#O_F7hKIQX^O5_4i=3O zK=01(B4eczW~977tMe+z=)Pr=-i-V^Riy2~J68Sdp0Q~&@~6n^#fO2FthFEypPSTs zi|BX#cd->Z&{G5}6MhJo5=O=6Jra&)5rIwPq$t22 z-Z_e(BDw8_mO#29!&&uT{hc>Wwdtn5(yOwrtG`R>Y-BP4x5%i`X-%eieGgi=E%*6U ze?K||FKPc?Ia2!CxwhO09d>7{qFZ^SczJWa8Zq#zhBvXGs5#I&;wY-}vWX?GV@r5j zk^hIi5r0u2DLpg449F;;80cJXvn#uwv*k5f293>D>E)a3MQ=^r%T)QZhsnQ z%Q7Bx))q_SO2p%j$zMhe=)AdkHWOYOpcB6Jkow*_lEQ5Tz<)#ROSnr9LIR6^UV=Vm zp?PV#(~$Fp^6)WC-eLb<)DY%dreHZoz}4t3!>!6sWpPLN=cgO`HuG-kyC)QQ8Zw$! zr`zkB_<2Nluh1o5#iF)g7^Yhh$P!Zk>W<^bHxg66!#^|5J~^SgH5XBIy`28pV>`U< zPT`Fq$+|f8p!Im58X2Yt%Vu1>G@f#}TpJRR`_*x*pM_7c(f0P;f<|T3fhzW*ef#3u z@~0)8gP5}1%g1U_0MYxmv%Rj8eMKB!f-1@*apq(!*_>kmcfpg3MK zZcne67Ww;w0!%~F@KZBGW!x4{j}W}i2e21j+b5%n37|Pz-)Ln$_w9*|`)UtUx$7=z z-Vb<&K;2K-ltOalzTT068l_f~hyffL396UbLC9Zd5jVe6+C@q-c zy>qVa4U^KhO0#sd%=@|P<7ww|^K%Mcn>c#(vG@d;s(7T7T{M5^8lrgQlBA|;;-Go! zkye(k1+?R!VC6F7}tj^2gJb7^tc?;Qz*hGF_|S#p0Y{ zg2u7$zdhDzIIVMy84cGThiKSx)YI=xGhuop*KFIykr4$~No1q_`Z*y|=ft3)^BtSq zwKyMoe52xd#igK6ppOE-4o}EWDLJYe1)EY*y>a*F4D?Je*eWc%5i}@J#HIiJgtZ`^ zTSf%~oX~0gdZkY!oQ&GB#I-~0o<@-qv$T2Qko++W4J0!x6{+y0Y~`moBN9OQ9uI&x zc(*mlPh6pWN;>xZ0QA)_6+`fx&wm+U_fw^kd);$_oOr2r3CK9{xt%PDR6KGlaTi2p z-&H{iP)RVI@$K@bn$6S8q*t((3Hd}7t52FUYOIMx=jOcb%m%cx{>k|kIJ;j^1BvAL zp2##TQ|H|@G2iTQf|eh&zS40}maMS-ap10MQlD#TSfXkw(*Q389JAl3m*`usVbeOd zHy{mTsWo-@JrbnPElVHtw;+9+kumr}F7eCK)jMxvLXKX{=F zZo+9Hgi@tBuFi|;?=PlQE_;kSy|-1N4dqS=IqmVNWvNr7M~UojgIlnClQ&VDgDq7C zR8J3<%F-)f8p0gPF<6;>rC)5XB!^X$x`@PF_RE~(dqUo7xg0<%YZS*5jZkumE>B!gTMag}y6sL#eIv+=_?8_8?Ijv*9{5WE#{N%(h?6eW}%h%kT37}Y!;HsiI<#^wbPce4lF3yl-x}oaFQ|53^yMnln z&cfpcfuB@A!$hd2z|{nd$BhA~5ogj5{23m3c_iOU+&r6~(;7>z8=Y9`d8Q{5d4K1s z+6=4b8<7BC5lTLcJwU-Hf-3LU+AWI1BYG#un9YANhMyZJi|4y&8B0r(a`rxs9LH8p zbp~9V`TXjOe|eov=?WR>E)fL5Tepz9H)?8Xd7e~z$#1~|l5~`uAH3qV{z1}oEwpR9 zr!jn%e^kz?Z8w?1eI}hb;}ejkA_?9s_0C?06*&YewM}=x4NyJhxogq*tVHdNDW^cF zr&YRK$2zz{-y#aD}p3wG7#t zdkPsIw8WsY)gPUSRH}ZM`o>%fJ>LJ-wr7;A$ccoJ3VGPE`<^B$ci|Ew7}WUsUOY;; zA;;YAwh4mZ?6Nrm1dEW=nsIfr+=;{41xWAfY8ZeOU z3tgoCi9+ROHT?CkWld2y`*>Yn9)IGClhcAoslNMCli5jWMs)mQ1?0)c1sJ}}EIk`? z2nNN}RMg<;2)guIQV(?|VHS%QxG95)Je%s))i_K_US7V>6G4nCYt~~H;zR+L1J{c2 zA+9fyfybGc5zB8dM+Y!%wJsW*uQe`MtM`MBZC&a zB*O|OJ9gADM@t|hc_70G!*|ZkERQQ?5i$k0Hpq(HUk=fV@U49`&Wm=bS_YRMF4P&^NeWd|dSF~&OtG%$ML;C#Hy*7cMlU1#= zg@-4jT+$mXU5O|dq6d%%xC!)csGhXY(n!;1^x3IcMs5EoGgA9%-W@fj?kS5pMtOID zE--k{#n810^?gH1E}Ly6@cgl?d3``>)(d%;_$=`^tyDqf`b_)OS`5~rfsslm z+QC|d388T#B_)mR21Hg2W7vF55((rHs{4E0eXwWi;8Hcwz)EBFaR4?;0|qlO?fXKw zh=GaOCg8u!Z`B&{l-7LbDt$f4Zuw07fOtb-Q|;|>Z$afw@QHrTn>3D8q z;%p*?>Rs;O9^W8#{qmWAj`szJ&R?3hEwuZrKw8mz`H=0}Z*D&!%(l~&A;k@6+S9+B znGvv~?1kzS3ROnB67&uy*UV!Fzf(tg1}&DHB-G3am>ZSte2F8JE} zF8T~^CclI&mQ5*$kXzOi4O(F5Ag4~r$AuowA+dw6tEK+KM*W-^6DufS^nd1bhi>~J z$<83xnv3=+Qt0e!;&kfZok*EZI5QjubnhGYs2w{-Dz|9F;uAb5M|0~)7TEJ4WwT*Yj_3vT{LX0m`w+zjnfme|d>K2vNvH-3Cd1GQ?VxhFb z?t3W*Veb0Ov8^F-VEpY7wOhXfF?h>eH<2Zk+ldfso#0Hhtp<6D)P*WA);2?cxM;Wu zQ~l>7gwI`jjX_aChSp*fFXGTaib3J6C|7=zc7J2aBP>z;>w2$l6ENqrGh%uN?0%pF z1FFUUKMhEFXjJ*j9U#UU1+;FP;D63=rgTBA7VYb>W=2e*fL#kB#E%I6mmj@G8S*}# zllHw?rp&9aPkzd-{|11Lj~$e!Z;-ngLqLwF;KQd8rvq?LT^2){7k=`zU2hyEwOe`r zC?50!KQ?%j@5&b*{2%UMg*U;4NE#3Mqz;k+f6ql|{Q!IOTZ&33C}7b3<-~LfQq!w@ zsu~*AT7i^~f&TefVos}N~C z0A`=-x<7BNzSyNp4a|c{>SwTihF~z4vhSoBGEp{Z|vcd6z1jSPH0SfqQ#s9c~8QL)$gU|{zgo-wkB37i7_Cbr0 zbm#A5gzEmk{Byn^TWdOI`z@bVc2s2m9+#b%NXmu%iHPa}GWatDfp0*^`#l&21((;S z#f%RZNdLt4kqrrhLQnZ~A;J{^Q~CdY{{KV{=#MFXh*F8}J)vb{XOHad>-+zZR?@d# z{`f&pvrQTFiA=#XV7%wHo3Le+5c@N6_x9nn;8zJY3Os1-hI2g^#z#?Jun|LAEM+$i z_>lg#+^*anJ;I_8d|f=E?0`%5rWig_i9tz#qPTEjf3$b?<>v2>@_U9RTe@1$bL!Nx zD6Ur1GwXY?zdo+P$sKfKb*{FFBECM@O)yO?gpN~1*#Mu(frsnS;N&#wIaXsx#KYqy zefKd<*PT50*LmhrXhFBo2KtI!?fV*|9XT#mH-G6!KiPIrkseaSB06&w#9T<7ZS8ej3KD)Cd9 zd}ko=mlk)&Z!FNMPOP^r$xPpO3;k2}a;0p;@sv_QulQGLvQ)>eFu119$eqGK3|K%a zL2wK(yXqObB&~XsMsq)i3pitH!>{C;3ST)V+VML>y)|Ve0a&1zJ}=>HsUGFJjE41d zddfVU%>Z8Acl~x#ttsPXPl(D*yRGH?KNf`q#NwHo$d__WE}LA0f9_r#1x_uN*(^Ko z^=Qo}d|^v@O&)|T|7!zQy%2qVW=C8Q-KHt#YvhR6=P^TIAhpBq`S|;wqmP8Ui5|6^ zLVAnqe;$j5_iO&G=?e<<`jPh zD#OC@zV7QgX0lF!56mtrbH~YSy_C+6oxeGt@*f@RESn|#rOg^=oBNW0jD%;_g$On6 zY|=AQxAe8;=3Vu%lDbB&)Y;|_yO;44r4@|X$Xw9g!t<*~=-eP;Q^zBuM~&B_TCqSrn?F)Ae$)OkXr+<#L z+wmf2)dQ=4InW%h@Xr>QDk-<>BYdv&)U z)X=?-m`CU!9(Nv3jyCqvw!jD`Xs(EB5G6Vd9mK%6qb!IT?Q1>9kK^=_>1s8OKP_fd9tC0NO%wY z+7ZufQQY-sG^7#~Dk(Tnk0SWCOT(YfW%L(S(IE%CX>s3gqg-FZkMO^c6c9Nj%M=~No9<#+#5!2VbzAvz5zTLn z#K^KWMarKcf0dG`4UZ0e_XXQ=F6TtvTeIh#0j1fJ3hl*p|LTFhQ}7!ClN~ebq8ozs5()cFawt=|n=nYCzCSz=Rp$GP=jK2fly2L?1roZFA z0Rq>V3b~}O9Brf9wrvtcx)0%3S+rrN+kQ+T@m5_x4b?~?+`2Kl(w+cX#7iTxi!rT{`FypW`O*!O!NZYaie=5Jz* z-!3JDUuf{?PLPTaZHj?Pjmv?^5%O zdq>1?q0ID?A|fJeh5$p(bn?0B?B)1zFxoe1B7EYrZ=C9G1*KO%CX}-uJix7nNs6h; zz98-&*Wq0(szHeinAZF_E_AIiKjkiBK`ghrq`b{02CnDe_PS*0@` z21aR*)p!dQg&*pMg%BK}@RNS4J8;xaYCxYsJTU}3F~5Pej(H?U8ZE-7d0gkMI864$ zX}691TM3orCVd!NvXViWBp_ii+q& zRi60UzMnfgc1KRsL1lIu;5^THrKM&f9 z6}4b>^O`-*i2zQQ0%a@GfjtLb={ENQZt-Hp{>ftRU#?&}W{U8|46Q|aVob!=Wd)+q zR?50h+IKbfsi>u`xYdu`IjQ%&z?i#VrJi=^m%fE$Rek@gioRL}Z3=aD`5suN>xHYa zKbpItF|PX34$sA9$w?5nfCW1egg-D221@(6Stqi}V|A=VPb{3%j$4+dqMz~a8oxr* zTv=NE>YVw^=yA_66c_n+V;8uXCvV1#9>l2+(O0jPD)%XP-3o)S_Il9+5g7gTSry-Mel=B(p{o-H;5nz7o=0V8wn|uhD*1kbO_Sj zjnXNtbW01;A<`jpUOwO7nwhm`{+WMfty%M@SMGbydt#rxpS}0dL&qGGV9uLFM_y=c4cXj8VbCiXOii^*V0(aXLR(2fvM8Dw+Ka`jsUt))U zR24ul2PTFW5;WzyVh;lPxcTeXPs((aK2o(*5TpeD5aO#&WmQBmv;ZF8jsfc<-iy3O zgX$&RU1e}=Uvwfa`$NC`9Q@1V_iI;A!Bh=OhZ^_d`!oz#1!*{c^e29h&I8aJiIliS}_ z(ah>U#OEE-z~hh!z9K;G0xtxa6K*w7(uIA8eaO*b%<#S8REC|~F81n9CdxA!$)$ft z7mK>_Dz~j-eh#L&`cIb)G|m0IU(x72QzQ&3=%H?{LjPR=#y zJh$crznafEh{T=p5u2paiC4Z?p^UIRpEX36LQ5+ruv8m*P6M?QF529NUk3CFXF+}N%e z`n9qo`+`i#HWA7?&*%Wzs)d zxKS~9G;Asv-L1mp*DwYTbrHtQP}!oOuZngvKwC6M4Ek!2?|3eQ+~ufPiSbvxA5$3L z@PI0z(GR9H@}|ATMUO^&kG3r*w@%eUXbRQE#1KFS1Z%I5$-O`2 zCn^YSu6Wl3OB8`fmy5<=q6^tKW>N>O-SeSQPBL9eFvbAP*>{KJ^V_Rq1h*k-$=goM z?Jb}8^}O(e`~hHU+K#3T?a~Kmd5~{59~;W?s`NY?JLu=4_9b@^&>-g|0NJ^P{tzJpa{LR>e`#9F% z?li?}d1&2LLUw`UV6e{9u2obo1RWw+~qEZA+yE9^H?TM`b#XZCD@iMfR8$7DdW) zHV5=BIN*9$TUOT06TprGgL=I@frYrV?7!>z5-KEIW7MTz;gi* z+%A1OP!1!wp+H+Zk)lMad&iEJQRYTt1lbrFuu<}c#@Jmo0(g`~&b^N_=I6prteBXX zh2)!6|Kv{;Po%u0M?L=;OP9J*eK6N>{^WS_h;#hqb9HKQ+S;<@IG1F3^9-p2N@4t^ z8fqJ_;FU4Ip!>6B@&FhT-WOtm%$^M=3tvxNK5~;p#Ec)%RCm7yV@`E?>x`nz+)|$m zqpfPY;Wi!cU~cJQ*bS5j`(C1~oZ4W1ZAJ~RSq!YA0^`(%#yLMxQ#+xeO!=O5wqb)0 zLmJ(zI6Yk{y%@f>m&C1QOXz|UZICND!rxqc(1=2G5nc+m8IvBIE!xSW=~a99aZ|$U z!a}}_=gZ4y{kbQG?fHTMre$n-(f=BU|Q zzGdI8{k63aFW;+}t(5CS^yR4udw`7558&z0Z(DhLn75*Fl15~x4R4Fl*5aZ2n!v5# zoC27TWh(#(id?qkWCI$w)_v35!A2}CqG_DsIo5x9Bf=(>eBU892% zz3@%myu$m;m$_4b)8RU-7jfg=EYY2IU!A}?> zUGn^Ql0+nyqL;p4o9UYN^~iNADXDOh^Y44253at7kU7#hw_dpAW8&e;q24?}hGR+P z9VP8dbccOUFEo_8EKHzlu@HOv52JJ9A({^|*v<&uz?jkh6e}|YTfccI6+FEW_+`I1|%5Wq0$W|&t0`a2ms*a5Cn zZt?Dy?s?|Sm)}>{w$sW zE{-JAo3yt&*v=ai1^G1~R zYb*!uRzDLRg;e&|Q0BV2HfgJkePa_hW$IPM86bd}Mh|YUiU?;|!0b6?R`2t`WlHF9)ryD)ks+{yE>22LZRAhd$tXFI$)~<4(Wg!3S?##b8kqE#um~gAwD<%7A zNcHI_c}DwlQzaE8N$NcDBONpiS|{v~-~XzErBo805@`WAMmMehJCcmk9n{ zlUf4>#ATcbcz7YzkB#&sJ|0#^>wU~8NbtnTTl+InWCA`Op|aL^{F2izb(6Q!lRtP+DcW z!zq@?RaGg7dsz=<7~eet5Wj9p1 zPHJK1RK%?n?GLl|l9t{3Hf!1U`wK_m1OvPb_4&b^qRUX8xwq}N^bD`zWrwpzlIfL= zVFu~V^a-Ed2@5@GBZ;Jp$9~f#eeY_zBi`XYcyM>8(!}TRzv%q-3{lh6duCb@yT&83 zG+4&-0?}wqxl9mL#l%XOThAF=1ILAA31gx{O%a3;X%PcxrSjyesTHfUE`NVt{%Sm{ z=*nafFX#CCT;J%J$L@EVQ|&d*SEFBQ66{Y5n_UzC{OVIUW7l0@FE}rYIT)NXUZ3f4 z+Q>X~9ejyS-Tl+H0$nHPy3DLE1;$&O3e2k_&iyaY`<#d7U8ICmmO0U0H zsac1sZCSg^z8jV5OdDOtD2^Mm{A*X|RDVu_8?_K(cCNbOPA`?>7-vo~a8YEjA{z!Z zO;LO+8P>XO>HwXj@J|6s|_f%rK|tlB7ZQEcS>VIrQ+JcW+n%|vZWbiynQy>WfMG>9bhkXL2`0QO@OGWYai9g@*OF#O6?Qk20TdJy-Il-BR$X_Ae)CA}plF#xxal#tJ2DzBZ0d z4DY1nJa>iTw%bDJ6_d)Mik>>quZE%X{bhv6Eue-9FO8htOyBjx_?P|5eQn8Xo5OOc zyLK^k!Qry0X^rBhb7)Mf4p~>5Ybck0x9~5ozdelt*UrBpiC!g*10^%XVC-vvhax5@iv-R8_SK zLyyMR%fh-}sCCdYD@RFJ`es%fUWUjJ*#%lC@V(wELKGrL2!P6ks-xyLEA)j6Uou(v zKPt>NT8K((7I3RX|Cs+n{RBN4Riz6a4(R_@oNQ@Dkwg7(p}{;z!d91qza0(eZ$QD^ zn875aS3H2lJ+oBW9?K1(2vEg<{uKNMpyG&@(b*H0>oN;@FF);L5S1aAAIxIZ(g1YN zmvK6oQ6R1hKQuUC80@2CKg*zBt(M@Yhq-R~tKmV!p|8LjJe3-Za|fR>2L$!u2&>#b z+m8h-V}YzLPc-;UD&}Z58&zHm`blo6HJOM-;ddz)Eej4(HWdg{f1EUfjB9f znTmHICjSjm6d4BI>lZ$Wr*hoUZ2o6(u=fZ;$L}XQ)K3Py8m!CoP>z7I*;%5?ELnsZ z8(N_bh{b3rruqczF2it|)oKN*1c-=?b_F5?vg_CJ$N((8JzyR3apfiMmmaV|NAsJr z3oC=Cn1U%BN6n|XUur-d(f5QWDT4_-2%#%$Xi zJca20<~1n7Q|cWP4H}%~#@D&1=V~pJfqvi|&7=Po9}giKdU#OJQarSfAAU&e|3BCl z)vP_B(SVLgIU@nIk;_$^_SEU~X;q_bdIOE8WyiH|=;a}xF-{k7dNR%!I4KH9tu4uc zy5M+Zf#*JwU_S!hyuDG0GWkEgobQJJP)xfzk2K#{n6^A?qG>Z=9$;GdO zj`5G00$r}l)Pg|LIDtaQwcpTfkwGDuGjXBODc@~8CA92 zvPiN1*9yN2pdBa;^m?s`R~;G+5WhZI5GqzLjMC#v7xvU@ay#S%LKE>`m&XI34lp0^ zw#P9lrWUns%Cbx~7Hk|pA3$%?Tf*+DMFff>0a-v@bvxJ<5j9u)$vJpyjX99AJV-;4(HM;WS_dA_e*SL*nJ}M><6bd6KlNav15O z-hjzQu&hzt6!|S949FYA0%1RS@Fw-mmMb0pVRqEv!_?}S@5_O71e$@ny)8`zYpS7p zY>5c;Qsn=~m--R3xtZxZjl2Ss77{^C)DY-&CY!QB9GGizDV?k|HZCmsYBeS<9YxO4 z=(rKSa~<{VGu>(!cRBPL-2bz3v#;P$qOk ztRjjUI|GE=cMgTd-^TR)dL$XDh|)XVkw6yXrF%c)Jk6I_;U zYGL2o(`1NrtVxML0cAGd13G`PWxVvT0db-@bU=;dpYj#zN8cCa95}E!=&Pf`%O6_b~|dfc@kgC?^y;%b$VH zL(|?SBtszL)?VXt>tPtNxz-cWw9z-3Ex}+poaSGYI`a@>C8Q1@3(p5^Nd7gKln#ld zpOk;UqQ#>}eoGI7ulNFHk1Mfg>C~ZQuINTYFVH1CQO>yJzDdENmKVy|rjsp>GQEyI zel9X<0a2K7f18Ov3VL*8{)KK;?jf~L8ZFwaEF7;Pf;O=K`wqAu8AYn6O%e8aAL3H7 z=SqJZpXShkk1p_Ot$k8kAENvwB?k{cd&8Ur$jDFze|v&!%d97*Q=&tPd>XR;~ry)dFCRhnt z1gYlT*_mv)|0qMvS-rTWbZ*=@3$Q! z%4yEJnIgmHFRq7R>E-lWO!mX1NHZ1NE9ha*t-D1@2q=+a#03ClYmkXkDI7V#dbJbj z@yi1w+&9LQ!^{G+?Y_Q-@8EMa7Ldvtyj5h?XH2IMv~Ar@o`&MJ$3HcbHvEiAACs88 z*lv;S3kV%Oz9Y@Y1~E}z1o%8fS01I=2zZDFnxXu>$b~&L3gdHk`FlYfBNwPcOeTNf z_(=A+okb@Xh--Opz}A7}>GtV75RQ;LbURphG4Pqc64Fjll|f!v``O}Ni?b$OBDkRU ztM_AknQpB|PcT&;L{rNW?V#cYs9{;t5V(Ma;SMtBz=e8H;na{;r(mEJ_(H&7e^s5| zNeA&M&}-Oo-T~dZ^7D1p@rii!sKr}=2%`?`5qF2#4Nm`5XCSHz>M1ZygNG&dOoHLK zPoBRbW&0jOBT;iLIf%Tl3k>8ssP2si{Z7jA3C!8*XSUO2WGr9t5*>l|`X@c;R(%BB zs-eWzh%_+xqdRby@R;}Gxt~sH=R0qYj{~NNeGmWqH{U|>5qF0`y=I|4!-C@whtZ-s z&Qj>2Soe4LzrW=`)2?vuA@#83U;+yd;9f`{*f5Cjrj|KaXiQgEbqLb81r}m{D&#xg z%3`51)t6MXTvtHMjn?*3KmO<9~O zLAOW(bcrgz^V?|4VyHY(+86{N}rWr5HaH^^D3nYWQU=m;Y!!rOqqk_ zkt4ys0o)ZRt?MfU5+U{tb};O32X%JKMu2=G*AQ4+9argS%JN@^IUIgu=aGX$9o%3K z)qs8rcOde;_Q#cb<>`MKG@DubfPj{l8A%Utf>K|=9sJNPB;ca1M-QaG;2~Q7IRcDp zgPNQq-_jS{H`5)rMrk-+gW0YBjKMO!RPzNdR}JvkSdZt0DJg{T^-qW{i~=YANjze886l5qWJpDB-BU;9D`y;NotWtXspsbCdfZMXkloMA9{); zLU16WjqSPG!anz5O86F?XEC_85r^=kI|EQGj@Ji{0sDd^#cJoRKdcM!3|Nj`Ps4hf z#HwuO81!3kPK19W?1Nwk&r7WNQxKDtiX+WSJRlPUj-zCJ9Pn4RK9QN5Hb(#59I+)h z0d>OPn$u!3M7*z@0TWN83@uUw{+in;1-Vu#P!*c?mW!^8O%HxV+faSYMj*wX`SU|4Aa*imce4$ z!O5!ezILTx3Nj52WeA`C12&j#>0^U1dt6$54&Q$_V;;?COUYL``usp+DxfB_Vo$fG zfzxi8ABr%1vE4pYJC22Z5>DI8(*A?iR@>VT0IR}j|9iOA9E6(SPv5XRx?*$ zw#ya|HlXsosm8o;2qHnqL)GJ#gIxsFV9>i3GbaD>#nc#KO2!a(^+$7m0vrhk zFx=$uLkI86jbu(^$`zc|fwUL3jLg)mosVL)iA9}@ZN@k?xySNta8S(V{AM2XmJHVI zf_n9tN2OU7ipN$P=#TU=NvKz8R>SV-`cOyjUiyWiRHJRUQRk!MW?)d$U&vj=pj@hm zedBDXO7ql8Z#9IRJ_U={?p|3Y*bR}aT4h^Jz{VSv@YMFXXDF@d;gJ(J><-2=MJrf5 zWr!P?aADjOg=^SiD#BT{E8b$S`tK!k8jfpmXxhpyp9AiW-FVIK>;GObStFbBSh>%9 zy|y?lP~347I__=j4zalH%am2ntmd^Xh>UeZQlgicZe>3^Pg z`9JVbN#rtKg4_BAB(-ux?Xl;T&{-J9;tTHsUMA4Dk-Tf_o)M5ZWhRwi`-&7(l7q@z zH=C_tpo5b6ZD^K7UBksnAa2047NX(L*xTT0vJ;_Vdee}AK2MaOZ@Hs0XU{F|eDM{4oonySBOI6d$7nX!4AOiUZ?#g`rTo^nTc$2@V?WmF17L7wY`jQvCK4sQfnPE3c#XxQN&! zuft9FaOx9}9&i;>;_BIEy_^GFA?2UTJh~qVI3Yu1>?><2Ii>HG8Wl2jmLv)#l0gGQ zQuGrx{@(-fIi8LVBTy9C8*C{NC<-L#D8E@P%mH5jzB{bQznB+>ShtVmf5%y26 zseEN4`~%I)YYqg=?0-HVuXTU6$q`Kh=`}zek|gBIbmSwS83Lu!cJyDns+8ml}Tvoe+T}G;{IO?{% zqTj**W>7?o%j4ZC>;%{Wru>V4kU|TjXUzbTUzsiVB;<>7{Hq zpY=WvaQt2kDi5**bdKZow%RW|PKw@B4t51nCXfcGgNWq8i%|~F(((235Ulu(!#2+; zHEWFt&1XtRxd7*v}wi1u!afjwPS{FAhUm)@N&e7fA#M5k#6Bv&&jq8D8%#))rrG?j}f4 zS2!jnEc%raBH*Is5v_{ZhDM8A$%d0~?7W`2OAkma0Nv1n%@}`#&^i={(}Q)gA^#?x z4q2u<@pM!I7e)9(k93#QN(aJXjOG;U_`XC8b|D5GV?>HJ$`MjK7{s3^O``^(FNr>0 zpT%oFX)PR!-ksK*7ctCi7tK~3&}@!5GC)CH4nl*LChr~p+gTNIOyxGO%XNS*yox(Y z6L1g*Qn8hub~HUrvaz%SOMIdIAY94^enSo`+b$M|c_4#KLY$#MC-P4;+y&pN9N|CT z2m@xKn(^}41;l|itMb;J^`0h@G^sDv^$^z_%P&I`Eb8fT`XI2{IB(XFZu$gW!g6dGKECk5EZY z%@_NV!)4<>WW`Jo!{!b(R*IjDT}Wjsy@+l0w*Ff{c0g0(ugXWhJ9J_2``LX9@V*h( z{iLS!=5N|3iaTA1{0r2XT!!p(JeEo}k6&W)fWH!Zm@q^}gU8-g>$It4z1UPwt&fRR zkpwx;paD_%;Z%Ui$<~;JKD)^6i8{r?o}!74YZ|qMxhXc4hyk!;W(JjgKbz#zzlI$Z z{VoZ3#Y?26@s5F4PUChUjvzBLpBwxJ3szP8(B0*X@wfpBYi>!+K*wG0hkCodNDjiP z0D+Jorce_{7Bl1kDR_(nATMM$L_6X-_knjBl4;`iGShI3tmy!ns}inoy-M{XRU{)*>vlkZ;gUQc$~ zj7(-fH$L46C~JEgshdS82O{a1nd^JIc_v-I4m2G50Wm}wk}ZCG;K~~CXLp_x4hK?M zZ#+rxqzFRAb&Mf9pR~DI>`Ln{S;3qO9%;9V z6~S2j1=5ho1HffhN?X{@(qL}Cnwf0m+ENcqw>GWyV#L`h&iLwDav|mb)ZG=0zfjj$m{vC<}u7?p#GureMbGudlkJD)ItUxq#jk{vR zr{bhXfCos^(m4AQ^@4WQ&IKFpx@gQ{$}>wZMp)GzH6!}VqTi7Z-u7DyR`EYHP`0*&389m*~PflHew;~jwvib9fuZ=6+$!|lF6cxZm555uXF|m&<0u&h1Z>e zh-n*Vv#2Z5!~!o2kP`0_xoTK(f;7r|0gQ-HE)ufy+ePE+zgCU`Nvn<$PUC?0dS_Yr z+(ps&+7q_}W26fBy%>*!yRaX9k2)$ib}}*ro0!1Nbf1iX(o>`RclOy9EeV4hOV=-S z1s!L=C&&-pI_isFRylH+e6i*&*S99~{+Le7uhE6x0S?0->P~=i>h`3!PM^si#8m{E zbu=igwmRcqjSS&M`4^G|8AKtUp3wV?GNa>u^V`MfL3+I*_DA&F;jBQHB78+n;?z2? zw;S<;P9ea8w_ZJc@+X`x1+e?c{-TGSF-HXTQ5t^Bq0a^ruf=OMD(d+Adoj}IG0nwZ z{P$gf@B*;cw>sW8T;P>O`q}v|nmsoq9{>=OWXu@|SXD{TqlKG7rR2mF;VNO55O=81 zL4$-o9QgX?4125eF#B7YZfvnZ=9bVpZz2O^x%Da}u&ablOz2V2qw!zSqyQ-tf=`WM zq{!mn2-k=>{eHE0QVVdOrk{N)85-qC*Arn1G77Ig0m{Sjm) z_N(*GD0o}5NuRcHjap;Pzy(~7^f=Rk6W?^~qNWu+H1WN-#wDl=(SpvPx z%j5xLiO0AaZ~}AL!Mi!*N5lb%>5g>1H{TyYRGTOJKefN=S2dd23!vd*(C6eo3}{j< z!v82P6GdLk@w)nAvF*+L1RFDtAq_+f+Uen#9)WWNu&XbR+b2ab)#;(Q=mU)nNwOWR>npv)h9k%5c z#h4ZPOSjQ6pNLhX-=;xA5pJ?5=1TIoEN9L-kyX=~9W2?qk4`mu{w(Z(QyT+`{QCw# zTf^R%0BH&24^)*nSpF*bl+M=&ORdcbY}!iNc+wp;KYoEu^_c_uhJ?Xnu1YqE+*>Jm zY-gts3)Id*D|mQLVAT;dM|!siI8%EQVcKCJ`6Nzwj0@mooEQAg5*_JB|C1lt(zdkw z${^hKO#%Xun{=74#Im0j{XqI5fo}({1ulq=loRazhEyRX+ms3Piw{p2+>F5lj6V`wD_2I9iArSE2g$N z%mGppaR67Dr6Xqu^FRhX&kRK#k#91rcIL7rLW6SAQ=2F!Ay zZ0*25QTMpBFTkBITw+v!hFMVP(Y^9m2SiA_HyI&Q45cawra^x0b#UhAdrhZE=*)az zy#dZcS7l%jLCg`oWYB+A1+Gvwx6lYCF9njHNmU@xjLvqmkOt*2O`vS|Q;pS3fHL_| z&?kW4iH6qeUe2(J5Hbs=YpSdSl+jf|r}XH`I;)$%@3W6)U>uRz7&`F`|! zP!e3J6`l|d<-%XTXmsD?Y%CLGDC95_2Y75&Y1s!Uy!ZEN71W5*;3pn+n)lH|X6pgV zENqg}P=(WkYaucW@`+E;Xe2J3FH>d0^%5)WZ~?pK?H%2mHq#} z^#5=oa!0-m91k@*#R*y}4WtWw1xgmP`=y`jULdsGvU*pWq<+!Wqy!Snq?wl zxG%22^Opo`M<4KQi4a_M+aPZ(lCDB~zj91qOTn^Dw_gxYUPF27OeJP~=y4r{U`aDn zs!u>x(Hly?D>EhBOSG+^gZ-&oq~j3 zejN_R)knyhlmQa1${_uIwjD$OB#l5>0OYo!6Dy2>oMRzKzh66xhux>&GobW)PSYAv z#i3DBBZh&8%OQugGC{i(`*X;AF6Mv##rKsRga_&4`O`k? z+BHi&>S(I4$j71w5*k}#j8vs#*;mokCfg)Kuveli67d_q8(s&AY;AW zA_C33 zBT-|nMq#PN-6FL{!~s}n@I1d(@Vwd5&ysOHw5yk=T_|KcW=SnMWkR7px93_?7F4Tq z3_b(K4KKBupql5zt<`?(gRyizrJ%lL&G_&Clo`zet-9#eCOLZDGJML0+ULHF>Uvm@ z+51M)VlfyL`b+6PD8$}e622y^07r9GJmdO)uDzg&75;IlERZw+nL=5$R2^!Vz489SdAT#Wu%4?|t@0pItK6HGiyRGRRRgs`rF43c)eBIA zKwjjee7}B&VErzlbZ09oW*KG9|FO+f` zh~=~8=@0t%E4NT-fY`!cUi(Xnf#-g`T9rv>76yVE671jAF4rX>qFe{)h@;#oQ8WBc z&P|1B+BkEB_LsMF^noSH3BsPP19|iB@-)fbUWjSC;Xp6_0Kefeh(}BRR9zX?5oR1l zQ6-Z;#2uSXhY+GlEHd`5iCj#@9A19OWw#A}CniK(Mh0hx%Tx)6I36Jo4Zfq=DfabR z1lKxX_(=#v#kJ`|T0@FMQFz2I6l#swIS|JX0X$tSOpBe*L*f44a>1V5#61qGj<-Y3t=u&2*jI6Gf_CKeabgiga5&bU=bt6QHO!yGo z5#>VFU;4-Rn-Eg!IDrHw4M_FHYnEyaXd8PoSZWAi$9y(ubhIW=FVlJI9mI#4lnD@^ z0pI|hK$!9A3p|SNrMk5RFhCCP2pI9Kca^Ch9qZj&1YY2M5Q^zVYIPye*4%BWZeNZM z9WPD4a|FRXPouJ3Gqw?LSvuUL!}$)J|cX9oH7Pd&RfPi*5h~@36FhR zwlcxAWqU&$mISU$b8Qj=JQ`y(6@ad<-%1TM0YMVoFK<)cF16_DI~~=x0C-|!$@4I= zkJ9s%d=fhg7-X_@N%=zqt%hL-x6a3Ppeh8?<^fg163rbvr4`2w1sRT*)5YpC%?m3J z|87vyZD|MQ+#7;8kRoEz4c$w@1LZ5q7UiGLuLQ|>y+0US?eklM+9aMTMYe%rQw=XN zYJ`_J7r8C%`%dn+fw=3KiPQgb!@Utw{HM0UX<>Jm*Tm_kiQ2kKtVvC}2W_WXjenEm z)yhN>eoda6;8E(hn2e?H+hvsLREzg*uJ}~8|MPG+cs<(WV!K};9;xDpl$7;rkfFh9 zj8?b7KKskn16%`7Q1BoNv^w%YDh82Oay*_q^#*vi{#H;fAfWCssEfhf$Q=|P^I2!U zw7({eGwwNv1n@9rg+qvP=T~aQX3Y;XCmU?*bi~()q`G5IFl8G}dl;5a8+l_JPp&O2 z_AkZS1npI#ZjJ(P^3hP&OlnvORCMt(djSPvxx8-T5c3N)JhatLVY;IWpkNaVR7qYe zu?AL}B1koXz=ZyEcP80u@M>M*0gvp+<=;&UKyL);cC>O1uTrkg+sxM$0~H9hzH@pv zU;GnWG1dF?`@h`WJS%z_HHGc-RxZQdsQACENX4sk(fy;Y@95oz(|WUVjYdL@_hM9? zHV2~sHM3fY&Z^U(cz_nsWkNlDt|Q7S0xl-**~P&Hy6*Ax!*?iGQuxT09f{LxVNJ&d zi+vk{iDXGcENDSTetRw8u=Bi~<(>msYp+yyC6^IljX(_@vzmu7DQAV@x*h<=Jk>ks zob2D(0njxJ=pQ%+(k78ZrpjLj^7;bmDBcD2If%JD7M5Q6=UmJ9LjCG27PVxN(Hg6i zwL1WzX2N%nXs+_=J)cTv6Bq0;qrWeXcpBh_4A4GcSAfoGCDfe2@!K%J@G)*|&AYaPmo6fZD zDy2MKks8RM{KtrEip-SxZ=1>b+1m!MCZ}Xr&Votc{Fhj9R_eKL#Lh~(o^LAkIJh_r z@;F`&Ytw{am{KlOl=Bv8s_TcO{XLNJMZ@LkjqyGO<%<2o=|V0KlWO09hC}o5JUO*C zFZWzew+e-wP?O*OB?!9!nsZ4?ea5ex0ZT;_29+OzX!9>d=%9;~Iu)4zFzS72!c~9b zwLDrjVPi@z+oe0v#y+cB`ZS!LFTJ7f+)?Ya^x{ea9^-m|ho@7J=D$}8gjR+? zc@vw1gTwH)Uvw2C%`PTqS$7C-UnMFJx+$OM+1p}`;<%?qe=v{k-3n^N`vK-l5rSeQ z-+>QbEk^6M9d|Y}^AEhw2m7Na^8CVcpHe723AamRvsL*#U2-^WCdf8$;_*F@d}zr> z=1Mt(mMM{ZShjM!{d0-)kr-~rO=_Szy+a|?H-ea50^d%rKULX zE>u4BbD9g^6&9NZew{DTZEJ{$#`}j{rcK%Mz8)+yF!9c?qnTpUin(ExC9}N{CvQ_v zN16sjA@WYU)0-NJyPJj7d7pNa$kC|LH9H!GSf(GUuu> z$J|MpajMY9v@+v({q~%J*0c?nP`8+XD3jNdgAPHR&7IMWO;^KzuE1O zT7aMI9}0QarWy=_xmH<@2rqsul1=1)VEsgDjl@}o zU%NTDFjdO%83T_p+dwyTQO;Jy1ou2VL|}TWtfm>y^Os1B#Z;pM-S)zkuAF59<>SN( z_@-g{r7eixlCi8}*+Yb|?3yfyokP3OM9oJ?53=EN!4WS1r+CF?@#l zj#|wIs&AQD7Grp0vWcZrPU&;;I-RdKAP9#Q2DJo~18+()=1p#AS0L(vex?`eVsC5S zPmu-f`tVmfiwc%n49-v7)v>1qvaV!1v4i*6&;9uhv^iJ`SR(MlAEjcMM|dAyx?0cQ zNxgG$tmxEpN&Jjmd~Ee{Rm6)1_L4?Gf2!Tzc0f4l;qD^fs!To7C{pS4zRYU-AcS2l zfl0#Nz^ae=S))uxm5`EGln)y~kM;)l>eqO*VAF{sJ9B>tbM8XQanvHddLr=d1G~pB z?18MBc;_mI^!YFYX}Q&4mp1LhxSt;%6_-A19%+?sZOm1ZO8H~z%M$mp{aVJzxVz_z z#msx_(bBIsWdUC42wm#CQ9C@ID-RZZhh9XR<+j~Af6y*@mEz*E4t$fT+h3(dzQ8um zr=R-UxFMV;U5jFdL8?RHL@aAQf<={FtjUW-s<|g3RnHrv16W1St#@T3WTf8QdupO} z03RY0Oa18F6)4DC)nBLS;)KK2UWc z(-R5YfrbM^!dN0ZPXR~apUu$?+D1y@M*_A0>so6$@wfrCHhH?WZ;pd)+!5v$WkB_s zIdCDS9BWFnXHl!&>NbBX_*nCPrCdWJpT&eMJJHU11QBM?1fP zj`~LVT#t`+t5G4ocUDUKzb|PgaA?p%G!#D-D;UMsQ~5Br7v(tX zYDlg6mze(fTcY3a@_hllWbzMI*TUKo{@U|VH#G?q;@nY_In$oFCVKNs@5>(|*12o? zz$@eSQI07H=TA-u?hcW|*PQ5k62=2eD@%45lc@`Vo{lJQOpOmnPxKs8?2*buQznAS z|6M&%bVD0ZFjUE|P0tGedZWXqv&Z(r_a1@(2pZ5)cYF@Wuz-P~tcep**OjaKlBIA- z<$IgYApU(w;;Z&VHJ`ht9h)7lyYV--v)z~0;osG?=*#BnLHIaX<*&^j%e9LtNcs&I zTQcNFYWcJNv{N2dQY{$tC3*NuZRAfZeI}?S`|K!3R zJzj|p2<#_tI$T8|J1&Kn0~xx3iIN6d)O)98{@y3RMg@_zg&(Hv>XTiI#u8S892K#2 z|Ded?cc4PTcS?c`N$bNEt_U-okjp5=ccfrcUFC@+j^tRU-#d@+HN>QEqP|kEh@Su5 zxO$mrvCB6lK-4+7m3n}s^R?G`n>~8T#j@tq{}uWO6>CS6@7+HhQ1My1W@TdG?}EAs z$gzKi;??~!-k~gfm6Fq3XRPL+ae(x`4p^gnD{SiX+ly2P{RVYWvhc33wrEc=pxDlep#;@|k+ehCg)Q$^i=f|HJ#Ny{g3gwz)z~;+cD&_Z;$`=g$BPoo1=@yNA zbVcrLqH#WC2*G1Cn033tAL!zBKpt1YyUad)H@u>S0w3YU)GqbplOP>%ayC;zFtEF% z$t<}g^1g9{#4xx~GK}D$F!1;>nclmfU#1qv7m?O7AhzY9reHyoN%k z68`rDBUZewK#V>Ji+Q4%-B?K3U`)CZ$hWD#@n%QB=0ua@aZJ*ZWWECK`=9d-@XSKb z_Oi0a>PGsExxd?TULG77zly}3rqIbKVE0z+9X6)k$`AH$NZ*|Fc6&E1`JNkV?KJp^ zTHgk6BR7p^3SIV>JkHFC5WKQRnJ7omp7%#Wts5E?_CfWi)T=L1l0hAi51XaIX1=>e z*>xc7RccUHDM1ts7co)Q?jg3|M4~t}o;10SABpHnq#J zDZgCfP$el11{`lE3*~FXc9r~va}^s^i_cP3*)O*iHr1bJ3Tl#ae7nuDT76d1Z<5UT zF|WbqYYaKMUk}!wr`xO=w`TCm=SD(T@l8p`)@tphRnAm%kJGrE3pc+5VPhrX-VC+SR(J3jiEJV& zeo)UgI`PP{>Ch&_;pxni#-Co+lsi7STS-f~GPv#=#8TXgf`u>h`bkXR1?c+Wk-e7q zfE5co@V-85e}hF(OwXek+xl5UA$mPDy?O6H6B=rM@78*~C_kEds6_DtQfz z>aF1xTX-zR82G7QtRJLR9gvGSh-Xm2B>N7Cv|QfeHLK^pO{o$wp_#!gak{vWig3x6 za+Vt@di?2mk*0zmua|UqaY=Upa))sj64@8Kg_MgM zQr;^**uO1dA_J1{B)?@D1#qy7rL!?w@U~IGU%Yl+yZzncni|vef0vdNk+*3j%!@`Ar5kDp zgKg8u7$A7|%4Wpr$CeEv?1&Tvg=3_ZNZ~v!7crrLg;xO=e3iaGT9M$hFUMJ zK-~Oy^^7Yo#_@B@WN!0&ZG6sMoX{Tq@I9=Q7wYGK#6M<#QJx{yaYK}g#!WbSAVWka zdBlD7_BIEDDj*beGU=dlb@yx>`bnYQR>!2HB$JuC01u58pe2NOnfCa~zK0<*_sDzz z)Lg}_f;IM-MG-z~YMQ>2wq&uOa9nG{xD%N+IQT4I+0Ol9__0y*2QyAqQZ8++91%h$ z>s_T>8Om6i{h#ujfeG&{D@`cz6I!H*_4e{TG`+pIgjkFkVoHt|bhK55%hucw-H%WM zk5-JL$zRX{{4q%?g2cKMx2b>&$c~4TaviuG9qUfrQrOb&Vjc{zmWLH%~0&=I5&ZeSwL#tSrZldneZ0rTxRH z=PzS+i3d`q+cUG6rs_*#UKgPn*cy8`8$W#YnURXwmQc^SrN~29SY`hU{bzqc$DC|d zcB2Njx>VWRsDti=BY{VPGmP}QRlQz7Hu@MyJPf_o{K{PDSe^Ytveo01{$pkXRHWTh zFan$)mu3u|m{EG(>?!6KbL1)R^!L#z(!I;u1IFuzh`XZ8`p~jyhtfxhc*aTEXKKo` ziI)3ZqjAct8GW)=_iFm#_HCvM>JOR1vwga`hwteX{udWOt+_)I+8n<5=5An!xu5)B zA7eh0a=nVOlebI%TYGOA6=nPOjlxhfAYIZ!HyDV3#DFwNNT-OPgdp7@-O^IhAl-r> zqO^oc3kE2ul!^+1628Z!|L58J*?X`3_5JeRYi^gzwWh8)uOojkSF=?>`0mkHi&xj2 zbLmFz=|)$ZD`PfEa%kAw>kuMcV+YnjDvL`OGgv6}%ptNmLIOr*io$3+=N_d9(icxD z+PA6p6GQE{jz9u`_<40JNk=n3kHrwfyGNcC1tiZeQ_y$5{5J(K{u?eI6vMzitY}{O zF*Ub+&BpE36J__?jE!TgMRWN{aXum!#dUJ{w2TgQ3pVT1-RB=`xTpl!aAH>R-bmMr zT)KGuMcR48qnst8TN#`}nX5lZS9wS4dc8c()EOC9hotjq)m`|Kg70Fkkx3}HTOLVr zS^^-m8T7)&LkQ&)sA6#siGd~g1@Le6IT5{~SOoxmX-b@bMB61~vI1)0-tvwg-a%COHm>u7A(73ztL^)sUzg1A z^YlB`E}eOD1uR`Vc8q3FvW>Gh1Fi&I%C00kcxCXUL)H6BSq;O5+31bf-thFS&hj$@ z#u{cuQccMo^z$S&8Oi;d_oEW*sy7ItNhgLrDqZ5*yQ=9o{vN;TQ{&r2=5v}PG>;pW zJEQNC{LqVHA|zBM8o&=`TgxZfJ2__uMy*-ztL28g<3j_O-Tco1V2NG7$r!7__xZGJ zU7zRQ*`PZ3kn_{D>=Y&z0}S;w{1kz^UB_0gpZU)84`@8EC@>5g`n+O(9`!B3>FT)S z&PlVqMKzfpj=3K8avrn!oOkBKUO1%up6oTTPuMYy#wX0=C_@D%q0Qahr4 z633ONROhJ105L}TQ}Nj>_?)Z&lvBHf@e5nMIH8&^I1DrL_dj*l?D{w2bU=pS;SwxD zy#(sxthDp5_@8!|?%ngSsV<7`pPVQqT%Y%I;P$!kyng=s&BCXsC4&dQKY#ZaWA6}t z?0HF(Ly=*e(0d)GWIMt?%G8g8&L|Bu8VXqn={LH2G~3h}RG(V(Bp@CM<5shuUx};s zvt24MfCF{F8BLN&*OH8Tn9;^=yjFJ(=u`-Fm`^=>Q;U@{o_rK+JbdlcKJDfR(JR~= zY5XAp__#{UD?rQH=f)dVmu~Pj$tUxd`5{9d2V}?-F2SVP8)2I5B6R<;#vjJjNDEFS zQ~ziovN6wUDo$J5kjp*o;yU?aWHWWNWev$|)A|Kfzx34WE_Br_%-L7p9XLhrkbgE% zGC#oDX!rBw#24z1vC<|P0|bs+V2sDf@%c5UxNw$nnCv6_H`x;&rCh$481cwYWkNpa zECx&U*q8oF=j<;zEV|Ep04lPNJ!j}i2IjJgdr4Z=<~}!!Ui}7;*rb?{-F5$wo!+A_ zK-^}QyjjVT%{BB$DTp{tnveI@4Kx8kL&+Wj;}1!#QDp49sXp3AAW%^VNlTCALE zO3yRQEOK6&)Z%<)>7CCN^#0kc>KI05pAs=0z^Hkq4d zKogG)w=NE&Lz<_iyVW~~pf|ufH?kbK)1`!WR^(LqOcrR=IQDuPQtPGT3sX&gXd?L^ z-Ed6AHXi%*Lq|EU?3-_YK3Z7(ERQ306*Vxw;adE|PiR;EK8c-F&{8CqY`T4nW}$8z z+mCs-Cy9n(&t8pWX?^$6#!$|wHEIgY*7d${*3XoiJQ()q9Y1w0uk;k|x|7RPWr^#{zL`167fG_onREk@Vt7(* zOYWbZ#w2#Cf3IksAfA}-9Ha9Ef^UjzrBU5C63gl%WQPbZUewoZQXb7k2DdoE5~9Bc z!mb_YK-~v-?-3dojO}ebA#D;8Itt7ku~Vwc)uTvZFB=s$P#L*dqmHRH(nuw~c~jHx z6r+@qYkF94@Jp}0x1-6!?AZ}=X^+*WTBVZz!r0EjcawDH54*X@CF>V^T-+SUCu&wL z#3Y`UAoP;CuWEQo+y45Zw+O`*w64ffU*O+S{OfRNRz-79rEptDl9Yt)Z0-MMajfYG z_^O{jbd^5z`Hg@NPcK^=T}d($hLwB|W0nCF#aI*rf+P#0(N+N^o3O-BM!X+160+8Q zk~0~-^`fMIJk=2*H(X{txB;shqnAIPBEmQlf9sHIi+r-NIlpvXrRFr%y&;4eL%`A#koEnpNu=m!RkV zl4-F!(ZbwZ@Z$F0&!voAfmj&H>hb4%OW5|lc(9k%y4H{JwGPkse}zo2XZ}WyCjfH# z2Vqsz`1?FQcvg0i-7qW659x~g0dSzkm=XE+vLY71aUoi;CjMn5)e6W)KU;G;$ zwK|MWbh*^G_rP(865-Hc#?%$PZr4uzb^x1lSHQDXoX~YrI zAcPJyO`tA
    p@YWqJ2^}p}fCV{x;t7*a}^+R#A{5;p5CBomu9(~MpwxuTR`pR_D z8l+!f6}{Mo!Ke754uxoW`JWvXb`_ZEX4cIL)f5eMv>B&0qQ@E zS1Z#rviEBsVs2#*6hVZN?KoZ(HVrV5$?{8^djXx}A#kj>X7xKG5lUL*5fMiBwGq`6 z%Cf^tqg=O83_Nn~!c1gy7SWQJuFesSVM4`Fa%6&jhtra2y`{8Svt3+{>OI0-rWc`CoqYStKc?xw6FfD=+2)-_V6P8*;7Ared zeuIp(d)%^?hf3U5`0H@wG+WCV@+dfoac-RRq zphDZkOM=mL+qt9NhA89|DMs+XFmMv)giz-5M`T41GfL5>&Oi4xg>S=JG|L4|Oo?Gubzk`Cn5a_6s668d*k(o3jDrqb&HUb2gWKKQK zJP_y<<8nVB=6{0f<4FyMBzZk%Jc`7k>jT z(sF3<=Tjcpo+*X!tlRsGB>o`3;(e(AF3AvREFl_4J?|og&0tuPOz(7x79fEqD)dG{ zErs{(+;iww1{Jxa1{IF?FPcBRDG1Ce+Lr8-r)?u!T;54aC3w<1!*H)jm428^sW)9# zwYWgBm)5EO5eNJ$=F8p!6w`Nst#4Wo_(l2`XyM!krf)|j_nbLUWh`s^9x=m&W@69% z791davK}v*0;=Wg!@7VjrxDs<#VdUKU zordzHJXbU=PP=-6H0a=64K%KA2A^;Jqv4(H|4W%7g5hg4oDsI`Xm-1v6 z{Og9G9UhV@z;kb1^`K$5khqE^!6f6WbLIjsi>v6-oqrl=G}{`4;tf`hjc1pBfhNUY zGW5JM2r!|n?~z4vz_;7p>^4QwuwSdZ90V+d_=_*d(~u4y zT!y8-S*KqU?9e$wjr^-bk#4O7Lm;j0cLGN`K?j!`|E0@6S+>lgyu;0gF1zVU{f=UR z0H?)s&24ZSzb&dAQ|XO?0g;)%KUrdOUd z^$xr|;X24?vD+i%5kfWs?E%XR`--=!#Gmdf!Cb1;;9)X{0=q84q~d|bE*<8m8xKCywA7r4SPdSjmu8Le!Y=s0R zsNom#d!645X#Lu-NU-q1x#BEsRPg=P?@88W?j!Ufqc{?B<}!>PXfoJ=yi+rP`&_KT zYRClN%LVL=7an-rYuv#4`GL$#E>4lp)Z83){BYS)X?QjJEpCqQdk)0YpK)JOt^)a_ z>1rdb8zzeZiJEtX*2e&@;UI$gso=2^D|@sv)luvKL|(6L4-n#5+B;{RNLz=*7iJ?K zaWqEv`^hLLVvKHO%18MEDs@cna(g2pO9roz0(xwlQu%N>Mu3^f3s9{%_MeS}JpLSEg~vW=e>kRDfG-_xcVCuRj|fcU{(si%KshTTTvW_Uyy!y}5m98< z?y)eV$i{rDNeXlWrWokkyB0`2h|$j=Gq(;5ylWk`{De+x4%~BHf8A6X^z+RPlopxD z1&1Hwuuyif`rg7&PoSYBNnh{F;XCi0g=8sO$-N(Z4Icu(%2}n8%&>1IADb7Tvxd#{ zXps!x+dyy)gAji-zr_LLn&R|%byS!Q4SPxy2+%ywK7Fml0$neZ5}$j{*{K(`sd<@z zfyvZ=+>zDHaI}4Q#=_gjAeBoc&p?BnljKaJ4K;-GoTU8W?9-)QU*B8N7Olkp!3UUY zw8LdoNo3fII^fWb06yesgpUBDd^iSvwgQmlUa?KPUnx*GNjpDCS%*YF(sS7uhnNAt^_Mg= zEADE79@ZdclvE%2e~)dZktFLMVXcx55S+oj?DMy*U2+f?(K``$ChTZ4>1$)c0;Fzr z9X$k*K>0W4a6&drsCA`y>G#*L+$RY6q_c7hYL6Aa3Y%7eD|g-eRjDh$$wZ2{m9fGP zIUj#eyUO&_anha;+>a$eY(s;rV;KKmiNncrVa#Jr^v{n^2iL@O-8mmAPIFNK=0b|G zzg+gu;Sbbi)LFe{VprCw*DQ4V1Xr0M=hp{Dc!K~H763A-)MhV*u3;voDZ zdrK}C={vVBGuepU-Mzo3H$ZRoI-R?j3Xi+ZHD!Anf8}suDfL5?={`kd?sjFj4dd}> zb#{hdI9`c6N@btuED#`Sj$vSuvw{H>sNwr31wxC zsPJ&zqG^udkFlB+ykb4Mjx=8FFPk+PJ|+NUTAuBBQklshM)la{#H**h_upzeaNVEW zvZ`({IhDD}%&7_zN|F4>$&oIU_#+o>X@oz70qxn;*ifirGtwPGf9~q|9 zf4jB@at>Zq;X&UvyEPH^YgRm^rVqKPn{~)9dzW+Wvkx>meXE>?hpoSAhjvzvG;0kU z^*=8T&#+2h6!$47^dhu&`yuUmfqv!lWg-lLc{*bZNm%v?^J6oWx3_%{BY(3kV^Lw8 zDL+464ioLJi3?T24NR_eoGrH@q-m*TUucHTB;V;X;lAw^JNuW}r!PYId1_}ce41ku z`QMigTtqNHl6qRwX^!eUjn3GvJjpcAO(wWHT4~Zy5L)Z!M6>b2U4bi#HOFu*I*D28WMypP#)zr# zqcBv2gBWS^(g{1i;!KL>8SS%0;~Ga%jMgb2sX1?^%BVxAsJPgJBT;7~JR}&-_WlSQ1lx?f{{OA0&qDVC&GH0@6gEuFw2J}C- z1E53oJXvpqQUsP>sN3`kK@G_e>5{KDb5gGop>X2ks0t{aI-DM8CZA6uNVoA;+)5q! zJvrNbC+ewXxe8hOTQm_#q5nrFw$eyb-mQp-Oyyr5md$*;Q4EAR{+(>kK>^&tH=X>| zmUxSHzKg1evgY!iEEb}+XBOa81<^D1V%P;taLFlz+G}yK$Ub}+Z!yf`1Ow$zc-ZI) zRve17Go)*~bS;(@I&6wT)FBmVEGhW-1E2-*id-rG7htGn-4(-H(%oiI7(!{n9HqgX zFY}LCQl&oyuzyBqo}h=Ei&hMMd68RLUtj1tHj+dcpRIeMLeq$A23<_vHwLci$ym3jg-{TC!uW0dz1&@>RESO5;Uz zcjUVM90$tLe^YaNaH&968f%M69PeQ>&PRkM4exNw57D{sI?QWm3j5p!9on`Kf&BZ( zPhOpUl3JLmmmt>A-qvxVB2AIy5G1UsZb#k>SW?8|Ixv z+zlg)*~UzrFer4izNhI&WtPUU2M7pKdyR=%5+u+u7s)72Nqek}?}eF`;7|$FwY6`( z9ekOF*lJagk;IhYFP^ARF;{`g$A5F&b6Fii6@OYQh9O9}kF<4BI4 zJBK#^scLGo+x=Aif|_1qwLB{&kF5{YV}iY8aROs@ss=>GEU^-FyqvTQpj3Ziei=&= zJJ}sZu7+AcVZ-Lk&g(dNXx|EH-q7|!`f6N7nubc^IZJ5F>K7+K9 zr_L|$xrZ+I5IM@P`oO<1d+bx^^XgaYN%3Z4m~l88Dk^dzGadCwgO5 zIYW?j5|sjLzM6>Y8k2_lHmQ)qc0Lt#TD3ZMI$1#E)SgPx5`zx!En9SL9d5}NSB^s| zF5nJv&rHVIVikw_f5RBOMQeCCF&JHR3&&X5TKHB)~$*xtJiRMPDas9wCJWjQu)s&bM5W~ zM=!ziAwb)C&yiL0WC`diRU6k;N2Fe2-#}VoadEmhwh zgyIu8%%7fdveO2~ixYDCn$O`kZqnvF&6fmhC1v~^-Ad1h>K-=@K>ld|{`tA4j%k>F zBf^{HRm|d&A~7Rzy`uLjw6q&91Zn9*O^ce(IPG^6MePCnR+576i-2k7_?N4%8?V0Y zh>%m9(>qJD^0E;Brrx>Vi!mITy7Ir2pPvRQk>U)anis4=Xsv#)%!8cWgAK~B3LCdy ztdE#X|2a$Ek`Wx+|4~vuJhb7T?)tzE>t-TBAFvXuSVFiyU#JQr9cm0f*p+R?p({d0>k`&$8%Hh>w$hRU|ip-UNPh79oC{eHAwh&qnE%p`2V6*g@ z`PDDp*YEkTmyub`PLQ3*6mJ>Ct6KWna=xEyPZp!QvXPW#5sH*}4C;#1w&eI%Fk_2- zG2U9}7y&82;x~NiFF*rwC9h)xorcdyX(@-+dG_?A+tuR0eHcGqvn(YRJ2$=kcOKTT ze3P(b611)7d+`aMO?9`rMR4jdHC@08Rt`pFv$U7!#g2an>riO)>Zy)M6se5~vDQcx zzrDBQy@-HyI`=*I&`4F%OMkL>=|IyjMJMT5u9OVHX({L-fA6FM)kvzML59l{!$Xvr zclO4pgBFE4O|4wx_WtD*%BBl&8YUEU#?ML;yitnrG`%NluN>x8EKl)MIaFeZV$QKL z{DjHL`aQ3Cqw{I~EOb)J)pC|Tp!0Co_d~GBjo=*9x-`>F4l~3IBucYbJv9Q7-^!X$ zF3;}W?a))Qp!g}1L?VS9Zv#!4juMcG)QPe)y}V6uxe1#2d655Q9xafo(I8f*B|QXj z*FGuN!5+5F5|7ih60w}9Vu7;w1DJ$qRJ7iJ4(9#2=tr?EO0CO4XIVpq-g>f|nMp2o zs=akwfNqvV$p=?{{Y7?hM1lJlkP#=N=pEh@LpX>$>E>ENy?uAv zM!r@Uh9a+W%-!Y}7L#yREw*m)n_;m<1k$!XdU8xId^lO4UYC-62gM%kHvjD`yY61X z-UqJpGHiVWvnOqR8|BZm+MGsV6!~Tly`9h<5b|yzJ5i|k9+?ki(W+Zu2@bj^k?tqw zoO9-Tjsdc-PxjvXEzuAC?wt82D1_mS$NpUhnd$RX!(B${E3u>;Wh?P1l7*y6IyNF~ zpub8dv1Rv4$S)P&OEGr|lnL)$b*Y5%LHIdm> zeWj0d9c`uIXD7!Mm8%V_N}QK%tg#*oHKDJ-+k1P&@rI=oJp3J1^g4gbQL zqo1k%5nVU~TuU}W^2>wNh@g&gg|)v4Cql4Q#(CbWp~8dsFS)USbzmfy)9)6S?)7}d zwLy+1X8*b06S_(Wem&u-yHWUu1mOhItj!VkS(y&K^K)V&Y8xOaY#RDf)xaihGyWyt ztcQ*r!v4w$D4otkwi$6;w%RA!OBWcF7R2Uc*Zvr`yDf&!%Qg{mGbeNHGZ9fi_fhkp z+vd_zETZyIV$#<6fC`>Si%NNZa$|4ptYOts^`%0w~??>L^sK!1Y+V zz03DCQ%|WDu?JJ<#d-K`dtoaRGVM4tNa@bVS(Zzx4&v_N~pzV{~^m zvwgEsXo>aNE2EXz=Y}~C*1Tpw(yhE(%rXrDDc}ghL773fF=a*ObQIpbm}eOs{tplU z5I)l56)C@0T0^q3+{d|8K);Q1hDJYdsE(h+A3f!M!0SaXGrJVKss8~JCFZ$0a{oC+ z(H!0gCt>Nsv;*q`n4I}3MSY6Joq^wghk!}}U?bQP>etQo3H3McBzD_SP_anFskq!n zmYdC_YgeO}GIg#<(AushYxBq+7d>;fMKt-c|BzDQaZ$ZO7wJr72pV`@Ri6`hn}n$B z>lDaVB^dE_`j_pPRO%_ZLSEeO(D~vy&iEPhnL8GEtV_4KN%d@tUURGKLQ{ln`7T57 zE@FJ#FVFMW*J&RKEyj>4P#IR;B!i=ghMaAOX?WY_PAuxy=19*dIw7VIog}u-wSoGA{>j1?|)&S*``dB!}f>5a@B>w6UR2Z{*8(r-78e_3A?< z#sg?G5)|0B6oX)YB94^dprt;rjGlcROU=EKbEDwfBYVw5E{rw&EO?Q(;zIxFKDkrC zMVN@}hF0)CXaR&jWE~BChhh6fLdjlxwlVL=Q`W_gO0*^tJ>GLy-RzBE(hJ5d0+6py z#5;pZ7h|2981+7E@7P1=0U4uCir-(0!AJB1UkWz zx(is|u(?h6{qIB2{|;Yyu;EU2!PDRa%|FLS5w@$KX&sX(9vdnRhw-DSJ0Eqd3gNCSp@--R?1TOVYGia|Hm=7j~mYrGmUI_fd{%QNU`ch>u?iJgZu0pUg*Fi>DP ztTmb^oj(=A0ei#fB*te5!mX(``27XyQx|Pum4s0D*YZgXSA!1%6c?D?^-+D^s7{VIjHM zW8UFa#V5-sW*K{hL!6XBL}35Kxd0R!qQNt?d5s3SCk!v#%0=%d;>GrY-_HGnFN;e6 z>|7^(hTw_8E{8~)E{I`hjLhbZqCReV>{r*%Q3Cb&4U6Rp(wbv|*ljg@B03c+%lHA2 z_*jAPG%Fr-T9e%+EElnx;D8=inw4mHWo1z)DT-z`GQ7klDU^(lN_oKY>#N{T7aBV9 z-{;%k2)I6*pYzq2e12*Q@CgmRxwl5;dYlJYJrjR@#fr$K21z%bgmP%?x7xI^UBoRa z!fVFH#w#E7HtA%G8^0B4^W%Eb*Kgx@hS0?3xIdaeU@GB5Qz zASj28^>$W`hksI#8GNHg%iNTTQ{mMU#H13?@4l51gLhn^-ruNch(C&9e{-QcCdKSz zFM7(F{=Q<$*83+Gh*sa%rw8>4BC+SBgs;7biP*< z04zK&-S;nhRg4CUxic$nGPtKhp|=SRSr$Iv{UJWHajVF@)k%kTTYA^Nit5jK#3;%Y zR(m=%_ej1(FdTY;*NeB1DGl={xWDqQ8~89k6x*e5#( z@)`D&PfsnAVp8ysN10Gq*YR)Rl;ZX^Z<`U~Rl47MUvC*$q6h2IA#&RdIkNuE_Lq&n zUF(a6iv1;{h$$9^O`-vUr@KgK=?#qUk-f=$620{j>fbgGTA`rMml$#3vIUL(>eu-H zc?Ux(RQ5xE@a|awkm#Q0Yh?;@15@;8)%t>f-3^tHorZ?KKWN~OeH%P#V)Yo}l)QTm z?wH8aK8@Ime#-v7LQ27VYa>Me#y3M)pA;lw+Sa#E-Zh}`c)W0ci zv)9I~zvHmWpeHR5&})w)R1ZZSX^MFM_MK?{otQuUFc1(s|K6{3Wo3m&f;S`a+ufN# zh;AxJP6WSvPrZy(DvT9NXszP7W7bB&DrNI(f;u{hC%Q4Dc#Bxm4Ljul6N%MW?xfh( zckMq*7vjhmefjWdud*)IX;*%-ZWnWh}_QeRkG0s;<(aEMt zwCkXFaL7Z0Ya1Lra_9-C&SiImUp(XCvly&$i^_pYxNXiO!OW9u5LhBNp7%t^N>4B+ zf%~zcyts%6of}U500Gfvk1C<%BXwXAy;71OcBYG0JN@qc*F92#ekJpwuH66mDuign z>m)P(`cIQ#w)%Gos2@j~e(Kb~BmZy5^*d zzd8(ne)^&O$b)!UBHaba@8tjaZFzL?45apxIgSPBCzu|!2=~9v5;3#2B~LZCzPMu8 z<~mW7@+KvxjivEMoI~U^t)+qz)h(8og;cOxMi|@-L#I6b|MR`y6!$Lkaj(vZl z`)!1*{Pv=t_{7B?&vA-vDx|W;lZa-S3zaR12-lDdn;*{$}DQV>g<^8 z*)Qr35Dy|`E9buuMk2CD@w-;PG}_)!l_~D~wr9!0w=XgO81^U-}~n(s;e-RwusE+_ZwG(WP87;2uJnw%FLbcidxKr z+yC_~I8lYSj~{{BdEXiCz`md5g?gJp+Fw|CSc8`0_z^R@R#rLdF8+M4v{zHrW)I5S zs$OK$$=XL}vZeoxVktN$YM{q4WGO}vBXhH(9+1`jQ2q$wCcO~%8Kr4`?<0Vw@7AfV z>dlZF9{ObOFlUpmUh+-14QY~lwRIHqG1 zT}f9m1nRz~{a*1wzU%&ZOwsWxdJ{`dXiI;TR-Gz&7#xpd2;u#?EQWAw4m;l;wAyD;e?c3ON!n@K}gA z`5wFB3>o)l{0Yw(aXs)96k(*?@Vx6?x*+J>yY=S^e<)YTnCy?lmkNEB2}(W+p!bAB zAAu#5@vHM5DV27K0jC>ZFPOyeyLJXI1jQ`7$(~8!nxpxI`{2;{Q^Mt~p@)aZi%7CX z19oY?&TsA-NI<%ZUNDP3yimE3Bq-3JnBBQEsbx&c^)?xIt1B%tn|Tv>Jhj$OWE!=g zyhor<#;J0N++IZwPQKUM?#GLJTqcQ+W|$5KNv1+Gzf%K56XA~apy=H9F@sx${A1-+ z@^H7f%#)58+Lo3n0MF28ne(%`5at?)C=WByfn1;xInh`r;PhVSgMHnx z=S1N9YO+v+4M{Ov7+K&41G|04?p!puibx&1Q z>uGycKX**+3|&*~qLPDvM>c<}vS%BM9LLy*Zb+S%hZlIyerms zl-zQ)g|}B{NS}TINFCZGu1B2a(%V(AkoYQbw(7(A5Z=YC^y{a{=Y5%NKJh~NVQ7OA zHm-Fu7k_@+RWW02x)YPxIOCXq?3*n2GrI;REk##$g6G@^r4P47s$AYQ599}ac~lQQ zg-$|JW{bs(cY=Plssn6Oaouo{)+D?;4AdTVXEg$l#T7bojFr&Sg>-&hA9FLQ@irO7 z3oj)!d(x?_*tJnSdd7rbo*uZyaNMBceotng57s%?*FG_nA70JZ|DfKb+wc`iPpQ~k z2XY0?SA|2*N>$YIRee?7iPpQ&$+|Btjjk&dH8zg70@`w$C~|+olJ;YA`kJ?sVfKZs z#y-?h-%{z-dc}~%0i0qH$dfnBw0F(qg;@^2{#;*E-os*=v1Y7ljwb7 zt|lLc7NLR&AwOjT=|jzr>>|_Sla9Oz5-#Anr&7-qU=$TwX%n|@7Pr>$_)Ew0f(G@Q zYv+`E#Q-uX;nzRrUyd5^z`w(xV2wBom{@t=or8p$mLV&bx)HO)_sp^C@jDxlIZe-hwbA^j}xdbBTW zx+s+G>4UHPe?6^|eB{m=#Br58**h0A)(=LcrY$CAx30aaHp>6Fcv_fN49&nJb=p~o zk_?M1RN3Yz-Ga_Ai^>*EubjDtUdtNvSbhQRipRPiV^W?p*sD|`-jMI;oZ_yW9TH82 zE~An(anxZE6O}=diihC|!=u6Lbt*AX4!I?S6H&{~(xaMjsqJGf8KC?a7o8 z8$3+ePFhVv;sXsYUQhUqG=9sH-A|aph|dwrST9@p3#p$JQLh0>V0h9i@1vXVcxD$t$4J>sKs@B zVeK{~Xk!l5OYI?lOcnD*4?7gEK0QSlkGm0c5eeCX>Ud-7oi>U}afN{Uwf1^D@^Ibo zUbikiWrX#`(_IQS_5XUS{!5|Z{H}Jg*t;00Ff_ijFH^*6hZsHfaq0O9ty*-4gmN%F9i3@L z*33k+{DND>IY&D%RQyW>q_^K|AB;Aicxir%?|N9c;ikY+g;Cf`r$|PbDRW7A3ePs=+Vsg<0V-((TJOMn1u@;Yzsxmkj@c31BX2dtXJu_RZPhy7UR;OYQEu-`o zNXj_WeYkT4^QrgL-BGdixnL@s$Z}qX>&Q+=dX)}QaWy)fyho$&{sg9Lk^`%3fiO0( zaE$XDlRGblzsmLp$T$|?`{3~14Ihl?{d*Jh#K8}nhHJhTuZ4GfL4Y40>9x2b94i4h zYnnnN{XUwj7}1!4dFOsiuR9aP5ZXQ2JN|`&sfmCem!n($-&ueb+{%w+-&hdw;8iTZ z5PujNpO>ue$Mhz4MZEXuWWXoN1;Nc2Sf2oV2ThQ5-_znARG`nQ`* zafEyI%;%&VuXlTCreM1jdI~?Bzre4zq!xR5$px(y^9oHr1I#1eKW=oCDm*7?STm!h z&S=`=9Ew?qzT;ors$7h6Yys%*!Scet0Ts?2g4RHen^rDW=qW(~fyTsv)Z+_Od@zq; zm<9z*p7+E}Vd16FooFxUnI^y*haUv~94kW-%>5Sh5Kr}cUngLYPdIUXXs8o5=O4_G z_&Yp0$`IL)IHTwZ5!ed9@Fo(AzJ>IJ*q3mlmc1cgT|K-A*Ei*8A3O?o$U>H;z>~(5 ziG+tevF)nnI=~cLf}|nBlCoOY7>oWO15+Uvo50#z@uUU9_3gbu;nP1pu&0h1Goo`xx#@#~!NqFiSsNZ-uxWig_iii}fU_q~sn!mj+ zk-{Q*Gy4Dxxv}tAABC z^NYm*31_c``>$TXPGfTpp8r*%EoDk%%yn(NSSL6kZ)Sy5j)7erIgjhAc;)VrH0oL? z^Xi_+P=58s+ROLjpO1}EiV{m~Ja>HMO>&y%jrdHm%!WV(Ll%vhQf&}mRCOxKStAW5 zj19NfrZc8)j_M?2vU_#r%Dq)Kg-dc%TgLuIiR)N_9A8p=LCjZVOn{}u=xy6AS&gMQ z7r;_8E=B!n35H}I+9eiq^qNGP!Ju7*25|z0y)M%=GdpctDHO3zn0M)pSD##tsgGP?R|Jh zLs_|xu*VZVxEj5z`Mu|kM7s_#Z+=P`>Qsl!curkVQsB|#z0Q*1=SmrQ#is<^e| zU|ZRcy)YrPuCwVw&%*c&JZ1Piy~1FClzDlL=puFR zo%nT!Awx^hw9>Cw9b@xU@fx<_p8>-PW}rVsbeK zuC=2sjsuJpQ_=_}UFX&eElt-R@-2A!9qo1f@dl8e!|Bb0kW?3z@<55?JD(F$ZgnzC zI4rRHucT%(b<32+;pKn)hRGwLm>^>mJF)ZQ+aSk zgA{(EeRw?}PJpdARfCTX>o=`2D`q4r8*b9_6XKAmv2BKRw+ta=(m+OLbgtS3o()N~ za306hjiL71IQ&(>4m^n8S|jnU$5!fX6vM8dWVAp03>As+uawG#o{Sk7W4maQ83a2} z*-*&}C_paWHTK|!X-G6x(ZX;F%gg5?7f@8p+c}DL!m$F=Z^N-lin=dfUV|45)pU*{ zWk;XNn9v)v5A(*Kq*(ajqocvT3A^l=L(yy1j^C{o1O!Kx5N zO{_)xz7)?95KfcPwBnISqV0t@#az5In1W-X5)kqureqh%eK1&9E&Mq{z$t!6Y@fV1 zA7q>WcueOwTW{qU^Znnu1j4&G-cIljt5U*V-nMyRPG#8QnuU#g+5$TPrOCyhClLH; zHF7DwYmWOl={IhS1%3%9lr2IU_4egt{W)nnYe% zYi`HN>MD|CFKu~k&Rhb{Ft?eRS>g-L-r%c@NHkW2bS(FUyMc=wjh(CkuhnM%AJ>_r z+=>#}F3i+QpwA(QPD`IR_8u^{%07Fhe-tba?LZBs+2^zQo2S8#Fm+Kn(8lJq7Tw2LgBy27t=OFrfjv$s;HzfPldK-R$#c^$+aKzfJHzfBrqn z#)9GOp&l9eRsC~7f9EI-a_?8Hk*L8wlsH60Q7mzU0=2FtTX8pW$4?~Y#6RB~btWh1 zWnmS*AUL@@OQ@kEBb%Xqt28iDM=-rXSfrC*{Ctgs+Y06v}~MDs_Z{C^3-qSg48e?Sv1DgM))t{t{V2H9=1eDL?xH zlQrh;^g9JYiXhtLvi0=TisFLL=AX@bI}tEEBKOCG)=$j|g+p+q5JDFy&{0ueim|!I$BziC@G=kqF~S-F052iJ4>I_HfPnM^>3=PVB|nh=Z~6M4lV{d!NC*hx2=dYr znx2S<+2|0$+4LI~V-j&Z5`fG%EdZWV4+@Hmrl!GWI|ENty7arXuYz0B)8+9wozFI=8{t0QgVuKX4;O)&7VR+Glnf zVkxc<*}t4t(Q(-w(^`8v_L%($S}ilk@`Y0W*V>3M~*QE#{Sme2F_v)iN$N$I%ggOcBg&zgqs%@H`DbrrlF z_^-&$aX-`tc8kn6yX+E^tU3))&Y!<7kJRB=@_#rYs>Y+2P1C69{i%}6iBv}V+1cRV z`T0gll1t6`aMYBG_qO$Qj7ENplfe9c9%>%r5<(#dDZyVsFBs)OAF?{2? zUs_y-{7OLl>SWCrn~e9jZ$Au zn&S@x-P5{!7>E;W*oqsWZu}_!Aua~=hX`WWuI-FRQ zcg*KxXI3A~(%_hPv>n*cEL)_(BuvX~vgg*mKdo}Hzv_{k?zxy3>f*l4QS6EeUGmyB z_)CzvWxpX=boVPeYixuDzV<}G!>MfVaFd3}H|igb1xJl}p**hx$)Rme?mN&Ra%3VH zD%Nl7m2PUlX`}NOqj_UZn@Kuh1Z$1s7}b0cuS(-;SHFI!(S*HI2&mlydQ`7*3*}Mk z%5*0!>5Jh2*OyX*m7In0W|g3EObZgky_7bh%@LRo zBC&o@l+9tU0Gs&O!O=Mtl-q+CCbJpnF`~~YdO{{Y)7NrfNm=dfHUL7KjR&Ohz zHS|?_R>I}#$O35-WTRt-qLwE?P|46^V;Y^-gWLn>Y?`^d-qyBXsvD{Na96Jk1JySm zzp6p5&)B`_2|}Mc>klj_(6Plk^Ih*>-)LH&D^@u|qJrUW*Rym-M3w5r0AUlH>8_+n z>vOFhM^GmbF0hi)?0Nr17x@Vg(R0~t-e9yl(B1RmV@#&e+mf`j^-40@tsU$xQD0Bx zt9>nD@K=t3OwPelk|X`$5|TMSw!=LVhX#OipZ5_W>0apdj@}VLwt9{W}HN&UeQbv%jkXx&LLnhup+sp z#!88?L9HMI3A8l>c;-F-6+7G}Fo#_3kRC}zFLx8BtCJ0-%-u}&K z_8QR4m~r4TzSD4Rw@iZtQ+?&wdUaSjLmR>SdR_?^mcrQpaT0NqDw$V^12OV>Znezf zXYi)rLnZ^9MDj{z73vYW7#r~DE7+h*w%z0@_)pldzpYk}4fvc!glrY1Avldyr#98- zU{CCIY(z4CuqW{=q2Dd8x$1w+t24!d8X`{b1WSLr?4E-C(C{afDoJC!@;QS z))Zz%AhZ1ib6i3c5`~P7A6qarh6t{Pn(|TIM&~1QFTQo+wmxjo*@5QmcoNCsuN z5kh&K0#|7xbYZLwl9T5(X@5or$%ClE>(myGnW=P%Bd9W_WBS;dex^Zdf{p$7ykWAj zL$5*FMZ|B(__sbkKSJ>wOqeCZASMkHq7l?N)0jJKO}d@;ce_rLe_|)Fq!v%NV*N$D zU6n~tO0qzqJN4FHX0x%rfX3wXEM*s>&MFi zlOAWrSGxPGR(q%6jxixkmN|puv@PSJJ485yK@rpr{8dNHUOjYDXQnH8q(@E0UNF^s z#*a4qOWre3+8>N6jZq>H#bFj1UA%SKj+g{cDCX1QM#P2QU<1aN<~xjdOvqWQfM=!v zPc;Y2!4SuQeyNlCpof;UVcNpco}G2AxEwnR{kB|n`+eCW)z*|E7hh2f#<)aHEE(Sr zR3JhmH=j;ubJYWsxqu!^!uLaIQ|S)`m)g5z5o^kHTs9&Ygin!Ah;aP;UYHaYD_5YF z7YtPPl=@6FQ-H4=2E`lsQe!`5yfSYOqXc6qdB$XhHPDdBnk3<7MDCmv%U+3OV z&n@K!|6nN$6KaSl+n{WCdRPy^*^fxeNA3j^t(tQykWgo5N0E9+Q6SghVlsLd5L)Ie z&Wvqa&}DMxE%ruiz7p+bA|{`sf)eSmDVYOx>W>73{AeA3cI@r%#;j~CE4jamoCaq9 zcKp@*(R|KCt4lu*Gc^hehFgV_bE3OoP}i&cqc~@2W{mDLTt$G-Ta0agrhw%H%2wm# zDbu%Sqo^tsdyu`OCVStV1+(Q=$J(spj*i8zTNnqL5kt?JV7+q6CcV6b$Y50P*DYp) zlN~Am3~0G-%DG*+0%p6TBFW{8VinZS4Jne6adNM3yBHJp3y|4yy0)d$zDn(Ql);R^ zi48m#5$q08!ncxjt?>pjQDJxW6ozFY9}VN>=K4;xi0;#7ts@U3BLb+6Y*Aov9n*6c z2_=Ap zj$(+j0RTVUvn2A1fsOQGs^K+hc-L3B%BTFF13z-oFz&u#|43+H>iSPp{(*%pI60QY z+so{*TfZ$daVr)g`Z`2Stq&d9_-6pl`_sTipiup3XzNLaZ57W;$L(g!QrHiD zZGzmv=Y!V~)cq^9S2)N)Nq@aR*2NJp>em&eO;DVrn_a=8s9>GI3X1O)UEbB+=m-O7 z!GWIXO&44Jrbtz(2&d<=(60?HagJV)Lq(4Ys*`nox3Z&$6>3_HIEMTgMFatg^;li1 z^w>C1!mBjSgwEw(<8_>4=i#P+IA*G=8f6L#Xb8EJtic5?bi+t0y#fSQI)c!?PE}Lw zL$c}r`dTRDOU88{ta85Et~zK@)+AU0$ZWGO0jzfLb~hWwYHYfFIti$5z@bEp|DML2 zCcaNY;+Kmrn#K^Rc(&=1;EBw}U69B#IXAq?4!{v5jZ~__QVz9D@HCU`aqBM(XG{;} z@0*p(3YAAbpp*g9<^on~)=x=4H*A%?c|%4^EoV?%115UL0W*I+4c8iI;kzww3dYPm z4eyR*LJgAlNeDLvqmaOAd~1htJ-ZpL9od!2giy5xN9FTBx4N?zk780@p^yNDQN#Kp z_hQI@8XbQPmg9Zdtm~$TNE6U4%pjB$=)#dF#|mUtKMfIOJL@@Kby=dcUiG`0BW)X( zSmMA`7kix0K8d6oUG?d(5$(94;_S#$cCICQoB!cWbvX4&bFYQ`iA4g+FJ|?@wwv-l z?_kJNn`i7lbbKgeW(^nFUceTI*`MVU=k>dcD|77t57b9b zbnNT9-6Q-U26QIRURJN`PnqGl3>({?KIih8dujia=us8FGRb$N!)ip;+M`$)CcIv1TaA|F0}x^cQ_z{c0{$z~pl0NET=8rl1;sIAcd z-YE1V zMttv}#kfPJmp&Uf9bXj?I$Q~?CaU?-Vcft94$cO=zsq9i_C^AE_6#ZFcaa}sg=$WD zO1*ZjB4&(dz|&e{=?mEm690f-n}RiOgzshcN&-lemGDO`5M)}z+-!%L#A|x?4xQ1& z;_{1vxQP+tq<21j-uKC7Pxv6<0**^yfTeX#)TMJz*f?Fi33C*od!P85e2K4ns#3_tRiN4sMlE#D7EZFgzD180zjCM zX;)u}VrWh3xfLcHnff4RRS|!a+Uo^Sn9A~ghcNoHcSKxWR_Uzs;*3znBJ4n4> ze=oXUKmDvl>AtXdOsv)B^FV$Sg|O~bdmW5xJzsIw9oF-%PL{buOLi)}C*}+Te7QlB z9!`jOdyyNEM=}E|zPp#Mz9K78^f1iFOwS?R=7|kMGQy2!z(5-!+hPaSzNSt0Fu?3m zN?|{s3Bgr}$XtU^y%azNNnH5mANR|-W?voxNcIw3arSl}l;Wdk_p@B8G<{A)er62c z=EQs+xQeBd4=7E(EYMay;2la5$S>J#;qjXR#r+@?S7+9C?c89H{w zatyFNA%Gpa9Xrs6$d|v=pg`yy%@mWyvNNw*@IC6!Jpe_S+_%X+m5QlzKAO&aWp^*z zOb`3}7#DiV#?V_cw^g^bDZO)Hco-%C<_w*}Q8EgXdbJ|tQ56RQ45sl2a=h0I7zq9F z)SzSBQ2LU5zCC7^&zS`Y29|JjtdwA?-^?g{ z&yS`1=fm;ZItDyyO-D{UoNCuTRDu-^IhmJXbvL|BU&%qrwgd6DrLA3u*nD84gCEX1 zY45%2gsx^ZuGUwTR^d^Zed=f0wClqvoju{~az|C|d;Jry>7T2`9L1T?h!IP&i$0Q< zDxHiMaO=qs<>$8-uM|XGD)jPs@xG{FL`ejG!7Z#ZrUfgtNQCYd#KUX=p0wacG3%*O zZ*XChzj5+=?cd~-xe}i^)X=JQ?VQ&;KWE~-MQF3f09)11PWjzD$qp>SE}s^2Uworr zn-&=-9!0N+H~X6FB+>M@0q)#!rePIy$1yvC+Xzh_+1O$fBWkI2a zepl#A-TM0?gtsob*7ro1CGdEa&BqHj!=)!Gx1D62jNlsJ56S%c$v3G6`Tl1y#%VUY zNwW8(FPRY~k;)C|M!9I|*dp`J)aei?S*5Vi(ZjFt=Z~4!eU@Y^+_U(9I0@3|MbV;) zYP7B_GQBvrIU#%5C*^N$PxV-QUv)1}tE{QvH?e3OSEcZ6nVy}aI!J83*YvTnIUhj1 z(felKi0Op6^z*XV^r^Dc`du5Yr!T^a-m2B{fP`aDWz*fCX9yoiBmeh{u!l;A$L(nx z3i~+CS#7Dt2@C5F{xxU_=OSO%$@QD~$)7Mm04&(^3p1ORU6%iqR?WHmsWzL#rQ3?P zaX=+`SA>xJVFifEZ)P`h9|vU*?C(*kD_;AhpUUSj53S`1{a7T92!9~!Aild!cwZd> z?sHqaEEUQpj-*i9ElXf`a9@WY;hvb!{R!84lo}}|#M3WL`MYfdyQL`HN{zuxet^ZF zNWw?~5{zF}L|KjuUj7yk`8RQSRXDyyZla;=NF(YTopdgD+c*_wv;t?M_SvttXp<1l zU#YuX%nNnpd9PTBotUHMN-WhAIshMOAd~(^vQh~=cP!G7aG@-EXKpxhZhg^mzhCYqheH~6xsujJh|28ua9ku@D#os4 z(dKiq*KGTRdanjPP=hi8l2%p+B}Q4XO#z2uo6>I}R7qTz_Z6AuTNkAP!#de{48vT#bgcm?*M)`53zS_6xBV zDvYx|8dkm}ifm?&1RI^)ZoLf7iw$3Ke;-sRPr=QBp@)nY)lZwwGwD~Sl}B$8LMl?y zxSP87F)koWDl$fbQc)AR@ zXnp)?CYW7#x{AN{5D*rAd<1@9Fu!#1qV-Tp`qxl*=+eKOBdOh{c!DdejDa6+w|Ak8!H$YT&qS*0Fh!)+2w#$y`VT;(Cg9Ct>^>$b1C`d6QDl?;|eI7NMa5&{Xp0IyZA zabM-W2!7O$(YJ;Pr&WX2491f(s#^B(8Xk_(GR9{gP1N#JLI2o3x+FO#^?DuNfZuH@ z**2I4+CHO_D-$#!6>rGjniq}%ygzKs$=jY1b49Fy1B4B2>wPqbGvs49zeb>J#76(+ z>KIXOGWTxmi{*Hy@ClAKC!)rHqNWd&8pb8!mw#J3QHUEX| zP3GNbm@S0^Xyr8emvua&sAltvShKwi*L z*F=~eXOQZqq&W)ADCprMjWog-TK+EQFULhm`tt_er_)@mmUHK{XMB<>+6XqR^Z0sa zz}9Q(r^IIBisK-@zIH@tWE^FsKF&%okf~}wsJ0tjC~~T+L0Rm{*bVBF^y*P%0+xMK zPX~=R5_VUX2N8F$$!eY(w?mJbB)ojKu=UZtSDFgB{w`M$t$nIg6=-VHKYPJFv_ska zJw|)nu@4J44LO*VK+7&nZj88sp4GzCJdOFhFPknQ6R`wHU72eO*v@;=D1;<0^8rsf zZX01FHft9`ZD}<=!%rXBc2TaTnkNc#t7rCgbg~~+Dp+4R>+5n`BdAvP=6C!WYpI_b zPFpMZ=*jd;j}I$!G862)7ySAyLKD#4QcHl!cGBPbhAMx{RSL;*>Y2$ZR`&pxfb)o~ z_uN&7F?@gxYXu55aocn#{i6D|`5Yqz3Z=zz#6iin+KAv2P^vM(eHv|GN#w&&SKUAt z3qgzLuIBc<*bGPbS&ibfEM!!|iLWivVc%rm7fVVK+@2yZZsZd?cfcektS#kZ>03Li z*l;{xiluqD=|b|i(5FR5pm{6oM5MlqEY)!n#!GBHSA?_~_P+m0EIZ3hz?I#|%BI2f zk^9cV*^!gh(~QSfH@jS0bR#w@S)N$Ya)2_ihuoK^xtko4$AT7hF%$iL?F29Bk_*5D zIjSchhOVWbQJYN_2jn?+l0)8vk)qY-ZDFq@NS?})=T|rLf5ZSAiKYcS?8mr#dc*$zEC4<>t9o0+NP@pG6dPJ14MHYY3f z>;B-*6Q2_Qc}!tJ3`6N#cdcSY)5C{NK2v&$wVGY|7XJ!)oyfVPn;?y)z^lg?Uw9TC zJ}Mo4)xPRJ*o_UtMNqO^2IsQFa20g3b$`n*cfFQD4nxKi{9xF}Jn(9Wo)|-$nOJKI zxFK)qQCr3#aXSk4I~yd@zcZxd7x#eM+{U1{Sqw;^1pZT(d3>D6&Gg8K?-?TunS@Ox zKFW;Tgmi>)g=hT?LES;z;t-~&NRk3q)h>E#=*Fh(p5u^1f}@m#)Ly4#o_(Th?@Gxu zDI-|xjXVQ3u9!crYIVEK@OA`x(pp=YV0hT30qU4u>7N_59859!tlyp%jBgDj8vvmN z-LE`kb46#$6=8OW;9jI)3v=19*Yh$6hmGW)f(CoAVI>lg>Pfu8AlAZ&hJNOe-Jbnk zvRBh>XaVVUKRju8<;pbCN=Zjf3h1V?a0D4FjU*1>4va zB_$$uy65a>p5(%f@~H^JEOUBqqO7L3;=xlay@J1ZY2~3o%TY}H>D>d~W}(t}tz9|J z3W-r332kW%!A%+}4Slip{5H-IGxG0h1>HIf@0fmAy=8p2V)fyQ0r%Ox?g%dnE=)pL zRtMz>_qfw16vHii{<+(FC$ZxO9p#fVGc&a?OqQN@%c6OD;=umMKL67$cf2=b4)~FU z_@;q*oce${d+A>{nHLKH&2x{$)=d0@3$|hJDNvxN4tQSPD&OEB+sBw7-DjM~P zNJ4W{GoTFd{i$}a+SQ3F+KDj|c|+k>-;lpQN>0E^fJ%(v z#Iq?PM`g`nW{_~j;AxhR0!qTJxSlL<`FW|*<|P&Qu9nJ8Gtnt#-+R>itZb(;C(Q}$ zDMc%E{$ZG0(slc{`Dr+=rQsZ&9B(>=RMNFK()<+F;;Y;}DF#DrEAp!ks9@&rr=e(! z(ccvMkoJ*95)EA^Wm-b~sw_q`ik|9QZRfk>j_x0axjO6`x6%Y%esZol7@KIafjtV| zqLq+#GP)&Emd=|GoA(X5^4e`O!`*Toj^Tq8Cm`dDx>@k)F};i)C_7+7a=`xa2pBr2>Sl$v$*!VQ=&vcNrnk*Xv<9 zV|31ifEWR$rjT(c0L&~+?Uw|KmRo_+3T$9wrqOhylGd%?b)k6~lFkQAE1uk$1jssa z8rgZI_YrNs@f6+!4lmbz0W7wy$-cbqipuwVJUi5!NCCaYs$H_yARL9v1L*|RYE*ydDnI}L8WX07sdxO%l;nO4-Z|GGziPly;Tb8ISR62TN^4wD>VK$a! zeK6nm9lPH=$SJBCqPz5lfXssDaU|Q;D~5h2We}+{A}9jkhTcm&5K;L7@=ZyrsyoC1(8R1^DS0%ziOMuhq zAI7>wm9g~OsI7qq0xu4Bc87YG834F`&$@Vr@KcyS0Bo5xS;(j&i(7-2 z|MB~cFlfXKa)rBKne*wrfA{VCixI}F-}LU~?$u4SN=6vfVQ#?@TbI)=jMtjCA}_z{ zH!6N*xc)8r^j&=8ivKp7dXC4F9(}jsmop=!SjEA;AyaWB$=0NCxt4`{$5jE?|02`- zX>9Hfn|sff0*U7ics^`7yIpm8f4W#@o~4j-HUvks1k+V{GUSQ_`={)5M1MRr*nR&C z39KZNiQ&q3e+J6AqoFU-@ZRyZzgoelHoO%};S46oJ8B%^d_V9YmO`9zrpUEOsel;+^B%9f zdY8hfO`aioT<07bjAZf4VsVgIf||%=FPKuB(xKlO0KVkAr%2@BsV|8XpiF!{q@1_2 z?V&=LWIcUuQDKTlnEv+BU+;?No=h9TK_mfZ2oD3JFMM~r2}3_An$wJsU3CVU7i9WA zAD}8u79X*S(!7w~Ks~Vf8yc8EYRs$#oPBu7<; zGi(cw>05w|I(&L*f2{aTzRmIMc2MkE$I@v1(k)$1gBRTC->~!LbX+B8#jY+Re=~M= z7cgEvTVIm$e7n^c%-4ZU0Af_i$z}j1yuuBg#U%r2BPL=)k~M&3&HRY~Xx>a9Ifism zFO5+ndv%WQTX67+i9Sjk$TJuO9x0`WKMg0kx}3HX!}n)_n^^Vkd{N9)H`YWPJ+o5w)=L6e0n>b&SdXBYwrI^PZ(-&z$CVgdooO0V@ZsC z)rwJ0zOYx275MUOkkO(8FXMJv4+6US=;Z`adXO zi3YEFS9T<$`ZxAus9=MwA0ZWrTqXSRGT0Unr)JcD8ZR;N?LTk>hscTfh|i&38>ju- zDghzXo0+<<5(6nQlw7*sKu<_3Hfo}2kFSd_c~+ha6VNF2b!T*sA!&pDGV;I>P(LFK zyJGYQ)I`m!ZOgR3T$K$xBEKHKi49L+_302cvm(l@SiymkemdvGDcT5%e0bo4C+wTx z&5DZ~ZO_&IuGmX6jQh|-5A$y+^&xUw^%OQE)sDZ$Emc#X^Nl6K4=3(Yo*F9zbE`MV z(Sylxo!e3oa?E(V)v{YozPD}f5J=O2Y^d6*ury}Jcbh2~id!4ac&DeRuc|n8-#~)i zjiWkX$l>c%nByL$@Aq|V>r*>hCw)9}w2!#mNfm>Y522p~_hEN!~&bOUP* zM`SSJ2Y`m^n@U_;gS$9T`xaI5IjYJjYW#bGS{s0dE_5SWD$li*u9d$M0P-y8m^}H5 z7T5Fx!<^P3`Pn!*ux@gBE)*GF9AcpVmf)UwfFkvosVIqK8&P=G8_{0nR1O#AI&84zfGINWX>IV>ncOqy*PnuWWmoc^ESa z-YUEW*RwrgA5y^G@fCoBE;T%Vu!#x|v)99ct%p3zX3}X|k4wV-+M0a&Gy55b`V~kF zwxEPRvJdwWU1)x|dX#hd{gioM`ls+GQ}Tqj7cJy;fHCT?D{hAR6x=DZXjU3C-r&&H zpIGaRlNYew?w6eMqQ|3?Ptsh`Wz+XSY)IFBS(|xCC1_Hh6M4Fv7HYeVWT+#?R2hGN z@s$h?YOvoZEPYhX(f#JX9)!ji+n{@Ur;7Ggl?skKk_|s4xF>pCvMyF%9U9uTSx((z zXHw6#I23DeFH*J{X=-J7wWU?;`rWJr1ZdQi=DeRdfUy&NcK+$BML(7BMsY?Z;9lcb zVLo0i^^W;wZ`6LvL6vRqfKI^ubZ&joZR!1P!1Hdn@3Zmqd8*Lf7qP@PLoNhYPs4xF zJaOC)R7h?fXK!#48Y$qQL)lRf>OEKSJ2KfgibZjim20)8sYz4zzp_PD-gwwX*IKqMJFToPk7t8L7G!A@^F8la4M+@c-GPnXNz;Z z%SH`VgpYU)b#+qHBGY?=S&?pcQjHxNn=AvL|H_G}H?8^me1G@L%X6wwUY0vZsz9x% zRnC$q6;3;jRVWrJExv7wSwG$A`Di#=AquYD_1-H=9U<#9eb^>?FkFgf`l93NNQgO9 z461#Oz$W@sC~UXDZOG&Ot>sUK?TpuM_O6RNKTd5jhSpv!9a(JIqKHt;f-2$tf>}IY zd_S>pz|(Y#I}$knDv!e^wn8ZY%;ACQETRzWq;Ch?jP2%^@H0`d_f*^PMJ z?-ggN>i`dB>D~Jnucawa!z$JOX1R>1iQRVL%$yBSuQA83{1Lo?`GBveU(TraLkW~8 zS`ncIx|l<{C1`^}%+xcVvIgir0*LgN$FqfXz#YC{VMeA!G%97(ehg$Z7$j?3ajXFiwpT>vDvS$-_6upPtUA+ ztW`F`wW_WBFMofqLx2T;{5R4N+jv$O@?}+4At^PSCSLSiz{rVCFpiaG{=(49eH<@* zEFi;PhpCS;9|T`UNUjP;zg7`!Ka*7^rUc5g+aLfU1=pu6C`lb0^7jPeV<9>|buMnxwnnd(-2Hrp_OiKRk2A#=v@g z2)7P@9(rC0j}R8M?fuLo^l^HE^U#VGSkbcwAFOmR$3+P7?^j&Lwcy@oW$9^W4&SU@ zNKmK|#4&GiYwz)59H-A?-!swUKSC#a9RynQoz_)$SmS2TJ6>%i|FEE6O-Sj~i^pM1 zFeP}_OECHpRsTazfa6wGLGnTzaEK8_X)-Q!P?3+{a_W0${9k1Hhc{qM^uf;U<>@AK zJDj6&p<7qQ--)$@?N{IXDv4{lt#^Dhd79`Y>i8`aORRvrv{26XD$oC$#JEoTrd125 zuHE5pBQ?(k=AVA&gG`xiJ=gH3N`w26o(zWu{_1IDGCjX6!)Vs#2m}ewRkaMDNr>M< z;duT(@|q1P)Yy{<-{&u!qVISY9EHu9U0!|qzT;)Ej`4f2-vYF+ncx$zeFuXFROMa$gMT(}zT!wdHGc|JGCM>iw(akaS`d7-jXnCSmSzZnREq%lgI zRZWDn+47oy=7w^5aNQaGD*#bop}P1i8f$a;zaV%Pkbx7m52;#q$w+9dKgH)i7x~5j zn5)#c93o$Z+u?S*H_GDQLE|aQlK;;9qU>k*L-Nh;Lo|wJ=}<$(y&oJxU!oC&8*o0~ zTSq?sN6#y`rEBt??+6G;Jb^iji~ftH1Cd05Nkpp2npKAFzRjghyH(?5CeE99s_aRW zyjI`#CkrAT^Z=Te_~#P;c9<0D%YSZioKFbcMyVCIUGEHv=2MLGzy6iWG6fC$zZ)$S z@R-?tlo$*jY{qa^{mu9%zdy53Yxc2C_$H*hx?S&Te^!ywYx}!BAobyS?d54rzii%n zHR#yqe~Z-WJzxl<#D?Zmt!Y@xPKy2vTQzj*{MRsN>&PK_oy{!kKf4cDhRh5cyHGgR zE=;z6f4AA{kNvX%cWW2^2;a&5+hZO)pq99yQyoo()^x{ktV%0s;iUYQEJ;%p16T#B?@4gBwCWjF>^ZIedL{aXTfxFGEQw ztPRH$|LZC);1Tyfqg9*=DK}8mrV0%-HD;8vn|(;keJmWM(`WzbwAG)!8PNL!f{IS? zzj+H57X;98xy`Js*zuE?`>ZPrRcUl4b1eQ(h;^}n`XxTIS~_>4RwX>l9l|w;L_5>} zI|~T1!DT+!EdOKbT=ie&38cX#Mxy)CEva5b|BuCj*ID6p$uJF0#((So|MTB1&%*kw z=#Ato|CW!7c~nD<4l8EDu@(Hz!qkoZz8J69H9Pc;@@ptqp8FUH&Xy*s>)U_nu$6vH zxEz6}k!LJ(7w5yVy$qLz8|hE#->ga1zu{VP80I)CHyg;ZmW$hQzJ7nFF9xuBx0FyT zum6_wZlu*#vA=*k^=lVLV~yD_4W{LkuUdKMz{o(>cr|v*iP}YeTlhwZsV|sUOSMqF zHoa2c_N!}Oi{Si=gTtqk!RRe$+BU9@JHGAHM&mMTTcA+!rO`KU4n5_gnvm>Uy=wN{ zZfS%!!HxQDLe^0U0V+QpBSO~EY`!OV~7T*@Z{Dr}%s2-NH4!^Lw85SDaIwaE#TIW~`bd8z~ zV8F_DKbJDFaZ&PM){?jF2^ZPLFJKAja(3L9^!1pqmm%wrjp<5`a>vEkl=qAaa;|PfmX9cjk9XkiFTiz6qCaK1G&0pWTD;K2qRuUaCuiRTk5=cczViY$q zC3eS9o#U56@Aau7Bjih|<1#UR^dFwl~ zuTJB`c#<&>9cQR==lv~9X7O3aDuT1kzl6(cVKU-<6EFw>SK*iC?v=Tzp%BC-ZDe1@ z>IzE3sL%Mx@I(i*4hkE_H2JbBca3#-fZMq*^D9SqzW;mLZ^ucRtbK`Ypm(nS*Y*e$Hhoxdy^0MO0A6y&RxBAyz1&U+xPYl8Db-ykaQvv4>-E z+0D`26f_%ccBy;jL}KkGW_-mHAbOkzJ(HQf+ZRNL7GXWcT=B(4{0!>4I!M*x@!FW(nD=n;S7kV+5i=>EJy8~@RN-Xx<4ml>z15@L2?VZ`RmmJU_5gKLEbT{9;>KS(Z{?72lejmxj zenI@9IbQO^ST%=@h%8nJ$#_sgC`vpV+{n3nZ?3Z05iDCP@HAoBnClG&5fHi8&w&8_G6pz8@Kugdh@*}Mq;*Rj(l zkL;8^rWr!BjPDEW-?G`ECDB&^fCn2_^B4UYWTNlq8BtBgf6p0j3Vj_QF{%kh_h47h z)kBA!b)On|3R#Q}u`PXvm}TUa>-xYgLAVmpz~t`<oTH?O-)>Bd4G$Mp2yN^I5jwlI-@bEgpE%}iX5Ch}^NFEgwP z3LKjPC_|%1R5u5D$#+Kv%fHhP{uxP0l>%sLP3tTtzW!^ziu;>^Ao5irv5wI)Q|X}? zQ^`bkdMA!xZ$Dq%x2pm1fFr&GA=+74QEh(eKJsd`i{)=2PiLA-;Fd=kr5 zD}!GIT8IF_9E~JM@fd33$k<9aOgjHZ_=MT*c4IH@-JJE6EZ;Y#T?3Ld>1AoNt^_Mr zx?ezw96$c*N?h_tWn@N(G?mW?qvW?QdxqTUsLwrr@cO#@tf@SIEcWu^u3OVogr99? zek6()^&^Ale;b{Lw$P}zXGLy!*-V|R-_-tKwG(9IHT?*|ov5F75Yo9_Aj&xCgS=|;cealGtA z%|O>`xi{Tl-_1`@0k*og2B|9bKcA2qwOMW1K8tjd3m(`WZ}XDDuK@z+gh1Dd zu|ixP;uN=Ur4c)@lCz%*%gA4_`Z6kH-=p;&Oi9xHP^c%2;j7I8(#UD?*7Y7~JP_%T z9}`a*;bF+rF!I)aNI_y){E`f)fWC($D1SvxYVam-`fT9M9yu^X0G8e12MNYsPaeaUPiIt`{)1i~C6 z-$qTLqsM$qP1dOe^jrZ3sod|A%Q%T4iRAY^?XpNbO1-qiL)@8`)KxB2R&-Cr5zwNL zBwc^$uap(?5Q*HU>SeiJC~%qs$ppPqAUj^}cy3r^P?2_uSD%*_n2gg!(7YnXh(nN! zhHPegFs>!wBWg{IL3kLIerN8(V16DL%83DN(g?H-%MSd=2{NNjQ{~lvMon$hdP(H7BHuBF>EkG7m2t$j9M@dW+4`X1XZ$`@^j1;;Bo(i6`!T_H*~IWi6#&CR z5G3r_SxnKKDhGd15F~S+wt^JCL^|q~UuxCltFBP_Lq63St5HbXOHU2%Nl9+d24dzs zjp9BtBg!-2sb=b-*au5Q^mFkPpSH3>>Nw4&7+T$AZau8p=ng!nyh8U6=(6 zSQvSmQrMwvO&$2!+&oN#*mId>#^knWMHD*P%ExRac_Ze+oHfRl8C~g_0A9*GZ{js zt-K(Oo2#w~lysU5k9BxB*f=($<$^^psP$knV|3K5t2{2Bxhd{y1AR>C&A?YSU&@9D zZg^w;nEJ85e24jPy{E{^moSZCU=53~EoIvXwnX$vg2k%ea9tZpVKVc2A>FXcCb3tW z8Zu;Tnd8+O%IhwEX46?({n{r({?Ui1m30m~ioi~%yFc4xVx`$j#^)_(*rpUhHM0G0 z$k!oz{iA8#`asi6lsTQq6m9#a(kEYD{zi!BCc3_CSqj_R5=a~~S;G&~$0msVDq~Pr zwP`?9OjMu0&~pxd$UxpNI81u=!TaneNe04E2^K~iF0Ob1@P#CPAr_IRY6*M#r^|Z zFRX1VPI!qzWc!AJ+p!zn=I=zF{aE>cnAHjZU=7T>r|ayM zHEi&Ia_&bn;s9B#0GZ{bs)(B%$C-xXNKqGSEOXK|l3L1A{){(q8ZROh>1}t5bePGN z3$#Bv!|a;yk7vtU^*&+RjAaS#!+k65-7J^5SKA&Y)o}lf9EgBjY2M zG_Ql0>y}7AK2qHYF7GUUhnWOtt$f}+ecs6aAxT&#_D4P#By_||Mx9` zEok*hxd4(COfi-9*Q)0UOpmDgo9^e|2>7wBlAWdku~;ALOg)x4bdraYd7=^|?9`cG z1J{G)oZjDU|7>~lJ-OkBhfCc(5X6x&RuJUSi>{{u#S{3{c3st;}}ig7(Q z2_-;-5D#FWA7ClQ%%f?BeEqhtjrEDmmW>V|*je=Hq&t6HL9wbvj6|Mu^Cvcfd#D)v z(*RbEt=b9#`ZX=M4w8csfrm=}hpV#;i<^zQHBe;GGH8ptdvUkH-QC^YDehL>y|}x( zy;zarTD-UvDNx{q@0{EgfLnX&IkNKhPFrJ9J7j*Dk!`$pdaxw}G~umq{Ev3JIxhGJd(CP7H@$ z^GUl^?B+|C+a+C<$6^AByC(n^9y^+PfrISHuLoWUimnfB5O1kvQ$GZbti z^5*(}BcF8Yje_3$zf;SO-PhqdK#$;2&IPui4Eh6n`OZ+p>5~HT?GWQ4^i}uPsL4B7 zDc&F};geI@W3?%G!#e*wF+wj1br59q*l1p&k2IY3-!KCvPR+kj7mMGZdcO~Cgy-7P zG+(HeRB1y`-U#nMI70-&#uUuq7J$x9DLfiMxu@|zaiD`QqyP2sAY2-Dre)b+{U$Tz z=Jn+{d-=WR#^G_MRkP!v`i>#4S?2pUYiwxRZ?r4tdTx0)2vKmE)x%2r*C02c`l09PPeXGCnWjR z#57>fe?Fcq_KO@sW+OVC$>yxNv0gvV_~mU3s(fV@i+G&QLiUFf`$ix$`uWw#hO? z8C@&QZy3r)ysh9|iF3DL3W)|Dx}qARDY6(J;`;I5=65nvNMX?AcO29o&U)DCL=DK- zHp4+4%@0PoWb1pwBAM7q!}(^;4g~r%YrZ5ITi#ZbM9C<( z+vU=iZtYCvE!HL&n`yi#A;_xpZYQU6xu#*NyPfk6;er2^4TH`CgFzgPNc_&)0=szy z6rz=~ss-G_^QCOdX*r)F!E##^#&qK>FIqi$F9H#&M>CG5{jl(ulQ%!U?ed8b7}yxA z*MW+w(2ZP}z~;_o6`E(W=65@D-%B{3>Q-`sFhQnYCYF+vrv{&_ck#aGjSGQF!pAuL z^kAhO#9Fz?F zUJ}xg=&?lLF2e9*aj6^<&BR`$Q*`I)u&ckv56B-0CBzbZ=#zG^QJMVv2Vg4ep`5T3 zQ>3ARR1mgI$ei|xvpf|Cyx7hX{@pLgg*HA+`vba?3F>mVDaP07M(Cr8=%jpLw@bPO z?v}tp;1Tf9&#klcRp?Va0c%pLbqX0X?Nh4JQBe&XVT(+3IWNxMC%UeXKTR`B$CcE` zw`jXncf3<}b=#)#aXPF2?Ryw2hiF_%@8^0Nr~($H&TsOx97-aWmRv{GZ-#n4eFl|K%-3k1kvAlNA^Q_-APlbXlJU{LEw3_OW_l zP!NVZY5_mEHa^rA+Ev$f?&V9{^pURPOM?ObgL1a1_1l=a9|xD^Bx5LFouQD*@4MJ@ zF$ALD0UJjPY6OG9E)EaX-o2%A9lAAokFBlf>!n${yX$sM(~G&DuWZ=%YK+OvmJ9Zo z($FK{(?%9g0JW(WN7!e%m#q12Y5h2ErxfRrGdJQhRI~X~3R>$76GwZLG}w0%i8Zs( z*>Wy8OYns>m*tn?!_jG7p9*siJ1PD2${~-{q>6w0^f>g}`1e2<239 zB~c9pmSx3j{tq8w{IY)x$yr%hYiF-4Rg*pzw>OF`6}dW=HXW?F$UpO>D^U)1oYy74 zY;XA{%w3DUIj=4>ci{2f)|&|l3tw2xl&`ZT!_ZYBV*G7-n|XWmpSxhUSupy*cNrsyhG2muNojj`(+s$hY@e@0+}?)bzAr z1;Be(UpY~|9y#}%`uS8F|H`|-L^Jmq4Dgi z-R%*-&H4S9Cx*qWsMc2FEtQ`<{l)9gQJ0^X8&ac`CD^k{Fr&iP8O4BB!{@NU>$W08 zE$Ub9bGIf|mf^{1+Net1W1UpG?r2!*vDIO?!7$$ zJJQrp%V@jM@#h{$Ffvq@O`GEQ?62Q-ul51{tPFenthU!8KCYAT3w?oK^|@SJ)Q{XY z)uD)l$%QYE0w^#@$k7kg7!Wo5LLH#pyyR=1=rll{;>7{O3Lxj=(wT18?q?a((CFrp zQYS5|Y+;a2?UsV1XkRQpWoIaJa+?}Hq^*N2dvO0+8DX)Y?NzTXZm|d|6*J|Oc@BE;;%MC#d}0Oeb;v0Cd=L2F)A8j=Nj?;Ev{7}_cbR;~ZK}`Eqm-1=Nhp8 z@yBJc(HDHXXdKsH*ra|sHHCXP{z)+*ajPWx6@h^!C60j^I*MQzcC$b>{da0y^v|iw zo(BUChYju?kbN@w>W2m19){P#2qG27-p5j=Q&zRQYC(khAn!4SkN*TJhphA z81dFN_0U42p>Uiow+am!e~(P)D7Bxx>&2%n$Rp`DP3P^!+D#UjuAZgT4n^;h*#FdS zo}2FJd<%y!<;C&y>frF~W#7LpqD7k?lNE}Bh{q-_nJZweuBFaUCxr9nWECq1(PQzz zRx{schfTW;(OsouJIVIa^G?qM!Pns);2U$)Xlt|@2HRnPNEDs-1g$^+qo8R4E#ev# zTz$7hoKN}X$V}}8)0FvMyHROx0F(2UHq-KzB)Lwj<+n~9V_yOhbh85$2gp2Rw=${J z?pkWkkcxwVRlrBfoIL)M1fH`D+l)gY2Wbj74Lfv;+p&uK6zkZhoj<^{q&>{jL^ED+ zk?u-WQD9L)xZ`r@E1L4tX%esV4cj?X8*zld3akS`rfX&Hk{DUF6AaYG_qhI|w zJ{KL`JZVdoHfp`AV|G`+yml3hHcqmuFs|W{amsCLJ4XN6+@G!5ER-vcigw=4%j(vK zw%p!KGH1W_EkN2!kH9G);9rV1> zX@6@ewO>hn`xSOIXhO!}5BQztpyv$^@hIemrC*-cUqW}g%QmV!U?U0HDtJs>_5x<2 z;T}@EsR^J%=W4rJTPdUASs^Ltg|{TXHhi7czB!feyTwXGbQcv{Z1PF_k&GA73%0R| zqeQ3N)<+IpFZXd~yW>(~fQLGB^{8QCeFQT zi`vo|=KFi7#=wol;WACxdIlKWoqa~ecS%M^Cke1$sn6m4U7%rJyfoPeYYlL&|5J7J zsA(flJZP#DPz-%UuEf|;8!@LB#O5L{0R96_(7|Z7M7F%HHZKQHZT50^GbicBdV74EOeoz=ZnofAnG3(j;{2#dz|3ucd=4K zattI8iiuQZ-1pv2sKS|#-7#%H@iSG59jxGA;R=EK|7baLZ;K1XT$65h5#(SJj1e!} z^4~IIlQx09K(#L$sBH32#A7YBdYFk&Ry#ea;`Y+w9efD$_b3 zWeQ6ZyMDl@g{NR-+X;3iC=c{@qYu7S&OFe>#Y(0O`X~*7X!_6R$jg>ZBeB&J;x#Vv zP+(z>Qqf>d@UfDx=_?5uuLBgTap^O{mJUE8iOuE>MH8gz`IilOXoB2jG`;#CZD^oJ zj6Sgzjen<=?0TvqlFz*GJyD4}`6gxuBTlIpj6E`pV`9G}<3N9uA`&so=vOE+7GtWyF_Z#hH6$T0>>movNQ8BGj;j`H8~US7pb{UcQ&3=)*tH(i zh&Cs$?<$%a8qc{g*<`5 zz`9`m*#!Khp+-;pn0ddO1>D~fQH4_nd;MJp6!R%2%Va?Gnmo`pVdQ5Cj@HAgFOjX>PN^%>vbDtZ4Y_8mEi^#4Ye6mk(-qAuL2PKGhsCE zMbBJuc4a&QLYL{IAxCo{43VC{oL!NB`Xz&LZjf#&L*0ju)ykXqETM<-GdZ1(jisX> z~}u%n@&`SGTLBneY(S1H)T*VB3+K*yJ>p@ER& z85I!{1LaKJ+-w?ejpTn#jJe)0#+ey+HEfS>&*$R4Az~MxGM!Z>(_z8`()e5}sNJMR zYcnwO!IJL$TSq#DjTbb;ROt;h4%J@X<1x0@mn~HcCzA`!7cqz_pm@&j( zN_&xAVgzzQG#}ZpYQ(!NSt7sPK&kFYhQbcQ6pC~+qnY5EH#NQ6#n!xShl%ZK*NW-d$RH2_yDz#fBVv#WhQqA^($~?Ckg4{wS z^g{3D?S&?&r}GGx^_%>OLotJHO%vkU2B8{8_Tp{XYQ3Z_kjfJL|243YqIOH@cZRx7 z)6|l|OdzPY770G?=QvAC<0O6*#wHTwp3b%1WCtOKO5}uk{P#qI1H-I~bClcU$(*E% z!>n=gJ=sP#79Z<#=qV2*nk*Y&3wP`L&}^w*QQ zAv6`XXo}4i8oAOdrsJ{gzY>0{J|i90Z>WPw;;7Zo^R~{OphxolPzeiM=je;gmzjzq zYmx268<2Db{f!JJSK!z_Cus2oWb`TT<{Kv(dQSb34gK;bc5;PAd3 zmvJ4NB#+OvzN|%Z^6#POj>CkB?W)w!fE`Ul$>C#KbAO{S3-}tBl)qsN6 zEt!zxb2D!7g``|k!a|N5tbwqEko>7)%vhZ=0aI*gxj_H^qGmx=@nCvbLYEV72UYmz zXsZ9bw0v|Woi({v_ydpYjm^_-H(0~kFJ8yFObtJcqIM?a;}6;=udIrJ(#5N+N?T3* zbf5EJd)$tkGgGY(ZD?5DUQ?EuV~1pER8P0}+OU zD7?i(i|`Pd;4yc9TVABTK^jP19FO}8TPshUGuPfE+Wfh;MkFL9Z{uc^jf#ha(V^C6 zeSr4!aMo;dGJ$R7{c3rrLbuldOcnp`iKx=f%YS5~8A@#EKul>a(Xt)oJ4lO>GLaKP zztg^F=R9Ab`iH6tWJ^aMj5IKehqM6)gy-346P{V+S>~py0<2Ele9$wpNGdiiQ;=)5 zVP4ejH3RMEE#qj)Ncy~aa{y*>ha`75d`CC1jvMpJPncl{we+WQR!f33em85k#D+fj z2HMFTKcD*I+IgRoy8&8Jq0RVZj~B%u|F;P&M=p6dCH!9{WXGO36r4(}W%=jn)SJUp zV#}&rD_)wh^7vr;@(ZGXmOPEZ7_p;ixVAc5_l#l`#Zn(>b)@2Sb~=}X9IQItW~NpM zh$_hky;n=#8SDJc1nqKam92fHWFA zK7ry$GLX7p?87HRk+2+l%-55~p(nXfp}lr7m`0l?nK(&9DWRkzdF-vG!QV*4-Y+b_jpUrPG^AZP zNWLxAwtNW8Sj+RJYs#wtQ#TFP1{RRfM@K=I?6oXw(Wh`>3Y=$9XfnOTcnsf(5mQ_T z?T*ENXy>%KuiS*QpyDAv5nFQ9x= z$~UxpMptsXba)x2*Vu1a|4+e*pM!~UxMN0nxnNcF>mT>Z+eMh4+! zt<&XbW+uDx;a^Tv2qKHaNJtb)6)t18Z?Vx?ZnQNlCf1GNK=ffhsa!MY=TE{W+nyod;Xdj>Y< zNBi-vmspD&t~FMBvGqUrRFVcj#>H~|Y`9#CUPSADfSzY_F{YH?Sg)r4(@N_;LE!{C zlxy`Qp=Yx!l~Yu$UM3fler0jHM`6zZw)w9=Gv^r$cCx+2jNTm{W;t^XG)T>u_SQn{ z6KJu%qphbO+T$PI`KeV(OAPJ5{^Y9KfX77w6x3*rsD5_Qb-5&Rn|LDh_D2Xc?fI-J z!RM@D>=t%KR~NbNw0YCgJ)|M`3C|r!rLH=y?W#pRBt9{ilS8(C>J*WY|EWFa_I%&+ zOv$KSw2(wO%^O*@P^~>Zx;^#FIPj`*a7;(X&jRX7fVqHtIt7K1N&p^-ka*(YEHp}D zrOPwfd9yI_?vy$$2~vLFXS7}t)1p&foyO3BNdWDQVS!Fn%h-W0h8UCSNkzhyIT!Dc zB!*Zhzd703askS6f}nm94ujhGPhNs$jylvv3@TPS@And;<PB+t^E#zaFqgH&Q0GN31`LEA9>t}jBlL^j0Q_8}ohf~WYx{mm7kb>&KLCUdr zaF;216%bI(e>hV+3661|XuBi`+_MZuU2+Qoy%$fN$>)TCf2Q_JHeDK+I9lZB2{EPN zOL6Nn?t1W`WHik5mV)ZTxYo1Rvf?jLS=r~IiwkDBT5QLK2iKxdY+kcl8=^Ywf=jH< z+wYD}mLl)sn#BHrevC>q=rvSau>Ie|Z0|pr^s`@$CQU4;Xl*&Pr`NRyyUD-xzIL{} z=f{V68bmlYRC9)e|?fyi8=UA#z2{JI)jrCxPYdb_yps5=te zT1*(J4gLV*yPQT7}G&Y_0cm~&W>XeVTS!pFN+Ml<3FpFK90b6ZXLZSF#l+lgmZ(?-OWzSZB z5|hXHH{8>CY`p0xcy-8$(o>ud%jjY#erKf2`<;;gKr;v%c0SDozV{|K>rZcW`|C3! zxuRv;qLq!!chMtrYDwL`0fr?R#~-d}Xq0Ni<6jxYJon$sjJqa^4m>Gcd`%GW#l7;D zJYQk-=w>ZwQ5@e7@`wu$brPkSd-T1l6hZ<~8lbQJqOaRu1YEj^@%FS%B7kUBAKCmC zlO~6sR1_NsgFm0*+_9LfmtSNkLPMllsx|TOVSRqWnL@;iQNrWU>W7D z1$l8JRzyy^hW(JIOonGD1S(%@^rUcU1$@(64ue}he&$;dhCTlW^-+!)9_`Xb-o#C9WZQkGwfM2fMF^UIc%K31S&h4|Bh|nY`EblKkRGA*7U8d3o(8c575-%kLtcN7@pOFrbFA zK!O&0dZjzPeiwG*3H7deSt^M)%5-#>))U3UMoe=g=}Xz(%pR?UTL`4+;vYO#Zc3Uc zy@Mj2{Kp7R2ga<4eu0yLW)aP9uP!UQWs-kF%O6LI78$x;oep}QDr*RWCaDo?iDSN= z2Ov)DDxnz{Q0mlk9?if&o04s>RL+_+nLAk<{7L2cuhljd_Q-S~L}W)E=MJNIVtzlo zQsN%x8egy3YUM6oI&{+-G+`=GATFPkvYh|NCrV27kWPN~>u@>^M>t!mS-RaUXX_-s zT}zbjg*9h1InsCeY9yaUvlk{c=+tV-m^^%Tdw8g?#(G{E+uBqcC@5}JZ4tyjvf;*n zL(jHPHb<7Jt4Dz^|$oBfW=jg{pXwG#%dmz3hco_JY2$`5e#lcDr^ zj|d0RxYJ6QWqogmh<58QslC8{ z4p}+)D#XGRcgo^={mhlwVdZA05W@GI3~QXc^zb+3PvfE^gVY96K^qdJqeNTyEE)Vf zb%1x3X`^{qHl{^&l_JVS$Zlb;z2g%sER8cE3kXk|+j~8i8{gc7D1hG)=1NP$nvDHy zjA*i|EWfqlPI~$<8c+3!Sq8^#+aFks0W@voC))1h<8bqg`zRiodxi0$lacrE=b}-O zy429^C^&Tp{kKIR+Q96GmZoMg5*4!<$eIdv2_bRb@2ufC(h{A^?{>}tQ!^xhw5tc{ z8hJPNvd6ORNXmylq@5Ipg-Kv3h$CrHt#ZahzK}&B{d}3@>w0`VVQZSqv=j!+&Ou+|@mF*Q@{46$yQ?&(^{mhq|K1 z)bXBD=9Vhzmlr<>`;MNfP2^X<+MW`XTf)ji?ZBW91BZlQP|*AhRF1(Ih8^gbEz&#e1buqiF zc_aTWvzdB}L=?xG1gr$niBeP71A)re;c;X5HL4@712FsZ*eh1CdSmYnvmL?@+%9{j zss7BHS1yJmuy149Vx9pJ1{%9{%S}c+%9T+M)r{c@$g17KTBEU1@_Ym%?x(^J0JZr6 zKMiwWnN(~Td;f!?dc@PMvJdH()r4zZ6%aLhKJmH|Fm30TgU^y&2tpSt#kg6ljpR|;hxjkG2vO0Z9lgVgy+Ht$))D^53Cr4kcQmuLt29d6IH6dn-;(>&) zA&Qx`2>x?w+Ik|*@^w=Y7I-$S)(1frwjWIHJ$X=^A@i-?5TT(VWEjdc!* zAZNn$JKdBG06Jv{CfL=Dqx;y=IM7raPNh>yEA;D8>iqXwP1iMh(HOv=m!ykE#T-P;)-Pvob|LL>GY-`F4ZHC>2ohs+Yej0f^>?oRu|(R6-x$?ul+aNw*i) zvWcW=l=?y$qcU23sSPC->Tb#~B*~z>b;(kG?NS+DN+jS$T34J0@gGNZpb6A0y49be zlEpImqE7`44WlJEjoGNteC0SOwvUVsx{U*Q-lZLfPcam;N*dDqcrDFRSKGU-5a$H? z^;Uv1RQdv^^Eq@7P2m%8q~W$fFtt`cL?X9$==ODrtYAf0a<;$0yaM*S(k%b>`}$#V z?y#R!B6Y!@A#CQ#lx*rlnqo*aGJfA0M8!ahxX^koR#PJM7JEyk%yevtp(im=dx+^g z&!uprOSOegMsbLXAE9Nsz+?Uw9czrcI{8JUa9DVJA;RnzI$es~eUj};I!JA{9O6D- z`jXpKIm#iPOy-gGk=h{|jERR+PaM{hHiL3sh`(;t?dEvA|Kq`p2G%$$14`;0db!T_iW^yJ<%Cq}1a2Q|V<)N!iB#5!+^H z8FNe`406rDB#h^xc*(Cj>*N62RX2cm0oYTeG;b+O-Cct;M*_!5mDzqSN@u z+O1BCnz|Uo7N4aW{sL%IvNv>#RpP>ZbkUx;zx;;R7F@8IpK_rvRZDr|$G4}j3HZgM zhHz(m#1aJPMvGNP)Dj`4c^@0^&dc8CTeAjXLbq9w_d!+XU$1}}5XTto`zg#!BBfEIm_taZ`o(%tS&_yqFE?$?i*PiO>74xA^!*u)tKH|w}I0uc*Y zWdyu#oEQ6q(2-R>4OZIkQMd2jwBUk5QgynF$|r05UVk~$1is$BQJ zstxdUxys16zzI{{V$Dx$RvV3N<{&mcoMkFWgw-^HX4AM8TUSRdE>mBEa=vN7UYQlx zowXM)@sgD$!JMe(er@W&$;`IDN!&Tq?fdGloTl-+02*ic-6-qw1E{PlHbSbJ*MRIa z+~b8E#RWKAz1bT9;=F*@$F$RM%7Sm6?SIWwY(KbHzKWbu39LF2%2yJJXK=`VxUzCP zO~Xw0op}B*$)CogzUCD5Dk6ha?$DVxrO8`{UfA4n7;P3oD7)hR4&L%UY`ChwduzFc z02*CKko+po=cK{|=6%YQHO~<+S!GAyq^Ufql8Mj7_Eg;P?IRX6Ipbw zC*2P<&28kw`01sg@OjSD;scOUvh!Mvrq6ZT}HP|y%WdTlF0a6ha5 z5-mROCW#9jZ9)6<-LhdFQ}>l9km=f0CG>CS;|Y+8kZOzs?GD(dTUq`BZhq01eQF_P zzJ@;=RD&jXTn;&Fz*Ut)K?;HliWA&!`8NKvA>fwu{|E~h8mFT@0W>l&&}6Pw=?QG4 zzuW0PR~JEdy!&C4)pYc?+V;Z~vPkmKQPFsI$JpDCiQT5+JYFdAv#4#)-?JihlF@Zr zv(J}D<|?kJiMyWgFv)ny*$lW+&SEx8<4CXjm{c5m5#OJ!@v?n~p^Q`XJ>zg98eyW> zlPQAg5k=+Kh{Wqhq~$ECQR5$5odr#XHe&9+0DWD)5|Ez@6WhXD^8Vn>!5ejD zesyhJLoBYirz|#5kpy?|spE=~?7u%uDGsoo(yg|#HB!Dm8{_5po}>T7QM)w-ur#C^ z{N-=JX*o^qnyJVJ=ze{&-qISFPdj#$g;gUFA;2KK78{(}`Cs?MSPW<1UDRJsi z2D=GGIVn;RV^bE@+8HRL(AiJVf$;DIjncl)DMz+pU*x8=a?+17>&kaAmc`^IAMR10 zG3fnGVmfA5Mc%EsZH#C2VYR(v7gAB)vX<5JGxSfL7DqHG*$+x|o@naSDS$wa_v22r z&=4vsho;9zAKWa%HOr5OA1Es9eD0(uQh0Wp$CIlnDL=id)HIyVGyF0Ma{>^7^X`nk zwgN0GmQ`0E>kU&sVA?l71J^^Fy!sy?fUZ&a*)P$~ zJpKFgsHJCoH<;YPIYCL187snCVXSSIsC5+U6x_N(R@Q?1e6r3}*2XnQPG%a~nhR+| zPy1<}PFPa2t?skyu!Q$uxfa)jlZc)zt}4r zpkQGPKQOV;#!q&>9|sPlx~$rI!wm^0sXH1xbMC>& z=%KI{&v!~|%Q{jh_L13|^zQhJ8Zu38WhSX8_w_`UXGl+C^xU%Hk$Xj($#&_R*TUXA zL^;ts=HppWp?YrA-=;6+dUW_Dopi*^g1QBxcUqK0WB` zdIRaBmZ*{f71(ebMa*0N%Npu5vB_)_-Wshj<8+YCG=TlAc8T|a*6!gYh#}1PtzE75 zH4(mgI&13o*$K0NRC+H(%0cvKw5x}>JkEs510K_bDuA&J5M6BD-^+)*h!*WXc6Cc) zoGub8O5LL2Kc+(9Fh-omF}g;PtD^Ct;$GN_O8gbnR9D{?2^P zACLWXVv%h==6<{^6-Sce<&d&h4yQ(?@0ZJK?hEx7HM*L}G?n*5-n;?;XcxFzp4LuR za^zerRmA&pQBlIH6FMB)QE^Nu0#BP?8!d!DK62vyl3CS5weFC$W3kL*na<4px~7lE z)gLx%k;1~ABL`Sqt*cVSF=nt_JBIkFf~0TiE`}!~p6Am1l&pZOM&FQn*USAJeH`!u z$XRW6j^m(eeCfbh(XPyqhkYXq=G>K3=+6ts(Rs*5cFAA>Kn1%Wlb4>@O~SpIKO z|Iiq4jdT;MneZbC`e8Ro@@FdS8}pHqNQR5eDbdWy0cO4|_biWLjx$kDzy@}O%CBuR z>sF`kofb>LgPyNz+tkpzRNf;PySuh=JH~j)1#rsUs|1N{eisBiM6qxhu+ryaqz?$3 z74D~OH!P@6pN8}6LyI>MCPcEep~Fh4qA+SRe?BX06gh5FjZerqV&eU9p2LtN;8v=* zJ5_yULH+SsmQS}>rODqgJcUHl80N9bLA|CEjR4>(tG@nEk&TJF7VOn^`m%h73krM< z4Tfv^r45g7|6EIa9^w%~fY1Co-8Q8C-lN0|F8B__T%5HG1^#F5b9&|mpfq}zVrT1` z$DJV>tN*!p*G?!)UuJH00?i)RQ)n_KvO+hqeiPw$z)wt13@3*D)tn$ndlIj_*B`Pf zWr{!eh1HnT=xl>0kNUr6IJj?SSw=}nCCJbl!re}YB6gO{wS{gig?l*6@U|A^6wv3b z*%Uom6!QtP_5%Svhew9rl}+C^7x{wAO6 zG-epr`A>&Ka}E)g0JIU>mK zHqjjs`+`GEzc=WEE0R#V5-+fBC**AwsB3?8+UA_tl0FAZErW3}sj4^?Y(UUqhw_z; z3$8Iuws3v8^oucYCeDAP=VhJj_Wn^0B9QL8Uv@lyA$nM)E))DWOPKgTK^~~G(ic!m zIY-H40MsNqe@3H|2GBLzkiHVboCx@=z%+c-BvpnXZvUS1T$o&KO6*s#(EF@&Fq`nD z+IXX7xA9JlT6;`uEZmpb0r-Bna;yDeP6~CN3nq=t7j&iPb4@>zZ!a8v?d^}1VjQnc zVBThI(eh6XX%@2uIb^M*DSEJx*p2?m1nag~MFptmH$c1aq2isg3_;_SiX-G}-TcV; z8#@&kGANn77eU|>iGvj4zO=~uJ~Q{EeE`pW5Ruv{pgBRTbDH@rz}FIn0g_62rb}5= zZbe_tK=)B;4qgNfcSG0%3_2uo`~7J>!@>Tz-qL3j zUK!dN4CibJrK}{bq+#wXX|HMU`p`A*ueMlKJyAJPt#^_W`9Mcc|L1Vp^`gg8h%1L# zJRkj})1#)?)ppQ3yjceyel{9pLu-LCVV{}AgFx`>lWM*lTz*XEUxLe(!UaU?6fQ*L zL*1S=)?jiJd6KW6`n$O-CgG(NpBukJ zz&hPt4fi{@izi;p9Ke_Y_YrK({Z`}n_224yZGA8HTaQ3elYGzPVKxxDNa-^-j>m`u z?+FN$NBWv|%xY=Be^M7ORf8ET4Y(hkb7ZJt=EM;Q_cQFdPn7SsFMa=Wmnjq|{QSrm z5t1LxgJ@d(Uz4yOi*RBHGE=04FAOr}XDo}3gl4VvE>Fi0)+twDxG{Znk7J9C3$XM) z6|eoU2!xo4G4A9!)CvHBr>L&GR2TVNjs{iFm)(C9dSN{(1Q?@NomHJ3n0duS}hZ-&}?5XlTQan zpm0#9jt}H6jPHxSci(i}#}|G+hb(=EpYk)rLd@qCj*;nm-n?80!!;;h9Eg9n+S(jU zr1F9I{(F)g54IYR~Y}-69w>JM>ce6lOTr8-5k(faK!!zF+fMT>o8rmX@`xb*& zW9q@Z3!?N^epM!XO0`nVFr>djEpl#{k}^>HO>uJv)vTTN^iv^5!MCWGvSXl-*KLol z#-=~zetBe8aL$AYr5t_jcrNlI(kFn32T&K>#rH}tD=TYC;NGY1+1L)pq3fK}_tTo? z<<{qOWLG(=F2gV4R=L(!;d5q*oip6UY=^LGPL=uY8XB7c0Zp_6jk@tRPO%aXPik>S z-d7XG^ow7nngMIDvLgS^f_+_~%8T{wb}JBgZ5_k#;0}?OMnxL^3D|5nJTLTqR`9qU zT2bE%yUM8%ztR{@XK~m}rZFC7`~vwY3i#eH?DT(-yWK98&vr|RH(hIZ$c`a@YJ1p{ z$@Q(p-=Z@<0)veoOxqmXGclFZ7NK~QrM%Z$)m_^*FtOmjwKx3uNR-2orNnVgdKq3E>%6&6d7`&KT$&$Q*p3OD?F$&)pHzEp{96l;I+1k?UGb#Ch-2IJF(_BX6m-S2mAQsj zvvU!FIqcuS>04;A{x5=eO0rb*?e#^z z+~?xOn6Qa->s`ZFQ`4GatG1NsVuHWoP_i}}46R;;s?q5FH5Qz<-yU{0THR7r(UlK{ zi_;XtG(lI5*#dL;Kq*UbZd%Uzs^aQ#r1#lG zX~aQpl83?pXToz^eiDD=O~8nZL3EM(r)&>lX>Xpu2(dbnq{wUdIb4+Qf8SzTb6}Sn zZBHgY*~k9l4!U9$F2D#LjRb4g*oD6F_bFO=!NV0ro)lAMNNs%17(R8MM$4yJl7ublh+ERlivRWBGn7~YE8Mr~KB5H%746!bv(3%sR>_8^w>O)QZb^PS-Vrg_h+AuLRoAGd#IX0mch ze&yGfLCBsY53jB(lEp5yTMYZpwp2s5$pj5(n+D$29^r4@`~SBF{|OI`(xsk+f+K=j!Y-M?axI2 zm+r~ht4)U@mzBaHJ?Aa7w1X^XGaMPaTCKufv4*bD<4D(L#2BqQY|zk#0k4ii|3nbg zML}e8F;q>e^cfzc)SrmvTHbc3wxY^T%ld$AGV31&~=!QGYIt3EvZ&t2Cq;*hP00kvv zEG;gghCmW$v``*fVIaa@7$}57Vn$;A7CN(oCby!R3qL6Gw zWamEMu*)bPyJU@0%Z3HDL#+|0i_Mm1Bqu2-WwA|3W?&}zgq~A}@my;R7RdZu`X?iG zp24bJjOVyPqoT{2(onE-Br*}s1JN(-(<0`HFwJ-sQN6K+)iDi(lXnz08ub+@zSDX5 ze*0O@AJ-sb&Rr1l>uNA%D``f2b}-{V_uvj{M2w})-%2r=rdLK>bg{fHN%SodIDd~L zk%|`3WBD(9?Fvzi8jBV%kQ+h^FAFJo6f*8WQvE47ot_{YOS4&HJ7+neFPoMB+jpd6zA=> z@+1Gn_KU#$HjXgAy+@mt$TkV6Y>(K&@lDtHQOIFTh0oGoLxb*FQ?b%DZ%Id14?*a< zG3gCUi=*NvGrRf$q|L(9u#P693>H*=CyMzrk2oHpD7b3(k6BGxD(ORGmZs!8mOKu5KGZP6!fl>)Yy6893JzJJgrDA$x>TEh#20@Bo1!w)A%HArhj%5qi#+~5q zE4S9HU^WV)hJV;if`~$ zy8gI6oCQ1`?%~IUVn4eJAJ}xGRbWW;R?~8`dGxiHxI1U;eW;&3pgBX zohY(U9g$db*apuO#?l zl&_6QSN?QMWP}}_c6C)iJNihx2Z3Ml=1RqvWCi*$7&jE7>!#*L8h~YO#gSWPLVt3` zk6Ph9R}vXvK}^M>&Z8PiSL}M|O_~4s8EhWsP2~tdJ9CU-1 zdoW^JsxS7}`;n`4BmYOC8v^O&hj^9}+f{@)9=S=Z|qEqs@PsaoBn&r_}S?Rl*j z10Cvb>S5pq-CIDR5*$=)v8luiy7@2T;HYd~qP{E(qT(PhLrcvEFnpuJX;<-7RNeM+gleJro%P zkywoU+L;-bm6a91gS|s(YZWQBF0Y4(^dW&lW1s_xT8yy56P&MQn{!Hlf(OJmOF*R} z(ZM&_0djdz+TX6>Yr|O{@P_reHwJCCGwe<%FWcH)JQ_IO7z_joJ$tKlV_7uO0vW*3 zv3Ums4X+qXKC8C{pijchFc$w%0qfhG81S=gFc~G?yoRl%{b$(FXw-xdV|T8-8A__< z@8z35E-knZ945WEEG~{*s34A20o5pCRfHf|D0GreYvSb=?#~psQ3=F&Fr41JZjo>y z%1_{EJ7PVB8pE}&L(m3^FTk@bo7&Asguwz;Z=?d(LQTL%*)ZY0<|tpnKno}!JhzZT z2YP>#EU}yQJYH*x5p6FBu{MuZ=DbF3*BgLYbch+Lw11Kair{DR@C7j}t$t z3V#K8M8p_n;J{!_BjvxqsZlvJkf%`fNE)!S7dqz8TomMOqG`oM6ri1MVdF4&ourrY zJIofz{_=sEgm-52V;GDUJ(?y9Ny;43uo3H~l++_{5yB0kQ`X@a_jj}Vfz@dWB~@-@ zAV8hLwt$bme_z@Jyi3amvW9&A)|EMR`gUmlLAIr{MC6@r(d~yb%;B7vO6q56Pftw9 zZMeTARU4T}Wl{F<@85MY%T0_Cf1sG=QtOy1ubc!gAitWN=ITA0+nsuNL2W|)QfpMZ zL36nZUu?u*CjyI4ijM_xOs z+ZuEq(&;)^JK~Y^m=IXD2_)V!8T>rA@6<*1RYRJPgw~8gBtvs!nm&ZW#30sZ50CRI zw!xp@x4;QE>iqoMLH7%6l89)r3Y?ivCA%erp%S|ahGnRn3qn+WY)J?UR{p>j`mEo6 zkFxceE1*|2$7Jm8lj~_&J5z8$VH9Z}dt5AhtWM>(;a5XP);m`diVSdR+H zuNswf9@n#~XKr+Gc$S>TSH97jPz*2lv$%w8w2v7qQSA88dwjv=4G7V#$4FWj#e(^= zB%Z@l)Pl_-68NLO$hC!giC+L)e7GOqrVhEZ{gH;_y&}59Y*Ba1V5?S?d7i*=X z_hK*iBN6O2>pJwB97 z>3PD!`Phm^d8*Pt3K#4G`NE#bLFanbI&vxh6WrLW|uC!Vy1eTDN-(%+yXJ~oM@vt z>5#RI@9ubN-|=MH2pIml&yN0xU4$WC8pMMmqM6E~<;PW3!P&}ljHV7Th5d}OG#gL0 zD7M#=qP9~4)Qtl>BgF;!OXVX;G!=NPW(~c&-q~p10apYonq$4A9IvyfVccmaBNgV$ae=v7?_Oh|a%Dq`%diX?W23K6gWonOQ%)eBOGmDufZ& zEd@-}WEBqvc&sXFnB*2^<+FLzK0K{G?A-v2LpeMKb-FW<4j1z}&GtU7YIb1{1pI10 z@EA*yETHq8LhqjS;J%aREqeC>|q22SgkLxdAx{*AAdAvxH z!>LPYW z=^qT`0@Xw&nm<=KnPoQS^eXQ-J^s1RicP%$jUtQxGFV$VNbIx)&@;J~&Lelt6rdM3 zbeZ))@wzk|9zfeSNr$~f6LL?3ashXP;$3yzRA}6_eDNqP7Fq}zh7+QouNE(uaRN&= z`9Ekqn3afNXla7V&flIh0W+8Q7|P&GqYhSc4uYA=hffs+6z-bT1JpjogC-O#_nRkv z7s5jiYQfxUlCr^U41|a{ZR{f3)zT>q^vyHGJHD?^WdQXW-v+hJ+(%mMb~6s*TcyU& zx%c{*P?y)+g-qucQSJYTF7EAb%inKi6f1K0y_#N#had~ZD3Pj==nWMbRpFjFwLSSB z@~rhLI>g@@4dydhOBR#;F5@d+IH}b$9=qLG6a^0L@-!5a4d(m!LP#_qw5|I11`5twwm-Q7+L=uMu=ev#?N!g?s$xkHt(-?Upc!gxsv7~(LQp;g zdHiIFA?DYrNYRZ(K?oJ^7Sjp1FfNC;S>BVebUZbmewv%zIlGEdC2-c}@0KUG<9Mcw z*ux|oY$R9;cB%J4GQ02uGvoJGfaA^Qh7NK}$IR3ww^6DARmV>yc$#{J`B`MHaY0KY zm4Q_9G;5w#WH-cMNvMLK@6YXfrwW8{6Fg^UF>+P8{;s#B&~`;foFTH}qcc8CN$Ls* z6^aKKuyjWXe>vygH<6PcG|--~kJ&)#UA@ee5)u=z3w)3$av#0G(Z!Tcf0p7uKljk z2893a%oVjcGsCCk1z!}UT+GZjYr$-nLlY655n%uDoQ>H~vHJPeN6aGa)6F#>MG32| zdw)5jT#EKaA)jy}-%FZ$48BdIC67!BHT{;C4<uhkRxU4+Bf<^wvUyzkd6GV)H|Au43!B66>PFFoZN__ zn-p9Xn!`0enZ7{`b}=T@644K}xOs@!`dfNrAe7Z{-E$S?CQO9ddDBH_EidG^LN4Jx z*3$hPXVzW!65D|YjlR931$RVTAG;d7Zfa z2||+eOA81)r2lAxxnK$xe6#uHCio2&ebLc9xpYWLvw&T1wH7JT=_WnMK*8u!xg(~U z2QMN)BBx=0BN+FWlL;yyMXgc!rZ?KeV6%fVpCRE76{mQd7gT;8x1z}pGt6SlPdQoY z?d^U$ap`5=_l4G`YKPxY6ek=8lEH>SOi@6yqYPz+I52dFM_g3&`73r)O{WTvc%dgF zLQF>QD7Pt}?e&$WBogXN;Jf`y@sTCoS9gL$VKT>h)7JF6Kzxb0=Aemig9t0piK#4* zBx(dDDkIFK!IXdbRQM{T$3g>5Lc`Q_LJ9EVd6+9lTX>>I9?C0~mVJW}Km~F!V8Q{B ziz!PT(p&vvw9p3I!jf{L53xC3)vZR?lTWv?)&A#uJN?_X`0Y3r{a=mAGQP-IaKVU+ zFcm{N7E5xUT;;~FW(}OCsMBX6K}jfSbB&f`KJus7?}Gd{0G5u7^4~dTgW`dGvRm|5 zqe_7VL#u%u8Tmh@c|UP6(L`(l7>YYeLo@H4f5P9czU)aPT=xs;=JR`Ovz6;#7{+(j zdBJA?v)a8bJei0Yz!+8DrsuyAb`ieFL2p3|6LJ^4wDb+#3D}m)nGg>WA-Lkj1D%cp z?nR7C`S~+__3yS(|1_C18C-NF$t@>-&8x*2NO2PlfgdXTlYes`HG((NaPRyF17K&Q z+3E6W34@xFq%rK3U!xj<5cqM#ey7glPv#h?kh8%k1Pb9(8bJ3X7!=ax8RB9tPUZ89 zv-H0R&R8k$64pz({Bs)U_e;W&N()n%p(xS4j9f&c%|cOGY51M>CyMhw)1=hziWi;# zkl|v&o2Lg;stfaNbQz~ocxl6b>fXK zp;B5Xgwft#Cb=adqy5*sQ{G<@JkC4j8<6UU%FLBaL<%w@rD;bEF>RLT{e(ecOu*|k zlp;!+7U%P&0JR3hJG8J&tI$s~I+)C;ga;A|xnGwOKF>cqVW5Xfq9fCTk9cdXeDD+9 zH;Y597wD>KD!&uP+N_JSP@10LaK(B=OcQR3x3U`FKJUZI3tVgsF8&xfDWMF(KG zWm^22l{I03to1RbN6!t3ilclrKd*5;zPrI4OYheSMh)08@E3wNIG*S44fUe_^(?|4}6eVM7(W@xqaK9%IrQjf0j?2BPMq4;#C< z&lblp=wRu7y(aDl^BfXFePH^1FHx;wQ|x)*@9SWSqyeU0iS)mpnr-*Ut`kD!8Spo^ zcuwXcI!&yTJ%z0BFcC8ttZs2dHU)wPZ2Cf16VNvWWVBGwAPYYkY%RAaH7*53 ziq2U#ug-ocjS~d^IJDBxrn*rAggb6iA9ANbP#_evA9P-IRGAqX9BwBLuaSmb(!iys zGsL_@_`Q4W*JJRV3b%wFN}HV>U6a?4b+%F@o1U)V@fDF^JqAM(r!@jxe=7{1S#rBEj&&+>0HXpp0_2O1hsToLEf z2R=>0%!b=!DM*oD=>JMVC&mTXcRD6jJz`36z@Xw^BC3*!eRQi zd-DgpZ_HDsb@+zxB}dQb#l3MAk3{a%ZX zmfgegxvyl1BC9H#ijm@*43#WX+B|@0IQi%=i!n8C55IO(VRZPDYkb3xv?eC~r?n5| zkG@(QzgwJwk!}@_>rwSM|Ggvtr4Y9CR=ZXJ(OKY|h2Z>mp~TZ;*9cH$XJ*6EC?d(d zU!QJ|0$_3p3(HIfw4lC^YhA_{({!_LFUv8bG_A%XX#hRt zb9D8`UUhr$b-l1lZ|bctuXjH0cgDkq8`sCG3MZn;>R(Mo6;Hb^j%<*}>EwuHP3KcN z&-Ey)>(DAA8xWmWVKeEJ;-uHisQ}TKNbQ>npj}$ zIb+Ui=K3RGk0)F_@-#>DsG`1SfORb`nwujLF*Wxp%5U9lNr%wv2Ugz(s%)c%iGW42vb@R;s_DTR5b;@;ssI`>UpplvI zRIb8E1(+wvaiT@Db{Gv1K~QWEP2==y7pBzm0>DM zZr(x})B;pY@t?otb@{VVi!5ybMsJfrufo|lJ73;=@2!`cvYCck<%rx@x_ficpR+@d zwL+6{2LnAdRLziPddrTR{OIT5eI73kw@HvNMuf$@xo6H^6;NrNW!t z&-JS=`o*y%P<@Jq4=l)pzlef6tO98AHK%#KArEgA>=TdYRbK(%zV4K6&)2(lTb3Z( z2spONPqi8Eea^kIZvq>6og1Y@rM8K9iIsQKc5;k_MYot5(`hbGr9x_>-0I%0I}Mlb zqxd;1ol|{BWi2wO4`$0sh;udNC$^5nhGKPRZrT{ndmkEIY`O6+ghzfl9sCSC8rW>d zE)GtesWTq>rn|vY0e)G~F@Ee_0Rtfb9z@Un2;$VH{t>{q8^MaChW&ajrMM>z0|pH6yD(PvU@K|9*kO_X9&1qc80J zmp~AGU`a4Pv+S2rx3(N{KrcVL(&{``G4X>{5}EMei8K7Dj|AG`43NvS2cV@x=X&hn zIooyngHt~N5ukjAf2`%un!O#;AxV=DFP?~}80A<#nS5rG)M?kduvX@3a}kOhgu&Ad zm6ox*dWa4-YvI|7P+%&K;sv@ z9)%Lvfi}1ASKV{R_Ych2s-=^tf8-%B?Fa-?FCEJp00I~-XpJ2{`dU$X{gSDE*ubTR zMeS9edmeVLyHjeE$OC>SMr!#sY1e~EDiGmd(NBQxc%bXLs&w6QLs#mnL}fgcZ&r0{ zHcJ+UdRsKxWE-p1&cWY=P#3AB(Z#%F-s;3Bo{}HkZTvBGNGqet&-i?{Bcg>A6wYMI0?jD5lN@ ze0H2Am%@zNO_j4$rhdyUQ_6m?6$Nd@GdJ3IuQM(^Q3U0DD%DEM1Ra9>5}XAbNVU=6YHh*sJzx9*|hRZ`_5Kc9za&MA|5ZMPEzqo)<2F7 zE*J7Lhq%-7r-eiU5?#Cv5~)ph zp4gEB2hr-9xeJ)ugNi#o2cUo;GeLdLUo!)y+4lVO7+!R6q2zO$vwjf#rv zAQ8~$;j-omU9tF2{_XU6=#>CMizAwG*8me^|KD02o~EwsNhV!kH)~alQe+tovp6;; z8RRyEE=mu$Qj9@74+abFXaWek@P`GE=2=bcf0)?39fkwe839@{5ywnn`g*-@Cwzm(CB7a~Gr0VB3Y9Sn{ly4$6f$ zGw-{VfV*K{m`zsB_5Gb7gwE0}0tjwU5DY2g=Q@(4;WC|NSk@9PE0vsGq>Z;3{%oWi%dV8Jumj)66LSprLpqM8Rp+O$^2=*c1 zh)FL%s*L3wh4g!(mZRkcyq8(4yOSS`{TM(=nH28MmpH??PB>tW+&)|RF_~t0VYe+P z=2foF9{-h>RJ!iIaISMvm~2$WEeT$4Wu%sO-qrl|^=rPF2u zbh7$iajBtL>2EYqU&sT{9ZU3l-$CcMrx_VP@6v4x7UVmmTf$%((xa7HXiBj-w=E-(= zek`Ff@BP8Q;2p7-T6x5>!+R{Yu3ABDb(KO7-L~P>d%nL_qqO{G&2%B}NVkbHq}JQN zSWn6V$QuJ8gCMVE;C!gW0j4Cf(Vv)d%NDIZPsurOuTQ3w8sxYxVe<%YRONoj^btX9 zpCCnfaKf2^cs7nZv`Xb@eJIpWiOcc_60h4V$;g$MAFcs8soL@iO-(zGt5ZP)oH$N6 z4NSUuNzM^MNRg)$J{&38eo-yvslC{Ej<=KLPnJqz4x}K6fYMT~CzCJ1>{(XUX%YT( zO@#3r4o77wSnY&4`A-e1(wV)1zbKyx+y8Cbn`V!!1J}&FuB+{Dy7#ym|TTh}3Lt3jQPsSr5Tu=Tm zZ!7vnX+ZvavqVlU+<9VE^{{Pv&43tC|B9r19?+g#pm1cZx!_kr%;s$$$ul~tzz*tJ zkz`}^a#u4dM&28#(zcX>fyNI%9GV3-Nvaaa&5wctsz#9yyXPRsq8_4hH z1HmmK@@n7T8XLBr$l%S;RrPJZSKiq{Ay=a9XC<*ycUmpOA9aSBDv`z?kfDDc2t%87 zxLW@-?lKD7D7A8D`Hf<*i?)Xu`}6Iy7|4LB?%1))zt#OOh?7S(P~U36Z1-MN77CfZ zsUI9aLwFNPEGi!}k-_GcAU0jiu^5FQ)mCk{ZAq{DMB{I%3@M^^qekV602FdM0<|+# z2&sSht(Z%sD+Qd*lRe~~SglOmR_B{G{N3+RGo`%540{SmGx_e|hk`&N9lffKXC~_4 z=rx7D++my?+(;4!4hM20U8iBK0}{O%u}zkZRDjO00f&@&qeg5=SQbL(g<4&G z8oCm{A!ac(=IUb))0f8E7w*WS&k;!ewU_ls=$x=On961iCslVE_!_f_dLhWl^x5#5 zglqp*xr;%te*q~D>()2k^nOPN#{rawR8{>@Bru_?|JbMB0ry%OOVsBf!B~Y5v=qaS zE%(o29FI)lxfV?FLPvUF_&7cbxpkpY&2b>tgfoa&ST&(DsN2Gqz(PSx{+r4pMHlq@ zx(3?>@5C)*B>bA-+KWy^&3wkP=KU5N4}Ue^Xa>7%m0pKdw%d}WX8_*RQRu`CJqQ3y zf1qqT)I>-+xT2>!iB4ChK!6FZZONLdTN|)a;vuuI1J zOzvQ>>M8a^aLlYfiQYwlPs1^_kX8WR6q_!~rFqD{+DJIicy7vGN~c;}YB^I}*5rAe`oG+mXWHZS ze#HkANwV*>2yhc4wl%{0UvdlxrAA*m`hJrb1Iorqp;x*~={W`3{9DjOcNRUP>DS|# zpPLVtn)U9<7AlQKGrE%oH+^Bx%uw3Ts;k)HOnpcLS7aGqZ8bu;J6@Zt^Ka|DglrWn zPS2tXdMe<3k4hzXwg#fq);oRXL{az)ixslVQ<-!#+-2*1w{7NkUGKv5z zeR6iLB|nzyC63;EJS?#zXA(A)_U9n+4Ce8vNFsc&E+Aq}KLZ0)_Q|EfSJihd@)>N> z^0@-KY3S1mVE;><#Xfi3Em^Y%3jD{d>2d7M3!osK{ES69T6ZG61t&}6T25ndWHWY? z^P$Jq4VcCS5~NuGmPfNnKCQD!ugfSSPbGlyEuo1x6}v9eGtBz2cj zt@JY3WSfD&2eb_qgF&JPNzfNa^mL%l8W!Tvj*R&F{~#(oEv*=oT^H*lhWM zZSE84O7;#oGzPq3QOx63hwY0u7*$+WF{BC)Bd3Un_^l>3%dxrSc7dABc6g`yqotC> zmK*|uAg4N~%Y+@{25Ps8&J74o8E)xwl`m5H*-TigfDqpn|A+NjgcSd=EO|MKA7-u5 z00N_7wk=yBPu}uDJKQNsrK|yFYK7nHO1^>kq z;&-$)wx^s&noc5nNb+_pj@W6#@<}GKRlf9c0Y!06qASsxX~DzGO(<{_}CY`VAOd@2WI@9j|p=--z_^jYxo*bT3{E=1I) z6*33I9fUm!kqHRLN(r+e53rl%^II!sLDa*rRV3h1$P_*rYqIP(f7U09QHj^T_bD@X z?BE{5m~|CeJq^T1GZVr@uOov83F5kB2;qJenx)JSAF!RF9(pJVw~&P__$L}(B3d(v z{HJBAgkjridpi;?D_RsmF~&iri-aj21|qwN#6tDuo#HGH`%j!G4t!|rPopi-x)wi7 zBvSsQ!>x!wDpc%B;C`*DC*AkO<}6exZ8$n5_SA8gQ9zpp zr3c!kmOdb*h5rnbt6^i%X*uibY)OYik3#@XM3LQ7I?UT`8FAC(+hJVD0rOSI_O%rQ zjLz%EB5iSy--eI$A1vEYXe5b&PDzWQ2ZFL{Fi7KosLytwXHtV&R0^H=`?&*lDi+1Q z(hJUN-Q)CruZv(!BxK5JIfAjY6}Cab+iTn?%Zpd+YzJr>K($XwIb4JEy&TKsENhC} z5ZI-R-}u{tq6(?Zp?q#2ollR5XU6c<3uPcIn=yz(xf|?s-$WF+Ep{&KQ#c|6)Kzi?_(G^QT)f(p1I3Nf>`nB^~^7;gT1Tv;is8@RG04 zTHq(u68H17fl+L|1S&t)DluqY^TrSiw$p`e$ISx+N4EHU=g%Bv_Ab+bFNz;c_Sy z2Rpu7qdS&I#xgXSC6QwSqm&R5M9OhaF&3wyVUZ7FXe#zkwNRf#dm)F@(E9efWzz0v z!E0ejLsVg0(;o;#MgkAAiY(7ZchEwcyQFBSv`KW0`7(#aAucQb!yd{K3(2W|QFK(R z#Xi+`-#C9TvA2wd&L@60)l2UQzswtN3>YjH#=59x``pD2FZ)3Yj?z0`cOJ9EJX@cu zh(9d{^pF{X)KRbFC9mT&U96j+>so*G#(pEWjR3nTZC*M#$Sa_D#9wtZKa4Oi4$RXe z+6|KElEh&C^}%>3-4-<9$nTe`m+I>>nA1#T94*AVQV!Gb7mJ1?tDgjo5 zkZ6;|d7I|B+<>KNYOe3mxOBzk&UEEpmK$*jV`6eS(n1l%J%N;Wf-#rSr2--&l z5;3QU0+Fy`XJWc8J~ay`{1YSy`?I&pvDxz`ddSBZxtJhP+9YaWP6(J^sgVDH{^c90dfXYtbfY{zd`Kdzs9qGVSQ3ynei;4sX0|j~6=MO4< zm=g1({I>xgvNz8J_v5QT@E#!s7E&boRFeb+`2RNegJ|(SzVJ5?0-?$RJw{S#7OMW+ zK#C+Y`0>TZwfoV5>ljI6A143X02h?V^1n{&`hiY062*C_{_Pa#@;`U;|J)@iQ0gZz zqdh8cGbt*9_n+G$#g*cQ(er&Y?RYF$L!O2-8p<2z+D5v4I&80+wXxT8Rf-UVBQ{zbDyu#Cs{b#y*=JZQXGFKUSQU`aE3v~$NW#*5Az(y>ejuC zU(SxNPC&UZkCs$~_5Ib;t-Ig7`}h@rBp*+CCKsS(9%tN#{_n3ys)E!%-j74aanpyw zwE@QNd2>+OzIps8FE3C3NACh2uzP_i1?u=H^Gaks*pNiuHv%FKjsa(u)NtRks(Wz~ zPCFg)rzJqpB$hrVya!K{mABMnn+f*|Q0}!3j_OOBvzBV4tdK4s{5ydR@`!PzLLYQd zzyC zP_5?kbi?un|MC@Vb2!)gO8QSDzvqoo5G;z_qu!r@SaMYqz6<{kMCEKSJjSeH7}2+e zR=_w&fl;eLiU`OX9l;7d1i*9eigexM*f#Vg`R0goog`Ap&H`L^b8qhr^uM)+L5F^4 z6t0-r0KO&2NfFxZB&22qHaXwA^)hi;p=xM1=N52xDpLdS@BGE~>zxRG>(>*4_JfVD zb-L|tR?~&jch(!ZK-R1guO?cU`2wG2v`+B-apGt@PVk%YU^L71XhjU^c-rwXkgLNa zn_6zRSLeA>%66UCG}Chgz(DtY`>p{E>4}EZ9_s3E&{+U!bIMtlPTXA3xZ{f0V_lg( zMNCq%A_Oo$UzJ-L0St$foRBRnkga|v(^)MwSPqVGd0d&W16}b!U4;b5RFCL+{ddur zL}JXm_2zNCM~AKdw&t-<^sFkMD~E);7fZxD3*^ko$N8@1ZULTblht+I5V0zbzIWXr zfe&!=es5v+0CBa@AvI9lUyPrKemzk1;$co*Uu`Pss`>k7 z#f1WM+Y=shh^^Z5>O}qULY;Bk1dyX!g_GyI?s_}!nmzY>e@GKUC>rKXP?HU7B+`v-f+>EWk?v zW+lG!+4K5)XF*YN>N>DBK4$N`ZDG{RR+4l<=#+yHVBLcKaM6cCRAtMpg}}c5vZDW2 zkA401jvXh?vzJ#ZgEMYsBr|qir^3T!;2s#G+Mh-)x4e1?%jJ7s>=VMEn!$#e@aho@aUhSnSVd&H(T9;6Th~!t2+;iF>6NhfWVlhA_9^Lmx>Nh9ck8 z&k0{48e!h|OOkg(CdNh>wn~@~Zg9&^pprW@%GfFYizwMnsN*putFhDZY?M^0ytD)$RZif8xFl{$Pz8NGy7hCrz} zkgaA`U(omK=>3I`y#ow~{y>hplzP{8k%o3kPQ{)kK&Q)OQ8wPH2LYt9j~e_^{r9JZ zqbTOi+7ifjLJphsgdAD+tSGPQdgF}iAre1t*|uPQ{qia;-|LwL6=N(}7~|WILTDhl zEW)Tu=XL&JneF;?Sd!LJjhpR!scTo6<|Fh2k;mo0p!`St-4^WR*_!XOt?QhcdZW%+ zBTV5Etn0Ki4HkRM>%QMx$>pLFIn)f15R-73^b6oyj!z(9RW_E;x*19^>XXj=p=MQ8 zrN=pB{9AJYn4$|#e1_ecBrL@~R>!C;*^VN4Nf@ZeH_xAHZAi{>%+v>S*iN?j{Dc5GTfh}?CSs_cY2mQ{j4S@{DSK>MW*7WCHUGQ!~kaRFow-l1G zY=ru0LYA$R3x}irq#9&!Fd^3<&WFHlBcJOwAYUsx1j$#rqX{BEIh6Z&=KkIUE_pWz zkR-*3cgxIyyUnoeHrEUsJSFA6^xuCkYh1sXIsdz($+`BuKxFA`t;6e2!R56kSQl48 z0TlC!S9aV#HGG*YPkkhBN*Sya07+Y|4WnA=sU$j1 z5<8Ew#D1D_yD{OcDer5~e!W|sAl#l@5OZxXS-+CpROMG1>)=vyR5*^@ioLUh4x}Hu zkc)@1wU(x>aVP>Z+B`=id||y!TsOCrjtvr978tSI`bTd_(T$34WJn^9mG7L{WLREJ0GdV!}!%NYyx zPS1cX1jF*wlyg;Eo(~R8?h^BcML@S^n~Pnk}X*@ z7%^Wt_F($Ss=lzGU^nnctHSNqQwDF1%Rvi#=x?HmC>&;vf!M~zfvJr0nNA5KJzAyJ*hDs3=Xl?XHL1;EW4p=apGg%r14Cn z@mei6*%mA4P$!j1bqk5?>b(eYAq2q$a$SgPW*(7TTeI zLvjPqMu~}mXVWMG-p)|l2YGu_Dm&~(=_|Z% zOOKnYj|#Jkqw19XpWxks6iG=S>R01RmDVsM@8eDqmUcz0JOWizDR!T)%gH0uHGS|o zpd4Yu;N`ar^N^|b=s+Jke)n@$sxW4~=h6d0H~vj1;j z^4y2n=aw&d4LfJr!#;aUTF8TF-CVl&3laI6ZC^cGJK%~#(?>W2_ zE$<=_eb>KhAt7a??kw62YtBmsPvsuzn*3Vmv_|jO_p}EgZ|EO87hu3gT3kV_TErmm F{{Y_SM}hzV literal 0 HcmV?d00001 diff --git a/modules/1_Continue_Exploring/A_qtm_hw/analog_hamiltonian_simulation/ahs_utils.py b/modules/1_Continue_Exploring/A_qtm_hw/analog_hamiltonian_simulation/ahs_utils.py new file mode 100644 index 000000000..984d9b4e2 --- /dev/null +++ b/modules/1_Continue_Exploring/A_qtm_hw/analog_hamiltonian_simulation/ahs_utils.py @@ -0,0 +1,490 @@ +import numpy as np +import matplotlib.pyplot as plt +import networkx as nx +from braket.ahs.atom_arrangement import SiteType +from braket.timings.time_series import TimeSeries +from braket.ahs.driving_field import DrivingField +from braket.ahs.shifting_field import ShiftingField +from braket.ahs.field import Field +from braket.ahs.pattern import Pattern +from collections import Counter + +from typing import Dict, List, Tuple +from braket.tasks.analog_hamiltonian_simulation_quantum_task_result import AnalogHamiltonianSimulationQuantumTaskResult +from braket.ahs.atom_arrangement import AtomArrangement + + +def show_register( + register: AtomArrangement, + blockade_radius: float=0.0, + what_to_draw: str="bond", + show_atom_index:bool=True +): + """Plot the given register + + Args: + register (AtomArrangement): A given register + blockade_radius (float): The blockade radius for the register. Default is 0 + what_to_draw (str): Either "bond" or "circle" to indicate the blockade region. + Default is "bond" + show_atom_index (bool): Whether showing the indices of the atoms. Default is True + + """ + filled_sites = [site.coordinate for site in register if site.site_type == SiteType.FILLED] + empty_sites = [site.coordinate for site in register if site.site_type == SiteType.VACANT] + + fig = plt.figure(figsize=(7, 7)) + if filled_sites: + plt.plot(np.array(filled_sites)[:, 0], np.array(filled_sites)[:, 1], 'r.', ms=15, label='filled') + if empty_sites: + plt.plot(np.array(empty_sites)[:, 0], np.array(empty_sites)[:, 1], 'k.', ms=5, label='empty') + plt.legend(bbox_to_anchor=(1.1, 1.05)) + + if show_atom_index: + for idx, site in enumerate(register): + plt.text(*site.coordinate, f" {idx}", fontsize=12) + + if blockade_radius > 0 and what_to_draw=="bond": + for i in range(len(filled_sites)): + for j in range(i+1, len(filled_sites)): + dist = np.linalg.norm(np.array(filled_sites[i]) - np.array(filled_sites[j])) + if dist <= blockade_radius: + plt.plot([filled_sites[i][0], filled_sites[j][0]], [filled_sites[i][1], filled_sites[j][1]], 'b') + + if blockade_radius > 0 and what_to_draw=="circle": + for site in filled_sites: + plt.gca().add_patch( plt.Circle((site[0],site[1]), blockade_radius/2, color="b", alpha=0.3) ) + plt.gca().set_aspect(1) + plt.show() + + +def rabi_pulse( + rabi_pulse_area: float, + omega_max: float, + omega_slew_rate_max: float +) -> Tuple[List[float], List[float]]: + """Get a time series for Rabi frequency with specified Rabi phase, maximum amplitude + and maximum slew rate + + Args: + rabi_pulse_area (float): Total area under the Rabi frequency time series + omega_max (float): The maximum amplitude + omega_slew_rate_max (float): The maximum slew rate + + Returns: + Tuple[List[float], List[float]]: A tuple containing the time points and values + of the time series for the time dependent Rabi frequency + + Notes: By Rabi phase, it means the integral of the amplitude of a time-dependent + Rabi frequency, \int_0^T\Omega(t)dt, where T is the duration. + """ + + phase_threshold = omega_max**2 / omega_slew_rate_max + if rabi_pulse_area <= phase_threshold: + t_ramp = np.sqrt(rabi_pulse_area / omega_slew_rate_max) + t_plateau = 0 + else: + t_ramp = omega_max / omega_slew_rate_max + t_plateau = (rabi_pulse_area / omega_max) - t_ramp + t_pules = 2 * t_ramp + t_plateau + time_points = [0, t_ramp, t_ramp + t_plateau, t_pules] + amplitude_values = [0, t_ramp * omega_slew_rate_max, t_ramp * omega_slew_rate_max, 0] + + return time_points, amplitude_values + + +def get_counts(result: AnalogHamiltonianSimulationQuantumTaskResult) -> Dict[str, int]: + """Aggregate state counts from AHS shot results + + Args: + result (AnalogHamiltonianSimulationQuantumTaskResult): The result + from which the aggregated state counts are obtained + + Returns: + Dict[str, int]: number of times each state configuration is measured + + Notes: We use the following convention to denote the state of an atom (site): + e: empty site + r: Rydberg state atom + g: ground state atom + """ + + state_counts = Counter() + states = ['e', 'r', 'g'] + for shot in result.measurements: + pre = shot.pre_sequence + post = shot.post_sequence + state_idx = np.array(pre) * (1 + np.array(post)) + state = "".join(map(lambda s_idx: states[s_idx], state_idx)) + state_counts.update((state,)) + + return dict(state_counts) + + +def get_drive( + times: List[float], + amplitude_values: List[float], + detuning_values: List[float], + phase_values: List[float] +) -> DrivingField: + """Get the driving field from a set of time points and values of the fields + + Args: + times (List[float]): The time points of the driving field + amplitude_values (List[float]): The values of the amplitude + detuning_values (List[float]): The values of the detuning + phase_values (List[float]): The values of the phase + + Returns: + DrivingField: The driving field obtained + """ + + assert len(times) == len(amplitude_values) + assert len(times) == len(detuning_values) + assert len(times) == len(phase_values) + + amplitude = TimeSeries() + detuning = TimeSeries() + phase = TimeSeries() + + for t, amplitude_value, detuning_value, phase_value in zip(times, amplitude_values, detuning_values, phase_values): + amplitude.put(t, amplitude_value) + detuning.put(t, detuning_value) + phase.put(t, phase_value) + + drive = DrivingField( + amplitude=amplitude, + detuning=detuning, + phase=phase + ) + + return drive + + +def get_shift(times: List[float], values: List[float], pattern: List[float]) -> ShiftingField: + """Get the shifting field from a set of time points, values and pattern + + Args: + times (List[float]): The time points of the shifting field + values (List[float]): The values of the shifting field + pattern (List[float]): The pattern of the shifting field + + Returns: + ShiftingField: The shifting field obtained + """ + assert len(times) == len(values) + + magnitude = TimeSeries() + for t, v in zip(times, values): + magnitude.put(t, v) + shift = ShiftingField(Field(magnitude, Pattern(pattern))) + + return shift + + +def show_global_drive(drive, axes=None, **plot_ops): + """Plot the driving field + Args: + drive (DrivingField): The driving field to be plot + axes: matplotlib axis to draw on + **plot_ops: options passed to matplitlib.pyplot.plot + """ + + data = { + 'amplitude [rad/s]': drive.amplitude.time_series, + 'detuning [rad/s]': drive.detuning.time_series, + 'phase [rad]': drive.phase.time_series, + } + + + if axes is None: + fig, axes = plt.subplots(3, 1, figsize=(7, 7), sharex=True) + + for ax, data_name in zip(axes, data.keys()): + if data_name == 'phase [rad]': + ax.step(data[data_name].times(), data[data_name].values(), '.-', where='post',**plot_ops) + else: + ax.plot(data[data_name].times(), data[data_name].values(), '.-',**plot_ops) + ax.set_ylabel(data_name) + ax.grid(ls=':') + axes[-1].set_xlabel('time [s]') + plt.tight_layout() + plt.show() + + +def show_local_shift(shift:ShiftingField): + """Plot the shifting field + Args: + shift (ShiftingField): The shifting field to be plot + """ + data = shift.magnitude.time_series + pattern = shift.magnitude.pattern.series + + plt.plot(data.times(), data.values(), '.-', label="pattern: " + str(pattern)) + plt.xlabel('time [s]') + plt.ylabel('shift [rad/s]') + plt.legend() + plt.tight_layout() + plt.show() + + +def show_drive_and_shift(drive: DrivingField, shift: ShiftingField): + """Plot the driving and shifting fields + + Args: + drive (DrivingField): The driving field to be plot + shift (ShiftingField): The shifting field to be plot + """ + drive_data = { + 'amplitude [rad/s]': drive.amplitude.time_series, + 'detuning [rad/s]': drive.detuning.time_series, + 'phase [rad]': drive.phase.time_series, + } + + fig, axes = plt.subplots(4, 1, figsize=(7, 7), sharex=True) + for ax, data_name in zip(axes, drive_data.keys()): + if data_name == 'phase [rad]': + ax.step(drive_data[data_name].times(), drive_data[data_name].values(), '.-', where='post') + else: + ax.plot(drive_data[data_name].times(), drive_data[data_name].values(), '.-') + ax.set_ylabel(data_name) + ax.grid(ls=':') + + shift_data = shift.magnitude.time_series + pattern = shift.magnitude.pattern.series + axes[-1].plot(shift_data.times(), shift_data.values(), '.-', label="pattern: " + str(pattern)) + axes[-1].set_ylabel('shift [rad/s]') + axes[-1].set_xlabel('time [s]') + axes[-1].legend() + axes[-1].grid() + plt.tight_layout() + plt.show() + + +def get_avg_density(result: AnalogHamiltonianSimulationQuantumTaskResult) -> np.ndarray: + """Get the average Rydberg densities from the result + + Args: + result (AnalogHamiltonianSimulationQuantumTaskResult): The result + from which the aggregated state counts are obtained + + Returns: + ndarray: The average densities from the result + """ + + measurements = result.measurements + postSeqs = [measurement.post_sequence for measurement in measurements] + postSeqs = 1 - np.array(postSeqs) # change the notation such 1 for rydberg state, and 0 for ground state + + avg_density = np.sum(postSeqs, axis=0)/len(postSeqs) + + return avg_density + + +def show_final_avg_density(result: AnalogHamiltonianSimulationQuantumTaskResult): + """Showing a bar plot for the average Rydberg densities from the result + + Args: + result (AnalogHamiltonianSimulationQuantumTaskResult): The result + from which the aggregated state counts are obtained + """ + avg_density = get_avg_density(result) + + plt.bar(range(len(avg_density)), avg_density) + plt.xlabel("Indices of atoms") + plt.ylabel("Average Rydberg density") + plt.show() + + +def constant_time_series(other_time_series: TimeSeries, constant: float=0.0) -> TimeSeries: + """Obtain a constant time series with the same time points as the given time series + + Args: + other_time_series (TimeSeries): The given time series + + Returns: + TimeSeries: A constant time series with the same time points as the given time series + """ + ts = TimeSeries() + for t in other_time_series.times(): + ts.put(t, constant) + return ts + + +def concatenate_time_series(time_series_1: TimeSeries, time_series_2: TimeSeries) -> TimeSeries: + """Concatenate two time series to a single time series + + Args: + time_series_1 (TimeSeries): The first time series to be concatenated + time_series_2 (TimeSeries): The second time series to be concatenated + + Returns: + TimeSeries: The concatenated time series + + """ + assert time_series_1.values()[-1] == time_series_2.values()[0] + + duration_1 = time_series_1.times()[-1] - time_series_1.times()[0] + + new_time_series = TimeSeries() + new_times = time_series_1.times() + [t + duration_1 - time_series_2.times()[0] for t in time_series_2.times()[1:]] + new_values = time_series_1.values() + time_series_2.values()[1:] + for t, v in zip(new_times, new_values): + new_time_series.put(t, v) + + return new_time_series + + +def concatenate_drives(drive_1: DrivingField, drive_2: DrivingField) -> DrivingField: + """Concatenate two driving fields to a single driving field + + Args: + drive_1 (DrivingField): The first driving field to be concatenated + drive_2 (DrivingField): The second driving field to be concatenated + + Returns: + DrivingField: The concatenated driving field + """ + return DrivingField( + amplitude=concatenate_time_series(drive_1.amplitude.time_series, drive_2.amplitude.time_series), + detuning=concatenate_time_series(drive_1.detuning.time_series, drive_2.detuning.time_series), + phase=concatenate_time_series(drive_1.phase.time_series, drive_2.phase.time_series) + ) + + +def concatenate_shifts(shift_1: ShiftingField, shift_2: ShiftingField) -> ShiftingField: + """Concatenate two driving fields to a single driving field + + Args: + shift_1 (ShiftingField): The first shifting field to be concatenated + shift_2 (ShiftingField): The second shifting field to be concatenated + + Returns: + ShiftingField: The concatenated shifting field + """ + assert shift_1.magnitude.pattern.series == shift_2.magnitude.pattern.series + + new_magnitude = concatenate_time_series(shift_1.magnitude.time_series, shift_2.magnitude.time_series) + return ShiftingField(Field(new_magnitude, shift_1.magnitude.pattern)) + + +def concatenate_drive_list(drive_list: List[DrivingField]) -> DrivingField: + """Concatenate a list of driving fields to a single driving field + + Args: + drive_list (List[DrivingField]): The list of driving fields to be concatenated + + Returns: + DrivingField: The concatenated driving field + """ + drive = drive_list[0] + for dr in drive_list[1:]: + drive = concatenate_drives(drive, dr) + return drive + + +def concatenate_shift_list(shift_list: List[ShiftingField]) -> ShiftingField: + """Concatenate a list of shifting fields to a single driving field + + Args: + shift_list (List[ShiftingField]): The list of shifting fields to be concatenated + + Returns: + ShiftingField: The concatenated shifting field + """ + shift = shift_list[0] + for sf in shift_list[1:]: + shift = concatenate_shifts(shift, sf) + return shift + + +def plot_avg_density_2D(densities, register, with_labels = True, batch_index = None, batch_mapping = None, custom_axes = None): + + # get atom coordinates + atom_coords = list(zip(register.coordinate_list(0), register.coordinate_list(1))) + # convert all to micrometers + atom_coords = [(atom_coord[0] * 10**6, atom_coord[1] * 10**6) for atom_coord in atom_coords] + + plot_avg_of_avgs = False + plot_single_batch = False + + if batch_index is not None: + if batch_mapping is not None: + plot_single_batch = True + # provided both batch and batch_mapping, show averages of single batch + batch_subindices = batch_mapping[batch_index] + batch_labels = {i:label for i,label in enumerate(batch_subindices)} + # get proper positions + pos = {i:tuple(coord) for i,coord in enumerate(list(np.array(atom_coords)[batch_subindices]))} + # narrow down densities + densities = np.array(densities)[batch_subindices] + + else: + raise Exception("batch_mapping required to index into") + else: + if batch_mapping is not None: + plot_avg_of_avgs = True + # just need the coordinates for first batch_mapping + subcoordinates = np.array(atom_coords)[batch_mapping[(0,0)]] + pos = {i:coord for i,coord in enumerate(subcoordinates)} + else: + # If both not provided do standard FOV + # handle 1D case + pos = {i:coord for i,coord in enumerate(atom_coords)} + + # get colors + vmin = 0 + vmax = 1 + cmap = plt.cm.Blues + + # construct graph + g = nx.Graph() + g.add_nodes_from(list(range(len(densities)))) + + # construct plot + if custom_axes is None: + fig, ax = plt.subplots() + else: + ax = custom_axes + + nx.draw(g, + pos, + node_color=densities, + cmap=cmap, + node_shape="o", + vmin=vmin, + vmax=vmax, + font_size=9, + with_labels=with_labels, + labels= batch_labels if plot_single_batch else None, + ax = custom_axes if custom_axes is not None else ax) + + ## Set axes + ax.set_axis_on() + ax.tick_params(left=True, + bottom=True, + top=True, + right=True, + labelleft=True, + labelbottom=True, + # labeltop=True, + # labelright=True, + direction="in") + ## Set colorbar + sm = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(vmin=vmin, vmax=vmax)) + sm.set_array([]) + + + ax.ticklabel_format(style="sci", useOffset=False) + + # set titles on x and y axes + plt.xlabel("x [μm]") + plt.ylabel("y [μm]") + + + if plot_avg_of_avgs: + cbar_label = "Averaged Rydberg Density" + else: + cbar_label = "Rydberg Density" + + plt.colorbar(sm, ax=ax, label=cbar_label) diff --git a/modules/1_Continue_Exploring/A_qtm_hw/analog_hamiltonian_simulation/analog.png b/modules/1_Continue_Exploring/A_qtm_hw/analog_hamiltonian_simulation/analog.png new file mode 100644 index 0000000000000000000000000000000000000000..ecfb54427e886026ff9a8324c81e471c710be43f GIT binary patch literal 994565 zcmeFZXH-+o`Zo-S3IfuUBE2h81O(}z^lqV7X;K5yOCW#^kP@VYj?$${3B5@R5Cj1s zKq%5{=m{kR-guw$FY9^Ey$;Wp_tV*H?d-|kbIt6Txyo;@Yi372)m5XoapwjB0Re@E zy7F@Z0+LYt`JCh${?6?suO9>iHy%4FDLvItQeuDV>Hf;e)t-PrJu)fz`cwT$nh)67 zzQ~7H;u$>$oe27*NI6YzeP9%gmgE-u7;(S;n!fT=li{m`SB)U-E<{&21wP(L@rzSY z4*p0;UUVQ-Rnp{MGFyT$SUoff-dP_F9xQ8AAV85k5))%dBI>2GBU5UgnfUZ<*mdMC z)nmH6u&ev#mWBl`uU`|q#1vjM=}-`fF1j-eEuF3&TsVuKy%S(1pn1DT1ELeYvS=AC z=bzf)8k*X#C?+i9^`Y#+E7D3L5lrfQo=KJo{A2d=fbh<{5B0X@B#H%I4ISJB8xjJ8 zgUdYD0Y$I}612N7h#8_D_%85xoe(^f=uu^4)OzJ#peMH#EWk!#b|vGuZAtso?EJXm zq+vR*LKcajPoUU+h4p{;t?X=ad-^cZpW~5C*hNUz=tWKRVTQs{dILq^8+O<4+LRMd zKM?F*lQ<5&{_f@MjkC&0mioAx_oyhJL|1VT9#4|OUj<%0;z@1wp4N;}a? zlod&h>=@`^ez}58nOT8$Kr*RD&)h3duM=2OcH4+tm<_03`R&L}u-;RbGR5v&4j~9E z@R#bCo@4;M;v~4uUAd!6sQ;L@WR^jo{Tg%oRoU;9Z`g0;ycF4GXB7R`c<}Oe>08db zVSsOB{GV^!?68)+0sC@W_wjY}H>~y7uDqsKesDw2nyBFAoySx(9f~OtL^&TExjsZ( z?RcC)rN>P``Zy;}lADy8U8CEa-TB>g~lmh3=*6D^Dp&KatjI)V;&g z!Zq6KY)4i_FO??1P9F#FMK6ghZ7zxIKUDdcqf=Q({OmY!Ik7BJDbcszp#QFY8o$n1 zzVvgYuU~)p{PJ|>LUW>7(c&?xqn{^-S4N*Zx;QP@*w(;ntfzpDbwS3VB}q*C+7e(m#i*iYF^4Nsv@%@yF(f-J)|?UTO6R-GEtR*6;_R?Szz?e5#_ z!9Om&_LTN)^<4KfTaJZO^arQpio$$!J2G^QSu-0>lGIj z`ziaI9p!>8swa)wRO)ozb>ep?8d#xS90tn2Re@ z0LWjEA2DK>sH3-{iB-o`m3q8wjTX%puPs{BN+l2^5G5EUtQMFS3>P4EnzR+tP15tz zSwx#$glxAREMLyLo%eUNzj1ix6fCKKbfor2i-XcjvY-L6-ub&uG<6-Az4- zT8Ss=s_7nPf=EeZORW+!9bZays@G)f%hgv9cfbDamX?^{TAT-#{$|fjr<>@T;MI*m zofM$sc0}$6F2r7FZf_*&*6QKggkF=G)J=2L*-w?x_dCxQMOTV<(l!FS&<*LS=|9UR zQDsdnSmz@zR!K^CunkyVk8$Y1(2b$%mUk>QEGaB$XUAvnw+x+71)T-gV#!a6kN1N% zgZR!|afVon-9oJJZpCg0!%Hf5az{$#D>x!Q;@R{HP>xer-Z_H@ zEu8&6NjhMApAuerW8JjfoT}+F=(~QA+1mKeChI_JDeKJn_<50epLusKSx!wZd}Z<|Wqv1NI2ORQeqZ@5ZjCh9hQp|Cv5eMWeU9JN|R zR743F+e@)v=*71fym-{3w>urs6rgt^be4IxM+|#6@~%=D)-}=v(}>lOiSJ3sOn}E{ z=hqkN=QV4iHOe%D)9Dfo(|L8l>hAsQ4qf&cw|YrNi0PAygiLDl6hEkBDY-2?8qg|iXiv%;FF^T z!AP^y+9}tWwwQXIZ-CcL2bj+Mk^K9bYQDtVj+1?}Cd~&w$|o#l><#S=n!Yx9`9}3$ z=|^H5QIoZ+wkn?8iuq>tqn67p>6q3T*qmQ*8~nV7KdCsrm{K9{?Db~oQCPBb=0?@q zuD1=>*;sBU{6cfB!W!>%r^Tn~LEo4T&&PGrZ@6x5Y$R>gNqnY|qF7Y3i8Ytm@Te&p zuHREkFn`e}BAM*9)u-p7K*4&XFdOj3D`(FEm3<^3mL6pmm%J=UTh>>WQ(IJfo&e&L zL9$GxhlrfyV-iol_K#K-)@6Okx+lve-?Xr`)G**RBpolUDs3yXlLeLyIp{be3#P{j zTedFwtOr3{5R>p&h@KD9FT1&;VPwj7bacdJ260rLB;c7 z!u?aoVH-vs0X#n-gV49oexl74elOfzA<<^&Z-MRE&{?(HU3&X9`s;dK_s*?Z7SK?@ z9GYXHbHaO8Z3MQjcbYw=fDLKo8>EU7Yk0Cve=oH2T3QOpZZTab_0{&~59`J6t4~ps zF>i}Z1{dIRbNSk%m_lDU5VYMS=%gTMu_Hk1q+DAkB1tAD@gcCgap7}j zZ4#MGSKW};EP|_25deA6g^p0{_L&Ks$MMmHaN0C3)3sMdo6Jbs7N>mp!9|1?^5m;s zW|IaOzBtc^T^#O0-?W{CTxsndX^o`#nTE%dAMK4bUg_u%@Z-}Y1jK}Q2(IE&g!ogQ zkmy`Kq1lRHZXz-{1XQKbgO%nR~ z%73Tv$d-WM@e3sl4gB?mt*5=co0p@z_q$RN0sIZp*Xkx-1O#+Ee@;S;=iIya@+X}1 zjlGR^w54s`0YcVx?l$&9{(#qi${~>Tm&PXn_TJX){s31uFKK@{&cAX<lje?d0yp{-<1P z8+RXXIZn<$75(?|kN33qclw{2+`RtTEPMln|2z>E5qco}-(}-TW&hlje(L0J?`op# z1i<$hz7Ba&5wQode-Zp&kN&61|3zy2zeyiS{BP3#_2~a3HSn_cRB{L4EA^KDp8@+P z@&A7KPeNJYKW+bCeesWu{_8Hjr{!fIPCMGV2wB@c^d3q~gm>4cgf*$D zYMvzOdOHwdh;-lWs>5!C_`6mJH?tEEk|+`oQH2r^|J$UzVAypUMR^nu*3NNhGDSW` zA`&*@OIO0a+eaElu-`YQ_<{2Bucl5gFLvoyA|RHRBE&c3gsFG;@(m#%We>XcZ~N%K zGqm&J8{W$oa)nX;-}mf)QLz)g8@j|m{8#qlC1Q1glO=cd&hX1qafj|QUS_oaSxI&V zzTw$t6n4j#;*r0oLW!y5uUtO+?*v+Q!li_^FmkrbG2)*};s`n%F3GolvIlt*afb%& zKZ=`Ix;zz);xYMUg@c_SOiwqII8N{UnrP7Fxg9SY*_UVY{|LwBW$8b{acK$sk8oUC zVExFQ*uobIjtJ;L@Llf#&QA!#`OU4KDm&WDC1|+f|6Iw-2OK}93YvQdO;9GCLo;`2))7->mMPf*CQ7*Q_f>}>Imp;feGzDIcZA-qex z@bIR+9-fWZ|twy9?_4(T6hb2p;J(7+805&3dVoO=i=b_xhO5mw| zPLeKZqFngiZXixBBa1!Wu;RrcaU5b^Q~%PvX&KY5z3C`dZ>fdAGO~-@aBv++kkMS} zVP4H5*nf~)=<|y?mN~fxDJhcjz(?uEx zrQ?Q$SHS^Nr(?&@AV1`M)rQ!TUK90#<2xxYExSg%-*~)h^1!KQ!?cROf~zNg^cS(R zwk9Wgs<;Me|MZ_Ert$%9*)k50NvIP9JWhG{=CbqC->W3bZ$897oC50|zy6@6H~X4M zP0RzNLd_C5r%TxIh>-h<>h*12n~JijxdB1OD>A%^`kRol1cLo4*~m)|Xgeis5ns@; zh%mJPtnNJhbi+_o%r0#fj|7Cu7mPWvjDiJM^%0#muWS7gMiDZ*l>FeRoLNg*6h4FRd-fiR9Ik^5f-lwjx>O zI&+}u+85Y;d)e*fI7wkTKB1;Jb_>E{y$lbT_jDfG6j#%v4h^>16DqDN$U>Jq%U62Rk|$f#jNrgV@^9e z5h{V1$CW$@4=XUgQ@1yVRX#(Pe@o2;5=B7Wjqn=Xw{)HKl8nAfM)P`KH8EgBEn|b4 zFG$@lxF05!C_cHkCqnxmt=ur+3;0DVF~aMN8i-M`Vxg)P!Qi~nilPWK$Y7hA&?d9fyVQLE7-F(5lQ>4_-q#tu7NOLZnV*AG{ zM;dwk)i;idfr+&ogv$EKw`M)lb zuO|U`Lw_lQS-(%R-b6_IEQG5Zafc3cB{CdpTSYPqw*fwAc+Z`JMV1+6cFdA82=)#0 z)~{c-E5DK`KY>9&jj+1peGlIbHQl?kT(!!isghr85^HsKOvys{0`gFC_XW9%*K7Df z@8WV_IX;9VGzq>gBC!L6t)LjZ; yrd9>fi*t!=&n5khlgupBEmH9R7v8Ld=#cs z(AAJ?QFH!vn-$Q*aP9uyyvR*S-2!8PSkIv>%i!>K7BN-#7Ea3A-Z$Q>Dn>ht8F?6j zyFtocF_gmkPmkNbeFe5yMQ&lquZw0(+0W%S?y(im9hfF?#lpNKRe9}8BWcH*qW%4N zLNj6SqakHQzXQWylITw63~muxfl|qPVkcknUqowDz^5%|$}u8-0a?=? z(MGNs`_Q&gCHB2J3tR%iG-gXu+TctzPYc^6KOfs#*4uOm< zYqpxIYzA^@ZUS9L((YVBDerzFbyOGzeni=UvmSrx0&_5FuuIS56~+>dn@aC%`pHrZ z5*P_vBIhwxX6G}I+%j3{&M(jIp$=wSOcDu5V=O{sB@jG^rOxMox9+)^86krzP`+&l zXS{_owTmPR%jS%O!_A|C&HR4X4d~GK7?aHFJ%^p7Kyr%AuM$1g^50#;)XGy5@_5P~ zs?{lb!WJR!TzyXAU13>akJ)Zer- zeanIi=SUQhque`;AZJ2N3fvyzS)ucNwRu8!U{rzEuNx8T1Vjp&?f1tmrDvhjX{nwC z%Z=r0f?WYbz37Ey%iLy!8#?DQkob%|tbumoO?~+<$}x1V9a#OW7uFO_tJrKcF*A;9 zoz^m67MzGdqyl=!yCQ-HKE5&WBj56u56heSAO!oW2qTG?oCcXgZ7{GhT(A-d87}wm685S~dTXbUOt2syOUexBXY~fpU6%j_1l^N4 z&5jY@`+)H&#N>q8b>j~;X@)#zyRN$qTpmP-Vflrp2 zkmnbF|EG*Mtv6pNrMa%FN?5_(~(FU(8>bC;2l>9I+nMbVgHup+ud~)vB7wu z^lemg?Y8$+gP^&oaIm@fP4UBUx%z4N!Jy3}t2<>;l>w_brMf0mLR-!YZ2#FBn}mTS z3T#n|al&)|oCHLO37gDV$0+Da&4(@)pS%SI6@1s%j=X=zY;bdG5aa#~-x#{Y^(#br zG{%OR)__#4>mJDbWqu`JZGwA^<~-rKi}lP4md3S^G1aJ48kwBvv1jy&6&6Bp7$`dN zkb{f#QbzYP&Ce|JjBRSLZ{G{~Ge`Ptp=T|DIJ+ylGQNQUg~InOrbDE{zMDn36?T_R zMJUJ=ky2yG((fRGCv60cur(ITGlhp{wz9I0dZL!8cWKWnAx>pIC4p-o%n~^I6eLcg zI184OQ~FFbVN^KPTDbkx38+oXQ~|EOTtgj!}gymu_1f6E}@2I(lEt^Jc(h z$k;!4KJvXmR7uDZjO^d5@HQGkRKv0!_gzPaA<@h=YQ9ieS>tn@7IH$NZ!V(iy{>~> z2haVT&M}Ktxd>XZ=9o2K)dmBmNZS0jULiZwtSH3V7e8|FJq%^%NMkT7qgpTz-chcE0&BbEN@^K0R00R?B^roOEgC4GnC8|45@r`2nJjz2{ zPU@fk+DQxFs4sOZqJ(*jcA^nwF0NxG&EtL+fE{1ct&gQv?RE;57Dn`s$2P%i)U?ay zcDFsvn?-ko7V_F;zWjTe(GH~9?PCEXl3rL=IN9>i`k(8C;6 zjok&!Zs2k!@>w4QT**gdYqlBg*M!Tw!rNfs~XFFO=$IIo~|ea z!#qqJ98=*)T)4x;cv80u6!zf7LTQS1OTAWHwSUkrQV!=$Sm6gd?EE~qyH)%W81^>{ ziKE&8AF$?hv95L~-;T1+Y(WjF`9cTm*9Unw8Ed+o)SW!#SZGp@z}1pZxSUg#&_nV$ zsv~4*1!@^qe=wVED6Ke^c2>2(4?mjrZZa^hK4|Sc78?iihT8Rt#4_$XH=p<}v#xjt zBJf~u=VSID$2Z#D{VK@Vwq~K0N^|oqllVSXKqPa2;v{^ztkrd~YO0a7(L7Nrn{_@X z(dvLvR4q2jl4&dV8nZ$}=;=GEBta?Vi%kvokK(*V8%`}7P1J4w9zX7q6U`16=WkTX z6y{N8?ouyHq81<9k5WQ-zUJ;YiFf}j;|q1HDBE(UNSB%@PVXpUrcv~rbEB(-$k$53 zUNP!Le%X*#&~V*+UWM~ve!Dmk61(GllNwAMr&ysKQjl$P7iHEgN zd%0bouJeRHv}oGxzA8kc%9_621O2A9K>zRYS1fT2eSux<@p@t4VPMAom*AQSrqNcT zbN?Z??Pur<66u`PnAKfd_x3xr4+e1*OZzJwt;e`p^w_b99xhg!Y z{tG+GYWx8|{d?NHUzZy){5iBNrk1D#yi(I_t?FEhv+0_?mAMqym*ktpqC6pNNNXn` z%O`QV5l_?JAboACwF^gyPiNG8AB)P#V$aIy=I=Malt};GByV?x(ace%f=#JA2!u06W)%{|+tUt{Mkn3XT(%r`v{{!T}Be2R~C+2NHX9$~XDnnMu zp2Cico2M#<-6!1|0YX|CkMs!kK)I^VuKS+P3fKncU&CV!;^c2s{_=#vH;nSROhd+4 z=|8?oCS^DEhK3qhAuOb`G~wo^Mo6ezFuJU&Wv5`Y5uqd*tA$O%e2Y1`)zHDbk`GT~ z?$;C3Ozq)pQzs&A`b5Q<&52m&khanK^bbL8hw**0T$RW8Z?eg;0rR47{*BIUV+#u? zR@1}$ylIei{3StQ-!gA$s>!oq+ct9gR1#9VvlLSpK%{=$<$iyevB|iSkq)(dL|&r~ z$t+uRyyb=JM1~(tS5E_G#z|t&hxL*QTfBX|H&c2BU|q2ubO`I)FT>01H|%{)v3GZr z>dK^Lvioicqxa}Ckdqr_T6hDQCW(9eJ2BMgV@Z|tWKUH~*|Mme<!!4%QQwSv&FXJtX#wESVN3`z-WWj05UgtWs*Zs^C;4peI9%4$ERtPb zklXHS$=hUwe}J=Nb>hMDt87j|SmO;gxu#f&zY~C6dEy0mTdm#WoKe}tUwdUJJ)HQ) zCt}Z2HUW2y+pM@o>}{Y5-ruw``p$k@ObXJITp;}rf5+!gAZM@hT;{1T z>i+ueHlPo7tS+%p8>p!wb(H41_fyR}ss^AdQ8{9N$7BRB_G2-%yid+X#{WJl3!C(( zcYLX$f~+i?sp;tNcdKtkJ5E{_sGLr&Xw!=x1^5b9x&mui3?^WBgtD!tXNL z$w?_oTmI!d*rg%HpwD@1Ks^irnb_!Dhk?KGDI7Zz*Kpk`43w4M$OB8FxG;&PEjvof zmioV{EF8S*{rueMguE(Tlv8ROgzbkPLVu6TLt+X6jPpt5eKRF>GdI2NS)0!QW|GgR z=Hwc@YqrOjFlBo+O$fpAm7mbP`f~oGI;VxM#W>^`e(EJN zen=cfON7xx>xis~=SQxrBkq;#{mAP0?`Lop4ZZx`< zhyN&S%HKJ>7p!-{Dw!bby7}Jp`?QgHtunjKs{Mc^&;(FMW~KJ?$?OG!_4dJWkuq4F zI5O%ZQjnvI3>1k?>j}``3CljE&>-41P&A zXcz*@318AZi{qtHYz!U+|0pr+xoL1bI8)3!gqUx&aOKZ`T*e~tvvgp>H@kq&f2U6f zn$e>pi88}!&Kl$o&3mP2p=^J(uowe)N>I7!SWgqdCx*D0@Dn|YOf!n%4FoAWOx~e+ z1%c(y7?H-$|8wu*y?v`$6@qx*B9xStjmQr_S6zOtTi)dT8Ol<2jI!^cuWa;Kf!?=| zU99R+NEj2DtWBOzh^nGP{shWaew0YP&hO*%)N26A>jwWN4D*p$)jwtSV1d=Pc!!ql z*kz5|8rt{9u8r9Gn&m%N^cIcKC3}V}{2(cnm&q*ZGf6N0m)IGT{z3fx_BSADEkBN6&vv@ZITImAAGX#Y87l zbC(@?T^!YGRfzrML{VJ8`o;E3yNoyKCbt$DR+JY+jK)$20yoV~w?&tH$fas^j8&&7VI|V4>c6;yoos48ZB@y{2LL~7vr+lShZ>cZR9*X~)9d`^ z9fT9!{Iged{BuF-c6q%wn{#$w-rO=q!=lG8TQ@EayPJJQuIFH)P-DjiiX0!MlR%G~ ztVnw0NvtX9w*A~eWq4#&RZaOfkBJI#Z%l&2pDlzZJPvvu5wEyFOpQj7d7OUGZ&RWZ z2mM)Ic5Ff7&vIe0f}IX%Jz}FCViCstjR5+a5KUF=W$6e)y>gepf_q9D?7HV`jUs84 z?upokuxHYz&l2JT+T0kjv0de3)5TLXiX9F!lT(YYz-1Cw1V^e?6W>Mm@AZ#QaeT6l zsjVB|o0;vbDuc@AJ9Q4%J>=uXWQ8c6b$#=A|F5U>?L*X#W}?AE zD~}5U9Yc6^Pa|H)FX)5I*}$HWxXeaKE`c)`F=4!aGqxLA1FdtKPW~}3Kl9Wuy_N45 zK3GaMm>?{YKyeQgQG^e(6XLKr?ob|w9oaI&?^f)2MddkKO zM{4H0y`EzPmof6?M=6MtfSZ`uZ@I!`Fv~gDZ^=WHNbH*Ty1ADEQ3kq&K_BW||& zdN{Q0zy!|?PELs=#9shSZ&`mlya z4FwXyTZ{g<=Z|HH2gfl(VyAUX>w$9qO`yMxZ@4SHoWpyWv=Y!WN6Bk@RD3~eBEoW{ zb^!zMZJ?-4dUV-sKHUuCK^D%P4sC?cH*f!&`2ZWXyWU<=4q5~zN1r(@Reww|Bgr4~ zv^-yZfMrXo+lHy6S1HpbGURHF~9 zkeLI8HDB;ZseG+LfOzZF>Z}?%1SO4!l{zWMRFXUoATv2-q6mxr((!5*`lfNq@h{)X z$YNy28CLfU(+h(Ff9~C1beg}v>CF^CtBo#oUGymZl|9zM|8Q6>{rI82UUem>hd-r& z(dwwjT}}2Ff5tJ-tJ+TE+z5F5-P`c^a!b<@{z)YWPg0-;okHX8yXK_evri93*hEIR z(05Z|7<&%3dt3^C*-&}Dutn(R)fJEC2P!`s&9^10jLUD^GPlM?uL$^Fw8&9d73|~L zwRwO%g6MB-#(g3{U19d`FWg{t%xjtc+Qt3P7LYwLUF>V%3|MMMNk;gnwS0kPdpMI} zHo^SqQLT-85e^gFn~DGdFnsoa4_Q7dw2zthT+yq22c9nXlmS$4k z-nKPdBPk-LPc-Cu!y1>IUo!S=MAT)BZxcQ18!Oi`Tl{A}@~ME0M4QN=Wb`jClzv*X zX%mkqrp=srweX!)?^<$0O#)I#u)=UjUcve}{So)*B!y+LT})dTT%cnzfQ1rt*yd51@7Rok+gmU}9|swe}| zPXAHu??Mql}b)l=E_1k5cX^bsG=5yJa58{Wp>n~AN6=x zD-)?t#v;FCe0L9UgXr<%xkY63ZC(t#>MdISU`owY3Z!}1_Y=M-IXjzlKAL2%u=T7~QxH~TZS`pc0t*dNQ3NpTD|9ag8$d9P;g02wQ zg;PY8=9Th={CXjGx@c)vAxAsusNvD*_*Nln#~I|QJ;1ju;yZCksCj&9K6qGLzHE0i&Fk(&B;re z2(|hk7nJOu_|BA7>)H}Hp#?l0%1FvSMM`QtgG|lbx*aayvDKEI1x0}hkc-TK>d^qE zT@m|_4TBusPM@HY7k}wem?%tyAB$6-D^FZ3H_KIpW7Loddn`2E3GgMdtWF9WFrXRh16@;`*vSqmG za&iBFzs@D;D~N7!y4ECl{jlM7XNJ<9%&}J&F5hkeJ#|Do!TlhG;k$k(vQH@x{;t2X5C=E&`Es-G>*?f@(0NS3m#LST`1PB`u3pesM~ zF}}?Z5!L5u2d(q^F}T*Pu^<>YvRC^T6=RR`5v(yzCj_~?VT8cPKgiD zYnewE8!0oBzHL7(`eDxskVTSNfZP3|;c|&T5FW9$S?+<8J@%;kW#(iTUS>aX*C`V! z-IFPC3f_ahAl!-tE+Q+Ii5nD&W5QYza%*}ID zBaOpVSgA2<2<6a0M`x0+_p;>bO{vb;_ZIJu?NWs80Cds5RuxmHv$i_QyOJxoHt7}l z2*$~Ro1?VSr6{*<#9mNSH8L|6@FCM9*G#QeehTIvv-SWw$m+tVimmT>HHHTN+K@Hf zaPgMlUQw9)z2NuF0@LJL-&6f?)pJWsfoHWfcFzz$6z(c%AokbnpA8WAE8xy{sc zl9x$GL;o~Mla7%uV!$q*cjZs;`1f_vLvc{K1>fVEjDUH$XG1>j*ejpYXFmezHZ3Pj ztS~;=4ia_V7(c1A7Lb|t-#Adi5PYB0J*B@Z6$aGI#HCIQ+sV%_K9<-^0LnPS;B|-3 z7mz{Y6Z^jFEet5TwPj4c5$dUGt_(K&1SQn;!xOwc;NM2?|7{PXt*U#&Bz;QGlK<2@ zc~>h}$M1O1?9+ZrG<_I=so?EF#HPRX`dpQhGVEtbn_v|=7t91;WN{&xZ~IleX?$|6 z9NywrZKaFWE4omz~tN zK%Y#W&g#Xi%KI_F?VC1>+crCU5Kp4+{cD}izAH++@#7J~pl9gRk)G#m&8U1JXYaWq zL^`cGa#iQ35n^M4_Ahq3*l?Nrjuj$5J(|0q8` zUIq-$>LgdVFJ(HXcZlj`#koeWS52$R9cQ2Rr1&9es`T9_YZEwS_TpQtlzSlyr1Fa6eN0#s$buD<7@SB%xGek_g zNdT1eMHlC2546(`K|kVO!YRj{Go)IN>XGkhaC8>%MHdbJiMY0Fey&i!azfLTH(8lX zoP!&!fi1I{KEr|4O z$=&Jb<=tAyN(&~|Mpq+7k4BPz_@~#suCy8@Rw-cRzDPxk%&B~C39lDl4Lf|SJv1|Z z#nNq0j&5#D&h4tuV?*R9@O@M;+1j9QfRT#q94AT;Ib>3rgsep#7nCdu721?+ow}~J z3~|V$;y(*npKhX}2t17aX(9}sj$>d@NUXPpfyN0@i|iqZs$tHwQ-VD$KUa^N|x!|1J# zj2_xDRrIn#OWfQEukeuW?NmQM-d`SCSy$^`ON>jV+J8AIs)_za=7{(Iv{8q(W>t_4 zSYxUJB9l50u}atVNLHXLq)mKdmQMj|0Xv@S;alCOzS)WY+AY*}k8tOT!%Qk99os1hfg3_>c*g<;XK-oqD90%;=jNc%*+Z}6nj zsFWr|soLXr_9(n)vhYQ55uDH7((MOJI} zX9j@f-FlzIUV^Dw*XgZ|vWLeEdsha8IIk6o;pkQ<((scjLc7M$_D`XZf|i>6WoPhv z+oI;uSwM(t3ERGFMK5}L&Gc!PenL3}E` z>H}Zy%WGlHDw2=sMKqTX!UAW;J8K;k?18thNd0S-wWHh42fRC}R0up9)8q;0(qP-0 zphrbz%*=%Z_+sgTP~UBfjyf>dP)r>Fos9E!9g5j8 zidNvMoPzxgs{?qM$&MCZMZoIf&*DkI>74+T#cBG#u^l^46#YJ(<#L0IV6*Qx0&>E) zI7z!ik(QN#nZW0|<`Y0PNDEQ2DIp7Yb(ynp3l!g0-H*XPEX zRfH@?oqKfin^5>seJ$wVy)vRelZIaFz^YfXg*TY29GBw&i~Iba4`F-i1qf?%c-|Jh zOaQd7*~mO!m9DA~HXHu!tV%CBAV#qBCybra){3*m;w?TZV5_4?b(gr=w4p{5C6^z=Xi+`7wZp`cl#Si8Eiv@dW2kGp=^Ety_>oa@4OZ@f$eR+U>#)rvo=GQ@hi z9wh8fgfOryCre6op~Tl34ngU_GZp|;?z7vg#uNk@SoVGa&l@IC^iM}DSy<4}X`HO( z&EFVsvd=r0=#%p!weNRHy9z(7c~kKOt7Bl03LH0eH)*=z9}x(8f`?J=WMFt<0Ttq1 zVX1s9sNCs@yf2bXXlL*HwSO6P`TdCVGuBbMZxN}U$bjYrX7B}V9qlFMd4hj`$8` z#UhzLhnJ)moTNmre{*)iBWQc{pd7Sg@@L`I`sk6nW;;9z{_$}Ye}xaStg89j`U1#} zR;19Ap`is5`(>n&zljF|+gdD++o}&svNcME^Rzw3irM%g{`kIu?QJddv}Y7%AbuW808$51~;l)dTb_^+4P$a4|S@F9e>6X99Pz(g(Xz+(>~uvM$V`Pf!) zN4RF&MvG_P#$Y%gHos-x4L7`^#tnaU#**pJ)(>)1D0IhWo%}knpm3PYE$QJ(QE8#P z{#s3sJ5)garkxc;?iDdcwqU(k z-pc55qh4bS*ADg0;(hX-P~W-549}%He6%ea_RzM?@Xr!=PA&7l{J{zKLI86llojG_ z_QSJOy0tz45OdW5ZPiM0NHD&$96ifFZjicB2K!=)74Y>5hVF4#_V@`dswiL?HaG*b zmgd#%1t4SJplUZKm4}!+r)n`t`E8sACaRK<*^0Vllq4;*N9@|kF|HQOsfWDNZsGfO zM3TafUqDykxm=V}D%-(Ay=@hMbC2;EQX%l2w$`=bJ`U8d=qJW0U5fQSE^5AbRsGdJ zLcvXh3mhNMhwaE$?XM3*h3oW~f(fG3gq!`MRW?nnn)Lap-~H>AL3lK)NXjhzL+Pk5 zs8LO4d$;w&cFf7S@i;WZ+G$$GYVRcW#Z>7j!kOjKf|{PaqR-OElmjF?)+76Al*`2n zEbp|1-RgWzy7#N&>91=l#$9vrb}T);fJ-zo2W;Z498# z_=PoWYd>DzZQ~DX5RE1s_bt;x)xzyO>*Hc>SN7Y^IK^*U+Wu;^HLZn=m(-N^KiR%I z>0%*N+F4tkAR*rsbqs~rHW$ZCSia2FV|%tD!ip-BN_M$m^|TLMwl!OyS={6ctuI_G z5=bpde_0h2iQk;{TO<4CqW+pSPIbY7`YH> zJ??|y?iFkT@3G+B_`k(T4}Dq%UFX`M3eM2>0PCjVbq5WC;al4}M8iJ#RbWi+()@o# zi~kSUw7X7v+={VuwvnE(J{!U8wW;9;ua{nzjBLT9TCu5Q=!m&s9#??cZpY5?whzF_>ChR>|?LbDE@C{)L-o5x7ArjDqcX!(9N0WdnyX> z9G{u5xN^Z+qeYiVx!l)p)Q^Uz#&j?IV=v@_U;gWzLc6oX-o@eZQWQ z&ZAyCde4~Y3y%2KlW4O_UFy9ohB8u3MhMfE^)AVXmQXNYvJAm?3YUpE?@Dl z=c{9I{;Bf&M+xJvgsPX7+Z{Y0Qt`xfN#{m`;vx*vVtiitqP4|2Tj?jKWVKwvZHP!R zw4!(@aKfKCb~BhB-h{KZ;nK9-I(l%V!R3ZY2zu^YuF}>uz__e>i}3)ch)8eJd+&r05fzl)K}uA5ml|q89V# zL{X^4`u3P&f?RlgByxSpMe`NgF)*a+|1Vym=yC>jHHA)J#QA?kG#w#YYHj0Pg;*X~ z`i#oIObaL)3>I<^Fa#A6@|PQJ20Jkpu>)JMxZ`Hf+-Oz5Pp?gj3$|UcmA>6~MgG%# za>mm4{#wSRi7cS0Iq==UtCAC3VKA=2KW%!UmPO57>>0FcC%11^tG;1#e)Z(ZwEys+ z+T%l+5lW9gZ13QCm9@ipd|vhm-s}|ujaZ*C!xbhXu@eDQxAIk;?(6S*PXIhgT1s z(J}-cb3%7etlP<>qIShG6zo@B?@D62URvGdt-RZH{^mv}_!OLmyK)*76N~*!G?_}N zGv9g(<$}k32Y}fOljKdIh(L$<{<5wk`L}kNr*?;Z4rzig0NL@FmQUy6aF`X={T z&O&5i7Yb7= z<03+_wS(rL1pj|E3Cb^3@IOFJ5xcDfUq+;e-b{7y-w0-v<=8{HG6H=zytPkT3PeT}Ki^D@jX|P2Vq6H1xFLkDB(a(|w=M2Afa= zpYL|%0&;7>Uy{7(+XRo0Zi>~jhuzj!N%@%QA_CdBk#-26QFTYG^2Uh^z{m3`;pGJJVBfyCSbCoRn19xF;eY-qgXa?<^-o-u zh~3L1W`6v6n0|WzA@%$j^{f2n|6hAp2rac&le)q*pUz3-s1ij5X-N3G5?iVm8ypcl z-5`-XzQ)OuNl+9Ov#;@JMS<>b3m+=hLSP7KDp`x{=&6jaeyPpoNS5`Ehc9mq6GSwB zwM{O_O-|^XDXHGH{lOFM?9EnkO~Fmk-lM!x@w(0l;pi zssTZ<=;;0Efr7!-6jXF;+#k^R2;>QJ%ssQ3cvZa=ifBJMVgx-}>$#6sP0(Uu2|eVh z3fV5cKXOQEGg@suT#pE6$`b`=m*(s1vQTPMK(A6-tP$9G$Io#tl_vh%CppT39tL>v z!!pX3!&%wu^xIiW&Z&#tsr-8j_!FdO@9BI)&T8Gu1(BJ6VN!~BNaefSC_?2=uBK?6 z>;JXf1WH{16&o@|Xn?R>tB!;f#+iqwFOCtLddw;~?8Yz-a$Rrx+wEMu!R)b|7aWPr zkIwqN7&yIMEKzsd3->xI)Xga4zzRx3`RwVb~6|es|W|J7}`IrIqI8K5j5Levqn@3fOG7HHm4&KAf!p zWgaHSe0}t3-4%X&bH}ZT6q4WNi;bm#4z2#igfeuMnFP|D6LGYsPtT*n)HC{wNBn`W zl6amHeD@wbJx!<>wc>>pQy@c$4z=;!A2ZxJHbD6iq+@I3{7tvUwWov#<>~Lkp=V#_ zIY{aMN=0iUFbyRP#4Sw6%m#haC(J*bikC0el`cK2b2F>?HQxp6Mg$Cma`a%oA6AdN z#27LkVdEcd+qCCxef?DatD29K64qLO;`RAYX+*H4@6kV${Qq+shXI~(!~R0C=ZqQ~ zLjgE{YzgGmo8E+#DlDdhhNuYE3V5O}{z>-)c$T4aXQI@d4LO^-Tbu^6#k0c;mvc5} zEJf7!Z=8}AT9l<|(TaJw=+7NVo`&wokZv8s@YuL-94t;Vc&1s12%4}oP<1(Hn5(#w zW*X`ZQMBz~0|k|#0RvKH%;f0W@h%ypN*oE;(rW(VOGVdSgF;Mr3+ac%tLtws!z`&B!7JTN;XLS}cf^jBUO1fdIodfkv zL5^1q%}hck5F(jdC^dP?Ju~H=jAl`iP3Jcv{4P&J4s~J89z@i3WHj+?xAv>#b1`~D z=ei`+wx3n@PxMCGgmhY?ZjZ+}2bZfE9ylM@_Djr7Jf?k_(bR?PZVJ&Yp=c-`n#)Z@ zk6w>@<^iY3K95z{QQpvnUuB?qdCt>GK>qpi7lMsg_GKmk@Cw@679|zD{gs;|Bnkg` zWV=*5`Bd$xxY*_MUo@denj5WYm<3oxa}zFs>L4n#A>$6^mKMBxv>ne`ER!gE1}-o3 zH_avF-T_)8itx6bsT;$+IeR~G(x+0b?zG6lGz|t_bFWWU9eU;xt+w(jP5d2r_?!NP zGmS~ha-K}wC^CVH$&%#-X-~fiH|N9uA=&oEY3zdp&Rl_SPY7$0Ng6A7^+RZ%x!!*& zF&5MKhTuP-Q=I|$2)dN-u7sS0^;sAS{~%7-fvHp_)}|>0(_zU{+rERdmZ06z@w?_Oh8a0p z^6B>LcXKD|sTcZuUu_ZA2cyxG#s4Z4*@LpF!F&+UKw~yV!a7A({Kra=qy!@K(`=QP zZhwc(h?e#RK9?4AmBP664+Y(>Mmm`ZakQ<98Uj(-Q=j^xW?B+`@pH=4sT0wL$N_>@ zx%v-p({=Qg-u0X^ESjE9QpvQd($^)g6@9p0X&`1Nx%TF7h8|qpT)v$7$N^EkY-yfT zLH>oK`c(jNqCbf5>#IA3;WA+ll3pe&EZZiq zM#<5HiclBQb6Yg;W^J_?%sG+Y+E+0k;5!bTN7PDL$y5i&gUU#`{W8aU|4LbGV`Lh7 zx3jTM0gP52<1N72TfXbm^+i|I2D9Xr?5k@ zxka)1cEdBs^U%!`*u@-z$nKKNys6X#N2|_*ivx;mM^G6ZGIQ>&&X6_8`#8ku>ZF^g ztHc{ETUxmRA!Bzrgd;3=2QIzNE|qpz&{`^G3sgYVwFKKLhPVj@O>_APkUs?%oy0jv zI(K9wS=_3tbVt?YRywi#W1*&)h|Fegr!neLMBeQ!x38_B_!d7S?6QmPfKF`4V?V1g z5!L|wn)b`)qY*XH(h-TYiE;mO)5?Q~5F!wB_|0hU3#1jRNmX^sR3y!SY8h3E3%%dd zP|^Q0?bLYf;Tjx?l(!ju+Z4eg_s+7HpW5)&nr{jf&&;Vspf`eQo!(8>KLCRZ$l z+;N`fJ_}!XHIX}Z<|(H3ndXKw70tDAiSkFIuspZ8Sltl>Du-QyNhO(k1m0I{i6_4M zM@+xBPk-)8-QA+oI{FT;{A8E4%dBl?`UjX2p)&jVI`2O>`{4bdN=D4peT7a6u{8`| zz$eMWK&SJ}@+3SG3Rb1=Mw4p~D#^r=B$ccq@kEuTasYnFP#(;&9sVfhEhxBUP~4qt zXSEF-)I=rB`JFZyvzC{*=qtNzL5{ksQjhilBAdBs8t0CFeBlpeRq46O=Yx{;c>=LV zu)`pZ{FBRJk5FbN!ggY3P0!}{R6;Rq&iHMI#LHOLl^+^Bju6n z(}ep$9kFN}@#ZcxWK*dRNf2TEYDXw?pL#d98{o*Of= zMv1vL7ES&7Rnxbs*EHwuF#|uIf9HV8B6KBry(?{%Su@V^OPIL#*N13*L*mfb&js#o zXRN;LRbE|NUI%ow1tWJ;2SDaCW|msxn7zY@!msb@CWqHgrZeB`N$O;p)@|?49h`~J z0gvn+ae8rt`{~;^uP5USi_=NE*HETY$0^* z+`I7|H#=7@g$=&=L9rF`x}OK$1kTIlpPnsDnf9BLbs+nXT=tg7SBUU7_t)Ip$DUQc zF8pf-7<@1Uz&ZA?FQkm^E0Y~xb5ar%!1msVH2-QuK=zh+r836ksGMjR+FA~O{i|X- z(KT2W?nscIlcdw{^SiyDqPa~ztOW8++WFybpzbNp+ohh7WMIIps>i`J(G}_<&rVBw zL**iw)UvpLt;B;#2MD<8=}R2uxKC(#)lv6<#*lwWtuA*sae94>033AFFoM)m2M9Nu zQCu-?ZsT}V9EhN=+B(ouel@CgYIP1wlMenqS)9C!?t`bdIz0{GH-Y*vD9b)?2L82C z)3m%>Q|qEXNbr8SxwZ3)NUUwqppL{>tkFa)MVHoJ6n$o56UElrf!&l4YHuu7Gz4>| z!f;Azgg%4ndw-?i`}X4vr_gQ1dQR2J2^qROAgUbQ6Z7NMs$fy^zTt@GBRaSG8f)b^ z2M^>3XokO4S&aht#_cOT{$~08gW+6jSrTl7LySH(&`TE1W7eq$X&%7T?7uS>bxd?e zWj0RQoo_YcZ(<(#wSX)Touig52g|EU{RMH@-+`$4t;u(meoqJ7Gce-LBoJ}%&Eo@C(8l#K*8pn)bGblbRmx~_L^A^e50oBiF;i#sw*D$9rVOSQWn z6)Vb9y`$J}F5}q|W!DA^a0#YeiQ6Z^=8cSZPbCHy(X)>*4S5mc8;r+UmGr}wP$(tbQ|?`dg)ri-?HMnt#1>bZvN7@t4bz;vEr@*r~1l<-iT@o%Ma540?#c=xm%{yCR;)azgYx6zhld09XTFV zC$(_z!DwpdQIz7bG#H}Dr9kf>#%;6(S-ot0*S-qO%8E?XEhKMUUO>k1t)q&ykO_P52_pwYKUXR{d%!90i$WsO9pM(-fHUKNf$n?~E7 zp>3u&xfP9V6*Sgz=O2z9{ik(3M2-54p`1$*mY))=W?hMJ;?kRU8}UE$ZG?T)48S!J zSIsOO?!@|Q7S8*Fj(v!!=HnP#ok(+`1uN1Abh<-CpOlVL#h0sp)P8bPe1aFZf&MHg1X& z*PtNlU4*uWp-$8mw{UNh>iej0{?jX;@4Id z#y1joF|`U4IrYcBMB^gyEE?-c;M*nRs2h-{M>8%wkP=k%p@NYD>CVTZ zAuO(Qt;EdYsAdtTo2v^Zt(5Aqjc-3*fkxmSQE^g0i`g7fm>>Hz7EAz+?Rm9+it>Vg`hvjVI zt0S{hU1q#fc9GSyhqzWK$5j4NvvwG8XbNldkCrhSAEtXgLes*%lh5y#abX8j z+Y|MCa-vf^%BY^BJ>SNmYzN=hg==O+~F;pI^jG0Pcx5lQmYX6Y;+k) zvrt3D7wH^98{kL^AZl9lX2##8u}J?|gFrBr{AdS#Ko4mix4VWvf94lydY->cw)2}&7zG>m^S)=Oz46b) zu|ac&Hap`rpQacmeHj(!?Xr&c87a{_IOXMG(efRE&<^Qk?n#sdC~dfj&93y*u0trn zWwQJYe)7EUUI|tYWGn_TwW$!-$D*u>F-uhCJNm@z2@8?U21=1oE}H{&P1+2Ct|5u#RZ>FI%EzoxKgE%oX=}ibDhs3t605N<8Q#jtPv!F|CJ>Jp8 zX1H>6mZ$PSUN(%QGvYAgC{Apjg+DH#bvtp}kN;}_F_vq;F}6UwL+ePX0X73LPp`*6 zwy&N+02_gp&{FV;8eMMYW`j@WH{D_{fAh25s<_r!H$ulkJ}aQ>5%2fE_To)avxxwN?rXBSjZ}S6T7U9qL&_68c=0U} zZ4-yAWDI49{);FC3E#XnYc-oX%vX8Ss>=LV?3eJI%^ac9DrdwuJ-@*iLN0FChf9+q z&d;IVp&BGi>HQw#xRbes`P3F-6kFkE8Sw`?*LA61XR$8pspc_epmm=wuG1fFKa=mW z?BOCdkPIp-(Z|1>Aw@3NL!3E6cshPf92Z$6-C2E^I|U&k_1KA41z_-l4`#n#T%(Ao za5TxY`=|xd1QXa%3&UT-|z={E_p$wS$&JFd_^Qq_HxPG6r z7CTcy)AxW@PK&A8Ep)05s%Ah%cp9)>Dj-YJ13u}4pZjE8JHV3XbuKw6llLK(q!U!? zgAq>N_Wug|d8R_RjCnVi+Bb}(7_CsDr7XIxfZSJFJuYY3jG5Qb99OW>#MiGnnIaY^V&YG%Y>L`dTl>e(-PZ@eZ0$GzsBm~ zg^3XYb(hB!XZ6^}iI|v)?)dCzCeBRnoyummCkKQrq)D(JPs(EJ#ebkZ5HcKF#e4VA zqOW6CbudQ%fVG=S_^P4>3Kcczirc3s65w_~t`~026{qUf5lYAV`RW;!!69173HK8H z-Phszr?0`d!_>q4%E4DZEE%1tBV#eBQcyvvOJ}Rg^d1Hky?%0}136iZO78{QNYAu$ z@g1a?6@oY5S?-zdHK_kl9;qw_@clT3L8y;WmYC!?IFH~S*t9i!V;_SB$3bxEX%wxf z0H}5)4&l%A3a;j;IDv{g(Vs9yLSEN~DmJZ7W4?KDwXeN#dosWkB-o``fj{z#>({es zVU3%I2bqrnPZeRe>s@AEXi}fH$3>nRD)OvZn!bGnG>g`u9WLfZvv$|*37%~Hk21W? zf$xV{0!de7+q?ps$oq$vbN|Y zBDjM>2}qjHi;0?C|KYDhy8^#o0tiw1hP5d7Dr4JsW-rAZ^qEV|1zgm3dyztR+COLZ zpoAm(o%{dT0L|Yuqppzh$*RxbcoJjR?%0*&yiwxXRgz-A{JS2z$J?+K2PCHzlS-Q@in>($p#I(Q4J5nXxwPS!9S@J~h)bIa>%`!zQwDfv?6 zrz__v-lb~gZ(QdSWGI;D&!%B!h;r^j^o)qC9sJ~H-vAg*I2~! zoG#(dYreaZXM1^-&F|8aP&FJn)H#080KT_7cd68-q?OLwi4Jc_f-Dw7FXMp@<)Dx26eZrWZpkBkoqD}6Zhs9!V>IK z7*d<01S8_XPzW4>HkA-hwE3c?#J8Z%P)PFjR#qh z?8@Dqz7#EI55G$^L9xHvlD8$CmLxqhq3-4)PcuC`E9NE-1L#iC3naIYg_g*;d;d!* zE$ZEjB#3(jt7q;045s{vVZEj!Y|+4zpJTq|dPGthmH?DIO?AL5ZI$kdkj(>F2g4$& zr*}xenTkYZgh!m-Ozi2~efF6akA0{+UKfa(vQPDE%jtO2gmnVGE#5WYBJy~0AeZJB zU!5085x6u)*ULtyPNlwzDknYdjFd!c`11H{P`VtxekZOvs!I4z`P#*b-#9pyE>!4}5JSMnPJ?%ed zcQPLJF^w7No#cF6wQds3UaeS@Ht(H=>lp#LyVy(r7DeYR=t`a43;P>@m7ezb16lf( zU3yUmJ|({sdl${}{+*UY8b0~c*NoD-?N}dHE5KF8+DC)7`j*?Mdf1S`wlUOOtK+aL zaQe7+!-lnddZwHL1>u@UTWE zcpG07-rdNHR}fK^KF+2ZS&4I(PV%o&R@)XwRZq;(tzuPGGJ`bEPe^bKe9NEuRqI2i zFnPgGO1HH6E=pB0nEpoSv_6GABo>8L~1Xdgk5K%Vf?J8JK`5MQkgedQu1 z$5ApCnN%n}j*{=&jR&9S&h(Rilz@`bx2sTNX%EKWxM-|Wk9f&Sj^#=;30c{m5FJd9^^SLSZ|Q_Ve}s z)gDtkbN3b?>!1-wJaCr?{GoFg-}jme?aK%~hCWj!wig0-76>>TF*i2!c>H+tUe4!V z%5KD?dpc-YPu$6QL>YFhrEAg1;qkmcFa&*pAEyUbzR zGV2S!{1qO2a1D3zA9cWviNE6{O~`j;tnm&+&)g!_RP`1R4W=js)fZRIhR)b;FNpo) zbuQ+-C2CxI&t9BaWfqE@va06bspNJp@S7MJz0*8!ab~r2UEP^N;v~#p?>e}8V~^)e zAtiVP=&L@{D0}>SYb~al73Y~z9jD1c@ryRo&brkNF;2nejpyeA;I7y@qs19MpOe8$ zmb}^G?JipdEwO&(1fCW~$ujR-<3f44l|Nr0%LMJ~V{ew&mP3H$QqGEQP~LQuil9H9 z`p>v6TWcZN>q)6CBg`3Grf(DcDfZnz4X+VzjIgC}p$e&`qI2`9=R5kCfg>($|G~hN z^ZT@a9+KwjgURvN8)296qtB-eH!U7f;9cGkmDUlR-bj+B*I!cr>W)D~(2|2p?)^Ys{2@a*BCf3H0Nv4{( zA%NzIqX0OBj3C!OXv0yKwP`0V^v%b_gvU1hJJPG?96u|H#jf{RhRvch5ny+PnDyM~ zmp0_#{b+oZ1(IMh)O8Gq`?`txi<3!zb>$Q)1|}ikP`ziQTnN+Orw5H(>^uM4;7lpb zOI88@4bfJ>S-h4UWapX}PR~EfIdg32{X%8L_{}ZOTiOiyC~tOnKn$~eW)Yk^okRLFYNmLo z3tg^wG=?{-*3_*eK-{Dg&Dh53@jlbv4;D%;b!D|Mur|YCu-y{UvR~S~MsdO$&O%X? z>T)~<2`5%NX3ybo!;u_5Vi?=TnK}iEKXANaeBCHkiM7*&S7rs=wJ=;&A~NkWW_!$%kMbdey>@wcB>epbD1$!S2eJ;Zy&EONTM4sRX!eX}Zlp^rm1l(3QAX zXP!(H-omju=N3;!8UEgVOfTT9bifgA8swsZBiw}4G?08YcW|i$Ply94RS_|v1nqs{ z9UulYn)2S}6wJ$`ADl+_VzJOxN^agKmp%zZ3RxGB+F9l30l{6LqgH55f z-{V)4g55uITF3D&==0AgrG?s2V1loopX}I##hf*@Nljgo6_Wk2b`SKfZ>V68NwE32`_%l1?EH1MVugnA)8R_Z*yXjLN4_0N2aPy^`=T$O`e&P^ zSjxda{=#kVzsqQ-fqdy5U!C3if2v{i4i|?Z=4J(ad!ujhB9NSB6p%KUa$+A}bn+80UPA8@ z@Jkl_p|hH&+%`mFzgsZot^p~qB`HODq{E)$84~{q6ce?|%AI@Uv!Ip-{C;%5N+IB} z_lK0goQKj4?y1C|L9Z&+nv=J4&$GK-taa=T5REO5){e$Ym(HIW&<17mf88j(9JiOZ zaUXx}=sym7Ang%J%kZ#GFtxRp zrOQnEIn}3;Th6_2@ZMV{5*xqu<(!gD9rU?61ad;X7M%L@#{|_X388ddcszo2oR^4LRM4D9DeDTS*XOy7=nXxr&cAfTEmRk;hAYn+gLc z>8gEPa|M@)!UmW7ne8uixwgYzZl}b{7I%F_gSGDc;hIjTp=LSz1AA5Hp`LN!{8eDY zZ50D;D#44(Rsl(<#)*wE7oO0DzclfZr(rJfa{Cc;rJUx2DwNY!eeHc#`?lHd>e2GD z11~(vvbcqOrri}3G>-ByuOI!QF|TVC($fBNDyensoij`Xsq zf^qi|OTj?Rx@>YVr6e9wp4r%^mTc2a<7;ZjtB{G);svl~zbgsX`s_JtvAaDFP6l#p zh3b`EcO9uukO=5GJZ(DIdtM%1P#Z0LJ#Sh{o}r=^H|%&taw4W_Z@B40yMbSqb0fI$`SFUWlPSKop(Zg$X&@iLe5$I%714U?D zHxlYwl`2ad=#~iz7iA&o2T(!rn64vLW+xch<(QY@kh+K z@?I{?qTMS7;V1|W{V*56)9bhLl~{k4BFc2Cu~ZQtvXRuSp)i=vwgWj*R@y^_ja zo>+xJU2m`#`95v$y}@MBUQlMeK8w5spW{wi{cyB*^0pU{|A*kM`G;{ zlRDKKaKcxsRYq>>qE}yDTa}cRp1tub|EAVa*)i&0O?Rn8C=eR>P*3R~-mp&QifZMJ zZEkJjg3t-|Xj0B)su=ouqMcK*+iltU@Y!YN%q+{4p1?IN?%a6=E{k#im23-Wgg026 zW${LPBFBqnzFf}yP1*GQ<*u+V-gP`Ve2pQQeyJkY?1WuhF_Jbidnvt8kbU)Rvc^ZpcXW>^pfuJAq^7-lNw5A?T$A~|_YTw%SP?He&#(eXQ zyP9yr!_2=|o}X7K3rj8yTsb&+f6y@&GzHr}VnP38Cl&fy?C#I=_u}UuX#-fF3eb4f z^HqfqfX@C9m(UlL97BdBjr*G^64ln14eq?ICfPJUSYE6@`u^ekO8OCcQT3Bk-*POZ zO`%YR17f$A9Z9oqbLqx;lzj!2#0AXqzbnb6r!BmtcXbzuT3Q=a&Oeu!B@$oqhjt5D zj9j#tMfXkyw4w1;E2ms+4zT)VIUrAx;(&#Dj|MmPOB4Vy(#!2oY0J|syL)^#AvyG4 zXHoJ8bkSQZ^y9evN)M4&qhclOHAi)|dScI(%e?11ltWGkZsBao&vxWe?ls3d+B-fv z9Cog3(>W$kU(SfLia;KZ(tflR?&R`?y5GrlA&Jy`%1EH>2p4o)|PU| zbQJf|N;E5Y&hE>tX0C~YeeRv%>|(^E!#V$o*GI?x;kVLPd#FnCcG#bK`9-uAGL@4p z&F6BpS5EY4k)3P5_Cfln@eNyvo`(7>qZ4UQ9G(~CHF{8gwyOC^?Rm+%+5OrF@m^RYAthm zk?>V+ET}yqMfG=anP}24@Q&=oTzc;M@Tm1#d`$~X=T3Kx!QSe9P*^&rt!9XT(S?<_ zBtA(4s{1fUV7|i-%2||=*z@!es`UL+!d1OYXFxc?X;bzxf|A1fPR5K|JmF?%rCkWW zCdABz);E?SkNaKUXpE199OaZTn^*u z*2A9fR{rZN|9pw^ty75)0{aa&lirCYAI8BH(HNR;jUWPb5}&;fmBCXBl* zy@DIF%=w_I;vv>eg^OJXxl^1QjkyEMKa?2@=wuEub>n38|J0_;+kMA%ZSgB#EandR z)f&_9mB#PkhVOc$mz}A!9z5(~*dAVC1lv=^166r>nNkF(@9w!Dp8c>y-|qyyT7LIP>fq5QS!BphF=rji3;~}RNz1L8=iiovqPz>P$2;4|Q~xgc z>JManvGX$xMBV)p`;&9wru_$AePNJcf$t;e1ufSD85@ad(e=_wreUReL`%zM&lafB zhZx+1eT?*%{MI4>YXp~lP?(s+)o!}EvN%^}4cGht#vi(J`?;%iWZ9iW{;%)HZ|L0lns9`xkZhypj)NZ9{A%HR?|wUe zh3(=4x*l`78bPjDaZ*_BZA&Ev@e3>LLLa(m;$i=uBG_$cId^xz%)rTm*MZXV8BZ zN#{jq?{Ln@OIbGoO@AqYZbEwXPx|AtKv8BIySbH5VXiFv;IS$pF8s{-yx1QBYuwKR z^QWIgl=XxyquyuO$u{XeD|W7QLKnA*ri}Gtf2&-v z)JNlhl!P3y+yeu9EG9BC>zZ(HE@r8YKoj3SBcS*zcaVzilTo!zaxR8qN>}b`7SHci zld_lYG(^rQ{gIfz<#G{rzW^;BI5Y%zLusm)_NsNdxvOHe&K@MA zD6in}ve^iy>}ZS8#GuwnF@(ftzT1q>NGYSQ;*6Y0HR7}^A@58%7rK2D-Y=X-ee~q+ z(u-9X)?Is_TY`A8>GtCgli+pNHU0uvuUEVmIW5bDr2~QQ;}Wz;GONAZQd8kc%3JjJ zXBXbCF~9NX%WjEwOm-XU0sp3_3?P;X%I~Qo&x;~ob98dsjPo&) z@xYG#NV+_;BmPT}1=8#K{3lz4lxP-*WF-J$^gifDqm>HacV!^g2g7Si(?Us#dnV~o zj9jA&r!&${`thStQAfS$%(9|{|875?W-M*3x3QI55{g#=gQ{=P4;Wi|FUcqX{%}#! zbk>E+GrLl?`pD1NYNA9dldey{Wa~}aqqLbIi{54T`}P`K`vm71nlExpy-U&@P*JL_ zU$f7;^Z^igK#ut2gZXPC2idn{e$*Do6~QKSbf}hc_7J7Z;lKZ17C?N@VwaS_pg!(T z$kiriqrS~26qr}J@0tEZ3&M{9$Ax64{KfAec|XNex0Hwa%FoY? z4p(>jxyKs-UCb&bQcu2!Zm}38kFI$lDP74EuN}AJDA{(ws^o}+_e*sXM$DD{6|${U zS0-a5)^6p{+fsnRPIEr7I3`ZywT6O7rb$7$iPUb|*68Q!HZIN+Qqf^|m1CkI-^xYa zA$r)KGQA*7excZGhwWjmL7zL56{^P@5>3Ly0bl#u6&$J6O*u7(w-4$AT4tSDydkql zp2zQ^KdWE7X#p_TocOEPRc!~Dqs(rHSe`D7OyKD2)W9rt;?|+A+9%)kf!U?=q^9#F zxbNX*&|CDy%E)KM%xXs|l8+*UwONg)1?_0=@Ukq9> z$%#QX)86BNw^58@G-YQC2k3LGpFo|dr4kuO)WwLAXYzpl5;EA9!wskx@EIT*O?v^ z@3$eGNq)aIL%1FltYi!RRH61Ce{}BMEJ|g~x|R~-A^b=5PvC&Q-|nF^TuvZ4T)^6) zF@x%9*^iatPmN3cEieT{_~Q>{#bIg0_}>+hoyihZd6rKe^XM0iY{Aro-HLO~rdL)` z$d#wdPAK7RnJT*9{f95v0A)?OW`YH->&y7mqV3)p{#74~l(EpLxN9ER!|5-5`Cui{ zM{x~1%qp>g>&HWkPcO1p6=-ltizjzVRfs%7FLv#JcdN_eKz6UM!gSb?MNw|SF5R*k zU8PnM#rr$Vt-sjunrDT?yEAp5 z*X1hd0zXwF%v#>xzpgXU%f�_j_BDv|l8aTVo|sI|i&G z=kgvXyW&@Ek{bMN^kSGZBskYa`k1i6ImQD!3LoowMrm%q7}P9Sa+#k!mUA-qFsk}? z+3?oVr<-t()Uh;GqJ(%lRiXj8?FzRMy(-C1wtfP(N^%Ig% zcR!Rj|7Vo-e9sctvE_5HczPj883tl=S4M7Ikj}Dt36v2@y(xYEFZZK-o2iLjq zitC+%C}1!J;tOmCX1$1vsCxChe$KFZVU&^Yc}7Kz$NaT*tQ~bX0P-a&06W@oL#wUK zpqP^JGDO7v=b|1ixws21aR9uc=MUac)Xq3cFgyrM?%^8R{>HVq2nWRh>PP1qH-f@N z^`SSlll3rVO|fx)zvZv)u|zhYkRoE2n4(Gz5^kD;T6-b|*#K=6txGcvTGntp$Sj4} ztJC(F?yc|XJv(6POu)xy4j0d&aq|zhN*n?&IBNT?G(S$ht#YfgX6W#)JMUY+mn$N9 zI<8lf{8m=?4$56olm&j4P^k`%rz}>?nzWj-)3ABxnI8t0D+N2hW_{iwnB?3w z?d}Z9_p!8=bQWwGDIK5@hF`&s4o~ig9M@X0)!RJD z^T{->)h#{xT_V22?~`)lX-8wV>6K|&yNcMD9!0kosZ}CRGt+WvvWfkTX-2{1o62_q znyAEtBspxH#QT;ksq#cA&3%zrbg~tD5rT2;dG%d}`L*<_Uo&}&r|&)c{m#lpcG)8H zNu&2vQ~AHBAo4qJ7fSy!6Q`-(U%8R_n3|{z9Hr+DEdQWIiceA5wd1*5UkoyjrJt&r zES!alN9nHP!L=EG)w1xzC`gsVJ`*YW=L1x9;mT&l#o*%oZt+q)U4wLdPeZz^Ah^)b zu$ua^!Ns6V0~%Q{L8|BXT?V@}g~OY}bN`7FD(KQaHa=c?062Ixc!j9J^#~!^al|gK z7_HL35(0|^Zxlg&&tysBw>YLdvt!Sk4wZFBvevexbB*S)TWbtw-E0ae3x=-(l)i*s?s|x3s{K?{<0oQGv+ane%lTq)j z?_ZjC$-kQeACWZ+&atS;v|J6?SfRWBw%xL4QYz+1o?z=txg2DlxYIgn70BW>+UPGPtjsn-l=iWC6r8CtJmySSQ8`^ZH z3w+A{Zqt0n8N?FA(&+GG0O@ZGLC5Xa{_c2#kh0E;-haEkD#Eg_x5_W2XNKU#uY=je zCULF%fnt!-Lxttjp}$O{BO*zs#5nr<2Lh!Z^HQE4^xkiBjy!*u;O;y4MGxv6IbXJX zkBTwwvt3RcM<=DoF7;)fFP?DQHQ7LBtOPYBnmpj>dVnQqSwj628mDSO{^;?X(iqJO znkxQTu^J`gEs%UR`*Wzu_I?jIqcohXG)q3Y9~IW!?hxB3)V038`vSip887hxtxxit zQv{Pk8%{RSp8L86G^cy_dq~Csro{9Omj6A0IoB3h7<0_u^Uzr=ee5X-ddirPe_Jt& z!HDRxP`s#a?T%}iu^q$wdZ66UvS9A%@%K+)4$qyPORjywGZv{-yW#hyRc_n4%GWHn zBU{{(q0=G|ky%mOr~}AFXT_RaMf`e!I7^&F-)h_MCb~%+tkL629C<*~ZqoGSPUJUG z+j7w2SXba9SV%gG%H z=MYK`CwWE=G&@rm=4vyzSMrr%JaF<^BZ-zFu~aKk(T!0FI>=% z;|EWC`F12mUhCF{{8nQJRn4hw+kLBl8f4nUX@4O?C6d)LuXbTb^5qVo_qFo|=Hp`xYy=4a^)qvK*Hs5_N+-r9m&wcrn%&CM~i ze_rOagI;WTa`NQI@(bGT;BHsRyl1}m>-&G3d~Y|VH>b)$l*td9S$x86bPLUxh+cV%@gZ9w`&_->Ah_ot=jW2iQlIG%p*kxL&$k z^?vkP8I?!zm%{YcRN65ga67ZMGV=viP_4on{T-SW{LVUd8jQn`bU84{Sb<^qo zQsTySqVRUJ;+;mXuqmbEM0uda?%JUR3 z5QU7@c&Bx0dWXd@I^MHot>>pa>8{VhOtwWDt*ypRsH&iIs>eN%1=L3E4vHl$ReSqw z+XUe{)a6Ma{vurthB=vhIOPI0blXkq)e9UVJY+#Hy$Om~; z;291#x9>|*(423<%6i0O+EhZ9p?lUQE{QSs0>mDPSem%iGsEr`@G=v?dI+Qru}v~N zXCQqGp~U2^-gc}SHTFs&;{c*1$6`YJZ&-XeSF9ZI#QY#IjSpLd zxI{W@?CoVjN5%(;Mkbd-yx#wQ+in7=n63sE-)fR~r5IQF)3SEib0wh99aYL#QgxpJ8r1|%|%oIXNaR^CF zu3CpICA0S|8FJmgBg$?aomt~gkB@bNTkmg6@LA9s`92Yfu9@aGoL@O&N}Y~T}!LP?_J?-VNl<^$fKVuClegnPM z`YtLj_+1W=SF7snf^@hfDsLz0yG>pjr;kUC>7Py#uZ|&gF5Ve5z}yFLhkb60+JIZ` z!wK7U>rDer(Q^d{&~bG3jGRhFLEPvRQ(gSPsoQ{KRnX|Pq4`Ueu)57GiBh7|$aJUu zPIfb_Gj1-&Z{IL@j$1uTb4HGn1yYT%WN+;y4K&!rnybp8Vr z(bek6!BRS8yOr(E=ZVP#8{ z|6H)aT3}^U>y#~-C#TKV&&jp08=O@c*fLR2Fd8kO)f&7fZx=u@TO1hW z(vTM19hm-gOa|u{D`Te#wvG0f7l@WkT5g4^_>DVxq`&{BIW&O#w&q)?!t3s2LVacN zg=*sPp7!dKrU-@p|5mrzBxN{IJ*PvxU%D3eLW@9U6yC7+>(Jae+xA+ zAhtHcvePfQByZYQY_x9+5%hO|m4*okxn;SisqFPyj2^*L3fo4yd{Y5)Vt2jV{le$> zq@eNahC}c1{>*`jK=l8RF2{<)NCun61bh_e`eP9=+vuungH} zC)&Iu3FQrkp+4sRUa5vrv%w=tHZl~|HYi8@W6P!sZ&q^P!~F0wo%s_Y@Ik&$xZAYB zZ;>)7u0~o@U;7;DfMRv3!thrm-o&bNVFhR&Gn-^=bos^{AoOib#s+LoO_RmPy>{qJ zz|h3kTs3La$^8C5Vh6-hQHfZ0k36^Wf5y3OY0ZOx3j1Z8kd1fxi_s(~a23J+{DyPm zbcn$o0($Vly}ZuiMB|M}jR^GPM*~p!1>W`` zibxT~^Kni7m@G1Y>T4|RkD<+nH^M5}_67{IY$-&t%3UT_F_~P}grRC!NBOQkFS%(e z%j>85!7Xp)xql{xSC<{osDKyJ=A%--40gC%v%_>%PmTwWCYXj2d_7*1Hv|7x5*?Z1 zXrw?5e(rY2p>C!H&?5B0thefbQ&HER+}fbO<(%_(O8>i8leTf_n&{Q)Vn3ak!}5Y= zPwaVzW0Vi~?tY8Re~oi5yLY^LSaA6IAm;0zfX=q)$n5s=KsAB6O7}|qk=9!P4Q~P8 za36&$0)z5&p0Mq96RXm{xoK7)UEyD5t;!CKT5j)QVsq|ayiR!K|3>`*rjf3T(F?WjUjFW;OVPlgd)EbH@TJAh@S8L~`T6qtbx)Zl4MNzlwm&9?gNKpY#LkMKhA?e*_ywKeP3RLZP=R;6WBsq?SohxJzy1&$nr zQ;#mkJG*hda=Mk%`)Pizs2{$aB%lg>Fnf&$E!R3H_kr1qUnT`?T)C5Ygf=Z)u*B=+VONiNzon}RVXW5tVVwW!rxtbMxEm!$V%wRZwYD|1#>aAOW z=RR5Vrb=LCr|1@rSxlco*-_QipWP3iRX8ZlY~6Pm)@B-MNBXcat)qUMvT4LwU^R!a z?v~)+?caFoM@o{%8+->IUmK+-mf{oU2MCAha*=)glKVJMRHO5=)WQ5@u^s`-H(!Zd zJ&AIyN-<8G?6k^|o6WPKq>_p;z*8U%*nF{==?T?&S?U6nS13Q{)9kIdCBbohg~qJG zZrBW$7_RUNlM1xEbSaneDJYS_QOCR2#k@ zGZGTaM6*<3f>;{1@ASSesCC*uy26ctv;km$uJBMZQnOyAnO`b1FnzNwz;>F`DOr%v zh#1t^OBJAK&+B?$ylCg{cn^&xwrcp`I~fBIauRBnlysS&ek0++^}-WH&~Kl;xX141 z(!on`(f3BM{Mk3oeN^F=PpJmzf#kgz+!7dAkJF27-;dPe(KuPcXyErJ;eeFm%J30H z4-wUPwnHHDgYod!U-oCoV)f(^B!AkJjNvxZ`M_4`edE*gL>Dh?x=G7omeK#9ZnALL zGtZveNkJyMg2O|hH*?v_jFU-T3H(I|8Qj^F@O(40$=-=YXundR*_%EPuK(y+vHCdo zzaaSId*b7jt%Zwov2wY`D$PcR54duu#hSNO=oP9$UXN*XPq|eOFZ3aMob~1%5*_jf zGxV4#Pe#rg1Ktl?60$a-Ypmrgo&9ABw_!e4_c>f$ z@qi5DjQr&42?O5gg}!bV0iyc-oFN;Qx9no%3w0UT-r;I4T?7e~^}~?Lp6p$r@W2|J zWhY`;k!X&UlMsQ^v-Rzmapn$v`Fzv#%z=+V`nvMZz%83TQy1z@>bFxJ-q2Lxpkyba z3PBsX%0AcPNd(nxYeGuy&L-K?@)T?K^&tObs81$iTQn$vd!ErJfnWuuf#!Z@$?JE5 zHhC&-6Jepye^#Dujm^P{J%t>>!mA#`rhK@& zCP@%Ez$H}Qws+vBzmpB*M++P3^rU?nzs^xaa`f1n`deHNW~<5u&H*#lO9LfH#={Vkqr)r&oyr*g4vC1h9l z-P-sgfCi|*`E2Nv#@*S?(X;Ee#mrdtXz8=Sh4oFI1K_@-r{#&Ii#qbYA}wSM$p7n#icQZgqZy;jqN#Gj!4?yt~N z==h0_1MN_3W6;_kQ?!%qcHbW_5P*)YE9rR$^95vsKg`#;#FQ^bR`)9m3Vr!dkf%2! zg9Gan=Vn{M{q)08{4d0Gmi)e7b1Q;5CNc8afO!S=adGo0#BHOHwLM# zM9#Kf-6(-KuL*Z~PvIK}GwcFg-3D%-!j{rxm!x#7!=CZs$8rZx67mpyX|_mgK~{&rsePc0Z_5xd7oQ(Vmmo32AvdM=(GM;z|9 zEqse_k6<-Iba+46^pqUM*>53FzW1Lf*Mz!Asgr&Dcy&w(hehHaVoauaSyV-&dBAO31R zbq}-lcW$t4RJ$#INH*Bp=x3zOCbN!)xR9eNZSzch+Iqxkv(MHQ>pqZYm)gGew?dUF z&PFp8-Q-7^#F5)@%D{GP{RC;W*Q+;X$X~t_ovPnIPpeZBM~7=bD)ygB`q zQ^{X+HvgO;Df6z6CJ9K|ZMW~A7=Kgv&iH9StU2NGz8*YsN1g7$n>Q8udGOl%smMfn zh1IZ^?8_XzKiO{PjwAVJG(Nfh@vqMXcI*2G@x&cPy8FN;6lT3dA&$TIwjAnSN3*6x zXhIB-)tgGFOv_;|QK`Fxn~|R${Be6O&qef)=e)#AzCJ9fZTr;ixdO1cX?evz6=|xu z?gQ>Q6@hL|E2|g}xfK03 zF!gRb_NFr0O~XP$r>#d8go0NK?pOt;T@K1G+k*S%5!`5LoYm_98`pOxe^JB_ZU5R% zeaJYJ_1P~V-IpRm9P8}i!$aJkn*=nggzj?ki%YpBT4Rmk6_$n~AZN~OR5wJ`81`h` z@138|6ONh`9^>LQt>V!>c7da4ZB%ffIP$E|%kNPmAlslGwmURopEm-8gb5Ptr>~=x zG6!o;w^NX)Oa1c@V1J+d%D+&PTYA9zZ=34E9GS}x4~=CN=Vnb$r>;#;Ct{L(#65iG z)#>3>v1>iJHma-NPv7&{4>Tsb*Lh*)0(zW0`@^wm7moAqLsy*e<~h)QoCvh+@=+}( zw=QcgoU+y@g9-sLsL|FJ#bxuZmzTdCP97f|0^WSg0}^Qe=hOf53>nCJWsZg6DjI)2 zT~XPTDrjB}c>a9uOs!SlU1&HL$Wyw$I2AR)B)qV5bFX*zMK2*OPd{);#U|~uP7B5r z9nS<_O7P8GT_xX_bv#bmz?snRSnhT^Jo6ZOA3hoZ%#_?)lR(6Z-q$HP2ML`RC9&>2 zm2;fKvUYeQ4`L5CR`1c6GbUuLUjFK#s+>Q$lhe>h+5fJ14{UtyPvY0CT)bAMaXe

    x8gQQZ~4nmX|? z%p*D?twoj>6zU=Z>+y;HY1xE1glHqSP#ovZ^CB=CitnUZM*b0&X~IH&q!=bT*F;y6 z`)SqhIH%~Smf1_K`a=6Uz89X_l2*z-l6JN;<1G@t!v1k_%|^P;*_ZI_EC$2rj-nHO z+q)F9b!kr31|RU1euOd9EpoGu&dMpUxy+^Sy>o4kO$}>PgFe+j;wGmg>|$PV6J2?X zFut3|B_SJZ8^$&-E?5_K;vI8j;w58v7rMgt@O#Q#j*ILIg)Fvhk;wua?$LGjGNp*- zNS0am<|Ba7aNID9IZLd5lhaBrm@uP^#K{TK8WDj6wQF^CwR-b4tDc!irxJAj-prM> zU0_e7?AW(b9k{+vgd!z%w$?-9%&u;Wofs~IR^hNztLx~VVmYK{?<<4H=O<~1rh-c~dphG9Uxk(ay{o z`gw(ZtBu~ZK!^|$gxAckJLo>nHT%5I4*B zJKfsRy|`sO$qdz~l5>6w0#2Jin_;^R7R;vTRFhD~h?O_jkrjW)iyObLw?L7IUF-_Y z6?RecUgjG?!2@sSA7m9{V#Ju@c zGm|e(zSP^AKw9D^MO@-Ek}AFfH5}gG{JzWaMi|PYz0%!|rxzFZ>a1^aM#NYV1ESax zw@?KQ3`uH9tA;co_jikaKVRLuup)Ue7LPAp>>muGsi;qT8|IBT&H@2&s)(d9w-#HH z(tsZC&=8$OJr2M*#QQj>@U(aYEn8#|xs7o2>Y|)> zziNZ>EA{)AwtitJE&ZwIOz2PJoJVjJP>p3galm z^|X-wb$jJNUpd**0|kux#+;~|uMDQQ9q%%dcR(6HnzEU+yl~?*w}ol$ zZwhqDetg5co@ewKW7yU9Q^xw-uS_6I<7QfI*2I_}3(U1P_9!&!V1r$7>8iS?gDSY# zM|)j6m;L58qhfE{q9?WO+17es8xC4!kjE2Sy`q`Zr~lJk3%L9-s~&gawG8SqfSoOU z8dpeh%>E7%xN>M~sCb*Bvc5iR^n!LT+WI#;Ic!R8{&{O1WzpY|4@RT*Zg*;STOk@Qm{dQxOE#_WTW^vdurH^fOh zZwsSZKw@>uh_UWTX!1J^@&lA|iGy2Ht@`qHYc~bU@w3$*84&5A&wccCGO0dqUfSjk zy6c5fe_!V4+9|LxpZN94E9I}jC*>|*%Jn_*aqjCqmN|?DZ541$(#g6xicYzvEYx^z zowgwVjB8R?t4|BK9PFM%tczXyF-b~evj?|obg#<_l)#R&j4+!U%q9r=_PeVcu_p%) zbZ~tiq*~Scs6O3dqZD2gb@0qa?KKP&1E~$E-gLCI?Xnvd-H5EwNFuwl>!jMMJ`~$1 z-U)TUy(Plb>vcC?2;t1nC7Vsc9U0r(Gxvv!5fhYDOU#98CwskI0W}tkLa46zf52!x z;nlL9glBz@*bT~>XE)9eYjNp6*t-lAyiOM}J4qa-3m=L7rZi^0s@?B(r9?ni$k` z-Nq2cpsi>R+*sR!%KSJ&_r2d>M~J6S31ptI<^IqA0shioX1DdAtICOtf4gDn}Pmf*QK2Vx6b;94gZ zjgcO=g}^^6+gzUECKv=qwla@WEAch`0s0@BneLU54?-19@uY@6*=_T8?!Go0biT{| zZadgkfBMBR?838Dc8j?31$JqJ0q-uo^f>q8ZOXRuo=*6AqL8Y0>X1vG`C!v)!6=$X zt-pFntt-9gI}xrfW!@xE8?8X!*?New0Xo%u#d-u^gLcDyJJ!Wp4NjgePttX5^D_9_ z=%BA7kS?p?jRY~gDnQ^aA?S7H7%MKk#3Udg?t;#L6w1a(m(8BUDlaSP&GH5ofm4@6 z-=l&yI9aWHD&!=LPjq5xOOPhbRcLvVG(dh>Tq3*v**lbRy*R?jXxnA<%60U91wu;ik*s2 z6FM4!&_;TE80C&S$Ig8Zf6699Jh%53+Y&h+b~|oRTArv2!$dlPH={ImOb-K!l*#jR z4-+me&$JM9L}h+yx<8+Ac)Zk~1H3=@D?mcPa0SE&ahdZKZ_Q~)8)$DUT6hD&dlqVT z0GF2sLoX=d*!|q#&%?4LxMx3S#|8hyt2^_VUF$&{n_o#Ak}m0oFnw+edycv=5AknY zlWj;f(!BFbb2naTuub-17jNCoie^096H1W#1MDPX1No4!`8{fDJd4$AZTE<$^T-@v z68vXt`d4J)K1aNYjU@A!4e_ptV0v78?t<93Wp$T&DJMvcV0u~njJq8ijvcBZstc& zRdY&kgH7#uwNk%R8FQc(ar|rDjpe+^$O&&ZFOHDnPx+sSfU}=>4^iDG^GPO(Kr}}tR-0?{g3ESL% zV5Sfr`kLTn_}ymM%B-qx&3TO`xP69obK$L27H5(M5Km0ksQ9eL)?|VHh|Snb2TTiL z<%}Exz?G%2WGJ>C+oVrV17v`eYW<4#vY=gXb2@B6uQLTDi*S|EehyzSYH*uSffpgn zh-s}vtS1Oh0B$nwxI)j1P}JQkVXTC#Z6;Z{7az$r8OqkPT@$s_oMMV-L3oO66UlKK zb)VwJb|TlGGm)~yy>Wm4^PM8Vh6edGna=fJ(@O9YNsL|X_P3Gp&J^`Ij6dj%1sqB?=np}oVH z+H-rmn#~QJh~Gw~p}e!J{C}s!t}z7CES}MYI31&tMgZIxRy+K722Hzfh&<{k2BTi@ zeX&suIhr2*z4D2KWY#kmtimP1e*sZD#pq`I1& z`t1!9&^^lYJv}Q!fr~N@%Ylx-pK8`_2B-FsEfB_V!6jgG&tq}l{j8Z-s1P=HGD296 zsbjLhWu>eu%r)&da|!+}ZpoE9!CgVklxV|1H}sW6R6>qaQAl4itL}M)ExQ3xmJx8- znVHV%%fbRZ=?WnPoBS@Q_k+>pj6$eC zAbU05HVK3S)dIVkQPz$XJG|BBq``&dFz~?EPuz+~S1ey`zr!`cDnOkyYt~4j*Y0T2HP(JuD`S%)&&oI+GKtXLmd@-LVrF%Eq*1FXJ?;M^Ynx?3!R1mue7uD?++D4l&L=-% zHTpeLnH092eoq5LGkBG7;rgI+&yuSEBcI>>GW5*+vLY@VLNe05K}SE3rRXG&$h~fN z064HQ`{yN!fPBf=Ky8ZgLMJ6D|I5chCWUq%g|x>qhBB?ZZpEx|5p%TTLH)uEu}D`} zv27LO2^X+m%4X_v)V#%XJ^v(^pz0@=|Ag#H=y*mf&{WWrY~+TA$(K2<894_40L`Hf zEt--&&krmOu2r+FpY7&gD>)0)uyns_Rp1u@{dw_@U+b_FkLRO~(2wY!ecblSqS93- zS~(xj=D0-m`zPO_97R9ms`m*`3He4lc+S63E>3CuHYo59cPos|-Jltn%nN9J`Q4a$ zdluwz=JR>QnP@Q!^fW|Eb8#Y4;4(+}(W8>n;HclUO1ahe@*5LEQ-V34+Rm()fh;Uj zJv zlr`eHIQ0~%4AIwn&wtFl-ZB)V@F`3l$_f2qe5Y-=Utl$be7oL=-( z9#m_x1(x3UUOGTbd7#$;!v#Or6KP0O)#B!)ec%CXxCIm#*!46=9q0igV^fl{5YMpM z&bnzZy}npYCbl2GI*FShyg!K zXCkgL9a(kKjKblKZ|vq3k*qw=P3)&fv*W3e&QCXz5)ZZiqKQ3NzyZ`|gm+;aiomaZ zlhj43P9gO`udji*fM}lcGvnVWbU0@tOJiaY+s$W=pC0Kiu@Uk;!S<%nM3Lq8#3>O3 z;UebAIy5*pM|F_{8UHUUqJ-#qjRZayFX`-8y?8V(M%f2jpdr)9a`R>JZnxtj>LBs- z4y|oWI{tef%QLEg<)9l2qBKzFKqjp5t9Ve9)1(J%+bjlfs*(A5gYt%@7pBW~i6Ic3 zf6otX=F6hVl=nWJU8~;UFUlP8L?iRK65iZ`sMtu#7R!pC4Bp5l3mBIYw-+y&jG>h2%;nkSj(=>X#8jXJBpig zP7jpqnzZ-ud`;4r9a&j+Uc)bnnj7EW8=(FfbmB^~;X)4LF){%REQUu2Fy|&(_19am zs17|S+w=w9U&>&PW zqiNRFkLh=Bt>6Lj?}2MLN(zn8WNMD8O0po_!4I4XoKofY%5SS>?;!WR-qqL?#s&Nj z&D3`!PnaKnAW>KPNfU@vAo^H+*|TRg-r<{~W|_wGcsZ$4qQ#}b{z8wN(p30q28FZJ zD)7&0D(i;#8evF+_Yvr08STD8dTVbue4f3)pZLckX-DrCu#G?afcUHCcuzaFyS4(*^h><)GrLqE}6=aoKB<-FwS7?R`>%re*`7| z|0@=acr{95L5<#XLz-e|Ik42z$P5=)uAZ^hwausc24I}Nzl4niKvP?Z$SB7wzL28^ zRT`0+vjR6vzbcEQHx!wq-HNfnYn?z+SEor>J~?Er(NcH(JpIlus%_@|{PufIe(!Z1 zT}*lqb0pAvYn+}3V5K#lxKHhF<3~b{attnWorj$hw;2~m?@U5!qt|OcezFu(7mthx zyZWcnzHJVnz6vzAR@7>%Q4#p~k)J(6yZCh|>6uJW0oDf!!Tc-K?~nrF8ak7jkC6*v?adFP@ye1#2P!~RSEG$B3=!BBMTsL znJgvaeeZa^CXZ7kfP_I8U@9O=96Qj%b^CE)&s%8MQr6EbGVfWesQ@G}MP*_z?)#ZQW z*j5_%kefSr#^&Ml%Q9mfpK8O|{gSs&>8oUqOjhhtF;B%|pflX4x9W{zVuqXonX8Q$ z!c}cCQGmPa*^JPSyq$F~nocGDNM`|#M!t|@IF`Hf@~+$=(`MWmq$vc z&hBmbta-z>)tNSk+++O49v{q`lHZ6N`h8-I7a8v~AGt*(M2|jYU%X&716sguiZj(^ zhxFdxGht9{sxa%p2Fi)rPn9xHFvPSo-~H;44$EIv93GzNjn))?h%bRaxoIZ?MWc$e}4zJ?kT zKT(TNXd!HaD0BgO9Zw9EAs+NKFjvN}V|&B@?%AW<$I&n(HuswwYn?e1jF>R8>&JAv z7>;5wPOCoLSa^f7Yu!bP3$iPZWov|Ki(5;BWhpk3idwj1Plq#&-iOng>OL)e{d($% z6i(Qh^f_ZtfBv1!o&o61hhtd>)yvi-M1)A%`3OMlgecc8jBNI0h$I~)F5HGXKI6Xe zkeB2aMcNrXp@V9gxON*k3tT}BI-RR7@oJyme5>g4cyN1Sx>6N>N9M$){^2L40Q z0T$pVX4=BM7jLF@x?{BW4*~dRmSYlx;Fu-?@nPP}6*E_{0iG<%xQHX4Ekr0IX?$p& zWSj<<_y;lY2ZS5IKkS5ANJJIQjCY zcX|lw`SiY|w0}PHpBRn{E{7*EjZe1-O6Kw5YVCIANukn58q1f`AlixK_s3T+aJ=vi z&>wtyS06Yti?#gqzn!EnOeSCJe4C>~vu}kGUR0&RvbPuOI(lc~DFm@zAP8cGM0axz zf&z(jeua%hj%|Ab*hVx$joj&*sM+}tl=fYErmsWuUuNd-Umhq@h4Xa}6NNh~X2<5O z@D1obG*PGx>unpTCcWiT_|Bq6MK*D-*Dr>wwc`<{X^&+B#yJ9Zi%K1VXu%DEBWjzh zwWMGn!Hoe!bDKvkof^VWdY*>ZdZ$76_(8>SL`$Qkjhsk4Y%OgHwMWH#dBZmPVcQvKU@M<5qyIe|LTf zQ8_|L0?iaJ_;5K;$jY^-#SJaISaMOtKKUrCVzYlUs*2KJkvH*eAD#)bh1qn`4EH6< z&ASCl%5w(S{aBMrVl$s2`XZ1oYVI)iTB$kbS5yzN+~U>^Sk4*Q&O{Kd*;jpX^Rcc*LNLd z>$&pmSBU{*@`fP19B-)b2&wR-JIlpC#dub)u;O#*LZ%C82}qp4dkTMB>bnU0yG7T$ z9N#f>dxa(}LVSi*0kp3z3@|6{0h` z1`jxRy78pzAq?0Eq!A7|XCjh&J4QAxX$&JH$(Q4ht_Tuz#NU3n^8AbH2vea%UlEb| z4TJ+~P9a%-IA2ep$%r{KI7C;Q7K0gU?Lt+SM>x{4=tnJzFHZ6`mn9DGwh8%Cj=M&0 z8@Q9-X7}!;p)7|pXnL$1irtiCG=0J!qQA+!Nf*e&?-tjNTGiXISoOmFWhZKFN$0Ns zz|!&0*mw~(-&?CDglm><86kA;H2BTw@^8k`Ka#HjBsRB{y6y;yOwt_iUKCJOe&+o^ z=or`M@#HNQ#7R;HLRl*f-975LICV+U!Rs156jE5Aw#|BL)ukfa%tq+XHwUkzMQhPn zmtM96DxWb1ABrswS81XXtP8WfB2$#T{3d)D8eKCh$<=N{IB0ug5b|}56P+IadeTwm zMyB%*5XJ6WVXoC?If){fzq)gug#%Gw4IFFyo9NUV1N<8;%mBjaZ9B6qlJA;w{B54v zzh}Q#rPs+D?2Yz)dY(B0-=lGO^Y#XcqbDpGyNN*=gYx^tz;Vuiv_E+v-P?qr)a(;u z9l$B_-6zcLK${)Rscy|%)R@2(38AhYsK4+H9`OQ;PaQ%AHavepiN>?5HI7DW#HIqyG#$nOzq@k}+(m)F?^gPa_zDJ2k{@R%Zle43U}` zd(sk>$FyzHO4};F`aZw*t(S~;Fz-gIJ6+?FGrdG;t7uZt8kh(GaQNJ|%L%z6a40Qf z#19%rR-b)luxrtg)U_I0IAM%_gn8Ls9Gn06d zko(?Nn#dvfg^O7~u6QnyY+$(IElkOOtZ)J^ zO&E}#60=%u0`d!!E3mT%*Yaxi^o2C`+>|nheP{k|>A{tbp+pz1=Jbc7Iml_=^66?K zdwBk@-`0}2>F(0D>E=EeVJT`{+iDaJ4oR~n*W*|%<0iWf@H))7QNvjEpWE$82P3k; zUcsD(&1Izc`E;s9J5W*d7A*-q7}0%Y2sbm+E}e;@4b|xZ4zcl&DOGY+#s5CeT#UN*($otYe1hnWcWVpglm;iN@$l7lk^CMVe3I8LG?%m6u-({MU~P1KUn}T zix_Ak1=uZuI0c|qY1dA<`DaaHWoH(4Uen}W>6gAQGiJB<(c$7)A+JURnvWq6K3Hk0 z<&iC8?gdF9nmkUy#^d=NQMd9T3T^)$!&#HMtNl?msB)+=*@I=*Y=3~#*edOKk-v}6 z8l#_&)FrmD$cOg$7WAe=MY-n}vpi0&!PbtCkg*BrECUVuX6DH54@_erTriT21mSI5 z0zw2Dv+LQ{-lfvL0q@2Ag#G!0N^TwKQB)KcDW9Y&| zeP^UO`J4W1llEAk<23=sE?MB&`hhwyiO5^QqDUQBUO{69QrvV1tt-}tbf@>j%dO@S zI$GP@Vw1&SD7#M6`Pmg!P+}wR5Azo%x#fU&7>J08+O_jt;KM7IleG&6H`g$78uI=b z;Tukd6Nj3Rq}vO$bS>l{0XeRZ@k*sGMhiFEV0v&9{$RGRxP<===vV6sY-pl zDeTNPqZdZ9%#0TaJw7CraZxg3?#xz8euZ|i!oT4VTN5223ph(NH0n4z4$mom7qqA? z#_8CyDKyqL$EZ6Ej;An_?%VQb!kFk-PQ1kOJ6purqFt83jH$)AJW z3BZnfkfcMxorn;c=gMW1`o&vb+Z5fcG}~Pt?fyh8>ZAq?ScWQAZIV%}uCN-RM?`TY zs=-R3s6NvdE%!Cjq=BR})@4M&tMqEX}o_su6 z?&>BN^&}GI#-Z?=IF^ZI&0x>Hd3;Lr6@&mB2Z2!_;c}ypxoY1sFh+l2Gm+((% zCPwjJqBQa+Hz{6}N|zPP^OGNxM^2B{nVKulB$@ckJKD3E11F#5e$B?jj;L}u3UsD410)h_@X8Nw8r1XP*+4J zqpn<_#|1dVBGCnykrYd0wkG_Fqoear*Z=%H2GN`Ecx$lk^T9i~FDHGdyPDn@81TQz z)kLPtHy{^ZaYQ6`xSWR04!oo;D(vFi$y;M;IXw7VL)*WR`v0_68X}CPh#|us!63;! zldkmcwyv%s-whkW?9c8E`TTZ)D$*-*b99|QWpM+Q99kWZla4Js-u{j5ZG8Q(=_Y#_ zs?*KcNDs3%_Qv_TvDmuZ|KzwhcoUC?k);=XCg9s>wMlIY2qV8vDvam9MpeJtwWp-~ zoR*(l&$b)m!E!uHJ#CVsz-lh+fy;-m5=T&`3pCucQA3Nfn0*wt9N0fX=%2G^vxiKh zQ%IH9epcX}ini?GIUWm{kv|zL_?|H#f5I9&LSaA0IHG^*k>+VbBP!$eEkG>M%-IC# zH`zqd?t_<^EprjH(Y{DM3Nqv9He0(T;QDdXB+R?~(MgN74rJB`*k7)-y9>{qK9Q?Bmk`p@;i^&Xd8pRzph*iWFbN}e6_iV8ni_Z z_sV%*^;&Ax>VS406+JY9BO;wR2y7 z14;`8X!G_%Kh|>Y6Qx@cN zV;$7nAe5J|OIh|*-YvX`e4CP^p{yC_w(PR+*>){1+pk`H-&i{YwLjaEr1M{dGEqi< zJ*~9l{7PkevnWP2yHU&Mrbpa9Bf2i{A?w(qdTBUM9mf~I-`*Q7oZQnahr|y-m=R_= zcLdTQUMY2rZdr9O4^eaj+<5%nMA20>djHuyQ$A#I+c?4QBHg2O*Q8K{Q1#$bYaOD+ z8hs`1LI@BM*+OTKtkYdW?He&VKch`tEKfwTVXJc;E**Gq0%ZZzrr_*EBossySxq@F z7QSs{>^L*FBjl+^qPHDu=%Kzix4G$Xa#px@@pNOKigoMD7b{I!de{jrtreR8w`=-| zqPcTggn?=+@}DOC?uNrC1n|U9uGzfU8&a;b<3TQcxLWb{htGrx#pD)4Y3Mf@5Se8u z428ZDgI-<4M3r8T+Ni4uUaH23?JKRMmRI#QnbIC)=!Zcr7y~*c3b#Pre8IiDC0a;s zJ8O61zVzB6B4n1IoHH$<7NX|{bxyutHb3`z{c)cIB?JiD>PPw!TcGawWMH^Z0zZAD z@wle8_@#}sG3QzE_agI?>d2v*uB+splH{q#@}z!{J?wFM_J=Kw>RwZ2TYF!b*6#jw z(Pjxf``82#bw90*j+@CwwJc(6HCYK1dbEHdg%~Ei2y{)tVr{_IMXTjn-T;)mB;+6J zzZWNesLBI1FkYoI$(|%=iT9WK^I}x@Mbvbivm??{zQg zD-Vvh8JgfAseNz5cF+FYkPmx<<(L!ds&WD+zvPGuMz9TVojpB3>75-c%>L;JTkx!D z-*QzH>c=Cnu48bAP!fB=_%QP73fL;6U20HRNwhLv)F$r5xq#!l9aZvKVCp-0CMv+j zKV0{$6xy+8a;yD{Db_tu@9EM@2YF*{OHxDZS2U`V8x(i2R+mKbRO{DAt7)SV864|0 z8~}n|KeUB4_WEK3JC+CLN3l27U+EPc{a`;Gsn0!{&8+o#so&fL>ux)DXX7z;qKg+X z=%g4HZUe9h`@~I&_{uW}Ql96#D31L;{I38x5m_(cIwPKdpYkN0SF4cB*5>A0QUyj^ z(;9L96lTG|q|<%#;hRAB+h;UprdbnaSd|u!%W+)e?&PM*>^Y}CQ#%Ya*qt*{{1*(w zoL;{gAWBl&m|{!WNw-leIkhHeUYwVs4zdW_&hr_SEaxV%h{8NRGGNDG`>NR=n$05B zZ8HP#ZCuplhOTifD;))?8Q{b_*@*It&v-S>iCve3z&3e3zEfwyG`vrA6 zWNH?l`z+x(COlor(C}k~YsndG4)Pm4&7vQn zy6!3`K2@=vrT#q4?tC`gUZg9YBObY*mb?(VW=mX`Jf#t`{MTOZgL`p}^Bx6wQz!%A z;Y_evK;w$t=Ik{cLu*K=eg|-kkq!71!Iy6D6FdN#(Z-pngP#Nmm?XL4L}r5&Zl03@mXWDt{~N zz}9QX8N7{i%@DCD%Q3d4gs5~gU@TIuo%9e$3dCM@(K4k6JoKP=7d(%J6LkJjZAgyoJs1YgQnZPT|+QZr6Y8p$UWHKME0YkG-X!Sa&@#>Ow5o1-9ba~l^I7m!DC zl0JY7B&@lGBqG$GB#5Ox7K7@>@S!5PcO!sq5nxjY=0bC$3gPJ=*af7F#?m2TW+{s^ z>Aj9!IT@XKl!KU~7<~SG#cwcGk{e7c_WPUPpoPY91OKZsNo23N4Jku%Lc~a@WTvm{ z=~c~Puoo^Pr+fJxFTNw2w>MspnQ8Er-A^_mTKJ3e=CRJV4vbXX5N#K1QuW0fe-??` zcRkA(k(GPK-;PM%0r`+sJl;K#R`}k&BM>`gYWyz+3-m$btB@K|t{@OR_EF6e$oVb& zNo!jMPz3>Olpiok`P`oRECR}mB4P3c!6A! zLk*DLt9N4vS*M9fvCEH6d<}!}0YNYFwXXLH6DQ>!!^{y*)8)VB**D*7B*%hwHMt zp8{f9wy(2b1TKg=m#T0Wf{&(Z1wMp!;#-pS`HpMk3BFaba4XnNMgjYx5u`VK50Y=tj&XxzWl>;MJa6 z()cAl4LKmPraYAQJ-9>HvEI~W+cm}mwA(hcP`@$x|HyjlsHPt`?i)lvr39oTh9DqP z0@5)RVM;1Ur*w=QHDH8@bV*AIh@fp6mzQ6lC_c_mb{@KpipWCj_ zRqyNdK6lF`KjN;80{E8?yoE?#KF-ux47n2~Ja9KvAt+WYmQ0`njxM)87Th?zLhVhd6K>rVoC65MPYc`tuG?nzO0Wmy z9Xr`^JI4<=r@+cQD4SkwEg!(H9r6df6cl0Z>Gw2b&ZpagX*xf>xR8zX;0RPg;h%pW+kWo7U0gXOGEE z_})e_#6ufmy`mf2W&~cItWbFXQ$J5(YjcXfEnk?Fd&N~aZ6gYI&Yh#RV>L?ZHcV;{ zmxYrHP8$y8QD3tA(twm53*WVr+Hlh9Oe&|Kw)Dhl|1nA>WSI;zw3#2X8Ei$`U60=D z=Uz2mjbiQB)=He$DZc#`DeWK55wy`oORbvykC#b|>&9H?`GYk^WT@ugg8{H2>qM(# z5#w%{3l0Ba<{>q@a=1s&mOYE8oK_ z5I!Gfvn_StF|5f#`ZoViwG?LE@6&E~T(opcA34ff<;3J81g8rpYbpHH$6QAe(|SJN zDYGk9x<@)Z3mgo}iz&6+6Z(mWyqIM`_3G;N_>f(Sq|H3jaAo>jn3lwAATnw1c%Pe7 zG!go|4Cb1ssB5dzlau@j5A*A!h(g+YYXS3)mAZ^eSfDF3=_}el^m&IJyW!7y1qc5e zZZ$((aubk3N?2+7QzmYyJG8 zr#DF3unBjHnEiV&`uUGxPf&ljqTK%!jtKG4%t<*hDvO{MuIq^7iWbT-X+3n?sYtep z-WlRlQ->IL;iMVqg^-St1iiAFqzM?Q0eQnwp+9m@yMSO{8ygFH`gRJ zoU?aPya)t>h7*}T(E!DRh#^3w=TJs z>qNW|zZNZ4vR66zm62@d=+J1-H(h+vP;#9pG}a{Dq{ZKqfb;Huj990BRFODYnvZAV z*}*5`i&9iXSDibr>UTC*MKYr}7KuCFv)MHwhyIkc=pt{k{O{Q4 zSZ37n9F7M|Iit%~Z%_112@?VcHsytIljyUv0bJq$@imF^hknvQKvOHrk{a&8=7(aAd?Xe_C2n0Bl zT1|68H;0^WnVfFFCjnanQj&lhq4zROMZ)*zBx3&H$iH?C(EzmcC=I2fimeS&Y$#XI za}hQ%MASl?X}iWlJQZ54e@qQZyQ(NX|J+*ipJ%3qwW5$}OsQg0jR5 zAr8icx;rn~TKcQh(+dQdfCw{RQrB*wVzOsg*3^{~yEjq`|3FM0CEr^dc48EJ4|~FN zVEbHdO2!AX0L{kJ-e~#;hAm%Zl~tkZNe_2?vI9#`F#4`ggyY z3rggJ$9aDJ0(>%Y@~nDstG)Pf`i*_QV?w7v#l=f#t_IaL3-GT%8&hY-KQ9_xiqs-1 zV4`NSozA10mOA2s5T5aue$fL-Wg+>+8(gRPE>^&O;Kq#}FNQ;6)LZ~NCj2PAR%KHA zrSmrPSI3O=B{Xt7CU+iRbM!dvzGhP=k<{#&07>TOEtWUeyPB=B7oozk9klws%bTaW zB~D8BYV~%wX$z<8P!#9AXIT&Rv--#1t7#Wo^K+u)BAL5l*`zx^jej>eZOV-ciOh&$ zOoq%#89R0o_ihuv*4b3*B*Ct$3-#GjK)|TUz=O|+R$OuaTYc=6xy^NXRQ%sMqJ(_gi#@6!H6tfLy0OtS>t7C^ zhz<1n8Xwm`sH~Gzp=GzD^mCAJEgz4@)Dg^##iaH{RD)2?!DVek^cdg8)gA9aojD&^ z5lb z)jVWniYew=tNN_tQZcKN2(7;j17%x7Wd8#?cw@9-#t)bTq0Ge75PP!g>=5!_5t2CmsjhR#VTH_gMY0 zRCY-Cayl%wiD%9howbUEWPbNGoTBSuK#w*S4vuue)WLGkB3u|3g_o1CO8fc{anqX``-L5lf zfGx6?pWt*hVN?0K#2W9Q^hvnI-7%T0P+og1{D7zHx|InM2{Bc8_(QP#FLo_{5yH3l+rEnnr+U9z zZZ#6AB!J(9cy_VsykPUrZgZVfZA$OkcvtlpOSFdD4;_hi-Pfu&KUwnCNOFvL0=%WJ zI_SNfCX{jStuA}w@1bcIhW?u&w_l&t6ki-mwV*fgFt@aOXs!~UuW*H5!j^)vS=Kj4 z*nW!Y;JA6kAvz^P%S!8Griy#Uq@rn?b!vd+z&=}1eo<`jbr%^33 zEnnD_{}TI1h4R^o3jT8D*B;%dm+GAcJVsad_EKBtfv*FtqT#WJ{{Iwg?U927y}h#X z%64PtmHe=s@y6XSQ1}4ryr8uD%}+`Mw5BuEE&NmMjG2bM$R|D86zznbM1WBC%jMuN z*XSEw!>*;plz)CO!{b-%0lHe*3-WDd&aqF%>^DS>&Eh!^TLEcRqpl@$Ro?0wym+g}{J_i@F^ z6d(&W%_$c~?(!-upQ^M3K|Jz}hFmA2=5=)K#)+e8tPg(uclaL$ zx=S!J)O+)@>28Pc9yn1=iN$aHr_fgZQDWr1>kBt&Pm?=g;=iW1hhF^7i{h$?ibOYN z)Rwv0j#$9{rt)0HrHS7sIsQbhP4tY`#q>oVS3b%6YK-uo7yavx8&Y38zspQPHL<~J z*CT}aE1rDw0|yszMas{bkgBAch!Dxn%$XRV{SXaGGJ|veJNaXPKC;2$X#OL~>8KYP z!U6x3SQqRYb|D9{6O8Jkmc(&QO>4MYoElGHzdd_gzM4P(IKi%W0%h)7AprW8sN8B1 zyqYlnm#UX>NoTP^uL6!u;bg%Bl0=&vI+hF+0_3HIaNLevnlo|XUc<>+@7x-vV z0z8%kf!d@(Ql$=-_EJGFaIl=SKmL%JfJ)`eJ0>^fi`GsS>-~9GJ9lYVcrGT8JmIfW zP=S2X<(QKH3^DNL8={N;*CIx@hi##I0k_E}Llr>`C1W3y3tUn^2wyvpDCDa zgirPfxj5Tk=*ir`&yX9GTN~WwPAe8JxgK4PEWlS?B$&jsgf8%P&Fpd9`w}oDUmini;62{qnO*;^ zS@|7j1mMRNl%9BTWe9$^DI3|GB|YfqkqmU~cN z(>sqfb_&FEjG7?|(mm4*Nj1>TfZv^09$Q{K9&8_^1}kx8aSZw^Gt(t$bJ#ta|3#ow zx%5qGGSB(^K0Bz5%$GDvoQOrxVkggb?5v`SjFmRGlQF%7aAz@3 z^xlfNuCJNs5MbNds8+1#;y`J5Svy_W`P*JqfY-6&b854%ca>b%om&XV^0nQJ{&bDT z6DpT%R2UHAhYtPSu|;@)5C*)3%pmc3KZjP%-TWSg>Gn}U!Yg(K87I$ZZJF($o?elegvx+Za{kfwt`U?A zZu4+$>m<7?x*0=U6!2@BK;6oNJs?$0__tOtGL(_Of>2i~Xr??Z;>n<~WRkryddd;A3T zRG)?0&t)Ps`8mUP9-*dgUyVY!L-EE%;jwej}ICQ7ao3`DtRhHK+qPy+h9ic(TS#rS|;>~&;KVF zf}B~kZc>9aVsm0d*w!Hhw1}A6xH`-3!$uZX4FTlq-s=V(epSjSd^FT?K9#K(46|n$ zSgnXQfCM~6;6)AZc8C!P4hb)qzQsm7BJce;tgPtBBpORrO9WYZL^<&g=sYIx@E)ut z9r9;$;M=Ifot<)d2Q4z~dGEvgzkC%8S^GuRADI?DI$q-=L5?DSAo3Yr48l;s?8}oS zh_?sOo2YWG8m;Ute7SdTz*HR^mq(%eMNczS+={;?=B)7-6{QIg#cvU#8 z-<`lg=@a+d(dw|6G5^j=^_j?s)`cGZ`@LtWwHx;d-|iE6BvvhTs{86`C;(0yvd)Ba zp$Tcqdp;-p>P_fG%G|#>%Of@q4Bd&{@y=+fy&H%B zZ$DrM-hfO9IRmKRb<*t01dV_DG|T1+W_x6%V&D80@H0qs$^w4>PNPs{ck7z;u(fpS z>e^6$=348=JvUEi)}>@$uMzJ0HB*ZgewGYS(7y~c6Ts#OpKns=yQjJ1?w_+O+cCBX z1>LveKk1I^4!QsK=ziwlnu4RYwRAP!z@*%SgpKVW6fe}X^224XZAma8{IA{>v3<^% z(B%-=KuA>`e7@J@;mA1gTiy<+?KIf*$2f`;-7S6;H?kQm-afkaGkbwU13Wh8!-}d6 z?>VVZH>rlN{a%t5Kb?E-HG+f%`s%v+EdP-f+HhOyzz-4u^8LTYZ?jt@J}0n9OuS6< znt7s~^y}}$xSZ(i?aJ^$)!4qQOjVWK(r)r6%_Y!s1E%BXjuPj)0+9DxrMJ>W90a)i zDk7za?&q&20vt4mDx&i+pW@I{{-x~=caRU7PafEg7i%C3nWe5Ki?F{b+v1hA zjvF!e$BR5oXY?2C#3V26cgRd-1gioqR5JMaxbt2UJp<`k%BngE7mc+M9t?p(PUBiA`pNm+yABwz3H{Nf^$ff)QbvSs)1BuUf z#<>5bp)9XwQb<0SB6Ss_35E~Cy zKu5e?NS}WSLM`W`U=88ZzMYDxbO3$Jgg!scoGrCDILhsk{oJ^ZJZMu)gkRTREdawQ+p zylz3(YJY230cx~B&pm%Gef5Nod-mCl)eCc@q}!nlPai`Q)q`Uec$HXFi9eh^Q4Tq9o-b{1}QN-a}5mSG(;ByGW+ez|;2x*3~eMHGhj@E#FeAmFIw z8efroWD74tYa3b-bn|_VaC|)oz!mWkWmugH=l?amDprK>gm@h;6Ai6^?K=i_+f%Re zOczMvgygGu0{vbt1#D!L_;Q>HO2z%)nW=n5TF2}3F%;S;9xL`pGBh;lLA5gM2xQnk-{m&o_(_$&BxRh!D|dsZkUUK3^|dCFoASx&wjWf zm=YV+PzZp?TKZ~ZSt5KRPyHMhgQ@m;*|V>Fd`@=?tT_7>eDNm*lDex#K@j57);s)D z!V~n|nYYcn8oM7%(`7Ek`B?Vy__Cwz^WH5HXoAld-(g(LM;TCkl2Oe3LwSsbEbg35 zMV)R3!jz3+tlKBQ6C`ptr89m-9wO1W);ZJd(H7(m)m>z3qFz0!)=pEmY5geBXKGmyA@sh73e@p)?9mDl?6zwZ>^cST8B z#*RE$PL?-$V-&m&@*BDl-!7!BQN*~~ixNTnZf(tBFMwZB=O!XW?rv2MBaMzk{VT1< zJb|*l9}gttYklMlII<$eS=`FkIfsl}fc>f@t^}DgKAH>x;;WTB?FO;iA5RyoZjI-N z1;l2ogUt0#ik#iqVCdu1({oH2)RD74IJB1V>zCSooU|~^=q)%qC4EHGF|}{-<&3g- zB9e10V|cvbk<>6tO^s>957$%3;-2%Y;mS)6fd2sx)jc~jg+r-p*pq{T|XG$>6MuR_O3k3R=9~B zuVXHwLwTIBF`hhqzGF9sXPA9p#N-1R?%W3xi^C ztk?hg6nI~Diq%Ac8vg0px<%?Khx=x?-FM^C%RQh&;94)(V$Z)&56Od=f~^i56R%rx zO|4FuLQ6}ca%AfIbOWJP!Z?Y{LHYTZD=Ts->Eu{yHmL@UMGI7Awg41vwD4~Ekl2uV z#>23JD!QQr5WbzOD=27#;wSOnPJa5w3(-4;95te41#b@|anVUNj$QXo?-zxOfgh<9 zDXmE{IbrrHA^mv}J~nef?h;~Go$RqUdhonk#&kW_lQHw-8f#Khsm9m_VxO9YY#ya8 z)K0cU;9?fUWAs$%)2kv8pz^cQiKnR*{6mAn^x`u{8wXx?O;e7p{k*lDtxy!7M-%Tw zy69XCSY%7&nZ@&&X$i8LJ~wW?p%+_EUX%_<0=9xfmF_$f5Cb$IG`uWS7QuFP?!Nol z0p5*FP+%7A>!69R)OEhnza>umqt+fs;Fz`jdrp;CYy3FaAW`qz!!M(rfSMq;9CT)C zVJEk705Ih-gK5AK{T|e&}s}Q<0}Pr74Ml6 zp7{9OBsmgPsIiv?K!sbN#swV-$XJn8)2W5 z&|b>@CUJgep=*=nYq(7T!(Doe%iZkjPLc*(Es6*F$?iCq7aEJo<|?!t2l;)CWLAlW zyd1N#;u!tno!#7&OXy*&J=kT zOE6a+kwP-1>h-wrx{|6mCjkFop0$D|lFo+7bgoWzzUCHp1Ft!`uG$Dzp8D<|SIw~P zQQh#G$GWX6u`lH~oHIH_Z))6u%E(=PFa?}rPcJ0eD$2fKy?u^O2cD&idj6kch((`J z;QI~Y5MqB@Vv@4mf+qoM%?RxnW$pZJ;XV9E?fm$0T}+r%<*kH#E}(py0o;a+6b1=* z^b_w+0yqbx&c%!{DlVD@j(`D4aU%Iv)^6Qzwu+o9eYUN)NBx zz1&XmKA-V1XmW+isHySHhzgx=x2HGlI)@{)9c@6>=RyUC5;+GI=Zjwaum9L^eK_z= z=&a3HQ26s&Ub0t7HkUS7>vJ0D>Yf)vZfOrkb|L9d(CSanx4Lh6z`8!2K#$Ka%c_Lx znE(UQkPLy-R{6PN)q=D7JyK_hHtm*AaHBfCz2b$(+QrO!@fS?7=;XFi#Mf?75^Lmf z2W;W!c>X5os%{d3dyuLN1PU?pR_}C;WxCQ$ZFnahlbY2NcJC|8&3vyV*c=Hrz&&S( z{eVbRk}@n1e}EJddzIRH!!_JpSGFJgDVQw)v$xX~P#e(Wpg}Os-aYRd_cs<+HjP4T zHZ+K*h#tCgmLQ=$Pmno9oY^N%CF-A~x;zB!EI=KWa~@y<>Y1$%u53~#{>c0A*W}(Y zbkkUPbRj|2#+guCq8dP`^`)`5N=fdn<#_rL-NVNhlz4l3lrPdvW&u>kV`+L$r?9^29s?{YAHhdIh>f zuU`^_f9R?pXAUvv&w$Uax7<+5~qcqP?Bh)0f+_hM(J8hI=3+oLNs=M0#jp>r53vmh0rOVKsGuPzq zY#2l73Xsp5;faR|&q9$rY5A36b&F71+EBduVEKC3!gt4wLH}?E}yrHJmUN^ zo*U`5uX5azpWl z1i^S82CZU$5Zgcd7Wl%~5VHNMpGBjzJNsAZPRlBXhtO!agqHoinT=D@;YZC8CoJVj zGy%T*y%|G4H^fR0tYiVTT(zm)q(kUriTZW3Y^=-7X<9%sm3E*lRTBNI@9riP{I;~peK7>TC|<^(Jh&tTHj6SDU{9ZqTXkC9Wh^XKIkQpN>yd(mk|0< zd35Vy;7~qI{!%00nJJ;xXz*q^QZ~^~#oP<0Tim0#wWF=elSMki^ukh2-R%%NY^@s# z8Ox{#93v)Q8MW$WQ?6@}1u5)l(74KA33YwtmpzE}Kv}ofhm%6L$AHPA!?x_@X79Ny z%1;_sYcJDW%rWo1W)J={l7q)y1{=C*+|TKvLWiZR+HiPYr12({_l!teHq0W@Kg^;k z^bueBX3c!Bwv2KC?hQS7-`v_IK3YVo@ctQ$nhib^U0?bvh9vh+L$MmW#_dt)&JIIc zI-4xi2X7o7f8tjwrMo(+{c4X$W492s|DLt<9RAy-XEIiY;q#@G`~DgW+I8}5F>YNC z{~Jf&k2+Sw6^}`SODmTKh4#eJ{pSPxLoY4*I~@JmklZE-QKSiq5_nUPk*FPO z)Ci=;X6NleloeI!OBMfq4{Q5r`-*p#-5$k|rGaw#i$2!MtT>gnTG;6DwaQYj*2!LN zOUfeg#|*hHFe)OzE#yTRml%1iOh}4r!4&3Z$}hnPf@^AF&qS`-0&_N_VU zJ>4m!zGzTIux2!Da!_u80KIcM9)RsSz0d{dgCm_y6%|L=0{FX$;Yv1-PxO8?X)Zg9q z_e7bSn#rv}E(^DpdbP(H_WYR6+c6z}T219h0KI{?sg(uX%)tfJh`Gnu>a2Dj<@qaD zSQzw7Mjrf~x3HL*V%UkgDt2Y)rE3rEmJkDB6qnjihIt8!=6s= zm)fz!2m`53?F*N&R{G)iLmj<)^pfpd} zeBeQeh4uK=kPml#)7+uLB@;IJ{^RuB-VVKvxO@hBEAT1@NPVWGVNkqRHzQSH#&JWq zQR4xkHQYo{Nza4z&@cr$R`9WVpNWpq?R`OSj9!S-r^%H7sDTwlA(J(0c$fZUmrPws z5dkC=%jImg8+#Z7Py7UmXgDZk9~%U0k4Y871Y&1)rSL?y0!;mwc#-YUy2X z^gj?`NOLumqlb2Ml-1Z7-K1&5&%HYrvy8qz3^u^rYvEbGcxXfA42GqTpOC~Y_+dsH zOkIg5{(j008vp(#(V}hTp`Q7c#62X2*vV;cS@c_mq1(quLGxuEoz}zQlfRyhRy_d6 zbD3(DW1Kk(v%xMjl@A4nPwPE-T0t+)YjR?h8L#Fw=R0n_xU%lFb0of1O~YJ5(eh)v zh>9N{Vb*u zU;^lI?BTwHSvBEC%Ff6MLqb4i1dccPO4IFD12W^=FJ`Ctt?4 zhYnwDo@gJRkwP7W&*qs+quDTTX&ni$v*LlWm-v_MV7&uEf!<~-@)1IP^tn_fWM^N_4Q!^RqNG6E8EsuMb_xme+_uOFx|h- zZ4FNTNK2SVj!>$$4g99X7pw=zQJ!7*t=KSXOx5=PHI1#c4%d38O^tJzKG6TkcdPy~ z%IiaH&&8_XBhVdRbJiWS=4q0vu<1O@{JlF~!IdD7zvq4uC7r&#t)W^gYhur{gUR}( z-{DJvqnY`k`7&&adIq*!WYXpjOIIcn_vaxhX;lN08p!z2ec&9>Reij4G%tE}ILG+- zJzGG>v%YVSpG7*EYBegzGduR1M~kX?EJK|4X}Z*&C)4U*?AZx_v!0L+(n6(?at(eP zb9z5^VvkWU>{W<#1RH}Wj{ElRdKsc7CCh`DTQqNr_rxub*?~7d|eufgP+B$(}(|EKpMB_p=_Jhg?-b^}WVjRguE6GYSt@m`1kXI`kN1O9?kZldU;I-9muO^~vx?%2%r4hb3Vb{$F$l|eQ5`Jkwl`;) z_+7VL7h#BH_IJ~4O;m)-2PHbHOER6^r6h73rOz5 zO!o&&Q1SaQUE4HtjsV?&kBPBX!nYsK?#7h_&-Y%I9j}${IP>}ALm@_36X~bkUd9>9 zr~viemyC?g*|EJnYgV1meUvo!o=+*W&VK0E%of!i&+<#Td-WpEl6R~3Ksrtg3$tF| z;zl7mg17#T%*vOM3`uk1F|5qvg99P+^ z7n#ReVZyMeef_fxDbI6JsaNrlgKv-9!j`*a67*_xm}p~kcK0m9rKQ@2znU|kG_rO> zp(3}mrMa-Q(TOSe5>WuE+kJWoC3;sjnzf9d(Pll*lsbeG>pj*cxvZ{uX;!^mS$uB! zEvaY70~XIbXQshN37d~+O|9$hkNjP|-AL?jH}0Osc9Tn0ZmoStLeZy(AlUaJA0}}W zRc-X&OX@r%8y%rP&JwOu7EDi-dl}+U>mFZ#Z$y5)*dKmA+-=AFT4^JZ$loie>O#hv zyz4GaSeu^R$9CFl+q{3=Hp`k-wEI3pU;n3PHWFLBso5V0gFfc=!xntVY1?f+W z^*$D0e+ME&cK6W6eR&kDl0BsY3T51;&itc5GIiO!S6Is2EZv17`%+NvnnF=8*A zP3Pe4Q_=J&r=MkR6~Myh1@c?F37L<%l2}5o+SPRGVEuomp7WT?jZE;lqV`Nr%OFq- zIGxiW^DFs<8p5yhngJV+Jhht(m;QF~X}XlAmOUU+dgsmr3P=+0D993~Zwxc`$bS4G zfqsmpxT^Yfe6aDy+7A5Da>ZAVMPKb?Sc8#YDTn$1{QqSE;FuvhR|RrXzhv#YVc1C} zX;LTW5}q?w8F$LlsoWIcjilV|u5)cX3ZN*MKXJD);&sZ|-uDoGB;0RbipRI!SMrza zdd!Q9h9!J8+Tpy#p%PFi|KG<_DU8fGg@(5P!$phhwG>Px<|3yhs?FSx)d*vdkY3Ul ze<)UMb&@LgQB{M+_hQdfL&G1pfJT%7OP>Tm!v4z_9z`?Vczkc2xvkO_E_}olKri0J%u|S6eXoGWLQ!Bm3|TMdInyQwlkPZ%+dgj?hfcR)by$m(w&B@9ryDt)Rljs-|q8f#-vO4B$(|F=LGu}%tN1j5RCh47OKq<%D{zU)~kx;CC zcMwj{aCx9-tgIsu{@6b)$Kn2-UMSig|W(6dV;YA5tn+PDyedL#?LO#x!~~9!b(yg*zUPYt!R+@HmB3tf2(GX}4-oK)NochnKHi%u1y~1B&KfYo zESm(D6t7C=npeF2;-O%!dbXH0rI_ebC+t+1hwfZp{9H2SsE*8EtF11)Ne3zlu4dW0 zN2cBlRz17VF4R^7%(5p6tMPfzpPo_%z73t54R@kXR)zjhA~NUSBNO_}{!sMz>1aKt z3FdRY5i{6A&G;#j zp4*Es`9_~bdeF)2_RbW5{t$|VQ~wL<7?8ZY7C2#zl;%AX6UMA8TqcP$wx60}Bht{; zE0I{lZ{BN&M*B6|@6jfyvl{bdIe?LNL zRI)z6vzL9|s$;X<4%QCV;zs_P+9Exvyr@Xq(jxhIQ{IZurchBd z#kcDmqg8;t5Ta~Whg1UVBl9V^7(UY13prd1-szYuz&wpxQ3G79#ZCrO$xBKSR~A+I z;U`qOg!D<0Xlia)FPBX3q{QV`EcSP74D-s$quD(rR}KwfPnKUFXS8u4ENc1?P-DMV z_E{W5Wq*8Keq^%@yddr|V^5S`_q6F`5JJHSpVl(8YNY7hPBmgUjW;MRhZ73T<+)f7 zLEZrzv@eG1++Au7l_BYWNLKKE-p zZ2vqcEt&{6*KAjEGp5ZWCeeTY?({ofXvOK~_}}i-B39}8dgdC=gL@Fe-Z>)7$xHRvtN;&t^t(NPZX%B^OKl!-VdRE$;eFoy2R!7P>Pv zy&OWJE4TH)>0#OX8nND*J74&Ez_EhsW}G)-6cGAve&#WvozV>Ik8>^cK^*d(F|4!b zM(LR@)N1Um(iW$2_v%N!8E(td0tZC1l^|lt1HS_FswLb2tjv)-#IJkLf$Gktvv>eB zQ5Z6;WXU55j1>mDJ<%r9lKHpLsXW|IXML3h6XRDq(|%0!HOX)4kJ~sek3wRhBl-Vk zpBs^5zhiH(=aYz7VD-Jh~BkV~c>gO`0;iyklxJgv8;}M`4*S<9DMPwH(X? zIaRWS-3#mydQ8ApP-9p}lirZgv}_rOFYJZOrFL@K@#Wr|IVGp0NTG_^r+3DHk}k~W zD2oVi&&gFiO(R^3)oHUzoUIf>w;k6~Z$MR@Jli_~ z%7%%BEEJ4$3EOSK z-N=9p3+=s$8Kz_3Qtcf-v;`e%c?XD2D5eNItPRRq#0N0rPR=zRn*u&h-H$~#vG7SP zC;AB*l4<)P{@Nbk()7_b(iz$>c7Ifnxqn|E^G;3gKB*ILn{Oy}AcU97D*6t%Oq;Si z3VMC_4Tkp9nthn)Jj1q^R?6K5g^dQC{rCC5 z$=vf?&D)U-;f4?tzJ?Q!wL>PB72PqqsTLO0a{{sS)#scMt4U&JpCIY4`?<|$75%4d zWChDP7o>U_H$u2X%@39wuas7c<+uJ8%{Y;@`G<|M+NS+|GJ3X>S&r`kGAg29&aTA@ zdlW%6G=b&2{grj2pHmlKREsgL>9p1)*T>N zcm4VTJ;<&axjQv!Fl0CR@r#>n;9eXj()tt$|2PoN6Pk!G9D@ka>+d-lM^C$~shwfb zWS%IWMH%zbl@`3+l*2#fg+dHE^svD6<_d|P7II#hO#tpYFvmzMhZiPndPbanY07g8 z@{78rXJGZWtLv?|<}}=2wPd>Gbeh`q#{~1URm^}nNSnY!Yz=d!iE9X+p?H;mZo=S% z>!2b<(qzYuy7_Gc2ZnRyqB#r*-aN-Mbh7KW`_f-;l?;q5f1gX!z&>Y;JX=Nl*WJLR zgywB4XKeI*jXI4_YQ7=G{+0l(<2)SX5BTMu%Z7|fyU=m&DG^6p#otI* zd~Ds2n3!H%H==%oRGDEF&bTt+YHb^kUi>alX&?gF;W(^4!;*(K!zd=bVcq=`!5uIL z0qo*eBSD!P$&^%6L-{ou!Fuq5l~zaL0vh%XG(3rwk;O-mQ*fn>wJ{kQ8!E#>`d&2b z)u8`}&tGKiZT3Lo_oSK}?=8=W+LxO#KD^N638;Su5=nySr`4&ZnNt zID9ErcU+taY5o1c1v^PYpQht|ScFtj?)CvVna&A11R~v6c5X_6|{0MYV*#{E1bMsYA_){s9cG+Y5djNX!(_ zXwkBAYttUv2!qi{es7kT)mU-xo6D|47%p#katxR$f5n5>c5x2%%bP79-;I+)J{`UF z8MNVD)Oj*$82zM-Sid#GHD>pHOO?8JZz%^4)@Vw}>_O{ls=S3r(~n?>4ZXugr#%f` zca#HdSR+chNOE!hlGz70^8WdnD15J=;M>I$zP)rcJBt0eU`4<*_+P)e2CvV}2z-(Z zH=mL+(|WmMb7E7|29OA3Okn>dd{h@HTDj2q$m>yppQX%%Gd9s_gCTnk;C%`u=UD(5 zqWf8TB4h_RV_aBWKrB09oK72NJVvC={jO@UL9**VBmFt4WX(C5KgS2N8o4vYdU6_1 z6}9!oJE1=8TcB#eweB0`p+x5&_)IglW${&+|Jv}3Kq4ZUf*oHT2NwWTV;yPx@j294 z;|_K6YUdrY^9zxKMDY)tFc4`CTQwNbV6iEw4( zmFr=Pv-%T8?-Oy;BZy-P2Hn_mz@{+gXx804(+!W+_ljDP>54}3(MzsBE_P>Hc>dG%OXbUhemS_aGiF+6Xf>kStK?*%cw(z`wGeT9^YyC6Ns)i(Xj$8L65S9Z z-QD2*%p{}8CAOlEyAJL90C+LYa^m|mOs5%&K^ZacpPM3;OfcikJ(fiaws7xY^_Q%L za$_T3QY(AGm>%ArpnpldYb}Dob>bzF1~kONzdw(LOu{Oo4)kvg7UK~2IH`6P%lbHV z>cZuaaUdkdD6;J{_&i}H_7ofMrx#zS20t}9qfc>ba*w31D?%ioTpGT37v)f@!L~t|J${Q%5(ffcXC0yqwZn@BOpQYkn z5~|JXRz2oIfb%vbhRgcqm)msK!mE(g+rJ;OKr##2W~%{?VOKFHc_?hMdHzG!uMwB< z7c8G7YxV&Mw*ZCeRb$p8IYMqoY(CEApEA%A>&M&uEYj`qLLYff-^zkF;KVaKk)Px7 zdZ{ISj^}ySo9+>Kr=51mfr02C`vy(T6W-rU70@-H0W!a(7?>I9nE8W0J&r_)U6zwp zP!TaYT|x;~IA*wZ79*Xpb2Ip6gFc;Gp8ULSk0ixQ?TX>8u(`jGvQhtI29V zkK*k8P-el08NAF8>y7+EuYF1`#r`d$us+BneYB^B%Y#FE)3f}zxo3Va1Lxe&L%isx z^VvI|OS6aW08<$0)JBqC_F@(BDs-hIn`eh^WNF2!=5pK+Dmy+l9P)cki{CG^tz_p5 zKIX5wU(=mlyhJiB@aWge%@dqPox{ zftYdec8TVL4LJ&9InoQ7Q+ARcgvxWO{lS zdd+Suc|CSW^Fdzl)n{s5nkR3pIyf=iA~c(j?n;QpeMYIj}hnjg|&+$b)#Qee>ovRQn3o!+qhRsGeU(HpTUEa5kp@0T(8nN20BZvJETR&gqB8t(_!rK0gUw z%(|DO$f(zg`}dMsvLnNtsVhkGr4jdDs!6SGHOx$7V&um~sF(Gi`+0WG`)o&YKr%i; z9o%mYnRkJ&{c>L;t5(=hsXP?m_G}aLtmOMW=^gbC9_I(Mu@gmJk*yaC#4xWIZ=QLw zcT9(A#Z z&rt2GcH+39?8%%%g5q%lMHW#I~s#cjey!&LQ$a4+3$qU)LdV^a!twx(y;xoDLI^<>8O|f;t zgHCIrp%2R!Uo%+_NMd5Y_r1bKP61f5M98!1tV-u7tY{vxvnA-JP2Zmvwu24Z26HCu zZ&bLNv~4up&xqa;qDhJ3Dm`Hlidn$VHb8f5L9&?#7U-qyCgjbT% z125znk4-hf-(S6dD!8+e>L0WkN7funr3GiliaYCro;4Y@&#W(;U^gwz%RMiLNYBP| z4hpp1VpuVsbyzQS2^!WLt`hP{ktrAhE=kSfcvolwB3q+KyezL6SgNPCk1?Z^46~y- z-C}zC*1ch;!9R|~@C=_`ZUB72PJJ^F7sT}lc5Sfw}g;GDG8Q+a5vdy=Mnr}8H zReosV?o&+pihUqU83473mq`hQesiYvSyzX8*cx7)Q-F>;Lhtu<9frC4hBG*(={L8q zJ?f%1XxwtDh-*Q{4P~$@(_a^_X?Lq#CS;91el;oQ)<4B;)GbR1L5T`a7F;Q&DNvEV z^=iHmfY+{iAix)lb8la3CcVCvV6Ov z$JW(3hfg$e4bSqPIVN{aVw-lICoUB7i(oyK&T+*3tznTS(Hm&pqCMHAg+V7v>J+ep>MUb>!LJ*4RG!}tj=iA2M+pv@7(w*=+}C?J$>>UXW`#n35^|Bwx<~0 z9eLZ4$9DzalzK@}7=X*HpRx5rp!VC?vMxG%)N9jHsd_7NIq}$)ux_t^7ym^MNeg9KXCFkPkZ0mx_^^l);Z~c9Zz$E}5)H=7qkTuk+k1Cltsl7`0O* zq;HzNad)ZU?V&Ol%BZ~57N6!W*U+^$gkFu|%uORuW&7QC&+lnc3$5Pk7?@zhOW%tG zhEsTrUlT_(rWJivrZ#L8^ZT&zGIwf)-i?#KBf#(XOn!xU)9Z?91$m>tqnz;u%`vpQ zpWf!vi0Fhy*=__xCb|5M8Lhm0mPvZOk-W5GkK34LdbBUXJbBzz2nh)3_&niT9Za}E zGHS+(J^z+_89<=Blfv!31E`RMw~5h1waF|D$6t}j zmdbnN8YzDY--xx{*4US3`wk@IzxGn;<_bmZOJjsybS3{p zXdu>SmcxH+;u`8~PH7{woQ|j+Vul&wkh8NNAHZbNsOifGLgh} zlSe(|vGlqfM;ym;B1FR&f8;xtBV5yCckA- zNU$XlRoc{weI))JfJ^W|YruQ5=s2Bzn<0qx8N*eE<%wL9`5p>WlOk- z&_x=_(70BnXQ-w9()C5z2>iK=F|-^`%qS(*;Hz=Bda_$uS!n5db#;O?tB~bLrF>o| zg`7F>JxTs;`Wp~KD_}X_dNSBsHi^xB;;YTO*l43EkmN;*%M|pEb-|=+q)^^C#kY3^ zC-8;J)-IXj%hhVPU%ryc<#}IiDP8Q(JSnjdLx1e5xhT8@rYC^Y=KJl7s!>k>4?FwT z3&vsITr;Yx`o0dAIGxNKHuNx|QptfYLDF<YpLLj(qc^x}-+gJOY!5&>ZZJ0F_ zEkPle`aY{{mw5HtVI?ZjYeqL$sh+JR*q8rUG)|TR8t{EO+sr22a*kQmJdy@mN6Js`1U#M+r4M z?T5~{tLUPw-&~gSg2r18U&3yz+Fz7Aza%d{X`9%TzGg`uiHsOQvdi8iZA|aZsB?^$ zoB9EhEcVe&jaw9q6);3f?V&*I$*WUuYQTs2jDucKOyG;$lerytmI;;`9sr0zGmtcPE@ZqldIj%qP zXj{~hE02rXUC9-OBO)zV64xLR)dqq|5@(J|j)EPrxeU0GCXj@Ps$xc9p1QqP(CO?% zL?~^uHifF)hhtGN8>R;IA1_qf&OEazuy;lSF#7%Rj0ERN z+0O|VdNut|mb~wL+YXbNy{c?|*)~0IbBLi70;pBkmwFaIK(PoT1t$Sl@AIA!p7eEE z{h>wy(h-rXx5%qeTqe4eVe?YF|EY%GOZJA*>2GvGEznAgpohN`m*)!Om<6p)IV6mV zQc`=%Q&K~kPo@l75+Ss3!D?$Db_nD!bDW9(wxJiX@`~duc-MGCvxM5ND!Jj1fTVeF zZvxY1Tt8~CTDd&>6S5LpL|#?^rkfaoe^5lqZ8n7zBCGeKCnHCHElkJzTH2rgllf5H zS?v zlcoXJ78-^kUtm7?FooPSa~T5lpK8lwR22aUHO;-6LvA(NGA|DQ-r{bJL*TSM#C5rE z`KQxt?*x|fpy#80PDbp)BHHZfJb3gjt5X`_8V-GtYKCF|ok}4m{>4Y6`yf&&cRq=0 zTwCYzT4;v29c|mx2CcXO?T}_;nihx794TjGlvkqz*UWSFUfDz=;cmb-6M?;b+RXrN-NokPs~HhC zN5PyOBEQ`T)I?&{PEB`d$qkU8msbT>)xjXl-TzOmSn4Uge?Tnk- zxa#ffG+_7tBJ#vjCBs{07P}*4gUfM$xE8=m6Bmay1hb1>j*@y_dzQ8YK)mt4L_Qs| zr`T6V(AfD@bcMZq8=*uPK2D}NNQg+TY`yir&qakZ4d+p=rGVa-y`g9$!0EEnh-~N_ z)xk&m^5ms=cr45&q4NASc(`trj)Vu&9T$BJg9~uWidGRP6*ZE8TnzYBWrM%A&W;~> z&Z7-E^P_g0ayznG)B88g`IxfOVh0u+c`AjOQHEnpNks#m&dgHoI%EEkp$s-w%Vpck zbk-t5>FkG{skX#OIIYNN#UUj0bt%I&P_Ig0EJ|TmknJn)sMoj6L?l#2#B9Rdu5V^y zNlDYbCE3f{glx>n9gG@>5Nkeu2wjpN;xlTz)%TIL|h*;1Gi8pO-5|#wcuMQ-BzQW zl);X~<|QG;(3c%ES5?YG6WV?iJF)Era>Rac8qKw*)bZyRslKXgLFy54k5R*hmu-=C zCSF9|298|up9v(By5u1~$!n>s$>|zBrQ~-YnQj@=v~- zR8E08lbJe?zny%Vp?gB6cL2FrgFNEGA#L3M>Ehll9%m+=mtFtkn_is^WZhZQe9HVu zu7@MrpYS`gWQ?#+n9If)i_#HSX56>TIDGIkSrbPGEYJ1WQsu~#c(c|S3M%N$nqn}W zx_7ipxG^F=gTuZ{2vY`qkenP*Tj@J*({?99ER70kho7UEi4u&51Q31tHjzAH4|6EE9T z<|s)mwB$fjnc6yu?+Z600t_va3s_G}7DPEGV!YZ67Kdf3w^NT;4ZigRv)`=SKFrt& z`q`d5{>xpN>!A(70@b&0KJw_rkO_ikfH%o~(FxAX;>t1m&p{!~i+ZbFu4XL0V9$R5 zev{wlw7mN$Lo8X0{Vua*P$%MROYZ^wu(?xM{a{;TqlOQ3o{#_O?=qVW5GEn>R{^f( z;Cpwqy`5wgd^d}V^4{N!-z#ai;H02$JzJQw%= znc9k1?m-@)k5m1d{+g~(N};S>{KiCQjA>=9^EuMw_Gh+4_?Q-^ue{tWZhJnZmwYG_ zsudy6IH)|HH!Gn42TQqjkB(H=Yjq;lJS>LSL=x6BieVLFP6u6!cv9+aw(47?jZJYo zM_4g)c#%G0H2dwHHi68aat5mY`= zyT4=&bku&_ug=J7ZT}}*TYh!OtvG*$avQbqy$@ENeui+c3@}V=D4Q8*411Y2WHi6< zT?aXJ_yg3BCtC*-soKRvb(J-6tAov5;@U(J>>&a@l?gwWyWh@NAV zu4-8BXKzcyQf~5AjUrKNPoL;B=;|&%A-jI6o$AX{a;;klcbY`7m1aM~TTWvvK z*GTfaC?F|3QtIj?S5k*LGyftbY<0EJR*ukZ8^{}$t3NRU4Pt=sfMcqQ^;N^UIu_bm zrolN+^B~7xi#ShZ+pP+q@$m2JbgzuY7c**TUQ+Ec;kWJfHOmchrVT{(TyKcPn+Frj z%IEGJNd%nps9GAhQnI%QmZ191gbdEK7LGY?=(CgVgPAjrNB*9wGY;2!Tl|rs-Sw;y zlYDXv=3V^FxB@SEG;KjFmaND*oQ*Mp%DULNYEX%A-gu9I4?tpK?N~0;&H^>8@*jV7 zrQ$EdGlRN?KZX)pwMAzE{~D%E=)N#V2~4xwc97 zydccqvqqJn4Oq42po`);#8HXEr4{zr{kVs!szx3YrjkV!?RONPvLvP83@)O{xcCX)876BqdfzTSar zNN+E#e^X>g*cT&Syb~^;R31TU^aoO-`@(;Jy6DMPLx98iZBZ#k_=}pL^ zvmx+RvHhrn!S6=poo{!ajPB%(s#8d#-dMg)FLOXQzKarRv^3gwf(Z${43yRr^kYq4 znX!lsMPMB~uhT%d#D?V^l_t5kK&kA@1L?Zwk<&kbt!Lj6rtU-KcLzQTdSIUh0+7(J`1rSNHw<_aH! zsS&(+-&R%W<8eFDFgCl%UD%-8ARCIba_qN;e+sw2aYqgX`DutNMT!$?()G{v)hZiU zvJ*C&t{7!2kM-nyeihsesq`Vu8dQI@ny@TaICh)yTZ{a%WBA(yTd5M}&bDrIjtN*S zv4@rxQ%Cm|4|V*RA~kc_vl1D)mRA{HjjxwxaSKkop{5TV+W19nTg1*Eom?Z7)lY*~ z9p#2T3mA%e=6HY8wGu|geMQ|@L$hAJZg0l_+o@F|-G;eoO*IQ$qFn!?c*GvQX=`eh zv)w8m+tl+TNTdu#eJ-~^kX#vjyOU42e?Mh7fs<;}WIKeff+VE8I+8kOIBu?))(6fr z0U95w-D#gR9rz^PShwHjdmct6F}L`QvP;IZTkC%KbH!hKJi(&i0f{E2aRZZXO9COC zUylkol^GmcH*Vfex*V8;f(y2)?;SoU8`3^R<6LsyNfYEn;r?c_7_wJiCynLrm5G~k z&AMcWZ*2_v9onJ$1*6t`g8b&FCn8RE3PzQ(S8X4`Z*oa@mC;r{?93+9q~ zkkCUr$Fm*m^r#00SPyF*ZgvM%EA7SGB*VZEw&5?+pA9FMA(I;`>I~-XMv`Ha<%B_4+$2bWVb?kWz64$su!AL zv`71|DqyF(bNdZj$Jzn4XFA2-%JxR3#sR=7_tPE6YIgm|gZxh*8l45-B+MVav{Gr@ z7F$tKZ#mLXf4@wn2EREaDVpcM)cKzY;#&gDoXyXitW|Y>V?Z#mV!z7}qMwBrz zav;t5G8z5zlwj?SI+z9sFKvGeZ}gh5%J)~7CMOqGJ>Oz7y1A&H@^+4Es@N`zgqRdJ z*$2L2SGpDj^ldFYS)KFrJvfkPIyiml!Hh_6isPCwl(|bzUMm)#+&yyu;A+!03yXq? zBDFW#VzoG_p^Q9{v?A&7)YL{yBb~Exy4N7Cm{Q=gq^o!D_;>hz*Drmqy(l8>FNOCK z|DW=Byt^D-z4PSv{qMocpT23j}6$jXW`&IT_-c`1v`5K=o`{9 z$QZVc34f?noQ!$9@{@Wrz~Eq9uKERTLS16!0;KEsmDtd-9F9LnzB`@8E)+|ccNZlW z=l-nMZE%@A)CR7;VCKbuZp7TG?L=ijO8rgAcD#4BCPf z;NwSq{zN7E$SILg0;&Cl%buEP6ob1R+GJ{7xtHf1wxH`r`?z3|wM!->moyquUKjZ6p=yZ#i~ zJ!z7DpC!|qjGRbEl;?EMxWZR{)5GcwkkSnVJ9SIjMd_nW zHB%;aesG4o;C&APu_(`==uACRc9Q`C9g+66k?-GI3wGP%xnOUEP4FLqTT18Xb%*)e zg$@Q6x|D1O*{;G{&&z!m?j5yf93H!qsxwxoo_x<`18_ETjZpHB;o|AKv7#fKIL;Ol zn!r!*veTOj@j^xXgx8#j4Mkagis#oAR3AT`^byOQ%b_OGgqZm3_ci7$|J0&JROduc zud|LQ7_?H2aGK#u!OVx}{@QKlB=K^Sh%GcQ8zL<>)~G!q{xq!ucq315&24~&wNf>d zLKxXITx~S^OS_({mvEHy9H-I0;qrISj1t!2ygS`LB~5<=Lo0rsVk|4zEioinHQKeN z)&R^5Iy0=|T;u9S@P#i%RH2#r*R{e`R+ggF&8$&D*6pHihT$}W?txSp4ab`1mjni< zH;Dr!z~aZWzfpCm4~mRcxY~azq}WW(ApRZLPtYPkX|X?ZamghUR4zyoHxlCDg%4s2 z>&e!#Z$1{x4QaODmn}x-2335Rlv%Ld;m6&6zT@8co+N{xj*PuS;5GujLHl`^T1|&I zA4^-Jk#a|5JTcayR#X7qUiXYlsy-bQ2({3v?Q^Mlnaerf0ajEM@IBq_!TBI}RV=>V z{B8Bb)-%s?hAh@G*%Z7IWrkWwS|uX8jN^U3q~9q2N(XVO@Cq1|37z)lMHM|_blM`R zE6!CI;E^djS32{(Y6kdQXl?{yU6)d{F1eE2*edFT9p*mC(#1{kJK6u`d3)KN<(B%I z#ZHUJY+yM(Gi6mGZ~L*b`dd>~a+R(bP3#J>b5HAyyi)3z>?68Hym#{vmM-D8#>%~~ zPO4MlFFqC@f@kKv=#*{KpRGRh8Mag4QhS3fUb~+%l1u^Z*E>#NZZ_3LxSI3IF^c}3 zDngZ6h39!QoB4PQYv=5~XrV0sa?T)Gg9E&HWB-x**5N)_HJ|_c=0V4wl{+u{QGaD8 zta*xsZc2k|B^}7tsP#>UiBmp;lhdY;Y{G zZHQWg*P0;-o}MrXK4nQF1c+vu=;{!%)G5cje@ee$Fsb}U7*Rtq9Bm8iQK?y?{35Q@ zI`Qy^Ddr#`+G4q=(a|*qNoC7Ni92eofr%M|hvmeVc;xexvn_6=xuUN-ZV-bkf2 zC}bwmGLu5R=>PXsaGi7OpM2dS_`M!BtdqH3u6tT7$?W-qo zj@}W$c0pgby}RQomOfJX$RRdkFJ*SmE+{ttc$ii!gRY~p_3B<5f*n{BcX|8TBRJuo zsZcw^G5EI;f&4m!?LX2 zR#iL-hH+Hgl69xmsJYJ9UiW2cG((k(Z?5(LU_Mja3OJWaUdjZv$hNrEx8PXU)Yv8J z1QAc$sc0Cf#io9ZN`ug9zJ~raZFLAq9h$}OMBV4to@BJ`UzH>M1 z;5!#Y4JvG~i3Bp22IJE43mPYo=tY;C|LQuXvXs>=e@8Z7#Y94Cdcv>GvjoE7PdxfK zDC-}p;@I8lBe#3(SJD<*R_fh>( z&S|~F_59~4F{w>``6pl0rQ~IF2WU3hp zbQSfMVZt{=Yi*_CV%8qWsijY{>@CSuoY3LNskFAZC21bD`N)R(P@q4~j)Kgc?!^ez zRDk!GzjmHBV4cpztCx&rE+aL_>#0K+FpiB2cc*6jt~79Wx?3N{pNU(;sCh zn>aV?Wjm?s98yaNNbx>3RAH;UD$_`L)I@g>wTSxndR*GI*X89toS80slsf5lM*Kyq z(dk&wOsU#j6dsWLw;n zMwpu&9kD*$~WHvFQNn9^#p)Kk?^WgNr zB1S(%_n>wtfm)zLloK?E7Z#Lj?T2`vwO7=+E$7BT;nVYaonAohy1 z0EoCT!~TOAU7$OrEMf^kxEd0&zP2i^;Jx$b!MNGuG><;TFiz;CHJ|)c=SJW%42Ma+36*{x zxh%e0#h+bSVJqR?0g>znKSZUe9@09>Cffkrk+EQoaH0&whfWDr!RmkC_h>dx?8OZ+ z>4sN&;oBRSeD!J561xusoX4-eYtJ7zKZqIyFS4}MHwB1DfX5A;) zo0}{*fi{_n6Q4ghsjGLgI!mv8)C!T^ck^-7w_YwAyDlDku`)xJFp;sk=k}&!;A~U| z{v8@Y93tTi^d>JcOcK9X+CJIRVwklU2kp6_>~S0gN%)-2Q&c~}vx;x~0;tRY;0H9p zm;DWNiqcgG< z^8J(I>>O-LzFF_ZyS5%3N4@>gt@l#)H(=(74=OWDTePFd$8Lphm&pXC@>I<)R;jBb7lK-F)uF)07y)-hewAAo6$d4mgmwq%j>%iy)Q5VtIaa>0+>lS(q=U)Xk zsrobt^=p}Z39E&RcHF>rK+i!fpY>e@WjP+2*k|CEe3s=$K#O_sfy*(Tg*=k)sP``| zS~PJu3=YV~2Pv;Tf$`Onam+k)gJVnqj-CI2`^*d(m>Ef_M1g?WqncwrW6mzXUmNxH zp3A%y1$${rw@2bQ?5#A*v3P=-hTp?i4WoCdF|*(FZfBlORK#W3WUZ@kRB`U7cm1YB zx3;5JEbRjGTr+E#RVpRh4`(U0Ybzd~GGB*en2>k@(P4}37mNTMLMVwZu9!J{5 zN&#@p<-&}93rzR;G1~bOcfaKLEmyok4QKJhwOp;TepnJ*Z&KCKSc94gvBk{|yxUATbg4X-=AcwW3O{UpzlilGu|v;g8kV)x6r4FeNFjG=lR~r)s%g=A z1U6dwex67@-kGjFf^*}raKr5}JB3HiIY&&OG(=s&c=y6lP|mZ%3}?2FwAh8uvh`G@ zHL0$d&w(@_y){l+;Mh-}+0*b}o0|I2DO%F0QfdJ=aN7i_W5lBMhxVXEqmf#y>R5nQ zZW!M3J&}6mtCg;o*z!iFIPfc-M(dZo`oEVOX7u>QW%aFJ@qorEP+A2y13H3S64g zCNT%(htukljtaYv{cJert;VfXb#Dd_Z-B6Va+Ku7<|2sH_f(~G{GRs6TQ zIDL~d$Qvt{*frlWr!vidzSq{Yrm>~~lw*8ml;a?*vvdkzvo;84xS zeRGU&Dt4|?2> z_)7Z4?`gp7_}-W%8;xh9+7okv-YMEMYQQM3zq@0`p_SZkQX~B~f$y|_$=FE^+ooo~$@FsW$f_8XN5A#jI{FZk z$Cu_$lY3lcJb_I3J)63=M*T)mU^~%ke0~>d6zGy_{c=aR)_YJ+*uEy)hHRjHQsf0Z zLzw?z*Fa*0(`R1(o8{Aq zGfnN?H@s-@wJNwRuDEHi_f-|WZc7iE!N2^pd0OCPXUKWc$;ZU#?kM|abiLU2fyYT- zWdR{Rb|)M%7~Z_F z=}EAhIwXuet=FF|fPOdncshW%vGv5klnT(?h6&M@{rTg1wu)umE{~Qc=MCFJvJGD+ z*+iC=9TFz4cQpMWcy`Q!b{bGHmCTaX4D+U4L0Kv^ZOoaC^|`H;#qbj#KX#87zTL4@ zn&54JJ{EL;mR7a2`Vn^n0b0g&R-Wv=FR^tnk|Mqe5y2HSh za1gJ~8v3ON`7EY+F*G|Vs>aAa1=2TOiEbULq^7tGgw36c@1j};1&x7A31m6OQXa(!50a}Ki$^rmRm{o2 zhE4}gTYGzE9(9~wH1^RNj{KXscPR>aTW``HdErsEcFg4zeq1s%H}ee}*d;S5+yNNF zu^Fm4B_U;|H)V%Fm(6tJ+EDxkcy18JSoXGxCgscK0QrR99v@h7SwLfDQs~ujwMZei z&%|36m8B-G3UJDBw;z9+f&?ICSPv2+wJVmr@yCCrHbN88t*iWG>CALrAN>O$tb6wa z5VtAv{Hai{&Aqs2SRss5>Hy+})6FEaZjPta9%^$v94ic_UY~*q4%-Sn${j_|>Wd6(=?mscwl;P?!&KK8 z$4ji-4k?@((O5KNdruoG%PFq2+v+ql_b{e;0zRkNP@T{qD&-1AOg(dm&>y2M8ml`K zY$i0X!DuImGT-T?SmW0;wx8(~SCk((C3m6X5@_rLyudFO4rR6?u_QzUAHa zol_pTGDoQXo1$hw*%cYHBaYMM*#J{z^TkurdLBUwlAIEEP28XM@IJ+7zZu^O{-ceA-n_02n~>< zMz{;99WzdwVyb%pO~`S>^s-3TyKFE z0yvnzg;axPJ4eK4+D&kQsPuM8KnfqfooFu2Kyz`7!v)zStQv#riINWt!fU-arys4-l)(nS=cs7NzeQgRBPtNzVpe z-gLXCPSWl#{BvR{gpU>km1N&KcAsIJYQ>+>Jtac^!kwpYih3;ayeI)p@svlhT!WM< z$^2xqzlG+U+9I5$!HJ{KVpMPs*;<`?$^$Q>`gPatPa5HNoR*4P#R1EaMgd?lx7P); zQo7|d`YTI59$CDU4IfmFMS@WBHSD@WtiWJUB!K9CS%%j?)0K#pFgn_2l7*`SYBKEK z2g?`I0w>v2<_HGydrz%Zj3;|ybDJHB*5Ygr2Y%@0R9t}fhp28T&PwYO6(`6_FVkGS z=S=NNzN9tHf2=KiCSV-xCVZ*0CXR;Lcz*V*>8#KoT=zo%7nXD@ycS${$42!JA;cQ9uvU-b*5b&D^;}Yd(Hb4J(&A z@oMIGxT8wt=*CK4o=*J)xN@iO_pWQg@heJ^4}>96kbe^TIIgzTMGKv63s*nSt`?n= z9?N?o+oL}Pq+Yror>_rpe%^G>3;Iqm%)?*h+21=PW?E62VKrf3O*$auP6MuqT~}Rp zRndd>)x3D%2p-&c990-@?<7Kuo1SsaGg2_Tx+}BfS2Tlpe5j!B7W>D2sq}(~MX!H< z=-qBQpey85YxNt-sXL4E9g*X+j+zn!f)wP%j@{k&wWKgX+kkS;gztHfQd3`axSKyl ze)DJ#qcwJZ*M(cE40pDkr+eqFnG9HOR{THQLt~l79t_OQa_|c^Y_N+qYKa(Hf1Qsr9puExL*`k!$}~OqTlyQ(dsi!`BN&pDKm`li zFo1ZmLFLslCd)U)(EAuyF{;EV@?YG#Em!XUOUI3oflO{v(ZMT8g3*f7>wP08>!&KETM`b2tb=fu(iIhnv zs80-|`)NTX`ZHNl>f3%|3Si)Xj3W*}H)_`K5d$`+hhB8%5i`ytm!O$Tx}ES*Q(2Tf ztGyT;!#G;@kGIV`8qDjAQEJBCr5*m^u*Zv{RnseT)&`mM)I?J;{^sur#aG4jUp}ey za_0LEnvk&)J(i`L%1-P9u<%U1nmzvn!pUrWfrLrvI3~Jn9nE$n4YS+Prv+4? z2>IqyfW;P0mi>do9P^<$n8RNICgdnRgqlV$CcgQ*DFJap{~fva&kEKdR@aVD9!rwx zsFMpSob+EpYrr(s`Gx=&p${b2yYOlpwJS#?Ydwhl_@u^Vf3&=ZYB_Ss|FhNK?@oB{ zbUO=5&u%HHD7EXcH1{llB;RH|gQZ_sr{zA{QTiB?t=~tFa5VHAY8!fU;ZQ4X=|!I+ zw#jJgc;((5vkC!AzYG5M`&%@_yi{K#k!(8eB&R+ID&c9?3cC4E4d1rO>h=6}pW{)} zPbvVHJ^`Km2Oir?2F{%z?8>mhOzwE&x6^m~i@Zj$ zqi$JijCmIhKzNV>v>~cZ1oWe2+x?)=j!OnKRnA|(*HURqIt)?bz-;L!gvkbL2|top z`bFvVt0LtktAW6S7ObkoWlW#Gd6`5w(i`<=gVN_0OncYVEsWCEPA)6lQhJL!695~M zm`y)Ci?&^HLj(WyP^!p1n~i_BIKkW3wx+1+5O$ySaQTi~p3qJe{#o_7DR)9%ixr zFHLyQwOqm+(pk z76l)^wKv%-ekCA1+_d=C!r6$EbVC@FW%Fc6;1t`qtJqCK_%iTXEr<}r|_iQkrlq& z8atz7gm2Iqc!*SlO*1BAweADc>?>#tTWi_FovlZg!d16kbs=FA-7ha5En-x-e@#b~ z=gDi7ta4nri+gPLV3NR|2|p*_+onUUKulg(kkQQ82gyS;s@D4}W9y-WXODbaf8~l~ zcy28IpajVasAw~;x%wI)kYk7H6;1M~f7o?iEouM2SCBzfb};&ZC7G^x23c;_Ud(M{V? zBP9&R_FE1|ZA3bgh3YA~7;Io%_H=_A3X&Ae(`(IN2&{e0a&fS;PBUVUxAe^~JKTKI zA=;3Bpb{(#*-VZw_cD=T@LGx4&4HyYa36D%)RC|bj|vmuf;Ev(MPFS05nn7Ztv7JG zx;Jwqz&v!ff)>{I;9wNsr3>eR?YVTYNoj^(V5gUdck# z_u9g%jq6<8$RHNYDCv7mMIcGzivs})Fw`uqiQ+K~mFp_SLc*W*R2&#%y5S3YBf~yfqIsJDJ{pjv3Ta) z&0BJCmUt@t)W{7BY%iRsfM01=+sV1CR49xa1$jTY&Z$&C{X++l{1l}pXll?Z+Z!ca zBMTdbGaZtL`vRw zILUhnPjA#Xm2sX9OX7GB3&CG+7G&BgoLa|Ij$_Sx2=qpB4N_#6S0bjG&Bv8ZZQqU~ zVtfxz-NyK@c9OKtUh-6)CUE$?Nu`UXjOL!&B)vTnzv{X)^d*Y_MktmE=wvtyw4UxE zP2D1;(~ie8TU)yM`Eg624NwE{nPVpXKU95XRMYPpw+ezNjg-I;De02YUD5(dch~4n z6{HzmQqm$F8{ILwVPkZ6cR&06pYyzU-f_k`J3BkOzV~&1@}$oJVUB+i1*!c>Tlp;M zko#?X$VB$c|efMY8}x*M*_HkC~6Cd+~O z7;E+>-pf1A*+q zTpjdst>!3YZ-OYmmp?8rPLvB(m9lP!87gr0RC85+ltkI@ZNsY2tG- zYc$qvO3-Wo%|Er|V*cu8R%{GwinwUlTfV+J z5*YfnKWYK%_A|znenS0YZ@MZ8_wZxnsWqPE2!m;bV#|=2pv8|AGd?TE5%_EXq@RFu zFnI>+nzM*%kkE`orHc2ux|aCML{g#iTkJgQr17d<;{D%bid-y7=1PHUgb}PXK>w{& z9>>~WMCA0RqOPlZX0S$6qg(UajG*Asvpj%E&j9l=J^2&sSGIjKwj6HYHQmhLww;SP zocDbG81t86=HI7t*JQX zXkHIw+wM@*YwD@2uiE(Me=Ms@D?|ur8x{671{>T0&}^7SA%KGtVFeA5Ozz6`U3#6F z&dIvyiEb&}{GAP^-8^^s#m@-fP-sG-eu9xv*H^(^^SdPogtJiK)<`p0(?8ak0ZS zD$H*p^hjwY+9&WdbfNaD=sThiFKGk9ol{;E)Hj0a*2C|*!HA1ZkLUY^xOViZOR?k# zEu9ltC|5Dlnp!{@j_Sy<%v!(Ko3#WkJ>y1+_}lvb3wps<+kuH`<~Z7q9+eA-+&Z(ij|x1V;qtBgV(N^RomomgubOuXXl5dK?1~n{}qX>G_u$s^%Xean%i zaA+b8C!<>H4C7^W0sCAZ@rIrE5;M3MPNCt(@*--Ce>Dzhy7@89^~6U`d)?IouA;&{ z!|;&-0@q0|xa?6K(5d$!sWpAEtC%ZCCPIj~Vne0FKrf46& zn>+ljO$#gGmdwZY8+aixC_mEG1NfNw>Z5BseCW&?97Es41qhvVmLfcHzZvvU3wKo& z-;kj+W40`a|5EDfOfG{l>Qd}Z66}p_@)?)3AeK0WioQ3g$TWc+C8d1)MlXW0-SLa{ zfvQdvF7g-xHPkXcn<~4AuGRMn8#}moH$7ixhQ|o?3Y6UkCMZ-W9J6o_$@4x=tKBKjt{paXZi9O1yGkOs{z+R-fzV;@IS^AX1 zlExmFX2v&lJ3Idi=ere}gX^%fA2kjgW8?dRrfI6jwFOGATk)ZP4d&K=KBL8J{MfWD zC_3jAdv#xj02Ep+Aul+cei(FqU&t~4?wr8nmk=s4Ev0(O@Biq+?|)*;@0-KuuWch% zbeWI0;AN?sxHj2U%hCBV)_b~p19#j**$*(7eUan4f`A~~zC65h*LopB)ooDV=x#_M zfx92_(BbdP9F~P^T9AeB;`C(bqaKz;X{!3RA>l~a+d(Aza%1Ds%&4ng(V<_?acI2k zM5O1OFwRxKT|`L@%!~?l3bdjSf2?VFu{l`5I^D5Y%oEt!uyQss>aTOSMr^-M6D&PV zu#v%J17&))sq}h$?HGHa-Gg>@(jHSxWnwqTYAb|S!ATfX*|g-8sooE z$|c}SJgj9@97pwi8*HA)T>f?r6YUeL24F0-4g$qm_JT=jj>y=9Du!)_yi3x1iDF!F z^}mQvaaR_XMH?WM3X3c<1MUuvCr}X}r)M0Y364f&X(ntRM|mwviJeV4%2?ml|HXM? z@c3x#Q9K}`II}MQ+D*Beeq{fpL1G;@a(2D>rR$^ta6WICa?AbgzKGaNa#Qa{`=Bq< zO13|vwiY-6$p%%Hfhwr7d&ei`$jzuN?n-?Zw~ZN+M`hRFjV3XfjfaYRbxO3~+i^K_I@3cXQamc!8W1(Cx9ulXA?3M09V&-+ zcvoV4=zk=Hk|b6+T2A*KU$3M_bMJOH2R|2LB3)ftJLPvt54E5}{jxY|gVK5_RTI0Y zEO^|sw1&7kuE#aIMbg53@dd*idf#f-MV*yrM%G%8IUD5e(b1XMnOf#@otRG!SXZq0 z7I6;oyGP`I$YZ18p7wl@ZZ#0NG^vv@O6745sO3g(VS`fE5~6wmG(uMVS_6Lfq@f2= zYmW4GUeFE)YWeDVZ0e?7C|;8XZto4#qb9Y#%il7A(&cDB5uJ4-J*#roXktNrJ&N^( zYEn0h&Pm8%r!~7;;6vZ6b$o+mg2bTM>A2QrpGzDUSGlPsGu9i1kZ^k?q+?5e8~+tZ z9d}HI8YLp$*X9!nPiz0cF>=c9Hj>vZ!)n)CXe{S#zl!D-H2B|f?RD(fv}pO?aZT%> z5-M!+&>i~m=>l{=Sm+eug56H1i0zk`C%xE}n{JwSRNY&BeG2a|p2@1eOQGv{2G^`k zq*c&2+y71EHOlA=5!KyC%+<^2uelIeCIFxoluVdZigS58%1=;^qz(PFuMmSx74z*W z5w*0^yhVdVG?$2ZlOBUO6t;FgCiqq<>;9 zAk0K{UT+-Hu>;#$e-BwcZ!`TQ8Q2-x@_KXZk-uEabG{0Px|ODT7ZZv9p#jyr9sR+_ zHVhbaEKML{KzBLL|G;ySw&Ba{LDfY@GWjz$7kBnH9xNA`O4je28dhtH*8y7Ol4= zjlyz+N(@|sEtSI>!Ah_S)P>{Z4w-fBY>K*$&z2Y&`aewZ84A`pzCTA32_0YQf5)M8 zz!x%X4##;P@s1;|QGfHzSiq1taJ}*`Evk&x`b|_RnM3(d8jqMkw)Y$VPsn}KpRwL6 zuaTeUcE{zxxa4p9Y_1gSXN-L>)fmcqPNJ5-gSz$j!ZTaNmtBa!=MCdsm%vk0pmgYL zS0puuoQmvkhVTC-e{)8dP5rIUv{gJABJdIJce>%H#zdBHi1-+ZMcw*QhKi#^P=@)+G)mpZ046gh>o{W0Sc<3+ZX6UIhh+Cn;+OfLH z;nqD+HTx*(fww#9zo{MZ)t}K1iP?C?t}>S%G^E;m$+->vzavXNZ#T%Vn%w)Esu=-s zInRs#gT>FXLS~YVQ5cO#&JT%ViKur-BS^>Y-F7b7$~&$b2siRvT`}R|Cg-h9WLOH8 zZ#pn)Gsu1%uOq6n;Pu3#cGZvX(x~buYnTK2fAr&z|ATM76(#pv%P4FnO1T4UN_Isw zq|EM!$_!Z_Z#(c!c&-@EP4Z( z0^QE!x0ppDY4&|_b8D}g?7yBZE+a(qSleoNip)04W>xTn0f+4p7wUmoPuxf+Q# zv?`KPXr{rqI{x1bk;ul{xwlUzEKO`>ZNte__3n5W0KMrla$Tu#kUu)R^e((vuWk^{ z56~17>h+5ro}l4Np>`kY?Qqz);k>W^nl^`0oBw#UM%8ZM9xc`|3Lp|B_HA%|a)ScS z^YNGPB?E?(1s-+Yj~#sJbvGTM3{=#XGy#l(GZY&mXk#eFYJZ7i2=2y~v8-XlR-hPk zoQex{e36~57piB5!o4wy4b`wz#wff3tS=1q6{8cZ0WRwNfw#}?&LrkJU4R`HpOY-x}ja`J<|NcMqC9Y(oxqj?dX#G}b43)ddM%hNKi50-V;{MOo-){!7qS~wJO z=Y74w(MD-_f1lFTpJ3IMMm4Idb?=q^#-r{TpYG0tUfeE*Z&W~@$(wes`Ga6v3sBRB zx{%o?*?)!9*a^?mUvyUBE#leS1ku=8S0fH7vUlJ4#r z7O;IoA-}obOa2d9B|9J0a%LgrGCK%b4+Hj972wD|=2rYII^@#9W`hd*7otb^)J_qp zpwoJ6f@$G&7y~m}a~O5S^V1GQM?W9$?R2GDr!d{3!w=rp*&*(_9+vLS>!12P?|)x{ z9nH&m5L*?qHSB`l0G#G*2P2@(OQ5T1HpM~9_Z0~7?F~8 zYim+s5$*s8HsFeWXP}R8zDap|33q&rWf1 zHbGh=3C~H;6r6i}?CVbdnLUrAE0g#5{kJ4Gax#T~)BB$T7SXnXdlX0O-aD%)@*vi_ zDy7vaNm=252^aBcCH<{7N|Ggv_HP~Rnz~El0sD1OTaZGgTlbjUWkI-|JlsbS5pSCD zu9Pvsy==3|&3d>#-QnDgU&c;VFyZVsl@GPZhkixr*^;V#5bfytZUoQWnX^Ur{_? zT=phATEDt{*Q>?@U;HNXm5DOMGph(WiGFX0ED^yy2&eI34tu~3h347@eFvgl|KS|{ zu!Oi$k90T1lG<0)ZY12o;;tV@JzI;{y>g5|Lb>BIvyDC|mzY=}_cf~PeF6g?C{a+w z70`)a_HqORpLZvwWFUokE-)fp7<$O>F`98B`<`V9q2W_&vfXj?czJvs^VE)7b935s z`y8wL+&?@0P4FIXj3{4diXU-m!XYgf#ZH*YqDfp3kQ) z-C^MW`YgCTqu&IlvgeNZ{n#Yk?viH|kk0{{t~r}wNOde7nDIt4`jjiA1}ra9*;ds$ zMvzE`;*&aq4{q7)ZI24;*PWST2v;rl3urxWw5leOanp8Bf^e!y7{!cpIgUY0rS?;p zD|!AZdIM`pjHnF{QJ+no4h$)eelc#vCMQ{hyKfr$0JRvIg<3{>-QtE(*1DWS|L$Jl z7z{2#qKkb*7EbQ){CQlFe|}>N;N4`96u}&fG_A^lPv8?sqjw9@* znjuc^CeFB!vwt8xj_-N9?$}DIb@C)z25H#>Do8KZ|1ZCu52!P;Qy(FQpYaI*BDao~7jt|JfxHCt_ zWt$8HzgN)D^=_c=QesPD)B*EE-(p~}VA&eIFR=o z_JO}KCq16}ccxJeK&ZTuye2Osr0AVl(v)teYdp)I>m`owxRz8&PMKt91>-{gUVq$$ z7c(uyux(83@C}*~^AbYY{|Vp8jVDfKBeiG~8W;2X%_Z%8d32u`R)E%oD}n&8D(p3R z?RG9DIoUv%glzaQA;!LBapc>FY!2{5-pIaD8WN|lhSVkx)_+E-8E8QvW=P-Aaw?-G zfIQ~fzTmj5xR{9P>2%KWPOviYW9zOA8d%t7>0X>D?WhF`)e$RztqxC+t?ah-tmI9b zU3c9Xgeid;Q{Mgwp^neSSd8~!kJI^%*!>j|C&M(C94y~%F$m_+m*s=QFK7e?CKg_A zPC3j>Glxhn=9Ye_D~=OpU;sIPCYkeJJVCA1T+O$ugKkReYaO@|=3#FjtWHKju9)h9 zr!_(&OH5ZqMIGBr&ksl14ix7%l`1f+OROZ}6b<&a}CyufFxlLp<<6PvVBAq~BIix&_B$(1)6?mB1cH1*U z0_qg@zV!3Dxk>37RBfXi*>5f#_S?ztY$U#Um-Q@1PHJ}1cE;iW)W@?zN?0E-a)3Vf(sPpg zN%jUL^Z$N%?(^>S7+pZxzG>Pesc90-bxk3D9nj{_9ukFEnv!irB{B_Q*?%}jV3$sS zTq;F;ZzYP|G(1<;&^q@C4d@R0x&72XX^Y9cd5hu$_g)@UHJR_g%SluPN3PyJ!*vx~ z2px<<>4fhHZ-m7y!^e(@8Z`xc&Yk!lm&cv1*6>2tVgPr%5m^k|a5Zl(_N~;jkQVc7 zcS^9^!3TvAuIthEWjab)_5yvKV>Q4PlTx%M)6de`7jhs8rOb}et7I@4V>d4lsbtW$OIrL_F>k0x%TG)ntj=fl~&h5;( z&g_oiSY5pP?h!WzVMzjzy|@YFq^3hR`JCcS=acR|AspJ+KTk{6vsC)rc+$~?LU=r_ zU5hZ@;uxZo3O#lAl8W}5_|E$j%^90=f%U49fS~g$p`xAo-K!7!VgqhJT=zRVqCZ~z zGC9%Q%){G$*EO$n>0f#(TaGQdLl%XjGPe2&vBu>h2Ess z2)yor*4M<7TqiQigyx)-tAa%XQdnn(RX4__F+a(G=vWF7YPo-unY>G{kO&ob+NDw( zi>jXTjSAs!8g|;sYmypO8*gW>0UV7VVV9NCpjx7L28pz^qF%<-DTB!11=7Nk498=a zfXFWHB(`qxP}2A7rj#9`dgC|$zF+P%cgYBMe|W{c{Qu9f%gz~s;RRpesJ%w0E)4=twmfa1R#tt^Ps7~ps$@c1i&%ZCJUl@!<*?gCjDg19rz6gGLna9b& zO?Ea+J(d(ROd-zB4lwd14;3as;{Qp%^C6A`l=xqBJ~dlyw5**Y@#fyf8Zzb4Tu2<4 zyZMfbo{l8OdxmfgKx3EzJmByHF@2d65V5z=TdF$3m zRIPf@#3gH(Q-tA4V0wW)6;ilavc!*eMe|P(FhOX#_?&y zaZ9!<-Mf#fR=(6ySz`EcD1*8TLuqM@?35iy%9Ys<3`xim0hTJE&9Ez=c?+U0jF#O` zFLhXA)OFtwGBk4GtaSr~4>aA@L((n3d;f2I>p!*;tmY%=@ z)|9h1%Op81cI^5nTJ$}%`n2*RI9bAOO7!cYZIWF8#t)OpQ;ISTO0M6#Z3=cchr2A* zY+G37=2Ef^`DjuCy}b$6RA`mOO8$x-1bDB7AZCl>j#}Wgxe;in!_DsJvO(XNGvR7r zR&wO^hjK={18c{i9?P7m<=sGP^EhK{14Mzyw|^+^FV|Fk#zOEP5Y&i=nEk8sfmGki-P9>j&WxA} z?mu+Q*7399(I-cL^`-UGoe&)LFRCrl5{yb$pVc^z# zA^LbGc8M~Q+kS3(9vmBHQr?pKm!T!~V<|bsaTqUnK5$#(vSSvUH4eGfB)&;J z{q3wx?{<61@)9P^L{b*ihwuLZ(`YOC%g(%!#o@>d8;dfPcRWKto-*JTRl9M-PZfCS zQqeC_NR$wuP^!}kT@GnG-f+y+j5&qq$I&9|PF6x$-EQeJbUd zc&O{544Ah`{k1!DyDYHr7V@$Ge93H2HAZr(10&8U<&(pk2ZDKZd`D6Rxiq>M=P8!z z{f_uV$pQDvzEJXY!%Q#bKj6`TL3iI6;eoK0BpHXUYyOMMaR-=SaYu&0_yFHd%Klgf z&7o$ zti2BvS`aw>sweHpVsnIu85rWqW$JUG>~(&8#SiT7b_U!DJQg%;w=JdRa8C6EDJLpl zn^g)tM<`cH;1B;ql;rVRpey0p3UAuPyP@a)>#IMdlkVPl^;*Xv^rvWar$qLz?&0`d z011C&!z`nAL@~k>CPBDaVN@|l3V zF}(os&xnZsA_e>WMvG8h&oP>2h6|%-e*7kX;#8e(EccVrH<@^8;hON{!z>vGEw>$A ztEQmCsLAHK*&g!UnxZX^cvh~Ghs+4hs)DBN%gJ}7-N*s{R*2?VeR2hOrm=aH=cv$T z%|^%Pgl5j1g}w4$MaP@E$Gkx0Qi_hE(fu7jV_IVNWscmy9@G1PPqUQExz-|Q4xhzF zrj_?DEpGH9&Y64GLO;OrsQysqDV~h(ypC1}QHbCkEm4C3qGY&Bft-}HF~FbO#9W@Z z2ZgHz$l^OAwue_fV)Q*H+GxoVdZE#pX#EubcMebp zEEA=(u3Mif=axwGLZO|S<9zuuinc6yEe!Mr#{C$x@9zA~!ZOLMD~>1Asry#_B%nXI z0YOcaDJ=jLQ$-=!0JJTCC|7Pj6940jJ50qUqLesX@Vu3N|J@Knz)p(a&@4y))~0FW zQ37iR3R*V^cri=`D~ueLRPsr!AE^&OS5Z;$%X7yD%D#tm%#}Fe*~4=vSU*jb|rpnH0s!%?fQx<#`H>1*G|cndq$t#g@~v*k?kp?`L^3s zpP{LC8BWnlFZzQR6&xv#i~hN&ej-Udj@)ZDj^tCy(+dVkhUG4l#A?X94yP9seOV4-cYuo;Q z1p|t~44tSdhy;9qmXxeN*=d{szA)A5H)i3m<{c08+m1Ua@S}KpkO>?Zjokq5^;N$Hrm#-~fDsW&z zlO7xK=Uy$VzNmtCP@+6Ef!pp}p*|K-<~K|<8^!N`E3ST*qlKEZ&-4O54t|$dm?R$S zjSvKgVOz7rq;3dOh-W=MsD@TNrK3)2*M&rXu8i5XiK{i`O_JItU-X75@b+dn)`Pp^ zKzM*Kq5Fh8ceU!_r*s_pe{rw(SPAdsZmw{I9ORai=mX3dX1w-XZDFlh&(0pHpE{0D z+8$H79*+FBPuJo7zAOB)CY#5ysnSj&t!sW34usxQG`@Nk8HBD})~qwjoBN}*j;=E7 zdN`MP@WUBoRF@u zuV^pm_IVoJ&Qi`xo$};{uQ-asU2hoFzpIX?U4_VznVU81as^naO7;h3uhU)>9AqQK ziE=M>PpituI5by7LIC*ws_=v!ocG(X76_)JyhP=9(=&I2MWTW zj|5d#*>kQ31-x+o9o0kJc$Vls@-lf}yz1IrQ6&mC^)3~hYGOPyHJeYq5c6(mwzy?+ zpj-zmc5hsNw-6JuhPOx!UJ4w|Hr&LNH7h^E-Fkn|Kwjpo(+dQL@|(@=l0u$Kk9SWc zdA)0J@@tnC+W9X976-JlEa6c$z<=mmx{8n)3K;=CKj3z5A=)xbR6BZS@9CO z*`2#WuL)ob*a%(=PX~N!hUHX@K}Z2|3Vuz90am^?q>cndIii=I(1rO2vGJob{dB(X z8KBLKj&tXH7FJd-L5g1bi#7YOtm~HzQzmT>29^HHwIs?mSKZNPmxrt*MN>JJ#4~HZ0%l3?7&rjydzyQzI0)xuDhg4K_=tRo?*_wscw7FK%GC zYr{Q&9&?~w(Rd>NoD@rsRA7DDVMv7W=q}10vUt5;=4z2-)RBH*N3EN_o7S3`(Eb@> zj_HJ}u`%U_oGF5?gjI7DelW!e`KaNqvbbtp(UmflPR_^*{2un4yi4;e>){VRF!F;H z$uCm_{SIR(V$tTSWn-U4|AE}>0=^y|@ryKM)^vCq1s7iKQb&(%pQZy?- zC_~g6MQIr#iQd>x!e(tUeFo8*I#$YVbuHVAEVHtKR_7e-co2f_EOZz1KzlKt^RX=a zQ$rL^zTm{V*A>w)VUS`Kk4`lS#YCH&1SR*F{S^W5>D7f*qdH}4pRZShYGpsT@Oxhl z8D*}s6f_(MvX!hUQoE{(CQ7vg6t})+kU$>Q8qiW@aov(I1|pxiEb|2qJ7es<>+tN@ z!<8k*bF^QB|ED#PLkZcsJRc9TXE9=9Y*`T)p$DlMj+BMtMul|X4&63HX^+vT!+)r$ zt^|&?ZVT%JpB_&~I(h`(`u-d-ziFS;%~4KgRL#QWus?&9a0G~8GkPfMRk)qv0guO% z33Vh7*Yu+1motTv+V$-g)Y0cFNi>00T#014I|`{f<+-IoY?@yFAB^G?9Ut9@0#zk7 zN&1wYG3?MNr=L|46ox!6tXE881?$?U3Kgi%)`o(#L7;NN{X8Yzbz*@s2yh&CL0$M; z$_sV98#NY7t6gtj`3$4#!j_P5ft{0$`JR;W>42}$snB_hSkSk`drO@(-&%_ZgF+^v z!lb;TBt<`*tThD&N;@3$qQcQ%WOC+Q^f2kSj(XJ8s%Cb+ODrFZ~z?81ARyZ<%9c4cGluNhbC2h2sjipPKYDj+Ib8E*G z=~_ee_;+qh;7{C(S&YfJ-vZqis$X*>tL-!x$?5)rN@)8w1&JArg`D#oMjkU$>iVOp zWJ60+>^Zls&4>m`q=ZZ_zcJ$a)q-wpENZp7$42Oj?DlyW06{HgpVBn-IL93{q|XWU zEu^Y%z7+SB7|p?Wzx(vNueDy62W%D+aC`c=7RsQmqa+lN69Nmha-Wg}C2IR`*xN-YLNTNsZvoAvoI+TI3Zo{WsW`rJZ6T-<_isE9ZKt@pxp1TLxH zOg{D$WL@Sk243$OFE%-DJgmGIBd6N|W4o?D32IQCxyGRi>q-T65?*H9px2ymNIs|L zl4zDm`jLzkL}j7(C4A-hUwJ9x|H}gCyY&SMKftnamhS7?ssfXq8XU_7Ylevja_%aJ zsgcI0Lcz~xi>So{Bjn*)fcBaC^y<6*+7nrCaQ4RcB*1-8M#iGkLG2hmSz5Q*627Uai1U&44v>ceu)2GyD zQigf^F4ZnohL`EC;B}{1-|IeCqy6^Dw(s!CM#I1dbFYGIj#hwS;Mswb+#bvvEo{FV zOLZ{YTZ=@yi)6T-X6e3cz;TM`dE-yw4oVwU2ks53Z|6q4JOj6|@^>QKr&4;aj3|bQ zs)LK!ZqPLR>XPsy|4qAEqbu39PF)J4&n^1d!*`M$`!NihRyM2fzNO@I2{G|a(;}>m zAnA6ZR#9|Fo*1AG&(Ul4_|#ZLehl;Ug~n-Ewbl31P=YE^#m3<6Kwo_SZ;3vyIxwfh zW(y8oCCvXNn$s0dn;B=uoJq|bP|8<#Q?yNU%-ufOQ(EGd0g>|0ux)Q0=TL~=PF(`mb>@1QVFfI+`jyz{$9^S^rurx z*F{WXpKSZy#CrlRfd~T^b7SB|csN4Ea6Ns0$>u?wd%Op|J6}%Z^y8d43PL+5QK1|U zHLo2XG*X4qfIZl;7DtM{k5{2=QOP2JlI7geo;r{Z{zg@3{1qobVCL>YgFhV6z__Yhb{kxt_!`a$8>XERM_KUF@hZ`8B3C_UTMMl-Vac<^8~ zZLRE}KCs5fV&7)g$sV7WzJGycL?yDqgBCpAA3XMwo~0-MD=A%n6VP0ix3#i6&;{tEjP&xd^r`#!?fcW;SJFGi>g;af$um} z*K-aq>`GI$T-05?M17%myeR8!?Y61Z4!)dP3HIl9^$%L%sO?6bD%-ikZICds?p;@M z1=JU^U+k19L(Lf&oqNzX^RghRT3n;UzAIh%dsnAGd<*QWRO|6EfAyv+=Mo85mr z2nk>7BogD4fg`W$Cs(*c3Rwm+arm5!-X3Ap)$9TRgp5J-2C8Cv-ES3}XI0RcwE@}- z!J_`R^N&5pu5CJQw?l>}F8}TSg*DVo&=cC|Hq$av-Lw^A(Ye9rTuU5z8q@+}kg8?s+GGV@NG(R~FQ+c04^~tfN;D z`>n1x+L)EN~n8-4KH?x509Ic|Ro7o%P#{mY{!Xo#U`>(2x*GMC@ zJgqt$!M=xZF_Ek+4sCdfZeVwQn;e_m?-^!TL;xq%n~b|OYutp%>8SA&)wqgSp^q^!XBc)Vw|TX|u6dY<67 z>jn1DY&6HsJ;z$i*(gS`}Ai5*xL5x&`QMW?&Qic_?y3rQJ#LA_N-#c5$jL65l?s=5formoiGwAy3hdlkfNQ5@^T=g;}vM}3vq10+_z_v-N z1kk{gO!}pLqax_N+TX3>k$$}H`qJxK|yU+156srB!q4-q)W=L-I!~LOW4BQk9pxv=a z;q!l_zNfG>!=ux(md&03l~(V~n3zCUTe2CnHs`6P<+QUl>IPLt|BdT4%7vIvHl4Q$ z;4NFwvxfVs@HCdS_4Hq?azI1R{o?nbm!I$h*`itqWjAs}h^0@1%;x-zpA;q?wFTqo zfvVGeb0tk28l0roSCwV%LFd2;vsnT%hz zB%~GvYN(TniiP>9z%h#mwCDMxSPxtPk?3_5pBG{LNlScC^8MwLA2h1Tt*kUVN-KahW~yHr%-O zjWhvZ*Dgk&N4HS9(y@f=MQ%ju?;bif^0#f_l_{X=qblj%uW;dbF6*r-Sz&rXjLGd+ zI_zuBY-c=9O+>S>;Ci!WMNA#`t8dFM9$k-pNE2z-!n~156I)^Iv>x|P!ruAtn!~?EdR<47t4t}5U8#qRM_Q#_{F_lzD?;~7sDFu=6>ijcTEJ;*AV1{-& zgTa(s6W}O1t|vcX`{Nuv!STLnlViH;<*)yI;nh@P2lyjN-17brB2Dwh z^@a8oyc~QH3(Z`Z>^#2LbgSFGD)51-1!z>Oxv!yNZ-&5o74v_vQE005-i2XhgVdQQ zBdg4qkp{PkVTsdhPwr5Z$Aw<~w;kxJ55FY5nYY$Gc8EkJdBQ;-=ZG7~_4B0OHOfiO zKngT$F4hCyaNyg~Ha&wI@pWJPjs^sM6G#R*Xq_TcRQxuqt#3*ml#3S}o;5Jh`p=E3 zU}zU3)xVghUd)}CW2!@Ko+|(|-t3x^Hkh_tH075pnwGNq^)Nn&)9}o+u$CCwD#xPi z9IW@B?WhmTlWx?XdMUXSDzu!wC3(gF9cD_m&oA3g-MV(+f%tGACu%T!DxS~B6zPqg zP-^=Qw3vNG==60(t??gb$+T?O3{VSAuZwLiWy4BYyG2_;mh_bm8S0bND>J6z#DnqL zIBQ{adsx(rORbe!Uxd%HYf>uq8IHnRb~}K-u6tuqVGcWcT)}mN%)F!gbR2_Qxzq&> z$`836Jc1Um-`sKJ3E;xHzjvnbsW?PHg{oxcN1F@0T>rfY%gBr5 zc7hk|56hRQjExtn_SqOo%d7NP`JJ1q1rRv5%V*E&|B0bTd~9-XccEIdWc6tb(<{H4 zA({F2H+=x5Id}7VB+@eqxcTOjJ4Qn`U@_PnoO4?O=s}ld+ zEA0;$Pt7T$MRbK+Uw)POoTa)2D9~@omiRq=u#e`X>Sag0U-U$ z^sp{~!5kRj4?lV7ND;IyLVjInE($q&>5b-?e&CD{67{W44!zW0@9QuKjo;%oWrJHW zh=)c25e0-4CQ#JZFB}8*Dwkwk#KVo_w2^d24}UNW(&$t(* zY|Hfv0%56N2ow5`u{?u6*uhCstd`$qQ%0p!?bjlVUwV|nDpJgH^E)YxyUh(Kc+3_D za<)?h%Hz2EnW+^j6Z_`4cf!#CmaHyyws&d8(Aj4ni1=9yz%*woO`qh5P53T~xfv&w zuj7I|bDdFqTqarXoQi$+bKC$0t}jKw5ReutqeyJAl9$T&(zDu<>;a8~6B!*|v!>RJ zUk%s!swyc0I$PZJJ_@{3OpUBToM+Rm!M~6<%zEogdsTOe2aoHwGk! zXr*gQxMX+gTPZ>u#)rAK>LDIzVWsMyE?XE_J!{_a8R6|pY`~)(DeYp^tI6{wLKO$Ih)~&M(e{+C8 zr?Bshlh^4f?Hu~)c2X3CD8!jVHyvH=8w>@l@Q)FR zsf2b3Rg^s(lyvL{N~me{kNdZ ziW-01JKp)B;)X(vpn;Oqu&R))L~{m8%iv8DI6_#gAN^+|2US5bncn8`Qn*3&QeyKP z8u#YQWEN-8Up2ZH{zZ(sHazC>aTceGr{4Eix{L`gE3QTO=sr?(?x~JRYQA71hSN>b zogrRl{Z+pd)|#y~aeA|)L_i$D=K4}jo?Bfyc3M%4<*WB4B6uZ7TER8V-nj2sz~q zEY(FmEv{Fk%;EMJb?G;Un&)(<-x?{UXbd7ehs|EFxaR7wvZyQ-51=qXPg{ORp&C&% z%6kwNnhV5CWJiG9y8jPuX)OU=Li^-t572$UlyX0hby{HDWl{dkIRjX83EGosZl-LT zB!f)9?77t$#nrvo)3JZ&ksLJ(t1K>8P%o=z3n5mM&KvN)h`sPOy^`Q&Uj*_*lX9>0 zNQ>F_1Rr*`5hncz-n;qytThNHw+-S8}0g-8mYYbRgfkj-Z zRr>=~$XVS#oi-ZHGamnkskfeUL@!z_S;A7u~obbqLQ~xQ=#eF+AeXe#EP!95+2_8IFjp? zx*(Y8rg?6=f5M;L=ZVMPy66S%#o)!t1rL&W3f1< zH#lMQ8|Zcx+#5{rFhtQzzjME``SPRyi)eNck%R8NJZv(=$X9(WYr>}(^-s}DfVUIg zXP`zHJ_F7FJu->N_%WB#cQ8kvN8)RIGn2*5ziMYsvw2<_W7h7A#RDiSHHL7( zF~e@$eKT{?M(UYGx9@3-j=M+F{1BSJ1jv)WqZxyO_2!XaWd|x7b^*p13nYTqD>b3% zy5(%0vj2zAV{I=2Rw@h#f}gOqs3~{zP+uaV>qOwiKH#%>Oa$$Xoqu1wUBGa^|K)7q zwth{Ty!f5Q^R8#8KK?-7(5d)stxV$@v)*fUc;4k8OPz!BFLfPll(&n|U+UQ1X2r#@TS+brDiAp1&3uPk^M9!~xCSRHjPQ*BbH|cirJ|}>Cej?I zF*NFi!4nlhD5Pr8)WnfPq3EQ#rJKE;wf5c%DR3B4_ruHPpgux@2Cr2?rf?u_(@VQw zQ;lcTy=F=%=t6#^vfr0zpYxG!gI=NhWPfJQ8C01vnh(u~7AmCjOFML(*+NsXbm6Cj z4e&H(+vMbh3KtMoGkhF_?yiqgH?Z*%_}#(^?_983nlU%DpCz{44hWooK77qkjH_5X z{4<)^PTFmnm_0erpGo@SN`GRt*B0Wny`7m6{2iS?n)ap%#RT#C7#3)M;Mt^gW)ooE z-!P9^{m8)}$V_+R0h;2YosUe~D1z+edg9>t!nl;Ur`(L^0A-CR0 z;kgqhzhCQIB#F#zmtbbEIhKBAI|sFec?R|LUkhg%t#5K5O0o8b;8vUl#?N?&5eefgkolZBZM&e;vM(zEqHxQ72xYYqens~5HR4s zNyFX1Pr6<`TUk2$>SrYZPut03kExNNMPw0hC8kptZf9l_YVbC(xsu~2EckSMw3$(J zir($@xV9N--wpDy1Q~$d`e6HnH_tD3@@ya3CiaNW$fakJE5)@LXmMGZoqun|Yx3dT zUGy+|^AD=5++XycU-VA=JQIBOxj%i%!33YK%!r;Yo5xY1ZH;orF2Z{2w^n_)tC|xO z3h~odJQFVYs6_RCr8eKrv@vh$(k4Kv zi96r`)T-YON4=cWGMdl$V3VM1%P3Gy_tI!0CBZp??(=ZI#$AX7Y&_x)~__HJ?5 z`2LROAN-ugLNUSt1`NLIgp)jusbz?aM?D=wBn>x>$V2yzmE=9U+zh+K1IMeVBp6}e z+MxyP@w@7f?f3MMhY$t6thIL>G^T44S*jr_ig7z#?rg$M=p~6a!qe6!0~bhO7$4xe zck>i-d&qBOEC1wSO6Bn{pl0n|P?yG|$DSj2Rp{8$jC~#FNEy}L0r?EG*nT5KmyOlp zjK2QASAEob*&B8La4I%e?`lI{nAV4}+e@fBB>Wpg^|$8bD$LPlvz=Ag(R5GtG&@eT z%r3a6qCnu7*ELc{(jaZ0FMBs*hg z&m;094=tQhC#e1yzJK41b?D`!VOUVJdc+5E1Q*B!CN`luOlj_Ds-`K*R4qlCx5y;d z;(O_$C2Si(3&|)Ftgu!RXnOI)b`S(UyY&!aaW7?5yO>+8*}Z-YYULQB-2P~>_%5C@ zHh=#8Xhp(rR0>31dxL*Gg-)<}<0tyHEzb&iErsIu?&53@7iEhSYs1iYyTPjhr2D*v6vaj#NN5+ zf=hNH+fLv8#cWKc1@1t>j=R2WL}QS9&LX4nu{4Dj@u2qxI$-_H`2JtP%;vWLl@v_E zc-=q`a|bNFkbBq1R&hBV_FcrXx>R-aIfgQ}`Te^;2pzhSP;g(W*Z1Su)ql)hljxJL zPEhn+2aSl$hiAn!x+A||KYI?Q#k$WQ@FjB z)of8XoWxK600*NOawXNmcxLP9*%Eh(kqbu*S>GYH9_t7XwdELY%pv7f-ysmVZ!Mh3 zLP2Xg@<`vPzo=R!e>Wu6kXa7?eGM9vR4Z^b@A?YqT>gFIT!x&7{O52uW96p={hD#R7- zjc=rt6zMo|&T-9KSp{&iMK=-0t3AM;kl|_y{<5R(P}`qlX7w_JAoDa4^<-{>4@;6x z{*NI~U-FVJHxCKxAsMTW{F&uCMZX=iX_UQ98sSU}$Ff)X$D}z8f6?3c&c@tOS8*&G zn&`ONNO{?s)=x|oNc9E-{5A~WVS7Lp5_dM5ppkqN+C&dd+!&=4DuHF{=x+wzZay}Z zq$KcbI?|`&gnAO56KS>1gdX|iTHvGaBdLC#cAk}k`0oj*)5Yobl)y||Uan(EdjyYe zG574AdbnM*jz!z*S_!{X(P+&Qd)%pH%#AX>?Z`-L5i>0{WyLegu5Bfqhq^#542rPk6c%lc7Bu_2a)0-JEIQ>#C$z=>Gt(i z4;+loeDu*?9ZednpOma=V!obtpJkPB~HHx1`da1~o|^sBD@mb9U-o|hMGuCIHMv;I$CwWRV} z*~o-bXZjvdrV?M-Ojd`YB5&9HK9I$lszP}xAOLiEQXZ+hS*Yfdk=?{PQeL7RY{qh1 z|Bs}WWoM}CKvFnCJYBe=y4d~0T6KTBsj^2Uo!hn%ON}4`C9Dn7KNF5PMPH2T=>Hgs`x>B zbbIQQ?cCA@s5y3F`1dHt^sdK^r_$HK4wjJ#l1C@cdLngt~2bLmCp-{)tI z(fdO6W+l-jE1at7L@cNVF{B6dp=)n!o10T_hSGb&gX%* z%ZZ;G_gMbyq#%zC*wK$d!OVC8gq)vnOMbp@Q8d%DnXn%;`37@yg|~$bS8Q(^F4Ikrl$a*O?~}5Dy$YPVA(P0)uXFSxbUjw@kur)I2b00sF#DNgTnb8B zckwkfS3exndMux#Ne-WHE8N$*J%|HES?YM=By_oHC-WITA@$)iB?O)X4&c}`Kntz*&pa!@4Ie)JVV3D|#g* z*m8U$5ssJ5u%MFE+;|rc%-sts-TCemDy3sLG0S@oQR*uA%@x^}+&uT`@24c*30~TK8-)Iqu)YsA-!tiHC@H-<%tKGx-4r7&qU9l)@$;P)%Mi8_+KU zLPPSiTC#f=R}8}r3TXXnSl+JquANc-xeISWuv&Zdc=QTo z+;+~!6=)gwkiInhqHr(_=+o>r#XUgGf~SRDq%J5Q=fR*;)$_Nl+U-!KzxH6Eix#$P zepRa93x^5uawhxVpl2;|NhNi38;$`HBVjx(^TUPv7ME_ohASs`dWHj<%Iv z*a)c0e%aG^%F9q$MY@oqxZT0>XC8fO#uitApHdNhwxob?YjF9G$>Vvl|FWL8nbbpY z{0PfZHkzQgp_ts6U{)#cjsKXy{0Z#t;`DhK3EoTrb#p#H+mHXud6^qJ?=QIv11f+B z^*g@!^*#z^t1?4&2B1=ee3ivS@OS)PTn7<{$J>f!KIMYVVWyb6xdZ z|0wM@#N!t?6GO8|BimO~1tE{S9Xqq$)d)WfxuO!kMaJ4s|qhA~7=QPSch$+Y1^h*`<^|7r@Rb=+W6 z4AI6bgDFfIzgJ(;C)hucUqlmc@`5o3Qsd0kxhe*QnJ}X(Uhn$(7W86|itnP!t@!5| zhD5xDsjovtbiismL*LwFrhA#$@b2ha-6LDBtp>|xvx)>N<7!7D+JLj4P zTdQb4iMZP0Ont@M(N7tDQ*awkVvpg;;`PdLJ2^G_CA+!&;fhbvGN1nDS{m5_Ib)A5 zUMSHs7!oLCCSMcC_j-Qeu;3SCBNiUy?Q9O#iUizHm6*7&C>zd2mbKTKW>E|-zH${m!>rw8;_=jqHvIUl#_y+!eV!}*5#eWy_^2nyT85TNxN z77T9YXqiGnsgg*<;V#m)R;_xEAp;s zAqu}LnvS$qZI=GOav@O(aZ6I!c2ShKD5kslB*=Ba)@&vLbFNbxVOOCQ^(#`S(lL(c zf~ewO>rjCPpOo+;`NzCwKy zO#zW=zUb9QGa(U;IWe$Xe>tCWFs%P--`_1?Bn*$>=I^s5nb}hYwR-+>k}!?wAo~o zWYTQ3_Wa}2J8Ibw=u+Lnx+_m2hx`_O)k$|)_ z7>NSS^NUM_#y}tUuHP~Lh=Z~}Ymn$A2DVqmKXdM@=ne^Ru%%$*wo>q1E)824ND301 zQ0=*~Yz%&q=_^^}4OlL4|LlZKJe4N2dDN$Wb9*>a6Go8ZYeWLdDbcmo&~g_FZrI1w zWANlhQos_apwklj`^q|7z+sGrRUI0or!H_f8w02{w2&Gt_u^8GZXM)$NzFG-Al*in=>F!}wgg;ZM)w0w{UQ9j`E)1BFEI8aKikQhC+kX!Ung0(FrAl>ph;1h${ z8s4)NvOVWIMj=6V@1CDY{rRpuNoG{s+G!jAp#H%YoAcw3tR42&DwgFY*JEvx9p+cc z751O={t5(Ua=Irz#w@V7G`_{w1(Cl$_6JzB9}Q1`tr*DMyxaEOR$ylLHM&5OrO04G zlgP}jv4r(r!d*%D7Vl7}$SA~1O18p!1(kHkQy}my8SA0TCwlKIwT8hZ@jKe_Jhc}p z4-YYt@nocLj2hncc1*z~cnCS~^QArbIcNd%T@m@@Qs<4qfNe9r=z7ee$mBZPs4_Co zx|~Z^BN9ERYM4YfkPEQ)Jwt4ZxIfWZ+gsTh!`1?IW(%2PC;~30=YBx-KYUnfUf0P1 zFFX^XEs>InUc3d+`f)ZPb51v6j00=_Qz)6)-0ZR@epZ`9P*Ek*%t%Z~+2ArL zJfY^-`Aiy6^hMrDewrR=?fx{69 z3;V*o-po26T^b(Pnj8(b1Twf3S|2l5DRA9O$=~&LGGo*Y#(4Y_A=nj4JJ+i2nF7NU z4*w3Hf`!h5A;5(GqRB?iBQEIr8VvJx#N)nP@L5vTrYIbRzc}fFAaaQDY5fF-zX+J$U`OkwFV4CNKa4V(Gb44(JKc9!4hy z|NdOqNJfQe`@XJep_K_AOUfWr7xOO=k`bAkT2tM>HGNSanUnFM5e1j{DuU)0AznRt z@zU4j+mQCUoEaofdle*(o~@rTlr8u7LU;@=*f}nq+%d)_!I}kMT27rxoM zRGIqk$Y$WVOyyYv8G8{w_7|E^kmZ=yIAW(HS%%L}0>{^=9lN=+g$on4xLCdis4*4n z(hS`GO^YXslRIq3*2&shmAxYIlwUxP%jP{_kP{Z@zZ zDK;MejT4NmLKLE4|)L)%n21`beZkJ?^J6ZK7?Cnf^y!;z6y2Da!_r=}#HjDF>eC1C8Z zfv^5RBL7szL&s+q-`%>hLG8%qCKg{Tu^$OBg!vQ0j+|Ei#jOT-H*V`q10+O(n#orP z8|!DyFG`POsd${n=@E3En=);gY}>PjY;-h*oINO~6N=R=q9y)F6%Jglks`h8AXo(u+(z0J0D$mRgs$ zBltp{^@vDoI2W;9wfwv`B{ryWiB9C)rb*P_o-oMTLFbQ6Yu9yhfZKF}wQIfx{}=B^ zn2qB`j6`f$#PRdoRUMNvW++3qY!nf$dr8fwMWSD0TU?eSOkB5XPu=Xf%v)0h%R*Aa z1uxxa6Wk9Qi0#&y_vfCRX##Rv=*K)bNd!h~uyoafoqs8aSMWL-X7^Ypi4pd&P(bjs z@E`Rz^zUnlrr_rp9PnHHQpl@#viQkZkNb`#eIxjJVz=pHoAoVcd-Loh0?=J62Qct; z`y%+X=ip(h@Hz=PobM#cL1O4Fv26Q^{43^Hn+KbAQJbo1Q-J8ot2IVoG+ z*0=Sg^Mmb~O#u)uk>5T9*qig(zR(Ny+sMXqGNp(PTsnxLcx1cY2OyPrR~VcSYc6Qs zBoylFhug}VARoj|b#)w+1D&p#uhgiP?V0zQ$J|%+_tOg4^3x1V*2r`SZW6;6y8Vn{ zj%_F2hsOwe#5r71AEWb7+DpwfI-lMErRCua2MkjKIdFRHnt_=*`m_v2p_RsLrVnNq z2M3VIgyRR%uIs5}SwBW+1lQ|7REEPFJnoH2BeXX|68`IJ%=U}pg+-2LfPIGSKF3QT zAB~>5D!ndtX_hHbX5b#-#-SeY8O^Rs`wD|m~&;vp|^dwT)ZRXHhDC~hLp1Zg*`@gRjtWU z_FYsALIU_^UB_&!H;D%dhNbIIU*@r3D9EQp?vTZ0OGtiOG4!;^NZtRv>ciAtI=qk` z&7g*}Ey^)j_Ai5+Y!=JIJ7T6(E7xc%*$g+P*b2sjd?t5n?AYf010ByAvI&fnx~Uln zE%2H4V6%+kp|XJE_6KnSvjs}*C**joMcPlTKDm+gOXuc}9f>hWa@;5p}9sHr~#bN6u>a~sv<=VLIDr#@7m5hSKH4rIS);Kmr= z+@V-$*3DpZXvm!YY1e8xAg-!FE95k6AtnU~%6b@7J?W-Qbaz`0R-wzqG=l+$N9+T~I3gFCO-GTzEZS zojhK~THJaeFgpf`$n`LR@A?jja6u$FT{F{*rV`t>xFxhgZgP2p%cMvIZ`S;nw%gfj>%xmFtcQ^*jh6!dYJ;3hB3z_+74j5Qvm+I{4Av};x**ge`E5$K(%IfG3m z8Nr*~uaKu+(ChBn=0XlR25Yv}@rnMhEKCc{sj;WH zp0DRca`xv_vQP8d7x%u9oBvlE4pP0I*?H_a4LTQZKU1~rXlGVM-SYc)!myo_u#oBQ zz5&LB|7~mM>xqsxL#qB#qI;SVJ{gG+;SyGw=%$`YP~+Rt${da;xldDS|ube(kbQLugItOt)sI>z~-0 zrnG2j=UQKRR%*pmD~-M~8j@ofvt9*~6ww8X7#nvK^GBKq2Q8FpJsk^y#(Bf=S}mpK48ctPvr`M#*Rb8=iVDu{sk5FagP33wRwWCS5R%{XX0(b>=QW;y z#UTOv4^zwW+<}WB3FvmfI#$-TMd`(z%8t7du;`ftvq8(2w;fZq8yAA#$o@B6j^N>tg>`yArsblX#X^m;XXRz#N_@Sv4O$w*cr!5 zcoXjXN*%kW@|WC2CU&t{e~sL<(YkMa{fLeq8ptVE-m7?wCGUP2&dp?9i9uURka)=K zGKRhU2=-GqkMyWdjU*zP+YQ{G9@@_lEMLbMu1!guqso2&N}ZZ8+(vo&yW8VoV288Q z#r0d8#K7BJuwWABq9#)BjhKEX{o-q|_t}!;JLqrwT&Z?w zYjOu7)X{GyOjC2j``Bmg)NOmdG{kMbV$=etUphLU-;a^YT>v6= zU2J#1lx%MT-XIs}4p@4B z(M6o?WAJ!?rk<3^D=PFVk$uqy#N@< zMu4o|T!p@-M%P5^NuExz(o|kuHY}Af6nQ3%UgHXIB>+fYieMV+7mBV&!XM)l|A67a zb{faH>T*juy@!89Y0A+$Jczd~z`R?5J{F5xtO`p~Q2bG$Utf z|HN3zHNGdS6f)qO#uekG&=-07~2v){5kK!!LR>7Oa+|;@&$O zk+|I!obZj5pcO8}V@DaVTz+R7U-Mwtj_6&*CL538Y^suzyA-lgxZi<2fiTFuq;L7c zjWVrS+0V)Djhhvc3m^HM#hNzDo;G+O*hZJa)U3l~oAmErM4Rty%Kg+PaA5NAPe^?h zK_h%0!5GE9W)uYI;L_Lw}F=ID7k0fZ>|w+cpAr5 zZF%a{u}SU4yubd{&|f(>#O?Pl;#LW8v|?DW)^(WRs3d~V>um7@bSRjGi!wA=AF=Tc zI}_`75#I+cZYM$h{;H*S%26hhTD+8uA~kefasI@TV#k`bKGj-C-kL+obXkPX_5IPz zekDbhDtzlZ&v-<>sl?{(R*c9;Pac2RZ^b8Tooq6+P161}VQp(N#sy_AtG$d>{ddjU zYU1DPwO*~-NS_p=dDc`>DFmGhtuk)jtXSm!IauQLd|fLIia{bdPmJzhx}I-uE9WmQ zWt*}DnG6p_a&a#k6PgWRUxjJqjc-p%rd|753O3zhCw1=e50~0EpDxV^wdpK!WL>w# zL34Bi`tdWc>CjT@rZ^I$rdp4Lj~g6RL@8 zPd4{7r0)BbO@TDL;ke8yIj+(|>e!do)?EKMFONHmNk*g7rR@$d$ittv7PNO%w?0BJ z{hxw0JN98R+|^$^>>nd66t~db#%XZ{d3*5}CKP@OYY*-$8sZkY-_+87pv0PDB-auk z@v;wMo%yPa5^0>Sr3{mrASDS%#7$G87>IgtB#J%`e&<8b^Zhr-)#k+8-9oSZ^KF^! zdr!_qVOVEN=y<&qA-wJ;R9&De@KI&|)89x0W`3 zKz+1aP$zV~@U(%I`r}n{8iE{O$M|*BU$)&^g%`4%Z0&!0jb$SfF%JB6%O@4cf+75s z{+>_6H?Z2SPM!*{WO|!}I)-=_$`|(c6PX0YSQw~4k~GT1}eOi6Cp}^n#}?9$g9b!K_U(x zVRs=)`y#=~gm~kN@AMem(`~{qZGO>Qh>Vez7);6aMCt7xJWABX@h`TnIvrTf3)TYs zDZ{H+y=Zc{{Y!-w!7*8v*W7ZROY9|&c6!<|e2^a$>|Z>Axqf=f&i)|1i;ECuo7#ma}vxrDS= zM-pi)*&Np+OCuug_Jc>(hZX7)A^eobp+H($p~V6GL7M1$_Cqq;xKZABg9jY^JB>wB z^Tx1|t1YsxsQJh1F}_-`Z7fbN=BoTw!spv z3@N+Bg$;l51?-JoB@2#wfuUj#WLz z4K+?2sPbylP3nW`q;qvvgh-(O4LBJrC$WkOGrLZ_(s#?wXzyb zO4*&iOZ(y&JDXz6no1%&%3Cy-r{zwd_R*YMW-1^d8!E=EGWFSJ&r7KxGn5L|Tpe9p zWq?iJh=?&he5O-STiNb^7bX0cJoOun?BT97!Q5tv{iZa&Li8W9s=iuOxR4p#Y+RA> z8D)Jr$R0Okh0nNOR-A=Y zO=~B(t-c2($?V>a3Rq1`FDuuSp=rw>HVoyH@g>z8pgt zth$?C#Us|`i8?$$l z?S=aY%?_-fHBn!}hxaE=(f!{v!g>wf_F-+x>(koi4}Wh#!57!AP)nCKf}?w@Y^&c^ zyRCY&N9%e|_8vovz)Q-XmB$>Udgb^EqoVzydv99Bo40 z4sXsU-c)Ns_-2I3j@qNsUatIotTjtnJ$~1h%R$yx>%57`C~F+`B;1HzbpSiRTxGmW z4L8iY!j0t01P3~XX@`xosaS>~elCBK3Rp|2-``^hBhMbD(|Y5>jG{(#-FhV`5a4k)?UgfC4t`}LJ1%7VtwL*yJubfAcQ@jeoDJO zT^^{G<-3~wFb0M;&8daa0Qd1dqkqXJPPWb}*`)3QwnInoEr6k~vF_xhvTw-@nP0Bq zl+1I9g9a}^)y_L=AwOPF3H`sR=WK_SLsCwEqw)%xN6n06J}{`UL*9eC32GrFBmTQ1TrI2(r6 z@mc!4E`z6RFUFRulJ!sm34Sxb&*g(mT)CaDn6Rs$HyZ#Qs_3POBN|-C;_xH$NGD78*y0| zvVf@3g`AxD1#&@i695Suz;Tv*zC_c+LJ;mDY};LqD(@8D7Jc^h zm*WlGwnlsfiA-(v{IY(LIHK`9g1hMLQP>E!q@|_mOE=FAnSE~?Zm!>+M^3KS-d^M% zw-PYg?|^oJBq#DNNqOr9%PrMayP~u1_qkgRqFJ%oeAjKRi65u93(~*(BELfuJ^!BC zePeK3)O~e#H?85Xl>Omy+;Mq5S%Z8~kA79m7q_|0Gh#tkCG~1pw4tUK^Q!IY65yEz zzt?wEc2$3*{zKj~vp(8SaX{EJYv?%;-%Z_FO&Za76qCouaRx`>y}%#qP2sn%*_gLq z$VO&F4udA=f6A&Wr|95NP#dy#SM$sr0MCDmMpb!sMmBz~@j<0eiOiG@AJV=WL+l-S zW+;wIRZjm~(Me?J=$~pS>1l=!^)$GQ1bY30l6&Nbv7E*pu?p{+j44=PNc|%_eXa}m z8*<`JjSZ340v;zQ8ip5)ZY!2_sapv~CA}D}I4ep$O(VL~mVoOBiG?>DNEx`_Psb+X zCsN_H6;~S42Vjd*YZfzw7>moZ>im?corwfRjhcL$=+=8kVOyD;(0UflmeAbVOMH~! zXS)4orJAc{S7W zV!ULiZ7eQ3sPym;#9r3XHmHX98D2%!JsZx*6G z42LF$csc)}J4%QIPK-m&G!q7de_Wi1U5&-aIFVk;f=x&L8)^{hm zA$r+Pg+}8Zj?-Q9K^Qm*sY+JEzRD`>J1*p%)`(V%b?~rjBl6zz;-?V|FG))O_f6#C zkA5*waGey=`|$mxX_n5Y|&XMiEl7yjnS*_5y)Z1281{ei2DY5#M>_!l=2*e>s-t z@q(KR|GpgGd`4BuawSB7cKI&bs!3SWEF72F2MoE2#g|LXW^ky0`Kf)=6_aBFg=Hfg6xKuUd< z@+*pu>UTP}mWex?rxxFF1(jl9*Jo&=FEZzSdh1D@wDSs7-}(qEU+ zN=Bfc_L)16ckS9U6))?4nCy9-K9zmQH&A($pEja|N95T%XPk`|Xt}1RxOXzhL3Fxv zTmJ1U1JD?MIiO{eI*1Vil4VSuhrYE5&TY+&+*}u&)s&pQO{qVwyW1CaKW}F>K3!7V z4)#i23nRD994SlfLHJ|fLR}na1b?Cj{u7+7U;{SDp|6BSCMhAnz2IDItq=Ef31aB$ zKV4q1k`~waS{uBQ71q4L>XAvka593}~vrArp6Vri-ND~Hy z3Bh7(56Rnx8l>K>C~83zp&9ED#_g%?s00Ch8AH0Oa4Y#E;=_?x3&mK;eTg0Hg!}F4 z71LArO{aj_b~`}5E+-N-Bcr$TCZ%X6hq zl@eGIr+8+v@nDKZU;ok^9ex0Dy8Xm1GB3+Hq2LP@MDST>!53}>{u}RSW{B1~cE;d@ zu1(`y^TcQ801sDEO9=vP!@5vm<`0pgiecnvG_{K2ro;_L!HyYHwXw_878!-+0qI6d z{ohxKgJbQFj|;QFpl<>Ok0Sas;RqD}ZppFXnwhpAKk6<*2au-#P}p&Njm7kyZzQ_x zHjM6`{;n$=3JoYAcQy9nIH>c?lCJ&-bSH906D!QLJuJw4jEi?j$Ccz;i5&JA>pjY& zGw5?>z8(QW+WJL@J1Q=j4yYiqq>PC*hs`ED`A{={8N9-NZlyAq{%cbZs}&k~9^^SjCODHU8o8iIfoZqNp5HZtbr}m6+qi5@-)?9vGJ%6*(yTGB%RmwztStv& z!MZFm@I&#(NX%2$+UDR1w|5a9uX~(EG!dr+5(L8~)}u5yt4!Ug3eNH|iC@xC4pg%| zdOXYG`*uwB1EgwpH9BRUzn-kNxrzBC1Wuv53|zk(xsXS&UDU7Y>nL_kpWG}1JZh(| zT&A8$VNEwb|8>5)b<4tW!7(MB0_{>c2IMf5`CKO4T-UrkxIG5H&165q&J?& zkFIsz*6bb?y8IIDP7bhwT+IhMXDZr~K=?Ew`cfW5Tg9t)pN%_CI}TUvNd?xiT=m`7 zUH2&V!eDQ@ztZ!l?Wn-+2&9K95(%(kcsSU{ZkNAx_+(4jF9!vRN5!miJwe#b2& zZx8WJ?Cu(!2h;c|eKv zLs}O5<}$@hkY!|}s1M&{Na0kB?>3V~J*7u-rI}g2jsb>BUT+1r!_00CUE3+Gh>8vUdO&X<1RT5}d6T-Ds#p<7E=f7*>>y?R- zKQGgSav6K(%48KMto_F8taj8;8k#uE4ob-UoDgQ7*x<`NQtRD_mH1$iT2I3-jXPc2 z`62YHCq~~x*om2EHD30Rq0>iFGxkY(bfi2$W}-xPOZA#eW(xafSsw)?^qW%LZ8QBC z{+95(=SDMD#NolUD>61xPQMOCN#eu&OfPy*!OQ!QUmSlss!M?5DJnt-(2f(evX!Oz z{LQ7gk=(ph2r0Y1yOJwlK`s2p^<>7kZ~)Ng+Px|qm~0zFzu;ykOG^Bu-N|esFUEG?yV+c)(^=z$y zCs>)9Z($cj%kC-jY^<@JKg7#ut?xXO;mz5_g(Irm`2afUj&5l_r1^@m;Q{T3NE4kv zY)a2k;`$5JXD&X7)9zFaY8utLV6Rv)eV6k>#Fp6#-JM3njoLBJ4N&Gba0eKHTpRcYA<&!f9>MZ^jr(pBD+mVOdu|xJetR9sx_E z$VX|lB$ThiG$?XKRN?%5z4yARk@*>7MDm@Kf^KeA;PdRJZjyE+BctNKjXXh=51_=C z;RURj7XKeSz9$QqJFaXH=w^HK<@Q18eyO6qSExTP$Ak?h8?5Uif;}htuBT2hJZEA2 ztO95Ju$<|ov;K>joyj`A!8$9LiJYJgLvpzA*TXwBksV7wjsIiWvv($@ySv$D5R?9& znb_}!J37LYO?WAEFO*T_xShX|S3Ezzn^e_zxI=ExXTKChUtU~n#uugmsH*49yD=dgm6EdR0)Fg)MNe9=I!im%RQtC!Pi0rO1 zYDN&6x{l$UEZfHq_yIQd#X5jZ6bb+|Vf&*o*~XGbrAU13ID85xj`#jMM~*Lx;i|2Z@7-{+m@ob%L&S0<{lAc{Q6IMxFn<<16i zvwlp9Upkudl{%r=C1(F}zOn5bUS@3*dKmtNrf9Pg&2 z1V&9AypJRw;;gYW)L|e!;txGd5YBe~8M_@Pup55Gv#25Ww>L*JkzJ?XSE#AVH57v5 zZLp}~5vMRBvg$Xfn)EUH4=s$q;QC9O$dOS#8M!cJ+jc`XKIsaVu*pFNgn$d0~Q=pau$i&%){M|jX6L7#Es|7PJy2qA! zv!oW^_8;tseQHU&MGxuRU zok*8u+ledfcv^+vVWI99`6{tzAy}WAoKHLozq%ECkH9o7a7Q~X+dJdv;vB>H{+HT) zF15pc4UP#om+i%w7b6z5=KuHuktElJ-Upi8f|k2enpiG$OZe7F?!5p}Ib_4`{BR4I zcFOTbF=g2w?Sq9zmWnDLPk5J7SGdPZBZIvC0udQEy;P)b-l(0!>lwY+tkoYUn=uDf zl4u@5T^*(-{IG~eMpvWNz8XI}VF%IHM8`HxHRL9LInqG;y-}^VE90I=?Pi8?ldQ%^ zK@yr?k9%JC$1j0%?T7i<&(7?k-mMI<(q-&U&llvPPaIc&fGA0?*0t49ObWl+TsEsl zNQF}UguuDSebkAc)Ky!EQZY+k%4q^3wY6U1G)asIdun;z6B$^>yTmA< zjKF&twsfs)%r<`7MNG0W@lS{;sO+d?v0BfEi6Y^mhFKmy{&VO09=htO)%F2tZ9p<4 z+ALRr$CjWm;8kj?7;NyJ^V#k(U5(AtwWuyvsG1eI z;ZnquJmPE2rU3*pQJgtKee((c$X!x#pY$?YKB%F0m6=(BrbNya=(kTWgwCJ76Wj2T zJ)a;_o`+ijkC0h&v-~uM)UdF>_N!NddD+s!O!gMs6c*}nrWq`C}zJA$Svo-Y`o1yc|CS)w!0GlPAn!e?&=ZHU> z!DDy7J`LY~jPc0);@{h3q4zfbr1t@?O{Q>chw-g0}p2!{OSvE&2NM3LXRP6=0E z-VfhN1!0YSzrc!Hz1ar2vYgHTKmwmr)7v;D&Rw(ld;K;Ex{D5njAqv@$k4OI=k_m~ zxn#7gHG$fK&SuSHE-28us`5ecFqPU98hSM}M+G|+`1>@*S&Ni^79R2z#dp3HK{I!} z!~js6viVL9cXJ7R@kNd9xstvkqm*yA&<#|Gn6`~soC$Q<0Dwt|At$)yhG_x0RDOttpa_f?HEeFK4C+M~ph9UspomN^2fqFCS zZ-VgeFz_Jf2sbJ}{-o2(l+K=$?+*QnKRAJ}@h=NxbArU5NWRKHF00RlyT2`>^^o0q zgnMdAaK7nFI-Tfs7RFH4Zgg=!HSf)?;k1gUZY*t}GL4%aV)9nmoQ)1?z~QqlVxikr z`Eqe|^y&2u-+rcTzL19>iWZbIlG*XLhD=-6_Ny5tEjiF0Lu)I9&B^#3;$#m!(4E+% zBlSjfV2mZm(0@A+Z!JPby_J)Ct9I~4BAvfOivd(>u6D>%u#-cxQoGWl?rF@dwSms% zf0SR6m^O6AA#5Z);_@>*%R8OQ4a=HQrP{~zc`ivx(xiz~#WO>;suuY@dE88Ni!ywW zoN-ex9;B;dv`tw-vPLmMn%Q(hU2R zj_iiDWR_mhKdF4jW-h1wy}730K`3mYzb>#hdy!KfFJrH;jgf-X4fQD&x@+c0C}n82 z=W4d*FS=ZH5uiba0F73R3fETWWl4F8E-fMRN<+aEYE(-1GSm|cdW^=@itanvh2Dt) zkE+CF22mV$(Uyw@?ij)La3e<27_zip#NI&`konK%jgWLcdGC2kEl@uk1clEr4)>4R zRZg7)4m@%EXErG!6G7sIkGgrQsam@GA{fA}b+Z{^w{K()roshGH#S4Z^Mk5S2*}_@ zySV^#v}>g|9`GhY{_LDAU2YOuUguqJFt$gp1OQ|91)TTJ)rs{@?|1V5Vg7pGfD zA7<#S0+1lQHwP+J=oIT+<3va%H%HtM=54H8Roe-xh^nH<>uMuke0XIuB|dP=OhIsn zE%MXY3KXA(_qruZsI0zbO4kV0=vra#ZEOOAqO>>Q$d``CC%5=3$#kN&g8>z6Hqp{9 zr{b5TSC9Zz%)>61@IL~{w)Q1Do-H8fbh-M3>SnUto0o_RZQQzlx};~t3kTS@FKO@sn{2DCf^r){wccW z=cCK1j(NrNI9l)X(D}>eUp1Ct4f*m~m zVc0wkB^~A9rYZre`Sx;fTCCt*dT>*@U(}t9U%H*CPkWole*f)Z*n!Q{L@yHnzAjH~ z!QC@4tg|v8p}OH=YAERcM*sNer23 zW`V+O^Q}yBeWHkNo94M=Ses6H-x}Qx%z-*(3msb9v8!%{L$V?5fB4+vyVz9j zA+ht64+54P*37Jb`b!2dJO`QmK65~p<<(yFgwf`VMzZKm-}=ZeXdM}VzvM2Zwo zjhu-si#<5zyPI*`1>0CE?mzp&x?DGtMbHKY!RVAYsuCqFQ(T%&bk*!gXx^Broh0ox zZio!o){Ixv&vUHQ`|jsdozD5km}lY2zje}zI2!TXxsjl4CnlpejO=pN^wK(UQW#N> zCVb=A3~uW%zaMzcioM2{C8ttW8bPww`Y zq2tf2ZEnq?rcexd8(F{-8htYO3GQA_+;dH(!9yVypTw~wi6?}o-;lZuVLDUhN*unf z$%?+V=NxwZ3cl=tb^2-aUnBdwjQnov94UkNEZz-&OoA-udU1k=NEeKOqGO)(TR0}& z-=iG%BhL$K+|bh&R*SPIW#mNdld5SP+D^EY>(Zyhu#Lr6*Ap!&`O&?3=G9~FxAFJJono1?bD5a-6F^&ZxljPgIdUZlx?vHdpbktQQ#SE*fkfKZ*M(I^3K8 z?qWIX?f0-V6=Q7Z(;epe1HDN5NavAgl8cO(sHHF|j9IObsau6v&pwfDYC7rG@-@@KCtXb2!!R|VeJofK(cl@qKi zJ0nm7C=Icz%}i770MA_%8~mtZY9vKI%4R0>2=fJ!&6Uh6*=3G=dfWTevO+tuS|8CM z#9_f{&CzY@@|oO61_?hJc4&Hs(n^(t8Q{Bhk2rm=*9f(bktkMl22pL#AYUKS+p zTRK`Y{I-SVye>{kJ6?x8gxy6rT*mWEb9%8q^fE(hB4f~=(<0NVi~+7(qAkM-cdh5- z1yK%kRPM%nKUkF4D~xI;E}3dPF6StK*+lhS+;5HaixA{U(Np}Y;lw^Va5A()Il$0q$qKK! z0AgAJLgwj!-I=!eEO_M?DxH2d+A>C`a!9pNq6YfQgPhA1Bd%tQz{sZw`zsn;-Wu2jEocTc!O^_QraS0b-IqYqFT&xMjm zgPTL}-e$bK)+@?wmt?N)?IWi)2_tlGMYn>-0ABlDa;@C2$0NQB{t-u+ylWPcXuYTG zW|Oi`wpJl6HLZ^LfMf;}akR>E6h#BZZ1_A>vL3cr|w+x++GQNhyXR(U zdELxBO~ZW4>)#xfrA}kc+xw79Dd5?-l>oHKArhQojLv0(8Xf+w+ zgqRd1w)u*FP`kC`SKHZ7(YhFX+L$gX<2jtqLMsomnb8%HZN8ozMO)=mtuS%3Ff@r9 zF7d4pl%pp5Q&rf!($7o!hBx(U`ED_mJA<{#*JvaIioc~(avMZ@;x(3u{rl#3L2pP#rV-6IkEanDV^ULbZ4EGPktH+2P54BxW*4Wh%jsEde4M z279bXX^+ckvU;s+Z&=dz{jFG2zcsK%V0P}$EsJlM;Z+0qXO=fz`aDuw`<=u2cnkD43(%&61+<@zTHjAPT(&tYH7=R{D2V{ZcpIMiQ#-ZD8OCsaL1TaY#=tRcTk~fP2)A zOQ}r%{qcDkT6SulXknhnrp;8M^xRUMg-Enq;)()T(DU^N&$0r^YpNM}@3%ilf5ZYP13pR^gMOede%*ZzpxaoUUrm`q5mWq6o~=aj{OAGiO)Cgo z&`abQ5nPWGq`;PFU~WM3Zvmbp{s2w(y`9u-MdDGfRmw8zal^H*Y^A5e0KV{;4lO`6 zy7NkZoo5bLD7t@+-zW`YpZYLEAIZI{mG^e6+-3{1TWl!`P zu&-79An?xFublp^xN)wd?0^M~F?NnywAi=z8>~2wHtnEckiv&vbM z-V4vXwscUeV0HOWM;(oa(h9CE?awSx{$u9F7^a7xssg_2M4H)7#}-b;mkWa2+i9a& zxywr*3_>~o;>Lz_IjZjy1$%zkJd>L33ue&))Y`UVCz!wX()eUak@jRae9&f?y0yfww{7VD({+Mb#xLtR2iza)7i(6>Q0b(^h{v=Q$gvLv*S~HHp$PjZIC`sJ zZ<2%+DGwr8@U7H`vR*B=4-bUBeDtENyhep=7)fI$QiFHd|L)72?_~Dg(Y|n;_`!%J z8)ygN9ow=2ls59DbIl?@X*=v!Q>jeV#0-@DPah2SZk|(x_Y&zG_kz$LW_Z%=^t?3L zW`%omJH|Xg`g@raTR955mU=ut+5Kp5+?ij=x(J%s3*n>i*^^e)wfl;v%NY{^#S^~(lkf1kZBWQ%NX!Y_7YvI5G%9y8Le7MlbRh`h3S(NX6G`aHeTeOdJHP-ugVXU$j)tO@?(~uQ72G4Q zMTkN*21UWO1YwOqKRURVck^F~T8fZ)KzKfQ=?H^yUw>RcF|0r-qGHo!4(X$-xkY=q z)aC@QU{@YsbHP(t*QZY;oDLw;<AmzMphKotNnzg#g^bt21WY=v<8sLiV2nwoeb@Z@XtjF4qM;~Hkjbir4AM*Boi(&tPX~_`8d5VjzqkG$e88JA z>1r)5P&jb7_(UxUIUPth`Y$it^`QeNH=-A6$`cb!@6loQc<&bzEFATGRLFbVJ$Iss z)M5vOGz)8;1CQ_6LqtAc$-J?IB9UubEB~FDN5N?FWo`Ia<$;>kmYoo8w&z|~TCi|a zT~Udu5$&pSZLCUuf;}rP74pQC^6~Z|*`P|+$N*VyqL5wBHiy6B9SY(E{^_>-adjC1 z7-7s_%6jEDi&wocVk1GxfRd5lTT#pcO;>J7gz(|^%6n8kbMqxG;~|+h749mOVPV$WvJ0TI3f)va5MJ|oeutL2H@HbQ+^**qm;J#V&CTdFKy4e%mDBb6d| z7ACZM9|k8)T1E@RIH{+|u5Tbs1_K#de+WEZA*m?DuoQ+LVPobs|C%bRt0FKWj&+Jc z!)b!ee5ll~g}}f|7f`NE+1x)poP7Kqjs>F+=WpUdYY09=QEMQca*kYEH=V=w9Sr=1 zo##^>i}GtPd83y_Yb&ZR8*9h;McG5hM0%Vx4Ez-$;_x3hqUWNs7sOlY>vR!@`gvjX zSjrQL^3hwt4vRYt*-ls*HNWQGz0xer;w_A5P%-#%j8JPBzYn0%Bcz-AAx@fnlgF9h z%d(C;Az%2C-1%#y$6OPr;d(UnlXl7M0ru8#&{a)j6!G!!{6LJw^RHOMNA=D@&G}5^ zb{$W)!7(_i>jm@Yd!EsFe^fScU$9~L)d8q$+Rp)y2@Z4J^bHJ+jp+_4lO>K{O?XQ+f7GjP@PzQBtJHXptCtc-f;l3&kg zaw`9LZ#Ty=S#SY)A8O4A2X;5{O?l*^Ifg-WIaZz|KcCdmUpvkpS%6GaX5t%J`(WHL z3Xj9$&3}pG5AC4*B%HRRSV3dH0MOR}jVzzAwsulk6D%gRS6$uMdZ@YB(x?0>bYboi z@3r!H!+p(-7nXms1o&(-c{9_0?5mpInEU&$#}(VrK^ppvsfyIFIMs87hMy$c0?9B~68`oWWo%`> z`zt`yMUuGEqkI>2-RTtr^@}*E6FSK-6bpeGJGZ$YyNZA9=W^rKxVM<3t2I6z_3e$j z$&Dd*@?Y6M9(m6+>Gcn2y^;;|0R$U;8jC!w{$fw=%!GooxeBI+)8$YE<8S>3Ft4gH z1^Uzc&EL;?;32^rTw9w1az!De$bD=&|K~Y*zy#afk1w#LC?jo6r$@1Hi~l$^ zuiveie5bS+n|%3$$GkW%^GJV^Uya!DCCeBq1|aQtQb+b2f9+ZOjSoE_27PLJr~CGO zgOBnW*7DR1N9}=pFK#o2P`Oj7N+78M+x=b5%kGOwa{h1y`bIIYw^iTcThw@5;UP@4 z8nLU78y%~PFE`?A3gY**N0*mpR*Q*LKmo@y&(Bj#0}^9I?hA(#>tBl`1&?WFho@Bs zYqEH6C_-@mU7UL=_a_TN9g;c)EoNs@aAU{aIlf`w4Y~S!yxJg*GR+Ca7vTmf(Vo0K zr{YaHJ>}`_bv%Z8?_JX%u6_V)iO>Edd@r!odBJguF=4BJq<%xUn5v@hia!)U;_sTG z@Oaji>Fhb_uw#j61?>~VL3P`97$O_enY2S%y&nFLwRJCpJA1lN^dOUEi*g>?tN{6( zf}N{O+;3(mJHoobxH}@#7&{Wp=Z^1(X~~Ns&KQsf>hLFHi6JVhXRn^OS$yRUoZcUx zrYQJK?hQZe4c3&9{^bt@7nCK2GM)tUr1TQO7iE%wVm@hQX<*D=`bCLygIQer;u~OR zH#)Y&sSFi#=zEd3h(Fs)dt8y<0I~SB$2Jx(BmWv#!!Llbwq2P+@$h{C-u zWkeVgzBs7$m^1A$ygKvD*W>MfR^nJbucQL!xt3yow8(zL-8I)2y-u>~F3vDON1i&QWLS-2 z3ar+~0;3h%#;i2rzp2jkyWAnj1CY#{%(98qUPl-oPF~cJ#^k}TFc`IYVbqyxqm1Cy z*mw0}#?0pTo*#iPt|Jd;5)@~~atp}--%wbBgrLy+S-UiXVNuuWzb0QDUi*3fMYGM( zQR*=!M-*ru99h%UTDG}6^$^L^AS@IK(hCVZR3Erx{XjHZ5kE{*nIv7s#Ie#eg`0VoZZR};n|+e;wq2Q@ z-*~=+*@;xPahwGQ2q~OrqWF-yjZhYE^PV&j{tn0O@iolRQ~go1Ba4=pty zTyy$Nx{X@)cM506|1+lh89U}XeL)vcs{Xv=lXdj9KQT4i4_w3ET%O;$%}l5CF4-X^ zi5G9J(*6F_HEYNx;Ct$V%WhsTw7S43Oh)ri;Tv#VdufN%PfVp&fwr9XXD#w6Zf0hczOUvn|4;%^cG&)djXLtg&pQ@>fZJQZ1~avV8bj+q zvNd_i=MA~ibLAr@$RzBQ@xy;Y5xBaH-{F$*-z^DM`=8d%=$6cfD`cbWRT9sGzQS^< z#*jF8Qyu40OMF(gv)7?>ku%HHCVgQMHqWGTnlg;|R*Kl<*`i10u6gp?HbbiwR@Q4&Gvl4Yeb`r zSn9_wz7|Z;%VXFx!>tt}xpt&V0r*V`{v)Av_UI#m)5!O^&bk8^;>8NNx+H&M0RX@G z)DM3aON1<(UC&lqSf5t>PkElk#Qn0wZflmm$BV$Bk>?-QOUrk(F8uSOvo1vbA(XZ9 zkxw_i2o9WE8`M-EIWi8sOuG9gX6AjTD=-hC4-Dj~(O?0&gi*y{a2gk^bllr`Jq^O$ z7_phTus0|Z&wi~qLV5S~w{(>%2!fED+nFqy_A-G5xQv^x=jVrS<1%`|AS_4nU_!M= z-9(69_9H`;r=Z|xnn-cWO4$S|T87jYcMAp4@1p5BN5q5r-_JzquEgF)3Yb%ie_q6? z=}!{E9ZHVqkII94hM>?Sg1ko&%DU0zzQ}ucluu8h-VY|mb1SRH<%+b zhGij#ukz5a@WXk)4IBxCO`LtjN!!$|P3)tay2Xp(l3MGR)3Qb#lzXTM-jV*?p0JKVVp_<`AX$v=`dvGy`~FT`Srpj~V_dnx~=Y+xe@v zqB=?G-`+)N4?2pjYr`x~G^^y8O3l#W=$}G(LP;d&Qb+iGh8vO{qc_IDkxG zgc{UGH842RQR4P047K5GEZFU!N6zNpSrkG-Z+v1Mo0fCKV`7tXAs2(M#;`CSuQO#B zj0m-ekRYC<3s)tnG+R=IQH(Jy?~9BTOEG^SoU4eJ*1iTP^Y%b?z$XK2zR*6&EG(LW zIy8Z0?oHGE>i}1ZGjD~8TVf$yTk&0es``G)#+6825uhP;!-!<*f&yso>Ek@o>mmh# zSt|A-Qn=-lG2{)t;mWF?g(13NXqoO#J*GMP94&)-ELN#wqR8-~`=Baot73JOJ9A7G zcxy5SR0r$NgZ*{<4`DWQKFRp9txV5%iD~<)O8o~hH~#$O*?^6652IGhHU)e*oDySc z> z*c+gKm33GeBT9-&zK!!K&EI-et-!B%%2NM;`QFD3;LEV*aj-b=E>y7%`z3X>A^l=+ zzp%Uiym~)Yo%F`QF7 zC@_NPU`N!kiR2+Y>O!U~JDm*uScWh+$V3!)s8Z-em*7b|BD9*mvbue|tMeJacTX89 z58~hLZJpQAU!=h^fct4CC$=7E%slY^Gt$6>g zVX>2oS>ET^d-a!lv0C^1FPmQx%Tm_mB`*YFXSf>62JHM%1h;2dOj;;!>E}up=Oy9t zJhMw_3p6n<;rEtDO7IZAzQ#+=6yhCns1M9Xq8VE%UOhKQy&^8{J_5fEq6z+0M7Gf7 zrwAq);e7e$ct5tbrY8QP6uP&9zg-9w*?+kuH%TFDP%60 zq3M%_pBE%AO7b(+P?ZJb8j>xB`5S3#8{a?SdJBslt4gYCzeFUp?hgKH@9w=_ycUPy zeb;M1TgLEE8h5;$C^k|-wAQcfMd<_&#wzD7agjX~wa33Q)yyB{uhipLV)6YP-|pyo zsMO%yzIW~r#(^;h#L@!W>uRat+G=kjMc=W^B)-xGNd8Vh`OZ&U?qWz#O1OYgL0)26 z@Qsx{s6;W;`!(K*!h&@I@}ka7-oLY3K*Iv#KBD_JsBVz@B$lTPHL_E|8)VZQ#VH( zCD)qqq*0^FFR*ppBi=n0_Ep{fM-FM<-laRZm9t#X6w>l6LegQzpWDb#fb6$Bw*jm$ zLSXeu&W?*-rA?C66*x_AoB)9~-A$UgtM0L>MkS_e=cbQooAVbu`Jtfck_#SAIbZt= zzAcI#Db+{n!#8Tv$<+cqud0?JqvJG4Aw`R;Vw>|FL1u=uX_6!v$q~5dqi7y0*7>!2 z97}P(wQFXQqN=!UDAN?98Xbt*zx&bMOQ>RuKS-A->yL>ivzMf43w{nxQI?qoBXs0xf_ zx}1I3kYkTs*WU)XhIc(=5UNqw6LWhHY0Xq=ibSE&P#!!`kCYH?M(x=FNCQ>>ha$^K z6Zq~Ls=go4`ZJ_}_2KUv5QaUCxRBNq$~`X-v5ZClhnyf>;V`S8X^Yn2Sm`XwA>zZ9n14G&-)9!z~JeQ@gh~P^yf$<#2 zPTl0Vo|>{mGKtVwyewQ??#qGEMu?mCI9$n$1LiN8v7H0?4LZw>aQiAn}oMyKErJf>*l=@0p--L?CYwpS&`~ zl0{u71m~##G?m_39+S94OeBfLzqMhmRm9i6%BRab&KI(Y(N99E+gX?&NfIR(7nb19 zOX8@#H5N|rJB@U4pw{qBvDh^6?^`u6Fa8ed7>RA5z$r_{$6ZHP#J-9s?>#d?I7Uz) zY+)ias5`(`b7iuiPW9+36xuD5Rr&5`jhKW}Kwh$p-h63;6$Xq||VFb(dhS>*A$6L;=5r zn9Rt7UP`R>n%gn+#`}!K1cI8_9?HylfrfKb5?S!WCfoH- z-c!bEJHkv~c(T#h;O`P*p218EUurkz90;4{85a|2a%pc+sH~@hvX)q5$(o$h&y@K& zGZv^J%sqbtGPff{&dZX|fNSnV$;Lnd-#6L)A4rp9D{E|Pe$hA#nB&8Fw1(I;*mF28 zEqrEX)g4;qY<({YdVHsI(|F~TR&Rkm*be$=*d;7y?>(BStaNrObjlM`$0Vf}B9e+e zO;NSm?R|4HL0p#&5zRa=2yzZqbBm(({2rd9khKxZ=fS|;WBTfQi*q=EzHH%qQC1jh z7VOf#?Vu&VHcSp<#er8R&hY9}>YUBULkW5377%No@y}5Z95AWr=w|PZpX&@4ZlQKThA5 z@iis!+ts7X#1p4MrgOE)5TEf_leeiVhY$d3^2fijWZE%a=&5{`1phS8nkwUU1qwqs ze)|!NGL-)kUt}?#z~dkL!YLAgM(4oOxNipM8x!xNbNlU@rilysj+_~ignKHBv0U83 z(y{)$yMsU3_`G^>nbFabeJuV429lsLnnaHC@?|jF`m8~^wCkjXekbFwoO)Vhp`fVZ zGIk-;Cn-Kcg79@v^}GE{xC1&?n0%VsdKYuFJtQcs6a)29wm5@T8yZlH_(DApQ64cP z<&)!sQC09*XFUC*3;DRwM6ZRy@V63atn>z6$qff07Dc@u0SFu15Nt3W@V(C*-_U3L8pqAGuQ3S~I{%FtA~apCLAG5uqgISrMuH*GWBU~3NKW7; zlHCpLHJ8Ky1?V`M<-mrm?e_L|4)&6hyuA?t>v+1sT!Q@NdrPr-emho~Bf=jtjNg*A z(XKmO>Xd98Nx%JV>kn{<(aiULJ^PCk>7^9Rr|W%p}8V5xfwpNhF5QdTUER={`3B0tOX^E54sEg zD>g2(OhS4T6hVGa{lWM*0czyIS#cT%BssEm49#Je5M{HpGCw3_m(S6m2od52p22(} zL<7<#CzrmZE>=h^kKt9L2AfLH3j>4qVmebtLsQTpYn(_xb^3vUnr4X+zKcL^;e~S#DY6+rwzp{jwB=?eu#^ zTs29TBqU{@-1m31qmwNnENnC~BTuJ;LofJ`pSx{zwF$%e-G z*gwpwZ9tq^hq`LowYoq$1}JMMmp@KS&~GyzNxadJ{WMAu#SY)ZAKObGWgzsY5>7PA zE3NNWr##GvA)mAE;qLsVCaA7qo#F)FK@csCE>#_8zSkJS!b%iMLmHa>lWr@-hEU&P z_@hOlk(~)-FVZVz)f1r{E2$P&jF-+)?lkZyd71S7EWhrG@}b*Db(ohj0M##l)c4sY zu>Ep%BcVOpKS(-6F6ZF==0IB3))s86Wr!6LEm ztULJ_O+$A9-8IIK$*$71L5!Q@EeSEd|eHI86H}>wFSogXRmVnVsY}l7d-^e~I6$3MzIyo17HB zTzB{**q4N5f)tef8nOWADBBUiyQIDY+*rw{T>gI<7T=E|V}hT}{pJgwg_1{@T_fia zOybPLjBu%lfmqrnOo&W^2rGPdrV?SSPBDIo7STIgz&4TyoFkY|IfHi3Xy^Hb`-@yFf2eZ#%Y#(`gW{BI`V2hAlbW^!G31c7Ku9 z9co5Cj?pJKzShY+-B*fPIvw znW>O2l9T~D(?Z^W$7Db*;i*r{u0ZGn&wT%&y!4AzJn>U?>niJBq6DCb(tl5l??V

    8Pj)!B84ni#FtiC zfTGGVU9lu#kKpiT`$=~2NIyKmA+G`aJ}-L5B0s6`e|Tf8)y$6H#5dG50B35L5Fe`4 zGO02z_fvKeiS84`Sn2^Ukn{VhneCYN-|8g8T>4%1W7TMD+3$AU=3TwV@TSY^SLdyQ zbFzR5cOxPF$vdB%v;=E^=yVT_NA_!qrFZn_+jK621q*ELf{3?zbH#pVub1hfcL9D= z?-1iIFUYz!xKfb$OBljJYss2^*wjpBQ+vzI>U(HJm{^-I#^-Nh7ZN4%i0+3~>itFN&wyOY$KQpf8GC*{8fVA9pc#u1Uj7 z(^?ZblS4)z8A!`t^z+DBo9DbIk&dD~s#;xtJ4P(yYt{~rjmeJ7C0CLp&zv7+e`dNyLkz$_H{T<@k4?gA+PDN(ni~ z@H>Y#Zu~&{1ZTcMyO|LL7+U7A@d7K%ynhef<)&dmF18t0RR~pINjk@u2?@KxHLgQuryd zAVd(fE^rmyF;EY|W?E-~pyMR75?jl4}9aw}kfP%C|w!74*bzi^cm+W`r z56<#Cwv*cqd3)%!jM9$%#xT8UVp|qA^7$cmvS;~J$hJqeBFr`it!dt3;aoP1-64=^@Q3!Hkp8%+sT9?(mX_fbC0%;NrWb|&Lk zB^>F+`OLc7$tQ=_wApRqX=7_a9d!yHj!k(}8&%GWPa26{U5tRV<8|r_6j9a7efyGTDQU%h)d=gIo{& z2X37$U~i`epOvdBX!IZ+a1Ta=P{8Hb5;4~|M{U=e=R+n)&epCHnOZ-sChm=PJ&yoz zS0rv|83A^)=a0<^2+EnfV~E9L>Dwp^#&@j8#Xh+jFNXrPrTr9HCRHIDE~uP zXmA`e`1!-l2Sp>7prIRHa<|}DST0SKXkhIa#g#A15v4@+tXai3#={nm+t5M&=Zm&W zlP5$Nkj(Gy{ff79LPMiVLvqH)sCr;q66u9M>zJ@=wMn(hVK1LsQjQ-qV_bzMo9~?k zmCL2&4#gV88MX`(2b&PW-6Ic}hAK7_A4ZZ-ympZ7(2N(~g_U0_*)@MGb(Nz_&WLFgJn3NB0 z#=3iZk$AzoB_ihK3h^SPNS(OZ7vy`lZ^vR3@p>uB-=t^tu^KxTmD$Y`3>)&idlr>% z(%h4z-}$2V2zuF2xIZnE+skPsvQjc8WO9<5ybyelgC>N@a+h5QDq65TmG#2w(;8@N z@6Je(zzq)A|ebZ!Ls3I}qyo{8+oAuBuU^MNl)f zm-EIe&QZa>owWV3O?>|cHbKe0O6=MyAImHNfl+M*2H zEC5-Qp&R`*&j4pEmh2ANUgqn-SQ{rZOyxQ$=5K83Nif<}JKEP0I&9u%tZqpA^cb;b zliwaGNQ9IZ(z2Py1lL$k>)GKXfLs&*7Bc;$w^W zR^ED~hgLdmu?QQ}=FdS<=lvtzs*f?KwspO*6*(3fECD!A?!{rO$*;^X#*TLP0O=x&W|z1B;7=#eUBmfdDSW@kmcB6(h>!#h4btHS~~V%qQg7+L`T^yA`*{h*z2J>pUk&9j{Mule5h(GO!gUADD}@zw&r|U{Tja9%80jmX$j0 zZxELuMrLxi;pEmcykf>X63T^ zN}H%d>A@K2uhA+LGCFX#1@FOcE2FY+n~jk6?)hGdm?6sZakWZhUWg#rWuQWHnU z>LPpcprnnLz9x!x3#pNt2ea)K65>5#=8SOBtyCxOW0-PSg7K_*~0fp7VTbJFI!57OYI5IzSL5HV`*ehVJ{{j%^uI=eHZFTn9SWhC9L(bzP#_Q(Ruk|$#63|Nw zJAc{)bqC)fr*!_dmSa1FJ7Y}Gd=ba?d6kG`j;}@W=J@nnF#`+SirX^BD!eR;X7xx` z?7%sjEq5h?y>A&<)^4gB;57SH6)*dbpQqRI zLH&k=WFZKia!gQpJkDf?x7EQ1Y6!uQ1p0~BLl zWY58nb{Q;fnlkqV#oY1H*vCfZQ}I;3qun{R*CffBZ~3U9)tb4zm_YS(!*h-#dpzH` z0U-NB?hEY8lPR7(Sx=9Dwx0g_2b<~BA8*O8r`OZT`c`^*_$WO;_>wFFxo2YuHsIxA z4s;7LDg2W^N?q~h2REePa~;1Vl~U(a=)slw-~>8sIz`yMRkT#5z65}qU&pfILouS# zMIU0TZTBNqP&Js|0uV5R17+6JovMT&dq=Zkt!4Wj;s%tJt~iocz~I-}AN<^5`r5bm z($~LzkiPM)!}RDw3;5^?EC7jfaqqkrF|LbeTJ`zln1~KMCh9JueNnl&h`#yUGXGw- zS_}&gl1y3_fXGunUjOVfc?!rgecc?MvVo(K@z~6>S|qfZdwzpY^dERE{5ak}uqS@V z(>{{4Z34)kLY^zR+cLXRGkR_=fVq{LjJXzNKGSGwNL_oz>}NsBx&~Q@E-#?gIC_|z zu2FmKvdpE2a_;*4llAoEQ+e`-y!z#}yaool0($W3c|}St4ul-{!LbeJwnbjmD%*;^ z)Q|^oVqDbxm;?Pg$v~x_xK=Qho-fK2QsOJQ&T(e~<+Ld5+9QCNnCfBMc*IzkmUgt&mWp(PR#j{KvI6lItZz$$qXfVKf;;bZwHd7_dm$8}R zTSnI#UvXcTwwnWZ>@MT0U|mP!yg(ImQf#C`otL5Ba0F0o8eq30k)<7YvNt z#iUfKX~AS2+Z8cYt8sA(9<`VFxNnK=Gq-smw(?e=?B{?7e*kmiF9!54V+fsn#*n+F zC&xezEr)gxGd}Q=r<#$mZ(DIUHDuss0m#ibc!M**$zZHR*QxVqFd0t@su5As9@vqG zWsjRWmP4OjVs*pTNskDT`#Ej^XnpwDY35~QWj^A>YA5^3Nsekax0d^p;riueu2*() z$rtclU6ofPYb=Ls)Uc1W-K$mmL23isUk9j445n==H}K50N~aC8=hi+8&#AabU(yBn z)*QcZJC@hH9KGDt8!~&JKGi3I@DbJMD08-`)0$3v;9`h_X_3)+>Y2_}W0_+=2g5!R zi}ngJ;mhj5m(=9Wl!}r16b>fpp7BV7Rp@4IG+3b@UH-G?>pGb)xrqQfSqP>#(xhAH8M)TvrX1vY<4wwTAxQQqwtCDMclOgqU$r}Qc#XkjZ*dpoMFW9l|KYgBdfAlx$Ko)=;AIj@h@GE;a}TV)=)GWUY1F!r%Z3}mt4lbRk~=}r&SlQ}{j z8~b}pK=&CkOn1v+apIFq89Pl~lvD3ZVj&~m%ckU>=d9|C0ep#19dW1^ zK31I4RRNvcI_8u3vsT727WZ{&^Z1tlc{*~T}(=)nifpfv0V{UHS_7G-*J2NWr!cL8)k@IHW%QLPL<${*BvG5 zntsrz>B%uD0w1(3f>JU1PHc)GoyRL;*R*T+pWVwM;+g zZB9vEpK;hxK8NEJ7`T-?m&b>P^5l=FY5$Wa@;LTa^6Sez{jw9x%*QFboX*tmi1P}D z>5jXh7x@%+N*B4Nuv5CZJmdg=LBF83n-?`Kg`HUbEM0wBIWylzx_ic~IUzhu=FP^TYpZstm{mqXy4p4~8aI`25BB(E zL+)*Er`@B6>Dj?YY47Br?%xe8;=n=>=`s#CUBrPl{^`A2y8(x~VlxJ9+?=zm<|`hu z^>8K@7Pi0xV?=Lyxy2kFrB4IF{a6t~4leyCGTMPnb+~!P21?n~w<@z;4aTqvQfO^k zvny17(VXa_nv{0rm)h@qc$mKNxA)R-|D(P1m0yq>$kMlqUI0?AAzbV{_w{rRb}m(y zX65%|BI?d1fE7q%o-Q+gD}+C3;&blz1&q9IoP;CaBY4bH7u$v{3qa)6FRy<1({v!$ z9miOeM!2Wcx+(OvD?)vulhOb*TL3nh;mn_O7S}$<@}!UB13dKuPy9H>AL-&qfIb;8 zWY@?6k%cF<-bRBAB9>y9#2wJ1>B$(6FMBvA(|)`5ylOY-QB&VF1qJic-2hzM5P@L# zcT;-$cq2W{uYK8-*S_G%AJ{-ed+r(z2euVQpJ=#^$FLJAC)yz#+x=OA1t0Y5ZFT31 zA;tjyPExm#s4-w*^{*-qH+v@mx7gca%aepBfxQ1Q{vFAaKr9!CtM;9?^wT)k1~t{j z@(N{*YG^l*(A7X8g5t!KCtSfH3aYeYP#1w=`RR`mGGe@LtgigB zpyCKm0Kq?>xDg{jFlMkZO^mY&ilneqENiC9BTLB&uk3hza)&Ge!2*zVyb?whaDZPI zfZV&2ZhiEA+LBkm=pqp;5W(i-&x3kRF5WieNh0g`rwc%Ep@;a|IAA_^^KNLvV~D!g zCazZ!3mxr=^E%3|P018yUxVtcwVS&x@IJ>3}3S;^^}e2gK=sh?TK@#V)-)H%v{JjP?# zL6@qsS2Xgyi#lSiTIsGlN@%>^>FEmS3@Y>ks`K_WCtSv}YAoF6ejLp4JBlGuCMLhf z2Z&dddc?$b0WPSlYPW!Ppzh{BJMSL5B|p6k4d_ikXy)zu%%+5TCgx)B2ap51YBn{i zI&DcigE;o$#Z5DJMZ!u{LmR_Hxmb{!QzzS%Y^s(sAiSjR+m}pbve@=MOh+EZ#hg&C z7IaGUPA<4lIcCU%GQ#<{M2)W2=z=BVvUtXE#9QeDo@>)GyvePbCxE=kd-tvF8xMMx zNCfLFeR5hEPYRqa*sdJawoY>7U|BKM&g*;~*x0W2^f8<~J2spp1D_%7Gxp1PA+3C^ zPtg_L92ZH@q>cfyouO7#ZZ&bfJXO?@f|$B5sEK9kr`1mBS|oGP>&kRD%|{PI89gz_ zr7e|$$)U2{#<5I4$UdheFSAV>%Go~SQr*dibP}(9Iehs#?S1-rI{5TSI@;UUFA$Nd z=0fC*LzqjaaS+U%!}eK~On2N3J^m@|lrC~jVW)KGz=Lk%3v;-QUy@JhVkp`ki=A?S z=H$6cE<*Cm;UIRl&q%s7!C2JiB=_;rg)9J(@9)=TF~;*JYv~8y+eknCtIhQMi;c9m zE3bbM6XoNAeVq+wyuCxe1ULeCXkp>&7VtGEhvvW{;v5y)GC* zse=W(x8{+xGOlvSdR{?21F*P57ja4XalW{{(ud&lXU-+7&W_kY|?|LHex7Jz7uLf-r| zp40DBdL`=d+{bYeGHK48>`3(&hfb2c~BE9;-Pvi+8 zPxTl)kpn2kVur@UMH#Cu00B4prZMptOKgXS#}*fJu1aab46SL z(&R7lIwiYWAQZq62Y+_Tu^Ggw)zKxk9E;W;i4L!W!P7wGNg(Un+q#2sj#|HaJ8eID zH*Lw2KsI)6>EaIE`4St$8)|>E03`2-G3 z1l!&nv0irV>b>MJ?@`AClLydLXNjG{ym7j*#PvE#Y)>~O8|;(}j`Asvv(m*r_!y#Y z37@_3#qreBW$Ji5`eQcgmWZZ%Rlwf)9xuar(b#hBksbT*wWIE=W4lOSb7E&atM;4w zoMT{)&q)l4NGxDiRnrb+Kp8QyJuny%tZFwxH!AMtKRX{ByDlNzf1|`+LA%V`^_lU6 zdUNI?UaR^YG_*4-PFZ>(lR-81!mRF^`6&`sq8i#1Cg{k`sgvzWHdU)}j@wsEW$MYG zrCjzzu9BC!Cce;@Vw4^E{aMG15jQ*;f3pB2C*qQdn*|`3l=vIB=a~V{QY^hM%3?Xh zl#>IYI*(bSPHwa#h$ZDHDPuWTM_g-X6ST-UcdLsQL!Vw+zpU}n>cdaawSU0YlLOIO z)-y#T?l;UQJ=a(aZC#<(WNnMxZFz>iqSX+=-1Ib6R(X6kd6KL+VXM%3J`|ysclQJ25R!0I-tNiv#B>*AsrU@N_Txh9Lfa9qo|1&cLgZ{zqrJlRV7$G2r6$bxN&jaxT|WVlE3rM4x-ezB$xY{cf;idG2z|kasqaxRX)c& zw|g0aACoWcm^(alsA&w&dE(@ZJq#pmpB? zD1P-d4zlR=WKUi@BiBE=2*f5Gonzp{f2pG0f=`vj5YaE`Z#%Gy+@mvfcgsb5R-2Ez2}`C5AR#d>=3 zH*4wD3q1J)XDM#>)m2RebrnG!OKR8^j&;OK40EG>psQRKd$ifmsx`oef69;Zs*+Zn z(uhpG0ar)>gfadH-l8#k7(hmy!gOrn5ZStw(j9pc$a^0hrT4#loOW&tgPa4|H#PJh zS;6^BnT_6~a=lepROY{c3F#@LjBOgz7VWHy$E;ttF{T@ngEs0Q8{6n>$_9DUS7aX4 zCxGaDC4I5|)#fL5xoU@+L0sI4Bpv|zf;Al&SO6mL1;Szw`L}szN1p!iKwbrNH*MU# zqfhqGzQ70lU?<4`>w;h3+1A&;;7K5BxcJi@+xHUPsw^m+V8&H+7vDIA-D)itUc+n8+WS{+I>c>&EQ8oV{TW*!Gw=sm^P` zH>poou`e7)99OHvNDkPN$IDjX9J4tO{xa4;?gHoEA=JmVkC8er8?9#_bLIdS&Va7i z2TCo-*D8V*1i{KmB+`@*ynszS!+|}_0I&0X&eU|OGW*=+IXgIysx*VezO4N zZQ0XrRX;iXvhNdA^4Ud(dJspXJwc^x>sbK@+&IiHmYcj%MW^~*jm zQcAqFZ7w&`;v-|riJ+K74l2eN!pwkmH?Mh07em;fvk0_sQe5_u12QB(Hrr#(VE2S8I9) zcP8Ii!7zAz`0pM%SlD9gTD$@=__ zu3ElU=`nN6YbJ0|Mn3AIoci%{!QcjQCdGBe9u|Q7=x6ERi|0m(NkcI7FW}%x>^mEz zJPvVAj8SkDVG+HYWAyJQfrCP696NMiqOR)yBYSWDYe|yb_vKrwUaj5L z`%KS}GZbe?ffPl`5@66aO+bbW*a8gr2SY#E|E>iXHlzV*3*yXhG}GPFYxPp=+kCz! z;uCQ)GBWSIZ>f4!{j%z2M4a@E!^EZ9Ui=UJbduuli`l71fuJ($5ECs zk-W%Gh@Wh_Pw*z?SU7v>sKTKFvuz9AqeZ&vgaAFF*~Yo7dKoHe*aokquj09IXSbve zxZ)NQKy?4%9kc@1y}Q<+jch9Cf-y$_FaySInk zJ9mcN`<4W9V3|Ym5F164-M?AF$M!)^0I}D}Tql5(;JmmB!(>B?h%xrsc2oy1(&p;S z7x3f#W6J|`<;xfV0*2F(2MtV*S1=jGdA06&i~MU{_5#?_Xm1jTctBeD$lFBcd9cxk z)_&wQHrg@MwgrdQh%PlbKjS$I9v=)MNBS z9ndz_wF-}oi_%}l8H(jVR?huC7}|nBQ(ar+CCb7+IKR#u5a1)FMYaQ|q|~v|rLeha zufBr~!KjLo?UAC9J0&Kq2=NpepP5Q&k2TG;f?oxaXhomytMxzl39pCEyv=qDipSyE7s>DWhFzl#xfhEfZD~Uzp3Q56)gk-xxz5>V%y5apF$XrO~}& z5?MuW8ZG*|llRzm?ctc7T4P$p#@ad<;aB0#!8g%GX+L1qXT{9%MW|HD_0BPYT&0(4 z8w+%lMIG(Yjl7QNIZ6IYF&o%g`Qz}L$HS35e0gTSz&-lzQGUO*4CqVw)~~VQG&Ym3 ztFTdWG~Sm@M6vbia;K-0kZ#J0R?#6^Pfx^BN2bNk(IqEdi$`B9=X7-BU0ud|5%d?H zRZtntoZFv~ve3X-@TG9Yo1+WV;}zkvRkrMp6P78TYKR82<5nc9DKUK=hGLuAA8B8iq}^S*=53OCIatpMTtayRunZ54jWv z;r){_B#!7I40V3}T(FWcyz9^MvLE^I+yUpgahge1LUBuwNEy||K75+&{N&FMhkx_$ zECJ+S9uNCB(nC&x<-=ue%*AyKRcr7nm;-iZRDk+8&hYr%!Dl-m=Q%MhEVqozGWg< z_a*Zr6K(3tJK>;b4N1+Yk@}SkBo!L6iplMJC&L?W+vmaQaL+#bH;tdKla7}joS_s0 z{ef2EmTB&nD@nVKNZ{sb&^KYCz!*ul5i+fJc%nSvg% zbS15w+9xG|$UwcW*FdAiq|8wAAq0jh_Gu$FDsznDV1qCDMpozS)~?N=mIShW!xDJ4 z0>~Xp0J(c-*n8uSwGV{wInS?M*$1gt0?5v-8^f-x0FxVR=?@?rYk6Aeo1^p(|Gpe%9cmAo#gI>eQ+M$v|I)8!3HV z8*!k=0}<(M-y=@Eh;4bT>}9m0{R`C3I6)=jrKQ8qWqV$7?zZ$sY-N+kw!MYEQo$7f z=$aR|cyH74BCf3?w@!o%{k+JIH!kE96O3nb6)iN8b#rkIVCWuR`ph^4YyYBS2;_hv4VBYkXAabw>T)$NF^w$oKK6zxI7*`lVEdV?DN8x{!&+v_adY zn1wdbXOEC1YTMLSpEkx~lKHdv1H*N*Yi+dc&_5Jrzv{%TsXO;Rf0G4|m|!h=O1%2q zh^_T`zbd9zo67Z2i8hCwqeo5im|oZkWm)+ngo0|78|y|^)+;9ZLVYX;^?YU2iKl3c zJZKkK+OPHX@9?|Fw(`f9!{L|T4oCLdmt(EJZKl^<`NLzD1Glb>dQp#+dC_+LJl%|8 zYxTlw>F!WA+T*qUEa}+;w42VN_)|qHYp6p>O zfan*;zVb&({_xkqm`y*nrqdHblx!k%`eZwLKxNNg3r=`F(9-H2X)}V;(raCOwGTbi z5?N)&O6J&B3sGCj3tu>wH!?C-YIBTNlAa{%EZ=dxb+}|JtJb>2#1=~{fJpGie|k9l z?f?2{_|t!JG~Bs&I_%lX>^djq_hoMU0ZCt?EqIZ3*>%NSTbz&7hORmrm`!=epQr4_ zh8VUy=(5-H&f~+&lI_KNeP7}Ukx%j>9C=2}2l(XZXgGfI)L%XK^pnqqBTGcp{NTx{ zMOKwo--y|5XdxnP>nX}K6P6xV%R$cy(La?o^pa6jXMJ(ikm5eP=6LGWFJf6P^6=!5z4pac ztNP3mK%PFf3yFkvFkLo!SN%!7sUAxNo0Uo}>c})m6CoJL*7=Gg(cC4om!obX`WsPn zq@5?-Mg)&W@q}|3D>VikDq7EW>>TxJ>VU!a{hR-`tL zmzI~!_RdSr-5zffZ;5Q%Tj-nUdRbV%eh1_69;D?3*rbZwlFT}oiQ+R5up`kqf7ZdA z!StnyFs|D1CZq6hAYvxG%$zx8Tm|y2Ec!3A>>jh$q0)zQdWbmsL&v&)1iq?>LoRbl zW<-855$7#eQaGj$iAocs=ykkyovqbt5c+`DqF%g=XB^P(Xzq}bf5-|jl^^#ZDe2K% z+SyS@)tzJ_FZLtp&3nC%+qP(h`F>0t`&(?~m{j>%%N9z3O!CYAcJLslNRNCq363kr zqbRwqj3RKI05S^4b>sDjK$(86JJc!FL+X^V*NIj*nq|tIWYdZ>3O5VVZc7P@23_#E zx_EJ`I3_;lmM?j%6&aWc`jZBILD$&|5jz>}1=D8cWo(_;$JxGFvRwSe*0K({YoB5^ z_$mAtCCYe{9CpT>q_fILZjaidMH$umm>6y(L>u1+7y)r}y7t$|MM3QidZeSUA$CiY zcbVrPM!i%2&Y^fJnjcc@7qG`qo)3ritJ`OvePs_{9@%OjM;3?lWU{@ePZcFfiktkm zaT^0ZCy?o9l`CqK$*SH!i|&ot$#R>+P_WPfnM zMRNn1<5%g-deFUCE@4;kP`t_?aFh#r`zwIV88AiC#nwH@FgGt(pCcpV!GO_m*{b@U z|MQQx?G-RLhL3-}=X2doF9F14^gv17(C1`pe|UQO=J0fQV5@-K8%}oYr^P$A?7UV2 zvDd)tSY03e9pZ^0c?A&FU5AwaWx~85&b3%IEi~Lt&h$n$$Id5A6 ziD=?G+<1CwCOvxIi@s7i-{^u-&o~87A*;OnXN>q_wp*82L5IqtGe183+0pRV|MR2a zPyX`Qmg+yT2X%_C`K(vLT=J$lyk7URF&!A|{M`I5{2cE*?ke8r)Cz6@06+jqL_t(C z9XCG)kr3)&TTFI8ATPe!_CLn3$7^X9@6p9-B&Ng|?a*m&UdEFm9_&cBabOdKVtQ=J z7)OsD4ToRZ>SLCKdSuC{8YKNh(x`9Qv(&FN&h?PfKXz|(a%hu?C7leq&nc6Joeo(w zciu(2=wsIlt5jSzNG7vcFe@(LSTWub8)%EcpDa$Z!drpLsh!CfFVLWwUt3nJT4s6S zSnFpNb!fXom6bK7shiFcy^)c+ExVSS+F|+T;kK{-@%5M6!*^e&)jzf@`9s$i_fEnl zP<6z(Cu-el1=?1a3dYgNA(_2#8*t6HcxCz}PDc1Hk zp~j`o3$6OGcjv%g6XOXW`R~P9^Bo3bT&(Dp+H<@}7p~pV)8e4F_*b^=2gbZ_k2&-+ zbnG0WK1a!9oHOJ7j_9#{2KQdB$g1G9=WO&g4!$@rTl!Kv>igc*8Qcm!bvoapMILp^ zo;I25iEi86IXHLTCaKkXPLH{s!C$TE*ZKP_=KFtC(Jy5tZ~}fM1CFYI+&>!=cBATljoun$5g~bdh{$}M2|S<*)EPU#Q?iW3n#0%T4HN~~KJDJy#6f*5GNL-Uf zK@Wg1paM@qBazauzGa<^gSq*#s2^2uD2=0}tI{eo(|n#5RSqoRieSXVdOE%Z)>d?X z-_Yv#XgN*Wo9!`gFpcii6ei))y&s^l>|D=5UzZj|3t$0I@Msi2f0!7Wn1xr1h2@AWYC$3 z?UgNdGwZJYBqm>yMtZT;$W*$b5+%3{^r9s@W9+m&ax^zunM97E7R9@4P@%;m1f^eD z4Rpzrm}Vkv@iyDC^38&y!~XEeZ|vv7CZYt6vZ+hCTVB|1 zXWK@PJ*Yhy4u-?w&hT{m!SHPRt>JWc&l5oGhoZx7cm<564ZZHg6Fz)Zkdzd%YY8I$ zx*6kZu2$lPuh?OA$w1>_mbcBcaH5g?K|S&9;qj3^3FE(Zwl4Ss8I$pLwk5n|RciB6 zG<}>n9jl9eDoxr>I#BsZoKng*uQtj>HZolbfb za$v8HvDe5+o6``G6d}wjKR!d2KuDi*j@I*5({;T{_2g=~%;S&tcg> z9(!PEFO^ZY%B3D|($A=8VvqR?1_!{~$;yaibo%L#DHBbp41DAQX&#e7$c&ZFwTMdO z=ROpDiI?=k!=qNdZA%s!W!6{dsU7!Q`ej73G0#_h0IJ@4XeuqC+BUMW6sE<^^)t#{ z*V_nOCxEmOxo*D(5nwWyE7e7Kba&kLi&7@3t_iD7Y{*1CQ9jlq2D!+Ob@)A*V4u0q zMQzu%vzny2>IVkC_9tPuAXR!&AA4#o~xy|!x&orx0Zm_QC*q(j3H zyq1m*aH*W4#(cG=n6_K4}9yxm(6?dLL~?n2lS$hpH;8q&g)Chc0<#b*)rqL zMrQ2sg?Ic?8z|}s*Bo8rr0}RnND5*bMN1_{H)%saLU$lYOU&)ySn4+nPlEeXVuJ(S=ftjhASUydd{(j`6iu`v0=DjU4% zp;e~Yfh_Mmfs+BRGz4$|mxb^$USs)3b_eDrC9`K~{Q_Ja=znZQ`?K89Vv)aMK^s+P%)HC4hJ$h_d0#uJ=znQ-n@5 zlrox!=+4og%)l1!!E1@gsGN~&A#`?0m1~;!*yh`(Ptt2&KKp3fu2*Iu7*Vw}tuh&xMoauOw`1W_Z`-03B0`bofD7M^x^CLL_p!m(hzILl zMwhdf;zvBrBiG}Bp;Y)i$@IuxC8Y$AbhBZ^>{Rfr#2VqYls}S_Ovm3AzSL$|Bt3Fc zXpJqe*!|kxuygyCuK;r6gLmyUF!$}I%+5Z|hbHXTGsCKH+c)+sLFBgKZ`!?_Zrskk z5f*7EK4x|BpwsSI0|PH&;X$Jf_LVHtVN0$vHlVfbg$^Pj2x6-D=#eH&+_>K<<0%BW zM~kvox~@*gz~C&wfJYmCTN00U5Vq}B?t9U0gE-e-6$}mn^5CJX4KLEbU34j1Jv%)g zpmluE7-9T~-HsXB9Z^W_`3YTR%cC7JOLclk4`?sRTs0o|_;!UGxdvTCc#$>&zu<=a zxhlS#wd+Kiv4fsDy7+UvC3>sBrw4iQgpX~}R&ChWRBlc$$98Gl6<(enxYkN1^5_Rk zd#Q}FNsiv7*hqGrenveLdvQ*K=}N1u*2ZXVnljN+%Zx#;6^WfFm`0{5TdGx`D=N{L zp6PC~WB1l>2aj6$wk@sDD3hgCF>d*FjEwaZ{YFllmLGjcwx@f^^yKFHIn{7YsS&tN z0I9LKuD$XRU=mPAsJA7Zgic!$&?pnHPH1C#=4J)!@Rl&ukFnmCZhn>-Kk%THKA@%A zWZJC#Oc*X49)Swa$`heZ@&SNgv5h|g1F2|3Um`@LzKqodt@>N3W17P|J2b#*+t7RE z7~6J@E=NhnOn@1IIvf|d#YSb+!6Ogd%Pw(**sOs*j3N!4_Bl%}euHn^1~#!!$2O4Im2W^|R<8lQO2K+jCpm-fENo!}4kBPD>?n-%oyY9)Yt`a7)v z5)wcf86|6oRF>YiPHY?TXzPxx0P@7}XtirRw$O90WYj9KAB<&F|RLQ+Uj zpWGC|TvmdHJwx%*8MgBWS=JvVcccW5RC+Rp$%v*mIB4|`fA*rJ4t+AO(4;@xa2~jf zl|9iZ9jmtS6D>1S(;u$o>a+;ZP#umf0Yv?L?+=cKzxbP{mH_g6_~B3N*V(pA|BFlj zVLo@?a;FQeX-_+M@f70D`0QB#)8oAi8u5A=wlB+Oj4{U|($=>dM?F%U^*x^EmYe`$ zuY7rCD}Nk*Z3!S>+big7l@3ilHQwk+dbx(hYgMsmP_6u9e^mQ}&Eu!f>|V$8*~3~* z7U{ly#-BJjw@-w}E@X3w2rG&^pl>G05^Nmrl|`{nAt@$3oYCsv1`&`I zzGTjuSNP&8(N?)yWDSlD)Qt!cI5KC6a5hgqdA#MXeEI6r?cwV$wuZw)^OU5)qOeoJ zsOgsp&8sR!rl!AZG@gjli4XF`t>Y}|_P@>0nMg3aOy@@rfXy+F6=q~pvdPD)ShOl3 zt}qZ&TYUazq!;a2PJX3COI>^Ky>U8x@P|jkgZEDKoZp6j(iM!kt+GRb2psh4n8UJ$ z;)_F_6Z(J*VDX`4tOp^|4a@n%sRxu2zS=DYUZg`q{=6l+U9ZLJR0$wTFw+Vke$!Dc zbiW^{>`~3JAwIpZMH<2!EdZG?!XVG_F8T`Np z+S1#jt+2-!S^=A5bFOkdqCJOSMW+X=aIXTNdqM82nx65YxZcx$V5lz&kPSg&?`^1 zL0=qz*)RGgImX9CkC?WlE@c~uWcztP@hkZ=k1MLKD{DvKIss(uP+bGBegv3xDdjPB zN_x?@g@i_#u{HxGN<()xG)nZVgw~clOr%BGmTp>^5yjGc=<546@H|eN(9m42Ev27u zR3^Q3g3oq}kRaGbu5Ck?HuNQ0M9wFGR22QFl&ZVdT5j8}$Z2hija_TIOxrOLD5X6| z3vFy;>cfnD0j?omu&XLj7Y-s5dC<;LTEO&$-_f^^)2m;;`et};4_;259r^wQ1^0Xs%v5o)=GMMHX zCqNt9MRR9l`t?XYnY+;?>PPl4?a8B*0P@RUSOUmLDFI~LRsaDb)9S6-dhq6Td)lgG z5Um8VZBLO-w)cnQ?K{Ka&i&zV@9p7q|IV;~b8FbMB#>=;9gHycoWVby2x2tpBV4lK zTPApthY~VM(uH0PW6vS<$w?r3#fv`vjK$J>7gX%p?#WsIKnX?`Lxgwk>1 zOGx}sx(}j>=%sUo@XhtnXv+W%)sg`6?vIa#fA-%#8-8X9ARpRlAP?SF++W-ZAp9Z8 zeG6@MqepAIchPN+u_=vXueAZDrN69pjM>Zb;iB!v82fn|2k%D4T0zYoY%MR*^*~a; zoT#r4}0y45yK*!Gp2$=JHK0W`&J{waEDihsqnce$aWP`6y8dl|1YTL&tGct#TC6R6 z)KOa5FUCa{Md@sbwWzazv)R%Pm2`-06&QQ-;8&mT3=cm~Ngz)i*@_^Rw5SBcaiDGu_Hc(`ea<>-y*nTotn$tNk$u(X}aCY|E5 zRaV04+5lEsBqqJmr(XDGLeW+t8qN|uq))GcQ3A-@@1K;{z(`WO{uXR9J{xSdJhEG9 zSt~LyM24n%k8U*1A3slpYc}{Iw-|Vl4y{ph<|evbuVPOEh?2{=!BFQsjG@EyH;_sU zgpCIzV|>gto}xzND8ixgfto=o$~~b3oUZd}d)T>qcR2XThr`YH-}VHM6T4w5W84%A zx^r{iRtm8MklP1&9*)jS;pSWP8EJg)@xZJq(Xk45<@s%h^ReunJ1usha~nX5mfpP% z^pJi_Y`Nv_8<5PW+0r z6}A{dD`0bM&ee-Lcj>{Ly;q6OeH8alwAF_m?N#dA>*i}5cXMY?#L$1RJsz035?S%j zB0s0MM~`FA`90&A#owSn zNswa3D^<~$9&kf}aGd~h-UwdHU!e#v`B35-ZA#H&omQeT z6>*8E7rn7e(hiL>+H7f&*Q-O*q*rCzc`x$tJV<&K-|34JbEC>v8{#vGC+wJ4u0+lh zIA{*OCUzrhL@0dOOB;16=XpJJlx*uQzHPVo*zRK|T^xx7nGhCL`*Il%Hi$>H^Yx7d z=2ev=BgmN@TF@`Grq=?Yf5%Us56?dRYIy#sz53 z7(pR8BD*?Bw@Ffq1EZ&n^Hz8;@sNO_g3K*bT7UMHYS))OCvR4Y*Or}7oF)pB1g#=@ zgkipo2PSiw)Cl19{fM(^B-u1)3^Q<=IF?mMxG7Qsn_C4N+n*2@M!q%lo`l|s%2Kyz z;)#|klzrgX6`mxX$hjX){$h8-(uC%Sy`3!w+H$=f(Ox`>%snD!;78EbYbqZ0I3P8PteZf+ujx9pp+_ z`RypFN#vq<^3|=X-R0Qb`&dMQx6$tJsqd|AI$|H`EIvhvJk)qrMvFNuzk;?~C`$Kx za?0^z1hTkN0iaO*nrMR}A0I zVf9!XsWQ~t8l#Pc_Y-$vzvAim_NwzRg6PX%Pg^urW8T3u&R8feK9Fj+Bc;-ZDjwE-%I7)o5e$f5&KG9!*%X9)zGlc zH8nRRd}}-iJ3wP8qUJ}nl1$xoju*1V;80?){iqOWP~7Q z1T|)^6v0~j2pATli-gt=I-L3+(z&eTRB(3^3Y16=Sy?aDbGPHVudVkxk5p7dAs5+Q z{SThX0q&~1dZk;gLmy(5isL_hKsR!qmhK$&F~p_-n01DqLh= z(@4yS!Xz4Tj;=(Jr!wbCE4(|4Pck{k7#^Fd62-6_MsD_D-i7_#z!XZbwTe@a7B4?LxOxX6LD}y>8ywZ(GUtExHqZZ?Cu3swNmB zPi^xK2au+{hNn1fOT!azl%sh)<%S=)76pi4T>4`peU~DfJZwT$wddmQEl9r1-tSL{ zla%soWBAgSBvE;)ZA3_S=!&5Y@YBwh$~)Y|6lUh3)bN&TPu3rJH=K3BW_-HJy4;i| zXC(*spbE1H5{d_0tHi$a{;DO)gfm5N4J^GQ;?EvEq;fWUjdsLsCUWqaFeJ%_ zv#u0l_?Ka8sJLRHFpG>73wiI$!wyWQJb!GB6e7Q#Zy`H8&yS_aS-ZY1{i+%cUg&zf2q79YTIsZ$^i${=&G9 zkXpc-55;ZX#gk#5VfuPu>9f8-2T8o--n6|1y9S>Zk4*A{ z`=k}Z1B(=5wa7oa5Xae^%y4!JEF1sLf(sH#)*g5}-JM|%*3yN&i z@Bk9|PET9cOyAVsLziLbM99hBr}7M33iwrYPX5L(J&})+5h+U0$6;Jb!>i}nZ&i29 z!KO>aJ61Oo#L1t#$*D}w^`{!25P`^Emgo^ufoEOVbW^7Po!mcTTxd199kUWdK{^7L zK}!V^GtzK2k>Y0h2?n-qzP!yos7$dyU{3q+UndVy6uVo2W#P4NFit%v8&r>L^!OMK0BAh$IZuw^sWG zTq=c*3f5EQoR<5dKOgxUHjz1JZji5!7T%@{Izkw(9}7>eif+6==h^+4#JBl6l;o1Z z*7s88b@DZNdn-m?YJNGHZyrZ)1~|vPE1?r(^Yz*Grio=_W=5qs~&is#O5NCUAz2}#?LE3<0TUgDNfT`Z#ahp6} z?V?dB> zQ#29<&6H%EGgR2UA?TMt!`LgqPi_tdrynuE)ePB#x!p?m=$Hdx$q^}_%H#lKS|H87 zMzpyH@C1A}Zsz-Ld>=NwRCKT0!Kx*EOtT2Zk<_$K3fy!xL|CRnT40V(u;ICBH+2(I zyn}_;$vU~R6U@rs*v)6Z1~gl2t%E7h?d`gN{zVHO9Gix3nF_DVAAAjIR&1YYQmU%I z3j=&E(20#6`Vz%{r5@&7d|YC2OSGVKn&dqia%V1+VVTSNm`)@IZ@NWFi2XV15$4^=Vg6uK&b|D|b*RRMdr$nkugZ70q7w-zbvw9-TnEmMA??Ho*VV26(`|8M+nnJCXYTsfL>kY4}W-M-C{bI~iLcr(4u z?OE==qck3km>r0dAFHal(q_uZW+WBRU(qowxImdq`EI@dCNvD7FVlTQ@~S}0`;e}# z&;z0-t(LdV?rG-IcJnZ;UK~fJXV&#suJX{=t`G7%vTXVt`{%1+g@VnMR))5YMPm3r zo@TMY;)O1I%-mPynxLgyyI!z?6)JoYf zc3*4|gX z-9ng`+%db%YJT{f_ib;UQXRBqS0`xn*bXcdavrf(QvVAm%HiknVQRQMx&*KK^Yw@@ z&Hs~vox83>LMe8Tv2U)fww-{WQ>VJ`1)V}Bm-5BZ_tL-S&Xbu^sMXC@q`LdvunfUj^x0nH(IO~lFjB86@RSdTi_$3Y(_ zdxfHNqT_8|es>l-4l0r}PtB|2ng}v%`z#B|44hAgLe{YRytUM7eLsZW! zfG}aZx`qmV5Y^0*V&rQ0`q~Y6qs;pJ$5Q3B-a5(U!!I4u=nLMgjJS>2rGLWYxsHrO~xpvYYV#kurhph%B%H`w7FyiKQ1D_(RuV* zo03*O*MxzF*;r9^J!7{>S@pEzESO|$GPBX8t-v%?WzF?aVkQt5d4K%)h}&WaZ~mff zKwIO7lwP;YB`7)+Vpz9JpXy|dKE~!ho*A54u8Qp;-{U~mHtMt9ZwVbUr#FrKHqsQv zv!`}FkLJ1D{U__1%%KUyhdlGi_Xs6%_@i1v6Ys8ujqR1ioSW$Q4|l`1ZffU6RP{(N zY;KX*cNQrg&vEx2N2&~zG(at^-%_?D5RQ|lePbUgb)6!|bcu+iBbA6TeuY37*ixS<-4ZK`^bvnN> zc1n#^(LS(OUJEGf{q1yRO`pqo?sotL3Hx*1qf@_Kyoce@xqTT{NG(D{g=(`w^Y#8t z+%LF%tE$5r_R0$v!IMuuJA+l5_qQmw$%ktucmIkz(JhCl1WzB2sB8#v-gufvm~Hw3 zR-Mo&M);Npl(6CP4I-&M063kuyBDoZZhs;eeBx0}nS^cn@gy6+L==;YxU1KPGl0_9 z4G|*DiHGPC)Sd8D+)dI43A~2PjidRlt)u<$#Mhrf3O3na_sTjE_MBl@tsS?i?)sQ@H;6yGB$qS5jq~g<&Q&BJ_k&De zv~eW^1}yXI0H|l^ewoD=S3cRf2`}TtRq}V(!Th(+UlE}FN{Mmr6wkj5BJ7floY2v>BOEQhmn1j-n|YT7o`7bV(qM z!5aS4RkwpZdv&GUBgWi1&XSy#tY*hoCuNCZ;Bcp|Wzw!!(-nM)&oa#LbdL9GezVVE4Gf4o+FOmBC6`LNL0oL6`ShAFWCUgd)j-{kwRGQf6rJkB*tM|o|H{3iriExpn1*0?1=Y(xj;;<-(fp2SbW@H?%4b>sybj8oiV zdoprK+t=-%6x$CKC<8|5fb>|Uw2TLwC7)sML{`>mNXTYb)vL>Pc5~R89$)w=nJ2sU zug?O2$Mt%oc)n_U@nTg!_+(FE$t3bifMS0*kU$_hb7T>#ZS&o9g%&{E>b>%*lkbG1 zcaEl1jhe%!(hJ^0C*NAS_YU|XL_dqL@5OyFUtBsG%>bA4-vF}0L=R-_)1krZTiGSq z4xN-!?V-eGx|Hb^n&3O;#)8~clN)bbF9Rbn1W??1OXiI02a>}t)pKMjHMg^WY6O-v z7o@=L+blx;t;>BJ%6yjqui9+<{8(P({y|R82pV(eWcbOA?;4@X8g|31Cg^QH(B)DJ zc}^kWMs>O5SF&WE&|`d9I^P=$55InlwnB@vT3VSRx|pl6M@+D0THup|D+3lVEXC!w zFVuj%#O#rfbE6kMcJ=>L>;$y#tAExgBc)d@a{*h%ucEX6er;QHaoI*FWmd`z1nqOv zw-x3J0(foI!0yX+mD(ARZaGiti>>)SNhHGMpF~L@$&$G*ra9dnxL&IG3DapZP6?xP~A#JFpvYl}+%gpw>IfG>H#lQ+NLeKzbLc+=Thp{gWT zM_SKnN{sf4_t>|b-YU9^C!$@NJbf9X!M2Bp^9QrWA8J4U?hv35#R>l7(@vo14u!>W z{2&PqaO_65w1|DqhCg$5CGF*EJ3bfhL>X301_a0E8@m-&EQm{YXt@5l<#4;s>BMDa zYS5Xzj!4|I+p3QYp+6CvR$ROBFc0iXn5Zxp%GQIxOj+GMqN2;BIiKKnl1?|p-iA6i z@4DAG;QR3;JUypJDZARj0f8qgeTCUC{(A5F=Q9@2sqZK;p6<@ER(ydPAj++!A^AIv z>dfPu{>>2*O|2C?-sGN5IWhsC?WrU|Nxm+_W10?+b$qE=Fdfdom$py=HZ*E!zRY`h zI@On1N>8*BLGakWK`Q1kOOG^s))|X-@qYGyQHKe$77q+Y8*hCu%zArb=$m}I9H#2; zG#P^$c_N_R;jMoCN9*3SDMi{6%|aNmej|R}(v+S`RmWbgY#*V~_?~^b+O(7CjdNB7Io_QrDn|Kofr?aw@29qd5o!LofF%W<4XedefOo{* z4&?S?;JjJnVH?t{*XPzQ{h$pfP(Sih$W$NbR;T}2Uc$fIs_Q_6J7--yyRAA0YK;0t z=l0g0qR1qVDyf|1{#`}1Vz*JT=1PhN6qm5mz&+?mrDV7u>2RsLtsTFU2Kf~pNRs}K z?V~w#;i=MYeZDrZPZRC|0=myW(K{< zcL`528KA63Dxc8GqL}6H)a~!HE)H~q1S+C6yiUWm`n4#_(Ws>sN;kG6Z1jOAKS%hR zWcDj&)D-b+tgBN#_qYj}yjN2?MAegrtLtCSN?nDX>Gi$pIbpTmooPQ6gBVIGSL>fT z);bV|&rbgu!OvVRJZ1Tlv^q2n<0ENt`Ke1T<*cGUGx73+$c2`#2Zr9o1S|<$LqB`w z@yyvqL0j;a{NQ7(;A<@#|7zg=c+9zgL`P$4ZOaZO#ZY4QM;Q1g)tkJ@A7T8ODlbRh2Q zFRcywOFLr^qiRRAwxeh$+XpftT(SXgeE&bqD;Ya3l$+)5LMT!L$$BoGnQu%Bq54un z0yjvS)A=ZFq6~t2jZuS}4UGuHfsfd}eGJ`oNH{B=SIov8A90^#rAN@(7B*CA!sYcK zUtvL;j4C{#TYH;_PJiETFfJ>OYwPxJh{=8x6^5@KdNh0VaAsb%| zuhVpuC<%AMLP|V5ZZQ81EUh zrLki-AT;DyTsk1xmNQZdPh1qX>jpkA;){Q`*Ylf;%+&?#+%H{i_KSuX_WlNh(rM;F zf*nQZgZRaXc)_=maZkZz|SV&kKmP+Imb*bRearyo)CO-=f+2HYb(m#!@ zqCm#5%oookc23QxFi}^N?t5MtTlcjb8ny3J2~3!vz;^O?KB@_6^@*=O-71Ndx3nCi zM_utgJAS|wcG*yJY7CL(m64qVmEY~;GFUYbxB*% z5bz{`!_dQ%UF@r%0yW!Fdmc>&AIWnsD$f|>{arC}Ze6&WWq=#&*oO}sc zs$Pzl8doJ4PyF7l>>rz~kllO#Nfb~Z&Rtr|C?<@hU@8}s?oA(oC}OEjt#K$nbHL;p z`z7R3BnG+Pe51`Y2}JuOB~};O^dx1)r5fs07WNre`Az!aD9rC=jH0@}%l*SGrVSr` z;CdJ$j(XJ1=x;cuAfp;=DefMuybo*s%|LG^`{q5N0<4XmH1k;c@Z0s4@Jkupn|Xkez#ox?ZoB7pa1}Ioy$kp z)2Mzb<4s90mTJu$ag6NlkB&-p;Z)~AiZYqo>{?;Fl~|2J`^N;%_xzAS$RuNbEmM;h z6Lieu>a2WPRuVwydw=8AmlP*P6-ybA6~I|hk_V0%TCTUMnUT{3k846w1Y)z#1t;wv597hARXBm#!*l2?32eqg+K6xI7ZX9r15>Kpb5J~ zP?8XK$gA!R_Xs{=Xq`E?H+{;h zCZ8^m;z{H1_63%=M>)rO@;b-xMS1E2kKC)9(GwG0ew8E2c}~!J{nx}1e#@eTh7UZA zmRHH)$W39{;!0iIM5D@ILJ^TChm^zHj^$AH({;Rjw5+c`^lYG?m)KjY$=+q`IyB;M4J`cnAG)9II4aIUBN(JCe{N*fts9NW(RE-~0k+bUAgrS~SFi|)9Ne&@m zY|N;EaE;Ail+Zgsm2teR>OdhO;}1HZ;yb*)@UeezVN`&~9)@S0qDGo^zjeOvj^W45 z4yQu}7IVw52&?kyNZ;qxKN;7)oc5h=78p5VV|On?1v+gLEb?wP1vNXMtusxQiPt_& z;?sTJtVsBiS~0XHB>VT9ZS|~#jwJEvbvZqe=GUQw^xWuT_>~vSp+-`x4l_k|Kb?E zwfd~e4_0aech36iF_pC9(i&@OE`jf8*R7-|uT!PTM1j9&93Q6A3fA+rkb4o?q_0nB4vK z?VHG65he0Ph*-OJIM+d_fw2cIb~Qg*GbYpKXMDzvoUVCp0zq+pF2MA&V~X0{ueY z8SPatJ0&*4$peG^d)=V30>1K;2AS~wpjK9TdCg_zs3RZb(a9 zJ{r>zWp0;g=WwLyW*>f@P7E&cuaBv`t8yuk*X!P$9L^h6YN8|eFTD@rD;awF9LpJq zJ=)z8b3z~uo@rFzR!?*~N{i6&dhullcJVmT_~veKDh)Gq6_TaeZB-D$E5Ct3o$1>W zHQMytY=kCQckH@&cmktLMl}c*jJ=Hx2TUcx&z~6gdb!-Z%obt;tkj-CJ z`u<_&jpoanKB}q28=TDy^#dU&6$z>xfl&5nd#!}wTkuCTvjce%f?aNzyli<5@%5KROKcut4XU#?*& zr>-UMq|&f$!P8fhnj@ajhQjB9^#kymK{+d!qmqk($f8HQAp53NXV9WAx>&w*?yFu9 zH9HrJ;Y~GrtrR|py(f=kgby;{_3)d$0e|pz;!jXh)Ax4k10}d{6|dpETu;gBKE#cr za6YYkqvxg_JsfnrZ2l-+Qx28JncVM*Gdx3DaFFjWsTaM+MxLx?Uq`6qQJ0!RaR5Q9wSc`l$1|*z zW=HH5uXSQaVQ&udj+eb!H?tBtW7(1uiWMfxPn)y=@6swHY=Ez@uPL*i_Mgy1A<2b? zHCjFBS8qJw>rvv19He~M@59W2@^HAKo6@jN7C*a?;9=W4)SJ`m{maMk^b1kTb`Jc8jST+(g_*Ey zR4ImR$C!UBRN_#X{`hpzXq1*n%sxOtxp?!KqY}i^1Ay;ORHJ%3YVL!0-J%mK2^RQ* z+@Wnf zAK{8{8#Qa{dx&20N`#HF!}&Q(sdVs&gMAF}`eKgzk4ZNbtHc)t8vR5Lwdc3<4Eo&vFZgGd`ZV`KT5tlG&NszpTWDsd%mC6ky`5dco>p`xENWn(GpHqO z_Is00_@HqhoHzXEIx}SE2*)#WVWuf+kYA6SDn_+-B)1>bnDBQovJxeWR^L(5d&g@( z8bcbH&mh*Pf^lS3y12ILyZvwHaZptTqA)mE9Abx543R}#NM%h0OZOJ~TA2T~Ai#`h zRqQzUI?MWPlXdXNtMt^OBP5A+=$w=mqThOs^xtV<|8nwpgTpWZ2B8~8Xl7^?XzPe)QyjK6BA! zTN7+9x)TglT2u7L>i>4b!7tmAQv=`Om~xh_u||KXpzU3?p%73-i-;`JSchnEnuV02{E-#3Hp--DD3#fl2<5Z#rQm5gGt2b+PX>WxazSS2HiYLRl!YukHRQ7s* z!YRpDNgcahZk;c>I?)G@&N3coyRUmDwQg(o!Cj-_n$NY8*j4}X`s1urRKoXF)V9L# zM3aR#sT7dvtngEJOtfl$EpECesa=N8R0b59$N&0Qr-=|zdzO`QW^G&XQBbmG2E;!n zKu}HnLlKtgwute29LW`-dcAqOwZ1QTo2wH8U0JOT5}kAL#)>R(EHD13_Jmb9WdJw_ zkhfJ}U*H~>f+^1S*6lba7Sv)n5YiUO=~6=RqP-=x+A=$Z%N&o)iK`?6t~5m{x{ z7IQr}w#ay!4h3JJWUlSf&`B4Ep@*|LLBOSon{-ERVrrq-;T4_Oq5P<=`0PZR{@^ZG z-jteERAt4u%{yrVmgT*BSTQ1VlbLaz#`IqAY0~B?c5Jv;pfy?q-`~dSwCbJ|OQWbw zMRJq`%}a)_@{rLF(x=>o@2pP||EYh`V!qWm9kzS8$jA6>($s5r7@2jqWMyjHkT5Ct zicYM6Ah&?kB1cbEmXKLA_(eM^oux8_8A1J0Vg*drvbNG3-subezM_Y1PZ-~xLsFEI z0>1S;6?NRW7l7~A^qgtsX=Tg5!mtQDsnqNzpBnv|hU}dH*1aP9dX2@_S3ab-DN19d z(aS^34f>gi^_Ief7W+$7A!tk7>;g9kCMOx}q2in|eZe$Jzi5B4519FKhU_jY)Pn_LxR6~ypswX!)cydFs13v-v!|>TR`P zYU7Kvat7(nw?befHx0&Ctq~9K!*P1tlJBU21AQkz%0wgtbFv1+sR}fu4#+2{XUW9m zApABB;6m0iO=x8kL0CYeUO?RBiGbtQ&>O7&3;k`!Hg+S-kaD||$ksWm%C=<7>Cn!g zx39U^eKgqt%hr~2E|ufAe{>bgV6kB!*=$uTP*S^lmRwsdKP3fpfyzZ{nj+#n%q8_= z&OQPgtv}8$^l?eX&(=ZjEug?k@o$o}VoR=W)6BBto$u@0-; zKoQ}WHLF+S-Tq||-6NY%T#+X|*&+TKd*W2sZ%jxc`|zzf%!omnID;4W+U%Cd=WAAsX3zf3BEjotL*Bk^l7JrxYWopYqdW;S$1}ieyKl5%!Zjb?UtYf-LYQ8t~)93HCEwUAP?Zcj27)tpgxF>%4=9 z-0vdzW%N2nqQcs}Qb$DM`;QMp7fe6D%Nt>+zMe-FpRpn%2 zQ+FfG{)<;&diqJ;oP;Hwc(QPQxSlQ{orqsUMf#1Z2Ouxr9j07@O2?_B{)WRl*l9O8 z=H-=}Rhg?3IMbJk)j!C*Juh8|y`0B|i8Ua_Qz(?HQV|;MR0LnmrT4YwTCb=Ib;!04 z3;L^xX*n4GM5MB**kR99v5zpjw2O(=Z=@xvj7!fE8~laZZ(c330goq68TboNJXQfg zR_WW#+^FJBWcTF&Jx-^igaYEyi2m7wv&nk0o9uPE(sP7?wTER+-1}`G?k$U8-T)l) z<+_u@$;LzffR^`Opws%Za^&qTz}Kn=_Y-`o#`qs&#n$7VQ~h^O@Me}xWm%t*P|27h z>Atsx^?Y#BBPjrX;yiGkn}5r+43?Xly!KEl%#Fg#vqY0a0pJJLJ-)LePWtkL<^ zUj4_*bv;p`XD?@JVMi5Q@dq_3<$#HhqzvNi)<*23CiISOfMJ4Yg4?qV`D4QMtY(#o zimUs^sfqYE=qd>hx_nH>h#sQJs;RR5ty7Nf7k4W5l<}_;4X9A*uD-pP~urIPp*<99XfT>cx^BF#q%-wG z10EMdO#Ogt;NhJ>|2REJZH_ZznE0@M0fhfK{~jTD11UstHry|c$YsCEOa@p>Xv2Jc zH;B=wne4(d#3#HD*e_ET|4IRy0s>YLmxl)v4cSa+UM&_{`4Xs(S92ww$8KLVYA5-P z^((ip631cowl!0m_u*m*^P@E(HWm{rITS`q8Lm00l$Csr3;_eNR%;F55DrtfI+DLs zK@HC>HuK+T0(`GnzH?uxdskV^7>rPO#(asu5!QMbmw2Q@dC%XGlT>;K}XT&U9GLQq6?AQ9po3UN$A1e@5VMLVA&<%;O(hIQNMRM3Xk5lHNHNkPJS1#KlJ!1?lmh|%3KE_0^obltCIzn zZ;lQr9Ksh)o-)y%yMcUV4Kx6y3I89y)lVOyQO|#HxKv#PRmWkYtdt$h6~G{jcDxCZ1u|ah1~03Z|tvY6Xugz z6?H+Fca{mB8DMq=FOZcmWkOe%1G3F?Ip{}&m$zKUM`RA2y>aIg=o6{uID&5_2Xdy%S=A3?}h(s0$V5TdKtwN?^-3L z)WsXdS3pj{4>)k4XWTl+8TgzXe#r$$_tx8LGX(HdGoROE-vZy89pN_tKm$?v`2p`hZpD4;6++PspC{TN;u{QG^4S+X|#KhzO%g(1z7@w3;% zi}moKzHl+6if<`eJ+ez}WVQ9$DX}AC5Ix#XZ4*?K%I=N5m3K!g`qAhI%Q)}vYY}km?xvR#i%B>xQBR5(cSdn ze?+uQ4G#a+bs^{Wq;=qSV8>PBFb&$la-Z9j$~;gY3%O__O;(^-50w!IeEmjS1uH>C zG;%$NY?RgN+>P{1(3?cDwp%=mA+fIV7MjrQY7$@KKpNK3J|YJ!d?=AdE`{0B#|gD1 z*y)K?Pygub(Kg7!fEA5tf4FDzCpXzXa=s+w;u;$S*%OVy5476sq2ES2zN_2U88OLK z-rFe^FUh_im6`hhEB7&&s~pibca!M_5u`}t9hrH!>vqyFUJqbe>9u?t!bmoCKGLGi zidSnbm*9cwVZ>?(1|*w_CXm>5Iu`v`QlTFgx_v=Az-JlaHL{aqN-U|NgXvf1LfY zd*Sgh+4j@hAIz{64Yxy|e-j!NgRrZpC_qr;8a=_gvZ8J)-r6cZ+sUz;IW(2eyeX%4 zCu;2C&4#C@Mq3o3&l8DaCv)tYlp^(7-HT6UH|ouxl0o<_$yL(Zr7ZWzi)@1#b-cAf zRgW#9XKOOjWf~PA=)5ott0TE8=g)8oV>ddPMFIJ>W>*M=Xg24dHK4we{m*-hZB$D7M#tgYQVuq@Nve=T7`es`zfs+K(V*S-)w{Dfo%|58UTxq0hb^mGb9;G*lL zO%t}lBMjK=AJD1!oU*Y{nqi5RvsdSf!77tCB|XFE)4TAbmlg1GIKW@{JA$k{f+~Wn z4tzhQ@+Z|VpEbuBYl1ihM<{{s6m_NO0B#3)sfJYBMU;5Q@Y#^Y(TD|BY2XEF=M+W> zwCHNh23_B=LVj&uYK3Hs&uRa$5H6V{$9xOgprMMT9G0ttFx>s%1?$~;9odEX8v{7^ zho0!IS#PBpBTa;izMen8d7{lE>4g_--{;vSvkyeTiqq!nUT8R#?&ufBQoFmH{`Tyf zZlnLRk%mYMHNm!QTOFM^u~$FuXJ(j}uC5zF8k_c|C0(uL*02O$?`U7WyLMqHNi6Ys zSe^bRO7$|_Z}^Nr(9OD|c9RQz%_DnCdWymG-AM#8?z_BSCQWx&q<4oC!e|6Hga3Y^ z>N03>$gv&9WB#>1(5384geRF}FvzzTbd-hjx&AwUkpiF%c-oz~SmOiNMt5RK2mcjw z938CRpIa^6$k8|LaIj!G>LzMB>nbUx;@V$f8yGO1I?SAKIG{hu>a*WxR?s>0jz2CA!_v2Y7wDJk>B4Arb5?+d<>jzj<`v-l z`T3%Rq3^WaImEeg?{(Aes0{vxc9hvEiee=C`D;;_njg^)GxVg1nC&r^7Z$_B#OO%H z3er z1hJOP8Brw%ych!OXMVRy>bBoaleR*Nz zEkC|9V@YyPQ}}m)Ec9_^11ww7UB2R2$p{~n4?_9R6)*YIFUIWmJtfE0oS|QNm-X_C zVT4sZ}OCN@!voe z1!vG;^b?h1U_7M`+xT~rg8?F5%m}M8IFeq}HTggdEe6kUCCt#G#TaCtU&GNr?qH|+ zw+!}#%~n6#RwzzMsYvyb8T76y_b9Rnis+4K`2&dfbQ271&_-M$T(3L|eIo#r_ngI{ z{fkg-RR1>Ec9v`*Y~s>N{?q^x!M^)(vPiV4OZl>N-c6e0e_dAf44v&tYAl*&)wE#A z9{Q_fai}SR%R4tURKVw|M}`YyZ0O#L9Kp|Q2P1xM*P`jh`ru=3eP>Pv>gtK5i&X6A z5`SmpJr-)Vd2=l}prcvH$RJXHxvlzvR2(+IJ$rZ`NKld-C;+%{XNHe^f6M+zM5@nz z3sQxs;m#QVMFerM4~Csjk^wF|8p2)vEj-V+X+nMHZ(}(kK`UU3`xz!`;dHej9;2ge z=HSJzv_|jx@ntiS;>l8BWe@>Sy7-W)&AqCs&3_ZO#ud@nd`>IJChN7k0~;^S{GAVB z0Iw78AK`f7&mQbhLJqnh;wriz?fP&-{NHgk2&UMb^00C2C!zuLO`K1+{@qCr?5?yw?kQf$AliWlRZ9T73DC8|x?j2lFPDYDr;4&x zAzgFN0_^KTTYNv)*Q3X_0;@aJ_MWn~ih*s>p|K1wq#o*iTywsrK%+iXz*=iQxIuqC z2D0Lsk5E6Rv`tWLe9M}IJSLI& ztwo{P(nM-a$$+?Zn8+bja~t)q^}r2@RORAFculCY$wI=-FOwrV30RUdI%OZ0}4hL5ndNY00b(oHiByTp{>>6NIx|n~gf~9gY z=FWaE)V~Wl*X9Y;sBn~PUXDC((%+5XpoiwkSEObyd@?5Es?U#evyja4;9cnOF-4;m zN*#ZgM;Yov5fi06TNS!7S6(CHXZsPEKnDpwEnmNhrCu^687oGiVs4pbEBvlJb`Utf z3bRV|b*hP7rX3xXymkqKQzGfnsPDHqIamR)3Z(3j`&|dW=}W+#UNA@SFStuhc{pfF z8mPOo1}Pp<1#YPsDgKlUJe%d@&dA5dxLkcKY;NZ>weYDR$Kyil!%SG}y?99#mbhL4 zw>YlT3R!u>CxDHqBTVUp6-s~M*jdsKqOsJ#-ZD1-CbP`+a88l?JGW_@ocwx9w4zIC z2gs{Oda88oSqmz{vWq2{9E%p!GBQuzfAlgGykl6+nlhYzubJ*~q0qMHy{IkoM!zWF zTZ51d<;|4m#x-1tixBBMu85Itg5Ic>){LA%U zI@vQy%@onRWRSXtL@?`82lCl82xLsx$`!ZEiv~SaKSUC#$FT)SM`c?3-3s9dQK-V$l-Kt_h^2dRMt|+F$5){)b^e*WemksK}Jet4!PV zJ0V&hd#R4vy6h~FjJm4)&pz&8_8O^$V&4;4JDAQ>Af1?kHPRP#2~jB#(iU1l|EQrb zj_1|ywfm2A_Q1JLV4d9HOTxaqrRQRrI7WJ35?;dC28#qwe(d)?rl}|%R5^{0M%Du= zEH=rw7^WXdm4!tPARCyvwr@!rj@Y>`j$ZdC+Z1}Z=0l0JC!6sA;JszOV1QpTaXwYJ zyeC5qT)u`l%q6#OX!y`)_?AB>=4g9^t$@&KgGP;VyVUA$wb=Fqwg~CqBtKiFhz%1l z`nwIY%f03y#owb7XO-vtM8X01_9NklC5m zl#6-(cHoL94qRwXo$pL5HE5gFja&c`?tygl@%Kr1$dXowHhAD==O4hS~nrVU7GcsZ@xg@~*Vr{)*S?w}lruQT~5ZISb~5ZdJfVrfNA z&8ot#&;GJG52EyeE$y`a%AXFP0`QZu2C;IN&Fj9$%X!AOfbxwMkAszPF#4R@-|Z3E zSa(Rx6^IUJfi2y?aKWR3;L~|eACUk&!UVZ{FA{@Wmy;CQz5?6aPoChYq27X(Ykf&bmQu< zs|kil%Uu8lrjHDpY645!zfox2DmLw>PUzI6^oR0*7CT|*J*6eGx>D{AA{qU1_I)l- zAI|3x%)wFm?-wQGCK%t^nI~002~@SQudT7+s68$TLL3m!Y)|CXw}&&uEPYqjx0`*B z2W#E#CTgGNv-)6Jw2=%Qq121Kg>G2v#cKlAad}pBRdJqL8u~jt{)C)ro#{oSQ|rgz zW<|L9(TDV5+%B28^lwD&Ba*?o)M}OcDR*ZcpJRd7`FBiO2eu#^G8T^G>+KW@(6Rej zM>?_g4^o?oYlY&0=FivF(;m2fe!Z3}shF@mGz(Tzov#>>vA?h=o#W=}X9Ug>yDqhA zlS!IavH$|vqW2c||Cw|mDu3_@oSshgTSDqa^Bmcef*K}^fx`K>B%@CabAiO}Hx~zX zoG_m}mUW`dO;7uQYZWwAh*L0J2zQp#zz!eOLl7)q+SG5~R4o`sr(ux@h5#TLbMgZp ztm=IU)%aiSd3fD83l6zeIUpTro{V*gP~SVJ`@ox>Rdl z6#qNiuv*J*R^U#-kP!77G9AcJ*!_NGGk(WbEQ!S-ZtsA9xYc&-e*h{$)xPb!jY`A% zb-6kM*9jo2V|0zUvJqgWnk%E@2?H{J^%em(eP&FVeLzPTG)j1}O`WobNi-(V(HsXn zmtg7y51`dAdZNKWZ`EPbXPzsem5JZQkx%7_7x=2S8}aK;#pq2^V2}~D($GvVX!pt< zrbp|^iZ;e_=-n6F(T>t>{KPB17j>l)MMw3jXGCrqtMxPjYc``^yhk+hpmjX*ZBAK3#Gdm^fvg;sS(%?lyLF10=_@z!w;`9`nCP9aeNi(cqz zw>&VhjQA)M>F9~Hh*cdPSkXG0U_kY}K^ruQ^5Hn!Gkf3kWwxsNvKx6Z9G?kbc@>QK z&{U6`%SA%39u2{lpf-4IJ8{!~jt9M`2YK|+K6%ZwR+_V)yQu2qb3UXj=O9at!;-|aDym45ASZ~gFS_{pC=AO83+ zo)7=@ua1Vd-!}uc>4DruZSnq~y`N~?7iDu3Juz0yQIRHH&{c1FqP?h%SoY%9qrE7< z&SEFVF~&FQikL|6*EtKsog2Rq)7Ju(1dzvN1&}8;zvL&yrsIpD|5N$5*;-#&4Y)uqHqn(i3o@lr=Jp6nZKK_lp{>4@R zIeea8)1?!i{s^slwVin07TxAnu!>8fTQr@Xu-gW3>)Pcf{`}3Uq!P)izaBf>O>Smd z`pZcC8sAipGF(#<&19^ix=TxMM>q1!DcNknCV8kqf%N7kV<&kD)_Y9DeUZ{5C3)KQ z`i%!C!#lPL$lW(AVe{a0*v$((ptA^4fx)1P>TxT_w)C@yK_4X;bU;_R#LKwiPL`(~ z)y&m#SA684(VmlaI`K~fXgJaeAey6ev$4)bOxM9)6vlnk*s*c16+jMH0i-5?h_`!l z-(UTbl0Ym0WPh_2Kw{TqvbRM{%SWb%f!E5sQf>rGIP2vgWkJ0YH74D+J3wryDS@<`1~UM zVLbH42ej6AWJCu8t!+oymPcC{8@idPLE`ubvz6vryNYCh~?q4i~xEqL{q zjeSTSwAktweMe7?Tg2qL{>Zfr3+vfTvUc~MDnTAiwVxSV;%3n<#{y!~Q*E1;f+;4h zD{DmHIss&jAYDVQY6O@NDCH-0N_;l7_)KDR^B4S# zMrkgm`mhhjr%KyJJ+c+sQsxsVv#_6e36{y2JMuYR$IC;sXey~p7yZPqpKanCKf-Q%t51G2)k^6(-Z8hV#_V62oF zW2TU!F6jyF2|n=fQ)4@tFM2}-KH_cLq1iUPNK-x1`J$UIzWuRu20(N9EGN5sq8>1% zY?(ML0K6Uz1@OQ^S1Ddg2M@00L+_RX_Y_20U!ha8KN0O_AoNAMo@_?MfTS?e(qh|C z2Gi&8aLZTTP!hO=?;i?K7Hqp<=zbM+Y{GwU7KP z-W<%LG-3*|TTueYNnQaYy#nTmKb*8bh=&tfy-c4|Th;93@F<;o3->bV*FfvpCaGiM zRHsW|{dy_Bo3Pzzzy?jOqo*ifLX|JF5-G{~moyzc$s~O=KsFROFbVvOu zxx@Nn`KgH z&wbCVy{fDCZn8=CkRsV6M$m{5wG1#2Faq>1=Zo}Nf`*U=7zh;6!)7m4UEQ^3Wo1_7 zo*CNwJslf<-W@EpqX(S=L9;o2*BE!pM0aQ6Ic zegcS*Bqr@!zdN%NVH6cg;-q)tToq4?k(|I*my8t(oBmqW%M-L)$j0M)vaYd7_*Q3A-7OJViWh4cgv zT-Tl62x}M5#v~A6o_7KWdyzt|I#l(g(!691?d;yvP*;Redx6rM%0(-y+G$|R`a5*? zGF|Tsqi-bYyatErR;G4i+HHPgCT6#HMS)Ay)kJqV?5qgoWfE^nQwdiSiQ$HhCQr&(ws;E>A03p+1A(l(oQSIA@ta|OP}$G z$*vtcd$Npo47@reno=X&-#5uhF6*))E2Rg`6u9IyQNc)ZLn%tM|UIo6sIPqdAvf>`fac@OFfWd&Pm z9$VLs3KLm1{5ql8{AgV$SjqM49!`E)C89dmk(P)?)JG~_z!wH#&+c;KM(U#{;mN08 zhAkw4@P7mIY__895BOgNU(vo4I6c{%H?jD=Ost;`xUMo|(7izX6NSlb%PCEIN*h<;8HXbyFk(^lBdzt5$SC=g@ zt-W-u-1GG?Sti3Q@Rp0$r_hXIq@de2uJKSfm$>hEv+DlWOW{}lv>rbE^%`Ea5)(j7 zk1x$R-b~9+06`*%C4lfXFnIL~|4^TQJ-muKlReh)B#^a@_-YtF0mKqO_$V1ZO=JB` zSi1CzC4g+r&V;RP_{7sX>`5O;=Gei_shur66$GyW*ha}D4&Jb0@&^+snB2jbl@vmq zJ>A1(;Gv!}v@J2jZYajSQbxOYGcS&fjREm~sL&vmLh5;5sr1AqK_#ym1;f7ZDJkFm z>1O!bfBPhS`$s$B;+6PU*Zi|%i-(-gXe<99jRC6tjNBcVmSfFLbB=Y%SbyG|#>roI zO7^^Cc^3XOwi<7>>8mHJWAKxG`npqdxE2#YaPU99`DO44AUybYaXqtVH&t;^%5D7J z!x4;EmAD~d|UHLShb0vY#9k4+@E)DE{9KkyJD|^kxn~04sq;7 zdHoAU$IeHPrvwn$F?LJ*fZlv?B;hM2gG3pzacg&Alxj4nW#TmB-b?2Z#YLpaq0{+< zc9gNrPh2<1LPh*&478?{wxJ9snUT>9#EB&)IiR5*+cGwp`+}nu-Ny45+l+A+PtW4h zSI%9Wh0E9XkcfyR5IhBBbv=5qbDt*~scW3PdKgdSjM(_?k3X}G5Kn_0m6|=BRKlco z{-<3>FP)A9wF#9hnGK2_Rx*XhdB}ar1dv^>Rd!(_?SQft0A_m%rS0o|%nG&{fSR># z@wjks+fVr76F^qZ;x#Ylk?3(52_P4dpvz=k#ISniR9L@!9id)?F2~a2p zlW+4|N48L_xwepGa%IqLC?RkJMwQluv6GJ*auy$~)gA0V$ zPBcw!FPBWTUMJZ%vYa>Lrs$>&O1lHqo??5{81;#~io?r}z+XF;=1}VR)bUEFWUZN^ zHB76V)An|AU@wI#UK!P)>RbmmOtH;wR^`@}YSBe9Ln%oi}tm z_b{^0r2=)qd%KJqsmNUF?)s5I(TU>K1$=e7Yc8}4mL8&g_K|tz-IXFu7}<19T8sn9 z&N0uaxtMy|>AZ}cF72|IrNKzQwhZK^mYvFEllfXX^^&QS zjW46FEX)q8b+9Otp~IM$(#|H?_t2M@ur3?cwYYj2<@2}VpEz-_E*>G`PleQ!(TT0T zq_yu^75hF%tyfDCsa;AAcRu$wFp~o?*d{W+ z$z%^c@nie`!?5|q9lQeO0e-li*^hiq#WawoSdysr_&G96cHw5VG| zw9>Wm#8XVov}`i6W%o8?E%j5cZ9--JO{wi?AM(KPZn07L=KsI()QqB+Da4 zE;fkg&{^A`IVr?u%3M^k*eDprzJ{lv{PEvB34iy$JPq%Be`Zfi;h4GL4mHtxxg^Uk*q!gp93jg!WWe3BiO`$gOPv9)6y0qrNNV@?M^UUR6GtVT|1 zSpvuo5ZSbeH^q&9{vV&s~hK~Q@5$v zc3FezpjB0NPFSu)lQ46nj&^Lad8LaD{?5jl=WTv_lOrqZ{az88K8J&ruwItPszNvl zg_TTgC4k(Ua%|*|Jgmez`AILG7S zP;l~1l|TM6)c2tx&4{Yfo6oxT70_d(ldNsardRf`S(Xee0fbKg*&HT-^v8vBGa7SV zw0yldB;!+&xW&Hs!4krk8d%`cu@cQ8r(ayStuVpk91=jTTtp(sIZh7SZA=W=xN;#s z0fgANiPQTT)>D|KD19B`7Ll|(YLi3$ylfHfV}WglR=c;APYBkV9F(TL-qE#CE1wX~ z@q=i9G&qb<}vh%Vj97l;!4CGWCUUme& z+PO4`Qpe}i<8{%9g`X3`OQrJHCki}XHSxOZi1(u$oRo(i0nJ10A+--p+#z@#KIm5S zP4mxW>AaDT=QJlhW)QL;j1;`M2iQj7O{Iz)QFjnEBoGhQA|&2lSkkr0c7$}odA!=2=rDc$yEACB~vL~-7X6n z^y$};N+z>>7OL%|TC%p3vE*v|ves3;wGQSB@`!CLj7(6iot{VMAIb7Uoq0ha0?CR| z3|4x!asa(}B0z9K^`mNON7{<65Etd3CWe6mf_b_Y-^Z%^E!x^isiC1vc*)dWESA<= zKeiS%t$lP{OZKbzGXDDPX?V)SkFV~9?T1h7RWSA=AAbq&Y&P#02Gn`(b#O;2^4)I3 zl5R}SK&0zod$Kn87NfRs;%8er$<#gwmNsKN;+uz&Eis)qq~=m7HA~HZ{lH9fZiY!l z(ot5)(Uwj&rl&l8aDTmQQc5D7m$x#tW#dcPd5mPhv8w*%PJ1l59DXqV9xL2{kR%?+ zcHHvVKrM4>h^CG*-Eg4XwiYP)ryAj?Rs;G_7# z4L$o}B`Uf(XUQDA!G;@fD|`wF%4H^jFad-ml0ISr2%jbrlS7EL8*(67g44aVvtj4# zYhm}yjj#&`ySTr*vo*tOUzRKZM9Ck$1Q5OAg|AMDPxQb)JrFNn4Z|CCGbD%b4{(*} zVK?OXln?F`eSo){cWSersct3vPf%%-~&%AK_BIr^Lyc^|IL%| z_y6nDaQ*c(xRA$~lRLq0b|rF|zH}(WAbgq;+i~mxZt$Y908Li_wBejRip~1K zIP9PTDS71z@+DlbG5KTl;yHW$izR^2IVLm{LpH8n3hNinhLw$VOBRVSiJ%{0>~qwq zACk3gqI$AEbCJrXNMcQX*c!vMHqX7S;Tzk>(px7|bY3YAZ#TQn2rqk3dE$+wqH2W)%YWtxOUb?nT zY)|Gn7O9JiHuAZMy~mEtJ~T6 z&rDz7NtSIgWb}g0$CJ%+CEAy9EPRp`$-G*Ot1Qj2UE-!~=}%;8+XW-vg)izNU$PtP zLnOCv^+=5 z#9M@tsZ`j$?d#OHZAkL!6Lq;Qx@60Ctt}%yVoGl zQ7uT;Nsw$<=tpq<(4Fm)FUosviKCn!vk{05zxCv;Ol@zcy7+`qTY8o~on*qvPV%PB zMfaQ%fwqw3o{EKVW`4kXK21!XEt9&X5p8%5D)LW8BvR}f@ zg}s$iVfQ=|K+e4uX3MDKX&>9$OJN(YOR17Sn9PCCHuSrAN(k$G%?od&?Er62TE`tX zC4X?x4Feqat9^iti6UjZEMX+wQ>N5LmH5GpyQGt;0V8iCQZwI};*(7{zNgOag{!ab zgrEHF+1{7M8+C}7G@63 zb5*6Vo~zF(&NNQ#xT#GJVW#jM2TX6Qb!_)^<1wcLpsbi3Xb&S<2M$q{0D>ogY=4bw z7(DfZ2_Sqgl-+purg3U}$)K*Jj z;Ho@v%SDE_JZS3&9bw4lVdWgeo753CZ~n?>!HT)8d(j@Nm3C|85O}n`s4%b=HGB;T zlk;xhTnZl}0p#KR_ymw;o; zcoIM#(>WlPB^K)|nk=hC5D-wtBoIpkVHu3rgj zN&w+SoNe8Q4=R`QFs%z6 z!<1`n^0F3x?Az*mZ!mhY{W_$Hrin+qWc%5EW$B zCck78d}+>TzNkIH)I24-_PA`@Q|Qzq<4p!$HihFjV|v#{UUr;g|E9<0=b4Tk$=bHY zLUOj}VTBV$_6IGGif?T0>AKyYWApKx))rwV^}%;M1wZDSd>-E8j}#h(h>%T|YCWq6 zrHyF+@74lO7!mpa3dl<_BGD$BPv0uTQ!H*)b$$IcDH*Dav)c& zY4r=AqZikxO~v30EBR437Vwigz`vZGJ>3dhc=gLu`~~gKy@&WA8n1p)2j_&yzE6P7 zVc18d?&#R*!COq*_BO3fZDQoZ%e99&Z}5*K#5b>;-Yt)b8awkgRdyL_tjFk^Z82n?8DXY#V2d_B#u@5 zg|^L~M9+Hu;N}}|sOc#nv5ZdvVbTMWKvwYd53A!TA4xcGC^CcEgT0;h1?gq*LkS;ebgUj5c?c=wMs!?%9) zAiVX1d*RI4&451=M)JpcxO(+6%F{69KcDcl150K>z(=_C&IA5hqo+SY_XDatb=zs% zAcbqhN7_{1{dmlCApAVc%ckp%vmN*7NKZH3zp;a1+(Md?0P+P?aBctWk_J zSF~^AiLS-1(wo;ZAFAKaUM}mlo9w5tB}EmBCli56*`ZB8T$h;u^63Xk0Kqwj2^us9E($Dm;l1$k6E~k1Q523d*bOwo+7JJNAHY3Hp{nxlT=C(5G9!` zq-*8UyHdlaYuvU?Xe(1&G_v(r>2hp}DJx2a`@zoLII-_MLE;)Fc1#i~``+eUGHJWT zagQ4-{LFEdkn@Yk5n1rv(oxNSBjU*(G5O^7Ft8@%Y<}r%2*9+l&DZH1xOm%;q#JF*muEKBim2yr)JO{OJsgIhk+4ql~=fK0BL_rDcY) zHwN$6bo*4}G(Qvzxyu%@W$0?#i0jGP`1%<6@%vNzM!J)7+6bH^fJ_^w6V$OB0j*SH zr4L#d$zr=KWRR!zrpRQ|mf~R9>eTLGyv*AcdG_tszOrg3-~=C|eeowL@u)0ufOaHT|g?+w`M&izSuZ>mG_^bjgp} zW84F|VimCmw7RxUY){tX@G|-8*-Do1ylF@g$3$lNYCU6f#d~>1bw!bU`bA4SIeQj1 z3q~uvVa9}sEj$I}!QG|s(R-`m_wTLYwJ>kJCv0xEOZUFNd9tD@Xw0Yan7gOxmzN{zpOx6Db%YW%+~l z4wFStawwGi!IH@#b~6rjzVd*2*=uJKM=l#F+FK>@ur2|sbrY>-OSY91GA7oXIvc_d z|8hJ0@z0)w^H-3Z7e2!S4IW^;XJO;isqoqxH^Q~+moe5DD2ywg2Ev(V|Cn?!RNMTffLyLUBd*k9Ac&wMd?Dckx{eEe6^ZVL65awG* zs|1k8pWOZI@}S&wJa6HH`igWo|19wn zU0X>%8XF$_c1}ngp-($M@El?15$K__E~V0L__K~DY7om#31c{CJ2OFYj)H9yVMkiO zsG>kVtc@>jvSroUEUkuCvQB)3jb;gx#+^2l!~~F-@NxbkUID`dkn2a7074%MkMVNz z7nRcGjz>uKJx^Bw;VWU~LTz?7(~Myp*T7yn#mlw`rAsB}5yyKMiTJyC4UE0I$|g|S z&&ibLM%VC^@uF4^Gdg)$yomF=aYhecIE9j}L3#*@mH?BAP*i>dT;@xFMAG^M@h<*#eEvnSeRUN*6Z-b6Gq^*YJMO20M= z)5_GA{-r222!|OQc2tv4le%rs!@Lv&b(kPExEgF5j6^8eJj@i|;+cXyDoihCa!c<0 zwDCF2*qqTEBFz}ayBMkWj>~*KkZgqUQMw36n2Xrk73s@S^Vdm?xLi+__*+cTjMv0- z5ZfN>QSYFCgn@uUVv$hR2_Ahr!6=CSX%Y1#z z`+gYeTYlf}@wPU^%=06ixLW?C&p%i@zHFLo_+vO_!V+q-mXnIkMyx+{IODW=3aiVx zR|q_%Z0*&SZOhy0g&QknKgTYP69HI7y9Z1mF&Z@U4TmwmV{+O;*L5>yljS9jS_FC3 zzu1?IX)5%s{rmLsQuy#UE8+cLtcQp9R*c4Uz$ivv@@8F50>Q*s=Br>>;znDPLvJ#^ z0w%r&#va=b(pdly|B#t2ZG^4$8)0+(m9V>X+MfPFpYem_55D##z50dsQ(_`Vyg8?& z4!c3ezs7b+BJrjj)<3&>my$hrlP+^79~=+K5;hM=8Y`%ahz)Ljj3tYj%*WWz;s)E# z{-^EmSAYLF+**if-s`>G>Q(q?Sda6HC z2O?XQS{Bt67!6&?YN+wXwx>D4ZBywHs52<+=;e)#u!g6QtuhG&PygU6VbWu5!rGb_Vgkr2v!_P58tSp8#zA`0wKD4D#_J@beoRi?OS{e6wbG4rPU?2=NKP~Ae0zi{ zi?z1fnwX_^MVMN83|s8@yumr@ko{ymYVL0YU%NBZDb3I^eGexa>0U(XkFGX$#n;M5 z;`EE#2xLF8or}QJJ3e(h_jF^t>cN=)Ws>WPkLO6$6~C^KTKQDHaL=pUFW%=B#}q%D zL;eV8+hZKU_2!`GqkW69WjG02-Izbg#l5JV?5C7t^NhCIx8f1Dl}o>G$&RQ~2`tXm zc3z*$x&bn*F@0=wluv`Y;HEek6iZ=aDSZ`FCW`jf6~GmLjv-f|^ENa~x>jEK88lK% zlk5>q@+n^fIuq3WEm+zUP<$HP^(mTDpEyhqzqGDP=TteaB8&eLsXf&#Ve9z%7-3J! z!;ip80?6UV@Py$xjDQxLdY#p3)s{XW=_HHoazc=tWsQ~3S}u%A*{iKm@*%I+h+7Mv z`qzz5peD}fq4ujEeW|feYbH-gBSmTYcAunSNd-IE>HC=d)cZ@`&QPrdzjX*Y$*5KW46M#SkK#H+I9~s zS&tX?r0_p<3ubcKLO@x*_C|v`wF!|u>%EOw@v6ex(ta}^5U|YiE*p8|K6M7CP4-?! zo#eu?Y%yNf)@47(W;qSeEDz2&826WKtH!DIIj=n-o^f*-6Om%nBAG+Z6<|Dm$hwN( z{h6@98*#t=#cH^FXC-WJ;s)JLTW;pxU}VLRYeFf%*_1OsYw2{3z_M|%AWUl+i({pB@ow%F4>c!Q0} zA1L!{USMZBmXHr_(wQDQ4g>2fjR$p&A!XQ1=PFrk{Yd%@iUxLrjrU7%uv~g&C;Yen zemDH=?;nNtfBW0NA&5a8%uF zF;S_pUP9KGC4hYRS-Af%AA}t|$;^%}n)T=^?tViF9=+rbSqP(cKH%vy`%RVH7CH(1 zfNC%kM7=g-rV&vV7&>0dM_D=z$x%LNBqvrZ1kq1>%UEMuNJ^~<(-ewT2dMb7yqE(b ztrMbZ#|6g&`i$}8likuY@Y;J`aUR}kf7uo*EerP1aENm)~5I+Q(ZB!~~*{a=`S~FrSd3i1@@-N{jWb4`zV&KYyLcYQ7$(diwlXIpiRK4eV>&PQcyH6nBl}DC zt=-D7$M%`WG~JV`XDVG|GPkL9+m784q%b4u<0JM1&<>E-9c9Gdh)H>r1JZJ}J3@ND zLl(h!J8?a)QgQkiBs)M1e$hLCxsFSJ>`Hb3x_!@92jP5CHvWn^UNyz*rm689#AYh@ zL2$<{p0PgY$nZx+PuAME7_~i4oUN`}f|Ihvc%HUC#@pf!)AsYx^Ju?%nXo;b$93zz z-22^6;brSC6X43C!6F-(M5}LjVT++ z=a(feEz9Hf7|9f?uzl{j&jnk{&DQnD+IcKWT&k7*AW8AAxFpf<1U0g5Wo(Y2^iR5z z^5{q4Bmv~;$Ml5p8H_+&xR_-u^1MF4QW&vJ-UcQsCGS5`3NkHH;tH!q#KN8$-b>%;g)p$jR*+utLjR5mF1VH!U$ z&hVGyn|JPor=Ncrb{^u@FVOi!kJx4U;R$?{@yHbPx38bEZZnD)YKf<9dyII5R{y-5 zvUzRU`m(j5PTaz^oRoW+a4cI}uWN03SdVdft3sE5l$I;VsFR%L`A2ML&oHu_cnbWM zuqIE+#@x`R5*Cdf#?y}0X_)*N#u4Rt<@E$PjM=0w9qNO*nCw{$bVdh4C~f`D+__@x z)*6YU6{m3eg$2=9?JxD7Qhd47-kLg(^}14L0>}(EhVFb3!p#p?!mZC%!=2Ap!qX=! z`0+p9T+3q(O0shN;!U=6LoVHDL9KTUn`hkCNwc{s~G8g9cG#Nu?(H5qm2M0obfab#+!v)5ivvHHkfsjc)So_utt3RG8W;~#K!bTEoLs9{$#1p%1txwK!Y z)iEoir;#qoVqir4RQwO5?HYj_&j*|%Q{8+a1P zAb?ELuP8porh1DU)7AZnR+5RsbGABRUW&4rM|rVpgKu$-Ug|W1vR3je7^!If>i8tA zp1Z}+V~X?`*Zd$HbbuD^-b+0x7wzn#_;x3Fd+x0L^ul|b-^tQHk8&&qFW)B)E@pnd z_{D7>(^joxvpsetZ}GkMiyFyZEJrEJ*P zhW-vCX?y4A*w~RGjMq!1Sfp#^)Y~DI6g|B-dZl=&ThzA4=VkluFE}3@ziv&`JoKD{ zI)hdx)B&{5K+Lva}QHXtZ1^{>m&h>R2sQ zBWdL|bK8pXQK}_*+#b=SP7B+z#kR&LmNm9;7`EydBzaI1M{-c+N{KhAXjIHhnEaYX zsGeQa#rT@IWOh;>`3RgOfE@Xdo)A9U5zs27(tC5iY-Mqc)9FAdBG4ijqR&80tvbAg5L`7NAlp3|-H)MSl$meb9@>T{Yi-wijN71*j@U&24 zeM_!}eJG5j<}Hh~uI-1}PhZ%op-K&nWu?m|i92kULk;VN^v`~0uqC`W<*=ltybr0)hExzUJVTI}G zTE0cv;+0L0e;%gQiKkbJyRq?2K?ded;paDTn&Zaf$)M8@=DbdK6ecH>vV0Bi0gzYw zc}&;JylikO`ZAA47;!dOHp_T9C&XvlSmAd&UTjlNo;*&dbIUpa8n+SP zzXgb{yrxqZ*sEmN(|O#m&KqM)nAqA}!i~74@agYX!tZ{y79Mn7at(hRoCVP_Aof!RA7o-SX(=X%%)8t$L;uN{91W!_42jaaW89Nncu@+=|J!r9R)p|$Box{ z<8cpJUJpO`I6V0IdtnC&Aa*m-77J%57jl_YdXh(*@Zl`67S~1|n{^4|+l?6pM^43F z^P02~VKo#umrQQsrg@dyCNve5R#6P(@k|UQ+xZ=s%vH3iLBa=sibFQpr}`^Jrxcb8 zrJWz)P%@n_%OV;HmYLHA?%SU&hmYS|2@i4tNO8b_11ffwmdJt9>UO?CatBI#^2cgS zD$$dtSSleTbEI=o^iVp+W5JFGlss=(8|4fQJC9&pmz*)%lRJ`)>64A=%$S(SBRfl6 zOkLBOLLS277@=dvi7#vxk5#N`U-~z3)+Lp-qZuT*618fkLD?}dw3_?g+q z5Z+17SS0NKXtVDLyaPJ%S<@u?n}ptE21>YMU|} z7a0)0V_I&nTZHp4SRX^{-|I$v__;!epD(R$gu;t;%<35K>AbA1kM+RI)hjP+d5&Y- zUpebKN^yFfWY4SgvAoDQj;g-WC(-4?o61Zwtt|$YFjAEbORE43|q?$-SVWdP``;Ob0pf! ziyy}_gyWcE7i;wxv~~(C$_MkfB|B+P9)XhtkjX=J0z4igpv6F?qEcIBE0686ct~Fs zHR*n(~*2-eLmewutTNGMt6B~Rdk}wH0piVDN(Kwb))fslQMrq#<`;Lu_Jc=Z=jmqH+s3cd=;xG+oI}N{5H+TrjJlrOV^HUqXIQFKvIbwk zNud}#PJ}(3$1PeHuk3pKErwX)dUEmfN^y7WD3ZEoYBJ~3Q)rHB&dWakfK6@~h~I3{ zFrSIYbOMNgrGdO4)svmIT07}ld50#8dNw^-Hb@m=ByW9I`qan+CL@-(^mewoQ9ujI z{rJgBcwr^)m3jVG@$`_AxnN8r!&WZ*u;kM^>_3>&KmS3og*>v)K3onT{9-M9b!#Q; z?BK3hqGW=HHqIsg;Y}s#O_oX~Hb_Q0>g=8_^vf6=u2r+WW&DBkT6i3;ghxw!70d

    kTefA={2>ECRHtFLlgw!+PuUxfF5_51MY$G5_*FK&mg@tTYK_a24^SikSz zdw{2{Yy!6&&YeFK-u=#7;m`inkHZgs{O$1Wx8Dp`uU>|;B_x3CV*Hj3XWrqI`%E82 z$m?pWZYw!t zvd1p|dj8P|pM;11{C-RTSw-d<7mIdlT|%#f4WHC8Fl!d!j77*?18q~0u-U}>R2Q=> zSBlFret=4ESHBm93SK3zh=3Llii4c(8A=f3&wx zvMamj@xdFT^K*FahKOo&>VC z0SjO&+f3psBBYEvD-{r@Rt(w05+noAR$p@eWK6!smZJT(e4KP_rSlxRHuEww^>I)s zzK%R|VA67*&bCtm2oph2x7Vp8J7P7qoR94$U6jkIP;I+Iz(5HzavaUsNwJj=`#0n& zl6#o|f>*q(oc>GJgz;~FERmybG`5=shHyxvtyuvmE<@a-$Lk9@xIGI!(ZUU1|gG04s4Yb>A#?LUE zggtqe;F~V=1IxZ@a9jD5agZ&sJ$tX8!gpAVkD>MLbt8VXSV^rp)5@jar_}N4k71ce zr*^L#>w%Z6S6_cpI?3Bo@y)~cFg;nzJ+IAq=I39YcOp*4{us^}=>{X8j(-j=gJC*>#{;=Qt;076Qc-{E|f0d1!a$kPF z8t#9+5;mVefsK#nueuLYdgF~byK%=P5D3_|n{CiVAFSYi_bE5?cvo#XJl?w)9_+ml zHuo-}i5n3JMhPEiP z+SplbMuxc1X7UMn)^G#z%*9!F^LyLjumAhU;ZOb=&ojZJ^|4&rD_@>IeTsyS$Kf8H zaB%apFT)4#eHecKyHCO=AKwgL;ZDJZ5?_;J+YEmBWRzIi81oBTzK*DN*tpz`j`+*Q7MwnWo{VlKKjIJ$OjoYU z4oq<@4K>c%Cu$#Eu<5{Y%Oka&ND?qN_P^NF^Rc)!Nv~ zCvXDMA3yRZTb3z2(-~I+d2Gah+3DzlZR+@BDH8Bp^Xc!F!^68+?{N_l!-z&@4U7GZ z$%K)>k_$n^DPm9iz!N}LkyK)JoTpZh{IQarUKQ=Yjgu4;6&V1z8H>&_dK!nxAZMaP z{BV6u*n~GZPdfZR@$eODmQ=_#y2f)+bv~jn;ghM^S`fg-pjgJucv($$CQaj~af!-^ zufEL>M;RMC#DcagcQGy)vvWxLxO`(5Pn_Bd=PqFE)@g+QBiwANuSAz+8R!(UrHCK4 zvrLuDuzy7+a-lY9ldQdt^`tFEZI2nNXWrz~Y!!!$l8(m!_lYHd=qVsbXk!A1Ki0~A z6T$waY~)%);15^r3h!&28OOmYCIAxbm;kbZr;DwgJA+ritcT^bm;k~Vym9SnIQQ+h z!bVO2u}L~kyMRXVPBl?qWvBL3`2;|F}It=}=S_cHQ~$*205f|CzneGIKmm<38La0{3as$(>tE1Eee zxyMd%;d?g)e;hIC%GpATS7w|k^}ZUDAIJWD6JpZ5s`o;@{7Sb7R%0U@wU1-j&Oyc4 zn~RbOGpW=dXdsswF<$yKc_S>V8`W*5!66K#?oL)~=+ss@#FluV8>m}BY}eAdrSn-?xXVdF4y3D=P#NY>Yu+gC$;evd;w+L_lbk$b zx*}H)zHGH^+hcomMCnY_-JXorQSJ;9rTXFRqH2guCi@fzwcCf*jq-lTtmmMhV|-Nl zF8*5l2@*gyKfi5t{-UeDY|QwhsHpoI*hM+V>?J4P6mF0AHeN0sFY{Q|TODQGdbT~8 z$C_dK60dB$?uhE7mK##am1Js9b(eqO7H=Yuy!T`I@VJ`e%?G3)=fJZ{cCu;P0!q$y zixtM}B=dHXX*AVAEkMu{9>vLt(`EC6ROZDz;2Q%=?hVwzo(}y%{QNL!V0(MV5)(FY z^L2)G<;=Mad`^ca4_CwOo6F(Wr_15y$E)E1l0bMf%knbd$`1kS{N%sf#ssnikR+F$ z0~vjz#J^?Gw6EoWJ8jrD_s)e!vm4CC{RWahzVpXh;ZJ_H72f$? zRLpkqxOLo(#O+7GW_a4i({TItSK)*AKMEh>sRv8|xrL`WSrQ0t9KHU=E8)-n{Exy9 z|L8mR1dwajuGrY|2_TOiJq`~aKCf~z|-D(B?5=FOXEE9da^kF#gON=g8+xdrIP^(%M+$lGE40-pfF1XE7nquG4S z`!TAY#L3Rf_OpK}^=Y3^iCs`XH6@#3KLs;BuclbPK#T@r-r&sBO$q%QKN+VC!Xg+y z;8X1u*^$CdJSzb4A%F`<3Y4T}Dd{U~dQgW7(sf@ZvAAejd80l(kzQU+tYB1T4XB)>v zPkylmwt}Of6KdsGmTg%XXQjV*$itho(s_AdDYZ;CsO*Q?PcOoVQ#aLZY9$lW1TJ9e zU9)a9#^PJdsizUUSPQ*B15hGKQ6iKW_CjV=#?m$y7>4?T`cdVE4l*W;B=*g2)3 zJ(|``7vDPeynakae(B;*%HFEfBd)X=4?l{pXr|S2e^N#BB+DI*d<>2)DTwVEI*!Rz z&$%D(7}m=bSC+*Jzj-5o>h|VAzCi$x%yaw_WWKC9Tt$Ps0IxsJ?M9d-i!Fz(r(5A` zJayu$ukMDgzWh2c3FOr`u7_`Z=gqLOaXLJGyoV=%;8igHvKGGl46lOOX7WOsOYqMS z?AD^yqo5>q_?vXVQO%og>^<9^8Kv?&66ccd!qb5c2UypNAW- zTn&HqH$M&E{_b1hJpMv=1CM84US30=x5K~u;{EW8pa0tU-g^7B@apT=!>g~|2&XpA z!V`nqML%a41KzYjSQ=|+j?>22j?;Er$LT1?$d7qDExc~%Q#;FMexsI7Vqsdj^sZzO zbd0&WgT$ssAATMl{rbbOi`OFAU#au1KQ~f|)&%vJk~!KW504VY%W{2`JDqhIW(KE< z1nodl?f7)wmN`~Nt41@{@xlMR9*|5od1d40X8Yui;y&_5rev9v-kut}_JA&VmmBM2 zi_J<^$jN<{xbrZul0%S`zS4$@)RZhSUk$Q*cb3AfPgcTxJON}IuOG8yIshX*BBhLIlqjmgtd6Yp3&wC512% z1Z~3`CdO&!Rxp~5i6o$|WISh4hLe>_z+>G?%F!PSDPalZrh@jVE@5d$X!$0%;IkP3 zx?b7gxd;g|m#^-H8?Wz%^LSzvPWKq6h_?AP?!d;*{CNz<(_bL5$*uS=wWx7Qfop>Z zldfYf9$lBIf32MDc{<^R5ufB%j`)`i|NUii1CRPr@(0U3P3DS>jYy~=jB`DLB$J8P zNygIS#xO0OuYQS7R>HxDI-mN%*S{>EIgO`(tl`7Q@?gC1gpds+ot}U9&9HWUS^|jT z>BS(GSg+DWHL*~*PCIqB&pxO({@8cYqY?}2oZ3De4@_oc9u3GZbd`=aWK zYsCMQdE!kqXJqGf`_y~KYHOm=>qRY{Y=mj$(!XqFdrf}W`0aWcB=dNuU=ACH?4PGE z`BbSnqB(O^hpTwy=b)wHn#VT-tM$nK3Rd!(IcXmE5ztE2mOk$Nby`HqT7%PsR-sI_KaZW2GG3Lwo#)rWmn~Y~eqGBt@n$Pk z=KS#0+F*H=^URxQx<0duPG!hVP&wfamvZSUSDCrbm(^A|3e5f-)zGM+pc`{GHKh5> zmV(Z5v_+FtBSk|#f|@QCpMsaA;VrVQ+MWdb4(|>IOxA8n;MsFiT9jrOV`T1j`e-Ec{Hu5F5qK!6PLH6UUI{xhUQkKOJuSi99L2dNR#0~3eUM8 z?-1_8rAKM0p5e+M!C$Rgu+zId|7k2iUxN9UNhlW+Ic+gnSk&RiDb8K zeu>YW@WsvBNC0^n-o_99KmN)0!El-h|$4Gv9 z^xntA1Q2J^t17wUs1rc!ted(s=uH*?pe`%8)Ykc2VwPC#teNMWc7*OGqb-c=gdI=* zAW}i3>x0ZojdYPw=Q2ub4FyS}QWHb%NMYZ32%IeQB|9avSobm)+}ICBPM{Xt(OE4CWNf4U=$F9|92n5 zv8Q?9oUw~1dRTo2=SQ^T(>&7o1TvmeXlv&edooCDbDxlBFFg@N{5oe@m-&Pc`r;S2 zRLr0xK3-=e9y2HyHYJi_X&YPh#bgt0tntI4)bz3h5WFJi>MOJG>YFpX{sm`Uyt<69 zcgyo`o&)U{kIAxF$xQ`fWr?e53QS=G$&<5{8$tZabGgAtPL%pCGq00On4V6UHa^+Z z2_V~e`Ujq$Ox&}wms{LpeQ8g7 zQ2!%O24yo=di@>SHzgL@MHPl>y7k{Wpq$hZeOkxd$blLU}S!*l{V9wVT|XRP#5 z3RBCX)ag(yCx|H5x}t@qzKU?RM(x|aPG#FxEJa=xJ}%Nl9+7BkEi~0oF9~6>9>2?i zoTQFhy68^~#T9*PO#I>>WAfj{HrhlTe@@m`YPF>5R>IdZ;oEY^SP=7cLPZRRL;G2p zT#7~kL1AO%Wr`%Soc7~+NVww=0Q z`_Z+gJXUqw79H94W0J>c6CSWva($3b)6ZPCyc= zE~B>e&Zz6*h3V>SDh>%Gk;}q^?yw;ReF{AAKO&%Q zWiv+BlY1F&kdY{o?d@GA!V^L6 z-n|#T{_4IZa@=_3S~!avGjy;GNB8lxr_Vn5BK)U+_{Z>{{_lSbPw~W-SAe;4?NYdU z^V)(1m#MC?*1k}CejnWA_Xn*RNoO;7K24*|V~JomH)mVhVHe3w zk3YH@9{u(ctJ_UV-rYao#-xy5LWq(@2DIo#Ive;yegLZk8q7+FMw;*9i|Qz}QL`$w z=G3e0cy|P*i~B0tYwU_^%E4L$G5!cQd&R-)kz(%vF@pH*cqG=IR(t3zC8p!Q zYmcN?+ryNg(dzb-lcTax46Z+ZoH(a#E+CO@munf4KP&+xJsM2M95J@3^n6j%{pRuO zLr{GPmWITrvuQrSz~m2JxG_r#2NzXL`dCE*$SSTgmhkisO8~*aw7kBGSHN6F0>~Tt zCV;3bjD_>aZ_-h&y4UYlZ|z$C{p^pmUb~7xrrlM=>&Mb#6DaRmXVif??ewbVtGCeH z?dd%3SkyHTehd|ubZQ@@^b@h2*j{%K?w8)i4|+S;UZ;)<)6)?nJ?kFh<FFeM6sr1TQO75Bt=zX|t5T!bMk~2+FI&lTrr*-ljftd_Ozj@Nr}Mby zRcEZnC6rV-W1~kfwjm`ySv6D`v z{1o02OHb!z-li;q<354cTIW|xh<#r&B#lW~P-D!cFJ-Z9|H4KbF~Vrqo&cyTTRk3X zm7k7!qaxnO((gm@Fs#W-s~MAfT*UZc)VK>ZSC@Wlm5s;BzUWds^`J(WWL3yjLv%-2 zioff;_CpBZ{1JKQ(bMqc(=RLmgzuYP;-5agsIBe7qH)MxcFj;wt^Jn{BX{h{s8cpP z9Yo>jDr?~sy4r&DvhwSKWNpV=Yqle{SVSAPdCQnB9;-G+2^$dwM;2}IHgmC&yjMns zs44zyq~w%lyed+vU7N<1Fw*s~!t`{qQ`utGre5}5W_D4)Z@W1`Xu31Nn}n3lbf>`K zt=jn_ls0siZyt>L?hr^M8@6MJs7ROv2`#w?dl@Kj5b=DojrHQ`lg;qu7q`QQzxyQI zPOp90;Y|zNiCV=ICN5vOgyavrQUtFRc?C%zXU?3#Uu1`H_s(AU;Fl}m(+}{3j;FYZ zFe7J)FCV8aJXR^U{F4-|6})+8%F;cy@r)0AkO(n58y@c72#;r1!`ANUu!C2_a3h93 z+do9ry005{d8lAxx@6XJ`v=5Km2xh_d9Qe*WY{v`wusE;7D_TKE01#3`Zf;J`tDgZ!~QD z(jaD;1~q{tXS3x=kRvPnShVv)Ixm;($O3pyM1CAKzFsyShIS5Tk>4bzOgb;~*kL`7 zBZ9F65WFs72d{m3@-Y%XK41dK<9M_3kO?64tTkOxj3$5pptvUWL<1>eU#1}`*8y3O z)*ZH^EYluGo;EIpaSF5h z+c61b35j$u0mPmLf>)ea7fH_lk$l1X^E-UvN0R_Txz=tbfb49?_iK`Y1Qs)FGN!p0;Zvzr zkP!3Ao4eu7@9c&%=lFCIM3iEUe4TFv?cy1rgh9V-OKt5!%G%>G0!O|_eB~~|Ox#{Z zHpy8(h%Vds7}P(Ka!WcMPj)?y1Y1i0!PC@c`0R0_*rY3ldB4D1(s(7$wj{=W_%Fr> z%9!|pr+Y8~#10Yw%I{nM9X@baFliA!^)ohyPM7!(-exQFqxS9jvajU7AWKcO!VZ1;pkybR+G05=4>|%T2_Od@xf8qR zJOVoS+mc~OrjXip#1v_%(KaqZMW%JLEOtdV-;RrTeOHaUS2N0>!Yk?j~@LzjV$rIPUa|_v?4Fr_~9n+ipI+f zkm8J%1y7wgR414Cyo`0*sPsk@dIPpwJ!RZH&SShhBFDeIolvd4$Cxe(`0Z~@C;^0! zC@+SpiQ3v~&@TkOX$=`s4Q0N$Kzwf_fwSpB`m*BL)(zZU+Qwg`K7RZJPmp+EPyP7n z&fUPzBmBkvCT_egW1^iodnR1Cd?8%NkN($hT*cErE`{?K&LFV>nG6W{$-@wCeYPCF z_+%M>t-TuV-C03G2_6;Bzrbdk_}F|^P;5tWmgmR}8*j!D6OsI$fonHx&o;u-*(JOJ z<`R-XE{Dw-A3>f_96L4=S>|lzQc#{g`6M87*@&CG*v!XwI@9Ck7L#Il!}0Q~ zxQX_??eP6S+YEp7U+sh&Z?F$Q@gu+4a=gNQ#qnDLsg70N9Od=EGH%#x;T17oe|0x} z`tcXx7eD_^`1wEmGJJxY<@fJCz>`CEED7Y?`Lp5GS7Y+dwdtS9G z7x7A&b^NujUJFBB?JthcQEx4$e9=#<>-i>r3a)3nsElLpue-+ViF=thjpt%x%gNF9 z+fSHzy7{AJ<7vU*2_Sft-8P;~!~~GXNC4sM?fBQ|cC(T+y)fp}W7#UP+4&YtFB>zr z`7oxW+-M7T7n;=N?3@LW08LBkKxvw!W-Cs!C}0)X?C4*SfM@|4?k{qUrJplwsAbi~m5<&O`5Wd=k$sg-T(py6^i0xZuT;O1^ z1P~;C#3z8n1P>-{@M#}R2-!tm0h2X186zDOwR;GCV;&0?rzvP1C7PZ(FVrs z<;|5z?Igo$50m&z#jjBZ4P6^Y!_98_BoAXY{>bBXX$UF@^RB~WYj%vo@fwMbjd9>V z+s8=wm|=eJBGGpD3EpRfHWRZvJO`ouEkW|ZqKg;Km1Y94?~7tK9oGRK@AmW$93)Br zp%3_9Mgqtxt{dzXFst~N1^%F52?x*e#zr`W>%g;bzdq>+Aavt5-?e!7Sodey)*gOecAZul!31 zu<+7T)ykw(c~ltj?N<)wmEw1XI+mSidewJ0aSwbZHV^d<{2I~@;Ls*IvG4Nb23|*B z3I>jPwd~)oiHZ|WvrVgS0#fW+KGn|rb1T`4L-k}-ORmzHR8@?=K_X6Z$$o6#m{9_^ zNf~8+w7%sl24LoCyb7|^e3*)>^_7@VcsmWcmwC36`l2Ink^r*kh@IeH&~BGSxB+GHEUUpODm%&tgLxTeEnK9ZEfgNPLoc) zvK*F@RsPu+@)bzbc|`kDlyr)Ke3BKOwl)tjPqzq9#QJV)IQRo9x7?1^(-@!b+z$^^&z%wR;$^+pq3@?Su8uHmue(V&k{4vR8Z9IS!jpk+ERChbYyW zQ08$5)9?vFFY?423~}puixCxUIrb%^t*?`%#}s`m@ZFMlC!%RFlFutW&m#8T4*W_0 zkt_bFPCCMLa{%{;Y-5{M>U%dDA}W4&v5GVCdHi@?MnuRk$x^{5NAQN*JtPU-{_;+^ z`PrBDdHnd1(Q+N#MH1N>5(BQ|RU&-y#|xe~zam)h(9t!6u#*s1=a$ z)i3LKJIfFL;%WHvf3q3h{_ak=`pRB7bq4Y4=_muTg9-SG1KvR0LLv|M7 z?}rb5`%(Dl_n+FUVVEScjJu%3@~I#!nGo`mKl?%W*Z<}(!?(WmCX#$khjr-K?{+*6 z7TLk9^0*(&{Fz&owKwj3wV%1;=j7mUUGyH~#GR^LzaXHP0P-LwfbexN z@x2~cU_4#pQVAVCd9QUNOe>$;*2Sgwr#NtI*`~H9@_5MoIp2Ox=Jj0S&gN<-TNbpV zUTdaoR7RJPq2&=qT`+9b0B_TdeC>DBnN~g0F4Xa+_%0rEv5lMJn|Nj6lP6E{6so7F z<4JZ_Zs8s|ZanYde1r9VdG-p*^J$ke!y=A_jfqYGJWuevgAbDz?X4Cm0fbKi(NjQ} z0J4H)koAovoX=PyU=o4T5;-{U_#_WY_`tOfE|z9kyDb5Pa(!^}(d%Ih!>~+7JnV4N z=P_l+6-rA8QDz5yP=-(Ji?gMT#xUtkVnh*7wVD}9yH=Q#7Eh{Ucx=-gL>>$JkJsd2 zj82{23pZY$h1cG~`TrF9z&@G2v(HC-CHkt6b-oVD{i1I{DcomkA+l}d`_M?8VQ%jt>2?owO8`;)-Y@&2vF+(Sc1~Tf5YooV_0`r` zmV8pVYm-s+lxW61^Bd(Enw1v>KN5AtacAOPxc~5 zbY5JC(dqgJXRu5oSr(jBp6du`PfR&tTCCa(SoV^&?W5|Hc*!SUi*QexZ^?;{Ve+?j zeh!cNSAdDH8olV>vf{7Ss5X#HBy=eiPix|LjJUPDs$E#- z)nZ>{OXSdA{Y`@mOuuT4oEs4T6)m!KhtGT+P`zX{<(_N9>mXlKVU0@&eE3 z<*d)sErxBo&GVtjl0xT4?=jCO6M9YSdusbAIOI!Qijs24glS52k|)@m$N1s==IyZc zn_f z);zXvUl6kKAr$RUs*9@j7>LMdNlyB0c@zt=wa&L9s>YV1-^+cS44#EP4z#r--U$g? z{UT1twWxjNALH7y7e>0K?f=cws7my(rOsn>tTHO-IW+}Ahzz}qzwK`iJoGRIQ`JkRScmt1k-YDZMU(R3I4X?bt z9e(r|Tj9rlu^q0xwuh&s@M#^q;fMIA-76Wm>j}6Pun#kQ_$rv&x4#OXe|jr_zP$Z4 zo&@p`$szagl#u)3F_Hs!kg;?A!rAawKl`)rZ~y1N3w$*U6Ma^A^CxY##%Kqa49CCS z&`g~c@CZvA^CRSY7F1>JjpLy9v+(sII1jfE{M;x|y)cPCo;Z;xl4XvSSIiYay&>jnai=Zc88qz@#lZQ{u;PqAig zA%S@tPb%6%<{T42wl+8I=~GM$VbaC&64s`rOJQ~IO|1Nv%@NWQqhI@`D4t_14!DU4 zAn|@Sm$j7@tiL!-Fu{RIAgf3Ku~)(1X%|caS;J>Jo!Dct2a`NfatAM`EdeAw0R(MJ z05Ms_aP3!eM=U9icHB=KB`ZxvfyM=CjiyYag@)P5CUz|nkcHS>8Vv<`GavlwY;iwC zMcG|(e=|9R2QE{K!;7p33Pq{@np!$u^Zn$NK>4X7`yL5f9E z5wqRugqc(3c;;XRD)^CGbLkqoJ~Up)d92&H6FZg(AiGEanLU1N_1d?Aqbu8y1Fu;? zcT>7*VI^SY3;#B>1P~+w^WTYk*!gzc+M}eg&p97(9k{|LfaC-aB#}b4eCl+10?2C% zCxEa6nlhY9s#C71fs~59qTTXPc7pK}PC1)vF zTlO$s=54{E6);1@mj$TQvJ&q&Mr*m}*MhFQjnerOMfK~6r_c2|7K$a&&%C9bjev<# zoeG30*5$NObg~~xr1ADeHdY(w8SDm7a15h7*^Qe6T`M)F8so8uioCWj@`KbomquJX zUMJbG+G_#+)zBeB4zyM5B}W$Y*A+@lf`yK6$i)zsChgf zx+vgzHSOGNqlzai1b+T-&3p9lad_`nzYFjE`uE`hZm{yHL0m|g0CMrt#qj3aui2A7 z__T=Ar#I~B5wzoHxK`rE6`lmLxw#x3-d_qgKUxhRzrPype~rH^ML0Gt2oI*VDbh5g zD$3eb!mese1X)_bD+6Yy!oBU+!h;ycH}MGlD>r6HrYXi2OLls+l^O0*?(W3D zsOOE60JZ~1gRAi1CGtxlMivDDaVtl5WFrgrI{-~XB! zMH_1#)9R+Ta{|cLR@lMo?H=1JU_J}GsM{lgbdsA$se};1$C5%kCex~$`NAq|h7~`U ztv2!Kh^l_{GF@C-%`9Q{G!8at$B~tt=3;S4R2+Nzh9c4?G9yl35XoNaVt=pIw%NvW zp&nx(DgL)LgXah+@Zq|_V~DmapCU>5A@<>edym3Byn1XCuf&MHk=B94!uWctXrp6q zc@GI7;q9;zt|ctjsuCMV##-z%DokeJ#&QWKT)r_Vf7bRa`GZLyc*_Nn-PeMtu45~<{mUEu7g8jzuj`6E5lQHGKUdTcY>gMH%1mQvcK3kuUS=%lAS zFSk;X!yu}ZG0<2E8j*&kMQSEI{hBn!#rT;RbN0e4T)46qE?u34izrtyR(gsF{yp9w#v7{lG~!mHPO@*(ICxS#5jkbRmmqkG&&u+a;_u|gC;vK^K#au%RGr+a?YDp zM>}pt4?M50cKNzaB<#m0fNZy6CUCSXJ3qBKU}><(nY-xZ2|2$Yo(Ug(s)s%KBhvEt z)Q`J7X88n=m2)uxWCfFh*kvY)o<0>euHzLjZ;dB_XrI#6*e1-Feu~`li_goZa2!ia z-noa1PBeZuNVW*`*t)+6$4i0L;Ap_qo)`Q#V#3Yq;9+$dO!55x?7jJuBuRE2=5-%^ z-`AWwvp2zoKnfrriY8H}|5j%DMUqjHnM_6*CBbMS2#^b42fMR#_I*@$*Ik)a`o8!4 zbARC(nUz&t-BZ1&=+1EW_r7N6<`>>)3BO5JU{F6*uTPjBz z@+0#!XbBSg(ouMl&uP40^EgfZ z^tAbNl=`cWsL#Bqtn^8bZkzU&5&tAo`QF-oQ{5x|ONO9W_oy&^eL%FM_#u6LGOC~4 zP`MAQaYMs)#7f@&AnOQcP5{?BIIrlXT)=hJ6bpr{dKHn9DUdqWWnRZtg*7?175mpX zIj4`}y9!lLQoGoy*Xc#Br!H#SQt#+s)+_m{R}?mF_M?y*n}yE4=mq_a5LhGG(r=5p zk{Q9C5vFT_vjC9k+UX4SgSUW2Dy4KN=3}{~SDpqDQh3ydgqMt1PST@Pj96A)X&**3 zr4`%yGg>FgRJ@nEW!KuJ)t48iYcMxmdEAukGKgz5c7Pe=4PtW_=4k9tI7YTh-js~E)GR3r#g?n7rfnP=6Q zHVQbpeDu83L_eYy@gr?gUV0|U2{WQ6GxCM;lAp^L{kh(p1W;>e>z9!rkD#ACx>WSY zzp=gq;h0sYDRRoVLf-%EH-br&;~aTh4dQqI@OAn<0tD8%tpX0N1aScYA6KtmPWL{z zldfUQm*wR}%olJ*%_ry#IC7HBlm>gV>B;?>^xc>9>G|V1YzH%oUv*QkY9(Z@UKc5C&u&&^oJ zmersU;xP0cU%GFd&}p+V0vXh#^8=q z6#$|!hIg(mhG;0WHF;0lZO1YQ!U-N5qO?AkhRgSB!DJyzf`TGffhETbb;)jFWZewf zupkFca%0@_zzIHQX7NnHRuUYS5Ew!_13+HCT2IfPzO?Pfwl;S#ZedFnV0^o(S>*jg zx&@(OjNjkAoeuUcVFe>ROJIks;)i?AlKaS1A79ymk1x)3a}^NV3Wh--^S%m*rO0~# zi0iWPnn4mdV1uiHu-z5hLGui_vlM}kd=`*z9|nn-Y^AYnEO^c^uFJ5%VP`WtSXRcz z)}8e)HogPcl#c^C(HKARWNCRc9krz;3rym;v#t(-^OdHkm9 zluh*+m0eZ$tV`oYy1ZO62u@u!?!0`Ze`Al9HNmEuNxDkl1_Iw)>BEW-kY#6>DPh$YJ$3p^s$DfKK2uN?!lcth}> zoJZhnmh*c%1JOZh0LZGnSIjOj0A$ft1X;RqHJ!uz;kYees?O>{n-iv`AEm6WNEzvi zw4>-cRoF?_@(7MfjV`~+M^ItVk#Ya13f>pI8t5nu_6O17-sS~TW6FjandNc3mM+c4s&*}1 z{L`Ga?-wdZpY`t1$BVdkl|OC%9HrjsBkD76Dl2``Q*IkDTAna(n#%W+*5BK|%JAUU zgi#-0UHWL#)={#3c-3#3`fA)zqf6HP%i7Duku_CLWnME$IQYnqiB3he{V(LRdSjYH4DVkF9Vm_8dSL%BF+(#3?%PWIxGcK2J9)f*I z`q#J8ms68R?F7nlWq<~~t$P{Z4a;G>bppCYYV^{oNP>tWdiKl``FvDf)FJ(c)4GUS z>a$+CF=y?_Q>|PzA85?F)~tJy3CVRZokDcsgz{7B=R+U=_pyZb0IPrOVtM~vO!V!& z!X6B42mZQC{-2O%Q>#%GTKj$UmZq|dMIDhxdMpdCG|GuKMXGzM-g~X0YP4d*IINv?pql{TF^A*TD@{F$w&G?7g-jpaT)aNgW2LJBIGp2r@%yY zG9GD%shA*Bujd4Xt-O^X2@z%~sY!rI0U*Si73n+7Z}Lq5=|q_fq7(SfNi>^u!$sS- zEnBi8@MbYFw~J-?pFVz`w|{w+w(v`AZu@fQgIn0{6xUTNKXJl|*LZ7lE3I#ArdKc5ZQ_-`z8?&*P0j5a>GPj{ zk}jM-Z_aFOZKa0~o}}--d62%q$}souKT2274}Sd9Pt(Vr-m?{9&YvTe7Xy>L{D+y& z!}`Q=YFe&UzV0d?N7tLm#4%NMjkGt_|E}fLmVM6^@#K>*EnR$1b+hD)g?>>F(L{+n z(fU&bfE;k!1gvJWsQ?fJ515u#b-$X4R0V}7AVlSkknCjFZIl76_|U0R21|yDV%~}( zAjNu-AhD9i|qk4vqnP zwxtWUaKUyiJ6N%05AUXXSdDHG0fkquUB;GE7&kESJjA#&;FyF-@Mlk6qzCsOBM@=Z zCYTqo;=tn4A_5Na+=1K@@=Gf$FQnn#Qd(bINt>@0@f?}KxCVbwaoZY9j?hI`nIGoi zB241L;0|8_WOg2_fiTzu={!CRF5y-%wh#iVM8SMmPzM7*7|a1%BS9VDSwIN4is33C zkh9e?^42kNWe*DgfezQ{2JE^~H}vqJ4cEZ}%SN`;^MOc54eS`6O+L%8%y!^WRv+=A z%b9Q{KxT;N@&cY$H}CDIn;-0_RRn*qeb|QbL*k=^!Wqqk_N;P&NPn#;$Hnt)?d*7@jM=^V+_OnA#Cx5 zNM1NKI(-n+wN#$4qW7iJqt1YLLc1CGHzIEe-XP(y@y29uZ{U8Mzi>XyAy{;V!6Nv~ zAs}@AJc2=QVg-AJ>&(ab%Q4RXpzpm4!JLxmaZ~WVI&iIr#7#?rpuu+ z9TtuGNN4$wqlHUVOFu*nx}-~TjERTnk@jBYyVa>}-O}H*Qtwq~eACJvRbIXFFgab6 z7BBi?@+Zlc4}G@9J0W|`J=dpI_hEZ~5-XnMBBtdDGb!z>@g)3d;OUzIf5WOCiC!u8 zG_ztKFXGPf$8Q1kp}sq15^tQvRz~HBm#sct#4$e!JBiooIZAnAf6GSWy(`_4Yx}nN zma5W?^ONp>iFEWd1=()M9g}L!`Ur#*jq;}09kax&3P#Pf7?lH3b=7dHa)3<8s^J8w z<-_$=tfXt3RG#$o@!IyPzE^qb?)Hx^uj;K{h*l}BOy$%ZF_Urf!!OxnY}I>~o74hl z0U(oF=ZtrXT0o<((&(CKZ90mn4>VybMgvTJl8j({DTPmnG8vP>P+p~ZAc3x``5^fuvFxIvLz6sd~!_#<%FPf?l5=Z=~{C#L0*HhQ$E zwmd3PDbr*11uA9rj!-U%+JroOTx-@n&P0&uR&<;IEuX|Ooqqe`4(9go3;x}wFAxCo z+I|%~#4o$)uO6>=R~Y#kfer~CY3d>AM2ouUjoM9Z6KTw!$RQtP zT;*w$ONQ7WN3wio9RjPXRq_Jl>tgbtk!%wOltO`YmIWu-4iThJ^hxPdG694vxAfpI zPWSdO>41qh281kQD;I9@!ZCu|g=}Nee;q+&uds^H2F4Sv^lyHnnyS%2>{GY=x?(A6v7A!6HAL05Vz3oy=k4aOM0kUAjI@AOCbO z{qeutNk95IwtQKs6O;U9^}9aec)`4$7o4bNK*%~KpEftPu>j0KGryt-SNFJxiPk05 z30wE9zfOPqpMRTv{Wrf!fAb&zK7I4`eVe@f#VYw9vC9%V-L@gowS3kr?~wT13`8X2(p4;j=LY;O4qJm zv2lpcBnBfgKxFO3O9Y%f#fn3l2sW6rafo9JKOCDD7njn?Dgr>T<-`!HO07Lh=_Nj| zv8~wVhCf4QXY*1PUWHN@`p@fY%MT{xW`pL`~w7Vh1 z$+9MvX}Yd`0U%}zU}&)_bHx*GRdyS}i?=^IuxFT!bp&L6)NKbHn)aZ)jv|+dQlqE} z!%4uIr6jC$F)hqU^t|quj%u((XPt_8&InsDG?DF!)|QLq=wDG>xSm1%_tF0c2zVM` z#kB*hY@`lLy%eJzQx)}%T!2RJG{t;Fa7;a5Fb8i69yDtH+Q~@f0s7?(g0L2_8k`4! zFkl1$Ah;Lj@os1VAa`${1%Tuhd!r;?Yh4D>RE`G3i?lKM78=#HyfG?_T%JSa9(J_o zlVndVude~rKz+P7sfY&SH_`D2EvtqfSIKxmT5RNvlRs&C^r5vMc_(1Ex##*c>OR!p zClMo_Xu`B~@efPe+8&1gq51Z%l%3Ffk9>+e(jvd*N#-nl^A=Da>bp}W@y1#1lMzia zvenYXkEyVvwRrJbdXzs-eqw*iMs@E-{gR7)H}WknXB+1yjR6uF(G>`?9Y`fx<=tp` z1nOnFAbZ+a;Hsp&D+e*p_F*Cos8~-8r;#?IbA+IV6Qh==(^v7XL2Xj$(vx4vtIthc zC|`ZA@}zhBN0(Ri5~-sfBkpKQd@D1Gk{{L2QOp_TXf1FS0CKeUIzzv+7U&tF%44(T z#d6Hk*>2e$XdrbTY+X#1iS(F{ddJcG8mh&H!8MM5b=1yEx^i9LIdE578YD@Hbe20j z1Mn1%5xapml69Y=XPiXi(WSXy>oci+ct^)`)HV%0Vq(5ukE$Ho%4j_0c2)BV8?|~q z>lQErSR5}CweQt>W{1q1}yt}rJtzRCcy%(?25MRI_@Y`s}y!D6f zICray-P~dLNqq6T8oMRCc!AV5V-IVbS{L zfG|RnuBbzLomWZ?Bo?J*VrsT0BEW1xUgks{{~(*i7xfJIc=3DiFQJyXn%E3ub^5cbt$L;FqWj4A{eVQuCP9KYwA>eu2#;>-ijt&!WRTBcIJ_O^S36 zTfcB6kk@ONzPQb}!E+L-;8j$#}dV8saA0>%PBUSU$6E6+e%G&@Oo!y6a)(HjUN8&)k8SQbrs z+bXM3Tbzkz1xUOK$Otce2H|MV3~2B%6VDsZn|+&nb*Pm zBLn}3SczqKd(VSCc6P9>*DhA`7~uKA07ImBo(wP!5XaR&2AJSp!HQBJe0V3_z?Kp7 z7;AL!*~2Z!USTyCTPXx9O>rz@APBdDna4XWpJVgbc7of-42QF6YyBX-TEnVR4`*F^5$u;$g1lYBKLZARM!E00^Iv4EC_#4+ef900cA-4$1Ay+4!uMZD=3#LDH;m zGR3oibUqXOllj0I6xWJ$VoVN1$~cc6JDv{~YiBEF9d@yW;WhBBVEn#tOz9UW7G2DS z!|_fqn0UFMx>!4*9ahgBq+1_h1(3Vky3Fe(kxpur>QF`t`5G9b;3LsRNa^_2l#1dA zYSlzu5$I;vq&!LhhZT%ePKDR%F9>90D`GNDB-tw1EN^!c?-2yE?Y?@Az4EXE2yd(+ zC`Fl|c0($&(UnR0SQopW(aE`jhXsJ)g7cb}gX3&0(-=A`w}4@=$K1JP;9Y(mtAQ+B zx{#J`TuZBWZyg!{qAJi<$0o{=NB&_)l$UIz9VY)?@sE1J$5bw=(It+wF=8WRJrhP4 z?=vAb#G5n@+khQWol@m-ZA082Y{%`ZG#fWIwlz>6FyM4S1dH;K7wJ)NOP8LLO2_#S z>9j>ZT3YZyeJ1t?(FBV;(po-9x63U-hPX+GbRI=!lD=tp zZNKRB7dixI+G{2Z^-Dg|rm-uGQyuxBcGV>#2 zp#x~ES0odoFB(20tu-@R4n9NYcv;7pKQd&>s(kj?si8gZhAuH*bT zo2E6Z&bA7vm7zYFB5#ymM9(sBwFS-sK;CNeo+&?m3$!DY%554gh$mWGt^-+pz>Q++ zlR`YD(#updrG30ei!zm723C!Mb;PcqV#`U@cQ1!AyA0HkMpUtbyiC=M>#)%u*&6XV)G6Y-cE@vS`*$V!OXKyZxz%1Ov%N$sbr`P(W;0V@P?(jze!n7h zqVfowA|G`HhfFf^sw(>x7rvm|dHynOe*GZrVG9^c}#44U|)Gpg^-i9`zNOi0i>sYFz zOvjdpS=mUVbd3-lzj%+Ty2vr5DA1U$5`Cab<2b;HCN8o609$xG`1WC1!}!1ekZaek zreFNipQPJ&uA}~(pu#@yW~XZ`K7Xp+7(>-{^x(2{-1yM zAJX%uYd*1yiCo^R>=T?sy?o^&Rs#7befHx|(ocTItzqt_3s@$e6SoW~nWpcw?Ni1W zv{K7^mkpS<<|_F9{5mDQ*X&YyoyEb4%*&qdd*l{&;>nb$^bME}Ym8#&rRMZ*(BU+hyPNVJ0V zkx5OR>8* z({%)ZaC;X9FB>24uM8U5#dC?4$>WMb<`y02f4jc4?7?ZBdO^%SXw17XTLc(Fsn0T`br0P~U1}{^KniTn z&2!Z%1T|jTPdD!DrzHL62w>i0^Kqjii#74=Mv#NF~#iCiH*-w^#vWuLOWl5CXLU8X>>_UE&c+ymis( zZN(2h=W#={rtCW8d)zbwz?E-i7Z8wj>0Fw{R)D-`IS$NW%a=vG11#ORjsTFGX?}GT zBJ?qL;>I=Eir1PD(Hr=oMd^w1q8%#yJ^@0%dK0&$W=xlyTD6`NQwzKgKs641eUk=K z2b`u;PJ?+L+U`g`wvDTDpAub^79%=k#EY~@XTIf;c9MsDpibF}v`A;Z<&lO%{Xu;w z(hPu8lXCXAuby!*Z@*i;EXZ<#)%0d8R*c^ zIpUx6_omtB;uoxDn=Rb+^6xbqG8V3v<6SuVP@oxGc*SOG3FYjBu95mnv{9vGvr_nX zDvw%~nj<~>RQw_1?0Dxba25da&YS$q;B+m}j!-JMY1Ag3Xtit)xmvWBHV#XA_({T3 z0hN*(^Re90UBf6o%EUo1%WI6RqoWidZEf^>9dYqNQU`GA(XgKVF}vA#v`q!EY~HxM zWgDORJStUcuuk_n#hQ^G%WcW+#&Z`PIoY_&$Dlx$|r-ZDUeo@8yO)!F^?rBbx4mTf_7*jzLq^R4u8< zbg@a+wGgD~V1?Ytw0b*CYnG|hNKAK}{PI2KVFU!xh#m12w0aBr1f1)fn%4b1DkE7%6+X4)BENQ1Nj8YVpCch0D#3ta@^kdkC%oGgzM z=k>5dKw6sJ#C8U+)5Qy~u?ogcy8DZj^zk2GOt(LoOINT3%=|o8z`%9DBxUy+2LnG) zw!KCyvyJH|uOlaR_zU0ljrH`Kzx^_O@td#G;|EXDlPAy9BczWXJ+m!i_};LJe#6P! z+jnkSAkn>#Zd)M8=LiT{SwY+LLgO%-*@*WQNV8G%p*$h+h;-#6|83^!v-&md#C97; zCyu;`B`qGDbhDA8)Kv{JgH?ABtcC3?HrHpcg~m+U!Dn}y0aI8#XLkno1n)=mEBsj8 z`xdVkSI%MT_tqTd%@-CKm~@a9mJ?QO;pZSNui|=L;N-gO(W~Nw1&XnaV>_!~ME}R< zskiELT(mV_avUeNqie?*ee-}TMj)7N^S588J&bSrD3<_%wiERzXE29W_aIxr9i%BQ zF{6#t%cP9jnKwIMGiLH0bgjFoxWI9x9-?WfDv5AZ>H1!KlVK=CL}`wHlzU)hRMHmVNMRAw63 z*|>AFn!;vAstu6~j_#f(u)4tMO6494dYLtsii3?VVZ~ROFwvOLbkh}h-2P~=f&1nq zg7y(y8SiJc@rWAP=xb-{?m1XD+X}RHa<^3+%0j#^WH4vgPuam{xgyV{^9cID0|g}N zn?HX(EndBxma!7p%IzD+3II7mHF|0WKeE43k7&ID?;BCq`wje#Ds*|NuBFFvpSjpS z`}prYjScW-4OE+8+73zFA5@2}P0-CvYS=EameeDoY~^-y!jc;Ck=~VfyQOhHM0$@0 zZGVXUNbuNS`uM`-w7qZ3vnA>YGO@*?w~gf#7T6TCs;(ke%zbvYPlM4S{EyBS4Za_F)^H|mw(6_)2~jqpLA`~ zj$9$fo5nE}S#$EFrsPfHJMz?xF|`8keeNs(H;A%_aD0mM*RTV85xbb(tJ4=cCwZJF|-NtbN3 zbn(Zfk{iR1?5bMSN>OiaIqEw_J=$JU@x`t1M=}N7<;W1JrDKXXMuylHLfY8F^~g^v zNp+9RNL_)UYmu%Ajd}qA0LUiSnC1zFGATn^*3&g9M^qu$DOhjg+R|R_IPOu}G?WYo zR8`fPx#GL&&Qm9aNC*^|j08Ppn;9&V%~ml0BHz0WK#qGxC~Hfb@nzUr1p)+XUpX)m$7=o2lz$y zt#sweCHr+YBgl;>7$RHrH?<~O}G9CziR)ZkJHlm6+Ck=i)M||YCRq0G6n=6MU#gt zvmXpm;n&!f;T!a!-+l3Q`iC!mpT7Ly|4I69 z{=0vHl|U|ozh`=){`y`cYyD|(uX7Lequ)MNb%_3pChL=U!mu)IGmQ)OK8tqT-ew?F zN-v+!q~}lO(kpChvGEGQApERj%L`0)GZ18dfIyJF8Eo_BW0*}?W9thBe#|4~ulE`3 zv2qS8E?n48=Pw z^s5M0L|2uf528gy;Jb*Q{iz6mH8!+5*(GwJ*zleMOauv=x;vL4vg&Jo_Y3gCapce zJ%YeNZZXDZih@6^GQ@_#-kJr9Eyx2Y%bFLDK_MRe;m>dS!4D7K3)D{^nYWMsIcBt! zSAEL!<~h)VKuW_CV5@A_VKgdt9+6qV^gBIMsRtjchv{?~`Vj*_h&I17#-;rkMy%@> z)BWP3YlU0Cd@xMcZXsxFWgp`T?>XZ6qT{x5#u9VHbM@>7YFW8XLpsr36OpZ+2uzx& z8Jk%hYNt?Tm8LzMbZt9p|y=G_Tr3+7aD4HE?_O!JGDdgATSlmEVQ)^58e4 zTQ<}eC-u!qyf^Xdr1kb*^K7Kt!{sjQ@4KD)sBuWldU|biglZv*SE}dA_>w{WST|Z8 zg(EN2>h07itSa1EBqZ}1R;*L;qhuUh{6$g2Yos+Qdx~ybvILCEH+29e;=4-6VNsj5 zo}n({={p3qi28@xG1`)hXp&`F@-Zh|Hzl&7yS!S`6^+-Va?f&a(gJ4zAaBxoXR`00 z1vFB%DNTzeH^!IiV3x7vn-mVHQEptmwIQ5R@naf!F&_umk z_g*z2IZPKr`9-x$GkFuvG7=4TWuvAVqMg!OsJJ@ZcO|-V#iWtDrKrpEhw+J;29vdo zK;bE9s*~E)(LL8ujH%KQV^c{@4?0{w13cLO2d_4;`o~NA5|OKa>~k4yehJSn{oeGD z8^=`zd8+8Ny%Dlw(jWbltv+7F#k^!9ttU@dS8WuGj@5o+)CdcD+5TR)F@S)rmK$s= z+D+dfWDTH^EaxM{5S3uLTr_pYhoEFL(R?Slg4_Uc!a#_stjLpeFvI_)Oe0QX&du}w zb3nl%*DquBk6TEur1R&olsD++b8R5EHN{!iIr@8; z80R87i?M*fk?= z7Bhc*-amW#JU#gSNxJ|2!*m}L?@t~-$7(V@@%!lEQ`^4b=B;bC70jRh`LEKS{ly=n zPhEl}RuRBt@)r6ex9M0!O>q-AWxJXij}Dj)nTVFGvgTuQ6w5e$OQIc)2|fDo<(vWkh`a~JWsKt9U& zaI%;85O07IxM%fM4Ud|}`ykwaG%)3%c2?V300?BaA3jMN*aBwfDT7|O?HBYTH+qi^ z1$mrU00?ccYOzY{u&w>v1fKXgk6zH>6YNIiNg0P3L0Gj(RBtq4)$d$M(WPe%-D7)l z+#O;Sf+0E;SNs?v*kgcIJO+4H>>~JsdGff5$5lKpE?v1`_byj1*u$!GTWEI%h;fCf zZ3Gz3BMNB&!C>>~h+OewesSJ{Kq$Y66{Z*vGQTiqD}30!k^N)6=#$*%3L`xHw(&gA zYF6Ud=Lc9ZhpR@tdVwv)xQf&owt~U^#rvRM5NMa;e34l01c0FIH0ou6GW>XChx6SfssQsm=gLVZgG5g5i|2Hf$*XB5WK#?nQQwkmW|j6b9{`GyR%H_M zp|W9cs%YbwF4p<{#r<^mW3B))MDWiJ#wrAq!!TECS-|yNMi39LZ8^XTW^zRew`SZ- zE$3YHOH9&SXGe3buYgRukjSyT_jxCKe;R>|5XQ+wI)$XK&?orP!J>lfQ|uc927usQ zZGRV?nJ+~=sD~H(utS*Gwh{vkSIz$xWaq};i}q4eYzXK^xa!xqgX(8+?dQ324+226 z+S0#ef{YO;)KR~llN>a_o*7^aZ6XZPsjU2v+rZzaPuaE z;kI5g@gnVQ*YSt2`L^ryHubAN>Z++Mo1&}S@v8dp7f0dC2A_D6iR_dURDb zB}qD&!*jnZaj=u&R308xsgVt5@x>P$+kod!jm0cKf0JMPZIrY zRJq;UI2}Yy;z^5RVwGZ5O-oiIx?{V#RWIog*5$icS)QC8M`p4{=SIE7>t4Ybe9O(r zv)yN}(l&nK&p?m?zO?7Q(mYE4>6JbKVszCE9zka-8|C|W<5a7O#_;b#WFIP~$wh&FjKlP4&I zv1JZOGbbEpH1msP`j_eQk2D?GAH#uGSjx~vVVTmmSnlLUIZ<|$+Y$BxLA^qm*vo5V zh-vk>_HdRWr2H-&9f$XzzJ#X_c2APdfB3@PevwTqCY`h#z6Wk`pLPnko?6eEtCjLE zboizG%e8fE(eX4r!vy`~$IonXjuY^_ww&CX!8>G#_g|s!ek~ViQU{#Ov2<%u!5Xd6B zBil=k(J8ipJIB>yh6yVu?A}N(c0a;aFiXZGUsV8PBZ%>w2WYoCCqiKUb~o9KDd!C{`5!qe3s^ySJBqoj)K}w*P-Wu-~Xti z8f=1_)_>Wa=v$l=-Wy=6G5qrX@uTPI>o31czx#);)35*27ik^aKm6>MpQnHJ&;Ka> z_@|$w4?n((U;X2k!k7%&#L55O0FYt3wfGb=cg))Dma?9ohm`0ZSJ@YP&;`1M?Rdfx*+278#m<^nQYMS!aUFr{+l znZbvt(UelFI(F{kEPHSj?hEu|&iQer5Ps(}zlc>pup-FSTf=k{zx2QJ$Xq=1hA>&=?1T$Ea+)6`cNrpQz?=owb9=L2)zQJhK^K72lS*0K9pM*T|njEe&! z8Oyp1_15p&G7UY5fgL;B0|ajDVzm!U^rQXw*~Q8q1Kj5dTwwdJVAA*Qhquzr+t)34 zW4OnyUNB}O-B{nk7BFjAePhpp1GvJ+((5T! zR(xQ<=(%&NkjXyKHkC~}%ptc`9HN7EWIefL{K8U3%qh}Fr1pJp6KaSwmWwNg@d)P8 zxLoVxY-`i(M{6r1(4H8S(QbRMUn6+`B~~#)0Eo3IlpoffRAQK>vNBJyT~ydW;D_IT z&`Z_C(EnD{#!WIt58E<{TR>erm*(*7wg3?5U*xkKTfZzZ0OUFXK=L!c?GLJsy3DAB zN)fhFMswrzMA>neQEfjkMc1Lf>ATMLVMWWxrfAewbswf{Xu6WdfO@@s44qE;6r)a} zfno<#$BeX7T>W?BntG)gTjir#Z{<}!s-Ba=s~+-0x4pF*7LGm@eI=8@7*nNN!)lb1%F$F(;rw_;=^SUHtDs{`eoB2OS`z8n-AY0Hc4 z7hqO5VM(ujC!(g!PviTvx*|?`V?{-aIQY-K*!d;?BTR&R_Yl7%+r$@h{n)PL36)w? z(dENTw6erYzK=IfpJc}I52d>T-9E8@P*n6o)d&#%Y3mVr#Eak3rK>bZ07J(5H)V^n zS&6UZjzBwm(hMgbrJV>8|;Q?HXT6Jh-*j~pbjY2C)u5lozFa4DsD%b@?+~N zKvrvt@@cG01dYiH6|slPSbTnro-+s)dtw#Bl8P{=+iznwT`Y0pMGv z+hml}Y|IZBQv#Oxg_O4Zx!@_U5_NNeoX{9eW~{7YDd z|NQyYbp6Iv+p2@XA6(Xd9$)Np+!(v{OKcFDKk0*YXW!e~#V`4>mDST{Y3ut3Y5V0i zfFX<-&01bHmaucr%(Yw6O;Qv`r85adZZx3He( z!JorQ7V}rGrG?vf)488~mM-8kzk=l!4hHXb9G>EOl=lc=j_T!J!&k+Q2^Y*oL3BMFxz%TxJJjM0=Pk;SIdi3C_ z^|!0nu#&*#i}tyI{>ZIk7SIR%{=n5?U*z~=V~nZzK~K}PQFPGT%Ws-}1aP2Rrycx= zo-5kCUgP#I_&l7&Wc7S{_C10>9?Ye+$FsJbg@#oR-ryJl&G^{Rft1B^sF3eZ-KON* zssT(xGm?hk--1Dw&nIjNGfY_E70s<^_gv~aI}knx8cU7H;{heo>iWj01#F+ zG!gD9^N^#F9rtlDmT{tyT{cntj5#cBf# zDHa=cCQ*AelQ4x0V5j-0OM*Q ze8$+bhO2;J#enRH=~6(0R{Vj7Mt6`oh_Yyz#iZ$U{w!uAcpd5A9%6r&bhN9yhw^QBW?|X(+2GK@RlYXgEbZ%PZI>>dG)(yn2wXT*pYi zu#Hup9;b&7o>-rlLqz1c)zx$v<2P3f<4R7pq6^+HZ0x4K-~(-!!`cxgGnlD#(vH}; zAQTKT4J!*wPNX)V?0qcI{eGx`;tELPctL#BFEQmW%F@~DlhqOcVk>~G*$N=m4+JQw zl#>t)#I`mFjXK7P?8sd8!ve36mk~Vv>E|$ADSf({l*?nZ;I4h`h3g z(&E)CX$9N9E#J7F7O!1F0LU`*cKad?$yJ%C#z%9)j&dqxoF2)J<5vx*D5tj8rJdxO zu*3)-X&^Vn0*h)}OynIUU;0#Tc$JT$= z>!!iK+Um-8Y-U>;Vx?!&16+EGd!0`IFk4VtB<>W-VA*o@6Xq=IgjFBM`rI9DWNjzdCLtKN^76Jw_o`d5T{zlQj zBwc1Z6vUUkScU`ke8@Av+{@i2uJGl){i51tt8k^DZX1(&-(gbz?=d0&?8$Tc6}NBs zvXm}dypV2V^6oaitiOo-%IcCW)jwx?=u6W#%*VHUQon=`>~Z^;NaPr{`|MfTe((st zjNQOI0|Go|5bS|;h+q$H0W%nKiedKo$ z7=nPBSp=%*|Iq`qJH^=#jtT7KVEC&qBOZw|3S z09Omx!1a3da@~TD&Rtlsz>lRR^eqH**j635#$W#KoAkf^FaI|E=fC*^!xvVcxOm=H z68QL&yXoT}eV9J|(Fa(G<}%uq!6p3Fgl|caz3q%yx-~lESf9fuNK^Z$-BhNDJ{s>i zpZ&w?1cRCM;^}O<|MhJ8>hH1I$2W87#pAiO@q$~rV6_6QUa*HPUbvNo&AI0>M)fS? z4~t-7jQ|i9(MWTc$6MfbF<23VtJ$nziB`m*IbNUxaNCz%{BnN#0RqOb63F1? zYwx3+^nAlZK_h)?O1rBnA`q-9lO}#v!lJQpa+seLQlwXD5(g_UU5)5g}e1qm{cm_b+j+!7|gQ_u#V4-61w z;NXorH_~;i{=n^AI9@}mT?Ym+4EGWAh6>UK@B2A8XLW(=_BKIh)gHj}s5-1zP6id$ zgit7DhgmTX0=(Q<9IU{9*iVCWjBYa3{q_E(2% zJFe(`wG?&|rcdq3{o9A> zGZ$%nEvj1e@uKW$%IkeXKDF-^EnhgM!cM{nFD%Q`;3apIR5qs3e-!Lde0ZDKwqL2g zMVrEir!p~9+%82`E8mt2@GWFUu3w+=hNkOzWOvj+S>K55ps<0KH%CD_<46X#GQ|2{ zCG~pf`(fAP5*3pjlOh>ostX!v%tx#+k!GTc;mL$Fls;<%kyg@MpB?Ti`4J zWcs!`L;fHwpdqGBqciaTiSk{&olgRwLkve9SeWHa+LtQS3H=$D0<_W2`zmsd+QCtFpb@lD}Xs<*GDX`ceG_KgtRkCNcx=s9EV%3r2bIGL4R+()*Z%8{!Lm27qke ze}?>ytqP(EfT&?&KC16CKT-G)X4Fk+)Zg+BQPp8bJsrlRLU_&1@*{mm1gNR^X6xt# z;}cjT!wzhev8X>`P`MN6B1u!nVMGy}HS+Ky5{e5hsfk2S$;kmT2cPVY}pU0XW zE4Y0yiGkpc`5CO^fHZ*h1Q7$t{lRxB`#tjkz2zo zEG*hqMYMq~io^S<<+4HPck6HWtoDiR*3wuO&9=rs;0ISCSbI8?9(^~PzWwcd`u*Q7 zq$l6ar}gJt?ZaD82H6CvN#bXnzEIog^hHYD3rPm0u;|d>>PtV4sgF=g&hQcym~%^`;GxtKJrno-@B6Zv<87_oIz^=OP!^S zS;mJ?C_mKim1Z(!D#Dz!Yr}iYL@VBW0nPa2A>$ZfT~Qft3R4!cj3>o2W}wNG5E;;} zka&}Eds55q4(G90)0OMPbob-^bm7tvL6$>o>$RC4VQa}JTww>nr96Da5(Gmc$nVnS z3+NB{AfWUd0)*Jd*bn&LF>*u_o#;6vW^6f^aegIp{d#1LG)8Y9Tz#^Pr2*9PR2Ial zl5G{9Z1>euG-0x${s0g%@w}5UYll)2wWft-S017u@E+#9jc%b7fVKupx5ALMpo7dA4gE-MI>?$?aPZpJmEwiFC6))1J z&G+e>R`%53;&sxskaLkI+7Z&@h?lVtcFLHPZARV^+&G=kzQ&oR{nhE(j%%{5f?RcB zC3`wsjUW{e-|AAM}~nF*M_`|>32-L^(_ zPqpgf^|}8;)ATM8{m4(xLh8eaDeNRni)DElyyT9O9><@z<;zk0o)+8oEA_W1FN}Dl zECRq2ZWmJ(pykdLP5PqElg^J^lRo1OP1pWNzQoF8eIvGmLctr;0m0YD%+26dhTt09 zkwu%AXP0q3t-i)sr&tQbs5}Knv<#A7^#w!9_o8T0#&s9@UfE#ZRJG-(-+8THj_C5* zxePdj`gFqi>;y{+bLycM&(FVy_pwA`kYqJj?GuKs4JNYJj)%c1Awjk+lzS?Ya*}c+guB)QDx>Y)iPu$61 z)ZBUoTNx*ni$~cUlfsiQLH!k#_?UE>I*bvWn%r;0CO|NIGr+H}_g>)({AX)v_xUSZ zLfF3iE0vtu&?r!*)ix1f4H*d&^3p>Hb*bFw<>hEdU8Q4~B1^3ci7FM5TX~kNMS*kL zFVlcVi$!0~lyZQwviz?=4J+f`%w;VLZi5YZ{34dA2{8fI$|8~PbjKkd5AsUGM@C;B z4v%~*4w~rzzVK8rF`|hco=gcYNK03_leR)CcR1Y2|D{jihaNgIhYeKT$cYiCP5!Oc#M@9upJacI8k#M zTfJPuvh5e}Yu%OeD|u;t$dw5KPB;KfRlyG{bjt3{iJz@<3IM@)_IwQiAdk{MwiTdX z{M&{e@;S#cf3eIhUbHF*13nnsVYdnLyfwJx3xh!R4j8zB6-2mo2^4uiiESDK#6Eth zjxAph3^F&npBCnUoI_9uR{7u-Ft*YM0#IgV5M+Z%QEo3|p0Mp^c_rOJJKni>Gu=g?(zP2{T7G2(SY9(+cV5(Ye5h?? zyDhsr42ob|RR4A`@%;UlGwJK!%%}Tb&85fRVvCoj^J(+dOxoGx#59KVA$k(-H}-9a zTb}oywD4A(<`ACPNixD2CKuSGHphpQB=Y95DhRiKxqz)8E?^~qYqtmKgU^TQM?c@k z3J?d_3Is?7WnqvSV$!{9m1Q3CL}jN=dsaJ-#j8JHyc=Q_8g2oz@w;!ab<`T79?-CA zMKYR^lonDQKB z?dIl|1&ORIV=E?1^75HMxg|{YS^x+pfaeehVrB3x_)FDfrRaE0beq~eV{M0V(tK58 zuqDADPhe)L0|&PP;}KXa8LggB^Gu>HO0ul&mKglO?O?d&67MsKXA?$ndHUvxyb5e% zS|Ob&4`lp5^2BDtWFgCIphM5`LW2?cDSK=e%d_8Qb&)4sOr6d&+sJrfB00NV{Sng? zxkT|a^M+Ui%rmk1K#=N0-2$8z>BKKo|TCl>Mi zTShS7GWyC2w(+`j2`hqd>o4{ZYfyR>e5V`cC^Lr~Sxj)XX)X82mkRdqGRbZw za+H{w2YVfVVnKN+j=o8bfoixGd$t9PuK*G+n~MURiBdt;P9g;*wKW;`X=qeLs1&eF z90`#1@zw|=hQs?RgN(WTi>&~Hv0(%;H?E~~AKkM6kVOQDwE-aXv))Vc zyV6GM8_f4)qpluyha}xck?AP-Aqu)ix*RIYmvMCQkxE2RvifL|&U|}#zi=wYpjZ}G zV^bebm{XUwjiE9fjg7`~_Gs*sOc(QR^{k+Dy-hK9C9~g&=80r{@EBfVZ z!MaVk(Z@QBA&3NC3C%Ln+J>W+i}uWCSSPHF$#g)z(+o-HhKW=KoP&oD@0|a zCklxs%p0Upl}tohR1Ll+4ODfN1v3>{UTUOPm?8s!^o;OC$SI#ioS5+sXSOh5i!bN> zm)ky}w2c)OUSpz$tATJS{{>9qUB)jnInmB>!=3>Q{FuiFv(LUQ0K5zJVxe?}Z2PSy zoB>BWa0&DQev!U|Ny#0q0J5=RW;^2<+Q6U5-m=9{>%+KLNM;@kwmB#GEP#YRes?pb z(@w6!uvTFNdJvp7yB-2T^Ci`(z`0y~iNAt5>hnm%sfs{pJ7tSLrv{nrNK?i@O8cGKPK)2HbiAzdFb2A0K>pCw=zW zhv}EU`f2+7C!g44A}1N=?0Ls=@ZBD2AGKdwrZ+}oCuChPp}L3Qj%SZ%(r^CbeEQ8_ zEv5%w&ZifT=F$N4IsD3=w_dsTb9LBHb(AhC!h}>FH9H5vJ zKc{R51&8G78V=rC;LZ^52YXnVf%n-C0%3NLZebNT26PPY-Y|h)J$w2B+rVJ;BTVcvC~J9nIdKc8Wvs-r%x%JKwU6v4?A9yFoYUPY zaa0LXohFLDRxoQ=X$SY+5ZlA> zDD7({Jx54)eZ0Po;bfqKzzWY`1AN4FVLkk142N!+WvZ zX8~d|0c|~qdfXd76OTha;dQ{v;Ie*BcQ=F^3>Nt`@_-OP<%?9Fy_UCUs6dXFo}( zt?$HIuJDoza)s7p)a+^#l_P8%Pjq5U4)#Q|GM$S)jB!>nh;Fn7QUJ)1oz)wxx`T2{ z5|jOcZEOz}K3J?EZcfRUU(q+R*=fMDajj35wh7@oCW3q{00hrt3jo15Lc2@2=I1{C z00AJ^(&FWA07&#(>P2hIbmy=`GKb;BZ*7TwYExYwUN0S@sXU37F%s#6MjGM5N_|ZA z94_Mzn4$?MUP~AMRHmx58lx>or^So3arw4`ssj?=^2X`-M?oLg@UgLvf>EPIdC}f> z+WHyoi5F>yXm^h*HnO|CVn7gM^AzgM?>_8s*>Lw{Iuq#?X%t)Q=NOf}lx<3^ zIOc@->`}dB=`20D7B~w4Ik~nx({v&&5C=LcR9R`H$zbF;pOiATAa4&e5aWZ5V{05} zj%I7rro0(VTdX5Gw&iRYCHrKm_kwq8B+FISa8^(9obE$C^7-L1_S+$oXk>~OwQsdW z3w~4@bMn=xl}CClWl>A|sSzC-e=-%7*$%RE+I?GY_|RjI$9AF+q!$F^q_j8*Bhc?2OZ zUc@&LD+<@cBg@4F@_I&SY?E@?1&=`Hi^4{a;Txe?#24lk%)!77j#m7}9mce>hm9FD zPPI&p&&et;8=pGlpkaw8VB7%*ieC*bR$Af)!KsfYjHLvI%Bd(4%lz1ZjOZdMEtpJT z`4B8!D`F)hg`QFcTB;DGvQi3b`b?j2tC+swV_)J6pJ_5wzTnRU!K~i7Ahm=PKJt`h z+4x*pz%rbS*-xB&d5sBlPWG{nEMQOe3;1RCg$t`5+<^(1A-^1I3QB6Z@q}b z>-Dtz;w2_^pOgR)^;McTg=UvJ^8|<~Lz(xJ)!M5>Jf;NUKdOOM%Wc8~N&JJ85LE7N;CiFK&ZD1RxOhH&{K>uaFaF|> z)35&7FEDA1$))q>jK>K_PBdbpifkPH8-MI_j4k8kWVha!t9p62KR{p#`U1NH1_aEZ zr>75Q(pSHkOW*v%TzdG`e0u(HKD~ZEXIsJW@A5hH!Pt$g??K#q)D-TStueSsJc$TH z!@;Qh;62E?DSm>O`30^9g4I9n4bq)YxGl^u-TQQyZhe425UvJ-W1lMt6eUK=r#_;b zh`7V^YWofn0}7w5J5LbA@cZxZF7!O@b8JLVi1lZILtRBuI&K9J^1II$D3Kmk%kn-x zTP>{t1Ss08Ov^GAAljgaer;p0gEUT3ua8x3XMmuyEd+OLBgkVL_Y7CqA>u0P+gJf))3y&{x`Ch&_C@lzBFrjQ0J(GbR=UUSK+xytpEV~8 z(U#Z4ov8J5=X0~WyV*~>7CE1#9L#z)RV$2)w{ior0F46FHFAQ9$qA7B`oZTO8YLpV zw6U;IX4iq`OtUhL2*WJPB>)6Lk!x!hyLQn|xHxLNTvN84wWkS52~xDXsntCSpxV~j z4<^PRF0W25tCn&miv_eb9bW*%b#{{Cd}57K1>m#uz+01&JMvUvGon!{dUE=NsP z6`AOD#rs8U zTHveCwEabcnfO8Eu&nM)-mA(>rjI5bQ?*>Ik@!DE%gXjirhMPyTa(`Vq`QwM-rGul z2%B%KE`53r>HU2oV`=J}1hoCLEk`AjcoEm;PrARW-?esFj(w4RA|8CCs-4nL|< zBLFZ?Uxat`a>b8nT>D1@Aq+)!#_9Y&cyJ#w_|!n!uCKaTpbC)QD61u%bm- z(yD2+YA!gI4mLiUdeMlN2PIQwV*LtCSFYmqKIV{0uOcn&u(C_4zFvpuEBSIR=o(jD zIdYc1aSNOUfV^=No+&uF7SJFNHHy}zeHhV%Rk=RYG`Q7)61*}pNlvNcV_A8neHhV{ zwph`FZH;>)zEo@-Bt>(*QM>A;I;m_ekbyE)o)*QX^wv}_14X8?kc*ZhqsOnz?$bA_ zWt0-Nd;ZNavD#`UwHs})&K)bc(1&%Oj(YBBKdNvK{s{W;h2K8Dyx;o%N!r04-Gfb^ z5H_W#pz0WnSbOD0^QHSE_n3LP+;%Y0sdf_YC}vwdBeD@72b|W|9wXu+^r@MK2aE-J z;EPdP$phcAv&=6_amqCKWkDbEk3u0YJ51%Y_$rep8uL6NkLAcej2HP)j(Vm!qqkI}tV@p8;Rwwb~KwF-mzf2lr88sE%9?$bH zCOEEfqUGh<>-6~H6Z=IjO>x=v+xP=MSg1Jmvt&d_r-d4H5 zuf}bnowGooaW;r6hjgSJ$C=852IffDb8VHvYwyL5&J$FS#|~ic6kV zU#F)}p4+MgT(M?=K7Q-Y_4Kd)+doZziXaef1;YR*PDI-{+BhVi8}eH#s=d6M)BupJ z&6)J<;Y|Ad-_NDL`oEUa*S}s!J6q^Gd`+Os<3a8FjcGZ!F7aJ>^|SYLwFBf>9&Od$Z!+20RJ$i(*4;p*A;nkXA43V;imm ztN=2!?Ozs_=!>_XE5JGEpiKsTtYMqEmoM?b)-c;!yLeyl0Fc{v5CDQPdjYFN@L6m= z(!K0r(IuUkUf7vl+t~eeUnEpK8_ft(6jq4FU{Tb!RgQe|L{phq(InTVhNU0y!LZ0n zzLm9iDzxbyR&3itdk%0vbHzWqr&R|t;C;mVA{c0(8AP=nSO6l*ykB`(n|ntuZAhc^ z$Hu_iK;|Fy;5{dcntXf8eQXv%VY66CjsYMH2C;V|@MgFz)NO2k_vr_C2fCgX@GdmR zYj1MdR;#lqXA>Q&eDC9RfIS7t_ORYhQrnF2dbPYMYIqEhUafWfca19dg5O8tn>3U< zVeG)7y^n2i;y$YrtC3YcuAx?s%G4*_k#<}=)5yslv9c+e%H)a0d^pr+Vt)}Wz^2W{ z`%>==qP68do$^@Ts@#WtA8CB6<)L@2woIOA%%2^{Z-Ll%)Sr%`P4bdenL1ipTaI=n z@ggqfB|}=Y8!>O1AJ@;+H>tnHMBbtHqvN?kt-h!u!XsUIjU!fWz_nOgt`2FLmO&LO z&GmZ5T;Wzlh1B%{`m0&TWFzu94ymGbm4y;y<)g5YS2>`Ob>rd*+r_9PN4ql8VJI1w zNJ(+^nzqoG-jUDv7TbsEr=kAEhf$lMb&6+anYZ5pX8|B@zm3l<9H|A$D3PU9R!VZr zA6_mGIEa-z#5nHN!7l2Vq+dLxl;hEsojRW0+6JEA@)R{ClNGgPk}Hk5GLEC5dKMbd zc?8zuq6pNHnMyl{^pIHO3ZmLCB+EEGawXfRFXCL!D5a~Pr8mcnueR%^&$2?S>Yz4N zdye`xEk)X=#ZSUbsVi5C=plZ&xrN}5?fXyC0ru+lFX`EjRMW0KZ!fnq4%3yGq7>bZ zW~ZS~p}s((?m}!c5hMqkHl|6cf+)(KqO#PmC-FZUkso}CZxg)8M;d1t?8{pV{t(Y; z9{9m8#bFj7Ghqdktq_eOucEw+m5>~HkuEG#VaD-=jeN-%j}Fk;o`d9;ZT?Qc_o(S3 z#cFr7bqdkEGxUc{9HaX5Pfep*In&lvO5~GpqPHpdf-0j)0oo`N0|4>fwEGiz{z{t@ z<6QY;ePa`=f2^n1FJId)!1)XBmDS~R_k-J5cKrr^y^W>0=`!V+W5JHlS1ZZb?i2Ww zVZa9`8Znt*dG-qn{GhHJ0K$m|(hZa8EZaxQnL@KG&)v`qW5*rp1!TCj?JIy_f@$ZO z0zjxg=mxGo00a#5-!iVlCljM-RILPnP#yinL6#pVTfr$anB?FD3y-1?d2bgg13m|U z%wITflOJ3GJZ$NNO4RehjdPya|;ayc`RYIfGf9# z={8mZ`2^d-eEhRvy7Tcq0?@c>0Jo;%M7y*pbsP2E<7{P4%#HL}&aD18K(4_pKP^fc_ejZm-LuJ$Soqa))-Z41YeqgILajfS` z9$cM+<1v3_ua!6$+(-O2mYLy}EibU5&a1U`tloib{~$kyj>d`Ed0V-|SMONhq%GQq z_s3P-M^~?1O11?I@M=f%39>aHm`~4KC*YtwHw9?HcdtjNi=iCL00Kf;syG9bQ&9^P z{dbFE(}#FuZ6IpgukylyNn-ZVR_Q=-YkelYc#^OZ$ZXnpjqPBzfhWv5Ix@vF^E{YV zI@NUoK#HRo9~}XSo)hiOki>RI86!jR|Byz42>2^@b z$9Y;@#>yYq`sK=vVLE^D0R05_FotM!Kb*1(2*-9Ym2wGUjYF*n1 zS|DZ#?;lsN)!fxskdAz0mvPPjelmWR5nu0RZP_HGFxqibl}#RSz4F9z{K9y-hpp~v00@IevAPDe zpdq^b!$^MO^{@aC#}V!UAaqR50cu6)VMe|p<6{5_*4W^gNCsG91n9z8#IeKzK<4o* z!&t=kLOf?@Fy1U7=;!>8K1xg20%ig4LPrSzsn?gz*JJehSKg$YdejC6={f$ci$ze)GV~pR&M)6CiY@Q?5}~i)2DiVNW$*n z+V~>B-|3q)R&0wnpuOKMazfsZ>)Vlj6jSj+Nk>bI<)i364pu%;R(4xjEC(CyfT(`d z(u2rhS>3A|FI1*nA1&&W_oPLSBR%5Zx4hnM=(k4ymKMwJTm4R>zwA4)FHP%X>~oTz zMC-%I)+C-VeJSOl%|6U=X_NYy`X+U^xX3%yww%um(CTXC1#jsp$FZbsm@4bWG?ck) zb|8Z)w!=js<7AL&S5f5Di_>C)0r?zwGbO{U}#M5>de*}Y#*kd=JKqE+w0m44PRY5%f0m$I12!I>rH%S;CL;d(XmaV zwsAbCcOGmRT4|Df{l3`hL zr181Hi2?RE+w$f0hE0yYz^~kQxI{Sm87B$3^#9VzV!DGb;BVi#i6z*VZMzpvwDdo# zWEm+86`RVC&3vA~v%K+eV#>)1e0-GiA)vqz>aYU_Vg*GWm&O1PZVAFI zV7LOv7FGa(akk0WIJk9llSvUL5LZ2@!X=bvK*kX10T1x1+%H~2e0b>A=CyxOpj_f{Q5+wp#+eQw(_ z#Q4dSTNORUr2V&FKS-qF||9&Yw`EDNm=9WbFV4sOyOg)VV(IYKOmV`X-eNHOa%!oWg1cLWh$Ol@;!uxuN z9%RFnNrLob+=n zqR)F6Gd90@koFKbwvX*k_Axf{{b(OSvNoC8SFuL9fAY>nLN&Gm2%ZBkU%X0d2n6I7 z92{pjp}v4$=PxZUx%%KF9YD z_QyR0gm6_E2H~-ahxtJi9`XC^ll^fbPo6@5IkO2ZfcC`Ws+7%b7I75|oumjo$ zrJOQx9?k+XMVr>X=#X-j9uQ2Nbud{UnG9zP5|P1me_o%W0R|y-XGOM5^b6KTAIqiol}(!Pq^ZjM*cot0i9*u zdJCxUsK3#mXfiII=qg97Xu?Q#npCn;-!yV>iW%GYfKC(SEM$k9bW{>hJo)rW= z1)f0_D-OUdUN6lVqI;0VI(}s#DU><~#Zu`glI@6e3RQo1cx@eY^?ex8imjkuG^N6J zomI(gj$*rXLkAm@_7vFsEKm(qi_R+2lcU~I-7TcP9B(TR%#s|gB4^NBoaMm|a*+s9v;|nIbGm`Jxj>C3s%T`GGE8Qt9*POW0SvfT)%xHQT zW;{PMlb(I$OOf(-5x%sUeDw2+d@s9~IN8ipT#qGi z_xK__BlEp_b#?a)E4yDtgx}#28JU&g8PVaHVlT?HO?1)>^}x( z>hLLpGw?%!Ab{uK52FFzClI1C=qS3f9-^ax<^b6O9LqyT%R`z78{&zu9xdyZ351jG zSS~b~R%I4xb}VO-l4$(uJn)ZWaL!h&ywl+<1!cNa>LHF5O|firrYok>89XE9r;L?! zu^N~_0919kLIQ_)2-`uQ^2wD=`_lHo{YU8mCi}Sh0arno!3%i*I(!zBDU0bU_Flh; zuWmW*3Re?_JW!L9}K3zRxvCa45@-Z>`UQ1 zxoP*e;x|Yu0=u?Ya0z_M6+m_{naeF5Hg9942Ylh~_ecsE=Eqf-zj7TV9IRwFTTusW zSy8`uZ|tyQ#`7A`bs#eNfMxap_+n;hG0k7Plvdtni&7+ihUx& zN%y1@K{M>cN43IJWAJr z{|MX0{QSTEGCg{*n%;QpmGtJ@ucfQ_^7z7~^Xc5V6}uid$;dCw(TWyiGPHHfxcWxl zRG&c_x&ym8o1JrX+*abVkEap*F_(Ui)jvM}Xx=88F>jB_cJFeghkbA0U~e@y4B!Y7 zTkO?>3E2!o!;*r4kd=sGo*^idV`n3qROgB&XRy=J#TT~Idw;Z^zWb9ctOSCfkV|_A zMDY2`qXa<3HW)I6Ft$wz0O7L`R+C}i7`K065C~UD+r{chd^X}U6K>pN9e&aQARO1Z zY7>L^*e98?%n9^O*vpj?Ha0daIEq1h^VqtD{hF(Ha3v7dcN2BvwZQFP9^x8U2R+Bz zdCcH@0LZ-M=X1~puZ4LAesI#Z?QEs&eOoKYnZI#UU>o$?q4Yqu0DdSJIVj`5id+fA zX(&-WFY-IQ(}!6oY#iC+!IDFC?-JIoQ$uGC8ewu!MzgQ4PNh3HQo470Dm`AEPTQLd zR`PmFhNmW^f=rwTQFJbtY_!G)sgivqg>F^C`YQ<`i0ll0;L)kS0eI3q+zcSV4yPq^ z5nD2m((Ey!Ola+iAPro%T>0bdxt(+tTfdyUxSN)-`UkIP+_K!RtSg&ZLzF465P5=MO%gu-~wMKf-l+9b49|V)e3F;LhL~WqElSzeNj5VxJ|wHx?zhyAHKm|r ze`Ov&()y3Q6$TfSGBWyau6I+(M;iWT#t-*kDG2OsR=}{C#@kOQ_p7$^5}xf~EA(Z0 z^F8v`4*8juw8qE&L^?Z^W;-*~6YEu$t(JEPItA0&fqcUXLr$pf8(-Pt@9|`(SbBg? zjm~bJtTJgu7h#0+5Y9`wg8FdbPcm)oi?+46F?QHs0(|UGEo@Xdh;6S`AB&x!#Raxr zR<%$KMwQ9f()5HqLx4Cwj~ut3A$$M1n9}wy)>|<7pzUWWM_R#JUdh-mJu3fx@`v!T zPxkQHpm-hkX!Zj{XJmO}bq0A|R(S^mA#3EBQ1k^I$1}-o9;kI4*72!u4|IZnEAl)e ze%TQ15^15yL@Em((>mN%oh_`E$?0^GDO{9U^P^}poU%OI_ko1?LwX@2xb_ncfE?Y2rxH%Y0~&(cG%6!bc)~qj2C&W; z6Y1h0SNX(Gh#%rnDmYWYlt!HLj?-YN`&b#+M8;G^MQ#Tf3!oU%*@blnOW^Fk({$WI z$uca;&Ell1$72>{qKPn7FVE>8(T{-5TPP`$;0K%x9?-gVC=uWapytW#$>=ACWiH8dJ#8CM!ssDG>$iz z)O!vPZm0@^iDpQLXoheF)+LhZstU;jQ(AChwKNxq#81ZR?cV?ZKmbWZK~%vUTwR3| zM)rk&eu>Bzh<1(B_AE@-iJ7H3S*n7R(IBH5eJTc$c0b}FG2)T#Ag9P~XsnoFqLFTu zJE~g#hBv70uniVKEOEjgfM2Z9%(12){$j7=1eF%W*=X4;xau+{6$?oUTL$t=T7E5i zA6pvSzxU7rKptZva}!%UaiWFyMh18+BItlitzX0h;WEAwSMZ0_YBEEAXSHR~jZ6oP zq`_{n-JdLr6H~r;=F4bKyknw=Uy52fH1QZ4O$Lx3a0>uIu*(J}ayReXLHRM2+PG)W z1r0ClAlz{hM&sR1L0BZMZ3Dx=6`Q0gSY%Y;$VVp7GMFV$m~5f|o5qC5G$v~2u@%Yk z`|qUl-+Awu3IH*~2TtARivfZY1gY=H2CfFOxw&bR;GE!Q7vlsWC$FcmCjq8vvGT_k z=^uXaoAjGs{Wg8{;V1a2{DG}c#Zp%g?1Z-+DE@`Oa(Ux#usZ6--1S3+1kWB6XFc`H#xiW z(2*~n(%VSmy(>`n02!w)8c6%hj*ORy#EG4$U`3RW1>jf25M7ZCBqx*4KZk8#-q=bX z{A4rz@Xxl>xeJ)s#;hoYs}aY5vJsRmIJOOO{>3y_dB8K!1_FdO(J!{KU6uuYAjpFE z@m-9kwh{>P>U*u+SZ)JBRE{*ofn|Wj*bP^le+^1LHYYa$>LtSGCzj zfC|TU4-oOzVF1X&;zD}vg)8X=^lb)%@OeaAg016vS%(~!8T@euTY+(fg=t%n2?2uO z=fpZE*R$2J@QHP8Dq%7pspEmZ}R+K zasRdbB#-m$)dMn4WOrqe*I~4V+ZS!%RQ(o#Bq;T)b{&RIWa5EJoM?<`ZgWI*;l%o#99#A8r}B)hVG zCQ_Mn<+9H5RF(|2tI@V&{g4f@`6L9Xk6#D?!FD=Z_wJ`{tN_FS5DyOG^@vr-$ZLLu zU^$vHtkaHA2D%m_6Ugek%v36hmX8f?41l16Od+aq8trD!b)*80e=kiVfM?;gm(w`} zzb+sUa~AD74O;6LK{hq%P!-I40h_d?@v_&z`d+C_$v}el$35Qfxhf5})1oi&_nf6D z+uwBzzQdS{!4ubp2lKNo9}uqjnc3D!`o$#u zt5GpjJdSJiS@ZBvJr4t`_rA%w<6ZVB{DuyVOW-8*9p+FNCnw^> zQgr3aVJ;`h7?LkNM@>ie11YD1#(>xd_th`nC@(V&=@$7Yx!v)^h3Z+Ms2CdG@&k3( zc35CcnR7__kSrP}+97<#$yT+!t14EGs$zh*wELCG+R_AZ8Q0n+9%~P=tA3eXJfe+K z<^LgE<#Uc21{|rSG)m<&pvr8gVH#1?v@iiQDNp4-&5ifKX#mK0|D0ltipB zJB~#-Sz{`*-qsw^mbR{dgXL5&D(xsnIpQXiI*Nt;laqiCaZTU2eiPfi+_f!Ww($a+ z_XBBS&{#2Wd_^eDVa!H%+K&CJc=J%k*g$dwVPQCy?g0*|MXe< z+n@bo`pvKZDSh(sr|IVPJ2rvNN$>L)&tj7NYI^g{SJON1y^&sc>G^c|@_BsazLFL( ziOxw!>Zs3*`&U%{F&^5NSqOiK?Ib?_*|dS3in!_r;#CUmkQT68 zUy3-%F0dY;U?yPBw013cUgFflgS46*Kzc8)B%K_PXdbI9njo!Q+D-5O@p}5xKi^2N zytSLS2o6_5VIV>OnQTB=NBHQ1+C>!XH$1kn70SjftQy1s5Iz%e+~5IK3w$qE3~VCXJho=w$_fnr==8qa@V2r?r&ofB z70AA`I*~I^!h4x*L;+cd1MO^mm}nj>@K+8Y3cxco6#vB=S*+>}d1mTfvmkWoJbO;| z+3IWp88hz*)aSt+rXG)Ro9GsIZ%n1TH>cD38rlV0#O!QmMw8zWlC2Vq?FpHX;|Jlc zr`m&@k!Ss&;Jw$|x5{C;_LuCxzz1yBk&|-MCOqRZY*YY9USI^V15@Zz*!E=+D}S8d zwE(U2m-n!Z6Dk7LdkhdUsgNttC>xZg3?of@*vRPY6@|JfP{{*8zOq0NZgs@JQRe1- zC6EiaXI{K?0l|Jtc!t3}6n&oCig?qlKn#bBIGPzREL@E>C!rHQA&?kmN z-6Ox@tI37DTt*Gf$FCd!f)(C&*0H4%uWSB2XPphL%hZNBF!S#a9ms}KQBlxMyQt{> z)2RwfOh^ecA5$+%7Wl{&Ko9_8fd|F}yV#z17F~Sf)x@pu7Oq}NGq~R#PXLHpW+u=c z8qI4a2jW{9d8QiE8FXZ;GcvdX7xpg4Rrr#@9wn$B<0kE9KuBWBzxnXPay5As8+p|A zL-h$9wAsb_*c??5k;fU1#})vBah+o|^8QSngFQ;{2cB=3$MwUY5IujR;jHZ_-QEr4 z{={G+^(}AhR(~z)TC8JL#VIEmmA}@hnt#$t)DF5ohiLbw{Dx5I8k)qZqCIHUC0qO| zA5_js(aWwzerFIKK_iw(E7&2^o`gD1!j20f{M_kND8n+>yHISCEHY3fh zR!pf&4*@QR2_t!uPqBh!73Jk%2W|pz60rD0Ttlg}_Hog_72Bux_HcL~TRBzF2&wt; zoRyBbF0HDmYKvBIE9Zh}Iyf2P0lBDGx=4>(a-245Wd z%R_(JXD|Ht;xE52OgqHmC7{uPPcIqS4+Ue&qp!^2L%7Uh1hS=4kH{U0X@o3*O>b6y z7}15NWF!=6h6&ZtCE#e&%3Dy9bl#!|UimG9R5X@WwA!dNyf;@IXIqxBWhs+6Oa&Xu z=txybFMH*#B15v+ry!e?CS2*`KDK=M>Wga@0OBhmaEbppn;$%%^J>k6W1F_!=Ce^~V zaN$onjcr96=x0l_Vs0tG2_0_b!U^x|*KVcXe)RkF@rS=lzxv1Drayf8WqN=Wa=0bZ z8BBolx?sS^c?3jVz-la4u3kv5Vhfq?eDB@#@+&W3TN&IpIboICT=l2AA()#%n}D~j zf=NxR7;x{-bo%o5)9IK0?_B!u=V!2*09O7$7v;(y?9xt~E1@oBN;0fTOg>t#kpC z%rus(FC6qxo9xF|0zkM*5`sUtD%vLc1;-JqEU#aTtDFSn)-Zcm4TR52y1wO0>QRtK z4E%`t(HrcacM8y3U*fogu?HQ1!F%dg45qNHFl;QG#)=>7=?1npx`VB)82qsXTefHu zo;!TvlKp2IK{Im}(6N9OKb9~te(B1EbQytubJ$l$+icJ#dREUwoRqbR!E6ulK5k_? z4Dhm*I6|$g&L<~u!qD2E^xiT2It9=X&dzhDv#jMS%8|}5sLKJ&zEZd z7a&e@nMz)T((FQ7XlVryP`Qh1n88|WSPA68-Kq584$6_;xU4>fNSXd~RdPaLdP?V{4i%7`qvu#BGYW1p1Z@gxKuM60UaE7aP;Tg|u>v}-;nrv9CvWzcdl+{%gW{SF^Gg}}B#!XML#g_$k zFjyuBd7y7uaEJZ<#-I-Rh`gSsLhDm3Q@PtKEc*d_| z8+}8Yj`7_B#XU=h>Pr{$P}xg<9*2u`%nx;L!9=Tm*20DVMyGUUbh4ZqD^2_;IO!rT z%8IxaPTX-HvLosejJig_4`7G-idfWVS~&1NenM-;sVr8(S#EKni7Bm*wIMFnh-Kkh zIC0O?q32DEXvHkS1Q4!;3xCk`xaA#Ge@p+Y+0)vmvRX)ei|`>>go~G{_{0-&qw|{yrs@>Mn{IxEWZR$nb)YBC>z3eEYhLqp3 z%wgxkFua_?Q8lxEB92faE0oohktXIvKjg1ry2^2ydr}@a4FGvko<7wx#seB~B8gya zIz;0z-CW}EB3K>NByUJgi&MExhj=3_+mi>Ah(hveopgh#5``0O=N>Ny zm4UwU^>flXglTbYx$@-OS;vfuRc;jjD7g6Av`epQ7GGp?!L2yZRvmmtMOQvil0BLy z3h47k?7{Prr-qdT!E+f#@`WM4c3u1QT3W}F=X@C^+r@R{RBBsuCJ{WuE7&Ohs7JIJ zrUyH+YAmQ?oJjSrZ6_gQLLNVR3CJb4w-^NCUx8Tw2(}-<%!<7%bU8(FRTFbkCRkNk zJ5j+YgEZDLfQPfP|3FN`q6n4EhY>3tldgj7LRlcwQ%=YWy^OEkZh+-gy4n!&gz;4fY>S^2m;x~#Hsm*jmhg+pEbAEuxw?23~{SW`spQR7J`)-=Wq*QM!7`AIuQTat+`iB8l z>>!UGOr=k`?aMD`)35*QeERIeISc+^@I(GP+}KnXE2uNIihv|2(u&mhGG2M5qG`nm zF1o>VfT;C%aY&#I*^XFUGd5QV%)(Mi=PvK0cYd&u{^eh+r#If`3NElT4=}B7JHnd6 z#Ql`)#3SV%`76yLchYudOqSG$7L}V}sQU=Uea32FgKx?d}5pt%K zi#B9fxmZ4Uo@0qAgq;3r9tW27wHD_>L(GUJ~M#RH9G2=6`bNk8%4MI)^e32 zooY3Ni*!#ruV>Zxyd#)w6Rw2|f6(-})zHu@Sg6s9UXb^20y593xr*<8yPnC*tGprp8L>lGEKI!W4WQIPUE7Oo=^2!6X zQ?~&iq$#pnfgM57I*$6TtFV+zke6BH%A%($s#6jzfua{oB38!?F+=!2P(JLLs`G6>#($PGsLmWBi5?+KWPaA=ipNYB`z~JB8#P1TP+>Wb26Q z6arzBZ6ENw`$uMYhLZt&0mziW9-QRir=2Y0=RqJLPZ&E0e)bZ$?L1Mua3HrM;u>3@ zdXcuu&XNI4HWTL+p2$?OQE12Sy13+O~Iyk&_~i9z9Ms@YO804B$A= zl|Gi1IT^TYliLee?w=FmHi=_xP^D16CNz3(>=@?-(Xuo|FZ>X$6<28GB>D1!NlmAUhiy)qlnJIb(_P1=*Ta%OJ7I4EqW) zuRsF3c&J5+6#A7m!%njoG@X7+KK$%OJGX4WB<;%k&&CQMR-u8D{wNhH)~CgZ<|I=M zAJmbXp{Ns1c5Pwuhm(m9FtL9Zfl;?_-AOkQ5OM=6gM9hrjdUH8>$edQvWj~nua6h8 zCCqof|9<-OzxY>3-$VQQHXPOu(a)ys4`=iNJ2+{CAC&SMlwXXN{TE$f2iqiE`)n%x z?7z&VU;WLQbo-0hw1$8XPRe5r%-TA%2$GD7g1kL0Mz zU2?@9K%}2Y!3!$@(p6w$5OI;(WPs;Q?qZ1tR)*tCuFD>RJ$Er#xW|b?Od^t} zJQKh}B>+WE^R^DuVxJZR?_W1cPwvFRq$EAM@~j37a@E zi^>tMr*rp9w%O|Kw$ldZ&2n~d;K?$LeSkXH(a2lP>P;1V zJTj3bZlOU*Z+1Wzl+DfVVH>91w0v$aEuY2eA4nG#v7*vEdJ49KNxQ6L)?sqToJ`jQ zcvaR&>3^=8#GuyAw2r`rHT+f)$oCK{U92I{lh+P|L1uCPzah&o7s`86W2ram*AYNmYWB**Xt88nZFsd4wjb!e|cIje!eUG&^>S-xmDZ)N@anJZ>1?+sWMJig=Ef$O`VCA^13PvjF$DRDg7a)b@xjA;a)21M~G9nGUUXoysK$S&PDgj2o6 z>z2DtE;DUM8T4gCOr5q`nRx?=aC#jRP{DIuzRFXn1(WR+6LXa+Lc954npn+p@5_uf z>5qI1Cpz*Ox!&Xrt1*)Cr$aL~VkJkdt8znTXta*KB*O#*mQ{X?Nv}B@iyd&$$V z97|E=$h;_2IKf()7Ee0SM4VufGa_{|KZ{*$ZPy4J8UC?J9R`8e3qrmy^smCK$;CKA z2i}-D#yU(UmJ;zu#)Ni@?TMw)UfHUvSh#pW2sX;VA_D|%og>cp0T4`bqpndp1lM)R za-4lKyabDQbSg8W>H@0Xzg+qfXV ziOI=3_-dAuB>eK*0zj4)(jvYHpT!GY@9$Mv&s9{HZ5+Z?PS1^_9fv!JoR-!GYQCW6 z${?6Dn87w4d||zfNun*RfMQ?6KJWk#zX!_EN>M>JaBSqBk_JGZ(AU`h#g@UI#r4h? z0kYupQQKRe+$AH0J4d>qaB-k=Y+a#p9FdGL99PvydALVIVsGoB0l+WCjHg_c_w{? ztzQ_-z+i`Xl>Px8_899mc8XM<9|D{H!kGE{tOhY%IGLYlD-8_??Uy}Wj1v|9%p)3; zN0wg2=)czXga&%T3?x}7I*HL&xz6Ln)WSnD z$wMXsd3s#urlZ;QR$x+swi@hvggZiMuagqpj=#o3g!6K8n+n#kCCvTXQ|aN|lpfw= zAc%q8UuKHa7avg$|7RP9j5M6sa&`P(N}waep3x4?Jmua|ZorK&Hm-qqol73ZMu2A# z;BjVg&sP25${&l^@@0OGV}$6Wks?~T6<2Z-kQCb7T}*7QApLBsEFyvcT7!$7=|Dz<4t5$i7h@EZ6Bco&nrwemIij3x3mh zPO@Nt9Q?7z@d@L?9&F^Z+w!~bq)R{gPFi^G3TU~a1jig6atLxY8?GxSVc+1`y^XPT z7h~!U#@C%S1k|C-0AQ|iX@A>AAtwLybQBNRErNj{wi*altHLw*G=j}%7+{Xyw5=Y3 ze#&dHv?cEsN74Eec|#wxd*gnlMEd<`g>Rh``)rF7&p(@VsN=}V2gS8clbja*w90LL zWM2yp_Qk$JaO^J)PUF4C?;xd@6>Sf(4?q@+OqREB;lHja@5%Adb4G*@!6MI-%*z() zj5a<=8#=n=zC(5lu}Mrvc2gKfTW}JT0fIN84qTL2G9HJ_*mi1D!Bm!!g1c_lE?7$| zo=z%*LnXxDp=%0a6Sy~)v;-n#8pp2!&jyt7%*#Q5eL$YX@Et0TD8~Q+DBH!O za-kc@h?b~6ebyP2ni)9Bw~@aq9u%@U^Q+9Ox*S1vfiaVLol3x9oCSSX*`~ zo@*UML)(S#>WqC+J`m+;di)+Z4FEZQpPouQlm|2rh&h%g$&)YAu@uWFSuw&|T@g1b zAN52U$x_-O%3>ag+$`Q1TnMO&dFrw8>Ccu$(-Id1l%NiSrji?foT#y5p zm;5YSA_ZRQ6wa85e1wxXQg+J`6QwA>AD(o>H1$R#S@}Mg$@#~SZcIH19RLbL4ya=H z$#sP7Lpu&lIWk0a1G00a_(jwXUYc&+f0Q<^-?8P+?IkHD#3)B~m!u=7GNm<q{T~p`=ggH4VmYQP)*{ng9t`E0zvfR&|cumo}v>O<)iar zM~iTp)RWUF;EPr&n{qSYHXxwc+ zI=N$g%$%BL3J6l$`GYT&@lJ7uWxOw*#n-C%2ox~T0Y{Vl#fI|qZmAFpBadvh;XBO; zh)a;1O39q89u!%ZoEd`k?6ZQ!fdM-SI9>9m3RPTQp40>1KILV(8% zwBuVy(pvWXYp3=EmWWC6btx39@5ivdoda%BP{>(^w3)pPVtejfC57{fNOjm+)z)fd;(D*6|7FsSP4)r;7A;5@b-SjLCh z^VtLh@YqGZn{Hj3P9Of=Z2IUI^Xa#LKbLO)!LQSK&h69Yrd!Lwu|8R-P%66LbGU9eNoK$2rHN1$BS~e1A zSm~5bTZ%aC4EtOBx^9^BnZx2~@v2!vxdCPSwd zz>jNv*ROYTDdoWAvcgDLLAH=KWg0?|*WoSb0Mb}4;6)b=@7E7f$eVu*?3lr`6UU=7 z3%=6F;tH<8v%6{O90Ju!@CO;3PkMZeQz@jNJKEv8tRGoG0H1%bf)1`3UQ67%YZbr8 z*cyqep3Nd~fLp&j_rle50b{X!+<*%5I^otzlrxKaHlGo!KW6)iZ)7jKlkyW(K+imS zb`gud5zpZ|TXC1qTG02PK66?biK!D%Iif0=L0O8hmTn&WJ zJ>H4HA7o0lU{-(O?V2qV6J)BbwRVK@83B4Rme6hw0O3jzs0aMNXJZu1LR<2=ZTY?T z(xpH8URp!|h^;!oHY$hrcs7dty@s~rsvi7X*2Y|nrws70?Ohj#QsPE;mS}e zK)@A2hs+$InmvuNFAcS)`WzWW8)1UCu%4pe2Ms@x*Q0F!kyWV9STaN)LMm$;i8y;O zj*NOnbVg?xVg$Z4uG8AB)xb_4r8))91cEP0^jmU-6zX2ahh6Y@$U6ml){j3|ySlb?X@(ohIih`pbmhswT$gecQevy4Yr$#h z=pHx?06Dr3PbD0i2Q(N^pz>`Rl{ronx(y89&@ycuje;OaP%4zlN(on9sc1c|gD3~O z1~xRF6?5ta-~BkGBCQH;g}%SRVz9@R=L{a7j z6xD}xU8(#OOsSV3lxt|J_vZaAqV22)n}$JE6v&Brt_X7D`fZzRUqnC^w@kW%KoCyI zPfyJQzLEa%|Nkic{BQmteT9ILbxhv#+WX+U@1(chc|E=G;?;Ea>{(icAMPopVK06B z%c=CA|JTLz@!u_^$B(AbC2@U1xy^r&y3_e`Suo(^L2$?S07y=xYxC4Gk&oyU97db- z4k63|5lnkn9wpmoaUxwjS{Vfg1e=7v%P;MuAODZ*>3e^=m7afPC!Iaddw|`(3;C!_ z$44NN?WAvUCW8*bkIzJFzefNF`hl%3kS8mRCh%ID!N@WRiGYqB{1{xv+ENE6Ki9FX z%;(r{k6R3J+ZT=@9G~emCU%cxiYQ2q_1xBF2|-1i$bR{i7qJq z@dLW-3nn@lGANxk6g%X6GdklkE$b{gV#>2%<|m%=ZOqSkW65C|T2tUil;u7G}bwu}RRoP?K1Bl4ckrnAHA#JbC{z)j}%cAd$=#}aZ($M=m6xSb{pSmFAw=k<(!)BnZ)=> znhoHy5>ZY=xfG-W1t16OZgApA%jYWwex$U5petTuE9bH5$Fc|2l46>jR(64&Y*m$) zN!K1?skD*8lmn2l*_KE#ly_|&5cS~xss->d0K`@~!*)o^XO|I_$EB4}DHy=5V;Bs} zYikj!64YuDlW;M#K`(>Ct2Lyb?2`rj|i*n_V2m_;m3CoVNKnd8&3G}Hs ztZ;^B4a+n5Bg^2n9Hi%#cU#!jYzxnY+pCY#F2^F$uv1W8mMQy`GRSRI3-;;Yb_WSA5AOFAtK)e&@%2AKmPxCp}B6yCgd#tY8 zGv1y(=V7G})YZ0s$#t|g#TdY1_nMf%@B@{gyw*1N0LvXYZ97~3WgBY zTxf5m#RuO0Z2K9k5HgKxbA~@WSIy$bRYNRj#2#MQR&*i{rCxew&#jrE%Z{vqd{gR* z+6}>2X~Caa2Rv=VqQhy68l;6sJBMgmn97mwr1G*=I@>b!3U&Y+)W3%MkZ=Ry^z5c< zu`Qc5Lox?sMNnJ2AzXxg9rC=t>CpW%!h}0bpS%Z#`dbTAIa;R{ZE=E=w#7yMC!HVc zZ!&hkQ1#OT*(o_$?x4;w0>$2vXlyZfLsW~dv@_%sq~p4E5`8wd&^FpT0v)G%4Y3GU zrDXXPFeX=Rk?c<0jkC%VZp<(Z4yW(acHt&kO0$K9CyZaxu5n-TGYcL?L{aVczrKqJhi)aoz|qApi2{#W%?yXdOJF^ z-38aJM=aI63zXOj=WU~ptD=WEA~*BLLDQF^D%bX?dWj>v;PT63N)fEop@=RSR(b-n z1ASF}g1JT?Um~J1+jtSWfu+s2vCloXf#F1{&qUDytgmW%f~JiU-I#1-GN;7}P9oy0 z%sLXl6R$xa*p^K5&%Ws8i$R;X!3)J42!fd&gY_S3vb?B|pm=nAMqL5f!3FqXv(b*I z=OFUjJ(F_`)gkMSD1!E|n#VRKH@CNZr4MXFZg~cPa7F5^&1w7y<7yyio}Fp@JotkF z3*Jn56k!3j@?E{no8z7LG*{Wk?YOVu2v@y9f$Fa0to_5V4OW5hTL- zd9D_s<;&SV6g_mvy#+6Th>cIoLaHpHkPeYVnDS(aVgUDRk%1pOSjhuh2Rz=iuU+{y z`Q6+1(j%-uz^_?3S$O5@<@6H17GGS(WMQ7rQs9WmHOI2vuB1##1XG#S3xDQY8sS$6B5YEN_%*dJ{fU7B$JW;4be|Jw_-cF>6IPro92nJ zv-BVTum1(g-ttnsNuc&tIuzyySK0c!#1`-m^q)$%$>F0-rg+wG*_fx zAL4TlBr*7!@?{FLMSfJAZ6MA`-DU$*gd1nvZgLh#0^o=?5`g&(Wx=%hS;~TG@yvvs zhtks7Jp`2QS@6dkRs!L%2RqG_qQl{a%qM85MP{MLAUI`9D!$~zBU@E21ig&Ke0f8X%n1JTBXIsV41oRoJ z#~3s8?4xI)XrOR{MH<6Nt{lR$!7_q5QVQ8=6cW{K*zsl zECA$o4gh(C01!O;nDZ&i`hX0Og;@fh7Y9&grr;FOWgA}tJ+BOoRSZy>!j^evKW&FS zCW|&P00ix@^1-*#<)8dGE#f(rhX;FLn=P~-1MHaE3LhA6ch<4G2kN$i;7e{HLm3Pt zvA^ZW%=%izS-?RX4Ccj&&ot7Uun!05ETDou8l`6vnsI8(VUyXT;1088g#DAyj5R0Q zqw4y&Ne&-7?S6&!W&3kWGF$zF0Ux;bEbs$)ZrM14=PM6r>IMkK_VQsz4j5Kq(Wzv>i2l=->l(82urSpxs?X*SWN6X! zbVNiHKtka%97&azanT1NFML^9p#g#ahr2m0;p&FFxxxqLNUR|Q#E!bAqXVCCNR{F0SR zn{)LLj)hhQ(_sp;UTMj&TwOuUye_JECXRT56CiUlSXCqAJ2gdl`Ke>6dp6LHdF2uA&a zGauSTSoA(F^A)EnL+8dVl(7TvO{7VFX z{D=STKc*YlHfF)L-$0NECKkEwtKmpKK;!KR{xky zx4&Wl5ay&1#9%$kPF>SjpB|Vt5-x;Nuo_Hd>zG}6qe@~C-gH7vAf(9zVtwLpQOq%uU<2f?K$7>3gnHz{%({Wm0<4%9_aLwp|Pmu?gPX z7;1m7rx}H|;W!WTR2dKv&j~=aA*M5^}kZ{7( zMMqxeBaY+7CIUd%A8z9L`u;sUUnAIKc9wxWm$5z6b9f$|Pmk{JrnN`Br%z)mANU5t zKLyL0>a7X`g?YMjA2wsEO>Uc0@@xVjlyxD_tVSo{bJFbGu3bZXM&h&460WcEjKpAB z+>Sh8)&&)RKuGqKsTexRYT0A-Jkfyt4l$9g^pA!y7t45!XCMZ7kd-W4DQC{I|e%0GcKs(7}QK8!n$nkx9o?ZD_WDZeTMzd`XH`N+wz4e z`ZN2t1%}}Io53|X%OCEYGYHP|=VZ1Z8^Oo0R_;W`9ybxq(cv9TrK6h{9a*KG=F9`F zvnO?n8m#3Pd`OOH$I%S&?FW-w(v6ZGX zRC6w-DF>@mkDj~$kj*kr+&0<50Y)2l z2Y|$S#kPp~aWvy_QAW*2f9e)fny8Y6+`)AOW@L}b-<4KND#&UT)yQ=Ig zltn?f2Y}#f<3%j*&j}hG**=Y_;$~R^AcDbK2%=O>TrDyHh*FXK+^q>Cnud$`a z4eKA9m}FeTBo+O_N&QRMis_yAU&X2*Zy^BWopkr}_tKp&E~T4aAUN&;I}W-F=O~d< zW;|4v0w*BT87?D47X=g^2rPKy+1DbD`bz&R8A6BQ@~5Q~L>~Q^%><1oqv^pwZ^rZxM8~; zl$jOhZ1xmOgNOMC7}{vG&fsDOIRa1>+mBK82c7l1(iT9NV%qO3^{_pzeR&@d+96z~;lLh`*q2&dq}wMy zG_LB|Xb4AfjU}c*mJi|fG2xj;+x;zAsOO&+9!QQYJBhAIXpYOE*Q zlnG4A3Z?NoULL}UR=SUxo|N2ZSFg`WDTvB7t4e1^wON!iX}+f~Fpl$If83~s%FZgv zad9})18l3KN~yUbrz4<1Eu(t0^6EeaiY!unrC*1xOqPadhhWZGZI*1&_9YYI^nKbc z+<1ExbBPBD0HFh_h0c$^C@fRqHRlxVS$L%_eyA+t55hAf=M*-|1Nhrwd{-OAcnUxD z!0~!O7rRnQS6*p^RcwCkP|Q)6<_*pUZ?N}oc9N;Iu#eCyd`s_T>D0|a)J%mlSRBhb zmtK~W8QVI=5je_oeW+bFOE-lA$npxm2nm<55hi-1(Pyna@`6{VYrBaye&$5U{HS9T z%_#VgoIb6pHMW{0LM7BJJ)W$}$y|qg9NVE-R0I`B$n&@a!hAaAh?`OskvoXxR3PR15_O?L!Hm|!X!p`Y|7 zxV)(bEy)UtU;Xyz2N=N&n&83n&h}JVeK3_C;m4qlHLUo-W&622KXIJ6WBd)>?uP`U zRCEeQ+018}p3gD*lq!^rF%w=MPa)U7az%g#13kFv2e*mQgvavAZd%43_ncoRoYyh0 z;Uc>$x*8X9s)cw;IW}NuKVub9kW;c*Cs`zHKZ z1SBV$IFZ4L!}Iv!`~oH$SFrE>5`sUteL!(7UR=JkdY{p>2sr7pXMY7R{!7%Ahs-f znUoMOg^8cptjFxo%WQu>q1f4_rL_Fsvljr;-s@Cm?Vj{et~t6gAA+fTl(f`M7h}D<{D((Lw+ zQ+oK{;|u1iX={U9WBK)ET>-L7NqYrE`1O0%jw9|Iaqk>+kQR=U(

    ljNo z25;gfw}pU^?fm1|%rSWp6Ui45{PEID&!;!ud?lU5n9QvSHZh6$7(pVB8A!sLBJ^d5-7Yw!&7N$pIL&v#poRb${`U`sZ=SUp-BsjsehP4`k(f;CH+;bum*Fy1NeXu!m)T^J*Yg3nD9Q+s zF|kVNGZN&7j@R?E1i#*K3W96KAL z)Y>RoV*UPxYlsZah06~tlq^Hc$P8weD?e~TM>kC@6(hQm3dyzM)HNqq7$s0npW_yMNO{kaJ+y^~ zn%_%f&l<=58i4@yZMzQ8|9Stzbuf)6{b>YG&LEg}2CHMutso!-*XcC+2`&o!s2qL3 z`m+oftNQqnQXA_p7_|`|%i}E2_0V3Qf|FOc2pcE!8-p9?U{z9%j<1(5 zNgc9*@@0o$ZFwIXM)ivpuJS(Ogf91-%%`&OL#Zq$PPGx8aDuBW{MRWh&#D}Qvf&kW zw3atusI@oh@HWs&b_3j3o_0Ey_F4rEEo-1u7Q2DFLw%QK|A>Vuy-;0N2)2!)T`t zl07o@3W%3v;ulQiVG(jb#5zoTlA|6hxN)d{k)3&a|B->^CB1Yh4NUM))*67y4$uQ7 zyWE~(8c8@!pN2E1yvy_QQ0ZS z(`FhdGToF6Wz@?_GP;&?>YG^Y{AzRu%f5R6 z2vu~M&ylJ$<%mOEId?KfGez92ZKtcVL4Zz7C zTVtQ%h(m%2LB8x>dH=0vY6Xz!v-->-e-$r1u}ry~f(e41v=N-N=Y;MiCU_rWlIjni zeU(1`^(X1~pZoz|m|stKa8KPvw8Gx*G=di9aWA@(=6C)io!$GlX>RJ0jWgCA*z7bG zbzn8DDmhPZInck@Wo>@nh=9o{lh~cfW3-0Ibh!^QF*cr1kiQI_Y1|;-^UkVr4(bIWfAfi}Z)(TPP1An`kxFy|It&%d^vUjO!H`rwZ@)3<-Tla>(_ zVyh(J8dcwv&e(4YEMMoem)k>dtmQ;8X*v0-;0p$l?qY?HhuGrhlVAKMeew?^yGyEGBZfmCO0_E9vD|UQBPj`vxYJR}cV#U=iDr3PBpdYe+yI-*WEF&1edkQCTA%jKE zMdRc$gr`o5u#?HMJZ0-3&Uzhb1Z3)cIzlY3N=I729GsD&>3Rt4BqS2dM#Fx=jNn9N z!Gzn7i4i*;&l!$vvALxwU*d}uI!I%G|3C+|*!=`}2K%tD&^Oa)BR3&4;(ow)Zd?Uq za~)fi;8|*e0U+yuF$e?!A$*Kw-`~bF6$3_C9oGOQ*>?68RgG~2vv|&#VbBMHJD8ti zzz23Xna2uf*saO}K=>@gU=Oda`%JD-YW1NS{CGC+32Cr;q7C~V6OgD*?nJk%1EUf% z1S#c7W`vOh4&k-Eg#Zu+<=wq|H{HH<$5!s)Ry|zJi7EZY)pizf-7<*w(v^z{23f-P zIGB9KL^Kt2s+>&%qC79P&r?IsQQd0;LU{dg(wnP$*mDC`A7P3H5y`_H>HWd;4zIXcR<88K(hM$#_Cqdz zkZ%d2DMzBZ5mNZOK)PleE+>Pi(o1Kjmp(NSbg^|y0O zAC)6bo0s=glZbC|Do2{HOTOOuIAVECBJ3#jIBt2zVGCs(SN)D+k9cF>Y5SUR5#GX7 zmb{pXPc&_L9IbHTVOes7Q#uKaXvd|oT}JkupsZZadCU{fI31-DSx(g1@~OT-WnmX> z8B0Vg1kws}31#@Ih(ewJD)DDbg9fbw^iC3JBuTVInIneksUft~K{CdsRcFiJmWRbu zep#keCQFX)WgYuezgD>3nG?QW0EiTUwC|VJzN$!exjm!lD#vN=NqgWl0OUz~{8Zn7 z2Q*44CCMatiHfx3R9Put8jZv(jKR;bzoV197L5@>hzsK zpEUMgw@Ig=%>DrGxZ$(wi04RGt#OJt#E;^M{GNBpK3tIf@Z;&|=4z*C0RzyQAh(0= zaiv*eWx!@~${W7SY)nuvk%yYw= z91wVKyNk&P26@9Ky;qLtAOBAKmfIajw5(1&A|` zfpJp1n6gY;U?2yGP}#y~TWa3bW{&pA1D*{1J97m|u{A4!ZWRs%k0G7%qP%z@Dwqnkr6&mdN>G{Pk`)uxLdx)r-#^lHHdvB#nKl~tX0h7ly%6kTm)_+gaqA| zX6rj?dFlsgc6!Ce7mEN0Rs3kc+6uuYMhbS9xUN2b z)wX!y7wnwm+(S?ae^aas#uSc8HZIxt(yeo63^iY|LV>0f31lI6kWAzJj*H8@dVe83 zem2hWZtP|2a~TGtk@)Z>KT?Owbe1fKe$FzO=-b`f0OdQ*fAmZR5-xZ;_?kn$OZv4waX zKpti0aqakzWv5YHjISdz%6BbZQ{+XQwJU*kWrx#!(0!)NFvMpK*K&wZNTjfp&r)28 zg)8*fmQ4tdc!X6l7!<;-VYYES^0|pC@$foc!j?=IFI`MmpSz6bK}5?ytlFQF?Rt=^ z)&!Q#KTI<%nb08I#zLtD5fX-L&9;1Dp4TrM4xK`M#MDS0W%H13Rnwu)%lcxqlPv_h zF!*BwsRe+5#;-jx(=cc1wwcuqI6(9Bj@!Zh#s2Gf>j%h|{+#twr0D>YJ@c4-$WsXF z=7BEo0qY3^yf4!hiT&shrXFQ%lxJg&1UrN&&m4>28@py<6vBuUYuv@3mY%!^VxMbUW(XHyPu|+e zG^&rWzwuDHbUlEDlSI+9aN!42IU_qxG6rcguwkjBopGsx`}9y28_Ea>5G8Y!z{S>b zAgfBEZbGvtlR5%NvN--}D2*`Ej6Z^1g>VQ)B)kh-q^FRVjPpr|ZCr%|`VuoQt>bGj-x~PAdy`_GmtSkh> z!cP!N&1O3?OxN+1Dp&j9@BSSR1lh$B{Nv*C0V{%BM0yDUB3L3lOD1>skO)FsqKL~}B9RLe zAW>@^w89qN~jg9ikDvXvfj?XbF&`ggio813(^o00;tUc70DGm#RL(5`3=f(2U^Z zr_GunEp#O6`c^v&m;mrhBdTbI%f>SR1bO@VJNIeI^&Z6z!e2fh-&X*smEVJ%Tnc^V z{kPMlADsq($W^1#+IFG2GO=)_837k;l)S^hc}=pt85FR#ime8&-%20-=0mIsaxMMg z<16Xj=kKJw^;gpT^ov+r!B^;M^~gr`1iKHb3o_-rAef9U6BV9Zj@J-z`cYTtb*7qr zP?we*Ly$IiQ=<`MPD`9ZfR`*Y`k5SIBstpwaKV&Jrcqs3Y;i0D&#hn<5UBU#KYyJ5 z?Z017FTTzdJTiZD0!8#19M>FVSb!ZSgdbo9moKqu%Powt99Lg@<$0{6bUvLucQ!3x zk_m%BTD^TI{oP;wb^7Ih`v1~{JNIldQqPJE8sVhzA_G4dkcYsJvuE);w~|({iU22* zxw-(&qb*jw9Qa|+E!@frzdZ&IsJ?2DAzui`>H_a1JhNWjNy^v@uxsSxvQv_chm|?j z@dupab6O^$iOVubO1LQvJd|7bO|aA8?4-amQ;w>ufW~C@%qegTe5W>+w0_%CP>w6+tkdfY_q_pORrBZ^t_@qwgDYQfbq`Kv^Z9^*pX?)c?RXoE7Sdp3 zN~}9cczwct4*6WCtr20gGCANx?&y=I_&~G z>03_b+X^7;ZG2Y6&&E+?8OYDb?1h(KPAhM{ndY#48dq%7I9n8+L?-yc`oKx(IDkwW zW7s6{n+4AtfcGRwWslug*uGEW$k(<#YoQ<6mM{p`oW;F%_AFKgK`@8~UT42O4HL^H zBNyqiI;=7Bb*{UK5$v!szcGArGAkrUN7!L1DmjPYJ#L;O)b=C)_+b5fu4 zT%dSZihPb8bCxrTczJ0wk61`is5K^uEfY;fTcm*7IeO2eQGOI^MnwK1!Yt7kS6E8M z&|R906HlcWmuqyp#6brAJx*kQ=yo|#ccp1?19d10v!6Qsp$O{Q8g+?Zey@}@CmN+i zZ0-d^@(OKk*Jzh;r|HRg0MGfgnNCj4spL}+jPrm-tTv52li)aTX1X#idAY!g$X1@p zg#a1BlnU3DN5fq&hBeqzZoINlY(-B2c!oSiJESkdT)s0w0IWb$ze|>1Twuznox^v5 zHp&Y3AVsk~b44i;M|jt=h#gWHsfX}{9gRlrj?V}t6=Dr00&0?~ZUxN-qMV-G`DiOF zcqf(64)6#C$?F-}m62-L)Z}ZvJfu}5x}B6Kbz!>!##X0$q5vGQEM+GtqwS;E;-w(kgD-%79v^WiN|8? z1*s@H#$*G>_H7!#Ux!iBMyBIA_Qz7Ne_4uEKCl4A8dm&RdpM0RD7o^-w5OTkZVQ7z z5N;=6zZG90L^jiyG9FNz%n4d7n{fqAJ~B%Xvn1px6G^U<5Qxbg^mk4uKSmG;Cns-X z!h&P@BEERz^5iR+U}VY(#u|@GY+-eVU9JFvJ?8B*YBR)rY+0)`Y(Pr?``4<-a6HTtp`>GfP)5OvI7EfA$9vvYZU&1kv()Z>Nht{I*SmpkbfP zL3PgyEkkvNR2e&A}!v=vfN)uu=TBUp@MiFhpqasxXW z%wao=5B>#K0Qq0m)9dfEEWcdss1zs|8>Z zYGGjkKdk(LZMV)?ddA9v%^?_!lgV+r1NxXhZaraJ&%nMt?(xBtlcIc{Vai|h3wUb7 zvw#DFD9g{hzq)iAPYpqW{1c_Y$&%q5=Q5xAvvoMYY#cQlNnAdIOw24RduR0iN;$G6 z%P(q(K)aBKBzE?k6-S<+31l|rvQKq76L9?Bfk}{A=mp}f$iB!-E=#?EW-4%+V&G4)m(Z^LbhXSfq#N$p zk_Vr$=2SON+qzCLlkDyitvk|WaoZ!BVY-MfHf2>vWCu|u!eIF>X7qwq9?wB`1a%4# zF=2kdwqhJb6hm2{vJA+2>C*zU0=Ct`J(hub{H@||p-0RkC}acA3Ec8!5i0;)zI-vg z@Y3^G6>iD=69W<0_9oMu<8A8K9Ip{v6Br*XSc-IfhR8pT0}T4GpWqY)TfLeioE56Y z+7t(ex>*+b*uQpAm#usEZ55D>J9n`K9s)oB_wm66m_D3HZ>xJ?z@?1oDP9W*Mq^(E zWOonSnC;D`?cF*1Z6V!3d3SHdaC^Y}3TI%30FwnfrfmSn$|_Ua7z4M`{Oop`pWDW` zxeIrA&{U~6>c=1|M9NtJ$nu*A0KqCswmOm-N}Esaa24)k?=L5(Ya+=og=3Aih&Aj) zTqj5LH0@FQ=dn}wC_ZOTMB~nStc%)Mf1-#jSVoWLCkSDMcQ!=o3z2k$=DA!u44$-+B>FxqxwbcOYAqX zyq}4{^E#`~Dqa?w-!obpg&j`iS#ha6O#StP>dBUtbL8d`VFq}{PkzTy3q9k;Hs+1F zLaa4ntxh5^@ zw0uGyI1KOaj}aDmy9L!h9@`byYhQMAjahz##*FJRDoQ8OxaPu!$W6fM6?_ zDQ*RW31V+!@fmY-3i@qkACoDt(*r=>Oc#Iftu(v5g30iw7XUJNUFJ@w>rpgK<(^2f zwgXxryE?+2h!I(du4zsTbBnTD*Y?tX{@>4}zy3c~(xbarDFOisZ02%=u0h*bv^wO1 zC7>6Xl}Se!f6U{jUc`L9&ASTknpGX}?Ll8L)}RPMnJ}`JgM|zyO#Ur&0cUiS7Y_B4 zj!fdo7w9ZI1j{rU1GtzEb_+?eA=-*WTU1*ZO4U#Jn@?;5lIxfgSwP zpIh_Xz*a8T`TOc-x^?SrdT{T7;knfoCw^af?Zx!Lci&0h`p!G)+xT6%as`5B)8@vb z^y$xkmHzOHU#E2hjBt{F0fBhu&SUi@O!hO-gWG;gvjKP@(KVse5on)WVJ2>-zv%Gi z8xIEIbB+atn1d-3)J1mHL786S8NVJ4?&yH|SLDQ#j3*|cjJ%c6d3+TS;_%}nHJF^m zX-pnr>}cqOF30If=hZ_d>o6Ek`0-yBX82CyJB!14&VC|`9egG?7_KdL1a&@vNu-YH z90XLD@v;~@d*&(6`%a|(>SFv};tuJv~5%weY3*M*CWAzBz zLIhkk!EH8YLvjVXy6Ek!f{E&*G{c-ma>&p8*gFRi%wPYF!Z{23^^Hx80c!}@ zyPY0loM2Gb#Y-2klF!+64yy~y*(yM&4f+VT`(m5$`e!@afifl9GYQ~a;e+@7X|D7^ z8m|1o>xlio*yV6jw zUndXvwT<4I?^%3ip2fX*7J>1zwlc^vo)Nf$7Y^^{F=OCEor)}Q+r<*3L|g!m&Bj4W zg!#Ix*Q*f!98)>Db*|v!d=h#78+&j5Bw3Q2hec&wU47p@*Us!>4=jiUXf%S7j7F1w zko23(_-D%W6U}HQi3BB(FhL*%;aDR;Ef%{w*qs^7^nG_%*RAh!_b%p4TDCFM^$?=eT(9(jSeB zMaE8#ku2jdiN)X=<*u5R2*=~dvEIy_>tN3#?ZX;D&Aa!3PyBdo-OH- zh}yaA=M4or%P3wo@KP}HLHq|Di z+6o(LgOfDOs!sdRbWih4OX`bk#ohkEV*4x@`XQO@(X{+fW`G^^b2cu^46njPWri9~ zTZ>2FGy!DsSe+tIECQOTRMOBQ^&zfJWZ|g3eZfqbwK-Q5l|x;N+YfCq8|TlOX@9~m zdQ;8TN-$HK%FOpf14=fUetbOJT#0@fl+$!fo|;3$KY1XwwX1rMlSC>uK!lC)#-b}( zeSug_h%qSVb5pPeQn{g6C^kc0Zne7g1#cFbENQ^%c3*4;ImhSMXV9>}>&!B@;jJ zg}s$p9PvlJ7>+v333hFC>uHK+=g{UN~U!4yx}fr8W+<3qN(nV??H0y09=x>B;h zI5s2tdcE$A(O;RpzKm|Z?CoLa4{Q?i0y};@ee92Xd9}&J1o()@zAWL(UY&w!Kdv8X zsg?j_-RYX2Tq;{P#6Z|J=-R9LsxA%#_(Pen?OOFdP?n^e&wdE8ynKLP@a~t(*Y<5e z@jQ}1);Ev@g75OfizyTGM>?pLG;7Nr5bPRbu)x^IVuC+10>2){v(B0PaR!MU`qi*4 zFmRO@U&Oz_E(tUXoGT9y><TyqW!!^k7kobq5F;;@kv!-+V( zG&ZxW1oFDM@Y18wbW>j>V3@2CX~R%5(O6EdZG#8R{LY-9^HOHA-sM|+S*^YY+lzbf0Que?`5Up+=FhaJ>BX(xpzSO@2DE-+(Jn#msryS@_$x8LXDsO>=D zN?jsOs;giFub@?5@&FP)Y}z%9I!oJ`!xB2EW|-8WHgP5ch~cTnuo!gY*;wS~sN=}C z0~JPKV2_kxSOPq!Al_sU5BnfM8!>a`E@!ds;%xw<(IMh>PE480=ePpnD#%wSDCV*u zfc{Rflf-U$h{U4%_wFNk;5n}OSJ=d0wOmHx$K|X3h&Jv9!h<`$m||BBirb$W9|X%a zVN+>d89zY8r=vlgZ|4C-^#r|>`bbCsZd{dVl|F*(Og2KYI$bp@S#NV-8Z62bJ`)5= zWt`GP@oI=^3^tdYVaZGUOh=!1AI5p&G3JGr*d2(8wcK6p3?A#Wj=EjjK<*+j^C^?+04T=j zL9BBMKYL)q5>?q=4_=$_fk_%nKf^@L9Xxiio5#-H8WKFtlvf#|i%x=*zsd|6OTN5QO+#mwek|L z&9aVUkkyr~vV!E0R4aIJAyic_Jdgd_4K3a{YKyw=svijAJ$3AjbWuP z^Lm=vhuK(^FI&A{(P!xqzQfHMC*sXgiLoVZ?Rs!^y zLac?#dAb);a0uwIF~oD*V|2a`Q9T_X2=uyo9b+*Rrk^+J2>^g{ik0CNcnNo30J9nq&Aj%e_=Uwddq`t@& zM+A?I)Z9L#X8%kiPFXLXH91c2^3QG0#tEOTczscsp@!4e;t@Da09ia%r^pkFfMzO{ zG^Bc8W+%jRTKjNo^ftLkPCS*OvlOi_Ge&h`X0=79*1*;ovGLL@9>iX6ldqGw>B+eC z(H!3lso$ehs6G(oPjx5jti*v|V+jAcx8a8vZ^@4#ugQ3==l1O$&$eT7SJXYBGfy;O z>`QhMo8P>gp&l3B74m`jhjf(&^lGnB!pQ3AQ@E^S}~7_V8uq9)B5+ zL*vOBulqL3g)w~{*6foO3n5$x)h}V~*I|rzePxBIzp3ho&PW#P>+Qrgj%bZCyEbKe z47w1=1a%dw2hx@`h?i-?%_=2BKIQth(ZTRgAK=Sz?D}zMf`yJ{B!b|};vIa!jD!ga z5@YAh9LSoeW$b7e%28e(m$l!#E>899x4OK(Me{6F@9*42E7^pyY%NaK_P;+QJThA*)KyS7$Ay=i_m=nwnBV%iT>jl3lr{X4yv~0T zc?+do*RV6Z4&AVLazmJ&F8*%1;GHnv_(%I(i4<@w_HA7aKLxnIAI?%(`hYs^s zeC_fc13vNEJBtOQZ+-GX`Qh(;*LDE;-QW9u>;STaogTKz=G{kSllM*7<$?E2+?9-r z!@Rbq$2~qHX85kSFzgok=o#Vmw*e}o)32Hkf<@|mEQa!tclOvj%y&LcI9{42?etOo z0grR8?dk!ogqmBZ@Spv9I_4c?5`e+wc*@a9AhEbcomJLw#&j&lCiM|3d1o8h1dT_c z`(V1FVd{)C{YD&LOoVX<*dP(@7>ktmvBkI(M+qId4x03E@mmT_1ThUc*X8oAyXi;G zY!J)DfjeJuSDAZOr*1y}=kk?{*!|;txp?`aJx+u&Of;yr%?J*ybGSrxD&3m*J%Kn(1@=gAY>{bLKs zNqa9}7@gKQ7WjCU36d|kTgUF+O4;1mD9^Spl}B5*%9E|@<=M{F@?z&w+1$N|gphNX z>UiTzha%Afb?%1eqajKpk`RNx5X$NV$sfzl%DI)t*!|;qSw(Wk1c@F@I+;wE?6F-| zkqp8l5hjLgtZtUGD^HQ!yjw1O@?N>{{cl?W2@!^I2P>w3*(TV$@pwu!F~8DcLTxWgt#jR@5?!c zks=ynDl2#cucW5$o9IVXtsrUOt9?{G-$=ZIoP#UcA|008n2dOf=s7No{OE0qendO{ zm{B{c(Rk{3c`mK@93hu^BxQcjld0Sz^(NDZ6P@**N7~ov!0cu2jNRLaCx3EfT3 zCmR8cr98f5Q9QLXW)`ofOE#C%bKKZ$Lv@X-x#LU@g;2g`rRPYcIu?56!fqDOY2Sx4A0-?kz1`H@sT^X- z6khVuXM(wpNt6E0Poy-j4}ETW$81T%P)1aiL;rf59CW(IsZNLM>1DF^)B15l;4}f` zIHGu};|(LA$zWDV_2S7?-zGvdFEy!1!pkA1@kA#@b(Ia(YCW%SXJqg+Ba)@LEz?Y7 zsHgP_A~8F9zcNlARn+Tr^<8F6HQ(|Kdx-5SW0lZ5BwCAK2j!!+T1|d5N|sQ)=k{&k za_N}9D|5REapOa%%E>|U@T&B{nw3lhy`DqXM_nBy5`9dE^e5*{v(uFTviFZF#cjN;IEvc~Ja$purmpc0e88^1Nhi#vYUuVAq_vybEyE`luK3)*&|e}gVY zV?YyH4vjJe^0FT!xjjVAZp}3_m)YrT*RXmZK-MB&rU^Hz9FrkUI@Il5?C`OP?~R{7 zE#(oCKOR58uLQT@mo4^43k4-fi;2$W)ZzR*)~4sCrcb=;U0icb-mlqlt4&Yy3$(#? zE6IkXP3;J>ft^3D+}JCZ@JN{R7qPf=7D*u3A%q9JT~$r1sU|%<0OP+Wa_nJ&7|)=` zg2HqBYWN|NKc3*%==@bFw~W7v?Z>ZSVd4BmJbNBOT>Q7>0G%OTC-z@P&7Ep5T2|CW zg&@YqL59q%oAwBc7r>G}LE_Fbe)Y{SpzGy8IUfk)T_BJ8VTW@b zx3fO`oo|)P|LA-80{a5=aK#(!>FRX$(Y4NgQ zfuW(cm8nhP%riXn)uEyw5X1uvo8u~gM894Pn&=#MHr;TcU9$WrrVbYN7NwJ&As$M% zr_!{L+Voj###@6A0i;KFm<00ufBL-qcmMKP`R?x=;BhSLhzEWRjBLH9PoI{5^S}Oa z`PcvI56j)J9@ygiIuf+ju}FUg*C`*}Vs-p-_&gSgZrr+7KKj=CmI%V#KrZ1?9=!JV z_jYXOv|Y^C+mD`>9n9DJTevr&4|plWLnr67;D5MZOLmF+>>9$kBH!mMEP`@Z5dIoI z5N`e8h{7OJP+Ki-S!9h-C(ejzlNObb!aM`Ss#@ z*k+=@Hg?W?f!$#4At{JSoJ=U10mRfl9Y?AXB_Ja!M(@F*7~ChndsFShZBvh6G7>Gn;$u7h@^Z0;fXWA8j(?Rw=@ z!6Un-kn!$?2_DPb$%DIpEImi^2Og=j{L+$5eBhh7?fl_MB1i&30>~L8fNU^f{aa2wSok#WjxNwb_K!p>5pjQu3h|G^fC2Dk&;R18XTezh=(+E zK@n!bLz!uZh=23h3UUsvXp8h-a=nb`i|9B`jQr^Bi+%)K8ZQ*ln8`G$n!(F+X}#wN znaqIrS{=P5Cg*Qt8 zK}@E)Fh!`=yf2jLG1)=qX`D7_FH_Z?R*o?OrwJg(7|c^ui$)+%0Fucx)^nSf>2{@P z)~s^|K5mRz5i*kWh^I0^Mr<|i7@pilukM6Dn%pvGmOgz@HvUjITbd-B-ZnA&^RD^1 zreHL`lHgE%ZMk(xlHB`~dFoHHP&J8{2y?3A8Wz*hWEFQAYHtt1?Fs8r3w1DBUtfsAzB-ziMN9>)zw?^0V7`{L2fhD`Ig0Uz#X3bCe&A zC9~O;tRWlZ*4Xp|+iCA_GvR}6zMw>u9rwW z%vjUp#`HOj`g91dw!*BrrOj1w226$P5ihh3Txm-a9ai!xt6^5?4PRus9NRu8;0tYh z`HVHfa`wVL9xt$GkA*pd9o<(}fQ49{HY5ry`S8Bt-NwWc5@@!{lSj|&m+8;3c(jQx z>R-LuvR|T8j*F9*uUsx4ef)m8a_zF)K+rYD-AzR*S(;(rx(1lo{9;%~Iwc|vOJL1^ zP-kI}q;II*T9Tioe?(+9iG2%)YXS%!o3r~Izu3oP9&8s4%qi`268L%oskZi(3=$eY z&Y%6lo~s~uSt5uQdH`LDd35OvwuDFW&ICJv*c?VZoO_`|7D&>m5Y2W80pt_UI|mi6xDz zZASCYZpzyt85hd9qKHGW(zycMV#TBmWR2>8002M$NklQoj2&T|F!D{tXL zo;bq<9b{`8-5PxJgDTA)KQ|~8N2`(UL@W44N8?B$BGr;G?)1S+>%$*DE`RVp+%Dh$ z{XHzmUM}Y^oQ0Zo%&pJMzyCk}wEW@!_Q$qM!wR-_I*-Mm8#k|(8%VOdcH>I9dhHSt z?=F@L*m>zJwvOk{OB?v5Fn0vuVlExB`=l-G81e$Ur{Vr->+VB)be`?zl>DvE9i@_k z0bM>WT&bNS^5djfoA*VyM`A*OCxjrlOq%6~bLg@!cBlyB!5`NW1BQOl1`FeJz@UG4 zSt5w7@N!Ws7RHE0osYAiGS}q_OrAP8APo;4);1x~DC<~MXgP)eals2(unogbM0d%R zD68nBcaV6EU-j99V{q5Fg)Ubd!C|3z&PV{Mx?QQiL(cq0jCQuR%A*HQ@Ys;2cr4yC zOXg%!$O@7;FJmmd|G~|20rNI@lCT(j4aMs~0 z@xA2dENlIpgWC#h6jkq_tp-X}4H*7Zq0UBNvxwPD_|am;hh4UNHN|g+}#J~ZyO1jk8qCf;ZZ-IfA%HH`{vF%=7@DXCT3$}0|_7(u~Xc& za_#z6JOAr=EDY`J@lj50!tF#O-|x_N#w7T3RX}$bd{u%0-+8WgH$4Gl=fMNaRd>q% zi>KI?g9&RZNc1?5T|Tas2b=Gg2d_TF&L7v1>~W!NBN1fpVBL~K_K_U2cfd!yaL12v z{}e`kLaDUEZkY!xI7`=EgY0v_I`XL8lJjQ$y&k^(A6%hGsIywuJ>tzYc@*`qzog^RSm)Z+DGHa}ezMvYy{GMeo0eNe3NksI%7osQV zuU!>)u;#Ph{kZ$0z0J==x>&LCH zw>vflbWVirF+E?nsWO6~c_GX7Iwjl3&2Te=&=^h5Y2pm$a7QhM4UhWI&?a2xyF_v! z5g;o+>Uiq)spF}fkCnzGfU3vXd6FL@*mAzk2PqBP@ze)`x?`~f5b4XpPHPlz%ZD7A zMkA(|lXD>-S81T@Ltvrr8?sTUF~{{kmaPe zFUK&V&BG2c)ilVO6x)|k(jys`Lt5=qhIE)|z4{P=bU4r^)X*;>GdZ*=Q`xqr?Mx$1 zbeC~G)7qvfvN2uG!_MPL(-1Qrf5$2W7Nen9I#<%G5rjKttV2rZj@pqLJXGzyvRVF6Uq)o-ky--C%d+zviEc;$VWJx|nEae6A~UoM#)ElkK$BuDxX^;dK3{eB z;4lG%=V*do0eb=nerXu$4~S6J(WVrfAVCQrPaZCn|M0KZ%3u7^MtOqWllGWA zhmSc;H|8f#cR0o&$(H+j#^ff9)?Dt(#OD2ZtQzv^=E* zjYCmG(n{jUi2foEVVT>nR(nmhARF;lGiEYXPL$3A!5sJX3v`1L^D;g>t&?2kUqC34BI=?CAX_MxWD&>OiU{ zl8mXUG*whWVXeA8o!z1K@DA7tr!PUCTd3a|EG3!ND-kB>2IU*{RTc-CjsQ3X@8DUY zJU-i(ZKr^hvW2Adhqzz6iv*C{U)?Pa?jfmS8wsV ztgfwkk|=Z%OB*^5e1hU@9qL4tSH&5YM2hMj5weL5kjGp*?X)u z#rj@k-XUtgwrqap^GJ6Up!7XGS@++i?XjM{4SzIt#v(n%3s4^ZlIyW*t6##g-SdPw zYAKz^rLVU?HvaNCA$}1|uh-h)wB`iq9n&ZIv3^Q^I;b8U>2)1WQ{382(loc)EUdgi zIW;fJ3S`4b(-(3gKvsTeJk`D=6Mc0)RvL#=uGe{zA0pUte)geZJD&P5tpp*dcl*X| ze>*lC&6X65`91VEhuZx@{4&w4Ng>LRkAcymogk;x6ORDyx!W*0acidrP9snwkY}l* z)~O`R3~$WxkmelZ?IFIGAGR|#*Qf2)?sWb%y6gvq^WNZ+8|oi^AP#v$A2Eg22^La- zre+v(dFniDf|XsLmIvPFM%PRKl1qT*tg`a#l*D3$Ua!vDkj}-5eI!@By8WQM{MA>s1Bm^S{g5v{ z+V#T^@x?rvLP4+&buO&fmgaoK3l}f&G8z|LQ0JF)a$N?KU5#Bq;@+V%DQ*Z#USy)B zyOTV$DP07bzDxkEYZ4}(SwHNcN>?F8&FRXc@7*{Y)7vD~-7JT?|Bv~?=Z(!5OXdC@ zBz`=a*e}`n=mLBL=L?HGF;WWInFlZ)UI*K|mk3#QXTReu7`spFtAHIs6)tkA%5;;{d-Dhb1nM!QcK=a4zO`vxn=A z+lRkIvd7aW&&qQoBW$A1T|c(4g*+FIR*>{@21x^aj{GHjImut5^H=KYpwYd0{mDI* z1K*p^xt2p%uc-_esaF};sU}oOcGtu(Hpe4lqPXNzbg=E<;mUKrd+4W)aG)AUvox$A8U-GX(HFx{q!45G21b(LZg4g>#=JL(k_sb@C zP_@7ya7kyNyef z9LCcXJihJHC47eC#W6*BA4B0YmC%&YInH>5ZPaQsLP2E%{Xf3!FM^7e5^dH)Hmr)gjzkcVrIgYg24`$3mv^z7Hoob%~ijNg&s@9 zq&|*wylgyUPVnT*Hik*J9lns1yNkqKCh9)Jy&E6b_u$?`>;m!-yTACk=U8U4$5|wn z@xJW>=9Y_il;5rQZ&`vFcM-BjIMF}#Nxnwca#!U0{QI6zWP0!>z3dZdTQ4v_J;828 zkIK_89$>c`By+#|R(Y`XF?ImCT3+%IFFTjY79R7mi(NmM{K4VD&`1@1%6}SCEnhsA zF+Z+Nu;a(_3zRRhyT~S9ugb~68W^y<}*w$*_VcSi9iO+58yc7%^3Hq;UGo}F@D zAJ`3K8FTXlkAYjkXa6#H`nrfm#9-H+34SD_D_|-)u=jM9f1>yJMcTSf!e_r2zb=Dy zkq(?BCdWZR&NSMdMW5%FWaeSsCa>?)0=6|?2-O&3J=4YOX{66M?DH}4c>mGU61!Fv z(cBZ!DhL(w$LJaJb*{(VFZ$rUP`me;{8_vnd(!R0d_8IVucJSYkvyi3qHCUx0WSt+ zrqPb<_VmMe*+=OhZA?$b9;H4twrU@m6=HPmkD}YKQWG7RvX>MJnn-o*+jTIQpBjpC zijV8?mc8?>-Y+%_8AnZy#e0L0>_@gM8p_<4fmm)p)^r1}>2slZFmz-r<=qu&OwQ1o zo{${od}#J zfV`bJpIRA>fF^{#%-~r((HmADcAD7Qyb4a6l|o=zzI}>_r?S~-m`r1R4C|O`JI{I5 zpP`)kFs^TiZIf&3U!{fqrf>Mcm%SGzyVv+bn`14>iO1Ux9j)e+hV40$$mMZiT&F_L z(!PR{GhkOsQE6ibJPC$t;&tTgc+{)b5#H;P#&oJ99S@H3i^$D8Sitxd7BKK7wm-&z zD@Egn^+_Fry!twhK7>kl_$?n+ZMcxKj|K1pKJo=$s@nmUJg=Ij2yNWf-i=_|84RW{ zRR|Vdr!&$s&%w&`O1pJz47o9-4iNI3F0RngE1ri?)sMwyVY;Tdpvpx5sf#b3hFxq( z!NiZRK3^_RQIh7i@a`2}0Ipo^X;T%dirF-=B&2V;C9iH~`p8W`;eznbYKl>-<{8m6 zj}fm!k*hHfLw!;^m0}$r5rkhnU%RzeuD`#Jgbi#>jW4PBg|#peW2|Xon+t|7UX@4q z1?l~}_pxyF(iV{n568J6c?Q24K8rgXuFIrsn}q9`S`j=h z^yV?Eahwx9hL&1u2`7Y$La(rcnkRr@Ua{Z;lfu{}oUC~)hng7cB|5^ss6S(RvcIOA zgCHN#w(|vlmgo~+OeEXK;pM%RwYqQR|%SvGIxmDZn zCCgZy{!zc_4V`HExg`@c7V&P?7KLcWxbqg?JyIMme0j509L0e|Qa#cR9416x$qe10 zOyi)6nI6|oi2B52P9|_NnUkOAEJ@=c|5fZFbBjBFAQ4~%kN@IlyX*{ILJLaUm~*bj zBRr5m`0Q5|#VBiP8&FtLLMED4c%RXaq>p0r5vLEYn0==q zGln;FAruT9sG_-I{RLbmdH(o1;H1h$U?zR={Ge?KoNRNcH3d% z&qE}BeEG$l^5vIzY)3cS8Hm>!#tf5r`B<3C*ahah-~Toe(LTXF;<`Q7jpt5t0OtgD zgZ}mRPw@n=ip~9M^$3FE6;0~{lGK=Q{Hcuc0Egs$xtf0rG$+sSFMAdZLm z1_$^VvATAE`{R9k9L)P4@0aTzUHV8SeDMByA>ttlhYb z9YM}p^7az5b^C!orkEFqjvk+R!W>p=k|wTR*S+GylzfxO9J=?>J(Aip;6_$Nb5BH*oOnH5{9lK%ebOPM@qw0U z?1Sj6_dL?x_91`14!$hfca0H^nMLI?PC7{I^@yiShnW5nk&Lj!=$OY7M&(hkl9^Xd zoktmfP`zfO$2#}(^o{b=>Cio8GYJVQQpU=DokIdFndCaI8*kNfQg4)n=Cze2IQ2!l zLF7i87aPTDVa4iItX2XHy|ScnQEhelac%nW4lku*19;V~x| z)7O|nIszQ~->{rp+ho`1SzpsZzA!4q?c1We{xpXhgOlL2Z8*a@vCfb~o&2!$DKm8A zTcZjUDQKFcolKnTvX3n(37YE_F%%67BJ$+!QE-XoW2;GcnnF%KH)9Cub&Jw7s~nT= zv5v`c>d%EFh#BD6>l7C9QnNdM(&D9`+aYb(a=(VO<7#Ey@;K4LIgW`v{F3bzo?rh8 zUtsP&e_6lu9FCu%Umhcj#j!xrj7$#2oIxHG*dhdAZet@ric~YpnZeYF7efjmF@}@9^1Y1`-p` z^q4BINro+RL%t*#kZhq4dS7AZkH-&|?2#`|9xh{RbN8N)6`&*4Tk4HiNFz;Tb8LsJ zth$>vkX)kiT&l{N?hr6Ry>*s|t3t#uRv_Sy1SfkO1#$0Pm*z%qrFVg=;@V@IC-^8B z{y>bsNW6F%JAqu=x7|QikpyA~3aQ`?HWv#wU%o0&A3v|Z9OX_R#H`>;MkackN8$&6 zjeh>Z27Zx_I-g68#UwMx>n6D;8v_yn3e6Na`7;n|4gF1(hqh=!iMJ@7a*|=amm|%N z?7L`-l-AD>R^K~0E(~zE?IHn$iEcFkq{Dd=K+~C+7W=S4GOE=SI_GduNaUd40urwg zE-vvGhS2L1EYz;i0ZQgKPPh-13C^JUyac|OQ9B79L2V2+};&w?AtsU!?!1<#vl-Qxf56W=4pi@QT`mo0quT2R<#hDf}aIDmyr`}HgMgb-&?YdDl$sC287g2V9S z`HSo5c326g;vk=Mvg7=E^3OCOIDfLvUxxG1BMcsCUf;*0vVVZzq3^92Z|(eMx%l3r z@>{>ZSN@y-{yZK7!^gSc*ZaWXio_*H`DPyhK$`}*XvzNJRh2W*kGSs7?7xf5-#ZnNF~A zn4`nGw|#7&#R^`q6!m}vKz!;ZP6zK5#3S8V!DoY2BRWlfZ6T5H`O_EW$>XQ?C=ezD zkhgK>Ou2?f3EjMPy_{tNr}dH6LYLVK>!I7nn>CD4MMBI9cg%g2E~7cx`|WxeI)|%2 zjc&Ej<(+e^;^t?`@$NG@I+~9pHa{DJNQ<#V`f>>Exx;q#b4Zro$uX}-6Fgq!(Zi=mmVSyP zAikcJXHTD*7$4!saqyk*eXD%y;}4O*ux5$(RO~x>!4~HlT%RoZxY>L`AIuR}#tt&8 zlZK`Hd_)TA&mZlVyI+)Y8;@|j{pFc*@8PBLWc&THxqkysi{hN=hnWaFETU>m(-c6? z0NmYUWogqM_p**%KbZKjX1jiDV~*t`U(h8!Gb(A39V(RWOp_xv4ygbKPrtp8EyI$Z zZ>wv3?BYQ=e+h{oSND(%a!@YebuJza!^czd{v08F^+8lIy1rT+tK=1-_?? zpG#tilZ<#{H1UqB>}|+j`IPO9(J~+PJf<{eGL3N2S?_tIrNhTOVZ-||yI%rM{3J4{ z=7{E=WsvBkWqihb9qPOrnEHHfGhlTwV<^)fsd~8((KIPZPq1{^<*7Y7L}~8#~gQiYD`%NIxC$+d8~HG@n$E_AWhlrB&S7&*HJH@ z@h!&QnL2eDsB!7VK+fPUGhk%js# zgry@94WHT->ODl<>@ zVJVw=o@*1J^r+0TLz;Z9eX13B6$-PBtciYCjG`j>=FCuJ&>H$emMHqjZS5u~pBu$% zl3`17J!T%KVP{MCnB2`-amtt~KT0Hb5!+SEjLLE7n4x+=?(8rC=ofeY;4|#Euzm3> zY-7HMoeAudodD86Ex&xcX2ofsx^Kvo##iQxhs7oC__2o_KMKnF%=#q5FFox@w5)1a z??7F1h>eyym(QQ%2-y(D^N)Sb_#&iVVJ_`x{`oLY`ei0n*Kqt}B;utqySs zGaEAUCF^&2%E_aU3mGmlGAxhoPs(lV{PFAww$9(im#Ma{1xAQTXNZBUnt3q(mQ4a7 z36l98J=>bAdIjpY)1}B;lHs@!N6(4om!LdMx7CE0ZL4ZAQI|JSdkcLic%B%C)wP1{ zsQ1eIpX`+Lcq|MLT9Kq@Snu18ACDhC!44o?Fu<1Fxc+#oWBXxl7k~BI6+H5Vk0Zc# z#7HF2@YK+hJ`>7sWQf_i*Jv3#quzhPt!uESQ+yUrbYjNjNFO^ScNCebhe2ZB*>44^ zGQDC8JE-m;$;}=CvyHijhs8~Sa}wY4m~pCO+)NHIxkH{kza4(~uZr=jLOfHP+e=Td zEj(YO*YT=FCu#}brCnaxBVh2$#54Fc`MFO%ENggPx#{7B%0q+1TgURQxyIGICz;k8 zY5kG+J>vM=>h_FNZU%)pe(Uo!`c57PWfRFCPq5wo-~V*E{HK3=ru^NXuVXGn0th$t zL8#=rqE-_?d|e$2jljf<^P?qzU~!9!VEkb!6F`hlp5c6_4?Zr2bRKqX;S_qp#}2mZ z-vMpM7wHbLP`8iIV3ZTkkRkyd5<@I0#OpTkDI2!Ddi<}9KQ!*-#hJ)c)I4FMN ziAIvez%U^Q3TsA3=}8{=10ez9HG*mrB=#G-B(8(g%*amEF5PhjIbO}>4u5re^L zi{hxe9BdH-`h;?z`~2oUR!`LzmGq%M$fK|1;lE^k&Kcq>&9F_z22#~Qnc$f%=|CAa znjQig-RhuNA5m`MF+$ItJx5aKGkl&uwnw{h_m2zM_2V)=&#zs(jB6c_eqr(rb=QM+ z>cxMns=~IfTC1NXLJSV+u+n@D26)2DObaRdYU1`rx<22S?!-f%zvfWT`Va7?gEAp! z(rhLJ#vQf=vvLk=fXj_ezp-kE(E^`pHTEn4)5a^t9zJia&7@2wXU2H+fJq63smBY{ z7Cv|`XnO|2L>TAZSk42IsSZpCd9$5g<<<8Uef^Df^?{ zV`i#^v%1bt${(MH-~k-doH)y$qhM$0IE;Rj_*-mvLU~>_&b(=HTf#l}G9KZyiiGP` z?8az`*DFYtvTK!RB1VG-1xY$YQ@bw>8v=3dS4i@u(oQQW0t&Q(tagIv+)T|xk|9=d znU-~kPueU@#=lNoHnM)vdVLFEG?wxh5>4vn@N^C9b4YE8=5irS2;?5+UXU$bPtUf# z4t0E5S2z3``3Z)%*$I282PYHio(49D!K&D;s;4%)nVLb|fJXexW($FXj-PG1!yXWA@XG3sB% z%3>-T*oa}p>JppsPYj?I>U-dY)s(Du@+MVVzns{&NeypPAEbMVmwZk}LbZQcBnuiJ z!R+9&>EwL3FL~MS1g+`*A)?9WF&t@{M;FmMOUEhw^&^0L(1eq5c#l)1SCx;&KqKy&YmtCqN^NQ$Su`%`Q*8-T~X4bvP!8^%j|cZ3{jDO z0<(=Oh>Bx4O;^b_KR0Kx$Vh$Yqgsk{Yd6vCbEC4BzTg=$QcD^WX{ve{rtxz(N8_EW9i!E$pzK373*&rgHqa_WOMXVS` zrX))xr11-I{F1$JvB7rx!0sQ~0R+C}FRCPJ`UZ_zUUZf(pk#X{`u83 zJ;t+QT5j!DYaUUZ(>pGjW-1L_-7v`oN>Zw|S&J6Gt>l3sYTm|s!;8b~5mYu&aFJ|l za|sC`%jNEulk)O8ZVn}+Z$kl=bX8nIjba$QNn9Msiq5uZL>pbqB&7MyXAm)10vvei z@hWOo2}ZyrYgUFV35GM_Q91{qA{G8iL#!#_i)VZh{r)a?1KBTU@T_wFO3@QPs0R_o zx6xZjdU}Bc!^c=KdUzj;hPVdTu|UL~KKM(~3)p^`JAtfVk-#n;UN^ix!WA0sU9QfM zAtv#vSHSFwhD%1&Q%zOLJ~6M$%ldO&`g%JVGqY~}jLzmjB>^r(@-%7(kUb@U5YwOE zskkLVs-^+!mc&D>m;_=w1Yp5wd40taK={kTB_@FI@h$1F>zaOdzH6*=?wsI@=k@ol zmvbL~fCP|>&<8yym;gfe=vVb2+R5!&6-M(@Wt?zDr>zTHwJLrkyu}Jn4KJA&&zH(w z{ObDCpG?YM{)aQ=)Bn6y_V8G()ph3^h^Ib$vjua?g1|Y&*57^2((0A~0=g%EM9DT5 z-zH0YklDprCmtEZ9YR23(ub{rG0_9_&twUS9!l~c4`XY|c+BpL#1AHa0Bes9;m#Pq z*b5U1hq&U(QZLOl&Wmv)KKmBeMt;nTk%LY?q)4(uHq>T3Y(Wp+`wk#Xjzdx++6R^h z!laOiC4iv!W&PZwT)wefKKlNC`JF%5D<6Cp@x-;byN6%+u1;`0A*f8AVZuTz40CbV z6L1jF?$8)FayVxRAc)N#c7d=Y5G3?%-+OHLRMcZ9u+!5wdERSZ+0fBK(FO;2^RKZ` zU_}#ZIerl3=_hf6%72LF4(53?<1U!HCq0HWZnD4pJMeXtTu2>1-2&Hs{~4 zZ=x>FcO24-ss+Q08OPpeOnwFxTAkLd@cMb8|M4kLIqIZJd#UY&c3#;gM)ashTe5~> zgPlOJiv;FZuU=W=$205%vWpT_^`M9o@01|dgk;l2}uC^P7W&-Mk zVdy3>QD<3kK#A;Ob6uiQ3F*4u9wvauZj}9pF-@AY)Z&V+2<=e5*}C?Z5wl_YaH_W2F=<=V=__`rQ(76Xn?IQvNrRml!<@t+?t?R$DO9+3tCyk)P=qPkugxn}^Bxqt?gti#DdK_r1etEafpI znxNwKbntauw)>(+lekJ@BqMq*6*cupZDB-byXOh>bt-w^+3tZjigFK{r^3wQH{@@2 zP3L?pit~7jM2+&jUg@O#qP#4#h~12ljW^Me_06k~jx{;}<8?g7wO_B@6a`^s+Q^;g zIyP?(kiIM~8p~0?K_BAXpr$U9uK?%OCUwd`^)E9`IK4Hn5#>)WB052N>O8FPV_4B< z%hnELM^jx@#iik;TO+*M=sP48EcrKl9Mq)o;iRTJw-q+O=g%D0dl~2RUH-XWvvG!v zQP5DW)-;~hPAUSppVsL*DHEr9Pa`lZ0-CW@5~q4!N{8rbQ^IL&C{JUi^)~t0ym@*g zKZbE$^+$7Bz0@F6X@RZ%mR^>u0!KMi^>$3(cl@l9mjAHGY6?lV3dLV_%lb(}zpg%6h46Z}}g+^4=A4#vldu z>WK?PxXqTjM_VMz3l71Mw(Czrg*Y9vt|!x@cnR!IMejibsF%kwfT20^-A(F^=5w08?!5#=qdfoGUMzxV|bK>o{0`Op7xy?p+YRZ9R_!Cb*3PB|*}zwYS4p<_eHcKN_i z!ZczumhoZ|$TE@`RwjF86$^9AOWXKm_A9h^(8f+5cyXtXrGss#_XH58OxS?{<*{S) zVbD0{w7_N{j4`8G8PiMDc~OZ+y=dB->4quiMdxtgRz6_$7JxG8Fj=+%hGacVHYkJ7 zu$T}?!)=Y(SY5+oIL_hM_aE++@BL`6y!SD}m*;ATiS2^!m-$}H-YwS?9%lYmf7?_l|#rC%I zhxtr;e)&j%!Z^s|q1ehFl87apC$}E_ytV`kqE?ukO}&-f^*M>{AIj&-MWn|TRTFg>t;!dRyMvx#%xOuVNR%6 zv?GF5P`pl^pN1f|1duRLrD-EK*bbYCQEhfc(2Joknxq(BLK)J@H!y{8uJNi#9H`r) zQxIb%9C6I~7>s)-6N90FL8<}{Jer>J5wv{hek0Rn)v4EXVlLqQ-6oQPp5bq+J$!bb zJ9n;}=OQxZ8`~MmKDQ5W|M#%`{HLE;jLW@ob=~fQ{C6>!JcKdi- z&aFN~^2bX{`j{|j5Q&C<5NrXDHVU0rDjYdvuV)dRd09Hs2{Inu_}CXd66V@1CSvcG z_dY@*2zCRZ3wuavH&^%utj$Ti(YM^@_@eJ9rtjt7vM)3@iF3tkjXu58gRzl6{5*Nv zhm8|lg@}diAcO^yW!yKc;@*4x`sK2MWDxG^x5Pi1afNEGt!^rSa$W5Tm{ZBuO2hz$ zT%d2yQS;4Z^+8peJyxJI?WmEEj-$$*6#fW(85y_jTsb99i`$)85dfua&sp zX}q3Gx;I%whp@D?2>x|El8uwn|2jS$r%XQvH8!)29wT1H&ce*YO8zie>6lgO+{`;y z;z@^O*zS44)G|9Lr-PaGRD4&-;$ltDA)z?tD3@`XJ_73$FC`fDz3!^FXH*$fszN8` zK1_)PL3;BPDq2=Os6$rzgq6J71H9c8(mn6DutSVmicQ1~uM z`6Y_04O=2cA8IpIs)??j336Kfnnd6<0px3PB7XDS$g`E|eaWbZrU>=z_QBTvNSnqq zJv~otm9n##?WQ-&g-=qcIaV`c{^lt#(;v0iW;n$;EyWvHXrZF4B zsBF@$Cf;;8h8d$xOFCt7tio<`Y@joJe<~(3K+GS8ZG6r0DbpACFH6m?XMNd8N@O1T zhHs>~XtDErv+QCadYivoee|sC;|py2B2_m7vyC0jp-IGtU%(&W*&zqp_*F5Umu*QP zyC^|#zY2AAdDzc1(02`Is&{wT+g?*Bn9|eZQd?LkmhNU#Ovlf^j)c`!gL5H8Ho$Nr zt2QmwL6>l5X8MMgWY_Kl1v5jIX!i`(1vy z?Ap~!Xg1}f@+C{CMr%MpW8bbBN0Mifcw@H*SmS{~KzF!IV|d6Q9dL2%dQ<~C=rwI{ z(Su~x`Em$rsB^(chm*XO&V@zfZzQ)Z$iw(&w$(FR=R-7(5uA4> zfbf@u_G>~sOPmYOdE~iHjt#sZLvg9FF@{AX?oM##*0r+n(R*bL2}AZP#IH#LNS(vH zBk%luaH+l{Z!GT%r~e6(=sx|)O8LcKua>|4^R@ETrz@Cakr#wtCiAel3pg7(XmAR! z$G3pM`UFE|Wrc}k+|>gwmVB-3S-FBNf)ylstSmG6!(Yot0O4a^R&2KqCV+6)5AN{c z3+DW6u$?$C$P_CZb6|7&GoC{SxQdlrl=d0V&akbLb<-iD^$=XzcAP#}OonngL{KSu zEuA5a)TTN)oH>`V7`VE2fW^RFB!KMNVj$<>J?s|3U*K~w$F4&r+#v~M8P_PUQ+u=$ z7iw)c5S{>EWVQuotHS_yw6GHgTM-mKPHzjp`rrKgtFrUtxqBLz>ULL|JD>G^R|jc+ zmfl2HL>%k$3e6i`x`@ZiFevTw$8_Kvk?sO~_XB-3w{!wQrL67nK{?()pfn6h|2%VJ z)n~)G-FnibKb2;kiU2jMv^n@}1_J}gKjXnOqd?mEu!d=~c9jd9`5#!+bq?Kp$WCG4 zO6V4zU9p2Dc)PoN+y-~u@#s6-m;@NqR7Bkfd<$D%650HBAq&IMPgm4v5Q)eqwb^DR z^AuTM$dxTEwpLW%pP5<8fZ$`J|kWIaxDJBsw8V7B&u1vHN06@`&-q zMPVg?fUiW5I?gPHp^sYSBKkloJrv1}j=TeqG>ibIN%VsY#(c!f7XF^%cvxeC8F%$y zKk&EE4(1B({_*9PcgoLx@+o$Yd0DPr$1Wkau9nMJF5!OgLfOE50_AMpffMvq<8Ioj zQ+R*QnCI4Eb%;WKiT8n{~@3RK%Tp~g6>UclG1_gMIdy0}(j|P~%DM zMVwTBb?s25r>VV&zHc0+4{G1GfW1Mlk8-l!z|6v;>fZta8Z&u(^fa{>P&W@UI)}~^ z053;Yy~?yh#D8trcK`YY-sU9P6<|j9T6aVMJNw3tj!tz- zI#4RORan7M*|6Cbsfzy)Iczm)`PcZpzKlJszuO4l9=wi-ck9Wi_1~ZfXr@xhuB)z6 z;W(_#2`4b|jcaX7g_Y8yGBZW%%P~x*u`ZcLul6+uR{w;7Oo&NZf0CB{)-vRV01diKr4w2b^{oK_oZ&8?$jYKUbJ>c(iaQqPYy_=Y3o$g?Uw zFr{jMcl06ei}-(tika-gb@K~KK8}UkmTx_Hf(46sc0Io#WWRJXFw@2ih6e^ri~xLL z!e6lMZ!zfudSMSghx4HGOBDuxo*e~uhAAfpXd!GUl1+u_FxkqF3gs#-JLkkvRtV5E z#RucX1SF->O|a$H5^9ZAtLj4b;&tmh9sGiR3r_*M_YaeD2ahe-+T=o4XtXjc#uxdr zMV9*szBjBG8%K^CbO+KQ6bh%WOGwS>thpvx`og|gJ1RBsi4H#Hcoh??U&4l9y$0-D zRpYYc+RcQ$iH=1tRF{^YV?psgwxHfBSFfGH4j&u%Rp%PMgvKL4BB1L>m14?^>g0Dm(S}ru9S@rZ`mVYR`4rfKE}dSBs~&4&a#cm!?mhUN0B*P>o`K) z*6C9_qv!E5?oI3JulmoOIe0D~-Crs{{qb`7yC1KXPyYtn@qdN{5Nun|L^1O1bhCt` zTt7FOucKqZ0XV!?S9i-Q5(|+bgiO9RmI43+#7KEDgc@746J4~a zd95;pgx;vSR&UW351n(yz5~s2Kk~F2W9Kg6C{A#wq#oS^}cmJ*eG7>h(4K# zq(FUil1D)uZ(gxK)7xf=(j z?{IwZu`hS-+$*=gyj#BdhdW3Bd4b*E*2>xQ=PVhRNgy|EN094vHxMdkvarrqSgVE3 zE5rBX$$I(e&u*5Ve|o*#yMLiPe|E-_Ley){TvN_RXRMESqyNk3{2CtbvOalUHkO~3 zGbmS=w=iXD*N@QH-`ItI>KKht^}1C;)1i3b!bDYI@uoc(Tt>nqAOCXs8WKS8IGFc7 z!RG)T55vz_Cb*9s7FQ~V0*#?D+;P+BP41KQTk-=KKIe-1j!MQgPUbsJ#&{Rqx09nY zgt5UL{kXFe?!Q-&1j0m+)yo&K!`~Tr$NQ$hsyvF%8hBZ@r>T7uz26wDuHAM%ylZN+ zCCnn7&T@<3Pa5+&zK4v)jK+uBba{++NLTFM?GVg7wj!$@^=-q->aVk zuw$e*+Zw>EF&iuSYNK{)M2mg-)aZU6GxW9TbDXOS`&HE2@>!vFcGj2cRk&6(F7r95 z%+tzSi@<3D$Xg5bsi77D%~Z3>h8#}+q)Vn@>K|qCZBA`BNRpeDZ#uLQ#u3ypi&dpI=DfeAJt9=i5*M$ToH$;Gca#yuHbH8_!ZGhtzIx)S%6N3CW?3>*?TLS>1SvUmz~w*PZL-(&h8z zEVcsY;-mda*mQ;W&}Tc33_7C@H%vIztO_EEnAyD8mWDu46;G67_*{0fhMdHCgu&9xIGfapxy zIw%&Wl)%A~3wqqeVr6BwtgU#$$J)}S)z?>EVPQ@?e(bp13KtmB8+O_hyLSFvZwvd@ zQ7%w$e!`g27zN!DH-cvT7?w`=*pc49cmbInl-$|L@Tl`JdXy%|1d!kvpKmx|w$jDc zT%xuCQzKQ4#h%I@3DzbJ|E|BcTmI2M-6`MtE)oU6@CCs5jFO@(3>ixTVFC!QQ|=UE zzw+fHVt5T>p>_#0E&|yiHLqJ_>2Q&E8}rK6?faGhviEWekNUx5ci8DX5b5Ai4*5tK zb}SuDZ7_mB5x)2t#>bJc=5wzUfJ3@9ou^$qNLHf9go6hJOV)@a8LpygL5bPI)&KxN z07*naRGS0N_0Ur2hT%E~1dZcjaDwQO4_22qwmRx#liFNQ&`ob-BY|fJSvI)XLc_+e z5u2>>Neg|^wghFJca^|+0toO%qc5zJjyOU84w9L7xKkd8>;tc@WyS#|W0wz0NKt}H zWe7x{T({fc^+OsDmEN+Zd{ilx`A2-x+lz;ck_18&W_X48p=-|j4O(SXbp4D!5EvL) z71MV4Fp*#yz^;NY#4*E3iQ~#&mdJrR$CDBvZCsJYpoR{Mul%Ymf{7Wqlcswn9(fDPXDh z>~ua7Ywo$pG7Hq_nUOdzw|#uptgK?^kB$9u`T9QQemnx~TYKfqS$K^x#W?hrWxLLy zX*5W(@D@sR)DkXW>g$vMV)5rS`I~&;UYuja9_xtv`PGZ(up{3kO9Zh;$}xHLb;pn7 zV!pO8_cXPCW0(n(4Wp?*X*%qS44>GM|$%>?!SJBXF7kal%~X9Uu;^^(`dAx?IvY8* zwx!NW=~0=PqV=UPqN|hvR@+908eKpNO%o##r)8Mf2Qrt|$h%Sm@FO*RyW z7^?&O2Rldr*~FL7_~qpJ$Jmm32hVrEibRm>u?T=)P*NrZv)Uq~Q)^JZ;n3#+>!t(P z5%>%urKXR(s4>ljDi4RTbozu7FVjU6=1oiKo~QRv3}Vg2mpwdsXYct7-vI02NF9hxq~}?;MdlxNB~(~<|AIX z)5ktAz%B3D%N_{>8g~lejw7~SZ;PhG-sbb;3wdumyC`K<8St^Kdn=j*HJr z=iB%-I@)_!;6$B=VXPAMz&KtP40t^jZC%3@=MgH04H_WNFW8u`6BcaF`dkDgk~@I> z=$~!dA|Szh{0zP-Gdkt$#X|K+ z9*Mvgz|8Wk`c01JXi+HAlz7T3hlW{@mL02({Q}9bNrb!VRo8`$hI*8(v#sm=Jc#cT7zq?T9 z<6oZPF;VyK-7o)u9fKYq3I8STNp`R+*(x6Uat6trOawWH9YHSRe&H$-KbaJA@zVLS zj&a5#|DDR6j+T%#`0&w2`MaOpD8KyG)pGmJW$XlU&gMIhCH(1~rXu+qjuXqoj}1%s zc!s2p7iATXds)S26L*^;%tz9gGAcae$N{2?+&)B<>_g!I@RDOc__?@o&Ub;j@&10f z@c|wUbAxp31c#lV24h2tU$a{axPCOqsXs@H*V{sCp2qzF?+Yf}-OrM{@o1PU7s~1- zB>98JtKSa{MxD#o@zE~c*Ae_pkkQ4O11wtKe_?vQ=)z}y&lBcdmD#sLe8`iV#!#kp z;{Lgeq1s_YCwv~SQ#aLABy$f$n*x6W2<;B!8_=0wvo3I4<#Bct_cbOZuQqjz(PrsB z3U-!`Md`D~n(mP2UBiposJJe;vusy9DmjLk&iX9*CZkCDJ)Oz>AG4u~y=)lMY0aQD zMS(}5`LI!}mVKEL3xZ;qr%BN|bu*enU)!kS{OTgp`g$4SoaSBW?qw@)b_{64&4r%i ztwh-fAI=Y5-vAyDI%^)U;ipB`@~0;dTeZzs;DRt6D>nXrCzsGUKg zsT8koryJM!W~aZAbxFyo9MdPB$}x;+Du>vCZOwz4`6Xhd%V{zcG=J8)uA%;ciW)yn zyx_`~J_OaKpo~>OCKMZ<|-ORHL2y)&O>x-OufzLI{dgWL*xF1Gh@~03Xf=N z&+Uce4|VfUKy&1^YUBF3Ajus%w(-pRE&Kv)=h@4$%bhx~(8$iKuTv(aPW?*&iwl2M zzs=+i=)$ig?U(C@ae={oTav9`xMsaGZ8<3WC}U?oWkBXl2Z_D&c48G3cffxO*~KXowm4OSRb*$_aH>p(1m>26jseGCr}M}m zsQ3hTTKJh1>xR6|-J!`aQwmxb@a6gP`ahI&7hjb3-@k@uyx+tk(F$UV#3&weNGjAO zPc+tXh?V0pz76r;Y#N zNF^M~9Q-2(W6kqk2fe`!sPkd*kMVP0t1egy<(I`s+E~M5T(}d69fQR|C%ImIc^ow2 zu!y#X#h{J%u6Y6o79E$dSY%@|jn$BN?LuRn3fg!-TwRts9R2nX#~7L;Ib9P#ZcoaO z|8%AN-CwSiFMhsS9%E-Ep3Y_40mMh(@&pMU6YTD>{0a+h*xh4g6D3};^9OeX;cg&Y zT(-4T3=ftQJbHc^<718!M|v#S{Dj@(=NBdeO91(=x5~%( z6*%VrCV;qTy;?)VNMWYJp6U=@!pb6(uO=JoW##-COUB~kow&fuB#_a9+lb_xI{+`Gw|ITG)cA%L+tCVV`4-w4(?@i9OXIJ02$^Ujiktb=V_gmJfL{)W?T z9)i>{a_D?`z|2p@r#f9_y^?z*@us<9h-0gY2Pof9G`aaT)1$s5J()ijvXd>oI&!(`PF;&*q0T2HsQfp zkf4U47PU+lm8N4RPhbHkBU+L_tU6Z&OvXezfiMZ=^0oc)5k3Px`p!NQY$8E$u9Cw% zIOYGwN5Cc*%yGEDm;}Om`}G@_%JK#u^SElCi8V&AJJxvdo*pwIpxET#iq?zF!-zK~ zD_*bfU9`vio8d?P;L{k&v`)-E&q1r7t-%+a&3U|l&ny(h+yl{O3jLZhFf;s`_u$vh z{XC{#C;F0?tlEsk7;RRBj)I+~V^R97aTb5sm>ONj{WZL(4a1EDW0vi#H;ZNZJlQ6r zNFx5Kc7Gf@R!p~`{*K;TRz=wxp5LaU*$+$*q&H8cq7AjpYBd{<@b-Lty$mItCfixw zdjh`1y3R<30I@2xDiS64BWSglgUMp3SGBO&?02AO4#sWm#5nepda@BXO#nIB_?~JX zjew>ll>{wPAL4w{fgI;46r5OW%8Gew_+cphDzmOJ8u>gj&nfMF$gB3kpDG*vxGI;C zB&TTAvtCW2uCpOT=Zs6LPw@i-O-)~`eu>faswPdEw>}h4g%6ZJDn6 zVf=Ai`v8KEtrPaaq^8b~_*sTpMQ2@D)<=)2SoWwz`_aqIYcHl#2_UcTKC~^%xnQw} zU!U0*?l^eP9jV&;TP=&Cyt7etOiXcjqx*$ zH)!f%_E9vNXooZ>ZWe05>6%21lNXIv(Hb4qhq%MUa z$7Z@y+WWL=R|Od^l)c1S)$Pw$%6%+Y?rsAte5y_xhcG%|P`-tI^~sz5PIiKX{(MI1 z2i?URfcg^NN07(RzVB{kJhFhh1?4cS7gWxMJsnu=`m(t zfT)f7_Y^3KyO`pMuD19p#b;X>(o`2t05Qk$ru&E-2l7N`oxI#8?QI|Rnn{Lh=z=zeN$?|8 zbAPQKVxVrWhHL7P08)4SK$|;%FxiAJuE%qJVgK#C(FOA_oMcbo9C`b=Fu6cz zJ7ti@HFdrqQAWAd;$L&Fiv7iq+>ZZ=XWjOeB>=Gg(5GU2DuLkHz_2rnGy z0TseaIKl)*-hy0vZ@>H=5SjE zaEG6zSp45ZGA(xi*?WN`0noTLJWqI#go9?-tIqMVN z_`lYD9C6_Jm~y@Wa6f7Pd{AN>#(=E}9ia%yESa07y)b_o&GD8%5;CSYa5k{%9@<{G zJ|&=Rz1p(H`nz~^$E(dv!<|Jk-;EpBu~2^jyE9-n7>o&%m2a(cM)%I*J>p>J+b%q? z>4)J1S__<+2!mrPW2$0m8E10v#-6nEp5S3$*IYXB3?4%fjA|#^)eae?St;9W z2aW0po_VOF1mwDO4Ta-WIkxKb{x_Z&>@6MRk@V1v$l&Pn+hEz z&8meAl~E7uONGaq(3!DC`9(fv?m?y-46EGi3%xL~|%T;;Jg035OL zM*7eJJFo1Fb?k`7JGftK9vsH}$j34J!xQvI{geEx&akU7!LYmBq0b)6c%?Gnsb0CpSRQx8h~DG-w&XINwA}7x7HuD&9`};tao(8Ao#W?!OiuDF$sfbe z!6DtwEXZbO$fBat<1IwsGy&u-1o_lN9|6r)D#d4ej3z!y=jWSM%`2kic~3OS%`Thn zX07+7ahe{dH9Kf)GSjTxwX;@!6!K^^ueHe=(`4vrG!ubPlX42D)R3=E1a`D=Y}O)I zvquyaM*e16Q!P}ZOxNaN=J9$>Lu?L(&VQy+df@v|yegM035t7V&aKQ)I9KK<%*FNB z1d!Vg%B!#L*)LZ2@r9x-H0BO2V15bTBJN?gkG(DYw3f*q+(ks+EJA+lODfT()VINv z2b95dv!PyQH$|J$mkC)Q(^b#5MH{(Bx(GX z|9|%0{6~@`I}@|ah`j2)tGcSs>h5Vy&q;EJ;9?~$1OiJPD?kDP3Htj42oUs(0IjqX z2`;r9lHxI(;T*j)Jw1I?*VT33nU%M`?>+m>o?CcCM%K|))16)wVP@}r@36zoJ>6cI zx9^{?3lBM$v9#58zHFMF%+1#8IhYB=7MrockmF7u4)gvo|M-Oi%T$)Kh}uaF*0>-=oX6cVjfAeo2}t(6fyVx>ie_$72M8!N3K`S#0S(hn--CcsR^+#uh1~Ao6xD*@9`P9DfOq z1!o3*ESxx!=CRl~hwb18*lOC&jd6}Nx_48I=X5#$V#Ri&>^Wg~s&;gDC+yR>sJ60& zbYA;#aM6he1M2?iujbQ-KOUxQpKhn+TbpTs*F!DMKeX-j7qRGOzp|cTkPlwxVnG}j zD_nDD9>aioZHEsAdO$DNm=y$KyMUmK^#=}5Zi}yMVTuz|0U)+s zjbS!62!yhz+7{wG4a-v|e|YY=yw9)J)}ZlF-eg0$Oe9$euL8OzxFBRL(|k3=SmYU_ zGOuBqsORz1o9VlMxRzdj2d_~=d+rnf!t>OWunpq?YTQtjr!%#2W@!xoVFNQr#Og|{4_>HpIkRK#RGaFs?47ketM21B_XVrPtesoDzT%Sy zEK>_y)}SN?e2#ApO4CC;2X=Y24CvrnPzd`w;0g_7GYZ2S2yR}(V*MlZ>8+c$ZIOO; z6^r9=`T*wiQ>RbhRUHSh0|;IN!+xfybTV(1bib^aDVERv(q}h`@6s5KE@M)1;2V}~ z!ci_FEbu_8@n%fXjgF+C=#jYa02}$ilyA*BY&gl{-TKHjLBpZ`S#e(WztD*GK6ja4&ML^!eR-0$Z5*<$%KfG5NduW&gsipCGxF!D>c@W0 zb+NW#V^4ALSqPu4@cw@8_#xb*3`)8Y-vEE0U!k4cOBsRXz8qwPFG_{rt zv8|qIhfvnMT=5i19lIcdXny zlri)YI{X!Osc&4x>WWXA#$KdFY|QTl8|9|WOF!|`_%lxLZpNaja{n#!~619y*K`%CS(7fMiiwqZ5P18RHy7g+* zLlgOqkr%b|TRJ$o5oEi{?B%|U7QlV*(m08UX;eVlNRYQFPzgl!`9{% z(K#6ti_1n4S4OGxU8879o!aF^n(|%zs6W8T0nK|VlZB6ytDczCgy?#m}Ea2Lhz4FC& z{XpJ=Kl0PGtS3J7l1kB3?xfVO>VyHOn+>rzd?U1@qb*ETr$&fR_=0_Ma-YHu4aflI*tB9_L+Z(7yE3B#$TMJaWSJ7gGq^8=^B-28Uhe=wy(N4C>3EJX4FG#75U zR#lyMg|bdr%j3&b2E9hB34m$)fd$+Ry>N14p49Nir2eGs5me!F91&wElk<16f?DSde{4swD zJAmLl;kGDB0KrtOgJt_LaR)dzb77Samglhmv~YwEm%p3`WRwSiwj$*rUizuz9vIgIr307ubto7uu9tu{(w0P1i=Xe zxAO;ev$iA;AIoPN@)Z~O#7L&WlWtxxB@YQt1EU))w>t<%L$UJ<^DJXZ^hLSm=ph-x z13*$bab^QMfUKoA5CFn1+$jLWn~nWk8n3aKi?M?A6=e&Gz`Yf>9@#*U83SVpb2@hn z!8l@o08@+L!T8MM*tO=iU?Em4H&wPA5@&Q&kZWWK3Bwd0fi3m2NWR!b8pn}%UbaO& z4KAcsCreouG%V|bbe1&M(ReOvHZ3@WV;dhD#D9LVnp$ilrTB-2^Yh6Yf^$B{B^#9g z*gzH#0wU*i3j#4f#^k|f^A|Ds0KPy$zx?DtHX3zN5A|_yQ`U;qO_tw%&{YO|+`?{o zd{xJNzN!O#yM>czh@D>;_;L2!8Kj30n1y=tA7o6Y=`n5emP$)qt(@)o^$e73+8i;o z%ZksEAXW#Itr?Y;f@geeWuhhc%0=ob{cZ)7iSar(xc*h7I=B<8sgCG-rB!c1ljCAD zjkK!F5w$U*gypS$i)_h&mz4yP)Vl9NkeVsL7EI3Q{$j*1r5cQxa&=XY1T!|c)4}ju z;hfEJyo$MEnL!}8?xfpzHRqi>cM;6-C@t+nb}D`J(OU>0IcoD8hd$dV_HTB@JflD4@pUhQ8NP1p5qA7|fLFdeK#JEE z;*~F)3-TGD+936sI6aVamNxPkUAk6vm;JtOExf2wf+hfjKmkLNU?j)9!Lu<2xwF3W zOWWzd;jQ$_>l^8{x3|)vqyAd8(oRu9u%m1l7tqy0&0gb!I)ol#FgH#K3<{oRbDCpX~EvtiFM7LDt#XiSWL08y8$PZ1Y zrd4xn2iYyuskre&wg8V9*`XHM>S|QU^$Fj_c6pNMwlk>kzwO65@3;OE?zGxGtu!rV zOa_fM5&5ldX>93i1Lw&$E$kg%UJL96fP8svy=SS+P?`{w#-YZ*P?Mz&37I05yoL)km zCq(zM?W*MJBuq6bRHcmOo)xBQ_GYMhi_ajDs%8_N)Yx==n8>e|l&iKxdAd~ks)wWc zgmF#@0J(BAtz7)V7DeeZKdSGj4pH0=gFUt$KgI`(91Q%B0>N^sQ!hTGYH2EWL`SNV z2_y85)M#Pn3XR^6lp7Q`)@w5BE$3jzJum1%sa%jA>kSrSw}`146do8-AYMrcDnR6^ zM2bakXHX49jGgS5Wt52R=G6Gy;!P^uiA0(iwg*(}K7x*-0L zk6uejmC^0w$Xt>keqL2Pt#Is+5{I8`v2P^fQrV^x%}MivIx>w2en>aH_H9s5TwYkG z8dzVI1YxeBalv*U-a&rmb^P-1RRn;b%mvt>w#c}4F9sKlpmStf8BmKqQs$NH>XuUR zinZx8edn&E#S3ngMG|3@_F+Vm9$}w4$3z4A;1Aog0O1EQoQv+jarTbm#kgX=~x2=V5CLl!$4l^3)-ImKT;n%u^o^=IH|r1nVFeM^1VQPKw_hEErt$qmLE<@&{{J@Y}%oHe(B)90&p>TuiQb z4pwu*t7(=nzEUoBX zMz_!`lWzVX6EQsJSVw+1A9Ktz805zFn+Q0%ja}px@cNfC=@72@!#TWW0^@NoMBp|y z7y9(G+4Rc~7t@uirx7snI$j&I&+WjF>P^RsZTf)%hvop4To~L>OLOw^K^nJfbc-Wb{l_dkgCl_#Pn?PDdYMeb8c)Ocb~i$Sm6K^tp}n z<~KI*dNA$+!a!|r7meX+Wx5>glscf$=gTBbl%)>JY3xkG@5GZoPpZ#?A0TYL=!D+M z=mh?=uHOVxQ?V={8_3=4?lF~OHaHuf39f&(Ig)JY7ggHpRYK_R23jqzpn1R(#zNadjTLXW3PNAeJV2qYNxzXRXCPo zp8U4VNhj0v*Lhas^cFv^9O*INZ!??N!Jmq>c z%(r#z=LyBfLOPU_)mrwP%EEivPkla^Mr&w`;ECtO%!;HRy_Y^O)}XVTTr2l&e2@0+v;q8l`@btUn$)V+M3S)ONoEo@mfb%2Lzr zzzow(toaTMn#B%(+^xI`v(=o}`j>4uy8F#V$VL3}@XQ;V_~qed!Y=XlpudZ%C0giH zr}`Q%7m7b>QFk*dfTCPo(=J{$HFYkISNS1f@kCcy{FwG(`e;$+iSs^K>b!<>2>`+3 zEQ8kUx~PFlL&Q8qJE`HNqg;25fQ5Oy6MXLI;WWTI!e{Ytcm@kP)=3gjW!Z1`@r77h zO~(UeK1`nDs|K*x_^bjzijUcLx6H<Po{PT7^OXzp{KX}I7HtP{3;@_nD_DSESw_GQ12b?CFPp9lyLgx$ zoTH2L2-I4_xw?SeIru6EJiy0i4S^lEZr({ZZ`?_bq0a+7JlKOlAe$S|0sULR%|ibi z7W9{JlAkz=t^1E0NNe{7>C>OCrmG)qq`TL*(((f?^f6c?FQi#NdmC#`w%`!X&-f6> zG6Tu5;ee$I2${n!BmO!V1%Gh3^H@wD;rSQ@ z;;)PWo$|mE&kv`aqEqYVBxgMlr@W@JlYanmK8ucDv;n)rfhT0Et_k2EgtTxHt;KcrZhFfSHYmexF!4yI@1C` z(6I~zvmG~Zj@x!F(J@wn#{^%y=d8o)x#)uSUCvRI^0{i-Esv`SQ?wCz7QjKXM&n>4 zF9&#VU?P}C0U&Tb@A@%7)&^}ZdmspPG600~9@K{ZQN6OerL)aE+K^+20~9#^v(7}( zQp)hcfiYxiFjzeRgnTj`&wwrR&6a1#bXlgRp5xyX7g@Mq2j_-0>~44O_PzA!Cl}Hc z?3VX=u;&w&qiXW-5Z7EpzGhw^UI^~fa};Nq&+hdesxn2>Qn_JUatLikaKKj-`ZLfCo?UW(jcMMHTxo`^U#doH zkTMxneXU|O*Hutu9HFw8s`phs4RULPPcBI#5L{& zu6aB^{S+>WbH?nOU${P`^)x?=-9?7j^<#L?f4oI7sCmD@tm7}PzKL2(vkD^Io#kvN+ zROZU}Goz`R7dBpNMawA7b(%8GO2k)fV{-0Sk?)mtOtmE^a-BMwTWn-@d1|kS=-hXJ zp}x@gC~aMYst?=AO0>AW^2^l%djTLXSATp3z0o8WtJcy~R!VHl z*Na%3T6CeQlUi4%t79CmrAOO+Jg7ZDN%GF(L!)s=<<#6bY^6`aPU1;JKc>^{fX3?(A2!D$_E{@uPihG6 zibU}p@=q-IZ1keyGuVb;8!I8p*!^Sqvn%#1RW3Y~@zZCC4F=a4@WBNQrrTKj;=_*k zz;v1iJQ3e#%4iz51t3ChKP!r+w2xO5jAV#*HInZ_>bcSKarR`AFmBn2ar|^O=2EM! z10vG_ve9Ap6skm)%Y#$(qmMk_bL*G}^AUsl!QI((>61aaa|5q_0YJWcy`lugKt<;j zjGF_!!DYJG6%UI4w`X7eW$xIQv}jH-zj*>?1)aH*VDNI%sB%sI?e1AV6R1Z#ZyTy| zO8M2MwVC@?(O&kpsWPHAPFRr(r1J|~w)+Qn0KqHW{UJRb)Mu0Kpew20*+I3T{4I{x zOpzJE77j8+K_*TBYuxEPRhg14O=a>Tt`AGvw8td9)9UEpxS)syy-ftIZD0}4b^zhH z(%=Nx9}Kq*)zMN4weJdPe8#|7c)_oE=Z+x&1UrB*Zx4bg)hM%egkLt!=pXq=huA@6 z4nYNT2ms-0V7QZjjoU_kydzx>=XEIM>nBbg z#a8+I%o6qSbu23g^0{>Bi*)JpE7;ix{SA{03Zbm&&UprPus$cxoJi;2el49ji|zKY zOUwTKI8oCaf=C{ufB66Y**-V1HNWrvvFYs&1nu!{S@Y0w0Kp%J5#)0MzxaIpwUg=1 zx6b1AKL^sKkG9g)&$iR8YqNO87I#>}A|0EH9_J>rgo}5Wfbtr;r&wrbKnDXoxC6)# zJAMp@2nt~yGz$)4U5y#5Xk!72WbO4NZ7f8dn}%C76gHn zT03vJ0|)~{urr7Ug&{D6xOh;X8bfq%zFhKxpUWg=W{Y9jKt4t+pUaeCm)JdE@i8l4 zfCmR9eCDfbJeUJ{`e|jp$^vwLgv)u-IFPyfioNzqPO?tOn?1U$I>Mw?6=jl~jtt8j zXqjd_%8_7L4+xt}NIID()~1fZcUXxD7JBC5iF`|=*4Ei+-?j&cIsz`?J| zqaSuS)BM~jemW~&C!?&?l=IQy_=f&!!pk6JOU~->i(tl5yw$RsuCt@9LeXp za%|Y4asalhsCN|ZbyHi?_vlklTkdTlE#^%Q#>UALYrY6D2^%mbXIPFql)&5I&Qb`n z=eahAV6oXD0uqs5UEQ!(#9Y3zkv{t5eERI-x6<U{_vG(4_<<|4J+Hb*{BRfHV zUi3j1*gkaWrSK=50Ok))6uUoW&?f?mhqzarLonAoUKhsK!IeWNhfX>%L}$6>3GBE!OTjN0E;z{-FMou;*6K#*im2nangn#1dWQkg5)?NHGJf^lBkteB|x_m#j%Zv4>^2oveQukuaWg|{DDs2=4WyY2oHI2&TkLsx! znT!3}XQ7MUD}5O)uonRGWwi3w+Q!JVi`HmqDl27!#eAGRd@8Dw33z1|>dJVti>B16 zRewv5w)=QlYqqJ0P+CoTtUrDFoK`tCS9LnAOt6CJ>7dG?&D1`+090M(VYgUHuBfO3 zT?-8b5;7H6bAdf3I|)09Cw2Xp(&U06Ro`eqtFUnO(FJHkPHjqXzp0|8Kl4OF{i-_D z>Gf&{kmU;q0J(6*UgLtN+7mC(_Fx+es9V^ccx!ppe(`L5&zp!~dYT6@5#OnT3Tk|n zEfp~vv!ZB9#Z$SXV5C5_jsG$5dTxvY^ePTv^ax#JYQ$J1jH=6AGMqV0J4z*eXjNh< z!r0=m#B*N$@nI+z!|vanO_x7I0LU$WAT_{hW>;HoQ(Cb9u0wj<2Vqbm#y{nM&r7gjDkB1H&^VWyZOgkP&rv&1O@?Yb(-g}MIdzbydNQwT1TE4wTS4-g zE5Wj($eGbfbpc7aPh0p^;c#vX3z3`Y#M#Ys;9$bG-u^57DqdxzO~%y%9YiUVO!mvA zyVR_)CH5-L@|maeG>*lV)|Rt1OD6Fmt}icH@}m7d>_i&t!n!j6gp2=}zcy^q9}B|W zL2MmnK_C+qR%Y$LO6$+T0sNoEE)zopZt&gUgMCYBW)X|M^nt73`LLY&#{6?W7lH;1 z06C1;z(B_$0!e1EQ-vvR9f62ckY(e&#h4`8B=eb3-o|@&NwQ`ii@kiU$}Ie%-~5oz zT`|_U;{n>23zROy3I&~6KdZ#W(s}HFvdA4#@Nk@ZHgRoP#p3ER7F{1bTuu+LXwI$h zEm*@|v*NpMD2QVP*C6t^5c}TyZ`-RFsAr3TB3OvMclTcU#m_!WKl{nA(%rlF?Odk~ z27vg^9Ucs_jMo9N;;+ATE`9g=-%M|R z*RKxKgF6Vc!|oKEXYI%x#dfh@Zz}-A*Ui!1#C8KfZ08RP`oIn-77*frA>1Xzbg<=7 zC#v>u55_>#lT? z4D-6jGJg!hv12ULX)^jUzVk$)4jmzDB(G=YiV5QE>=w59-%RiS?piwcCLH;)0zlx3 zjYXUn9su$X_e*FbJK$jUk$uj{pjrS3>G;oarG}&ggD(Wf z@jWGxB+hUA+`soQUAcTUUH^i?ANMdfEt|{|7W2-%dM3T|jkhpQ90ZMlAHhG`u!H)b z5J$b9Wq(L?R>puX0`Zy8)K$1H=_8v*Zbsy?GUk*m86t7CWs}MNIbsARRb=RnsP(~l zCYtNwd46~0E4?=t{nJ>9v@F!J)CN6J^MHJeXp`=?a#om=+DBcwN>&%BiFFcBsoBZ^ zOt0e)DH(&|jzAvN!Fd_8CY-}*hQP)x>_)Ske)I86x^Vg3bo17?aP1w~?oi``Kg=ft zc+AeMr-j)E>EPTAy!Pcm8d~s&&r93eI1lr|_Kj^USIH*5A|>IeP4xlncAdw*>F*!* zO~vG_B|%js_Yx~xxp6Ss;?%$s^293}=^NkONM~Nd&Rq+f-?EPqmSa--0#c4iy1{#3 zx%C3vC?**oPd}dOp1f##x(wTe?eo(3V}qPdv3>ZJokNzvo&(QNSOr%@B&(U0=ar!9NCq{Z_PAMR@P$qQdFG}%nO!ZYV&NYPO zir&l~|s!K5He|Oh9MR^k`Ulk+073(~!lVHI{ zQDGUNavkd5bP{r;_^sTyviwlf)H3yUb$4}eyi`ZkCoN{L{N=X5UI56K+umPeYxU&s zUOGfqswV0$J9U)j6H%peg6h)5Qz|=5MN=wXTNb^_)CsWiY@##KEYH7Ut4Pkay4&*T z^+%JqCSOx22TAy7K5}Y)_n1(9Qxn^!>h+u! zDIDmu;_U`G++Pn2=6uD!h7oNUG#m8L-l;P zjm3<*^9P=w@nJlBIhfZlrsI7Nh{P99W#Y?`^+~N3u%exU9hWKfs9FlNLqb7i07h>* z#8jISUmk;Jm5#A*!Hcnw=>VjUMx{?!>65a0Th#FnY>sWKDpQH)RBc?y*`&YP#kWI# zyfTCB&9N|fc{V+`=Z|%{ro+Q;{9s!r5DchUWlLqpQz-Wq7%flw>iCovN>~5YGHw?o z5=XhpkF3tspp+wS~HAvqh>I5ItsF(fk;z5yIzs*lptBg$;f=+#@sQWOfMIE z@!s*nN4L_^6PxJ}QU-wx5EQ~AyOw3fC-SS{YemKj?ZhcM9H=H~&r8vXn#7YiVI;-kJra6Ai!Yp)G>(W01!iIgh&y~{9w0= zgx7UpB|o}Ny$qo6oi%cB1y)8Z-~w&KAO{PW;Jgpnxw)aeB4r5Hp3)5Xs&r_VmUoIXeT5P=~21Jo8+vC!(fS73(^?m~rY(EH#1M*5@w>OV{8-+A2v zOXxp?P;TD1oqqV2|Cs*cU;LfD!ex%zZsTBI&<}p7lX|$=_V&APq~H6&chWb%^-khW zAV-fK19}btAa~QB{pkYMUDvDOQGT#-e+H zp`xnGc$qI7mP*#)ZXYzsD%G57{eds~FmgZ#kDP>z)7x*uWxLjv2(X!-$0FYuEb@J4 z9k1Vl5eonz7l#z*q7$FpHv^^^aJK$nIc?%KFk9F$jq{InMzCq)y984BP8zc~*SI?n zKQsJ<;9Rz|HEeX%CNiH&eBKKNNsq;4Cgi8266X~Pk!@R`r`8S^x*zO+mUEL zb{aZ<;)n&FojrFNI}d<79O?i7KmbWZK~ydJ+-fHhmE&-QmQo*U?hVS+>t~RRlV9+V zfO6RNu3$)ZzTpCty=X_E89K`{Z$1>5fb>my)6n_iY0ty`r*#laXQhmayHKk&+IOu% zF$waOV=tDyG~IV&R9?Dpzh9FS>wcrfG-iyg`xn}jTpIuq+dz2fmW*`seDQ0a&(#cO z8_eSsVh?B2Pk*+Qe(}K(1b>`Kj~}1LHP(X{blOU%Z1B`$;K#nfExhjKL0TBDq`4XV z%{Rl>;HgVtkG`9evCnhAXQf1Ch>r)#WD0%vF)Rwpen^HTcD1@Yvr9s}+JZ#M7l1Nj z89g$>W+!+Jr2Rw3w$iI_ZD4o4ZQPr0rG2qhgmCi`d{UOM6OJ!RIS|3E8GS!%g<3+S7RQNTg0(EZ^>3y^+ z(aotglWN(Oc)3gU%I1FRo-NWzi{)u*)Td_}x#xxPI#7GtbI;4-1if-Wg9*@(H9t*)xyr$ehqunXWIgM0U*z|J@>RtYynLG z}9(T`!i>r?jirOOtrQE0s+zcWi2+(@d`?3|al8I!JreCz|Ra zp2~4z9l3zVIk~M~_Op^}PGXf(bM!}i=2aijx=12;^i!Ru@7-fc6U(?%^`u(Rr4_ZI z#9BS>N%m(Nx2CFJk5gkwGAa)vP`pSBc|4fk!Xn)=7VVaI3IIXHxsc&Ie_*?OEPlzN zSy3UYFGG0@oiIJP61I4jWumAapBJMAJRzgb>j>pGDauQxC>l98ihLfyrgv113W~|1 zEo6!aAN25`FZ|@i7LuBSzEI4O-U{+h?H5Jbwrnxt^9Q#)R+ne6s4cEtEwWEo;nr=PG;6X4Nk_iu&uJZE5m~_#ALW6++{FOZy zarf=tOa~7$2*f{gSj07d1UDt)zo?!E>s5}DFPXyHG1DWWF{7~}9ip>5iP!QaCmEHc zH{$zv5w}|`+umd_Ag!IT7`TPi>@Du#fB+C%b+$q4{ov@GzwMXmole+U#^G34#4r49 z_Ydv>!q>oH@zBQzI)nY8KB4dUSQX%-ojY8VL;wk212e=fAOi%F@U;;>2D7}W@Vu#l zVeZ&5MDze(TM&;8vN2<@z4K_Lj%u$?k6@2_#k6tvqu1Z|u=ecTp5k0Jnt z3!yVJ1Mt?;uRr`0J8gVuzm(^W8hlN{CS<5%oge6<9tM=m!)N|#o`Dws`G5Hb>5VsD zhg*ZRw*Dx6`kT+w2S5KP{rsoDN+0~}*Xiz^2Nrn3I_S{cw2D6DFQk9)FTb1qB?tAyar~7p~qc4ytB<0cg5z(P5=npGK_gUXVb4`xRKKmy-jD7PfZE2VxOmcj(L z`Cr;X!B}L_>?U4E#5rdZfwpnpDOSz*TuJ!O z01yU?@qFj2qGlKn!p`Sl@xfa}Et6?=ECHuO4OcMaxgL@%7zdep4flHzirKG|$>To@ z{_xZTKkCjNoxl(HIm=yrEHDHE5h;By{?jk&%Kq3j9mW*cWv?6J_^~mE6dlSBJJ!Y( z9b=v&0x5lC%EPbJq;nvmzoFdC5a%B-C<&J9GhJDpWZJUb7m&Yu`(FC&lMCtE)f?#{ z0(q$G7=FEd2D=U&#j9U9k1?>!gX?J1T9#_4sD6w9VLNCYwvF!)mU(2)EYB~$))3?T z!azneuQLge>-mbwynu0AYLl)kJtdS~z{5SyK4(g)&4_O<6ij7#2u5O6%*vQnSDiIS zTIEj81vLaxll;V0VX|xwSNAPFtPv8m^B%@*W>YLjtJFunuu(~emoYj;h_ma$kULu~ zq`&{sne?+?ypkS0K*R#BQ8s^4F^-&+3}5XsoblJb92#Cvi^E44$2>3GGe7^cEQIr= z!wIIaJ1R|ozF8}~AnN7~I;m9{t7p~}^%@;t6T6t8e1xn>-G;5yZhK2UDu8p=UhtW( zf#Lo5$yc`0*|#>+@zXr_c@4B0m^5>_sjPpas$lj@%SM0N0HZI>i9JKRZ-G2;W^ird z^?d&LQ48W89>CuLxF@z-^VYhF*h&F|Ixi8CD-9xY_o@gphQmfYMtBH7%FOw+%7ls5i1ZdE zw;P#WMbCgJU#RM3@Tc6=gaH$>R^w^LS0AQru1R{u(^R~R)2cP|)aBSO>Mxy-IzMHk z4=dho(x_(|IklIt@=s+;GpNOKnz+M2z^JvvQonu-+6F{2^E;`FG@8vE9B@y^w!tx?SeSNgZSKe*ZQY%+E zGOWqDa<#G{4~X= zv#C&bfOVAdmzfLzdGt8~Kt3O{0|@JeHsLQmtyx-=9V@j^9-xtw zWkjo}%InawK{tsZhF!L!YHewJ!NbR3;($MHmudWhfYpj?z0+Z>G|8+!m7 zo*jxt;;+FO0J4by5C*f^ufMZg9aF&NM%Or?F4<*Dg!;_&O9{=8=Z)KGV(Vv6xUkDt zzwm>dJQ5anZJaV_fpcwM38&5B+#oGr0eGG}0N|wLuk!Ij--IRP^bjlWcQGHYpgy*f z1s9s_gB?6rPyG6Q74_V}e0>5tg}ncrcd_HfX$z*H9UjYAl>YUvK21OQ(FfQe<1WT1 zYlByUKzCV;g+J6oeJ4&HOYgk*W_t7dtLe4Z&tQj)qd?DLv1BFveZEh*0r7o<%u{{EfAR@`ULp7Phfym2 zXq#?q#}9pn4jo8GjzP!vLb`t^ zrJGl0(#4PG(v2$!06|A`S0FoV5OIFR$iv)=Dss)-=3&mo7SzGukGu;=3;>zWfgnuh z@~dFrlFz-+!?A^pzU;$=b-0bb#RqHS{A_||`AoANKokIi)g@v{3{jAIwrFk=}X9)>eM9djDLC08lP1%4+VSc2r{>)4^LdAw$8|3S{Ro9WGOY}lOp z%mP4QoYy~_E93x;hJ$0(&TWiS&NrI~9NNH+HVmeu{4MSC-o*`@m7{Gr`_Aef;Q$G$>hGUOqJ0w@& zew}i*n4WrXyGl}=nlZsHafO@NDtiTT2|T&c@ufpFPWLO=Dh$X-tdC6``H|=N+_zk%M0zKwu?;%j}9s)n^AyDxVu2t)PFK_zYh}w(eMdy{D1^HZX zn0waL%j}6p96z}%9V(jwRGw_vG+O==Evh3+^oSKbx>oqD0_rGCFHk41m2(RS0y(*r z-u=!-I`fv=-Y1d8n5Hd3F_0|%eFJs zZVl`bzoRX5qK{zoXPIE9Fk+pLFI+2lUFFUn4E`7%K7gG-4%y!Yc72CVAMfKv%M`Z0 za*#UzTt|GhGl>THPwVb3>CR;S- zBc0`!{m^|+^xJ9GbKY&Vw95VM$o)3dL46R%Q`@@4h%dY_qN^O!h$SwTBTo5o7}?lK zUV5fUHMVqDtFp<;APW2&Ku5$#PQ2ZwQCFXAwOY9*6MQS2430A1mXPpFff}LUCDB#t zr7q1BXzr`pY+TrLW%h35OEs|mH?j+tu-?KX11F<+|pPDmxv8r9fHX*~emt z7IYV$Fci)5ffUCHb;qNvgR68*Mb=!D?dFMTadL24dROCK>G`+7UI57RZ{s}+r3Ex0 zw5b51vmEm*c{xrcn%Kl^WxU+gQ!y<)+U(;+KD1L*@DtFM;(axPUl(o!x= z#ke>~3oW;h$^lZdqq?0pj?P*+uhafT;dr?M$?~@gfcN$AkDyY}LPf@%s1x5QuDJKlm*!=3&vxw$$#b znX1(HfJd|u1$|Y>Hx25WQlp41#H>-^5d$Dh;Ncc(M8Z^?Oyw~rHLdAU6?mW{aHHMy zj0za4?}3=caH~%As9qTHRAw*&Z+aiz!y@UmSu9S@rsW4SSZIMa_;2gLK@scc_0RQqK}=<{zec3U%_CnVkiM1(>02rLR*geHSxHI$J~{IJ8W>_bQ`;XY%d`2 zn$1s?`|Fu#n&=EvA^;GJ*0nf~p6|3|jF#nK{PSAbP}-Y0Nj^RE#g@$deR zzetzxDli6{46x9ghiz#_>f`b18?U7A|K9uQo8NvXz5CuEHaf{{;d-&Ou4CH!UfoGfA78YM}PdU%%?@v!R~=z z`@w^UriZ~PE7+BU0U+Fcgu8uE-gZSn$^~ueIeg?Gb~rhP;FQDZ(BVU9f4pM_eY5)L zae9DP+&sYRX*M3<*V7m~jC}9~Z3K}(o)7fxwGl{lXd#UY*elpw>Gt*6^y!Cl>FVbm z05WU?K)73ht+!*oPyh&0Ti{mk2VeVQuYkd8U>4E(2qMEUL5e(f10j#WBhTpZ#X5rEI2SQ!?f~X(27wGvFa6zMN=#2yR&FgMD zpS?t$9IRQ#xO@SbpN0lo_XF0QM$BldQ}!vV;rQ}HsgEa>9Gy#*SjU{C-C1`$)0mLV zy6pOpJ_!aT%C-1tBVHw}5DNKNg%Na?E{9&Y*Upv=x*IJW)v>jYr}N^ z{$jd(7ToN3};rbQ`L=hX#Se*0zw91`SdPrW%B$2 zlR;APC}SuRW8NAi%b4O^*Qh3AjD*I(Srs*uysjaIfQ;0%eI$C{_>y*EqCVw`p*>#D z4&gfS-tTT8P>=ztPG?p6#+T%$O(%^H>6iv1?9-;x*qR3Ow0=ll!)@$2f==w*SF3ZS z;8~{A*ov6;kL4+R@!1tXTn~6nWdO*+nd505_n!m2T9JXCeoPv@QyBWnK>9jdZPUlw zO~s{WH!@!ab{F+(C#g7LkK?uU301QDz6tzsEVZm^qH@Gf;ziucoG<6|%k1QyZ`K0s z7}WS9Q#{dBo~G#}6ZJ?=yxr)NY+tJJ=6_c>LbQUXT@M zidL{{3^ABy0m&6eXC9M)bF1$KEkL-lYd=1}-CZn6dE?I{20!g-I%|syBMzXJLQ>K}cZe@Onp&6-KjLllcD&WeCZ{@6}Xv;pq zz{o*4=@65@mZix3+q3D~B`lQQ!R{YeB;3Td$J8lX!n5Cuj&JArq6mrhaGDR5gAlVm zj;MiHzg>(Na-@rSIwU`t26aX!jXs+`ej7d$o#FC)xSSOUW9u%4uX>3gUv?ZT8)nD~ zq>Jip;5@D|lBFJ$P2-vjb0ysTBaBd?(c7JkA5^g+5qN|z>ySP1iEPnydssKwJs|XxegUxlU?yuul@M~DP*+2k-`|Cb)L6I_) zKZqSd&c1pk9mA^z2GGk_sjNW9Z7d>xc;RyTF#;v7-o(l&eZhYQg4iw~z%jp!puIKB z>kQcVlmGd@PJi$(zn=~u2!h7|tETtv-A{l1@BcdeZ~x2xnJ#>CDJ^1QnY(S+uk_It zzDoudT)AjENUtLR6*PNfk7jz z1A{CS7@>MG(1dk+``tIv5B~7G>D;+j;L$905?M{R@j9Ao2(l{}AL11rSp4Nq4l{fOnyrv<;hTXU=rCK*XJ_j` zhu9cI;17Z-7+iPf#!UM4&*##mPZ0Ej7=StK2xLbV^MyWB>5JP`k7`ms-183tKN1s0keo*E*207vbZ0gef~k6aP1oQ=>|Dq>h_m2(iw#1!3Hq+@>w-9s$CIUeC`kkjfpo%rHE87n0I3BsH&L)C~ z*6%U^1ou?dDE(egowHdPVrUG3Jv;|+E^zyJ?gGMq3;tr*J{Zp&i+-4p%av9m2b#@S zelhPKBbBn_=(F){Y~x%&*=fAkBk+T^z$-x@c78JW1OC7l`pRIk*?D~6BN#Zp=Wsp` z(t~@m>EV3_pd!fQK0XMJV#*-YW#m_F_m3IOUD)jifgjw#hW92MpX@se@G&>}x(2T{ z?`inU{oy=I|d9-5@79!Q6% z8py2?d`k#^_Oh}f@$6C{pXiSaA#d3XjPzh)$L#DZuD=-H4<0O}3!fiJpMHKkUHI$- zUU7ENc68$D#e-(-v_(3=D_<67AEl+?{j@Z=i}V3b*Bp3eIGnpkV|yBb_v-TB8kpxj zfjb<$HUPqNMePzLY@;p9Xi5mD$YSnsdh~>4c)J-)`-C^D~l((m03WhLj$Q(ZZM`Sd`T}! zk`r6JmQH@lvoe5jJWhj=t*1@d?&fDUs=kZu)7sEHH_i37m9?@OMiuP^fe4&N@YrV^ z(_qHwCtbee!8JfY^c;4Jvz1`x)5jNX>tmGF2|vF&X0fv8``jj#%01 zSKY-|Y?p4bBNcOvyA1$ggLS*a?~-awYOeJ;`WNfyxaeT3gS?j3YTqkA?-tk#0D0am z{I%B~CjsS^s&QgD=E?W6sGKtDg)Q^yER+=rtu&J@5v@)8Fpu>}Eyf0cY$+t@ZpQkFSNv=GL3F0&kLpM)`Bqb58^ppc8MH<5FndLw^E-7lt~5E+BmvdfB3151nxpHt&gb2a!Ky<6Aa`%hrYjfl zt3vDmV%w|3DS9bCYF~RjYwg_EvgQc}Wn3=HqwMQZ_Q)>t38Ej+N0rRGY7%q4^3)DY z^&r;l5DFp}6b(ZimdC7*lyxBAd7c{9Y!KW%3I9lLQ%wXWu}HDNYZWu3{o^QhOq4D3r<{e74TG>vgA2X;{? zk{7F@L1li?E*? z@UV!5K?V}=!=M804#ByTuM&9p@KIXE;_ou-@@-2iu(gU0A2hSAG~R4SiiIJ5xqbve z5^tu{ubi}ig*C{oARyr;cG&pfHy6_1{`0TWspd0)$H<2>nWCQK+JMX`p z{<}Z7U*yN!!r%z%#Vc24xot)` z*bWSY;TT|}*xbo+W|;hqx;cSk$Y~6C+(3|xE!f|GgzMlc#tL>>$^Bf$0Yy#3<+3=~ zFeZD!pS!nG`cMBfmo9vWpcyP^w*esZgF3iFQ(f5RLKI&Yg8&dzZ`cHY@O2l9*ad_E zAo~t*978X50b$+O)(~vOxJ~SM!Pmbqzp>7pXna29oUa`~xUkMSc9Q`iY%ZIZFt&kZ znZYDhEhJntBVBWsHA^YeGWdiu8&cBj$aL=NWHiwoZV=5KVo{g3va5*S!jMLccKA4i zT_0X~eLbB#!$1(e4hDP%fN0{1N}gw)_f)9pCISe!gUlxGsThc64X#0x?W^7__PPl? z>u5X9FbD+m%m5#z9>ALw*$7ZxE$3+&=hS8PGvCTNh{WiS$3V2KU(Auu5f?}~PZ^)} z!{Fr39t;4n-99jXFaTu0S2BUVxiyD*beOK;^+#7eAEc`nX418bc=g;Z1Zu5dcMk+e z*?57;GA1z2c!#X4UI|PDaYWd`9%bNAPD5>iFI6qSJRnSR?{o^ z96i2{b8!<@0h0eYma}2b$#%_wQx*UPj`e^w3c*C?)Ux~{rPAu+rLnS%=e<5eyIe-t z^?-G8`(2){6KV{*Wp7jqqw&=0r-wdE$YM7g@vFGt<4^jjXXLO>$W*c;B=Vx58;q3N zu~EJtoao-LoeIM;G-K_DRCUiI+uSiYzQ(yDZ9E5~YSWtum@@5P8%I54kDR+wA{k&x z-+(5zYwUgx2Do3r=hn^r>7RdoHhuibN$f^*0IykN@THwzMF4jJ829T4{&<)U&fiD} zhIeoevToy_R(QU1=oWu5=4~j`ANj`A9CELGH@{-SGev=8t^Em)bZ3>ywS8nZAmgTd zG!o-wH)Hv%w)9`dM4nu3Z4?YLte@$ZkJQ6!89HkLyG1cj@FecdPoLe!D`B>A9mT6) zaGmZu)aTUS_H_x~qP;$0(5At(qLXYEUSpHqPczP*#Glr`PFWRin-3je{?JbixQ^g+ zD8Lt+gTG9h6RKgpElIQPrjWDdmy?OB&!`~ktb1M`gp>OOI4F`{Fjkl z?k{>~a`EK1?lW4t_)Mq4MEuj_r?E8+=4pI**0OO7wP%EQEuB7$@G@x9DWc2MB+Rp} z-;?T_H0GpJeXX)&TDth1R1HXC)4;CkX&?InzoF%H*^y zSGN4~cI(HfKjXNl8uoH8vIX`6Kwf0)e=TflmTJ>j`JH(})XROQU_e3McI~KZ~i(@t27_xSyC3O4^@w@V`jzh6|IX>y>K|sCREzcEKK37XnX)j)vKJ` zlwYD#osRfGvCHSfMnAfA(ncv68j`2OsOsi}9HC`Xn{~@X;453?GoiL|aB*T*$|r)J z0dp62Fa|d9YsM7>fGk@82;K{g2lhN{VU!D}_~kPLLpoz;7hdYYlSK5Otfh<3v@^zy zfkszHMBqq%3S3kk_8L0^AI138SjZi~FDj1C|Ljpuxhvq7rU3?;D zw6DePVFfMx^*`oAi1U>Mmp?%O$X#q@PIah{JT-rd(|-Q4C>va0u{?-O^_N zqv;*IYUNA_0C|j{h`V^T$%mg`O+WtSC+XT9ydnj`8S}91J8ht!&=w4eVLS48{mpaf zU;XQUVY_y)o(xK1K*uU{{p=^dNg*QgTI>jcKp9Q~+95Y`*Z2uong9leSp`_4bsi4cm)++KezmlK}Z-=T*!thyJv7yel9Q{J17>^ z9FY$ihM^A(-g0_0y6ilp(@y+W$OXv zVC({bAUw|La|o8>9Ht$r?7G2$3+3olU(lo>9y#@S$T9IY(NG1GMQjvjd5~B|$!Jb= zB-K|OZ5dW=LURB{OwluPrcgHMk^z(V0&8a)J23RMQ9(3%huP^Yx@xXPh`IH7<=TYocpjRLEF(JGctke{9n~rXAg6zlrKh#6 zG6O(p;PRD&>F@sWjr8%yr*S{B;PWsQfJe0q{us_YP78yFX>o8r9hkd=oj-7b!NIL< z26FNIcC6`U9!`)Z9i&?sDaVoXywAxi2W9eM-KP49*zj6*kpaVaXauI7uS$p`ExTw8 z!x_+V!4;kookKL57^vCmq`3J*dF0#v z(>X^F`F+P!m@FtAR?l4Mvq?Vb!c%;bOjd7+{Au+@%&zis!W;;apg*%<4BBY*2U8{c zENvF0PoA;1#-Osc<_TsuRJh;6wS0)3@#YR6O!N3K2!uO*Szsk#abACN>%YyCv9rew zu)g{UD_))rAWD@3O zrh>+G{?5(s-fF%{Wy(5^+%Q7%f09p*b4x8(LL~$x35{ZO=HE!^XlZ`c$Mw4C$W*4 zPzy72s|XPr>lDvqr*)gh*i zk=8n0i&8C$C%w{A>7>Y}bE_7iD<)F9`F^S0V$=`n7qgsKAVd?Ut6QbU4^`9@36oRt zCM#@&p0p^xiqV}Fp~72OaODml3;@|io{I-uth6o4QMT8=U@L#?LaA;v@8-dgu#E~Y zHu}Bj-}RwXu4n12ph>hqD%nQ2ZfL3v0qRID=TW}-Dd!%`f-4P%+FvzEkLu1E@Dtr_ zhlpf~+9@;C+3M;O<#y6skh+Nlm`fjHapoQudGW9p3ouk*{vpfinV+ATdO85 z*Pp57b82NQ3USS-tYjd|gS=V1n|$QRT`PKCU$NDkSSRLHwmbx^O!-W(zz~@bU2MuT zZ{I-{G`j0>aY^Bkg_t9tb2z5=20DTP+r&Z_+y3O4t#s~9EJ|YAX$Ir4?cKT*!+x}r z^ENKboctm_0$FZ&Xh`!-FtA;ZWg0x?0fcdz2Ow*&NdbuqfDA0Ke$G-<$ya@>V21?m z+(0|_p`7J?L7ofq+}(lleEkP^$>3)mc?N{gqXkg&Z!QLDeDCbxg7^YtC zdT|he2nQG(!39+4=ZE&F>&~sawu6W0)JL8U%cD5JVj=6rzy<|?Frb7s7y$ARyGd98 z2)1HahWrW^6*urt+Mw!?|- z{=r3D>t~J+{?937sCN;4HpdV2vu+GrVg1+9U)*s;!8>dnju~4tWghbFhj!>M>EjRD zr>yJf!+HDXu~)mL%Jk}|O`Gs=y<5X8UhsMj1n8_`+}MsE41n}V2%9Tuce0;`;1`bI z1lkYPwDbNEUVHKDpAXaLAI+r|yy`-)STXnL4(rGSUz|HRS8!Nx;hMXEp!u;N&A=L@ z2=c%WM6sZaUoT_Vk0rcLY6-i5Xa^9^(HjWn;NtoQfAAhw?+-dxx`@Qe3r&IV<_dH&egHsKQE*K|8g6QXeus^LWI4|P-Wnj@dcJbl3 zvoX~>K7(J?VILr-3`*%f2A7?$OmR-mA^>f6X+8}Q6f$E0y)>RXAlor zIG7mDGM*>S1|-jS<}tX4;RktJpu)VtU4v#2IEE3M*4F3Jty_3y#ixtd@nbPvzk&de zTSI#l5(9MB5l?4^>Mz-^V@W0A=Ou@WXZOnIgX#^aY!Xfyj>AQ@r$z?WnZEW#a%7g{GGR;~mw!OPeXAz-G-mOk16Y%ZWe(UsC? zkmcVhtS@QA)W2PJP@H8bTXq&<0SBwZOVNeT52wHV`}65j1c0#2>jG_EX0^Pc@5K5Kmn*W9S3nk)Wk?kj|vQC;L; z86Xu>=08oRwGIK)WG7>LeB>+={FHp7HWyu9_=@e)4O}WFQDRhUr;TmX;7^uD^JE($ zlpZdGlBs@?)U988CTdJ}Ju9mAGB2#1Oly`>%38;KEVpzbo#sjEPO9CbWl8kS^tkY8s|0)n{Hj z6KUj#f2N1@cZ^Q7z;R-)fVq4Hk$<%b1 zPU^rvG?Li@p088kf}g+I1PhB;^!GkTgPFYuT|iyLmnW|;`Z&k>G~Hp5m55T8iV+Gd={{Z&U7BXQ0F+Le|$~JVf^Bb zyJILI!4^5;*D?b@5NyF6KrEoa2DP`ZeY+CNvYqD_@cI`9x!@tLy_N)cwkHEqxSPld z0wo@!8ml-z*0JNp7FP4Qfa~pwwuNuhqxzjXb0Qr%auB{^rwz6vK5IC6A3)D-te|pl z3I=A(WASx}=m5&G%s>|E9HRgEIvTds5*{Qoz=Y$RZu`Np#`B*9tc*H0^O$&>d&<0x z5cEmirG?|61dW({5Vx#!IK7nec(kz`MBKOHAcsddI)%bheS}q+f})j5XS(cGnw7SCGQ!po( z9jMDG%k-Z^jdKHr1IBj_0Leih3ILgB00vw7ET(R@aC2YKnXJ=F_z=7ShE} zm(mxP7SgRRup7t&H^A}C040jsk<;KosTcW1j}-;2DVm!2B|d3IFNhe9HYTY+M~$aPM1l$9OkIFrzqGl)^&ile$0eZ<87$Tvq; zpR*3I3oR;>KJXhdO^qQsYs3*La91+O6Zu?*uLvE~&IPsmPDr{?{~mEPW$9vEsK=CV zN2EDr{I~Sf01#KQwm!h?+UC-y7mlPK{pihf@#0bIL+$`Y!#sV4Gb{Gmm!-iyy!z!9 zb^yWs7q!?ef} zo4wO37O94!hGQliDyq*^Hb|!sgeGJuLS38>mhg(GcfYfl-oa#QpmG;R9*z=waItWR|Z| zvxAMVj>x31Orn9+)=%_UQDORc5f}54A+42*yeRWL^YWp!Ejn$B7io=8np8!$2|gFZ z6HR4dL#lbb+$&_B=m9!0D~|<|=aJq=6aHmPd4B5XJ9o(wJz^#EtkN&T#BS&7c&!UtVrXev8$KI@Ho z#>q>Be7Pf9ol7zY4Ea;Bo>SRw9J4Xir)qXa!4`{IfQjb5KvGuqk$*<-6e#Z6HFc^i z9ewF!Z1vVQSwz&L}hGg z#~#0mW6rB%plTk~xJP*rEwC2=@*-OOYhkm@5V^MF%8?%PY9yzX$*ePnU}`b8W4e0)Aa+ji>ZfoSwlIc0^Ho-)q*T%Abk`Zy6fkx4!B zj=){$rI^7z0A%GdcL2F&uX^Dk-WC=Xxj@0)KYVp3n^NUzZihn;<^6aT3~;>H zG#PX}>GY%Oa5;`eTO_2xd=O{n7*ijt$Y6;jFDCLqZ8?D9gJ%3U8IvOpPto0GofE50 zg0l=2QP>X0*7KVhGTSg!mwMgoW@U~hzUHcKUyS8~?$Hx?4a}?fwIKpP<`)=Xkpnxd zqo5g!ZTw?^i}L!TfB_VIMGALXP~e6FLKJY}yJTQt9(w5C01pxm9N3=@9K^yu0s`1j z_KFnll7Vyl!M*!w`4L`m!G_KCq^!9C$N7Ms0U|>zB%U~VEFHs65`0|;gCiJRz`EVP z`!HSn{IUf}upc~-z{iXQ(m=;JnmHm*V6BL;u~%f;UX zd=~MU$4_VH;XlVO^)UeCz`=d?IvER=3GKd$V7P}23|QO1Vk-Ma0Tl4a{GIS48nqFvT4DY=OT94+X1nfFqxKLTgkn2-G2yyYCZO1|hjxIMMbslhh_$P8r59{HL5m?@bMhID! z`}7n+sxnOVi1_x9Ik8kGPBfDNLqRzmf- zPG!2u4|U+fd5}A?JYG)ei;J`P;58Uu4Dd>ff$s{$`H{^}ABoQ&&dIi80eIX2gunRa z@F}~1AlQS!9}7#|SqH%%*yVz+e<7bchtLPkl?*)N>tC3+j{-cnLkM|gPe*<&ZQT)0aJ2~Lop~=HW=N$Xk>8S;oL%dq+>90T+SkQCNpCI06+jqL_t*GC~XbW zja%65V0AdwU5A?}_lIOoaTND~HUG!R2xk}- zfMu5Bl^G_emYqlQ3k>|iNjh^60em;pk)t=TbJ9lo_V@PT)mNCSXNH)=;XLGc%`!z^ zfEFC2t4t&8pZ3T!8>7bSVv4W8#re+lx-#^FWn$fBN;10FHo547fY9N6?QJM`U9**P z{nW;8P5PtC0_+mIWh^$rR+OP& zGtwIoALAej!_-t{plr21sO-CU;2!JYLi*zRf%Mshqv_YbKAWyzJ7D*`oaYg;p9V8) zc-70jbYOThEe;=GcQd@s6T5%V8s{n6; z=q%V60h9br_p0786%JS%v$;_ymtjSRbdj#{jcma&Uk(XpLQ^cTk^z9h9*av`>CN{x z5IDGr`&8_zf@?0X!O@>0vqOeHT07xuoc&3d+zmz6%2YH#-z1kxn?0fYh;CI%j*bAH zGa5w6ag)<4Y+M2UF8NnwZRQ@gjcO3Q2Za{PV``q7Iq_n=w@;NxB+&!tbIAlji+t z)x;K7?ILYjJue$h=Wg^%=W!n|;`Z{-wgohvG`?Ex;zzo$;;BrGXu^vZ>3uZezpPZ_ zOyiDrMUxMcczqbrCZ(;7aoE^i!t~B54N%1qY;&XRxPmql)-Rm*M3!NuaXu8i#kH8g zmp__HRhFuqQ;iy>QNn4`DH{<{^OLaX9b;!3!GDu4yv!$&f5X}#n$k>d+oXea3`gF$ zqt=DKjmNpX9Nq~x&e|URd9}d*&)$15$#EoEgV7pV6CeO`h8(@KyR+)5I zXZGEGD`vl$;c!TTAhbrK(emDN_ZQ(AnN?j4L4X`2P!$pG&qaug%+Bxf!*HkzC5%!yrG!J4kd({ri$z7VVJ}C)H1~MRaGAtGC@VJFE3Ja zDl1(TD}pHjSOMh59jyA{zeZ)?$39+&9pFWn z9!A(TUX`DxJ9za$OqA>W8|=#Cs%AtGCoyVPnW%sjMUz~gf^YvDPAyn(Xd4SqFI1nU zE@7O+mmyB{S0ZSx5k|t^l&!>j(%E3KG|W_{yl7b$^HUhnB-6@E2qq}y;hp93-Pfyl zNzNC>cu0&FjtT%_I}mSPqC+juLb%Oxys!2bIv^NLzVIavF(&Ig`aznOpGIx`Kkh^0 zT|byO*g<5O08^GR10kq`dBc+CY|aVVpE0}tY`-Wdz?PEhZmFE<>cvI1Sard{T^Pt(s#b##R?7xQs8p> zYxpo2fCslk;r1xpN`%|3aJvn@uw{@011v1q0_h%qrcXuiVFN!Ay@A zQ`-UtZqhHd^>J*Sz~B}IU+DZ~Aj%ekK)7`Se@(Bz3i4S?OFe_J4jOb5WBKrtjls4g zYz21ot3K}c%`F>jobin$@$7FTe0XgC(7%K62n=85uAe_$PF%fMRuKU}oK=K|>|p%>SJXm4w{`}sSUD-bWHIw?rr3IA5-&I|3&Mu@`wGnk07C4topJ2;7QrVRvf$z zl5Q==7u@Wq*E!J4HW#p6*_ZgRTen{>mB$a35d49_yRTNuoo`ogJ~EgJzkfCyzwkfi zPM7o5LnyCRKr9FZzy4lZW6%fA^H}wRaYAdLuj0cO^H62&vX8k%t9LNKgKa|^^SfC2 z!)O?Pd>+7UW4Kk-KId9!;C&J2CJs-I9t-?{9Lq)nk@|?M&l7+{(aTKb2V_`q&yYo) zxWN%+k?p)u;gF7DzzPiR1pe361`nXkoH_L2!KQb*ylZo(TW*N~(G%zYH zGQ!G$ja?9}Ie}SQe}L5hzAm5q^jZ1Ge_kn{|D4-jGbIr|n}`soZ)BU4<0)I64HdL$RD8Ku!$^->aNv{4 zyF{oOCYcrOJ_Mko@jGIGAepMCW*Re-g6j3@Yu*gBIyD+|RHb`(Vr0JOX=Mh|c~GWv z!x{LN9$~1Hv}~(_y9}=jJnr5MBpn_bFrGU{5R zJ5;)BySq%6|f_b6*zb&xhb=3peVh(2MbQjJ@U#VO2@XljobPe+n{!(h6=_Tlly>gVcS z?Hj(-U{Ric>EN|fM?XuEXXg&?Nf>ax#+5+03dp%L_?*UdoXh^G;icurma2XFdWz2a zikE4Nwu59B#lLOb5$aGULHMLeTJDJ_y2|1&nCcp^AbciFt*qLqJX7EYz{uyW+|@Ze z#S`X3`sQ0e<4NOd%7QTB37hFtG~%b|Q#9%RzEX`djXU>Mp1Bv|2|MMRFjKsqHcwBF z&21~*Xik{`i8RIz>qec;cjpacq^KEJuBC@z5?{JCovPfF&CAJmr5QW+T{bex^YgGB zFZo{e=$fEWogdbSR@1OpWvUir`g-)`hE-j>y=LQFLQWrsYx+OrzMmHO5CHQ1wDVuF z6`lNSfsop3|y7(=w`mw&3$HYFCM# z8DEHq37#hEDchRZn?gBb7uGCN8PR^#g~mW`no0;CIL_u~C5NGo#?Mt#b!Ck_w$p$v z^||t*&8Y!(WLvT^omPd@>?2WU>0$+D@xV%K4*@>a( zaeJaqkBRa5+W8yBq1)8mJo1-ZW4R{NuwxYc;sYjs8TkMKAh*9+L0|z_3BZd+zNo=L z4PK-6aM<*NXx^X$S?0?S26)&@5x$@#-<~_ixkU_s#F{)cBd_M7EwdIrF>mJ*9pEPt zo~xwW+!jF~;`70*UPM~(3b9qt74Tly^s-oWH5zi1NEj>DFS8vO8$tBNxc<#7bL5#F z8Dm{_PzDd>`SNJ}*z>Y};t3usW6AkdY%Nl->JH8~zEC@cfPfPxPhfQmZk2*y3;qNV z`nK@0@WK5@7P#R75^04D@V#Dmi5s?=aNCw^*RPbT*DoVb04r_4#!jsM@d(?t-1_cL zVagYv3|inJdDeyP$yFD}StCJZBGcxykjRri1c6J{nCtrka=3_u`4JGE-rucp3LL@`HA0O>3qy z&j``>92czhKCWwf7-PH7_}R2ouK4nOA6uR6qkn7kLKgs%^``EO>dA?5yK*Ueqp~aG z!<9BH2;|{X`SSOx<*Pre+R6xgrZ3%=hFZ?YHm7PE7_I_>JWmBSWHtT=|0mAY6rJAFI#U!OqX^G0#TEC6nIBAYkBdp5Xkt#JLTF z#I}X8tzj^L7)69b0WDTp4OC;eah~VgB8uktV%e_w3@);HeW^S{;K$bp{P^~p)8)>c z6SziU<&OvJ*g6ZV+hB~)jHzYUr23>Rt<63NoK@F(JZhAY3HbpDh3ICt1-T`xps<4N zG|pXkQ9k{Aulxirg+Kdjt6V|g=E^Ep%ApYc$GEo&n9>*{Vcy5TV=17rK~u%dRS?}} z*Wp+wiVS7QuNdT|qRz{t@o)pQ=w+l;j&{5dJWr~mm6M&RY*iOFdT}@5%`GRe=38SqdLjQWfR9fnV3*;QI)L||Hl zGZE(w#u<4xzdK$2{l7jgUw?D4+`D%M=N7lGL-5DS%W?uMf1F%Ju+r)?1hsDAv}fR~ zpKNTK_Cf!Htg=}W9|dbiVY?2Utb8$*^d)ppC5K@ve?pJ(pj7(jVa+yy5}I;m5!%4me1Sv# znJ->lmB~ZkZ=Wqkx;Dhsv)ayQ$bin9F&w;hui}1W?d%!*yI~c7Gp*nnz7$KmY2L32 zf3z94nHrRpY;D-8On#;dKSgU&-(PN)ADJ$1`nrfdk#b_m(aR;|Uiu-rG%$ zpQ*p?h?}BIeNGo?b=Fw8Ec?FXbuQ-flfH?b{S;=3mvM{c-?Y9(?asozOMf&*rp^%h zD?al*Ci8lJ&m&())-w;6@r&Suf7MjuOZ`DTqE(&Y{M30}F^gnWp}sMqJhB@)B_;J^lNIq4tFi$SC>Rb|ao2^&oESJS3XuM_%{*f85;z1;M9 zInS%!Z@nC~PGM!O<4x7aR1l|Hx$JP9^md~>AP)+iHu)pno_hU;a^9gmjd(df#dCch zzQ5lV_z(c{{kHdCp*5ZKO4$U;D^;`f<%Vq+1!18@v#sf)?3BFl;`OQcOvTHzX?nG- zxvct#S@+sjIOz>LSwR06)qP(D7xHv>}EQnrb` zP$4N?HX7;3R6goJws>0f!sahx`Ojnk(o^Cnn;y!7PK+O(QCVr_f*`2+x~-HV6e}G% zvjQg@53gvUhc74};&TVTq<)O_IX*b=;Lj>v*6}5zt&o8rf%6y6;AJjeMB*jWCRQxC zbNgO-h#(NI1o9Fqd00?^HMUtc8~mb=tmiR2IQ;Y{SIc#*lCg@1h6i{f#}zGXg$%5G zaGL=jJnx~OffhViQ`M0=7>L1bNIw4fqjLGmrE(H4NG$*a4<>m$h5T1veOn%3%as-Q z!axd+bqmsf&J{eUw6TwNVEsJ6pz=ca1V*t?(w^(_J7ouFjV;45rzI^d$FC3xA zQ@(&?5KW}WbDNY^d&@}QCk`8X-X5IW_PMeM1Kil)urcqTUq?L@SkEz!hOCF%!}-GY zyL7<$B757S4H@*YgDsDCuw~J1ymYsw?G+7#V~7xlt{6kDx4`T=$#jV4 z3au*vW4moWE9DRWwo?A|Z);`iIamDQSa)0%MVY5IKU{*I0eT$foNu`mj0J#TYFJr~ zKoG9}5kVjf5aG+d{@{@3OL?}H&6zv}@bOb21%PnzFY=&3D}@llgR<120FWi(NaGj( zd(!eja~>)qe&{0J4yAo@7CmqS*#pisy9j!Ch?gXH&^ULo63PQ?xwTP#{+pj+1*0oy zH*Pt__U6_%d$#J(jjwOo)>`K;p26IUt*Nk0)d>XRajv2HLEmJ%hve%y$v&J=vX20y zZ3N&kFv;eJ3CyI4+$PX%hiEEGFzU*AX7xDc8_eZgb;wo(Ay#r4;MoWBn*+(Ow`>Ro zRBQCr|H`%hxu`-~Ii=@~dAyLtrL?q_L70gJ13bg4U$a z1~dy{9A(X!HEm$?lgR3a$&(!S98^_lRVx9e*USb#S63!NOY|UpF;V+cR}W~$aS&xQ zkF06~jH(Jm_rrv(U^sy*Fe#8?IYCj;Ld{fSDxps*CEi5E8B5nTmS2E~)}yt69Qg@u zb~RS|6%~jho*oF(>zypiSR|L;?*uyYCbe#dZ*fro8hHn82x znYH`n%=&#Rb9*MLk{X<N{0jITe(q|Ca=K56m2#B&a2v5{E zHvT0;rIEKR1#mQM0 zPq9_wwf%DJ1jaf8KzOYKHtV8j^@oKyN5+oyKq>juec0H^dNfXDR^xRcJ@af*fsRA! zCD>#tJqzeKitm%Qejr5seMNUQi)LD`hW!wSe^((`d;?o>G7yCK{tN=~b43lDrG9Mr zJa|;!Ok;hg=siv4chNq*zq5SKbmphzNKc0*O-;foCrF*(gO~3|bzdTQ=8=~9Jx?-9 za|_G!Oe0Qo=6fD#@57<rtoJ&Q z^r>g%rrREt>f9HOg?1}dwKdZ~)%V~XHur^OQ!pf;bm#r92SDMeOMH z4ZSuod<}GUJ`5-RPM;|NEtBg-q@x2wm|P79BXI>;P2)S2ay_4qj(b{@%efxKvOMW| zS&sP`e2}L&uC?Dz;Oe@ZookAatmUXMGs3Frkjf5E+5AhN3vH9)o zvia35TMGXGOX1tw9kzQ`*QuCQ)Pu180hZ{LBQKXt*T9zFQiO}MOoe{~!G;YoHMN#- z;#dL{5!Lb1Wc12Zvx#eIy#WfC*$bmhoikgxA2YI{7lF-huS2WF%%_8<0`l-Gp=;IL zS$~Mh0FakkOXcC+rE>emYT4upApE5+9}*90hcX``!*Tjfp4Gu<@q!W$r%VnszN93d zFNj>u@hG|+JR@KJ)w+RTG^Whp%Tq5i?;mEA_mnT26aYg12;ehl1`zOpttm#Chn1O< z7kZ2V(6H=Ovn4!I*H2#b4~2Lzv4){;mV+*VDB`g_nE3VZ!9#p*Te^RM0E`0$fbf_7 zYk2v162Ce=i)~vjV*3`X6oChQ3IMrx_W=Sx9+zj&o+AJR=PL9r-=2AOk?Sq6b&U;MOP)5w!6ffh9b+^^8>kU#5pdls3rR+Q2a}<^eaG-Wf@AWbN%LUR2;A z@bQl?mNf)`nD0ZwW4SpL+Ux6|;k6AiG36U=@XgFe}K$GF_Z zSl`2k+rIE+`~C~8`hl@#ia1yG3TNro7)bnac0P!!cD#JCRQ~+?_sRe*A5Cp*<76^jj!|h%e^ua(94+z1z$EgN7nm6oYwhN{c zoNKn~2VZF6#Nm9&@yS!dKAclgrcXA%8jcvrJDs|CEtgJYE$`!T+#SL3w=@fold-Bu?3sO6N%(sN%DoXrt8?5zptfYa4*4)=Tn$CIs=q<-s z!`OI3nRC(344F3esa#nHNZZ&rf@0wWz6Nv zTrvg&%hiN3B<=#s=s$dHOCe(~BS3GZJa~A_SN^zhy4<*N2HS0&z%>a2H2kojrBElw zsweU2Eo#3V{7I(H>llJg(f6^9%z0?YA*OUvAQ1?j_i>3j1MG}3O7TibQ?=mNW#)Y zZB?WBn}=9a-!P_;b#v8&Z;ps216DXCn(8CE>l&zt0<_B!2~WT#A>o+ukZ*prT(7G7 z1;*sxAxXfr)W%K>W@pg_1An#`0(B_`q&HZrYq(DV{ZC(9EdS^K^>b|hauI=QI2X${ zwtabwEngmD1&}AmZ=xA--xMozT(nDL&`DNcH|<*4zMAZSPNnIfU+OZY z#%4W0;G7XzYYfMe;&N4HLXTk$NU&c&GR^7)xtJ}@_uAlY!tVzo&uT@MT5H~}T}JUQ zp7Xqp9zVTb&RyCs*FM`TpM1V=+raE&dl;J&s4N{;q;h0rqtb{=bSnlZE`=o7QDqX| zXy8h3KplSsJ(BD7P1zLIQreKvfN{ja3_Vh<`W@=e5zQV2{(aiU-9U9M&#(hJ20T#; zBIUK(wvWW$VH?;!lK~;ixF4|t+NIYCZdC<99#G3nrasNZuWVr2WjiHPfIV=1S|%Dfhy$D5`1`=s++ z%;#orJD;mP?{&+v`!;PH#YexI_v7;@8eScn$I`26p^ohRRJqqJyzKYd`CavqnX z@gb+fxmo9S_I+l)ZzKW}ZDczX_3b6xyfHnLX_c_)%$SWPH{^__wT5UpbIFv1b4}Rh zvY}ltGXZkaq-k@}`OmFMI@u15O&@u}F_iRUQctW58vN^3w#Iw`TpDdM{Y5n{H&_VN^|u^^He1w zc#D<~O=R_Aljacd#7F{4jNASfel;k zgVXY4ZIbe5png!OEv&ZAT#5JoWK7R%)f%E2ow<3uA#xF{E|j`Jncs3gn8HYVzL1Uj zQJ{s>qts_%r4zsf?6BU1p@Lij|M}P7mCY}|EqhoBy>0yhklJU$%3&luXw^e5l_%vo zJ9&&szWO3UCo|C7^C*M5W^!$%AWq&GRRLx&`fIsa(|OmA9U{cbKp4bf4~S_!1T4W9%lzntWDV{B z!RV0XLuSew248#u$?`ysdf=sew>%0wzgl~^k9_b&ntk+gMP(5AVv;<)prlgjo6;{f779lx@_ zbQe~z0?5G=q-_Ndu8eU8+nQYZ=mG*j@WK)g{`iKLTfjU*pv7aXxUq?s*gIUp1)kPz zOVBBNG3me1_7{5Vc;R;*zZyG_U<2D~1&y`G4}(Ck;>HW;+~tZt=p^Z};2o5!F6Q}y z8E=~n6NA8NZ|#P@K>ajFst>qbfH2kwECiGG{9iOr(51tvv%Y=I&EgtecGL~~yRcw26{K^Ha0CJq#@n6DK+Z)ZeKVy}-&t_r9Qm;puSyhfz>uapCgO~h! z2=sV~EsC}gG_{975C#}|faB}gpDnGvBBJjPAGZwJ*ujn;H@{jg-~4H%JiLc3xSrsp zI#y0l0G(;U7pjBv+0$hNfUsvYdw)gv+g9b}>Hp8Gy@*tIrl` z0JT$ea~*anXC0u~wlEkR+zw_1by-0G*%In(^DzdPi81vI)NvN{@kZhfR{ePTY@__; ztJCFQ|MlbY-M4445(rmu^1i2-xn%ONm+Xt4X^CywDj$rB4Th>)$sbne-1fEYzI0w(1eOdnI@9&p?{HKTI;>9g&!@;e={C-3gcR6aohyPW1D zscdWJ4%-!*0CMzU74_$qFDK9LmrsAbS3dvE9fTHIX#qTe^eN$-@+d6=FjJ&UBW^*TDToyl<*Ms$C! zb5~``_j3KUC)?=ry=>3V<*9ngpLS!GB|Oi+GkMf$ttwIr`hDO46Ec%}t0Gg|grjK5 z9E^O{w5oCz@AExYW#VSbtA0v*ttM^6tfT23%4Lk&MYP(+$wV6?bM#dF5W`W$qxq8h zZy?jlIa9XfUlsX~d2d?aLjcHo(-l7!N9xQT6;fHL>Y2+e?>S9n!g3N4$I~{q`$Gpu zN{>=fb3T`Qdgd{ok1&d5V?ZjEsaK-7N4hi|8SEg4mGiu~Y^pRR+ z2YeLRlml879A+wpnc?WKy#ZFc@u&i>$BHg%_@15GC=U-OH*kZAR;{DCMT39J!g@o@ zs8Wz;;f7MFx$tn4zV6}2#&rddZxH~3EnsM$FCcj+5XJK(_(NlR`G`ER{$Lq?L#MsC zge>`du&m$@FFT$Oo%v#|9xz2;?A(gft%HVVS)?1^@_8F z$cHS2jLk27kTLxvkslxWXMF*JLHUJaJO_APC}+Y1MJG0F)Yn0PF)#x`0PA?!xbYaj z*nf@}xLas5bO`CotF~$fUo!G#<0-u4=L<>d+uhkI&!4?0TX6W`#oZP7QD5)q<07opPC1l^jCxY6N#I3OoCH0K=HxQhS~Y@Ne8 zbI^DXvktDIx1(!b)lb)J!80QvY_aXy{D9NL zPZ59Vg{o*SC7pTAxz^_7v&Q6EhAH$}KF*@J){&H7q_J#AWUTJUSGxEq?RgAhVO>{N z_sfY>d*##5x699djV%&RV7sdqSk?p=DQ<_w)s)yi3;=nKvGMT1!}1-rzx(>Dn+U9X zY^x(_^&!r?Cr)6iDg=$3z}6`zPaQ88ur1f+D<4@f267xyUq33JeDb_p{df~&quVx7Mj@zv zSIUtsHm^^t))cRTRAHsb(~Jho~O2r91l5 z8n;J@2YSsyPNEfV1gF|~1*6uXf;=;Bn<1drExVkyGEaR*X~rh-u!Nw54OSCQysEH* zOilgbIl?|!L2wa+tNsH4Aphts2BRgF$>JS-=<`p3#soKIZ&1NVrKkvhuT zy&UGm8~{Rq@p%1<>xj-rruGTCITIB(43+bP!^Vq-RbY62Xo%*NdAlx{U|>Krx^!ip z^5U7i8>T6fW2QekS}oR$3v|U1k#*&@({RUZB2c>=w>Ui03S_h$?mUqj%>8dd_~-w-h|HA(Q!x}IRWahiCG1tnU~0~n)Q3z`O@;H_geJ%(m!l& zJy(C&)p%##YmD?`=WRG7ThiUz?D@nAGsTmhMbbB=N46%%9gV;`{m{eD%wI`aA(AbdvY`N;GL`hWwGL0sGhRsTT!(>V3Wq)j| zM}8>3s}}eW0P?O{{zq#!%}iEDm6ej1^W$>9cxigkWKw@xKrNb;sKO5ERVq4D(fV`> zlWAGD(W~w1;1ten$zq$Ln;y-d(l?x79VedZpo^EvN!uu^wv?L$%<@NcV&rS4Ii24_ z>aaBClQKTWQb)n4>qqScwY9xeX_-=)hD1|Fyh07d>l{hf5h#Ju|23tkl?c7PzLCm2TKZpd_O3$CEup?rT6RL3YSjg6c7qhR>Zmp=0aE=rFBlzRs_lzr^$?kR-rIv^5RFC|@a@;Jd~h5uC364>=VA*mAPyL-1{$1g z#0RQ;IIM$pu@C8iQCV9PI9)ijVRW9+s~q{%&0p@hF4(N47d4jz4QZ27hoH7`|j>{eiRbn6wZ#c_gesXe-k~ zNG|j`Y#ihF)T>xcVEyW4`vo7je;M|hY)cE;)lWEAN1vn5*3O(L8<);n0LV~BZ~5@D zbI;(yiD^skn`R)w%~g9WU1WvV!8bJKi6y(5WJJOxwJ}fzGMMkHqRpEDg>NIZI0D^ zTgy1#nYWLR9iQ`A{jrZEDQJTMa~#j4*}NS2Atuk+e*TyYT$CQVD^pE&*cQ}pIDGM* z0RP)DC^WKiBQ^+J`D0}jt23P2Ef+r8D<6NdT|U0PhZR5=I}}6z9u-{Kv=T-rZAZD{Nnc>njh9GcTp@ zWM5R0vYQ5(zzslISoxF=nk(qpMuK{Ff=SYp8}fsv2+zBfwS5F=ZkM0`@=^JRf4q+% zkgc+@zK5~W`kXS}@2sngd0K6-7>*O050e4Oup?d|gU;^M(QG*dqf4xsW_32SKyX)* zBB3j(X2hwf^woOROofay5*l+_CsdQjSbj>egE(5rWlgGB=+5m!lI~MPCtkD=;evK{ zkj^Z13-274>1~mhv67d}WGW>T#KFH2c>Zy`ZEmiW|N6s6<^TSFJ}-~&u9kBfH_Mr0 z_sSZAh8g_9bCj#C(P)U<{Lj3t8ii|t{mnr>J{ByDxlQ-zCKo(YLkwi>P#@VK30g|X zHVD(88_jR8stVzRCAgg%p@V2D30;!OH1;stBws(wNdBS@9PBGpMdC)A^<}uQOCfHL zcI?=G`Rq5lDM?ZF|Oz;d8UzOMC z%b1$)4OYfPW*%0&iTdmOQIOPx=2s#esh+X`Ke<&G`_|4C(O)-}Ug*&|xQI%hsT`@< zD${1^;5kDaPe-oawSg4?H!hv?AWrNp==UPy`F@tZ_m{2#r2$4yMU&U!^>p!>_865j zrk9_>Wc;hU^Aceu^jmC8P4YO6Avk;g33>jd6qlAgILqa&Ft6r*g(fkEW3{>@)1W z&iDPPex}nsuhny^H5RC*#G>Iw`jZMl6KRyKbISx+q>8E1VLWvfuYf$-6emm-8fO}~ z@>Cz$9*s??t(X9f{j2IGGVWJ$J|;rE{sJ`JS&Q66 zjIcpqGK;6?9P!<%Rgc2PcToPe@lG~wib$6_muA^-w2bb8gBvg5dI$43)9`XEmAIl| z07%nBwr)5@ZRdM9Ax4)Hmv0O^cAGcs!7d)6;-$??Y(wzi&T_f+%}UvP$^Z~P_#L0O zq_bZBP&fiU_yC!7%AiA+_)>%){OX)E%cJb8N5C6k{G}x8=!d;zOb?3L32ZapiooYH zf2rs}9K?Gthxe8RccdqzE(;x@lWoGhJ+x(>W?j@%(oiOe50!ZkpAWUaXoQKTdK@(X zg#CZ!{9d_uWfw0j5AciigR;IsZE20@vy(dPAGWJYdC2 zP|uDCLfQjr7VDbpyii^}jXk`tUMg$YQi1^>c5-E)@>B@F2LT}D*?{I!(8tUA#WNNF(g*lR z#UiQ360xdxrb&l*DoI#jlT&Pvi@C*Q1-`FpguWgsBKiS3BSw6R}VR4Fm1TV1OJdc(TFvD@cYs@xQ-QYGb zPo6w2j~+ZOPq9+WbCkKl(k{1V!Dko2LtG_^*j+6D@G(~I`MZDkP5I>0tFX6jy6DIr zA}Y7Ao!;hiTvTyv;8(h7AKF9k2Uo1&Y9RaEs)!xI zj_1+$n^UL1M-4=Isd9zrbrA8v|78p$ZU?i>)j+r{%&`sM5+)*vIF7cl?aRIUC(4bR zr^^?Ax`@w5SV09rH4(5h*FDuCyv;?qI#*sG)ix^-jj311D1!8&8E#E5Aef5Ub3 z)^Er$sEF-y?bGMww|{rPeD>M1a{2O$a{46R62rLR(0`7X7fRI^P!tOLxs}F5vlo{n zq@!x0JPutinfJbBjt8$g740Na6Uo{>2wMH70-34Uni;SS5-hd*+(wjic0x3zQY4cV zD~5nf9fUL6%(DIx6DqflNrW2FiO=^bWcR#GGaa1_X*x1C-J*&;PUUd;#W{W-^CknV z9zWf{`F6Ja+rM5ZPw$su-4l-HPfoV3CbdqOGDrX+G5I$~$Dx2I~$o*%$ zIbW)3n80d#*al{OAKQrSmcRR7_R6UX{2PSV4Oc=uZPn&L#$;#MAddbJqj9DHiGF-c zVWpNjWK(*`BQ5)rd1Q?aIctI=?wAn1+qlTwIeKdQFKQ#}os+L^0KGCl2ktBY-=_c& zI_0w!>)^Fe`LMd!Ds~89UB)(a>s$fk!Wml)WEBA+OI%)V@m4v^)H~#B(5Q!1mP?|u z-1FvPvYc?e{1ism*GXk3>lZES&3w{3j7^FpC%R}-BVJDz-^5*B_ZejMeuRZ2N`G?a29|AyrIDPd4^Hj60Qn|0PQqpt2m4{R> zwaKk4q?x-sYRggP8E)%0=s zWHe4qZDmSQgfKegqaaN)gr!w_d}O*f1f*vq8zbB3ypd`0%xM_RzQK_IQfma2quy3* zw5naCsAi=j)7z?$=1hf~8qg~yIIIV0{sL^t138Pnlik1B-!%F ztl%jzgFG0_px}>HZaH8tCY{DI-yuoHbnvMs|KmZb+@@=m2b}>P9soib{0Gh!YXIE? zA{Eav{n-s&jcvshuK5c=U37KZMY%0 zmLkK4$ovKWxeNQ{qpSXs^4JNy%wHowR;iN*efAvlJnCr9(25CcU#6`6PYhy$RxQqlTjUE@@m0=8fKQaJh z?ZWA@8r%CA`-oqfQ`%Ubtw7k>i0_ZXw&uaMq3^rTx5~~VU-4t->5H<5m-q)<`Gb>( z0mpN=Glt*R1v)o$S_~mGN&8|Oz4FsvyeyynavR&W za61^b1;>Xs2Dg4;qtv+o6=smf4uUOq@!`rJJJ@DxYikQzqT#*>!5AJC^4!Wh7*AKQ z^2hJ~@wesLCm%z%ZzaR+WHu2oiHaJ||uXV0C&_Fed3srHj6@xeAS$Fa(W zb(}S*Z^31CWE0^R=LfL8kEqPur<=AF%s%wuiW-##h>b9H$w{|iFgrh z!oU~|7QR$sFbIP{R!$%g1Q9em*PcAtD8K)o7t4SC{&Km0?=-g6S+|#@HV%1>mt84V znQ1zNV`@<0-4R2kY{P(<=}D!Ai<77?15wT-GiP5Nj?$ttkE1INh_>np>U|8Wcbz+r zG57i7^1FYySFV4uSs2sj_bRyFXs~zM=px52t#AzckQiE=3jA;<(zgk=vY(YKYla-^ zY{AE__43v4H_G$J`{fw64P0N{ zHe_ARfQE3GJ$z|3zj}U>Mn2|0UUw7#Qm-F8hfS{GOksRcmPf5S$4k`9IpD>$K=6k^0Fmf9(zWc@JHCWsT_?u z%*DQCCS6b)Pn|b?8!Y4w>-RS5_L}X6EAPO4&1XGbAiL+mIm1=&ma(eYDz>Rxzs!|D z&f7{}U_?dbm?VG5X>KFcE7SVA&BBP@z59vw7_?3oANhr6<#*Q>T_rwMvi7q|6+i zPI|YHPy`l&Y3Q3+t)L z53qzJo&o$TBqv4c4I4o6S$)1x8&n^{iY1;;E<|>UK27tgI8XkJ+MwDVTk`t?(BpZe zWLuhL!iVaLT4Dl|NrOCvtAYV%Sdi0;V26?)O5aZldr-Jw z&wpe)tzG;YM%RKVo-{U1P0o2LD{T@jH|EvLRhzK`J{w!7!J5f8>SH;5tKqIIyDraov zMO8FTGe&alMk4B|4rzb}sW%<2IJcBqsouy*PX#d(qdI668@BRT>Uqr_*JI_X+qtu4 zz!z4IhQcWsK_o(GPiu3XD`IttVI6ky4Eg@uk3IMrq zX}?^#XMgwJ002M$NklQ=dlvVNd(;ab_=F{BnT>WQf)r}HSQSrv3C9xUew~3 z`&i+kIX~g-1Zhg=1gw%Wz7pSAhSxBRX1>Jdi+im0v2*VcUY#+7>Q!PM7aN0^PoI_uv~86ST1*NE| zrW@Ao1mUPbBT=TXWts8>RT)_6qMTunvTaOfqKPRC@xn0A!~H-8AhyHG>V7$mRh2&f z)ywjepKq7-W8CJ9C>|IGXdGJwh8MDQcsuhPb2?WB;%Xny5Jbe4L7pI}$b&$zItPM9 zE?zuee)%^)FPE-dG%Y*8a>bBG51*93eDO{B@{fP9Ad+(z&mjopbUAb8bUBUl{WQ{( z2-xDPAPgMQwp@AT9&1+yqi_sAeTKOT(Lrhi`ZsjlYaxEBQ^i?>J45xWJdjNkdQEL$ z834SzhSf_D{IPoKSlL@SUY@@=QEp?qm;dn}SIhtWuPX@tST2BQIEI1b9u-gd8sund zlk44|5))>M=f+zzsXR!fAc(B09lb))!A#izhe$A(*aznY>vQ$`^YV}Xa=ZNe7f;H$ zv)kp^25w|8dW0=7^9i0N;7>-8O4<1V%_CvxG%l#}_DM7WQR-`(9t4-D&sGV&O0QvNnyXCk4yj#v)^1p+~Gd;A4 z3~d-Kd{E!3&xJ9==}R&s&B7%3%xu=9rkOVuXDT8?4MwH!_;}?yykoy##k|ff$!b39 z>EbK3IUDyY%lNxuP1~BlbaSQhgj(GTwrhR^iPtDc&*fUGcA0i`jqj(#Vdv*zUh6z3?sat?X6whw z*SOL+n^(_SSkWmfJ(*^7F;M7FEwOr;dHTqEl|$o1V@GA`swgJrc*uDTh*_oL?!`|jYeWF`!W)%1fW7(eO_%1)eTC*j{F;- zROtQd%fvY?+n#Bo`Y!z`)q^13XxD?fXWJAjJg8EhnUc$pS-LZZc{zQUzFzJ_`TJ^t z4*?+GS4;oZ+0n_blns#cx!lt;kNI{H^o!p-e9u!^sq6D^(UfLhAli&vFB;_NqCC25 zNOhD}J+MIZyOI1H%8?xmZ zdR}e{KSi6;F$V|Mh&x&L);!K0Nlh7EfcB>JWK*xH6XSpZApFJY4wlP*{^uLz#TPfr zK3-(h6+mhmp=Z^(*@Z*$dJv}vVi_)8rB(frspX1D88Bz@2XvhYjp(f=`QVGK6w2$b z>X6T;44qK3=w^(3(d4Ad@NBM1#e%+$)|Gt@=rEF=K^A)|ts`ZSVZA)C;{I)HLGa~T zdHR?ufZ#ze9z64~dWAxo^#{b@q2LdeV|5QcK*qDCRmkz-G6Na-Vv}3J5XS%z=2!Sc z6tXs7Aj_A7)^3((8Ju`1%ybXGh_0)Fpsa_>_QKH$-tP4UBxOw=a+ab@|LrSykmE0M zX_p^sPGSiojsL6=Jj&xBi403s&NMO9-?iLiB+O;K*)A6@@0F{cFaYELOHFf22MF;$ zWz8`f;8B%L76%Z@b?^y->zVbP<>g1B@q8Ygznv~S=OJV6NJod6RqS<7%^xFK*`Uqv zbs$HdF`yar!C(Qd0^%!xn1>^EMle12Vk-UlT$LSknAmpGByAkicD@t9PUp*2{JMVi zG*$q?3u1d%%YZxZd^U2W*`%w30_vcB{zpBC;V<;p&Ymi(SXqF-1mw#bJHj_F9PL~4 zQ+{}mY04i>>l;MZKVoq%WBCkTzqTJewU_35ScSp1&%ld%JCV>{wN2oHom=5b?#kXf z;pSnQOtg7D@lf@KK{0%6 z7+8vVg9@ykNC32X8ebJd8zDnk^7-KqVLg>H1F{h?B|49M10dy?W1c*IL>Dc}WLg#{ zpy?03$wgiyx~@F=!$K;XV}=+&xU~#+Ua_rTE_}3YD=K|_eb?sJRa}R5Eda#Fz*GPT z+l95}nD!6rD#6OcWP^Y+}iv*j39@3Hfr{f9Qg ziZy%KhKAe0Fi?$K!PqJ`)`{K*_H7NvuV|dqM#DyONK`c`h^*w)5o`;*9bU0t7O#~T zJEzK@zP(<)xN)s~ck4oV_~3-C{K0@vx+F2WAyrCcta_O+;wcrz=9ifY*guf4FPAhQ zsuRf{u(O&9iA*i`4zN683N%dZJi++maq{$T`S|+N^4aH4%5VPWLAicy6YX<=ag)6W zpG-f#P!DBIiOMKY$|ZH)xl^n<>+D?Wpc?0q$^)Ya-$NSd9gHL#fgQu0O++V{p~Ko$ zkzuBjA2N?vGUNQhI1SNg#epKuEk`}_eG6qxg^Wm9)(c)&G*qTZ?5OE7&M&TR_vHRT zxqD*?t3<6JIB*Rs5#c@^_tbV7%)TMdBFBbb2XODf>jCHgxCSsNn`Qez#~?L1@S%XK zhxGcXn}_bLRdIH$KFr`U5%=MZuKRlOC}+b#_vk2_42VV-pHSf=?{Yr6K{CG4SioUE zQr?U8J7Yv7hIrLW7~MDSDgfl?yXDvah!sFS;@>xZ?WB%yjafUYo+wWRfJ}}_2+Cj6 zp#t?x@Z_JdXJA9L>djcmS6j&jaiaq^3=4*2M;H<4kHDhMNUbfB?b}`q0RBC}zbkAd z5Cnm^npbJP&d572vQu(BUbT~~MWZ%Z-@B-w>L5Q6B5BDCQqeDoezgw`6j;x#$d%*Lt6ug6`^!nS1`g|zLfDg#> zSBth1$T|Z-sEahL1VTOo9MJjpFc_+IgKT9y47P{B_|n5-zS!H_WiW^P$p_EOGAP7l zP%u5z1sr}Y>9Wv493LvjKP$Ugq(JK;6$y7|uNP4kUVx7KxE>E7v z&_0F9w8I?e^)4hEewu9fK9b`g#sJ#Ki(CeQaLWZ9^_-2quWbqlU*hr5oFJKssf2Nc z>P$CJ4g`AG7BDy&_@H*pzLAQ4-0ApZGI$m&5Vy&870k|FMdfeX9r}Sg!Md{Ipc&Aj{wn zj!)8U3lFCJK%c>^>~nRc2S#48O{`ty3sReBk*d9P?V$IKh62m_GNzG$@i{f7?jQ~l ztG7g*gKtw-OSL6Ca)mLNj`RE}ynO%k^Oxo7r`rguz!nKuQHgCsK9w+_p?>T_)@;nn z4aQMwD9#1saTO148*}H@{c`i$TjkE}d*#912M8KLAZ>T9Qk?kX$4}VyFx*P!lb>9} z_9165|8vC`c*2fDg=__zP2a|7Zwt{ud=qRHN#2@2PIlqUOL=9fKOMDLGi0jZ=g=}% z6?*XWZ29kh{6+cGH$N-Sw@%?2yJGz-Xzd$_Qra{~O|qA@i)?icMbcBpu0Sa@48D8} zj?Z(B)2b)QF)R9j97NMcM)rGBU?6Qe-52&Prg#K$UcUOI{ICDp&GNUueT2ZDy|T+K z-ylYHOnJVuRDG45>IC_I;4HGt2n(vW9oqsJ>2Ngc3<$0a-x=yvWqUc+{i@JG#%v@? z)}EUzL0WdAUX8hUPIiXARO&#{yt)j4slYnvo?+_cJ)yML>!wU@58~d$!F$5p9jp#@ zd#Bv}8lUgh%H6vsvHA{w-OpPFSXK3D5P24PA8At@_{?*hI6m&lNh5~$=1eV*ds5!V z158;v2YJ6faoBw|=3Lrh#o4{QcIm#I1e^DH{|&n3183VWraa}T&*TaA|DGZ*{lW4w z@7KvnSh_-g_^I?LBN@5w0;Qp2l0&*XzkTnHP3aU$W85sgfp7+yYqBkt;D$3V))WSzq5? z6Jkdq9Yvo7XV4k=J-W|7lGPbt)|Uelhw1Oy$FC4cmM4v2A*YExv8S?pp2L;9xU%5! z>sPRP*9p7lv6ERHIVJes)6`hrCho3iM{!>Al2!RAI^HC<_e13)*oZM@5*jC&wxFs! z#&mtnv<1}+Mwx2!u3LFg-{;|Ue%5=X!7M#b@&j+t7Rcj7V@I;$^>p!bI)&|NDrY(6 zWn&&j*zYr)H3l^%>B}rk_A}!%z2@gtT#b{)zesb%G&jjefU}JB)IV%GtcpzWmtQVU zmt<2$LPTxkdIoCz1_va~eR(Pst&^BhbYqgAmUWDH!cHq3Vu@+^j;H!gC^||2i2RZo zR~xoO>{`B(k#Yaf+UkeO%nrIfU2_B(%ZT$KeOE2;ApqoEwfv9Tt|o&%&6Qq+=XhP* zd_s}jQFQe(xt#M^C-bnJ*m=$~pNy9PRorR(j;YW%4cT&4gjfSNDHoz8$G3}Ik{>vg z=vi^dcbb8ig}0hl4Rp(q{@uzIk}}!Kl>RAN60g~5+|2$UJTs}s8{agV&!#f;8ZQ97 zoJq7VHt`rT?O&66)!ZxUg^#=u;ICQtUu@ym(+B|h%gwU&^)1_fo-ZkFfT<1gxH*EW z`9Y~3Vo^NPOXG4GW8>$3k3WlLY^UAk}eI4D{QZ~gSKz!yihKAq==fvFhOL*_hOnB0f$6KZkY)=$kNse~mD`h8bvHdxYxB>_RKw2kx`$xIb zqu!x5`lOa%jQM`Ix>2Rp}U_Kl*g z{)2vf`mmInU#%bjWEp{ZtL52aT#IpVRi*5&^5`X_vurQzm`0u^EN>dfCn3?0wKOicj@3K3EzC=NwqCrjAQ9oY1BM2K5VT`b9^|vUqh6ND*;afaO_-*=+jGUU-Rqy<2|$>xbpzD=*6F(>r)+ zjOz~XPhgNHtS_lAYz%x3r*b>?_~r_Yx02^*V??ZVC8t$0aJ3;q*Fd}#lv7HyU8|eI zP>_B%bddM$8EUuNl%vwq73R7wfb%0I{s2lP6hoN9#w^ zU=nt|tEe`C1MFvR2xKe%>|xcR&F%8&_HMcR?H;yjJXY@GT-j+mUZ&5=XL+@*uzgwdx0z=Dt*4W*zMNRfYVuQA6Bx@qPnbEW#u>+n z@`6v%#8aAEm$bfi!u?RwsdJTe@mV9+_RZJuC^n9Qee<5ap2k_DUSlh_a>bG;K$!1} zM$NJ$WXwEXs9ZRiaA#rJS-?E@*uOeRSJ^OOe2OL+@l>8nn~BCAG?EtvBp|26sG!X! z)j`vn@un-!VTJ(JKn-cvXyf_U(1&5kZt5tS$iucwikJ;E@;6VTqID93BJo~@WY7?) zT>WvH^k!QFrAb~`k{W)fM|BwMpl|VfFqp%8g5)Fk*%sm6G+`^`2Mt?kL*IsaqJb+` z_fViG)=;K`KV;rv3w#Iwd54Yv<20=^zE5*)XYoXDSY6oKq&CL1S!NMlkLkMF{)k>QYu~}xqQByOlfTR zS-G*)7&(o}RqXF62E5v0p}AAXy6J+h`n3KWdm~%fhWcxaep8gr>BH2bA~gVnFBrDS4w_067^MMXH4Ab<(oXIra0;K z+>m^nS^mo(mz2Crsy`_!u|{(Xeq-A7%kCfz;R%-=2EJ@cZmRuW86&5moIx8r9^PFl z-+j4So;>2OseQ&FO!Z`{k4xZ}M)u%X50+gQA0RW(V-@d)R@asg1mdaDK<7he&1cl_ z0UZ(8!C()r_<<+MPIpW802#bJE{l(phiD8A;kiX!JSXc4AnZ@+Hy-)%;nQ6d>N#wA zRM151%dn=|i!Mk44v^xAT-On9r=eUxWpBtmY)i1bykD+-f|r&*-^0@J^e0+|3T7T1 zFBfA#X{Yz4s+=>X2JoIHX3y3ZqcUa=msVDVX!IyUY z*lix{6K5~-h$o#1zj!G1(x9KG#y{s<9XdC1%Dk1$#i8=bg933R+v`+0r(Wws34&IS zI(B@ooV~DDE?(Zo>K{AUnq|+fGrShm0~NQ`QE<`90U+!qs#CXB{1Gy2Q`To67p+|c zATjXc@#ClEi9Sz|M}Y0t)(c>~Uzo1qBKgzLKPkWar{9*#S1#e2#_JbWw82H~C4$qQ zJ>7(^=VcAoy;C@+8E!#Ct?eQ&Lhal+&PUq`(L|!HBH^_OYtNLY&(_P$+o#Lj2dB%k zXB*|&=E?G8=TdpTd$DZqpR^zl-t(xXt3DBA2q{T}Il~AsCMNI_tvZ9C>WW`e)eUKn z(VQg+WoVM+9!nk%!{V!Vt=Hjb|E4b9qZ~W2S3bJ@tbF>DrxpbAIktpZ-@yHgt>{Ay z=sSvpGAl)%4)rz-I^}3jQyGoscN0(=v?;CCPQ_G*Xi{EUURb$lL8SYc?X+<$PgJbHQ_s|y{2Ud|;xj!XwsntrDE*tLLx zT)gK-f%ofNxk7;-yeH@VzXf~%V_P;N)yjV6AbjEVgsT?u*k^DyuLW!j{Ku4qIn7sK z;yK3qcJl259>*RrD%aHHC~J_$CzhRUDdmIjs(dJeW{2@u<2X>JYZ@yiD_%;;w{~h` zgxVo(Ds$_mRdnt(1c3bVZ}+eQ2*TbFT*$v|%uVVFeUxGUo9<9BH6Fs$DCzZ#0EsXU zTX}GVZe)LQFjG=D${txJ>T8N9{DzMs`}2nF_v#qPL7%+OU%kTZ%GoUV8QscLn8uBq z4MzII^VRQh81%7@ZR(C)zia^^e!rAEYNX{oB=l`N<$sTvSB)uo;iYFDM%Xu%%4V-G z`!EB;KJO1*Ohli;h&LzA*DS(x|J2j7iV1J*961b=`9FmG)cL4$c8d2V>U0$S!qV>h z;Ln?=|CEkA-s-T=LNn1@~}@yZSCE14IQ~UK)jsWE89125adgqLPZO0E8@8(OP^S4rKwxY8%dsY- zv6%a$s{W99uUgkwPVFfWOO=L6m)PM9T{R9fO+V?w_SCd4 ziJt2c{MIx-)Yjybn@*>t#@K0Gu4ZbYuKMi{dFrK%e6DtkKpX86HSW`jj%McrqU=}B zH|(3s9Z^5(PniEEVVYe&Qb$N%nipk<-%*HgziX!=B54tGnu*l zrud6svJT?ySLg8d@dNBHeq*^jdAL&e0+LIX(^=d40$FzMAUXhk-xv)Y zU~?xXggx}zF1E$+l|QiR2evM=l|R@Kn25etzosgv0c>MNJtW|qfdq)g8LPti;W1VM z`T7s5<-4!23dj>~Gs1fc|3$LRy`k2u*qCq~rYGiS3jm>R&e1X-sfwm1=8&>GBQ&LH4n- z1{x2?-aaZ#VHyE=DgZ?M-Uj85didBoDBCZ0utmem@&e=Z`SVQ#^YHTmWo%W1;MyGo ziR>W2gPn2>%e4RIx4$SCuoV=2*#&(QE3!RBaMOeP56eRYH!WlJk5j8F%zI)A3APSK%xborSW991`=j_EZR|DDITP<6A zr^?p;SxdL~PnF$+V|dAn8-P$@;z=*F);7pgvNEJ8?;6J6nLnqaYW;}`T!kZJ`3iC~ zq;;ff-|@-k%9)*^F5b8BUTEXkZn=2rS^4|l-NolYIdclDPH~w89MUaKnpf#euCDkd z(>ppSyI$41wJGSpId`ntDa7! z$g>nD8iSj;lF%CN1J-e$aQry7b;IO+fJnfdC!6KooxO7F_Hudn=rmU3xrq7W1f1i& z3)c!kmIlL3<}LUGfeSV@*eW0l0Kv5bv3naWHV=-EY}Hdg?-_SxbAAk=Y} z!AK?>f<3m{p2(;U3&~W+#)^91$B1c)>PPNjb;#IhZEu$9{&=PHGX%3Tr!9IfY@SI( zpFI)**&Z|GMkxk8P20UP%A8MD&zve7S1y+I^H>FhD+KbF890V7e~k1VepxGbeyMRq zp2CPXmG<(&WIeMm!oJBg+s%6A!z@0qb)rjhx+sY>g%NK~n*WZf_a?w+dM_@IGrjkI z3X}0alzcuX^EsR8Z?Z13v8aCH7sbAcpGWoQRcst4qp@UTOao2CButXni99nqp<*U> z7K8TQgq~i%`c&;NzUWqt%IdtW=WICC%Sy*0>A=n$fxhn52RUc}M>Q<8k2*?~abpeZ znNO7Spa!KAECi zUsInI>cueW^-B}W&EtX>rs>B_U|QxNmr>J zQp?g~+N)q?A2Bnpu18c=;aO+j0~Iu#LFM?XF#9z%erdXm0FW090J(9;ejRTw5!C?G z8fH@U;D~_!;Zf#Q1>w4G0BWsNr3y@$3E%3UJXNk{LJ;MUtKx!y;PUPTeW-p&8kj0q zU2z4Jdb%}SUP-mxE5e>_S@5k^ab?o1aldLHw0}o-j?aR_S0yFTFTmCxF{_q0N13)g8H9VwU#*3eM zD}bmP(qF3s$5ycF$MT650J6Nww>LmcJ0=yAsphXbZdGxhr)ZN(-Vjmlb2Tc~cW?V8 zwkmsCb`bQj^YEz!f*jz*8V~v=-;MCjzG~0BvIlH(ezrET3do)1a`)zPx%JH|=I0g6 znVd^m*QUPaMT?Yl8wo7)B_LA!pg0;&A=9+B;Zw1Zv3{xZtxJ$ax)y3X;)FKL*fo^^Z#*@06eZYzsjYd-fvJ#k@k2;e~6NffGC*`7*OMT4&@96m3qh zYm#2{`b*z!1b;kz`pi}c+1lF1bqd?ooIg{pfAVoTg(chR(>CY~`nY%Ze!2PW?Q-|l zJzR^o5&W@QPGJtYaN<}wgBLmL$N1SO8(2|j13_PWxvTT#uqs%~s9{iGRy2R{i>+UF zSIUd6HEcI=yxh2X7B8MpKtEq1JDLF>TYG29)13?D<=*MCQ%+$E2*1jyX>~r@m@@-1 zJTplo~QuiEsNj?DNf(=>_kkn+O7Xf^+@_g1WdmkOhBPx?@3L+qe&TiF2L-VcZt#)R~jz+}YFR^2PHw&o|1_ z_EyYs`E1Lt2&JG2;;>fNC88~YHML80abA)5eR)E=e>|bsHvxK(%gj>L9 z1&|HgyUkevB;ctyooHt;TC)|5;aFp=SpkjWCmg&qN<&f@PugcUV%u)2d z3UU@ zzEYnGqw+$2&S{)Q=71?1Be}34Q|c=(dr9rC8}?QQp*cs%T4bb9WTp+|)E;A^)AI5= z_q}M@#O%E5mHd3!@S$G!rnEXH>yd7ry*$+ClhXR*KA3sFm%QX;qcxZO%g9EP9MkNR z^kja{oBj|u44dUXmH&}Qsad_Nr>!PoI0dANBYET z@}5&!xM4bvJC8TiqI#-Ha{Fhb_(mHPGAiX!Db~w8Sp=U%huNdlWhgnnl=b#KFkg~4 zM#BIQYypGSKi)(D2rcU&mpueYu85vUbqwm}rPfMS8i1oP>STWqXd)p;eN`95Oa|1f zHw5%69?Fnp56_Y?WyUusQWSOo5=EIx5rc|2mXPMQVY}pV)bgz+bcy?e^To~!Y&r1g z-iif)JjJigU%qgMEkMND!CxR+07%ru+k`s!a5;iNB2@qggFx00_F9@B$vfS^!A>1B~NyzpUb6 z?8fCw767uejvxn9I?&JxGHjG608bfi`?7p&9V>wFgO|a4lVjs=Ak=it$;k)RNo9&m z(dMXneHQ9wU4pOuot?6atu?kEKDGdmU94KQj~8d`ySn1Z>swq{1O0;OiDQyDftyXD zUe2exSR~@bGpq#iV7Ywz<%$J?Y(7T-QM_0q&OTIyyv~{I0bc^zffGwuraUw{tjMo6 ztelUsFhFI3_F?Jr1-wCK#&ui(3lysREwu4yFcmbfTRjmAR^3+~AcX7LXgaD9_ zuOkHEG+)B{7G|y#<0l;A7~y%r)B>&42vf#hlg4wVet5y;0UCpCH!*IXVI1#ZJoDH8 z#}LSImM>=z%t61luyV+~yAR5(@9vauzxl4*M*4E=CF<(|AQvM5gmMi2SV!>3I_8%R zexSp)YKV3U%RWfl3;(X26-Bxid=CgM<@x4%dGPo|x%U8{d#B2?=a|D#hm{qqT(q5lS4K?chhnbNx&aK9hWt>W6F2dr>n3fCh?7c3s39TA^Z_7rlD^Uh zYv-Y4&}VoEGVk+^8%@eFz)zN7c^{uWbP$6z{l3g;JZJ4*l=rL5gU{7?j^X@U#dVmg z^7wgz2^{4oP_cG?zdfmwFi#F3ZLGz$pIM*V@$L`lbW0`Gd_uBtIdvC%eM{cAEBJYd$ zS;e|brIys{V`lpG&c1oOKYf3}?%SEZd!=qkb@INMOy<4cXJ#K@j_`<#OtOkBJvtcy z!0fXFa5&u4VF7TCxzfnY=iYQi!R|}QGXR9`@e#Lx`KyC+cRUr zWz9BH=IcEj1V zW$nrZ3q*H)bk6-bt^PNQSA%C?#%Q!E`e{9oZpo{hb!OUW^`8bWA1EW6qV?qwy*9Xk zKK8IA-iX*V67N?$tj`3fr>Pw5K{Cx_(Ffq4S;1Q-+NYkYVI@v`z4l|kP}@&m`lc5 zRPGOa5?7m>u6Sr@{x@{P1x*UG6Ak3l9+UYUFZ-_ZpK005c;5XwS+><__WjLq@B#>)@3jucO+@rQO21KFPE@1#iO~;H?m2KGCZ`f=DO)6OBa3)b! zJ==MZ57Sa9nZ`d2UAp9j%G5DNo1q&OPyon5S^;GD6f1ztda+|3W%p*dQe78DjjM7_ zr}0RqJvD=6y81{94;r1)*sLc=)o|@p2e1aV;ps0zP0C zWxm)wJiv=%ygas-#X+-`K~NWeflPk9jHbK5*u{!G#OzwPYJ<+ybdgR+?8{TOxwSiJ zI%R@Tj!@GRLY{9}lczvFq(3y$H@4O0)=@cs@wi;Rc2q83M*s-g$X2GvmSuqYq(_da zTp7s^*{>K8vZ74u^1a-I%?^J;@uWUKCO&IynZ=VX!@%#pDmcU5&K3Z|nRG~ahep0f zgJ*ncolJeHa+l*ZLjBh1IMIylUToD5uI|CI*#X8oZCOG9$T|Z+E}a7|1%QnCF=^WU zhE4{6aO;;ve3mv=F=2s=kH@@v9BtnkV>JG#oFG44HfEu?#mgR6MX;4Wo^2!WV;7T8 zzNEf4sXFKza!nmp9j#Mq%^Lk;vVFWSw5zcbp0jB6qAGm263D&VS_NdWJbk!SFmGsM ztWENTPPxq?B)5p^lHK5mmT`h8J&yXbz6+sTa-^Ai{KApD8Zi_VKOhd&_b5?Jmo)_> zg_8<8SzN@5N$Uul`*5#(^4Tu7eL2LWIs&RNiRpgvP9Jh%hb!+atl%1B`Xj9XLYr1^ z%ed3tUY_SQb%=525KBYYBq{KV7#Fzh0|Pg>Itf<>xrbFh?qJf`Rsgy80JL4>tzk0f z9LAJQeh@IW8rL}|oiAOwSgzi_MGDzA1|FnP@xW8x_5@|gO@svqc!N5CKeWS4;;`0O2F+~acqY+C(I z4sP-ArWj<2Fa%HRC;{jzldtH11HH6Pn%Zy;r&`qCK8GVK^r6=)#K z`E#6z!?YJMO(4p5>J^6PmdBV^q?wGEQeYBOzN9#_B_}=AS}=kxHmUmfh9|8|OvCBA z4?ULPOGR}arSOe`m<;6L^+FiioIxIY2+r8u-NOfghls?}${h!wTM!2ZU|y@cNH-9a z^}z?%%9SgZ%R2I0$zvIluDnNm`}Ggy-~Q$I<35b)XTgDap)P`p2^W;_!wn0A3IPL!#WKz;445x z*R1KHJ}$zBw0V)t`LAB6VE)CKCtil@F6i1o98C?Hb3# zkG@0z$lvUjD>u+?Xd|{M58BXC`w;1&ybk~owoeV7bkVt7BwiS%=Bp8UO|4x0NxDem zA^*JO-_l!Ya$uI7c`#MsFhjNUhbqSW8KO@v)%u=MUkluT0*w(Tn;l26QnT7^L@GwF z5zg62x_|KAzKC&Y{n}-01#OKSfz} zp)L85X=m_31CjdewDO2*J^QJ@5F*+L{6vy!WO@QEnrf-?iOSvqfUZk>euh6PzXPtl zccE(m^(*x=vPBbAyi6Bu3@^Dpl}y&tV^ls3Rx)Gh)V`MtOzWqjkLf)PZK@AYqPD0Q z`IQX>s9_UR`<@shrD_MnsDTRi?($M)=3o>r3vM_liL1To@fy2(_Fo2JkcAr4JgiQgIvRK*zrTDcq%I;J?F>DlAYu= zU$PqMQ#vW%I4viX##7a+4x0MQUcgyt8=(_w(pF>kJTGUeZUv3ja!t>)+$`)Yp7c$} z^i}QKj~e7V^8-yP7$6FfG(D7>c1XcA{%PsbCy!O8o-x`C{eW{nxFgKC^Vih-51*Eo zSOH}BySvx|X3u^(q6da)TGZvbXS4xam;tdb$aT@xxGLv#8gGQIYeW9=VWiSbr!|7* zGKK{88>(#&F%yoG*_s}5(r-%nB@y6cqw=~;vqSsCb4xRR)C`IlL#}ujc?R;}gn~)B zYsD(_m}p!m&#(o|gF8!Q8>@hr#vA}b3womo+q7mco1vS*9~K0{i66c|#>WCc_{%~D zf#9=-xhbv)!h7_#aw-?q(?I6kI**=sFIuk2LyCJWZ6e3)79KjR`d0{!JH*r)FP{`BAC2Zkv;nER) zz0NHFJP>3VG}fWQvw=*Mu}Z6%>T{*kjJ%p4h%roi*o4g?{G`%J{eDbdcHV%ol^ou*54pps6LmJMS*_o&`E^nR$`?=16K1}YsyVI} zjCD_Ai>|xhEtPxUFJUDKUqOJHXobJIIV=wng8~ zh~dY0fkQGpq;^QHC1VGMiR|*8vW9J6&R@W)AGdbP$Di$&O|JaGU!(Kf#rY84okL$? z02Tv4n6j|~R}H>_47&^M(%;;TvTE|-f%D;mVR2JnKVkp~w~2Z5;7PfUEnptre_S3v zdTJ|xaDv!Y4T8Wj8g>13<1`zgBL2@-@$4-@R$#TOr!TOZxTxP;YwuyxA{?)^uI0Q%#9eqH|I|NU32>hr)n<#n!W9XZQel|Wxd z(8z_&jdB^!1-B4Pa{1h*Z8fro0O)7WjuDi#SROt(k6@7N<<%Z|7;qQ>;_~=L71$;W z2D0aI^g9MB*ay!b_FRtp30DE(Y9Iaq9|6g}0to2FcdXjp4WKRU*_qGj{>;v2S-S?c z5(wHm2Z%I0=oTcR^I%PF&%#dUd5Vv8*7MYOJkj`XUuKte#XrjW-vUv8hqzAS`@@tt zRxFZ&ERwY)13;E=&-vsR`{h^v^#H-zTpa~g(XQ2>kg&Fg64S*3j(Sf(x!3QA_Fb_c zO}&3W2~}qsO~WuZrcZyqQU6K)R6x{as69$jG7B>*80QM|^VDUEiUFA}u+BWv0%cB^ z<68kBY+$VjI)~UBgRn2Z>BGi9TpSAs5?{f%Vq3vny;N4P&6ICPsT267Ex&1fY8&~h zGVP4fvVHMMlU$}{>`#%G540seGVPQ;Z~)YyL0dGH$rnx7NcA^Ne!dW`gU(fyH@QYV zP35^1zGaZEOWeK86P4exTkp+}w1E1R`ku-e+VfP-m@&D`XI^q|8r$2+<*9v7&H$|I zxW}shW_@SL_jqW?V#LU>-I_ z8&z6~UK`1c%Q!|nVXKNkW)>DTQT-{?)nTZH53Q}O)lV9wp$9raZhtLibUkZLkl5-& z=i30)3hI~noHXwH+`H5Q?*l;IrL*y8;fqF#KFyVz#?#ONY#VhjSWU+_t;7h|sEsy@ zm+{IwzPZuMM_FTL14=>lyF!wGJ|LrJA*TVlma7)lz->uSVolAC$xw^yaD7pOq+^mI zo6<)xX_H8)na**R=~?)Kca;wEeOWWy+g3bOkS`?B#8|T-M4Uq}7+neBsO&$VNlT ze3a=sUqqV@)8{&^POKLio^p0DPkZ=~ro?N_Pyhfx07*naRFBoiuuj8w;FBC^q?#`2 z3%1@mj`55}TDYT3Sj=WAWOOrwzK%#)YPq_IJ)n#?L=jNzB`8iqLf&JXih zjy8B6&|x?^b9}%FOaX!A!6LszRwI&}51rV+Q?DJEZL!rn82Evgt_z%XsXjyo7aQ^X zCEhxgWnQ_601(d7@SwelchX7U9suGifGlJ3=_~;t8mm-~X=VD-V@~q#RD7#H8USsy z_Y7NQJb4~lzHsFa{Bj;!N7=Q+W}0?xI)gejB+n_*X_zcZr|ZinEc$_oWO~z~{>t+_ zfewQDJK_~sU5w4x4h8{wkMA#(`v?Mgcz3Zpez~`r+O91w@4#Y9Vi&7_ z>{<}rxpP?g1LG;jRewpLk&Qkz?YzEht0XokuQfU`$6+w4L8fVQL7Ol_wmm~Qy~jCK z-~Rl-68kT&rF=ax(1R;}a4VQs2zFwA2kFks9c!MW%(mX&Uo6`@*ly_l z`SR`em$CKBx~(+8`x6h<&16_}TY&(Y&i12>+Fg02 z#wW%IVTZ<|Ov8Leu|qT#h#}7y{>8py{YUg*8cn!_2`QHmKT?WTxzN)=20l*kK;Wuo z41E3SFYcDV|NGnJqg&h9GUO2L&-(!TfJ?C-Q$q2b@WIV;1rwqS3_Apk0Uj@LZQZ~7uzdf`4+sKz zj=t^pYi?U;TNmO&5thLr7cO2XpMUvD`3M16ml3#e?))a6cRc{)n?HS5{_UTBhb>$l z!F4|8E#f-FmJGQ5xUJJN{?1~`Re;ubE#t#ge$H=gmJR$$pJO|3c{{JL^3$^=Y{_&E zD}h|a7EK#=?b&r1O=cq?@_Z(@=kgfp{Ql4aKrA>L0U*9Ip9h23${)OsAYfa8A|?la z*f%&f@WUW&ThYUwqn*a<(mv?R9>mRaf%C$1M46EFXYY_9n{+qR%c7n#|0>W9AiA*z?^syj8V@&x<`h_qRlFfY5#`I^Jlq7kPm=1IY zLC}m-p7=3-)q~6!U-Erwaw9tD(kDYwl9c!N`ox+mtEUo;y?O?uNqY{6S_(Hy>EJ$5 z2gq>=8`sfEZRInJH7f`ZUBhZcYj|GZih+K{SYcIuT+dHW?N37Xujh?i91E$iAbi<0L=T&xD^=rk);ilI~f2=^{opXW`!jPyMpj#Xgv?PhHnN zZtikdp{%>t(LsCmz%Mn_xJ*|&jX?%>3CUG|^stnzN=`Hhshs&e4;bpsLus`o`H_@( zSDSkUfqhxRqAL}>Pn|CxCjCnCBXyCs{3A5dTK`D$0iLjx+N+^kPBvVxN;sEE&Z%;+ zmld6;o+o|p)3@CM?*l;I_8IuIv#$%kPjf}bd3xwFWQ>Z9CYf1!dQ2|oJazQtNxf}g z9>WGrV_O4PMe@Bu!e$#pfe1O#YPo9352J~ALUz)26R;PDC{EUDk}~0YQ!|%*f=71J zMvtj&Amcp%Wi_|%M|>G|(jhEyvT>4(^H0`2pPp$b>CY7wZJJC+ho}dDVEJK8Fzn-3 z)-V5byX+tUcRrQzg|P>DINwef z>Ownq9fv(HvpwJ!zm3l_DJ)PD9LpNTFf0!ab!r!JR$!>p@$L(M^}B*S#BY9dSZ;oN zR5rHQR%{pf3cOB+IW(};3dv?8MlNh;HO>hJ3hLWls|gJ~+{O56+k{j00@?Pw^a$~3nyGA95VRiSLj?==Hxb4|G=cu83I6b zEz*GQbE5U-G0dc6uSa3E4zUu#-u)+K_uk`jh>7nbOw4gfeH&<|os%hM>ov&Jc}m$S zDo4mttP`#BBy`%Za4Df{gx7&IQ3EICIIg{Xj%@%iHsAYh5##hqd5SH&cyRp9hphMY zHJ!mUd-#eTYWA$HLJ_*6b$`m}aY;Uf3coyp$V7ZoF(`!6NF+Z20YN^KXG0(|%PSuI zaq;p#R=RkF@pB(rCh#5s?~{@?u0fbatU{pTrn9uhfGpgYXh05xKhqMP4^u-`S%&mz zEW2JaZ>ALoqa`Jf>!647E_0h9u&#)rL^YY^9i?WA_X+Ec|0<(#0{_>Se%YENKKv5I8%*S=Oig9Tf9ekBRU8p;0i=Z)9jgJf5g6ZYX3a-g> z2+X>K6-rV72-}M7fmYMAI3wmLYac#~Gq8iHV$DpV^PLZ z2k#NoA=|o->pqh4%A?ur5N1q|uvH%jvLRld3ft3J9(@Ms8=)^}MN@dHgP^L5%JZhu zb5{A@&g<%1hzFpv-s{_Qi8q`U?y>$7olxVvuzej==6y=%KFfn#wc$)IcVP1~HaD?`_U2_d2-TKdDFkkNN(ZCGAW{*Fe%crmKUFL8@Om5#uu6nrhSbfad5d zQ~lvhFdun56g>-)mN6YqdNq`q_KcU#lnU#rJAVcvViK~fuu6NrX>?@xFm5a4ySij; zZz2F>=;g2^Tg^Z8(usD<4)*fm^>k@|pT6xDcpm`rw$H%N-aapKUEsRlm9la-LcOE{&(>BzL47hh@PY4GE?XE)`_su{1ofKp+pFc9wQ!GY8t!iAw4 zd-V!Q{6R>0H7hBhKaq$qpZbRfW4O0jMc`e^F#{7pYW@h5A4W){4`V3dr>B!rlUT>F zx)b-B02>earp96w1NMcJqLt2Rs&>|>JP z<<|%R!RH9e8ZYoIU{-&UzTor4ME^XNMfKt$(}s53sI~h5qyqQ`k#lMb@S_8$e^(Ca z_(;MuNr%aR7fhEKAgS0z1VV{8J=`cYSYRgGAnf<5O*6lOk!(~dSum*jbP&Sq$lcUL zOn_hfj2V_juM1xuzj%ffK)zkFNk(ja4pELf)DU9~H9?hqs1q_aQHZQ9Esr;g_5#^n zG;?Wb4+2@j64chE;-$39LobxuOJcs%#Y;BT!Cx4AAc(#2#amMHME4ayh^IU!%A7|K zasHB6`dpSE;|W6?K7O!Z|BYy5)ZJRm=#T}_@Ww>dDTpuQ7{)ajkXUA{BQz#oT;m7Z z<%3W6%ZH!hg+C@SL!ArL02Pa<)Qk=F8%T8Gge5G~O-xKN2yvP?v*k@m)k~TFTDGbR zR+UB*jNk)0kz_q&(oRq7g;=XKp0(wkKHH94;l3bYa0a=gkSV6 zW3TVCtN>D#rc8V082ZCDo5#PT>f|iyOPxoUWjc7VUG{K4Vo>4%Cccj_DaZ3>Cz$Or zaUy1`S340kN3+gWHp+!VGExnwH)dy@W}^zT6zlZaH8n!_6+RX)fyu49uq6z(1GxXg zVtI6bsXTeOPS)JwE7|wQSyFUy@5Hb^35I9cE9kA6apHj9h1~{H@{J_B#3-+)oo393fZ6{t~ zTZ)&v_S|+1`VxZK7zDztC{{3`%wu7J2pp!6PqBmcbre0fZ}otRNzD8EwKz z=oS1jcx|1N%?K!ZaRI9gTrN+aZ()*oz3lBHfP#+NQ3P>xIa-u5}6|f?{`uZ3g^nFZnv+h@}?UYYHeNw*o;&J)v7mv%OE4voV zdUz1C?4jSrfXJ&4o71Q`ZHVUfI%miYhnPCXrR<(&^6}-&YDpE8Mq{AB@&Kwr_!A0Z zY;~p}613+uIOO-+&`1!n45aYD00g7sp3K!d7{J68J#33guFL@%53ZKM;0bPZ#9*f- z^j+RhUp#+V9wJ!d$>V3%-??heA!JM+?w`g4fBWD5vV8T`7r1{e zW5tktv&|JizWw^U@~{8+J8Z}F$OAPHw6Vk$J8;d=Ci5Iicuk!{P}TJtSFw`Fm2v^W zoEx|Y6GQ)BVk?=)kDpj@3hT~mn=9}5>L1INU*JFo+lvTRS-=3#GGEr(ul9LeVc_O? zxVyVj?%v-jfBfcZdG;Lld3%=TDrRwhc#WdKI2C@JkCe~ic>ZP(HcWep;0^|VU_Q94 zZY&^0nXB|MP@B){@RNbu?6>Sk4F2HOFHE&+M@<1RK7v0OMCRws$7aJo-gPiAgwOPF znCG1z$S@_JG+yK6dw+4dc*YMb+r;P)<3Vxb*Fq|jhC|m?m~t7>qc0jTzSx%NG8VA? z#jg*r0?0u*e+6dfGunY7ItKSv7!c3=QbAy*34>Ex5Bb;#jvbV1Au?uU(q@niG@+MN z*v**GHcSG*gzYgnKpdlITZ48hfIa}Bndx)I8FBe90k*7&Q8`@yqWqS`#Se} zj@%lz%_Y;P_Ve0`&-$6G6AhkfhR%N?W&j78;|lNjSfPkpz^r2BqvgvN@WTvT^t!nw znYW)+FQ6x^Essod%J5q_QOEE-M%Xu<()MX=jrlsoCk=jm9}#_u*lEc9-*_C8dz$p+ zTIO10y0AZ&bmE$Y<2s{W$5vBbjsA2tS-V-hN%YB-H?8kvi*E=Tkp0(5NBdebYS-$N*7G~Z9M%U7g#U}fl-=9A@`^AkA| zU|{GsG#U_Jz43lbltUE<8Iu*m^{b>YPW`~m^a4V+l=$jXBO^CWR&=EUp;T~w@0SBo zJCIQ8n8YJ{mH-e_Nu8+Jq?ePF+Gh0}Ok(7usU6We>G^xgyV3&h13=!DGx4+ZV{CNl zX(}saMRR_vOoT9=@&-70h^ABsmU~*}F+Ytzn^*ms@Mlb4&|>iPI`p_L-~YchbX? zDOvl;==l-SD~~BD+WcDhcFzJpFo|&Rbi2I7uih*G1OXxT=I<1$ra{#$^>Rh!0X|m) zjQXH60I3jQolw@h%Bxp9K`mnXDn9fW1bCyP9g+@N@{|l`I6JKLo^xU*nez`WXC zEc?5B`OG%<)>KVQ4OQ_2O-z^Ur7`k&$?W@zBgLv8ct>t8p7|15FQ#dmay;mwuh_u? z{>KYododg@i;1xh%G!gR^>r-eeZr6m90%?0GRnd+b-wH>rHl)>kp03CS@RJoq)eUR z9Ab5LdFL^2N8pubN;#fdw#DWa13(UJ6_7=|bmt4@P-!9tHX$$Cw;D?%3Fv}ixzYlp za%GS%Mb50HiVfLGXl1l(1=>0}@iM)qO)Hzp&?ihadYX(XMVZiNB;;-T7xo8C&e+FK z{HXR3HMRAs0Cl0j38V$grYvA$h@D-Nw-uK%v`fd9Ia&14P1~27*AM%qj?pnoOr@$D zCu}g`v}h}UU}7jHfone!{tT&)k7p1(tq2-`ZE%3?Dqh`rSoR)1DTm10Ry~{%BJ-U* z!Y}os>SsHb{WaIhr>~II@4domATJ8Gf>|ox{wKDCxwC{{uVZk*L63yXUR0)K+SgfH zHtUtVnxJX+ocJtJZdBHx_Dwv;bL!jJ*vG{AKDK??E7xxBl}nco?cTzmKd+-}*S$~I zO|^jx5e&|<01%{B290A(#hK-I_siSXz4iMUCSAEo4psu;XAyuUj6uFq!GcXVKYsKW zE5u-HKdhj$i=bZW;JD;tvrj~?U{#bgOm3e$w~9&Wt@7mgjq>2}hgfZ33xOxt7K1CS zq`}-tP=bqdK6k(x@x+k;bFSSRvSf>*v1ImqOI!^(B2Oo4PR|7-}{S_k8Zz*f=Z~FYc5t zfAO&V-G94XZhp9pdk~&yu)0G&Bv+p*!l;kM;dB+y83-qon2Z;2#slr;K^?@Z4d&2L zQ`@ncW2VX^DwOKlGoh-WVbreV>%PKZk9`DV_-Y+kfdhdM3eaGlD{|Os9{3xDjmV&n z^SEzbzi|x#92fA5_7yxo9hQd=9+&U1Wy`(04-mBRxNL9ZK^6zMT;b7d^ZAk6!yF=* z>~i_rzx!?Z>X%<&%a#?aGIe0FKwK&0yKiro|L>oEUw93z!R9)GI#zIhU*&2YOo3nK z>K*uS3#M}jzOtYcuIz#9kbggM)skx4viyq1Lt;T5z#QQE+<*Q8Tbv=N%OWh;u?ZlC zzN3iG{yw&5x_7Sp=hxS;9Sl|gLDiNP{UQLY;{6$$!6tr<*>fjX08ub@toE^tpbrLs ztYN37)%67gfg#udG(D&LHHcma6TAg;bq`ya4}I1Gu!HVAuEN5$b&Syv48i~p$y0U^ z077}}SCk@6AFBqN&DAHX$Sx1ay& zu>AVJ9+q>LQAgC1_3KyBpl)5e(xJ4!*JSJjFZ*|07OjoVZh_;J`ViYhrQgYNu8C-G zz@>LaMSsoCa;!eX0dyL;%>5{l=gN-homRgwY;UB!32x^o=ZGKEU&pAPIq{H^EvAObj;w_byez+%MDCeait?9|R zlQ1XorE5AaH+Q~wJKg2je!T{x8L{Wc=4sM5p<|jo=^m@aG?|W$hGC$=F@AY=fM3vU zV+)v9U;j{!xW~MAu1?@|#oQ&czDzfboh>~)sD?wU0oF;iB9TsSeH(S7Ajs55?m!>q z?LS`qAtleX5UE3X1NuV^Nm3L#h^{_MBvgnVMIs5V#a^Ag)djZ?0O4OGX4dK=c{$?h zYAJXAN(_?}t8w42^v3pi2Zr~WT8BJ#2}Exvi%%e!SH3LP3**@dSI!>Gc5`tkiHnC**#p81A157~N z@L#dp%k+VK$dab4*-D^Fj|`Ja3!KVUWI;+Aqf#2lg~ed0=aB?{I)yG1bQZ)TPRBIb zNf^n`ohF;|-AJg10zkO>2PY$VV&clG>e;7x@SI7NnxK}gBcLBM;ER*W3;@Y1e@N1B zuCIPapogshf&h@!OXr-G0zix)N0e3tDMKF_ScTbDUjbyzmvts&%ytr;Cp$TQ%_B8G z#sg(IQG|OCC&I8=!QR8CwjvcLD#=)~8+aTJCS(^4QX6R2#-9O%hNkkAxSuHz< z7Z3n)6{~`rFNX^oIRBV@0-IR%Wood~lpCKIGDZ#?CV}PifewmV|6<1O^T8obACj1l z)Djkg&$1m>Hk4yQq%Q__vg6`Ay4bkC)I}WYgU{;f0RliCl>hNRzAc}9iv66xWMAfC zI4H9|jFOd&;W^3&iWwY6@U{cmu612t&?60#`a+uG`WOiXm@=)NMH@p)zAu3;K1FO& z9}iy))U)6K<{4mt`>O?7AkY50j+JK^XvCE?K%4B-8=Vfn<87G1NeRPYv#EM z$UZ;l%iQ9H!5o`d`Q!5COXZW#Zj}$Pde$QP?lCY50J;6c-Et4xu54o!Dca%+HCS>zI6Fw`Q>lEEFXVz%YrtzS_msgzaKw(R&IZP2YOzbjy0?v#8p2`CszW& z{oYpt@gR^j_#v7FokaWjN*a9dwN|rMwlAI^wk>==gpEDi_l|H4^V;MI^)ue!92eP7 zZr|G~zyIU)^7sk1Z$P*4EgIW7Vcqx<&!4?f#xnwc=+F36OIKJ%00>qASw{fK8dd>O zAjrxJx4dCj;Bz)ouG(RN9TDKcl|XQ7=7-lHyT>86h(X+p1%S|b>k9{14FtgwJkR`C z;C5aCgt8|EfS?KVcL4QLk5UWL_M$fwc{mJX8R$2Pf5okk;`Jl8Ux6-be0;GDxboK4 zxuf#wFAvLCe}$EnEV^i2Mz0)*~VWp>~{;ocsqyAx{*YCH+km#9IJoVl=v{HRYIyC;NADF~ceN{us z^fvmkprlXZ3B%MeykI=jA+zXz**aUWT%w_32QrmxLMPiKf)C zx?xm1c?@jK5bE_)%4rf)Syns^OuZpx+tMjL(lpdCEJJ7xQiKa`z6 ze2-sV?|5HiLr!bJ8BW(1D!}MPlV~cl3#pIDM1A!kMn&X$22&UbSAW`rj+SO8L~zpt zLgP6{ea6+1rcY#UxdDn3ZMSZwP(i<)ZA$ez}@lwOr1{42H>>3c3fKY^rLa# zDY(AlTd0_NZfOH6nBn5Cf>VvU^dQ0{K*9mL?~hiTVcmLeS0rmO@NewXa%j1Y6nM5l zT;7t@NbLHrt??nC^RLD08M#{;0V83pzA`3(cUaC5wMN%*q!?&ba;1Dz&0N0#)48>( zT&DxG3`4LN^HY{`JcE%cxK815eTHYT7Qko-8hT#sC#cF z{)z)H;+~)-5@f5X&=O=3C7;z%GLs8csF4 zwuL2c%~>c>Po?=!2o}sMXMG-m33aH|=)HJ)UCdlNhl8KvShVeyS_$92f@eOTwOvPM z6+&De(2fev*c@#<{j!Z<#EVJJP7^9Ev%T0@G_7!)*3#rU?>AIhqFA4g`>48{^?p)d9P<1AxM)hwsmHfx=9bM|(j!ZH*ga z)NrDUi`Wc9zNC>nq{{!&2(VUY>Hvl-`8I=%(janV16YY)f#blkDe&eAH+^wIdGdm= z^{7oE&hYw|h#pmR1m3}Y-lkZdeub+As1DF01lP5DZKVgs}^FO`rXNZEJbw0exz$_wwzDoZSMTMX@2kpzi>rLh!X6R+aF|NOX2sZ1mdZTY^##aLf?Ij2WWcK1$#WFq|d@iK1{bJm%Av0Z~vX z2SD^5BX?HntL*L3=1qHb%%myrd+#sB-nU>?1nfLJk9R4`w5bX9c+Zf^@y*G^$pRZU zp|zwi_Z9{W!oG9wS+2`s9D?2KDHwlu>OZ|a!zK22tU5jLu=}42jRFWeBZq`6+rm+n zMYpkoqN@zsaP3<_0TF|^>+CH*F=93!|JgqR{a${f!SVK@76Rl)3NfCyJEev34QpFk zw5#;nbbYVJrWhPeu(8pHnl&AZGS`|eQrd*qnSa}F4WzQHEkpnP0%(X_7ci?9d;H_g zY=Mn|(&3Eu8_w5!jk_(DLS?@4E$Y#FG~SyMA$HyogT~NS^}O=ty-dHVKb&28EeOfwFZ8y@Jt!vFC!R)Z3KQBQsN?q zQ8D^x^`-o~!rwr55^aZSi>j_Fcj2T^z&pC6Cy2nAUL-5M&dnt2xOrw!9<0fip zu4l>Pib$4TF8P>2e~@6_ZvT2?tE>O?SZ%?p3^cw^cq3rst7zp{dBSH#;<>r@7x?0V z=gn*Px*+VFd+a(Mlra8HV>F01+SI%#`-tHvuJ?56c)8`D6jNscAw*?VQ*R)(MM{fmWe zOWYB55LcF*PgVB_*-A0T#0^j4ToU(PFJAkFS(iD9!bEf4d0ut3;u{xo|L*};SF;h* z=(?XFX;C!fp@^Zc5Uid-q);!E9fGaI2K6o7xb<1q^I>wCqfkfxSY=e~Gb$MVtO~RV zGCvZXy$mQFtn!xzZAv?!D(=KCr^9C1i%%)I1 zU(*r8rzfpkm;{M<46Um+iXw^Gm5!?^dATF&VrG8dYjgG=;Xz|E)RQ8**r&S$BgZ}M z7BCax7}RV$dF@O5B@Re;!>8AP-CIJ=zRX6&{uhWR022&Qo=4SxSgN9DBesDtN5pI$ zEu(b$lP-^Q^CcQT*TKRgkJ!8e{dM7YC*nXp+jS@>PPq@xY8&JBFGbOzG!>T87ZH*5XgPA8PCv~k-?B63O-o_UE%Il zakD#bhHQLt-HF+MTKv)CbPBUZu>BqKnVO^Kg=>vD&m_ILHZZUdEqWja59~Rq?4|;+ zJwfJc_u_R4l}^lQo*WrlLL75$DM{j<5`9buLHM7EIT}N<{g8YOoqIR83#y6ilpnE` zWNhCu+Mh_9lWu;hS2Di5WCg$1K3*gF&tEU|7TSc+wB80M-!ozF(ZN~P zIL{S$;a6WUq|yNJ#_EQm%nqqEjJm5qKE{}@$R_ceG|6*SB>7#b-!D`kU?~olFlm2f zYH!5AZ9TS)g>5t%T3{{T?C1%$1}abY*9%x`Ge8Y^OsG+#`+y?P@(`07uE>au#C4ioH=(ujMy00M10)6)((re9}o;wqXBIkOP-!o38#p z-)Qo9rF>%&lMfo7YU`@5sGk7DlW#M~&l2Am;zUT10t`2pkABiuj}CyK9GX|>d}2n! z_WcI}=PLQiZ5m0zV7r+?l7p*!|GswNgwR98AvfAwO8LR#RG=-Jj5dF`nSR6fh6W5?EUKVnEMVbtd8MU2!sobSx6wU zFdE?!tv2N`LpP@@vYb#?-v{58w?|-ZvQCpwjTeb#=MI-tT&@745~(0#T#e5%JwlEn zed@xkI@+C94+w7^G$4czpNb6w3O)acj{vF-@S?t_>D@UWvd~;cn4~@K|Jm2r$Vp-2 z;NYTWy=%)$?Nh+Cjx^cG;}x+DuzwBQCeZa~8H)O1MA=p!e2RMGb>B2f*4YVVxH0Os zy$p03lUwGEg3Z36?} zT7t*C%n}zGgN`-2srGvw`-0H~g(udjATBskT_=oTEv{XB-KN=is|8I8JbK&bd|Fok znK^70-f7u@69F;qmlKYTp{|%^u#l`pQd3fq_;#a#;VnTjttYfCSOgikthBR&HE=l9 zvz{&A0D0d~BzaG$a_hD4HH}@RCBdxPMt_sMSCvUXBrB;^xpb9pJ$WxP!`V`(Gy6by zLA@9D5~ut$-(SCC9pvy~G+1-&*IPAGr;HqCn|yC9qQKsl^4CYliX^^hnOEu5^}k}S zf<16b&y<0-WU?xZ)*I-1&p%!p0eKu_d0lhR3dzFKlJ@Uz-;aYBtbz5 zKMff_LFfde`fmcJ{l5ulaPt43fL4B0>cvh*?B@)MGE*EY>%KnE(J^?05Na?vBjSP< z)=5j^r}naCisDGRIe*t?PSok5iM${&qEn7wSxIY)l7*J1Xx`P&#lfyl?Y0Uh_D`M_ zz@V*#{1a5DJ;+*~%*cnPW*?pyYV4*r~6j_Z!BUp((CXsqH=pB0Iz)o*{qaJBOsTU6wRkqQ;lTr$D@s zqed;(ntn(@l%n6mITu_O#B};0S;;*izAQ#Y1-E}vUo1zIec}v?HwlGPWGU;si9Z0lccW$5s#ll|_p4KO@fEoV2GFQ#ht05wM(UZ+H824E zT!;2#i~dy*+alSV{o6LXzK;S!cSU#l`F`8rs@E?Dm7m!X&B_4!*+Ws@ozeh4)#24h z^8TONzNH^`aES1I32~X@jzRix*JkVlk~m22%t`;`Q>=QfNl3n52^{ix1)#ttIR!7n zkdJxFaq+ljjf{CQFg;&d=A2IG!}R+CX|*AgCl7)-V+oTGZR z=B|U)>`vwZhv2!=-vJr84XCt(fZ+8paoElvFB@qLzT8v|tg&mYH)8qcpd94i=OC z9m?*h6{rSX{~ZN%h2rt{xY}B zf~NDh7ms69ku$kc%Go6f%XuwtV9sX2*Y{Rl$Lq#uYP1_(BG+5C^;6DS1ydocMWW&@ z05>a#NsD}V&ns%#+z7Q?#GM6YiYAEGwhcvfwIWUU2Z?%zlOT;}9B%fvD~WPiwyc_K zS*#=9ib@kNpxp8ScotUZ8T|4HZ<`X*4UiXe{y3?bBn>+F&=6WTe3hdbWhBP($KB2` z-6ePa_H^^X#rKEQ*4vzfQc!lWi9H`bY?X^p7c0uXqXpht&)I6D?|cvT0QDVf&rPU{{_}w~YB?obVl!;QC?~u$(K_0|%4+K1Oc+$a9`n?B9`>)mA2?@{5`YCmRS@83kP zSg)Vo@tbP{pHJyjy;E7SSj@Tyku;k5;+_wXxgE5~!}X?q;H`pSK0P?BwXl5q=*!9z zO@>sfwVhDJutyrr$JSt>;UN9o_)NOSpRq6{;!R1hBKHx(8gi2~h&uY%nAv=2RP+%^ zboDhgx`w8btrrGMUp|hs8tBl~6>NxCQFd*Ocpmi^GjirHK^%gIe$r1^1oeL28*(h@ zZLR9*j@d@*!6K!HOc&M^jTTOXD`C|bMtQ_*R0t0GZguxp7k2ky84iLaUxy%8t;v$L zBN5~c3E9*8kt_Gt1PsxNt*nJ>`GnX0Bjjk)Fj}hOEzY|RXPQ{%`Xnt17E7ff9V~nC zPq2Sj6%e8hv{yjlEGD7_$oX5ajE#;uwM1{nosyA#aU|+lBg=DeMq_(p3=XyyA2+?_ zlw7h?!XKRx0$lz2AVaMX<_%)|P)ufkYRpg|XDPXQN|W4b>DO%%AY~EmT3widYI&(f zQ-Gu}4LdbZ?5iqiFON83IL{UGXK9ALuV3x6B>rChlIA#mjQkA!rPTPcdrYmw-rXn| z%?#cztl|rg18jf?S|bM@iKXv5&%b$6)-X?_Lw}9owD(!|!SX<170JdTs51&W@vujq zrzuId69lZfV2P%=hng~)1H>PzNZSGGLq+o?ZIz>hTKr~y2Psy z`2n79PH7}hXYwT@ek0trZjxF`M2oI+VaF53^}4UwH~F_IGWtm_4p+czGeQuUc%~Da zdzuz&^YOw(xaofhOc#EWi;6D7+Tx-WC!?(5%)n6m6dEZHWe&Op{%&O;M{LQQ&#-&? zblRFNoO*V$UeWBv=;&3^H$X}{(Eh+$I6(07P9n*pR!mj9kRV;fD$* zvOf14%hE5vF~h{}t>sXeXZl!K9CY-}r46v8TPc!VeUF(LLAQ$;Hancm0&Y%5u%Eh! zz9qim+q~MpA2(LR1p2htq58hfN0De96fci3gFM6C1vf^s^#yGYfClPS!n`Q~(Jj!- zt8!&9H$iCGpHzxvMr@i2QtxD0pq_ix=T%xc_GYmlbEFeIEJ+9XwOttBc^hiiPf|OX zPrWz|0cxX)1!yvwy^6CkEz$9$3-ezqW&@0Mf(cu@1q`UK5ij|gXu*30S`9hQ$8dMdtHSZ6vZ4eUb(OCfj4k}8K zBE$qJ24#)#=qb#qKt);0Easx(0eF^30vb`Yx5(CCPywZ*u?JGhe}24xxqRVcP&JuG zyNe2iA8ufnQ=IhjMcW0%QIo7yKZ}?w&WG9)RK~}WevvL~{lKZNA|hdT{u7T9lR|RT z;3TPVqP;UIz7$>RYtk(WUldLB?4033EL5Rlh?c1k-p=Dd=!K*1`^+jD zlKa^taKL;{j|Yv*b*6FiZ@al&1Lg}cklw$-=dZzLz?61Egt!ts$HrvgeTxRQ4Yu4G zbM6+8D-4Q)`3A$1kYF$6`#3Vmcm5TLoqxV7;OYhk;d--6yV+QQZx^q;bsbCCH>yY$ z=CtV}SyYxwm_=6RXFrE~&rauR2H{;`T>@FuTCgZox+=*rRpibpn#do zco%!kSZ}jQT^Jw6`QJLlp!|CgCo}DwT_iPU+tAB_@X*iD2lD0DVK@x@G2O zXHjL#lLt}j`0yWpe>nSud!4lMmnW7r-7lO#yK3LfpOFe5%Q$QM+7kq@b__q{gJM~F zeeM^y8pCM8k7Hxtfl1Dr%qSGNofEjRpy%6eif?WkiVfG1462)Zd$nU@mK>YUS9WV% z|D_}`50KzQnT)=0QCHXU1=!&LQ$UKg4w*c~0y?C~cH3kgKNb8|mH&Oyw}yz4 zlfLxeaxAhCJRIYZQ8@02qYd-)+rE=NEput0w71rx#MN;K@fV#K__Je50 zI$LOYd_|ySE*BTq=y!wwTZ$Tq0GdVS3iw{30+O_*AUoWae+UbA@Y$C7TPDau9kdmw z%`pRcABFLmBZ8Gae+{zBz;yByEoGwo94;XQMql8nLRmOdeC$@flLkk_j^6&e&-LgA!a^lo-H6q$_ zJ7Cn}iL=I~zk5P!2qk-AG#`y$bOO?a^Tpe(d@Mf687LhG5p%G9o7gRAM23-(qRZjb z+KV|JIag{vSu6By*S#$%zlgJ_wSx8skcSLO|CBOx9?`vjqJ95t%&a9QviZ~?x10zO z)9$ejjzX#5yBx8(91@%tx?aYRl7xAtB9m^LmH6KHFctX#SgT z6!9QxCKNQmDVT?k)Yn6ny-IRZU)U9vWNsqv0DA>X_G%2dU8PShlqjECX>23o>hV-{ z>JKku9GMH)S@92ccUm6xIWt>NFdo3t& zCOY)4Pym6ir1Y&VNduNejXi~c%4&H?MwZpUBL-PJ{#KH+sp-3?ApF&RNUj|kln?W` zlGFNo!YM{e7MwdOD>LnM3?a$_?lOvvFqYa6f zn$>UGIH9|Ie_d))l1tJxi|C3~%uRLU>SwDD;-Vf;hl>9g4Opz6T0NwmQV|WglY*pxQu7h6xdNZ-0`NDg!Qyl6M!GQNNIo_3hC= zmH$c)N6YvTLks^pm{09gv}kbB>8Xtc&DKl2M7|scQMF%!B`_vtzX{p*H%yaEA0;-h zcy!n5c^i}KORFyK|Ap7y6)kusoNK?8am>(1P>tt7n`Fr;y)2VT=d0kNkPGI-7|ZzP zguJdlt6ED9k3=$!y&{1P4Y!F38nvQkQZLF3cC& zQ@QwB8=~xGIAIowfq7qr$_Q$=UC(Gw0L>7c9BwR$Ky3tFbBu|_u6cYHuwDf?zd zE{`uv>9 zusjse7BOh5(c!cqrm~~CW9jais=!IUiBZI{)23d$;T_3RxD8&H}|s zL&ZuD=NUJEa)b%Z@Y(3C4@b8os@Wd6=u=MpW$*>KT(8De=9`Wh*orkWS2Opk3zcsO zpo6;43k~>GB4~bwnHa*1rTB+iZHI(FOhI_`@Bl-P%8=>>U`lK-=?q) zV$ z@4JnHx($7rmm-Ap29B3Mayx5|f{vtF)b=%=_Kv^NSFl|RYMebB`aN*Vtt^() zmundrqXrN*BeOPRixSDTPZ=#FxS&9h;@8$KZhIf7XP8$Tq4Cfu6aH`^PsjrS908UQ zj6r+n`cnwm@LuPs$JS?a)Os`f9jFnTES7yy>x|5j{&erm1_wE7K7xD-(u|n~mKkLI zKI)zV_~t|%5G|(>Zbm1ZRQYZqu-DSt!ejirM<_VxVamTO?mYP01MSiud=8`s&m`SK zP+-Xcq}lXqYg)bVLmxFxYl8-_YAx&w(NJJ^Og{L{ca1mJtEXVKjXtQ`!^2-S+@54b~{$1}$t@2MPU<{O5Ed>-$y(DTK|f{RA>X%>KQ(2~+nUCP%h z>CP`-Ij&RnXPbNRo&sIPLzL6+lRZsISxvX)P*NG0vsnJr5ewu{9}uhudR#(AnD569 zyCnU0)z>o@3F^aLP=v1|xPK6eNOJuEQEuUY`G-`?w(gZqRdE)+xs@+ z`?5lHuj$rH>o1E^^cG$DwEVo#y^3skB!!?yvp+<9j|^6FePQd?b+(wlS_1?4m?ggR zE8aP%C?QMEJX;mVolb<`KQ^uXuM1%R{7#^~6kepJuBuIY%)2#eM}FPY&lznJ#&^)u z+?bzbIS~e16yvWrxu*@ru=5(}LUiEfw{l=3)Y91yZ*03tH*KI5teZVUbzq$+c21X6 z_+wGo8+}D+&$Z+<$1-=M;FWuAezf2EXJj6SW$>(FlCG=DyISX|EJ$#>VYCqrMgQ#I zrkAe1k6-nfpu4Ro`H(xR?$*~(#10&(ysRX z_TPM8F=kKXtP4^OpPPZ9kC#Pp}9vKN2UKNr9&dJ)SMxN?N^h;HEhOe?Mg zA=blk)XOlLTq=0luygEH+M`iR9c`TjC`th^kW_L{xt$$#q;POW6)dLqZuCqdB|E&z zd@5@Hp%7P>Eq&+|Z7dT9Tw9lVp-xTc4Bn2rRcMzOlyfJ=`AkQ_)^PUF)6}q&mKdB7 zpG*GrGTN3V_1Vsqa#if7gaz-O_UCHoIqy6k{Sn6*l>PdNk$xWm-kiq0^8gJdfaTT@ zDa7P!lec!Sl10mz07vt|>QWsA?-!aswy0GU|2kquc&lJQp66_VTwLw!5)#U%N=(c+ zjTy>ZI3BmI&_C6Kb-L4{*YOk5C1-gSy&VgW=JpSY3uM<1zzeTKX7`hn6)!y^;<4?&tbC?%6WaiTf8ep=(GYD%#gu&EV9<+jO$Ud@(#dKm zm94B$@hKy%A;K)j;Pd5iknsGQ?)&%?>=_9&`LerHrC~M@0@7u!hDOsZN?P~=jsxg& z{4(VaqFHYPi~HP(hpxliQ&D?0&xI3crfzw+SjIn$ahRrGvXB&tFOG#eW?={Z8@XJ| zhbNSoZD*mb|BiK@Go;<7)Pud%dWhw^{Z$}H*cgp0x4xiW1)x2j{q1YA0h~aQQS`a!{txAN!hSRrqJ-;h#I$&u4zo z+&$tdLsWWk-P$K(0R;8x*C^U|D$^(jrw_8|pUm=f}FE9u_WWJT`X(;F8DZoqg$f0yldnk;VcQYYMlYq7v zK{>R6_z=MM*?;IX43@ZAikR&?IZ7Dr*2%yWZjkuHl_8*uv?Wqo#H+4AZnY9)pAG4n%!UaUF0@NwKsc$CuM11gNT zR258s0NVsDjc++4Qlr>O;pyxP`dR~qGPRHVR>b5uO!Ugh4ncv-hKbezX9hr!@%AP< zeYnm9lxY6zZ?*AZk6Mid57JB=?u#HOz^+xJmJlTflOM=mN>-3|+8+tQs$}N>{UC@& zxv9K+o~%}4tM?Xj1vlg}Ce96?QZj??4bglbPoQFBo*ROgaAMh^zq{lg6E1MlcYW7< z^m*EYBD>XR7aMod>_ASF8%xtqZ;qQXfKdBqBu3(_>&(TtOaf`rL(|5spnTDsVz#1* z@7|@D=Z{_GQRyme?yEQG$4DflapjhthqdXaMi3lLt+~UOJH~h2pcBj^l|HnU!%t9euv%(MVse z%EVm+R2s?qtFdlD`SFg{>%6l~U;l_;lJ?8pwZ42kx2AuO@@3}5GYT{;i;a>Y+4-du zi;7w>Wo)R0^u5wAa0(vuyI{9v>AS{@|pFVAFd1^k(1a!`A?mB<{5h&A` zT*CkGys-XN`CBk2{z-6nsgqYi(y!+F=V7Yk2^!Xs{lwT8ouD-I<`J$(-O22(8!vCa ze1YbUV1w9aI&yF9c7Liddp~y#k`F_Jwpb}>M zAI67MH{wr9)-hZ!a6o_7_!Z1hs=0=h2J6VM$O@&HY2?CVYmC$`h`Tbg0?a|aYTTpM z?dZ?2M<_}4%P*Ot1yX|{t(>f`_f1D&Gj@hq}|_v*8w4mb)~`i*|{O@Xy-Fa=EDLvb?c!ZkFUaw z0gBBFJ1Gmi=7Bm>mfn6%&`K`6ydv4QP+gRI@m;QAIjelQ2jw5C2>u;IJq%a2dh5{= z_hMAH#dVMJ(AsGJZ6B46JYF;2_>T9aTzA;1B}oTSND5|Ph1ySGLi7SQVrB(MMnFE& zX%h`;)LYO7ZWYCl}NQ{T}d~Lw7cVd;5UxCOH zMwgmPyV>6$pFPjeDg&k?HmKs-61Jlk7P<2@giu4D(Bzne_L*uWw!aPgezJnu@ znfTG3>4F-?<;}T$?m01|T;YUxvK1Ka7$q=Rx?O$zvRMR?3K@_(u8@+0u(ZdtOv(0i ztE23QTjm_m7gg&&?7iSM4wTYsd_ZU zx!E0)EIOcjRn&l2LMmaYkopfJ{wH*zUTwxZqTT3Fq0tqC&jrFOrmU_zeeNIkRQ)~r zC=|>J>c+)?6}1GmSW=Qc2=kgjXcy=c{H&$e#ySTk3%C$i@Gc2DI`-^X(1F+2mGNIOj| zn840~AZKV+|J(1HS2R^5`wB=-XmS9F+*oH|7`PN?1_`?DB&%AjHFdpd+@o!B`p^kz zv>(AR*VrQtk5xPTy1dzWB0gV^B$cz`?PL8X9V8gXL8_86kN)dpyoWlH#ES8I2{oFV z5ez`%l}9A=%7MOZi@*EU+^0CrfE?0wYy>k1rvd$`c0xu3j@!~_0+8-5J^8Pc$%tek z)Kc`>IAfczt>KrzdE}gaf(cX?!9VLUj89SDZ(&23H7k6XQ<{QpcXyw->dV6b+-=u= zLXQviLTU=3$Tgdlsk6&C)9vA&-64PXWkJ8rTcJ(Ks@bk(dii2ds`17`0P#Q&wopI{ zw)_C3G29<+MW13O*3l}x7~A>>Gt9!j znXJ}+0)ec!N({@Y7qHlU|4w;^h>Y{XG4|c7P@-V^FgWj4U96JF=ncfA$ z2ji~|2lpq%GKW%^qE`KaJ3T*_D8>Ki$~ZXZ=seOEYFZ%LW?JSRS)g#oLL9d*; zxA;kGGzbQm7xGl>mJu)Ob*|6#3~M!Nvu~r&{twwlDDx6WiGz6w z)|SQmmq5gPLg&(Ve@maAAvn}?$v_2W8)aK=hRdR#Uy=|UL&-;MSloUXccWU8r0y|q ztWt|$WDFF^e^04R>*~}xlT*d{V)iABq^e)A<9t{@eTHJB$yOKsA$UEpg zBTRody7b5M(Lz`osLRl0fIBGqr|qrA?$UfI-j=5_bViy5^(9;Me51!Fq?jsunHeI+{~mhWgw zHgcB(tOom??ydfehO!=S?xpSSjo~t4t6(&G+0m&*+XDc31t7te^FEo)lt)8g#mxFC zW7Loe4&-TdCXe;7wTe7@$=xKnXn_-5pP+AvUEV0Nh&d~dELX*_Fw6SLAJ;)`d@;te zqFocs*XY~gtYyE+cUNhUrz5Vs$eL3^xqVsCNA$6Xym4~cG61*!KF(H{eLgWo=`V@` z4UMz79WCmN_Gjk*)|WX_tEB*S;z0P!zt$Kq=}sTdlIt#vLDtypl)8e30dmJd8qWiz z*?}S`%*KiKh+S3sgK~=tV~1#CZsV5`-fNwaOGpZunY=mTR=Sa)^-mK&qyo!{FR$yzMyi^P z%2OKzr(&uKw)2OHO9dTl6HPJ{%IrLg^RtA|GChcM<}uMPO<0B}ulFFkBNTxzm#2P6 zA!i;nTS9Q6XTWu=U4%5vZ=XbH4+4&>jqxk>P}})@x%ctIz6s^5VoZ{R>M# z6W)ID+!vhY_dsPXg~7mP9*T(wiwgOgaBXFMdOn@{+_hpdKl3ZkEhW8F9DyDeQgoOa z_*+stskwm^q#90?oUK^svjC#o(L>0EsttoOxpsGF{rE~&mF&>jp>kLI0ddMq=xc9d zLb>->(;U%1LIH7OX&k=ay5FxT^y1=khWf91oqMQ7mf;TI;6$qo<duR znR%Kd4OPHBQLOn-bf>@#f6WcscrM83v_`T#s-qScG7CRM?B+m7KS?^CF9jK0;eHt` z^G^B5Znh>kyr7-U!|L}4>40P!yb6Qya{ZzfSh;E;z2DIiwR(6a$x*ph_mBZ&T`zkV zqfJ}hafeJ*2Vw?~#8d_P=02K^ajVO#44PPK4=Ye8vXapAUnKu_k?9^m1h=gY7pOr7 zU%6KV)4rs)8w0w1)cCi3Lel9ow)i;Ve7ctjhDS)M_~PDIg_r|)=*~;hi{6q#kuB?*fkv)V6?nT(jLu^dp~OB+p<_dNIDlT8KB%~S3J*u%iJII@Jm>4( z^Ejp5Dn&>CnpU8!Djt+hekUKMm2N>+?nm6w+bvhw0}SAMtI1I_j=dZMAgLtW9bI`o zZb0YdqQcN}m6Z%PZm;|xPTQvPq6P~TBx21kPjFKk3~1tpa{#dgcxh`|P9QEC6{#z|v(VF=xn}gR?^9`Bm^Io=F z$m&3Tr|A;A`wz1|RR+UQ^*L#h+DDdWauzB85FyYwb}VEp42)*`4p}iEPBrTUQ9biZflIH`=U$9EI#}rk)n6>P zxHS3z_HrZS@hMS({vp3jVJ5VCi^S`=)e#&FMox z6wSi|!QbO8*_10lv9wX$uozIK>#xW_p-hiH_vmf6IbP=coqFm-n(o2kQ08+`%LzD8 zc)X^**%wNACUmtR9ZMJPksJR-t6V{f%9h_2=vz3hm0N+UVwM>6=qc17H!IasI2WZj zjCBl*YXB@bNr#WPe1R8d?@PQXa7dZ(kHWS8O0Al748kGU+sWjo z0$A%k(LQCCm%~URg!h|V%{d^piwx4F#>zjE$T(vIpPn@{u$o zWIW>uD(sD-<54S~qv6H`g+DFeneK!M_WJ|X(a$6*k4ww*e8t;ZZWQ!1DEAIq5m5?7 z`lDL)0oJ6L2Tpkz)7?F9fIl)}1Tg?yBJateX?#E2&bk=0eln)iu=~`}ay$24?uyxT zU8gl6(R@DklnYK*>XhxIOe($HK~(L>$YgUHl5`qO%yjl_PQycP#vAFO9kpC-xkk36z0S@)*ctruKIf5j&_e$Ct+mtXhZh*JeF{c zaSly7_ghw5j0<>53qKWg=~$Y_*6A^IiUAxwv#az-npJ$s_7)X&fn%=hzd(h4%f-BE zn&-lIQ?AOFo(19NldyM+g(k4>8^SP+1M5m4uCPYU*EcBJ4;si09^srj9W5!J=S(`W z*#0{NN8Jj%l!Fv4?3k{n^}Zl$b)(oDkzW7cgqoN#N;cit}PtOYK{PAv7OME$r|j#K6TtU6}dM2rbV z#2O8lUo^D3gd!4*&2bH0iObubcM34@LxZCK?kEPmDiGjSVWE)A{Tzj5(Q)eK>v6(; zpfbUlIn1FWHY~XuI)ZkumIb|^p&V>63et`&&S#ckr2MLfX<@{Jk)>nWV2)unWc8U@ zAp{Lkmfa(G5!<#l)?a_k69ID^AwVaKQSs_h`+qrqi}lK#FuhP6KA~0Y2D59z@U9QK zv1noU2UdQ}F(>H0+8wZdj1$%$;9}8aiD(N)H4+|KU^I)*Kv(s4Upat@|BNCgY53)# z03yPyB{-h@TcZXtB)Rhaa_Hagf^$uC#1Mw9HeC2dU%|#P2m`md+Ie>wawKAnrU%v0 za>>MuSj^h};WdAnKeT;lI>fsOn|BbHE@N^DjFzXIkxu=&DWgC67#S{qS@FysH+69E z3b_h<*L=Jw*aDs|F(=DuIvCp&x}aqA-Wj5l8Hx<_wcU>izfAct8ociiRZRB!qiu18 z2vj}vK;c-nsESUQLZ9#tY@K6s9~d_#uct5#lt?IO&hL$gvg$B~~7iICJb@?;-u zm7KkoIr77S3VxOIN%%ft_m0qFDrA4f`f=`kYBQ5-Ex~rl$Q5}VEiV9R`sk`-NJ`}k ztxBOZA91YXFzCJhb;D2OZM)`c=(k93lPUJ;w14{zi<|T=nmJ`I$S|+=^zq%L$Y%g6hm2pZ+Ml#s(VCMHZp2pTud@{~XEVctGzHIJ>mH8YEKRno4Ft`i7PF>P7= z#!ela#q2z*qot;hkw0otoDv~{Fp@Jw4_#*_O7X)9`Yf`s{^I20%l5hFgE$cDlb!DoJ6~H|C~$9iN%50S+T6{aG@<dweQ)*Xj0@ozXcRE}Dd(w!|s^9#xxZn}Rql_(xY6*G=h zr9pONOI&*rxDNPdCuafAri4Exy7GzDgJxg$hyqfdbi1sUp3ECR9^4h>=nEZuA*0P( zTqTE@c=LSyda3Y>(Pn!BF5YH^VQHh(DU|T~W~-jH%8Z@a(uYl4=shuO2BDlyk-zaD zt5T~~Y)s`<){^Z~%R*hLRXW+%qIs;`!i>%Xx!ju$x-Nxr1^klj`Wg2HaLh0F+1Cg) zRpfRLUw0eaVs;1pB7&v8^L6`DIoskz*XA6E*G9}HlBi!>jzL15RPyGIlQEw#Et3mLZyOC?1>8cK`3^U*U@#U7w zTAMWX7mJvD|3fy@du-u?7m;@bH}F~Y4>rice>@65hD7YEO?tS=Zvfm#+^|$i$1z8W zh%tMtE(?*}cFGUDOUviTNF6CP9D&0%9^)YzxwGzJ3sSZ*iT6HcMz9EEfY^aNcRTjt zx50&C?z`{rryc$?xIjF7r7M4Ba7k-DZmSq{hcBI);M*!ZtYQvB+p~!vgLRCV?WV)D zn}eCXME3Vd%RpDdI~X@_7PD4;S{QH9(hMSW#20m$N72$hLFD$ z{Jlnz!%P0^n`-GXhb;$7Fmgj)j@$ZG3RfmhB}qgDOF`$8-q+CfxB{ZdOktO)!Nit+ zcDs2KpE{mfP6GCF5?}yF;WJ!3LR1|5DIQ67o8@+j`8mF0sBqRp-oz{Lqq^QiNn<7U z;g6F&3=R9biUBhBy;z4$+Iio41)Q-&ld{n(BW~e$F&}TQ-;B)ya)(U`hc6jbcE3__ zQ_8}orfN@z(6W?byZnOBFLHN8F-c$N*=$vB!VX&4TMIb-tV!A|(zHE_CrrvHBNMq; zrECwvn~3&^Dl(5;BX7PEbvW}4Sco@EAMOv-x4D?^F*l)PPo-xaVEy7G@GhMk4 zY3RfwQ7^$?cH)@$$Of{yV+MpVYngf0d;RvTjoOg9`$s#GE%Gq(rE75Nt($so7a(AJ zPz7geIHhn_zR!9@!Or^f5=_d2tPvHRHlC|?bnG&lR_xuK(Cs%ph&-9Y-h+w0#~RN2 zky0sjG_b!XW~!vg;XQW_8Ss966D8a#{CalSl}6g>MHcn_!WtHZ{$`E2GvjSX_;v3l z)8HL5%CXiRCW==}KUFW+z9(x65&!vUEi5c-?!3uf;l9Rl&qDa!@#(VQzV_inWbYAy zU%9>euraoVXdLYZ{$%@53-ec1H(a76Rt&#qSuvcQ5&%)K><@aTRB9PV)odCS*9pa8 zqyl33rzuxT!z>!L>SM7?&4g;EcsrlercG-2UY@P!wvSo|e^{TZt)v)6hhkhxd@Z8;_HwE))&C9~W=(+{fO}gcNI{G;4>kx1$7)u^8(=Bg+DzRuYoh0*;=J8X{bM^<# zs6Z%xGk=mcj!Wy4f7LGV)@wc6uz>&QLAw;eam^zbfc)p6YbRt(bDn(DjQz1=&QtWA zI}+af`TNr?>;kfjPk-^6srQc8;g##hor*R_n)BQ2TYd>U@|@qM?`3)RW3**D^_y2| zgI!H{plMR4NXj@*xM@r;1YawW4iLu-$Vm_e_Gsuv4 zepsl$?75zrg}@=~Wcke8=;gF%o%7g!%BQhFV;wa8OZudtm76)kXEp@04Jma)H^ zvNLqatm`bGH_2;M18)|9T%*SL>9{h^QuKVJIq!HICQ7aoo#FWxWW9(DRMlg!VBvk>=P?WUUbKa9(r=}-&h=Cmp9^WdrUQ7 znx8B}M^Tk?fsLGL8>U3q&g~kPrGvVxqg01r?K}whTq15lRy?u7B+>O;>v)?-o4mQj zP5xCWuSu^efPD&EbK~u_r=Na3J;C?FkH7wYI>WZpe1ovRYK6+Goud?`-o!C^iALVC zilok%OSIGu7W+PH#TUCwz03j-wLMLuPFg=0{2`q`-Qa0u>9pEPp(7MDeduRRUMw7{ zkcwvlc*H0heOK%(H`7uP#G)qTc|)i6b>XEC{)@p`)Otgc>8b+=@F5Q!c=~9T}r zt1QhTK3xT9ILLn@+MVjI_tO#4bQ5&N54S zDvj91kan6LgNl8X!Fg5_w_?YesZlsEaxC*{NIWb?ti93sbi{)6b-gmyId&-HT=cMy zx4aJ@KF|&zyxFSH%Mh}~hBVL+U9!(2QY<{s0uVgt-sMjVK)U}4RaEDpB|2%=$+YoI zUns=DR(ZJ4;|Om)Kl|)!EGYb555mr{$Uu$Hr%ykH;LhldHuKqaJoW<9qsb_;grG{Q zH_uYe&rBgBelqPAF>7*5bn9Szh9=Oth!2*zV+0ooaM35)jdWqHgoYIC0OXm>{-^V< z(}p1S4j*L6rgT_ooO^l>c<`BTG$c|TXvm0Ru9USyrv{F@;&2Ba?ux_DIi0rv#PYV+ z6fYz$f_0avZMC54m5{RPIXy%jaeQIX85i}QV8;jT2ExyX@JTE%C)n+SyS#k&=y3Y& z?;cE_etsVd4ERY9@KePs0U3URLj8hiK2&D^!B11AXlNnk{o^#sA93K~!}K zpMtrAMIiU57kk(VWakzZDD0|RsZ3}LPMu8CbuR!>A(E$u&BkDQ;U#N4K*o6)n9zf3 z17k8~o}J4WB5qT;Hg@dzXnGG1 z-QK?UHWqH+vtV%Q@ps=(zxtQo>hmq!0VKvH7Hr^2K6mNZ=dMp&0D|8QEdD#h;>Fuo zRLEUG?qLgm(zQSa6-Zh7Pxsgs+|`2%9{ssOdg<~-CEy4dekx`u_`D#Es^Gl#S^~Eb ztX5k@Y!HWftlft!jwy~W(w(P{_JBAsq%jcZ@mL>JS6`RU>Si$Cb;D2O za1j#{qAu3`rF(149p#*Z)?o#WA`Nn zslK7IT-E!!Nnh-dt8T>?&>Mpo82N7Z^XD_rqhr{ z*?is09YZwsGG;}I?-&_Yg)6XOMNBdpT-_{jv$P$oF=SJ`QdiTo$$8_>y_4xr@adOd z{Hs$e#)?llvaV$BG748My*dWR09{ghBcXUuPkuZ9B*r-LQl7LCJ5yyL5(zB%Hb%$- zoh;ISo~ zbCBmK+tj>-0l)?12M_O02Uv`FfX~73voJdt0KTti{Hu#=qq((B8}r+&Zo`f|=eOy5 zS>9L%>sz9mW=x4a(fI;uEnh^Il5FpOe(wnP1M{5khU!rqMm-+w zt?A60S82xmA>!-i&sFNceZ_sJ>R98QN2iXe?>xM*##Q-BtG+Fzm-H;*E=qGh>+MX* zuwt5Z8OywRra5oyEOr6yd@?ON!wwmXR`SN&u>`V!=QHOSH@wSPnJ9ggY1qV6p2ZSl zxlyFs>$>~&I#h~vF2+mPEJO1l1j85e?9nLiykp8n+GUY8i-&3!!l@p+Ky6gaF;$^Etog9uUj-^{@VdSYkvD{EQv+`nfLxoV_$fN#!B5|v9^+ar^Mck-WOKT- zwOMGBw`t2ZjCCwcW@cP@W(BR8bXh#7i9O0K=PMPL=Q7Y~PT_Q%x_yz}%M?D@v^_jO zw(dF7bzJosIr=xp1j;na%(XkW#9g8pKgJ!~+aNHmrws|-ZK}bJl4h1^qtYt3n6`pN z<|`mte{=8^=v+_%_1p!759^-%3Oj&s0SMk2Ji`r4J~-7KJBs<{<${Wl#G62i!9^)d zUv#(+`hrLCh|h+u7pgJ^y7e^Gpm_%n(n2&8b}aI#Q!&}h2TZC0o47&`og|Q_obXCl zomNIi2WSXbwpLn<{XXtHvZbQn$Ra`erT;cfPRKvNkeAMaP2tefj-b+4;7+l{^9y_q z=KF7Vr!PL6L`BXRVgCN zy1Q%-q?`u{(+(d>hI!urT#I0z9#sWPmNBnn1BzSUwrdudj7>X+KE7W$D>23I2S1PMeJ>0 z+*#aFHUNciAuMZ|!Hp2PASKU`!eWwSxv?(P43djFk&n11n#1MJ%I0H1=nj|Cw2a2>&2 zq41y|i+8^H8lP-={DaEC{>z0MH^ArO4=w^>y+_^hp?%QwX&0Uc=m{L6f1bG z2Xob1B1@3311;HX%e9cz)HIJHu8KD8nIMlpW*ZL#(HmiISy%!PJm*CYIzT7C%A01) z%f{nepmQLMa>2(jKf#0rAo>gw=GSn9P65yyOXr&-&J)ms>-+>0`ti};^xgM|)31Mb zfBN*ZdpNbm?md`;2!lES3W1xQag)$0>YdYvXb@2y)e8{}$ppni{{SzT&ls@MW_Rpq! z@0?73@ps45FaHdmFylHb`W!Au!~7h0j?!eazd5YQ8?(e;;*GR1Z+oP-`az<&BD#6T zH-H(V0D+ap{GgYlT4&0y9H`1=_I1h#t(aP#5$8PhQD#k_aj!ep{0k%e`&reQ1GvtI z#=LG{n*KVFJfVQ8^8Erba!^ zUq#o;%D61m2h*;gJ0`3v2!@ES6YF(>X;)ENOLZ0b>n7uI>9Okkb@TI$Kjr+kr836; z>5(_mx2Tx0URHjlY)fXb-=%Sn-HLI4-J)`nHB`d3d0>FfbZy8jfIBG)QBFb7)e0uP zn^@O6*qs?Z%oPRAM`J6-w8YqVPpi&b#d2KyX@HT|^VVq_O=Ok`{3dozm&i~CtEr3n zNpn95e)orY+X-GAaTTCMNA^_3G2P38URdjQ1is1t!ax6Jdh+X!rz1SLJH?jKd}I5RZ;oPdh=LyQUCfei z>@1>PoMigq!F?&n2^t$V^YaT|NPuoVO&+wkIo1st6EWywF%ArG;QEG|^$1ITK!VI8 zZJLAS=#!ev5pP*ZyYs5p8xwUA=pwTtfpIoHEHt3Yed|;bf6+@O8X@>eu zaz7Ib2h~->*&Ollqt);R?JOk;2Gu%=i3}|*hbD@GaiPb}+g$v?oj*>e!<&!--DO_W z(KH)i0W)Z1{OCP> z3WmEA@Y~xA(GRyP3bQC2{V!0uO5eEvggc7x4ROzL1-6 z5nr)QzL;tP#50pNOs5^{VDQ6G)0#f;NOOPU0?!jH_B`deo^PyUp;XNIXiH+L41xA! zQ#sH*9x}fiS-NtqWr#=Jqn$z&a^@I;%I8#Rtd?EF-To_?CWK1cEea zddQ3gAmmXUcPJoT3qBM>4`OzDE&LD-IMIlUpX`vQMAFi(NCYCpu_s!dq|9Vd3m8lg z_3#@uZr=QEdjH{noPPGfKTkjV*%=mp+?wv+e+!>+xr1F8a6aN3igEe;*>fz`IYzy* zZLre^&Q)9hqVpFkGD91SdH^50eRM~|jalDd9S!Aa+A`s?*hY{N1C_&n*3~gS8UizYW3YEt(cf_4P(1u)GuTDuX zX`huVumlEo>>vS40pkfqAOCPL{pvUOHGW^bz^C6h#;lWKG?l6}UXj+qs~oEyw_FH< zsWEr|h%qdl1~(P4uP~0F@rxw;vc{SE9Ma62mT8UEq_LjJ*BB6u2mP1ZI*1-PTB|!q zfh91DWLrsM6z#869#VHDjcM!Q_4~oC)9E2T-S}sJgU>hqNz7rVFXEhI_G18p3k93!K)>-9=ZcvR0WN))6w~Iv}habH= z-NL8D_OMgoMw@rBSCp#0xP>e2vSzG6#-_M_4+sh{om62aF3z6Nmq zsw!X3o2y!VJ#uwi{z1p;>nYy)<%>0wcy4s@hWaD{j&0FdPjQgi;b7Y+t|(d z&3(1uE}9rC0s0s1Lf;6jCN}1f1#l-tA@Y<6HLg(_3DhRGVyb0|7v8{XP8-t|H>7>{ zwCa2VEGCw0jEeYUZwavOG&*UB|08W(_&?Y=UrXUXw=KUaXOfaI7y08B>gvPAjT zaYf`!@+VpYZx(?3L>unTBqJ+RJjaa&FA-J|#oftPWsc$);!ZCElRh-sP>1MUTxh)@6@)nL5Wf zH)6-UaXpSA1kS}Wcd>Y8x}2klT7Qk#5+QBOKyIpA;#@#OUM*q$7k21MX0!kVmC3iY zpZ*#Jm(WS}?R?xjr+g)Dj~tOEewx!O@eQ=`nT!`TFyn z>Cv}%sDkff%f8&L7U>Udv3e4d8c7qw`H~F{(IfhN*x^gGUZk)mwK~A_v=wrp-3@GA ztvZsOqB82b=`^Ku^ZNvEQr|c@o$fz8!4KaIe{ee8zRUFl*%krq#|{0-%6jS@#`G?_ zoT>^t!aYaz(#Xr$#%5v-(iE;^JZ3!3r7Gnbt?Eg`jeQf^uu+Tfg`~ z3qZ=Ck)MOHvXO=;q2H+wPE&$=fn-UsUow+bd(wIWJcryJu!xLC87<_>p zq@I8J6?PqXqK996+c)}l*2g)T6whstC>7KREP(mDAQ2XhoxAIwl0Q_i&YI5p(N zB^Lp<-jFk9U5hv~zXNNMG%$k%qYXM~)yxb~1dwD%Xk>=tIEPktvtj+oluuAfy|X!- z`NVLJ;onZjkDpA(-#v;?X}X@PJ_^))$}dJ%4m|6g3pt)W+n+xE>@Icyxr@ahH?c$C z4fGexdoCDt6N^Zf11Y-$S&mmN(gK6y(>sH3A&An+rwWE8SLG58?rs`)B~KxZRRa0r zI3rDT5|G!}3by5m4K4xUfvS)6#;6#n>W3=dsf#J@rou&Ix9^_lla25F>}2}zm%N^j z`r-9GooV&p#GS>T9 zy4#U%J(Wf+mM6c-n+`(bCwK`%7J=J%!WggxYd?iwIkdVR^en;a^$q6%2A8R(mSle{ z8vo{vbIh_ue)@|$ryaceV7mFiyVH$3x2GK}2+;!CIsli&&!M_D+&G4t?)*jLH9aH! zqWWGISIbd-sPq*Zu3Mj6E6lt~bK3X;<2Lp^4#R6~Or>2U?UK1v&Qq4On!kv?KLo~O z)#G%@2V<6aubXDS{*XRgwTy0m_m8XUvD~7*p`#gNnQgKCx{S<^sn51%ZJ$niJXfCk z$|yI|&7Z}!5?nC=RQ<+RsA*%oBeR$>3m0QOZ5VrCm(tP@Ai|EGxfo*K3K1@mA5v@UUmV9T}EFqo)1y4(mV`Uh6wAi0$}hh8aX{Vurk zS5mer#H~NskDh<^?ez4wpXr;`C%6%C#s@=BumFVLujZ#b&8%yVH&@z?lp^l7 z&;uUQUCe^nX!M3*f};YlX;R315PZR;8&0S?<{K@Al$S^<0jB#Ncs)=hoqn;?;O?pQ zG*{E6@3zV>GgbI*+vMJV(%;Tl>{;pIB2S`lt&bOZyMQGv5 z3|NRgpu)p*R*aX!+Vx6R97Eu**(I;t$;1+~GF+c=*9~iaN?Z5bCaeq%ziHt9Tfo3%sd{rz;2Vy))hXqYt$J zM2jMTBiq4EV4Cyh*VyBUn0T8P<-?+uU3?zk53&FRWjWy+>v-_>g1diw{9r;5_PDVg^OoY#rZLh3Pfv3Jh<5+L0uU`0X#Lmd%{a~#F>a!EfU#qna8an%SkB3_ zw#~W`kj^2fF0-y0xC%+ef&fyEHaNDm00eKwGv=5_AN2W6%BeqXP{T#*-?A5ui+dNA zxiXL?8Urf?bX5M?GwcNN{iEsGqvPq(qrK^yZx68m7lr6EU-^((m#Ij5p$N~#e!xs~`X!%q2Dy>3`UB~SjhNIPgqf4(%*<5? z{h{CQyz_ke+rRsG`m2BQ<@D}5Pp4Zqv6b2`7JHyP+XJ*!h1V*TWdtPH69pU=>+ndu@-`vKhg5H|G`|kF1 zbb@(q2OXD=A_z-7^Oc4L$}yI$FBgKKAvk_xtacgc;$aA?2OQWB)E7j^JjWOCjgAb{ z+@VL8y9GGc(up;XX$E5|eTf$6<)f-R`vL38-GXuD^~#;=F`iVmtwQRf zU!$IJ3|nMo%W6`-VW5mS2iZ;n%RS?zENQh)U%HYn!TrY4b+< zb<1nFLj0|A&U9khk=Xb*Dd7pWQiZSiH*d-#)r83QV@=Rm;ItGtN{vEOwj9KHq zPP+a2L;7&l^0`K9f4HhH%5CVYij!%~MeJDoGBVrrzG{88HEa7c;<0R=`-x>3Z{t;* z(yjy-q5!PNBtxBFibt8igmU}3G4J@K4X`nuT^e@Dc%A=fs9-GDNG%Z_aq_aSo;od) zh;yPWQ_;I7A9Uj_5czH-@>PfZ+NcW(Sxr}<)Rh*1P%_YWWH`lcRif zeB^cMH>vAY18)|9T(9=H=HApnZdXlnY&v7p99LT4`iUWUG5K`7&jmg~cAX(V&s)y1 zF`>KWdU^>PT=_O*Bg45(v>C(1R^m1NEKe^B)b#>Fw(G3)u4_F-+2v`s>zvnB&si>z z72nPu#WVUa$836a9>3Q?DSlJ4M)Qe@_M6Y6DKnrglBk)2Vbc1~EynqP=JVwecBnWj z1*Tt4+Zvh==~#pp-+VVc{rwlQ0EAn@W9#CxBfLF|`1BbTf$(!Mx*M08Mz>5(_sVr$ zyXi9Xp~+{W<$+S=Ly?Qx8iTA@j1dP!(t%4`663+P?J4x| z;W6lRCEQ8fslRnHCivg>8-spPpAJ^6ILHINc0`Gp4?Xd}=^!V3LhJ-+@>hhpK+GKk zQZn^6T*VffK+;N3aPt{EfjoIMX(y2HzuB7}e~<5yb0LWJ2uNMD<1p9fste~i_5#~b znJ1mCs}>g|#%U%k4kMtDC#33`DV*2iZnavrxY{oMAjIyc^8lre&*%wJ=`#U zfNzK2Kb_us`wTbF+ilTyGka#wYDHuwgG}+Tz_1&}wipb;SNWCKL99uJD3y})Lx;}k zLylG98>wV@tZ$$}`p+YJH%2uBugDz@Bxm?Ft#9C6bEV}eC!T1p?`be~* zL8y)^xeUHVn@z}8993yn)dNeM-}%Wm?f|0C6<9j-*j#ifN(P^8q5hA!cauIMJl7xU(0}r)S?EPv3ohGJW;M9u|PynZEu8pMW{VXGX9HK><^w z0>r67({M`@$i@r z=Annh1E1ASy7GwCkFzbJPY1vC7vd!ppoD^`|9Jq&WorP?GLYm2AP*jJ0mvuQU;dk~ zumI%A^wupDXa_s-z+c(ym1J?%o3B+wT(DvA43{d+dnK`KZ*gESGMh$SM-^jL<~iPm zv5Ya0F-hXgRN9zNIm=iLW1GJWkAEYuQyt@TXU9*l)6P>Yw!(tQi3{i1o(pYSZO+s5 zV99#;MpayN{p`iw^yr5h(@o+tc&sd{ZBCSpY`FatwOT)1?8&E*gd7SmTs9 zFf^t)ZgcEXkKLv&g`~xJfZlYojT`36m}-kXKxV%b4j9KOrt@JTj_ELQ#3(L&lE*4q zq7{*rv@Vuy|Hj$$E*5bA>wkMZy^qf^?H}|yF|G-|;)KVA+lJ~*tER}W^on1Tsq!_g zI;wa|A$q@Fa}BP&SC%!OH|H@if(@t~`+ZOo=dUekw! zd23kfIxqG$P`@e)3DeJ$mm_xKT=2^Scpm0l#swey_&bF=f$(!MdxtmCg!y@~mp4;1 zxNxp(m)g6-T4c~7x|lSo2s#PjWyl*pK8o8 zS;y%(M$H@PKh^SH7r*NWzNk;5Ozne9qpb3mY;cIJ4J+z9Pku?~tDw#LnhOSJ+!twM zhDoE9e^Eb{^iZgj+ZdYG@sP^4X&=k6WJ2a+WLfKImaE*F_p&j z5;id1X3A(jOnjfkliBqwr3l(A3u!UQp7G9Q38ss*VXFXvzhAXO`a)pOf6!sCu4ivHA)IpIr6C0^3C@VWQGM8FNV2~i;yc3t+zTt zMW$a#>4uQr(ni_&=@)L@e}t`zc_Wi=1+#zY?MmFxJO%9xw00G=p{Wym!^+op&UXY- ztyr0G-VH;r+r+eteeuRd)5Pw z$);|?YRK+D15uV_3Lfss7yBx<8y*~f;)M%7-p7sO`w#K`@B`jVr|&EQ0uHGrys5=c zTeHYu6OAW*r3~{s!WJCjrne>FPbg1M2Z79X_#$8I^wHzm)#E$`N1F3ix`Z{a#jXny z&hbn24!jm@(W0{ob``_aR-oZe)j^qc%4n3eEJp^fW#+YyZ}TCYE`-68lP=5s~G1w#$42) z-9Fl`AEe=dDi(k2af2mdAQX#6I0r^reL&^aLB)^VJJ^qy-JMQ$Z%@w-KAN8Gy*r(p z9qO8bi#gaWk8zE0gy-rfSc}YS0Lq-6K$eR=l;6R^56nm4#{!VhOIa=gk&ToS9`ull zSp5TDv_G?e6-_eGMHg#GT_RoSe z9mlS*boU}-{{qF@fbg0lKK=587SNyKvzhvw7CYWp;0@_YptlZV%f%dN1b6#*ezZ6J z?vs1duYdbsdi>0IbOYc4<}2~M%P874C@|6b5J{w z#sukzIX=1LhZ-q?ElVmrcKFec^vp#(3uN-(g#Q%(_**)Jone^op1mB>Yt7 z!Taw_w}1K3bmQ(@*+5IJbXA)!)RIo~E~DFes;p_3(etXX_M`e>+Br5nNfFitX3A9F zIch4qT`Q-&^A)p}-d2LjTa&-;bdSe6PEE7#=8bgo-^7=%0r#B?jtUvD3^SH9&G{uy zj2U@#c#T7=>RXc^^}VY6Vn0iVe1B#M<9>P>KbG{2^4rSa=8^?aCx!E^zQ+q080^@v z-s``onqN&(qqKy}GwQ1b?6ce4`KDwcu^l`5=<;^DcpyImfi+utXzojZO}DGd41u??jt1Or%1v4eA(8lQ~!RvOt{*2%P?p z_!N-R&XbXHsC8H*5$ z@*CMsgQthLb5p61f{|Q5o(otP-O8zYi?ioDv{mcK)Xhs&$}zSre(@#V;Kl-wBW_`g zw}RF0VEUAA2jiwDw=~uw5Z>5iMY>XpQs1x{ukTD3v=+y`hqOjV!o_bi@+0F5JmzOG z^8KSS!9&K%qfCWIwq)p8xd;QTiMLnfKxqb%)>96lC>(g{h+N}PKf=7aKoi+0D;9M5 z&>)$hLWD+EF7=AYw|1g`BFLAi{?Y zvMb4qs)K3PQ=_$n&>lCcZ_AJITx8@b?`pOy&IhxLsL7C>@jE;GG^o;RdR87Y;H3S; z(+vIL!&g}GQrb~bdUsmiNqV4IFM&H=!G z&NaM|x_9evy7Ay1zN`I?(t5a;or|hM%oQ;xZ@!pM0TZDgY0lxCi}ttx1P^B$e?e7T zOTayMZrN`Ntyp|x8_@}t3v=QbUR&q6;^-Uf{_!i9$dHooldgJ*W zpL*k>&lo6yoXIhhj@sXjigCsEv5fj90JAoeK#UgSNSgJtv=bUVV^MFBKvH8%`lLX< zu}@QC_Yk{(+&;v3=nFu`I<56)HI5q=iDK34R})vo^9p@6`rTO4hI-)?fjQ#&52w>N zpB_(NeR4Ma{&?n%F<|D?CWm*r1x%dN%JT%pC0SFdw)A1F5_0+ zQXpY$*?r$hLUpWA{u6r2EaHg3SI zb2_nxO72x0TBStau*xMni*peKR35~ZVcfb!(mgg+BLHO0%ocD+KN!|yEL23Oyadhk z0%ci?yiClw^Y~FL069CtVmc|u!391~IibSfh{DZ%3l7;)uULqTK68vd^Yx><)92qj zn7;n{=Jf5?``Dq6yZLaOHie;;YWbrM95{}tOn=&#Cnm@ksKQVZG?gVWlvAD#7AHwF zT`XioqmINH-f$jsWYBgtP~%&GIx>iagGET5!Dbmt^_XLjWxoIJ$@I}LPw)xH)9Jkr z&Ze7p;V=AY3$ap!ZZV8%O<&?kU^o~*)5DAzOctj5s@0IUL^Gc;`BF!0Wn{XT62D@Y zu6&6U!jf;5Mtt?JEdU{-=vj0uG1VW5n1D=4_RJt>Gscqbu#HDdvsY|cc3ZqnudiOl z(cB6{yW8dm7Q_a&IZ=2%2W-__@JmU33I=n)4SWXX=FdKu4({F2u4?)_Ljp@Ryrk(o znhRI;nRcFR<*&(Cdd2@3X_uq=VA=)jYZ3%*>>s9IK!qW-FI=^MxD>SnrrFLdx z?{%D3y30lW65aea@#Sj3{ipV+^E52UEYX(q7&r1b#MXuteOr?o^}KAJean4tv7co{ zwJ|)L94vboKNjsQC|Ik5Hn%JQ=A>{wivSBf73N}eRnr~OQ;k2)i;Y3efuGw4pb+f0 z+uix1W+S;ByWk@|5jp*7_L*-Pq=RoCY)2(2@^Yw(RS#jvrTGJT@7&dv*p^X4-) z&G8bi(y9!kQ_Sa|cG5LtCOWratS5T<;_@|p3wm17omjy1KNQktGaZSRg?~*=tBY{j z^eAza=rZzoR>t!(b3GlsM(>E;R+TnSyDD6NaMWM3M3%>&`p;$NRX82ZMIu_VQY6;N0Zng(^>~QHram+44r5?{Mp%iG! zNM)DhpR^HzrW=i&4HorEsF*`Ob@7e4@4ua9)GttJ^KM~;qomyDAEFu6r~O8 zkwvMPF{N|#IeZIgrzuZd!@9$%PK=7UlZq{|=)fFftZRf1nF!k3#|>gE{IZ2GE_2IzK{{3@`uq^sR-IZyl& zZB5TeKVOz@4;!4j@D!4ZEcnoOCm;CgMkUJx5O3buOO{7(NK=}tbtEtP9 zF8}7F4Pl;xIKS*3;z2aGQ-1I^zN>w2+PirW=O_9`T{4P;$Npf8_87u99=kW5^B8mC zhjsu#+~zf+vs0VqJasyl=lr=b?cpg37YRQ9^o!~FXJ5zG_t^5D+er7aoU7>%18_%m zN894X4zR3s^^<4>{4W=#TXTS;Fh$@z{Hd}!g!blciP6up?^OLY%`O`wr1vuqv)~b39Cbmf5~NiZtQSDBgiBm(My}X; z0^0oDsvHs7JQ(Nz3>C)L7oe> z=z}pAhmgm`Ac(m;mKKdbhuRWK*%q88;{2L50vhMc)3g2Qgr9@ic?-LMyoZG#?@mW2 zd($y@{_sK%UV1`apMpVJJA!bYr#yaV7#!RcL_3EdW58JH zb4LTwmCw01ffwDc0qiRG>);M8YQzS3C}yd`~sxZ2TrDeav`^9(Ul*yaLL*)ViQ3V3)mfn%@r3l8op z24BPPW9N^~-gRTwZ9*ZYhlAt#1qT zwX^IC4P6I+X5D`1JkBnSjFIPjlxtp%=2?&P6=k0Nxx}!lYF=CVB5hUMmX1`Jk+;>+ ztf0%x0gH9&`D$Pe*>ojZptXY=Lfnw(a*4HmVmdSQRo=jNxtd5zgeXnB?%WS7lZbPo z@XxXYugM2}6JHH1V}?2y%TR2Z)yrgxJgcTCrF^YETr~u(AvgUs-euPFkcMAQxKG-z zWz-w$b+3Up3qY=W3tdb9JPD0)b@qIoFIXiN^AeIFH{%Jgq|Y?lb>6Y*jF)J0dY=G8 z&Xb&EXX3Mrz{aW=JOI*YS+=oEt;p2ijGd5H(i_8+Qk3ooQ$`YK+ZMVAZ9~z4{mGln;xrRlMF5#y92h3YuPk2tA}_-n;R zCRq)i{k&aJfFE#B$ivS!Vk{gYRFpr#j3+tel#Db<(i_6U$Y$olR>;Q18`8zuP74gV zjStCGNczBy&eb@vqj|bb5Kd8APMnfI{h5yl7J#%B*>9L`fhn z8TFPS0MCAyun1%aJAv#@Pap42&z|f|FJ8pkx_ltm{N&xKl5hS=Cs;9ft5eanU?X-D z32&qiSZy&a5-8LG8dbR2$dbxZO2Ksiu-PRrut}1R{r%JF;E+3iV7HIAPN%!~PpA9u zoK81D3l->Zw8;z)aD%>C2gwSRum~WkfJ!nH|^o(sfip zr<)eA$dOwy;(;h`7fnJppamfCaqsr+Y5(q>>Bjv#@g^M>szg7vFf`Q;+f~d`6%u`# zVmXfiSr>p%pUdJg<~hlED>vQwt+DLEeb%Yocz%LUzu>cBUwwl`1UNU)=r{nkDkMGu zcKAH}tKhq1x}$B;*%pAzu;Hv-c6;MoQz zkF16U>GX^A%|IvkAO8TNPrEk{r`@-1#wTFf^-Jh)N`SLIBxk|&8PORtMS>2I;%0t+_x*A{@F!+8ORQXX7$&jUT#TX}K(GMh@BjX{(_i5eFc0oOn{FPSpl)~_os}~*r*$+_AQUee z`MgA}`wgs(*fs!6)^mkf6)FsIMWN?|LQ;|#;^_y|{@E|eS)US=BB%xeN~r8nzVeEQ zlFi5TW#lt&Q)_zUHxB&N3m40C0sYC-r_<>(d@2*GjdTW}5*KjEh-qoWHc9p=s(T_T z7?|TQmUg+**$wP;bQ3$|?A@9^`}AP?)j!^tzWs7fpJ(LGINIGK7k4z>nV?(zK^0>3 zsHA(kG(W8}Qk^Unhhrzjqg`1Z{8X$Oi%@xxNfW_bb1@t@IU|Klj)a#j@|t3!yXrjGFm!?Dz>G;b6H#l<}K@KF;z4y0aXY2 zqaM+CsK8WQNrY?*_GL-NHtRSa=V#3Y#Q^73%CWqcy8bRYmXgwI#?nAF@0{2RK=uv} zroB72wRrsypM%*)nsrgn3+JdR?5(v}aOWl23f4vJ*ed3Y^z-yyg}-ELiALR~FWB*f zw$x_kEr^XI_a(QF^A)#^S8;3UAEQ>+Y`v0T{ZcEIb>61 zv_NZz)(~WeM3+l!oew)R^i^J0A)fteA}tZ3JT?q?vNr1L(1lblMNH3ViB2kb(|Mn` zkcVXW5(+x5%L=|A-^!5s+#fv02YGZX^3~tCo8QNeQ}$(sO+Vf&02vzbf8gw!1t9+e zH}2~znrEyrt`;xC3%n;apXlb3(x}JzZML>yEVqQ2`{R?>{CqabMc&k$>ZPdBa-McM z$@GNoziiEGQ~JCT!m*8`Eo?Aw+U>liGhybL-jO}E$+L})F{Q`bcpVj~b*xWLRf5$K z^g(XO&Z});R)tP47W4vgmcMXZbuJpcu%-(GRT;Q(&bQdGyT=PI0QvX}e9Ib7^%3|6 zt%Ld>Z^Glw`xzb<@zXGjwPh$lyqj1;yE$T7t@!MF?&D_-JlCO%5tCBhGQ8?)7cayx z-)w{sv%bJGmJgY9#g;OW4w}TP4r8+n(v@=7+lt3T;@Ohqvp)uo1Oi@B7zY6J1Fg*$ zSsv#-XEEPJYTtva<~6btw8Ju>Hd!8|`Ot+AWB7LQQ|ti3g&^O3jToPW;e(h6z_Tj> z@AeCSs80$7Q_8kUX{=~HS0Ty0JQ7u&bU(CJ`BH)9io%wZc?jy+5%uC`Fy9j7H^Se( zcQ)O*ha1Iru^8kgx;Wlwwytn3j^V)tjw5`oY*3J3%d{~)8GBBzG^ML9 z3s%~OKoIH;+Yw@(>D6`99FJJjqm1DQedl5{?e@V}&avQQ7q4!fp;LKLNE>Ia9L`l} z%XvRf?Pzosm2Iyg<8WS)$NFnyger6HgEum8%BOvpJ8#^*0O&v$zdIe=zc<}@8*k9v zxusn?+;0PkqY{ym@P!Ylfhx)lAW^Wn64#AwlWUrh=8bgoRnK_q_~ZzS1-Vlcen

    !p)!V6=E!b8CKwf>@yt5a4{E@|(8VIno$0I3 zccx$c*IWRC&$jK~NMp8zn0P)kjfcXBnb+l{#84CaU3_R$LC$fg&r=4_snT z4i^az3shqTRV&G-@=Y!)Bg0`H@nlP zzuBF>_+)ST^3&bv$>Y5kceq}4Xf9c0#-wY3HDZl%~gQkr9TMnj$?1t${Uu;#DC#PQRVoSWYN#qsoue|0=P{1DgnSp30j`nX11 z5k7}ZS9o@zYs2iYRgyAMhnJCBSLyLH8xL?wRhISDF!D8;GJF6oG0lPmTP_ksPlZR> zm-V&l721Rl<>-fGs*+;LV~?aZEf)Solh$KfwoUo9alNE_)U$*!En3yNh~2_VygBlE zc8i$|J+{foDZ~yU!S_q;R)WCbyzOHnJbIq`I8LGT#!Rfq_ZvLx`?MJm`n(df3 z(#>CpuTbZ{PM|hlD^yygGd=Q1TMJ_eoL|FVN4m$O$0vO>&HkD<(#^kW{JQjB)t~Dw z=l)ekjA{1Wyh>l95x+*at{NLlTGh?Gc_W>?tAtrU82V7bt>lHdC&EU<$K&=vGIb>$2%ffa%Pd*R@2-bYeP>IfrHH z8ro9xcufcEVvb~v)!{mtaaXX!EaGRv$hfdGJ+sUxam9SqxoGr?dbfzt49v34xx>fv zufLz3{`NC{4u(>70f;;4neJxu&EeP)M4yCVgVaVr)+OlHK@qW+)BSvX0SKK)O&ME; zbdMyl0E-*T#D@&&aRCxorj-|jOzQ`ocR#I&PK$>}x`1OgtIkhnn?3uQu|Ag_sJrs83W z)kY8>xIBNhgPYI0)Av{a!Z(eNp5txad=poTL42ptI>M=D#HKVZ(_GYlv~(%0%0@^j zt^AD}c0rBextD~WI;L)yjSn8VxI+)C@HX@zcKNt-?*zMkAjbE>Z{CIguX(u*J(3iU z&{L+Y#!JvzpqXF+JDKN!Vtgi{Ok%CJ0yxH3gIN}IepLW~wjGna@Zth(9Zw(oc_#DySbKr~%_ z4(O#c&7kI2mc{fIla6{j{^9BL?DMat7hipcH=nU{1a^f|xXJ<$y2E;8QKC4Z>#9e0 zrq-~RRMg~0xn6H}lqTphMMmzL`4MX?DthWO%`tU1w+5T`VH?)GSxlen0ua5yj;HDf z(U&o2_5sxk$nmIuQFi%F8Po**luVHu#|-r|=p0S~2P(qPppi0LG^3#2+ysk9NOnj7g}tQWowH*a9-tQrSe<=f?Y|DcW&ZSFn6ct zyAP%pd+%UZkelN3Q!q!^$)qg+fi8XqhSwj<3qa5}f#LNB7mB!hI%fMzj^_&2EDq#} zPlAZd551Wfw?s>r5WHv&*yREc*nar#)9HWtpMO35^GU%!{`lpeo#5IY za~0+&E@+dFRsV{vB{I)JtgdkJ;!3*QFsCdTxd2ULhknqR3>&oK9+QMN-;12Y3s(8U z_t+2}2STep(&>k2ILOA3uNbCluzu++b}Qz*w8RG6l<|U;%PcHu{$v@p*^b^YN4SNT zcyr`6%jL;*AD@7^^~;aq6P7&bYZ71$vxQz&xMD*$A1uG*(>C6#^51$!Th5!$*gh`t zDz2n2GT9Y4lfF)1+Sdw|R_RQSJkr*}SOVwQ@Yj*<@wjb#ZsWa7nO>LPm+|R3%esHn z5o4PDHqUhD$v15cYx+|Bs`M=B9%=5AI%%4j&ad?u(+xj2c4cJ2n#~14Ll;<^^F{Ns zqg&lAT{yCk#Xw0)L7R_82DziYZI}%nO57dm&aR|9^)`PRt|@60IHt6*mMwsioMXu_ z-tyKbp^b8cs+U;+5-QV=P>17Exq{jKyUYR*%C74S&2Ns^wFcfS0J*L$bFKaIY&FK! zY4XeuI!|VGs_=zt5Wy9EE;H9*o@3i{-m&S7muQ@fgWgXToz|T6j9Are=o?Sb-Cj)e zyAYF?>pgRkro3O^yM+B;pZqNw}{h}7#1R-Px>o>rG zCk^mEvI5HE>>->i$q}_xM!ncl}KEXH3@erhiv;zxW5A6w%3Hd`pP#r6W z#)~+3^o@c3bRU6%4)daX&;lsm3T90F{=umhdGJ#&Z@oQDw-9p?2tW670}DcM-(5}gAHj&&2*1f?HA?4JUK#<;bT{9gn+!B0=)`Yh*XXVO9Z8S-;trt{q4Ao%FNUxZU zG%Cw-Y7ve*F7UwHVXUd(yMv$NmQJCW~3MS>bi6m zU`bNTOv#Lw`UIgZbVTmn#a+C(sON;AFCd0vPXQVJClUYUjahVFv_OWZOb4;c^s^dH z4=wQg8nbsOWclK}nUI<8Ce{-592-RXgCF|f{;gYjKpHy)+2QoidO>!Q@*Op&+u*jg zG-frnp=x9myp3T6P#FKqkSjc^pxqpk9-3SP!G#mwd^t`3^q+3vGcY%BzK+Ek60;hL za^Xhq0K$bFd|1k^vC9P@oSJjDj~mF}@Zyh~JJ{7?iiIF;0Z35_z3O-Hjn9|#i%33xn* zh0ooosw90VB)6q}EA(@d8@_H3q=K!*AGsBwR!qWdJ{oAA*F=_3C~^|HeoknLQb_@g zW6pI+dBReH*;&}en*q9T(@to|h`sb(bBv6*KA!9*>mD<`8jNi&(;me;$ZB2TZjQ+U7^W0b(pH66eWK z1M%aSSepx|kGv{lENL{Tm}vy!XL)2qOB~Y%R3An;!fIffIj}d>y!91`p_?%~82>|^ z``jkz>J*-P)sA#moqt^yuMK%38;Yw(&-7OIXuJ>{8x7Uq)t0&t+&!eNXas z1{sf4W8F6|V@FsQtmwARHC>~K^Tx+?lnMvtJR2BKU)`U$3&4EmE$fp^2Zf3>LbA)! z?6!oUDIU5#eU5WqM=qrFIWJAx4Sj=Trs0b(pg!!%XWr4 z+b7RnOlPtWH-SiQLSTQ43hFCm&4ux{GrKOJo2h~sY3i@iCzzu>DU=JGIk~kQ~~Sh zI*>-=V}7P(D>IOW*y+sAZiX6@x+{;QnS0ig*wqO25KtU37x8m1S^$E#_;>la7d~yw zIZ8SPAKd07%O57R03`Z~nhi9!Um7DJLiN+M?G2cM%MllV?BZ>?!;c(D+&w6K0jQ!l2Hz9Y8!k*{1VUWt!Dio@t7+kLqF9_mA<#FD~nQDK~0|%t~lqr1=gQVGdQh%`}H*aw4>AE_DDnr*Y@7 zU4Gi?E1yGtgWrS|)UnL+`S9MgLsJ>H-_( z!C%%U&tmH%kyBU=RU))3m8nW(x(ZfyDv`~^*k<*kiqy3G=Qx%tW=zve>tje)+r~D% zyl-?LnkpVMtC8!PK(ju~^?up`g;QOA#w zciCvmepK2yK6p}@O{CT{$X)>BepCOxGtJt}8|mcRvPm7K8gO56zgR}isg@yilrwLn&oxAD32WLCex%vPWn@Mjm(8#CFFON;ZLDVP z)c$!XdoEb&UbS764kF^1W>}j;Mg{<#6h_NuIrPQcX}&Tqn|TvOQ<qPr?AJ1zh*PW*+!s2yh@YuXmC z`?XE#>bxJ%9^a^^wWIHTn4aMiFfYFTE_U|7-Ep4CYrj-^)Bup+f4)VG8=`#Z$S{%2DD`(cA$*dTrA>aKV0X>p(@t;ibc@xs60v~kpg-L%>VUeRV ziD8WED$0iqjx6d4jQxlODApf%A{1mV)7>Euq$C;JA_%#UQl4V;hwY(?@3I>IvXQ!# z=3E&%0xzO;P%j5CXr{^ILlve0bv1>smC_;u6($YIxPd8#SmZKv9St1}@&ssyq>OgRUkbJW zJ$Sguw{#CbdVjk0i}$8I+(aeq!U2Un-zxP1#s8?s-5abYX4fS>Z_$s|x2dHMIk2Ga%ige49R`u4!3RMQMnT(X7UHKsM z_%R=1K2`m+1t1h4C?85NXPZpxK@bV)i+S<~M8>3lejdsnO*-BqWn(_-Wq|+2VvRAcDBxgegNJyM6l-bKi zR=V8?`#nE(_Wd_I(|`Go`_n)F!wsCHv2X+DJ_c#w0Y70;VVr*Xz%&+w@Z31;0D^@c zT<~$g-9Nklgy&Px`RRq-{4^Bj8`cpQTxc;&?B|2-@O!KYzxO>u(j26j#AT3i4^y_j=lQ+8ulfZ2i%$TH6$9OKNZ zzfumrI3N-*W29MC;*(y3fJp#I<%Ql4KKy?AKmNl%O@E6WKz7g$Cr7B*5?DudZd%mc z@N^EDnE>E@tLdUMk)gyD7}`B!8zk_Z?vYBo}_1KF4R!Fo!CvoeRlKe*ze7WU^_ZmiFSg zbr;tWT-3IUPh0U}EO$1FcI+*vF^Y-*7`ypA$GXh#@Cn9Gf5)9bc5^3?J@vsoT>q-m z!XWFxT}O4I!_1S$w~V=#bAA@XL{{UBOyZ25nM!N@q)1l&Tmj2Kr+Yn6>;xT;^T#1R z+j#%s33mTDoj&-*>GTeE{y4mqyZHfknjO@|p4p)ygjP;4JD(}`1JF8ghNWz<5=#QY z+|#fedb*^LzjyD+EF-zt?pG7UjP6=07*naRJJNuqJeL+V~TisB#l3- zCC>!o&70+&k-*Bqf@Y60m2cian`M~+&NPXXjFU9Cq^{8iJ*2ON=$qtPyEU�GSt-%F)~WME zQCH2+C0~86`fj@;t>$0SgF5M4P?g)-{flCzT~I}XxrB}I6HoMU%3c$ttF*P^T?V_R zV;lXl`iZ}Y-`i~d6nJbQjV2GN?2y~~rO)G67&@vFn%buSRn^zBti%=X{BU7C_ZOapfk2PON!`$A#Ti%rAm8c_Q1^pM z8#FCshjObshMvUWr}8Q7-XBsR;pd2;XaV`}bC*Fm-B zSw;_#)1GOWEzvrsgI*5fqL*rt>bd}=+lrL2mL;{*F5-_hUIuHKtHwX3Ez}3^AfnNa z9zC6&<00RRuO4AnkEghihJ_rcxYqa9io*^A-06#BeI|h0%C|)zlmXv2_oTudOd0Y` za2zsbD^6DQac0mfDaZff@dDCxxdRLz92=8B-lSC$2L@h1ffh9$v<(?z!U#pfAnU9f zZ+6IzKqHxS=YyV3OkRuJ<`%-OHp>~4K8$qD6~axp) zWWlEYA*(<)EZgV6L?w@JN%E5}H?iP@JAAx#2Wfoj<<^}OJ*;B;(hhY+v5=tg457d0 zNgi{`Co!vd4w4dUEDFM46x0~gY-RZ4DYS$!i&(SzgEJYsUR0-~&7BXF6)o{Bl9<_e zCeN}+Z{x|3^>Yl}z=97vDcn7XSPMY-y7^LYoitl50koBZhNR93#-}c49k({JEy_9V zR3|jfYJ!T{kMM8z<^gv9cz?S2vv;){NNlNm0cCLCbIq!q83WchedEC_e@Mkxm|-Gg zz49U}!L$uHRi(T9%olh4c>24~r{hPDH3nl)Zb-d;!nTg~lGb-qH;b*J&pL9{t4V&q z={ky<54q|hUGky~(z8l8JRLF8SHSX#Lzxvk!8%NVL3+tHZC7y`8{t$$RoeO6g$Aeqir?4{CHu%xil*tEOYvEzqt zr|CccKYRKN%!}t(00J6={MRA!+5rT4?Jz`HOv`&%(7^?g?GrEuyIKHps0AQgM9GC9 z`0-OP*bRhJxz5CJgS&g293zKC9$X)+&&9on-NIr~2p(eN;VtQ>+#v+l4BW-z!RY;R&wu^0G>?(^*A~ya2>qKjL=Q>}?iR6irC| zS$`s@zJ#b^IY)o^(O1*|{_p>J`nP|HZ}4D;v6C05NCeqvV8F9EM|y#Dp$6{UMj8}w z2BT_~Gd%A?TT-6$wm>#m9_QP}Q{$CBx1lHr4U7DF<8m8zjVBkf-R%45i_Vp(T<-kA z-4Z!xatB0q8dbIDrcto=hiuys5~HtBp=%ePk>idZeCvLfpI%tgpJHTlf!7NxuKxU! zo$0gR?Mz>OvWHJTVb`1^{tW|1ihXp+maTQFx=5V+Qt_+_xmZ-IP;`&o%MjCBz9_aH z^Jd-Gx|8XvoH8<{DgN}>neIL~nf~ZsA5S0r{H*Q#!7(@+-^KP)(q->{gz=z*QOdc5+qj^OYgQZuhIw>-5~4BSlFs?;4?dP zQ6a{2sWDZbuY1O^dl~G4JB_rYr!f~2WB+u10eUqO8>?+)0ncIB6#9{ilO$qcJ54K<&9-C z_A0}tj@oTDMw?g3FSVW9wvE|V-tLX%jNNA2*lif|x`m)L9}HmJ{7FpZx#CT$7n!0} zkE5oWjnO#q8~Uuc#KsKrO)sGC2bESdtR!nsAf)HJK8u>?*z_7N@l1=j`8SkhrbW*b zI>mE*P^>R=SvOoN=CG79kFm?9nZa}um`pZpNJV>G80TIba1Htlk5 zgwnvou}$`-b_G#4cA(G5;gs|&t^Tdr)2^Zgf9OuyU7ohrbXC1f7pF(oR$c{f>ZnDo zNTyXS5b=qR(kcTEwJcQ!WsG0aSFt01dl@&;+bJ%qJ#~J&)GO!W&LR8X@ej|Y7hire zz4+#l-uULHUD!{z-guPj;eXo+gu8)oClJTDi_bUU`H2w)HbDGGmJ2y*i83>zS(j*w8@Z1_Iv?|#-U)w5*PIoV>IkGok;K>|0{^WlnFtOBXLPr zT^KWO_YNW5JY%WJG$xVee~}7ZL}C$yA+PdBnc#&wq?KhH^M%GsK%`Ot=6y$%Nje@1 z6f+xT2|+&mIl`9ne1n&}fV^Og2S9uam~SugOGj^s)(stSb{0T6tX&2FmIl4hil=IqX%o!Q4Z z`~Sc0o;fRxR@2k!X0!PKA9xo~&%O7WU3Ux5$gC`|KmsiUkm>Gb*RGj+cz8rbczS4C zl2K9RSr^4XJLwE?YWXU$B!taW9?>C}if7ouMPV(@Y^hw`=ErI1*+kq-6*MSWKqYq2 z8OIpzAUvdvV~#rtA3Rm$3Lvri2aiSS$-+GwBy1iLn$xk)D=Zr#W#+zO8!7UOvc^#r z$R|D$d@okI9r5v$q67B1EV6{WFf~|*Vy`Xfx#J>lBfjx zyeELj-q4a(9>-B-1*)u9f;c|F!>$L9uqxC;oEz}!7p(rF{lk6vb8Xxw?s(_LZ~<&x z0i@B+{GfHC`J;md^5@nbXKkK7TstzD<^^Mp;)`04X`oos%$J9w>BM( zmw5StEQsL3z*(EsnLlZ!FE=9gi0O1NC zJ6b*K+70~j{>IL99iMC0cae{CajbxWbHC2>;Me31p7SyJ^Lb1F;bjCTePFJcu*+9IP)ZW3rUo0zlu^jZr`N9^PM?1I{q$e{^B<^+{nh(G-D6& z7%_m_86e{I0}ikqto*Te|rt~uPM0s+^qt>+W9C?F=?6(4-iU zV}&=abcCY|>@?Pile+J`dpf=I;mP#jFHWYrcsR%TU6B=l z<*Jju!YbrhafoQ5<4*PLKvQ)c?fX?+Gz)9lZ7d5<(KK$L&{-2{lQGk27|^_2&7iB$ zs$$-{#%*D-v(8vTHXd8#wGpv2pfNK@ts=%^^Z6Q!W#eR?Smr&Egti3Pmc?-!F)r6Q zY-1hy>VBf$W9=xn?Te-y2k4h|?PLCnvaPq%c!M!+4=WH||MY|D`Umf7QrZqy1?hWX zz5S}jQCE#xunN}X>z*aVc9xIjH8htdwm%a(4ws#dILn8$4JHeC>jsnaitZcrykXgS zwysT$#ZC6sr!xlob4@lxusdj81ti0ZE07_&2CM`__h9E zx30b`V@Clxo8j`rG><@lxh&%DvdH!Fj9}!W(oUHl_0~aN8Qm9F>OziTBQ|I&13|sq z`R4LY)v+OSnQ03$;h}4>S>4HcPW3Vum>h@@T^$%ba#iA6%_-YRp*f zgXrQ|muB0=Gxy=T^g$Go99=EzW!oZkh;AH@$TdLAnpqgxlwzBA!T=k?O9*ey*~YP3 zzd5yaMJ>syzUJrHS~XU=mTjdtn=b5I?2WEvY_^haY|@%H*KJ4lA5KS)<5$6c7`QDl`|%EL8k`>CJ?_sBC$0#>2_ZZD*(bO55GVH1 z>W!F)C&2lgJ0~pojb%tPZvC5yOqnv#hev9*aVLlzNHo51-=xmtO@{^_ z{e{lNsFq|v284iKP#(o3US5463?qg#<3+52yAp+2hLoN&Y&SlRr4$0CmsZhX}N}8w3;U8M!la%c0Sc z8rvIVuAh}UcqX0~4Dz0V)@^EF#?#v0a;7#OiUxSP zz!gmRtKI!OZ%tR=g$EpNPq(A%ZXTCOXW2UH z9X{>FSn?bbKc0R0omT$fWDx!0ISAI7{`7Kp(Ao(Zh2_kTI?B%3I3a|+>U3tC{mdOC zi-eROsQzR3qi)G9v8JTnHk6rX?L&^lSFG*H#Z9`%wugQ^U-I<@oZxfJ2_Sqrmgl#2 z7SR(k)-BqCmE=lMQP=n$N10uAKssE&W(cz+SZFe5GEc;gZ}7U`cAKD5eKD?R0ti+B z(E|#^&g0{}b|b?!?LQ0pWfWLZZ?2%ri>X029LqGaEOzZKp4%MY;qdSNX?Oa=f4?$4 zzQ3#2z_jPsgy)BsY5L%yGVRzkR$c*fl@mbX6)=2-+Ksm`0p#ZHbmL}B1mS8SoY=v0 zxhH(aL<~;+j|YGSLZUq+cB(o-D7 zdwZwTd!L+4pZ&YD>HUw-w8|gHrs#+ffGNFChp;vlmuxMw;WoURY^Y<6Tszj*HMWnQ zh6a07qVfDm;d2EyCjH!0(@~*);eU;Z*Uc|0)yv)4M9rWSz zhh;8PXBqRCx!K3d;=f3&j)gWa5|8(9-RJB48ymg?W!WbC5i^#_WLdDrxoMQ!$B4Df zQu-n`OFWxo7i#wm$j9&|-W6S~xGOe*mSU-91H2X6STca;#cQKpsyz$1mtfOa64a*R8Y>md?5mOz`bt|2G22E`G?ES-jI=IIZ zGM77oxm7z#=k*;iu3wisj%6QYe6zhyE%0Un$m_JXe)d>BAUI_}&O3FGQMR;BK@bwt?>MxZFu*PaeYc^uxomA5Hk-fASW!!|s;~J~EUVZqA^;t$Y+cC1zQv9rB}@IQ zdS!mjGiqH9ewSW6y)2#=kDyty;`q;ZTc2PRkR$ve_}Mq#V-g6S6rfT0U~%g$83XKU8HegiEo)vPM_&FAYtz)36yghFdrr7B{=uX{UYqy{fF(KoI0l!G+(V$U3i^0Fr7nhaVt@Eq$HhW;G{&Xf+W1 z3K%Pb@P<290pY!IKD=SwxGcQ4*oRT(uHlmPdO(HMKKQF!O$gDdAMq<(?FUs1bp)sH zFj8bz-ppeu${D9@?6qTSu4{*!i3jm&k-)ysSM^jU*~mGTlPSat$|dr1V7wV?_cpKm z(qRX4r4P2VCXFeNU$ipi7=lks{=nn{<{^(`%q~bX) zw!L&we}c{9>x(L5ezwsV4aa|+9Ps?!57VsoC?uk}kjd*YQgZY`+9BWi9DKRW(yS9S zfsUe9;xSDhbQc@Sa;h(gI$r%Aldtx%0tnw%&j+V`IKi+sJ|Gr+xj43+wq+E{K?Mr`R{h8FMhW--N)-84zMx+CtXml_N5s<8orrw z=!Tunv6yJa#RxdDV;`@1xw1b@0KvqM8*k+V5WH%QtA%jbAb(%&D^};=ieOybgF2q; zz3Nw_=xaRxV@y3I?i4Ye;#Dwbx2GpNA5G7ucY(hWmz3a-YX#ID=XFgmkuCD*u{s7UfBQH0 zrcXY3q;}@2XLTR7z9_5Q7t9ZSjSHBANTZjWsLdD>LT4OtJoZR@97#u9#Rg2@mb0Mt zqM$T~WDrs8jj~xe3-)Q;w&{|OC0mXy9LG3`os;BGo<76hNl!I)M$BefvL0on7Oo8V zcX0mZtMK+P`C}KqwvW|6uEwNJUCZ>b&W!T9&<2$Ac;&u&j@Q9FdVrNczC4@meKAcB zzu%n>p6=mV8xLx6XdCF^ZFi*xqbY+42gD5ZzYINPmDXUFAW zXX?sjnfMkI=5rh~TpAnWm>L$D8Giz(UzA(8#?Jgq`*;j63IB{XUB97Ya%{SC6BFBS zzlBu|-<__$cNc%Z@fs^na$D8;$2JakO64d!srk3830_jhaa4b!%;haZr~|;3CWeiF z@Z;=D#T4kBP_oc$=QR zgk6%2@sF6XOuS{bbv#x6B7Jg+$38AAy-+{MfP4&JD2A~y7L1o-sb&i%xW;iSK|6rw z#lSUqQ+E3%N=IGOb1jBO)FjH(I;`@|c|63<>M*D4C6EOlJS5F}d;1x&j;QPD!2Zn_ zP6K0|WHt{#|5iY~=DmN|PlblezGnOlwrXb;?ZRfnIJho%9Lqk;_$GZ_THwtDkk@5T zy%KSHKyX@vvTRI^u^fZ0M=GoGFRT^0^tN+qBc_!3Gsvm)AvM?EY($)6T!{_R@ z1-jt7>8in)U$7e?mtOvfeX1Ss2NLd#pJEMeP5?Rh(>*Qu&%5P(XsgX(x!soPO-$-_ z;eapg6WoF0gb*${PakbU2=uYCMjDyB`LZB*qyJOJ3oXPP*;c09zr+zQG&-QzNra8G zUC?M!2Ni@-7kWPZ&_9&=EN#xtn?1v(rVe!C4T=WZ!i5kXs^g)b368fTVX#z-)5gtUs$}~7=qmPQL zHz`X!R1TS(Q45f9-W9Q5*mAMUl))1~m2(Vbl3|#trClDN`EH6JS}2824jKzG9aN=} zH|dD!&R13193jmJjQG6pkU6js1ikhy_r2W}o4n1sM5gr4Z3u>*3w{zdi17yqw6 z09IVJD!AQRV|V|%dFQu1pw>f^x}Q5XdI#N9*{a(`3HK4r7)z}K_Ile#|fVhwOxarTdP&{VrMy4eH};nYj}i`FiILRpVVTQ=$%__Se+92yR4&HIS414)q43v#+MT|_ zssP`9xi>xdE>;2I1WICBT^Jv2I01yKfNi;g%d!S?qdSTK34$2hp&IR!4Fpf z;j3UU0faUun8bOENgR9#8?S-mL{E${nE0U;K9F(}2%fK_-=IGwPBy%>!AFxpFsbAD z>5b{BCV+e}9iCo?4JLskMw3X=4`2DhK1iJ&{t}aAUH%}?a{aKaSZ3o9Q^!l;2*Ac> zAxt=?!$v(fO#lJ#?RO5QU;p~s>DQlqkI#eYy>~I$3ZT3mLG7|~>tZD%<@cM-n0 zRz?5CD=|4yPLn_|TUoEUq$>w~zS}t>I~A`F_O9b~FZl3!VfWfKj9)nDwBfwYN@MFQ zQLSk_U|cUYR`eendpOn(9vx4QzdM?~{nIpk`S}&B403fkIlBf74rJPC0tk+AmDYbP zRkigC_*7&iyrx@2DQFI?t5*YssMvFih>2ZTRdV+kCLLq7%G1v=D19}3^o#4$U;XW` zFyZPhRsg|7T)aw$y+(hN6pnS-dd#o8Mp|b}x$T#1$F`_#IqK}gn9yfOuyS@pQRw!n zxVfxq8qJs~Ap2*(qBwU|?`Na!LYX$Sb>FN!?%T%LoKf4S`mz-zHHM_R8egr#YdYe;e%GxPe!}d^p|s#RvGi2FKRg2_S35N~K*70Z4m}K*%mb7kNYMXWXS6S|3 zx1Mt>dzIsU6WhE6+y{N+xjaW*PU*6JwEkvdhgmA&{%Nesgf7WUp|tRL$hFN3x290d z4XNYG+(%TR#^-Uq4P(A|Fd5R05BtWym7*V!U2C|W5p`mw89nDM&7R_o?EbcR(-XX>bVjy6knbCma|+kLKmQ+nN6 z;LQY(*KLpetnqpfa_V4Q9#iX?T2}|N)blSjZ5Uph&2lP`%oL?e`8r*$EA53E5mTFBwyg4cm(itfN1AG*5W#h<+=+%L20$r%weP+jF*BO)m?R zu@^eFnNEU5CR7V_R6yHwtC4oef?Zd>q}$RseBW zZnve{4;Ws2=$OUV8SaSlrs)|bfN&DX4kv~9wJ_u&(DqE}rydL_NB@@sDhb++&M5PN z6!kRC+nK@zR(vQEtJqQ}TiWmeXv(w%Jw0aGwoIEWJkc`$hi_rPHQ&Z^)w<$UhCJIX z+hvBJtZmHWQ`#@oDK}0Kv`(1-GNV!Bhd;^j#nzl*NU1I3l3xmdWjis)hut$HNkcct zHMHyDIBeW>fz&s7wY8>e0R)Oqc)U^7)MOU2Wdoh;1azmL^+oAS8n) znKe7eIf0H3Z}6P?F6MzWvrU=$_i|7~?0J~Ulw$+S9Jkcg3r}#` zahWl=yyTnvkSl#0;Wc1~-{03NP)83jIe_D}_G84bWV?-w*4$Uz6PqS?Xn&rA*~VYP zxG{auSYbKKgRVVLhf2LHs~&X-0-8$~#rAEC?U-6-5M_2x*VJFu=D0>)`}DCJ6F~S1 z80=#{vChsF-6$hs-&Ws2ssJgEFOFn`3zG|k3h2be=*Rd%h!)D7Wbd3y9Tw~LL z7t8sWA+KFj2DUFJc^p6AneP9vGkyEj&h+K)uT0;3ffWIs;~_LAd1x$gTufyXc3jOv zlR+@)1M_P%0YsBP@-;A=0CMd*Cx1+u0CEi}CxGx_ExVQ`mU*%VU(vz|AQ-1PK?B1} zOb9_E#{`g5O$zbkjx(<40g~g>{pnzOXL@$_?sRbWHYS0*h1Ee2Bzf@R3Sye@K^`;$ zxmXqt%Q+E5y3DhU)V-ZHTyI6;3B<-`k%l-)`WJQHIH`qpAAI;^`uqRz#q^hd@%{AC z2T!M4Z(*r3bgI)6oG+8WeayB@)we;oq>Cs5Rc&5o-m%(84izp&UEBbu7xikltb@ux ztIEbT>&U48Ayx8|e_%v3sZ#_Mjj`8Z3ljnF98vbsHG4Tcbvl46* zRF>CByO^Y~hwFyj8~8BAYx219dV-se>wdmm(|EwP2kOYP?KojeuN!)HG(CIxZ2IBL zqv?y^9%JR7-Rb%9Thr0mO|7hRat5C;sLX!FB4el<_fg$yzoi#u6jNUt(jsW&R3BOJ-LG}2X>G{#;n9%a|^!B^grcZzM>GaVjA50&7 z@c#7HZM+T)hTBg7p??Jhe-T%W=)8RE6EGd^Ydeu=)>aFRRrSP+J3|_|so!Q>aIt9 zm)I0}jJLem66wZi!mw>cWtL>+A{Ng12^Kxc+AwI8ONbXCtmKd>ufWzt!%qT^{Jz5R5L&Kc^z6)TT@ zS=I+?@R`yC_SKCtG9(RSk&QczHN0)k&4@5{O9yI&uAxJ}{B6dnU6NIO&Cju}E)h#r z4$HKurep9ZQ{*-dyNi5R@{8D=hkaSR=lNZyM?7d~K1e*qYha#!jtL-NeWwS1lyiT0 zKdfUoPtJY7hw!|auRHO$p|2aMcs)#;9D6DoWzy3*QARNIJ8PZ#HUwkX)P7c_~dH z%*d0z$(fm(27$k=BTm>Pu)d}akTTm@pJjKi7Pj=EbWEeEDQ27r@&gCDrbry@*L(`d zRe_LlqQ@?u4D#6E1OfGXf^ifvAbseC*2Q}xq^@s%*g<%pi%mqJ{VTSHp?$}x{@jsW z)Ex{t_p#`(AXFn(Lwe$tvYD#u#Df)%_zT_}zxrsp{_%TS4MedR7DV}NVGu?szI_}J z=xYLng);e^r@ocZ?t0Y@+dpHqZL1?RmeF=)gDEG?@l{|4U*4OZeTi4U96ZB=T0TLA zV{xxo$(_0G)k;i(c!el`{kax;X#Qws4ee}cQ=?D`*bPfh- z_{)H3qfQJlFjFWJ&SQpU%P}nuQ3=>dngK;=GuPXg0j|S=n?{!DX&|!OUDv`5pQPSj2QB^n;k9LEb0h^ zqUmhd1dE=D;-w2$-Z*?VP4~awnSTHOU73FWFZ}Lwg%vl9rP=IB|qJy=Dy$ zmG@?oK=2xv>sSHg`mR<2;ff&FRE~)v+y|U^!MVPi2%=ZIl!+Ny1tfJ^6@;sJpv+I; z`HO#yiV&QhVYQNz{ps-R*7WG?!|4F4foSEBGMPjZKyYBvFFEMDP6AQWWlXb6E6VWU z6Gz3Y0`hLnmMJpoiri4j@CGgM{PLF%rvL3f|8Dx5-+Vvaym5>N*l>W&bD!O>n(dFy zIH1^p9{)Fu{l@qRYkdH*WHa=BQR1_%h=jA;JSrm`M@D>hFJ&lana2~i#p921Y3E;T zKiV$Y%#rhwZ04fHlG+U&=?E)g9sckDD}g)*4%Q@C+8pGlccU;~j=!Av@zxDJNZsM9 zU-Fu&ooCInUO?@{hJGdmnTEGDhMpqh1?? z(y0;_ZkKXwRy?%b*zgzUQ>E&MGVP?l|B?sK}&-!9X1Np>EkYgKDt*?G3Fn%>8t$6dxZ z%3OZcV*hiE$9<{xFV~g2Dqq4{W}7j!eZ?)wM!SoYFN<$e-*cb!@!XE(Y$5BnihH3k zHv8Vpx@5cHqMxgp(k;hxq=g~tnx1P>jOQnt8c_9vuD74T3~RwhSGT`+C^FVVvdh$U z8B5$o-m%;<<}ruN)84w)M4{9-b+wA#7w#XcF;t%>>Kr}7$T^5Nec;VdymUW{ZTEkeBb#k$!Zf{5IG9g_S z1}=9^AzI0HbXP6Ox^|wMV_jWhmZ}`KX;V#yw&=DMH21u@^rCi~S+{G`^EfV3k9zWE zA?~tqiQ|JW?qLNGJOIS9$Nsfj>z@~K>*n)*!46@T$G{G5>glHbVZ0LN3_qEqFFkDJ z9S_^mU+&1D;Ws`}2p#qQbVZXXc9{jPO#tCtMQ(h!nNL3$A@N#4M4SYKtofiFb<_w; zUKA8FzQ~t)V*CLk?IfF8k|tmh`yN15FavcD)7NyyvVV5kKG_HW;`#zOk6N+=snpr8UXmev&u2rX;qX2tfZ!D{oB*O4v%jc6xc(@UfL}@rQAj1I^*6$8 z&~yv-E7*!r1K=zBr?HW;hXV|qRvW^@iI@O#6BE-mPXO`$Bahs{1yk=w<{djR+^k!- zuLKeq!76R{WgDVLJL{UfWe{L0**4l%z$x#En~{?uo<5qU-~Q9y^xywqtg7*N4-*sk zz&Ar6Wzu@$2QPVIA_yjcT!~k~XeE%V_(lHJocw{+K(1Up!$c6S2Etdx#3;m2z1jzc zm^L9pGM4jmg5id*i3xn*PL44F1e1nYJ3h!g#WmvL>9y(c^oc%4C)Z^Y4~jX4(TN@ zzVhV?CadjUzpC+y`$j#kHS7{W=c1NllG~3Ok5N8HXc9Z)$KO_*%z603chmDP|2Q4o ze>y#RertMs_|Ej;**nPJnGR2G;F!S#&@)V!z@Ff%R#=Hh$&L~ocpJkjDnnMJ+PdoJ}8phKU}x4>0-T^Xc1fzL>uI{)g$|4^O6N z_n_T|_dNfuX=wSZ8p<$+rL zrr5jxk4}6%jB=J~e%^7kWM`T8XWNhBEI|>7N>Ea|Kc!o3+^_Ah<2C+|+$taAS$9sT zZfK(kAeiuR6|c9v_Q5;T{+-*?-mM!rr}1@r+)Lh5)slI~Y`x1PZmDdWO*|E|#BrH2 z$6kGoGMBgTyL3QVwuQO(U9^ASmoAgSm@Vkq9&`CE1egwzA9OTi5s8HyMwQT_4ZYrsB?xeQ3PF zw~gBdfp@r-xo78b2d<-gP6U<5jEye^6*K61``Ng+X_w4%b@(0a$1*Lu`yuw$lPiDL zH;t+<_k8pT34fusbBoTz z+$LQ`&T&gstW6;1G;tkNoYQm%ssNNlZ@wj8-O#yWXwgeae=0u3 z>G0bh@T<22-SFh99eVh?V75_Is}mhL;i1^kWC7%Hw_X!XaHn1=eoe0>koEIU=yNCO zSm7N(92IS44l*)!?ofRC1x}PHmyS12q(`F39xQ^3ap^8&;vv|To@K83AqRmYST|v4 z7rfy&Vjz+=gGPAT#_J*^p;}wiJ}Ff_KCPHCa8rVX3k66{58uL`nf%c8f*t{dl$4NfE3CE8Z864F=GZpajnv*vZ# zd>dHgtF*67S!M&`fxnKAc=D%}J$7&dUdMuD=*zsB&SQhe0zT2-GY}=DsmD({FxrZ~8y}*MFUU`OAl5 zI^(NfXsfT*+|sT4Vl3@=SOcnKx*_tB!9|@SHpgw8buKTZ-iJy7z?nw%BvyW86wFyQ zbtO(hpuUZZ!l6H9Dl7tE4CLk(ERjF&J55$>B+tNB&YS0vLeKVQn{xFGPJ}->IG9eb z3dk8&O;Vr^_B<|)sQ}@6fD>i;nwLGk?gguU>|oMbto%`Gk(FJ{=xk#qo1vIyk(6l|bH_o*mwto*m!B zN;}uED#%q#!@!2ziHaJqW+ zXnO0;G~Ie{xm&8y*Nqi?YnoT zzxd6srcZzQ@$}yN?*e}d;}^#m9N^q~AW`NwLmK4~W?-zVvS^UdkKZ#Klq!RSAs~t4 zRhe*&HqP#fa>x~K!-7H>3dk2JX=P{QT8WgMT8GqO!0h}j>ySx{?|efd`uL#AgM?v6 z0Kuq3s2)cx4?X|0tPc&bAwQP|Ps60WU*8%=XxD@>0A-`;LY?3Buf+nNVQed5`m!Cz zLvO1x)g0=MF}Cfl1(h)#+s``(7=K>6j*s#dM%K?FRrTr>pP3 zjq&R$`bBnXgO!?Ttov9dm@?yKoL|PWIO?me+PuuXV_5QSUG-maMepO$ZR|2lDXZmm zvg&3bf04f8C>`OtvO-B;#w@sg?^e%4pUfU+^#cs-1Pwa;!F&&=O~k=tX2t2@Pj1zU+c zrZqi`i%rRDs0-K}(@m@6CRHXh^_mjmN{*t(z&e~-HfLK`8vT!D+GQk2boQ*yhW*vC zVN;WYf*?FgFNjXP1oMN zqcKM-8eNoh1HO-Ka}evI`e+Orbz{4+4SL&o0?08|e&WQx=ifchgDy@4R6Bz6XW#M; zKBFFg0o!8pUH&$>K(i#Hf#uA*dTtWiR}697*v?Fhm9T$NY%@x;>zWIFKCCJ&pu2>ID zPTSqRq6r{Z@JfY!Ov2j1%!5-sl!$#rGqw@Um}fgNU)zoHajO{XykBRNLkQ$Hl2~4K zmW@~uocC3YOk|s?vurh0lVPF;o(WHX_!mq9`Nu2M{qJ^B#^hhDoWV_FNv4|g0kJNX zPPPfJ|_6c$?n4sSL5KrO-;f;o-&s8s+Y`bQV4V> zn0!n*cUah*PRFNvSOw(f^!)73^z`JN=>VVOQ~nY;xHP%MJ}9%V)U%GlDwBC(04Q54 zIYax@J2l+L9v87=Tiv{QIKA`kMSO=-FQC6U0I{gaql2 z+vv{Me5^0yxyYu;6XG0vg8ST0AC)UZm}-dizA z&F!_swCf$0N*1@RgW8sM@JpK$tXgvN6f2lurHsR`zQOtZF{IF-UD)oNJoWVG#`Nd_ ztAaegjn~86o(?b>M62sy5{Nd}H-pgMU!ghoyY+z)i9khbZp6fiU%R^})3v<=97E5i zcRt>m-uvbC>Fx)Z1ajvTubV;u_|LI`6ZH?UfBwh6{C@i9|MuJI0bbE_hJ*h`z6R!F zyaMLqk3XF5zIzvwZ(@?GLdZI_aGHNe*6FI8_*!m65U~N^j)8YnryY}-Kiq;i2 znUx=9W4V(1ys>Qz)%Mc!>UUsOMfue?_8+!6U;DCm;|BiDc?Xl-@rorZ^|d+yq}qB9 zST>gFV@X!!%-f!MZnlZiPxI{D&fM4mxw*{zC>zVfoU_HX^EsfRcBHPs zSSECoxm;*on`}K+qi(CU88O>b&c`{iFJeFXxNN?W|5Yj1)^{ItY}So(>uYLkm95KH zzKhtc<9ktg>n9GV29q+MyBoGRt9_)17qd(DBhc;})^Sy!K~=`Q$Eum!l?Y)q?eICK znRh@FIn&~UpmDZLpga!Fhu5VFnRQG@>{uo~WZjp8*aqAE+1`9jW4b0_Gvg1;vbleR zXo#obQr^nUEX7y>)NjVr{#W-&WqFf-JzD^OKi5O&^{m93s9#nKj3blFPVFa$ZKVJJ zKmbWZK~%SvYo7XEt^-L}7TroWw9e_AYi?gLOSnMKZRXeH?XNyVXYq{u0CCJr4C}># zabCZ$(a@@sT$DR)=WHj2u8b&XH_Ea-Y2AnI^6zWSzDIam*Hnq3`NIK&?uaIaq{$F zI(qnIdVUW#3^5txj1PzSKzIzdn6J%dHQ7~X<|qUoGq%Q2!sWj4;T=9bK#jZpO~yXY zUwP@h&J3BRB&r`tL&oE$P5@Cjn%n^srSa=m-p~;?(|FQB_Ry!J@CXclQPzDj%VV7Q z^oyKrpwc!Tu9UY^ECU0BFo};F*eP@0AdYQ7pwcMQTKLP-&Ucz^y$n|owSr9cHGqsT_wl&ray-+AdC0l{2yDC!v&Qi%n%8&ktz(cz@ z1}NuKy)3J5b0P@jJVsFVv0;A^w#h9$CncP5Y_YL__$F)YI2w({b3(<0FWExnK0(Xq z%VA&T)N$K-Hv~Lw=pPS7@oV0FO#aw^`_{Do?%P`0UG2)TYwbqczC}%j`ejf;X3&wK zH>b{ZQL6paIhBKAU=7jhRF;;szz^h*lvHAyJ{UUz)umfg^9mxiFFRe(&ZO~Zb zWg84lYbC@9ZZ$G=svim!LmRsnH2T=svZ9bZ4X|aKMWKI-dX285eq7Ez$TEZk0V~6E z{qc140Fynj@(X|2uGO~?bnNo9Vx^cxibqlSV&I)Ic1e!5T^vTVZCfcMPDv3vW{NmI zam>*+_*4u~=$wrQd-`QPj=?KflKe_OT-6F}} za*~JZjg-59pSV=&6F_!xZn%PpB$_LT2_T&8p@|Gs>tv#+CNovuvZL>lwF`Bn89vl@9*7yBPcNlP8$$ zcYk{R^*u}gc?3QB4KD3Cp^}p>j!yQcXGd5K1RuU)>F^jItO9a$a&%`pvWH_Q$uUyT8K2=DSz0q7EiZAZGpj$2wx--zg5bum1GS^vBP?oF3o@3r9zX z(~TR~r;jlCgR6hs#%cxEF*%nLKzPiwW5l6)UouF`+{BdOLvdfN5~a#RElKr1Qk6Ll zg|pC$#d`WezS%OLBIQ&{b=m+M<6`QNwDvZ{w&|DsfXwY!gk1ZALS<|qP%n(Su9@e^ zGj1!kA($WI2~rYy?}ng+jA97YdjcYv`V-|gpnvA^KYX~qQI;)4Jo=4rWRz{_<8K>t zK$dzzP~tYL=B&`$mX-n{Lx`iGm>c)OC`$#wFK1&vs1-TK3;QcWQT&6QbSdK`kgFfQ zH{HYvJACb4Sd8Rms&dQ53fD#*b=AJ+t4)>vT=}KAYm7y&240BM`-^Gavfath#+0gG z$j^?C1$`AQg)>A@;jevu={Rg-Bx<*$XQkI3!=**G!4&wp*-d<#bmtQPgn)JZs~iz) zqgm>QOLikphfE4b-CAcwp<}I-Uq*IaKcg@1TW`dT1-Qo6~H@!gvxc^oV?HqR0{ zM$yiYI5&6u$PwFRkqxVUib;lolSKz~g3Q%AHM5rCY0pu$P$SMFUm;x)bdFGsWg8%x zINBPOnP?sh5jXa~h`S#v`}v@eNM%1PM6-l`K$&JGrMuvmTdV-z2>xta z;LQY(KigeyDqK1jIk`r_2g!ahb@=;Ku3vr#?EO$6 zal`QYA2$J{gv8z8zSlDW@bOUK$RZxzl*f(OGrk@MH~Y9Eh*k*U(*WprlZ(fj9u_0* z7cKCVWlsQ6Eh*E}45;I&M%d`#X+)=oecZv~|7TRZ~E4;!5x=jG#K7d?Ux<2pq~;&p|pA7kmyPbZc$Bt&_t11Z1Dq${w81<<&iy#|?5tE}kSq zLO14a?UCx0a=KLF_>8T(bMkfh^SV#MY(1f>3cu=CB?z_&b*#toID>jR-g9EBYPB^C z_ikRFu43ZHRjmAR<ior!fr7tY>1}A6Dv}WE@vd zpJO?7Jmh-zr+fI7@Pimr)E_d+(x%!U>vzG6RO`iT+%fvj-k!&{w6MKpuA7@S%S;HR z_$+PQPf1g^z=VWQQ&K`V)SJ&TrVfSqackkx_?*pH_i6b`8=N)aD9%q@_2c*`K&kicchSs^feY&@YNfcP^ zHB-r^wl4(U?Rxg^yJYV9?D`o<3m=`(FHzAAk*X!rH~=jsvkM|gR6kB*)8J= zA)Fk-S4ZetN#XUFb@_(zQIj>WlayweUCa-8nQ|BfOJH(h#}3CWJcNF9^1<}r^i#bG z<`l1w@atrPmppQ;3I#8+;)9%N`N&a+hd#?I3G9|Oz9EG5{_L~wrvLa4Ure9<;=%OJ z-Dh}s4Tb8E{hY?+U;x-WK6|{D@SHE1)0VgvPs^NRy`(17vb`r`#&uNSEHe|OJny*A zbL9fES#DfSHC6#&8(}kq@z||)FFVh_4Nfr`{+O>z!O9XGE0VFb zSFb$BWRJt?8qyp4&!+2F@wxJJy1LKTzno3`H?B_CKl)(0@#!bi6|^C*RY>Z1ISHRJ zKfxrOM-LuPPf*8a2RPR7ik*)>dLNUn@ctNXJjQAhn;^97zhR^PNqY`L`a6_k7V;Qa z^tT!EJ})vd>NHt|;|}c@Z`z{Jj&nLCp8w;^0WyWqMRIUcVqu8*ZAqd+F)MUz&DqW} z#lk`=lvLLS7EHuc72SSCR~?=gU&WH%c*~heW&uIDNkk~#L{+L--Cf6wRN^!$5X zliaDp2@Tk|?(pCIq=}Ys2=qc1JjS?rjPfxTVJV0J{7m2edv_e8e{47$6ZyB|wGZE& zZeRk){%!odgK;iS^0k%LdD_%Aw!a9*HtYPoOnHsdaa7q0`1bKWnELvF;&s;u##Fs! z1Kn0d*Jvy7YXHL0ttdU#xx7v2wjuT+cH3~j2*&Ze3bAa8zxE*?8J4-cWItkDu2|bI z>IUT!rgGK%U|Lm|mS4BuykDy$W0!Olr@SlbNJgMtca9d9zTM-jx%8w^0?MZ zCS5>v)_EO_&tS(OW<poeL$hCNi&#=;?3`&{&yJbP zWizyadAS$It+)TGuG@tb|9<8+N6t%ukT01pJ8eQ{3@hvEV8it)t+#no^n z5*JXd^C6>r3V4%^H{b9JJUyh!8*#c)At&{W1f8PYn9+qNFJM5Wn>)}WC5~nF9X^>* z9w0qD46U zdT)uPo??83mRMpW%!E42yS)r)OxtFoV%SUAdD*rh61Z{JnuSArBd#Px5_szzf%X-3 z@jt|g?KZtNt3CBIOa`GC?SRDGnt$dc>0hNBf2%NNg%t|@M}{{tl_@U zF<|l^nL6&QMPZAerN@3%s-}xt%#V>?GmVL0Il;2_NBHIJAzu0A*T0CoP5^;GZHjdG zdtT6=<;#IMu!{x(dyZ^sFLRM2o5-|kUA8AOZoSh~uA2Zt8dI8wGH#Z$W1G+Ye8h%D zd^bB3H{pZ^vEs%TQ~KdYGN!0B$AHsAOaS2nPCP*4uf#R6vY~o>w$s4igA6=hxoqqd| z`_sekxdKR>CS+?Oq_p7#5M44c&&eIca+MFHoB)C!pJ9z!e+tcII52t6RZ%>D3H{(?> z;tTt>A4o&{=oaE+nR>ZUo?o#IMT>jdq1^!O!Z}o2so<~w`pfCR{4bwRpM3Oa+TZ6x z?=awM3*x3#al*b{$7+!(z@U$TDq{8i3(Xiv;x9Ro7dW0z0HG69x_!GOQLks}ecaag zeY{iV&0~Ue7G`SLrPbO*CbmDwPq9MMF(wuqJ$x9G;Mvi~P4-E`O5hVK5@E%Ut6cR1 z*8`ZGwtJNa2kn7T2Pcu8Gw;^1)VeV+Vu6ObYJ?sHdf*L(CV*g!Ke~@synXv^p8(?e z&<=fVSF@#Zl?{lv(#P=$CxKv95UvKoNgrAbzM z2PcE=?w%q&#$t2$XtfWn{Bev)AV;dzdHx))G{X$6eVh+&-?=^QV7#Jz;Si0r(5=6!3s#fG3rhF=iUNuCV>38@8L_S zpGPdGCS`d^X8rsG;-SccT0c>Y9JIG=U0N~rXROOTwNFcY&WVB0c212N%aqS$y$-83 z9$35Yu$`Z*lW!i7$%b_9d#((f5#>)*!7OLN`@waox;ZCHo3(+zEKIVQF3(bK8bxDW zK=HjIXqr~h4UmoYo#_HOJ98_$Oo}Dh1*l&LYX5WJJNOCXDQ=`a{UaxU;GNOWo^QuK z(xnx5l|3|~L7?NoGV!3`GL0m|5oI3~p%A~e!VNx74mrlnOWf#-_bgKn3exaKC%Kg3 z2$PVC_~?N+bd>A(V_sO;F{LqdeCM=m^q`eTQQFgvTyoMAOB(-;z$aqHz72sAYf*r+m1^?5uxPeFWD< z*F2wqZoRG6VJp+@=+#m$5Z1?o%#h(T>aqyOQ;`x|8P3SIL}`?YpVxS zGrpV*k;beQ9t(nibz=W#Y3vuHd#(g> zj90;M0?0rA-+R*!-{6%Btf*rlb$;XpUp&o>D}i_th$e-!2_S*xgIwAKrHOka+=XZS zVLwD#(F++}W^kegb^Z)x&g9^$V2<&+isz@dri0UWrYEN#U=qkRJSc`8@X-jtL640~ zg)EbI=qrq+wL#iZq_$8dY%{Bb{@gaV?i@^i_qTtV{`dd%`E>Wa19cv@tB-r~+lShf zWd>Kbu}n9c zVe$vB$KnBUF|^%K=YE`@U%xocgVSS^Wo#R|(BC!4XadNidHRF05SLmdvf!K42kjW;_P{h;)qvK-&8ViE`^fb8GBqwB92 z|Hs<)Hi;TrKgzdlk9GEzZ_9HLoMRn*SWYhMs_Yye^;jdcbz0Jy?;MVzj{8d?7|+F3 zS4?Kv(POQNb(Xn2BY4FNy!PPM#^;RJ@+|)3iR1aX@5sLOhU-Ec|PZ98sBX4^<-@wLj# z8S1&gb$9=8ymJe4TWX&!GhLF^Qx81Nb|!5cVA$5a=(vb_v%UT;@MZ$Y>%R|wf*N>0 za7vfXJFT)Fk_QhDLn_0>@<3LO%2Vaek7@VSW2&;?^FVKn$2`ZgY-?Y(3a)u+J;noT zAH+L02GU-xga7(J3<|ymp?v6!;7yisv&8$tb+&xOM|rb$JIpp5-Fw?t&LCjMES43j z6+tI*MK?g)2Hoh#=Im_A`I79%`a92lAs%#o-tgc`8+--KGki{-9AJV4UcJHxo<2C1 zs7E?uEO(iytD7?MQdY5}FPD`9oP8ix2I0**PW}J^Z{XoRUMEXuunUS_rXX(Y@J0^x ze2N-3b#zxUeZ@^4*y)B3Qp&BXsqzdBap>k6I912^j+j_Um!(u)qB^|+T#hjUb%G#n zSa*!tD{ok?j3o>KF-T4_{twb@n<8Vo%{JN*hEz^aAZ7+*IR#D=&8pj%QyaH?j?IRC z!g*lRH$^E=Z6x|8W~PkYk%;hN9tKlPolX1pM~RFQi=^+NZoHH;T}wNtiCV^_^u36q zke>iDw&+q(j;@A0i`nm-Z#O2{NAb&St=f})I+i|ev~m&EAA%T)83qioZPFFJqK|O9 zjmsj+FY_(w8ZMRI*A3e;Kn9T?Ja{)YiXlUE^yxuy!6GBzc(MQX?U(?96+m>;m=6)Q z+E(juu9-~2u3F1(s|g@E9>JK$4<~*ceEzjo0nr$LZU8R^V65KVWbgzKzfNVw>Zf~c zpqOdrg(a+Ib0nP(5;nrBh!R2_vmq?=^CFu=S_xr+%vh?7ud+?@^K{g6+~E0^lYNdb z0f>`;Gyw!<-QXvN$J@Hf`dCa@YsA`6m81>8ZCV%iPBHC!p!5$4A34!QMs^%h#oA z@IF@PaCO|OQ7|U_0}rWIVjlcn*{9%ay7#Bu>39FMH+}o%-t_n(e)0c2IQhU}*Gv54g=v1C5qoX`!6m%I@3ZeXTcRD`1 zIz7b%kVhxKn4X>7PPwXvujHU@+KVU4coq#gS^G8=0nq;dDDdF21@T<@g9|_1x%+hb z_~ZN2zyIrRroaF9_onN&o?&A09ww{coD3Yzo41xBUn!7yELS_~v1KTougC; zm40e)rgVKCrkd!OrLU!!3lZa0|3t=6^-+`ytWwYNvPW#J(|LV+X1K1vdaAPIBRk5t zUgF;qr&v+q~X2@Sk9eKm6hTbod=7fINXO7_vUhfy~Dt*?1jA zS=%X?p~XoX)G=g*tuI<*0~G6e;Lih2{^%1xbe{n{Y+6qMsr#96>za*1DM%V0Ua#(5 z#jExB3K*;a(q92Xhq1Z8*{a2hzf-v4#|c*k!4DZY@#8u6A@kR+UYl;=;q^Yx5x~R; zb=KcDsH0?vjQa{7$+O;B^OiV{)szuo%OncJH!IJr1&_RC?k6(>D`l02&eJya@;Nvj zO^aEaR4GUsVJlY!zhHio|B=$6+s0+%EN9ueDl2j}i6ApQ_NncNrOx^$rvL>U*G%K@ zs5sf_c+QiX?g?O$ktT__54R4^V+hvx(!_hqozkiO!pndEXw*U1 zTs)4r639pIVZ6Hu8jc+tC+gN3HHEJ9D6ck~^6Ts^-(>ruI>$Qtu$;WsRoOZIe9Riw z`UdIDXXW{6?FSwkZB=!ajp^voHL3C?*~s%MmLu-?MlW3n5l8Ea?57eqo}V*@%c`qe zcAM5TmcB>4b?uO_0N9dM*wuE_39#nNcAIRr!K|Tg;;r_p9oY&&t?L(-8@iH?6-w^& z;;3d0$FkY@VPQJ%#jw)%NYJoWgkV!iC(xD3*)A-b@0LL=lhi}#EcP{gOV}luy|1Bx zcwVDryfKl^;%oI-@PLZdeb~o%^Hm#jTeco!gj3g>b(zH`fCKD&?vFJ#bG=Dl-xhc? z0p#`FcRyj|91#4mTMrW3mix)hr}sX%nS-f$om%Jem|9_f_+ z^njdo$|o1BU%9~pK-QUZ;&XBcajFz!;g&kd;0ZTEsE?aJfzUU6^BAAorVR3W{M#yI z3m8;EHwu~^1j;wd%upU!sF?}75Q>6du1Sx9K8a4e+AS%SP$R;AA2H>%%_|?(ytk|^ zg6Ub5J2o*$7*{}>VcNJHST;SmLz=nJzE-ab%wj3q3hG!SD3hA;$Oz zn&fx<@JYm>o8Aq5X_;LdcdTdMpBJF^G1~@?V!KIKV9fgA8uM!N+K}D}>4R9RBW7B} zM%hvr)?Xxb=(aI$jjhQt)>fubjo&2aq~vCw;Kvg{_;8S~0@CU)?7Ip;Uxm%B(M9Y> z^9hONeB5A#NAcoo6h$jDGM!&JhUI`S5zkEYBY%pW&^QixKJF7h@T+@1c-6zbIG@$_ zVteDi{3~T18|4bA#I@44RY#*rz;fLxcEnjX%By|L8??cQjlzv>cEOD+fN*>AaA*4N zo4x7Y7rWCJ|9WM5_yb;{gBID{Ltm)0$g}9v4qxp;x4Lvfx{I+xI!uJ1%(|M&;ldZI zp@|;se#|d?xRdZ-U!e~HWe3M^PY;eiot_@woleg7@f2mTAi{#~~+tFqKN)u|a^))xsU%kS`2FW0Z)SMYe%3nruO@^uJWeF8Nmso-g& zO1LE~8_NV)CWH3H{!EQ5kud`S)-^ECZJ`q(C*Q}t z1plpu6RD0h$%)~nz82ZVGKA{SR7PNe&A!zCQ=jq9^p{ykUu+%K3&$v5YjySAyO{j` z$+Um#HoRd%)wvTuHU;IqRV!?n?W`N+*1ycuzU`yNFzSrCU^@1TEzH|EU2HA0xyQLt zZvDEn)^Hu>RhN(Bm&=a3j%%aNm^bO=wSfDSj~JJ$hf(Kp#n^7tSzfWPT7FYMbAL3( zHej(i>4+1psOq6AAP>ITR;_GZ#D&<$~VI2`3O z!j(dIJleN1ZPJ&yty`g!AUIdCsEt(J=VC)8X{=_~J$OuCYOLm~!83+dW~TTp@?ICl zw~Q(9H`zba7I-rOcMjPWSXKI<#Dl@L?EOWZ7 z>oEb>N5wQ+vI$w&^qf7#cnaoJ%?DV@yG$ zSYOj6?UHP>jjL6w0Odd$zq=$OOZ+k?YHhshVViYrQlnVTpBMYG)%Mbt&A)vlfgIw& zANTxa)bZm3O#XPJi6BQmJi?7oEEA8LhVwqV!Ix>hV+dW6LA;qW3CzPCj!zULuiJu@ z^QNaSY|s(dPxSC8Cokw1&dht0Id0m}M)vXKLX$n>rNQ9~ZPFgP<0ek%=?k0V(GB91 zv7*eTPB?ZN~ul2!Z+^`(`d}trb4`6vGzRv+l z1GzV^(!(<4p>j?5ASGfm-f8E{Q@r{U?C{I`D>x4KZesP1{Onxe^$V{Ez@OA?Q`No5 z$W2*m@5EA`fhnu6s-TKfzk@RU<0fbi0XGED-Z4z>-OHjAa3B$p^oP|K!&6=;*`g>B&3O;pt7S3L<+E1dqx&@KfCNDw(kLb2n{M zgo&#qu|r|pw{9Iy|L_lgoc_~){9<|+lRx&ZoM9dS6z+VLh+J^%ak{C}={%y)y17Oj zP3k^sTN8@z>{ZK{Q{HxGy&xM?==BL`-AmBjCyE`EIIf+Mi9pvaU9D76%J@* zG)+-nQ|Is({N0DI3W81c%yM7?Emu&v&J{p70p$91yxIwqsd8M8<0fN2LCSqZ->eVL zVW;@9!c$Co`TC2mrhDIfi##U1K=Z7Q-0mgp)mR{jtLnASZ(0qgTiBl`-tsz_>lt*cn)pF_7HoOQDYSGeG?v z1^c%AWu)ngZKGIGW_|YGyF0!0>re42m^<=%xf4KgN6qTv##qwLfG?q7-=?lHj5=d3 zkghu@&!KSNsn-&g+0?pGZv9ePYqz9-9b`Pic=PyGWz<>D{HUYs&33sh;C|KjOdFD$ zBkPQ%!ZL%bTPHW}RZQ3Qv!%XRWn0(9jYET>fkxjII`XfK7X{q2;b87&Uh3HJFymcS zj$yR2V{axcljo&|M4w9C%vaH`&qnN{eJj&Y=W%63W1R{sU)er+uJ2gXMyk?Qr9Lwn z{;e?+uzm*5HI>r{cY==Wxq)_QxAnNu?oIj6s|DUn0QvLUpO;)44=qkfzd3Jhzs1l) z@?h3ac19cHvQx{MTIO^+oqguGT#d@$3UM6++n~GNSJ(7hC!fn^C#S|uG;j`VChtsv z3cea*NA%XDY;1Q&Qf=oJooSx4cOiowifi^&=h~u4JGk|$BKlET z*SWSh2`&FomXLvZrK+i) z9S4oN7?&)M3%a0)tl}jZGfJ4Ln{{Y+O|;0H&J}_@Z?I_G0)}+a62(>lvmE*`M_IOU155V$ zrA~54%{=r7F3_@&58)$dvgm(+!iLC@cT3&8QY_XH(e;$-W?EvxhiN)4_5{(~!e8U* zFlmY9hhk&+aA;*4MZkopE1KWI-bisKoU)Ez@z!FYMzgrtFWg^Rnl}eaUy6q#z>1uy zGDz4DMJCVgW~1lUrd83aSfv-sM;Ku<@>yrO%hdyQOY(+6{g4j|6Ir>&kTCZpT347U zkXr1UyuP7pcBa-b0OPA(6F?x?!xG5X-g{dsfb8GK0|op7SX=2cc1`&bR~WqLHyA~l zURZ3MA!NOrKG?rdF|F=|*LxlDK^J}@tks>MAzqf-1`DvEt=$%?Lrg}wpj{)XgyW8~ zZj_UXx+)*BE*H11gGIGG#$9#Bk1j1|y5O#=UnpN=aC}TDU((H-0Kjo5CV=3V?py%` zeSoh$;KQ@lXV{PVeV3uf+N41wDAl*v&@Qj0kcqG=1~MKKcRLbC2U0dE;7yBZGz)d@<#R!wFv( z!ShisBM)Ah8t1e{6zV9d|FHSsA=^;94|$cD=JgH@q*I1p5!>;}RlWY@>B-xe1oHm$ z?DST%^?oszOdI#?j7}8;X>o)A--y>dmhmzTixNy%Fwx`2&BN(~4E= z9hjOBFE(2jt=Kbob=~XeQBh3B9c%`xjXVNMoAO!5qOMw!ir2kd?c*`7ZNB)!pQf+BzBe7>{KkEE>(*PC1afzJ z2P+r6jn`LP!?}a_xK=K)s4gww)JLs!jpPOhk-mN2+<4uM`mu^L%-n5hr$SyaJ*-*t z6?A586b4IXk^yF9RHT%YP0KuSn9aw;ir-@1_xTV~HPSwZV4+Pn+Pgy4A9+(wI%cW1 z3#uhg8y;SHl{VCC|I1O5GEV~ijmJTbf44!vlcp!|^Bl~FJDDmN z+N5v#oAnh6%4VJWUQwN&&Gu#$&a<~4k`k-yMAT>hojcQwUwwj=K<>oKN2Q2Mip!-2O74-T+Ky(%+Ly-`*)(tv8{;uqQhqgD_oQp@EXL55!BIBiJ@$3; zmh15~QO|&<#_OT8$~t&8M|_QKvpphd73Mj5m9I;pu8w1lB~NJ!8&$rdcl`;Q^Mv6l z*8+DthuT@Boo`;ZIqFU6-%1O-nE>){WlvwYo*tc?RszeMQWtqk^v8NJsTZ#Oq++yz zE<3fHsbx;j*TrBL_%goAu*TDvJdUAA+!Vhu?fup4hjwsCq%moT@N!|T@J zyGF3m?g_58=IcC5xyrhvr|hyY!QYy|83(=Ors)PH#FQ! z=BvLU9v0EgM4Uc9nx1|A-E{EBZ?G&fZXD`H#eg5fH1!h9I@=_s9S4>xwQ?qmo`r)} z|8(%8XZs*7sW^#?rxdu*!i^W|dBX(>yHa>ShHi@|0ozVeFqdrG?x^US*!Pe-Ei3uRM`FZ!&bp2zz`UU9~`~sK{EVQ|Q zrh#ivYh|tBN#>kl!c3#WOJ4mOlgjiVU z+tMLyExpFLh{-DW#VuFPODxbNmsgh#?x_G5Ag zVI#|24)adJ+^Dn7Cf#TgjKlXQ6DU*TOQ zSV?1V_YO{tyjF@y7U(gu_xP&QmdL=DuY<`;tr&)&({+S-u$qSl|XJ!5BVyXlXp=!@S8_y8pJ2~7S5Ie>4RziDqdG{gcd``8T*-d_{C<;6?Yg`-Rx4~ z4$9V!MQ)in)OIdpYRr;ufVSd`*wEN^z41!0VvicewNG<*`5CzNHK6rX>THJp>z_6|Op;d>j>-AIo`=a%vv6`ElrLIi?LAj4JLBv<5abrS>$0+70qgKZ< zQg6oo|LnbqmfT2^BnU?EzM0H}%*?7jW~Qfm-t3#VZ~y-{_VvzA_iR;l=f(SG+$$og zVx};MdwB53VrCPhyP2tqimDwjAOLfKPblGzbA$ySdR4!jq`_!k-C0*#EFh>L|yD zZe8`ExGkGe+q8_Ib8`cNVJ*uRN)8_cg6 z&-?hQW1x-=a$48qEmM^5;M~0LU^+9|CY)_BGtx5@R>p{(Wd%J>NI7DwZpG!;K;~WG zvF&I=xqaG~=a$y7G7fTMJVSWO5@aCP-|XZsaoKLpy#f-Qzj}O@WLo?=W>1|i4;Hgx z!%~_-HrYJrv|~jOP1eWQR1Qgi97o5doHK0lG(*?N4w^zy-ep%}EL5_ta==FdMo9FR)J!~Hs+KA6!ios_tAN&H{zq`K6 z7{6;3F}g;UcC7W3bgQgRhYh(^o;lz&J<)+-lhrEEc#?)mv<<9i5dURIc{aODh0RKZ zjuLDsQ$9saUds~lYf;#=@0O{Y4yelBjrHBF?Ax)BDP_E{iHmJ}xLNpyHw*Dz>~Z|Q zlV7`}adE3`D?5WUvokXe7!4XK^CMiIltIS}zS_TWQPF98@`81Wq3>DT1KSBu!-$wj zYULLyv{J|$9(uM9F~Vh;c6Fmw>}UA)z^#>oEN+TGXuSvs3LDw!0!|tdmt}J*O*QR; z0x9{4&onNOH(7yfRE{({``HM<6&G76DofewdH6bCs?d7)k6yzmVmvDH4t zXV~f@vB<)&zTKATJ~Yu51%>PkV3_>RaqwkMDj1Kq1q!Q#vp#J|qxv+^nvCtLy84ye z0)t(yMhkhu@sZU!6H_jj(?rcN*s3_#>4pg^%*P*J{r(#*0MV0ywrYgIxojNxpkuMd zqbt)HjO6$#dQwpvqQJ%6L?PxwJ{lc2P>$a0Py2YP(_1_Ngs*~$@fpUnm1U5ibjk+s znQcZ&)+=_@QM10hWaBIMqt!ZY;5SyYRV)aXuy$z|E|-oNqd8MKBJ`}(O=~RC)3xtA z&N*V54aNe;1s|!;W4b=C-{8g|7l3e41(4Vow73I?tW(>^XG9>Sf--&;owB7&gf_~? zjRTkCGv$ucX@e7|EwOo%aQE6(yngAL7J%$>Ar^1gYG=;SYz7C;l1Ba@NT`(5yDyDV zpAuY+sT{Yl0;7IidEky;{YRhADCOTl%rq;^LM5+}2JQ0Z6E^-T{v{UwJbn6Pdie0s z^!VYc>Di-`>GkvL)48KRPCLi<&@C7FRC{)hs!v|Ehs#X!!-i9yhdJPUpEvYrkij$? z1|k`cWqk~=Q&Ox{eU!G$H(kmopnUJ>+Vt%3zMcYdcybXkF2d;eAR{&m`JGut(zj5z zGV82yk#gBV%X;3r^LqNH|N6u9U;p!i>8rc1r>ocYv9=TOABAs`060*#bEpc%+o-;$=Rq+Bil-Ek8^OVN7g=`@*oEV=y!o&ti!JUg7^v{lZOq-fTa zM$cjoq0hOzUndkvjQJ*Cb!CDy0bmK^dM@d@v*apC(%Ib5k%prnWP#*&R5OvYh8V5Q zN~4lL)hPfAZ7GJdrMl9PzLt$0agIXx;zs+NxeKUrstQFgt2%7#OE_~VO^KYQ0(p%M z{XGa$o~Izs{WKQBMVSXq{XLOCEYbN);#A@044IanIp3%{|g1ghw?vt(!Q##7VGC@nS8OfFfjvtRD zo6N=(9dSd2jI-Y50BrH?MoG@fmDCfttMqr&~ zQSJu?%XtttHd0SeT~6#AQ>-&~&p4s<-6nzh-8;t|N zJ06R?e8RD%@6ly3YklOAn*v^nsHbD<);JXF{hkFStM-I#{cSGA_XI z!b@C$p&Sa@@WM=9l+hCzP}X>3%=pM9NK}Qqh{=md+IJEopk**y*}@nwj!oArQRd)< zS?FS}urU2d7vnm7LGNFa=8n+k7~0BJe90#zypT!`oYJRF!>M-RQ%~Fo3aZ0~z93Um zhqQcyGvgx$rPMjiqA3kc@&|1{YGb4E_n=aXGQ^}37 z&gF_(mtV43k(tm6l3BKnxXXK+blFO-Qd4RAQC|0%#=gZReCZ0Lxr!@t-{a06+jqL_t(8_%YbD*SywXwu`jsFb4VS*+ab2i?4mz ze}tPsPw;DCJmE=Wc@|3}`}mps1DMfz|9&T@{zJNU)+igwY-!$Xr*F4f^X+b+07_w- zGBN|5gq97^cPfU@2t-e5*^6c#~Oh5nd%k%?2uke%rZs$&JPv?*RVcI?UJCv@W-F09?3{gRc;I?7c zS;mHAo*$h?A!YFHUhXSxFCI+y?meCUumAC<>7V|~!)f>8 zG1`{x6&vx{jqQH7bs|Clu0xZTj6#VDMhr!_DO-JxxJ|kdd$zJ0Zf+HQ91Y9`Al$ew zORm8)$N$GZ+7ln#4q;Sz}^t42T72##s%!b zW?7WkFK89@v-d3ATOq)y|<_X7}y7h)91>zbRThH zi1&F{#~20B3dm?sF(5@28p%4yywN1{;QjYU^Mefk{=9JO=5z^90olR49y=cQ7uI^d z`PiVpW#j-09PxgpH(22M0*gN$;3<|5A3mP;@tU(8@Lt0cqrUv=i|ICA19S7%jp;I8 z1rx`;b~KO!yK3Dycbk}bJdTA*$7-3&>Ns<;$+(%u&g?w2@jYUzZp@|xSSJY8_5%n$`ThrDAh0xiis|MTT zVW?{s7@vC8E?+Ih`~^N85(|{DKi6}cZ74q$M&lUcfv;xb-#-_y0OZn_x2Fp?@V5}I z(Dc8h-71b`=#bV?)Nj&__9L(LA2S`}dq-c3`%!XPw*|H56hl3?RQZz3c&Bd3v38al z_ghMN933|w=d5#?ILmBf-6*&I*G@mRc;2P{9#3P>SYA1evCid+X}VM{?K-wIw%R+t z4aV5Bq#ir&yJ~BlhiThSEdY4Qu5xV3H~zv?Wz}}6ZR#8%Yyp*Q(nJfo9VPTZFu}bp z9krC3*(N&^_ieK=zmx@ttYdFB6+4HvlCc!nz9~zegp5(NNIGmK7Z~%|hs!gL)kYOt z{O!#wTF?Z|_dJHq+XLYlJhzUFT%)2cm6iohw-7-)PFr3Bwk(jJzkeSs@Oc5q@1q|- zQY}0Ij49n&X4k9bF6p^IbE2DbaDtl4Y~yr}Ki$9M>UN&|C}|TS>(N|fMsuBGZHYN63?K5hf{e)n~7=n)e);Q^HfXbyG>`Ztkz*}w_Z~kZEmts z%7~E2pPeR-)#r!(;XY{;Y+srWHnq`hv-tZBvEPL^XZ-6K~%DDsuaQmNKL~^dgV^Wg9&R&P5i+a360R$)|Ge2fUF$JfqV8^f$A~03Zv$#PmFyt-*_2 zm^4-5m;h$1+HA;nq%H5PP?mB?5*JCcAvqZH_wjB{gPEsm5i&^`^7q&La%#Z>*4 z7#Ku!q^ z+y-68+=|g$%~GR4rjj&yn5{Y>cW^i81UFvM*=%ulg=tmTYECT@>Lz=Dt4L1v&?K0 zX&>j9%W;Ei55I=pfACcE_#uB0i$wrAc3It@)4&2}mXD67OIl( zbo=^0Ojj=a-Sqn9_36da^H}t|gZocB2KO+UuOedv!r-{a!y`A1C1SE1QYwPWa`I`o znb>6-KxSQ0OBQV}YrGxeB3=V?9iQ7+1afD3dvr@{^W<8PY8{-CRI%eMGGnOX8z{Kl zxUn~V``wf2Z~ll^zx>_9>6>p};aHFJ}C5&WMK>}_uCRCf`i#Z4?okIz<{;S5YL{H0YFiRfP z_@U4Okhl9<1af@Hh3;4k#|37XQ}_f5E<$Ke{79ec<~z!xIcmVpJJ{9oY~CsHzRv;> z9_J5VV8JIALU8ftF&2Pm!ZQ3`=}`DvIw)1ec|DuWAhzi& zE&R^9F2qsRXcC|#g-w@OqMLndjEW-b!d4*;#IUNf?0wSYXPl!e(k{7cbw;M?)1JdP zcag=YtRqLWMZPu9qE!f^Ez?Q~zi{Noe8`zYud(BG2rm3k$~+IMOyMyXgDfsaYaNBS zO1|zV8$#PkWnRsXTm*teR9C*kt6;Dnu^zDiq_&D_*;?af+$NoEjIoX7zgBAh@8PfX z$!xGx`4;qJf4Wa-YMo^+FVVUs$C_EbWb<2)`8?XO=2ao?T^3f4L${4QcH3RTSkTJAEHmI?Uz>vz%upBI4qPCD}ARKpX%nA)4=EZ00sQLfX5Wybno zXtqerb6Q%hjIA=~L+6RvlV^{`IHU#*b#c4}+2+Guhww8$7+5y5EPfzw0i9llfd$2^ zTTzS`6V1BZ55;gLYs*owPCnvX-i&We4tQ&dyeQSmrXnWuz1@rQOxewGory}|k*`I1 zcB=Qb7-J#f7*CdYp#hz6jEkZNFJ4dkPo85T$dl;^zanRc=t9Ic@l=<_s%}pnZcd{VRz((zKLTrUq-?J=B8~k~1c1wW%8O!y9I4{mMV!tn>?~tkNbkCE zoN$|AL!`R83MrDA8b&5HA{+Jk2AF|kOQLk=VmIo!7!NF0uut~`*P5key8YHU(^rF$ zuVSpTY%EuvG2gH@Ccr|2tIo1WJuc?bQUaC7iuc{3ooDGbZ}h2&>6ZH==796pF5_2k z*Y)1(3-|@;?v+ciudW2(SX~E~=dM)RpjtpLiaeA;89rkiLvjvJb2>VhUjO@pY43*z zdi4wcpwvD-H(cbluq~QEL%LShjcLO|aWZRo2wWbGSZT-^SLAGR zepnCJ#WKSr{{VesKBwU)h|voYW7b)Tr$<&TBW_yv8IF1fntUpT%tOEe?Wi-*2b}ll6LDU5#;8p=E zGApeJ6Mpk4A(VQ*n(u2J=N#K^7dMjl3;2f*o?zj}gXyOqA0Yp5dh-Sg!9d0ZA{TL^ z`{vDC(;xou_tWj0-%UUN+x6++{`EXw7sFp6BV30>;+D_jj>_!Q7(#O_FtGP#om0ze zx3yX$!+9!nARqSUz{U6R@eUSfoS)v}=^xJy?oY1{zS1;q*NxK-nUa4|(LqwXD3s-S|KZ``^!O28bM?!k>G`u4(`zn>!Lg6?9T$Pz|L&XVtFOP*t6(@s z#(;DsM#j~$<2fxBTIzg@88iUfKy5m@8q00GkYH4jY}h=Uwt#xy^RaM7Z=N38}id)%sH9SZAM@S{KJ`V(T{1H5>X#U&Eniar`&Vma*3}q|JHSu$nN&N@d=%43bSO4}~JO$(q7_ncU#8YC!@%uW-#utqn zwaVU?f1Uk0UzXF(aa7qlzCm95X;7V|=y|8^kCvT<$2B>N&8Lplc}WK8<5!h^>hb>` zGMxz-A33&bB&OFs7S)Rb3;>jCnYThscv=kH^rCU0=__pB3wqWY`Bk zlqlMVeKu!$o-VdFrewo9o|Mb<|(I(3hM&&dPnMDI>+)9iumE-1X$RXo` z2`m6nV+JH-Y+OAVgc$J97Fh`6!vbw7*CG&n@y2d|l=9*@{V-f^p$jfHh03^@7EcfX zfI!+8KaDR4QV&27Bxjfs65%lxm69q84UjmNGhSu+g^fPdRVE2>=t`by^*^p+u6hUw z`#es#qZOjRke34zMBX@K^><7JAq=zh)+)wgI&D=DCfnOO;=DB=1VM-lfW*o+foYqi zmbfpPpk+!QHyJW(cq(LVzQ$wF$X7AeSvHoxMRHjg^NITuU^#?LDVO+0ICB=S!Ko78gW6Ko=uKU#R_oD z!xUNW8Aq@8rZ;%i!`_b%F`wfpPMq_&b)zV6_-;3vhkb3yWD)DebmI<&d`$dGIL6wR zHcPT9H*dAEEK~Z)=4qoWTcja3m^TbF=9vlC6kI>nlq18l7R%=Gh}ks$JJx73N11b& za#p7=&250593JatVEjV-<#hBCHwQ7sH8(PL4jztad}3%9BIZf1u zYxqC^>EEXx{_?|gfE%P&F^}=J2sbgO-TC77bpPA0r)$^lOb>pzj0GUO)3e7|RPpK@ zZk(bw$?d7b^??&*OJ8L+qh>q^gtn|%vuo;ECPNMx3avY($Z?$(O^0&i<5e(E55ApV z9Nfc#kPGrBQxns_^W;Ik7Af*3Ilge3rF8&Tt{zOczj!hI%^x05|Hps(X}W*!CFGc2 zhj;CaF3iVNIxhO)e+HckKPSXW8V8L&Lk_W<(DwB zp+dD|T5Y9BS&ktMB#3zKykYa=4lVvz1KkD_;iwVA8_((WiUrIWm^XNQKf)6Zx#0Z- z3qW+E6~}wcC#)0tNqw~;){Uxcjy5m1_F1hIB`d8*fuYD7<1v%FR}X>5cf`!sduag( zUh%|5e#iTJl6PS7MPBVh)miw}IHTB+5sM%MFJcLVBNUmmiMES*BIYKJU9_+3L=J8c z@NW^ed%ObXPI(24{efr2FwE;WpP)dl*Qocir_ZM+cmmp^$4~TB5XN)$+STd1Kir?b z{^l#Z2Ie9b$>ra6u45%zllPd|CLUqg9*EuH+urnJb4X5bYv|UbHkqd;a39RI^HO3t zcDOYc<_M|25wudrP4G4@1e)sflbf zQ*KviW5Qf8i)$L#U(Vyhg&%%3jOQo>tf!Ugng*QHKkd!&9`US;nsIWzIFCiRSO50A z>GC&swcoD(T6rDAw(_wOE^ll9E;u*X=xa%C*%|zJaGt?r3F>*rW5(qr>?YY*%T3td ziVk~33)Qn#l{Mw(%&*o09%sF0*1KN9jxv|YLe5%V&;09Ywi<8Q7~Y2&-Dv0WyD@TC zKKVwDYHMhfjrr~D!FW2GK4{pXdH5XIMoLV=Q zH(}S?)OZ55iMR8tqUMr5A)}V5Y6n*T<&C;gH=9rmwyVW-?#rcmiL}dHtB}+w-Wa#B zbzM%|d1*DA)AY9JxLU>5PEdD5*jU&4XatyA>7aCFs2fx>vsTy&)XX}-c?-}vN#!w z8#>hG2ZmmdL6h8TfR*fULu|u zn6U$oPjF@Hiz540ecb&E7baP6>cS_foM#TtxM4zuNFz}mooMns+(lXXAr3TrN%fv3p zz@I*-o&CL8=zCig;aRfPHS^f7_-o*c-+VD$#^a99U%!G2v78^`M$1{KKP1-ku6v%X zr!kHUb-bz1Cq3}>U2lJRJncVvHk}+CLKk;&Pa^q{A-x-yJF=YOHrjp}= zum3s56Ct<&5vORAd6#T#zHeVZGIuHQPMqY(dQq+6OZEsvDOi%DBzp^GZa#+ zZ1xvpdlf4^zIc zGvci)^6|+ZOT9sQo~yX+)Op}yJ&!Pl@$&+&g7}~R{IAph`saVaX~Xe!=k6W+3jVGZ ze%$%u&UED}UZrz#9yd;Rrza1m>8C&KPXGSDckxP?UCe>Gb_{$9t;9E$TUCkW2d$~m zuRPKG%r}h^idp}0C$u=*#^a4W~k7fuQ_u& zv@B!S;OXG>-FJ_t|MpKmOn?0T*>v~Lo9XJ616d!JSXDFF(X@z#YdY#tfnzQH;69U% zfI{yH%Y} z^Y_cDA<>dNe`c7NEBM-|-5Xaihg`?pcRcOm_;`q?L>v>#zXf8@MqORct)hSfZG#bt z?%QF#5YSNKKP}NRYX6n7lltI}J~D>mLtgQPEMkxI5-kA1{C@Bv7l0gK@n;)r^pre} zwES&AEdl%}K8{mn@x>Gyb~kJ+cbO#C%Qn=_2!t^|kstvy@&+#cU3LD(jp-8RBfi>; zwsf%sx0zGoxP=eeolJXs2YL<6k3al0y?XgtJXf*k?f(6Hcn!=K(3Qr&SO0i_x{PxOK7}oI zQU>dazKhRl>jtl~cj0^=o23{mGq2+-^0DpffU=p>O*&&T_59iPN81+Ms9T7xp{=u^ z)Zo2((R{yVx-|b-<~TfOjdJUM?etTN=PdR2*r{XYeeBI=jykl*-N~5uO&$B_`~7*% zT$obS_Rl=}dkhfiaam=B;nb|{N1*HHs9YX#EPIZr6F|oYgL%S!UNW}!A8V$~$|&VA z!v&;8?>LGmfJM+SDRa3nu4FxyjCGkn%SNM+M;$7D#6>;P3$E@;T=TY)eW{PiX&gxV zG-$N%z8s6sDm$|0jB)C^)cRTXIsK2<0-qOv{KxC_Q)=vq$Eo2gFUhQDI_e?G8E1Zg zGtQ|wYPsf@xx2p+yTlhV$74iF=f$BO^VkiY`}6^TF||q72f_TSv-)la9)nH0n9hB< z6n`FuL6^B45+4ezx0dOuZjK7<_zX!MbU)#rBc@IoA|4xYZ8UjO+gEdV*juSRv@+MNZeHf}dXZug_>nN27? z9-3-Z5I&n+K>&^uAzu4{obGrMq}U+T&06B|VczA_7J$SJ6_E0xiY^St#g({#ZJrjX zx^}Fhs*d)m`??0TWNFJhqi%~Wkmn5owlj5^Cq@fH@&b%FiGlu@PZA-HOiaWV_Khd` z#EHBXcfdwgVH9%!@l7R1n3GMumaU?e}4$JcUi&oc->7%q9-7%9musTW;H>6mHU!c4v*D#8J-A5>0at zfJY_GnhotJ*syUw6+bZUuMVfio0&pZ=QbnOr40*!_kngkm`aWrJpm*afb4St2woAu z1t5GhehwhH=*OJ!$cRWoZbwOtBGnhQRROzL0P-#ive?&hpD{$tA!}h}y&T$N+Q6wjtIdcvU&=LhAfwn%{>VmZ;biw> zkp~uiam50_>`$G)@Z1Gle9gh$-rn@T|K-oq|NdWpQNP^9quY5C^xplir|WnM2zLyQ zg`>l1dh-ekK>o5b{ptV3lRzHfH8T4$Zt~HCmVZJ(#S4&*Hb9>r-=LH}cg`Na*GCjf5KYse* zXTA1{bK;e&m!~hVz~mN>A$ocgE6Yz*o^fz%F{>2eX0}zs<;`jE1*SD@v>SYdyDE1a zX^|==_)`BdU2s}GHT9wpS`$>gWohi9+k{3kP`dKfOP?Tw$YbA-V>)&Vo{dHUzEv)YGN;$1=z6xoMPJ z|7)k8T0Cc|zsF7;GuztRmU!D&ndDZWu(aC{^S+y1jK1HOm-Z`TES=@)9%LyGEXfocN=4&k$L5)`HqWR)zv(;V|lc78A#87 z6gf!dt33HStEX53b4%M9AE#o;@de|s=Xc~h!AF~rvj$+|rL;3q8&)ARy0>#kDsxBn zobBf6X?mjH4ddn=kN?d-Xj@x4_;kg@c2tG9C>zO;8F)gQb_4Xo6+brrStA|eaif?g z^}3LN1t2fpOnZ2L{J|6an(XD9xR6K)I>3EkOQoi-w3ZoIb(Sez;9PK`lOD-Qgb(uC zd$Op#6SBa0p+=P3;t$jhS5fjpil6iW41emXU--upK!}g0eUytUxJayDjWr)0g9rx$ zn`4^`Biuk5$6DMGdR3KQY8QOTCQ|(h5f`FG()27EXC0LSNXMIRz5y4uU8l1A5yM*? z!4)_u8icwQzvF72mPD{6smpbBEwO-E=Tw+xo;V7TWhuKiGPAj|bILr4 zd~vU7l|f7b;ae3&pQl`6egzhDNjmcfhn+P2T+9Ea!Y-G91OpOVh5th!76!K#bvn5aLsa-&jH-NS8 z=P!mYevK!9+`F6arRP3q;0I2Jn9W{$-!i8*VSRaFn2%UL!p&a3_GRyvC)44Zx6?5e zglK`78^uN@L4C9zKwd9`Tm3;&6MM%@Qud4M*RI|#VJ&ko=Be@}nej~7Mzy>}zT#`Q zQyyg_Tx7gY7;|671)Bw&vU<}ofUQYnIg`0%8@Cq0% z0O3s!9M2Qv;ozY#x^S7^XA#gJ1a>>q*=SRm_JWv%1ru53GIf?Qk1b+`5dQZ-!n0_B`5@ z+p*3M@YE120(tp-nw~s3H~sR%?)39tcBdCl!;kufA!h8EC}xr1i#kSbon8flvd+zl z9NF1s8}~Pr_S0kunzsyY-kD=I;N0g4UJMl zE?+*HzW@Hw^q>F!m+9O4&!?}ydX2V zwrzu{2F8zk>*UpTtGtO8z)M%SCMk@nV!akskrgd5&39fCoHo#+dv>;Y8=l9guJOn9r>uNJRLprwpcJ6IT&lTN7`v=YwcDN7Sy**w00t>0Ifb{$|JRK3| zVeu*$;!mlNC>_`m*1GQdu+drJO>E1@s~PY|Ayq z<3_3W!019KE>OKam=2%6!uzCO;B_$1@JsU7Xz;i>S}j`M^p(~!gR0K5Ojk}s+|dPR z4BrpVe|k^2_a)-m=fbOj5Vs3i!~&z6GsXiT_5|@_ zV(=hCj5cy-F71Tz0uy7%BpkmOI}?22BQbH#NESMZrD(b=OHNhVlS^%ZGUH4#&ZAUm zYZX#wnW7@5;toIOtS`Btk!4EL4^4G$A*R?Km-o+~?@VI4N;M|&Qfq$K7Lp9r2Zf(*@ zWQGcB{Ih`k;j1@zb=S|+-p`M5gZ~h7q}#IF)tuCXz<%~OeFeR5-o#6>jJmN*-tA4IG{*Zn>Jd=ssML_M)J&Vq6nSstHCH6 z%e1sCJ@82Z6tNCLwM3ZUk{qH>AL3OOzx@0Vix`flYj`~S4cwHujbFK6)r}e4WQ06^ zy^FaG?X}DE8TB`MuJkicjkw{hG1K1LX?pnMx#|D=e|D!wKkrTldw3EEZdew0uR^Jd z>Ohi|6&0mhZLayu)Q$^^5)<07v{yaf-uJ)!6{TjSW92hymbEh_2~i^_vr~Bp;MTK z4XOEzahWhx1M?o|M9O#ZIzP36I9Pw7RO(+5mwC)fy=BJsd2?<+Im-O=Gh9bXlQ5HQ z>uUz&f&)rBsoXg#bWTH4+$h4vMkaE(p;t48*o25twysR9?Tn#}Tgn-)_XVE^xP9bj zurnq|`nNeK88OyT-nhHz*>g1}*KbRf=pPfn7z2V&NIS>5?;;n0;P{t|oJiTn{ssr- zJZcHAF%QRFpmqM{HNB4S5*C8+wR|6L0f_6gA9~Jy<;Rssp0$1onN5nQW!s#Rpo(>y z9~k}bSk7DX1E6(Im$C9= zAQH%;5lp%!4cn>=i8;GwNj|rZ!}MI%?IX8YyS|;b=W$c}7;j6;*_M>MYm6m^ky#!# zkjw=tR-3@B`#!C%>+DAP$TI}Bc5IG3AF8}fJPR>qhwz5M@!la8fV{*n<$jqC9^+@B zY*bxTSQFzZE@?jVI27h%A(b->{I-Ds1%Leu#;_w07t>JC{>KFyxd=o6E^OgN63Ucj znOD+S#!V4ED!M-jBxJ(!7lqB9bvGA%=Eln5Giw4|P-*i5b;J;p=)81H*qb1#DyPn2T!w4y@-&fp8uNftQHgM^kkFFHq~IEN6&8DD3w)+& zwkeHvjsnM_?3Q?GIFom#%3){LX3JRI1M7gUb56coKx%9ejai1)U@cQnZjdEifz7i9 zr!kY*c@t(*7L85Snq=05v>MDty=jPB(Lul)<-CA;;fveTr7v%55y*M`ikNdl|Am`b zK77jX=dIuhg*3i(=7GAh#4&~xa|dHTz%QHM{`)U_0tm~~uI<;v8ib)d1-gczi*;qZ z5_Z)}POx<7E9(_hFEE^@uXdUDIGFV@+|eWHNbg7`OFPRjYoqQ&ImbANd(jnhMZ0D-2MosoU*&d$Uqv50ev0Ed7l7br$U24=6Y)l%YeG{U z*6G|nF+#`M+N!sqC2B()igBbV!62Iy9OYU7a`z4vf!xt69ef-&n}>;qj>~hxD3R9D z$s@j0w$MgHI2O;+v|%!K2b*(7F)MVIXfMZ9gMfw{B&IFW9qiKw`-jt0JoV$z!$;F2 zJgMz5`xH<5xP+%1+`-)SH-Gp2^!3+xauF7@=^OxdVNM==5EvJz)?CsPkCCroEY5xruTLg$VB3-#O3*%WKM8qwLQ#(&Us}?8*tuL*E1u=$j zd>oxzn4TYeH9b4{77IYG>1OJjcwS;1c|(?`fR`>EPd9J9p6=ayI(`4`lj(at`Qyu1 zcwzt+(Rn~2Wq-OjXFII~L-=A}#Dd<_@N<3CGe)}WO&RmtoJQ&F-{czkIAYkY-d6Ta zD`?Ax$xVwWB4CZ%em+iMDh%E>Rl^gEHsHB4HuCD%?tG#HpZ0;V&!>LuU;zR1=Pq5q zVgl%p?(ohzYIC%|hXruYwE!d*w!cyAoJ+)dmhfC<+3?GP%+BgcUF?H`0d8~~+eslh zpt&_n6x(+lgTiwVqm8rx1W$N6e2FK3yvCCou?RHg4mt!IKHBFw@L8q@$s#K*$)hZX z8IZ-2@r&)BIu@<3GRwOR2Kql3;_s_>T>wHKOIyT)QL8xVkB%{-F@BD)5aX7!pv;ajo2;Aif0T8wlM~I%>wfnuW|5NhMow*6bnL7){j`+D&{DD zeJ&ubB6n7L*qy^dTrQ})fCciGzqvbI#NSEh@WYwqzmL{6LN=`9krT`8(G5Myt^ZJ| z{gAKvs`4#;v0Y~agp|oS%H^*53m>)p-6zykd6>rB7FNsOWUsXty;Yq!muWsJX&yz< zQ@u8pInYfyW6qMAZ}f8(jt_}tJfBJ|suu@R?~Ybgi|RPDjG!uKx$3HZlvB5EGv`@s z)^VLhzS18Kgd`bE?Kh7ps%cxxl&x&FLWO(9?_gNXsA~AaA(IgZAw>bhcg3$@>t70h z3R?_T@bYM26cR(L#f8{~!*gMuT8powUY~SqpRT*i6{QdJw+@^&0zHJ?7*F^vx)S?J zT=3KS1j;(+o8LBzeq?V1(^{7*C%4P+7@cIn=kz~t3w&Mx@*lYKm#glX!YNVCJGJFl zuGqkMQkx&-Mmv|s)P5?jF-y8Ct2SNkcxH2Dn;l2)D0gYkc@p&>KQ7CYV61WA`y`+C zbpmd_dyJ9mzE(Bn?HZ$fICj|x%UK?E#%$7T)^&!+ZSat))&wY1#Afit3m?YTHjSK^ zsQcc|&iJ%<@tx8o4o6|aC5&|+I$iR$E*{IP4P@Cd2hU$mumAkxwEy6-ZX)Sde4D}@ zXlBr=v%>D%iPWHIddo3J5F5qut3AgmN$426intKMg&_EMf~#g)#DR+=@fw%7Si%dx zyrNbYfbhbJo(2LrA15t6apDD=(kO>l#)iE-2Wn4Y0-5%I>X>JWtA0%Mr8Y4pFUnGn zY=D@go_h!l(}sCHWkfOw6^CK+OdZb6Rm<)M9e%>^g3``GvIi9}2}kG2YhDO6_Vk zY~`@CDkHEOHC+g!9nHqHdyi31iQA^&%-P|gT#{Q>%xjh*HAu@;1oG9-I?P}a#RS)S zH+z#d!6L(wu+c%euGwv8J5m2tXFsG4(O%@dml3VdNtiU>pK2zu$wSdx5kJ2 zxb`n)YQ1dSypOF{MNm$$+kK?P5kexh^{DK7OK1Wb`6OJ5M}Ue=UW?YnBA6>?;7{}_h*0^cM8@ZRT z0EC~Ni+BZ$IyA;Vi9GD;@UU!f*!r5D`Jvxt=OEk>qj4=KmdV<#*ox2245pLV`&|c~ z_r%u9^_SB>{rCSeegDUA@!Es)n&a43 zJhrI5jv0mOtyYV5;Sl4g!;7cqra%9$-RY;l>`t$qotyUgG!Wd#^x7duUhT*H+O`>i zrCejP4-fkSQ+DUv5#rsMUL4+?p6!1-?HymoumADXrZ#xPf}D*Db>musOL*nWjhk<# z`}dyd$sd3JH&5^y80;IwqVahXl{UQ}*0-CC)_m#M4u{8Fm{%*e24BVAGic^II3CYq z6@S*e>X%0C{0?QemHEc@w7ks~5Y&se9CxvJ8Yu_CNN9qyq#Oj`;-XA03fsk#Zuq1R zeXd=LrvvGHy_4#11r)VF;^EV2AB#W^@Pxy|w|i<(#n|E7<=lsDaECzQnW5=Iz&>LW zaIPVm`LQ3335(_LHdm!ui{aq-fKLF)1t5F{+zI9cg}^V2J^d}fotk<4k#SCc8<>RS zoDt18S5xEH1wz27KApo)Ev>XQcS0@zxyC1e;Av}m0?29{Bk|C*qk6H-c)94~4W5Mc z2JOSw!*IKZ1w+>{cDM+Ho94vPlIn;m@OiAo21m^
  1. moSM;1iZEfBUr-ftm-IA{2-ZyVQ&~@-$EpZQloGKmQr1+) zf_UCsUBO%)8)d$+Nqd0Eb&i?%%!QH1(VJ-0TmG@q(cijwEH^&OTsVOS+{dz>*S#k4|K5pcI(YIrUROPE;Q* z_P~W>F6y8?efPptl+71_ zxM6aC)x}xfAV8THX*oXipEzcsEWP;hay{kVBu99u*W$EM&x@|u7`t-9CdY^+5Hi(; zd1MIDMYF`VI#SQA5hFjt^fF<6vv0=Ze5L?J8wa}SCGQxUbexTXwyQuMa0(bEQ_3ra~*xg#tb;7!Y? zPoLt+98aeQzdV{AKYTL1eEDkH+uO$t@tx@!Zeo6O|Lf@={_*dp``>>vUBHc+V;t)} zXS52@cWa;?pXyFIKD;i)1rU3PT%3lA9wHIsSx;u{V{*3FMLF=wjmc|Vfqdm z7k}uq4{*^3e}&FGpYU;xPyWC!()n5_ ze*Cl#x1i3$vmFlbYLvG>KGah{__xgw7f8^>*iJ)ei$%prTWa}b0dmN8%4oBqrom{E zJfR|1v{|f)racJkO>+c)`HwmB5Ocx)6FdzF=@IJ3*M7B)LD7gQ|IT3ASq6XAdyX>T zX~8emExstx7WM68vdO{hajKSR?L`F06bH_`_zIX?H}&)uk^>mk002M$NklTc)ADH5$)r(S$kOI!9^f=&eDov`q?fpur9TaX3q-geB%TTq{YI{&?iuz;6V^EBKUGDq zE-WzjZxNj>TexLt2cz7qRZon|))%{V$GIw(xp_t|b1tQ}Ije37zlCfz4u-+gbcjh| z@p=WH0)p!rTs5R?98PuZ0~Pf^rok4Q=TbJ&E?$#)1IG(B*f)9bZ>dhA>$H$BsJHK}sq##)YgVm`G^ z^I@r>jwvNb&qbrWK+c@~7@TJgq8Koq4_UuL{chQD_bDtKQ+1rxF}6-lbL%R;(5}tC ztKC|{EfkA=;XsPL_g&)0G39cB_iSy1!n^3VTPasfDVW(5uChxl*uiQM+lAFnV7qSQ zmIDQom}2a?u80EO1U(i`uf{jdjhXN_pO!;5#vF5SB_pl{fqcf!oaXBhJH%E^4VBaM zpE8e;D0Uw#*Se|>P|x~PMsu6s8Nc;c@hDtVX5ia!t}*{C{^VQW^8%1hzKeeC06kkd zrGMw0I;OGQvGd6ca?K-w?>gH%HE-wXzO6IXspU0Y)pehV^Smag@lMS(mKn_`i}HMe zHYRmBiH7Z5W>0ONwdsnVhD0Vn4GKxGPL+1~Qsmvn+;dw?=jn&S1gj2ac~p)AF(MsY zSWb(Tew+ulMQI@4!s2X@kIjF!XgpTB)oQQzQG(df*u1%T^mc#Zqmuawn1dI2QIR(k z>W!mLx}4jlDd>+OIjo*p;f#F@C(yKkHhytP`-qt&(xHss4aZ3nL05WYhfDKL613>St_hY!BAV1$EHzO@e`$H9sZFEVQXRvs9M`2~4m0>{9^ zrd1F{;*Rn01zOtlu^xDpc>{s=o&%ImCfnpqhOj3V8*%zXzH>|4eTlmI4t@AbF2zvg zq)uImTX~Q(Z0mfXRowE++?6ZAgo20kckI8|p_M+gQ$W#j{*>OM1%MX5(rU{p1^M zyg*yE&9r33X2&kxHt9gX8(G{mPZWIzN~`^wH6 zx&z;m?ld>9pX;q({zAxK{_@7wK3)r<8$a<=Q#|?TUA)YrIERiP3+uFTVF&a}Sj&#H zWBrSId8wT(L4H}zV!cvdG27%z^-FdO%N&b|RNV(F_l3pobC;J>qa2OPM2F10?&CR+ z@wT_ta+gaALcKNtH=nss=>jTd2h> zv{@m8a;(&$og+yd3q_ytaq-GI{4)H~S9hn&`0!Wa8X|xjodnT}qcD|iC_yhz{IV`> zd})NmH8eJvBOLl@RD3kU5o5&+%eIO3;V;$q@Pwa7=(j)p>tCjyetdwNjc>6?;RrVw z@oFFR)wOF^r!T+ya{A`mucq(+@a^=)-P^kP9Cf83HoXWi#{$*Zx63eua53a zuMWS&0uYQ7;8{1HGLd!{3q0;^HXz{1D@{_#3l62C^;LtV{b^U!*+8R4&h7n){%Lz5yQ>rlZZcz-1qE#1UQr zbBM)$d;-YI`3rDrC03moe9m#8Wo%MHXG}!n?}&yv)+15#zLlYrYrX~m|K7pAyL%l^ z;JA6Cyxt2w!b$L?*-Qov#nF8Mpx%E!P_8)?s3Y|EE4&ux1)h@j5Kpvx`UJ1a;Q|o+ zt@j09oAvGAd^_E~jRh$Dfk19Pt}P7@K0M?V7Q(%JHcc;|WAPdCTnxg6dOBsy&QcXX z5OLQE*$dOGoJ7VHnMC|b9r&!(-z%zT9Fy_q>vS1U1G#$rWV(Lqc)D>bo)B{W0{20* z3@B!FBr;jjD~vT?4eC%5=QdwswqCr>XKnPc)6HhvtOH@QeFHehOB2Iw?zCZA2G|7G zFpU4rq^b{|dc$_XJb6xw=5S2Jyvc=hybjU_#CEmfKEWpk?Ow)0`9I#Du419-4&Fng zADV1Ov4E;Q<4&lu1(S~|T8hE4!LbJl#p7V9y20!$MISr+e6%JOkh;~D5TnlJv&8bL zVf#$Tx<`$w?5`ECW1;^~A)dchJ8bLMW3i4~%gkZjD7XHvm2TC)8GPG^%aN&$mBl*L z3MbE2K9j7PkNlon+Qb3CDn6XH>CGpig{;@X*bJ1Ik+2aZLDjF*fzEaIwAx}Xag5m! z>oRe+x6I`^2kTMl(kfGBwy-SH6~0nW>-_hUEj>Ph(b6o9Z3FRWKabUMjVXEO+#|yM z*-6lSB+E~wY zRks?C@xV5C%cOE%j?!FaV^8Yx?xV^uMMup!Z4VQwCimoR^ey8+OB%Y0Fk@|98gw~J z)ne4G>M2>><{YbfN;YHIJU*W321SxI*J8GLO1)BKP6F`oH| z=%avkz_PLNIl)z~!&h(ci@BH69)5MoUzqD=3>QOeyN#}w?BJ{QuR?Qtt6=RnjEy!> z>jX&lj2QwEF^`KITD4z>J_^w;p zYpY`rb&Mx%#6pjlXC#E2DKGl7A@D&OG8QSzjWFSOb3lc_LA}D~3)kQigLyKQFXWpY zQQ{Pt9EPr!DV)iISY|TN7lq^!IMRq9zUc!^oT53O?DLBh8Eabrl4Uw1y*JXettpsk zg<00vqV4maE;dJq=520e=+o&rrK(g3?ZhN3o5;F%O4(;~!*DTglQ|+w)y{EM*`iSq z+J++ART;&QOEk#EVjC6kwS=**DXUQ)5iNqfv(0SG08la7^%LWEYzsi>bBu|`1mbfJ zub8-ai@!p>Fuw@wk zdv0Xl4J$%Kh*yDFjGsiCLx|GK_)dyt!g*X?0>^*pdV>uUq9K_Ap1_yW2b8hzh zT-5?(=#k)C*hER_7NjoZj+%n7gPeWNf-5X&M@pVLo^$X~<`?+{5PXxR1BQlB4U8H~b-Y>hPH6sCL;oVBUv{UMUFJI`X%m1-8o$O20^V`m@m#^p;azJ2)c z@$?X{clz;%pYaqBEcC)FeRj|9Oc${j=Gu*G)9pLA^egteSom@K&h6AQPRrmwLOja{$lB6&3ev&RIxW;LOLy z1t6^R-lM0}>p%UVzhl@3QN{3Y><3Tb#Qp2>N*|u5+B6u!L`-Zh+4X3`mJ0Gg$^ZO& z!EK6#2Zvbr!B>18y?%`+Htyr^xBOe8)1+TI1541gSlE=Ifts20lQ|}Yw5{1&T9pk| zGX;=Y&MQ36+Pyko08*`#w<+tLN{T$!I5M_J(*wY^=NLc2e)kryKzs50B^J>AGCjl- zln(X}rt|o_@5asR)7NU&MwkXgb~R&6_m#=XAF`FTCNyH&gDLpYn#OV-tYFI8)gk-7hF(|vO6 zWP3MZWop79L(FEJ$7DzK+(7oZ_#1D5&kI0);~n_n!uJg2)XXd|$>vgBn6QZ~Y!hir zw3Zp@@|arB)H=&tc4|40Ih!vXON{d5){i9CAobB8MGadZV?6fNeV577d=|M}`8q+B zqSn2B&AcJHjw0)suXZfYx4B){t&?}eSnsOo`BffQc}+E8T5Oyx6>@f!$KdXLyWG3l zoyKn77V&8YA6dU`JdT&)qzyWY;#DwvKR=p|aZypPNjYoeLn!P^d-b@8 ziwJ9oI|zWdco`>AWWk4eWg{;g7l7n~4V8J3xqXPk#b%cEXjJ?v2G7dXMG-If$ftqm z)i9KCfk^VPZQ4nk7G!wwM_d7neGuQg*v}8!l9lGoS*C0cezLt|(FQq!CoT{tmKfP5 z4=-NJmiE}pBTQl$lQyP|Bjom%ZUbR5ruu}X?93rL>P6=-l~o_&+Er~9NF^g?LLi~D zqb|zL2C&xUR2kkgBJwc@HB4d-0uF^pC71uuQyLn<^cCTy{h%zSEuOij7Fs7{uGX1l zw~f7n#E`ZK#xYl?v|ZX9#FB24Y^dMRY;#Nd7;WaLp=7X)sSX*NfI0sC7}{0LKz630 z+ml8fJ5@F#V=Pc|ym24puZu6=$CE#>_+uB30^jB9Ur4f+V8-@Q3rlsejPvn6e$D#& zFF)&-&1%>Wu<&D>3bkK01KfJDjq@!Sh6@ROA0c6knJrj)UoU{SWg(7p2J6x4V!mxj zjBlx#mI>U4gnO7-=5nKA#x$n2(sGuIj$C^3O^$KBDu@d}@C#@z?ySeMph{yU+&7Yt znRYz!%t}{~3lr8Vu$;24@?{F+dR5$cG4FSakY~lPfAZ$V1uSg1gqw6a|4?w$7n@G6 zT*RO8);4k@6D2vn0?>}>#z+;q9mwcS^+sL`O1025t+C&+rdl{A`|wRpJ&lL5prYrM z(A~0xu|4>7kJng$`}0q~O#k{Xf1V!krsd&*ZcOr*=Dd0N<=0>0i68gz^p87urO7QV z{5a1W=k!UQ@bq5anod9jm-y9uyyD<3Zg@U_f+vFfvO7I}xHCO}yfeMQYhl>tJVoNC z9oMqXwd(5vs_|C*OdcHz3Lx;`I?m@@1oC3y_OlGPz1=mSx`ru7RE$Tpa{Px=v-Y3wh@&2rUplc>o>lBXYauiECBg&I>b{TxM{y6#e4O$ zW2pXfzfV!$4~+>MeM4jh1-0-MheFQ|j2CUkzX33Z>s4ObF|ko zk5B610uXNdSmgE!Px^TAEM9~4<`w3`e60)Dbj8Attf@>QBE^v6NNS|1Xq_Tg`8Dc> zG8|6wr*o(OW|)(IB5Fb^9)at7WQyEePXVoRb4)Fvyk zCg>T{xTd|_FU4g?Q z=62#aHi{h!{_q@uPXgi7)Oei(u`5~qy@dH@2Mgve<4K8E?%kcvDbkGM9j-C21)CA{WU1mrn} zv03&h#rb=S#bak_ELk?zd9#B_Tid}~p zZB%yfS((Z+;td_;EVsF20L_cx#M4;sG`HkJKN>tIiV&=GK#37s>PEAr`guBSbuiz? zw8xymtVIVe{}x;efx>Omc{_ep*V}H+8BZsi%i>xHWu054vHc*#*&bB|8D+;(O}Z@q z9+TzxC5-5iFbadrek?Y)}@#(4Q^>au!XKqYzENqu zlkLaQRo|z@v!qWMF2wQ1(HkxR!D|Ni%QE%|`@{XPRrC%gX=R^=ji+T67-u^8N7*N8 z8X@Av7gOqZ*MbW`^kF_ey6J_hV|q6^(zvM1UmfBi2rq&&78|AiLObuQob`$gquB(_u%58<9Go!{1?A*pH6i_f8_C4p3UAzbW z${)VQ0+2g#!^s3IhQGeRp|rX{z*gqs58mwIt6%sEm;*csL~|mq`u_^s$^sB~@V37D zKnM%lkMd1?Xo#f|M-$68nOnyeC7$EQW5~KQ5j7)b%(Om|v2Vw+=_s#keJmuR1W#R` z7a0Zw_~;2Bzu;9tc$x%n5b7?G)MQTfOvIXYF~|E-gES4ErMZ2$YpR&vI1f`4ZBf5N zL}fT9t{>YW_5zUGx2B7CZtA!k$3Wu9i7iY`uX6b7n1H~5|MBU1l7zgcBuyE>M7XTE znKGSYn}-n@A`{rkWDIQ{eg{V#Y5 z$RnM%@Tnhu^2fbchU08)}N`O#$#ga(2 zXJ(n4-@#K+F!jATxidXK`EEKqe{(v2`TTVK_Tlu+cL&qA-@lo@z5i_b=8G3t^zmjo zetUp+I>I~(Zk?*-`4`Wh6f`4A2h6rDBX;0TzMLV9pSA!5LEAL;t!2Abxz=Dyv8=J( zBqj|Tj=TF@M??fpe}n+B?7#K%VGHS%-KE1mn?@K{mF*Y5df?A!(*s;;0McjBoLo?j@m@xT}m&-p7?rVH2c)HN*t!A{J-w?b7suFq<0 z&fJ$mnsLnS@9$3!ettOpg3qg$uduKKa{yvEk9m_%0=fU)z3DC%({XVfUsuP)9enD? z8$9Xb8_tIx2Ja)r?jUU2qm`x7s?VKGZ(N zc;^9m{uUYMU@Uyv#k{M<8@l$vd3p2S4&>n6!lyD_`VtFrv9Daf(-L>^6cEni{#$#y zfZZ6|p+7FFwpER*%D0TbJCfVqRqv6}t{I+NkWt%*s@r z5pU=yXSvNK1880hC!WUIsYvTZonFl7*YOI}h|(mT$xG_y{^#vvN1jfbFDo{t?)?f{ zlDTdA-t}!Dv93<5Zl~pg_}p*ABBq`la^|zR`eGZd zV>CX}CDf8^Zq-ZMVHca85!!qne3#3SLE+Wyyv*4n8%V0+J@bxdW6mM(QhdQZSjx?Skp(rs|Tb+g5TbX@ERI z_=J?-adSmt#2hzT7$0=Jm`EfqZqSBh<&ok7v@TNPxwu;N!Dr~=Vj%PSOR$Z{ZT1LhF)1?d`l^ z05n!-nh^w&H9@ftnd@fL;GUPdgX($6cNbk@8tYs(!g80H8dG&kvTCz+zLIWjGy`f( zA|CDY1Kq6us#PjD5A0xnKY#nW9%p>G%g`_<8#JuLco zp-0+t5y;W2w=qUJx1C|58!qNxjrppVvuw28XpvXfU6mRC(v|nKI^Te|PeK@@>X|$7 zQp_vuZEg>uM%Xe&%+is^O4GQ!l&;zqUnM)UwVcNwd^CS&%8K(iL;3L@UIFtE3qWuq z^aRIr9N0u-8x~BJ3K;V^var<#q!G%x8Ag8zcYRr>grt(C6gH2x>b~0fHJ+TnlZ9a?Q5Bi{?=@y$#8@)bR3(j9TRqG)Xk7fJ|?^wCtZGtR(gElJcV`S zV$`@H9_J@CU|4*@$RXWx&T*7jO)4K7klsqqGZhD zl^eT!Edj?b_XRE($@6j!7}s4fD7rQE%E)`ds4(xbk8!NzD`4LK_+UDG@fw`au^zL) zyX7orciUiTxB<`OEVq%$`>3_9v-V@m!F+X)$K=T&_HX@Nk^4FP>3rbz8`KR8K=3{$ zVHAix#S<{(Jin}IGRNI2&@}5TLT;k8_ae8Lze8whLp}F#jC1bWy?hx@61di$NT4x4 zx<^_23{vhtXWbYN_rKS8Mb0z4&h+u4$J1lH4s8$n{x1H;<5NJs{0gto`r_7f{l*PE z9q2OVvt2B3!|PsN^0hB~4GccH$SwT4W*JQhi`lA`3LV{LJ?FYG#u(?TI%1+tqrYV{ zgY^PAv=9X84i@e0?qXiNaBjMA5wC>7YhiBQ!4pAns(ba?@pJ)CNMehg;59d!e3!r% z_Q^h`-A9V=UA}rXHe0)`iC?m@9%-LD=9JvenhqQ?;g>R9*Y-!cN?!?S*g5kDD7j9} z(RQ4Suf|)gTI{MLzOe6M)o9GcoSXT2J%xc>LVqcraj?K(C+ECu+kOYr5VH=Lyu|%K}3_y;<^Zm#h zJo(*-X3{=#w`u@A2HBk=`tOoB!8n0X#piL-${! z%D1%~w}57RdeDjBAt_2~$cX;n6lY+YZ9f0!Z(sEh~6SA3Yv z2OgB;gJyjg;9)y|@F6sVJv`vUf!k4l1wwfq{6ZC(~vH2 zY6PUuv~JP{vc+~`3>H}9#+O$BCYE{9h}%&U5>zs5+h8FHJ&~A<0V>9n#FzDpq{4sF zBqDXiKoXY6!pbj$1W`PR$!C=_w%C%;Kw*`4klKWLrf8@Jlu`Q*z>|oH62w zCQPP}Xu@xtW`!FI&44uk1gv)QuwgzEAR+pJ3sL)6P(6J5a60<_8~Zhzv3Xwq&PP|3 zaz1f!jQ(>T=IcDpUcIwl|8haoj$Uw0J=hCcn7Xt{YK_1)?6lxTI}8BP(AjzwI@{e~ z=m;WvEMwL;EwkPg7+hr~r?FBPra>qxl&@7y-<JAiOC-XMW1uCQ*rdXmnTLdwcJxuE)tT7+mjB4hNB zEj)(fv9b~x$mrKGwiQ3F!3S8FJH&_A;&PwZnv#|_twvYV;fqG6U#olPl6V@&hU#o6 z&`IYN*~HmGFEgk+?7fEJu7d)$9H!@y`c9L!60w(EBV)W9n6~- zcty;My;wM9un0#JJ@C3r6A;u_1}n_(ljtn18uTjlb@N zfl0pe$An-aKbct%3=kX_2mm>I_ZEMfA&7}PfKWv;Sno3pKL28)huM?~TvC)JN!EZV zV-oF7n*TSnW+rO^(m8qXpbW6w`DOne0=FD5xi!%kP32fYwgwY`#t-SMa4&wYf z#?EQn1?0#7`3L5xkEr$)0>}=g2iOVj(W6KBe1lz<9^o}t`_r#KVFwTdvT;WvUJlK5 znu+?F6`2b2@}eV~W7?skZ{zwriK->3x_COnG_a=72%0*u8RT(@d6GMUJi_Z>9zF3L zK@bCgqxZT|;e{~Kcex}9QeO|G*OQj3FqaLZHiUXPIi!?+b(mQl#HUP>%Z9U#0x6k{ zyn(#@p{mbdgJX;zJ_ngF_W8Gv&C9sgnmya04{<#*nS(uhRpudsK%PCF4!?P1&q=Nq z05Ymvt~`x@u45D1Bg_ha@*v4D4LH&kF!}tJXg?Q>Fv9lfs#a93R$+R5zjwKx_eXP0 zkCD$A0L?%$zq^DHHqT<~u~llDoc#G*`nU1rb71>%rSX<+2_v4$#OQQcI90NmGCfLO z`Un!O5xBv^tp7&FMGI%t_bc7Vj)%N#NnYiwCySAuF-5L4u1oeZPIaS#mYY;(;#=BC z5H=hgDJ+VL0?%ZuFqvlRYb`V$wwVXzpJc67!qw_cPw2}PDSg?8tlM2))fRsLD+_gw z7p2$Sjb0LZ^ypD)x{vqhf@E;`FO?`2Uq z71^aB2=y`{1o1jVQ%ZWy=WuSsLxlEE!z<)N)+C*CQOJ~Lw zPc$!A2XO6Z94gS7X?-ERQfjW^m2+M(DRPo7q+w>g?x9#iT%{v`8A4}Kwm&N6xL|=} z64$P1h+t%VkV14tvN3Rlj!jr!+D>ka-oI^pksit*&xfRVV8&n3o#Pkg$9RBx`V)SM ziifJ)Z@Y~7-lWPhoz;rhr@|PWH!KMd1)fHh#TRYsX2@<2$uJqFd@ZD_i6cA7!f7 z;&Bnm*g}j99h7q<$>Cu4Ne{0gb3vZdS#__=%ROSQXC&9p7emKQ6~ADE|2Y78Jz$ED zUj}@w!q8A(4ZiHsg8M-3GHnco-zO^ zOT3O4^JGay56hqReF+!QaUPS;SG}BJVfPFv%XhFCdgng3RQF%v9wRv6 z^~*QYN2I);IKV>9qsLgJeDVlC-o>wO=?nDP>BEM`$AU}ZUWes!^v*`7_T++Jkug&U zypVdn_Ju(p{H6Q}(_@rR5E#M_^H#>LCh;r!3+@bpI3#;r42HYK7;xH!GuB4P$_952 zVRiQQS%3bTov$`ve!}YvE~i8Mik)<(NB8!pJCBdB1IWYa+5i4_y7%ls)WTW{cGMnd zZJcKe%COx&xX{i8c3W`w^b+MuIBB~tuzv!>z!36So+z(-Jns#&=k3D&aPt-bf`xmN zF_K!H09G1_VI?4bN2hG=w|rufXG*dx^vy5^bekbz6m_QjDX{R5Sh|O=T?S3teKJz* z;KBQ63!ui%A6U%azvr)X@m=&{HxLVOq6|KE?~RUSl#4Y05~S7LR1dPYIC$^Rx$T^< zM!}8`r#OfBxx{WD47AexvW3bSlz!GOi+-D-oDgqMvVw-7%@u6W5Vdi{v1DV*#~Zf& zvFm|&cB1fP2|1fbP_zJ$w+H~iJ4-xZXN$H2lyi^&pUXA#7eR3ty{|U>;?+sjs%RH7 zIGH@G0b>V{d-qlZfDrHF!bN+drfuUd?ga7@*FnAx=JlI5*uCh3U2+c(?@f1(p5XI* zI@o(U9e+GPfC$DAUlSD-G5fvwrjjT$eD~d)E4T!ZVhRPh-uHPs%6JjaHMPMs#E-%cc-ivTI$TAhUWG#EUj+ z6t8ftz$sq}BWWA{#*k?ZQzJs&RIJe<>^fUx4>qG}e0<6rCLQJ{U$e#MIrh8*&pjBF z#{g8!ld4a_V<2(f-eu4hcOQHHY`TM2!SMNr?j_rnRGrj;EccC=dBT70R6g{!Mc>lC z&SMT5<)uOciFD*?p|odU)R#+isoFGUtyGg-L(!-w(>K-od*Hmq=x^(>=)Z?g*{1yZ zqxh43+cvKj&f{d24&pOb@{}obW-=p+;)|s+WkqBDCJ))Tu738h`kQ_=eICmDbNG|| zm!qLO+v`}xjOc|RKUH}#MnLeK?BFU=b3(*Z2x+VRopOcAjOM{0+H`1SwrM(=0s*z1 zHMMHKOj5J#7@O;nMMz)b^*C0=v9gh6#cL~-bZ|`~73+A(R0kAYD4MO*h85lVk|60) zM2zE{uSTv~+z*VfN=jbdX1~T3xD5dL8hiCxb<%{;r&-yU*Ip1EuSu=)B)dxACYX_Y zrg5TlJ$WJ%O&6~!F}Eq7HTk-%baHkCqR#xLN?0q1r-`(bMWBkgU6UPLH7c^^9Gkzx zzaUj)&1H0(|8f{rTYXa&#oU!Ao|ozyI-ZA67hw?@T8Wa`-Qn-sn3g?f1Y z*$t_LnBwEX9}EIP8LJ3}%XB@22G0XP_%I}bK=44sgFhGmf`{37xNY@Dy?Fjx5C|XG z@}1mi5y0jKIvXFB{Q)jLBweRJGLYlX%Lw&Db4#R@CDRuB2=cP@xDD!)99^ukZp-DE zw}V(_sFxqhM`Gmyq&fc>#_8sd!G&{KCnbz@CpNRX-IpGvg4s|A)!}LJL9)V{zUXrc zxG{zcXFWwhak*sZP;(Tw6GVV8Rhm-t(vF3IjPwrlsLr}>c$q*6QPDtnpLMz9a3-(Y_E6sB%=O&Ztk$Ia{I++lo3yj?bsLZaEKqG|5#V9>L0HXgVL_W%|r3 zf-*7dFa_iX0PV1Yodgb_J;QnW)D|juyc*6(@yN7{t%lo2EnbS;r`^8g`u2>VOJzB{2CFqeV4$%t)JuoQbBVGyf;avoX z;I%QQA6b6}gfNDJudcD%AP#3c*!|quV|UMkKNRqBfPjx92727tneJi{^WH;$tpRS; z&@9{y1bDQ~{^N(!-GBRGIzrG8J-WJDGiFLn-Fv%V!^*F{Dh9iR@D(w9Jq*iy4dNws z!Mnu!Ah;V|x&LE@X)PLnb@6kOeTZ?wz(bB*gGEJww>qohreU)$-9v1KUPhJisg7HM za;$-83xF7(79f3y-8^i;(C?Y`OY%Jge;hoxJMG;?;55c-RC-DCjnfqX!rco`xqA+R zK$z!FNc_8Dajx9P6Lq0Fe1&W|*U*3zvv!m`%GQ?{8y0kgAPxrIGq^}|d>K@-5jNGf z40Jh10LTSoeSEUp>ZVO?#$-3+~>%yVD)) zoOtI?-%fkD4*0mGZ)$|xSR)$sie7De{@lnfS&pgl8~u5%a<*3H zfJ|JISBvJF^fZ;%sQTU6nkVTsc zn7*8#%--lBzhrY8<+*=neJ;gNI69BFu`|QU*{~r$L?%9&H}TAqzS&$d0tJ}Y0v=Vb za#cu}5E)>_NomZ7WqO2EnIZ+NCXAB(E^-o*%pjd(RfhrCg3w3wOp7+@>fnf$r?H-; zmG}EwmGXF*`=`3AF4iLft7y*&lbc2~^`!KblhNFeyf=KsR3C41UuO&427r8>{d$dB zY1ZvisS=&#ocA&*bwVNn6#Fl%QsQ~2tTfXMkTC0b!dDz8zGfl}f2v(z>2RGPlM=tY zTYd255ciXlWBo&?iquIHI8~|F-#8>t)#15hJ6IK2bG_7PVbsx8#@y)ztz0of_6=gx z+@&c%5UmWL-W}_R@JwLQdhBuqz}X7CQq!3Ex%Kx}X-^H&^Hko%r;&~-#|Hs?fPKPu zCL;)hi;ng{obRKCXdU~q8L3qC>P7G1UX=i&lX= zHJnJYS;`bjg{(Bl$)#ea>3UNEu!z0DKxa`z>jm$B0C`zHQCRsb6=dm75N1X0B)m9c zj)aoVnZgmCE`e_9M>fp*BEx+%1uHP-Qy5hM;&3>Xp&_I68TmLvZ4vVL=NHq*|M~~!;t!|~7k`0R)i&0KP_haW_6)*RZOj1@ zE3OzJlnnU7m0%CeBZZM1$h>|PU3jKR#2m`yj7w1YO(;KnSdnSc={zbScZFhdS>Mi2 z_SZ~KYM|2QWU5A|Y7Vb~9R@I-bvipfumx{4+VxMxIo9S4@Z6*fcP?Ski?0zl!44p2 zSny)rcJQL>Y8Bd5o>@ECW?J4A~{)4YX zImd$IF%}^|OmDC-{Q&{BrwB6GL$Jd)-#nYX!7pm>U=c|f zwYVFIV|lN~MSI&Vgn>IacPxO5dZ0r)hcFOC_kDEQ=LR@s=bE~~D`Rz%TV6f?CR-I2 zJ>hKJ6gn8FD946hD>5_t>? z!3V*VyLa$mxxHSQnh2EVT3ebLCmgf3IYH3j*e_GnTyD_n~c?o z?(zK3x+HY{RQfJ1&Zd)-6YK=?cKZ3p*LZyu&(8<2`3Qy|;1sxnTJXF;AFvIQ8_Zf= zhHf|~w}Dec&qB~-WNT$G+z6XU)fQ*TAnRjIs&+LM;h~$%1`W$8iU{tgba=#|L%a^= z*;VWWa%np&QC+y!$d|%EH+f+>U<8>%R(9TkU`UjDR31|RZSUT>Gu`>&Tl@|6Cj@{Tq3z;aG3$LJ^ksrVnc=_mSE@`gEn43}Bj1aV4;mHA ziJR(1n$Az){G3gE$#&^d|E`-Cr8(E4r>WeT{6iKwmzH_3^Dxh|9qWq~<=Y>@mz$_G z$3{PPayi@B2utBK;FOilzD)h1Wn0(Dccx3duA@Kq@37Cqn0URvtHyDUZOU>s8m#rB z?JLR&-snJKHlHj2o$SW!TVDmw4A05-2=|QFa-yWUQA|_gwP|!U1@J?$rqEeEq_0aI zU*+d5B>@_!-ita<9V7el$8oYFXXnzQ_&vKyyfmo7b01`jXoI0K2B@Np7`0cCF)sbf zlCnvr)8&W5GS(E_etm^4a2o*f6?W?Ns-y{_PpM5bXRgkv6Y2dZbU@oTzQ@9bUa_OLj2P_J@bStf-GT|<=}(RTphxYo@L>c)qM zOo+vQ!kzH*ELNF40ny8Wi8ofEX72QXPLRm7r# z$q;X9`HiXs*8MVu>oYFP72}flmVRNFCOw%np<|+#<~G}Of_lE zQ1(>LyKYd~ku6i`XZ>y+8oSOJ9M< zwJaZIYe_#>jMg3@oSOh7sjS!Ns)#eS9Ry*lu-dim!a)+}s|A2O@mIhw0ECC;O6tyK zD=dAFX{Q*Ex1RAn@bWi`V$|Ie&rvdisckX}*@=@aSNA{@u6J zpZ@e6w&cGz9dZH2WFUn9swe$b-OYXZ?+mX{oO^6zTj1vw@4Sz*1%BS+Ft`)J#7Vn0-*ME4$QWD~Iy2xqF~6Mj|JPYVbkVi0<~ZhOAMJPduisBc z2msl`>qsoH!KAh{N{7NxPiQ1);e-W!p#RG2WEd=hd71$qwxEy2d!Kz7|>~{BrIB(8wGEK%tM>=WL5By9f5X1wXU@5ximdyAjmk zdC=n?*aD)7VX(B_KeGX%6T(H(sh@!$`v?M|jAIu33%Q$4cJNvQwk?C!kAM7SI>+uG z7PO9jvcm_{HO;EdQKwQh(8coJOZuI`k;@zdfb3O591GY{#)3fD_tvLHVUqW(OUKv% z$@&3l4FExOm25Aoab^5&#!wYCK-8s&WS-`0qxE0W#=_L=Sq1Xmg|7?ZVlo3jY|$Cx z%g$rKN^@3`l2i3Ym{mL~*x4iEYI^p^|FN~!t%J{a`41R6rOq#2&` zQcIf5tKsz86#xK007*naRPPH;3=**n4)1VV9pEnYX+ zAgTlADh7w#`OEjyz5n%>K>)})kECcF?o092De_BY+8@!9UwMMmpvklZ-6UJ)4_XdA zqNz+hqV+mQ-ip>^{~60=9*llbnRT&w6ltdYGuH8s;&UE1`Ha}qKgnm=p4OMCTeMB> zjBq2HBiyF6Jf=1oXG<8-H?>iE$3UCs>4X1^k&{%uj?COMU#zL<0NI*4FGW!eVs@h(Rl5U zQM7i~{_Ppo%S*7QOW$q!wY0!(0La(Ulb=)%o$!51rJ~6|U!G&?1rE6aFPWq>)3W|0 z`rMYJJRQlg20^zZ@|xSKgGrTR0ttG}Rglv(vFgU$)Q0YcCP7ZbLz@mLzM?1>B|7#) z+}3Bwj`YoIGp9&vO+OveSKF>hAR4{2*}UHM+7;O9)P}iDeBV%21N&Th8zWm3M*h^1 zP!)+*DV~$O_)+G=USzrb^*Mj7`rGS?zd*lu&sV|Vf9;@N;rg;n3TdW!!y-bYLGP$| zP~kxOU^kWaq#HRt@CMBmnTRnQ9yYQrWb#2Z7eDymo3ae-C=bZ_Al!fXq5u#+)b>Ra z@F;KkbVkO5Th_(KGsY<&>a)?JY!CP?P{c7d=xyMK3?8W10)S|mbD+WlL-cSM_;lDD zLmAnLyy-VwI%h(+<|Sg-dQK+JKS{kmL<>2q5Bw^{3?z~AnZ~@4X$KkWs)SHB6f!Z0 zi3Kwflb7xaGK$p5KY#FNHIsz1qU880C3R$nD~60NwtPifu>}UHBv~PeS!vX;^g#$o zWYB^|?Ywa-OAVLXuyCvLLb8nLE!9h^aK@09%OkmUv_`L;vA%Ezxy6UHkWv5Zd|ziK z^GoyN9OHt?{-X!e5qAGLz^fMaAKk~p%L6}O3ouLnzWFk@!f*b{{G7k^<#zTj-(p9H zH`C?uDW)RMU(rGf{iBEB*8B^YZEC8W4qTr))isbeqAz#w3dSGC`D3rMm6xVqy z&e$5}C;c}E$Vn(B0WH?6o z37l(2DNJw@AXk0hZ3;fFwYv=1!mB(EEdT`9UM`eEu!x3MFN+$6`b2D{NF451Yc>Tmj+&{g0_kMbX*AKkIqV)TB2&zS}01e;8V#{~mKcD{e0|G!E+`|qR z*hvBR9rTH{)j4M+`rP>Hh2}gbfX3~^dmZF?zk`q6_n_?eK*W&F_D5P|$Palo68`gG z(qF%fG58{m>S)$fNJpeasbobjbt@S|Xh^bZ+Kq=aezcIAqf6Js+~a?9CC4tAQ0R`^Yt;d3lGP!o&TIC zJnv$g@fRJk#|B8CEU}W*Ai02cUC)#I+ea%mdlL19r)wTtO4E^W)t^g3; zi*Y=f<&i)VuHGf$nyh?bqwv*JuYNn9e){{_^!6opB)W@!z^g21eFr=AP?uMs%o}AM z0Hn5$8x3fY@k)e4WO}8HPO80TiL z@jpP|$FuJ*r^iqIwOR)V453=726XwLPUx>DD7XwKr(y><$r7ae05&2Cu4^GNrAbEu zpvf1*vYZK$DT+ndGW}HfEzGIUhV@vZhxaNx82GVwhe27k<(6MNLLuicJ`cI`=kKTc z2msl~>tK9Ls*-DrY}={p)O`{^ceearM@t6P*d(dJGc7?k$(A_=;C!A_wl9zL^)*m= zg#Blv;i_tGYtB@e#1ZYEv5tQvpEZ8+8L_Ej7xdRf7Hy2>UiT^+a<9bn(Ws`mm^vC>@oH|LD2Ik7^UIyAac zLGxgqN<~YmR%DCwf${Q4pY&$lT(QfKu%eZ^r+V~ymIFYDY<;eJrKRONbwqOx>*G3l zOm=XI*VE<0ZThvez-<7?*V2<)*CS5=6jr%Uvtsd_rVCk~CUk=;Ue!C&)9RDfaVq(d z%rZ~@2r>7k>QhdSJ5gFei7RcsH&}h~?G?CQ$&Y2nGQIcPm!-G%Ow}=>Rqp4>-IPCTd`DyR zS8J!g;#aG9{Q%#o&GD~3SX;N=O$v-?AU8Lva!V(cWGD|FAMQ9F-(0{TQBEP{qA}@O z%&=d0k||pe<}Z;6q*xNDWG(V_|?e z{I>^F#s|%K!gFDZhvQ5<_;_+0`iQj}28>wAd)~`XqbFb>QzgI5FUuOC&`l}z2#QqV z#v`4ET@liB$UaGiVTSFZBjkb?mcc|WSQ$+z_k>ykU4^7HrIO|%qV30GZqR>m*u6Yd ze~uZcto3w^uwJU)hL1YvIv{-&wVbP1jz{8Be-uyURnjApDx-3OlO`0MV{7ZO0kN*#p^*w`}OsIM(j;6^lRoW%40kvG5mv^~)|7sBF%lQ=ew% zCZsj4q)TIl4_oQ~DRvGx`Q;VnUTkTPV34ab{Gyrd|GC>zPteQB5*`ldyP&Zt^|}ln zUuBTEp!7&S)HO*bBA(6lC}@r#U9>WOb6?K%IJ0kS>8~jSds&FGPxNbjE-JELuJDR9 z{;Jz|^YF6!722A`J=f99mHC{h4%8g`*W6acI^VLq#zN4zV9Ol`_zIX)z5)h|(DQm( z#oBSy*o*dV>{RzGC)YZ%72(sMDV-H~>yPmL>XP+?Oe_!{A^_xo0U)eP>;O{DNON_d z46h2>JXh6JnW9j(oMmIMCE>am1SI6MUguc!e~H~bUi|uEdW%=+eLOyy&KL}U`zdzD z{=wdK53kI4{@rs60^uuQcI}=e+MTG-tMiH;jA*2fjym4yA3vz5W#b+RZM(}rSk8$^ zxp;2@u%z)mNqr;bc`S&wDupeY+w@p>tr(i;c?Je|6*zeM0AuD6c8__49iQ&Qf9}Ad zd#p{p*bo=alxq#!HpY?77YqvF=ae7zJNk5(a>rApqox?^lXL_YPjnf<>F4u#c=7$eb@^$9)^ocuv;Qz_- z&h-8*13;$fx1Xo!<2yLS`PMo;j7MTxy-IC2sV-qweDD!P4I7*@u4|B{(>}+ z>NU3o4iwGlNw>xtjT;sTQm*sgxpy@^LIB9~AMjcjq&zNpEpCqLbwf@CNywDSZ2a}o zNs+)x6RXM6fQ%5k37!hF49h%3^HQs86>lUf9qUs0+v{H^H{e^FmxlN8Fn}$RTpn!t z!gB)W=RS7=L2A!TFj#mkXQ ztBpyjC%*%h%H(D_6K!qgb9Xq0x`o+yUjvnAz<)A=<~q5p8KkF+f17@u7SMRoXzk0i zDw;g#v84AjmC5VnNn3YF{yMVjbT9E&j=gXwpT|pj7U{V%p>L(lPEi&YtIQ?A9AVTu zYEzYK&-k+)>0~;`Ca&heL~@xbRs1L!2g~0)U5eJJYl^}PyHqwm!oMEdC@cl{d5mp& zD+e;Jsb)L$w&SF>i($e))uCKxz^urc3zc0$zA$QJFK64TS0{X1{EA!PHUQ)+?%d_7 zX%ff?(Ug*x^YgN9#K_@vV&xF2yk1Av)AMp!d8L%&(U+a--!0E4&6YNouYBe5CC+K$ zpq}M|7Mz%w%f;E|)xcZAmhf`HWS3|8&>M73+bl}YOeD35@Zo_;&GDjClqfY_#j7aK zt;d!Nm_*fXav1a(M%YxpLW+#K<2tgvuFcD;Z*so)D4H;vYrQ^Fwnnx`v?WWcu?&RZ zV=Ddv{p0`qV(A6mU2oeLLuEZT7WB(avU^i1C()v>@FLUeF*3d|80;LgLE&W@@&FKU z@Nn90p!iUO4)Eb4X_m&rKg)9mkoa&R1T+f(A&IX97qRd}2nNjBh-ECWeP8E?J{Mp8k** zn*0H_qd*Rxr6Q&j^l~FvF!YcIWtm8Gp#+UQ_EJ9F4^qlp9BML3d9kR2c)o&%G%E*F zT_r#HtXmk%P+5m1sXrvIv8i&88P@0+G~6Drb!Ht1vyUFH?tT(zhy= zA4MiIWeiYXVY(*pY`u!)p0~=@C-5}(d9Lr{7j1|5W%%7ce`gOhtxvMQpJ3-EL^ZCY zOJj!f5f{Es{_$cu{-0m5p!LCab+AB$FVT*%IKhVj^WW#(|HCS|;6DP-=Ok7Vr_lA6VSu zVxGOufs1;~$9!Atgl;ozwvt2YKVcHfvf{HKOr{yVeAV-cZGd*Rg>MT0d4&Lwm$m?H z;?%_qQ|YCe<}fAR&W1}&)+5)&p%swJ!~tvxa%ANr*l-6kc$u7m$2rTz!NaEr0C~(; zz;F>Ci>Hl(xz;kgvXM>mjqVUC3T3M*(>NDJEr1UgBJKpcmnWM#&~yL8GAq@eRf!#_=Pqt^>fWugdN@2 z*rGk}Z?M2)3$zSAvwI!`x$3x=@?mJ6ny+oY%)Ho+0LSb;iR#_ZdifZmI|!)RyL)Fk zzz$Eg6Uej2P{CJAc)PDxv>_s&H;s>IXKNOIp`9@w*ehZXuy>9CkSo0YCG&Oum97c% zn*XhsZ8h$B`&Ty3dGZ^7LI8|<7LpbglVKYbsq7FZlj?WE*8`mI z^v7O9V>^DJ|I0l&1t2ALMStxpS?Dn~U!sHN0U(@5DaDTzE0s2-gozi%SnSRJ|l-BHMzjhl={+0*|y}QFY`$2`NFMBrRTcxNx%1J zC`3h?x+L6E*5$!PhFW|l5T2h10Ksct82G^*K=|C`=sWx^h1b9wJiL!r!eH=l5T&tI zZK#5xsG>bx{Lh)nwrpe{dY&+Y)EWx(+`v6eWr_=zX+~~s=5soq&s4GMP%W}H(N@X* z(RrNf@}XIp?>(%wK}7AL!zM}pa7YR`;vj`nZ0xErpenlp~(JBKyjj`Vw&!sr~5&w08Ot;h^A z!VBA%Dbmw=>_9C@;dQE)^vrl&U8+9l2zj+u9VenBbYP2}WV@nku1e+{`NGICFWX!i zB(*`7yv={zEr91MWoUifHNCA}Y5`3Gi8Q-(3!{|SoUdi0Y8Yvr>9FlElOCn=BbRf& z+M4?y*@}@Xq-eg>O=Ce9P;aN|5q2hPj8@Jr&|TfV&U_eG7*aV%U0>E(r81SGZMiK; z^_VKIr(X_Jnj41IC*}hfnMYc~N7=n}Tx}DR-tcRadTywyfn~k&EYlkB7bwW~$QRLi zHzY&4Fe4h+eCUtkg1=rx5XkAPcX%DlD}NOX=(baaA=Z42)Qct;LdEc=q#q!}f@WBz z_{X!(9)n9C>9%O$0UQ<2U=D!rFvAu*s2f2az6~~i`ARw$Kp@ZH4=X#~+Kc#p07scs z0@wMrg9r00lEd+g4<7s-H1kWuvr<~w^}{$NlC7w#C$!JrPz-`wTHXc$z@Jjy|4A8LWD%BB=HvKcuj zUYfQ}0KqOGmv|LP(?0YUhvr_Fa*F4nSoITD)uK(=uY#5% z*+xb7OZhAVXBvMf4Zigguf@jL%33!ckaKr(SBvS;`FqUkHT(|^1kBZ z$K&bepMIHs`5CXGI6j`vvG{w2-9Y$Sw*xGuJi_a!9zK3BJx0*S0|bB^B0z250x#SN z`;PNQ=am)&>56Ep+;TixXIL+1EX@!W!5F^}3k5q;$S5Cdf~z8p)3 z!V`7QD#te9QO#^@tdoO~-KSwEii7)@@3BC22SIN}#17JX!8ek~moRHp<+x~)i~qI+tlf~NZ%7YUn1-jH4c z_(TzoiQPlIx(JJbdr18iFrohoCl{FKjH z;J6?&v3BE*FWB+p3g!k;j^OWDV_TA7ps|xQ@)jM;CVtyn&B6SE9T}ReLG50B`ricBeG6=;4i=Lf0s zv2=yt$sNw=*rkl;DSv3fYyScMmb!!2)-lj>4}q+t`B4-|5zV`Eg$*&I?p-Z~o7?vK;dZhdbJ zv6>Hy-c&R363Mc{j`+co-?{Ha>(!0RwHD6r%cSv*c4nFwBIE6?-2 zAK6Crp!cmWS0w$aI#%Gy*-a0YaaHqe?rUm++W?TSsW-Q(OP--9xKz&coUby?L{{dI z7V8tGXnmR;U*av%=dyKD<|OF+_QC~P0ZH#%k0>))W3+O0vL(}b+HQEWi8W-xXlcfQ zE$I*FtmmBG`X_9gemRVqTm2zFYynP%NM{(Mhp(Hs-0ADvYsS7dLC)mf67AYbKS5Bo zNB(45HX#|(gb_{Uz(wRceX>wKre|FF(*3&UOxE3%u09HHu#JBO^7|4~dce z)i}$v0_~KlD7}sgud9n8J|h&hrS6roJ}2WDDHG!L<&5p~!jdlef)OEu3UeVNnFaO@ zlDY80hnI)^W&JmJ9l)c9)Bc0I{!2FSuGPLb=-)=FFyHXk!^eOB2LeET#{7F?^OjE< z8);}jTr^=1u*Wu8M5ZwDlpDzm_37z)Sy(Y+R5d@g8V(L_&eIrr8i5V3SQ9r0RuSfr z;eR_(BhUlaIF1|sQoja(cpwPpW;Z`y5LS%UwXr4$9->1(q=<&L2pYi`F~Blj4h0tfEcfb5o~aD$AUk&3y1|9e5n8s zRwdWXtG3y9)SJ6~{MUc}_w>_`KToGv47T>b*B%y1?%lgPJ;Ccqo;-atJ$n3Tx_kew z>Avh!*4V|H{7Y5YpD=uzh1IsOV5>;l1E^B4faBg;YNQgaIjiXG|z zKaX6k({x^CQ&N{{y&mfz5Q*(^l9!D5vSq1UgOAGUeu(3NzZCZX5RMU?!(a5EN0`kp zcQa6(f1e!xH?Efm#Pa)f_{>Vm@eO@rI~0-9Na`DLV3$DlA;#GigMG03&m{stc5qJH zeF(KkUSb>iU@*zX#AI_M7#9oxdHdGx5t65^NUcF!>*POS%gz*&rfuOXgQzytIhloC zKii1pv;zph2C38?DT#cWu3&uL3ksFicyYT`iJ&Fum^)c?mxVozQax+&%VRXAXxJ+YKlzw zS)C|DyJA(BoF)N~Q?ofJvuDh#C-ND;#11`WnDTFI9J)pIl7Fj>$t!pRCzSk3q{XcK z+eRjodH*C%nnU-a8tF7?3h-7>r{*!0w z+`L^yeCFgSwMomhx+P2Mb>v%ZzfUQTg-u#O_)V}&HIfeUdp(&a`GSeeHBP6-&d7#r zeM)+rF_6d5CbqY+(bsc0e-w~6ZtIWJO8Ymhh-t04_6Jt;VbPmvC0-&~wqT*78go?e zv%+<*eCx@*(>rJ>r#Siu#ZGQ1@z*Z7j{&ZRFR8mM=Z9I@6P_ zcwT)v@^Oy7rF=~-a2o*fHTCA!bt$tjBuDv7qw;xK6i!8&NQktOm;*UsJk8${QcB)Z zKFa}>W@OHLUX-lTEYs8GWm0TnG<_^Nrk_}4yP0q0kBBN~7fQajT^Pk?i)c$3&Ab*+ zSEE*OSMhplb1bW>Y70H9J_y3hcoMR7u75K*DVfWQbNy60`-`yX*VnwgWN)+gi5h#% zDl3v-mf^X6_U3~&|$h%Kq`#%D;0#I#DrcWhdQH)K-)$SCg}93_BR2- zIL`=w$-Mn!k*jSVA*3`(cz2E;U#?A+6O6VF!cbhf#wiTJAd09M=KG zT${R_^=E@6-FX;o#;I+cfSZ_Ag(;TtnNAjXg;X-hma@Q6&8RH|DXHwO(pRk(vComI zW0U7~X8}z9YVFRSzOi3|b0-j6m?E$aluqc&7CEQXbBXOAl`t25@sPh_<}aF0e)`pZ zMb3rTd1W{ATTP@cq}0X>#Um4VT27s&FF!#aVS8E;1VfHl)(i7_Ey_>R51xy|M)>0({5~MVebVHY`Au%9*Dw%QG`LXp^>x$%lOD$QklE^GyKA z%U2jXCtlBH!UzwduDQ|NZM02+fTFq-VlW5ga=kPe38osW-MsM%gV$$XZ+960g5ZzC zCwPqq7L+Y8r%{s&?f{2i^jOiin3;=LXy#RFlPmR$y3;=%^#25l&_Dm<*XfsEex2UE zc|Ve&dW_O(rIT;ZlAu-Sm$yM zhm`dZf%qU8&FUOMuon2sg?`=}MNkO)sRV^kOzqg68(wr~ne)QrCnZ#jcI0B!-M?W6 zkUu>~9;=vkE@p?ew37YTc}*3WK2T}%4T8$J1IYPD27usxxtvk-hX>ms8Y&Va+h7*P zDAo;;nl`+|srJ9?QuruT0#H{-Q0oN9O3G3p#DsV4gZY=;$7j4zaBqh{Q;K^t98XDjF+MkRB>l=;~z zQ^eZb2q0TgbeAjEfvRV@#*JYmAfu)*3No%D@8jSI?Ht{?nx1`sIeqi}6<$wk_bbuz2WkSCopeM3R^H4O2?>ptEQw8PiHaMvEbVhw?-N8dc2 z_L15yAPC~}Yk{0&njI8f#>DIC;@@OCvL%}A$d8^bewVUcazmEi#9QqEy@Mq|C?y?ZHMPyduUQ0GnR`&3^j|3~p>Rb7_G zUE5>xdD-jdnztR3)V;0Dsyb}L8}>=AEF9DL+(vJMO^rIVm%x2H2rnO+`6Gc-7TRhB zY}ztrrPUf`8l=h`mmE@7Je5;Q9~=8BK)w7YJWrj)R?^dFD;`>kt0fcgzD)9nR_U(G zG1-P8WJq-&F&zrjPNcX_k}|iedKNpOzeTns=`J#CMfoM>ZF<`RsReEWKvHA;Yi2cL zEv30tgmGHAxFm>Z_2#vekz|`nLB=Ytbc7Ktw8hMq=e%VJhBCVU4Ov(({I!1i`SOt*4DoG z;quqo5hPbyZp00e`n+_0#zvk29z1vs`b}gkl9C?!Y7ht(DTw1!EiG!~AP@`wpqyhY zP=pH{#M|LI%?|a`0I|X44nUeOigCW*g@*=iU<}tcH!yad6uOrk3nKX(5s;Y(NGPhmk3Z`@W&YzkWYSniPvtu#sU*|6W}~F8vxg<6;@13H zc()TljwRQ7o+9|;ncHK#V2E|YM zF2}rHbxgW<3oZ0LaAJiZr2WIq8c00h_D-8gVc|mRxV1d zc!h{wDT_I8G6>K(KCCnSzraH9>o;%ltMj+hOSJum_aCsBc7OUFbI~Kb`sFBI`9k?w zyL$6C=jD^p>jrhr))?^0{G7;l>M zI>_~k(8+V1!3cLF@NXYGu5c$P3?k_4E4qQ1@UuZ`+>Uq&$iAgNd?m>FhZEZsf(_?? z1v!wabl+5W0s#&5tX?LQ`X)QV>KqPBmaNkwrP613{}L;u-k!VYe+JsvE+F=rAP$Z% zcW?~xZ;*>)v@_1NlV4sU2;_wafG|jD(@L*$SwlxvW0}_u27TafAp1Lrfgrk`uwNCl zuu8A=B}{*v67X;&tNR5$pz@Pu%_E zAAjGSe)%8Y`NO6GXb0E6%^q`5(Q0v;fmGoDxp!{a`00yOajHHC=sZ_7lbA`FYzWtO z2O((1jpC^@f(>f5So&N{8msK0(|ln60e6Ad-RR@kcXKLn{i(FxX3!BTp0G(==e5pHl@lb|l4{ob(|fLR)+a3^UdH|2 z`DXr#agk~C&u4x2wC7#N|C`o#9Uroc{JDv`WxY3@&ts_{Un*yt8Bcn~^t>#W^VgBd z@}HWY^+|Rpl>2u zxH7cl%woAs&CZU*GZGK>tLN7Z}zLGvrVyU4@KE@ zGvT($_Bx|aO-0Y!M(;M*P3&a9qEZ6rD9g2|pEpHI>2R`N@C&z@I6gl{Tg4|_;!BKYFLyk+?nG-I&n9XYqdzPb9BySzd8f6qFIzlnF>_Hn@KJZvJUB8fSR9+7%|L?B@H)5_o3ys*j;u$ zV8Lw%zbNG|(+-|I#4pvJVyj~Olo97Kf35pRIyi^u9F|`;f5BJ&s`u>myXh43?CFa) z*yhy$im&Sxg92u80fiKsKE|ktHbm;X*nk zO|y|4XLAe(gYEF4oj$k%1RCcGTMY_6f*`m$bcMwZ21Hn8eIUhY44rN+D$tiH7k~yw zm%+@hWDoU-+RYg|$NqOpJ00>@3a`X*$kNNh= zbb#Gf_7DWJi#FHmIk&d4RCg-sc^dmxM>HPhpbG?moV`D`oj}aCFyV+dHGJoMrGvy& zEd3#Vmu5GlzM*Bj8_bl2JVvE;+k!wCU;xlQ#qqoWH|;0e1j_e`S6$U)>dR*xYtaKF^5f8p+`$t!Q^>5PS@XfP8gV(#9qwC+k-kDy% z+?ihevOB$fiNL%Iyn2SOelZDY^qO$?bq2U(IS84GBavkPWV$IVw*~pUb52qReI}V~ zI6mt$Z$cFGV3~;SJ-`i3fh!JIdQnMUDIlBjwW1tScD^5C*N=M-uCNQp<@Edq-xZ|U z(a`_U4ZESbnr}?CWUE2z3rd}LRbIjrlPI#~=&DhQfh~Gbma38|grcoxq(~T*DLhD*OkjUR_3!)JSSn0*LencT3{}B0O9o&e_J6C#9j}>QCG&*$U)Nb zK^r|S^RJuVRBx^$ZH;^$_)zK?JY5%hDCs!Nn_i~J5*K)~?0ztn2k=75EvOo0nt1>>ll@Oy~p^kqut zvDfz6fS3Hqa;v;ZBCB9G!qXUIf9McRuZ7A0FbY*Pq(a*PJE>j&t>J6jxd~7$ahSg+=OK+`K5G(6-_cK=X9B;3t*ZR zLvSu5tR_saLyv3A!sfc^0->q2>g9s7%(r?(mY$aDrK-=-`O$#ntK3+IxL%KJN=KVk zjV(Qw#u&8&k-86%RDQrY<7Gh;mK4&lsRUqlBTy%^Nl|*|Ex3vF&0yq1*0za1Jx1lM zr`Ih^rUwm)?Qnqyo#$BCIR5)D)9EiS5EO!kpB4a;^$zk`CD}3+P!0i-j2t{Yt}Elk zGGc~86$8Zc({8#VXv5Ce2IIjTMz;kEpeftngJyg@{4hQ-{xNmT7mu0mE9e#Tg$LCn zXr8b^1+u)&8z33kzrarz$&soBPSQe;1ya-^$npvHBVTD0q$mwq&dSYKl6Qz>3mM?L zbB7^{c)=6XvS3bx)Gi{0hKjM)1{D+-_EvYA>LP@Tx}=_!YCS8f7e3QWwyjvGo1vUu z>cFD>30ClI92T_nC=D;NO^JU>s>+RYbfz1~DqaH|6|&J@k;;_IxRIXg)9ie}Q|w(V zM&0@0+vx}kfcynGf1PgU?M=7y^<7<-#GJy{cU)k%kJDeUd&6(9u&DK6y1-%&7dN-s zVQJaQjI$dj3m1QLZy7Lnx|11UiaZ2NUMIX4+};*luk%K}*i^MN9E8T<{GCEnBkD|oy6*lOGYK(K(1 zpb0JT%7&#OoMkm~73k0hL>M;YWV<+-30Wxtvc>wLof!Oa#$7&MzribB-eO0OJJYw% zpG|l0S{GssV{MB2BrXnfPQp38$G{c_oR$kyv0gI0&teoAx}$R|nBw(x$>vm8(i%Mc z7SGy|ZIIg`w+~rSR#m8vc)6Bl%C+j!J@;=&Qj?EBAo&?mGt7pfTeaq#q^El?di zd4PrAee_E#&|k*~ogZ0N^$|~HVuHr8a(RMazIVq61UdC4&A6n`&Ozx)^v{u%3&mXO z8p{H(uD>*Aa5sm2jD6n$gaJTF+2?S+)2aD^*U9r&Z>E!%Z!B<RS`OP zf3bu9WYEV20>2nwV%Hrz={fut>b*c-v_JD#Ctp=WUoJl46)?5~NDTlfyK&&ebTnlp zFN;-=C`+lk;!ho@g_6=-^~#cF;G_)-d>m2A=T8vq??sLq27m11l}!vH8%P%us)3rO zj9dDn>Hx$%13*qbVCRqj-kn|`_~YX{Y}9hb{__A4RzmkObw;3tT0_=gXD7HaPC=uC zSK2fg2d_X0YzidkaE92H;>&yw$R#T1{Ln8j_+{<|qQQVCiY%$GbgpV%62DE|7KXU( z1oHfc%jt)I!>eE(^7;i$Xtdhy$)Q%spxznVwpTA|6%t&Xr1A_5!U|qR{iNjT4S9z|v zZxie)JvYVsL;3TG14Cmet66F%Vaf0D;^~yhT`%5}-c9J)-lymrjiJ6jRnC4%PCS)~ z5iR4Je0Df0lI0t0Dr7N|^So1FJ*Y5XC^wqXgHYx(FJ~21q~@xq?mhN1rj!b zXQf^)u;ZkYUz8=zv12`=I!0}&rf{{LjzN8-MK>Di$9f%@`yg9IcIf9^j(GX!vaRnN zd717d|E}6O_I#E|TPeb^|MCp|?6clY^ zB{u-fHnT5F{$z|~Gfggur!rIGGF@^(!^5D9@+B50`KwoZK)UMTZ&oQY zOyl4XFiZGqE#me`1UsJ~kaZ;@gYq|le3Z4{9sZ5^1K$_Qhpg$vMN);X>9LizH$X%lMkO%CSG}@ zE^U_W%XApgIfPmrB;%-X2TcBVsQFD(PBdWs3XtimRLjYWWIb>CM0u4$F54vgCXUvnsTe@9;(O*1g_aEHDt6!d50Eh*DP#F#1w9##y+yL(j zR(sP0UfFT{-@{O!L zafg(MS-}dY>ity~@N?gG_23ExR&&_rc2B`F7v`8U_=9=273W8Me2#%GsZ$&FgQC!r zbM#$uiM%$eItxf0Jx#o8rK=rl13-KSkgF>O#Zay~;#FfA?S(^CH5B@tQ%b8LbB>-rwV)ye;tINT>K$6eG+$(TN8=oI!2l2hCtTv5nFq&|+?O&d zOOH}9KSSEN>HQXVtVs#L$9!%4Ave5df}#b0;B{-<&0*JeeK8H6!RxU~-oNwu$Q`rJ zUcSa_uin~@S(m2>jIjIrYx=`BKppM=n8AhI<%56cAOPeN0h-)-!|pq*9W?I@Yz;`` zny@`b;An36~{?*y;PWGw($ouaq}g5IdMg zL`mICpoulVI*FJU`0AkjqdPuFn5(L*Ymh=wa~0`&F4F>oJoxID_iuNmpZ>mQ0U+EB zgjnH;lbrN|8wQ!U-%g`oX0Zk8^{pzZpqfi^eHPAST=tF78UVslYC8&HmevwK-VrV}q-PhZE&w*DY_wgC^F4_-1#$=bL<$>uul_Qd-f z?EZ1*`)?3v|D6Tdvr&XAg0qYoZpOGl0y||>JEIQVz!f!`ptgntBd}+R2OJKB}375SPehDEx>u^i*H%l35@Cty@#2+J zMg(9}c9r_IJleboUHv#3^`~fZiZYwfgl|$g9gWu8Z?IiKq9o7ek<9Gm1`|IuII7HL zwHK+XmI!N0jXv2eo$YEzog<%RQst1?AaOs|%M;i6Jk;(O`60c8IxXo?J$pT+-nA#| zH8RPEoNQG!bIg+O?q9{Xy0U}%+cVw6n!zet?ce6U#um5@0Qnkwb)!0IBIwgBJm%@5 zmZu3#W`!3_(c8B03X77={mR9Scnt~GYnpA5!`6V?) zOoYIgqd_aIl1Yk`bzYCq^i5Rd)tsc~=@Mp%KG)!sF}^f0K($XohnQ*`k~=k3re}nX zflT7e6}HUJQ0n~r3>LOinf*~iXBxGM&b)Y{sZ8FAgK#`><-^a@SA0bQUQh7y-E@wv zm+e>A+dOdXOtPqP(0ibBucuqN2zgz&UTHbdEx5xX&>ax#)>ZQX}z_*7_Dw&B%OFSXuL&gXoVRB_jgTP*_2Uw?Ve|M`ekwFe%9A zO?!vj8vC3ay2o?$rVi^nC}pt6J{OK3-=B`Ye}?n{PG^jMTlBsuYoAY#&n55|1C_rp z{`j9iO(zHfxje;U6V0;yEEDZ_gKfA~twx>KIF__!AH#PIf6l8s+PQ&qDv0@H#d%_V zj72XCG{lZmSC{A04j1LP;=|XuaBlQgs^79lRz9eEbna!F8NY3Q$!^x8cG(1*>$G+3I@kS3#q!gPT>V_(9X7If)YQM`<_mGg$A1q*M6|Ai-5=Jg|5QG zgk9{suycVj79)XRcqNbiF~b$_9rE}wMcx=Tw{!9SfB_(U*E|A19zBF^1%S9te!GMj zFn^5Gx247;(S=tsCNlfVY>4?e37;|6j&V-DL*U1YUw)fjzIZ(yA0sdejdB-r&a-Ea z@roCI9!+=eA6fg^yi**d3$A=N?h{7A9P(=v@FCu+RC;FeUHwdlX!1klWMENW!Zcaa z<@ZOXj`vjz2*K;QcDTb!>NZwQcQ!6yg=ynAOl`qQ`5-9LY4 zK}8k-RR_Y7_Lj~;uR|wHrinL7=^w=T5&(i%rP+>I2n0EQ|G@(^;Gdnt z316~m_*|{RjB}s;hX9L9?DoN+j|taeyi26*pH99%S5!9D9ab}$k%K3<$|P3^;T+4j z7M|nPQs*B&Vs7FNAmq)IhX9k9*NNizBed5m9@6$`!8ZI&1;1LJQIIj)U{ zvBjO9cDMt`5q1D!kQfh+eb2SuW)vi|*RojB-yjV3IR3aZy?wPa{rcnX^aihf;bo71 zz7-WF(5e#8b@7`=cp@e%flnlkV1aeD62Fui*21vlxXJ~L@iR|4T~2cYsr=}2Y7#}v zWePUhO=XDT0LC0CLPlkK@zg)WW$gaLX?ptna{3OtfgItrFjI*kb^TCaGWl!9nL|=5 zRc0eca%H)C0a)sJjr~p@2b#{qzD&4io#@J9uAS*f=$l+GT}`f_fbC7$TSN>7&iz4F8HCT9nZ=CQl6&sk6C9@<@_P->d_BZ!43 z9sQg|dR!Q59aK>XrMXE8#Tw}gp6XIWN=Cv}ucl73yh3M{RL*@Z@LBBKku*rB3bE;#xV?!DU-sD_5^MG(FbcOWc;f#um5@0Qnkw zb#0wAtth2H&gXJZC(>zoiqT|Nc)=9C)!*w>S!uS2X@xm1z5u$u!Gx$uzFD6SSftaoInsbOQD=ob(b;_c+3bTsWYa3(L zB&9tdCR)j;{#4nikzCV{GA+4IM(mod1ytxK=f0$^O`OgCEH&7OE*foQ9Sb%IM`v+y zgTH7zd-riV`Ss;=hWBpsUFW0ipE(ZHzm3+;9E(F-p=V!{rXu8g-p9I|_8m$+&j*3# zKV?X=r7FLnv-8{NDF_7RLN`&$#Rm$QHAR*(kHd(ljq2whE0_7CoE$FV-yvX$sP#0rVuIUNEQg@WAO)))HHw3jwyk8npEzA^F);#C_sVSV_`dmD0 zL333jihLnYYBMdOl6Klz28MmKE~?Xu!&rWb<& z$-Gu-^OF2nC6Qg*1iwnx0%N#6|T@`Y%ewMC4xB+!hy0rZ1xEJKzen# zhX4m)Ea-zN949?&?xN4_`m)QE0U!(rImZV9Ab_$=y5smObGb3&0zjTVLiw)g(Y$2ZS;ZJ{Y2>5Y;SXIz zHuESq3*azitH1Js^GsgVA2rE{7N(?grfA0 zMx1{(9OUOfzuh~K51sP>5T~;$e7(dGc7nS1*YA-(iuPZjcwmcT(vI-W@}iCKnHDm< zFFt$y-ga!T_DJnqyfGRp#QQW*3nMGMexBzk&(itP8^Q=A3}5Pxxr``~1#b875Q~6# z)f#rc;ch)cGZOg>=?=ClxI_@d3H}B-{RMxEAQ;_Vna15ZtR4$SqnWL~BZvhSUSKya z?DWAP%-HpV!57v@Hpz8@Y?5dIohv$b3_0rpCuAQ=j|f``VT)q~K5!RCz6Qp22P2D0 z3btfI$cC2nO|jKM#{DfPqy|Dp;+KyVSEJFD@yJK9*pwRV2*f#H7w0I?%})&g;dO<_ zF<$-h`Zs)D>`ZT7>`fn0=IOK(e9P0V>}L2RUK9axo!+KYQspEb2vrk}EDqt~Mz@d! z67BHgLV<}ywsoxtkdZ^&<_GgtD!?#te7PDQfy_&f`c`G?wc%nQ{$W`UwF8Iu!QqYt zfc*L2FQx~NT|2*N!RlaQPL~Gy$)lk*g<7j}{R6&{6J9A53c!4(vmA$AXMnRh2$SW2 z6PY3%s}cm70m9IyB%A2o1hc{i_2CMLv8)ei3-z3z6JB}80K^Oi#SQ{=_i>MN=P!Sn z9{lfr$LrP*C4^RO13;)=ji<_x_N9-J4?RugEqt>^34Gshnb)c8&qI|7)47>xo%mvL z)WWLOh_|TdcVzgiWh1G0v5Hnex0&Ci1vIYuai%hz5=IV+*VD;g#gqK+k!lPU+j5kI zt|Iw*R`BaG(vkGeY_8LhTq*O1^k$y)^m7*Jaqm*=kQ@rRk#1v+^hqXqHn}rvH|f>X zX_i;$4Am)dUyJ-u)-k=Uq$FimVOw552Be=OT6J~_R9g;~(Jqtd@c>mBNmYz;N{c$^ zt9He0(`uX7`d)X7y)AvcEpQtE^7Z!ZikfL!QJSHmDJ3uGM`a>_vH!vS89$OCZ52km ztTRM{bcscfW4xx|&abui9Gw|@*SjaZ&Xa#uvKFC=UD`tG ziv!HbHuCa=&fw#&VFAoA;`>AFV#^+C`wf;oU@|NtN#dXhTBJ@pOskRjWn{9@E;e_l zp6Nsoi4N7{egR5NZ zKF3Z2AGia^&o6w7cl|z`w&2D->~JMZ})sU*gc*0c21}L-LvUn?{qrcKb;Qt z5jeqs5n$O*3_{^y=P_Olu#2A_@87>a9X@_E?L`2H1^YP4zDtAB8Ghgh?K97!9g!iK zhZl!L2c&QQ(v?b25jgYu_1o#qD|`_2@qq!a*bU$U3%*p>9Vm2yc+j;t&kIk!hO7g({HCnr zsn0%~<3c&_snB*i76^icVC*7cJA{xP$KqT`K6T5_z&8o*Lw68ta_0vGfcy;sAouS2 z_-H_%SXgmg@v5`FIOPyLaE2W~&anfC#xX_J6z+vr#_CLAo9B?Os^b>!)7GN9F~1i- z05-G5K{?^I%4W&oYdj7f-a`P$;V=L^<3C5<13=EEKqH(T*bc5 z!RruS_rxG~yB2Xg;e7Z0iOvhve*S=_=25%JwCMChGLf(x;Upzx>;MK)`N5@1YhkWK;Z#nIviW7 zk#rW}bWaq2Nth7DLw)HF*B0MkdOr!}bd~4|Kg5vcSjVtnJkpUXSS!Z}lcEq|!ZBxh z7({CaBvm<-NoL^8lW(r3AO7uPdi?ClUIU{ky4lIg|Vf0!QszyCMx)1Cm#c?S3D&7q1lL=JrA z>a5yobRQ#LuOVZXFqDzUz5Lf!F4v@}Sj=WI%YEM3ZenW_%uRWDQ?@jA`q92br~gBq z6a;e#lTV#a6HJw8`$LzhdhxDE<+jr=shWPO zeAU$EK9}CsN?RJ)TfdD!2*=rNWp-O#ohHAz!r=cqXn_h_X08OH6d?co_P zrk}8o_g@jZ97z=RSIZ=)h&KJCl?q$EO@>sS3^6a5Zswtn3q=&I57f+aQ?8pfrZg@2 zCJUZ5o28bcH*T9Y>|^SHi!zI*5UGnK-O@*%m=wU#mz@|a$4V`+oit1aB{3?hNYYUJ z_j+4>2DV6|R8nUs`wC*|mdYu3SyVe)M-XSSu0Zm`s)x>=SM(N3*~8#UNZ?{Ol;$L3 zM3+kOR3=}vC9LS9RC;9DS{4x975BLf*v(52^6Pt?f{dFd=^>Zd}BjLv0i3ve0K7P@Ch2TPNw{Ls6a|~qXStHrdph)AS43tdk9a&e-_GGJ<$(Wv}@{+9htI||$ zQzKoy-AqTGzr^Rl;MvR9)5(ih_PPM>oN{@=9X|Ff*yHs4a5_0ZiU5$q>5PFOSBDlH zLW~9YNN@4c4Xas6CWIqP{c1ab>|RX!*bQVK0U-OkCl(0e0U#$91hNPI9$pv2NyB#p z!5GKA1n()hAh?GBkOKsOXa|sbF010<7>oR%*bf7Zmt2K%28bwiP{D&bY^dSu3_(cm za8L8{w^!3^yz1^P@~7Adgy-o#7BBbr_OVU=0bcv^aQf!?v+2P@1g&5m+QYBgdFWg( zb7k06z=eSf7&+R`=N8DqX8MRm4WhFxNYJ>`tb#AO!V5pexAZz+w9OCoNvAa~ zm4SgV>H#1K{=kCLE?y5~G}~DL0_sr0w>&t9Fo@^qd%OY$0U!qt5TL-I9t#SjQ#Wwr zlb}=Q7SQUb#wB);IJI3VuvpKa1euREDNREi=A!MvZ5j`ebk0v6Jt zKKIXHp|lFaixtnXc*YIx+&`VZz$0L|0OZ!4GwcfD^7{9xh@B_LNsX05sCtGI8Mdin z6_K=*_d1n@NvS@X>XOQ`RWaN2K4dRU){kVwOU``8XI(F+PKWH*Fv4z-me19wY%_*e zZ8vvr^C7RTSO9YW|M@?sgGZ0RjB!>L63LM&rn1uPYY8LlMN@IF@d_huVSBmsNbA5& z!u71qF{1kOI_r8CVOKG|(I2#|`Bc@b*EF7LEBz&dk4WWf&Ce#7j|ibLy((Wzqg`@3 z?OS%H%YaY{Q&c5WPalbdZ7TQ?1@V&Ns<{=`Y#bz~<(%zWPJJehO;h<&U6L!KkbJ}^ z+g9fcif25xgqI-ieY7#OrL_x<;_3NvMHG*wSz|xv;w7xj1PVQzh;QBoh^E7~7?m6( zp6rVV)k)|kjUS$c8&hd~%+IWfQe118#t#a!xGD*?0e2scmCRMDUjVO@KS2vzF97)y zbn>{0Jo(!Rz;PqFDzNwylT<1zm7HlWtK~Y8IzG>Lrqg_C zCbCmnedt0+iA+oz1^452nk41B_$;)MDGD&v~s*)b`H@DkLD^~2iC0kiSmHyFyz zc@V}1(-;7CnbV-q2UOabytpnIj~PY!7Qa%9*r0q%HdG}4G%oX2f;BurraJa?rY5a2 zjM(bnf?`KZfaH@!`(m#eTYYF*u$h30bj;&S%Ec_>qcRhx02;f2d>}HDP3SVW@WIE# z#;5qD&o()423fFaJ`>9sY?W<-AZL%yJp0wlX7dFINPY?t%E6SlR7cie0~!s5)gKfRjX z{&F%Mz1yAMy~je2Q!M(xjvptdxN*uyykIwwGh6V1{Dj9T@Ubv`7Tb^*bS;Vmo%vBe?m4;-Yp$hF!Rfb2{M zU)-M#zxo0@RNS&hlyGO9)svOZc$Bf7f|tw@=fB6?;|oCE*ymzf0AlmnIp)zsUS~BV zZ4^(I^;|6`Pl2@x!qC>ah_g?Q+BHKij6elMV5SB($GaT+_iy`k*CZ8d#ZUT%IJf}h z7z;qSU=lBTEDEkEHfQ9@FU4UM=QRf}+Hv6rANhi7u`jl$^(mJ?YXkO1WWb%z;l@>k zG~!a2#Tfo1FGVNP0u}z7I@5vTHl1Q7kHF0B3lI!`$KFG~Ky>W(zE8$eq z)~{->bJr~}Z-MItAoDi)lSnkhC{?vt9?7ayUz-+-I`d$Da@#t|6_hfI{MAE(F2q7a z@1snfO+3L>WNqC>7v)mFa*?QQqKRF;<+BYld`KzZF}YhrC5)13#URXZDuq;hDpM!y zs6N!UN4CtGC3(i=e2XvD)J3dSyJ3L(rlFFu#-w0XyLq4IXgcdwbtNT5r+8Gp67oxs z$bTP?%9(N#tT5Sb!#rJv`6<3QnA+>ntaFFspxy7$4Xn-Z7 za_)xCKU@WY@R61UBrKaOK2#x39&?A(+_69mzW9(2x2a*NoWg0d80+LRUZuP-s>+j} zN1PLyf0PoYdBK6{T!}U@F3X2Nz?=p@{j^Y)I=dbVgu)cG#Fu=OI6Jxo33J2{KCFo| z0C~9=AHSp)B`-s2OPUpI7S8x&-6>Xzim&t5S*-9bs3`8+vLkJas+aisGSQN?mbKB= zFuhGv7O|XXWv}bYmv)++*lrQLVavrIH@?PAzPq<@;~T#wkDG>N05n#=Z9#KI9YgGM zw2!^81_C#qK0N;g3qXFc1$BHB40iyr8>GKR=vw?iU%LAvSzjJu6yvDNO^5NqpX%~g z%(!N7!OIzTjPjdp(D9_T6PImb4kC?l7K!O}vPdT1ITc2-j8%-%Da{zkl*&dJm8tJ! zntvM84qr^NJh&EhBFt$4OSnCqpk3eo{CfK3M?6mGm+k4z(cyIT{t%CSImAvMdjQhN zKXcN(g@8Agicox>I?iWbU8i_uG+RMYasTHyyLJYh|C$_&D6rsTfA{Tlxcg?hvG*G3 zTRb8L3qcUpHg*8nz0Dm!?xY<+xY&zF;^Z2~@V$R&h zBBFyY9$+lp#$$zU;L%{a(MRW0RvnrBN_L)a>BH6*fM6a!d4t^~IM?-ePKEDMzeX_5 z9BXt|jz#@f>?O!{MHv}kyjV)isLuVoFAC`Gnq@Iy2M{cV+Q$NrU7QCV)|y|DTvdvI zxd7w?7Jz*7BNl=DIGu7ALSA2Zol#xRamPNfT|aQ1pTYhNkAJZ{+_H}b!df;v)HHBV zPoFqvb$%9?rE!a-X2f44sqLf-k+nH+wg3dzPJULfT}rr1may^#8-2!*N;@{FTwFF8 zcc%J@j`g$`j1@;?rh>+0IH|R9CKDq|4qpI*N5Ei(0T+AOA$t_;%2eteaYbOJ+4SPs_Vnz>9V~dH6aEgNMj$*>ZB|g?iC(mFoNuxOjUOcwMJp>V#Zy70 z{e!#A`>cb=kztiJCAfdq$$farf~=W!A64RIYZ4eZ+U@bzsbz3Bn7ocw`Uocut?wb1 znp5%~7J=MeyWikbOK} z?e_omzfFf@IrVEg*sS{*3?D2hTMt+j9R`DnQ8OZkS5+<4pm=IO`%O48ghggzQ-7~N^9g;*U7#`s6-5+ z3Yv;_LF2P)gQ^Q-Q6kltA$LBiO>O?ZO?sPbulREPvi>@M-2#0JTrU9WTjWnu){Lc; z6<1!V8e_R^7qw8=3)~XEmydi3!^u&3rn#)R>SU@(+88wx8cZCrnU{MB{g$a28K-lU z$>EGLeeobStbehC(92n(82Yr0z)P*HwQya}e7>Dn*0_l|PruA#?GoxCOY}|KU*bbr zDwVDMGFUI12|vqbyP5Kmg3MV046dxZB>jcWvd=yql8y9PM$DQWbt8N)BTskm7lZf) z>-|e?k^bXTzk!KgvGZ4S{3K<+^6X4lEaN7JwShZUBY$uz)Omn~(5OSM1s-e%8(qR% zN>aoWvhslnWmkudIR`n3sW812%%j3L8v{ik0rwIe`OL}jU9DXkr;EvrPlCRGC@;FO zWfC&CHGwPXwtQ*V&Re9mh|I|0lr*>cLf4;@jK3Tu9ElNA%M1%2OsNVH`tK!W)*MFGR28xH|eOiEhlJDXu@HXi;sk{pzRHTA?;7v zVv{+MZ+vvRwPLthwHJmwy`Q9GmTEzgik7CZ(~E$a(h%j1YX4k{FXz#;xEG2WU|8_+ z%h~kiIc|);#3Lx)ZR3$9d)WD77tOzGJAIHq^SdJ1wl?#q%6vA9!K1IS+tswx#e?_o zum^}`{C*w1d3oC&595!B+1bHj5IiPk9}7SZ4n9mbZ=Fqtcd^UH!#h~ib(?qbut5yG z$)Qu%GRf1}r3?2G5ZcAqpjAA4kQ+C#sDO9Kcn6Q;S>%kd34($+=uS}xBUP@4@Pjlj8lgJhbnbPHIpSk) zng8rN$DIu9e2<&0Nqlu#`cDu9_m8Cii{@$ z`f?Y2wD;gH7AWBL0J}qB#{r*v&#@7=OErhr&*~y{VBtY*)&xwcLb`(;Kn@;Y z2atn<5_d=c35%>Kb}%}AKfU?q_tVk8f3RIKc*C3RTl%Yyz$yVD`+(OUoZqM1^@A_; zmtCJ|BV2E9I=tb0EiGl4=p0Lm20RM{kW&>_0b(f(O5zz-$#(!jyzf3BX6#nN#|lx6 zm!c{CMMmnnc=~GDFmV^O@FU7aY!@WZ!Pw(fN*8EH7uF^#PB;!}7qq@P2R_r_9LGYh zof|i7p_gezVnKV@#XkVyBD9<;;P-S3i$A96=kKTK)w7-H^{Xvh@4O|rP$3^`A1C0| zD6wOn(|J%mRcnu*eAUKeh*@5wQCZd|moQRVSvJW_R+(UCe@eud)l4pxS40*#>H7sB zj7N1gTahYIrY6H1)9AEqw9Q@Y0`k}YI-MRqK|7&c8`E;#YNXauiiOlQQql|SQpHZ( z;vthB01B#%smE}JtROIq-9=-`dnN(q);(p3X3p*?c3}TC)zq5(6J9G;k*J zJhOGIR2k(BA8`~mt>R@958hVe8{y%hMo@DD=(Xq%+5*=LK>nZ|dw#VvWA&*lC1*M3 zYdK%k>ZCTt&N(Vi)%CU+!+btQSl2JdLVa&n%cEQ{dXnDjWbIbfC#P&#xh`MW5=ED- z-l@oKE8v`0np~@vry_Fh(_-p{s9Xb!bA5@KJ{zP9t6&kID$Ewmq=GG`o78X7c%Tqp z2`Dg<4@^FpDEsW=k<*NkOjzkurhX(_k_#)|E{%@mFVgsn_4m(TVIjyf+`xQmCr0^2 zerGlep?9T_vmCPgfv(Wz0ak>b(YY%cFOwV})M01ku-8WT%vIWmU-|S>=pI2mwnW2^QRh3u4WF66nyXnLGf*=?IV9`T{=6L7^cZnuY{4ilfg&AZJIqHH{o{qV6Whhw#v8~+(H<6nU?-66 z1Mch;3qhb>2)TyCYYrC8ad857li7cCZ#sDVz!nTzPv^O!TFrAAr?DcGbXhJLF(J1F zAiuoz1t9M^AEMG&a8y2fcy()~%r4HIxOU3rJe4sueXFeLIwttk=iF@7p{z(RworsN z*2af8Pq_dD*Ix^vk7LAgRWinn$5wFx$UnZD-v0AD-xY(4(pL_S(-xmjzmI%oPd^$d?ov)!|>Sj85Aa6FNS|JR86 zAWBR=7klh+EscsRzC5%fr|VKe{0;p zp$Ty7gawn+~uL zWETr{x3K__?P`m;4JteFG){h{!YBsGE)jyxjWU41A=xG9G=E&e)J)W}xki#*mh*G6 z(;W3V#dICZxCJ!s@>mqI*QqT1=a%Mi=T~V?+flPf>NTuJFN|!eW+j&!qqrEgV&xc^ zq>Ea`>G~#oVa@ZG;JS#0kzd`V^i=h0r6>*fgq81NlLVUoG=-{Mu!GD9JCeDn*EsVE zJD`TB#aC=AH``Q?hAY}4EF4;hTq=ByOER^4Mb?}!N(-&VCP(Q4Jdeo=sX1|8r+@4g zxLyGA$L`;S+G(~@N*MEeX%di5DKR{1S(8Y6@vHh4-^<0-%g-x2YmP$_W301ah|lAz z`cbZOS1o0AvW6T!rB&+@BdIQal#LHrSFLO%8Szp_d9|)N+0D~Wk6{<^#fwkA0NFT^ zd+Hdw%1xjyC)(M{^8GG(S3OFdOG^<=jj*=LAYJ0=8Ag$guPtl5F{hy9QlmT@Y!e_r+EDwB_6Lb zaKqljlzSlb<)N9vzW5GR3KSTcm?G>fDFT+dBUhLzMg@GFP-RZAlSVw%#?Pf%CPT6D z0^e~228rc#5;C39I@ZN*KneR%P%)OW!5m8u`b9c%a&7r|BcCb2$vk-qSIGs+6UXD7 zheT$Bg4*2Vp_I%m=IlAlwcLw02D?&lQ$_Y(2$;8~H89IXZdYOwh z>qj!-FOjl3Mz01d9CAc~2jE}IvUO0-F%_GX33DbrwfTfS)1Cd@Y5yT^>V0v4+QALJ zUEJv7ug8DS3qUZb*yFR_;3n34>^i`0?NuKiO{n{M?N?g;+|gx?Zgc}u>xTF?eS~p6 zDG-?he2DYc)Vy1O8<)1*2k##68UXnzZ&c}}^MSS?Act{URD-uX7>cbqwis+&83Eoh zc0gsKRc8Yux$0G!X9+X139L*qO%Jy+0RjiWwzo%JPq66Y{Smgo$9l^**!uqM>uvlZ z8fBy(-g8$FT$f;Pb24vy`I+b}cEPGMm%E6$s{~at!|^8@vM9`8uugSrf7dme@lbMl z#v6`ApW=Q!7J=+yr;Wp->E_Lo>DEI$Y6Y*uo4DC)6~^j5ZeH(U0h#T9g5XZ^I>sW9mv|J@)1R@J6=V1=9!YZtJAd57 z!m~Z#twT88Ngh7su1P(tMx=tb7)pW3i!Ox8X<4)p!V%s$7kmm|Fl%u$EVg&d138W> z%gcWsugNi1x$_5h0O2kmwg7~?t>9&khJg*o(eU8H37i|ePVC$`#ACwlPlwpDeiyq9 zVAR2G$*^O~xIC|9IZdb=$>@zcfV{>65Ih3r)E0nXKE%9OVo=>9B>$|50?Xv=dFd|> zp3O3M18JC6&0H6HgWxToIzKZ@$uk~8QCFKbkaG7MF0$FjBX)k<1t9OH*MI+ZdW%IM zToi%TStab8@%nMm04l?463+26?4-e!b6oski*wi(xvv|7TtFT)xd%+E^M#GXBN8vP z0=Z$+E*-T`(C!!u_NW@HaNrIgXI$~eu@poxI|fxa7P%F3Fs{(MeLl0=R7|tusaT=5 zVHp*3*VV>gD6(Cgo4N=BU_(;RJa+&&#O?t&zYW9sg`b?5O%e#hYv9Sr*7WmtThq7y z!0sQo?(rjsj%r5>#^e53uV^xZ4)f8E;!s))A&^Y*kW95!MW|zY8J3wiYK{P6Poo{UfZZcK09X9UWwI5J1WDZFsf$A)=+rYYIB05p%S`b2+$BQ- zBF{v=vMkG)?{$=Ia#%2%05`;3HD7V73XU7YKGy@g_W+OH{Exq22av~>-?@qB1mS2G zfQZ9Xzrma8Vv*r3moE{HPAr;oVCC{9=<3{l31gV#)@99d`Erb(mzCzI&nv3yXhtod zu{S!ydY#H6p3g<5vBztb@+CGq_1juxOnap*R^yClqTw>n*q}Yn%`AU_k&$>&PFbG; zXLweqHT0{yWSlu8z$&V_8DGU0TA`Cb^Pi?sl?5H8Gc5Q-Ik#8Lh@Mpxa71h}$BU=p zTX``b@s+lyEml5b4cbt?#Hn^y0&i}Dn;CcbbAG?2} zcB7do%b3q)HA*Y%Ck;(xlG94_ophDA<#Ks1lV7INDa|@)>ufym8Q46h6@1T^$`(9o zQ?SmXIx!}xG`Tu9eJB|E?BYo-)pps8Xvvvh(^2n-lM0($2!M1fU6v=)l3n5`fYL^k zsO`$HBUb_}ST%B`ykPG97%xZ|@K42ixo9rdZz~O7+;4&r_#A9><}tqPe*eSM>HRZ2 z#sH6kIl-b34nw=~BC3m~eK#l+HW z&vdg7MX_Po6}4L+EB1^gmHE9Shq=Y!Dk4gJ%u7dMKPTl=#B>Df$V$j82F8X%JY{|f zd2`ZQ6prV+zQh!*I9it?3cFHd#tZc$uwx1YdT~-y>g_Olmv0w|ueKK@{KC&-N`a+p zVyo@Y2vv|#4N#iWOzKy~B@+Tm+ZLd1%oQpkp zBaJuI_%mEC_~4lK|DMnB(81bK^pPp&hdFmkaNAL^QO-$^Q8{CJ7u2nBX4_5j^x5%g zek}9H0JB8RCuQ(>`(~P6{)}HgKi{5SKEuL~H+9hm^>oQ*^yj+;Qjb9ecdX4j(-dggh^~@Z&unvw-{_g4*NbNVMY& z$-+m8L1p*k?+Pc*N1dO=mZ%Ps&6o1xnJv)BF$8bHHcmU{z^*|$i>6q7oHOsVMyhxU zn*C!%m-&Jne7M7a=Qi`(hp{6F7yKo&h8H*Z$;|5ocMsYB;^B1je|$CV-o$Dmkk^}3 zjn%v$2YC=lHb=LTu;BubW9;m7j0GSk?|c^|d-T;Jk2->Ms339ns`RXOuDaDV)cl;u zBg`EZ6|>5t|Ft6(cmBYOTSnyeq^->ZA=F$Y&N9}MmEq-wY531!_^3>vtW4sZt$jo= z7O!AVvW4}y#&W^Et$1L)qHe@^Ecg_kDrM>*HZhb^E9HJpJcQNX0hB3r=_s><0=|rd zG2)2C3*9@gRI^^&Ty%#WK=?R6J1nLe7iEU+2s!7eZs_{yr*F5XZ~wlFN1p+WMIl;% z?qPWC?6LrX@j=9pBWR1o+nEa5)3E{Oe`C0q#^6F6Eb}eoO!VSn6s|RLKgjUEl}YdI z!0U3sP$xaJ#7Bz64ql6R1T1At>^6ZZe-cMq4>h{qwb`bpfR*`B;`5Zzbp6<*efMD_}- zm$NM05|)@X9rgLR2sYbYNnVu^nSx=t*9qgP7J%$xC$z)Ad^sIr2M}IgxziRKVB>3R zOZyR}9B-}%DYLG3A#8^!gOcVex}Gk|ny<@wm2kaIWkQ6{GLt8JWfhfbAo=ehE%Qz} zSv=~IyqBrGR!_}vn_$;?u1fb?#-s6}@iMB@8s;Lp5w@49tT^)Nl}|hA&r4OWp7%Vv zi|Ciek@}TfJtpfGeJN;FV!+ee$|TFnd@)i6u&UfyZTI9nI$-`eFEEv)y01i4R&t5E z$dE}qid}uLa)$T$5w@50<@M`8_MrChR6MdD#uxRGPVGllwSeaKDycqYCyDH3JF-z+ zZd;M!$fjfZxioQ;>tkri^9?9Cq(S=M?jFn+lg@IrvcvKo~+_ zb%hfrnT@ATCNr8+#SiMlv1~Hr88Zv^!3#>GVCtEIrJ(98=QecW8bD-cLg#QIn>Xl_ z2d(YpH1VL7D(9&)IwxdrL4_@e%c&MJPpW*zWkh0AYN6pR%1KOnxib`WvpK2YnGwFR z5;H5;*b~(v4Pvgy#Y1{$cPYOsG`W-sXGZC5)&@ye$SHGoMccQn$^^LESxXdKBP)Cn zq`u$`Ia|tx$eg&1CDqX!h*$EyoT6CGUe>OVG60bjAu*lnFUmWj0zGshrv0sVvoAyx%=eYZ=)cRx0LS}_yj^Ld61`9wwU6^LXr!ix(sRpBpA*)Kk4N|!^+-pE7U zG4A~x9ZmSvGj{xV=DU8pd9{rN3qasMe;v*Hv>aL-OIiRznH`Xkhs79vR`xfCa0FPN z6POjQZr{Zxe$&QS3|sRRxR%e2xWfm3(Y=M(4{w}dw~f>3&I2p}xqpgZAWzdieq_46 zi+19;3;r5}OFZBz)wxE=Ddve|+>n2F^lp0f>h<*O+4JcHH&pLn3-h~p-N5c1hldBg z$Rp_3ZfqatLB_^>sf0W7@Y^aWgwW}H)H!Er`j9QM!pL+j70=KnVi$M8uJxhfknNiD zfv)%%&LuDqf3__HFFEaH9K4X(qXeK?88{4Hr(Fa^VMe z(7=4aJMcEoS(`-dfkiE?pxH+4QstC*t4bzJ9`EW4pWzFl?YJb)+1l=8i3K2tnd8bH zS;JLvr5_m!y%6iKK6Y_8!&m|4po2kpR}~<{Y#@}2@2o3Uo-tL`Gsk-IJl^3WV44LW zWcD_tG3!z-osK6r7fqa?>)yTP4j|ij1k4V0zv7}K-z|!k^FSY)`k6HOrc{L|4q)+ z3Rbp~iqsUHWzEjs6f(pX5of;Ejs`qP>9kffxRrq?6;6)*{WC1eJe%&|TKxFS3D;$` zGa8apnH`#NGf$}c#G@f^(lD=vOX4Q3EYJDOL%BDuBczLz=Xn{j;t)oGt;v_Lv{}=M zQ|U#pvbnN!siJhy>sqJ2OA;33VmGvdFTcPJAXosxT|n+|0SHF$8U7CV)epw32F=db z>LUCAqk-8E6v?xTF0c8z|Gq(T!lgS;X4sCOMMbO{3?QGaNV9oA6OH6+vZV@&SGG&I zUrYX5#-s6}@iMCO8fHm1l1oM(^w*au&oY*EdTnr85k5Oquby`X{0PC?I9lpk$yePf z=%~b+AMwaUWu|2g87Tu;Rqo8*>sxe;qx2b7eN$%}kX0gQuAuOglc-o0F`qaTyZT?{ z-Xxbt*k0C`n>u8&Sw7k)>Lni8595paNaw}i0l(&Ych$CuY;qW-{fn@*p;&R*y^Dey zXXJn6Yiw~X{Uf))^#YJTa_^S9rCHWwxt#M2=v|!+eUf&}G?qGzwu8o4_(r z-IwXt2ruGv?16pA#RS}L{@|;}_{G_M{F?iQ{Q{ZiTe-%J%|9Ed&UXf+b4>ln1r+b` z*sM3WiS^;<7asEk7l5o)ls9PEOYDu|P2+5Acf&#uH#sy*+If%uIOVUV@koPHu0-Hg z`ds7}cQUMQI&th9cX2gNM#2oJc@99n$SGb8N~IO;mCR)gPntt+MZT3n2A`kToK@z) zWFlP>eN67g#9p z@bLrq#V^wBCVi!4;EYxA6@T<1mx@8MRMt7y)K}L`ixf2ZybIYn zMsEh(D7ga>@Z2rx)_?xh9#!J{45FXv!|e1XxynqzXU9nAniv|47u1*=KfJ+Cc-#Tx z$aih9n`lJQt;S@>f4|KmU>L{_7Ia_%$ltL82(F#neQLG<#5w})hXsmU@WI6&r|)p?+w(2J z!3M}pgyQJX>1wAJ@MuAG+Z?{ar*zwpS z1B0sPUFXvrUe7VdOTKPB*UGzUqw*a2`Ac->m-9Y_ES*Hc^m6I1(@)z1d7NqN$z#@0 zmh~6WiBIVok1#nEzW13iOL>hejWgmTD>efM8DDUlW+Ko{=7P0475fBIwubCEmD^tO zfMuib3oiw8rC{?^*fM9%A>!6_s`4B;lGIvM?UD?=7%KUyHaX`Y#UZShp;Mh2lg_7% znlqrqh(FWl@4kwxIZ>(()sC2otMZ!D*qn{y3c1exiCW-#0mz@Cv-_DUmvf$tp|aB4 zK&?!Zi6dOsf2iGzPrORAPvv`EUlxuYL#LUND$R>oW+rnU*=u6Bx76|4j)!V1np z0n<}cT5zE+Ut)Th0s@c}8Gpn5}J*&bYwL z;%nG?Ux~PoHU<|fB)ZZ8S#}ZUjhco-7GjDo5{Sk{l@W_{w6Fde1 zVc6Bm?jm{Ztl5IGZ?@`4@#hwitfH*NAlCe+dRlaZH~ru-XBM(o8*jHPlPBkgJ?hGX zw7dBA@tu2E0P+=f>%jK&2iP5C7mtZ4ok&Mr1$nL+7j)d^<2^oq9KAi7o;`g&{e%S| zZ}6GqnBx{Z$s8Q+VHc2F(^r3aGJSy?8apKC;(<7FJtS+o-9u%i{7{*tkZFNMX#?x0 zz(=CR7_D?%Dtx-}m-xgZjAAJ5B}&9L!%BBmDeKP{+eGc6v7$bcFVhPY!i=FE%SgBO z@i>@+1KT}dI~IYoV-QgEJIBHPSFA+u!h9u z%|(@mF~m#pZes_QvH*mSfWaavZ;~8brTAnyoWG~|TSE&#_;-el2i74Sym5KP>lGJ& z@NW_B{=rFelfOrTN2i#ba?wWKJIRrb_I+hbt30EF92 z#DGvNvSELa&brx0k&$ZX3g@1>cf=&VYTExj#IYK|yOWN@i;W*Tx3PpIb^x*dA{08U zL1|({fnKDuohOdZZ1LkuJo@a#Pre|MyI)b4L#aG2&pQ3hV)4;IbTBct2qdb;&~$C( zZWsoQI#9<}rXSidwHKu!^X_3=85DAYT<=0Ea7bo(^mS7XD?`c#vcvGNJko0nj*K}bvOJqaEh;wG}i3N(M#8NVFJX1Eo_zocWOop8p`RJDe zJObwM>nGTi@lUh>ge}5zc*8^UUwe*mzR2yqAsJxuENhiFXZU=OI`_+YpF)#PB4NDV zs=c(=>8EaiJkI*o&pO7D^-H>5K8k;hr^jCe+uO37$6Fn1nbkmUnt~VB6&HLDo=xV0 zPDDP|Ym$1U9EL)_CSyQRX39^!{wWy$8=H<*Q zU)4rA*-}Q20m%mRLqsuAEXc&GAUS)Hj)~cjf&jA7W}#jmKFUiPavMjK+u{Wx_Lvp0{-^lws$|T_N^odCQK-IQ63|h1<~cjOZ;;4$^&%hDSePoA z9ye?P!St*>fh}wo!Gj7`OX+L{d1af%O zx1fLc1doQnLXd6zD!JH`)ZO^`MI($$F8ttPj~CeaajtGLNS9zGNPsze$mB|jJE5!3mW>W_@<$I1wk@s^JUFk85n zP0y9>Mr~H+l#$YULd<0Hde++3oO-0vtYIUnJRd4h)l2iBZqAYsT3@aWYT-8$;1CTgRIUgX@Xng$?}{hcVEu3 zURTSS_=>&asR|Os;dZjtpT#N@R3}tPJ}6lTLeBA`@vxB>g{*LCBv}xMuikVT z_z-B|lv|7Q@DJqiajE!Y#$V<(WVt+XjAu-YSyx+%D;+yLJA1j&^!jo~>3 z*%Edc`*Y}B-4kc0BIq%aZ=Q1T2hWXNY%zcM_2cOPH}ZJXi8ubNa;3dD=lmRy<$Ooo zI9|CW{qd{U(}x$YrlTL9PbYYMmJNb(qweaWX0PNMyQ7|?H^yb>9a7#ffu)2{Y2Eil^8O;~0;4dHrf@`r#XHdB1IoLC9)$AT?g4Q9Fw_9M0!OwLkzo zM6)bSjFQCwsL4=JOxoG4UN;E}l9Gs93NKqpPC6sCanttcVsP^ge|>y1J^11j3qtTq zR4xMHS`WF1lyUNrFRy=jGrh#)UVi@R>GT{6K#n2fO=FHt{=0GWz!rTxz}#{NkAb;~ zM@w;j$v0L@b(oPK=2boB^C1jRAYoD+8mKOA5a#nTV@CN+urrL}B4LSZ#9m{eR-a+U z$d8bg!IT2)Wh(b>(BU>mVX+Q(0@>yQ5H1Aa;vF4W#KU^-V$tA@uO3bN53qR99y!77 zV|XOLR*bTIYEY@1G0dkUGg;GyjV%BdA)Uj(o%fGPyS}Ds<0nq&hf~mD^0<65-@yHuLU4n zxOI_ZXBWF(VFwUi2l?oi*DtrGBP@o*x>TRnXVvifGKMCMn4j%YE>I}7Scx^f&msO< z2CYc~HFyr16-vkadh2HV*hKR}fxIoopgrYGpk%7gU!;|dr4$&#GM1%9;fz|2Vqgof z3N+8Yf(b%Oy91S`_!RBSMVNp6uaoI(>;l4#va~q0vxwkB+EYf^+7b|RX)?T7a3xCU zdgJ7&SB0%1q|35o+GK^1jg*qJEM1mmIrF`avX42Id|sMU0j?2`b=D75alsi*^_`p8 z0fY-czI;3#{-z5+R3|oyVpjuYon#BC#+e2sVUo#2x?V0lQvJ;{8n@CV_+nNyQ4Lh4 zfn+kyI>~--X}-q#>{sW2U$ZX1rSHC;iiPsrK0WSZ${IWUm?Gy)7oa@+W!Ga>&aw5_ zth-G9s`xI_wz*Ffb8kPw2wT!SL9JKPGg}>`xzaJR=`6aUN7RhLXamW_qm%@7K5lEII<;82bZpj1lj~tJ ze*VRg+0XMyaK+c05rsx|GVXv#=5b}a)VQ*bK$pgp`?`Mrv$VkV0+2sTPg^}TAt+Vl zRaV-|S=MD^jM3y)u0IA7R_U16r9H-d%A%$%j*}mKDmueyMr48Wp_#OHA&lwJtOQhH zRxT4i_?^w)O`d#GyFS6n-d*J>TQ$kD8aa9EQRS>=%UMyW2~3!+GK%>%-LgJay%1WT z7+r8iQpSgn$))$BD>$BVT`Qjq`!o^ts*f&@xEb9@{?X1hAn5(7rLufYMi(P&FK77* z>xmnfym|QH#V^ylr?~m@{FmwY^~7IqYH-kPJ{YR1ljS*|t0Q@`S>zVh(l9{c zUsm!gMnOFAVLVn25EIx|eh0fOOru^3(R9Y_SiVzMZ>+f7LLzr$WG}g;Cd6C#;5@)D z3MuyUvOSLs4lPsXm4pV88FTZd`CW$1SHL1uN=xKf=7{ijfO6y-&N5TvY@$+ z@$2ySxH;jPWDHnY3#oa#Q#V>ws z#}D3A)vu0?6mOPRF7al$Yxyp1Ygfbqc4NZCy-ZY8rWj^ig;N=%v<;h5|D^V;9Axqt zCT z>E;d0Gu+VtD@v^1<{EFKgW^)z0U(>%UA!?^*MBY47%(LfS}4)TMjQ!<&;X1W8a-rr ztk*V&b&gqNlqH`MGo}BAJ1Z}f&%Wr>$_viPZxa_sgqJSisVxy(X3KU?I^hC8Jbvi-;Nw=$`We9tnX* z@NfYLug`q_R*!&TEXO#n-~59+fP8PeX>D;;SRC9bgOA@i!((FX5ipoISuL-eP@eMK zuydjnd;6r0i6(PYE<_v6&Akna+~x$7gzx*=R2F41VGwNlQ!Zw~A~xH_Bo=@;$nks^ zUFq*EON^;XNg51B=bY96LLi2iy-mU@&<~qIM^h~ppcE4^28Epc#NFL&=N=h}ggDv_ z{g&j zl#!+?BUso`!g&#Vrb~^&Y{0H&d^N1m}AUD2ck>%=TNOjro)V3{1XWNqk0Ru_i+ z&s^1YiV&cBH=Qp@*`biyif=`CZejD1)E-cS>HX+M&-W2O4P7cASB9iCobcS*DR=a zuuztNli4F+YyrqU1Lj9kx#h3*u9$N@=v(qj#Gw<(Xo4rpB=2P_uKM}R&QG2|=N!3K z8J*>%pstslL;YE)Ig9epe4=t6q|aWtC3?iKTmIbQIj{D4j9j)AmpHPVaoF$<;Y9ns+Y!XDNcOVY0FBvzNm*1mI67sIT?p5*`L=r!zIS1Z*; z#=k>5Q5`G21}y+lsy-~$DkAA^B!^uwB*wX1TNEa*7R*Vv%-iCxOMk=`xLyGAN9@(b zI_acWN?^|SW$8TCMXAz#V&_(wvGd%dRrt^Q%>R`BnN{;u`tv<58I$JzlyjAIWGd z`G|+I3m!2j_=P36!RDi2-hKO%eIYx0SaYUUs5zXhXI_|I9yUI{)(B(>4F2Q$Ej#ov zj`V!-eD`ynAji~SJ%>@K=u>mRJUn8h6_2MEdKaF_?L7EqjE#iDZ64rE1iUePlA;8*rb|e#j}x32Fb8xv^Ivy&JT4;3t2AFE(U^~ zPsyDvGyvaTx^cI|Um4@(o|&`*XxYbSuHj8eR{K33llAV0XVZu0ukb7JH~6(OwtL`l zPMg|k&aMH8<}b4wyzz!DeG%T@xNUS?=z+T_XZ*!9A5DW@KhE&Yziv1;)Tz%X*X%|g zc653dN*l_IDXJ_CE+!@pov>0bm`J^pD&{5q=JN9cV8~-st_&gqNJAX!aHdz-;{LmT z>`c#p-nL&k_c0kBLVFSqQvJZ6IPox_k23-RS@e&8TA~blo5mkG>8rJ?A~@-=IVo z!h8-6&#lI|7Gx(Il?wvCHKu!=Y}7yOh=Li#Tu9rDc&u%@dbP+6OWC*h>Hu9Q;efPtUG+1}AK;huQ-DwYxfZ4-V^}D#~%tL)WbD%+>3Vt5 zlON*=b0-&oa1p|X7q6$2*GInag98?}vz=yCfAZvZ5iio}8us)*!igtzJU7bc*x*wA z#g|;ri#hUZdvZa4FyOU#_tv2;{@6qNZlk@uDMrDx%vV`reEi$uH5Pyz{fi4gu)_~` zfk7C&8OfbLPO*ctz^_&?srrI(B*Z3dSqsOux<0vf?pU-PY3Q<$256_QWo`{wY*O=P$hTzr9dnOG8GCXA?#`%qhI4 z7(U1>fn0xIl?H^uba;cz&U=%v%yZNdOC`3oUnVCBGsM6l=Q8+Y*&Y{T6t1T&UE_b^ zWXaL292Zz)2+(4#*@8*anyO77jpXF$bxXXTn_Tme*THL%Wm(RAucPeOKJwi6ImEL`{WU)F znAyax$MifZXWY^$l707f()IGp`>FE7K8%2L&Sp&R|BYi(#ez5U^&Emqp0V;>=8php zo7$G1Q-9c8Ux1$RPYRsYRAG5dsdP!iY_OZOqpe8TmUseGd{xv+PSzRH%Oa8#=V0=h0+m)Of|99q>Ebhl7+qJ4nkz!DtElVTAG-yv z7l8b+`#0526M<5ylxNCGAeX7vq05T&RnASe9QS99K;GOKdtsz1qH(#lJ<0Mg=* zv9;@4Yccof8fvVo7oW=2j{#wGXlSfM6@;Q*L7njNiCP{G(8l zx>P00az3h9&)=-fc>%lDf!ISpY{>h$9axy#*=|Lb5o=YoIW_T{Ez5q!@{2*cM->qB zA&ikYHq=Nw3YIO0H}}|TD08IeJZ3+yWJeAjUM5jDW2KYLxg1>Q8cN-}^eTB7CClJV z-!uYWvJoK@$CqfB+3X;-J2iaeQDmZVO{!9{b6K{eO(JEnQ~T^q#lj(crZJfmw4*YY zLqt_4?!zHuhM_F`V;KkQm)ppt{%$&E2X+}(^MjbHvdqs$*E?06R($Ekt`=0;FQS3x z!U*pEv5y;e2TvYOd-khs{4$?A3X#`4F-7wG%x=fl=kM`|inmx8$NBLD+ti=oCXe;E z+H|Q6+1G3iR=>ljsBSO_Z_Zn$(pyu;t{%4A2Ui?$*N@l%$~^1hw6T3pjMiMX7^)nmqsAs+v66R%shZ`tl2_b|WQz%N<1c{AQB$@+K%jPcxgUty2Z zROece7RbdHt2dKdxRuI+4U}Y?Wo)Ywdv4x{$J##fW+zOJci^`d(Rbrl0P%=d@;;?r z*j~r729z*MeC#jYP2~ay&Zm360K^^@Mh^5XAN#U*_m(XH*?)9@+QZE&9`$CG75y!r zFp9y!352Y48J`grFMlA2EDUW2SMlw)zOQ#xogiMAKSzoTf7b$ud?Y=w$1kLnJobM{-4{^w}0Q6-tvig z<%lSvlJsdW&b7>Qs^?sR0=cB4xs^@M0`QUdzfZ%y{y{^N_K4s;iNBoKE)dw_%m|Ho zd(qm#UJkijIL@z00V{t`X#t4`5X7jB`I4U;9SB%g^%K_(dF>rkKLZ%bg?umZVeFl7 z0m#|(_$xey4X>MbChVF8mTh;~pF2jP(2UC@bZoJhs_2m^`M@b*NLj~x4m0a$lXWcf z5Qe&5FCB5cjx-$qQhf$#Z)>=jdWRM%6|rm3t4=FX?*h=U8s$ zq^L=jDQ3FPrvI>M~Zo%lr`r+0Mg{N;Gvr!GMmAPYCATV4RaOkpf$q ztAJ%3Gm|1f2)%LH6H$*lvtUq^LwwU z?NBKr4&&(YmDpoz_1>nGRW`S1ajx%WmHRsP$8Uk_1t5R?K1K~S5h!J)l~<~U=*vX9 zOjCu*bwZol%=tILD25zgmVvd-#^vHsMe?CE+qN>*L3J`@6yzgcoHCQONH{GQUlG+{ zT9c;K#zK`O`EuFIRIXGmk?YLUV`@3)=8Rd}=I7W^Rr@xxXA*;`$mcZ4&8jltma-pf zzr@?ie=R@RZ}ypcoEYgOSDCtzjB*{)vz+au{{$(&bj3GT-2VClewq9J*)R6U1AEi~ zzl^gRFdO*I;pS@4H0xMy^j;`ql6pHJ7Y>7)6uKF0VpGQ%4`b@f`7e8>!BIaz0~Io* zJa=SYWX4g6lj>2`-CX#OV0vPRj3PmpDfjdI5kD7QOWcywX8UETWnyK2qLS>WMfq#%Ltde zvXuTD>M}0pdtT~B+}S4QWxr}8We-+4oTAt)?vPpbH^|%0AD9p9hTR?f!tCK)JZJj8 z{bJktMjbS;{TxL)A2m)@R;-%$-r+{|(Z7GN9Y9XF^9B}R_z*(F;eS3)WV@EKxpk9@ zH)(V4kdWWklhawdy@<1DhpGEYy6@MqEZDB1H`Og*+x9F;SCjb%Zs13rXT*bGrfGa zV>i5b1IF#pr^f5$x*$aC$*Eh^Dn!|Q0j|ClY?N{YiBaQ9xH3Et5IGr_u&S-*f~sMh zeXL&gc$~qnD3BMZ%lXS_-pJcVJ8>tFFR%;9lfRuzhjw3|H^I0_h<)GzyEvs z>BpzG$m2HVl>7JZO^+WxoNjX00(|c9#UCEG*QrLYI$miidevz_-Y=}kZN8*y7- z2fk|Cx^m6e$h?u!k9@Iy_DU6H$MDcV_fmbAK4W+ysGO)=*u4YFId#i+0ok)%K(=T;jInD)4u5LE9JnVT*vt1joNZ}nH@%8eJ4K^)$ zmc1>0MB`Z%>5H}1~H|BNv1lMbS1dL{1Rx8MrG9Y$W^oPXi9hDh)8QK!EsYk&~^B<`R}?>^&UXBVe%5cMA)4Y(lq2)U}N~Zlh}y%M@*K0SMOgeEaw9 z>6`!Fo{o+xo>z%E^C3Pr_gT`@)lSQ>x(UnY)(w{dD z(WW)OmQ%%8FksR15it7)r_-Y+d`-6K^6(ZuPvSb9{hL8~3!kOTI<$xR7EH+Yg0GE`RP#- z2TvYP2VXv#4!(Mf1(sM1gri(jWl(xsffmITW!ic=X_jR-IfeyHj61W6^VmV%i9FK2t{B$LgEN0^JGnLl%1gkw{z#%6<$0CcYETvnM_*=f8s_I*K>P{pDw-V7Hs z%aottJ8&+}u+hW04z<_agTm|Orp@yo1=*RK!>lq;q&AY8siw|(d>Q5W9;-67%l2&y z&eY4ioH;7@TsN$%1>t`jWcJ#=S!!SlB{z{ikB!>N<5qhCkqu3mJHUO(_Z%y>>-5jq z0@n*b{_wq?CxcNw%h(w6vLu?ebYat^GPlV*vd%K*d2Fh4v{}S#oaekcL2u5dI*?QK zQl{2xcHIIRKJ35yDid@eAtc8^5B)LMOH%%zPbMRot7TQ|P$h|=Y3EJk8KeB1xvysK z6I%I~m|?H>nbXJtEmHn6*^jl~)aS3|C&we7YREO6u*3+TW!d&TRGm|hqzxCO+qUg# z+csv}wmofY+O}=mw#{jq)yA}~t?!TBi@mL@im10T-g8dolRl&RN<;?06X%Iz-vAS7 z1Lji~ao+xFeBG6K*=%2oV0F26WvFPfu30H0Aj7x2GnW@9OaR-TnNFoNa*71;*9}+^ za<@Es6GZ(%fo?Z2TT|+dPY9w;Z)2#s{T`hw_N!$c8e&h4aWvkwdE*Y zfkv);Hk``RBcIOL(vV<=zk!MVs@sy(2wf%H+Mhfsu4O)=m38Yodmh;;dH?Ob; z!AJ%rJ2zroMT~Y9Xn{Ct6Xxxxs;ebWc~XLPuyskt5-FLWwOS=BJKT(S<*(T-9&8%! zDNUO5o|tz-jC%aoo2ugzAv*;j-zK&m&yXB@{~CCK?4oLf#w=wD4Uz&bzcV@Gekb(0 znWAPlHow&w1tpfFDJwM5GkPM7OG^BRgPU{Kl}PsLUnEga)StnIgunED?9XuggK+x3 zW${h%X5H=(lH>9aixi@k$|Bw`eShBl8Xbui-sIv!L<8ju@b z%|r-}1h7Kb0INd=q9diO3;fy~oHL??+Nb&%i8uzv`UreKN1Ed<;NqN`Dqk$mqzPoa zoPsBq*<*EPn}~04a2P>6-xl2Z0CMc3r_ju!bDd*Rky}s!)3606!XKk|B+P13Pf!Kc z_ZRvuISU+-1NY6}V>(AJy#p8S69X8+8yUgQqmZmk7 zdx(7cd?F?jX~P5~X9&zDCTD}HwkBqq%$^$SaklWujyo$5{RIq#e&MhX3!e!O`Y)i* zp;_Hv%KAQ`%3nRqNOVmp|Z?(I(j3mqG~zw98ZPJ4LJ6qIH?WDd;`=@^2$*XA+# zpGzqah*w>kQq+iAh3Iw52C)@rdXW8tIQx3=@ptlQsp(fEz0WSTaUOF4f)fx0dYpMM z6hHAq=EFopM4p=b(T6#={Gwz3=dj95}2@_v^feb$r@VdjwP z_JQB-DMLY;20cJeKTsU4DWkNfM5}Xd$~-7SNj(-sh$cRtm{6Nmk$v^n-OlDladE|{ ztbb^oJt?M!_!I$QX9)jbj32y!@UOaJvUi0yBPI!-jnKgrR8Gm!?y5J@-vSL!%z zE&+ZYi@B0pZdqQdm68knWI6lj2GT$gt!;(4$nppI^Yzsp!sO5~O)+g2bI&h@c{Iv_ z?ZmuZ&9v}gicI{C9Ec~&FF%)|>59?n}He2YqmY-|2=UEA4fOIRZ; zpCf4syMvJ|TQ>eFA8j-dODMyL<1M484yp8BF1kN6DLCv*SfH#aFpz7})4T#re?<8-HT3z77qgHDAV;kx5S}J4AO+eaz5*UMcqKgNHHQPqnq#@q^X8Y)) znZvR=z&U!RLHFcamcgM1V;KOXOLpZ-?13hhB8V{qrsl&@){>SHDp04;J#Mpf%ehj|_XbEMR4qdaR# zq~4KIr@7FeMaB!$0I15-?JbjinY&OAusAH%pr?V!dL8I5y1lfIpR479rD8rJNR3hM zM6tllCZ$UkRTeaVy}rJI#8EwLyp-Y{BtwWSF!4`T(4>Pt{3469$e%6aDRU`=YQ(m7~mnln4_V^ zHuh^wwNJm*8O9xX_C@A^e2ZcTz z2#e8BX{hQ17|4<0e>(yqNZ*d09=-_YK#M{=N4nyjBy47*?C-%7WO1h!66WY~tj%)6 z5_M^KMjJr=Ac2mLsVx1Jrs7LCNwO5Q3hgSnBqT7AiZkh= zc|5GsS^Q#XUWFC3*kgf}T64V=807_GyZ6ljjCP#=?z#bpQY%y05-2pKXm(0J%*L_M zaTmqS6A`1|MzD$`a1tlH=R=W(Rx4u;(DtbmJmuSy1fND-S65@~0AK{SUQYEwj%ATo zpFzK&UweQqMf~sEqh>$*v(?EQaN@n3n~%cGRKHc=Ns@SVKmtzcHe(e_>9Rhlu;`RZ zfP7GhY8kXB+k*iN!%5{=87E~ZeQ@AL8 zi&;_YrCuZgttD(jDvGy~DjxKIq6&2HrDa!M&C$} zWL{MeC{wgv3*Ez0UQwr+Da>;77GI1rppyymhH+L*OB=XalZ>JQE|z>b1>v?t?lj)y zAq1c=XK&U`k>Q2^3Gk1Qp$G;d#_4xCn*%e^afGkMG*n403A70@lc}Bc+13X*#`t0o zIA$&>acsqjBQEA^0Ncb%z$wA7peNJUBKJc^|sF?f0Pocsyh2YS@HDi*cS@FXe(JNyz z>*h0;IWvh7-8qxPvGQaEzX`Sv)@{0;@pI|pVn?W_l{lyf>zaj!b|2V7@x0bcza_D_ z@JvP_0#W>R!4n1KHx*v1twYzQ@YK#QKjQ-w(u;WoKesUiQUF5Phge_hSmSYq!}?~ox9 zH8kBpU}0ub+mcYLC~9z!c*omg7l8Obnn@_)<9qNU+p@M6Z%L)2!7=2Z*_)Vh8iJMw zEnkTiU54`68|zU|HPciocKqMpv#J>c62~4un(nI2M2vTbEOskp?=cw6*0eVzbuPp| zRH9ayk}9Vh8?Pm4LAdfk@&WznrKV#(5 zP2nlA(aLTP10NXWCv#njS;6q0rCVgll#c#TlLkKXPN2)3{Y_v5)RNVCMAjw3x`ApY z%d@6vfQfY30wntxeGBFcFs}u=xvosGQFc@tE#!k}pXcEguccdJ-fp=E$!Yb!`*vl= zJor<6{AwrlMQpjd9L8_&Vip>=b{h3sn+`2|;;9gd-qgT-v=R-JhY z--#XPiV|Nh^i>}+LX7VA)qj9|`Ek4diS^Iu?ieSKxvknea+Y^$JpZZP#*PYNmu5&4l^N?;rbB#ySufL-{n<*jLdEM6h!Kg#I#bm-p(eG>F*Jg8g}jBP`a z^jc!0X*61pF8*X)e7u2Q5ZBW_2dIHzO4u)iZ*Sa&tiK<762uB5IRXsZea+Q5+IB!I z$41Qu&K%Yu)Kl;sGVXG>mxuNc&td`@u%m1BQ3|U$%wxCU^9OEWg@BdVYB$CSzj48;ujb$31VGlFX80P`)-EN@N%xO`O3(KjazF$H!O>y1IIKe7a4ij5Ra z--ya3xk+;nNHV|yasZU0OPZX8Fdf;1)y4|;d@y7&pTchZDzlIkWcY?)??iAD6v7W1 zizC?zTKSxp4A*gs^kUP`PGR@cgo*)#v_VR#F70^h#ggmKIvEN*+wlRiXvV?FSmxin ziNRRwge%1paTY4oS8Yb~d?PR;eGubgN_QEZX;d>Md}J(Epm*LmUpB%<78|7{iQ81; zkkT;5qdlR%<5@O!dvN#wn5EZ!aU|~Y-|C8kByk7kZ{%Rv^4O0|Y5z?-drk@R8u6?S zvkYUA&%v1FK%q{NnrL3W)6;>k)cAlf=Xn<6Pq3zX-rZ{scDjA|;%2cdLM;d?W~yo} ze)B^YgH_UlcsjUu-mU^`X2(q~SHj0!4idZ$UsUKp=6?;DcMTVK+MqAa*Poiv+7CYe z8C>EyJ5XAsLzgnc>xWkzv=7wF*TnR*`cgaT3vB$qI!gcl=_t79qrse(O}^$}x|{*a zE6m_DIWa4$s@b`P^G~H#OYE-dX#gah!qb^7qzwKSu3&!1->D8Hwj>l&eYqm76^H~l zf!1VCyQ)dZx;HOc8znAWT)L9R7N*tv(OLK=NRkn)V{{;D#Oy$lwawkC*=hA(ZI5rC zUBLbSH1yT>0b1DdO>L5vrcQPFatikX=M(hI9jafIlE=|Bi=(%C>ecFc>1)hAhUdK_ z-A^x>qo#9p<@vxn^8yz_-+j1^RjF-$rSoX(BT=UY!#Ra|byV)RPMujcaINmCEg<6@ zohf!z0_+*cFjEhg4B+*@J`&|5Qh?I(KtBt76FrzNA!)i4HPrw~y>8Jg#_ve_{JAQLShVBw0reGKtwdX9IH|3) zXEa@dDG=$v#?7@as2_I3ozxnPyD2a1IDqa@Obd=o$K}UI;NU!poTwfoVaQLca5!qb z_MiEC3jalSg*m*Q>|&la_j*%s4OWpDqa1>oT%ze8|FE{~Y5XKnpc56uLOV?FJl0aC zncET+bRf`Nsaq5!3Lv?OLEug?%gbQ|!qsifxE3Pbi&PS)=F!$6!AS`Dg1Iss$PG_M zN!>pCXNlK7P4GQ;F!qRfo0$63w){r#N`%(Du>%*+uAVhP(D?i{|J>LOV-g&vZ3n(* z>z*3*MVe2J_3Sk;xnYa!ZdJX%*`<1OQ)>f|AzZ#*uQ&<6&xZRcCRLxV0>= zcN@56IJi{^7vw@O0uQzn+mT&4k?FbxZLvz|&Prel=>bFErY8hZ_Mzo(gB6gJ zNb-DyCp?TyBM1(WXtrgomY0s@+G-~HN=9;Z1*r?2&lfh3UvUSh$ql~O}u(vU?S)QhOsq-3pS zexv(Q(VnQJ(g|5ozE>Ab2B_!ZLSW`yfduLaXU<7rrK9WzM?~YA8?KdUO*3-BM_=0^IGX6GX7+PRmj7VmKf?Qqb?g#AV)~ zFeuejQy#a5?{~cRW-9HojR9=byEnW?U?|{=c=`!UTSzo-VC2cVvZCYNgoxCmBCj81 z+Md&~7Gf;ekNvKxak@a|h^vP=G|~eZ?6o_M>9>8a-e?+z1ldma!OGm1RXnXuY-!$N z84QyRNTX6x=UtA`(3e)LP8{*&#uLC8S7T z(L@@@XMk+Y%n(YEG_uBr`-qNQn$+K~T@Jl>r>`>Pp432JvDdPfn(Ge!)M!{Jp=afF zHNEF8!_#Q;mD8F9y~u=VTDhc3_-1I{@K|!cm+?Q=yiUF(CqI{IRN-(=O(^8W{@Iyd zsb4$^3iZyYpUfdC>FLU0terva5lsH7tT}r!4`aZiL&RWTf7=wb3D?%-cgRjSpt$w2X86LU8=dgz3k6er>h2OL|6_^{zG{1&y-YQcNz&-<1MHPADrh4uJB{)7I1EC9>K&kq^A z6NiE~-KQ=U)PIs!b(neDiK&TKb54#wUw1GSmSb|wgeEP_ZnMYCN1f$ydu;*OzFU*& zae=@EoQ3-}!`zL;KN_si%Qs<<(lR}@h;z4-+Dwvne#n^=DDNaqd489U-uYw0Pp^z> zZ%>c?B84q~9Dk40bh+7%+Lg4*QH-bG<0bXPXtJ7-Bi%OfyrHZ zx{&AD7;x7NbBs&tvZ(cv69*lD^nvuaTunN;TpT-HArtSfnqF^gjP@O(5FNF#~q;H3d+d?7QqQjXD7%wf$R4DHGY6Q zem*vjsp%ga{Z9eGZ&@g9K8(CcpGv$C7i#6oxw;rCT48#9tUu{Gwj@mkHtxDcVy%+N z>KwqF>V)&v=SdUMoc$5J3 z;sN4>YVFH3vY?rYXYlfi;_k06~H>mY$3z#c2nXAmTbhC|bN&i4l!7OpP{ zd^YJjBS-}cb?tzKt(9w^DSHDX$?j)6|0tjrYkJIW6}NjZadxz0Tcq@d{sTURQ&xdX zs2KCYdNCG6V7h#_1QoudI8`)5&iq<~o8IWjGu>K6R20YS)U{Z19n%J*_nrH|StTLL zH4D+b%lGvz5Uiyu)=;%~X7WKefS=;4@$HQ&&bKBdtqyIbho4C=oZ^X6VNoMdUiDUx zVZ~=%nDoi}tmxGt4IXt@!0Glcz;BX>G{ zsT=8Ij*zVUbL#~(w!iSK1j&dbwtl!b!wd?36p#_vp!J!qTsm3UPru^p*`<}S%9(5i z-i`0+71-g=L}Vl4gsKo-GOc_})+Vt7Q55UM){L;Dhz=;=h^odFCu>cdf++k+Xb=&lcpV0v>;u!|PlD>@uN*vFBPew&AW zaVefym$o|2YlY^SGFFCjHf`bOvT{t7R$r;?eIPBty!3bXz|=G2`+ynrj3=eAbG5tl z)4T(b8onBvMF!C57EsAJu9l}NK?%TsR*p%?h-E&@z?Ni9p_4c2h|NnY-{vipGlkF` zYD+C_IcGOZ^ue1_|J_u{qM|Jn#npTwPUU5RD*YQkXN8If3M?Y$@S7N!UE!@0DvDS?s1;@#~pjflbh*T1~(&HImn!|89~oXgHY$bni1& zznHNSi}g$O^S|EC-W`_lO~Fp~qQh`U;EP%OEV4;^*A6irV{(4VXy1*!Oy$ z!-7s{cv8e7J#+>8a9l9rg5gaJmAY$sf^$Xa&x|{AvK(mPvsE7i1N92GjVohmUukyw zI<jcW%owtbtzFt$f7BA*v}Rj&7|cO^uAF{SkWM;w$uQtY%|=M8~)_HxK_9-IRYj6yn{Fbm@LI}mH1cH+P>gG7psAq!pFdA zRGz6wvA`w391l{kL)(5mk?rKLMTv!KK}N72}X zfo|n@MnaNseV_C(tqOg^oNSYhh6v`^a!(I*7VL^$q8cX*7L82}*?+b0kD3_DE7Xs# z|6_&@h=K2(CqA*+e&Fzo{yea*w$s6gCM}(lWZ~|CLme?JzaJaH;g~*E`*7779vh+4 zaOmlMn}D7=!e6U_kK$G$?JpGK4NB87oZk9%vt#fbA(3prK;?e@ZZfkLs-AWqW_INt z+SF=7EG|^;<(hhBMU@RJQ{aR{C`63HevQ4DT-xkG52H)vARshC&c5u9Met%RJCdxr zfu&`VcciEfkqi&_%4`<`%u`Vk4%F2Rf$Fzx5Xg;&5hj`?Cm#7zAq4 zI&mrKW<_Gn=l=n4cqM`t&gDN2L|j4$JsbMyY?x}OCw~Y_9SB6BzvC7cyRlc&@e8zO zaMhI^RJB%yY1@{dXKoF)s7A&q>*3b#HgKkj|GRF{FdPtdg=Us3uMIM2Nu%Lq#pkbh zJXl)9V(jnFYQ^A+vmyL}TJ|i7g8wJ!&~@Bav+K)2889X)1Kf@9*#h6YZAx8Wuhc%v zd}bx$abnuZ6~SaUTWF?am1|isMZtQhlXQzoD*;2y5`B%R&^8(~qU%~=msN31Hu@D` z-2nx84fV0RTDq?oQ8d6`b{#BUX0?t9TB;pttw6djGIHtVsBID_=x{oYchZf3V2PjI zQq}GE^FL>TZbY03$l5n0s%iS1<-$pG&bp*%XG%#0?8IXw*ec&8*n3W&SB8Fl-jj?4 zNVO~LxNAqeA8{WV@2dI^=GN7&0G6PW=sPf_Itu0g1pAfL5wQ53F2;|TJHeDNP;sxeo=-Rks}bX@Se$W z@Ov5gOOiRF;MHb-X3e5OyZi}v3a~xOt^B#MD&E<4cHIWK!wB-K_s~;X%2Ja;?5dxu zxAjoaGW(tASb1wA>;9T3&q=%LqLbFkfqXpN)vDwJVVlH6wrg~fz~0-fI9_Ux5H|HI z(~OdiGJ=tqmI@?8iE3kIg+qfOBabB)x+(5+{KU*U(~_8DuDc_5Z0vq*8n9*XX8p2- znR757uBgTNUsyB+woDZ#B}F}pA-bL^{a~{N{e$ci)*Wmh4WQ6~6Ks%rpLY8(qyrf5 zUQ)CQw+JEOTQ8U8n+PPIyT`S_o<<UY;c!DFFD_;qrRZI2dkZtuo~__)`I;p<`X$4YnwfEdAx);kMbXT|P(FSh zHIkuHkTeddFBE!EqkJ(1NfNwTzrfE%mRrm!Yh#Y*5dxcXNIzLUi8pkA^0dD_yky8J z@;(-7e-o3?_cbinG4=7|7Mqw!L#RE3>A(^F7eKl8$-Od-O(_UAY)1hMmLDsBS*3H4%Fec1rBTw2 z_KhcF>A5=apA6oHN#ycH}|YyzG0fgU-%9Oo26 z7Hvw7b3wznj7o+qH?dgEW{e{ypf~sy@SXpFh{6Ra$&dv!udPR0KaKYDMtfORRkw(E zq}-!jAEzTl|8WtEp&GF}3r-UGX~Uu^f`;}^WgO#XOmBxGEtz};0R~A7c@I24F%kQE z8TZMT&LW6c_-BtS1(wI7z>?KmwP?eTep#_iIwZ}#@(*)r2>-- zdPWuW3ti3%SQaM_#2wdqIbbratNryk;Hugw{BAblH})?4Id_^+*SAB*yWdyu)_0vB zJymHgQ@5o_lfr z0Z5-5#+k@-TAzD-zz_mDys$&hG;pUV{0}(1!1GTdx)T7eXN(X1n0a2*jQfRuBFuom zC2ZzyBsNNhYBKe(M|5n5`kB`QfL{J#AQIyNs{llAe-Lh)3*Wzgq&7)x7G9-m!=X{X zR4o=={R4ma+>lFQOcK%KR9}kDacUVJHoKWNu-PqLFJNAR+zAqY4@!`DU*c`RbOkO+ z&>tJQT}_DK+)~q*Fsr^d&i)||Y^3#W&^4pDvtm67d!YYCwXRu<)3$T%bGSKoj#;QW z@1yHwX2T`ovXC+-sBgEg?L` z1Qich@w5QA$xyvg{#IJbEQeB4&#%){U&Vu3IVMC_=~R-haf$VQ|Dx5-kEMxex_?RW zX_3={an-&$Na?Y0H!@Idzg|=z>I{md#%l8tzbQJU+3a;Fa0fR0J8jc zMpo{1{HPL}PALMD1&*DbRlb&wZh!S>BG5JyhUro>7w-tN$BMibqe3oIck8`bVidi1 zcp(n?*Ae?#?PC_@o8Kyv3fP z&SSz-qk%rp=Q8%f=G_P7p`h0n^J_Npw+6qC`(*)I9&U8>dX#-`>2<}F{U2@rdVa#htYKsd;bvjH@~`IYYnyl0|0Pl2bKe{kJLQH&J8GMHurA~^N+7ksS$)lDvPBF)7MZgu zqA`Z#Xk1j$+0Evt$Sg%>$V4cuhe1NTRJfr`(Ty``FOP}P7&TPn#=djg7t5E_#hSsU zLMuCIm9~#6CUL?RSwCP7(z-eJ$p=04Y(UH?KX5i+)zRplph1#BnvJ zMaMWq5~}?4{LD!@S`;E;BKG!f)a~=^)ZJfF-p1^!QM0OrXSgVgZV8$3n5F9w*Q&+k zL_h>&+k!U+xCpAS?wGcEb((Mq_Zm;93Ob|{ydA=K&|PisR(6M{wD{)FaUU{yl9p97 zsledcE?||gd86(isn@2I@&EvvNY!r{TuPu_(NcX|ZwA0UZj?frSl927i1=8_feE+s z4;v$KDD!CbE!|^zcjVqdB$D0TR>-;g5Ug;O$I3G;+XmcO&9;Q{l}$i(6fA9x!I)*- z(PaB?zoVdM?{`1lG2~ZV-{RU)CYCvCV(ggRPrt8LU|nxKx~@W#Ev8D%F%G=zAd5uC z{gg*<2%K1!^YlxOaD1dxuok1dn7N>F^wDEizb<6*zC`c^AC|KdHVQtqVrET1#BHQ@ ziehsjItAP32C7qAIoTzcn6pO!1Yo`@9OuYqA*%+=+P z(S3jv^i-SQSl}-p90QW1HFuJU;5hr=xQT9p6DstlwL3DfWbGfO?&Z9xE>0kJZ6D=@ zjWvZOk+u28P&L@Qn0cL8aSR`ca-yAN|wJ`88jZc@?SToUIF7H6E)|g z{_(7|p8YFqwbHOU6L99&klLd!Y5mME1yDeqpRgeJKnrGEzyL74>uJABC_JbUHN1|A zqkKX4Q*J4+%>zTaB0_w#qWwslhN0L*|4ym2@nQHbp1(12(*=OvQ1ltz;oq2PZ9$(y z3|ZoMbj0u{>mGzfh4Eseb6dpbkzhya3s3zd2I&_dCZ*a$J|)$c zIH!IT6Y5X4^l{{k71K9%#<{k}n9)(4Ny}s&UEQQOpUrFa)_;oq+;Ae1a%Icd1y!@^ zfjnMT0b_UEK5Y^yLTGx0Q(B6D$+5cJn?~OeI&Ej;s*Y%JXR8%c@apWnT#-A2ZiTS+ zk|vz9yJ~@q5UThlNRT|E^-3?*x5>?QtF&44rd;5g^-0*$4=nq!*R?=qt65fHEooUu zq)D-(H*t!>ZP0^QO?QhRa&4*ZUa-wuVAoIcpf;-OkY#I~%q{^ZQ|O+)RqQzSCX=`d zwBT)+3=0D#`oN4X%4-+vke1xF{nE&ybxFzDj4)@Z(=E;~P-&j*#xb{y9L>FIL*o!R zJa3V?>IIX7d>$QI{I| zSH_Y#gqy2|NSte7NjB52_FILIk_He&tif1=zV^qr4Fm~;aU|na+`+K@m5+KK=D3>( z4KA`fHE#o-&5w|G& zxM9H_k-a9FB^zHyEhohCyh)u@CAsEnb&r^m6jF7%l^$Uip7#*1GOVYx{}vDIdw=~y z6QL+d`%AsJfLiP%*3A2B6^3r|PFt~|WiOD#Xl1lq&ZV4LJya;AYGxYxF_BHEX%pKd zDB6%{z1#`{`-Jb&2D_4no9TS7kUN_|in!N$b7l7hP&QS9&y@-;*cm*_?chepfwgP| z-FvMaEtfr=okZ;YS$Bkr<)3Z5Z!pxHts>cTMg>)k;${bek%xd-tA6JxT7spE*u!n> zpDC8z&FKj}ZVg#qQEv_A4)S{H!!Lc3baYDD`fbp46{Bwj3om@Lme%$CY>)>1{oXe} z8~5o55&c^~gb~k2yy>-Jqg;LuMG|v4TedKp4ZQA-d)H0AD1Q!|E$11OL;f=EaSwRN zum%13l)^@BN+(e;Q#ZOe&4ggmsbyW_ai)x7p1@Gfh;*QO|MfyVNP|sF+x=|9Ylww#@WB82ul;BH3uJ z6KKZzNVMgAX*(WdR+8PMC4mACFl6 z%>8Joje|l(==izp1eR;)(1^oDs*i&85Iv=&$MtzN}++4zDJzE8g zqI!c;xFI98jZotQfIN2IYF_!RQu(caT6l6)VEOg zf0b;JpMC4A~D zc&jU#{XZFg5A(IC>h!rIFSALG^-8hcFzJd=bIvj!Ye2x$x{zUGl^NZ7yZ8MFP!Y?Q zU}J@1x?7+r%NbC#9G&Kfdb$;9r2O5!F7g^RH4=4naBt_zU#@$=_FSO zX|#33?fVU-#F8C26|&-03{gjlp)ab}EVGUjlV8zj{4jb9(Um2@aIXFPdi8Z6U=vzD zt<0+R{FNPtV*-ZUC+@7?TKLD>Il1X}+d1}!{*{z3JT#b5a%37#6%hudSSC&Y1+!?c zTx`l>f4c1t2Tyht?2B>U8hGIuwW`%gPF?LnFO+7a5%I{fGjQrn9B|K*e4q|PvCvJ~ znLCHZo<}>6`jpDbAB95|(ND6NSF`iBAmu}?%4P$kxN85~3l9Sy(5V#UT^*!4Jqfmb zQvTtPD(U&R>uG-jI^mqMhjocYU68=BCjO&ZskYBs4ey5(SG;TaOUL-QE$DXZ{t%}! z1)$-H&oBERLE9|})#)BK+h@Wq2yBMnfu@M*n(SG7yXxHx-9*?J3sPadcFp?4tzDEo zcyT~VsK<-jjrLeqfF2H<~eB zQ1e6;^z-U3nC5SSHX{5wQ~ouD+}p+@t|3@D$o_FHq0EC3d@qe!hN&5Mh19uv^zpE~ zKtkIZhFh8be{9}T5JXDB^AljU@~m;wFv=aqstjkUwdv#510y!5p{9e?(*xExFAcd8 znVkAf>u4E-D(a!0!((oZt~x?+ZJ%fW_W+vK4IZ!S6(_*% zcf0NoxgjID-`N{S7O{fssw;NdL4!yuqOLm~wlm>|@iDZ=G`2fPgOrn&-ntgK226Qe z`|$cK=ElqVWcDK}nq2VyR<6gyjjl%!1Tg9h4tIN9 zO@XR8a5@RNpCo9kz#2t*lEyDpsSHukwuub86vT}yFIEO-UJxRQX-&YkZ{ZB{R`QH2`BHCo9+|-iMX&Ms(1v_ zpyUrch5}bc@4%ZUs8)idLs6ax=6uvUI@`%L+l5 z;;K^7+Bm5auU8vZuIyXb#q!m}Qk8#&%m??Xw!?|%*)!xKW%vg;%)c)lhTaYNEawa` z3}B5`et|9aECtr}B-~)x?NQ*okaP+1EEFU?pzG z0nXtr197L?kz5_4hiukD-%wGE^Jgz1J=YC&I@8zZ`rQOJ)r$nzWqs4+GzkycPO;%A zfomeQFly*IZI09?CtL3QMDvYU6t8Iwr+G)rJB&Uiy(=!u0eYWD9^dlb;TWeIy@?`0 z*H5!HcxU~bZQGHU9d|qWRl#qUj<>M5G`h9Uue+{m!|;9Cz3tU?CFnz01Jjbb~DC_W?kt{xIM+bUGbCeIB^&)D}oi{dO4Oc&K`9U)@**9-$u)+ulv!^rAB|{QIKK6^r~PP_+DEc_q#iVxJsybS_%MA)ZmA-7q*_dahsAEojY3IWuMA z%_f@?^KzejbYJ)~3wU?!U%4${X`*A?e;$amFelGoelNazzij*T$Y! zt!#TD;I=+zOGut`taV~@HPC4C(q>>O#~@o=nI_ixe3c_KJio_~8=vB4b((6O`iK^c zs&YwtZ2M&kf4TXe&|YpT_x;K?uLj=c))#*5)bj)&`So{r5679^{p2jYBL(h~uUrL{ z!fdkXIHJn>Y>D*btO?m0DtldX&LP}z3t7>)Qf0_fkmDDK_#x=44z<}y-#X>PpxZWMKvUe z!nKfQ?gy~KL+CYD%FQGm+>Aq$a=zZj6FfT3#}oK@T*Dt2chGsR4|Js1d#~%t*gv^@ zvo(1dDuZQZ>mGW3gSz$C$s1Mmj~#oPUDq6jmk+B5Cl4;8eT_cb+;9) zkBP8T<)87;DKutM?K9hXX-8Fkgbct!`{2H%CAV`Zm{1l}l}82lEA;{$6{hGy5{(VI zSj!MzPHI+N4gxTxoD?WTMLP-}$qFs)IEcL2kZ35web`z2ICVu7BA&XCwrXa3^ zSjVRGjhMxwdm#Zm!B4=M6DB_9jU>^gNwe}F*)vH8R~)M7*({qrJtvz2JiUSjhg^_KB;&ssKu0pSD$#Z z@cpGE#y~?18Lu11K~9Tk&$La?h{hn*L6R9lVIU-EP7}llkt%iBq#pi0Esca(|GS># z;Ec%~xL&y4O$+mTr>YH70L%;C=;B-0pryD6+n#W2!{DdPcO<%AJm?h=KmRAM3%-et z)KVcY-u!D|D1t)bj!oC5_8Igd+V@DTZ0pra7!WLIv2D>Ql~z(~levPHL+t5+v6=%k z#;fsJT>uB5!OUBdzuy?1FFz>*euJ+AxnT`}i{c`F(x+*c9fa%Y26EI z_Ek4^aZ7Pu|{HWB{Kb>qa=9p&*lVy!J&ZHOm^ z7xqAGfh1`n6do4fl)V2k?!f(~#-Dni*78^ds;j&oQZ{P!@x)U{>eX>C#U`zWRm%#B z8PZiGrX;7@Gw+dW$lba%Q3mr8oQ9cm)n_sGOk3XSDzw^I*ywcaY49#IU2aB<>ELD3 ziQm``T-*bJ^!V6&ky*^GSAdT&Z~h@k@A}H6wmLSjA81g5J4% zaGgFsV^#D|F&ka%=l?M}Z2ixa*2(yo)o(qlRIy{N=~)~*8&WMVmiT~fX}@gtswl5F z)}l0|t~}BbG40yfLX+DWsM2^3>>s3(Wc>@4p_hto<5~k<&Zcy1#62F2u^69mRp}4@_}>&#T=Bf`>8k zc7D<1J#~_~##OPr)0zuVunNkFM9z_;tZX;RsJXl< zc|3Ug2OgGvBCQy2T(Z~fc5$+->#rAN(MB|u6`;7$&D7kTf%zjgtucc)>*eH%n4v~z z!RX!n@#`XxEf>=VSoCxb7?64XKI?WH(V~*1XVO|ro+hMUC)fH6T=X0;+iVQ6 zqkc|lmBZOISy~pq`>FkWGf4Cj$iI~ibHmBFPBh{%KVJOt25!%AY_J@1;r8`?LOw+i zhemHz#`gM~y5-m#HHp}Te@mMaSV8~B%RuqNeDdMe9=xU|{Q{y-Rb)yC70en}B(I+0 zA@=@*!OsoVnoj3zrjeD4pdOv>xB0%?4|Nzo&U!tVcqLDC%S*DL^5T*%w|#4j8LJc1 zUlr~)f&$#R{fi93W~_vqrw^Xcpe(;4SE!PC^c+NUB0l8ZODXf2gJFHG10&s<+!+oH$O7)|6lPd>FC2RcBOBn^fj zEu&&B7uGF}+%c(D4XRR;J#M{0mhoa?dR3iiYx_<0HHs1CgdEHPgcD;>P?&pIsz;}9 zFXU{cYwxs_c+Y!R=RA)#Z$#=sOSN?T{JhV5y6t1vU6?8ED@3Z-;UCr1GQnTg7EY=T zN67-(K^hd}zjMk&IC`*3pi=OzfM+Ks{PHnrXTzD)jms~*wM*!=>*F=f;FVKWRzEnh zT9n#=cl=#ix7qfmp09d=_p4gleh!T;IPcT7i;xH#-Q7>;z@@e5!3ePhlA(+jPZSU6kc%nd)VP%Z86X0 zIt1zgZ`B1Wi^laL47LY}S+Z+ICP8b` zzQ%ii1aTWaEU3z5>Fg)|QN1Jw^7uKBY$OQ5=*f`w0`5Lii^wUEhE)&mVE1tg6bX1M zv(cJEW9BdEr6fL`v_7TI%VWrU-~HC%mu)14dc11;Bi#}7UzKB#oS-g52kq&Gi88zm zV{GJyZ^UglsHM=+$d0UeUWCA~&(Uf#=%`llnm1y{jE@F?ZhLY;mlKF?mMnv!J@xcX z64A4YT>B~-2g$H?B>H*g@ogpL$-YfMohho(vGa99%?CBBe_kXD$~*`K-cTji@G0JQ z(%35h^GC;dL(svtdnRqkmAzYgs6JQpGecWk4i7l<8-p=>X3!(-X_@4Wda} zCrUGHRU;GP{Rf;$&D+BqhXj?htw-e=;sy$XtVrS-N9e!fD5WB7u~8h}ON)FiE!j@^ zIpYMHRQBsVE!sl=WW9B@{7-jtnf`AGk5^PB-)5SZr*N7|FH!vq zMRVTAb)}=P7OJdb^_+6G-E*d;79VQN-Cg#MkbC7U8Db(Z87@e>+&St3*fn8HSto* z&G6dkv!OsM?o${dpKEKXPaxUkJ*nLO79b{nN@g#C|Aw%MT^wlV}hBiKxX0)Lk0|#c}L)7lknv;QQxneJ_kI9lGEcEWK)V znhSZsfi9$EFgyn<$Z~enCqKcgGWe*Bd5*Bn_^8JES#kHho1=3gM_B01p$+6h?esL^ z?gm3|;5xxN%OY9c$p3G--56n#0yWvOyMeWNZQJRs4wj&Ms9ADhbteP4uBlOo-lmAH zL>?7a4&t*N71Umx;n8Nx&W)nLNi{L%#cwet*goM#H*BA6?he326d$T^LRj0=9%O5& zl975oagSgw-YFQ~e(5x3PMYlb^$!sX6EnHjfgKzXBd5Z+zegc##W#=#ru=raL@Yli zw3{V6tIo%N0QF!q2oGpi!IQu(;kL^QoJVugt$ku0U#w8AG9@Tx+_2O>TZ}a*u4Vm< zp0R9N152bYY9>Yg& zpT|9VRTyadT^R|33ZJA?qh8d)Qw|~-pn#kWq{0J2 zLEEj?HpUgKENKK-{Ek*Zy_~I!lTGn(W~U4obtWlHLe?_Lv_5ye*@oQUyu3G|J3w;K z0tp-E|AM&ur0))zhy;T(q(26K?p`9`W970NfxUHX1gr&PGB3rt~9N&>>o)9OP(YuT!^<2@exhfes9| zt|xB&Y$!Z?6I~_=4Q^W&=9`U9d0^*jJaeU>!^j8>V9~l1K-?{$C-f26;b)*u*|e>P zAR;}S6!Y0%`fNS!ThKkk3XVP?MpvBJ;r8S;G_HsBb{byWvM8^kU4G8AAsOtX02wde z5Q*y=yW1+*`_su^;(g;s6g6^BT3hsHW6jr1BXAr>1I!5F^@1Tt5ty8(o-=i3q-bHV zDv~uwDX7}7vO0LcFw3K!8&dnH*{nLj1oKII(wO7Js^F+I9M*S|C$|**6vsoAQNxGM z?1jiR5uN+g#A{0>8+(L$SSWF|HQt7RI`IiHX%5GwmFT4cXhEjSokt<<3KxJW#%1uD zZhCY+mcw-$sd8tC#;Sc*$EM6SpMCuC18!1;SpZaItn^DJg_`+CgZeLAl$4bArZLqT%Q)9G(n{x5kZop21>Mk?X&iOwXDZoZ?Kma6 zXV(gDOh8{(33btrXRbq)6h$V;lg*ZbP%C&M%K@ZF!TT=Tov#4Cj4t@eI`&EHKycmlzJ2@~=s4K)Gn`sil_I^+0j z8S^cML$Y}DCt}998wqA&xPg&@Y=K?pI>HsX>wEzlO*>FkFyU2m z=+1h30{Wj}vYLhIhHa-k@2=pme6JJ0K*h2(g~c*M0fo!@jc#D zxjoP=v9w%xZydGz`X8mafJ>E7XeG9|0dwBFx;fs$PWsR_%fy&Ld7{BSv~FM{3%NE# zV^x~=N2ZW2T`Y!waUb8GFj3ssH402=*P_vNIdDzCQx}`Yx{J90Uk7(h-}lSJ3oxgz zsoj1k(&#=c?{xH*z`}5h+cmC;;suxf4&hV5<;>OLzlMS)uQqoOA7Z!{!)xL#Xfq5U zx?Dr$Ee?fp71Zhpz_(doJ&pX~aRVl^AQl{qxx54`ADn#AA zvT!j0_8gXsz#ttjLraz4d{J`Xsi6j5>N{Iqeg`~Q(VM_Rqv=`#VuhBrQLOr&3A2(v&zCd}mjlRHu4E^R1h9bmG+AESH zQXTl$=!Isca6{L8Un*0<3r-RY=ppF7Pf;Dk;n$r@9(OR$6a*0s!q5{KBawh8k~qgr z?>}#8z|ZY&J))1hbzkuCowvVxCB*N5Hp&CvilSaOG_~@G&iF|+7xt%z#vd0IRPKRT z2qWO1Sp9qMZ>rsR-|C_lA&Nr6R$o;2ZHHAcM){&tCoEKK#R32TLvlMZgc#ggxtK)0 zX${?sp_kn_|6Mr~0xQ((7HbkrJ9AK^A_wFV^s0M5%aQ>Mc)=iW|K{(52Na&hKkWnWn0=%eht2ZD!07HdXr&&|JR{&M z0HH#KbdJy!v^pZ4CMnXs74k3aHnNNiyhB6YDe9XvrI*coR{rald#!hO=pH)U%!Z|< zVhj+9_$v_c%piq1&Y!o_$z-{ePfyP_#X9F$^8pX&C9Vonf7nd79#lBFD?lxfO4kUx z*lm7YP8Gbkrt*S|QJcb7OOKXvm`7JymHJfP8*NV9krv{)xmVw(3@taNg}zW<%(dFD z@?xRxdXV5tMQnQeR-qJAe_qM6?K-u@BWbgkL(QD)V`Fx~K1I&E7~l{S_OAxAvu?N` z?^`x4rcKN5d-`LQJPv>?4wR&_#VguThUFkZ=lWxnbzF`zzgcJsgVcov_VxEy`UuwV7U97_E zH-ws65Q>b~L+aOPYE?RADV6CqHBvj*TB}~fJ+lEEFH6iuL0a|Pht1R307wdbRi=#7 zLIl0rrF1nWP+3A3MPrFIuOqjtz1Rm{S88}^aR*D6yc{6;!mxfv&dE_r8`E$MPu#ZL z?VKr;T;s3q+Q?$LUKxpAvlAsqr_yuN6B_ZLsQnDdI0?pQrBm(!$Upuvbtl4K)f0&X zH_^{07S_()=#Ik13b+nE@!4P*s@;8;IdOi?P?cE3SVSb(HQ>ZnDI4y{=QVHUPmybe zD78xYNt|(Wm)MIzThv~rv#NwW?mRe?^Io*6cjSa5{=zB^#WO2~zh|wYT=5Z7Rn7!w z+=$PwGk12(`xYrqU;NG3ySGL>AO-G4GTNmmd*zP6>Zx9silEcc0H)4-z&s!at!XF_ z3i-W19(1<7qH_CuwrC4XK4S3`oG_+08H-T#R+W6QKPg-08_ro4*|P1`^`{oz)Fkq8 z_wo$Q5y{;x*`c+EZ&+1*(bD81w2{vh(v7Xhi3QQh<4=nhdE#nL50ZCHxjd4lrc!#T z4WE~IsceueQ`9$_=P9(&YbPk<`@`)0VJ*NtS_ z9>?F+^ta?By?F@E!zIgte&MEq%vr`8c^_Ey_LA>|b{Zws6Uy;Z+3HT=L)Co$rtkIW z5rX=_(jQc)io{MkIpBHb5KV2FKZit4V7{CnEvk*uMf2pM)GSHPcVN^4w z#Hn;@B`Yq1)EHT6l&|uA=50p}UKc_=zQ0A;Zu<$Hh`v?R@B-i_Bcbx9YZYITx!ANx zc?Cvk0YzsZXm&^c6V!ap#2Zkkpzx(8J9sX|D_Nkl?Zp4*W=dT{Ugd$U3;y#=$mbrJ6;%WDDLlOChYp!}0-B?ok!knF@ zwwL?;aiAI2vg*n#LA{p$@Dt#8*a9g1LXJ zKH!o-X4<`g0CkVx>Hm)f5K~jxqVTOF?fN&~Betz=Jxqm&AJT{fQNh1Q27Z538C)KZ zvM!O4FE<}E1Lm)NkC(ma)>J1}N@MCKhb)rqiN>_S zG)RgcjLJJ0eEesuG=EGRiJjTd6O_j2<7}R0Bc!-wO}Xb)H)?a${o&KWe;)SL3tznY zpY4NVdFb@-&+}Zp)u?Kq_gf#Q`Sl``fCSE-rzV~{&i={@6JmF9;wkfX_PvVz6)MD? z%5%iKhmEZ@4Za+Dx~oE)C1aGX*VHY{qi#Ok>ELBgT_AhLwf4!~ijAXg@OyJ)X)ZKt z{%Na`554%qc1VIBOfZ07PrbZ^C`PT%&Un=CFiHQMQ4K}UW~twR>4z-V~y-=!>S*>DH_i< zBE4qIrb5~hG^MYvMxz*8@no?FzV6@*$!PTjU-QXy|4gB$uP=Sd_VA?!V#O^f>=F=527)?J?I>ApI;KL;Z5lwJUp)xV*9$}V(02;_{zcXeBD zajsCT%0qh4Xn8Hw4mF`PzzXbIx3Qt+2t)|p2V@q>5e#q?*Bon2n=`>H`3H{pQV z!n`6Gv|Wv=NRj{S)7y`cXV~yd#JjNJinq&fi@0O0Ub-5<3tYdoI_)AdHKtY=CC}6l zNrW+1@LG5V#q>aT+)ueOeD>B5Uv25c+HKzF2wRNXcRP9zq&9O8DFKrgoy5M}oL&dw z(2gFEF##ZVdiurezke4u%p-BFVBhX=vQ&|bR-gBXLH4xaDPro4k058Fhv(%OucTLP zcX{!r6g>dZr1BaZLQvR%JNs|r)P|W|#>X|sVy2wQ(6%rZx~}X8j;T;XrivrQ;)Tp>oAuTkYU_M|fh1QuiT|cZpG(XxoBEB-&sQz0<-(4Ei6-#lW=n6+$p>wJPGt z@4whBh-`_fD8#i(ZyGDS40!*H5o8e188Z=1aB)OQuTnL4Or*1!@R+IdSyfD8>}Ol@ z_u=$pvljbvvV>sDnqBn!4}enV2GzPSS$s?Vy!HyZeM}^IU${M5pZ|;x0+9baX|Dd- z5;<&z6~re}%%A?jXct*&N9(uxVSXS^GG~mD!QJjQe4q|(WK@j*jX`-h z(tF~+!~MtH*s=eG?wkD~hY2F0vm>N6=-iCt+%KJa zH16Pidsit4arl;(I^z9pA_(SDbLr3_DkdjTzQNap`c z6uw(pM_!g!LAc{aZ(U$=5K?w=-TYjvBe!Q9iX?iiB1csO+A+t7l>*cUrO5N2bolz# zh3zjpqHw+L`CYE~Zd?^t#8TP>7umS!Nx}Aqwbz`aoLr_nHH0}8zkPS^Z35YQr-VIp zpZ0y0c2lJYzZ6g6UOduEq&+!;F46!i0ZfxQ-qfHu8%p1g8R}q3GYu2VW85-cT#TfK19nzyyz&<)5WRoJ@D*!Gp`=@TZe_9*XhmTbB1}8w3#Ur7@WHfm{Dy5*q}RD zpDSb(R9nyjr2us3g-G5b4c6ao*l!3<*9l8{$%cxNwI>i;2hUlUPKR9+3!u+58$PzG z^R5v+RfuwDj3Auu9>6G12{R4~AGj7*!!}ciQfY0BW8e$23m_gVV5g%(v?Pku)bnmF z#KWA#xXY&r8^Od2dq-UM_v0{?U))aQX*! z@VguA;Jb@w;6?PADXpsTZ6$ieIbx5ayau7w*6|=VLAFTnYJRnCIadu^DKMKO&ha{3 zkM0jb(#|r6a*gx!{9`@$R5`DBB9m1$RA|qR-V@>>yiY zvLKO`Bn4k{ET((dDL~S10?pa7+3rPmMVF8De0ZWFOU_VV`Xune8>uI2d1iGu(lqt5 zkDZ-gnMw~z5$SJbL)3)2?@O92@YG(0nzz28vSIuNe`-I9-xvJmoT>Z%^$ zgjxf~=@N>>m_2%u(|Y(vC~?B-k9iK1==@b;IaD>y)q;s620@j9e3Uo0IbO*YhM(%D zs+U+D+m+SNCI$FXK$Ms{I??Do>SlV{pl94gVoJ9z|H;$fELShr2tw71WJFChwu^Cj5&G#E0=7`JGSA`|msy+#f+Rd&S%1Aoq%kWn&$=QR_rmVadJcSCHDOV|{&(C7TNfc!t(dBzYq`_DB~d!El~Jf|4)7pG_M(5U3lS4Ov=VN^m8YDzJ3Q%o&Ck z;&&h)%5^I<6WDGclo0grk=MTk4I8<64I3RafAv^as6F|)(y0`oNIXK$of2~I+@+O^ zV->LB`@uQkn^w1*<(=ia#^o5{?o2`v40)MVt_|?u4ns%qQIO%{cJlVQ613UrS8E5| zFWMb8A#YkCCS?BkKI*&4i(GMKcoZ9xZ^bCw;#wrPZ?w-g6vlk%Kuz2QkTM!)nSq}- zN@bt{DpN63@|&i~mm5qn%9WeS9$KkaMO*&z$ADnpbQGDK4%Y#5av1w6RH~Z%mCe-m z2TeQr=2{5L4+J&OS%(2kYe>J`vl_#sW_u6x#e2`foBB>3)F>S6$dhcy9n7H-A%&9e z$NBUjldP=n!SeeXRO7gH?id?75cY|RGF|VO4iUff;N75FtuwzbSRYt}f@f_m8 ziOVoZ!)QWZ-#x5GXDB%!Uz|zR5Evj-^oTY#J8)ijzT9$UQmXXOlH@9<#YEIq(^yHo zoWoqlTZimc@#?NvJ$ z_^&C1p!4Kk+^Muz%+9e@t(oq&@(U+0PR(H^yf*{Ba=YU6Ls)fbPn1g4l)DDfQ~f!` z!s}@j!aR>gsuf*{PAJ^e&29t`26;Xqdm0!`RVX-S}WD!BWMh)jrY9Ptp^YTn`*=CToi{LB^XS(hWq0M zJ_7}!$MmNMk~_S_R@L93DOQj^bb#BCpWFdyy1$Xf2sdrMOBKe_v!J%Gkh2PW!>e70 z6sva=sxnIf*TOJ$_x5hp>Gp2-e&;0ycaFx_D0K_^{ed<`4_x(hH;=6XlGnYznILl9 zm@CJ@GPTb@AfBq3s^vf9*AGj51rPNqMP=E=aXadbLd1s~qWsH3jg7e>*!rg22R`_^ zj!XhdL|i)U`@O?~3eL>9+sfLCx6h-Oi&fQ+p!~Cx0YUz!O@M?%p(xcLm(3>#lt?&UuGgDSm&DF zG25mTkUYX80>7(d0{dap0txG;>={WYa`}Y`(*KU!-Kr0c63&C`UuWgHdg?BUvVU57 zSyNkMTSh67mC#PfCUE9Y3IC$AP2uPBh+p9`SMT-j@LM56JtV(n@_oeqR2;4Wl3w1Y zkuG(+F$7`hm2+s07;SUrj=c;!?x|^T#UD=mrM>0643YtjcE{qLD>k(?j3O*_ETSE< zhx?m`{I|3`2gZ-xjsf79*tG*GrA^gUe>VsqOuW|^@>>H8q~$)&ksHXT0iZ!vjDXlgf!^QdQ89eoawwX*OcrD6gBAGlYx?r^W1NI+wZANJe&SB1zeA@3G9!;TV z*x7<=pFa5YW)}>PTP+Qq<<-O4!+Us(ig+w=-IPM`178{WnKJePLi@c9@QjLzyo8{3 zMXtp2AY9u*oBa?bK4M)`Ms4Do&e9b~;h_je2O!&LO-J;Q@5)CIz2Dvr1P4)?a6gll zAIRDkX$8FStyf6jMf&Owo$TUl^2Zzn&v&|2(qsxMLU9JzGq?jw-P9L`0ie_N?^ zzfLZ(CH~&e$NYygxGemX+)I~v-t2pyj>_0kcvM0+ov^vYn}B0k^O)e84EMM-!J7fy zr^GGuPG$NUxgpUlwm(W5b&mlxs*pBel<0Z5eqxN`Z4@Uz3l1ldlx!;GI7L0a+-Mye zhiPCL)@J9=!Hyqih=F-$u~IxeWfX@Jl|Y;-mm=>yZRY@$Z1)#T)+13HJI4Cr=Z}Ps ztP`j1ONP#T2T9CTFBGT*TY-e1e|Huw6SetRDpw3C&k^79F~UgLa1XG44K_Bf{KPnt zLwSD_{K|5?UYF$6*v*SV_Xr9{5MuK4m+A&#A=S6MVE6-eK&-U=uM0{0gvm^`hR{D< z&LEtcklKk-B-j4qS10cC@j7v;xjWIy(!(dvstNyl$I12ajnl1vN07i>mPq!%N{ts$ z z#mjVDz5RmT!oFHU56Zi1fYeNO#`Q3U*df*pisSrg8Zk=R)u*Fnn;-W2w%CY1#T#0E zyLGt0TniY*_`?2ByY|P8+4Mp2hHAVNBjWzWUo-StZSd{)|&*Bs*g380PT&RY@rAuv zOhrKbfuepIo2O2{^6RVlEo`{UMr4T7!F%&+>xXWrx4bR6pG~23a#ur-$!P~JV_$5=};g!-C9|3DTycaOmA-dHZYo+rSQ9v1`p>;@1fEbO%Ew;A$dtr0+2J zEjQoJ)B#0)Aey_fcKrC}uUmypWd%0y^&x zpQuj3&k#Gs!+w=rgL?amGMguG%Iyz(!U%ZEHd8$ zl4URPqYST)o3uf7wp(GP8t;zn8-Mcd!1o{BmNx#f7CY5(Djgn({c^SsN7o7l}n`Ys&bj;=Tds~FE z|8`|XnNG#>|7ANi=Gt_${wdJ9WX90x>LCTEG^D1e^9@K3y9{#b$~$plO-7NPRjb~r zB-P8Mr9d({%|$aiJp9Pn0v1Yq=cPR;fo!cS*Q&|j%#h8J|2|R$oMYF$Q>i}E2ZL1B zj9b32p$0!@2%Jn8qh4>)glQu!KfsSiK2%N1guWsz zC&qJ@o@H?M#0`c`wu4Lcc>}O2XzoD{!dS^uStAvTAv#4#W?L?_{DLz7rTG{Hrktpd zY4>fEC0+Hr?mM*P&+rTrf*`x9yseC-H8S*ZF&& zRQJl6?)hgxmKe-4^pc!QcjFdF%d6Vx8PnZ>TQ@x>?`z;gk}&<{{ssy zDQz`$trKVs14T@B)B)Q>Oej~zCHqJ;Py`8;r+WDIO5;^)h;yg06o}= z&O_XKjY4JAnL)>4-!9M~vU@*aXRv6Et_QTKA}R0jNqsv#Y=-*-eRK?mMI|t7zCf)} z)e8lfu0w!5a_7InB{LrFYcO+!Ggk5Ou(R>9MPy~G`a=|TO6Oe5+h!DtWSsXqUt<0G z{gAl}#nJit_z;xhDkWy(7CM56uM9WNThSJuP6BACq6`m$B*A*H_s1OIr{Bjsh#TB@ z>F@0lAcv_}e_@uA%Nd7>z3D*+fk`zqv_)8ArutXXx$cy#2}LlGv;XlWitQfBE!Kee zS;Nl!pQL~5SjNX;D#q%M9?b1f@8{;hJ2|PW8GeK z>+E`d-w**z#=n?iZ;Z3?M?glg-Jx4kCegiEQZNJ99X^mF^UEjvjLvpLUg*VeN#n-M zH=2k|+a97vJRQ5l-35Q7V4)&ihb` zYtNu zKZ`Qg6y@-=l*+&AT-d7GD{5~Uv*>D{8Hrw0=-y^Q&d`#j%L8%93Z$GuzI1*;pb<*8 zy7vKK_o1@;4(2CM%ib}T|N9%U54g0iN6t$;P@?#D*2rpN?xzxKk$k$e>d2Z!BGQc3 zf=60a>>DHKx8b6uX~_ip(sj=8n;8#Ro(bGQ<1tO@7GtI^D{XpPw~;=__TK7a^Zy38 z^c!F3u+~M!W@R0JzF^K0<+r)7xbmSX=|FJ+N(r>n1 zHrvs=pvh$8`jcLV{*P>?jC??Lh!Pj*ZKXwBJM3?RXQW;;w5$L^EW34CJ3Gv``3!|C zvKf*RpBAKlB$=$7i0Mul4-uiRqE@$`1#ZMMVpnDSMKT{>gNd-nSjs!|Y%bV3+-d^78vK3ENYzcTz3qPp^0Bh zLn*Fmm!{YnrbV*-DB~(ZoOfi`0Gi#P{(b$Itx>^DM(IxfFR7|tq0*QsWoaIv*FTT} zOXi!2zVs~kI7UXAOA0R8q11KqVaCqmPKJhU)FAbd_^%dQ*ZR!aZ8Zk-u_0wgW1qk1 zsjnI5M%K?ts|?OP>Qj?s4t%4<}g{mu2sH&)-Qa;DVSg z2Ud?GuHur=x3SkqlWcCqJ%-D@)pm76yg%~GM~8}DqL#AhtygimwS!y~5aC8R=grwGk zZ4^hRZ_cdK!;C{gGvWkI9x3(P*$OxX@(`aOTFM&#tng-H@_XOx`k#bgOIfv3Jmun zO4})UsB3R*j8xawZ19J_$M-7mv| zAs33o>X(Firb?lW?}!nH6*w%Bsu6;SZ?|z&iYNOdwhTmhlFfFDNY3+<`X>_f6%k;j zq^u+T2uRQ4A%L)Q)ab>T-Jxf)X`J^@*^q&Ps97B0_*ny2~)`ARa(L&x}F?@5m zh_~BP^1Pfay|F7z#nHBdB$0BHGF4!jTwOspXQWu@cZw{XWw@9l#CV@L^a8p0zlnuB znl^^Wg*|Jw`k9=scG#)iPkH)~G5&qI)_Ffo4*)+2_cZk@6JW5qbLKa1r$tjycBioe z??K%RfpO&8&%1GcZ6-X>aaf}L68JWB{9oy!9(V|%Hipv2u`jLI}a=jXBwYe~g_MEDlQdw24?xiq@8@BCMO{+ACRg1*Z znz4%H%sJi6>>&z(^&%Xu9b+>=6@ge?8kWW@6QnqtNw%qsvGMiN_td z1K)_}N2hLLV4GrO0bVR9pTgRZWXEt7L}}Jk>()~s07Fz6XjZ4Mv+36)FkE|@XHaR| z5pXJ8+ujO~G&#vEbdtLbW0n;9PhP4yQ{es=jUDk{A1()OJCa5h!a%oNTW3I6F^ty;n5iSvJ=-HZ@|niTPM&W1*&^7_~x_ZS@!Tcsa4FqG#lK*g2;3 z1S27-+#UXCy?YD4X%HGq>g#=r$k;WoLHD=e#E|t!YrX3&>{}MOz3sFa=FN=OgTTyW zMQ|B^Wc4m3bv$3UWJbhhT?I)l@#@%6hP3i>R?CtV7Z*YU;lQxB6xdJn3i zsFqz+#K6&3Ru0HDa8Qh|tMXmB}j%dp&|sZ1FzR6b=#}- zq&=oqcm}mg90{8Ug-Du&1?xdaZxN48^Hm{~OdkgYJAx_WW%5yv_3r z;F<;!Ou9{C3%&fmO)5I;n)L>yr$7ic6LwHUf*A2be~|UAd5;jX5)5?tAO#%jPeE?H zKt>6JNL>R)42aJ$K?sYUM7l3H{30Jf0Fci2n?azem_4dadh1g8QW$atvP2BF^2JQd ztCiGdEcww#M2rjngmSZL5}i6y1p}PkK=kAdTH3TY<7kETTv}4nmHNpYaKU7%;wJxw zH2Hubj?d7F?maxE^H!RwYCOfBo*DmCszbM(v0L}H>$Q^)iA{Ifq?WY_pnj@S-cO%9 zD9cu)naX>!R*W*5dav1=psI_Ze<42UnTf0lLS~I2 z@{c!6gunC*QtKL5@zxexBdr4_$>>!s5{_Vocs44UzbZCind@g|eaP1{}eeM~zK+yV*|5F;@^x2ov8yeU%@P4$5II1=A4grOJaz$&GSE=a8QsOHc zQmAX5Xl=brMZ_`DwH%HujyGm^q8%k!N)aqHRV6W6;%o1(j8E2Q{;iZUcX&@-OiiQ8 z)0{GyES#RKZ=`FSwCY)CuevVz<~~!|wH_8P6nQZx&~5v!iFZT$CuO?93-|TZD_Y9* z6|-jCN?=YsqmEs7=wtZqRVCQ!7CT@B1*A82GkAwGujGAtqx2MxFrQoil)=uSGuBMY z{$*N<3Fddf;`f`LI+s@7Zx)?^HC$phJXG0`8RLR0LdC z7u(h?@pHVD8L?HDq_(9GS7wq#zyOk@5k7}5mOl3H#<3-@b3(3T*ok}W_#X_KAYB_4 zD4WCN3OuvPD-v<{x^8~)Yz@s>FXnH2!TZawigmqQ%cy=`Ol%LK>w5$Z>iSFzZLLoY zvN2{+z2PB}(q+u!KVKd+c!WuBrlhmyUU87xnf)icCRe%thT<3m#(l@~`=(@s)}5o@ zSpV6B{_RoMN0@6PwtcBUS_8M53%mH_Fr5zGG((Ln;XGPq7>}%);f`RXJW@6_;@s5f z#2BibaK$KRHx5B?kQ=obRi?%;3U!swE+iqEJK^|!iy3e`4=U^n%u;*0jslLveFz8= z@H3RT?#FHm#wYFn@)XrMRD44w!RSZR3#BBAefhnT-{Qd_)VXK}jG=+&(c^C$+gNjH z{W*{&CU8%0b{5LQCQAtx`#C`!17CwVP-@rkV>deNZkzv1e1@RV>j)mcJ#9peL zh8TdVSiu8a&2~T^wB9_^{jFq3(F0{egB?Sn3wGNFp*WQc_2IAK>sR9wkxk-;bZUO-6vL2_BG;;w+2i5k z`q!7(Z+<{Q|J>Qz zu@V=2yuu=$muN@s`tb@op*ig}XfLt0XM1|@y?fJr^uhPuzcU>j9bs3k9qgus1t1SG zuRhwEUSm-u{j|B0j?;>jYkgSeIw4E3!-rqOVgU%|X?raU7l0to-9I?5`g}@FK95># zIsch@Zxg5a;*YW;h|Q6p0q2XgDC2E|=A=55UA`}ywU9GR%(bNRFnhF548J^M`pNf$ zbjNzxzxy$!@EmTsN%J^i_pJBNr_Xfcnx>i-@1S6*lukBQDdkobtk6gcF|WWn{8^pU-{J=S}wevU1+N8?!; z9ecT29_8F><@5uqZUpvplPfk|%j)lHgSdRLFt3hdTM20&Q^obP$MoeE-IkWIqv~=F zbb6IzeMZomtA7~Ex%PIqUN;BZS~Bt!OtSablw-@IS*yj zg}dQ9d)Pkz-ks^-lLxj9{PzAXY{UaBb*!u+KL!II-bst@!<>Z`Q(5HnqKuy{) z({suO#=@dsNk?So=WvhV4GgE1F>at=Bt3{Iryv3)jiSx`1)}d?vN^|AifmTOJSV-v zs?2TWx!~aO57YGhSNPR39#lPlx;-7gW_=YxHB8m(ztncVFZ>XmsXvV3FTSP2Pe!Oe2P{y=MDe71Mc7oFk=W3a4;DXV~9p1jE+a8&If}J`uNJ1Ti6BU{f|$lk3Yi#5Nu;_58`wm z$I_usg&WV$^|31QDX={)h9jz`(rg4YBbyLf z+@2mM8Px*=f-N{yc~wgNR0@CiIu80}A>kK%;;+PaZ{MEwu>-^YNAKG%AV0+d5LUs) zeJtGJ9C?hmKL7m})5|}8X$!!uKdCMRuX9905vN~zTWg<{Jq zRqFyhs%OZUf6%G%!pmfGgc7(oh|SJUrx)1y?D@0j)6*xTV4qpEaFbcF*=45-w6aMPG>FZvQrcd>$245dbEp{ z?FM4=5$nph5DOcjgA}JT!;%jb%zHd70}Lz4BS21eQha+{8d5C~Z+>8S!gb5RAzqz^ z*Qb5*`Pp>ufy2bFLP0MM1}9vwlH9VBEb)oSI25Cs)%s?D^hic2={+yZtW0_tm9tQ` zk?HH?B}?o`_c}TlS6X0LOaz`&y(Ja5p5}5(y@fE z)*Ue$Q+fbkB2_HvBw`p+u?~Hy-eUGnRdC^`J~NR-kRKXCRW3?aW~yJy@{Y-Rg&nJI z@fF+BO*YlT$|VNXuX2G@`cC471KBqx^_adKf=J|_>sZFQM0WThY_)Nd`}>Q)%>t00 zMVs@4=ZT(AeC3t0qRJ~JO-D=9AB3FPG~S6O3D?)kwLF%@S6UI3muXq1(u?hWJk!W% z&}AE$qHj=!Wo#kRpGPp}gRZXz;0#jnXoJ3Gb} zrohZ@cJ$4$U`Ax#!?ISO-N>sy3q!i1R%i}4de5Uien=0sO_@~3%oSH%A&F#uUO7tG z&Hjjq`ocFJVWr6#V~sDfZ#OAB4~*e|Ug#bn5j7_6Im_n2z?QILl^D2at%S-2s7y)? z(`yvpyzs&ZGNKVJvEIJaE~QKQI=t7{!L$C@VT&)MCx2{=<^v!8!!I+p5BF{B_q{u} zr=7d_1u%C0uwRVv4!VvKXc5{pv$J2BP6_gQTC3^pEA{i5Je*%&c;jmU$cw*zi(f5c z0SFeUo$+B77OrueI>#aqK0&Z{D8WErQn+QKPj%jqZV!x(nd>e={I?4n7IhzDIwU`!Fe`e+4>aWqU*jm8_7bdY_AXamZH(3eR$uZO5c0~WP% zw&Y3?vC~OTM9>|KZ{QnUg;6tEeukyJUZ;_GF3Opz3!N|(B3n8H`|)xN8$nYY#s?}d z#KI;QLU6(29u_d%{-0a`@;PX`=m%J6$D{b=#dW_2wN9d}BNl*Qce-Od)aGkoUjFSn zyr%G>E%eI^Ko|*LyRPzsF6NM09z^?_j8>c2pkU>On0y;&>2L81_N-mu7Z-r+;oYO|u%DE?JkdkIG)&2!#)@G^B%!a6C zj88NN!*n!tH#&7OgD>h$SkH>jQZ-_A4=m+bFBhhcj8i!zki5b|C@%JRj<$P+9bI0( z#%>?j1>`jre;nhQh_A<^|GRj7(;*&I-?arGSOjwa_H+w7(rj(*Os`*^PmjLan*R0| zz7odk=zgHzddpaS%q?>b9wN2HlbAfY$b%nSI7vER14EiE3~?;+{(;l>ADR(pZMIc{=hk9JAm*4$=W{4QMNre zKe1i+vHQ~<>;STRR|`ONA=ToqucUfWWA-uAWlj7MPneXd--}cNB?8heHl=ST2(zSL z^`Q4zi)wRKy+4*bM|d7K-*raC%Vgq4^o-dgf8F{vvE5@8gX^qcZ(~)t?@Jk*`&I65 z!mQ$Fp72VkYZYHOrkh~1+-34?1GR_bN9~d^;)^!YAze+%07Ouwqu~zsP8cB4+cXctE)kifa1wEp{Rh!gRctOsRrcdqTh34C3Az`vrZv%>g`Xx`eb?_q{ zH?+T>2;3|HdFR`@8FivIqA67+RaPoG)0S2TPq5-ItA=KxlxgLRTzJfgue2g6FVnJ2 zr5D?I{41lXaJ`LMR?Y`SST3^S)Jdvni@&zZU_G*36-un68jP!0wIxuc)SP%Vb)NK$ zkz;DFqn1axWgR745L1<5jLyYh&GCWiYrG2P_#s~j^TZZ`u(QqR$A~P7D8wd{UW6uUt+zw4)&uI;Y+!Rsty*0?M5Gd5w>%5fQLT# z)i2(;zW?Cfw1f9VU*^bT{OWQ4GTMJS8U5i{uP>@E;)x>6Yyk)ssGVWK2Y3JA11!F_ z%DRUFB?W7wr9Hd;WpwsE(Bm1D+n`SM$)sPt4_FBm+1}5-oFsG(``Mis%+hDdcJjHX zU$?3b(m=gdW!6u`NF}2>b!;ojhWe?>WLBD4AjM=vXF+(;WJ_)C3qZD}AHJKWZ@%DG z_1m^p{V5iJ_+ky(asAZQECS(!C_JQcx@_U5Dd_z4JibmQ)9Bygcpt%{-}Ke|kJP*Y z-5z9-?}{v=hg(V&B-cYAU?FHaon+tsFpTyLl{lg$lG%0RijO&vAUUhY5cosa$Y-2u z5Tji@(Bm(eKm7D;`t(<))8QTZ=bw5aBuy?pCs^2+x{K(_1&bNEVW zJw48fTZLu(W(CF4`Bw>r1EpCRjjTE#2Y>rrLwGICUBLF=yE`3xcz@de@WFJ51t8md z2QbaEZW9};>{p(;2`OquaWjvvP<#4cf1Y0a_g{Pgh@IH*rxzN8q?s=>pElFEAiI`! zIMUP-y@=+4ET4U6d%3JDb$JrKYzeAze#)_#16GQ2!8len45GRR%l&|*pwmv$WTN89 zwtFT8u3c&yTPg@zY&fCBSU9BQ@IxP-;k@|U*WXSLe|U@qA6Wc~3i!Oq8|hx}9V|XN zJUqmLkE7}Cz1!1mEJi-!wdnzNr2~(1&11~1U;c4tdW@YwPEVoT%+o?!Q!bF?K{pAp zxsr=OP~fg1MpvFYfe;^9@k{}~z_Q(0WP)XUIQ5ZduSSb`hRw%aK1_xRnGKBRS=XZ3 z<|oPVIUg2Fe%}-LX0J&m9K(@UpTmf36Hz?F<)}$54-~A@CfthzSH|} zUFV2i`Vt6**O@GTd{8KOZryz)xs(M+#L}-Sh}_kOutfF#tdf+RWK@=n=q&dwM)W7l7RU?JsRXAOoo% z&#j~5av0T1(yCuiCw~=B@{y|F=NO14sCYpi_U*uCp2Rmvd(TzQI#lBkFXMiye3=VN zJ5*1^6D39}^ib7GoXe%sN9pU*c{xv9O8)#5zU2O~6kTCP{B?MJY_cB7_ZXEo!Aj<` zsp7BppdQhR&Ty#ASB0@*MimczGdlxy5*e_{HCsNN9CTGw002M$NkltX|bzQe|1mxSnMk!KE)Jf3y8w_f7dG0yhgl-uXU|&UUMd z%1UzuMN>NBIjs(4D92w`J{V2NfQA;UVg^$iEe#ERbc{0=ZJA*Ut*|v@01{Axt|8AYr}TRlF5y3+uY;B7b^6 zi@~=l!v!Anl)tJ!dG^wNWzVgmPjR#H^u=rJ1cFyA@a9@nYm*D7*^Q?aH5Zn4`pD%) z3REFJUE;_5Cj&>g=>>cnwkH8~q6Lg)d#Cmnq7`!}&uA}nO82LimQJ*cI z6S%>*jT`G+{IQGOKK5|Ko$2nKBium59dTmq#`OA@RX0kgewnturnd{Jaih6jNiK>n z5<|X?7@p$}`%63se1RQ6jvrxM!g$1mALlP)mm>BL1xmteq#AGXIYKd`(>U}pVOqMN z5lHmI%{sSZ2~yLMk0Tl+>KQEY;sKc1A%YVxidq05|D}a#(cOr7f&Hv+hb(LINlyKe zF62C|MDz-MNw(Lo1t1TucY~dC^HGO{elh)S6Ki; zzFVZ6ZD~&)X;WPz6{@D!Y>%5UF#^wV%+5~p1AQb{ z5|~Sy3qe&gn#HKRacB!buu$O`54oRz`L&JxXV~e0iz?c&iBF3mjn8^6Sp|#ReOOoN z=&|8!v`q{s>eEoPg%>?3oZz(~+yUe{ z7l2?l5YDZ9P&pGUQL34yy;KOc&W(yrxgKjB4gPj?O0@0kbt;;G_jAVuU7kcQtL|r5 z0OE^-QqM9bqy>V~!ZjM_5b0q`y>6K}e#9>fdJ~wEkq#FvP_uR^Bf*j@8O)?$Ajtvd=5e5 zLJ*esxI5i07Af1SE6%6qcn!=qU*a`u*a_st3-k-juXdENjGl&@bT6W%1t4^pizh9$ z1((d@6N^GDd|oYu(a%v-(&sw2XLaV6eWKaywQ7D&`<&*naTu}0xqtN0=qNMwuac-} zGDQLz!-g;0ZBw{c!=?c;-U$j;T&_bxKSIduPn_orKUh1%X7tfWPY{d5aJ=&kB3&o>M% zPYj;)JjzMrMf)D`W_`PX_x>d21=-$nm9v<%k9ZmPQ{{a=vtBWCLA=c1ST&+&%({6S z_W-^wee2p?!u^!~sDG%xEc-Y=gM_7yUS4{I=~Lk^!cmUcb#T3n%aqwC7TZHk)1T28 zu&%*enb5gTU(90Jl#R_IBv8s4*KDLZxCjWPF1p&0GQ?iv8c8#SGi61P9G78B`!%#>6rzNm^;P z!8{M~lseVFM>O$Up8OHFnQvD3BQ2_*%GIx;v1C-w;(8jN^@mMAgco7UR4bXTSSEGJ z#8`&%lFPd0`6c-!`dq`Rmf1;5(3P))QJk;s;z>=A!#xNu z*}8#+dxOnEdbnPCfdKioyiAE##z--;-Vu$0Bf4l(ob`y-r@c(iU$-2#c=Nr)ptm0b z4iP=8H>21#F_n;fR=F3><$_g)%w90_vhc-u8z(6amDko6FE(ok4=4VlqkVjK_^ZnI z?_sO_yIA~jXWG4WU^fm+UkSaN__=zHSkuvW6xPRy4lFm^w=I^aRJDL z_uZEV=Y99;>aX#G)fa}5o;N*OWek5#-LdzrHIGkpEITlA@OlF)b10=hyb^mDPr&H;7}z`})F z|MaWr)~`N+IgZ8g3K*G?57{sA)=2v(YXOMuM)&CP^x})ZO)szrgbP5n@jx!u*-b(N z&r25gQM+0YK`))KWZ;!s)i@hxE+jH$;5^wBMQY#q6}9z6QNUybi$@eE)6a)1Yb z2Y40C_TD~N96;PYMc(A$@sW$D9op~g_|^36_g_rU@d}ueM^AhqC0?0g^+?sv-M_?8 ze7Udkpc17oi`QVI(9i_*w4aaQU;vaNik8J!w1JvJizu|S5e50080xTJ@FVN7p==Si zJin|TgtAh1StmVog@7fXMv*yw6eKUAN3G3F-}vg6Z@&3{`r!xcj)O%~r&ut;#UFR@s+Zf?eeU+{TPR~OGR_q)_Mn{WueRXP z^!mj#J$-bJSHNJWEzGmeopOl_-_1>{i_l3qXbUkgHH$LCjCxc5yz7#8jI2)Wo^Z{-Nu7TM|n!%hW5nfxVpCpph}KK`7p3P;_;!Uwozn zN4>dY*83lxPrvxp*>w9}vYqi=-u&%or6@;uBBn4^2Mf~uNX3Q_zR%=D&vLRUTE>W% zX~c=n{1UIH6T5V*(zhgYX}TP9qa2%=%F-eDf*RZN`RW{F!up`=BQuR=p z5l)kR>0_(#5ZwyNe=EmVzwm=(^%dz6zR@S*>>^_1r-N7eSM&*69Uj~51a69d_Yt^R z0P?fx0`=stBXg#)qPgsOQM5op;iv-|r5vU4z49cTb!XZtdgjTh(q2a%U;|UeOkfLK z8BbNBgz8smH7Bb|RnJB*i5QJbEM|kaq?h$pSz)W|@~?7gPI8qp$}QWiRz`A}wn~TN z>V#C~YP?*26{hx`D!*CoVjnlt*Q4LG{@z|LXWONN2SB_`AJMWt=7s6$(zC?x@jsI? zIx8QP+08Zl-1_u6-Yw17!SGl2FJ4Wj{MEfZbmd())EQyA(#4d*OFdAhVjoRwjbP4h z$bv3eLijO!N~tfzne{`U%#flUqw*@OFifR8({euR$@ES0VJF{g@8iR9* z?_e~#1QuqMuLY|N!M$MStx`7U*%-<%sJv4Do2y==XlyonxUt8reYyC9TLbUj=i-mM z)9&qqX$LnBd7SC#Z)n`a&((88DEyfweVnuags%d4{zohT`Th}hDSAGg<3S1g_PU22 zXf=I0gbObzE4@`F3ZVzp^GeW!@NBsV$eg6G$)-ZUi(bd(ZW?kGKQqb(#85e-y8JBNoh>d(}+r3Z%Br1qdH7JzVk zAm2Xt1-edu!-P&+AfFW{y;%Tag2p1uF{Y0KewZw?Mpp(!IBh6>RS|%ksqu?asJY?m zwKHoC9hAe#U<*L7ef@{OIGsMfh6NzmopP?3$;>eqmcKTD_DW_8K;(o~H|p*YwAfgD z6Gr+p&q|-@*Ojte+%_Fs(5g<5JLm%RQe^9gI6p9t?cP3`_8#EZ%m4WKboALrI47=m z0m!IHeF4ZRt~c>ILM;IK;;;UyFFerJ7{JNvdss7cop0Mw*Nms3=gmvguf*B^DtW+TDlfu+g0E%7l53;#zM-krx$nEco_8u-4vk;ikbR) z0EBFOSPfnUI}|C)sua%iP~m75EY0my|rVT z@Cg>#a{>`7m2ln|8niCaj@d|%~J;HhMl&?s_4ruI8`&jV7g&#+F z<;yLevykCJ4X-Hc%8?#kqzBL3P3r_}XrDfsrfJXJNlZ+omX zzmn%4kB!$2auHK5va~}f3(+a-!bu|x-oN1tb zVTi|srcD7e%+-ShRw@qK%*Qzv?C`qb=+^mk_r0^}K6U_k@bNV5qdaM0Xcidcdz}R$ zQ@DPyLuI7}h|G+Z2=YIXOjPt$dW6ZcqDfA?o=*NMp5*)VGBUl6waf0b_iea~&TM1) zuJ8D+bEY!i;!X*Q&hiTt!FL zKkRp5L}OgW*nA2FqN$v9mb{#l)4`Bz!KI8u5~*ZoRPsNH!j*3~V z_sUT2F;$UE6+UVlsx_?6>XPk5zF=7w{8yRmWqH*>X;$pCEL(NXd9(V3s<(XsNUmS5 z{Z0NR0(}H-7J&2-d1uRIv_%b+@6%j4@tmfKOv9!oKjX$9w+*eRlAfiMK=CBhmqo8w z4a{}oNHW#Q5KKIys5W!G8XUbYE+?9!AuHn{E^}Gia=zM@oV@c}(yio(CmNBiBU9$l z98p>;EVVl3{MDEo619nR=vSKIY%xWP1)CL6un&%u&C+%Jo(Zi%==HAc&>Ffg16kJ} z`AHj+5l!W6Up&!981a70RDS&g{#d7kUH->U(zx@->C4yHj{B)?$$jz^zdA$t95*R> zW5jQQUoAEqLRsVTAZtOLMI}OF_iuqKvLU}9>g15M!X_c!1iQ+CReE|}lzAhaS&p2l zvjzy=S1k{un)}LNqy^d8BP)H2}w<=h*iA z`R~7)UVrz)bcSESp5rwzb|^qz+UUEUKcR}<6rXyY=}cQvi%#71WA*bOX5TtiBPe(% z6ST1kU4$`S4L{qEy!16ZYBLSZHC!Km*_?@j(b%Q702w`Z+Qc(`1cXmKhor}9ROr<2 z96swh!vmD>zuCeLAiL8uY*$|vfY6R)VBczlFI&KY2DRs2EZYZsq}=6$TeSN^5aaguU*Riz(14xA4%JJ6i33^!{}8>(8dcPd|j)cvT>udh(F(UK)OPH7KDs z@u37m!&kuYn)9VCJbsSFA20FYf)LxP$K=%bp#&$Oy~d>B$$G|)XbX;9K(+_$98g9F z%@pOri>I!THCCA^ zwDAiEQkJb4eu!mrrxz&09R1{ni!IG(Bf7lvK*u;$cwq4$j6|bb)+nUTupH*>aG?N% zj$ri(<6mWPO~Q3kxVCuz!?Wp=&++P)_s*w-BktT%)b%Qc<)Sxp<)1E689@1(amZV! zk)r0#kt})M5U76;E7-A{elN+3PJObUX{+d)`Y^&T*&JaLO<`dW`I;C0ZO6rr_PQ~g zTQ)8x{5n~?H-fm^t3h%8?ql~S&Y!zDpRJYN_yQ0Gex0B!U`k-%a`d5cV&x#L;svhn zgDOi+>6;=TonbOB^734)zSg3@&1uXm_1uNCqRH=aUI(G)3-@EE^6PE!Ck=#aheCZw zeTRZ0+7ew@87z8~0ieeS`!=VuHjVo9=W52OKWtPl1t;`peZ3w*dwMRHabo}$sbI38 zI!}yyx<=LT=1>Kp5v+w4Y;@H}wv8AC`Jtg!<*IO=n_;0#x|igg?!HTYuG#rnhp?4) zLH()JZp3g5t4HlKnc9x=vZcAEB5ST{^jwkQh&hOTj}NItUe=vJH`%|_2;3|H`PnqQ zhDfEXnDROT2EUgyi5~LJe5b7+SWq#=~${oEn^fCtCK1g z!sSMk=u)FHaZ(_I;t4DIEWHpglem~L(z&)n7pvbG(fcD`sA!3o>B484oDfgt5k|Zp zGnHRIp+6j4_#f#xZpgoW{0zUoe=?ommuJWLoWI76%6KxCyRXKiO`@eAIpLY#g~td> z8Y8vh-gDKfkjj?I6*13kf}KlO%90+@iIhJQI}b z8p^M12Pr9rvW_LD=)fvFl+U_;+I;QP_*2l%1^khL1s*%NLC9Z5?_#^{J^ZS7_wFJ1 ze0UPESN%3{U$%7as7w_j+6JoMDrkFs;jW1$NBirGvH;|Zucv3f`(k?i{SVVQ9tNJ< z0}uxN@*PR%kH!rvNBb3;9Gj)dZpo_ggOGjeSkYS|2rLyP%Ja&=%$K zr3Ezh3K;AF^4V|Bro%hno3Bz}R_j;9MedY|iTYbprCdbJp-?4a)!gQ!i&SAVEzr#( z4Dj_(+US%U$mq-}vI9)0pC!^yMv&0o{p}C-YMobDSb2uUHrKKM1Od*`&9$*eMYu{Ub>Y)| zB02i4zCyiTuMk4Qxz1%;MR@^;H&x4bA4#JEI?WIBoDh)8C>Tua2?s1B*Yf0OSSw_c3?>zz&Ply^q%~-NM7;yI6$9&+Z-< z!g8@8KX~;WFr@A9wMb!ye%oAQ4Nhxj5vd>E_dL(_KAan0zrZ~E_15$di!Gl$*}{Sp zNO6sqE{;MrGCdQt8W}y?uXG+An^6HXY#&AGscl@QOmwn=$fB?NBc4 z#He6}4iRx;B-SFqEH)~*D%d2qBriI3$;C{|bmn^=X;(RxY_8M^C(vN*pI?FvT zFg|vAL47dOTvR@U5Rw@tSfkoWO1!x?A>O{!M@{P$=A6pe({f%1afHeEA1g1v-WGq# zn6g0!5OmacL{mI_Ea{>NQ)EhJ@zjvWTbB;oGwP#rSWXM8z99PAsR9`KrEerJ=!hp; z88-%CkqSmarQ?7Q<5*m^r1@L{C_?j09uI@7`p9!qCT z#xlOeIX~+Vw$kKqE7_D{0SIYCxBVsLLqK|E$H)#aB&Uy0Nax<8X{-Bl0BG<}SeWEKZf-{?yGshNx@;IhZ zu?V(ud7>_2k#SMtTbZH?8BJQExexXylt>jc^F@%VUpf96rlaPZB3@5-?wBfFZ7QtN zmb+Y96AxHLdQLGep#Xt2;}&pWBe>2hOn0j&l9wG{NA*7XGUs^~gQ!j4U zskMpGOa~_2Zv2rKpd~Ct%e^ud@*yG8WJENTNB9vh-6;h{0ZCEKepGua8a5CT>)8AnCLc^l!i)-$j-X0(Iwyw>!qNH z1)OnJjy_N=fFWMZBpR~?P{cImkzjn*byi=O%l7*idLM#@nQSpNR|^)m#Lh=siaH0N z=; zwP%00f;D-kWnFb4h|AEfRnFBUyHp%U_~J~bnOSCOXm)tOjAOt##wqM0tUrE%&K*Fs z0OU4&V?FR$JQ#EyN|`rX%-{%mVS@*)&WmqYkDSvRZc}K)Ru?1()n#!8XnD~F6%=05 z)?>sPVa4lH>9BLTR8LOz=qMXb;0|M=`~rUg(n++%(mxjD!Drvy#=|OZUC)IdeEkda zwg3bVpRJQfYtbjd#c8g+svsK25nfN8;bHh|E&%z{m-u|)JAklr+TkgSbv}Ux^BsWj zN$3!=M0Qv(e$fdr5-AH>BO5fb{RAPmK^RM4{CkzJfZ^^R-1`3jzX0cMDtw)Q`rH@2;`!MHX5&gs?g;>*L znF6(p;z3Z+UNRv^^`vEbu^BuoJD|cMhoqsQ!0Qn1D0X;sKHb5qUmkpPZlC=F*Jt*q z6URJ;#8i!r%HNDA`NDXFOIhSBlJmi@QcjQ`MZ9FP@QQp@=pdCPlJ#B0TZNUrQ7XA! z{|LK4^S%To`zS9EaUp0se{k22J)Te8K}Q`MhE}%K*of^GiF1pueA&a!Py1X*iPwSg z#{=H>s>oRW@>B(;*Dw0zHJfCPMd?tzEw_=!<-WgX-c>x3x_np7YTnrRnh6sUvdm^a$nsUg z>Sp7j>y@loYAQyGj^u-p`Z9@5%RW@yb6!&ynK3nS^Mv_w!$9_wN+6XZtC$EOziN4u zqj1tSg51zE;2sq6sNp zPj~*9D%my_R%y!}m)6Isx=hPWl29t1LPN4>s<9^D+78Jh#l3N-DJ1Y!vRS8$N?+!Q z_NLQpbIBjkGgf}}JeA4s@#6J#>B_0FBRv`SGs*J?F^+RA1mPkOF8+9hUlE?-l`v=A zwiq`qZ6Qd6ZvJb{&EvpfmR6~$c3|+$Xu}!8Louv1RKS=B4 z)t)__*m7|*@Mp&BI~o6OesM*Y%nr5l z0Xh6*-x`idLm?+x-BMlpGEt_J*TJ?zta|K$OlA1NUy~nw`tfx1`6u=YfIYq{E?(o2 zdiDyBF2_n$7{rS0$Hm+ywv*p;EC6}_`@c-5Po8;KU=`FLGM~#)MT`>0E$0mAHg|%o zd8mkILeUkOGU0l8)MkpRY`R|H*%zZT)IQ;88-r2L<^afa^fIL5LtQy`tfKi7c+(YF z4-x^O@?!@wj05q7MjxOb{g$tGdB**U4}HfL9J(uQ$|$92ImX2XrtFJIoEDY-~QEi0U?w; zx|9zex5=R2&VeUUWv5xG$k71xc+wgLrA_6|mAA53N6gl1(XY#Co&VH#-MX*K$G2UN zT1fqDmA}FYlV!vcO=V%3F7ZSsrk4}1rxSabL;YmbcSO@UJetc!@)!CM&YP?%v>>#q zp0eGFx9|g3hc{%Hl zU+R^aw-^um+XznUqRaf3Ev2edDo0i^5kj_Wd6c7Y(lvtI&~75IVFYd#fNU7Bw-c@r zlBx3aH0Q_Vil{jvt1PC&o>lbD7>%5%DPI|z^95kCb6X&nn<#{gWGl^c_#-{5jl3py zvG@mjtBymnqcq=nRjYo<)(J85l&5uhqG7wY-ujp&X`@OPiwl`7sl1?lS@b?_aXBU> z4iL%ow$SQpWm?@Wa^2E(=os00Q+h|XmT2;!_L&yh_vDNhazqo4srZ?;ZhpzHb>-h7 zoIO0l2oN`r&tBpeY`Brh8}r-|4~NjL@<_v zRfZyoSSlt95^4a0LY5iH_52>w^RwN|8_^4mnK~|eXr0zqBu@*aHh_*yWm>_KSnL++ z8kwOsH++%4OWT~g<>Rp{?7QHIXMf0&f&T4_K6Y&z{2jjT1s_Xq9onzBwz2g#JC<$b z8#mtB&utc4sQ&0YXy%Nl!r0e&{oZwo#j6XzC`Mb`*!mnl>3#aUKTl8o_4m{1<0mL1 z$owc+7IS`~gI(0eMuDTMjvm@Nsu#;2sY%FOAiL0zF(Q>0Vg+PUp|-^OfUBibpH%Wn zNw)j=d3as6=h0Oi)MYv>qC<1G zO$WE2g>}bgA6l-D}O{+pGmkJxivlGVusT&yGG+28SwDb22}Y1&=!l zV7mdE@AmN868>`e@Y4^G-h*1-L82-f=fb;&DYFf6Sb$^bXx!n6uNr*%-+!8(;lpdq zEqmPs+qep5TfP7}PEs2r`bxSS&m&`_=m`IIwOM1e!`{U9;+Sj?3MrEOa77^E|M|(8 zT_+rV_Q`bnSHG|YApAA>n_d8-=FeWYd3Tzz<+b{AyjJb`AHJMUA3d2SF5sfHY2mIg(+meAW>2XDY>b3YqgYVC+h997 zepYs+UVlPT9E2r}|0<7qS%h8~cH0aL=s2Bh0SI>dc!b5PPY~-DTtJWAKh8LTKxP*! z68G?McpnRm_x5+OxBw~6K`#2(KiHcNz~g-8!*A%NJDae z9@cdhAL_`szARfCq#jdu&Q#-~Zwu$x#Miu_(fGO-j>|UhnM1%5?jo%}YueQUkX_85 z2UtM4&jldZIg)=jW`EXHw*ibbl;aZ1v>aUV*G&5c^NOq~Twxj`Nzr&wx$EUr!(1ED z*3(qBmZv7-`*iUl5$xf`|WgPP(?7DqW_SePBHsv;zk?gvu z`ic5sFDJg}!Y$E-o24m$MK;lh?~0~kRsD;e&X~(6>bd3+FUa{N|SQcU3Caukk#nZr*uv-)d9O|k$f4g zi~JlTiu_TTzVySnc%sXPVsDs{)Q}m(%`v4)&`{&#>QrWl56VYJgUQN9;I(OETWgCi z0^gM0MT3bU+iG>PL=#NBOczZU@kCdd{1HuZH|a$YU?c!9LD0UrRrm3ur}kd))BnsoPiSMel6XNsJNBB<3nd#g&TFYeeZkN?E_o* z?(x@Kpb0ygi~B0{Sd}xbAO7>)AY6|T{asEKiyTMM`g-{Skdx`jfBkuS`mg^zo$z55 z0~PIOcm_%3Q4o8jxeU2-u0-FYDjmz+HE~kbASz}Oiv#B1F4f^ zkA>_iQh5;w4fvuCUjSn35Mz?3dT^T$zg? zxM<@P3qY7R2m}nng(0}^^H&g%24}$I^{UGuWjPG^LK2pPfVx{QFv{Cv8lxE{K%s|p zm&zfnHl!Q4dF-8H{?Rt-!`R_@<8r5_T zX1p~BA+E(2dC|svCE&$OEAn4>PjtHkAUj6k4Td=?_`gw4-gM7|}pvk$cp^Tivr|<|b|5VOt?{mT0KoMhd7AP^td4gT? z_zIY#Uwt~={`Kb;yIsU{dxsAIt)a5ywd8Z%ROd`{Bdi7NBfh7270HXQzQrqGzVg?q zVNt?4b_OX!3C4la_Y{m0gm77OLYF#RFJo$*So(d)j^>=cBb&*Hb+H*0F7-u*d9$Km zgv(|Fv}V2wjOjyOew6A_kzvGBTEi9UZ7gORQwJA*@WVOi7=I`IU<*K=PA^}+!u)|< zZioYaAJ>-L?c?b15DNGaX3eDw>i zC2&pQucwn%6T8$`>tphx#1f8$Zz8D<-cDdA-)G?7tBfrQ1Eg}6$#~L*$@HG4a@N!5 zC7-b)S}(Urndc;5^@81*wz05k3*#}*zy4qw=o**ZUE@KITPkY-$R1w(a`?#y_WG|K zoY%epkW#AHl7{P|E121yXdBp2hZ=XVwG}Cj>fJ=5GN;}}Y! zy-j|;%f94((w_yZczvBmSka_ctee7d2#cb0*WooO5PmTY{R4ef z#4)l%x@=X9a;va&-YgcOhCdSMkKShXr()ekUzV(<9`c=r-kOP3u*s<}s&6;Uo5D>5 zRzv`QkEr{tK;5w3;s|JT>{Gfdn%wWpM2M!e#g4m&uu3JvR5YdH<#Nu8@3Of!=CRNG zG_jGa)AXH(S<$i;<{RBGS_e;Ba;caSfcA2ug9@^<#%ysa@n!)Jm6;cfc^)l~jawlL zNXfuyo@+Wc3wxF9I=qp+EJs5`@F6`b! zVJu~&MOujyEwY)lq-I09hS*vAuFzxiHeHi2`Z8bX!i66@y!nosb-TCYAsAlwLYm(w zL_em?!s5PcQvF=l2r6fc%#$|qKl8KPyPnUnV0?19uNz+hbB6b8JdFh)r&w&Jv7}(F zoAC=B>=J#<&K1*9G}`&HT2;Y z5i98BVHoMskF2iyjNHjkRPE;dv<;xfpFHk}M%n&wX<9^oz^hrffc7bViTwRH+yP{3 zdWJGmNE=QN+6ahDI?+VOsfx zim`6|p|&mTU}}pzJZ0atg&n|H$_LYiksKT%kN->uan57?wQGpwiK9L@OCkH%_`y7N zSn7161jcwI=m5PyE#oD|sOT`PUunBl@bIb{?v`?J$Ol~5-u|OgyatA^gK^vT@U2xK zi}RGm>)27^;Qi;)}c}BQM4Z7y`1eZd+qye(_0C#WScK@(B5cA;PJ^YFp53#PY0E8ynXfHWIIvocZ z{%{A7C;#<_>FIxB=cgAh?AO{Bk9c*)Tni$}xtVb=gZPR#aD=Gik1@qEHBOPnHh9(q zBx!(YBtr%~Jxt^d8(WCutzUmO-T8-K;uqlerX4J*d6Nr3=mo2ty9>*sgX8wu$?^2! zODq8S<5#w*^7J*X*Re=}uin{We7S&|A0E=vhNaN0AB!ifOZvBXC|Nd~bSS?ap!p<= zwhA0)a|+{4X09-bR%fWR>xzaCH2)KikJ%1c(-S_B=a^ExA|qM%)90uYwDk#Jsl!)e zauo%RZA?7e!DAoSjk|o!1Pq*D$B(B^o=?y4_t9&_nhQW|@ki|Tu}{410D{*I@;a20 z7afbbc)fh2pgwcGWXcF)_W4y_3FDQsc$9WjU5x+(JTdT}bKCJN?!2{)1t43~^Cx(9 z4K{Q<#kwFa65-sy!xv$=jGt7eE3>v` znK*tTP?im%+i^TG*={%+w7?jM`LJlpLVe_E<`9cN?msx4?tO4R-NUP2Zrz3mDr*Zs zfNSe4-K*2;s|+Q4CNahp>>(!<7{X+`LP9wD0HL#^*Dru6R3Xxg6)SYpW-+6T@G48D zPlY2rV@c2DUT&dm*G$2)F&P(k+&xM=esGbauz+iPa{w~QaT!a;f?Np}9y!K|LCgOQTrRRODWiccS})lw}tN3O43 zi+uM=96dGOX(WC3YVme^yy`4i#p`ROe#kzU^BE_4roF9wHutyM2kE(cTxsL7>L{Gb zi>ZPGb=h{t6S8i+G`5($bfb{6rY-Bs+UI^d(!M$FwTjG)JC}Ga5L8*UWZ9W(u5#H2$2-s3NU&6gMi*|N2qOB}X7#E1DG8-jQ>~x# zs!r;uI7#MI?P~sK#!dbv0vAN!W&y|r0ebt{8mam;d%h0O@fu8Y0Xv=**3q{PCi}>| zWO_O$0P&P&jML1j6_Vsu+*h=RuGbZLQ$JGH+ZQI&MU#)2M_T6hJjskOnMT}5Rv7VAmR^$+ zGl+RGC;^sWhfR7EcRcr7|Cp&2fhu}MBVMMhZ+3*VYOC(3cd7aa+|g`|4OuS!;4gM} z@7^E!zq?53%zCAq$CJzuzYAzc+4&3(ey0uVf` z;wxaD{oC(try*Ogz>xRdZAInzK%zgiIHB-*4E4)~c%`gN!t@53MhkorBV2QS7A=0o zAJi(lGp>L%<|HqS_X|H46hrkDxnosPAq)#EKcvrXh+4p&kq#LMHjD0MCzp!=m5@qL z@NFRmn9uNQXdFU71#2O9s($*Bl5s76&%yb#g5c4m8KpymHB)Y(Z3qZIq z<_NEUx%1xH^!|tVd~`PL9Y8xeM6u`a`W<>$kLD2FgAgnyid98wuF=sK)`Vp-Ed*&6 zfdC*nv5Kwgka^Oj#U3M`Fnzj~OxOSEgT|zDJO}hQsE?O^9+PSdqV4*Yiz`m-`r+1ZemUL!hhI&5_us=J zQe00UzQrf=;mv-jPO5$>W58rPzWC~!=_OtPbNu8P#;a58=7&Wfe2wF4ECOMrIGFN? zP?bTwgia9xL><;8(0?nBB>BKRAFtZcLL#QlqOX*xrU{l@{8bGAG1Bb|)F1<4#o615 zAnFaUWMn`JLchrnZy$~fk|TkKr(E#y3cGo5M~@eHMbRrPpy8`p_Hho~!YhC7@)b&W z*vwj-V(#F=4`N;;zGqkfvIpMLEu3R~1qFQIwI*Fr-!fD7<@Qu3lFVfXqlEezF1}EI z?WSSPKyk*i0WnS*`CX3cIJfcjFHauwl`vb=BkaQU>LnxK3qZ^+)lnBe=C3QZZ+u1T zM3h{&eD|7A6hQm$DN&MRzUT+r%JD5dX4@FjXaH+>>2?ZrRU4HSxzJzfBm@zv%@4$6 z3-jXc9v4QQO`m*@-LWt?@;XA|#L<%`K2nf^`SrP!@Ca=qbgs>9qy$P^vfqsZIbR->f;k!@5d*{qZ*DO&HR=$zk`mmXmY0|2L~ zPp;Fyr1d7fi2x&TvjF6s?*|$X`ZQN;9iHPgn6!hNv<}Z z-{Uh+@)?);lFhU%vuXai^=)eZN5Hd+apRKxmhV63jr$Y676!Y5@Ll7!8whTC@|ThN zg{DOqo!P|YCJNUTc~jXdQ*+23Q(-bsG~qH&G+{=(jLCe-h@W|)36puE1x90UA(z2` z7yPP{xLJ{mc$#lqwVV~Dp;{70b_AwA@^hKAs~ui#*QuB+X>7+-#EB1duqD7YZVK-3 zp%;IxiG?4#_wG!)xG8VH7~>x`?9;p}J~(94X2n!B(FY=HkxFwWw8njrMi}wl_H-#e zIgY~c7ksC9X!88O|1v%O54;NC@l)>n?Okcq*-XtM1Cj#k0hh{Bn$yx~ z36!#g`UseWz>gknf4mbeQ*Inr6rn@18N-KQZdR#vVKZQK(_a)6!_p-JZ3L>Mq1Yj% zZhh8)9smG907*naR3WiphwR~|F5<2oKwduQgD5Qiz=NoVSP1g!1r}@Il;pw=m&bJ{ zousev;g8mN+VVl1(Xc%`7d6N9TQmV1jyT~Wem?c!bxITM#fX-Ni(AHt!&ix zOOQs8vih8QENAI1Rbd$ECx<>4h1O-gEIES5EnJ_uN&316`}zqUsz3UV-%U^c z?f*zv9q9Yfry`6X0u=zO#ZFvhtjcM{+AoS?Y!gQz(Jw|yAFKY zz~d#pN@e@tV7i6HA9w%hH?{+a#T2W|%6S?-ys4y|ZZM$gi)Oz>$Kdnguis5C|NPhK zm~$%H^&GoYaQD7*?A~Vsm;@9tuU-=aJ8wY8Xw+0i{XP?mAHBW=Vyuf<(Lr<5{Kkj& zLKzd!h8*0mzeAwJ+KmzbSgRY@2t~$CP;cZC#*DghtMeIR#+^ItgJ1b`*AH9Nfkp2x zU%s4PF6US?0?@QmIs- zCcg(V0h3s@8CWrrx+c4%QgTatD(NvQlP9@M%XH?&Tf!2vbc75O##L=*=eq?OM6T#X zN9C@L+xT$hFBkM1O*U)5mMpDDFaG$L!v!GQ*m30GlMkn(U;kp-yK~DH2+k|Lp8Ct9 z6y%Wx1z`a*icRjsR5`+oOa)EjaSv(QuV+SC-ez|1`3RHo??PTPoqY8X*-Jf7nCnPo zXB``xU@zm_o7TUMPq{CZZl8&vM5MkiuCgJSRhU&g*}AG8+34H6i9e0OP@zRI$~hYY zx%kq#Y1;cRl3%KCJFY}@VrYO z&vL*?-yADtjv-$d4+SM_ZK`Ic2}`<$^-8O{t6Z1kO&1)pp#I?~QN1LT>c0vjiJZ#6 zsweAj>zVtd+9d0`$=^g^DFQbOK$ar&&d@bn_GzxbGEakth8GQLqEm|oG4bjUExkl3 z->2m15Km>Lm0kzFo);K7N_K!Htv{|+u0BcEs4kT!d>urqri^Ox^2eZ#msDjrrIxdX zC7#{RF`)EiDbFu+RF}ETh!T2`FlT0 z2Q`3reL3suc`6el`HWx6OKuaHC0#!=x`hT`=<^mG-0b9gaL>3K2ww+-t-OyPJ+t%_ zH<`)fVOx&#j8bUd*089_J3o1f7gEVwcO|4)PT(F^-1KZ8L}6qOe~8RCey`Uf`60hX z+JzbMej1w1&+*WRiwgLlYZqJda(mug+@RaRje7f)7;YTew!v0CexWX1b@Ydk=6sbm zt=Sq=M7qA%RQub9SDZ$18_`$;TL6LwQqOQQS z`*S5f&nRsl-Cfr|y-ef6(66Gvpwh!a>0U+7v0V{JT*U=Zu{2syfD%M2&rFpsg8^XL zk=kfY0mM`O5JM7=nVw+CoPK3Y0nuD?&2Ka2STh+Xg#DTxyw@+L>G|Vr{0ez%`tEN# z6BmTgg)Kg)64v~ruMjXE#z%l`0SIv19b^Z)eb^!p?*4%f7k=PJp|<$L(mmk$Y=AnT zm(Px=o{MQtPx0$*JpAGU5B_SKJj)YfAK=L=WtVjvcOig-&|_E>yzCe*hLkN(Dvu(N z<8Wp5WC8!Jjg00oQw+Q$Z175pcw@Q>Z)a;p={C5xAM3?f-MjBQf82W?zj%I+4=MqM zb@!e5!9g=_%AF@9pCsZ*bf88M>zBff(t+#{X6+eq1HkmsNRqGpJ`n-Y1MDJ`3>027 zP$a-bS!)1*ETBmHGUY{M{tX_sAQ!f_`RcRVNA}=~wz*(|V{_Ve}C;##v)9Lf)_F5H6YjH;#BlR8v&}wl~Y7A?9h}dfU(wN$G z40UGc;&`-$EdZ!1_f6|Nq#2){@f-mH3qW?b00fIa?*5P8`YT{?y}`MxKW8bm$~se>ui3Uokc$0k5`mi?W3hbs5}cSY_(t z0vYby;X8g{ClAEu813vl%n^vEE!M-J&7EHEzyIF!5ni2i3$Ib4Uu+ZqpnpUI(KpUh zs+;?wZv~rWVj@A-#N9pXlV-pX_HFvZM%5BIB>k`zP{{;)kg z#SUCAo^y`m96^ZVXfU4>ESnB|yVn+J)9Lhtra4Mm8e%5o1Uo;O<^0J6K*pGm(CT!4 z^M735gB^!^fSI%{yRy*ftgujg@z>m-zL*d9F#p}foXFRq-Mv3ySC_MBH!7lEX5RAF zoR+)ztJE7%b~}%0C#Ncyx8S+S79@<-i!5Y24uWfW8KuhO8^)85*$(dY$vyA$KUpeGq4V;3Pgrn6qUayMta(uU- zqAMJ8P^j(w%x&KD8XHj%evEaWdyKH6kMtrMMi!QZitl&|(LhnZQ?kZ-hq@k#$yTc_ zYzegD0zv+{o>q4ek4)>w@;uYa-IQ-4aI*m9o$mu0V)`^!Y>8K=HVrWvOe&{NCgRmu zV5E0MlP}__tkmfm^hEVkGLgzr&T2st!vDZ6WQdDXHEKSqb*Vhz>&3xbKBFx!f0FZ( zDy;BBWy(25NKH|qvs`&K*IQraR876isO)-D6=r`INh)K~EGqUaT^;WkJP}saEy1pw z{juzcb zfQbQL#btJ_pUtjbzm2Dib=EIiCSOD@23qYR#*Pray%GyO} zaUx!)=FqJNA^uRP3W?tIfjA9y{ga<}3;la?^}+mHqwn*nf%q z=)3Ldo3D29OJr`5?_1HEyMfp9Nj9i<|IiK~e1O9TR$SP?g&#Y3n6rxoAKcYq?*QBN zBeh*XfUzp#A=2pyY6%03?HLw;;5jI0T;u^d`Ix%22!yLN`UN0-MsEHi;|o7H7m`M$ z2#)FYMI+SdwD_wcibghEfRR|Ai6TRs&m#-D@MZ!9JG`xkC50unKV9)Jf*gbAnb-~G z++O|i;iqT#75n*gcpLG<4`_Lq3{poM$-c}FQyeq_&4obEgsQx9f+<+{65M@ZtMd#Bdw^hC6`hVe0xWw2@s;ZVM0cPG7y8e)yOFoF4yw z|2~~Pe-;Zs@*JHt*LYd~v6GM|-N4=~-c_~=BpT}Ni$Fw^Qk1ESF=NX1>e^SAYA?=G4>Iye_vv&K9to z@j4x!a?-2H)YRG5`9PM=l}sbOl?er%9>bL{XO_7t6x0PEF;`eyhNAE>kBcr3K5_U@ zc{}e-gkLBHj~Hg{Fq$veImQIQoj&-gmzP-3{t~+yzQQ#Lcl0nBUR$CMY;*B2{&7c- zdssO20O!pS&a1W$CL1usah?ZybqTdo_)VreM0a$}p{AhU#oyKlbOD8ru&$FdXl#kb zayS`2zf$)Jnjfd#^yCp<#fF_go@4&yP9U7i+*w!DTQMWlN?Yc**Uw3ALymcW14}O?z>?*ka70Ihx4Z` z0QvQ2_}h|W04^F!V6Mr|qMB8W(+Mdiieq2SaPczjg1nvofl(h6tuK#MEp;Vg#T&`J zE3|TcMr~B~`gsjA?V@^VEZ#)sBAr*^|Cs)$KdASw<99EkGG%)`;`Q`wN0>}o%J-+- z67I*Quj)Ia_7rU`KNkX|F=3=*K?LoCmgpNJz*$C+*#Z##9cM-*;b^r@F(7t!u!5W_ zOr{5|uU{TYdtNr7yzq0ZYKQT#vn8zP($%J_?_7`SE&Psqx*`9aMc`%u$UEEM`J`9APjltO6Rj<`6C6s$ZZR$?n$ljM z=t{*`I--wgvKG7oQAVlsGId(z)SOTnPjz8Vx?cqOM z^b89?P98tAF@@a!a> z|49$M#t&PHn-+i=oL_b*bwMrskS*g1E2t!cZj!=CaAn#lT7jin)yZK|!H^N3m=nB> z;D>LvrZ4}vJ3W2muYloh9X5i2?{)ETk;Vlewg?1DxKjw9&0;rhTLgk<1Gd0n53hZ( z#UEGz!h7@k*rlJ(4rrH)IZluHi*9Jc$94eWb5YQ_7=+K2jfS#62&?one|~CoJ*@KQ z(9wpd5bLCm^WyJ`2m#LxW{qbw7byLhG~KwOqW&&Pr0*B~llWEem7vEviG5@(OU zbUvLv`Q_{-9$uK z8K-v9mJpk7O@uJaua7VWIAQgu-XZFp>*Z0l3GT^kqPR@h#BOhGjLDe=N zmZ72ft7Tq;5o$YR;gx86c=gKxUS+{o!CZ9#h^k0;E;_ch_pvL*%jx0&`|s1E|L0$) z(`V1&lP}V=#)Ff-7)9Eo9hyt$0?$t}Gv`Ru*#bc=mBQetOpa^AHwO?7C^!^4E9fiu z#-lo3@8VjQ3ubj3Uu|CM@e` z?rB_%cCF3=KyfDQ^Y~{bA;>;m#x!r{kS1>jWBuv$?CG=VDRxPD`3k#!U?B)!{lZtd z*g{n3;Oidv+Lr??B0j**FNawCbBOjo!gb~jCm$Z>p!-2r%pY?|zFX%Z2L}-;D59Al z=weabtZ@wtbHoYgG!rzs%5Ca!m$BEZ*<8n0uT9glM|dU7qiK4K9YLNyMf}dN&;|2r zbp~1Uk7nn#gB7laUj}n5DFuT9^E@A&Mhx}(2Q14N2DE(SIwXx0aF`OwDJ25JXQ&sk z-1UQtJ>J8@kNY3ul`nU=7$oLGtrC&e(2<+M{eTBv0kbWd6`WGDIhTC0Kh~r}^gb=J zViZEnNJpjA+zPP@LN4o&jA$xTK(t2qf`a5PkoCUhy7;O${yVi!mI zA&T@#{{?Pbg-ze=e1v_zQuOfCkEWx~Kc04QfoVT1P#?UCk+o#|N~^q<@EoL$tIn)4 zkt15tkjE!$I}^E@KWa*8St=(t-r6kZA|AT-Q2DKO`0v=UzMpx!wE^k-B)OsqDLpEW zQpsF5c4SMmm3=Q9D(7%lEA?OLx@@}2ha8K7Q=nupKpCqRsL-0DSc`Q zO6galuPJc2bldF^+WM2!4YIAg^tC|8h?i}(IF?#0DHY%Gy1Ecs4*iW31oaayx*lQW zm&&d-Y>C+QuR=yf{`HGaGUg_K6M?Hn;AR2HRU`P5$!nxqO0#3ah}M_u#hIpxc5v(E z=JJx8r;^QSFW;9dwoJMOqKwjtmF>!@IiWPKseWaWB|vwe1zweEgf5u5t-@-jOOPv8 zIZYobXH3=8=PJ5#MzqRpb1gPksm7_5Xz4C5--XP2mg*rrlxgwOqO|o<)XSw=m%J9O zFJI2WW>Twc_x`AyEv%ByxSRYNjR2bl9ojC|(3wwh6P53F=PO}&|M4p<0QobvtAC1z4|p=c zz^oBlUA7GSdbD}zQlmalnDQ_PqAMj^^1WYu8PMk1in74yafjVPpkB}zA1(4Q^)eqi z#Usv1bBFZ6jAnQ!=ApvuIH!L1GLl|ez!9{ z`GK!t@O%Cy46#~o=Fu;}=e-EN2F6l6q{97pTi{{O2e89MSpaf~9YC=7!xn&GcM!e; zh6_DTUi&T|^p87qaQ6>>I1aJv+3p{)7=(S93qfq*NGudF9Au4WI#>~Q4-%=<64OUn z+R+$?td~hsA>^3Yp$DA?2$~YgA)n7Nm#On=7K3LNL(=fv8oQyKO`l@%$1i?;iichv zLu%yfZ}^%6?EtZj2jBd7!0p@gm@O)mv+_9_-dN;{E}RK&@Kxm3kP)^RpUcb^YRn-U zQThkrjWA;YpPI2rzBRyWDzN?vIBnBB%KXLjHWotiVO7~GpHTec{J76oq}|7y`2Y(* zuv?amMeMvA9)0*JF4|ZX``sR{313a$a{kJ{;pIOyz2CD+Hfp>g1vj?&yKn5FMXRPaZ#+9zA+&JAZID5XO~bA77;d zg;+GVYl}a)=;IbXOn1>&DNlVq7Hf77U(A#_g&Yrftp;<#@^|1Y2CNP~Rn+Tax+>B1 z(+2-1@XSUPfxpy^`IE0ed;Q{kdir?6T)btAK#s9H7soFf4kYBJy&j^?ECeC=^s}kA z`R5p`7aT4-jnRGbc_^cD>P%H%afkvYrZ0(iWE8PO7nIS4cdL+}A zi4?6$U7YLnElHSee&NG~9$a9>a}5iyY(9%~&cx>dU($LlbdIU!1AO7@(+)mZ9FMBrqO)W= zy(nrJ-E2H`8>?j>0UKp)x89t7m6;sLF@U{OOZ02M1W>#g@u^3z2Ysi=3}u^WcM4rfxpTA>ao- z*llc6Z^|;9X;-1C3VPzc456HFCVVqmWJ)Ge!u1|aVw(ColkBiX+6mLEd6qXtqrOH0 zE(DPP{be1WdEuhg1{b&Rsh2gpm8miowfMGkye)>sWN7fhYq|JUoy<)2<=nSTGh(_# z!S$MBaeXhMo8y09;O%}Q+I_A}d*xqLTy-zqL;)bb`+C^>?H>^|_7ZD)SkzN{gTYQ( zwX*Cc)I<8k?kFi9Gf~jFkd`|Z^95@0oNZ#h)Wh=lpg?U3R24-!^O2qifl7uv5)eq8 zO%Ghnim_1|VV~OurBXp9rBs9jw<(yKAYe_`JWUu|B#}J~P7KAys!Rkj*ZrMqrtA;T zpR5gk{OyJoo{XbB+Cg9HzY+rRAADGs(_$Y#0Yf?QDHtx+@e?rd*%tQm`9+8KL3Kx!f>&R`W5WKb!7&G0Knb7N$WrmrNk9_*$loK>_Hy=LI&|% zy!6~s>FGA%cv97rhHvT0xUW_jctM;tqCk|gWYb9^P6-evsN*dJfPC?@v*9Oyg*Tq{ z>H0O)|3sfZ*hApvE4&SVjL#qNjdyM_xKvD!QW;&c&wDp-U(Q*g^4Rh@TzzMKC zu-H(!Y%-^+TanX?GEGiRPq}C#?Rv$9Gh7?Fcow=Kh8GJnSv8Wo4Fu)%0O%cHyl0151)fM^_4Vx*)9DGW_pXA^~y&IaJ zK!H5x?i19BKkoFwGUu>u1PkB7MS}F)?PDK*pS;EnG_MeRx`)qMvR~}%>}byOymt#h zAmqJ;d(Tboq{GGO@=!eHby^uVQZAGeId*&cQ5N z7E=BXVBw2CTM9~y<}M)W(7cu*I1pb6((WIxUk=)h>-CE@?1%z+=n`>IkAH^IF2Ztx zvOrE*EP26$oad+&ae=UHDiKT~o{V5whcGQ)i(ya94bf-Bjymx3XFK@h8F%}*dk??+ z*!klQ0z~l{m^Iu-4A>nc)KpB--h3C}Q= zdpg1{I+I5i}kr_u~d5=U9m25Yl12>Pd;2X$|2dW2d0zj%O zK9tOOYH63@9?tq0=G1j;S_^3CCAn2>U&4MND$8H=?uG1cOkn-1=w5}!22IgU!AyUXUe*JiN66=! zK*RcSxwF*v(x>>Q_Ax#QbMo}naPn$TZylcDAv$@)k1pYd@_JzEX1lC`*G2CxN_o94 z%W&3jnx5BqrAC^Vz#dl0dHzTf3$cEF$cN@xl2ly#39~wtSP^t4bFN)m7O1|0hx^>d ze*HEUudranZR`0a*2XU1aK=OV%y2=z@3$oHVJ=@FY8IWFZH~zPTZMK`#t#j*pZYn# zW!g7KLmUG@_W$tbVej7%0P^f57Nzh?Dp%aO%5MjeaD_wTf&G)?!5t#?SBj`KD)2<| zAg(+Co<7?qr;uM%wt9A)s=w)tEB3`gl8p^nd<;$U<~K7DR)%1aXPPR$W*U!}P_!!= zrs*}z@?2h?TH>M{YjfYuW)bGKx))D|;hWzh0OZN~z@}#a1`p8}AB1#XFUS`quFFaW z-lF9K4%Z1bZ!ri2DHeM+@I?ugv6VPs8`uSe4&Z})u5&8Rh$(|V@S{zHYf}NH3i60R z55g7TQBv(3!XS}SeWqNCRw^Zw7rdbpIMm7XDxfU6MTTMZT4;b6Et{U|BpJ?p)F`)v3U0U%%fC-`OubXfR1#4Z3YUcACv@Xv?G-#x`5=>BjU0RnfiL&Po? zy7{St9n7;kxB2Ef=3n?dj-toKoEGykMYA|^#x-~rQ1TtJ24MhR7o&?H|IJaQkfx67 z5L9_A-WO1mjjK8ejo~czxI$9(h{kQ>4(~>HSwy8`8D?R|lZ17fqsjDzhd$6-%KQWx z10vP&v5*ECnvc~%%MKt9@8KGX9|Ayb-Q5iucE}ZvQiBC*w<{6TG-#Ew1IV-g{eOq& z|MS<_rQ(Ga-Zel^Ksag(d--?mSZA-**am06pidM8qJ{iSLpo{# zj1N9(4{1pP6oZ^Mc6Wz+fBT=Y1IT~T?kO@)Rx}*}yPk7)gY2LwGpgLyX9(mv!C2-l zAcx;R!7eKY5nO@!GiV@#{=>aEY0q(=uATapn4HIg$n3VnBY)Ap(pL24;t?>@RvLhF z00{ZKTb1jp-Jb~8ugGTm@E@H+8Ni+59)fe*0Rmr+5d?CEezJ`@?7>I(5&VYleUJt) z2Am$E{x9(PxtEv+H?RnO7Yn?*Sm?ctal~La?FM4ULweXG3ueMuhoT}T6RjBBqic7HYR>&pTY=rQrWn`Lv$klj6DB>bbOqNjE126`9 zJiv}0AALM%_m5rd0y5ysxWomTF03A z3$5H^AyY8p`gD%g@Jw%=8Rq;Hy>ThEZ!{0{Z#dpx=#ypK@uLMfs+sK54ZS3044t>jlR9iAx*{Aa@nEQW0=d7Y}kwz zJ3OOZ&naA{OZiLtHSy+bww&;6eUHn0?|YutA|4)}eVMo(<}z_N$D4V;eJA&)If*^3 z%cM8IVSRZ{=Bn`PmbZ%DseV@bX_*TauGPx~+c~5u6`Im9CnB>;gy*BoP>6ckAPJ?F ztr7*?bsN!E*=~UfKpi?*l{Z1t;qtub=`_QVgi&^$wzFl#Wt`IyvJ?WBZCKP*_`AAf zY2#pLVit8;M-$U%rgB++%agKE2iy`HytZjUS$C6jle_W2au49|2@i$kgg4mt#RHxQ zY)>xdJn=3&UF4~gNF_I<=cxoqZie;wzC0z5G&~xv^~MJ4X*4%B!ax@pe! zSejf;nC||W$6RArQ8Ss?XMt>dV|ZYj{z*~E7sgZGm}^`z-8j7*4SmyJ^Rv7Kcf%st zb%7enw2!mA)$$hzUropaRhGNx-3f+k22nrt`pEVWmTk&;)6b=rndM!Ee@^ZV+#bj` zS-D@=xda_vt-y}20mV6nJAz=>kAq_^^m4KH6c1ZZQ9dhg9-bfZEkvwD@kt!`au7(? zX*;fxw)qb>x~nV`)OXWNy9{T#RcJwC`@=WG{=fZcIDYn`eKLw2?6REfTBDD$|F1bHyq zR`vW~3nnTCq3~d|jAl>pOBQXcMvAd4@N@2Nh-um;5eiY@ukqwOMTLye&2j{QoDY1{ z`1^0xhnG*+5PT4C9dqR@-cUAQ(ExVJVV%~oc*Dg&$w2@JHxR(Hc%^*XccTP;1PpWt z5YYkUT<1Q64(?`kDm_DF#Zm4jpiHgx3O5deLHsl;7%a7xN8KQxrMp-7UoWbJ3LT7M?(}giP#79)my7NZJugJAYtsXmO3Uk*@sK(QaJC+CmV>)`R=Q z#@!u_DFt23+0?;PtwtD|JBMe5Y5>STMgYjkv*)U3%sEX07kxdBU_A6#Dt5V`Rt#9; zwK&YWfz=cvqf$X_4c}{Clq&0MM8w5?D5IUkA=#9EesYGu(>n+N`7gsqzd!&876d~p z9|aeRm+FFP7e>7u!F%I{KU)A_s@p?KYokg>({6Q>QZ+!fwhq9Adqu@s*ykJ zioqzjc*%i^!$09S6gyiAx|-+fO&bfne_PqK)}i(*l{3x(60WNPK-fOiSa#uHfxCPh zBbbG|dYm9V#!iGssLv5$j4XtJU9{ULpM9)UF+{8m;QR#EJ_1D!;4jW+oZGe#_`%>0 z283vL0vJbH^~YLU+Ti*)ZAiPSk`$Ettm|fu7UV#=Nwh0(!Xzg*NF$@2B=Xo8GrA6> z;dPdl7mq3kWd9XE3Bv%8_#NyqP>`QbD{=}CORk$_+5lHv#gN&L8;f3wHp)7o2pTAfbh?iC$17 zl&i)L8ycSUjz?NaoH)-=Z%jkIw&zwCCafyyT zh+?#_Yyv?Z88u2Os1ouC@ZX#%syJu}6aB>|to_@J5%ewwNE9A;qdWLlsHc6lMesss};XPkh z&i?68mn!BO$_#JyZOd)%ci_ilC05D}p8H z#4|$Li}WuMtvr>pZaAW5YbML>@d-EfVQ^X|p?pVIU;WKQW>6_)KuomcD`M?jCyI(piS>+@O8W%znIe_7>xBirVd@Il7e zE2i=~Bs&zN{wl74C&Si&<5}BYmlk=v8TCjJ4z~V_9S)PfEn@(-+;r^iAKVCdrQxFIj zooJ`m_7n(WEl@*E z?breP^_dq&VemhG`UH$W3B$mR0_Oq~H>P30h-i@y96vX}JZbS0y!b<9!ipT$1GN5$ z9|eLWOes$|1dOcDr03C(J?RZpoI4#G2>#&W*ZoK5!^2Nbhx-o^AhQhzV%z&y&tDCH z`s3Hb(PsNUfk^$elIC;OwK-rf7%6$ z0XbN-X3(S-(%>ui88Jmi9oDhHeH+`?-{LMH_=E|!wby`S=Uws0O+uE^g#W*j>jKa|R!HL*{U1u#Tk)!-GP;q&Hi(*w?fOqyH>r@VG{ ze_7Y0LOVbcB*;dFpE%suy*u3h#a|B(fBDx40J#GjR`;6}u6T0Wl`b@D%PCkdmb-f# zU{|00fB$+o!R{8SJL^`D;+x__eV!3>0I$iMAnDWaNzm1CQ}{fWwUh^3L(*<16lF+yL1s;56_boP%`c}EJ{!#(0uI*HL!BE-&VQk z|Cv^XT6jxMBDX+N=zwZf&U93f<=L=;HyL=i%hka?t`EE}KVQQq+SZ1HJ@^}crrBE_ z6YL|QAAXjMCRert8TjN111Js$*#gw;qZCQ1e-x6Y8cDW##C4avp_`vO+rcg$cORS& zAANE@+`(sGxHFjU6Cl+VV&;$xmrDhzTxP1ql4-OiGX?A|4G{GPev#NrO>n(QP0CEw zL>to5%-5jf+#G+ltEb60O3U~jH`X>TnNKO&hFJQC0Ux+I9x&^+ zEx|d)jjrt^0NQ?!&|rbY>i*FnAu-ODYgm+B$~3meu69|P4IDF$O74rcbA-Gp+<0IG z58&^j*6miHzae>VJm6W|sSV3z=bcW`1k96(|H@hH7M9`EvX~M!1vf6I%=gDM@5rV~ zQZrQ}{_GwLEOYL-4joP5sMB-J0O29wN!Vrbn68Se8ChX;h!3180_Rdt^ygOR9+S(< zWd!A$(c~&qUUNm0%lfoZXcepiYbKDFKEEmdGKFtb_Ae`34ww{J`g3Hn3Q=$-oaTZgG2HuI%E_q6O6uc1wz@eOjh+%=nfIpuFi?YhtTCW|+1hV^;AS<4-Q_J1FrfH{8pLOTT2 zt>{|^>{(YX*JtGFbA_$%&Q)4LOyL)7S)^@$kOr=*L{a`Q3uN(+YyK?O3l}bru65)i zLjQ{pfH*T&KLgKv)tTyKneKa}Gpv#^lleg`O(sl&y&h8+tAetKN`y(cbsJ={C&zrt zco<${q3JPq0(p)H>R3nOLJg0gYcg5Z8ZJ|090bD8!0;CVAP81KenVx@V9MZ{uVt}b z=LmkF9tD8VIR0lD3ttQZ(T*N~Yhg+7z^P1gNDoH@9rK{Y?+kKvSf*ga1vvPEKN^dz zNPdbeK2Nmda*>&kQz1l4uTq?fb}`Y`Q`ob$eKtJ$>>R(d;ogI@;Wie=*6~T4^Rx9~ ze{UbVe>@ppJb$UrC2%2?K_DlmxJKjC34Ehob%X59&2_vPzct*)0_u;x{CxNnZ__gX z#Pfl66M+9t@#C?{MV`@uGbaFvWZIvS2DR1L$fBF{YTP>`iv9k7tbojum@*_U;+Q|wv*eWoKH+XZC? zd~AREFt)PC=hPSwA_uU;ta!LNOzwWy!;Nn#?5zPH|1v!PU%$rZ0iVJy2XSzqf?5L6 zdRTa?!5wa-BFs92H|j?H72cEr2)*<>k&Z4ac-tJaCkS}I$^Zcp7o_?TRbV`X8$0#lL2x_79x@t`xv(`HhN2V{iqc?Bc7ZFQlbOMZcCoHH2t*GQPT59hT{SHn zprwv>jV7GHfGaaLOpMgHhTXLo+;MU^3eVd-JZk3; zT<7lG8x#bxja@(1*3g$}6XlibG$m5c_>dNXoKuR^BCR=tGWri-syotohEj>b&l}Yc zVS(ec$4PDv9J8pjjKsF}G=^JT#`ieWAa#{nMPh#8xH`w2%jW<}%innX+A`aryV@%& zvrZCTx4cOu?=jGQY87uz(e^NxS>+Xm(Mq1_ZOb}V63`K?)OU(fkMEwx{iYMWShTT4 zUN2{nprA!X0aUYUVf{_|Aoa;00EnUbGj zIiCeh!2@RfwkNpY*<8o$oFbO^02et0?*1`-0kuxsHgA{h8JPivVb>I&Wk%}$xN096 zbKjJ1Jb=E2&OFieZ(Q^Kd%(@sr`ht0ah^o{M^`NyAaNJVX_qk5PT7%R%#UfMdkk8j z>3Kq8Fg4be3%oCQ;4a;LH2D`hjI)l_Ce}q=)@fgQDsPl6XWEtq&OC%KQZGV!{#IU= zo0gMjgnV(5q=FRZG<#7vMp{mmy=d8(XAyr@NH2G}cdx2tb-p=!dN?K8)*fd#X_n!L z=h4#y^ya+W1D+?^+|cNaGsHAK+<2vFAdp^LOyi-7gFg7?|M9E6;dBoHAq)(`!(1*7 z>mf7+l!vv^T7B2?9W{JCMdao7rt`L6=A!_~B+4jiONjYRaH% zV{byyf-Mlz%P9cs6hYxrLY69r%zPl8bw$B6O%6%PTvBmnKI2EiDwX9mdy6cJP`2^; z-i;`Z)qF2#dt8OuuB0Upoxai-#>V_D7AO#;SUHMnDzUpC+rl?)5zU>l2c z0$0uJ>zmkSvt>bijh{!u=Xut+^9NQx6(Bh$uXMx>Tw`y4{s;je4~9*A{$(Bf>No88 z6Ng=$QC2a9%XEu*^lS%!{GZ62(D>zLOO2!ddc*N7$B!;ialF@RH_ZlT>0$7?kWu%Ol>b&BG7XSn;7lhLBPlTGwt@l0FW)jwQ-G}*E=;$2tok| zWO@D#Kz}YiD6~wdm36ayf)!Jk=h1Lcm!f!#v|`sIu;i{eWg%PQr8D6~RlNh!f?FgR z%WI{U%l6Ol_i%D&K9)@b2h?iOS^T?=*ChmcFkpf~{+e4cKehf1x?Ub-&K=N2@~UT! z?wa80v$zM^*v8ITKlyyv;e8M8Yu@dl8Yh*#!`uKQ>2U6pb)Eu=VU}oI4>vxgZa0r* zq6{;caXp-PTWTv^HZRjsx<~=e!E?v&HF2iNIcagU()HP-6yRhM^I&$A}pXp_- zLSvpuS_>}7Ok=*e)U3o`hHp;ZW#J3$X@in6ZhzCdd|6$lw;Y$JQmdaZXJIa}<9Z&+ z^}JP;6p4j6k~p`yXiQUCbEe33U94Lqqe7ee^3>UMWufD|=}p_0$JAkSPdlb@X`a^n zb%yQgVhKunAK1V;J2&bkH(-l_IfNI#H?}TE{6#dpbh$mveld?JZ_*nN&;vICARlBu z$g`F6PF*3Fof^(GV519MA#1SA=e$$Pa@lEW#O+Adz5|AvyACc_ACgyG@zF|-6EG3du4{p*t5)5<9c~C%s3l4MPuAeI_Cl3(0Sg- zbjBH$X?mP#Mkxn{2L=%s9H)5m@B|A^{GH*~b_HP&NW2BAH$nA)nr+&*D`u^}=|@Vt zg4r*_(}}oxF)Iy2{$C0JiMh@WZeFDaYdZh{KmbWZK~&NkmRz~z;tJoe;Kpop8R=TK?~Fd$}oeuSb-Fb zELx+*R6+_Qnk%#e2&WeWf^efC|G3g4o+3_pngc%8my29l`!4p;M*oOoaKkx&)Ru7M z(XYrcPtbsn*DA^cA8}+hJ!$Ay+M+dX;U!3PZe_`oK!I_}M`cRDQb|C>3*kFh82j?) zrwRbs+yYN#13BA@K^}a2{-6YY@N)`>*qMt9tz29sUVQ_+yO^iH{PE|*=lGlg7j+l_ z5`iDb;^(65DHh5Z0CF3$FiEL zF0=)san~OJk_?W9j)o1jah`xz^AdYznas1ApqKCHLvEvw&+_QAFYt5tl>Kgkn;i{^ z4FrAM#+%IBj~>Le7BVDMgJ6+wN|a5W!YxY35cF&Zfc*M5!wUp}96fo8dpz9dF=C08 z%Lie!n+FHW=;*Yw(x7F3%6-ee66=DDB#`{T`%QIXtg&jswTS^B5B}j7!=wNHO9VhM z00f^*sU0%Ody83`I(5ii)=>c<*s0<93w>hk_!)vLv9nJNsIGpnAk>@8JVCfV2ZM2c z#w{NZ0K$84RS`IkSLw2cqR>pL@&n}dXavn;G1ox=`m_9xY?u*&cba#3&j{cKQU*2f zGcTNHo?~Z|XV|@na};;^;I2a(NV&rYf16l*-a>%WHs+!o1b*yb?qWd5I_^Dme+gam zK-gClLr>@rxNroxu5N3Bbks~KxBgcEbZNy!20Vfl1Vz}lNUOi9X!zaZpx6<+dj!AR zqFs_-dK7(CI&)rGbP1ZM}jn>!C>W&}SjAyuu zPrcm1=gw{+rj3E16v*8^Mu9Lzhv#2XEgsiR?fV}wTid~MG%Rtc;SY# zRzBFlDsG%w`!;PcZb(}A61%99YLhhXl3PZz1lLqC7j2;w;}fj}=f{tK<1vumKkoEs zM@l>#CZAe6J$Fcs|s&*_yn5jVL3)IC7K7jL7~a)~u% ziC<15bBptuo0jt=1vl9n56A;I0U#e-NAOJLloen;mtCnbEJ`?g)=l$;CpAwdE{7z` zaoWr8;lvx})I2#2Ts5cIGtzAvO;qJh$f=;1cC%*J%Out@f{P(>8Ci9MyV_GFIkS-Z z2Er^RD7AJ`scFnJLM{}NjhDiic+8)xXNrZiBeH8qXOv;CAK|W7m1jUP!8}<`>pPX} znli4pjgZ!Bl6@61Q}*;WWm|ikb(+TV41XKxyVUhI?7x~!-`IKHuoS~tUWPOMD3vSu zpr{+cW%^7U~1ew1lM{YWl#@Ju|owGh_n+3-xlYZBI;7MwD()bmRZLj4dMDGQug0Skq1nlh!GB! z5+_)pL!OO8dSnV;NxAYxzQ8EMep+P*3(pnCylfK@5&BOs4od223#`CNLx0O2*hN2V zVmti156*|rzd9X0{+zynS+qMH^d0MVh9D0HdhpW<%=7av4CFXGI>LhMzJfeR#|6|! zj~)&mJ-lB7Kn@Wo^6KU5;l+zr!}F)l5eRaqfDh7cV~)R##S`uZavN{r-^TpUzz_!i z>3~yZvu%oMxip!=%W_GK3XqhJCV1fxF3ED>$Fe|>Ww_puM%(mP8du1jts>qa!@5u| z`ZTYl3jRQ9RzzTC+oTlGkPXzt8{=vRlT}lN(hTedJ6mkrx<)cbI zlaItaN)m-~&c>3~lZ)ud5KIhC+`tYvAN{vq4j=#bU*X<`0U!vH2<1iC^&}TG$5JJ- z9~37TlLy~C#x5%iuH4sWom7*N6Dca{XRv||)L+WII07vAX_$d2;A@=UNNk2+hm^?Z znw2cn^`?|vuV5uTxLAPC6_la-d3=Hd_xT6dfr!Tz<_-pUa6aeX2gjI~7@YRx$@Ag+ z@17_CL~{*3QFR+Z#0>P%oP&GJP3)4xdrN+nUtH z1$hGW*`6SGG|;*TGS02)|8fw0Vl;{H<9|EPY5?OkG!BdcWlKtW;ToPr-!CIXYY$jt=nKNB6)kAqomPI*-rAfS%VIYLIwjiZ%h9 zmz~r>qi8pO$P&+?$j`gnLhvF#@4}ru_*paV`mw!(6u}-?k4M`A&)vU}XZ%yPT{1&@ z)L)9IZ0Z;zX^Ul%TJ=DhVZ9W$ll#4R%xGda#8{oNqjc=25ekNMG)?@kE-uEoe`mqlDZD3B>`SEAEcCI11 z==_`ki|^vF!?G?rug3viQ9Um6Bj5MO4n0?NpElloo#h^9npIMpy$bF7OrvW?GO)~Q z==K-1N8-6^_Fd{)#l|nIQ)rWK8gDP&7AsN!m-$N;|D zT*Os(i3BwP+%$!&0XiPyn~Jf0mG_M^S*|V1us2q4NdeYvTQd79IMbWoJchrG^j+$D z8}?sKX1*aC&yDEPrQ`Q-YBFw_*4FRIP{~vNMQ34|BG67=a;p0IWAg z(e#=-D2&~p2xa1Nxy**^z)5A%OQjd4#`k zJUl}V4+b}|@Tbqb;B8E%+(vi(cGdPO<6pJzX?ZppE1>Lfm?R8}w( zk%LE+Er+b;Gp>+~bh&=E)n&_}{(88>8dRAo1(XKRs4B;TN2FX}!eTZWklV|@c)B*c zc(Sf^?_~=Bp$QJ&aQ_mlEb=hFjuT}mueXHxrZ9s-3NK*9wFa$T2@nkC0vFBa^+YKa zIhDeZkrI#VlHm-bpp!EX@S+ti=tTfh^;6Jt?G*omPZ`n?kZm%Nxrq(g1&aQVFagigJ# zYiE2Wjh&oukBwQW4gk4-XW0Gn(_!o5k91AuwHX4UBh50iXSJiRm2nwvSmR<2W3&W- zJpU)`0Kxze>;S@@CKz17F~WM7R{B_Y6S^#|Q*K@CW9XUEEvl-a(KP=9z5-fN%~v=bsd~9`G6*mX!L! zhHw=PEHIiZc!uRX39fJ?@s-=oFo0$J>?^iU9SwzcVVr}7HREBNNO1~Y;sVb^*CA2I zsfd+c(UHdTOw2wY5g~`yRnl^^w!?h}fFRvlLmmMj$SWWOfg;>MhQUM(0pp^YN}Gf8WRWhz~V(swL(BxtH%kzkoz^JE&sEPNS`Em!Ez75sr~ z5O@06!1bKFH!_Hy*L8Lj%gK(jj`ujVuen?02Idw9PHz9`)8Y1KkI?SC?|D}NAav4P zU#+4uGj@4*l@9zt72Dh$W_w;^smEP+#jNXX>si(A zH?b%8g^6CistJuQ3n{|04iZj~H2#t^P3E0~EiiU~tMGIpRxU2|2P=n!g|Smma zkx6>fO3ni9ls)4*H2zF$E9YpXjVDyO@R>!>1RsrrK)RpMEB#UB6-3-;N1;)-T;|Vp z>E)Qt^9ajs6XR~u8xLI812+L6m-W~WPVbqjPi>gtEa&`UxlLrG%(OY5`3!eToR18f z%bV6|rt`&M46Ac&ogF(oMA`N>tr}uIOfeOEvS+E2r^&PlD2&jxs7^R*$SjRCa>f}R zWtSF3`(XnWG^%1sP3AE{auJ?X(=>ERa*@PUH%;;MVq9UV=#dh);^|Fz=TuOp4SXB& z=k(6Om)T=G$!l9PEW?>!h9mywcoPqJ-r$_!yydldgkz^~2UA@#g&g&cB99La8RT(x z9J_&VSCDgVON~^!gW#d>83IJ~<2KcJAbf@=lH5f^Zz)oaezb%6u;*Ir&D|JcJzo^l zL(!Gbm-Oe{P`R@Ho-q{EHfLq6GgX`q%JiM*Z9D|zo5^@+rW6kZmExh`I^M?AgF?b? z@eMINDC7b;R7$?&Ci%T7*IagAaNS(CnmM@fbE(~8eC`)L&NLrt+WU<4SjBG+06D_j z$%lAL`S4r(zQbZ57Ok{$kA5+Acuitqk;%m9K9v(0cU5N0E7D3-7~M!2Zf4`GBb68a zAjJdm5u0csG}+SbyQr)wBq@2TPXXXP7t3Rq4PhGm881*1n`jpK42gbO#-el*Lm?LA zS~)eGbbuMm;^Ywo(oKxhmsmc>Ie=Y0=k4RvRDO_ z^<$m~@k~S~NC0uJU%aUh;%Q;fD?^YDLgQdgi*2x(pMLrHN2kNXPtJxr_xQGS(8+c) zq%{0Ia<;H%xCZkRFQ>e&f|-Fe4BX(tsuz;?UcDY3KYlhmef$)GAPfN6S3nJeJ2tT> z#JBTrVb14o6Z1ad3<`OKAcXrL-4hL!wLZ*(RvD3j-EtBWBn9a{PN=WTq zc{(_XOAqp8ISa(OqxMeDxCO=~fGP(SgU{A(@w$p1{HW_FIyhZGzsWaCM6qLN2M`8; zU>kew0D^0@+K~2DU5i5C&V^ZEk!lqP=9d}(@~^|o|BV2U$4~GHKm_)3HCe$PYT6Jc zo7mR)F+zYx^<^msbjjJBBI>ZnMM%uA>VK4<{fT__5w<|sxO*2nfc$Fs_<#KJtpk zFz_CnyMb^U2v3k?CL?)6K;#MMA;;6tETAvrGafq7uH1RZ0UrklQaM0>I7A@m5p?YA z?hc=0;r0GU_b~*p@Jc2KIfLHU2t0d53I!7z!sl^Gjl;{(ofKnynk<>k`Tgg<^JhBDM$fD3brJrLKLh1VENcizcMO^9H^O$LK71rED?XvYui_Q9R5bT~ok zx;ZV%qE&#W529^q)k~%bL5Vs0pU5VQrNtwB6Yxe$UnSlqz6q!e68fe{DsdAWplo0z zLT0IuOt>VUbV-~p#~in6oJcVqIXA{9JppH)gN=XF>Ha+#nB*-ucghSZP3%)7*8yXn zry8kCjabJ5?^zH`w)x=haQo9o!xlcB_U;2fSkvAaxsiKZ=NbAw)h!L?Ak1ykvBp?u zAI|zHZmcuodt4T2DVduvmyORnA6h=H4PkXZ&t%+(R<94qUiTySE83p>S+2`6c&4)~ z%g(s#$iEHw>TeT*-7noAUA|O3vLmbm0xYwamB}+stlfMvcMXf#dOV$J_DI50wyFv9 zl99&rdI8sTi8Rk+Rc6g}_yV7-i*=PWPo>sjn9C$>FqYueVr!dgC+bsX(nd>OAH@r< zbE*p|f@e|YoW82V;*}O16}BkPsHh+7MM$QzVHswwoAky5Z{~rU0FXEH-w(j;387E3 zDRVf(8?7g_cF|j;iQ5J880WOfna54hns1D=EygPKyyq)GwV_ej_DVWIWBckvJt5Dy zD!I~BNX;zjG^*99*%P?>Fu|lq8+GJ*oa5~NzBl3eifRIW6Br3m}-2F7|Xi2 z^rrm12FtU7#2ePrzKgPT+a8y*?jGlIrZHcSGd$DYMGR*Rf>*2;{n!gBWvdP0;L4v=)jV8Pb z6-ni-@V=?IfZxR3b z59`Bse_F>U0Qg{lvU!Z{ay7Y0n*yEBtQ@*u~I7D0l(&K^x|w z#2%NlEM(2Ml!q1I(L34jz+UPcKEc8o7NU4PU1MM+gF)Ex^2Lhc;B)rRTUf~2`6&WG z5PY+afD+9eQc@h&i8Hj+OjyG@(iMuZx&(l{_^00vFBAas7(u-F%pX2A)Y`lg#m>$S zg~Php@7s~BYgF}NaU-0~X(3Y+NYfF-MK*A2=)0Tu?hOz0378)y07SLRRiCU;*nEza zcitx-KYNK!t>IHJ*a?I_)*>$W)=Tum%%(t^gD6R4=p(#ds~s4Wjo^|q-D@K-q`%*G zf6vWQZAKpeoJGz9{G`hf?%iMEy8jA+WG@k19agUpWBfIl<_Vno6G2sWfx{rib1?|yL_s2GZv=)!AP6ianT0}6X;P&O>R?kM zhDSE!HVQV#20QCZKUoa2EJaez#@XwtQUQjPOdh;hg83{bQ}=mw2LKywmQ<*FQ1P+! z6kJbI^)$h({PZ!)JWak56uNX@%j*vQ&f~R+0f-9tN5gUat$e^fnl3Y!)Zs#!l@(q< zNT1ReDs%%PtFeH7zrKy&RRpQ>xApMBaO?hEkl}9^cJ6n6^bV63ixoYtfZbF*R7-WvrcgClcveAmF>>XC^{^!myt<(+~j;Q!w^^ekl^X7wrJs* zVzmn@t&M0x3`x^tt4)`j8-+llt zPXt!&vQxry{^D|*&_IhnzG5QkWn?)Sm-BNp8P0rvjAbn7_ncQ}$T59L8(*&Zhj6Cy z^{1CzMN3F|IFik)It!2tNwBq84yghi=S6sba z)gX3{>mtc05blRB)@IyI5oT?K0&=h=5#`_MpKbHAs8IJYi8-iSr zJjK{O!Q#(8f-Z5FP7(kbk!9X;_eeZ#u117B)`6dbdGhCV{MLs3*XzSE%3O0) z{Y1~P81%tT&*H!-UOWw(B5Crf>EQ&;4a^2Se8WD=gY_|T#LDL2tOgiMcN}Q@H6G2 zFFZ5cy?1x``Ct8X_|cc2X<=83%cwAS8X?{O{yr898N6~U-t5PU;HKW_PoCf!jC@OL zY%lP&vdFrzLFyn5RyxC3zUUyYbR_lBNFAqr6^&O&z?AtqmQk_rvEwShrYyK=*AE6# z@|tTMU`$mViCHLck)8nz_?*U_pMN=QfBG;20WJ`b(YXp4zMyLsfI2w<SX{3p-If_=jH(kN)BBaBuT=J^{ln;Oh65x_k8S$ufxfDMbc=?En7H!x44?QI9Ft zR*eT#tM`~?HP0be3Tv2XI99dW9`3nyKMft)d5`zjG*CZCArE~RTH|_;et3*~cFqxp zm>c-x9Kjtw4$%j=6UZTU_B%zS0Q)}!K)(9%7uYT6A%Z**RLpx#PWF&{%KC9W!2)!A zP72#a&~Y?D3Fmz**5Y2HwP&;?+my5<*GYMnO8^PsvYaVN1YoZ42&yu3lLzdJYe4oe z<Kn;_<^yUZ)tpXr^|Z^u@{|;1au6*K9NaV+ta!z(iCVzN4-DslFv& zj0&BVGU$lobfFe>-HYACjSmpw&^fYWG)lC!h?&F@7#mi*ZbF&Oq9B``~;@I*tcg6Gw2gXD z7tv(;lxH7=RV(oaZ80g=gV!7MQwCk~TDkQxfIRZOwZ|AhO5zd z?3SY61U9~wTc*{6bsp=qw2@BQ+LJYLH@O=Rtn7iC0Faek^+OV-*{PagSf5q`WQ;Q` z%55S8yiOz&II~qb)AEAMIHzXr%Z4)zoF~9M_tguqk=2F?{t8;um1Rm}kyoo-GgS!8 z>f~gaimI8!=8^j%f-Rru6)cCIQ)gX~D8%0`(F0~x@vwuxX4 z?C`O{9X)O{j~}+()~+9XGxHW62F4THFiCD*sOVM9eP=wY^yN8Y>`vnQzLRlt{2vnh zP5e~rNhiTE{KxV6`uE=quYdh-!|{{n(T`>VKq|j8rQ7D77ULQO#+6honGgUzfZ$Pi zM)*-d)FS2ysKCbAD)ityv!R~c)q^0P+b$oKE5y<#{PD1i3=2#}vK@$)Jh2ugi*1A`POk#6Xuv~dwsbpem9Hb5I!^G0@ZO8{;l)$@o~#Y8o~NxltUA36N)JF6!t31Vp#~YexZRp z=PUHYGp`Kut**>f9>V=YR`nt;@>&;TrW_%Q4}_C##ud8I*#c#5-$rl+cK>+r@!9a` z)AM2XZV-CSO^U4G!ZaC^X{)0EEEQ!UTcC)+ABVW^?&A{;d)VQJpK4&bzmHwJuxPxA zv3(D3(*ESstu`sV*oc)^5gXcJ(x_hqv1C+Jo`<{ME4k?|&MOzI_525K^zL7x<+KsyTg4 zi?-;8c41%<0$p<)rT0Ck%27C~~1#8MI?I;*)qKgIa z%#x1u;-TCEcW2)L@F>mGB2`G|be6>!NF%C-WIa_DEq{7%P!1$pqjZ6yb( z%|Rd0=2kaTMDwuZ>mFrrK895UUvLBs<(eAZ7SMCoi$jlSWvjGYSyO-& z*T@%hz3!f=;^7tGG*;Fku!8~p4Bp4ZdKmb*PK_muCu>0^>pe5%5H4|*AP8$UJGjL# zU42zYY%=(R*Wp&%3C`;REpgZ~749tVgr+sz z<(!&!2~C>=Gvo4n?Oq_8t4*e{G}BJuO!Gday!!Nq=b0&7PwTRISf1lsg~syUG_|fd zTPS}Onm4uMy7}F&`c^YM>oZM{^N=C!+^{jPXtL0^oS$v4WRS13J+0gGvL^O&dj8&j z#GA)DM{`VJSmbM!n95PEr^@aH=7tQ0b~bIMF|1HouKR#&%JfazOwP4%n#lsz z>&O%>KSx{OoTDP!SV~>0{6t_<_mf3tK)QPR4%ED%C`#2o1?e*7_Hvqmk!vwh6Kkxqh|UM2!k4SDlSdG$Zk&LLy{#jBBNq>lhYz z7V(6&kKZ;`%C}Ep$f!p) zb;YCwz-WH;11=KRhi2joz6tIkcX=Y4l3`6wvNz$YG!nvZ+DaRX0kOCNpcdCy#!Wfj zhQ)*Pb-o#khk$$oSzE?$G3D+aQP$^O7$7owLdy9Pif!PO4b_7eeVooaqoBE3@`uBZ-?XWpGLo-6WLE!Inci{X&qyw-{tW)B82Sv z5F!hx`I;$Kq%yKminCM^*3Cy8XEor190}icvj`c&<$5b$aMcei^N(hWY7gQ^ZBq>* zWAIcFgk-VK7k_2CQpo^K;fW!C!D;5HbV+cXL#xLnQ)2@SM0@za{rE6;|9JNO+VJ?B zb$lM6v$ZH9pZ&-CGuog!A@wpvts~_ZGnq-Vqikq~NKBf$fPrXM$H5<@t-F9wl8_L} zMKYIbN@^TM28l%O_lIG&yl?};- z|M4}htxxcYL`2lp!+xoNr5RGo&GK20sz36+nE^)lML-DeqX~=D_tOmi;_g1r5d87& zpTEWDqF$kl&(zSrxX-+Wh2~or<68(c)(`oeJG;X@ym`NibPIt{8ypv?2VUhr_-N2M83vVxvTumhDsW*5s6aqO5{0f{cx#abedOR~ROepffKCO81$d zZJG^67Pn|_{m1~}iD>Ms<XqC8(Li`d}BxlN*+EXRDtxt_l8 zW}W_~WyLiG6S8fRY9 z816FhhMCr>$4<}~8mVy}SA_O3mq(oL2I>!J@6zP52Mij^OvzlzdN9pT$ncFtJP_w+ zC?bys*!)}!U`p}8TEQZGkWGFc*+|2fR$C0@Y)W7^Ym3ep(uVBWxi_h{WP?U?sDUO@ z3g8G1Ee!hLR@!)&zOlss4=ywzl+#K zgBPm3#gYKAKu*8huErVW@|4l;4z=2esK@nXk{XuS-s^1kh5ciLjWgV3u^ zXkDNzjL;E(8#5IwGVl;!)`D!jA&UeGwkmX_2ZYGrSH4!5K>bF#M2kLHfiY(7L%GEA zNvk6PKwcMRBpw#9Lua+%X?>gs{=$|(1ab9WL{P{DCr9`c%y((|v>*~1gKDH4kKub5Kk=w}m>&V^zNinPyAQ3AmEwAw8bqs+b?K@ z23*V*3m}pF-{3VXc#s%ID%zqp8L>n`dMF*m_3~OiHfb6jetI(e=qG2xy^ny%l}j?n zws5%8%XoMR;6YiIm*~UAuo|*Be&sW!SWMv}FF!}YMc`vxV;Qg!fgM}06N^m1zs9Ga zo;`c61>&dJ3FrVjhHN0XkU<`7KL&a*2xJFu;_hH;_8q>R%RGWfwh)l02pAc-+R4Em z-ua_1PfE%Ch%S~N-~{~lRH9Bm=1My$DS+ZH&IJ7$>bHgka0OYG#kZB@EKy+;eSYiV z{bBcKUkuxiJ`&h}_f?w=p1@fCxL+9w(Pc}BnhXTZl31fu-m_kS8*ym$pM5s1utQ3ieN z-rX7QKe#*GxqD~0vwH`hec6Ve5p2wR*0Q5V=z=oTO@YdC4wa*fK2Ep};#o%pcoZ1> zfoX^r58ArO2r8V#%M_BhK#qg7JlNy%q5fAv%#?n|?#dEQqA?Rm7>{LSg#L*xNQmH( zQn#%pnV4IJFC_JvL%IS}l_*8L!J|CzzJ5!MXiBcoQb_Ot&T-cr6<3s1c_y{J;4?@S zRKXDHfGswZv;Z{Oi@0nCeJXEToRCpS>Vri9(2r=dH0B%9x!SCSbU|(s;cCc!3NW*U zCEAuP$V_8C6Ip47o8B;&&BN4u%CmMLqLJ+Xyrv@ME+6{)k3szSaU5uFwOrD>Vp%rw z_GP>7MU`cW`8%Gg6zR{bEBBYH$XkhrI`MB4JC*JJ?5kn>^G9$4t`WHYyxqf&>l@T? zYBw&!I;-6FZabGrHU;b0U9_+Bm<$n3w{fO5uTxtqz5+C?Noln*-}|2WdO$lhwvxfd z8SZi-`9ZSpn>|-?!c^a}oH?A~q|1GdW#g6&3-g$keEqQs%^VNm%VhU_bLHI6`nGmC z^P1kczMN@m-iEru6+z!l027{Bvl~1)Z}dbaru<$-r42+aRvu1yg{emxPP>33m1!$! z%`}0Prr=y|6pJ}e!J)F)dLchNT5L4`qGUos-XiT7F5bRA$p=+-RTlh~U-8t~+2wMk znc^e9iWf0;u%0SRoO**vGD|$ce*?PlK=T0pRvCA{hPuhUe;)AQcbY9UtWT$C0_LXY z1urHXQ!7jJ=) zw_d1=PCp2&@TOoQ*W~xPT7|+jdhk(T<}uFY2}J-c#|FPCq{E(}O=QYT(B_-!?|79XQd@e>q&L* z`C(sWGu5Q9YZ=ow}6G8smwLKtw?nTG>HDmGRAWtmAW2f|t(_1oG$g;nfT52=WS_f;r+G z1ZuLUgKz$aD9SI=Koey4aq9q$zriFOlZ_f1E{A!|cGdy7@F=onCCdRJ zCLg8lK*e9?ksRx(zBFJYAqqve=K?J<^ID4_%yoY91p}eh2l6a(Leg@O7~uu@h70Ko z0NMG;=fn0#_rS+~i@ymcgikfEVapXR$JPLl-~LVkActRnJsdrGh5!(3^`nJ$+Qg0< zZ(!4db~%9BRpJce?d%+%4Z`pA96Lzi#~nP*(0&>*aU)c#rQJa=PXrc}%AaZ6tZ$$n z;6Uc(md34|4@>6t=Ze3&6Tm$V4WPA`Lf3 zvxAZ_`g1{UkXq0tEwbe$93rE$Lzg*V(}_w;tTX z_43PM`(p-7qQ{-*9h5GXcXZ;0N@8 z2Y#Psljd*%&*yrDEq?_rc7r)t)Ys!&p0XvwGH;&v3V)vT7P{rMjttcw@GBm7qvsjpB+{rm0dW^p)q{w1daTVnSqR{NrZ`&Q2TMh6 zp%E>?IugGm1%DA!<#>Un25f*gC@G{mR}w421`}F|nc>{X1Scz^4AYyoOlW;OM7x@p z!iy-R4(K>JLg2^V`SASv_2Kc?8^hinghC$I^Gc1$rC(7~%QlH-(4Q{bz*+{Qtgry5 z;L{Pv$QE7o}v_KZ^0|LMg4)6&W ze6Hdp7KUFuf1!YoL+n_<&qkcFvhW12bKVhz*Q$GXL-(t%z8F5n0u2|FHGa@Xf*LIF zf!dqbHy_lm|MVp(=Z^^R099dEn~=A5Y9NS{m?Fy^Og01OveghyQrN`#ukF5t9k|N% zTG!*kTE!H;JcccDHZ9EDQDkF#8=ru=H{Aa6(_ss{Eb!31%q(-MR>3C^3Q}qt{gbkm z$T7+RAg>Sr^5UOO4=3jrYr+E8#v+tGt^Hr7rd=Tzyf^`l{H<6zj{#Bb|pxV?F( z{H={+)kT3MYY05R&NQ$f`s)S)bKt+NPd^zR{5?Ja^NYVhOvu~Y0mS}t+q=9h^|gaE zF;B67Ay@{VK|Fr`62BM2;o}#>3C0-jRoT}rbFlqAUSmf%=wW+ce7?jr`xyeao<4r2 z-v-9wPqEX?=Rf)kK8EkW%pr4%&oMs54j^Cu{u}J>v_I_LzNJ7926JuWcMG%}$K==N zUeF)duhi$6p&Yga*Be92y~msUEnVw3wWXdo*+^ypB6zvMIG9Fi;Tp;ndw4X>|*aGpmS1c|706+jq zL_t&v0M}>*(hq_Jqe^yq%)0zR82=Y$r2F2o(PWzIa*cIex7;cF7W!UMJ{r4Sf1Q#u z3!A9KvbkV_T%sF~y@TsSnWHLX>cZPyOg!fD1**!PQa&XU7TIr=rDmEZEZ0-1%Z*}L zuGT6M&BH9)x)M{$2LB@M7%qm1`Unnxxb7D0cE~<8&bnNVyRn{fs$Ohgb3x-wJGebd z4a{(p-gw}RJa7{L@<#4^SInLvoKkPj=W-8kI8P!Y*78?io7_n6gRFW6C4mWU(=rh|9#<>e+C%EUPzcK3(J|ZS^tomS@UE`!bEGrZg_Y zh1MyqF>GE&cJ<8lCm#G|fv#Lu-<~LB$`$hSwynUt0*U2M8NCAgwUbQQLnVeYZ(9xP z%bAAxe3&Q0Zt_?0z~a2or1UtK8^vn5JpRbxG1$XblXe9vb*<9BYJyD3heQ`J!{LEB zgFv_&2m?M8^pOKUxM(3b`XN&!ns-TqN@>wc4}0BDokC^F)_I!Fkm_=CjB*5KgrfpQ z8vM$F5%Jn4n}Hq-0%5R+9%$p?-)1}rtU(|UE*TnoR^EKr+5kAA3r!>W;B&d(+V2^* zY6Y9Gg2Vlor5?Ac%nyam{+jaN6l|(q>Zd>)VS(!4kKCsI89oW{Qrp&R2Oc`n3&!lU z*}=U)chl(HbzD_4;|VA<73a*9e8Zd;+7Kb5Vlj$hEf<-{7d&uOPgwPv2ngW+k_JHx zJLv(Oe0*rnUp<`9dWdwHS=@aUvIqcSIRJ4^4zVq?BWVw#DR+FheLLv5SmbDaOR99g z*bfflt9rayj%V#Jo~#Yu{c&S>`FwpiIS!cX826oEG_SO?5CFL{`@`^RB_xQn2*`QT z^ksqoW8IaOKmyt$@(`wclyNSwu$5)YsAPqkC@GZulC6CuUn8WOq)^Lge*5l z{l0eH(&yI@0D>`Yzcl8^d2v-{Sw~OQmy1mskiW6JGi+f85N>C`iBD|k&`tt9Q!Bf5 z2`RO#NaGB5xe`odasbH7fBsj@`F~UZ$mzkp+D3C0Z06WMMMY1~HX{fFyL_CUVGcN1 zN6^PM0zmHScX*5-kkcImfFKA&0U)4P5J>C{!p2``AjvucK(Ncl=GyUaYl8tF`}*C! zwLk3Ocl*}sVH-gq8|x+T1iR{>y96(H2SH&23xW&)x&NyVC;$YF!~51#jHwd@X&ij} z1UrE|hjVd{ddUC~HmBx3j6d%Baf&f`gn*6%jM3)^E_s4$_xISr>oEd6_^GD<{MY~A z@Uy@AF+S;npd)_Thce&Tum9KurXm2iOr6=nG& zObr$qEMp5R$V{oa6kMHWOfNW3@eA4@ZgWADgM|6`yP{~S&LVwW>j^46lpI1ET`?3x zqxhM$L2owO9&q6F_e*GOvYQTKJV#N~sGe1Np^=!(8}pv!`W{I(z#vj)YO+V`0d9jO zvz#h%$&{pCM?q%$#`SDMD7K0zVA3vhkH!+doU$j;M7Ea+*+JlmGWEcHdhznoM(D-mtFgmOEwNLfIEnIYku2{($*8w&2HImrgfQ+k_M5g(qAbMVaE!)$n%blp1 z;@IvWnul4obxjKm{zcj`T)Y$YAw2Gr$I@G0>FuL`JK8e$HE_#~DS7P(NZ30~*V@x9 z(o4B1-+18i9>Cuy?tYhNzTtQm9_VK%mz~-Mmz^5UG+?8quJg1$O=rq#3O$&)8=q+ig}o8X%!ydu={Cyl}yG2kj=Z`Mrm^oGsuSl;IwJ{n#@+^O|M~m+7uGujVXm zT9cX?sT%JJf?1A+>c<3mJsb^Kkx*$=C!HWtF2yOS;hWlV2w8EF0gnGoQW#l|#oR!$ z%(tUMRKUo@_RvE=@cH52xMD@8EwG&|+tv}ohhLyibe*!h>AZCKTAKTELXWc9U7Z+p zj}h?)Sm=FV->@n@?kd%D0Lbx6EKYs%csPFY0y}`b9!~If@ENv}Kf?m978T^&)J`co z(u+1VYTUB{&wxS{Njwm*j22JB`P%T}={j};!LA^$B?WUG@r5Cjr85yBlywRYlqcxrdvgX0 z=$tWvDPf_LYXBlCWR#%;$pWiTwl&CjX5FS}LspYVTGzn#lkXHee{5pskGl^}hX;?& zh6f)b7~&&*3g(tBMP!Skh;p%|Muc}JiKj@KfazS}k<=o()zbpON?a;Z7#Ee#^eG8^ zPU84vIL2Zz13ixMskWn|BL#vSU}vDCedLc0MZ?cU{PgEP9zOl-V{K=DrX9M@5&Ut2 zMd_DVlzt*PJ6O=!!9w#EKCg0{J2@cT!Y3;D37TpQ8diOq7tvx{1bU!c?d^=F;pK2U z)yp~It@1&|{>TM6G!%nBlxG=>b6m7$f1Ms*locXMhc1Pg1hkr2;8V)g?jQGe2X1M< z{mH{&1E0*%(Jg58D*7^c3=095JJ$e^fBXIL>Ysm80zkeW&JSM0Oa@;tHensRdTb3Z z5AF>w4n7)Q9o--HjvwH6XE;E>#}Rh@I61$C0Ff>9nOnH^ilC496byF&i8N9f7Ji%S`v?qSFv#9;XY1u~XZz)F|Mv6YF7kJ`UMa|GeP?&r z{N%IY?k|5ieDrsJgZX$Dx{lt^BjLZkn=JDxeZ=Ep9`+~Daa|z%HAuIp^0!WY)XfTt}Wa7W8 zA80a}OlC48Arb-sEPy?**W5FGPG41Bx4zHazX*SkFS9bMs%NT+dNcVV!u|6jJdT%L z5g89-YZqgY8?>HbY(2+@lIJ+B=f#T`{X+AdqzxW%#cHcsYw@56V>JMX+% zZsXNCJh|tP;~FQD?C{wRpH?ycR`6U~K_A8c@C!2_Hm7hQmVR3u>3}<7-(i>eFa)?g zcTrE2{Tb>!!yAnoKvUw3xzNd*~s(`by>kaMZcQ7Pc(|+#rwhP;Vk{6t3@Y8kcx1b*@Pxbfy~+c3Gt*URBM14BRB zCTHSOAA|*i!;U)EDe2p^PCUbJjXM{YFEr8nIjKbGF{F5tQm+q1Gsxup(dr;fqkMBY z`Sor3aMIeUe~k5=ljt1PC*{EuW?uaiUsPt6?z7e>TebaFU;1rxej})_NM>d_Qt5f- z1M1A8)%w_60^leX4;#{}tT{R?4eNs1XZ=|zWi!uo;T9OlRgszzu+4*-S|!sEvvSSv zXavul5!bX|`A#+M|uC-&l>`=ZMRpu5z^8$-1xY zUVQ+t>23Ur+(iUV5&?X_Zr$)C3NB<`WdufMTg}Whm3?8Aiq6z&wW$X)NXM&US&#Bc z1yWh5=uF3G;yX`0Pm^MMXn{W=J|u(&Q&_7LnOe_DC7f#A3I7+p=jDjpQ!2#+(}RML zu;g@!kRh5tL!PMP`o#5g8fF@OD9uuf$?zeRk>gGf2Z7B!|aEz_A7 zPh%^O8}fOH=cP72d%F1NGF5jl=UTz*%Q9xeDP5&uPFFMOH|u6HX5cAyr(0WCV7jVv z%xQhI)mJpRJ*|(6pHs!3w7#EbUY2>C^3!7D^=*Crq;>K?PGiCL*>>4^fY-lZVTl_+ z4zK})pTnJHDSp3Lzp0gZ?oY z=V^=>u)9t2D1#6FAGAS|lTV&vVFEz@Y2pwY9rkgE12=)(`)nB-L9mn?uVE*aw#-er zN>g?*<2-9);Ku!Ow8ZHnFMW?~{*po+;PFSG)lS2b)~%zT8u&iS92iG;jl%P`DrJ=Zf$5J`LM5@6_ylL5xQ9TJ8 z)@zzz&>^4u9o^$eA3IoF-oi-(zQByR0_A;ljLSIH;+^;2E;nx7u;3mZVABW|nYXug z%Kdu}%4eT_S#~jpTmkMfe#Lu)IjGD;MJDEw zgz$Jk85ikz+6OkEETh46G(Q`w#VHA%Fl&p5h^6&;7+<}DUo>O$$NH^n_+|5ToCdP# znmeO?ldDWHL%}Q4oHGA?umR*}KQG&#eo=PrKg5YoTc+gTaHZ_xB##%^?D2T(Zh83P z?egU18|B&V-LkcN6R&-_UiJ^LStgvR&68ZPHk;-o=^>l4SX0Gola^m%1IW{IZT(TX zap``!efg_$^U{NIbMq1U4^9rbypBb|yXEE|{%*ViW)tzn=i@2TsuADSFrx z!qZ83(jGU1=(1-Wgv=*C2a#u;OcC-t*#|4&wh_dhyPOD#w~yxy3pzJSi-$~INH;#c z1KV{o51lCUV!WC6=WY<4MXryv8GXUVqHStv^>Xnj+jE6_Vk27B&5UDMYb(*2_)I+4 zK$k6IoBw#8BG!I|K5eoIs@b7lTy-M?>lWo;MO}#+Vxvfg`)7$`{2p{GR0`2{P1FTc zYeRBbFDA_6l7C)`dpIZzo`%i{!lD~Mq+9h?Sus`F_#+_VMtKrcZBlpAcMjFTSl00< zgc8RspCfv;OPumyv={?KR(WMe#8n?}$jg?|c}sqzRf%`jp#LJyY=C z1eu%9c&*|UX_wx6(>8#tY-01riZ;u2!8|jkMgm`T_q@vROzwB19kavFQPguoP>su; zE`ClGp)s$;%lOwV?@u9)iRrZw=G&-S_Uqg9<0N%gM92EhY4lOH>Qp9-$>u!zB}(if za?^C5wZ3epwtX0>W4J|PW*^SFEZ_&rX})n!2TLQVy*czN-EDD1=9rG^{jDk442sRGU`_ zg&gZ6p5oRZVM8WErt(3Tm}qW0Tdcx0(|n-(Y-|;}$XrC=m6BBs*D;NrZCvCRjex#v z{ zjrUo+Txr|b0K)!@mu2^Boc@91;rTk4gXi4*v5Uq2{c?m;K#s7e>w%5_sBUSF;HGkP zQ~TpGXt~!4lI>HF^!mr_0ccPFw3UaW7j*K(wp5EwveuYYjmcy==85aDp!u&kT^IY2 zw?iyWf$#NHKzmNL&OMcIEl!Kck=E#eS zY%7K=*p5K?a0w@Yl=9@^QhA0AAkXnSn3q^Dc06N|^gx}DW2dp&9tZctg%p{PlOo8< zE7w6~PGiP2Py`>7jFo0$y-Xf7gg&F0LdzLh&0rA8L5x>}hCUL3F>j%Q8#}ncWNq!R zT)KLM6F&~iO`QC3{T4QV;Oz;#_iZpKEPMH?BTT&{BSXI4U5Xxu3g0|B(R|Y3%guk-oirnQ_Lav zv9aJjUN!L&ua()vi3FQi$XUbYi#6oeA;!tE!=XQC9&-2|I*Z{&4KdzPS-K%)z%T=5Ras{t>xs2Dm@YODEOk+ttDXkUgD-~rX zVzK&^qb}|XSX;(MkJT4tbM-kkgFGvjR`FSTUann!UT$39DtF&sDIfmp@0R!f)psGs z7~=UveYmBr0LtQ5FR%JhQ_ovWJ9;J-j1TZUeTfr5cD}q{4zPjBHl@*d)*Y4CW(Vuz z5oGmAzIy2~Hhg^i(PuWMww`ari62{bq6f#vD#jB}*}00ocK!M_%uTm!6UeRGH>|vj zKF=|0 z!83RWRbf*`g`qF=gBERQ?$VTD$s?BX&|l@vNZiOH1{YHVJCYzvhXD*$H)DjD5ly!f z)Q^l_#TuA#mwy$5jJ1d18= zl8gs0G0E%kWKW}y@n&I(e}xzO8X`PV2X16z+}E(7^b$@l;_F{HZ+$bD0;<5XobwBM zp|)3tRe26Ib==W|PA>DNsp^|nwIIH)n>f&x7qTW92a$^Y&8?uWpD`b;tD+0_VY0g(DgEHMVzu4fB^@OjvVbXtIO~AfP%;=t~6ot#(&As~gJ` z@210dvpKAX*Hy;I%X||^svA!}$S28(ZbDKU8l2a3_$$s@Svq7e>oPkARm3VvnHebs zvmHYFx}kR_f3xiwiZ56f5ttc)iwz(%!*gDkY2??Zj%Z4=uRU#8_EOyItm0)o3!F@v z)3f$Q6HjSIjnTv(^4gc`A>GkV6NiuY{?dcH(H)Z~N!d{Sgmt>`@yCrC6QL$k*=*DH zq+cygE-yrrAwpEgh&QATOOxJ^avWyJ@2kkTWLh65F*Bz65l&a%$3T@?rBY_-TVkA1 z_Eqa2b5k}|@r)5qG+{DbG-1Tc^f4OoqD%H7J!u3qhiLxDdc@1L)8xm74fW-*I1O_e zyWg~|;-;9Yoc)-_%k|H3p={&Dw9ka|Iwal)W@>Z zCZ&QN5Me1|Si2n+{&0M6XQ^yGE9K#rE9Gl!207ScJzZYoxNxfp?kh?OB24hSO;vjw3ZSv-j^?AR!2&vAAjUHjxXwqpadD;h0 z{x~Q%?;he*3%vGagMU~K7fdd0?m|;cvS=AMH6LKf$iXqZ+FSw57|Dlmsj1|QRlaAU z>?V+b0%!Xjy}ni z$1i?w-??3`U~|O!`l?~cZ~cOT>?h%%>RAb(i>5j-rCn?`S=qqG2c+EmF^bDFXPM_O zn&FrIqWP^m*Z^|XPXC}!cENvDiRBs|=MH#5s+cS%-f^i;0NMKJW7`1oMdHL;scf0)He}1c6zP1J*abg9o+zq7jtkdIc=o#Yvw0f`>?E8l} zF=yxAqw*3TZm{Hr5c|cuEjAO?qHqXfJXM1!FK)p49H;60!{7a+eEIp8)-U+#7JEj6 zzlzt%Y~VEs*Kx|soi}dbl`r_*zE!SXziK=?p~E!k7Per6akdK?d2K0dQ~wfQ3xkDO ze)x(gy!!{92GWF~!xq5VVAO{cWqYj>>tyvKor~yRrUu_sNg2%z#K053nM?M%8Pa%( zZYjzZ8~7nUT?)4}s>C84=Wm#Z|B;>Q$OR*Bwvi6jo%;D~0fuC|%qDWOZ8&m>byS_R zYB~5OMvQdBhbm8uuCNyJrknctm@`($8{DyVLq>>_<^E@^>sL&wpGI(MJE5duBT6*} z)s{h$K^JjqB{P1kr|ah&k)mlluU}-lq=q2qYWfZ~D5_q`VecdKiGDD3M@T>(G<>W- zaI*n63@)vrPhxy=qu>$yGV_L`tk;FQA_wC9SN-}!(-5OO6N+Z><~P-lXRWVkK3Ps< z&O$$oA~$@j-MLXNf9E|rHOpdT&{vYI zXvc^eTeawGAo@Hy&MPL5Ld`9iM!!X8zUPs4aV;K!+;{qZHA|c1B-5A2WQ7^yX^5qv zVKC`uVV3-u&UtC-OSykZRy>vS9ItWQW5)DU`5BpBPY<0{|G_-c0b9|dsaTu-`XF;_ z4cn}@HfTBH4iq&!bE?aPzC@7EYIBu`nuaA|%|^A~`IQ@~iuV{XobIYT-)xANWRw5W z;J&oK4XIzWF9b;*;PHA6F-GPE7<>a8~UT$@oX1~{cQND=4^axyR0GS?}bH>qx zFfGmQ3M1OE+#YPmRhDNo7q`i;0zz3X&y$xAO0!IS861!X1qgXr)cVH`sWXJQB6?X9 zbgN5Dvzk*0M*#SrJ?L8HrD#gpBG^>*KA7@>ybw($>Yq^J3G1w3DZx{Aag5r2R<*@T z9VKVozMMvh*&OfcpfICujuNZr=`*id|Coo_rYbL7=8-0Tri<3gWV-N~M!e{fy+}_Q zfw4J+x&^d>N?+YX0*2GkXZY*Rux%PFULh-=2KFUuXj)2FqNOY!ou)RB+StINHdy4o zJH!&jfDaWmJbC_|dx(&nr?z+tsC~<%2z4?gg9h;j`y;##X6GeN0(p#A!8}?j+t2)D z5UvUO<#v=01!5xQcV4QLCuS(VyLn#V+P^_&U0fnCQ8{WeoRN70D)OqoOBga#hbA%r za=x>wS0Gk8^IXFRWo;cNe_TE)S8g1YTW=hct4O(yzr5_|SkrK2RRM}sv9sp8Ck4t% z&zJ&LICl=>B-=9cxl`rbn3<+-eX0)tvTxwS1zm2&*~Y74op10r3q%^T z24FkNUyfHUMq|N_3(HG5`NQzgX{Ug2fsb`C841<7uX2G zYu!%H*(_JCTq>J*rO>5ImvH*W728a86{qrC!K;=waOw^(Z4|MBW`JlX^P6MB%ADz# z*WAj6z=vZTsp&y#&kO3shoT|u1S^v0dI(^@Ps#+{@LrD)a$Zc_?OEbv*4sCWBza`rZqR5;pYVspwn<{r zp2MlgWo<74i}h+UYz_Gza4Y9JO03!pU5=ryKtx7Sq+ati2+c2P^r%Jz%@cB}9fL`E zlVQ$Hh3_cqnQwKinj|x+BU}}rrry`2U*t}{6K)%gSQC7#KQhZab+9j@U)qN>^he~E zR)WqxYyC82D8kFCmu#o31IF(Lqg`Yo2|ofKbe8H@rC^;Zp<%1<{94q{^4vDR^bDj0 zfg!*cMLW}qy(-cb4UQ^v;f8v#CVp?BISkW)ilSM#%iqfqGX6uqn z#*fi@EyDD4mNmr2h8FG2k{#2x2rc(B^*zdG`amBX8jRsCa#_bfZbo6MtxjfI9O^vM z0ft3yF}v5GI!$JVc&8>Q!GbZAZOm4iF@4^cz=XKkyw;&98qGPr$xrs&F~7!WRPXd` zTmFpkrgcP@r!KU*F z?D(7`t|o*&m5ZXYob#<*A9gmU3^A2gWruvXBAQaC9?uib<=Vs?dNjukV6qW1!SjEF z4=rjERvlFKNnA=jt)^-Q^yW~2#0($gig9~?T*PcC8)?%rP%xP47yFVi)H5_Uizno4 zjKaXQ#!y7nNtKdHq>6hYEts9{*J8@DE;*ZNi)lMOTDIj2HTE=>vo+y+p6FRmmYbHB zT(55${#DZD3vHYSf2P+}U$k-`7fn*)^>p!>Y8Yu;shlz5i8h82@4TmqgDn@Fe*Nl`^YqhsF!NjfCXs3n*&J&t@n)rcjMW}lrpIL7dCx0OijT_l zTQt=n^F*6FjldmY;pqUIJa(TvE!&^ow}mRx!9^P^K9SE?!W>|6mw8(NQqa5ZSQm$a zuJXXAEJKEL4M4`IJdKd{Yi1~so?aeho#sIh*@{!$=pmXj!?G*%MFaU2G_yfnUaqdP z7(8^m6cK<~7H1d0(uXarMjQ&ZLLRF(CdtNkT#q}OcZY*D8X zt&i~+)4a5J!#oanz+xpfe>`6*U*9j~>j%sBdKlW|N1<_>Ng;&+$kj5E*{3i|`Er_( zc{2l7b?XrzigqZH&^%q>|rtidZtlYkRvwZm75A5`U6)wc#;$kq{mgqvR-CQbH zZY`A$ez0GD=YQNsdQjf^&^KsNOLPgDm@8HPQ5R8pOn4ebb3SD>=ZeO8{|IA(n=JRA zKQFtFo|fH*Pw`CM!K-x+%Co00%Kdu}$_~ocaB9cRn|K8RHg)ioNPNu_^*zEXm45b< zUzD%#TBQT@D{h9mg>iEir+r+%c@3u#;q)Ag4UQAG_lo*{u7sS=H0DLO6b*nhw~fKc z!$<$wxQAbil|9k8ks>yVkVtyP(yg7`6(r&i#N9nkcU?!8g%T4lJ~h>O!9YBo(T z70?bDS+Co!dJIc{fiful47?Fs5AUiI^U~S$IJG{H~H%m@X))w2*i0wP3!`Uf}8$HrhyA?9YNt~HNZ_adA-@V?F%^N_hkB}j31vzP;N4!&{ z>|3>77^|=H;^{&h+pBnm)f!F%Tf_Xfe)p!8t;eWM&(w)rC$(^<(U|DW_dL>YW#4M2 zan^trq-lxfu{@?llguohFtgHJn_0N?$nzP*dV{&Aa`sho%NQ@?a{eSTS^li^=gptm z?YqvCi~YzDFVn|pjNKSrG{v^+iA)}H!hD_3kv<`qil$V&T+Vs%vn(fZ z(IYc9_f?Q%B%*)*sZ33(i|U{<{jF+1ucyoW z^i)=R#58)w9gi6c#UOxGhYG9C(yq9xym)%NZ;R=aK6$G0Vp`4)E&IJceOVSoXIZj6 zucwPYEtSqi<)-O7E&aUtGhUzi#V`hk${DTxKgJVIW2;UrV2CD6=8@L(g?k-R#X_;6 z&ttSqU$kC|kK#71yr|wb=F~^2VcNJ6W*UES>)(`w+C%on+Dg1xsp6h7Y7^1MFyfu} zRB=*#RHomesScSZ+T1C-61ow;7jUt1_wm!R_3>9_@6i)iVGFIqU^@U$0>Q8Oc@l_i z3W;CN8ZdQ9{n1!|yjIy2#$9+3`^FR99{xk{puUn*YI4Bi|KSD@{1aAckfCo?4;jXE zfYELJiRDByUr2FURcP`w?08c}l)-pw-@5P{XM_33^}B0x9GRrLEOj#U{3pJnsLQXw zqiB4w4IdCo96uNfC^V0pUl)!j16|(7s2pX7aLvT>)V05hlR$6^$P>H@hMPflUM}IJ z1}u|tUElCYkUDvV6Xq(|2IJi_UTQGWP10o>#8kC9Bur%Gvx`Ufc?RT@0VLR`rS4w#N0yM6P%jx=+R@dVW%2kk(;l);0XyU_$(v8 z!ZJ?>;YlAjL7^bEjTW&{guacoxoM3XtDyj9`aF5XqnGCiAc)607U{44#=Ew-Wj2KG zbc-xCeVK64I?;(D=MXjpL%EMlTU$8PiDUMwPnXIs{^p?k@^22yqkC7%*3KntLa?<^ z!&8p-`8ny8eaw1D&t>YbGzkSjMZ=(A>+DFmR*2@t2_XCBH~s}SfPDX;y!V^?S7A*!02Eavt1&Y$t)-ym`Ic=4)K=3Kzc8WexqEL3)nYvwe|S={#-L(1{%$BQ^|U9gD?CNgvwv z4Jj_Kg?8A8c|xvm0`lzRVxD(g(-(54E88KR@<`BRl(jlgmD#imZ)pQa=rXa$ z8^STBuF3`jN%aLh3x}~>Uhs;MKBUAFB}@E<(&Uqy6+v+54O-nqDno#@OPZZR2xE|K z*mtrffE>TW#kV5sx1gASe}9s2-Q2-VA9=F}%ao@O`kHSFL7uJ*d}P}X438G#5jfyc zEZ1ScOa)UfAPOnl3e*MO04p6KGs+X@1S$K1)r$^!a8ICRJ`ueNYYm&erwUU_<4|53Zjk&N$o!i=U04q}mYjADZ*k&GG4AswJALd*kS+hNd(j&3r6&2yoc znU#?q$3upUT(|dZ8kmn zrqpWJa`H!E_cAOQq~V&jmQ$b1el_kz?jiywi@?POkdwvj8fVF9m-}lRsUfn zp=vW{WHr;wQY8#@f~vS@x@Zy-Z>W7(5_XuL9y3;5#?a}V{;o)06mP|J=wDYFt>}o- zPV8hw=^ZtCGL4X{WI>HV#jt@4U$> zPP5`Ri#M%4iks#k;zW~-cs*TwPy6wsaYb&=8%n;8CAEjuM156IoNc%y?gR+IWpH;0 z?gS0)1Q~2_PjGj4m*8%LB>{rl;O?%2I|PU2Kf7D!ey*nK?XRn!mRj@}k233c(&UHj zJlb(bqxvD|ktV&H78_8vAk$x6JKxKZiQ)BNaQmG#JW8suTBv`y$ZB^XD}GH}UGs?Y zxj)VOo|-vpYr|!kE6Aj<9*N^~zNSoz9~f@!B7Z@ba3D1)ji8bN&-P6kco8SK7Fzr zz`RQ7wn_E{VDP0iWg;us)w3+m-9W&36~XrM`l|=db-r0!fVYLGesmAxi`9i!utZ^LvEO zT3sP?RXG3QP8WWv<9h!9R-1*X?+*423toq%dY%l8j9ya67l)^a*(e}H9TE5 znzNfUPj}z@1AJO1h`EuT{9IubDAiF2|rVU$i?Sn8j5E}-uhj4{oc6KXaCRL$oZ?vBKB1_ zo^`LUcDZ+M=}~U3uo1s4z4Isj_f^}aXv;lVUjNmnL-24>-gAR+%UyZf;xd!|!Tw*5 zQZ_TorOz>eLhcT!ccMOj+M*YzYKrmzrj4_rykDKU@qi_LqJ5aSs|XEI;_r&eQU!lC zj0ZXFxWAQ{7LzyIx4w1Yz%m2@@0Z z8yK5{PB5`gqtaeBCFDD@h^sAMNUnS}ka_}IN*%Nthaw9i&zbS5|6o=2j|L&)-ez`h zE`3*P9xaNOC}T6->3uh;TbL-5V7eLbX(XLm_+a!T+-+Ytpp6lvQ)@OTNCmwnS?*GT zhdemKUj=@f=!*4;o+L2a7b-n2GT@v+=|imXK08vRmCZ>p^vwM`L2hweWF+?s3g>ll z>V+iwKSabvs4W~sm(I&IOE2rj*^7ecGu%7&3W=vm?8iT4Rn)`R>YDq-SD0ASdEJ{6 z$)JFLKVB90wUm%<>rK24#3ucZvqWLJYPxx5o~>$+Z?lt_Vg*+T`XBPf7yrtOzpzN) zaj#OT%#pUZ`3Rd)9yLxSN27d;d6AR27SgI}PR6Maf3#kaY_|KFN@jNmKUW>#x z%@|Ct9pn9M^$PHDC$!?>8mZzi%)#$*7<3gj1TLsaInCg)@6B5?Lyz-2yLltsr zt?#YRsKIiR%km{A$WzoM@ClmiR~DDR(;U6E=E3L2SeVxr4qv&K#@OMOie`%n(URc8 zp{1Q+doF9G^%3*->x%)7>nDxGU+8qcSp>}BLe}Jj49RwyZ`moA8Ca&i9A#pnaz%=B zO9ql~vzqu!1r}jI2Bsyh?V-3~qB)O3ZcV28dQ zTpRt*Y6k^fHC#7BurG*Z{T3S?m)iI9m($}3l$9Ga+}O_n6|mXxl-rW{NEUj)-a>4y z&%6xZ8R-UVBN2U077Ft3>2Mkh;@@m$?Gr2jQM$SO1_rxPh)j@8HXPZ_@qUzrOu5gt zz4}~=$f=HX63S#EF?!y{Q{mg{T2I~L90ZeLrLv6XdeFC7l8%IdH~xChBSG`%W0qB) zhTG~C2v*uKx*funHN{_{MT8)wPo>jG=6op3m@0ZaYq^3eoWDMNVoS2&`dpo+X-KgldBg4 zD^~?9fwd|);iHOz#beGG{RJ-Yf|WgJWD1X>BDTp$ zxw`0#DckAj;6NCcE#?;J`RY@(3SnmNc;3!!7Y!TsI6~$NxabQWt4bd!vDLAMN8t-J zknzMthZ+#>%Tqm6`e{-v5^;!pHJQk}K#x!*P)%KDxr*09LR;v-eJM@NK?chA` z`0j?!UzQvmUeC!EJ=XfXYk;t@&mzXSv#FW|9f^Vfm6i zqa4?T$YFB0kXWK&C>N3%Yj!hd!T1cZcQQ35;5EKsj4}VB@I$X4uDj_B9*KBFa#ieC z7SVF7hc<)sy=ntTS9m!XX6lh<#JTRK5Yt1gJT*W)+0x zn7$4yYIxwy%qkt=T4*z63#1f-RvLFFaN|iv(l4UQG40^mpSOfSm?X3{HJ#4%a|}~m zzu-Z#{~_;QnR_il)~Jo}%?=l}<^Mvlm(6aACeNI7TQ1wHyvAY4v)-|2h04C3@{3YY zbVn3jr{!gcfHl(^co~|{{zGQY5-FoR!Q=a!N-D~W*<-P+YU=mOmJ(5#8Pd7k)rd;< zdU>^8!TLjK&!kM6aJ{)Af+4|T{n|?5Sss?Lf!|r589jQ=KRC-9?U@M1*ipR>9S{;1@byujBGX4ev?{$V3Nu4R^BjvUg(zW6R^FuV&I(x+?as73)m5W*vo z0;r_n=ZJtxM`_%@3=TA7MS-$7zV;giSHp&b3J(Qt_ZX<);>@&xgCsN%0@BrV(H&R`Cy}Z7PBay%UFfM9n+6sCkTG6{?t&w z$@$i9#!p%nm$Zi1F^W}$cSX)+X?_*~8)TYbZ7y9mURkO^a z&Z8|a<1iaCN!Y)A(Qu2iB>#@l(2VXHyaF&0y!WnBUtIR))mvQ5O6-gVsICS5ow2N= zhVrW%9yL6vnEh9GL;S<|IuR9#Erw_oDTGwH88D2C5W6#NQX^vteym&s3VS)>^8H5m z$5|88Qev$na$G~B^ZssFJ7vi~nPE?ol_0t`BiuWSI6)AXvU;G5C zV$$dhuI(pMgOT=p9U}sGxH)veqV4)Ddk;EBV#T+CBI&qjAxzo5FF;Kg`{S({*rJfK zGlwtH>rekKjS3z^qJ0tk*k&eTV;kbkPTAX^Wc1p7P+8cR{`g}NuZGY$s`H`GeBI(e zF^~m4^{YSJyt`wH@>tV>uf5+Mo^`7DolQ&H5Plwy`7onO4Ovgp3fJ(as;%WeI410N&j2Ic9sj)ZeT5v(Z-}W$Q-up-sZu*$nZeYwT$H(ebp* zuWlj<=hDl3tQa>X<<`$-X+HUJ7=&k&f_xECE1RoI(#_b%|;p-~5w?Q>TtA6m9 zsHkg&6t0(7=G5~`Rh=y+d>F6rq|oFj#7#=nts75Y4coE4u4BDde+>Jgw0;*#~@L*JLcGk)6ifq*;Sy(o89@C zS``RXX_?DfjCdSgo0u<%4m_m8EWUP>Rk20$YiS$}ZFhDK<_-x{$&Ff=uD3}b(Z;Z1%9109?h{X2WMQs7JRlS(#eFtP zgq74UljXHxI&p4hs?!a7L9E%8ge(&F60Zb*Y?x18ytT%`M%(q z;HzXr|KNg)vN{t=E|(wX5tw3h&QUhuR&J7yPX08+O2u6P;#Al;N1EPJCF{irTujrQ z`Tt!2t9;1!J7|>|OlZ$MPeB%`c-gzmVhA*{5&L9zcW&sV)b|LRbERVJBx-0i959jF z8+sH}Z%9h@mSvR1XuiA6Oyl16+1s4$2_WmDkLa#CCK(13d9S=HQ;9l3kO z<4drtC(COgt2%tY-sSnoEbTItSErI)oYaQcf7;V-XDT zOTXvzL~C>%G)CqTMs|sHeOOpS&9YAJ1drmU?7;5;r*<&~I@S@5ggUTf{iu}C8n5t3 zgkB2T!lS%lo>K9oVI&cvt06S&U&fp22N>r@YslB)*O!yDiLU>{a*5FNy3ejEY&!%$ zlM+%iQFa?3VR6T(i9vW z?9mI43k<|1;eSSIi}q2Sm@F+W_Of5NkKF3(3U@Rbv90MghPvePPHrmzvudDAG)iq~ z?(TH`()4vY)J7`cVOcKtlY9=iGr5qjA*rRl|Az9HkgyYw%6tjGNHX-%#+ZMxJX!;$ z20vQK#et=MWTa>K=bA|^??6jshQ7ZH%OZ3T(+0*+YK0zo%W6z!$^mo!?l+Ak09~N7=T2d!qQ8 zuuuzBBfIJ94XftZFzT$|SE{_~>iKpdRg74AM_?peRuFTx>QqTOkKwMCAX<*u?n*4* zhY`T@!^oAae+O{g=e*9KCG17g_JlquHy4fCkVz%oDejT&>xs&9^+g1p9n8bYjLLg$ z@WvbX3ix{EI2?=|e|nS6yt&amM7~gexP#{R;D;KWS9N^M?~DTW??y`ad%xPvNU`8( z5Pa^V6t7(9U3c8u}@)o$9G;YCvU1FN>3N<*D zBTWu;CAZz-N@;xk(h)6~#;Z602xB1XJd)olu#XtwljC67Wp9F|@hPY_ypraXNKqP7 zOO@9DghrOO7fY~XOmIXxTq1keAY>;P@}WTRY?XCDmK03?wNMS9l}XklBUkcb|Iv_SFc#(W=2=b!Scj)vZERVdIo$A1OSRg!OtJ=S;lD_)n0pOtWcDj)EHRs((f0cE z@8aUnJ`E%%MP5+TLKVL^hVUC7;PWtiznvrc#meb61J#obR$RP4` znTc1Xb~6?Y z_V%{E$m+@89IArTLx^@j#McjivY!S&ff9f^Bt)Bo)GQ+$U(-@D$X?{KwM4pj@oZJ( zhTN59&uYSEiM3!w#a2Z_>NDrsu*I*xV^9nGpT;_NUW94S)l{*NZ19Lyh1E$ zWjBq&ewd&EPD|+*I(xGH@8{8iIlBY*g}1uH5s>G)GNrUgf#a$_p7W2LhQ6NU1@u|K zjC0RoGIu2s0^;yYu?>E~@$Ek&mN5gSY1TJRiMm`eQ98ATafYQ>*QD&8q_>~~%UEVp zBe35F#9jNje}t=ekBfQ|^4BprS0(e>uRgBQ|DTrYM4Mg{%U?O8&a71k_{`mj<%P|! zqV4U+h|#U-?-_u*$od&OUm)p{HHF+M4R#J%4-Y<38)V-PV02r&8nL~EtrqB#tMej% zDHgPooiY?0|Mr6Sp(ltYw}K+fqf&~DWriar*slPMNg~iy{}tVi4Hbb*08l?0{U((c zNj%^RgG7BO#bGsI`u|gz>BYEIQJe`frV+S}yNRJCPZC4Hti$ zPv`0f2)(e3-2IEaKX|b;K3%`0&1ZZ@{6ivn+Rt>4&!g*1_@z3V9}pzLb1D7@`@`ak zdQ0DqyXE;)6RmC8yY@E^!WPUj~FhFmK(RPIWw6VoALMLi7{eJPj z-t&7=wc&t`z#{@*Kr?C0MUpnV07$MeX~~B0yDiH1QbagCfzgIrtN`xyD#iSfCBq)& z;gb2^sG?~lf~Z{Vx5auZ6v9oAIt#XXLrJZ>5xUao@S$#ARWkNNWzHjkL_b~kE;mQFFkZmoI4iv(f{fm=PxU> z#^qY>qeB%}o&$AOsy8}}w4IrTn2atd*Dy|n(|i0#-9Vvo9ao|B{w(Rh7mt$XE7{|{ z=y>hnMpZDdc(8&VZ#6!vS-0Kcr*sF3p zyDx&Py-39`E?v0w`NnwJg7bCxEv*emuL=*(*Av5U4}dqo`xoK(>JlslIh136*Kg3g z0MS3s4LZNA_sf*5EZ#dug1LK8DNfSU*$f+gkdZ`aPsW$?0rATytruZX4f5n8EtV2t zP>v_W3r#6S%`)S$EX`JC1CaxK!^LeHo;!?r?C!hnXP{V9CjvHR<9z;d+HAvERrIE# zN8crMzlX(A`axidVrLd<3Uw39lnCW~4T^#j0A{Pa=^5mcW6B3Kz{kXG)J?Zt3fI98 z)=h|Sa;8?J^uyP^3dZZ){3FD6bY?vgaPfA3Gr)*mP~qtyBkPZ_1EmYq1i~}ZnwgG1 zuS==Rb3RD*1M9(#r-!;`t+AVl4j#u?+ElOrs4d*br^K0?pCk8u1MVZGkidV27?M|z zk|&`Z9G?EF`A7`T0*$3KXNgJX5eAm}vb_;&1gNKCd}ECH`i&Ya*R+N;90?^FQSmdO zauYfAqppI`^)^AbBRsXD;XPyoqVha;H z<1Ibs&rH7f4pe_j${nSy*+=L5tQDY|X|#|Lv$?HBghUP0*gnVRPMf4ONZtR|6;z)b z7=@1a(uOEXsYP||t+yQn_RDv1sk4Z*K3bJbE$X*vikg(H39idrxng5^lCrxPz?>Bv zgpJN;9Q?2+e9Xz>ZDlTNgvnXRW&c|5H{+~ChwM-8liW6F_{CTofsHp{G-~|M_)ORN z%*oVzGk16wfk?(E!%1;^J(Mw&j3)d*czs*Q~E4ol3O{AJ$T} z?d1ha=JLK&Ek)?-q{-1zQ|I+-)EtT3Vdg$!ESv4aWY zBa|q|cHTZsg${0{{Pg^J^rD6}bk!44#>H8Pn&(+~+iaZ?BPMUu(Z=*be|dOfe&mD0 z1bOs`&xEuNC=b}!MgI3o(DQMYPTQxisVe$;$^8s>`nMp@B+o)dJU4uq#p}d>&f3q7 z?mZC;>5+I!E>YfR;2Dpes5ilq%0H%38{S#NWt9YQ@*>DWe?kA*PVR1J8lugP?()p$ z5~3M&L$X{iv0DBq5Do%N3g(TFao2v_#P1#rt5=4RP9h`v{JG>34h6Fv_{S`W*+?Kr z@lZuv-zSX2r8fz?vRs9slU0^sQ0%>PyVT2ta&mNurhF5(FF#7~gzgn=TQRy;`e^Zf zZG0pB45g0MikK2h`l=e$d|=MwM}ImdQ1B1jHRqUQT=f#7rl3SF5@Z0r%nz2%MY-C( zH1hQGCjg7+GV1Hwg2J=KvNlxt5}v z^SWxb^Yqxc8W+zO#Oe2xAmSk%{vg<>e_uhbn=TOa{BaJy+-__9b90(a^+zpu98F|T z>PIUk?9lS8y;Z+YT*TagCclkp#ch~~GKUDw*U4O>v4AbuUT`@uG)lsdnOvMK0_zN^$U?tGN-?w(A9Jm*C(J(C6c z7_CHcko>fG->qTuyN)Q*Q_vlcM4;BNQ+s}a!#&_)v-{

    tFjfE_6LV=lL0ui`)}~ z8Ctddc6!}MkpDQQoNuSZ^96K9jZqx)GSDSmT##E^aRDlW%t^>30mCPw3en)QwRRBL91#?{JDLKW;&oOU+`@HkJg=i>fmhe2t9O6c&Z9+Omp z&vQCPR%AAo$DqEA2$5CY8y`1#B)|D#m4wj4*6vdxcY?h*j(*T~CLM%0#1%DWzkz~~ zr6)i{!+NDlxfU^5*6?w}bo{6w=y`+p;tL4xEh@0CezI1v#*p!oZy5jhjtmz}gW_Rs zTSMVS4qhCc*SLamN6aNx?86OdWpI({Dpo~}`G|*DFG~DJv!Uh&!dsNQMpSr+lGzkZ z;c#kLL#3jhI?41-q@9+?PF=D_FWB=%poKEs9JrZbIKZ7dF^Fjwq5s$I7YlH?$@0?a zBxiov`N{^TN~Fs-^Qw@n%r-=9eM%;vF6ps(AliyaL$yhb7J{ucVrC3R)c=nDbFMnw zdWNYU#VspN@5doMl;0n}d%WR6@M8APh7T*~z|0lfEzpEVwJ1?&WI%i~By@GWMX7@A zy0`-pA(|C-9Ub#j|EN5O%wUGcE;@s}FxXo**If_)UY3HVbUyl&(#QF{7nToi~~D6N8y#PW>ff@Pb6k{OV`^?si)D| z!r9DtHupKJI8sdneu@EuRf#HYr!gvSXs$H3;|N|fLnM!jDEXmq1iu~vggp7R#d%`? z2k|~QrSIb>3FOp9X*e~I${Y>TMmy+F>34)zAhF!q-xieVJlKoFN;S*yWCdy2V_=rZ zPc&2B-7@caSa%FICC?x1avnX^JT?j+J`|$!#j>wH$U#i2??-xLa2%7u`~|CyD6Me1 z?1OS8sn>^At>jC=ReEra#`d?s}9)m5Rgu<{kHNN{`@mVg0bU!D4To!oMRlRbX>Jdg;X}_unZdW z!Rq7qz8x1l^BvQ_U_4VqDWd9k~7QsKCg<7N;CgPyRY zBW}hhNNyZg&t8UH9=KsmB0?;Z!c?H_bAqL=ivfkJXBFg%*D-Z6$v~G{P3cZS??cW2 zy4AOw&?+-FXo%mpGUdSZ^xxGGtnlxdb*_3|Yd@?z`jxHru}3b^$`!3%Te1(cza8rA zrHj20?ghK-%>Qx;Eo0rJ3Hz$+wA|P8grvN$3kl1^%xUe?fgG482yb*9x3J|#HH9Qo z@Sd%9CH`~wF+qRSWB+SPN>*0w7)3r&KaikC25k9pK2vhF^XB;Lc?W2p;tc?AyDENl zW5W73X-qw;n$^05;U~ppCPPzX2yZ~`?GR=V3P(+7&6Q}4H!`X@0P|VRnDl;WkQv)(#CT-`O9z|Pt2KEAM;cqDn6S@8HgwIi$YZYhtqGyACW z+8h@v3h>!qyIMQU&-U^wsWoe$Ks}Bf0Fb{{B#KO(L&cUz^fE@j~3 zb(3Kuxnc~rNm4;R%ilw#4=>6!=B;bPT>Nk>4c3?O9#s^VJHFNOK2J}>l*w$qeA^nY#?nQu7+kI^a(uld#rf3}H*p65Sz_qq(I*YG5_3l=s^JaT{XYsq`2D_cH|3x_;cnd}UD2?eVFqXHe zGhVxtE(2_oBsEKNc2aZ%XN!``dTy*`BGavxKG2WHm9=UDxi)U)tB$C?_!--NTsRX+ zjnopUIxU^l0$EL^ch=zpy+XWy)$RiCH z&kW)JgV;XN=4qR}lex3{K0h+yy*3<`yj{k1%qb(}`a)H=+T&JdUYbreuG!+1r!ODXObRR`@N`je&;wf>|D4F_kHz|%{a1zqgH&?__hJ8BOb-motMcpT~%JU=k2+-K*b#SN5CUyZ>YH6Dzb}p)iURt8@f156^!Q( z)hjv3u(_pTP&}7S85ZS$QB!5vrGYz0^CUy@spHr~zgc{KZbX?ybExzv+M@yM#LUF+ zeChjFtlw^Rgs}^K#xs!hZm*@ajffwZj8;!R(im~CalrM4jt0;a58nZdq$L8@2j6s0 zbf8_%)cM%i=d9RuVEMsJom=V(5?teh}`7WYeq>7_1^k=YZqQV~%i znVdC3Dd#BgUgy%`*Vp%@zP{8l?@tal5o6@M6UK>)1Dq+dm(owoJe{P)p@t3zo23cq zLW_gJ3oQowhv3fyo56+uU6^LIwK#J+^mbE}dNtE/go^y}(@ectXmoV8HOio>W!yQIR@q%X;i<3a#O zzi>B_&Hx(8o9LD=VP(N^(pUNImc6#U@r<-J``sk^Qc! z>}cBY3HM>j5oT%KPwi~YTUYdH7kx$XW=J+KRYmL-t}MWAi-*YJ)dT!ImG@ltJe2oh z(lSmhTL*i(H$HNOKyTwbGkC`4R=U|5CF%taXj>>h@q5T84RDX>u*qia&eQJPGj@9B z7{RU>AN;^ZVwMT#M526PP*r(b5c!Croilcr+d2_sKa16v`dd9+|oT%UdX@_~KI+rI>SR3Sciryy+n!>?R8 zJ!FVy#1fR`p7lj;FMKwJ_p*7V`rByt(bCbzhSSw`G7GyLj5fDm(tRqZUA~A*z&$+~;O|i1+Uj>b{PD@Ec$-exKs_o!j zW)oZv{n$(1b0y1#s6bHCO#&}V_;%?es{Fv41bP6+9Dzj+Lz*dbYyNg4OI~=BrX%W@ zVq;T)8P8?dp)Q8z-YT68`anSLZ2fqW>(!-SbL}cVWP~Oe-2zy0hGML z`p0RzLXmOmJ*M>TNoqUPJIq{If9N_Knft#;zK-^{e4m)l(+)(oZMl4$qm$$E?3Fbf zJ^wvdmvMZio|yUQ`bLt+lP8*f^g)GafAz!Febc2*Oo__jO$Pdt&l1AfQ)1OK8hV;;9QZ~5oGI)%)9IogLIk@z>Yu%v3>su8S) z@A$oA{xuyRwH-0G}+d@Xi*r9moSBm9)OctTPBng z=uFt^NgEC`fdx$2(9OV@&|=2hRdTp4xQsRb+7dxch730-KP@ubj;vxd zI398-!(B$xCvrG2n82eD9NXg#;b(ZCA|xav{PkPvEjos2|f zHJuwKghW)ar$t8zEl2;m{O8xsHO9_c9WZr~P6UEBF4g-x8RnQg^vC!hV(t?(k4`>*{oSQFyrcd!Fw9wD14zb$jD2+hzX) zP^u|D*8V=<-=*jy7|$+hakVXkvMx>uz~2vzegYxWN1kk@${_P^4G3Fokhk#v9^^bn zl;=sL$tqJqTVCX}h)+RKM~CY!cILfJ+4*7?-&j2Wur3Tn!P%JYj)P#5jyMm?mb{N- z+Es2}b94MA3URAZY&^@ehmn}d<2s9M305}UiTO!e2Q8msglXl_F0P*GBRQfJ{(*)Z zQ1PL4B|4U-U>v_HImf2~R~(}^n{7fzh~XoI`Qu&7GV;V?Tq1t2KIMVjtU_8c#)}JL zDTI1hP+A#bbIkFey7*|42KSA?k)k-iasm^dTU)nz}qwU2`H1%C_JB^b8188zV^7@9L|_KmD8Ly_jBM(4;{`j59C%Sa}nlkt6?Jyw~D82Yq*} zvfBa4lgWA$=*UuVWUkDFr@X4o2d0w;V-7Q=^~(VvQl17A(;}ODQB|h!T^@N8retmS z#|B(*4m5n<0Dog)MaD@IVg$FXv{c9bVBneimDN3>W|S@{+D4V`^-NR})DW;KFYu{{ zSFU?5As?zKayb?jeO2L4d{RHAmU`05vjb&Skq!^WT+C}|I&-pW85vw1@S~4L=P9&9zG6Qdn~CRtq$l2l!@RU@SqX-#CjDrbuK~|M66` zvEjTQBd*OSaAavzR8sAu)(BdU;tY4D*4&as2WIy5thiq+Vr^N4VtZ0D=A~EbJ;9+h zbw0bX=h=}pQ~c62|8z5zOcUp`81k}i+ouiAb!Se2zaBQE)&^4zRuE6;*N3Q6-D-#x zWUf5^$^YEf;L^-M`6GB|TVT_y!17!GzqGFF*YyLuK25*EBTOOi?V5c7w>`x$<4d*s zr8(kjYf83UT%EXgbF>nrE_Sa?hKU_cq`#ahJoJn`I(2`vTP#B!Zo^9M8VTD^|Du`G zH3t--0=f>2R&xuKD7~x?0O>O8=3?u|aAmCJe8}-_ss!;3KlT4k2A=^|W;{Rr zYTKaOVaiX@6O8FNM#j`VrXLv3;GiPWDtkKUL~!%WtYEDMe(vQif}OV+Fqljd1meKYLn4ak;-Lxua#lCMWZ1^I^v(Xkh$6{DYj-G#JGQy;q4cyz6p~0}(J!)rlWY zBEBk$zfv#MZ*&*5(6MN1Usa;sOF&P(+dp~i!h(0l~IUxd6DwJlHP`3 z>DztXHh-r#la{+ZDVFVP9;6&6ghyB?)nj|m33oT!e*K?@etH|73NA=FR(4PW?r0<&wrZb`_CL#Vac_$;g^ZD zVOcSKM*q9K|B^&*y(+KbA_tZI5UDAQf>mG?^&#~M>}oxc^h8@VZvxDUMAM0X8XfPo zA}@~3AWe!#19#fT(qM1ix;N;+&)}4q7RY|VllqRh4o~09Elh@DgALa7HfvVTPhi zdk({RMB%N-0#I7Hj;JZ3O5@ZRtxhgV)M{vJG8{hHW~;V2ww}Taz5BUqLA_4MmRMVDGn>F!9oCjt!f^wQv==0{8=J zc{wNsZSce+jKxcZ^gX^-W|_BIB~1uV8Kr+}>}auhUo~f4K2{G$7h4g|eu7pVr8hWh zKic{yZ?EQ?e0kB(O+_Uu0^tRRt1c#t!VrXZ7`ZUd9FwZQd^a)C+rASra(%1>Qe~H- z#*mw0nhJ(R5l6Pvnf5VhbH~-Z7M53ho+170d0x+?Kl>e|q_mXq7us6W=(cGpaWz|ze=*&nTsfH?NKJeO& z?=(CUqZ_CkkLbO>pcfca(vR!0R;DcF0vlG8%divOi+GVW_^svsbOhgR> z)9;3HqtSozv41*_XX)nY*uNG*j{lLO6kld9-i#T?2fT3>0Qj5a*=w!P-dmt?{r)GN z^{ZUXm-0))_!imcn`HC4L@Pk_DKh(?(}h!6-NesLs9^w3@28Hk*mPDBT5AmsZXp5e!86mKH(yC`w13G?C{Sc zEcB_2AGCFdTRiCKxO4j@W92?813p(fSjk#wvAB<^^ZIOM54rQY{R*1xeyWM>UxG3I zeNl*E0%(_N@6#O688}8&RgOzg?>P-?{jbVmQroF;u*CgrnJ%FO&jF@;;E%u&p%yWX zFSpa9DGK=-kV)(%JN2ruvl|)@s7dz*n6-6{E+b{Y$SH3{9ootvYdqUD!4*(mQE83p z${-2lCaSrY;{FyV!9zF2)WavmBP9Ne;&?9yS=kU`czg6;VH0~!f7+WTk@e`uvScDz z5A5cbl}=CBt{>V#G`hZ0dstHO)AM_d7n6Nm*qaIlU!qZpS%-m8FCJw(7eXexi)^lqQ^6Uzn8zz zgaX}D1U<8rAvW}b#*pxwoXSNpuCyqLB6}{M#Yj|KW5a_YsJR#tD-gR|XZ^Xrr%(@v z@5&(02ev@#C)KahHJ~T~qA}Yi67^Qqgus0L!bjR~Gc=}Pl^YA&FG{zA$J6G;_S4F} zvj*CBz8`ZGsa4@6qN*-vG+CCR;Z)S7L0WUElOV-^%~3Ek`kxtok_$Ssl%@}Xh5-9t z(>(h<{{vo-UDRr`_l)R!F)(?jyK`>&#`}W@>>LrGXr4J91*i6QosARiRd3C0aI8vKxupiTOfHlKjSb;8XS|OZTFW|Ll+r z{~zX>btnFZxS|eAtXD|avbSJss`Vi@y)t&+K#Vg68Laxrm8PsM3ANBV)BgYPc3AX} z_2&h}|hxzHMV8^{yPn!btPreHFUHY;rt zgAU@;iTRjQCmu#*pz-^VAF)#dCHmfioxi@vX|QMCFt6me*A26PO4=(cK#aL){D?bR zM@F+Xo<3?EmL~h%EJrJdqO#(^hOq0f?Xy9>w(6=0+lZ!?AspY#S{1s=zEP7(K(m0n%H;~`IBG@5uiWtmC4AgNk<*9 zxW7Hxea7~lh-Uw~aZ7ua)ODu+zW#R52rRZib9WB` zUl6Ga_d5eMZM~E=N!}bgp`gao)??on3&`-jUJ856SUztj2?D@N>jrTS|760S0%`b)*nDe` zp)XfvC|0z#Wy-)XdXH`N%Wa(I@cj9fE%-lv zh*xo7?tA~k_sZ}7@VD_QnACFXXE_p!5Z~|- zn?X2N0Am}djPEwg2l?c#w8}DP&k8;#oXls5o^?iJne(;)24k5dbcV|3X4H_STH^6x zy+L(e=&9{y7`IET%f|)~lOd1vz_3JI=&N+l3=%qsrd?j-xP2BvQKZ!m0^QNrlmLkd zn*@1%JjY@y8!d!n8*sbKzGtgn)YV_vrn%GU8~ED^XKl@Xrb56v9MXZIKxbN~+l!s9 zP7N{Dt_i5tL#nZ++_cvuvnQ^~G#I_e;`+>FHT!G_T5b&d!<(Br>LNLN37LGH$d^X%*!3VO;`S zjmqIl;DnY6$X0zp&isy-{niwjX+y=W)MHg9Lh_tehX?RRtHBiwK-30v8)VP87CR zC8WVF{VMmV_)MKAg#Yo?`Jz=!%tCE~}v&+tVm*RQx^Wt8W-g)i!xOx2Pg4?UG@;sPP!3*M?5ollR zTAPU`6}hkXJYmLCjWLazzD${(rt+A+^G;K26fc#%o*v&!J4t=cK0dA8PvXycmKlrn zSljefFP$VSKVM(M+g+xn=5dD)Q?C`&6M@Zo?!?H~)L~(PNAcG(Uf*=-R8DRFA z?wQ`ItJ~lAo%3a$oA16?ud1thnW)?SUYEi?yJhI`&bu?$lysV9_r=l{bU=~ zO%Q{pXuOyQ4dT>ma(@NI^5#wCPR)>p#tiJZOr}h?gBQg%_50jOJ;*DM@Hksx`Ow#{ zA{Bhf%K^T6WB=;4>8=id;OQ^?i+CHPA>&ypR=1s=vMu7Hl6teBH&VaN58IPARf3TP zyErcr0~j1`@}I}X?RjkG^DAI>a2Q0tu+iA0>Rbm|AanHs+Y-4P-8l|}8k(k7glXSk z%U9jnOhs6$M>LqLW~fMouB32!J2gY3!6_g4OoD&G&!=JVYjjYOzK48je#stiD)B}? zzU-^=C^Mh*C?oF(m**l&etil9=RuI0`1%eW{J?DR!W5UXQ1LeD|9dra%6@OVjthxvK{e@W~%b zcKf(bd4eidz5x^#f+lOkVbKlpoXWPxMtU9^sdj_u_S+TfBX+J+;v?3=EN#bZ?)P&F z@8W?zSDw8)z4nFu=^y?!p9Hc$?e6a5AP~O7W%oRu=COy8eZ>PHAL;-I`};fJ{{Hln zAN>?hlDUn89eWrTPsQPn&%QE!;ftS}KJ&RxPp`cC()9GxIP3%MgS%Mk&;XA+$1#@i z%V3N}d_~sHpT0fae)j_$mcv&QVQeY^wc|$RQfGVD-FEA(*;#95P1FR!n5rpb8~BR5 z4ut$~UMV$j^kk1b{Go$i0P6q<*Ma!~5UvyTX+T^j^mQ;O<4IdBkZhcT1Rv4(5C?;8 z_c#t3jwhAo6K>t0LzgrUpYom*2M@vNwpa<{5OXl6Ol(#JAQP`xBRZ3+fl(|9ne|k1 z(du26t%Lan3bTn7KSdcq%vG77z(VIK>a6inJSbgXHNy?vb6W8;+8#R7X3U{A-r3mR-sa-Nz%}K%xwizb^Rayd8eJh| zvMScLMqf)9V>gwyb6ovuoBdnu9lq|Jo6h5@A5VPtRU80$UTedHd-6w3w#SBfW4*R= z4P6J*I8N87RJLueWsqGtO zW1U#@s$Qk5U1QC2z2c8UpOih1#TtXhrFq7Te9ITh+R!1`O>03_t9BQ461=PvPQ9G< zPIEAQKKheHmvpMd&fff%u4o$$`H@($ zVC&M3zkFz{zV5I3wmrwG&)BKi(Vc2WK{Or2Ydc+DlRWBMHuAgn8FiL{<7VLO0LXDO zcWQc`@N{6>rJdG#rK^syd2=AlKNW!N3!QPc<8tJ)ZkbDCT#o#)Zd~<0V#a#L-&L`M z0^`LU{Af$p^G$xay@3;kHu}n3Jd9+wO$lrD7vJWE#J41J^xju4bVE`or+KsXa9wXLX5Z8&zhW z^;ln$8+TUTPX_7-wYpwb{%BwGp?1#*DE0O8q<|hX(z&VmViU|Cn^SQWn8TH1x z@gsk8z0RGbPOI|GmL7E}b6a!Gcx%2Lf5j}xjT_54?vK|Oqs50?uWhe6QB=s~I9f(b z)jxJi=m#%8nPVS+mCQ%d-^Obnhd}P(>ks0u_qVjpp$uF7enC1~!2<}~RN>}}4whgu zl}{PL&ROSC4qR)wY(YQ%%a&$K#!O%SiWY(*AK_0r*jQqzn52Wc4}PTWro%chc?d** z;mjZ0$&)e2sVf=C1B{z?00d86P#;Uxx~M>jKPJRq zYopJb-4Y|=3Pc1gNKb7co#uM1Wa0v2mb2_1$0M(OA3~VOVoQC(+;Ki=Lzi-O~SJMT^3`m66u-~G<_r#m>{^yHPx)5VJy@kEHr zIv8+?2MF-gm>nDn*?a!k=>;4Rc;)9lJw1y@-Sg=ndpKO64O8ToPdv~eGT7%BZLf^C zq`x(u4@h7s2mu0&*Dm z%BeFSClw;?d-k>6E~;VKJ(J_3%~fq>B^Hl#4%0RZ+xUfA3ylskEXxDSHS$}hda$8AzM+J$@<((J-{%W0Er88cY?w z3D;`DNIr|SN>W$E;~L5eSZPx-99vPFk&)mTtNtEtC07MmRUOJ0MuE@Grb14o3KKm$ zSOKHWz6opC;mEgqsXR>QF!_?r`{cQA+h^dkM?Ra@-6gvxZEwlPqrmfc@)&eX=CeM^j2X+SGskbwtMMMi-u~EiGNqlcw`0CL%r9wcj zw1tyD4Y+KaYPe-^_uE5N2+4cKfz%rLh81t4eA#3r>7C6e5bb{9E zGxb}8tzUkb(`2E)`rf^F*_>Bv{AESGdM&7>rF_Ix{Z+c7S7qj`$GExuW@(*LCdk+# z39^kPRMVC1E$gh0XT|o3GajbzrN%fOj|A6=HP3ogwj?KS#8~&Nyx$CXovCY#d82KQ zd(VSWUhBqI-Y0=}Zfd^VF3VgWF_E_z|IW`gx$O2#ZBy1cGtN2dSB!a|oN`ltjIvFw zUg|6JHt9X;GUs4*oUV?SZ7@e}FWfK&{&o8S{yP2+p5Aa1PXW38?o}KB!Cxh7^K?tA z{tfu-zCE-ftLL!6!owhX{5_uxLSHDg3D)jU23P+ISer`XBKAImh{q>0PH6sj?5bm9 zi3d1DC#GRTPn+G4Q~w?hcMvZOH(RYsl6+p=tO6~&!STB>jIGB|7Ez}VuQp~x(>M8nnd^7#oDUuLRcChlG9zR9+K)H@avcXiu1-IA~nw8JAkE*kdXhPJiC6P8+vsUY>inS0tZdCGdiGR9W;nf;=13!|L3eDRRT$2iRN&fD)! zJP`1cAHN~qE}ml0;-?GjLmwayH!k2Q5_o#Z&;8Qpr(gWlFHf)I2@x;j(7kZ{YVsJ_fivu9j^tXSxGyTVZcX9geUtXN9U){k06(9g+_tdM6_snTct=1$kRxkt^ zI0VqJ)k&cRw@$G!TP}bf>l%NlY?;m2y!o!r$`MQ-1>jJ~9_yIZ=s)Fh33I@d;ivS9bXUh{(B!xfBQG_1d!)(DCn2I^2O=p zPrW!@##b2ZVl$H$*DJ5_uCuH>)>p5H?A`&sE(=foxQ(yNy7jYnaTw%k1bT!6Ahbl}zLdHB1VAdGIR&3*wN9D& z9{Ny;R%Mdno)fyFHQ<1wJtxwHcwo|wcmsxbV_Gke#|BVOMATU&+x(Qx?tv1+N0uz= zwTgu_U9?X`Y1dn%$+-5~>OzFFy4vrASRXesZ8y23V;b7`zQ z)OD6?Y|m8<8UqVMOJ=K!O3Tt<#`^wPT=AP^6}K&Y()PCXyNF|wm5`VtJGck#J@?eK zhx_C1bI<7O_O!lmEr@(fV|}CHM^xy0*HU=7Qli~%=@M$0XI)BxIv5!Bd>*mK@mFh3Fbr~=ACfw?8r$jsqpPQO8#>4DYp0jBiRc2nrEXj>KEAKZ0{?JD|Z4JRd zuRTzGaBg@WRDPw$c|{p@miSfgaiROVJde2M(vp@_Fsj_SI4qalj;U?RI%n4PB<)n( zHg+FBOwGAkjKq(;O|5c25mWoB@;B)}$};Amj!(zBl%El|gt7jSO2vRp5V{Ij5e4OKkCN@RN4$Bz!&tOA2|;hYLOch zjDzOM;wKxD5f_NOS`#3ooQPTM1d!((sv5iiQWkn7`gjnNg1k^CQ2(Qh3TR#|ny=)A zgJ4T65YfW{5aS7=H0#LM>;MR!uyBBOeF-fZHWgp!vK>h^a}hteX&)4alxr?q zz+s&4x-5@8L)QePJ#XM+V{!*iap03b_ymv(_$nCnJ;z@27B>0rNIOT&S@qD0V^NTf zv}n!bg&2ObRz~Io3HMQSRiXZj|C?W%e*R0J(*ckt zFrIkr<1o}mI8bsE2cz~b?oLlWd0AgSvU6@1QU)304XYkPVGQh|dw60AzJ}(#Y5LYT zE=+&;zh9bu{I__b2+ve8einT5l{^WO7Z?i?pE^yqi*0FE3YR(@S{ypf2WebcL}h^? z9pemUiC3ME7ReB0BG$Yu2rG*r(=X2vFt0m%Z%@<3zn?xj_@n9GrEgAO`;E^}|K@l9 z)%1lgeO}|9c|TCU-<;lh^WEtKJPGS5e8tbJpZ=7-_NVt1?o+VGxE;GoMjH2sH8G2g z$aIhaPo%-u5#9XBThpz#@Kh3vq1mCTV#4VstG1DK$;hmrRt=`sEs$|%q899+W9KRY zumJ&}lr&y(OY+=d9W>Vs9^6O_*M(R=xK{9R2M&vo$Ae>e07N_<3c=U!1cv%4*SZqF zELT3GE21Tf2g03$4CE5OxU zQ!j)x-5&dMJ#p2BKhiZ5)*)liYnY=Dws#V?ieHZnkD(%3OHxN+WUl$S>e4HC^2ZBL z<8v0CmW4xLaXILSwI$PWFJvJ7{Sq5YoZI1YD{fs!<8Tqw7=0ZB_l0JfMsIFDwrGbJs8PMXug0;4q zpjn=&%qo2i^m4jsO*DpvD~|kHcLeO2immz`V`@Ftw&iEj99OdDz1Y|NlEZXqyR1f9 zI%bJ-r1O%3*OY>_vmvw)@lsG~ov1P@#cKgvUZ-QaRQu~X#7ijyM-8Zdb-^G`$ zw787Te70%{-8r?c&9c5uHu9}IFRQn?r1#axuk~g9+Fa(P)>~!Xh-y?nLsf>n%#2j& zCVDx(O&Z(DPRs6g-d9maiDyINR|n;)s};^Bdn@2GMrOe42djMzsk!WYVk(~XZLXy$ zGh3%%WC^p4?MD$)bF?m}M~(ab@>A#Kyl;{DEkd!*HrOr9of5=(ch2d?JiD}PcaeToABul7q0(D7IPGz_lfBvH@J-nhM` zj1_M*6-*o)30pD|Z?MD7Zf;7^FUbSg*XuwxHmr4FNpo^B2Tc zY%*d)rp+)L4X-wcGCPz(1H%o=b`3UXCa9T=DDjI?;mOAa9R4ZywA--YA=m7ygOBnn zU@(r% zlRN;zCxGBP*MA7dQ-+Sk82{j-1m_386p{M_`y3(w&R zAeZ6o91ecmn11+!H*}DMUmfz|%g;|wX~yBzvm_97WCR>4)Dr zKYjbpFHC>^rx&MpeuB+%G+`$mMA2H}{?4jB0dXtRD34t8eQV7)Tjw`>98q0Ia4 zvTrPKf)+gGt=b6il5QoJC0As$=w-bbf^IXFzOCv|sM0Xj&yw*UOz%$b-TuAl*6#m> zzIt`~*T4Ha)0cno3wpZ81wP#c*Ik^j;bEY=2eGc5$Nb>I2Cn(a0pozBbqN8&0R!R=r=G$u#i!`S4J2vbMW&_%o>C>*s z*9+?dkkS6+`QFN?fbr8nIB-epU>y#C#KEyxS2$?(L=YeT;1faepvVq$&q1Ff()R}) z5@kLx@bnchh=elD6Wm++*SbKJuy_Mu4AybtXoFWNWrKCfi(VKCy!41+Rk~@5tj2RC zV0xDjIyzWlUFt{)4D$HD>$WwD5Q-}{SpB^nSm`Xg3_YYX`%&h)Ffwc(YFM|CD#=Jt z7mKp}sD#jZGufb*U8{Ddp;Wf^sDQfTwn$J1KkBW#pb!njtsYk{ug(7$prlwJUh8T%q^!1HL{tVXIkzm$^umTa zr%`Fgc5C08*RTVz8SD0TrEYISJPjTg>r`LtU0#;8^fcWfORPmb|En=HdkMxJ)M|@V z6B@5vmOdH*XZ5oTJm3uA=bHJ{dBFb9+^uB5E4NDmOuMww`nqmxDXup;-UE7%XrD&Fvo zkO`|2Uvp~xkgrOtw<@t_ExXUk4SJKz=w(c8u0IDfUJ}%_Y?iaiPd7Ek_Pl+$9OL%- zOUTo(x#VYC-cjQ52%+s!ZP#H&SL}2{=NjBIPg?HE&MYuFCkKSO++`(UiP6Bodo@vCBzw`2(~tmYLV< zfs@OKUwYUqQ&1ThZRm=!w;|+BCMEF5whF6iB#Au0k+}^!B`4t&$}~WHSdNmo)F)dI zVuIIW3Y~5{!GQ8JGWoWHYzQ1~@oNg?Je~l810Ww>o9^B&2SDtPj%6c%tpS==V3ll2 z<5ERR!i!0sugt091l#G7r2;dYW$OkrVUPN&2S6^XEgEw@B5SE+yo=Wwb}EGmgY5zL z_AMIRz#M$FpJBjn@v+f*(Isf^2xdLTZfw-*00{WpoQVxtj&Y3R#5PwVT8)n4s_k*e zma)DhH|{}{h{gHwVU}&&>S+c5@~IGf+Q$tX1o;RDoIbjCefk*X4St0Oo(OUkPrLcv z``4yx$nRIb_Lb>3f9oGjuYdLxJmuqwX>V^27Ivoh-+zDlv;X&-(|7*ndwK%Mi!Z$} zJ^jp;>FH;m5{_RLbLsL$97I5guO!;#COQ6n_gg#DpZ~$`^u52jF#Ys7r?$jEafy{Y%`ut+949u+f=kK@~H392F2`g+Gf)yK3`I4 zf}%6pN}FzjZ5p<&q}n~)O72a#zn%ZX>B4h=Jbm@+&rHAlFTaMTwR{@=bP+kl0R<$0 zIfz3!+^po`031g2Mn3J7IDNmiU&}_m<-Mez^EhO3d%FGhd(*AA-^bUleT+jOxaabI zr^65hjRr8?T>fhcOcQy(2S9RFj?~hba)GDe$T-#n{v+S_PmV33l`zUcL#8KtV8Fx^ zKJrN)dI71oq9%RTj8l-iZK9Of0@Q6bohywR39b{zw^YcJG0HWM8 zA=FbJg}$*6NM?E9gQqo3|A)#SLUmCEGrWz0~ZYn3|FPh})P>RWVp?SX^9$ss)4Iiv8y30TWCh z|0BM`*R*U>CY_%p&f{qx7oNibkk5Q-+QmT-Uj7Uj=+k&F$y^x|RisD`$LF|Xp*(YAdQoprYEm;Wfma#&kD zj_S-<;#E6Ka`P&VHW&HntW1Ndb|~#wmuw%Zyaiy>7;@j*OvR2eV_I1Q&PG)IhATu> zDQuDYoVIea>B*hzI%{0x)6#GQ>hU8ggXTtx@)(WlHtssgV#9Xb_d?rOQK_V{c=^tFlTHyRKgOm0r?W@)^8(uUL*}oxQow-p=mJ zv3r4DvfppmY0m-8?;O=A=(+E?Fk~GORJ{dQ)_%b`H?XE=ttIg$neoe*+Dtc{8sb-B znlWZUM6E;(g&V&{9O#Y0!QeJk+gozJ#M{Q^aWIav&{zk0QOh+m#p1^5XeYu;+k*t{xR*W58rUYCfstnw;< zoz3<9aZG!x%j$Zy$4oNj-ThMeBhR_6O?BRvWEJ;Gp`9P+rnbwn$~#G#o8fow;wue) z_U?4^r}&HHk8ZT5IM}y-sf{75-w)KG%Ru}~gV}GsM^Hp;dn>n|Y>@h!Z$9`T8XG{| z9K(hzOK%RvPss42!4kiqAj!W(jyOZM!wn{FtTCoM1fmU6>%^wFV#`ggh%@xLDISl# z2OfIfO!gQhmaq9(4IZLV%c5Vo2Gn%`GAL1Iu58j!@>4m~45AguwaXN;0O~!A*#+dSV^dLoNgZ}-7Zc0PJ01YJbM>R?HV=ScQ=Cr((NjZYo^N>JzyH#i z4nm}Nn(47PJ{?jCd1O!~I+pg>JuSboB6&wBF%YFm!aRmAaNP3L05@ghkcVjP>c=>i z8gzhwB3}4!9vJh>KFB4!UY41kbru@ao3K?j(xcr`ehPKRtD%Uoe}EUimWnSP3b}*w z7RswQ?DT{8KAf)N(At-N`HR!9;}FR6{A*|agAv;K@sEEt{ocR-{ppYX^Pk}`$-bWc z@dOTt@Bqk*FFrSY3XjNt@%*KW z(=MKJwfpST)5RB`oi5;h$E%MGW#SYAcfv+L<|~@?UwK=EWcm^AcyfUP9%q;;X%+jb(L3e^ED+x?*dIKk{llX!~63Kl{iy+>ag~ zA+9#bv0W>7o@G@+y5|5M7TY{(oYl`V@Zd6lpKJOMeQ<8iJgsJ+uDGUM8eQv^=FQY~ zm)7YwJ)+`r*)d(V#53NdF=O5Q>N9wC?dwBs)F12Ao%4D-yDwwBz%JR31-{st2ULv} zy5I{p$dGkJr+nKmCw_(FC|3*(3~LQ+RX53uU&ho~UYj0fk<~%Xn32D+6=TC4(ySaD z&1A=^*xr)!CEjs-Y@_2ij9v0=o-x)L`IK)Xvz-T7I#$Q`Abp>#uhsQpy?tXV!t2bE z%(!v>cwSLH%B=HADr;_>FSoDC%p1!wM@#vuJnD}+qs{g8aZG!x%j$Zy$4oNjz4nV` z=DDs64C!&+kDu?yD{;<+b5oLM zK8k}CgLm&X`8U=Sn>RpPTk7y9Ms>Wkj!#7l0R3W_n?O8RfX!EL1jPnVHxwqyr!gGX zpuPD45dN@?js83U5`XOUk^r)sys>lm@?Jp`5M_am7;BAHpQP?GYgaaVlJj)HX-s-TodH@7p zAH=Wl;a_cQ3^15@#TZg>kVPpONVLW~*Rr3XQqo6FQMspas)Q`?}GpR@BMiC_y5a( znEvDM|H*U>PkOkBLq~i%$Wu>0IX#EXu~%>avyNG z{nMT4xfcS2+sf?fYfAGvlh=x|m3KIeppm@0aD0HL%jn=G4qx8I(`GnlH(hKl*HK31 zTdaB3Q`9XlL3o@PqY_NnNha44jgvBHbhNL;hlEJ`?|i6>{8@7JkJk-KXkD^o8xmezf$iazUpib zha4|lc|wQ0qHmZOC+9T7Es0<8XPM)0eT#VN05ja*J!tC0AP%Hd6QXOJ|9IJss+6Z)31@E(FH~{j*6EW5mclZg*UD=r- zCqoLM;_0{f(`e6di(ApGKT?+C6(sFyC~kGVx`TyM_dFP!;!`<u(*t&S}qQ3g& z3Ftimy^EL5PgkxyJH7t;FHA2y^UKqlKX`5W?l)eVKK=lk=6FDY4s#&D)&(F$CxiW6 zma}MzF{o)+U}#8*Ii`%di80MK>Y}V%u5#GwMH#WIn`X%?F(M@dYrwJI$axUNI0dh`$m2m)<&QKm9*kKh>l_c3B%g@z#}c|$s zei5fCaA_-9fk}HT0?3jgGN`CZi1Xe4x(acsQB{4QeA{0UQ5;a}u$EmCr2K|&Fd&y5 zk#i%#Coiaq>!GAhv6F7HeXbo+c7qY@61-wYxfkU2`DxykCDqy5@%%;*Ukv`sPeUsj! zF3Y@?Eb{SZ9;0;vY7>G`2kUs%+%Be%$!0 z?Ijz|ejc{c?{MWOQPo*BZ760%Z}{S68?;LmVx`p zz}W$i`^nyk=q|0)=8a`_XqkCqy)P#I*g0S1M!iwL)=j${bzQIJi0v{jaYdR?%|QFWSQOh@k`uvoLYDAFb&>S^@w}=a%PQ}2r=6osd9%#eZQ6YNTzQUp{nIM|FX*A<-<+G*rb8pz=Yi%T7czgIvMP5tgU3%woJV-!i6HT{FyL?} zPcQH>U^r&Zq%XYGAHZoNi+b2<}z7`|;1ASqb?NKK`2WEijv$tDM0{~85a_po> zs79RDjj;uNM!1WZcBzvhNl9A&&P27foyfjgf@%SD3=NMK);V z{KVVNahXqgl#zFw z%QjES-f?0`9gcgo5wYmt3^%4R_xM-Mm+_>IOD{h+?LL984&o*kfCt!oW)E^Lxs7>n z?b`L}4SWU6Uwq@Qr*HlB-{Anrhto}L^6%rTKKNA@2Y3R+9Xu`P0I%EoH}K?-E7NCR z|N8XWOaElL^}*+-_kQ%^bo(a0Dg)igmoF_#t&;ty{s)a%>+)loLxYDP)K8gX%E)hh zmpNBKJNA(!)%c^X(xOTT>QHWU%3ZgPTF0hS<~nZ~yc}!PpyK2u!!eC~ya)3DosvKJ-_}0+t+l;%Vk2UFs2aT1?)1m@iOf1zV;>v~HN0y;#aNGfA_kJy zACx$d<~3@Ehd^`yga<1zmU$pVU;omd2Er$h=|z7CMo;6=6ROH!BOmQjAMpOC7dXMp z)KC|>qs)zBNnI5|ONl%xr@Y%CHeQm^GBGMiQpW=Zr1*R%-!GxXo5w+vG=z=pOH&GA zJLTjw0C?@bDQLt&GU0+&JVhC|$3no1eK7LQB8u{6f{`|85-2PumY01*?T~jH%yG4d zHfBlahO`faEx?AZ>WtO#GVeqOFIsJFn{7stkh~jcwkU2PfFAX$EKRk-*oJ`{1@G%BsuIR;|Qz`;~J)n^Y+|G50wS9GXWXmtu5J?LwxO^#zp zc1V16a2*1r*!Ky~5!bD1e#Kh0O}W$(^S04{R57@FC^WB?uGe@s$tv!QzW)q(Ow}1< zo~>I}`Q{n3t<3mGp&ZAa#~ov{%)GIF-1u#0lYY%*#VzTsVtdalQM9+J)7P^#!Wu@S zYdp)6<(fg*L7-|=d#LHEjugo(z?R8#)Nj4ji0EH%jV4Xs>k5@ zBT@e5W4L86>5VovVCxs#V(gvWYn& zY}sO9T$@Kk*&IE$G_Q3VbAGLz6b5mPrpPD_o>dEfRgpLDh;hYc4Sl7*XTtlexG}Rp z@6+aS)t6$iEz4Z5@sd~NmQ|kh?x#F0yY~~*!_(!5La$jhivD4-ayf6JKi0{O9_PY# zbHv)8%<{0DvDI34JVb{yIH%5~@dNCL)svoIM|A%H;m*Iuuw9$)dM%f7ZnIV;h-1yO3)18m6=cdk@NwXBt_?zsN-*~5zI~3JIhH%D! zZ@O0q{B=TBR0m&EjIoo(o2Q)G6BXq&IKDCXQn12LOh*sSEn|6=;gOaFS>|M>Ok!#6MCNg{mO3vFiqWc$F9+gOW0CWdhm;$h-` z(GZgo6;nSEqf9iQDgfsC#f6rf^0^&3RoYgz8%_>&}OH)@bno6s?>4 zz-lBr4aYi_J)i{lJ&=ddz<^A6v?mUsMcMADdh!RK0)q86X?+z8Izxv;unuz|#*;@f zFmy&7US!F}<#-^UYjpA&AB1o?01|Qr9eOM&3p-JA%}_ltY-8g|mOf}EuduH`z+uT` zz>a9!H98+HGFiygV_(0xy7pYO}qMJ{83U)tee)bp1w zO}qGNv)$*Poi5@jApC3ml?4B6dhW&sby=14T@kj+ZbBr0` zET$%#ThPz)b5yl1c z%a~pdYUaDCHDZLX)Sa*8B{=NZ+L(9qY1I0*x8i8VsG2iDshkuhOtzVC!U0n}y0XmJ z5|#74AS$TQU=iIHX}b=v8ndkOPMfyRZQ>a*)@6*ARo+R&ep+@!yoLtPFC-h zRUYYzU5^>H(3_d|&2wZ`?~}w?moK-m=EnIts?7MKl_x#Nj^_PAp`HIahUweUL5#ai#QL}DD>5uv z{O?;vwL35cNgg-3S&uv+Uh(-udl*t1jMc6-<{t)3Z0=zD<$!gswW&v&JP^Pab!Qt{ zQD>m(Au;6FS8c#5ZEZ?4M>vQ*kU^4;xx)=3(qV%xbde!u%B+){(h#OT(Gm*IcF$z2 z@|xKTW}CaI6Bt6RL`4P!Upgoezxc;)H=h0xPXM`#O>YRX8^z=R@IVj0ryJ0;!Oye3 zIcYO(hmULnMR=`#{tX@5Xz?|MTuL|JlEJRZzE(_#gNfy4BsM8_@tyS-p7dA1MBGiW znap@CK-HYly&?0`XmCwZkz-9y@`y30ucqNsKKRnkf0X*l7sTBE5Il@GJ1Zn=Zci zEC*H_>q}-h&e(Scm;*Pi-@svytJB+f+QUzN^roH;@{>2-oZf!xo#})3-<*R|^tNXBrw|B(>0>NQ4awA1)w~o@E*uS0#v(EEbtg?FCXmDXCK;eS z0K%uBeD)XbOkewNZ%tqNuMVb9y?!uVc_w^v$3Hh4zN;d~Qj)PXm!kYB8y z2YA}n&9~p1ZvN!$=>X$Iox@Jv;^O?4rRWyXp7Y~vSF1&u?XqAbI}eg%O@je6O14d{ zWED@v5-$d#Xx2H_`7{p?wz#jx;Sa8DJ^-R8e)y|lEn2U`{TFrLs zFyaWLF-Ja<87e>N%)FVJDqZ(nP5{pXw|CT$h8uy3N#d+a+WL)` z*qJ_ohg>UmjNf3-b0j_wTj7*T-2iwWxQnlHx-jkHYtb&@;0N!I=ka-pyf!X8#!oq< zW%IKhOGxD{Yk594DJP|`ae!Gi@{KR0?-4yW7(3Q4xRKO20<%ORi1`(7%#y6)9tS!; z;htQixk}35I@{Y|PAVe%S{KVn`0+UKxUfz0S#L5ERcM7Hl=rDFPY#8Zb@sNw93ku( zbfr&k{c zfE_?#Am1Gyt1D{B@Y+|GPV;8QXrmZe#bmo@N^WQ7pyewQ@fjzEsHJ*8Ux?ZJXDGmG4GSbWb=&LkWW~9$IsIdKE&mMXi zvQ=r%+0s%UQft*HX}Lz(F`Y|Zuk~1hS}!?{yyj)>lX(zm6J0ytLfVGJDOVdTAU64h z72(d_4{O^De8h@vmj=umctm^m3tx(dHq9rkERw+GxJNl-fY_W*qA=f7bWq ze13(-{QdEtE6)2;pRlc#&)eN=%xBHHR-iS@&wcw;%r+&bOICn^H zz4O6z^T*hb{P1HuHlJTtfL#;ZM{54p`ftDerb>2FsCs-Mg>Lv!NJ=PxC0S1;L6{)+~)BuOkcz4*#HdFgwpiMqW~E$#7_^vp;c zo*;pm1CoHBl|*C-3^fKBx#D@FN_L4OkXI>3-6jH&zKEyaP$xfa%u2$=kbTF=4L)vQ z>MLOIgoC^L*sMibj^h|(4B>p({GwLGm|AUUH9uk4;+0ZkL{`G3 z`jdZ=zPC5+J@q6GfINw=#dy-DhTAExe9Nm5W;7X_t059^r~r~PjFg4QizKzmU<(xaLG{c)z%6rGO=lA zt;R$Gt(Y_<9&T6A077 zL&V{5NYEPXYizMDM({C&IzN^x$+dJPRe2WQjRzL!38F#W=>?N49&>i+aa90Gaq zl~BYorYq)X(AD?IAM4bpys)s{JJ(Qt70k^y-k$E@X-cfeTEq_9Y(wHrZJ+6L-3fbI zL$U&{`k}28!r-mQLl)~6+sPN#v33vUK*hjnhdH>G@o*b?{F)aXY(tp`MD#=u9s=Qj z)z`qp0T8#>xmPF%nfVZpBnMQ=@;(xSD|n$p2wRMQ?f!(wsUP5wTc5l^CM<2p zH-(H0rA#vmp%bj6Ef17@SRPGC?@|hEyEg>T=&R8#Jjt&`i>La8 zt96Mvp+J@f#LRTIEn9=TW>!{4bMqfS+^%)VoJDuxI{zHK`m z>xZq>92?XO(pQb60z2REiVfZ>X6Dz5DChAl=@sx9d6t0(oPo0gAP+dWm-{oGO*FlNmyGo#UQ=9Nkn9Olv&Tb9&@K`qhprr7&Vrwb~<8v*-DCG#QCz!b>F4Tr$5U& zFWX=NFs*N?u=d&%^ID~22p*K5Z9{WB9tG4Jd9E+nw4O0zz3Oa|Roof9lmV{|bv%ze z*O&Co>vN^gpHb%NQ?bTuk{R=;mt&ren^Wh#YCcmADs*VU>_O64839X+qB`M0g*ez5fMDaSmWR!+Cci1V&r+M;qBo09w* znEel~;jfWzP6zw@F^X&Qw=qo2_{;bl_WT7vy9!C3b2Fb601<~61a~Yd`9pVZ9szQf z81nPg9xb2s*l?0D*utklIEwt^S08qYxEswmD_v|>q101Ir0xwXMHKO|0kqMQ$~efx zm3;XMr=3qRcse8^U4T)B%A9Ypv5vj@lvbD)k9Mp?gS@y~YaXi&lk5QLU3s9KcC&PD zxT(iOLOd+AfAy-q0!DTTl{SsfeT9t>vJI@azwV|MjW^|zK5hWoCQIl!4xY_9{6a_2 zG=1jg?vh9(+D+M4O@Dd!tl4^)$F} z(bm${+%{qfC0@%7Oc9N2bu4qhtFTxldth~jU9JGAd4%hv>>R=6eL;072wiv?Pm96f zkG*G}n)aT5W;%c6GRz_w9N*rXPQQfBN(P=Y{FpfAZ>d z^W$^V`8`;NybcAWUObL3$a35p$2x}s}7Tv#YFFmhLQ7-qM74=~^_yrF!K_FudX0K{P#|dhYJ@ z%Fo@IzWA&A)35*L{`Be3hjSkQv0A$irQxwooO#wcPRV;0#|7`ZH}Q0sJG}4SxH;Xu zeJA=topiWm&i9s!>_)Ev{We@WH-#7tGVb-Exr;$Fb4-k$>H!(s&U+zkllDD0p2UNv zedHReLxQ5?@Q3cdXfr==a7_#xz7B>5Luk()nRnVPb^XD#8amFK){Fv-!DG- z!#d=NCfLpr+wWDx(=;(?wF-j6ri20r)T+d`SLaeo|CDlKa77%wEb#aoKn(uzYWQOT&$=p)3^zQa^Y;=W z1f(33xwxHj=J=zreUh^Jv`vUHbd#}7S zUHf zd1a+nsBP`b70h)C55qp}wmQ}^&W9b>QT%%>Z8Oe{u@3#1XP=hUX*5nB>lka@T5f}> z_-*OhSMERSHkqA6(B|sG__W?pO8c;H*OzRJ`B_{q5;S6K&$Q-br>yjc0Et>P)I+PC zDsHnJn4&wzYM&#&8(&9-k5S)sYIU1KJc}j+V;$RZz2>caY?@ip;pgPUR~WKlx{D_Y z002M$Nkl-GPr<4JFzV?tkB@bt2 zx6FVSgR!K#c{Ww+l`cPEX-%;Vw=0t};fhP!Wl3J;SK7EG-m)zG0$ed% z(H2eAp_g1aYoc`Rp*(X1joHGRzQYce@`_GFwwK;2!V#F)-cMQ03S7+uQC1Q*Eumx+&G6NL){wl>0BGKx$L@|arYyA5I&9)pW~^?ByX&*vuT{| z5Jz6ETXzX-*;%K)I%9Ecvp|SAXh%Zp$ zSOmUpID-`?Xd`4~&`0=8HgUR$LtK=T$THG^_9Kt&0LX_p0D{9HvMYNu5IRwYMbZ#U zrVSBP;?eeG`ekg*Nk~J2KAG*iLytj4vPl5U&)~fHE{74CScn~)kLU3OklibI0tj9j z|GC*uNGgXZR%u%=3t=N1BtP=u@fUCawD}pk@G^RXV=bkvmSYh)D0nOSRSosCA6={dX21&EGvT;<9jTfJ5O^nzB4zzpI1w1L{(#y|J zyLj@)g)4Z({Y9M6;1vlCn$@IMTp`&ULpqSA6HDxWzV1yQymxE*!M6{lKmI>1P2c>3 zD>wi$O&4*#L_;JEv0#7k;y5C0xn!5j5+1=%sm_c zVf&faE6*KFU;GFA({KLUThr&i%twEm<2PB&F5ini2iMhSO2?@9zI6wOKK4KSXu6Fj z!tB5M!F1c)8OKf657>X{AD|sR2y{Pv+MuRY3EmaWy9eDtuPoY85&;`Xk0( zf7+BH0VMev41tYtipT-6ZrF08(k690fZ<+P@z}_;FOoEge2E}!K1$QXL9TzzR`4ug zsVmi~%hrdMh?ECFnMwQP@I{_+vro{iI@Z+>BI zB5NM&{4w7=*OzR$m1E1yU($ITczxDJw4S?_PhPFNT}xQY9!B}7#dDk-)bVuKShIW^ z9bx$faK$smB|Bs6+h9hWZR;Le?mz39uX+a1=4wVg>R5N1vf8(u%BwcUoKd#2UKCIv z(@ZqLc~sV0o2n;ShVA678VW%JR9!2r>W;B`2_5;>+AC2d z4_>jeAs6nqlQ{s=eL5beJL>QzNXJF<9N@?g>Dl{P22MKzX9qw|JHuPq_d+n1RyLpY zO82^NNY;pQj`hv3+nCGeI+nStmX~;zhiqjbT!|ZagO+3?FW1P`HhAHux$y19*Ac0- zFAH6tfn3?5eF^2SY3fyLmQ`NG&gl^~*5~Ne+IINGW)FF*mV9e+Zdd(o%c)kk)!Bp_ z?Kx8FjIvF3PD(cVbUfy}UgN90$|r4^^~pQCPBR1kP)Q#i@0E8P-=1&dvg3OAI*#Q> zTgQ2G9vQ89M~U3|v(D+}&2#OOIrql=yKhFmb6v~Y548{0VJiP|r=6dpCl9PQj>MtqW`oPW2x7>EosD? zem`$p@yq(qi;y}J*%S+omP?9B;X? zNi1@}OHcbCfoev`TJsf^Dha*duf8uyXSt9{wKun6EbUZV)UXy>p{w$eHCH0jN(PKZ z$v3ZJ&9mN6a(oe@7!JV>s#{mjX@0D!Gd1bnYl8?NP z^$-C&(SzBV0*YGG7y~X2AyT()o}1qM@icw^+dI=={HKf4-+trbbnE&w?OlYBfK+to zTqm$BiO-T^4nfg*;6sNyDC3KG%KhTO5Ab*JWE%2(nVvT%T0!2uyB(}LraDVaa~Sc# z4%y4b3rAh)2R4__=I> zF@5=0=ZBad67-$=y0{X5ew-gke5uVBLgOkP@h&`_BfX?UzAgx9 zZX+h4ENFLIY*9NMl7TSUnv>my`Wg2{9)jdozg&FjIUS_kxpYzUeRcCoE$RkNg>t8j zzRagn%PMcnU^Wf9Elm*SHPdsY@{VApwd5!|k2+TOoD9ckpD`cb$J9dm9Bg7rKebv%AIwx=}Q>%xdHkWtjul9^zQLVh}!-;V1I4Muv* zZXjA^aUx13LPlVl^@-_ia9{P&SzUxZ$6>pHpbaMioUuJs zmL@$Ow)5#Y?8Bw`y>wg=&w5Uuo*O?y~Zh?V1~9==BBA+-fg13~D~Br2(I7=u#WJ=vyXeU2~fs*!NAK@~Yd# zSPbYfnTlWbTi&xrj%CJn)DpFXTH-C~lD8dpsoBh%)5Y{uOXfSb>%1S%uT~F7AC4I9 zwMY+FJ#oYs3mq)QGxA(_K-G?Am1o>pc^Vn;IzrnX@0E8PpPp|^%Z}#SC$xK=xBJbb z^XJ?b}1_+-vK_ldK0l)kC`Q2W5PSXNBsKkl^ic9eXbUYqk%1(JOazudk3 z{)f|bY(()dl6m9S(+f5^_b(G>zZuW*-gqAW-H>z8IY|wJK|fH72OG@{>G z^ke5!KeWp}^@!t6sdiqu1IkS%Zcqg;HmYI=HTaZ;oOSB!#lgrNc}ly^gB;vw&Ye)Q z&w*Bnkc7t@`&z#s4~BHwh7mv6k&j)~DCxvHw9U^`QHS*~O25>xy;6qVDu)iQ#7oci zqz94Zg2Eq7=LR~Zgyl%lCipf7Kxit%qIFymZ;M+_lOGWThVK~{rTwD*tfmV6u)nR7 zt!1WkQAKJT3wZ79?c!@ap2h)?r}WpX3{o4H>T7_dh&PWLl+FJUQ@ zE%NlwPUJ2|uNn~Zony)4i3l!nJnyEGGVY&Ckov5o4)xlyNF4P-3;}53Lah<k|LZ&Gi+BPE?(j4s$KMlS4fyh?k1?*C4H(#0EFkxlk~kNtBfL zPKv0PFJg4KgOcRwD_%H2^X0=Iac_-#tOjW6NKQL^e2p%6^FUB!*$VO$NG}7%=y~6Y za)uFr=A;;<1~0JSaV}6x{-}@fnNE61RjG#!V;hooEC(T1w3R%UY%Z@XQVxdhwP_nw z$4V?O;b||bdJof#AMzB;5eZJ&+5;dFoZ46IQ@h7GO42q8$7-x390!M8_Pc_Eud0sf zT4?GL&KIK`b8v3q24hywTN*&&tH~V87?$}~7)t6ho>^N4jH^e%TIbYCC6SFq1IIRk zeg26{`r4OEI0UkDiQid!{}n)y&({ zgkWyTQFI;$EZ1OOp1ZC;4zYg{WAr#%nlYoyb>_i%^TzrT=26Js*5fT3mdHil{ zlas@It+`JY$cm{IoekjlbU;7FjBkF)>M;jsW`DFjGgNGnG`3>QOQ>yoS#^D|w4oX? zZq}c-!+q69XEjeOdNEYW=Zs`f+Jse4f`K7R;;r{t?ONSDm*)3!-rn`Nu5m`4W#GYQ z06%|us6Ke-XC9dWuedIq71v#k{N=iC4yn>_6t>~gx-89eY1vrcgtbn^1TRL{XzQ?g z|6o}ykFk28_YhuPW|;x{8gKh^tFAd;t9Bxu%6AL=OLp2Y&-O-+_2;;Gt?QaPOume( zv%1|6*P2SfS~-0z2$vh=fQE8Ge?T0qYI_cX+U6b2(*2{W-x|+hF;y&WjP)9sWz|=e zpV8Z9U|ct>XTIy(mY!>#XG?meKh>a$1K%w;G=&?~12SBg^MSX8vQ8#UCr&@JE#HN%RM%qF` zQd|F#<{^!IaV?;XPbIjAUDSKr;3Hi&qIBQ_JpXw;WyBdnyxiLl%CM^_V!0vDa%4pi zig9UkEOxhq2^<6sgm}UM6FTE_DT}rt2IPz}@~aE>KfI<5O9mG0)9x9S@#=-h8e8#c zXy}Aq7pI-fyKJs`<2X=%r%J%UG@k%&jN>m@_g;8z+I#Lz|tT@KrDxlb%0o z0+5N6jczI9vckT<_TjndTi>`a{mq~4PT&78yVKi0JU{K<#^%~?$Z5i3gk!KB{Gh(= zfaa6;&!5MfBwsI#ZYc}rWy7fFzz8e)Waupc%*^W{6! zKmQ-D;{eFPbomO>!Q5i9XbC7rV%`_VDUn`Z4zAyrZs99n^i?oeSNWA}N|Xl7dgsi( z=Q>epHkjG`rYIb-_{TXk%G+Qo8XPW_??Wg$AVQqR6Z02e{la?q51#L#9BgVQ@3p{^ z-|xc_596Y~_@rBeF{bE_m&OiCg$4}$Y3&RmI0m6c96`qDUK)(XBZMI4Q5LDsF;8|d zNy$!>GDxGU%3Pp3$Rc2xO`;W0s7X(_^lf`-i&eujv#Hn%-#0u4GHL;=ThN_M%5Ao5 z>ty)Nzx~V%8?<6|fzce;12E>Tz*h~AP+H-ONVl0|XjL=1aK*(MhV@I74Y~2&vrZ9w z$JvtEES?U*zS4M5l9pO>xL?`O0>ExUBWUx&1stB;n=U;4#B}LXFHIL;%+F6++^Zia z<8VJGk64PM^61g=75+HDPAD+nN9z1BZ<7m0xCvvKTX7T}>ptvK>pp_0b9jttlWfGE zcKuO`<*04-`0#kSUwzxFc5=yBzqD8IF=)rW*ZFp zC7a!P8%qHj^w;VlvxBc-U;Q8v~q zW=U4%q~q!ftT`-4{nh%&={jA~Zy3QFm&|CtWuvsl6SVU+BF!htGDqQCgzIywbFOuX z>5@*(b!+YD7~imI#W$tOoAbjy>xLJ9O$7u6i zujLrK>%@$Dn`G7I8GTp=#&x6OEvvl4XwNIpvn9MSOR`TA&-wGZ?|Nbrc z6NFDj6-%LP1T+51pPQfD1q~i!CV%#{5B`O*H=tNzQ%X9dA=3tw{3B=g4sZbEgKPTA0{+Fi zkTOR9s$~gUu1m~f1Sb3|tpc)bAyGlELEt^J9ig^LR4I&ZXX|mLn);7|>_>`rE?=B3 zz4(F-f$#uG^aqOO$^=UKDb-$~C5n3>j@7*AgTRgN5o_mmY`53^Hdq8ggu`-Zo{pX) ztqv?PGab9IGVL$%DxdVa%XVyI9qyQX#SR~I2vPXW!(13Z(G5`s)Og@c^z#1mvM$;h=h?R?-G-y@DkZ)Z-7|}j; zONALd=fRcpW3TqHQg{5cFoNb*muoZqG*EdnEqm|G5lRbuvArGbz`7nO-wWs5qt`aw zd+cKgvq^UJC=S=)n6OXXI1X3Yh={p@d(6d)cyiiPcwNEakLPfId=m2&bDocP(&ha3 z9@%L4RD_O!#vMoHt>KRY?1W4u#deIrc2BJPOSx zJ<7;?(3j(R6k<7Q+dV#d){kak)OWpF@$f#S=~PBcpWW5}QR$8Sn2Bn0w|F1Nf$NL@ zov4Mxuk&w}YOkp~$rdhvJ1exBu5{)#W9McQW1)S`LBUN-TkDK9J&8 zVwQMwU1T<6HFhpX4RYtdW9GTBd_|WG{y@e;@A2lbGUw7&M>!pcNQQYxdI z%!(Q1qs;XYw=SMD{x%u#2fjMa&D%zQ#Bl!Ax##&v+&cbf<8i1nM>S_P=KINCwL`k* zZ`Kt zrF--@qQl_zp%0Z2IN01dr2;>DlI9^0(qL-CGs~2duR|T$L8V&QraoVila^7MEBfR~ z7XAWbdB)H%v_ZH_cO~n=6M%2bH@`0EJ^aObeq{l9@6^J8!yqe|bi%NR3M=7AOrhEvF#OK?OD{gZZ~(-QR-N)TB*-fpKK$qSVI`^+^G41 zI_Y1=y8$5vd&IcF|`2;S8vZ1e5MDx%UtT1#_L!T*Th2t$T!n)2<048*FIJb*vlUmADlb`iH#UP2hSU5gQ;B z<_EL&EA=S~1cewNQc~-hT@gUZcEI#5{lJHndU>*cUahswKFh$ z$0rcQG0P8?0uJNMNjfN@1{t94gWRUr*69^BqUK6XtM{?~9i& zO*^~0n$q@F$J4QW9a%9uZBefzWKn(u=9Xia`R@6c+dq-MNR#7GoO^mSYhJ~3)td!r z*^GHsIrR(-%f`&#CfN*FDjt`fd9D}8+B;Omm|kaR9p8FKEtke$9jBwb%C`39WH@*z zj&?^|RvG!M&(@O!8gCczDJiu1ajf6y$P0AEkSm;TCN@X`uMh@Z-z%T7b=Q2WeuXY{F&&sn5oK^iyt-_d=NpF6eX+A0 zmqxHOZ!DKE<{8@;X5Uk~PheY+iSMhp4E4AR)bXUju-E-ju`jN{uRfd09*}%(eoH$E zieH<|HEOJsG(Vtwbe)=O*V==`RKJMRzd$L$vr8C}(`8Z3>D-(rbj{64Tjd{pkRIiF_MRcewR74uaru^xPQH*M4jYvixw`b`vUZ&}}*J6tR391mGJR zB|kmoCn&{C19&AJe`ySP+Bt`vPaR&#ozwU$Wc=WsJEm+`KL7$OcW8-~NyxO*dS08U zI{ZOB+sw2%Kv0*LwNRVIdCsc;8hS@7O;8(&*+7h|U7 zB<)e#cC;CzxEW7KB&8eH5lr-|xMTz$RKOu85fy@TDG#9VMH9hLzo;cP9DKaDc?gUT zfLwh3IrKNb0w#8U8>VShBAq*ibaSqZ@rcI&rUYXJ*H(6!)bWBTaxGC`jhL(}KcMl@ z1zoILj|@iDBNJrvo0YBPI<=N~Ypm@g)^V+Y9h)6v3+jl^bN<-IsK}E57!wy?cxJl% z>PtEZa_%BFx_F|3mj-N*o8FzG5#s|O@4vM({ipwJZ~BWrxHNt6*7@l+zVYJ#`~7y~ zq3lB(97^QrFb9_?9_V06K9bCmhd=lgGPI$CAd&?pa6OvV3(*6$oo;oj)vcD)8b&i326zF(-~k?Zga>{bGX}h1m|=_z zFia9NG7N#)2#tgd7h?o7sMV_Ky5BS7nyj_=Uhdod`1vjok&zMEajL%K?t8C&@$G*6 zeEFRneuVF_qHn4v>s+e$b5QfNr@PJGqb040E|KK?NOzL3s>FJFv!(<{Seb}#67jt% zG?W{gqlL-(i*6|tGro(d*_6Txqjmxnz0I980a8`VZIwyP1$oDM?jOyEir0~TTA}1GtwiPBj>hyK5=7OQ4fR`X+viQWvjCT zU2P8>8umh|_oMod7i#)e`&muVkK$D0k8!$F)lG)C=C@qYiBXp-o;A|j{y4QixAt1@ zDxQ$+v+B#;%ws~dl0TN5r%K6KKaveuBR|^~-OGVM3pi(MNv}p>iGNOWYsF-b_EqnN zb1x`#7Wnaq(sl{n_t(styG z+BpU}Zkg_VAIIye`lvXYUzpB(CCSs1lj#V%e?0#Ad(#pA5*bhb@I(<$6W1N(hlK>x zujwQuzFl9uit{C8b-%Ln-N-25dFhW`?AoI+J|5F3^8+TB)b1VjgcQ7z_+d{{(Z)*qw9zJ2^%I6A1 zSLygq(I_HZYrUbN;)C`x%#p(nm;myzC4lJRyFGjX{7#I! z`3IGrtOAB?s!ARX;pvZAvlBT{VWBD=vATQ{5V%2%B{@zzxFyFWFP?q zW6T5)b4vzLa;nagJ3xbcK1^dV?_=i9fy4QUqr@N!mUNU(FdLQ7;r}jzB2&7N z)FOzlUb?fpi@$V!eR}YnuTQ%#;T<7OKo&(yAL)krE0@&v1dpfFhwtu8fAC-KPk;K4 z?oVHSh92leT-W*0~%y&UKj5 zaK`6+?T@-ix{^Owns4k;Ofb<5V@YV9TwzHed{qo(2&WyEd=(7J89gu=OK&7+vTWOW zWva+76{;^s(suIa#7GGs6c}B%q7{Xg zUV#%B$fu{rc>T*4_G+!84?nd!U&CezNPv_B{au>(1{=hqkZ39tkyiRKQ1Orm!h418qeYJMoEUn>!b+>KVd9*BygLwPbHq4u5+$oV zz@#LxW$m>|W?X}Ll0XrNIp=NZHtR-`9yHj-$M09(c03t0?WNTXY-E>Gvu4X%vGB;VnR7Dxg`cl?-xfr%gL_n-{^`9ja~ zNaQPK9X(^!!;ws;2}juxo&28Hx20o*&Ae^v{T$Tv({%KQO=Rpk@knG$k*L;x;v9rEn3-(+2wk27XMMk5Oe9t)5uiH8! zzi!JHI|8=}AlG7iwPLL+tFyYHX$exBh`OjrpXAh5DY{8TLp+ruOr~Xfx>;2IvMx}c2RWJ zdmd>^M;|Y(H5uPyGH+hrmvjA+E;-TJ4t1sPYKs9#y~4z-rOTmBr}1H%A5TPJ zNgMc!WITMbhfVwoWcw>*wDI(`B!V;vAf)>)AcfDi$yPgbzd2yX4g{55*0@^9K;t8t z^NA)6k9O?46H34&tA|sh83VX8K85AsL=;Ict9ZJq2TQ`81=eLG>!tfc1AZ8kRa8t5 zbw-=tS1p_YVvLypa>N7>yawj%5IcZieyEQWqYj2eG?vy^mZ3)j3`vTVgZAhLkJ%Ig zPw3iTQKZ7WwT5v_SLg%v?*1OOF@M7oKrsGi<>{|uo`z8+fRIY7Rjcg4zh=I=yd2cr zF8!@yvl?~tP-wiRv+Kp|Gy;7w3Qk2XDw1cDA6^IHRjmY8+J~itR$({643+!1nt$Qr z0_^I@3>+pb$Lub4{Mi5co74Sozdh|99AHc$qhW|TM=cK)!kCW0^-L4_Yk6v4Xr1s-v1GaQDAuy7|3wogtlFUiNGV_$i_d+4|}L;^_2G|QP` zfk(*`v39V;$CgMCMGmfG)tE7jU9Jya;`H&=x6Y;?{>`K5hd(`;e(kqUr*C{0F~s$b z9E;}Awc8M%d4oa5y#SdiCtp3Dp8WOu)021KM}l428YX`4JTs zJxy|=hmg-pC)%nAdWje66e}3E$>)D|{|zka!f~=&q7yK>Zxe5aY^!ZVIp&b&9IP^1 zVlpva#=^-VtoWL)3D>OC4iXqLLBM3R9_q#fGUvY^UKTyYcW?uudzLV@ti3=uLS3s* zWGh2o@k{yzG7XZix>X}gwn>v%rU|=PMr=8Li${-9dngc{NW31dC5-)^quq}(G|4T| zl4`5keCvqBnr_LX!Riv0;v-(CwtSZvVddY9C)-pee|p8|Xmgxp({3yS9bAWa>^^#V zI(YkyY45dHrn?XB+pAw9A|YkbiuzR-3W|JCdrLnw(KMIU&T7OHt;3Wx5PV%nnMN_u zS?_tI@la1#S8p;c(^=QiV?@6$rPlO(<%%XB#p~(fZ(ClrzHROI_-o~lCKsI4R2C`E zr4fz&5}oyo&%B;a-qNv3-;&Hl>BD)J9f1K|vl-iuquN7%6ogJMu~}!9l}M%)Y_Dek z7HPP~1T((<6cer5wzcXWFTZ4SHW}E@SUbx+>(|oaMXijmBbrONzp_J`uvKHO5f9I! zn-x3PGwP3N;yGJ*9hG?Grqrz|0?cs@ zQFOM274N*IbY7Oe^ZN1p<+PU2lXku2b)q8IutQhohFXO@r z{$YE1cr-o61E|CIKAO%RKd}e?^m!v+^(%Jyg*m(y-8x-+Qgp_p#P3`AYSQ;F7w13P z{R2lCJXaL7r|_L5dnkrVNdO_y5;`GW}}c=e0z4x(fc%JXAKlxl)z z)d;E;rH-Dkj*llmPyxT+vWG!KqA{EH;DKely2UUQMRJEFBU6Nt;s1P4XgWwT0!shE zo_vDHZ!u0M-bD=96}h#V%H@ zniDvQqBcvPuOS~4Yw)b5)>0Yue+@|Fw`uJd%yJ#ReX!qp@Ha`yDdL0kD_Aq{!ALD^39>|0U zz3bvD0pz`(?@Yh<5AIKY`UeO0`j@?fkPJba!XWLyC;raJwmm;*qDLfq>|pl~CV6Pb z4<&-^F!@6XA$TQ>C5=FVsSaJepX?re3qhS5(sO>Cq9AKR%oe-~C`Z#r^m67;}&TjYQ0{Mze=Du&bS890@DX zs4#3cGkRtpPw)-PiAWjFr>MgzQ*0}K=q-F=^r0oz(Fc}}M?KnxbL}Bx4O+AR)zaK3 z?O8?6qh!^ZPGcN+a0Rt{2ijaijS@T)D0T99@E$@e8I|exSmy_-vKb45I^OMo6i(EV zk~-iQV+4$gT9m}J($;*dRX^mC?@Uq*>#}L()shXgO(Ogfdu=H^{T&_Rix>S;vn^9! z5@V*K@ajF#N$!JUEST<%J-zT*$?j)2L?6)_1)UD@`citNH}lu=MlxA`%R1*Ct~{6O zbQ>?ml)GWwd;OK^{x{#6?!EFdk`8fmX~tWQZ|T6L!R5UCPsq4QwVZV5n(yfeqD$FG>WzArapI9S;%Dr2sB6CI%2ivwiOzP<6K2~|IxkD#w)T7c zb@N9{fTnCer}}p8k9hsu6P?(em*q!w%5Ez&(z7XTI4^PsLQ%PHBVheFsy(!;4t08m zwxK}qURS|)dPV}&;mcJAPRjdl78O}*#fN_FD~x)rCe^b}XuT`*Y=u6lo?&4?Hl$Bj zdZB|n$%-~F9Y4obdXbUQLWs&%2_Tel-R>Jkv$`yWQMN_yi}!mb*b3aXZX@uVB7lD% z<>~sIy!fRwn^!5-RVpBAs}!AOOVcps8=Dp^002S%zVWI|E9+WCQ#rCV;>~?AND!f}AF}5N-Zq>%;)V60Zs)C* zs`9LDgRPQE0IBn%@>Hw5^VyJ|^ZHoj*VQiS-#Y!P_}TVwLP1z`>JeTvwX+TJL=#4I zwZ*?J&l>@KDXr^c)g)e}tgmTV)3rkh(IhQiPZ$5Dmx|k}n2IOtCVd{o>teCY*U^i6 zZRHrBC+-@X%a6Y_U*A%(yGYzFt9Lp6n)jxg4gACQ>1pXoRMQSGJu>l$@W0PzP@ z_Tb5qKz6Mk{EKAkkNt`KT|6jN0!So;MB5TYq}v>HzuX`9j-Gf-S^9^!XCiI9nZ#jF zLA8c+y#UVsdN?P5@MjtDLWj%Z!Kx*9#7{QHc8nVhdm(2uviToM*7$#U0!tDP+E8gg zYZ=yhXkyYG-#lC)9#G;{1s{KcB#_VW;P=?#u6ZrpRaAo-DF6vFnP~zp@kAGnaK5CCb zK^zk^7~FS%wln?1|Kwo$(?7gFog7Wm-h&7gd{oG|lqmtkmMt!0O74IjCV=cB!DDyt zjwOMxPW}8{l1m!f_wYIx)@?jZANXv?L0kN=Ys`c4oiaQDM2;x&L%V1wk%N~u-dJKg zf5c^86FtDQ%Z=m6+y%CSW^~l)Q>M`+^7M%fILlNt1~9f{5GU^#xSRk&x!HY*#Akf){&t3U*6>v@M<3%gFu4C7CoWEm^Bf3> z?%pLaEcEOoohgLD4SO;hSjNWXEM*bnRDaageOM*$$Gl(iZkcJyZgLvU5#)wg*c~sm zZO+sgVg3;v65zP^cE&^^o!77NK}_73Xr`i`T+n%yN-g%WwZN5VIu@JKE-_n+IhpP7 zQcbNXYE#zxkhBC-bgk{-iQ&adQZir4YNL=K+xk;FBS=*&$|@5TquR)*c(bzeCHOJy z)>6D?qDF9M6`$&;)AhZP(25yrGEbuK!WMZj$;z0SmQ64-q3cDk-Q@V)_})F+@ni4x zN7H@mh{e~T`LJ396p7?~1TN-QVq9TWKG3B6%(Uc6o}+oPnW$tF{v1_X*C3bYuV}rx zkwtkv;`Q=3t?mDEa<8>+XWH}Xk9?v1>)_AxibHQ#b5L_qe9_q!FVixe^`1xC^Ex&f zUv&yj>N=KOo-2!eP=`a0WJh>GM?BHW`mqY!uV);Yg7=EPaa3qHSa7n4vVsyZs>1ge z(M{ZSYsoErm}@JP85a7aQt~rQk!B_OQ%Xr^o&;K~^owg{h>KU^mq3~y)wVM|G_8#) zCVHi)rv6EvY>S^u*{;K|tT)Tu)^8(lSrNER0J*G4Zmma)n@TFk_1y01na6s)(dh

    po9U&+XPGr+`a0f4ur6z%kN9hjl;H^VqMJ88vv*-_dsSc83U2^-*7{eu zAlsTu#EO>X$j@})GmUuBv#c=Ushu&m_47nvyoR`@%-dAAE|vEBX{E&zw&mXZmf}{| zWbc#cY>Ag?>v}$l*TrI)ucH_D+R8CLPuw*wmmhy=zMkb}#qF|sm*cN_@47K}LEx?k zr;iV(lh3}G4nO#KI{NTa?E1i0!EkqsExjnepeMObM~+WHg&}>{ay4jyF1&p^GF|Ss z(aGl%)4=h88k0ZFar)0EqDW-fVVwyr{F8am+5`|Li69YVmw5I$Y*H8My#3nzr&>B3 z0d05YaJu2}q*FV9c+v;g3sVBoNB}WCR8^mpQr30=3H_cN61GV*IxtaM+vt2yN*g#- z>M5;LL)4$dx;(MY^ggjE-Kn3@#{>|2IEe%y&I^Xb58_n~|JWZKP7l5?W)P!@r!C|g znWw_{x~b<0AhP`XasXpIieYmm95NZI1C|D`y8(A~*n9IeO90_tw4T}1X(&xbsX3%< zeDyHM$oUjzjAR{b2!YJBEIg>gaJU>y_hf(^lH{i@Il3h4(z{ZlzyhhAtu66HPoCF# zkrk}2D`DfZ6F`Rg%x9dCRj|WXzhGyWgSTI|hh2B}?)f?*cWr#tSY39ZC}7KAu$BG zP9|@cAQT!O%UwC(D7(c32_=9iVM7?MBWGCpg`qChk*6@7+Rh)2CSCHTm-++GHtSaA zx-Sn-hZ^&he0=P(l_N&5p%P_YQf6?NU$FD?>rbce{2CKLj;7!E-IM8iKjPZseIJN{ z$5FW2gZC@m15TeD;ZDI#EqN9HXB2?qI@{t2E6fsI{O46}G~dE`UBmQMa+)VA{Z}wTk7P$Of{u8il{I7) zc($HVx*Y|56R1$}0qu2HklgSx<3GNtECUEwx%`0_O#ljsH{kh+A8I&+QMa7 z=MDV}aq+wvc&NzpqxVHJZn3xDx2s?3pY*kQDvmYTufwpcx0SqY-A3SYB5<1kayfB4 zhZZevDy4$$5zYDH_&<6jLkV$I)&(Y`S}kl<{G8{MifOUF*x|OcV%;i!nP|uhUsp>R z8up|03pb~bpDmzrZ-xG1Xi$-_MSK>UDx~k&BX*`$76xvX0{ z&50(>x~|lIQOa#%x~k8LkK(q}UZta58#K17uE*8dt}}O=xSwY(uj>2x#%7hq>%rS5 zrq9~rKE|{sTCvTG1w@YT=~qvtCwLXilXpJAt{_L#Q%i;@$n7fn6+TJnx-4J9#Dfd^ z*}(ma?`ae;A-@jI)o5FsgU>n>H~1rm(Yeh$pPpJGNbK~%zA(wdK1ldLdk0TW+2)hd z9qb6eT>(4+goz(a1i^kXgmY zr&;(DlV}J_?zp_ikve6@%GS-wq~;}FPj9@~q9I2vOW&rZX}7ltT75{1OaA`; zbnvaOO$T59+I05-nG-xHBcF}Xp2U*srM9HF1aaQ}>@Rkv|K>kEnEvb^VFwT-fM^Gh zSiTHy*IOiiFmZ%CcW`NHUj2eyKK794ahE%RaCZ=v`0#Zwc+-)6m<+;8kh*t4w}cYZ zIo-L0SOSN3|6no(Xyh>wgC8bOa4pdeAeQt2pRFCqA5U@7*}6bI;90^2WK2)d6|aIx z`q|N9i*zG6t@uGAb&;12%Jqk68V~XbD+wU4KApbxt4IL(t&{1u{?+5@`@hZ(*8~u| zR~Th}()GLwGnYCKh2DGTxXv;G^T|8!BN^l?I2!i^PR!iNFhf#VKN3H$6Q((Mq_fI3 z(=CP~6xtOe@0w#`ak9c>SsvSZaR2~707*naRKxhAC~F|^znpM9(xkRI9c{N~LXI^V zOmuo=qAHz4Rel)L^@1?JJ3w>a8MciUjE0YfCJw6xYyd7CB+Ubr?yK~N>zc393pS4; z)6t_xZn@(X-&}>8Ghc90C{*!IhOH1#5qh(&UbmpbQhsS%hoB$|D~u+f-<$;!*UFg) zsPvUx)z!~-rJ=!gjElF75>+wOKe0y!wT&MB{g1e*g6YM$FG#xdEt>+^CkZcDZ(5#k%*6{yB5r#lT3e7omXSBw;P5 zk`aA%sQ_lwh(v$RTE6on+r}$2lwd}?D5!dAzdh(rOA$u#>SL7AGU0yB z6lEyt(n#_;Y$tl#yp6ymMBp|7;#b0!wJy^DFW6cCs~=^-CqCqhZMm4&($0o^H9A-860ejw zUh$X77BQx7hdG}PbyqP_o26)sv>h^`4ui<5k%K20#o7h8Im^g4GCelykh7WA%(bZuqYvgA$TY#aAY#zwJK{8z=J$Ev+b=DPE?jp?)Qk7Am~L$t;= z08D&1J3gMC{QSM?@z3A4zd%-ULhe^1x2~aI-UC3XT)2}u8N1OaG&4FJ&978;4 z(J;TrV{!*d(nYh~OZWsfKHLdp2TxY-AlZY79(-L4pN`sl&hey`B|o-H2%f%L@(1xq z0O8!%&K!J*VBhWNs5y&P)RpLAWZsLJ{J};fQaGPU73hVDOO{VxRR=@&aRP&Ge~D=< z;ur_V@u9Z)7d#h5Bj`l>7c=0fU? z4S?eB(yoGP*-t)w#^IxBRWs>E!fqI(E9Ef1&`LC~W|_pKpef)S!9jy!NBt?DTHC{o z*I&b5x4w!xc6lharQM=p;@)Sfa_^t^PmE{>hxp#|vyF2mjOy7x@Tp#IyB8y&par%^ zP-RwI^##(qQpE%&WgA}Auz78jtP*P|tV-Mc&8ed&QGfV}+%mVsT&TVyk= zIn*76t#4Dj&;TOt&d$^6FOdN9-!cK@A4dYn{ooN3%DB$hlH|*hC2r&d5bp57gb$WX z`mhi3R(A2)7w!nc1dx09?AUtcdbtA#bHNC z=P)Ep0AbRK;XyO3EmwC8!vqlH!2o$YxCEGPynDpzux*!W1jiFbKqENwqHgOMdHEnO zw^28pC?kZ%B_=0;eDen<)A#WTnBV?;D1Sl+z3&9uy@HkQ$k*}`rW3h%)85r{hIRJy z>F~V|k!<(5C1l!8T-2_Kk}R>`em_F5G>#Ej@DVmAU6h4G2Dr{GpGudtrQHmk3MGNz40-`E)m_#OI#evmz zMV7`Q)3V66^{w<_&E`Sdc8zUoti#*9^8@e?QL{qtmfNr4u-LOzt6I)kK`Ln?r`V)CTl|$m)@CN z2Wp#cRLhv@Fo2vHj8z7=%DAA(4KEX4ekGD&6r(JtZ}!YFvceGHxUA3?p!x0P+ljyIQp_ zew9S4t}<)rY2MD~iVmt)qr#95m4$(dXe?D1zi*4qvgMVVa9&ppl5x2%UHR7TKPU94 z`Fbuy`T4<>HMSii?c>E;dgP1BB|3XO=T);Ku5{*duEV)Y^eoHzX1LijkQy5g307 z93jWFd~M`4E7Ql4H;>xKs;vLfm7c#z4@Yqt#Zj~oe%VgGZg_33 z*16By#XU=2&w3x9%b3d-?Wtni$6s{ncOK?45+(S+{P6vc@Br$g=@@^3%x&nOp5UPw z*nR(sZ~8S{zh)OkRK#afx07H=r%IA__4s!!8Yb0C$B__pIBzs|f;)A@Uo9#jgr)6b z!asvYox6Q_5(sztz{iq7nDpUEA(j|I3|wO^$k!o&?OS(X5T`n`L2{RXv20ml2fKX6L=T20C3~D4*8~wJcUV#gO36}&i6KlRIXmS#k$9we zo(1Th0K#@GJ*ZF)9|lTC_(h)i7}qA*1`BKyL6mSU#a9Bz!`Gfp-~0h~{=g0(KgA9p zzw+ZVyWg=-qa)vkM*L?<^EDN5#aesv0_%glDeKR`ckj_E&uB z)e2j6RBXpv(qV?GJZtS5UwP(Tb*wm}Z&ejpYXuY)`KRAkNT$8*;-B6=eER_^fU8Pj@?TW28g*moe=&DS$Bbm(OFF*Y;vQNyMUTkWOY#?f=lpSwp zs(us@ZLltFzKxJ?KMWt>E=>S9e`jHmj!Pnqw=!Z&%K|wmDWeChAZu z{jXV5I~&LXi7r`^79fG%+_$8DgR1nl5g*OP4U}CFB44ta-mlD4y_Xxw2qRwKrY_N> zw=X5T3AUI03<)uQ5;9K^}2Pz+OuMP|QEV=2E?*=jit(!W7apECG6CfH^DptB|1&&*!UO-0zrd?t z@F(7UI9Y(5NBW^bKmK=YYZgq)luni8>gp-q$4I1Yd>qH?EUq=9qp3so=O0r9tyzaka1l`0FAq8P!}Frl4P)`s7|@^w6%Z?Yl@}HjhG$R z;}G9fL^{z?=-a`^FgTfR=s(5lfcTf`$Dc6)1P=}@&IB;p;REI9k4du{wJ3=5*SHug zP+n9lb@2ZXBAZo?foNxi_h{) z*qG~_nmUA)eDOU1gbI#Pm)NY-JRpOpAySGYEl{S5CQRm$migj|rnY3CL&;rl%t!cA z#(bS0l)?41gIB-ozxmp<|HdQR?w+rL!Ni0jb#R@cHatWtB+{U^FGo+Ozxo$=1+!NSUEBHAj)4|Glpxx6=Sk-$`Ja>`SCImK)(IM6TAZEX!_0HJ(<4u zqwAXh()0xZJpSl2?8Nm8+X>_hgJW@FCpEdUz?wQXp|OL7RR=oqJ=nmpfN30fjc85d zI%aDb^?>MO=1NVERdK@q_5(Ppk|#bCnGQ3?6IzrDo(Z!qY)lOI-xPmDV#Z->@hVN?d&3el?CxnJ_i)-Otl;2P4o^8CIjPa1)~3ns7o zr2Ht7A{Z)8!88_5!n&fSm8HBs)EEAh?|aGLRHXum(+WR>5hBbEC3&#X@5&{fOfsgf z58&uR8NX{T!rT*jOIE!R^u%(==rcy}MKLHp*Lw)@B3`v-nNDl}nM#JzByn z>3m-Fc5SB@T2-q@b4=w4y$U1rHdx7QQ%XN&Ht}a0-PZv-np1hs(MMr2z0iWV;!-Ky zl)Plg7}1KrB~(_9*#^e*_%FJn4uwA1%(9|MheXuQe94tHB*49l%ev9BY?Yg#H0P^N zSalqjUTINOUgx|miY=0+tWeNT)!A?Np)95#kW@mU z3W4PY*I}A&NOwbwD6~APu9RAn$*RHa)%H@Y>Zphjt#WJ4ak-n7*VUv_j#^v9ilr`k zuCS%fIw<5V4s-FUXeO9g&!oE2nP*~gS!wpgA{EeF&(fLBI*+WwDeXDSw48Zs8|+;A zCR4aZv}@wLH(E!8Q+tlYsNe$0{L!^X8V_AVYCHACIk$1B^Huas;+dl{ie=`rK8xkn zQ=5M38tb*IUHc-+O(+%j-q(K4lE3NL%;KGtzew{t$4;?fS4AJiFooh$t4r5G9t*}k zw~Mb_@9^O13{L@1zIu$EKt7%h-}!Jlef$JZ6p=KcLF+x{j}7HJRxo>-evs%cpSjKe z6r6q%p$*hY_mdl9-9G3Oez@M@6IZmU*L1T4?J1tDTGB#E0^v>|-1&nEAGO@UlT~{a z44$~MZo1XqNXD>NMIcT#)_9u9(yn?2l@+$h2j2h89c>FZ`OdQvb^ZwNtPVp(VZ-K+ zfhg`ebc?ry6wyeuIvsYs42|1%zepzrmaSUal*3`+WyLTktRI*YwgbrL)5+&Z2*Qpq z+^v9Up4~rSfGtPplWk59PyV1C-dBZGztJW!=$bA|JrNQ&OTlV6l+Edl+aDNNjHhf2i;;q2S??dzucLA@9!T>fBJ`b1q_laECD3^ zW?@rzkN|?I>j@yS!^d7EeC!=S2X_Bp5(pDO^ja8C0P#c+cB>p=%Puh{a4=Eh#CP#v z(ucq1<>`bsfKB#F7nZi(iRUHdd6`=>2<5nY2--~Qu*8l?B;n2>vGk_{P)eyFWUfet=iN{N(SPOyB)APXIZCe=t?=bZ!p&U+1@k7Lrr#($N#2EYZ}L_?2d=&0y!SQoVbjND6r633$5Yt2l*anV; z{4pL+MK&mmVWzP?JF+I?0T{qsw7vfhU=Xfe_4h-r=YB+l096P`w|i%}5Wv~}RQTpT zOSRRkMBB2*^zDpZ#ml%$s_T1^nN8zm^A+p5B{}c!*^VFkZ@q3iVe$2N?LlcBOTow( zVK1Yky{x;pFJ7jTmfLIm&|EHaDDWv>q?jiire0ILbmYt2UdGM2l_CvhtCFpjdn8;3 zd9F>a-px7$Z?vM*vCI>lG}V`!-vqNHyN-Sy-RF^6=f`F6x0&@LY@Sm#*G7{tIXc4! zFVhozSnW;p?JTs4mvKvV&Cl6{${KPJY^a%WF{rsw!P} zHPr@GsX?vOq{HcDU8)QLAev=OJk*H}q2^}kqD3b~LT{#318r@DC2d)je#nQLDT~o94wOn2x~<(t;5kL$ zHUZ>01)ht7A1c{Wy)D%uLjRB~3s|ftrCoFotwS36l6=v6tlGI8W9y;}|F-hSb?f$4 z7IXNd{)p!7YF~8IAP2OzmbM5$iI%(L!Ye4%-V79RlZ6)9ww7e)bW+yIR!r`a;@;~N z#{3LtXFGp1CZo}JtZ(;*O1n{3sL!r)mG)#y!5H;Qm=Uk1NzXPiy^h=VC<0m^w2rL8 zjCegwdi*-`aVytW3}fG>4$*pjH@U6YdjHzFn|Yh|F~?}#I<~3KIZl3#uDKCyuHiaU zwuyV4%j);MXBrcYhuRsrikETMxvsb=CfQfAUX_9s{47ETylQRxHftEt{X^gFfi4k2vsb_H zX{dep+7~2>F!6&QzUpNcGTiwCyMEk7(#IVpf85){2fKpU6I?TbwHQeq{7Y

    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import networkx as nx\n", + "# access and visualize the device topology\n", + "print(aspen_m.properties.paradigm.connectivity.connectivityGraph)\n", + "nx.draw_kamada_kawai(aspen_m.topology_graph, with_labels=True, font_color=\"white\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we can submit a task of the above program with verbatim box." + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "DECLARE ro BIT[2]\n", + "PRAGMA INITIAL_REWIRING \"NAIVE\"\n", + "RESET\n", + "RX(pi) 0\n", + "RX(pi) 0\n", + "CZ 0 1\n", + "MEASURE 1 ro[1]\n", + "MEASURE 0 ro[0]\n", + "\n" + ] + } + ], + "source": [ + "verbatim_task = aspen_m.run(OpenQASMProgram(source=program_with_verbatim_box), shots = 10)\n", + "verbatim_result = verbatim_task.result()\n", + "meta = verbatim_result.additional_metadata.rigettiMetadata\n", + "print(meta.compiledProgram)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As shown above, the two consecutive `rx` $\\pi$-rotation gates did not get optimized and we confirm that our program was indeed executed verbatim." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Requesting Result Types with OpenQASM\n", + "\n", + "Braket provides [a rich library of result types](https://docs.aws.amazon.com/braket/latest/developerguide/braket-result-types.html) for circuit executions. With OpenQASM, requesting different result types for our tasks is easier than ever using the `result` pragma. Next, we give an example of requesting result types for our Bell state program submitted to SV1. Before doing that, let's see what result types are supported on SV1:" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "name='Sample' observables=['x', 'y', 'z', 'h', 'i', 'hermitian'] minShots=1 maxShots=100000\n", + "name='Expectation' observables=['x', 'y', 'z', 'h', 'i', 'hermitian'] minShots=0 maxShots=100000\n", + "name='Variance' observables=['x', 'y', 'z', 'h', 'i', 'hermitian'] minShots=0 maxShots=100000\n", + "name='Probability' observables=None minShots=1 maxShots=100000\n", + "name='Amplitude' observables=None minShots=0 maxShots=0\n", + "name='AdjointGradient' observables=['x', 'y', 'z', 'h', 'i'] minShots=0 maxShots=0\n" + ] + } + ], + "source": [ + "# print the result types supported by SV1\n", + "for iter in sv1.properties.action['braket.ir.openqasm.program'].supportedResultTypes:\n", + " print(iter)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "With knowing the supported result types on SV1, we choose to request the `Expectation` of $X \\otimes Z$ observable on `q[0]` and `q[1]` and the `Amplitude` result type for a `shots=0` task of our bell program:" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "bell_with_result_type = \"\"\"\n", + "OPENQASM 3;\n", + "\n", + "qubit[2] q;\n", + "\n", + "#pragma braket result expectation x(q[0]) @ z(q[1])\n", + "#pragma braket result amplitude \"00\", \"11\"\n", + "h q[0];\n", + "cnot q[0], q[1];\n", + "\"\"\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The location of the `result` pragma is very flexible as long as it's after the qubit register definition (if you use physical qubits, you can put `result` pragmas anywhere after the program header).\n", + "\n", + "We can submit the above program and receive the results for our requested result types." + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.0, {'00': (0.7071067811865475+0j), '11': (0.7071067811865475+0j)}]\n" + ] + } + ], + "source": [ + "bell_result_types_task = sv1.run(OpenQASMProgram(source=bell_with_result_type), shots = 0)\n", + "bell_result = bell_result_types_task.result()\n", + "values = bell_result.values\n", + "print(values)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "At last, we want to remind our Braket OpenQASM users that there are two requirements when requesting result types:\n", + "1. For `shots=0` tasks, requesting non-simultaneously measurable result types is allowed, but for `shots>0` tasks, it is not allowed. For example, we can write the following OpenQASM program in a `shots=0` task but not in a `shots>0` task, since the two result types are not simultaneously measurable:" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "program_with_non_simultaneously_measurable_result_types = \"\"\"\n", + "OPENQASM 3;\n", + "\n", + "qubit[2] q;\n", + "\n", + "h q[0];\n", + "cnot q[0], q[1];\n", + "\n", + "#pragma braket result expectation x(q[0]) @ z(q[1])\n", + "#pragma braket result expectation hermitian([[0, -1im], [1im, 0]]) q[0]\n", + "\"\"\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "2. Do not use measurement instructions and request result types in the same OpenQASM program, otherwise a validation error will be raised. Since measurement instructions are basically equivalent to `#pragma braket result sample z(qubit)`, we encourage users to adapt a consistent style of requesting result types in the same program." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Conclusion\n", + "\n", + "In this notebook, you learned how to submit OpenQASM tasks and use OpenQASM features on Braket. Hope you enjoyed it! You can find more information about OpenQASM3.0 in its [live specification](https://openqasm.com/), and you can learn more about OpenQASM support on Braket in the [Amazon Braket documentation](https://docs.aws.amazon.com/braket/latest/developerguide/)." + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Task Summary\n", + "{'arn:aws:braket:::device/quantum-simulator/amazon/sv1': {'shots': 120, 'tasks': {'CREATED': 1, 'COMPLETED': 3}, 'execution_duration': datetime.timedelta(microseconds=14000), 'billed_execution_duration': datetime.timedelta(seconds=9)}, 'arn:aws:braket:::device/quantum-simulator/amazon/dm1': {'shots': 30, 'tasks': {'COMPLETED': 3}, 'execution_duration': datetime.timedelta(microseconds=264000), 'billed_execution_duration': datetime.timedelta(seconds=9)}, 'arn:aws:braket:us-west-1::device/qpu/rigetti/Aspen-M-3': {'shots': 20, 'tasks': {'COMPLETED': 2}}}\n", + "Note: Charges shown are estimates based on your Amazon Braket simulator and quantum processing unit (QPU) task usage. Estimated charges shown may differ from your actual charges. Estimated charges do not factor in any discounts or credits, and you may experience additional charges based on your use of other services such as Amazon Elastic Compute Cloud (Amazon EC2).\n", + "Estimated cost to run this example: 0.63 USD\n" + ] + } + ], + "source": [ + "print(\"Task Summary\")\n", + "print(t.quantum_tasks_statistics())\n", + "print('Note: Charges shown are estimates based on your Amazon Braket simulator and quantum processing unit (QPU) task usage. Estimated charges shown may differ from your actual charges. Estimated charges do not factor in any discounts or credits, and you may experience additional charges based on your use of other services such as Amazon Elastic Compute Cloud (Amazon EC2).')\n", + "print(f\"Estimated cost to run this example: {t.qpu_tasks_cost() + t.simulator_tasks_cost():.2f} USD\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.15" + }, + "vscode": { + "interpreter": { + "hash": "590fab68195cf107911461461f81d5c472d3d6127f579badfcfad30f03e5cab2" + } + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} \ No newline at end of file diff --git a/modules/1_Continue_Exploring/A_qtm_hw/compilation/Simulating_Advanced_OpenQASM_Programs_with_the_Local_Simulator.ipynb b/modules/1_Continue_Exploring/A_qtm_hw/compilation/Simulating_Advanced_OpenQASM_Programs_with_the_Local_Simulator.ipynb new file mode 100644 index 000000000..3b09b3c35 --- /dev/null +++ b/modules/1_Continue_Exploring/A_qtm_hw/compilation/Simulating_Advanced_OpenQASM_Programs_with_the_Local_Simulator.ipynb @@ -0,0 +1,705 @@ +{ + "cells": [ + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Simulating Advanced OpenQASM Programs with the Local Simulator\n", + "\n", + "The `LocalSimulator` now supports simulating OpenQASM programs and the scope\n", + "of supported language features is larger than previously offered on Braket!\n", + "\n", + "This notebook serves as a references of all OpenQASM features supported by Braket\n", + "with the `LocalSimulator`. For detailed documentation about the language, see the [OpenQASM 3.0 specification](https://openqasm.com/language/index.html)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Creating the Device\n", + "\n", + "We create the device using the LocalSimulator class." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from braket.devices import LocalSimulator\n", + "\n", + "device = LocalSimulator()" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# to make the output a little neater\n", + "\n", + "import numpy as np\n", + "np.set_printoptions(precision=3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Run a Bell circuit\n", + "\n", + "Let's do a Hello World example where we run a Bell circuit!" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Measurement counts: Counter({'11': 56, '00': 44})\n" + ] + } + ], + "source": [ + "from braket.ir.openqasm import Program\n", + "\n", + "qasm_string = \"\"\"\n", + "qubit[2] q;\n", + "\n", + "h q[0];\n", + "cnot q[0], q[1];\n", + "\"\"\"\n", + "qasm_program = Program(source=qasm_string)\n", + "\n", + "result = device.run(qasm_program, shots=100).result()\n", + "print(f\"Measurement counts: {result.measurement_counts}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Run a Bell circuit with a result type\n", + "\n", + "Let's run the same circuit, but with no shots, instead getting the\n", + "state vector.\n", + "\n", + "For more info on supported result types, see the [developer guide](https://docs.aws.amazon.com/braket/latest/developerguide/braket-openqasm-supported-features.html#braket-openqasm-supported-features-pragmas)." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "State vector result: [0.707+0.j 0. +0.j 0. +0.j 0.707+0.j]\n" + ] + } + ], + "source": [ + "from braket.ir.openqasm import Program\n", + "\n", + "qasm_string = \"\"\"\n", + "qubit[2] q;\n", + "\n", + "h q[0];\n", + "cnot q[0], q[1];\n", + "\n", + "#pragma braket result state_vector\n", + "\"\"\"\n", + "qasm_program = Program(source=qasm_string)\n", + "\n", + "result = device.run(qasm_program).result()\n", + "print(f\"State vector result: {result.result_types[0].value}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Gate Modifiers\n", + "\n", + "You can use the following gate modifiers on any gate: `inv`, `ctrl`, `negctrl`, `pow`.\n", + "\n", + "For more documentation on gate modifiers, see the [OpenQASM specification](https://openqasm.com/language/gates.html#quantum-gate-modifiers)." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "This program uses OpenQASM language features that may not be supported on QPUs or on-demand simulators.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Measurement counts: Counter({'00': 54, '11': 46})\n" + ] + } + ], + "source": [ + "qasm_string = \"\"\"\n", + "qubit[2] q;\n", + "\n", + "h q[0];\n", + "ctrl @ x q[0], q[1];\n", + "\"\"\"\n", + "qasm_program = Program(source=qasm_string)\n", + "\n", + "result = device.run(qasm_program, shots=100).result()\n", + "print(f\"Measurement counts: {result.measurement_counts}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "This program uses OpenQASM language features that may not be supported on QPUs or on-demand simulators.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "State vector result: [1.+0.j 0.+0.j]\n" + ] + } + ], + "source": [ + "qasm_string = \"\"\"\n", + "qubit q;\n", + "\n", + "pow(1/2) @ x q; // sqrt x\n", + "inv @ v q; // inv of (sqrt x)\n", + "\n", + "#pragma braket result state_vector\n", + "\"\"\"\n", + "qasm_program = Program(source=qasm_string)\n", + "\n", + "result = device.run(qasm_program, shots=0).result()\n", + "print(f\"State vector result: {result.result_types[0].value}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## OpenQASM Built-in Gates\n", + "\n", + "You can use the built-in OpenQASM quantum directives, the parameterized unitary, `U`,\n", + "and the global phase instruction `gphase`.\n", + "\n", + "For more info on the built-in quantum operations, see the [OpenQASM specification](https://openqasm.com/language/gates.html#built-in-gates)." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "State vector result: [6.123e-17+0.j 1.000e+00+0.j]\n" + ] + } + ], + "source": [ + "qasm_string = \"\"\"\n", + "qubit q;\n", + "\n", + "U(π, 0, π) q;\n", + "\n", + "#pragma braket result state_vector\n", + "\"\"\"\n", + "qasm_program = Program(source=qasm_string)\n", + "\n", + "result = device.run(qasm_program, shots=0).result()\n", + "print(f\"State vector result: {result.result_types[0].value}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Classical Variables\n", + "\n", + "The `LocalSimulator` supports OpenQASM variables and constants of the\n", + "following types: `int`, `uint`, `float`, `bool`, `bit`.\n", + "\n", + "For more info on classical variables in OpenQASM, see the [OpenQASM specification](https://openqasm.com/language/types.html)." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "This program uses OpenQASM language features that may not be supported on QPUs or on-demand simulators.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "State vector result: [1.+0.j 0.+0.j]\n" + ] + } + ], + "source": [ + "qasm_string = \"\"\"\n", + "qubit q;\n", + "\n", + "int p1 = 2;\n", + "float p2 = .25;\n", + "\n", + "pow(p1) @ pow(p2) @ x q; // sqrt x\n", + "inv @ v q; // inv of (sqrt x)\n", + "\n", + "#pragma braket result state_vector\n", + "\"\"\"\n", + "qasm_program = Program(source=qasm_string)\n", + "\n", + "result = device.run(qasm_program, shots=0).result()\n", + "print(f\"State vector result: {result.result_types[0].value}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Classical Operations\n", + "\n", + "You can use many standard operators on classical variables of different\n", + "types. There is also a list of built-in functions.\n", + "\n", + "For a full list of supported operations and functions, see the OpenQASM specification for [classical operations](https://openqasm.com/language/classical.html) and [built-in functions](https://openqasm.com/language/types.html#mathematical-functions-available-for-constant-initialization)." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "This program uses OpenQASM language features that may not be supported on QPUs or on-demand simulators.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "State vector result: [0.915-0.279j 0.085+0.279j]\n" + ] + } + ], + "source": [ + "qasm_string = \"\"\"\n", + "qubit q;\n", + "\n", + "int p1 = floor(log(sin(20)));\n", + "float p2 = 4 * (π/3);\n", + "\n", + "pow(p1) @ pow(p2) @ x q;\n", + "\n", + "#pragma braket result state_vector\n", + "\"\"\"\n", + "qasm_program = Program(source=qasm_string)\n", + "\n", + "result = device.run(qasm_program, shots=0).result()\n", + "print(f\"State vector result: {result.result_types[0].value}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Custom Gates\n", + "\n", + "You can define your own gates using built-in Braket and OpenQASM gates, as well as other\n", + "custom defined gates.\n", + "\n", + "For more information around defining custom gates, see the [OpenQASM specification](https://openqasm.com/language/gates.html#hierarchically-defined-unitary-gates)." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "This program uses OpenQASM language features that may not be supported on QPUs or on-demand simulators.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Measurement counts: Counter({'111': 100})\n" + ] + } + ], + "source": [ + "qasm_string = \"\"\"\n", + "qubit[3] q;\n", + "\n", + "gate majority a, b, c {\n", + " // set c to the majority of {a, b, c}\n", + " ctrl @ x c, b;\n", + " ctrl @ x c, a;\n", + " ctrl(2) @ x a, b, c;\n", + "}\n", + "\n", + "x q[0:1];\n", + "// this should flip q[2] to 1\n", + "majority q[0], q[1], q[2];\n", + "\"\"\"\n", + "qasm_program = Program(source=qasm_string)\n", + "\n", + "result = device.run(qasm_program, shots=100).result()\n", + "print(f\"Measurement counts: {result.measurement_counts}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Classical control\n", + "\n", + "The `LocalSimulator` supports the following classical control directives:\n", + "`if`, `for`, `while`, as well as simple subroutines (more on that later)\n", + "\n", + "For more info on classical control, see the [OpenQASM specification](https://openqasm.com/language/classical.html#looping-and-branching)." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "This program uses OpenQASM language features that may not be supported on QPUs or on-demand simulators.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Measurement counts: Counter({'10': 100})\n" + ] + } + ], + "source": [ + "qasm_string = \"\"\"\n", + "qubit[2] q;\n", + "\n", + "bit[2] bitstring = \"10\";\n", + "\n", + "for int i in [0:1] {\n", + " if (bitstring[i]) {\n", + " x q[i];\n", + " }\n", + " else {\n", + " i q[i];\n", + " }\n", + "}\n", + "\"\"\"\n", + "qasm_program = Program(source=qasm_string)\n", + "\n", + "result = device.run(qasm_program, shots=100).result()\n", + "print(f\"Measurement counts: {result.measurement_counts}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Input\n", + "\n", + "The `LocalSimulator` supports parametric circuits using the `input` directive allowing users\n", + "to provide a dictionary to the `inputs` field in the OpenQASM Program object.\n", + "\n", + "For documentation on the input directive, see the [OpenQASM specification](https://openqasm.com/language/directives.html#input-output)." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "This program uses OpenQASM language features that may not be supported on QPUs or on-demand simulators.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Measurement counts: Counter({'0': 78, '1': 22})\n" + ] + } + ], + "source": [ + "qasm_string = \"\"\"\n", + "input float theta;\n", + "qubit q;\n", + "rx(theta) q;\n", + "\"\"\"\n", + "qasm_program = Program(source=qasm_string, inputs={\"theta\": 1.0})\n", + "\n", + "result = device.run(qasm_program, shots=100).result()\n", + "print(f\"Measurement counts: {result.measurement_counts}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## QASM Files\n", + "\n", + "Instead of providing an OpenQASM string, you can provide a filename." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "This program uses OpenQASM language features that may not be supported on QPUs or on-demand simulators.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2 + 11 = 13\n" + ] + } + ], + "source": [ + "a_in, b_in = 2, 11\n", + "inputs = {\"a_in\": a_in, \"b_in\": b_in}\n", + "\n", + "program = Program(source=\"adder.qasm\", inputs=inputs)\n", + "device = LocalSimulator()\n", + "\n", + "result = device.run(program).result()\n", + "probs = np.outer(\n", + " result.result_types[0].value,\n", + " result.result_types[1].value\n", + ").flatten()\n", + "answer = np.argmax(probs)\n", + "print(f\"{a_in} + {b_in} = {answer}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Subroutines\n", + "\n", + "The `LocalSimulator` supports creating subroutines to compartmentalize pieces of your code.\n", + "They can support both classical and quantum computation. Note that using variables that are in scope during\n", + "subroutine definition, but not passed as arguments is currently undefined behavior.\n", + "\n", + "For documentation around subroutines, see the [OpenQASM specification](https://openqasm.com/language/subroutines.html)." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "This program uses OpenQASM language features that may not be supported on QPUs or on-demand simulators.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Measurement counts: Counter({'1': 100})\n" + ] + } + ], + "source": [ + "qasm_string = \"\"\"\n", + "const int[8] n = 4;\n", + "input bit[n] x;\n", + "\n", + "qubit q;\n", + "\n", + "def parity(bit[n] cin) -> bit {\n", + " bit c = false;\n", + " for int[8] i in [0: n - 1] {\n", + " c ^= cin[i];\n", + " }\n", + " return c;\n", + "}\n", + "\n", + "if(parity(x)) {\n", + " x q;\n", + "} else {\n", + " i q;\n", + "}\n", + "\"\"\"\n", + "qasm_program = Program(source=qasm_string, inputs={\"x\": \"1011\"})\n", + "\n", + "result = device.run(qasm_program, shots=100).result()\n", + "print(f\"Measurement counts: {result.measurement_counts}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "This program uses OpenQASM language features that may not be supported on QPUs or on-demand simulators.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Measurement counts: Counter({'0': 80, '1': 20})\n" + ] + } + ], + "source": [ + "qasm_string = \"\"\"\n", + "qubit q;\n", + "\n", + "def sum(const array[int[8], #dim = 1] arr) -> int {\n", + " int size = sizeof(arr);\n", + " int x = 0;\n", + " for int i in [0:size - 1] {\n", + " x += arr[i];\n", + " }\n", + " return x;\n", + "}\n", + "\n", + "array[int, 10] arr = {9, 3, 6, 2, 2, 4, 3, 1, 12, 7};\n", + "int s = sum(arr);\n", + "rx(s*π/4) q;\n", + "\"\"\"\n", + "qasm_program = Program(source=qasm_string)\n", + "\n", + "result = device.run(qasm_program, shots=100).result()\n", + "print(f\"Measurement counts: {result.measurement_counts}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Simulating Noise\n", + "\n", + "You can simulate noise instructions on the density matrix simulator using\n", + "Braket noise pragmas.\n", + "\n", + "For more documentation around supported noise operations, see the [developer guide](https://docs.aws.amazon.com/braket/latest/developerguide/braket-openqasm-noise-simulation.html)." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Measurement counts: Counter({'1': 92, '0': 8})\n" + ] + } + ], + "source": [ + "qasm_string = \"\"\"\n", + "qubit q;\n", + "\n", + "x q;\n", + "\n", + "#pragma braket noise bit_flip(.1) q\n", + "\"\"\"\n", + "qasm_program = Program(source=qasm_string, inputs={\"x\": \"1011\"})\n", + "\n", + "device = LocalSimulator(\"braket_dm\")\n", + "result = device.run(qasm_program, shots=100).result()\n", + "print(f\"Measurement counts: {result.measurement_counts}\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.15" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/modules/1_Continue_Exploring/A_qtm_hw/compilation/Verbatim_Compilation.ipynb b/modules/1_Continue_Exploring/A_qtm_hw/compilation/Verbatim_Compilation.ipynb new file mode 100644 index 000000000..07bca5b0a --- /dev/null +++ b/modules/1_Continue_Exploring/A_qtm_hw/compilation/Verbatim_Compilation.ipynb @@ -0,0 +1,983 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Verbatim compilation" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# Use Braket SDK Cost Tracking to estimate the cost to run this example\n", + "from braket.tracking import Tracker\n", + "t = Tracker().start()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Usually, when you run a circuit on a QPU, behind the scenes, Amazon Braket will do a series of compilation steps to optimize your circuit and map the abstract circuit to the physical qubits on the QPU. However, in many situations, such as for error mitigation or benchmarking experiments, researchers require full control of the qubits and the gates that are being applied. In a [previous notebook](https://github.com/aws/amazon-braket-examples/blob/main/examples/braket_features/Allocating_Qubits_on_QPU_Devices.ipynb), we showed you how to manually allocate the qubits of your circuit, i.e., how you can exactly define which logical qubit maps to which physical qubit. In this notebook, you will learn how to use _verbatim compilation_ to run your circuits exactly as defined without any modification during the compilation process.\n", + "\n", + "### Table of contents:\n", + "\n", + "* [Recap: Running circuits on Amazon Braket](#Recap)\n", + "* [Using verbatim compilation to run circuits without further compilation](#Verbatim)\n", + "* [Programming verbatim circuits onto the Rigetti device](#Rigetti)\n", + "* [Programming verbatim circuits onto the Oxford Quantum Circuits device](#OQC)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Recap: Running circuits on Amazon Braket " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us begin with importing the usual dependencies. Verbatim compilation is supported by all Rigetti devices, and we will use the Aspen-M-3 device for this demonstration." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# general imports\n", + "import boto3\n", + "from braket.aws import AwsDevice\n", + "from braket.circuits import Circuit\n", + "from math import pi\n", + "import networkx as nx\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When you run a circuit on Amazon Braket, different compilation and optimization steps occur before the circuit is executed on the selected QPU. First, the gates of your circuit are decomposed into the _native gates_ of the QPU. Let's first remember what the native gates of the Aspen-M-3 device are:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The native gates for the Aspen-M device are:\n", + "rx\n", + "rz\n", + "cz\n", + "cphaseshift\n", + "xy\n" + ] + } + ], + "source": [ + "# set up the Rigetti Aspen-M-3 device\n", + "device = AwsDevice(\"arn:aws:braket:us-west-1::device/qpu/rigetti/Aspen-M-3\")\n", + "\n", + "# list the native gate set\n", + "print(\"The native gates for the\", device.name, \"device are:\")\n", + "for gate in device.properties.paradigm.nativeGateSet:\n", + " print(gate)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If we create a circuit with gates that are not part of that list, the gates will automatically be decomposed into a gate set that can be executed on the device." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + " Note: This notebook uses the Rigetti Aspen-M-3 device. When you run this notebook, make sure the device is currently available. You can find QPU availability windows on the Devices page in the Amazon Braket Console\n", + "
    " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : |0|1|\n", + " \n", + "q0 : -H-C-\n", + " | \n", + "q1 : ---X-\n", + "\n", + "T : |0|1|\n", + "Counter({'11': 418, '00': 358, '10': 203, '01': 21})\n" + ] + } + ], + "source": [ + "bell = Circuit().h(0).cnot(0,1)\n", + "print(bell)\n", + "result = device.run(bell, shots=1000).result()\n", + "print(result.measurement_counts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's have a look at the circuit that was actually executed. " + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "DECLARE ro BIT[2]\n", + "PRAGMA INITIAL_REWIRING \"PARTIAL\"\n", + "RESET\n", + "RZ(pi/2) 121\n", + "RX(pi/2) 121\n", + "RZ(pi/2) 121\n", + "RZ(-pi/2) 122\n", + "RX(pi/2) 122\n", + "RZ(pi/2) 122\n", + "CZ 122 121\n", + "RZ(pi) 121\n", + "RZ(-3*pi/2) 122\n", + "RX(pi/2) 122\n", + "RZ(3*pi/2) 122\n", + "MEASURE 122 ro[1]\n", + "MEASURE 121 ro[0]\n", + "\n" + ] + } + ], + "source": [ + "meta = result.additional_metadata.rigettiMetadata\n", + "print(meta.compiledProgram)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As you can see, the original gates, `h` and `cnot`, were decomposed into the native `rz`, `rx`, `cz`, and `cphase` gates. You will also note that the abstract qubit indices 0 and 1 (which were chosen as an example) were remapped to qubits that actually exist on the device, in this case, 121 and 122, respectively. At the time when you run this notebook, you might see a different remapping, as the compiler takes into account the latest calibration of the device and tries to map to the qubits that yield the best results. \n", + "\n", + "The compiler further performs circuit optimizations to minimize the number of operations, e.g., by removing redundant gates. Let's have a look at a single-qubit circuit containing two subsequent `x` gates:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "identity = Circuit().x(0).x(0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Of course, if you do the math, two consecutive `x` gates just cancel each other out, and we are left with an empty circuit after compilation." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "DECLARE ro BIT[1]\n", + "PRAGMA INITIAL_REWIRING \"PARTIAL\"\n", + "RESET\n", + "MEASURE 46 ro[0]\n", + "\n", + "Counter({'0': 994, '1': 6})\n" + ] + } + ], + "source": [ + "result = device.run(identity, shots=1000).result()\n", + "compiled_program = result.additional_metadata.rigettiMetadata.compiledProgram\n", + "print(compiled_program)\n", + "print(result.measurement_counts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Using verbatim compilation to run circuits without further compilation " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In some cases, however, you may need to run circuits exactly as defined, without any further modifications by the compiler. For instance, if you want to benchmark device performance you may want to control exactly which gates are executed on the hardware. Similarly, [certain error mitigation protocols](https://arxiv.org/pdf/2005.10921.pdf) require insertion of additional, redundant operations that would normally be removed by the compiler but are essential for the protocol to work. To prevent circuits (or parts of circuits) from further compiler optimizations, you can use the `add_verbatim_box` function in the Amazon Braket SDK." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + " Note: add_verbatim_box is currently only supported on Rigetti, OQC, and IonQ devices.\n", + "
    " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When you define a (sub-)circuit in a verbatim box, you need to make sure that everything inside the verbatim box can be executed on the device _exactly_ as you defined it. This means that\n", + "1. The circuit can only use qubit indices that exist on the device\n", + "2. All gates of the circuit have to be part of the native gate set of the device\n", + "3. All multi-qubit gates have to be between qubits that are connected according to the connectivity graph of the device " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Getting started with a minimal example\n", + "Let's have a look at the simple example from before of an identify circuit. " + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "identity = Circuit().rx(0,pi).rx(0,pi)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here, we have chosen the Rigetti-native `rx` gate, which is identical to `x` if we choose the angle to be $\\pi$. Next, we wrap this circuit in a verbatim box to prevent the compiler from collapsing the two gates. You can see the circuit diagram indicates the start and end of the verbatim box." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : | 0 | 1 | 2 | 3 |\n", + " \n", + "q0 : -StartVerbatim-Rx(3.14)-Rx(3.14)-EndVerbatim-\n", + "\n", + "T : | 0 | 1 | 2 | 3 |\n" + ] + } + ], + "source": [ + "circ = Circuit().add_verbatim_box(identity)\n", + "print(circ)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When we run the circuit, both gates will be executed on the device." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + " Note: To run a circuit that contains a verbatim box the disable_qubit_rewiring flag must be set to True \n", + "
    " + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "DECLARE ro BIT[1]\n", + "PRAGMA INITIAL_REWIRING \"NAIVE\"\n", + "RESET\n", + "RX(pi) 0\n", + "RX(pi) 0\n", + "MEASURE 0 ro[0]\n", + "\n", + "Counter({'0': 809, '1': 191})\n" + ] + } + ], + "source": [ + "result = device.run(circ, shots=1000, disable_qubit_rewiring=True).result()\n", + "compiled_program = result.additional_metadata.rigettiMetadata.compiledProgram\n", + "print(compiled_program)\n", + "print(result.measurement_counts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Programming verbatim circuits onto the Rigetti device " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As we have mentioned above, to build circuits with multi-qubit gates, you need to take into consideration the connectivity graph of the device. When a circuit contains a verbatim box, automatic qubit rewiring has to be disables, and you have manually allocate the qubits on the device that you want to use for your circuit.\n", + "You can access the connectivity graph on the [device detail page](https://console.aws.amazon.com/braket/home?region=us-west-1#/devices/arn:aws:braket:us-west-2::device/qpu/rigetti/Aspen-M-3) in the Amazon Braket Console, or by using the code below." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'0': ['1', '7'], '1': ['0', '16', '2'], '10': ['11', '113', '17'], '100': ['101', '107'], '101': ['100', '102', '116'], '102': ['101', '103', '115'], '103': ['102', '104'], '104': ['103', '105', '7'], '105': ['104', '106'], '106': ['105', '107'], '107': ['100', '106'], '11': ['10', '12', '26'], '110': ['111', '117'], '111': ['110', '112', '126'], '112': ['111', '113'], '113': ['10', '112', '114'], '114': ['113', '115', '17'], '115': ['102', '114', '116'], '116': ['101', '115', '117'], '117': ['110', '116'], '12': ['11', '13', '25'], '120': ['121', '127'], '121': ['120', '122', '136'], '122': ['121', '123', '135'], '123': ['122', '124', '20'], '124': ['123', '125', '27'], '125': ['124', '126'], '126': ['111', '125', '127'], '127': ['120', '126'], '13': ['12', '14'], '130': ['131', '137'], '131': ['130', '132', '146'], '132': ['131', '133', '145'], '133': ['132', '134', '30'], '134': ['133', '135', '37'], '135': ['122', '134', '136'], '136': ['121', '135', '137'], '137': ['130', '136'], '14': ['13', '15'], '140': ['141', '147'], '141': ['140', '142'], '142': ['141', '143'], '143': ['142', '144', '40'], '144': ['143', '145', '47'], '145': ['132', '144', '146'], '146': ['131', '145', '147'], '147': ['140', '146'], '15': ['14', '16', '2'], '16': ['1', '15', '17'], '17': ['10', '16', '114'], '2': ['1', '15', '3'], '20': ['123', '21', '27'], '21': ['20', '22', '36'], '22': ['21', '23', '35'], '23': ['22', '24'], '24': ['23', '25'], '25': ['12', '24', '26'], '26': ['11', '25', '27'], '27': ['20', '26', '124'], '3': ['2', '4'], '30': ['133', '31', '37'], '31': ['30', '32', '46'], '32': ['31', '33', '45'], '33': ['32', '34'], '34': ['33', '35'], '35': ['22', '34', '36'], '36': ['21', '35', '37'], '37': ['30', '36', '134'], '4': ['3', '5'], '40': ['143', '41', '47'], '41': ['40', '42'], '42': ['41', '43'], '43': ['42', '44'], '44': ['43', '45'], '45': ['32', '44', '46'], '46': ['31', '45', '47'], '47': ['40', '46', '144'], '5': ['4', '6'], '6': ['5', '7'], '7': ['0', '6', '104']}\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXxM9/oH8M+ZmWSSyT7ZIwuRxBKJNYLaglCtai1Fa6tSba9uVFttbyv00lbdWi9a5VJaXD+0lKKIPYgKIkgiIQvZ9z2ZmfP7I2ZkzJJJ5kwyM3ner1df95pz5pzvkMk88/1+n+dhWJZlQQghhBBCSDPxWnsAhBBCCCHEtFFASQghhBBC9EIBJSGEEEII0QsFlIQQQgghRC8UUBJCCCGEEL1QQEkIIYQQQvRCASUhhBBCCNELBZSEEEIIIUQvFFASQgghhBC9UEBJCCGEEEL0QgElIYQQQgjRCwWUhBBCCCFELxRQEkIIIYQQvVBASQghhBBC9EIBJSGEEEII0QsFlIQQQgghRC8UUBJCCCGEEL1QQEkIIYQQQvRCASUhhBBCCNELBZSEEEIIIUQvFFASQgghhBC9UEBJCCGEEEL0QgElIYQQQgjRCwWUhBBCCCFELxRQEkIIIYQQvVBASQghhBBC9EIBJSGEEEII0QsFlIQQQgghRC8UUBJCCCGEEL1QQEkIIYQQQvRCASUhhBBCCNELBZSEEEIIIUQvFFASQgghhBC9UEBJCCGEEEL0QgElIYQQQgjRCwWUhBBCCCFELxRQEkIIIYQQvQhaewCEEEJIS6qokeBBQQVqJTJYCnho72wDGyF9HBKiD3oHEUIIMXvJOWX45XI6ohNzkV5YCbbBMQaAr1iEiE5umBrui0B3u9YaJiEmi2FZlm38NEIIIcT0ZBRW4rMD8Th3Lx98HgOpTPNHnvz4oAAXLB8XAh+xqAVHSohpo4CSEEKIWdodm47FBxMgkbFaA8mn8XkMBDwGS8YGY0qYrwFHSIj5oICSEEIIp4xhj+L66GSsPJ6k93UWjgzCOxGBHIyIEPNGeygJIYTozZj2KO6OTeckmASAlceT4GorxGSaqSREK5qhJIQQ0mzGtkdRKmPB5zFYfSIJq08mqxwP9rLHp6O7oKePI6QyFhdTCrDsyG1kFFWpnNvO0RrvDw/E0CBXuNoJwTAM5+MlxFxQHUpCCCHNsjs2HSNWncHF1AIAaHSfovz4xdQCjFh1Brtj0zkf09nkPI3HOrraYPcb/WDBZzBv1zV8tO8mOrjYYO+bAyC2sVQ6N8jdFofeGYggdzss//Mulh25w/lYCTEnFFASQghpsvXRyVi0Px41ElmTEl6A+sCyRiLDov3xWB+tOovYXMk5ZVjwv+saj88fEYRaiQyzt1/F6cQ8HEvIxuvbYyG2scTcQf5K566a1ANZJVWY9EMMfrv+ED+dv497uWWcjZUQc0MBJSGEkCbheo/iHo5mKn+5nA4+T/2yNJ/HYHhndxxNyEZ5jUTx+MPiKlxKLcDIYHfFY+EdxAj2csDWC/dRK5Upnr/zEvczqoSYC0rKIYQQojOpjMWUMF9kl1Q3e4/ixF7eWPlyd87HFp2Yq3G21E8sgrUlH3eyVWcZ72SXYmCAC4QCHmokMvTtIAYAlNdI8d/XwjDA3xkSGYsbmcWcj5kQc0EzlIQQQnTGxR7FU4m5GLfhguK/CZsuIupggtprXr16FXPmzEFaWhpCQ0Px1ltvITY2Fk/nk5bXSJBeWKlxbI6i+vuXVNaqHCuprAOPx8De2gIA4GFvBQD4bmIockqrMWt7LD7/7RZ8xSKV+xJC6lFASQghRCdc7VEsrKhFXEax4r+/04qw52oGZA1mF8vLy/HBBx+gb9++2LJlC06fPo34+Hj8+OOP6Nu3L7p06YLvv/8eubm5AIC0ggroEuppjQcfH5Nnc8elF2HR/nhcTCnAb9cfYu6OvynTmxANKKAkhBCiE672KKoztocXeI+vfejQIQQFBWHdunWKGcHCwkIAUPw5MTERH374Idzd3WFnZ4eXp7yq9frFj2cmHZ/K5gYAB5EFZDIWpdV1SueeTcpXOu92VinqJDKt99FVRY0ECY9KEJdehIRHJaho8HdGiCmiPZSEEEJ0wtUeRXVe7uWNsuo69AjujNTUVJXjCxYs0Dq2Pj2746yW42mFlaiqlaKzmqLqnT3s8KCwQjG2u2peg4IeE5TGVPydEK7RDCUhhJBGcblH8WkdXW3Qp70Yv19/hPsZj1SOMwyDLl26wNXVVfEYj8eDs7Mz9uzZg9LSUmxcsVRrrCeVsTh5Nwejgj1gY8lXPO7lYIV+/s44ditb8djpxFxU1kowpJOr0jW6ednDgv/kY7OgoEDLHZ/IKKzE9C2XEbn6LHZcTkPaU8EkUL/anlZYiR2X0xC5+iymb7mMDC1/34QYGwooCSGENIrLPYpPm9THBwCw52oGjl28hiVLlsDb2xsAIBAIwLIsAgMD0bt3b8Vz5syZg3v37mHSpElgGAY2QgGm9/PDiC71S+sBbrYY3c0Do7t5wMqi/qNu1YkkWFvysXVmGIYGuWJUV3dsfS0MRRV12Hz+vuLapdUSfP9XEgYHumLlxFAMDnTBhF7tsGVmGACgtrYWO3bsgKurKz7//HOcPn0aUqlU7WszxuLvhBgCBZSEEEIaVdvI3sGm7FFsSMBjML6nN24/KkH8wxK4uHngyy+/RFpaGk6ePIlJkybB0tIStbW1GDhwIEJDQ3Hu3Dn88MMPcHR0VLrW0he74buJ9eWIxoR6YePU3tg4tTdcbIQAgJS8Ckz5MQZ1MhYbpvbCdy93R1pBJSb9GIPCCuWZ1Z/O38cn+26iWzsHbJ7RB58/1wVnr9yAr68vhEIhZsyYAZZlsXz5ckREROD27dsqr80Yi78TYii0h5IQQkijLAXa5x+askexoeGd3eBqJ8S6x0GT/D48Hg/Dhg3DsGHDsHHjRjAMAzs7O3z++ecax5CcU4bI1dp2UgK3HpVi2pbLWs+R23M1A3uuZij+nL1lHmryMlTOYxhGJfub6+LvrrZCTA7z5eR6hBgCzVASQghpVHtnG872KDY0KcwH1XVS/Bb3EMzj+zzN3t4ednaNJ6kEutthUICLxkz05uLzGAwKcMGNc8dgY6M6PpZlERkZiezs+teYUViJxRrqajbXlwcTaE8lMWo0Q0kIIWasokaCBwUVqJXIYCngob2zDWyEuv/qz8vLQ11dHby8vDC9nx+q6ur3Csr3KAL12d/VdTKsOpGE3+cNxNaZYdh4JgVCAQ/zI4NU9ijKudkJMSTQFX/EZ6G0WgI/Z1GTxqbO8nEhGLHqTJOXmLUR8BgsHxcCH7EIBw4cwMiRI1XOKS8vx6+//oo5c+bAwdoaiV+NxuoTSc3uJgQAD75+nrPXQIihUUBJCCFmhqvyNFVVVejXrx+qq6uRkZGBpS92UxwbE+qFMaFeAICB355CZnGVYo/iotFdsGFqL0hkLGJSCjD3yN8qexQBYGJvbwj4POyJzQCfxyAiyE3v1+4jFmHJ2GAs2h+v97Xklo4Nho9YBAAaO+W4uLjg9ddfx/Vbt/FQ4IVX+qpfnpZ3E7qdVYp5u65BKOBjwYgg7H1zAJ5bd07l7+lwfBZ+OvekjNLaKT3gI1adJSWktVFASQghZiKjsBKfHYjHuXv54PMYtbN0DcvTbIt5gEEBLorZN6XzWBaLFi3CgwcPwLIsJkyYgEqBPRIDJmkdQ1P2KG44nYINp1MUf57Wj5s9glPCfJFfXsPJHsaPRnZS2rs4ZMgQ/Pnnn9i3bx9++uknHDx4EJGRkbCyskJtbS02xWThTkWJxoCyYTcheQH4Ww9LEP3hUMwd5I9vjt5VOj+/vAZxGfU9xPk8BlvOP0DU2GC9XxchXKM9lIQQYga4Kk8zd+5c2Nvbg8/nY+3atZDJZGBZFr/99htO7N8Jf+sag+1RDHDjrpj3OxGB+GZ8CIQCXpPHy+cxEAp4+HZ8COZFBCgdEwqFePbZZ7F582bk5OTghRdegJVVfe9vS0tLPJQ5AhraM+rbTUgqYxGdlNuk10JIS6EZSkIIMXHro5ObPRsnlbGQylgs2h+P/PIaWFpaoqxMfaeYwYMHY/s7zxpsjyLXpoT54pmOLo3O2srJjw/wd1Y7a/s0NzflJXp58XdHkfoC7s3pJvRidy9M7uMDhgGScsrxc8wDVNRI9N5rSgjX6CeSEEJMGNflab6YOA/8TZvUFuo+ffo0MhNvGHSPItd8xCLsmB3+ZF9pUi7SC9TsK3UWISLIDdP6+TZ7prSx4u+6dhPKK6sBAPx2/SFO3c1FVkkVnG2EmBzmg+8mdkdeWTUFlMTo0E8kIYSYKEOUp1l2NBmMrQtQkqP0uFAohIODA0pLSzFlVH+D7VE0lEB3O0SNDUYUgvXOfNekseLvcrp2E/pgz3WlQ0cTsvHTjD4Y3ln/5CVCuEYBJSGEmCgHawtOytMAwMz+7TGjnx+8xdbI/zgZe7ZtxieffAKpVIqLFy+iX79+Sue/ExEIF1shFh9MgOTxsrmu+DwGAh6DpWODW6VYt41QgGAvB86v21jx9+Z2E2rot7iHivaShBgTCigJIcQEVdZKcDg+i5PyNPOGBuDDyCBsPJOCc8l5CPV2xCfvfwBbW1vcv39fJZiUM/QeRVPTWPH35nYTakhDvg8hrY4CSkIIMUErjibij/hHepencRRZ4N1hAdgdm47vjicCAGLTihDeQYw33ngDMpn2AKcl9ygaOxuhAL5ikcZZxobdhL7+8w4qauv3qcq7CW1VU/z9aa+G+3E6ZkK4QgElIYSYoOjEXI2zgfLyNPvjMjWWp5EHlEOCXGFlwcfevzMV50llLNafvofhXdzB5/NVrq9OS+xRNAXzhgbganoRAP26Cc0d5I9AN1tcSClAdkkVnG3rk3L6+zu3yusipDFt4x1OCCFmhMvyNJ0eL7/eferc6+nFYFkWTDPWWA21R9EUTArzwaQwHwD6dRNKySvHiC7uiOjsBgdrC1TXSXE7qxTZJVXwcLBulddGiDYUUBJCiInhsjyNo8gSNXVSRY9uORZArVQGoUC3GUryxPQtl3ExtUDjDLIu3YRO3s3FybtPipjzeQwG+Dtjx+xwTsdKCFeoUw4hhJgYrsvTaDpN6/OJRsvHhUDAcTchQxV/J4QrFFASQoiJ4bI8TXFlLaws+LCyUL0m10FRW+EjFmEJx/22DVn8nRAuUEBJCCEmhsvyNPK9k5097JXOc7UVQsCnj4jmmhLmi4Ujgzi5VksVfydEH/TbghBCTIy8PI0mDcvT2Fg+2QMpL09z7Fa24rEzSXmorpNiYi9vpWvMGdSB+4G3Me9EBOKb8SEQCnjgN3G2l89jIBTw8O34EMyLCDDQCAnhDj8qKiqqtQdBCCGkaWwsBbC2FCCyqzvyy2vAAgh0s0VmUSUkMhaJOWWY3r89Bvg7I7+8Bp3c7fDNhFCAZfDh/91QJOHUSGRgWeDNwf6wEPAglbEYE+qJdyICwKMlb711a+eAl3q0Q1JOGdILK8HnMVr3psqPD+zogu2z+mJAgEvLDZYQPTAsS9uuCSHEXMjL0wBANy97LBrdBb18HRXlaZYduYP0wkqV5702oD2m9/ODt5M18spqILLkQ2wjbOnhmzVtxd8BwEXIYlR3PwwMdIGHvVWbq+FJTBsFlIQQYqIaK0/THFSepmU0LP6eXVKNbccu4fy9fFg4eQINdsgyAHzFIkR0csPUcF8EqtkXS4gxoICSEEJMVEZhJUasOtNo/+emEAp4ODF/CGUUt4CMwkpFH3QGLFgtqVbyPuiDAlzMsg86MX2UlEMIISaKytOYrt2x6Rix6gwuphYAgNZgEoBiFvpiagFGrDqD3bHpBh8jIU1BM5SEEGLi1kcnY+XxJL2v89HITpRR3AK4+vdaODII70QEcjAiQvRHASUhhJiB3bHpWHwwARIZ26Q9lXweAwGPwdKxwVTrsAXsjk3Hov3xnF3v2/Eh9O9GjAIFlIQQYiYa7smT77nThPbktTypjAWfx2D1iSSsPpmscjzYyx6fju6Cnj6OkMpYXEwpwLIjt5FRVKXxml097XH43YFgGCrxRFoX7aEkhBAz4SMWYcfscPz1wWC8EOIJOyvN5WZEFny81MMLX47p2maDyYoaCRIelSAuvQgJj0pQUSMx6P3OJudpPNbR1Qa73+gHCz6Debuu4aN9N9HBxQZ73xwAsZoWmgDAY4BlL3VDUWWdoYZMiM6ouBUhhJiRjMJKLP3jtmKWUpOyGgkO3czCb9cftalZSkUtyMRcpBcq14I0ZIme5JwyLPjfdcR9MVLt8fkjglArkWH29qsofxzY3npYgugPh2LuIH98c/SuynNmD/SHh4MV1p5KRtQL3CZnEdJUNENJCCFm4unM4cb2UralzOGMwkpM33IZkavPYsflNKQVqhYWZ1HfB33H5TRErj6L6VsuI0NNEfjm+OVyusYAn89jMLyzO44mZCuCSQB4WFyFS6kFGBnsrvKc9s4iLBgRhC9+v4VKA8+sEqILCigJIcQMrI9OxqL98aiRyJpc6FwqY1EjkWHR/nisj1bd22fqjCHQjk7M1XhfP7EI1pZ83MkuUzl2J7sU7cU2EAqUP66/HR+Kk3dzcOJOLjisa09Is1FASQghJm53bDonZWgAYOXxJOwxo5lKYwi0y2skattdyjmK6vdIllTWqhwrqawDj8fA3tpC8diM/n7o5GGHqEMJSudW1dJMJWk9FFASQogJyyisxOKDCY2f2ARfHkzgbKm3NRlLoJ1WUKGyvK6O1porj4+1c7TGx6M6Y/mfd5FfrhyAPiqpbtb4COECJeUQQogJc7C2QOJXo/UuRfP6M+3Rt70zgr3s4SMW4U5WaUu9BIMwVKA9oKOL2uSl//znP1i2bBnefPNNvPHGG/Dy8lIcq22kNWbx45lJRzXZ3A4iC8hkLEqr6zO5l74YjKScMhy9lQX7x1n8VpZ8AIDMjNe+G/Y+txTw0N7ZBjZCCmGMCf1rEEKIiaqsleBwfBZe6au+sLW8FM3trFLM23UNQgEfC0YEYe+bA/DcunMorHgywzW1rx8q66S4mFKA4ZZ8lFTV4V5uGQLcuMt0bklcBNrWFnysmBCKrl72cLe3Ao+B0t+Z3N69e/H+++9DKpUiKioKUVFRCAoKwujRoxEeHo4qK2etY00rrERVrRSd1WSVd/aww4PCCkW/9k7udvB2EuHm4lEq53KZlW4MWisjnzQPBZSEEGKiVhxNxB/xjzQGlE0pRTNi9RnFkuux9wcDAHZeSkcUx73CWwJXgbYFnwHDAFvO30dGUSVkMhZ9OzjjvWEBYBgGEokEn3zyCb7//nuVeyQlJSEpqX65nbGwgs+CvRrHK5WxOHk3B6OCPfD1n3dQUSsFAHg5WKGfvzO2nr+vOPfdXXEqCTpDglzx9tAA1NRJIbTgN+0vywjpUqC/YUb+tpgHbar0lbGigJIQQkyUtsxheSma/XGZGkvRNAwo1e3fi07KRRRML6DkKtAurZbgnV1xSs+9dL8QvX2dMDDQBc8++yxOnjypdSx2dnbYt28fzlZ6oLqufpYxwM0Wo7t5AKj/N6yuk2HViST8Pm8gts4Mw8YzKRAKeJgfGYSiijpsbhBQxmUUq9zD26k+iDKHYLJhC1Gg6Rn5S8YGYwq1omwVlJRDCCEmqLHM4eaUonlaekGlwbvHGIIugXZTaj42JJWxOJeQBgCKGUhNxo0bh4cPHyIyMhJfvRiC7yZ2BwCMCfXCxqm9sXFqb7jYCAEAKXkVmPJjDOpkLDZM7YXvXu6OtIJKTPoxRu0ye0MNy1tmZGTgiy++QE1NjdbnqNPSnYOeZgwZ+aT5aIaSEEJMUGOZw7qWoskr0xx4sAAeFFQg2MtBz9E+YejkCnmg7SiyUHu8sUB7YIALhAKeYs+iHJ/HwNqCj95+Tpg9LBgXLsbA398fPB4PaWlpKtdasWIFFi5cqOixnZxThsjVZ7WO/dajUkzbclnXl6rwv78zIUqPwbjh/fHhhx/i5MmTKC8vx7///W/weNq/NBhynyLLsjr3GOc6I9/VVojJNFPZoiigJIQQE9RY5rCcLqVouLiPNi2ZXGGIQPuFUE+se6WX4s//u5qB4PZdcfr0aQD1s4InTpzA6tWrER8fj8WLF+Ojjz5Sunagux0GBbjgYmpBk2fftOGBRU3GLSz55lMsafD46tWrsXr1anh7eyM1NRUWFsoBdkvsU9Q1mGzpjHxiGBRQEkKICbJsZLm6KaVo9LmPNq2RXGGIQPtMUh5eWH8etkIBevo64q0hHZVK9Pj4+GDWrFmYOXMmAGicFVw+LgQjVp3hNKC0EPCxb/FUPLN/KaqqqlSOi8ViCATKH/XGtk/xswPxirGo08fPCfMiAtDL1wlCAQ9ZJdXYH5eJdafuaXyORMbiswPx2DE7nLNxEu1oDyUhhJig9s420Db/05RSNJowj+/TUH5+PnJzcxsdX2u1OzREoF1aLUH8wxLEpBZgw+kUfLY/XjHT2RCPx9O6xOwjFmEJx1nzS8cGo2egDz788EO1x9u3b680U2hs+xSTc8pw7l6+xrGM7e6FPXP7o6y6Dgv+dx2ztsVi05kUrT/78rGeu5ePe7mqWxuIYVBASQghJshGKICvllm8hqVobCyfZP/KS9Ecu5Xd6D1crRkk3LiGXbt2YcmSJZg2bRrat28Pd3d3fPLJJxqfZ+igpbKyEps3b8bgwYOxbds2pWMtEWjfyFTNtNbVlDBfLBwZ1OznN/TRyE6KfYI7d+5Ue87Bgwcxf/58sCxrNJ2DGvrlcjr4PPX/Yu72Qnw9LgS/XknHe7uv4+TdXMSkFmDP1Qys1TI7KcfnMdh5yXzaiBo7WvImhBATNW9oAK6mFwHQrxQNAIS0c4C3kzUAwNZKAIZh0RUZWLFiK2JjY5GZmQmGYSCV1tdIXLduHaZOnYrQ0FCl67REckV0dDTmzp0LADh37hw++ugjhIaGws3NDcXFxRB0mQaIXNVesyk1HzUZE+qp1+t6JyIQLrZCxbJzU4JuPo+BgMdg6dhgpb+XefPm4caNG/jtt99QXl4OAPDw8EBubi5Wr16N68kZeNhjltprrpwYiom9fTTec9yGC2rLFXGxT1FbRv6UMF/YCAXYdCalWdeWyliTLX1lihiW1bqThBBCiIkZ+O0pZBbX76fr5mWPRaO7oJevIyQyFjEpBVh25I5KySFtQcVrr72G7du3Kz3GMAzs7e1x5swZdO9eXw4no7ASI1adaXSGrymEAh5OzB+iCFoyMzMxZMgQpKamqj3/2WefRefRsyDwCsJ3E3vgj5uPcDg+C8CTQLujqw1+nzcQCQ9LlAJtR2tLpcLmr/b1RVh7Mc4l5yGrpBrWlnyEdxDj9QEdYKHH3lI5XfaYysmPN7bH9OrVq+jXrx/mzZuHNWvWgGVZHDp0CO//dg8yl45g+KrzSL5iEZzVbAH4aUYf1EpleObbU1A3ND6PwQB/Z7X7FKVSKaKjo1FZWYlhw4bB1tZW5ZzyGglCoo5pTKL6ZXY4unrZ4/3dcVj0bGcEuduhuKoOxxKy8fWfd5XKPmnCALgVNYraNLYACigJIcSETd9ymfPM4YaBwr59+zB58mTFzOTTXFxccOPGDXh5eaG0qg721hZ6tTvs4GKDV8J80b+jM/zEIshYFrllNQhyt0NKSgoGDRqE7OxsqPvoYhgGJSUlsLNTnyne1EC7l68T/jG0I7p5OcDJxgJSGYsH+RVwt7eCs62wSX+n2iiy4JNykV6gJgveWYSIIDdM6+erUyvM1NRU+Pr6KpJxdClZ9LTwDmLsmdsfa08l4/u/tM84n5g/WGlcV69exZw5c3Djxg0AgLW1NaZNm4a5c+eid+/eij2dCY9K8Py68xqve3L+ELRzskadVIaNp1NwLb0Iod6OmD8iCLceleDlH2J0ei2H3x3Iaekroh6F7IQQYsIUmcNSGaBjmZbGCHgMlo8LAQBMmDABe/fuxcsvv6w2qLSxsYFIJMLtpHu4UWypd7vDQYEuGNbZDfvjMnEzswQCHoMxoZ4IcrfDzz//jKysLLXXt7a2xuHDhxXBZGOBti41H6+lF2HOz1cVf9Y2I6ePQHc7RI0NRhSCOanT6e/vr/Rn+T7FpnzpmNTHBzIZi/9dzdB6nnyfYtTYYBQXF+Ozzz7Dpk2blJKTqqqq8N///hebN29GcHAwJk2ahJEjR+J2jubC/ADA8AArCz7WnEzGxsfL3pfuF6JOKsPiF4LxTEdnXEgpaPS1cFH6ijSOZigJIcTE7Y5Nx6L98Zxd79vxISr7Fj/55BOsWLFC8WexWIyAgABYWFigtLQUpYGj4Bg6HNcXP6t2hnL9Kz3R398ZQ1aeVixVtnO0RvSHQ7H1wn1Fu0MnkQWKKpWzrFmZFD+Oa4+BIR0hFotRW6taQ/LcuXMYOHCg4s8tsfxuKoZ8F400LV2VnmYnFODKZyNwNa0Q07deafR8XydrDK86h5UrV6KiokLt7LE6Fm4d4PX6Oo3H9789AL18nfD82nNIyCpVPN7BxQbRHw7F13/ewQ9n1W99aIhmKFsGZXkTQogR06Ud3uQ+PqiM2Q0AOn+Ya9Iwc7ihf/7zn/jyyy8xf/58FBcXo6CgAJcvX8b58+dx8+ZN+PZ7DoyGkjlNaXf4dDAJAAyPj4w6G9jY2KC0tBQ3b97Er7/+inbt2sHCwgK9e/dGeLjyrKGhSvSYWjDZWItOdcZ294K1Jb/R2Um5tMJKLFn2DcrLy3X6+fPy8sK6desQe+qI1oz8uw2CyIbkz9FlwlVd6avmaO22lKaAlrwJIcTINLWzzMWLF5F3Zidsi3LhFPkmGIFF/XqhjjRlDjdkZ2eHJUuWqD1WXiNBhgHaHTYU7OUIlmUhFAoREhKCkJAQjBgxAjweD87OzmqfMyXMF/nlNZxknWsKtI1dY52D1JkU5oPCilocS8jR6XyGYTDsxclIOH8M2dnZEAgEkEgk4PF4kMnq/035fD7s7OywZs0aTJ8+XbGP0lecpXH29M+EbLwa7ochnVyVZigjOrkBAOIeVzjQxtdZBBuhANXV1Th//jyGD1HDXCgAACAASURBVB+ucwefluzwZA4ooCSEECPRnM4yLpI83PjpUwCAa1ky1j7viT2pvCZlDg/wd9arO42h+4pP7uOD/h2dkVVSBU8Ha8Xjrq7qSwM1ZIgSPaakqfsHO3vYobu3I7ZeuI9aqe7P/e7fq9DDxxExMTH44YcfsGfPHtTU1EAgEEAqlWL27Nn4+uuvIRaLlZ4X0ckNOy6nqf13OZecj79u5+D9YYHgMQziHiflvD88ECfu5OBqmvaAks8AEUH1weeyZcvwr3/9CytXrsS0adNga2sLGxv1M5et0eHJHFBASQghRqC57fDyGCd4zv4Piv76ATHHf4a7uzvGRHCfOayNIfuKDw1yxdIXg3E4PgteDlZKAaWupoT54pmOLk0u0aNvoG0Mmto6c3Kf+tJRTe1UZCnggWEYDBgwAAMGDMCaNWuwa9cuFBYWIjIyEn379lX7vKnhvtgW80Djdd/ZdQ0fDA/EK3198f7wQOSUVmPL+ftYo6aKwNOkLPDNnOfxXUUeKivrZ0EXLlyIhQsXIjAwEElJqjPXxtaW0pRQQEkIIa1sfXRys5dlGb4A4PHh/Nx72Hu7FO+41+9H5DpzWBtD9RUfHOiCTdN64/y9fHywJw6//eOZZo/RRyzCjtnhLRpoGwN55yBd5mUt+Ty81LMdrmcUISmnXOd7qNun6OjoiLfffrvR5wa622FQgIvGjPwaiQzfHkvEt8cSdR4PUP+lwKb8IdLy0tQeDw5W3V+rz/tQ+nj2e9H+eOSX1+CdiMBmXceUUUBJCCGtiIvOMvI9YZo6y9gIBQbNcjVEu8PBgS74cXofXL5fgLd3XoNEynKSXNGSgbYxkLfo1CXLe2RXdziJLPHt44x7Xcn3KTaXovQVh7VUBTwGhxdPxU+OmVi6dKnK8YsXL6KwsFCxBN8SHZ7MnXm9cwghxIRkFFZi8cEETq/JRTu8ppIHLepmGYGmtzsc9DiYjH1QiLk7/katVAY/PYMWTeNuC+VktO1TbGhSmA8qaiQ4dOORztfm8xjFPsXmkmfkc1n6Sp6R37CUVEO5ubnw8/PDhQsX4OQdoPF92K+DGLvn9ld7TFNLSqB13oetjQJKQghpJQ7WFkj8arTauo19/Jwwsbc3gr0cEORuC6GAr9Tp5WntHK3x/vBADAlyhVjN0rKhcdVXvI+fE36c1gd5ZTXYcDoFXT3tweMxGB3s0eKvyVw0tk9RboYONSefJpWxmNZP/5k4Q2Xk3759W+W4s7MzampqUF1dje7du6Pz2/9BnYMvoGWefcXRu4hJVS6inpijWrVATiJj8dmBeM6L4BszCigJIQRo8eXPyloJDsdnaews80yACwYGuCDhUSnKqyXo31F9aRwACHK3xe43+iO9sBLLjtxBdkk11k7pAY9mJLA016QwH0wKq0/oGBPqhTGhXgCetDtMyavAlB9jsGh0F2yY2kvR7nDukb8VXXIAYGCAC6wt+fARi7DrjX4tNn5z1tg+xeaSdw7iaq+pITLy33//fcyZMweFhYXo3bs3bG1tce/ePfB4PNTV1WHDLwewKrHxrRT3Cyo0zkaqI5WxOHcvH/dyy8xiL64uKKAkhLRZrVlnbsXRRPwR/0hjQLn2VLIik/WNQf5aA8pVk3ogq6QKk36IQa1UBj6PwaYzqYjiuLB3Y7hod7j6ZLLSbK2h2h22NYbapyhv0ckVQ2Tk29jUF8WPi4tT1McEAAsLCxSJg8HnNb4doDkatqVsCyigJIS0OcZQZy46MVfrh5iuDW/CO4gR7OWAD/deV9QNlMpYRCflIgot+0FmKkFLW2TIfYpcM1RGfrt27VQea+x9KLd0bDesm9ITVXVSxKUXY+2p5EbrYLbW+7C1UEBJCGlTjKHOnLwdnqbOMk3Rt4P48TWl+O9rYRjg7wyJjMWl+wWorJVAZNlyv+ZNKWhpi0ytc5ChM/J1aUtZVi3B1gv3cSm1AEWVtWjvbIO5g/yx+41+eH17LM4m52t9fnpBJSpqJGZXPUAd83+FhBDymLHUmWtOOzxNPOytAADfTQzFkfgszNoeCzc7KywcGQRLftOKWutK24f7lDBf5JVW498nksGyrM5t7tQx1XaHxsxUOwcZIiNfl/dhQlYpEv54ktgT+6AIxxKycfT9wfh0dBecTT6n9fksgAcFFW2imgAFlISQNqEl68xJpVLcunULlpaW6Ny5s0pQ1dR2eNrIrx2XXqQ0M5iUU4Yj7w3i7D5N2W/ajfcQBUfWwinyTYAvAMPj63wfc2h3aOye3qfIYwBtcaU5dQ5qqLnvw9JqCU7dzcW0fn6N9qDX5z6mhgJKQojZa8l6jzk5OZgwYQIuXboEqVQKNzc3jB49GiNGjMDw4cPh6enZ5HZ42si70JxNUl56u51VijqpDBZ6zlI2ab/ppQfYFvMA1ffjUJ12AyEZv8FhxFu4mFrUptodGjv5lwP5cq+2YNLPzDoHNaTP+7ApE+9cvt+NGQWUhBCzx0W9x4m9vLHy5e5a7xMTE4OXXnoJeXl5iuXe3Nxc7Ny5E9u3bwdQn1nq4OwG0cxNnLy2u9nqa+ExqA/SniaT1c+WyDNdtWnyftPHh4W+IfCcswEvvxiC1wYFtrl2h8ZKly8HcvJZS18nEWYP7GCWAX5T2lI2ZG8lwLDObkh4VNLo7KS6tpTmigJKQohZ46re46nEXIzbcEHl8V/mhENkKcCuXbswY8YMyGQysI9TtOX/K5VKFefX1dUhuFMASi1lnOyjPJ2Yi8paCYZ0csWWC08KhIf7iMBjGPz999/4v//7PyQmJuLOnTtISUkBn8/H8ePHMWiQ5iVxLvqLRx1JQrmkft9eW2p3aIya+uVAfpjLZDRjo0tbyjWTe+BRcRVuPixBUUUt2rvY4I2B/nCxFWLh3huN3kPftpSmpG28SkJIm8VVvcfCilqlAtwAYCsUgAcgNjYWr776qtZx8Hg8eHp64tChQ+jZsyf+F5uhtbOM2MYS4Y8zuDt71M/aDe3kioLH47h8vxBA/X6u7/9Kwj+f74qVE0Nx8MYjuNpaYv5QP6SlpSEyMhLFxfUFmeUBbl1dHUaOHIljx45h8ODBKmM1ZH/xttLu0JgYSzKaMWqsLeXd7DKMCfXE1HA/iCz5KK6qw9UHRZi/9zpuZpZovTYXbSlNCQWUhBCzxlW9R3VGd/OAlaUA69ev13oewzAYNmwYdu/eDWfn+oC1sc4yQW622Di1t9J1/vVSfT3GS6kFmLL5kuLxn87fR1m1BLOeaY8XunuhokaK0uIijIyMRFGR+lp5tbW1GDVqlEpQaS79xUm9lkxGM0WNtaXceCYFG8+kNOvaXLWlNBUUUBJCzBaX9R7VmdzHB6XVdVi46HNERkbir7/+wtGjR5Gbm6t03qeffoqlS5eCz1fOdtbWWebS/UK0//SwzmPZczUDe65mKHWWiY6OxsCBA5GRkaG07A7U76Wsrq5GZGQkTp48iYEDBwLgrr/4g6+f13nsxDDoy0HjTKUtpSloG6lHhJA2ict6j0/r6GqDPu3FOHTjEXgO7pg2bRq2b9+O7Oxs3L59G2vWrMHMmTNx4sQJLFu2TCWYBOo7ywjUJM7oo2FnmXbt2uH8+fPw9fWFQCBQWxOytrYW06ZNQ2VlJUorqnA4PkvjteX7TR8VV+FaWuN9jQ/HZ2HchguK/zIKK5r/wkiTfXYgXrFnUh2RJR9fjumKy58OR+LSZ3Hk3YF4IdRT6zUlMhafHeCucL0xMPT7sK2ggJIQYrYMWf9tUp/65erdsRlK92EYBl26dMF7772Hbdu2Yfjw4RqvIe8sw6WnO8u0a9cO586dg4+Pj2IPZcPAkmEYZGRkwM7ODh1emo8VR+9ovPbaU8kYuCIab+78G6cSczWeJ5dfXoO4jGLEZRTj5sMSbDn/oPkvjDRJck4Zzt3L1zrrtmlab0zo5Y01J5Px2rZY3MgswbpXemFsdy+Nz5HKWJy7l497ueqrC5iilngftgUUUBJCzJah6r8JeAzG9/TG7UcliH9Yotd9poT5YuHIIE7GpamzjHymcujQofjHP/6BNWvW4M8//8S9e/dQW1sLqVSK3Nxc+PYbrbXAnj77TeV9jUnL+OVyutqyUXJDO7licKArvvj9Fn69ko6Y1AJ8eiAeZ5Pz8NnoLtA2YcfnMdh5Kd0Ao249LfE+NHe0h5IQYrbkdea4NryzG1zthFgXncxJnbmWaIfn5eWF6OhojceFtg4olgjgaNmkoWv1YncvTO7jA4YBknLK8XPMgzbT17i1NZaMNqqrB8prJCpbHP7v70ysndITPXyccC1dfUKX/MtBFLid1WttptqW0ljQu5oQYrbkdeZKq+s4ve6kMB9U10nxW9xDzurMPd0Or6U7y3C93/S36w9x6m4uskqq4GwjxOQwH3w3sTvyyqopoDQweTKaNp087HAvt1zlZ+xOVmn9cXdbjQElAKQXVJrll4PWfh+aMvP6SSCEkKfMGxqAq2n1NRv1qfco52YnxJBAV/wRn4WKWinG9+SuzpyPWIQds8NbpbMM1/tNP9hzXenPRxOy8dOMPhjeue3U5Wstunw5cBRZIENN0FlcVf/ly0mkfaqaBfCgoMIsa4rq8j5kWRY2bBWGh3ZEZFd3dHS1hdiGw+l9E0QBJSHErHFZ7xEAJvb2hoDPw57YDIPVmQt0t2vxzjIt0W/4t7iHGNHF3eD3aet0/XKgbU+sLrPVhkx6Mwbq3ocpueX47Woqjl1NRIWjBw7dzMKhm/XbBhgAvmIRIjq5YWq4LwLd207JIIACSkKImdu7dy/e2XcXVn6hYHiqv/KaWu9xw+kUbDidAj6PwaAAF4PXmWupzjKG2m/akJZ8H8IhXb4cFFfWwVHNLKSjtcXj47Uqx5pzH3NRWFGLb/68i3P38sEDCwsn1fJKLIC0wkrsuJyGbTEPMCjApU0tg7ednwZCiMmrqJEg4VEJ4tKLkPCoBBU1kkafs379ehT/tRGsVKoom8MFc6szJ99vakivhvsZ9Pqkni5fDu5mlyHAzVYlE1y+7SMxp1zr87lIRjMVu2PTMWLVGVxMLQAAyBr525XvuZT3Qd8da14Z8ZrQDCUhxKgp9jEl5iK9UM1+Qi1LTDExMTh79iwAoOivH+D83Hucjcsc68zNGxrASX/xuYP8EehmiwspBcguqYKzbX1STn9/9X3SCbfkXw7StCTmHE/Ixqt9fTE62AN/NMj0ntDLG9kl1bieoTkhBwBnyWjGjvqg645hufzKTgghHMkorGxGpqUTnnUuwo0Lp3D06FHcvn1b6Tz7/pPgNGQGWJZV2zVGVx+N7IR5EQHNfr6pke837ddBjN1z+6s9p+F+0+Gd3fDm4I7wd7WBg7UFquukuJ1VCj+xCB4O1i059DYr6mACdlxO0/q++fn1vght54Bvjt5FWkElXujuhVf7+uL9PXH4/fojjc/j8xhMD/dDFMfFwI3N7th0LNrPXVegb8eHmHVJIQooCSFGZ3dserNqwYGVQSapQ8mpzSiNO6p0SCAQoF+/fvAb9gouS/wgg/Yg9Wltpc6ctv7izdWwvzhpGck5ZYhcfVbrOSJLPj4a2QnPh3jCQWSB1LwKbDh9T5Fkos2J+YPNuk91RmElRqw6gxodE48m9/HBtxNCUVEjQXDUMbXnCAU8nJg/xOxWNuQooCSEGBV9lpgAKGYfi878jNKY/wEARowYgd9//x0iUf0v8ubMfraVDfZN/SDVhbl/kBor+nLQfE35u3O3F+KvD4agslYKOyuBxoDS3P/uKCmHEGI0dsem6xVMAk/6VDsNmQHb0EgAwLJlyxTBJPCkztxfHwzG9HA/+DmLVLbZMwD8nEWYHu6HE/MHY8fs8DYREFFfY/OxfFwIBNp6KDaDuSWjqaNLH/SGlr0Ugsv3C3H+Xp7W88yxD3pD5r+jlhBiEjIKK7H4YAJn12NZFk6Rb8HPqgZhYWFqz2mNeo+mYEqYL/LLa/QO7oG229fYGMi/HHC5D7AtfDmQ90HXJaB8qUc7hHcQI3LVWZ16gcv7oJvj/tO2+duSEGJ0HKwtkPjVaKw+kYTVJ5OVjvXxc8LE3t4I9nJAkLsthAK+IlFEnZn922NGPz94i61RWDZKpwSclqr3aCqor7F5oC8HTddYH3Q5ZxtLfDmmK749lojs0mqdrm2ufdABWvImhBiByloJDsdrTgR4JsAFAwNc8Ki4CtfSirVea97QACwe0xVHE7Ixc+sV/DcmndP6k23JlDBfnJg/BAMel/t5umbh01iZFAAwwN8ZJ+YPaRPBhyl4JyIQ34wPgVDAa/Tf8Gl8HgOhgIdvx4e0icoGuvRBl/vqxW5IzSvHzktpTbqHvA+6uaEZSkJIq1txNBF/xD/CK33VByBrTyVjzeNZyzcG+aN/R/X1DB1FFnh3WAB2x6bju+OJAIDYtCKEdxBjOLX8axZd+4vbMdXIvHYcnXi52PH1AQCgbQRGZEqYL57p6KJIRmNYGVhG85zSk1Jczm0iGU1Olz7oAPBssAeGd3HD8+vON/ke5toHnd7ZhJBW19gSk64TjEOCXGFlwcfevzMVj0llLNafvkcBpZ502W9qYTEFfzt4YuSnm1EtDkBGEwvRE8OpqJGgtLoOCyKD8GpfX/wZdx/Xs6uQUVSt+m/kLEJEkBum9fM169JA6ujSn1xkycdXLwZj+8U05JZWw96qPpSy4NcH6PZWAtRJWVTVSfW6j6mhgJIQ0qrkS0yOIgu9r9XpcYByN1s5i/J6erHexczJE+r2m6YXVMB5wmJYdeiJRJkUjJplw7be67ilaesyxbIsbNkqvNqvMwYGusDD3opmkaFbf3KxyBKudlaYO9gfcwf7qxy/uXgUjidkY+7Ov/W6j6lpuz81hBCjoOsSky4cRZaoqZOqzAywAGqlMggFfI7uRBqSF6IX+taXk2F42v+en+51vGRsMKbQfkvO6FJnlWEYVDAi7L6agV+upCuC+7YcTAJP+qBr+52UV16DKT/GqDz+9tCOCO/gjNf+ewWFlbUan2+ufdDb9k8OIaTVcb30o+mDgPJyDKNhIXqG37SPlLbW67glNOwyBaDRbGUK7pXp0ge9RiLDpcd96xua2NsbUhmr9lhD5toH3fzmXAkhJoXLpZ/iylpYWfBhZaF6Ta4LPBNuCtHLrTyehD2x6Zxcq61aH52MRfvjUSORNbk7jlTGokYiw6L98Vgfndz4E8xYRCe3JmfD64rPYxAR5GaQa7c2CigJIa1KvsTEBfneyc4e9kqPu9oKIeDTrzsucV2IHgC+PJiADB1LthBlFNxzZ2q4b7PaVS78v5sa2y7KSWUspvUzzxlg85tzJYSYFPkSU2l1nd7XOpOUh+o6KSb28sb1jCf1KucM6qD3tYkyLgvRy7V3toGHg5Uhh22WtAX3NpZ8vDssEF297BHsaQ9nW6Haf7OnfXkwAQM6urTJhKlAdzsMCnAxWB90c82cp6/shJBWN29oACK7egAAAtxsMbqbB0Z381AsXYttLBWPdfao/2U8tJMrRnfzQHgHseI6JVV1WHfqHl7t64uFIzshvIMYbw72x+xnKKDkEpeF6OV4DPDN+BAUlGtOZiDqfXYgXrFn8mlOIku82tcXQj4Px2/n6HxNiYzFZwe4a9loahR90DncfG3ufdAZllpIEEKMlHxWq18HMXbP7a/2nEupBZiy+ZLSY68NaI/p/fzg7WSNvLIaiCz5ENsIW2LIbULUwQT8Ef8IVz+PVDvbxTT4HH5jkD8+f65LozOUbwzyx+vPtMfmc6n4coz5taUzlOScMkSuPqvTuU4iC8R9MVKnGUq5E/MHm+2MWmN2x6Zz2gf92/EhZt09ipa8CSFGYfqWyxqXmC7dL0T7Tw/rfK1tFx9g28UHiiWmHbPDuRxqm8dVIXq59s4iLBgRhHd3X4OjtaWeo2tbfrmcrrE0kL74PAY7L6Ujaqz5Bfi6dHGa2NMLb8//BA6Dpuldx7Yt9EGngJIQYhSWjwvBiFVnOP1gNPclptbAZSF6uW/Hh+Lk3RycuJOLib28AQBVtRJYW9JHVGMaC+71IZWxiE7KRRTMI6DUVui9YRenyX3aIe70EXz88ccofvgQkrJCOI96Gzy+ALImpBDyeQwEPAZLxwabfTAJ0B5KQoiR8BGLsITjmZClY4PbZFKBIXFZiB4AZvT3QycPO0QdUk4qeVRSzeFdzJM8uDek9IJKVNRIDHoPQ8sorMT0LZcRufosdlxOQ9pTwSTwpIvT9pj7GL3uAuYfTEFOef3rfr6LE85+EolnAlwBoNGSQvLjA/ydcWL+kDYRTAI0Q0kIMSJTwnyRX17DSfmTtrDE1Bq4LETfztEaH4/qjKV/3Eb+U8k4dVLz63XMNa6De3VYAA8KKlRabZqKphZ6Zx/PQFr5hsJzzgYU/fUD5syZA19nG+yYHf5kljMpF+kFamY523AfdAooCSFG5Z2IQLjYChUfAk1ZzmtrS0ytgctC9EtfDEZSThmO3sqCvVX9x5GVZX3bRqEZ9jrmGtddplr7Plxr2MWpqRi+AODx4fzce4irdceIx48HutshamwwohCs0z7MtqTtvnJCiNGaEuaLZzq6NNqPWE5+fIC/M5aPC6FlbgPishB9J3c7eDuJcHPxKJVjHVxsObqL+eIyuDeG+3CJi0Lv8iSc/5xLh6+rg8qXVBuhwGRnbg2BAkpCiFHyEYsaXWICAFdrBv0CPTCyqzv8XW0htjGeLGFznMHgshD9u7viVGYihwS54u2hAXpfuy2QB/eGXPZmHt9HHy39PtBW6L2rpz0WjuyETh52cLaxRHWdFKn5Ffg5Jg2/XX+o8ZptudC7rkz7NxshxOypW2JKyS3HX3dycPDCTeSyLjh0MwuHbtYX2m6YrTk13BeB7i27j0nXTNLWGBtXXukuRmpp/f+XF6IH6jOOq+tkENtYKgrONyxEX1BRi8KKWly+XwgAiMtQLXru2wY+sPUNsA4cOACxWIwhQ4bAVyxCWiOJOUODXGFtyYft43uo+zfTxNdZBBuhAJmZmTh+/DhmzZqlU/mc1nwfaCv0bm8lQFZJFQ7eeISc0mpYW/LxUg8vrJ7cA95O1lgffU/t8+SF3qkEmWZU2JwQYjIyCiufLIMzgFTLby/5MvigAJcWWQZXGpuOS/QtNTYuSaVS8Pl8tceaW4i+oYm9vLHy5e5IT0/Htm3b8Pnnn2u8nynhKsD6+++/ER4eDgcHBzx48ADf/JWCX2MzFckk6pz/OALeTup/xrQVnGfAYlJPT3zxXCdMnjwZR44cwapVqzB79mxYWVnBwkK1dFRrvw+aUui9oQNvD4CbvRWe+faU1vPacqH3xlBASQgxCQ2zNZuTqLNkbDCmGChRx5jHpk1zZsq++uorREVFwfXlJbDyCwV43AV7rEwKN1kRNkzqitmzZyM+Ph4bN27EW2+9pfM1jG2bARcB1p07d3Dt2jUUFxcjKioKBQUFYFkWrq6uqBO5wOGV7ww2/oeb34KkIFPl8a5duyIhQXlZ2RjeB1EHE7DjclqTa3NumdkHgW52GPxdtNZxTg/3M8tC71yggJIQYvT0ydZsaOHIILwTEcjBiJ4w5rGpo89MWVVVFby8vFBcXAyBgzs852wAT2BZ32uRC5JaPNz8NiQlT3pOMwyDbt26ITw8HJs2bVI7W2ms2wy4CrDCw8Nx5coVtee6uLhgyOK9iMuq5LTAOZ/HwFdYhdOLJ6o9PnnyZOzevVvxZ2N5Hwz5LrrRLQBA/Y8sj2HgYG2B50I8sXhMVyw+mIBfr6RrfZ6fswhnFkY0e3zmjAJKQohRM+Z+usY8tqc1d6bsq7FdUZGbjitXrmDr1q04f/684jzb0JFwfu49zsa49PlOeGtkKKqqVJdgvby8kJmZqbR/r7WXV7XhMsCyz4jBzJkz1R6fPn06lq3ehBGrzqCGw/I+QgEPJ+YPwaZ/L8Py5ctVjg8bNgwnTpwAwzBG8z4or5EgJOqYTklKy17qhqnhfgCAGokUX/1xGzsvaw8mgfovKLeiRpl8cp0hUEBJCDFaUhkLPo/B6hNJWH0yWelYHz8nTOztjWAvBwS520Io4GvcD/b6M+3Rt70zgr3s4SMWobpOCisL/ZZqMworDfYhznWw09yZMh5YSCW1KDz+A8pvHlc9zuPBNnwinIbM0HuMH43shH8M7Yg+ffrg2rVrKsf//e9/Y8GCBYo/G8PyqiZcB1hv97bHopcHqz3GMAySk5MRW2hhkKBu/PjxOHDggNpzIiIi8OMv+/D8hkst9j7YunUrzp07hzVr1sDe3l7pWMKjEjy/7rzKc9TxcrCCs60QzraWGNHZHa/09cU3R+9i87nURp97+N2BVC5IDQqxCSFG62xyHiI6uak99kyACwYGuCDhUSnKqyXo39FZ43Wm9vVDZZ0UF1MKMMKSj9yyGnTxtNd4vi4crC2Q+NVovYLdDi42eCXMF/07OsNPLIKMZZFbVqPXuJ6mz0yZDAzAt4Tzc++BZ+OI0pj/KY65urpi4MCBCA/vBV6AI366Xqp3IfpLly6pDSYBICoqCm+//Tasra31ek3Sx2NctD8e+eU1nG8zkJessbHk491hgejqZY9gT3s42wrV/qwA9T3nZw5oj5d7e6O9sw1qJTIk55Zj2ZE7uJZWiA2X8iBwcFfaCuDt7Y3Q0FA4OzvDzs4OUzq6GaTLlI+PD7p06YJ79+6hrq6+VFS7du2Ql5eH06dPY9iizeB7dQXUJAX193fGuJ7t0NvXCZ6OViitkiD+YTHWnEzGrUelGu+vKaP68OHDmD17NgBg165dGDNmDF544QWMHj0abm5uTSrA/qikWtHe83RiHgDg41GdsO9aJgorarU91WQLvRsaBZSEEKOUnFOGBf+7jrgvRqo9vvZUMtY8/nB+Y5C/1oByxOozkK/FHHt/MEqq6nAvt6zZ2ZqVtRIcjs/CK33Vz3DpG0ay6QAAIABJREFUGuwOCnTBsM5u2B+XiZuZJRDwGIwJ9UQQR/v8uCzu7DRkBmQVRaiIP4FZs2Zhy5YtSudNiWj68vPThehDQ0Oxdu1a3LhxA1u3bgXLsor7l5WVoUePHnjtqx/xQ1y5Xq9JbuXxJLjaCjndZiAvWeNqK8SrfX1xJ6sUx2/naPxZ4THAD9N7I8xPjE1nU3AtrQjWlgKEtLOHyJIPMAx4FpaYuGIf8vdG4cSJEwgODsa1a9dgaalcc9UQXabWrFkDALh+/TrCw8MxceJE/PLLLwCAv67E440D6RqXmKf184OTyAL/vXgfybnlENtY4o1B/jjwj2cwY+sVxKQWqH2eVMbi3L18xXu0trYWn376Kb7//nvFOTU1NThw4AD27dsHALCwsIBrUE9YvPClzq+5oRuZxZjWzw++YlGjAaUpFnpvCRRQEkKM0i+X08HnaU72aMpmHXXn7ryUrjZbs6CgAMeOHYOTkxMiIyMhEKj+mlxxNBF/xD/SGCToGuweuvEIP8ekKT127l4+Qts5IshDv6BSW3Hn5mBZFk6Rb6E28xYWL16sclyXQvSN9ToWiUR4991366/n44OoqCj89NNPmDVrFq5cuYK5Cz7FxisFsBNZ493hQY3O/j34+nmNrycltxzDV53htGB1ck4Zzt3LBwBkFlchdGn9NgEnkYXGn5XXBrTH0CA3TNx0UakuZ3RiruL/s2AQc78YG5esQEHBbGzfvl0lmJQzVJepHj16ICEhAe3atVM8diGbp/X6X/5+CwVPBWdnkvJwZuFQzIsI0BhQyse181I6Xgu1wfPPP487d+6onCOTPZkplEgkGNo7GBfAQt1saWP6+TtDKmOR3khCDxeF3s0VBZSEEKMUnZjLadaqyvWTchGFJwFlZmYmVq5ciR9++AHV1fVLYQEBAfjmm28wfvx4pWSQxsama7BbVKnabUYqY3E+JV/vgJKLJXlrCz5WTAhFVy97uNtbgccAWQsj4OvhpPG+XPU6/uyzzzB48GAMHToUDMMgPDwc3WYtx8WUfDjZ6Db7N27DBZXHevg4YvELwTh2OxsAtwWr5V+CmvJzO2tAB1y5X6i2yHtDfB6Dy/mWGrcENMRFcK9OQIByB6PG3gdPB5MAUFkrRXJuOTwdrLTeSypjsfPUNSx5sfH9uSNHjsQvv/xSn/HeSJb38nEhKK+W4EZmMfLLa+AkssTzIZ54obsXNp1JaXR2Ul7onaiivxVCiNEpr5EgvbASjiLVwslcSS+oREWNBJkPUvDtt99ix44dYFkWUqkUQP1Sb2pqKiZOnIgePXrgu+++w4gRI1pkbF087JWWe+Xi4uJw8OBBBAYGokuXLujZs6fa53O1JG/BZ8AwwJbz95FRVAmZjEXfDs54z91Rp24p+vQ6trCwQETEk/IsyTlluJBSAIDRefZPXZD2al9fyGQs9lzNAKC6vNpQYWEhVq5cib59+8LT0xNLlizBzJkzMWHCBLUz1039EuTpYAUfsQgn7ubgo5GdMKmPD5xEFkjNr8APZ1Ow79qTVoBSGavyJagxXAX36sjfB01lJxSgm5cDLqZonp2Uk1g5oVNwKApyHiE/v37ml8fjKWYmeTwevvnmG3z44Yfg8eqXoSM6uWmtQxmXXoSJvb0xoVc72FtboLJWijtZpfhgz3WtrReB+qA+Ikj9nm5CASUhxAilFVQYtD8xUN//2KdLLxTdV58Zy7Is5EUwrl+/jsjISNjb2+OF6W+DtRtksHFN7uOD/h2dkVVSBU8Ha1RXV2Pv3r1Yu3Ytrl69CgAQCASQSqV48803sWzZMojFYqVrcLUkX1otwTu74pQeu3S/EL19nTAw0EXfl9okzZn9e5qNJR/PhXji8v1CpBU8CYbky6vyLRC1tbXYsGEDFi9ejNLSUrz00ksYNWoU/vzzT/z555/w9PTEggULMGfOHDg6OgJoXoDlYV8/SzehlzeyS6qx+OAtlNVIMCXMF/9+uQcs+Dzsjs1QnC//EtScQFCf4F6d5r5Hl77YDdaWfKyPVk1OUsEw2Hf8LIK9HJCZmYkjR45g3759OH68/svE77//jjFjxig9ZWq4L7bFPNB4yb1/Z2Lv36qF2nUhlbGY1q/lGxCYCtpZSggxOi2VReni7qHTTJtcaWkpjhxTLZ/DlaFBrlj6YjAOx2dh8869GDt2LFxdXTFjxgylpU6JRAKWZbF582b4+/vjxx9/VMysAtwtyasjlbG4+VD78qwhcLEF4oXuXrARCrD7qnK9QfnsH8uyOHDgADp16oQFCxagtLQ+E7m0tBRWVk+WaLOysvDxxx/Dzc0N4eHhWL16NdZt3dXkAEv+sycU8DBrWyyO3MrGueR8zPv1GuIfluC9YcoZ6CyABwUVTX7dhtCc9+iCyCCM69kOXx2+rTXLW919vL29MXfuXBw7dgwnT57ElStXVIJJoH5WdlCAi9b9183B5zEYFOBCbRe1oICSEGJ0WiqL8sC+vcjKysK7774LgUCgtIwpX0Lj8XiwsrLCBx98gIyMDJw7o7k1mz4GB7pg07TeOH8vHx/sicO/lkbh0KFDKC+vz2humIAgJ5VKUVJSgjfffBOurq745z//iWOnzujUKaSp+DwGtkIBhgS5YmIvb0ikLVc6pbnLq0+b3McHJVV1OHorW+VYWn4FRPZOGD9+PB48eICGJZpPnTqFWbNmKZ3Psizq6upw5coVzJ8/H1Ff/avJ4ymurN+vl5pXgYdP7V89m5QHL0drONsoJ98YS8mapr5H3x8eiPeGBWLFsbsqiWhNvc+wYcMQFham8TnLx4VAwHFAKeAxWD4uhNNrmhsKKAkhRqe9s00z8jSbRp6t6e7ujrVr1yI5ORmvvvqqYtZIJpPB3t4eX3zxBTIzM7Fq1Sp4e3sbZGyDA13w4/Q+uHy/AG/vvAaJlMWBn39EeHh9oogus6hFRUVYtmwZXnhlVqPnNtULoZ5IWfYcbkWNwvZZfXE6KQ+JOWWc30cTLrZABP4/e+cdHlWZ/u97SnqvkEAapNCLEkIPoQkqKvxYpCsCLiuKi7hi2VXAFb+KimvBgiCKrFhBBVwhlNAjnUCABAJJgEBCek+m/P6YzJDJTJKZ5KQA731dXBc59T2TczLPed7n83l8nekd6MGmE1fNm3DLZMjd2pjd19nZmVGjRtXYXIajoyPPPfccN27c4Mifh6weU2pOCSUVKrPr9L9yTY10cmuxrLHmOXh2eBgLRoSzIjaJlbsvWnyOhiqqAzwdWSJxv+2lD3Vt8u5KtzuihlIgELQ6nOyUTO8XRGmlbho31NeZMd3aArqpz7JKDZ5OtkSF6GoHO1UpoodG+JBdXEFOcQXxl3IMx+vezo32Hg4AONsrkclgev8go1q04OBgvvrqKxYtWsTmzZvx8PBg8uTJODs7m4wt0NORgjJThXZDGFwVTB6+nMOT645SodYQ5OXIA/fF8MB9I9izZw9/+9vfSExMNNlXqVSiUqno378/f/3rX4mJieF4Wi7PbmlYjVhtxCVlMfajfTjbKekd6M7c6I5omlCBXxMpsnKPRgYA8F21msSa7DtwCHXmRd59911++OEHQJcFdnV1ZcmSJWzbtg25XI5cLueZZ57hX//6Fx4eOsW7U7kKGVgV+Ko1WrYn3mBMNz/auzsYqeyjw324nF1s5ATQWixrKisrsZFpCfR0rDcb/sywUBaMCDeq27WUxiiqJ0UGNonRu6B2REApEAhaJUsf7mb4/4M9/Hmwhz+Awd4m3NeZT6bea7TPvx/RTUkdSslm0qpbGaPH+gcx4d4A4+M/1A1zdOnShS5dutQ5tnlDQzmSlgs0LtjtE+TB59P6kFVYzsrdF+ni54pcLmNM17aGcw0ZMoSTJ0/y6aef8tJLLyGTySgsLMTBwYHHHnuMp556iu7db03FFSrdAGkDyoIyFQlX8wE4mJJNWnYJH025R9Jz1EVjs3I2ChnjerXj1JU8EjNqr92zVcrp2qcP3377LcuXL+fjjz9m5cqV2NnZ0b59e2xsbHjwwQdZvnw5HTt2NNpX/6JRPcAaGu6Dg60C56qgyNy98u72JIZG+PLVzL68vyNJJ8rpE0jntq7M+9bYIqh6gKVWq1EoGtY+tDGKb5VKxYABA7Czs2P4C5/yTXxarbWtsweFsHBkBLvPZ7LrXCa9A9yN1tdllSSForopjN4FtSMCSoFA0Cp548PVrLrWttb1hy7lEPzSFouO9fyPp3j+x1NGy2IXDGlwgf3EyAAmVmW8GhPsDgr1xsFWQYCnI9/O6Vfr+ZRKJU8//TSPPvoo6enppKWlMWzYMJNextA85QInrzSvKEd/TQ3NiY7o3AYvZztWxNaeraqZ/Wvfvj1vvvkm//znPykuLsbX15eioqJaDcXB1LLm3490o73HrWlSc/dKWk4Jf/nsAItGd2LZuO7YKOQkZhQwe90Rdp67ZW4ul+kCVI1GQ1lZGb169SImJob33nsPR0fHessiDJ6U5zNJyzHjSenpSEyEL1OjAgmro1PTO++8Y3AbeOjaMdSaOjpUddaVEAyN8GWomRaqdT2/Uimqm8roXWCKTKttjN5PIBAIpEer1dK5c2dye03FPrAHMoV0774KuYwBHbwabWQ9fXU8B1KyJTVfl2ps0ct3UVBWyfF/jaq1f7SeOYM78Mr9nc0am9fG36I7sGh050aN0VpqGlZXz/4tn9CTzaeusSUhA7iV/dOz9vFIokK86LsslsJy8zWLQV6OxD0fY3adpSTfKGTk+3sadYy6uLpqLqps0+zzW2+9xQsvvGB2n/Qc61tiDg71NgRTeXl5/Pjjj+Tm5nLhwgVWrVplJFhq8+jrOAT3RCuTrrZTquegJlIbvQuMERlKgUDQ5Fg7xbZ7927Onz+P8vrH+M1eCXKFVfY+dSGVWnPZuO6MWBEnaUAp1dikmpKf0jeQyGBP9iZnkZFfhoOtgqgQT54YENLoMVpDTk4OHR3LuZInsyr7Bzrz8MFhPmw6cbXWYFIqw2q9ZU1TvGjIMpPMBpOASZ2vng2H0wzTvUC9Y9KvP5CSzYgVcSx5qCslCbHMmTPHyFC8Og/4FrDPRmle6NRAmkpR3ZRG7wKRoRQIBE2EtVNsarWahIQEdu/ezVtvvcX16zprF+ceo/C6f75k43prfHfJaqI2HE7jxZ/NG6M3BCnHZg59oNUvxJMNT/Y3u031Kfl7Aj14amhHuvm74eFkg1qj5fLNYrydbTmybxejRo0y2zFGaqZOncoPf+zFf84nTXaOxpRAVCc9p4QRK+IkDbDslHJ+f2YAkx4cyZEjR6j5tR0SEsKJEyeMSiA+2pUsiSBl/tAQ3n5sGDdu3DC73tbWlhW/xPN2XN1dZqyhqZ8DQdMgAkqBQCApDZliC7Qp5tTql8i/loJMJjP5wnQfOAm3wdN0jtyNyFT+Y1QE82JC69/QCqT64pZ6bE0xJS+XwcCO3gRd+o033niDDz74gGeeecbi/RuSFUpJSSEsLAyNRkPbyW9gF9AN5A0To5ijKaZXm+pFIy0tjZCQELOZwm7dunHy5Enkcrnk5w++sZ+4L9+sdf2mTZtId+3SKp8DQfMhAkqBQCAZ1afYrAlkZGhRV1aQu/0zik4Zd6Lp06cPI0aMQBE+mB9SZK1SrdnQ627KsUmeKdNq0agqyPnmOYpv6Iyp7e3t+eGHH+jZsyft2rUzmMFXpzFiELVazeTJk/npp5/QaDQo3drgP3slMhs7aa4JXfYvdkG05OKLpnjROHz4MH379q1124iICF789zu8eVKBUi7jmWFhdPF3paufK17Odmbrad+Z0MPEAQHgYmYRw1fEGX7vef9dSPENXYehtm3b8tNPP+Hr64uHh4fBOqk1PgeC5kMElAKBQBIa/QValX3MjfuagoPfA/Dee++xYMECwyaNFRg0Ja1xbFJnquxO/kjS72vNrps5cyZr1qwx/NzQz2NelBffrvqQ+Ph4Tpw4QXl5udG2Lr3uw3O05VnR+mjK6VWpAyyNRsOuXbv48ssvWb9+PS+//DLDhg0DYO/evezYsYOkdqNwCOpJe09nts4fzNmMAlJuFjO5b2CtAeUD3f2Z8oWxMXtZpZqz13Xm9XIZdPOx4bfn7kMmk7Fv3z4GDBhgduyt8TkQNA8ioBQIBI1G6sAle+t/0F48wPXr180KDlqzWrO1jU3KTNmlLZ/y7rvvml3/1VdfMWPGDKBxgZRMq+HGlg9NMtV65HI5zlET8IieYf1F1KA5plebIsDSaDScOHGC3r17G4nVkq4XMOo/e02293C0qVXx/86EHozp5kfXxX/Uey2P2CQQ4GbDwoUL6922tT0HgqZHBJQCgaBRqDVaFHKZyZeVXAYzB4YwJMyb8DYuuDvYcjWvlO2J1/kk7iIFZaaK23buDjw7PJToMB88nWywsUDw0ZrVmq1lbFJkyqJ8NHTs2NFs/Z6TkxOFhYXIZDLJAtjqmWo9vXv3pn///vTt2xdlRDRLt5y9baZXmyPAWvzrGSMfTD1SBJQKuYzpUUEsbkBLw9byHAiaFvEbFQjuEFrqj/ae5CxizJgW29so+PvwMH47eY0Nh9PJLa6gazs3nokJZXjnNoz9aJ9RfV94G2c2zOlPWk4Jb2w9i5udjNfH9673/E52Srr6u0l6TVLRWsYmhblzfn4+8+fPJzExkd27d1NRUWHYvri4mIkTJzL2729KEkwCeETPQFOcS9Gp7YBxBlTPkHDf28awujksa3adz2yQCMveRsHhl4fj6WRHZmEZ2xJv8N72JPJLb7V9VGu07ErKZDHWB5St5TkQNC0ioBQIbmOk6n7RmPM/9/0Jjv9rlMm6sko1g5fvIq9aL+JDl3K4llfKJ1PvZUw3PzaduGU1smJiLzLyS5n42UEq1LpA87FBoWI6TCICPB1ZNyuqwZkyNzc3VqxYAUBcXBxDhw4F4JVXXuH06dNs2X2IwyEJoKi9k4xVaLV4jpxLWeop/N3smDJliuTX1FI0RYBVVK4irZ6+2uY4m1HI2YyznL+hq5eMCvFk1qAQBnb05qGP91FSoTZsm5ZdQnG5SmQXBWYRd4VAcBtiSV2WFkjNKWFdfCprD15uksL39fFpKOTmbXw0WoyCST0nq/r3+rvZG5ZFhXjS1d+NhT+cMASTCrmMbw6lNWiKTVA7UmTKoqOjeeKJJ6ioqOD1119HJpMx/sOdHLtShJOtwiJ1MUBXf1deGtOZ3gHuqDVaDlzM5o2tiaTnloJMhsLGFs/R8/jXCL86/S6FYTWkZhc3qDXl6v2XjH7ed+EmZ64V8Om0e5kcGWi0Xgtczi4W2UaBWe78p0wguMOQovvFJIlqxxoyxTagozcASZmFhmV9q7q2FJWr+fLxSAZ08EKl0TZ7z+i7jcZkylavXm34f/KNQo5dKwW5Ag9HW6b0DeRsRgHbEm8wua/5e62jjxMb5vQjMaOAed8ew06p4LkR4fzw1wHc/+Fecoor0CDDIeQeoscOaZZrup2pkNBI/Y/E6xSXq+gd6A77m+48gjsL6ZpvCgSCJuejXcm8+HMC5SqN1YGcWqOlXKXhxZ8T+GhX7b2dLaUhU2xtXO1YNDqCk1fy2HEu07C8rasuW7l8Qg9uFJQx86vDvLLpNIGejiYm54LWR/VM9ZW8Unos3cajqw7x9h/nat1nwYhwKlQaZn11hN3ns/jjzHWe+Oownk62PDm4g2E7hVzG+vi0Jr+G2x1bpbRf5zIZaMw8e1KfR3DnIO4MgeA2YcPhNMkED+9sS+K7w3V/SZeWlpKYmEhlpem0NVg/xebmYMPax/sCMp7+7zGqf1fprU+Op+Xy4s8JHLiYzaYTV3ly3VHJengLmg5rM9UKuYzhndrwvzPXKarWX/tqXimHUrIZ1bWNYZleDCKom2AvJ6R6Uu7v5oejrZLjacYzBLKq8wgE5hBT3gLBbYBao2VSZCDX88sabM0z4Z72vPOXnhad78svv2Tu3LlUVFTg5OTE6NGjeeCBBxg9ejR+fn6AdVNfrvZKvpkVRRtXe6Z8cUhXI1eNvBKdYnhP0k2j5YkZBVSqNNiIrEirpSGZ6iBPRxxsFQbj7OqcvV7AoFBv7JRygwuAEIPUj5OdkkBPR1Kr/S6GhvvgYKvAuepzC/V1Zky3toDuJcDLyY7/PNqL305lGF4Qo0I8eWJgCOevF7LhcLrROQK9HMXvQFAr4s4QCG4DpLDm2Xk+k3ErbxVEyeUyuvu7GYleiouLeeqpp/j666+Nlm3atImffvoJAA8PD3x8fPDs2BN6Plbv2F3tlayf3Y8ADwemfhHPOTNBhLllBkSCslXTEDGIu6NOCZ5fUmGyLr+kErlchquDDVmFui45QgxiGTERvkY+lP9+pBvtPW6J8B7s4c+DPfwBGPTWTgrKKrlZVMHsQSF4O9shl+uyxGsPXObjXRcorbyl8FbIZcSEm/4NEgj0iIBSIGjlSGXNk1NcQU6x8Rd44rUCXn2wC3K5jMTERMaNG8eFCxdMzqNW3/piyc3NJS8vj4d79CajnlBCH0wGejoybXU8ZzIKzG63+3wmJRUqoiN8jFSl3fxdsVGI7GRrpjEijTrLY2usE2KQ+pkaFcjag5cNPw96e1e9+8xdf9SiY6s1Wqb1E322BbUjAkqBoJUjlTWPOR7q5Y9cLuPDDz/k2WeftUgAM3r0aL799lvc3d159ZfThixGzek0rRa+fiKKrn6uLN2SiFIuo3eAu+E42cUVhqnSgjIV721P4p8PdOGdCT349eQ1fFzseOG+TvWOR9CyNESkoS9xcHcy9ax0c7RBo9FSUGZ8XwsxSP2EtXFhcKg3B1KyG2RwXhsKuYwBHbxahYenoPUiAkqBoJUjlTWPOf5yT3sKSitYtGhRrcGkQqEAdMKZd955h/nz5xuEMksf7mbYruZ0GkCvqgBy8VhTL8kfj6bz/I+nDD9/se8ShWUqZg4MZmxPf4rL1VzJLaGNa91BsaBl0YtBrLlDU3NKKK1Q08mM2X6nti5czik26qIkxCCWs2xcd0asiJM0oFTKZSwb112y4wnuTERAKRC0YvSCB3dHG4v3qc2apyYdfZzoE+zJ+vhUziankH7pAlu3buWXX34hMTHRsJ1araZdu3b8/PPP9O3b1+gYyTcKGfn+nlrPEfzSFovHDfDdkXS+O3JLCBC7wHL/QUHLYE4MUh9qjZYd525wX9e2vPn7WYqrurH4u9nTr4MXa/YZm20LMYjlBHg6suShrrz4c4Jkx1z6UNdmb1UpuP0QcwgCQStGSmuemkzsEwDAhsPpFMkcGDRoEMuWLePMmTOkp6ezatUqHn30UZ555hlOnTplEkzCrSm22qbkG4pCLmNwqLeYYrtNiInwNboHhob7MKZbW0Z01tn/6MshxnRri72N7mtnRWwSDrYK1jwWydBwH+7r0oY1j0eSW1zJqmoBpRCDWM+kyECeHxUuybH+MSqCRyVqhCC4sxGvfAJBK0ZKa57qKOUyxvduT+K1fBKu5pucp3379syePZvZs2fXe14xxSaoKQapT118Ja+Ui1nFTPr8IC+O6czKqfeg0mg5eDGbJ7ceNRKPCTFIw3g6JgxvZztDVy1rfUKVchlLH+oqgkmBxYiAUiBoxVgqRLDEmqc6wzv54uNix4dVHXMaI3hojim2u7U/8+1CTTGIJepigNPXCpi2Or7W9UIM0jgmRQYysKM3L29MYO+FmyjksjoDS/36AR28WDauu5jmFliF+IssELRiLOl+Yak1T3UmRgZQVqlm0/GrkggeJkUGcrOovFGdfLRaLTKZzDDFlnyjkPXxaew6n0laTonR1L8MCPR0JCbCl6lRgYSZEXcImheRqW6dBHg68uqDXfh41wV2nMuksFpnouq42CsZ3smXp2NCRQAvaBAioBQIWjFOdkqm9wuSxJpHj6+LHdFhPmxOyKCgTEWQRIKHxkyxoVGjVasoP7COdsOfY/rq7DozKlp0SuF18amsPXiZwaHeIqPSwggxSOsjPafE4uxkSYWaTSeukV1UIZ4lQYOQaS0xnhMIBK0OvTXPvkXDat2mpjUPwFNDO/LCfZ2YvOoQf17OYXpUkFG3nMZizZeYfv3gUG+2LJlOpUcIHiP/ilxpAzLLp+H1NV9LHurKJFHz1aJ8tCtZkp7z/xgVwbyYUAlGdHey4XBao+onxbMksBYRUAoErZz6rHkaS+yCIU0yxWWYsk7KJC3bzJS1lyMx4b5M6xdIqK8LQ+a+QZpHL8PUd0N5flQ4T8eENXr8gobT2GBGiEEah1RBvXiWBNYgAkqBoJWj0WgInvkOsjYRyBTSVanoBQ/rZkVJdszaqE9Us+FwmqRTpW+N7y4CkhamoZlqMd3aOMSzJGgpREApEDQz1iqWd+7cyX3jp+A3eyUypW2jsnfVsVPKiV0Q3eJf3uk5JYxYEUe5Sg31SpAso7Vcm8D6TLWg4dx6lqTrey6eJYGliIBSIGgGGqpYVqvVjBkzhtjYWJy6j8Tr/vmSjam1ZB4KSitxdbDh/dgk3t+RbFgul8HMgSEMCfMmvI0L7g62XM0rZXvidT6Ju0hBmbFa9fKbDzT30AVWUlyu4t8frWX1d5t4b8V7dGrnTWc/V2EBJRHTV8dzICUbe6WcZ4aF0cXfla5+rng525k8X+b47sl+RIV48dXBy7z26xmgeWcyBLc34ikWCJoQS6b9aiqWowJdGWCTysHYzWzdupXCQp2nZNGpbcid3PGIntHoOsPW0v2ipELFloQMJvc1HYu9jYK/Dw/jt5PX2HA4ndziCrq2c+OZmFCGd27D2I/2mWRitiRk8MXeFMPPH0zqRYCn6AHd0uhfqHaezyQtuy2Ow//GPzcnA8nCAkoikm8UsvfCTQA8HG2Z0jeQsxkFbEu8Yfb5qsmM/kFm7cPUGi17L9zkQmahyCAL6kQElAJBE1FdmADUK07Qrz90OZeDakfyzucbgkmL1arXAAAgAElEQVQ9ISXn6SS/yFE6oqHuurSatEbBw9v/O8/mhGtmv/DKKtUMXr6LvJJKw7JDl3K4llfKJ1PvZUw3PzaduGq0z82ico6n5wG6612977KkCnaBdZh9oarxIiQsoKRhfXya4TO+kldKj6XbAPBwtKk3oGzv7sAL93Vi4fcn+Gx6H5P1CrmMbw6liWdJUCeil7dA0AR8tCuZF39OoFylsdroWSZXIFPa4jn6aVz7TzQsj42N5cSJE2x4Yz47F8YwoIMXQL19tPXrB3TwInZBdKsJJkHnpVnb56PRYhRM6jlZFTD6u9nXeWy1RsuupMzGD1LQIDYcTmPEijgOpGQDlr9QHUjJZsSKODYcTmvyMd5J1PUs1cey8d3Zl3yTPxJvmF0vniWBJYgMpUAgMRsOpzXaskM/ne0RPQNNSR4dtNcZPny4YX2ApyPrZkXd1oKHonIVaTkluDvaWLXfgI7eACRlmraXfLinP4/2CUAmg6QbRXx98DLF5SpRo9fMNMa2Rl1lNfTizwncLCoXtjUWoH+WGsKjfQLo1d6dESvi6twuLbtEPEuCOhF3hkAgIek5JYZidinQarV4jPgrf2lvPjsQ1saFxQ91ZTFdb7t+16nZxVibT2njasei0RGcvJLHjnPGn8mmE1fZeS6TjPxSvJzseDQygOUTepJVWNaqP4c7DSleqPS8sy0JH2e7VpVVb4005FkC3fP0yv2defP3s2QWlte5rRa4nF1MV3+3Bo1RcOcj/soKBBLi5mDD+dfHNFqxDPBY/2Bm9AuivacD+WamfmviZKe8rf7YV1hpbeLmYMPax/sCMp7+7zFq+lP8/bsTRj//78x1vpjRh+GdfBs5UoGl6F+onGwVFqmM+wR5MOHe9nT1dyO8jTN2SgWD3trJlbxSwzav/nqGAR29RU1lHVj7LOl545HunM0o4NvD6U16HsHdgaihFAgkQq9YNodesXw1t5SlmxOZufZPvj2cxuS+gfw4dwB2SuNHcd7QUF57sAv/O3Odx9b8yRf7LnGnOXzZKi3/8+Nqr+SbWVG0cbVn+pp40nNL698J2HT8qmS+nYL6eXljAiqN1qAytlPI2VZLXR7AwFBvBoV6cy2vlGOpeWa3UWm0vLxROqPuOxFrniU9Y7q1JTrchzf/dw5Xe6XhH4CNQo6rvRJljfrshpxHcPcgMpQCgURIpVh2d7ThmWGhbDicxvJt5wE4nJpLVIgnwzu3aZ6LaQaCvZwssjF3tVeyfnY/AjwcmPpFPOeum9ZO1oaIJZuP6rY1lqqMP9iZzH+qspZzBnegf0cvk22EbU396J8la145I9q4YKOQs+mpgSbrpvQNZErfQJ5cd8TwQiCrOo9AUBsioBQIJEIqxXJ0uA/2Ngp+OHrFsEyt0fLR7gt3VEDpZKck0NORgrLap/P1wWSgpyPTVsdzJqPAqnNMiQpq7DAFFlLdtsZSLE26C9uautE/S6lWCHN+PHqFQ1UK/OpseLI/f5y5zpf7L3H+xq2Xt0AvR1GLLKgTcXcIBBIgpWI5osrYuWYm7kRaXqMNzVsb84aGciQtF4BQX2fGdGsL6IJzrRa+fiKKrn6uLN2SiFIuo3eAu2Hf7OIKg7L1ycEdCPN1Zv/FbK7nl+LlrBPl9O9gmvESNA2Nsa2pD71tzWJEQFkb3pU3SNU6gUw3LT003AcHWwXOVUFgzefrSl6pUa1qda4XlHHoUo7hZ4VcRky4qEUW1I0IKAUCCZBSsezuaEt5pZrSSrXR9lqgQq3BTqlo/IBbCRMjA5gYGQDAgz38ebCHPwCD3toJQK+qAHLxWNNA4sej6Tz/4ykALmYVMaJzG2I6+eLmYENZpZrEjAKu55fS1s2hOS7lrqYxtjWWcjfY1jTUqSEnJ4ftn7yK57QVhmX/fqQb7T1uCZlqPl+1BZPmUGu0TOsnlPaCurlzn0yBoBmRWrFcW3B6h+lygFv9h81lt4Jf2mLRMXacyzQKykX/4ealobY11nCn2tYYvGTPZ5KWY8ZL1oK2lO+++y7F1y7icOkY9oE9kCmUDHp7V4PGU/OZ0z9Lon5VUB9CsiUQSICUiuW8kgrsbRTY25ges6bq8k5g2bjukl+XUi5j2bjukh5TUDvNZSdzJ9nWpOeUMH11PCPf38O6+FRSawSTYNyWcuT7e5i+Op70GpngrKws3nvvPTQaDTn/+xitRi2pI4R4lgSWIgJKgUACGqJYnr7avGJZv6xTW1ej5T7OdigVd94jG+DpyBKJxRZLH+oqfAubkeayk7lTbGsa05Zy+Hu7mfN/a5kzZw59+vTBz8+PsrIyAFT5N8jd/pmkddbiWRJYyp3xdAoELYxeZVkX1RXL09f8WatiOS4pi7JKNRPuaW+0fPbgEMnG29qYFBnI86PCG3UMfVbmH6MiRGeVZsbSF6rGcKfY1ny0K5kXf06gXKWxWsSk1mipUGnYnu/Dj2eLOHr0KGr1rVprhUJB0alt5MZ9LclYxbMksAZRQykQSIRUiuX80ko+3HmBhSPDySutZG9yFr0C3Jk18M4NKAGejgnD29mO1349g6qqn7OlaNUqtBo1XcrOMC/mAZP1t1tbytsNc7Y19amMyyo1eDrZEhXiCUCntroavaERPmQXV5BTXEF8NaWxlLY1LXU/SNKWsir76DZ4GqrCbIpObdf97ObG/Pnz6dmzJz169OBwjg1LNp+1+llSyGUo5TKWPtRVBJMCq5Bp77T2GwJBK0OvWN63aFit21RXLOt5fEAw0/sF0d7DgazCchxtFXg62TXpWFsD6TklvLwxgb0Xbtbra6iQgVoL5aknuLn1Q1T5N1i7di3Tpk0j5WZJo8UOAst59ZcE1senoa76oPe9EGOkMq6OXmXcL8STDU/2N7vNoZRsJq06BIAcLVOjgnhldBiVlZVkZ2fz2GOPMXfuXB5++GEcHeufkpVC/NIY0nNKGLEijnKJ6kC1Wi1aVQUZXzyFKv8Gv//+O6NHjzY5p8XPUtX6waHeLBvXXUxzC6xGBJQCgYTUpVhuKHerYtkQACRlkpZtJgDwciQm3Jdp/QJxk5XRrl07KisrUbq1of24f6Bt20l8iTYjz776Jr9U9miy419dNRdV9hWT5T179uTEiRNm9tDRWoKq6n8bLO11/viAYB7u6U+QlxNOdgpuFlVwLDWXD3Ymk5xZhFatojwtgcCUX4mPj6+1dtKaZ0mouQUNRQSUAoGESJ2FALBTyoldEH1XBzuWTFGOHz+e7ReL8Rj5V2RyBTKF5VOY+mm+JQ91ZZKY5rOayspK/P39kQ+fj31QT2Ry6bxSFXIZPpoc4v9vutn1Pj4+pKam4uBg6je64XBag0oopL4fkm8UMvL9PYaf27s7sHX+YM5mFJBys5jJfQPNBpQLRoSh0cLZjALySysJ9HRkbnRH2rraM/ajfaTcLAZgcaSCx8cbZydrQ5R/CJoKxeLFixe39CAEgjsFNwcbfFzsiD2bWf/GFrLskW4MCPWW7Hi3I7ZKOb4u9vi5OeDrYm9W7fvtqRwKQkeBXGF1QKPV6gQPsWczUSpk9A25uzvsFJerSM4s5GpuKTnFFTjZKutUWG/atIm1a9dSfiUR595jdL8DiZTGtgo5mxeOwdvNiZ07d5qsLykp4erVqzz88MNG5/xoVzJLN59FrdFa7d8q9f3w4c4LJFzLN4yjoEzFJ3EX+fHYFY6l5TI3uiOHUrKNutMAHErJIf5SDhezirmaV0piRgH7L2Qze3AH8korOZSSjRwtgUGBxERY1snGkmdJIGgI4rVEIJCYSZGB3Cwqb3zxPUJlaSkbDqdxQqP7nBobyLyzLQkfZ7u77nNvaI1hcXExr7/+OnDLtsbr/vmSjUtvW/Piiy9y8OBBNm/ebLLN2rVrCQoKQp8fkUT8UoUU94OUbSlzissBUGt0syAaZOxOypLk2AJBYxABpUDQBDRGsSxUltaRnlPCa7+ekfSYr/56hgEdve+KMgNLagyrG2yvPXiZXm3siCg4xv5tv3Lo0CEj65qiU9tQOHvgPmR61Z4ND/Crv1DJ5XKmTp1qFFDKZDKDXdSSJUu4evUqs55dxGu/JltUpyiXwcyBIQwJ8ya8jQvuDrZczStle+J1Pom7SEGZCmjc/SBFW0q5DJRyOQGeDiy6rxNZheX8cPRWPend0JZS0PoRd59A0ERMigxkYEdvqwUBAzp4CYGIFbg52HD+9TENDhbMEezlRFs3++YYfotSvcYQLDfYPp5RwjF1KLlFzkbBJIC9vT39XfPxd7nOvlI/VJr6j1udul6oBg8ezJNPPsmaNWvo0qULkydPxtbWltzcXOLi4vjpp5/4rSgI+6Ce+Hg4MaVvIGczCtiWeIPJfU1fzuxtFPx9eBi/nbzGhsPp5BZX0LWdG8/EhDK8cxvGfrSPcpUGlUbLyxsTTIRxGo2GTz75hLfffhuZTMZjjz3G448/TkjILYsvKdpSnl0yGjsbXRnHxawiJq06REZ+mWH9ndqWUnB7IUQ5AkEzUJfKEiDA04HhEW2EytJKSipU/HLimllRg6OtgviXhvPbyWvsvXDTKFjILCw3BAs1kcvgp7kD8HNzuKODyo92JTdqWlir1SKTyciN+5qCg98DsGLFCp566ilsbW2BplNYp6Wl4evri7298e/n5KUbPPz5EZPtPRxtOP6vUWZfOlwdbMgrqTTafky3tnwy9V7+/t0JNp24algeu2CI4fk8c+YMM2fO5PDhw7euQaFArVYzaNAgZs+ezYQJE0jKrmDcJwdqvZbaxladrv6u2CrkBHo5MmtgCH5u9kz5Ip7kzCLDNhv/NoDegR61nkcgaGpENa5A0AyEtXFhalQgMeG+tPcwVaNeySll1/lMvjmURvIN03aMAvO8/b/zvLv9vNl1ZZVqBi/fxcubTvP76escupTD6n2XeGljAuFtXBjTzc/sfrMGdaCtmz2f773YlENvUaSoMdTXqnpEz8C5x0hCQkJ49tlnDcEk6NpqrpsVxfa/D2F6VBBBXo4mE+AyIMjLkelRQcQuGMK6WVH1ZucDAwNNgkmAjQm6wNVSNFpMgkmAk+l5APhXe6FQyGV8cyiN8vJyXn31VXr16sWxY8eM9tNna/ft28fjjz+Os7MzI4YNtXg8tXHmWgHH0/N0L0+rDgEyXrgvwmgbIa4RtDRiylsgaGIaUqMmfBEtoy6xgzXBgp5gL0eeGxHOMxuO4e5ga7L+TkDqmlOtVovHyLlM80mvVRAV1saFxQ91ZTFdm9S2Rirxy4COOleFpMxbL3dqjZbv9p5m2YTeVFaa3lfmkMlk9A5tz4VG1pJWp7hCTUpWESHezrfOw53RllJweyMCSoGgCWlojdqBlGxGrIgTvoh1oBc7uDvaWLWfuWBBz1vje7Dj3A1iz2YaeqmXVqhwsL1z/lS+vDGByGBPHurpz72BHvi521NQqiLhah7/2ZHM6WvGPeaVchmPDQjmL/e2J9jLiQqVhuTMIt7YepZjabm6IFKh5LzbPRad38lO2SS1flKIXwDauNqxaHQEJ6/kseOcsf1XicIJFQrAOKCUy+VoqlTXeqHQ1KlTef/99/H29iZ6+S6jtpSNwcPRhoi2LhxJzTUsk7ItpUDQUMQdKBA0EY2pUVNXKcNf/DmBm0XlPB0TJvHobn8aInaoK1iY0T+IiLYuzFthPI15Lb+Mjj7OSE1LGEwn3yhk74WbfDzlHjwcbfjywCWSM4vwdLJlzuAObHxqIDPW/MnBlGxAV2P42fR7iQzy5NM9FzmWmouDrZLu7VxxtL3l9SmTK4hPLeBCZmGL1QBLIX5xc7Bh7eN9ARlP//eYiX+lTCbjaFIayX/uYvXq1Wzfvh2ZTGYIJgHat2/PF198wahRowzLYiJ8WRefavRCWV+vcxu5nHWzovj15FUu3SyhrFJNB28nZg4MwVYp5z9V9ZYKuYyYcMs8KAWCpkQElAJBE9DafPDuRCqs7EZUV7DQzt2BF+7rxNLNidwsqjDar1ItXdejlu4nvT4+DYVcxqu/nCa72Pg645KyiHt+KPNiQg0B5eMDghka7suETw9wvKpUAHQBT030NYaLH+oq+bgtwdr7oSau9kq+mRVFG1d7pnxxiPTcUvMbypVMnDiRiRMncvXqVb755hu++OILioqKmDp1KkuWLMHJyXj6eWpUIGsPXjZa9u9Huhn1On+whz8P9vAHdL3OMwvLOZtRwOTIQPzcHbBTyskqLOfQpWzmrr/IhSpBjlqjZVo/8bdB0PKIgFIgkBjhi9g8WCNCqC9YWPpwV5JuFPK/0xm42uv+LNpXZeDsJBA7tJY6Wn2NYc1gEqCkQk1yZhF+1WpLZw4I4c9LOUbBZG2oNVp2JWWymJYJKBsjSnG1V7J+dj8CPByY+kU8567XLoyrfp527dqxaNEiFi1aVOfxw9q4MDjU29DLG2DQ27vqHddLGxPqXK+QyxjQwUs4QwhaBSKgFAgkRipfxCcGBtM32Iuu/q4EeDpyNqOg5qnuaoK9nCySOVgSLES0caG9hyOnXrvPZJ1e/KBWq7l8+TKJiYmcOXOG1NRU3nrrLVxdXes8f2upo62vxtDFTkk3fzcOXNRlJ/3c7AnwdCT23A3+MSqCiX0C8HC0IeVmMZ/tuchPx66aHKMlDbb194O10976+yPQ05Fpq+M5U8dz1hjxy7Jx3RmxIk6yjjmgq29dNq67ZMcTCBqDCCgFAgkpqVCxJSGjUSbKeqb2DaKkUs2Bi9kMt1WQX1rZojVqrQ0nOyWBno4UlNWuuLU0WHjm2+MmmcjocB/+NjSUF154gYsXL7J582YqKowze/Hx8cTGxuLp6Wn2uK2pjra+GsOlD3fDwVbBR7t0L0FtXXWZyv93T3uu55fx2q+nKSxXMSkykHf/0gsbhZwNh9ONjtGSBtv6+6G6+KW+OkWtFr5+Ioqufq4s3ZKIUi6jd4C7Yf/s4gqjILwx4pcAT0eWPNSVF3+uO+toDfq2lAJBa0AElAKBhLz9v/NsTrhmNqDU+yJWt7I5dCmHa3mlfDL1XsZ08zMyUR7xfpyhzu+PZ4cAtGiNWmtk3tBQjqTp1K6NCRbMTekGVPmF7ty5k6NHjxqt09vjnDp1iiFDhrBz5058fY2FEc1ZR5uRkcHx48fZtm0b3bp1Y8yYMbRr185om7pqDJ8bGc643u149dfTBpW3/hrtlHJmrj3M1TxdmcDe5JsEPj2I+cPCTALK+s7T1AyN8OGr/Skg15Ur1FenCNCr6p5YPNb0ufrxaDrP/3gKkEb8MikykJtF5ZLcF9XbUgoErQERUAoEEiKlL6K5HlYtWaPWGpkYGcDEyACgccGCObRVE+pz585lzpw5xuuqfjlqtZqzZ88ycOBA4uLi8PfXnV9fR9u/gxfjerer157n8psP1DqOi5lFDF8RV2sdbWxsLBMnTiQvL4/qjc86d+7M2LFjGTNmDJGRkaRdTjF7/GeHhzF/WBhv/3GOrw+mGpbnleiysSlZxYZgUs+epCzmxYTi5WRrUo/ZkgbbPRzyDcEkWFanGPzSFouOLZX45emYMLyd7QxlEFK1pRQIWhoRUAoEEtEUvog1ackatdbK/ct/50xWBTKF6WdiabBQE4Vcxo0CXa/k2bNnU15eztNPP212W41Gw4ULFwgPD2fLli1ER0fz8sYEVBot0/oFWWTPM27lfpPj9gpw57WxXfkj8TqAST9ptVrNG2+8weLFiwFdkKtUKlGpdLW4Z8+e5ezZs7z99tsAyGzsCXjuByPz8WeHh7FgRDgrYpNYudu4M1BqTgklFeb7nesPoanx1iOlwXZDbJU2//cLyso6YhfQ3ez90FCkFr9MigxkYEdvq9tSDujgJRoeCFot4ltJIJAIqX0RzdGSNWrNhbWBhHvSVnCLQStX1NqpxVpqih3mzZuHg4MDs2fPNsoCwi0j6+LiYoYOHUrUyIe5fq8uo2mpPY+5KfcpfQPRaLR8d0Q3razWaNl74SYXMgtxk5UxefJkduzYYbSPPpisSefOnfn00095+WAlV/J0gfIzw0JZMCKcD3YmGzwNq6PWaNmeeIMx3fxo7+7AlWpZyuhwHy5nF5NbI+PeWIPtxtgq5efn89///heNgwd+s1dCE94PUqBvS2m45qRM0rLNXLOXIzHhvkzrFyjqpwWtGhFQCgQSIaUvopTnuR1oaCBRXl7ObxvWQockvO6fL9l4zIkdnnjiCRwcHJg2bRoajQZ7e3siIiLo0aMHXbp0wdnZmbKyMr5NUqHVqJHJFRbb89TEyVbB/d39iL+UQ2r2LVGIHC2Pv7GGAx8uMAlsAezs7KioqECr1aJQKLC3t+frr79m/PjxAIzIO8O6+FRmDghm4cgIdp/PZNe5TKPaUrgV4L67PYmhEb58NbMv7+9I0oly+gTSua0r8741NoCXo2VouA8ajYbS0lKKi4v55ZdfOHjwIK+99hpBQUG1Xm9jbJVsKgqIjY3lww8/1ImmKm6Qu/2zJr8fpKK52lIKBE2NuFMFAomQ0hdRqvO0dhoaSCx+sBPJxw/y7rvvUlRUBKe2IXdyxyN6BlqttlGZqbrEDpMnT2bkyJEUFRURGBiIXG76u/ht+S6yrbDnMcfYnv442SnZcCTNaLkGGWmVLiiVSkM/6ept/7y8vMjIyEAul9OlSxc2btxIx44dDfvrDbZHdG4DwNAIX4ZGmApN9KUCaTkl/OWzAywa3UkXvCnkJGYUMHvdEXbWyKhrkLHsiTEszb5icrx169ZRUVFh9vfSUFulfReyGPx/28j+4xOKTm0z2qbo1DYcPNvg2O9RaGQf7eYUvzRVW0qBoDkQAaVAIBFS+iLWhpQ1ai1NQwOJvcmZDHvnGjnbPqXoVKxhvXPqPnpV9OGMfRc01F2TVhNrxA7e3t54e3ubXWdJP+ma9jzmeLRPAPmllfzv9HXTsbq1IbewhJKCXLZt28bWrVvZunUreXl55OTkADBr1iw++OAD7O2Ns6B6g+2pq+Mt/nySbhQx66sjdW6jkMtob1NCqplgEnRT8Rs3bjRkSvU0xlZJiwytXInX/fORO7lTcPB7AAYPHszy5cvp06cPPxy7KsQvAkEzceekOgSCFkbvg1cX1X0Rp6/5s04TZXM0tkattfDRrmRe/DmBcpXGeqNnmRwUNnjdPx/X/hMBeP7557ly5Qqb3v0HOxfGMKCDF6ALDOpCv35ABy9iF0Q3Onior45Wb8/z+pZEI5V3dcJ8nekd6MGmE1eNfEn16OtofXx8mDp1KuvXryc7O5s///yTzZs3k5mZyeeff24STOpZNq47yno+F2tRymV8M/9+Nm7cWOs2U6dO5dSpW6p6KWyV9BlPj+gZOPcYCcCaNWuIiopCoVAwKTKQ2AXRLXY/CAR3E7f/N5NA0IqQyhcRoHs7N9pXeSE62yuRyWBedKhhvUqlQqvVYmNjnaocGqaglQqpAwlNSR4LFy40LGtJsUNd9a212fPU5NEqG6TvzHg81nYeuVxOZGSkRWNsSoPtgEce4fXXX+df//qXyTZlZWUMGjSI5ORkKmxcJG1PqtVq8Rg5l17+joSGhhqtE+IXgaB5kGnNVXYLBAJJ0fsi7ls0rNZtavoivjOhBxPuDah1+7Fjx5Kamsqff/5ZazaqOo1R0EpFek4JI1bEmc28NQStVotcq2LPolF1iiaaK4A+cy2fBz7cZ7K8uj2POUW1HhuFjEMvDudqXikPfWxqJaRnyzODGl1r15jp5ur8Y1QE82JuBXFarZbAwECuXNFNf8vlcrRarUFEZGdnx4CX/0tquT19gz0t8ums7VnQe3QCaNUqItxlbHv5oXrHLMQvAoH0iIBSIJCYLvNWUuzUTlIfPJlWQ+nlk9z47l/IZDJsbW0pLy8HwMnJiS5duhAXF4eDg4PJvpYIX/To1+sVtFIrWwtKK3F1sGlUn3MHGwVv/78edPF3pY2rPXIZ5BRXGHVEaSmKy1V0W/yHUbD+zLBQFo6M4IOdyby3ve4Abky3tnwy9V7+uSmBb+LTzG4jA04vvk+SAKh6HauUNYbvvfceS5YsQaVSMX36dFxcXHBwcODUqVOk5VeQ028eAB9PuQcPRxu2JmQY+XR2b+dm5NP5zoQePNDdnylfHDI6T1mlmrM1apBjFwwRGUaBoAUQr2QCQR1Ym8m4cuUKyf99Hb9ZH0vqg2dro+TNaVFM/UGn6NUHkwDFxcWkpKSgVJqOq6HClwMp2YxYEceSh7oySaI6Mqn6nNsoZMhksHrfJdJzS9BotPQN8WL+sFDJPu+GUrOf9OxBIRbZ8+h5tE8ApRVqfjlxrdZzSFlH21QG28899xxz586luFhX61mdxb+e4etDl9FoLffpBJ2Jujm/zprjE+1JBYKWQQSUAkENGjM1vHbtWlR515vEB+/RyEBsvv+eCRMmmKwvKysjLy/P6Mu7MVOa6qqM1Ys/J3CzqJynY8IaPHY9UvU5LyhT8fS3x432P3Qph3sDPRgUZl593ZzERPiy7tBl1FostucB8HOzZ3CYD5tOXKWw3LxBuRT9pGvSVDWGjo6OODqaBpy7zmeij1kb6tNZG2qNVrQnFQhaCBFQCgRVNNQT8fWHupBx4TS///47b775JqDzwWsKX8RHHnkEV1dXCgqMFcLFxcVER0dz5swZZDKZJMIXPe9sS8LH2a7Rilcp+5zXRK3RcupqXqsIKPVejwCTVh2qc9vqZOSX0fGVrXVuI1U/aXM0h8G2JbZKtfl02tsoOPzycDyd7MgsLGNb4g3e255EfqnxfSPakwoELYN44gQCGueJGP22zhOx5HSswWAaoODg97R1d0TVcxxamQJr3HFqq1G7ePGiSTAJ4OzszOOPP86hQ4e4t08fJkUGcj2/rMF1iiHeTkyODKR/Ry+CPB3RaLWUV6qxs1FYfhHVaKo+5wq5DAcbBfcGeTDhnvao1BqUipZ1Qwtr44IiMwmVV1ZK7r4AACAASURBVIdW3U+6LprKYNuS9qTmfDrPZhRyNuMs52/o7oOoEE9mDQphYEdvHvp4HyUVasO2d0N7UoGgNSICSsFdT6PUrtU8EaubK7/xxhvMnDkTPz+/BoliaqtRCw8P59KlS+zfv58ZM2YQHh7Ohx9+iEwmo3///pw+fZrv9yQwbfg9Jse2pk5xcJg3wzr58vPxK5y6ko+tUs7M/sEMDvcxOe6OHTs4cOAAOTk5ZGVlMWPGDIYPH45CcSv4bIo+52N7+PHh5FvX+f2RdLr6u7Z4IHHu3DnSfnrrtugn3dzU1zZU79P56q+njVTeq/dfMtpu34WbnLlWwKfT7mVyZKDJ+juxPalA0NoRAaXgrkZqT0RtST6dbHN4+eWXDeulrlELDg4mODiYwMBAgoODCQi4Zafi0j6cd1f/ybThpvtZU6f428lrJl6JO89lcqaaujgvT+f/uGbNGgA6derEuXPnWL9+PT4+PsyYMYPp06fTs2fPJulzHpeUxdiP9uFsp6R3oDtzozuisdYk3UKsmQL+8ssvURdk3lb9pJuLutqGWurTqeePxOsUl6voHegONRyW7qT2pALB7YIIKAV3Lek5JZKbK7uPeJKJobV0QJG4Rm3w4MEmy747crXWbiDW1CnmmtlOIZfx56UcYjr5sm3bNqZPn0529q06Ny8vL8P/s7KyeO+993j33XdRKpUE9RwII/9h0XVZ2ue8oExFwtV8AA6mZJOWXcJHU0wzsw3FGnGWi7aYjRs38t133xEXp/NFLDq1DYWzB+5Dpjdpf/HbCX170pphf3WfzpW7L1p8PJlMp/42Wsad055UILidEAGloNXQ3GbDbg42nH99jIknIsDjA4J5uKc/QV5OONkpuFlUwbHUXD7YmUxyZpHJsdq5O/Ds8DCiw33wdLKt99xNVaNWl/ClNuqrU9Sj1mhxsVOQnZ3NmDFjjOpFAfbvN04T6S1uNRoNPTr4ccyCSe/G9Dk/eaVuSxlLsUqcdegyaw9epvTScXL++BhV3q3e2zKZjH4ueYT6FrA9xw2Vpv7a3Orcif2ka9oqgc6nc8GIcD7YmVyn6XtN7u/mh6OtkuNpxr/3O6U9qUBwuyGeOkGL0lLdW+ryRATwcLRhd1IWZzMukl9aSaCnI3OjO7LpqYGM/WgfKTeLDduGt3Fmw5z+pOWU8MbWs1zPL+ODSb1o62ZqMt6UNET4Ul+dYnUe7RNAnxAvnl2w0CSYBAgICODKlSu67jVV3VHmzZvHm2++ibOzM9HLd1FQZpr51FO9z/m01fFW9zm/r5OuvvPcuXPEx8eTnJxMUlISJ06coLS0lJ07dxIWVrf9kdXirKrV9oHd8Zv1MbnbP6Po1DYANm/ezP333w80zFy+Pq/H25WYCF/Wxaei1mgt8uls5+7Afx7txW+nMgy1uFEhnjwxMITz1wvZUK1FZVPYKgkEAssQAaWgRWioRY9UX7B1eSICrIg1zpTEX8rhWFoeO56L5uFe7VgRe6vucsXEXmTklzLxs4NUqDUo5DI+jUtpdnNla4UvltQp6hka7sPSh7uyJSED96BOjB8/nt9++w2VSmWYyu3Zsyfp6enI5XJCQkL46quvGDhwoOEYUvU5n9I3kMhgT/YmZ5GRX4aDrYLIIHce6xfE/v37iY6ORq1Wo1Qq0Wg0huB30KBB7Nu3r9agsjHiLJlCCXKFQZzlkBLH6NGjDetFP+lbVLdVssSns7CskptFFcweFIK3sx1yOVzNK2Xtgct8vOsCpZW3FN5NaaskEAjqRgSUgmanNXRvacjUcE5xedV4bmXnokI86ervxsIfTlCh1hjG2xLmytYIXyytUwQYEubNp9PuZd+Fm/z9u+N8/+QElvx9Dnl5efzwww98+eWXHDx40NBeb/78+SxevNikv/jEyAAmRuoERA/28OfBHv7ArT7nvaoCyMVjTT+36n3Oz10vZFgnX164rxMeTjaoNVou3yxmX/wRxj9wH2q1LsBQqYzNwbOzsxk0aBB79+4lPDzcaJ3U4qx7BvRBLjcVhjSH12NrJ6yNC4NDvTmQkm2RT2dBmYq564/Wu11z2ioJBAJT7vy/XoJWRWvo3mLN1LBcBkq5nABPBxbd14mswnJ+OHrFsL5viGfVMdV8+XgkAzp4odJoOXQpm5IKFY62zfeIWapstaZOcUiYN59P70P8pWz+9s0xKtVaw3nc3d2ZM2cOc+bM4cqVK7i6urJ+/fo6xSfTV8dzICXbbDBfvWtMXRxLy2X210cMP+sDiXWzBrBnzx6GDh1KUVGRoYZTj1qtJisri4EDB7J//35DUJmeU8LvCRm8/f96cG+gB37u9hSUqki4msd/diQb2dcAdPV35aUxnekd4I5ao+XAxWze2JpoCMq1Wi0Jdl1IzympM5veVHW0twPLxnVnxIo4q1/q6uJOsFUSCG5nhLeCoNmQunvLd4fTGrSvNVPDZ5eMJunfY9jx3FA6+jozadUhMvLLDOvbuuqycMsn9OBGQRkzvzrMK5tOE9HGBdtmNtjWK2jronqd4vQ1f9ZZpzi4Kpg8fDmHJ9cdpUKtqVVB2759e1xdXetVMi8b1x1lLSr0hlI9kLjnnnvYvXs3Li4uKBSmHpBarZabN2/SpUsXVq5ciVqt5uWNCTwaGUh7Dwe+PHCJmWsPs2TzGbyc7dj41ED6d7ilXu/o48SGOf2wUciY9+0x/vHTKUK8nfjhrwMMYiyZTIYGGS9vTJD0Ou8kAjwdWSJxScidYKskENzOiAyloFmQ2qIH4NVfzzCgo7fJl4hareaxxx7D1dWVZ599lvDwcKPAwpqp4fGfHsBWISfQy5FZA0PYMCeKKV/EG5Te+uMeT8vlxZ9vBRBJNwrZOt/U1qcpcbJTMr1fkKGmrDF1in2CPPh8Wh+yCstZufsiXfxcAWjrZt+oaVl9IFH9s2osNQMJfVAZExNDfr7OVsjGxgaVSmXIWqrVaubNm8fS/6zCfvy/ScwoMOkrHZeURdzzQ5kXE8rBFJ090oIR4VSoNMz66ghFVf22T1/NZ9fCoTw5uAP/979zuuNrtOy9cJMLmYViCrYWJkUGcrOoXJKXzDvFVkkguJ0RAaWgWZDComfCPe155y896zzP9evXmTRpksEL8JNPPiEoKIhHHnmEBx54gCFDhiDTqOs8RnXOVE13Hk/PIzbxBrufj+GF+yKYs05X05VXogtC9iTdNNovMaOASrUGm2bOUi59uJvh/42pUxwU6o2DrYIAT0e+ndNP0jE2RyDRu3dvdu/ezdixY+nQoQPdunUjLCzM8C84OJjjx4/zys8nuKBRmwSTACUVapIzi/Cr8udUyGUM79SGn49fMQSToBOIHErJZlTXNoaAUr/9N4fSml2cdTvxdEwY3s52hprqu91WSSC4nREBpaDJkcqiZ+f5TMat3G+y//rZUTjaKjlw4ABjx441ZKX0pKam8sEHH/Cf//wHALmtA+0XfG/1dRRXqEnJKiLE29mwrLb6QxnUajDelOw/fZGp68/Vut7SOsX3dySbBP4AsQuGSJJxa45AolevXqSnp9e6Pioqiso9JVDNE7E6LnZKuvm7ceCiLjsZ5OmIg62Cs2Z+52evFzAo1Bs7pdzQvrKlxFm3G5MiAxnY0VvYKgkEtzkioBQ0OVJZ9OQUV5BTI5PkbKdEIZdx8eJFI4uamuinOm1sbFj43LPsdFRgmpOqGw9HGyLaunAkNdewbPf5TEoqVERH+Bj1Ex7e2Re5RD2crWHPb99TdkmNXVB3ZHLpHu+mUNC2dCChF2fVxtKHu+Fgq+CjXbr7091RVyOZX2J65+SXVCKXy3B1sCGrsNywPC27hOJy1V2h3m4MltgqAfi52XNPgAdje/oxOMxHfK4CQStCPI2CJkcqix5zjOnWFjulgqVLl9Z7zClTpvDZZ5/h7OzM94fTa/VEtJHLWTcril9PXuXSzRLKKtV08HZi5sAQbJVyo24eBWUq3tuexD8f6MI7E3rw68lrtHG155/3dzZso9FozFrI1Ie1tjJarZbPPvuM7Lwy/GavBJmpKKWhNJWCtiX9GesSZz03Mpxxvdvx6q+nTVTedfl11jygFricXXzXqrmtpaat0p7kLDafusa+c9fIq5CRkV/GlvwMtpzOaNLGBwKBwHpEQCloUqS06DHHo30CKCir5M/jJ7G3t6esrAylUmnkQWhnZ8fKlSuZOXOmIcCqyxMxs7CcsxkFTI4MxM/dATulnKzCcg5dymbu+otcqNF68Yt9lygsUzFzYDBje/pTXK42nEetVhMVFcW9997LZ599Vu9n0JjOQVu2bCE1NRWA3O2f4XX//HrPZylNraBtCX/G2sRZzw4PY/6wMN7+4xxfH0w1LNfXy7qbaa3p5miDRqM12wnIGhGYQIdp4wM5Nd+NmrLxgUAgsB4RUAqaFGsteuxsFABczCoyseipSUcfJ/oEe7I+PpUf/xdHhK8TBw4cYMuWLWzcuJHk5GQ8PDzYs2cP3bp1M9m/Lk/El6y0fPnuSDrfHUkHrYbSyyfI+v41XFxcsLOzIysri6NHjxIbG0t0dDRr1qwx2b8hnYMGhXoxJUzG8b2xbNmyhYMHDxq2LTq1DaWLJ26Dp6HVahuVqWxuBW1z+TOa8+18dngYC0aEsyI2iZW7LxqtS80pobRCTSczmbBObV24nFNsqJ+s7zyC2mkNjQ8EAoH1iL90gibFWouecSv38+x3xykuV7FhThRhvs61bj+xjy7DuOFwOhUqDUqlkiFDhvDWW2+RlJTE8ePHSUlJMRtMQtN4ItrZKJkSputjXVBQQFZWlmFdSkoK+/btM9lnw+E0RqyI40CVNY2lX6D7kjKZ++tV3vpxn1EwCRAWFsYTUf5Mj1Bgb6OwWiCkkMuwU8p5a3x35sWEWrXv7UJN385nhoWyYEQ4H+xMNipr0KPWaNlx7gb3dW2Lk63CsNzfzZ5+Hbz44/R1k31q8+0UmOejXcm8+HMC5SqN1WUyao2WcpWGF39OMNS9CgSC5kNkKAVNijXZmfoseqqjlMsY37s9idfySbiab/Y8vXr1qvN8TeWJ+GjkGBw1JSxbtsxkvUKhQK1Wo1DoApLGdA5CrkAmk+M5+mlkDq4UHNQp15cvX87zzz9v2OxJC7KfhvHdRQpaJzslgZ6OpOaUMHtQCAtHRrD7fCa7zmUa+XOC7p4EWBGbxC/zBrHmsUg+ibuInVLOgpHh5BZXsmrfJZNzBHo5CuGIhUjd+MDH2U7YCQkEzYj4SydoUizp3mIOcxY91RneyRcfFzs+3JXcqCxQU3kiLly4kLfeesvQV1rPuXPn+Nvf/sbnn38uef9oTXEu6uR9zJ0712iblhS+tHZiInxZF5/KiM5tABga4cvQCF+T7fR2Sxezipn0+UFeHNOZlVPvQaXRcvBiNk9uPWriQKCQy4gJNz2WwJTmbHwgEAiaBhFQCpoUfRbInFihLsxZ9FRnYmQAZZVqNh2/2ugsUFN4IsbFxZkEk3pWrVpFidyRw96jGjzmmmi1WjxGzmVwVCecnc0H4S0hfGntTI0KZO3By0xadcjifU5fK2Da6vh6t1NrtEzrJzJklvDyxgRUGi39O3gxrnc7i3qqV+e7J/sRFeLFVwcvGwJTlUbLyxsTWDcrqpmuQiC4u7n7vkEEzc68oaEcSc0BGmfRo8fXxY7oMB82J2RQXKFmfO/GZ4Gk9kR8+OGH2b9/P5s2bWL58uX07t2bV155heDgYLRaLSHhXfBydWxU5yCAy28+UGNk4y263uYSvrR2wtq4MDjUu1ZxVkNpCt/OO5XkG4XsvaDrNDWtXxAejjZ8eeASyZlFeDrZMmdwBzY+NZAZa/40tMCszoz+QWZnKET7S4GgeREBpaDJkdKiB2DCve1RKuR8dzhd0iyQlFPDcrmcAQMG0L9/f7p27cqwYcMICNB9BiUVKn45UbvRu6Wdg/RsScjgi70php8/mNSLAE8hBLGUZeO6M2JFnKQBZVP5dt6JrI9PM7ygvfrLaYt6qutp7+7AC/d1YuH3J/hseh+TY4v2lwJB8yECSkGT8//ZO+/wpur9j79O0t3SSemgA0pb9hIKyCoIwgUFQVEQEUUcCKLi/ikq4HXfe0EFFCeCXkEciOgVmWWWPcouBTro3nsl5/dHmtA0aZu0CXR8X8/j89icb05OQtPzOZ/zeb/faWlp9H7mC+yDeiIpDX/lzLXoWbkrjpW74lAqJIaFtrV498GSt4YlSeKhhx7Se8xSyUFaMgvLdKIRpULiq71XxQnUDKwlzhKze6ZRPfjAlEz16rxzd0/2xmay5Wya0X2L+EuB4MYhbIMEVmfdunVkbVmBrFbpIhAtwY3oAmlvDfcN8qC7v5tF5gytmRykPYEKzGNaRBAvjAm3yL5utG9nc6a++Eu4nqkem6Z/t2Jq/0D6BLjzxqbTdT5fG38pEAisi+hQCszG3K7dN998Q2VuarNLb7EG1kgOuqu3P1P7ByJJcDGtkDUHror86AZgDXGWoG5MCT6omakO4ONqz2vju/Lu/86RXi073Rgi/lIguDGIM47AJMyNBFSpVERHR/PNN99w8uRJQJPeonB2xyNyZrNLb7EUlk4O2njiGjvOp5OSV4KXsz1TIwL5cEpvMgpKRUHZACwtzhLUTX3BB7Vlqr89qSfnUvL54XCiRV5HIBA0HnHGEdRJQyIBPUpTif/5fXISjSi0M47RRx7ECWU4auo+WdekJXSBzE0OslMqCPJyYvaQjqx7bCDTvzyop/R+dv0Jvef8dSaVL2f2Z1QX4X/YUEwRZ8myjLO6mMkDujIsrC0+rg7kl1aIzrCZ1BV8UFum+rgevkSGe3PvqgO4Ouh/1rZKBa4ONhSXq3TRjfW9jkAgsAySbMmhNkGLonqmrjmFn6yqRFaryNm6isJTfwMQHBzM1q1bCQsLA0wrVLVotw8Lbdvsu0BnkvO445O9eDjZcvz1MUZtg4zhbKdk1wsjOZGYYzQ5qDp39vRj+fRbLHXIAvTHPE7GxvP8B1/g0LEPth7+euuMdesFtVNUVkmPRVsMuvbVM9VrWoc9OyqMZ0fXPe/6+Noj/F0l1JGA04vGikJfILAy4hsmMEpjIgElpQ0olHiNfxqFszsF0RtYuHChrpiE1pveYq3koOo0YpJAUAvO9ja4OtjqLoJc+oxFUigN1tXs1reEiyBrUj3+Ukt9meo/HU0i2ogf5brHb2XLmVS+2XeFC2kFusdF/KVAcGMQ3zKBAZaOBJRK85kyZYrRda0tvcVayUHVmT4wuKGHJ6iF6t16wGgxWR1tx33/5SxGL41i8cTuTGumYxrWRht/qVLLJmWqJ+WWkJRbYnRfqfmlRF/J1v0s4i8FghtHyzpbCxqNSi0zLSKI1LzSRiW4ADx0awceHBRM4Fv/QGlC26y1pLfMGxHKkQRNYdiY5KDHh4UQ1s6FfXFZpOaV4OWiEeXcGuJ1U95XS6Ux3XpV1bjIK7/EkFlYxlMjw+p/UitDG38JmJypbioi/lIguHGIGUqBHjsvpDOyczujs30LRoehluFcSr5egouvq4NBgsu8EaE8f3s4n0bFsfdSBhN7t6/VyFugQZsctHhid/oHexgkB63cpZ8cNKpLO54Y3okQb2fcHG0prVBxNiWfYE8nfN0cb+I7aTmsO5xgUcPz9+/u2WwFZdZkzDubuJArGw0+aCja+EuR5S0Q3BhEQSnQEZtWwH2fHzBLLNLJ24Xtz0Xy0fZYXYKLu5Mt0a+M4pdjSby68brp8NHXRuPlYm+1429OPPjVQavlR4sTqGVIzC5m4cYY7ujlT78gD/zcHcgvqSTmWi4fbY/Vs7HpH+zBlH4BdPd3I9zHBXsbJUPf32Fwa9beRsG2BZFiprIGd0ydSUzgJCQbu0bZiVVHfNYCwY1FeCkIdGgzdc3BWIJLZLg3DrZKPRNupULim31XLXKcLYF3JvfExszPuj5EfrRlefXXGKZGBBHg4cg3+68wa/VhFm8+g5eLPb/OHaI3WjAktC1DQ9uSnFvCsfjcWvdZqZZ51cyo0eZIUVklZ5LzOJ6Qw5nkvDqTavLz89m2cT05W1dZrJiE5hl8IBA0Z8QMpUCHqZGA9SW4dK6ySjmfel1pqVLL/B6TzAtjO1v+wJshIj+6aRObVsCeS5mcTck3yJeOuphB1AsjmDcylANVauPqiuTHhoVwayfjc6wqtcyeS5lcSi9oEa4F1TE3/KCyspLdu3fz9ttvU15eTrkIPhAImjWioBQA5kUC1pfg4u5kR1mFipIKld7zErKKUatlFBbuzDVXpkUEkVlY1mhFPYgTqKXRdutrFpMAxeUqYtML8XNz0D1mzuCQUiHxXXQCiyZ2t8Sh3nQaFH5Qlkb8hnfJSbqkt8756h76Du7PafturTL4QCBozohb3gLAvEjAuz/bz+SV+3hm/XGKyipZ99hAwtrp+yMa25cMVKhFBFp1nhoZxnt398TeRmH2uIFSIWFvo+D9u3syb2SolY6wdVJXt76NvQ09/N2ITTN0NjAFlVpm58X0xhxek2Hd4QRGL41if1Wntr4CULs928YLl6nv49JrjG7ba6+9xrVr1/j1Xy+y4/mRDK4aKajve6HdPjjEi20LIkUxKRDcJESHUgCYFwl4pkqMcDwxl21n09j1wkheGttZl+CSW1yOg60SB1sFpRX6+1UI120DzM2PlmQ1sqQQ+dFWQtutr40ld/XA0U7J8p31i9ZqIyGruNnHNFoy/KD48C8899xzutvcrTX4QCBozjTfv2YCi9LQrFtjCS7a2ckuvq6cSLwuUPB2scdWKZrixjD1BKrKS6NnWwXvPT4JhUIis7CM/NKKFmkCf7Ooq1v/3O3hTO7bnjc2ndZTeZuLDFzNKmq2vquWDj/oHhKIp6enwZrWFnwgEDRnxLdRADQ8EtBYgkvUxQxKK1RMuSVAr6Cc0i+g0cP2LZ26TqCVKpnbH1/ISXUfJqzYp/c8kSFtOWrr1j8zKoynbwvjgy3nWXMg3mqv09RJzC7mzU1nuDXEi8l929drqVRfIIIsy6QHjSAxu7jObntrCT4QCJoroqAUAJo/1g8OCtYJaRqT4JJXUsEnOy7x/O3h5JZUsCc2g14B7jw7OkwUk2agPYFWFz049hojMqStjLFu/TOjwlgwOpyl2y6yclec1V6nIdzozt2rv8ZQqZaZMSgYDydbvtl/hdj0Qjyd7XhsWAi/zh3CzK8P6RTwHk627LqYwbmUOL1AhI1zh+gCEeSq/QoPVYGg+SKMzQX1Ym6Ci5aHB2uiFwM8HMksKCc2vcBonJqgdqpnSDdE8SoypM2nqKySHou26G57z78tlOdv78zHO2L5z9b6b/M+NiyE18Z3NWpsrkUCTi8a2+DCz1yLHksRm1bA7ct2A+DlbGeggneyUxL1wggupBUy46uDte7HWCACwLYFw8UspEDQTBEdSoGO6icLY/yfmYbMq/dfZfX+q7qfty0Y3tBDa5WIDOmbg7O9DUGeTsRnF/Po0I48f3tndl1IZ+f5dPoGuuutPV410uHpbMfAjpoZwC6+moJoRGdvsorKyS4q5+CVbL3nBXk56YpJWZb5+eefGTVqFB4eHnUeW0MseizZrdbaKanUssmWSsYwFojQ0uyUBILWhigoBTrCfNowLLSt1SIBRefBdCwhetDyr78v4u1iL+xUzGBoJw8SsosY3dUHgBGd2xntrnf4vz8ACG/nwqcP9NPb9s9JmtSi6MtZTPsi+voGtYr0Ezt54ol1FBcXc/nyZfbv34+zszPz58/n3XffNXpM1bvVYLpFz/7LWYxeGmWRbnV94QdaS6X9cVkG2+oLRNDaKS1CFJQCQXNE3PIW6JGYXczopVGUWVAwIDJ1zUP8G9x8Fn64gu+yO1ht/9e+mENlVpLB46GhoVy8eNFg1rgx3erqvDAmvMHd6sKySnpWGwUwxtL7+nBnLz8mr9xnoIK/sEQ/EOHxtUeJy9AflWnsKIBAILh5CA8XgR7aSEBLIiIBzcPN0ZYLb43j2VGGJ/6HB3fg1ycHc2zh7Vx46x/se/k2PpnW18BYviYdvJzxrec2pECDLMv89NUnlFw5hqyqPYO6ISgVErd2dKedvfGLhUuXLrF8+XK9xyzdrV5/OKFBz60v/EBrqfTWH2eNWiqZGohwNauoQccnEAhuLqKgFBgwLSKIF8aEW2RfIhLQPIrLK/kjJqXW7VrF7Cu/nGLm14dYtu0i3fxd2Th3CCFtnY0+RyHBe3f3JKvQcOatNVBUVsmZ5DyOJ+RwJjmPorK6i8TDhw9z4cIFsv9agaxWYcmbODYKiQ+m9GXv3r24u7sbXfP000/z119/AdcteizJG5vOkGjEuL24uJiuXbvStm1bFi9ezJ49eygvv/47U5fNkSmWSmeS8zmemMtvJ5K5/4toQOKlsZ0N1jVXOyWBoLUj7isIjPLUyDDautg3SmEsMnXN54O/LrA5Jpn7Bxj/3JZu009nOXglm2MJuWx/LpK7+rTXU8xqmT00BF83Bz7fE8cbd7aO+bSGqqCLiop44403AKjMSyNn6yq8xj9tsePSdes9O/L9999zxx13GF03btw43n33XWK8IqlUyyZ5PiokmDWkI8PD2hLu0wZ3Rzuu5Zaw9Wwqn0bFkV+qKaQr1bKBRU98fDwTJkzg/PnzmuNcsoRFixbh4OBA3759cXV1xbdLf3C81eBYG2KpZCwQQYul7JQEAsGNRRSUgloxNxJQu11EAjac+kQPxjCmmNXSwcuJ50aHM3/dMdwd7SxyjE2Zhqigb/F3pGfpGfb871f27NlDZeX1Dmbhqb9RunjgPvxBkGVohI9qzW59SEgI9vb2lJWVoVAoCA4Opk2bNuTn55Oens4b/1qJ/2MaYY8pno8OtkqeHRXG7yeTWXc4kZyicrq3d2P+yFBGdfVhwvK9lFWqUall9lzK5FJ6AaHt2rBzEHpOpwAAIABJREFU507uvvtuCgoKdMemrvpdKi0t5cCBAwA47IvGZ94gvc9g/m2hLBgdzsc7YvW8aOvDWCACaIr9Dl7GO+0CgaBpIwpKQZ2YEgkI4OtqT0QHTx4fFkLPAOO38gR1o82QdneyrXdtfYpZLe/f3Yvt59PYdi6dKbcEAFBSXomjXcv76jdUBX00qZAjqvbkZNvpFZMAI0eO5M47B0Cntqw6km3Rbn2XLl0oLS3ls88+IywsjFGjRultf/rbPfx+LhdZUvDGb6cNbHqiLmYQ9cII5o0M5cDlLEorVAz7cCe5xRW6NdFXsknOLeHTB/oxrocfG09c0x3X2uh4Mrd8yqefflrvbf1p06axZs0aRi/bS3zV7XJTLJXa2NuYHIgA+nZKAoGgeSG+uQKTqB4JeDIxly/3XmbbqasUy3ZIkkRqfhm/n0ph86kUEQHYQOoTPVTn3GJ9xey0L6JJySvVWzPz1mA6+7Zh3tJjeo8n55XSybtuEU9zozEqaEmhBEmB17j5KJzcyD/wIwC7du0iMjJSt+7eYfV3P7WY062fM2eO0cdPplciS5rbv6Z4Pqpl9IpJ3X6qvDL9q4myVGqZr/6M5tqqlbW/B6USW1tbvv32W+677z4ARnZux9qD8ajUskmWSmWVas6l5HN/RJBBIMKc7/UDEZQKiZHhIvhAIGiuiIJSYDIGtxOxN7gDKCIAG445YoS7P9uPnVJBkJcTs4d0ZN1jA5n+5UFiq07Q7d0deWlsF5ZsPktmDTFOhapliR4soYLW2vR4RM5EXZxLQFkCw4frG/Gb0q2X0HTZRoa3Y8agoAZ7r2q71XVRl+djdQZ3agvAxfQCvcdtPHy5Z+p0KkoKOXDgABkZGUiSpOtW+vv7s3nzZnr16qV7zgMDg1h94CqAvrdmLZSr1CYHIqjUMjMGiZlrgaC5IgpKgUk0BVPllo45YoQzVUKM44m5bDubxq4XRvLS2M48tvYoAEvu6s7FtAL+Op2Cq4Pma+5gp+lo2ltY9HCjs6SrY2kVtCzLeIx+gml+ybXmzlfv1lvrvZvSrV5yVw8c7ZQs31n77KKPqz0v/6MzJ5Ny2X4+vcZWicX/WUl3fzdkWebChQvs2LGD5cuXk5OTw4kTJ/D09NR7hgg/EAgEtSEKSkG9iAjAG0MHL2caIvkwppjt7NOGAA8nTr051mC9MWWtudysLOmavPprDJVqmW5+rrwwpjOdfdvg5WxHaYWKy5lFrDkQr5sb1GKjkHhocAfu7RdABy9nyivVxKYX8vaf5ziWkANKG8469Tbp9Z3tbeju72bx91Vft1rr+fjGptNGPR9B42e6+uEBgMRT/z2GsTFJ7etIkkSXLl3o0qULc+fOrfO135nck9FLoyxaUNooJN6Z3NNi+xMIBDceUVAK6kREAN44tBnS+aWGc3B1YUwxO/+H4wadyMhwb54cEWrw/MLCQg4dOsTgwYNxcKjb/PxmZ0lXJzatgD2XMgFwdbAhJa+ETSeTScsvxdFOyaQ+/iyb2ocAD0eW77wEaMRMqx7sR0SwJ5/tjuNYfA6Odjb0bO+KU1UHV1IoOZiQr1NB3wzq6lab4vno6mDDd7MH4uPqwPQvo0nMKTH7dWpDG37wyi+m3co2BRF+IBA0f0RBKagVlVpmWkQQqXmlLKuhxnx4cAfu6u1PsJczzvZKMgvLORafw8c7YnVzfFoeGdKBAR286O7vSqCnE6UVKhyqBCUCfeaNCOVIgqYwDG3nwrgevoDGTshWoTBZMXu8SohRnfbummJx8uTJJCcnk5qaSkZGBiUlmmKjW7duxMTEoFAYLzKa2tjD9wcTdEVt9JVsoq9k623fcT6dQA8n7h8QpCsoHx7cgRHh7Zjy2X69z2jnBf3bwUqFxHfRCSyycGqUqWi71TU/YVM8H10dbPj+0UEEejjywJcHOZ9aYHRdYyx6pkUEkVlYZpGLTRF+IBC0DERBKaiV3bEZjDSi3oTriS3nUuLIK6kgyNOJOZGd2Dh3CBOW7+Vy5vX4tAcGBFNcoWJ/XBaj7ZSkF5TR1c/1Rr2NZsV9EYHcFxEIwJ29/Lmzlz8AQ9/fQXpBmcmKWWNIVYrhxMREjh49arD97NmzPPPMM3z88ccWzZK21tiDKZ6d2cXleLnY636eNbgjh65kGy24ax7zzovpLOLmFJTabnV8NWGOKZ6P2mIyyNOJGV8d5EyK8dvh0HiLHhF+IBAIqiMKSoFRYtMKeO7HExx/fYzR7eYktoxeFqWb39ryzHDySipu6u3Epowsy3R6dCkqr05ISsOvp6mK2ZooFRJp+aVkZGSQlGToV6ll+fLl+Pr68tprr+kea4pjD7WpoCUJFJKEm6Mt43v6MTzMWyfa8XNzINDTiW3n03hxTGfu6x+Ih5MtlzOLWLU7jp+P6c9aJmQVU1RWedN8Eatb9Jji+Whvo2DNIwPp7ufKkj/OYqOQ9NZlFZXrPjNLWfSI8AOBQKBFFJQCo2hvJ5pDbYktxsQAN/N2YlPmxIkTJP78AX6PrgSFslalsbloRQ/enk5ER0czYMAAsrOzUalUBmsXLlyIl5cXc+bM0amoTRW9XH3XeJQgQFx6IaOWRvHGpjMM7tS21mLi2rVrKBQK9u3bR05ODpMmTcLb21tvTW0q6H/e1YMHBgYDUFapYvHvZ/jvoQQAfF01t/zvuSWA1LxS3tx0moKySqZFBPHve/tgq1Sw7nCibl8ycDWryCqiG1OobtFjiuejt4s9faoKyEUTDL9bPx1N5IWfTgGWtei5kXZKAoGg6SIKSoFRTI0ANDWxxWD/N/F24o3EXFuZ1atXIxdmWi9DGujQoQPbtm1jyJAhFBYav03+5JNP8tdff2E75jkq1bLJopfJK/cZ7KtPoDtvTujOlrOpgPEsadB0Z1etWsWCBQsYNmwYaWlpnDp1iieeeILhw4czdepUJk+ejK+vb60q6BU7L7HucCJeLnaM7uLD4ok9cLSz4Ys9l3XFub2NglmrD3MtVzM7uic2k6CnhvL0bWF6BSWY5w1qacJ82uCUn0CRs79Jno9JuSV0+L8/6l1nLYueG2GnJBAImi7iGy4wwJwIQFMSW4xxs28nWhNzLXVkWeb8+fP89ttvrFixApVKReGpv1E4u+MRORNZlhvVqTQmeujVqxebN29mxIgReo+7urpib29PUVERWw/G4N1VI+gwVfRibDZx+oAg1GqZ9Uc0xVrNLGmA1NRUHn74YbZs2QJATEwMQ4YMISYmBlmWiYqKIioqirlz5+Lo6EjILcNh2HyD10rOKyW56vdv14UMAF4a25mfjyWRW6wxeL+cUaQrJrXsvpjBvJGheDnb6aXSNEQFXRvmFlnXrl0j9r9L8Ju9wirdamtiLTslgUDQdGl5Z3NBozEnArC+xJbauNm3E61BQyx1vFWZpP2+jMTzJwzW5h/4ER83J1R9JoOkRGWG7Z8poofIyEh++eUXbG1t6d27Nz4+PtjZ2em2v/rTcX44eg25DnfMmqKXmjjbKRnf04+DV7KJz7o+81hdRb1x40ZmzZpFfv51AUlqaiqbN282mjFdUlKCu00FhchQj3PnyaRcZgwKJsjTiZhreRSXVxpdp63V1NVerzEqaC2N8etcs2YNqrw0q3arBQKBwFJYNjJD0CIw5zbfmeR8jifm8tuJZO7/IhqQeGlsZ4u/TlNn3eEERi+NYv9lTQyeqZY66bjDHa/j0ktf/LR48WISEhK4+L9v2PXiaF18Xn1zrdrtg0O82LYgsl7xy+TJk7nzzjsJDAzUKyYB9l3JNSgmJUnzGp7OdswYFMzwMG8+izJuXwMwobc/zvY2rDuSoPe4Si2zYd9Z2rVrx+TJk8nNzUVdY/a25vEADBo0iCtXrrB313aCPesv9gaFeKFSyyRkF6NSy2w9m0YnbxcC3B311kWGe3M1q4icalnYxlTQ6enpRovcmiRmF/PgVwe5fdlu1h6MJ75GMQn6Fxe3L9vNg18dJDG7mIyMDNauXcuSJUuQZZnCU3+TE7VG8xwTXrsuhEWPQCCwFqJDKTCgobf5jCW2WON1mhqNsdSRlDagUOI1/mkUzu7kH/iRAQMG8MYbb+jW3AzRQ20q6rpEL8aY2j+QvJIK/jqdarCtSHLExcOLvLw8ysvLUSgUekXlyy+/zMKFC1EoFCgUCt5++22ef/55lErNiEV1FfQ7k3tSWFrJyaRcMgvL8HCy446efkzo7c9nUXFkV93G/vfWi4zo3I5vZw1g2faLGlFO/yC6+roy74dj1w9OraIy/iT//vcxbG1tyc3NJSEhga+//poOHTqwevVqg6xvLQ3169x7KYNh7/1N1t+fUXhyi96a/AM/4ufhTEWvSVbpVgsEAkFjEQWlwICGRgAaS2ypDUvcTtRyMwUAlrDU0c7GeUTORF2cy+zZ9xhddyNFD7WNPdQlejE43nYu9A3y4NsDVykz1o2WJH7fGU03P1dOnTrFTz/9xA8//EBcnKbjWVFRgVKpJDQ0lHXr1tGnTx+9p1dXQR9PyGFKvwDuuaU9ro62FJerOJeSz7PrT+ip0BOyi7l31X5e/kcX3pncE1ulgrMp+Ty69gg7qmddK5Qc+uHf7M/SCMyUSiWyLCPLMleuXGH58uVGC8rGXFzISMgKG7zGzUfh5Eb+gR8B+Pjjj5kyZQp+fn4mjVVoERY9AoHgRiLJjb2HImiRvPHbaUoqVHw4pTebTyXzR0wKUH9ii7+7A1M/jybmWp5uXz3buxHgobnFuPCObhSVVfLdwXiWTOwBQHFxMf/973+ZMWNGvdF/WppClrRKLaNUSCzbdrHBSUKOtko+uKcX3fxd8XF1QCGBAhkHu/oFUdbkeEIOkz/dX++6f97Vg6kRgQx8d7uuC6hl4R1deXRoCOM/3sPZWgy2f31yMH2DPHQ/y7LMmTNn+OOPP5g0aRIqlYqQkJBafy8e/Oog+y9nWTRXWquCHlhymPnzDYU/Wn777TcmTpyo+3nd4QSLxhFm//UJozs68csvvxhsExY9AoGgqSEKSoFZaBNbFk/sTv9gD4PElpW7DBNb/jWlF1P6BRrd37fffsvHH3/MsWPHCAwMZPbs2bz55pu1vn5DOjTWypLeeSGdkZ3bGS0oF4wOQy3DuZR8vSQhX1cHvSQhVwcb3pnck/1xWSTmFCOr1dzTL5DJfQMseqzmciY5jzs+2Vvvunv7BfDhlN5MWrmPE9UU3rZKiehXRnEtt4SJKwythLT8MX9oo4RZidnFjF4aZbwD2kDsbRRsWxBJoKcTH3/8Mc8884zRdXZ2dhw4cIBbbrnF4schyzJyZTn/HGzPzLtr9/aEm9uhFwgEAi2ioBQY5WJqPmM+2mO1/V/7Yg6VWUlIkqQnNAgNDSU21nisXPXZtIbEvFkySzo2rYD7Pj/A8dfHGC0ojdHJ24Xtz0Xy0fZYvSQhYxxfOBoP59rV09amqKySHou21Kv2//e9vZnUpz0R72zT61CO6+HLpw/0Y+HGGL47aHzGUgJOLxrb6OLH0p3B9+/uqZs1lGWZp556ipUrVxpdq1Ao+PHHH9mYG8D+y1l09mljkgF8bRdZWvN3AFmtYmhYO75/dJDF3ptAIBBYC3EZKzBKTvw5Sq4cwyGol9EIwIaiVEgM7OBBtKstV7IMVatxcXHs2rXLwB+xqWVJWzJJqCZKhcThqzmM6e7b4ONrLDWzpE0VvWiZ2j+QknIVv51IrvU1GpslrWVaRBCZhWUWiYesqYKWJIkXX3zRaEEpSRJqtZr7n1iA/2OfAphsAA9QUq5i+pf6huWlFdeTiySFkn1xWSKmVCAQNAtEQdlKMPe22Jo1a8jd+is+s5Zb3FT5/Xt6I43bTZ8+fcjKytLbLssyd955J2fPniUoSHNib4pZ0tZIElIqJBxtlfQL9qBfsIfRNTeS6ipqU0UvoMnMHhbmzcYT1ygoM+77aKksaS1PjQyjrYt9ozrYtamgg4OD2b59O++++y6zZ88mMjISd3d3HB0dUalUPLLif0Qlq0FSmGwADxrPS2NG8DWPTcSUCgSC5oAoKFswDRGuyLLMsWPH+PLLLykvL7eeqbKnE6+88govvviiwRpJktiwYQOPPPIIrm7uTIsIIjWvtMHCl45tnbk/IohbO3kR7OmEWpYpq1DpEn6qo1aryc7OJiUlhYqKCvr27WtQTFsjSWhCLz8+uf8W3c8/Hknkjp5+N3UWrrqKesPRJJMiNQFS8krp9Nqfda6xZJa0lmkRQQzp1NbiKmhJkrjtttu47bbbDPehVHK1zBkkQ4ul6tRnAF8bKrXcamJKBQJB80YUlC2QhiS2dPUAv8RdbPnlvyQnX79NWT0CEFm+HinSAGreTuzYsSNt2rShoKAAhUJBt27dsLe3R5IkZs+ezcmTJ0lTeHHfsB5G9+fhZMuuixmcS4nTE75snDtET/gyLKwtt3Vpxy/HkziVlIedjYJZt3ZgWLi33v5iY2OZOXMmp06dIjQ0lFOnThESEsLMmTOZPn06YWGaW+XWSBKKupjBhOV7cbG3oW+QO3MiO1lUudwQwnza4JQXT5FLe4uPPVgjSxpuvGdnbX6dkgQKScLN0ZbxPf0YHubNm5vO6K1xsFVy+NVReDrbk15Qyt9n0/jP1ovklVTorWvJMaUCgaDlIEQ5LYyGCldkVSWoVWRvXUXhqb8BjeBg8eLFTJo0iZhiVxb9bvnbiQAffPAB4eHhTJo0SfeYWq3m65//x4rzto0Wvng42eoloGg5UyUIUavVfPLJJ7z88stUVFSgVqsZOnQoe/dqVM5KpRKVSkVwcDBdunSh27Dx/FLYCQ8n847N2U7JrhdGciIxh8fWHq1z7Z09/Vg+/ZY615iLuWMPSUlJdOwZgd/sFUg2dhYbe6iuor4RWFMFXZsa/u1J+gbwb20+qydOmj2kIwAX0jRZ6QM7ejJ7aEeSc0uZuGIvxeUqvf01Vg0vEAgE1kZc8rYgGpvYIldLbCk69DPz5s1j4cKFAPQAhoZa/nYiwEsvvWTwmEKhIMm+A0pF7aIOYxgTvhgrJpUKiUNXshnZpR2TJk3i999/19t+6tQp3f+rVJqTe3x8PPHx8eyOuUy7mUvNOi4wL0noRFLds3Wm0hi/zs8//7xFZEk729tYrRirLT60PgP4r/Zd0Vu/91ImZ5Lz+WxGP+6PCDLY3pJiSgUCQctEFJRW4Gb4wlk8saUoh4ceekhv+42+nWgN4YsWlVrGQakmPT2dP/74w2B7QUGB3s+SJGFvb8/ixYuZ89Qz9H5rm3lvBvOShAaHeJm9/+o0ZOxhaGhbHu5ux7HdW9m0aRP79mn8I6uPPciy3KhOZUvLkq4tPjQ5r5TkqlnZXRcyAHhpbGd+PpZkoIjXsuVsKkVllfQNcoca1p0tJaZUIBC0XERBaSFuZnKLSi3XKlypyfrHBzGwoxffHrhqMNMF0N7dkWdGhRL5f7/Rro3xdJIbEQFoDeFLdab2D+TWMF+ee/El1Gq1nh+mra0tY8eOZfPmzbr1EydOZNWqVfj4+ADw4KBgSqosXkLbuTCuh8bip74kITsbBR9V+zeaPiCIiA6e7InNICVPYzMzoIMnDw/uQHFxMUeOHCEtLY3U1FTOnz/Pr7/+ymuvvca8efNqfW8NzpK+mMbuc5Xkbt9BwQn9iqby5GYCwzuS4j8UGUSWdBXamNL6Po6TSbnMGBRMkKdTrQUlaGYv1TWmkCwZUyoQCATWQhSUjaQhnSBLJ7fsjs1gZOf6LVhm3hpc54kp3MeFdY/dSkJ2Me/8eQ7vNg4svKNbnfu01u1EawhftIwI92bJXd35IyaF2Qte4/HZj/DDDz+wZs0arl69SkVFBYWFmue6ubnx6aefMm3aNL3O3JK7rguF7uzlz529/IHrSULnUvK5PyLIIElozvf6SULnUwu4rUs7XhrbBQ9nW1RqmauZRfz7u828Pe9+SkpKAE2HVOt7+OKLLzJhwgSdrVJ1GjP2oLGHUuD5j/lIjtezpF9//XUWLlyInZ2dyJKuQU2/ztoYFOKFSi0bFfBoGd/DDyc7G44n6I87WMqvUyAQCKyJEOU0gqaQ3GJqYkuAuyN/PTuc5388waoH+xvtUP4xfygAk1fup1ylmdnatmD4TTFV1mZJW1r4MjysLZ8/2J99cZnM+e4oPz5+qy5LWpZljhw5wvr16+nbty+lpaXccccd+PoaGozHphVw+7LdjX+jtTCqdD9fL3vH6DalUklISAjR0dF4enrqHrd0YkzWnx+huHqQtLQ0gyxtkSV9nUWbzuj8OuszgH/vr/O0d3fko6l9+P1Uiu7CaWBHTx4Z0pH4rGImrdyn634rFRIPDgwWPpQCgaDJIy57G0hTSW4xNbHlnbt7sjc2ky1n04xuH9jRk+7+bjy/4YSumLyZpsoNnRmrS/iiLSYPXsniye+OUaGS9V5HkiQiIiKIiIio93XCfNowLLQt+y9nWdTeR2up89XstxnQJYg5c+YYrFGpVMTFxTFu3Dh27tyJk5MTidnFRkcYGoosy3jcPodRpb0Mikm4MWMPzYXqfp2mGMAXlFaQWVjOo0M70tbFHoUCruWWsHr/VVbsvKQrJsE6fp0CgUBgDVrPX30L0pSSW0wRrkztH0ifAHdGV2UEG2NAR02nq7BMxTcPRzA4xItKtcxJC6mNzUU7m2YutQlfhlUVk4evZvP42qOUq9SNnk17Z3JPRi+NsmhBaaOQeGdyTwCeeOIJkpOTWbJkicE6tVrNoUOH6Nq1K6dPn+bVX89SqZbp5udqUpY0QHd/V/5vXFf6BrqjUsvsj8vi7T/PkphTorm9r1CS3WlsvcdsTRV1c6D6xYUpBvD5pZXM+b5u2yiwrl+nQCAQWBohHTQTS3eCAN7YdIbEemawjFGbqXJ1fFzteW18V9793znSC8pqXefrqulCfTilF2n5pcz69jCvbTxNkKeTQd72jcDZ3oYHBwUzuqtGBKMVvozr4YuDrYI29jZsnDuER4Z0YGTndtwa4sUDA4LY8MRgA+FL/2APPp/Rn4yCMlbuiqObnyt9A935Rw/fRnXSAj2dWGzh7m1NS51FixYxffp03c82NvrHm5CQQEC3/uy5lIlKLeuypD/ccoFZqw/z3IaTJOUUs2xqH54aGap7XidvZ9Y9NghbpcS8H47x4s+n6NjWmQ1PDMbT2Q7QWEmdTC/nUrq+4l1gyDuTe2JjZrZ7fVS/uBAIBIKmjuhQmomboy0X3hpn0kxfbYrqKbcE8K97e5v0etOnT2fXrl188sknTJw4EVvb66pnU4Qrb0/qybmUfH44nFjnOq3g5HhCjt4c3sW0Av58ephJx2ppLCV8GRraFkc7JYGeTvzw2CCLHuO0iCAyC8ss0rE2ZqkjSRIfffQRBw8epE2bNtx55534+Pjo/isuLubfuxK4qFYhKZQmZ0kvGB1OeaWa2d8eobAqb/v0tTx2Pj+Cx4eF8N5f5wGRJW0q2osLS86w3mi/ToFAIGgMoqA0g+LySv6ISeH+AfXfnq5LUb3jQjqTV+4zePz7RwfiZKf5J8nPz2fu3Ln88MMPAEyZMoU2bdowadIkpkyZwpgxYygtr6zzGMb18CUy3Jt7Vx3A1UH/n9pWqcDVwYbichWVapncYo2Vye6LmXrrzqbkU1GpxvYm+OD9b99xntxcu7H5//1q2sl72fZYo8W/pQRHT40Mo62LfaMEWnVZ6rRt25ZLly7Vuo93Y3Yi1dOprp4lrVRIjOriwy/Hk3TFJGjm+KIvZzGmu4+uoBRZ0qZj7YsLgUAgaMqIgtIMPvjrAptjkustKAPcHXlpbBedorom2UXlBl50LvY2OnHNvn37mDZtGikpKXprCgoKWLt2LWvXrgXAwS8Un4eW1XocnX3aYKtUsHHuEINt0wcEMX1AEI+vPcLfZ9M4n1rHbU3L3skzme2/fk9pkjv2wT2RFE07S3paRBBDOlknSaguGpIlHezphKOdknNG/s3PpeYzNLQt9jYKyqrSWUSWtOlY++JCIBAImiriDGEGpia31KeoNsa4Hr7Y2yh5++23dXGHdWFnZ8fj90/mtzrW/HQ0iejLWQaPr3v8VracSeWbfVd0WcK7LqRTXF5JZGdvvdi3Hv6u2Cot0500Rw1cUVHBN998Q77KFr9HV4KktFiWtLVm0250khDUPvbwz7v0s6QX/36G/x7SZEm7O2lmJPOKDQ2284orUCgkXB1tyaiauZWBq1lFrVp4Yw436+JCIBAIbiaioDQRU5NbTFFU1/a8/NIK3vng37WuUSgUqNVqnnzySf71r3/h5OSE22+na01sScotISm3xOi+UvNL9Wbt8ksr+c/Wiyy8oxv/mtKLTSeT8W5jz0tju+jWyLLM2bNn6datm8nFXUMShFQqFf/5z3/IztYcX3PLkr6RljoNzZIGqFNrVWObyJI2D1MuLgD83By4JdCDCb39GBbmLbrAAoGg2SL+epmIKQIYUxXVNenk7Uz/Dp58fzCe/3yxlmunD7JhwwbOnz+vFwno7u7O2rVrGT9+vO65dQlXaisma+PLvVcoKK1k1pAOTOjtT1GZiovXMinLraS0tJQff/yR119/nRdffJEpU6bQv39/FArj3cuGJAh1cq7A9cJmdmzaQH5+vm5d4am/Ubp44D78QU0V1IyypK1tqdOQLGntvKx7lZq7Om5OtqjVMvmlFSa9jqBual5c7I7NYPOpZHafTaKgUklKXil/5KXwx+kUq0e0CgQCgTURBaWJmNKhMVVRXZP7+gcCsO5wIksmDqbvfXewZMkSLl68yIYNG3jzzTdxcHDg3LlztGunH7HYkMSWDv/3R63b1h9JZP2R68d/7Ys5VGbp++p9+OGHfPjhh2zZsoUxY8YY7KOhWdKX8iVkn/GoOyTCqb912yMjI5k4cQBSqDefHc4Ss2nVaEiWdMy1PErKVXQxUrB08W3D1ewi3fwkiCxx7ctsAAAgAElEQVRpS2B4gWVjMJts7YhWgUAgsCai7WAi9XVotIrqd/86j6uDje4/uK6oNuZTZ6OQuLtvAGeT84i5lqf3OuHh4bz22muUlJRQWFhoUEzCdVNlU9JyzEGpkBgS4om/s/H3LUkSYWGGCT/Ld8byyi8xlFWqzTb8lpQ2SDZ2eI1/Gtdb70OSJJYsWcKuXbt47rnnWDBxANsWRDI4xEt3jPW9B4DBIV5sWxDZ4opJuJ4lXR/Vs6RVapnt59MY290XZzulbo2/mwODQrzYcjpV77kiS7pxrDucwOilUeyvmmc29QJr/+UsRi+NYt3hBKsfo0AgEDQWcZYwkfqSW8xRVFdnVJd2eLex55OdsbV2gqp7TxrDWokt793Tmzb3nqRPnz7Ex8frbZdlmRkzZhAVFaUz27ZEgpB2NtMjciZycR6PPvqo3vabIXxp6ozs3M7kLGmtu8DSbRf5bd5Qvn4ogk+j4rC3UbDg9nByiir4Yu91UZZSITEy3PBCRmAaTSWiVSAQCKyNKChNRNsJqjlbpsUcRXV17osIpLRCxcbj1xrcCbKuqbITr776Kk888YTBmv3799OvXz8OHTpEepHK4lnSXmOfpNLe+PyhyJK+jrlZ0gBxGUVM+/wAr4zrysoHbqFSLXMgLovH/zyqZ2klsqQbTlOKaBUIBAJr03rOuhZg3ohQjiRoMqIbo6jW0q6NPZFh3myOSaGoXMXdfRveCbKmqXJqaqrBGhcXF15//XX69OlDYWEhgV5ezB3RiaXbGpYeBHD13TsadLwiS9q8LGktp5PzmfHVwVq3iyzphmOtiNbBndqKmUqBQNAkEQWlGdwXEch9ERoBTWMV1QBT+gVgo1Sw/nCiRTpB1jJVfv3113nsscd46623+Pbbb4mJiSE4OBilUklxcTEHjpxg1PDBddvQUHd6kJY/YlL4spq1DcB/7utNx7YuJr+X1oi1xh5ElnTDePXXGCrVMt38XHlhTGc6+7bBy9mO0goVlzOLWHMgXq9jXBNjF16VaplXf41h7eyBN+hdCAQCgemIgtJMBv3f96SoXUxObqlLUb1yVxwrd8WhVEgMC21rkU6QNUyVJUnCz8+PFStW8N577+Hq6qrb5uTkxNFiT0bVc1z1pQdpySws43hirt7xfbs/XmRJ14PIkm46xKYVsOeSJsLU1cGGlLwSNp1MJi2/FEc7JZP6+LNsah8CPBx12erVqe3CS6WW2XMpk0vpBaJrLBAImhytXuVdVFbJmeQ8jifkcCY5j6Ky2vOxVSoV8RveRVapdN6QlsDSnSCtcGXrs8N5cGAwwV5OBoIiCQj2cuLBgcFsWzCctbMH1ls8SJKkV0xq2Xsp08hqfRqSHgTXs6QF9TMtIogXxoRbZF8iS7rhfH8wQecwEH0lm9c2nmbjiWscuJzFjvPpPL3uBMcTcoxGuGovvN747bTRfSsVEt9FC9W3QCBoerTKDmVD0lsAtm/fTmrcGVyaSXLLjRCuFJZVkpRjmCVdHXPSg+7q7c/U/oFIElxMK2TNgav8dDRJZEmbiMiSvvmYEtGaXVyOl4u9weP1XXhpL7AWITr2AoGgadGqztANSW8ZFtqWV0Z34PyRvTz77LOAJrlF4eyusbaR5UZlTN+oTpC1hCv1JQiZkx608cQ1dpxPJyWvBC9ne6ZGBPLhlN4EejqJLGkzMHfsQSGBWkZkSVsAbURrTSQJFJKEm6Mt43v6MTzM20C0Y+qFV0JWsbjAEggETY5W8xepoekte2LTiDp3jZytn1OYdF09a3txO537dCPOvR8yoDLjDnhL6gTVlyBkTnrQs+tP6P3815lUvpzZnycjO3E+Jb+WZwmMYVqWtExlTiozRvXlgVs7oVBIZBaWkV9a0eqslyxFbRdY/7yrBw8MDAagrFLF4t/P8N9D129dm3PhJYO4wBIIBE2OVnHGaIy5MJISyUaB1/inUTi7UxC9ga1btzJy5EgUCoVJXU8tpghgmht1JQhp04PuXXVAlxqkRZseVFyu0hX5xth4/Bqju/rg6li3ubvAOHWNPZSUljN2zutscHBg/bFUk0c/BLVT2wXWip2XWHc4ES8XO0Z38WHxxB442tnwRZWjgbmxraZEwQoEAsGNpMUXlJZOb+kd3oFRo65rmlt7cktdCUINTQ+qjnaawKeNgwWOtnWjHXuofhHk0nc8KoXSYK3IlW4YtV1gJeeVkpxXCsCuCxkAvDS2Mz8fS2JgR0+zL7zqi4IVCASCG02LLigtbS4syzIp7YeRmF1scGJtrcktzvY2BHgYLzIamh5Uncl9A6hQqXGwMyx6BOZTc/RDMlJMVqdmrvTiid2Z1szHNKyJ9gKrvgmYk0m5zBgUTJCnk9kXXrVFtAoEAsHNpGVWOVUEejoxd0QoS7fV3aGsK70F4KFbOzBzUDABno6k55dx+Gp2nZ2a1pbc8siQjkDj0oMeHxZCWDsX9sVlkZpXgpeLPVP7BzI83Jud59MZ2UXkSTcWkSttfbQRrfFGhDnVGRTihUotk5BdbPaFV0MjWgUCgcCatNi/SnnF5bg52dXrF1lfesu8EaE8f3s4n0bFsSc2g14B7jw/Jpy8knLcHO0sfdjNkkl92wONSw+KyyhkdFcfRnZph5ujLaUVKs6m5DP/h2M8M0oUL41F5ErfOEZ2bsea6KuoZU2CUWFpJSeTcsksLMPDyY47evoxobc/n0XFkV1UTjaYfOGlVEiMDBcXVwKBoOnRYgvKVbsv89I/utS5pr70FncnW+bfFsq6wwl8+PcFQGNUbGej4PnbLWMg3VJ48KuD7L+cZZLvobH0oO3n09l+Xt/AXGRJWwaRK31jeWBgEKsPXAXgeEIOU/oFcM8t7XF1tKW4XMW5lHyeXX+izujF2rBERKtAIBBYgxZbUO69lMlL9aypz0Q4MtwbB1slG44m6T2+/kgiL4zpbKEjbRmILOmmi7m50v2DPZjSL4Du/m6E+7hgb6M06DiLXOnaUeVco+TKMRyCerHhaJLB3w9TqXnhJS6wBAJBU6ZFSgXNSW95Y5PxiDPQqJQBzqfqC0cyCsrIKiyjUiWsO7Ros6QticiSbjzaXGmVWtblSn+45QKzVh/muQ0nScopZtnUPjw1MlT3nCGhbRka2pbk3BKOxeca3W/1XOmWjjnxrABfffUVuVs/RVY37YhWgUAgsCQtskNpqfQWdyc7yipUlFSoDLblllRgb6PARdkia/IGMS0iiMzCMovM6oksacugzZVWqWWir2TrzeMB7DifTqCHE/cPCGL5zksAfLwjlo+2xwLw2LAQbu3kZXTf2lzpRRa+kGgKNDSetby8nC+++ILyvDxymklEq0AgEFiCFllQWjK9pa7C1IJ3d1sMIku6adGQXGlTm2otMVe6IfGsg4LdGOGcwsEdf/LTTz9RWFgIaCJabdp44jZsRrOJaBUIBIKG0iILSkult+QWl+Ngq8TBVkFphX6R6u5oi9qCt7NaEuZmSbfEBKGmQGNypU2lJeVKNzSe9cDlLParleSdTNUVkwAeHh7c0dGGtu2L+TPVmUq5/n1WR1xgCQSC5kTzPwsYwVLpLdrZyS6+rpxIvD5L5u1ij5eLPeWVhrfCBRpMypKWZewq8rl3aE+GhbXFx9WB/NKKFlOg3GwamittDi0lV7oxHp2S0gYUSjzGPgUOruQf+JHbb7+dv/76C4VCc3H7XCuPaBUIBC2fFnnWtlR6S9TFDEorVEy5JUCvoJzSLwC1LGNnI9Jb6qO2BKHU/FLm/3MFRe7BfH8onu+rFTQiR9oyNDRX2lKv01ywdDyruiiHF198UVdMgohoFQgELZ8WWVCCZdJb8koq+GTHJZ6/PZzckgqdsfmzo8I4Hp9Dvw6e1n8jLQhnextcHWx1nRo5eAC2IkfaajQkVzq7qNxir9McsEY8q+eYJwnve6vR7a01olUgELR8WuxfL0uktwCs2HWJovJKHhwUzGPDOpJRUManUXHc2cvP4sfc0hE50jeWhuRKm1tQWjJX+mYUWOZ6dD48uAN39fYn2MsZZ3slmYXlHIvP4eMdscSmFyJJEpKNLQt/O1OvR2dri2gVCAQtmxZbUELj01u0rN5/ldX7rwLXzYWfHS2ScsxB5EjfeBqSK20ujc2Vbqg9jyXQenQCOo/OTSeTScsvxdFOyaQ+/iyb2ocAD0edpZKHky27LmZwLiWOvJIKgjydmBPZiY1zhzBh+V4uZxYhI+k8OsVta4FA0FpQLlq0aNHNPghrEdHBk+8Oxls0vcVOqeDbWQNwc7S12D5bOusOJ7Bk8zmL7Gt/XBZ+bg70aC86O6YQn1VMTHIeclWu9MCOXrg62uLpbEfP9m48MyqMSX3b8/nuy2w9p0mM8nS2Y0Rnb8LauTCgoyfd/Fy5nFlIew9HvJztuFbV5VdKcFfv9ozorMmWLi8vZ+7cufj5+eHv71/ncSVmF/PUf4/xzz/PEZOcR05xhdF1eSUVxCTn8e2BeI7G5xDRwdNi371PdlzSfTZJuSXsOJ/O+dQCknJKuJJZxP9OpxIZ7s2gEC++3ncFgOjL2Ry8kk1cRhHXcks4m5LPvktZPDoshNySCt18tlIhISHpPhuBQCBo6UiyJaMcmiDrDifwyi8xFtvf+3f3FBYeZpCYXczopVGUWVC4YW+jYNuCSDFTaQIxCZlM+PQgAPf2C2BKvwBCvV30cqXXHU7Uu607qKMn6x43PgMYfTmLaV9E637OWvMsPo4yjo6OpKWlkZGRgSRJBAQEcOXKFZRKw7GG6qMPDbHRsdToQ+SHO+vt3n71UH/C2rVh+Ic7a13j4WTL8dfH8J+tF/h4xyXd48FeTkS9MLLRxykQCATNgRZ9yxtEesvNxs3RlgtvjWPZtossq0pfqY31jw9iYEcvvj1wtU6hRAcvZ3zdHCx8pC2TE1H/o+TKVRyCe5ucKx19JbvOERDQdCfblKQQn3yJwhrbZFkmIyOD8vJyHB0d9bY1ldGHxnp0KiSwUSgI9HTk5bFdyCgoM/hsW5JHp0AgENRHq/hLJ9Jbbg7F5ZX8EZPC/QPq/9xm3hpskrhDIcF7d/ckq7BcFJUmsGrVKnLOXsb3keUgKRqV1lIdG6WC31+fznftMnj11VcNtpeWlvLEE0/w7bff6l7TEvY8Wv7190W8Xewb/J1srEfnucX/wN5W032Nyyhk2hfRpFQp57W0FI9OgUAgMIXm6/dhJtMigti2IJLBIZpcYqWi7hOrdvvgEC+2LYgUxWQD+OCvC/x764V61wW4O/LS2C688dvpetfOHhqCr5sDn++Js8QhNiuKyio5k5zH8YQcziTnUVRWWef6ixcvsm/fPipyUsjZuspixSRcz5V+5ZVXmDZtmtE1a9euZeHChYDl7XkA3th0hsRablmvX7+eW265hSVLlnDo0CFUKv0Qgro8Oics38vDqw+x4UgSiyf24LFhIQbr7v5sP5NX7uOZ9ccpKqtk3WMDCWvnYrCuuXt0CgQCgam0ig6lFlPTWwK9nOgT4M6Ybj6EeLvg6Wx3sw65WWNKjjTAO3f3ZG9sJlvOptW5roOXE8+NDmf+umO4O7aOf5OGqKCzsrLYtm0b//znP3VrC0/9jcLZHY/ImZqwbgvlSkuSxMsvv8y6deuuH5ckoR3Nfuedd7hw4QLyiHkm2/MoJJg1pCPDw9oS7tMGd0eNEGjr2VQ+jYojv1RTSFeqZV79NUbPnqeiooKXXnqJZcuWAXD8+HHefPNN3NzcGDduHOPGjaNv374cu5hs9L2Z6tF5Jjlfs//EXLadTWPXCyN5aWxnHlt7VG9/zdmjUyAQCMyhVRWUWoyZC8elF/L78QT+PHiWRHxIzC7h91MpgEhuaQjaGTV3p7oVuVP7B9InwJ3RS6Pq3ef7d/di+/k0tp1LZ8otAQCUlFfiaNfyfo0TTYjqq2kAH+JYRvbfKzi1fyc1tXaSJJF/4Efs5XJcImchKWwsNvrRrl07JkyYwJYtW1CpVMyaNQtPT0+KiorYv38/u0/G4hSm6SSaYs/jYKvk2VFh/H4ymXWHE8kpKqd7ezfmjwxlVFcfJizfS1mlGpVa1rPnSUpKYsqUKRw6dMjg+PPy8li3bp2u8JVsHQh8bkO9XVtTPDqLylVcziikY1v9DqUlPToFAoGgqdPyzsRmkl1Uznv/O8+eS5kokLH18DVYI5JbzKe2GbXq+Lja89r4rrz7v3OkF5TVuXbmrcF09m3DvKXH9B5Pziulk7fhrcbmTE0D+PoKP+32y8W2qAfNw7nAhsJTf+u2u7u78+KLLzJ27Fj69u3LtdxSi+ZK+/v7s2nTJs6dO0dqaiojR+ormxf+epLvDyUiIxF9JVsvjQpgx/l0Aj2cuH9AEMt3XqK0QsWwD3eSW81KKPpKNsm5JXz6QD/G9fDTdTOVConvohMYYBPPfffdR3FxsUExXZMhQ4bw9ddf8+hv1+r13jTFo9PDyZbOvm04Ep+j93hjPToFAoGgOdGq/9rVPHGrqbtbIZJbTMeU2bG3J/XkXEo+PxxOrHNd+6oZyyWbz5JZqN8lqlC1rBm1xqigkRRINnZ4jX8ahbM7+Qd+BGD16tXcddddumXWypXu2rUrXbt2NXh8z6Vs5Hq+W9nF5Xi52AOgltErJrWcTMwFwL+aGEullln992EWr5hV5/4VCgWurq6sX7+eMWPGAHBb5wrWVvnUvjO5J4WllZxMyiWzsAwPJzvu6OnHhN7+fBYVR3ZROW3sbVg7eyCbTl7jSmYxpRUqQto6M2tIR+xsFHxUzcVAqZAYGS48KAUCQeuh1RaUTcW+pKVS3+zYuB6+RIZ7c++qA7g66P8a2ioVuDrYUFyuolIts+Su7lxMK+Cv0ym6tQ52GoWtvYVn1G5mvrIlVNDaW7gekTNRF+XgkHyc8ePHG117I3KlG2vPU53BndoCcDG9QH+DS1tCwruSm5lGdna2Jv5QklCr1VWvJdGvXz9+/vlnAgMDdU97YGAQqw9cBeB4Qg5T+gVwzy3t9Tw6n11/QtcNLatUcy4ln/sjgvBzd8TeRkFGQRnRV7KY830cl9KvGyip1DIzBomLTYFA0HpolQVlU7Ivaaloc6Rro7NPG2yVCjbOHWKwbfqAIKYPCOLxtUf4+2wanX3aEODhxKk3xxqsrTm31hBuZvyflrpU0FP7B/L+Pb0oKquk+6ItettsFBIPDe7Avf0C6ODlTHmlmtj0Qt7+4yxHbp/DXbansLWtP1nGWrnSjbXn0eLjas/L/+jMyaRctp9P198oSWzaeYDu/m5cuXKFLVu28Oeff7J161bKysqYP38+H374IXZ2+kKuMJ82DAtty/7LWSZ5dJar1Pzfr/WHJGjjWUXsokAgaE20uoLSWvYlgzu1FTOV1dDmSOeXGo/U++loki6mrjrrHr+VLWdS+WbfFS6kaTpR8384btCJjAz35skRoQbPP3DgAN7e3oSGGm6rSUOEL9aan3311xjd6EV1tHOmqXmltKnRyVVIsOrBfkQEe/LZ7jiOxefgaGdDz/auONnboFDakNJ+hEWP01zqsudZdzgRLxc7RnfxYfHEHjja2fDFnssGa90cbVn98ABA4qn/HsPYiKT2dTp27MicOXOYM2cO5eXlFBcX4+7uXuvxvTO5J6OXRlk0ntVGIfHO5J4W259AIBA0B1pdQWmp5JZHhnRgQAcvuvu7EujpxLmUfCsedfNk3ohQjiRohAqh7VwY10MjeNp5IZ2k3BKSqjKha5KaX6on3DheNTtXnfbumjm6uXPnolAoyMrK4tq1a+zduxeASZMm8csvv9R6bA0VvlhjfjY2rYA9lzKNbnt7Uk8OXskmr6SccT389LY9PLgDI8LbMeWz/Xqf0c4LVR08hZIj14p0KuibQW2jD6ba87g62PDd7IH4uDow/ctoEnOM/84Yex07OzuDrmRNAj2dWDyxu0XjWbUenQKBQNCaaFUmadrkFlOoL7nlgQHBtPdwZH9cFpmFZeSVVHCp5mxXK+e+iEA+uKcXAHf28ufTB/rx6QP9aOts3+h9S5LmV/fQoUOsWLGCdevWsWfPHmRZRpZltm7dSmam8SJt+c5YXvklRmc9Yw4qtUxZpZpXfolh+c66L0hM5fuDCUaN9if1ac/Ajp68Xovh+6zBHTl0Jdtowa1Fq4K+WdQ3+qDlZFIutkoFQdUKMVcHG75/dBCBHo48+NVBzqca/3411p5nWkQQL4wJb/DzqyPiWQUCQWulVXUoP/jrAptjkuuNAtQmtzz/4wlWPdjf6JrRy6J0t962PDMcgO+iE1g0sbtFj7m5M2LRT1wptkVSmvarVl+GNGiKpLT8UvLy8khNTTW6pqioiPHjx7Nr1y6cnK4XKU1xftaYAbyXsx1v3NmN97dcIDW/1OA5fm4OBHo6se18Gi+O6cx9/QPxcLLlcmYRq3bH8fMxjZBEpZbZeTGdRdyc30vt6EO8mfY82mIyyNOJGV8d5EwddwAsYc8j4lkFAoGgcbSqgtKSyS3G5rhu5om7qVK48wvkiCdAobRcjnTVjJqbmxOHDx+mf//+pKam6lS9ALIsc/jwYcaPH8/27dtRKpW1zs/WJnq5+u4dtR5DXHoho5ZGmTQ/m5eXR2lpKT4+PgbbalNBv3VXDy5nFPJddLzRffq6am7533NLAKl5pby56TQFZZVMiwji3/f2wVapYF2VHVNCVjFFZZU3zRNxZOd2rI2+ikrGJHseexsFax4ZSHc/V5b8cRYbhUTfwOtzkFlF5brPzJL2PNMighjSqa1FPToFAoGgtdBqCkprJLfU5GafuG8E5tjLXL58maO7/8YlF7zGP22xY6g+o+bn58e2bdvo3bu3XkGpJSoqiqCgINasWcM3V50NhC91iV4mr9xnsL8+ge68OaE7W85qOqPG4v8AMjMzmTdvHqmpqfj6+rJhwwaGDRvGjBkzuPvuu/Hy0mTKG1NB/6O7L6O6tuOOT/bW+hloi3N7GwWzVh/mWtU86p7YTIKeGsrTt4XpCkoZuJpVZBUVtymYa8/j7WJPn6oCctEEwwu0n44m8sJPpwDL2/NYy6NTIBAIWjott/KpgaWTW4xxs0/c1sJcWx2VSkV0dDQvv/wyoJ8jLctyozqVxmbUtIbap05pigw/Pz98fX1xdXXl6tWrlJaWMm7qLPwf+9Rgf3WJXozNJk4fEIRaLbP+iKZYqxn/B7Bx40Zmz56t80R86KGHANi7dy979uzhySefJDIykj59+tC+1xDg+kypk52St+7qzrf740nPL9X5btoqNTOjrg42VKhkcos1wpXLGUW6YlLL7osZzBsZipezHVlVAhdTjOathVSQRsmVYzgE9fr/9u48Lqp6/QP458wMO7KLijDigqZI5kK4K2mSWZpWV7zaopUrXaWfaXlvRaV5tW5qLplL5XW5apvXlptmriiQuCIuaIK4sSM7g8yc3x844wwzAzPMgAx83v/08pzDmWMR5+Gc7/N8TBrPc+NOmclLH+prPE9DzOgkImpKms1PRWsmt1j6ObaiLmN1PBWZSP9uCfLSddcpFsbthLSiBO7DXoMgSGtNJdJmyhq1xMRE7N+/H6WlpRg7dqzuNYoipn6xD7+llQPC/T40ddPL48sOm9SU4WIvxZMhbZCQmodrufdfU6sbX2YP8sPrr7+OrVu3aopm9at3dbMQACiVSuzfvx/79++Hne8P8JuyUnMuL2d7tGzhiKmDO2Dq4A5613D2vQjsTc7AjG0nUVpRafA61fW6SmtdRm2D5s1hboG1fv163PltM1pNXlUvSx/qW33N6CQiakqaTUFpzeQWSz7HFI3hiUhdx+rkybzh8vxiVPz2hSZPulu3bvjkk08QHh6O7FJVvaxRs7OzQ0SE/uBzoOr1cEqRTKeYrK3pxZCne/jBxUGG7Ym6XdNKlYjth5OwcFwPKJVKANDJk05ONjz3NDw8HMtXfY4xm69onvpmFysQuS5O79gZQzsirL03Xv7qD+SVVkCpEvHb+UyM7N4G/h5OOiOYhnRuibTcEuTfiy+0tAsaqPvw94qKCqxbtw4Vd+4g/7cv6m3pAxERPVjNpqC0ZnKLMZbcuBtDWouaJbGUglQGSKQ6edIbN25E3759AQABjmjwNWqGGl9qa3oxZHyfABSU3cWv5/Q7y8tkrlBJ7IB7BaWaIAiIiorCypVVTyElEgn8/f2xZcsWDBo0CAAg97ql6YJWVKp0ZnCqPdfbH0qVqLPvX7+lYGgXX2ya/CiW/55S1ZTTR46urd0w6z8nNcdV74I+ePAgEhISMG/evFqfFtblKfXAjt4Y30GFs3EHsHnzZty5U7V0oL6XPhAR0YPTbApKaya3GKO+cYuiiMjISISHh2P69Ok1fk1jSmsBrJ8n7ekoQVhYmN4xDblGrfr6WVOaXvSu19cVPeWe2BSXBoWBZQ2CIODI6YtIOvw/bN26FUePHtXkSSu1isxp06Zh6dKlcHW9HxkZ3sUXmxOumT0TMz2vFM9/cQzzn3gIH40NgZ1UgvO3C/Hq5kTsvxdPKKqUuBr7Ix7ZEo1OnTqhsLAQR44cQXl5ORYtWoSlS5ca/R6t61PqI5ezcPhiJe78HouiS5d0jnFOPYyHegbjinsviELNT6ir43geIqLGq9kUlID1klsAIKStO/w9nQAAro4yCIKIJwIEnD59GkePHsXOnTuxc+dOnDlzBu3atcNTTz2F7t2765yjMaW1qM8fGSpHRkF5nVOEnOykWPrsw+jm54ZWbo6QCBGoVIqwkxl/GlXfa9S017Wa2vRSdlf3SeP40AAAwI4a1tc6u7ppYv9u3ryp+R4ICQnBwoULERYWhuHDh+t9nXYXtDFzvz2r6WzWlpJZjFc2JRr9OkEiRU7cD7iRlYYzZ87o7CsqKtLbpmbRU2qJFBAk8HoiCoKTGwrjdqJHjx7YuXMngoKCIAiCSb9IqXE8DxFR49esCsq/hDw5zd8AABxrSURBVAbgL/cKg6ce9sNTD/sBAAYu2W+0mDTmpX7t8FzvAK0tTnh7/FAAwPLlyzVb165dC6Dq5r1o0SLNdktu2Mp7g5ff+j4JOcUKRIUH1ek81R2+nI3wLrXP9KspRchOKkAQgI2xqbieXwqIIsb18sfYnv5Wuca60F7XamrTy9QtJzTb7KQCxj7SFmdv3MH5GgZsa39O27ZtER0djejo6FqvL6hVCwzq5INjV3Otmimt7oJefOIIunXrhqIi/SfsX331FaZPn44ePXpotln7KbWqJB8ff/wmOne+3/jE8TxERE2LIIqGRnQ3XS9sTKi3G7f86m589NFHBo+Jj4/XvPrdfjzdqtnBS8aFWPwK8HJmEf6yLg6n3hlRY865v4cTfp0zWJMiZCjn3JBT/xgOTytELtZFiaIS3WP2QETV3EbtIdlq1ZteUjKLNftGdm+Nzyf2xj92JWFLguEYQwHAuZiIOr+qv55XiuHLDhl8nV5XDjIJ9kUPQYBX1QD4AQMG4O5d/SUfLVq0wMWLF+Hn52f16xBFEVDexeH5j6Odj2uNxzaGZjQiIqqbZvfT+qOxIRi+7JBVC0r1+JIArzDs2bMHJ06c0DsmMjISFy9eRFaJ0qQCzBympLXUxliedHWmpAhVJ5UIOJ6WjxHBret8fZbQjv8zp+lFbXyfAJRVKPHf07eMfoal8X8BXs54f3SwVX/R0O6CDg0NxbBhw/Drr7/qHVdUVITAwECsXr0aBxBscJKBsTShT557uNqT+irqJCFBECDI7PCP/ybrDX+vjuN5iIhsV7MrKOvzxl1eXo6kJP3zurq6YsaMGTh27Bh6Ptoflz4cWeNTQDVj6xTb+7hgQqgc/Tp6o52XM1SiWKdB7NpMiaU0N0VIKhHgZCdF73ae6N3O06Lrs9TQLi2xOf4azP09oo27IwYFtcSu0zdRpDA899Fa8X+RoXLkFCuskjVuqAt6xIgRSEpKws2bN+Hv74+RI0fC1dUV58+fR0ZGBmYtWAi/V9fonaumNCEAKKtQ4q8b4nW2lWutQRUh6A1/JyKipqXZFZRA/d247ezssGDBAuTn52P79u3IzMxEmzZtsGrVKowcORIpV6/hf8mZmPBo7a+na1qnOCjIB4895IvvT93A2RsFkEkEPPVwG3Q2ME7o9OnTmDJlCi5cuIDnn38e06ZNQ//+/XVGtpgSS2luitDTD7fBygm9NH/emXgdo0LaPLBXmC63T0Elehndb6zp5XZBOTr+/Zcaz23N+L+o8CD4uDpomrWs2QUdHR2NOXPmYM2aNRg1ahQCAwN19285hl3nciEKurNUa0oTAqoGqBtKFap+bVvi0xEzmln3RERNkfXiM2xMVHgQ/jkuBA4yiUmverVJJQIcZBIsGReCWeGd7m+XSvHee+9h+fLlSExMRHBwMNasWYNx48bByckJP/ypxCd7L9Z6fn8PJ8yLeAjv/vecwf0/nrmF4csOYc3BPxF7JQcHU7Ix//skpGTcb7ooLCzE7Nmz0atXL5w6dQrl5eXYunUrBg4ciK5du+Kzzz5Dfn5Vx7spsZTmpggdSsnG06tiMWF9PJbuuYgnure26jIDc32z4TOUpZ6EqDT8lLGupBIBgzr5WPXJW2SoHPuih6B/B2/NZ9R2DQDQv4M39kUPqXE9rSAImDVrll4xCQAnbyv0ikl1mtA7Rr4XTaVUiTiQkmXROYiIqPFqlk8o1SJD5RjQ0adexpf4+/vj3Dndm/CBS1kmvXKtbZ2iOgFFm1IlIvbPHHRu3QK7du3C1KlTkZubq5PYolJVNVpcunQJs2fPxuzZs+Ht7Q3fbmHAgJlGr6cuKUKF5ZVIulkAAIi7mov03FKs+msvWIO5zRvnzp1DYmIiZJevo82ra2wi/q+hu6ANDX83NU3I0U6K4wuGwcvFAVlF5dh7PhOf/paCgjLd79P03FKUKCrZaENE1AQ1+5/sDXXjNuW1MmD+OkVtXVu3QHZ2Np599llN8VgbOzs79OnZA4drOMYaKUKnb9T8SrQ2dU0SEkURS5cuhSAIqCzItLn4v4YaAG/oKbUpaUIXbhfhwu0LmqH/Ye298MrA9hjQ0QejV8eitEJ7LSWQllvCxhsioiao2ReUavV94zbltbK56xS1je8TgH4dffD3RR/DlElQwcHBWL9+Pfr166cZq2OMNVKE1K9vgaoir7CwEO7utRcWdUkS6hvogWFumUg8uAc//fQTbt26351dfHYvZC284D5oEiCKgA3F/9VnF3RFtTFBpqYJbTyaqvPn2Cs5SL5ViLWTemNCqFxvf/XPISKipoEFpQH1ceM25UZq7jpFtaGdW+KDMcH4Oek2nnvhVcyLmopt27Zh9erVSE5OhiAImiLT2dkZixcvxsyZMyGTVf3nd3GQ4YW+7TTpMJakCP31UTlCA71w5HI2bheUw8leikcDvfBy/0AAVcXk8uXLMW/ePKxYsQK9evVCWFiYwVfQdU0Siruai2NKoOB4Ogpv6Y76adGiBYa1vgtfnzv4Pd8TlWLt59XWVOP/tIey1zVNSG3P+QyUKCrRU+4BHDX+OURE1HSwoGwgtd1I67JOEQAGB/lg7aTeiL2Sgzk7TmHXzAFwd3fHjBkzMH36dCQmJuKLL77At99+i2HDhmHlypXw8/PT+/wPxtyPhbQkRehiRhEee8gX8yIegqeLHZQqEak5Jfh068/41/9NRlFRkWa49qxZswAAN27cQNu2bXXOY43oP8+IKMCxKvoPAFasWIFZs2ZBKpUCMO3pp1pTj/8L9HaBgKqnvXVJE6pOEKq6v3W23fscIiJqelhQNhD1DduYuqxTHBzkg3Uv9EFCai5mbDmJSqWoc8MWBAGhoaEIDQ3Fhg0bary+y5lFeHx5TSspDfyd3v5Zb9vJ9Hy8+m/9bOmb62ehMk9/aLhUKtVb71kf0X8eeRcQFRUFieR+Yc/4v/u0h79nFysQuS5O75jqaULGPNm9DZztZTiVrrtu1tLh70RE1Hjxp3sDUd+wC8v1O7QB89cpDrpXTB5Py8PUzSdQoVShnQU37PrOk5626z8IDw9HZaXu2B6lUolhw4bhjz/+gIeHB67nlVo1SUgURXg+Ph0T3K7oFJPaGqrxpbEL7+KLzQnXTE4TauvhhBXjH8GPZ29r1giHtffClAHtcSmjCNu1lm5Ya/g7ERE1Ts3jTtlIzBraCYnpVbMfLVmn2KedJ9ZN6oPsIgXWHPwT3dq4QSIRMNLCaMP6jaV0xvr16zF58mS9Yy5fvgy5XI74+HgsjisyK/oPAIL93PD2yK7oGeABpUrEsT9zseiX87ieX1b1pFIixVWfviZdb3OO/5sYJsfXcWkmH19Ufhc5xRV4dWB7+Lg6QCIBbt4pw9fH0rD6wBWdNZbWHP5ORESNjyCa0hJM9aqmdYppi0fpRS/OGRaEOcM718u1bD+ebtVYyiXjQjTNK9u2bcPEiRP1jpFIJBBFETIvf/i99rne/lZuDvhtzhCUVijRwlGmU1B2bOmCXTMH4PztQnx+6E84yKR4Y3hnuDvZ4cmVR5BXcv/V7L7owU32lbW1vLAxod6eUteW5U1ERLaLBWUDs4UbtiUNMdreHNFFJ0mosLAQe/fuxY4dO/Ddd9/hp59+wvDhw2Fvbw+FQoHJq37BsWwZUC2tZcOLfSCK0ET/aReUqyb0RL8O3hjyyUEU38vabuvhhAP/NxRfHk3FP3+tSiaSSgS8ENaO0X+1uJ5XiuHLDkFhxfE+DjIJ9kUPaXKNTEREdB9neDSwj8aGQGZm1GNtrJ3WUh+xlADg5uaG5557Djt37kRaWhqefPJJ2NvbAwAcHBxwU+WhV0zWFP0nlQgY9lAr/JqcoSkmgarXrvFXczEiuJVmG6P/TBPg5Yz3rVx01/fwdyIievBYUDYwW7lh13eetFyuu78u0X/tvJzhZC/FhQz9oeoXMgoR6OUCB61xTeroP6pZZKgcc0dYZ0lFQw9/JyKiB4NNOQ9AZKgcOcUKq71Wrq8bdkOO1alL9J+Hc9XTzQIDI2wKSu9CIhHg5mSH7HupQ4z+M11UeBB8XB00g+U5/J2IiGrCgvIBsaUbdkOM1alr9B9QlaBofGfNn0PGRYbKMaCjj8nD3yUCoBKBsEAvLHn2Yb7mJiJqRlhQPkDm3rAbQ1pLfY3VqUv03517TyY9XOz1zufubAeVStSb+8noP/OY8pRaTf2tG3c1F5M2JiC8iy8mhskR1Iqd9URETR27vBuJ5p7WUqKoRPeYPRAB+Hs4IXb+YzUevzc5AzO2ncS59yLw3ckb+Ee1pp1Nk0MR4OWMx/51SLNNAHAuJqLZDCqvD9fzSjH/u7M4djVX80TSGPUvQIM6+TTJuEoiIrqPBWUj1FzTWoZ8fADX8krhIJOgZ4CH3v7q0X8pmcVYNaEnwtp7Y+gnB1BSUTVI28/dEQfmDsWXsalYsueS5uvbeTvj0NzwBvv7NDXbj6dbtETj/dHBiOSaSiKiJqnpVyk2qLmmtZgb/QcAy/al4L+zBuLLl0LvDTaXIPrxzsgvuYv1sama4xj9ZxlLZpMq7xWgb32fhJxiBaLCg6x8dURE9KBxQRk1GhPD5GYPfP8zuwSR6+JwVyVizcRe+Pj5HriWW4q/rIvTSclh9F/dbT+ebpWJBADwyd4U7DiebpVzERFR48FX3tSo2EKSUHPC5BwiIjIFn1BSo2ILSULNyYIfklBppLgf3ycAaYtHITkmosZz7JjaF2mLR2kG+leqRCz4wXp58URE9OCxoKRGxVaShJqDy5lFOHIlx+DT4lZuDvj7k12RUaCfYKTtxX7tEOjtorNNqRJx5EoOrmTpJxwREZFtYkFJjQ6j/xqHrQnpRiM3Fz0TgoTUPMReyTb69f4eTpgX8RDeNZLDviWeaymJiJoKFpTUKEWFB+Gf40LgIJPUmiNenVQiwEEmwZJxIZgV3qmerrDpO3Apy+DTyWceaYuw9l54x0ChqO2jcSGIvZyDPecz9fYpVSIOpGRZ7VqJiOjBYkFJjVZkqBz7ooegfwdvAKi1sBRVVXMo+3fwxu5ZA9C9rTtOpecj+VYBShSV9X69TUmxohLpeaV6271d7PHuU92wZM8lZBQaf909vk8AHvH3wLu7jRed6bml/O9CRNREcA4lNWqmRP+pk4TyUk7A3d0D6XnOeGLFEf1jvJwZB2iia7klBuMVPxzTHVezi7El/prRr1Wvr1z8vwvIKlIYPU4EkJZb0ixnrhIRNTUsKMkmBLVqgZjRwYhBsF6SkEwiYOHPF3DNuysKVUoIBp6siQCu5ZVic8I1fB2XxjjAWlQYGBP0RHBrDOvqi1ErY2v82kXPhODC7UL85/j1On0OERHZHr7yJpujThLqKfdE0s0CjF59FMeu5gIABIm0xq9Vrwk8djUXw5cdwnYO2TbIXqb7o8HZXooPxwRj07FryCosh5ujDG6OMthJq45zc5TByU6Kkd1bY0jnllj860XNMW6OVb+32kklcHOU6YyFqv45RERkmzjYnGyWJXGA2uaO6Mw4wGpKFJXoHrNH89rb38MJsfMfq/Fr9iZn4PztQswZXnOH/tTNidh7PhMCgHMxEc0ip56IqKnjT3KySdaOA2zp6sDxQlpcHGSQeznj2r3lA9nFCkSui9M7bsbQjghr742Xv/oDeaUVKFUoEX/vabG27VP7YU9yBr46mopLmVXzJ+XeziwmiYiaCP40J5tzPa8U7+1O1ts+vk8Aljz7MEoUlQiO2aPZ3qedJ57r7Y9gP3d0buUKB5kUA5fsx407ZZpj3t2djP4dfbimUkt4F19sTrgGpUqEolKF+NQ8vWOe6+0PpUrU2af971VbRmG55jipREB4Z9/6uXAiImpwXMBENsdQHGBNyS0DOvlgYCcf3LpThpPX7hg8J+MA9U0Mk1s1U12bUiViUl8+ESYiaiq4hpJsyuXMIjy+/LDe9g0v9oEoAgVlFRjZvY3OE0pBANTf5a8N6oC/P9lV7wml2r7owejky5FCas8s34dTt0ogSK33MkMqEdC/gzc2vxJmtXMSEdGDxSeUZFMMxQHWltxi6q9MzSEOsERRieRbBSYPfPdJ2weolLDm750yiYCPxoZY7XxERPTgcQ0l2ZTqcYCmJreYQh0HGINgSy+zUdEMhb+UhfQ8A0PhjQx8r6iowM4v10BsfwreT/7NatfzwehgrlUlImpiWFCSzTAUB2hKcos51HGATaH7+HpeKRb8kIQjV3IglQgG10NWH/g+oKM3xrYtQ+KhPdi0aROKioqAs3shdfWEx+AXIIoiBMG8bHVtb47owm56IqImyPbvmtRsVI8DNDW5xRxNJQ5w+/F0vLc7WdO8VFtzjXp/7OUsHLlYiYL9Z1CYkaHZ38+tAAEe2ThY5AulWPv5tEklAmQSAR+MDmYxSUTURLGgJJuhHdNnKLkFgE5yy12liLK7Sos+xxZZMvBdkEgBQQLPiCjA0Q2FcTuxdu1aTJs2DYBpTz3V1Pv7d/BmzCURURPHgpJshnZMn5ezPVq2cMTUwR0wdXAHvWPPvheBvckZmLrlhEWfUxfVs8YDvV0a7BW6NQa+q19pew55EZKKYkycOFGzL8DLGZtfCbu/LjMlC+m5BtZlejsjvLMvJvWVs2ueiKgZYEFJNiPQ2wUCql5Lm5rcYi7h3ueYq66NL9Zk7sD3l/sHYkwPP7TzdoGLgxQ5xRU4eS0fn+2/jMtZxRBFEZ7DpyK/QgLXaucMatUCMaODEYPgB1pAExFR48Cf+mQztOMAzUlu8XKxR1h7LwDAQ62rirmhXVoit6QCeSUVSNA6Vh0HuGLFCiQnJ2Pt2rWQSIw/saxL48ugTj718gq4toHvLRx1/3f3dLbDwZRsXLj9JwrK7kLu5YzpQzpi18wBeHpVLK7mlACCDAt+SKpxZqSLg8zm15wSEZFlWFCSTdGOAzRVZ19XfD6xt862hc9UzUGMv5qLyPXxAAABInq1ckBKSgrmz58PhUIBAJg8eTLs7e3Rq1cvnQ7nuja+HLuai+HLDuH90cGItFKTyuXMIhy5kqO3fdEzIUhIzdMMfNe2bN9lnT8npObhZPod/P7GEIx5pC2W7UuBSgSOXMnBlawivromIiKjmJRDNsVYUo613Fw/HZW5NwzuO3fuHIKDq2ZUWtL4om3uiM6ICg+y+Dwxu5P1Cu1nHmmLD8cE4/FlhzF3RGe9BCFDPJ3tcOqdEfj0t0v4bP8VAFXNNS+EtUPM6KY1n5OIiKyHSTlkU4JatcCgTj56aTmWkkoEhAa4wlFhOOs7ICAAXbt2BWCdxhe1T/amYMdxy9N5LBn4LhEAe6kEHVu6YMm4h5FdpMA3J+4X1eqB70RERMawoCSb89HYEMisXFDKJAI+jQzFO++8Y3B/Tk4O8vPzjTa+WOLd3cm4Xm1guzksHfh+4f0nkLJwJH5/Yyg6+roicn08bhfoFqHqge9ERESGsKAkmxPg5Yz3rfz6VR0HuG3bNoP7y8rKIJfL8dLqX/UaX9TG9wlA2uJRSI6J0GyTCMArA9tj0+RQxL31GC68/wT2RQ/B/IgumtmZlSoRC35IMnjO3NxcREVFoXfv3pgyZQr27NmDu3fv6hxjbOD7W0bOWd24tccwds1RzN5xCiWKSmx/LQxBvrp93eqB70RERIawKYdsUmSoHDnFCqu8etaOA/zb3/6G8+fPIykpCXv37gUAjBkzBp6enkjJLMLVUgcA+gWlsW5qRzsp5gwLwo9nbmH78evIL6lAcFt3vB7eCcO6tsLTq2KhqFQZbHz55Zdf8NJLLyEnJweCIODkyZP46quv4Obmhueffx7jx49HeHg4CkvuP52sy8D35FuFAIBT1+9g3/lMHJwbjnkRXfDaZt0ZnrY+8J2IiOoPm3LIpml3WlszDlAURbz00kv48ccfkZqaCg8PD8TsTsa/49Ng6GM2vNgHoghNN7W6+UUiAG5OdrhTqvtUcWT31vh8Ym/M2XEau07f1Gl8KS4uxhtvvIH169dDEASIogh7e3tUVBieq2nn2x5+U1YCAPw9nBA7/7Ea/+61DXzf8VpfeLs6YPiyQzrbf359IMcDERGRQXxCSTYtMlSOAR19rB4HKAgCNm3ahMLCQri7VxVRBy5lGSwmn3mkLcLae2m6qbWpROgVkwBw5npV84+fuyOAqsaX3y9kwOnCT1i4cCGKi4sBVBW2AIwWkz4+Poj5YAE+Tqv6s6UD3z2d7dCldQskXsvX2V7Xge9ERNQ8sKAkm1dfcYCCIGiKSUONL4B53dTa+nf0AQCkZBVptqXnl+HtT2Mg3jV8HolEApVKBalUCmdnZ6xduxYTJkyAIAjY+fEBswa+t3CQYfMrYdh95iZSc0pRfleJDj4umDygPexlEqz4XXdGpXrgOxERkSG8Q1CTUZ9xgNUbX9TM6aZWa+XmgPlPdMGZG3fw+8X743gEQcCKL7ch69JJ/PLLLzh58qSmiASg+eeQIUOwadMm+Pv7a77W3IHvikoVLtwuxIRQOdp4OMFBJkF2kQLxqbmYvvVPXMkq1hwrlQgI7+xr8t+PiIiaHxaU1CRZOw7QUEOKupt61MpYk8/j7mSHr19+FICAqG0nUX0F88DBQ9Fz0lh8+OGHSEtLwzfffINt27bh9OnTcHd3x6JFizBz5kydxB4AmBgmx9dxaUY/d+63ZzH327P3/z5KFd42sQtcqRIxqa91En2IiKhpYkFJZAJ7me6Erbp0U7s5yrDllTC0cnPEXzfE43p+WY2fExgYiDfffBNvvvkmSkpK4OJifA2jeuD7sau5ZjUn1UYqEdC/gzdjF4mIqEbs8iYyQYmiEt1j9mhee5vbTe3mKMPWV/siwNMJEzckIPl2od7xAoBzMRF1fjV/Pa8Uw5cdgsKK430cZBLsix5itHmJiIgI4BNKIpO4OMgg93LGtXuNOeZ0U6uLSbmXMyZtNFxMApY3vqgHvr/1vWmvsk2hHvhORERUExaURCbSbnwxtZvaQSbBv6eEIbiNGz74+TxkEgE9Azw0x+eWVCA9r9RqjS/1NfCdiIioJiwoiUxUW+OLIS1dHfDIvQIy5mn9uMhvT1zH3G/PWrXxJSo8CD6uDvUy8J2IiMgQrqEkMsMLGxPqrfFl8ythVjsnULWm0tyB74M6+dQ48J2IiMgQFpREZrDFxhdrD3wnIiKqjgUlkZm2H0+3auPLknEhDfZ62doD34mIiAAWlER1surAZas1vswK72SFKyIiInpwWFAS1dH24+lsfCEiIgILSiKLsPGFiIiIBSWRVbDxhYiImjMWlERWxsYXIiJqblhQEhEREZFFJA/6AoiIiIjItrGgJCIiIiKLsKAkIiIiIouwoCQiIiIii7CgJCIiIiKLsKAkIiIiIouwoCQiIiIii7CgJCIiIiKLsKAkIiIiIouwoCQiIiIii7CgJCIiIiKLsKAkIiIiIouwoCQiIiIii7CgJCIiIiKLsKAkIiIiIouwoCQiIiIii7CgJCIiIiKLsKAkIiIiIouwoCQiIiIii7CgJCIiIiKLsKAkIiIiIouwoCQiIiIii7CgJCIiIiKLsKAkIiIiIouwoCQiIiIii7CgJCIiIiKLsKAkIiIiIouwoCQiIiIii7CgJCIiIiKLsKAkIiIiIouwoCQiIiIii7CgJCIiIiKLsKAkIiIiIouwoCQiIiIii7CgJCIiIiKLsKAkIiIiIouwoCQiIiIii/w/URCj9EODxRkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# set up the Rigetti Aspen-M-3 device\n", + "rigetti = AwsDevice(\"arn:aws:braket:us-west-1::device/qpu/rigetti/Aspen-M-3\")\n", + "\n", + "# access and visualize the device topology\n", + "# note that device topology can change day-to-day based on edge fidelity data\n", + "print(rigetti.properties.paradigm.connectivity.connectivityGraph)\n", + "nx.draw_kamada_kawai(rigetti.topology_graph, with_labels=True, font_color=\"white\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From the connectivity graph, you can see that qubits 11, 10, and 17 are connected in a line, and with the code in the next cell you can access their respective 2-qubit gate fidelities to make sure you have selected a high-quality qubit subset. " + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'fCPHASE': 0.9337939355722039, 'fCPHASE_std_err': 0.009613787561716118, 'fCZ': 0.9422746489035245, 'fCZ_std_err': 0.007187651208699537, 'fXY': 0.9887022319066467, 'fXY_std_err': 0.003682831114426735}\n", + "{'fCPHASE': 0.919371151695913, 'fCPHASE_std_err': 0.003625200733935161, 'fCZ': 0.9557165619080631, 'fCZ_std_err': 0.00549970432762644, 'fXY': 0.9739503289969474, 'fXY_std_err': 0.005178345557993867}\n" + ] + } + ], + "source": [ + "print(rigetti.properties.provider.specs[\"2Q\"][\"10-11\"])\n", + "print(rigetti.properties.provider.specs[\"2Q\"][\"10-17\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + " Note: At the time when you run this notebook the fidelity numbers may be different as QPU devices are periodically recalibrated\n", + "
    " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "After selecting the qubits and validating their gate fidelities, you can now construct a circuit and run it. " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : | 0 | 1 | 2 | 3 | 4 | 5 |\n", + " \n", + "q10 : -StartVerbatim-XY(0.79)-XY(1.57)-Rx(3.14)-XY(0.79)-EndVerbatim-\n", + " | | | | | \n", + "q11 : -|-------------XY(0.79)-|-----------------XY(0.79)-|-----------\n", + " | | | \n", + "q17 : -*************----------XY(1.57)-------------------***********-\n", + "\n", + "T : | 0 | 1 | 2 | 3 | 4 | 5 |\n" + ] + } + ], + "source": [ + "circ = Circuit().xy(10,11,pi/4).xy(10,17,pi/2).rx(10,pi).xy(10,11,pi/4)\n", + "verbatim_circ = Circuit().add_verbatim_box(circ)\n", + "print(verbatim_circ)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "DECLARE ro BIT[3]\n", + "PRAGMA INITIAL_REWIRING \"NAIVE\"\n", + "RESET\n", + "XY(pi/4) 10 11\n", + "XY(pi/2) 10 17\n", + "RX(pi) 10\n", + "XY(pi/4) 10 11\n", + "MEASURE 17 ro[2]\n", + "MEASURE 11 ro[1]\n", + "MEASURE 10 ro[0]\n", + "\n", + "Counter({'100': 659, '010': 119, '000': 112, '110': 93, '101': 11, '011': 3, '001': 2, '111': 1})\n" + ] + } + ], + "source": [ + "result = rigetti.run(verbatim_circ, shots=1000, disable_qubit_rewiring=True).result()\n", + "compiled_program = result.additional_metadata.rigettiMetadata.compiledProgram\n", + "print(compiled_program)\n", + "print(result.measurement_counts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As expected, the program is faithfully executed exactly as it was defined." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Defining verbatim subcircuits " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In some situations, you might only be interested in executing parts of your circuits verbatim, and have the compiler nativize and optimize the rest. The next example demonstrates how to do this. Let's get started by defining the subcircuit we want to execute verbatim." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "verbatim_subcirc = Circuit().rx(10,pi).rx(10,pi)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, define the part of the circuit you want to compiler to process, so you don't have to worry about nativizing gates. " + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "subcirc1 = Circuit().cnot(10,11).cnot(10,17)\n", + "subcirc2 = Circuit().cnot(10,17).cnot(10,11)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, put everything together" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : |0|1| 2 | 3 | 4 | 5 |6|7|\n", + " \n", + "q10 : -C-C-StartVerbatim-Rx(3.14)-Rx(3.14)-EndVerbatim-C-C-\n", + " | | | | | | \n", + "q11 : -X-|-|-------------------------------|-----------|-X-\n", + " | | | | \n", + "q17 : ---X-*************-------------------***********-X---\n", + "\n", + "T : |0|1| 2 | 3 | 4 | 5 |6|7|\n" + ] + } + ], + "source": [ + "circ = subcirc1.add_verbatim_box(verbatim_subcirc).add_circuit(subcirc2)\n", + "print(circ)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "DECLARE ro BIT[3]\n", + "PRAGMA INITIAL_REWIRING \"NAIVE\"\n", + "RESET\n", + "RZ(-pi/2) 10\n", + "RZ(-pi/2) 11\n", + "RX(pi/2) 11\n", + "CZ 11 10\n", + "RZ(-pi/2) 10\n", + "RZ(-pi/2) 17\n", + "RX(pi/2) 17\n", + "RZ(pi/2) 17\n", + "CZ 17 10\n", + "RZ(pi) 10\n", + "RZ(-pi) 11\n", + "RX(pi/2) 11\n", + "RZ(3*pi/2) 11\n", + "RZ(-3*pi/2) 17\n", + "RX(pi/2) 17\n", + "RZ(3*pi/2) 17\n", + "RX(pi) 10\n", + "RX(pi) 10\n", + "RZ(pi/2) 10\n", + "RZ(-3*pi/2) 17\n", + "RX(pi/2) 17\n", + "RZ(pi) 17\n", + "CZ 10 17\n", + "RZ(-pi/2) 10\n", + "RZ(-pi/2) 11\n", + "RX(pi/2) 11\n", + "RZ(pi/2) 11\n", + "CZ 11 10\n", + "RZ(pi) 10\n", + "RZ(-3*pi/2) 11\n", + "RX(pi/2) 11\n", + "RZ(3*pi/2) 11\n", + "RX(pi/2) 17\n", + "RZ(pi/2) 17\n", + "MEASURE 17 ro[2]\n", + "MEASURE 11 ro[1]\n", + "MEASURE 10 ro[0]\n", + "\n", + "Counter({'000': 869, '010': 84, '100': 20, '001': 19, '011': 3, '111': 2, '101': 2, '110': 1})\n" + ] + } + ], + "source": [ + "result = rigetti.run(circ, shots=1000, disable_qubit_rewiring=True).result()\n", + "compiled_program = result.additional_metadata.rigettiMetadata.compiledProgram\n", + "print(compiled_program)\n", + "print(result.measurement_counts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Inspecting the compiled program, you can see that the `cnot` gates were nativized, however, the two `rx` gates in the middle of the circuit remain unaltered, and were not removed by the compiler. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Programming verbatim circuits onto the Oxford Quantum Circuits device " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Oxford Quantum Circuits (OQC) also supports verbatim compilation. As mentioned above, a verbatim circuit does not allow automatic qubit rewiring. All qubits have to be allocated using the indices that exist on the device. The gates of a verbatim circuit have to come from the native gate set, and multi-qubits gates can only be applied according to the connectivity graph of the device. First, let's look at OQC's native gate set." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The native gates for the Lucy device are:\n", + "ecr\n", + "i\n", + "rz\n", + "v\n", + "x\n" + ] + } + ], + "source": [ + "# set up the OQC Lucy device\n", + "oqc_device = AwsDevice(\"arn:aws:braket:eu-west-2::device/qpu/oqc/Lucy\")\n", + "\n", + "# list the native gate set\n", + "print(\"The native gates for the\", oqc_device.name, \"device are:\")\n", + "for gate in oqc_device.properties.paradigm.nativeGateSet:\n", + " print(gate)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's check out the device connectivity graph to see what qubits are on the device and how they are connected. Notice that connections in the OQC device are unidirectional. This mean that two-qubits gates can only be applied one direction with verbatim compilation. In the topology graph, each arrow represents the direction that a two-qubit gate can be applied in verbatim mode. The tail of the arrow is the first qubit and the head is the second qubit. For example, `ecr(4,3)` is a valid gate while `ecr(3,4)` is not." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'0': ['1', '7'], '1': ['2'], '2': ['3'], '4': ['3', '5'], '6': ['5'], '7': ['6']}\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEuCAYAAADx63eqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA6s0lEQVR4nO3deViU1eIH8O/AAAMC4kKKYpqhopkki4IbKCCF+1buWl019eo1tbQ0bREzc+lWLmmZXJdSsNw3VEBNUQHFXBBwBQUFEVkHmJn394c5vyZ2GOYdZr6f5+l5bjPDzJfnEl/Oec97jkQQBAFERERGwkTsAERERLrE4iMiIqPC4iMiIqPC4iMiIqPC4iMiIqPC4iMiIqPC4iMiIqPC4iMiIqPC4iMiIqPC4iMiIqPC4iMiIqPC4iMiIqPC4iMiIqPC4iMiIqPC4iMiIqPC4iMiIqPC4iMiIqPC4iMiIqPC4iMiIqPC4iMiIqPC4iMiIqPC4iMiIqMiFTsAERHVPRm5hQiNSUF8Wjay5QrYyqRwbmqLEW6OaGRtIXa8ckkEQRDEDkFERHVDXHIW1kQkITIhHQBQqFCpn5NJTSAA8Glnj2neTnBpYSdOyAqw+IiIqFK2Rt1B0MF4yBVKlNccEgkgk5piQaAzxnq20lm+yuJUJxERVehZ6V1HQbGqwtcKAlBQrETQwesAoHflxxEfERGVKy45CyM3RqGgWKnxeH1LMywf1gk92zRGZl4Rlh+5gb1xDzReY2lmih2TPdHJ0U6HicvHVZ1ERFSuNRFJkCuUJR7/YtArKFaq4B50DLN2XMKSwR3R5gVrjdfIFUqsjUjSVdRKYfEREVGZMnILEZmQXuKanqWZKV5/xQErwxKQX6RE9N0nOHb9IYZ2bq7xOkEAwm+k43FuoQ5Tl4/FR0REZQqNSSn18daN60GpEnA7I0/92PXUHLRpYlPitRIAobGlv48YWHxERFSm+LRsjVsWnrOyMEVuYbHGYznyYlhblFwzKVeoEJ+aU2sZq4rFR0REZcqWK0p9PL9QCWsLM43HrC2kyC0s/fXZ8uJSHxcDb2cgIiIAwNOnTxEbG4vo6Gj1P82HfwyYNC3x2lsZeTA1kaBVIyvceZwPAGjvYIvEh6WP7GxlZqU+LgaO+IiIjFB2djYiIyOxcuVKjB49Gm3btkXz5s3xySef4P79++jfvz/279+PUa/3goW0ZFUUFCtx5GoaZvu3haWZKdxaNoB/hyb47eL9Eq+VSU3g7FDy2p9YeB8fEZGBy83NxaVLlzRGcsnJyejUqRPc3d3V/zg7O8PU1FTjazNyC9H9qxOlXuerb2mGr4d1Qo82jfEkvxhfHY4vcR8fAFhITXBmXh+92cOTxUdEZEDy8/PVJRcTE4Po6Gjcvn0br776Ktzd3eHm5gZ3d3d06NABUmnlrnZN3hKNsOsPy92mrCwSCRDQoQnWj3Wv+hfXEhYfEVEdVVBQgLi4OHXBRUdH4+bNm+jQoYN6FOfm5oZXXnkF5ubm1f6cuOQsvLXxLOSV2K7sn/Rx5xYubiEiqgMKCwtx+fJljZFcQkICnJ2d4e7uDk9PT/z73/9Gx44dYWGh3SnFTo710fJxDG7adoICphV/wV8szUywINBZr0oP4IiPiEjvFBUV4c8//9QYycXHx6NNmzYa1+ReffVVyGSyWs+zbNkyhISEYNrqX7Di2K06fzoDi4+ISETFxcW4evWqxkju6tWrePnllzWuybm4uMDS0lLn+Xbt2oVZs2YhKioKzZs3x+WULKyNSEL4jXRI8Ozm9Oeen8fXu509pvk46d1I7zkWHxGRjigUCly/fl1jdeWVK1fQqlUrdcE9L7l69eqJHRfR0dF44403cOTIEbi6umo89zi3EKGxKYhPzUG2vBi2MjM4O9hguCtPYCciMkpKpRLx8fEaI7m4uDi0aNFCYyTXuXNnWFtbV/yGOpacnAwvLy98//33GDx4sNhxtIrFR0RUQyqVCgkJCepRXExMDC5duoSmTZtqXJPr3LkzbG1txY5bodzcXPTs2ROjR4/GBx98IHYcrWPxERFVgUqlQlJSksZI7uLFi7C3t9cYybm6usLOzk7suFWmVCoxZMgQvPDCC9i4cSMkEonYkbSOxUdEdUZWVhbWrl2LDz74AGZmtb/3oyAIuHXrlsZILjY2FnZ2dhojOVdXVzRs2LDW8+jC3LlzERsbi8OHD9fo3j99xuIjojrhzz//xOuvv46HDx/iwoUL6Ny5s1bfXxAE3LlzR+MWgpiYGNjY2GiM5Nzc3NC4cWOtfra+2LhxI1asWIGzZ88aTJGXhjewE5HWZeQWIjQmBfFp2ciWK2Ark8K5qS1GuFVvxd+WLVvw3nvvIT8/H/Xq1UN0dHSNik8QBCQnJ2sUXHR0NGQymXoUN2fOHLi5ueGFF16o9ufUJcePH8cnn3yCU6dOGXTpARzxEZEWxSVnYU1EEiIT0gFAY2Pj5/d4+bSzxzRvJ7i0sKvw/YqKijB9+nRs374d+fn56sfHjx+P4ODgSmUSBAH379/XGMlFR0fD1NQUHh4eGiM5BweHKn2/hiI+Ph7e3t7YuXMnvL29xY5T61h8RKQVW6PuIOhgvNZ29Xjw4AECAwORmJioUXoA4OTkhMTExFK/LjU1tcRITqVSaexd6e7ujmbNmhnkwo2qysjIgKenJxYsWIC3335b7Dg6weIjohp7VnrXUVCFTYyf7ePYvtTyi4yMxODBg5GbmwuFouSJ3mZmZsjJyUFWVlaJkVxRUZHGzeDu7u5wdHRkyZWisLAQ/v7+6NatG5YtWyZ2HJ1h8RFRjcQlZ2HkxigUFCs1Hh/v1RLDXR3RrqkN9sU9wNzQyyW+9p879wuCgOXLl+Ozzz5DQUFBmZ8plUrRsGFDFBUVlRjJtWzZkiVXCYIg4O2330Z2djZCQ0NhYmI855JzcQsR1ciaiCTIFcoSjz/MLsT34Uno1cYeMrPSf6nKFUqsjUjC+rHuyMnJwciRIxEREVFu6QGAiYkJZsyYgQULFrDkqmnZsmX4888/cfLkSaMqPYDFR0Q1kJFbiMiE9FKv6R25mgYAeLV5fTjUL/0EAUEAwm+k43D4aYwaOgDZ2dlQqSqeLi0qKsL169dZetUUGhqKdevWISoqSi/2BNU146p5ItKq0JiUGr+HBMC2szehUqlgYmJS6V/E586dq/FnG6MLFy5g6tSp2LNnD5o1ayZ2HFGw+Iio2uLTsjVuWagOuUKFxi+74OnTp0hJScGGDRswfPhw2NnZoV69emWeN3f37l3I5fIafbaxSU5OxuDBg/Hjjz9qfQOAuoTFR0TVli0vueKyeu9TDABo0qQJRo8ejZCQEGRmZuL8+fNYunQpevToAQsLC9ja2sLU9NkJ4DKZDJcvl1wwQ6XLzc3FgAED8P7772PQoEFixxEVi4+Iqs3aXDu/QmxlJffdlEgk6NChA95//32cOnUKT58+xZ49ezB79my0bdsWeXl5uHHjhlY+39AplUqMGjUKHh4emDNnjthxRMfFLURUaYIgICEhAUePHsWRI0dwPscWtt1HQyGUXGRiaiKB1EQCUxMJTEwksJCaQKESoFRproSRSU3g7GBT4WdbWFjAx8cHPj4+WL58ObKysoxyYUZ1fPjhh8jLy8OaNWu4IAi8j4+IKpCVlYXjx4+ry06pVCIgIAB9+/aFq5c3+m2ILfU63yzfNpjl11bjsW+OJeCb45o7rlhITXBmXh+9P7W7rtqwYQNWrlyJqKgoNGjQQOw4eoHFR0QaFAoFLly4oC66K1euoEePHujbty8CAgLg7OysMWqYvCUaYdcflrtNWVkkEiCgQxOsH+uuxe+Anjt27BjGjh2LU6dOoU2bNmLH0RssPiLC3bt31UV34sQJvPjii+qi6969e5krK4Gyd26pjH/u3ELaEx8fj169eiEkJMQoNp6uChYfkRHKzc1FZGQkjhw5gqNHj+LJkyfw9/dHQEAA/Pz8qnxKgbb36qSaeb7x9MKFCzFx4kSx4+gdFh+REVCpVIiLi1MX3YULF+Dh4aEe1bm4uNR42yptn85A1VNYWAg/Pz/06NEDX375pdhx9BKLj8hApaWlISwsDEeOHEFYWBgaNGigLjpvb29YW1tr/TMvp2RhbUQSwm+kQ4JnN6c/9/w8vt7t7DHNx4nTm7VAEARMmDABeXl5CAkJMbo9OCuLxUdkIORyOf744w/1qO7evXvo06cPAgIC4O/vj1atWuksy+PcQoTGpiA+NQfZ8mLYyszg7GCD4a7VO4GdKmfp0qX47bffcPLkSVhZWYkdR2+x+IjqKEEQEB8fry6606dPo2PHjupRnYeHB6RS3qprLEJCQjBnzhxERUUZ7R6clcXiI6pDMjMzcfz4cXXZSSQSBAQEICAgAH369OF9Wkbq/Pnz6NevH8LCwvDaa6+JHUfvsfiI9JhCocC5c+fURXf9+nX07NlTfQN527ZtuROHkbt37x68vLywbt06DBw4UOw4dQKLj0jP3L59W1104eHheOmll9RF161bN1hY8BoZPZOTk4MePXpg/Pjx3IOzClh8RCLLyclBeHg4jh49iqNHjyI7O1t9nc7f3x8vvPCC2BFJDymVSgwaNAjNmjXDDz/8wJF/FbD4iHRMpVLh4sWLOHLkCI4cOYLY2Fh07dpVParr1KkTf4lRhWbPno24uDgcPnwYZmYlT7egsnHJF5EOPHjwQD2iCwsLg729Pfr27Yv58+fD29ubS8+pSn744QccPHgQZ8+eZelVA0d8RLWgoKAAp06dUu9/+eDBA/j6+qpHdS1atBA7ItVRYWFhGDduHE6fPg0nJyex49RJLD4iLRAEAdeuXVNPX545cwYuLi7qonN3d1efHE5UXdevX4e3tzdCQ0PRq1cvsePUWSw+omrKyMjAsWPH1FOYZmZmGvfU1a9fX+yIZEAyMjLQtWtXLFq0CBMmTBA7Tp3G4iODlJOTgwULFuCzzz7T2k3dxcXFOHv2rHr6MiEhAd7e3upRnZOTExelUK14vvF0z549sXTpUrHj1HksPjI4jx49gre3NxITExEcHIwxY8ZU+71u3rypnr6MjIyEk5OTuui8vLxgbm6uxeREJT3feDo/Px87d+7kxtNawOIjg3Lz5k306tULjx49gkKhwNChQ7Fr165Kf/3Tp0/V99QdOXIEBQUF6nvq/Pz8YG9vX4vpiUoKCgrC7t27ERkZydW/WsLiI9Fl5BYiNCYF8WnZyJYrYCuTwrmpLUa4VW0n/9jYWPj6+uLp06d4/mNta2uLrKysMqcglUolYmJi1DulXLp0CV5eXupRXceOHTl9SaLZuXMn5s6di3PnzlX5cGAqG4uPRBOXnIU1EUmITEgHABSWcnabTzt7TPN2gksLu3Lf6+jRoxg6dCjy8vI0Hre2tsbp06fh4uKifiwlJUU9ojt27BgcHBzURderVy9YWlpq7Xskqi5uPF17WHwkCm2e1r1161ZMnjwZBQUFJZ4zNzfHwoUL4eHhoR7VPXz4EH5+fuotwRwdHbX0XRFpx/ONp9evX48BAwaIHcfgsPhI556V3nUUFKsqfvFfLM1MsCCwfYny++qrr/DZZ5+VWnrPmZiYoHv37upRnaurK++pI72Vk5OD7t27Y+LEiZg9e7bYcQwSi490Ki45CyM3RqGgWKl+zNzUBF8M6ojuTo1gZ2WOe4/zsPzIDUT8NQX6nKWZKXZM9kQnRzuoVCr85z//waZNm5Cfn1/uZ5qbmyMzMxP16tWrle+JSFu48bRucF0s6dSaiCTIFUqNx0xNJEh9WoCRG6Lw6mdHsCIsAd+PdoWjnea1NrlCibURSSgqKsLQoUOxcePGCksPAGQyGU6ePKnV74OoNsydOxdyuRxr1qxh6dUiFh/pTEZuISIT0ktc0ysoVuKb44lIySqAIAAn4h8hOTMfHZtr7nwiCED4jXS81rUH9uzZg8LCwkp9bk5ODvbu3autb4OoVqxfvx6HDh1CSEgIN56uZSw+0pnQmJRKva6xtTlaN66HxEc5JZ6TAOj73mJ8+umnGDhwIJo1awYzMzPY2tqWeUCrIAjYv39/TaIT1aqjR4/i008/xf79+7W20xCVjccSkc7Ep2Vr3LJQGqmJBN+81Rm7YlNwMz2vxPNyhQoSu+ZYPKWf+rGcnBxcunQJMTExOHXqFC5cuIDU1FRYWVmhqKgIcrkcqampSE5O5qkIpHeuXbuGsWPHIjQ0lKct6AiLj3QmW64o93mJBFj95msoVqqwaO/Vct6nWOPfbWxs0LNnT/Ts2ROzZs0CAOTl5eHy5cuIjo7GH3/8gUuXLuHRo0csPtIr6enpGDBgAL7++muetqBDLD7SiaKiIigLSk5d/t3yoZ3Q2NoCEzefh0JV9mJjW1nF1z/q1asHLy8veHl5YcaMGVXOS1TbCgsLMWTIELz11ls8bUHHWHxUK+7fv4+oqCicPXsWZ8+exaVLl+Do/zbMOwaiSFmy1IIGd4TTC9YY89O5cqdDZVITODvY1GZ0olonCAL+9a9/wcHBAUuWLBE7jtHhfXxUY4WFhYiNjVUXXVRUFPLz8+Hp6akedXl4eKBQYo7uX50oUWzN7Szxx7w+KCxWaoz0Pt79J/ZceqDxWgupCc7M61OlPTyJdC0yMhIpKSllngyyZMkS7NmzhxtPi4TFR1UiCAKSk5M1Su7y5cto166duug8PT3LPJtu8pZohF1/WO42ZWWRSICADk2wfqy7Fr4Totrz+uuvIywsDDNnzsTKlSs1jhLixtPiY/FRuQoKChAbG6uesoyKikJxcbF6JOfl5QV3d/dK74pS2s4tlfX3nVuI9JUgCKhfvz5ycnJgZWWFXr16YdeuXbCyssK5c+fQv39/HDt2TGPjdNItFh+pCYKAu3fvapTc1atX0aFDB43R3EsvvVSjXSW0uVcnkb65ceMG3Nzc1CeFyGQytGrVCsHBwRgyZAg3ntYDXNxixPLz8xEdHa0uubNnz0IikahHciNGjICbm5vWr0E8Ly9tnc5ApE8iIiLw9/GEXC5HYmIiunXrhpkzZ7L09ABHfEZCEATcunVLo+Ti4+PRsWNHddF5enrixRdf1NkegZdTsrA2IgnhN9IhwbOb0597fh5f73b2mObjxOlNqjMGDx6MPXv2lPqclZUVtm/fjkGDBuk4Ff0di89A5ebm4sKFC+qii4qKgrm5uUbJubq6QiaTiR0Vj3MLERqbgvjUHGTLi2ErM4Ozgw2Gu1btBHYisQmCgMaNGyMzM7PM11haWmLRokWYN28eN6IWCYvPAAiCgMTERI3RXGJiIlxcXNQl5+XlxQNXiWrZnTt30KFDh3LPhwSejfyGDRuGn376iRtSi4DX+Oqg7OxsnD9/XuOWAmtra/VobuLEiXjttdfK3LSZiGpHZGRkpQ45zs/Px9atW+Ho6IilS5fqIBn9HYtPz6lUKty4cUNjNHf79m107twZXl5eePfdd7Fx40Y0a9ZM7KhERu/w4cPIzc0t9zXW1taoV68e5s6di0mTJukoGf0dpzr1TFZWFs6dO6cuuXPnzqFBgwYaU5adOnWCubm52FGJ6B8cHByQlpZW4nFTU1OYm5vDxcUFH3/8MQIDAys1MqTaweITkUqlwrVr1zSmLO/duwc3NzeN++aaNGkidlQiqsCDBw/QunVrjQOSraysoFKpMGrUKMydOxcdOnQQMSE9Z/RTnbdv30arVq10sroqMzMT586dU5fc+fPnYW9vry65f//733j11VchlRr9/y1EeicjtxChMSmIT8tGtlwBW5kUzk1tMcLt2erjyMhIKJXPdiT6+3Tmv/71L9jZ2YkbnjQY7YhPEAQEBQVh0aJFOH36NLp166bV91cqlbh69arGLigPHjyAh4eHuui6du0Ke3t7rX4uEWlXXHIW1kQkITIhHQA0Nll/fr+pTzt7xG5Zhuiju9ClSxcsXLiQ05l6zCiLLz8/H6NGjcKxY8dQXFyMpUuXYu7cuTV6z4yMDI0pywsXLqBZs2YaU5YdO3bkfwhEdciz7fUqt8OQVCJgbAcrLB7TR3cBqVrqTPFVNM1QWXfv3kXfvn1x7949yOVyAEDfvn1x5MiRSr+HQqHAn3/+qbHS8tGjR+jSpYu65Lp27YpGjRpV+fskIv3APWUNl94XX2WnGaZ5O8GlhV257xUZGYmBAwciNzcXKtX/v4+dnR0yMzPLvM736NEjjZKLiYlBixYtNFZatm/fnqM5IgNR2ikiVz8N0HiNzMwUW6Lu4tN9VzUe5yki+k+vi68q0wzlbWQsCAK+//57zJs3r9QdFSwtLXHjxg20aNECxcXFiIuL05i2zMzMRNeuXTWuzfFiNZHhqujcSCtzU1z42A9vb76A83c0tyfjuZH6T2+XD1ZlmkEQgIJiJYIOXgcAjfIrLCzEu+++i99//73cbYSmT5+OJ0+e4OLFi3jppZfg6ekJX19fLFy4EO3atdM4SJKIDFdGbiEiE9LL/WP7jY5N8TivqETpAc9+H4XfSMfj3ELuNaun9LL44pKzEHQwvkTprX7zNXR/uREszU2RnluIHyJvYUd0svr5gmIVgg7Go5OjHTo52iEtLQ2vv/46EhISyi29goICPHz4EEFBQfDw8ED9+vVr7XsjIv0WGpNS4WuGuTrit9iyXycBEBqbgim9XtZiMtIWvSy+NRFJkCtKntC9NiIJ83ZdRpFShZft6+HXSZ64+uAprjzIVr9GrlBibUQS3m0noG/fvsjJyVHfW1OenJwc+Pn5afX7IKK6Jz4tW2MtwT81t7NE15ca4cNdl8t8jVyhQnxqTm3EIy3Qu/m78qYZEh/lokj57AdSEJ7907JRPY3XCAJw/PpDeHr7ISsrq1KlBwBJSUkaOy4QkXHKlivKfX5I5+aIvpOJlCfln8CQLS/WZizSIr0b8VU0zfDFoI4Y7uoIS3NTXLn/FOE3HpV4jamJCSYv2wSblHM4ePAgEhISYGlpWWI1599ZWlri4sWL8PT01Mr3QUR1k62s/F+LQ12bY13EzUq8D48b0ld6N+KraJrhkz1X8MqnhzF8/RkcvpqGolJeK1eoIGvyMpYvX44rV67gyZMnCAkJwezZs9GhQweYmZnB1tZWY8FKYWEhzpw5UyvfExHVHc5NbWEhLf1Xo+uLDdDUVoaDf6aW+x4yqQmcHWxqIx5pgd4VX0XTDACgEoDou0/gUF+GsZ4ty3if/59mqFevHvr27Yuvv/4aV69eRWZmJnbu3In3338fzs7OMDMzgyAICA8P19r3QUR103C3sg9sHu7aHIevpiGvqPxLKAKA4a48+Flf6d1UZ0XTDH9naiJBy4ZWZbxP2dMM1tbWCAgIQEBAAFasWIGcnBz88ccfsLS0rHJeIjIsja0t4N3WvtT7+D7efaXCr5dIgN7t7Hkrgx7TuxFfWdMMjeqZY0AnB1iZm8JEAvRq0xgDXZrhj5sZJV5b1WkGGxsbvP766/D29q5RdiIyDNN9nCCTVm8nJpnUFNN8nLSciLRJ70Z8w90csfpYQonHBQBju7ZE0OBXIZEA97MK8Pn+azh2veTiFk4zEFFNuLSwQ2AzOfbfN0ehovKbWz3bq9OZ25XpOb0rvrKmGTLzivDWxqgKv57TDERUU/v27cMvn0/DR5sOYe2Z1Bpvm0j6Re+KD3g2zXAqMUNjg9jK4jQDEdVEbGws3nnnHRw4cABdurjAu2NLrI1IQviNdEjwbNX4c883yu/dzh7TfJw40qsj9HaTah4JQkS6lpycDC8vL/z3v//FsGHDNJ57nFuI0NgUxKfmIFteDFuZGZwdbDDctWpHo5H49Lb4gKqdzqAqLoS76T1sWTQZVlalr/QkIipLdnY2evTogfHjx9f4YGrSb3pdfABwOSWrUtMMoZ9PQWbSRdjY2OCTTz7BtGnTWIBEVCkKhQIDBgxAy5YtsW7dujLP5iTDoPfF91xF0wxDhgzB7t27AQBWVlYwMzNTFyDvzyOisgiCgGnTpuH27dvYv38/pFK9XPpAWlRniq8iy5cvx8KFC1Fc/P87tjwvwEWLFmHq1KksQCIqYdWqVdi8eTNOnz4NW1tbseOQDujdDezV5eLiUmJqMz8/H0+fPsUnn3yCZs2aYfXq1ZDL5SIlJCJ98/vvv2PVqlU4cOAAS8+IGMyILzU1Fa1bty632KysrGBubo7Fixfjvffeg0wm02FCItIn58+fR79+/XD48GG4ubmJHYd0yGCKTxAE2NraIjc3t8LXmpubw9HREUlJSbyITWSE7ty5g27dumH9+vUYOHCg2HFIxwxmqlMikaBdu3YVvs7U1BQWFhZYvXo1S4/ICGVlZaFfv36YN28eS89IGUzxAUCXLl3Kfd7KygqvvPIKrly5wh94IiNUXFyMESNGoE+fPpg5c6bYcUgkBlV8Hh4eqFevXqnPWVpaYtKkSYiOjsaLL76o42REJDZBEDB16lTIZDJ88803nPExYgZ1w0qnTp00TlUHnk1tSiQSBAYG4ptvvhEnGBGJ7quvvkJsbCxOnjwJU9PqHTlEhsGgRnwdOnRAQUGB+t+trKzQqVMnREdH49y5czh06JCI6YhILDt37sTatWuxb98+WFtbix2HRGZQxWdpaYkmTZqo//fUqVNx/vx5uLi4YPv27Xj77beRkpIickoi0qWzZ89i+vTp2LdvH5o3by52HNIDBlV8wLMb2a2trfHbb79hxYoV6u2HevbsiZkzZ2LUqFFQKBQipyQiXbh16xaGDh2K4OBguLi4iB2H9ITB3Mf33L1792BhYaEe+f2dSqXCG2+8AXd3dwQFBYmQjoh05cmTJ/Dy8sLMmTMxbdo0seOQHjG44qvIo0eP4Orqip9++gkBAQFixyGiWlBUVISAgAC4urpi5cqVYschPWN0xQcAERERGDVqFGJiYtCsWTOx4xCRFgmCgIkTJyI7OxuhoaFcwUklGNw1vsrw8fHBtGnTMHr0aF7vIzIwS5YswbVr17B161aWHpXKKIsPAD7++GNIpVJ8/vnnYkchIi3Ztm0bfvrpJ+zbt6/MzSyIjHKq87mHDx/C1dUVwcHB8PPzEzsOEdXAqVOnMGzYMJw4cQIdO3YUOw7pMaMd8QFAkyZN8L///Q/jx49HWlqa2HGIqJoSExMxYsQIbNu2jaVHFTLq4gMAX19fTJ48GaNHj4ZSqRQ7DhFV0ePHj9GvXz988cUX8Pf3FzsO1QFGPdX5nFKphL+/P7y9vbF48WKx4xBRJcnlcvj7+6N79+5YtmyZ2HGojmDx/SU1NRVubm7Ytm0bevfuLXYcIqqAIAgYM2YMiouLsWPHjhIb1BOVhT8pf3FwcEBwcDDGjh2Lhw8fih2HiCqwePFi3Lp1C//73/9YelQl/Gn5G39/f7zzzjsYO3Ysr/cR6bHg4GBs3boVe/fuhaWlpdhxqI7hVOc/KBQK+Pr6wt/fHwsXLhQ7DhH9Q3h4OEaOHImIiAi0b99e7DhUB7H4SnH//n24u7vj119/hbe3t9hxiOgv169fh4+PD3799Vdei6dq41RnKZo3b46ff/4ZY8aMQXp6uthxiAjPNpjv168fvvrqK5Ye1QhHfOX46KOPcPHiRRw8eJAXz4lEVFBQgD59+sDPzw9ffPGF2HGojmPxlUOhUMDHxwf9+vXDRx99JHYcIqOkUqkwcuRISKVSbNu2DRKJROxIVMdJxQ6gz6RSKX799Ve4u7ujZ8+e6NGjh9iRiIzOggUL8ODBAxw7doylR1rB+bsKODo6YtOmTRg9ejQyMjLEjkNkVH788UeEhoZi9+7dkMlkYschA8Gpzkr68MMPcfXqVezbt4/X+4h0ICwsDOPGjcOpU6fQpk0bseOQAeFv8EoKCgrCkydPsGLFCrGjEBm8K1euYMyYMQgJCWHpkdZxxFcF9+7dg4eHB37//Xd069ZN7DhEBiktLQ2enp4ICgrCmDFjxI5DBogjvip48cUX8eOPP2LUqFF4/Pix2HGIDE5+fj4GDBiAd955h6VHtYYjvmqYM2cOEhMTsWfPHq4yI9ISpVKJESNGwMbGBps3b+Z/W1RrOOKrhi+//BIPHz7E6tWrxY5CZDDmzZuHJ0+eYOPGjSw9qlW8j68azM3NsWPHDnTt2hXdunWDp6en2JGI6rR169Zh//79OHPmDMzNzcWOQwaOU501sHv3bsyaNQsXL15EgwYNxI5DVCcdPHgQ7777Lk6fPo2XX35Z7DhkBFh8NTRr1izcuXMHv//+O6dniKooLi4Ofn5+2LNnD1dKk87wGl8NLV++HPfv38e3334rdhSiOuX+/fsYMGAAvv/+e5Ye6RRHfFpw69YteHp64sCBA/Dw8BA7DpHey83NRa9evTBixAhuAE86x+LTkl27duGDDz5AbGws7OzsxI5DpLeUSiUGDx6MJk2acAUniYLFp0UzZszAgwcPEBoayv+Yicowc+ZMXLt2DYcOHYKZmZnYccgI8RqfFq1YsQJ37tzBmjVrxI5CpJe+/fZbHD9+HKGhoSw9Eg1HfFqWlJQELy8vHD58GG5ubmLHIdIbe/fuxXvvvYczZ86gVatWYschI8YRn5Y5OTlhzZo1ePPNN/H06VOx4xDphZiYGLz77rvYvXs3S49Ex+KrBW+++SYCAgIwadIkcEBNhi4vLw+XL18u8/nk5GQMGjQIP/zwA7p06aLDZESlY/HVklWrViExMRHr168XOwpRrdq0aRM6d+6MDRs2lHguOzsb/fr1w/vvv4+hQ4eKkI6oJF7jq0WJiYno1q0bjh49is6dO4sdh6hW9O3bF2FhYbCyssKUKVOwYsUKmJiYQKFQYMCAAWjVqhXWrl3Llc6kN1h8teyXX37BokWLEBMTA1tbW7HjEGmVSqWCra0t8vLyAABWVlbo06cPduzYgdmzZ+Pu3bvYt28fpFLuh0/6g8WnA5MnT0ZOTg62b9/Ov3rJoFy+fBndu3dHbm6u+jFLS0vY2dnBzs4OUVFR/IOP9A6v8enAf//7X1y9ehUbN24UOwqRVoWHh0OhUGg8VlBQgNTUVGRkZODBgwciJSMqG4tPBywtLRESEoIFCxYgLi5O7DhEWrNv3z7I5fJSn8vIyECXLl0QERGh21BEFWDx6Ui7du2wevVqvPnmm8jJyRE7DlGNqVQqnD17tsznBUFATk4OAgMDsXnzZt0FI6oAi0+Hxo4dix49emDq1Km8v4/qvD///BMmJhX/CikoKMDkyZPx1Vdf6SAVUcVYfDr23Xff4dKlS9i0aZPYUYhq5MSJEyWu75XG2toaTZs2RevWrXWQiqhiXGOsY1ZWVti5cye8vb3RtWtXdOzYUexIRNVS3vU9c3NzSCQSeHt7Y968eejduzdXNJPe4O0MIgkODsayZctw4cIFWFtbix2HqEqUSiVsbW2Rn5+v8bi1tTVMTEzw3nvv4d///jdatGghUkKisrH4RDRx4kQIgoDg4GCxoxBVycWLF9GtWzfI5XKYmJhAJpOhdevWmD9/PoYPHw4LCwuxIxKViVOdIlqzZg08PDywefNmTJw4Uew4RGoZuYUIjUlBfFo2suUK2MqkcG5qixFujmhkbYHNmzdDLpfDwsICw4YNw9y5c7ktH9UZHPGJ7MqVK+jduzciIyPRoUMHseOQkYtLzsKaiCREJqQDAAoVKvVzMqkJBAA+7exhlhCO4odJ+PLLL9GwYUOR0hJVD4tPD2zatAkrV67E+fPnUa9ePbHjkJHaGnUHQQfjIVcoUd5vBYkEkElNsSDQGWM9W+ksH5G2sPj0gCAIGD9+PMzMzHibA4niWeldR0GxSuPxAZ0c8B/ftmhmJ0N6TiHmhsbhwp0nAABLMxMsCGzP8qM6h8WnJ3Jzc+Hu7o4FCxZg3LhxYschIxKXnIWRG6NQUKzUeLyHU2MsG/oqZvxyEZdSsvCCzbMFKw+zC9WvsTQzxY7JnujkaKfLyEQ1wuLTI5cvX4avry9OnToFZ2dnABUvMiCqqclbohF2/WGJ6c1d73XDjuhk7IxOLvNrJRIgoEMTrB/rXsspibSHqzr1SKdOnRAUFIQRI0bgp9+P4cezyWUsMkjD6mMJ8Glnj2neTnBpYSdSYqrrMnILEZmQXqL0TCTAq83r49j1h4iY6wMLqQmOXnuIpQeva/wsCgIQfiMdj3ML+YcY1RncskzPTJo0Cc79J2FccAzCrj9EoUKl8YsGAOR/PXb02kOM3BiFrVF3xAlLdV5oTEqpjze2toC51ARvdGyKET+cReC3p/CKgy1m9GlT4rUSAKGxpb8PkT5i8emZbefu4opZGxQqhHJX1gHP/touKFYi6OB1lh9VS3xadok/rABA/tf1vuCzd5CeU4gn+cX48fRt9G5nX/K1ChXiU3niCNUdLD49EpechaCD8SVW1j3XqpEVbnz+Ola/+ZrG4wXFKgQdjMfllKzaD0kGJVte+ibT2XIFHmQVaPzxVd7fYdnyYu0GI6pFLD49siYiCXKFssznPx/UEXEpT0t9Tq5QYm1EUm1FIwNlKyv7Mn9ITAomdGuFRvXMYSuT4t3uL+F4/KMy3sestiISaR0Xt+iJshYZPDegkwOyC4oR++gJWjYqeZM7FxlQdTg3tYWFNK3U6c7vTiSiYT1zhM/xQaFCif1/pmJNeMk/rmRSEzg72OgiLpFWcMSnJ8paZAAA1hZSvO/fFksOXC/3PbjIgKpquJtjmc8pVAI+2XMFnT4/Co+lx/HZvmulFqQAYLhr2e9DpG9YfHqirEUGADDHvy12XkhGWnbpZ589x0UGVFWNrS3g3dYe1T0qTyIBerez5ywD1SksPj1R1iKDDg626O7UGD/9cbuS78NFBlQ1491egImq7GvL5ZFJTTHNx0nLiYhqF6/x6YmyFhl4tm4IxwaWODOvDwDAylwKUxMJ2rzQA/2/P13K+3CRAVVednY25rw9Ap16vYV4y/ZlriguzbO9Op25XRnVOSw+PVHWIoPt5+9hX1yq+t8n9WwNxwaWWLjnSon34CIDqoq8vDz069cPbm5uWLP8fWw7d5enM5BRYPHpieFujlh9LKHE4/JiFeTF/78pcH6RAoUKFTLzikq8losMqLIKCgowaNAgODk54fvvv4dEIsFYz1bo5GiHtRFJCL+RDgmeXTd+7vl5fL3b2WOajxNHelRncZNqPVLWZsGVwc2CqbKKioowZMgQ2NraYuvWrTA1NS3xmse5hQiNTUF8ag6y5cWwlZnB2cEGw125OTrVfSw+PVLW8TCVYSGVIGRKN/4VTuVSKBR46623oFKpsHPnTpiZ8ZowGR+u6tQjLi3ssCDQGZZmVfu/RQoVCv7YBuHx3VpKRoZAqVRiwoQJyM/Px6+//srSI6PF4tMzYz1bYUFge1iamVZ4b5VE8uwg0E8HvYoV7w2Cv78/Dh06pJugVKeoVCpMnjwZqamp+O2332BhwelKMl6c6tRTl1OyqrzI4MyZMxg2bBgWLVqEqVOnipKb9I8gCJgxYwYuXbqEw4cPw9raWuxIRKJi8em5qi4yuHnzJvr164f+/ftj+fLlMDHhoN6YCYKADz/8EBERETh27Bjq168vdiQi0bH4DFBmZiaGDh2Khg0bYuvWrbCyshI7Eolk8eLF2L17N8LDw9GwYUOx4xDpBQ4HDFDDhg1x5MgRWFtbw8fHB2lpaWJHIhEsW7YMO3fuRFhYGEuP6G9YfAbKwsICwcHB6NevH7y8vHD16lWxI5EO/fe//8WPP/6I48eP44UXXhA7DpFe4VSnEdi6dStmz56N7du3w8/PT+w4VMs2bNiApUuXIjIyEi1bthQ7DpHeYfEZiZMnT2LEiBH48ssv8c4774gdh2rJli1b8NFHHyEiIgJOTjw1gag0LD4jcuPGDfTr1w9vvvkmlixZwhWfBiYkJAQzZ87EiRMn0L59e7HjEOktFp+RSU9Px+DBg9GiRQts3rwZMplM7EikBXv37sWkSZNw9OhRuLi4iB2HSK/xT34jY29vj+PHjwMAfH19kZ6eLnIiqqmjR4/iX//6F/bv38/SI6oEFp8Rkslk2L59O3x8fODl5YUbN26IHYmqKTIyEmPGjMHvv/8ODw8PseMQ1Qk8j89ImZiYICgoCC+//DJ69eqFnTt3wtvbW+xYVAVnz57FiBEjsGPHDnTv3l3sOER1Bkd8Ru6dd97Btm3bMGLECGzZskXsOFRJsbGxGDx4MIKDg9GnTx+x4xDVKVzcQgCAq1evon///pgwYQIWL14MSUVHQ5Borly5Aj8/P6xbtw5DhgwROw5RncPiI7WHDx9iwIABaNeuHX788UceXaOHbty4gT59+mDlypUYOXKk2HGI6iROdZJakyZNEBERgby8PPTt2xeZmZliR6K/uXXrFvz9/REUFMTSI6oBFh9psLKyQmhoKLp06QIvLy/cvHlT7EgEIDk5Gb6+vvjoo48wceJEseMQ1WksPirBxMQEX3/9NWbNmoUePXrgzJkzYkcyaqmpqfD19cWMGTN4wDCRFvAaH5Xr0KFDmDBhAr777ju89dZbYscxOunp6fDx8cGoUaOwcOFCseMQGQQWH1UoLi4OAwYMwNSpUzF//nyu+NSRJ0+eoE+fPggMDERQUJDYcYgMBouPKuX+/fsYMGAAXF1dsW7dOpiZmYkdyaBlZ2fD398f3bp1w6pVq/jHBpEWsfio0nJzczFq1CgUFBQgNDQUdnZ2YkcySHl5eXjjjTfwyiuvYO3atSw9Ii3j4haqNGtra+zevRvt27dH9+7dcefOHbEjGRy5XI7BgwejdevWWLNmDUuPqBaw+KhKTE1N8d1332HKlCno3r07Lly4IHYkg1FUVIThw4ejUaNG+Omnn3heIlEt4VQnVdvevXvx7rvvYsOGDdw6q4YUCgVGjhwJhUKBkJAQXkMlqkUsPqqRmJgYDBo0CO+//z5mz57NqblqUCqVmDBhAjIyMrBnzx5uFUdUy1h8VGP37t1D//790aNHD3z77beQSnnaVWWpVCpMmTIFSUlJOHDgAKysrMSORGTwWHykFdnZ2RgxYgRMTU2xY8cO2NjYiB1J7wmCgP/85z+Ijo7G0aNHYW1tLXYkIqPAq+ekFba2tti/fz9atGiBHj16ICUlRexIek0QBMyfPx9nzpzBoUOHWHpEOsTiI60xMzPD+vXrMXbsWHh5eeHixYtiR9Jbn3/+OQ4dOoQjR46gfv36YschMiqc6qRaERoaiqlTp+Lnn39G//79xY6jV5YvX46ff/4ZERERaNKkidhxiIwOR3xUK4YPH459+/Zh0qRJ+P7778WOoze+++47bNiwAceOHWPpEYmEIz6qVbdv30ZgYCBef/11rFixAqampmJHEs3GjRuxZMkSnDx5Ei1bthQ7DpHRYvFRrXvy5AmGDRsGW1tbbNu2DfXq1RM7ks5t3boV8+fPR0REBJycnMSOQ2TUONVJta5BgwY4fPgwGjRoAG9vb6SmpoodSadCQ0PxwQcf4OjRoyw9Ij3A4iOdMDc3x6ZNmzB48GB4eXnhypUrYkfSif3792P69Ok4fPgwOnToIHYcIgKnOkkE27dvx6xZs7B161b07dtX7Di1JiwsDGPGjMGBAwfg4eEhdhwi+gtHfKRzo0ePxq5duzB+/Hhs3LhR7Di14uTJkxg9ejR+++03lh6RnuGIj0STmJiIwMBADBs2DEuXLjWYY3iioqIwcOBA/PLLL/D19RU7DhH9A4uPRJWRkYHBgwejWbNmCA4OhqWlpdiRaiQ2NhZvvPEGfv75ZwQGBoodh4hKYRh/YlOd1bhxYxw7dgxSqRR9+vTBo0ePxI5UbVeuXEG/fv2wfv16lh6RHmPxkehkMhm2bdsGPz8/eHl5IT4+XuxIVZaQkICAgACsWrWKh/IS6TkenEZ6QSKR4IsvvkDr1q3h7e2NHTt2wMfHR+xYlXL79m34+flhyZIlGDVqlNhxiKgCHPGRXnn77bfxyy+/4M0330RwcLDYcXDmzBlERUWV+XxKSgp8fX0xf/58vP322zpMRkTVxeIjvdOnTx9ERkbis88+w+LFi1He+itBELBv3z4olcpayTJjxgz06tULR44cKfFcWloafH19MX36dEybNq1WPp+ItI/FR3qpffv2OHv2LA4fPoxx48ahsLCw1NctWbIEAwcOxP79+7We4fHjx7hy5QqKi4sxZMgQ7N27V/1cRkYG/Pz8MG7cOMyZM0frn01EtYfFR3qrSZMmCA8Ph1wuh7+/Px4/fqzx/C+//IIvv/wSALBs2TKtf/6+fftgZmYGACgoKMDIkSOxY8cOZGVloW/fvhg4cCAWLFig9c8lotrF+/hI76lUKsyfPx979uzBgQMH4OTkhDNnzsDPzw8FBQUAAEtLS1y6dAlt27bV2uf6+fnh+PHjGo/JZDI0a9YMAwcOxKpVqyCRSLT2eUSkGxzxkd4zMTHB8uXLMXv2bPTo0QM7d+7EG2+8oS49ACguLsaqVau09pn5+fk4ffp0icflcjnu3r2LNm3asPSI6iiO+KhOCQ0NxVtvvQVBEEoserGyssKjR4+0ct7fnj17MG7cOOTk5JT6vJWVFT7//HNe3yOqgzjiozqjsLAQy5Ytg4mJSakrPSUSCbZs2aKVz/rll1/KLD3g2Yhw0aJF+OKLL7TyeUSkOxzxUZ0gCAKGDx+OQ4cOaUxx/tNLL72Emzdv1mgaUqFQoEGDBsjNza3wtVZWVpg5c6Z6kQ0R6T+O+KhOWLBgAQ4fPlxu6QHAo0ePSr02VxVnzpypVHGampoCeDb9qlAoavSZRKQ7LD7Se1u3bsXKlSuRn59f4Wvz8vKwfPnyGn3ejh07kJeXV+pzEokENjY2qF+/PqZMmYKTJ08iISEBUil3/yOqK/hfK+m9jIwMNGrUCJmZmTAzM6twCjIsLAypqalwcHCo8mcJgoCQkBCoVCqNx21sbKBQKDBw4EBMmjQJPj4+6hEfEdUtvMZHdUZKSgoiIiJw8OBBHD9+HNnZ2ZBKpSWK0MzMDPPnz8fnn3+u8XhGbiFCY1IQn5aNbLkCtjIpnJvaYoSbIxpZWwAA4uLi4O7uDoVCASsrKyiVSvTq1QtTpkxBYGBgnT8vkIhYfFSH3bt3T12EJ06cQE5ODiQSCQoKCmBpaYmsrCyYm5sjLjkLayKSEJmQDgAoVPz/aE4mNYEAwKedPaZ5O+HLD97Djh074OLigunTp2P48OFo0KCBSN8hEdUGFh8ZjDt37iAiIgIhISE4fvw4wsLCcNesBYIOxkOuUKK8n3SJBJBJTTHZoxHeaGMDZ2dn3QUnIp1i8ZHB2hp1B0EHr6OgWFXxi/9iaWaCBYHtMdazVe0FIyJRsfjIIMUlZ2HkxigUFGseV/TrJE90bmEHherZj31athy+qyI1XmNpZoodkz3RydFOV3GJSIe4qpMM0pqIJMgVpZ/Rt2jvVeyITi7za+UKJdZGJGH9WPfaikdEIuJ9fGRwMnILEZmQXu41vfIIAhB+Ix2Pc0s/A5CI6jYWHxmc0JiUcp//MKAdYhf6I3SKFzxfaljqayQAQmPLfx8iqps41UkGJz4tW+OWhb9bdjgeiQ9zUKwUMMDFAT9O8EDgt6dwL1NzVxi5QoX41LI3qSaiuosjPjI42fKy9828lJyFvCIlipQq7Iq9j5i7mejd7oUy3qe4tiISkYhYfGRwbGWVn8gQhGf38JX+PmZaSkRE+oTFRwbHuaktLKQlf7RtZVL0atMYFlITmJpIMOi1ZujyUkP1ji5/J5OawNnBRhdxiUjHeI2PDM5wN0esPpZQ4nGpqQnm9G2Hl+2toVIJuJmei8lbYnA7o+RJDAKA4a6OOkhLRLrG4iOD09jaAt5t7RF2/aHGLQ2ZeUUYtOaPCr9eIgF6t7NXb1xNRIaFU51kkKb7OEEmrd6xQTKpKab5OGk5ERHpCxYfGSSXFnZYEOgMS7Oq/Yg/26vTmduVERkwTnWSwXq+0XRVTmdYEOjMDaqJDBw3qSaDdzklC2sjkhB+Ix0SPLs5/bnn5/H1bmePaT5OHOkRGQEWHxmNx7mFCI1NQXxqDrLlxbCVmcHZwQbDXR25kIXIiLD4iIjIqHBxCxERGRUWHxERGRUWHxERGRUWHxERGRUWHxERGRUWHxERGRUWHxERGRUWHxERGRUWHxERGRUWHxERGRUWHxERGRUWHxERGRUWHxERGRUWHxERGRUWHxERGRUWHxERGRUWHxERGRUWHxERGRUWHxERGRUWHxERGRUWHxERGZX/A+eo3IFH8oyKAAAAAElFTkSuQmCC", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# access and visualize the device topology\n", + "print(oqc_device.properties.paradigm.connectivity.connectivityGraph)\n", + "nx.draw_kamada_kawai(oqc_device.topology_graph, with_labels=True, font_color=\"white\", arrows=True, arrowsize=30)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "With this information, we can create a circuit and run it with verbatim mode. OQC currently only supports verbatim mode for the whole circuit, i.e. the verbatim box has to contain all the gates in a circuit when submitting to the device." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : | 0 | 1 | 2 | 3 | 4 |\n", + " \n", + "q0 : -StartVerbatim-Rz(0.785)-Rz(-0.785)-----EndVerbatim-\n", + " | | \n", + "q1 : -|-------------ECR----------------------|-----------\n", + " | | | \n", + "q2 : -|-------------ECR-------X----------ECR-|-----------\n", + " | | | \n", + "q3 : -*************----------------------ECR-***********-\n", + "\n", + "T : | 0 | 1 | 2 | 3 | 4 |\n" + ] + } + ], + "source": [ + "circ = Circuit().rz(0,pi/4).rz(0,-pi/4).ecr(1,2).x(2).ecr(2,3)\n", + "verbatim_circ = Circuit().add_verbatim_box(circ)\n", + "print(verbatim_circ)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "OPENQASM 2.0;\n", + "include \"qelib1.inc\";\n", + "qreg q[4];\n", + "creg b[4];\n", + "\n", + "rz(0.7853981633974483) q[0];\n", + "rz(-0.7853981633974483) q[0];\n", + "ecr q[1], q[2];\n", + "x q[2];\n", + "ecr q[2], q[3];\n", + "measure q -> b;\n", + "Counter({'0110': 419, '0010': 243, '0100': 210, '0000': 103, '0011': 5, '0101': 5, '0111': 4, '0001': 3, '1000': 2, '1010': 2, '1100': 2, '1110': 2})\n" + ] + } + ], + "source": [ + "result = oqc_device.run(verbatim_circ, shots=1000).result()\n", + "compiledProgram = result.additional_metadata.oqcMetadata.compiledProgram\n", + "print(compiledProgram)\n", + "print(result.measurement_counts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Programming verbatim circuits onto the IonQ device" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "IonQ also supports verbatim compilation. Because qubits in the IonQ device have all-to-all connection, there is no restriction in qubit connectivity; all qubit pairs are avaialbe for 2-qubit gates. Because there is no circuit optimization or gate decomposition in verbatim compilation, all gates in the circuit must be native gates. Let's look at IonQ's native gate set." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The native gates for the Aria 1 device are:\n", + "GPI\n", + "GPI2\n", + "MS\n" + ] + } + ], + "source": [ + "# set up the IonQ device\n", + "ionq_device = AwsDevice(\"arn:aws:braket:us-east-1::device/qpu/ionq/Aria-1\")\n", + "\n", + "# list the native gate set\n", + "print(\"The native gates for the\", ionq_device.name, \"device are:\")\n", + "for gate in ionq_device.properties.paradigm.nativeGateSet:\n", + " print(gate)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In `device.property`, you can see `fullyConnected=True`, showing that qubits are fully connected. This manifests as the device having a complete topology graph." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "fullyConnected=True connectivityGraph={}\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd1hTZ/sH8O/JYI+wh4AooqKiOHDv0aK1tlqtVly46qi1vmqrtq63w9ra6uve2rrr1jqKq4gLZxWtA0QZgiB7E5Lcvz/45ZTIhuDq/bmuXLVnPOdJTkjuPON+BCIiMMYYY4wxVkmSl10BxhhjjDH2euOAkjHGGGOMVQkHlIwxxhhjrEo4oGSMMcYYY1XCASVjjDHGGKsSDigZY4wxxliVcEDJGGOMMcaqhANKxhhjjDFWJRxQMsYYY4yxKuGAkjHGGGOMVQkHlIwxxhhjrEo4oGSMMcYYY1XCASVjjDHGGKsSDigZY4wxxliVcEDJGGOMMcaqhANKxhhjjDFWJRxQMsYYY4yxKuGAkjHGGGOMVQkHlIwxxhhjrEo4oGSMMcYYY1XCASVjjDHGGKsSDigZY4wxxliVcEDJGGOMMcaqhANKxhhjjDFWJRxQMsYYY4yxKuGAkjHGGGOMVQkHlIwxxhhjrEo4oGSMMcYYY1XCASVjjDHGGKsSDigZY4wxxliVcEDJGGOMMcaqhANKxhhjjDFWJRxQMsYYY4yxKuGAkjHGGGOMVQkHlIwxxhhjrEo4oGSMMcYYY1XCASVjjDHGGKsS2cuuAGOMvamy8lR4nJQFpUoDA5kE7jamMDXkj13G2JuHP9kYY0yPwuIzsC0kCmfuJyAqORtUaJ8AwM3aBF3q2cO/lRs8HcxfVjUZY0yvBCKisg9jjDFWmujkbMzaH4rg8ERIJQLUmpI/WrX7O9SxxXd9veFqbfICa8oYY/rHASVjTK/+jd28O69EYe6hO1BpqNRA8nlSiQCZRMD8Pg0xyNetGmvIGGPViwNKxliV/Zu7eZefCcOiwAdVLmfaW3XxSRdPPdSIMcZePA4oGWOV9ip18+bk5GDVqlXw8PDAe++9p7Pv+++/x759+zB58mR8+OGHkMvlernmzitRmLEvVC9lAcDCft4YyC2VjLHXEAeUjLFKeVW6eTUaDXbu3Inp06cjNjYWnTp1wp9//qlzzJAhQ7Bt2zYAgIODAz777DOMHTsW1tbWlb5udHI2ui8OQp5KU+z+FjWtMLFLHTRzs4KhTIK4tFzsuxGDZafDSyzTUCbBySmdeEwlY+y1w3koGWMVtvxMGGbsC0WeSlOhYBIA1BpCnkqDGftCsfxMWJXqcf78efj6+sLf3x9xcXEAgPT09CLHmZmZia2S8fHx+PLLL+Hs7Izx48fjwYPKdVfP2h8KVQnPvU8TZ+wa2wYZufn4z29/IWDzFawOegihjDJVGsKs/fpr8WSMsReFA0rGWIXsvBKllzGDALAo8AF2XYmq8HkPHz5Ev3790L59e9y8eRMAoO1sefDgAU6fPi0e++zZM/zyyy9QqVTiNo1Gg7y8PKxbtw716tVDr169cPr0aZS3wyYsPgPB4YnFBtMOFoZY0Ncb2y9H4dOdf+HUvQRcjEjCrqvRWFpK6yRQEGwHhyciPCGjXPUoTm5uLg4dOgR/f3/Y2Njg8OHDOvuVSqUYfDPGmL682VMvGWN6FZ2cjbmH7hS7b1H/xujf3LXEc/uuPI8b0alFts85dAdtPWzL1c2bkpKCr7/+GsuWLRO3qdVqnWOysrJw+fJldO3aFQAgCAJyc3OLLU97bmBgII4dO4YGDRpg+vTp+Oijj2BoaFhiPbaFRJU4ZnSQrxtMDWVYHfSwzOdTHKlEwNZLUZjXp2G5z8nNzUVgYCB27dqFAwcOIDs7G1KpFGq1ushzX7lyJaZNm4aZM2dizpw5ehtPWpJ/46x/xv6N+K+aMVZupXXzLj0djm0hRVsb1w9rAaVag5sxRYNJ4J9u3i2jWpV4XaVSiVWrVmHu3LnIzMwsEkQ+z8zMTPy3jY0NDAwMoFQqSzxeW97du3cREBCAadOmYfLkyRg3bhzs7OyKHH/mfkKJXf0t3a2Rkq2Eh50p1g1tjroO5kjNyccfd55iwbF7yMxTFXueWBcN4cyDBMxD6QFlcUGkTCYTW2K1z6lOnTo65928eRMajQbffvstDh8+jB07dsDLy6vUa1XUv3nWP2P/VtzlzRgrl9K6eQEgKjkbN6JTdR4GMglszAyx+1oMShpqWVo3LxHhwIEDqF+/PqZMmYK0tLQyg0kAWL16tdh9ffLkSZ3u7tJoz0lKSsK8efPg4uKC0aNH486df1plM/NUiErOLrEMRwsjGMulWDG4GX6/FYchG0Kw9mwE+jV1waYRvuWqR1RSNrKKCTyf785+77338NtvvyE7u6A+xT3PPXv2iP+OjY3FhQsXQEQgIty+fRs+Pj5YunQpNJriJxdVRHRyNoZuCEGPJWexJSQSkc8FkwBAACKTs7ElJBI9lpzF0A0hiC7l9WSMvR44oGSMlYu2m7ciPmzhCo2G8NvV6FKP03bzFnbt2jV07NgRffv2RWRkZLnHNwJAREQEBKGgrjKZrFLBkkajgVKpxMaNG9GoUSPUqFEDo0aNwtwflxUJkgoTJICRXIqVfz7EyqCHuPQoGWuDI/DDH/fg626Ndh42ZV6bADxOygJQuSCyMJnsn46oFStW6ExCUqvVUCqVmDx5Mrp164bo6NLvU2l2XolC98VBuBCRVFB2GZO1tPsvRCSh++Ig7KzEWFrG2KuDu7wZY+VSWjdvccwNZejVyAnnHyYiJiWn1GMLd/PGxMRg5syZ2Lp1K6RSKQBUOCCUSCTo27cvMjIykJaWVqFzn6cNZGNjY7Fx40Yo6vjAsv83JR6fmp0PADj74JnO9j8fPMNcAI1qWOL8w6Qyr/vbnn0IDzlZbHd2eVtcAaBjx47iv589e1bicefOnUODBg2wZs0afPTRR2JAXh5VSe6u/v+0UzP2hSIxM4+TuzP2muKAkrE31GeffYZbt26hQ4cOaNeuHVq3bg0LC4tKlVVWN29x+jRxhrGBtMzWSa3IpCw0aNwUd0P/EreVp3u7OFlZWThw4AAkEkmFAqNylZ2eBstS9t+LS0czN6si27W1KG9MvuDbr5Gf8Ej8/4oEkYVFRRW0/KWmphbJz1mYSqVCVlYW/P39sX//fqxZs6ZceTr1PevfzsyQk7sz9hrigJKxN8CRI0dw+PBhrFy5EhJJwUiWe/fu4cyZMwgODoZKpYIgCKhfvz46d+6Mtm3bol27dnB3dy9XwBWZlFVqN29xPvR1RXKWEn/ciS/nGQIinlU+Xc7zoqKi4Orqips3b8LHx0dv5apS4kBEJb5ux+48xeBWNdGpnh3uxP2TE7NLPXsAwI2olDKvQURQpegntU9mZiYAICQkBGFhpef91LbG7t+/H0FBQfj111/h5+dX4vGlzfpvXcsaO8e2KXZfSTP+gYrN+meMvTo4oGTsNUZEWLJkCaZOnQoiwsSJE+Ht7Q0A6Ny5s86EFCLC3bt3ER4ejlWrVgEAbG1t0bFjR7Rv3x5t27ZF06ZNYWBgUOQ6yhJWgylJfUdzNHFRYOP5R1Cqy38uCdIKXackgiBgyJAhSE9PR3p6OgRBqNAYzNLKtVWYQ5UaB7mVc7HHBIcl4sTf8Zjc1RMSQcCNqBQ0dlFgcjdPnLwbj6uRZQeU6tQ4UH7xqY4qaseOHfj7779haVlau+pz11erkZiYiJ49e2LcuHFYtGgRTE1NixxX2qx/rR+O38PFCN0u/vvxJf9wKM+sf8bYq4cDSsZeU/n5+Zg4cSLWrVsHoCDYCQoKEgPK5OTkYruM8/PzxX8nJibiwIEDOHDgADQaDQwMDNC8eXN06tQJbdu2Rdu2bQvS7sgqNn9vYIuCfJQVnWhB6vyyDypPOUQ4e/asXsp6vtz09HQoom9BZukAQVJ8APzJjuv4rJsnPmrphsndPBGfnosN5x7hf6fKsTKQRo3sh1f1VueQkBBcvHixwudpA/C1a9fijz/+wI4dO9Cq1T9BnnbWf1keJWWV2BpZnMKz/uvYc0ohxl4XHFAyVg2qO5lzamoq+vXrpzMmThAE/Oc//0GDBg3QtWtXxMTElKuswhNelEolLl68iCtXrogtm3K5HCYWVrAcvaFc3eMGUgneb1oDf0Wn4EF8ZrmfExFBnfq03MeXZdGiRWjVqhUsLCzg5+ent9Vh8vLykBxyEM6NS+4KzlNpsPCP+1j4x/2KX0AiRcaNo1Wooa6nT59CqVSiffv2ePz4cYXP12g0ePz4Mdq2bYtZs2aJydBLS+5eVZVJ7s4Ye7k4oGRMT15UMueHDx/Cz88Pjx490unG1Wg00Gg0OHfuHLp27Qp/f3/s2LGjUtcoPAEkPz8fqtwsIPMZYG5f5rlvNXCAlYkBFh6/V6FratKeQqMsfTZ4eZmamiIxMRGPHz9GZGSkTqLzqhIEAflJ0ZAk3Ifatk6JrZSVQWoVcqNuQZVUvh8DZTE0NES/fv3QpUsXODk5VSqgBCDmrfzmm2/www8/YNKkSTht0hFqTdnP/b99GmHZoKbIyVfjRlQqlp4OK7Pbv7zJ3Rljrw6B9DGwiLF/sejkbMzaH4rg8MQyW2y0+zvUscV3fb0rPPEgODgYffr0QUZGRokzoLt3744jR44gLS0NTk5OlZ4p/by6H32JXNeWZQZQv45sieZuVmj53UlkKct3bdKokXH9CFJOrtVHVaudubk58uRmcBq1EiSR6WUmOREB6nzErhsPVVp5JzK9HObWdrAas7HU593QyQIfNHfBpYgkpGQr4W5jirEdaqOWrSlG/nIFZ8NK7y4XANye9zYv08jYa4IDSsaqYOeVKMw9dAeq/8+lV15SiQCZRMD8Pg0xqJwpUn799VeMGjVKbIkszcaNG+Hm5obu3buXu05lkdu4wnnMKr2V97wn68bprWUOABwcHODs7AyFQoGMjAxcvaq/cYkAoFAoYO7zNiSth+qtzKSj/0PmrRN6K2/9+vUQBAF79uzBsWPH9Fau3L4WnEcuK/vA51gYyXB8ckek5eSj59LgMo8/Mqk9GjqXfzIRY+zl4ZVyGKuk5WfCMGNfKPJUmgqPI1NrCHkqDWbsC8XyM6VP1NBoNPjyyy8xfPhwqFSqciX5joyMxIMHD4qdsV1ZmtRY5Dy6Dmj00+KpRRo1ch/dgCYlVm9lNmrUCKdOncL169dx+vRp/Pzzz2I6JX1JTU1FTNBvaJAfXrChsr/N//+8lKBfkBV6Uk+1KxAZGQl3d3eMHDkStra2eitXkMordV56rgqn7yXAy8kChuWY6FXR7AKMsZeHWygZq4SdV6IwY1+o3spb2M+72GTO2dnZGDZsGPbu3au3a1WFzNIBTqNXQpAZ6LWb99nmT5GTqL/WSS1BECAIgl7WqS6Nc4cBkLX6qGA4QAXGVAogqPOVyAzaiJSrR6qxhvpl7uYF68E/Vurcb99vBP9WNVFv9jHklREwVraFMiMjA5GRkXj8+DEePXoEa2tr+Pv7V6q+jLHy4cEpjFVQacmcK6u4ZM5Pnz5Fr169cPPmzUqV+e2334KI8NVXX+mrmlClxcPozmEoffrrpTxBEJB8Yo3eg0lLS0ukpaWJk0mqW2zwbshunYW130QY12oG0qhLHWuq3Z/96AaSj6+oljGT77//PtLS0hAaGorExLLT+1SELCel1OTuJbEwkqFrfXvciU0rM5gUALjbFM19CRSshPT48WOdR0REBMLDwxEZGVlkuU1nZ2f4+/tDrVbj5MmT6N69u7isJ2NMPzigZKyCykrm3NDJApO7eaKJqwIWRnLEpubg4M0nWBscgdz84r9En0/mfPPmTfTs2RMJCQmVbl3r0qUL1q9fX6lzSyKVShF2fDNqSgyBxu8WdNdWoqVSG4ykBP2CjJt/6LWO2vL79++PMWPGwMzMDNevX8ehQ4dw4oT+xic+T5UWj4RdcyC3cYVZ054wrt0CMisnnaBLuwJOTsRVZNw4qtcxo89bunQpXF1dodFocO3aNbRt27bSyzc+L+XZUxiXktwdAP430AexqTm49SQNKVlKuNuaYkz72rA1M8S03WX/SLKQKnFo326kpKSIQWNYWBgiIyORkvLPLHFBEMR1zov78SCTyfDBBx8AAHbt2gV/f38MHz4cGzdu1PswCMb+zbjLm7EKCIvPQI8lJSfMrmNvht8/aY+IZ5lY8edDJGcp0aqWNT7pUgdn7idgzJZrpZZ/ckpH3LschP79+yMvL0/f1dcbMzMzoHZbOPT6BPlqDQRp+X+bkkYNUquQcmK1XiegvGyFV+OxsLBAeno6Ppv+BVb88hs8POvhYdh9qFLiINHk623mfVmkUmm1XcvObyKMG79VYkvs+E4e6N3YCa5WJjAxkCI1Jx9XH6dgZVA4bsWkFXuOSKNGeqFZ/xKJpEqtzX/++Sc6deoEPz8/BAYGgojw8ccfY9WqVXpf652xfysOKBmrgHmH7mBLSGSJk3Cm9qiLSV090fHHM4hKzha3f/d+IwxuVRON5/+B9NziW4kkIBhEhuD+jm/0UleJRIKuXbtiwoQJ6Nevn17KLMzExAQqI0vY+k2C3K1xubt5cx5dr7ZuXqlUikaNGiEqKkqnFQsAjIyMMHLkSNy9exdnzpzR+7WLY2tri8TEREgkErGlWV/LQJZGGyRpr+Pi4gJnZ2dcvnxZb9d4nWb9z58/H5mZmVi0aJHOa//pp59iyZIlHFQypgfc3s9YBZy5n1DqjG5tV3hGru4Sgum5Kqg1hHx1yedqICDL0l0v9QSAgIAAbNiwAbm5+lkT+nnZ2dlQJschdvssxK4bj4zrR5CfHFskWCIi5CfHIuP6EcStn4CEXXOqLc+il5cXAgMD0blzZ3GMnPa/ubm52LhxY7W9HsXRjl0sPGyhuoPJWrVqYfr06di7dy8CAwPh4+ODmJgYvQaTAGCkTK2eWf9qFZR6TO4OAD169MCPP/5Y5LVfunQpZs6c+ULG2TL2puMWSsbKKTNPBe95f6C0PxgXhTGOfNoB58IT8f2xuwVd3rVtsORDH+y9EYP5h/8u9RpEhOifB4DyX1zQo2+C3Ahya2dAIkPTJt64fOoImjVuiGvXSu/u17fatWtj8eLF6NOnDzIzM7Fw4UKsXr1a7xNU/s18u/jhabMxkMgMKjWW9nlEBEGjwpO14/T2o6Nz586YNm0aevfuXeIx8+bNw9y5c/VyPcb+rbiFkrFyikzKKjWYBICY1Bz0W3Ue9RzMEfx5V9yZ74eNw32x93rZwSTw/xMMrJz0U+H/Z2lpiUGDBum1zOJoJzhQfi6U8RFQxj1Awv3roPzcFx5MAoBarUZ+fkFLsVKpxJkzZ5CYmAiZTIaWLVu+8Pq8CB07dizSfaudtFIds5qvnDmOhrl39BJMAgV1TfpjpV5bsBUKBQYMGFDqMfPmzcMPP/ygl+tl5alwJzYNN6JScCc2DVl5+pkIxdirjmd5M1ZO5Umy7KIwxvphvkjMzMO4rdeQnKWEj6sCn3StAxMDGb7Yd6vMMiqbNLo4x44dg5+fHwAgPj6+WscOFjcb/dGjR9V2vec1bdoUmzdvhouLC8aNG4d9+/ahf//+MDU1RU5ODjQaDTp27IiDBw9CoVDg6dOn8PT0RGZm5gurY3U7e/YsDA0NYWpqiuTkZABAv379sH37dhgYGKB169YICQnR6zWPr5iDev0mI7duj0rP+teelxL0i94nauXm5iInp+w14r/44gsYGRnh008/rfA1wuIzsC0kCmfuJyAqOVvnh6cAwM3aBF3q2cO/lRs8HcwrXD5jrwMOKBkrJ4NyrOzxhV99mBnK0GtpMHLyC8aWXX6cjJRsJX7s3wT7bsQg5FFyqWWQOr/U/RXRs2dPvZX1qjMxMYGLiwusra3x22+/4eLFi+jRoweysrIAAKampvDz84OFhQU0Gg0mT578RgWT1tbWCAwMRPPmzQEUBPO9e/fG3r17YWpqCgsLCzHI1Lf7+/4Hs8Z3YfP2eBCECs36F0BQq5TIv7QN6Rf36b1ux48fL/exkydPhpGREcaOHVuu46OTszFrfyiCwxMhlQjFjq8mAJHJ2dgSEonNFx+jQx1bfNfXWyfnLGNvAu7yZqyc3G1MUVbbSwMnC4QnZIrBpNbNmFQAQN0yWie0eQr1wdDQED179oSxsTGAgskplpZv3rrINWrUQKdOnXD+/Hk4ODjgv//9Lz788EO0bdsW2dnZGDNmDKZNmwYiwqxZs2BqagobGxv89ttv8PHxQbdu3V72U6gSV1dXDBkyBMnJyejUqROuXLkClUqFQ4cOia3GKpUKycnJMDMzQ/369aulHpm3AvFk7TjkRhW0wlNZk3WooG45j29CFrgAT8/rP5gMCAio8Dnjxo3DL7/8UuZxO69EofviIFyISAKAMpdf1e6/EJGE7ouDsPNKVIXrxtirjFsoGSsnU0MZ3KxNEFkoHdDz4jNyUdfBHCYGUmQr//lCbeZmBQB4mlb6ZBtVSpzeJuTI5XIcO3YMgiBg5MiR6NWrF3bt2oXjx48jIyNDL9d42SwsLNC3b1+4u7ujWbNmWLlypTi5ombNmjh9+jRq164NjUaDESNGYMKECTh79qw40/v27dt6S/b9MvTv3x+7d+8GAHTv3h0BAQFo2bKlmJpIKpWiTZs2+PTTT7Fjxw4cOnQI9+7dq5a6CIIAVVo8kvf+F4KlU6nJ3TVp8cgKvwzb1LuIvBpcbWl7KpPLlYgQEBAAQ0PDEsceLz8ThkWBDypVJ7WGoNYQZuwLRWJmHj7p4lmpchh71fAsb/ZGIyKkpaVBLpeLj6p8eU3cGIQjD9IBofjG/e5e9lg7pAX+iknFhnOPkJylRFM3BSZ0roPY1By8syy4xNRBpFEjo1AyZ/bivIjckNVBoVBg06ZNWLZsGc6dOwelUinua9asGUJCQiCTFbQbaDQajB49Gps2barWOsnlcuTn56NDhw4IDg6GIDcqCCqlcgikhjLpCQS1strXV68qiUSCPXv2oG/fvjrbd16Jwox9oXq7zsJ+3hjo66a38hh7WTigZG8ktVqNW7duYefOnUVmb0okEsjlcshkMvFROOCUy+UwMDCAXC6HoaEhDAwMEB8fj6ioKOQb25SZzLlNbRuM7+SB+o7mMDeSIzYtB6fuJmBlUDhSs0sfH/l0w0TkPYus8vMv7Pkk128Ke3t7PHv2rFzPS5tYXBAE2NnZAShovcrNzX2lVyQqiUQigaGhoc5kk1q1aiEgIAATJ05Ejx49cP36dXh4eODs2bNYsGAB1q9fj9zcXJibm8PBwQHh4eHVWkcjIyPk5ubCysqqSJL5F6F79+44efJklcqQyWQ4ePAgevXqBaBgzGT3xUFlrkNeEYYyCU5O6cRjKtlrj8dQsjfSzJkz0axZs2JbIzUaDfLy8pCVlYW0tDQkJSXh6dOniI6ORkREBO7fv4/Q0FBcv34dFy9eRFBQEO7du4fs7Gw4m0mQ8+hGqcmcL0YkYdimy2i54BS85h5Ht5+D8N2xu6UGk6RRQx1zW6/B5Mcff4y0tDRoNBr8/PPPEAQBUqkUQ4cOxfDhw1/71DkJCQk6waSJiQk+++wz7N69G/Hx8SAiLFq0CEDBPTc2NkZ4eDji4+MRHx+P1NRUdOnSBQDQvHlzeHl5vZTnURkajabIzGVDQ0PExsYiNDQUBw8exIgRI/Dw4UPUqFEDy5cvh5mZGZYtW4b09HRcvnwZJibVG8BohxW8jGCyYcOG5RoHWRaVSoV3330XO3bsAADM2h8qLl5QHgNbuOLxgndwZ97bJV9DQ5i1X38tnoy9LNxCyd44e/fuRf/+/QEArVu3RlxcHKKiovTWQtdzwBDccesLQY/JnCUaFWL0mMwZKGhdcXd3R35+PiIjI2FlZYWLFy+iXr16AIDY2Fh4enoiO7vkMaGvKicnJ8TFxUEqlWLq1KkICwvD/v37YWVlhfPnz8PLywvnz59Hjx49kJOTg5o1ayIyMhISiQT/+c9/sHDhQvTr1w8HDx5Ex44dERQUBAC4fv06+vbti6ioN2/ChEwmg7GxMQwMDKBWq5Gamvqyq/Ra8RsYgLu1Pij38Q4WhjjxWSdkK9UwN5Kh4bw/Sj3+5JSOqGPPKYXY64tbKNkb5d69exg6dKjYMnnp0iXk5eXpLZgUBAHHdm9FnfQbek3mnKjnZM6urq6oW7cuwsPDERlZ0OqZlpYGPz8/DBkyBNu3b4eXlxeys7MxYMCA12b2t3aGclxcHFxcXBAdHY2FCxdi3759WLJkCVJTU+Ht7Y3BgwejQ4cOyM/Px86dO/H48WOcO3cOdnZ2WLRoEUxMTHDw4EG0atVKJzenubk5njx5AnNzc7Rq1eplPc0iBEFA+/bt4e3tDQBYs2YN8vLyEB0djWvXrmHgwIEA/kkuXxyVSoXs7Gykpqa+0cGko6OjOG5UX0xMTPC30rrsmeuFfPu+N0IeJeNc+LMyj5VKBGy99Ob9iGH/LhxQsjdGRkYG+vTpA6VSqRNAPn36VG/XICKYmJjg9LpvkHp2i7itkoUBQLUkc3Z0dBSTig8bNgxffvklmjZtimfPnmHbtm3w9/dHeno6FAoFNBoNVq9ejcaNG+u1DvokCAJcXV1x7949mJiYwMTEBDExMThy5Ih4zOTJk3H+/HkAwI4dOyCXy/H333+LwVa7du0QFxeHRo0aieMmFQqF2DWrTXyu0Whw6tQpXLp0CXFxcWjduvULfra63nvvPWg0GgQHB+PSpUswNzfHhAkT8OTJE7i4uACAOB5So9HAwMAAZ8+ehVqtxpEjRzB48GC4uroCKBhbrFarIZFI0KhRI4wePRoeHh4v7bnpW82aNbFp0yY8fPgQFhYWeitXEASo7OtBkJRvtaH3fWqgVS1rzD54u1zHqzWEMw8SqlJFxl467vJmbwQiwoABA3DgwAGo1eVvRagqs8Zvwa7nRKg1VKFkziANNKp8pJxYrfdgUksQBCxcuBDTp08Xt6Wnp6NWrVpITk6Gu7s7kpOTkZ6eXi3Xrw6DBg3CL7/8gtTUVHh6eiI9PR1btmzBkCFDkIfCf60AACAASURBVJiYiBYtWiAyMhKGhobIy8tDkyZNcOHCBXG84Pjx47F69WrUrVsXpqamuHHjBgwNDbF48WKcOnUKe/fuFcff7tq1C5cuXUJMTMwLf54GBgbYuHEjhg8fDkdHR506nD9/Hh06dIC1tTVsbW1x//59AAUBs6urK3bu3IkGDRogNDQUEokEZ8+eRf/+/fHs2TPxdREEARKJ5IX+rbzOBANjuE75rVwZImxMDXBiSif8fPIBtl6KxKL+jdGzkVOZXd4CgNvz3oapIWfzY68nbqFkb4TFixdj7969L+wLUvvF4qKMQvKWKTDNii3YQaXP/tR2meU8/gtx6ydUazBJRPj8889hY2ODkSNH4v79+6hXrx6Sk5OxcOFCPHr0CGlpabhy5QocHR2rpR76JJFIkJGRgfnz5+PSpUu4cOECTE1NMWzYMMyfPx+urq6IjIzEZ599huzsbAwcOBA3b96Es7Mz7ty5gylTpmD16tXw9PTEnTt3cP36dezcuRNSqRQTJkzA3r17IZVK8f3332PAgAHYs2eP2DVsbW2NmJgY5OTkVPu66J07d0ZYWBj8/f0xYsQIPHnyBFu2bBH3P336FObm5khKSsL9+/fh5+eHyMhInDt3Djt27MCIESPw999/w8fHB2+//TY6deqE5ORkzJw5E7m5udi1axekUinUajXk8oJlPvXdRfwyaIdtGBgYYODAgWJCf32QKRzLnW7s6/caIeJZJrZeqtgEOwLwOCmrErVj7NXAASV77QUFBem0wr0I2ob9iIgIpMVGoLv0LmLXjUdj41RQerzYnV34+PzkWGRcP4In68YhYdccyJXV0zLo4OCA3NxcPHz4EEOHDoVGo8GmTZtQv359PH36FLVr18bVq1fh7OwMqVQKX19fvQ4L0CdtV7eZmRk0Gg2OHDmC7777Du+99x4aNWqEnJwcEBHmzZuH3Nxc9O3bF126dEF6ejp27tyJFStWICMjA97e3liyZAnc3d1x4cIFrF27Fm+99RYmTpyoMylJrVbD0dERP/30E5KSksTu7kOHDqFGjRowMjLCjh074ODgALlcrjNT2sjISKxzeclkMvj4+GDz5s2wtbUFAPz555+oWbMmXFxcYGFhAQMDA0yZMgVr166Fo6Mj+vfvj6ysLLFLd9SoUXBz+yeP4aZNm9C8eXOEhoYiMDAQzZo1Q0xMDL777jsAwIcffoj58+cDAPLz8+Ht7Y3c3Fzs37+/MrfolWBoaIhu3brhyy+/hEqlwu7du8X7oQ9yw/IFp34NHdHNyx4zKjlrW6nHdESMvWjc5c1ea0+ePEHjxo2Rmpr6UhMla5M5GxsbIycnRyeZM6nzdVbAsbGxQVJSUrXVxcvLC/369UN8fDzu3r2LyMjIcnXbalfT6dChA2xtbWFpaQmNRoMhQ4Zg7doXk2xdm7sQKJiAc+HCBVhZFawy1KRJE9y6dQsLFiyAqakprl27hoMHD5Y4wUQqlcLCwgJqtVrs1te2zGnZ2dkhMzMTOTk5WLx4MZYsWYLIyEgoFAosXLgQH3/8MXx8fHDjxg3xnEePHqF27dro27cv9uzZgxUrVmD+/PniPe3fvz9kMhliY2Mhk8lw+vRp8VyZTIa3334bFy9ehEwmQ3z8PxOxdu3ahUGDBuHjjz/GkydPcOrUqSKpgQwMDDB8+HAsWbIESqUSTk5O0Gg0iI6Ohr29PcLCwtC7d288ePBAfK6FZ7EDwPDhw/Hrr7/CzMwM7u7uuH37Ntzc3HD48GE0b978tV45qLrI7WvBeeSyUo8xMZAiaFpn7L8Ri+VnwsTtX7/XCN29HNDm+1PIV1ORZVkLOzKpPRo6vx4T5Bgrghh7CTJz8+n2k1S6HplMt5+kUmZufoXLyMvLo5YtW5JMJiMU9Bi9Mg9TU9Mi25ycnF5KXQRB0Pl/iURCFhYWJJVKxW01atSgzZs3k1qtJiKiWbNmEQBauHAhERGlpKTQ8OHDSS6XFymvKg9tHTw9Pcne3p4AiHWzs7PTud8pKSlkbGxMcrmcbt26Ra6urgSA2rZtSzdu3CADAwOSSCQUEBBAPj4+ZGZmVuq1LS0tSaFQEABq2rQpHTx4kFJSUmjBggUkl8vF486fP69Tj4CAAAJA165d09murX9xDw8PD53jfX19SSaT6ZyvVqvJwMCAPDw8KD8/n6ZPn06GhoZFymratKl4rw4fPiy+fqNGjRLvzeDBgyk/P5/8/PwIAPXo0YPS0tLIy8uLAFCDBg0oIyODiIimTJmiU36NGjVe+t9PRd/bgiBQnTp1yNbWVud9ra+HsbmC3L44TDVn/F7io933p8r8zPrjdlyJ57vP+L1Sn4OMvSq4hZK9MGHxGdgWEoUz9xMQlZyNwm88AYCbtQm61LOHfys3eDqUnY/tk08+wcqVK9+4FWCq4q233kKtWrVw/PhxMV2Qlq+vL6ZOnYoBAwZAIpFg2bJl+PTTT2FqaoqcnBxoNBrI5XK0atUKISEhMDMzQ3Jysnj+7du34e3tDX9/fzg5OWHDhg2VSlptZmaGvLw8NG7cGBs3bkSTJk0AFHQVjx07FitXrsSUKVOwdOlSLF++HBMnThTPPXbsGHr16iWOEZ02bRpGjx6NzZs3Y//+/eIElcK0E1zq1auH8ePH4+rVq5BKpTAzM0NaWlqR46VSKYyNjZGZmQmgYOzm4MGDsWzZMigUCtja2kKtVovPXTukYMyYMSW+F0ePHo1169aJ/z9mzBisX78ecXFxOuNXO3TogHPnzokt3gqFAjNnzgQRYcaMGbC3t0diYqJ4r9q0aYP09HT89ddfAApmOf/+++9o1KgRNBoNkpOT8c477+Dy5cviakFNmzZF9+7dkZqaivT0dCQlJeH06dNiC7+lpSUEQXilUwsJgoCTJ0+ia9euWLVqFSZMmABra2s8fPgQCoUCISEh6N27NxITE/V2zZqfbALM7ErcbyiToKmrosj28Z090KqWDUZsuozkbCUexGcWX76NCYKmddFbfRl70TigZNUuOjkbs/aHIjg8EVKJAHUpK01o93eoY4vv+nqXuBzZ1q1bMXTo0Oqq8mvJzs4ODRs2xKVLl8Ru48IcHR3x7bffYuTIkQgLC4OXlxfMzMzE8ZNLly7F+vXrERZW0F1nYGAAPz8/zJ49Gy1atMCHH36I3bt34/z581i0aBEOHTokdh+7ublh0qRJ2LRpExQKBeLi4vDo0SMoFIoigYmNjQ3ee+891KhRAz///DOysrIgCALCwsLEFDYqlQoWFhaQyWRITU0V8yt+8803mD17NgDA1NQUKpVKTAEkk8lgb2+PuLg4AAARwcrKCuHh4bC2thavv3btWowfPx4ajQZSqRRRUVFISEhAcHAwrl+/jvv37+PKlSvFdv1qA1kLCwvUrVsXT58+RVxcnPg6WFhYYNmyZRgyZAhCQkIQEBAgBrnNmzfH2rVr0axZM2zZsgXDhg3Dxo0bERAQgISEBIwcORJHjx4FEcHAwAD9+vWDl5eXmDdy69atUKlU8PX1RXR0NJ49e1akjtrXqTLDPwoPB9AmP39VZ4G7ubkhMjISKpUKISEh+P777/H7779DJpPB2toaqampOuua64NV97GwaPYOUM7UQVrlmeUtlQgY2qom5vVpWNVqMvbScEDJqtXOK1GYe+gOVBoqNZB8nlQiQCYRML9PQwzyddPZd+vWLbRs2fK1XIP5RTAzM4O5uTni4uIwcOBArF+/Hp9++im2bdsGpVIJhUIBlUqFrKwshISEwNfXVzw3IyMDVlZWMDIygqWlJWJjC2avKxQKscVOrVaDiFC7dm3MnTsXw4cPx4gRI7Bp0yaxnK5duyIoKEgMSG7fvo1169Zh6dKlYlCmpR03OWfOHMydO7dI8DhixAjIZDJs3769yKo+Li4u6N27N4YNG4Y2bdoAAGbNmoUFCxYAAM6cOYPOnTsXeY3q1q0rBs7Dhg3TWabvxIkTeOutt9C7d28cPHgQN2/exKRJk8Qcl6XRtnwaGRnByMgIgiDg8ePHOsGaRCKBVCpFfn7p67qX5PmUP9qWRy2JRAJnZ2c0bdoU9+7dQ1hYGAwMDGBjY4O4uDj4+flh+fLlMDc3R5MmTfD06VMsXLgQn3/+OZRKJbp164Zz584BAN555x2kpaWJ//+y2dnZIT8/X/yRUVzgLAgCGjZsCGtra5w9e1Yv15VIJDC0qwn7gNLHURanvGmDeKUc9rrjgJJVm+VnwrAo8EGVy5n2Vl180sUTAJCamgofHx9ER0dXaRKOTCZ7oyYfWFlZoVOnTggODhYnh7Rv3x7BwcHiMUqlEjNnzsSSJUug0Wggk8kwbdo0fP3112LaGG26nIMHD6JPnz6IjIzE5MmTcfjwYfH1lkql6NevH1avXo1jx45hyJAhWL9+PUaNGiVe6/mAEvgn6bZ2m4eHBywtLXH37l2dySc2NjYwNTVFdnZ2kS5LExMTjBkzBn369IGfnx9kMhmePn0qznjetWsXPvroIxgaGkKpVEIul+Pw4cMwMzPDs2fPkJSUhK1bt+L06dOoVasWkpKSkJ6eDhMTE9SrVw95eXm4f/8+1Gq1GHgrlUrk5+dXeWjF84F0YZaWlujWrRu8vb2xa9cu3Lt3D9u3b4enpyfs7e1hb28PIyMj2Nvb49mzgpVXrKyssG3bNvTs2RMA8PPPP2Pq1KlFJh7Z2tri2rVrcHFxgY+PD0JDQxEQEIATJ04gJiYG8+bNw9y5c8Xjg4KCxCDcwMAAR48ehZGRETp16vRKtFjKZDJoNBoxEX23bt3Qrl07tGnTBj/88APmz58PFxcXHDt2TFxZSB8UCgVM3/kC0hoNyp3gvDxIrYJxRjSm+Mjh6+sLR0dH2NnZiSmdGHtdcEDJqsXOK1GYsa9yqTOKs7CfNwY0d0GPHj10Zs2yglnFu3fvBlAwhvLEiX9yW/bq1Qu7d+8W09vs2LEDgwcPhqOjI3JycpCWlgZDQ0OMGDECM2bMgIeHB2rXro2wsDCcO3cO48ePx+3b/6z20bp1a4SGhiIrqyBfnrm5OTIyMhAREYFatWqJxz0fUJ47dw4ffPABEhISIAgCzp49i/bt20OlUuHAgQMYNmxYkRnNz3N0dESTJk2QnZ2NrKwsxMXFIS4uDjKZDGZmZsjJyalyq7U2GDMwMIBcLkdubq74HLT7bGxskJqaCrVaDVdXV8yaNQsbNmzA1atX8eTJE9jb20MikSA0NBT79u3Df//7Xzg5OUEqleLZs2fF1tHExARubm5ikL19+3aMHTsWa9asAVDwY2DIkCHifa5VqxbCw8OLLLX4/vvv4+DBg+IPpsLBZe3atTF8+HBs2bJFXFlnxowZYmsuAGRmZsLR0RF5eXlYs2YNxo0bB5VKhVmzZmHhwoWwsrKCIAhISHjxq7pMmDABP/74I0xMTBAVFQUPDw8YGhoiISFBfH/fu3cPw4cPx+XLl6ulDnWbtUVu12mAVF6h9FAlISJISI2YNR8XWXrV0tIS9vb2cHZ2hrOzMxwdHeHg4AAHBwedf9vb278ReUTZ648DSqZ30cnZ6L44CHnF5FRr4mKJqT3qoVlNKwgAbsWkYdGJ+7gWWfrkDkOZAIOTP+L2pT/1Vs83oZVSO3mjXbt2sLa2xuHDh9G5c2ds27YNvXv3FleC+d///od3330X7u7uOq16q1atwrx588RAj4gwZ84cbN26FRERERAEAV27dsWFCxegUCgQGxsLlUqFPXv24KeffsLVq1fFujg4OKBx48ZwcXHB77//jmfPnqF169a4c+cOMjIyAPzTPVtaa115CIIAuVwOjUYDlUoFExMTZGdnQxAENG/eHHZ2drCwsEBiYiJOnToFuVyO2bNnY8GCBcjLy8PRo0fh6+sLhUIBiUSCDRs2YOzYsUVavU1NTfH2229j7ty5mDt3Lg4cOIDHjx/Dzs4OAwYMwNGjR8VubrVaLT5PrYcPH6JOnTro168fbt26hfDwcAiCgBYtWuDJkyeIjY0t9bWQSqUwNDQU823a2NiIgWlsbGyRhPRLly7F5MmTAQDz58/HnDlzcOLECSxYsADnzp0r0s0+ffp0/PDDD+L/t2zZEleuXMGmTZswYsQIREVFoWXLlmJ6o+3bt6NXr17Ytm0b5s+fX22BpbGxMSwtLZGUlKRTZ0EQ0LRpU/zwww94/PgxRo8eDQcHB9jY2ODhw4disK59TbV/H/rk3s0f5PuR3spLOvq/Mhc40A6TIKIin1mCIIjBp6GhIczMzHD+/Hm9BLyMVQQHlEzvhm4IwYWIpCJjJhu7WGL32Db4KyYVG849ggDg404eaOhkgY/WX8L1qJJnlZJGjbyoW0jYNUdvs7p79eqFkJCQas0JWZ3mzJmDmTNnom/fvjh+/DgAwMfHB9euXRNbrjZv3owJEyYgJydHbK0aP3487O3tkZKSgrS0NKSnp+POnTt48EB3eIJcLhe7jvU9wQEoCJbMzc3h7OyMunXr4sCBA3B2dsakSZPwyy+/4N69e7C2tsZ//vMffPXVV/D19YWtrS2uXr0qdvsWJpFIEBQUhPbt2+ts37ZtG4YMGSI+/xUrVmDChAkACrrh161bhxUrViA09J8WdQcHB2zduhXdu3cXt5mbm8PMzEyc9APotrxKpVIEBQWhXbt24v6ffvoJ06ZNE+v37rvvYvXq1XB0dBSXgYyIiMDq1auxfPlyZGdnw8jICGZmZkhMTNTJy1kchUIBR0dH1K5dGxEREbh37544a9/CwgLx8fEwMDAAUDDRyd3dHU+ePNEpw8XFBStXrsTNmzcxe/Zs9O7dG4cPHxb3JyQkwMHBAQDg5OSECxcu4MmTJ/jf//6H3bt3w9HREQkJCVXOA+vs7IyxY8di3rx54nKaAHD37l20atWqSLBemEQigaenJ7p27Yphw4ahdevWGDdunNjCq2/W7T+CeXt/EFHlAjciQBCQGvQr8PcfxWYbqIrdu3ejf//+ei2TsbJwQMn0Kiw+Az2WFD8Q/pcAXzRwskCHH88gN7/gy8fUQIqz07vgUWIW+q+5WGb5T9aNgypJf2srlzSw/1Unk8ng6emJvLw8xMXF6XQXSyQSEJFeAm8jIyNIJBJkZ2ejQ4cOsLGxgYWFBSwtLaFQKPDtt9/C3d0dy5Ytg6WlJfbs2YNNmzYV+wVpZ2eHmjVr4urVq5g7dy7mzZuns9/LywthYWGwtbVFfHw8unTpgsDAQMhkMtSuXRuRkZGIj4+Hra0tlEol9uzZg9WrV+uMEwUKJiU1aNAAPXv2REBAAGrWrIlBgwZh165dkMlkiIuLQ3BwMH788UdxNrcgCBAEAVKpFPXr10doaCjq1q2LkJAQKBQKnD17Fp06dcInn3yCZct0J2bk5ubqLPPn5+eHrl27YuHCheKPlQYNGuDixYviWE8A2LlzJz766COsWbNGbB394Ycf8P333+u8fn5+fti7dy+MjIxw+/ZtBAcHY86cOUhOToaDgwNSU1OLdKNrW+hMTEzQpUsXNGzYELt378ajR48wYsQIrFmzBj///DO++uornXGRcrkcZ86cga+vLy5fvowLFy5gyZIliIuLE9cBf55MJoOVlRXs7Ozg4OCAM2fOoG3btsjMzMS9e/fg4OCA6OhosV5SqRTe3t5wc3PDwYMHcfnyZdSqVQu2trbIzc2FiYkJmjdvjpCQEBw/fhzbt2/HyZMndZLAl8TJyQmtW7dG165d8ddff+HXX3/Vewulllnjt2DrNwEaCBUaU0lqVcEP5PNbkHDpgN7rJQgC7OzsEBYWpvN+Y6zaVWOOS/YvNPfgbao960ixiXszcvPp0F9Pimw/GhpLREQtvj1RauLgmp8fJKvuY/WWrLhfv37k6OhIKJRg+3V6CIIgJuCWyWTk7OwsJnp2c3OjDz74gAICAqhv374EFCTytrGxIQBkbm5O7777rk4C9ho1alBeXh4REV2+fJmaNWsm7pPL5XTp0iWdex0XF0cAqFmzZtSqVatik7kXTsxtaWlJAwcOJAD03nvvFXnvjBo1Sjx29uzZOvvOnDlDAMjPz0/cdvnyZZLJZCSTycTk3HZ2duTm5kYSiaRIHZ6/x4IgUP369WnJkiViIvfvvvuOiIhGjx5NQEGC+suXL4sJwuPi4orUOzAwkADQzJkzxfeT9p4MHTqUAND06dOLnJecnEwAaNiwYeK24OBgsrOz06mnVCql/v37U1JSknjc33//TQDIy8uLTExMCAANGDCAli9fTgEBAdS2bVsyMDAo9n0jlUpJoVBQvXr1xATr5Xm/2dnZUa1atXSSiTdo0EDnOW3dupUA0Pr163W2Ozg4kJmZmfh+bdeuHS1evJgA0Pbt24mIKD8/n3bt2kUWFhZFrm1qakpGRkYEgM6ePUtEROvXr9d5vbXv0+fvcXX+bcssHch+4H+p5ozfye3zg2V+ftWc8Ts5DPyaZJYO1frZIJFI6NNPPy3ynmOsOnFAyfSq4w+nS/xAzc1X0Z5r0UW2H7gRQ0REQzZcKv0Decbv5Dp+vd4+dLVfNHZ2dq9NQLl27VrSaDTUq1cvcVvdunUpP79ghY34+Hhyc3MjANS6dWtKSEgQV5eJi4ujnJwc8vX11XkNbGxsSBAEioyMLHI/V61apXN9d3d3GjBgADVt2lTny1sQBDHQsLW1pebNm5NEIiEioujoaBozZowYzGqvO2nSJIqPjyeif1bmAQpWlSmOt7c3CYJAERERdPPmTZLL5SSVSik4OJiIiLp06UIAaPHixaRWq+nkyZP0/vvvF/s6CoJAAQEBdPXqVVIqlWRoaEgKhUJcKYiI6JdffiGpVEqCIJBMJiNXV9di6zV16lQCIAZwRkZGYpBWq1YtAooPKImI5HI5NW3alLKyssSgVSqV0owZM+jDDz8kAOTs7CzW+e233xbvk4eHhxg8bN26tUjZOTk5OsGZ9gfF80FXeR79+vUT71V0dLRYbp06dcT3HhHRxx9/TAAoJiZGpy4ODg7k4OBAKSkp1KlTJ7HeQMGPHwcHhyIrMNWuXZu+++47evLkCRERXbt2jQBQ+/btxXLz8vJoxIgROj8gJBIJeXp6UosWLXTec/p+FP6xJLdxJavuY8l57NoiK+q4fXGYms89RFbdx9KkL7/R+eypzocgCEVWc2KsOnFAyfQmIzef3EsJBm8/SaXwhAxyn/nPttqzjtDjxEwiIpq043qZAaXbF4dJkBtV2wdwdX/IV+XRo0cP8bX+4osvxO09e/bUuQ9qtZp69+6t88W1fv16GjRokBjo2NjYiAEJAKpfv36x91TbSunh4aHzpQ1AbDGqX78+AQUtct9++y0RFQR32oCysNDQULFF7fkvZkdHR/Ly8iKJRCK2lBZ28+ZNAkA+Pj5kaGhIEomETp48Ke7Py8sjS0tLkkgkNHjwYJ2WPmNjY+rbty8NGzaMbG1ti73v7du3p6CgIJ2g8vbt22J969Wrp7MvLS2Nhg4dKp5vbW1NS5cuJbVaTXl5eWJrLABq3LixzrlaTk5OZGJiIr4GzZs3F1tBb9++TQDI39+fTp06JS6bqL2W9t/u7u4UHBxM33//PQ0aNIiaNWtGDg4OxbZQyuVysrOzoyZNmtAHH3wgvk9cXV3FQNPKyoqMjY2LfQ9KJBKytbXVaY22t7cXg9xWrVqRVCot8jwdHBzIzs6Oli1bRt27dydzc3Odci0sLKhLly60ZMkSio+PJ4lEQo0bNy5STqtWrQgoaEnW/mjRvveef1+1adOGTp8+Td27d6/Wv8siraJyI5Lb1yIDp7rUqIMfCXIjmjRpks7f44t4SKVSatq0KalUqmL/thnTNw4omd7cfpJaajA4bfdfRET068XH1PK7E9R6wUnacTmS8lUFX7QTt10rM6CsOeN3ktvX0tuHrpWVFS1atIjUajV99dVXBBS07D3/5fQyH46OjuL6ysePH6e5c+eKQUCbNm0IAH3wwQdF7oe2xa7ww9XVlXbu3CkeUzi4cnNzo02bNtGYMWPI09NTpyvUwMCA6tevTyNHjqQePXoU6SZt3769TpdsSQElEYktcdu2bSvyZaxd7/ynn34q9tzC3fBHjx4Vt2dlZdHs2bN1ukC1AVXDhg2LlDN79mwCUOx631KplGrWrEn+/v505MgRat++vbjPw8OD7t69S3369BGDGalUSsbGxsXWV7vWNgBSKBQ6dX7w4IEYlJuamurcFy1ra2tSKBSUl5dHwcHBOut1lxbg2NnZiUGbpaUlAaC+ffvqlB0eHk5SqZTMzc0pJyeH4uLiyNzcnARBoO3bt5O3tzcBoPnz51PPnj3Fckp6mJqaklQqJQMDA/riiy9o48aNNGfOHOrQoUOROtvZ2ZGfn5/O+2jAgAHiD4lmzZoV+WERGBhILVu2FI8XBIEaN25Ma9euJbVaTTk5OWRubk4SiYTq1q2rcz0Hh+rtYn7+8Sr9OF2xYkWx703G9I0DSqY31yOTywwGFxz9mzJy/+kiu/o4mVaeCSMiog9WnS9XQGngVFcvH7SmpqY0f/58Wr58OX399dckCAJZW1tTTEwM5ebm0rRp017qF4FEIqENGzaQRqOhuLg4ksvl4hewk5MTZWVlkVqtphYtWhBQ0JKltWvXriLlPT9ucdu2bQQUtHA9H1gZGhqKXeeffPKJznk3b94U92kfFhYWNH/+fLEVrrSAUhvMabuT582bR7t27SJfX1+dVtDWrVvTnj17xPMiIyPFAMzV1ZXy8/Np2bJl1KBBA/EL3NDQkGrXri1+qZuYmFBGRkax9Sh8f/fs2UMPHz6kr776ilq0aFFkPKhUKiUXFxedbZ6ennT06FEyMjIqMpZQKzw8nABQhw4dxHvXvn17GjZsmE7Qce/ePTFoXLBggdjSWLhb9fmA5fkhB99++y1lZ2cTEdGAAQMIKGilU6vV1KRJEwIgBq1qtZqcnJxIEAS6cOGCzmtsPmKlfwAAIABJREFUamoq1u2tt97SeT5qtZr8/f0r/Z728fGhqVOn0r59+ygpKYlatGhBUqlUbH01NTWlrVu30saNGwkATZkyhd5//32d+6FtPS3cOq21YcMGnesV94PhRT7KOz61Oh+mpqbFjv1lTN84oGR6U1YLpfbh+eVR6rH4T2r7/SmqOeN32nbpMWXm5lPdr46+8BbKV/FhbW1NgiCQvb29zus7bNgwAgqCm7S0NHG7Wq2mxo0bE1AQNGqDB6Bg0kZgYCC5u7sTUDAu7f333xdbPAt/6TRs2FDsSjU1NSUPDw8SBIGysrKIiEipVIrduNoxky1btqQvv/xS/MI3Njamzz77jDp16lRiQKktQyqVFgkK8vPziwSrhoaG1KlTJzGQqFmzplgHbTna4FOj0ZBarRaDrZkzZ5b4fo2PjxevUb9+/SJdg7GxsfTRRx+VeJ+8vLzEMab9+/cv9hragHL69OmUlJSk020tl8vF+1BcV6hcLicrKysCII5ZlEqltGXLFrH8uLg4cnV1Fc+pUaOG2KLatGlTMcBPS0vTGUurvQczZswoUueIiAjxtd22bVuR/fXq1SOZTEY3b96kbt26FRv0WltbU/Pmzalbt27Upk2bIsMlnn/UqVOHGjVqJL4Oz7eGOjo60pQpUygxMVHsEi881jYwMLBIq2SvXr2IiOjp06di1/6/8SGVSmngwIEl/h0wpi8cUDK9ySxjDGVxjzYLTlJatpLWBz8s1/H6HEPZoUMHunz5sti117dvX5o9ezZNmjSJhg0bJrZIeXh4UO3atUscV6bPh6WlJXl7e4tdt23atKEJEyboTNgAQMOHD6fw8HCx9e348eNFxszNnDmTNm/eTL179yZ7e3udfdqAq23btuKkB60VK1aIQYKRkRHFxcXRzp07xaCxXr16dPbsWQJA48aNI6KCoPann34SA1JtQFK4dTAvL4/atm0r1qF79+7Fvo+0M4Xnzp1LX331VZHgt/BzWLFihc6kECKigIAAAiDOAI+Oji72Om+99RYBEIMNb29vnXGOp0+f1rnnrVq1opkzZ1KrVq2KdGmamJhQt27daNmyZRQfH09nz56lBQsW0DvvvCO+jqV1gyoUCurfvz998803dOrUKcrJyRFfV+19tba2pgcPHhR5Hjk5OSSXy8nQ0FC8hkQioZ9//lnn+fzxxx8E/NP96+3tXezrsm/fPrGMwuNUr1y5QmPHjtW5v9rXuVatWkVacE1NTWngwIF09+5dcVKOWq2m0NBQWrFiBY0aNYrq1KkjllHSa1OzZk3q1asXff7552LLprYFdurUqWJALZFIqFevXhQdHS3+Te/evZvWrFkjtmy/Ci2GL+sRGBhY7P1mTF84oGR6Vdos7x6L/6SfT9ynEZsu0+B1F+nr3+9Q4v+xd+VhVVXr+9v77DPC4TAPIqOADCoq5iyK85SziTgPOaWmpqSYmiNZmkNpWdrNNMX0dkPTvCSSac4TSmY4p4gTIgIiHA7v749z1+pszgGta/dXxvc863lgn73XXmvttfd61ze8X/5jnL6ei7DZ3zwVoPQe/fEz+8DWr1+fL5AxMTGyfuTk5EAURfj5+fFjq1evfua+UYIgcMBgZ2fHtUjP+j4KhQIGg0EGLEVRxIIFC7BmzRps27YN+/btw7lz55CTk4MVK1ZY1aFWq7k/1po1a0BE2Lx5s9Uc+PTTT3mfFAoFevTogaNHj3J/zU6dOkGn0yEoKMjmHGIaRl9fX3Tr1k3WhvKarvbt28vMecxnMSQkBHv27AGRGZCUD4i5dOkSiIgHfjAzblRUFLZu3cq1oOy5lI+Az8vLQ3BwsOw5Ps1zcHV1xcyZM7Fnzx4MGzaMX2cwGKyA8Z07d2Ta2rS0tArfOxZpTmQGp2xDoNfrMWvWLN5/Sy13bm6uzbo8PT0hSRI++OADmZ+oZT+8vb0xduxYGZXU8OHDQWR2kbA1z7VarexZFRcXy6L7iczAu3bt2mjevPkTtZqWdYeFheGzzz7DvXv3AAC5ubkyzalOp8PGjRtx48YNKw3436GIooiAgAC+UamSKvkjpApQVskzlcp4KFstScPhS/dwv7AYj42luHy3ACtSMxE66+nA5LPmobQsCoUCzs7OiIiIQPfu3TlY2LRpE8aMGWMVPDJw4ECcPHkSmzZtwttvvw0iQqtWrWRBFszPjWlFLLUjb731Fv7973+joKCA06EMHTpUNpbx8fGyBXHr1q3YunUr5s+fb3NRtbWIaLVaaLVaqFQq7rP434yTo6MjfHx8eMBHo0aN0KFDB/Tp0wcjRozAlClTMH/+fAQHB0MQBCuewKlTpwIAgoKCYGdnZzV/srKyMHr0aCtNUosWLThtzblz59C7d2/Z776+vpgyZQrUajVUKhXu3LkDABzcjBgxQnYfFi189uxZfswy4EehUCAqKgpEZgDcr18/1K9fH+7u7hXyOxoMBvj6+qJatWo2ffdCQkIwZ84cXL16ld/zwoULHKxZBuakpaXxucQ4MZkJ15ZMmzaNz4OioiKYTCbMmTOHPyeNRoPx48fLIvt3797NrzeZTNi5cycPerE1T/r37w9vb2+oVCqbEesNGjSAJEkAgNTUVN7+mjVryupzdnaGh4eHDDDa29tj586dsvpMJpPsnKZNm6JTp05PpD0SRVH2jJRKJZKSkjjYXLVq1R/yDfmzF+av/Ful4LERGVkPcPLafWRkPUDBY+OTL6qSv6VUZcqpkmcqlWXKeRbyLDPl6PV6ys/Pp06dOlFOTg5dv36d7t+/bzMbCNGvWXW8vLxo3bp11KJFC7K3t6clS5bQtGnTaNeuXdS2bVvKz88nOzs7cnFxIR8fH0pKSqKYmBjKzc0lPz8/unbtGl25coX8/f153U5OTiSKoiwN5D//+U+ePu3KlStERDRs2DDav3+/LLsJEZGnpyfdv3+fjEYj7d27lwYMGEA3b96kBQsW0MyZM/l5RqOR9Ho9qVQqMhgMdOPGDQoICKBp06ZRQUEB5ebm0o8//kjbt28nInPmlICAALp37x7dv3+fiMyZUUwmEwEghUJBZWVlvzkrD8vkotfreb7loqIim7nVmzVrRm3btiVnZ2dycXEhFxcXcnNzo/fee4/Wr19PYWFhdOXKFZ6i0Nvbm+Lj42ncuHEkSRKFhITQhQsXaOfOndS5c2c6efIkRUVFUfPmzenbb7+lV199lT777DNZikNb+bWVSiU5OjqSt7c3BQUFUd26dWnFihVUUFBARqORTCYTLV68mF599VUaPHgwbdmyhV9rb29Pjx494lmZtFot1axZk9q1a0dpaWl04sQJUqlUVFxcTNWqVaPs7GxSKBSUlJREvXv3purVq1Nubi4VFhZajc+bb75Jc+fOJYPBQHl5eZSQkEALFy4kInNqyVWrVtHcuXP53GLpFwVBoA4dOtDJkyfp5s2bsv5GRUXxTEO3b9+mFi1akCiKZDQaKSYmhvbu3WvVDjc3N1IoFHTr1i0iMqdsbNCgAV2/fp0UCgVvj+V9vLy8KD8/nzQajc10mjExMfTdd9+Rq6sr3bt3j4iIVCoVvfbaa/TGG2+Qs7MzabVa2rdvHx04cICSk5MpNTWVTCbTf50v/nkUSZLo3LlzFBwcXOl5F27n0+dHfqG0n+/QL/cfkeUoCkTk66yjmJruNKCRLwV76P/QNlfJX0j+36BslTy3ErvmAPxe3/6bfCmf6Ds57St4xC545rv2OXPmADBrQz799FPUrVvXpsbDxcXFZuCEJElcY9KlSxfMmjULu3btwsOHD2FnZwdvb29IkgRBEJCYmIitW7eCyJrKIy4uDkSEjIwMAMCuXbtkZOHlNUZ6vZ6br99++21uGp47dy4AID8/n/++ZMkSfp8xY8aAiPDxxx/DZDKhT58+IDJrHo8fPy4jTG/Xrp1ME3Xjxg3Z+Dg4OMj6UFhYiKtXr+Lo0aOoVasWP89gMGDEiBF48cUXeZCJ5diW//9ZmvtVKpWMMsbT07NSU6pCoZBpwDw9PbF3794KTYVqtRq1a9fGxYsXOYk2myehoaFITU0FkTkox2QyITU1FcOGDUONGjWstLD+/v5cq0dEGD16NMrKygAAU6ZMAZG1H1xiYiJvZ0FBAZycnKBWq614PC3pi8oXBwcHNGvWjPuUls9SBJg1puy5fPDBBzbHggVHMTl27Bi6dOkiG28/Pz8sXrwYSUlJaNKkieydeuGFF5CUlMTnXH5+voxD0s7Ojj+bkJAQZGZmcqqv2bNnIzo6mr+TCxYsAGAO8mLE8MwHWJKkCqPnn/ciSRJiYmL4vCovv+QUYuBac4KJiixNrLDfB649jF9yCm3WVyV/L6nSUFbJM5P8/Hxat24dLfvoM6Ius0hQKIkE4b+uFwAJJiNlfTyWSvOenM/3t4goilwzVP5VEEWRJk2aRO+88w6JokihoaF06dIl+uGHH+jgwYN08uRJ+vnnn+nkyZM2NWtMBEGgpk2bUuvWralOnTrUt29fGjBgAG3cuJGf8/PPP1NoaCgFBwdTSUkJXbt2zaoepVJJw4cPp/fff58kSaKSkhLy8PCgvLw8AkANGjSgY8eO8fMfPHhAQUFBlJOTQ6tWraLBgweTk5MTubq6UnZ2Nj/vvffeo1dffZX3X61WU2lpKZWUlJAoilbt+Pzzz2ngwIFERBQaGkq7du2igIAA/vvFixcpLCyMSktLqVu3bvSvf/2La3c3b95MixcvprNnz/Lz1Wo1TZkyhRYtWkQlJSUUGhpKV65c4drcs2fPUmlpKd29e5fu3btH9+7do9zcXMrNzaXvvvuOTp8+TURm7YuLiwsVFhZSUVGRlRb394parSZJkkilUpFarSa1Wk06nY7UajWdPn2avLy8qGHDhrR//36uxdXpdPT++++TTqej2NhYmjBhAi1fvtxqPI8cOUJz586lb775xua9NRoNLVmyhPr27UseHh7Upk0b2rNnDxERrVixgiZNmkRubm508eJFcnBwoHXr1tHIkSNp2LBhVL9+fUpOTqYTJ05Qbm4ur9Pe3p5MJhPP/+7r60spKSlUr149kiSJHjx4YPO5u7m50b1790ij0dCZM2dkWq4bN26Qj48P9e/fnyRJoh07dtCDBw+IyKwxvnPnDhmNRpIkiTZv3sw176WlpRQTE0MHDhzgdTFNcE5ODtfoOjs7U05ODpWUlNCQIUMoKSmJBEGgYcOG0caNG6mkpISIzNrs7du3k7OzM6/v3//+N3Xs2JGIiOLi4ujzzz8nIrO2NDIykjIyMiqfAM+hbNq0ifr37y87lnTsF5qz/UcqLQOZyp4eFihEgSRRoLndIij2Bd9n3dQq+QtJFaCskt8lRqORMjIy6OjRo3TkyBH64YcfKDMzk4iIFAoFNYqbTFnerZ7Z/XJ2raCCM98+s/qIzO2sCHTo9Xp69913aejQoSRJEhUUFJCDgwM1adKEfvjhB9m5BoOBnJyc6NKlS3Ty5ElKS0ujt99+m5sYVSoVX/DK30OhUHBzL1s8ywszZY4YMYLWrl0r+2337t3UqVMnIiLKy8sjBwcH2e/37t2j4OBgevDgATVo0ICOHz9OX375JfXs2ZOIiC5dukRdu3al8+fPy6574YUX6OjRozbbc+XKFQoMDKQaNWrQpUuXSBAEGj16NK1atYq2bdtGAwYMoNLSUhIEgcrKyig1NZUWLVpEBw4coJKSEhIEgSIiIigjI4Pc3d0pJyeHTCYTeXh4EBHR7du36dVXX6UXX3yR2rZtS5MnT6Z3332XSkpK6PDhw/TDDz9Qeno6ZWZm0i+//CJzE2DCQImXlxeVlpbSjRs36OHDh7LfR44cSX379qW7d+9STk4O3b9/nx48eEAPHjygLVu2UH5+PhGZ3RHc3d2pqKiIHj9+TCUlJbxUtpGoSERRJEmSSJIkUiqVBIC3zdnZmTQaDT18+JAKCwtlmxxRFAkALViwgIqKimjBggXk7OxMFy9eJKPRSJ9++il9/fXXdODAAdl1bJ6PGDGCli9fTvb29kRE9MMPP1CrVq1kfYiPj6fFixdbtfnWrVvk5eVF9erVo9OnT5NWq6Vz586Rn58f3bt3j/r16yczgzs7O1OPHj1o9uzZ5OfnR56enlRSUkKPHz+moqIimjhxIq1YsYKIft2gzJ8/n/7xj3/Q5cuXeT0ajYYMBgPdvn2bbt++Te7u7kREdObMGerYsaNsY9SjRw/617/+JWv3Bx98QOPHjyeY4wWofv36dOLECSIiGj58OP3jH//gLhd/J9FqtXTz5k1ydHQkIqL30y7QkpTM/7reqe1DaHxM5eb0Knl+pQpQVskTBQBdvXqVg8eDBw/S6dOnqbi4mARBIIVCIVuUmDaqx8wP6JTJhwj4fZrK/1yXu289PTy09Rn2yCze3t4UFxdHcXFx9NJLL9GFCxeISO4/JwgCeXh4kMFgoJ9//pk+//xziouL43WUlZWRJEnUtm1bSklJoQsXLlDjxo3p/v37pFAoKDg4mH766ScyGo20atUq2rhxI1/QniRKpZLq1atHHTp0oNWrV9ODBw/o/v37HDSWlZVRQEAA/fLLL0RE1L17d/rqq6+s6rl16xYFBwdTQUEBubm50Z07d6isrIzGjRtHH330EQGgvn370vvvv0/h4eGUk5NDPj4+dP78edLpdFb1rV69ml555RXatm0bBQQEUI8ePej69eukVqupuLiYtFot+fn50fnz58nOzo77/QUGBtLw4cPptddeI41GQ3q9ntzd3Sk9PZ0mTJhAn376KRERH0+9Xk/btm0jQRC4Rrb8+ADgc69Jkya0aNEiaty4MWk0GiIi+uWXX2jUqFGUkpJi05/OxcWFevbsSXPmzKHq1asTEdHjx49Jp9NR/fr1qbS0lNLT02nYsGH0ySefyK7t27cvbdu2jYiI3N3daf369RQQEEB3796lHTt20JIlS/gmITIyksLCwig/P58KCgqooKCAHj16RDdv3qS8vDxeJ9MO/x6/1PKiVCrJzs6OHjx4QM7OzhQVFUV6vZ4cHBzI0dGRHB0dqbS0lBYuXCi7V82aNemDDz6gmJgYfmzChAn0/vvv0/79++nmzZsUGxtLSqWSPD09+fwjIurSpQstWLCA6tatK2uLp6cnERFlZGRQgwYN6Nq1a/TCCy/Q999/T0ePHqWWLVvycyMiImjBggW0d+9e+uKLL+j27dt8bAYPHkwJCQmUkJBAmzdvJqJf31dBEOjGjRtUrVo1Kisro4EDB9LmzZvJwcGBfvjhB5o1axZ99dVXNHv2bLp37x6tXr2awsLCKCMjg7Zv3069e/eucFP3PIqHhwcdP36cDmSX0fQvzz75gqeUxb1qU78qTeXfUqoAZZVwyc3Npd69e9PEiRNJq9XSkSNH6PDhw3T48GFuMnva3bzBYKCHDx9SUIchZKzdncoEkQRR8fSNKTNRmamUcr/98JlrJpl4eXmRp6cnnT59mgCQnZ0dFRUVUXZ2NgmCQJ999hlt376dzpw5w813RGbTX/369alXr14UGhpKLVu2pBkzZlBkZCQNHDiQTCYTvfXWWzR79mxSqVTk4OAgC3pggPuNN96goUOH0sOHD6lPnz5cMyMIAjk7O1NhYaEsUIT95uTkRF5eXvTw4UO6fv06vfjii3T9+nU6ffo0rV+/ngYPHmzV15YtW9L335uDpRISEjhA9fHxoeTkZKpXrx4REdWoUYOuXLlCAPhCXKtWLVldAwYMoE2bNnGN6OPHj6lGjRp08+ZNIpJrfj09PSk2NpZmzpxJrq6uRERUUlJChw4doj59+lBubi7VqlWLMjIyKjVRh4eHU0REBNWtW5eaNm1KjRs3ppUrV9Lrr79OHTt2pJMnT1Jubi49ePCAdDod/fjjjzRq1Cg6ePAgERGFhYVRdnY2FRQUEADSaDT04osv0jfffMMBXfXq1WngwIGk0WjozTffpA0bNlBcXBzVqlWLfvrpJxo3bhytWrWKHj16RH369OFm6vj4eEpMTLQyE1+5coUaNGhA9+/fp4CAALp48SI/p6ysjDp06EB79uwhd3d3UigU9OjRI9k8IyIqKCigu3fv0rvvvkurVq2qFGSKokharZZ0Oh3dv39fNp6/N3hKoVCQUqnk89BgMNCjR49k3wAnJycyGo306NEjSkhIICcnJx485eHhQe7u7tSwYUMSBIFu3bpFZWVl1KtXL0pOTubvApHZTeDgwYMUGRkpa8OFCxcoPDycB4JZ3nfPnj0UGBhITZo0ofPnz5MgCDRz5kz64osvKDMzk+rUqUOHDh0inU7HA+ru3LlDRERBQUH0008/kSRJREQ0ZcoUWrZs2W8an/+VsA1S+e/B7xWVSmWu086FXIesIBNZuziEeznQ1PY1qaannlzsVPTYaKLL9wrps0PX6KvTWRXWrZZE2jO5Jfk4W29Gq+T5lipAWSVERJSSkkLx8fGUnp7Oj/3eRchS3NzcKLdEJOeOr5A2oD4JBAJVoq0sMxGJCiq6cpLu7171zH0miYjmzZtHO3fupCNHjvBjLi4ulJOTQ7179+ZaJyb3798nFxcXCgkJIT8/Pzp58qSVmdXZ2Znu379PoiiSwWCgBw8e8HFzcHCgWrVqUdeuXWnIkCH0zjvv0PLly+nzzz+nxMREmQ+Xg4MDmUwmKigoICIik8lEp06dogMHDtDs2bMpPz+f3N3dKTc3t0JgHxwcTGFhYVSnTh1q3LgxVa9enerWrUtBQUF0+fJlKisrI1EUad68ebII8IcPH5LBYKAWLVpwvz8ioo8//piGDx/Oz4uMjKTz589TcXExHT16lKKjoyuMjF+0aBGdPn2aLly4QFlZWZW229HRkdq1a0eRkZF0+fJl2rp1Kzc7h4WF0cmTJ/nCmpGRQZGRkeTo6Ei3b9+mr776ivr27Uvt27enW7du0ZkzZ4iIqEGDBrRmzRo6fPgwvfLKKzRx4kQKDw+nMWPGULNmzejAgQN05MgRmjdvHqWlpXG/QiKid955hyZOnEiiKFJYWBhdvHiR2rRpQwcOHKDi4mKSJIlrACuSn376icLDw4nIDFiPHTtGZWVl9MILL9DNmzcpOjqaUlNTqUOHDpSWlkalpaUkiiIdP36c1q9fT3v37qWLFy/adJno2rUrffLJJ7R582ZKTk6m06dPcx9OS5k5cyZNnTqVmzdLSkrozp07dOfOHbp06RL169ePWxmio6PJ29ubvv/+e8rKqhg0CP+xOPzWb4MgCNwVovxxURSpbt26ZG9vT/b29uTg4EAGg4EcHR3pyy+/5C417FwGmENCQmj06NGUmJjII8GJiHr27Elffvml7D5jx46lDz/8kARBoIcPH3Lz/4ULFyg0NJR0Oh15eHjQpUuXflO//kjR6XT06NGjZ16vVqslr7hFVOocQIJCsvq9cYAzvRhZjY5dzaXbDx+TVqWgHnWrUbdIb1qS8jO9n3bRZr0KUaCmgS60YUSjZ97mKvmTyx8Z8VMlfx3p2bPnHxpdWK9ePShdfDD0vZ2oNuojmxlwqo36CE5tR0Fyqf6HtoXxDUqShAEDBvDoUCJzNHW9evXw6aef8mhTxvG3a9cuPl63b9/GwIEDK+TEc3BwgEKhQEBAgNVYlydzZpHNu3btwoQJE0Bkm8T64MGDIDLngtZoNFCpVEhJScGyZcswePBghIaGPvUYCIKAefPmyVI4snYlJycDAI4fP875FC05Mh0dHeHg4CAjSRcEAQ4ODnB0dKwwjaC7uzvq1q2Lvn37YuHChZxfkcg6zzgTSzJ5SZIQGxuLu3fvwsXFBaIo4syZMwCAnTt3yqKmY2JicPHiRQDmCH69Xg+tVsvJw1lE89tvvy273+bNm62eTVRUFBITE2V8ops2bYJSqURkZGSl7xVLvfjCCy/wcWD1sLSQJpMJsbGxIDLnKLfsh0qlQmhoKLp27QpBEPhvLCORk5OTbF4WFBRg7dq1/HfLYjAY0Lx5c7z11luc05NlCfr666/h6OgIURRx/vx5HDx4EO3bt7d6ll26dJFFvK9cuVL2jp89exapqanYsmULVq9ejQULFmDq1KnQarWQJEnGD2lnZ8fJ7i37+7SE5k9T7O3tERkZiebNm3NuWfbOBgYG4sMPP8SWLVvg5OQEQRCQkpKC0tJSbNu27Yl8l390+SPvr1AoENYo5ncxbpy8dh83ch898bwLtx9W+m5UyfMnVYCySgAAixcv/p98JFlKtPmJb0PpHgA73wgo3QMgKDX/0w+4j48PX1Q//ticfadVq1aoW7cuX9CUSiVatmwJV1dXaDQaLF68GC1atLDKM0xEcHd3x6hRo9CjRw9Ur15dtijqdDpERUWhc+fOcHNz48c9PDyg1WohCAK++uorAL/ml+7QoYPN52RJvr1t2zar3xkgHTp0KI4fP84zoxARJ1q3tbg4OztDkiSIoog33ngDX3/9NfLy8mTZWjQaTaV0K5agkQEFBgbj4uKsMsE0adIERGQTdFsKozZi9C+svP7669i4cSNPzcju1bp1a9n1c+bMMc+5+fP5MaPRCGdnZ4iiKCM3nzVrFh/bjz/+mM9XVthzZeB7wIABlbbdMpf3Sy+9xOtp1aoV4uLi4OfnJwNtkiShTp06mDp1Km/Xnj17IIoi1Go1Tp06BUEQ0KBBAyxYsIADzOjoaJ75hoG8Bg0agMicOrRnz56oVq2ajJJJp9OByJy95+rVqzzlouU5Pj4+fPPCztfpdJg2bRp/ntOnTweROY+7ZapNwAyWlyxZwutUKpUYOnQoHj78FWzk5OTwXOUREREcsO7fv59vWlj2H3t7e7z11luIj4/H6NGjERsbi44dO9okkv+rFh8fHwiCgOvXr6O4uJinmXyWJTw8HNW7T4ZvfPJvBpR7frqFazmFT6QUmpOcUem7USXPn1QByipBaWkp/P39/6cfzf+vnLos5zGReQGcMmUKHBwcZNw9591MAAAgAElEQVR9jx8/xowZM6w4E4nMi62XlxeioqI4uHBxcbEaU5PJBLVaDQcHhydyL27ZskV2LVvEbcnQoUNBZNZMVSQhISEgIpnmNTY2lmtcTSYTNm7cyDWjoaGhNvv6pGJnZ4c33ngD3333nRVPY0xMDERRRGZmJm+Pvb0972v37t15Pe3atat0fqanp4OIMHjwYM7HWH4uDRo0CHl5eYiIiIAgCDwbjdFohEajgcFgsMrukp6eDkEQ4OrqysGRv78/1Go1ALPW09HREURm7V75XNVEZmBZmTBAyTgqbeUAb9CgAWbMmAEiQq9evWTXHzhwgHNjpqenAwBq1aoFhUIBo9GInJwcNG/enM/tqVOnQhRFGAwGFBcXo0WLFiAiHDt2jD/77du3IzY2tsKMP0Rm8H7jxg2cO3cOROYsOSaTCYmJiXxMVCoVRo4ciWXLlvHrvL29UVRUBKPRiISEBM79yPpanh+TSVJSEj/PYDCgZcuW/F157bXXZFrc8+fP8+tycnJ49p/69etz3k9LPk/L9+78+fPIz8/Hjz/+yLNZsf4mJCRg3LhxGDBgAB83e3t7BAcHy/rxRxWNRoPg4GCuzXZ3d8eECRMwa9YsPh7PorDc696jP34qAOk/wwwQ681PwcyvzqKk1IQZX5554nXR7+yt9N2okudPqgBlleCLL774wz+Wf4bi4+OD0tJSmEwmLF68WAaiatasicmTJ6Nu3brQarVW11ouvuxvtmh17NjRakyNRqMsJ7dWq0Xfvn0xfPhwBAYGyupWKpWoWbMmRo8ejYMHD/KUizt27JDVuX//ftn9LfMoW8pHH30kq79ly5Z4/Pgx0tLSsHDhQvTt2xd169blwKB8USgUNs3W5YsoinB2dkZ4eDi6deuGmTNnYseOHcjLy+OAksl7773HgTwb90aNGkGv18vypVckTk5OMBgMMkBm+Xe9evVw9OhRnDp1CkSEZs2aAQBeeeUVEBE+/PBDm/UuWGAmy+/SpQvu3bsHIjMQZ4BCkiQsWrSIn5+Tk4Nx48bJxsHJyQnDhg3j+b4LCwuxbt06dO7c2Uqbrdfr0aRJEwQEBIDIDGSysrIAABqNBqGhofxeR48ehSRJkCSJA0I2lkRygvEdO3ZwLR/RrznWr127xnNdMyksLMTYsWOtQIadnZ1ssyNJEq/ziy++kI3bmjVrOGE8ew5sXPR6PZ+jDg4OmDdvHjw8PODh4VHh883NzQURyXKo+/r64vr16/ycjIwMEJm13YDZBYRpTceOHcvPY5rZgwcPol27dlbztlatWrh69Sp27tzJj5XPax4WFgZBEGQ53FlueCKSWRr+m8Lar1QqodGYrTTP0uRfUZE09vB9fcdTAcqNh39NFfrYWIqZ/3oymPSb/jX8p39dlabxbyZVgPJvLmVlZYiMjPyffMT+v4vBYOD+ZidOnOBgw7IIggB/f38MHToUe/bsgYeHB+zt7QGYc0jb8k1r1KgRcnJyAABFRUUYM2YMB0+iKGLu3LlcO5aTkyMDshMnTkStWrVkpmT2LDw8PJCSkgKTyYTCwkLY29tDoVDg0KFDEAQBISEhsmd55coVrg2ULR42tMEqlQru7u4ICgqSZeOxBEDVqlXD1KlTkZOTg/Xr11uBTBcXF1SrVs2mNogVS7C5ZcsWWW7v6dOnIywsrEJtLJPHjx/L+qXVajFnzhyYTCacP38e0dHRvA8hISEICwsDEeHQoUOQJKlSIAOA569mfpWsny1atODPtaJriOTasIqy/Pj5+VmBFmY2V6lU2L17N/z8/KDX6wEAp06dglKphEKhwIEDB2TXGY1GiKKIOnXqyI736NFDds/+/fvDaDRyP8nx48dzDS47p2nTplb+uqmpqTbnjCRJCAoKwvDhw5GWlgaTyVShr6Eoili+fDmv80mA8vLly7LxZIB01KhRsvNcXFzg6OiId999F4IgQKFQYNOmTbJzMjMzQUTcVcPBwQFHjhxBp06dZH23/Ob17t2bX5+SkgIiQteuXWX1Ll26lD9jSZKwZs0azJs3DzqdDs7OzlxTKggCnxMVmeIHDhyIGzduAADs7Ozg6elpsw+1atVCeno6z4T1rIrSPeCpTdxNEveg63v7MeQfR7Dh0FWUmsqwYOe5p7o2I+tBhc+8Sp4/qQKUf3NhJqLnvTRr1qzCxd7d3R0dOnSAl5cXXxDatWuH77//HkSEnj174uzZsxxs9evXDydOnLAKgrHU8Li5ufGACiZ5eXlcs9G6dWsQkcx/7/z585g+fTrq169vtfCxBXbkyJHYs2cPB02BgYFwc3OrdEPg7u6Ol156CYsWLcK+ffu4eTonJweTJ0+WgUgHBwcMGzaMm4wBYMSIEbx/gYGBUKlUPLViaGgo8vLyYDKZcPz4caxYsQKDBw/mmq2KwCbrH2v3P//5Tzx4IF988vLyMGjQIBm4cXNzszJdA0BWVpZVmj+m/bHla2ophYWFMq20o6Mjdu7cWeH5t2/f5uD+SfOOtWfatGk269q5cyd/tkxrmZGRAbVaDVEUkZqaavO6+vXrQxRFbkLeuHEjiMyaWks3A7Vazesl+k8wxn/mTps2bSrso6U2rkePHpg6dSoiIyNlz1MURXh7e1f4XgUGBvJnVRGgNJlMGDt2rMzHsri4GLm5uTyIJjIyEoWF5tR+zOWDyKwZtjR/WwqbnxqNRqblNJlMMr9iyxIbG4vi4mL4+vpCoVBYbSZCQ0OhUCjw7bffcp9WpjVt3749ysrKcPfuXdy+fRvt27eHIAgoLi5GVlYWHj16xH1UWfH29kZGRgbfCFy+fBmAecNw8+ZNvml58803ucb8WRWVV8jvToO74dBVlJSaUG9+ylMF8FTJ30eqAOXfXNq0afNUC+PzUiyBjCiKcHV1lY3Hd999h/DwcNk1Y8eOhUKhgCiKshzcXbp0AdGvwQ+WpU6dOjJAWVhYyLVzixcvxq5du0Akz7PNpKioCMOGDeOLzpOClVif1Go1Ro4ciX379sHNzQ2SJMHLywuCIHAtV1FRERYtWsS1KQxksHq0Wi0HkwUFBTwoJSQkBHl5eTAYDPDx8QHw6+Jub2+P48ePy/pgafI2mUw8V7ler0fDhg3h5eVlc94pFAoYDAaZZof9rVAorPKHl5fc3Fx+L9an8nnTLaW4uBj9+vWT3b988NDVq1cxe/ZsNGzY0MqXzt3dnfdj48aNMBqNiIiIsOqXm5sbPvnkE5tg+Pr163wzQ0Tc7GkZvV1ePvnkEz5/srKyoFQqodPpkJeXh/3796N9+/YyIM6A7caNG1GjRg2Ioojs7OxKx5K5Zrz00kuy45cvX8a4ceNsat/c3NxkGniNRoMDBw7YBJS7d+/m5/r4+KBevXoyNwlLv0mDwYB9+/ZxP1YnJ6cK86snJyfz+/v7+1v9zt69ynxImzZtKntWhYWFEASB5yrftWsXRFHk7+awYcOwa9cufPbZZ1i2bBkfu8GDB6NHjx5o06YNGjduzJ/v/+c3UKFQ/CYNZfkydetpAED3VQeqNJRVIpMqQPk3FuZv9rwXvV6PhIQETiOzY8cO/lF3dXXl1DPlx8YS8IiiiLVr1/Lfz58/L9PWhISEYNeuXdi4caMsYIeI0KRJEx6U8eabbwL41WcsPDyc+zS6ublVuNgIgoCIiAhERkbC39+fa98sF+727dvjww8/xJIlS0BkNqdfuXIFCoUCarUatWrVkmmCYmJikJKSAjc3N+j1emzduhWCIMDOzg7ffvst1zLGxcXBZDLBZDJBEARZFPUnn3xiE2xbAkoWBezv728VlMHMi2yMK4siZ8Xf3x8vvvgiEhISsH37divNJgCrIAYHBweZ6wEAbNq0iQNES3/Sbt26YerUqVb+tKIows/Pj1NsDRkyBIAZcLJofabtbd++PYxGoxV7giRJaNGihZUGtDwQ/fjjjyt9d00mEyRJQs2aNbkGMjo6Gnq9ntfh5+eH+Ph4tG3blh9j49unT59K6wcg08Ky9h47dkzGNMC09M2aNUOzZs1kfpzli8FgAGCe++z5SJLEo+8nTpwIIkJmZqasHatWrZLVo9VquRtKeUlJSYEoitBoNOjQoQOIfqXBys/Px4kTJ6BWqyFJEt59913ExcVVGiCoVqvh5OTE5wHzaa1IK1tREUVRdh8XFxeb73rjxo0xePBgTJw4EbNnz0ZkZCSIyKYv6O8tGo0GntX9ntqHsnzZduI6Sk1lT9RQVvlQ/v2kClD+jSU2Nvb/Ldr6f1EYCCMiVK9enWtkcnNzIYqiLMozNjZWppk6evQor0en0/HzvL29ZUE1KpUKR48etRrb4uJi7gNn2SaVSlWpT2O9evXQr18/LFq0CD4+Pvx3S9C7Zs0aGZiVJMmKz4/ITMHi7+8vA7f169fHhg0bOLBivloMYDDTKRs/y2CWM2fOgMjafFveHcBkMnFA+eabb/Lxt6VRYiDVsj9qtRrbtm2DyWTi7AMxMTGoW7cuX5zL95VRH4WHh6NNmzb8uRGZ/eMYcNRqtRg5ciSvS61W4/XXX4dWq7Wql/kMDhs2DKmpqXzM2BhZbjA++OADft3gwYP5cRblPWXKFLz99tvcjMva0rVrVxw7dgxZWVky7adKparU7A4AUVFRVuPg5uaGcePGWWkf9+3bJwPHe/bsqbTuffv2gciseVOpVFCpVDIfwebNm+Onn37C8uXLQfQraAPM79eKFSvQunXrSrVxjRo1wr179/h1//rXv0BEWL58OXJycnDu3Dns27cPAwcOlF3H5lqjRo3QokUL1K9fH6GhoTxIiI3tf6MJZAwI5Y8HBQWhadOmaN++PXr37s19qiVJwsKFC7F582Z8++23aNKkCQRBQElJiWxcGzduDIVCwf+fO3eu1T2qVauGzz77DADw8OFDKBSKZx5lHhERgepj11UKCD8/cg1r9l3CuM9P4KU1BzF6w3FsP20OIPvgu4tVUd5VYiVVgPJvKpcvX/7Nu+y/UqlWrRoeP34M4FdicrVajT179nAH95SUFCtam6SkJKSnp3PQ9+KLLwIAtmzZIvuos8WqU6dO2Lt3LxYsWIA+ffo8UdPIiiRJPLKzIioVpv1hVDKXL1/m/m86nQ4bNmzA1KlTQURYunQpioqKZFRBloU963bt2vFgAAAYNGgQiIhT0gwZMoRfo9frZQv+O++8AyKyaYotLCzk2pTg4GA0b96c39PT05P7wFlKWloa7w+RWTvDAmMEQeDmdqYJBAAvLy/odDqYTCacPHkSK1aswJAhQ9C4cWN4e3tX6LPp5OQENzc32ZwvH80uCAKCg4M5TY9l3y1l9OjRICIenc2eAdssiKLIA10seSiZ5ObmYtq0aZw/07IolUp4e3tzTeL06dNl987Pz0dCQoJss0Fk3hCdO3fOZnuZWIJeInNku63nAgAdO3YEEWHNmjVcu05E6Ny5s8wnkXEkHj58GHv27EFSUhJWrVqF+fPnY8qUKRgxYoSMAN9WEUURCoXid32PFAoFVCqVTLPt6emJmjVrol69etzNpGHDhnwTUatWLXz44YfYtm0bvvvuO/z444+4c+eOTOtvZ2eHXbt2ITc3l2tOWXF0dMSgQYNw+fJlBAcHc9O5wWDAnTt3AID7UJaXMWPGgIhkY7hnzx7+vbFkhrB8b5910el0CO6XUCkP5dStp3H48j3cy3+MklITHjwqwaFL9/Bq0qkngskqHsq/p1QByr+pvPLKK8+176S3t7cMqCUnJ8tAnmWwDCCntbFcVJKSkrjfliAIcHd3t0lszgrTNLLFi8hsQmVtuX79Ol5++WXZIs345hjROvAr2ToRoW7duhgzZgxfXPr06cPrM5lMPAuJpU+bt7c3pk2bhg0bNqBv375W4IWRrTOOxvz8fO47GhYWxsGji4sLj07u3bs3iKhC3zUAePnll2ULoZubmywbDwBs27aN08MIggB7e3uoVCr++4kTJ3jwEssgxGTSpEkgogqDVZgbR506dbBixQq+WXiauR4dHY2EhAQefW1JtWMpjRo1gkKhQHFxMZo2bQoisw9gdnY2Tp48yTXTBw8etAkoLSU9Pd3Kl08QBIwcOZKDoebNm2Pp0qUIDQ2V+cuyv5+GdqmsrIxnwiH61cQvSRK6dOmCiRMnYsiQIejZsyfatm1rBWTY/wxs/zesEE96FiyCnc3nwMBAfPHFFzhw4AAyMzNlRN/p6ek4ceIEN0WXp9IqLi6GWq2GXq/nHLK2/FgZof2MGTNk7WvRogVeffVVEBHWrVuHESNGyJgemJsDczNxdnbG/fv3bQLKW7ducXAaHh6O4OBgGAwGm2NpacX4vWD7ScU1sNbv9qN8mlKVKefvJ1WA8i8uBY+NyMh6gJPX7iMj68FT+azcuXPnqXzV/opFq9Vy5/eQkBCZGfvatWscVL7wwguyhaWoqAitWrV6qnuoVCpuPmSLgVarxfTp0znPJQOUzG/MlrDUg5amSH9/f0yePBkKhQL29vYyXj4fHx+cOHECgDnSeMKECTIzH1sIExMTbd6PEXmrVCr4+fnZXMjCwsK4tpItkh4eHsjPz0doaOgTKX4AeSSuJYfjxx9/zNurUCjQt29f5OTk8KAYpi0rKCjgEfOsT61atUJubi7PJFQRGToDxR06dLDKrMP6MmLECMyePRutW7d+4nugVqsRHh6Orl27IiEhAcnJyXB1dYWzszN3M+jUqZNsLh0+fJgDnK+++gpEtgFlXl4er2PFihVIT0+XPU8iaw2Vt7c3OnbsyAEh06rVrFkTgYGB8PLygrOzM+zt7bmv4H8DRpRKJZycnGRBVOHh4WjdujW6d+8OpVIJe3t7zJo1C++++y7Wr1+PnTt34ujRo3j//fe5Vt/Sh7BPnz4wmUyYM2cO9/lUKpVcO2x5f0mSEBkZialTp+LHH3/kY2fpU8g0zfv27bM5J5iFQhAE7kdtKYz83tHRESaTiZOsW1okJEmSXZOenm5F08Q2ifb29lyDHBwcDAcHB5vvmk6ng6+vL1q0aIFRo0bxzFFEZt/uixcv4s0335T5xT6rwrS61Qe+Bb/fkS3nSdrJgWttc+RWyfMtVYDyLyiZtx5iTnIGot/eC38bjtDRb+/FnOQMZN6yvUOcPXv2c8k7GRQUxDV3zLQUERHBF/sTJ07wjylbJFjKwYrqFAQBLVu2RGJiIvbv38/rZyZBo9Eo++ir1WoZaCqvCbUURs2SmJiItLQ0tG3bVqZFtQQ7nTt3RmFhIebOnSvLamRvb48+ffrw+7u7u1c6dxITE0FkBkEspaHlwmwJJGrWrMkj2KtVq8YBbmXy6aefcgDB6oqIiOBaXZVKhZdffllmai3vh8cyhXz66ae4e/cu1wIqlUq888478PX15cC2sLAQa9euRefOna2I2jUajQxMvf7661btZbQvllpnPz8/dO3alc+TyqKBXV1d0aFDB4wePRqJiYnYsGEDPvroI4wePRqCIPBxCAgIQHR0NKKiohAaGgpfX19Zik+1Wv27LAaWec4dHBzg5uaG6tWrIzg4GHXq1EHTpk3Rtm1bKBQKSJKEV199lbt8tGnTBl9//TWnsGKFtYuZb5lcvnwZCoUCer0eRUVF3P81JiZGdl52djafNyqVCitXroSHhwfc3d253+egQYMAmDXsK1eulGns2Vxs06YNgoKCrHKbh4WFcSorViqjQGrWrBm/1pZ2kpG8WwZCMS2oJf+jr68v0tPTcevWLWzZsoVvhPR6fYXPzhI0jh49Gh999BEkSULdunWt2nH16lUQEd8UiaKIiIiI35XF6mmKi4sLPINqwXfql/D7nQE6tkrIG7vwS45tV4oqeb6lClD+heSXnEIMXHuY7wKftEv0m/41Bq49LHu5CwoK/pAd75+h9O/fH0VFRUhNTcX8+fO5do8tpk+7OLOFYNKkSXxxLe9vFhAQYBVp+t577/H7MNLl4ODgCp9ncXExiAjdu3fnxywpb8q3jbVPpVKhbdu2MkJqxlnXtm3bJ84jpsFlfXNwcOBayVOnTuHVV1+1IltnxdPTk5Otl5ekpCRuwmbaFkvS9AkTJlhR8gDmiHkiwqRJkzB//nwQWZNKJycnW3FblqetYf2ZMmUKD35hvqZ6vR5arRZZWVk4e/YsUlNTsWXLFh6xPGzYMPTq1UtmzmRAkqVn/G/zRTM+URYRzsbez8/PyvSpUqnQrFkzzJ49G8OHD5fRChGZQSjL/67VajmVky157bXXQERYtmwZP+bp6QlJkjBgwAC+ibGc/+WJtpmsWbMGRGZanbNnz4KIMHXqVP57QkICB1ft27fnub0ZbZDJZOK+sSNHjuTXWR5npVu3bjy46MiRI3jllVcQFhZmBfDZuPn6+lqRxzMycjYfLNsKmH1SJUmy6m9WVpZsg1KeVcGyqNVq+Pn5oXnz5mjdurVscyJJEpo2bSoLWvL09LRK15qVlYX58+fb9L3W6XTo2rUr9y9+lsXe3h51e497phrKpKPXUCV/T6kClH8R2Xz0GkLe2PVEIGkLWIa8sQub//OSM/+w56kw2hpbv1n6nBERatSowTWNzN+PFScnJ67ZHD9+PACzzyMzX2s0GqxZswaAeREvn6mGffDr1Kkjy/vctWtX3Lx50+ZztazHMieyTqdDSEiIzcjj9u3bY//+/byOu3fvcvOwQqGw8lksL9nZ2TJAwxZ9W5KZmYnp06fbzEfu4+ODl156CV9++SW2bdsGQRCg0+kQGxvL63d0dESjRo1AZDbt//DDDzbvI4oiJ3R3c3NDYWEhrl+/jpSUFAwbNgwhISE2Aa6zszMCAwO5ibE81RMLkvkt88mWidiSXJ7IrA3v0qUL+vfvj1GjRmHo0KHo1q0bmjZtipCQELi6utpsL+M/JSIOctlvnp6eGD9+PIjMG5jywvwxLYtGo+Fm81u3blldU1RUBJVKJQMwd+/e5c+E3XfdunUAIOPkZG4G5YXR8XTu3BlE5iCtgwcPcp9PNzc3q+w7ljyURqMRNWvWBBFhwoQJyM7O5j6+TDvH+iQIAlq1aiUzVV+/fl02buVBmKenJ+Li4rBq1SqIoggnJycUFxfDxcUFKpWK+wBnZ2fzjU9kZGSl5mmtVgtvb29+X8YxS0Q2N1dsM2u5kdVoNOjUqRNq164NURQxY8YMREVF2QSr0dHRWLt2LZ/XjRo14hrMP6J0jX/PvGb8Xk3lf65zbNoPr7/+eoWE81XyfEsVoPwLyHt7M5/JznHGxu+ey8hupVLJI3hFUcTMmTNl5unu3bvzc7Ozs2ULmCWAaNWqFQeF5WlXNmzYwD/8bCGx1Cwy01irVq34MbVaLdP+tGzZ0opjj2k6e/XqZdUeloOZ0abExMTIfCr1ej369euH5s2bg4h4XmrLNHLl5dixYzLfsIqCFMrLokWL+DWurq48D3dFz4QBu/Hjx2PQoEEyihsPDw8EBgaiWrVqcHFx+a815uUBAMvgEhERgYYNG3J/P5Z9Jj4+HkuXLuWBGN26dcOVK1dQUFAg6/Pdu3dlz4Xo1zzklgFUlQmjZWJjUhm4VSgUcHJy4sB8xowZSE5O5qCOPWdGhaXVaq0I0fv37y9bzJk/68aNG3H16lVZwA3zr7TsS9OmTTmBN6vz7bfflvXJaDTKNLmdOnXi4z5lyhSb86k8sbnRaOT0W2xM4uPjUVRUBCKzn+XBgwdRp04dfp8GDRrg22+/5QE2a9euhSAIaNq0Ka5cuYIXX3zR5rjq9XoEBQXxTV5FmwydTgc/Pz9unn7rrbf4by1atOBtX716tSy1Kov2txRLbWKNGjUwbNgwmxpuURTh7++PgQMHYteuXcjKygIRoWPHjgDMmlvmAvJHl3p9xsNv2pfwe337bwST2+Hz2j9RveVLsvrq1KmDJUuWyCLaq+T5lipA+SeXzUevPVNzhE/Ll/7y0d2WPJBffPEFHysWAFHeb9Eyc4alGUulUiEpKQlGo1HmR+bl5WXzWRQXF8v8Dhs1agSTycT9rZo0aSJbTO3s7BAaGopDhw7Jor6joqJw7NgxAJDR5rDi6+uLWbNmcc2hyWTiQQuAWbMyduxYHglNZAYjY8eOhb+/PwRBsJkFZeXKlVxDJkkSXxTr1auH6dOnY8yYMejfvz+6dOmCli1bIioqCmFhYfD39+fn/jdzpzxlj4uLC9zd3a18H1nR6/WoXbs2Xn75ZWzYsAG7d+/GiRMncP36dc5vWb49CxYsqPBdYsEWzH+PbTSuXavYRJeUlGQTfCxZsuSpgPi5c+dARFYE6V26dMHBgwdx6tQprFy5EkOHDkWTJk0qTGXIjjHzJwsgkySJ++VZXufu7o6RI0dCFEV4eHjINJIRERHYt28fTy3aoUMHPs8YWTpgfm+Y+dbf31+WJjQ9PV3WvsjIyEqBg61MOQzQE5n5S5loNBqEh4fz/zMyMrgfLSvMdB0SEgJJkrBp0yZMmTKF8z8+aS4aDAY+7zZu3GjzWbKgOQboli5dyn8rLCzk80KhUCA+Pl5WB3NBKc8IIUmSbC6wZzV+/HgO7KtXrw61Wo3OnTtXSIP1RxXJ4IFWc7f9xx+/cm0l+z141ApIBg+b9TE+z+bNm+PDDz+skIqrSp4PqQKUf2L5JacQIW/senaA8vUd8J36JdQu1Z65prJXr17c+f6P+NCp1Wr06NEDly9f5tQxRIStW7fKxozl6Z00aRI/Zgm8WLFlUuzfvz//CFZGKs3SIhL96mdXv359q0WJAUom586d4wECtkrNmjU5EDSZTLh79y4yMjKQlpbGTYSzZs3CtGnT8PLLL+Oll17i2r3yz1MUReh0OqhUqt8VgMVMvDqdDgaDgQO3kJAQrqWzrJflAF+yZAlGjBhhUxvj6OiIunXrVkrSPGDAAKSlpT0RrBUWFlpdq1AokJCQUOl1LBgmJycHdnZ2FW4eAGDcuHEgMoPBDRs2WI2jnZ0dZsyYYeUXajKZsJ+/yD4AACAASURBVH79equc7JbjcPfu3Qrv27VrVxARjh8/jpUrV/JoYkEQKoxKZ/dp2LAhQkNDrUALkXkjc/r0adm9ateuDUEQcPnyZR5QZamRNJlMGDFiBPfhjYuLQ2Zmpiw9aWRkZKVjDsgBZWlpKc/e4+bmxnkqGSOAr6+vVYrN8+fPW5mGK/qGWbomGAwGLF++HEePHsXy5cs5V6plcXZ2RuvWrbFy5UqZid/V1RUODg4oLi6Gk5MTRFHkXJ9GoxFEZl9SZp5Xq9WoVq2abJOjVqs5cK1ZsyZMJhPy8vJAZHaF6du3r0xDr9PpZPOsevXqmD59Ok+p+b8CmEpXX/RJ3IJqoz6yuY5UG/URnNqOgtLVx+pbUNH3hL2jnTt3xueff843zKmpqYiIiLCy3lTJX0+qAOWfWAauPYzAhJ0In/0NPvjuIvZl3sG9fDNZ97Jvf7YJGjuv/B77L9xFwWMj8h6V4Juz2Wi+OPXXc+KT4RW38Jl+fAICArBnzx7Mnz+fg43KUrA9bdFqtZg0aRI3w+Xn5/MMHt7e3pAkySqq2WQycb+j9957zyZ1DJF1fmIAXOvDFqTypNJMmNnQMgVdo0aNsG/fPqSkpGDTpk147733oFQq4ezsjGHDhqF79+4ICAioNGL49/j7WS5cGo3GKvjIMjOPo6MjRowYwc3mS5cuxfr166FUKqFUKnHx4sUKgZy9vT0CAwOtzJBExLN6WArLlPPNN98gOjq60qAGyzHftm3bE9+L9PR0memfyEx+zhZ2T09PKz5CJiyynvnOTZw40eqcoqIibqIPCAhATk4OAPA0igaDAQsWLODaJ7VajTFjxiA5ORmtWrWSuTmwjQCRWQvH0gha8nuWl3nz5oGIsG/fPhiNRu7OcfLkSQDmOX769GmsXLkS/fv3r3ROlS8uLi4YNWoUB7QssKZx48Y8Zagtov3MzEwEBQVZ1cfec8usQbaEAcqsrCxupm/ZsiWMRiPy8/M5qBw0aBB/f4OCguDg4GATOJbXTDs7O+Pnn3/GtWvXIEkS7Ozs+ObSzs5Ols3K8pk0b97cinjdwcGBv9vdunUDYGaIYP69jx8/5s/IFo8kC7Sy5KFkvqmNGzeGyWSCSqVCnTp1cPv2bYwfP95mJLdWq8WqVav4huXQoUM288Q/y1Ke6J+IMGPWm1C6B2DsG4uhdA+Ak5vnM+Eh1Wg0iI6O5t+nOXPmVDqHquTPL1WA8k8qmbcechDY7K1U5D0qweFL97DpiNk8ZwtQtl6ahodFJTh8+R6G/OMIRm04jvPZD5H9oMgq76raze93fxCepnh4eCAqKgq9evXii/dXX32FsLAwuLq6yoCPWq2Gl5cX5s2bh+rVq8NgMODWrVsoKysDYCbCJjKTDtvZ2UGSJFy9epUHMKxevVo2duvWrbPZJkdHRxw7dox/lFu3bo3169dj2bJleOONNyCKIuzt7dGhQwe+SOt0OgQGBsLb2/uZ+PtZlvIgS5IkhISEoFu3bhgwYADGjRuHhIQELFmyBJ988gmUSiU8PT1x6dIl5Ofn89zcV69elfWfUeGU12a88MILSEpK4lGpTJhLQEUURyaTyaq9los8o2wxmUzYvn074uLirDRpWq0WkZGRmDx5MpYtW4a+ffvK/PBYcXNzw4wZM2xqK4xGI2JjY/n9mVlRrVbzXONTpkzhi123bt1skrBbuhmU94U8d+4cX9x79eolA9i//PILv44FZ82YMcMK0AUEBGDRokUoKiri5tIaNWrweljksbu7u82AqMOHD4PIrI1mfoHz5s2z+WzYuFv6CVuW0NBQeHt7V5i5yc7OTqbN9PPzw/37963ukZKSYvN5jR49WvZOViQeHh5wdHTkY9WwYUO0b9+eB8LYAo0ajQY+Pj78mh49eiAzM5M/k8LCQm6WJjK7SDCQz4KCNmzYwInBV65cCQD47LPPQEQyLWhxcTGSkpLQq1cvq02oTqdDQECAFbURm9eNGjXC3LlzcfToUdSrVw9Ev5p6LYU9o+bNm0Ov18tAGaP/Sk9Px9atW2XvD8tNzuZ9y5Yt/6e+8Oze5ZkGnnVxdHR8KutElfx5pQpQ/kllTnKGzYjuuvP+DcA2oNyRnoV7+Y8RMWc3P9b0rVQUG02y3Ku+8cnw7jb5mX4MFi9ejPj4eBDJ6UkAIDo6GqIoAgAOHDgg+5C2bt1adm5MTAwEQYDJZMLDhw9x4cIF7N+/H5Ik8Z1t586dMXbsWMTGxvLo5qioKCtz039TLGl6iMzBGN7e3jItjUajQffu3TFkyBB07dqVLwJ6vR6+vr6yBcHSTMwCFxjYUCqVcHBwkKVwW7hwodWHleWovnv3LtLS0kD0q/N+ebEMeBg6dCgHn6xN/v7+skhclnKxvMZu48aNMpeBmJgYbkbfvXs3B+eWmVvYfYnMoOjKlSs228i0NhVp2DQaDWrXro1JkyZh8eLF3FQeEhKCzMxMbpKuXr26rN7r169zLapGo7HSnh0/fpzft3xfGfhYvny5VXsZZQ7rq6UW3tHRkW82RFFEp06dZGkwyxObL1y4kC/S5dMfMgBfq1YtEJk3AhWJyWTC0qVLbYK9qKgoq3OPHz+OPn36VOi3yopCoYCjoyNCQkJ43QqFAtOnT0d+fj6n4REEgQeNVa9eHSaTCTdv3kRSUhImT57MQWNF75idnR38/PwQHR2NIUOGyMDtggUL+Hs0a9asCsdg5cqVvD7Wzvj4eK7ZO3fuHO9vnz59ZOb6n376yaq+/Px8aLVaKBSKCl0M2HfmzJkzVtdv2rSJz//Q0FBcvHgRRqMRq1evtnIFKU//xWTOnDkgIivXBZVKhfbt22PUqFHP9Pv9ZyrVq1d/6qC3KvlzSRWg/JNK9Nt7bZq0KwKUgQk78ai4FBsPX7W6Zt/Pd3Dpbr7sWLVRHz3Tj8D169d5arjNmzdjzZo1WLRoEeLj46HT6XgkNjuffaiZj5GdnR1UKtUz2XlrNBqZNsHOzg4dOnRAnz59MGLECEyZMgVz5szhpq5evXqhTp06EATBygw5f/58CIIApVKJ5ORkzJw5k3/oLbVfaWlpaN26tZUpSK/X8x2+ZeCCJd9iUFAQ7OzsYDQaMX36dA6cdDodpk6dyhfGlJQUEBEmT54Mf39/iKJo5YtnMpnQs2dPfv+AgAD+W2FhoQzoEpk1I71790Z6ejr/LTU1VUY2zfq0atUqrumylX7SxcUFiYmJyM7O5ibvimTLli0gItSuXRvFxcVciy2KIrZv347Ro0fzgAvLe7i7u2P06NHYs2cPT3FYkZl2/fr1XKsaHh7Oge2OHTt4fSzQhOXn1ul0Ns3lOTk5VgFUgiBg0KBBMs1cSkqKzKTKAIStTDksKMXX19eq/WwO2NnZ2dRiGo1GJCQk8PM0Gg3Py85KXFxcheMPmIHTnDlzZO4DkiTB398fkZGRFbqtWOZAf5r31fKdGDhwINauXYvMzExugbCU7OxsPmZso1FR2krLsWD3cHV15eDRkkS/qKhI5qLCgnzq16+Pu3fvYunSpWjVqpUV0HZxcUG7du3w/vvvY8eOHRg0aJBVnxnZ+rhx47hpnfmIWs4VNnaWoPLnn3+W9YURvVtuEAYOHIisrCyrZ/U8FkEQULt27UrTu1bJn1eqAOWfUPIfG60y4DwJUMYsSQMAzPzqrNU1H+67CJOpTBbg4/v6DgjK/20EoeVHgy2EzPwaGhqK+vXrc41XZGQkRo0ahfj4eJ7/lojQt29fnDt3Drdv38b06dNlZtgJEyaguLgY7777Lj/GtEmnTp2yGufi4mIEBATwNlVk8k1NTbUyHy9atAhnz55F7969ZQuEv78/xo8fL/vwq1QqmZ/hqVOnuD+W0WhEly5dQEQcOJpMJixevJhrNVUqFUaMGIHCwkLodDq+2PTv31/WzpycHK6ZjIqK4jyBu3fv5vUqlUoEBQXZTN1YfjFVq9WIjo62qf1ydnZGmzZtsHLlSuTk5PDMKAMGDACASgHl7du3oVKpoNFoZACeAXyNRoPU1FRMnz6dAxc/Pz+EhYVZaYyYVnDUqFE2TWXFxcU8B7koihg3bhxatGjBr69duzaPwA8KCpK1p6ioCImJiVa+g927d+f+ebGxsVb3ZFH/lnPT3d1d5sfHhKUFDAwMlD1/BqTLa6+KioowduxYPg4ODg6YO3cu73t58veoqKgnLs6MqoeNkWVfFQoF2rVrh8aNG8PNza1C07llYUThjRs35u+5Uql8YhYnJpcvX+Z1derU6Ynn5+TkcMDGNmxr1qyxmeaTzReFQmEVHCYIAjw9PTmfpmWqR0th1gHGrBAeHi7TsltyjVoWrVaLHTt2wGQy8Rzz9erVAwCrVJRsoy1Jkmxev/nmm/yd+KuzddgqOp3OpstFlfw1pApQ/gklI+tBhZHaFQHKnqvNhNHjN52wumbxN2azToOF38qOK90DntmHgAGK3r17Y926dUhOTsY///lP1KhRQ3be0KFDeT+JrEERW9wYlyLjvBNFEWq1Gt7e3lYLKgNk48ePl+XXdXR0REZGBjc528rSUlRUxIFbRfmhgV81iqxYam88PDwwYcIE3L59GyaTCePGjbPSYjRo0ADZ2dmyiNGMjAwAwNy5c0FE+P77763uu3btWr7AKRQK2d+WptL9+/dz8xgjZc/JyYFCoeBZVDZu3Agia2qdjIwMmVatsjJ69GgrEy1gXhCZmXnkyJGVAkpmAt21a5fsOANplgulm5ubVY7mo0eP8pzk5el4fHx80LdvX3z55Zey533s2DEZ2byXl5csd3K/fv24H+batWsRGRkpS43YqlUr6PV6WVQ4M0lbMg2wPrCo/3//+9+y8QsJCUFKSoqsPxMmTACROQrYaDT+H3vfHR5Vlb9/7p2emfTeG2mQ0FKAQIBQIkUxtKVJUVqICU1BQKQIC6uCoAgiAoIgYouw1BVQWRABRRcEZUOWHwj5YmQRYzYbs+Pw/v6Y/ZzcM/dOAgh89fvk8zznUTJzy5x77jnv+ZT35ekHjDHuubx+/TqGDh3KgWZgYCBWrFih6lsCJHv37uUcmr6+vrw62dXKy8s5u0FDhXQGgwFRUVHo2LEjDAYDAgICcPbsWZw8eRILFiwQNiTuijZ8fHyQnJyM3r17Y8aMGXj//fcFAOGqmCNJUr2MCwCEQhVXzsx3333XbWEeNZvNhnfeeYePF09Pz3rBLylcKeezb775Bj169NBM35AkCT4+PnxO6NChAy5evMg/T05OFtSfnnrqKfzyyy949tlnwZhTgvSzzz7j3Ll+fn7Yt28fAGDSpEl3bA7/LTR3lGeN9vuwRkD5G7QvLv5w24Dy0TfqAZQLRUBpDE28YxNBYmIidDodX5SLi4tVi4qrN4cxNaAEnDx05C0kVY558+YJSeGuCypV+DLGeKh206ZNAMAn5ry8PM3+VlKJLF68WPW50uOpbH369BGKR/7yl79wb15ERATMZjMSExM5ybFOp+M63EuWLOHHHTlyBIwxzJkzx+2YKCkpETS8rVYrD7U+99xzkCQJer0eb731lnAcAZzNmzcjMzMTkiRxQHjq1ClOG3Mzz1ipdaxlDoeDk76Hh4drAkrSTVbK7pG99NJLqmvm5eWpPI/keT1w4AAAcA9jZmamUDRFHqc+ffpg06ZNqKmp4d5KZQsICMCOHTvQoUMHDthIuWfjxo38+rIso3379vw+rl+/DrPZDKPRiIqKCq68pNSPJ3WbCRMmoHfv3vydiIyMxNatW/m56FjybNN43rp1q+q4LVu2aPa/MpTft29fAE6ddCL879GjB7p3716vIgy1jIwMFBQUYObMmcjJyRGKQmjzofU+KSm9GGNYsGABXnrpJZjNZhgMBkRERGhSGul0Onh7e/PrkPeQ8nX379+v+Zsff/xxPo8Qh+bJkycxefJkpKWluaXZiYuLEyILO3bsAODM8abn5c5ok0DvuhKIBwYGYsKECbxwZs6cOcjKyqqXKosxp0dy2bJlwlivra2FLMscqMuyjKKiIuE7xBrwf6VJkoTVq1e77ftG+21bI6D8DdrteChvNeQdPWMnzKFqGpA7MSFo/b/FYkHLli2RnZ3N8xkZc3plnn76abz00kvYunUr9u/fj9DQUNhsNqxatQqMOb0aysXP1ZN46NAhHoqLj4+HTqdTFWoQ/6PrZEX5V02bNuU5nsuXL0dtbS2WLl0qhISJmsdgMHAA9+677+LHH38UiKbnz58PQOSh/Oijj/gCZjAYcOTIEX4PVIThrsBG+T3XynBabPz8/DQro2tqamAwGODv78/JxFNSUlRgIiAgAEOHDsWOHTtQW1vLqWpcC23S09OxadMmt5WYdrtdCBErjSh7YmNjVce/8sor3Lvj7++P//f//h8PTYeHh3PpygsXLkCSJDRr1owfu2XLFjDmBC+AU+FmyZIl6NSpkyqM35Cme2JiIpYsWaLKaaQwLHl/yXbu3Ck8h8TERMEzSoCS8gCvX7/OwQ8BkJUrVwKoC5VLkoT169er7mvPnj1ux0Z5eTlX2aHx6Q40KgthqGqeMSd4o0IiuiellZSUIDs7WzhnRkYGtmzZAofDAbvdztV8lHNAYWGhitjc4XDg1KlTeOmll/Dwww8jOzu7QfqjqKgowbO5a9cu3odjx45VgUeDwYDExESMHTsWU6Y4ixAHDx7MoymM1aUG6HQ6XL16lW9WtNRvAGfeqdKzTa1v376CFzgvL09V5X3lyhXMmjXLrSZ8dHQ01q5dyzd8Gzdu5O9f06ZNhVxdh8PBi9oaouT6PTVZltGtWze347zRftvWCCh/g/av28ihpKKcTZ+qi3I+/nuFqign+i7kUConyoCAAGGCt9lsMJlMKkWPW2lKfr/w8HDEx8fzEDCFQOm7Q4cOxfLly7Fp0ybs3r0bhw8fhs1mg06nw/nz53lfr1ixAow5qYeI7JrOp5zkNmzYAMApp5iamoqDBw8KXhvGnNyGyiIZJaAsKyvjZOG0IN9///3497//DaCO57E+I+47Kg5R5rOlpqbi8OHDwvePHz+OwsJCzRxIxpz5h4sXL9YEh0RdQ61Pnz68cImu3blzZ1X4FnB6ViglYfbs2QCAyspKWCwWGAwGYbE+f/4892oSqXPbtm3550888QQYc4L5Dz74gG8MlDmxytxQLfvpp5/w8ssvIzc3t97xVR9gI0+QFk8mhWg9PT1VQNQVUJJp5UJqEfDbbDYcO3YMgBM0btmyBZMnT0b37t05T6M7T2NwcDA6deqEgoICvPjii9z72aJFC1RXV+PJJ5/kz7NFixaoqqqC3W6HxWKBl5eX200DqRTFxsYK44HGY15eHueSVGpy+/r6uu1fUqq6//77edoBY87UAWUI/GZaQkICPvzwQ35uh8MBLy8vWCwWDvbLysrQuXNnlXoTpdUozW6344UXXkBKSorw/by8PJ4Ko9zgAGpAWVZWxhksGHNufOurtKdnSv9VRmOuX7/O00ZatmyJ6upqVUHW77np9Xr8+OOPbsdKo/12rRFQ/kbtVqu8iTbo+59+RtM5e/jf2i3ej5/tv2DVR+eE74YXvHpXJoM2bdrg+++/5/x5RqMRfn5+mr+RMSdQOX78OHbv3o3XX38dU6ZMEXbcVqsVGRkZaNOmDdLS0jjgU6q3/JqJS1l9qfUdnU6H/Px8FBYW8vBaZmYmVqxYIXgvExIS8PPPPwu/jwClw+FAaGgoJEnCkSNHcOnSJR5mN5vNWLNmDRITE2GxWNyOB+VCT4stY84cLuVC5enpiZCQEMET5/rbmjdvLnhIXa26upoDdWpU+VxTU4NFixYJubFWqxX5+fkCyFNS5ixcuJBX2G7evBmAc5EvKCjg9z1gwADU1tYiICBAJdG3Y8cOATwrAafr9SorK1WfXb16FUOHDhV+j81mQ1RUlIpbUK/Xo02bNliwYIEgJUjHu56f6F2oj11Ds+4ApfK5zpo1y+340+v1mqCRCttiYmLQqVMnvlk7c+YMrly5AsbUBS1Krxb1uyzLMBgMQsU1bVzI0+5qyiKy6upqVd9arVb06NGDF77Mnj2bf9a5c2dVH5IWuNIzRUo0vXv3RklJiSCNqmxGoxGenp6a9D5EfUTPuEOHDnj//fc5UT3g9BrS76FGijZbt25FZmamUATTrl07rqDjOjZIDhKoA5Rffvml4BFt3rw53/jRfHIzlduUbjFhwgSeMjBu3Dh+PQqP3405/X+jvfHGG5pjr9F+29YIKH+j5spDOXL9MRRs/hyPv+OUTttxshwFmz9HwebPkfTUbk5sXvWzHUf/8U+MXH8M417/DN9cqVQRm0dN3w7fbneex8xisSAhIYEDrYSEBOj1el7J6GqM1eVQfvDBB7zykZorjx4AfPHFF3zRYswJLsgrRGFnxhh27dqFffv2cdWa+fPnY8qUKdzb4efnp/IQUOFPQ2HRhiZ+o9HI70+n03GAHBwcjI4dO6JXr14YPHgwOnfuzK9FC+L+/fvxzTff4IcffhA8RFTp3qdPHw4GzGYzhgwZwlU5lPeh1+uRlZUl6J67LkJaVlNTw4tX5s2bx/tIKwR67do1TJ06Vcht9fX1xcMPP8w1lZWgm/L69uzZwwuhIiMjceLECX7O9PR06PV61bVIAYUxpyfYtcCKyNlnzpwJwAmKFyxYwKv4lY101Mmqq6vdAjoPDw+0bt2aVzgrbdGiRWDMqcxz7tw5GAwGeHh4CDQ/WoBS6WlMS0trEAgQaCwoKMDatWtRVlYm3AflCCuVnShX0fXZ9unTh5+XxowrF6zD4eD5jFqFbE2aNIGHhwcA4LHHHuNjsaSkBBMnTlRtRgIDA+Hv7883BQaDgecQE8VVhw4d+D1u2rRJuE/l/KK8b9cUESW369ChQ5Gdnc0LWVwbgc3k5GT06tWLKyO5NkmSkJqailWrVvG+cNUadzgc/DqHDh0CAAFE0phVaqEDwO7du8GYM5/atbhmxIgRnGxdy5NpMpmQmZmJp556CufPnxeOvxXlpN9i0+l0vCiz0X5f1ggof6OmVMqJnrETl35QV9aStf9TnbRi7/9KL1bX2lFZ8x/sPX0FORrezjutlJOSkoLo6Gi3C7OXlxcSEhKQl5eHqVOnYuvWrWDMyQdH4TFZlrnSBGNOehZXI8oOxpx8jGTffPMNGGM8fKosniC7ePEiHn74YdUCft9993Gvxf79+7nXxmKxQJIkvPvuu7h69argdQsMDMSUKVO4rraysCcmJgZJSUm8GIIWJqPRyImzb6VvG/q+LMvw8vJCSkoK8vPzVYsocUaazWaYTCZNzkbA6eWgwh8CJ+Q90el0KiCjtPPnz2PkyJEqCTnKC2TMWYFLfajX63nOo9IeeeQRMKZWsCHJTTp/SEiI4EEEnOkIfn5+QqGREnzLsuxWd3rWrFlgzBlyVeZyRkVFqbSZ09LS+O8IDAzkHjdSYElPT+egcdSoUWDMmWPZUCFM69atMWHCBDzyyCNC+DskJMQt0bPD4YDVaoXVahU2IERHRGH8tWvX8hSN5s2bY+fOnUKI2tVWr14NxtQ5o4DT8x4XF8dzCSMjI1X3V1ZWhuHDhwubM1mW0a9fP144RZuu6OhodO/eXSiso+/LsowlS5bwVBK6L8aYZuU6gTQC8Eo1rVOnTmHlypV45JFHkJ2d7bZAyPUesrOz8e677+Kf//wn15AfMGCAcN0LFy5Ap9PBbDYLXK95eXm4ePGi5rMjRguiy1IW7TFWp0BFGuuMOT3rvXv3RnR0tGos6fV66PV6WCwWngv6e21ms5mnAzXa78caAeVv2EjL212Bzu20qGnbED3quTv68lM1r7LK9ZtvvuGyaAkJCYiOjobVanULjmw2G0/4NxgMMJlMSExMFPpj4cKFQqEI0e4A4CHVs2fPom3btmCM4eTJk7h+/Toef/xxgTpEGS6nynTAWeGp0+lgMBhw6tQplJWVwWw2Q5IkwXv6wgsvaD6vw4cP8wWqsLCQeyZd+RYBJxCorKxEaWkpDh8+LFTHms1m9OjRA1lZWZp5ddTnjDkB0+2AVCVo9vLy4kU7jDmBVNu2bdGtWzfIssx/h81mw7Jly7B582bs3bsXJ06cwKVLl1QA9fPPP9eUqaPWvn17IeyoNFo8N27cKPw9Li4OsiyjoqKCh1CNRiN2796Nbdu2cb136pNWrVpxYN20aVOuw02Sia7mcDhgs9ng4eGByspKTkyt0+kwe/ZsXjGelJQkAEyqwg0PD0d4eHi9oeuoqCjExMRwwGo0GjmY0KqgV9IHMeYEGMr8XwBcnUrJGgA4vceMOT1jRKtjsViEfqU0DMacObiuBOrBwcHQ6/UCTRSFogmM9u7du16pPLvdrkmCr9X8/f2Rl5eHVatWobKykoOiX375hZ+LxpUkSbBYLJpyjxaLBREREaiuroZer1elUABONaWxY8dqjtPg4GC3hTPUX4GBgejVqxeeeOIJlJSUYNmyZSoqMdeiHFcjhR/GnGk0BMp37NjBr2Oz2XgEwGQyCZyiDoeDjxGlktj/lfbnP/+53v5rtN+eNQLK37B9e61aVZn9q8DkEzsQM30b9N7Bd/zlJ29DaGgon/QKCgrAWB3ZsMPhwNNPPy1M1qTX645Ww8vLC/Hx8Xzi9/T05N5NoiH69NNPwZhTFhAAzp49yxdsOo+Hhwf69OmDzz//HECdPrjZbAbgLGChHb4yJEoKKrSI+vj41PvMlOTi1Fz5Ft0dR/fjro+7dOkiANPAwEB4eXlh8eLFgjrIoEGDcPDgQezatQsvv/yysBBS69ChA7KyspCamorY2FjuSTIYDDCbzbcV9qfKd7PZXO/iZjab0bZtWxQWFmL27NlYunQpNmzYgB07dvDK3ZEjR/LfWVJSAsacXJFkS5YsUTEKkGdo0KBBfIyNGDECANC0aVPodDoOTrRs+fLlYIxh6tSpAIAPP/xQ8LgGBwdzAHgzbejQC/ez/wAAIABJREFUodi3bx8Yc1ZD02bDarVixowZvKDDHXn3V199BcbUhPNZWVk4efIkamtr3eYoUyEKHdOvXz8B+JeXl4Mxp4zpsGHD+Lt18uRJ/h16R5SKO1SQw5hTbrUhu3TpEvcS1teMRqOK8oquRWFkyrVcvHgx3n77bZ5HevnyZeE4+h5pZ1MhVWVlJWbMmCHwkXp7e2PYsGFo3bo1LxwiL35JSYnARep6v+7eAZpvGGN477338M9//lO4v7Nnz3ImBALGrnblyhXhHaTrKUH/4sWL+ZxLoP/48eNu5SJ/T02v1wucxY32+7BGQPkbtzePX7yjHkpb8+53/OV3rSKm3Dmi+6msrMSUKVOEBXXmzJlgrC6Hkhad/v3749VXX+Vh8IZIiRMSEvjkPXz4cDRr1kwIBbVo0UIT0JHsHWPOsCzJ+H3yiZPP8+jRozwXjBQrGHNWZzZkDodDUODRCs1duXIFixYtQvv27VWE0kr5OGquBRJ2u50TidMCNm3aNFXOG4GWrVu3YsWKFTzcKEkShg0bhuvXr/M0AyWIA8DB0IIFC3D58mW+CE6cOBEvvvgi5s+fj8mTJ2PUqFHo168funfvjnbt2qF58+YqQHo7XlTlAs0YEyibXL/n6+uLQYMGCZ7bESNGoKSkBPv374ckSZxs3NUuX76MN954A5MnT+bAwWaz1RuebteuHSZMmIB169ahrKwMpaWlmDlzJtLT091uCqxWK6+qP3nyJCRJgr+/v2aeIgDcuHEDkiShU6dOXH9aS9nI1Zu7b98+4Z3UAn6kg04FIq+88goPMSu9pUqJT6Vi1apVqzTvmfqhdevWmnQ29Lf4+Hi88soraNGihfA8acMIAJ988gkYY5g7dy5efdVZRKgsyKIUAy8vLyHkfujQIX6+6OhoLFmyRIgwUEiYCs1ImSgxMZF7yIkn9fz58zxKkJaWplLEYcwJNlNTU9GuXbt6cza9vb2Fd71jx47o2LEjJElSjUvXDRO13r17A6jb/ChTLsjIo9mtWzecOXMGjz322E17iX9Lzdvb2+27Qfavn+04Xf4jvrj4A06X/4h//Vz/9xvt7lojoPwd2IoPS7mH8baA5H+P82o38K69/JGRkSgvL8fzzz+Pzp07q3LpGHPuOvPz87mXjTEnoDxw4ACf/GlinTNnDp+sGWOYPn06SktLsXbtWhQUFAiKMVr3QxO/xWLBlClTsHXrVoGuhkKPtABIkoQPP/xQKFyQZRmTJ0+Gw+HguZuSJGlK6CmN+BaVi8myZcvw1FNPISMjQ/DGEgVSv379EBYWBrPZDIfDge7dReAfExODr776CtXV1Rg7dqywsFEluZbFx8fDYDAIn2uF0fv06aM6dsaMGWCM8aIZVyJvd0aLHWNOOUMlP+aFCxf4xkIJjmhRpipWs9mMgQMHciDg6o0k6cabkQK8nUbqSvHx8arcPoPBgMcffxxfffUVV0dS2tWrV1W638p7Dw4O5sDYtUDI1by9vREZGSnwe44ePVooQIuLi8P27dtRWVnJqZH0ej1mzpwJSZKQnZ2tOi+FdZX25Zdf8g0HeXZp3BMgoWdHv/lvf/sbLy5SesZ0Oh1iY2MxfPhw7NmzB8HBwRyA+fn5Cd7SmpoazJs3T8hnNBgMnCmCitdsNptKpWnNmjVgzLmhoDQKh8MhbCyoPzp06IDt27er+mLTpk1gjOFPf/oTAPDUBQJqtbW1nF9TC+R16tRJyC8mzzJjDC+++CJGjx7Nc6rdjTebzYakpCT06NGDMyj4+vri448/VgFzem/8/PxUqTTEt2mxWITfQKFxqvL/vTQl/RNZ6Xc/Ye720+j47Icqer2YGTvR8dkPMXf7aZR+95PWK9Vod9EaAeVv3ChPxtY8D3Ez/oyo6dtvCUzGzNiBqMfeQ3C7/Lv20hsMBkF+7vvvv+fVm4w5wZ1rThJ5V9LS0mCxWKDX64Uii4cffpgv7K6LwGeffYauXbsK54uMjET//v0xZswYdOzY0W2BkCzL/F6URRJGoxEvvviiULjw7bff8mtS+I9yD//2t79pPi/iW6TwuSvgkWUZ0dHRnERcCUZIKo/AMnkzlJXd9N/g4GC88sorCA0NhdVq1byX69evgzGnJ0Rp5MFxBbadOnUSwF+3bt1U3hMqekhISFBd78qVKzyXlc6pZaWlpbxIpqSkBNOnTxc8O/RMlNXjNpuN67i72o8//qjKhQsICEBISIhbbyFV43t4eMBms8HLywteXl4NKprU11yJ4JXN398f0dHRnHxc+ZnVakVaWhqKi4tx6NAhXL58Gf/5z38AOOUdTSYTACewoSIpAtrZ2dmqca7kQ01KSlLpQRNJe79+/VR9WVVVxXMuU1JScOLECf48unfvjtDQUK5IoxzbRCI+btw4HqJWmpLf1ZULVmnbt293+8zefvttzWMoF9HLy0tQO2LMudl69dVX683zzMjIgCRJPFWHFIeof65du4aBAwcKz23SpEk4cuSIECXIyMjg1FnEE9m1a1devETV7Q6HA1999RVWrlyJHj16gDEmqAQpm06ng6enp+a4GjVqlPC7qHAtMjISf/7zn8GYk1nh+vXrggTr119/jb59+/4uQuNKKqlvr1XjobVHOe9yfeseff7Q2qP49pr7gtZGu7PWCCh/o3bjxg1Bbs9oNKJpZg7Chi3m1D/1gsn/fh465I/wDou7ay+8MixoNptVC7tyQvj555+xefNmPPjggwJYYMyZcN6mTRvMmTNHUNugSsfz589j+PDhQiiYJtmHHnpIsw+rqqqg1+sREBDAPZsdO3ZsULM4ODgY3bt3x5QpU7BlyxaUl5fzkPwbb7zB6YWU4IZIxLUm6djYWH7N5s2ba2phA+BFTIw5vVCMMbRq1YovOsp+JgBPYUiSIVQaeRi1vDIEqnNycnDkyBGhSj09PR2ff/45oqOjBb491/tUytPNnDlTADaRkZFutbwBp344Vb0fPHgQdrsdTz/9tCZFSkpKCgdIly5dwubNmzFp0iR069bNbYiRMSdQo7zK0NBQrF+/vt5KdbK9e/eCMSeQV3qb33zzTezYsQNr1qwRyLZjYmKEkKLJZEJoaKhAn0P5pbf7nplMJnh6enIdeHr3CHC6jo8HHngAr732Gt+YLVmyhFfNUuW5kjfU1VwLgrTuJzU1FRMnTsQXX3xRb38SrZEkSdi3bx8kSUJYWJhbkOdwODBlyhRNEBUaGoqpU6dyb+SXX36J/Px8AdwqvfcPP/xwvfdmt9uh0+mQmpoq/D0hIQGSJAnk55SGQ/+mNJTTp08jOztbGK+utEG5ubmaHKmkC96hQwcOKIcNG4ZVq1Zh9OjRnAXDHciWJAkRERHIy8uDwWCALMsCqJUkiUc7XEUIiE9z2bJlv2kOyy+//BJvHr+IxNm7b7lINW7WLiTO3o03j2tX2jfanbVGQPkbsxs3bmDnzp3CzpexupBTixYt4B2VjNSR8xFZuE4VBo96YgdaPrUNvt3GYXjRtLv+sl+/fh1HjhzRBIiM1Z+4T98NCwtDZGSkKqwpSRJMJpMQcvTz88Po0aNx8eJFgbvRnZF2tLK6V6mu06FDB+G65KVy52lKSEjg4EuWZYSFhamAgqenJ4qKigRNciWptLe3t4qTTpnT2a9fPxUnZ3JyMg4cOIAXXniBL5iZmZk8vOYqRwkAUVFRvOhIaVSswJizwIPs66+/5ko01D9RUVGq45U5oi+++CLvTwKprVq1Qm5ubr2AEnB6mgmE0oLmSp1ysy0pKQmFhYVYunQpHxfp6elcaUcLVNdnycnJgsdR2U9kr776qvDsk5KSVJ7r9957D4w5cwfPnz8PnU4Hm82G69ev49KlSzhx4gT27t2L9evXY/jw4UhKStLMPaTim5CQkDtWzWsymWC1WuHr64uQkBBER0cjIiJCJXXq2tLS0nD48GGUlpaisrKyXu8fKVFJkoTAwEAAdZXpVFTnzihvkjGnd69ly5ZC3yjvMTQ0VJBEbNOmDSc1r89I3vXFF1/kf/v666+FDUNycjL279/Pi8PmzZvHw87dunXjhV4XL17Efffdp+ovWZY1q9HJCAyTlKuWlZSUCHPS/fffL9ATuTYilVfOm0R/BtQVLioL3ajIh+ZBX19fmM1mnmqhtSGy2WyYPHkyp227k83T0xMpKSkI6TrqjtQPrPhQLU3baHfWGgHlPbYbN25o7lRv3LiBDz74gBPzuls0qEiFchSNHp5o2j4PlogUDCt6ApLBzPNo7nYzGAx8106L7gcffIAxY8YIXpPg4GBMnDgR33//Pf+9J06c4Iuaw+HA7t27OVAKCgpSTV6yLCM+Ph7FxcU4ceIElixZwj+777773Pa33W6H2WyGt7c3L4ag42jCDQ8Px7FjxxAUFCTktZ07dw5r167FuHHj+P24A5rKKulJkyZhy5YtsFgsHFCSrVy5ErIsQ6fTYcOGDbDb7Tzvja6v9Eakp6cLxN+A0/Oal5fHx4mXl5cKOFZUVIAxNcfgH/7wBzDmLG4g8EiV72SXLl0Scjijo6OFlAbAyTOoDMOPGzeO0xBRLp87QHnw4EHk5OSonrG7fEiz2czpm5QLGWNOcK6kjwIgPGMKbd+qvfbaa8I9KInJ//znP/NKfkmSEBsby9/XLl26CO83EZvT75AkSTMk7Gp2ux0lJSUq77RWI3lLu92OiooKnDx5EqNGjVJxLA4fPpyPm8DAQDRv3hzBwcGqvr2dRqFsSiPw8fHh+Zg03g0GA3r27IlBgwbx+WvIkCFYvXo13nnnHXz00Uc4ffo0rl69ioqKCphMJt6vNDe48/K2aNECa9eu5ZvP8PBwPtbPnDnjtp+JWN5ut+Po0aOCp5767+9//zuAumhAaWkp7HY7z2MNDQ1FeXk5amtr0b9/f8378/X1VQFvh8PBK9IZY26957t374Ysy7BYLDylRKfT4fjx47h27ZqgtPPggw9i9OjRaN++vTA3u86l9K7l5ORg+vTpHGwqi7koN3vLli1gzKlyRWTr/fv3v6teTZrTYrsNu6NFqVsbPZV31RoB5T22DRs2QK/X4/nnn+dyZwcPHuSL+616HyjMwRjjYZZ7zUdmNBqxaNEi4XdmZmZClmX0799f2CnHxMRgzpw53OPaq1cvTiqtXNSMRiMPn48dOxbJyckqqg5JkuDh4QGj0Vivl4S8f7NmzRLOodfrMXfuXP69s2fPQpZleHt74/XXX0ffvn0RFhYm3JfVakVWVhaKi4u55FpDE6uXlxeaNGmC7t27Y/LkyVi4cKHAUcmYMxSulDNkjOHTTz+tdyx9+OGHgvf22Wef5Z/R4vfRRx/xv40YMQKMOT2IDocDFy9ehCRJguoHGeVKtmjRgo+noKAgvPLKK3j11VcF0JuamsoBFoXVCFBu3rwZEydORNu2bW8qPzEjI4Pzmep0OuGeHA4H1qxZoyr+yM7OVnkg/fz8+PckSUJJSUm9fam0L7/8UgVud+/ejQ0bNnBPvCzLyM/P58VJV69e5R4yo9GIpUuXAqgDlHQvVKV7KybLMnJycvDWW2/Vu9GcNGmSKoy9cuVKDr6JFocxNRWRj48PMjIy+HPt378/HA4HHA4HLl++jKSkJP7dgQMHYvHixZg+fTrGjx+PwYMHo1evXujYsSPS09ORnJwsjEslsP21wFX5HjZv3hxNmjThwFU5JhhjfP647777UF5erqoYJrnC+Ph4nvOozCX++uuv+ZgEgA4dOqg2STR3kQ44Y07e05ycHEiShDFjxgh52lTlX1FRwQEfPQutOYyEFkwmE7755hue/yxJEgwGA9566y1IkgQvLy/eD1TAd+bMGd4nTZs25WH09u3b1/sclPOZzWbjUR6STSXLyMiAXq/Hzp07NYswb7fRvSW2zkb04yW3X4yq0RJn727MqbyL1ggo77GNHz+evzBt27blJNx3AgTeayD5wAMPYNiwYRyk+fj48AkzMDAQQUFB/HcfOHAAXbt2VYFC5eQlSRIyMjLwxhtvcM5KxhgOHjzIz3Pq1ClN4CxJEmJiYvDQQw9h9+7dwuRMpNXK6yoLF6qrq/Hqq6+iZ8+equ95e3ujTZs2fCF1NaWKxcKFCwE4QcTatWu5akVMTEy9YXTlbyAgowxF1WcOh4NTwNAzqampURXrEJ9ms2bNhL4h8mjXtAHSGabKcvJA0nUMBgM2btwoeNDCw8MRHx+vWuBdn3dYWBhGjRqF1157Df/4xz8AOKU3aeGkKnvXKuRPP/2UA/GxY8di2bJlPDTNmBOc9+zZE0eOHOHgmRZyxkRlJXd25swZGI1GyLKMjRs38nPQgmkwGDBy5EjNKAMAvP/++zxfNi4ujgNz5fNVsg3cjPn6+go0Rr6+vqiqqsLhw4cxYsQI1YaGCmRGjBiBRx99FDk5OarnYDAY0KlTJ04ivnnzZk7ttHz5cs37UKaK1Md0QCDHarXyQrvg4GCBYLyqqoqHtMPCwrB+/XosWbIEM2fOFHgileMmODgYAQEBwnt0u6T+er1e1W8eHh5ISkpCmzZt0LVrV+Tn53Pe0UceeYSnw+zevRvHjx/HhQsXUFZWJsh79urVC0CdljcgErIzxgTP62OPPcY3vERjROYqtEBms9mE4i5JknD69Gk4HA6MGTOG/52AalZWFhhjOHbsGADnhokxJ02Yw+HA6dOn8fLLL/MNstVq1czZlCQJ3t7eSEpKQs+ePZGamgrGnIpFDSkO3WpLTk5G9KjnnEIcGsBw8JpP8dZn36KsogrVtXZc+bEGH5y5gt4v/rXBnMqH1or93Gh3zhoB5T02Aie/90bFMoBzwpw2bRpf7D08PCBJkmbembtwfFRUlIrY+OjRo2CM4amnnuJ/cyVzptA5qZwoJ7/w8HAMGDAAixcvFhadjIwMLF++HF26dFFxaCo1vin/k0I+a9asUf2eF154gR+rpC4BnJWtriHvsrIyIcxVX3P1bFKBkJYpw17kKSEqINL5TUxMVHlprl27xivPlZabmwtJknDjxg1cvHgRXbp0ual79vDwgLe3tyo8PXToUKGCXMuUCiHkeSdbtmwZD6u6ekoqKysxa9YsIcRHGwNS16F8M6X2u6udO3eOV5/v3LmTe58Yc4LSSZMmuT1WaXa7HaNGjRL6QJZlzhQQFxfX4DnIjh07xsO8sixDkiTVGLh8+TL/vQkJCQ0u7kou0pycHJ7ba7VaVaBGaUq5P0mShLxDsu3bt2uq2LgCSjIqPuvduzdycnKETWKLFi2wYcMGeHp6IiYmRjhu3rx5vF9yc3M59U+fPn3w0UcfYeDAgcLmVafTIS4uDt26dUNiYqIQOjebzfDz8+NhVi2weStNp9Px88fGxqJp06Zo2bKlCvjSHElz4pgxY3Du3Dn89NNPboUWgDo2CKrG1+v1Qri8tLSUg3KdTodVq1ZBkiQkJSUJx7uG2GlzvGHDBgDASy+9JNxvQEAAIiMj7zh41Oq/hIyO9QLDnaf+B5+UXcWT75/CH145goLNn+PExR/wn18cGLzm0wY9lecqGimF7oY1Asp7aCdPnvw/JY/Vs2dPoWLZ4XBg0aJF3EMjyzLGjh2LL774AkOGDNGUMwsKClJ5mXr06IHDhw/D4XCAMYYePXrwa9ACRJMe4JTlo7B3eXk5Fi5ciOzsbLfyaa7X79WrF9atW8d/S21tLby9vSHLMkpLS1WKP2R///vfeYiccjqVRMOugLK2tlZIpDcajSgqKsKKFSs4WKDPmjVr5tazKcsyPD09BbA5YMAAMOasvKYxFhsby+89NjbWLRgipZRHH30UEydORNeuXesdpx4eHvD19VV9xxVAMcZw5MiRW3pH0tPT+aLCGMP58+c5BZWvry/Onj1b7/Hl5eUYP368EIILCgpCYWEhzx/09/dXLaYXLlzgG6GePXuqKqebNGlyS78DcBZ3ELDQ6/V47733+PMYO3ZsvcfW1NQIxVPU8vPz+XdKS0sxY8YMtG7dWuVRioiIQM+ePdGvXz+0atVKAFeSJCEoKEhgOzAajdi3b1+992Q2m7n0JD3rAQMGcI/33r17IcsyzGazavOgBSiPHz+O3r17q4rxZFkWaIWSk5M1i8uUaQY05lwZFFz5XF3HZ5s2ber9zXa7XSi06dChAyZNmsQ3rxaLBZ07d8Z9992nOed4e3tzGrHbmWOJc9VqtcLHxwfBwcFCASSBO1mWMXToUEyfPh2LFi3iXLP0HtGz3r17N2w2mxA9IqO59cqVK277r2/fvjwV4uOPPwZj7LaK6Bpqvt3G1ctk0nrBB6q/pczZg+9/qsGhc1cb9FLO3X5a9fsb7ddbI6C8B3b27FkMGjTojuUP/W810tj29/fnyeEmkwkvv/yy8HvXrl3LFyl356IFm5RyqqqqMHv2bAFweXl5Qa/XIzw8HIDTE6XT6fi/yebPnw/GGPdwnj9/Hv3792+wv/38/NC9e3esXLlSFcI8fvw4J6HOysrSzOcjvV4K/5FedEhICKqrqzmgrK2tFWhYSB9aGXomTyu1yZMnC9crKyvDunXrMGHCBHTq1Ommw+jU1+fOncOlS5ewadMmDhrdhaddOS8lSULfvn2FRd7hcGgm/ev1emzcuPGmqrxdjXI6lepI5C1OT08XdIwbMqVkptKjQufT6/Wc17C8vJzndxLQCAgIwAsvvMDBF2MMO3bsuKXfU1xczK9L583KyuLe5L1792oet379en7PaWlpWLhwIX8O48ePV1EFEYk40efIsqw6N23OJElCu3btNCvJGXMW0Gn9zpqaGjDmzK189NFHwVgdjU58fDy2b9/OC6Bci6SAOkD5j3/8Q0X/RaTnNN5clX9oQ+FuQ6R81nFxccL1KU9SOT6VqRtBQUFYsGCBWyovwMnnSucgwnqdTodZs2Zpfn/u3Ln8/Dt37kR5eTmnt6KxNG7cOHz99deYP3++IDQQFhYmgN2cnBy0bt3aGQKOjkZwcLCwEbhdTyp5kb29vREYGIjIyEg+prKzs3HfffdhwIABGDVqFAfDlPceEhKCjz/+mMtDKvNrf22jMRA2fs1t5Uh+UnYVZd9XNfi9js+pCdMb7ddbI6C8y/bTTz/9Lghkb6YRVcb48eMBOEPBtBAnJSXh1KlTmDt3rlB8YTabNZUeSEuYAKXSysvLUVBQIEy0gYGBPFfJdcE7duwYGHMCB62+Tk5OxsqVK8FYXTi+S5cuKsUYb29vdOzYEc8++ywqKip4bhNRFymNFrk5c+YIfyf94YiICFgsFnh5eQmevJ49e2om3//xj38EY4wXM1C19M1YWVkZ1q9ff8uJ8QaDAYGBgcjOzuY0KXPnzuVyjbS4UK4p4CwS6NKli7CQpaWloaCgQCiCoRyvWzHK9fvss894mJ4xJyfnrVpQUBAfh71798bBgwfRvXt31fhIT08XvEcRERHYsmULgDqQP3XqVOh0OoSFhd309UlhhsDxxIkT0a1bNzDmBCNUtat8xhcuXOBhTIvFglmzZmH8+PGaSj2JiYkYP348l04kI35PWZaFgizyJjHGsHr1au5l7NevHzp37qyS5pNlGWlpaVi1ahV++uknngv63HPPCcwJSjCn0+k0uS2vXr0KDw8PYcwo6b8A8Opob29v1fHEY6kFwEmz3Gw2Y8SIEZzqadCgQRg2bJiquIpSdUJDQ4WcZUmSkJaWhtWrV2u+n0oN94yMDMGLp2Xkaad+YYxhxowZcDgcfNOsfD6uxX8pKSma1ekOh0PgXiXwTOFqm80GPz8/yLKMFStW4LnnnsOsWbPw4IMPCv3fpEkTNG3aFLGxsQgNDRVSf25XJvVONcloua1CnNS5e1H57/9gz1dXGvxuzIydjTKNd8EaAeU9sD/96U+qkObvrSkXXWX1cXV1tTB58klBkvDxxx8DqFOyUDYiAtYClEqj3D1lKCkkJATp6elITEx06wWlECCRb1Oe2Lp168CYk8cNcHowlGTrrrl/BIYjIiL4PW3evBmMOaultYxI0F37zx1fpt1uh4eHBzw9PeFwOPhvstlsKsogANzTWFxcjK5duyIuLs5tIYzFYhE8dHq9/qZpYjp37ozLly/j5MmT6Nu3r6pK21UKr7a2VvWddu3aaXqsXI34NLOysvDMM88I9+fv76+SmKvPqLJ6wIABCA8Ph4eHB//M4XDgnXfe4drY1GRZVnmcFi1aBMacBUtE5q5MtXBnVVVVsFqt0Ov1vCqXaIcOHDggFGg0adIEDocDRUVF/De7gi/luK+PjJyMqtR1Oh1POXDlR7TZbKrcvKqqKjz//PMCITs1AuJTp07F1atXuReusLBQyKtctmwZAKdHc+HChbz6n1q/fv1w8uRJ4bpffPEFD+0yxgTmBaCOBmr69Omq30qFe3TMJ598IoxBX19fPv8QaKLUh86dO8PhcODNN99EZmYmB356vR7t2rVDSUkJzp49yyvAGXPmn96M0TWopaSkcPWjixcvQq/Xw2q1oqqqCgCEHGVln7Vo0UKYb4cMGQLGnEVCjIlcnqtXr+bHkXSm0qqrq4V7uv/++4X3V6fTqVIA/v3vfwt54q1ateLAncbqnVpjqBmCYm/LO1nyxWX85xdHg4U51E6X/3hTz7LRbt4aAeU9sk8++eSuJzPfrXb//ffjf/7nfwSuxenTp6NNmzYCMTUtCJIkwcfHB4AzfEfnefLJJ3HixAkBgHp7e9ebZ0eLujvvm9FoRMuWLXnfWq1WTr8zatQofh4vLy/uZUxJSYEkSdw7ojS73Y5t27Zh0KBBqpCu2WxGs2bNeJ6YqwexrKyMF7MojwsPD6/XozF58mQwVkeu3Lx5c8FLkJSUxEGjVmK/zWZDXFwcOnXqJPSrEoQp881IAo48m+PHjxc8MO6aTqdDREQED6tq8SlSqoBrzhiRYbsz4v8jTk4/Pz8EBQXxjUFQUBBffBsyqvA+efIkL3ggOqPPPvtMkId0bSaTCXmDewIgAAAgAElEQVR5eTh06BDPYaytrUVtbS1MJhN8fX0bvD6xEGzcuJGDWyWPJQFId/fg4eGB1q1bY+bMmVztyGw2IyQk5KZ+P1BXzENFHWazmb+rBoOhQe93TU0Nxo4d6zb3z2q1CkBy8+bN/B11zc3s0qULfH19NYtyamtrufrP6dOnVVyw1F8UVVCa3W7nUYDS0lLh3QsICOD3npWVhbCwMJhMJkHRZteuXarzLV++HMnJyZrzDI1FAs3uzG63874IDg7m72VgYCAvVCKPYmZmJsrLy7mndN68eQCc+bFKlZ6EhAReJEaqPgEBASqPLs2D/v7+qmdMClCM1XnOzWYz1qxZg0uXLoGxuuiT0qgokYDuhg0bUFpaqipovBPNaDQiKCXrlsHkCwecObtPbf/qpo/54uIP9T7HRrt1awSU99Ao/+b31GRZxvfff88l6FyBR9OmTfHSSy/x6mECgIwxITTjqphTWloqnCchIYHT/Wzfvh2DBw9GVFSUKmG/ZcuWmDZtGpYvX46srCwVwCJQq9y5Hz9+HIw5qygBJ6hgzEnq25ApaYFcF1eTyYRmzZph8ODBgscrOTlZCCE2bdpUM4x28eJFrFu3jhMNx8XFuS0k0uv1iImJQW5uLoqKirBhwwaVHjLlkjLG3FaDb9u2jS/4sbGxWLp0Kb9mbGysKkRoNBoRHByMiIgITR5JSZLg6emJ+Ph4dOvWDZMmTUJ+fp1uvCvIjo+PV6UskBePvGBt2rRBbW0tcnJyIMsyzyEMCwurN9eNzM/PjwO/q1evgjGnZ0WZ60W/85lnnuEV5JIkCeFlqioniU0Cd/WpP9EzoAp7ApRTpkzBxo0b0adPH00PIGPOghtl4ZfD4YDVaoXVakXLli1hMBga/O2u/arT6YSUC0pbUbIR1Gd2ux2zZs0Squ8TExP5eZR95TpuVq1axce9uypvSgMg3k7igvXx8RFyJr28vLgWNRlxrSrzrpUbl6qqKn5+ur8dO3bwZ+9OsnX79u38HXGlJtPpdPDw8HDLe3vp0iXh+dK8uHDhQh5if//99wEA999/vzDuGRMZLQDgypUr6NOnj9C/xDZBRTSuOdxEuE653GTkBbVYLLBarVi8eDG/Nv3e3r17q7hFKdVI6Vkn/t87vd54eHggtnXOLYHJ5/c5ieef2fvNLR3X6KG889YIKO+RKUOZv5emJORVhuDCw8N5iLV9+/bCxH/hwgVhwabFXMto4XXnMbLZbFw5iDEmaGcrCxfCwsIEqUJJktCtWzcecidPk9IjSdxsrhKIrkaTtrKopm/fvigoKNAsSlHy5BkMBg7WAgICkJuby0GjVsiZPI0UYnv00Udx6tQpnt+YmJjoNvS7detW4Vz1eVHsdjtPAaD+cs3T0+IapEr27OxsrF+/HoWFhejcuXO9BUJmsxnx8fHo0KED4uLi6pLuw8Lw+uuvA4BQhKMsRlIqk8yePRuMOcFDfdQ9p06dAmNOVRgAePvttwUvel5eHl/wSYsZAI4cOcLDdyNGjBC4PRlzepfGjRsHDw8PWK1WTUBx4sQJSJJTYvCHH37Ayy+/LOjSK/uE+qFZs2ZCv6WmpvJxOnPmTDDmBLDkdb1ZIEimpOmaMWMG91I9/vjjt3Qek8mE4ODgW/JKSZKE/v3748svv9QElJTX7LqxW758ORhjgkeyadOmMJlM/N979uwRrtWuXTu37/KBAwf4fdO8RO8lbTIB5+aDPJgGg4ELBVA6hhL4eXh4oLCwUIg87Nq1i8/xNNZd74O8nI899hgqKir4syfvo5LRAoCKBF0ZaqaIQ2hoKPLy8iDLMmRZRkJCAt/QUvHN7aw9BKBpI22xWLjnVa/Xo2XLlnecBk+SJCSkpN50DiWByef3/f2WwGRjDuXdsUZAeY9MKcH2e2iJiYnCjpQxZ5jru+++A+Cc6IjUOjAwkHvLlF4yxupAaXR0NE6ePMlJxLUk5QwGA58wKfeJuChpMXEtXKCcNmXOknLRs9ls0Ol0XEfY9Xm0aNGi3ueWmZkJvV4vEFQ/+eSTnCpDkiS0bt0anTt3vqniK6vViri4OOTm5nISYtdij/Pnz4MxhqKiIv43yuGzWq0qoKfU+fXz84NOp9NUvyGbOXOmZo5eSkoKdu3axf+tDDGfOXMGsizD19e3XkBHYXSll4YKoRrqm0mTJgkeOtJOplQAIluPj49X8WmSDRw4EIw5wSJ50+na69at4xXWM2fOVB177do1HtZr2bIlGHOCnSFDhghhXMacfJbK/ikvL+cbHK181ujoaMyZM4ePG09PT67eQ8CK3jdZllFYWAiDwcA9rUQCTgVDN2PDhw8X7sFiseD8+fOwWCxCTnBDRrl3PXv21KQyYswp+Qc4ybgLCgqETQI1nU6HcePG4dChQygrK+OyoVrV+xQmXrFihfBct2zZItDUpKWl1auTTUbFO3RcdnY234QWFRVhwYIFHDh17txZ2LhRzvTatWtx5swZlRc/OjqabxwMBgNeeuklpKenc67OefPmYfLkyRg1ahR69eqlOU8oGRWU6me32kjD29fXl0cU9Ho99zImJCRgyJAhMBqN0Ol0+OMf/4i1a9cK0SQfHx/s2bOH/36l9CJQt9GjlKLbpURy17y8vBBd9FqDoHDJB04KsRcOlN5yiLyxyvvuWCOgvEe2bdu2O/rS3Yvm5eWFwYMHo3fv3mBMXYQBOKuTKWfuscce4xMjKTycPn1a4IpzbcHBwVixYgWfwGtqalBUVMR38jSxGgwGFBUV8X/37duXL0SkrNKpUyfodDo0a9YMFRUVKCoqEnIvAwICMG7cOFy+fBlAXbitPm3lwMBABAQEwGQyqUCRu4nUYrGopO2oGY1G9O/fH++88w7vV8rvU5osy2jfvr3wt40bN/LcSgJZpPNLHoiCggKeCuD6rJYtW6ZaDFu2bInBgwfz45XeYkobsNvtCAwMhCRJmkVCWqYMcxORN4HNwsJCdOjQwS3XJYXRlYvg5s2bcenSJZ57SDrDSnM4HMJzMplMGD9+PK5cuQLG6gq16lPMcTgcnNOTsbqiLsCZB+26ETKbzSqAEBISgj59+uD111/H6dOnwZgz7YHC6iNHjlQB4q5du4IxJ6hWgrHHHnsMAOrNcXO1yspKngdIBNdEW2a1WnlI9GYUeyoqKriakrLl5uZi/fr1QgFJx44dBXB37tw5wVOm9ax79OiBPXv2qJ5lTU0NvL29odPpUFpaynW5lXPCrYBiQL3ZNRqNQoqJxWLBkCFDUFRUhOHDh+PBBx8U2CCioqIQFhbGgdqdKrKkcUnjIysrC126dMGDDz7I5yjiut2wYQN27tyJo0ePori4WEXQ7rrZo/xsugZtgqg4cdy4cQAAf39/hISE4OmnnxaA9Y8//sgB5bp16/CXv/wFc+fO5f1WnyrWr2mh909EdD08lAt2OivgPzpbgfyVh1WtPjDZyEN596wRUN4jW7hw4R3fyd3NNmDAAH7vyrCdVsjxo48+0gQHrmTL9B2TycRzE91VeTscDl7RKEw0oaGCh448F9nZ2XA4HMjIyIAkSRxskueyX79+Ql5jREQEiouLIUkS4uPjAThzGjdu3Iji4mJ06dJFVaGqbJIkIS4uDm3btuWAomvXrsLCSDyURLbuSs1CfdK7d29s2LBB8NT4+fkhNDRU1S+nT5/m5+nYsSMkSYLJZELHjh3BGMPly5fxxhtvgDGnFOTnn3+OXr16CR4PkshUXu+nn37iixdjzsWV8mcfeOABMCaGiBsy4qGk0LGSyPvKlSuCvF6rVq34Ik30PNHR0W5zNpVhy+LiYrz22msYO3Ysfw46nQ4zZszgoE2ZbnIzgAyok6SUZRmvv/66QCLuCsqpmUwmbNq0SRgDq1at4p/Hx8cLaRtKq62thY+PD2RZxrFjxwSw0rVrV87B2hAR94kTJ/hiP3LkSLRt25ZvLt544w1IksRD+4WFhZrnqK6uxty5cwX1JeX7u379euH7y5YtE77Xpk0bHn6ura3l8rKyLOPo0aMc7CrnQ1mWERERgYEDB+Ldd9+F3W7n0QllX0RGRvJ85cGDB6OgoABDhgxB79690alTJ6SnpyMlJQUxMTEICQnhnjqtDeHNNOV74+XlhcDAQERERPC+oP96e3vD399fdY0nn3wSn3/+OS5fvoza2lrU1NTwsd+tWze+GVcWAtH8WlVVBQ8PD+j1epWoAhltlqgZDAaMGDFCKMgZN24cGGNc/IEsNDQUer0eVVVVkGUZ2dnZ+Ne//oW33npLeD8bCpdrvae/plksFhj8I+sFhZ/+45/1vgcNeSgblXLujjUCyntkgwcP/lVyXne7BQcH4+2331bxpDkcDhgMBiQkJGiGHL/++mtBuUHZwsPD0b9/f2zdupVPkqtWrRI8OkrlD1dThmGUE+bw4cNRWVnJ88rS09P5REkSbIsXLwbgVPdQJvOXlJTwKuqG+sQ1Ib9nz54oKyvjIDY/Px96vR6SJPF8K6VpSS+Sd4gWddcdvr+/P7p168arqbWsurpaoDL561//CovFwgnfy8rKeD6V8tyBgYGCJrCWKQtqGKur7MzIyKj3OFdTEps3adIEjDlVOvbv38+fv8lkgslk4mNjxYoVPJdTr9dj2LBhCAsLg5eXF1577TWesxkbG1vv5iwyMhJdu3bFxIkT8frrr/MUCcYYNm3adFP3T5yYrgCBJPyI2uezzz7j6i7KBTgnJ0cACbm5uQ1ek3IwqX82b97Mc9RILUVL4YRs1apV/LmvX78eDoeDgxUyJeuCMg3Ebrdj5cqV3JNKz6d79+5C/61atUrz2nQc5fsy5ty0TZ06VdhMK3MAW7Vqhfj4eHh7e7sF6bfSyFNP8p9BQUGIiopCUlISWrVqJRQSKfPDlecoKipCRUWF4EEOCgpSpcwoZTmVGy3qRyXIon7ct28fD9dTysXBgwd5qgTNN0TsTmwYrkTvSrt+/bowtmnOlGUZDz74IK5cuSJo0rds2RI//fQT9u7di8GDB4OxunzShgB3y5YtsWTJEnz66aew2+08JeVW+W9vpqWlpSFo0NP1eilvpzVqed9dawSU98jupJrAnWxUcKPMGbp06RLnSSPVm0WLFgGo40EzmUyqRUBZAe7n56eStyOrrq7metaSJHHCX6UNHTpUmFwYY+jVqxefMGnycw190iIaHBzMqyi9vb3dFsK4VpFHRUWhbdu2wm8zm83CAuNwODggNJlMbulwtAClw+FA8+bN+UQMOD0Rr7zyCnr06KEiW/f09EROTg4nWwfAdX6VCz9jznC1Frg3m831LkpKy87OhiRJArG4LMsCufnNmBJQfvfddzAajQLtFG0GtNRGNm/eLHhIGBPl4K5evcqJsGkhpuvpdDq3z5r6isAmhdEBZ0X0uHHjkJiYKDx7pbJKfHw8TyOgnFryfB09ehTV1dVYsGCBkO5A9zFy5Mib6rfHHnsMjDm9PmTvvfeesPFw9XIqvfleXl7cO0jvLlVQkym9ppMnT0ZycrJAAURUN/n5+ZzGiTFnykhERAQCAwPh5eXl9CT9inw/k8nE8/1CQkIQFRWlylV111asWIGzZ8/i+vXrbiuuXU0JfPR6PV555RUATtYH5XtTUFAgHKfX65GZmcn/PW3aNOH5Ul650vLy8iBJEubNm6eSJkxISBC4Wa9evSp4g61WK+bMmQPG6nJT3ZlyA7hz504AzuIgZXRFSRdVX5/GxcVh2LBhWLJkCY4ePQq73Q6HwyHQkQ0bNoz/ffv27XdFdpHmnC59BiLysfcQfRsk5+5a4uzd+PZaw0wRjXZ71ggo74HV1tb+JjW8R44cib/85S9grI7mhIx2tRS2TkpKchv6mDBhAqqrq/lOt3Xr1jyUQ3KIWkaLCmNOD+nhw4dx5swZYTLcunUrbty4AUmSuJeHQrDUfHx8EBER4RZIUCFMly5dUFxcjI0bNwq5XmPHjhV+q2tTcuLV1NQIPJqenp5uJQG1ACUADigZ0yYgrq2t5cTFPj4+wm+yWCw812rLli1Cbhl9TrmHjDmLq+oronG1kJAQ+Pv7w+FwCJXfZrMZ69atu+nzKAGlw+FAamoqX9zOnz8PDw8P2Gy2esHA7t27OTiTJAlt2rRB+/bteX/ExMTwZ9GqVSswJlaJE0NAbGwscnNzb8oLJkkS/P39IcsyL5ZyB9hovBcXFwNwAn3Kf/T19UV+fr7Qh/7+/hgzZozb8CVQl0vJWJ1nqqamBmVlZQLIzsjIwJNPPomxY8dysGmz2ZCeno7U1FTExcVxAG+z2WA2m4VNyO00UmEJDQ1FXFwcmjVrhszMTOTm5qJPnz68qGjs2LFYunQpXnjhBbRr1051TQKNPXr0gMPhwLVr1zBw4EA+RwYFBWH16tUAnJutZcuWaYJWHx8fdOzYEUuWLKl3w+NwOASWBsa0i/GmT5/OP09KSkJlZSUPKY8ZMwa1tbVo3749GHN6X7dv3w7GnKFrVyNASdenAiAlF3FAQADGjx+P8vJyOBwO1bwWFBRU7/tx7tw5SJLEgbKHhwf8/f3deu+VrBNxcXE4evQoDh48yD//8UdtGh3KoVTmw94LkQ5JktC9YO4d9VBuPa7mHm60O2eNgPIeGCXm/283ZThKWeWanJzMib7379+PUaNGcXJwaiaTCU2bNkVRUZFQtJCUlASHw8Fz+Bhj2LZtGw4dOsQnT1pwXY0xZ7HAtGnTNBeM0aNHY+PGjSgqKuJ8evWBAqPRiMzMTCH/jfIj3dmlS5eECvGIiAgMGTJECMtbrVb07dsXJSUlfPLu16+fW9oTMi1ASZyLXbp04SBLK6/v22+/BWNObwmRrZNXt75G/RMREQGj0YioqKiGhqdgBoMBrVq1wqhRo8AY49Xa1B/NmjW7qapaApTl5eUcZBG4Isqm5cuXN3geqjp39RgTFx8AIffz+++/BwB0794djDlBi91ux7vvvssrt5VNr9fDZrPB29tbsxpdybNJUQZJkjBs2DD+HfLm0ZgbMWIE/vrXv2Lbtm2cl9Xf31/YkBmNRoSEhCApKYnn+92sd85dIz5Ti8XCQaZer0eTJk2QkJDAGQBcj/P09MTatWuxd+9enDhxApcuXUJVVZVAizV06NAGnxWxEzRv3lz4e1VVlXBdX19f7tlSvmfR0dF45513NM/9wQcf8O/98Y9/dKts1bZtW8yfPx/ffvstAGdIWen1f+ONN9C8eXPIsqzJFHD27FkhP5LCwkuWLOHnUcqn0pg6d+6ccB4ClA6Hg3+HqqJLS0sxdOhQ4XlHRkZi5syZwhgZPnw4qqqqsGfPHsydOxf5+flIS0urFzQGBwcjMzOTexrJm6rcZFI4Pi8vDwD4Rrq0tJTfP7Fx9OzZ023hTXh4OE6dOsWp4u50o+t2GLfACQh/pafypQ/FZ9Rod94aAeWvtH/9bMfp8h/xxcUfcLr8R01uK6KduBtNp9Npeg5pUiwsLMT69ev5ZM9YnV7uL7/8gm3btvHFV9koJ4/+feLECdTU1PAq4Li4OL6jpsWBQt5USXj16lX+WUZGhsqTx5jTM+pardhQM5lMmDBhAl5//XVcuHBBVUmekpLCf//TTz+t+dy+/vpr7m1grI6yZfHixZxvkUiMXYmos7KyOFegKzGz0rQAZXx8PCRJwpUrV2C327nnYuLEiarjdTod2rZtCwBYs2aNALrJk6YFQmRZxujRo3n+HYXKG7Jr166BMcYJkJOSknDhwgVIkoSUlBSuXy7LMoqKiur1nlCVN43NWbNmweFw8L7U0mx2tcOHDwv5e6mpqQIoTE5OxoEDBwCAA4t+/frxDQVVrrqCRA8PD8yfPx8nT57EmTNn8NFHH+Gdd97B6tWrsWjRIp4q4evrCz8/P5hMprua/yzLMqxWKwfNycnJfLPh4eGBhx9+GFOnTsUTTzwBxpzVt8qxGxcXx4E0GckN5uTkCF7SoKAgzp+oTCuJjIzEzz//DMCZB0hRAnrHV65ceVNjiDZnSuYEAoOyLGPKlCmqqnh3OchKU3rSlB5Bu92O999/nytbKZ+TMoxvNBrh7+8PoC7kT5RErnblyhWVqhlJ51LqDxk5C7KyslT9QF51xkShBaUdOXIE3bt3v+kcUpPJhNDQUD4+IiIicOzYMS6F6RoRSktL4+D54sWLuO+++4T3ITMzkwO3qKgodOnSRcU1SgB0xIgRuH79Oqqqqvhz1ul0GDBgwF2LwFH6UnjHPyD2ie2IusWcyrhZu5A4e3ejZ/IeWSOgvA0r/e4nzN1+Gh2f/RAxLgM4ZsZOdHz2Q8zdfhql3zkryejlv9NhAiLCpn+bzWZ0794dhw8fxueffw7GGM9PpHAFTZTBwcHC/dDkW1hYyD1QLVq04AUHXl5e/Bz9+/fnYILya/R6PZo1ayaQDwPOcA/pCJtMJmRlZdWrCOPqyXjuuedw4cIF7l11VX9Q2sWLF/lETueg0BnZ0aNHucwfY86CnhMnTsDhcPDQIIWRqPJx/Pjx/N6U9x0WFoapU6fC29sbsiyrcttcASWFyJQV9LW1tfwZumoVe3t7w2g0CgtwWFgYli5dysPYyhym4OBgzUpyb29vjBkzBgcPHqwXBFJoS6/Xw2g08jAiUeUcOHAAx48f5xsNPz8/t/rklBNmNBoFiTvKfbRYLG5TBXbs2ME95BRei42Nxd/+9jfs27cPL774oqA6Rf3jLkeWPNu3w7JAx1NRzK14EU0mE9+opKSkYNWqVYJ3d8eOHcjJyRHuy2q1YuPGjXA4HCguLgZjDA8//DA/Rq/XCxKHVEGt0+kwd+5cVFVVYdasWcI5if7r7NmzQj+fPXsWjDFePBQXF4eamhruiS0uLuY0Ta6qTO6soqJCiAxUVlbyOcfHx0d491xBuqtKjNKUpPiMMezdu1fzew6HA48++qjmBkCWZaSmpnL6MZIw1LJvv/1WVb2cl5en6dWkAi5laowy6pGfn889jXPmzEF+fj5SU1Pr9TQqm6+vLz7++GPh2rSxp2daXV0NSZL4BhRwpkoQT67Srl69yinLtFpQUBB69eqFdevWobq6WsVDCTg3exRpuBdt5MiR0PuEIPvJLf9dZ+v3VtLnmdM3NuZM3kNrBJS3YN9eq8ZDa4/ynU9DO6PoGTvxwPN/gclfVHK5k41Ajk6nE+7V4XDwxUKL1oEqUZ955hl89913XAqRVG1qa2shyzJatWoleDKUYUqHwyGEk2RZhs1mQ25uLmJjY93mNJrNZqFwoWnTpjh9+jTXS/b29uZhdUmSBO/j1q1bG3xOFRUVwvVCQkIwceJEXhktSRI6d+4shHiAOiUYxpwJ7ozVeS6bNGnCVUo+++wz9OnTR+XFsFqtAth1BZRKmg6l1dTU8PBicXExhg0bJgBD6sPXXnuNH3P69GkO2iRJwrZt2/hnb731lluPgU6nQ0xMDIYNG4Zdu3YJAJOAM2MM7733Hv/71atXIcsyYmJi+N/mzp3Lr5Gbm8tpSqqqqjjIYcyp2LNs2TLMmTMH48aN47m1jDlDWmlpaYiPj0d4eLhbtZ3baZLk1JMPDQ1FbGwsmjZtioyMDA6WWrdujcLCQsyaNQtLlizB+vXrsX37dhw5coSnb2iBb6Jgce1T6rMNGzagqKiIvwNUvOV6b56enjyvt6ioSLURMBgM6Ny5MwfvO3bswLVr1zhQat26NQfke/fu1byOt7d3vfrpQJ0eNJFVk0eZaJ7at2/Pc2Fv1iiv9/333+e5rUri7k6dOvF3b+XKlYJHLDg4WKUGRNXEf/jDH/gGw2KxqLSqS0tL+Txrs9m4t46eZ1xcnCqa06RJE4wdOxaHDh3CjRs3+Llqa2sF8EvznJKQnuzixYuQJAmJiYnYvXs35syZwz2O7jYy5GnMzMzEQw89xMUGaHNUXFysqp5u06YN9u/fz+mUXJkDkpOTodfr+bh99tlnwRjjEaqnnnoKGRkZ9dL8BAQEqMY9AcrnnntORfIfGRl5T4AljZ8pU6bA4B+JkS/uRNi4NRqKOjsQUfAqUh6aA1uYk13iiSeecCuE0Gh31hoB5U3am8cvInH27gaBpKpN347oae+jWZ9xnFj4Tr5oYWFhyMjIgMFgwLVr17Bs2TLk5uZqUjm0bNkSK1asUFHpkFGo85NPPsHSpUvBGOOTMS1kw4cPx6OPPorc3FzNRcx1waSK2k2bNuG9995TFb4oJ0VarNeuXQsA+PLLL1W/Q1l04c6oupU8bcrjk5OT3RZFUKhTp9Nx2TtayNx59nbt2oWOHTsKHpGWLVtiw4YNsFgsHFASkbBWvmRFRQXGjx8vnMPf31/IYyVFILvdjmHDhgnAa+HChapzlpaWCgv1xx9/jNmzZyM9PV01BgMDA9GuXTsOkJs1a4bCwkIMGzYMDzzwADp37szPFRQUhNDQUPj5+d20Ak59TafTqTgCfXx8kJ6ejq5duyI/P58v5mFhYYK3VpLqJCOVAJr6UUlKTqZFpeNq5EF3NdJKpns5fvw4Xn31VX49LUofUmQaO3asADbdSXBSeNYVhCjTByg3780330RGRgb/7a7nupkiKqUeNPWlt7c3H+/0rG/FqqqqoNfrVaFto9Holkx98+bNwrvapUsX/t2QkBC+EfPz8+ObUSqscTgcGD16NP/9Q4cOFQCEzWYTZB9PnTrFve7KcaPT6RAbG4sHH3xQyBukKE1BQQEHimFhYejZsyf3NLp7D5SgcenSpTh27JgK3FAqiCRJPD1q2rRpuHHjhmYVNV1r3759wnloQ7x27VqcPn2az53K5yDLMqKjozF06FDs3LkTzz//vOq8JpMJ06dPh91uR0VFhSolKjAwEAUFBcKzpPntbjZKO2CM8fSbxUuehyEoFl6xzWEObYLg8CgeRVIWsWVlZd20l73Rbt8aAeVN2IoPb13aSWj/3UXljF94x18y0hZ2/XtwcLAAUJKSkvjvoRC0a27dlV61rScAACAASURBVCtXOG2IFvWJVjMajejatatAQq6VwF9TU6PiOGSMYeDAgQDqFiElmTdx5plMJr7Aenl5udWzJmvZsqXgCZNlGSkpKRwweXh48AmTjIjWXcnMn3nmmZsaIw6HQ5BjpOMtFguvVlZyLlZXV2P+/PnCguHh4cEn/0WLFgm5S9euXcPy5cv5bwgMDOS8eqNHj8agQYPQq1cv5OTkoHXr1khOTkZkZKSwYBoMBq60c6sTuZJHMDAwEJGRkUhISECLFi2QmJgojLW0tDTExsZCkiS8+eab2L9/Pz744ANIksTHYXV1tbC5MJvNmDRpEmpra/H3v/8dM2bMQKtWrYRNiyRJnPy6pKQEdrudk7gzxjhXqvKY9PR01QKuJPvWMovFgsTERP7vyspKgTrFdVNz8uRJQV1EaQQop02b5nbsUHHJmDFj/j97bx4eVZV1D59bc6UyV+YAGZhCIIyBhEnmMRDEiEGQMaLMAiICQiOCiLQIgraiNIKAgCPIII3QgNKIwYgKTUdETERExYgx5ouxvL2+P6r3zj11byUB6f75dmc/z3kgNdy6wxnW2XvttWus927UmjZtimeeeQaqqqKoqIiBmbY0qT+jhAoCH6RBS9qulKR1LbZ27VqJEzhixAjurzWZbzEDiiqQlE/r1q1htVpZC/a2225j725CQoKunjclwU2ZMkV6na6tSZMmOH/+PObPn4927doZ8tGrC0ubzWbExsaiTZs2kuh+SEgIZ3nXZBSNIZ6xVtHi0qVLsFqtsNvthioU4eHhyMvLwxtvvCFFGLStUaNGyMvLw5EjR3Qb49zcXP5MTfN9RkaGoWTVY4895rcy2L+r0TkalfA1cnSYTCYEBATUWoe2zq7P6gBlDbYtv/iGyhZ0HXv/v22Q5eTkYMeOHaisrJQyX4UQUnWZbdu28cJfU3ia6sD26tWLJ3G3280JKxS+JY8mZRNqeV8bNmxgINSiRQtcuHCBJ1Eqz0jH3rVrFwBvmIU8nZcvX0ZJSYmkp2YE9FRVxQMPPMDnTpM7he9UVcWyZct48rPZbJgwYQIKCwtZd1Nb/9iXRlCTUWULs9nMnh9tCwkJQcuWLaWQEYXvIiMjERkZ+ZtKmfny/UJDQyUxZxKeHjBgAHJzczFhwgTcd999ePDBB3khdTgcOp4gia2Tt9pX3Hru3Lk8adPvEEeXjADZ22+/jcmTJ0teE4fDgSlTpjAHV3v/k5OTuS+TWL3WSD8wMTERv/zyCz/npUuXcn+m50EAcseOHRDCuPJPZWUlhKgS3F+1apUEMp5++mnDZ3/p0iX+TEpKCodjawKU5JEy0qlUVVXi4tX07AMDA3mDEhwczP0/LS2Nk8iMjK5v0KBBAKqqT5HskpG0ldG5Pvjgg7r+GxQUBFVVER0dXStACXi9/kYlQk+ePMnj89NPP+XPmM1mvxs/UkbQ6pgC3rFKFXeysrLQokULwxrbRi0xMRGjRo3ieYS81bQZTUxMRJ8+fWoFKGku1soYhYSESBEk6iPaggzx8fFITk72myyWnp4OIfRJOr5G111eXs70Hn9Ny0f3eDyYN28eb3qdTieXvV24cOF1z2HX2q4nGWj48OGSRNIvv/yCZ555BhMnTqy1pmmdGVsdoKzGvigpR5MF+5D6hzfx9JHzOHruW3xX5s2EXPXWJzqwmPP037Atvxgff/kDfvb8CgDovPyQ5Kmsf++rCIpNvKGDKjIyUqqqQpmZ5HVwOBx+QaNWFqVXr15cyUUIgfHjx+vuCYEHIYSUkEEAsby8nBMmRo0axck0TqdTV7LNd1IgIv9rr73G9ADtQtiyZUtYLBbJI/Hxxx+jsrIS06dPl3bwAwcOhKqqCAoKMgxFrlu3ThJiF0JwWJdCJiaTCUOHDkXv3r2RmZmJtLQ0NGrUCPHx8YiIiEBwcDAcDsdvEnemesLh4eGIiYlBQkKC32MlJibioYcewvr169kbsWDBAvz4448S/8vXCCCQDuHDDz8sva/lPObl5QGoXmxdCIHOnTtj2bJlnMUaFxeHS5cu4ezZs1Ko/tVXX8XZs2f5/pK3x+FwICoqSrpWq9WKpk2b4u6775a4fwTyhg4dKp33ggUL+LqMEnyoHrS2n91666349ttvYbPZuMa41g4ePAghvFwtug4CXDk5OX7vMQCMGzeOfyswMBDvv/9+jYAyIiICNptNd/4fffSRLnFNe6/q168v9Xen04mwsLBqs4WDg4PRvXt3TJ06FZs2bUJxcbEkRXX06FH+fa0molaiydd8x15gYCBzewkML1u27JoAJeCV8yJwqgV6tEHS3gt/WrBlZWWw2WwICgrCkCFDqk2EoXnRZrPh1ltvxeOPP85qAZ9++ilWrVol1bmnZuQ1jIiIkHQo/dlXX33FMk9aPqhvcqOqqtIY1Ta73Y4mTZqgYcOGutC22Wz2m/hGxw0ICIDNZtMBM5vNhn/+85945ZVXJJWAPn36YNSoUfxbISEhWLp0KVRVRb169RASEsIg+ffazGYzIiMjsWPHDmzbtk2KEv34Y11Jxt9idYCyGrtj/Qkkz9+LzssPofT/+wUnPvsOL77nBThGgPLxtz7Bxe/Lsf/MZRw/7601KgHKuXvQYM4uROU+dEMHiM1m40xYfzs2LWicPn06T45awKZdEIXQ1+z1/Yw2QSY1NRUOhwOAd5HRLuQ333yz4cRGiw4tDllZWdi7dy977bScl59++gnZ2dkQQuDFF1+UdC+pWa1WXlCbNWuG5ORknvApnHw94s4UPnc4HAgKCoLb7UZcXBwaNmyIFi1aICMjg/l+o0ePlsj82tagQQO0b99e4oXGxMRg5syZKCkpker83n777dJ5kjwOWXVaer728ccf83MgcEii0qSTSMDfX4i0srISW7ZsMaz4ZDab0b59eyxatIj7kxZUVle1Ji0tjUFCdeFZp9Mp0TbovIWonpZQVlbGx6f7Tgk7QggdfUIrbq0o3nKbiqIgJiamRu9FRUUFe4fNZjNMJhMefPBBCGEMKFevXg0hBGbNmgUA+OGHHzBnzhxpAbfZbBg1ahTOnz+Pzz//nMc3ebT279+P7t27S0BSURQsX76cOZvt2rWr1pNDzyc8PJzBZlFREfdFo7KRVPqUftftdnMCFn2HNnQBAQGIioq6JkDp8XjgcDj4vCMjI6WCAkJ4tXTp9+rXr18jaKREmA4dOmDUqFF4/PHHpflg6NCh0jNu06aNrvzpkSNHGKx16dLFcLNF51sToKQx8pe//EV6nTbngwcPRlxcnG78NGvWjDcCZrNZStYjJQlqlFi5ceNGvrajR4+iT58+kue9efPmeOqpp1BaWsoh48GDBwOoSsrRgmeLxYIFCxZI592lSxfp/etZy/5fNO39/e676muE11n1Vgco/di5r380DFm3fsg7+I0AZeK8qv8v3evlmvgCSmoWd70bPjC02bNa8XGjBSE/Px9CeCtAlJWVsd4fcWlIOkdru3fvhhBenqHT6YTNZuNQUnBwMBo0aIC33nqLF24CigMHDsTy5ctx//334+6778bw4cN59+9PhuV6+X7UnE4ngoOD+VyCgoLQqlUrdOrUCX379kVOTo5UlUQIYSi5061bt1r3mcLCQuTm5urCfk6nU5fZferUKQwdOlTiv9Lzo9CZ9tq1maWUge8rB1KdhYWFISwsTKr2QR5at9vNGwWjMnJaU1VVym5PS0tDgwYNdJ5GIy+r2WxGu3btMG/ePCnDvqysDC6XCxaLhQWpfY087AAYRBBoq6kSUGlpKYfzpk+fzqFOIbyeVSqD9/rrrzOAIZmikJAQmM1mnSKAPyMh6dmzZ0v96d5779Xdx8DAQAQEBODRRx/VqUAoimKYbPXss89yX/E9Hgnta/tTly5dsHv3bgDAwoUL+fpo3AUFBTHftbrxFBERgalTp2Lt2rXo06cPP9+4uDiu6FNYWAiTyYSQkBB+JqSHGRAQcE2AcubMmRBCYM2aNVKpw5qaFjTSRuKtt94y3Hhp9YGXLFmie5+qAvnaX/7yF5hMJjgcDtx5550QwgsgjTaSgYGByMjIwOLFi6XNOyUg3n333ZKIuG/UJCQkBF26dOH5UlEUvr8nT55kL7aWYkRar1OnTkXr1q0lKop2XFLBAV8NXNKjFULgwQcflLRfY2JiJJ55q1atcOLECSxatIj7UEZGBkpLS5mf+X+pffXVV7Xuo3WmtzpA6ccW7TpjmNFdHaDUtuoAZYM5uxA1YMoNHQg0UaSlpXGpLwpnG2V0A2BtSQI1Xbp04TAVkeHT0tLQv39/dOjQgSeMuLg4qQzX9er7af/W7n4VRUFKSgq6dOmCAQMG4LbbbsOECRN0ZQbj4uLwpz/9CcuXL5fCPU8++aR0nSRQrTWtBIvL5UJBQQEAoKCgQKoQIoTXI+rPLl++jEmTJkmeisjISMmT66uF6Wv79u3TSRA5HA4sX76cr1lRFOzbtw9AVTankQfZn1Ht7I8++ggAMGvWLP6t5557Dunp6TqQYmSzZ8/m7w0dOhQVFRXYuHEjBg0aZKgs4Ns/IyMjJT4v2eHDhyGE14tr5AmkRLInn3wSQgjWCW3dunWtrr+kpIS9ks899xxOnTqlS56i/1O4kegf/gSwjUxVVbhcLrhcLpSVlbHGY2hoKHtDVVVlbzs1s9nMlAu3243z58/7/Q26juXLl0uv0zPdt28fHnvsMQmkOp1OZGVlYf/+/ewBVRQFq1atAlDlmd2wYQNXp7JarToQ4ttHk5OT0aNHD0yePBnBwcFQFEXSYwTAvxcZGen3mn788Ufs27cPCxcuZI3E6n7bZDLpKBOKovDmQFVV2Gw2JCUlGf7exIkTIUQVnYG8xFozmUzo3Lmz4fe1nsDY2FiOwGh1PIXwAkrtOTqdTqlKkK+IeHh4OMukUSKStk+RV5uSv0pLS7mPNW/enDPhhfB6cO+++25DbqTD4eCNlVYn1vf+aNv999/P7587d06iR2nHEBV5uHr1qt9yvb/XVh3XuM5qtjpA6cduWvHXa/ZQ1hZQJszdg4Spz9/wwRAYGIiePXvyBENeHyG8Hgmn0/mb+H40CYaFhSEmJoZ3x1ow6Ha7MXr0aMydOxePPvoonnzySV4A58yZg9LSUgYM9J3WrVvDYrHAYrHg/vvvh8lkgslkkuSDKEFACK+3w1dfjxJihPAuznPnzuX37rjjDgghOAO0tLSUJ7p69erpvIdUbk0bYmvcuDEDurKyMixcuJAzYoXwenpyc3M5C/Lq1av8XvPmzf32M1VVGbwL4fXuJSYm8jPS/msymXDw4EGd3lxtjLh8JKpO2ZEkxeF0Og25pmSVlZXo1KkThPCCIyOuni+vjQBbUFCQbtPhcrkwduxYSWydtBCpRJ3WiC8phNdrs2TJEgjhBYe1tW+++YY9c5s3b2aQ6tvq1avHC3fPnj1rfXwy0v+bO3cu33caO23atJHuRcuWLfH4449zX8rMzKzR4zpp0iQI4QVQ2qzm+Ph4BAQESJ8tLS3F3LlzJQkVIbyLP20kGzZsyNqG2ix1i8WCZs2acYIHjb2cnBz07NmzWukjKrrQo0cP3qSSyP3ChQsxZMgQNG/eXOLV+utPJpMJw4YNw759+9irJoSAx+Ph5BDtHHTPPfdg+/btEEJg0aJF0v0oLy9nbcyGDRuipKQEAQEBiI+Plz5HlcWmTp1q+Ay0lAuXy4Uvv/yS31NVVaIYhIaGon///jrvo3be7tWrF44fP87HUBQFN910E4Aq3vpjjz0GwFuFSgiBJ554gj9PpUCNMpyDg4MxYsQInDt3Dt9//z1mz54t3ceQkBCMGTMGFy5cQH5+Pt8f36YVNq+oqGDpHt/Wvn175Ofn33CJvP9EGzRokN+a5nVWs9UBSgMr+9mjq4BzwwHl/bththvrOP6Wpp3cXS4XA6ekpCS0aNECHTp0QM+ePaUFpmHDhnj88cc5PJWRkYHPP/+cJ00Cc77lw86ePSstBn/4wx8M76c25Kj19tD3LBYLzGYzT6gFBQUMVrVhw44dOyIkJAQxMTGGvyGE16NK3sKYmBgcO3YMn3zyCYTw1g0vKChgMOTPe5GWlsZeKgJRdF+11+twONCvXz+pzBzZkCFDpAl+9uzZus94PB6JL0ceP8AL4FauXCnJeWhbx44dDc+9OqMs8nXr1vExiouLeaELDg7Gr7/+Kn3nypUrmDt3rt9FPzQ0lD0iJpMJAwYMwMWLF3nRM5vNnHBw+vRp3HnnnbpsWq3YOvXLN954QzoPyt632Wz46quvuLzmtWZlXrx4kQXUtUkfO3bs0FUPcTqdNYI7fxYWFga73Y6XXnqJ7w0dl67/qaeewuHDhxkMzZw5s1bHpmMqirf8psfjwcWLFyGEl4fszyZMmKA7F/ptAoFWqxWqqrKYOLWMjAwOdfrqe27evBlCeJPk7r77brRq1QqhoaE1ZuAqioKAgAAkJydj6NChWLVqFctL0WeysrIkeSdVVRkMud1urjzkLyNem9195swZnk+GDRvGfYfCyVpdRaIPvPLKK7r7SJSLyMhIpiAEBwczXeTChQuSF1h7PjSOhg0bhgkTJiAlJUXy4pGUkc1mQ0REBCoqKtiTSUYcdZPJhE8++QQejwerVq2SFB2oHThwwG9/aNSokeQZ951faNNG/YWkl0hjVwivakdRURFKS0t54659vps2bcL+/ft/c536/1QzmUyoV68e/va3v/m9b3Xm3+oApYGdufSDX6B4wwDl3D2wRiXdsIFA4cpNmzZBiKpsXfK0kByPb4gkLCwMoaGhAKo8RIcPH+Z7QRNBbGwsT8AejwdjxozRTZZUqs/IfEOOVN+XBrH2N1977TXJ++dyudjzZ0SUB4D58+dDCIGdO3dCVVXMnj1bSvZxu92SFyMsLMwvGAkJCUG9evWgqiqDL98WFBSENWvWGB7jyy+/5IoeTZs25WonvvWNacF1OBy6MKHWzGYzZ8nS79vtdvY61NYoM5wqGtFCTVqEQnh5lffeey8yMzMNJWCGDBmCzZs3Y82aNZIHKTc3V6pwQn3szjvvNDyXDRs2MLByOBy6kL8Q3qSAHTt2sMyPEAK9evXiMnMZGRm1vnayiooKCXiYzWbeoOzbt49fo/fdbjdWr159TcC1qKhISlCgPjx27FgeT3a7HUuWLGHKiG/1lershx9+gBCCOXsDBw7kEKXWy6U1Gh8JCQmorKzExx9/jJycHEMvkva5N2/enEGbx+PhDc7NN9+MhQsXSvfSKPJB2fw0V7hcLsTFxdVYFclsNuOWW27Bxo0bpXKVQJU+rRBeAKatEqX1pmqP8+STTzIn25fCcOzYMQghA2WqDuZbjefpp5+GEN7QNFEYKPGKRPp9ryU7O1uiH2glgshOnz6NWbNmIS0tTUf/EcIL8Pbt28f9kDjw2qQiivJof9s3cUZrwcHBcLvdEsVH+wwbNmyoC9nTvOx0OnXC+b78aupLDz74IKsn/F9oxM32JxFWZ/6tDlAa2AfF3/9HAKUt9saVYzSZTFi8eDECAgJgsViwZ88efPjhh3j77bchhFeMWev5I927sWPHQgiBU6dOITY2Fi6Xi+9DeXk5T5AUKn399dd5UUxOTsaZM2eYBF6TALI25KgVwqW6vM899xwfiyReSPImKCgIp06dYi6gb3m2hIQEXR3xixcvMqFcu3iZzWbdIqU1SkjyXRwmTZqEsrIyTJ06lSf9oKAgLFq0SAIcpLnocDiQkpKCoqIiLpF5+fJlrkgkhCw4789iYmLgdrsBwDBsFh0djalTp+qE6n2tuLiYv0Pg9pNPPpHC39rjUl+xWq04dOgQ6zuSl4cWr759++p+i96rzsOnFbs3mUwYN24cli5daphJTp+JiorCokWLIITAtm3barx3WtN6Vho3bix5hoqKiiR+6AMPPIBp06ZJcjgLFy70CyxLSkowa9Ys1sWkPkf9jrK8b7nlFuma3G73dVXwsNlsaNWqFcvJBAUFISgoyPCzDz3kVZWIj483VFs4dOgQbwB82z333IPs7GwOT/ujy4SHh3P29KpVq3Dy5EnJ2x0dHc2ATlupqqioCOvXr5c2kL7jlf4ODAxEUlISRw1atmzJz5AiACQVRHOWNoHEZDJJ4FNrvvJidGytPf/889wXxo0bp/Mu0m+MGjVKAra5ublMKaDratiwoU4kXGu+HFtts9vt0nMIDg7GunXrOEyflZXFSZYWi0UHigGv+Dx932Kx4Pbbb2eAfODAAfTo0cOvBFVmZqauH5WUlEjKDj/++CMWLlyok776v9BoQ1ldMYI6M7Y6QGlg/xc9lNfSLBYLy9+Q14s8FRERESx/Q+DO4XDAZDKxd8JXWJyyVYWofkcMeEGedhKmeuJasfG8vDyJ10jl7UwmE4dVtIkyV65cgRACvXv31v1eaWkpXwe1ZcuW6T53+vRp5OTkSBykxMRELF68GJcvX4bZbEZcXBx/XlVVacJ0OByYNm0aPvzwQwghuMQhlfh77rnndM/BKPveyDp16gSTycS8zFatWsFkMsFqtaJv377SpJ2YmIgHH3zQsAoMeV1MJpNORFwIr/ehV69ekpcjISEBX331Fe69914GYy6XC3PnzoXH40Hz5s2hKIoE0IlDWNtKIfn5+VIY8+DBg8wJo+MYhcx69uyJtWvX1sh5Ki4ulvRQiZt75swZXjSzsrJYP1W7MVJVFYsWLWKvncPhwNSpU1FRUYGKigosW7ZMWkgDAgIwZMgQFBQUsCoCLU7ffPMNi8/T606ns8Z620YWFxeHsLAwlJeXc58dMGCA7nP0LKKjo/HTTz9J7129ehVjx4411FL0bVarFXFxccjIyMCIESMkKsrkyZNrPN/o6GhO2iJuIOANLVM/pDmIvPVFRUXYvHkzpk+fjl69eiE5OVni5vo2u92Obt268bnFxMSgRYsWPK/Q5zIyMnQVdXJyciCEwGeffQbAm/gUHx8PVVVx6NAhQ5kyu92O1NRUTJ06Ffn5+fjjH//I97pnz55QFIXFx4OCgmA2m1FYWIjRo0fzZmPMmDGGGejajP01a9ZgwIAB1WqMtmnTBl27dpXuH817AQEBKCgogKqqWLJkiTSW2rRp41erUlVVSXdY27RZ8cePH+c+SBv4U6dOAfAm72jnk9/C3/9Pta5du+Ldd9+tsU/Xmd7qAKWB/fQf4FA2uH83TDZ9mO96m9lshtPphMPhwKZNm7B69WosWrQI06ZN40FsNpuRlpaGtLQ0NGzYEPHx8TVWR7ie5na7kZSUhNTUVKSnp6N79+4YPHgwRo4cyR5G3+ZwODB9+nS/Hq2PPvpICsVRBiRQJTGiFVoHgJMnT/IipSWaK4qCSZMmobi4GBMmTJDuAYGzrVu3SscieRBfrURVVbF69WrdfSwoKGBAeebMGV1JR98SfdXZ5MmT+ZqF8GZl7tu3j6VLzp8/j8OHD6N3795SvefmzZtj1qxZyMvLkzxn1BdSUlIwceJENGnShGkE586dk7zH0dHRvCCEhYXh0Ucflbx0p06dghACnTp14vvhcrl4A3AtppW10T4vuufa8KpvaC8kJIQ3J+SpVVUV99xzD/f/IUOG6BZPOn9t803SomOtWbPGcLxYrVZ0796dPe1aI5HvSZMmScLYc+bMwfbt2zlkSQkXtbWuXbvy/aXkoujoaOnZECc6ODgYs2fPZk9jWFiYISiz2+0MNvyFr/v3749jx47h1Vdf5ddXrFhR4/kSZYP42Hv27OEwsMvlYjDWvn37Wl1/eHg4goKCMH36dPTo0cOQMqHtK4mJiWjfvr1EG2nRogV76mkjOHr0aM7gttlsuvuQmpqK++67z693kXiHBJIpQiSElzNLdvbsWZ4TgoODdZ7T119/XXcdMTExmDFjBq5cuYKSkhKsWrWKQaTv/NunTx9MmSIriRAgdblcnKHtj2P5448/6qqtUeEF+ttmsyElJYU3SS+++CJTmZYvX46ioiIEBARAURS8/vrr2Lx5M9N/fq/t0UcfrbZIRJ1Vb3WA0o/5ZnmP2fAeJm55H7Nf/hAAsPujS5i45X1M3PI+mi7ch4S5e9BmyQF+7ZUCb1jngdc/xsQt7+O2dcdlQDn5zzd0INACofUcXr16lTOIq6tdTFmjFO4+ffo08+x8yeWzZ8/GrFmzMH78eOTk5KBDhw68mNFkQwkP15tV7q+EYP369SXA1LdvX+Tm5nKYf9myZVi3bh1eeeUV3HPPPSw78tBDD0FRFJ7kfTMhQ0JCMHLkSJw7d471O32BR2VlpY4c72t/+MMf+JgEqMijoiiKFNYj+Z7aGHEIw8LCWDweAHbu3MmJDcXFxVBVFXv37kXXrl39ynUQxUHrzXW73YiJiZEADnl26FqqAw0Udv3oo49YM7Bhw4bXDCgBLy2CwnX0nInvSVw1Ibyc4MrKSrz44ou4+eabuR42ve9wOBh0RkdH48SJE35/U6tHaqQ7CHg1WLt06aIDsoqiICsrS1faj+zll1+GEELyIhOfGfACeEqKyM7OrjVX85577oEQAufOnZMq5NSrVw+pqamG2b5CyPxQq9WKgQMHIj8/n3+XNE6F8IK7qVOn8t9GoI28gWvWrKn2fAlQUoIcteHDh6OyspI9W59++mmtrr99+/a60qiPPPKI4TXHxMRU69k0mUyGHnCr1crzp8PhqDU1QVv+9dFHH+X/G31/5cqVPFbT09MxZcoUCXRRCJ08p0am5SdGR0f7FVsXwsuJ9Xg8TDUx2sCvXr2az6lDhw7MGxXC68EliS9tCwwMxMiRI7kqVr9+/VgBQFsAAwBHAn6PzWhTWGe1tzpA6cd8dSgvfm8MxoAqL2TuOmNCPAC8+9l3VYByzi6E97773zYoHA4HIiMjeSEgr4pvVRAy2kXHxMTA4/FIXhiTyYRp06bh+PHjEEIfpqUd+ZEjRwBUeUV8PXCffvqptBhrdSwVReHa0rm5uZgukwAAIABJREFUuRgwYAC6du2Ktm3bIiUlBQkJCYiOjkZoaOi/RYrC4XCgRYsW6NSpE3vXxo8fj1mzZmHJkiV46qmnsH37dhbqXbhwoWGYqnHjxlAUBS+88IIUZnc4HAxaUlJSYDKZODu3NqaVIOrXrx+/7vF4WHvQd7EMCAhA27Zt0bdvXylUZrfbuVwkmclk4vPVgv/ExETWwbTZbNizZ4/h+V24cIFBqM1mQ3h4OHr06HFdgPLUqVOsf6gFRS1btuTkCX811j0eD7Zt22aY7ep0OtG6dWvMmTMH//jHP6TvaXmNJpOJw6H5+fnIysqSgFSTJk3w2GOPobKyEvv27ZM2bN26ddMlSRUWFkrnYeQRqqioYM9dQkKCYXJbaWkp9uzZgwceeADZ2dk6GSBtI9BoNptx2223YdmyZejTpw+/HhUVVW3CAS34lFBVVFTEIN/hcOjGIPW9P/7xj36PSeNXGyqnCi/0XI0oK/6MMtZ9gbwWuA8dOhQ2mw0Oh4M514WFhcjLy0NCQkKN+rk0bhRFwe23347nn38en3/+ea3OT+vJo/uVmZmp+1xlZSUeeughqY/RczKZTH43OL5GdKScnBxcuXIFN998s9+NPG2uLRaLpLtYWFjI9I2goCDOcKdKOUJ46QJXrlyRIh7Z2dl+I12+ER0C2H369DEsJPH/uvmqS9TZtVkdoPRj/irl3Kh2Iyvl0MSYlZWFrKwsv3pntCDUq1cPHTt2xLhx47B27VqWS3E4HGjZsiV/liQhyChkV1hYyK8NGjQIQggJHJFkzOrVq3Hx4kVd6ITkh4TwAiSqiuMvQ9XX0tPTufwZHXPHjh148803GRjFxsbqeEfaJImkpCROFPBdGK+lEZeRfkf7f99mNpuRm5vL4LJly5Z488038f777+OLL77Azz//7PeaaXGYN28eBg0ahOjoaN35ms1mzJs3T9LEmzZtGoQQGDFiBBYuXCgtdE6nU6rlTC01NVXKuj9w4AB7d7X6nlrThqM3bdp0XYDyzJkzHGb861//Co/HI1EkyGtKCUq+5utZuXz5Mg4ePIixY8eiYcOGEoAg/hv1X7qX5NXWApP4+Hjcf//9hskNgJdDpq2S0q5dOxQUFODSpUuSt0ib8GZkRGmwWCzo1KkTUlNTER4ebii/Q9dJfe2BBx7AoUOH+BoDAgKQn5+P/v37c99p0KABXnrppRqfA/GUR48eLb2+fv16Pn5ISAgOHTqE3Nxc6V653W4sXLhQioaUlJRI42P+/PlQFAWNGjUC4AVDJpPJr5fXyEiqiMT9tSLyNpuNM5eTkpL43vsK77vdbvTu3RuPPfYYRowYUetIijZBqHv37pg8eTKef/55yQPZp08f/nxiYiInEn3wwQdQVRUbN25EmzZt+DctFgtatGih40MbKVoYGckIac8zOTmZAdyECROwc+dOHfWG5n2tdNCoUaOk+ZwAJVEUaC4YOnQoTCYT7HY7zp49i9OnT0s14OkaFi9ejPLyco58hYeHw+Px4OzZs787TqWRTFSd1d7qAGU1RrW8bySQbDBnF6Jzl1x3ScHqmqqqHLINDQ3F2bNnUVJSgmeeeQZCeL0fzZo1Q1hYWI0acZ07d8batWvx4YcfcjjsH//4By+YZI0bN9aJKVdWVuokZ4Twgq/Q0FBJ2Pz222/HiRMnWPKCKtZUZ3l5eRBC4OjRo3wfe/Xqxbv8uLg4KeTrdDrx3HPPQVVVzJs3D0LIYcc33nhD2i1nZGSgvLwcRUVFyM/Px969e7Fp0yasWrWKwXFqaipuvvlm9OrVCxkZGTpvR033t6YFy2KxwGazwWazGXpSLBYL3G432rZti/HjxzMwDAgIwNatW/Huu+9i69atEEJffebcuXP8PLTHjIyM9MupunTpEofiunTpovOukoA3eQ+vFVCeO3eOk7/efPNN6b2PP/5YOlffkqD+PCtGduLECUyaNAkpKSnVJjkIIXDbbbdJGck12dmzZ7mspb926NAh7N69mz2N1YFGi8XCiTCjR4/G6tWr8f777/OzpGxfqkCjrd6iTbhKSUnR8Yurs1GjRvH3tEZRCjq2yWTCjBkzoKoqXn75Zd3mjAA79V+r1cpREpqnSM6IVCRqa5SIN27cOJw6dUqab3JyctCxY0fdPQ0ICEBWVhY2bNhgSP+prKzUhfXHjRsHj8eD4uJibNmyhROEGjZsaBhGVxSFoxxCVEWHqH8GBARwv6NKTxs2bOBnStng2qbVxzQyrawWnQMVYQD0GewkLSeE4KiK9vt2ux3NmzfHtGnTUFBQwIBSCxZpY6Llcp86dUrS1e3Zs6c0D1OWv3aOX7lyJb+/adMmv7q7/6lWXVW0OqvZ6gBlNfZFSTmaLNh348Dk/buRMPs1WMNi/y2DQVsa0beElFEZsZKSEmlA+x5H2xwOB+Lj45lrdO+99+LDDz+Ey+VCw4YN+ZgnTpwwrGlLIT1tZRMhvIASAI4ePcq8Sd8MTF/buHEjhKjiJxnxBRs0aCDx78hIAF2baQp4ky5IjFwIr0fPX0g6PDwcNpuN+UcLFy7k77ndbhw6dAgAeOFITk5GZWUlzp8/j27duunu78yZMzFz5kwMHz4cLVq0qFYU2mq1wmKx/CZeqpFWnvacAgIC0KZNG8ycORPLly/Hs88+i1dffRVHjhxhT0tkZKTkvdZWzXjllVeuCVBqyftaoK+106dPS+ebkZGBr776CmPHjmXPs69npTorLy+v1pNP9+Tmm2/G3r17r0mHksKxtWkOh0MHGl9//XUGIgMHDvT723T+d911F/bv3y954OkZVadv6s8oEqEoilRSkDKVL1y4gBMnTnDYMyIiAocPH5aeo68MkNlsRkhICF/Ljz/+yP3YYrHgxx9/vObzJMBtNF8pioL4+HjO7qdmVIRAa9p+TJQLu92OSZMm+c2G/uKLLySwWVO/MplMSEpKwl133aXzbFKSy/Hjx1n5wGq16kLHAPDOO+9IXOdWrVpxVn9aWhp/jjLYqZynr4QRJYUdP36cN1vaOVU719C8pN2g7Ny5U7o+kkV77733oKoqtm/fLm3YzWYzMjMz8dprr+GVV16Rzh8Avv76a0Ox9f9EM7rPdVZ7qwOUNdi2/OIb6qEMbNnnhg8Cf+AjMDAQHTp0wKJFixAaGqrj4xw6dEhKcqHJCwC+//577Nq1i0Os5Nk0AjLECdTKj7Rp04bDN40aNYLFYtFVuBGiClAC3tAqhVC0YXVfu3z5MoQQhl5Qi8WC/fv3Iz4+HoqiGC4gDRs25IogWlu+fDmEEOyJCwwMxI4dO3Tfpx3+mDFjJBA6ZcoUPiZpJVosFt1CdOXKFdx6663SvdRO4IqiIDY2FkOGDMGWLVs4kUYIoePoqaqKK1eu4MyZMzh8+DDL7dCxb7rpJgwbNgz9+/dH48aN/fLGbDbbdXnNjWq5m0wm9vR07twZ/fv3x7Bhw5CXl4d7770XS5cuZV7q9u3b4XQ6oShKtbqSWg1N30Z6qDWZqqp45plnJJChKAp69eoFt9vN3qUFCxZwqFT7ufj4eOTk5GD79u24cuUKdu/ejfnz52Pw4MFITU2VsuP93SshvNn6JOPizyorK7mmc/369Q01Rgl0ktedWteuXRnsEbf5WsztdjMAeOSRRwCAhdp9uZcPPPAAzz99+vTByZMnpX7duXNnKQnDbrejT58+OHr0KOu1duvWrdbnRgLgWmqOtkVEROg2AMeOHeO5yWq1+k1O/Pvf/y6VqgW88j1EW/DVazSyixcvGo4xX++tkWeTztHtdmPy5Ml47LHHpO+mpaWhuLgYu3bt4tA1bRQjIiL4HIjrTfSUjz76CEJUURiIkkRznBBVZSh97/XEiRMN1xez2YyRI0di3759KC8vZwBotVoZJJK00Pr16yGEl4ayZs0aNGvWTLp+7f/Pnz/PddgTEhIwfvx4vp90HkaZ7TeqPfvss7Xui3WmtzpAWQtb+9dzv90zOXcPgjsO+02h0Jraiy++CI/Hg127dmH48OFo0KCBDgC2bt0aM2bM4Mxc7UDNyMiAEKLGqh3EuSTpidp6y3r06IE1a9bg1KlTUFUVQsiAEvBm01Jtad+syKtXr+rq0ArhFVU+e/YsNm/eLN1fo3KHQFUikW/2oTbzcc2aNezJa9eunY7f5cvH0soYETClSjlkhYWFuP/++9GmTRvDjFmr1YpRo0bpMi/dbjd/vqZsWqBqwXA4HCgvL8eqVat0O/7ExERejLT6moAXeL3wwgto3bo1P1tFUVCvXj1kZ2fjrrvuQs+ePfk98sTGxMTwedIiQWGua+nHxEt1Op0IDg5GRESEVKfd9/Mulwt33nknnnjiCWzZsgX79+9HQUEBLl68iMrKSrz22mvo2LEjL0x0PmFhYezRtNlsDNBoE0Liz2azGaGhodX2c63ETExMDFauXCnVe9aKcCuKgmXLltXK60lJVw6Hgz3fZL7n07VrVw6PFhcXw2KxwOVy6fQnazKTyYTMzEzOciZgYyRgD3gz8ykCQY24qMTFjYqKgsvlQmJiou7eEXgzMi1FwZ9ywZtvvslRAn90h5KSEg7Hulwu3Sbv008/lTbEvtzF7du3My/TZDJh4MCBUii6pKREkqiiNm7cOPbkU4lHIbycb/Js3nPPPejdu3e1a4Pve4qioF+/fiwvpNUCVVWVVQ+Ilx4WFobg4GApg5zC4qTyERAQIPHYtWVBhRBYuXIlFixY4Nd7SPx1AqmDBg1CUVER90MtkC8rK5Puh3YcUXU3qsP+yy+/YPbs2ZLT41rmk2tpTz75pN++WGc1Wx2grKVtyy9GkwX7rplTmXj/G2gw+zUEte73bwWTiqLoFhzAO7kcPHiQOTzaCU+70CcmJqKsrAyKouhC4772ww8/6MIgI0eOxA8//IDvvvuOJ96EhARJ9NmoOZ1OdOzYEWPHjmWw+fLLL7O36MKFC3j00Uc5m5YmHfq/b6UZmoyEELjlllsMF21/pfuaNm0Kp9PJf5eVlbHGHyW8FBUVSWEmOk/6Hfr9yMhIOBwOhIWF6UTEzWYzkpOTMWbMGLz11ltSMgFN7HPmzIHH42HeKoWtfOup+1pBQQEDcu0zJj6mEN7KHaqqIjU1FUJ4OZH+jLx6LVq0kI7Vq1cvvPrqq5J4cmVlJTweDxwOBwNJrZWVlXG4dOvWrQwSBw4ciKlTp2LUqFEYMmQIevbsiQ4dOqB58+ZITk72G9a8nqbtt1FRUUhISOCMaS3gNPo9q9WKyMhI1K9fXwLP2paUlMRi65GRkXzM++67j4Xg6bMBAQH8enW2c+dOznxfunQp1q5dq5O5MeJIEjWkQ4cO1R5fa1SGc/LkycwHVRQF4eHh+OWXXwy/c+nSJUk3VAivV9ViscBsNuNvf/sbywYBXgBK3lftvZgwYQK2b99ebRLVbbfdxvedKioVFxcjKSkJdru9WpCuqiorADgcDtaS1Ibqx4wZw7+pTUwjO3DggFTJKTExURfeT05ORseOHQ2F/ckr61uFZ8uWLRDCK+sFeD2dW7Zs4bFU06a9Xr16nCC0YcMGHDlyBGazGUFBQSgtLZXKK4aEhOh47y+++CKP2ZUrV2Lp0qUcfSCd3y1btgDwzp9WqxVut5s3YUYgz+l08sb76NGjumcREhICh8OBixcvSvedWl5enrSRj4qKqpUI/29pCxcu9Nt/6qxmqwOU12BflJTjjvUnWPqnWjD5r/ejch9Cq849/20DICoqSgJYLpcLOTk5Oh4ilV+jgd6vXz+dVp3FYuGF6/Dhw7rJWVVVPPjgg7pQM+08VVVlPTmaGAmQCeHlNe7cuZPD6DQRGQFt3wnUZDJxAop2sdeGgL/55hsGTsTjTE5O1oVyAK80itlslq4xMDAQiYmJus8eOXJEIpsL4a1lTCFOKsl377338rlqr4kEgCdOnIi//e1vuuOXlJTAbrdzBiyFG202GwPyM2fOwG63S9woX6usrERoaCgURdH1CfIYaXfglBBR24o95eXlWLx4sRQO1j6LiIgIfPbZZxKn1MhKS0v5ftbG46oV0dZ6hqmU4PHjx/k++YbgXS4XGjVqhBYtWiA+Pv6GZpX6A56+Y0oIL+1j4sSJXGPearWynIzVasXo0aMNBdXJLly44FdbsrqQMY2zpUuX1nifgapa1Tt27GANTSEEPvzwQ91nVVXFfffdx/d04MCBKC0txahRo/jekBc8LCyMAaWqqggICEBgYCDWrFljeA8tFgvS0tIwZ84cBn5r167lsbVx40Zs374dQgg8/vjjEMLL3avJPB4PA1KTyYS1a9eyXuKOHTt44yaEsUdWVVU899xzuuQRAjpNmjQB4FU9MAKU//znP5mOoK3I5Ha7YbPZ2HPq8Xgwb948SQN05syZqKysZI1d+m0CjrXp22lpaXA6nRLvnaywsFCibURERODChQuclEOAEqhSjxCiKjpDYutGiTWUUf/UU0+htLQUS5cuhRBVXkgAqFevnsTr1K4bCxYsgMViqZGfer2NNpUtW7aU7slPP3tw5tIP+KD4e5y59AN++rl2HO3/VasDlNdoBw8ehNVdH20nPIKEKc8j4V/hbG14O2X2doT1vgv9bxv7b+n81GiXm56eDovFgmnTpkkafG63G+PGjWMtQSG8WX3kEaFBu3r1auYlaRdjs9mMhIQEDB8+HIMHD2YvW2BgoFSSC/BOtCRyTmHszz77jCcxqvZC2naAzKG8evUqFi1ahPr161+TN+q2227DmjVr8MEHH7Csxe7duwFUVZgxKm+3atUqCFGVJEQheK3Oo/aZ+4Z5BgwYwBO4w+GQzpmAn8ViQVJSUq36FWXoksd13bp10rMcNmwY4uLiEBoaavj9H374QdK+jIiIwNq1a9n7qSgK3nvvPek7lJBlBKJrsm+//VbqV9QURcHTTz/NgNrX+1ZWVsbnqRXhN7LKykpJI/L222+HqqoICgpiD90tt9yCyZMn6wC/ttyd7zmaTCbEx8cjMzMTo0ePZk7WZ599xvW8t2/fjo8//hiHDh3C9u3bOcPV5XJh9OjRuOWWW3jxtVgsSE5ORv369dkz/VvGNW0IAgICEBwcXG0VGOIvP/zww3j66afx0ksv4a9//StOnz6Nb7/9FpWVlYiMjISiKFwOrzojDu7Vq1cZjBr1uXfeeYcX96ioKN34OnPmjI6HGh4ejq1bt/qNWrjdbjRq1IjnGUVRkJKSgpUrV3JWeEhICPNlSZ+VOJq1FaX2TfASwpthDHiTYhwOBxo0aCAVEfAVtjeZTGjXrh1WrFjB854QXi7igQMH/AJK6tc0X4wYMYLnotmzZ6OiogKTJk3ie0CeP1/KzTfffMPznclkwurVqwF4PZtbt27F+PHja6yjTRSEbt26YdKkSVi5cqUE2Bo0aIArV67oAKWqqrxhN+KiA+DQuqIo6NOnj6HYutlsxvLly5kfTGOPrmnnzp3o16+fLrrzW8aW0VijMTxy5Eg4HA4cP3MBi3adwU0r/qqrmJc4dw9uWvFXLNp1Bue+vvZEsv92qwOU12D5+fk8wEl3L7Z+IoITUmGPawprVBIUq0OnxfXvaoqioGfPnkhLS5M4P+fOncOIESMkjwYNxPT0dABVfMFmzZpJ11hRUeG9rthYtGnTxrDE3dChQ7Fjxw4+5sqVK7nW7dChQ/lYxNMkbymFrYm7I4QXwA0aNEhaNBs3bowVK1agsrKSa9rSwA8NDZW0FI0mKQILY8eOxZgxYziUoy1vRxVBWrduDQB47733IIRci7y0tJQzFs1mM2699VYMHDiw2sQWrQdSW8u7NkZhn2nTpgHwhq9p4tf+zhdffMHf+eqrr3jhp3PYunUrysrKODRP4Kt169bS5E/kfZPJ5LfkZXXWpEkTTnwaOXKkdJ70vCZNmsSfr6io4IVm8eLF1R5706ZN3H9NJhNCQkJw9epV7Nq1y2/pQKMWExOD0aNHY968eRy69QW5nTt35oz0kpISCGHs7SLPa1xcHAPYfv366RZUSshasmQJV4Zp2rSp5IGhFh0djQ4dOqBjx47SeA0MDJQiAYqicIb/b5kzHA4HgoODERkZiXr16qFx48Zo1aoVOnXqhL59+7KeIeko0mL+0ksv4YMPPsC5c+c46mAymTBnzhy/Yeby8nLk5OT4zcLWlsr09dDt3LkTnTt31tU9X79+vfR7pPuqparUxrRedCG8Gcbl5eUICgpCQkICb5jT09N1wvYrV66UxguNs7Zt2/Im0263+wWUAKSqTxaLBU6nE7m5ufx8IyMj8dRTT2HDhg0Qogrwao240jTuGjVqhLNnz2LGjBl8HoMHD2b+r5azmJycjEaNGvn1bPoCZ5rnVVVlrj1dt9bLCHiTDrXPrV69eqioqEBlZSW2bt1qqIUZGBgolSYVQkheVK1H9EY3Kv4wYsI0xI18BAlz99RIbaP371h/Al+U+C968r9mdYCylvbuu+9KCyZNtEYT/L9DY9K3JScn6yQxqJzflStXGMxZLBakpKRIk6K2ysa3336ru1atV0sIrwfi1ltvRefOnQ1LlGkHJtkHH3wAIYTEx6SQtN1ux/Dhw6XvxsfH47777tNlUB49epTvsdPpRFlZmQSgRowYweETp9OJlJSUanU27XY7OnTogLFjxyIuLg4mkwkVFRV8DOJNrVixgo/h+4z97fx9pZquFVCqqsp8rMOHD7OEyeeff67zkrZt2xbp6ek6uZ+Kigp89NFH/JxGjhwJAHy/MzIyeEFu0aKFtCm4Ftu3bx+E8Ib+tbZ//36dh65x48ZYvnw5X9u8efP8Hvfjjz/mxA3yvtVmPOTm5rKnWlVVnDhxgpO33G43goODoSiKYcnL2NhYqaRmYmIibDabYU1f2ogZLaQAmENKEjmkz3nfffcB8D7jQ4cO8SKtfX42mw3x8fESH81qtWLZsmUAvPI02jlI+7ljx45h165d2LBhAx577DHMnz8fkydPxsiRI5Gdnc1eQZfLheTkZL7mwMBALlN5PfOWxWKBw+FAUFAQwsLCmBdXU/j1rrvuwt69e5Gfn4+ioiL8+c/eUrTjxo3je3nixAkG2dpNhM1mQ48ePXDw4EH24g8YMKD6DqsxLeVCCC9oFKJq4xUTEyPNc/Xq1cPcuXMNhe2p1Kg20jJ8+HA+18jISPzpT3/SfY887b73pX79+lKyIClaaCM79H2bzYakpCR4PB7WDqUWExPD5UZPnTrFmyl6X7vxXbx4MYTwbpqzs7PRu3dvNGrUqFrPuNPp5BKvVqtVUuWg9UMIweoAiYmJqKysZP5lZGSkLoFU2/+o/7Rq1QqFhYW48847r7lv1qbFxsbCZDJh0PRlqH/vq0i4/41rypFInr8XTRbsw7Z8ee7/X7U6QFkLO3bsGAICAn5Xqv5U2/Xjjz+WFhltycUePXpIk6BRqKldu3bYvHkzVFXFZ599JklKREREcPhYa99//z2Hk30XofDwcPTq1YvDmpTheOXKFcyYMUNXbis5OVkHxMgeeeQR5sTdfvvtPAE4nU7ExsbCarWiVatWcLlcsFgsOhHqq1ev4o033sD8+fMxYMCAakORdB1GPLWwsDD06NEDq1atQklJCQO9BQsWSJ/LycmRvCfXCiiBKtkRl8uFgIAA5p0BwN69eyGEDHAJvCiKghMnTmD9+vVcR3zdunXSsQkMEecuJCQE8fHxMJvN13ye9erVg9lsNpRQUVVVAoLaPhIVFYVnnnkGO3fuxPz581mSirif/p6LdqGhvrV//37s3r0bQuiTs8i0nqjk5GRDUGC1WiU+G33n1VdflT5HHFkC4SkpKfj111+lz9C4oHvvCyi19yg0NBR2ux1vv/027rjjDr8cSSG8CW60wJvNZjRq1AjFxcU89tu3b19jco8/6R+tmUwm5t+uW7cO+/btg9VqlSq63HTTTRg6dCi6dOmC+vXrc0JLTc+uts2XgxwSEoLExESkpKQgLi7OcBwPGzYM69evx86dO3Hs2DGcO3cOP/74o25T8NNPP3H/WbJkCQIDA2E2m9nrRs3tdiMoKMhvSBfwrgskJ+X7GaqGRY6H4OBgLF26lD9XWFio89T5E3e3WCxo37699BrxWxctWoSysjKpMg/93s6dO/nzpGxBz0RVVXg8Hi7UEB0dbTgPnz9/nvuldmMfHBysWw+1/GUKcbdo0QLjxo2DEN6N5YgRIyCEXmEDqFJVoPO5EX2pphYVFYXWI+d6AaIPfe1a29q/ntNd0/+a1QHKf9nXX3+N1NRU5OXl4eDBg/j111/x66+/YseOHbXacf+n29ixY3kBSU9Ph9lslrgmMTExOpHo8ePH6waTEQm6RYsWMJlM1SaAUEKHdgHo16+fjitDtaPpb5fLJUlX+MoGAd7Fliq/EDEckMHB1KlTERMTwwuPUUjIyKZPn87npS0XWF0jUffMzEwMGzaMJ0zSzHz22Wf5s+Hh4Vxt5noAJSBXsiA5kIMHDzJnSggvoV8r1RIWFsaLWFBQED744APDY/fv3x9CCOZ4de/eHZmZmVAUxa8+n69R2TutN8nXrkUrTquB6XQ6MWzYMGRmZkr9uXnz5njqqafg8XhYV2/OnDkAwAsWUQW0RiFDAl4kS0JGIW5tmUFSO+jUqRMAY01I8pikpaUxSCgrK4PFYpE2Af4AJVClz6cdM2lpadi0aRPuvfdeSWrId2EdNWoUVFVlTzGN+eoq+2jFyWlDqjWqoCSEV2xfVVVJpL13796YO3cu0tPTdfQG0ujcsWOHIX3CN3mQWmpqKqZPn468vDwGvNpKMtHR0YiMjERISAicTqcEbmvbKDFI69ElUOQvktGiRQsGWzNmzMCRI0fw97//Hd999x1UVUV5eTmDUV95M6AqKYeSa+h+2e12XWIJSXIJYZxlHBUVxdWQyDp16gRFUbBixQq+r+3bt8fXX3+NlStX8rV27NiRa8Nr54uXXnqJk4O6desmQed/AAAgAElEQVRW7WZEOx/ZbDZJE/XLL79kmgRl+teUrGa32zFx4kSsX78en376KR8rLS0NJpOJx97ly5dhNptrleV+va3JgHE3VGd6+/+4p7IOUP7LaOKngeB2u3Xaar+XRiHB4OBgvPTSS5wcYDKZMH78eAwdOpQnytjYWK53SwkO5FHYu3evFJ6gFhAQwJ5Ef9UhtJmKFK668847oaqqTqNR2wIDA9G+fXsOG/fu3Vs67uXLl3ly7dSpk25xIv6kVu5l8ODBNT7f4uJiPPjgg8jIyKjWU5mcnIwTJ06wZ5NEq/2F0SlMSddM/adbt24cgr8eo0UnOzubQ8WUqd24cWMA4CxXbejMYrHgz3/+c7XHJv1QIbyJAHSchx56qFbnRny3y5cvG4rf+1ukXS4XMjIy0LZtW10SDfVrLZ2APEl5eXnS76uqyoLk9Df1C63Ui1aLsby8HK+88grfq4YNG+If//gHJxxoKzgBXn6oxWLBuXPn/FatoQSWdu3aQVVVphVotRD9AcrDhw+zbJMQXjBgVCHq6tWrPL6N+i2NQ/rXZrNJZfd87fjx41AUBXFxcTqvGoHH+Ph47N27l++V7/M0m81ITEzEyJEja11FiJ5306ZN8fzzz/N8RfPNCy+8INX8TktL8zv3+N5bIbzeYl8OasuWLXHLLbdg4MCB6Ny5swRUb9RcbDabGZySpFTjxo25H/ft2xc5OTno27evYQiZPpeTk8MUjYcffli6zg4dOnBJU8Db37UAOTAwEC+//LL0ndLSUo42WSwWLF68GD/99JPu9+fPn1/jsyPvLa0JDodDGmckZG42m2GxWNjTmZSUBJvNhhkzZqBPnz5+5wVFUfjZBQYGMkD95JNPeHze6OZwOGAJif5XmNvYM5n6hzfx9JHzOHruW3xX9jMAYNVbn1QLKJss2Pc/zamsA5T/sl9++eV354U0aiTRsHLlSt0A1ZbCKysrw7hx43jS8eU+ajX3+vbti+LiYpSUlGDmzJm8OAnh3cmPHTtWOjYtPCaTiRcT4udod6bt2rXDli1b8Msvv2DXrl24/fbbDcXWW7Zsifvuuw/r169nr5Q/UXLia2m/TyXFtFZYWIg5c+boRMRNJhPq16+PrKwsHRfSN0HJ6Jja43Tt2pVrMfvrO4qiIDMzE2PGjMETTzxRY4UUMm1Y22QyITc3FyUlJWjQoAGCg4Nx+fJl5qOS9yMpKYm/FxERgTVr1hjyALUArEuXLszHMpISoUQYAo0EdI08EOTJ7dixoxSy0t7ntm3boqKiAmvWrPHLP05JSUFBQQEL6H/55Ze68woODkaDBg34by1VoKysDKqqsvaeVgOP+GbkRSGvr69nj8p6ksdk+fLlhs+Jso87dOjAJfW05gsoX3vtNd4QKorC2bLDhg3THbusrIzv96pVq6CqKmev1zRXDRw40K/HmRJOcnNz+bWSkhKJo+g7VyiKt5LL0aNHr6kMJRnNQ/n5+QCq5IkCAgIYKGv7VPfu3Ws8JnmmhaiKdOTn5+uS/KKjo3XqFe3bt8f27dv5Wgjc22w2lJWVITs7m8+JPIHESyVptLCwMKSnpyM1NRVJSUkSL/W3riUWiwVBQUFwu90Mtpo2bYoOHTpItKGmTZtiwYIFWLVqFV544QXs27ePeakVFRU4cOAAz82+BSH27NlT4z0ePXo0f37z5s147bXXuD9opaioz2hlwOgeUi10RVF4HWrTpg22bNnCYNMfV5o20b/lXvo2s9mM6OhoROU+hAbVyP91Xn4Ipf/fLzjx2Xd48T0vSK4JUCbP34s71p+o/cD4L7M6QKkxbbLK77W9//77KC4u5oQc7WAzShKorKzEjBkzDI916623cjjE186fP68bzHFxcVJYo0GDBobcRJPJVG15MkpM8HeN9evXx9SpU3V1iKlm7Jw5c6RF76mnnkJBQQGmTZumExEnSZexY8fi4MGDUmlE34nKH4glo0XHZDLpZFKAKo/V4MGDa/Ru+9ZwfuKJJ3Dy5EksWbKEASItZqGhoeyp7dWrFxRFkfhXJpMJ69evB+ANa06dOpWfSVBQEBYtWqQDAVo5nuHDh7Pgdt++fWv0NJIovFaM3vf4tOjdfPPNOHnyJIQQvGj4gtHg4GBkZ2dj6NChOu92YGCgYV9KTU2F3W6XXqPQXHp6Oi+EM2fONHyWZ86cke6hlm8GQOII+4oy+5o2ScxXDJsAZb9+/djjajabkZOTw2OvYcOGMJlM+Prrr/l75eXlvLGjpJznnnsOQnjB5c8//4zp06dLYy8xMVG3cSQqxJo1a6T7SPNHt27dDLnVJDROY9C3HvS12NmzZ3ksao3kcrSeRUVRGEST/qQ/c7vdCA0Nhc1m09Fzjh07pssaFsLrffXNFAeqqA9CCH4u69at4746ZswYAF7JIZPJZKgWoDVtuUmLxYJhw4bh9OnTOHnyJLZs2QJFURAUFCTpPlqtVmRkZPC4c7vdiI+P5w3Z9Urm+As/OxwOpKamon379ujevTsGDx6MkSNHYvLkyZg/fz57JgmQrly5kosTEE2jf//+zM+kv8moUtShQ4eYzlBQUMDlarX6qU2bNoXFYoGqqrhw4QL3A3+SQ7+lmUwmWN31rymU3fqhv3j7bA2Aktqn3/xvSgrVAUqNaUOBv8fmy03Jzs5GRUWFxK2Lj49nLwDgBW/aKjPUbDYbJk6cWG1Yiao9HD16FNnZ2X4lS+rXr4/58+dzWMs3ROnPhJDJ1yS4qwWLFosFjRs3Rl5enrQIaic63+siEXFtGTGy/Px83qmHh4fj4MGD7PG0Wq2G1YYAYNu2bfwb/j5TUVHBJfwAwOl0csKMEF6vy7x58ziMHh4eXu0i0aZNG85A7dChA1RVlfQ/hfCCMaPMZVVVsXDhQl6MHA4HBg0ahNmzZyMrK8tvGTv6LHkax44di7Vr1+LDDz/EnDlzIETN+pHaBAHA6xXUVuqglpaWZviMCgoKdJVUGjVqhEceeYSBNXFZfb1w5BURQtSKbqDlAmZmZuLixYu8GSC+Xk3JLhcuXOBjDBw4UHoGlAVMfXP8+PE6AfN33nkHQlTRP37++We+X1pOHZXC1NJAVFWVAKHD4cCdd97J1Vx8wYTFYvHLy6T/7927V3eNxFslYHUtRptQGhfac9cqSmzatEmKjhC1w8jOnDkDIbwqD/Hx8QgNDUVhYSFyc3OlCAZ5RjMzM6VSolarFTfddBPTA0iH1rff5Ofn8+sjRozgmu/+xtySJUskUD9p0iTdHEvcTCrxefToUWkT3LZtW76G9evXS5ER8g6mpaXB4/Hgq6++wocffoi33noL27Ztw9q1a7F48WLMnDkT48aNQ05ODm666Sa/5QopS/t6eKm+f9NclpycjLZt2/Jzp41bbGwsHnnkEaxbt469vJ06dWLvJXGWAe+Gx2w2w+PxYOzYsdd0brVpkf2nVOud/C2AMnn+XizadeYaR8l/h9UBSo35Zsr9XprFYmFuCb3Wt29fDmeSsPnUqVN5YhgyZAhmz54t1Q+mElpCVCUCWCwWDB8+3NALRJmE9913n1+PG4Xt1q9fz96S2lZeEUJIE6l2kj59+jQnJtRGKDouLs6Qg0ZWUVHBWc4mkwnTpk1jLwV5Mii8uWTJEum75K0Vwhv2qc4IQKxcuZKTcgoLCxnUa/lO5eXlyMvL48ne4XDwAuub6UpNO/GHhoZi+fLleP/996GqKr7//nvs3LkTc+fORVZWFpo1ayYBWt9mNpuRmZnJCyDRAYyssrISdrsdYWFh1V4/eevod9u1a6cDLLNmzWKv1N133214HEow2rZtG7p16ybx31q3bs18RV8Vgm+//ZZ/yx/w15rFYkHr1q0ldQMaP2vWrIEQXg94dUYSXdSPbr75ZsydO1cCq+np6dVqfVLoW5v9S0lHgF43VWukNjBr1iz2AlssFkMQX1OrrupOaGioJK9UGzt+/DiE8AI4bbLSlStXmHZBG7z69eujoqJCSvjr0KGDYQUhev7vvPOOBEJpbrv77rsZ0GjLlf7888+6Uq4BAQHsQWvZsiWEEJg+fTp/R1tqVQh94kxlZSVmzpzJYXaXy4WkpCRDHcpPP/0UQnjlcLRGgF1LD6GxTv8GBgZixYoVteqTZLt37+axQ/2KPN00HrXzrqqqrPkYGxuLF198kZM5s7KyMGHCBOTm5mLAgAHo3LmzNLYJBJNSwPWEqqmKlJYfeqNrd9vtdjSYsuHf6qG86Y9/rdXz+W+zOkD5L3v11Vf/I/qRv6WZzWbMnj2bPXVNmzZFaWkp0tPTWdj87NmzUhiFBlB5eTn+9Kc/8WuXLl3C9u3bOeHDZDJhwIABzCUrLy/HH/7wB+k4iqJg6NChzF166KGH0KZNG2nioMGvLYloZAcOHODvUDlF0ibzeDx4+eWXceuttyI+Pr7Wz6V58+aGi/aGDRt4sm/RooXEBwXAE218fDwD7b59+0JVVRQVFTEo9639bWSqqsLlcsHlcumSctasWcPHIrFhIbzJJxSyJoI70Rd++OEHvPrqq9V6FP01q9WKqKgoZGZmYty4cRg1apQUPoqIiMDXX3+NyspKKfyrzeIkI97s888/7/faiU9Imo++fZdKsr3zzju4evUqL+okKq01u90uVfBRVRWbNm2SxKPpmWk9ahRqVBQFYWFh1YK4b775BkJ4Perbt2/XHffEiRM1qh2cOnUKQng9LWVlZdL9DQkJYakhoyxvrZHHjTZPWkADVIWHn332Wd13jxw5AiG8EYv+/fsb6hsK4QWL33zzDZcJ9Sdo3bp1a8yePVsXciZKR3UbN19r3LgxFEVBREQEA8qjR4/ydc6YMQMA2PudnJwMj8fD95Xmr7Vr1/Ixy8rKYLfbdeffv39/PmcqtOCrk6q177//HrNnz5a4hTR2haiiL6xbt076ncDAQBQUFKCsrAxjx47lOS88PByPPfYYVFX1WymHqupQtR+tderUCUJ4uY2+G3i73Q632y157moyimbY7XYcOHAACQkJCAoKAlAlvk+NsvrpdRIjB2BYehEAq2Ro7wFtYqgqE20ce/TogXPnzuHYsWPYuXMn1q9fj0cffVS691lZWejevTvS09N5HF+vPmp1rX5So2uWCLpWQJk4d8//ZJnGOkAJYMeOHb/LhBwtiGjatKlUfisvL48nwJSUFFitVuTm5rJXS7vTJa3HtLQ0HpwEYAAvuKMQmRDGWozBwcHsKejZsycURWEPX3l5uW7gK4qCQYMGSeF3Mi1Q7datGyoqKljbUSshQ7/bqVMnSWroxIkTuHz5MpYtW2YotB4VFYWBAwdixYoVzHt0Op1+s58DAgIYcH711VcseRMTEyNVa6mOF6o18iKQqDxZUVGRzhOWk5MjfZfkQLZt28aexpSUFMmT69tHSFQ6NDQUTqfTsC9rOZvaxUpRFPTo0QNnzpxhMNShQwfpnEpLS2E2mxEXF2d4vR999JHOG6alR/To0QNXr17F5cuXYTKZOPlHVVWu1hMSEsJA5bXXXoMQctUirVVWVvI9puZ0OhkUjxo1ius7+6oIaI04l1QNyel04u2338aUKVP4HtakdtC8eXMoioKsrCwee/TvuHHjqpUN0hrVtxbCGASlpqZKteepbnKPHj10G0iqmzxp0iSd1mFaWhqHG7WKFvR+bGys9OxsNhtSU1MxZcoU3uzcdttt1V4L2Z49eyCEt3pWdHQ0oqOjJW1ZbTY8UCXp1bRpU3g8Hp4TCHxGRkZK4X2TyYR+/fph+fLlEMLLLQWqIk3XInZOfUDL4VUUBVOmTMH777/Pfz/99NPcN+j+xcbGYuPGjdLxjAAlcYm7du1qeA6ff/65lLiilRPSnlO7du2qvZZffvmFPa7x8fG4dOkSAHAEBPDO2YqiSFEv6n8xMTHSBs8IUD7zzDMQoqpwRXFxsURfat68OYCqZCyjTSrg9VTTd7TSXQA4unGjE3MSWnW+ZjmgawWUCXP34MylH6p9Tv+N9j8PKLdu3fq780z6hjop/OmbCLJp0ybdQEtISMDLL7/MCzV5hehzFL7RcqFeeeUVZGZm6o6l5ShqNf7q16+P4OBg/nvKlCkQQuCZZ57B1atXdZNgaGgoRo0ahcLCQgZU5EUx8rylpKSwiDhQJRMjhF7m4p577oEQ3mQlWjx9QyRWqxXdu3fH2rVrdaDQ4/FACMGcPfKY+Jb6qk5z0choYWratClOnz7NYVEhvNp7Dz/8MN8Du92OhIQEnei79vn7Xk9AQEC12balpaXYs2cPHnjgAWRnZ9eKs6ndSEydOpWPTwkZ2vBycXEx8vLypD5iNpsxfPhwyetAmpxk5MXUJsE89dRT3Mc3btyILl26QFEUQxFyrYWGhiI2NhZz5syRZIhCQkIwatQoBs7+woNablZycjL3N8C7uGtlfYxAFMktUWvQoAFeeuklqKrKHhby6lUHKFVV5co5QujVBmjxr1evHjp16iRtohRFQXR0NMxmM6KiogyB7/Hjx3VVtShMPHDgQFy6dInHFyUGnThxApMnT0azZs0MOZfjx4/H4cOHq+2DJJpfWlqK6OhoPk5ERITf5J677roLQniBb0lJCUwmk467TcehSEN5eTmE8GbKE4e2trQbskaNGsHlcgHwep0pXO7byPNJrWvXrob3wAhQNmvWDIqi+C3ksHnzZh7rCQkJrG9ZUFAgrVEul4vLIPpaUVERbwy1ZUGppK62NG6zZs1gMpl083WPHj0kmoEvoLxw4QLMZjOCgoKk/ubxeKQ8BC1/WBsp+Omnn/DZZ5/h3Xff5eRA2hSlpqbijjvuQHZ2tqGk3Y1o4Y3b/kcA5QfF31fT4/477X8aUBYWFv4uPZPa1rBhQ+Tn58NiscBisXDW5dmzZ9G5c2fps926dYOqqtixYwdPyoB3cSDwQmK8TZo0Qd++fdnzpSgKUlNTsXbtWpw5c0ZK9KGQFZndbucdKHkno6Ki+P2LFy9yJnJeXp7Og6Jtdrsd/fv3x7p163D58mWueqOddElE2shD9vrrr0MIr1yFluQvhBdYdOrUSSckHBISgi5duuDRRx9lb9jDDz+MgIAAxMXFoaSkRJdtXBu9Nq2R1p52ISDJI3+gjhbO9PR0PPnkk3j77bclj0xUVJQEDK5HvgWo4jnOnTsX2dnZSE5O9ntOtHhTucwePXpIYV16PykpiT1KpHNI9bG1RuLfsbGx0usnT56UsturS8ggS0tLg81mQ3l5OVwuF8sraUEueTjee+896btnz57la/atcKQ1rWh9WloaiouLdWOvUaNGOHjwoPQ9j8fDmzlaXI1M/f/Ze/PoqKrse/y+mlOVeSITScjAEAgBAoEkzPPUKPMkkxEkyBAGMSA0oCioIAgyKZMNKjSIIIJ0CyKiiCKtCI00goJ0vuk0xhjpdLqM1fv3R61zct9QCSj057fQs9ZdSqrq1av77nDuOfvs7fFwqnPw4MH8bLZu3YpHH30UmZmZqgOSTCL+xz/+kVOfycnJ7BBp7f333+fokbzeKYrCDj8dAlq0aGF4jXPnzmHWrFm6Qjiz2YyEhASMGDEC+/fv537cunUrhPDCCUpKSvh7jbhltUYRRnnuxMbG4tFHH1VRLsnCDXa7nR3tnJycW54bTqcTKSkpqr/J1fvaNaugoIDnYv369XUHVa1DSRCfvn376r772rVrjN0kDXAt/dSyZcv4+2k8uFwuzJ07l8fA66+/DqvVqqP0AaqlUp9++mn+G8EoZDlRwvKSAEBZWRl/97Rp07B+/XreS+655x4MGzYMffr0Qfv27ZGZmYlGjRoZQi4In34re9+dCvRYI+v9FqG8Q/ardijdbjfmz5/POEJfVcz/q2b0/VQJePz4cSaOlZ29zMxMVbqauAgdDodqkWvQoIHhBE1ISMDvf/973YlUURS4XC4ujhDC69DRRkG8eSSlJaevrl69yvdUW0GNlsD46NGjEMKLxfF4PKxlK4QwpDi6ceMGhPA6BfK9CqGOKrrdbrzyyivo378/YmJidH2RlpbGmD5yJmmhpchd586dddil0tJSvP7666r0tFyMITc/Pz+OMo0bNw7PP/88zpw5gytXrvCGIoTA2rVr8eGHH/L3UhXmxYsXUVZWxuOkJgLrmqxBgwbw8/PT/f3q1atcVU6tpoimLMdH/1+vXj18+eWX6NSpk6FDCQAPPvgghFDDLgBvVJUiZ3Xq1DEsxpCN5DjpnuXrnTlzBgMGDFDxEdarVw+PP/44Nm/erIKG1GZaWT659ejRw+fn3G43QzXatGlj+B6K2Hfs2BEzZsxQRUWp/wlO8uabb/p0lHr37g0hhGp8VlRU8N9NJhMefvhhuN1u3fgkWUfqKyO1FrKrV69CCC+UYP78+WjVqpVONScmJgZWqxUWiwX79+/nNcDpdPq87tmzZzFw4EAdNyxpm1Mx0LFjx1RjLycnB9evX+e5QiTzt2KUpejTp4/q7zIdDjWtDCU56i6XSwXv0TqUxL8rR8E9Hg+mT5/O1+vbty8qKyt5XMtr6rVr11RjYvz48exA2+12Xj9sNhuWLVuGnTt3Yu3atVi8eLEKd5+Tk4Pc3Fw0a9bMkP2DnuGt7l1msxk2mw1Op1OFD5efY69evTBkyBCMHz8es2bNwiOPPAIhBJo1a4Z33nkHf/nLX3gvpoI0yjzQ329HU6wOxP+Gobwj9qt2KMn++9//4tSpUz6B6ne60QS2Wq14+umnVVgWskOHDqlwhK1ateLCFyrKoY1aCG+VMQAUFRXpJBep2Ww2PPfcc6q+oOIkl8vFUUI63coLDfHomUwmxMbGGpKIy5+xWCxcPHH48GHGLNF70tPTsWHDBng8HubNHD16NKexk5KSfD4/2RHPyspCcXExpxxJulBrHo8H+/btY25A7XOPioqC1WqFw+FAcXExQwXsdjuSk5MRHBx807xwXbt2rXWTq6qq0tFCmUwm/h0yYTCRbt9qxS2Zv7+/LgIimxFxtslkQk5ODhYsWIB58+b53Iy0zz0rKwujR4/GihUrcOrUKfz0009cMR4cHKzrFxnfGRAQYEjPQiZr/8p0PVqjDVobnVMURYcXNTK56lj+vNlsrlWukopthBAq9oAPP/yQcafyM7darRzhWbBgAcrKyiCEb9wd2aJFiyBE9QF0/fr1nH1o3rw54+hIenPevHmq9UT+bkVRdBywskVHR+uiocXFxViyZAlyc3MN8b4WiwWBgYGq/rp27RrGjx+vwnDWqVMHU6ZMQUlJCaevyZlYtmwZevToASEE/va3v3F6Ve6/mylW0Ro5qaQUtW/fPp0DQ9kOIbwH2+XLlxse0mfMmAFA7VAS5RhhBH/88Uf88Y9/5INrUFAQCgoKsHDhQhQUFOC+++6Doiiw2WzIzs5G06ZNDdXHfi4vJcn0ys8pNjaWDwaJiYno3bs3R4Op0eEnKSkJf/vb3/D9998brmsej0eFAxXCm9LWPhvieqUxC3hT8zQvBg0a5FOt6Zc0h8OB2AdfvCnHcMzmjzBx+yeYteszAMD+M0WYuP0TTNz+CRrMP/hblbfGfnMoNfa/JDfX0opQRJEmoaIoWLJkCd+TyWRCq1atoCgK/Pz8GIdEDmV+fr5uEsvfl52djQsXLvBEpu9PSUnBhQsXcODAAb62Vp/W5XIhMjJSFUkz2jSSk5MxduxYHDp0iFPNwcHBvKHJRveUmZmpOvVri3CE0EvjAd60pZwSlk/0csqRFnkjS0xMREBAAK5du+azOtaohYWFIScnB2PHjsXAgQMZ/2i1WjF69GiUl5fD5XJxCkouqDKyNWvWQAihw7oJoadyoYiKENXKSTdrxLdnFFk7ePAgOnTo4DNCQTRF2shN3759UVJSggMHDmDevHno168fH4qMou4Oh4MjUc2bN2dn8z//+Q/MZjMaN26MDRs2wGQywWQyGT57wEuJIoTXya/NkZD7Va4QJv47LbE54I3Uy+uBn58fioqK2CkTQqBbt241RlKpKIc279DQUFWfKIqCxo0bY8qUKfjkk08AeDdVq9WKiIgIdmbl9K6RffDBBxDCi3Um2IfL5cIrr7zC76FqZeL783g8qrSu7HDb7XafhUhUPPPOO/pNk1gOZL5HbeGcw+FQOTNBQUEYMWKEITMEVRKbTCa4XC7Y7XYVtRWRZFN79dVXa+wnI5s/fz6E8DrZWgqiDRs28DOoV68ehPAeEOfNm4fJkydj6NChSElJ0eG2aQ7dyppi1EwmExwOh2pPkO+RHK2QkBAVBrpp06Z46aWX8NFHH+Hrr79GXFycCve+Z88edlqF8BY0VVVV6Xg2z549q4K4WK3WWosTidCcMgd073Xq1FFBmSIiImC32zFjxgx0794dqampCAwMvONBHUVRkDJ0zk3xUF77zveBMXfpEcPP/MZD+ZuxzZ49+46lvmlipaamciifFlvil/voo48ghLpYxWw2Y+TIkTyRaTFwOp2cpqSFRbuw1alTB9HR0bDZbHyaJIzl6tWr+TRM77fZbLhw4QL3h8fjwbFjx2pMOZjNZgwdOpSxUVeuXFFJ9GkJjcmEqJZMc7vdWLFiheGpX64oB7wO1ZgxYzjKVKdOHUOKDrfbzVx3c+fORWlpKfbs2YNHHnkEvXv3vinQd506dRAUFGR4Qo6MjOR0nsPhwNSpU1X4MJfLxd9PutO+TFbWaNmypUrDNjQ0VFfc4nQ6eZxqX6vJaHxRWvPUqVMqB1AIdXopKyuLo87a4oyIiAhDYnIAqpR3eXk5Dhw4gPnz56Nfv35o3LhxjXrvgYGByMrKQu/evdnxGDlypOr6VVVVjOfzhfsjO3v2rIojr6ioiKX/oqOjebw5HA706tULM2bM4PlpsVgwYsQIrvy/fv06AgMDYbfbecPURvqrqqqwd+9eDB06VOegCCG4P9PT031GrilKHxISAofDUetzlQ8ZQgjVfAS8RUZUSKGNqvbq1YvnWc0FPt0AACAASURBVL9+/VScnw8//LDOWSe6pe7du+vugw6rQnijqlVVVXC73TXKEQYGBqJt27ZYunSpSi2ITFsIQ+lQohpKTEzk3yCEFz6wc+dOpqYpLCzExIkTMWLECPTp0wcdOnRgvF9CQsJtiX754o2lsRUZGYkGDRpwH9SpUwezZs3CqlWrsH37dhw6dAinT5/GtWvX4Ha7UVVVBYfDgaCgIK6EJo1rAHj00Uf5O2SFr0OHDjEkSlEUtG/fHhcvXoTdbkdaWhoAcODA4XDg4sWLMJvN/JqREpBWT5tgBkb2008/wel0wt/fnzMR2vXc6XQarvG0XrZv3x7jxo1TiTL80uejbQFxqbeMo7yV9ptSzm8GQA3Cv5NNURRMmjQJHo+HsX/Hjx9XRRVpgerWrZvuPmmSOxwO1YSj1OSOHTtUlaNE7wCA02i0SRN9ihDeqMa8efMwcuRIJCYm6hZJRVFgt9sZvD1jxgze2K1WKzp37syYr0WLFmHGjBkQQmDlypW63yBEtUMpG+kyazed4cOHY82aNeyEJyUlcbGAEF5uN63TWL9+fZ8RN+o3WuQ7d+6M1157jV/fvHmz6r7OnTuHgoICnTOkKIphYQJROhFNiy9uzsOHD/O1iHA9MjISiqJg/Pjx3BedOnXiyufk5GT4+fnBarXCz8+v1opossWLF0MIb4RSHmsxMTGYNWsWvvvOW5lIfXLt2jVcvnzZcFG32WyYMGGCYdq3Jgwl2cqVKyGEt/J0/vz5/FxDQkJ86nxHRUUhKyuLHTW73a4r8JFt69atMJvNMJlMzEaQkpKCMWPGQAiBb7/9FuXl5ZgzZ46uyj4lJYUjNQT7oGKchQsXAvCS/9PG53Q6ERERoRpv5Kjn5OTgzJkz7JTHxcXVCIMgh0KI2g8jBw8e5GdpNpuZA5DM4/Ewn6uRZChhhen7HnroIY7G0XN+4IEHVM85Pj5e5+gSTZAQXqdv27ZtquwD9d/rr7+OoqIiPP3002jbtq1uPlksFoSGhiI5ORmtWrVCs2bNVOMvICDgFx36qXJce43g4GCG2DgcDgwcOBB5eXmYOXMmFixYoIqqHjt2DCUlJYaR8YkTJ/r8bpvNVqs4AhlxQtKYo2jsqFGjeL2ljJKWW/fjjz/WVap37doVhw8fhslkgt1uZ87OrKwsKIrCz5cgNSSjSEVSubm5nPa2WCwMESguLsaOHTswY8YMPow6HI4aI400Lx599FH87W9/M5wLRLN0p1rMyCVIuAW1nJtpv2l5/2Yqkzf3O9XMZrMqpUxAd7mNGDECVVVVjNvZsGEDv//IkSPo0qWLztkbO3asbmLSomKz2VRYFavVioyMDJw4cYIr8LRgfT8/P7Rs2RLz5s3DpUuXeMMl/Fx2djZfb+vWrarP5+bmMokynVi19yaEsUNJDhjJ68mbHbUGDRpgypQp6N27N6fHjRxHPz8/BvYL4S20OXv2LDweDzsJQlSnjsvLy/laspWXl2PkyJG8CYWFhfHmY7FYdHrEMTExMJvNiI6OxmeffQYhvJFHrdHiLYRXpg2o3uCJ3Pz69etMa2S1WrFs2TIutti2bRuE8KaOa7LS0lJMnz5dtSmGhoZi3Lhxus3o0KFD/J5PP/0Uq1evVm0OGzduxPr16zkKbTabMWTIEFXBwc04lIBXj9lms6G8vBwmk0n1O+TIZm1QFHIss7KyMGrUKKxYsQK/+93vIIS38IYwgYQzDgsLg9VqhdvtVmliO51ONG/eXIXri4yMxOTJk7nvAgMDsX79evTs2dNQZ5j4FktKSlQ8lARJob6szbGgZ37fffcZvl5WVsbRO4vFgrCwMMNiKyqc81VpTkVa169fZ9xcixYtmKCeDowmkwlZWVlYunQpR2y7dOmCgQMHqvgujQ6ht3P9lHHZOTk56N27N4YNGwaz2YzQ0FAMGDCA53tycjLeffddlJWVwePxoLKyEvn5+apnSYWOxBagZZkgI9UfIbwVzzWZEXRFTls3btwYa9eurRGqIWMRHQ6HSv41MTER169fx65du3jtJlEK2S5cuKAr9LJYLCpsMgUn5Mpw2ndkdbVJkyZhxowZukOCUaNI44QJE3jN3LNnD4qKini9NiJoLy8vx5o1a9C1a1dDPuTbOYackfGIn/naLZOc19TqzzuIb0prxlXfzfabQ6kxWZf3TrarV6/ixo0bGDNmjKG0FKWrKioqmGqme/fuKqetXr16KmoSI2xL3bp1ueJSURQ8+eST2LJli2EqIjAwEK1bt+bohMViwaJFi/haxCHocrmgKAo7xW63mxegsLAwTvMqioIuXbowH5mWekcIvUNJqZzf/e53iIqK4uKHmvqSXg8NDcX999+PNWvWsNNIVl5ezk7C6tWrOQoohFdhhIw4F4XwSkEWFxejb9++vIDGxcWpCH4XLlwIIbyO3tatW7kwQYsbo2f86KOPoqKiQoVfo3SZx+NhB9Eojbt3716+LkWk3n//feZy0xKBV1ZW4sknn1ThTKk/tVEs7ZihsSGPN9L9lTlRd+3axc/bZDKhZ8+e+Oabb27aody+fTuEqMZb+SKfB4CNGzfyc7DZbNizZw9v3A0bNtThE+X7lp1NGgeyxFtoaCieffZZ1Zg5d+4cBg8erKs8lltYWBi6deuGNWvW4MMPP+S5ExgYiL1797JDSdmC1NRUfP311zyHdu7c6fP3UsGYw+HQbbxLlizhe2/bti1KS0vRp08fCCFw4sQJHDhwAC+99BJHYkNDQzF69Gjce++96NKlC1q3bo309HQkJyczcXRAQIDhuvBzmslkgr+/PxITE9G4cWNYLBZYrVb069cPI0eOxKRJkzB37lwsW7YMmzdvxhtvvIEPP/wQly9fxo0bN+DxePDOO+9g3LhxSElJMXRgxo8fr6qsJjw0APz73/9Wza9JkyZh6NChPD4iIiKwZs0auN1uCOGN/pGKjTYzIRupz9QGQ6AMDjViiNi5cyeysrJUJPht2rTRkbyTER4xJiaG53xsbKxqnNKaERgYaIjVlp1CavHx8Tz2PB4PrFYrEhMTsWPHDkyfPp3FK4yeLcGt5HnRokULLqKScbtAtTQowbrkQrWwsDAUFhaiXbt2ugwBOf2LFi26Y7jKxv3G39YI5Y6PjTlGfy32m0OpMaq2vRODV24JCQk8SWJiYlj5hlIYgDf1+8ADD6ick8jISEydOhXXr1/HqVOnVCoCERERqgIBotxp1KgRK7AY3cvkyZNV0SXAy5tGkYnY2Fh88sknnKIUojod8tVXXzHerFevXrzQHT9+XKWBazabOSJERpvh7Nmz0bt3b3ZMamqtW7dGXl4epk2bhuzsbBWuz2azYfXq1T5P/aWlpbwoyyk9uufi4mIoisJpm/DwcBXu1RdNz+HDh3nxk6NAfn5+iIyMROfOnXUFUvTMqKIxJycHf//735m03FcKu6qqCmPHjuX7Sk9Ph9vtZhzpyZMn8eKLL6Jp06Yq9oBOnTrhz3/+M1wuFyvVGBk5ePJBRQjBeN1Tp05xulDezA8fPqzCpFJ062aM+sBkMtWYBvZ4PKqI4PDhwxkLuWPHDgBeuiDa6NLT03HPPfegcePGPp1NIbzYNHI2n332WRw4cACLFi3SkYhrW8OGDbFmzRrdeHvmmWfY2ZPTjomJiTz+z549y8UWc+fOxaZNm/D0009jzpw5yM/P11FWhYSEoF69eggLC1Ntrj+H349SvnJxFLEXpKeno02bNroq/oYNG2LlypUoLCysUSP8nnvu0a0lAFgp5+eaLAygbRaLBSkpKcylKT+PN954QxWVj4iI4LECVGekqPhHSx1kZITHXbt2re6169ev8+Ga+oMOSxRVBLzzeNWqVUx2LoTXSe3Ro4cqkyRjUmkdNZICJX3u4OBgfPvtt6rXSGPebDZj+/btyM7O5u80m82GcBYt24QQXk7Rixcv4r///S9f+6uvvlJFQH0xT9A1L1y4wPuCtjgtOjoa9957L7Zv3w6324309HTY7XYA4Hl+J1rzkYVeh/AXRiqff+fLWsfO3W6/OZQGJhPH3qlBLIQ3HUPqI7Lz4nA4VFXOQUFBXLQhF7EQSLtJkyY86SMjI7F48WK0a9dOV0QRHh6uOwXWFBHyeDyYNGkS35cc6bp+/Tr27Nmjinwa2bvvvqvanChyUVPUsVmzZqqNfNKkSbxgavW0ichdW8TUunVr7Nq1S+eglJSUqAqY5MpHwrLKPJ8EC6jNiouL+Znl5uYy358svUhpaiMHwOl08sa3a9euWr/v/Pnz/NmAgABWGJH7OTMzE9u3b+c+8MW3J5vc71Q8YrfbVRCNDz74gA8I2kjnJ598osLuZmRk4MMPP6zxt+zduxdCeJ2mmozofwoKCphtgA4G+fn5ePHFF7kyXIaIAN6NzyjqQoUPvpwyk8mEoKAgxvmZTCb4+fmporiK4pWwa9iwIVq0aIGGDRtyZkB7rV9C7izPmcDAQDRt2hQ5OTno0aMHBg0axBGi9u3bY82aNYwzXbVqFYqLiw0PWh9//DGE8EbOtXbixAlV2nHDhg067Wu5ydXXWvslDqXH41FJYcp0NllZWcjIyFA5RQQ5kQ8foaGhfI0ePXrwwZsijrQ+3gzt0J/+9Cd+nrKk4OOPP647tJCR8pafn5/KYQS8XLoyHzLN6aFDh6qc4e7duyMuLg7BwcGG90U0WiEhIXjxxRcxffp0lXN7M+OsV69euHjxIuM35TVfq+UtmxyRzcjI4PT7hQsXMHv2bMNxHx8fj44dO3Kfadk4goKC4O/vr2P8uBMtoFkPJBW+gfiH994yZrL+vIO/+sgk2a/eofzXf6pwruh7/OXqdzhX9D1uVP4Im82G8PBwnsy3kwNLbqRdvHz5ct4k6DU/Pz/06dMHJ09WA3wbN24MIbwOB4GjFyxYwETdRhuY2WzGyy+/rKrAln/P1KlTa+0j7SlUCMGbu8PhwN69e/Haa69xpLFBgwa18jRS37Zs2RJnz55lLNh9993HjoyiKCp8HzlkRs5r165defNMS0vjBcxut6Nbt244duwYgGoaErq32NhYANXKHtSIsFju/9rM4/FwtWlERAT8/PxUDiXRkwjhxRO53W4u4tDihVwuF1q1aoX58+frMI5kVJSj7dvk5GRDNZLjx49DCKGCMZCVlpayc2YymTB+/HjuQy1tEQC88847OnC/bEQGLkd433rrLcPfQRyKiqIY4sAAb2pdCK90KBkpKAlRDQFwuVzYuXMnDh8+jB07dqCwsFC1IQUGBrKjdacyEXRo0qbKbTYbcnNzMXToUEyYMAGzZ89GQUEBzGYzFEXBc889h/Pnz6O0tBQRERF82KHCNiG8hx1fxV1ECdWtWzdMnjwZQtQuGUpFWkePHjV8vbi42LBoRv6vPM9TUlKYb1a2X+JQ0mHJZrOhuLiYsYxyShTwyugKoWe6EMKbBerduzePcbvdjueff54PkYqi4Ny5m6d6oTUqNTUVp0+f5qhtSEgIr2XaCP3OnTv5AP7UU08ZXre4uBj5+fkqKVEa11RwqSgKioqK8Oqrr2L69Ono1q0bUlJSaoymm81mtG/fHhMnTsTGjRvx5ZfeaFpVVRXmzJmjUqkaMWIEFEVBZGQkPB4P45d94UZJGa1BgwaMrdWOC22Tx2VJSQn3X1ZWFp544glVEMLPzw/9+vXjPe9OtISEBFiC6iBhzDNIKHyzVkqhpLkHkFD4Ju7bePJXjZnU2q/Sobz4jx+wYN85tH/6HSQaDJaYB1/AsKdfgzU83hBcfbta8+bNuQCFNiL6f6MF57vvvoPNZlNFRuTrxcfHc9qRFoF7772XP19UVAR/f38oisIbjhDGDprWiLpC23wVwtStWxc5OTnIy8vD2rVrcfbsWZY5JI1fIbwOKTmntKjRRqGtbjfiSSOjSANFzOjUL6fR6TtbtmypivDJi3fbtm1x7do1VqYwkkqrzZ588knuF8I7kaNJv2379u0oLS2FEIKjbRSxHj58uAoSQX2akZGBvLw89OnTRxVpjomJ0cEFjKrqKerwwQcfqP7++OOPc9+YTCa8+eabrHwRGRlpWOgBAG+99Rbz5Gm1mQlDWVRUpMOgvvzyy6isrOQUelRUFL8eHx+PqVOnYsyYMejfvz+6du2KFi1aMEVUdHQ0wsLCEBAQoOLn+6UtMDAQCQkJSEtLQ8uWLdGxY0f07dsXI0aM4MhRr169eMMMCAjwSSdlND9ktoGBAweqHP5PP/2UsaknTpzAxYsXIYQXRyxHexVFUUXEjCwgIIAPQwkJCbUS6hPOUI7MeTwebN68Gc2aNfOJXYuJiUFRURFHsBo3box+/frx+2NjY1VFRz/XoZRZF+QxRmlcmrsPPPCAyglp164djh8/jiVLlqBt27Y1OltCqCUJb8YITy4/m/z8fBQXF6u4I7X25ZdfMoa3b9++hs/n/PnzhmwfNY0xmXJHFgegZlT8KJvH49HBHAYMGIAbN24w84nFYlGNP6KUI6yv0X06HA6sWbOG13hq8iGZxpv8jGgcydrjf/nLX27LXK+ptW3bFtawugjrPhFx+Rt1afD4R/Yjd8nbWLDv3K+WGqgm+1U5lN+UVuC+jSdVJwyf7ZE3kFD4JjJnboElqI7PNM/tav379+dIjZ+fH5xOJzweD06fPo0pU6YgLS1Np0BRr149jBs3DvXr14fVauXfScTDQlRH2EpKSnjC0kJPmxhtliUlJdi9ezdmz56NXr163VSkMSYmBvfffz87jbVtYMnJyTCZTLh8+bJqw6X2u9/9juldjhw5ovv8uXPndDxpQLVW7tKlS3WfKS4uVqVuaKHT/ha5ah3w6hvXJBdXk5GEpBCCI1W5ubkoLy/nCDjRHVmtVthsNp2z4PF4cPToUQwfPlwHVaAFXn7GR44cUVUnaws+yKmlZyRHVqg/8vPzVbrxM2fOhBACW7ZswYkTJ7Bv3z5s3rwZy5Ytw9y5c/maVFzQqlUrNG7cmK8XGhoKf39/1UHoVprWqQ4LC0NsbCySk5N5LMnvr1Onjs/qUNKgDw8Ph8ViAQDm4QsKCjKM6l65coWrcsmCgoJU3Ko//PADDh48iPnz5+Oee+7Racf7+l05OTlYvnw5PvroI5w4cYL7XQuN6NmzJzMS1CT1CIDhGhaLxWe0V7bU1FQe4wcOHED79u1VPJTNmzfH1q1b8dVXX6kif1u2bAEAjv6SClB5eTlGjRqlYkNYuXIlIiMjb9mhPHDgAH+fHOkHqiEfiYmJOkypLxWosrIyrFq1Cl26dNFFXW02Gzp16oRVq1bVStwNVBfLUKM1lZR8SIDCyNxuN2NCY2NjsX79ehQUFKBbt258GLiZFh0djXnz5unS9EVFRfysCO+5evXqWn/TkSNH+NqyQo3soMbGxhpSyimKV+1sxowZnHmbO3cuv0fL+XvlyhUcPHhQN9602QOKdu/ateu2yi/ebAsKi4QrrgFs0fWR3XswFKujVtWqX7P9ahzKVz++ivrzDtbuSGpa/MN7Ue+RfQho1uOODFiLxcISdFSlSdWG8kJps9mY3oP+NnnyZADVSjmykfPZpEkTXL9+nRfQZ599lp1GOkX7chgp0pidna26F1oMqWgnPDzcZ8pMa5R2JW4zbXO5XHC5XD6jYkA11Y68uVK1phyRJRs9ejSE8EaEp06dapgSE0LgpZdeUn2OqiMPHz58U79NazKuMzo6mh0WSmHK2D2t81dRUYFFixap8GL+/v7o1KkThg0bhkaNGqmeG6kUDR8+XKU93bRpUzz22GOYPXs2swX07NlTFZU1wgpTRPDnjGc/Pz++t7p16yI1NRUZGRnIyclB586dVY4gvW/mzJnYvHkzj1nqK4qk5+Xlqfpn7dq1jJf0RVDvcDjQvHlzPPLII/jiiy/4syEhIYiJieF/E/asY8eOumdIGDQZK0rRFqNU/x/+8AcI4Y14lpSUMD5Uu/ka3a92XLpcLqxbt44dhvT0dBW7gpFRZEurk+7LHA4HnE6nal1JTU3FU089xc9g3759fG9yFIlomYSoruAlq6ysxJQpU/hgQVG0m9XZJr5E6rd169apXl+7di3fk6JUK76Eh4frZCGN7KuvvuIxaBSFDQwMRG5uLpYsWaKqnL527ZoKLyhzwZ45c4YdK1l6saioCK+88go7jbWlpxVF4THdunVrTk/LEbrQ0FBVpXirVq2wY8cOFBcX87VlRSdZrMKX0Tyw2WwAgN27d/s8HLlcLmRmZrID7AuGUVxczEVJ2t/oa7wdO3aMn0n79u35HiwWy/+JUymPCfr/P/zhD7X256/RfhUO5ep3Lv6i6i0Skg/MHnJHBmrr1q11uqk06aZNm8YnPqKHmTt3Lqc4jxw5onMoSYZNu2j52sjq1q3LEViLxYJNmzapFn5ycIXwqjJQ9XjPnj1Vp9Du3bvXKENHJld/C+FNM3g8HixevFilaDJx4kSf8m9G/Jx+fn5o0KCB6n2EvwoLC1NxDVJkTrvYJSQksAwZpfm7du16S+MNqMYFCiH4hB8WFoZLly7B4/GoIqQdO3bEjh078Nxzz6Fv376qKCMVfCQnJ6N+/fqoW7cuIiMjERQUdFsUJBwOh654KzU1Fe3atUOvXr0wdOhQLqJ64oknsH79euzatQtHjx7FuXPncP36dXg8HibHJ0eqNtqgn376CfPnz1cVok2dOpX1md9//32OmCQmJvJ4rKysrLHil/rEz8/PZzGVyWTSRRlIW16GCpw5cwZCeA9QslF0TJtG3LlzJxRFgb+/P0uNyjyUJ06cQK9evQyfW2JiYo1FgHa7nQ8B4eHhHNmUo1NEYSWE8IlXBbzO1OjRo1VR79jYWDz88MO66BxRftntdhw+fBj/+Mc/GAdIn23YsCFMJpNhhNfj8WDBggWq5zx58mT85z//8Xl/x48fZ8hFcnIy8xXSGkHrGjmU9evXV2VghBC1sgXIGadly5bhqaeeUlFIEWUZvcfpdDKTghCC4RBCCCxZsgRCVCtJZWdns4OudVbJsU5MTESHDh3Qo0cP1XtSU1NRVlaGYcOGQQi9I0hjPykpCT/99BPWrVuHJk2a6NZ2KnChdHSjRo1q7BOK1NO9ELTI13jctGkT3n//fQhRO/H+V199pVM7EsLLm2wUDfZ4PKoDr6IoyMvLQ0VFBb744gsIIWpU2vpfNFIZ+s3Udtc7lK9+fPW28kxF5w68IwOUQNchISG4fPkyc4uNHTsWQDWdC0UCPvvsM5jNZlgsFnbCqOrb6PomkwnZ2dnIy8vDunXrcO7cOY6UERh97969rL7w2GOPobKykrFK1IjwNy4ujqOI8inUZrNh1apVPp/HypUrVZGYoKAg1evjx49XLRgWiwXDhg3TLTwyPydFbOrVqwd/f39+DxFJUwsODsZTTz3FyiHBwcGoW7cuzGYz4wvl/mrZsiUTb1+7dg2nT5/GoUOHsH37djz33HNYsGCBDu/XunVrVTGGyWRi8uSfOzbMZjPsdjtcLhdCQkIQFRWFxMREjmKEhITwBjdy5Ejk5OQgLi7O54ZgsViwZs0aAF6sqYyfPHTokO6ZUTHRa6+9VuNcI63okJAQ5Obm1spD+Y9//ANCeEnqyYmmfkpMTGR5yaVLl6Jnz54qR1vbP0JURzFffvllLnRZsWKF6jsJn6gtMHC73QgODobJZOJNvKaIYFhYmGrs7tu3j4urZHyY7FDKtmfPHuTk5OiyA+SUUNRtypQpuPfee9GkSROfv99ut/Nr9PmRI0eqnM3r16+joKCAHQwhqtOaBQUFut8nc8vGxcWponQ7duzQba5CGON2ySIjI+Hv7696zqNGjdLRY3300Uec+n///fehKAoyMzMxY8YMdtJcLhfmzJmDqqoqVo956623VKleUnExMnLW6KBMB/aysjJ06NCB7+/xxx/H/v370aVLF926ajKZfGY6ZCq3Dh06ID8/H5s2bdLhjAEvfZS8XvTo0QMejwdBQUEIDw/XvZ94krVzq7i4WAf18Pf3h8Ph4PvMyMjQcfM+//zzhuwHBAFYsWIFYyiffPJJFeaf9goj7ksSUpDHm7aFhISo7ufHH3/EzJkzVUWZhOsMDQ3FxYsXcf369TsmjXyra3LTpk1rPBj9Gu2udii/Ka1A/XkHb5szGf/IfsTPfA2OsNtLY/DGG28wpUvv3r35/mNiYmAymTBu3DhOQQYGBvp0GuvWrYvc3FzYbDY+UdOGLYRXuk82kkpbvnw5/03W4ZYnLmFmyChyIXMzyjJ0qampqtP1hQsXmNtQXvi0p1u5unXHjh0qjsLevXvj73//O7+XNhwqfCH80kcffaRKjbhcLvTu3RsPPfQQ7rvvPvTr109VFe/v74/o6GjeYG9Ho2dksViQlJSEJk2aoFGjRjUS9NatWxczZ87EpUuXDOUMjSwgIACJiYmGr5WXl9cYxYyMjFRRq+zbt8/wOjdu3ICiKCr5Tl+2atUq1WZTkxGVyrvvvgvAmy6uaQOiRptfUFAQFi9eDI/HA7PZjKysLL72hQsX+FBy77338sZF97d3717d/Zw+fZqrWwkD6wuzeP/990MIgU8++QSHDh3iQgxt1MKXQwkAly9f5rmpbcSq4HK58M033/BnCNMZHx+PBQsW4N5770Xjxo19Hh7MZrPKabXZbOjQoQNOnTrFhyitHKMvblnZaNPv3Lkzj+maJDDlopxt27Yx9tJkMqFfv34oLi7WFSdRxFUWLli2bJnqfsrKymA2mxEXFwcA+OMf/8i/1egZE1tAeno6OnXqBEVRVNcrKirC7NmzGTL0c2AfW7duVaW8fdmWLVs4Krhy5UqWWKQ5qYV5kBHUiOZNRUUFz5unnnoKJSUlmDJligqPSQeN6Oho5ObmGmKyk5KSsGHDBgQEBCAiIoK/j5R0iDZo2bJlus/t27cPlZWVWLx4sUo1yeVyoX///jzvTCYTc7DS67t27UJeXh7fvVpdmwAAIABJREFUI8E2aG9Yvnw573/y+kkY9P/L5nA4sG/fPmzcuBHTp09H165dkZqaekuMAXeT3dUO5X0bTyJp7gGk/f4trHv3Eo5d/Ce+veE9Uax4+28qZ7HenDfx2Jt/xbt/K8H/+/7f+Lf7J3xZcgNrj36J9IWHqp3K2fsQOfSx2zoomzdvzrgsinwYOR42m42dxgceeADr1q1jKgU6sZ4+fZonqhDV6jSEWSRCcsCrJiGEwKBBg1T9Jmt700Jep04d1YmZKpS1TmpVVRVGjhzJC8DYsWMxZswY/veIESNUFcn+/v44fvw49uzZg8cffxxCeFNoEydOxPDhw9GnTx8muKXPWK1WBAQEcFT3l/Y/LaBxcXGcClMUBa1bt9Zt+DabDa1atcL69evx6aefoqioCG63G2+99RYviNTnWh7KCxcucERFbpmZmTcFFTCyhg0b+lTtOHbsGG8ctDHKESJtRCM0NBSdO3c2LEyoX78+LBbLTWHgZDnJmhzjqKgoOJ1OLF68GDk5OT4dei2FSmRkpI5UOiIiQrUJAt70uJZUmqJTvvqbnCyn0wmTycRE1Fq7cuUKhPDCNYg+yWgTMXIoPR4PJk6cyM9k8ODBcLvd7Oxom9lsVhWoUdEO/Y2ob1asWMFFX0apVu116W+ZmZkYOXIkli1bhqVLl9bKLUvZEz8/PyiKgq1bt/L3jRw50vAzRlXeBw4c4AgUrQ+KouD1119neI8Q3kKrmtRrxo0bByG8Dg8dzAlfK0fcS0pKYLPZYLfb8cILLzCUIyUlBQEBATWuJaGhoZgwYYIu0ti/f/8a15Zx48bhnXfe0c0bumdZFhQAZs+ezZ99+eWXDX8v4Yrj4uJQWVnJjB6kL0/2+eef85qlvS+Xy4U+ffowcbqMgSXJWzocaR1KoBqjn5qaqhtbspACGUFZhPAqupWUlOg+V6dOHWzatAmffvophBAoLCwE4N3T5IMvjfd77rkHzzzzzC9e/29XkyPWMmb712R3rUN58R8/sBOYu/QIyv/9I05e/havfORN2Wodyka/fws/VP6Il09ewcTtn2DohhN47M2/oqzCjb/94wddpNMSVrO28M9tdrtd5TRSJMCXnq/H4+FI4unTp1UOi5YolnAscuGKw+FAWloa/5u0jp1Op0qC0WQyIS0tDUeOHMHOnTuxdu1ahISEwGQy4f7778fgwYPRs2dPtG3bFs2bN9fR3tB1fk6fEJ7K4XCooi12ux3169c3jML5+flh5cqV2LlzJ9555x2cPXsW//znP+HxeFRUJNOnT9f16YEDB6AoXsWir776CqmpqbBYLJgyZYoqghYaGoq8vDyuqrfZbCoOPpfLhZSUFOTn5xtqPgtRnR77uQ4lbWgyfu1f//oXR2vNZrMKtkCYNrkfu3fvjt69e+sA+IGBgWjbti2WLFmCuXPnQoibB6MTJjg2NlaFg7106RLmzp2rw9EqioK4uDh06dIFiqLwM5XHkMVi8cnfR3J2RiaTSterV4/VN3wZRVi02EmtUaTIiOBd/r1CVDuUb731FkdO69ati9OnT/N7qShv3bp17OzLm25ISAjy8vLw2WefwWQyISEhgQspGjdujJycHNUc0xLb37hxA4cOHeLIJm2ARvPSarUiKioKLVu2ZGfz5MmTTN1ls9nw17/+FWazGYGBgVizZg1/Ni0tTTeea6INIuyp0fxo1KhRjc8A8B4cbDYbV967XC5ER0ezY9yiRQuWmDT6DhnTOHz4cI7s+fv7Y/Xq1Swq4XQ6deTeRC8mhEBpaSnmzJnD807+DnpegwYN4uxJw4YNDRWx5OioEWcsEasLUR3NLCwsxBdffIHZs2ejWbNmqiIrIbx0XF27djUsBrJaraqD09mzZyGEwKhRowDoHUoqnvPVnyEhIVi+fDmPO4/Hw8wWQni5gokPWB5/BDOgA+mBAwdYCpdwlPKepN0P/v/SEhMTVWpCvya7ax3KBfvOGVZ0N3vsTwCMI5QZj/1J9/6J2z8BAEzb8Wn132fvQ2i3B2/rIKQNVj7JElWIEMYVqGT0WZm7bMiQIYz3W7VqFRYuXIipU6fypK5Tpw6ys7M5NRkTE8OTU5tauNlGFeNWq9Xw87RQOp1OFS9ZUFAQXnzxRbhcLgQEBODChQv4/vvvfUbDLly4YAjypmaz2XxKFwLVJ3wjjWSy3bt3M4Ceoga0oF66dAkjR45UpY1MJhPy8/NRVlbGHJjyghsQEIBevXpxFCYoKAgrVqzg92gVgG7WaPGlSMyaNWu4nzMzMxnfRIv2wYMHUVpaqsJt2Ww2hj243W7s2LEDAwYMYMJ8uW+dTifmz5+Pr7/+usb7kkmIAwICVFRC8mbUq1cvHDx4EB6PR4VjlPlfrVarKlKclpamYxUg7K0RnguoJpWm8VaTyZAPGWIhG8meCiGwfv16n9cih3LKlCk8Zmnj1JrT6eTq86qqKiaYNhrjWoeB+rRBgwZchVwbbMLpdCI1NRVut5sjuUFBQejVqxfS09MRFhbm8xDodDrRsmVLLjjLyMjgzAE9c9nJ9uVQXrlypUZYRk1YyL///e94+eWXUVBQwFkPLbWaPD+FEIiKikJ+fj5L+Q0dOhSA1+nJy8vj/h4xYoRqbdiwYQPfZ7NmzbjoaufOnRBCqA4z8tj/+uuv8fvf/x5ZWVm6ZxYTE4P+/fvj1VdfVVU4C+HFztM47Nq1q+peiNGCWmhoqOp3E+MDzRmtMAIVoGnpljIzM7Ft2zZ4PB6EhoaychU5lAsXLuTouHYs3rhxA263GwUFBdxP/v7+mDt3LmNuiW2DWsOGDWE2mxEVFYVDhw7xQYv6if6blpbGOGaPx8NOpvwbbkeB4u1oFosFs2bNqnHe3c121zqU7Z9+xxAH6cuh9NWyl3gpY5566wvV32MffPG2DkRKxTz77LOYN28eHnjgAS4soPR1SkoKkpKSEBMToyJ3/rnfaeQ4ulwupKWlsbOUnZ2tqoROSUnBxo0bsX//fq7ClbFrixYt4k2oU6dOKC8vR1lZGdq2bcvXeOSRRwB49V0pkkWVkqNHj6712e7fv1/HKym3pKSkGj9PuMzaCN23b9/OVbva3/nNN99wtFKuINc2l8uF48ePo6qqSpW6HTFiBACvvB1tYmPGjKn1t2uNKpHHjx/PHIQul0ulVwxURz0cDgdH1oTwpknJCUhKSsJf//pX1ec8Hg/279+PESNG6IoQHA4HMjIyMGvWLE73njhxAg8++KChw5OSkoLx48fj+PHjLAMqm0ziLTeKSl69epWxaTR2qFCI0rA1pUa//PJLvqYvUmkqLCJKHLnCnOzzzz9XHZpkGInWyKGk9+bm5hpqXZOmtDarcPbsWRUDhMPhYK4+aiaTCZ06deIo04oVKyCEb0wsUC3D2blzZ4ZB/O53vzPsE4pszp8/n9ekmrTRZejCwIEDcfLkSUMeyj179qgc5tatW+PMmTO4evWqavyEh4ejd+/e6Nq1K5KTk2tMTyuKwo7JCy+8gNdee40PytHR0fz79u3bByG8hUT79+/n9S4hIQGff/65YZ9VVFRwFNlkMmHWrFkIDw/neyF6MbfbzX1DOHJZFrR///5o27atDscYGRnJa8TXX3+NqqoqLhKKjo7G7t27kZeXx1h0amazGQ0bNkR+fr6K2aBNmzY+o/YUha1Xrx42btyIjIwMfhZWq5Vff+ONNwzlG7Ozs1FeXo5nn30WQqix8B6PB4sWLfJJjeRyufiwQYWTL7zwAjweD0aNGqUa11poS1VVlWEwYfbs2TeFv/5ftPfee8/nvLvb7a50KG/8p8pQAefnOJQz//gZACDvpY91BTqK9X9zKpKVcQIDAxEeHo64uDikpKSgadOmOixcdnY2Fi5ciFWrVmH79u04dOgQTp8+jWvXrsHtdsPj8TDoXy5eIfJbAv5TKpyiPwQaj4qKYtLkBg0awGKx4KOPPmKgfWhoqAo/A4AjTuQcE+5n8ODBsFqt7PAYVUKSvfTSS4xxNJlMuOeee1BcXIznn39e12dUxaw1Ot1rwfi+jNI7tBl4PB4cOHCAcUkDBw5Eq1atfKZe7HY7XnrpJT7ZUzRZxtjIBM7Nmze/6YIcoNoxoDZ8+HBd1JV+s9Zha9u2LV9DxrmOGjXKMHJLwPpp06bh/vvvZ0qXmsbu1KlTWVUkLS0NHo8HFy5cgBDV0aFDhw7pIAFmsxnbt29nXlL5WV2/fh2DBg3i746KimInqiapwXPnzkEIwQ5ZfHy8TvmD6JiqqqoMOTC/+OIL2O12mEwmHD58WMV2oLWzZ8/yeLXZbHjjjTd83htJhxphNktKSpCdna3rH3njpf+2aNGCD2dGcA4yOgySvvjNKMVQOleGHdy4cQP79+9XHahkHlJti4qKQnJysmrNSklJwbPPPotp06aha9euhhRq8nxKTExEx44dMWnSJGzevJnXDIrWk8Px7rvv4ocffuC1xWq1ssJWQUEBzzd6zRecQmsffPCBquCF1IZkZS/igo2MjMTIkSMhhD5qC6jJ1uWDnhDeCF+dOnV0h1XZCbfZbMxjrLU6deqoCPjJDh06xH0pRDXutbKyEk888YROdYtahw4d4OfnB39/f9X3UX8///zzqu/Zv3+/jgLNarUiMjKS31NVVQWHw4GgoCBMmzaNxzL9RhlmIBeMduvWTQXR+b/kp9Q+s5vRg79b7a50KM8Vfe/TQbwVhzLrybfxzx8q8dm1MiTO0b9ujax3WwYhLU5JSUk4cuQIaxQPHDiQfxOlUYy49SiCRg6B2Wyu0TEDvBNZPkE+9NBD/Bo5joTvkvFpRCFDeEFZMUJRFEyaNEm3uFHKeNiwYfB4PMjPz+cFIy4ujjdumfKHzOPxYMWKFbwwWa1WjB49mlPar776KhRFQUBAAC5duqTayAIDA/HYY4+p7mfixIkQwotfu1lbu3YtX5PSRYqicBRCURQ0adIEa9euZb68jRs36tKV/v7+cDqdhou8nOINCgq6qSpBObJiNpt1cpRktIFoIwZEAUV2/vx5jvwGBAToaIIqKys5XV+3bl1VlIiojbSOREpKCsaNG8eYzmbNmjHc4emnn+aDhbyJhISEcGSHdO6NqqRv3Lihqg4VwptG9HVQoGsdOHCAHQqHw8Hpc9K1nj9/Pn+GikYOHjyIy5cvcyEKYWVpbMtsB1VVVTqpudrSYHa7HQkJCfzviooKLFiwQLW5u1wulSNGspgBAQHYuHGjTioxKCjIkAYKqI4G2+12HD9+vMZ7A7yHErvdzmlQrf3lL3/h5xcfHw/AS2VTk3Poq9F1kpOT8eCDD2LdunUYMmSIqgp4yZIlhs85JCSEI+nz5s1j/PCcOXNU2vPyfXXo0OGm1HFkI1wgXYP4XMlkjKAQXoxrTTjpqqoqPPLII/xMausjOoA9+uijEMI422KxWJCZman62/fff89k7EVFRSz7OmbMGCxcuLDG50XrnTw/AO+6EBgYyPuOfPCnZzlgwADODAkh0KdPH4YNyKlw2gt79OihghkkJiby9xOulPpLHjcbN27k3/R/0fz8/G55LN1Ndlc6lH+5+t0vdiibLvoTzv+/cvzzh/+g7VNHDN9ji65/WwYhpZTr1q2LkydPQlEUREVF6egsiJdLNqrepolLFdbaz8v2r3/9ix0YmqR0XQJky5g+bQXtoUOHeNGTNbmN+PqI2ke70ROfmryAWq1WFZB73rx57CwT8bVcfEIpM6fTyc4RSQWazWaOhvr5+aGgoAClpaV8vwQ4v1mbNm2a7rklJiZi0aJFPiOKLpcLSUlJHAWiz5nNZvTr109VkEH9npCQwIcCrXIPWWlpKTv9dOKvqdCE+EaF8EYF6f+1mt5kK1as4M0yKSkJPXr00BE9u1wutGnTBosWLdI5pufOnePNwyj1LTdyROW5oCWzDw0Nhc1m80ly73a7VRQiTqcTjzzyiC5SQJFSus6ePXu4cOOxxx5j50wep3JlMDmTe/bs4de/++47CFGNcd65c6eKOuvtt9+GEMYOMdnrr78OIbyFFWvWrFHRANlsNnTt2pWd3uLiYh02V4jqCt/KykosWbJE5Vg6nU7cc889OH36NCorK1WR6tq0wckoS1ETpICoxITwamknJyersLra5u/vj8TERNSrVw9xcXEIDg42TKPb7XZERUWhRYsWaNSoETuMTqcTDz/8sOo5U0aBxq4Q1XrQBw8eVPWdoiiqg8CtGFEaPfzww6r+nDBhAgDoyPdlXXPAe2DYvHkz+vTpoyJMp37JycnBk08+ia+//poxzUZ906BBAy5YlPvhn//8J4TQR+wJX7tjxw5UVVVh9erVKsdYHm9UoEmHL7nFxMRg1qxZ7DydOHFCtQ9ZrVaMGTMGGRkZKtJ7raMt4/4tFgtfZ968edxPMg3RoEGDeH6WlZXp7isoKAhnz56tEWN/J5vJZMKAAQN+K8q5m+yXRijTFx7C53//HqX/cqPHymM+33e7IpS+NlqHw4GAgACEhYWxrjRtVJ07d+bTnIxtW716NYYM8Sr69OrVS+fsfP755xypGjFiBCoqKvizixYt4tOd7BxqOf6uXr2qkrsjnWbtBl5ZWakjH5dNCK+KjLz5PfTQQ5g0aRKfTAMCArBw4UKdcyxXYl++fJn/TipBQgi0aNECy5Yt41SSvGjLCju+7Nq1axg/frxq0aONrLaiFABMzC2EwNGjR1n3Wk7VhISEYMyYMbhy5QrjTLdu3crOsJaLbvHixXxNiqwQzYeRY1tVVcVOXUFBAeLj49lhDQgIUDlpN27cwPr169GjRw8dibbdbkf79u15bD3zzDM1/nZZKefKlSuYP38+QyLkJm9mkyZNMrwW0VjVlM4GvJs4RVDp2hMmTOB+SUtL01EsffXVV6p0+3PPPae7LhE7CyHwyiuv6F5PSkqC1WrlaJjdbmf4SE08lGRURSzLUWZlZWHnzp26cU8R5H79+uk2Mvn5p6enw2q1YtasWSpVGJoDDofDMCNgZD/88AMsFgtiYmJw7do1bN++HVOnTkWXLl0Y02hUPEQFf0brm68Ue1FREYTw4pUXLlyI/v3711ogJIQXZzlkyBA888wzqrEbGRnJBV80T6hpVbVu1uQ0LT0f2ZGV5/fq1at5HVi8eDG6du2qm1shISHo2LEjzGazT05ZcsS6du3qMwJnNpuRkZGBmTNncuZIPgAQU0N2djbjK2ns0KFOxvBSBTvBAoTwFkn169dPFSkPCQlRzeOUlBS43W5UVVVxgR0Z9VPPnj1VY4NgKITXPHr0qIpcPyIigvGlEREROHbsGBcw0dqwZs0aPrz/Xxfp3Mz+cjfaXelQ/usXYCjJmSyrcKP3c+/5dCZvJ4ZS67A0aNAAbdq0QXp6OlJSUhAbG4vw8PAaT/u1NUqH07+dTicrrmgX6qioKEycOBGFhYWYN28ehPBiVt577z2MHTuWN74+ffpwClgIPQ8aRdF8VcEK4cX8+fn56bjSwsLCeFPWGun82u12Hd+Xx+NRLep0T88995zq+j169DCMzpSXl6OwsFCViqVG/GdCeKPJRlJzstGCTUokLpcLUVFRALxO1pgxY1QSYnTP9evXR1lZGadb09PTceLECY76hYSEqCIrhB/cv3+/ri/IWbHZbFxtOWrUKE7j16tXDx07dtSNwbCwMHTv3h1Tp05lhzwmJgYnT56ExWKpdTMmh9LtdmPatGm8wGv1x7V9HBkZiV69emHjxo0qByk2NhZms7nGdBIB/K9evYr169dzf5rNZgwZMgT+/v6cjpVNjnTExsaqKsWvX7+uKp6ggjLZ5IKzHj16qFKbvhzK48ePo3v37qpxn5aWhlWrVvnEYFHE6MEHHwRQHTWUaVcoEkYpd4KGrFy5Uufcmc1mzJgxQ1ckpHUafUlCUsEgjaFJkybp5llgYCAef/xxREREqL5/yJAhhhkUeoa+ouc3btzAn//8Z3Y2Y2NjayQfDw8PZ1EGIbwZgCeeeIL7i9Kut2IE0dGua3IkjVpubq6u/yIiItCzZ0+88MILPFaoWtyIJogODzLTB63LiqJgyZIlhvNLCG/wYdKkSYbp4UaNGvF4c7vdjEOk6CDgFdegMSrDHSorK9GnTx9d39N9vPLKK0xpJRfWHD9+nN/r7++PZ599Fm3bttVd5+LFi4bk+nPmzFGxkdDn+vXrB8DLvkD7U3Z2Nt577z00btz4lvbK29FsNtuvktz8rnQogZ9X5U3O5Pf//hF9Vx+vMSUeM+GF2zb4goODedIGBATU+Lvy8vL4c5mZmXC73Yx7GTVqFHbs2IE1a9bg0UcfZf7Ivn37qopZ4uPjVZrQP5ccnCJdWtxWfHw8LwbBwcHo1asXhgwZgvHjx2PWrFl44oknmLbD12SPiIhgJQjZSOfXarX6rMakTS4yMhKKouD06dN8wpdxPIqioEuXLrhw4QKWL1+O+vXr8wJFnIVCeCNOR44cYUUWcrCSkpJ8bv579+7lhQWopgOZPHmy7r3EHyqf+qOjo7F48WIVRYYQAhMnTtRtxKQtLUcXPB4Pp7dMJhMaN26MsLAwmEwmtG7dWkciHhUVhb59+2Lr1q261LLH48HUqVP5OZMTXBMmjFJOsj7y8uXLudBAdqSPHTvmszCByNZJk13mUNUaOcxydGDXrl0qHGJYWJhKeQYAV5ZScQXpVpeVlfH9PP/880yjRM7OiRMnVJWljRs31t2T7FCeP38egwcPVvU9RasWLFjg83cB1TjY5ORkw3uX52BGRgbjQXfv3q3ilj1x4gROnjyp+4zFYjEkwJZfJ6dxy5YtqqwA4HXKhw8frjokUATP7Xbzd82aNYvHJelWyxYZGVnrGmhku3fvNizMqE3pxmQyYeDAgXj66adx4sSJWgsqKioqYLFYdBXrZ86c8QnvCAkJ4bXEV5SdouvaLANFVdu0aaOb95QZEqI6Yj169Gh8/PHHfJjS/n6TyYSMjAzs379fd72KigreJxYvXgwAmD59On/24Ycfxvfff4+RI0fycw4PD8eqVauwdetWNG/eXPV9fn5+MJlMjCu///77VQILcl9fu3aNx4XcjLChf/rTn/g6WpUmKswiJ75x48b44Ycf+HD+v2xG68HdbnetQ6nloRyz+SNM3P4JZu3yVm3vP1OEids/wcTtn6DB/IOoP+8gPv2mDB7Pf7HgjXO4d837qtZOclDjZ+9DSNcJd2wgdunSBQUFBXj55Zd1J2hSWDCbzbwg0OTRbvC0CdGmnpaWhh9++EHXV3Tald+7YsUKfPHFF4zRpMWpTZs2ePDBBzFs2DD07t0b7du3R2ZmpirtLm9MWvzgrTaz2YywsDDExcWpooatW7fGwIEDMW7cOBQUFGDRokVYvXo1XnnlFcTGxsLhcODdd99lLW0hBJo2bcqVj8eOHdNFIc1mM9q2bYvdu3dzqqVu3bqqiFXr1q2hKAoX9zRo0EC3CZWWlqqUJABwUco//vGPGsetL7UU6v9NmzYZfk5RFHTo0AGA1wEkfkCCJsjPwGQyIS4uDgMGDGC1oZs5TV+5ckVFSE5RAdlKSkpw77338nuio6OxdetWANXRCW2kffDgwaprVFRUYOPGjYZk60J4YRJPPvmkjnOSIo1G+Nj169errpGbm4vz58+jtLSUD1mAl05GxujRXAC86XGz2Qx/f3/07NmT+3LGjBk+lYQIgiE7GxEREZg0aRKKi4vRqlUrKIriEx8KeKPmVEhhxLNJ2FDqb3mjlXHECQkJNyUvGhYWhvvvvx+XLl3iqLxWnpGsqKgIffr04e+rW7cuK14J4XVwaDN3Op38OYquOp1OnDx5EkC18y0XI96qUfRQbu3bt8f169c5skmRRC07BjXCbGZmZmLEiBEqZ5MivytXrsTDDz+MZs2a6YpoZNodGktt27Zlp1KL2yRxCllVC6g+LLRo0cIwmpuUlAQ/Pz+GkpCDSVK98romhPfQKI9DGvfDhw/Hvn374PF4cOPGDZ5zy5YtY2y3EN7UNz3nuLg4Q/iH2+1WBT2oD8gBTUxMREhIiE7Vikz7LCIiIlQRzrNnz8Jms8FsNmPBggWq37N//36YTCaEhoayYpt27v2vWlxcHMaOHfurw1LetQ6lrJSTUPgmrn3nm4old+kR5C494vN1ANj1yTeq690JpRxfvF3kFFHqjRawefPmcYpXCP2jJG1cIYSumEc20i02mUy4fPky3wdNSCG8xRK+SKOBapyb/BtkSTHAm67au3evTs7Q5XJh0qRJGDlyJBcoBQcHq3Aw8qL9c51UX1Qm2mIT6rOUlBQsX74cL730Eg4cOICPP/6YqXMef/xx3hTT09NVCz6lme12O28SDofjpivL5aikFqoghLfSXGvBwcGIjIxEQUGBz43SbDbjzTffVN3rp59+CkVREB4eftN0Fxs3buRrNmnSBFevXsVXX32Fzp07qzB6iqLWMiYqFWoTJkxg3GFN/KNEti7Lt8nPq1WrVky2brVaVTJyZEuXLoUQ3kijXERBDtbbb7/N7/3iiy9440xJScFPP/3Er8lzIiMjg+mzSAJuy5YtuHHjBubOnauKhttsNgwbNgznz5/na1VVVcFsNtcayWjWrBmEEHj11Vd1r127dg3btm3TcVUaPX9/f3/Uq1ePI3mLFi1SEUZv27YNmZmZKiynEF5YhNYuXryI9u3b8/Nu0KCBiiqMqn7pu/38/HRRvW3btjGv5XPPPYcxY8ZACOGTraA2u3jxos+1oWnTpsyQkZuby/hegosEBQWhsLAQAwYMQHp6OsLDw29J2UtRFBQWFqJRo0Ywm83o1q0bFEVBWVmZitCeNN/lyOymTZsghNeBI6OIfJMmTXwWVxIV2XfffWeYbg8NDWUWApkn8sqVK1iwYAGysrJUhzsqnuzTpw//XUshlJqairfeeqvWZ5GVlQUhhI67Njg4GGFhYTp+TLfbzYdgut+JEyfyuh8YGIgej6QuAAAgAElEQVRp06YxZReNNcrOyE2mZiJe2f9F27BhA06dOoV//etftfbP3Wp3rUMJVGt53wzf5M22+Nn7EDV88W0fjN26dWMQc9OmTXHp0iVs2rQJ+fn56NChg44EV14E6P+7du3KkU2q9DSZTFx04ItChNLPFKV57733VNcNDg6uta/plK0lJKYN68iRI6pCHsJXCqHG7ADgyuiSkhLs3LlT5SBpK58rKytx9epVnDp1CgcPHsS2bduYfLh///6cxtQ2s9kMp9MJf3//ny3hJTt7JpMJwcHBfK8EJXA6nbxQNmvWDHPmzMHTTz+NjRs3Yu/evXj//fdx8eJFlJeX46effsKsWbNUFb4VFRVwu91YtmyZisxdURRkZWWhf//+OgddCG/0Zfz48aqqbkpjaY0iSn379q31OZP5qqJMT0/H8ePHVUU5QDUlDzVK3Xo8Ho56jh8/vtbvJWdw3bp1rAuvhWyYzWbMnDlTFXWlqCnhXi9evKhycGmjrKysZEeQHK+YmBh8+OGHuuIZuTCpoqICiqLAbrernOp27dpBCOOiHIqaGhUCkVEhRatWrW6qEEa7JlCTsZ3k+PtyVGi8yYc4Pz8/9OnTB1u3blVJeTZv3hwff/yx7hpaNZOIiAhDpZzz588z/MFqtdaqYuTLbty4wZkRRVFUmthyX6WkpCA4OBihoaH8WeLtjI6ORkVFBTweD959913k5eUZcq366ne73c6OGB1U3n//fVRVVeHgwYMqnHJKSgp/P0X+aGySlGv9+vV9HvKqqqq4yE8e9/K/Bw0aBJPJhJCQkBrx3sXFxVi6dKkh2brcbiVyLBcepaen4+zZs8jLy1NBWiIiIlBQUICPPvpI9f7w8HAoioKrV6+iqqoKhYWFqn3lnnvuUc1j7X0GBQVh//79+O9//8uZpDvZFEVBr169VAfPX6vd1Q7lN6UVOg3uX9Qe2Y/4WXtgCapz2wdlQkICJkyYgNTUVNXiAlRzP8bHx8PtduPSpUtcbSufAI0WOtKpJbzjiy++qJKT83g8vNAlJyer0iW0QN1sNSQ5PJmZmXjyySf5OwlPqSgKevbsyTQzdI9amUTCG/bo0QOXLl1SbWyK4tV0rYmU/NSpUxDCG5UwwocabeBEC2S329G2bVv+XGhoKCZOnIg1a9bg8ccfx4wZMxg316lTJ+Tm5vIiLPNS/tIqQxnLWadOHdStW5epVYzeL//O5s2b469//Su+/fZbdmjkilQjI6d3y5YtN/WsCaukXchJLYQcSo/Hw+lhGlPa1G1VVRU7xVOnTq3xe4kUXebX83g8OHr0KPLy8nT9brPZ0KhRIwQHB+uolaiYpl27drqo3OzZswFUk3lTGzRoECoqKhAaGgqTyYRnnnkGLVu2VG3mbdq0YQ7Pmqq8iVLlxx9/xDfffINt27apnEZf8ooUaezUqRMeeughbN26lQ9ucuUupeFlzsnVq1cjPj4egYGBNfYzzaHs7GwUFhaqVJ6E8DoDf/rTnww/Kx8S6DBrNpt9anlXVlay0IK/v7+hklBNRtW9QnjTujS2AgMDee04dOgQ+vXrx++zWq1MmO3xeDBs2DC+T3kuORwONG3alNO4TZo0QWlpKa91KSkpmD9/PgYMGICmTZvqKrjlcSgr4dB6Xl5ezkEEoJrXNCkpSecEejwe7NixQyekEBcXh927dwNQc+ZSlb1MT1abHT58uEa8IWGaV65cie+++073+dOnT3MK3mQywWw2w8/PT7XG0+FSCxWgKCtlQNq1awfAG4Un6Ab912q1Yty4cfj0009V13jiiSd4T/xfFuN89tlntzBi7167qx1KAHj146u3NULp37TbHRmQ2skVGhqKUaNGYezYsRCi+vQsG53sHQ4HrFYrysvLGacTGhqKdu3aITEx0bBK02QyISAggE+McnonMTERZ8+exXvvvcd/qy3NcfXqVV6ICwsLsWHDBpXzk5qaqtooKFXvC4BPPJmUOt27d69Kho5OobKVlZVh1qxZOmm6uLg4vPbaa/xv2aH+z3/+w+mZhIQEViq5ceMGxo4dqyoqWbZsGTweD9544w3+nWQULVAUhbVzXS4XGjZsCJvNhqSkJJSWluL8+fM4duwYdu/ejQ0bNmDRokX8zBRFQVJSEnJzc1UA9V+CQZWvYbVa4efnh6CgIERERKBu3bpITU1FRkYGWrduzenCwYMHY8aMGXjsscfw/PPP49VXX8Xbb7+NM2fOYMuWLar0qt1uZ1og2uS6dOnCThptLjIUQisLCQA//vgjbyjkzPkySn0T9k62KVOmQAiBPXv2YPLkyUhLS1NheknnmCKWrVq1AgB8++23KnxheHg48vPzdQ78vHnzcOTIER4z1Jo0acL4OpmdQHYoZaeRfoNRipaqp2VuWdlpNDKZW1aex0J4U6I7duxQrQNyhMzIGjZsCEVRsHbtWlWxS1xcnKqgKioqClOnTlUp/MgFWSEhIQwTkDGUWpMj6X5+fj4xm7JdvHiR5Ubp98pGz54qmgHg66+/1vW1dq7YbDYUFhaqCo8IU71161bOQuTn5xveF0EUhPDCCsjZDA8P16WAqQUEBPBBNSgoCEeOHOHo5NGjR9GlSxdVBJaEFITwVkHLJkcB4+LiamWjANTFayaTiXk0s7OzVXuTVtEqMDAQubm5eOyxx3TZoN27d7MOuAxDuX79OoSoxnebTCbV/tOkSRMeu++++y7PSzoAbNq0SSezSHvPqlWrUFZWpsqA3ekWExPzq8NK+rK73qEEgNXvXPzFkcmEwjcR2nb4bR+MISEhHC24ePEiCgsLDRe62NhYDB48GLt37+aF5r777oMQ3lObxWLhDeP+++837AcqDGnRogU6duzoU2KLlGdo8aDUrpEjAHidQ0oTyhukzWbDfffdx6+1bt2aFzfSXqaTudZIGk4IgZ07d6pee+qpp3hhzs7OxoIFC1T6tk6nkyMNJpOJHVlyNAcNGsT9TYtvv379DCN4brcb06dP52iRy+XCnDlzYLfbVRQ0cvqUFniXy8VVk0Z0IGvXruXFunnz5li1ahX69eunIxG32WyGJOJnzpzRFVnI0RUZH9WxY0e0bNkSaWlpqFevHqKjoxEaGgp/f3/Y7fZbwotpm91uR0BAgEqlRG4pKSn8exo1aoSVK1di27ZtOHjwIE6dOoWrV6+isrJSlW6uqeqZSP7r16+ve40ODrIMHB1eEhMT0axZM8PCBIoyjxs3Dnl5ear+79ixo4rMnxo5m/S8CbISFxeHKVOmoHPnziocpVELDw9Hp06dMHnyZJXT+P+x9+bhUVTZ+3h19ZakOxshC4TsQAISlrBvYd9VCIsEFwQEwbAliAgIQgQREARBEAQRBAEFUVQYhCA6ICIoEEFkIrLnh5iJTD6ZGNtM+f7+6O853NtVnYTNmZE5z3OfR0N3ddWtu5x7znvelzScPeXsjMyTW9YTq0rYy99++03iYvQW6f/444953CmK2wlPT0+XcH8nTpxAv379pDEWFxfHh4IePXqwAsrx48d5XHpT5QkICEBoaCg2b97MZPMiplA0TdMwfPhwfkfER+uZ6aBiJVr3mjZt6hWnbrPZkJWVxQcSMd2cm5sLRZFFB4wKUshWrVrF1zWykpISvPnmm7o1t6J55nA40KVLF+Tk5PC9kXiCaCKjh6K4i6y8KaetXLlSotcaOHAgCgsLmfEiPz8fixcv5nt48sknGdPcr18/HbcsHVxF7mGCP0ydOhWAOyJNn4+NjUVBQQE0TUNYWBiv2Z7Pvnr1at29v/vuu7rP0ppAAhd/RDNi7rhb7a5wKAF3pLL2tJ03jKmMfup9RD35LqLbp9+xARkYGChFH0TdXl9fXzRt2lRyHEgJx9OZMJvNXFFrZJqmsbNy+PBhPnUrisKLUFpaGtq3b2/IT0m/7e/vj4SEBHTu3Bnjx4/n06D4+bFjx/Kip2ka01qEhITg+++/5xSrZ4Uv4K4UFhd+T/1bTdOwdOlSKeKiqiratWvHFZT0PA8//DB/LzQ0lKNo48ePr3Dj8vzNWbNm8X3RBnDhwgUmEe7ZsyenmNPS0uBwODjCKgK18/LyOK2kqqqu6jkoKAjt2rXD/PnzERAQoFPBEE2ULVMUd7p179696NSpk7RJidKQ5Rnht/r164cvv/wSw4YN44iMqqqoU6cO0tPT0adPH8bSValSBQkJCYiMjGTA/e2YF1arFVWqVEG1atUQFxeHunXromnTpmjfvj1HKHr16oWpU6diwYIFWLNmDTZt2gRFUXDfffcxZvDLL7+EolzH6lK1eVxcnI5Y33Neej4LjXF/f38MGTKE56CInRTnCvVdVFQUO43nzp1DUlKSYVU4cL1QxKj4ytNWr17NmzDxIpIKFTmEYtHPhx9+CEW5Tv0kRvo1TcPs2bOlA+GoUaPKrUAHYDjekpOTGZs7YMAATgU7nU5dpuXw4cNQlOsY2vIOejt27GDnPyYmhh0asSDo2rVrWLp0qXTIpEaHgpkzZ6KwsBCapuHZZ5/l9+jj48OpUiqIEZkNRFlQb1ZeoaRo5KiJ/ZaUlCStBxaLxSvGm6qdTSYTBg0ahHnz5mHbtm3SZ0jm1mKxYMuWLXx/zz//vCQAMHLkSH4vO3bs4DUMAEcZqVFfi1Q/VqsVzZo10zFn+Pj4IDk5GX5+fjCZTHjnnXd47NlsNund+vn5oVatWnC5XMwVKl6nR48ekvQwVcHTvkL/3axZM6+R4NvVxHcmFvTd7XbXOJSAG1P58OpDiJn8UYWOZdxkd1QyfOCsO4KZVBSFq/SoVatWDVlZWZzmttvtUiqpoKAACxYsQLt27QyxdK1atcLy5ct1J3XRPCshTSYTdu3axfQmYmSoYcOGsFqtOHPmDKZNm8aRyurVq0spObHRRI6Ojsb48eOxYcMGqRKWFjf67qBBg6T7Kyws5AWHcJi0Ie7cuROpqan8G6qqIj4+Xtq0jx49CgC8mf7jH//ga5vNZqSkpEhykZVJrXnasmXLuP/pOYiqQqTsod9JSkpCQUEBXnzxRV06XlHcUaquXbsavjuqUjRSkaFoSmJiIlfImkwmHDlyBFevXuXrR0dHSxjBli1bSvKBnkZ4Rtp8fX19MWHCBMPUmdPpZLL2srIydO7cmTdCz4V3165dOH78OHbv3s3Ex9nZ2cjKysLQoUPRr18/dO3aFc2bN+e+o/R8YGAgU+fcLG8qRfHp+9WrV+doZUBAwC1FaRXFHS0nmh1K2xthKKmAp0WLFrr+PH36NBd4VZSqpHfudDp1ODkRt6oo1zlKSYbz1KlTmDt3Ls+l6tWrS/jTevXqVbrqH7geDaxVq5YOU6qqKgIDA/kw1rJlS+m7dNgUo++lpaUSFCUvL48xr1arFS+88AKzLAwZMgTz5s3zWlQSGxvLh3QqsvE0TdPw8ssvs2NC41aEdzRt2rRC55qMntWbLCsAPogaOStdunRBXl6e9PmSkhLk5OQgOzsb/fr1Q/369cvlDqU53KlTJx7bDRs25PXS4XBg8uTJuvdMIgK0FpFDSRkrVVXxwAMP8Dy69957+TlpfL344ot47LHHUKtWLcN55XQ6paK9srIyKIr7ACFSF5lMJgQHB0uR/oCAAD64E5Z10qRJusK/O9FEJ5z+uzKQgrvF7iqHkizvx//DjO0nkfqiEfn5h4gc+RpqDpzC1EB36rRDRMxPPvkk+vTpo8M6BgYGel3ASEvWW6Mo14IFC9gpdblcOqJsEZiuKDIeh6JDZCKpeKdOnaSNvXXr1hzZ9LZI+vv7Mzk0/b137958/aKiIgatL1myBMB17JK4cNaqVQvz58/niaxpGkaNGsXXFTFMVNl+5coVKIp8kvUmc1ZZE+/JZDKhZ8+euHz5MjRN4yIDWtTFvlBVFampqVi3bl2lNqiIiAhYLBaJZ5R0k0VydRF2QBXJiqLghx9+QFlZGRYvXszYOEVxO9TdunVjp/qXX37ByJEjpfE+derUcot5CIv4xRdfsLPcrl07tGvXDqqqShXBAQEB5Tqyoomk4iIPnWh08JozZw727duHLVu2YMWKFVyMQVXutBE2bNiQI9d2u/22RVJpHoiYUbvdjtatW/PGV69ePUyYMAGzZs1irNm0adOQm5uLH3/8kQ8jIhm/NysuLubxVadOHcMDZEFBAR8c6f6mTp2Kdu3aMZ1TcXGxRINEa53Vaq204wRcjxQ1btyYx0pZWRlefvll3cGX5rdIWO1wOKR1RjRPHenU1FTk5ubiwQcf5HknzsFq1aohLS0NGzduhMvlgslkQvv27VFaWspFKlWrVi33edavX69L5aanp1e6P4DrGPBZs2bp/o2q6D3HX9u2bfHII4/w342kcz2NnKgdO3ZIOtkhISHlOpt+fn5o1KgR0tPTMW/ePBw4cAAul4vp30TJV3IoCWJFLTg4WIoYAm5n1NfXV3efaWlphvdhNpuRkJDAsIRnn31WIleng8r27duRn5+PkSNHShhRGl+jR49mppHbMae9NZvNhujoaNhsNixbtgwmqw++OH0JRy/8jJP5/8A/f638IezPaHelQynaG+s3whoWh7EzF8IaFofQajXueLicGuGNiJtu69atvDGJEcT69etj1apVvFgfOnSI/33EiBEMbk5NTcX69esNcXiUelUUhYtAFOU6aTOgx+Ooqoo2bdrw/1+4cEHi8KOF7/3335f6lApUPv/8c7zxxhvIyMhA+/btERcXZ1ggRJWrdL2UlBS0bt1aSnubzWY89dRT5UrvnT17VqImUpTrkSLx9Nq3b1+ObpCM3c0YOSrp6elSn3pG0MSqeW/UPeUZpbFoUxOr/n/99Vf+HG3slDKjceRpRUVFOp5EMWocFhbG6ipUzODNvvrqK+mZCSfVoUMHafz16tWLN7jmzZvjp59+qvC5RdlDUZOYrLS0FDabTaKAASA5TRcuXEB4eDgsFgs6duxYoRNpt9tRt25dPPzww5g2bRpWrlyJ1atXY/bs2ejZsyeio6PLXR/ECOrNRlJVVYWvry8CAgJQtWpVREZGombNmkhOTkZycjI/Q3x8PMaNG4cZM2Zg8eLF2LBhA/7yl7/gq6++wsWLF5kJwmQysYPk7++PgIAA9O3bl69DmRGK1jqdTh3MxJsNHz4ciqLnYiUjPWgjbFz37t3ZgTGq7j927JgOg+rpMFSvXh3p6enYvn27YUQ1MDAQNWrUAHBd9aUyfLBGLAbt27f3ikX0NBKEEOmxPHk+qWVnZ8NkMiE0NBRlZWXIz8+XdOG9HaiA63ABetdEqL5582acO3dOx7FL84mwoN7GoOhsPvvss1AURUr9E1ZSPPiQDnvPnj35byUlJXzAT0hI4AMWRaVr1KhhyGZQt25dbN++HUVFRbBYLNKBgw7LrVq1kijlYmJidMU6t7MRtGvhqrcQ3PlxNJz2PqL/X30FtdjJHyF1/ieYsf0k8n7Ui4j82e2udygpjSJiP252I6hsM5lMEr6nffv2WLVqFYPLz549y1in8PBwvh+LxSI5LkRWTmTgiqJI+J6ysjK89tprXrnF6LoUxatVqxZXYlKqbty4cTh58qSE6xQXeTHCSEYYNaM0LcmwiY4fEf566y9a+JKTkzFu3Dgpje5ptPjRd5xOJ5YsWcILq+jQkUPvjZ+zPCOnrrLjJTIy0pBmo7JG3JzES2hU9U+8hiLJsaqqXp3wS5cuoUOHDrp7DQ0NxRNPPIG+fftCURRkZWV5vS9RZUlUAKF0JWG8SktLUVRUxNrvpHRRkV25coV5BI0KIShSm56ejjFjxqBjx45eCy+8tbCwMKxevbrcSKynuVwuZGdnG/4WOZxt27Zl0YDMzEycP38ee/bsgaK4YQqLFi3C9OnTMXbsWF6H/P390bx5c9SrVw/x8fGoXr06QkJC4O/vf0vRFyN4isViQVRUFJo2bcoRZfFz9evXx2uvvYYPP/wQhw4dwtmzZ6UxJ0IuykuPU8QpPDwcV65cYedHbEOHDmW6n4MHDxriH8X7VhSl3MIYsnr16jFdFDk8VqvV67vWNI15bAmeIx6iFcUt8lCRwy1GC9u0acNjwmQySVmc1157DYAxF+zGjRv5AJ6YmGjozFJmSVVV2Gw2Lrpq37699C5Hjx7N31mwYAE/29q1a5GTk4NZs2ZxVJWgJeWNJ7q+xWLhviAddsp4nDx5kveeAQMGsAxnUFAQr5mkakXjX5w/1F/kND7++OOM8SYhBOKhjI2N1WWCblej+xkw9AnEDFngdh4nbS8XMkeQuodXH8LFwvKjzH8mu6sdypMnT96RAVhRo5RLaGio5IyYTCYpJUjqKpQi8SzeSElJwaFDh9CkSRNeZImfT9M0TJgwQcK5FBcXY8OGDTxJxBMqVeoqilvhZunSpVAURaIMadq0KY4dO8Y8kYriTp2I2Ccy0mz2tAULFkBRrnONeZ4oHQ4HunbtiuzsbI5sVlSNnpCQgE6dOmHMmDGwWCzw9/dHcXGx7gQuYnYAt7NCVDrl4U4Bt4TeyJEjkZiYqNvYVVXF448/zgvpe++9J/02/TdF727GxD4PCwsz1NE+f/48f6ZVq1a8oYjydoAbp9emTRv+d1I5MdKapnv3pI0qKytj6hvC3lGkXdM0Cedar1496bs5OTmctqpevbohMbZoFy5c4ChGjx490LFjR8THx+vmA40Jup+aNWsiIyMDiqLoNMIVxR0xETHKN2snTpzQpUg9W2hoKJ588knmMxQpry5dugSLxQI/Pz/D9/r7779zijcgIICVZFwuF/Lz83Hs2DEdLjUzMxNDhgzhFLPnXPDx8UFAQEClnIeKmp+fH4KDgxEREYGYmBgkJSWhcePGSE1NRa9evSRM7rx587Bq1SqpoKK8Fh8fj4yMDBw6dAgul4v72dfXF1evXq3w3RC/ZHFxMUdDFUXB9OnTdZ+9evUqH5bp4E6OGFEhieOoTp062Ldvn+46x44d00mGJiQkYM6cOdi2bRtj0W02m/Q9wl6LhZUul4ufwWQyYcSIETpnmNb4l156SYrY1a1bF7t374bdbkdwcLD0nQMHDvCcysjIgKZpcDgccDgcfP3c3Fwp0BISEmI45xTleoZDVVWkp6djwIABfEARabQAN1clrT0NGjSQ1guqmP7xxx8xb948tG3bVndoU1UV3bp1w6pVq7gCf9KkSfj2229vaRwbNepb/4bdEfXku4h9+oMbKuqNn7oDtaftxKbD+j3yz2h3tUNJg/52D8KKms1mg8vlYn5Cz3tISkrC3r17GVfy3XffcdSpQYMGhhPMZDLxgrRixQpOx0ZEREg4F0o5kCwiaYMTSNrofhs1asSn45KSEqYposif0+nUaY5TdMuTOy8xMZGdDPE3aIHxloKmaEh2djbWrl0rpdGdTqdhha3RsxABMJkRT5qmafj4448xePBgxMfHS5uxzWZjh/KNN95g/rzTp0/D5XJJfHqK4t5sxX594IEHbmqsLlu2jK9RXnSEPkMLbevWrTlKmJmZKeFLU1JSvDpzn332Gbp27SrhsJKSkrBkyRKcPXuWU2udOnXCN998A0VxU9YAQO/evaU+MKK+0TQNY8eO5b5JS0vD3/72N6xbt44jjeQ0Gr1Lp9OJ+Ph4dOzYkVNRxAtYUlICRXFHLYw2QLPZjL17y5davRnbuHGj7l4pe2A0xzMyMvDFF1/wgcnonoqKitghS05ONnQ4vdn+/fslFSWK+pEjQdExl8sFu92OoKAglJWVoaCgACdPnkRWVhZv9BERERg5ciSGDx/OKUebzYYGDRogMTER0dHRCAsLY7UosQL5VjZzp9OJGjVqoHbt2sw5KRaYDRgwALNnz8by5cvx9ttvY+/evThx4gSuXr0KTdNYKvW9995jZ96IOeGTTz7hg0hmZiYCAwOlz2iaxnRM999/P7p168bPFhMTg1dffRVDhgyRODrpHinlnpOTw5FEmjuiFRcX89rqeUjPzc3lw31QUBBnAyZOnKjrN6vVKq0RlNWYN2+edM3CwkLeV2g+E9euSJ1FOPYNGzYwTjExMRE5OTmMwRUhWkb7XXh4OFJSUpCeno65c+cy/tlqtXJktDyVJIpM0vN7/kZ0dLSE175dLTg4GFVTH5LoA2+2Lf0kz+vz/VnsrnUoT548eVsIo2+00QJNJ0lKGxAfn7hQ0SQnh2b06NEoLCyEorhVWi5duoQRI0YYYmFUVcWUKVN0z6wo18mcySilQwUWRs1sNiMuLo6LWlatWgUAWLNmDS8GYrTn6NGjUBR3BSYAbN++XeLHE/t+1KhR+Pnnn7lir2HDhrp0bllZGePKjNJVFJEMCAhAenq61CfeHBKKbNKimpCQgKioKGnz9/PzQ0pKCiZPnoy8vDwmr6aq3RMnTkBR3I4bpaeIw41S+9euXWNwuaK4o7DLli2r9FglrV9yjoyqg4Hr3J02m40LvlauXIlVq1ZJz9SmTZsKqU9Eo1SWZ+vfvz+/i5CQEAQGBnIUiKKcZrNZ2rjPnz/PTmOHDh10/S2+M9FpHDt2LObOnQubzQZVVVmRhyw4OBg2mw3jxo2TKumNBANupHr5Ru3HH380VEnq1q0b8zs6HA5dwURAQACGDh2KnJwc7tMjR47wmBo6dGil7+GDDz7gMS2OfZp/hw4d4kPpm2++yfJ0NKdFKykp4RQwYaoVxRhyYWQul0uinalozQ0ODkZsbKyuD291raaooDiPAgICUL9+fY5KmkwmdOjQgeE93bt3x4YNG7Br1y58/fXXuHjxItPkDBkyBGfOnJGI1Wm9ePTRR9G2bVuYTCZOfX/wwQdc0EjRWZHqiIwgElFRUYbr3Jw5c/hA61kA2b59ex3uHXA7w06nE35+frpraprG677J5CayF2mZTpw4we+PCjhbtGgBk8nE73/Lli18D3RPNWrUwDPPPIP+/fujQYMGCA0NrTASHhkZiblz52L//v26ymkKlhDVUElJCXZ5hewAACAASURBVNasWcN8rXeihYaGIjL1gdsqjLL5Tx6pvCscyl9//ZWJk0tLS3Hw4ME7Xg1m1IYNG8YgdtHh2b59u3S/hYWFGDBggLSIDh8+HMD1E6mYgmzSpIlUzSlO7uzsbJ74FJ0S6Sg0TcPcuXOl71WrVg2BgYGIjIzE999/j6lTp6Jx48bSgkAEzv379+dnqlKlioTXczqdsFqtus3hkUce4YU5Li5OuhfCVwUGBkpazACQnZ0NRXFzyHkapYVGjx7NpOZU0U4OWevWrSWlB2+bFOnftm7dGuPGjcP69etx8eJFXjjFFG5+fj6/SwLQkzawzWZDUlISf/bq1atSXwQEBGDWrFnlYvcIouDv748rV65wtMAoSkmRLovFwk4gOVcmk4mdCFLtuRHzpLiivrPb7ejcuTPT1JDUGkXDyCn0FkWmf09KSpKkPo1gFICbxJvgGvv370dpaSleeOEFKcXo5+cHHx8f2O12aU7caWeSrKyszNCpJOf2k08+AQC8+uqrPE48ydYp0mUymQwLkoxs7dq1/L7NZjPS0tJw9epVTnuLRVr5+fn8TlRVZeonb3bgwAE+JBDVmJGVlJRg9erV6NmzJ1esi32QlJSEOXPmID8/XyoEU1UVf/3rX3X9uHz5cklCz2KxoHPnzvjss89w8uRJPuA2atQIa9aswcKFCzFt2jSMGTMGjzzyCEfLqehPVVVUq1at3IjazTTxOqqq8rsWuX5VVcX48eMRHBwMu92OL7/8EufOndM55hSNe/TRRw37eNmyZdJaTGl4OtyPHTtW9x3iNp04caLu3yhyS81sNkvRTE+Hkg6rzz33HH9GHO9paWle17RffvkFe/fuxaxZsyqkPKLIJo1pmuMippswlJ4qUbfa7HY7HOExiJ64TVd4Q63Os3/B6wfO4seiUvz627/wbf4/MGbj1+U6lLWn7fxTYyr/9A6leHr6d7ePPvqIFWI8J/CkSZN4EopE4OJCFRQUxOkastOnT/Pi5XQ68frrr8NkMsFut0tSXYQJIrJkTdMwffp0Pq2LnyVFiHbt2vHvHD9+nDnBsrOz0bJlSx2xOi34nkTs4eHhmDp1KmJjY2Gz2fi0qSh6HkoAWLp0KVchingiTdMM01U//fSTRBDucDhw5MgRnDp1CoqiMNaP5M/E+1VVFcnJyVyZbjabOVXqbbOJjY1Fhw4dkJKSIn2GoAW1atWC1WqFn5+f5FAC7sOCyGWmKO4UZFZWlu5UvnXrVphMbhk+crDOnz8vcXN6jnN6z+ScWSwWPPjgg+zoE6awsvJ2gHtjFzfGPXv24NSpU+jdu7fhGPBs/v7+UqTxzTffZHlK0UpLS9kBUFUV48aNM9yYDh8+rDs8Wa1Wjl5+8803EpaMrvdH8sVduHBB+n2KviuK2+EdP348z1HCApKEpSfek7hf+/Tpw3Q4ZJqmYeHChfwdq9WKIUOGSKnxZs2aSQcAsvPnz/M48cxmeBrJ/Pn4+HDfd+/eHfn5+ViyZAk6deqku29R95kcv7Zt26KkpIQPlCJUhyATnrZw4UIoivsgJEblnE4n+vXrx6nO6tWr66A3gDt6Xb16dZjNZjRv3hzA9cyKorgj9r/99hsAYMyYMVAUt6zqrl27sGHDBixevBj333+/bu1QFPehsGbNmkzqX5GTVF6jNU8kyQ8KCkJsbCySkpJQo0YNXSBE/H8SS1i6dCmKiop0c4fuT6SEKioq0jnDiuIugCHzdCg1TYPNZuMKdjroi/tURdhk4msV2xdffIG9e/cyXVCDBg10EAJxvoeHh0v0bLe7VX/ohXKLbz7L+wn/+OU3TNn2DdJf+wIbv3Sv0WM3HS0XU/nwar1k7J/F/vQO5b8rte3ZaOKLyiYmkwl//etfOWoWHh6Ojz76iCNNzZo1w4EDB6Ao7hMYRTFUVcXEiRMxZMgQ6aRNThbhU958801s3rxZ0h02m81Mo6Io7s1+xowZ0DSNF1NaVIgMuaysDFWqVIGqqrqo4d///ndkZ2cbFiXQ4tq4cWPeYClKRmkWI4cScDsNlO4TOdEoqiPKXRGZtqK4o1s//PADE8B73hORiC9ZsoTT0CaTCcOHD8fLL78MRVEkR/rs2bNYu3YtO4Hh4eGGNBf0jmnDi4iIkBZd0UQloPT0dENn4KOPPpKq/kUj51fE3JFsmZji9fHxMeQTrIy8HeB2OBYsWMDPW95m6W2OeYs0lmeHDh3iqERISAg/54cffog2bdpIm6jJZMJzzz0HTdOwfft2r/dX2Sjf7TSSURVbnTp1JNaFzp07c4Tq2rVrHNlt2LAhzp49y4UJnkwNoaGhiI+Pl8jnMzMzDZ1mosiiRr9H5PcUpfQWdRRhLadOncKUKVMM6b/CwsLQo0cPrFq1Sof1DA8Ph9lshtlslsbR999/DwAchfTEOJ86dYojtvRsV69exdixYxkSRM9Pc8gzldygQQOO6I0cORJ79uyR5gk59CUlJbBarQgNDQXgVoxp27YtjzfiVSX+WJrrns64pmns3Ilt+/btuO+++6Aobu7h2bNnc6FW//790a1bN7Ru3RoNGzaUDiC3UjRFTqrNZuN+9/HxQXR0NAcO6NmIB5MwipGRkXjzzTeZyeHVV19lJ5XWVoIAKYqCbdu24ZVXXuF5641dgrIddA16d56wDnHf+frrr7F3716uYg8ODkZoaOgdyzQ6qtcsN9L46BtfAtA7j5/l/YQr/yhF3JTyU9/fX/1zUgr96R1KwF188+9IcSuK2wH55ptvkJ+fLy2Aqqoyf56maZg4caIUdREpdwIDA1G1alVOY4rpBYfDgaSkJFitVv488fOFhIQAAG+0nmBmi8WCrl27SpEqsYiBKlGpOGj+/Pn8uZKSEsyYMUMXMRArOkUScbElJiaioKCAFyRvVlRUxBil5ORkli8MCwuDxWJBSUkJy4QpittZ9JSopGY2mw2dq9zcXHbgAwMDUb9+fSiKzM85evRoKIo7VU/OnKqqGDlyJN544w2MGTOGSZONFn+qRhejdIsXL2Y5srfffhtvvPEGO1E0Dmw2myHWkUirY2Nj4XK5JOofEZtLFf9GJsrbNWrUCE888QQ6dOjgtchJUdyHD/pOdHQ01q9fj/PnzzPFFTk9FBGmVqNGDUyZMqXCSnpPmzZtmiGnY61atfDiiy/i448/5iKHVatWSREykbZFjOj/0eZ5/3Xr1mU1EXJqzGYzOnXqxBurt8K0a9euYdGiRTp5O9pgO3TogMWLF+voqTyzIiRHSn20bt06hgd4Vi3TIUtVVSnqS9kKinDWqlVLp+wiWtWqVXlMEVenyHFaWFgIHx8fKWJbVlaG0NBQmEzeid7z8vLw4IMP6hzuNm3a8HgTydupWNBqtTLUp2vXrgDAxN0pKSnSodFTSIGstLSU34UnDEekwRGhAna7HQ6Hw2s/idcW1Y78/f0xc+ZM5Obm8t7x008/4bvvvsNf//pXyUG2Wq3o2LEj0tPT0bNnT6SmpqJx48YSrOR274cmkwk1atRArVq1eB2zWq24//77MXToUGRmZiI7O5sj0/fccw+OHTsGm83Ga6eiuAnayYz2HcAt4GA2m3Ht2jWmqLvdlEE1B05BdDnRyY1fXkDxr2U6xb2xm9xKbWnLPy83SjljuxyY+bPYXeFQ/jujlFS8kZ+fr0vD1a1bl++RcHfiJkjavIQPDA4OliocRefPZDJJuDjCWmZnZ0uTLTIyEqtXr8b06dMlSiB/f38MHDhQKsC4fPkyS/+1bt0aZWVlWLZsGe655x4phdalSxdpI5o0aRIUxZ1+pUXaW/+HhIQgOzsbFy9eNHx3v//+O28IRJlCm5xRWrNGjRoYMGAAtm7dirKyMsbWeFPiEPufnEGqTj19+jRycnKgKO70HZ3wU1JSdKk16reIiAjY7XacO3cONpsNQUFB6NChQ7kVy/S9jh07SnyfJpMJnTp1wrlz53T3Syd10dGaP38+NE3jTYNO/OfPn8fatWsxevRoyWk0ug9yfKlQwWq1YtOmTdJvU/p75cqVkiNA1d4ih2CPHj34AGQymZCYmIiFCxeWm34+c+YMHnnkEZ2TYDab8cILL0iffffdd6X3P2zYMN0zecOi/REmRs9F3HRYWBg0TcM777wjHfQaNGhgyLF67do1PPjgg+wIhIaGYuHChVizZg169eqlo6kJCAhAq1atMGfOHC4co3GsqiqOHDkCRXHDQAA31Q1hU9PT06WoHr27mJgYDBo0CNu3b+dIlSetzfDhw6VUq6ZpuggpHeBeeukl6RnpYJKYmAjguiRjdnZ2pfr6iy++0PGq1q5dW6cOFh4ezpFzOkB6YoQjIyMxadKkcoUUAPfBmqjPCHd4/vx5npck+uDr6yvN1W7duhlG74uKivDQQw/xe6a1e8KECSgrK0NISAhUVcWJEyek71HqNygoiL9jtE7R2iyunyILSHFxMc6cOYODBw9i5MiRUjFT586d8dBDD6Fdu3Y8lunffH19UaVKFTidTkNd+xtpdrudn8FqtSIhIQH16tVD8+bNpTUyLi6OOU4rou26kebn54fo0WvKjTB+feFnHLt4Tff3zi99CgCY/G5uud9PffGTSo3p/za7KxxKwL0B3y6ptco2OuU+++yznOIUZb2Id5KiXlWrVsUPP/yADRs28GRPSkrCX/7yF+m67dq144Vu69atEv6RFirSBBY3GJF4muzKlSt44oknpGIVakSZ4+vri2bNmnH/mc1mNGvWDO+8845X8DUBy0Ui9sDAQLhcLmzbtk1Hr0P91ahRI0yePFmKzB0/ftyQgJtacHAwdu3aZXgvlJLxVhkt2rVr15hvjhYW0Rl3OBxeyZSJNFlRrtOBUPTY086dO4e1a9dizJgxaNGiRaXGUkBAAAYNGoRXXnkFXbt21WEIMzMz2WkUi4SMCmFE7s5x48ZxJMDHxwc5OTl8T1FRUYZcfyUlJfD394fZbObUHqUqa9SowZuQyPv5/vvvo1WrVlL6sHHjxkxFUlBQgHHjxkm8pFWqVMFjjz2GCxcuYOvWrRzpSUhIwHfffYcFCxZITo+vr6+hPjJRZP07TEzDk6whzaGNGzeyJJ3T6ZTmSuvWrXHq1Cnk5+ejV69e/L6joqK8jkGXy4W3334b/fr1Q2RkpOGmTlATctY3b96MjIwM1KlTRwcloPukd1SeeUb6d+zYgZ07d7KzTFE1cnxMJpPhoYLgOuSIN2nS5Ib7XDxIerY6derA5XKhoKAAmZmZuixK9+7dbximIUrGPvfcc3xYowIoABKZu/ieW7VqhW+//RZXrlzBvffey++5Ro0aeOutt6BpGkdBqUrf81AFXNdSb926NUpKSiRM+KRJk3Dp0iUuyhTHRUpKSrnPduTIEV4D27VrhxUrVrDqkYhfNOozSpVHRUWxUx8XF4d169Zh8eLFmDFjBkczq1evzu9M3M+qVKkCf39/+Pj4VCiAcbua3RHgtRCH2g8Fxfj0b1d1f2/y/B4AwLy/fFfu92Mnf/SnlGm8axzKP5LEvHr16vj73/+OoqIiKQ1HtBy0WIoObqtWraQF1uVycRRKbJ4ksYC7yttsNkv6zWKrbEHCqVOnDFUsqNWtWxdLly6tdKUsyfdRo+pWMkVRMHDgQOzevduQ89FzQxSrQsVmVOBBNmPGDCiKLAdWke3cuVOXQhk4cGCFfUi4MsJweXMoPe3kyZOSYzR9+nSm1YmMjLzpRTQmJoadxvXr15e7UW7dulXq+549e5brRBC2l/qGjHC4DodDRyQPuCNWK1euRHJysuG7dDgc6Nu3L5N3i1ZWVqYjxPb398f777+Pt99+m//mGbm+EQWc222kOCW2p556SkqpNm7cmOEYR44c0SmzKIo70najik6apmHHjh06vW6jZrPZUKdOHaSlpUmp6RuhlwJkWhta4+bMmYPw8HCEh4ezsEFkZKTXexb10G+Ed9PTRDUrb83hcLDTK8rO3qgVFhZKkeZ69epJDiVFiYnM/Ouvv5YUzqjVqlVLd/AXI56elG9kFHkUlcv279+vi1z36tVLEkkgMYLyjEQoqDmdTuTm5jLFEamrGZnIk5mYmKibi3TAmTx5MgBIgQZPnXDRDh48KN2TEQzkZps1LK5C+p8fCoqx77R3h3JuBQ5lzOSPcDL/HxX2/X+bqcr/7LYbgHL/3WQy6T5n9J2KruN5TW+fv5Hr/P777+Ve/3Zcy/O6v//+u+G1b+S3yrv+zZjnb1fmWW7F6PdUVVUAcJ/cjuv+/vvvFV7vVn7rRvuYfqu88eqtvz3/bjSX/husvLnvbS24mWe8kXFEv0Gfvx1zx9s1yrv2rf4+2Z2es55W0Xru+dnbOWa99ZVnH/zRa6r4+0bf81wLxPu7kfd3W/vSbK3wM//4pUwJ8rPp/h7ka/1///5bhdf47V9/7Pj8Q+xOear/afbvSHlTpGTGjBlSyptwH5TyJvyOt5T3rl27pOumpqZyynvLli1SioBSNnl5eVJky9/fXwI8k+Xn52PUqFHlprx9fHx0Ke+mTZti8+bNN5Xy3rp1q2H0lUjEp0yZIgH8c3NzWQPaqJFyRHkp75YtW1Y4RgoLC1lJSFHcKVTPAqi33nrL8Ls3kvI+e/Ys3njjDWRkZEgV+OW1gIAAPPjgg1i2bBm6d++uG8uZmZlMGF5RylskDB8zZgy6dOkCRXGnvPfs2cMYpfJS3sTrR0VTW7ZsASCnvMUIzbZt29CyZUsp5d2kSRNs3LiRU96ZmZm6lPfQoUM55U2pxJo1a+L06dO6lLePj48Oi6wo/96U9wcffMD3YbFYOPKtqio2bdrERSJOp5ML3EwmE9q2bYvTp08jPz/fMBVqZC6XC5s3b0ZaWhqqV69uGAEmWiYx5T1mzBjUrVtXxzNLc339+vWVSnmLSi4Vpby9ZU0o5U1j8mZT3p5KXNSSkpLgcrnw97//HVlZWToqoNuZ8ha3VzHzIxYyErThypUruP/++7nfIyMjGWrgmfKeM2eO7h4o5d2mTRuUlJRIvLCTJ0/G5cuX0ahRIx5f9Ps3kvJOTU3FypUrK53yJoWe6Ohovr+4uDi88cYbrGMvprzpnYn7WXBwsJTy/iNqIfwia1cYXXzLS1HOmI3u4rHyinL+zBHKu8Kh/E8pyvEshPAsyhHvsTJFOSJ1x40U5axatQrPPPOMVJRDCjPEU6goCvLz87kop1WrVkw0TOkcmvydO3c2LMqJj4/nFGV5RTmzZs0yLEQA3CkwUcf4m2++YZ1xb0U5/fv3x5YtW264KIecHSJAPnXqFKvPVKlShfuxUaNGXotyqlWrBrvdjrNnz3JRTnkSkdQiIiLQqVMnHaayc+fOhil9cshFx3LevHnQNI3HiFiUUxlJQ9HZpKIci8Wiw+xRUc5rr72Ga9eulVuU0717d6koJykpCYsWLWLePyM7e/YsBg8erGMlUFVVt5mKRTlms9mwKIfUmv4d5q0oJzw8HJqm4e233650UY5YrFG1alUsWLAAq1atYhJx8ZkDAgLQunVrvPDCC5LGMa0hX3/9NRRFX5SjqioeeughNGzYUKL3UVUV0dHRSE9P1xXlUJrSZNJrTWuapoO+3KminIMHD+oYBmrXri2pVCmKuyCK5hQV5ZAakLhOPvXUUxUW5fzzn/+sdFGOON+6d+9u+J6LiorwyCOP6IpysrKyuCjHZDLpICFGRTmNGzfGlStXpM89/fTTfA+eRTm///47ioqKkJeXhwMHDmDEiBHSPXfq1AkPPvggUlNTdQfaO1WUQ9RrycnJaNGiBTp16sQH3vj4eIZH3NainMDgCjGUj65x0waNfksmMt93+mqlaIP+h6H8L7b/FNogcdH3pA168sknpUlIusSAnjZIdBCdTuct0QZ169ZNog0SnVRP2iBRPaGkpATZ2dk62iCKWNntdh3RMbXK0gZdu3aNr1e/fn2JNshqtepog0JCQm6JNigoKMiQNoh0xAcPHszRZFVVMWLECLz++uvIyMioFG2QWAjz8ssvM23QO++8gzVr1vDGJFbQV4Y2SIzeik52ZWmDUlJSMHr06ErpZxPRcHR0NNatW2dIG+TJ/xkVFYWpU6feVtqgefPmMW2Q3W7H6tWrvdIGiWTef7RVhjaI1F/o3ZVHG7RgwQLDzTM4OBgdO3bEkiVLdE5QZWiDSHv7008/lb4r0gZ5HmCDgoIk2iDilDQycoTISSiPNohIsStDG3T69GkMGjSIM0DU2rZtWyFtEBVwedIGNW7cWEcbNG/evHJpgzydXqINImEC+m+73Q6n0+m1n8Rri5XnxBcs0gb9+OOP+Pbbb/Hpp59KmRSiDRo4cCB69OiBtm3bIiUl5Y7SBtE8r127NkcdbTYbevfujWHDhmHChAmYNWsW0wbVq1cPubm5t0wb9Pnnn+v2xNvRYseuqzDC+FneT7hW4sLT7+Yi/bUv8Nb/IzYft9k7sfn/qrz/y+0/hdicHA1PYvPPPvvMK7F506ZNmWerXr16vGioqoqnnnoKQ4cOrZDYfNOmTZIyjclkQkREBN+Pv78/pk+fDk3TmG+RrmlEbO5JV1FQUICZM2dyGl9sFOFo0qQJLl68CEW5TmxOqbcbJTYnxQ6R2FxUXUhMTMTZs2fx0ksv6aIViuJ2Ort06YLFixfz5kKRlSVLlkBR3KkdMkpPk7MUFhZmKKtHizSl+ClSWbNmTd2zeRKbk5NmtVoxdOhQFBcXY8eOHTdEbB4aGgpVVaV7s9vtt0xs/tJLL/Hm6m3RFqlFPJu3yHN55o3Y3JNomlp2djY0TcP777/vdf79pxCbJyUlSXRIXbp04Xd07do1rppv0KABfvjhB7zwwgto06aNzmGqWrUqEhIS+J34+Phg3LhxlSI2/+WXXwC4x6FIbP3xxx8bPocnsfnUqVMNic1DQ0PRvXt3vPbaa3z4IxOJzcVxdObMGQA3Tmw+ZswY6YBO495msxkSm9OYGTlyJHJycgyJzX/55RdYrVaEhYUBcI+31NRUXitVVUWjRo2wdu3aConNxSg9tffff5+JzSdMmIDnnnsOEyZMwNChQ9GvXz907doVrVq1QoMGDViLXVxHb6Z5IzaPiYlBbGysVM2fmpqKwYMH83pUo0YNbNiwgYubVqxYUSGxOWWPQkJCvB4gb4bY/KuvvkJOTg5XixOx+Z2CsYV2yyhXJSdmslt6cc2Bs7haVIpfy/6FU/9fUYXSi//jofwvt/9U6UVxAyacy++//w7AvSCRwyV+jqQXfX19+fny8vJ4cXQ4HHj99dc5aiNiUWiBInyfpmmYMWMGR/TERYsWGlExJjc3lzEtM2bMQIsWLbxKLzZr1kzaAMPDwzF58mTExsbCarVKuMGKpBfXrVvHf/cmvUgRO2/Si7RwNWjQQIcVNZJejImJgcPhKFd6sWPHjmjcuLEUOfviiy8AXJde9PX1NZRepEixKL04YcIEnTOwbdu2G5ZepPdMG6jFYsGgQYNuWXpRJGrOycm5IelFSqN36NABY8aMwdq1a71KL1KaU1VVZGZmGmL3vvzyS+53sSKZUrbffPONzuH5o6UXz58/L/2+6CA4HA5kZWXpiLzPnz+PadOmeZVeTEtLw6ZNm3TSi4sWLWL6G6vVisGDB+P//u+6EkezZs24vzylF+nvNyO92KNHD1y5cgVLly5F586ddRQ8RLa+aNEixhiS9KJIYUPVzhVJL8bFxfFhW1Hch2FRejEyMvKmpBdbt27NfUrzY9KkSdi5cyfWr1+Pl156Cb179zbEmVPmITIyUuKqvZlGa56n9GJcXBzq1KmDqKgo3WFKXH8om7Ns2TLD6vgbkV4Uo+QVSS/OmjVLuqegoCAJfmVk3qQXc3Jy8Nxzz6Ffv36oX7++LqtGjaQXRZ3329msIVEVOoa30v6nlPNfbL/++itKS0u5HTx48JbkrG62DRkyBMOHD5c2QkW5nlomKywsRP/+/aXPjBgxAsB1bORf/vIX/nyTJk0YKC3+XlxcHGbNmsVSa7SIiwUvmqZh/vz50veqVauGgIAAREZGIi8vD5MnT0ZKSooOtB8VFYUBAwbg8ccfh6K4cYZius3pdLJjJV7/4Ycf5tRyXFycdC+EDQwMDNTJPJJmrKcqBXAdZzp27FjGQFIE8vXXX4eiuHGgIgjfm8NIEZE2bdpg/Pjx2LBhAy5evIitW7dCUdzRYrL8/HypCGb58uVcGGKz2SSH8urVq1JkJDAwELNnzy634OGtt97ilPmVK1cYv3js2DHdZyliYjabGR5BkWNVVdnJj4+Pr3DB9zQx/Sb2m91uR9euXSWH3MfHhyNt5Ez6+/uXi9kU03GJiYleCyNyc3OZgHv//v0oLS3FvHnzdDJ85KyJcyI4OLjSlFe3YmVlZYZRbHr3RJ9FTprdbpc+T+OP/ruy0dV169bx+zabzejduzeuXr3KjpDIDZqfn89Ot6qqiIiIKPfaBw4ckPgVvVEYlZSUMNl6eHi47p0nJSXh+eefx6VLlyReQVVV8dlnn+n6cdmyZVLxh9lsRteuXfHZZ5/h5MmTktrT6tWrsWDBAkydOhUZGRl46KGH+IBCRWSqqqJatWpSZud2rO2eThm969atW0t/z8rKQnBwMOx2Ow4fPozz589zxJiMChq9EfK/+uqr0lpMfUBO8tixY3XfWbRoERRFwcSJE3X/9thjj0nP4ikg4OlQbt68GYriLkAiE9f4Pn36eF3TfvnlF+Tk5Oiw/UbNZrMhPDycxzRFpLOysvh6eXl5UBTFK+/ozTabzYaIQc+Xq5ZzM+1/Wt5/Uvt3pcJpIRAl8iwWC44cOYILFy6ga9eufF+0SdKpNCMjA4WFhVAUBR06dMClS5cwfPhww7C/qqrM7SU+s6LoucyI944cMKNmNpsRHx/PDhlxaorpMMI+AcDRo0ehKNcLIrZv3y6pwIgb/eOPP46ff/6Z9WsbNWrETjAZbdIBAQGGaJ4WEAAAIABJREFUi1VJSQksFgsCAgIwcODAClMhTqcTCQkJ6Ny5M0ePatasiaioKOneiGz96aefZryWolwvtiJ+uVatWvEGTc6UqqpISkrCtWvXJLUOh8OB5cuXV3qsUh9TNNAbSTsVENlsNl70V65cidWrV0vP1KZNG/ztb3+r1G9rmoZRo0YZ9mH//v35XYSEhCAwMBDr1q2T7tVsNktO3Pnz57F+/XqMHTsWHTt2RHR0tCHPJjmbcXFxHNkkNSNVVZGTkyPdZ3BwMKxWK7KysiT4heemdaedyh9//NFQ67179+7M1uBwOHSRrICAAAwdOhR79+7lPj1y5AiPKc90YHn24Ycf8lwS1ziqEj506JDEOkHvl+a0aCUlJRJumFgQqlWrppujRvbbb7/xWPS8H6P1Nzg4GDExMV5hJTfbRFgGOcYBAQFo0KABFyeaTCZ07NiRD209evTAxo0bsXv3bhw7dgyXL19mDOCQIUPw/fffc1SQmp+fHwYPHow2bdrAZDIxTvWDDz6A2WyG1WrlQkXP1DwA5naMjo42XOdEnk8Rv64o7kyMyWRCmzZtpO9omgan0wk/Pz/dNT2zYa+++ipDMmJiYpCbm6tzKJs3bw6TycTvX+SAJcgPya1SpLFq1aoVBnFq1KiBefPm4cCBA7psAmW1bDYbNE1DSUkJVq9eLQlR3O4WFlcH0RO3VVigcyOt9rSduFhY8bz5b7W71qEE3MU6fwTzvmez2WxwuVyw2WyIj4+HqqrS4lqnTh3s3buXQcnfffcdOz0NGjTQ4alIKpCwkitWrOCoREREhJTapA2BqFSGDh0KRblORG10v40aNWKsU0lJCRwOBywWC15++WUpeiYaOaee+L/ExEROMxv91qhRowzfFRXGZGdnY82aNcjIyED79u0RGxtbbnrac1N59913pevSYtmgQQP+m6Zp2LNnDx599FEd2brdbucFfc2aNVzhevr0aUmGjpqPj490bw888MBNjVWKZimKcXSSjD6Tm5sLRXFHSGh8ZGVlMXUIvdfDhw8bXuezzz5Dly5dpE0gKSkJr7zyCs6ePcsFRB07duTfopQlbVDUXnnlFd31NU3DmDFjeMz17dsXeXl5WL9+PcaNG8cFQuVFNsnZpIMKjZ2SkhLecI1S8qqqSvjT22UbNmzQ/Ralcz3nVp06dZCRkYGDBw+yY2B0T0VFRUhMTISiuCPjN0L0feDAASQlJfFvEq6PHF5yIF0uF+x2O4KCglBWVoarV6/ixIkTyMzM5PdfrVo1PP7443jsscdYQMFms6F+/fqoXbs2oqKiEBYWhsDAQPj5+emiwzfTVFWFv78/oqKikJiYyM6bSF82cOBAzJkzBytWrMCWLVuwb98+nDx5EgUFBdA0jXHR7733HkfiAgICYLfbJaaBffv2sRObmZmJwMBACVqjaRo75Pfdd5908I+NjcXKlSsxdOhQHVzBbDYziXtOTg5rzyvKdfgRWXFxMa+tnhH6Y8eOSbRMRH4uEodTs1qt0hpB9D1iUSXgzoTRvkLBC5JvFSu8aX4RjZHFYkFiYiL27NnDDBzi3DTa7yIiItC4cWMMGjQI8+bN433HYrFwtiowMNDrWCbBBHp+z9+Ijo5m6MPtbKEt+tzWCOXmwzdGSfXfZne1Q/lHqueIrWrVqgCuF1KIk3Hbtm18fz4+PoiKioLL5cL8+fN1uLDGjRvj0KFDaNKkCTs5VNlLleN0/V69eqG4uBhvvvkmLzrib9tsNt58v/rqKwZXi5ilJk2a4OjRo5LSgq+vr2F60ul0Ijw8XPd3Usog9QUxVakobse2S5cumDlzJp544gm0a9dOojcy2nAo0jh27FhYrVb4+/ujuLhYhzcym83SveTn53NKvqIK5M8//xyjRo3iinrP644YMQL79+/n4hDRCaV+njp16g2PUTKKXCiKO/Vj5FiIuL1WrVrx7zocDhw6dD3Ncvr0abRt25YX/9q1a2P37t04efIk+vfvL9Fb0XOIEAvAHTEmOUzaiL/77jsA7rFHfWQymSSIAODeWGnjjYyMrJAn8sKFC+wE9erVC506dUJCQoJXZ5PuJyEhgaNvRowDCQkJUlT9Zu3EiRMV0paEhoZi4sSJ7NSIMBcah35+fl4dRqpU9vf3Z8oYl8uFS5cu4euvv8auXbuwYcMGLFmyBDNnzsT48ePx6KOPckbBcy7Y7XbGY98q/MfPzw/BwcGIiIhAbGws6tSpgyZNmqBdu3a499572SG22+2YP38+Vq9erVM88tbi4+PxxBNP4NChQ3C5XBx99vX1NeRI9TQ64BUXF3P0XFEUTJs2TffZq1ev8lpDkTYq/qNIGEERFMVdsS/SpZEdO3ZMR+MUHx+P2bNn47333uN5KTJzAOCAwNq1a/lvnrRMI0eO1EUZ6XqLFi2SWB7q1q2L3bt3w263Izg4WPrOgQMHeE5lZGRA0zQ4HA44HA6+fm5urqRAExISYliMJe4nqqpi0KBBGDhwIAdKlixZIv32kSNHeN42aNCAnVRFUTB69GgA7kj/3Llz0aZNG92hUFVVdO/eHatXr+bD7KRJkyR6rNvVzGYzAlo+gJjJH91ypPKVT7yzIPxZ7K52KIHr9A7Eu0cT93YPTKPNjP67Q4cOWLVqlVTVS1Qs4eHhvGBQFTHdX61atQC4MZT0N5FmpqysDCtXrvQKbKY0EOGhatWqxTJaJBk3btw4nDx5ktNAnn3Vp08fXZ9SZXpGRobu31wuF1OGiJO2vD4npyY5ORmZmZl46623vFYPk9Qi9ZnT6eQiH0VRMGvWLP4snc5vVNIOkGXdKlNpWL169RvGLYoWFxcHVVXxzDPPQFGMU47EGSqOLVVVvXLpXbp0yRAcHxYWhtGjRzN/H1X7V9QPomQcpaiob0pLS1FUVMQURxaLBTNmzKjwufPz89lxNNKwfuqpp6Ao7ujouHHj0KlTJ07ZVXYeh4aGYuXKlTck0ehyuTBjxgwdtyw9m6K4C1DoIJCZmYmzZ89i9+7dUBQ3TnThwoWYNm0axowZw1g7f39/NGvWDPfccw/i4+NRrVo15ve7FaoXo2ihxWJBVFQUmjVrhvbt2+vmYYMGDbB69Wrs2LGD8X7imCOsX2JiYrkwAnICw8PDkZ+fbyhqMHToUHYQDx48yLARo0b94E3TXLR69epxIRKJD1gsFq/vWtM03HvvvTx+zGazLvLVtGnTcrMEACTaqrZt20oFkuIhfeXKlQCuF7bce++9fI2NGzeyA5eUlMRZIs/7pfdrs9l4znbs2FF6l+SoAe5DPUGt1q1bh927dyM7O5uJxX18fCo8ZLRv356vQX1BuG3KiH377bc8Fwke43K5EBQUxPf2yCOPAIBU9OepKS/SadGYGzx4MIDrGMqYmJhbKogqr1mtVjjrd0Xc0+9XWPlthJmsPW3nnz4ySXbXO5SU8qQJHRoa+ocU7IiV16SnSlW9nos/Ley0CB46dIgn5IgRI9g5a9euHdatW4f77rsPEREROqJ0uq6oXrN48WLuC4fDIenZqqoq4XEuXLgg6c/SxCfyXjIq0Pj888/x+uuvc6SR0tNG/UGgeUVxR1nbtm0rpfbNZjMmTpxYLtHwmTNnOBpCbdKkSQCA559/nv+WlpbGxVHeOP8qYwQrGDhwoIRn8nx/YuGBCGSvrFExUHp6OoDrTlxUVBR+/fVX/hxFfaiPqQjB04qKijBlyhTpYCCqUISGhjIZtUi+b2RfffWV9IwUhaXoJbVevXrxgt+iRYtKRQYLCgp4QxKjNmTEt0p8rmSEJQPcYzY8PBwWiwWdOnWq0Pm32+2oU6cOHnroIUyZMgWvvvoqVq1ahVmzZqF79+6Iiooqd33wLDS5mbVBVVX4+voiICAAoaGhqFGjBmrVqoX69eujfv36/Azx8fHIzMzEzJkzsWTJErz11lv4+OOPcfToUVy+fJnVWVRV5QhqQEAAAgIC0K9fP75OREQExo8fzxErp9NZocNERpRE9erVM3TSLl26JI1F8Tl79OjBGZNx48bpvnv8+HFddsKz7yMjI5Geno7333/f0KkNDAxEjRo1AABZWVk8byoyz0JFRXEf/H/44YdK9Qsp/VAltKZp2LBhg44ZQlHcMB6TyYTQ0FCUlZUhPz+foSl2u50FLozs8OHDUBSFnXTK+GzevBnnzp2T9gCHw8FrKjnL3sZgSkoKBg0ahPnz52PmzJn8jsX9y2q1Svyg5LD37NmT//bLL7/wsyQkJLDjSLCYyMhIQ7zsPffcgw8++ABFRUWwWCySMAXtdy1btpQisrGxsZLS1u1uLTr1QtjA59zRygocS1LQeXj1oT81ZtLT7nqH8ug338IaFoelmz6CNSwOr73hJvkVMX53iuvqnXfegaIoePLJJ9G7d2+d8ktQUJAhjyBwPRLnrZFCy8KFC3nzdrlcOtUIkQqCFnmyKlWqSBN5//79MJvNsFgs6NKli9QvLVu2ZKfR2yZJlePi38UIZ1FRETtpL7/8MgBw5EYsrqhZsybmzp3LwG1S46DFU8QJUvTxypUrUBRFqvKOiYm5pbEjnohNJhN69uyJ/Px8aJomRWA9C0NUVUVqairz2VVkERERsFgsUjpUVCOijZQ2X88I8A8//ICysjIsWrQISUlJ3E8+Pj7o0aMHK2WUlpZi1KhR0nNNmTKl3Mhdnz59oCiKxB2ZmpqKdu3aQVVVKboTEBCA9957r1J9e+3aNU5Te9tQiW919uzZ2Lt3L95++20sX76cMXLDhw/HgAEDeEw1aNCAo2W3A+PnuT6IjpvdbkebNm04VZqcnIyJEydi9uzZHAGbPn06Tpw4gZ9++gn/+te/oGkawsLCyiXyBtxYO6JLSUpKMoRrEJWWyP4wdepUydkuLi7Gww8/LDkdVqsVFoulUuOSjA4yKSkpPFZovImcm+L8mzt3Ln/f4XB4VbKiiBS1tm3b4vjx4wwB8CzyqVatGvr06YMNGzbA5XLBZDKhffv2KC0tZQJtghx5szfffFPHq1ueAIOR0f4hZkTIXC4XXnrpJd2+0rZtWzz88MP89549e1ZY+DR79mwoipsQXIyKVkRhRDK3Dz74IObPn4/PP/8cLpeLYQEi9y8FXYj4XfwNT+qxyMhIidaOTCxK9Jw7NWvWZKnIZ599lvt+9uzZvF9t374dly9fxogRIyTYAf336NGjpdT5nWpWqxXR9Zqharcn0GDae7o0eOxkN2n5jO0n/7TUQOXZXelQ5v34f5ix/SRS539icLr4ENVHvoYH5m2BNaT8aMStNorkUatWrRomTJjAG6WPj48UySkoKMCLL76I1NRUXWGOorgLMFasWFEucP/777+XKh4p5U2KA2IasmHDhrBarThz5gyeeeYZ/l61atW8RhppQsfExCAzMxMbN27E5cuXAbhP/XQypk3Oc6EuLCzkReL555+XOBd37typIxqOj49nRzwqKgpHjx4FcN3ZEyOaZrMZjRs35gXbx8cH+/fvv+Hx88orr+g2yipVqqCsrAyapjEWip4xKSkJhYWFWLhwoSEBPJGtL1u2TOccrFixAopiDB8QU46PPvooX+/IkSMoKCjgdyxWrlssFrRq1apcx07EvCmKG6+WlZVlyOPodDqZcqasrIwjM0bzZteuXTh69KgO75eZmYkhQ4agb9++6NKlC5o2bcrvKDAwEKGhoRLe72YdQavVKhWf0eanKG5n91Y3I5KGU5TrLAAEHaH/B9xFQyaTybBa//Tp01BVFUFBQRXyZtI7dzqdOgeUNmhqBFsglZ5vv/2Wq+YVxQ3JEKvT69Wrd0PV8BQhq1Wrli4KZzabERgYyFi4li1bSt8lah8Ri11aWsrzKDY2Fnl5eRzdslgsmDNnDkdHBw8ejPnz5yM1NVU3L+n7JGlas2ZNHZYa0PN50tzxxJBX1tGm9bk8h5CUejybyWRCly5dJHo3wD1uKD3dt29fJCcnV5jmtdvt6NSpE4/tRo0a8Xrp5+eHSZMm6d5zZGQkzGYzr0XkUIr0U4SRVBR39oGe88knn4SiuAuAhg0bhpo1axrOK6fTKWVPysrKoCgK7r//fhQXF0sY1KCgIAnLGRgYyAc1gvdMmjSJnes72ei9Wq1WBAYGwmT1wbHzf8fRCz/jZP4//pRyijdid5VDebGwBA+vPiSFpL22pz9AzOSPEDbwOdhDqnstDLkdLTAwUCJ6Ful1fH190aRJE52kYEREhA6sbDabDVODZJqmcSr88OHDEi6SHJ0+ffpwpNFbZDYgIAA1a9ZEly5dkJmZyVFEceEYM2aMVCFJUZmQkBB8//33vFkMGDBAd5+ikoyi6KuaNU3DK6+8Ijm1FPUjHB89D8nMAZCUFcaNG8dp3hdffLHCsaNpGrKzs6WUEW2CtDH07NmTq+jT0tLgcDi4ylt08s+cOSNRC3m+R1ow582bB39/fx2Ru2h0+KDWokUL5OTk6DBUycnJlcIJjh8/HoqioF+/fjh06BAee+wxia8wKSkJAwcORO/evTkSXKVKFcTHx6N69eoICQm5bRF9SmdXq1YN8fHxuOeee9CsWTN06NCBU1u9evXCtGnTsHDhQqxdu5YpTO677z7u8y+//BKKcr0QgzC+cXFxhilI8T14PouoMDVs2DAeD57V/DRGxMNORkYG3njjDZw9exZJSUlesXyLFy+GorhxcBUZUUKpqspUVGfPnpXuVYQtEDabDm2BgYFcIKRpGh/iqP9HjhxZYZRs7969huONYEQDBgzgyKTT6dRdj9K2xLX7t7/9jaPTvXv3lvpox44djAmPjo7miLBIwVNUVIRly5YZ4jDpkDRjxgwUFhZC0zRMnz6dsbA+Pj4c/aU0vkieHRwcbCiHKhplexSl/O2V3rMnw4cn1MfHx8dwTtntdsa9UqTRUy2KMjcWi4VViDRNw5w5cySBhREjRvB7ITnbtLQ0ANcdSmrU15cvX2ZuY6vViqZNm0qOH+1f9evXZ5nZLVu2SMpg4rv18/NDrVq14HK5dM6hj48PevbsyeIRAKTCLpFUv3nz5nc8Uim+sz179pT7nu8mu2scyk2HL6D2tJ0VO5IeLfqp9xH39HY4G3S77XqhiuLejAMCAgC4F1JKZXpuTpGRkRg4cCC2bdvGzgWlIIhqoiLOOopapKSkVFg9HRAQwJsARSbfeecdw+tqmsZ4PDHFZrPZ8NBDD/Ei06JFC466kGJQ/fr1Da+5Z88evp/NmzdL/zZ37lzeLFu2bIkZM2ZIm4evry9HQVVV5WIYSsn269cPgKxnfd999xlu7i6XC5mZmRy9cTgcmDp1Knx8fBAdHc2fI0oRRbmOIXI4HOzYemr9Am4qIBpTDRs2xNKlS9G7d2+JeJn6sXnz5pg5c6YUxTl27JiuKET8nvhv7dq1Q+PGjVGnTh3GGgUHB8PhcPDGdLNjmCqGq1SpYhiZFGXo6tatiyVLlmDDhg3YtWsXvv76a1y6dAkulwulpaU8jsor2MnPz4fJZELt2rV1//buu+9CUWSqItrgY2NjUb9+fQmzZTKZEBUVxZGtIUOGYNiwYVI/dujQAbt379ZhvWhD7t69OwB3lEVVVdSoUYMLhCo6iIaEhKB9+/aSswlcl7ZbunSp134g++abb9gJGTRokDQWFUXBpk2b+P5EyMvw4cMNxzwVDlH0i+h5xKKy3Nxc9O3bVzrUxcfHc8SoR48eLDN7/PhxXhO8ZQQIL7pp0yZ2krzJgnrS2lBlv2d0n56VUsHNmzc3jGDSs06YMIHpacRCI6okJgUxs9mMt956y+v7WLVqFV/XyIj8/UbnGTFgfPLJJ3xvnrh3AOxkU59XrVrVsKAHcBfyEe7SbDZjwIABKCwsRO3atWEymZCfn8+Or6K44VkulwubNm1CWlqaLuNC2Eqz2Yxz584BuJ7upgNdaWkpfz42NpYpnsLCwgwFOhTFzQriaVu3btWtW7QmEF72j2iiDPDdbneFQ7n0k7xbKvcnnETVdg/fsUHpmboIDg7G4MGDMWzYMCiKcVUvnfSoKq+oqIgLboKDg9G6dWuWEfT8PXIayaEST3SxsbE4ceIEPv30U/5bRZXQFy5c4IXg6aefxsqVKyWsS82aNaUNiTZ5p9NpeD3CIFHk57333kNubi6noMTICtm1a9fw1FNP6Ra5yMhIdjQUReEUPOBWUaINOCYmhiEGxcXFePTRR9lBqlKlChYuXAhN0/DBBx9AURSJOJ6cdZPJxNFmh8OBxMRE5hstKCjAyZMnsW/fPmzZsgUrVqzAzJkz+Z2ZTCbExcWhVatWzM0mbgy30kwmE2w2G/z8/BAYGIiwsDBERUWhdu3aaNiwIVq0aME0Hw888ACefPJJzJ49G8uWLcPmzZuRk5ODEydOYO3atVJRl91ux/nz5zF9+nRe3Dt37sy0RHSYEDdyzwMC4Hbc6bpUSOXNSKNdpEIiI77Sd999FxkZGUhKSpLmlsViQc2aNZGWlgZFuU7yX1BQIEWKQ0NDkZGRIY1hRXHjHvft2yc5bQTLIHoX0QkUU94XL17Ehg0bMH78eC5a8uSgpeuJ3KoPPvig5Gwa2T//+U9pzNA8VhQFP//8MzZv3szrgMlkMtSYF42wtsuXL5eIv2vUqCGxRkRERCAzM1OC5lA60mq1Ijg4mPGOxCBhZNR3iuI+EH7++efl3h/ghu+IRXiemOi6deuyjCEpVp07d07X1579b7PZMHnyZKm/KZuzdu1ajjp748wVZSVnzpyJtLQ0JCcnIyQkxGvkLCAggA+8gYGB2LdvHzuN+/btQ+fOnaVK8XvuuQfLli2Dosi4dwASRRbRzlVkW7du5bWV4BiK4qYfE+ePiEGn+27Tpg1mzZrFOuXUtm7dytHNhg0b8m8VFBRAURTGeauqKvVLcnIyj91PP/2U5yXh/VevXq0rvqE1csmSJbh27ZqU5bvTrXr16iybfLfbn96h3HT4wm0lJg1v2eeODMqYmBiMHDkStWvX1ukOUwEOVfV+//33fPoWI0JGNCl+fn58srZYLHj99dclvVtN03iDiIuLw2OPPcbXEaXwKmMUiWrcuDHmzJnDFesi9qZbt24cZaN79IwskCPbrVs3nDlzRhdR8hZZITty5AgUxV2EYeSMUcGPaJmZmVAUtwPbpk0b/l6VKlUwcuRILF26FNnZ2cjKyuITfYcOHdCqVSuODtGiKHIh3mrz9fVFREQEoqOjERUVheDgYMP3LD5nSkoKvvvuO/z888+MOwsMDCy3z4jmpzzIhGjz5s3T3UNgYCCTc3fo0AGqqkLTNAkrrKoqrFarRIRfVlbGpNVG1b6inT59mscYmaZp2Lt3L4YOHarrd5vNhjp16iAoKEjSsQauU5W0bt2a+4/GPDm1Tz/9tHS9fv36oaSkBFWqVIHJZMLChQslzKeiuCNhlF40wlCS0fj87bffJGezc+fOSEhI0BXp0dhyOByIjY3lyOaaNWu4+lgsEKpVqxYsFgsrYdntdixbtgzR0dGcFfFmNIdatmyJSZMm6XS6Q0ND8fHHHxt+V9M0rgimuW82mw15aQF3xIoI2J1O5w3Tay1fvpzfX0REBK9vVJylKO4D8b333itxQIoFiaSAZTabpXfp4+OD5ORk5g+tV68eCgsLORKbkJCAZ555hp1GI75T6vvw8HDJIYuOjkZRURFUVeVMDY23uLg4nSOoaRrefvttNGvWTLrHyMhIHm+iAAIVIZVX4OVpe/fu1an/iK1KlSro1KkTO26e9vXXX/MhkvrSk+eX0tmeQRRiPSGO4rZt2wJwMwXQYYjmhM1mw7Bhw3Ds2DHpGrNnz+Y9UaxKv9Pt+PHjNzBi/7z2p3YoLxaWoPa0naj77F/w6qdn8FneT/h7sZtmZdGev+mcxRkfnMTRCz+j8J8u/Fr2L1y+9gs+OJ6Pzi99ypHK6Inb4Fu1xm0biOQcdOnShVNm9evXR15eHlavXo1Ro0Z5LcLxbF27dkVWVhY2bdqEefPmcfqAFnUjqS/geuEHpXD/+te/Sk5LeQoGZFRhJ26CoaGhfMrfu3evVHks4jc9SYaJc7GgoABvv/22VCywbt066bOlpaU4f/48Dh8+jB07dmDdunUsFZeWloZevXrp+poWOz8/PzidTq8Ypcq8O7om6S/T8wcGBkJVVfj5+bGz1qhRI0ydOhULFizAmjVrsH37dhw8eBBnzpxBcXExNE3DU089JW16JSUlTGxPCy79dvPmzdG3b19JDYWan58fVznT34wqToHrC7zIgVeReZM8q1evHvbv388OJZlnAYJIp0ILf2UonMg5Wr58OQYNGoSYmBjdoYEopkQteKpGp006Ly+P34uiuFNlu3btktLuFJmrXr06Dh48yJrS9Hsi9vaf//wnFEXGUlKlt6IYO5Q074wOOGTTpk2DorgjqaKzaUTqbjTOqXXv3p0xpYR39HbAoPEmQnx8fX1x7733Yu3atfwOFMUdeTKKFItVvbQGGTmUp06d4gOt1WpFUFCQ174oz4qLi9lBUVWV+UkVxe2kity9wcHBEtUUjU3KAmmahv3792P48OFcxFNR/9L7pmgardcHDx5EWVkZdu7cKUV2xQhxo0aNpCAC4Zhr167tFTtdVlbGBzXPAAC1/v37V6rA68qVK5gzZw5at25d7j5DUKHKmHgASU5OxokTJ3RKQqGhocjKysKXX34pfT4kJAQmkwkXLlxAWVkZnn76aZ1WuDiPPe8zMDAQO3bswO+////sfXl4FVW2/ak739yMZB4gkIE5IcwkgMwgEAYRBEEmAQUEZZYZUQahQQIIDYJANzwEQSQyiIpPEdQoIk+hEVGByIsh0iEdY0zHy+31++O+vVOnqm4SFPu9H7q/73xibt26VadOnbPO3muv/S+fZWPvZFMUBT179sStW7eq3T93q93VgPKhrTlImHsEbZ99G8U//Yycb/6O3R95vWNGgDLr+Jd47q0vMe6vp/H/TqT+AAAgAElEQVTA5g8wY99/4evvS/DjP93otOod1p+KHPzMbzIwjcrE0QQZGBjIYUOa6BcsWFApAfzs2bO8WzPim5GR+LLJZMI333zDk8qwYcN4smrevLmuvKLatDWchRBSWb9//etf+OGHH/Dqq6/qAJDL5cKECRMwdOhQ1rmk0md0jPrfRmHC6jRfoFHLO6Q+S0pKwnPPPYedO3fi6NGjOH36NFcQeuaZZ1jLMiUlRVqcCTjb7XYOtVHVo+qYejE2uk+jZI3g4GBERERg2rRpPjPwzWYzXnvtNelaz549K2ngVcfIg0D3npubi8uXL6NLly6SJBHJ05BpuX3jxo1jWSESKjay8vJy7N692xDEulwutGzZEgsWLMDVq1dhtVql8BrZs88+CyG84WitlJEQ8mbrwoULDBqTkpKkhUItnZKamopvv/0WAPCnP/0JQghs374dJSUlmD9/vsSftNlsGDx4MGvOAl5QYDabWcXAl1EIlbiQart27Rp27dolyXUZ1RJXezYJMD/11FPs2fR4PPjLX/6CZs2a6by1Wo4e4F3ISYKI5hc1LSYwMFAC+k6nUwcod+7cyXzJtWvXctZ6dTUwja7JKIQthDdaQfJY5JEGgDVr1vB8M2fOnGqFp33NHbNmzUKDBg1gNpvRrVs3KIqCmzdvcqIeeewcDofk3XvxxRchhJA4o6QD26hRI5/AnzbON2/elGgo1GrUqMEeT3WZxytXrmDBggVo2bKlNFcoioKYmBhkZmYy/1qd5S6EF5CrCxj4Mkq61Hohg4ODOXFPbeXl5dL80LlzZzz66KP8/aCgIEydOhV2ux0mk4nf1wsXLujuW+2RpWIP/462adMmfPzxx/jxxx+r7J+71e5aQHnp+g+GIeu0p71hGiNAadQ6r34XAJB1XOZhWkLvnJdS27p06cKeRnV4GgCHXiicCIAnBa1c0LFjxyBERVi8QYMGhpp15AVRH/vcc8/hb3/7G7p27SpNOK1bt8a4ceMwePBg9OzZE+3bt0ezZs2k0Lv6378U/FEzm80ICwtDzZo1JSHuNm3aYODAgXj44Ycxbdo0PP3008z3i4uLg8PhwIkTJxiMC+EFAJGRkQgNDcU777yj08Q0m83IyMjA/v372YMaFxcnAenWrVtDURSe8I2qhBQWFjLop2pGVJf9+vXrlY5bylL2tXht27bN8HuKoqBDhw4AvOCAvG8E3rV6fbGxsZyJriiK5M3zZVevXpXCSEZVkgoKCpifKITX60NhdMqu1iYSaTP9S0tLsWXLFvTs2VNXwk4IgVatWmH58uW6DU5RURGEqKi+oTbyBtL9t2vXDhcuXEBhYSFMJhN757Ozs3n8krd5zZo1ALzZ02azGf7+/ryYm0wmTJ06FXXr1jXM2v7www8hhAzywsPDMX78eOTl5aFly5ZQFKVSOZri4mKWTPruu+90n6sTbYiHR8+b+trpdHJt86rex9DQUIwePRpfffUVyyBp9QbJ8vLypFByXFwcnn76aT7XiBEjOGFOzaEkyR+Xy4WPPvoIQAU94HY8YVojDq26tW/fHt9//z2OHTuGRYsWMfgyAt5CeDeCUVFRaNGiBYYNG4ZVq1YhJycHbrebQ+Nr167FrFmz0LRpU12yps1mkxJd6Brod7WAjKI7tPkko6Smpk2bGoJKkkwjzjjxRdW0JSEqqDiRkZG6jXl8fDyGDh2KQ4cOwePxSJI9q1evxueff87HkyeVnrNRYlJ5eTnX6Vb3h1pOLiQkBOHh4YbPT/ssIiIi8Oc//5k/P3/+PGw2G8xmMxYtWiQ9w8OHD3OkyO12M3f3TtGPbqfFxsZi5MiRvztu5V0LKBdlnzfM6L5dQEnHr37zYsXfZ2UjpOsjd2zwhYSE8E4sICCg0vsiQCmE12tYXl7Ou8jhw4fjpZdewvPPP4958+Zx1Y7evXvzpGMymRichYeHc2j2l1w3ZTxqw+Px8fEcZg8ODkavXr0wePBgPPLII5g1axaWLVvGO0eS5NAucuHh4Thx4oTu/klc3Wq1ck1jrVHmY3h4OHOIKNNTW2Kza9euuHTpEtasWYN69epJHjZaAOx2O44fPw6PxwOz2cxhG7WouNZIvsNmswEA1z83ygg8ffo0+vbtK9EFoqOjsXTpUgwYMEC6XqNavrRLV5dI9Hg87NkymUxo1KgRatSoAZPJhNatW+tCW5GRkejduze2b9+uAzcejweTJ0+WeKVaKSStkVdGndS0atUquFwuRERESMkuJ0+eRFZWFjp37qzjoBFn65FHvO+bEYgl27NnD4SoKGcHAC+//LLkKQwNDdWV7ST5EUoqoOetFlffsGEDYmJioCgKe7o++OADKTnAqKqQmkN54cIFDB48WPLiU6hv4cKFPu8LqMi8JqoAGS2a6nc4LS2NJXv279/PYT8/Pz988MEHDHK1oIMAifYdp887dOiACRMm4MUXX9RlDRcVFWHo0KGSV494u1RuVQiBGTNmcPJQcnKyjocXERFR5RxoZPv27ZPebWpVzW0mkwn333+/BBors9LSUlgsFp239fPPP2dwo+3DkJAQ9iD7UuBo06YNFEXRJV4SZaVNmza6914NZEnLc8SIEfj4448ZFGqvxWw2o0mTJjhy5IjufKWlpbwhWbJkCQA5W3rmzJkoLi7GQw89xM85LCwMa9euxbZt25CWlib9ntPphMlkYn1eNdAl3V6ya9eu6ZLK1NehtjfeeEOiGtF8CVRwu8nJ0rhxY/zwww+VlvL8rVpVkYe70e5aQGksWl49QFlnzmEkzzuKzqvfwRvn8/H9D/9Em+XHpWNix2+5YwNPW2u7bt26aN26NVJSUpCYmIjY2FiEhoYa1g2ubqMEGfXLHh0djTp16uhCO1FRUZgwYQLmzJnD3svu3bvj5MmTGD16NJ+nV69enHErhF4ah/QpfVU6EcIrc0LeF/U1hIaGYu3atYY78+PHj8NkMsFut0shRKAie5wmVJKfUUtfCOHllBmV/ysuLsbcuXMNFyeqQy2El1+nLntoZOSdmDJlCgAv0CUR8MuXL2PEiBHSs6drrlu3LoqKingSTE1NxQcffMDAKDg4WPJyUNhOm/Xu8XiY92e1WhlwDR8+HH/+858hhJf836lTJ102c2hoKLp27YpJkybxZ7Gxsfjoo49gsViqTNQiDqVWdklNOzAKKUZERKBXr17YunWrtLiS2HJlpTeplnBubi42bdrE/WmxWDBkyBAEBARIUk/qZ04LlNYjrS7/KIRXwUBr6jrE3bt312mOCqHnUJ48eRI9eshSZPXr10dWVpZPUEPA8JFHHgEAplxQn5rNZk40IU8aRSSysrIMwcWMGTN0STDXrl3Df/zHf2DKlCno2rWrlB2unVMojE5gc+3atdIxgYGBWLx4McLCwqTvDx482PDdpmfoK8u7pKSEPY0kW1OZxzUsLAx16tThPoqPj2ewbbFYKqXx+DKSFlJ7zgBIHGdq7du311FQwsPD0aNHD2zevJnHCkUmjOTFCCx27NiR/0bzsqIoWLZsGY8jLa0nOTkZjz32GGbPnq17durxVl5ezvPLggUL+HdiYmKkTSFZWVkZMjMzdX1P17F7926mB5E+KgAuoCGE13u+evVqXifU7dKlS+yUuPfee+HxePCvf/0Ls2fP5ntU0xv69u0LwLs5p/UpPT0d7733Hs+B/85mt9urFfW52+yuBJQl/3SjdhUex8oA5T9/ruBMff19CTqvftdQSkix/naudOLaBAQEIDQ0FDExMezBqlu3Lrp06cLeETUY27BhA9fw7dmzJ3766Sepb7SadaWlpfzdxYsX8y5R7YEwm81o1aoV//+1a9ekl5TK2GkXwrKyMgQEBMBsNhtKngjhTTZQA93HHnsMkyZN4jBFQEAAFi5cqFt8jh49CpPJBIfDIV2resJq1qwZ/vSnPzEgUk9+ai+WL8vLy8Ojjz6qA1tOp5M11iozp9PJoOnEiRMcJqWJUgiv92LUqFG4evUqA5O//OUvvAiNHTtWOueSJUv4nPfccw+KiorYi2EkQO12uxnMTZkyhZNYSFBd7Y0sKSnB5s2bce+99+rkQex2O9q3b89jqyoxeHVSzuXLlzF37lzDKkHqsWtUDQio4Of68u6QkZdHzTUeP34890vDhg3hcDik71y+fFm6V6MEGbWu4O7du3WfJyQkwGq1StnUJB1UWZY3GdES1MCwZcuW2LNnj27cU3axVqLFZDJJz5+qqEybNo29Tup3wOFwwOVyVdqfZD/88AMsFgtiYmJ0YDMpKUnHl1Q/W19gb+XKlYa/RfWgW7VqhUWLFqF///7V4jSGhYVhyJAhWLVqlfQ8IyIi2EtKY5daddUrtOZ2u+FwOBAYGMjPh3iQQlTU0xbCq4dK88DSpUvRrVs3XcZ8SEgIlyr1VQ6WIixdu3aVygKrm8ViQZMmTTBjxgwsX74cQgiJIjN37lwI4QVa6enp0nijCNn06dP5eKrDri5lu3jxYvTp00eKpqgjbEJ4ecfl5eVSkikZ6W/27NlTGhs0Rolq9M4776C8vJzBZnh4OD/X8PBwvPfeexz1EcKrH7thwwae24y87f/OVp315W60uxJQns/7R5Uh7MoAZa9176H/hlN4fM+n+OxaEb7/oYwzvdXNGqEnQv+SRgTmWrVqIScnB4rirYSjXkxIzJk4eWTq+q1CVCTSaL+vNrVmHU3SlLRz7tw5COGVPiELDw+XOC/Hjh3jCYS+73A4DEHjBx98wGRv9fVQNQ9agGkBomM8Hg8WLlzI4UGHw4FJkyZJXsEDBw5AUbzVSEiKiErLURa3EBWlAwsLC3kSNeLZVWbamsJCeL0dixYt8llJxOVycca6NsO8X79+Enmc+j0+Pp6pBNqMdrLCwkIGn1arFeHh4TpJHLWpw1ZqvT8K3WptzZo1/HwTExPRs2dPndi6y+VC69atsWjRIklsHfDynEg6pCr+EoVa6f+NyttRXWJfPMPy8nJ+7nRtc+bM0W1wiGtI5zlw4ABXS3r66afhdDoREBAgjdOCggLYbDbY7Xau9kESLQBw8+ZNCFHhPdq7dy9HEpKTkzlUXRmgJHrEnDlzsHHjRjRu3Jj72mazoUuXLizHlJ+fLz0Hej+eeuopAN5N3LJlyySA53K50L9/f5w5cwZlZWWc+CaEQEFBgc/rUhtxHn1xeAFgxowZfN4OHTogKSnJZ6KhEF4PVa1atVC7dm3ExMQgKCjIEDTa7XZER0ezML+a46otHagWDCfwTRVfqAKMWhC9OgkmRvbUU0/xc1UneZE2Jek4UiPPMVlZWRl27NiBzMxMREZG6hIDMzIysGTJEly5coVFxI2KBpDOqraa1vfffw8h9JuwJk2aQAjBm5UNGzZIYFA93ognTlnn6hYbG4uZM2dyxOCDDz6Q+tZqtWLEiBFITU2VMti165V6s26xWPg8pPxRWloqJRwNGjSI30/iTKt/NygoCOfPn/epQvFbN6JQ/N64k2R3JaD8NPfmrwKU6tZw4ev4/od/4s2/5es+s0X71uu6nUahuYSEBBw/fpzFzAcMGMD3RELIRiCAFjACLmaz2WdlBDK32y1N9o899hh/RrtCAjykewYACxYs4InnyJEjkhyMoiiYMGGCDshS9Z8hQ4bA4/Fg/PjxPAHUrFmTifRGIucejwdr167lXb3FYsHw4cM5lPfSSy9BURT4+/vj66+/lkI+QUFBeOaZZ6TrobBhXFxcpf2jNhIQFqIi7K0oCk/waqFh4gtt2bJFt0MOCAiAy+VCaGio7jfUXofg4GD87W9/q/K6jhw5wt44s9nsk1NKyVla3qQWCF64cIHDdgEBAXjllVekz8vKytgDWKtWLV29ZsrAVP9GUlISxowZw8LvaWlpHI5duXKljtNKiwyVt1u1ahUv3ForKSnB6NGjpQUxNjbW50Zq9erVEELgyJEjku7oO++8A6BCPkkd8iPawdGjR3H58mU4nU4oioIjR44AqBjbamDidrsxdOhQKSSn9vwYmd1ul7xTpaWleOqpp6TsbZfLJSUhREZGwul0IjAwEFu2bNHprgYFBfksSKD2plannn15eTnsdjtCQkIMP//000/5XolWkJ+fr8sSrk6j8yQmJuKRRx7Bxo0bMWjQIH7OwcHBWLFiheFzDgkJ4fdy/vz5DPZmz57NnquLFy9K10We/tsxt9stjTuHwyFt6rTAqWHDhpVyjt1uN4elq1ORjaIc8+bNgxACy5Yt052TNEjV9o9//IMpRnl5eTzvjBw5EosXLzbMFqdGYF8r81ZWVobAwEBed3bu3MkJj/Qs77vvPqksY2ZmJiecUvKREIKjbkQJoA1pnTp1+LkSLUCrEasoCrZu3fpv1Z/UNqfTedtj6W6yuxJQ/loPpbblfPN3fFVQ8pt5KKs7wSqKgoCAAISFhSE2NhaJiYlISUnRCSBTOcKsrCxJ8iY3NxdlZWUSt05dBWPdunUAvFVvFEXhJAPyTlA4IioqihMb6tWrB4vFgtOnT/OEERISolvIaOKiUC4BiUGDBsFqtfLkXBkQVk9UJpMJffv2RX5+Pp5//nldn23YsMHwHOXl5Xy/VdW1BiokckwmE8xmMzweD44cOcLXe//99+uEhtXN4XBg586dHO6mfvjiiy/4N8hzIoQ3TF9Zxq/W3G639HtDhgzReebontX6gUIItGvXjs8xYsQIBkAjRoww5PGtW7cOQng9FqNHj0ZCQoLPpAcas5MnT2YZJJJAIXHywYMHA/ACXm02t8lkwq5du+ByueByuaRndePGDdx///3c59HR0XxtlYXFz58/Ly1a8fHxkofO4/GwXJXb7cbEiRMhhMCYMWP4mIsXLzJwPn78OOLi4uB0Og1/79y5czxebTYbsrOzfV4bqSkY8XoLCgok3VYh9EoK9N/mzZuzRNLUqVN9/t7bb7/N31EUBStWrPB5LNmcOXMghJCOLSkpQXZ2tuSJpmQMo3ERHR2N5ORkiVeYmJiIrKwsTJkyBd26dasU1NhsNuZsjh8/Hlu3bsVXX30FoCIhg7xT7777Ln744QcGaBaLBefOnQNQUciA3gmr1Yrly5dX2QcAcOrUKSmsTfSDbt268THkoYyIiODEqYCAAJ0kUlFREdauXWuYkObv74+oqCidl1+9HthsNgQHBxvOZaRooTXaYFK/DBs2DIAXGC5ZssRnudAOHTrA6XTq3kfqb+2ce+TIEYl+QJvwiIgIPkZNH5g6dSqPG7pHPz8/9u7m5uZyv3ft2lWiDlFk59eutb+2+fv7V1t+7W60uxJQ/vgrOZTa44tKy/HWheu/KYfSarXCbrdjzZo1WLBgAcaNG8cZ1DT5JicnS0k6AQEBv0oSwUizzc/PDw0bNmTPV3p6ugREkpKSsGXLFmRnZ3O9bTW/cvHixbyT7dixI4qKilBUVCQRrymxQYiK8nC0CFamR0h25MgRqT60ttWpU6fS7xPwNdrVq23Xrl08SSiKouOREjChkKzRtbhcLpw8eRJut1tKTBg6dCiACkqAEF4vwe0a1RkeO3Ysl6FzuVy68oY0Tux2u8ThWrNmDXuqExMTDZOcsrOzMWTIEF3Izel0Ii0tDTNnzmQC+ocffojx48cbSrIkJSVh7NixOHHiBGrUqKETzNcCXmrEt7t69Srr+9FzPnjwIICK2vCVhWTVIsh9+/Y1XIRJfYBAQu3atXXHnTt3jqVLhKio5W1kxKGkhTIjIwN///vfdccdP34cQsiZ+vRbam8aJdOp+8dkMqFTp04MRilJqzIASxuRzp0783jIzMw07JOSkhIcPXoU8+fP5zmpRo0aPjmN6uTBgQMHIicnBxEREbrM6FdffVUCnq1atcJ//dd/ITc3V5rXwsPDkZmZiW7duvnkbKpBFgGzzZs3Y//+/VImMN1fdnY2hBDIysrCoUOHeL6Lj4/36ekvLS2V5KJmzpyJ8PBwPj/REsrLy7lvyNO+ZcsW5vf179/fUEQ8IiKCAdiVK1fgdrsZrEVFReHAgQMYN26cLmPZbDajfv36GD9+vBTBatOmjU7vkYyAWZ06dfDCCy8gNTVVolnQ59nZ2YZJM23atEFxcTF7/dU6lx6PB0899ZRPkXSXy8XAmpKwtmzZAo/HI+m8mkwmKaGHxi3VuVe3WbNm6d6L/6323nvv+Xzv7na7KwEloM/yHrntI4zf9Qlm7POWSDr0WR7G7/oE43d9gnoLjqLxomM4+20RFh86j1HbP8aQFz7E3AOf46uCEpSWu5G5/qR0vphHXrijg5Dkc9QT+tGjR/lzdYaf1sjFr85GHTRoEN58803Otlu8eDGmTJnCE1ZUVBQyMjKYOB8bGyuVDqyOqK+2UbidknS0n9OO2M/PD0OGDOG/BwcHY/PmzfDz80NAQAAuXLiAmzdv+vQgXrx4kWVpjJrNZjPU2ySjLE2Hw+GzusH+/fsZzFNYk3bKX331FYYOHSpRBkwmEyZOnIji4mKUlJRg4cKFOq5bjx49GMQHBgbyZCyEzFm9HSOvDHmEN2zYwP3crFkzzmKl53n06FEUFhZK126z2VhrkUTE77vvPh1vkp7dokWLuF65L+vUqRN/NzAwECkpKboSmkJ4wRhJmJSXlyM4OBiKokgSIlarVarZ3KhRI52kFHnRfWXt7t27l/ugqspP6uxwrQ4s2enTp/kefKkYABWAcvLkybwQWiwWw6pFpCkIQNI8NGq+NBTr1q3LfeeL26v+veTkZJSXlzOPOzAwEPfeey8aN25caSIMCcrT91JTU2G1WhlMar1xkZGRhpVyrl69Wumm2CjrmSwvLw8vvfQSJ5up5xhtI/AfFRWF8ePHM42FvOQejwdjx47lZ6r19G/atImvs2nTpjwuXn75ZT4/GdGTFEXB5cuXWURc+8xiY2MxYMAA7NmzhzmGlGgycuRIHofdunWT5imKOFCrUaOGdN9msxkJCQlcQlGbQEi0HfUcTd7tXbt2wePxICQkhOkNVI/7qaeekiqPUXM4HCgpKUF5eTkef/xx7id/f3/Mnz9fUpdQf69evXowmUyIiorC66+/znxK6ieKvDVo0ID5+R6PR5JSo+f6v6E1adQsFgtmzJhR6Xt3N9tdCyi1OpTXbvqeXNs++zaS5x3F7o9ycen6Dyj5pxs/3/Igr+gnvPLpNXTRJOTUusM6lOpmt9tRs2ZNZGRkYMyYMfyikEdLaySKK4SX89ivXz8+lzbkRbtdtZafw+GQ9PPUmnXkPTSbzTCZTGjYsCHeeecd7Nu3D5s2bUJISAhMJhPGjh2rEzqvXbu2DlRWlvVZWTOZTEw8V5/Tbrejbt26hpOJw+HAmjVrsGfPHhw/fhyff/45rl+/jlu3buGVV17h47QeIQA4dOgQFEWB0+nE5cuXkZycDKvViscee0wKdYWGhmLs2LFMWideKZnL5UJSUhImTpwohWfUjUB4ZfyqyoxExNWl1X788UfmLJrNZilL0+PxYNGiRVI/duvWDT179tRdY1BQENq1a4cVK1YwV+uvf/1rta6Lxk5cXJwUwv/6668xb948neYcbWpISJsWSPV1WiwWn9nBap6v1mgD4XQ6UadOnUoTmIAK+ZeqQD4tgFar1Wd1F22W97Fjx/h7NWvWlBKzaLHeuHGjoVRPSEgIxo4di88//5wzggkYNWzYEG3btpUAYPPmzbFz507emJGnccGCBejfvz97nI1Ao9VqRXR0NFq2bInhw4dj9erV+Pjjj+F2uxEaGgqbzYbz58/DbDYjMDCQZaiE8AJ+7Xj2BSgBL9j3NS9oxb6NrKysDDabjcO7LpcL0dHRfF/NmzdHUlKSz99wuVyIj4/HPffcgyFDhvA77nK5kJWVxVn4fn5+OjFvyoQWQqCwsJB5kFoKDD2vQYMGMfitV6+e4caX5jNFUQwB9RtvvMHnJdA5e/ZsXLx4EU8++SSaNm0qgVdFUVCzZk106dLF0GtotVolqgWJmVPiIgFK2lBT4pOv/gwJCcGaNWukBEubzcbOjPXr13OhB/X4s1gsWLJkCW+SDx8+zIl0iqJg9OjRPK9QMp9RotL/dqtdu/YfSTl3m/mqlHOn2p2slJOWloahQ4dCCC9ICQ4ONuTkacHmhg0bWAeSJFrOnDkDISrCTnPmzAEAdOvWDUJ45RrIfvrpJwjhDUup7a9//av0u6GhoYiMjERYWBgfU1hYCCEEOnXqJH2XEhJoEnj44YcxatQo9swNHTpUCuH5+/vj1KlTOHjwIJYuXcqLCJVizMzMRGpqqrQDt1qtCAoKgsvl+kU1uLVNzUslaRsKcas9Y0J4QWPLli2xadMmnDlzBteuXUN5ebmU+U597nK5pAXxiy++kKrIUGvatOkvBpT169fXSeGQvffee+y1VgsK04Ss9ZiQiPj69et1xHJflWCMjBYEISr3kkVFRcHPzw9Lly5FRkaGzxCZFuiGh4frQmFaJQLACzQojF67dm38/e9/Z8+4r/5etGgRhPCCB5PJ5DML+sqVKxBCoG3btuyVN9KdM5IN8ng8mDBhAj+TgQMHory8HPv37ze8f4vFwolDQEXJPQqxEghfvXo1iouLDSMERos/HdOiRQsGjStWrODM96VLlxreO9ELKEFpx44dfK6HHnrI8DtGgFJLXSGt3AMHDkjlR6OiovDiiy8anhcAV2bZtWsXh/IpvKzmcqsz9rds2QJ/f3+YzWYkJyf7lD5Svxvjxo3D1q1bcenSJT6n+n026uMxY8bgnXfe0b03dM3+/v44ffo0/11dg1ybGU722GOPQQivh7OsrIwpPJTpT0bA0Mhr63K50KtXLw45q8uVkgwZ3acWUAIVoNcIqFutVnTs2FEqZ6rWKy4qKkJBQYHumiIiIrB161acPXsWQnhBMuBd09RzAI33fv36ccnT/wtNDW7VHPnfk921gBKoqOV9J4FkrZkHETlkyR0diNnZ2bh16xaE8IqFk1HIkRXeHiQAACAASURBVCoMUIatLxAVFxfHYWyn0ykJZQuhB3+HDx/mhYjs6tWrUsiPzh0fHy95gGjiU2e3aiVTvvzyS/7s4sWLzP1RE/LV3BvACwwCAwMBeCufUPKOyWRCr169pBDkqVOn2LPl8Xh41/vJJ59IxHKXy4XevXtj0qRJGD58OPr16ydlafv7+yMmJsYnoKluU0+s6nrICQkJaNSoEerXr1/pohUbG4upU6fi0qVLVYYryQICAlC7dm3Dz4qLiyvNGI2IiJAmal+cu5KSEiiKgrZt21Z5PSRsbbVaeZPjyyi7/913veVNd+zYIVWeqaqfAwMDsWTJEq5gpOa4Xrx4kT2B9913Hy/olLxD3Eu1URg7IiKC69v36NHD8NpJieGTTz7BsWPHWBNVDTaAynUoL1++rKtrT61hw4ZMuaB64YD3/VQUBbVq1cKCBQvQr18/PtboPFQ/Wr3odejQAadPn2bwrC2rePnyZZ2otNZoM6KmNlC43sjUgFKbXNevXz/k5+fj7NmzsFqtMJvNeP/991mah64/JCREl91dVFQEs9nMqg0Ugvb1jPft2wchvMlxdO1aebYnn3yyWpnWvtr27dvRvXt3KIqi+3217dixg6M/a9as4cQrmn/VyWBqo00h0T5KS0v5vXn22WdRUFCASZMmSYlutNmNjo5G+/btdcU0hPDyKTdt2gR/f39pc6YFlKS8QC0xMRGHDh1iySqSaxLCuzHr378/v3cmkwnnzp1jQOpyubBv3z6MHTtWyuIXwsvvpd+j9U89f6plqv63mt1ux2uvvYYXX3wR06ZNQ7du3VC3bt3fpag5cJcDym8LS1F3/tE7ByafPIRaMw7AEhR5xwcmeUSCg4PxzTffsBdg1KhRACoSRGgnSWEvi8XCQMiXZ5Mm5fT0dPZsnjt3jvUJafAfPHiQw9LPPPOM5OGhRlIz6uzW/Px8Ps5ms3G2uJGtW7dO2slp+WzEhaNJxWKx4MEHH9R5zEpLS9nDQPyaOnXqSNJDtPumFhwcjOXLl8Pj8SA2NhbBwcGoWbMmzGYzFi5cqOuvli1bIiwsDDabDXl5eTh79izzUtetW8e81FGjRmHAgAHo1q0b2rRpIyUlUC3xXxqaoZC43W6Hy+VCSEgIoqKiEB8fz2AkODgYvXv3xoMPPoihQ4ciIyNDV6dc3axWKwtvl5SUSFnCRjIzJBWllRHSGiW0hISEoF27dlUCyuvXr0MIb+iPFkkav7Vr14afnx/MZjNWrFiBnj176sTWqdHG5+GHHwbgfVcoeYS4oWSUmPPEE09Ifyf+pslk4kSKlJQU5sFpLTQ0VBq72dnZTJNQ80t9AcoDBw4gPT1dt8FQAxmbzYbJkyejX79+aNy4sS4LWP0d6htalIcPHy5xAAsLCzF16lQpcYF4tFTJSdsflIwRGxsrcVOJE0eNwEFWVpbPZx0ZGclFGmgMjhgxQhfy/fjjj2GxWGCxWHjD2KxZM0yfPp1BrMvlwuzZs+F2u5nic/ToUeTl5fF79vTTT/u8FvJSU717yvwuKipiWhDxXLOzs9GlSxfdczKZTD7faTXwueeeezgb/dKlS7pQ6Pnz5yU+MwH4oKAgKSJE9s033/Dvqy0/P1+n9uHv7w+Hw8HX2aRJEwk8FxcXY8OGDejatatuQ2Kz2dCxY0esXr2a3+slS5awjiU9Q0VRDHnLhYWFOlF9bQsJCZGu5+eff8aMGTP4PhRFYQ92jRo1cOnSJdy4ceMX8fvvdDObzUhNTa2yWtrvze5qQAkAL32ce0c9lP6p3e744GzdurWkN6dujz/+OD7//HMAYDLynDlz2AP39ttvo0WLFrBarXzPJA6r9bj58mLExcVxqNdsNmPr1q3Si966dWs+dsaMGfjuu+948pszZw6DgB49elQrdEsJSNTatWsHj8eDp59+msEYaVr6ktCh3by6IoHT6dRVvyBx3tDQUJ6o/Pz8OEykBczx8fFcjuzGjRsQwitRcbv29NNP8zlJSDo0NBRff/01PB6PBBw6deqEvXv3YsOGDejbt69OaiMoKAhJSUmoV68eatWqhYiICAQHB98RIrrD4dBlqCclJaFdu3a49957MWjQIPj7+8NkMmHJkiXYuHEj9u7di7fffhvnzp1DQUEBPB4PV7MJDAxEQUGBVCnHyNxuN+bNm8dj0uFwYMqUKRwa++CDDzjzOT4+nsdjWVkZ0tPTfd4P9avD4fAp3G4ymdC+fXvpb5SooAZFJDbfpk0b6Viqnf7ggw9Kf3/55ZfZq0iedDWgPHXqFHr06GH43OLj4ystraoGjWFhYVizZg1zGsnIoyeEwOuvv+6z7y9fvoyRI0dKXqqYmBjMmDFDt3GjhDSqb379+nUdF5o872oeL5nH4+ENCT2Xxx9/vNKF+OTJkzCbzbBarUhMTITZbGZ916VLlzKNg8ZtcnIyCgoKpPmuMmqGx+ORqjatWrUKzz77LAOv0NBQREVFSffo5+cn/Y02cEII1uKl60lPT2fwa0Q9UHM2yZNJn1N9cwK9tLkhIzmihIQEuN1ubNiwAY0aNdLN7cSfJ89lgwYNKu2TS5cuMU2AxlhlfPcXX3yRq5Jpo0xau3LlimFm9siRIw01Gz0ej24OfPjhh1FaWoovvvgCQghd9bJ/d3M6nbpoxB/2OwCUALD+Py/9OiD55CHEzz6MwPRBd3xgms1mBAUFwePxMCmfds7qychms6FevXrSYjR58mQA0AFKALywpqSk4MaNG/wCrl69GgcOHMCTTz7JSS6+vJpOpxNxcXE6TwpNauQxCQ8P57BlVXby5EkIIZjTqW0ulwv+/v7w8/PzeQ7i6KnDkZT5qE44IiPh3CZNmmDq1Kk+PQvahBPy4B4/frxa96Y1NVCLjo7mBZequlBGsxAC+/btk75bWlqKp59+WtLkc7lc6NixIx544AFd+NxisSAxMRHDhg3j8SOEN/t2yZIlmD17NpfB1Hr7jICMtrpPdRtxM2lMxcXFITk5GampqUhPT0fnzp0l/Ur677Rp07h8XaNGjbivKKGGvI9kf/7zn/kafYWNHQ4H0tLSMGvWLInTFBISIoVnqeawkZICbVzUSTcEJLQSS0AF/5iANVXBqYzqQE07Ll0uFzZt2sSgsTKPKRmBxK1bt/o8Rm0OhwN+fn6SdyspKQnLly9n0Jednc3XpgZt6gRANQcP8AJ/dQlVup/qcHABr4wSRWCE0NfN3rhxI1+T2lsYFhZWrZKSly9flmpCa5+FOiFN7YG7du0a0tLSpDnSarXCz88Pn332GSsUqEPe3333Hfbs2YNp06ahe/fuzNn0NQ7UY7pVq1b48ssv4fF48Omnn/IxNWrUkEontmrVCnv37kV+fj6fW534ogWmRkbvAa0lL7/8ss9kQj8/PzRv3pzD6r7AlTp6pZ1ftOONnAcnTpzgzzt06MBJUmaz2adG5r+jqZ9ZdZMTf2/2uwCUgNdTWXf+0dvmVNZ+8jXUnP4KanZ44DcdrP3792evFk3yHo8HZ86cweOPP45GjRrpeD116tTBqFGjOGGCTF0mMCcnBwCkHTyV9CO+khBe7ub333/PYLNXr16oX79+pWF0IbxAafTo0diwYQM+//zzKheMxMREmEwmDt1oW2ZmJpPOKelAbefOnYPJZEKNGjUk7wyVuHv22Wd138nPz5d4PUIYE9W1niiqn/5LjDh4QlQAtoyMDE6aCAsLYw6QzWaDzWbTJYB4PB4cP34cQ4YMkSShqNFi++GHHwLwilWrw6JakNqzZ08IUeG9OXPmDHNUaeGfOHEihxxPnz6N6dOnQwiBHTt2ICcnB4cOHcKOHTuwevVqzJ8/X9Lly8jIQKtWrdC4cWM+X2hoKPz9/X9xbV31d5xOJ9e1T0hI4LGkPj4yMlLi6Kqb1WpFw4YNERYWxu/LpUuXeFNn5GEjzmKjRo34b0FBQZJgdElJCY4cOcKcRrUSgK9mMpnQtm1b9jSeOnUKFosFVqtV6lMhvMDg9ddf539XZsSXtlgsXHygMktOTuYxfvToUXTo0EECamlpadi2bRuuXLkiAd7t27cDqNB0pRBzcXExHnroIR6boaGhWLduXaVZ3r7syJEj/Py1kQfyElNtehorJpPJpw7tzZs3kZWVhc6dO+s4hDabDZ06dTJMSDMySiCktnPnTgBgENeyZUufHMry8nKO+sTGxmLz5s0MNqszdqhFRUVh/vz5unGbl5fHm1kKpxPFpTKjiID6ewRW6e+xsbEYPnw46tSpI60LiqIgJSUFU6ZMYR1PdfSqQYMG0vt89epVvP7667rxRiFyOo5UM/bv3/+Lqi792hYcHMxrBclBaaMbf1iF/W4AJeDlVD60NQfxsw9XCSzrzPZ6JRMefu434UwK4d3Vq+vAql9Qo8oVhYWFsNls/LJpF9OaNWvyzpYmerXHLi8vj0W6yfMjhKhWhQjK6lY3LUmaGnk2MzIyJLB54MABCOENr6n1wygrnIAAgRF15QkALFmiKIpOfJjkOsiTVFJSgvnz50s7WvrNli1b8oIkhJxF3LZtW+Tm5rIcSGZm5m2PsyVLlvAzooQhAgk0Oe3evZv7lKrnJCcns4i4trQhiYiPHTsWmZmZEsCMiYnR7dyN+GyUhPH+++/rrpcAgMlkwpEjRzhzOTw83GclmNdff52TUbQVjijknZeXh969e/O91KxZE7t370Z5eTmuXbuGM2fOICoqij+Pj4/X8VKJMqAoCqKjoxEWFobAwEDJE/prW2BgIGrXro0GDRqgefPm6NChA4c1CXT36NGDa6j7+/sjKCioSs8jjYO6devqsrrJ1MkoH374IfM8+/Tpo/PufP/995WOvYCAAAYlaqqAL8vMzIQQQtqceTwe7NixA02bNq204k1eXh5v1Bo3bow+ffrw8bGxsVJW8C8BlAB4zhBCrqJF8yZxMseNGycpMrRr1w7vvfceli1bZigirm2+5Kh8GcnZqJ/z+PHjcf36dZhMJs6A19pXX33F1+xLXP/ChQtSSLeqMa4oCvz8/DiMTtqg6qalZ2jN4/HoBNMHDBiAkpISvPCCV3PZYrFI8kL/+te/cPLkSQ6rG3EbHQ4HNmzYoNNUVfOMabypnxHds3r9Untof6tGvGGr1YqQkBA0bdkGne8fgejG6Rg/ewkUqwPXr1+/rbHye7LfFaAku3T9ByzKPo97/vSfuoo6tWcfRuyjLyCmzxPwi07w+aLciUbcyOeeew5CCGnX7HQ60atXL/YwAhXcw/379/NuaeHChcwHUodYCeyZzWbs2rWLF7CrV69K9/P4449X2V+XL1/mHSY1AoEOhwPZ2dl49dVXMXv2bPTu3btank0CVs2bN8fnn3/OQuUPPfQQ848URZEmHgJlRhVuiFielZWFBg0a8OJtt9vRvXt3rl5ANXbVIVkAzAGkRouyuv+rMo/Hw/qPBMTUskHqxJ8DBw6gvLwc4eHhUBRFx6vz9/dHq1atKhURVxPu1S0hIcHQ20Z0AyNtu8LCQg6vk7aoOrFAa2+//TbXRjYK/ZIHRg2ofNWVXrx4MV+7L68aSeo0btyY/zZmzBj+HgFsyhp9++23sXfvXsybN0+qIRwYGChJQ/0W77XJZIK/v7+OSmCz2ZCRkYEHHngA48aNw4wZM/DEE09ICUTnz5/HjRs3GDQDYC8x9aOv8KLH44EQ3o0YRSkqK0UJVNQvV8sSqS0/P1/nzVPrBqrfJSG8myK18gPZLwWUAPDII4/wu/zdd98xR5zmOxrPlLhoNF/HxsaiV69ePMbtdjs2bNggiXzfTmYuzVHJycmSpz8kJEQquqA2EtdXFMUngP3uu+8wfvx4qZoVjWvyalMijFEYvbJs//bt2+PRRx/Fli1bOIxONcTVuqcPPfQQqx14PB5+f3ytFdeuXYOiKKhXrx5vuLTjQtvU47KgoID7r3Xr1li2bJkEbp1OJzIzMyXpoTvdaEMeHx8Pa2hNxPWbivoz9zLdTU1/u2flf2JR9nlcuv5DtcfL78V+l4BSbT/+043zef/Ap7k3cT7vH/jxn26eqCojyd+JlpCQwFItYWFhvIA7HA5pEQwKCmJARzvN8vJy9pA0btyYX96IiAgsXboU99xzjy7ZghYp9d8q03fT6uWpw8Y3btzAgQMHeIL0VcbwxIkTktYcLbaVTTZNmjSRrnPChAnYsmULTzjaa9yzZ490r2azGW3atMH+/ft115Ofn8/9bLVaedEGKuopqzl5qampPpM7tOelzOp27dqhvLxcp0NJgNho0nc4HAyyX3755Sp/j+pSC+ENT1HykbqfmzVrhr/+9a/sBSGNPrU0ldbU/U4g12az4ZtvvuFjTp06xUkTWk/x6dOnJa9aWlpalaCceIbBwcGVHkeJClOmTGGvLiWz0RihxAJ1shbg3RR16dJF1/cOhwNBQUE+F2JKiiKPkdls5vdTXe4vODiYvZv169dHzZo1dWCfgOPtzBHq49VAKTAwEKmpqcjIyED37t1x//33o2/fvhDCuwFYv349hw/Xrl2LvLw8wxrDH3/8MYQQmDdvnu6z999/X9IqfeGFFzBz5kyfCgK0OTOyXwMoPR4Pv7NBQUESr7hVq1ZITU3VVWGKiYmRIg8hISFSdSZKHqTIhqIoCAsLq1YdZqLXKIoi0VSeeeYZHZglU4vrnzx5UjpfSUkJ5s2bJ0UZAgMDMWTIEIma0717d8TFxfl8T4gDGRISgu3bt2PatGlS2cTKxp66by5evMiJVOq525cuJgAp+zstLY03hhcvXsTs2bMNf7tmzZro0KED95m2yERgYCD8/f0rVay4U81sNmPK/CWIGPwMFy+pLIJJEc6Htubg28LqSbz9Hux3Dyi15na7q0Wg/7VNXUkmOjpa8rZQiPHatWsYN26cFN6MjIzE5MmTUVBQwLp5dJ6IiAgpyzo/Px9CVFTR8DWhPPbYYygsLJT64Y033mA+XlxcHD755BNkZWXxd6h+sS/Nuvfee0/K5qYQqtpzJoQXfJFn01emu7q1bt0ao0ePxhNPPIHWrVtLi7bNZsOGDRt8LgqFhYXsbVEvSnTN+fn5UBSFuTrkPaSJ1cjzAgBvvfUWT/yzZs3iv/v5+SEiIgKdOnXScSDVIWAhvPxKkj3x8/PzmS3vdrsxcuRIPk9qairKy8sRGRkJRVGQk5ODrVu3okmTJnztpD34xhtvwOVyITEx0ef4J805bfjL6XQiNzcXp0+fZo7lxx9/zN87fvw4A3ECYVXJBpFRH5jN5iqzc9UgYejQoVyhhWqXf/bZZ8z/aty4Mfr27YtGjRpVWns6KCgIrVq1wogRI7BmzRocO3YMS5YsqVRsXQgvL2zjxo268bZy5Uoel2pKS3x8PI//8+fPMwiaN28etm/fjlWrVmHu3LmYOHEiC2aT5ygkJAQJCQlS7WgaR78EpFosFjgcDu4ru92OxMREpKSkoHXr1rrnX79+faxZswZPPvmktNnVtr59+0phUbJfAyiBiuxmo2axWJCcnMyeZ/XzOHjwoLTZDA8Px0svvcSfE2+QIhe9e/eu8lqoz7Ti+oB3jlGDuH79+unE9QHve0xVeNRKB/fee6+kCzpx4kTpuZnNZqSkpOh+lzbcwcHBurmcxiBFq9q0acO/SRskozGi3jAJ4dXFvHjxovSOaqNXNWrUMOwz+vzixYtcKli74YqKikK/fv2wc+dOlJWVISUlhatabdy48bbG+O20rl27IiK9P2rPOohaMw/eVo5FwtwjqDv/KF76OLfKcfN7sD8ApcYuX778mw1cdcvNzUVJSQlGjRplGLakhYf0Fk0mE3r27Cl5TWvXri1N/EZkcvKUqD2JO3bsMExKCQgIQKtWrRhsWSwWKTxK1SsCAgKkbFO1Zl1oaCjvtBVFQdeuXVl6ZO7cudK1CaHn9syfPx9CeLmLxK2rikNEQKFGjRoYPXo0nn/+eXz22Wc6AWQKI61fvx4ej4czFPv06aO7RyEEPvvsM+Tn56Nv374+uWEk1WK1WrF9+3YsW7bMEIjQM54/fz5KS0vh8XjYo0T36PF4WH+0efPmumd58OBBPi95zE6dOsVyUgsWLJCONxIapg3Ip59+6vMdqFmzJt+verzZbDZYLBaYzWZe9Pbt28fPm8botWvXqpQNIqMwJfEkK/OYb926VaIyvPLKK7w4kZalEWi02WyIiYlh0EjjwGaz8XOpUaMGVq9eLY2Z8+fPY+DAgT6TfGi8d+3aFevXr8epU6d4UxQYGIjs7GyWDaL7S05OxpUrV+ByuaAoii5xSm3kYXQ4HDrQqpa5adu2LQoLC1klIicnB0ePHsXOnTu5IkuNGjUwcuRI3HfffejatSvatGmDlJQUrnRCeqkOh+OOUAEoEhEfH4+GDRtywlFmZiaGDh2KCRMmYM6cOVi5ciW2bt2K7OxsvP/++/jqq6/www8/4NatWzh+/DhGjx5tmHwlhMAjjzwibWpq166NgIAAAN55k/rDZDJh0qRJePDBB3l8hIWFYf369awO0a9fP04+2bZtm89nQh5NX7xiMrXHTgivtI7b7caePXvQsmVLKUM7PT0dBw4cMDzP8uXLIYSXJ03vfExMjDROac4gZQGtkVqFutWqVYsjIR6PB1arFbVr18bevXsxbdo0Q2++uvn5+UlzQ7NmzXg+2717t/T7NKeTEoA6uhIaGoq5c+finnvuMUyUEsJLafitnDzNmjVDYPoDrDP9a9Rg1v/nHzJCfwBKjakz3X6rphbjBoDc3FzdMQ8++CDcbjfLlmzZsoWPf+edd9C1a1fd4jly5EjdwkN1nG02m7TztVqtaNKkCT744AP2cmhD/CQNMXfuXHz99dfsZSMQm56ezufbtm2btPC2a9eONQpp8tF6n+g+tUayHFQCTAh9Vna9evUwefJk9O7dmz0mRhOg0+lETEwM91X//v0ZbB49epSPe/TRRwF4s1TpXGorLi7G8OHDpexVNfDW1s6NjY2F2WxGTEwMlxJr0aKF7l7VpcMmTJgAAOjfvz+EEFi0aBEA4MaNG+yhsdlsWL16NYfPaTFp2rRppeOahIbV/RgSEoJRo0bpOJoU0hPCm+S0fv16CdRv27YNmzZtkioqDRkyRPKMVBdQUl3o4uJimEwm6T6Ki4tx6NAhzJ8/v1KvmBBe0BUTE4PWrVtjxIgRyMrK4gVOXd6OhPPDwsJgtVpRXl6OKVOm8PPz8/NDWlqalC1PUQHqO39/f2zevNmw/jkdv3z5chQUFEg6lORtosWRMoN9Gb37VFNZa1oh7tDQUEOgQ3xno2o9AFCvXj04nU7cuHGDAXHz5s11mxeTyYQ2bdpg5cqV/LvdunXDwIEDpU2LdgN4JwCq+hz0b4vFgoyMDPTs2RODBw+G2WxGjRo10L9/f35PExMT8c4776CwsBAejwdlZWWYOHEiP8vAwED2cJaWlsLlcsFisXABB7URd1MIYzF4tRElw+geFEVB48aNsWnTpio98vQMnE6nJCgfHx+PGzducB10l8tlyD++cOGCjv9usVgkqgpFJZYsWcJ/o7GnBqOPPfYYpk2bhubNm1cJ8GrVqoX27dtj3LhxPB5eeeUV5OXlcQib9EXVVlxcjI0bN6J79+6VbuTuxHhyOByo0TLzjupU7/mdeyr/AJQao4y237qRcLfH4+HapO+99560S6NJUZvtDFRMAg6HQwpZ0I73pZdekrhs6rJ5RUVFEEJg2LBhALwlwOg4Pz8/LFy40FAagq7bbrfzDnzq1Km84FitVnTu3JmFjxcvXsyai0ZZx0IYA8pr167pwHJQUBCGDh2KjRs38iRbp04dnD9/nuV3zp8/j8LCQhw8eJDD6PXq1fO5oFG/qTXPqDSbEHpPxblz5/D4448bli2rVasWhg0bhiNHjvAiQRxKAsi+kinUm5hJkyax91RRFIwbN477onPnzlxZJDExEX5+flxmU1txxJc988wzEMJLT1BnkkZHR2P69Om4efMmAHCfXLt2DV9//bWhR9tut2P8+PGGZSKrAyjXrFkDIbwgf/78+RKAMfJKK4qCqKgotG7dmr13drsd0dHRPn9DXd6O5KiSkpKYNvD3v/8dxcXFePLJJ3Ve5aSkJE6co80HeeKpbvK+fft44XO5XPzc1O+TEN7N19mzZ9nrUrNmzUrBhNvt5vFZlbD+0aNHJY6nWjMTAFeGUhRFV2YRqNjA0DOeNGmSRAmx2WwYN26c9Jxr1aqlqyF/5MgR/s6sWbOwa9cuHfjIyMjAgQMHkJ+fj5UrV6Jdu3Y6kWqLxYIaNWogKSkJLVu2RNOmTaU5LigoSIrq3C5gJd1K7RwTHBzMwNhut+P+++/Hww8/jGnTpmHRokXSO/Duu+8iPz/fkF6j5TOrm81mq7aGIaky0Jgj3U8auzSWtNWZACAnJ0fSy6RxRPqe6mS6Vq1aQVEUfr7PPvsszxFARSJj27ZtOTGGKgkBXqrQ3r17MX36dKYLkcaxr36g92Lu3Lm6MDrZ6dOnb+u53m6rUasu4me++qs9k+pWd/7R3zWn8g9AqbFZs2b95qWdkpKS2LNBXj8KBxBJXs37sVgsGDp0KIe09+/fz7vS3NxctGjRgl9eCm3TdyMiIhAdHQ2bzcYv7d69eyGEN/Q7bNgw6Xi73S6J4JI0BE0URpO32WzGkCFDpExy8l4pilIpr0adZLR69WpJXkW9AKgnHLfbjVGjRjHPhzKytVZeXs7XPW/ePB3Y1O7ctY3O7at+emRkJHu2HA4HJk+eLHFEqSKGEFVXk1BfS/PmzXnDIIQXYL311lvS8X5+fjxO33zzzUrPrbacnBwI4Q29A14tyn79+knC1sRpFMKb9ECfaZO8IiIifCYsqQGl2tPYt29fNGzYsNJKF0FBQWjdujV69+7Ni7jWS+d2u9mLWJV39vz58wwWFUVBXl4ecy/V1U8cDgd69eqFadOm8ftJpT8pe/XGjRsIinF2DQAAIABJREFUDAyE3W73WW701q1bLP+krshCjcZMSkqKT1A5ZcoUfvZa4GZklHBFbdCgQdJYvHLlCsxmM/z9/XUbAFImMJlM6NOnj6QLOGvWLB1oKigogBBe3qHW1Jy/du3awe12c4KaL+AXFBSE9u3b60TEycgbSo14ykSlqVOnDmusCuHVC9y/fz9efPFF/OlPf2Je6rBhwzhbuEWLFmjYsCFq1659R6Sn1CLs2jmE3hX15jY8PBzTpk1DVlYWdu7ciaNHj+L06dPIzc1FWVkZbyiCgoK4Ypeal0xhZCG81cvIjh07xhEkRVHQoUMHXLp0CXa7HQ0bNgTg3YCoa8+bzWb+zEjnVz0XCeHdFBjxZAHv2KeIVHl5Ob+/2k2WEdj08/Njz+aoUaM4YvZr6qr7ai6XC0ljs1Br5kEMeeFD7D39Lb4uKEFpuRv5/yjDm3/LR+9171UKHnMue/mwOz64InEqH9pafWWQu83+AJQa+3dklFFTh5hbtGjBgFH9sq1YsYIXeJPJxBpjTqeTw+ZUKUc9mdNipP7/9PR0XLx4kY8joJCcnIyLFy/iyJEjrKGmzuoFvOAoMjISqampPu/HbDYjISEBI0eOxNGjR3lRDgkJ4VJ0ahPCKyau9mJYLBa0bdtW9xzUIX+yixcvSlmI6qxut9vNn02fPt3n8ybe1bVr16rUqlO30NBQpKenY+TIkRgwYABvDKxWK4YPH47i4mK4XK5K692qbcOGDRBCGPZvp06dpGPV4IHC5NU1kpYxEsg+duwYOnTo4HPhDwkJwcqVK9nLSa13797Iz8/HoUOHMHfuXPTt25fHltFi7XA4eOw3a9YMWVlZOHPmDMrLy2E2m9GoUSNs2rSJM7Z9VX05dOgQn6+q7FziWmoXKEVR0LZtW1ZbUNvu3bslcO10OpGXl8cATAgvqKqs3CiFvAmMh4aGSsBDURQ0bNgQkyZN4rD8Tz/9BKvVivDwcMydOxdCCMPrUxuVwZs8eTInR7lcLonvS9GXjIwMAJCqc9G1qJ+Rr7KnJElkJDVEFBetkoL2+aufQWBgIB588EHDai5UUctsNsPlcsHhcKBmzZr8ubpajxBCSriprlFG84IFC3QbgM2bN2PevHkQoiKRr1u3bliwYAEmT56MIUOGIDk5WceDp/tX1+n+JaF/8iaqw+Xq+tg0loKDg6UQcWpqKrZv344PP/wQ33zzDeLi4iRFiwMHDkBRFB6Xa9asYZ1fk8nE9c3PnTsn0TqsVmuVwu9UipI2XNQXUVFREpUgLCwMdrsd06dPR48ePVC3bt1qabv+2qYoChq06cwg8PDn3+H9r29g3quf44HNH2D8rk9wJvcmfr7lwZAXPjQEkwuyz+F6sff9UANKal8V/D4lhf4AlPB64T7++GNMmzbt35Lh7atZrVasWLGCPRjqUN6xY8ckHlmLFi04hEqAUh1qWb16NQBvOGLs2LE+f2/t2rVSX9BEQ95PoCKUpZ4Q77//fty4cQMmkwkxMTGYPXs2mjVrJnEJ1d+xWCw4fPgwAC9HT60pRuXKXnjhBXg8HjzxxBMQQmDEiBFISPBqgSYkJPh8fmo5lpYtWyI/P58X1YkTJxp+59atWzh48CB7N7WTfVRUFIeTr1+/zoDEbrcjKSnJZ1jWqHXp0qVKgWm32y1lVgrhXUTJc6mudEEhKV+e36rM39/fZzUR+lx7b8SfW7hwIebOnavLAjZaCIUQEqfxzJkz8Hg87LkIDg7W9QslrwjhBRpaWSK1kUyKEJVLIZGoshEPr1WrVlX2FwEKbTObzYbhfrWpExAoRAh4PcXq5DU6xmKxMAhZuHAh01Oqqs5BWp4kSbNp0yYOE6elpfGGjsDwggULdJs2q9XKCXcEbo0sOjpaV97wu+++44Q0I4+SxWJBYGCg1F95eXl49NFHpTKgERERmDRpEgoKCtCnTx8IUaERuGrVKq5Ec+nSJa4Pre6/6sj+aO3EiRMQoqLaz2uvvaZTnAgMDGRe4Y0bN7Bq1SquSqRuJH2jLr340ksv8XwGAD///DNeeeUVps4EBQVh2rRpWLx4MaZOnYrhw4cz2MvIyECTJk3YG68dK78kw58UN9TPKTY2lgEpeXy1lWlI+7hOnTr44osvcPPmTcN5zePx6FQtgoODdc+GKChqGaWysjJe5wYOHMibkTsZNXQ6najR7VGWBmr2zJs6QNhg4ev4/ocynPzqhu6zts++jZJ/uvHIX73viBZQJsw9gkXZ1dc0vZvsdw0oy8vLsWDBAp6wfutQd1XNKNubXraTJ0/CbDbDYrFIFSGaNWsm6SbWrl0bVqsVDodD2kmqv6NutWrVwoIFCyQvy+7duxlUkvCvEN7sQuJbDho0CEAF4V/tHczNzeXf0wJMbUtNTZU8Ie+++y6EqOCYkfSREMZVQkpKSiCEF+CSjiQ1df3n8vJy7Nq1C/3790d0dLRuIm7YsCGDJJq8iVtG3jbK1FTbzZs3kZ2djTlz5iAzMxMNGjTwqV/qcDgQGxuL9PR0jBo1CuvWrcPZs2dx5coVicS/ceNGfPjhh/y7VEXl0qVLKCoq4nHqS8aoKqMkDK1dvXpVkrkRovIa1OrNAgHQOnXq4Ouvv66UQ0kbH63nsbi4mKtuREZGVur5AyqAIoFQ9fk+++wz3HfffRL3rk6dOliyZAlefPFFvl5/f/8q+4tE2o1aZaUQy8vL2eOlLetJRov0Pffcg+nTp0tSW0IIfucVRcFrr73mc2NCSVrq8VlaWiqVcZwxYwaHn9W/ER8fD6fTye8qJYMZGSUQdu3aFfPnz0eLFi2k81FCGnEUDx06xM+gsjKm586dw8CBA3XvDp2LNk8E/mjsUYY7vSvNmjWrdr1wMvL4ayWDtJ54ehfV0RTakLpcLinjXA0oAS/n1Gw2S4lrHo9HcmL07t0bpaWlPK7VcypV7qLfHTt2LIMtu93OkQ1K2tu3bx82bdqEZcuWYebMmfx527Zt0a5dOzRt2tQQEKtl6G6nmUwm2Gw2+Pn5GXoZY2Njce+992LQoEEYM2YMpk+fjieffBJCeHWHjx8/jk8++YQjAkRrIO/ona7hHfPoC1XyId//+ga+/r5E9/cTl77H6+fyET/b6yAx8lDe86f/vK0xeLfY7xpQXrx48X/VI1mdlpCQgJycHKm+MuDN3lNXJRDCm1Ti8XiYI0l6ZTk5Oez1cLlcMJvNSE5ORo8ePXiyVxQFDRo0wLp163D+/HndZBMeHs79ZrfbubZxaWkprFYrIiIi+HOqnJCYmIjRo0cb1qGmZrfb0aNHD2zatAnXr183zLIkD2tMTIzuGb766qsQQmDdunXweDzSdQcFBaFNmza6TFw1Z+uVV16BEAJLly6Fn58fYmJiUFhYKGX5CmEs/FyZbdu2TVr4hPACysDAQJ+eTQKKzZs3x7p163DixAn20Arh9d6ogeftLpxkBDJmzZqFPn36ICEhwec1UUjM4XDgwQcfRJcuXZgfq/48Pj6eJZcIVGgz5QHvBsBisegSaU6fPi1V60hOTq7yPlJSUmCz2Tg712w2Y9CgQdKzI6+v1uN24cIFvucBAwb47MvNmzfzuVJTU3Ht2jVcvHhRqoaSlJSE48ePS99TUy6E8J1h7fF42PM1cOBALoX4l7/8BQsWLODog/p+YmNjMWDAAOzZswc///wzAG+SltZrSHbq1CkGPur5TlEU5t8S8G3WrJnhOc6dO4dp06bp3guTyYT4+HhdQhptPMeMGYOCggL+3fT0dMMqTmqjJBD1uxMTEyOJfxPAJrPb7TzHpaen3/a74efnh6SkJOlv9CyM5qwpU6Zw1KJu3bq6pDgtoHzrrbcghHEp12vXrnGSI3kNtREEtRoEjQd/f3/Mnz+fNxEHDx5kio06YxuoSCpTV+hRJ8Wpxzi911lZWSguLsbq1ashhDcB84UXXmAg279/fwwdOhSZmZno0KED81LVYX71OPklyVO/dv00aorNWWUiTuNFx1D8088MHKnN2v8Zin/6GS2XvlUpoKw9+zB+/Ofte8v/f7ffNaAEKrxxv8XAvWMvwP+EKbQJEDt27NBde61atbB3714MHjyYFzv15EyAZOTIkXye/fv3Iz09XfcCqxePyZMn8/E1a9aU+DgUuti4cSOKiop0Ei/BwcEYMWIELl26xB5PmnS0iR5CeCWBnnvuORYB9ng8fP1aLUsKj3/00UcMvrSeZqvVio4dO+L555/XTfzknUhPT4cQFXIgkydPls5RVQk7rRF/tV69ejh//jyDBiG8gthLliyRPAy1a9f2maiifS42mw1Op7PSRbOoqAivvfYa5s6di8zMTE6EqSxMr07MmTx5Mp+fgKKax5ebm4uxY8dKJeJIPkjN8dKWW6QayAcPHuS/rV+/nrU4d+zYgXbt2kFRlCoz14ODgxEdHY2ZM2dKYdOgoCCMGDGC+cZGAtQAJIH4hIQEyXt05coVNGzYkD8fPHiw7vtqGRf1u+fxeJiq8NBDD0EI34AS8I5vtSJDgwYNpM9LS0shhLfAgLYutaJ4S+SZTCZEREQYhuDff/99neeTAGSvXr2Ql5fH7xfVKc7JycGECRNQv3593TuqKArGjBmDEydOVDoGSTqruLgYEREREo9UW/udjGSdUlJSUFhYCEVRGCSpx78QAleuXJH6Z9CgQSwVpeUdV2VJSUkMyM+ePctya9rWsWNH6Vruuecewz7QAkoAXBL222+/NbyGnTt3SjXtiSN/5swZ6RpcLhfWrFlj+LvqhMju3bvzMWVlZRBC4L777pOux2w266gPnTt31kWshKiolHP58mWYzWYEBARI0SW32800BCEEJ00JIaRNRGlpKa5cuYKPPvqINXQp/N+oUSMMHz4c/fr1qzJp8pe2sOS0Kr2TBz79b/x8yyMl5rRa9haKf/oZs1/5jP8GGAPK+NmHcT7vH5WMuLvTfveAEgBefvnl/5OeSvVEXrduXSmxgyrr+Pv7o0GDBryYE5hS7xITExPx7bffIiUlhSdDdXjwzTfflDx7fn5+OqAaGBjIk0znzp2hKApPVqWlpTo+j6Io6Nu3ryEXi+QwhPB6VcvKynhisdls0nkCAgKQnp4u1V/OyclBXl4eli5dargbjoyMRO/evbFq1SpeSJ1Op0/BYj8/PwZT3333HXt+IyMjJa9ZVWR0shUrVkAIL5BVl17Mzc1liShq999/v/RdAp579+5lMNigQQOfmY7EewsODkZQUBCcTqfhWKZwe5s2bSSeoqIo6Ny5My5cuMCgTMsrLC4uZk1NI/vss890ISk1qO/YsSOKioq47CVV6vF4PKw1GhQUxLWUyetMmehaKy8v5z6m5nQ6eUMxfPhw9qpUJrlD9dtpk0Nl8SZOnMh9GBwcDJPJ5NOrRuOrT58+utrWDz/8sKRDWZlRMosQXs+P1ho2bChVErp58yaysrLQuXNn3UakRo0a6NKlC8aPH6/jAqampjJYovdMvSmIioqSnh1lB0+aNInrqT/wwAOV3gvZ4cOHIYQXxFClnOXLl3OlHq2oOyX71KtXD263m6sFURQlPDychdiF8G60unfvzpziNWvWAKjwcJLsTXWMxoBaEkxRFEyaNAmffvop///GjRt1FWSioqJ0gvxGgJJkcHzxYa9cucJzLZ1fC/YURTEseqA2t9vNHvSYmBjmzzocDp6PSktLoSiKFD2iuS4qKkramGgBJeDl6ApRIUeXm5srRS4ogkXeVCPBdQCcwS5EBceUrHnz5hyCv1Prs6IoqN28Y6Vgcu3b3tyEBdnnpL+/deE6cr75u/Q3wDeg/DT3ZqXP6W60PwDl/9grr7zyf95TaTabMX36dKk6SHFxMYfFAOBvf/ubboGhsKC6fFVeXh727NkjZZD36tUL//3f/w3AO+FQFRj1y9i/f3+uvrF48WKkpaVJLztNIL40F8nU4tkkAUS1dN1uN/bv34+BAwciLi6u2pNJo0aNOASoth07djA/rFGjRjrNNgIisbGxHB7v0aMHPB4Prl69ymCuOgkcHo8HLpcLLpcLfn5+EqBct24dbxLU3sLIyEjOYqdFm3hsRUVF2Ldvn6Ent6pGmcKtW7fGqFGjMGzYMMmTFx4ejoKCApSXl0u6g0aTP3mOKqsiQuAwMDBQ9y6ZzWbW+Dt58iSKiorYe56WlqbzrJHXVt2vO3bsQNOmTaXxEBsbiyNHjvBx5NVQFAUhISGVhldJ/mbMmDHYs2ePdN64uDjk5OTAZDIZlrojI9H6jIwM/PjjjxK9gpIthKgaUJ47dw5CVIAndUQAqAhPvvDCC7rvEu+4b9++6Nmzp0+1gg4dOqCgoAC3bt3CjBkzDL3VFosFaWlpmDlzJusUkg0bNgxCCM4Aro4lJyfzu02lF0+cOMH3+fjjjwOokABKSEiA2+3mfhXCC2rVSWklJSWw2+26eaFHjx68KSGpISNwTnbz5k1Mnz5dyuym91aIiix2Ne1BCO8m/syZMygpKcHo0aOld3rlypXweDyGgBIAV+Oh61QbbSYPHz4sbfqoD0JDQ5GSkmIoCG5kVNXHbrfjzTffRHx8PFcSUm/qhfAmE3k8Hv57XFwcex+NACVQAdzV1d5oPSEtVJp3O3bsiC+//BInT57EgQMHsGXLFixfvlzq+169eqFDhw5o3rw55wX8ksSjqlp8k7Y+weRzb30JAFhx7Avp7+N3fYKfb3nQb8MppDx1jBsA/MdHuUh56hgS/6e+9x8eyj8MQIVExf+1ZrVa4e/vLwFFdTIAAcrHHnuMJ9n+/ftj1qxZPNmZTCbWtiMwQS/sgw8+aOh9I5HvGTNmcPhQ2xRFQVpaGrZt28YTcXXDTeoF9P+x993xUVX522f6TCa9F1LpJYFAQkfp0jtSpIjSCWxESmDRiKAUQak2siwIKqhLWaQIRhZxEYKC0SwbUdggyyJiFrIxxnH27vP+Mb/vl3vm3klRfH++7+b7+ZyPmJm55dxzz3nOtzyPEEKq6KWcLdJzra6PYmJi8Mknn/g8V2VlJXs8SIqNvD1UiEL5dupqXMBD/UKTmvek6m3z58+HEJ4qeyI2V9Mb+fv7c7J9RUUFJk+ezJOxzWbjYiZfkpPqRTQ4OBirV6/GuXPnoCgKbt26hf3792vC3L4AuclkQrt27RiAGI1G1KtXT/e+qDI7JCSkyvunkGNQUBAMBoPEkUotOzubxwopFHkbeXJ37dqFe+65R+JGTE9P58KFAwcOSL/75ptv+Dz5+flVXisAmM1mpKenS6wDQnjA2fr16yGEwObNm6s8BqkYkedvyJAhWLRokVSskpGRUSW4pRy64uJi3uCoQajL5YLRaGS+WrURJ+EjjzzC3kaTySRRHtW03XPPPT6vMTg4uNbMAqQuY7FYJC3vmzdvchUxgYr4+HhUVlZi0aJFfD3t2rXTLc4aPXo0hPBsTtQpFkJ4VJCmTp3Kz2P06NH8u8rKSqxYsULKb/Xz8+OoBOUQEtAFZMopITzV92pzuVyYO3cugyen08meYW8jj7X3cywsLOTfer/rahnU1atX12hMkh04cIDXANo0eot3qDcIiqJwuk9UVBReffVVPPTQQxDCA/gmT56MkSNHok+fPujUqZMmmkTXa7Vaf5JXkSrQ1XmiesWqP6fZ/YN0cygJTD577HPNZ8/9z2dV2ZRXztblUP5vX8CvybwXlV9ro5d4wIABqKyslMLV9erVk8LMiqLoUrxYLBbMmDHDJ9ccAHTo0AEGgwEnTpzAgAEDfFbB16tXDzk5OZxz+fDDD9eov4UQUpjEbrcjJSVF8sZZLBY0bNgQkydP5sme8nS8CwTo+40bN8a0adN0SbfPnj3LYaTQ0FC8++67XFlqNpt9ghAqdBLCN1CprKyE1WpFWFgYAHDFIwHVrl27YuHChRzGri6nsXXr1uypaNu2LRRFYa8DNV/UOm63G0uWLJHIgQcNGoQFCxZgwIABVXo81eHxiRMnYsOGDTh37hxXZa5atarK50qeCyEEX4seuElNTcWf//xn3WdEOa3UGjZsiFWrVjEoI2+ot2eTAK0QQvIO+zJ1VXGHDh1w9epV9iJR7l513qDLly/zMdT0RYqiSHlkFosFkyZN0gCkkydPQog74fkffviBUwjU+uwUDVADU0VRpMItu92OKVOm8MbE27tjsVgkXkMhtDm6ao8vGXkM1bnXNTUCdvReqK9d7VHevn07V/nTM/dlRMc0duxYxMXFITg4GMXFxRg9erTkoSUw0q5dO7Rs2VLix7z33ntx+PBhvha9cXPmzBn++7hx4xAWFgaDwaD7zimKguXLl0th5GnTpuH777+XvkdsFKRadOLECWnT3KZNGwZnW7duRXFxsXQ/BoMBqamp+PHHH/H3v/8d586dwzvvvINXX30VGzZswNKlS5GdnY1JkyZh2LBh6NKli09QRuCttuDPe1xRnr8QnhSrNm3a8HOn8RkTE4NVq1Zhy5YtvIHq2LEjV7ATPyoAyRP74IMP1uraatLipudJgHHNUQ8H6vr8i7qey04r8zHqpVOaBgBHiq5j1Eun0OrJd+qqvP+3L+DXZNXpBf8a2kcffYSrV68yuFJPBCQHpzaXy8WFK94TAHFJ6hl55bzDi2pvXkJCAvr166ehBjIajVXmGyqKUqVmenx8PGbPnq3Jv9y/fz+EEJLnVQjPbv3cuXOYM2cOWrRoIU3ORLY+YcIEHD16lL2Subm5GjBXXViSijRMJpOuhB2FBAcMGKAJWXk3NWgjCqGPP/4YTz31FHspqO+DgoIYRPTo0YMr6Ok5qMm/9bSKly5dqkngp0IbITweHMoFvO+++2pUwNOuXTtMnDgR69evZw+p2mhRHTJkCOeOqXP11C0wMBADBw7E4MGDNTls/v7+umOpWbNmsNls0t+osjgjIwMTJkyAEL41l4uKiqQwv7pICACysrL4Gk6cOFHluFCTg3uTfZNHqk+fPuxJM5lMGDZsGL979evXh9Fo5IIYwOO9pu8//fTTAIAtW7ZACE+u4A8//ICsrCzJw5+UlKQJd4eGhqJnz57YuHGjVOREXreuXbtKOtzUHA4HJk+ezO8gjRdfxTRV2YULFyCEZ8OmNgrje9MOUUW6d8jd28LCwhAcHAyr1apJS/jggw84B08CEnFx2Lp1q2a8lpaW8nfouVCeoBB3gHRRUZFGSUbP1AUlZrMZI0aMQGFhIQoKCrBjxw4IITj3mb5nsVjQtm1bfu/Cw8MRGxvLm56fqujjzW+rnoOaN2+Otm3bolu3bhg0aBDGjRuHWbNm4be//S173um9ffbZZ1FeXo7Lly9zhKtv374SvZI6b5UIzvPz89kDTMpcQngcA2SNGzeG2WyGoii4dOkShPBE0Xr27Klh6fi5zWQyIaTnVOahXPb2XwAAx4tvYMjmDzStqnxLoI6HUm11gPJ/7Mcff/xVFuZ4NwoRrlmzRjPBUFUg4MkzUue2eC805G00GAzo1asXSkpKcPPmTWRnZ0teAofDgUmTJkl5h8QjqJZEpHC8ug/btGmDHTt2wOVyYd++fRg1ahQSEhI0/dyyZUssWLAAW7duZSCklhNTm1plhZreIldcXMxk6+rqZaPRiPj4ePTr10/Dx1edR0vtKTAajejcuTN7Gn2NHSIEV/NO1oTSRO1RMBqNGDlyJEpLS5GQkIDAwEBcv36dyYmpP5KTk/m5RkRESHlnalMUhT1gnTt3hqIosFqtXCyjNnW1+MCBA30SwdMCRSCZvieEDBjatGmDyspKbNiwwadUXZMmTXD27FkGapTXq7bAwEAkJCTw/5P+u9PpRHl5ORRFYa+oGhC63W6WGzUYDOzJu3r1qnR8KvohupMVK1bo9iUBrbZt28JoNGroXryLcvbt28dAlgj9hbjD66q28vJy9uBTVS9V11Y3VxGnoZ6Rl1tduU4V1fQcvecKg8EAu92O48eP/yS6KhrPZ86cAQDO53Y6nbryfGqw4csol1uIOxKuBQUF6N+/v7TJjYqKksaa0WhERkYGXnvtNb4X2iySEoyaMshgMGDVqlXIycnB9OnTWSM7JCREknCMjo5GaGioJDP5U/P/iAg+PDyc568mTZqgXbt2Eght3LgxlixZgvXr12Pnzp04fPgwOx1cLheOHj3KkRzvAh8SmqjKaGMmhMCOHTuwZ88eHg+00QHAG3y1UAZFC9xuN65cuQKDwcDrUHp6Onbs2IHf/OY36NmzJ4PWqjyfd6uZTCbENE5nAPjhpW+r7IPaAsrEnDqlnP96o4lfXflIoa9fW6Pco8DAQLzxxhsM5gwGAyZNmoTBgwfzSxgTE4Nt27YBAFdSUxX3oUOHdKkZnE4nh2p95X2R9yQ9PR2/+93vIITA5MmToShKlTrN/v7+yMzMZBDUq1cv6bjXr19nIKDHWUf3npiYyB7lgQMHVvt8r1y5gqVLl6J9+/aaBVPdkpOTcerUKQ1ZuS+PndVqRVxcnOaeu3btqinKqY0RkBg0aJCko240Gpkvj2hr1ADbbDZrKk69TZ3aMW/ePD4OKYVUZ2FhYbBarbh+/boENps1a4bQ0FCfC4Cfnx/atm2LVq1a6XorSQaT/p82NpMnT5bOTzRSpI+uBshqD+GVK1cYZFZUVOCtt97ivmrQoAGKi4u54MBb2rNRo0Ywm824ePEiX2u/fv0kMEUe6YyMDCiKwnl9akJqX1XeJ06ckKh8MjIydItdbt26xQBCb9xS/iG9j1artUrC+1OnTsFgMCA2NlYDDKnwigqdfHnGiHty7NixOHDgQI0AJhWDNW7cmDlaCRT7+flhx44dKC0tZeCZmppaZTqOum/puOqNo7+/P9LS0jB06FD07dsXHTt2lPJw79ZcbDKZOLUlMjIS8fHxaNSoEY/j++67DyNGjMB9992nK/JAfTxixAiNR5qMvJZktLFQ5xl6V8yXlZXxe242m/HEE0/gu+++4/P6omHTM/JUUtSzKNonAAAgAElEQVSBNhZkVEhIJPzEIZycnAyr1cqg0de8QCIadC/ErHDx4kXs3Lnzrj0rdbPb7Ygc9SQS5u+rlkKoNq1Oy7vOAABff/01mjVrhsmTJyM/Px///ve/8e9//xu7d++G3W7/1XkvJ02axCGXjIwMmEwmKdQbFRWlCeNRcjW1iIgI3R10ixYtOE/Hl5HGME0kJpMJvXv31oQnbDabtBA6nU6pso88C2pTFIXJt8PDw9nzSsUHQniqYKOjo3mSItBcnRE1CRGq13TyIYWb+++/X+L+s9lsUpJ7aGgok0VTUU5tjUK3QtyRjszPz5fUjtLT06WwekhICOdmBQQE4Ny5c7rHpnumKtSuXbuiffv2MBgM1coIklHIripuTm/SffUi5t3UVFF2ux0jR45E+/btpbSGZs2aYdOmTXC73VzAQGoa5KlSF1KQEXihBYsIm8ko1KmmLCkvL4fBYOCcLpfLxTmd8fHxuHHjBpPtp6WlMaD67rvvWD2FrCraoLy8PH4P6T5TU1Oxbds2zJ07F2lpaT5zXcePHw9FUZiwWggPqPT2tKqtsrISAQEBMJlMUjSD7OLFi3ys7OxsKIoiybl2794dixYtQmZmpq46DpGt621CIyMjdfP4mjVrhjlz5mDSpEno1KkThBAS8IuOjkZERAQCAwPhcDh+cr4fFXvQOKNNsxrkqMdnamoqv09z587F+++/L8kNVlRUVNmX9H653W7k5ORwf9lsNilvnM5Lm2N1zqy679TCEoCnItxgMGD16tU8RjIyMvD1119jzZo13IcdOnTgEL66sHL37t0MYO+5554qw/dEr0Xvj5oF4urVq8zqQJ5bXyF29Zowc+ZMbN26VYouUd6kEJ58ymvXrvHa8kusv+agKCTO31styXltWqMlh/BVac3m0f8frQ5Q1sA++OADXW7G/81GL+Knn34q7cwjIyP5pezatauUN6WubKTWpk0b7Ny5E4qi4PLly5LUYnh4uKaKFvAswjNmzNC9rrCwMPTs2RPR0dEwGAwcKi8tLcUjjzwihWuE8CRsq1Vx1KbmrKOq3tjYWPj5+SEmJgYWiwVpaWnw8/OD2WzWLKZU9bxo0SL06dOnSs8kPVs92cTg4GB07doVa9euxc2bN7la/LHHHpO+N2LECMlb81MA5VdffcVeNafTKYET0lRXL8x2u529yadPn0ZeXh7ztr344ovSsb1zl4KCglCvXj2YTKZaXyf9Ti+/UVEUn/mSkZGRePnll7F//3789re/xaBBgzhnU+/90guBUTj90KFDOHDgAITweKj0TL0JqV+/vm7FsMViQXp6Ov8/Pdc//OEP0vceffRRCHHHY9ekSRP8+9//lr4zc+ZMCCG4730BSkVREBwcDJvNhvfffx9jx46V3mPvlpiYyJ+bTCY0aNAAV65c4b+1bdu22uIhAvkvvPCCz+8QkTjdw6FDhyTqFrPZjM6dO2PIkCHo0qUL4uPjfc6N1QELX408Xer3Lzk5GU2bNkVcXJzue3z//fdj69at2L9/P06dOoUvv/xS91lXVFSw53v58uXw9/eH0WjUyGuGhoYiICCA8/r07IMPPmAw7f0dYimgTX5QUBCeeuop/t7nn3+uyV0dMWKE7nnMZjMyMzOlvxEDR25uLsrLy6VCOCE80Su1Q4HyHOl5KIoCt9vNzCaRkZEaOjXAM37VErBCeNKgSPPd+3nTd+gdTU1N5aKahg0bslTvrl27NOfauHEjH0udMqM3D9ytFtt5xF31UO4q0F/L/lusDlDW0D788ENpV04Tha88sF9i8KtbSkqKRGehrjy8efMme1TMZjOaNGkiTcLqils9fWziAKNdYVRUFIYNG4aOHTv65LgTQg5fExkwEd8CHt4/q9UKq9XKAJFf7NhYzJs3TwNQTpw4wX3scDhQXl4u5TeNGTOGJ0uHw4HGjRtXWVBit9uZlzEuLg5GoxGVlZVYvnw5hLgTMl21ahUfw5sLTQ90GgwGDTCuLaD0Dt0ScL18+TLeffddKazepk0bZGZmStfl5+eHyspKFBYW8nMaO3YsFEVh5aR27drxotaiRQvu27Vr19b4OoE7Um7ePH9HjhzRhPYaNmyI1atXc+h+0aJFPo/7l7/8hSlXjEYje++qe6dGjRqFdevW4aOPPoKiKDh9+jR7YEJDQxl0Ez+e2mJiYiQ6nKSkJNhsNvznP//RfJdAuRAeHlZvc7vdDPIVRdEASipIUxe3qecU0q6mv1ksFjz11FMAPJsN9RyknntOnjyJ/fv343e/+x2eeeYZLF68GDNnzsQDDzyAgQMHMnhxOp1ITk7me/b394fNZvtJfH+02SNJUepnX+T66jZ9+nQcOnQIZ8+exZUrVzhtRu31Pn36NIMZ9YbDarWie/fuePfdd9nb17dv32pG7B0rKyuT+FhJpYjemejoaKlSOy4uDgsWLNDdPBFNGEVa/vnPf2LUqFF8rZGRkbpKTYqi6M6l8fHxEti6fv06hNBP+7BarUhOTobb7WZFJmrR0dE4fdoTej1//jzzstLnanaFpUuXQggPkB8wYAB69OiB+vXrV7kB9/Pzw7333sua7Z9/fodWh9YPmv+F8KQSuVwufP/998yP63a7sXfvXowaNQrx8fHSmKG5Nz09HcXFxRwRuNstNjYWwZ1GIzHn7Z/tqdz03hc1HoP/v1odoKyFFRQU8GRPO8KYmBhNccfAgQN/kcGv13r06IHU1FQmNgc8xSNjxoyRFnZ6QTMyMgDcyaf0lnmrrKyEwWBAdHQ0WrVqpQFmgYGBGDZsGN544w0JjOgRCVPuDeWGEX0R0ZII4ckxGjRokOSdUVPEbN68mRcvITw7fW9VFnUjKbEOHTpg0qRJePDBB2EymWAwGLBmzRq+Nm9eP6IHUauzlJWVcdjLaDRixIgR6N+/v08KDovFIlV/1xZQ0k6eQrckueY9vtSe2OvXr2PQoEHSYrtz506Ul5ezzKY6EV7tSSGQWVWubFXWqFEjGAwGnDx5EmPHjtWEQYUQmDFjBn+/srKSCwP0wJjaXnnlFR4TRqMRgYGBuH37Ng4cOIDQ0NAag5/o6GiMHz8eCxcuhMFgQHBwsMaT16lTJxiNRgB3QuDdu3fXXBN5O2NjYxnoquXtyIgcetmyZfj8888hhEfpivTN1dcXFRWFtm3bokOHDpocQHU+qcFgkPj5fmpzOBwICgpCREQE5/u1atUKHTt2xH333cfAm1IjaOP81ltvobCwEJcvX+bPjEYj5s+f79ODV1FRwVKbeq1z585YsWIFbty4wXm5lDe5b98+dOzYUQIZpHalPp/FYoHFYoHD4ahyPPl6ltSIXD8gIACJiYlcuJSRkSHNow0bNsSaNWuk94U29mrSfaJm8mUE4oTwbAwcDgfGjBkjFdVt2rSJUza2b9+uOUa3bt2k+aFhw4a4cOECHnnkEb6O/v37IygoiIUr6JwpKSmoX7++rqeR5jJ6xpRa8+yzz0JRFJ7XKQeYRBjIbt68Ka0bRJLucrmwc+dOieZKPd7V8qNCCElbnVgXfonWu3dvBLXuh+SF+7nyuzY5k42WHPqv90yS1QHKWhrR3dCuv2ef/hg0cSaademHBpldYbDYOVeRPEy/VLNarQDuEJtnZWVJ+TlhYWGYPHky5/3RpEMLKv3tueeewyOPPILU1FTJ62EymZCUlIQxY8Zg8ODBvGP19/eX+PUAz46ZwkZEJEz8fKmpqRwiV3NUCiHv7B977DHEx8fXylNy//33Y+PGjfjkk0+Yj5PC9BR+dDgcGpofoiyhYgzioVMTxpPl5+drQrj9+vXjSdM7x9Zms3FfqtVeqrI//vGPEOJO6PbFF1+UnuWoUaM8u+ngYN3fl5WVSdX5YWFh2LBhA/eJwWBAQUGB9BuSJ0xMTKzRNartxo0bumDBYDDgpZde4r7xBm/qkOPq1aurPIfL5dLQGymKgoCAAAbJw4YNQ1ZWluRxooUwMDDQJzl8bGws2rVrhwkTJrBM3aVLlzBv3jwIIfDaa6+hsLAQ7777Lnbt2sWbRKfTiQkTJmDYsGGcvmE2m5GSkoL4+HhEREToFl/UplG+n9PpRHBwcJXpNgaDAaGhoXj66afx0ksv4a233sKf/vQn/OUvf8G3334Ll8vFudJVEf+TUaGRutJZb8ydPHmSx2dkZCROnjwpff7ZZ59pZB9DQkLw+uuv66beCOHxJNevX59zAqni/9lnn5UkOmmDeuvWLQghuLDQWzfelxUWFmr6kwAbRXMSEhJgt9v5NwcOHECXLl14fjQajWjdujVWrlwpFW82aNAA7777rk+lHBrXdP6xY8fyXDRv3jwN7RcBO7XsLuB5/+jdNhqN2LBhAwBPTuPOnTvx0EMP6UZS1M3f3x/Jycno2rUrZs6cieeee04KNSckJODmzZsapRxFUThf0ldKgFoq1xf1j9FoxOrVqznHk949+mzfvn3o3bu3hgbu57xbvprZbMaIidMQM+YpBorVAcnEnLcxLu/0f3XOpLfVAcqfYIMnTEPDUYvRdP5uJHq5yRMWHkDc9Dw0HLUY90/x8D9SeOuXaBEREZLXwt/fHyNGjNBUjD755JP8HT8/P/Tq1Uuz8NFu32Aw4E9/+pNmolAUBUuXLtWEaqiYQz3RPPjggwAgFb4kJCRgz549yMnJYUoYi8WiO0noVZa2bt0aDz30kLQYqCUev/nmG6bSITqWlJQUlJaWap5h06ZNJW1kwENyrQcAjx8/rgGUQ4YM4bAYJdLThGg0GjVhSyJb1yPyLi0thc1mg9VqxeLFi/m4NpuNF9+ioiIGqr7M5XLxb9XFHE6nk/Mq1VRCv/3tbyFEzZWNSI5TDRTUzyI8PByXLl3iHERfC6o65EgLYVW2Z88eCXTQv+Pi4vD999/jz3/+s0TFo94U+fn5oUGDBkhNTUVsbOxdTe6vSY4gjYOGDRtixowZmD9/PiuJkEfSbDZj4sSJ+O6773z2weXLlyUPpvq8VanbEChcvnx59Q8YwAsvvAAhPEUbb7zxBp9DL1WAiNupT/v27YuysjKmZVI/j9DQUM4HJt1yPz8/bNy4UbcPzWYzWrRogXnz5jEf5ebNm1lBatu2bcxOQBsjPa+yt7ndbsnzvXHjRvj7+8NgMGDXrl3SBqZ3796695yXl6cBxbTZbtSoEQB9LW/6vZohg8zbQ+t2u7F48WLuW4fDgezsbLhcLsyZM0fqM6KSqslGPDU1FQ6HQ5cirLi4WMpxp4JIPelFUtMR4g6VXWlpKZ599lndDUNYWBh69+6N559/HmVlZZxipPZuqnmg1feSmJiIxx57DCaTSZNbebcaRU7S0tJw8et/IXd/Ee555j0keQHJpP8hLc/dX/RfSw1UldUBylrYV6UVGJd32gMcq3ONL/wjEnPeRuaCVxAUm+JTZeZuNm9SZcAzgR07dkyXvFjdkpKSuLpVnfeoZ7dv39ZMaGPHjsWtW7fw7bffco5mQkKCRB6t1xwOB4enN27ciMLCQrz55ptMJXHp0iWsXr1aUvtR71hpAidbt24dfzZ8+HDd3XNFRQUMBgPatWsn/b1x48ZS6Eyd7G4ymbB48WKUlJRwKJkmPqfTyeeh80dERLBUYVVk6++88w7nHBEIdDqdyMnJgdvtxl//+le+FyFkGTk9+/jjj5kzUD0xE2AVwsN5qCgKc+917tzZ5/Hcbjeef/55NG/eXAqr9+zZE3v27OEJ3ul0wuVycQ4hVWaq7bvvvsOlS5fw4Ycf4tVXX+WFvV+/fpzvN2jQIHTr1g2ZmZlo3rw5UlJSEBMTc9fyktXvYWRkJJKSkni8qj1jvsKA4eHhiI+PR1RUlG6OWXJyMjZv3oyysjJERETw+ebPnw+32y1RBfn5+WHBggXVFtPs2bOHN3rLly/Hxo0bpRw/IQQzC6iN2AJqokFPVlJSAiE87AKU/2Y0GhESEoIff/xR9zfXrl3TbJrj4+NhNpthMplw6tQpREVFMaC8ceOGRgnJz88PU6dOxe7duzFp0iQ0aNBAelZWqxVNmzbFyJEjud/pvbly5QpT1FRFYaQoCntV7XY7/vrXv/I9kxd44sSJVc6nR44ckZTJkpKSNCk4SUlJzJzgbZQaRNElMqLHoY341atXsWPHDtYsr24jFB8fj27dumHWrFnYtm0bjh8/zkCzrKyMxzhxQXqnCLz22mucGvTcc8/h6aef5s3AI488AiHuAMqKigpYLBaEhobyRlsvFcPhcPAG0FscQFEUBAUFwW6348qVKxg/frzm91OmTJE8szSn3o15wFfzrrL/7gc3iq7dxrkr/0TRtdv/lXKKtbE6QFlDe73gChotOVStK1wPWCbM24M+s5bx5PxLvQyvvvpqlYnOQnh2xdnZ2dKETt5ACt3s2bOnyr4g7yLxnNX0nrp3745NmzahsLCQQ8zetEEHDhyAwWCAw+HQ0HHcunUL8+fP1xD0hoaG4sKFC9ixY4fk2fRFjk5FPN6VhkOGDIEQAi6XCxs3buTJKyMjQxNy8q5Wnz59On9GpNhCyNXHFy9e1CVbp2axWDB+/HhNPmNYWBh/vyYePXoudrsdFRUVWLduncbDSl5Gk8mE2NhY6feKomD79u1IS0vjZ0vUJoMGDcLUqVPRtWtXScZOCE++Inm9CZDRIlWbcUweXofDgcDAQERERHCemJ432+l0YurUqdi4cSNee+01HD16FOfPn8e1a9eYVL9jx45SuFIIIeVTkmSmEILDt1R1ajKZOA/N1zWrtYujo6OxZs0aVgoRQnCeM/XNihUrasTfOHfuXH6W3pKf3tfTpUsXXLt2DYDMwVmV51PPjEYjOnTowLKna9asgRD6HjvAAxD1lKEMBgODssjISDidTi7MUreAgACf13L69GnMnDkTTZs29UmhdPDgQfaKqzlA1VZaWspecafTqeG4/PLLL2G326VqdrXt2rWLQZnRaET//v25r+n46txFag8++CBXT/ft25f//sYbb+Crr77Cjh07MGfOHPTo0YPHtt774j3uDQYDevfuzephRC8G3PGCGgwGlp8NCQlBYGCg5AUkvtLp06dDCA+oV8vVHj9+XNo0rV27FosXL9aVvKVxL8SdosUBAwZouGDJysvLpf5Qz4G0KSfv5Y8//ohHH32U++Vua3ur26ZNm3yOxTqr3uoAZQ1s43v6+p41B5WesHi3rFW/yEvga6Hz9/dHu3bt8MQTTyA4OBgxMTHSfR0/fpwnaTU4ADwT5N69ezk83aRJEyac1Tt/eHi4NPmkp6fzxFK/fn2YzWZER0dL5xdCBpRHjx5lbsfi4mKfz4MqH9VFC9TMZjMOHTrEoNM7twvwSN1ZLBbNgr5y5UoIcYcsWo8wGLjDyzZhwgQGoTSp0zGfeOIJvh7vxevmzZtSaE0I2etKRVGDBg3CK6+8InlN1CF+wLN43LhxA5999hny8/OZloOeU5cuXTBy5Ej06dOHybr1xooaENV27HkTRhuNRgaWnTt3Rt++fXH//fdjypQpmDdvHp566im88MILePPNN/Hmm28yWH799dd9PvMrV674vIbk5GQUFVUvdaYoCl566SXJw2w0GtGtWzfWaHY6nVi8eLEm/4/oYYYPH47du3ejtLQUBw8exJIlSzBo0CA0b97cJ/WRd5s2bRrOnj2roRxSm8vl4uIH4r70NgLAixYtko7fpUsXXtz/9Kc/VdsvesclDygpBPmiHFq8eDGDnd69e+PMmTPSJqRjx46SeILNZkPv3r1x4sQJ9tbVRBWHrKioCPPmzWMtaO85kKjO1O/2Bx98IOUk+uJbvXDhAs+HgYGBADybCsr/M5vNHInxZVevXq02hUfPA66OKoSFhWHWrFkcyqffpqWl4cqVK9i/fz8XthDHplonnYrtcnJyANzRYSeuVSrmoTmO5mjv1KDCwkJMmzbN5/2MHz8ehw8fRkVFBYNMi8XCROfLli0DcIdvtW3btli3bh2aNGki3b/6319++SUURYHNZkNiYiImTZrEcxb9lzznv0R7+eWXazwW60xrdYCyGnu94Mpd5alK6jH2F6MVouPGxsbib3/7m3QfRqNRE8ouLS1l74PecdTN4XCgXr16nD/56KOPorCwEE6nU8rHOX36NOdRqht5MF566SX+rhB3AOWJEye4GEFPMURtFMojT6DejjUhIYEBgnoBuX37NoTQ5p0piiJRwjzwwAM+Q5GhoaGwWq344YcfAEDiowwLC8O7774LADwBJiUlweVy4eLFi1wAou7r7OxsZGdnY/To0WjRogWCg4N9Jp8TTcdPJXf2JprXe+Z+fn5o06YN5s6di1WrViEvLw979+7F+++/j44dO0IIT0hfzVunLkDbs2cPunXrpgl5+zJ1yHH//v263/nss8+k623fvj2+/vprTJo0iRfoqp6Zt1VWVmoIpvX6ZOjQoTh06FCt5AbJ41PdOyWEx/MYGxuLtm3bYvz48Xjuueewd+9eXqD79+/v89x0/VOnTsWRI0c0QCUiIoK1uGtjakoj2gypSdEvXbqE06dPM2gNDw/H8ePHUVJSAofDAYPBoAkDk5eX7uVf//oXj2Oz2Yx//av2+Whms1kSSfDu79jYWIlaTQj9DabaiP2C3gMh7hBx+1LuIU/j7Nmz0b1792q1p00mE5KTkzF9+nRs27ZNisQQ2Prwww8519JisehWeZ88eVLaHLVs2RKrV6+GEELKtfbWYT99+rQ0Jg0GD0H6qVOnMH36dDRu3FiaU9VzEf2b5jhAznEWQjBgPXPmDBRFweuvvy6laJhMJnTo0AF79uzBH/7wB+n6AY/IiC8v6C/daiqQUWf6Vgcoq7CvSivQaMmhuwcoFx5AwqN/gD0s7hd5GRRF4WrI4OBgFBUVobS0lBPtExMT2dNYXbVcp06dsGnTJnz66ae8CFA+X5s2bbiPGjZsCD8/P6nfXC6XboWh0WiUFhUhPIDy9OnTMJvNsFgs+Pjjj6t9Lg8//DCE8HhfaFLs2bMnLwCxsbFSeMzPzw8vvfQSFEVhb44auOzfv1+a8Nq3b4+Kigr87W9/w+nTp3HgwAFs27YNa9euZcLiZs2aYfDgwejevTvatm2r8fz9nGpEyl2y2WzMEej9HbPZjLCwMLRu3RoPP/wwU4I4nU689tprOHPmDCfTJyQkSKCEqGy8QU54eDiOHTum2+fXrl3jxbtLly4a4PbFF1/wfQOoFaCk31O1vHe1bmFhoQSgQ0JCpM+Li4u5EMCXV5nsww8/xPTp09GkSZNq85pHjhzpk3Rfz4qKihhw+2r5+fkcoh08eDCaN2+O0NBQn8/YG2wWFBRw31N+Hamo7N+/X8qZpX83btxYAgDVGeWzeZPFk2wjefuMRiMeeeQRKIqCt956S+OFa968OQYOHMj3ZrFY2AtGDAGkuOWL1NuX3bx5E0J4eCvPnz8vRStGjhyJTp06afrU4XCgX79+yMvL0/VSulwuzWbroYceYi3qV155hUFjSkqKT3JvIkund0oIwTnsfn5+kke/ZcuWyMvL4/eTwJ66eafbeNvu3bs110DUbAAQEBCAyMhI/v/f//73/N2GDRtq7sFms6FFixaYM2cOzp07x/MIaXML4SnaAjx8tEajEXa7HefPn5fAdPfu3aW8ZBof6gIv8sIK4QFz6lz5/4322muv1Woc1plsdYCyChuXdxopiw+i2eOH8cKfvsSJi9/g23KPV+q5Y59XCyBPX/aIzkvi8Qv2I2r08rv6EtDE2a9fP/Tr169Kzwt5Gjt27IiHHnoImzdv5pxIdXW0EB6eMbUXijwX6nA0VZGqAQbtUNetW4erV6+yGgM1KiwRwkPTQ163Dz/8sEbPJSMjg6s96Zi7du3CoUOHuEgkOjoa/fr185lvk5SUJKkK0aRX276nkC9NnETcrvddk8mEMWPGMCht2bIl3nnnHZw7dw5///vfq+SCpGtbtGgRBg0axEpE3sdfuHChxFNJUpMPPPAAlixZInmOHA4H+vTpo7nOpk2bSgUJR48eZRBBYTRvUyt1bN++vdaAEvCQmhNIeu+99+B2u6VkffI2qcN7alu/fj33fWZmJq5fv45jx47hwQcfREqKXBhns9nQvHlzHr/qvjQajRJAqYrYGvAALfV7k5GRgY8//hjXrl2T3kWn01nl/ZPModlsRqdOnaoEm/Q86H4XLVqEY8eO8Xj28/NDQUEB+vbty+AmISGBgUBVRiTZajlKwBO6pOMHBQUhPz8fI0eOlPhHw8PDkZubKwE2tUa32WzG4sWLYTAYmGewQYMGMBqN1QIntZH859atWwF4cvIotG6z2TjfkYoCnU6nxusVGhqKHj16YPXq1RgzZoxPr78v0JiSkoJu3bohKysL27Ztk6JC6jkvOTmZNxrnzp3jHOXWrVvzOamqXb0RT0pKkviFqzLiD1Vfb3JyMkdxpkyZgj179ugWSfr5+Uk51uPGjZPmcwKUBPZo7A0ZMoRTlC5cuIBPP/1Uw8GcnJyMZcuWoaKiAkVFRTAajQgNDYXb7caFCxd+dZLGvnJw66xmVgcofdjFr//FILDTynyUff8jTl/6Fq+d8XgsqgOUj+3/DF+XeUIkEqD8n2YJj//FXgqHw8Fa07QACyF8Lojvv/8+hPCQtLvdbmniNRqNyMrKwp///GcIoaWYoQIXytXasGEDhPAU7Kjtiy++kBZGtUfQYDBg1KhRmDJlCu6//3706dMHnTt3Rnp6Oho3boyEhARERkYyJ98v0V+pqano1KkTU+xMnjwZ8+bNw/Lly/H8889j9+7dGD16NIQQePzxx3Xz32i3v337donewm63M0E66XGHhYXVODxLfHtCyDyZbrebKzC9w51+fn5IT09Hz549pX632+2w2+3SQmU0Gvl6jUYjHycxMZE93larFW+//bbu9V2+fBkGgwEtWrSA1WpFaGjoTwKUgCffi/Sa1bRWLVu2xAcffD20aBAAACAASURBVAAh7nhBvc3tduP111/XpRZxOBxIT0/HggULmIaGTB3mNBgMnHJRUFCAAQMGaIitV69eDZfLhYMHD7Jn1GDw6KKrtYkBj/dUfR3vvPOO5rorKys5JSQpKYl5+dRWVlaGQ4cOsWeTNgZVFXAYjUaMHDkSy5cvR69evXg+8KXeQkbAjDhjS0pKmBHA4XBoiPbpGqpSW4qKikJwcLBUzEbhRXquPXv29Pl7b5syZQqE0Hrv1IBsyJAhsFqtsNvt7BktLi7Gww8/jMTExGqLO9TetQceeEADGqsydfERbU7at2+v+Z7L5cKyZct0RSgMBoMm792X0TgcPnw4bt68icGDB1fJXUqRj6+++oqP4e3pJ3BFgFIIj9LWzZs3ORwvhMdz6Utq1TuETAC3V69eGqaCX0P74x//WKP+rjN9qwOUPix3f5FuRXerJz0LQlWAstPKfJT/4MbUVzz5S96AMmHBftQb/MhdfRFo8li1ahXfw61bt6QQgq9kdCIdJw9KUVER5x96S989+uijyM7OxqRJkzB8+HCuDI+KiuJJVE1NQeCgtvdC+X5OpxMhISGIjo5GQkKCNMn37t0bo0ePZi3vlStXYsuWLdizZw+ys7N5UX3iiSc4LEOLovp8gYGBGDt2LC5evMihOO98KZfLBZvNJkn0eZs6l5KoPigsZjAYpEWGZDJrYhTSCgkJkciW9+7dC4PBAD8/P1y5cgWKouDQoUPo0qWLTy/phAkTNIt3WFgYoqOjsXv3bgaf3oUrVZGQqxWRiPC+fv36PwlQ3rhxg8ELNX9/f+bApL/t37+flTcGDx6soRZyOBx8L5GRkSxDp2fkMRZC+FzADx48KBFbq8fqgAEDfHrXiMtRDXTU6Raff/45b+AGDx5c41zN3/zGw3F78eJFBAcHMziqV68emjdvrgF91NQeeYvFgr59++LMmTO8uSEFKSE8RRSzZs2SuBC9751AgZrfVM+INsgbYI8aNQoul4vzrr2LznxZZmamZmOxYsUK3XuOjo5mrkm9z4kE3/vvFouFKYJsNptms+DLKIwvhOCcRiGEhrUC8IR81V712bNnSywWRqMRDzzwQJXnJrENmoeryuFs3rw53G63xGjhbevWrZOu6cUXX5TuIT8/X3PcgIAAjB8/HhcuXIAQno2vmt9TbeoirV9bqyk5fp3pWx2g9GH3rH5PFyzWBFCeuPgNDn92HYk5Ho+OnocyfkbeXS3OMZlMsNvtsNls2LZtG5577jk89thjyMrKkihcUlNT0aJFC9SvXx+xsbFc3apeJGpzXvq+2rMVHh6OlJQUNG/eHJmZmejWrRsGDRqEcePGsbyg9+/tdjuysrJ8hn0LCwulMKSapoe8dN55YmfPnuWFNT09XTrnzJkzcfXqVUybNk1SWaGFX03iC4C1ZL133Iqi4LnnntOE0+jcTZo0wYULFzRyY7WpbCXFHwqJHjx4UMpd+vLLL5Gfn48ePXpIgJuIoadMmSJ5FITwhNiIbL1hw4bssSSAQt+LiYnhYwYHB2PlypUS6KEK0o4dO3J/kJdXj4evKiPyYiFkMYDf//73AOSwujewCwoKwj333IPVq1dzRbSiKMjOzmZANGjQIM1Gga5f3fQKRBRFwbp163SLBSwWC+655x4cPnxY8zvaRMyYMUO6pwULFuD111/XlQWtiXXp0oUBO4kHREVFSc+GaI8CAgKwYMECDB48GC1atPApXWmz2RhY6eUA2+129O3bF6dOnZKKKapTPALuAMrMzEwew+StdzqdDLwyMzNrdP+hoaEICAhAVlYWunXrVqU6kdlsRnJyMjIzM6UUhNTUVC7SUVdCHzhwgPvDezPctGlTzJs3D3/5y190r4skFSmH9cSJE/xbNeguKiriOSEwMBD79u2TjkN0QOrnFB0djTlz5uDmzZv49ttvsXbtWq6+V7fw8HD07t1bIh+ncUr9fe+990IIff5SwJNCQGF7uga104DukTZ/JpMJr776Ko4ePQohBFauXCkV2+3Zswfbt2/3WUT1a2krV67Ef/7znxqNwTrTWh2g1LHyH9wahvyaAsoFbxWi7PsfkfnUsSoBZcLCAzBYtNW2/zeaxWJBYGAgwsPDOTxIQCo8PBxDhw7FxIkTGYTQZE3eTrPZLHlC/f39ORTtTQzrbVevXpVCTZ06dcLq1asREhICITxhpkmTJqG8vJx/s2XLFvb4UX6XOnmaEvT1QmZlZWUaMPX0009rvvfZZ59hxIgRUkg9MTERubm5uH79uoav0e12Y8mSJdxvdrsdc+bMQWFhIYTwFC6ptbxffvllzQLhnRbgy0jTmELfLVu25NzNXr16Sd6o5ORkLF26VNcbTZRCBDa9SYITExPRvXt3aRFNTEzE9evXMX/+fO4bNSE3EZ6rc23VXpmaWEFBAT+jsLAw5OfnswQgXa8eRVSPHj2YRLwq++qrrzjH0W63Iy8vD4BnUSdg2r9/f/acqBVMFEXBY489xue32+2YPXs2KisrUVlZiRUrVkjKIH5+fhg0aBA++ugjBiZCeIjNb9y4wYsv/d1ut+uqJ1VnsbGxCAkJQUVFBT+Xvn37ar73zDPPMBhQv1OAh/HgoYce0q3615szYmJi0LZtW4wZM0by6Kn12n1ZVFQUg3E1w8Lzzz/P45DGMVWml5SUYPv27cjKyuJCmKo8jTabDV27dmWvaVRUFHva1R779u3ba5gkqBL60qVLADw8s3FxcVAUBcePH2cApm5Etj5z5kwUFBTwuI+KikL37t1hMBiQkpLC49dkMqG4uBjjx4/nqMWDDz6om/qyefNmPs+mTZvQt2/fKkP06enpTMNE/UdV+E6nEx9//DEURcHy5culUHOrVq18Vq8risKa5t5Nrbx06tQpHoPkaabCm4sXL0qbv/8bAh8/t3Xp0qXG+fx1JlsdoNSxomu3fXofqwKUbZ8+hrLvf0TOHwr5b4A+oEzMeRuWyKpVZGrTDAYDli1bxuHfw4cP49NPP+X8pOzsbHz88ccMgCZOnAgA7DE8f/48YmJipMKB77//nhcbqsLct28fLyYpKSkoKirSlRLTs+vXr/PCrJ7UyLOTl5fHk6DJZMLw4cM5BB0QEIDz589zyNabMy0xMRE2m03629WrVzV8dUJ4vKlqAORtQnjCy96Aa/r06SgvL5e0dgMCAvDEE09IniFafOx2O5o0aYKSkhKYTCb4+/vj+vXrUojVW+lHz6Kjo7kQRS8/MCoqCnPmzME333xT5XHUXI7kmbl48SITDHsXKNFYsVgsyM/Ph6IoePrppyUNayH0Ca/ps6oKjSorK5mqyWg04qGHHsKyZcskJRLvMR4VFYXc3FwIUTVvpZ5t376dN0cNGjSQQMaVK1ckLeHFixcjKyuLx39AQAByc3N9hqRLS0sxb948yQOjBj7z588HIOdrCuEB0Hqh0OrMarWiZcuWnG4QEBDgkyCc8pzj4uJ0wcO7777LqjPeLTs7mz2bYWFhPgFBaGgoMjMzMW7cODz77LNSNTrgGbfkjVUXjZWUlGDLli0amqGqCmHIK5eWlsbPkEQMysvL+W8jRoyQilBIH1rPvCuh6dhqI7oyp9OJSZMm6ZKtU4haTfQ+atQoDVVPgwYNWKlHz9QV1d4RJHUFvxAeD+eLL76Iy5cvQwjP5og8h2azWXfDpQasZrMZo0eP5hz7d955B127dvUJYNu1a6cZR6WlpZIa2+3bt6UN9/9LjeZBemfrrOZWByh17NyVf/4kQHnswtc4felb6W+Ab0BpjdFfOH/qSwDcId2mhHpSHaC8rbKyMvbENGvWDCEhIQgODgZwpyJYXeFL4DEmJoYXU7fbjQcffFBTCKJXTED27bffMhDJy8vDsWPHpEn4vffe4+/u2bNHCq04nU4mrk5PT9etfKS8pb1790JRFMydO5c9bQMGDGDidbrekJAQn+AgKCgI9erVYyJsvf4OCAjwmTf297//nfumSZMmiIuLg8FgkDjwjh49yhOX3W5HQUGBz74zm82IioqSwnU2mw0PPPBAjXPOgDtVxEajkfMSAeBvf/sbHzcyMhLz589H+/btNV5Bf39/DBo0CNu3b8eGDRu4f00mE0aOHCmBfAIokydP1r2WrVu3Mii32+26IcuBAwcy+Tk9tx49eviUzqyJuVwuqbKd9IEBDwUKLbD0eVhYGDZs2FArHsqSkhIN36jT6cTEiRN5gbXZbFi+fDlTRFWnTqU24lIlb1C/fv2Y+1KtdKI2ej8SExPhcrlQWFiIYcOG6eZaqr2PaqYHt9vN3tihQ4fi8ccf53C7d7+px2lERAQ/Pz8/P8TGxup6GtX/bzabMXz4cLzyyiuazd/WrVv5exaLRcpJ9VbsoY3ppk2bGNB6q03RplvtaSVvvjcYo3zC0NBQBmC0waG0I71xrM5lJ75FtRUWFiI7OxupqanSMahPOnbsiCNHjvA4PHPmDPeTulLcO1VhyZIlPsdRYGAgwsLCJDCv/n2DBg00gJDmZbvdjt/97nfS8RRF0dx/YGAgli5dqpt3+WttJBvrTeJfZ9VbHaDUsZ/ioZy+8yP8+G8Fgzd/gNQnjnADgFfPXEHqE0dQ36vIxxZdtb72T2nqSdnf35930ElJSVJOo1qCq379+lizZg3Wr18PITzJ+JcuXcJTTz0FIQTnPXnrSP/1r3+VFpHHH39ctz9v3brFVYBqEKZePEwmEz744AMAkDyp6ny+9u3bIzAwUKO4A3iAshAerwUlpUdHR+PUqVPMuzhq1Ch8/PHHvPNOTk7Wvd7U1FT2dnrnKHlTz/Tu3VuXLJk8bxQK0pOBdLvdUv7m0KFDeefvcrmwZs0anxrsHTp00L32qiwiIgIBAQHYsmULH6OkpISBamBgoKZ6/ebNm1i0aJFPz1RwcDCHMg0GA/r06YOvvvqKqaNMJhMvyoWFhXj44Yc1nl+TyYSkpCSMGzeOx6V3teWSJUsghCfMeO3aNTRt2hQmk6lWQA/weK0JRBFgttlseOONN5jLk5qfn1+VHtaqjDzcRPqsXqjp/jdv3izJ2z3yyCM1OjYV+ghxhy3g6tWrEMLjnfJlVBmtTmlQa77TfKEoCvbu3Sv1Rbt27TjnTy3zB9zRoU5MTMTUqVORlpZWI65bKihLTk7GkCFDsHbtWrzzzjvSd/r16yelb5CsoBCe9BwCm4qiaOjJhJCrwIuKing+GTFiBI8deu5qKUXy4OnRyNAmPSIigjecgYGBnLtbUlLC77V3Dia9R8OHD8eUKVM0JOJUCGS1WhEeHq5bDOhyuVgK9OLFi3C73Vi3bh1Hd9RNj1WAjArnKN3I+3k/+eST0j3MmjULgOzppw3H7du3pTQVer7bt2/H4cOHdYuefo3NaDQiPj7e58aszqq2OkCpY9/9hBzK5459Xu1xp7xyViI5v9s5lP7+/ujZsyd7IJ1OJ09gP7fqmv5ts9m46lqdP0ifh4aGYsKECVi4cCFWrlyJDRs28GRCXH5qYnMhPJ4Ws9kMs9mMhQsXcr4kccydP3+eq8mF8Cz0BD7JysvLGbwZjUYsWrSIP6O8S8qbUofF6tWrp/FCED2QupCnYcOGrH1bXl6O3NxcDTXIyJEjmZJGTfXTvHlzn2NCURTJe2G1WpGYmCjJGNJ/jUYj8vPzmZS7NmDqyy+/5IUUAHvpqHjGz89PCvl5m8vlYi694OBgXYCpHldq76a/v7/m+xQ2PHnyJN8HecgffPBBzfkJUArhSZegMO6WLVtq3AfXr1/nsbhz507Ju6Zu8fHxDBq8abJqYpRLl5OTw/1O707r1q0lAJGamoq1a9cyb2L79u2rBbHkjVRTHAFAXFycRmTg1q1bWLBggVQ5TO8QvS8NGjRAQUEBhJDzes1mM5o2bcobSvrdsGHD0K1bNyQnJ/v0NAYEBCAlJQXdu3fnfrZYLDh06BAef/xxDBkypNowunrsDx8+HG+//TaDSYPBALfbDbfbjZycHGkOys7Oxq5duyDEHT1ossrKSi6OIrlBPz8/xMXFSd+j8HFWVpbuMyCZVuqTv//97/yZoigSmA4ODkafPn0kT633vN2jRw8JxBgMBs41pTzGZ555BsAdnl+1p5U8qnq0aoGBgRg9ejSKi4vxz3/+E48++qiUVx4cHMya4wUFBVLxmLqpCxV/+OEHDd0W/btt27YoKCjwyTTwa24DBw6sNie7znxbHaD0YbWt8u60Mh+jXjqlaQBwpOg6Rr10Cq2efIe/X2/6lrv6ItAL3aJFCyiKgkaNGvHEHh8fr3uPAQEBCAwM5EmoU6dOPPlTHltaWhr69u2L9u3b8zni4uJ4p28wGHxS1NSmqUOeFCru1KkT+vTpg5EjR+Lhhx/G/fffL/0mJiYGGzduxFNPPSVdw6ZNm6T7DAkJ0dD9lJaW8oJFSeuApzJc7b0VoupcvevXr2PmzJlSODoiIkLS337xxRerHGuHDh3ShHxtNhtWrVrFurxCCAa0JJdJgLsmRrmnRFf06KOP8nFffvllZGRkwGw2V3scdZ7h4MGDUVlZie3bt2PAgAG6ng7vFhERoRveP378OITQqvqQ0bgkzxFVKrdq1apG919aWiqlXJw/f15DM6Tue+BOLqx3iLQqoyp3p9OJ8vJyrmQODg7mEKla5pOuwWw2s6c3LCysSpoYug91YRwAzJ07l8fJ6tWrpY2Kw+HAgAEDcOTIEckr/uyzzwIA0z1t3boV27ZtQ1ZWFm8+fW1AHQ4Hg8asrCzeRHjLPdL5qtqwlJeX4/Dhw3j88cclsnlf5yaFIO/PKTVGURRYrVafUQiiSiNv8dy5czXf0ZOrJaMqbJqH1BKV9MyFEJJqjhCCPbJ0bj2ydcqLJSYL9Zjy3uiUlZVxekmLFi1QXl7Ox8zJycH06dN1OSIdDgfnWapVdbz7R90WLlzIn1+8eFFTqETvEPGR3r59WxON+LW32ihj1ZnW6gClD/PmoZy49Qym7/wI8978BABwoPAapu/8CNN3foTGj/mWZwT0eShDek696y8D7fT9/f25alE9+aiNPBKTJ09GeXk5q5DQImQwGDQSd1S1Wr9+fTgcDlitVg4pBQYGIiEhAceOHWNgQYtl//79sWrVKp7gxo4dy+o8vkIhVquVc55q2w8GgwEOhwOBgYG8+AYEBCAtLQ0dOnRAz549MXToUKk4xte11Ibep7i4GKNHj9Ycx+FwaCpsz58/jyFDhkgeBXp+FOZWL0R79+7l3xJXYOvWrWt8bSEhIQgJCZE8jVFRUTAYDAgLC+PirOrUShRFkcBXixYtEB8fL12r1WrVBQImkwmtW7dGTk6OlPtZXl7O3nQ10bLayBsGAM899xwfz2AwVOvRU6dczJkzR+LBi42NZRCyb98+9iwlJyfj3LlzCAoKgslkqnGu6vz58yGEJ8VBPQ68Ux4URYG/vz8cDgeeeeYZTSGSwWCQKmnJKMTqDf4VRcGmTZs080GXLl0YMCxZsoTvj64tICAAycnJ1b5nERERmDNnDjZt2oTevXvz842JiWEqreLiYpZXpWdCaTR+fn6cq1oTIyqw9evXS5uY6prNZkNMTAwyMzO5gO3o0aO6ldRqwu4nn3xS83loaKguL+mRI0eYsovSCMLDwyW1JGoBAQFo3749nnzySakYifKZp06dioqKCuTl5emqnAUGBqJTp05SOgb1r5oWbdKkSXxsuu9Zs2YxIwSNKbXnlLyUc+bMke6vtLSUv/PEE09IkZrIyEip0KlVq1Y4ffo0cnNzeQy1a9cOZWVlGgfA/wvtH//4R43HaJ1prQ5Q+jC1Uk5iztu4+k99UnAA6LQyv1aAMjHnbZjD6t21l8BqtTJFha/wEVVIdu/eHbNnz+ZJQr0jmzRpkvQbPQ+Y+jtqwtpmzZox6Tbl+ND3yJPlbUIIaXEaMGAADh48KPErkn333Xdc+bhr1y6myFA3i8XC4cTmzZsjJSWFQ2FOpxN2ux1ms/kncW2azWbY7XYEBAQgLCwMsbGxzLXZtm1bdO/eHYMHD8b48eMlUnB1i4+PR+vWrTU8j3PnzkVpaSkqKyvZOzp69GjpOvPz86W+S0tLg9ForJHazqeffgohPMoh5C3q27cvFEVhMmhaDL15NsmIRFztfaFmMpnQtm1bPPHEEzye1LmfVdG8tGjRghdAX+cGAIfDIWlLq0msvT11aisvL+fjqzc69G9v9aiFCxfydwwGA1fAe3M86lllZSWsVivzcBKpvhD6FaMEtsg7VlZWhpycHImY2mq14oEHHsAXX3yBv/3tbwwIqLDjyJEjuPfee6UwusFgwKpVq7B161bMmjULbdq0qTKfkd6/0NBQzJkzBzt27MCVK1d4LOrRW5WVlWHixIl83tDQUKxduxbPPvsshPBsYhVFQUBAAKdT1AZQut1uOBwOvu6IiAhNwc2iRYtYCzohIQFDhgxBamqqzzC6Gmw+8MADWLNmjbRpHTJkiPSM9QoAjx8/zsCsU6dOkrdX3egZVmX0jniTaROzxeDBg7mgT33sJk2aSMwMxNMKyJ5TeratW7fG9u3b+d5OnDiB3r17S97DZs2aYePGjSgrK+NN7sCBAwHcAd7qtAKz2awp+OnUqZP0eW3XsV9D+/bbb2s8RutMa3WAsgojLW9fYPGntIT5+xAz5qm7+hKEh4dLEx8BL1o0KTTlK99JDTa7du3Kn6l3vWS04AohE4nTJFhRUcEhmAkTJjC4cjgcGoCqnvQMBgPq168PwFPlrVaAIUtLS4PZbGawmpSUhM8++wwulwu/+c1vpAmvb9++cLvdGjoQshdffFGjKEGLA4XujEYjhg0bhl69eqFDhw5IS0tDw4YNUa9ePYSHh/+svFQ6vrcaUGJios/FPzExEUuXLsWWLVswdarHw/3b3/4Wt2/frhLskHwiLZ7ePJwUYhPiDjtAeXk5XnzxRdx33326yhudO3fGihUr+LexsbG4du2ahsT9D3/4A6tnqHWpbTabJA8qxJ2ChKlTp0o5si6XC0J4ipbURspEZrNZd8NSWVkpgXeqRv/mm29gtVqRkpKi+Q2pjsydO5crmimdYvjw4T77GJA3W/7+/vjoo484h9IXBUl4eDisVqvm+j/55BNNha26r+rVqyeNd4fDgZCQkCq5CoOCgtC9e3cJNKo9XydOnODzU9hZCE9KhC9zuVzIzs7ma/H39+eqYSKif/rpp5nYvKZ29epVvn91OotaIpT+FhAQoPv8y8vLmXO3OrBJ86LVasWIESOwZs0aBm0XL17E2rVrJU8dNb2q7rCwMPTu3btaYv/r16/DYrHA4XBIeXvNmzeXKNAURUGHDh10n6nNZkODBg2QnJwsAUTa0PjimCSjSJP3nEPFWW+++SbPiwaDAffddx8mTJjA5woMDMSTTz4JRVFQr149BAUFcf7qr7WZTCZERkbijTfewK5duySPq56oQZ3V3OoAZRX2VWkFGi3xHc6uNZhceABJC/bBHKTlErwbbejQodi1axdcLpekKiKEkKTnXn/9dQjh8UpVRxhsNpsZbBIwIWDg5+fHoVzyFCQlJUGIO8AE8PC3qasCL1++zADUYrHgwoULfGyiAHnttdc4B/TatWsoLS3lSc9iseh6pRRFkYo3aHGdMmUKf64m9rVarZg2bRqKi4thNpvhdDo515AmntpYeXk5e1Uefvhh3QW9ZcuWGg1b8uBERkb+7GpIk8kEq9UKPz8/BAcHSyE0IjSnvFTSK8/NzeVF22azaeiCwsLC0KtXL86Z8taBJkoadWgtOjpakl6k377//vsSv6MQd1SSvMnWTSYTkpOTWQd9xYoVmj6nsF1SUhKHWRVFwbJlyyQVpylTpnC1MElZLl26VHM8Aq9DhgwBIMvQCSF8Uolcu3aNv9OkSRMGCNUBSvL+EC+s2hRF0bzHvhq9K/T+BQUF8fhPTU2tMjeM7m/AgAEA7mwOqRBuwoQJPn+rvtalS5dqxq/T6YSiKLUClAcPHtSAvvT0dJw9exbjx4+HEAJffPEF35/ZbNYdGwAYFHqHMsvLyzmHcMCAARq6nqpacnIyxo0bx5uVuLg4nD17ljdSSUlJ6NWrV42UomguVlMJBQUFSXnvVEWflpbGc2BcXBxSUlJ8bmTbtGkDIQR2795d5fnpnauoqPCpx03vkToX3O12Y/HixRxydzgcMBqNaN68uTQH/9Ltp2zkx4wZg9u3b/O9/Pjjj3jppZcwffr0WrNG1JlsdYCyGnu94Mpd9VD6p2mpLX5O8/Pz0yWP9fb+qMOFVOBANBdk//jHPyCExwug9ux4802qm9VqRffu3TFmzBj+29ixYzX9WFlZiaFDh2p+P3LkSACeCd5sNks5S0QkbLPZpNwv7zClt5EngRYck8mEJk2aSOHvnJwcKVxM5/KWSKwqnKo2RVF4Mfd+PocPH2YaGQI9FRUVWLZsmbQ7djqdvLg//fTTPFlPmDABt27dwvr16xmYR0REsLdm8uTJGD16NPr374977rkHbdq0QdOmTTXezp+al0qqPDQWIiIiUK9ePTRs2BBpaWlo1KiRNNbS0tK4L0iO7ciRIxDiDpF7ZWWlBlTOmTMHLpcLFy9exKJFi9C6dWspx9RgMKBevXoYOXIk3nrrLbjdbrz66qv8eaNGjfDoo49KOZ4ZGRmatAAqMPOlbe9wOCTC+X/961+S5z47O1v6/ieffML97J2vXB2gBMA65A8//DC6du3qs3pa3dSfNWrUCM8//zzcbjdKSkp4DNntdmzfvr3KcVtSUgIhBBdykHexTZs2UBQFFoulWsECb9u4caMEwseMGcPjtTpTF6EJcSenmwpUWrVqBYvFwhvQkSNH8gYtMTGRi87ITp48CSHuUN6Q0b01atQIX3zxBRYtWoQ2bdroFhhWFb41mUyIjo7mOUfNqiFEzZZXAvCLFy+GoigwGAw8jq5duwaLxQKbzaZb4BIWFobJkydjFlNgGgAAIABJREFU//79XEjjPW7q16+PSZMm4b333tMAJupvtdqTr3HXtm1bzjdW9+PatWtrVJB3Nxtdo96GS4/T1mQywc/PTyOpW2d31+oAZQ1s43sXfx6QXHgAiTlvI6jD/XedSqFevXrIyMiAxWLBP//5T6xfvx7du3fX1Rxu1aoVNmzYAJvNplv53b17dwjhIUcmjyPlKhJgmDBhAkuh6VFU0MuuDqNnZWVh+/bt2LNnj2ZSVC/AFMYlabzz589rJirvxVzP8vLyIIQHUHovEE2aNJGS49VGYT6iHaLfjBw50ufO9eDBg6yrTN9PT0/H9u3b4efnx9KLRMY8bdo0zTFu3ryJGTNmSMcICwuTwC3lF7rdbpZuo8/0ijcuXrwojYETJ05g8eLFaNOmjea5RUREoGPHjpIXedasWRg3bhwGDRqEbt268bEiIyMRExOD0NBQOJ3On61HbzabNcofQUFBaNOmDeelUsg9NjZW8zz1+P7oWN58iYBnATSbzfxc9Iw89t6mlpSMiYlBQUEBXn75ZT6fXmoFAcopU6bg97//PWbOnMmgUa//SAnFVw4gfUdRFOzatQuZmZkMZr2PVRMWAPKknzlzhvsyODiYxzs969oYbQ6933XiENWznTt3Ss+2R48e/N3o6GiYzWauYKbNLnn1FEXB5MmT+f5Hjx4tbSL8/f0lMFtYWMhARN3PJpMJKSkpGDJkiMZLbzQaMX36dN5YxcXFoV+/fhxG9/UeREdHIyMjg3M2P/zwQ80GR1EUREdHw2AwsDeSNiB6m1Q617Fjx6TjEPtDXl4eioqK+J1Vb9yMRiMSExMxZswY/PGPf+ScV+9xRhvuGzduaEBbeHg4pk2bJj1L4rb9JZvasUHOCbp+yluOiopiBwtRcQnhAcM/RZGqzmpndYCyhvZ6wRU0WnKo1jmVyYveRvyjf0BKr3G/yEtGqife4VlFUSCEB0DpeTCtVivnwX399ddM/k3eCKokTk9PZ44zIQTWrVsnnUMdUjUajXA6ndWG0e12u+QBbdq0KedC2mw2BAcHc5W6wWDgqmQhaia3R5rJ6kk9OztbqmC/9957NZW7pHsshMDbb7/Nk6cQdzjrAE+F/IABAzQ7YafTKXm91FregGdxpoVRbepinDlz5mD8+PEaD7E3QCgqKmLvpsFgkCTldu/e7TMPk8LI48ePx6FDhySgTJWnQghJueXmzZswGo1ISkriv+Xm5vI5evTowSHeiooKKd9r/fr1WL9+PXJzc/n4tCgHBAQgNTUVDRo0QFxcHAICAn42QFWPxeDgYERHRyMpKQnNmjVDRkYGV1Onp6djxowZWLRoEVavXo28vDzs27cPH3zwAavc6BU8qftIfS4hPPmiW7dulUCj3qaLwtP169dHjx49MHv2bE0ahMViQbdu3Zg/8sCBAxLVVXp6Oo+1I0eO+OQf1CPdV1t4eDiCgoIwe/ZsnheEuKNw1KlTJyl1oSZG1b379u1jzx09V+JXpHdv8+bN0qYxOjpaI6tKJOv3338/37933iHg2UTR83U6nVw0SJvi5ORkTY5pw4YNMW3aNA2vrcvlYiUiIe4U2QQEBGhUja5cuQKDwYDGjRvjyJEjyM3N5fNYLBafmwM12MzJyZEo2LKysjSb6fbt2yM/P59lHL294d78tLQB2rp1K0pKSpCbm4vMzMwqnRrh4eGazTOlZTzzzDMYO3aslNYQFxcn8ZT+0k1NjSWEgF9gCCyRyVi4+gXYoutjw/MvISAgAO3ateP5edGiRTUqXqyzn291gLIW9lVpBcblnUZiztvVAkv6fFzeaTTL7CJNqner0aJE/2+329GzZ0+cPHkSH330EYTwcJEpisIAhV4y2hF7L4ozZsxg9QminKAFkI4xbNgwnnRosjabzWjWrJlGT1udB2az2dC+fXsGm3r3pAZCISEhWLNmDUpKSri4JyoqymeosqSkhHOX6BjeHJCnT5+WFoo2bdrg7NmzTONit9tZPYLALBFJkx63ejKdO3cuq1YQqTmZN6CkCkwiFwc8CxcBw5ycHOn3QUFBsFqtkochNjYWa9as4dC52oPhKwczODgYU6ZMkUjE9YwWDvIukZQmkaDn5+ejoKCA9arDwsKkwiy1Eem71WqVeO5oo2C3230WDBw8eJBDcPQsk5KS8Omnn+Ldd9/Fpk2bJOofWoT13i+qyFUzANSm0e8pLzUwMLDG77HNZuMNSdOmTfHCCy9IMoIHDhxA586dJcDh7++PHTt2QFEUZGVlQQi5OM5kMjHQCAoK4jxHs9mM3NxclJeXY8mSJdIxAwICMGrUKI12dHFxMYQQXESXkpKCyspK/v/Zs2fzNdTUu3Pjxg0YjUYueCorK+M5JygoSHr3vPPffCltAR6vsbrfvSujyRRFwaxZs3Rz64xGI1JTUzF79mwYjUa0aNHC5/muXLmiAen33XefLjChDYiaf1Pt1Rs8eDDKy8vxzjvvIDc3F0OHDq2yQMi7hYSE4L333pPOTeTjxcXFAMBypO3bt+fv+KIXu3nzpkYVSt0iIyPRt29f5OXloaKigucFdbj41KlTktjEL90mTpwIo9GIp556CkEJTXDf4jzETtuChP+J/t1pBxA77WWMWLEblrB4XX7ROvvlrA5Q/gS7+PW/kLu/CPc8855GUScp523c88x7yN1fhC9ueCrG1Hled7vRYue9oBIwmzlzJn73u9+x8oMQHs8F4Jl89+/f7zMPRa2u8fHHH6OyspKTvVNSUjhETKCGvJXkgbt58yZ/lpmZqQEQQnioKebMmVMrmgmbzYbp06dj27ZtKCkpwWeffSZVKjdr1ozvX49fDgAuXLggySpSQvqK/8Peu4dVVW3v43OvfWWzud/lLgIi4h0VLyCKd1LxknfNkySpmZqZeiw1yfKWhtnRRNM0szITNSrTzFIzyUwlMzJ/kREZh8iIQ5zd8v39sb9juuZea6OZeezzMJ5nPuVm7bXnWmuuOccc4x3v++STPHVEhUfOkmYdOnTgRQ5UMEJkvkpzdigBoEmTJpAkCeXl5bDb7TyiopXK1+v1fIFQplbpWfv6+mo6kFSE0qFDBzCmxsq6MuKfIyWOpk2b4ptvvoFOp0OzZs0waNAgfv5p06bV65ymp6cLEZe5c+fy1B5jDufienbkyBHOj8qYg/NSyfWXkJDA6ZTo3gwZMoQvln5+fqqNE43thQsXori4GF988QUOHz6MnTt3Yv369XjyySf5uPb19YWvry/MZvNNgf9vtFFknxze+Ph4JCYmgjEHBveee+7BjBkzOMdlWlqaELVv3Lgxd/7J8vLywJgDsqKs0g8ICMD999+P8vJyIfMQERGB3377DYADVkEbVWKMWLt27Q2NIZpLnHXr6TqnT5+uiQUkFRhXRlhIxhy4OTK73Y7XX38dw4YNU/GhKovEjEYj/Pz8AADPPfccGBNlYJX2/fffqwp0CHv8xBNPCMcWFxeDMUdKVes+0Ds4fPhwzd86evQoMjIyblgcgiKb9F6Ehobio48+wmOPPQbG1EU4SUlJnF5Ma8OdnJzM55CIiAj06NFDBZeiiObYsWNRVVWF6upqLnNJzAnXk9m82WY0GhEcHIzQ0FCMuHcKQkc/ybmc64eZ7UHknH0Ynf8Rvq10TfnXYLfWGhzKP2m//mZHcdnP+LT0JxSX/Yxff1PvYGnS+V83JT+iUpowPj4eOp0OpaWlOHjwICZMmICYmBhh4jGZTEhISMDkyZM5iJwxh9Mhy7LAC7l792588MEHPDLxwAMPaN47xhx4p1mzZmlGfe69915s3boVDzzwAPR6PY80ubo+k8mEdu3a8cpOJRWRK7t06ZIgwRceHo7hw4cLi567uzsGDx6M3bt38+hQVlYW1qxZA8YYunbtqnluLYfyyJEjYMyRJiangQoOnPtFf7Pb7di1axePFF5vAqaFxmQyISIiot7rdzYqwiClH6qipvvRvHlzIcrmytLT0yFJEsrKynhEk6J1FNlYtWrVdc/z5ptvCtfFmCO6uX79en6MkqD+xx9/BHBtQe/Tpw93Oig65rzxstls8PLygtVqdSkjGBMTwzk4dTodl/NkzOG0EaZLp9Nh7NixOHLkCAoKCjhfpp+fn3AN5Bg0bdoU0dHRCAkJ4Wnvm81kSJIk8KUy5tgUxcTEIDY2Fr6+vpoLv81mQ35+PgoLC1FUVITS0lJcuXKFF+gwpl1o52xff/01GHMUZSmturpalXmgjabFYuHXGxERgVdffVXz3EqN79zcXAwYMEC1WfDw8EBKSgoWL17McdKHDx8WHOpt27bVy+H6xRdf8L7q9Xouw7pixQp+nj59+vDNFI0pZ2Ujog2SZZkfQ5Ki58+fx8iRI4XNYHh4OObNmyeMkTFjxuDXX3/FO++8g4ULF/LIpr+/v8sNOKXRR40aheXLl3NSeGUmgxzE3r17AwB3npUQICXZuivmibCwMJw5c4YXdt3qRpCpu+++G4EpgxA1e/f1HUmNTGHc/EK8fKJBAed2WINDeRusrq7ujiR6HT9+PK++HTBggNBnZYU1Y46oiatddE5ODmpqang6uHXr1pwMvD7aCuX5g4ODcezYMZw7d05I47/88su4evWqUPl41113Cb/v7e2NiIgIlxg8d3d3REdHIz09HVOnTuWRTTJSu3BFG6KUClRGaWnSc5W61XIoAQeUQPkMtMYLcRp6e3urJAIJnL59+3aVGoXVahUWj7i4uOsqySgtODgYvr6+Knysm5sbNm7ceMPnIYcScETCaTOj1+tx8eJFzk5QX5SzsLBQwJJ27NgRXbp0EdLg9CwoBaiM9BK2KyoqCt26dRMq1V29E6QcJEkSZxyQZZlXw3p6enL9bBrvtGEqKiriUX0fHx8MHDhQoGLx8/NDdna2y6IwQHSOqUK7trYWFy9eFDIG7du3x/z583HffffxBd/d3R3t2rVDUlISYmJi+Jzj4eHBSf3/TKTVZrNx9Zjo6GiOS+3WrRsyMzP5tWZnZ2PFihVYvXo1OnTooLrf1F8i16+srMTw4cN5fwMDAzk9U3V1NZ5++mnNfnt7eyMtLQ0rV65URWiVJsuySrRBSdNDRvKTNN9duXIF5eXlYMyBKa2rq+NZjdDQUOzZsweMMWRkZKjOpeShlGWZb0aUc0xAQABycnJQVlYGWZYF7k/6e33vR0lJCR9r9PzrczaNRiMfs9HR0Th27BgOHz7M/66k0lEapbzpud1q6FZ97+K4cePgmXI3p937M8Wxa967MbWrBrt5a3Aob5NpKYzcCY1UdpRUPJcuXeK8jFQxTWTYRA+kRWNBNDY02bvSI66pqRGibcpoKZkyAkTpnb59+/JoFzWKkJLJssypPGiC9vLy0nQ2dTq1VnBERARSUlIE59lsNgvRDFmWOb7KbDa7LHzQcihlWeZpW5K2rI9E3NPTE6mpqVi+fDmPvhUVFQmKP9TXNm3a8Iiist0IfQxZp06deEqbvi9JUr0LtpYpHcoffvgBJpOJL3RGo5Hzfc6bN0/13W3btgnOE2OiJGRFRQWGDh3Kr1+v1yMtLQ2SJEGv19dbfW42m5GRkYHp06fjpZde4s7dkSNHMGnSJMTHxwtRIiX2MiYmhuN3KXJKFerHjx9HTU0NFi1aJDjBNL4oOnU9o4iS1Wrln73++utC1bEzVleWZZ6+Vjq89O46wzFID50xR5FDQkKCUDQTFBSEbt26YfDgwZz5gTFHhDk8PBwBAQHw8vL6U6T+BIdwd3eHt7c3goKCEB4efsM8rGvWrMG5c+dQWVl5w9yBhIum50pR7hMnTgiwFueMgcFgQHJyMv83OZ50rh9++EH1WxQhX7BgAccTU4uNjRWeYUVFhXCMu7s7FixYAMYc+Mv6jGAojDkKtwAHNlfJEEER1+ul1Rs3bswjm8eOHYPdbldln8aMGcM/37t3r2YV+q1oer0effr0ga1Fr1tK27ejIVL5l1qDQ3mbbMSIEX8pDuvPtsDAQLzyyiuQZZmnug4dOsT52mJjY/liFxMTwx2sc+fOaToxjDkKSLKysvDyyy/zKNnatWsFR9RZ/URpzs4jLQTjx4/HlStXuFPSpk0bvqhs3boVjF0jwbZYLAJF0htvvIGkpKTrYn4Id6X8rE+fPrhw4QLnwBs4cCB37JYtW6bqv5ZDSXyG5JC6IhEPCwtTyb6R1dTUCLxxhw8f5phXALh48aKms+zv76/i6XM25QJFz5oxJiyoN2JKh5L6WlhYiAMHDvDnT5uSuro6yLKMvLw8HuUyGAwYO3YsGjVqBA8PD2zatAn3338/0tLSEBUVVW/EPzIykjuN27Zt4wTWjDFs3br1hvpPhRbOjilVyROR88cff6y61yaTCampqULhkJZ8obOdPHlSwJ2++OKLHB5AzpcWNRHZunXruELKxo0bNSmSNm7cyPsUEBDAP7fb7XjuueeQmJgobFQyMjKE++cKS0nHKDGv4eHheOihh7BkyRL+vOjcVqsVbdq0QePGjeHl5XVLMjjEl+rm5gYvLy8EBAQgPDwccXFxaNWqlRBxV4okKM8xZcoUjm8mCwwMFO4VcI3MnzGRIN9ut2PNmjVCJbXZbEavXr1w4MAB7oBRAd7hw4d51JLGEI1Rir7Xtxmsqqriv7NlyxY+Z0qShEGDBuHy5cvYsmULP6Z169b45ZdfsH//fh4coKjl9SKPLVu2xLJly3D06FEOw2GM3XIOSp1O51BF8wrCiHUf4pWiUly4XI2aOjvKf67F/s/L0T/vA8FRXLCnGJ+W/oTKX+vwm/13fFf1H+z5rAwZT78vHBc3v7ABU/kXWoNDeZssNzf3jkx7a73MjImVyMrilYiICFUK9dChQ5oOmjOtDh1jNpt5Sn3kyJGa90uWZY5fUjbi/yOjlG9KSgpkWUa7du2g0+l4GpoiBVlZWSrM0rRp0yBJEsdZlpaWYuvWrZg2bRp69OghpN617lN0dDQ6dOjAHaTu3bsL0RJyKMvKyrB48WIVNQzdk8zMTGzevFlInVNq0dmKi4v5eSgqZzabeRThu+++40Vgubm5OHnyJPr37y88Hy8vLyxZskT4vStXrgjpVnKYKioqeGHG4sWLb3i8k0NJFfKkVgQ4JOeIJokWOVqA9Xo9GjVqhMjISE16EyXJus1mw7Rp07BlyxZMmjSJPweDwYDZs2dzp0CWZe6kafGAahnhcCVJwosvvsjJ1l2RXzPmiAS/9NJLwhigAhDGHBEg5+giWV1dHby9vSFJEk6cOCEs7hkZGbhy5Qr0ej06dOhQb79PnjzJHYTx48cLJO40Lui91OLpBBwbloULF6qiTzR/EU8smTOXYceOHXmUtK6ujjvFkiTho48+4lXkyvlQkiSEh4fj7rvvxq5du2C32zk9jrKFh4dz53XkyJG4//77MWrUKGRmZqJbt25o164dmjVrxnGpvr6+sNlsgjjCH2nEcsGYI/rr7++P0NBQfi4lrMDf31/llM2bNw+ffPIJvv32W/z2228CRVhGRgaHBtE9YYzx+bW6uhpWqxUGg8ElTIJS8tSUG24ygvSQnCKZksZMkiR06tQJNTU1eO211wQOx+tFNl3xEd9so/EZMX4Z9p0uw9ELFfjnG2dw9/pjyNn2CU6W/oT//i5jxPMfcUdx9YEv8fS7XyL7xSLcvf4YZr32GS78WI1ff7MjfcUhAVM5Jv+41q1ssFtgDQ7lbbLdu3ff0pfudjRPT08MHz6cp45tNpuKsic3N5dPig8//DCfUA0GA4xGIz7//HOhAtu5BQUFIS8vj6fca2trMXnyZL5rV6aoyAFkzCGNRw7RwIEDwZjDwdLr9UhMTMTly5cxefJkIf3oTMhLFdr1cfUFBATA399fRb5N16i1q6cIidb1klbwzp070b9/fzDGsH//ftXvSpKEzp07C59t2bKFV5tShWphYSEkSeKTfk5ODtq3b6+pBOMsI6jT6dCyZUsMHz6cO2mERWTMUTAFOKIuAQEB0Ol0OHXq1A2Nd6ryZoxxCpkLFy4gPz8f999/P7p06eJygZckCZ6enjxtFxcXh+3bt+PSpUucxsYZ6gA4HEflczKZTMjOzuaLLo2pGTNmuOy3LMuc2ogxB40W2ZEjR4QCLnrWztAPglts3ryZF+RR5I9wYc4FIeTMz5gxQ4jME8E1FWndiEN85coVHh0l52X48OHQ6XRwd3fnVfxKGIEru3z5sgrbx5iDCSA/P19QekpLSxOwySUlJddNYffr1w/vvPOO6lnW1tbC09MTer0eJSUlgoIOjZuwsLDr9l9pixYtEuYUk8kk0IBZLBaMGjUKDzzwAMaNG4dBgwahR48eHIYSGRmJRo0a8Y2Okmj7jzTn7yjnOp1Oh+TkZKSnp2PAgAF8XHh6emL58uV44YUXsGfPHhw7dgxTpkwRnHKlEhfZ9OnThd8gBg6KVN93330AwBkRFi1axM+Znp6On3/+mWMo8/Pz8e6772LRokX8vv1ZqVhXzT8mCZFz9qHN4v2qtHXCY2/hx19q8eFXFfWmt7uvfB8AsPqAWpiEGFga7NZag0N5m4wUM/4uLT4+nlflUnN3d+eLkCzLHAcZEBDAeepo0nZuJItG1YMUAVI2ZfrJ19cXa9aswYkTJ/hkCTi4Jimt5ubmxsm+ldRHStoLDw8P6PV6+Pv7C8/jq6++AmPa4HylJScnw2AwcCJdxhjmz5/Pozc6nQ6tWrVCamqqJh2Kc6MCoW7duuHee++FTqdDo0aNhN8kiqepU6fyz0jRxN3dXYjQAo7NCi1SVMnbrFkzl9c0d+5czYUwISGBYwMZY/j111/5d86dO8f5Oesr8iGnUQmD0Kqe1mrTp0/Hd999x89FKbW8vDwA0IRcOBvBERYtWsRTnPTbL7zwAn9uWrjdyspK7sRSZW7Xrl0xYsQI1cLZsWNHgaC+rKyML9pai2xkZCQeffRR7oApCbKJLYDS/ZIkYcqUKTCbzRxnS0ok27dvd3nvnY10r6m5ubnh4sWLcHNz+0POWE1NDRhzYJidIRHUqKiPsKhaMBi9Xs9JxC9cuAC9Xg9PT0/NojbSfqeNEz3X7du3C05sUlLSDbEOyLIsPJdOnTpxoYNp06Zh8eLF3JFKS0sTMOWkXpOfn4+zZ8+q0uSRkZE8i2M0GrFmzRqerl6zZg0WLVqEGTNmYMKECejfv7/mPKHEsN4sLpXusbu7O3x8fLjjazQa+T2LjY3FiBEjYDKZIEkScnNzsWHDBmET4+3tLfB8OvNQEr6aCgpvdebNy8sLUUMerrei++iFClz4sbpeh7LV4+8AAFbuP6+q/F5QIEpINtitsQaH8jYZRU9u5Yv3Vzea1EgDmj4PCwvj2L8uXboIDgZRSCgnXVdOG2MOHKIyKqZsVLVK/1amCzdt2sRTIyEhISot2l69euH99x07VIpgEnckAJ6Gc9amdTZy5AivyZgjOjpp0iQhLURNmfYyGo38PgUEBKB79+6IiYm5bjU6LXRTpkzBmTNneIV0XFycSh2EbMeOHcK56qPksdvtKs1k52IgnU6nclxJjrNz58480piWlsbT066itU2aNEFqaiqio6P5MaGhoRwrplzMlFXatHCVlJRg/vz5YEwbcqG0M2fOgDEHZx4AvPbaa3zsSpKEnj178gIMJfbt6NGjfDyNHz+e6yIr78+kSZNgtVrh7u6uWQhCGMiAgABUVVVh3bp1HIupbEqqHCU+kTGHg0TjlOQ/ly5dysefs4rM9WzGjBn83HPmzOGsDrNmzfpD5zGbzQgKCvpDeDmdTodhw4bhs88+Q1BQkErLm+AAzrRbq1atAmMOCAmZs2gCXQc1ZZrd2Q4ePMg3mUq4BGMiFKOyshKdO3fmxy1duhTAtTGlnL+tViumTp0qcLwWFhbyDACNded+0KbjoYcewuXLl/k4IExmnz59hO/IsoyKigo+19CcbLVaORdpo0aN0Lt3b46fjYuLEyiorFbrDfNcaq0B9P5YrVae8TEYDGjVqhXn2bxVTa/XIy4uDhFTNrl0FJsveBtX/vNfvHW2XFOZLvafhei+8hDeKS7Hj7/8ho5PHlAdl7r8vRsZ9g32B63BobyNRryDf6cmSRJ+/PFHHDhwAIwxAdjOmCOqlZeXxyNGS5Ys4X9TVurS5ExGlBfUYmNjuRTgnj17MHLkSERGRqo0mlu2bImZM2di5cqVmpJfNHEqiYQpyklyckVFRZoLmZYR1pMmO+Vvmc1mNG/eHCNHjhSebXx8vJDyTkhI0HRASktLsWnTJh6VIGdT6zkYDAZOfzN58mRs2rRJpV7y+OOP8+NdYa52797NIzWNGzfGypUrBSoR5+iLyWRCYGAgQkNDXWIaPT090aRJE/Ts2RPTp08XolgXLlxAt27d+MLZpEkTQTkHuEZaTYtt+/btUVdXxzXSc3NzwZhj4XSlkqQ0X19fHtmrqKgAY46IoxKnRte5dOlSrFy5kqcblTQ/pJJDG5k5c+aAMaZZgEVGEXqK2FFmYsaMGdi6dSsGDhyoSbbOmGNz9e233/JzkXqTu7s7WrVq5bJIy5V98MEH0Ov1wjtETAw36pja7XYhom00GhEXFycwOtA4cB43//rXv/i413IoAbUwwPnz57lspnLj4OnpKRTXAdc2HMoK6aSkJC6jqMQFU//37t3Lnz1tOpxtz549/D1UvvPkXFmtVpeV5ZcuXRKiszQvLl68mL/nJJNKUAKlo/roo48K5ysvL0dmZqZwf6k6nTa7pNCzdOlSMMZ44V9wcLDwvlDFvtlshtVqxdKlS/lv03yVmZmJnJwcjBw5Ev3790daWhqPbirfjT/jpNbXrFYrouMS6qUI2vXpd/jv77KqMCdyzj789t/f+fVe+LEa3Ve+r3mOqDn7NDmjG+zPWYNDeZvsyJEjqiKVv0vLzMzE999/L+jTzpkzBx07dhSiP8oJhhb0F154gX82f/58FBUVCTyO3t5AzQFEAAAgAElEQVTeOHbsmMv79sQTT/DzafXNZDKhVatWHBju7u7Oo5VKqhYC1APgNCnKiCUZVS/efffdqgikxWJB8+bNIUkSLBaLKlp48eJFdO/eXeUshIaG1otXoygSpXaJeJnO07RpU5eRTcLFRUdHC/Qenp6egtNQUVHBsaxGoxErV65ESUkJ8vPzkZ2drdooaDW9Xs+rz3U6HY4ePaq6FioocU6DtWjRot7nTNyc5AD4+voiMDCQvzOBgYEqDXRXRtG806dP83tLONWTJ08K48+5mc1m9O7dGx9++CGPbNfV1XGdeRrX9RlF1Tdv3swdSsJCAtfkAV31wc3NDa1bt8acOXO4E2uxWBAcHHxD1w84JEYNBgMMBgOKiopgNpuF99dVpJustrYWEydOdIlzVY5FnU6HrVu3cqfEy8tLwCmmp6dzaiBnq6urg4+PDyRJQnFxMQIDA6HT6XDy5Enhful0OiFiCTjeVTc3N3h6euLChQvCu6eUNezQoQMaNWoEi8Ui6Mw7b2zsdjtWrVqFpk2bqt4zk8nEna/rEfLb7XYeEQ0KCuLvZUBAAE/P00Y1OTkZZWVlfO5csGABAMeGOy0tjfcjNjaWRzFJMpJ02JVG74ufn5/qGSujuuT0WiwWbNiwoV6MLqW8ybHcvHkzSkpKVIo6t6KZzWYExrVx6Uw+c9DBJflowVnNv/fL+wCD1h7BtB2f4vSlKvz4S62q0ptacZk272aD3bw1OJS3wZ588knBQfg7NuXCcvz4tSq5mpoaVcqaoj2HDh0CcE0GTtkoteSqypuMCgiUlYRBQUFo165dvWTrNPkTpxyleImbLzMzE4Bj4XQVOfLw8OC/q4yOEKaqdevWmn1+4IEHNO+fK91ru90Oq9UKDw8PoSLZZrMJCyvZpUuXsG3bNkybNg0ZGRn1ptHd3NyEjQwpqTgfq4XZ6tatG8rKynDmzBkMGTJEFaG02WyCk1dXV6c6plOnTteFFQCihN3y5cuF/vn5+QmYtusZOXFDhw5FaGiowOkoyzJeeeUVgdKH7ss///lP4TwUbT9w4AAmTpzIF9PrWXV1Ndzd3WEwGHj0lRzKAwcOCJGe2NhYyLIsjBmr1arpyAUFBeHTTz+97u+fOnUKRqMRer2eO/HOxUTu7u6C9jQA/PLLL1ixYoUq+qh8n2bNmoV///vfnCfx/vvvF/pKzlZtbS2eeOIJFVPCoEGDVIVdn376qUCXRE4V2enTp8EYw+zZs1XXSlF5+s6HH34ozBU+Pj5YvXo1GLuGraZ70a1bN8iyjJdeegnt2rXj74DBYECnTp2we/dulJSUcAgKjfkbMWc528TERB6tLC0t5Ty/9P7QPMcYEzgkW7ZsKWzEiOqHopNUOAc4aKPoe+PGjVP1ibCw1O666y4Bv6rFIlBTU4NnnnlG6M/YsWMF+qdbuc4wxmAKidN0AJ9+90sAwNK3v7ghzslmj72FH3/5Dfs/V6fGI+fsw6elP93Qs2ywG7cGh/Ivtl9++eVvh5101Qh7RrvY7du3cweiadOmOHPmDBYuXCg4FRaLRRWZDQoKQllZGRjTdijLysowadIkoSgoMDCQT7RE4EtGKWyr1aqpdhMfH88LH0hpJj09XVV0RMobK1asQEVFBcftmc1mVVEPSe3Nnz9f+HzhwoVgzIEzpeiJcsFVyrYpjZwX6pObmxt++eXGKhEp0qisaL+RZjAYEBAQgI4dO3Kc5sKFC3mKmTEHHZOS1PzgwYPo0aOHcE1JSUm47777BOfe19eX81DeqBHesKioCA8++CA/1z/+8Y8/dB7AwR1Iqfz+/fvj0KFDyMjIUL2L7dq1U+GDX3rpJQCOaCZjDvJvojO6UTt06BAYYxwfSlRUjDGOdXNzcxOiSM4FZ3PnzkVOTo4K30pp5+zsbHz44Ye4evUqP0dxcTHHPNOGDgDef/99/v1169ZxtoCsrCykpaWpCokkSULLli2xbt06VFdX86K05cuXw263w2KxwMvLi1PS0HjSYgGorKyE1WoVNi2+vr6YMGECzxIMHjwYjGlrvC9btgyMMaFQhEyWZXh5ecFisXBHR6fTYcSIERg7dqwKwtGjRw8A4JtHGrM6nQ5JSUlYv3695vupjOC3bdv2uhXyyig4ja85c+ZAlmWe+VA+H+cipmbNmmlSTMmyLECJaLO2adMmMHZNzUiSJKxZswZLly7FnDlzMGDAAOH+N2nSBAkJCYiKikJwcLCQAaKx8b9aZ4yB0S6dyaff/fIPEZkf//rf+OqydvFOQ4Ty1luDQ3kb7Pz585qcin+3RtEtPz8/tG7dGow5HMZ169YJ10tRQOfJXDlJ0cJODmV1dTXmzZsnpJk9PT1hMBh4RSpx8RGBNxnh1kjm8eLFixg6dOh1KyV9fX3Rq1cvPPfcc6r0EKVug4KC0KFDB+j1euHvJE2oLF4h3WbCLhEPZV1dHe655x5hwp43b56wcJHzQs2Z2oacxpycHKSmptZbCOPczGYzLly4wCOb06dPrzeyqUxl0n8HDRqEr7/+Wrh+raIkg8GAF198USA2v1ErLS3lVe90Plro2rZt61LiUssmTZrEz6Hc0CiLCkg3uqysjEdaaMz4+/vzyAw5E84bmeuZs9oQY470K1WaazlIgFhwlpSUhMWLF/Pz5OTkICkpSdg46fV6REVFYeDAgRyO4HxuWZb5s+zYsaMmHpbGrtZ11tbWgjGGIUOG8HQ9URLFxMRg37590Ov1MJlMmhFpwlBevHgR48aNEzY/QUFBwrvqHAWmzZurYiziOmXMEd1T/n5dXZ1wbr1eL8xLgYGByM3NrXdsVVVV8XeBItt6vV6TKQAAj94yxrBv3z6UlZVxJ5DGUnZ2NoqLi7FgwQJhYxsaGsp/Kzk5GV26dEHr1q0RHx+PiIgIBAYGCs7/zXBr0ni0Wq3w8vJCYGAgIiIi+JzcuXNn9OnTB8OGDcOECRM4dIAgDSEhIfjggw9w+fJl6PX6W6oCp9PpoDNaBAzliv3nAQDPHFTT/1yvyruqpg7vnvuhAUN5m6zBobyNdubMmZueAO7E1q9fPwH0LcsycnNzOaBdkiRMmjQJp0+fxqhRowTON+WErsQsWSwW9O3bF0ePHuWLoLLykVI9ykWncePGnLT30qVLWLx4MVJSUjR/T+v3+/btiw0bNvBrqaurg5eXFyRJQklJCV+wnAtdqIDAy8sLK1asAGMOnBQ5p85KOXV1dUIBgdlsxuTJk5GXl6dyfhMTE106jVQIExsbi169emHGjBmc4D0nJ4ePsejoaF6tHBUV5XJBHj16NBhzVJWTs0nncIXZJNybc7/oePobFUjcqFFkh75/8eJFHr3y8fFxSQxOdunSJWRnZwsRl6CgIEyZMoUXgPj5+alkQb/55hvuVPbr108VySTy+z9i586d44uxXq/H66+/zh3d6/FJ1tbWalL0DBo0iB/z1VdfYd68eWjbtq3gNOt0OoSFhaFPnz7IyspC69atheixJEkIDAwUCsfMZjPefffdevtksVgQFxcnRLDuvvtuvjHav38/xxeXlIi6yVpFOUVFRcjMzBTGGKkOKTcvTZs2hcViUfVHiQum61JSXQGiNrrzWGWMXZco3m63C+nrTp064cEHH+T322KxoFu3bujVq5fmnOPp6cklKm9mjiXhAnrngoODhWgm9UOv12P06NF45JFH8NRTT/GoNo0/ckILCwths9k0FZdoblVGX+mdoTZkyBDIsgxZlnkU3lla8la0RpOeR+ScfVi873MAwKHzlzFo7RFVo6rvU99WYdHeYtzzwgmMeP4jzNt1Bl/9P3WdzDUfNlR53yZrcChvs91qmoX/VaPUEeCYdGfNmsUnN3KC2rdvr7r+hx56SPN8kZGRPMJIRkoZyspHKo7w9fUFAHzyySdgzJHqUeJ5JElCWFgYhg0bhqVLlwqLVrt27ZCXl4cePXqogOW+vr48ekLyjQRKf/7551XXQ/gs+u5PP13D5Tg7lFevXkVJSQn69et3QwuJs9O4Y8cOTsrubM6OKmPXKo2J3Dg2NlbF31hZWQlJkhAZGSl8TsTkV69eRWlpqWph0WpEUaIsyqBnM3LkSJw/f16z72R79+7l3yEuPrJVq1bxqmviwyO7cuUK5s6dK6jv0MIuSRIuX77Mo6kpKSkuHesLFy7AYrFAkiTs27cPjz76KD+fyWTCtGnT6qUsIrPb7Rg3bpxwD/R6PV599VUwdo3o/UbsxIkT3CkgJ8h5DHz33Xc84hgXF3fd4j+l1F5qairHF1utVgEf7WzOrAvEEam0goIC6HQ6uLm5CfyQrqq8yYnJzMxEamqqsOFu2bIlNm3aBJvNhqioKOF7Cxcu5Pele/fuXHL1rrvuwrvvvoshQ4YITrTRaETjxo2RkZGBuLg4oWjMzc0Nvr6+8PDwgMVicSlYcKNNr9fz8zdu3BiJiYma1GiSJKFDhw68cCw7Oxtff/01qqur+XOnoiqlUcSW4BEGg0HYIJ0/f56/C3q9HuvWrYNOp0N8fDyAa/AC500VFQrRZv3ZZ58V+hsQEMChPH/l2mI0GtF46COImF2Aj77+t8vxCACRcxw0Qds/LkXJD7+g+jc7/vu7jLKq/+D1Ty+hh0ZBTgMP5V9nDQ7lbbZJkybxySolJYXvsP+OkcvMzEyMHDmST9w+Pj5YunQpZFlGQECAsAs+cOAAunfvriqiUS5QkiShbdu22LZtG2RZ5oD7w4cP8/OcPn2aV9Eq7xlJIY4dOxZvvfWWkE6WZVmV4uvYsSPHBhLZer9+/TQjDMRZOWzYMNXzVNIKLV68GLIso6SkBBs2bIBer4ebm9sfSk/TQqSkParPZFkWOBMHDhyI2tpahISEwN3dnR9HUdbExETh3pBz61wwRCTiZ8+eRU1NDbKzs4Uoi9FoxObNm4Vij7CwMDRp0sQl9RE940aNGmH8+PHYuHEjX9SU0S2KzDkXQHz00Ud80zBx4kSsXLkS8fHx/L66ubmhX79+OH78uMAbSv2eOXPmde/nuXPnYDabIUmSoIGs5DEcN26cyyrpXbt28WhQTEyMUFlLtDE3olCjNB8fH9hsNv6ueHt748qVKzhy5AjGjBmjGldGoxHx8fEYP348pk6dyknCnY9JTU3F2rVrceXKFWzbto1HHlevXq3ZD8JQM8ZUHKVKe+2113gkm6L6Sofy6tWr+OWXX/D888+DMUcKNT8/H8uWLcOcOXOEjYFy3AQFBcHPz0+43pspdiT5TucIu9VqRdOmTdGxY0dkZGQgKyuLFyhNnDgRnp6ecHd3x1tvvcXlFC9cuCAQrffr1w+AoyiHeCiVVd+MOaKaNHc99NBDfOPi7MwfOXKEp+hPnz7NP7fZbPDx8REgKWfPnoUsy1wsQafT8Sg90avRMzt16hQYc/CtyrKMs2fPYu3atbzgx93dXROLTnROTZs2Rb9+/Tju+osvvrjlxTnx7dP+UHr7j7YGpZy/xhocyttsmzdvhsFgwKpVqziY/oMPPuBVz3/UsVTupildeLudU5PJxKN5ZMnJydDr9Rg8eLDgzEVHR2PBggU83davXz/885//FBZdWvBoEp44cSLi4+M1MZnEh1af0YQ9b9484RwGg0GoKKUUtqenJ7Zu3YrBgwejUaNGwoLl7u6Otm3bYvLkyTyyc71FTRlpnDlzJp544gk+ASuxcspqUsZYvTQ7APDee+8J+CslPyLh995771pqZ/z48WDMwckoyzLHLGqp6lARRosWLfh4CgoKwvr167FhwwZhwWnevDkvmCLHlCKc27dvx/Tp05GSkuISt6ds7dq144UezhhMWZaxfv16IR2t1+vRuXNnFBQUCMf6+vry43Q6HVeluRH77LPPVGOtsLAQW7Zs4fhOSZIwcOBA/PDDDwCAH3/8kWcfTCYTnn76aQDXKs6pL/3797/hfpBJkoQuXbpgx44dLt/t0NBQTJ8+XXA8AGDt2rWCVCA5Gc40XN7e3mjbti1/roMHD+apzdLSUmFsDhs2DEuWLMHDDz+M7OxsDB8+HH379kXXrl3Rpk0bNG3aVMVZ6Px+/9lms9nQokULzQ0M3SPqQ58+fVBeXq6KzhO+MiYmBnFxcbx/qampKCkpwblz5/iYBIAuXbqoxiRR+RgMBv6MExISuHLOvffeKwhE0IZbGTWnjIhWMdDBgwd52vvcuXOcNYA2J+S8e3h48I1MVFQUzp49i88//5zfk2bNmmHt2rX4xz/+gU6dOtX7HJSOtoeHB9+wOmcGqKBtz549f4jw/nqNfj/6HysRWY9azs20Bi3vv9YaHMrbbFevXtWMbly9ehXvvvsu3026WjgIP0MvsNFoRFJSEgwGAyZPngzGmKCO8Vc2vV6PiIgI/u/k5GS89dZbuPfee4VIZHBwMB588EGhWpiKUMxmM2RZxttvv82/ExgYqOIxpIl/2rRp+PTTTzlmkTEHDYgrU1akyrLMKUgYY3yhbdSoET7++GNeZFNUVARZlvHll19iw4YNyM7OdokppKbk+KP0tJubm5DyBhwye0SQvHnzZtjtdk44TNEQZUqpbdu2qpRXdXU1T0GTfJ0zxuzy5ctgjKFXr17C5+QEd+jQgSttOFMTlZaWCtizyMhI7Ny5Uzjm66+/FvCS2dnZMBgMvHK5vqKcw4cPIzU1VfWMSQ7O+d5aLBZVxIScCC8vL1URiPIZEz/qHzUlfypjIo/k3r17OR2OTqdDVFQU73ePHj2E91spuUrXUJ92PJndbsfOnTu5vGl9jeiO7HY7ysvLcerUKYwfP151z8aMGYOePXuCMUfRUVJSEoKCgnia/8/MBQRHMJlMcHd3h7e3N3dwaLwbjUb069cPI0aM4PPXqFGjsH79euzcuROHDx/GuXPnUFlZicuXL8NsNvMxQu+XlsyfTueQP920aRN3IkNDQ/lY//zzz13e56SkJEiSBLvdjuPHj3PJTeV7SHhQpXKT3W7nkd+QkBCUlZWhrq4OQ4cO1bw/Pj4+mtrzSviLcwqarLCwkEfvqRhSr9ejqKgIlZWVfA6m4jlyGrUivfRdup9du3bFI488gl27duHf//63EElt2rQpZFkWpBfr6urw8ssvIysr6y+tBPf09IQtOBKRD+9CZD0k53+0xc0vxLeV1xdHaLCbswaH8g6zq1ev4s0330SLFi1ULxhjjuiSh4cH0tLSEBISAp3RgsiWndGkQwZmLFoJb/8gbNy4EYwx7mD+la2qqgpHjhxR0V6Qc+iskKM0OrZRo0YIDw9XpbIYczicStoUJd0IRQTqKyag3bUS/6jk2aPIsPI+16c9HRsbyyd1nU6H0NBQ1SJns9kwefJkWCwW7lDKssz1iLWcoMcee4x/f/DgwTxiopzcDxw4gNWrV/N72759e87f2LNnT9W1R0REaBYzEGE3nYOsuLiYO5l0fREREarvy7LMK5WfeeYZ/uzJyWvTps0NVXmfPHlSIManxe5mQP7x8fHIycnBypUr+bho06YNJwZ/44036u2Ls5GqDvUvOTlZdcyGDRuEZx8fH6+izdm5cycYc0TpLl68CL1eD5vNhsrKSpSWlqKoqAiFhYXYuHEjRo0ahdjYWM30oclkgq+vL4KCgm6ZdrLZbOY0MyEhIYiKikJ4eDh8fHzqzXIkJSXh2LFjuHDhwnXJ5omuiyQpAWD27NlgTORQ1LL169cL19+yZUsVTpr+Pzg4WCjQ6dChA7y9veHn51fvb5D8I4kKAA7Yg3L+pXePtOUXLlzIq7V79uyJ3393qLOUlpbyVLfyfkmSVK/eOD1Pg8GA1157TfOYN954Qzhn//79NVkWqNE4U86b5DQCjmwMYyK0Rqly5unpCR8fH5jNZr550hp3NpsNM2bMwBdffHFLxqSyeXp6Iq7vPbc0QrnjhFrMosFunTU4lHeoXb16FW+88QbH55jNZiQmJsLX1xfTFyxFQJ/JaD5np1qi6pG9iJ3xEhLHLkTm6GxYrVYVx9ytbMpJnfgalROqsnintrYWL774IgYMGCDgsei7HTt2xGOPPSboH6enpwOAJt0I/c6YMWM072F1dTX0ej38/PywYcMGTJo0CV27dq0X48eYI1JI6ekdO3agvLwcU6dOBWMML730kpCCIjtx4gQmT56syTkaHR3Nf7Nly5Yu5QOVnH7/+Mc/wJiDPL1v377CPbVYLDxiSFGTgwcPqs5HzpRzOhgAX2y6dOmCY8eOCQtou3btcPLkSURGRsLT01P1XSL5njx5Mv9s3rx5ghMSHh5er0Op5Es8fPgw7HY7Fi9erMml2bRpU676U1ZWxtPoPXv2rHdRdXd3538PDg5Gfn4+vvrqK5d9IiPc44ABA7jkKGMM27dvR0FBAdatWydIbUZGRgr9NpvNCAkJEca4JEl/yhG0WCzw8PCAn58ff+ckSUKLFi1UkUg3NzcMHDgQmzdv5uPo6aef5tQ4RGGlxRlJRvAIV43mowceeECTfF9plE3Q6XTYv38/p4ZyJV8oyzKmT5+uualr1KgRZs2axcfDqVOnkJWVJWRElO/ghAkT6u2b3W6HXq/n6jNklOLv3r07v98U8aN+kRZ8cXGxoMDTrFkzjvOm1q1bN/z8s5r3sK6ujr+HFBEdNWqUkJ4OCwtzyWVMFf29e/fmuFAiv4+NjYVOp+NV6u+8847w2/7+/vD09OTSozczLv9qvkqdTod5L6klFm+mPfve9d/9Bvtz1uBQ3uEmyzJfAGY8mougEbmInLMPEdfBlkT9P0ez49yX4OYf9pfIZFEzGo1CSrSiogJDhgzhf6c0mPI7tAAnJSXBzc0NBoNBoOWZMGECXzSdHaKioiJV1XFYWBgGDx6MiRMnomvXroiMjNSMskiSJKRLabEwGo149tln+eKclJQkSDNSpImwS85YNbIrV65wpRNnzjv6/cjISIwcORIFBQXCokrVl4TTo43AXXfdpZrAAwMDsX79elXxjdKqqqrAGENqaqrw+eHDh8EYE56JTqdDt27dBIcrIyMDOp1O6CNhK2NjY1W/V15erpI11LKSkhKeZt21axdmzZolcE/SM1ESONtsNgwdOlST4/DKlSsCZo8xR0o3ODjY5UJMqXA3NzfYbDZ4enryooubXSzrw9L6+flxx9P5GHd3d7Ro0QIPPvggjh49iu+//57j/Zo3bw6z2QxApJ0i7r+UlBTVOFcWnMXHx8NgMAjP8OLFi2DMEQl3turqajRr1gyMORyjTz/9lD+PjIwMBAcHw2AwoGnTpqoirdjYWGRnZ+ODDz5QOYtKHKckSSoderKCggLNghDGGOcNdTZS4vL09ETXrl2FfsXHx7skKydr164ddDodd7iJbYDuT2VlJYYPHy48t+nTp+PIkSO8MIUxRxSbnHSSf+3RoweP+huNRixfvhyyLOPMmTN49tlneVEbkbM7XzNBWrTG1YQJE4Trovc6LCwMe/bsAWMMWVlZqKqqgl6v52pf586dQ1ZWlsv7fCe1jIwMAMDLJ0oRN78Qjee9+Ycxk3HzCxsik7fJGhzKv4kNemg5Ih56HZGP7PljO7PZBYh8+A20GvLXpr/DwsJw6dIlrFixAmlpaZqRJoPBgEGDBnEZPcYcxOYHDx4EY45ID02QlAKmxeGhhx7C+fPn8fzzz2PSpEk8be0q6kOTpZubG2bOnIlXXnlFqK6NioqC2WwWiiwOHjyI2tpanhKWJAkPPvggZFnmfSSMZX327rvvqhaF1atX49FHH0VycrLKaWnUqBGysrIQEhLCMaXO0m3R0dEoLi5GTU0NJk2aJERkCOukZTExMTAajcLftXS777rrLtV3KcJJEaiqqipYLBaYTCZcvnzZ5fUrpdpiYmIEuqBvvvlG0Oem40wmE5KSkpCTkwM3NzeYzWYMHTqUO07OXIXkDN4sv9/1miRJ8PHxQUxMjEpRyWAw4OGHH0ZxcTEqKipU976iokIl7ajse3BwMO93fdXSAODl5YXw8HDY7XbupNx7771C5Xbjxo1RUFCAK1eucDyuwWDAnDlzoNPp0KlTJ9V5g4KCVFX0p06d4pstku4jrkEqoqP3iq6Z9NJdka2PGTMGhYWFCAwM5I6pr6+vQL9UW1uLBQsWCNhho9HI38O0tDQYDAbYbDZVdJ/S4j4+PjxqSdrfynFDcopa0XqiHHrqqacAAKGhodDr9RwLW1dXp4LGKFu3bt0E/KMSw/vMM89gwoQJmvrgyubh4cGrpyk66u3tjffff18FgaDIt6+vr0qSlPDzbm5uwjVQxJn4av8uTVlU+G1lDcbkH+eO4vUcycg5+zAm/3gDZvI2WoND+TewNe+V8HT2TYX7/9/3UnOe+EteeufoEC2a3t7ekCQJV65cwcyZMwWeSnJWSCmHtIwHDx6M559/nqeXlMoRWk2JORs3bhwSExOFNHyLFi1QWFiouqdKjsHhw4dz7WMi4j5+/DjHBnp7e/MoUJMmTa77vGRZFqhEvvjiC9Ux5eXlePLJJ9GlSxeBYJoxR3TN2SF//PHHhe/b7Xa0bNmS/91qtWLWrFmqSlZSWdm+fTvy8vK4w6DT6TB27FhUVVVxTKiz/i85xosXL8alS5c4lmrq1Kl45plnsGDBAkybNg3jx49HVlYWMjIyuIyjs6Ov1+tvqvBD+ezd3NxgMpk0x4OPjw9GjBgh/G38+PHYvXs33wy0bt1a0/EuKyvDyy+/jBkzZnBHz8PDw2V/dTodOnTogJycHOTn56OkpARffvkl5syZgzZt2riM/FitVjzxxBOcqkWSJPj5+ameGdnVq1d55JgcVKUTTmNky5YtwvcOHDggZCTIUVIa4atpvK9bt45LQubn5/PjqOCooqKC85kyxrB27VrNPl+4cIGTrWthQWkOiI6Oxrp169CiRQvhmXl4ePBI5NGjR8GYQ6d7w4YNYMwRfSUjWidPT09hg6OshI6MjMTTTz8t0EuReAKxKMiyDIPBgLi4OKNHgPcAACAASURBVE4DNnHiRACOaC5huFu0aCFINSqzG82bN0fHjh2FqLrz+Pf29hbe9dTUVHTp0kWVBQAcMAGtcU4sAcR/qxRSIKN5KyMjA8XFxZg5c+YflmW9E5qXl5fmu1Hywy9YUFCM1OXvIco5MzfHQVq+oKC4gRrof2ANDuUdbi+fKL2loOSu42f/JS8/Rd1CQkJ46shZYUaWZSxevFil9R0eHu6Sx4wodyhK5OHhgVdeeQWMXQP1f/TRR2DsGt6SAOfKKJ6bmxsyMzN5dJFS2FS04opIWCnhZzQaNbWGlVZZWckpdKhpObRa36P+uLrH6enpQkQiICAAHh4eWLp0qVD1P2zYMBw6dAh79+7FunXrNM/VpUsXJCcnIzExEdHR0UJhwM2SO+t0Ov79+oo63Nzc0KlTJ0ydOhWPPvooVq1ahS1btuDNN9/kKfXx48fz66RiCGUBgTPuS6fTcbzk8OHDOUaUnORmzZpBr9fzAgoto0Wa+CoPHjwo0KEEBwcLBV3Xa6NGjcI777wDxhy4VBrjVqsVjzzyCNdM79u3r2Z/zp49yxdW5Xk7dOiA06dPo66ujhfrOJssywJWOCsrS5AXLCsr4789atQo/q4poRz0jtCmDwDnhmWMqajCtOzSpUuCBKWrZjabVQUpCxcuBGPXquL79u0LxhiWLFmCV155BTqdDjabTUX0TscRATjBcYgA31neddSoUWjdujV0Oh28vb1hNptRV1eHXbt2CU6jsr/OfLrKcUjPmDFHMRhFTsnOnz/Po5BEAu9s5eXlwqaMfk9ZBLV06VI+Lilye+LECZd9+zs1g8GAe+6557rj69ff7Cgu+xmflv6E4rKfG+QU/8fW4FDewfZtZQ3i5hei2WNv4V/vX8Dhkh/x7+rfAACr3v1S5Sy+9sm3mue5cLmaRyrDH3od0UntbunLT8UX9913HxhzYK8+//xzroLRpEkTRERE1Et+a7PZ0LlzZ168YDKZEBcXJ1zHkiVLOGkvY0zA05ESxfnz53m159mzZ1FVVYWHH35YiBx4eXlxh0eJL3MmEiblFJ1OJ1RduyJ+PnLkCI/ATJkyRZBnc05NybKMqqoqnD9/Hh9++KGw6FosFvTu3RvJyckICAjQlD9UVkcrpfD+yDMzGo1wc3ODp6cn/P39+QLm7++PlJQU9OzZE5Ik8Q2AzWbDM888g+3bt2P//v04deoUp0tRWlFRkSpqrWydOnXi1abORhEi56hb48aNueoNcf+ZTCYUFhZi9+7dAreeJElo3bo1hzMkJCTgqaeeAmMM69ev1/xdWZa52tLPP//MaZP0ej2PZgcHB3PpQboWvV4PHx8fhIWFISwszCUEw2g0IjIyElFRUQLFFEW/tFSYlPrvjDkiTs7VwlQxvWLFCuFz2qCkpKRwRRU3NzdBslTJsZqUlKSq2KaKcmWa2W63874z5uCRrQ+faLfbVQ4xjWHnz/z8/JCRkcHJ1olShzYBdrtdIDa3Wq2a1dNubm4ICwtDTU0NDAaDpkLPd999h/vuu08FZ2DMUZTnaq5SYpj79++POXPm4I033sDq1auF4keKJNdnhP1kzLHhoCjr3r17+e94eHjwiKPZbBY2BbIs81S2Up3H1f39u7U9e/bUe/8a7M6zBofyDrYx+cfReN6b6PzUQVz5z39x/Ot/Y/vHDnCxK4fyP3W/q/RO+6w+zI+JmF2AwOGP3zLqEWoJCQmIiIhwGZny8vJCXFwcevfujYceeohHGTt16sR51MgRoO8MHDhQdU8I08WYg2+TjGgrKDXYuXNn1XdLS0sFomFqvXr14g4OEQmbTCbuTO7atQuXL18Wqs/9/f3x4IMPYtasWZg4caJQJR0VFYW4uDghLUa4v5tJ+17vO0TGnpCQgMGDB6v452hBN5vNMJlMLuUD6+rqeKp+9uzZAMDpgfR6vctCCkC7Cp8xEbO1dOlSdOvWDYw5HPnFixerzkNVyc4YzQ8++ACMXeNfDQkJUWmrm0wm+Pj4ICkpSXAuGWP8WbZs2VKz/+SkZmZmcmfJz89PNaYtFguSkpL4dShTji+++CIYc3CHfv/999ixYwcvLiNexvqeZZs2bZCTk4Px48cLVFnBwcECh6vSSAXK3d1dcOwefvhhMMbw1ltvAQDy8/MFEv29e/fy63TmKgWu0elMnTpV9Td3d3c0btyYF5uEh4ernteFCxcwevRoYZ6RJAmDBw/mkVPaqERGRqJXr17CNdPxkiRh2bJl/Pz/+te/+N+1dN0pwk28ocTOsHbtWnz22WdYs2YNJkyYgJSUlBuSEdTr9ejSpQt27dqFyspK1NTUgDGGoUOHCr/7zTffQK/Xw2KxCLRXPXv2dEkZVFtbC8auOZ+SJPH3jbFrBSlKTlSr1Yp+/fqpZDAZczj5xAV7I/Kud3KzWCyC89xgfw9rcCjvUCv54RfNlHWrxx3UD64cyl9/s99Q6tvgp016+2ea1WpFXFwcTws2adKEO4laxti1dNq7777LCzCotW3bVvWdTz/9VFiMOnTowB0kWuQZY9i3bx/eeecdbNu2DXl5eVi4cCGmT5/OozW+vr4qdQeiA/ozhR56vR5ms5n3T6/X82hHcHAw0tLS0L9/f4wcORLp6el8waVq5Pfeew9ffvklfv75Z8FBoAjmgAEDuLNkNpsxatQozcXFYDCgffv2qvT7fffdV++4q62t5Q7pggULuIP47LPPqo6trKzE9OnTBXocX19f3HvvvUhJSYEkSQLmLysrC4CDlofufXh4uEA707ZtWxgMBtVvlZaWcseuU6dOKmxVQUEBGGOYO3cuv47c3FzV9TPGVEVVFMlyNabbtm3LyfaVRlHP4OBglJSUwGAwwGq1CpE+IjZXEqOTszlz5ky0bNnyuspWkZGRSE1NxaRJk7BhwwaUlJRwlS0AWL58ORhjmDNnDv+MnCXnZ6vkIKXWvXt34ThZljlZvhaGrUmTJrBarQCuSXRaLBbs2rULDzzwgAoWEBAQAF9fXyEySxFVYjbo0qUL7+O2bds0+0nOH43/Pn36qPpNdD0jR45ESkrKdTGNCQkJ6N+/v4qdgJpOp0NiYiLWrl3L74XFYhHUpWRZ5lhvSs+TQAW1jh074uzZs0J/yfldsWIFHnzwQeH4e+65h5OIa+EfzWYz2rdvj8ceewzffPON8P1bHSy43U2v12PIkCGqcddgd741OJR3qC0oKNasZLslDuXsAgT2nfKXTAbt27fH5cuXMWDAADDGXGK8AIdDmZmZiY8//hj79u3D5s2bMWPGDCHdRFKH7du3R/PmzbmjpiyUUS4yN9oI76esAtU6jqIqU6dO5enF9u3bY+3atcLCGRsbi99++024Pnd3d16BHRISAp1Oh2PHjqG0tJRHNC0WC/Lz8xEXF6eJpSKz2+08PU0ayIw5MIJKR5pSZMrrcb62pKQkXoyhZTU1NSqeUNIZ1nLU3N3dkZWVJfAaKquQc3NzOSRh69atAK5pkNP9Hzp0KOrq6uDv769KURYUFAhOvrIwgyw1NRWMMU0VqoqKCowePVq4HuKo1KrgTklJQW5uLr777jt+DsIZOp9/wYIFfBFkTK2JruVQOj/XuXPnunQqDQaDZmSTtLLJ2SROz7Nnz+LSpUtgTI3NVJLrKyO4RqNRcFAJJ7lw4ULNPvfv3x+MMdjtdtTU1HANaGo2mw19+/blcIn58+fzv6Wnp6vuIUXTlJy1lFrv168fdu/eLSg3KZvJZILNZtOkhyI4Aj3jrl27oqCgQMA0lpeXq6J58fHxkGUZr776Ktq3b8+fjV6vR8eOHeHn5yfws9LYmDVrFv+MCM5PnTqF9u3ba7575IzfCJE/yW9OnjyZO9bKzWFdXd3/iTQ3tZdeeklz7DXYnW0NDuUdaqnL3rupCOXv8lX8+Estfpev4vuf/4PNx/4/tFj0jvpcU1+45ZOAUpnB399fKDBxd3eH2Wy+KbyfcvGgxTAsLAxNmjTh+CJKKdOxo0ePRl5eHrZt24a3334bx44dg7u7u4oDj5Q8nnvuOVRUVAh8ecrJ/IUXXgAAmM1mNG/eHIcPH+bXR4t9SkqKkJokhxJwSBUSPpPOfdddd/G0js1mQ+PGjesdE1SxTWl9paPYvHlzHD16VDj+xIkTmDp1qksOUpvNhtzcXE0M3PHjx4VjBwwYIKSSTSYT0tPTVQ4U4FjcaIGfP38+gGv8nEajUSiiuHjxIr8eUihSOozkxJvNZuzfv5/TtyidV1mWYTQaXVbgX7lyBWvXrkV6enq94+vtt992ee/Xrl0LxphKghIA5yL09PRUwQlcOZS1tbXIycnh98nLy0uTzslms3Fnvry8nEc2e/XqhdjY2HrT6EFBQTyyuXr1ag4tadWqFWpqajB//nz+PFu0aIHq6mph4+IKG0mUXtHR0fz7RqORO/09e/bkkUFy5khH3JUR3VH//v0hyzLy8/PBmKMyX8n1WF+jvjRp0kSgm6GIq5ubG48ylpSUIC0tTXjPKbsQGhoq9M1utyMvLw/NmjUTju/Zsyd/JxMTE4XvkENJdvHiRXTv3p1/Pzo6WhNbquyLcm5Zs2YNP1dVVRUv6iGhhLFjx97y+fx/1QwGgyYJfIPd+dbgUN6BVv2bXUWHcCMO5eN7P8fjez/H6PzjGJ1/HHkHS1BTZ8dXl6uR8NhbKiohg8X9lk8GysVNWUBjtVrRqlUrdO7cGX369OGRkvj4eOTm5mLt2rV45ZVXcPDgQYSEhMBms3EcF9EPKSdypX344Yd8MYuJiYFer0dYWJhwDDki69atEz632+2QJAmJiYkcw7V69WrU1dVh1apVQqSONKWJusZgMGDnzp24cuWKgA0kBQ2lQ3no0CHurBqNRnz00Ue8D7IsgzF1Cs/ZCC+nvN+UOvb19eWaw0qrra2F0WjkCit+fn4qaiXGHHjBESNGoKCgAHV1dfxeKI+TJAlt27bFtm3bXDobdrtd0LlWGqnOREVFqb6/fv167lz5+fnh4sWL6NKlCxhzUEd9//33ABxYNUpDkpHWMGEyKyoqsHz5cqSmpqrShddLB8bGxmLZsmUqx5DIwJ0xhfv27QNj13CqcXFxQprY2aGsqqrCiBEjeD8CAwPx3HPPAQDXgdbpdNi0aZOqX4SH1LLy8nL4+Phw4n2dTufS2bRarTyyqYwuGo1GjhPWogXatWsXhzJQP5OTk7Fjxw7Isgy73S7gjGnMTJ06FUFBQULkWZZlfPbZZ8jLy8M999yDlJSU61YnR0ZGIjMzE3PnzkVBQQEKCwuh0+ng7++P++67T4WHJLL1iRMncsqjESNGCOlt2hTq9XpUVFTwaKVz5ThZdXW1IE9KbeDAgQKm09mhpGf0z3/+U9h4K1tUVBQ2btzIi6C2bNnC589mzZoJWExZljFixAgwxlye7+/YJEni2NEG+/tZg0N5B1px2c8u09X1OZRabdLWTwAAj+/9XPU3U5AaX3azrUmTJtDr9ZBlGbIsY9q0aarFTEn7AogYSqUpNbBJSWLBggWCXri/v7+wa1emLqnCmNKry5YtA2PaxQcABD5HLe3xp59+mi+gyusZMGCA4MTt37+fRwNDQ0NhsVgQFxeHnj178kWLQPfKqtxjx46BMYbHHnvM5ZjYuXOnkBpzd3fnSj7EWWcwGLBjxw7he+PGjQNjDh7K5ORk6HQ6vmCdOXNGpRlfX9OqRFaaLMtcAzs0NFRTepH4D4nnT2nPPvus6jd79eqlcj5p0Se5yVatWoExh1KJcnHV6XQICQnBwIEDsW3bNtTW1goKTsrx8uabb6Jr167c0SPs7+bNm/nvS5IkFHv99NNPAtE7UUwlJiby75BDmZOTg379+vF3IiIiQnhWJGdJz5gc+pdffhmZmZmC/J+rdCApvDB2Da+6atUqfi/69u17Q5FNxhxVx5MmTcLs2bPRpUsX7uzrdDr+jLXeJ2csYG5uLvLy8jgVFb0Xzr9H6Wn6G22cDAYDJEnSjIQD19LGI0eOhMFgQHx8vEuydWWLiYkRxsq+ffsAOJgaGGO4//77NX8PAKeConddGWkMCAhATk4Oh2BoiRloNbPZjFWrVgljnYp26PySJGHKlCnCMRQ5/7/SdDqdatPfYH8fa3Ao70D7tPSnW+ZQRs3dh19/s2Pv6TK1QxkSd8smAgLDDxkyBPn5+XjjjTfw2muvcXUPakp+QVoIlEaTKIGy7XY7fH19ecFMo0aNBM1sT09P7mBMmTKFc8/RRFxcXAxJkuDr66tZYFBbW8ujfM6RT6VRaouaMvIVGBiIqVOn4vLly5BlGVOmTFEt1snJySgvL0ddXR18fHwgSRKnPVq0aBEYY/jggw9Uv7thwwYeJdXr9dypdqZzUVIWkcZ2ZWWlILm2bds2vsgrrbi4WKBFqq9lZ2drapHLssyd04kTJyI9Pd2lljel65z5Ocn5Vd67gIAAHD58WDiO0vFEe0THSpKE8PBwDB8+HLt37xaed1FRkVCgERISIugvDxs2jG+GNm3ahFatWgkchGlpabDZbAgJCeHnpAIvZRqcroFI1Mn5oBYfH4/9+/cL10OVyE2bNoXdbhd0tClSWlVVJVRN+/v7Iy8vT8A+AuDUNW+99RZ/F3x8fDTJ9QFH1IyilEraG61mMBgQHh7OHW9/f3+cO3cOJ0+exOOPPy68E64woT4+PkhISBAijT/99JMwjpQpbp1OhzfffFOz72RKXfVly5YJf3vttddcFuZQs9lsePXVV/l48fDwQGBgoMvfI/1txq5phX/xxRfo27evZpRVkiR4eXnxDWlqaipKS0v53xMSErjja7PZMH/+fPz+++98I7x582YUFRXxYjlfX18+hpwd+P8LTalo1mB/L2twKO9Au5URyqi5+1BTZ0fBZ9+p/mYMjP6fTBiSJPHCG7PZjIiICMTHx6N169Z8cWjRogWys7Mxa9YsrqLDGON6zuXl5Zg7d66w8586dSpPVdNnlJ7W0t6uq6vjEUOKvGjZgQMHVKD/JUuW4OzZsxg6dKgQ6YiKisKUKVME8mSTySTwKp46dQo6nQ4BAQGw2+1CkQPgWFSffPJJvkCbTCZMnDgRNTU1sFqtPDLi7IwrSdXbtm3LCZ5p8VFiDS9fvoypU6cKuD1nTJfJZEJqaqomBtPHxwfdu3fH6tWrUVFRwTcUo0ePBoB6HcrLly9zWiYlPyf1xWKx4ODBg0KxSkREBBISElTPgShocnJyNNPwdXV13LGi9CtFjxhzFElQhLNJkyZCf2pra7F06VLuAFMbMGAAxowZA8aukesrjaiSlMVlgYGBmjKLFGGLiYkRnj85jocOHRKOr62txZQpU4QN1YIFC/i1k1NIDkrbtm2vS79Cmzi6R8pr1ev16NmzJzp27IiAgIAbYkAwGAzcYad7YDAY6nXSlEbwAsZck74rrbKykjtrRCW1fv16Pp70ej2GDRuGyspK/q4aDAZV1FCn0yEoKIhv4LR044Fr1GWSJCEnJwcJCQmCI+lKFcrNzQ179+6FLMt8TLVq1QqA45kvWrSIPz+z2cwLD5XjeuHChfzcf/dqbq1mtVqFDUaD/b2swaG8A+3Xm8RQarXJLzkoWRbuKRY+j3hkL3RG16osf7SVlZVxvdodO3bg+eefx1NPPYVHHnkEVquVLyh0PC2IFosFPj4+vGjnVlQqms1mIQXu7u6OXr16YciQIZgwYQJmzJiBBQsW8LRiVlYWj645E5AvWrSI49IKCgp4xaqbm5uwUB86dAgZGRmqhcTDw4Nfa4sWLXiamiKemZmZaNKkCdzd3WG32zF79mxBUeXhhx/mjsb+/fvBmIN/Mzo6mkviKU2WZU7FwpgD/E9WU1PDCzOo2Ww2DB06FKdPn+ZO8KFDh7BmzRp+D+mannvuOb6IaRUU+Pn5YcmSJfj+++/rdSgBcB7SpKQk1NXVcTJ6nU6HgoICZGdnIy4uTrVoBgUFIScnBwcPHuRymZIkaXJrbtmyhUcwExMTOQZNmRomp4HS1VarlRfBKK2yshLNmjUT+kLylcoir/379wvRXnJ4taq8iTA9IiJC1X8aA+7u7irCccARuZ8/fz53kCwWi6qSnZx7V1ZdXY1HH31UgFIYjUZERUWhRYsWLotGlCTaN8Krqjxm9OjReP7553H+/HmXMph0TfTeKKuntcxut/N5w9/fn/fbZDLxiHpNTY3AcUvR6TZt2qCyshKrVq1Cenq6ikqMyNbz8vKwZ88ejBkzRjVHmUwmNGvWDFOnTuWbhoyMDNVYoXun3IB++eWXqutZs2aNIAwwevRofPfdd6pn9X+x6XQ6JCUlNXBQ/k2twaG8Q825ynv8po+Rs+0TzHrtMwDA3tNlyNn2CXK2fYL4RwvR6amDKPr/KvFYQTHGb/oY4zZ9jLWHvkLtf3/H+fJf0PRRsSgn/P6Nt3QSePLJJzmZ8qpVq8RrSU3lzgWp0dB3SS6RLD09nWvbVldX4+uvv8bRo0dhMBj49/r164fJkydj5MiRXCmmXbt2aNSo0XU5/f7INdEiQBWqoaGhvOCEMcciPmDAAIwbNw6ZmZl8AfTw8BAIiiVJ4tFGSZIwffp0yLLMuepMJhM8PDx4lMPb2xtLlixRLbhEnVJRUcGjJK4KeShSKUkSxo8fj8TERGEhjI6OFqJflGadNm2acJ5t27bxjQDpShuNRkiShMLCQh5Rdt4MkBMxf/58l4Tow4cPB2NqWTvl/U1KSsKMGTOwbNkyHlGKi4tDSUkJpkxxUF85V+WWlpbytCnRMimtqKiI99n5WomFwHkMA46oFz0vnU4nOFze3t7cUZAkCf369ROok5wdyieeeAKMMTRq1EgFIaAiLUqpJycna94/OnbVqlWaUWRnHldZlnHixAkMGTKk3gpjxq5hGuPj47lzI0kS5syZg+rqakE6kKK14eHhkGUZ5eXleOWVVzBz5kz07t1bFeFVNqvVioiICHTt2hXjxo0TMI+5ubl8A0RsAVr2zDPPCGPOYDBg9uzZfCNWXFzM379hw4YJGwMtKEB1dTWXD9WiI6L7wxhTcUvSOKK+JCQk4Ouvv4Ysy1i3bp2qgKZHjx4cC6w0oqNyVuwxmUzo3bs3VyX7v9jCwsLw448/unzeDXbnWoNDeYeaMw/lpZ/UuDWyzk8dRNLCt/HW2XJ8W1mD/9T9jt/sv+Primr86/0LaL7gbRUPpW/PnL90UggMDESbNm0wePBgHn16/fXX0bRpU/j6+gqRJ7PZjODgYCxatAhhYWHw8vJCeXk5x4eRpjCluA0GA7755huOPaMqWbKNG7WdZS+v/5+96w6L6ljf39m+LOzSq1IFERUFjAUr9ha7othQY6Im4RpjJRJMNBpjLNFgLsbkaiwR9XqtxO71YsVuiGIJsYQgEkRERFiX9/fH/mbcs7ugSTD3JtnveeYRd0+ZMzN75p1vvu99dTh9+jQHQR06dMCaNWuwZMkSJCUlQSKRwN7eHl27duXgTqPRICgoCD4+PnB1dX1mnNkvKeZbbjKZDCEhIejZsyfi4uIwfvx4zJgxAx999BFWrlwJmUwGT09PXL9+HSUlJWjQoAEEQbAAbFlZWSAS64ILgoCmTZti48aNUCqV8PPz48czUvCqtvwZwGGTm7mHhvEHGgwG7NixA3FxcRYTsUqlQnh4OCZOnIiPP/4YAwYMsAqC3NzckJiYiOvXr1vUQ6/X83g/lmHMrs3iHydOnMgn8969e1v1dDCaIiJLRZ7s7Gzuperbt68I1N+6dYufxyQcp02bZhE35+/vjw8++ABlZWW8jqaURgsXLuS/EWveRxYjmpSUhJdffhlEhPfff99q37B2Z7yv5iU0NBTe3t5Vbo9qNBpRHKqfn5+Flx4QJ5yZlnHjxvHfJPO+WzMPDw84OjryxUPTpk052KwqQUilUqF27dr8nN69e4s8m6WlpRgzZgwfjzqdjgNHtlhavXo1XySwJD4m72nKJVleXo7169ejb9++XLLTtI0CAwOtyomq1Wo0bdoUycnJOHnyJA+fYM9jaoysvVWrVnBwcBA9s0ajQb9+/XD+/HmkpaWJxpREIuG/ZUEQ0Lp161+luPVrC/stm3PT1nRxdHTEv//972qlPG32v202QPk/alUp5dRUqUmlnICAABw4cABz5szhk7E1dYfnLWyCUKvVeOutt7hOc0lJCQ4fPgwio1dKKpVaxGUZDAa+dbt06dIqA/LNM86Bp0o7bAIzVR4xtY4dO0IQBBH9SPPmzZGRkYH9+/djw4YNSElJgVwu58oxffr0QWBgYJUeD3bfXztRsJhEc+CgVCpF29Tx8fF82+zjjz/GP/7xD84hePXq1Spf5own89ixY6KseCJL3W3gqad5z549aN26dbU67qz+RNZ5Hs3t22+/tdj6GzlyJN+i9/LysrptDTwNG2BbnuYeWcAYU8j6NiAggIcVzJ8/n7fj7NmzRfFu48ePx44dOxATE8PHjyAIIvWn2NhYnpXr4uJiFbgBT4nFDx8+DL1ez/Xcz549C8A4xs+ePYulS5di8ODBz6TbMS2urq4YN24cf6aLFy/y8RsVFQVBEKyC8OzsbJF3nhW2pW/uBTY3RhuUm5vLE8vatm0LvV6PkpISHn4yYsQI7pUMDg6GTqez+psw/8zZ2RmXL1/GzZs3eXwk42bUaDSi+FXTPmnZsqWF5KNOp+P936tXLwDAmTNneNzz48ePeciKabINK1qtlj8DM0aT1rx5cxgMBigUCoSHh+Pu3btISEiw2Gpn7z9ThZ7jx4+LEpBeRDHd4WFtzHhH2b+Mnuq33kOlUqFt27b8/ZScnFztGLLZ/77ZAOX/sDEt75oEkkYt79k1rqrQt29fLFmyxEJ2raaKUqlE79698f3333NOOSLCpk2bRG3GsmxNdb7N1VCIrAf7M++XRCKpNrOU6TMTPQVCLKvX1Ex5KAHgu+++s8phx0pISAjnvzMYDCgsLMSlT6p1kgAAIABJREFUS5dw+PBhTtWSnJyMqVOn4rXXXkNsbCyf0M37kyU+MQWVX9reTEFFrVbzSV0QBAQHB4u2700n0fj4eHz88ccYNWqUVW48JycnREREVEuhEhcXh/379z/TS8E0lU2LIAh45513qj3P19cXEokEhYWF0Gg0oqxtc2MecLVajVWrVlmAGI1Gg8TERAv2AIPBgDVr1iAqKsoqGHJ0dKxSmxsAevbsCSJCZmYmPvnkE+7ZEgShShocdp9mzZohNDTUqkZ1ZGSkiBAeACerz8nJ4Z4700xpg8GA0aNH8xCQoUOH4vr16yJgEx4eXm2bAxDxUOr1ek6l5ebmxgHd3LlzeR+Zeg8B4MqVKxaLkqreYaYAW6fTYfHixThx4gQWL15ssRgiMoLRDh06YNmyZSKQz3YkTJkZGNckU/KJjo7m9VepVBbeYKVSycMLmAJPcXExiIyhO+ZJfUx8gf3fx8cHU6dOxf3795GRkfFM7fGaKhKJhCty7fhmL+TuAfj7pt2QuwegVbsOvP1ZXZ/1jmHvD6lUih49emD9+vV4+PAhAODgwYOoX7++VR5dm/2xzAYo/4ftVmEpQmam1xyYnLYDvpO3QOni/cJeRL9HMZX9S0tL4+21detWEFlu3W7fvp0fb+oJkMvlWL9+PfR6vUhFpSqQUV5eLuIxbNasGQwGA8/qZd4HZgxQHj9+XDSRRUVFcf1qBhRNi6+vL9555x2+Hcqys4ODgwEYExfGjRsn8qxIpVJMmDAB/v7+EATBKvVGSkoKBwYymYx7SyMiIjBjxgyMHz8ecXFx6NmzJ9q1a4cmTZogLCwMAQEB/FjTyfLXyF2yv2UyGVxcXODu7l6lN9vBwQH169fHK6+8gtWrVyM9PR2nTp3CzZs3LSQP2fXNKZFMbcOGDSAiDB8+HMDTLcjqtmrT0tKsTpYLFy58rq25S5cugUgc3iCVStG9e3ccO3YMZ86cwSeffIKRI0eiefPmXBO6qrbTaDR4+eWX+XiVSqVYsWKFSEaUyJi8NHbsWEgkEnh4ePCwEyIjSfahQ4e4t79Lly58nDEuR8AYCsHAUEBAgChe8MKFC6L6mSacWTNzYnPgaVISEWHQoEH8c3Ot7KysLBHFE9HTmNSQkBBIpVJs2LABkydP5rsZzxqLjo6OfNx99dVXVvuScYOysIVFixbx70pLS0Vgavr06SIKJya3aB6rKpVKLUChh4cHpx0DjDrsSqUSPXr0sDj299jqXrFiBeQutTFgXhq8X1sBv+k7LOYR79dWoP/cDZC71BaNLfPCgGTr1q2RmpqKn3/++Zm/GZv9cc0GKP/H7evMmzXqobRv1PmFv5B+7yKXy+Hq6spXzDNnzsThw4d55iwDDkRGjrP8/HzO6WY6WcfExKBz5878OFNbs2YN95AwENi7d2/+PbtHu3bt+GdKpVK0/dmuXTuLVXhgYCA0Gg1XSTGdNBiVEcvejYmJEWVpa7VaDB48mCvKzJkzB0RPOTyt2alTp0TgxtPT87mA0dy5c/k5rq6uaNq0abUKHaxN33zzTYwYMUIUHuDp6cnjUl1cXLiX9dcW80lWIpHAx8cH9evXx0svvYSYmBj06tWLJw5NnToVH3/8MQc0vXr1wvfff889Jszy8/NFvKZET8mszWMvq7KrV6+K6lUdIJBKpXB2doYgCLCzs0NiYiK2b9/OZehYP7OkErVaLYprUygUiIuLE42x+Ph4EBHWrl2LGzduoFOnThb69abeUgbImjVrxn9b5tyOjBuW3ZfxwJomnJmbOaAsLy/nC0MG2KdMmcIpjAYMGIAjR46IOClfeukl7Nu3T7TNLggCoqOjkZOTwz275kWr1SI4OJiHwlQVWsIShFq1aoWxY8di3rx5/LvWrVvzuqekpPAFlkQisbp4Y+8RIiMlVFVee0EQ4O/vj6FDh2LXrl1ch50l2xkMBk7J9aJL27ZtUadRM4S9vtw4X0zbXv188v/fh/9tBWQ6D9E7lcgoC7lw4UL8+OOPz/Vbsdkf32yA8g9gyw5erREw+enBa0hMTPxdXk6/Z5FKpVVuubCJg00AgYGBHGyaZ0o6OTlx+hgmsXf79m3uXVSpVFwtRq1WIyQkRNRPTNWnYcOGotjNl19+mUsHmpvpdUz5M9nn5hOfTCZDly5dcOTIEX6NgoICnu0ulUpRXFxc7XjKy8sTJTJYSwxhlp2djWnTplnEeJmTiG/evBmCIECtVmPIkCGi6zNwYmdnZ6E3zowp07A4tdLSUuTm5mLfvn0YM2YM6tata3W718XFBUFBQRxom44Dpp3+S7061jxcUqlUtJVap04ddO/eHYMHD8bYsWMxcuRI9OzZE82bN0dwcDBcXV2txsuachQ6ODiIPFAeHh5cSahHjx4WbXTt2jWL66nVah7ScefOHYtzysrKoFAo4OLiIhovpl4lT09PHgPJMu+JjIsja3GebJwzIJmeno7jx4/z2EhXV1cL/kzzLW8Wx5iQkIC8vDwORljCFEuAEQQBMTExoiSt27dvi9rNnCXAy8sLQ4cOxfLlyzlDQ3l5OVxcXKBQKHiMaH5+Pvd8Nm7cGCEhIVXGbNrZ2cHLy4uPQaVSyZ/BGoBm49G0biqVCt27d+dhBomJiYiKirIaAtK2bVt8/vnnHAQ3b94cP/zwwwt7h06dOhX24Z0RMG0bfKds/WU7X1O2InDaNtg36gKpVIoZM2ZYpUOy2Z/fbIDyD2JfZ95EyMz0XxxTGZi4CyEz07Eh07gd9fDhwxrNVP5fKoMHD0ZZWRkOHTqEOXPm8MQNmUz2XITMpkDCzs4Of/vb3/jk0rNnTzx69Ij3R0BAAOzt7fn/DQYDli5dyr0+LF7IHHSaGlPcMPV0xsXFVVk3Vj+FQmFBN8JA2/Po4DIwYQpsGPH7mTNnkJCQgPr161sFRF5eXlXGOG7YsAGCIMDe3t7iHoIg4PXXX7eqVpSdnQ0iwsSJE0X8nKa2bds2C9Juc88mu9fbb7/NqWrs7OywZs0aODg4QKVSIS8vD1lZWTh06BA2bdrEPadjxoxBv379RJ43U7lBV1dX2Nvb/6bYY0EQoFAooFarRYDbz8/PAsgoFApER0dj5syZiI+Pt8iwlcvl2Lp1KwDjooSpIVmzt99+G0RiOi9PT09IpVKMGDGCA2XTZ/P09LR6LUadFB0djW+//RZEYp7IxMREDuo7derEFysMUBoMBk6HNHbsWH6eqdISq0vv3r259+/kyZOYMGECQkNDLZKQ2P2sZaizjHo2Hsw5LUtKSjh7gqnl5eWJQjGqSypj4gwtW7ZETEyM6P0qk8nQsmVLbNu2TdT2pgAfMIaxzJkzx+p7Sq1Wo0ePHiKvZ00VBwcHtGrVCq5th/Ht7F8bTuU3fScW7bkEm/11zQYo/0B2q7AUw1ae4EDxWUDSb/pODFt5ArcKxZRD77777u9KO/F7lcDAQL7NbU1X+cyZM3yyZi97FxeXasGmIAho27Yt5s6dK9pG79q1K4iM6jbJyckc3CgUCp6YJJVKq6TiAYwKPESEefPm4cCBA+jQoYOFR4P93b17d5SWlmL27NkICHiqcKTRaNC/f3/u5XiWGgnbuu7WrZuFrrWpd0+hUCA0NJTHj/n4+MDBwUFEN2TNWGKH6fhq0KCBVdUfZkuWLAER8UmX3XPVqlUoKCjgXiS5XI4FCxbA19cXKpUKgDGW7csvv0SPHj0svKgqlUoEkqZOnWpRX0axZBrr5uvri549e/JxUl0WtZubG7p164Zx48bho48+wrp167By5Uq89tprokVAYGAg2rZti6ioKNSrVw9+fn68jRQKBZRK5a9KnjLdvtZqtXB1dYWPjw/q1KmDhg0bokWLFujQoQMkEglkMhkSEhL41nCHDh14ZrrpNVm9zLkAc3JyIJVK4eDggLKyMhgMBu5BNLW8vDwRx+rSpUs5oIyMjATR0zhWxqNpTskjkUjQvn17BAUFWSS5hIWF8fhGVhh1lTVjoQIKhcLqQmj8+PEgEmvVs6xsRttEZASsFy5cQH5+PjZt2sST+Ozt7avsO7VaLdpGT01NhVQq5Qo55u1LZPTSsvCd+vXr/ybGjOqKi4sLvLy84Nmyf42GVTHnhc3+emYDlH9Au3rnAZK3ZaHNgoMWijr+03eizYKDSN6WhWv5D6yeX1BQUC19zR+5qNVq7h0LCQkRecRu3Lgh4sEznVzKysosJtaqikKhsOBkVKvVmDFjBudDZKoc5tmqpsYmRVPgGBAQgEmTJnFFDVN6nFq1avFknoKCAiQkJIiy6tmkxrJlze3cuXO8/qaAxrSEhYXh4sWLAICPP/4YRMat2JKSEoSGhnIgV52ZZsHPmzePf75y5UqRLvmAAQNQWFjIt1kZyCwpKeHZruyZYmJicP/+feTn54Ooat11Fl/YtWtXqwku7u7uGDVqFJKSkhATE/PM3wFLEOnVqxfeeecd7NixA66urnBycuJbzV27dhWNpRMnTkAmk0Emk/FEMWtKOcXFxTyx6pNPPsG5c+dEalKm44v97ePjg27dunGQwcZhvXr1EBgYCG9vbx6XymikfotXVSaTwcnJCV5eXrwv6tWrx+NS5XI5NBoNZs6ciYULF2LVqlXYsWMHTpw4gU8//ZQvdEzDUphuelJSEo8rlMvlVYZ4NG7cGFOmTOEZ1oBYiYZd21zznRkTXBAEoUp+U5VKBZ1OB4PBwJO3TL2SMplMdM758+fRp08fUV0ZKLa3t+db1c/aRjcFm6ZhCG5ubrh+/bposVqThS1iPALD4DflX7/aM2mthMxMt3Bi2OyvYTZA+Qe3h4/1yMq9j7M37yEr9z4ePrbcUrRmr7/+eo2pyvwvltq1a4vk7LZt2yby/pl7DpctW2YBLjQaDdLS0kTB5u7u7tWqjCgUCri7u3OCYyJj0gery+3bt/HKK6+IPDLu7u5ISEgQJUd8/vnn/PtGjRphwoQJHBj079+fX89gMHDgYFovHx8fTJ48GatWrcKAAQMs+Dg1Gg2ioqKgUqmg1WpRUlLCqWBCQ0OxYMECPkmymEwm6VidLNrYsWNF93F1dbWI6dyyZYtIQ12j0UAul/Pvz5w5w8GaIAjYvXs3/45RRllTFwGegubw8HAsWbKEb3U+z1hv27Yt3nnnHbzzzjsgMgIna9asWTNIpVKUl5dzGqhatWohLy8PZ8+ehVwuh0wmw7Fjx3D9+nUQWQeUgBGYWPOAjh07loPvVq1aYfHixdxzRWT01DGQ4uvrW2V/MKusrBQBGwZIZTIZevXqhYkTJyI+Ph79+vXjlD6mxVSF5rfwpT5PX0ilUjRq1IiDzYCAAKSlpSEjIwPZ2dmiBLYLFy7gzJkzvM3N+UfLy8uhVCrh4OAAQRDg5eVl1UvJErSmT58uerY2bdrwMffFF19g1KhRFgTvWq2WL76cnZ1RVFSEzp07QxAE0T3y8/ORkJAAIuPOSXVg0/Sz37ooqKq4uLggcPQiDP77EaSduoXr+SUoLdcj734Z9n6Xhx5L/8NBYsCMnXh/53f495V8/HT/ER6VP8G1/BIsP3QNDWeJhTMCE3dh2ErrPLA2+3ObDVD+RS0nJ+dPue3NipeXFx4/fgzgqYdCqVRi//79XFVk9+7dyM7O5qDD3t4eaWlpuHDhAt9m69GjByorK7FhwwZR8DwDp127dsWhQ4cwd+5cDBw4EI0bN4a7u/szYzYZmbhKpeL1NDcW9N+vXz/eZ8wDx2IDJ0+eDCIjpUlZWRlat25t9X5sQurcuTPnugTAyZ9ZDCWTYGTtUVhYyI9lIDM9Pd2irqWlpTwGLjg4WFQPT09PC3lBwKh/biqD16xZMw5mBEHg1xs5ciQ/x8vLC3Z2djAYDDh9+jQWL16MESNGoFmzZvD29q6Sp9HZ2RkeHh4W8pDmNEjBwcGcg7MqihMWTsHakY0vhULBJUKZt8waoCwqKsLkyZMtFFkYePDx8eGLmxkzZojuXVJSgpkzZ1possfGxoo8eNbs73//u+icnj17Vrk4YCEdqampIh7Xbt264fbt2/w4Bu5OnjyJAwcOIC0tDcuXL8ecOXMwefJkvPLKKxZeV/PCst9/DWhiyVKm/e7p6Ym6desiIiKCe/CbNGnCk+saNGiA5cuXIy0tDQcPHsS3336LO3fuiBJ9NBoN0tPTUVRUhDfffFN0T0dHR4wYMQI5OTkIDg7mCwKdTscXhdYAJQCMG2dUKDNtw3379vH3BZP1NP3Nvoii0WgQ1qID/KbvxM6LP+Ho9QK886+LGJR6DOPWnsaZm/dQ8cSAwSuOw2/6TtR79xs8KKvAuhM3MG7tacSmHsP7O79DUWk5rtx5YJXerqodMpv9ec0GKP/CNnjw4Col2f4shQEW5kECjBO6VCqFRqPhL+24uDjR9jjTeyYi0URTq1YtkWKIQqGwqspSXl4OmUxmAdoZ6DCvp1wuh7u7OyIiIjBw4EDMnTuXe0YFQeCADwBWrFghmkBZLKj5NRs0aMB5KdlnkZGRWL16NffSMFqbAQMGADDqELNjJRKJSNaSqaqYe9u+/fZbnogwePBgGAwGxMTEQCKRYNasWSAyekytgRcm62j6PEqlEps2bcKTJ0+4JzMmJsZC1s60MMqd+vXr8+1QtmXZr18/vhhQq9V49dVXeUiCUqnE1KlToVarLUCNTCZDUFAQ4uPjRYlIrI1M1WFMwdqIESP45wxQvvXWW5g/f75I19rOzg69evXCqVOnkJubK6KVUSgU1ZLrAxBRMbHi5uaG8ePHW1DZHD58WDSO9+/fX+21MzIyQEQYPXo0FAoFFAqFqO4tW7bEpUuXLOJfAeDevXtYvHgxYmJiqn2/NG3aVOSV/9e//gUiwpIlS1BUVITs7GxkZGRwsQJWmCe+RYsWorhU08QltVr9ixSEzItp/KtpCQoKQosWLdCpUyf069eP/+5kMhlmz56NdevWYc+ePXz7uqKiQtSuzZs3h1Qq5f9/7733LO7h4+ODNWvWAAAePHgAiURSrRjAr3m2hg0bwrP7m/Cdug2Rs/dagMF6736Duw/KkHGtgHsoG72/x+K4cWtPAwD+tuGchZcyeVtWtWPMZn8+swHKv7Cx7cE/e9FqtZgxYwaPn9q+fTv3CLi6uvKYQfO2MSfN/uKLL/j32dnZIhAUHByM9PR0fPXVV4iMjBSBnujoaD7xzJo1C4AR1BIZt74GDhyIiIgIuLu7VzkJCoKA+vXrIzw8HP7+/hYTjFqtRpcuXZCamsozWxMSEvDDDz9AIpFAqVRyuhIiI4Bt164d9uzZAzc3Nzg4OGDTpk18C3rv3r0cJA4ZMoTHhgqCgPbt2/N2+PLLL7mHKSUlhX/OACUATJ8+HUTGpAbTMAQA2L17t+gZq4tpZHUPCAhAr169MHPmTOzcudMqTVLbtm1F5zK5RNPtTlOvs2m4QK9evTBlyhQ0btxYBMIkEgl8fX05NyXznN64cYMfx67TqVMn6PV6fPjhh6J6yOVytGnTxsLLq9frRRrjz5IyNCUhZ0labdu2FcXb+fr6YsqUKejQoQP/jI0vtoCozkyTTRi4PXXqlAjIMk7W6OhoREdHV8kgIQgCdDodAOPYZzKnMpmM65Sz7WBzrlYmV2k61k0ZFkxt7969XPua0Rtt374dgNG7e+7cOZ4AtWTJEgwbNqza3QSVSgUnJyfev2xr/deQ+puCa2dnZ6v3bdasGYYPH4433ngDSUlJ3Etv2oe/tTD+UiNpedWxkEevF+D63ZJqj2kxz7gwmf/NZYvv2iw4+MwxZrM/l9kA5V/cOnTo8KeOpWQvc/O/mQfC1dVV1B7m27BEhPHjx3P+wGXLlvFje/ToASLiqhimpVGjRjxTGjBuCTMPyvz585Geng4io562uZWVlfHEllq1aj0X5RHR0wzqQ4cOwdXVFXK5HF5eXhAEgfNWlpWVYd68eahTpw4/z3SiU6vVuHHjBgAjxRSb0EJCQlBUVASdTscpahhptr29PU6fPi16BlNA+eTJE54R6+DggKZNm4qSPEyLTCaDo6OjCBgxz51UKq02yQkwghV2L9bPpkDX3MrLyzF48GB+vEQisaA2unHjBpKTk62Subu7u/PnYKpLjBbH/LhVq1ZZjd+7ffu2BUG5RCKxGlrA7Msvv+TjJzc3l8tkFhcXIyMjA126dBH1K1vgrF27FkFBQVUScpsaA6oDBw4UfZ6Tk4Px48dbtAXjEDXNSlapVDhy5IhVpZw9e/bwzPxatWohIiKCjxnACJpZwpZOp0NGRgb32js6Ola5Xb9t2zb+O7cWX8p+e9boktjf0dHRor4qLS2FIAho3rw5AGDXrl0QBIH/NkeNGoXdu3dj7dq1+OSTTzhpe3x8PPr27YuOHTtytoL/9q6QXC6HoFBXm4jTIHk3ih9V4Jtv86oFlG9vPA8AGLM60+I7/+k7nzum32Z/DrMByr+4HThw4L/6cvu9SqtWraqMTXJ3d0fnzp35pC4IAjp37owjR46AyKhTnpWVxb1PAwcOxJkzZ3iMIyv29vZ84nZ1dRUBSkCc1csyyk3l7LKzszF16lRO8G0KBtjk9+qrr+LAgQPcmxUUFAR3d/dq42Hd3NwwcOBAzJkzB4cOHeITcWFhISZNmiQCAEyTm4FK4Gk2ukaj4TKMpgk8xcXFePLkCU6dOoXFixdj+PDhHBBWFdNo3hdbtmyx8DQWFxdjxIgRIkDt5uZmFZTl5uaie/fuonZgW96bN2+u9jdQWloq8kTqdLpqt5vz8/OrpYoxLaw+VSXl7Nq1i/ctA3BZWVk86aaq5CPmBWceX7YNHxERgatXryIkJIS3v6lUKaOyIiKRp9ncGKUVEaFPnz6YNGkSwsPDRf0plUpRq1atKr11gYGBvK+sAUrACBpNE87kcjnKy8tRVFTEt9gbN27MY3BNY3ydnJyQnZ1ttf5MYUelUoniFQ0GA48bNi9DhgxBeXk5fH19IZVKRfHDgFEmVSqVci+oUqnktFOdO3dGZWUlCgoKkJ+fz2Moy8vLkZubi0ePHmHLli2i+/n4+CArK4tni7PfnF6vR35+PueWfe+999CmTZsafR/K3QOqBYpbzv6IiicGUWKOeWk6dx/uPijD+dtF8J9h/Zis3PtVjjGb/fnMBij/4lZZWYnGjRv/qRN0TIHCN998A8CYSfzGG29YHCMIAvz8/DBy5Ejs27cP7u7ufHvt0qVLFlyHREYVCzb5lJWVYfz48SJptlmzZvGJtbCwUJQl+sYbb1iQiDOg4uHhwWP3SktLOYg5duwYBEGwIE3/4YcfOMg1neSteThZzKapp5JtS7L/e3l5YdKkSSgsLMTq1astxoiLi0uViTDs/vXr10fv3r2RlJSEzZs3izxx06dPR7169Z5JRfT48WMOkIiMXtSkpCQYDAZkZ2ejdevW/H5169blYPvkyZOQyWRWgYypMQ8zI45m7d+qVSsLUMGM8Syy+pg/t3nx8/OzuNaMGTNAZIzj3L17N/z8/ODg4ADAqJUtl8shlUpFqkiAEXBIJBKEh4eLPjelsREEgccFM97JhIQENGjQQFTHFi1aWKjaHDhwoErvcXBwMMaMGYPDhw/DYDBg06ZNVseXRCLBkiVL+DWrApTMGAcjaw/TBZSpubi4wNHREYsXL+biAevXrxcdw+KCWeKSg4MDTpw4gS5dulj1RhKJ5Ur37t0LIktyfRZKwjyTK1aswPvvvw87Ozuu2MS+r4p8n5WhQ4dySUKNRmNBrM6eISwsDOfOnatSVvLXFoVXSJVA8ZMDxpCDpG3fVnlM+Ht7cOmnYtx98Bit5h+o8rizN+9V2ec2+/OZDVDaDBs3bvxdAN1/u/j6+kKv18NgMODDDz8UeeZCQ0Px1ltvISIiQgQQ+AvYJLaR/c2OY7q7pqbX60WxVkqlEv3798eoUaNEHiN2vdDQUIwbNw7Hjh3D1KlTQUTYsWOH6JoZGRlcbYXICJismSnlEJGR+qSsrAyHDx/G3LlzERsbi4iICKvgmIGB51lgyGQyngjDQOOuXbtQXFws2vIGxLRMDFCzLeRnkaUDgJOTE7RabZWAIDIyEpmZmTwuuGXLlgCM9FhEhL///e9Wr8v0z3v06IGff/4ZREbdZuYRkslkIl7PgoICnqnLirOzM0aPHo2bN42EztWRrWu1WrRo0YInG3l7e/NscZVKJfJoZ2Zmcj7LzMxMUVsSET777DP+2Y4dO0Txi19//TUA4ObNmxAEQUSBVFpayiUeTftSo9GIgCQjSycibNy4UdRuqampPHub9QMjCLe3t+d9rdVq8d5778Hd3b1aQMliik15V2vXri3yLjJvYFxcHADg2LFj3As9btw4fhzTvj569KiIr5KVhg0b4ocffsCuXbv4Z+YKO4yiifUpIPbasp2G31pYDC9jfLCWyPciisqrjlUAuGifUTJx/m7LmEhWGs7ajYs/3kfhw3J0WXK4Wk+nzUP51zIboLSZKJv29yr/rTgiuVzOAZmdnR3efvttODo6QqlU8u3DsrIyq/rVbPL08vJCZGQkn0idnZ0t2tRgMHD+O/PrmHt/NmzYIDq3du3aVXrtWGylk5NTlf3JvHmm22SDBg3iXlK9Xo+vvvqKZzWHhoZWCS6fNRkmJiaKttGZMUBpTsvEgEnv3r35daoiKWd24cIFEBmzpydNmmR1LA0bNgzFxcWoX78+BEEQbR+aklab2rlz53gcLYub9Pf3h1KpBGCMtWOLDp1OJ+IjZSUxMbHaurMsb1NtatPz7ezsEBUVhWnTpoHoKUUUsyNHjnBNcpbp36BBA0ilUuj1ehQWFqJly5Z8bE+ePBkSiQQ6nQ7l5eWcvunUqVMAjL/1bdu2YfDgwdVmQXt5eeH27du4dOkSiJ4mZs2dO5d7sRUKBcaOHSvSoGfZ/Hq9HjNnzhTFWarVaoukLGaMTJy1NUvakUgkmDRpEgwGA491Nd3mLiws5J72fBC7AAAgAElEQVTBiIgIDvqsec0lEgkuXbqEBw8eICsrS5TY5u3tjRkzZmD8+PGIi4vj7WZvb4/g4OBqpRdrqqhUKoSEhHCPuYeHBxISEpCcnGyRZPZb34H+wXUtYigZmFy078ozwWRRaTm6f1L1drgthvKvaTZAaTMAsMhGfVGFJSzMmzcPRCTa6n3e5JOaKLVr10Z+fj6Apx69tm3bolGjRtxDwDKhXV1doVQqsWDBArRp08aqFJqbmxvGjh2L3r17Wyi0aDQaNGnSBC+//LLIs+Hh4cF1nbds2QIAXAmmS5cuVvuJSdcRETZt2mTxPdvGHzlyJDIzM0WUK6ZJBKaFeRoZYXVSUhLS09NRXFyMgoICrvqhUqmqjIlk7eXm5obGjRuLuAuJjFt85skuLEnB39+/2rHJuA69vLxE15w2bRrWrl0rolcisowNTE5OBhFh9uzZ/DO9Xg8nJydIJBJkZT2lN2EE15s3b0ZqaiqPxWOFjQ1Gfj506NBq627KQ8kSTIgI7dq1w9ChQ+Hv72/hFWzYsCEmTZrE42sPHDjAY/YYCG7SpAnmzJnDF2Zt27blXrZPPvkERMS35QMDA9GnTx+eoMXuxUCSq6srbty4wWP8TI+pVasW34Jmx9vZ2WHq1Km8P1kWv1qttuAbZdKKpjGSI0aMwIMHTzkKCwsL+dZwgwYN+OLkyJEj3Auq0+mgUCig0Wgwd+5cTJkyBWPHjkVsbCy6dOlSo7Q6/+3CxvOtW7dQXl4uInKvqRIWFgbfCV9y8PfxXiNI/+TA1WeCyfuPKtBzWUa1YNKW5f3XNBugtBkAcCqUF1UYh+CePXtARNiyYxdUXnWQuHAFXIMbw9HV44Xe37Qw2hOZTIahQ4eKSLgFQbDgamTE1aZZt/n5+Rg+fHiVIFir1UIikSAgIMCirRMTE0X3YyAlPT2dkyibx7UBxi0+IuN2rkqlglwux+7du7Fo0SIMHz6cJ1s8b5kzZ44oEYbVa+vWrQCA06dPcw9TfHw8P06n00Gr1YoIqwVBgFarhZOTU5U8mwxsDhgwAHPmzBHpMffq1cvquDSljJHJZBgyZAgKCgrg4uIi4udMT0/n9xUEAe3ateM0UQaDAVqtFmq1moMgFi/50Ucfie6XlpYmqrdEIkFUVBTmz5/PgZ9cLsf69eshl8vRqFGjan9XDFAycMcI7YmMMaSsfgxs+vr6itqPhUN0796dtwHR07ABJycnkZLQw4cPsWLFCgs1FyIjKGvdujXmz5/PF1MsNm/Xrl1wdHTkXmUWc2hOndW9e3eRN3rp0qX8+4iICFy4cAH79+/Hhg0bkJKSgtmzZ2PSpEl8O9fUK6rRaCwWHr9Vhce8ODg4oHHjxmjdujX3lLP2DwoKQmpqKjZt2sQ99Pv27cOTJ0+wefPm38RjWRPlRS6wZTIZ6gyaAd+p2zB753cAgEPZ+eiTcsSi+E03yimeu1UEg6ESyduzLI5p/dFBGw+lzWyA0mZG27t3r0gukMi4Nftb1RpMPXJKd3/0eHcVao1bCb/p5pQVO+Dz2ufw6zcZcpfaL/RF/f7771tQ/bCJzTQ4n1lhYSGIjFyTHTt2tEoiziZwQRDg7OwsajcHBwdER0djzpw5yM3N5VJu69ats/CAabVaaDQafm+9Xo/MzEwsWrSIe3E8PDyqnWzq1q3LYxrT09P5lnGdOnV4vaRSKebMmSN6zuLiYhAZYwhTUlJ4LOWXX34pOi48PBwKhQKAMc6vOu7IefPmITY2FpGRkVXybLI6OTo6YsCAAZg9ezbi4+NFCQ1hYWEiIJOVlQWJRAJnZ2fo9XoeB9ypUyeuiEJkXDycOXOGA9OEhAROQs7iLI8dO4Zu3bpZeF8XLlyI8vJy6PV6nrzUsWNH/rxM7rI6Y1vGRE/J9XNzc7lKTuvWraHX69G+fXsIgsAXMadOncKbb76JsLCwKtv35ZdfRn5+PicRrypsISkpSbRwKCsrw82bN3Hq1CmkpaXx5BZWn9jYWJGKjzWAVxXx97OK6QLK2udNmjRBu3bt0LNnT8TFxWH8+PFITEwUMSqYcjoKgoC6deti0aJFFr/Lvn37WvQHi/MUBAElJSX886tXr0IikcDe3p5n2/+vFGsx3b+1CIIAjbcxjvL499YVoZj5Td+Jlh9aZxtgtun0LQsPpU0p569nAgCQzWxGREVFRTRgwAB68803yc7Ojk6ePEknTpyg48ePU1FRERERyeVy0uv1z7yWTqejBw8eUL169cixVh363vklUvlHECoNJEikVZ4nEAgkkOTuVbr9z/n0pDi/xp7P3Ly9vcnT05POnz9PlZWVZGdnR2VlZXTnzh0iIlq9ejXt2LGDLl68SMXFxfw8Nzc3ioqKon79+lFoaCi1adOGZsyYQY0aNaJhw4aRwWCgefPmUXJyMikUCtLpdPTTTz9RZWUlERFJJBKqrKykxMREGj16NBUXF9OgQYPo+++/N7aBIJCTkxOVlpZSeXm5uH0EgZydncnLy4uKi4vp9u3b1LNnT/rxxx/p/PnztHr1ahoxYoTFs7Zr144OHz5MRETvvPMOLV++nIqKiqh27dq0bds2ioiIICKiOnXqUE5ODgEgrVZLR48epQYNGoiuNXToUFq/fj0VFxeTVqulx48fU1BQEP30009ERCSTyejJkydEROTp6UmDBg2ipKQkcnV1JSKiiooKOnHiBPXv35/u3btHjRo1om+//ZafY83CwsIoLCyMGjduTC1atKDo6GhaunQpTZs2jbp27Upnz56loqIiun//PtnZ2dHly5dp7NixdPToUSIiCg0Npby8PCotLaXKykpSq9XUs2dP+uabb+jBgwdERFS7dm0aNmwYKZVKmjVrFq1Zs4bi4uKoQYMGdPnyZZowYQKlpKTQo0ePaODAgZSenk5ERFOmTKEPP/yQJBKJqM4//PADRUZG0v379ykgIICuX7/Oj6msrKRu3brR3r17yd3dnaRSKT169Iju378vusbDhw8pPz+fFi1aRJ999hlV97qWSqWkVqtJpVLRvXv3+Hhj31VWVlZ7vjWTSCSkUCiovLycAJCjoyM9evSIKioq+DFOTk6k1+uptLSUZs6cSc7OzuTs7Eyurq7k7u5O7u7u1KRJE5JIJHTnzh2qrKykvn370vbt2/lvgYjIzs6Ojh07Ro0aNRLV4dq1a1SvXj2L+js5OdH+/fspICCAWrRoQVeuXCFBECgpKYk2bNhAV69epYYNG9KJEyfIzs6OKisrycvLi+7evUtEREFBQZSdnU0ymYyIiCZNmkSLFy/+Re3ze5lSqaTKysrnevc+jykUClKr1WTXYyopfcMJJNTIdYmIpBKBogNdaM2YZjV2TZv9McwGKG32TANAN2/epMzMTDp58iQdP36czp49S+Xl5SQIAkkkEjIYDPx4Nkm8++67tHj7SXLtMoEMlSBBKnv+e1YaSEKge/v+Tg/O7X4Rj0Xe3t4UFxdHw4cPpwEDBtC1a9eIyAja2M9CEATy9PQkrVZLV65cofXr19OQIUP4NSorK0kmk1HHjh1p7969dO3aNWrevDndu3ePpFIp1alTh7Kzs6miooI+++wzWrNmDZ05c+a56ieXyykyMpK6dOlCn376Kd2/f5+KiopIq9XyewcGBtLNmzeJiKh37960detWi+vcuXOHgoOD6eHDh+Tu7k75+flUWVlJr7/+OqWmphIAGjBgAKWkpFBYWBgVFhZS7dq1KTs7m+zs7Cyut3z5cnr99ddp8+bNFBAQQH369KHbt2+TUqmk8vJyUqvV5OvrS1euXCGNRkOlpaVERBQQEECjR4+mt99+m9RqNTk4OJC7uztduHCB3njjDVq9ejURGQFpp06dyN7enjZv3kyCIJBMJhOBGNY+ADgQbdasGc2dO5eio6NJpVIREdGtW7fotddeoz179lgFUy4uLtSvXz969913qVatWkRE9PjxY7Kzs6PIyEh68uQJXbhwgUaPHk1ffPGF6NyBAwfS5s2bici4yFi9ejX5+/tTQUEB7dy5kxYuXMjBUnh4OIWFhdGDBw/o4cOHVFpaSqWlpZSXl8cXK4IgkFwuJ4PB8KvAn7kpFArSaDRUVFREzs7O1KRJE3JwcCCtVkuOjo7k6OhIBoOB3n//fdF5oaGhlJKSQu3bt+efvfnmm/Tpp5/S4cOH6c6dOxQbG0tyuZy8vb35+CMi6t69O33wwQfUuHFj0TU9PT2JiCgrK4uaNGlCN2/epKZNm9Lhw4cpMzOT2rZty48NCwujDz74gA4cOEAbN27kAFClUtGIESMoMTGREhMT6euvvyYAot9rbm4ueXt7U2VlJQ0fPpzWr1/PF0ZJSUm0detWSk5OpoKCAlq+fDmFhobSd999R1u3bqWBAweKQPif3Tw8PGj7waM0/OurVP6k5p5bKZPQ/rfaUm1ny3eHzf7cZgOUNvtV9uTJE8rKyuIg8+jRo3TlyhUiMgKCrl270pEie9K1HsZf+r/YACJBIPW1/ZT9zyU1/ARiT5q52dvb05IlS2jkyJEkk8no4cOHpNVqqUWLFtzrxUyn05GTkxNdv36dzp49S//+97/po48+osLCQiIiDrTMTavVklQqpYqKCiorK6tyMtPpdFRcXExjxoyhlStXir775ptvqHv37kRE3GNoaj///DMFBwfT/fv36aWXXqJTp07Rli1bqG/fvkRk9KL16NGDLl++LDrvpZdeoszMTKv1+eGHHygwMJCCgoLo+++/J0EQaNy4cfTpp5/S5s2baejQobxdAdDBgwdp7ty5lJGRQRUVFSQIAtWvX5+ysrLIzc2N7t27RwaDgYOOO3fuUEJCAvXq1Ys6duxIb731Fi1atIgqKiooMzOTjhw5QhcuXKCrV6/S7du3qaCgwKKOcrmcHB0dydPTkwwGA/3444/cE8m+HzVqFA0aNIh+/vlnKiwspHv37lFRUREVFxfTxo0bqaSkhIiMnjA3NzcqKyuj8vJyKi8vJ71eTxUVFdV6Va0ZW4BJpVKSyWSkUCiIiLhn0tnZmVQqFT148IBKS0tFoFIikRAAmjdvHpWWltLs2bPJ0dGRcnJySK/Xc4/6kSNHROexcT5q1ChaunQp2dvbExHRkSNHKCYmRvQMkydPpgULFljU+86dO+Tl5UURERF0/vx5UqvVdOnSJfLz86N79+5RbGws7d+/nx/v5OREffr0oeTkZPLz8yNPT08+zh8/fkwTJ07k3sB169bRsGHDaPbs2fSPf/yDcnJy+HVUKhXpdDrKz8+n/Px8cnd3JyKiixcvUteuXSkvL48fa21BlZqaShMmTCAYw7soMjKSL+heeeUV+uKLL5571+XPZGq1mn766SdydHSkDadu0fQt39bYtef3a0ixL/nW2PVs9scxG6C0WY1ZSUkJffnll7R48WIq9WhEmvav1tzFM9fRzYNf19z1/t/Mt/RMTRAE+tvf/kYLFy4kiURCoaGhdP36dTpy5AgdO3aMzp07R1euXKGzZ8+KPLTmJggCtWzZktq3b0/h4eE0YMAAGjp0KK1du5Yfc+XKFQoNDaXg4GDS6/V048YNi+vI5XIaOXIkffbZZ9xj5+HhQcXFxQSAoqKi6PTp0/z4+/fvU506daiwsJBSUlJoxIgR5OTkRK6urqKJeNmyZZSQkMD/r1QqSa/Xk16vt9jGJXoKAIiI6tWrR7t27aKAgAD+/fXr16levXr05MkT6tmzJ23bto17rdPS0ujDDz+kixcviu731ltv0bx586iiooLq1atHOTk55OfnRzdv3qTz58+TwWCggoICC/B3+PBhunDhAhEZt3VdXV3p4cOH1QL0X2pKpZKDP6VSSSqVim8tnzt3jry9valZs2b0n//8hy8i7Ozs6LPPPiOVSkWxsbGUkJBAixcvtmjPEydO0HvvvUe7d1v3wqtUKlq0aBH179+fPDw8qEOHDhy4ffLJJzRx4kRyc3Oj69evk1arpS+++IJeeeUVio+Pp5deeon+9a9/0dmzZ+nevXv8mhqNhiorK6msrIyIiPz8/GjPnj0UERFBMpmM7t+/b7Xf3d3dqaCggFQqFWVlZVFQUBD/7scff6TatWvTkCFDSC6X0/bt2zlI9vb2prt379KTJ09IJpPRhg0bqH///kRkXJi2a9eOjh49yj2NCoWCHB0dqaCggP8mnZ2dqbCwkCoqKmjEiBGUlpZGgiDQmDFjaPXq1RwQRkdH044dO8jZ2ZnXbffu3dStWzciIoqLi6N169YRkdHDHx4eTt99991zjYM/k5nvtHx66Bp9vPfqb77ulM516fWYOr/5Ojb7g9qLD9O02V/NLt3Kh//UrdVqxf6iMm0Har/9T6hdLXkAf2tJSkoCYMy0Xb16NSIiIiyOYckfVamHsESTnj174t1330V6ejpKSkqg0Wjg4+PDCc7nzZuHTZs2gYgs9KXj4uJARJzChukNswQG8wQIrVbLE54WLFiAXr16gYgwa9YsAEBJSQnPwjbVC2dJCampqTAYDOjfvz+IjAkxZ86c4frkRMYEF1Puxtu3b4sSXswTUkpLS5GTk4MTJ05waUZW19GjR6Nnz54WlEvmCRoSiaRGteUVCoWIbsjLy6vaLGKpVCrKsvbw8MCBAweq1I1WKpVo2LAhrl27xpNCWP3r1q3LpU2nTJkCg8GA/fv3Iz4+HkFBQRbZ8AEBAaLEoPHjx/P7MP7NvXv3iu7P6L48PT3x8OFDC05VZqYk3uZFq9UiOjqak4Cz34SpmUq0pqamWm0LqVTKta4BY2JRz549Re3t6+uLefPm4euvv0bz5s1Ffd20aVOkpaXxMVdSUoJOnTrx7+3s7PhvrW7durh+/TpmzpzJ68y4GmUyGaeI0uv1vP8ZtZBMJquW/urPXGQyGWJiYlBZWWnRf19n3kTIzHQEJu76Re/nwMRdCJmZjg2ZNy2uabO/ltkApc1q3IatPIHAxF0Ie/cbfPbv6zh89S5+LnkMAFhcBWluUOIuvL/zO1zOK0ZZxRMUP6rA6Rv30Hf5UeMxU7fBPfb9Gn25MhWQrl274qWXXoKXl1e1Gcts8vP09MQ333zDs0QXLFgAIiPtT0VFBQoLC/H48WNoNBqEhobi/PnzHGwwObgffvhB1GaOjo4WBOmm2r83btzAjRs30L59ewvAJQgCPD09+WR78OBBnqVrnsmt1+s54bqPjw8HMikpKZg/fz6mT5/OwSmbgEJCQkQ0NKYKQL+WCYCdo9Vq4eLiAgcHBxHAMgUh0dHReO+997B06VKsW7cOe/bswdmzZxEfHw8iQr169UT9VqtWLSxdupRTBDG6GKbPfebMGRAZpRXLysowbtw4C4Bh7ZkY9VGjRo3Qv39/zJ49G66urlCr1bxNFixYgPLyck7CzYqDg4PomdRqNRo3boypU6eiSZMmEASBP4O3tzfPZGY65D4+PrCzs7P6e2M8m4xw3JRsnfFAmmZAM+5LuVxulTeVyJgdn5iYiO+//56Tq7P+iYmJsVoPV1dXkRpOfn4+5zCVSqVWx4qXlxc0Gg1cXFysXpMRnJvSCykUCkyfPh2lpaVQKpXQ6XQ4d+4cPv30U3Tu3LnaBclvZa34oxe5XI6rV69abWsAuFVYimErT3Cg+Cwg6Td9J4atPIFbhaVVXtNmfx2zAUqb1ahdvfOAv3BafngAxY8qcOL7n7H+pHH1ag1QBszYif2X76D4UQXm776M2NRjiP9HJhbuzcbQ/3+5sSJzqXkvJZERJLm4uKBBgwbo06cPByHr16/HhAkTLGh64uLicObMGaxbtw4fffQRiIzk0gyY2NnZcZlENhGbXuPDDz/Enj178PDhQw5wTLkeAXAJRna9tLQ0pKWl4b333nuuiVIikUCtVkOtVkOhUNQIv5+TkxN8fX05GG/evDm6du2KgQMH4pVXXsHkyZMxZ84crtZjTkY+efJkAECdOnVE9EjMcnNzMW7cOAvvXcuWLZGXlwfASMXTr18/0fd+fn6YMmUKJ+FmPItMYnDMmDGi+zRr1gxExMnDAYi801KplJPId+/eHYMHD0ZkZCQ8PDyq5CfUarXw9fWFl5eXSCGGlbp162LWrFlcxQcw0tUwAKTRaLhq0qFDh/hYYnyd3bt3r/J3x8aKIAgoKyuDwWBAUlISr4dKpcKbb77JVWWIxN5Og8GA9PR03i7WxtOQIUPg4+MDhUJhoToEGCUPZTIZAKNHk9W/bt26ouu5uLjAw8ND9Jm9vT0H/MyYZrnpGOjatesz+RmlUqmoj+RyOTZu3Mi11E25Tf9KRRAEvoPxLLt65wGSt2WhzYKD8LeigNNmwUEkb8uyUQPZTGQ2QGmzGrXkbVlWV7aN398DwDqgfG9HFp4YKjmJbpVl6ja4dhlfYy/YyMhIvPbaayCy9LoUFhZCIpGIdKaXL19e4zq7pp4pjUYDtVpd4+TObJLV6XQiMnKJRIK5c+fi888/x5YtW5CRkYHs7GwUFRVxtRXTolQq+VZ9amoqiJ5qRpvaqlWr+IQulUrRt29fZGZm8i36rl27Qq1Wo06dOlbHkMFggFwuh6+vL/r06SOqg3m7dOnShQNNwKhpTWQEMUyGz9/f3wIA5eTkgIgQHh4OABg6dCiICE2aNMHmzZtFUqQajUak6QwYOTsZN6W1elVVXFxcMGPGDOzduxfx8fEcVOl0OlRUVIjucffuXZG2tTWye2Zvv/02P06n0/Ex5eDggOTkZP78w4YN4/1irl/NzNPTE1KpFCkpKSJPtOlz+Pj4YNy4cTh+/Dg/b/To0SAirp9uPs7VarWor8rLy7nikOkYq1+/PqKjo5/b08i0ytesWcNBY1FRkQhU2tnZYe3atfjxxx/5LsFfqTCRhapCN6qzh4/1yMq9j7M37yEr975NTtFmVZoNUNqsRq2NmWLC8wDKW4WlOHb95+eK16k17vMae8m2bNkSJ0+e5HKQffv2xcyZM/HGG29g+PDhXAItKCgIgYGBL4Rg2Lw4OjoiPDyce/ZatGiB119/HV27dhVN7CNHjkROTg7fdt+9e7eF52b69OlYvXo1Xn75ZXh4iJWI2GQbHR2N3NxcUR9++umn/HuVSoW8vDxs2LCBx6CFhITg8OHDICKMGzcOgBEEfvzxxyKCdyISkUeXl5dz3WkiI0m4NVu7di2ICO+++y4SExP51rx5kcvlWLZsmYWkI9M7Z9u65s/HjKnlsLjR8PBwEfA8ePCgqM+bNm2KqVOnomnTplY1uTt27IiUlBQUFBQgIyMD8+fP59dmEpvV9TvbRt+/fz+f+A0GA+8LZ2dnq9uVZWVlPJbXFAAuWbJE9Dy7d+8GEfFFRcOGDa22Cwu1YMT2+/fvB2BUTho3bpyof9m9/P39LfrJ3t4egwcPxuXLl+Hh4QEPDw8YDAZcuHABy5Ytw6hRozgor87r6O/vjx49emD69OnYunUrCgsLMXDgQBAZPd4MIEokEnTr1g23b9/mggGbNm1Camoq95ZaU3H6q5R9+/ZZ7W+b2aymzAYobVZjVvJYb7E98ixA2XyecbL68mgOPj14DXcfPIb+iQFX7jzApI3nLK7jO20HBPmfO6De2dkZEolEFI8GgOtyS6VSkfKJwWDgE2jv3r1Fikf16tXD7t27uacrKCgIffv25WCZFTs7O9SvX58DQnt7e66sw/SZKyoqeGwgU0pp2rQpEhMTOdhUq9V466230LZtW0gkEqvjhF1DKpVysMJMr9dzgMBAi0qlQrt27Ti4Y8/CvIJSqRTNmjXDxo0bYTAYRCBsxowZVY5XpptORAgNDcWTJ09E3+fm5oqe17yfwsLCuKd2wIABVu9hquVdWFgokseUy+W8H6x54+RyOe8PFmIgkUiwevVqfv28vDxRX/r4+HAp0YiICA4oi4uLufc7Ly+PSz1OmzbNap3Z865du9bi+7p160Imk+HChQvo0KGD1bhjR0dHREZGon379mjevHmVHlx2nzp16qBBgwa8HcyTtzw9PTFx4kQUFBQgPz8fEokEQUFBvE579+4VqekQEbp168bbyDTZ7K9WpFIpYmNjq/wd2MxmNWU2QGmzGrOs3PtVeharApR9Uo4AAIrLKnDlzgOMX3saw744gZ0XfwIATPvnBYtryd1rRhpNo9Fg9uzZSElJwQcffAAi45bkTz/9hMePH4u2Ef8bRRAErFy5EpWVlcjLy4NcLuceFk9PT5SWlsJgMHBt8qFDh/K+MNekJjKCTVNbt24diIxJOeYxf0qlkidUTJgwQXTehQsXLLYNtVotZs+ezQFMTExMlYAyKSkJRE+Te2bNmoUNGzagSZMmImDVokUL/POf/+Tn3bx5k4PK2rVrQ6/XIyUlBfXr1+fARKlUIjAwkLefRqMReUlNbfLkyfxemzZtwvfff4/ExERERUXBzs7OYlI2B+F16tTBrl27oFKpEBYWZvUeDFC2bt2a913r1q1F291EhOzsbJSXl+PIkSOYP38+Bg8ejKioqGqzkU29eoIg4IMPPsCjR48AAIMGDQKRMcbVYDDw7HwWo2kwGODl5QVBEHD06FFRG5s+e+fOnUXPYzAYOCPBr0lwady4MaZMmcI9jU2aNIFEIuFAW6PRYP369fjyyy9BRHjrrbfQt29fvmAheipFaL4YAYAVK1aI7mdvb8/rWdNhJM/7G/5vvkNYG5iGGtjMZi/KbIDSZjVmZ2/e+8WAsu9y42T2WP8E0R8eEH138cf7yC16ZHEthVdIjb1sdTodPvroI57EwCbh32N7+3mLt7c3BzO7d+/GrFmzQGTMZm7RogWIrHvIWIas6cRWu3ZtDioAiLTW/f39sWrVKrz66qsICQkRARa5XI66deti1KhR6Nixo9WkGRa/BlQPKNn2/bp16yxAEctOX7RokdVzWaKMIAiiJI7S0lIkJyeLkoCY58wa2GN0M9aSZ9gW7rBhw5Ceno5WrVrx7+rUqYPLly+jd+/eHKBIJFbf/2oAACAASURBVBKoVCqr9d2+fTs/19HREenp6fy769ev83Gm0WisxqM6OzvD0dGRg82xY8c+E6TI5XK4urpyryb711zbOicnB1KpFA4ODigrK0Nubi4HYOvXr+ehIMnJyejSpQu/TnXAhSXETJ8+HatWrcKsWbPQpk0bizq7ublZZGTHxsZyuqPIyEhIJBIR/dH+/fvRvHlz0Xhp2LAhp8AqKyvj2fQsKYwV09jhv1oxpyizmc1elNkApc1qzH6NhzLm40MAgEs/FVuc8+nBawCAyNl7X4iH0rz8L3gTqium3qLp06fzz82zfw0GA9/iYxP2ypUrMWTIEA4EXVxcEBDwtB1DQ0Ot9inLfA4ODrbw8DDvWb169UBk9Dh+8MEHAKoGlBcuXLDw/jHg5+npiXr16lkACdNziQiNGjWCUqkUxfcBxhhNnU4HQRAwdOhQEYiws7ND7969MXz4cBEFDdFTz1WrVq3wn//8RxR3mJWVxesbGhoq+q64uBgjRozg48bFxYXHLZaXl3MvIauztcxoLy8v2NnZ8TaIjIzkMZ9ZWVkgMnqeDxw4INouN6Vx8vPz457NIUOGICoqSkQjZVoY2AwPD0f//v3RvXt3EBkXGgzcOzk5VekZlUgkcHV1FXkM3d3dcevWLQDG7HmpVGrxnB4eHnBzc0NKSgo6deoEBwcH0XUdHBzQrl07LFq0iG9ps4QpU2NZ6PPmzUNUVBTvO5lMZrEIjI6OxsGDB3ms7Isq1cV/sgXQm2++Kfo9/h5FKpUiIiLCIpTDZjZ7UWYDlDarMXv4K2IoAxN3obRcbxVQphwyAsrG7+95ITGUbDJyd3f/XV/0v6WkpqaisrKSAwEiY5IMS0wx5f5r0aIF8vPzRbFzZWVlaNq0qWjSYRyF5pnMAPDZZ5+J7h8QEIDY2FhERkaKAAuLqSQyAis22QNGQvRXXnlFxIUolUqRkJCAgoICAEBiYiL/LjAw0Or4atiwIQRBQE5ODi5evAi5XA6pVIqMjAwARhBLRBzU7du3zyJL3LS+o0ePxunTp1FRUQGVSgVHR0cR6Fu9ejXnTpTL5ahdu7bVerHQCNNEJgbc2fb7lClTrJ4rl8sRERGB0tJSdOvWjbfN1KlTeeIJ89oKgoAuXbrwfmIUQBKJxGqsI/PYsWfW6XRwcXF5Ju2OtdK3b1/cvXuX9ye7bnBwsCgpirEm/Pjjj6K6sKScoqIitGnThj8nkZGb1ZxGiLXdnDlzOMA+ffo0iIzAn1l5eTni4+NFix1BEBAUFISoqCgR8K7pYq0dZTIZ7HROGPr6NHiENUPyks8hV9tj8+bNICLuGf89Fq+CIODMmTNWx53NbPYizAYobVaj9muyvLee+xHlegNamm15Z+Xexw8/PxR95v3qihp74fbv3x+enp58Un7RL/iaLhKJhE9qMpmME2KzSbpfv36Ij4/noEqn04mSbl5++WWRt9Db25t7BjMzM0W8jHK5HJmZmaK+zsvLA5HRC9O8eXMLrxMRiTxdOp0OQ4YMAZFlPCcAzrfIJl5TO3ToEIiMlEPMTp06BZlMBplMhokTJ4LIuJVau3ZtUX+yOpj3sSAICA0NxeLFizmgnTt3LgBgzJgxIDJuRWdmZvJtemuxaHv37gWRMQGIjSfWJ8OHDweRdUB57949EBFGjBjBP8vIyLDYnpVKpRg4cKAopODSpUsgMnpNWR/269cPS5cuRXx8PFq0aFElX6ZUKoWTkxNCQ0PRtGnT515Mubq6IiAgQASGzMMJWIb+ypUrRZ97eHjA3t6ej9dWrVph8eLFIDJyvQLGhKxNmzbxrXXT+9jZ2fF+/M9//gMA+Pzzzy3YC8xBniAIv8ti0b9RCzh3fA3hiVssFcKm7UDdt79G0KDpGDT2b79aDOCXvhsSEhIsxpzNbPYizablbbMatVnbv6M1J2+SodI4rNqFuJFaISV7pYwWDGhEOy/+RLu+NepIH7pylx7rK8nX2Y52vNGKfi4ppyUHrlJJ+RMa3MSXOod50Otfn6Vvsu4QEREqDVRydhcV7V9RY/VlGtN/NJPL5RQSEkJlZWWUl5fHdZmJjJrWlZWVFtrkv8ZUKhVJJBJ69OgRtWrVilxcXEir1ZJOpyNHR0f64IMPyN/fn5YuXUo6nY7++c9/0ldffUVFRUUW13JzcyM/Pz86ffo0JScn06xZs0Tf16tXj65evUru7u50584dateuHe3bt49kMhkFBgbSzZs3KT8/n1xdXamiooI2bdpEqamplJGRIbqOvb091a9fn7p160ajRo0iX19fio2NpY0bN5JMJqO8vDw6evQoffTRR5SZmUlPnjzh2tVSqZSCg4Pp0qVLFBISQqdOnSKtVksZGRnUpk0beuONN2jZsmWi+z1+/JjUajX/f7du3ahDhw40b948ru0dFhZGx48fJ61Wy4/bsGEDDRkyhFJTU+nVV1+lyspKmj9/Ps2fP5+Ki4v5cZ07d6Z//etfpFKp6OLFi5SRkUGzZs2ie/fucS33x48f/1979x0dVbk1cPh3pqX3HkISAqGFHkAICU2KgKIUJUoRBMGGiiLKVYFrQYqIwr0iH4pSLCgoEcul92YoSugBQgBpIUA6aXO+P+IcGBJImyDgftaatWDmtJlMMnv2+757W12TpS+2o6MjHTt2pEGDBixatIikpCQGDRrEnDlzmDZtGm+++aZVH3qj0cjatWtp0aIF8fHxbNmyhenTp3PmzBns7e2LnQfAYDDg7u6Or68vvr6+rFu3jqioKDIzMzl48KDWO15VVRRFQa/X07BhQ4KDg4mLi2P79u2EhYXh7e3NlStXcHR0JDIyku3bt7N8+XK+/vprVq5cydmzZ0t8j177nAMCAmjVqhWdO3dmx44dLFiwgLy8vJvuVxntuvfmsHskpuDGqOZCFJ3+xhubC0GnJydpFxf/919cdHmkpaVVyd8fX19fEhMTrd5vQlS5vzWcFXedazvlhLz2k3ry4o1bcl2bkew8fZ266sBZNT0nT83JK1B3Jl9Uh3zxW/EV3t7VbfYtvkePHsXm091Jt3Hjxqk5OTlq165dtfuuLRWjqkVFxi1zyyyZmqefflqdMGGC+uKLL6qDBw9We/fuXWwRA39le1xcXG6Y6Srv7fqsjKXYer169bR2jwEBAerEiRO1+YIeHh5aZ6DIyEj1vvvus1pIdO1Np9Np2atrWbJmlgzltYsUCgsL1dmzZ2tllyw3Pz+/YnX7nJ2dVX9/f6v7rs0o6vV6ddOmTVaPT5s2zer6evbsqWU5LTUdjx07po4ePVrLNNrb22vvy9IWh3l4eKj16tVTe/ToYbVSWlEUbTGPRX5+fok1PatXr67++OOP6ttvv61CUU/6a11bXikgIEBNSkpSN2/erJUeKq0/ellvgYGB2oKzBQsWaOffv39/iYunrn9v1a5dW33qqafULVu2qKqqqk8++WSV/e6ZTCb1/ucnqtVfXqKGvPpjmWroXtugIWT09+o9j41SoXiJJFvcvvvuuxv+3RWiqkiGUtjcwM+2s+VYqpaltAW9Asr5RI5+Nsp2x9TrrbIzdyKTyUReXh7R0dG4u7vz008/0b59exYuXMj999/P77//jr29PR999BEPPPAAISEhGAwGzp49i6urK7NmzWL8+PGkpKRoWa1x48axcOFCjh07hqIodOjQga1bt+Lu7s7p06cpKChgyZIlvP/+++zYsQMoyg75+fnRqFEjgoKCWLZsGSkpKbRu3Zp9+/aRnp4OXM0IVzYzrCgKRqORwsJCCgsLcXR0JDs7G0VRaNasGT4+Pri4uHDx4kVWr16N0WjkjTfeYNKkSVy5coWff/6ZFi1a4OnpiU6n47PPPuPJJ58sltV1cnKiS5cuTJgwgfHjx7N06VKOHz+Oj48Pffv25ddff0Wv1+Ps7ExhYSEZGRlW+x89epRatWrRp08f9uzZQ2JiIgCRkZGcPn2aM2fOaK97SfR6Pfb29mRnZ6OqKp6enuj1elJSUjhz5gz+/v5W28+cOZPnn38eQLvmlStXMnHiRDZv3kx+fr7V9q+88gpTpkzR/t+yZUvi4+P5/PPPGTx4MMnJybRs2ZLz588D8NVXX9GtWzcWLlzI22+/rd1va3Z2dri7u3Px4kWra9bpdDRt2pQpU6aQlJTEsGHD8PX1xcfHhyNHjpCbmwtczdBafj9sqWbNmpia9iS71r2gqqAo5T/IX/uFpu1h/ax/lbq5Xq/Xfmeu/5ulKIqWIbazs8PZ2ZlNmzahVOS6hKgECSiFzZ28mE2n6evJLbDdUI6dQceKF2J4ot+DrFmzxmbHvRv07duX7777DoCuXbuyYsUK7bEePXrw7bff4ujoCBQFBP3798ff35/s7GzS09Oxs7NjyJAhvPbaa4SFhREWFkZiYiKbNm3imWeeISEhQTteq1at2LNnD9nZ2QC4uLiQkZHB0aNHCQsL07br2LEj69ev1z78Nm/eTJ8+fTh37hwAGzduJDo6moKCAuLi4hgwYECJw6nXCggIoFGjRuTk5JCVlcWZM2c4ffo0BoMBFxcXsrOziwUU5WUwGCgoKMBkMmEymcjJydGeg+ULiJeXF5cvX6awsJCgoCDGjh3L3Llz2blzJydPnsTf3x+dTscff/zBDz/8wNtvv01AQAA6nY6UlJQSAxxHR0dCQkKoWbMmbm5ufPnllwwfPpzZs2cDkJeXx6BBg1i0aBEANWrU4MiRI9pQvcVDDz1EXFyc9jyu/dJUs2ZNBg8ezBdffMHRo0cBePXVV5k0aZK2f2ZmJv7+/uTm5jJ79myeeuopCgoKeP3115k0aRIeHh4oilJlgeTNPPvss0yZMgVHR0dOnDhBzZo1sbOz4/z589r7+9ChQzz++ONs3769wu+Bm6lfvz4Zvg3RtRpos2MGnV7P5vlTre5TFAU3Nzd8fX0JDAwkMDAQf39//Pz88PPzs/q3j48PBoPBZtcjREVJQCmqxDfxJ3jt+4TSNyyjyb0b0q9FMJcvX6ZJkyacPHmyUhkuo9FYLFtzJ3N3d6ddu3Zs3LiRixcvAhAdHW01vzAvL4/XXnuNjz76CLPZjMFg4JVXXuGtt97SPpAefvhhFi9eTFxcHD179iQ5OZnnn3+en376SXu9DQYDvXr14pNPPuHXX39lwIABfPrppwwdOlQ71/UBJYDZbMZkMmn3hYWF4ebmxqFDh7QAVVEUvLy8cHJyIicnp1jg4ujoyNChQ+nZsyfdu3e3yrYCfPvtt8TGxmrz/YxGIz///DMuLi6kpKSQmprKggULWL16NTVq1ODixYukpaXh6OhIvXr1uHLlCgcPHqSwsBAPDw/y8/PJy8sjPz/fJsHJjYIcNzc3q7mOhw8f5ssvvyQ8PBxfX1/8/Pywt7fHx8eHCxcuAEU/c0vGEOCDDz7g5ZdfLpZ59/LyYteuXQQFBdG4cWP27t3L0KFDWb58OadOnSo2n3X9+vW0b98eKMqA//LLL9jb29OuXbvbIqNvMBgwm82YzWZiYmK49957iYqKok2bNkyaNIm3336b6tWr88svv9CwYUObndfd3R29my9OD08iqrY/vZoGERnsQYC7Pek5BST8eZmPViey93S6tk/zEA/6RgYREehGbT9n7Ax6oiev4dTlv+Y8qyrmgjyqJ8xjUO/utGzZEn9/fwkSxR1JAkpRZf6zNpH3Vxyu9HFe6VKHZzvU0v6/Z88eWrZsqWWjhDUXFxdcXFw4ffo0/fr149NPP2XkyJF8+eWX5Ofn4+7uTmFhIZmZmWzfvp0WLVpo+2ZmZuLm5oaDgwOurq6cOVO0gMrDw4OMjAxUVdUW/NSoUYN///vfDBo0iMGDB/P5559rx7k+oExISGDOnDnMnDmz2HC3JfgbP34848aN07Ju77zzDm+++SZDhgzBYDDw5ZdfaoGnRVBQED169GDQoEFERUUB8K9//Yv33nsPgHXr1tGuXbtir1GdOnU4fLjovTlo0CDmzZunPbZy5Uq6dOnC/fffT1xcHLt372bkyJFs3bq11NfeMvzt4OCAvb09iqKQlJRkFeTpdDoMBkOFh2IVRUGn01kdD9BeU71eT0BAAM2aNePAgQMkJiZiZ2eHh4cHZ8+e5b777mPGjBm4uLjQpEkTzp07x6RJk3j11VfJy8ujY8eObN68GSjKcF++fFn7/9/N29ub/Px80tLSbjhlRVEU6tevj5eXFxs2bLDJeS0/M88+47Cr3pD/DmiBh6ORXxLOkHg+E08nE0/GhNGwmhuD5v7G1mNFi7FeuDechyOD2Hc6HVd7I61relkHlIBOgTY1vVkw9B6bXKsQfxcJKEWV+ib+BON/3EeBWS3XnEq9TsGgU3irZwT9WgQXe3zhwoUMHGi7Yae7gbe3Nw0bNmTr1q0lDh8HBAQwceJEBg8eTGJiIvXq1cPJyUkbhv7www/57LPPOHLkCFCUnerWrRvjxo2jWbNmPPLII3z33Xds3ryZadOmERcXp32gBwcH89xzz/H555/j4eHBmTNnSEpKwsPDo9iKb29vbx566CGqVavG+++/T1ZWFoqicPjwYWrVKvriUFBQgKurK0ajkUuXLhULMqFoNXd+fr72xUKv1+Pn56cFwaqq4uHhwZEjR/D09NTOP3v2bJ5++mlUVUWv13PixAnOnj3Lpk2b2LVrF4cOHWLHjh0UFBQUew0twbCrqyt169bVht0tr4OrqyszZsxg4MCBbN26laFDh3Lo0CEAmjdvzuzZs2nWrBkLFixg0KBBzJ07lyFDhnD+/HmGDRvGTz/9pM3969u3L/Xq1ePSpUukpaUxf/58CgoKaNmyJcnJyVy4cKHYNV4fXJbHtQGaJZN8O2QkSxIcHExycjIFBQXEx8fz3nvvsWzZMgwGgzYlwdZfOO18Q/F/4j8AeDmZSM2y/kLgaNKzfnR7Dp3LZMBn24Gi6ZWWT9gnY8J4vXu9YgGlxapRbanl62LTaxbiVtKVvokQFRfbIphVo9oRFeYFFAWKN2N5PCrMi1Wj2pUYTAIMGDCAZ599ViaeX+PChQvo9XoGDhxISEhIscerVauGnZ0dZrOZ8PBwPvjgA9LT0/H29sbJyYmxY8eSnJxMTEwMRqMRJycnli5dSrNmzQAYN24cAB9//DE1atTAxeXqh9+JEycYM2YMBw4cYMuWLSQlJQGUWD4oJyeHefPmsWzZMi3zpaoqtWvX1srnvPzyy+Tk5PDee+9ZzROMjIwEirJQmZmZPPfccxw+fJixY8dSq1YtTp8+jVpUXxdFUbh06RIBAQEsWLCA3377jebNm/PUU09pc9QKCwupVq0akZGRvPDCC8ybN4/4+Hjs7e21c+p0OgYNGsSlS5e0OZQ6nY7t27dz4sQJ8vLymDt3LoqikJ6ezuDBg9Hr9URHR2vB5LBhw4iPj9deS0vmzDJc7evry48//qhlWVVV5auvvmLatGn4+PhQq1Yt8vPz8fHxIT4+nrNnz6IoCu3ataNJkybatVavXp3du3ejqiqFhYWkpqbSsmVL7TUDaNq0KWPGjGHEiBHExsbSuXNnq4ynu7s7Tk5Ot20wCfDnn3+yZs0aDAYDv//+O8uWLcPT05OUlBTOnj3L+vXr8fb2tuk5/aP7opqLXpPrg0mA7LxCEs9nEuB29b1T1nSNXqewcNsJm1ynEH+bW7KWXAi1qKTQ+Li9atupa4p11Al97Se17dQ16vi4vWriufQyHS83N7dchZlv5e3a1nSW2/VFmG/F7doONpabTqdTXVxcrF63atWqqfPmzdNKDlkKfU+ePFlV1aIi3IMGDapQl5Wb3SzlZmrVqqWV33Fzc1P1er3q4+Nj9fO+dOmS1vUnISHBqiPQ7t27VaPRqCqKog4ePFht0qTJTUvN6HQ61d3dXSvZ0rRpU/XHH39UL126pE6cONGqV/nmzZutrmPIkCEqUKwLyc36RdesWVONj4/Xtm3RooVqMBis9i8sLFRNJpNas2ZNNT8/Xx0zZkyxkk06nU5t2rSp9rNatmyZCkUda4YNG6b9rGNjY9X8/HytIHuXLl3UjIwMtX79+ioUtctMS0tTVVVVR40aZXUOS2eeO+lm6Y7j5eVVJX8P7O3t1cARc25aDqjB+P+padl56q8JZ0p8/J2f96uqqhZr4GC5tZ26pkx/94S4XcmQt/hbZOUWcDw1i7wCMyaDjlAvJ5zsyj8J/c8//6RRo0Zcvnz5by1QbllVaylfczOenp7awpmqUL9+fXr37s25c+c4cOAAycnJnDx5stT9hgwZQvfu3Wnbti3e3t64ublhNpt59NFH+eyzz6rseq/l4ODAlStXUFWVunXrsnnzZm24unHjxuzZs4eJEyfi5OTEzp07iYuLsyoCfi29Xq9lIS3bXD/vztvbm6ysLHJycpg+fTrTp0/nxIkTuLu7M2XKFIYPH06TJk3YvXu3tk9ycjKhoaH06tWLxYsXM3PmTN5++22tiPkjjzwCwOnTpzGZTFZVCYxGI126dGHLli0YjUZtugHAokWLiI2NZcSIEZw6dYo1a9ZYFay37P/444/z0UcfceXKFapVq4bZbObkyZNaMesHHniAQ4cOac+1bdu2rF+/XjvG448/zvz583F2diY0NJS9e/cSHBzMsmXLaNGiRZUWAr9TKSYHqo/69qYjItMfacL9jQLo9fFmq4U5FqUNeSvA3gldK/R3UIjbwt8c0ApRaevWrfvbWidaMlkjR45UAXXq1KlqtWrV1Af7PKJ6hzdR3cIaq0bfGiX2H7+2LaEtb76+vmpubq565MgRdcCAAaqbm5vV42FhYWq/fv1uWpD6VvQaLstNURS1evXqN8w2Xp+N6tWrl7ps2TL18uXLqqqq6syZM1WdTqc9n5CQEDUlJUWdNWuW2qVLlxIL2wcEBKjvv/++mpKSonbq1EkFihUs9/X1VY1Go1Um2lKEvDyvncFgUBs3bqzOnTvXqtc5FGWNX3rpJdVoNKpeXl7qnDlztNaOer1ea1G4ePHiYr8TkZGR2nGaNWtWrGXkxIkTtccbNmyoFhQUqD/88MPf/vOu6M3Ozk7t3bu3+vrrr6s6nU7LQNvq+E5BdW6anfxo9WFVVVX1zbiEG25TWobS0m5WiDuVzKEUd7x27doxderU0jesArVq1cLV1ZXExETaPxjLvL3ZODwymd9rDcSpzzu4P/IugU/MJPil76j21Bx8uz2L0as6QKl1Fyvq/Pnz2NvbU6tWLRYuXIher2fo0KEcPHgQf39/jh07RpMmTbTFJL/99ht+fn5Wx1Bvk4ELVVU5efIkmZmZ6PV67r//fl5//XWWLVvG/v37tZXUEyZMwN7enh9++IGVK1fi4uLCI488wsiRI3FxcSEhIYFRo0aRnJxMVFQUw4YNY/ny5cycOVOrYQhFGcyzZ88yevRofHx8tJXdDzzwAKdOneLKlSvExsaSkpJCfn4+WVlZ2r6WbGJ5XruCggL++OMPnnjiCS3D2b59e5KTkzl16hRpaWnk5+czffp0hg0bxpkzZ1i8eDFOTk5asfg5c+Zw4sTV+XdDhgxh586dNGzYkK5du2olg8aOHQsUlVayzIc1Go0kJCRgb29Pr169KvIjui3k5uayZs0a3n33XQwGA3379rXp71d+4Y1/pi/cG87zHcOZsvwg87cmV+o8eTas3SvErSZD3uKuoKoqDz/8MEuXLr1liwksw19DnhvNT+ddcKjRrNR+voqqoioKLll/cnD+OArSzt1wW1tc3+TJk3nllVe0+9LT07X6i6GhoaSmphbr7nI769evH/Pnz+fixYvUrl2bjIwMFi5cSP/+/blw4QLNmzcnOTkZOzs7cnNzadKkCZs3b9aCxqeffppPPvmE2rVr4+joyO+//46dnR3Tp09n9erVLFmyhNdee43mzZuzaNEitm3bVqbpArZmMpn47LPPGDx4MP7+/pw6dUp7bPPmzcTExODp6YmPjw8HDx4EICoqimrVqvHdd98RERHBnj170Ol0bNiwgb59+5KSkqJ1jrm+9JC4OaNvDQKfmFns/hfuDWdUp9pMX3WYj1Yn3vQYpQ15A/w8MpqIQDebXLMQt5oElOKukZGRQWRkJMeOHavSD0oHBwdycnIwGAzY1++IR+cRKHo9iq7sc59UcyE6VHI2zuP8tqU2zwi2aNGCvXv3kpOTw4ABAwgODmb58uUcOHDAao6nh4cH9957L3379uWdd95h7969Nr0OWwoJCSE5OVkLDrOzs4sVVN+6dSvR0dGYzWbs7OxISEggPDxce9xsNmvFvQHuu+8+lixZgqOjI2azmWrVqnHu3DmtPufZs2fp3bt3mWpQVpWePXsSFxcHFD1nPz8/cnJySExMpEaNGuzatYsRI0ZobTBNJhOrV68mKiqKX375ha+++opNmzZZBcY6nY6IiAhatWrF2rVrtVJRd7qwsDA+/vhjIiIiiIiI0LK4leXk7onXiHlWcyhHdqzFy53rMGNNIh+sLL3ersyhFHc7CSjFXeXgwYNERkaSk5OjBWn+/v6cPXvWpueJjY1l9Vkjjq36aSVqysuyn+vx9SR8Y9sh++rVq+Pi4sL+/fu1+/R6PcHBwURHR9O9e3eGDx9ORkYGffv2ZcWKFTb78K1K9erV48CBA0BRUfPt27cTGBgIFNXRfOmll9DpdPTr14+vv/4avV7PwoUL6devn1X7R0sGs2XLlmzdulUrTWSpz+ng4EBERATbt2//257rtXQ6HVFRUaSlpZGQkMDs2bMZNGgQ58+f5/z580ydOpVvv/221HaDBoNBKyl0t/L39y+xRmdlODo64j3kvyguPgAMi67BGz3qs+7Q+RIzk7tPXgbA08nEPTWKFpV1qudHn2ZBvLE0gdSsPC5m5bE96erivBAvR9aP7mCzaxbiVpOAUtx1vv/+e/r06QMU9Z4+c+YMJ06csFkWsFevXqxKysHzvudscjwAzyO/snvxf212PCiadA8qSgAAHiZJREFUHxcaGkp+fj7Hjx/H3d2dbdu2UadOHaBoFXJ4eHipq9JvR4GBgZw+fRq9Xs9LL73E4cOHiYuLw8PDg61bt1KnTh22bNlCp06dyMnJITg4mBMnTqDT6Rg9ejTvvfceffr0YenSpVaroHft2sVDDz30twxzVzWDwYCDgwMmkwmz2VxijVBxY81HTCbVoz5mFL55shWt/qqtW5LQsT8D0KqGJ98Mb13iNtuOpRI7ZxtQVIdy4D0hTOgZYfsLF+IWkYBS3JXGjBnD1KlTefXVV5k8ebLNjhsSEsKfl69QbfgsHO3tef7e2tQPdCUiwBUvZzs+XHWYD6/LWBx/r8cNj3f0fCYdP1gHhXnkfv8m547tv+G25TV8+HCmTp2Kq6srH374IaNGjUKn0/HYY4+h0+k4cOAAO3bsuG0W4FSWo6Mjw4YNo02bNrRt2xZ/f3+mTZvG6NGjgaKpCnv37iUsLEzbp1u3bvzvf/+jWbNmZGdna/MR70T16tWjY8eOPPLII9SqVYuxY8cyf/587XEvLy/Gjx/Ps88+S1paGkFBQXfkl4myaNCgAStWrNCy15WhKApfffUVkR160PlD27RyLIl0yhF3OgkoxV2psLCQhIQEvv76a6ZMmWL1mF6vx2g0YjAYtJvRaLS6mUwmjEYjdnZ2mEwmzp07R3JyMtnZ2VQfOBkloC7VPZ355fkYDpxJ59iFLB5tGVxiQNm0unux62tS3Z3xD0Tw8bojTFl+CNVcSG7yHlK+G2/zepqW4fi77Vfd19eX8+fPl2lbS8tERVHw8fFBVVXy8vLIycm5I+suWt6z19apDA0NZciQITzzzDN06dKF3bt3U7NmTTZs2MCkSZOYM2cOV65cwcXFBV9fX44ePVql12jp0e7u7s7ly5er9FzX0+l0dOjQgdWrV1fqOAaDgbi4OLp37w7AwM+2s+VYarnayJZGr1OICvOSXt7ijicBpbirqapKWlqaFiAaDIZKtWtctmEHI38tvjLbw9HI7je7lBhQlmRqn0b0aRZEhw/WkZx6NUv055ynKEg9dZM9y6+0eXXizn2N3N3d+eKLL5g5cyYbN260Co6bNm3Ktm3bMJlMQNGCpGHDhvH5559X6TVZivy3adNGa61pYXmdry8wfzvS6XQsXrzYqpzSyYvZdJq+nlwblvexM+hYNaod1T0dS99YiNuY1KEUdzVFUXB3d8fR0RGj0Vjp3t87LzuU2o+8NE4mPd0bBrA96aJVMKmaC3Fp2r1Sx76Ws7Oz9u8hQ4bw/fff069fP9zdi2dM71Rubm6MHDmSadOm8dJLL2nBE0BwcDBHjhzRFqHs37+fdu3aWe2v1xeVeLoTg0mAzp078+CDD7Jq1Spmz56tvb8VRWH37t04OjrSunVrvvzySx588MEqDyYt5wa0YFIx2mP0rYEpoDZG3xro7RxxdXUFoG7dulV6Lf3796/QfpZh7utrc1b3dOTfNp7n+FbPCAkmxV1B6hMIUQ5rD52v9HDXA40DcbIz8M2OE1b3Kzo9DmHNucT/Ver4Fvn5+XTr1o1169bx+eefM2/ePFxdXW/58GNVSktL44cffiAsLIwNGzZgMBj497//zf79+1m0aBHh4eEMHToUNzc3Zs2aRXZ2Ng4ODtjZ2XH58mUaNGiAh4cH69at+7ufSoV89913BAcH065dOxYuXIiTkxNr166ladOmzJo1i48//pht27axbVvR4g9nZ2eCgoKqdK5ofn4+Rq/quDTrgVN4SxQXH+svcqqKPucSNXPPYEjail1SEoGBgSQlJdn8Wq79glFWiqLwxRdf0K9fvxIfj20RzIXMXN5fUXqpoNK80qUO/VoEV/o4QtwOZMhbiDLKzC2g4YTllPQLU54h7x+ejiLMx5mWE1cVGzpTVZWTHzyMmm/bLjp36pBueURHRxMXF6f1/t66dSudO3fWutk4OTnxxhtvMGbMGAAee+wxFi1a9Lddr615eHiwcuVKIiMjAUhKSqJHjx4cOHAAo9GIq6ur1o2nqjSL6cypwJiyFflHRUUhyJBB/Mcv4aYvICUlpUqvryxmz57N8OHDS93um/gTjP9xHwVmtVxfMvU6BYNO4a2eERJMiruKDHkLUUbJqVklBpPlEe7rTNNgD5b+/meJ87AURcHgEVDJs1z166+/oqoqZrOZDh3u7hp3GRkZnDp1itTUVB5++GFiYmLIysrC2dkZnU5HVlYWv/zyC+np6eh0Oj788EOcnJz+7su2mUuXLtG8eXPs7Ozw8vIiLCyMAwcO0LdvXzIzM7lw4QItW7asknM3adKE2t2GkNrqGRxCGgPcNJgEUCnKWp7KcyRg6H8x1m1fJdfWrVu3Mm/70UcflSmYhKJM5apR7Yj6q3xQaVNhLI9HhXmxalQ7CSbFXUcCSiHKyBZ9dvu1KOrjvSj+xnUOFb2x0uex6NatG25ubsTGxrJ27VqbHbckJc1PDQ0NrdJzXuuPP/6gcePGeHt7s3jxYoKCgli8eDEZGRmkpKQQHR3Nxo0b8fb2pmXLlgQEBFj14r4bxMTEUFBQwMWLVwtmW3p/GwwGfvvtN5uf88knn+SEcz1yG/dB1RmglECyGJ0eVWfE2OZxXFs/YvPrs7e3x97evtTtJk+ezPPPP1+uY1f3dGTB0HtY+WJbBt4TQoiXI9f/FigUFS0feE8Iq0a1ZcHQe2TOpLgryRxKIcrIZKjc9y+jXqFXk2rsOXWZ/Wdu3JVGLcyv1Hmul56efkuGdq8dUreU6QkKCuL48eNERkayc+fOKr+Ga+l0OozGouDcZDLRtm1bDh48yIULF4iPj7+l13KrbNy4scT7bdk15lpt2rTh6+3JeHUvCsQquujNsp9Hu0HUCPDij+9n2ewaL126xOLFi7n//vtvuM2ECRO0qRAVEe7nwoSeEUwggqzcAo6nZpFXYMZk0BHq5STtFMU/gmQohSijUC+nYtmH8uhUzw8vZzu+3XHj7KSqqhRcOlOJs1w1bNgwTp48yddff22T45WVYrRH7x2CKaA22w//iWK014JJy6rqqhIREcH58+fp3bs3ycnJPPjggxgMBlxcXJg4cSKZmZm0adOmSq/h7xYaGsprr73G0qVLWbFiBY0bN66S87i4uLB97xG8uj5tu/m5qsrFGp1wCwwrfdsyWrdunTavtiSvvvoq48aNs9n5nOwMRAS60TTYg4hANwkmxT+GvNOFKCMnOwPBno4kX7xa6qd9bR8cTHqc//rQqOXrTLcG/kDRivAr+VeHyfs1r05OXiFxv5++4Tn02RdttiBn7ty5JCUl8eyzz9rkeNdzcnLiypUrODk5Ed68LSdMITjXbkmhg6dVpkpVVQounyXnaDyZu3+lMLXq2hru37+fTp06cfLkSS3IsdQ7tLOzY/DgwVov8FvBy8uL1NRULWN7Kxw/fpxJkyZZLcQKCgoiICDAppnZjIwMwp74NwWKjqia3vRqWo3IYA8C3O1Jzykg4c/LfLQ6kb2nrbPxEYGujO1Wj6bV3Sk0q2w5msq7v+zn5KUcUBR0egN2MYNhke2CvJUrV/LKK68wbdo0q5/DCy+8wHvvvVfpcmJCCFnlLUS5TPhxHwu2J2urOjeN6UCQR8nzoaInr+HU5aJOJgFu9mwa05Glv//Jy9/9UeL2ln6+LfTH6dOnD7m5uVXzJGzAycmJrKws3v1oNh9tOVemVb2oZlB0mE/v4+yyD8m3USb2duTi4kJGRgajR4/m/fffJyIign379gHc0uCyKguIuwSF4zlgOgD/fawZHo5Gfkk4Q+L5TDydTDwZE0bDam4MmvsbW48VrS6v6ePE0mfasP9MOrPWH8XOoOelTrVxczDSfeZGLmZdLcx+bZF/na5oMK2ir9u6deto164d9913HytWrEBVVZ566ik+/vhjCSaFsBEJKIUoh8RzGbekn++ePXu47777OHfuXIU/RLds2cLcuXP59NNPbXZ9lgClRo0aODXqTEb4faA3gFL22TOKaqawIJ829qf55t2RNru2azk7O9O1a1dGjBiBi4sLO3bsYNmyZaxYsaJKzncjitEeg0cAit6IWphPwaUzNi8JdSMnTpygevWiRWA7d+6kVatWNp1L6dFpOC7NeqDo9Hg5mUjNsm5h6WjSs350ew6dy2TAZ9sB+M+jTWkd5kW799eRmVt0LdXcHVj7cnvmbk5i0v/+qo+pmmnilE5suJ5Lly5x/Phxjh8/TmJiIsePH+fSpUvaeRRF0brzlPRxptfreeaZZ5gxYwZfffUV/fv3Z/DgwXz22WdaoCqEqDwZ8haiHML9XIip5V1l/Xxr+boA0KhRI3bt2kWPHj34/fffKxRUrlmzhuBg25YmKSwsJCIigjMejTDX64mqquXO8KiKDp3BxNbCGjR//HV2zp9o8xqZBoOBJUuWsGTJEpsetyyMXtVxbtoNh5rNMbgHlDD8f4Yrx3aSsesX8qtw+H/kyJGkpaWRkJBg8/qTXl5e2NdqqWWkrw8mAbLzCkk8n0mAW9EKa71O4d66fny/+5QWTAL8eTmHbcdS6RLhdzWgVHRccggkNrbkUldZWVkkJydrgebx48c5duwYR44cITk52ap4f2FhIUuWLGHGjBnExsbi5eVFp06dJJgUwsYkoBSinCb2akin6ettGlAadAoTezW0us/f359NmzYxcODACgVGb7zxhq0uz0qyvhpe0UUt7So8XPjXfikBrfGP6k1q/DKrPtSVZQkoKjtUWhrLPMWAgABydI749HiBPM8wbXi/pO2NHoGYIgNwiXyAUPsrbJ7+LIbcNK5csW3mMi4uzqbHu9aVAhUnN7+bbuNiZ6BBoBtbjhYFsyGejjiY9Bw4m1Fs2wNn04mu5Y2dQafVZz2Rmk1WbkGJi1qcnJyoX78+9evXL/HcmZmZWsCZlJSEh4cHUPR+6Nq1a7meqxCibOQrmhDldCv7+To4OPDtt9/y+uuvl+t4EyZMYNasWRVqPXcjer0eg5ufzVf1Glv3x+zoadOMUcOGDdm3bx+FhYUUFhayYcOGKstIjRo1igzfRngO+IBct78ywqVMAbAU9U7KNhI0YjbOjbvY/LoURWHcuHGsXbuWxYsX4+3tbbNj59m5lfpl4q0HG+Bg0vOftUWdo9wdi96LadnFvzikZeej0ym4OlytwaoCx1MrVifU2dmZiIgIevTowXPPPVfhnt5CiLKTDKUQFXAr+/nqdDreeecd6tSpwxNPPIHZbC414xYcHExwcLBNs35ms5laj/yLXEWHs52BkR3DqR/oSkSAK17OdjdsOxnbojr97wkh1MuRArPK4bMZfLLhGGsPnS/KVOr0eHcbydmvyxc030xCQgLt27cnMDAQDw8PMjMzbZ6l9PDwwNnZmcUHMvHqNpICVUXRly9jq+j0qKqKU4fheAaGcPiHmTa7PlVVCQoK4siRIyxZsoQLFy7Y7NilFd9/qXNtejWtxrgf9xZb5X3T7yLXPWaLZgJCiFtDAkohKui5DuF4O9vdsn6+AwcOJDQ0lJ49e5KRkXHD1budOnWif//+XL58WVusYAsNo7uQ5lUTBfBwNPFYy2AOnElnxf5zPNqy5OcwqlNtXrg3nIXbkpn8v4PYGXQ8HhXK54NbMGLhTpbvO4ui02MX0hiDV5C2qtcWUlJSqqw3tIuLC+np6fhF9San4YNA5Yf/c+t0xbNFEhfjf7LVZZa5jWB5OdrfOPP9wr3hPN8xnCnLDzJ/a7J2/+W/MpPuTsX3dXM0YjarpF+xLupf2WYCQohbR35bhaiEW93PNyYmhh07dlCjRo0bFgmPiYnBZDIRHx9vs2DSycmJi571Uc1FQeypyzk0emsF/eZsY8rygzfc75HmQfyWdJE34vay6cgFVh88z5Pzd5Cek0/fZtW07VRzIZ4tH7TJtVqud+zYsSxcuJB3332XOnXq2OzY8FcNxkYtya7Xw2bD/6qq4tR2CIZS5iaWh52dHTExMYwbN47WrVvb5Jgmk4nBfXtQLJ1IUTA5qlNtpq86zMfrjlo9lnwxm5y8Qur6uRTbr66/C8cvZln1t1coaiYghLgzSEApRCXd6n6+NWvWJD4+nrZt21plxRRFwWg0Eh0dDcDChQsr+IyKVklbGI1GTCYTZv96N68zWYKCQpWMXOusU26BmdyCQuvgQafHGNLEZjUBs7KycHd3JygoiO7du5OWlmaT414rrXY3+Gv4/7X76jL/iZbsfL0Tx9/rwYv3hpe4z+CoUFaPaseht+/jt7H38s6DDXC1L3qtlb+KenveZ7tC9Hl5eSxZsoThw4dz5kzF634qioJOp+PNN98kMzOT6VMmEeJpHeyN7FiLUZ1qM2NNIh+VMPWh0Kyy+uA5ukb442S6+j4KdLOnVZgXy/eetdo+2MtRuswIcQeR31YhbORW9vN1d3dn+fLlPPfcc/zf//2fdv8HH3xAx44dAbQahKXR64vm8ZnNZkwmEy1atKBt27ZERUXRunVrvLy8yMwtoOGE5SXkpG7u8y1J/KtbPR5pXp3/7T2DnVHPiLZhuNgb+XzLcevrcPMHgx3YqE7jq6++apPjXM/BwQGTTwgONZoBZR/+f717PZ5oU4M5G4+x6cgFwn2dGdW5No2C3Og9awsFZhV0ehxqNLPZ8L+qqvj5+VUqi6rT6QgJCeHrr7/mnnvu0e7vUMdXK/I/LLoGL3euw7pD51l78DxNq7tbHWP3yaJV99NXHSbu2WjmPt7ir8LmOkZ1rs2lrHzmbErSttfrFDrU9q3wNQshbj0JKIWoApZ+vlXJaDTyySefUK9ePV566SVUVaVdu3ba456eniV2SjEajeTnF2UNvb29adeuHdHR0URFRdGkSZMSV4Ynp2aVO5gEmLv5OFfyzbzdM4IpfRoBcCk7j6Hz4tmZfMlqW0VRMHgEkH8+qaRDlYteryc6Opr09HTS09M5evRo6TuVgaIouLq6kle7rdYZyDL8D+DhaCwxoPRztWNIVCjztx3Xai1uOnKB1Kw8ZsQ2pW9kEN/EF9WkVM2FuEXeT+qKT2xyza1bt6ZJkya4uroyadKkMu9n6egzYsQIpk6dipOTdUay/z3BfLH1OFDUpx6gfR1f2tcpHgiGjv0ZgKMpWcT+31Ze61aPj/s3o8CssvVoKsN/2WnVJafQrDKglW1rqAohqpYElELcwRRF4cUXXyQ8PJxly5YREXG1nNG6desoLCzUFuYoikK9evVo3749UVFRtGnThpCQkDINM1d0te3DkUGMv78+87Yms+7weUx6Hb2bVWPOoOY8tXAnGxKtVx7rDLYpc1RYWMj8+fMJDg7mjz/+oEmTJjY5rqqqnDt3jsCHmpdr+L9pdQ8Meh3rDlkvElp94BwA3Rr4awGlotNjF9rMJtcLEBsby8iRI1m+fHmZA0q9Xo+npycLFiy4Yd3Ga4v8x87ZVubr2Xs6XeucU+K5ryvyL4S4M0hAKcRdoEePHvTo0cPqvrp165Kfn09MTAxt2rThnnvuwdXVtULHr8hqW1d7A2/1bMA3O04y8dcD2v3rDqfwzZOtePehhsRMXWu1T2hwEIfPHLbJQhdLsGzr+pOKyQGDe0C59rG8ftcH5gVmFbNZpa6/9c/F4BGAYrS3SZtGZ2dnAFq1akV4eDiJicXnN1pYCrX37t2bTz75BE9Pz5se+1YV+RdC3P5kUY4Qd6kPP/yQ1atXM2HCBDp37lzhYBKKVtuWd7lMTR9nHEx69py6XOyxPafSqO7piOM1izMUYOe6/3HixAkGDhwIUOFg0NnZmV69enHvvfcSGRlZoWOURFEU3KrVLPfiocRzRd1hIkM8rO5vFuyBTqfg7mhd11FRFN6aPov+/ftrQ803WtVfGkv7TTc3N9q3b3/D7QwGA87Oznz11Vd8++23pQaTcGuL/Ashbm8SUAohSuVkZyC4nB/y59KLsmtNq3sUe6xpsDuXs/PIzrs6v9OyqjcoKIj58+ezc+dO2rRpA5S/xqPZbOb7779n5cqV5Zo3WBLLuQMDA3niiScY/MSwch/jwNkMth9LZXjbMLo38MfV3kCzYA/e7dWAgkJzicW+ezzwIAsXLuTChQvExcURGxurBZfXrsIvzYYNG7R/+/j43HC7mJgY9u/fz6OPPlr2J0ZR6azRXWqXa58bKa3IvxDi9iUBpRCiTDrU8bWqs9m+tg/dGvhrCzJq+TrTrYE/3Rr4Y2/UcTrtCr/uPcOjLYMZd399YsK9ubeuLx8/1owWoZ58Wsqq3mbNmrF+/XqWLl1KaGhouYLKsLAwbdi8sLCwQuWIdDodJpOJoUOHsm/fPv78808+/fRThj0xuNzHAnjmq13sTL7Ex/0j2TO+K18/eQ/L955l/5l0zqYXH9q2DJPb29vTs2dPq+CyX79+ZQ4ur61F+uyzz1K79tXgT6/XYzKZmDFjBqtWrSIoKKhCz+25DuFM6t0QO4Ou1Fqs19PrFOwMOib3bsizHWpV6PxCiL+fotqsKa8Q4m6WeC6Dzh9ezXZtGtOBII+Ss5bRk9dw6nIOdgYdg1qH0rtpNYI8HCgwqyRdyGLe1uPE/X7aap9Vo9recCFGXl4en3zyCePGjSMjI6PUNoozZ87kueeeA4oW0tjb25epDaVlZbO3tzcvvPACI0aMKJbVy8otoMENSih5OBrZ/WaXG7ahBPByMuHjYsefl3K4UlDIrjc68+ves4xZskfbRgH2Tuh601JTV65cYcWKFXz77bcsXbqUrKysEjsj7dq1i6ZNm2r/HzJkCPPmzQOgUaNGfPPNN9StW7eUV6ZsTl7M5l8/JLDxyAX0OuWmcystj8fU8mZir4YyzC3EHU4W5QghyuTaVb2FZpXoKWtL3Se3wMycjceYs/HYDbcpy6pek8nE888/z8CBA3nnnXeYMWMGwA07AWVmZmr/Tk1NLTWYtJRXqlevHq+88gqxsbHY2dmVuK1l+D/5YvZNj3kjqVl5pP5VImdwVCiOJgPzth632qYsRb0tmcuePXuWGFxantORI0esAsrGjRuj0+n417/+xZtvvonRePO+3OVhKfKfeC6DL7efYO3h85xIzbYKvpW/nl+H2r4MaBUsq7mFuEtIhlIIUWYnL2bTafp6qy43lWVn0LFqVLtyZaiOHj3KmDFj+P7774vV2nRycuLHH3/UCrynpKQQHBxMbm5usdXjln27d+/O6NGjad++fZmGxyf8uE8r6g1Fw/8OJj3Odgam9m3MT3tO83NCUWeatYfOcyXfTGyLokLzyanZuDoYaV/bh37NqzN1xSFmrb9aJ1OvUxh4TwgTKrjY5drg8tdff+WLL77ggQce0B7Py8sjNTWVgIDyrVSvqKou8i+EuD1IQCmEKJdv4k/w2vcJNjve5N4NK7wQY/PmzTz//PPs2rVLK3nTtGlTdu3aZbXdU089xdy5c7WC7pb5kUOGDOHFF1+0mldYFhUZ/n+0RXWeaFODah4OmFXYdzqNTzcmsfKvWpTXutnwvxBC3I7ka6IQolxiWwRzITOX91ccrvSxKruqt02bNsTHx7No0SJGjx7N6dOnSyyPlJmZqQWTfn5+jBo1iieffLJMpXFKUpHh/6/jT/L1X8XLb0SKegsh7lSSoRRCVMg38ScY/+M+CsxquQpb63UKBp3CWz0jbFoiJicnh08++YSwsDAefPBBq8cmTZrEDz/8wAsvvMDDDz9sk3mDt8vwvxBC3A4koBRCVNg/fVXv7TT8L4QQfycJKIUQlfZPXtX7n7WJNhv+lzqMQog7lQSUQgib+ieu6r3dhv+FEOJWk4BSCCFs4J8+/C+E+GeTgFIIIWzonzz8L4T455KAUgghqsg/cfhfCPHPJAGlEEIIIYSoFN3ffQFCCCGEEOLOJgGlEEIIIYSoFAkohRBCCCFEpUhAKYQQQgghKkUCSiGEEEIIUSkSUAohhBBCiEqRgFIIIYQQQlSKBJRCCCGEEKJSJKAUQgghhBCVIgGlEEIIIYSoFAkohRBCCCFEpUhAKYQQQgghKkUCSiGEEEIIUSkSUAohhBBCiEqRgFIIIYQQQlSKBJRCCCGEEKJSJKAUQgghhBCVIgGlEEIIIYSoFAkohRBCCCFEpUhAKYQQQgghKkUCSiGEEEIIUSkSUAohhBBCiEqRgFIIIYQQQlSKBJRCCCGEEKJSJKAUQgghhBCVIgGlEEIIIYSoFAkohRBCCCFEpUhAKYQQQgghKkUCSiGEEEIIUSkSUAohhBBCiEqRgFIIIYQQQlSKBJRCCCGEEKJSJKAUQgghhBCVIgGlEEIIIYSoFAkohRBCCCFEpUhAKYQQQgghKkUCSiGEEEIIUSn/DwHkEnJdsbrjAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# access and visualize the device topology\n", + "print(ionq_device.properties.paradigm.connectivity)\n", + "nx.draw_kamada_kawai(ionq_device.topology_graph, with_labels=True, font_color=\"white\", arrows=True, arrowsize=30)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "With this information, you can write a circuit to run verbatim on an IonQ device. IonQ currently only supports verbatim compilation for the entire circuit, so every instruction in the circuit will need to be enclosed in a verbatim box. In other words, you cannot have any gates outside of the verbatim box. As well, note that IonQ native gates cannot be used outside of a verbatim box. To learn more about IonQ native gates and the best practice of using them, see the [Amazon Braket Developer Guide](https://docs.aws.amazon.com/braket/latest/developerguide/braket-devices.html?tag=local002-20#braket-qpu-partner-ionq) and [IonQ's documentation page](https://ionq.com/docs/getting-started-with-native-gates). " + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : | 0 | 1 | 2 | 3 |\n", + " \n", + "q0 : -StartVerbatim-GPi(3.13)-MS(0.10, 0.20, 0.30)-EndVerbatim-\n", + " | | | \n", + "q1 : -*************-----------MS(0.10, 0.20, 0.30)-***********-\n", + "\n", + "T : | 0 | 1 | 2 | 3 |\n" + ] + } + ], + "source": [ + "circ = Circuit().gpi(0,pi).ms(0, 1, 0.1, 0.2, 0.3)\n", + "verbatim_circ = Circuit().add_verbatim_box(circ)\n", + "print(verbatim_circ)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Counter({'10': 9, '01': 1})\n" + ] + } + ], + "source": [ + "task = ionq_device.run(verbatim_circ, shots=10)\n", + "print(task.result().measurement_counts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Conclusion \n", + "This notebook introduced the basic functionality of verbatim compilation of Amazon Braket, that allows you to run circuits or subcircuits to be executed exactly as defined without any compiler modifications. You can find further information in the [Amazon Braket documentation](https://docs.aws.amazon.com/braket/). " + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Task Summary\n", + "{'arn:aws:braket:us-west-1::device/qpu/rigetti/Aspen-M-3': {'shots': 5000, 'tasks': {'COMPLETED': 5}}, 'arn:aws:braket:us-east-1::device/qpu/ionq/Harmony': {'shots': 10, 'tasks': {'COMPLETED': 1}}}\n", + "Note: Charges shown are estimates based on your Amazon Braket simulator and quantum processing unit (QPU) task usage. Estimated charges shown may differ from your actual charges. Estimated charges do not factor in any discounts or credits, and you may experience additional charges based on your use of other services such as Amazon Elastic Compute Cloud (Amazon EC2).\n", + "Estimated cost to run this example: 3.650 USD\n" + ] + } + ], + "source": [ + "print(\"Task Summary\")\n", + "print(t.quantum_tasks_statistics())\n", + "print('Note: Charges shown are estimates based on your Amazon Braket simulator and quantum processing unit (QPU) task usage. Estimated charges shown may differ from your actual charges. Estimated charges do not factor in any discounts or credits, and you may experience additional charges based on your use of other services such as Amazon Elastic Compute Cloud (Amazon EC2).')\n", + "print(f\"Estimated cost to run this example: {t.qpu_tasks_cost() + t.simulator_tasks_cost():.3f} USD\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "conda_braket", + "language": "python", + "name": "conda_braket" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.13" + }, + "vscode": { + "interpreter": { + "hash": "590fab68195cf107911461461f81d5c472d3d6127f579badfcfad30f03e5cab2" + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/modules/1_Continue_Exploring/A_qtm_hw/pulse_control/1_Bringup_experiments.ipynb b/modules/1_Continue_Exploring/A_qtm_hw/pulse_control/1_Bringup_experiments.ipynb new file mode 100644 index 000000000..6e5f187be --- /dev/null +++ b/modules/1_Continue_Exploring/A_qtm_hw/pulse_control/1_Bringup_experiments.ipynb @@ -0,0 +1,603 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Bringup Experiments\n", + "In this tutorial notebook, we will review common pulse sequences that are used as first steps during the bring up of more complex pulse experiments:\n", + "- measure the resonance frequency of a qubit\n", + "- calibrate a $\\pi$/2 pulse via Rabi spectroscopy\n", + "- measure the $T^*_2$ coherence time with a Ramsey sequence\n", + "\n", + "You can use either Rigetti's Aspen M-3 or OQC's Lucy device to run this notebook." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# Use Braket SDK Cost Tracking to estimate the cost to run this example\n", + "from braket.tracking import Tracker\n", + "t = Tracker().start()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's first import some packages to construct pulse sequences and analyze results." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "\n", + "from braket.aws import AwsDevice\n", + "from braket.pulse import PulseSequence, GaussianWaveform, ConstantWaveform\n", + "from braket.parametric import FreeParameter\n", + "\n", + "## Imports for function fitting\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import scipy.optimize\n", + "from scipy.fft import fft, fftfreq" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You will be able to switch from one device to the other by setting the `device_name` to `aspen` or `lucy`" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "device_name = \"aspen\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will use the following configuration to control the different parameters for our experiments across the available devices" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "experiment_configuration = {\n", + " \"aspen\": {\n", + " \"device_arn\": \"arn:aws:braket:us-west-1::device/qpu/rigetti/Aspen-M-3\",\n", + " \"qubit\": 4,\n", + " \"drive_frame\": \"q4_rf_frame\",\n", + " \"readout_frame\": \"q4_ro_rx_frame\",\n", + " \"spectroscopy_wf\": GaussianWaveform(100e-9, 25e-9, 0.1, True),\n", + " \"rabi_wf\": GaussianWaveform(FreeParameter(\"length\"), FreeParameter(\"length\") * 0.25, 0.2, True)\n", + " },\n", + " \"lucy\": {\n", + " \"device_arn\": \"arn:aws:braket:eu-west-2::device/qpu/oqc/Lucy\",\n", + " \"qubit\": 0,\n", + " \"drive_frame\": \"q0_drive\",\n", + " \"readout_frame\": \"r0_measure\",\n", + " \"spectroscopy_wf\": ConstantWaveform(25e-9, 0.03),\n", + " \"rabi_wf\": ConstantWaveform(FreeParameter(\"length\"), 0.07)\n", + " }\n", + "}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here we will first instantiate a device that will provide access to some properties such as frames" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "device = AwsDevice(experiment_configuration[device_name][\"device_arn\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "With both devices, frames are predefined in the device capabilities and can be loaded with the Amazon Braket SDK. In this notebook, we will drive a single qubit, which only requires the frames:\n", + "- `q4_rf_frame` to drive the qubit and `q4_ro_rx_frame` to measure it. (Rigetti Aspen M-3)\n", + "- `q0_drive` to drive the qubit and `r0_measure` to measure it. (OQC Lucy) \n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "qubit = experiment_configuration[device_name][\"qubit\"]\n", + "drive_frame = device.frames[experiment_configuration[device_name][\"drive_frame\"]]\n", + "readout_frame = device.frames[experiment_configuration[device_name][\"readout_frame\"]]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Qubit spectropscopy" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Qubit spectroscopy is one of the first step to charaterize a qubit. While this information is already present in the frame properties, we will build a pulse sequence to estimate the transition frequency between the ground state and the first excited state.\n", + "\n", + "For simplicity, we will use Gaussian or Constant waveforms as envelopes of the different pulses. The Gaussian waveforms are parametrized by their amplitude $A$ and the length $d$ of their pulse window. They are positioned at the center of the window ($d$/2) and their width (1/e) will be set to be a quarter of the window length ($d$/4). The Constant waveforms have a complex amplitude $iq$ . \n", + "\n", + "For qubit spectroscopy, while a prior knowledge of the systems helps choosing these parameters to increase the signal-to-noise ratio, it is not necessary to tune them precisely. \n", + "\n", + "With Aspen, we will use a pulse length of 100ns, the Gaussian has a width of 25ns and its amplitude is 0.1. With Lucy, We will use a pulse length of 25ns and an amplitude is 0.03. The amplitude unit should be considered as arbitrary, the maximum amplitude can be retrieved from the device capabilities, please see the documentation for more details." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "waveform = experiment_configuration[device_name][\"spectroscopy_wf\"]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "The pulse sequence below contains three instructions:\n", + "-\tThe first sets the frequency of the microwave signal to a chosen frequency among the range of frequency to probe\n", + "-\tThe second plays the waveform.\n", + "-\tThe third instruction is a readout instruction. Measurements are realized via the predefined function capture_v0() that executes a projective measurement of the qubit and returns the projected eigenstate.\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "frequency = FreeParameter(\"frequency\")\n", + "\n", + "pulse_sequence = ( \n", + " PulseSequence()\n", + " .set_frequency(drive_frame, frequency)\n", + " .play(drive_frame, waveform)\n", + " .capture_v0(readout_frame)\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will sweep the frequency over a range that is centered around the expected transition frequency. For that, we use the FreeParameter object that we defined in the previous cell and create a new pulse sequence by binding the FreeParameter to each tested frequency.\n", + "\n", + "We then run our batch of pulse sequence with `device.run_batch`, which returns a batch of quantum tasks." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "span = 75e6\n", + "N_steps = 25\n", + "N_shots = 100\n", + "frequencies = np.linspace(drive_frame.frequency-span/2, drive_frame.frequency+span/2, N_steps)\n", + "\n", + "qubit_spectroscopy_sequences = [pulse_sequence(frequency=frequency) for frequency in frequencies]\n", + "batch = device.run_batch(qubit_spectroscopy_sequences, shots=N_shots)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "After executing this batch of tasks, we are ready to analyze the results. We will use a simple Gaussian fit function to extract the transition frequency." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "def resonance_fit(x, A, A0, w, x0):\n", + " return A0-A*np.exp(-(x-x0)**2/w**2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The result format is the same as with circuits, which means that `result()` will return a task result object that includes a counter with the number of occurences for each eigenstate of the measurement basis. Since we have been using a batch, we can quickly construct the probability to measure the state $|0\\rangle$. \n", + "\n", + "The data are then plotted and fitted with the previously defined fit function." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Expected resonance frequency: 4728.33 GHz\n", + "Measured resonance frequency: 4726.44 GHz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAABdeElEQVR4nO3deXhU9dn/8ffMkIUEEgghCxi2sEaWsAgGN7BRUIrbo1IrAlHxB5VHbB5bS1vBrUVrBWpLwVpRqq3SKnUpNIgIChpACKgIIntYkkAIZIMszJzfH8MMhCSQZZIzy+d1XXOdkzPnnLm/WWbufFeLYRgGIiIiIn7CanYAIiIiIp6k5EZERET8ipIbERER8StKbkRERMSvKLkRERERv6LkRkRERPyKkhsRERHxKy3MDqC5ORwOjhw5QuvWrbFYLGaHIyIiInVgGAbFxcV06NABq/XidTMBl9wcOXKEhIQEs8MQERGRBjh48CCXXXbZRc8JuOSmdevWgPObExERYXI0IiIiUhdFRUUkJCS4P8cvJuCSG1dTVEREhJIbERERH1OXLiXqUCwiIiJ+RcmNiIiI+BUlNyIiIuJXlNyIiIiIX1FyIyIiIn5FyY2IiIj4FSU3IiIi4leU3IiIiIhfUXIjIiIifkXJjYiIiPgVU5Obzz77jLFjx9KhQwcsFgvvvffeJa9Zs2YNgwYNIiQkhO7du/P66683eZwiIiLiO0xNbkpLSxkwYADz58+v0/n79u1jzJgxjBw5kq1bt/Loo4/y4IMPsmLFiiaOVERERHyFqQtn3nTTTdx00011Pn/hwoV07dqVF198EYA+ffqwbt065s6dy6hRo5oqTBEREfEhPrUqeGZmJqmpqVWOjRo1ikcffbTWa8rLyykvL3d/XVRU1FTh+TW7w2DjvgKOFpcR0zqUoV2jsFkvvTKriIh4N398f/ep5CY3N5fY2Ngqx2JjYykqKuL06dO0bNmy2jWzZ8/mqaeeaq4Q/VLGthye+nA7OYVl7mPxkaHMGpvE6L7xJkYmcs6pijMkzXQ2UW9/ehRhwT719iZiCn99f/f70VIzZsygsLDQ/Th48KDZIfmUjG05TH0zq8ovPkBuYRlT38wiY1uOSZGJiEhj+PP7u08lN3FxceTl5VU5lpeXR0RERI21NgAhISFERERUeUjd2B0GT324HaOG51zHnvpwO3ZHTWeIiIi38vf3d5+qt01JSWH58uVVjq1cuZKUlBSTIjrHG9ssGxvTxn0F1TL68xlATmEZG/cVkJLYrtni8nb+Xj4RX+DJv0N//Jtuqvd3b2FqclNSUsLu3bvdX+/bt4+tW7cSFRVFp06dmDFjBocPH+Zvf/sbAFOmTOFPf/oTP//5z7n//vv55JNP+Oc//8myZcvMKgLgnW2WnojpaHHtv/gNOc9TcXkzfy+fiC/w5N+hv/5NN8X7uzcxtVlq06ZNDBw4kIEDBwKQnp7OwIEDmTlzJgA5OTlkZ2e7z+/atSvLli1j5cqVDBgwgBdffJG//vWvpg4D98Y2S0/FFNM61KPneeP3ypP8vXwivsCTf4f+/Dft6fd3b2NqcjNixAgMw6j2cM06/Prrr7NmzZpq12zZsoXy8nL27NnDpEmTmj1uF29ss/RkTEO7RhEfGUptla8WnP/BDO0a1axxeSN/L5+IL/Dk36G//0178v3dG/lUh2JvU582S1+MyWa1MGtsEkC1PwDX17PGJtWp7bmpvld2h0HmnuO8v/UwmXuOm/ZG442/CyK18Za/G0/z5N+hv/9Ne/L9/Xze8rvlUx2KvY03tll6OqbRfeNZMH5QtTbnOPXfqcIbfxdEauJNfzee5sm/w0D4m/bU+7uLN/1uWQzD8I+UvY6KioqIjIyksLCw0cPCM/cc555X1gNwuWU/fw6aV+V542z+GxcZSmgLK1jOz4AvyIYtteXONT1f+3OnKuwcPHG6xjic+06dosIID25x8dc9b9cASiscnLE7aGGzEh5sw3LRa6s+V1JuZ/exklrL4Iqxe0wrWocG1X7fs/c+caqCPcdKq1QZG1g4Y9iopAW9L4smtm0E2IKhRbBzawsBWxAEh0NIBIRGQGjk2f1IaBUD4TFgq3/Of/7vwsW8NflKnxx54As0id+lufqQXPim7/oLWzB+UN0/hCpK4VQBnD4Bp89uTxVAeTGcKYPK0+dty+HM2a29EgwHGHZwuLZ259ZwnN0/uz0/0mofVRd8bRicrrRz5ORpLmS54Nz4yBBaBtlqubdzv6zSQV7RpROX2IhQQoN8uxHEAMorHdgdBjarhZAga63NVbU5VWHnWHE5+UTyPxXnJs5t0O9WLerz+a2//kZwtVnmFpYRTCWdrUdrPrG4+WIKA3rV5e/sZP3uawFa1T8ct1ZAcl3iyq/b/doCQy52v5yzj3qzQHh7iIiHqG7QrrvzEd0TYvs6E6UanP+7UNN/CxacSa6vtl+L77tUHxILzj4kNyTFnWuKKC+Gozsg71s49h2cOACFh6AwG8oKmzH6umkJJNblfaYO78mhQOe63Kvk0qd4OwvO8jZGGM7vV4hRWeV4rb9bTUzJTSO42iynvpnFLuMybi8/P1t1voX8fHQvruwWXeN/Bue+vPR/JPW5duO+48z9eFe1eK1nr53+gx7OD9mLve4lY7rw7pe+dvOBAuav3oMFo8rlrrimjkhkcKe2l3hdg+9yi5mzcmcN7cQGQZwhiDMEW87w0FWX0a1NENjP/rd4phzsFc7/OMuLoKzI+QZdXgSnT0LpMed/j6VHnY+cr6q+gC0E4gfAZVdAl6ug20gIDnM+dd7vguWCqBvTfi3iKXXpQ3KmMJc9nyym5+ktsH8dHN9d6/kAWIMgLApaRkHLts79kAgICoUWLc9uzz6CWkKLEOc1FitYbedtbee+ttjAenZrqSG7uEQt94Z9Bbz40ffuMhkXnPV/o86+J1/kHq7XWL83n99l7Ky1+O739wD3zeFCZr2/DYCKGtIKM+bMUXLTSOe3WW4pPDdLsqud8coGVMM1dsKooV1hYkztbZ9DTWpXH9wT7o6vPa7BdYxrZ/lhPnJcukkxpUMy3ZI71jk+u93Olh27KM4/RDwF9AzKw1qwx/kGn/sNlJ2EQxudj/XznW/eiddD75uh9w893n4tcqHGvDfU1jckmkLG2r7gNtvnDLDuhXUXnNAqDmKTICbJWZsZmQBtEiCiI4S0xm7gVRPcDesC97ev/X2mPu/JVybAQ+0GeuRenuZNEwvuPX6YLKPikuc1Z/8kJTceMLpvPDckxXnkF81THbI8GZMneSKuppifofr3PZz4yCRmjb2T0WPjnbVRBXvh0JdwcAPs+thZNb9zmfOx7DG4/HZGXzmFGx6/3uu+7+L7GvvecP7fgwUHI61buc+2kmus39DC4gDAYVg4HdWH8F4joes1cNlQCK/9P21v6kB6Pk++/3nje6m3fd+9cc4cdSj2Ih7t7OfH7A6Dq5//5JL9W9Y9fn2d3oAa9H03DGdtzs7l8O17cGzHuee6p8LIX0HHQXUvlDSaP3co9sR7g91hcPVzqxhQspZHW7xLb+u5RYS3OLrznv0qvgy/jg9/cUfT/d1Io3nj993T78m1qc/nt2938fYj/j5hlCd5cn6GBn/fLRaI7w8jfgE/yYQHVkLfO519BHZ/DK+MhHcnQ3FufYomUo2n3htseV+zvNUzLAyeR2/rQYqNlrx8Zgwjy1/kjoqn+Zt9FI/cMrxp/26kUbz1+95Uc+Y0hpIbL+HvE0Z5mqt/S1xk1WrOuMjQev3n4pHvu8UCCUPhzlfhfzdD/3HO49/8E+YPhS1/r6GTtUjdNPp39Ew5rJwFfxlJ24KtnLG1ZJHtLq4qf4nZZ+5lnxFvzt9NDbxlAjhv5c2fE556T/YU/6m39XGBMGGUp3miLdzj3/eobnDHX2DYFPjPo84RV+//BPZ8AmPnQUjrOscmAo38HS3YC/9Kg5ytzq+TbqPF6OeY2CqOPt70d4P39SPxRt7+OeFN/ZOU3HgJb+yQ5QtsVkujhhY22fe94yB48BP44g/wyW9g2zuQ+zX8eIkzARKpowb/ju5ZDf+cCOWFzqHat/4Jeo8BwAZe9XdTWz8S1wKV6r/j5AufE419T/YUNUt5CX9fxMxbNen33dYCrvk/SFsOrTtA/vfw1xvg0ObGhCwBpkG/o1lvwN/vdCY2CcNgyjp3YmNaTLXw1n4k3kifE3Wn5MZLeGOHrEDQLN/3TlfC5E8grj+cyofFY+FAZsPvJwGl3r+jG1+BD6aB4wz0uxsmfgiRdZ/vqUliughv7kfiaY3tU6TPibpTcuNFvK1DVqBolu97RLyzBqfrdVBZ6vyvOntD4+8rAaHOv6MbX4Hljzn3h/+vs/9XixBzY7oEb+9H4ikZ23K4+vlPuOeV9Ux/eyv3vLKeq5//hIxt9VsnRp8TdaN5bryQN808GUia5ftecQreGgf7PnMu1vnAx9C+p2dfI0D58zw3Lhf9Hf32PfjXJMCAqx6F1CdrWKqgmWOqg0BYdLYp5qYJxM8JLZzp47ylQ1agaZbve3AY3LME/narcxmHv9/pbLIK1/o0cmm1/o5mb4ClDwEGXPFgsyU2F42pjvx90dkGLVhaB/qcuDg1S4k0t+AwuOctaNsFTh6AJfeB/UyNp2reD7mk4lxYMt65QGzPm+Cm3zVbYuMJ/t6PJJD6FHkT1dyImCE8Gu59B165HrK/gNW/gdRZVU7RvB9ySfYz8M79zlXsY5KcE0labWZHVW/+vOhsoPQp8jZKbkTMEt0DbnnJ2U9i3RzofBX0SAU074fU0ZrZcOBzCG4Nd78BweFmR9Rg3jQBnCf5wtw0/kjNUiJmuvx2uGKyc//9h+H0Cc37IXVzaLMzKQZnkhzd3dx4PMDVj+TW5I6kJLbz+cQGNDeNWZTciJjtxmegXXcoyYWMX6qNXi6tsgzemwKGA/rdBX3vMDsiqYW/9ynyVkpuRMwW1BJu/TNgga/+Abs/qtNlaqMPYJ+94JzxulWsswOxeDXNTdP81OdGxBt0GgZX/gTWzyd522yCeZoKgi56idroA9TxPfDFS879m38PYWrO8AX+2qfIW6nmRsRbjJwBrWJpWXyA6eEr1UYv1RkGZPwC7BWQ+APoM9bsiKQe/LFPkbdSciPiLUJaQ+pTAPw/lhLDCbXRS1W7VsKuj8AaBDc971Pz2Yg0JyU3It6k/zi47Apa2E/xr6TP1EYv5zgcsMqZ/HLlFOdUAiJSI/W5EfEmVivc8DS8dhOd9r/LuodnsPFkhNroBba9C3nbICQSrk43OxoRr6bkRsTbdB7u7E+xZxW2T58j5Y6XzY5IzGavdM5iDXDV/6oTscglqFlKxBtd/2vn9uslcGynubGI+b5eAif2QXh7GDbV7GhEvJ6SGxFv1HEQ9BoDGPD5S2ZHI2ZyOGDdPOf+8P+FkFamhiPiC0xPbubPn0+XLl0IDQ1l2LBhbNy4sdZzKysrefrpp0lMTCQ0NJQBAwaQkZHRjNGKNKOrf+rcfr0Eio6YG4uYZ+cyOL4LQiNhcJrZ0Yj4BFOTmyVLlpCens6sWbPIyspiwIABjBo1iqNHj9Z4/q9//Wtefvll/vjHP7J9+3amTJnC7bffzpYtW5o5cpFmkHAFdBoOjkpY/2ezoxEzGAasm+vcv2IyhEaYG4+IjzA1uZkzZw6TJ08mLS2NpKQkFi5cSFhYGIsWLarx/DfeeINf/vKX3HzzzXTr1o2pU6dy88038+KLL9b6GuXl5RQVFVV5iPiMqx91bje9DmWFZkYiZsheD4c3Q4tQGDbF7GhEfIZpyU1FRQWbN28mNTX1XDBWK6mpqWRmZtZ4TXl5OaGhVef9aNmyJevWrav1dWbPnk1kZKT7kZCQ4JkCiDSH7jdA+95QUQxfvW12NNLcNv7Fue1/N7Rqb24sIj7EtOQmPz8fu91ObGxsleOxsbHk5ubWeM2oUaOYM2cOu3btwuFwsHLlSpYuXUpOTk6trzNjxgwKCwvdj4MHD3q0HCJNymqFKx507n/5V2czhQSG4lzY8YFz/4rJ5sYi4mNM71BcH3/4wx/o0aMHvXv3Jjg4mGnTppGWlobVWnsxQkJCiIiIqPIQ8Sn9x0FwK+cq0PvXmh2NNJfNr4PjDHRKgfj+Zkcj4lNMS26io6Ox2Wzk5eVVOZ6Xl0dcXFyN17Rv35733nuP0tJSDhw4wHfffUerVq3o1q1bc4QsYo7QCGeCA87aG/F/9krY9Jpz31VzJyJ1ZlpyExwczODBg1m1apX7mMPhYNWqVaSkpFz02tDQUDp27MiZM2d49913ufXWW5s6XBFzuT7gdvwHivMufq74vt0fQ0muc9K+PreYHY2IzzG1WSo9PZ1XXnmFxYsXs2PHDqZOnUppaSlpac65HCZMmMCMGTPc52/YsIGlS5eyd+9e1q5dy+jRo3E4HPz85z83qwgizSM2CS67Agw7fPNPs6ORprblTee2/zhoEWxuLCI+yNS1pcaNG8exY8eYOXMmubm5JCcnk5GR4e5knJ2dXaU/TVlZGb/+9a/Zu3cvrVq14uabb+aNN96gTZs2JpVApBkl/xgOfQlb/wEp08CiBTT9Uskx+P7s5KTJ95obi4iPshhGYA2/KCoqIjIyksLCQnUuFt9y+iT8vifYy+GhT6FDstkReZVTFWdImrkCgO1PjyIs2EfXBc6cDyt+CR0GwUOrzY5GxGvU5/Pbp0ZLiQS0lm2g9xjn/tZ/mBqKNCHXz3agam1EGkrJjYgvcTVTfPMv54ga8S9Hd0DeNrAGQd//MTsaEZ+l5EbEl3QbAWHRcLoA9n1qdjTiaduWOrfdU6FlW3NjEfFhSm5EfImtBSSdHRr87b/NjUU8yzDg27PJTd87zI1FxMcpuRHxNZef/eDb8SGcqTA3FvGc3K/h+G7nIpm9bjI7GhGfpuRGxNd0Hg6tYp2rhO9dY3Y04inb3nVue46CkNbmxiLi45TciPgaqw2Szs7K7WrGEN9mGLD9fef+5WqSEmksJTcivujy253bncs1asofHN0OJ/Y7m6R63GB2NCI+T8mNiC9KGAZh7ZxNUwe+MDsaaazvljm33UZCcLi5sYj4ASU3Ir7IaoOeo537O5ebG4s03nf/cW5dkzSKSKMouRHxVb1udm53Lnf22RDfVHgIcr4Ci1WjpEQ8RMmNiK9KHOnso3EyG/K+NTsaaajvzta8JQyD8GhzYxHxE0puRHxVcLizjwaoacqXuX52rpo4EWk0JTcivszVjPH9CnPjkIapKIUDnzv3XX2oRKTRlNyI+DLXsOHDm+FUgbmxSP3tWwv2CojsBNE9zI5GxG8ouRHxZREdIOZywIA9n5gdjdTX7pXObY9UsFjMjUXEjyi5EfF13X/g3O7+2Nw4pH4MA3adTW66a+I+EU9SciPi67qnOre7V4HDYW4sUnfHd8PJA2ALhq7Xmh2NiF9RciPi6zqlQFA4lB6FvG/MjkbqylVr0ykFQlqZG4uIn1FyI+LrWgRDt+uc+64PTPF+e1c7t65mRRHxGCU3Iv4g8Xrndt+n5sYhdWOvPLcmWLcRpoYi4o+U3Ij4g65na26yN0BlmbmxyKUd3gwVJdAyCmL7mR2NiN9RciPiD6J7QKs4sJfDoY1mRyOXsvdsDVvXa8Cqt2ERT9NflYg/sFjOjbjZq6Ypr+dqPlSTlEiTUHIj4i9cyc2+z8yNQy6uohQOnq1dczUniohHtTA7ABHxENeIqcObobwYQlqbG48AYHcYbNxXwNHiMmJahzLUvgWboxIiEyCqm9nhifglJTci/qJNJ2jbBU7sd47E6TnK7IgCXsa2HJ76cDs5hec6eT8d/g4TwFnTpiUXRJqEmqVE/EmXa5zb/evMjUPI2JbD1DezqiQ2AEmV2wD4psXlZoQlEhCU3Ij4k85XObeuOVTEFHaHwVMfbse44Hgo5fS37AHgya/bYHdceIaIeIKSGxF/0nm4c5uz1dlxVUyxcV9BtRobgIHW3QRb7OQYUWwuimTjvgITohPxf6YnN/Pnz6dLly6EhoYybNgwNm68+Bwd8+bNo1evXrRs2ZKEhAR++tOfUlamSctEAGe/m4iO4DgDhzaZHU3AOlpc83vSFZadAGx09AYstZ4nIo1janKzZMkS0tPTmTVrFllZWQwYMIBRo0Zx9OjRGs//xz/+wS9+8QtmzZrFjh07ePXVV1myZAm//OUvmzlyES9lsTgXYgQ1TZkopnVojceHWncAruSm9vNEpHFMTW7mzJnD5MmTSUtLIykpiYULFxIWFsaiRYtqPP+LL77gqquu4sc//jFdunThxhtv5J577rlkbY9IQHE1TWUruTHL0K5RxEeGcv5YqCDOMNi6C3AmN/GRoQztGmVOgCJ+zrTkpqKigs2bN5OamnouGKuV1NRUMjMza7xm+PDhbN682Z3M7N27l+XLl3PzzTfX+jrl5eUUFRVVeYj4NVdyc/BLOFNhbiwByma1MGtsEoA7welr2UdLSwXHjdbsNjoya2wSNquGgos0BdOSm/z8fOx2O7GxsVWOx8bGkpubW+M1P/7xj3n66ae5+uqrCQoKIjExkREjRly0WWr27NlERka6HwkJCR4th4jXie4FLdvCmdOQ85XZ0QSs0X3jWTB+EHGRzqanwdbvAdhm68OC8YMZ3TfezPBE/JrpHYrrY82aNfz2t7/lz3/+M1lZWSxdupRly5bxzDPP1HrNjBkzKCwsdD8OHjzYjBGLmMBqhYQrnfsHN5gbS4Ab3TeedY9fz1uTr+T+Ts6+hNeMHKPERqSJmTZDcXR0NDabjby8vCrH8/LyiIuLq/GaJ554gvvuu48HH3wQgH79+lFaWspDDz3Er371K6w1rK4bEhJCSEiI5wsg4s0SroDv/6sVwr2AzWohpVsUFH8NgLXTMJMjEvF/ptXcBAcHM3jwYFatWuU+5nA4WLVqFSkpKTVec+rUqWoJjM1mA8AwNBmWiNtlQ53bg1+aG4c4ncyGkjywtoAOyWZHI+L3TF1bKj09nYkTJzJkyBCGDh3KvHnzKC0tJS0tDYAJEybQsWNHZs+eDcDYsWOZM2cOAwcOZNiwYezevZsnnniCsWPHupMcEQE6DgKLDYqPQOEhiLzM7IgC26GzSWb8AAhqaW4sIgHA1ORm3LhxHDt2jJkzZ5Kbm0tycjIZGRnuTsbZ2dlVamp+/etfY7FY+PWvf83hw4dp3749Y8eO5Te/+Y1ZRRDxTsHhEHs55H4NBzcquTGbq++Tq0ZNRJqUxQiw9pyioiIiIyMpLCwkIiLC7HBEms6y/4Mv/wpX/gRGzzY7miZ3quIMSTNXALD96VGEBZv6v1tVL1/rHLl252vQ9w6zoxHxSfX5/Pap0VIiUg/ufjfqVGyqilLIda4EToJqbkSag5IbEX+VcIVzm/MVVGoNI9Mc2QqGHVp3UPOgSDNRciPir9p2hfD24KjUZH5mOrzZub1ssLlxiAQQJTci/spigY5nP1CPZJkbSyBzJTcdldyINBclNyL+rMMg5/awkhvTuL73rp+FiDQ5JTci/kw1N+YqOQaF2YBFk/eJNCMlNyL+rMNA5/b4bjh90tRQApIrqYzuCaGR5sYiEkCU3Ij4s/B20Kazc//IFnNjCUTqbyNiCiU3Iv5OTVPmcSc36m8j0pyU3Ij4u47qVGwKwzj3PVdyI9KslNyI+DtXzY2Sm+Z18gCcLgBrEMT2NTsakYCi5EbE38UPAIvVuUJ4cZ7Z0QQO18SJsUnQIsTcWEQCjJIbEX8XHA7tejj3c782N5ZAcmSrcxufbGYUIgFJyY1IIIjr59xqGYbm4/pexw8wNw6RAKTkRiQQxPd3bnO/MTeOQGEYkLPVua+aG5Fmp+RGJBDEuZIbNUs1i6LDcOo4WGwQe7nZ0YgEHCU3IoHAldwU7IWyInNjCQSu/jYxfSAo1NRQRAKRkhuRQBDeDiOiIwBrP19D5p7j2B2GyUH5MXd/m2RTwxAJVC3MDkBEml7GthzCS+K5hsN8/MnHLLbbiI8MZdbYJEb3jTc7PP+jzsQiplLNjYify9iWw9Q3s8iqSADgcst+AHILy5j6ZhYZ23JMjM5PuZIbrQQuYgolNyJ+zO4weOrD7RjAdkcXAJKsBwBwNUo99eF2NVF5UskxKMkFLOpMLGISJTcifmzjvgJyCssA+NboAkBPy0GCOAM4E5ycwjI27iswKUI/lLfNuY3q5pxAUUSanZIbET92tLjMvX/IiKbQCCPYYqeH5VCt50kjuZIb1dqImEbJjYgfi2l9/jBkS7WmqZrPk0bJ+9a5dc0KLSLNTsmNiB8b2jWK+MhQLGe//tboDJzrVGwB4iNDGdo1ypT4/FKuam5EzKbkRsSP2awWZo1NApyJzLfn1dy4Ep5ZY5OwWS01Xi/1ZK+EY98592P7mhuLSABTciPi50b3jWfB+EHERYay/WzNTZLlAPERwSwYP0jz3HhS/vfgqISQCGjTyexoRAKWJvETCQCj+8ZzQ1IcX+65HPtbM2ntOM3ahxKxRSux8ShXf5vYy8Gi2jARs6jmRiRA2KwWruwRhy3O2RfElqdFND3Oteq6+tuImErJjUigcY3icX0Qi+e4a27U30bETEpuRAKNa4XwXNXceJx7jhslNyJm8orkZv78+XTp0oXQ0FCGDRvGxo0baz13xIgRWCyWao8xY8Y0Y8QiPsyd3GwzNw5/U3IMSvIAC8T0MTsakYBmenKzZMkS0tPTmTVrFllZWQwYMIBRo0Zx9OjRGs9funQpOTk57se2bduw2WzcddddzRy5iI9yffAWH4HTJ00Nxa+4l13oCiGtzI1FJMCZntzMmTOHyZMnk5aWRlJSEgsXLiQsLIxFixbVeH5UVBRxcXHux8qVKwkLC1NyI1JXoREQ6Vwh3D0nizSe+tuIeA1Tk5uKigo2b95Mamqq+5jVaiU1NZXMzMw63ePVV1/lRz/6EeHhNS9QV15eTlFRUZWHSMBz1d64PpCl8dTfRsRrmJrc5OfnY7fbiY2NrXI8NjaW3NzcS16/ceNGtm3bxoMPPljrObNnzyYyMtL9SEhIaHTcIj7Pldwc3WFuHP7EldzEKbkRMZvpzVKN8eqrr9KvXz+GDh1a6zkzZsygsLDQ/Th48GAzRijipWKcSzIoufEQeyUc2+ncV82NiOlMnaE4Ojoam81GXl5eleN5eXnExcVd9NrS0lLefvttnn766YueFxISQkhISKNjFfEr7pqb7WAYmk23sfJ3gb1Cyy6IeAlTa26Cg4MZPHgwq1atch9zOBysWrWKlJSUi177r3/9i/LycsaPH9/UYYr4n+ieYLHC6QIoqXlkotRD3nkrgStRFDGd6c1S6enpvPLKKyxevJgdO3YwdepUSktLSUtLA2DChAnMmDGj2nWvvvoqt912G+3atWvukEV8X1BLiOrm3D+63dxY/MH5yY2ImM70hTPHjRvHsWPHmDlzJrm5uSQnJ5ORkeHuZJydnY3VWjUH27lzJ+vWreOjjz4yI2QR/xDTB47vdva7SRxpdjS+7fwFM0XEdKYnNwDTpk1j2rRpNT63Zs2aasd69eqFYRhNHJWIn4tJgh0fqubGE46enS/I1VFbRExlerOUiJhEw8E9o6wIig4599v3MjcWEQGU3IgELlctw7HvwOEwNxZflv+9c9sqDlq2NTcWEQGU3IgErqhuYAuGihIo1PxPDeZawkK1NiJeQ8mNSKCyBTmHhIOaphrD9b3TSuAiXqNByU1eXh733XcfHTp0oEWLFthstioPEfER7pmK1am4wVwzE6vmRsRrNGi01KRJk8jOzuaJJ54gPj4eiyatEvFN6lTceO5mKdXciHiLBiU369atY+3atSQnJ3s4HBFpVlpjqnHKi8/1V1LNjYjXaFCzVEJCguaZEfEHrpqb/J3OxR+lfo65RkrFQliUubGIiFuDkpt58+bxi1/8gv3793s4HBFpVpEJENzKuehjwV6zo/E9Gikl4pUa1Cw1btw4Tp06RWJiImFhYQQFBVV5vqCgwCPBiUgTs1qhfW84vMnZqVgf0vVz7GxznvrbiHiVBiU38+bN83AYImKamD7O5CZvO1x+u9nR+BaNlBLxSg1KbiZOnOjpOETELOf3u5H6ca8ppZobEW/S4IUz7XY77733Hjt2OKtlL7/8cm655RbNcyPia1wT+bk6x0rdlJdAYbZzv31vc2MRkSoalNzs3r2bm2++mcOHD9Orl7M6dvbs2SQkJLBs2TISExM9GqSINCFXcnN8N9jPgK3B//MEFldNV3iMRkqJeJkGjZZ65JFHSExM5ODBg2RlZZGVlUV2djZdu3blkUce8XSMItKUIhMgKAwclXBiv9nR+I6jGikl4q0a9C/ap59+yvr164mKOvffSrt27Xjuuee46qqrPBaciDQDqxXadYfcr521EdHdzY7INxxTfxsRb9WgmpuQkBCKi4urHS8pKSE4OLjRQYlIM3PVPhxTp+I60xw3Il6rQcnND3/4Qx566CE2bNiAYRgYhsH69euZMmUKt9xyi6djFJGmFn32Azp/l7lx+BKtKSXitRqU3Lz00kskJiaSkpJCaGgooaGhXHXVVXTv3p0//OEPno5RRJpadA/nVsPB66a8BE5qpJSIt2pQn5s2bdrw/vvvs2vXLr77zvnfS58+fejeXW31Ij7J3Sz1PRgGWCzmxuPt8s8Omw9vD+HtzI1FRKpp1JjPHj160KNHD0/FIiJmiUoEiw0qiqE4ByI6mB2Rd3M3SanWRsQb1Tm5SU9P55lnniE8PJz09PSLnjtnzpxGByYizahFMER1dc51c2ynkptLcdXcqDOxiFeqc3KzZcsWKisr3fsi4meiezmTm/zvIXGk2dF4N1fH63aquRbxRnVOblavXl3jvoj4ifY9Yeeyc7USUrvju51bzQkk4pUaNFrq/vvvr3Gem9LSUu6///5GByUiJnCvMaURUxflsEPBXud+OyU3It6oQcnN4sWLOX36dLXjp0+f5m9/+1ujgxIRE7jnulHNzUWdPAD2CrCFOJeuEBGvU6/RUkVFRe5J+4qLiwkNDXU/Z7fbWb58OTExMR4PUkSagWuum5I8OH0SWrYxMxrvdXyPc9suEaw2c2MRkRrVK7lp06YNFosFi8VCz549qz1vsVh46qmnPBaciDSj0Aho3QGKjzhrbxKGmh2Rd3J3JlaTlIi3qldys3r1agzD4Prrr+fdd9+tsnBmcHAwnTt3pkMHDSEV8VntezqTm2M7ldzU5vjZ5CZaI6VEvFW9kpvrrrsOgH379pGQkIDV2qAuOyLiraJ7wd41WobhYlRzI+L1GpSddO7cGavVyqlTp/juu+/4+uuvqzzqY/78+XTp0oXQ0FCGDRvGxo0bL3r+yZMnefjhh4mPjyckJISePXuyfPnyhhRDRC7kXmNKC2jWyjUMXHPciHitBi2/cOzYMdLS0vjvf/9b4/N2u71O91myZAnp6eksXLiQYcOGMW/ePEaNGsXOnTtr7JhcUVHBDTfcQExMDO+88w4dO3bkwIEDtGnTpiHFEJELudeYUs1NjcpLnMtTgOa4EfFiDaq5efTRRzl58iQbNmygZcuWZGRksHjxYnr06MEHH3xQ5/vMmTOHyZMnk5aWRlJSEgsXLiQsLIxFixbVeP6iRYsoKCjgvffe46qrrqJLly5cd911DBgwoCHFEJELuYaDnzwAlWXmxuKNXLU2YdHQsq25sYhIrRqU3HzyySfMmTOHIUOGYLVa6dy5M+PHj+d3v/sds2fPrtM9Kioq2Lx5M6mpqeeCsVpJTU0lMzOzxms++OADUlJSePjhh4mNjaVv37789re/vWhNUXl5OUVFRVUeIlKLVjEQGgmG49wHuZzjnplYTVIi3qxByU1paam72aht27YcO3YMgH79+pGVlVWne+Tn52O324mNja1yPDY2ltzc3Bqv2bt3L++88457Tp0nnniCF198kWeffbbW15k9ezaRkZHuR0KCJt0SqZXFct5kfmqaqsbdmTjR3DhE5KIalNz06tWLnTudb3wDBgzg5Zdf5vDhwyxcuJD4+HiPBng+h8NBTEwMf/nLXxg8eDDjxo3jV7/6FQsXLqz1mhkzZlBYWOh+HDx4sMniE/ELrloJ12R1cs5xLZgp4gsa1KF4+vTp5OQ4O9XNmjWL0aNH8/e//53g4GBef/31Ot0jOjoam81GXl5eleN5eXnExcXVeE18fDxBQUHYbOdmBe3Tpw+5ublUVFQQHBxc7ZqQkBBCQkLqWDIRcQ9x1oip6tQsJeITGlRzM378eCZNmgTA4MGDOXDgAF9++SUHDx5k3LhxdbpHcHAwgwcPZtWqVe5jDoeDVatWkZKSUuM1V111Fbt378bhcLiPff/998THx9eY2IhIA7hrbpTcVGEY5y29oORGxJt5ZBa+sLAwBg0aRHR0dL2uS09P55VXXmHx4sXs2LGDqVOnUlpaSlpaGgATJkxgxowZ7vOnTp1KQUEB06dP5/vvv2fZsmX89re/5eGHH/ZEMUQEztXcHN/j/EAXp+IcqCgBiw3adjE7GhG5iDo3S6Wnp9f5pnPmzKnTeePGjePYsWPMnDmT3NxckpOTycjIcHcyzs7OrjILckJCAitWrOCnP/0p/fv3p2PHjkyfPp3HH3+8zrGJyCVEdQOLFcqLoOQotI699DWBwNVM17YztFBNsYg3q3Nys2XLljqdZ7FY6hXAtGnTmDZtWo3PrVmzptqxlJQU1q9fX6/XEJF6aBECbTrBif3OpiklN07qTCziM+qc3Kxevbop4xARb9Ku+9nkZjd0udrsaLyDq7+NOhOLeD2tfCki1bXTGlPVaMFMEZ/RoKHgI0eOvGjz0yeffNLggETEC0Sf16lYnFzNUqq5EfF6DUpukpOTq3xdWVnJ1q1b2bZtGxMnTvREXCJiJveIKdXcAHCmHE5mO/dVcyPi9RqU3MydO7fG408++SQlJSWNCkhEvICrWerEfrBXgi3I1HBMV7DXud5WcGtopQ7WIt7Oo31uxo8fX+uK3iLiQyI6QFAYOM7AiQNmR2M+98zE3Z3rb4mIV/NocpOZmUloaKgnbykiZrBYzi0Oqaap8zoTq7+NiC9oULPUHXfcUeVrwzDIyclh06ZNPPHEEx4JTERM1q4H5H7j/GDvdZPZ0ZhLa0qJ+JQGJTeRkZFVvrZarfTq1Yunn36aG2+80SOBiYjJ3GtM7TY3Dm/grrlJNDcOEamTBiU3r732mqfjEBFv4x4xpeRGsxOL+JYGJTcumzZtYseOHQAkJSUxePBgjwQlIl7AldwE+kR+pwrg9AnnvmpuRHxCg5KbQ4cOcc899/D555/Tpk0bAE6ePMnw4cN5++23ueyyyzwZo4iYwZXclB6FskIIjbz4+f7KldxFXAbB4ebGIiJ10qDRUg8++CCVlZXs2LGDgoICCgoK2LFjBw6HgwcffNDTMYqIGUIjzs3pEshNU+6ZiTV5n4ivaFDNzaeffsoXX3xBr1693Md69erFH//4R6655hqPBSciJmvXA0ryIH83dAzQZmetKSXicxpUc5OQkEBlZWW143a7nQ4dOjQ6KBHxEtHqVOwuuzoTi/iMBiU3L7zwAv/7v//Lpk2b3Mc2bdrE9OnT+f3vf++x4ETEZFpjqursxCLiExrULDVp0iROnTrFsGHDaNHCeYszZ87QokUL7r//fu6//373uQUFBZ6JVESan6u2Ij9Aa24cdue6UqCaGxEf0qDkZt68eR4OQ0S8kmsiv4I94HCA1aMrtni/kwfAXgG2EIhMMDsaEamjBiU3EydO9HQcIuKN2nQCawuoPAXFRyAywKZ5cNVYtUsMvMROxIc1eBI/u93Oe++9557E7/LLL+eWW27BZrN5LDgRMZktCNp2dfa5yd8VeMnNcY2UEvFFDUpudu/ezc0338zhw4fdw8Fnz55NQkICy5YtIzFRs3iK+I123Z0f8sd3Q+JIs6NpXlowU8QnNaie9ZFHHiExMZGDBw+SlZVFVlYW2dnZdO3alUceecTTMYqImQJ5OHi+1pQS8UUNnsRv/fr1REVFuY+1a9eO5557jquuuspjwYmIF3CPmArA4eCquRHxSQ2quQkJCaG4uLja8ZKSEoKDgxsdlIh4kUBdHby8GIpznPtaMFPEpzQoufnhD3/IQw89xIYNGzAMA8MwWL9+PVOmTOGWW27xdIwiYiZXrcXJbKgsMzeW5uRK5sKioWVbc2MRkXppUHLz0ksv0b17d4YPH05oaCihoaFcddVVdO/enT/84Q+ejlFEzBTeHkIiAQNO7DM7muZzfI9zqyYpEZ9Trz43DoeDF154gQ8++ICKigpuu+02Jk6ciMVioU+fPnTvruGSIn7HYnE2yxzJcva7ieljdkTNQwtmiviseiU3v/nNb3jyySdJTU2lZcuWLF++nMjISBYtWtRU8YmIN4ju4UxuAmmNKVdZVXMj4nPq1Sz1t7/9jT//+c+sWLGC9957jw8//JC///3vOByOpopPRLyBa8SUq6kmEGgYuIjPqldyk52dzc033+z+OjU1FYvFwpEjRzwemIh4EddooUAZDm4Y5xI5NUuJ+Jx6JTdnzpwhNDS0yrGgoCAqKys9GpSIeBlX00ygNEsV50BlKVhs0LaL2dGISD3Vq8+NYRhMmjSJkJAQ97GysjKmTJlCeHi4+9jSpUvrFcT8+fN54YUXyM3NZcCAAfzxj39k6NChNZ77+uuvk5aWVuVYSEgIZWUBNERVpLlFna25OX0CThVAWNTFz/d1rhqqtl2ghebuEvE19UpualoNfPz48Y0KYMmSJaSnp7Nw4UKGDRvGvHnzGDVqFDt37iQmJqbGayIiIti5c6f7a4vF0qgYROQSgsMg4jIoOuT84O80zOyImpY6E4v4tHolN6+99prHA5gzZw6TJ09218YsXLiQZcuWsWjRIn7xi1/UeI3FYiEuLs7jsYjIRUR3dyY3x3f7f3KTf3YCP/W3EfFJDZrEz1MqKirYvHkzqamp7mNWq5XU1FQyMzNrva6kpITOnTuTkJDArbfeyrffflvrueXl5RQVFVV5iEgDBNIyDMc1x42ILzM1ucnPz8dutxMbG1vleGxsLLm5uTVe06tXLxYtWsT777/Pm2++icPhYPjw4Rw6dKjG82fPnk1kZKT7kZCQ4PFyiASEdgHUqVgLZor4NFOTm4ZISUlhwoQJJCcnc91117F06VLat2/Pyy+/XOP5M2bMoLCw0P04ePBgM0cs4ifcNTd+PtfNmXLnOlqgOW5EfFS9+tx4WnR0NDabjby8vCrH8/Ly6tynJigoiIEDB7J7d81V5SEhIVVGd4lIA7nmujm+Bxx2sNrMjaepFOwFwwEhEdCq5kENIuLdTK25CQ4OZvDgwaxatcp9zOFwsGrVKlJSUup0D7vdzjfffEN8fHxThSkiAG06gS0Y7OVQWHMzsF84f00pjcQU8UmmN0ulp6fzyiuvsHjxYnbs2MHUqVMpLS11j56aMGECM2bMcJ//9NNP89FHH7F3716ysrIYP348Bw4c4MEHHzSrCCKBwWqDqG7OfX/ud6POxCI+z9RmKYBx48Zx7NgxZs6cSW5uLsnJyWRkZLg7GWdnZ2O1nsvBTpw4weTJk8nNzaVt27YMHjyYL774gqSkJLOKIBI42nWHY985m6a6p176fF/k6lOkzsQiPsv05AZg2rRpTJs2rcbn1qxZU+XruXPnMnfu3GaISkSqCYTh4PmquRHxdaY3S4mID3F94PvzApqanVjE5ym5EZG6cy+g6afDwUuPO9fPgnPraYmIz1FyIyJ156q5KTwIlafNjaUpuGptIi5zrqclIj5JyY2I1F1YOwhtAxjO+WD8jXtmYvW3EfFlSm5EpO4sFv/ud3O2TI52Pcjcc5z3tx4mc89x7A7D5MBEpD68YrSUiPiQ6B5weJN/jpg6W6a5Wxz8ce169+H4yFBmjU1idF9NFiriC1RzIyL1c/4yDH6m5PAOALaeal/leG5hGVPfzCJjW44ZYYlIPSm5EZH6cc9141/NUvYzlYQUHwBgn1G1hsbVKPXUh9vVRCXiA5TciEj9uFbK9rNmqa+2fUMQZygzgjhstKv2vAHkFJaxcV9B8wcnIvWi5EZE6se1vtTpE855YfxEee53AOwz4jAu8tZ4tLisuUISkQZSciMi9RMcBpEJzn0/qr2Jr3SudL7XuHin4ZjWoc0Rjog0gpIbEak/d6di/+l304kjAOwzOtT4vAXnqKmhXaOaMSoRaQglNyJSf37Y78Z6tiz7HHFYLnjO9fWssUnYrBc+KyLeRsmNiNSfP64OfrYsd44aSVxk1aanuMhQFowfpHluRHyEJvETkfpzz1LsJ8lNeTEUO+ewSRl6JeuuiWTjvgKOFpcR09rZFKUaGxHfoeRGROrPtfZSwV5w2MFqMzeexnLVQIW3h5ZtsAEpidWHg4uIb1CzlIjUX2QC2ELAXu5cIdzXuWqgXH2JRMSnKbkRkfqz2s7Nd+MP/W5co75co8BExKcpuRGRhnElAv7Q78aVoEWr5kbEHyi5EZGG8acRU/mumhslNyL+QMmNiDRMtJ/MdWMY51Y4V82NiF9QciMiDeMvNTdFR6CyFCw2aNvF7GhExAOU3IhIw7iacAoPQuVpc2NpDFdn4rZdwBZkaigi4hlKbkSkYcKiILSNc9/VrOOL1JlYxO8ouRGRhrFY/KPfjXuOm+7mxiEiHqPkRkTqze4wyNxznGyLcwVtR74Prw6e/71zq5obEb+h5EZE6iVjWw5XP/8J97yyniV7QwBY8elaMrblmBxZA7kSs+he5sYhIh6j5EZE6ixjWw5T38wip7AMgD2Gs+amw5mDTH0zy/cSnIpTUJjt3I/uaW4sIuIxSm5EpE7sDoOnPtyOcd6x3WeTm26WHMD5vN1h1Hi9V3KNlAprB+FaKFPEXyi5EZE62bivwF1j43LAiOOMYaW15TQxnCCnsIyN+wpMirAB3E1SqrUR8SdKbkSkTo4Wl1U7VkkLDhixAHS3Hq71PK91bKdzq87EIn7FK5Kb+fPn06VLF0JDQxk2bBgbN26s03Vvv/02FouF2267rWkDFBFiWofWeNzV7ybRcuSi53kl90gpdSYW8SemJzdLliwhPT2dWbNmkZWVxYABAxg1ahRHjx696HX79+/nscce45prrmmmSEUC29CuUcRHhmK54LgruelhOUJ8ZChDu0Y1f3ANpWYpEb9kenIzZ84cJk+eTFpaGklJSSxcuJCwsDAWLVpU6zV2u517772Xp556im7dul30/uXl5RQVFVV5iEj92awWZo1NAqiS4Ox2dASgm+UIs8YmYbNemP54KYddsxOL+ClTk5uKigo2b95Mamqq+5jVaiU1NZXMzMxar3v66aeJiYnhgQceuORrzJ49m8jISPcjISHBI7GLBKLRfeNZMH4QcZHnmp5cNTeDw48yum+8WaHV38kDYC+HFqHQppPZ0YiIB7Uw88Xz8/Ox2+3ExsZWOR4bG8t3331X4zXr1q3j1VdfZevWrXV6jRkzZpCenu7+uqioSAmOSCOM7hvPDUlxbNxXwNHiMuJDkmDJTELLjkFZIYRGmh1i3biapNp1B6vN3FhExKNMTW7qq7i4mPvuu49XXnmF6OjoOl0TEhJCSEhIE0cmElhsVgspiefNC9M6HopznAnDZUPMC6w+NFJKxG+ZmtxER0djs9nIy8urcjwvL4+4uLhq5+/Zs4f9+/czduxY9zGHwwFAixYt2LlzJ4mJiU0btIhUF93jbHLzve8kNxopJeK3TO1zExwczODBg1m1apX7mMPhYNWqVaSkpFQ7v3fv3nzzzTds3brV/bjlllsYOXIkW7duVXOTiFlcCYKrNsQXuEdKqeZGxN+Y3iyVnp7OxIkTGTJkCEOHDmXevHmUlpaSlpYGwIQJE+jYsSOzZ88mNDSUvn37Vrm+TZs2ANWOi0gzcg2ldtWGeDvDgHxXs5SGgYv4G9OTm3HjxnHs2DFmzpxJbm4uycnJZGRkuDsZZ2dnY7WaPmJdRC6mvY8lN6eOw+kTgMXZoVhE/IrpyQ3AtGnTmDZtWo3PrVmz5qLXvv76654PSETqx1X7UbAPzlRAi2Bz47kUVxLWJgGCw8yNRUQ8TlUiItJ4reMhuDUYdijYa3Y0l3ZMTVIi/kzJjYg0nsVyrmNuvg90KnZ3JtZIKRF/pORGRDyj/dlEwRf63biHgWuklIg/UnIjIp7hauI55gvJzdnapfaquRHxR0puRMQzfGU4eMUpOHnQua8+NyJ+ScmNiHiGu1lqF5ydOdwrFewBDGjZFsLaXfJ0EfE9Sm5ExDPadgFrC6gshaLDZkdTu/NHSlks5sYiIk1CyY2IeIYtCKLOru3mzU1Tx75zbtv3NjcOEWkySm5ExHNcMxW7EghvdHSHcxuTZG4cItJklNyIiOe4Eoaj282N42LyvnVuY5XciPgrJTci4jnu5GaHuXHUpqIUTux37qvmRsRvKbkREc9xJzffeeeIqWM7AQPC20N4tNnRiEgTUXIjIp4T1Q1sIc4RUyf3mx1Nde7+Nn3MjUNEmpSSGxHxHFuLc52KvbFpytUXSE1SIn5NyY2IeFbM5c5tnhd2KlZyIxIQlNyIiGe5mny8ccSUhoGLBAQlNyLiWbFna268Lbk5VQDFOc59LZgp4teU3IiIZ7lqbo7vhjPl5sZyPtfEgpGdIDTC3FhEpEkpuRERz4roCCGR4DjjXETTW7hqkjR5n4jfU3IjIp5lsZzX78aLRky5OjhrGLiI31NyIyKe56odOfqtuXGcT52JRQKGkhsR8TxvW4bBMM4bBq6aGxF/p+RGRDzPldx4y1w3xblQdhIsNojuaXY0ItLElNyIiOe5akcKs6GsyNxY4FytTbvu0CLE3FhEpMkpuRERzwuLgtbxzn3XEGwzqUlKJKAouRGRpuFNMxWrM7FIQFFyIyJNw5v63ajmRiSgKLkRkabhHjFlcnLjcMDRs01jqrkRCQhKbkSkabjmusn71jkU2ywn9sGZ09AiFKK6mheHiDQbJTci0jSiewEWOF0AJUfNiyP3a+c2JgmsNvPiEJFm4xXJzfz58+nSpQuhoaEMGzaMjRs31nru0qVLGTJkCG3atCE8PJzk5GTeeOONZoxWROokOMw59Bog9xvz4sg5m9zE9zcvBhFpVqYnN0uWLCE9PZ1Zs2aRlZXFgAEDGDVqFEeP1vyfXlRUFL/61a/IzMzk66+/Ji0tjbS0NFasWNHMkYvIJcUPcG5ztpoXg6vmJk7JjUigMD25mTNnDpMnTyYtLY2kpCQWLlxIWFgYixYtqvH8ESNGcPvtt9OnTx8SExOZPn06/fv3Z926dc0cuYhckqu2xJVgmMFdczPAvBhEpFmZmtxUVFSwefNmUlNT3cesViupqalkZmZe8nrDMFi1ahU7d+7k2muvrfGc8vJyioqKqjxEpJm4a26+Muf1i3Oh9ChYrBopJRJATE1u8vPzsdvtxMbGVjkeGxtLbm5urdcVFhbSqlUrgoODGTNmDH/84x+54YYbajx39uzZREZGuh8JCQkeLYOIXISrKejEfjh9svlf31VrE93T2QdIRAKC6c1SDdG6dWu2bt3Kl19+yW9+8xvS09NZs2ZNjefOmDGDwsJC9+PgwYPNG6xIIAuLgshOzn0zOhXnnq0xUn8bkYDSwswXj46OxmazkZeXV+V4Xl4ecXFxtV5ntVrp3t05CiM5OZkdO3Ywe/ZsRowYUe3ckJAQQkK0UJ6IaeL7OxfQzP0aul7TvK+tkVIiAcnUmpvg4GAGDx7MqlWr3MccDgerVq0iJSWlzvdxOByUl5c3RYgi0lhm9rtxj5Tq1/yvLSKmMbXmBiA9PZ2JEycyZMgQhg4dyrx58ygtLSUtLQ2ACRMm0LFjR2bPng04+9AMGTKExMREysvLWb58OW+88QYLFiwwsxgiUhtXk1BOM4+YOn3C2dfn/BhEJCCYntyMGzeOY8eOMXPmTHJzc0lOTiYjI8PdyTg7Oxur9VwFU2lpKT/5yU84dOgQLVu2pHfv3rz55puMGzfOrCKIyMW4am7yd0JFKQSHN8/rHtni3Lbt6uz7IyIBw2IYZi760vyKioqIjIyksLCQiIgIs8MRCQwv9obiHEj7L3Qe3iQvcariDEkznZN5bn96FGHr58Inz0LfO+HOV5vkNUWk+dTn89snR0uJiI/pONi5Pby5+V7zcFbV1xaRgKHkRkSanivBOLSpeV7PMM4lUh0HNc9riojXUHIjIk3PXXOT1TyvV5QDJXlgsakzsUgAUnIjIk2vw0DA4pzvpqTmRXE96shW5zY2STMTiwQgJTci0vRCI6B9L+d+E/W7sTvOjY04suPs2nTqbyMSkJTciEjzaMJ+Nxnbckid86n76wPbvgDgG7p7/LVExPspuRGR5tFEI6YytuUw9c0s8orOzVLe17oPgJ9/0YKMbTkefT0R8X5KbkSkeZyf3DjsHrml3WHw1IfbuXCyrtaWMoqMML43LuOpD7dXabISEf+n5EZEmkdsXwhuBeVFkPetR265cV8BOYVlNT632dEDO1ZyCsvYuK/AI68nIr5ByY2INA9bC0gY6tzPdnb4tTsMMvcc5/2th8ncc7zeNSxHi2tObAC+dPSq03ki4n9MX1tKRAJIp+Gw5xM48AUZ4bfw1Ifbq9S8xEeGMmtsEqP7xtfpdjGtQ2t9btN5yc3FzhMR/6OaGxFpPp1TACjb+zlT39xcrUkpt7CMqW9m1bkT8NCuUcRHhmK54HiFYeMrIxELzoRpaFctnCkSSJTciEjz6TgYwxpEaNkxOlnyqj3tapSqaydgm9XCrLFJ1Y5/a3ShgmAAZo1Nwma9MP0REX+m5EZEmk9QS4rbOZdDGGr9rsZTDKhXJ+DRfeNZMH4QsREh7mObHT2IiwxlwfhBdW7iEhH/oeRGRJpVbpuBAFxh2XnR8+rTCXh033g+Tr/O/fW1I8ew7vHrldiIBCglNyLSrOwJwwEYbvsWqs1Qc059OwHbig6793sOvUFNUSIBTMmNiDSrnkNHUUELLrPk09WSW+35BncC3ndu+QVCIxoXpIj4NCU3ItKsbKGtKG4/BIDrrF9Xec5V19KgTsB7P730OSISEJTciEizazdgNACpIVVnKm5wJ2CHHQ6s81R4IuLjNImfiDS/xB/Ax09ylW0Hb98/iLxTDmJaO5uiGtRXJucrOH3S42GKiG9SciMizS+2L4S3x1J6jCuDdkHytY27355PPBOXiPgFNUuJSPOzWiHxeuf+7lWNv9/3Kxp/DxHxG0puRMQc3W9wbr9bBkb9FsysoigHDm30TEwi4heU3IiIOXqOAlswHN8FR3c0/D7f/ce57TjYM3GJiM9TciMi5giNcHYsBtj+XsPvs+MD57bXzY0OSUT8g5IbETHP5bc5t9++17DrS4/D/s+d+0puROQsJTciYp5eNzmbpvJ3wtGaF9K8qJ3LwLBDXD+I6uz5+ETEJym5ERHzhEaeGzX1zb/qf/2WN53by2/3XEwi4vOU3IiIufqPc26z/gZnKup+Xe42OLgBrC0g+d6miU1EfJKSGxExV5+x0CoOSo+e6xxcF5tfc257j4HWcU0Tm4j4JCU3ImIuWxAMud+5v/GVul1TXgJfLXHuu64VETnLK5Kb+fPn06VLF0JDQxk2bBgbN9Y+Idcrr7zCNddcQ9u2bWnbti2pqakXPV9EfMDgSWANgoPr4cjWS5+/5Q2oKIaoROjSyKUbRMTvmJ7cLFmyhPT0dGbNmkVWVhYDBgxg1KhRHD16tMbz16xZwz333MPq1avJzMwkISGBG2+8kcOHDzdz5CLiMa1jzw0L/3jWxWcsPn0CPn3euT98mnMpBxGR85j+rjBnzhwmT55MWloaSUlJLFy4kLCwMBYtWlTj+X//+9/5yU9+QnJyMr179+avf/0rDoeDVatqXp+mvLycoqKiKg8R8UIjfwW2ENi75tyswzVZ+6IzwWnfGwZOaLbwRMR3mJrcVFRUsHnzZlJTU93HrFYrqampZGZm1ukep06dorKykqioqBqfnz17NpGRke5HQkKCR2IXEQ+L6grD/9e5v+KXUFFa/Zy8b2HDy879G54BW4vmi09EfIapyU1+fj52u53Y2Ngqx2NjY8nNza3TPR5//HE6dOhQJUE634wZMygsLHQ/Dh482Oi4RaSJXJMOER3hZDa89SOoOHXuuZPZ8Ob/gL0CuqdCjxvMi1NEvJpP/9vz3HPP8fbbb7NmzRpCQ0NrPCckJISQkJBmjkxEGiQ4HO5aDG/cBvs+gzfvgGFT4HQBrJsHxTnO5qg7XgGLxexoRcRLmZrcREdHY7PZyMvLq3I8Ly+PuLiLz1vx+9//nueee46PP/6Y/v37N2WYItKcEq6Ae99x1tJkZzofLpEJMH4phNXcDC0iAiY3SwUHBzN48OAqnYFdnYNTUlJqve53v/sdzzzzDBkZGQwZMqQ5QhWR5tQ5BR5aDSnTILonxFwON/4GpqyFyI41XhIW3IL9z41h/3NjCAv26UppEWkk098B0tPTmThxIkOGDGHo0KHMmzeP0tJS0tLSAJgwYQIdO3Zk9uzZADz//PPMnDmTf/zjH3Tp0sXdN6dVq1a0atXKtHKIiIe17wWjfuN8iIjUg+nJzbhx4zh27BgzZ84kNzeX5ORkMjIy3J2Ms7OzsZ43j8WCBQuoqKjgzjvvrHKfWbNm8eSTTzZn6CIiIuKFLIZxsdmy/E9RURGRkZEUFhYSERFhdjgiIiJSB/X5/DZ9Ej8RERERT1JyIyIiIn5FyY2IiIj4FSU3IiIi4leU3IiIiIhfUXIjIiIifkXJjYiIiPgVJTciIiLiV5TciIiIiF9RciMiIiJ+RcmNiIiI+BUlNyIiIuJXTF8VvLm51gktKioyORIRERGpK9fndl3W+w645Ka4uBiAhIQEkyMRERGR+iouLiYyMvKi51iMuqRAfsThcHDkyBFat26NxWJp8H2KiopISEjg4MGDl1x63R+ovP5N5fVvgVZeCLwyB0J5DcOguLiYDh06YLVevFdNwNXcWK1WLrvsMo/dLyIiwm9/kWqi8vo3lde/BVp5IfDK7O/lvVSNjYs6FIuIiIhfUXIjIiIifkXJTQOFhIQwa9YsQkJCzA6lWai8/k3l9W+BVl4IvDIHWnkvJeA6FIuIiIh/U82NiIiI+BUlNyIiIuJXlNyIiIiIX1FyIyIiIn5Fyc0FnnvuOSwWC48++uhFzzt58iQPP/ww8fHxhISE0LNnT5YvX+5+vri4mEcffZTOnTvTsmVLhg8fzpdfftnE0ddfXco7YsQILBZLtceYMWPc5xiGwcyZM4mPj6dly5akpqaya9euZihB/XiqvEuXLuXGG2+kXbt2WCwWtm7d2vTBN5AnylxZWcnjjz9Ov379CA8Pp0OHDkyYMIEjR440UynqzlM/4yeffJLevXsTHh5O27ZtSU1NZcOGDc1QgvrxVHnPN2XKFCwWC/PmzWuaoBvBU+WdNGlStedHjx7dDCWoH0/+fHfs2MEtt9xCZGQk4eHhXHHFFWRnZzdxCcwRcDMUX8yXX37Jyy+/TP/+/S96XkVFBTfccAMxMTG88847dOzYkQMHDtCmTRv3OQ8++CDbtm3jjTfeoEOHDrz55pukpqayfft2Onbs2MQlqZu6lnfp0qVUVFS4vz5+/DgDBgzgrrvuch/73e9+x0svvcTixYvp2rUrTzzxBKNGjWL79u2EhoY2WRnqw5PlLS0t5eqrr+buu+9m8uTJTRZzY3mqzKdOnSIrK4snnniCAQMGcOLECaZPn84tt9zCpk2bmrQM9eHJn3HPnj3505/+RLdu3Th9+jRz587lxhtvZPfu3bRv377JylAfniyvy7///W/Wr19Phw4dPB5vY3m6vKNHj+a1115zf+1tw6g9Wd49e/Zw9dVX88ADD/DUU08RERHBt99+6zXvzx5niGEYhlFcXGz06NHDWLlypXHdddcZ06dPr/XcBQsWGN26dTMqKipqfP7UqVOGzWYz/vOf/1Q5PmjQIONXv/qVJ8NusPqU90Jz5841WrdubZSUlBiGYRgOh8OIi4szXnjhBfc5J0+eNEJCQoy33nrL06E3iCfLe759+/YZgLFlyxbPBeshTVVml40bNxqAceDAAQ9E23hNXd7CwkIDMD7++GMPRNt4TVHeQ4cOGR07djS2bdtmdO7c2Zg7d65ng24ET5d34sSJxq233ur5QD3E0+UdN26cMX78+CaI1DupWeqshx9+mDFjxpCamnrJcz/44ANSUlJ4+OGHiY2NpW/fvvz2t7/FbrcDcObMGex2e7WMuGXLlqxbt65J4q+v+pT3Qq+++io/+tGPCA8PB2Dfvn3k5uZWuVdkZCTDhg0jMzPTYzE3hifL6yuausyFhYVYLJYqNZZmasryVlRU8Je//IXIyEgGDBjQ2FA9wtPldTgc3HffffzsZz/j8ssv92SoHtEUP981a9YQExNDr169mDp1KsePH/dUuI3myfI6HA6WLVtGz549GTVqFDExMQwbNoz33nvPw1F7DzVLAW+//TZZWVl17hOzd+9ePvnkE+69916WL1/O7t27+clPfkJlZSWzZs2idevWpKSk8Mwzz9CnTx9iY2N56623yMzMpHv37k1cmkurb3nPt3HjRrZt28arr77qPpabmwtAbGxslXNjY2Pdz5nJ0+X1BU1d5rKyMh5//HHuuecer1ikr6nK+5///Icf/ehHnDp1ivj4eFauXEl0dLQnQm6Upijv888/T4sWLXjkkUc8FabHNEV5R48ezR133EHXrl3Zs2cPv/zlL7npppvIzMzEZrN5KvQG8XR5jx49SklJCc899xzPPvsszz//PBkZGdxxxx2sXr2a6667zpPhe4WAT24OHjzI9OnTWblyZZ3bHh0OBzExMfzlL3/BZrMxePBgDh8+zAsvvMCsWbMAeOONN7j//vvp2LEjNpuNQYMGcc8997B58+amLM4lNaS853v11Vfp168fQ4cObYLoPC/QygtNX+bKykruvvtuDMNgwYIFjQ230ZqyvCNHjmTr1q3k5+fzyiuvcPfdd7NhwwZiYmI8EXqDNEV5N2/ezB/+8AeysrKwWCyeDLfRmurn+6Mf/ci9369fP/r3709iYiJr1qzhBz/4QaPjbqimKK/D4QDg1ltv5ac//SkAycnJfPHFFyxcuNAvk5uA73Pz73//2wAMm83mfgCGxWIxbDabcebMmWrXXHvttcYPfvCDKseWL19uAEZ5eXmV4yUlJcaRI0cMwzCMu+++27j55pubrjB10JDyupSUlBgRERHGvHnzqhzfs2dPjf1Orr32WuORRx5pimLUWVOU93ze2OemKctcUVFh3HbbbUb//v2N/Pz8pipCvTT1z/h83bt3N3772996KvQGaYryzp071339+fe0Wq1G586dm7hEF9ecP9/o6Ghj4cKFngq9QZqivOXl5UaLFi2MZ555psrxn//858bw4cObpBxmC/iamx/84Ad88803VY6lpaXRu3dvHn/88RqrJ6+66ir+8Y9/4HA4sFqd3Za+//574uPjCQ4OrnJueHg44eHhnDhxghUrVvC73/2u6QpTBw0pr8u//vUvysvLGT9+fJXjXbt2JS4ujlWrVpGcnAxAUVERGzZsYOrUqR4vQ300RXm9XVOV2VVjs2vXLlavXk27du08HntDNOfP2OFwUF5e3qh4G6spynvfffdV69sxatQo7rvvPtLS0jwXfAM018/30KFDHD9+nPj4+EbH3BhNUd7g4GCuuOIKdu7cWeX4999/T+fOnT0XvDcxO7vyRhf2TL/vvvuMX/ziF+6vs7OzjdatWxvTpk0zdu7cafznP/8xYmJijGeffdZ9TkZGhvHf//7X2Lt3r/HRRx8ZAwYMMIYNG1brCCszXaq8LldffbUxbty4Gu/x3HPPGW3atDHef/994+uvvzZuvfVWo2vXrsbp06ebKuwG80R5jx8/bmzZssVYtmyZARhvv/22sWXLFiMnJ6epwm6Uxpa5oqLCuOWWW4zLLrvM2Lp1q5GTk+N+XFhb6Q0aW96SkhJjxowZRmZmprF//35j06ZNRlpamhESEmJs27atKUNvEE/8Tl/I20ZLna+x5S0uLjYee+wxIzMz09i3b5/x8ccfG4MGDTJ69OhhlJWVNWXoDeKJn+/SpUuNoKAg4y9/+Yuxa9cu449//KNhs9mMtWvXNlXYpgr4mpu6yM7OdtfQACQkJLBixQp++tOf0r9/fzp27Mj06dN5/PHH3ecUFhYyY8YMDh06RFRUFP/zP//Db37zG4KCgswoQr1cWF6AnTt3sm7dOj766KMar/n5z39OaWkpDz30ECdPnuTqq68mIyPDJ+ZQaEh5P/jggyr/0bra72fNmsWTTz7ZZLF6Sn3LfPjwYT744AMAd+2cy+rVqxkxYkRTheoR9S2vzWbju+++Y/HixeTn59OuXTuuuOIK1q5d65UjiS7UkN9pX9aQn+/XX3/N4sWLOXnyJB06dODGG2/kmWee8bq5bmrSkJ/v7bffzsKFC5k9ezaPPPIIvXr14t133+Xqq69ujpCbncUwDMPsIEREREQ8RfPciIiIiF9RciMiIiJ+RcmNiIiI+BUlNyIiIuJXlNyIiIiIX1FyIyIiIn5FyY2IiIj4FSU3IiIi4hGfffYZY8eOpUOHDlgsFt5777163+Of//wnycnJhIWF0blzZ1544YV630PJjYhIA1RUVNC9e3e++OILj943IyOD5ORk90rOIr6ktLSUAQMGMH/+/AZd/9///pd7772XKVOmsG3bNv785z8zd+5c/vSnP9XrPkpuRIRJkyZhsViqPXbv3m12aF5r4cKFdO3aleHDh7uP1faf6qRJk7jtttvqdN/Ro0cTFBTE3//+dw9FKtJ8brrpJp599lluv/32Gp8vLy/nscceo2PHjoSHhzNs2DDWrFnjfv6NN97gtttuY8qUKXTr1o0xY8YwY8YMnn/+eeqzoIKSGxEBnB+qOTk5VR5du3atdl5FRYUJ0XkXwzD405/+xAMPPNAk9580aRIvvfRSk9xbxEzTpk0jMzOTt99+m6+//pq77rqL0aNHs2vXLsCZ/Fy4JmHLli05dOgQBw4cqPPrKLkREQBCQkKIi4ur8rDZbIwYMYJp06bx6KOPEh0dzahRowDYtm0bN910E61atSI2Npb77ruP/Px89/1KS0uZMGECrVq1Ij4+nhdffJERI0bw6KOPus+pqaajTZs2vP766+6vDx48yN13302bNm2Iiori1ltvZf/+/e7nXbUiv//974mPj6ddu3Y8/PDDVFZWus8pLy/n8ccfJyEhgZCQELp3786rr76KYRh0796d3//+91Vi2Lp160VrrjZv3syePXsYM2ZMPb/LsH///hpryc5ffHTs2LFs2rSJPXv21Pv+It4qOzub1157jX/9619cc801JCYm8thjj3H11Vfz2muvATBq1CiWLl3KqlWrcDgcfP/997z44osA5OTk1Pm1lNyIyCUtXryY4OBgPv/8cxYuXMjJkye5/vrrGThwIJs2bSIjI4O8vDzuvvtu9zU/+9nP+PTTT3n//ff56KOPWLNmDVlZWfV63crKSkaNGkXr1q1Zu3Ytn3/+Oa1atWL06NFVapBWr17Nnj17WL16NYsXL+b111+vkiBNmDCBt956i5deeokdO3bw8ssv06pVKywWC/fff7/7jdXltdde49prr6V79+41xrV27Vp69uxJ69at61UegISEhCq1Y1u2bKFdu3Zce+217nM6depEbGwsa9eurff9RbzVN998g91up2fPnrRq1cr9+PTTT92J/OTJk5k2bRo//OEPCQ4O5sorr+RHP/oRQLWV0C/KEJGAN3HiRMNmsxnh4eHux5133mkYhmFcd911xsCBA6uc/8wzzxg33nhjlWMHDx40AGPnzp1GcXGxERwcbPzzn/90P3/8+HGjZcuWxvTp093HAOPf//53lftERkYar732mmEYhvHGG28YvXr1MhwOh/v58vJyo2XLlsaKFSvcsXfu3Nk4c+aM+5y77rrLGDdunGEYhrFz504DMFauXFlj2Q8fPmzYbDZjw4YNhmEYRkVFhREdHW28/vrrtX6/pk+fblx//fXVjgNGaGhole9jeHi40aJFC+PWW2+tdv7p06eNYcOGGT/84Q8Nu91e5bmBAwcaTz75ZK0xiHi7C/++3377bcNmsxnfffedsWvXriqPnJycKteeOXPGOHTokFFeXm4sX77cAIyjR4/W+bVbeDYvExFfNXLkSBYsWOD+Ojw83L0/ePDgKud+9dVXrF69mlatWlW7z549ezh9+jQVFRUMGzbMfTwqKopevXrVK6avvvqK3bt3V6shKSsrq9Jkc/nll2Oz2dxfx8fH88033wDOJiabzcZ1111X42t06NCBMWPGsGjRIoYOHcqHH35IeXk5d911V61xnT59ulq/AJe5c+eSmppa5djjjz+O3W6vdu79999PcXExK1eurPZfacuWLTl16lStMYj4moEDB2K32zl69CjXXHPNRc+12Wx07NgRgLfeeouUlBTat29f59dSciMigDOZqa0Z5vxEB6CkpISxY8fy/PPPVzs3Pj6+zqOsLBZLtREQ5/eVKSkpYfDgwTWOHDr/jS4oKKjafV1DqVu2bHnJOB588EHuu+8+5s6dy2uvvca4ceMICwur9fzo6Gh38nShuLi4at/H1q1bc/LkySrHnn32WVasWMHGjRtrbN4qKCio15u5iDcoKSmp8ve/b98+tm7dSlRUFD179uTee+9lwoQJvPjiiwwcOJBjx46xatUq+vfvz5gxY8jPz+edd95hxIgRlJWVufvofPrpp/WKQ8mNiNTboEGDePfdd+nSpQstWlR/G0lMTCQoKIgNGzbQqVMnAE6cOMH3339fpQalffv2VToJ7tq1q0ptxaBBg1iyZAkxMTFEREQ0KNZ+/frhcDj49NNPq9WouNx8882Eh4ezYMECMjIy+Oyzzy56z4EDB7JgwQIMw8BisdQ7pnfffZenn36a//73vyQmJlZ73lUzNXDgwHrfW8RMmzZtYuTIke6v09PTAZg4cSKvv/46r732Gs8++yz/93//x+HDh4mOjubKK6/khz/8ofuaxYsX89hjj2EYBikpKaxZs4ahQ4fWKw51KBaRenv44YcpKCjgnnvu4csvv2TPnj2sWLGCtLQ07HY7rVq14oEHHuBnP/sZn3zyCdu2bWPSpEnVml6uv/56/vSnP7FlyxY2bdrElClTqtTC3HvvvURHR3Prrbeydu1a9u3bx5o1a3jkkUc4dOhQnWLt0qULEydO5P777+e9995z3+Of//yn+xybzcakSZOYMWMGPXr0ICUl5aL3HDlyJCUlJXz77bf1+K45bdu2jQkTJvD4449z+eWXk5ubS25uLgUFBe5z1q9fT0hIyCXjEPE2I0aMwDCMag9XB/+goCCeeuop9u3bR0VFBUeOHGHp0qX069cPcNaKZmZmUlJSQmlpKR9//HGV5u26UnIjIvXWoUMHPv/8c+x2OzfeeCP9+vXj0UcfpU2bNu4E5oUXXuCaa65h7NixpKamcvXVV1fru/Piiy+SkJDANddcw49//GMee+yxKs1BYWFhfPbZZ3Tq1Ik77riDPn368MADD1BWVlavmpwFCxZw55138pOf/ITevXszefJkSktLq5zzwAMPUFFRQVpa2iXv165dO26//fYGTbS3adMmTp06xbPPPkt8fLz7cccdd7jPeeutt7j33nsv2jQmIrWzGBc2eIuINJERI0aQnJzMvHnzzA6lmrVr1/KDH/yAgwcPEhsbe8nzv/76a2644Qb27NlTY8fqhsrPz6dXr15s2rSpxkkUReTSVHMjIgGtvLycQ4cO8eSTT3LXXXfVKbEB6N+/P88//zz79u3zaDz79+/nz3/+sxIbkUZQh2IRCWhvvfUWDzzwAMnJyfztb3+r17WTJk3yeDxDhgxhyJAhHr+vSCBRs5SIiIj4FTVLiYiIiF9RciMiIiJ+RcmNiIiI+BUlNyIiIuJXlNyIiIiIX1FyIyIiIn5FyY2IiIj4FSU3IiIi4lf+P0kBgWnC1Z5RAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "probability_of_zero = [result.measurement_counts['0']/N_shots for result in batch.results()]\n", + "\n", + "x, y = frequencies, probability_of_zero\n", + "\n", + "initial_guess=[1/2, 1, 10e6, drive_frame.frequency] # Amplitude, Offset, width, centerFrequency\n", + "optimal_params, _ = scipy.optimize.curve_fit(resonance_fit, x, y, p0=initial_guess)\n", + "x_fit = np.arange(x[0],x[-1], np.diff(x)[0]/10)\n", + "y_fit = resonance_fit(x_fit, *optimal_params)\n", + "\n", + "plt.figure()\n", + "plt.plot(x,y, 'o')\n", + "plt.plot(x_fit,y_fit)\n", + "plt.xlabel(\"Frequency (Hz)\")\n", + "plt.ylabel(\"Population\")\n", + "plt.vlines(drive_frame.frequency, min(y_fit), 1)\n", + "resonance_frequency = optimal_params[3]\n", + "print('Expected resonance frequency:', round(drive_frame.frequency*1e-6,2), 'GHz')\n", + "print('Measured resonance frequency:', round(resonance_frequency*1e-6,2), 'GHz')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Calibrating $\\pi$/2 pulses via Rabi spectroscopy \n", + "\n", + "Applying an electromagnetic field to a qubit leads to Rabi flopping, a cyclic behavior that is used to calibrate specific pulse parameters. Here, we will determine the optimal pulse length to realize a $\\pi$/2 pulse, an elementary block used to build more complex pulse sequences, such as the Ramsey sequence. \n", + "\n", + "Below, we will reuse the previous pulse sequence. First, we will fix the driving frequency to the resonance frequency and replace the coarsely-chosen pulse length by a FreeParameter.\n", + "\n", + "We also choose to increase the amplitude of the waveform to increase the rate of the expected oscillations.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "waveform = experiment_configuration[device_name][\"rabi_wf\"]\n", + "\n", + "rabi_sequence = ( \n", + " PulseSequence()\n", + " .set_frequency(drive_frame, drive_frame.frequency)\n", + " .play(drive_frame, waveform)\n", + " .capture_v0(readout_frame)\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As for qubit spectroscopy, we will sweep one parameter of our pulse sequence, here the length of the waveform.\n", + "\n", + "We construct another batch of task with lengths ranging from 12ns to 200ns with a step of 12ns so all the sequences verify the 4-sample constraint (waveforms must have a length multiple of 4ns). " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "start_length=12e-9\n", + "end_length=2e-7\n", + "lengths = np.arange(start_length, end_length, 12e-9)\n", + "N_shots = 100\n", + "\n", + "pulse_sequences = [rabi_sequence(length=length) for length in lengths]\n", + "\n", + "batch = device.run_batch(pulse_sequences, shots=N_shots)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To increase the chances of fitting success, we estimate some initial parameters values:\n", + "- initial signal mean is taken as the mean of the measurement data\n", + "- initial Rabi frequency is set as the position of the maximum value of the measurement data's FFT" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "def damped_oscillation_fit(x, A, A0, Tau, f, x0):\n", + " return A*np.exp(-x/Tau)*np.cos(2*np.pi*(x-x0)*f)+A0\n", + "\n", + "def estimate_fit_parameters(x, y):\n", + " signal_mean = np.mean(y)\n", + " idx_max=np.argmax(np.abs(fft(y-np.mean(y))))\n", + " oscillation_frequency_estimate = fftfreq(len(x), np.diff(x)[0])[idx_max]\n", + "\n", + " return signal_mean, oscillation_frequency_estimate" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The projected state after the qubit measurement reflects the oscillatory dynamics of the qubit that oscillates between the state $|0\\rangle$ and the state $|1\\rangle$. \n", + "From the measurement data, one can extract the Rabi frequency as the flipping rate and compute the length of $\\pi/2$ pulse." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Rabi frequency: 13.13 MHz\n", + "rx(pi/2) length: 17.62 ns\n", + "Redefined rx(pi/2) length: 16.0 ns\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAG1CAYAAAAYxut7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB0BElEQVR4nO3deXxU1fn48c/MZJkAWQghG4QQwhq2sBQMaBUbBBeU+nWpiqBW+5Vq1VKt+msV6YbWjdqvldYq2mJFrYgbxgUFRUGEECVssgTCkoUQsu8z9/fHyZ1kSAJZZubO8rxfr7zmZnJn5rmZ7bnnPOcck6ZpGkIIIYQQAcxsdABCCCGEEEaThEgIIYQQAU8SIiGEEEIEPEmIhBBCCBHwJCESQgghRMCThEgIIYQQAU8SIiGEEEIEPEmIhBBCCBHwJCESQgghRMCThEgIIYQQAc/QhOjzzz9nzpw5JCYmYjKZWLNmzVlvs379eiZOnEhoaChDhw7lpZdecnucQgghhPBvhiZE1dXVjB8/nmeffbZT++fl5XHppZcyY8YMcnJyuOeee7j11lv58MMP3RypEEIIIfyZyVsWdzWZTLz11lvMnTu3w33uv/9+3n//fXJzcx3X/eQnP6GsrIysrKxOPY7dbuf48eOEh4djMpl6GrYQQgghPEDTNCorK0lMTMRsdn17TpDL79GNNm3aRGZmptN1s2bN4p577unwNvX19dTX1zt+P3bsGGlpae4KUQghhBBudOTIEQYOHOjy+/WphKiwsJC4uDin6+Li4qioqKC2tpawsLA2t1m6dClLlixpc/2RI0eIiIhwW6xCCCGEcJ2KigqSkpIIDw93y/37VELUHQ8++CCLFi1y/K7/QyMiIiQhEkIIIXyMu8pdfCohio+Pp6ioyOm6oqIiIiIi2m0dAggNDSU0NNQT4QkhhBDCR/nUPEQZGRmsW7fO6bqPP/6YjIwMgyISQgghhD8wNCGqqqoiJyeHnJwcQA2rz8nJIT8/H1DdXfPnz3fsf/vtt3Pw4EF+/etfs2fPHv72t7/x+uuv88tf/tKI8IUQQgjhJwxNiLZu3cqECROYMGECAIsWLWLChAk8/PDDABQUFDiSI4CUlBTef/99Pv74Y8aPH8+TTz7JP//5T2bNmmVI/EIIIYTwD14zD5GnVFRUEBkZSXl5uRRVCyGEED7C3d/fPlVDJIQQQgjhDpIQCSGEECLgSUIkhBBCiIAnCZEQQgghAp4kREIIIYQIeJIQCSGEECLgSUIkhBBCiIDnU2uZCSFasduhsQZC+xgdiRCeZ7dBXTmE9YVOLPZps2tsySuluLKO2HArU1KisZjds0io8E2SEAnha6pLYNsK+OZFqDwOIX0gIhHix8KFD0F0itERCuEex3Pgq79C8W4oPQBNdRCbBunXw7hroU9suzfLyi1gybu7KCivc1yXEGll8Zw0Zo9J8FDwwtvJTNVC+Aq7DT5ZDF//HWwN7e8TFAYz/h+c83OwyPmO8BO2RvjiKfj8z2Bvan8fcxBc+FuYfo9Ti1FWbgELV2Zz+hedvsdz8yZKUuQj3P39LQmREL7A1gRrFsKO19XviRNh6v/CsIug5iSUH1FfGIe+aP77BJi3GnpFGxezEK5QdgRenw/Hs9XvaVdA+jyIGQbWSNi1Bra/Ase2qr9PvR1mLQWzGZtd49zHPnVqGWrNBMRHWtl4/4XSfeYDJCFyMUmIhM9pqof/3gJ73lNnwXOXw7ir2+6naZDzCnz4G6grg0HTYP4aCAr1dMRCuEZdBbxwEZzYrZKfS56EsVe1XzO0+TnIekBtj74SfrycTYeruO75zWd9mFdvO4eM1H4uDl64mqxlJkQg0zR442aVDFlC4Jp/t58MgfqSmDAPbsmC0AjI/wrevkPdhxC+xm6D1bepZKhPPNy+Ub32OyqgPmch/M8LYA6Gnavh/UUUV7bfMnS6zu4n/JskREJ4s20rYO/7YAmF61+HkZec/Taxo+Caf6nWpB1vwPql7o9TCFdb9zv4PguCrPCT/0DUoLPfZuxVcN2rgAm2r2TkqfWdeqjYcGuPQhX+QRIiIbxVaR58+Fu1nfkIpM7o/G1TZ8ClT6ntDY/BwQ0uD08It9m5Br5cprYv/z8YOKnztx02E869B4DhW37LmIgaOqoOMqFGm01JkVo7IQmREN7JblfdXY3VkHyuKhTtqkkLYPItavuDX6uROkJ4u/qqllqg6Xd33EV8Jhf8P4gfh6m2lBV9XwK0NkmR/vviOWlSUC0ASYiE8E5fL4fDX0Jwb5j7LJi7+Vb90cPQqx+c2KOG6wvh7TY+DZUF0HewSmy6IygErnwegqz0L9rIe9P2ER/p3C0WH2mVIffCiUxUIoS3qS6BT/+gtmf9UX0xdFdYX9Xd9s4vYP2jqsYiPN4VUQrheqV5auJFgIv+CME9qO2JHQk/WgwfPsjo759j46LtbDlaJzNViw5JC5EQ3ubLv6iusoR0bBMWsOnASd7OOcamAyex2bsxYix9HgyYBA2V8NFDro9XCFf56Ldgq4eU82HkpT2/vx/cClHJUFWE5ZvnyUjtxxXpA8hI7SfJkGhDEiIhvElVMWx5HoBtQ27n3D9/xnXPb+buVTlc9/xmzn3sU7JyC7p2n2YzXPIEYFITOx7Ldn3cQvTUwQ1qegmTBS5+rFPrk51VUAhc0FyP9OUyNa+REB2QhEgIb/LlX6CplrK+47hqXXibGXYLy+tYuDK760nRgIkw7hq1/dUzLgpWCBfa8Gd1OfkWNXWEq4y7FmKGQ+0p2Pw3192v8DuSEAnhLSoL4Zt/AvBI1RXtjIvBsR7Tknd3db37bNpd6nLX21B6sAeBCuFix7fD4Y1q7qxzf+na+zZb4IIH1fZX/wc1pa69f+E3JCESwltsXAZNdVT2n8iaypEd7qYBBeV1bMnr4gd7/BgYmgmaHTY926NQhXCpr/5PXY6+EiIHuP7+0+ZC3FhVRyevfdEBSYiE8Aa1p2DbSwDsGPZz6HAquRbdWm5g+t3qcvsrajSbEEYrOwI731Lb0+50z2OYzXD+fWp720tqfUAhTiMJkRDe4NvXoKkWYkdjGtK5Gam7tdzA4PMgcYJ6rObibSEM9fVy0GyQ8kNIGO++xxlxKYQnQk0J7HrHfY8jfJYkREIYTdNg64tqe/LNTBnSj4RIq3uWGzCZWlqJtvwDGqq7E7EQrlFXDtteVtsZv3DvY1mCYNJNaru5Vk+I1iQhEsJoh7+Ckr1qVupx12Ixm1g8Jw1o23HmkuUGRl2u5mapLZUzZWGs7H+rup7+I1V9m7tNnK8Kt49shsJc9z+e8CmSEAlhNL11aOxVYI0AYPaYBJ6bN9E9yw2YLTDxRrWd80r370eIntA02L5SbU/5WfeXp+mKiAQYeZna3vqC+x9P+BRZukMII1WXqGHwAJNvdvrT7DEJzEyLZ0teqeuXGxh/HXz6Rzj0hVouITql5/cpRFcU5MCJ3WAJhTH/47nH/cGtsGuNqtvLXOI4CRFCWoiEMFLOK2BvVIXOiRPa/NliNrlnuYHIgTDkArX97auuuU8huiKn+XU38lIIi/Lc4w4+F2JGqOVxvnvNc48rvJ4kREIYRdMcQ+2ZfIvnHz/9BnWZ8yrY7Z5/fBG4mhpgxxtqO/16zz62ydTSGisnA6IVSYiEMMrxbDVjdHAvNSGdp426DEIjoTxfdZ0J4Sn7PlJF/X3ioJPTTLjUmP8BkxmObZNZ24WDJERCGCV3tboccTGE9vH84weHwZjmREyKq4Un5fxHXY67Rg2H97Q+sWreI4DcNz3/+MIrSUIkhBHs9pbZeY1oHdLp3Wa73pGVwIVnVJfAvg/V9ngPd5e1NuYqdamfmIiAJwmREEY48jVUHIPQCM/Mv9KRgZOh3zA1c/X3WcbFIQJH7ptgb1KzUselGRfHqDlgDobiXVC0y7g4hNeQhEgII+jN9CMvg+BuLMHhKiYTjJ6rtvXh/0K408416nLctYaGQVgUDJuptnP/a2gowjtIQiSEp9ma1Dwo0FLDY6RRc9Tl/nWylIdwr6piyN+ktvXXnZH0+Y9y31SjPkVAk4RICE87vBGqT0BY35a5gIwUP04t5dFUC/s/MToa4cfse9YCGmVRo9l0sjc2u8FJyIiL1SjPU4fUiDMR0CQhEsLT9CLOtCvAEmxsLKC6zfSzdVnbTLhJVm4Bm9eqhVz/cWI01z2/mXMf+5Ss3ALjggrpDSMuUdsy2izgSUIkhCfZmmD3u2rbyNFlp0u7Ql1+/yE01Rsbi/A7WbkF/HrlRibbvgXgQ/sPACgsr2PhymxjkyL9tb93rXSbBThJiITwpKNb1IR0YX0hebrR0bQYMBnCE9TK4wfXGx2N8CM2u8aSd3dxgXk7ISYb++2JHNAGAKCnH0ve3WVc91nqhWAJUd1mJ/YaE4PwCpIQCeFJ+tD2oTONmZCuI2Zzyyrg0m0mXGhLXikF5XXMsnwDQFZz65BOAwrK69iSV2pAdKhJUfVJGr//wJgYhFeQhEgIT/q+eUK6EbONjaM9aZery73vq649IVyguLKOUBqYYW7uLrP9oMP9DDO8+f24V+biCmSSEAnhKaV5cGIPmCyQ+iOjo2lr0DTo1Q9qT7UMjRaih2LDrZxn3kEvUz3HtH7s0FI63M8wekJ0dAtUnzQuDmEoSYiE8BS9dSh5mpoUzttYglpmzd7/sbGxCL8xJSWay605AHxkmwyYnP5uAhIirUxJifZ4bA5RSRA3FjS7WnhWBCRJiITwFL1+aLgXdpfphjbP3LtP5iMSrmExwUWhuQB8Zp/g9Dc9NVo8Jw2L2YSh9G5sqSMKWJIQCeEJ9ZVwaKPa9uaEKPVCwATFO6HiuNHRCH9QvBtrbRE2i5XDfdKd/hQfaeW5eROZPSbBmNhaG3Gxuty/TqaeCFBeNMxFCD924DOwN0J0KsQMNTqajvXuBwMmqll7938CE+cbHZHwdc2zn1tSzuPT62ezJa+U4so6YsNVN5nhLUO6hAnQJw6qitTJy1AvrPMTbiUtREJ4gi90l+kc3WZSRyRcQF8OZmgmFrOJjNR+XJE+gIzUft6TDIGaemL4LLWt1/uJgCIJkRDuZm9VqOmNw+1Pp68AfnA92BoNDUX4uPqqlhGLesG+N9NPBg58amwcwhCSEAnhbsU71WKuwb0h6Ryjozm7xAkQFg31FXD0G6OjEb7s0EawNajFg/ulGh3N2aX8EExmOLkPyo8aHY3wMEmIhHA3fSmMwedCUIihoXSK2dJcXI10m4meadVdhsmLusc6EhYFiRPVtixhE3AkIRLC3fQP1iEXGBlF1+jdZvtl+L3ogdYJka9InaEuD3xmbBzC4yQhEsKdmurh8Fdq25cSIn0m7cLvoLLQ2FiEbzp5AE7lgTkYUs4zOprOG9KcEB1cr+r/RMCQhEgIdzr6DTTWQO9YiB1ldDSd16c/JIxX23mfGxuL8E3716nLQedAaLixsXTFwB+oer+aElX/JwKGJERCuJPe7D7kAt+ooWhNXwE8b4OxcQjfpHcV6/VoviIoRNX7gXSbBRhJiIRwJ8eXwgxDw+gqm11jt1Uts1C3bwM2u2ZwRMKn2G1wuHlm9pTzjY2lO/T360FJiAKJJERCuEttGRzPVts+9KWQlVvAuY99ylVrNRo1C9aqI1z16CqycguMDk34isIdUFcOIeEtXa++RK/3O/wVNNYZGorwHEmIhHCXQxvV6tkxwyFygNHRdEpWbgELV2ZTUF5HNWF8pw0BYGh1NgtXZktSJDrn0BfqMnkaWHxwhaj+IyE8AZrq4Mhmo6MRHiIJkRDu4mPD7W12jSXv7qJ159hX9tEAZJh3AbDk3V3SfSbOLq85IfKl0WWtmUwt71upIwoYkhAJ4S4+lhBtySuloNy5e2CTPQ1QCZGGRkF5HVvySo0IT/gKW1PLVBODfTQhgpZu7sNfGhuH8BhJiIRwh8pCNf0/JkiebnQ0nVJc2bZWYpt9OPVaEAmmUlJMhR3uJ4RDwbfQUAnWSIgfa3Q03Te4+X17fDs0VBsbi/AISYiEcAf9rDJ+rFoOwAfEhlvbXFdPCNu1YUBLt1l7+wnhcKh53qrkc9UyML4qahBEDgJ7Exz52uhohAdIQiSEOzi6DM41No4umJISTUKkldNnS/rKpuqIppl3khBpZUpKtOeDE77D1+uHWkuepi7197Pwa4YnRM8++yyDBw/GarUydepUtmzZcsb9ly1bxogRIwgLCyMpKYlf/vKX1NVJE77wMvoHqP6B6gMsZhOL56iaodZJ0VfNdUTnmHex+LJRWMw+NsGk8BxbI+Q3j8ry5fohnd5tdkjqiAKBoQnRa6+9xqJFi1i8eDHZ2dmMHz+eWbNmUVxc3O7+//nPf3jggQdYvHgxu3fv5oUXXuC1117j//2//+fhyIU4g5pSKFbdSwzKMDaWLpo9JoHn5k0kPrKlW+xbbSi1hBJjqmB2bJlxwQnvdywbGqshLBpi04yOpuf0+r9jW6Gx1thYhNsZOkHEU089xW233cbNN98MwPLly3n//fd58cUXeeCBB9rs/9VXXzF9+nSuv/56AAYPHsx1113H119L/67wIvmb1GX/kdA7xthYumH2mARmpsWzJa+U4so6YsOtWDdmQN56yP8K4vzgi064hz7/0OBzwWx4B0TPRQ+BPvFQVQjHtvlUF7joOsNesQ0NDWzbto3MzMyWYMxmMjMz2bRpU7u3mTZtGtu2bXN0qx08eJC1a9dyySWXdPg49fX1VFRUOP0I4VZ687oPdZedzmI2kZHajyvSB5CR2g9TcnNLV75MUifOQD8Z8JfEwWSSbrMAYlhCVFJSgs1mIy4uzun6uLg4CgsL273N9ddfz+9+9zvOPfdcgoODSU1N5YILLjhjl9nSpUuJjIx0/CQlJbn0OIRoQx9h5iPD7Ttl0DnqUhIi0RG7DY4014D6WFfxGTkKqzcaG4dwO59q01y/fj1/+tOf+Nvf/kZ2djarV6/m/fff5/e//32Ht3nwwQcpLy93/Bw5csSDEYuAU1cBhd+pbR9uIWpjwGQwWaD8CJTJe0i0o3gX1Feo9cviRhsdjeskN7d2HfkGmhqMjUW4lWE1RDExMVgsFoqKipyuLyoqIj4+vt3bPPTQQ9x4443ceuutAIwdO5bq6mp+9rOf8Zvf/AZzO33WoaGhhIaGuv4AhGjPkS1q/bK+KRCRaHQ0rhPaRy3SeTxbtRJFSUurOI3eepj0A9+ef+h0/UdAr35Qc1JN0jhoqtERCTcxrIUoJCSESZMmsW7dOsd1druddevWkZHRfnNrTU1Nm6THYlFvPE0zdn0lm11j04GTvJ1zjE0HTsp6T4HKH7vLdHo3SH77NX4iwOmvC3/qLgNVRyTdZgHB0FFmixYtYsGCBUyePJkpU6awbNkyqqurHaPO5s+fz4ABA1i6dCkAc+bM4amnnmLChAlMnTqV/fv389BDDzFnzhxHYmSErNwClry7y2kdqIRIK4vnpDF7TIJhcQkDHPb9guoODToHNj8rdUSiffrrQq838yfJ02H3u/La93OGJkTXXnstJ06c4OGHH6awsJD09HSysrIchdb5+flOLUK//e1vMZlM/Pa3v+XYsWP079+fOXPm8Mc//tGoQyArt4CFK7M5vT2osLyOhSuzeW7eREmKAkVjnZqHBSDZz86SoeWLrngX1J6CsL7GxiO8R9kRqDgG5iAYMMnoaFwvqbmb7MgWsNv9Y0oB0YZJM7qvycMqKiqIjIykvLyciIiIHt2Xza5x7mOftlkhXGcC4iOtbLz/QpndNxDkb4YXZ0HvWLj3e9XU7m/+OglO7ofrX4fhs4yORniL796A1beqZOi2T42OxvVsjbA0CZpq4Y4tqq5IeJwrv7/bI2luD2zJK+0wGQLQgILyOrbklXouKGEcfQHIpCn+mQxBq+H3UkckWvHX+iGdJbil5UsWevVbkhD1QHFl59ZQ6+x+wsfpc7Ak+fEolEEyQaNoh2OEmR+/9pOmqEtJiPyWJEQ9EBtuPftOXdhP+DBNa5UQTTE2FnfSE6Jj21TNlBC1p1qt3eeHBdW61nVEwi9JQtQDU1KiSYi00lHniAk12mxKSrQnwxJGOHUIqovBHAwJ6UZH4z7RQ1SNlK1BzckixJFvAA2iU6FPrNHRuM/AH6jLku/VAs7C70hC1AMWs4nFc9RCl6cnRfrvi+ekSUF1INDPGhPTIdiPWwRNppYWsKPfGBuL8A5H9OH2flo/pOvdD/oNU9vy2vdLkhD10OwxCTw3byLxkc5fgvGRVhlyH0iONidEA/24u0ynnynLl4KAVl3FPzA2Dk9wdJtJHZE/MnQeIn8xe0wCM9Pi2ZJXSnFlHbHhqptMWoYCSOsRZv7OkRBtNTYOYTy7raXrNBBOBpKmQM5KqSPyU5IQuYjFbCIjtZ/RYQgj1FdC0U617c+jbHSJ6Wqh18rjUH4MIgcYHZEwyok90FClFnQNhLl59Pf3sW1qbiJLsLHxCJeSLjMheupYtlrQNTIJIgKgizSkd8tq5tJtFtj053/ABP9a0LUjMcPBGgmNNVC4w+hohItJQiRETwXCcPvTSWG1gJbnf2AA1A+BWrJD7xqUbjO/IwmRED3lqB8KgO4ynRRWC2ipIwuUhAha3udHJSHyN5IQCdETmhZ4Z8nQcqzHc6CpwdBQhEFqy1QNEcCAyYaG4lEDm49VBhX4HUmIhOiJkwegrgyCrBA/1uhoPCd6iFrt3lYPRVJLEZCOZ6vLvoOhT39DQ/GoxAnqsuwwVJcYG4twKUmIhOiJY9vUZcL4wBpxYjLJ8PtApz/vgdQ6BBAWpYqroeX9L/yCJERCdILNrrHpwEnezjnGpgMnsdk19Qf9A1FfCTuQDJTC6oAWiPVDOv39LgmRX5F5iIQ4i6zcApa8u4uC8pbFTBMirSyek8bsgE6I9FoKSYgCTqDWzukGTIJvX5XWUT8jLURCnEFWbgELV2Y7JUMAheV13L3ya+wF36orBkw0IDqDDZgImNTCtlUnjI5GeFLpQagtBUtoYNXO6Vq3EGmasbEIl5GESIgO2OwaS97dRXsfdxow0pSP2d6IFtYX+qZ4OjzjWSOh/0i1fUzOlAOK3jKSMB6CQoyNxQhxY1QyWFemkkPhFyQhEqIDW/JK27QMtTbOfACAsr7jVJFxINJbxo5lGxuH8CxHd1mAFVTrgkIgYZzaljoivyEJkRAdKK7sOBkCSG9OiIrCR3siHO+kD0E+LglRQNGf70CsndMNkPmI/I0kREJ0IDbcesa/p5v2A6AF9JdCqxYiqaUIDE0NLet46QlxIJKRZn5HEiIhOjAlJZqESCvtdYZFUE2quQCA4RPO92xg3iRuDJiDVYFt2WGjoxGeULwTbA1gjVITdAaqgc0JUeF30FRvbCzCJSQhEqIDFrOJxXPSANokRePMqpCypvdALOEBNEvv6YJajTKSOqLAcHy7ukycELi1c6AGUoRFq+SwKNfoaIQLSELkKoW58NZCeP9eoyMRLjR7TALPzZtIfKRz99m5Yao1pNfgAFrhviOObjPpOggIeuIbiFNNtGYytXSbHZXXvj+QiRldpbEWvv0P9O4Plzwe2GdOfmb2mARmpsWzJa+U4so6YsOtnLNlJewlcEfZtJbY/MWotxwI/+ZoIQrwhAjU+3//x3Iy4CckIXKV+DFgskD1Cag4BpEDjY5IuJDFbCIjtZ/6RdPgrQCeofp0ekvB8Ryw28BsMTQc4UYNNVC8W20HegsRyMmAn5EuM1cJDoNYVW8ibw4/V1kAVUVgMkP8OKOjMV7McAjuDY3VUPK90dEIdyr8DjQb9ImHiESjozFeYrq6LPke6qsMDUX0nCRErqS/OSQh8m/6ch0xIyCkl7GxeAOzpeW1L4XV/k3qh5z1iYWIAYCmkkXh0yQhciXHJHWSEPm14znqUk8ChEzQGCj051fqh1rI577fkITIlRxvjByZpM6fFeSoy4R0I6PwLo5J6iQh8muOFqIAnpDxdNIz4DckIXKluNGtJqnLNzoa4S7SQtSW3oVSlCuT1Pmr2jIoVcvVSAtRK9JC5DckIXKloFCVFIG8OfxVZSFUFQImNUuzUKKSZZI6f6e3jPYdDL2ijYzEuyQ0J0Qn90NdubGxiB6RhMjV5GzBvzkKqodDaB9jY/EmJlPLa1//Hwn/ckzqh9rVux9EDVLb8tr3aZIQuZokRP5Nuss6ljBeXcqXgn9qvWSHcCaf+35BEiJXk8Jq/yYF1R2ThMi/6a99ORloSxIivyAJkavFjgJLKNSXQ+lBo6MRrqZ/2cuXQlt6QlS0E2yNxsYiXKum1UAR/XkWLSQh8guSELmaJbhl9W95c/iXquZlWTC1PMeiRd/BEBqpCqtP7DE6GuFK+olA9BCwRhobizfSk8RTh6D2lKGhiO6ThMgd5GzBP+ldBv2GQmi4oaF4JZMJEpqXMpFuM//i6CqW1qF2hfWFvilqW68zFD5HEiJ3kITIP0lB9dlJHZF/0l/7UjvXMfnc93mSELmD/oVZ8B3Y7YaGIlxICqrPTv/fSELkX6R27uwkIfJ5khC5Q8wICLJCQyWcyjM6GuEq+peCdBt0TP/fFO4Au83YWIRr1Ja1fI7FjzM0FK/meO3LIq++ShIid7AEQWya2pYzZf9QfRLKj6jtBPlS6FC/VAjuDY01auZe4fv0z7CoZJmh+kz0gRanDqkkUvgcSYjcRf/SlLMF/1DQ3AwenSqjbM7EbGn5YpCTAf8g3WWd0ysaIptnrC7cYWwsolskIXIXR3GpJER+QQqqO08Kq/2LjDDrPDkR9mmSELlLfKsvBZmx2vdJ/VDnSULkX2SEWefJibBPk4TIXeLSwGSBmhKoLDA6GtFTMsKs81onRDLK0rfVlUPpAbUta5idXbzMw+XLJCFyl+Aw6D9CbcvZgm+TZQu6pv9INcqyvkJGWfo6vRYmcpAUVHeG3mVW8j001hobi+gySYjcSc4W/IPeOtQ3BcKijIzEN1iCIG602pbXvm9zdJfJyMpOCU+A3v1Bs0HRLqOjEV0kCZE7SYGdf5BRNl0ndUT+wVE7l25oGD7DZGo5ES6U176vkYTInaTAzj84zpKlu6zTJCHyD3qXmbz2O0/W8/NZkhC5kz4fS3m+qkMRvkkKqrsuQUZZ+rzGWlULAy2fZeLsHKUSciLsayQhcidrJPQdrLal28w31Z5SM8+CnCV3RWwamIOgthTKjxodjeiO4t2qFqZXDITHGx2N79A/J4p2gq3R2FhEl0hC5G5ytuDb9OdNli3omqBQiB2ltqXrwDfp3WXxY1VtjOicvikQEg62+pYWNuETJCFyN1nwz7fJLL3dJ3VEvq11QiQ6z2xutXyNfO77EkmI3E2+FHybLNnRfXrNlbz2fZMjIZIh910mJ8I+SRIid9M/TEr2QUO1sbGIrpOC6u6TkwHfZbdDUa7alhairpORZj5JEiJ3C4+DPvGAporshO+oq4DSg2pbEqKuixsNJjNUFUJlodHRiK44lQcNVWrG8X5DjY7G9zjmItohy9f4EEmIPEHOFnyTnsBGDIDe/YyNxReF9IaY4Wpbail8i95dFpumZh4XXdN/BFhC1fI1ZYeMjkZ0kiREniBLePgmKSrtOek280167Yu89rvHEqwW+AZ57fsQSYg8QQrsfJM+9b4UlXafIyHKMTQM0UVyMtBzMuWKz5GEyBP0LrOiXdDUYGwsovPkS6HnpIXIN8mSHT0na1n6HEmIPCEqWc1abW+EE3uMjkZ0hq1RzdQLkhD1hGP5miNQfdLYWETnVJ2AygLApGqIRPe0nnZClq/xCZIQeYLTCshytuATSr4HWwOERqiEVnSPNRKih6htWf3bNxQ1tw71S4XQPsbG4sti09Qoy+oTMsrSR0hC5CnSdeBb9C6DuDFq5lnRfa2HIAvvJ13FrhHSq2WUpZwI+wTDP+mfffZZBg8ejNVqZerUqWzZsuWM+5eVlXHHHXeQkJBAaGgow4cPZ+3atR6KtgekwM636M9TghRU95gsY+BbJCFyHfnc9ymGJkSvvfYaixYtYvHixWRnZzN+/HhmzZpFcXFxu/s3NDQwc+ZMDh06xH//+1/27t3L888/z4ABAzwceTc4RprJRF0+QYYdu07r177wfrJkh+vIKEufYuiMW0899RS33XYbN998MwDLly/n/fff58UXX+SBBx5os/+LL75IaWkpX331FcHBwQAMHjzYkyF3X8wwCAqDxmooPaB+F95J0+Qs2ZX0/+HJfdBQo7oShHdqrG1ZoV1e+z0nI818imEtRA0NDWzbto3MzMyWYMxmMjMz2bRpU7u3eeedd8jIyOCOO+4gLi6OMWPG8Kc//Qmbzdbh49TX11NRUeH0YwizRS1lAFJH5O3Kj0JdGZiDoP9Io6PxfX3ioHd/0OxQvMvoaMSZFO1Sz1Pv/up5Ez2jJ5Vl+VB7ythYxFkZlhCVlJRgs9mIi3N+08XFxVFY2H5F/sGDB/nvf/+LzWZj7dq1PPTQQzz55JP84Q9/6PBxli5dSmRkpOMnKSnJpcfRJXK24Bv01qH+IyEo1NhY/IGMsvQdrbuKTSZjY/EHYX1bRqlKHZHXM7youivsdjuxsbH84x//YNKkSVx77bX85je/Yfny5R3e5sEHH6S8vNzxc+TIEQ9GfBoZaeYbpIbC9aSw2jdIV7HryYmwz+hWQlRUVMSNN95IYmIiQUFBWCwWp5/OiImJwWKxUFRU1Oa+4+Pj271NQkICw4cPd3qMUaNGUVhYSEND+zNAh4aGEhER4fRjmNYjDmSiLu8lBdWulyBD732CnAy4nD1O/S+P7NrMpgMnsdnls99bdauo+qabbiI/P5+HHnqIhIQETN1oWg0JCWHSpEmsW7eOuXPnAqoFaN26ddx5553t3mb69On85z//wW63Y26eG+b7778nISGBkJCQ7hyK5+TnQ2E9FGjACfj8QwiPbfl7TAwMGmRYeKIVSYhcT/+CLdoJdpuqqRPexW5Tzw9IQuQiWbkFfLxR40mgJj+H657fTEKklcVz0pg9JsHo8MRpupUQbdy4kS+++IL09PQePfiiRYtYsGABkydPZsqUKSxbtozq6mrHqLP58+czYMAAli5dCsDChQv5v//7P+6++25+8YtfsG/fPv70pz9x11139SgOt8vPhxEjoK6u5bp/XOy8j9UKe/dKUmS02jJVAAkQP8bQUPxK9BAI7q1GWZ7cD/1HGB2ROF1pnnp+gsLULNWiR7JyC1i4MptYEsEKqabjhNJAYTksXJnNc/MmSlLkZbqVECUlJaG5oMvn2muv5cSJEzz88MMUFhaSnp5OVlaWo9A6Pz/f0RKkP+6HH37IL3/5S8aNG8eAAQO4++67uf/++3sci1uVlDgnQ+2pq1P7SUJkrKJcdRk5SBVECtfQR1ke3aK6ZSQh8j56y2jcaGnB6yGbXWPJu7vQgCL6clILp5+pkuGmo+zQhmAClry7i5lp8VjMUrzuLbqVEC1btowHHniAv//97z2eB+jOO+/ssIts/fr1ba7LyMhg8+bNPXpMITrkWOVbugxcLn6sSogKvoWxVxkdjTidFFS7zJa8UgrK9ZNgEzvtg/mhZQejzYfYYRuCBhSU17Elr5SM1H5Ghipa6VZCdO2111JTU0Nqaiq9evVyTJKoKy0tdUlwQnhcgdQPuY0UVns3SYhcprjSuUdgl5bMD9lBmunwGfcTxup2C5EQfkm+FNxH/58W7lCjLGWeG+8iI8xcJjbc6vT7LruaiyjNfPiM+wljdSshWrBggavjEMJ4TQ1wYo/aloTI9WLTwGSBmhKoLICIRKMjErqqYqgqBEwQl2Z0ND5vSko0CZFWCsvr0FAtRACjTIcxYQfMxEdamZISbWicwlm31zKz2WysWbOG3bt3AzB69Gguv/zyTs9DJITXObEH7I1gjYRIA2c091fBYRAzHE7sVq0RkhB5D72gut9QCOltbCx+wGI2sXhOGgtXZmMC8rQE6rRgepvqGWwq4pCWwOI5aVJQ7WW6NTHj/v37GTVqFPPnz2f16tWsXr2aefPmMXr0aA4cOODqGIXwjNZdBtKd4x4yY7V3kq5il5s9JoHn5k0kPtKKDQt7NDWCeHrv4zLk3kt1KyG66667SE1N5ciRI2RnZ5OdnU1+fj4pKSnePyeQEWJi1DxDZ2K1qv2EcaSGwv1kGQPvJAmRW8wek8DG+y/k1dvOIWrIRAB+N1WTZMhLdavLbMOGDWzevJno6Jb+z379+vHoo48yffp0lwXnNwYNUpMulpSo38uPwarrwBwMt3wIliCZqdobyAzV7te6sFp4D5luwm0sZpMaWl96Dhx6A3ORvPa9VbcSotDQUCorK9tcX1VV5f1LaBhl0KCWhEebAJv7Qn0FJPWSGZG9gabJWbIn6K1vp/KgrlzVawljNVRDyT61La2j7hMv0054u251mV122WX87Gc/4+uvv0bTNDRNY/Pmzdx+++1cfvnlro7R/5hMcqbsbcoOqwTVEqIKf4V79IqGiIFqW183SxireDegQZ846BN71t1FN8WmASY1mq+q2OhoRDu6lRA988wzpKamkpGRgdVqxWq1Mn36dIYOHcpf/vIXV8fonyQh8i7689B/JARJK6dbSWG1d5GuYs8I7dOyRpzU0HmlbnWZRUVF8fbbb7Nv3z727FHztowaNYqhQ4e6NDi/5kiI5I3hFaSGwnMSxsH3H8jJgLeQrmLPiR+nFjcu3AFDM42ORpym2/MQAQwbNoxhw4a5KpbAIrP2ehfHkh2SELmdnAx4F1muxnPix8LO1XIy4KU6nRAtWrSI3//+9/Tu3ZtFixadcd+nnnqqx4H5vf6j1CizujIoPwJRMsLMUHKW7Dl60lm8W80OLl2UxrHbWmq55GTA/aSw2qt1OiHavn07jY2Njm3RQ0Ehql6laId6c0hCZJyaUqg4qrbjRhsbSyCIGgShkVBfDiV7JQk10skD0FQLwb0geojR0fg//bVesk+N7pNZwb1KpxOizz77rN1t0QPxY1sSopGXGh1N4NLP1voOlmHgnqCPsjy8UXXXSEJkHL3bMm40mGXZJbcLj4PesVBdDEW7IOkHRkckWunWKLNbbrml3XmIqqurueWWW3ocVMCQkWbeQbrLPC9Bug68grz2PU9ma/da3UqIXn75ZWpra9tcX1tby7/+9a8eBxUwpLjUOxTlqkupofAcORnwDrJcjefJa99rdWmUWUVFhWMixsrKSqyt1uey2WysXbuW2FiZ2Ksz8vPzKSmwQYENCvLgq/VgjXD8PSYmhkGylIdnyFmy57UuLpVRlsaRhMjzJCHyWl1KiKKiojCZTJhMJoYPbzubr8lkYsmSJS4Lzl/l5+czYsQI6urqWq78xwynfaxWK3v37pWkyN2a6uGEmktLEiIPihmuZgWvL1ezhPcdbHREgaeySNWymMwQO8roaAKHnnwW7VSj/KR2y2t0KSH67LPP0DSNCy+8kDfffNNpcdeQkBCSk5NJTEx0eZD+pqSkxDkZakddXR0lJSWSELnbiT1gb4KwvhAxwOhoAoc+yrLwO1VYLQmR5+ktFP2GQUgvY2MJJNFD1Ki+xho1SWP/EUZHJJp1KSE6//zzAcjLyyMpKQmzuVslSEJ4j9bdZdJt41kJ41RCVLgD0mQNRI+TJTuMYbZA3Bg4ukW99iUh8hrdmqk6OTkZgJqaGvLz82loaHD6+7hx0h8tfITUUBhHJqkzliRExokf25wQfQdjrzI6GtGsWwnRiRMnuPnmm/nggw/a/bvNZutRUEJ4jBRUGydehh8bSl77xpHCaq/UrT6ve+65h7KyMr7++mvCwsLIysri5ZdfZtiwYbzzzjuujlEI99C0lg+kuDHGxhKI9FnBK45B9UljYwk09VVqlmqQhMgI+slAwXfqc0h4hW61EH366ae8/fbbTJ48GbPZTHJyMjNnziQiIoKlS5dy6aUy67LwAWWHob5CjXaKaTtqUriZNUIVmJYeVK1EqTPOfhvhGsW7AA36xEMfmSrF42JHqdF9NSVQVQTh8UZHJOhmC1F1dbVjvqG+ffty4sQJAMaOHUt2drbrohPCnfTWof4jZYFRo0jXgTGkfshYIb1aTsIKpMvYW3QrIRoxYgR79+4FYPz48fz973/n2LFjLF++nISEBJcG6I9iYmKcJrVsj9VqJSYmxkMRBSgpqDaeJETGkPoh48lKBV6nW11md999NwUFBQAsXryY2bNn88orrxASEsJLL73kyvj80qBBg9i7dy8lJSXqipL98OYtENwbbl4LJpPMVO0JhfqSHfKlYJj48epSvhQ8S0+IEuRkwDDxY2HHG3Iy4EW6lRDNmzfPsT1p0iQOHz7Mnj17GDRokLRqdNKgQYNaEh7bWPj6DrDVQUo0RKcYG1ygkLNk4+n/+5LvobEWgsOMjScQ2JrULMkgraNGktZRr+OSmRV79erFxIkTJRnqLktwy9T58ubwjNpTUJ6vtuNlhJlhwuOhd3/Q7FC0y+hoAkPpAWiqUy3SfeXkyzBxzQlR6UGorzQ2FgF0oYVo0aJFnb7Tp556qlvBBLT4sVDwrcza6yl6d1lUMlgjjY0lkJlM6rV/4FPVbTZwktER+T9Hy+gYkNUGjNOnP4QnQGWBarEbdI7REQW8TidE27dv79R+Jln+oHtk1l7Pku4y7+FIiOS17xEF36pLee0bL36cSogKd0hC5AU6nRB99tln7oxDSH+yZ8kIM+8hM1Z7lpwMeI/4sbDvQ3ntewlpL/UW+kzJFUehptTYWAKBfCl4Dz0hKtoJdln2x61az84ur33jyYmwV+nWKLMZM2acsWvs008/7XZAAcsaoQocT+Wps4UhFxgdkf9qaoATe9S2fCkYr18qBPeCxhq1nER/mTXcbSoL1ezIJjPEphkdjdA/f4p2qdF/lm59JQsX6VYLUXp6OuPHj3f8pKWl0dDQQHZ2NmPHyhdMt8nZgmec2AP2RlVMHTnQ6GiE2dKyrpl0HbiX/tkSM1ymOPAGfVMgJBxs9WrqCWGobqWjTz/9dLvXP/LII1RVVfUooIAWPw52vyMJkbu1rh+SQQDeIX4sHP1GPTdjrzI6Gv8lS3Z4F7NZjfbL36Re+3HSamckl9YQzZs3jxdffNGVdxlYpIXIM4pkhmqvI4XVniH1Q95HlvDwGi5NiDZt2nTWNbrEGehvjBN71ay9wj3kS8H76AlRwXeq8Fe4h4yu9D5yIuw1utVlduWVVzr9rmkaBQUFbN26lYceesglgQWkiEQIi4baUijeDQMmGh2R/9E06TbwRnFpqtC3pkQV/kbIItEuV1+pZkUGee17k9YJkaZJN76ButVCFBkZ6fQTHR3NBRdcwNq1a1m8eLGrYwwcJlPLYotytuAe5UegrhzMwRAzwuhohC44TBX6grz23aVoJ6BBeCL0lmWWvEb/UWCyqBPhimNGRxPQutVCtGLFClfHIXTxY+HgevlScBf9/xo7EoJCjI1FOIsfq0YAFn4Lwy8yOhr/I13F3inYCv1HQvFO9RzJyFfD9GjSg61bt7J7924A0tLSmDRJ1iHqMVnCw72khsJ7xY+DHW/Ia99dpKvYe8WPbUmIRlxsdDQBq1sJ0dGjR7nuuuv48ssviYqKAqCsrIxp06axatUqBg6UDLfbHBN15YLdLosvupqcJXsvKS51L3nte6/4sfDdKhlpZrBufdveeuutNDY2snv3bkpLSyktLWX37t3Y7XZuvfVWV8cYWPoNgyArNFSpWauFa8lZsvfSW+1KD0JdhbGx+Btbk5oNGeS1743kZMArdCsh2rBhA8899xwjRrQUpY4YMYK//vWvfP755y4LLiBZglqm1JezBdeqLYOyfLWtrx0nvEfvfhAxQG0X7TQ2Fn9zcp+aDTmkj5odWXgXPSE6dUgN+hCG6FZClJSURGNjY5vrbTYbiYmJPQ4q4MnZgnvoEzJGDYKwKENDER2QSercQ/8siRsj3fDeqFc0RCap7cJcY2MJYN16Zzz++OP84he/YOvWrY7rtm7dyt13380TTzzhsuACliRE7qF/0EhBtfeSGavdQ7qKvZ987huuW0XVN910EzU1NUydOpWgIHUXTU1NBAUFccstt3DLLbc49i0tLXVNpIFERpq5R+uzZOGd5EvBPfT/Z/M8Zza7xpa8Uoor64gNtzIlJRqLWSYENFT8WNi7Vl77BupWQrRs2TIXhyGcxKUBJqgsgKoT0Ke/0RH5BzlL9n76xKTFu8HWCJZgY+PxB5rmNMIsK7eAJe/uoqC8zrFLQqSVxXPSmD1GZgg3jHQXG65bCdGCBQtcHYdoLTQcoodA6QH15hj6I6Mj8n1NDWrSP5CEyJtFJUNoJNSXqzX94qU1r8cqjkPNSTBZ+OhEXxa+ms3pq8UVltexcGU2z82bKEmRUfTPpeLd6vNKJo71uG5X19lsNt58803+8Ic/8Ic//IG33noLm83mytgCmyzh4Vol34OtQX3ZRg0yOhrREZNJzpRdrfkzROs/gsVrD7RJhgDHdUve3YXNLovrGkI/GbA3Qsleo6MJSN1KiPbv38+oUaOYP38+q1evZvXq1cybN4/Ro0dz4MABV8cYmKSWwrVaT0oniyd6N3ntu1bz/7Gk93CnbrLTaUBBeR1b8qTu0xBOJwPy2jdCtxKiu+66i9TUVI4cOUJ2djbZ2dnk5+eTkpLCXXfd5eoYA5MUVruWzNLrO+RLwbUKvwWgqNewTu1eXNlx0iTcTF77hupWDdGGDRvYvHkz0dHRjuv69evHo48+yvTp010WXEDT3xgn90FDDYT0MjYeXycF1b4jodXQe02TFr2eKlCvfVNiOmw7++6x4Vb3xiM6JgmRobrVQhQaGkplZWWb66uqqggJkUIwl+gTB737g2aH4l1GR+PbThtlI7xczAgwB6sZe/WZxUX31J6CssMAjEyfTkKklY7SSxNqtNmUlOgO9hBu17p+TpNaLk/rVkJ02WWX8bOf/Yyvv/4aTdPQNI3Nmzdz++23c/nll7s6xsBkMskkda5SfhTqytSXbP+RRkcjziYoBGJHqW157fdMc+sQUclYevdl8Ry1LNDpSZH+++I5aTIfkZH6j5STAQN1KyF65plnGDp0KNOmTcNqtWK1Wpk+fTpDhw7lL3/5i6tjDFzSfOoa+v+v/0gZyuorpIbONfSEMmE8ALPHJPDcvInERzp3i8VHWmXIvTcICoHY5pM2ee17XJdqiOx2O48//jjvvPMODQ0NzJ07lwULFmAymRg1ahRDhw51V5yBSRIi19DXMJPuMt8hr33XKFAF1Y66LFRSNDMtXmaq9lbx49TrvnAHjLrM6GgCSpcSoj/+8Y888sgjZGZmEhYWxtq1a4mMjOTFF190V3yBTT9LLtoJdhuYLcbG46ukoNr36F/gBdJl1iOOhCjd6WqL2URGaj/PxyPOTk4GDNOlLrN//etf/O1vf+PDDz9kzZo1vPvuu7zyyivY7XZ3xRfY+qVCUBg01sBJmd+p2xwF1TLrsc/Q15urOAo1Mi9OtzRUQ8k+td3cZSZ8gCREhulSQpSfn88ll1zi+D0zMxOTycTx48ddHphAtQjFjVbbUlzaPXXlcOqQ2pZFXX2HNQL6pqhtee13T2EuoEGfeOgTa3Q0orP0z6nyfDkZ8LAuJURNTU1Yrc7FeMHBwTQ2Nro0KNGKLOHRM3qXQdQg6CXDiX2KnCn3jKO7TFqHfEpYlFrGA1rqH4VHdCkh0jSNm266iSuvvNLxU1dXx+233+50XVc9++yzDB48GKvVytSpU9myZUunbrdq1SpMJhNz587t8mP6DPlS6JkOaiiED5CRZj1TKAmRz5LPfUN0qai6vVXu582b16MAXnvtNRYtWsTy5cuZOnUqy5YtY9asWezdu5fY2I6beQ8dOsS9997Leeed16PH93rypdAzx3PUpXwp+B4prO6ZdkaYCR8RPw72vCef+x7WpYRoxYoVLg/gqaee4rbbbuPmm28GYPny5bz//vu8+OKLPPDAA+3exmazccMNN7BkyRK++OILysrKXB6X14hNA5MZqouhshDC442OyLfoXwqJ6YaGIbpBP0su+R4aayE4zNh4fElTPRTvVttyMuB7pIXIEN2amNFVGhoa2LZtG5mZmY7rzGYzmZmZbNq0qcPb/e53vyM2Npaf/vSnngjTWCG9oF/z/E7y5uia+ko4uV9tS5eZ7wlPgF4xoNlk+ZquKt4N9iYI6wuRSUZHI7pKT4hO7FHJrfAIQxOikpISbDYbcXFxTtfHxcVRWFjY7m02btzICy+8wPPPP9+px6ivr6eiosLpx+fIEh7dU7gD0CBiIPSOMToa0VUmk5wpd5feMho/ThbH9UWRA8EapZJavaVPuJ2hCVFXVVZWcuONN/L8888TE9O5L7ilS5cSGRnp+ElK8sGzJflS6B6pH/J98trvHhlh5ttMJhlhbIAu1RC5WkxMDBaLhaKiIqfri4qKiI9vWytz4MABDh06xJw5cxzX6ZNCBgUFsXfvXlJTU51u8+CDD7Jo0SLH7xUVFb6XFMmXQvdI/ZDv07/QpbC6a05bw0z4oPhxkPe5fO57kKEtRCEhIUyaNIl169Y5rrPb7axbt46MjIw2+48cOZIdO3aQk5Pj+Ln88suZMWMGOTk57SY6oaGhREREOP34HD0hOnkA6quMjcWXFOSoS/lS8F36a19fvkacna2peVJGpHbOl8mJsMcZ2kIEsGjRIhYsWMDkyZOZMmUKy5Yto7q62jHqbP78+QwYMIClS5ditVoZM8Z5tuGoqCiANtf7lT6xarbZqkL1xTBoqtEReb+GajU6CeRLwZf1G9q8fE01lB6EmGFGR+T9Tu6DploI6QPRQ4yORnRX64TIbgezT1W4+CTDE6Jrr72WEydO8PDDD1NYWEh6ejpZWVmOQuv8/HzM8kJQb479haopXBKisyvMBc2uEsnwuLPvL7yTvnzNsa3qtS8J0dk5CqrHypeoL4sZDpZQaKiEskOS3HqA4QkRwJ133smdd97Z7t/Wr19/xtu+9NJLrg/IGyWMg/0fS/NpZ0n9kP+IH9ucEO2AMf9jdDTer0Dqh/yCJRhiR6mu/8IdkhB5gJw++ArpT+4aqR/ySTa7xqYDJ3k75xibDpzEZtdkxuquaj3kXvg2+dz3KK9oIRKdoH+4Fe0EW6M6exAdk2HHPicrt4Al7+6ioLzOcV1CpJWnpiWSAfKl0Bl2u4ww8yf6577+eSbcSlqIfEXfFAiNAFu9mr1UdKyxttWyBemGhiI6Jyu3gIUrs52SIYDC8jpu+aAGjVbL14iOlR2C+gpVe9J/hNHRiJ7Sk9rjOaBphoYSCCQh8hVms/ObQ3SsaJda7qFXDEQkGh2NOAubXWPJu7to7+NeA+oI5ZCp+XmUVqIz01sS4tKkFdkfxI9ttZZlgdHR+D1JiHyJIyHabmwc3q6g+f+TmC7LFviALXmlbVqGWtOAb5sGqV9k+Zozk65i/xLSC/qPVNtyIux2khD5ksQJ6lIvGBbtky8Fn1Jc2XEypNtlT1YbUlh9ZjLCzP/o3f7yue92khD5Ej0hKsxVhdWifY41zNKNjEJ0Umy49az77NIGqw3pMuuYprUaYSYJkd/Qpw6RFiK3k4TIl7RTWN3uMOVA1lTfqqBavhR8wZSUaBIirXTUuWkCTvYZrn4pPQD1lZ4KzbdUHIeaEjBZVA2R8A/6id3x7VJY7WYy7N6X6IXVh76A4zlklcS0O0x58Zw0Zo9JMDBQAxXvAnsjhPWFqEFGRyM6wWI2sXhOGgtXZmMCp+JqPUm6+/IM+DARKo+rFtLktmsdBjy9vqr/SAgOMzYW4TqnF1bLQBG3kRYiX9Pc6nF451cdDlNeuDKbrNwAHZHQun5ICqp9xuwxCTw3byLxkc7dZ/GRVp6bN1El+HqLn8zJ0j6pnfNPUljtMdJC5Gua64iqDn6DxmVt/qyhzqqXvLuLmWnxWMwBlhRI/ZDPmj0mgZlp8WzJK6W4so7YcCtTUqJbXsOJE+D7D+B4trGBeivHa19mqPY7Cemq9bsgB0ZeYnQ0fksSIl/T/EU/1H6IIJpoaucp1ICC8jq25JWSkdrPs/EZTc6SfZrFbOr4NasPKpBpJ9qn/1/0/5PwH4np8O1/pIXIzaTLzNdED6ExqA+hpkaGmY6dcdfODGf2K7ZGtbQJyKKu/kj/oi/ZB3UVxsbibSqOQ1WhqjWRNcz8jxRWe4QkRL7GbKam3xgAxpjzzrhrZ4Yz+5UTe9QIvNBINSJP+Jc+/SEyCdBkgsbT6a1D/UepmhPhX2TGao+QhMgHhadMBmCcqf2EyIQabTYlJdqDUXmB1jUUUlDtn/SWv2NSR+RE/38MkO4yvySF1R4hCZEPMjd/6I0x57WZu0X/ffGctMArqJb6If8ndUTtk/oh/yczVrudJES+qPlDb1xQPgMinIuqnYYpBxr9g0JGmPmvxInqUhKiFprWMvJO//8I/+OYsVpe++4io8x8UfQQsEZiqStnw4JYttQNan+YciCxNakJ+0AKqv2Z/tyeyoOaUugVYN3C7Sk7DLWnwBwMcaONjka4i57sHstWSbCUBbictBD5IpPJ8eawFGwnI7UfV6QPICO1X2AmQ6AKqptqISQcolONjka4S1jfloJ56TpQ9Pqh+DEQFGpsLMJ94seCOUgtz1KWb3Q0fkkSIl81QD9b2GZsHN5C/z8MmKCWOBH+a4B0mzmR+qHAEGyFODXCWCYndQ/55vBVAyapy2PypQC0SogmGRuHcD8prHbmSIikfsjvyYmwW0lC5Kv0D78Tu6Gh2thYvIFj2LEkRH5PT4jkZADs9pZh2NJC5P/kRNitJCHyVREJEJ4Imj2gFru02TU2HTjJ2znH2HTgJDa7phLC4l1qBzlL9n8J4wETVByFqmKjozHWyf3QUAlBYS3z1Aj/pSdEx7eD3WZsLH5IRpn5sgETYc9x1XyaPM3oaNwuK7eAJe/uoqC8ZUmShEgrT2fUco5mgz7xEJFoYITCI0LDIWY4lOxVXwzDZxkdkXH07rKEcWCRj3O/FzMcgntDYzWc2AtxaUZH5FekhciXBVB/clZuAQtXZjslQwCF5XV8/PEH6pcBk2QoaqDQX/tHtxobh9Fk/qHAYra0qqGTwmpXk4TIlzn6k/37jWGzayx5dxftLWmoAePNBwCwy5dC4HC89gM8IXIMJpDXfsDQl2cJgBNhT5OEyJfpMzKXHYbqEkNDcacteaVtWoZaG29SCdEeyzBPhSSMNlCt58exbaqwOBA11bfUD8pggsARICfCRpCEyJeFRUG/5iTAj4cgF1d2nAz1pYJksyqszQsZ7qmQhNHixkCQFerKofSA0dEYozAXbA0QFq1mrxeBQU+IinKhsePPRtF1khD5OsfZgv82n8aGWzv823jzQQAO2BOI7hfrqZCE0SzBLYv4Bmodkd5dOHCy1M4Fksgk6BUD9iaVFAmXkYTI1w1otb6Nn5qSEk1CpJX2PvL17rLvg4YzJUXWtQooA/RuswBNiI5+oy71/4MIDCZTQJwIG0ESIl/X+o2htVd27PssZhOL56jhpacnRXpBdfK48wJ3HbdANbD5tR+oLUT6cQ+U+qGAIwmRW0hC5Ovix4IlRC34dyrP6GjcZvaYBJ6bN5H4yNbdZxrpFtVlljZ5hjGBCePoLSNFudBYa2wsnlZ9suX9LgXVgUd/zvVWQuESMpOXrwsKVbUUR79RZ4x+XFw5e0wCM9Pi2ZJXSnFlHUkUE72mAszBLYseisARNQh694fqE1DwHQyaanREnqN3E/YbBmF9jY1FeJ7eKlh6UI0w7h1jbDx+QlqI/MHAH6jLI1uMjcMDLGYTGan9uCJ9ABNN36srE8arlaBFYDGZAreO6GirgmoReML6QswItR2oXcZuIAmRP9AToqP+nxA50Y83aYqxcQjjBGod0TFJiAJeoH7uu5EkRP5ATwgKc9VCp4FCbxHTPxhE4AnEFiK7HY7qM1RLQhSwkgKnZ8BTJCHyB5EDm1e+t8HxHKOj8YyGaijaqbaTAqh2RDgbMBEwQVk+VJ0wOhrPOLkf6svVxJRxo42ORhhlYPOJ8LFssDUZG4ufkITIX+hN54HSfHosWyWAEQMgcoDR0QijWCPVCuAQOCNu9NawxAlqgkoRmPqPhNAIaKyG4l1GR+MXJCHyF3q32ZEA+VI4Kt1lopnjtf+1sXF4imNCRhluH9DM5paJeQPlZMDNJCHyF3rz6dFv/HaCRid64icF1ULvMg2UhEhq54Su9ee+6DFJiPxFwng1H091MZQdNjoa99K0Vi1EkhAFvEHnqMtj2dDUYGws7lZX3lI7NyjD2FiE8RytowFSKuFmkhD5i2ArJIxT2/7ebVZ6EGpOqhm69WMWgavfUOjVD2z1UPCt0dG419FvAA36DobwOKOjEUbTu01LD6jZy0WPSELkTxzNp35+tqCfDSWkq5m6RWAzmVp1m202NhZ3y2/uFkw6x9g4hHfoFa1mKwfpNnMBSYj8iWOkmZ+/MWRCRnG6QCms1hO+QFqmRJxZktQRuYokRP5EP0su+M6/J2jUuwSlqFTo9BaT/K/9d1CBrallQkZpIRI6x9JNfn4y4AGSEPmTqCSIGKjm5/HXs4X6SijWJ2SUFiLRLHFCy6ACfRV4f1O0Q805Y41Uc9AIAS3F9Ue3+v+gAjeThMjfJDe/OQ5vMjYOdzmyBTS7Wuk8ItHoaIS3CLZCYrrazvfTM2X9uAZOUXPQCAHQfwSERUNTrf8PKnAzeVf5G/1sIf8rY+Nwl8PNx5U83dg4hPfx9/mIpH5ItMdk8v/PfQ+RhMjfJE9Tl0e3gq3R2FjcIb+55UvmYBGn0+cj8seESNNaWojktS9O5+89Ax4iCZG/iRkBYX2hsUYVV/uTpnqV6EFL4ieETm8hKt4NtWWGhuJy5Ueg8jiYgyBxotHRCG8zqPnzMH8T2O3GxuLDJCHyN2az/zafHstWk+/17q8m4xOitT6x0DcF0Pxv5l69dShhPIT0MjYW4X0SxkFwL6grgxN7jI7GZ0lC5I/0rgN/az7VE7xBGarfXIjT6bVlh780Ng5X0+uHZLi9aI8luGX4vb+dCHuQJET+yF+bT6WgWpzNYD9NiA41H88gSYhEB/QyAn87EfYgSYj8UcJ4CAqD2lIo+d7oaFzDbmvpNkiWolLRAT1ZPpYN9VXGxuIqVSfgxG61PfhcY2MR3stRKrHJfycndTNJiPxRUEjLMh7+0nxauAMaKiE0AuLGGB2N8FZ9kyFykJqc1F9Gm+mtXXFj1NpVQrRn4A9U0X3FMSjLNzoanyQJkb/yt+ZTfbh90lQwW4yNRXg3vRXl0EZj43AV/TikdUicSUgvteA1tHxeii6RhMhf+VvzqaN+SIbbi7PwtzoiSYhEZznmI/KTngEPk4TIXyVNUWs7lR+BU4eMjqZnNK3ljEcSInE2euJwbJvvL3Lcun5IBhOIs0n2s9ZRD5OEyF+F9G4Zhpm3wdhYeurEHqg+oQrFEycYHY3wdlHJapFje5Pvz0ck9UOiK5KngckCpQeg/KjR0fgcSYj8WcoP1WXe58bG0VMHmxO6QedAUKixsQjvZzL5Tx3RoS/UpXSXic6wRrScNPr6574BJCHyZ0POV5d5n/t2HZHewqUfjxBno9cR+XxCJPVDoouaPyftB9ez6cBJ3s45xqYDJ7HZffg7wEOCjA5AuNGAyWo69+oTan2nuDSjI+o6W1PLl0KKJESik5zqiGp8c7mLqhPNyzCYpH5IdF7KD+GLJzn53cdct+VyQM3qnxBpZfGcNGaPSTA2Pi8mLUT+LCikZbSZr9YRHd8O9RVgjVITTgrRGX1TIGIA2Bt9dz6iw80nAlI/JLrgo8pk6rVg+lPKEFOB4/rC8joWrswmK7fgDLcObJIQ+TtfryPKW68uU86T+YdE55lMrV77PnoyIN1lootsdo3Faw+y1T4cgGnmnY6/6R1mS97dJd1nHfCKhOjZZ59l8ODBWK1Wpk6dypYtHY8Mef755znvvPPo27cvffv2JTMz84z7Bzy97ubQRtX95Gv0gmrpLhNdlXqhujzwqbFxnIHNrnVc56HHnXKeMcEJn7Mlr5SC8jq+so8GnBMiUElRQXkdW/JKDYjO+xleQ/Taa6+xaNEili9fztSpU1m2bBmzZs1i7969xMbGttl//fr1XHfddUybNg2r1cpjjz3GRRddxM6dOxkwYIABR+Dl4seBNRLqyqHgWxg4yeiIOq+xtmXY9JALDA1F+CD9NVPwLVSXQO8YQ8M5XVZuAUve3UVBeZ3jOkedR2IdlB5USzEMloRIdE5xpXot6QlRhnkXJuxop7V96PsJZ4a3ED311FPcdttt3HzzzaSlpbF8+XJ69erFiy++2O7+r7zyCj//+c9JT09n5MiR/POf/8Rut7Nu3ToPR+4jzJaWD1S9+8lX5G8GWz2EJ0K/oUZHI3xNn1iIG6u2D643NJTTZeUWsHBltlMyBC11Hju/WKOuSJqqhlIL0Qmx4VYAvtOGUKmF0ddURZrpcIf7CWeGJkQNDQ1s27aNzMxMx3Vms5nMzEw2bercWiw1NTU0NjYSHS1Fhx1KaTX83pe0Hm5vMhkbi/BNqTPUpRd1m9nsGkve3UV7VRz6dSXfrlUbevxCdMKUlGgSIq3YsfC1fSTg3G1mQrVCTkmR78v2GJoQlZSUYLPZiIuLc7o+Li6OwsLCTt3H/fffT2JiolNS1Vp9fT0VFRVOPwFHryPK36yGIPsK/axeustEd7WuI/KSubj0Oo+OWGhiom2H+iX1Rx6KSvgDi9nE4jlqepVNzd1m55nVa0k/pVw8Jw2LWU4w22N4l1lPPProo6xatYq33noLq7X9JsClS5cSGRnp+ElKSvJwlF4gZjhEJkFTne9MVFdTqmo/oGW0kBBdNSgDgqxQWdA8p4/xzla/kW7aT7iplvqQqJbVy4XopNljEnhu3kR29poCwFTzHsKoIz7SynPzJso8RGdgaEIUExODxWKhqKjI6fqioiLi4+PPeNsnnniCRx99lI8++ohx48Z1uN+DDz5IeXm54+fIkSMuid2nmEwwbKba3veRsbF01v51oNkhdjREJBodjfBVwdaWSQ29pNvsbPUbP7R8B0Bl4rlg9ulzVmGQ2WMSeOWBG6nrPZBQUyOrL7ax8f4LJRk6C0PfbSEhIUyaNMmpIFovkM7IyOjwdn/+85/5/e9/T1ZWFpMnTz7jY4SGhhIREeH0E5CGXaQu933oNV0HZ7TvQ3WpJ3JCdJeXDb/X6zw66rQ436wSouhxF3suKOF3LBYz1rTZAIyq3CzdZJ1g+OnHokWLeP7553n55ZfZvXs3CxcupLq6mptvvhmA+fPn8+CDDzr2f+yxx3jooYd48cUXGTx4MIWFhRQWFlJVVWXUIfiGlB+CJQTK8qFkn9HRnJndBvs/UdvDZxkbi/B9ekJ06EtoNH64ces6j9O/oqKpYKwpDwDz0As9HJnwO44T4Y9940TYYIYnRNdeey1PPPEEDz/8MOnp6eTk5JCVleUotM7Pz6egoGWq8eeee46GhgauuuoqEhISHD9PPPGEUYfgG0J6t8x46+3dZke/gdpTarmOgVOMjkb4uthR0Ccemmoh/yujowFa6jziI527zy7p8z1mkwaxadJVLHpu8HlgCYXyfDix1+hovJ7hEzMC3Hnnndx5553t/m39+vVOvx86dMj9AfmrYRepboN9H8G09v/fXuH75u6yoT8Ci1e8RIUvM5lgWCZsX6leW6ne0fIye0wCM9Pi2ZJXSnFlHbHhVqZ+9x58i9fEKHxcSC810/n+T9TnfuxIoyPyaoa3EAkP0ptPD38F9ZXGxnImegvWMOkuEy4y4lJ1uWetV3UdWMwmMlL7cUX6ADJSojBL7ZxwNf1z1Nt7BryAJESBpF8qRA9RK4Af9NIFL8uPQlEuYIKh7c8tJUSXDbkAgsJU10FRrtHRtO/I11BzUnUV6yPjhOgpPbnO36SWcBIdkoQo0DiK7Lz0bEGPa+APoHc/Y2MR/iOkV8usz3vWGhtLR/a8ry6HzwZLsLGxCP8RnQL9hoG9yeuWsPE2khAFGsd8RB+D3W5sLO35vjkhGn6RsXEI/zPiEnW5931j42iPprUkRCMvNTYW4X/0E+HvvfRE2EtIQhRoks+FkHCoPA7HthkdjbPG2pb1y6R+SLja8NmASc2AXn7U6GicFe+GU3lqRJAUVAtX06cv2bsWbE3GxuLFJCEKNMFWGKEm62LXGkNDaWP/J9BYo5YZiR9rdDTC3/Tpr1aPB9j7gbGxnE5vHUqdAaF9jI1F+J/k6dCrH9SWwqEvjI7Ga0lCFIjSrlCXu97xqhE37HxLXaZdIavbC/cYqXebeVkd0Z731KV0lwl3sATBqDlq29tOhL2IJESBaGgmBPdWI26OZxsdjdJYC3uz1PboK42NRfgvffh93hfeM+Km/CgU5AAmGC7LdQg30U+Ed78n3WYdkIQoEAWHtfQp73rb2Fh0+z6GxmqIHAQDJhodjfBXMUObR9w0ek+Bqd59N+gc1a0nhDsMPg/CoqGmBA5/aXQ0XkkSokDl6DZ72zu6zfTustHSXSbcbPSP1eWON4yNQ6eflOij4IRwB0twS5est5wIexlJiALVsJlqorpTh9SoGyM11MD3enfZj42NRfi/cdeoy/2fQHWJsbGUHWkpch0jXcXCzUbPVZe731WLaAsnkhAFqpDeLXP9GH22sP9jNbosahAkSneZcLOYYZCQDpqtpWXSKHor1eDzIHKgsbEI/5dyvpoJvbpYzVwtnEhCFMj0brOdbxnbbeYYXTZXusuEZ+itRN+9blwMmgbfvdYcz7XGxSEChyUYRl6mto0+GfBCkhAFsmGz1GizU3mQv9mYGOqrWla315tzhXC3Mf8DJjMc3QKlecbEUPAtnNgDQVZIu9yYGETgGdNclpD7JjTVGxuLl5GEKJCF9ml5c2z/tzEx5L6pusuiU6W7THhOeDyk/FBt7/ivMTHorVMjLgZrpDExiMAzZAZEDIDaUy3zXwlAEiIxYb663PkW1FV4/vGzX1aXE+dLd5nwrLF6t9lrnu8ytjW11A9Jd5nwJLMF0m9Q29n/MjYWLyMJUaBLmgIxw1UrTe6bnn3swly1npo5CNKv9+xjCzFqjuquOrkPjm/37GPnrVeFrWHRaqJUITxpwjzABAfXq5HGApCESJhMMOFGte3pbjO9dWjEJdAn1rOPLYQ1omVelq0vevaxc/6jLsf8jyp0FcKT+ibDkPPV9vZXjI3Fi0hCJGD8daqV5tg2KNrlmcdsrG0ZYTPpJs88phCnm/IzdbnjDagp9cxjVhxvmepiwjzPPKYQp5vYXC6R84rMSdRMEiKhlgsYPltte6qVaNfbai2pqEGqyE8IIyRNhfhx0FTX0mLpbt+8APYmGDQNEtM985hCnG7kZRDWFyqOwYFPjY7GK0hCJBTH2cJ/oKHa/Y+37SV1OWE+mOVlKAxiMsHU/1Xb37zg/kUvG2tbuufOud29jyXEmQSFthT0e7rL2EvJN5FQhmZC3xSoK4Ntbj5TPr5dzZJqMsOEG9z7WEKczZiroFc/KD8C33/g3sfa8QbUlqpFjEdc6t7HEuJsJt8CmGDvWijeY3Q0hpOESChmC0y/W21/9Vf3Ttj1+RPqcsxVEJHovscRojOCrTBxgdr++u/uexxNg83Pqe0pt4ElyH2PJURn9B8Bo5pnrt74tLGxeAFJiESL9OuhTzxUHodvV7nnMQpzmycDM8EP73XPYwjRVT/4KZgsaqHVwlz3PEbe51C8S80OP/FG9zyGEF117iJ1ueONgB+CLwmRaBEUCtN+oba/XOaekQdfNLcOpV2hzk6E8AaRA1uWz/jsj+55DP0MPP06VcwqhDcYMBFSL1SLHX/5jNHRGEoSIuFs0k3qw7r0IOxa49r7PrEXdjbf5w/vc+19C9FTF/w/1Uq0dy0cdvFK4Ps/gYOfgTkYMu507X0L0VPn/Updbl8JlYXGxmIgSYiEs9A+MHWh2v78Sde2En3xJKCpYtL4Ma67XyFcof/wlq6sjx923XIedht89JDanvq/EJ3imvsVwlWSp0PSOWCrVzWkAUoSItHWlNvUYpPFO2HL8665z+PbW9Zuktoh4a3OfwCCwuDoFtjzvmvuM+cVVTtkjWo5ExfCm5hMLa32Xy/33AS9XkYSItFWr2jIfERtf/p7KD/Ws/uzNcLbvwDNDqOvVH3WQnijiATIuENtr1vS83mJ6qvg0+aapPN/rd5bQnijYZmq9d7eBO/dA3a70RF5nCREon0Tb4KBU6ChCj74dc/u66tnoGiHqk26+M8uCU8It5l+l1p0teR7NbigJzY+BVWF0Hcw/OBWV0QnhPtc8mcI6QNHvobsl4yOxuMkIRLtM5thzjK1xtme99p0H9jsGpsOnOTtnGNsOnASm72DeouSfbD+MbU9+1G1TIgQ3swaCRf9QW1/9qfuF1gf+BS+eEptz/ydGsUphDeLHAgXNte7ffxIwBVYS0IkOhY3umVEzHuLoCwfgKzcAs597FOue34zd6/K4brnN3PuY5+SlVvgfPumBnj7TlWoNzSzZZp4Ibxd+vXq9arZ4M2fdn3h17Ij8N+fAppaFiftCreEKYTLTbkNEidAfTms+bkqeQgQkhCJMzv/fug/UjX7//vHrNu2k4Ursykor3ParbC8joUrs1uSIlsTvHkLHNmsmmAve1oV7gnhC0wmuPRJ6DdULX751u2dr6loaoA3blJLdCSMh4sfd2uoQriU2QJznoEgKxxYB2sWBkw9kSRE4sxCesG81RCZBCf3k/jejfSmps1ueofZknd3YWtqgrd+BrvfBUsIXPOyWtVeCC/VbhdwaDhc/RJYQmHfh6qlqKHta99JfZXa79hW1fV2zb/U0iBC+JKEceq1aw5So4Oz7u/cNBSumqrCICZN8/Ej6KKKigoiIyMpLy8nIiLC6HB8R8l+Gp+fSXB9KTn2VH7TeAs7tbbzqfSjnA9Hvk/MoffUm+nalTDiYgMCFqJzsnILWPLuLqdWz4RIK4vnpDF7TAJ89wasuV2NvkkYDz/5j6q1ON2J7+G1eVCyV03weN2rMHyWB49ECBfb8V9481ZAgwnz4EePtF8HWvCtqrdLnq4GJbiJu7+/JSESnbZ+/UdM/Gw+EaZa7JqJ1fbzeKXpR9QSih0TV1q+YL7lY3qZ6tUXwtUrpHZCeLWs3AIWrszm9A9BvXP3uXkTVVJ06Et4/UaoOQm9YlR90bCZED8WjmXD4Y3wzQtqVGafeNWylJzh4aMRwg22PA9rm+eOCwmH836pakLNQapF9KtnmtenBHrHwi93QlCIW0KRhMjFJCHqvk0HTvKr59/j18GrmGv5qsP9qvqNo89lf4SUH3owOiG6xmbXOPexT9vUw+lMQHyklY33X4jFbIJTh2HV9VB0hsVfB58HV70IfWLdE7QQRsj7HD76rWoJapcJxl4NFzwA/VLdFoa7v7+DXH6Pwm9NSYlGixzIL8vvZEXTbH4V9AZDzAWE0kgojezTBvCfkKv588/vA4uUpwnvtiWvtMNkCFRdXEF5HVvySslI7Qd9k+HWdfB9Fuz7GPZ9BNXFEJ2qWoNSLoDRPwaLfKwKP5PyQ7htPeT+V7UIVZ8Ee6NaliblhyoRih1ldJQ9Ju9c0WkWs4nFc9JYuDKb77ShzG980PE3RxfDNROxSDIkfEBxZcfJUIf7BVth9Fz1Y7erLjKrtDSLAGA2w7hr1I+fkm8u0SWzxyTw3LyJxEc6j5yJj7S21FsI4QNiwzs3+qvD/cxmSYaE8CPSQiS6bPaYBGamxbMlr5Tiyjpiw61MSYlWdRZC+IgpKdEkRFopLK9rU1QNLTVEU1Jk/TEhAoEkRKJbLGaTqqsQwke17gI2gVNSpKf2i+ekSaIvRBfY7JrPnixLQiSECFh6F/Dp8xDFt56HSAjRKWed08vLybB7IUTA8+WzWiG8Qafn9OoBGXYvhBBuJl3AQnSfza6x5N1d7dbiaaikaMm7u5iZFu/VJxoyykwIIYQQ3daVOb28mSREQgghhOi2bs3p5YUkIRJCCCFEt/V4Ti8vIQmREEIIIbpNn9Oro+ogE2q0mbfP6SUJkRBCCCG6TZ/TC2iTFPnSnF6SEAkhhBCiR/xhWScZdi+EEEKIHvP1ZZ0kIRJCCCGES/jynF7SZSaEEEKIgCcJkRBCCCECniREQgghhAh4khAJIYQQIuBJQiSEEEKIgCcJkRBCCCECniREQgghhAh4khAJIYQQIuBJQiSEEEKIgBdwM1VrmgZARUWFwZEIIYQQorP07239e9zVAi4hqqysBCApKcngSIQQQgjRVZWVlURGRrr8fk2au1ItL2W32zl+/Djh4eGYTL6x4FxnVVRUkJSUxJEjR4iIiDA6HI+SYw+8Yw/U4wY59kA89kA9bmg59vz8fEwmE4mJiZjNrq/4CbgWIrPZzMCBA40Ow60iIiIC7g2jk2MPvGMP1OMGOfZAPPZAPW6AyMhItx67FFULIYQQIuBJQiSEEEKIgCcJkR8JDQ1l8eLFhIaGGh2Kx8mxB96xB+pxgxx7IB57oB43eO7YA66oWgghhBDidNJCJIQQQoiAJwmREEIIIQKeJERCCCGECHiSEAkhhBAi4ElC5OWeffZZBg8ejNVqZerUqWzZsqXDfZ9//nnOO+88+vbtS9++fcnMzGyz/0033YTJZHL6mT17trsPo1u6cuwvvfRSm+OyWq1O+2iaxsMPP0xCQgJhYWFkZmayb98+dx9Gl3XluC+44II2x20ymbj00ksd+/jCc/75558zZ84cEhMTMZlMrFmz5qy3Wb9+PRMnTiQ0NJShQ4fy0ksvtdmnK/9Lo3T12FevXs3MmTPp378/ERERZGRk8OGHHzrt88gjj7R5zkeOHOnGo+ierh77+vXr2329FxYWOu3n7c97V4+7vfewyWRi9OjRjn184TlfunQpP/jBDwgPDyc2Npa5c+eyd+/es97ujTfeYOTIkVitVsaOHcvatWud/u6qz3ZJiLzYa6+9xqJFi1i8eDHZ2dmMHz+eWbNmUVxc3O7+69ev57rrruOzzz5j06ZNJCUlcdFFF3Hs2DGn/WbPnk1BQYHj59VXX/XE4XRJV48d1AyurY/r8OHDTn//85//zDPPPMPy5cv5+uuv6d27N7NmzaKurs7dh9NpXT3u1atXOx1zbm4uFouFq6++2mk/b3/Oq6urGT9+PM8++2yn9s/Ly+PSSy9lxowZ5OTkcM8993Drrbc6JQbdeQ0ZoavH/vnnnzNz5kzWrl3Ltm3bmDFjBnPmzGH79u1O+40ePdrpOd+4caM7wu+Rrh67bu/evU7HFhsb6/ibLzzvXT3uv/zlL07He+TIEaKjo9u8z739Od+wYQN33HEHmzdv5uOPP6axsZGLLrqI6urqDm/z1Vdfcd111/HTn/6U7du3M3fuXObOnUtubq5jH5d9tmvCa02ZMkW74447HL/bbDYtMTFRW7p0aadu39TUpIWHh2svv/yy47oFCxZoV1xxhatDdbmuHvuKFSu0yMjIDu/Pbrdr8fHx2uOPP+64rqysTAsNDdVeffVVl8XdUz19zp9++mktPDxcq6qqclznK8+5DtDeeuutM+7z61//Whs9erTTdddee602a9Ysx+89/V8aoTPH3p60tDRtyZIljt8XL16sjR8/3nWBeUBnjv2zzz7TAO3UqVMd7uNrz3t3nvO33npLM5lM2qFDhxzX+eJzXlxcrAHahg0bOtznmmuu0S699FKn66ZOnar97//+r6Zprv1slxYiL9XQ0MC2bdvIzMx0XGc2m8nMzGTTpk2duo+amhoaGxuJjo52un79+vXExsYyYsQIFi5cyMmTJ10ae09199irqqpITk4mKSmJK664gp07dzr+lpeXR2FhodN9RkZGMnXq1E7/P93NFc/5Cy+8wE9+8hN69+7tdL23P+ddtWnTJqf/E8CsWbMc/ydX/C99hd1up7Kyss37fN++fSQmJjJkyBBuuOEG8vPzDYrQ9dLT00lISGDmzJl8+eWXjusD5Xl/4YUXyMzMJDk52el6X3vOy8vLAdq8dls723vdlZ/tkhB5qZKSEmw2G3FxcU7Xx8XFtekv78j9999PYmKi0wtl9uzZ/Otf/2LdunU89thjbNiwgYsvvhibzebS+HuiO8c+YsQIXnzxRd5++21WrlyJ3W5n2rRpHD16FMBxu578P92tp8/5li1byM3N5dZbb3W63hee864qLCxs9/9UUVFBbW2tS94/vuKJJ56gqqqKa665xnHd1KlTeemll8jKyuK5554jLy+P8847j8rKSgMj7bmEhASWL1/Om2++yZtvvklSUhIXXHAB2dnZgGs+N73d8ePH+eCDD9q8z33tObfb7dxzzz1Mnz6dMWPGdLhfR+91/fl05Wd7wK12HygeffRRVq1axfr1652Ki3/yk584tseOHcu4ceNITU1l/fr1/OhHPzIiVJfIyMggIyPD8fu0adMYNWoUf//73/n9739vYGSe88ILLzB27FimTJnidL2/PucC/vOf/7BkyRLefvttpzqaiy++2LE9btw4pk6dSnJyMq+//jo//elPjQjVJUaMGMGIESMcv0+bNo0DBw7w9NNP8+9//9vAyDzn5ZdfJioqirlz5zpd72vP+R133EFubq5X1TlJC5GXiomJwWKxUFRU5HR9UVER8fHxZ7ztE088waOPPspHH33EuHHjzrjvkCFDiImJYf/+/T2O2VV6cuy64OBgJkyY4Dgu/XY9uU9368lxV1dXs2rVqk598Hnjc95V8fHx7f6fIiIiCAsLc8lryNutWrWKW2+9lddff71Nl8LpoqKiGD58uE8/5x2ZMmWK47j8/XnXNI0XX3yRG2+8kZCQkDPu683P+Z133sl7773HZ599xsCBA8+4b0fvdf35dOVnuyREXiokJIRJkyaxbt06x3V2u51169Y5tYSc7s9//jO///3vycrKYvLkyWd9nKNHj3Ly5EkSEhJcErcrdPfYW7PZbOzYscNxXCkpKcTHxzvdZ0VFBV9//XWn79PdenLcb7zxBvX19cybN++sj+ONz3lXZWRkOP2fAD7++GPH/8kVryFv9uqrr3LzzTfz6quvOk2x0JGqqioOHDjg0895R3JychzH5e/P+4YNG9i/f3+nTny88TnXNI0777yTt956i08//ZSUlJSz3uZs73WXfrZ3qQRbeNSqVau00NBQ7aWXXtJ27dql/exnP9OioqK0wsJCTdM07cYbb9QeeOABx/6PPvqoFhISov33v//VCgoKHD+VlZWapmlaZWWldu+992qbNm3S8vLytE8++USbOHGiNmzYMK2urs6QY+xIV499yZIl2ocffqgdOHBA27Ztm/aTn/xEs1qt2s6dOx37PProo1pUVJT29ttva9999512xRVXaCkpKVptba3Hj68jXT1u3bnnnqtde+21ba73lee8srJS2759u7Z9+3YN0J566ilt+/bt2uHDhzVN07QHHnhAu/HGGx37Hzx4UOvVq5d23333abt379aeffZZzWKxaFlZWY59zva/9BZdPfZXXnlFCwoK0p599lmn93lZWZljn1/96lfa+vXrtby8PO3LL7/UMjMztZiYGK24uNjjx3cmXT32p59+WluzZo22b98+bceOHdrdd9+tmc1m7ZNPPnHs4wvPe1ePWzdv3jxt6tSp7d6nLzznCxcu1CIjI7X169c7vXZramoc+5z+Gffll19qQUFB2hNPPKHt3r1bW7x4sRYcHKzt2LHDsY+rPtslIfJyf/3rX7VBgwZpISEh2pQpU7TNmzc7/nb++edrCxYscPyenJysAW1+Fi9erGmaptXU1GgXXXSR1r9/fy04OFhLTk7WbrvtNq/6oGitK8d+zz33OPaNi4vTLrnkEi07O9vp/ux2u/bQQw9pcXFxWmhoqPajH/1I27t3r6cOp9O6ctyapml79uzRAO2jjz5qc1++8pzrw6lP/9GPdcGCBdr555/f5jbp6elaSEiINmTIEG3FihVt7vdM/0tv0dVjP//888+4v6apKQgSEhK0kJAQbcCAAdq1116r7d+/37MH1gldPfbHHntMS01N1axWqxYdHa1dcMEF2qefftrmfr39ee/O672srEwLCwvT/vGPf7R7n77wnLd3zIDTe7e9z7jXX39dGz58uBYSEqKNHj1ae//9953+7qrPdlNzkEIIIYQQAUtqiIQQQggR8CQhEkIIIUTAk4RICCGEEAFPEiIhhBBCBDxJiIQQQggR8CQhEkIIIUTAk4RICCGEEAFPEiIhhBBCtOvzzz9nzpw5JCYmYjKZWLNmjVsfb/DgwZhMpjY/d9xxh1sfFyQhEkJ0wuDBg1m2bJlHH9MTH75n8sgjj5Cenu6Rx1q3bh2jRo3CZrOddd+srCzS09Ox2+0eiEwEuurqasaPH8+zzz7rkcf75ptvKCgocPx8/PHHAFx99dVuf2xJiITwczfddJPjLCskJIShQ4fyu9/9jqamJqND8xrtJV/33ntvm0Ul3eXXv/41v/3tb7FYLGfdd/bs2QQHB/PKK694IDIR6C6++GL+8Ic/8OMf/7jdv9fX13PvvfcyYMAAevfuzdSpU1m/fn23H69///7Ex8c7ft577z1SU1M5//zzu32fnSUJkRABYPbs2RQUFLBv3z5+9atf8cgjj/D4448bHZZb2Wy2HrWi9OnTh379+rkwovZt3LiRAwcO8D//8z+dvs1NN93EM88848aohOicO++8k02bNrFq1Sq+++47rr76ambPns2+fft6fN8NDQ2sXLmSW265BZPJ5IJoz0wSIiECQGhoKPHx8SQnJ7Nw4UIyMzN55513ALjgggu45557nPafO3cuN910U7v3pWkajzzyCIMGDSI0NJTExETuuusux9+7c8a4b98+fvjDH2K1WklLS3M0k+vWr1+PyWSirKzMcV1OTg4mk4lDhw4B8NJLLxEVFcU777xDWloaoaGh5Ofn88033zBz5kxiYmKIjIzk/PPPJzs723E/gwcPBuDHP/4xJpPJ8fvpXWZ2u53f/e53DBw4kNDQUNLT08nKynL8/dChQ5hMJlavXs2MGTPo1asX48ePZ9OmTWc89lWrVjFz5kysVqvjum+//ZYZM2YQHh5OREQEkyZNYuvWrY6/z5kzh61bt3LgwIEz3rcQ7pSfn8+KFSt44403OO+880hNTeXee+/l3HPPZcWKFT2+/zVr1lBWVtbhZ5GrSUIkRAAKCwujoaGhW7d98803efrpp/n73//Ovn37WLNmDWPHjnX8vatnjHa7nSuvvJKQkBC+/vprli9fzv3339+t2Gpqanjsscf45z//yc6dO4mNjaWyspIFCxawceNGNm/ezLBhw7jkkkuorKwEVM0CwIoVKygoKHD8frq//OUvPPnkkzzxxBN89913zJo1i8svv7zNcf3mN7/h3nvvJScnh+HDh3PdddedsXvyiy++YPLkyU7X3XDDDQwcOJBvvvmGbdu28cADDxAcHOz4+6BBg4iLi+OLL77o1v9JCFfYsWMHNpuN4cOH06dPH8fPhg0bHMn6nj172i2Sbv3zwAMPtHv/L7zwAhdffDGJiYkeOZ4gjzyKEMIraJrGunXr+PDDD/nFL37RrfvIz88nPj6ezMxMgoODGTRoEFOmTHH8bcWKFeTn5zs+xO69916ysrJYsWIFf/rTn9rc3yeffMKePXv48MMPHbf505/+xMUXX9zl2BobG/nb3/7G+PHjHdddeOGFTvv84x//ICoqig0bNnDZZZfRv39/AKKiooiPj+/wvp944gnuv/9+fvKTnwDw2GOP8dlnn7Fs2TKngtN7772XSy+9FIAlS5YwevRo9u/fz8iRI9u938OHD7f5wM/Pz+e+++5z3GbYsGFtbpeYmMjhw4c7jFcId6uqqsJisbBt27Y29W99+vQBYMiQIezevfuM99Ne1/Thw4f55JNPWL16tesCPgtJiIQIAO+99x59+vShsbERu93O9ddfzyOPPNKt+7r66qtZtmwZQ4YMYfbs2VxyySXMmTOHoKAgpzPG1urr6zusx9m9ezdJSUlOSUFGRka3YgsJCWHcuHFO1xUVFfHb3/6W9evXU1xcjM1mo6amhvz8/E7fb0VFBcePH2f69OlO10+fPp1vv/3W6brWj5+QkABAcXFxhwlRbW2tU3cZwKJFi7j11lv597//TWZmJldffTWpqalO+4SFhVFTU9PpYxDC1SZMmIDNZqO4uJjzzjuv3X1CQkI6fO2fyYoVK4iNjXWcXHiCJERCBIAZM2bw3HPPERISQmJiIkFBLW99s9mMpmlO+zc2NnZ4X0lJSezdu5dPPvmEjz/+mJ///Oc8/vjjbNiwoVNnjN1hNqve/dZxthdjWFhYm+LLBQsWcPLkSf7yl7+QnJxMaGgoGRkZ3e4yPJvWXVt6LGcq7o6JieHUqVNO1z3yyCNcf/31vP/++3zwwQcsXryYVatWOY30KS0tdbRuCeEuVVVV7N+/3/F7Xl4eOTk5REdHM3z4cG644Qbmz5/Pk08+yYQJEzhx4gTr1q1j3Lhx3U5m7HY7K1asYMGCBU6fVe4mNURCBIDevXszdOhQBg0a1OYDpn///hQUFDh+t9ls5ObmnvH+wsLCmDNnDs888wzr169n06ZN7Nixw+mMcejQoU4/HXVHjRo1iiNHjjjFsHnz5jYxAk775OTkdOrYv/zyS+666y4uueQSRo8eTWhoKCUlJU77BAcHn3EOoIiICBITE/nyyy/b3HdaWlqn4ujIhAkT2LVrV5vrhw8fzi9/+Us++ugjrrzySqci1bq6Og4cOMCECRN69NhCnM3WrVuZMGGC47W2aNEiJkyYwMMPPwyolpz58+fzq1/9ihEjRjB37ly++eYbBg0a1O3H/OSTT8jPz+eWW25xyTF0lrQQCRHgLrzwQhYtWsT7779PamoqTz31lNNortO99NJL2Gw2pk6dSq9evVi5ciVhYWEkJyfTr1+/Lp8xZmZmMnz4cBYsWMDjjz9ORUUFv/nNb5z2GTp0KElJSTzyyCP88Y9/5Pvvv+fJJ5/s1PENGzaMf//730yePJmKigruu+8+wsLCnPYZPHgw69atY/r06YSGhtK3b98293PfffexePFiUlNTSU9PZ8WKFeTk5PR4PqBZs2bx8ssvO36vra3lvvvu46qrriIlJYWjR4/yzTffOA3L37x5s6OlSwh3uuCCC9q0ILcWHBzMkiVLWLJkicse86KLLjrjY7qLtBAJEeBuueUWFixYwPz58zn//PMZMmQIM2bM6HD/qKgonn/+eaZPn864ceP45JNPePfddx01Ql09YzSbzbz11lvU1tYyZcoUbr31Vv74xz867RMcHMyrr77Knj17GDduHI899hh/+MMfOnV8L7zwAqdOnWLixInceOON3HXXXcTGxjrt8+STT/Lxxx+TlJTUYavLXXfdxaJFi/jVr37F2LFjycrK4p133mm34LkrbrjhBnbu3MnevXsBsFgsnDx5kvnz5zN8+HCuueYaLr74YqcvnFdffZUbbriBXr169eixhRAtTJoRaZgQQgiH++67j4qKCv7+97+fdd+SkhJGjBjB1q1bSUlJ8UB0QgQGaSESQgiD/eY3vyE5OblTM2sfOnSIv/3tb5IMCeFi0kIkhBBCiIAnLURCCCGECHiSEAkhhBAi4ElCJIQQQoiAJwmREEIIIQKeJERCCCGECHiSEAkhhBAi4ElCJIQQQoiAJwmREEIIIQKeJERCCCGECHj/HyRVjunJS3+uAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "probability_of_zero = [result.measurement_counts['0']/N_shots for result in batch.results()]\n", + "x, y = lengths, probability_of_zero\n", + "\n", + "signal_mean, oscillation_frequency_estimate = estimate_fit_parameters(x,y)\n", + "\n", + "initial_guess=[1/2, signal_mean, 8e-6, oscillation_frequency_estimate, 0]\n", + "optimal_params, _ = scipy.optimize.curve_fit(damped_oscillation_fit, x, y, p0=initial_guess)\n", + "x_fit = np.arange(x[0],x[-1], np.diff(x)[0]/10)\n", + "y_fit = damped_oscillation_fit(x_fit, *optimal_params)\n", + "\n", + "plt.plot(x,y, 'o')\n", + "plt.plot(x_fit,y_fit)\n", + "plt.xlabel(\"Pulse duration (s)\")\n", + "plt.ylabel(\"Population\")\n", + "\n", + "\n", + "rabi_frequency = optimal_params[3]\n", + "phase_offset = optimal_params[4]\n", + "x90_duration=(np.pi/2)/(2*np.pi*rabi_frequency)+phase_offset\n", + "plt.plot(x90_duration, damped_oscillation_fit(x90_duration, *optimal_params), 'ks')\n", + "\n", + "print('Rabi frequency:', round(rabi_frequency*1e-6, 2), ' MHz')\n", + "print('rx(pi/2) length: ', round(x90_duration*1e9, 2), ' ns')\n", + "\n", + "# Pulse duration must be a multiple of 4ns\n", + "x90_duration=x90_duration//4e-9*4e-9\n", + "plt.plot(x90_duration, damped_oscillation_fit(x90_duration, *optimal_params), 'rs')\n", + "print('Redefined rx(pi/2) length: ', round(x90_duration*1e9, 0), ' ns')" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "experiment_configuration[\"aspen\"][\"x90_wf\"] = GaussianWaveform(x90_duration, x90_duration/4, 0.2, True)\n", + "experiment_configuration[\"lucy\"][\"x90_wf\"] = ConstantWaveform(x90_duration, 0.07)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Ramsey sequence - $T^*_2$ Measurement" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the following, we implement a Ramsey sequence that allows you to measure the coherence time of a qubit. The Ramsey sequence consists of two $\\pi$/2 pulses separated by a varying gap. Starting from the $|0\\rangle$ state, the first pulse creates an equal superposition of $|0\\rangle$ and $|1\\rangle$ which will decay back to a mixed state after a characteristic time called $T^*_2$. \n", + "\n", + "For better visualization, the carrier frequency is shifted away from the resonance frequency by some arbitraryily-chosen detuning which causes the frame of the driving to rotate with respect to the qubit frame. This results in oscillations at a rate equal to the detuning on top of the decoherence decay. " + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "detuning=250e3\n", + "x90 = experiment_configuration[device_name][\"x90_wf\"]\n", + "\n", + "delay = FreeParameter(\"delay\")\n", + "ramsey_spectroscopy = ( \n", + " PulseSequence()\n", + " .set_frequency(drive_frame, drive_frame.frequency - detuning)\n", + " .play(drive_frame, x90)\n", + " .delay(drive_frame, delay)\n", + " .play(drive_frame, x90)\n", + " .capture_v0(readout_frame)\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Once again, we will sweep a parameter of the sequence which is the time gap between the two $\\pi$/2-pulses. " + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "start_delay=12e-9\n", + "end_delay=40000e-9\n", + "delays = np.arange(start_delay, end_delay, 512e-9)\n", + "N_shots=100\n", + "\n", + "pulse_sequences = [ramsey_spectroscopy(delay=delay) for delay in delays]\n", + "\n", + "batch = device.run_batch(pulse_sequences, shots=N_shots)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plotting and fitting are not different from what we have seen with Rabi oscillations. We can now experimentally verify that the oscillations correspond to the frequency detuning of our pulses, and we can extract the coherence time $T^*_2$ of the qubit " + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Detuning: 258.53 kHz\n", + "T2: 33.33 us\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAADujklEQVR4nOy9eZgkZ3nl+4vc99q33luttdXaEEgIhAEhjMDIgz2eYWBkFg944MKAYe413rBGYww2HjDYY8OYudjGjLF9MZsMbowlFstICKnViEZ7q/euvSr3PSPuH9/3RUZmZVXnEpGZ3YrzPP10d1Zk5FeZkREnznve82qGYRi4cOHChQsXLlxcIPAMegEuXLhw4cKFCxd2wiU3Lly4cOHChYsLCi65ceHChQsXLlxcUHDJjQsXLly4cOHigoJLbly4cOHChQsXFxRccuPChQsXLly4uKDgkhsXLly4cOHCxQUF36AX0G/ous7Zs2eJx+Nomjbo5bhw4cKFCxcu2oBhGGQyGbZt24bHs7U285wjN2fPnmXnzp2DXoYLFy5cuHDhogucOnWKHTt2bLnNc47cxONxQLw5iURiwKtx4cKFCxcuXLSDdDrNzp07zev4VnjOkRtVikokEi65ceHChQsXLs4ztGMpcQ3FLly4cOHChYsLCi65ceHChQsXLlxcUHDJjQsXLly4cOHigoJLbly4cOHChQsXFxQGSm6+973vcfvtt7Nt2zY0TeMrX/nKOZ/zne98h+c973kEg0Euvvhi/uIv/sLxdbpw4cKFCxcuzh8MlNzkcjmuueYa/uRP/qSt7Y8dO8bP/MzP8PKXv5zDhw/zK7/yK7ztbW/jm9/8psMrdeHChQsXLlycLxhoK/irX/1qXv3qV7e9/ac//Wn27t3Lxz72MQCuuOIK7rvvPv7wD/+QV73qVU4t04ULFy5cuHBxHuG88tzcf//93HrrrQ2PvepVr+L+++/f9DmlUol0Ot3wx4ULFy5cuHBx4eK8IjcLCwvMzMw0PDYzM0M6naZQKLR8zkc+8hFGRkbMP+7oBRcuXLhw4eLCxnlFbrrBr//6r5NKpcw/p06dGvSSXLhw4cKFCxcO4rwavzA7O8vi4mLDY4uLiyQSCcLhcMvnBINBgsFgP5bnwoULFy5cuBgCnFfKzU033cQ999zT8Ni3vvUtbrrppgGtyIULFy5cuHAxbBgouclmsxw+fJjDhw8DotX78OHDnDx5EhAlpTe96U3m9u94xzt49tln+dVf/VWeeOIJ/vRP/5S/+7u/433ve98glt9fVIpQLQ96FS5cuHDhwsXQY6Dk5qGHHuK6667juuuuA+D9738/1113Hb/9278NwPz8vEl0APbu3cvXv/51vvWtb3HNNdfwsY99jP/9v//3hd8Gnp6HP7oWPnoRHL130Ktx4cKFCxcuhhqaYRjGoBfRT6TTaUZGRkilUiQSiUEvpz189V3wyOfFvycvg//rAfCcVxVFFy5cuHDhoid0cv0+rwzFz0nUqvD4P9T/v/IkLPwItl03uDW1iZpu8OCxNZYyRabjIW7YO47Xow16WS5cuHDh4gKHS26GHWcPQTEJoVHY8QJ45ltw/L6hJzcHj8xz192PMZ8qmo/NjYS48/b93HZgboArc+HChQsXFzrc2saw4+wj4u9dN8FFLxX/PrF5IvMw4OCRed75+UMNxAZgIVXknZ8/xMEj8wNamQsXLly4eC7AJTfDjvkfAXAqdAn35UW6srH440GuaEvUdIO77n6MVkYu9dhddz9GTX9OWb1cuHDhwkUf4ZKbIUf62MMA/PeHfLz7n4USoiVP8q1Hnh7ksjbFg8fWNig2VhjAfKrIg8fW+rcoFy5cuHDxnIJLboYYB398Bn/yWQCeNraTJM6iMQrAn/7d14eyvLOU2ZzYdLOdCxcuXLhw0SlccjOkqOkGf3r3vxLWylQND6eNKQCe0bcDsFdbGMryznQ8ZOt2Lly4cOHCRadwyc2Q4sFja0SyJwA4bUxRlY1tJ41pAHZqS0NZ3rlh7zhzIyE2a/jWEF1TN+wd7+eyXLhw4cLFcwguuRlSLGWK7NbEkNDjxqz5+ClJbnZ5lszthglej8adt+9v+TNFeO68fb+bd+PChQsXLhyDS26GFNPxENu1ZQBOG5Pm41blRm03bLjtwByfuuN5jIb9DY/PjoT41B3Pc3NuXLhw4cKFo3BD/IYUN+wdZy2QAh3OWsjNKem92aktD3V557YDc5xcy/PhbzwBwE/vn+FTd1zvKjYuXLhw4cJxuMrNkMLr0XjhRB6As8aE+fiCIcjMFEnufO3lQ00WljMl89/RoG+o1+rChQsXLi4cuORmiDFRE2Wpdd+U+dgKI+ho+DSd2/b6N3vqUGDJQm4yxeoAV+LChQsXLp5LcMnNsMIwIHUGgIv2XWo+/O9fsActKslOZmEQK2sbi+m62TlTrAxwJS5cuHDh4rkEl9wMK4opqAnl46lC3Hw4HPChxWX31DCTm9WjFFPL5n9d5caFCxcuXPQLLrkZVuQkMQgmOJ3RzYeXsyUwyc3wJRQD8P0/hj9+Hv9v9t3slO3smZKr3Lhw4cKFi/7AJTfDiqxo9Taikw2zmpYzxTq5yS4OYmVbo7AO3/4IABNaind7vwq4yo0LFy5cuOgfXHIzrMgJclMLT1KuWpSbTAniMidmGJWbJ74OlZz535/xPkCQMtliFcMYrlERLly4cOHiwoRLboYVWVGWyvsnGh5ezpQgNiP+kxlC5ebZ7wJw+qp3sWSMEtOKXKU9S1U3KFb0czzZhQsXLly46B0uuRlWSM9NxjcGwI6xMADpYpVyRJGbIVRuTvyr+CvxfB7SRZfXC7xPAcPZMVXTDe4/uspXD5/h/qOrQzeI1IULFy5cdA43oXhYIctSq4wCcOlMnKVMiXJVZ90zzgwMX7dUbhXSon39ae8lnNIv5TXeB3m+7yhUBTGbTgx4jRYcPDLPXXc/1uBpmhsJceft+90RES5cuHBxHsNVboYVsiy1pAs2MDsSYioWBGCZMbnNIuhDVOpZ/LH4e2wvZwpeHjd2AXCpdhoYLuXm4JF53vn5Qw3EBmAhVeSdnz/EwSNDqIq5cOHChYu24JKbYYVUbs5UYwDMJkJMxQW5OSsfw6hBMTmI1bXG4k/E3zNXspgu8ZS+E4DtxgJBykPTMVXTDe66+zFaFaDUY3fd/ZhbonLhwoWL8xQuuRlWyFbwEyVJbkbq5GYpp0NwRGyXXx3I8lpi9Rnx99TlLKaLrJCgFBjDg8HF2hmypeEgNw8eW9ug2FhhAPOpIg8eW+vfoly4cOHChW1wyc2wIrcCwNGcMBLPWcjNcqYEEVmayg/RBXjtWfH3+EVyaKZGaeQiAPZoi0NTllrKbE5sutnOhQsXLlwMF1xyM4wo58ysmCeygtzMJiyem2wJIrJFfKiUG0luJvaZc6W08b0A7NYWh6YsNR0P2bqdCxcuXLgYLrjkZhgh28ANX5jFohdoLEstZ0oQHhfbFoZEuamWIHUKgFx0J7lyDYDg1D4AdmpLpIeE3Nywd5y5kRDaJj/XEErZDXvH+7ksFy5cuHBhE1xyM4yQpaZaaAzQiAa8xEP+prLUkCk3mXnAAF+IxZro8IoFfQQkudk9RGUpr0fjztv3t/yZIjx33r4fr2cz+uPChQsXLoYZLrkZRhTWASj5hWl4dkSURxrJjVQVhoXcpM+Kv+NzLGbKAEwngjAq2sG3aatkh0S5AbjtwByfuuN5hP2NX4HZkRCfuuN5bs6NCxcuXJzHcMnNMEKSm5w3DljIjcVzY6iy1LAYihW5SWw3jbgz8RAkBEmY1dbIFIZDuVG47cAcL7lkEj9VdmhLvGr/NPd94BaX2Lhw4cLFeQ43oXgYIclNGkluEsJUrJSbclWn6B8hDENIbuZMM/F0IggxMcE8pFXQi0OyVgtKpTKfD3yYGz1P8PD8i/DyddjUjeOiXdR0gwePrbGUKTIdF/4lt8znwoWLfsElN8OIQhKApBEBYHZEkJqQ30si5CNdrJLUEoLcDIuhWM25SmxjKV0CYCYRAn+IcmCUQDlJML80wAW2xg2pg9zoeQKA6wvfh8e+DAf+7YBXdX7DHWvhwoWLQcMtSw0jpHKzUlXkJmz+SKk3a7pQdYbHcyNmShHfxmJGkJtpudZKVKg34eLwkZufKvwzACVD8Pzaj/6/QS7nvIc71sKFCxfDAJfcDCMkuVmo1DNuFMyU4lpUPDA0Zam6clMvS4l16zFxtx4rDxm5KSS5svY4AG+v/FcAtGfvhUphkKs6b+GOtXDhwsWwwCU3wwhJbs6UBDmYG7GSG/Hvs2Wp5hTWhmN4pum52SbTiWFGEjEtLsjNSGVlIEvbFKcexIPBs/osjwSex5IxiqdWgrOHB72y8xLuWAsXLlwMC1xyM4yQ5OZ0URCZGatyIzumTpckuTF0KKX6u75m6DXILojlxOuGYrVu3+g2ACaNNcrVISBiEsbJBwB4SL+Mq7aPcki/RPzg9IMDXNX5C3eshQsXLoYFLrkZRkhykzSi+L0aE9GA+SNVllrM6RBQvpsB3wnnlkGvguYh6x8nL9OJpxNirYGxHQDMaGtDE+QHoC/8GIBHjYu4ascIh3UROMjZRwa4qvMX7lgLFy5cDAtccjOMMMlNjJlECI+lhbZxBMOQDM9UJanYDEs5QWziQR+RgDDpekaEcjOrrQ/NfCkAFh8D4CljJ1duG+EJY6d4fOmJAS7q/IU71sKFCxfDApfcDBsMwyQ3KSPaYCaGZnIjEowHXpaSE8yJTjVm3CjERbfUzDCRm2IKb+Y0AKf9e7loMspTuiQ3q09DtTzAxZ2fsI61aCY47lgLFy5c9BMuuRk2lHOgi9JNkpiZTqygPDcr2RKERsWDxQGTm7wiN5Nmxk1D6UEaiidIk8kPid9i5RkAFo1RjNAIeyejnGWCjBEWJba1Zwe8wPMTaqzFTNNx6461cOHCRT/hkpthQzEJQE3zkSe4qXKzmiujB8WAShX6NzAo5SYyWR+9YFVu5KgIj2ZQygxJx5QkL8eNWaJBH9Ggj9lEmJPGtPj5+vHBre08x20H5vjH977E/H/E73HHWrhw4aKvcMnNsEHNlfLEAW2DcjMeDeDRRPWq5JOG4iFSbhat6cQKXh9Zj1hrObPc79W1xtpRAI7pgtwAXDQV5ZQiN8mTg1rZBYG0ZY5YvqIPVZecCxcuLny45GbYYM6VigFsIDdej8aELE3lNLHNwMlNTqYkRyZMz41SmBSy3lEAakNDboRyc8KYJRb0ArB3MsppY1L8PHliUCu7ILCeb+yKO5/av2u6wf1HV/nq4TPcf3TVDR104eI8hDtbatggyc26nCs1N7KxbXYqFmQ5UyKjRZiEwZMbq+cm00K5AQr+MaicqpewBg2pzJwypoiZyk1s+MtSpSx889dh/QS85g9g6rJBr6gl1vONhuylTIndE9EBraZ9uHOxXLi4MOAqN8OGYhqAtaoI6WsmCVDvRErqEfmcZF+WtimsnpumAD+FUkC0rWuF4ZqFddaYqJelJqOcMqbEz4dVubnnv8Ohz8Gx78LfvBFqQ9J91oT1XCO5UYreMMOdi+XCxYUDl9wMG0qC3KSMMJrWOvBMdUytSgI0LMqNEZkwPTfTTWWpSkiYin3FISA3um7Owlowxi3KTd1zYwyj56aQhIf/vP7/1Wfgya8PbDlbobkspY6LYYU7F8uFiwsLLrkZNkjlJmNEmIgGCfg2fkTm8MzKkJAb6bnJ+UcpVBrTiRX08AQA/tJ6f9fWCrll0CvoeFhi1CQ320fDLHmEcqMVU4PvQmvG0/8EtTJMXY5+03sAOPX9vxtKX0iyuSw15MqNOxfLhYsLCy65GTZI5SZDpKXfBurkZqEsCcQgyU2lCOUMAEtV0REVD9XTiRWMiDDqhspDQG5kSSrjG6eKzyxL+bwepiYmWDFki/2wlaae+WcAjk68lHc+NANA7NR3eONnvs/Nv3/vUJVNlOcmEhBmbeXFGla4c7FcuLiw4JKbYYNUbtJGuKXfBurk5kxBzpwapMKgzMQeHwslsa7mkhSAFhXKTaQyPORmzSdUGqXcgOqYUr6bIStNnfoBAP/t0XHuyeykYAQY07JcpM0PnS9kPSfKUpfMCMI77J4bdy6WCxcXFlxyM2yQoxS2VG6k5+ZUwS8eKKZE8M0gYJqJJ1jKirv1VqTMF5NEopbs18o2h5yFtawJNSlqITcXTUVZMOTso8xC35e2KbJLsH4cHY1H9H1U8fGocREAz/M8PXS+EKXcXH6ekBt3LpYLFxcWXHIzbLB4bpozbhSUcnMsJ5UbvQKVQl+WtwH5eqfU4iadUgCBhDDqJvQB+4PAVG4WNaEmWZWbfZMxloxR8Z9hIjfzjwLwrD5HFtElp6aYX6UdA4bLF6IMxZfNCnIz7GUp61ysZrhzsVy4OP/gkpthg+m5CW8YvaBgDs8seTE04WkYmO9GTSSPbt4pBRAaFeRmxMgMTmVSSAlyM6+Lu/CGstRUtE5uskNEbpZ+AsATxi7zoSd08e/LPKcaNx0CX4gyFF8uyU2mWCVfHs62dQU1F0tr4i/uXCwXLs4/uORm2GBRbjYrS8WCPkJ+D6DV50sNKutGhg4SHjcvqtMtSFlkVBhg/VqNWj7Zr9W1hixLna4JchOVCcUgsm6WGAWglh4icrP4GABPqMnlwJOG+Pdl2imwNDEPgy9kTebc7ByP1E3FQ94ODvCyy6YbuPf7br3EnYvlwsV5CJfcDBss3VLNk5UVNE0z1ZuKf0Q8OCjlxiQ3o+bFayaxUbmJxaJi4jaQX1/s2/JaIiPIzcmqeO/iobpyMx4NkPWLclUlORzmXABWnhR/hfeaDz1jbKdqeBjVckyRHBpfSKFcoyRnSY1G/KaSN+ylKRCBfVbEQ363FOXCxXkIl9wMGYxindxsVpaCuqm45BvwfCnVqRUeY1EpNy2Ug6DPSwoRv59PDzjILyvmW50qi5KJ1VCsaRqh0W3i39kBkzAr5DiI1778xeZDZfycNQQR26OJtQ6DL0SZiX0ejVjQZyp5w24qBjZk3ZxNDsjL5sKFi57gkpthQrWEVhN3t0Yw3nDRbYZSbvKeQZMbodwYoTGLoXijcgP1QZ/FzADnS5VzUMkBsFDbSG4A4pM7AAiUVodjvEEhab7P1159LQFv/WurZmFdFV0fGl+IKkmNRQNoJ/6Vj66/j//p/yRra0MyNHULNBOwsymX3LhwcT7CJTfDBKnaAMQTY1tuqshNVpZ6VDmr75Ben6I/TrEiShGbeT5yXuEPqmQHmHUjW9cNX4gcYp3RpsDB6bnt1AwNDUOkGQ8aaohndJpvPJGhXNPZOxnhJZdMmuTmt14UGQpiA5CUnVK7QkX4whvZU3yc13p/wPVHfnfAKzs3lHITl4T3bHL41SYXLlxshEtuhgi1glBfskYIv9+/ZV7JVExcmFOGJBKljOPrawmpKDwiOUDY72k5MgKg4BVKSS03wLKUJCu18CSgEQl4N5Rxdk0kWEX4cR594snB58YocjO2hy8+fBqAf/f8neyfS3DKEEZtzxClKauy1M9xr5nbBHDF6rcgdXpQy2oLSrm5dtco4JalXLg4X+GSmyHBwSPzvO3P7gEgTYQfn0lvGalvTgavKXKT7cs6m5FNCiXkj78v/i5U9E3XXfIL5UbPD1K5EeSmEhJeleaS1MEj89z1Dz8x28E/8ZV/GfxoA0luspEdPHh8DY8GP3/dDiZiAVO5Yf3Y4NbXBNUG/pLS9wB45Nr/zg/0y/Giw2NfG+TSzol5WYa6bpdQTpezJcrSHO3ChYvzBy65GQIcPDLPOz9/iFIuCYg2cGDLSH1lKF6ryCC/ASg3B4/MU0gLUpM0Yubjm627rDq7CgMkN9klAErBjQF+6nNYyZZNcjOtJQc/2kASlx/nxQX3JZdMMTsSYjIW5IRJbo4PZm0tsJarMMU6u8tPA1C9+FX8U+168cOnvznAlZ0bC7Ljb/9cgoDPg2GcH0ZoFy5cNMIlNwNGTTe46+7HMIA4eUB0SgFbRuqbk8HLgyE3Nd3grq/9hATCnJsyoubPNlt3LaDa1pN9WmULSOUm728M8LN+DoBJbqZIDn60gSQu9ywIf9UvXC8MzxOxYF25yS5COd//tbXAer7MjZ4nxH/mrmF8Zgff1a8R/z/5A6hVBre4c2BBKjfbRkNsHxXv9xm3NOXCxXkHl9wMGA8eWzNNjAlNkhtlEmbzSP06uZHzpfpsKH7w2BrJdIqgJrqJksQaft5q3XpoFABfaYAjGCS5yfmFCqIC/KyfA8AaooQ2rgnSOKjRBjXdoLj0LACP5saIB728cr/w2UzGAqSJkZYt9sMyxTyZL3Od5xnxn503MpMIcdTYRsqIQLUAi0cGu8BNUK3pLMssntlEyAzRnHc7ply4OO/gkpsBwxqVH0ecRJVys9l2ABMxodgka6pbqr/KzVKmyIhUbSqGlzyt278b1h0WakmgknR6eZtDkpuMdxSoKzfN7++qIczPitwo9HO0wcEj89z8e/fgyYhxEWeMSWoGfOdJUVpTpcmT+nBNMV/LV7jGc1T8Z8cLiAV9hAN+HtEvEY+dfmhwi9sCy9kSuiHyeSZiQbZJ5cbtmHLh4vyDS24GDGvbdEySm6xFuWm1HYhQvNGInyyDITfT8RAjmiA3SaKwyTxl67o9kVEAApUBdXaBSW5SHqXcCHLT/P6uGVK5oVER69doA9OHlV4moNUAWGKMfLlm+n/GooLgLhgyNkCOlRg0krmSHAkBzF4FiGGqR4w94rGlxwezsHNApRNPx4N4PZpJbtyylAsX5x9ccjNg3LB3nLmREBoQ1SS5oU5utorUn4oFLTk3/SUMN+wdZ19MeCfSFr+NQqt1+6Li3+HagDJ5wEwnXtMEeVHKjfVzAFhHKDcTUrnp52gDq/9nRhPm6xUjQYW6+fmuux/Do2mMRfwsKXKTGY5xEd7cAnGtIIa6jovJ5dPxIE/r28UGy08OcHWbQ5GbWVmO2qbKUi65ceHivINLbgYMr0fjztv3AxBDnFxzMrtGXWg3i9SfjAVMIlTOp/pqdvV6NN72fHFRbfbbbLZuf0wOqqylBzcZXCo3a4YwNytyY/0cNGBVKjdjWuacn4PdsPp/FLkxCQyN/p/JWJAFQxKuISE3U4XjAFRG9oBPqEvTiRDPGMIIzfITg1nYObCQLhKixE/5H4dK0S1LuXBxHmPg5OZP/uRP2LNnD6FQiBtvvJEHH3xwy+0/8YlPcNlllxEOh9m5cyfve9/7KBbP75PPbQfm+NQdz2PCL/JBVHLu7Eho00j9g0fmeeRUkowkN5V8qu95LM+TVo+iL97w+GbrDsZF+7WfKlQGcDes1yAvAgSX9I2jF9TnMDsSYk15bkgzmwj2dbSB1dczLcnNgrExsXopU2QiFmABVZYaPLkpV3W2VaX3Z/Iy8/GZeJCjxhwGGuRXzKToYUJqZYFvBj7Ar5z5r/CpF7EjJD4HN8jPhYvzD5sPL+oD/vZv/5b3v//9fPrTn+bGG2/kE5/4BK961at48sknmZ6e3rD9X//1X/Nrv/ZrfPazn+VFL3oRTz31FG95y1vQNI2Pf/zjA/gN7MNtB+bIPBiEk1D1RfjCL72QG/aOt1QKlB/DoF7CimolllJ53vn5Q/27EMuW7puuvJjoo15ypRr/4xeu5ueet6PluiOxESqGF79WE1k3gY3GaUdRSKIa1ZdqMSDfkHMD4nN45f5ZPnvvEbgPglqV+953A95wom/LtPp6ZhHkZrEFuZmOi6ybxSFSbpKFMhdrwgDtm7ncfHwmEaJIkFX/HJOVs6I0FZ0c1DJb4gXH/oTdHmHWZu0oOw//IfAKMqUq6WKFRMg/0PW5cOGifQxUufn4xz/O29/+dt761reyf/9+Pv3pTxOJRPjsZz/bcvvvf//7vPjFL+aNb3wje/bs4ad/+qd5wxvecE6157xBWaQMe0Jxbto30ZIgNOex5Cz+nKg0JPctj0WG8WnhUUpyrtTNl0xtWrqJhwPmZPCBBPkVZBt3MEFGiGQbyA2IEtV1F2+nYIiSirfQ33ERVv+PWZaiTm6s/h9BbobHUJzMV7jEI8iNZ7pOblSi9gnPTvHAsJWmimmuT/0TAE9e9g4A/Ef+lm1hEXUw75amXLg4rzAwclMul3n44Ye59dZb64vxeLj11lu5//77Wz7nRS96EQ8//LBJZp599lm+8Y1v8JrXvGbT1ymVSqTT6YY/QwtJboxAbNNNmvNYyvgpGeICHaPQ3zwWOeiz5o9TlWQqFtpcDEyEfGbYn1Hob14MUCdU4TGyJXHR2mzyejzkZ1Vm3ahSVr9g9f80l6Wa/T+TsUC9ZFVYg2qpr2ttxnquzD5NkqypS83HlRr1lDGkpuKnDhIyShzV50jd+P/A+EVQzvLayE+AwZSmarrB/UdX+erhM9x/dHXwM86eA3Df8wsHAytLraysUKvVmJmZaXh8ZmaGJ55ofVf3xje+kZWVFW6++WYMw6BarfKOd7yD3/iN39j0dT7ykY9w11132bp2p6BJcsMW5KZVzkqWMEEyRLWiGQ/clzwWGRxY8Ir1ahpE/N5NN4+H/JyRyk0xu87GhneHkZeEKjxGtqjITev1JsI+VowYO7QVjNzKJo3uzkH5f7Z/MQnUy1KzIyHuvH2/WXacjAVJEqOCHz8VUZoa29Pn1daRTq0xqckbCNkpBTAjlZsnSpOCoQ3RuAgA45l/RgP+SX8+rx2NwGWvgfv/Jy/VDvNnXMPZPgf5HTwyz113P9ZwIzPX9Nm7sBfue35hYeCG4k7wne98hw9/+MP86Z/+KYcOHeJLX/oSX//61/md3/mdTZ/z67/+66RSKfPPqVOn+rjizuCpiNwYLRjfdJtWOSuqHVyNb9hsO9shlZuiRxCWWMCHZ4tuopDfYwYUljIDLEtFxsmVBbmJb6I0xUN+M+umklnuy/KacduBOS4Kivc4OLadL7z9hdz3gVsaTrSTsSCgseIRZu1Bm4ora8JMnPPEIVT3KU0nxPF4tCLXOSSBgwAYBsaz3wXge/rVooR28SsAuLJ0GOivcqM8ddaLLGw9a85Fb3Df8wsPA1NuJicn8Xq9LC4uNjy+uLjI7Oxsy+d88IMf5Bd/8Rd529veBsBVV11FLpfjl3/5l/nN3/xNPJ6NXC0YDBIMtk7PHTb4qoLcbGVeVX6MhVTR9N0oU3FMK6AZ4u6+H3ksSrnJS3KzGVFQ0DSNgty2LIeE9hWmcjNO7hxlqWjAa45gKKWWCPRlgU2oVQmWRElsZGYXN+2b2LCJSqpeMsaYY2HgpmJDkpZkYBZr+lEs6CMa8HK6Ik3EyZMiDkDrtybWAukzeLILVA0PJ0P7Cfq8sOMG0DyMVhaZYY355Pa+LKXZU2eFgRC97rr7MV65f7YvsQTPBbjv+YWJgSk3gUCA66+/nnvuucd8TNd17rnnHm666aaWz8nn8xsIjNcrygrGoHJT7IKuE6gJ5cUf3ly5sfoxFBS5UeMb+pXHopSbnFRjtvLbKJRkCauaTzq2rE1hUW4yqiwVaL1mTdPIekUWTjU7GOWG3DIaBjVDIxCfarnJpBzBcKYmh5JmFvq1upbwpk8DkA1tlPFnEiHmDUnQKrk62Rw0Tv8QgMeNXYyOyvcxGIOZKwF4nufpvqUUN3vqmrGVp871i3SHXt5zF8OLgbaCv//97+fNb34zz3/+87nhhhv4xCc+QS6X461vfSsAb3rTm9i+fTsf+chHALj99tv5+Mc/znXXXceNN97IM888wwc/+EFuv/12k+Sct5AlKQD/OdqOlR/jzq/9hMV0yRy0uT1S5VOv618ei1JuUkYEqLXsPGpG2ReHGtTyAxieKS+memiMUlV0d22lNhX8o1CBWnZAmSx58bprJBiNtXYoKXKzqI+IW5XcgIiYRDArOqWK0W0bfjadCPLsSoBiaIpQcRlSJyG6UY3qO+Z/BMCj+j5mE5Zy7rbrYOHHXO45yRf75Llp1yvXvJ3rF+ke3b7nLoYbAyU3r3/961leXua3f/u3WVhY4Nprr+XgwYOmyfjkyZMNSs1v/dZvoWkav/Vbv8WZM2eYmpri9ttv53d/93cH9SvYh5IwE9cMjWBkc0Oxwm0H5rj1ihku/a1/NJWbX7tlO55+nsgkuUkbYSBLrI0ckKo/DiXQiwMgN7JbquQfNR/arCxlblcB8gPwB4FJVFaMBBPR1oWxcMBLNOBlRSk3uaV+ra4lokVRFqvFd2z4mfKBpYJzgtwkTwoCMWjIzq0njR3m6AUApoVCepl2moVUEV03tvSU2YF2vXLT8ZAg6//4q6wunOLPT7+SeeOKhm2UX6SfAZTnIzp6z12cNxgouQF497vfzbvf/e6WP/vOd77T8H+fz8edd97JnXfe2YeV9RmyUypHiHi4PYeHz+shEfaTLQty41HdVv2AYZhlqVQtCGTP6bkBqAXjkAWtOICWfFmWKvgFEQj4PPi9m1dmq4ERyINWHBS5EcrNqpEwh2S2wmQ8yGoy0fCcQWGkLMpi2ujODT9THVPL3hlmoMFUXNMNHjy2xlKmyHQ8tGmApSOQgzyfNnbwIqtyMy3IwmXaKSo1g5VsyTRGO4VWnjorNKSnbs8Y/J+fg2e/wwTw2cAj3FL6GIvUvXauX6Q9nOs9B5hNBNENg68ePtP/49NFVxg4uXEhIQdf5ggTb6O8o5AI+cmWIw376AsqeTDEtOq1mvT8tLPuoLgIe8oDIDdSgcl5hKfpXGU0IzQKgLc0AJUJTOVmlREmIluQm1iQ1fVEw3MGhcmqaBDwTezZ8LMZSQzmmeIAmORmoCWVSsFsS39a38HPt1BudnsWCVLmTLLgOLlRnrp3fv4QGrS82N55+368J/8Vnv0OBhrrRpRxLcu7fF/lt6tvbdjW6hdpZUh30fieb4ZCRec//u8fmP93S37Dj/OqFfyChlJujFBb3hWFeMhHVg7aVGWivkApL5qX9YooR7W1btke7C33d4o5YCo3WU/jRPDNYIRFtoy/PGByYyQY30K5mYgGWJGDQBmU+RmgUmTCEAQyPLl3w4+n4kK5OV6rt4MPvAV35WnAIK3FWSHRWJaKTkFkAg8GF2tntjSd2gnrjDMrIgFvvcT0yOcBOL7n3/FfKv8FgNd5/5Ug5Zb7dP0iW0O9574mNUZdIFOFSsPjbov48MMlN8MC6bnJEmqr60ghEfKbnpu+KjeKSAXjZMpCwYm34bnxhEcB8Ff7WEJTkIbijGfj0MxW8EYEuQlUB5NqbWTrnputyM1kPMgKFuVmQJ2DekqYifNGkMT4xtlwSrk5WhLvq5E6tWULLvRhlIgcA/G0sQPQmLMSCk0z1ZtLtdN9zbq57cAc3/6/X9bw2M6xsCA21TI88XUAcpf9At/Xr+SMMUFCy/Miz09a7s/1i5wbtx2YIyHPvb/6qsv4P//pxk3LwX07Pl10DZfcDAvKolsqZ4Tb8q4oxEO+wZAbpdyEEmbabzukzBcZBSBY7bNyUylAVVyckqiy1NYddr6o8C/49dJApphXM8IcvMoIo5HNieNkLFhXbqoFUwXsN3KrIiBz0RhlNLoxW0qRmyfzMg4guTD4FlxJbp6obmtYo4kpMR/rMs/pvrWDK6h5bQpPLmZZy5XhzENQzkBkkituuJXZkQjfrl0LwMs8hxueY51D5mJrFCs11vJCofmPN+7G49FYzbVWwsBtER92uORmWFBWnpsQ8WD704fjIb/ZCt5f5UaWaoIjZIrihNCO58YfERfhkN7nC7CaK+XxkayJC9i5ylKh2ChVQ35FCkkHF9caNanc5LyjhLYYazEZC1AgREmTF+YB+W7yq0K5WdHGCfg2nlqmVVmqLFQmf2mVAJUN2zXD0ZLKytMAHDW2EQv6NqqPExcDsFNb7PvwTJWiHfB5uGRaEMIHj62CTFPmopfi9Xq58/b9fE+/GoAXeh43n988h8zF1lDKXCTgJRH2uS3i5zlccjMk0IuqLBXurCwVtio3fSQMVuWm1L5yE4iOAuA3Kv0d8qjITWiUnCyjnassFQ/7ScuAQopJBxfXGprsfKqEtzaCqqybpKbawQfTMVVOioGZKV/r9UaDPmJBH+vEMTxC7p8iec79OlpSSZ4A4KQxbXZzNUDO6dqlLfV9vpSZoh3w8sKLxHv6wLNrcOZhscEuEXZ624E5SjOipf4S7QxRGeY5OxJy28A7gFIRt42G0TTNbRE/z+GSmyFBWYbadW4o9puzpfqr3MjXCibMtN92ymnh2Fj9P/1sB1fKS3jUvGic632Oh/wkDZk5VOh/O7i3KKeRRya33E6Rm1WUqXgwWTd6WrSBZ/2br3c6IWZhlcLCk7M/nt90276UVNYFuTllTDE30iIo0Upu+q7cCBIeCfjMTqcHjq7A/GGxwdy1gCin/GAlwBljAo9mcEA7zv/zqks3zCEbOCpF+MmX4fh9g15JS6iy47ZRcRyoFvHNNC+35DfccMnNkKBSUEMowy0l/c2QaPDc9JEslFooN22QsngkWC+j9TPIT71WaITMOeZKKSRCftJqQlK/y1LlHL6quPBrsdajFxTUfKnFmhzbMah2cDnXqhDaaCZWUKWpXFD8Tu+8PtJyu76UVIopU5E7ZUxv9NsAjO4CYETLU86uUqzUnFlLC1hJuLqAJhdPiM9X88LsAQD+9ZkVihWdp7yXAnC15yhzI+HhKkVVSxh/8TPw/70F/uJnOPnlu4bOiKvKjtukqdw66qbVO2kA/+EFO/mHR8+64y4sGJYxIG7OzZCgVhBKSNUXPceWjUiE/GQMS85Nv4YRKtWlQ+UmHvKTISzmYPUzP8YkN50oNz7WB6XcyNJS0fATiY1suak5gqEWF9/oAZWlfHlBqirhzcmYIhAp7wQTwEhlBdi4/Ww/ckRkzk7OO0qeUGOnlEIgghGbRcsusEtbYiFVZM9kZ9/RbqGO00jQy2QsyKUzMfYsizlYTF0OfnGT8M+PC6WuMnstnL2fazxHWSmc28vUTzz51Y9y2ZmHzP9vO/wJ3vjYXt76b145NOrS2SblBuot4s05TCBOs3/4z0+b/3ezb4ZrDIir3AwJ9GKX5MbquTFq/evqkcqNEYxblJtzG6HjIZ9Jxox+lqWUZyY0Qq4k7r7PRW4SYT9JU7kZDLlZJcF4i84jKxIhHwGvhxVVlhrQCIZQQbyuHpvddBtFbpY1oUQ8+rjoVnrzi3YzHhXHz+++7kB/SiqyJLXkFeNeZlqRG0AbkO9GGYrVcfrCiyY44DkmfrjtWgB03eCex0Vw4swVLwLgGu1ZUoVq39Z5Lnzz0ZOMPfq/Afi/K/+Zb9Weh0/T+dnCV4YqK0Z9ts0k97YDc9z3gVv4wttfyCf/w7X8Xy/bB2xMXHiuZ98MPLOqCS65GRIYsltK93dGbuIhP3mC6Eo47ZfvRhKTqj9uyo7tKDexkM806Vb6ORncWpYqtleWiod8pAzxeej9Jjd54bdZM+Jbjl4AMcF8Ihaoq0wDmrYdLQvlxhPfnJSostS8LrxXemaeoM/Du152MaMyhXnfdKw/JRVpJj4jlaO5zdKHB+S7USQ8EhCdcjddNMF+TaxZ+W2OnE2xlCkRDXi5/BphMN7pWSafHVDwZBNqusE/3v13TGtJVowEX6m9mM/WXg3A7d77CVAemqwYpdxsH93ovfJ6NG7aN8Frr97Glx850/L5z+Xsm5puDD6zqgkuuRkWyE4nIxDv6GmCUGgUkHf3/co4kcpNwSMu/ppWPwlvhVigrtwUM328CCtyYzUUn4OMxUM+kgjCUMn2mTBIMpU0YlsG+ClMxoKsG/LYKQyA3JRzhHSR1eQf25zcqBLa41lxDMyyzn+8cTfTiZB5/BTKffK1SOXmaEUYoJsTgU00kJs+KjdN3rAb9o6zT5MdafGLgHpJ6iWXTBFMTJH3C9IYTD3bt3VuhQePrXFD4V8BOFh7AVV8PKBfwYIxRkLLc4PniaHIijEMwySu21qQG4UHj60NPptpCDGM74tLboYEmgzxI3juieBWJGQuR06ZdNV+nIYkC4rcxII+tDa8Ph6PRlE+p5xLOra8DbAoN3W5f2syFvR5yWmCMFRzfVZuJEFJ0i65CbAuwwmV6tNXZESnVN4IEo2Ptdzk4JF5/vs/PAbAo2lBbma0dS6bEcd8JCAu4urzcRxSuXmqLEpkm5Ob3QDs0JaZ72tZSkYWyPdlIqSxyyPUsYeygpCpktQrrhAm7kxMkJ5EdjjIzVK6wEs8Pwbgn/XnAWDgMUMHXy5DBwedFZPMVyhIs/imxwHtr3PQv0+/MYzvi0tuhgReOY7AE+xGuYGsMRjlJqeJi1SijdELCkWvTKjN91E6V91OoRHTI6QuGluh5BeBc0a/Sz3y9daNeFvkZiIWrLet5wcwxTwrLrKLxmjLMpqqx6/JxNclYxSAaW2dX/vSjzl4ZN5UbvL9Um5SpwE4Y0wS8HoY32w4aWI7ANu0Vc70sSyVtxiKAVg/jhedrBHiu2e9zKcK/ORsGk2Dl18uyE1xRPhBxgrH+rbOrbBTW2anZ5my4eVB/Qrz8X/RrwLgBo/wXA06K0b5bSZjgS0DM93sm9YYxvfFJTdDAtX26wt3Sm4EqcgjD5q+KTeC3GSlf6aTbJ6yX/yOtX6SG4tyk23TcwNQDUqTbr89N/L11okxtsVEcIXJWJA1BliWkuRmmdEN621Vj1+W4yISWsH0XYT94nTUt7JUWngnzhoTTCeCeDbz+UhyM6etMr++eS6P3TAVRkXCV0VnzjFjlgeOrXGPLEldt3PULPdVxy8BYLp0sm/r3ArXep4B4CfG3vo5Cjiki3Verp1kb4KBZ8VsKElVS/AP74OPXwlf+y9mo4abfdMaw/i+uORmSBCoClLiCyc6e57PQ8jvIWeSm34pN8K4nJblsE5SlauS3Bj9TP1t0QrejgG6FhwFwNPPtnVAl6WllBFjot2ylFJuytn+pj8DhuruMhIblJtW9fg0UcqGuEMeJ8N8qmiWYfpSlqoUTAK5YIy1bgNXSIi5U1GtxPraMvcfXemLMdI0FCsSLkdFPGts46nFLH/2vaNAXbUB0KZE1s326inH19cOPGcfAeBR/aKGxxeYYN4Yx6fp/N5NtYFn8igvlXkc/NNvwUOfhfRpOPQ5+McPAFtn3zyXx11Y35dmDOp9ccnNMKBWxW+Ii5G/Q3IDQr3JGfJL2a8RDLIsldQluelAuakp0/QAWsH14Ejb4xcAjNAoAN5S0qGFtUY1K8hNkhiJ8LlLfpOxIBki6Oor3ecyWiUtVIQ1I8FY05DP1nV2zUxUntAEcVSttX1RbtLCmFvxhEgTbR3gJ3HwqRQpaSwf11d5w2d+wM2/f6/jra31PCZZJpHKzQmEYfvkmrgg/+X3j5tr8c+I0s9O/SzUhqAd/OwhAK574cs3XNgel6GDN/oH7w9SZalto2FYPQoPfkb84Pq3ir8PfQ6WRAlNZd80e3Oe6+Mu1PsS8jfSikG9Ly65GQZY1JbAOQLbWiER8vW3LFUpQk14JxS56WSSuSFLPZ5yP6eYiwto3ltvtW+HkHnCcjJ4JQO6fo6t7YOeE+SkEhxr625nMhbEwENaG0xpqpQS5GbdM0K4ybOwWZ191RBEflKSGzX5vC+eG5mmnPZPAdqmyo3yCp3RxfiDbZognf3I7lAKljJar50UQzGfqTVeJFazZXMtsendlAw/fq1GZX3ApalaFeZ/BMD2Ay/eoHa98KdESzinf9jvlW2AKkttHw3DD/83YMAlPw23fwIuf634/w8/Y26vsm/e+wpZXpuJD9+4iwHgtgNzXLdzFIA33bSbL7z9hQN7X1xyMwyQ5KZseIlFWsfRbwUxX6qPZSlzzIPGeiUg19BB2HVIXNS8/SI3es1igBYXf59HI9jGmAtPZFT8jd7f8RayZKKUo3NhMi4+h3rWTX87pmpynlXJP7aha26zevyK9N1MamnmRkLsmxJrz/ejLJUWpGTFI7qOWik3Vq/QvCE7qjRBGvuR3aHKUtGgl5puUFsVCscxozEk0bqWSNDPKUPk9uQXjzqyrrax8hRU8hCI8f2keP/2zyVMg/xS4kqx3dnDA1pgHWZZKhGAI18SDz7/P8m/pXpz5O+hVk9+9no0XrBH/F6G/L8LWM+L9+iV+2e4ad/EwN4Xl9wMA2QpKUe4o/KOQiLstyg3fSA31tELZaFmdLJujyy9+at9IjcWUpKRBuhom63r0WiUvOpE66Op2FsSr+WJbD0RXGFCphiv6FKZ6nd3l/TclIIb17uZT2EVqdyQ5s7b95vHUF+UG2kmPlUVBCtTrG4gKVavkCI3c1qdNDqd3aGUm2jAxw+fmWcKcUwo8mKFWsuhk0nOaiJxubw84HLPwqPi79mruf9YEoCb9k2wY0yovc9qosWe9On+lqhbYF6Sm0vKT0B2AYIjsO8W8cOLXg7hcfH9VxPZJRJhccymhmzchcIg5jypjsh2GiGchEtuhgGylJSjs4ngCvGQz2Io7kNZSplrg3Ez7bed0QsKfqmGBKt98gepNnB/hGxVHPLtvs/xoI+UGsHQLwN0tYxfGsy9sfa6C8ajATwaAwvy8xYEudHDrclYK5/CiixLvX5/kNsOzBHuYyv48eOii+epgljDJ+95eoOPxuoVmjfE7zXHxvfVqeyOfKnuDcsuidburBEygyVbYSlTZNknyI0uQwoHhmXhUWH6Ch54VpDCF15UJzfHc36Ib2vcdgCo1nQW0rJbKilLZBe9FHzy4uzxiv8DHP12w3NHpB8uXRwCcpM6I1QwWT4/eGSem3//Xt7wmQd4798c5g2fecBxr5hhGKznBblpJ8LCSbjkZhgg1Za8Eeyo60ghYTUU94XcSMXFMhG8k7KUPypC3kK17MYBLU7AGuBnpr6eO00Z5Hwpo8/zpeTr6IZGeJNAvGZ4PRrj0UCd3PS5LOUvyvcmuvnQzOYZPa+64WoA9obFXbPKHXK6LHXwyDyPP/kkIDqlFJp9NFav0EIL5UbBqewOa0LxNkOE9502hEdoM0zHQ6wFBGHQkoMmN08BkIlfxLPLOTQNbtgzzo4xoZ6eXi/A9OVi26XHB7VKFjMldAP8Xo3o/A/Eg3te0rjRRS8Xfz/bmtzkyzUqtf558jbgwc/AJw7An70U/urf8E+Hnx3InKdMqUqlJs7pLrlxIerSQJ5gR2F4CokG5aYfnhv5GoEYGXnH0gkp84VFKcBLjR88dcZ5qdTSBp5tcyK4QjzkMztl+k1uUkQZi20eBd+MiWiQdbXWfgb56TWClSQAntjklpuqGT3/5trt7NklyxI5ceHuh3KjfDTKO7No1JWxZh+N1St0lkZDMTib3WEYhqUs5eXykPg8zxit31/rWtIhQW786QEbilcEgfxxWXiE9s8lGIn4TeXm9HoepmSw3wDJjSpJbU/40E4pcnNz40b7JLk5/VD9fEI9ZwwGWJo6+wjGN/4fMCS5OvY91r72WwOZ87QuS1KRgHfLMMR+wCU3Q4BaUSk33Zel8v1sBVcEKhgzA/Hiba774JF5/vs3j5v/f9eff8/5ttqWyk17602E/KTlLCzrSc1RFFQ6cXsBfgqT8cBgylL5NTQMdEMjmNia3DRAqTxZQW76MVtK+WhmJLmZNxqJidVHY/UKqUTlKdnZ5XR2R7Gio6490aAPT0oQldPG1DnzVfKRHQCEcwPMuqmWYU2U0r67Jt7jF14kCGKd3BRgWpKb5cGRmzOS3Lw4ckrcaIbHYeryxo1Gd8HYXjBqguBIeD2aee4bFLlZ/upvoWHwtdpNvLks8nh+vnaQOVqrt056xYbFbwMuuRkKlPKizJMn2PZF14pE2N9nz40sSwVilrLUuRUnM4K/UCOjwv+0vPNttcorYxm90IlykzY9N30yPeY7myulMBmzKjd9LEtJ5SVJlJFo+0oT0cmG5/djttRSpoiGzhSCpCjS0mo7qHuFPHGhPiS0PEHKjmd3WN+DsN8LSUFubrzumnPmq5TjuwAIldf7l3vVjLWjgggE4nzrpKBfN0lys9MsS+Xr5GZpcJ4bVbq5wSt8WOx+EXhaXBq3i9lYyGBCBZVDlR4Aufne/fcztXgfuqHxB9V/z3f1a7i/tp+AVuONvnu2fK4TXjHlt5mIDZ7cdH4ldWE7SgXRw1PUwgTaaE9uRt8NxaZyYzEUn6Ms1RzBnyVMnAJRihiIu8+77n6MV+6ftf9O2DIRvHNyMwjlpj4RvNWcps0wEQ1y2mwF76dyI8zEa0aiszp7bLr+fF3vi3IzHQ8xSha/Jl5jhda5UlYfzW0H5njlFa+l+rtBfHqJPcEM3/jA6xxtcVUKYyTgFWMhJLm5/PID3Pdzt/DgsTWWMkWm46IUZV1LMDZG0ogyquXEcNCZKx1b56ZYFiWpyvjFPHs8j6bBC2T5brtUbtLFKqnYReITyC6I71eo85yvXqHawC/WZXfZ3LWtN9x2nWgHnz/c8PBI2M+ZZKHvyk1NN3jyn/+cnwK+p1/NKUMYyf+6dgs3eR/j57z38bHqv2Mzj5YTXrHVrKvcuLCgUhBKSNXbwV2vBY2G4j60V7fy3JyDLDRH8Kv1xjVxYnG0rbaXslTYZ7aP970sRXujFxQm4wHWBlGWksrLKonOTmoRqdzoVSgm+zI484a941wRF8fhmhGj2nR/t5mPxuv1oMXExSNWWcVw2Aifs3RKASa5YXRXg2+pVY7ISNhf9+bI4aB9h0xTnvcLX9WV2xKm+TYS8JnH9Zm8D6KS5K4NZtinIjfbi2LNzF3desNt18knHG54eFDt4A8eW+PmyvcBuLt2k/n4P+nPp2AE2KGtcJm2sTTppFdsWDqlwCU3Q4FqUagtVV/nAX4g1IW+JhRL5cZoKEttTRaaJdAssixFYcvtbIF1Inixe+WmVugPuVETyJNGvDPPTSzIOgPolsqJ11o1EmbKcFvwBep36rllsyyVL9fQHTKZez0av/JC8ZoqRFDhXD4aT0KQm0mSZlCZU8hbzMRUy0LZAOH9OAcSYT9nZeu6yvPpO9aOA/B4WfiqXri3MSJA+W5OredhXM6dWhtMLs/ZZJEgZRK54+KB2atabzh7NaBB6pTpEwNLO3ifyU1q+TRXeAR5uVe/1ny8RIAH5AT2l3p+1PAcp71iaznxHrjKjQsA9KJQW3Rfd8pNPOQj21fPjSA3FV/END2ei9w0S6AqUTnaRG4caatt6JZqf64UCKO0Um6q+aT9a2sBc66UEe3QcxMgqcpSxVT/Zgsp5cboULmB+l17btlUbgCKVQfVmymx7zWtsc3+XD4apdxMa0nTOOkUslaFUY6KwBuENkIdR8J+s3VdzdDqO9aFCvNgUuQIKTOxQkM7uEluBpOofDZV4DLtFB6jJt7f+CY+qlACJi4W/7aUpupZN/2d5XVRVnh/fqLvZp3GmYTf1a8B4KWeRxsed9ortpYTMxKHwXPjkpshQK0kCInh7065SYT99W6pSl6MG3ASsvRV8oj1ejQ2zBNqRnMEf1YSBlWWclIqbVWWard13ePRKPvUFPP+KDcVSW6ynkTDBf9cmIwFGwPe+hQ6WJV3sWtsnAh+TqiOqdxywzHkaJBfdhGA2IQ4wd9y+XR7M3CkqXhKS7Kac3bquvr9owELuYnPQhup2iNhf70LbGDk5jgAD6dH8Fj8NgoN7eAmuel/WSpfrpLMV9jvkZlAs1dv/R4rVWfxJ+ZDitz0uyx1cV6Qm/v1jdO4Fbl5gfdJ3nCtIPEvv3TK8TlPrnLjohFlRW6i59iwNRoMxZb9OQap3ORVaamNUQbNEfzWspTTUmkDuSk3TVpuA3pA3BUZfSpL1YdmjrY1IkJhMhakhpeUCh3sU2mqIodmrhoJHjub6iw/Q3VMZZfxeDST4Kh0XkeQE+tNaqMAXLtztL0ZOEq5IWkaJ51C1ho2qQhKYltbz02E/Wai8kA8N5UihlzzCWOa3RPRDWXghnbw8b3iwQGUpdTAzKt98n2aPbD1E8zW9SfNh1Q2WcrhUmUzPMe/B8D39Y2G8ePGLGeMCQJUefW4IMelmu74nKe656bzvDa74ZKbYUBFkBEt0B25iQV8lDU/VUN+nE6TG5WorKmJ4O0dyNYIfrMspRUdl0qtreCqu0ul4bYDPSjIjafcp1ZwaQbWQ52pWKqEtd7HjqmDR+Z5/Ki4KK0aCd7wmR90llsUq5eloJ51k684KPHLIZ8riDvattO1JbmZ0lKOl6XyqlvKWpbarFzShJGwjwUGp9z8yw8fRsMgY4RZJ86xldyGY6J1WWoQ5EYox5f75dqa822aoX5uyeUZiQxAuckswtqzGGg8pG9c8+xIGM/OFwCwtyja7E+vFzZsZzfW3ZwbF1Z4ZEKxFuyO3Hg8GrFgH4dnSuUmayhy0z5RUBH8BESp5xV7w45Lpb2UpQA0c4p5f8iNt6iGZrY3ekEh5PcSD/nqpmKHO6ZUbtGIngTqgzA7yi2ylKWgPynFitwsydlW7ZJzU7nR1lnNOluWypllqW6VGzmtOn22PyNOJA4emeez/yBGFJwyplEW1uZjomVZKrvY91weRW52G/I9nrx06yeY5OYpc4bTQOZLSc/PYmAXaSK84vIpc6yJKrHO7Rcpy5NJ4bs5myw4nga/mhuenBuX3AwBPFVBbnyhzQfinQuJkL9/Ixik5yYjp2V3mqrs9WgYQXEBHvMVHZdKzfC9UKJObjqaYj4KgK+a74tJ118RZMzX5tBMK6ZiwXpZSnWJOQBrbtG4Jo6HVUkWOop4bwryM+dLOVmWkuRmoabITZvHQryu3Kw6rNzkWhmK21Zu6mUprZLrW4SBOiZ2aeL9PWlMmz9rPiaUcpMpVsVg2rA81qVXp184myoSpcBETXY/KcPwZhi/CDx+obanRKdSYhCeG9mOfn9hJwC/cutlG+MBtj8fgNDSI/g8UNUNFtPODHkFMYBUvQeucuMCAG9V3D34QvGu9xEP+fo3PFPeXaV1SW66GPZZlf4izek7Nb1mlv0IjpDpMOcGwBuxtAyXHFZvKkV8urhwBuMdjDKQGI/6zSnmx0+fduxOTeUWeakxponP0MzYoYPcItX9I0todeXGQRIpPTdnq2K9nZalJkmxlnFW4m8wFKcluUm0R26CPi+aP8SaKk/2qR1cHROK3JywkBtoPCbCAS+T8u7+9HoeRsVFWhGGfuFsssBeTb6/0SmInOOGwuuDyUvEv6XvxvTc2EhuarrB/UdX+erhM9x/dNX8HqvH55+4H4BH9b3cesUMV+1oEX44dw1oXrTsItcmxDnQydJUUv7+mgajQ0Bu3ITiIUBAFwecP2yXctMfz02qFgTy7cv6FtT84nfVHC+h1UMNjWCsK+UmFgmTN4JEtJK4Cz7XCbAXSH9QzdCIxDpLaz14ZJ4jZ9IkJbn52g8e4wtH7uXO2/fbXvZTeUSj1D+/hk6tpu02hbpjlyU0M6W44pByo9dMlehkWZCbtofVRqcw0PBpOpWMs2btxlZwWTKJt1eWAvE7LZQmGNeyoqzVh5Ri9Vnv0KwTzDffbvtYhJVsmdPrBa4c2QnzP6qHFfYJZ5MF9mltlqQUpi6HpceE7+bSn7a9W+rgkXnuuvuxhtDTuZEQP3vNHF/70TzzqSL3B38EGvxY38tP79mkfB2IiM994VFeHDnBQ8n9nF7PO9ORSn2u1GjY77wa3wZc5WYI4K8JchOIdK/cJMLW4ZkOphRXy1ATB3Gy2l1ZCsCQ5MZTcZrcSKXFF6Ko+8xcnk7WLOZLRRr35xRkCSFDhPFYsO2nKf9Lsaqbys0IOcfmdqk8olGp2qSMCDU2dqCdM7fIVG4EWTDnSzlVlsqvyenJGqdK4jNt+1jw+qkGxYVEyy04sz6Jeoifp67cyFb0dtDYDt4f5UZ91ts0MY5jswnmajszyG8tXw8n7DO5mU8V2edR5OaS9p6ktlsVuTyK3GRL1Z7DJ9X32Eps1Dr/1/eOMZ8qMkmKOW0N3dB4zNjDR/7xic2/37MibfmAV3SDOancmEMzhyCdGFxyMxQIGeKAC/VAbuIhf3+C/CxKy2rVL1+7C3ITFOTG6zi5kUQvGDfvhjWNjvJj4iE/mX7Nl5L7TxsRxqPtkZvmuV3KczOi5Trzv3QAlVs0ijjWzPBAibZzi6xlKcOwjGBwqCwlM26MyAQZaZvp5PjVZWnKV1g+x5a9QYVNjmk5qEnzcpueGxhM1o06JubMieuNwX3Nx0RDO/hI/8tShmFwphvlpqm7S41fMAzMbsxu0Pw93gxXyEyeY8as2USy6fdbKnZ7dfGc0+v5rtd3LqhOqfEhKEmBS24Gj1oFP+ILEYp2PzQuEfL1ZwSDIgu+kHlx6Ea5QRqK/VWHS2jKTBxM1KX+wLlzeaxIhPx15cbpyeCS3KSIMtZmVkTz3C41xVwRDyfmdqncojFpJraWpDrKLVIlPqMGxZTzwzOl30aP1EsmnZRVNameRMsrVGu6vWuzQLWCj9WECkJ4HPztp3ePNGTd9Ee58Xo07nrNRUxq4jtyxkJuWh0TDe3gynOT7B+5Wc2VKVd1dkuPkElazoWm0MGgz0vILy6lvZSmmr/Hm+FSTagwTxriPdvy+y3JzWxRTDx3VLnJu8qNCyssRCQS7U25ycnuJUe7pdS+AzHzLqUb5cYrs2P8NafNz3Xlphu/DYjfr2/KjexwSncweqHZ12JVbrbarlfcdmCOd94gyIlVuekot8gXhIDK5Vmtl6WcIjeyU6oSFiWToM9DwNf+adA3IlOKSZkncyegiPhIVZKbNtvAFRINIxj6N1/qp3cIwpczgibJhtbHREM7+ACUm/lkETDY45HkZmxve09U5CZ9BiriO2WH76bd7+clktw8bew49/MluYnlThGh6Cy5kcGWnQz7dRKuoXjQkBk3FcNLLNLd+AUQF+C+5Nyo7qZgfWhmN8qNFhZELlDLi7wIj0M8W3lkLGWpaAfpxCAuFKk+eW70QhIPkCbCJW2eJJp9LYpoJMhtuZ0d2BYSJZOcN84n/+21TMdF2aEjQ2FkXByz+TUiMg264FhZSlzIikFBbjo1w3ukcjOtrbOWKzszC416t1S8IstfHZSkQFxsn0QNz+xjkJ8kJ/PGBFfvGOU/3bx302NipyQ3Z9YLGCNXCnUntwyVAvi7m7PXCc4kC4yQI4Ys1bQxlBQQpdRgQpwLkidg6jJGwn4W06Wesm7aPZYu9Qhy85TeSG5aPj86CbFZyC5wmXaKHyfD1HTDmaGZrnLjwopKQSgLBYLEw91HVifCfnJypEFfPDeBeG/KTVim/mLUW7WdgCIjXUwEV4iHfOZkcKeVm1JWSMspI9p2VkTz3C7TUCyVGyfnduWSgiwY4fHGjI1OYOmYcjzET3puCgHxmh0fu3LQ54SWNu9UnYBpKC5JVaHNNnCFQSk3qgR21pjghj1bHxNm1k2pSpo4qPEzfRoZMZ8qmG3rxGZEd1E70LQNIyPsUG6av8etYXCxJt7jp6Ryc87vt1RvrvSeoqobLDiUdeN6blw0oJgTF988wY6yV5ohcm5kWcrJ7JiyRbkxyULnpCwYilEz5NfYyfVay1JlS3ttB0iE/OZkcKfJTTEjyE3RF8Pvbe/raZ3bBZayFDk0aU90am5XMS26nLy9tMdbOqaiTpMb2Qae9YnX7JzcCK/OBGlWHAzyUypjuCDIWCdt4CAutkvGqPhPOdu/5F9JTM4aE1w6s3WZPeT3Mik7Ak8lrb4b5zumarrBQ8fXTHJjjO7pbAdjjeTGjqyb5vl7rTDHGgmtQMXwctyYbc/fJudhXR0Sx9LpNWdMxatut5QLKwqS3BQItX0xa4VEqE/jF0p1z406AXej3ESCPnN4pqOt6y0MxZ0qN4mQj7QkDE5PBq/mxOiFqj/R0fPU3K6peNBUbvxajYsSODq3S88JchNMTJxjyy1gITfKc+NYt5QkNxmvMO93Tm5EOUsoN86MYKjpBsWK8K4ECl0qNyEfOcIUNXlOkIqV40grcjPJJTPnzu0aRMfUwSPz3Pz79/L1Hy+wU5Kbg2dDncUlNHVM2ZV1Y52/Z8XcSIj//FN7eWFcfI7HjVkq+Nrzt8nU5Ut9Ir7AKd+NGprpem5cAFDMCbJQ0nqr3cdDPnPWU1/KUsGYWV/uJqE4EvCSIcIIeXOcgyOwxVDsJyOJWC2fdPRLU5OGYj3YeefcbQfmeP7ucZ7/u9+iZPgIalX+6Z1X4x1zbm6XJudgRUenz7HlFlCqT36N8JTTyo0w6CY1OXqhU9VRKTcOjmDIWYidL6/KJu1n3ED9YrvmGWdb7awgNxP7bFvjZqisncQPzDPOxdPtkZvDp5KNKcUOdkypHBnVNK2Um6fKE3zi84favxHY0A4u50vZEOR324E5furSKfb/9jcB+MwvXs8tV8zg9WjoY9+Bb0J0+36+cOsL2/O3yVyenTVns27Wc3L0wpCQG1e5GTBK0nNT9vRmoIuH/OTpQ7eUJAuGVbnpopwWCVjGRTip3Jiem4RZRuu0LBXye8hpQg2pFfrTLUVotKuni5OsZnaqeEvOrtdfFvsfm+iF3FjKUkGHyY0c87BqdDhXSkEqN+NkWMs6c5FQc7V8Hg1NKk3m9PQ2ocjNsipNZZwNHVSorosLaCky15ZZu6Ed3GHlplWOjFJuTuri/W07D8oh5UYhXRDnKq9H4xWS2AB45Ott23egfX+bzO8ZrywQpOxY1s2a67lxYYUyFFe8vZGbRNhnjl8w+qDcVH1Rc9hwN+MXIgFvf8pSDSF+4qLRqdKkaRpV2cVjOExuPJKMeSOjXT0/IFub+zE8s1zVielivRNTM93vKCzj4/OrhP0OlqUMA/JCuVnR1VypDo9dScS8mkEp7cwIhnoek4aWU8pNh+QmIn6vRUVu+lGWMgx8WWF2DU3uaespDe3gZkqxM+SmVY6MdchnR3lQitwkT0GtYvvwzBVZ8hyLBPBYCczaUfn6Hahw0SkIjqBhsFtbdES5KZRr5siU8SGYCA4uuRk4qkVJFrzdt4GDnC0ly1KGowZdWUbziPV6PZoZYNUJwgGvRblxcL3KIxPsbiK4gi7JjdOt4L6K2L8/Otr1PmJBn+m7UbOqnMDp9Twjst18bKKzskkDlHJTWHc2xK+Sh6q4uC3VRMmk45Kq1085IEqGNdlWbjcUsZsLlECXJC/aek7TZlBKwpmqPG77odwUk+YomYm5PW09pZ+em+YcGC81tstREacsc7DaypuJz4IvLMInkydtV26UCjLZTBTkyIeOSoyaBpPCd7NPO8vppP3KjWoDD3g9ZlPAoOGSmwFDkZtaj7kOQZ/HLG05Sm6kclOUrxULdpb2qxAN+EwfS3+UG2tCcRdfPhk66HG4zBOsivUG490bdKNBr0W5WbdjWS1xcjlFXBMXM82ubilZlnIkxE/6bfAGWKuIi1Gim4n2ocnG/dkMNVdrm18eu6FREXbYAVT3zqI+Kh7oh3IjO6VWjTh7t7VHxqxlKUMFFWbmRfaVzWjOgZnTVvFpOiXDxyJjm27XEg3t4MdMcpPuYfyCFas5odw0BHlWy3Xi14lyA2Zp6iJtnvlk0fZ07XWzU8rf1fXACbjkZsDQS+LOV/dFz7Hl1tA0DU3Oa9IczY0RJ9y8Vic33SAS8JKV2TGGk2pIyxC/LkIHI+Ju3VfJYtbj7IZhEK4J8hiOd08WYkF/fRyCg2WphQXRXaKjQaj70SF1Q/EqYdkt5YhyI4dzEpkkIwlEN51+ynfjKzhTllIK4zafPHY7LEmB+H75PFp/PTcy42a+jTZwBaXcZEtVUt5x0DxCrVJeIxvRnCOjSlKnjSkMPJ3nQakyWqqu3NhhKAZYVWm/1uG568fF0NdArPNjQnZMXeydp6obLGbs7fQz28CHxG8DLrkZPMxQvN7KUgBemfrrqZWgZs+XbAPkevNSdenq4oAsS0mPUK3YB+UmVC9LdbNmjzT4eoyqmSptO8pZPIg7quhI98pNzKrcOFiWWl0RakDJGwNPD1K0ZXhmRI5CKNd0KnbPblLkJjpBRnb6deMX88bFhSVcWbN/jdS7pWY8itx07mfSNE1k3TAqHnCohGZFbkXk08wbE211SoHIupmKiwv46XS1/rtm7E9Vbs6DsvptOpqHpjBS7+5SwzPtLks1tFWbfpuLhHLUCWTH1OWqHdzmrBul3EwMid8GXHIzeJTlQRZo72SwFXwhyz6cMhXLkpfy93RLbiKWslQ172Cpp8VU8G6Um2A4RtWQXxensm7kfkuGj9FEZzk3VkSDvvpcHweVm/SanNMUHO1tRyqh2KgRsYyMsL1jylRuJnpK1/YnxAV4Qkub2R52QpWlpuQAyk79NgoNQX5Z55Wb5KIgN9nAZEeKboOpWI2ZcGhkhMqRGYv4Tb/NGWOys3loCqN1j5DVc2PYoOwq5aahLNWN30ZBlqV2G2cAg1M2m4rXXOXGRTNUCckT6K0sBRAOhykb8g7aqXZwud+0LlSXbstSXo9GURNqVa3gUFmqWjYNpA2emy7WnIgEnJ8MroZmEmE81pnHwopo0NcXz00+JUsH4R78NiCmXcvo/UBp3bxztr00pTwykUkLuelcufHEBNmYJG1ehOyEMhRPIj+7LpQbgLiV3ORXxffBQRTWhOfG6DCTR/luTq0V6gNCHZyHdduBOX7zNVewTRNk9yXPv477PnBL50GXZndXvSxV0w1bSPlqKyWkm04phfGLQPMQMfJMkbS9HdxsAx+SjBtwyc3A4a2Kg8wb6p3cJEJ9mC9VUuRGHMSxLi4OChXpM3LMAG0xKtf8MZLyLvvZpWx7WRYW9GMyeFmmE6eNaE9ZEfGgj6TDZSldNyhnxcXBH7VhZpUsTWmFdSJ+lXVjczu4RbkxAyi7IefWlGIHgvwUCR8z5HEW6165WSeOrsnfMedsaUpPCw9WcHx7R8/bNipulL739DLzRn3YZ003uP/oKl89fIb7j652/J3dCrlyjW2I42H3RZd1N5pkpN66HvZ78XvFPuwoTSlD8YRdyo0vaJbR9moLtreDm0MzXeXGhYIiNw0lpS4RD9WzbpxTbgRhSNVC5mt2i4pP/M6OGYplZ1PVG+HmP/iumXPzf3/xUW7+/Xs7iltPhPx15cah9eZS4mSbIWLW8LtB1NoK7lBZajFTJK7Lzq5eRi8oWEzFEaeC/GTGjRGZMAlEN91SRBS5SZl5JHZC/d6jusxbiXYXkDgiAx3zAdndlXG2Yyog05QTUzvbfs7BI/N84QeinPUvT6/wl0fE+/njxx/j5t+/lzd85gHe+zeHecNnHuj4O7sVMsUKc1K5IdEZGTOhlJvMPFqtYst8KQXTc2NVcGWAX1fKDZjdXbs9i7YrN67nxsUG+HVRNvGHeyc3iZCfvJPDMw3D3O96VXyRu0knVqhK5UZzWLlZqQY3hHctpIq88/OH2j5Z9kO5yctQuLw33lM7ZUNZyiHl5sRqnlFNfG6eiM3kxpwvZTe5EWShFBzrKYBSeWDGyTii3JjG92pvZakRSZAzfvn5OOy7SVQFeZzatqet7dUoBGv79LycZJ5ZOtnzd3YrZArlOrkZ2dHdTqKTIusGA9Knbc26WWv23FSK9Wnp3Y7RkMM+d2lL9is3rufGRTP8ujjIgpHuDaQK8YbhmQ6UpapFEVoFrFUFierWcwOgB1TrujPkRo1KMGduWaAE7nbj1hNhf92k6xC5KcmJ4GVfe220myEe9JFyuBX85GqeUeTnFh7beuN2YOmYCjtVlpKem4JvFBDjDboJoFTkZlJLOUpuolWp3HRZljKVBK8kjg62g6+ns4wjFM2duy865/atRiEALCLWOqNt9Ip1+p3dCnp2haBWxUCr+3w6haY1zMOya75UqVojI48BsyyVPAkYEIjXvyudYrxObuZT9mbduJ4bFxsQVOQm3NsFDdTwTAfJjUVhWZUhaN0MzVQwAuJ39jo0OPPpk+IOL6PKSc2vT/tx6/GQj7SDyk1NN1hYEmWDnBbt6eS9QblxIBDtxFrOVG5sITfhunLj2HwpWZbKWiaCd6WQSc/NiJZnPW3/9yxXrqGhEy4rctOtciOHZ2ry83GwHfz4cVEyqeAjOnLuMlqrUQhQV27mtDXYQH06+85uBX9eGJbzwUnwdu8brLeD25dSrIiCz6OZBJXkCfH32O7O28AVpHKzR1sU55t0G0nMbUJ1DZ735GZxcZFf/MVfZNu2bfh8Prxeb8MfF+0jZIgacyjau3KTCFuVGwcIg9qnP0qmJC6YXcn6ClK58VadMT/npBKSaaHcWNFO3Hoi5K+TJJs9NwePzHPz79/LE8dE+uiJfKAnf0E06K17bgzdkWPhhFW56SWdWMEcwbBmBvk51Qqe9ihy0+WxGxo1TboVB3wsuVKVUbJ4pEraSys4wLKZdeOccrNwVlx8U95x8Jz7srLZd25BkpuIViLB5ueFtkYkbIGwJDfFcIcdUs2wtIPbNV9KdeCNRS1zpdaPy9fb3f2OpXKzxyPDC20qTem6wXpe/M7DRG66uu1+y1vewsmTJ/ngBz/I3Nzc0MQtn28oV3UiiC9pJGZHWcpqKHZQuQnGzBC0XspSBIVy468VQK/1FgTXAmNe8d6aYx42QTtx64mQ3xHlRvkODCDhFya/tBEx/QUdZ28gPpMSAUoECFIWpaleEoRb4ORanlFNHmO2lKUsnhu/mi9lY1mqVjXb4pMkgNXuj12Ph3JwjFBxGT1jf5JurlxjSpPHWHisa2VBkZv5mvzsHTQUq4ybUqg9IrbZd65EgHUjxpiWZVZbJ2209iK2NSJhC0SL4r2oRHslN9Z2cHE89VqWWm0V4Jc82fh63WBsDwAjZIiTt43cpIsVU2kejfRws2szuvp233ffffzLv/wL1157rc3LeW4hVywzpgnlxg5ykwj5WXGyLKX2GYiZ3Sa9dEt5QpbfuZSB8GgPi9uIPTGhLqkxD83QgNk249bjIZ+p3OiFpC313GbfgbpTTRPFkOu76+7HeOX+2Y5aVdVFO6NFCRplaSru4Y6vBayG4p5zbsBCbtaIRB2YL2XJ+1mXF8xejt1aeBKKy2h5++dL5UpVphW56bIkBZhKwpmqJDcOKjcq48YM4TsH1CiEhVRxQ/FpwRhnTMsyp63xlNHYedXJd3YrJErivajFuzQTK1jawUe22TNfak21gVs7j6xlqW4RjAsVMLfMLs2+jilVRosFfQR9w1O56eocvXPnTltSGJ/ryGbq5QK7WsGzTraCl+vKTbaHhFeFQMjZ0EGPLB9lWyg3ncatx0M+sxW8ZlOicrPvYEQqIUoh6tZfoEIK0w4F+aXyFVKFisVQPNr7Tq0jGAIOeG4UCQmPkZYe4F5KqposFfmL9s+XypeqTCKPsS5LUlBXbk6WpZ/PyVbwtCALwbH2zLnWUQjN3z7lu5nRGo/7rkYkbIKxqlTcRrpsA1doEeRnV1lqImppAzeVmx5vUqTvZre2aJtyM4x+G+iS3HziE5/g137t1zh+/LjNy3luIZcTJzAdTbYU9oaRsJ+8o4ZiScYCcdPN30tZKhLw1omHE5PB5T5fetVFG9bZady6z+sRM5SAmk1lqWbfQAJxJ2X6ZTbZ7lxQv6tSKOzumDqxlsNPlZgm12Vrt1S9FdzWslTD6AVx8ekq40bCGxekI1xZt32+lChLJcV/elBu1MX2mCI3uSVHzOVruTLxiiCPien2M27UKITZkcYSU9ov3ttLQo3etq5GJGyCyZogN96x9tfbEspzkz7DSMCeEL/VVp1H61K56aUsBfWsG22JUzbNl1rLid93bMjITVff7te//vXk83n27dtHJBLB72+8A1pb683J/lxBMSe+vCWChNsw4Z0LVs+NXsra3won1RUjEDXLUr10S0WDPrJGmHEt60wuj1RuLt65jZ8Pbedz95/glVdM80s3X8QNe8c7vvurBeJQBQr2kJtm30Bcq3tuttruXFCfyZoeAS+2Z900mInRQA4V7Qlhq+dGHLm2lqVajl7oQXVMiI6gCS3Neq7MdKI3D4iCYRjkSlWmzKGZ3QX4gaUsVYljeDU0vQqFNbPbyy48tZgxW7cDo50pIbcdmOOV+2d58NgaS5ki0/EQN578MXz3W/ynq4OcMnbzuQdOcOPeMf767Tf1rNiAMMDOII6H4ESPZCE2Cx4/6BWm5XvQu3LTlE5cyojPDXonN2bWzSJfs0m5UWW0ceW3OXMIvvJO2HkD/Owf2/Ia3aCrb/cnPvEJm5fx3EQxJ5SFkhY6h+W1PcSCPrNbqlrIYDuPlgSk6o/VQ9CC3Uv7Yb+3Pi7CidRfy0RwZfK7Ye8EN+3rLifCCI5AFTSbuo+afQdWzw107y9Qyo1TwzNPruUZ0SwlKRuIuem5MWqMeMVJ19bZUi2Um16IuSazZyZIs5K1j9yUazpV3WDS23tZKh70oWlQM7wYkQnhD8os2E5unl7M8AKlNMU7mysFokTV8J1MCYLkyczz0uun+NwDJ8iWarYQG4BsocA0SQDCkz2WeTweEQK4foypqij79Woo3pBOrEpS4TEI9ejNHK+XpRbSIuvG5+3t+7tBuVl9BpafMJO8B4Wuvt1vfvOb7V7HcxLlgiQ3HjuojSidVL1iX7WiE63g4oJW8QploesQNIlIwFvvZHKwLEUwbrYq9uTmDyYgB16biJjyHbzz84fwoJPQxEU9ZUR78hcEfR68Hs2xlOITqznG7AzwA/CHwR+BSl0VsjXET5Gb6ERPQzNNSNJh93wpcyK4vPj2UpbyeDTiQR/pYpVKeIpgfkWaig/0vlCJmm7wvadW+BmpWtRis/RsKU3UJ4PvnhDnmpOreQzDsKUzN79yioRmUDZ8hEa6f39NjO6C9WOMVhaAGfvLUmZJyoamAOW58SxRqxj81f0nuHwu0ZWSraA8N6bSZI6J2NvzcntB11emWq3G3//93/OhD32ID33oQ3z5y1+mVuv8TutP/uRP2LNnD6FQiBtvvJEHH3xwy+2TySTvete7mJubIxgMcumll/KNb3yj219joCgXFFmw564PwAioeU3OeW5KHnHCiXUbgiYRCfrIGQ4aoNX07mDC/AL2Eg/ujYiuE18tL1qLbYDyHcyF6hfIDJGe/AWaphENeB2bDG57p5SC3NeoIT43ew3FVuWm97JUndykzCGHdkClE9tRlgIYkWS+qFq0bQzyU/lM3338tCgtA6/57NO9j0dQs57SZ9gxFkHTIFOqmjcovaK0JpSQRW3SHtVR+m7iRZGdY5eheDJmTSem95IUmIRjjlUCVLjrHx7reW6XNZcHqJObbsdE2ISuPtlnnnmGK664gje96U186Utf4ktf+hJ33HEHV155JUePHm17P3/7t3/L+9//fu68804OHTrENddcw6te9SqWllp/AcvlMq985Ss5fvw4X/ziF3nyySf5zGc+w/btPTreB4SKJDdVb+tW5W6gBeUFzcFuqYJUmnrKuAEifqcNxS3ITQ+mN29kdOO+bcBtB+Z49T5B8kpaiM+9/Wbu+8AtPRkn4yE/SYdGMIiMG5uVGzBLU2ogp63kpsFzIy4+dig3k1raPLnbgZxUq6ZVmaeHshTUTcV5NV/KphEMKp9pPlU011oy/DyV9vU+/0mNQygmCRklZmXJ78SqPTds1TURlrnisalsItvBVTBgqapTrHR/7G4YZWBHG7jEwWNVckYQj2awQ6tnNPUyt8vsloo0KzfnHsPhJLoiN+95z3vYt28fp06d4tChQxw6dIiTJ0+yd+9e3vOe97S9n49//OO8/e1v561vfSv79+/n05/+NJFIhM9+9rMtt//sZz/L2toaX/nKV3jxi1/Mnj17eOlLX8o111zTza8xcKjSUc1nJ7kRnRFaxbkQvwI2kZuAt54e7CS5CSVIqrpwD2WpWDhUH0xq8wiG1VVB6I3QCDftm+jZXxANeh0pSxUrNRbSRXvTiRXkvqK6eG+HW7mRk8FJs2bjZPBcSYxeGEUpN72VTVR8f314Zu/KTXM+0zRCGVwyRsWsJnqc/xRMgF8eu+mz7BqXpSmbunvUAMp1X2/E0YRUbvyZM+ZkhHSxO/WmWKmZzRpmK7hNbeA13eCuf3ick4Y4pnZp9WiAXuZ2bSBjq1LgOB/JzXe/+10++tGPMj5eP7FNTEzwe7/3e3z3u99tax/lcpmHH36YW2+9tb4Yj4dbb72V+++/v+Vzvva1r3HTTTfxrne9i5mZGQ4cOMCHP/zhLcthpVKJdDrd8GdYoMt2bd1vH7nxBsXduqdi70h7wFRu8pogJIle7nyRZSmnlBvDMPdZ9kbN1vVeylLxkN/iEbLvONJ1g+SqUBY0m4IMo0FfvaXcRuXm9Hoew4Bpnzy+7FRuZFkqWlVlKTs9N1K5ida7pXppBVeKSlgrk8kke1xcHflylTGy+JAt2z2af5Vyk/TIc3W296yb5nwm1Sm1iDgWep7/pFmGWWbqvpsTq/ac0zyZMwCkAp2bn1tCzpfSUqfMc2K3puKGuVIy8dguz4363E5IcrNbayS63X5uDTk3hfV6Z9fYeei5CQaDZDIbL0bZbJZAoL2Lx8rKCrVajZmZxjuTmZkZFhZaS6fPPvssX/ziF6nVanzjG9/ggx/8IB/72Mf40Ic+tOnrfOQjH2FkZMT8s3Nnj7kGNsL0xdhIbvxyAKe35gC5kWQhI30yvXSbgMy5cUq5qRRAFxexlFyvptXbY7uBGJ6p1BD7yM2ZZIFgTRDHQHTUln3Gmodn2gR1gdketDHjRkFm3YSrDig3OaXcjFtGh/QyFy1K1SOOq0raPh9LrlStZ9xEJnob6kid3Kxqo+IBG8hNc+6SSW6M0S236wimqXie3RPiOLaL3PizonyUC9lgJgbLfKnTjITEJbVb341VBdE0Tdyk2VSWUp/HCUP4uHZprY/bTj+3NavnZu2YeDA2A8Heg2l7QVfk5rWvfS2//Mu/zA9+8AMMw8AwDB544AHe8Y538LM/+7N2r9GErutMT0/zZ3/2Z1x//fW8/vWv5zd/8zf59Kc/velzfv3Xf51UKmX+OXXqlGPr6xiqdBSw7yBQ5Manl6FmjwHPhFRuMrokNz2WpcJOem7M/WmsVwThHg37eyr3JMIW5cbGstRTixkznVizIzMGSW6w31CsLjAzfqXc2F+WClaSgI2t4IZhlqWMyIQto0MAyiGxXkP5eWxArlRjUo1eiPZmJgbL8ExFPGwgN825S4rcLBljW27XESymYlWWsstzE8qLm+dCuL005XMisR00D9RK7ArJIM4uyc2KyrhRbeDFZF0lHuntxlx9HqdMctP6WOjkcytXdVMVH48EhsZvA12Smz/6oz9i37593HTTTYRCIUKhEC9+8Yu5+OKL+eQnP9nWPiYnJ/F6vSwuNr7Bi4uLzM62lgvn5ua49NJLGyaPX3HFFSwsLFAutzb1BYNBEolEw59hgSbLUh5lArYBQet0cbtNxdJzk9bFF6/Xi0M06DPJjeEUuQkmzC6LXkpSIMoYGRWwZ2NZ6qnFbH0Csp1lKZVQXEzbkkxb0w1+cEyQhJgh318HylKBchIQ5lpbxryUs1ATF41SYJxKTeyz1+NXD4uSkZ3zpXJly+iFWO+ekETz8EwbPDcqn0ndJkybyo04FjRgrtf5T2pGVWa+XpayyXMTLQpyU4n1nnQMCHVNrvcinyjJpAvdlVTXmodmqpJUdBoCvSn86nOre24aj4VuPrekLEl5NEmklXJzvpKb0dFRvvrVr/Lkk0/yxS9+0exc+vKXv8zISHvThwOBANdffz333HOP+Ziu69xzzz3cdNNNLZ/z4he/mGeeeQbdcqJ+6qmnmJuba7scNkzwVEWuicdG+S4aCVMy5Enb7hEMkiylqoLc2FmWqtlY5gGgJC8QoXqnVK8TaxMhvzlfys6y1NNLGRIyndiu6d0Nyg1G/f3oEqrt95s/ETcjtaw4iT+0ZOOMOVmW8pXExdIwROdJz1BmYl+IdE0cA5oG0UBvx68K8rNzvlSuZJkI3qOZGKzDM+UIhlIayr2RBOtcKMAMxFs0xuyb/6Q8N+mz7B4Xx/FyptS7D6uUJVwT391a3MYuW6mq7PKKY6Fb5cacK+VAG7j63E40kBvx/e32c1OZPGORAB6Pdv4rNwqXXHIJt99+O7fffjsXX3xxx89///vfz2c+8xn+8i//kscff5x3vvOd5HI53vrWtwLwpje9iV//9V83t3/nO9/J2toa733ve3nqqaf4+te/zoc//GHe9a539fJrDAw+6Yvxh+xTbhIhv5lSbDu5kcrNWlV88eI9lqWCPo9FubFbZdoY4NfrYLe4VbmxsSz1tFW5sZHcVPBRlr6QXkzF1rZfBZVQ/Dv3LPSea6IQEXf+3mK9jGaL78b020ySkSF5saBPnIx7gC8u5P1oZZ2yHSQM4blxoiy1WPTXvX02lKZUPpPfqzUYim2b/2QhNyMRf30IaK/qTVqYidNGmGBstLd9WSF9N9sQ7dVdkxsH28BBfG6/8YZbqeIhrJVNYtrt57aes/htANaGo1MKOkgofv/738/v/M7vEI1Gef/737/lth//+Mfb2ufrX/96lpeX+e3f/m0WFha49tprOXjwoGkyPnnyJB5LyNLOnTv55je/yfve9z6uvvpqtm/fznvf+14+8IEPtPtrDBV8Urnxhe1TbtR8qTGy9palDMPc33o1CJR69txomoauWj7tLku1CPAb7bUsFbYoNzaVpXTd4JmlrOm5sWVOE/XJ4HlPnIBelL6bzrsXmtt+FVQreJIYd939GK/cP9t7PL4sS2n5NYI+D6WqTq5U7X3acN5qJladUr2peACBhDhPTWhp1vNlZmwYwZArV9lrDs3svSylSEG6VBOBgOvHRWnKhvTY2w7MMRo+wkxFkJtf/bcv5arrbrRnTIKF3ADsnojw6OkUJ1bzXD7bg7VAtoGfNSZ7yzlqhlRuZvTeyI2a02SWpewM8JN41dW7MO7dCckT7NIWmZjZxT+85yVdfW5rQ5pxAx2Qm0ceeYRKpWL+2y68+93v5t3vfnfLn33nO9/Z8NhNN93EAw88YNvrDxIBvQAeCITt8wElQn6RxaJhr3JTzqEkzOWKHyjZcnKo+GNiXpNjnps4yXzvGTcgymhqqOXi8hKTutHzifz0eoFCpcZoQA6xs025Eb60rCfOKMtdd0w1t/0CBKgQ1cRJeN2IkZbto93O7DKhJoMX1ogEvJSqOoUewtBMWNrAs8Xep9kraDGZdaOlWMmW7CE3pSpT2K/cpAsVmJqR5MaeIL9KTSebyzASFGrKtfsvF+YLOxCX5Ca7CLUKu8YFuTnZa8eUVG7mjfGePVcNkMrNeI/zpeplKWkotnP0ggXa+F5InmC3tsQ/JQtdf2zrVqWpmIacDAYc8OgF6IDcfPvb3275bxfdoVStEUJcNIKRuG37TYTrwzNtnbStVCDNw2pJXDh79dwA6JLceCp2l6WUchM3TXq9KDcHj8xz59d+wk9L5ebhJ4/zO79/L3fevr8nCf6pRUHCpvxFqGEfuZGfTVbrLeumVVvoiFRtaoZmdo/11ParoAIBq0XGgjXWsaks1WJopi0XNpl1M07GtvlSuXKNSc2e0QtQz/JJFSp1D49NIxiWMyVzBpbhC6PZdOwC4r31+EScQ3bRYiru8YZNKjfzxgTbbVVuhLIyWhbEcVjLUibG9gCw17tEpljl9HqBneOdG5ZXrWWpdWkmjkzadh7rBV15bn7pl36pZc5NLpfjl37pl3pe1HMBuVKNCOLuNxS1T7mJh/xkDQc8N4ooBWJkpW+hV88NgBEQv7unVoKqfTH21ongyXzTCaNDKM/JYrpkem7i5HuKLFd4ekm8rxNeew3FyiybVB1TXbaDt2oLHZUltBRRDHkK6antVyEQA4+44Mz6xWvkSzYE+TWMXrCnDRwwA/YmbRyemW/w3NhXlsqWquhKCbLBcwMi8G1GphNr8VmwYailCY+n3jGVnjdNxT1n3aSEcnPWmLBFvTMhlZtYUZwLuic34powGQvIjBt70ok3QAbsXRkWjQE/Odtdmb2u3PiHqiQFXZKbv/zLv6RQKGx4vFAo8LnPfa7nRT0XkClWiEjlxmtjK7jVUGzY6bkpW8mNlPbtuEBYO8XsXK9FuVnvoSzV7DlRnpu4lu8pslzhaancxGxuBVcn7qRpgE52tZ/mtl+AMcSa1424PW2/CppmlqamfZLc2KzcpO2YK6VgGZ65YtN8qXyxwjg2KjeW0MpSSKYd2zRfajFdNM3EJhGxE6bv5gy71HTwng3FdeWmp4TqZozsAMBfFc0BXXtusoosBAUpr+QBzdy/bZDKzUVeUUZ6bL47crNmNmsEh2ZgpkJH5CadTpNKpTAMg0wm0zDSYH19nW984xtMT/f+hXwuIFOsEpG+BQL2kRtlKAaoFGz0sSjiEYyZvgU7LhChYICCIRUVG7Nj6obikZ4Mxc2eE6XcJBAn2V6j5p9aEp9RWCYU212WWtN7C/JrbvsFzKGZqtW857ZfK2RpasoryY0tnhtJbqI2zZVSsJalshtv9rqBp7SOT1OjF3pXbvxeD9GAKCPnApLc2FSWsg7NJG7TKAMrWmTdnFkvUK1135lmKOWGCXsNxYGoScy3ayvmcdYJipUaOUnmx6OBumoTnwNf0LalihcQys10VRi2H+tCuanpBseWZQdtroSuZkoNeOyCQkff8NHRUTRNQ9M0Lr300g0/1zSNu+66y7bFXcjIlqrsksqNOSTOBkQCXgqS3JTzGWxL/5FlKSMQI1u2z5QZCYiU4jBlezumrK3gliyGTtHsJclYlJuttmsHqlMqQAVvTT7frrKU/GxWa1K56aEVXLX9/uoXHyVdrJrkpuBL8Kl/b0PbrxWyY2pSvoYtZSmr52beRtUxIsiCX6uRT3U5R6kJoZIooVWDo/h6HL2gkAj7yZVrpL3jTIJtZanFdNEM8HNGuamnFM/EQwR8HspVnbPJoqnkdATDcM5QDKJjKr/Kdm2FU10oN8q/4vdqQlVKHhc/sNtvA6ZyE66sE6XA4x0qNwePzHPX3Y+ZN35/8u2jvDJ8iGthaJSbjj7db3/72xiGwS233MLf//3fNwzODAQC7N69m23bbIq0vsCRKVRMz42dyo2maVS84otfLtiohEjlpuaPokJj7Tg5RAI+MkZYBJfZSm7E764H46ZEPBbt/GLR7CVJm8pNYcvt2sGp9TzFis6cT+1Lg6B9OTcAS5Uw+Ol5BMNtB+Y4sZrnI//4BAfGapCFmw5cgsdOYgOmcjPmEceCPTk3dc9NtiSOBTtawfEFKPviBKoZqhl71JBwWZCkWniqs5PzFhgJ+5lPFUl67RueCUK5ucIkNw4oN5b5Uh6Pxq7xCM8sZTmxluuO3BTW0eRA4UUmiAS853hChxjdCfOH2a6tkC1VqdZ0fN72iyP1kpScK2V2StnXBm4iNCJuJApr7NKWeDwZJpkvt6VuKw9icyF+u34WNPj+eoIX2b/ijtHR9+elL30pAMeOHWPnzp0NGTQuOkO+kKvLzz3Gajej6o9CBWp2lqUk8aj6BBHzezWCvt4//3DAoflScl8FLYKyw4yGO1dulOdkIVXEoK7cBLUKQcqUCTDbpefkqUVBGK8cB9JAMCGMlDYganpu1PDM3kMHVVrwrnAJsuCxc66UgiQ3KkfHnlZwa7eUKHfZdddeCY0TyGZsmy8VrayBBwwbSlIKCXN4phyVkV0S4zh6PNYWUgXTUOwMuWnKulHkZjXPSy7pYn9StVk14viDEUEg7ITsmNquiWMhXewso2nFzLiRJSinzMQK43vhzBrXx5M8nt7NY/NpXrRv6yn0m+VeRSmYydq/fV+Rb97ce0xGr+jq6N69ezcej4d8Ps8TTzzBo48+2vDHxdao6QZPnarfPdV89pIbXe5vcWWV+4+udm12bYBUbkoese+A18MDz671vO+oU5PBpecmLfcdC/oIdEHGrJ4TDcgSQjfEl1apN916Tp6Wfpv9o/ICbmP7ZMTvRdOwdXimUlHihvQHRRwgN5IwjRji88v1WpaqVepm6qjN3VJATc6XKqcWe/6u6bpBoia7j2wwEyso4+w9J2sYaGDUoNB7GW3Baii2YVTEBqism4wgNz2bilOqJGWz30ZBdkzt9kpy02Fpaq159ML6cfG3E2UpML0x18WTQHu+m1a5VwB75BDOFSPBM2lv1x5EO9EVuVleXua1r30t8XicK6+8kuuuu67hj4vNoWb0fOUHTwFQMvzc/Affsy3C/uCReU5mxYX2zNIKb/jMA9z8+/f2vn/pufmnZ8Sdb65cs2Xf4YDPUeUmqYt99zJXSnlOZkdCGNRHRuyN13qKmn9aKjcXJ+wnNx6PRjTgs7SCJ3veZ0F6reK6A0MzFaQpU71Gz2WpvDrJahAeq+fcBHu/uB08Ms/DK6K0ESit9vx9KFTqE8G9cXvIzcEj8/zrM0K5+puHF1g1RKbWfY8c6Wm/hmGwmCrVDcUJB+wIpnIzD4bB7l6ng1s6pWz324CZUrzT0918qQ1DM1XGjVPKjfTdXOIXZKwdcrOZt3CPJjrwjhuzW27XT3RFbn7lV36FZDLJD37wA8LhMAcPHuQv//IvueSSS/ja175m9xovGFhn9IRlp1SOoC15Kdb9p2tC1lSt5nbs/9hZcfCuVhpl1l73HQl4zSA4Jzw36/K96DXC/7YDc9z3gVt49YFZsx38C2+6wpYAv91RqU7Y1AauEA1668pNl63gViiiEdHlSdARciOUm6h8jULP5EaWpMJj4PHaptyo79rZiiALE7J9u5fvQ65UNffjTfSuhKg1Wkt7y8YoAH/2jft7Oh+s5cr4aznimvSLOdktVStBfo3dEz1m3ZgZN+P2eK6aIZWbOQRZ6JTcqLLUeDQIeg2Sp8QPnFJuZMfUdkOc29tpB9/MW9hMbmzJveoRXZGbe++9l49//OM8//nPx+PxsHv3bu644w4++tGP8pGPfMTuNV4QaK5VRiXxyBOyJS/Fun+VcxPVxGv0uv+abvCjo+LEYAYESvS672jAS87uspSum/tarYr19jpXCkSJ6pLpGBm5Xm+5e8N2TXZKAWwPy4wUm1M9Y0GLclPOihJND1AXyUjVQXIjy1LRqlAwcr1OgbaMXgDI2JDRZP2urSBCKCdkqnAv3weRTix+717LUpt5I5YNcYxNkezpfDOfspSkAnEI2peybsIXqLfDN2XdGEYX605by1LOKTdjRpIg5c6VG2tZKjMPekWkNKuuMbshy1IjRfG+PLOUpXgOj1ur3CuAvR5Bbk7oM/blXvWIrshNLpcz82zGxsZYXhZBQFdddRWHDh2yb3UXEJprlSrjpmAIZaHXvBTr/lXOjdmN1eP+Hzy2Zo5HUPu2opd9O1KWqljmYJUEqel1rpRCJOgjbaoh3ZObU2t5SlWdgM/DuMfedGKFWNBnGqCBnktTSkUJSeLhZFlKvUbPyo2lUwowy1K93Llbv2urhiI3dcN2t98HOyeCb+aNWGYUgCkt2dP5pjHAzwHVRsGSdbNjLIxHEwpiV6GJlnRiR8hNeEykbCNMxSowsl00lKVUp9TITvDY3NWlIMtS3sxpJsIeqpYbrs3QKvcK6srNMWPW3tyrHtAVubnssst48sknAbjmmmv4X//rf3HmzBk+/elPMzfnQN7BBYDmGmSYellqq+262X9OqisxbWOwWDf7X8oUTaXJJCLnWEO7iDhhKFakw+NnpSi+ZN1k3LRCNOgzlZteOpDU2IV9UzE8JbkfmyaCK0SDPnQ8lP1yvEePpmJVlgpUnC9LBSvJhtfsGpaJ4JWaTrEiOr56ubhZj/M1SW7MeVCbbNcOGshNjxPBN3vtJVmWUp0t3Z5v5lNFpp3slFKwZN0EfV7mRsR372Q3M6Ysnhtbco6aoWmmerNdW+miLGUZE+PUTCkr4nPgDaLpVV4yI46Dn5w99zlNeRCt3bKK3Lzx1S+zN/eqB3RFbt773vcyPy/qtXfeeSf/+I//yK5du/ijP/ojPvzhD9u6wAsFzTVIRRYKTWWebmuV1ufVlZuNJ65u9j8dD5lEKWds/vxu9t3oubEpl8ca4FcQZQi7yE0s6K2rIT2sV/ltLp2J1RUVm5Ub1Q5e8smSQY++m0KlRpAyvpokzY50SwnC5K/m8FMl33NZSqUTTzakxvYSQGk9zldlWWqcjcS80+9DrlQxPTe9KjebvfaySW6SW253Ljg+ekHBknUD1Adoduq70XWzpXze7nRiK0a7JzdrqhU8Fqx3SjllJgYRBSDJ0wsSgtS0m1R824E5to2KY+dXbp4xyf2LbrjRgYV2h67IzR133MFb3vIWAK6//npOnDjBD3/4Q06dOsXrX/96O9d3waC5Vmk1FAM9z+ix7j8vCUjUUpbqZf837B1n1KvWu1G56WXfkYDPfuXGMldKDc3sJsCvFaIBnxnk10tZ6mmT3MTrCpDNhmI12LTos0e5KZRrjKgZWJpXeC3sRmgUNHFaGiXTu3LTMDRTXGwiAW9H4WrNsH7XVqSHxVqW6vb7UM6uE9QkAesx52Yzb4Ty3ExryZ7ON8JzkxT/SThJbpqybiS5Od4pucmvQK2MjsaCMeZMWQoalJtOW8FXsy3KUk4qN2D6bvbLAZrtzpiq6QZn1sXN83/YJ0uE0WlnvFddwpbEsEgkwvOe9zwmJ7cOAHouozkvxVRuCJonoF5qldb9K+UmqFXwUe15/16Pxo6okPObDcW97jtiDfGza3CmIjehhFnHtsNQDE0+li7LUjXd4JGTSUBkmxgOKzd5jzzh9Oi5yVeqjGmWNnAnQjw9HlO9GdOyNpSlFLmxb66U9bumylLjWhYvtZ6+D7pMDs5rUfD31m3SfL5RWDLEeztFsqfzTd+Um+asGzkd/GSn7eApUZJKe8ep4uuLcpMutK86Fis181gfjwWcbwNXkB1TuxHH3uPzGfQ2TOYL6SLlmo7PozFVFu/tsIxdUGj7W/7+97+/7Z1+/OMf72oxFzpUrfKuux8jnJVKiBFidiTEnbfv77lWqfZ/55ceARl+HKFEdCTW8/6jhihFFLQw1haMXtcecSKh2ByamSCZ7H4ieCsIz033ZamDR+b5b197jIW0ILcf+9ZTvCJ8iv3gGLnJmuSmV+VGZ7uc+eSI30YhPA75Vca1DMu9lqVy9W4pRW7smImmvmu/87UfUytpeDWDcTL4Rma7/j4YWdGYkfGNW23gPa/ROgNoGXGM7Qpm2dfD+UAoN9KM7KjnprVyc6LTID/ZKbXiETfgtk4Et6JLz42aKxXweoTiaio3Dg+hlKbi0dJZAj4P2VKVU+t5s+1+M6isoR1jYbxJmZk0fp6Sm0ceeaSt7WyPtL7AcNuBOV65f5Y/u/MvAbjhsp3c9x9vsc1dftuBOS6ZjlP+Ey8Brcafv3E/1x64svf9S1WlIInInbfv5/LZBDfsHe9p39aylFHKbJDRu4LVc6PKUrYZir1mzk2nZanNZrKEa1nwwAPzNV54mS3LBOoKRQbZDt6r56ZcZQQH04kVIhOw+jSj2KHcrJn7NAP8bLprV9/l4kfGiFbWeP5Ulf/5vu6/y56cIDf5gH3vrVrjg8fWuPtHZ/jag4IU+CsZqBTAv3mDwFZYTBUtoxf6UZYSnptdMsjvZKdlKdkptagJcuNYWWq0PoKhI3KTVRk3AbRaWbSCQ9/KUp7kMS6bifPjMykeO5s+J7lR7/+uiSioaeATFzm61E7R9if87W9/28l1PKdQ1XVChriT2jY9aXvb3EQsQI4wAbJcNe3tff96DeTAuaQuPEJvvHEXQV/vLYqNs6XsMhTLzJFggmReDc20s1tKnGCNYrJtMrZZ7gjAiCbugv74X5d4wU/ZN5MlKgcD2jGCwTAM8pUaYx6l3DhJbuTwTC1DqapT03t4Tyw5N5mUvaMXQJR/tMgkpNaIVtd7+uy8BUFuCjaSGxBrvGnfBFfvGOErh89QMAKEtbIYoCnv3DtBtlQlU6owE0yKB/pBbkopKGVN5WY1V+bvHjrFzrFIezdYslPqrC7e25gNCdUtMbIDgFnWWFzPcv/R1bbWp5SbiVhAhvcZ4I+a0QiOQZalWDvOFZfE+PGZFF9+5AyjkcCW61bK2e7xCKxIcjNkyo07+XIAyBarZgZNIBSzff+JkN8M8stmkr3v0OKFyRFmPBqwhdhAcyt4VnQ19AqpqFT8Mco1sT9by1IoctM+GdssdwQMEogTxTMZv60zWVRZal0Nz+zBc1Oq6hgGjNGnshQwhhrB0GVpyjCahmbaOBHciphQAzyF1Z52EyiK55eDzngXo0Efrz6wzTQVk+luOvhCqsgIOYKaVCacLEsF43Xjemaef31mBVUc+NUvPtr+yAup3JyqiWPLKeXm4AmDCj58mo4/v9D2+lYtE8FJHhcPju0GpyshY3uEgb+c4aGfPAHAPz22eM51K+Vm90TEotxcAOTm5S9/Obfccsumf1xsjUyxSkSmB3uCW8t/3cDj0ShqgtzkM71Pg1ZzpXSPnzJ+puPBczyhffi9Hkpe8R5oGDKAr0dI5aboEfsN+jyE/faQMWu3VCfkZrM8kShFczp8moitM1mUt2S9pspoya73pcL0RrR+lKXEvsfla3Ud5FdMgS6JUcT+oZkKPjkHKlpZP2fC61YIlYTKVAk715jx756/gyUEMS0lz3a1jwVrOnF4HHz2nQ9aQqo3D/7ox6Ks2yR/tjXyQnpujlfF7+4EuTl4ZJ53/p/DpjqkpoO3sz6zDTwa6E8buIIvSC4i1Kbp8qmGH2217hMyZ+jiaEkOYdUuDOXm2muv5ZprrjH/7N+/n3K5zKFDh7jqqqvsXuMFh2yprtwQsJ/cAJQ8Qg3J52wo9UjlpuoV+5xO2Ds3RPOHqRryULTDVCz3kdPEezsWCdjmBfN6NMo+5WFpnzhulieiVJuK4aVA0NaZLCqobEWRmx7KUnl50Z7w9EG5keRm0itOoF37bpRqE4iBP0S25Ay58ScEuZnQ0ixnSufYenOEy0K1q0V6awPfCjfsGSfrF+/v488809U+FvrVKaUgW82/ef9Gvxq0OfJCKTcmubFXvbOWnc8YgpwqctPO+uplqWD/2sAR6z5cEMfbPq2R7G62bsMwzJyhfZrslBrdBQE7bPD2oatv+R/+4R+2fPy//bf/RjZrUzvvBYxM0XlyU/VGQIdi1gZyI5WbkkccvDM2Kjcg5PJsMcwoOfO1eoIkHVlZPuplIngr1AIJqIGnnBGljzaIk8odWUgVG07QCem3SRFlbiRs60wWVZZaqsqyXw9lKTURfMIjlTVHyc2EfC058qPbslSu3gYOkDa7pew9HjQZuDdBmuVsiZ3j3Z3kY1VZkuwx42YreDwaY9M7YB6eeOppThw+w3Q81FFjwEKqwGw/OqUUZEpxsLB5Gc068uKmfU0+Fb1mGnTPGuJndnTMWWEtOzeTm3Ouj6ay1LIiN3tsXWMrPHhsjcfKM7zYt5HcQOt1J/MVUwWdLcm1TtnYCWETbPXc3HHHHXz2s5+1c5cXJLKlellKzSKxG1WfIE3lvA1KSFl6HzSl3NhLbsJ2t4PLslRKFyqIXZ1SCnpQZJtoRg3K7ZXRNpvJokLxMkbE9pks6gS+VFHkpnvlplCW3iVJxhwtS4VtKkvlG8lNvVvK5pKEHMo52aNyE6/Kz6fHoZnnghEThMTILvHevzncvm9FYiFdZJqk+I+TAX4Ksiw1p53bj9ayrJtZAKOG4fGxzCixoM/2Jg7r6542BDndoS23tz7qc6UmY5YAvz6UpZYyRY4a4v29SNv887euW5mJZxJB/OtPiwcnL3VukV3CVnJz//33EwoNftT5sCNTrJghfvidkfJ0vyA31YJ9yo2a3j1jc1mqMaXYhvVKL0yyJtY5blOnlIIvEKFiSA9PB6UplTsS8NZPrAlNnCjGJqZtn8miyM1CWc3CSrLBsNAmlKm3HuLnvOdmxDQU91iWUhPBHfLcqP1PaKnuyY1hMKInAfAlZmxa2EYcPDLP3zwm1jitEoZp07di2ba/ZSlFbs5t2G5Z1pV+m0pkBh2P7apN8+ueMMTnt1tbam99WFrBIwFYPyYe7INyMx0PcVQX728r5ca6nYLKuNk9HoVlMWNyGJWbrj7ln//5n2/4v2EYzM/P89BDD/HBD37QloVdyMiWqub4BafKUmq/1aIdyo0gN2nZBm6nLwQcCPKT+1itiX3aXZaKhfxkCDNOVpKx7W0/97YDc+ybeprHFzK846X7+AXvGfg+jI7bbyJVZanlWgT8QK0sWvq7OOaU52bEsCQUOwWptIwYgqR23S21yURw29NpZRlpgh6Um1KGIOLu3Slyo3whl8n5UiZBQZQfNIS/4pX7Z7dUNhb6NRFcYURkx+zxraFVaOm70RCBoi3LusmTABQi4nvqhJnYWnY2yY1nob31UffczPiy9Rsm1abtIG7YO04uvgfKoowWpEyJ+s1gq3WfMDNuInDqKfHg1OWOr7VTdKXcjIyMNPwZHx/nZS97Gd/4xje488477V7jBYdMsVpXbhwqS2myC0sv2dF9JC5oyZokNzaXpWyfDC7Vn5WKWKfdZalo0EtatVd3MV8qKy/Wr9w/w8UJqUrYnE4M9ZybPEEMjzyhd+m7KZZrgEHM6EO3lFSFokYOD7oNyo0qS4n33fZ0WkluxrUMS92SGxnglzVCRKPOzOdRvpBFQ7y/M01lHuWv+It/PcZXD5/h/qOrLQ2wfVdu5EiD3d5VwNiQLXXOkRey+ygbFgqFE+TGWnY+bgjCt01bI0TpnOur6YZJipOnHxcPjuzsOmCx03W/5/abSBpRPJrBXm1hwzbN61bk5uKEbqpiw1iW6upT/vM//3O71/GcguiWUuTGmbKUVw0ws2Nek9zHWlWQBEfKUnYqN5JwLJYDgG67ciOyblSpp/NW+6y1PGLOlRq1Z3EW+LweQn4PxYqOHhzBW1gVvpuR9pUmhXy5RpQifqSK4mRZSqpCHgxGekkpbjIUq26pmENlqbhWIJnqsqyaFSWMFWOEiANlE6j7JuYluZnS0gSoUKbx+/E7X3/c/Pdc03iVUrXGSrbMdLCfyo0gN/5qls/8+4v54DfPNGRGnXMEjFRukgHxc6fmSpnjLr72E1KlCCNanl3aEqvRffzu6w60XJ8Yx/ITSlXhafvavf/CT/lhJbiDfk1qvO2qbax/+xJYO8w+7SxPGEIpG4v4+cjPX7Vh3SdlG/gVAUmEYjO2D/21Az15bh566CH+6q/+ir/6q7/i4YcftmtNFzzy+TwBTZ6wHSpL+cJCEdLaNLxuiZIqSwlSMxWzX7nJ2KXcVEtQE3dBiyVBxuz23MR6mC9lGEb9Ihv01cmRA8qNeA1xIq8GR8UDXWbd5Cs1xlTGjTfo7F2l12e+H+NapvuylBng1+y5sfniFkyge8Q+y5mNPot2UEmLTqAVRkzFzW6ocnKSGCVDrNfqu2mFZi/OUrqEB71uKFaDLZ1EIGKqY7fOlbjvA7ewb1KcN//rKy/lvg/csrVfTQ6hXPUrcuPQ6AUEwbnv116Bd1JkvuzRFnjzTbs3JTbv/PwhFtJ1tW+PVE7+8Wy0bYO3HRjbdSUAH3iB1+yK+oXrd7Rct1Ju9hjDq9pAl+Tm9OnTvOQlL+GGG27gve99L+9973t5wQtewM0338zp06ftXuMFh3LBoqb4nSE3/ojo6PFUO5zB0gpSuckRYjwaIOCzN9g6YucIBgs5mi+Ii4TdZalIwEdajTToULkpVXUqNSH1x0MWcuPQnU8sKN6Dil8cD92WpTbMlXI6OVUqQz3Nl7KMXqjphmM5N2gaVRW8l93YIdMOqorcGCNEAs5cfJUvREMz1ZtZtjbpNmedLKSLTJAWwZOax9G29QZI9YbkKbwejUtmhDIdD7XR+SSVmyXvjPkcJ+H1aMTmhMF2j7bAg8c2diluNo5lr+xYOm7Mbp3bYzcmLwFgV+0UP3etUHZ/dHrjua1Qrpml15nicfHgEPptoEty87a3vY1KpcLjjz/O2toaa2trPP744+i6ztve9ja713jBQZl8a5oPfPZeeBVCktz4q/YpNzkjbGs6sULY2i3VaxlNkYVAnNW8kHptNxQHLUpTh+RGqQcg0o5NJcUh5UaZiksmuemuHbxQ1uvKjZNmYgVzvlS2+1bwXF25UcQGHLq4ydKXJ7+C0UVHWiUt7tjXGbH95kHB6gtZlCnF7bRXW7NOFlLFesZNdFqobP2AHEipiMq2UfH9az3SxAK9Jmc1wVlEi71TZakGjIshknu0RR46sUa52jhWZrNxLHs1QXKfNebM97wvUARl6XGu3TUKwI9Pp6jWGtd9UraBx0M+gkllJh6+Tinoktx897vf5VOf+hSXXVb/pS677DL++I//mO9973u2Le5CRaUoCEfN51CnFBCOiYtZQC/0vjOZc5MlZLvfBoTxNStnYfVcllLKjwMTwRWs86U6VZqsJSmPR7OUpUZtXGEdqu214JXkpuuyVNWc9eSo30ZBkoUxLdN9iJ+ZczNudkoFfB7b5qJZ4ZUjGEaNddKFztdrSHKT9Dn73ipfSNInFBdrx9S5sJQpspAqsk21ZMshkX2BNBWTEkRl26g4X5xJnuP8llkAvQIeH2d1mU7skKepAZLcXOxboljRefR0suHHrfNuDLMspUzJdo5j2RIzB8TfK0+ybzxALOijUKnx1GLjzabZBj4RQVs40vjcIUNX5Gbnzp1UKhvHuddqNbZt60MN9jyHUZSzmhzKuAGIxEYBCBlFStXu590AfVBuvGaacM/kRpqJ9WDcLGfYNRFcIRr0kVbr7bBbKtuctWIaip3y3IjXyXulwbxr5aZmTi8n0gflRgX5kemuLFXOm5PsidaVG9s7pSS80lg7RYrlbBcXpKy4qKW8Dk+BRhCcV954HQBvuNzLB3/miraeNx0PsZAusk0l7/aV3MhAuybl5uy5yI302zCyg0zZUg52GnKI5MU+4cF64NnG8l+rOI0Z1oloJaqGh1MyCNDu2I1NMbIDgiOgV/GuPs01O8X56PCpZMNmSrnZP1Ktd0rNXNmfNXaIrsjNH/zBH/Bf/st/4aGHHjIfe+ihh3jve9/L//gf/8O2xV2oMGTpxXCS3ETFnXqUIqn8RiLaEeR6nVJuGkP8elVuxPOrfnEx93o02y9oDYbijstSFXMfDc93SLlRZamsJiMHuvbc1CzKTR/IjexAGtfS3ZWllJnY44dgwiwHOhHgBphdQ1Nasqt2cG9OlCNygf54WDwjMrgtmOYtL94rvTitoSG6pm7YO85CqlgvZfWV3KiylCArbZelzLTfXaSdyjlqBancjFeXCFLm/iZyo/xPVlzkEX6bU8YUNXzme94XaFqdpCz+hGt3jgJw+FTjzZAyEz8vKL21Y3shlOjPGjtEV+TmLW95C4cPH+bGG28kGAwSDAa58cYbOXToEL/0S7/E+Pi4+cdFC8g7Ss2hjBsAT0jsO6IVSRZ6JDdKuSHMjM0ZNyByY+wzFIvnq+GWo2G/bUMzFRqUmw7Xm2luR3baUCxfJ0Nvyk1Dt1Q/ylLSqDqppcl1RW7qZmI0zbkAPwVJbqa19a6C/Hx5cYc/r49umi9jK2TqL+mzDV6czb4pKutkYMqNxVAM9bLUYrq4wRfSAKn0MLrbuYTqVohMgBzTslNb4uET6w0KeqtxLKokdcwQHUp2j2M5J0xy82Ou3SluYJqVGzV64TLjuHhgdngHZXf1KX/iE5+weRnPHRiGIdqzffWgPUcgiVOUIkd7Vm7klG0jZPtEcICw38ZWcFkmKnqcGZoJwiOUNnorS8WCPqhVzffW6bJUSlPdXcmu9iPKUn0I8FOwpP4WuvHcmGbixgA/xy5sMdGJM6MlOdwhufnmo6d4ZVEQhh8lQ7zhMw9syJexHaqFWw6UNDNa7n6sQQ3RgE/+h2vNdSykimwfpOemmIRimsloHL9Xo1IzWMyU2D66STSBKkuN7SbzjFRN+0FuNE2oN/OHuSa8wjP5HTx6OsUL9tS/OzfsncDrAcXNVIDecmA7n3r985z77DfDrPTOLP6Ea28aBeDppSyZYsW8KTgpPTfbS3Ki/OzV/V1jB+jqU37zm99s9zqeMyhVdYKGqBN7HCU3Yt8hrUIymwd6uCCVVFnKGc+NrSF+UknJy4u53Rk30GQo7rAsVfd++BtVH6e6pWRb8bou19uD52ZMtYL3pSwlyY2W6s5zk28kN2mnyY1SblhnOds+uTl4ZJ7/9tff4VUhg6rhYRVxt6/yZT51h0MXuYSF3Og6eDzCi7N/lgePrbGYLvI7//ATVnMVYXwHdN1gMV1kzi/f20TnYZBdIxgXx11hHVKn8MxcydxImJNrec4mC1uQm43KTaIfZSkQ7dXzh/mp8TX+Pg8PHF1tIDdfPXyGmg5XbovzWz9zJRf906dgEf7dq16Bp9/EBmBGqjDzP2IqFmD7aJgzyQI/Pp3iRRdPUq3pnF4X166xtAx6nB1OMzH0EOJXq9X4+7//ez70oQ/xoQ99iC9/+cvUaj0aV58DyJbqoxe8IWdi1oGGsQ65TOcpulYoj1DOcMhzE7SOX+ixFVwShqymlBuHyE2XIX4NnhtFNPxR8Dpzwo3KnJu1miTSXXpu+l+WUsMo012SG0tZCgfnSilI5WZaS7J8Lh+IhMo6mZJBesuMostTcnO+jO2IzYicGr1qjn4AUS65ad8Er7tuO2+8UZh4v/iw8Fes5EpoeqUe4KdKRf1CUzu48qxsaSq2TNh2LOdoM8j26qv8Qh174Fij70a9r//++bu4ad8EMwUxMNMzOyCD7uwB8AbEjcH6MbMl/BFZmppPFanqBuPeIr5V2Qa+/frBrLUNdEVunnnmGa644gre9KY38aUvfYkvfelL3HHHHVx55ZUcPXrU7jVeUMgWq4QRd3Yep4ZmAvgCVKUwl8/2QG6qZbSaaKnOEmLKEeXG4rmplUTKcLeQZaK0LvY35kBZKmbx3BidGoqtnhuH04mhfiJfrfWq3DSF+DkNS1kqX+qirCrHGaj9bOhSsxtSuQlpFXKZ9rJJVNaJasdekgMtFaz5MrbD6zMJmdn10oR/+zxRdvreU8sspIospkrMaGt4NEOkVEf7NSBAQpEbOStqu9kxtQmZrJYhLQhENbHTJMl9MRQDTIsutO2V4wA8dLzuu3nsbJqfnE3j92r87DXbxLlArnVgoXi+YL3MdPphrjNNxUmgbia+NXESDUN0sMWmB7DQ9tAVuXnPe97Dvn37OHXqFIcOHeLQoUOcPHmSvXv38p73vMfuNV5QyBSrRDU1V8pBcgNUvOLLn8/1YNK1hOqFIiP4vfYHjEX8PnJYFKFe1BuppCRNcuOEcuM1lRutnBVBYW2iwXPjsJkY6t1SS1VL6KC+hQFzE+TLtf6G+MkLZ1Cr4ql0cTwoNUKefE3PjVPdUv6w2aGnpzcOH2wFlWFSJzet31fHsk7U0MtM65j/PZNRbtgzjm7Alx85w3yqwDaVaDyy3fmU6mbIDiTWngXaaAdfPw6GDoEYWX+9xb7fyk1g/Rmmo15KVZ0fnRLfeaXa3HrFjIiqWJJlnsT2wc5p2vEC8ffpH1o6ppIYhsEJOVPqRQHx/rPzxgEssH10HeL30Y9+tKEbamJigt/7vd/ju9/9rm2LuxCRKVWISOXGcXIjQwJLuR58LNIDUzT8TIw4s95I0EsNL3lDqkK9dExJ5WatJsiS3Rk3IDxCpucGOlpvgzTucDox1MnNYkV5Egwoda7klctlRpA5N/0oS/nD6HI0Sbi83nnqb1a0VhNV5Mb5NuBaVKg33lx75EZlmKj5TotNyk3zdrbD0jG1GX7heqHefPHhU7JTagBmYoVxkR3DqqgOzI2eoyy1JqsI4xeRKYkbkJDf48gNWkuM7QFfGK1W4md2inP+A8+uUq7qfOWwUMv+3fPl+7j0mPh7ur3MIcew4/ni79M/5MD2EXwejeVMibOpIielcnPAeFJss/OGAS2yPXT1KQeDQTKZjRfMbDZLIODMOIELBdlitW/kRveJC3Cl0Ltyk3WoDRxEWUq9BtCbqVgSjdWKJDcOlKW8Hg2fP0jBkMd6B6Wphq4dhzNuoK5UpMpafY5ZF6UpbyUryhHQH+UGMGRJadRIUd6q3bcVVFlKll760QasJQS5CZdWqLSx3mt3juL3akzTWrmx5ss4AkVQZOpvK7zm6jnCfi9Hl3McPLJgaQPvs98GzGA8RVpM5WYzj9Oq7OiZuNjMuFGDZPsCjxemxFDJl40JUvjAs6t8+8kl1nJlJmNBfuoSmWuklJvp/a321D8ocrPwKCGjyOVzQo08fDLJidU8HnR25n8it33BgBbZHroiN6997Wv55V/+ZX7wgx9gGAaGYfDAAw/wjne8g5/92Z+1e40XFLIlS1nKoaGZCoYkT9VCL2ShbiZ2olMKICTj8G1pB5fPXSwL4uGEoRiaU4rbJzf1spTf8XRisIT4lWpm55DZJt0mDMMgVE0CCDXFoXlozdDMrJtU50F+ZllqippucEZ2ecynio5lyPhGRJlninXWcuWW29R0g/uPrvLVw2f4r393mErNMMtSat4T1PNmHM06MQ26m5ObWNDHqw8I0vb9o6umcqP3Yxp4M5RykzwJ1bLFc7OJcmMhN/VOqT6VpBSmhBJzwCeUmh8eW+MT3xJm3Nddtw2fUpEWJWEYtHIzulscF3oVjt/XEOZ3Yi3PtdozBKtZcc4a0rELCl2Rmz/6oz/i4osv5kUvehGhUIhQKMSLX/xiLr74Yj75yU/avcYLCplilQj98dyojqlaLx4WlXFD2JFOKQCPR2uaDN4DuZFlqaWSuENzohUcxPDMpKFSf9tXQjKlVsqNc+QmZpKbSt0InO+M3JSqOqNGH83EEp6YagfvMMhP103l5tun4ebfv5cnFsUx9cl7nubm37+Xg0da+0x6Wm/c0jHVIuvm4JF5bv79e3nDZx7gvX9zmG8cEeWri8PivbWWpWZHQs61gSs0dR9thl0T9RKsIje/d3/WkfdwS8RnxQ2hoUPyhNktlSpUyFkGo5qQ5SsmLnbeUL4Z5oRBt3r6EB4NKrrB4wviWPzKI2fEe6jXYP5Hcvtr+7u+ZmgaXHyr+Pcz/9wQ5ndyNcfLvIfFz/a9on9DU7tER6vTdZ0/+IM/4Gtf+xrlcpnXve51vPnNb0bTNK644gouvvhip9Z5wSBbqhLR+lOW8gTFxdfoyaBbH73gRICfQiTgJVuyYTK4LEudLQpS40RZCoQiksp03l5ttoJbPTd9MBQXKzp6ZELczXRIbvKWAD+tj+TGbAfvNMivsA6GIEP/+UsnKTed5hzLkImplOKN5ObgkXne+flDtNKMwqVl0OB9P/dT/Jx/H9NxUYpyPJ22DXJz8Mg8n/znp83/K3LzRH6EzziZw9MKKhhv8cewepT45CXEQz4yxSrzqQIXTzdFa5jkZh+Z5T6OXrBi2/PE32cP0SwYrmbLvPPzh/jczyZ4STkriNswTNi++FZ46LOC3Dz/TgAOnUxS0w1eHjgstrnklYNbX5voSLn53d/9XX7jN36DWCzG9u3b+cY3vsFXvvIVbr/9dpfYtIl+Kjc+OYJBK+e630nZ+bIUqOGZPY5g0GvmeudLzpelUkbnqb+moTjYH+VG5dwAVEPdKTf5ctUM8NP65LcBLEF+HWbd5IRqkyK2gdiAgxkysh18pmkEg8qzafVKPqpMII73A5ddxr+5djs37ZvoT+y+8s3klqCysbSzcd0GOzRR7jtjiBKnYzk8m2FCdUxJ382IOGecaW4HL+cgI43S4xf1d/SCBbWZq6jhYUZLmt4qBfWufefeg+Ifc9cIn86gsfenwOODtWe5iDPEgl5qusEMa1zlOS62UerOEKMjcvO5z32OP/3TP+Wb3/wmX/nKV7j77rv5P//n/6B30Vr6XEWmWDFD/BwnNxGRduqv5SlWugxYbJgr5ZxyEw34yKp28G7LUpbnKf/OaNiZO7VY0EeKzspShmHUPTd9MhQHfV4Csq5fDkhi0iG5KVZqjGvyvY1MbL2xnbB4bnKlDo5f2Sm1qG9OGh3JkJHm5SmSDSnFKs+mFSZJ4dFEOvGDS33q4lEIj0FAqh0tfDfN654gTUwrohsap4xpZ3N4NsOEvIleEb4VNWNqvtl3syw7eiKTEBkfGLl58EyJp3WR5HyNZ2MGnAHsLsq1bn9eH1e2BYJxuOjlABy797OUa4KGvc77rwD8SLucg8eHP7C3o2/TyZMnec1rXmP+/9Zbb0XTNM6e3byV0EUjsqUq4T6VpQJhceKKaiVSXQ7P1CVhyBohx7qlQCo3vRqKpeKje4OU8ZMI+eqGPZsRCXjryk2bZalSVacq73LjIX+dFDmo3EBdvSn6R8UDXZSlJjSppkX7M7Xa+loTpClUOihLZYW6sGKc+321NUNG5sY0l6W2eo1pSzrxUra1CdkxaFq9NJXaWJpqXvcuTQ73ZJwy/k23cxTSoMvSE8AWWTeqtXpGdB8NpFsK8d48qgu16SrPsy23MUnPsJAbgGvfAEDi8S+gVYv4qPKLvm8B8IXyS3jn5w/133PVITo681erVUKhxrt3v99PpdLjYMbnELLF+vgFp7ul1NTxCEWSXQ7PLOaEupAjzGTMOXJji6FYmolrfvF7O5FxoxAL+kganbVWqxOspkHE760/z2EfixoUmPfJi32+szvtfLnGuCydEOljKm23IxhkWWqZ0XNuamuGjDQUx7QiqVT9mNjqNeakh2XRGHMuz2YrbOG7aV7PLk0oYqeM6S23cxSSrLD0OBiGSW42lKUWVW6M2H5Qys10PMRhQ6hNN3qe2PDzGHn2a3JExPbn93NpW6J22e3MM8mUluL/8n2V/+T9R3ZoKywbI3y59mJgACXJDtHRJ20YBm95y1sIBusXuWKxyDve8Q6i0fqF+ktf+pJ9K7zAkCn1L+dG7T+qFUjmu7srLGZTRBAtwE6GX0UCPrLmvKbelJuyTyhWTvltQHpu6MxzY5akAj4xjFCRDIdD8dTwzKxXkZvOlJtCucaEKktF+1iWitTJzY+6KEsVAuOwCafXEB1JtmbIBONUfRF81Tx6qq5m37B3nLmREAup4gbfjTLorvmmealTeTZbYQty07zu3VK5OaELEufIe3guTFwi/CClFKRO18tSqWblRrVWC3IzqG6pG/aO87Ho9VD+f7lOe5ooBXLqJg54kecx/FoNY3wf2tjuvq5tKzx4MsNfl/8Dfxz4n7zX92Xz8T+o/ntKiPOqKknetK+P54QO0NHV6s1vfjPT09OMjIyYf+644w62bdvW8JiLzVEoFPBr8kTdL3JDifUulZtyXhAGj5NDPhHKTaZXQ7EkRSWv+L2d6pQCQW46bQXPWudK6TXL+AVnTbqqHTyjCQ9Wx+SmUmNCk2sdQFlqnAyFUgfzxmRZ6tKL9rX8sZMZMpWoyH/xZevkxuvRuPP2/S0Nxdsludm777L+mIibocjN2rENP1LrBvGe7fJIcmNM9yeHpxV8AUFwAJYeNw3FG8pSSrmZEUMoVZdi3yaCS3g9Gm/72Vs4oU8T0Grc6Hnc/JkGvMTzqPj3vlv6uq5zYSlT5G79Jj5Z/Xlqhvh8/6z6M/xd7WUbthtWdERj//zP/9ypdTxnULOqEn3KuYlQZL7QnXJTlenGvrDz5KZnz40sSxXkRPBxB5WbWNBLms48N9kN6cT9SfxV7eDJLsmNKEspQ3Efy1LSvOzRDPROSmmyLPV0ThwHAZ+HcrXe9DA7EuLO2/c70sJsjOyA1DOE841+hNsOzPHGG3bx1w82KiR7A0nQYe++AQ1LVAbdtY1mVxDr/tQdz+Ouux9jV0EoYieNGUffw3NiZj8sPw5LP2Hb/psBkVJsGAaapkFuxTwG1HynQZWlQLyHJw/dAs/+DS/x/Jh7deGtmR0J8fO+pyAHXPyKvq9rK4hSo8YfVn+BP6++Cg8GayQ22W44MdwpPBcgjKLoPtI9ATxeh+8iZM5NVOvec6PLbqlAxFlFLhLwsdyr50bOTMpqgnQ4XZaqKzfJtp6Ttg7NVGpPIOZ44q/y3KwbkqAW1oVy1GbbaaFcZdw0FPeR3Hh95LwjRGsptNxK+8+TZalvnhCE5q/fdiOVmsFSpuh4hox/fBechInaMrlS1SSWAFXZVfq6a7fx8sunmY6HeOG9H4cziIGJg4AiN6vPgmG0HIZ524E5Xrl/ltofrEMBfvnf3MKVL3j5YJQmqKf4Lj7GzAtDaBqUqzqrcqQBi0fEz0d3m+fAjLVLcQDY9YLXwrN/wxtGjjB+69VMJyLcEF3A++mT4PHDnpsHsq7NYC1JJtl4YzuQkmSH6HPv4XMbhmFglMXwMcdVG8trRCh2XZbSZEJxOOY0ualP2lYKTMdQ6cRy9EK2WHHM8BYNdOG5MctSlk6pPgyhjAUUuVHHnNFR8GCpVCChSdm/n+QGyAeEerN09gT3H13d8vNUow2KSZH8u6iP8LLLpnj+nnFu2jfRlwwZ36iY17RNW2Ul21hKO3wqCcDPXL3NXIuWEtOhBzKIEmBsN2heqOQgs/nAT2+1QKAg1JCrr7p2cMQGYFak/nL2EQI+j5m/ZZamTv9Q/G3pPurH4NQtse8VEIgTyp3h34weE8fhj/5a/OzSV4n26yFCc0nSioGVJDuES276iFJVJ6DLL2BfyI24a4lrBVJdlqW8FUHGovFRu1bVEuGAt6tZTVYcPS1KAU+nxGH9dw+fdixqvyHEr5SG2rlblbPmCdZnMROP2r62ZkStwzNDXZiKpWpSw+toJk8zDh6Z5+m8OIYXzhznDZ95YNPPU402eONnvo+vIH63ZWOEG/f21+yojYpgvDlttaEdPFOs8PSSUEHVvB6q5fr08kEMogTw+gXBgfosplaQuTIqN2agUAMbV5+G3Cpzzb6bU5Lc7LzRfErD2JNBIBCBq35B/PtfPiZ8YQ//hfj/8948mDWdA6okOTvSWHrqy2gQG+CSmz4iU6wPzdT6QW7k3UC0h1Zwf02Qm3hi1K5VtUQ04CNtdE9uDh6Z5/s/EabIjKUbQUXt201wokFvXbmBttZs1v2tZak+XCiUFJ8rVeshfB2QG4/cNu8fbVm2cAJqXMG8DOKbkXkwrT5Pc9tUkTGy+DRR/lkjzkcPPtHfPA5ZXtqurTSQmx+fTmEYsH00zJRK+s6cBQzwBvuuiDXALE1tQW5UKN4wjAeIjMOkmLbN6R9aBmgWRWnt9IPiZztuAEDXjXoy+KDIDcCL3ytKUM9+Bz55tUhTn7tmqEcZ3HZgjvs+cAtfePsL+eR/uJYvvP2F3PeBW4ae2IBLbvqKbKlKWLaB95PcxCiwnuug28S6C12Qm9FRZy/CQrmR70mtBJX2XfgqJj6mibWa5S2ci9qPBX3U8NbbOtsoTZllqaAPCkq5cX6cQUyG+HVLbnxFsW3R35/RC9bY/0VDvOa0nJzd/Hk2jwiYlF1da0aMqrQU9jWPQ5aX5rQ1li2dJI/IktS1u0br25olqe19I40t0Q65WRkicgOwUxAXTj9oDtA8myyI36GwDr4QzF4FQK5cxZAff7+7pRowvhde9WHx70oeggl43acG+9m3Aa9H61tZ10645KaPaAjw6yO58Ws18vnO50vpNZ2IIaTe8XFn5X0R4hdCVxXdDtQbFRMfR5IbIg0/dyIm3uxA6mAEQ8baCt5Hz41aa6ZrciPet2KgP+UIa+z/kpyUPSWVG2j8PJtHBMxqYq2LxviGbfsCqdxEtBKZ9SXzYeW3uU6VpABSZ8Tfg/LbKEzIlvm2lJsBdXU1Q6oynPzB/9/em0e3VZ/5/68ryZZsS973JGSDJIRAQqBJQ6FsSZMW0qbzLQN8KWRooVMGTmEopXROD4G2M4FO1+lQ6ALJb0pnQjfolxbcUkJgQkMDCSkJCTSE7PESx5tkW/v9/fG5V5ZsWbYT617JeV7n6Mi6+lzpubqW9NazJhr5NXcH4fBf1PbGhYlEfdNjWuDUcLts/spb/Dn4zB/hY9+Cf9qSKFUXxh8RNxbiD0YsmwgOQEEJuiEWzJLusXCiuyfh4q+syHK5cqELHQd92thDU2avhTJNCbhELsww68YDs3dMV9ywdxQJugOl4MkJxVZ4btKFpUZffVQYUsIg4rZG3CSfJ1Pc1GlDxWObPzjknJrrWvSKIWstocBDX4F6naKdyjOj63pC3CxIFjedB9R12RnW2DYcZojn+NAOugnM+3LFczP1InV9ZCtTvOoz6mhXP7z3J7V92ocSS/1JVYpaLnhJzlgMi261X9ROcETcWIjqTmyh58bhQDeSik9K3JxQzdDiaLiKhvY4GE+KClXoxE9Sku4oMXstlGGIG9K/tuPZkyHhuRlDI79ExYY7KaHYipybFHFjTgYfvSejKKzWRousSc5NPk+JsBRdadcNPqcNKFtb9Moha62iv1g18nMa85qOdvVz3B/C5dCYNymp6rDTaJxXOd0y29JSN09ddx5I/6MiGoIOYy5Srnhuqs6EiukQC3OWX+XYHO/sgfc2qvvPWp5YanullGALIm4sJBC0cPSCiRmaivaOeTJ4V6f6oujTirMeFy4eLG5GWV4NAz0ZTM9NzyDPjQY0jHNPhuICZe9YysEDacNS2ffcnGpYqiiqbI1bJG7M86kBbcZ8KOWRUYkTyeczeS0MhKVMcZONcz8SkTJVfVTcq8SN6bWZ0+DDU5DUW6gjR8RNcSWUGl6E1reH3t++F/Q4uMsSk89tR9NgzlUANBx6FoBz+19Tva58Dall4LmQTCxYjogbCwmEBqqlsj0000TzKI+LT+sfc8VUT5eRSOrIvq3FhaYnZOxhKbMnQzrPTbZ6MjgcGsWFzjENz/QH0yUUW+25Gbu4KYl2AaBb1J04ucfGccNz49EilNI35Hwmr4UkcUOlbf04tEo1Bbo8qMJSOw51AYNCUjDguamwWdxAIvmWlp1D7zu2XV03nJdbya8L/i8Ahfv+wEzXcW52Nqnt512b0qDSzu7Egn2IuLEQfzCSqJayynNjTgb30k/XGHvdBHqMcITLO+52Dcb03HTFzeqjsZWDr5hdgUdT4q0nqVoqmz0ZStwuehIJxV0jrk8pR7Ul5yY2IG7G0PHXF+sCQLOwXNnssVFRVkq3cT5rtK6059NcW1TgpN7IuWnVK2zrx+GuVdVHtdFjxON6UjJx0rkO9w70uLHbcwNKuAA0vzX0viNvqOtJF1hnz2ioOwdmXI4Wj/K864ssdrxD3FEIi/8xZZmEpU5PRMpaiD8UpdbKnBtIKQcfq+em398FQKww+90zTXHTHS9WknusvW6M9Toafoq4dFYNn790ZlZb7XvdLrr7xu65SRE3FuTcmGGp3nCUeFGV+kUzhoTi0rh6bR1eC4dmMtD2v+vf66B/P/PL+vj3e69Iez5XzGvguy/8jbouJcj/+e8uZd7CD9lStlpSrwY7TqWV9kCInUfV65dSBm6GpIoqLBG4I5Lw3KQRN0e3qevJF1pnz2j56MPw02UUGqNX3j77Ts4tbUxZIp6b0xPx3FhIIBilWLNJ3Gj9dPWNzXMT7u1Sf2R5IjgMhKUSvW7GLG66AOhzeNFxcPGZ1VnvyVDidtI1ypwbXR9oJOYt0CybCA4Dnhtdh3634X0JtJFo/jEC5bpK7naW1mbFvkw4HRol1ap7ryvQOmy/mlA0xuHjnVRpalzI/Ln2tYYvqFGem0atnVffOUYoGqfU42J6VdJ7PpdCUjAw0qBtN5gjYgBCAbUNcs9zA6p663Mv8fvaz/GZ8D28Un3dkCUpifzCaYOIGwvx25JQbOTcjNFzE4vr9PYo70IvxVlvglbocuByaCffpdgIC/k1FSaqK8t+dUxJYdIIhhHCUsFIPPEaeknqOWTBOANPgQPzez5gNuKLBkc3oDQawmv0Dyr0WS9uANxVqlS6Vj/OvuOBtGv2tgao0pXXRnd57PWGeGvpx4NT09mx868AzJ9SjiNZbOVKMrFJ+Rnga4R4FI6+MbC9eYdKJvY1wiCPSM5QNZN3z7yFjfGFqhw8iVhcZ2+r+p/p7s/erDkh98gJcfPII48wbdo0PB4PixcvZuvWraPab8OGDWiaxqpVq7Jr4DiRklBsueemj67+0Ykbc06P6bl5vTmWtRlNyRQVOgca8J2k58ZMSG6wQty4XaNu4mf+etQ0KIkax+YuA2f2f01qmpbw3gTibjDDjIG2DHsp9F7VDiCiO/H47JkpZM5ratTa2X0sfYuA3c09iTJwzddgb+KrptFWoPJ8Wg+q/jDnD04mNhvmGcnHtqNpA71j9v/vwPb9r6hrsyNwjpJo5JckbszPsT/uVrlNz+w4ZsnnmJAb2C5unnrqKe6++27WrFnD9u3bmT9/PsuXL6etLfMH74EDB7jnnnu45JJLLLL01FGl4NZWS6WMYBhFWCp5To/XmATtpyhrM5qSKSl0nfzwTMNz0hFVH3L1pdaIm+5R9rnxJ41e0MwQlgVDM00S4iYYBTN3pndkcRPqVOe7nTKK7XLrG83OJmvtvD2cuDnWk6iUygUPQ5dbCbJJMVUxlZJvAwOhntqzLbRqBGZeoa73/mFg294X1HUOzz8CaEieL0Xq51gyVnyOCbmB7eLmO9/5Drfeeis333wzc+fO5bHHHqO4uJgnnnhi2H1isRg33HADDz74IDNm5Mgvn1GgmvjZ0+fGqwXpHiEsNXhOT2KcgV6ctRlNyRQXOk8+LGWs7zT2r7NA3HjdTjp0wwvSdyJjDksgeWimhQ38QJ1X05Hx+v4O9BKjV4lZrZOBcNcxQHUKTunRYiVlpufmBLub0/9f7G7uYbKmvEyU29zxF+j2qbyb2dphAOY1JjXvi8ehbY/6uzaH2u/PWg5o0PxX1bSv431VBq454MyldluXkfpSNYz0YEcvr+5t54H/N/A5lowVn2NCbmCruAmHw2zbto2lSwfeOA6Hg6VLl7Jly5Zh9/va175GbW0tn/3sZ0d8jlAoRE9PT8rFLiwfvwBjqpYaPKfHZ3huAsZwyGzP6UkZnnmSYaluvYRqbyGFFsyQKSl00WmGpeKRjDksA2Xg1o5eMF3zR41ftN94bg8vHTWNOj7i/tFu03NTYd/APMNz06idYPexbvRBIjIe19lzrIcpCXEz1WoLU2ja1cxvmtW5PdtxEIBPPPLqgLeg+5CaCO0sHJjrlAuUVA94b7b+FF5/XP094zLw1dtm1kg07WrmpidUKkMwEueGx/9CS8/w4zYsnzcm2IKt4qa9vZ1YLEZdXWrXy7q6OlpaWtLus3nzZh5//HF+8pOfjOo51q5dS1lZWeIyZcqUU7b7ZAmELB6cCWMKSw2evzPguSnKuG68KCl0nXJCcQ9eS7w2oMJSQdyEHcbzZWiMZ+bcWDk0czjX/JGwEmT79u8b8TF0v3ofdjrsybcBUoZROoOdQ5JGj3T24w9FmeowxE2FfeLGfM23h5Qgm6UdxUksNRzSaoSkqmeBM8d6ryz+vLp+7RHY8p/Gttvss2cEzNe7tSc05n0tmzcm2ILtYamx4Pf7ufHGG/nJT35CdfXoGop95Stfobu7O3E5fPhwlq1Mj67rBIIRa2dLQaJayqv10z1CQvHg+Ts+TYkb03Mz3LrxYrw8N1YkE0NSHovDCDlkFDdJ3YnNdVkMSw0OMSZjDqN8+297R3bN+1Xoqstpo7gp8CTa/ivvTar31QxVTXcZvXts8twkv+aH9RoCuge3FmG61pwSDombIw5q5w73UPZx1jKYu2rg9txVOZtvk+l/fDRYOW9MsB5bC/+rq6txOp20tqbG/ltbW6mvH+oG3bdvHwcOHGDlypWJbfG4mgjrcrl49913mTkz1c3rdrtxu91ZsH5shKJxnPFwYso2hdnv+guAO6lD8QhhKXNOT0t3EN3YB0hUMGmojr/ZmtOTknMTDUIkqL7YRkPCc1Nsmeem2K1yUHocZVTSmlHcpMyVMiqQKMleU7zBIcZkjhvzmoojHWzd38GSmcPPjNICynPT47JmrtSwlE2GQCuTtXZ2N/fwkXMGPh92H+vBQZzauL2em+TXXMfBu/oULtD2Mlc7xHv65EQ4pOP9HVQD1OWguNE0+D+Pw9nGZ+zcT+TWyIUkMv2PZyLbn2NCbmCr56awsJALLriAF198MbEtHo/z4osvsmTJkiHr58yZw86dO9mxY0fi8vGPf5zLL7+cHTt22BpyGomeYAQfSe50y8SNCkv5tJHDUoPn9Jg5N369yJI5PcWFLvwUoZvPNobJ4Kanxw7PTbeWlFQ8DGZCcakn2XOTPcGQyeXeritvXo3WPaJr3tWnKqoChdaNXkiLkXczKU05uCoDP4GTGDgK1OBEGxj8Wu6Jq8TmuUbejUnR8R3qD7NxXq7hdMG5n1KXXAubJXEyYSW75o0J1mN7y8a7776b1atXc+GFF7Jo0SK+973v0dvby8033wzATTfdxKRJk1i7di0ej4d58+al7F9eXg4wZHuuEQhGKTHEAoVecFikK5NybkLROMFILGPVizmn555fvpXiuakv87Bm5dyszukpLnSi4yDkLMETCyjB4h1l4zgzLEWJdTk3RlflTkYWN8ml4HRm33OTyeV+3AhLVWvd9I3gmi/sV+Kmt9Da0QtDMEJNU7Q2/jBY3Bzr4Qwz36Z8SsrQRCsZ/Jq/pc8AXuR8x97Etho6Kek7Amgw+QPWGjjBOJmwkhWfY0JuYLu4ufbaazl+/Dj3338/LS0tLFiwgKampkSS8aFDh3BYJQSySCAUxZvIt7HIawOJnJtiLYSTGF19EerLMn/4r5jXwNb3j+PbrsTNt264mIVzZ2X9l445Xyro9A6Im9FihKWU56Yo89pxwpzZ1B43xE2GYZQDOTcFA+uyOIhycIgxGVPc1Grd1E8rH/5B4jEKQ8ZkeLfNnptqNa9ppnaMo139dPdFKCsuoLM3zLHuIB9yGj17bKyUGvyab43PAWCB9h5uwoQpZLn3fYiihj56Sm2zdSKQ6X8clJemrtTNt/9+Ae2BELU+T1ZnzQm5RU6ohjvuuIODBw8SCoX4y1/+wuLFixP3bdq0ifXr1w+77/r163nmmWeyb+QpEghGKTHDUm4LxU2SkCoZZSM/gGj/QFnzB+ZMs+QDwfQomV2GY31do985yXNTX2ZNjpV3sLgZdc6NKW6y5w1JDjEOPnPtlBHXNQqI4uwf3mb6TuDQY8R1jWiRzeKmSvWNOculcoB2N/ekXM8rNirQbKyUGvyaH9DradXLcWtRPuhQfW0+P+l9tXjGZfYYOYHI9D9u3n7g4+fwoTOr+cSCSVmfNSfkFjkhbk4HeoLRRMdfM1RkCa5CcCn37VjmS0V6ldck5igEV/bFQtOuZp54Vc3baQmp51vzi1dH10k0FlF9Q4AevZh6yzw3Soy1xYwKr77h+2aYpeBlBXEwJhhnM+cGBkKM9YNykKrLvISLDGHVczTNngZ+9dqfoBS3uzBbZo6OKuW5qdPbcRMeEDdGiOq8QqN1RPVsW8wzSX3NNV6MLQRgledNHvu/85h83BhtkONN8fKF4f7H68s8PPrphRJ+Oo2xPSx1umBbWAqUmIoGxzQZPG4k80ZdXrKdwWD2qjBdy2bFVLy/m9ue3D7yh1RwIAcj7i5LeFSyjRmWaomUQAHQN3xYykworjSmVuNwWTI0c8W8BpbNrefX245w76/fwudxsfnLV+B8fAocbYPuo9B4fvqdjR43rXoFRXZ1JzYpqQZPGY5gN9O0loSoMUXOtPghta7GXnEDA6/51v0d6Pv64M8bWeXaghZ5Sf2PeOtgWv6Mjcl1kl/vNn9Qwk8CIJ4bywgEIwMJxVZ6bpKer4TgqIdnmoIhVphdW9P1qjB73ZhNBEdslW6EpPx6ETVlFvUPIk3OzSjCUuV6l9pQXGVZUrnToXHZHOWp6TXsMBvjZfTcdCnBcEyvSuRD2YamJUJTM7TmFM9NIRHKgmqGU67ManI6NJbMrOKipf8Hqmejhf3w7J3qzgv+wZKBqacT5ust4SfBRMSNRfiDyd2JbfDcoEq7RxuWMpN59SwLsXS9KkzPTZnWO7pW6WYyMSWWDMw0KTa8GR2jqZYyPDdlccPLlMV8m3RUFKuwUlyHnv7I6MRNtxIMR/Vqigpz4MvYCE1N15rZ2+qnJxjhveMBZmjNOPSYmrJuUxn4sDgccPV3VYk6qLDZh+601yZBOA3IgU+s04NAKJroG2O556Yweb7U6MJSDiOHxay2yhbpelV0GZO2y/FnXJcgqJJJe/SSIbH3bOJwaJQUOukMG+ezvxNi0bS/ys2cm5Kokfia5XybwRQ4HZR6XPQEo5zoDVNRZoib7kziRnXzPqpXU2V3WAqgWnluzi5oIRrU+f1bzcTiOucXtaiBQbVzcrPh3LQPwe1/gePvwPRLretOLginMeK5sQh/yKZqKUiaDD46z42u67iiSlg4slyumq5XhTmMskILZFyXIKk7sVUN/ExK3C468aFrxlspjfdG1/VEWCohbiz23ABUlijvTWdfGEob1caeY8Pv0DUgbmwPSwHUqV5W813Krl9tU56lxV6jw3nNHFvMGhVVM2HOVda/9wXhNEXEjUUEUsJS9uTceOmjq39kz00oGqcorvJdXMVlWTXN7FWR/Ht7wHPTiwY0jNQqPWmulFUN/Ey8bhdxHEQ8hicm0DpkTX8khpky5A4b4bUs9rgZjgpD3HT0hqFUdfyl58jwOyR5bopyQdw0zAdgcvQQbsJsO6iE4lynMS8uR/JtBEGwHxE3FuEPRpJKwe3LuekcheemJxhJhNBcRdn13KTrVWF2/K0wKotGbJXep77kOnSf5Z4bc75UyGxyl0bcmJVSDg0Kgoa4KbZe3FQaeTedvWEww1I9zWDMZ0shGk5US+WM58bXACU1OIhxjnbA2Kgztc8YRDnpArssEwQhxxBxYxGqFNzeaikvqrPrSPT0D9iqebLruYGhvSo6Dc9NlaN3dL0qjFBQJz7LPTfmCIb+DOKmJ2kiuGbe76uzxL5kzLDUid4weOtBc0A8Ar1tQxf3HAF0Qrg5Qan9peAAmkZrmfLefMDxLgBTtVbc4U7ijoKEZ0cQBEHEjUX4g1FKNJurpegfVVjKH4xQqqmwlFUt4lfMa2Dzl69gZk1JIixV7exlRdL05+GI9RriRvda7rkxe+oEXEbYLJ3nxsi38XkKEo3x7KjqSeTc9IZV0rMZmuo8MHSxUSnV6qgGtJwISzXtaubHB9X/wwcduwG42LELgG3RGTS9k6GiThCE0woRNxaR0sTP6rBUUTkApVovnX0RdD1DzxiUp8HsMWOll8np0JhR402EpbRYCCJ9I+4X8auhiT1aaeIL3CrMXjc9LiPnxj98WMrrdg3c77Xec5PIuTEr5qpmqOsT7w1dbCQTN6MSn4ttLgU3+yFtjquk4oscu/HSx+WONwF4KbZg5H5IgiCcNoi4sQh/MIrXFAxWJxQbnXBL6SMcjfPK345n/BLwByNJITRrh/vV+Nz04SaqGX1BMow0MIkFjAqlkko0i0uBTXHT5Rzec2OWgZe7gV5jerUdnpvknBtINMVLK2469gFwWFfixu6wlNkP6V19CvviDbi1CDc7m7jM8VcAXohfMHI/JEEQThtE3FiAWQqcCEtZnHPzRksMUJ4bgNXrXufihzcOO7eppz+aFJbKfs5NMjVeN6DR5zREVf/IX1aaMfzRaUMFktdIKO7UytWGwND8Fb8Rlmos8AO6Gr1gcZ8bGAhLdQwRN/uGLj6uclrejamScbsTigf6HGlsiF0OwBcLfoVLi7M1Ppu9+uRB6wRBOJ0RcWMBwUicWFy3JSzVtKuZf9uoepmUMhDiaekOctuT29MKHH8wQhlKCFkx/yiZGp8amunXzK6/I4sbV0hVS7nLarNm13CY4ZrjVKgNGaqlGh1daoO33rLRC8kMCUtVzlTXGcTNnqgSN3bn3CT3OfpZbBnvxKcAENQL+FrkxrTrBEE4fZEOxRbgD0UoIIpbMyqVLEooNvMUio1ZTWWG5wZUQ1cNNbdp2dz6lFJrfzA6sNbI17EKU9x04mUSjOy5iYYojCnR5i23vjGemVDcphsergwJxXUOYxq4b+Qk6WwwkFBs/B9WGeKm431VDm4KrmhYbQPei+eG58bsh9TSHSSIm0+F17DMsY1t+iwO6XVoqEnQGfshCYJw2iCeGwtQc6X6BzZYFJYy8xR69IFBlBoDPU2Gm9vk7w8mhaXKLbHVxBQ3J2JGi/qRPDfG/VHdQXml9eLGzLlpjhniJhyAUCBljZlzU4txLDaLm0AoSigag/KpKkQW7Qd/UqfijvdBjxEv9NKCEgsel73iZnA/pADFPB2/JCFsYBT9kARBOG0QcWMBgWAUr5lv4/KAs8CS5zXzD3pQgyidmj7QJTnNOpNoX/fADas9N14lblqjhrgxRisMS6LHjZf6suIsWpaeEiPnpiNSCAWGzYP6xpiem8q4veKm1ONKfPl39kZUOXjFNHVn+96Bhe0qJBWpOBPQ8BQ4cOSAaBjcD8mkvswzun5IgiCcNkhYygICyXOlLOxxY+YfhCgkpBfg1iKU0keA4rTrTGK9Kocl4iyiwCIhZpLw3MRLlPQeKSxlihvdZ+nQTBMzLNUbjqrGfB3vq3lNlTMSa8yJ4OUxo6rLJnGjaRoVxYW0B0J09IbV61V7tqqWat0FM1WiLsf/BkCwTCUc210GnsyKeQ0sm1vP1v0dtPmD1PpUKEo8NoIgJCOeGwvwJ8+VsjCZOHluk+m9Sc67GXZukzGrKVpgbRk4gKfAic/jSnQpHiksFe8d6E5sh7gxw1K9oSiUqSRXs0eMSaKJX6RdbbChDNykskSJ1U4zqbhhgbpu/uvAopa3AOgtOwuwvwx8ME6HxpKZVXxiwSSWzKwSYSMIwhBE3FiAP2lWk5U9bpLzFHp0JW7MiqlMeQqaIW7ibmvLwE1qfO5EIz/62jOu7e1SIaAO3Uet4fWxEnP8Qm8oBuWGuOlOFTem58YbMkcv2OO5gUEjGGBA3Bx7c2DRkTcA6KhQ4wzsrpQSBEEYKyJuLCAlLGVxjxszT6HPqZ7X7HWTKU/BFe4BQLc4mdik1ufmeKL6KM3coyT6DHETdJVR4LT+39nMuVGemzPUxq5DKWtUKbhOcd9RtaFiuoUWppIyggFg8gWApkJT/hbldfIfA81Je6masm13pZQgCMJYyZ1g+gQmkDxXyurRCyiBo795Buz7G6X0Ma26mBfvvmxYd35BRCUUaxYnE5vU+DwcMMVNb2bPTahbiZuox54S4OScG71ssvKIdQ8NS1XRgzPaB2hQNtlyO00qigc18iuqgPpzVShq/yuq2gtg0gUE4mqtJ8fCUoIgCCMhnhsL8CdPBLd6aKaBVqTEQqnWSySqDyts4nGdwqgfAGdJhWX2JVPjddOeEDfHIcMsrLjh2YkVW18GDgM5N3EdQl5DtHQNDktFmKIZYxdKJ4HL+vCZSdXgLsUAZy5V128/DXueVX/PWk5fWHW2Fs+NIAj5hogbC1BzpcywlD3ixhyjUKb1cqI3NOyyQDia6E7sskvc+NycwEhmjkegv3PYtc5elcei+awfRAnqi98cZxUoMkJ83YdVUzwGRm+coRnhtYqpNlg5wJAuxQDzr1PX7z4H+zaC5oB5f0cwIuJGEIT8RMSNBaTOlbK+AglIiJtS+ghG4vQbv8oH4w8miZtie0I9NT43YQro1QwhaA6bTIMnpMJWheX2VCBpmpZIKg4U1CphEAsnet30hWPEdZhsiptye8XNkJwbgJrZMHfVwO1z/x4qZyQ8N0UFEr0WBCG/kE8tCwgkT9m2KSxldhoud6hqqY6+MJMKi4Ys6+mPJJKOrW7gZ2L2uunQyijRAyqpuGZ22rXeiCoVL6lstMy+wZS4nQRCUQJRDXyN0HNEhaZ89Yky8KkOQ6CZTfNsYkjOjcknHlGvcSwMl94HMCBuCuU3kCAI+YV8almA3+aEYiDhualyKpHVEQinXZbsubF69IKJ2aW4LW7m3QxTMRXupUhXYq201r4k3YFy8OhAOXjXQWBg9MI0pylucsNzM0TcuL1w+b/A0gegQPULGghLyW8gQRDyCxE3FhDIgYRiU9xUJnlu0tHTH7FtaKaJ6blpiRll84H0YSndSCbu093UVlZZYls6SpK7FA+atG32uJmSyLmZZrV5KSTCUn1h9AyJ2gB9YWV7rjXxEwRBGAkRNxbgD0aTBlHalHNj5M+Ua6rUt3PwL3cDfyhiu+emsqQQh8ZAr5thPDd9HapvzHG9jPryoSE2qzB73QRCMaiZpTYa85kCoShuwtTpRkm7jT1uYCAsFYnpiZDZcAyEpUTcCIKQX4i4sYBAKIrP9Nx47On6S5ESN2W6atA3JCxh4A9GbffcOB0aVcnl4MM08utpOwJAh6PC1tCJN3kEQ7UpbtR8pkAwypnaMZzE1Tnw1tplJqCEiumJGe5/wESqpQRByFdE3GQZsxQ4kaRrkzeEYhW2KYn1APrw4qavn3LT1mL7Qj21PjftJPW6GUQsrrNv//sAdDsqiMUzh1iySUlacbMXYlH8wSizNaNjcd05JOrGbWTYvJtBDFRLibgRBCG/EHGTZfojMWJxHZ8x08m2UnAjLOUkho/+YXNuogFVfaSj2SfEMHrd6MZrNchz07SrmYsf3sj2PSr0czDs4+KHN9K0q9lqM4FkcRNTYSd3KUSDcPwd/KEoZzsMcVN7ti32DSY57yYTA038JKFYEIT8QsRNlgkEo2jE7Q9LFRRBgRqeWa75h825iRvjDoKuUnDa96VW43XTqhtNBP0DoqVpVzO3Pbmd5u4gtXQBcFwvp6U7yG1PbrdF4JQYYZvecBQcDmhQAydp3kEgGOV8x3vqduNCy21LR6KRX28k47p+KQUXBCFPkU+tLOMPRSkhiEMzwiZ2JRRDIu+mEv/AVOjB9J0AIFRoT3dikxqfm2N6tbrhb4FYhFhc58Fnd2MGoGo0NQOrnbLEtgef3W15iMr03CQSdBvPV9eHttDf38u52n51e8oiS+0ajoERDMN3qgbldQRp4icIQv4h4ibLdPVFKDVCUnFHITGHfXOFKFaCpUILDOu5cfSrsFTUbb+4OYGPiFYA6NBzlK37O2juDibWNGrKy3RMV7lBOtDcHWTr/g5LbU1JKAaYcam63reJmhNv4NYi9BZUQeUMS+0ajoFGfqPz3EhCsSAI+YaImyzStKuZW//rjUQZ+ImYh4u/+ZJtuSFmgnAF/mHzLQpDShjEi+wZvWBS43Oj46DdYQzE7D5Cmz+YtEJnsiFujuipQzNT12WfksHi5oyLwOWBniNcdfR7ABypvSwnkokBKksKgOHbAZgk+tyIuBEEIc8QcZMlzNyQjt5wIpnYrxfbmhtihqUqtACdfRHiacI37nCX+sPGSikY6FLcjBGa6j5Crc+TuL+cAD5N5TEdNcNXBsnrrGBIWKqwGM69BoD6iJoQfuyMj1tqUybMnJthQ5MGA2EpETeCIOQXIm6ywODcELMMvIdiW3NDEp4bzU8srtMTHBqWKIp2AaCV2CxujC7FB6OGB6n7MIumV9JQ5kEDJmuqPLxNLyeE+rLWgIYyD4umW+t1Ki5Qb6OjXf1s2XdCndcP3wNeNan86diHCE36oKU2ZaJqFNVS8bhOMKImm0tYShCEfEPETRYYnBtiVkr5dVWtZFduiFkOXutUYitdn5OSqErSLfDZ22wuIW5iprg5gtOhsWblXICkkJTy2pgBnzUr5+J0WBf+adrVzL2/3gnA4Y5+rv/Ja6os/agbbvszXyj5d/458k/4PLmTlGvm3GQKS5leG5BScEEQ8g8RN1lgcM5Hsucm07qsY3hualzKnsG/3MPROOW6EjeFpal5LFbjdbvwFDgGQk5dKryzYl4Dj356IdNdqfk29WUeHv30QlbMa7DMxuTQYzKJ0OP+CG9EZwJaIuk4F0g08cvguUkWN26XfEwIgpBf5M4n7gRicM6H6bnp0Usyrss6Rs5NtUPNlzoxaDK4PxihQvMD4LZZ3GiapsrBu4zwWPeRxH0r5jUQ+n+dEIaqSWfyP8s+yKLplZZ6bAaHHpPRUZ6kB5/dnZgKnkueG1PcdPVFiMbiuJxDxUt/Undih4WvqyAIwnggP8myQHJuCAx4bvyG58au3BCzFLwcY3hm32BxE6XCGKzp9KYm6dpBrc8z0Oum+zAYU6yDkRi+oErIPmfuuSyZWWWpsIGhocfBmKHHQEiJhHdb/baOiEimrKggUbjV1Z++HLxPysAFQchjRNxkgeTcECDR56ZHL7YtNwRIhKXKjNDT4D4nPcEIVfSkrLWTGq+bo3o1cRwQ6VPN/ID32gI0ohKKyxpm2mLbWEOKtz253dYREcm4nA7KijKXg5tl4B6plBIEIQ8RcZMlzNwQhwY+o8+Nn2JbckMSlKgkYW+sC434EM9Nb8BPkWZsywVx43MTpoBuzyS1wZi0vedoJ9M1JXS0Knsa451MSNHWNgCDqCzOPDyzXyaCC4KQx4i4ySLLz6nH5dASnptPX3Yem798hT3CBsBbC2g49ZgawTAo5ybUpQRDmAJw+2wwMBWzYqq54Ay1wRA3zft349YiRBxuKJ9mi22DQ4+jwdY2AIMYaTK4dCcWBCGfEXGTRXrDMcIxPdGh+KwzJlkfikrGWZDwyNRqXUM8N7HuYwB0uapyoptuohzcMVltaNsDQKj5bQACvjPVoEobSA49jlXg2NIGYBAVI1RMmTk3EpYSBCEfEXGTRdr9ajBhmSFucNs4NNPEVw8ocTPkV7uR0xIosD+ZGAa6FL8dn6o2HHuTeFzH2/kOAI66ucPtaglm6LG+bOwhKsvbAAyicoReNxKWEgQhn8md+tQJSHtAiZsKo1qKInuHUQKqa27rLmq1TvYP+mJz9Cpx0+u2twzcxPTcvBaapja07uJwexfz4u+AE7xn2t/1d8W8BpbNrWfr/g7a/EHa/SG+/vs9I+5neRuAQYw0gmEgLCUfEYIg5B/yyZVF2gNhNOL4jNJrs0OwrRiemxq6hvxqL+xrBSDksbc7sYkpbv7aW45eWonW30HLzk2c73gPAOfUJTZaN4DTobFkpgr3xeI6P928n5buYNoeOBqq4aDlbQAGkRjBMGy1lNHnRjw3giDkIRKWyiLtgRA++nCiZvRg86RtIDHvqFbrwh+KEo7GE3e5g6q8OlJcZ4tpg6nyqi/gSAzC068EYOYbD+LVgvhdFVAzx07z0pIpF8fWNgCDGMi5Sd/nRoZmCoKQz4i4ySLtgVCiKR6FXnAV2msQJDw3dVoXAF1JCaUlISVuYl6bqrkG4XY5KS9W/VhOTFkGQHX/fgCONi4HR25+8Q6Xi2NrG4BBVJZk7nPTb/S5kZwbQRDyEQlLZZETgTAVZkgqF7w2kPDcNDi7IaJyLmpL1ZdwaVSJG63U/i9fkxqvm66+CPurLqOx8Xw49iZ+vYjwB26z27SMDM7FqfV5LB8RkYnKEhXyG64UXMJSgiDkMyJuskh7IES5MavJHH1gOz4lXEzPTfIv94roCQCcZbkjbmpL3extC3C8N8qJT/2ah779ELvi0/nlrHl2mzYiybk4ucaITfzCEpYSBCF/kbBUFmkPhHLPc+NTnpsqvRPQB/qchPwUGwM+3RWTbDJuKGY5+HF/iD0ndH4Zu4z+yrNzasp2PlJhhKX6I7GEkElGSsEFQchnRNxkkROB8EDOTS5USgF4Vc5NIWHK6B345e5XlVIB3YPXV26TcUMxK6aOB0LsblYzseY25kC/oDzH63ZR4FQhsnSN/AbCUiIiBUHIP0TcZJHjyWGpXPHcFHigRPWxmawdT4gbvecIAK16BaXGUMVcICFu/CHePqaGep7TWGanSRMCTdMSIxjSJRXL+AVBEPIZETdZIhiJ4Q9GB8JSueK5AShXHX8na8cTX2zh46oK6bBei8+TO7/Wk8XNbkPczG0Qz814UJEh70ZKwQVByGdE3GQJ8wuj0pFjOTcAFUrcTNGOJ/qcRNrfB+AwtTn1hVbjVZVchzv72HdcvZYSlhofEp6bwTPG4jonjO7a77cHbB/yKQiCMFZE3GQJc/RCrdOYK5VTnhs1ZXuK1kZHr7JT7zwAQJurAS0HhmaaJIZnnugjrqvOurXGNuHUMMVN8nT4pl3NXPzwRo51q9lXX//dHi5+eCNNu5ptsVEQBOFkEHGTJUxxk5uem+kATNda6OhVnhtH1wEAOgoa7bIqLTWDhMzcxtKcEl/5zGDPTdOuZm57cjvN3alDPVu6g9z25HYROIIg5A0ibrJEu/FruJwc63MDibEFZzqOqpybeBx3l5rXdKJ4qp2WDaG8qABXUuM7ybcZP5JzbmJxnQef3Z12Hpa57cFnd0uIShCEvEDETZYwPTfeeI5VSwHUzAKgUesg1NuF3nUQV7SPkO7CX5Rb4sbh0BJDHgEKnJp8wY4TpuemozfM1v0dQzw2yehAc3eQrfs7LLJOEATh5BFxkyXa/WHchHHrxhdGLuXcFFWgl6hmftPjhwgeexuAffokSopyK5+laVdzSjXPf760T3JAxolkcdPmH17YJDPadYIgCHYi4iZLnOgNUat1qhuuInDnWDhl0gIAFjj2ET70BgB79DNyqseNmQMSGeSpkRyQ8SE556bW5xlhtWK06wRBEOxExE2WaA+EqKVL3fDVQY4lwWqTFwGw0PE3nIe2APB6fHbO9LiRHJDsU+pRQra5K0g8rlOa4dxrQEOZGv4pCIKQ64i4yRLt/jC1xnBKc+RBTjH1IgCudv4Fb8trAGyNz0l84dmN5IBkl6ZdzXz2/3sdAH8oyg2P/4WeYDTtWlOWr1k5N2emmguCIGQiJ8TNI488wrRp0/B4PCxevJitW7cOu/YnP/kJl1xyCRUVFVRUVLB06dKM6+1ChaW61A1jWGVOMeWDnHBWJ24ecZ/J+3pDznhuJAcke5jhvjZ/KO395cWpAre+zMOjn17Iinm5My1eEAQhE7aLm6eeeoq7776bNWvWsH37dubPn8/y5ctpa2tLu37Tpk1cf/31vPTSS2zZsoUpU6bwkY98hKNHj1ps+fDE4jodveGBnJtc9Nw4HPyp+qbEzd/6rgO0nMm5kRyQ7JAp3AfKS+NxOfj5LYv5/nUL+J9bP8jmL18hwkYQhLzCdnHzne98h1tvvZWbb76ZuXPn8thjj1FcXMwTTzyRdv3Pf/5z/umf/okFCxYwZ84cfvrTnxKPx3nxxRfTrg+FQvT09KRcsk1Hb5i4DnW57LkB9kz6FJ8Of4X/mvcELzk/BJAx78JKFk2vpKHMw3BBEMkBOTlGE+5r6Qnh0DQ+sWASS2ZWSShKEIS8w1ZxEw6H2bZtG0uXLk1sczgcLF26lC1btozqMfr6+ohEIlRWpv+SW7t2LWVlZYnLlClTxsX2TJwwRhpMcnarDbnouUFVy2yOn8tu7Sx6gqpTsS9Hcm6cDo01K+cCDBE4kgNy8ki4TxCE0wFbxU17ezuxWIy6ulTPRl1dHS0tLaN6jC9/+cs0NjamCKRkvvKVr9Dd3Z24HD58+JTtHol2v+rLUufoUhty1HNTkdTnxG8kk+ZKQjHAinkNPPrphdSXpYaeJAfk5JFwnyAIpwO5EYM4SR566CE2bNjApk2b8HjSfxi73W7cbmsb05ndiavNUvAc9dxUJfU56ek3PTe59S+xYl4Dy+bWs3V/B23+ILU+FYoSj83JYYb7WrqDafNuNJR4lHCfIAj5jK3fZNXV1TidTlpbW1O2t7a2Ul+fWRB861vf4qGHHuJPf/oT5513XjbNHDPtgRAFRCmNG2EpX26KG3O20HF/iN5wDCBnEoqTcTo0lsysstuMCYEZ7rvtye1okCJwJNwnCMJEwdawVGFhIRdccEFKMrCZHLxkyZJh9/vmN7/J17/+dZqamrjwwgutMHVMtAfCVGMIG4crt+ZKJWF2qD3S2Z/YlmueG2H8kXCfIAgTHdu/ye6++25Wr17NhRdeyKJFi/je975Hb28vN998MwA33XQTkyZNYu3atQA8/PDD3H///fz3f/8306ZNS+TmeL1evF6vbceRTHsgRIN2Qt3wNYDD9qK0tJjiJmp0+fUUOChw5qatwvgi4T5BECYytouba6+9luPHj3P//ffT0tLCggULaGpqSiQZHzp0CEeSOHj00UcJh8N86lOfSnmcNWvW8MADD1hp+rCcCISYohl9eiqm2WpLJgY3a8ulZGIh+0i4TxCEiYrt4gbgjjvu4I477kh736ZNm1JuHzhwIPsGnSLtgTDzEuJmqr3GZKDA6aDU40q03ZeQlCAIgjARkBhEFmgPhJiiHVc3cthzAwOhKcjNZGJBEARBGCsibsYZXdc5EQgz1WFUgJVPs9WekUgWN7nSwE8QBEEQTgURN+NMTzBKOBZjtmY0C6ydY69BI5DiuZGwlCAIgjABkG+z8SLYAwc209/ZTR1RyrVe0JxQPctuyzJi9roB8dwIgiAIEwMRN+PFwVdhw/WUlU7nbMc1alvVmeCytjvyWKn0iudGEARBmFhIWGq8OGMJaA6Kevaz0mkM/Zy00F6bRkFlsSQUC4IgCBMLETfjRVE51KsxEP/H+b9q2/RL7bNnlFSkJBSL50YQBEHIf0TcjCezP5b4M6oVwMwrbDRmdJQn5dm09gSJxdONUxQEQRCE/EHEzXiy6FYCrnIAdjRcC746e+0ZgaZdzXzl6Z2J24+8tI+LH95I065mG60SBEEQhFNDxM14UlzJVyet46Ohtbxz7hfttiYjTbuaue3J7ZzoDadsb+kOctuT20XgCIIgCHmLiJtx5nDQwx59KlXeIrtNGZZYXOfBZ3eTLgBlbnvw2d0SohIEQRDyEhE340x7IARAtS93S8C37u+guTs47P060NwdZOv+DuuMEgRBEIRxQsTNONPuN8SNN3fFTZt/eGFzMusEQRAEIZcQcTOO9Idj9IZjAFQlNcfLNWp9nnFdJwiCIAi5hIibccQMSRW6HPjcudszZtH0ShrKPGjD3K8BDWUeFk2vtNIsQRAEQRgXRNyMI6a4qfG60bThpIP9OB0aa1bOBRgicMzba1bOxenI3WMQBEEQhOEQcTOOnAiosupcDkmZrJjXwKOfXkh9WWroqb7Mw6OfXsiKeQ02WSYIgiAIp0buxk7ykESlVA4nEyezYl4Dy+bWs3V/B23+ILU+FYoSj40gCIKQz4i4GUcGxE3ue25MnA6NJTOr7DZDEARBEMYNCUuNI+2JsFR+eG4EQRAEYSIi4mYcybewlCAIgiBMRETcjCP5GJYSBEEQhImGiJtxIhbXOdzRB0BbT0jmMgmCIAiCTYi4GQeadjVz8cMbOdqlxhX863N7uPjhjTJZWxAEQRBsQMTNKdK0q5nbntw+ZBBlS3eQ257cLgJHEARBECxGxM0pEIvrPPjsbtIFoMxtDz67W0JUgiAIgmAhIm5Oga37O4Z4bJLRgebuIFv3d1hnlCAIgiCc5oi4OQXa/MMLm5NZJwiCIAjCqSPi5hSo9XlGXjSGdYIgCIIgnDoibk6BRdMraSjzDJmsbaIBDWVqXpMgCIIgCNYg4uYUcDo01qycCzBE4Ji316ycK4MoBUEQBMFCRNycIivmNfDopxdSX5Yaeqov8/DopxeyYl6DTZYJgiAIwumJTAUfB1bMa2DZ3Hq27u+gzR+k1qdCUeKxEQRBEATrEXEzTjgdGktmVtlthiAIgiCc9khYShAEQRCECYWIG0EQBEEQJhQibgRBEARBmFCIuBEEQRAEYUIh4kYQBEEQhAmFiBtBEARBECYUIm4EQRAEQZhQiLgRBEEQBGFCIeJGEARBEIQJxWnXoVjXdQB6enpstkQQBEEQhNFifm+b3+OZOO3Ejd/vB2DKlCk2WyIIgiAIwljx+/2UlZVlXKPpo5FAE4h4PM6xY8fw+Xxo2vgOtuzp6WHKlCkcPnyY0tLScX3sXGCiHx9M/GOc6McHE/8Y5fjyn4l+jNk6Pl3X8fv9NDY24nBkzqo57Tw3DoeDyZMnZ/U5SktLJ+Q/rMlEPz6Y+Mc40Y8PJv4xyvHlPxP9GLNxfCN5bEwkoVgQBEEQhAmFiBtBEARBECYUIm7GEbfbzZo1a3C73XabkhUm+vHBxD/GiX58MPGPUY4v/5nox5gLx3faJRQLgiAIgjCxEc+NIAiCIAgTChE3giAIgiBMKETcCIIgCIIwoRBxIwiCIAjChELEzRh55JFHmDZtGh6Ph8WLF7N169aM63/5y18yZ84cPB4P5557Ls8995xFlp4cYzm+9evXo2laysXj8Vho7dh45ZVXWLlyJY2NjWiaxjPPPDPiPps2bWLhwoW43W7OPPNM1q9fn3U7T4WxHuOmTZuGnENN02hpabHG4DGydu1aPvCBD+Dz+aitrWXVqlW8++67I+6XL+/Dkzm+fHsfPvroo5x33nmJBm9Llizh+eefz7hPvpw/GPvx5dv5G8xDDz2EpmncddddGddZfQ5F3IyBp556irvvvps1a9awfft25s+fz/Lly2lra0u7/s9//jPXX389n/3sZ3nzzTdZtWoVq1atYteuXRZbPjrGenygOlA2NzcnLgcPHrTQ4rHR29vL/PnzeeSRR0a1fv/+/Vx11VVcfvnl7Nixg7vuuotbbrmFP/zhD1m29OQZ6zGavPvuuynnsba2NksWnhovv/wyt99+O6+99hovvPACkUiEj3zkI/T29g67Tz69D0/m+CC/3oeTJ0/moYceYtu2bbzxxhtcccUVfOITn+Dtt99Ouz6fzh+M/fggv85fMq+//jo/+tGPOO+88zKus+Uc6sKoWbRokX777bcnbsdiMb2xsVFfu3Zt2vV///d/r1911VUp2xYvXqz/4z/+Y1btPFnGenzr1q3Ty8rKLLJufAH0p59+OuOae++9Vz/nnHNStl177bX68uXLs2jZ+DGaY3zppZd0QO/s7LTEpvGmra1NB/SXX3552DX59j5MZjTHl8/vQ5OKigr9pz/9adr78vn8mWQ6vnw9f36/Xz/rrLP0F154Qb/00kv1O++8c9i1dpxD8dyMknA4zLZt21i6dGlim8PhYOnSpWzZsiXtPlu2bElZD7B8+fJh19vJyRwfQCAQYOrUqUyZMmXEXyf5Rj6dv1NlwYIFNDQ0sGzZMl599VW7zRk13d3dAFRWVg67Jp/P42iOD/L3fRiLxdiwYQO9vb0sWbIk7Zp8Pn+jOT7Iz/N3++23c9VVVw05N+mw4xyKuBkl7e3txGIx6urqUrbX1dUNm5/Q0tIypvV2cjLHN3v2bJ544gl++9vf8uSTTxKPx7nooos4cuSIFSZnneHOX09PD/39/TZZNb40NDTw2GOP8etf/5pf//rXTJkyhcsuu4zt27fbbdqIxONx7rrrLj70oQ8xb968Ydfl0/swmdEeXz6+D3fu3InX68XtdvP5z3+ep59+mrlz56Zdm4/nbyzHl4/nb8OGDWzfvp21a9eOar0d5/C0mwoujB9LlixJ+TVy0UUXcfbZZ/OjH/2Ir3/96zZaJoyW2bNnM3v27MTtiy66iH379vHd736Xn/3sZzZaNjK33347u3btYvPmzXabkhVGe3z5+D6cPXs2O3bsoLu7m1/96lesXr2al19+eVgBkG+M5fjy7fwdPnyYO++8kxdeeCGnE59F3IyS6upqnE4nra2tKdtbW1upr69Pu099ff2Y1tvJyRzfYAoKCjj//PN57733smGi5Qx3/kpLSykqKrLJquyzaNGinBcMd9xxB7/73e945ZVXmDx5csa1+fQ+NBnL8Q0mH96HhYWFnHnmmQBccMEFvP7663z/+9/nRz/60ZC1+Xj+xnJ8g8n187dt2zba2tpYuHBhYlssFuOVV17hP//zPwmFQjidzpR97DiHEpYaJYWFhVxwwQW8+OKLiW3xeJwXX3xx2FjqkiVLUtYDvPDCCxljr3ZxMsc3mFgsxs6dO2loaMiWmZaST+dvPNmxY0fOnkNd17njjjt4+umn2bhxI9OnTx9xn3w6jydzfIPJx/dhPB4nFAqlvS+fzt9wZDq+weT6+bvyyivZuXMnO3bsSFwuvPBCbrjhBnbs2DFE2IBN5zBrqcoTkA0bNuhut1tfv369vnv3bv1zn/ucXl5erre0tOi6rus33nijft999yXWv/rqq7rL5dK/9a1v6Xv27NHXrFmjFxQU6Dt37rTrEDIy1uN78MEH9T/84Q/6vn379G3btunXXXed7vF49LffftuuQ8iI3+/X33zzTf3NN9/UAf073/mO/uabb+oHDx7UdV3X77vvPv3GG29MrH///ff14uJi/Utf+pK+Z88e/ZFHHtGdTqfe1NRk1yGMyFiP8bvf/a7+zDPP6Hv37tV37typ33nnnbrD4dD/9Kc/2XUIGbntttv0srIyfdOmTXpzc3Pi0tfXl1iTz+/Dkzm+fHsf3nffffrLL7+s79+/X3/rrbf0++67T9c0Tf/jH/+o63p+nz9dH/vx5dv5S8fgaqlcOIcibsbID37wA/2MM87QCwsL9UWLFumvvfZa4r5LL71UX716dcr6X/ziF/qsWbP0wsJC/ZxzztF///vfW2zx2BjL8d11112JtXV1dfrHPvYxffv27TZYPTrMsufBF/OYVq9erV966aVD9lmwYIFeWFioz5gxQ1+3bp3ldo+FsR7jww8/rM+cOVP3eDx6ZWWlftlll+kbN260x/hRkO7YgJTzks/vw5M5vnx7H37mM5/Rp06dqhcWFuo1NTX6lVdemfji1/X8Pn+6Pvbjy7fzl47B4iYXzqGm67qePb+QIAiCIAiCtUjOjSAIgiAIEwoRN4IgCIIgTChE3AiCIAiCMKEQcSMIgiAIwoRCxI0gCIIgCBMKETeCIAiCIEwoRNwIgiAIgjChEHEjCIIgCEJaXnnlFVauXEljYyOapvHMM89k9fkeeOABNE1LucyZM2fMjyPiRhCEnOeBBx5gwYIFljzXjTfeyL/927+Nau11113Ht7/97SxbJAj20dvby/z583nkkUcse85zzjmH5ubmxOVkBvmKuBEEISv8wz/8Q+KXV0FBAXV1dSxbtownnniCeDxut3lp+etf/8pzzz3HF77whVGt/+pXv8q//uu/0t3dnWXLBMEePvrRj/KNb3yDT37yk2nvD4VC3HPPPUyaNImSkhIWL17Mpk2bTuk5XS4X9fX1iUt1dfWYH0PEjSAIWWPFihU0Nzdz4MABnn/+eS6//HLuvPNOrr76aqLRqN3mDeEHP/gB11xzDV6vd1Tr582bx8yZM3nyySezbJkg5CZ33HEHW7ZsYcOGDbz11ltcc801rFixgr179570Y+7du5fGxkZmzJjBDTfcwKFDh8b8GCJuBEHIGm63m/r6eiZNmsTChQv5l3/5F37729/y/PPPs379+sS6rq4ubrnlFmpqaigtLeWKK67gr3/967CP+/rrr7Ns2TKqq6spKyvj0ksvZfv27Yn7P/OZz3D11Ven7BOJRKitreXxxx9P+5ixWIxf/epXrFy5MmX7D3/4Q8466yw8Hg91dXV86lOfSrl/5cqVbNiwYbQviSBMGA4dOsS6dev45S9/ySWXXMLMmTO55557uPjii1m3bt1JPebixYtZv349TU1NPProo+zfv59LLrkEv98/pscRcSMIgqVcccUVzJ8/n9/85jeJbddccw1tbW08//zzbNu2jYULF3LllVfS0dGR9jH8fj+rV69m8+bNvPbaa5x11ll87GMfS3wA3nLLLTQ1NdHc3JzY53e/+x19fX1ce+21aR/zrbfeoru7mwsvvDCx7Y033uALX/gCX/va13j33Xdpamriwx/+cMp+ixYtYuvWrYRCoZN+TQQhH9m5cyexWIxZs2bh9XoTl5dffpl9+/YB8M477wxJEB58ue+++xKP+dGPfpRrrrmG8847j+XLl/Pcc8/R1dXFL37xizHZ5hrXIxUEQRgFc+bM4a233gJg8+bNbN26lba2NtxuNwDf+ta3eOaZZ/jVr37F5z73uSH7X3HFFSm3f/zjH1NeXs7LL7/M1VdfzUUXXcTs2bP52c9+xr333gvAunXrMoacDh48iNPppLa2NrHt0KFDlJSUcPXVV+Pz+Zg6dSrnn39+yn6NjY2Ew2FaWlqYOnXqyb8ogpBnBAIBnE4n27Ztw+l0ptxnvs9mzJjBnj17Mj5OVVXVsPeVl5cza9Ys3nvvvTHZJuJGEATL0XUdTdMAlcQbCASGfMD19/cnfv0NprW1la9+9ats2rSJtrY2YrEYfX19KbH5W265hR//+Mfce++9tLa28vzzz7Nx48Zhberv78ftdifsAli2bBlTp05lxowZrFixghUrVvDJT36S4uLixJqioiIA+vr6xv5CCEIec/755xOLxWhra+OSSy5Ju6awsPCkSrlNAoEA+/bt48YbbxzTfiJuBEGwnD179jB9+nRAfXg1NDSkrbAoLy9Pu//q1as5ceIE3//+95k6dSput5slS5YQDocTa2666Sbuu+8+tmzZwp///GemT58+7AcwQHV1NX19fYTDYQoLCwHw+Xxs376dTZs28cc//pH777+fBx54gNdffz1hmxk6q6mpOYlXQhBym0AgkOI12b9/Pzt27KCyspJZs2Zxww03cNNNN/Htb3+b888/n+PHj/Piiy9y3nnncdVVV435+e655x5WrlzJ1KlTOXbsGGvWrMHpdHL99deP6XFE3AiCYCkbN25k586d/PM//zMACxcupKWlBZfLxbRp00b1GK+++io//OEP+djHPgbA4cOHaW9vT1lTVVXFqlWrWLduHVu2bOHmm2/O+JhmH53du3en9NRxuVwsXbqUpUuXsmbNGsrLy9m4cSN/93d/B8CuXbuYPHnySZWrCkKu88Ybb3D55Zcnbt99992A+oGxfv161q1bxze+8Q2++MUvcvToUaqrq/ngBz84JKF/tBw5coTrr7+eEydOUFNTw8UXX8xrr7025h8PIm4EQcgaoVCIlpYWYrEYra2tNDU1sXbtWq6++mpuuukmAJYuXcqSJUtYtWoV3/zmN5k1axbHjh3j97//PZ/85CdTEnxNzjrrLH72s59x4YUX0tPTw5e+9KVEeCiZW265hauvvppYLMbq1asz2lpTU8PChQvZvHlzQtz87ne/4/333+fDH/4wFRUVPPfcc8TjcWbPnp3Y73//93/5yEc+cgqvkiDkLpdddhm6rg97f0FBAQ8++CAPPvjguDzfeFUeSrWUIAhZo6mpiYaGBqZNm8aKFSt46aWX+I//+A9++9vfJhIQNU3jueee48Mf/jA333wzs2bN4rrrruPgwYPU1dWlfdzHH3+czs5OFi5cyI033sgXvvCFlERgk6VLl9LQ0MDy5ctpbGwc0d5bbrmFn//854nb5eXl/OY3v+GKK67g7LPP5rHHHuN//ud/OOeccwAIBoM888wz3HrrrSfz8giCkCU0PZMkEwRByGMCgQCTJk1i3bp1iTBSJvr7+5k9ezZPPfUUS5YsGXH9o48+ytNPP80f//jH8TBXEIRxQsJSgiBMOOLxOO3t7Xz729+mvLycj3/846Par6ioiP/6r/8akr8zHAUFBfzgBz84FVMFQcgC4rkRBGHCceDAAaZPn87kyZNZv349V155pd0mCYJgISJuBEEQBEGYUEhCsSAIgiAIEwoRN4IgCIIgTChE3AiCIAiCMKEQcSMIgiAIwoRCxI0gCIIgCBMKETeCIAiCIEwoRNwIgiAIgjChEHEjCIIgCMKE4v8Hs1twavvjuZYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "probability_of_zero = [result.measurement_counts['0']/N_shots for result in batch.results()]\n", + "x, y = delays, probability_of_zero\n", + "plt.plot(x,y, 'o-')\n", + "\n", + "signal_mean, oscillation_frequency_estimate = estimate_fit_parameters(x,y)\n", + "initial_guess=[0.5, signal_mean, 2e-5, oscillation_frequency_estimate, 0]\n", + "\n", + "optimal_params, _ = scipy.optimize.curve_fit(damped_oscillation_fit, x, y, p0=initial_guess)\n", + "x_fit = np.arange(x[0],x[-1], np.diff(x)[0]/10)\n", + "y_fit = damped_oscillation_fit(x_fit, *optimal_params)\n", + "plt.plot(x_fit,y_fit)\n", + "plt.xlabel(\"Delay (s)\")\n", + "plt.ylabel(\"Population\")\n", + "print('Detuning:', round(optimal_params[3]*1e-3, 2), ' kHz')\n", + "print('T2: ', round(np.abs(optimal_params[2])*1e6, 2), ' us')" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Task Summary\n", + "{'arn:aws:braket:us-west-1::device/qpu/rigetti/Aspen-M-3': {'shots': 12000, 'tasks': {'COMPLETED': 120}}}\n", + "Note: Charges shown are estimates based on your Amazon Braket simulator and quantum processing unit (QPU) task usage. Estimated charges shown may differ from your actual charges. Estimated charges do not factor in any discounts or credits, and you may experience additional charges based on your use of other services such as Amazon Elastic Compute Cloud (Amazon EC2).\n", + "Estimated cost to run this example: 40.200 USD\n" + ] + } + ], + "source": [ + "print(\"Task Summary\")\n", + "print(t.quantum_tasks_statistics())\n", + "print('Note: Charges shown are estimates based on your Amazon Braket simulator and quantum processing unit (QPU) task usage. Estimated charges shown may differ from your actual charges. Estimated charges do not factor in any discounts or credits, and you may experience additional charges based on your use of other services such as Amazon Elastic Compute Cloud (Amazon EC2).')\n", + "print(f\"Estimated cost to run this example: {t.qpu_tasks_cost() + t.simulator_tasks_cost():.3f} USD\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.9.14", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.15" + }, + "vscode": { + "interpreter": { + "hash": "e8fe7b1d737818ec041fd05b4c8bbd1804e351a931e38c7cd860a34c69554183" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/modules/1_Continue_Exploring/A_qtm_hw/pulse_control/2_Bell_pair_with_pulses_OQC.ipynb b/modules/1_Continue_Exploring/A_qtm_hw/pulse_control/2_Bell_pair_with_pulses_OQC.ipynb new file mode 100644 index 000000000..d96983dcd --- /dev/null +++ b/modules/1_Continue_Exploring/A_qtm_hw/pulse_control/2_Bell_pair_with_pulses_OQC.ipynb @@ -0,0 +1,401 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Creating a Bell state with cross-resonance pulses on OQC's Lucy\n", + "\n", + "In this notebook we will investigate cross-resonance mechanisms to create a Bell state, i.e., the `Hello world!` example in quantum computing. \n", + "\n", + "The simplest circuit to generate a Bell pair is an Hadamard gate on a first qubit followed by a CNOT gate between this qubit and a second qubit. However, diving deeper in the pulse implementation of such gates, we would realize that they require specific mechanisms that are tightly connected to the hardware type and device architecture. Focusing on the capabilities of OQC's Lucy device, we will replace the canonical CNOT gate with a different entangling gate that is either the cross-resonance (CR) gate or its echoed version. We will then see how two qubits interact when we drive one qubit at the frequency of the other and calibrate this process to be able to create a Bell pair." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# Use Braket SDK Cost Tracking to estimate the cost to run this example\n", + "from braket.tracking import Tracker\n", + "t = Tracker().start()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's first start with importing some packages as usual." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "from braket.aws import AwsDevice\n", + "from braket.pulse import PulseSequence, ConstantWaveform\n", + "\n", + "from braket.circuits import Circuit, Observable\n", + "from braket.parametric import FreeParameter\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will use two qubits, #0 amd #1, that are physically connected to each other. We also instantiate an OQC device to extract frames and submit circuits." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "a=0\n", + "b=1\n", + "\n", + "device = AwsDevice(\"arn:aws:braket:eu-west-2::device/qpu/oqc/Lucy\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Bell pair with the H, ECR and V gates" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "First we show how to transform the canonical Bell state circuit into another one where we replace the CNOT gate by an echoed cross-resonance (ECR) gatet and a V gate, also known as SX (square-root of X). These gates are native on the Lucy device.\n", + "\n", + "As shown in Phys. Rev. B. 81, 134507 (2010) and Phys. Rev. Applied 12, 064013, the ECR gate implements an unitary evolution of the system that can be decomposed in two steps with a time reversal half way through the process to suppress most undesired evolution.\n", + "$$ R_{ZX}(\\pi/4)-R_X(\\pi)-R_{ZX}(\\pi/4).$$\n", + "The $R_{ZX}$ is interpretable as the rotation of the second qubit, conditioned by the state of the first qubit. " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : |0| 1 |2|\n", + " \n", + "q0 : -H-ECR---\n", + " | \n", + "q1 : ---ECR-V-\n", + "\n", + "T : |0| 1 |2|\n" + ] + } + ], + "source": [ + "bell_pair_with_gates = Circuit().h(a).ecr(a, b).v(b)\n", + "print(bell_pair_with_gates)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The circuit is then executed on the OQC device and we plot the measurement histogram which indicates that we created $$\\frac{|00\\rangle+e^{i\\phi}|11\\rangle}{\\sqrt{2}}$$" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Population')" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAkU0lEQVR4nO3df1RUdf7H8deAMhMS+IOCsFESXJVKSVgI+7ZaO4anH6bZOdZuiZS0bZm1c9pTtiuUtWcsjeiHRbWL/d48ncxqa93TTmproa4i/TS3OhKmDmKmCBYYM98/Ok07KyoMAxc+PB/nzDnOnXvvvKd7ymd37szYAoFAQAAAAIaIsnoAAACASCJuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGCUflYP0N38fr927dqlE088UTabzepxAABAOwQCAR08eFApKSmKijr2uZk+Fze7du2S0+m0egwAABCGHTt26NRTTz3mOn0ubk488URJP/zDiY+Pt3gaAADQHg0NDXI6ncG/x4+lz8XNj29FxcfHEzcAAPQy7bmkhAuKAQCAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYpZ/VAwAA0BVSb3/D6hH6rJpFF1n6/Jy5AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEbpEXGzdOlSpaamyuFwKDc3Vxs3bjzquk899ZRsNlvIzeFwdOO0AACgJ7M8bpYvXy63262SkhJVVVVp3Lhxys/P1549e466TXx8vHbv3h28ffnll904MQAA6Mksj5vS0lIVFRWpsLBQGRkZKi8vV2xsrCoqKo66jc1mU3JycvCWlJTUjRMDAICezNK4aWlp0ebNm+VyuYLLoqKi5HK5VFlZedTtGhsbNXz4cDmdTl166aX6+OOPj7puc3OzGhoaQm4AAMBclsbN3r171draesSZl6SkJPl8vja3GTVqlCoqKvTqq6/queeek9/v14QJE/TVV1+1ub7H41FCQkLw5nQ6I/46AABAz2H521IdlZeXp1mzZikzM1MTJ07UihUrdNJJJ+nxxx9vc/358+frwIEDwduOHTu6eWIAANCd+ln55ImJiYqOjlZdXV3I8rq6OiUnJ7drH/3799dZZ52lzz//vM3H7Xa77HZ7p2cFAAC9g6VnbmJiYpSVlSWv1xtc5vf75fV6lZeX1659tLa26sMPP9Qpp5zSVWMCAIBexNIzN5LkdrtVUFCg7Oxs5eTkqKysTE1NTSosLJQkzZo1S0OHDpXH45EkLVy4UGeffbbS09O1f/9+LV68WF9++aXmzJlj5csAAAA9hOVxM3PmTNXX16u4uFg+n0+ZmZlatWpV8CLj2tpaRUX9dILpm2++UVFRkXw+nwYNGqSsrCy99957ysjIsOolAACAHsQWCAQCVg/RnRoaGpSQkKADBw4oPj7e6nEAAF0k9fY3rB6hz6pZdFHE99mRv7973aelAAAAjoW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABG6RFxs3TpUqWmpsrhcCg3N1cbN25s13YvvviibDabpk2b1rUDAgCAXsPyuFm+fLncbrdKSkpUVVWlcePGKT8/X3v27DnmdjU1Nbr11lt17rnndtOkAACgN7A8bkpLS1VUVKTCwkJlZGSovLxcsbGxqqioOOo2ra2t+vWvf6277rpLI0aM6MZpAQBAT2dp3LS0tGjz5s1yuVzBZVFRUXK5XKqsrDzqdgsXLtTJJ5+sa6+99rjP0dzcrIaGhpAbAAAwl6Vxs3fvXrW2tiopKSlkeVJSknw+X5vbrFu3Tn/5y1/05JNPtus5PB6PEhISgjen09npuQEAQM9l+dtSHXHw4EFdffXVevLJJ5WYmNiubebPn68DBw4Ebzt27OjiKQEAgJX6WfnkiYmJio6OVl1dXcjyuro6JScnH7H+F198oZqaGl1yySXBZX6/X5LUr18/bdu2TWlpaSHb2O122e32LpgeAAD0RJaeuYmJiVFWVpa8Xm9wmd/vl9frVV5e3hHrjx49Wh9++KGqq6uDt6lTp+q8885TdXU1bzkBAABrz9xIktvtVkFBgbKzs5WTk6OysjI1NTWpsLBQkjRr1iwNHTpUHo9HDodDZ5xxRsj2AwcOlKQjlgMAgL7J8riZOXOm6uvrVVxcLJ/Pp8zMTK1atSp4kXFtba2ionrVpUEAAMBCtkAgELB6iO7U0NCghIQEHThwQPHx8VaPAwDoIqm3v2H1CH1WzaKLIr7Pjvz9zSkRAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFH6WT2AaVJvf8PqEfqsmkUXWT0CAKAH4MwNAAAwCnEDAACMQtwAAACjEDcAAMAoYcVNXV2drr76aqWkpKhfv36Kjo4OuQEAAFglrE9LzZ49W7W1tVqwYIFOOeUU2Wy2SM8FAAAQlrDiZt26dfrXv/6lzMzMCI8DAADQOWG9LeV0OhUIBCI9CwAAQKeFFTdlZWW6/fbbVVNTE+FxAAAAOiest6VmzpypQ4cOKS0tTbGxserfv3/I4/v27YvIcAAAAB0VVtyUlZVFeAwAAIDICCtuCgoKIj0HAABARIT9w5mtra1auXKltm7dKkk6/fTTNXXqVL7nBgAAWCqsuPn888914YUXaufOnRo1apQkyePxyOl06o033lBaWlpEhwQAAGivsD4tNW/ePKWlpWnHjh2qqqpSVVWVamtrddppp2nevHmRnhEAAKDdwjpzs3btWq1fv16DBw8OLhsyZIgWLVqkc845J2LDAQAAdFRYZ27sdrsOHjx4xPLGxkbFxMR0eigAAIBwhRU3F198sa677jpt2LBBgUBAgUBA69ev1/XXX6+pU6dGekYAAIB2CytuHnroIaWlpSkvL08Oh0MOh0PnnHOO0tPT9eCDD0Z6RgAAgHYL65qbgQMH6tVXX9Vnn32mTz/9VJI0ZswYpaenR3Q4AACAjgr7e24kaeTIkRo5cmSkZgEAAOi0dseN2+3W3XffrQEDBsjtdh9z3dLS0k4PBgAAEI52X3OzZcsWHT58OPjnY906aunSpUpNTZXD4VBubq42btx41HVXrFih7OxsDRw4UAMGDFBmZqaeffbZDj8nAAAwU7vP3KxevbrNP3fW8uXL5Xa7VV5ertzcXJWVlSk/P1/btm3TySeffMT6gwcP1h/+8AeNHj1aMTEx+tvf/qbCwkKdfPLJys/Pj9hcAACgdwrr01LXXHNNm99z09TUpGuuuaZD+yotLVVRUZEKCwuVkZGh8vJyxcbGqqKios31J02apOnTp2vMmDFKS0vTzTffrLFjx2rdunVtrt/c3KyGhoaQGwAAMFdYcfP000/r22+/PWL5t99+q2eeeabd+2lpadHmzZvlcrl+GigqSi6XS5WVlcfdPhAIyOv1atu2bfrFL37R5joej0cJCQnBm9PpbPd8AACg9+nQp6UaGhqCX9p38OBBORyO4GOtra16880323wr6Wj27t2r1tZWJSUlhSxPSkoKfsS8LQcOHNDQoUPV3Nys6OhoPfroo5o8eXKb686fPz/kAuiGhgYCBwAAg3UobgYOHCibzSabzaaf/exnRzxus9l01113RWy4oznxxBNVXV2txsZGeb1eud1ujRgxQpMmTTpiXbvdLrvd3uUzAQCAnqFDcbN69WoFAgGdf/75evnll0N+ODMmJkbDhw9XSkpKu/eXmJio6Oho1dXVhSyvq6tTcnLyUbeLiooKfmFgZmamtm7dKo/H02bcAACAvqVDcTNx4kRJ0vbt2+V0OhUVFdYlO0ExMTHKysqS1+vVtGnTJEl+v19er1dz585t9378fr+am5s7NQsAADBDWN9QPHz4cEnSoUOHVFtbq5aWlpDHx44d2+59ud1uFRQUKDs7Wzk5OSorK1NTU5MKCwslSbNmzdLQoUPl8Xgk/XCBcHZ2ttLS0tTc3Kw333xTzz77rB577LFwXgoAADBMWHFTX1+vwsJC/f3vf2/z8dbW1nbva+bMmaqvr1dxcbF8Pp8yMzO1atWq4EXGtbW1IWeImpqadMMNN+irr77SCSecoNGjR+u5557TzJkzw3kpAADAMGHFzS233KL9+/drw4YNmjRpkl555RXV1dXpnnvu0f3339/h/c2dO/eob0OtWbMm5P4999yje+65J5yxAQBAHxBW3Lz99tt69dVXlZ2draioKA0fPlyTJ09WfHy8PB6PLrrookjPCQAA0C5hXRHc1NQU/D6bQYMGqb6+XpJ05plnqqqqKnLTAQAAdFBYcTNq1Cht27ZNkjRu3Dg9/vjj2rlzp8rLy3XKKadEdEAAAICOCOttqZtvvlm7d++WJJWUlGjKlCl6/vnnFRMTo6eeeiqS8wEAAHRIWHFz1VVXBf+clZWlL7/8Up9++qmGDRumxMTEiA0HAADQUWHFzf+KjY3V+PHjI7ErAACATml33Pz3j08eT2lpaVjDAAAAdFa742bLli3tWs9ms4U9DAAAQGe1O25Wr17dlXMAAABEROd++RIAAKCHCeuC4vPOO++Ybz+9/fbbYQ8EAADQGWHFTWZmZsj9w4cPq7q6Wh999JEKCgoiMRcAAEBYwoqbBx54oM3ld955pxobGzs1EAAAQGdE9Jqbq666ShUVFZHcJQAAQIdENG4qKyvlcDgiuUsAAIAOCettqcsuuyzkfiAQ0O7du7Vp0yYtWLAgIoMBAACEI6y4SUhICLkfFRWlUaNGaeHChbrgggsiMhgAAEA4woqbZcuWRXoOAACAiOjUD2du2rRJW7dulSRlZGQoKysrIkMBAACEK6y4+eqrr3TllVfq3Xff1cCBAyVJ+/fv14QJE/Tiiy/q1FNPjeSMAAAA7RbWp6XmzJmjw4cPa+vWrdq3b5/27dunrVu3yu/3a86cOZGeEQAAoN3COnOzdu1avffeexo1alRw2ahRo/Twww/r3HPPjdhwAAAAHRXWmRun06nDhw8fsby1tVUpKSmdHgoAACBcYcXN4sWLddNNN2nTpk3BZZs2bdLNN9+sJUuWRGw4AACAjgrrbanZs2fr0KFDys3NVb9+P+zi+++/V79+/XTNNdfommuuCa67b9++yEwKAADQDmHFTVlZWYTHAAAAiIyw4qagoCDScwAAAERE2F/i19raqpUrVwa/xO/000/X1KlTFR0dHbHhAAAAOiqsuPn888914YUXaufOncGPg3s8HjmdTr3xxhtKS0uL6JAAAADtFdanpebNm6e0tDTt2LFDVVVVqqqqUm1trU477TTNmzcv0jMCAAC0W9hf4rd+/XoNHjw4uGzIkCFatGiRzjnnnIgNBwAA0FFhnbmx2+06ePDgEcsbGxsVExPT6aEAAADCFVbcXHzxxbruuuu0YcMGBQIBBQIBrV+/Xtdff72mTp0a6RkBAADaLay4eeihh5Senq4JEybI4XDI4XDonHPOUXp6uh588MFIzwgAANBuHbrmxu/3a/HixXrttdfU0tKiadOmqaCgQDabTWPGjFF6enpXzQkAANAuHYqbP/3pT7rzzjvlcrl0wgkn6M0331RCQoIqKiq6aj4AAIAO6dDbUs8884weffRR/eMf/9DKlSv1+uuv6/nnn5ff7++q+QAAADqkQ3FTW1urCy+8MHjf5XLJZrNp165dER8MAAAgHB2Km++//14OhyNkWf/+/XX48OGIDgUAABCuDl1zEwgENHv2bNnt9uCy7777Ttdff70GDBgQXLZixYrITQgAANABHYqbtn4N/KqrrorYMAAAAJ3VobhZtmxZV80BAAAQEWF9iR8AAEBPRdwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwSo+Im6VLlyo1NVUOh0O5ubnauHHjUdd98sknde6552rQoEEaNGiQXC7XMdcHAAB9i+Vxs3z5crndbpWUlKiqqkrjxo1Tfn6+9uzZ0+b6a9as0ZVXXqnVq1ersrJSTqdTF1xwgXbu3NnNkwMAgJ7I8rgpLS1VUVGRCgsLlZGRofLycsXGxqqioqLN9Z9//nndcMMNyszM1OjRo/XnP/9Zfr9fXq+3zfWbm5vV0NAQcgMAAOayNG5aWlq0efNmuVyu4LKoqCi5XC5VVla2ax+HDh3S4cOHNXjw4DYf93g8SkhICN6cTmdEZgcAAD2TpXGzd+9etba2KikpKWR5UlKSfD5fu/Zx2223KSUlJSSQ/tv8+fN14MCB4G3Hjh2dnhsAAPRc/aweoDMWLVqkF198UWvWrJHD4WhzHbvdLrvd3s2TAQAAq1gaN4mJiYqOjlZdXV3I8rq6OiUnJx9z2yVLlmjRokX65z//qbFjx3blmAAAoBex9G2pmJgYZWVlhVwM/OPFwXl5eUfd7r777tPdd9+tVatWKTs7uztGBQAAvYTlb0u53W4VFBQoOztbOTk5KisrU1NTkwoLCyVJs2bN0tChQ+XxeCRJ9957r4qLi/XCCy8oNTU1eG1OXFyc4uLiLHsdAACgZ7A8bmbOnKn6+noVFxfL5/MpMzNTq1atCl5kXFtbq6ion04wPfbYY2ppadHll18esp+SkhLdeeed3Tk6AADogSyPG0maO3eu5s6d2+Zja9asCblfU1PT9QMBAIBey/Iv8QMAAIgk4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGMXyuFm6dKlSU1PlcDiUm5urjRs3HnXdjz/+WDNmzFBqaqpsNpvKysq6b1AAANArWBo3y5cvl9vtVklJiaqqqjRu3Djl5+drz549ba5/6NAhjRgxQosWLVJycnI3TwsAAHoDS+OmtLRURUVFKiwsVEZGhsrLyxUbG6uKioo21//5z3+uxYsX64orrpDdbu/maQEAQG9gWdy0tLRo8+bNcrlcPw0TFSWXy6XKysqIPU9zc7MaGhpCbgAAwFyWxc3evXvV2tqqpKSkkOVJSUny+XwRex6Px6OEhITgzel0RmzfAACg57H8guKuNn/+fB04cCB427Fjh9UjAQCALtTPqidOTExUdHS06urqQpbX1dVF9GJhu93O9TkAAPQhlp25iYmJUVZWlrxeb3CZ3++X1+tVXl6eVWMBAIBezrIzN5LkdrtVUFCg7Oxs5eTkqKysTE1NTSosLJQkzZo1S0OHDpXH45H0w0XIn3zySfDPO3fuVHV1teLi4pSenm7Z6wAAAD2HpXEzc+ZM1dfXq7i4WD6fT5mZmVq1alXwIuPa2lpFRf10cmnXrl0666yzgveXLFmiJUuWaOLEiVqzZk13jw8AAHogS+NGkubOnau5c+e2+dj/BktqaqoCgUA3TAUAAHor4z8tBQAA+hbiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYxfKPggOAlVJvf8PqEfqsmkUXWT0CDMWZGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYJR+Vg8A9Aapt79h9Qh9Vs2ii6weAUAvw5kbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYJQeETdLly5VamqqHA6HcnNztXHjxmOu/9JLL2n06NFyOBw688wz9eabb3bTpAAAoKezPG6WL18ut9utkpISVVVVady4ccrPz9eePXvaXP+9997TlVdeqWuvvVZbtmzRtGnTNG3aNH300UfdPDkAAOiJLI+b0tJSFRUVqbCwUBkZGSovL1dsbKwqKiraXP/BBx/UlClT9Pvf/15jxozR3XffrfHjx+uRRx7p5skBAEBP1M/KJ29padHmzZs1f/784LKoqCi5XC5VVla2uU1lZaXcbnfIsvz8fK1cubLN9Zubm9Xc3By8f+DAAUlSQ0NDJ6dvm7/5UJfsF8fXVcdU4rhaqSuPq8SxtRLH1lxdcWx/3GcgEDjuupbGzd69e9Xa2qqkpKSQ5UlJSfr000/b3Mbn87W5vs/na3N9j8eju+6664jlTqczzKnRUyWUWT0BugLH1VwcW3N15bE9ePCgEhISjrmOpXHTHebPnx9ypsfv92vfvn0aMmSIbDabhZP1LA0NDXI6ndqxY4fi4+OtHgcRxLE1F8fWTBzXtgUCAR08eFApKSnHXdfSuElMTFR0dLTq6upCltfV1Sk5ObnNbZKTkzu0vt1ul91uD1k2cODA8Ic2XHx8PP8yGYpjay6OrZk4rkc63hmbH1l6QXFMTIyysrLk9XqDy/x+v7xer/Ly8trcJi8vL2R9SXrrrbeOuj4AAOhbLH9byu12q6CgQNnZ2crJyVFZWZmamppUWFgoSZo1a5aGDh0qj8cjSbr55ps1ceJE3X///brooov04osvatOmTXriiSesfBkAAKCHsDxuZs6cqfr6ehUXF8vn8ykzM1OrVq0KXjRcW1urqKifTjBNmDBBL7zwgv74xz/qjjvu0MiRI7Vy5UqdccYZVr0EI9jtdpWUlBzxFh56P46tuTi2ZuK4dp4t0J7PVAEAAPQSln+JHwAAQCQRNwAAwCjEDQAAMApxAwAAjELc9EFLly5VamqqHA6HcnNztXHjxuBj3333nW688UYNGTJEcXFxmjFjxhFfmoie61jH9oknntCkSZMUHx8vm82m/fv3Wzco2u2dd97RJZdcopSUFNlstiN+Ry8QCKi4uFinnHKKTjjhBLlcLn322WfWDIsOOd6xXbFihS644ILgN+pXV1dbMmdvRNz0McuXL5fb7VZJSYmqqqo0btw45efna8+ePZKk3/3ud3r99df10ksvae3atdq1a5cuu+wyi6dGexzv2B46dEhTpkzRHXfcYfGk6IimpiaNGzdOS5cubfPx++67Tw899JDKy8u1YcMGDRgwQPn5+fruu++6eVJ01PGObVNTk/7v//5P9957bzdPZoAA+pScnJzAjTfeGLzf2toaSElJCXg8nsD+/fsD/fv3D7z00kvBx7du3RqQFKisrLRiXHTAsY7tf1u9enVAUuCbb77p5gnRWZICr7zySvC+3+8PJCcnBxYvXhxctn///oDdbg/89a9/tWBChOt/j+1/2759e0BSYMuWLd06U2/GmZs+pKWlRZs3b5bL5Qoui4qKksvlUmVlpTZv3qzDhw+HPD569GgNGzZMlZWVVoyMdjresYWZtm/fLp/PF3LcExISlJuby3FHn0bc9CF79+5Va2tr8Nuff5SUlCSfzyefz6eYmJgjflj0x8fRcx3v2MJMPx5bjjsQirgBAABGIW76kMTEREVHRx/x6ae6ujolJycrOTlZLS0tR3yK5sfH0XMd79jCTD8eW447EIq46UNiYmKUlZUlr9cbXOb3++X1epWXl6esrCz1798/5PFt27aptrZWeXl5VoyMdjresYWZTjvtNCUnJ4cc94aGBm3YsIHjjj7N8l8FR/dyu90qKChQdna2cnJyVFZWpqamJhUWFiohIUHXXnut3G63Bg8erPj4eN10003Ky8vT2WefbfXoOI5jHVtJweuqPv/8c0nShx9+qBNPPFHDhg3T4MGDrRwdx9DY2Bg8ZtIPFxFXV1dr8ODBGjZsmG655Rbdc889GjlypE477TQtWLBAKSkpmjZtmnVDo12Od2z37dun2tpa7dq1S9IP/7MpKXimHcdg9ce10P0efvjhwLBhwwIxMTGBnJycwPr164OPffvtt4EbbrghMGjQoEBsbGxg+vTpgd27d1s4LTriWMe2pKQkIOmI27Jly6wbGMf140f3//dWUFAQCAR++Dj4ggULAklJSQG73R745S9/Gdi2bZu1Q6Ndjndsly1b1ubjJSUlls7dG9gCgUCge3MKAACg63DNDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQOgR6mvr9dvf/tbDRs2THa7XcnJycrPz9e7774rSbLZbFq5cmWH95uamqqysrLIDgugR+KHMwH0KDNmzFBLS4uefvppjRgxQnV1dfJ6vfr666+tHg1AL8FvSwHoMfbv369BgwZpzZo1mjhx4hGPp6am6ssvvwzeHz58uGpqavTFF1/I7XZr/fr1ampq0pgxY+TxeORyuSRJkyZN0tq1a0P29eN/+tatW6f58+dr06ZNSkxM1PTp0+XxeDRgwIAufKUAuhJvSwHoMeLi4hQXF6eVK1equbn5iMf//e9/S5KWLVum3bt3B+83NjbqwgsvlNfr1ZYtWzRlyhRdcsklqq2tlSStWLFCp556qhYuXKjdu3dr9+7dkqQvvvhCU6ZM0YwZM/TBBx9o+fLlWrdunebOndtNrxhAV+DMDYAe5eWXX1ZRUZG+/fZbjR8/XhMnTtQVV1yhsWPHSvrhmptXXnlF06ZNO+Z+zjjjDF1//fXBUElNTdUtt9yiW265JbjOnDlzFB0drccffzy4bN26dZo4caKamprkcDgi/voAdD3O3ADoUWbMmKFdu3bptdde05QpU7RmzRqNHz9eTz311FG3aWxs1K233qoxY8Zo4MCBiouL09atW4Nnbo7m/fff11NPPRU8YxQXF6f8/Hz5/X5t3749wq8MQHfhgmIAPY7D4dDkyZM1efJkLViwQHPmzFFJSYlmz57d5vq33nqr3nrrLS1ZskTp6ek64YQTdPnll6ulpeWYz9PY2Kjf/OY3mjdv3hGPDRs2LBIvBYAFiBsAPV5GRkbw49/9+/dXa2tryOPvvvuuZs+erenTp0v6IVpqampC1omJiTliu/Hjx+uTTz5Renp6l80OoPvxthSAHuPrr7/W+eefr+eee04ffPCBtm/frpdeekn33XefLr30Ukk/XDvj9Xrl8/n0zTffSJJGjhypFStWqLq6Wu+//75+9atfye/3h+w7NTVV77zzjnbu3Km9e/dKkm677Ta99957mjt3rqqrq/XZZ5/p1Vdf5YJioJcjbgD0GHFxccrNzdUDDzygX/ziFzrjjDO0YMECFRUV6ZFHHpEk3X///XrrrbfkdDp11llnSZJKS0s1aNAgTZgwQZdccony8/M1fvz4kH0vXLhQNTU1SktL00knnSRJGjt2rNauXav//Oc/Ovfcc3XWWWepuLhYKSkp3fvCAUQUn5YCAABG4cwNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAo/w/+6RxlECLHrAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nb_shots = 100\n", + "task = device.run(bell_pair_with_gates, shots = nb_shots)\n", + "counts = task.result().measurement_counts\n", + "\n", + "\n", + "plt.bar(sorted(counts), [counts[k]/nb_shots for k in sorted(counts)])\n", + "plt.xlabel(\"State\")\n", + "plt.ylabel(\"Population\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Bell pair with the pulse implementation of the cross-resonance sequence" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Instead of tackling the implementation of the complete echoed cross resonance pulse sequence, we use a simple cross-resonance (CR) gate. The CR gate is a single-pulse gate that implements the unitary transformation $$ \\exp(−i \\beta Z X / 2),$$ where Z and X are the 2x2 Pauli matrices. Practically, you can understand the gate by isolating its action for each eigenstate of the control qubit. If it is in $|0\\rangle$ (resp. $|1\\rangle$), the target qubit undergoes a rotation of angle $\\beta$ (resp. $-\\beta$). \n", + "\n", + "We seek to measure the interaction strength between the qubits when we drive one of them at the frequency of the other. For this, we use the frame `q0_q1_cross_resonance` that is bound to qubit 0 but tuned up to the frequency of qubit 1. As we will test this pulse sequence in a quantum circuit containing single-qubit gates on other qubits, we also declare the 1-qubit drive frames for 0 and 1. " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "q0_q1_CR = device.frames[f'q{a}_q{b}_cross_resonance']\n", + "q0 = device.frames[f'q{a}_drive']\n", + "q1 = device.frames[f'q{b}_drive']" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The sequence consists of a single square pulse of amplitude 0.18. This value has been determined by running the circuits below for different amplitudes and choosing the one that optimizes the difference of the expectation values $\\langle IZ \\rangle$ taken for the opposite initialization of the control qubit." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "length = FreeParameter(\"length\")\n", + "const_wf = ConstantWaveform(length, 0.18)\n", + "\n", + "cross_resonance_sequence = (\n", + " PulseSequence()\n", + " .barrier([q0, q1, q0_q1_CR])\n", + " .play(q0_q1_CR, const_wf)\n", + " .barrier([q0, q1, q0_q1_CR])\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We run two batches of circuits where we vary the length of the pulse from 12ns to 1.4 µs. Each batch has a different initialized state: $|0\\rangle$ for the first, $|1\\rangle$ for the second. " + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "lengths = np.arange(12e-9, 1.5e-6, 36e-9)\n", + "nb_shots = 1000\n", + "\n", + "# Initialization of the control qubit in 0\n", + "circuit = (\n", + " Circuit()\n", + " .pulse_gate([0, 1], pulse_sequence=cross_resonance_sequence)\n", + " .expectation(observable = Observable.I() @ Observable.Z(),target=[0,1])\n", + ")\n", + "CR_circuits = [circuit(length=l) for l in lengths]\n", + "batch_init_0 = device.run_batch(CR_circuits, shots=nb_shots, disable_qubit_rewiring=True)\n", + "\n", + "# Initialization of the control qubit in 1\n", + "circuit = (\n", + " Circuit()\n", + " .x(0)\n", + " .pulse_gate([0, 1], pulse_sequence=cross_resonance_sequence)\n", + " .expectation(observable = Observable.I() @ Observable.Z(),target=[0,1])\n", + ")\n", + "CR_circuits = [circuit(length=l) for l in lengths]\n", + "batch_init_1 = device.run_batch(CR_circuits, shots=nb_shots, disable_qubit_rewiring=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We analyze the data by plotting the expectation value $\\langle IZ \\rangle$ versus the pulse duration for each batch. " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGwCAYAAABFFQqPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAACWRUlEQVR4nOzdd3hUZfbA8e/MpHfSA0kICSWEThAERLo0UWxYWCyr7q51bbvi6i7q2nZF1/JDXVlF7BVRUREFQUF66IQSICSkEiCdtJn7++NmJgRSZiYzmXY+z5NnLjN37pyBkJx53/OeV6MoioIQQgghhAfSOjoAIYQQQghHkURICCGEEB5LEiEhhBBCeCxJhIQQQgjhsSQREkIIIYTHkkRICCGEEB5LEiEhhBBCeCwvRwfg7AwGA/n5+QQHB6PRaBwdjhBCCCHMoCgKFRUVdO3aFa229XEfSYTakZ+fT0JCgqPDEEIIIYQVcnNziY+Pb/VxSYTaERwcDKh/kSEhIQ6ORgghhBDmKC8vJyEhwfR7vDWSCLXDOB0WEhIiiZAQQgjhYtora5FiaSGEEEJ4LEmEhBBCCOGxJBESQgghhMeSREgIIYQQHksSISGEEEJ4LEmEhBBCCOGxJBESQgghhMeSREgIIYQQHksSISGEEEJ4LEmEhBBCCOGxJBESQgghhMeSREgIIYQQHsvlEqGFCxeSlJSEn58fI0aMYPPmzWY97+OPP0aj0TBr1iz7BmgmvUHh5/3Fjg5DCCGE8GgulQh98sknPPDAA8yfP5+MjAwGDRrElClTKC5uO6HIzs7moYceYsyYMZ0Uadvq9Qaue3MDt7yzhVWZRY4ORwghhPBYLpUIvfjii9x+++3ccsstpKWl8cYbbxAQEMDbb7/d6nP0ej1z5szhiSeeIDk5uROjbZ23TsuQxC4AzFu6m9LqOgdHJIQQQngml0mE6urq2LZtG5MmTTLdp9VqmTRpEhs2bGj1eU8++STR0dHceuutZr1ObW0t5eXlzb7s4YHJvUmJCuRERS3zv95rl9cQQgghRNtcJhEqKSlBr9cTExPT7P6YmBgKCwtbfM66det46623WLRokdmv8+yzzxIaGmr6SkhI6FDcrfHz1vHC7MFoNfDVjnxW7Cmwy+sIIYQQonUukwhZqqKigrlz57Jo0SIiIyPNft4jjzxCWVmZ6Ss3N9duMQ5OCONPY1MAePTLPZysrLXbawkhhBDifF6ODsBckZGR6HQ6ioqaFxcXFRURGxt73vmHDx8mOzubmTNnmu4zGAwAeHl5ceDAAVJSUs57nq+vL76+vjaOvnV/ntSLVZnFHCiq4B9f7WXhnKGd9tpCCCGEp3OZESEfHx/S09NZtWqV6T6DwcCqVasYOXLkeeenpqaye/duduzYYfq67LLLGD9+PDt27LDblJelfL10vDB7EF5aDd/uLuCbnfmODkkIIYTwGC4zIgTwwAMPcNNNNzFs2DCGDx/OSy+9RFVVFbfccgsAN954I926dePZZ5/Fz8+P/v37N3t+WFgYwHn3O1r/bqHcNb4nL686xN+/2sOI5HCig/0cHZYQQgjh9lwqEbr22ms5ceIE//jHPygsLGTw4MGsWLHCVECdk5ODVusyg1zN3DW+Jz/uK2JfQTmPfrmHN+emo9FoHB2WEEII4dY0iqIojg7CmZWXlxMaGkpZWRkhISF2fa39heXMfHUd9XqFF2cP4sqh8XZ9PSGEEMJdmfv72zWHT9xUamwI903qDcDjX++lsKzGwREJIYQQ7k0SISfzx4uTGRQfSnlNA/OW7kIG7IQQQgj7kUTIyXjptCy4ZhA+XlrWHDjBp1vt18dICCGE8HSSCDmhXjHBPDhZnSL75/JM8krPODgiIYQQwj1JIuSkbhuTzNDEMCprG3j4c5kiE0II4X6+2ZnPO+uPcqZO77AYJBFyUjqthgXXDMLPW8u6rBI+2JTj6JCEEEIIm2nQG3j+hwM8/s0+PtvmuDIQSYScWHJUEH+dkgrAM99lklVc4eCIhBBCCNv4fk8hOaeq6RLgzdXpjmsXI4mQk7t5VBIjeoRTXadnzv82cexklaNDEkIIITpEURTeWHsYgBtHJhHg47j+zpIIOTmtVsNrc4bSKzqIovJabli0SYqnhRBCuLR1WSXszS/Hz1vLTaOSHBqLJEKOsnUx/DgfMt6DYxug8gS0UhAdEeTLB7eNoEdkIHmlZ5izaCNF5dJsUQghhGsyjgZdd0Ei4YE+Do3FpfYacyt7v4Sja5vf5xsKESkQ0bPxK8V0Gx0SzAe3jWD2fzeQfbKaOf/bxCd/uJCIIF/HxC+EEEJYYffxMtZnnUSn1XDrRT0cHY4kQg4z+AaISoWTWepXaQ7UlkF+hvp1ri496Drncz66/UKueWMDWcWV/O6tzXx0+wjCAhybTQshhBDmMo4GzRwYR0J4gIOjkU1X29Vpm67W18Dp7KbE6GQWnDys3lYVq+cMngOzXuPIiUpm/3cjJZW1DIoP5f3bRhDs522/2IQQQggbyC6pYsILazAo8P2fx9A3zn6/V839/S0jQs7C2w+iU9Wvcx3bAIunwu7PYNITJEdF8cFtI7juzQ3sPF7G79/ZwpLfD3do1b0QQgjRnjd/PYJBgXF9ouyaBFlCiqVdQfeR0C0d9HWwbTEAfWKDee/WEQT7ebEl+zS3LdlKTb3jOnMKIYQQbSmuqOHzbccB+NPYFAdH00QSIVdx4Z3q7Zb/QUMdAP27hbLk98MJ9NHx2+GT/On9bdQ2SDIkhBDC+byzPpu6BgODE8IY0SPc0eGYSCLkKtIuh+A4qCxSV5w1GprYhbdvvgA/b3W3+ns/2k693uDAQIUQQojmKmrqeW/jMQDuGJeCRqNxcERNJBFyFTpvuOBW9XjT6816Do1IjmDRjcPw8dLyw94iHvh0J3qD1MALIYRwDh9tzqGipoGUqEAm941xdDjNSCLkStJvAS8/yN8OuZuaPTSmVxSvzxmKl1bDNzvz+b/VWQ4KUgghhGhS26DnrXVHAfjjxSlotc4zGgSSCLmWwEgYcI16vPH18x6e2DeG564aCMArqw+RkXO6M6MTQgghzvPV9nyKymuJCfHl8iFdHR3OeSQRcjUX3qHeZn4DpbnnPXx1ejyXDeqK3qBw/yc7qKxt6OQAhRBCCJXBoPDGL2oDxVsv6oGvl87BEZ1PEiFXE9MPelwMih62LGrxlH/O6k+3MH+Onazmia/3dnKAQgghhOrHzCKOnKgi2M+L64cnOjqcFkki5IpGNI4KbVsCdVXnPRzq781/rh2MVgOfbTvOt7sKOjlAIYQQ7qKipp7vdhfw8eYcKmrqzX6eoiim7TTmXtjdaXdAkFbErqj3FOiSpG7JsfPjptVkZxneI5w7xqWw8OfD/O3L3QztHkZcqH+nhyqEEML1ZJdUsWp/Mav3F7HpyCkaGlci/2vFfv40NoUbRybh79P2NNfmo6fYnlOKj5eWW0Y7fnPV1siIkCvS6mDEn9TjTf9ttpT+bPdN6s3A+FDKztTzwCc7MciSeiGEEC2o1xvYcPgkT3+7jwkvrGHcgjX8c/k+1medpMGgkBwVSHJkIKer63n2+/1c/PzPvLshu80mvsbRoKvT44kK9u2st2Ix2XS1HZ226aqlasrhxTSoq4DfLYWeE1s87ciJSma8so4z9XoemZbKH52orbkQQgjHOVOnZ8XeAlZlFrP24AkqapoW13hpNYxIDmdCagwTUqPpERlIg97Al9vzeHnVIY6fPgNAtzB//jyxF1cO7YaXrmlsZX9hOVNf+hWtBlY/OI6kyMBOf3/m/v6WRKgdTpsIAXz/MGx6A3pOht993uppH2/OYd7S3XjrNHx552j6dwvtxCCFEEI4mwa9gdn/3UBGTqnpvvBAH8b3iWZi32gu6hVJSCs1PXUNBj7Zmsurqw5RXFELQHJkIPdN7s2lA+LQajXc/8kOvtyex4wBcSycM7Qz3tJ5JBGyEadOhE4ehlfTAQXu3gqRvVo8TVEU/vT+Nn7YW0RKVCDL7xnT7tyuEEII9/W/X4/w1LeZBPt6cdOoJCb0jWZQfBg6C5od1tTreW/DMV5fe5hTVeoemKmxwdwyOom/fbkHvUHhm7svYkC8Yz58m/v7W2qEXFlECvSeqh5v+m+rp2k0Gp67ciDRwb4cPlHF09/t66QAhRBCOJuck9UsWHkAgMcu7ctDU/owNLGLRUkQgJ+3jtsvTuaXv47ngcm9Cfb1Yn9hBQ9/sRu9QWF0zwiHJUGWkETI1V3YWDS940M4U9rqaV0CfXhh9iAA3t+Yw0/7ijohOCGEEM5EURT+9uVuauoNjEyOYPawhA5fM8jXi3sn9uLXh8dz57gU/L11aDVw9/iWZymcjSRCrq7HWIhOg/oq2P5em6eO6RXFbRepSxj/+sUuiitqOiNCIYQQTuLzbcdZl1WCr5eWZ68cYNNd4MMCfPjr1FTWz5vAyvvHMjIlwmbXtidJhFydRnPWUvo3Qd/2lhp/mdqH1NhgTlXV8ZfPdiElYkII4RlOVNTy1LeZANw/ubfdVnKFB/rQMzrILte2B0mE3MHA2eAfDmU5cOC7Nk/19dLxyvVD8PXSsvbgCZb8lt05MQohhHCoJ77ZS9mZevp1DTHNDghJhNyDtz8Mu0U93vRGu6f3jgnmkWmpADzz/X6Olpy/TYcQQgj38dO+IpbvKkCn1fCvqwY26/ljc4oCBoP9rm9jkgi5iwtuA60XHFsPBTvbPf2mUUkM7xFOXYOBH/YWdkKAQgghHKGipp7Hlu0B4LYxPezfS+7LP8K/k6A0x76vYyOSCLmLkK6Qdrl6vLH9USGNRsPE1GgAtuectmdkQgghHOhfK/ZTWF5D94gA7pvY274vdvAH2PUJ1JTBgRX2fS0bkUTInVx4p3q753OoLG739KHduwCQkVMqRdNCCOGGtmSf4v2N6sjMs1cOsG8z3YZaWDGv6c/HN9vvtWxIEiF3Ej8Mug4FfR1kftPu6QO6heKl1XCiopa80jOdEKAQQojOUlOvZ94XuwC4dlgCo1Ii7fuCG1+DU0fUMg2A3E32fT0bkUTI3fScpN7mtp+J+3nrSOuqth0/e78ZIYQQrm/hz1kcPlFFVLAvf5ve174vVl4Aa59Xj6c+BxqtWiNU4fw1qJIIuZuEEeqtmUOSQxMbp8eOSZ2QEEK4i/2F5by+5jAAT17Wj9CAljdQtZmf5quNfeOHw7Bb1Ua/YNaHckeTRMjdxKert6eOQOWJdk8fkhgGwPbcUvvFJIQQotPoDQoPf7GbBoPCJWkxTO0fa98XzNmoFkijgWn/Aq0WEoarj7lAnZAkQu7GvwtEqT2COL6l3dONI0L78suoqdfbMzIhhBCd4J3fstmZW0qwrxf/nNXfpttonMegh+//qh4PnQvdhqrH8Y2JkIwICYcwZuJmFKrFd/EnMsiXer3C3vwyOwcmhBDCnnJPVbPgB3Vn+Uem9yUmxM++L7j9PbV3nW8oTPhH0/3G30P529XVZE5MEiF3ZMzEzRgR0mg0pumxjGOl9otJCCGEXSmKwmPL9nCmXs/wHuFcd0HHd5Zv05nTsOpJ9Xj8IxAU1fRYeDIERKirmAt22TeODpJEyB0ZC6bzMkBf3+7ppoJpaawohBAu67vdhaw9eAIfnZbnrhyAVmvHKTGANc9B9Um1HOOC25o/ptE0/S5y8mX0kgi5o4ie4BcGDWegcHe7p5sKpmUJvRBCuKSKmnqeXL4XgD+NSyE5ys67vxftg82L1OOpz4GuhVVp8Reot05eMC2JkDs6u2LfjEK1gfGh6LQaCstryJfGikII4XL+8+Mhispr6R4RwJ3jUuz7YoqiFkgreug7E1LGt3yeaURos/ocJyWJkLuKN3/pYoCPF33jggGZHhNuqr4GijOhptzRkQhhc3vzy3jnt6MA/PPSXvjVtN86pUP2fQXZv4KXH1zydOvndR2idpmuKICy4/aNqQO8HB2AsBMLRoQAhiR0YU9eOdtzSrl0YFc7BiaEA3xxK+xfrh4HxajTxxEpjbeNX12SwMvXoWEKYSmDQS2QNigwY0AcF+/5O3yyFLqPhpF3Qe+poLXh/mJ11bDyMfV49J+hS/fWz/UJgNgB6sqx3E0QZufibStJIuSuuqWrLc7LcqE8X92dvg1Du4fx3sZjMiIk3E/BzqYkCKCySP06tr75eRothCWqSVHcYBj7MHj5dGqoQljq4y25bM8pJdBHx9+n9YTXvlMfOLZe/QpPhhF3wOAbwNcGdUPrX1Z/r4TEw+j72j8/YYSaCB3fAgOu7vjr24FMjbkr3yCI6acemzEqNCRBXTm2N6+c2gZprCjcyPqX1dv+V8PDx+D21XDlIhg7T70vbjD4BIFigNPZkPUT/LoA9nzhyKiFaFdJZS3/WrEfgAcu6UNs9SFoqFEb6150P/iFqrsMfP8X+E8a/DgfyvKsf8HTx2D9S+rxlKfUEZ/2GAumnXjlmIwIubP44eqqsdzN0G9Wm6d2jwggPNCHU1V17M0vNy2pF8KlnToKe79Uj0f/GfzD1NHSbunNz1MUqCyGk1mw9S01Ccr6EQZf3+khC2Gu577fT9mZetLiQrhpZHfY3DgalHAhTHocxjwEOz9q2hV+/Uuw4f+g35Uw8k61hscSKx9TE62kMZA2y7znGAumC3er02rmJE+dTBIhd5YwQv2hbkbBtEajYWhiGD9lFpNx7LQkQsI9bPg/daQnZSLEDWz9PI0GgmPUL61OTYQOr1a3D7BlfYUQNrL56Ck+33YcjQaeuqI/Xjpt06iLsUbUNwiG3w7Dfg8Hf4ANC+HYOtj9qfrVfTQMnmPelFlZHmR+DRqdup+Yudt2hMZDcJxaMJ2/HZJGW/eG7UgSIXeW0Dgkmb9DXTXj3Xar9SGJXfgps1g2YBXuofIEbH9fPb7oPvOf122Yul3AmdPqD+74YXYJTwhr1esNPLZM7RF33QWJ6gdXRYGcxkQo8cLmT9DqIHW6+pW/HTa8BnuXNtURWeKC25rKLsyh0aiJ2b6v1ERNEiHRqbr0gMAoqDqhFowmjmjzdFNjxWNSMC3cwOb/qsP43dLVoXxz6bwgeaz66TfrJ0mEhNN5a91RDhZVEhHow8NT+6h3luZAZSFovdue8uo6BK5apE6dbVnUmDyZ2eMnKAbG/83ygOMbEyEztn1yBEmE3Jmxxfn+5Wom3k4iNCg+DK0G8stqKCyrITbUzpv1CWEvtZVNXW9H32f+ML5Rz0mNidAqGDfP5uEJYa3jp6t5+adDgLqpalhA48pG47RY3CDw9m//QqHd1GSoM5y91YaiWP7/0c5k1Zi7s6DFeaCvF31iQwDY3oFl9C+sPMCA+T9wsKjC6msI0SEZS6CmVF0KnzrD8uf3nKje5m2F6lM2DU2Ijnjim32mTVWvGtqt6QFTfVDbH3gdIm4g6HzUfclOHXF0NOeRRMjdWdjifKhxJ3orE6Gy6nre/OUIFbUNfL0j36prCNEhDXVqUSjAqHutK3YOjYeovmqh9ZE1Ng1PCGv9tK+IH/cV4aXV8NSs/mjOHlkx1Qc5YSLk5ds0XWdmk9/OJImQu+s6WG1xXlmkziG3Y0jjajFrN2D9POM4tQ0GADYeOWnVNYTokD2fQ3keBMXCoOusv45xVChrlW3iEqIDqusamP+1uqnqbWOS6R0T3PRgTTkUq4855YgQOPUGrJIIuTtvf3XOGMzKxI0jQrvyyqhrTGjMpSgKH2w6ZvrzzuOlVNc1WHQNITrEYGhqoHjhHR3bMqPnJPU26yen3jBSeIZXV2eRV3qGbmH+3DuxZ/MH87aqo5dh3SE41jEBtufs2QknI4mQJ7BgA9YekYGEBXhT12BgX4FlG1RuOHKSIyeqCPTRERXsS71eIeNYqRUBC2GlQz/Aif3gGwLDbunYtRJHgneAuhKnaK9t4hPCCoeKKlj0i1pbM39mGgE+56xzynHi+iAjY2+j4n1Ot/mxJEKewLQBa/stzjUaDUMSwgDLC6Y/2KhOvc0a0o0xPSMBmR4TnWzdf9TbYb9XtxfoCG+/pmX3WT917FpCWElRFP7x1V4aDAqT+kZzSb8WRnxynbg+yCg4Vt3LTzFA3jZHR9OMJEKewJgIFe6Buqp2Tzd2lc6woE6ouKKGH/YWAjBnRHcuTI4AJBESnejYBvUXgs5HnRazhbOnx4RwgJ8yi9lw5CQ+Xlrmz2yhkaFBD8e3qscJF57/uDMxjlg5WT8hSYQ8QWg8hHQDRQ95Ge2e3lQwbf6I0KdbcmkwKAxNDCOta4gpEdp5vJQzdbKJq+gExs0gB11vuzoJY8F0zkaolXYQonPVNRh45rtMAG67qAcJ4S3s01W8D+oq1Ong6L6dHKGF4s2fnehMkgh5Cgsq9gclhKLRwPHTZyiuqGn3fL1B4aPNuQD87sLuACSE+9M11E+tE+pATyIhzFK0Dw6uADTqknlbiUhRO7Qb6uHor7a7rhBm+GDTMY6WVBEZ5MMd41JaPilno3obP8z598UzlWlsURc2OAlJhDyFBRX7wX7e9I5Wl2aaU+y85kAxeaVnCAvwZvqAOECtNZLpMdFpfntFve07EyJ7tn2upWR6TDhAaXUdLzV2kH5gch+C/bxbPtH4M92ZC6WNYvqrCxBqy6DkoKOjMZFEyFNY2lixexgA23PbH815f6O6ZP6a9Hj8vJs+kUgiJDpFaS7s/kw9tmRzVXPJMnrhAK+uzqLsTD19YoKZPSy+9RNzG0eEXCER0nmpe/+BU02PSSLkKWIHgJcfnDkFJw+3e7qpTqidEaHcU9WsOXgCgBtGdG/22IjkcAB25EqdkLCjja+BoUFd4WX8IWtLSRepG1mWHnPK7QGE+8kuqeLdDdkAPDqjL166Vn5VlxeojXI1WtfZHNgJGytKIuQpvHyaWpyb8Q3Y1FixlHp963O5H23OQVHgop6R9IgMbPZYYngAcVInJOyp+hRsW6Ie22M0CMA3CLqPVI9lekx0gue+30+9XmFs7ygu7h3V+onGUZWYfuAb3Pp5zsQJGytKIuRJjJm4GUOSyZFBhPh5UVNvYH9By6tl6hoMfLrVWCSdeN7jUick7G7L/6C+Sh3xTJlov9eROiHRSTYdOcmKvYVoNepoUJtcqT7IyPh7qOSg02xo7HKJ0MKFC0lKSsLPz48RI0aweXPrWeWiRYsYM2YMXbp0oUuXLkyaNKnN892eBZm4VqthsKmfUMujOT/sLaSkso7oYF8m9o1p8ZwLG6fHJBESNldXDZveUI9H3wdnb0Bpa8ZE6OivUN/+SkohrGEwKDz1rbpc/vrhic33E2uJqT7IyfsHnS0wAiIaFzQY+x85mEslQp988gkPPPAA8+fPJyMjg0GDBjFlyhSKi4tbPH/NmjVcf/31/Pzzz2zYsIGEhAQuueQS8vLyOjlyJ2FqcZ4JNWXtnm6cHmutn5CxSPq64Yl4tzKHbRwRkjohYXM7PoDqk+r+Smmz7Pta0WkQHAcNZyDnN/u+lvBYy3bksTuvjCBfL+6f3Lvtk+vPQMFO9dj4s91VmBorOsfAhEslQi+++CK33347t9xyC2lpabzxxhsEBATw9ttvt3j+Bx98wJ133sngwYNJTU3lf//7HwaDgVWrPHQ36aBo6JIEKGZl4m11mM4qrmDT0VNoNXD98IRWryF1QsIu6qrg1xfV41H3qKtR7Emjkd3ohV2dqdPz7xUHALhrfE8ig9rZMDgvQ10kEBynbl3hSiwo0+gMLpMI1dXVsW3bNiZNmmS6T6vVMmnSJDZs2GDWNaqrq6mvryc8PLzVc2praykvL2/25VZMG7C23+J8UOOeYzmnqimprG322PuN+4pN7BtDXKh/q9eQOiFhF7/9H1Tkq6NBQ+Z2zmtKnZCwo0W/HqGwvIZuYf7cMjqp/ScYk4iE4fadFrYH44hQXgboGxwbCy6UCJWUlKDX64mJaV6LEhMTQ2FhoVnXePjhh+natWuzZOpczz77LKGhoaavhITWRztckgUbsIb6e9MrOgiA7WeNClXXNfBFxnGgqZN0W4x1QpuOOEdhnHBx5QVN22lMelzdHLUzJI9Tlymf2K/2LhLCRorLa3hjrdrW5OFpqc36sbXKlAi5UH2QUVSquiVIXaW6RYiDuUwi1FHPPfccH3/8MV9++SV+fq3/4HzkkUcoKyszfeXmutkPPGMidHyrWS3OhzTWCZ09rbV8ZwEVNQ0khgeYdplvi9QJCZta/RTUV6ujm/2u6LzX9e/SNKR/WKbHhO28sPIg1XV6hiSGMXNgXPtPUJSzEiEXWjFmpD2r75ETTI+5TCIUGRmJTqejqKio2f1FRUXExra9weKCBQt47rnnWLlyJQMHDmzzXF9fX0JCQpp9uZXofuAdCLXl6ifbdgxtYQPW9zepRdI3jEhEq21/SNZYJ1SnN1i0kasQ5ynYqRZJA0x5pvOnBGR6TNjYvvxyPt2mfuB+bEYaGnO+p0sOwZnT4OUPcW3/TnNaFpRp2JvLJEI+Pj6kp6c3K3Q2Fj6PHDmy1ef9+9//5p///CcrVqxg2DAX6bxpTzoviG/svmtOY8XuaiK0M7eMBr2BXcdL2XW8DB+dlmvS22j7fhapExI2oSjww6OAAv2vhoQLOj8GY8H0kbWgr+/81xduRVEUnvp2H4oClw6MI73x5227jKMo3YaCrpU9yJydBWUa9uYyiRDAAw88wKJFi1iyZAmZmZnccccdVFVVccsttwBw44038sgjj5jO/9e//sXf//533n77bZKSkigsLKSwsJDKykpHvQXnYMzEzegn1DMqiGBfL87U69lfWMEHjUXS0wbEEtHeqoazNPUTkjohYaWDKyD7V9D5wqT5jokhbggERKgjqk7SA0W4rtX7i/nt8El8vLQ8PDXV/Ce60v5irYkfBmjgdDZUttwCp7O4VCJ07bXXsmDBAv7xj38wePBgduzYwYoVK0wF1Dk5ORQUFJjOf/3116mrq+Pqq68mLi7O9LVgwQJHvQXnYHFjxTAA1h48wVc71R5M5hRJn03qhESH6Oth5WPq8cg7HbdcWKuFlAnqsUyPiQ6o1xt4+ju1eeLvR/cgITzA/Ce7Ykfpc/mFQnRj52wHb7dh5+Ybtnf33Xdz9913t/jYmjVrmv05Ozvb/gG5ImOR2slDaovzgNbbCQAMSQjj10MlvPZzFjX1BvrEBDPM3CHcRonhAcSG+FFYXsP2nNOMMqPIWgiTrW/DySwIiISLHnBsLCkT1d3us36CiX93bCzCZX24KYcjJ6oID/ThzvEp5j+x+pS6PQW4XiPFc8VfoK4aO74Z+l7qsDBcakRI2EhAOEQ2di01o1BtSGPSU9U4kjPnwkTzCvrOotYJyXYbwgpnTsOaZ9XjCY+Cn4MXMBhHhAp2QOUJh4YiXJPeoJiWy98/qRchfhbU+RhHTyJ7t/sh1uk5yQaskgh5qnjzC9WGNDZWBAjw0XHFkG5WvWRTwbTUCQkL/LJATYai+sKQGx0dDQTHQGzjSp3Dqx0bi3BJvx46QUFZDaH+3lwzzMJede5QH2RkfA/526GhzmFhSCLkqRLML5gOC/AhOSoQgMsHdyPYkk8vZ5E6IWGxU0dg03/V4ylP2X8rDXPJMnrRAZ9tVRvSXjGkm3nNE8/mDvVBRhEp4B8ODTVQuNthYUgi5KmMiVDeNrNanN8+Jpl+XUP409hkq1+ye4RaJyT9hITZfpwPhnq1Lqdn6x3hO50xlsOrzGpMKoTRqao6Vu5Td0OYbeloUEOd+jMbINEFO0qfS6NRfxcFxUKV46aZJRHyVJF9wDdU7dBbvLfd068fnsi3946he0Sg1S/ZrE7oqEyPiXYc+w0yv1a3tbjkKUdH01zCcPAJhuqTaq2QEGb6cnse9XqF/t1CSOtqYb1b4W519MQ/HCJ62ifAznb12/Dgfugz1WEhSCLkqZq1OO+8QjVprCjMYjDAD39Tj4feBDFpjo3nXDpvSB6rHstu9MJMiqLw2Va1i/S1lo4GQfP6IFfbaLU1PoEOfy+SCHky475JndgYzlQnlFNKTb3UCYlW7P5MLaD0CYbxf3N0NC2TOiFhoV3Hy9hfWIGvl5bLBlux6CTHmAi5+LJ5JyOJkCczJUKdt9fL2XVCGVInJFpSVw2rnlCPxzwAQdGOjac1xu02jm9WV7UJ0Y5PGkeDpvaPJdTfwkUnZ2+06g71QU5EEiFP1m2oenvqsNqkqxM07yckdUKiBRsXQnkehCbAhXc6OprWhSWqtXaKAQ796OhohJM7U6fnmx35gJXTYqXHoLIItN7QdYiNo/Nskgh5soCzCu6MKxE6gdQJiVZVFMGv/1GPJz0O3n4ODadd/a5Qb3d+5Ng4hNP7fk8BFbUNJIT7m34GWsRYyxk3CLz9bRuch5NEyNM5YHpM6oREq9Y+B/VV0G0Y9L/K0dG0b9B16u3hn6Esz7GxCKf2yRZ1Wuya9AS0WiuKg3PcqJGik5FEyNMZV451YsG01AmJFtWfgV2fqceT5jt8JYlZwntA99GAArs+dnQ0wklll1Sx6egpNBq4Oj3euosYR4QSJRGyNUmEPF23xkQob2unNYaTOiHRokMroa5CrQ3qfpGjozHf4BvU2x0fqQWtQpzjs23qaNDFvaLoGmbFtFZNeVO/NxkRsjlJhDxdTD/w8oeaMnV3704yQuqExLn2fKHe9rtC7XPlKtIuB+8AOHmoU0dWhWvQGxQ+36ZuqWFxJ2mjvK1qUX5YdwiOtWF0AiQRErqzViDkST8h4SA15XDwB/V4wNWOjcVSvsFqMgSw4wPHxiKczi8HT1BUXkuXAG8mpVnZCiKncdm8jAbZhSRCAuLT1dtOLJhOigggJsS3cd+x0k57XeGkDnyvbh0Q0bNpZ3dXYpwe27NUrXUSopGxSPqKIfH4elm4wapR9q/qrdQH2YUkQsIhK8fUOiGZHhON9nyu3va/2jWKpM/V/SIITYTaMtj/raOjEU7iZGUtP2UWATD7AiuLpHM2wbH1oNE518bDbkQSIdGUCBXtg7qqTntZSYQEoDbzPLxaPXaFJfMt0Wph8PXq8Y4PHRuLcBpfbs+jwaAwKD6U1FgLN1g1Wv1P9XbwDdAlyWaxiSaSCAkI6QrBXUHRQ/6OTntZYyK0PVfqhDzavq/A0ACxAyCqt6OjsZ6xp9CRn6E837GxCIdTFKWpd5C1RdJH1qjTYjofGPuw7YITzUgiJFSmfkIOqBNqMJBxTPoJeSzjajFXHQ0yCk+GxFHq6p6d0lPI0+3ILeVQcSV+3louG9zV8gsoCqxqHA1KvwXCrEymRLskERIq4/RYJ64c02g0XNwrCoBvdhV02usKJ1JeANnr1ON+Vzo2Flsw9RT6UHoKebhPGzdYnd4/jhA/CzdYBXUVZd5Wtb3JmAdtHJ04myRCQmUcEcrd0qk/wK9q7LK6fGe+TI95on3LAAXih0OX7o6OpuP6zWrqKdSJ+/cJ51Jd18A3O9UPd1ZNixkMsPop9XjEHyA4xobRiXNJIiRUcYPVVQmVherO351keFI48V38qaht4Ie9hZ32usJJ7G5cLeZqvYNa4xsMfS9Tj6WnkMf6bnchlbUNdI8IMHXRt8i+ZVC0G3xDYPR9tg5PnEMSIaHyCYDY/upxJ3bH1Wo1XDVUHRUydl8VHuLUUXXoX6OFtFmOjsZ2jNNju7+A+hrHxiIc4tPGIunZwxLQWNoOQt8APz+jHo+8CwKsSKSERSQREk0c0E8IMCVC67JKKCiTZnQeY+9S9TZpjHsN/SeNUfdLqy2DA9JTyNMcOVHJ5uxTaDVNP9sssusTdWrVPxwuvNP2AYrzSCIkmnTr/J3oARIjAhjRIxxFgaUZnTctJxxsd+NqMXeZFjPSamGQ9BTyVJ81jmyP7R1FbKifZU9uqIO1z6nHF90Hflb2HhIWkURINDGOCBXsAH19p7701Y1F019sO44iq23cX3Gmupu21hv6znR0NLZnbK54eLX0FPIgDXoDXzQmQtdeYEWR9PZ3oTQHgmLggtttHJ1ojSRCoklECviFqXs+Fe3p1JeePiCOAB8dR0qqyJC9x9yfsXdQz0ng38WxsdhDeDIkjlR7Cu36xNHRiE6y9uAJiitqiQj0YUKqhdO99WfglwXq8ZiH1LpN0SkkERJNNJqzGit27vRYoK8X0/rHAfBFhhRNuzVFcZ8mim2RnkIep2mD1W74eFn463XL/6CiQK0vS7/JDtGJ1kgiJJpzUME0wFXp3QD4RnoKubf87XDqiNoors80R0djP2mz1PdYchDyMhwdjbCzExW1rN5fDMBsS6fFaitg3X/U47EPg5evjaMTbZFESDTnoBEhgAt7RNAtzJ+KmgZW7ivq9NcXncQ4GtRnKvgGOTYWe/ILgTTpKeQpvtx+nAaDwuCEMHrHBFv25I1vQPVJCE9pKrQXnUYSIdFct3T19tRhdVfwTqTVakydpqWnkJsyGGDvl+pxfzdbLdYS4/TYns+lp5AbO3uDVYuLpM+cht9eVY/H/w10XjaOTrRHEiHRnH8XiOilHjtgVOiqoer02LpDJygsk18cbid3o9q53DdELZR2d0kXQ0g81JTBge8cHY2wk4ycUg6fqMLfW8elA+Mse/L6V9SeU9H93GO/PRckiZA4nwM2YDXqHhHI8B7hGBRYul1GhdyOcUuNvjPB28IeK65Iq21aSi89hdyWsZP09AFxBFuywWplMWx6Qz2e8Kj6/SI6nfyti/PFN06POaBgGpp6Cn0uPYXci76hcZNVoL8HffI11nwcXgXlBY6NRdhcVW0Dy3epvaIsnhb79UWor4auQ6HPdDtEJ8whiZA4n2nl2Da1pqOTTR8Qh7+3jiMnqtieW9rpry/s5OgatSA0IAJ6jHNwMJ0oIkV6Crmxb3cXUFWnp0dkIBckWdATq+w4bH1LPZ7wmNq+RDiEJELifNH91GW/tWVwMqvTXz7I14tpA2IBKZp2K8YtNdJmeV5B6Nlbbsgop1sxTotdMyzesg1Wf30B9HXQfTSkTLBTdMIckgiJ8+m8oOsQ9dhR02ONmxVKTyE3UV8D+5erx+62t5g5+s1q7Cl0APKlp5C7yCquZOux0+i0GtPPLLPoG2BP46bDY/8qo0EOJomQaJmpn5BjEqELk5t6Cv0oPYVcX9aPUFsOId0g4UJHR9P5/EKh12T1OGu1Y2MRNvPZNnU0aFzvKKJDLCj+z9sGNaXqlkZJY+wSmzCfJEKiZQ5cOQaNPYUal9LL9JgbMDZR7HeF566M6XGxepv9i2PjEDZRrzfwxbY8wIpO0odWqrc9J4JWZ+PIhKU89CeSaJdxRKhoL9RVOSQEY3PFX6WnkGurrYQDK9Rjd95brD3GRCh3MzTUOjYW0WFrDpygpLKWyCAfJqRGW/bkrB/V256TbR+YsJgkQqJlIV3VaQzFoO4N5QDdIwIZnqT2FPpye55DYhA2cOB7aDij7shurD3zRJG9ISgGGmocNuUsbMfYSfrKofF46yz4VVpRBAU71WNPaCrqAiQREq1z4L5jRk09hXKlp5CrMi4Z73+VZxeFajSQdJF6fPRXx8YiOqS4vIafDzRusDrMgiJpgKyf1NuuQyAoysaRCWtIIiRa182xBdMA0weqPYUOn6hih/QUcj0nDzdNAwy8zrGxOANTnZAkQq5s6fY89AaFoYlh9Iy2cINVY31Qr0tsH5iwiiRConWmxopbHdb7JMjXi6n9paeQy9r0X/W21yUQ2dOxsTgD4wqh3M1QV+3YWIRVFEUx9Q6yuJO0vgEO/6weS32Q05BESLQubhBovaCyUN0o00GM02NfS08h11JTBjs+UI8vvMOxsTiL8GS19s5QD7mbHB2NsMLWY6c5UlJFgI+OGQO7Wvbk45vVRrX+4dBtqH0CFBaTREi0zicAYvqpxw6cHhuZHEHXUD/pKeRqtr8PdZUQlQrJ4x0djXPQaJpGhWR6zCUZR4NmDIgjyNfCDumHjKvFZNm8M5FESLTt7OkxB9FqNaal9DI95iIM+qZpsRF/9Owi6XP1aEyEpGDa5VTWNvDtbnXjXIunxUCWzTspSYRE25wgEQK4amhTT6Gicukp5PQOfA+lx9TOuVIk3ZxxRCg/Q+2xJFzGt7vyqa7TkxwVSHp3CzZYBSgvgMLdgEYdERJOQxIh0TbjyrGCHdBQ57AwkiIDGda9CwYFvt1V4LA4hJk2vaHept+sTrGKJl26Q1giGBogZ6OjoxEWMPYOmj0swbINVqFp2Xy3oRAYaePIREdIIiTaFpGifqpvqIGiPQ4Nxbh67KdMqRNyaoW71foXjQ6G3+7oaJyTbLfhcrKKK8jIKUWn1XBl4/Y/FpFl805LEiHRNo3GaabHJqfFALDp6CnKqusdGotow8bG0aC0yyDUwmZzniKpMRE6KomQq/h0q1qfOL5PNNHBFmywCqCvhyNr1GOpD3I6kgiJ9jl4A1aj7hGB9I4JQm9QWHOw2KGxiFZUlcDuz9TjEbJkvlXGgumCnWqbAeHU6vUGlmaoiZBVRdK5m6C2HAIiPXubGScliZBoX3y6eusE+yNN6quOCq2UZfTOaeti0NdC16GQMNzR0TivkK4QnqLu5XfsN0dHI9qxKrOYkso6IoN8GdfHim0xmi2bl1+7zkb+RUT7ujUmQqeOQNVJh4ZinB5be+AEdQ0Gh8YiztFQB1sWqccX3iFL5tsjy+hdxmdb1SLpq9K7WbbBqpExEZL6IKckiZBon38XdedsUDujOtCg+DCign2prG1g01HHJmXiHPuWQWURBMVC2ixHR+P8TI0VpU7ImRU122DVimmxsjwo3gsaLaRMsHF0whYkERLmMe6afXCFQ8PQajVM6hsNIF2mnYmiwMbX1OMLbgMvH8fG4wqMiVDhHqg+5dhYRKu+yDiOQYFh3buQEhVk+QWMTRS7pUNAuG2DEzYhiZAwT9+Z6u3+b9WuwQ5krBP6aV8RioM2gxXnyN0M+dtB5wvDbnF0NK4hOEbdfgQFjq13dDSiBaeq6nh73VEAZltTJA0yLeYCJBES5kkao/YTqjrh8M0iR/eMxN9bR35ZDXvzyx0ai2i06XX1duA10izOEklSJ+TM/v7VHkoq6+gdE8Tlgy3cYBXUurkja9XjnpNsG5ywGUmEhHl03tBnunq872uHhuLnrWNML/WXrTRXdAJlx5u+J2TJvGVMBdNSJ+Rslu/K59tdBei0Gl64ZjC+XlZskpq7EeoqIDAK4gbbPEZhG5IICfMZp8cyv1FrQhxoUuPqMakTcgKbF4GiV0c3Yvs7OhrX0r2x9u5EJlSecGwswuRERS1/X6Z20r9rXAoD4kOtu5Bp2fwkWTbvxORfRpgvZTx4B0L5cbUexIEmpkaj0cDe/HLyS884NBaPVlcN295Rjy+U0SCLBUZATGPymC3TY85AURQe/XI3p6vrSYsL4e4Jvay/mKk+SLpJOzNJhIT5vP2b/kNnfuPQUCKCfElPVHd/lukxB9r1MdSUQlh36D3V0dG4JtMyekmEnMGyHXms3FeEt07DgmsG4eNl5a/J0lx1pE+jheTxtg1S2JQkQsIyaZept5lfO3x6bLJMjzmWosCm/6rHI/4EWitqKIQ0VnQiReU1zP9qLwD3TuhFWtcQ6y9mXDYfP1yWzTu5DidCNTU1fP3111RVVdkiHuHsel0COh84mQUn9js0FGOd0MYjJymvkU1YO92Rn9XvAZ8gGDLH0dG4ru6jAA2cPATlBY6OxmMpisK8L3ZRXtPAgG6h3DEupWMXPPSTettLVos5uw4nQp9//jlXXHEFH3zwgS3iEc7ON7ipO6qDp8dSooJIjgqkXq/wy0EpNO10GxuXzA+eA35WFpMKtXN73CD1OHudY2PxYJ9tPc7PB07go9PywuxBeFmzlYZRQ23TbvPSP8jpdTgRWrJkCT169GDx4sW2iEe4AtPqMccuoweY3FemxxyiJAsOrQQ0MOKPjo7G9fWQ7TYcKa/0DP9cvg+ABy7pTe+Y4I5dMGcD1FdBUAzEDrRBhMKeOpQIHT9+nLVr1/LRRx+RkZHBwYMHbRWXcGZ9poNGB4W74dRRh4ZirBP6eX8x9XrZhLXTrPuPett7CkR0cApBQNLF6q30E+p0ximxitoGhiSGcfuY5I5f9Oxl87L5sNPrUCL03nvvMWrUKC644AKmTJnCkiVLbBWXcGYB4U17j+1f7tBQhiR2ISLQh/KaBrYclf2aOsVv/wc73lePR93j2FjcRfeR6oeL09nqaiPRaT7YlMOvh0rw9dKy4JpB6LQ2SFxk2bxL6VAitGTJEubOnQvA3Llzef/9920SlHABxukxB3eZ1mk1TEht3IRVltHb367PYOWj6vGkJ5oSYtExvsHQdYh6LMvoO03uqWqe+S4TgL9OTbVuU9VznT4GJQfUxFaWzbsEqxOhjRs3kpuby+zZswG47LLLKC8vZ9WqVTYLTjix1EvV2+ObHb7S5ewu07IJqx0dXg3LGpsmjrgDRv/ZsfG4G1lG36kMBoWHPttJdZ2e4Unh3DIqyTYXNi6bTxgB/mG2uaawK6sToSVLlnDZZZcRHKwWlfn6+nLNNdfwzjvv2Cq2Fi1cuJCkpCT8/PwYMWIEmzdvbvP8zz77jNTUVPz8/BgwYADfffedXePzGCFxan8McPj02Jhekfh6aTl++gwHiiocGovbyt8Bn8wFQz30uxKmPCO1D7Z2dmNFSejtbsmGbDYdPYW/t47nrxmI1hZTYiDL5l2QVYlQbW0tn3zyCTfeeGOz++fOncvSpUuprKy0SXDn+uSTT3jggQeYP38+GRkZDBo0iClTplBcXNzi+b/99hvXX389t956K9u3b2fWrFnMmjWLPXv22CU+j3P23mMOFODjxUU91U1Yf9wr02M2d+oIfHA11FVCj4vhijdk3yR7SLwQtN5QlqvWCgm7OVpSxb9WqH3QHpmeSveIQNtcuL4GjjbuNi/L5l2GVT/NKioqeOmll5gyZUqz+8eMGcN///tfuyVCL774Irfffju33HILaWlpvPHGGwQEBPD222+3eP7LL7/M1KlT+ctf/kLfvn355z//ydChQ/m///s/u8TncYyJUPY6qHZsobJx9Zhst2FjlSfg/aug6gTEDIBrPwAvX0dH5Z58AiF+mHosdUJ29fS3+6ipNzAqJYLfjehuuwvn/Ab11RAc17SHnHB6ViVCkZGR3HjjjWhb+FT4u9/9jtjY2A4Hdq66ujq2bdvGpElNw41arZZJkyaxYcOGFp+zYcOGZucDTJkypdXzQR3tKi8vb/YlWhHeA2IHqDuPH3DslOOEvmrB9M7jZRSV1zg0FrdRWwkfXqOOCIUlwu8+B78ObDkg2mecHpNl9HbToDewPuskAH+b3td2U2Igy+ZdlMWJ0HvvvcepU61/+q+qquLJJ5/sUFAtKSkpQa/XExMT0+z+mJgYCgsLW3xOYWGhRecDPPvss4SGhpq+EhISOh68O+tr3HvMsdNj0cF+DE4IA2RUyCb09fDpjZC/HQIi4HdfQrDtP+CIc5xdMC11Qnaxv7CCM/V6gn29SIuzYWJffwb2LFWPZdm8S7E4EbrpppsYPnx4q3U2lZWVPPHEEx0OzFEeeeQRysrKTF+5udLTo03G6bHDq6HWsYXKsgmrjRgM8NXdcHgVeAfADZ9CZE9HR+UZ4oeDzhcqC9X9/ITNZeScBmBwYphtR4O2LVH/3UIToPc0211X2J1VU2PJycmMGjWKpUuX2jqeVkVGRqLT6Sgqav5LrqioqNWpuNjYWIvOB3X1W0hISLMv0YaoVIjoCfq6xi0XHMeYCP2WdZKq2gaHxuLSVj0Ouz5W+6DMfrepbkXYn7cfJDSuxpTpMbvIOKYmQkMTu9juovVnmrqtj3kQvHxsd21hdxYnQhqNhvfff5+HH36Y2bNnM3/+fHvEdR4fHx/S09Ob9SkyGAysWrWKkSNHtvickSNHntfX6Mcff2z1fGEFjcZpmiv2ig6ie0QAdXqDbMJqrQ2vwfqX1ePL/0+G+B3h7GX0wua2NY4IpXe3YSJ09mjQ4Dm2u67oFBYnQsaGdY8++ijLli3j5Zdf5oorrqCqqsrmwZ3rgQceYNGiRSxZsoTMzEzuuOMOqqqquOWWWwC48cYbeeSRR0zn//nPf2bFihW88MIL7N+/n8cff5ytW7dy99132z1Wj2KsEzr0o/rJyEE0Gg2TjJuwSp2Q5fZ9DT80/v+ZOB8G3+DYeDxVj8Z9x7LXSZ2QjRVX1JB76gwajTo1ZhP1NTIa5OI61Azk0ksvZePGjWRmZjJixAiOHDliq7hadO2117JgwQL+8Y9/MHjwYHbs2MGKFStMBdE5OTkUFDR1OR41ahQffvghb775JoMGDeLzzz9n2bJl9O8vyxptqusQCIlXd1s+/LNDQzFOj63eX0yDbMJqmTXPqrcX3A4X3e/YWDxZt3S1NqvqBBRnOjoat5JxrBSA3tHBhPh52+iiMhrk6qyaGjtbamoqmzdvpnv37lxwwQWsXGnfOpG7776bY8eOUVtby6ZNmxgxYoTpsTVr1pzX2fqaa67hwIED1NbWsmfPHqZPn27X+DzS2dNjDl49Nqx7F8ICvCmtrmdbYy2AMENlMRTvU4/HPSJLfx3Jy6dpemznR46Nxc1sb5wWG2qrabH6Gvj1RfV4zAMyGuSirJ4aO1tISAjLly/nj3/8IzfffLMt4hKuxpgIHfhOXXrtIF46LRP6qD2FZBm9BYyFuTEDIDDCsbEIGPZ79TZjCdTZv+zAU2wzFUqH2eaCxtGgkHgY/DvbXFN0OquWz/v7+593v0aj4ZlnnuGjjz5i7NixNglOuJDECyEwCmpKHV7kKZuwWsGYCCXL/12n0OsSCE+GmjIZFbKRugYDu/LKABsVSp89GnSx1Aa5MosTocWLF5s2Wm3J7NmzWb16dYeCEi5Iq4PUGeqxg6fHLu4dhY9OS/bJag4V22e7F7djTISMhbrCsbRaGPEn9XjjG2pvJ9Ehe/PLqGsw0CXAmx6RNthbTEaD3IaXpU/4+uv2l0hrNBpmzpxpVUDChfWdCdvegczlMH2Bmhw5QJCvFxf3DGfdgTzeWHOYF68d7JA4XEZpDpw+qvYNSpTWEk5j8A2w+ik4eUhtWCq7mXdIRk4poPYPOrfW1WIyGuRWLE6EZs2a1e45Go0GvV5vTTzClSVdDL6hUFUMx7eo02UO8lzg+4T5vs+MHc+wa3QSA+PDHBaL0zOOBnVLl73EnIlvMAyZCxsXwqbXJRHqIFMjRVtMi8lokFuxeGrMYDC0+yVJkIfy8oE+U9VjR06PVZ4gcv9HeGkMjNTu46nlmVIr1JYja9VbmRZzPsNvBzSQ9ROcOOjoaFyacWuNDneUPrtvkIwGuQWr+ghVV1eze/fuFh/bu3cvlZVSl+Gxzu4y7ajkY+eHYFBXriXpTrA5+xQ/7G19o12PpihSH+TMwntAn8aWH5vecGwsLiy/9AwFZTXotBoGJYR27GIZ70JFgYwGuRGrEqG6ujpGjBjB5s2bm92/b98+hgwZIomQJ0uZqDaDK8uBgh2d//qKora7bzQ6shqAZ7/fT12DFJyep+SQOsSv84WEEe2fLzrfhXeotzs/gjPSG8saxtGgvnHBBPhYXBHSpL4G1knfIHdjVSIUFhbGpZdeyrvvvtvs/vfee4+JEye2uampcHM+AU37U+3+vPNfP3sdnDps+mOy9ymign05drKadzdkd348zu5o47RY4gh1w0/hfJIugpj+UF+tjkYIixn7B6V3dFrs7NGgITIa5C6s3mLjpptu4pNPPqGhQd3lW1EUPvjgA9O+X8KDDWrco2rXJ53fXHHbO+ptglqorSvL4aFLegPwyqpDnK6q69x4nJ0xEeoh/YOclkbTtJR+8yLQNzg2HhdkWjHWkULp80aDfDsemHAKVidCU6dOxcvLi2+//RZQt7eorKw0a1WZcHM9J0JgtLpXUtZPnfe61acgs7G9w8S/q7c1ZVzdL5jU2GDKaxp4edWhzovH2Rn0cLSx+aUkQs5twDUQEAFlubB/uaOjcSk19Xr2NjZS7FChtIwGuS2rEyGdTsecOXNM02Pvvfce1157LT4+Mmfq8XTeMHC2erzjg8573Z0fgb4OYgeq0wkBkWo4Zbk8NiMNgPc3HuPwCalhA6Bwt9oJ3CdY3ThXOC9vv6ZtN6Ro2iK7jpfRYFCICvYlvsv5uyKYRUaD3FqHdp+/6aab+O6778jLy+OLL77gpptuslVcwtUNbpweO7ACqk7a//XOLpJOv1m9DUtUb0tzuKhXJBNTo2kwKDz73X77x+MKjKvFkkaDrgMFpKJzDLsVtF6QswHytzs6GpdhLJRO70gjxe3vyWiQG+tQIjRgwADS0tKYM2cOcXFxXHih4xroCScT0w/iBqnL2Pd0QtF0zkYoOaCuWBtwjXqfKRE6BsAj0/ui02r4KbOI3w6X2D8mZ3dU+ge5lJA46HelerxRRoXMZdpotXuYdRc4b4d5GQ1yNx1KhABuvPFGfvnlF2688UZbxCPcyeA56m1nTI9lNI4G9b+yqTvyWSNCAD2jg5gzQr3vqeWZ6A0e3GSxoQ6ObVCPpT7IdVzYWDS95wuoKHJsLC5AURS2G0eErC2U3v4eVOTLaJAb63AiNHfuXObPn8/vf/97W8Qj3En/q0HrDQU7oXCP/V7nzGnY+6V6PPTmpvu7dFdvGxMhgD9P7EWwnxf7CspZmnHcfjE5u7xtUF+lFuBGpzk6GmGubukQP1wdad36lqOjcXo5p6opqazDW6ehX1crGika9LD+FfV4zP0yGuSmOpwIhYeHM3/+fOkdJM4XGNG05cbOj+z3Ors+g4YaiO4H8cOa7g87PxGKCPLlngk9AXj+hwNU13noUmRTfdAYdadz4TqMDRa3vg0NtY6NxckZ64P6dwvFz9uKTaAP/qA2h/UPbxrhFm5HfgIK+zL+8LBXTyFFaeodlH6T2nPFyDg1dvpYs+0+bhqVREK4P8UVtfx37RHbx+QKjIlQskyLuZy+MyGkm9qeYs8Xjo7GqXW4keLmN9XboTeCt5UrzoTTk0RI2FfPSRAY1dhTaJXtr5+3DYr3gpdf05J9o9AE9bauotnWBL5eOh6Z1heAN385QmFZje3jcmZ11XC8cXscqQ9yPTpvuOA29Xjja47b088FZBwrBaxspHjiIBz5GTTaptYFwi1JIiTsS+cNA69Vj+1RNL1tsXqbNgv8z/lh5xOgNnaEZtNjANP6xzKsexfO1OtZsPKA7eNyZrkb1X5LId0gPNnR0QhrpN8MXv5qL6hjvzk6GqdUWdvA/sJywMpC6S3/U297T2uqNxRuSRIhYX+DrldvD3yvdn+2lZpy2LNUPTb2DjrXOSvHjDQaDY/OUEeFvsg4zp7GzrMewbTb/NjmU4nCdQSEw6DGDxgbX3NsLE5qV24pBgW6hfkTE2LhPnq1FbDjQ/V4+G22D044FUmEhP3F9m/qKWTLjVh3f6ZuRBnZBxJb6WF1Ti+hsw1J7MLlg7uiKPDUt/tQPGWK4Yj0D3ILIxqLpg98p9bBiWaa+gdZMRq06xN1Sj2iF/QYZ9O4hPORREh0Dnv0FDL2Djq3SPpsrYwIGf11aiq+Xlo2HjnF6v3FtovNWZ0phYId6rEkQq4tOhWSx4NiaCrqFSbGFWNDE8Mse6KiqJvbAgy/XVZVegD5Fxadw9RTaAcU7e349fK3q/2JdD4w8LrWz2uhl9DZuoX5c/PoJABe+umQ+48KHVuv/uKM6Amh3Rwdjego41L6jPfUqWIBgMGgmHact7g+KPtXOLEffIKapvWFW5NESHSOwAjoPUU9Ns69d4RxX7G+l6nXbk07I0IAfxiTTICPjt15Ze4/KmSqD5LRILfQc7Ka1NaWwYfXqrUtgiMlVZSdqcfPW0vfuBDLnmwcXRt0XVOXeuHWJBESncfUU+jTjvUUqq1U64NAnRZri7Gp4jm9hM4WEeTLjSOTAA8YFTq7UFq4Pq0WZr0BviGQ8xu8O0ud/vRwGY31QQPjw/DWWfBrrjQX9n+rHl9wux0iE85IEiHReXpNhoBIqCruWE+hvUuhrlJd+p00pu1zjb2E6qvaXLF2+5ge7j8qVFkMxfvU4/b+3oTrSLgAbvpabR+RtxWWzISqk46OyqEyrN1fbNtideq4x8VqDZbwCJIIic5jq55Cpk7SN7e//NvbD4Iat39pYeWYUUSQL3NHqqNHL69y01Eh42hQ7IC2pxOF6+k6BG5arn7QKNwF78zw6E1ZTSvGLOkoXV/T9LNl+B9sH5RwWpIIic41+Ab19uAK63oKFe5Wu0lrvWHQDeY9x4w6IVBrhfy9dew6XsbPB9xwVOiocdm8TIu5pdj+cMv3EBwHJzLhnelQlufoqDpdWXU9h4orAQtXjO1bBtUn1V3me0+zS2zCOUkiJDpXbH+IHah2NrZmnyRjkXTqDAiKMu85bfQSOltEkC83jlJHhdyyVkgKpd1fVG+45Tt1SvhkFiye5tI9ht7feIxr/7uBQ0XmF4Fvz1VHg5IiAogIsmC3eOOS+WG3gM7LkjCFi5NESHQ+a3sK1VWrhdbQfpH02dpZQn82tx0VOn0MTmeDRgfdRzk6GmFP4cnqyFCXHmryv3ganDzs6KissvDnLDYdPcV1b25kX7557QEyrGmkmLdNra/S+cBQC362CLcgiZDofAOuUae28rdD0T7zn7f7U3WZcFh3y7q9mjk1Bm48KmQcDeqWDr7Bjo1F2F9YgpoMRfaG8jw1GSre7+ioLJJXeoaCxg2RT1bVcf2ijezMLW33ecb+QRbVB21u3Fes35XmjzQLtyGJkOh8Z/cU2tlOTyFFgcOr4f2r4Js/q/cNvdGybq/GRMjMKQK3HBWSaTHPExIHN38HMf2hskitGSrY5eiozGYseO4TE8zQxDDKztTzu/9tYmt267WFeoPCdktXjFWVNE3TS5G0R5JESDiGsWh65yegbzj/8foatVvu66PgvSsg6yfQaNVPbMZuuuYKO2tqzIwRHrcbFVKUpkLpZCmU9ihBUXDTN+qqsuqTsORSOL7N0VGZZVtjwjOqZwTv3jqCET3Cqaht4Ma3N/Pb4ZIWn3OwqIKqOj1Bvl70jjFz5DPjXdDXQtehEJ9uq/CFC5FESDhGr0uaegodPqunUFUJrPkXvNQfvr5b7XvjE6RuMHlPBlyzGHwCLXut0HhAAw1n1Oubwa1GhUoOqiMCXn4QP9zR0YjOFhAON34FCSOgpgzevdwlaoa2NY7sDOseTpCvF+/cMpwxvSKprtNzy+ItrGnh/6VxFGlwQhg6bTutNUD9ELb1bfVYRoM8liRCwjF03jBwtnq84wO1fuHre+HFNFjzDFSdUJexTv4n3L8Xpj0H4T2sey0vX3VJMZhVJwRuNipknBZLGKH2VRKexy8UfrcU4i9Qd1Xf+LqjI2pTVW0DmQXqSjHjFJe/j45FNw5jUt9oahsM3P7uVlbuLWz2PNNGq+ZOix1cAWW5EBAB/a6w3RsQLkUSIeE4xumxfV/DayPU3eT1teow/lVvwZ93wOh7wT+s469lKpjONvspZ48KrTlwouMxOMqRNeqt1Ad5Nt8gmPCYerzzI6fepHVnbil6g0K3MH9iQ5uSdz9vHa/NSWf6gFjq9Qp3fpDBNzvzTY+bVoyZ2z/IuK/Y0BvlQ4IHk0RIOE7sALWnEAqggb4z4ZYVcPvPMOBqddTIVixYQm+k7kFmHBU66JqjQgY9ZK9Tj6WRougxVl1JVlcJuz5xdDSt2nqs9YJnHy8tr1w3hCuGdKPBoPDnj7fz+bbjnKysJftkNQBDzFkxduKAWjun0cKw39s0fuFaJBESjnXVW+r0170ZcO370H1k+9tmWMOCJfRnu/1idVRop6uOChXugppS8AlWR9qEZ9NommphNr9p1uIBRzAmQsOSWk5ovHRaXrhmENddkIBBgYc+28k/vtoLQK/oIEL9zfgQtaVxyXyf6U0/H4RHkkRIOFZUb3X6KzzZvq9jZSIU6eqjQsb6oKTR0i1XqAZdpybGJQebVhM6EYNBYbsZe4VptRqeuWIAN49KAuDb3QWAmcvma8phR2PrjuGyy7ynk0RIeAYLewmdzWVHhQwG2LtMPZZpMWHkGwyDr1ePjdtKOJGDxRVU1DYQ6KMjNbbtJfBarYb5M9P449imD1JmNVLc9Yk6PRjZW/5vCEmEhIcw9hIqy7V4OsBlR4W2vgX5GWr7gX6zHB2NcCYXNI6CHPjO4lFSezMtgU8Mw0vX/q8ojUbDvKmpPDajLxNSo5k6ILbtJyhK07TYBbfbZypeuBRJhIRnCOmmFkU21ECl5X2BXG5UqOw4/PSEejxxPoR0dWw8wrlENY6EKIamPjpOYlu2sVA63OznaDQabhuTzNs3X0CIXzv1Qbmb4MR+8A5QpwmFx5NESHgGLx8IbkwGrPgE7FKjQooC3z6o9ouJHw4X3OroiIQzMhZNb1uidnJ3Etss3SLD4hdYot72vxL8QuzzGsKlSCIkPIepYNryOiFoPiq08Ujr+x053N6laqM4rTdc9ipodY6OSDij3lMhNAHOnFK/Z5zAiYpajp2sRqOBIeb2ArLEmVLY+6V6PPRm219fuCRJhITnMPUSsi4RigzyZWp/tf5g81EzEqHi/bDxDdDXW/V6Vqk+Bd/9VT2++CGITu281xauRefV1D/H2FjQwc7eaLXdKS5r7P5M3Wonuh/ED7P99YVLkkRIeA4rl9CfbUC3UAB255W1f/LS22DFw/DbK1a/nsV+eBSqSyCqL1z0QOe9rnBNQ28EnS/kb3eKzVi3HVM/YNhlWkxRYOti9Tj9JimSFiaSCAnPYYNEaGC8MREqbfvEEwegcLd6/Nv/QW2F1a9ptsOrYeeHgAYue0WtixKiLYGR0P8q9dgJRoW2tdFRusPytkHxXnXzYeM+h0IgiZDwJB3oJWSU1jUErQaKymspLm+jwHTPF03HZ07Zv19LXRV8c596PPwPkCC7zAszGRsK7l0KlY5bEVlTr2dPnrr/2TALVoyZbds76m3aLPC3UyG2cEmSCAnPcXYvIYPBqksE+HjRMzoIaGN6TFFg9+fqcc/J6u1vr0JtpVWvaZafn1Frn0ITYOLf7fc6wv10Gwrd0kFfp2587CB78sqo0xuIDPIlIdzfthevKW/6cJJ+s22vLVyeJELCc4R0A41O/YFfWWT1ZQZ0CwPaSIQKdsKpw+oQ/FX/g/AUdVRoi51GhfK2wcbX1ONL/6N2DhbCEsal9FvfBn2DQ0Iw7S/WvQsaW9fv7Pkc6qshsg8kXmjbawuXJ4mQ8Bw6LzUZAqtXjgEM6Kb2Htl9vJVEaE/jaFDvqeAfBmMbV3Gtf8X2o0L6evj6XrUx3oBroNdk215feIa0WRAQCeV5ardpB7BrfZBxWkyKpEULJBESnsW0hL4DK8fiw4BWRoQMBtjT2KfEWITa/2r7jQqtfxmK9oB/OEx9zrbXFp7D209NEsAhRdOKopBhTIRa2XHeavnb1VFanQ8Mut621xZuQRIh4Vk62FQRIC1OLZgurqil6NyC6dxNUH5c3d271yXqfTovuPgv6rEtR4VKDsHaf6vHU59TVwAJYa1hv1e3ocn+FYozO/Wls09Wc7KqDh8vLf262rjbs7GTdN/LIMAORdjC5UkiJDyLDZbQ+/vo6B2j1uGcNz1mLMjse6n6KdtowDUQnmy7USGDQZ0S09dCz0myHFh0XGg8pM5Qj42bknaSrdlq/6BB8aH4etmwE3ptZdPCBSmSFq2QREh4FhssoQfo39hYcdfZ02P6Bti3rPGEq5s/QecFF9uwVijjHcj5DbwD1QJpqXsQtmAsmt7xEdSY0TTURjIa9xcbauv6oL1L1T33wlMg6SLbXlu4DUmEhGcJ63iNEJzVWPF4adOd2b9A1Qm1Xid57PlPstWoUHk+/DhfPZ7496bkToiOShoDUalQXwU7P+60l92abVwxZuOpK+O0mBRJizZIIiQ8izFpKDsOBr3Vl+lv2mqjvGkn+t2N02L9ZoGuhX2Szh4VsravUG0lfHEb1JZDt2FNn+CFsAWNBi64TT3e/KbV/bYsUVZdz6Fi9f/CUFtutFq4G/K2qpsPD7rBdtcVbkcSIeFZguNA6wWGeqgotPoyaXEh6LQaSiprKSyvgYZayPxGfdC4WqwlxlGh6pOW12HUlMF7V8Cx9Wox9uX/JzvLC9sbdJ36/XUyC46usfvLGafFkiMDiQjytd2FjaNBqTMgKMp21xVuRxIh4Vls1EvIz1tHL2OH6eNlkPUT1JapiVbiqLZf3zQqZEGtUPUpWHIZHN8MfmFw01cQ3dfq+IVolW8wDG4cQbH31jA09Q+yaX1QXTXs+lQ9NrYFEKIVkggJz2ODXkJw9gasZU2rxfpdCdp2/ltZOipUeQLeuRQKdkBABNy8XN0SQQh7MU6PHfgeivba9aW2Nu44P6y1RMiaKex9y9QPJmHdocc4a0MTHkISIeF5bLCEHmBAY53QgdxC9RcGwIA2psWMzu4r1N6oUHk+vDNd3TU7KBZu/g5iB3QobiHaFdUbek0BFHjvSjh52C4vU683sDNXXZ12Xkfp2gr48Fp4LhF++z/LEiLjtNjQG9v/YCI8nnyHCM9jWjnWsSX0xg7TEcdXq/sYdekBXYea+eTZ6vltjQqV5sDi6VByEELi4ZbvIDq1QzELYbZZr0N0GlQWwruXd/iDQ0syC8o5U68n1N+blKigpgcqCtXv/YMroK4SVj4Ki6dBSVb7Fy3OhNyN6r6CQ35n85iF+5FESHgeYyLUwV5CqbHBeGk1TGj4Vb2j/1XmL9HVeTXtQfbbK+w9ms8rqw5RU9/4qffkYfUXwemj0CVJTYIiUjoUrxAWCYyAG7+CiJ5QlqvWqJUX2PQlTPVBiWFotY3/d0oOwVuToXAXBEbB+EfV4u3cTfDGaNiwsO3RoYx31ds+0yA41qbxCvckiZDwPDaaGvPz1jE0SsNY7Q71jrZWi7XkrFGhDZ/8mxd/PMhrP2fBiQNqElSWCxG94Jbvm+qahOhMQdFw49fqh4fTR+Hdy9SaNRsx7Tif1Ng/KHezmgSV5qh1dLeuVD8w3LkBksdBQw388LfGkdIWRofqa2DnR+qxdJIWZpJESHgeYyJUnqd2g+6Aa4J24KPRc8I/BWLSLHvyWaNCV5z5HH9qWLfuZwxvT1enI6L7qSNBIV07FKMQHRLaDW76Rl1tWXIQ3pulrmK0gQzTiFAXyFwOS2bCmdPqYoBbf1STIYCwBJi7DC59CXyC1KmvlkaHMr9Rnx+aACkTbBKjcH+SCAnPExyrNlkzNEBFx4b6R9esBWCNzxjrLjBgNmX+CURoKnjS6x3e1jyJ9kwJxA1SV4cFRXcoPiFsokt3NRkKioGiPfD+lR3egiOv9AwFZTXotBrST3wJn85VR3x6TVFf69xNhDUaGHZLy6NDxmLube+ot0PmSo8tYTZJhITn0erUT5jQsYLpymLiTm0C4L2KYU0dpi2h8+I9n2sAuMbrF8I0VWxXelF8xWeyU7ZwLhEp6jRZQATkb4cPrunQnnlqfZDCM6HL8FnxICgGdZXXdR+CT2DrTwxLbBwd+k/T6NDro9VtZ46tA41WiqSFRSQREp7JFnVC+75CoxjYaUhhV3U4eaVnLL5ESWUtLxUPIdsQA8Be7/78rnYer/5muzoMIWwmOlVNQvxC1eLlj66Desu/7wG2Hy1mgfd/ufbMJ+od4x6Bma+oU8bt0Whg2O/V0aEeY6HhDKx/SX2s1yXqdJ4QZpJESHgmWyRCuz8HYHPQeAD25Fk+VfDTviIaFB0LuvwDLnmayqs/oQp/Pt6SQ+6pautjE8Je4gbC775UV3Jl/wqf/E7dYsYStRVcuvd+rtb9gkGjUxOgcfMs3xg1LFFd2WYcHQIYfrtl1xAeTxIh4ZmMiZC1S+hLc9UheTSUdJ8OwK7jlidCK/cVAdBn4AgYdTcj+sRzUc9I6vUKL686ZF1sQthbfDrM+RS8A9TtZT7/PejrWz/foIeqk+rS+GO/oV88g/T6DKoVX0ove6dj22AYR4fu2Qa3rYaek6y/lvBILpMInTp1ijlz5hASEkJYWBi33norlZWtz0+fOnWKe+65hz59+uDv709iYiL33nsvZWUdK/ATbiIsSb21dkRo71L1tvtoEpN6Ao1bbVigsraBdVklAEzp39Tv5KEpfQBYmnGcwyesr8EQwq66j4LrPwKdL+xfrk6TrXgElv5RrR9aNBFeGQLPdYcnI+D5ZPi/YbB4GrrCnZxUgrnX90nCh1xmm3iCY9UETQgLuUwiNGfOHPbu3cuPP/7I8uXL+eWXX/jDH/7Q6vn5+fnk5+ezYMEC9uzZwzvvvMOKFSu49dZbOzFq4bQ6OjVm3Fus/5UM7BYGqImQJQXTaw+coK7BQFJEgGkDV4DBCWFM6huDQYH//HjQuviE6AzJ4+Da99VVmFk/wcbXYNfHcGgl5G2FU0egphRo/H/hGwJh3TnWZSRX1T1OQI8RDgxeCJUZVWmOl5mZyYoVK9iyZQvDhg0D4NVXX2X69OksWLCArl3P77PSv39/vvjiC9OfU1JSePrpp/nd735HQ0MDXl4tv/Xa2lpqa5vmu8vLy238boRTOLeXkDkFmkYlWVCwU23hnzaL3r5BeOs0lFbXc/z0GRLCA8y6zMp9hQBc0i8WzTm1EQ9e0pufMotYvquAO8eVk9Y1xPz4hOhMvS9R63T2LlVXe/mHqysez7vtAjpvAP7x9mayC05wiy13nBfCSi4xIrRhwwbCwsJMSRDApEmT0Gq1bNq0yezrlJWVERIS0moSBPDss88SGhpq+kpISOhQ7MJJBcWoQ/qKHsqPW/Zc42hQyngIjMDXS0dqrJqomDs9VtdgYPX+YgCm9Is57/G+cSFcOjAOgBd/PGBZfEJ0sucPRDBo6xRuy7+Mj3yupKjnbOh7qTp9Fp2q9sNqTIIMBoWMHLWR4nkbrQrhAC6RCBUWFhId3byxnJeXF+Hh4RQWFpp1jZKSEv75z3+2OZ0G8Mgjj1BWVmb6ys3NtTpu4cS02rN6CVkwPaYosEddLUb/q013D4hXd6I3t2B609GTVNQ0EBnky+CEln8Z3D+5N1oN/JRZzPbGXxxCOJszdXreXpdN2Zl6fsos4pGluxnxzCouffVXXvzxIDtzSzEYmqaMDxVXUlHTQICPjtTYYAdGLoTKoYnQvHnz0Gg0bX7t37+/w69TXl7OjBkzSEtL4/HHH2/zXF9fX0JCQpp9CTdlTZ1Q0R51mwGdL6TOMN09oJuaCJm7hP6HvWoCPzktGp225SXDKVFBXDU0HoAXVkqtkHBOaw8Wc6ZeT7cwfx6c3JshiWFoNLAnr5xXVh3i8oXrGf7MKv7y2U5W7Cngl4Nqj6whiWF46Vzis7hwcw6tEXrwwQe5+eab2zwnOTmZ2NhYiouLm93f0NDAqVOniI1te3fhiooKpk6dSnBwMF9++SXe3t4dDVu4C2sSoV2fqre9LwG/piTZmAgZC6bPrfk5m8Gg8GPjsvlL0tr+/r13Yi+W7chjXVYJGw6fZGRKhPmxCtEJvtutJvUzBsZxz8Re3DOxFyWVtaw5cILV+4v45WAJJZW1fLbtOJ9ta5qGTk+UaTHhHByaCEVFRREVFdXueSNHjqS0tJRt27aRnq4uj1y9ejUGg4ERI1pfdVBeXs6UKVPw9fXl66+/xs/Pz2axCzcQ1riju7m9hHI3w8bX1eMBs5s91DsmGB+dlrIz9eSeOkNiROsF07vyyigqryXQR8eonm0nNgnhAVx3QSLvbTzGgpUH+PxPI9tMsoToTDX1elZlqkn9tLNaQEQG+XJ1ejxXp8dT12BgS/YpVmUWs2p/EcdOqo1Cx/Zp/2e/EJ3BJcYl+/bty9SpU7n99tvZvHkz69ev5+677+a6664zrRjLy8sjNTWVzZs3A2oSdMkll1BVVcVbb71FeXk5hYWFFBYWotfr23o54SksGRGqKIRP5oKhHtIuh74zmz3s46Wlb5xa77Arr7TNS61snBYblxqNr1f7G0PePaEnvl5ath07zZqDsvWGcB6/HDxBVZ2erqF+DE4Ia/EcHy8to3tG8o+Zaax5aByrHhzLN3dfRHp32UtPOAeXSIQAPvjgA1JTU5k4cSLTp0/noosu4s033zQ9Xl9fz4EDB6iuVj9tZGRksGnTJnbv3k3Pnj2Ji4szfUkBtACaRoTaS4Qa6uDTm6CyEKJS4fKFLW4F0P+s6bG2GOuDLkk7f7VYS2JC/LhpVBIAL6w8YN3mrkLYwfd71O/laQPizBqp1Gg0pEQFmRYXCOEMXKKPEEB4eDgffvhhq48nJSU1+wUxbtw4+YUh2mYcEarIV5MdL5+Wz/vhb+p2Gr4hcO0H4NvySpeB8aF8sAl2t7FyLKu4ksMnqvDWaRifGt3qeef609gUPtyUw568clbsKWTagDiznyuEPdQ26PmpsdZt+oC2a92EcGYuMyIkhM0FRYOXHyiG1nsJ7fgQtixSj69cBJE9W71c/3MKpltiLJIemRJJiJ/5hfvhgT78/qIeALzw40H0BknyhWOtzyqhoraBmBBfhrTSAkIIVyCJkPBcGk3bdUL52+Gb+9TjsfOgz9Q2L9c7JhgfLy0VNQ2mgtBzmbpJmzktdrbbxvQg1N+brOJKvtqRZ/HzhbClb3c1Tov1j0PbSgsIIVyBJELCs7WWCFWVqMXR+lroPRXGPtzupbx1WvrGqUvqd7VQJ1RUXsP2nFIAJluRCIX4efPHsckAvPTTIer1BouvIYQt1DUY+HGfMRGSaTHh2iQREp6tpURI3wCf3wJluRCeAle+qXaiNsPANhorGqfFhiSGERNiXSuHm0clERnkS86par7bXWDVNYToqN8Ol1Be00BUsC/DkmT1l3BtkggJz9ZSL6FVj8PRX8A7EK77APzMX+FibKy463jpeY+tNLOJYlsCfLy4Ybi6Ncg3O/Otvo4QHfF9YxPFqf1iW+2MLoSrkERIeLZzR4T2fAG/vaoez3oNovtadDnjsuC9eeXN9lcqr6lnw+ESAC5pYZNVS8wcpPbOWnvwBGXV9R26lhCWqtcb+ME4LSarxYQbkERIeLazewkV7YWv7lb/PPo+6DfL4sv1ig7C10tLRW0D2SerTPf/vL+Yer1CSlQgKVFBHQq5V0wwqbHB1OsVVuyV6THRuTYeOUlpdT0RgT4Ml2kx4QYkERKezdRLqAA+vgHqqyF5PEz8h1WX89JpSeuqFkyf3VjROC02pZ9tPkEbR4W+lukx0cmMe4td0i9WNk0VbkG+i4VnC4wE7wBAgdPZamJ09dugbX/ri9aYNmBtbKxY26BnzX510+BLbJQIXdaYCG04fJLiihqbXFOI9jToDaYtYqSJonAXkggJz3Z2LyEvP7j2fQjo2HD/gHO22vgt6yRVdXpiQnxNq8o6KiE8gMEJYRgU+G6XTI+JzrE5+xQnq+roEuDNhcltbxgshKuQREiIxJGg0cJlr0LcoA5fzlQwna8WTDc1UYy1aeM546jQN5IIiU5ibNlwSVos3jItJtyEfCcLMeMFePAADJxtk8v1jArCz1tLZW0Dh09UmvoHdXS12LlmDIxDo4Ftx05z/HTLnayFsBW9QWHFHvV7WVaLCXciiZAQWp2675iNeOm0pDV2mH53wzFKKusI9vNiRA/bTiXEhPhxYeM1l8uokDDD1uxTvPjjQapqG6x6bkllLSF+XoxKibRDdEI4hiRCQtjBwPgwAD7eovYnmpAajY+X7f+7mVaP7ZDVY6JtiqJw/6c7eGXVIf788Q6LN+79fo86xTs5LdYu38tCOIp8NwthB8ad6Ov16i8bWy2bP9e0/rF4aTXsKygnq7jSLq8h3ENGzmlyT50B4KfMIv69Yr/ZzzUYFL7fo446zhgo02LCvUgiJIQdDIxvWh3m46Xl4t5RdnmdLoE+jOmlTlPIlhuiLcu2q98fyVGBAPz3lyN8siWnraeYZOScpqi8lmBfL0b3lGkx4V4kERLCDlKigvD3VnsRXdQzkiBfL7u91mWDjavH8lEUy6Y7hGeo1xv4tnHF1/yZ/fjzxF4APPrlHjYcPtnu841NFCelxeDrZX2PLSGckSRCQtiBTqthcEIYAFP723cqYXJaLL5eWo6cqGJvfrldX0u4pnWHSjhVVUdkkA+jUyK4b1IvZg7qSoNB4Y4PtnG0pKrV5549LTbNzt/LQjiCJEJC2MnTV/TnmSsGcPXQeLu+TpCvFxP7qqvevtkl02PifMt25AFw6cCueOm0aDQanr96IIMTwiitrufWd7a0uoHvzuOlFJTVEOijs9sUrxCOJImQEHaSHBXEDSMSbdpEsTUzB6rTY8t3FjTb9V6IqtoGVu5V+//MGtLNdL+ft443b0ynW5g/R0qquOODbdTrDec939hEcULfGPy8ZVpMuB9JhIRwA+NTowny9SKv9Azbc087OhzhRH7cV8SZej3dIwIYFN98i5foYD/+d9MwAn10/Hb4JP/4am+zOjNFUUz1QTOkiaJwU5IICeEG/Lx1XJKmdq6WnkLibMZpscsHd0OjOX90sm9cCK9cPwSNBj7anMPb67NNj+3OKyOv9Az+3jrG9rZd01EhnIkkQkK4iZmNq8e+3V1AQwtTHMLzlFTW8uuhEgBmNX5/tGRi3xgend4XgKe+3ceqTHUqzTgaNCE1Gn8fmRYT7kkSISHcxEU9I+kS4E1JZR0bj5xydDjCCXy7qwC9QWFgfCjJUUFtnnvrRT24fngiigL3frSdzIJyU32Q7C0m3JkkQkK4CW+dlmkD4gBprihUZ0+LtUej0fDk5f0YlRJBVZ2eGxZtJOdUNb5eWsb3kWkx4b4kERLCjRhXj32/p4DaBr2DoxGOlHOymu05pWg1MHNgnFnP8dZpeX1OOsmRgZxuXE4/vk80gXZsCCqEo0kiJIQbGd4jnJgQX8prGvj1YImjwxEO9FXjaNColEiiQ/zMfl5ogDdv3XwBof7eAMwwM4kSwlVJIiSEG9FpNcwY0LgjvUyPeSxFUc6aFmu9SLo1PSID+fxPI3nuygHMGCCJkHBvkggJ4WaMe4/9uK+I6roGB0cjHGFvfjmHT1Th66W1eouXXjHBXDe8cxqCCuFIkggJ4WYGxYeSGB7AmXo9qzKLHR2OcIBl29XRoEl9Ywj283ZwNEI4N0mEhHAzGo2GmYNk9Zin0hsU07SoNdNiQngaSYSEcEMzB6m/ANccOEHZmZY30xTuaeORkxRX1BLq7804WfYuRLskERLCDaXGhtA7Jog6vYGVewsdHY7oRMZpsekD4vDxkh/xQrRH/pcI4aaMPYXssXqsuLyGnw8UN9ugUzheTb2eFXvUxFemxYQwjyRCQrgp4/TYb4dPUlJZa9Nr3/vxdm5ZvIUfZLTJqfy8v5iK2ga6hvoxPCnc0eEI4RIkERLCTSVFBjIwPhS9QeH7xj2jbKGg7IxpL7NvdtruuqLjjL2DZg7uKsvehTCTJEJCuLFLG7sCf2vDRMg49QLw84FiauplKw9nUFZdz8/7TwAwy4y9xYQQKkmEhHBj0xu7Am86eori8hqbXPP73U2JUHWdnl8PyVYezuD7PQXU6Q30iQmmb1yIo8MRwmVIIiSEG4vvEsCQxDAUBb7f0/F6nuLyGrYcU6fFpvSLAZqPEAnHMW2pMUSKpIWwhCRCQrg5415R3+7q+PTYir2FKAoMTgjj96N7APBTZhH1ekOHry2sV1B2hk1H1QT1skGSCAlhCUmEhHBzxumxLcdOUVjWsemx7xprjWYMiGNYUjiRQT6Unaln45GTHY5TWO/rHfkoClyQ1IX4LgGODkcIlyKJkBBurmuYP8O6d0FRmhIZa5yoqGVz46jD1P6x6LQaJqepG3rK9JhjfbXDuKWGFEkLYSlJhITwADNssHps5b5CDAoMjA8lIVwddTDubP7D3iL0Bmmu6AiHiirYV1COl1ZjmgYVQphPEiEhPMD0AXFoNLDt2GnyS89YdQ3jarFp/Zt+2Y5MjiDYz4uSylq255y2SazCMl82bqkxrk8UXQJ9HByNEK5HEiEhPEBMiB8XNHYatmZ67FRVHRsa64CmD4g13e/jpWVSX3X1mC1WpQnLbM85zVvrjgIwa4hMiwlhDS9HB+Au9Ho99fWyy7cn8vHxQat1/s8Ulw6MY/PRUyzfVcBtY5Iteu7KvYXoDQr9uobQPSKw2WNT+sXy5fY8Vuwp5LEZfdFopKNxZ8grPcPt726jtsHAxNToZiN1QgjzSSLUQYqiUFhYSGlpqaNDEQ6i1Wrp0aMHPj7OPS0xtX8sj3+9lx25peSeqjbV+Zjju8bRnukt1KCM7R2Fv7eOvNIz7M0vp3+3UJvFLFpWWdvAre9soaSyltTYYF6+fgg62VJDCKtIItRBxiQoOjqagIAA+TTsYQwGA/n5+RQUFJCYmOjU//7RwX6M6BHBhiMn+W53AX8cm2LW80qr6/gtS+0ePa1/7HmP+/voGNcniu/3FLJiT6EkQnamNyjc9/F29hdWEBnky1s3X0CQr/woF8Ja8r+nA/R6vSkJioiIcHQ4wkGioqLIz8+noaEBb29vR4fTphkD49hw5CTfWpAI/biviAaDQmpsMMlRQS2eM7V/rJoI7S3koSl9bBmyOMdz32fyU2YxPl5aFt2YTrcwf0eHJIRLc/7CBidmrAkKCJAGZp7MOCWm1zv/5qNT+8ei1cCu42XknKw26znG4uq2alDGp0bjrdOQVVxJVnGFTWIV5/t4cw6LflWLo1+4ZhBDErs4OCIhXJ8kQjbgzNMhwv5c6d8/MsiXUSmRACzfnd/u+WVn6lnXOC02Y+D502JGIX7ejO6pXleaK9rHb4dLeGzZHgDun9SbmbKVhhA2IYmQEB7G1FzRjL3HVmUWUa9X6BUdRM/o4DbPNdYPrdgriZCtHTlRyR3vZ9BgULhsUFfundjT0SEJ4TYkERIuY82aNWg0mjZX6Gk0GpYtW9ZpMbmiKf3U7TH25pdztKSqzXO/MzZRNKNj8aS+MWg1sCevnNxT5k27ifaVVtdx65KtlJ2pZ0hiGP++eqBLjUIK4ewkEfJQhYWF3HPPPSQnJ+Pr60tCQgIzZ85k1apVNn2dcePGcd9999n0mm0pKChg2rRpHbpGTU0Nd911FxEREQQFBXHVVVdRVFRkowgdLzzQxzSN9e2u1qfHKmrq+eXQCaB5E8XWRAT5MryH2rTxBxkVsol6vYE73s/gaEkV3cL8eXPuMPy8dY4OSwi3IomQB8rOziY9PZ3Vq1fz/PPPs3v3blasWMH48eO56667Oj0eRVFoaGiwybViY2Px9fXt0DXuv/9+vvnmGz777DPWrl1Lfn4+V155pU3icxaXNo7wLG9jemz1/mLqGgwkRwbSJ6btaTGjqf2Me49JItRRiqLw92V72HDkJIE+Ot66eRhRwR373hZCnE8SIRtSFIXqugaHfCmK+Rte3nnnnWg0GjZv3sxVV11F79696devHw888AAbN240nZeTk8Pll19OUFAQISEhzJ49u9nIyOOPP87gwYN57733SEpKIjQ0lOuuu46KCnXV0M0338zatWt5+eWX0Wg0aDQasrOzTVNc33//Penp6fj6+rJu3Tpqa2u59957iY6Oxs/Pj4suuogtW7ZY9G9w9tRYdnY2Go2GpUuXMn78eAICAhg0aBAbNmxo9fllZWW89dZbvPjii0yYMIH09HQWL17Mb7/91uzvxtVd0i8GL62G/YUVZBVXtniOcbWYuk+ZeVMxlzQmQluPnaa4osY2wXqot9Yd5eMtuWg18OoNQ0iNDXF0SEK4JekjZENn6vWk/eMHh7z2vienEODT/j/nqVOnWLFiBU8//TSBgYHnPR4WFgaojQKNSdDatWtpaGjgrrvu4tprr2XNmjWm8w8fPsyyZctYvnw5p0+fZvbs2Tz33HM8/fTTvPzyyxw8eJD+/fvz5JNPAmrPnezsbADmzZvHggULSE5OpkuXLvz1r3/liy++YMmSJXTv3p1///vfTJkyhaysLMLDw63+u3n00UdZsGABvXr14tFHH+X6668nKysLL6/z/762bdtGfX09kyZNMt2XmppKYmIiGzZs4MILL7Q6DmcSFuDDmF6R/HzgBN/uKuDPk3o1e7yqtoE1B9RpsWlmTIsZdQ3zZ1BCGDtzS1m5t4jfXdjdpnF7gqraBj7fdpynv8sE4NEZaUxIjXFwVEK4LxkR8jBZWVkoikJqamqb561atYrdu3fz4Ycfkp6ezogRI3j33XdZu3Zts1Eag8HAO++8Q//+/RkzZgxz58411RmFhobi4+NDQEAAsbGxxMbGotM11Tc8+eSTTJ48mZSUFHx9fXn99dd5/vnnmTZtGmlpaSxatAh/f3/eeuutDr3nhx56iBkzZtC7d2+eeOIJjh07RlZWVovnFhYW4uPjY0oIjWJiYigsdK/pnhkD1eXX37awjP7nA8XUNhjoHhFAWpxlIxHG1WMyPWY+g0FhfVYJD3yyg2FP/cT8r/eiKHDDiER+PzrJ0eEJ4dZkRMiG/L117HtyisNe2xzmTqFlZmaSkJBAQkKC6b60tDTCwsLIzMzkggsuACApKYng4Kb6kbi4OIqLi816jWHDhpmODx8+TH19PaNHjzbd5+3tzfDhw8nMzDTreq0ZOHBgs/gAiouL200G3d3ktBh8dFoOFlVysKiC3mfVAX1vXC3W3/xpMaMp/WJ57vv9bDh8ktLqOsICnHsPNkc6cqKSLzKO82VGHvllTVOJPSIDufaCBG69qIesEBPCziQRsiGNRmPW9JQj9erVC41Gw/79+21yvXO3lNBoNBgMBrOe29LUnD2cHaPxl0prMcbGxlJXV0dpaWmzUaGioiJiY82fInIFof7eXNw7kp8yi1m+q4AHJquJ0Jk6Pav3q8msOavFztUjMpDU2GD2F1awKrOYq9LjbRq3qyurruebXfl8kXGc7TmlpvuD/byYOagrVw2NZ2himCRAQnQSmRrzMOHh4UyZMoWFCxdSVXV+Dxljj56+ffuSm5tLbm6u6bF9+/ZRWlpKWlqa2a/n4+Nj1tYTKSkp+Pj4sH79etN99fX1bNmyxaLX66j09HS8vb2btRE4cOAAOTk5jBw5stPi6CxNzRXzTaOFaw4Uc6ZeT3wXfwZYuYHqlMai6e+ly7TJvvxy7voggwue+YnHlu1he04pOq2G8X2i+L8bhrDl0Uk8c8UA0rt3kSRIiE7k3MMXwi4WLlzI6NGjGT58OE8++SQDBw6koaGBH3/8kddff53MzEwmTZrEgAEDmDNnDi+99BINDQ3ceeedjB07ttmUVnuSkpLYtGkT2dnZBAUFtVr0HBgYyB133MFf/vIXwsPDSUxM5N///jfV1dXceuuttnrr7QoNDeXWW2/lgQceIDw8nJCQEO655x5GjhzpNoXSZ5vUNwYfLy2HT1RxoKiC1NgQvmtMXixZLXauqf1jeXnVIX45dIKq2gYC7bA7+sq9hWzJPsWfJ/V2+t3XNx45ye/f2UJ1nfqhIDU2mKvT47lscFeig/0cHJ0Qns25f3oIu0hOTiYjI4Onn36aBx98kIKCAqKiokhPT+f1118H1Cmkr776invuuYeLL74YrVbL1KlTefXVVy16rYceeoibbrqJtLQ0zpw5w9GjR1s997nnnsNgMDB37lwqKioYNmwYP/zwA126dO7Gkv/5z3/QarVcddVV1NbWMmXKFF577bVOjaGzBPt5M653FCv3FfHtrgKSIgJZnam2SDAWPVsjNTaY7hEBHDtZzZoDJ0wjT7agKApvrD3Cv1ao07t6A/xjZueNGlrql4Mn+MN7W6mpNzAqJYJHZ/SlX1frRtqEELanUSxpQOOBysvLCQ0NpaysjJCQ5qtnampqOHr0KD169MDPTz7VeSpX/z74akcef/54Bz0iA5k3LZU/vreNrqF+rJ83oUNTNM9+n8l/1x5h5qCuvHr9EJvEqjcoPPnNXpZsOGa6z1unYeX9Y+kRaZuas9oGPUVltSRGBHT4Wj/tK+LODzKo0xuYkBrNa3OGSmdoITpJW7+/zyY1QkJ4uIl9Y/D10nK0pIqXfzoEwFQrVoudy9hlenVmETX17deJtaemXs9dH2SwZMMxNBr4+6VpjO8TRb1e4bnvO7ay0MhgULjp7c1c/PzP3Pfxdkqr66y+1re7CvjT+9uo0xuY1j+WN36XLkmQEE5IEiEhPFyQrxcTUqMB2FdQDsCMgR1fITcoPozYED+q6vSszyrp0LVKq+uY+9YmVuwtxEen5dXrh3DrRT342/S+6LQafthbxMYjJzsc8/ubjrHxyCkAlu3IZ9KLv7DSin5IX24/zj0fqbvFXz5YHRHz8ZIft0I4I/mfKYRoVsMTE+LLkISO12VptRqm9FM7Iq/owOqx46erufqNDWzJPk2wnxdLfj+cSxubQfaKCeaG4YkAPPXtPgwG62f680vP8K/v1bqjm0cl0TM6iJLKWv7w3jaLRoc+3pzDA5/uxKDAtcMSeHH2YLx08qNWCGcl/zuFEExIjTY15ZzWPw6t1jbLt6c0Flz/mFlEg968/lJn25dfzpWv/UZWcSWxIX58/qdRjEyJaHbOfZN6EezrxZ68cr7cnmdVnMYNTqvq9AxNDOMfl6ax/J6L+NPYFLQadXRo8n9+4cd9RW1e5531R5m3dDeKAjeO7M6zVw5AZ6O/SyGEfUgiJIQgwMeLG0Yk4u+t47rhCe0/wUzDk8IJD/ShtLqeSS+u5clv9rE+q4S6hvaTovVZJcz+7waKK2rpHRPE0jtH0Sc2+LzzIoJ8uWtCTwCe/+EA1XUNFsf5za4CVu0vxken5V9XDUSr1eDnrWPetFS+uGMUKVGBnKio5fZ3t3L/JztaHB16Y+1hHv9mHwB/uDiZJy7rZ7OEUghhP7JqrB2yaky0x12+DxRFQVGw+S/v//2qLnWv1zf9qAny9eLi3pFMSI1hXJ8oIoN8mz3nqx15PPTZTur1CiN6hPPmjcMI9fc+99ImNfV6Jr24luOnz3D/pN7nbSLbltNVdUx6cS0nq+pafW5NvZ7//HSQRb8cwaBAVLAvz14xgElpMSiKwsurDvFSY6H5vRN6cv/k3tIUUQgHM3fVmMskQqdOneKee+7hm2++MfV4efnllwkKCmr3uYqiMH36dFasWMGXX37JrFmzzH5dSYREe+T7oH2VtQ2sO1TC6v1FrN5/gpLKWtNjGg0MTghjYmo0E1Jj+PXQCZ5trNWZMTCOF2cPwter/dVWy3flc/eH2/H31rHmL+OICTHv3+LBT3fyRcZxescEsfyeMW0WNWfknOYvn+3k8Am1K/sVQ7oREejD/9ap/bH+MqUPd43vadbrCiHsy9xEyGUaKs6ZM4eCggJ+/PFH6uvrueWWW/jDH/7Ahx9+2O5zX3rpJfl0JoQDBfl6MbV/LFP7x2IwKOzOK2PV/mJW7y9iT14523NK2Z5TyoKVB03PufWiHjw6va/ZI1QzBsTxduJRMnJKWfDDAZ6/ZlC7z/nl4Am+yDiORgPPXjmw3ZVdQxO78O29Y/jPjwdZ9OuRZjVJf780jVsv6mFWrEII5+ESNUKZmZmsWLGC//3vf4wYMYKLLrqIV199lY8//pj8/Pw2n7tjxw5eeOEF3n777U6KVgjRFq1Ww6CEMB6Y3Jvl94xh4yMTefbKAUzqG4O/tw6NBh6b0Ze/X5pm0TSdRqPhsUvVDtOfZxxnb35Zm+dX1zXwty93A3DTyCTSu5u3Us7PW8cj0/vy+R2jSI4KRKuBp2b1lyRICBflEiNCGzZsICwsrNkeV5MmTUKr1bJp0yauuOKKFp9XXV3NDTfcwMKFC83eOby2tpba2qZh+/Ly8o4FL2xmzZo1jB8/ntOnTzfbGf5sGo3G4ulP4VixoX5cPzyR64cnUlOvp/xMPdFmTmuda2hiF2YO6so3O/N5+ttMPrhtRKujwS+uPMjx02foFubPX6b0seq1Vt53MWVn6ok4p8ZJCOE6XGJEqLCwkOjo6Gb3eXl5ER4eTmFh6/1J7r//fkaNGsXll19u9ms9++yzhIaGmr4SEmy3gsaZFBYWcs8995CcnIyvry8JCQnMnDmz2a7rtjBu3Djuu+8+m16zLQUFBUybNq1D13jzzTcZN24cISEhaDQaSktLbROcaJeft87qJMjor1P64OOl5bfDJ1mVWdziOTtzS3l7vVrX89QV/a3eFNZLp5UkSAgX59BEaN68eWg0mja/9u/fb9W1v/76a1avXs1LL71k0fMeeeQRysrKTF+5ublWvb4zy87OJj09ndWrV/P888+ze/duVqxYwfjx47nrrrs6PR5FUWhosHzJc0tiY2Px9e3YL6bq6mqmTp3K3/72N5vEJDpXQniAaZrqme8yqT+nf1G93sDDX+zCoMCswV0Z3ye6pcsIITyEQxOhBx98kMzMzDa/kpOTiY2Npbi4+Se7hoYGTp061eqU1+rVqzl8+DBhYWF4eXnh5aV+4rvqqqsYN25cqzH5+voSEhLS7MtsigJ1VY75smDx35133olGo2Hz5s1cddVV9O7dm379+vHAAw+wceNG03k5OTlcfvnlBAUFERISwuzZsykqamoo9/jjjzN48GDee+89kpKSCA0N5brrrqOiogKAm2++mbVr1/Lyyy+bEtvs7GzWrFmDRqPh+++/Jz09HV9fX9atW0dtbS333nsv0dHR+Pn5cdFFF7Flyxbz//5Rp8aWLVsGqAmfRqNh6dKljB8/noCAAAYNGsSGDRvavMZ9993HvHnzuPDCCy16beE87hyXQkSgD0dKqvhg47Fmj/137WH2F1bQJcCbv1/qvLvWCyE6h0NrhKKiooiKimr3vJEjR1JaWsq2bdtIT08H1ETHYDAwYsSIFp8zb948brvttmb3DRgwgP/85z/MnDmz48G3pL4anulqn2u352/54NP+7tunTp1ixYoVPP300wQGnn++sfbGYDCYkqC1a9fS0NDAXXfdxbXXXsuaNWtM5x8+fJhly5axfPlyTp8+zezZs3nuued4+umnefnllzl48CD9+/fnySefBNR/8+zsbED9N1qwYAHJycl06dKFv/71r3zxxRcsWbKE7t278+9//5spU6aQlZVFeHi41X81jz76KAsWLKBXr148+uijXH/99WRlZZmSY+F+gv28eeCS3jz65R5eWnWIK4bEExrgTVZxJa+sygJg/sx+Mq0lhHCNGqG+ffsydepUbr/9djZv3sz69eu5++67ue666+jaVU088vLySE1NZfPmzYA6RdK/f/9mXwCJiYn06OG5qzuysrJQFIXU1NQ2z1u1ahW7d+/mww8/JD09nREjRvDuu++ydu3aZqM0BoOBd955h/79+zNmzBjmzp1rqjMKDQ3Fx8eHgIAAYmNjiY2NRadr6gfz5JNPMnnyZFJSUvD19eX111/n+eefZ9q0aaSlpbFo0SL8/f156623OvSeH3roIWbMmEHv3r154oknOHbsGFlZWR26pnB+1w5LoHdMEKXV9by6+hAGg8Lflu6mTm9gXJ8oLh/soA8tQgin4jIfiT/44APuvvtuJk6caGqo+Morr5ger6+v58CBA1RXVzsuSO8AdWTGUa9tBnP7Z2ZmZpKQkNCsWDwtLY2wsDAyMzO54IILAEhKSiI4uGnbg7i4uPOmMVtz9irAw4cPU19fz+jRo033eXt7M3z4cDIzM826XmsGDhzYLD6A4uLidpNB4dq8dFr+Nr0vNy/ewpIN2ei0GjZnnyLAR8dTs/pLbzEhBOBCiVB4eHibzROTkpLa/SVv9ybaGo1Z01OO1KtXrw4VoZ/L27v5tgcajQaDwbzNNVuamrOHs2M0/vIzN0bh2sb1iebi3lH8cvAE//3lCKB2f47vYt4HByGE+3OJqTFhO+Hh4UyZMoWFCxdSVVV13uPGpeJ9+/YlNze32aq5ffv2UVpaSlqa+QWmPj4+6PX6ds9LSUnBx8eH9evXm+6rr69ny5YtFr2eEOd6dHpfjH0ZByeEcePIJIfGI4RwLpIIeaCFCxei1+sZPnw4X3zxBYcOHSIzM5NXXnmFkSNHAmrDygEDBjBnzhwyMjLYvHkzN954I2PHjm02pdWepKQkNm3aRHZ2NiUlJa2OxAQGBnLHHXfwl7/8hRUrVrBv3z5uv/12qqurufXWW23yvs1VWFjIjh07THVEu3fvZseOHZw6dapT4xC20Sc2mHsn9iI5MpAF1wxEJzvCCyHOIomQB0pOTiYjI4Px48fz4IMP0r9/fyZPnsyqVat4/fXXAXUK6auvvqJLly5cfPHFTJo0ieTkZD755BOLXuuhhx5Cp9ORlpZGVFQUOTk5rZ773HPPcdVVVzF37lyGDh1KVlYWP/zwA126mLf1ga288cYbDBkyhNtvvx2Aiy++mCFDhvD11193ahzCdu6b1JvVD42jZ3Rw+ycLITyKy+w+7yiy+7xoj3wfCCGE8zF393kZERJCCCGEx5JESAghhBAeSxIhIYQQQngsSYSEEEII4bEkEbIBqTf3bPLvL4QQrksSoQ4wdix26LYewuHq6uoAmu2jJoQQwjW4zBYbzkin0xEWFmbaWysgIED2L/IwBoOBEydOEBAQILvZCyGEC5Kf3B0UGxsLYPZGo8L9aLVaEhMTJQkWQggXJIlQB2k0GuLi4oiOjqa+vt7R4QgH8PHxQauVWWYhhHBFkgjZiE6nkxoRIYQQwsXIx1ghhBBCeCxJhIQQQgjhsSQREkIIIYTHkhqhdhib5ZWXlzs4EiGEEEKYy/h7u72mt5IItaOiogKAhIQEB0cihBBCCEtVVFQQGhra6uMaRfYHaJPBYCA/P5/g4OAO94kpLy8nISGB3NxcQkJCbBShc5P3LO/ZXcl7lvfsrtzlPSuKQkVFBV27dm2zxYmMCLVDq9USHx9v02uGhIS49DeXNeQ9ewZ5z55B3rNncIf33NZIkJEUSwshhBDCY0kiJIQQQgiPJYlQJ/L19WX+/Pn4+vo6OpROI+/ZM8h79gzynj2Dp71nKZYWQgghhMeSESEhhBBCeCxJhIQQQgjhsSQREkIIIYTHkkRICCGEEB5LEiEbW7hwIUlJSfj5+TFixAg2b97c5vmfffYZqamp+Pn5MWDAAL777rtOitR2LHnPixYtYsyYMXTp0oUuXbowadKkdv+OnJGl/85GH3/8MRqNhlmzZtk3QDuw9D2XlpZy1113ERcXh6+vL71793a5729L3/NLL71Enz598Pf3JyEhgfvvv5+amppOirbjfvnlF2bOnEnXrl3RaDQsW7as3eesWbOGoUOH4uvrS8+ePXnnnXfsHqctWfqely5dyuTJk4mKiiIkJISRI0fyww8/dE6wNmLNv7PR+vXr8fLyYvDgwXaLr7NJImRDn3zyCQ888ADz588nIyODQYMGMWXKFIqLi1s8/7fffuP666/n1ltvZfv27cyaNYtZs2axZ8+eTo7cepa+5zVr1nD99dfz888/s2HDBhISErjkkkvIy8vr5MitZ+l7NsrOzuahhx5izJgxnRSp7Vj6nuvq6pg8eTLZ2dl8/vnnHDhwgEWLFtGtW7dOjtx6lr7nDz/8kHnz5jF//nwyMzN56623+OSTT/jb3/7WyZFbr6qqikGDBrFw4UKzzj969CgzZsxg/Pjx7Nixg/vuu4/bbrvNpRIDS9/zL7/8wuTJk/nuu+/Ytm0b48ePZ+bMmWzfvt3OkdqOpe/ZqLS0lBtvvJGJEyfaKTIHUYTNDB8+XLnrrrtMf9br9UrXrl2VZ599tsXzZ8+ercyYMaPZfSNGjFD++Mc/2jVOW7L0PZ+roaFBCQ4OVpYsWWKvEG3Omvfc0NCgjBo1Svnf//6n3HTTTcrll1/eCZHajqXv+fXXX1eSk5OVurq6zgrR5ix9z3fddZcyYcKEZvc98MADyujRo+0ap70AypdfftnmOX/961+Vfv36Nbvv2muvVaZMmWLHyOzHnPfckrS0NOWJJ56wfUCdwJL3fO211yqPPfaYMn/+fGXQoEF2jaszyYiQjdTV1bFt2zYmTZpkuk+r1TJp0iQ2bNjQ4nM2bNjQ7HyAKVOmtHq+s7HmPZ+rurqa+vp6wsPD7RWmTVn7np988kmio6O59dZbOyNMm7LmPX/99deMHDmSu+66i5iYGPr3788zzzyDXq/vrLA7xJr3PGrUKLZt22aaPjty5Ajfffcd06dP75SYHcHVf4bZgsFgoKKiwmV+hllr8eLFHDlyhPnz5zs6FJuTTVdtpKSkBL1eT0xMTLP7Y2Ji2L9/f4vPKSwsbPH8wsJCu8VpS9a853M9/PDDdO3a9bwfps7Kmve8bt063nrrLXbs2NEJEdqeNe/5yJEjrF69mjlz5vDdd9+RlZXFnXfeSX19vUv8ILXmPd9www2UlJRw0UUXoSgKDQ0N/OlPf3KpqTFLtfYzrLy8nDNnzuDv7++gyDrPggULqKysZPbs2Y4OxW4OHTrEvHnz+PXXX/Hycr+0QUaEhMM899xzfPzxx3z55Zf4+fk5Ohy7qKioYO7cuSxatIjIyEhHh9NpDAYD0dHRvPnmm6Snp3Pttdfy6KOP8sYbbzg6NLtZs2YNzzzzDK+99hoZGRksXbqUb7/9ln/+85+ODk3YyYcffsgTTzzBp59+SnR0tKPDsQu9Xs8NN9zAE088Qe/evR0djl24X2rnIJGRkeh0OoqKiprdX1RURGxsbIvPiY2Nteh8Z2PNezZasGABzz33HD/99BMDBw60Z5g2Zel7Pnz4MNnZ2cycOdN0n8FgAMDLy4sDBw6QkpJi36A7yJp/57i4OLy9vdHpdKb7+vbtS2FhIXV1dfj4+Ng15o6y5j3//e9/Z+7cudx2220ADBgwgKqqKv7whz/w6KOPotW63+fO1n6GhYSEuP1o0Mcff8xtt93GZ5995jIj2taoqKhg69atbN++nbvvvhtQf4YpioKXlxcrV65kwoQJDo6yY9zvf6aD+Pj4kJ6ezqpVq0z3GQwGVq1axciRI1t8zsiRI5udD/Djjz+2er6zseY9A/z73//mn//8JytWrGDYsGGdEarNWPqeU1NT2b17Nzt27DB9XXbZZaZVNgkJCZ0ZvlWs+XcePXo0WVlZpqQP4ODBg8TFxTl9EgTWvefq6urzkh1jIqi46ZaOrv4zzFofffQRt9xyCx999BEzZsxwdDh2FRISct7PsD/96U/06dOHHTt2MGLECEeH2HEOLtZ2Kx9//LHi6+urvPPOO8q+ffuUP/zhD0pYWJhSWFioKIqizJ07V5k3b57p/PXr1yteXl7KggULlMzMTGX+/PmKt7e3snv3bke9BYtZ+p6fe+45xcfHR/n888+VgoIC01dFRYWj3oLFLH3P53LFVWOWvuecnBwlODhYufvuu5UDBw4oy5cvV6Kjo5WnnnrKUW/BYpa+5/nz5yvBwcHKRx99pBw5ckRZuXKlkpKSosyePdtRb8FiFRUVyvbt25Xt27crgPLiiy8q27dvV44dO6YoiqLMmzdPmTt3run8I0eOKAEBAcpf/vIXJTMzU1m4cKGi0+mUFStWOOotWMzS9/zBBx8oXl5eysKFC5v9DCstLXXUW7CYpe/5XO62akwSIRt79dVXlcTERMXHx0cZPny4snHjRtNjY8eOVW666aZm53/66adK7969FR8fH6Vfv37Kt99+28kRd5wl77l79+4KcN7X/PnzOz/wDrD03/lsrpgIKYrl7/m3335TRowYofj6+irJycnK008/rTQ0NHRy1B1jyXuur69XHn/8cSUlJUXx8/NTEhISlDvvvFM5ffp05wdupZ9//rnF/5/G93nTTTcpY8eOPe85gwcPVnx8fJTk5GRl8eLFnR53R1j6nseOHdvm+a7Amn/ns7lbIqRRFDcdsxVCCCGEaIfUCAkhhBDCY0kiJIQQQgiPJYmQEEIIITyWJEJCCCGE8FiSCAkhhBDCY0kiJIQQQgiPJYmQEEIIITyWJEJCCCGE6LBffvmFmTNn0rVrVzQaDcuWLbP7a+bl5fG73/2OiIgI/P39GTBgAFu3brXoGpIICSFsLikpiZdeeqlTX7OzfvC25vHHH2fw4MGd8lqrVq2ib9++6PX6ds9dsWIFgwcPbrbvmxD2UFVVxaBBg1i4cGGnvN7p06cZPXo03t7efP/99+zbt48XXniBLl26WHQdSYSEEM3cfPPNaDQaNBoNPj4+9OzZkyeffJKGhgZHh+Y0Wkq6HnroofM2ILWXv/71rzz22GOmTV3bMnXqVLy9vfnggw86ITLhyaZNm8ZTTz3FFVdc0eLjtbW1PPTQQ3Tr1o3AwEBGjBjBmjVrrH69f/3rXyQkJLB48WKGDx9Ojx49uOSSS0hJSbHoOpIICSHOM3XqVAoKCjh06BAPPvggjz/+OM8//7yjw7IrvV7foVGToKAgIiIibBhRy9atW8fhw4e56qqrzH7OzTffzCuvvGLHqIRo3913382GDRv4+OOP2bVrF9dccw1Tp07l0KFDVl3v66+/ZtiwYVxzzTVER0czZMgQFi1aZPF1JBESQpzH19eX2NhYunfvzh133MGkSZP4+uuvARg3bhz33Xdfs/NnzZrFzTff3OK1FEXh8ccfJzExEV9fX7p27cq9995retyaT4mHDh3i4osvxs/Pj7S0NH788cdmj69ZswaNRkNpaanpvh07dqDRaMjOzgbgnXfeISwsjK+//pq0tDR8fX3Jyclhy5YtTJ48mcjISEJDQxk7diwZGRmm6yQlJQFwxRVXoNFoTH8+d2rMYDDw5JNPEh8fj6+vL4MHD2bFihWmx7Ozs9FoNCxdupTx48cTEBDAoEGD2LBhQ5vv/eOPP2by5Mn4+fmZ7tu5cyfjx48nODiYkJAQ0tPTm9VJzJw5k61bt3L48OE2ry2EveTk5LB48WI+++wzxowZQ0pKCg899BAXXXQRixcvtuqaR44c4fXXX6dXr1788MMP3HHHHdx7770sWbLEoutIIiSEaJe/vz91dXVWPfeLL77gP//5D//97385dOgQy5YtY8CAAabHLf2UaDAYuPLKK/Hx8WHTpk288cYbPPzww1bFVl1dzb/+9S/+97//sXfvXqKjo6moqOCmm25i3bp1bNy4kV69ejF9+nQqKioA2LJlCwCLFy+moKDA9Odzvfzyy7zwwgssWLCAXbt2MWXKFC677LLz3tejjz7KQw89xI4dO+jduzfXX399m9OQv/76K8OGDWt235w5c4iPj2fLli1s27aNefPm4e3tbXo8MTGRmJgYfv31V6v+noToqN27d6PX6+nduzdBQUGmr7Vr15oS9P3795um5Vv7mjdvnumaBoOBoUOH8swzzzBkyBD+8Ic/cPvtt/PGG29YFJuXTd+pEMKtKIrCqlWr+OGHH7jnnnusukZOTg6xsbFMmjQJb29vEhMTGT58uOmxxYsXk5OTQ9euXQG11mbFihUsXryYZ5555rzr/fTTT+zfv58ffvjB9JxnnnmGadOmWRxbfX09r732GoMGDTLdN2HChGbnvPnmm4SFhbF27VouvfRSoqKiAAgLCyM2NrbVay9YsICHH36Y6667DlDrGX7++WdeeumlZsWkDz30EDNmzADgiSeeoF+/fmRlZZGamtridY8dO2Z630Y5OTn85S9/MT2nV69e5z2va9euHDt2rNV4hbCnyspKdDod27ZtO6+2LSgoCIDk5GQyMzPbvM7Z089xcXGkpaU1e7xv37588cUXFsUmiZAQ4jzLly8nKCiI+vp6DAYDN9xwA48//rhV17rmmmt46aWXSE5OZurUqUyfPp2ZM2fi5eXV7FPi2Wpra1utt8nMzCQhIaFZMjBy5EirYvPx8WHgwIHN7isqKuKxxx5jzZo1FBcXo9frqa6uJicnx+zrlpeXk5+fz+jRo5vdP3r0aHbu3Pn/7dxfSJNfHMfxt6s5HoOI0iBhLnNNoho90R9qRBlCFAYR5UXDDcSrLgZOdiWkUgYhi+qiyIgCg3UnFFKkQl1Ikl4M0khJCgoC04QRLYjh7yJ++/k0Zy7rx6/fPi/YxQ5fzjkPPGzf53vOcyxtc8dft24dAJOTk1kToWQyaVkWAwiHwzQ0NNDV1UV1dTUnT57M2DBqGAafP39e9DWI/EqmaZJKpZicnGTfvn3zxhQWFma97+fj8/kYGxuztI2Pj+NyuXKamxIhEclQVVXFtWvXKCwspLS0lOXL//mpsNlszM7OWuK/fv2atS+n08nY2Bh9fX309vZy+vRpOjo6ePLkyaKeEn+GzfZt1X/uPOebo2EYFBQUWNqCwSDT09NcvnwZl8uFw+Fgz549P700+CNzl7D+nstCm7aLi4uZmZmxtLW2tnLq1Cl6enp48OABLS0t3L171/L2zsePH9PVLJHf4dOnT7x69Sr9/fXr18TjcVavXo3H48Hv9xMIBIhGo5imyYcPH+jv78fr9aarorlobGxk7969nD9/ntraWp49e0ZnZyednZ059aM9QiKSYcWKFbjdbsrKyixJEEBJSQnv379Pf0+lUoyMjCzYn2EYHD16lCtXrvD48WOePn3K8+fPLU+Jbrfb8sm27LRp0ybevn1rmcPg4GDGHAFLTDweX9S1DwwMEAqFOHLkCJs3b8bhcDA1NWWJsdvtC57hs3LlSkpLSxkYGMjo+/tSfq5M0+TFixcZ7R6Ph8bGRh49esTx48ctG1C/fPnCxMQEpmkuaWyRhQwPD2OaZvo+C4fDmKbJmTNngG/76gKBAE1NTVRWVnLs2DGGhoYoKyv7qfF27txJd3c3sViMLVu2cPbsWS5duoTf78+pH1WERCQnBw8eJBwO09PTQ0VFBRcvXrS8nfW927dvk0ql2L17N0VFRdy5cwfDMHC5XKxZsybnp8Tq6mo8Hg/BYJCOjg4SiQTNzc2WGLfbjdPppLW1lfb2dsbHx4lGo4u6vo0bN9LV1cWOHTtIJBJEIhEMw7DErF+/nv7+fnw+Hw6HY94D3CKRCC0tLVRUVLBt2zZu3bpFPB5f8nk+hw4dsrwVk0wmiUQinDhxgvLyct69e8fQ0JDl9frBwcF0ZUvkdzlw4EBGtXguu91OW1sbbW1tv2zMmpoaampqltSHKkIikpP6+nqCwSCBQID9+/ezYcMGqqqqssavWrWKGzdu4PP58Hq99PX1cf/+/fQeoFyfEm02G93d3SSTSXbt2kVDQwPt7e2WGLvdTiwW4+XLl3i9Xi5cuMC5c+cWdX03b95kZmaG7du3U1dXRygUYu3atZaYaDRKb28vTqcza5UlFAoRDodpampi69atPHz4kHv37s27kTkXfr+f0dHR9N6IZcuWMT09TSAQwOPxUFtby+HDhy1/NrFYDL/fT1FR0ZLGFvk/KphdKH0TEZH/nEgkQiKR4Pr16z+MnZqaorKykuHhYcrLy/+F2Yn8WVQREhH5wzQ3N+NyuRZ1EvabN2+4evWqkiCRLFQREhERkbylipCIiIjkLSVCIiIikreUCImIiEjeUiIkIiIieUuJkIiIiOQtJUIiIiKSt5QIiYiISN5SIiQiIiJ5S4mQiIiI5K2/AP48i4j9oZm4AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "IZ_exp_value_init_0 = np.array([result.values[0] for result in batch_init_0.results()])\n", + "IZ_exp_value_init_1 = np.array([result.values[0] for result in batch_init_1.results()])\n", + "\n", + "plt.plot(lengths, IZ_exp_value_init_0, label=\"Control in 0\")\n", + "plt.plot(lengths, IZ_exp_value_init_1, label=\"Control in 1\")\n", + "plt.xlabel(\"Pulse duration (s)\")\n", + "plt.ylabel(\"\")\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The plot displays a state-dependent oscillatory behavior indicating that we have implemented a unitary evolution based on the ZX interaction. We see also from the previous plot that, for pulse duration of 700ns, the two qubits interacts long enough for the state of the target qubit (i) to be flipped if the control qubit is its ground state or (ii) to cycle back to the original state if the control is in the excited state. Adding an X gate after this sequence would give the expected for the CNOT gate. \n", + "\n", + "Fixing the duration of the pulse to this particular value, we can now create a circuit including our custom pulse sequence and create a Bell state" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "RZX_sequence = cross_resonance_sequence(length=700e-9)\n", + "\n", + "bell_pair_with_pulses = (\n", + " Circuit()\n", + " .h(a)\n", + " .pulse_gate([a ,b], pulse_sequence=RZX_sequence)\n", + " .x(b)\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We now can execute this circuit, which returns similar results as with the circuit using an ECR gate. \n", + "\n", + "We can however notice that the fidelity is worse than in the first case, due to the fact that we did not include any correction for crosstalks such as cross-resonant cancelation, pulse synchronization and an echo scheme. To dive deeper and investigate methods to improve these results, see the following paper Phys. Rev. Applied 12, 064013. " + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Population')" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGzCAYAAADHdKgcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAtzklEQVR4nO3df1iVdZ7/8RdgHFASMZIDhoHC+KMUEoIvTY1tnTyUW1nWpe42IJVNNVbu6SdNgqWzqJlDphMzzfqjmsp1M5vdcWmbkzhbIY6i4zaZq146+OscUQcQTDA43z+6PO1JVDgCB/g8H9d1X8P9uT/3h/fnuq/BV/f53PcJ8ng8HgEAABgkONAFAAAAdDUCEAAAMA4BCAAAGIcABAAAjEMAAgAAxiEAAQAA4xCAAACAcQhAAADAOAQgAABgHAIQAAAwTp9AFyBJS5cu1csvvyyXy6WUlBS99tprysjIaLXvmjVr9M///M/avXu3Tp8+reTkZD355JP68Y9/7O0zbdo0rVy50uc8u92u0tLSNtXT0tKiQ4cO6dJLL1VQUJD/EwMAAF3G4/HoxIkTiouLU3Dw+e/xBDwArVq1Sg6HQyUlJcrMzFRxcbHsdrt27typQYMGndV/4MCB+tnPfqYRI0YoNDRU//Ef/6G8vDwNGjRIdrvd2y87O1vLly/37lssljbXdOjQIcXHx1/cxAAAQEDs379fV1xxxXn7BAX6y1AzMzN17bXXasmSJZK+vfsSHx+vxx57TM8991ybxhg7dqwmTJigOXPmSPr2DlBNTY3Wrl3rV021tbUaMGCA9u/fr/79+/s1BgAA6Fp1dXWKj49XTU2NIiMjz9s3oHeAmpqatGXLFuXn53vbgoODZbPZVF5efsHzPR6PPvnkE+3cuVPz58/3OVZWVqZBgwYpKipKN910k+bOnavLLrus1XEaGxvV2Njo3T9x4oQkqX///gQgAAB6mLYsXwloADp69Kiam5sVExPj0x4TE6OvvvrqnOfV1tZq8ODBamxsVEhIiH75y1/qlltu8R7Pzs7W3XffrcTERO3Zs0fPP/+8br31VpWXlyskJOSs8YqKivTiiy923MQAAEC3FvA1QP649NJLtW3bNtXX18vpdMrhcGjo0KG68cYbJUlTpkzx9h09erTGjBmjYcOGqaysTDfffPNZ4+Xn58vhcHj3z9xCAwAAvVNAA1B0dLRCQkLkdrt92t1ut6xW6znPCw4OVlJSkiQpNTVVO3bsUFFRkTcAfd/QoUMVHR2t3bt3txqALBZLuxZJAwCAni2g7wEKDQ1VWlqanE6nt62lpUVOp1NZWVltHqelpcVnDc/3HThwQMeOHVNsbOxF1QsAAHqHgH8E5nA4lJubq/T0dGVkZKi4uFgNDQ3Ky8uTJOXk5Gjw4MEqKiqS9O16nfT0dA0bNkyNjY1at26d3nrrLb3++uuSpPr6er344ouaNGmSrFar9uzZo2eeeUZJSUk+j8kDAABzBTwATZ48WdXV1SooKJDL5VJqaqpKS0u9C6Orqqp8XmbU0NCgRx99VAcOHFB4eLhGjBiht99+W5MnT5YkhYSEaPv27Vq5cqVqamoUFxen8ePHa86cOXzMBQAAJHWD9wB1R3V1dYqMjFRtbS2PwQMA0EO0599vvgsMAAAYhwAEAACMQwACAADGIQABAADjEIAAAIBxCEAAAMA4BCAAAGAcAhAAADBOwN8EDQBAoCQ89/tAl2CkffMmBLoE7gABAADzEIAAAIBxCEAAAMA4BCAAAGAcAhAAADAOAQgAABiHAAQAAIxDAAIAAMYhAAEAAOMQgAAAgHEIQAAAwDgEIAAAYBwCEAAAMA4BCAAAGIcABAAAjEMAAgAAxiEAAQAA4xCAAACAcQhAAADAOAQgAABgHAIQAAAwDgEIAAAYhwAEAACMQwACAADGIQABAADjEIAAAIBxCEAAAMA4BCAAAGAcAhAAADAOAQgAABiHAAQAAIxDAAIAAMbpFgFo6dKlSkhIUFhYmDIzM7Vp06Zz9l2zZo3S09M1YMAA9evXT6mpqXrrrbd8+ng8HhUUFCg2Nlbh4eGy2WzatWtXZ08DAAD0EAEPQKtWrZLD4VBhYaEqKyuVkpIiu92uI0eOtNp/4MCB+tnPfqby8nJt375deXl5ysvL00cffeTts2DBAi1evFglJSWqqKhQv379ZLfbderUqa6aFgAA6MaCPB6PJ5AFZGZm6tprr9WSJUskSS0tLYqPj9djjz2m5557rk1jjB07VhMmTNCcOXPk8XgUFxenJ598Uk899ZQkqba2VjExMVqxYoWmTJlywfHq6uoUGRmp2tpa9e/f3//JAQC6tYTnfh/oEoy0b96EThm3Pf9+B/QOUFNTk7Zs2SKbzeZtCw4Ols1mU3l5+QXP93g8cjqd2rlzp370ox9Jkvbu3SuXy+UzZmRkpDIzM885ZmNjo+rq6nw2AADQewU0AB09elTNzc2KiYnxaY+JiZHL5TrnebW1tYqIiFBoaKgmTJig1157Tbfccoskec9rz5hFRUWKjIz0bvHx8RczLQAA0M0FfA2QPy699FJt27ZNf/rTn/Tzn/9cDodDZWVlfo+Xn5+v2tpa77Z///6OKxYAAHQ7fQL5y6OjoxUSEiK32+3T7na7ZbVaz3lecHCwkpKSJEmpqanasWOHioqKdOONN3rPc7vdio2N9RkzNTW11fEsFossFstFzgYAAPQUAb0DFBoaqrS0NDmdTm9bS0uLnE6nsrKy2jxOS0uLGhsbJUmJiYmyWq0+Y9bV1amioqJdYwIAgN4roHeAJMnhcCg3N1fp6enKyMhQcXGxGhoalJeXJ0nKycnR4MGDVVRUJOnb9Trp6ekaNmyYGhsbtW7dOr311lt6/fXXJUlBQUGaOXOm5s6dq+TkZCUmJmrWrFmKi4vTxIkTAzVNAADQjQQ8AE2ePFnV1dUqKCiQy+VSamqqSktLvYuYq6qqFBz83Y2qhoYGPfroozpw4IDCw8M1YsQIvf3225o8ebK3zzPPPKOGhgY99NBDqqmp0fXXX6/S0lKFhYV1+fwAAED3E/D3AHVHvAcIAMzAe4ACw/j3AAEAAAQCAQgAABiHAAQAAIxDAAIAAMYhAAEAAOMQgAAAgHEC/h4gE/HYZeB01qOXAICehTtAAADAOAQgAABgHAIQAAAwDgEIAAAYhwAEAACMQwACAADGIQABAADjEIAAAIBxCEAAAMA4BCAAAGAcAhAAADAOAQgAABiHAAQAAIxDAAIAAMYhAAEAAOMQgAAAgHEIQAAAwDgEIAAAYBwCEAAAMA4BCAAAGIcABAAAjEMAAgAAxiEAAQAA4xCAAACAcQhAAADAOAQgAABgHAIQAAAwDgEIAAAYhwAEAACMQwACAADGIQABAADjEIAAAIBxCEAAAMA4BCAAAGAcAhAAADBOtwhAS5cuVUJCgsLCwpSZmalNmzads+8bb7yhG264QVFRUYqKipLNZjur/7Rp0xQUFOSzZWdnd/Y0AABADxHwALRq1So5HA4VFhaqsrJSKSkpstvtOnLkSKv9y8rKNHXqVK1fv17l5eWKj4/X+PHjdfDgQZ9+2dnZOnz4sHd79913u2I6AACgBwh4AFq0aJGmT5+uvLw8jRo1SiUlJerbt6+WLVvWav/f/va3evTRR5WamqoRI0boN7/5jVpaWuR0On36WSwWWa1W7xYVFdUV0wEAAD1AQANQU1OTtmzZIpvN5m0LDg6WzWZTeXl5m8Y4efKkTp8+rYEDB/q0l5WVadCgQRo+fLgeeeQRHTt27JxjNDY2qq6uzmcDAAC9V0AD0NGjR9Xc3KyYmBif9piYGLlcrjaN8eyzzyouLs4nRGVnZ+vNN9+U0+nU/PnztWHDBt16661qbm5udYyioiJFRkZ6t/j4eP8nBQAAur0+gS7gYsybN0/vvfeeysrKFBYW5m2fMmWK9+fRo0drzJgxGjZsmMrKynTzzTefNU5+fr4cDod3v66ujhAEAEAvFtA7QNHR0QoJCZHb7fZpd7vdslqt5z134cKFmjdvnv7rv/5LY8aMOW/foUOHKjo6Wrt37271uMViUf/+/X02AADQewU0AIWGhiotLc1nAfOZBc1ZWVnnPG/BggWaM2eOSktLlZ6efsHfc+DAAR07dkyxsbEdUjcAAOjZAv4UmMPh0BtvvKGVK1dqx44deuSRR9TQ0KC8vDxJUk5OjvLz873958+fr1mzZmnZsmVKSEiQy+WSy+VSfX29JKm+vl5PP/20Nm7cqH379snpdOrOO+9UUlKS7HZ7QOYIAAC6l4CvAZo8ebKqq6tVUFAgl8ul1NRUlZaWehdGV1VVKTj4u5z2+uuvq6mpSffcc4/POIWFhZo9e7ZCQkK0fft2rVy5UjU1NYqLi9P48eM1Z84cWSyWLp0bAADongIegCRpxowZmjFjRqvHysrKfPb37dt33rHCw8P10UcfdVBlAACgNwr4R2AAAABdjQAEAACMQwACAADGIQABAADjEIAAAIBxCEAAAMA4BCAAAGAcAhAAADAOAQgAABiHAAQAAIxDAAIAAMYhAAEAAOMQgAAAgHEIQAAAwDgEIAAAYBwCEAAAMA4BCAAAGIcABAAAjEMAAgAAxiEAAQAA4xCAAACAcQhAAADAOAQgAABgHAIQAAAwDgEIAAAYhwAEAACMQwACAADGIQABAADjEIAAAIBxCEAAAMA4BCAAAGAcAhAAADAOAQgAABiHAAQAAIxDAAIAAMYhAAEAAOMQgAAAgHEIQAAAwDh+BSC3260f//jHiouLU58+fRQSEuKzAQAAdGd9/Dlp2rRpqqqq0qxZsxQbG6ugoKCOrgsAAKDT+BWAPv30U/33f/+3UlNTO7gcAACAzufXR2Dx8fHyeDwdVsTSpUuVkJCgsLAwZWZmatOmTefs+8Ybb+iGG25QVFSUoqKiZLPZzurv8XhUUFCg2NhYhYeHy2azadeuXR1WLwAA6Nn8CkDFxcV67rnntG/fvosuYNWqVXI4HCosLFRlZaVSUlJkt9t15MiRVvuXlZVp6tSpWr9+vcrLyxUfH6/x48fr4MGD3j4LFizQ4sWLVVJSooqKCvXr1092u12nTp266HoBAEDPF+Tx41ZOVFSUTp48qW+++UZ9+/bVJZdc4nP8+PHjbR4rMzNT1157rZYsWSJJamlpUXx8vB577DE999xzFzy/ublZUVFRWrJkiXJycuTxeBQXF6cnn3xSTz31lCSptrZWMTExWrFihaZMmXLBMevq6hQZGana2lr179+/zXNpq4Tnft/hY6Jt9s2bEOgSAHQj/D0OjM76W9yef7/9WgNUXFzsz2lnaWpq0pYtW5Sfn+9tCw4Ols1mU3l5eZvGOHnypE6fPq2BAwdKkvbu3SuXyyWbzebtExkZqczMTJWXl7cagBobG9XY2Ojdr6ur83dKAACgB/ArAOXm5nbILz969Kiam5sVExPj0x4TE6OvvvqqTWM8++yziouL8wYel8vlHeP7Y5459n1FRUV68cUX21s+AADoofwKQNK3Hz2tXbtWO3bskCRdddVVuuOOO7r0PUDz5s3Te++9p7KyMoWFhfk9Tn5+vhwOh3e/rq5O8fHxHVEiAADohvwKQLt379Ztt92mgwcPavjw4ZK+vYsSHx+v3//+9xo2bFibxomOjlZISIjcbrdPu9vtltVqPe+5Cxcu1Lx58/SHP/xBY8aM8bafOc/tdis2NtZnzHM9tm+xWGSxWNpUMwAA6Pn8egrs8ccf17Bhw7R//35VVlaqsrJSVVVVSkxM1OOPP97mcUJDQ5WWlian0+lta2lpkdPpVFZW1jnPW7BggebMmaPS0lKlp6f7HEtMTJTVavUZs66uThUVFecdEwAAmMOvO0AbNmzQxo0bvQuPJemyyy7TvHnz9MMf/rBdYzkcDuXm5io9PV0ZGRkqLi5WQ0OD8vLyJEk5OTkaPHiwioqKJEnz589XQUGB3nnnHSUkJHjX9URERCgiIkJBQUGaOXOm5s6dq+TkZCUmJmrWrFmKi4vTxIkT/ZkuAADoZfwKQBaLRSdOnDirvb6+XqGhoe0aa/LkyaqurlZBQYFcLpdSU1NVWlrqXcRcVVWl4ODvblS9/vrrampq0j333OMzTmFhoWbPni1JeuaZZ9TQ0KCHHnpINTU1uv7661VaWnpR64QAAEDv4dd7gHJyclRZWal/+Zd/UUZGhiSpoqJC06dPV1pamlasWNHRdXYp3gPUe/EeIAD/F3+PA6M7vAfIrzVAixcv1rBhw5SVlaWwsDCFhYXphz/8oZKSkvTqq6/6VTQAAEBX8esjsAEDBujDDz/Url27vO/rGTlypJKSkjq0OAAAgM7g93uAJCk5OVnJyckdVQsAAECXaHMAcjgcmjNnjvr16+fz0sDWLFq06KILAwAA6CxtDkBbt27V6dOnvT8DgClYKBs4PLiAztLmALR+/fpWfwYAAOhp/HoK7P7772/1PUANDQ26//77L7ooAACAzuRXAFq5cqW+/vrrs9q//vprvfnmmxddFAAAQGdq11NgdXV18ng88ng8OnHihM+blZubm7Vu3ToNGjSow4sEegLWiQQO60QAtFe7AtCAAQMUFBSkoKAg/eAHPzjreFBQkF588cUOKw4AAKAztCsArV+/Xh6PRzfddJPef/99ny9DDQ0N1ZVXXqm4uLgOLxIAAKAjtSsAjRs3TpK0d+9excfH+3xJKQAAQE/h15ugr7zySknSyZMnVVVVpaamJp/jY8aMufjKAAAAOolfAai6ulp5eXn6z//8z1aPNzc3X1RRAAAAncmvz7BmzpypmpoaVVRUKDw8XKWlpVq5cqWSk5P1u9/9rqNrBAAA6FB+3QH65JNP9OGHHyo9PV3BwcG68sordcstt6h///4qKirShAk8kgoAALovv+4ANTQ0eN/3ExUVperqaknS6NGjVVlZ2XHVAQAAdAK/AtDw4cO1c+dOSVJKSop+9atf6eDBgyopKVFsbGyHFggAANDR/PoI7IknntDhw4clSYWFhcrOztZvf/tbhYaGasWKFR1ZHwAAQIfzKwDdd9993p/T0tL017/+VV999ZWGDBmi6OjoDisOAACgM/gVgL6vb9++Gjt2bEcMBQAA0OnaHIAcDkebB120aJFfxQAAAHSFNgegrVu3tqlfUFCQ38UAAAB0hTYHoPXr13dmHQAAAF2GbzMFAADG8WsR9N/93d+d96OuTz75xO+CAAAAOptfASg1NdVn//Tp09q2bZu++OIL5ebmdkRdAAAAncavAPSLX/yi1fbZs2ervr7+ogoCAADobB26Bui+++7TsmXLOnJIAACADtehAai8vFxhYWEdOSQAAECH8+sjsLvvvttn3+Px6PDhw9q8ebNmzZrVIYUBAAB0Fr8CUGRkpM9+cHCwhg8frpdeeknjx4/vkMIAAAA6i18BaPny5R1dBwAAQJe5qC9D3bx5s3bs2CFJGjVqlNLS0jqkKAAAgM7kVwA6cOCApk6dqs8++0wDBgyQJNXU1Oi6667Te++9pyuuuKIjawQAAOhQfj0F9uCDD+r06dPasWOHjh8/ruPHj2vHjh1qaWnRgw8+2NE1AgAAdCi/7gBt2LBBn3/+uYYPH+5tGz58uF577TXdcMMNHVYcAABAZ/DrDlB8fLxOnz59Vntzc7Pi4uIuuigAAIDO5FcAevnll/XYY49p8+bN3rbNmzfriSee0MKFCzusOAAAgM7g10dg06ZN08mTJ5WZmak+fb4d4ptvvlGfPn10//336/777/f2PX78eMdUCgAA0EH8CkDFxcUdXAYAAEDX8SsA5ebmdnQdAAAAXcbvL0Ntbm7W+++/r7lz52ru3Ln64IMP1Nzc3O5xli5dqoSEBIWFhSkzM1ObNm06Z9+//OUvmjRpkhISEhQUFNTqnajZs2crKCjIZxsxYkS76wIAAL2XXwFo9+7dGjlypHJycrRmzRqtWbNG9913n6666irt2bOnzeOsWrVKDodDhYWFqqysVEpKiux2u44cOdJq/5MnT2ro0KGaN2+erFbrOce96qqrdPjwYe/26aeftnuOAACg9/IrAD3++OMaNmyY9u/fr8rKSlVWVqqqqkqJiYl6/PHH2zzOokWLNH36dOXl5WnUqFEqKSlR3759tWzZslb7X3vttXr55Zc1ZcoUWSyWc47bp08fWa1W7xYdHd3uOQIAgN7LrwC0YcMGLViwQAMHDvS2XXbZZZo3b542bNjQpjGampq0ZcsW2Wy274oJDpbNZlN5ebk/ZXnt2rVLcXFxGjp0qP7xH/9RVVVV5+3f2Niouro6nw0AAPRefgUgi8WiEydOnNVeX1+v0NDQNo1x9OhRNTc3KyYmxqc9JiZGLpfLn7IkSZmZmVqxYoVKS0v1+uuva+/evbrhhhtarfeMoqIiRUZGerf4+Hi/fz8AAOj+/ApAf//3f6+HHnpIFRUV8ng88ng82rhxox5++GHdcccdHV1ju9x666269957NWbMGNntdq1bt041NTX613/913Oek5+fr9raWu+2f//+LqwYAAB0Nb8eg1+8eLGmTZum6667zudFiHfccYdeffXVNo0RHR2tkJAQud1un3a3233eBc7tNWDAAP3gBz/Q7t27z9nHYrGcd00RAADoXdp1B6ilpUXz58/XhAkTdPDgQU2cOFGrV6/Wv/3bv2nnzp364IMPFBkZ2aaxQkNDlZaWJqfT6TO+0+lUVlZW+2ZxHvX19dqzZ49iY2M7bEwAANCztesO0M9//nPNnj1bNptN4eHhWrdunSIjI8/51NaFOBwO5ebmKj09XRkZGSouLlZDQ4Py8vIkSTk5ORo8eLCKiookfbtw+ssvv/T+fPDgQW3btk0RERFKSkqSJD311FO6/fbbdeWVV+rQoUMqLCxUSEiIpk6d6leNAACg92lXAHrzzTf1y1/+Uj/5yU8kSX/4wx80YcIE/eY3v1FwcPuXE02ePFnV1dUqKCiQy+VSamqqSktLvQujq6qqfMY9dOiQrrnmGu/+woULtXDhQo0bN05lZWWSpAMHDmjq1Kk6duyYLr/8cl1//fXauHGjLr/88nbXBwAAeqd2BaCqqirddttt3n2bzaagoCAdOnRIV1xxhV8FzJgxQzNmzGj12JlQc0ZCQoI8Hs95x3vvvff8qgMAAJijXbdtvvnmG4WFhfm0XXLJJTp9+nSHFgUAANCZ2nUHyOPxaNq0aT5PTJ06dUoPP/yw+vXr521bs2ZNx1UIAADQwdoVgFr7Fvj77ruvw4oBAADoCu0KQMuXL++sOgAAALqMX2+CBgAA6MkIQAAAwDgEIAAAYBwCEAAAMA4BCAAAGIcABAAAjEMAAgAAxiEAAQAA4xCAAACAcQhAAADAOAQgAABgHAIQAAAwDgEIAAAYhwAEAACMQwACAADGIQABAADjEIAAAIBxCEAAAMA4BCAAAGAcAhAAADAOAQgAABiHAAQAAIxDAAIAAMYhAAEAAOMQgAAAgHEIQAAAwDgEIAAAYBwCEAAAMA4BCAAAGIcABAAAjEMAAgAAxiEAAQAA4xCAAACAcQhAAADAOAQgAABgHAIQAAAwDgEIAAAYJ+ABaOnSpUpISFBYWJgyMzO1adOmc/b9y1/+okmTJikhIUFBQUEqLi6+6DEBAIB5AhqAVq1aJYfDocLCQlVWViolJUV2u11Hjhxptf/Jkyc1dOhQzZs3T1artUPGBAAA5gloAFq0aJGmT5+uvLw8jRo1SiUlJerbt6+WLVvWav9rr71WL7/8sqZMmSKLxdIhYwIAAPMELAA1NTVpy5Ytstls3xUTHCybzaby8vIuHbOxsVF1dXU+GwAA6L0CFoCOHj2q5uZmxcTE+LTHxMTI5XJ16ZhFRUWKjIz0bvHx8X79fgAA0DMEfBF0d5Cfn6/a2lrvtn///kCXBAAAOlGfQP3i6OhohYSEyO12+7S73e5zLnDurDEtFss51xQBAIDeJ2B3gEJDQ5WWlian0+lta2lpkdPpVFZWVrcZEwAA9D4BuwMkSQ6HQ7m5uUpPT1dGRoaKi4vV0NCgvLw8SVJOTo4GDx6soqIiSd8ucv7yyy+9Px88eFDbtm1TRESEkpKS2jQmAABAQAPQ5MmTVV1drYKCArlcLqWmpqq0tNS7iLmqqkrBwd/dpDp06JCuueYa7/7ChQu1cOFCjRs3TmVlZW0aEwAAIKABSJJmzJihGTNmtHrsTKg5IyEhQR6P56LGBAAA4CkwAABgHAIQAAAwDgEIAAAYhwAEAACMQwACAADGIQABAADjEIAAAIBxCEAAAMA4BCAAAGAcAhAAADAOAQgAABiHAAQAAIxDAAIAAMYhAAEAAOMQgAAAgHEIQAAAwDgEIAAAYBwCEAAAMA4BCAAAGIcABAAAjEMAAgAAxiEAAQAA4xCAAACAcQhAAADAOAQgAABgHAIQAAAwDgEIAAAYhwAEAACMQwACAADGIQABAADjEIAAAIBxCEAAAMA4BCAAAGAcAhAAADAOAQgAABiHAAQAAIxDAAIAAMYhAAEAAOMQgAAAgHEIQAAAwDgEIAAAYJxuEYCWLl2qhIQEhYWFKTMzU5s2bTpv/9WrV2vEiBEKCwvT6NGjtW7dOp/j06ZNU1BQkM+WnZ3dmVMAAAA9SMAD0KpVq+RwOFRYWKjKykqlpKTIbrfryJEjrfb//PPPNXXqVD3wwAPaunWrJk6cqIkTJ+qLL77w6Zedna3Dhw97t3fffbcrpgMAAHqAgAegRYsWafr06crLy9OoUaNUUlKivn37atmyZa32f/XVV5Wdna2nn35aI0eO1Jw5czR27FgtWbLEp5/FYpHVavVuUVFRXTEdAADQAwQ0ADU1NWnLli2y2WzetuDgYNlsNpWXl7d6Tnl5uU9/SbLb7Wf1Lysr06BBgzR8+HA98sgjOnbs2DnraGxsVF1dnc8GAAB6r4AGoKNHj6q5uVkxMTE+7TExMXK5XK2e43K5Ltg/Oztbb775ppxOp+bPn68NGzbo1ltvVXNzc6tjFhUVKTIy0rvFx8df5MwAAEB31ifQBXSGKVOmeH8ePXq0xowZo2HDhqmsrEw333zzWf3z8/PlcDi8+3V1dYQgAAB6sYDeAYqOjlZISIjcbrdPu9vtltVqbfUcq9Xarv6SNHToUEVHR2v37t2tHrdYLOrfv7/PBgAAeq+ABqDQ0FClpaXJ6XR621paWuR0OpWVldXqOVlZWT79Jenjjz8+Z39JOnDggI4dO6bY2NiOKRwAAPRoAX8KzOFw6I033tDKlSu1Y8cOPfLII2poaFBeXp4kKScnR/n5+d7+TzzxhEpLS/XKK6/oq6++0uzZs7V582bNmDFDklRfX6+nn35aGzdu1L59++R0OnXnnXcqKSlJdrs9IHMEAADdS8DXAE2ePFnV1dUqKCiQy+VSamqqSktLvQudq6qqFBz8XU677rrr9M477+iFF17Q888/r+TkZK1du1ZXX321JCkkJETbt2/XypUrVVNTo7i4OI0fP15z5syRxWIJyBwBAED3EvAAJEkzZszw3sH5vrKysrPa7r33Xt17772t9g8PD9dHH33UkeUBAIBeJuAfgQEAAHQ1AhAAADAOAQgAABiHAAQAAIxDAAIAAMYhAAEAAOMQgAAAgHEIQAAAwDgEIAAAYBwCEAAAMA4BCAAAGIcABAAAjEMAAgAAxiEAAQAA4xCAAACAcQhAAADAOAQgAABgHAIQAAAwDgEIAAAYhwAEAACMQwACAADGIQABAADjEIAAAIBxCEAAAMA4BCAAAGAcAhAAADAOAQgAABiHAAQAAIxDAAIAAMYhAAEAAOMQgAAAgHEIQAAAwDgEIAAAYBwCEAAAMA4BCAAAGIcABAAAjEMAAgAAxiEAAQAA4xCAAACAcQhAAADAOAQgAABgHAIQAAAwTrcIQEuXLlVCQoLCwsKUmZmpTZs2nbf/6tWrNWLECIWFhWn06NFat26dz3GPx6OCggLFxsYqPDxcNptNu3bt6swpAACAHiTgAWjVqlVyOBwqLCxUZWWlUlJSZLfbdeTIkVb7f/7555o6daoeeOABbd26VRMnTtTEiRP1xRdfePssWLBAixcvVklJiSoqKtSvXz/Z7XadOnWqq6YFAAC6sYAHoEWLFmn69OnKy8vTqFGjVFJSor59+2rZsmWt9n/11VeVnZ2tp59+WiNHjtScOXM0duxYLVmyRNK3d3+Ki4v1wgsv6M4779SYMWP05ptv6tChQ1q7dm0XzgwAAHRXfQL5y5uamrRlyxbl5+d724KDg2Wz2VReXt7qOeXl5XI4HD5tdrvdG2727t0rl8slm83mPR4ZGanMzEyVl5drypQpZ43Z2NioxsZG735tba0kqa6uzu+5nU9L48lOGRcX1lnXVOK6BlJnXleJaxtIXNveqbOu65lxPR7PBfsGNAAdPXpUzc3NiomJ8WmPiYnRV1991eo5Lper1f4ul8t7/Ezbufp8X1FRkV588cWz2uPj49s2EfQYkcWBrgCdgevae3Fte6fOvq4nTpxQZGTkefsENAB1F/n5+T53lVpaWnT8+HFddtllCgoKCmBl3UtdXZ3i4+O1f/9+9e/fP9DloANxbXsnrmvvxbVtncfj0YkTJxQXF3fBvgENQNHR0QoJCZHb7fZpd7vdslqtrZ5jtVrP2//M/7rdbsXGxvr0SU1NbXVMi8Uii8Xi0zZgwID2TMUo/fv35/9wvRTXtnfiuvZeXNuzXejOzxkBXQQdGhqqtLQ0OZ1Ob1tLS4ucTqeysrJaPScrK8unvyR9/PHH3v6JiYmyWq0+ferq6lRRUXHOMQEAgFkC/hGYw+FQbm6u0tPTlZGRoeLiYjU0NCgvL0+SlJOTo8GDB6uoqEiS9MQTT2jcuHF65ZVXNGHCBL333nvavHmzfv3rX0uSgoKCNHPmTM2dO1fJyclKTEzUrFmzFBcXp4kTJwZqmgAAoBsJeACaPHmyqqurVVBQIJfLpdTUVJWWlnoXMVdVVSk4+LsbVdddd53eeecdvfDCC3r++eeVnJystWvX6uqrr/b2eeaZZ9TQ0KCHHnpINTU1uv7661VaWqqwsLAun19vYrFYVFhYeNbHhej5uLa9E9e19+LaXrwgT1ueFQMAAOhFAv4iRAAAgK5GAAIAAMYhAAEAAOMQgAAAgHEIQGjV0qVLlZCQoLCwMGVmZmrTpk3eY6dOndJPf/pTXXbZZYqIiNCkSZPOejkluq/zXdtf//rXuvHGG9W/f38FBQWppqYmcIWizf74xz/q9ttvV1xcnIKCgs764mePx6OCggLFxsYqPDxcNptNu3btCkyxaJcLXds1a9Zo/Pjx3m8u2LZtW0Dq7IkIQDjLqlWr5HA4VFhYqMrKSqWkpMhut+vIkSOSpH/6p3/Sv//7v2v16tXasGGDDh06pLvvvjvAVaMtLnRtT548qezsbD3//PMBrhTt0dDQoJSUFC1durTV4wsWLNDixYtVUlKiiooK9evXT3a7XadOneriStFeF7q2DQ0Nuv766zV//vwurqwX8ADfk5GR4fnpT3/q3W9ubvbExcV5ioqKPDU1NZ5LLrnEs3r1au/xHTt2eCR5ysvLA1Eu2uF81/b/Wr9+vUeS529/+1sXV4iLJcnzwQcfePdbWlo8VqvV8/LLL3vbampqPBaLxfPuu+8GoEL46/vX9v/au3evR5Jn69atXVpTT8YdIPhoamrSli1bZLPZvG3BwcGy2WwqLy/Xli1bdPr0aZ/jI0aM0JAhQ1ReXh6IktFGF7q26J327t0rl8vlc90jIyOVmZnJdYfRCEDwcfToUTU3N3vfxH1GTEyMXC6XXC6XQkNDz/qy2DPH0X1d6NqidzpzbbnugC8CEAAAMA4BCD6io6MVEhJy1lNdbrdbVqtVVqtVTU1NZz0ddOY4uq8LXVv0TmeuLdcd8EUAgo/Q0FClpaXJ6XR621paWuR0OpWVlaW0tDRdcsklPsd37typqqoqZWVlBaJktNGFri16p8TERFmtVp/rXldXp4qKCq47jBbwb4NH9+NwOJSbm6v09HRlZGSouLhYDQ0NysvLU2RkpB544AE5HA4NHDhQ/fv312OPPaasrCz9v//3/wJdOi7gfNdWkned1+7duyVJ//M//6NLL71UQ4YM0cCBAwNZOs6jvr7ee82kbxc+b9u2TQMHDtSQIUM0c+ZMzZ07V8nJyUpMTNSsWbMUFxeniRMnBq5otMmFru3x48dVVVWlQ4cOSfr2P0glee/Y4zwC/RgauqfXXnvNM2TIEE9oaKgnIyPDs3HjRu+xr7/+2vPoo496oqKiPH379vXcddddnsOHDwewWrTH+a5tYWGhR9JZ2/LlywNXMC7ozGsLvr/l5uZ6PJ5vH4WfNWuWJyYmxmOxWDw333yzZ+fOnYEtGm1yoWu7fPnyVo8XFhYGtO6eIMjj8Xi6NnIBAAAEFmuAAACAcQhAAADAOAQgAABgHAIQAAAwDgEIAAAYhwAEAACMQwACAADGIQABAADjEIAA9CjV1dV65JFHNGTIEFksFlmtVtntdn322WeSpKCgIK1du7bd4yYkJKi4uLhjiwXQbfFdYAB6lEmTJqmpqUkrV67U0KFD5Xa75XQ6dezYsUCXBqAH4aswAPQYNTU1ioqKUllZmcaNG3fW8YSEBP31r3/17l955ZXat2+f9uzZI4fDoY0bN6qhoUEjR45UUVGRbDabJOnGG2/Uhg0bfMY686fx008/VX5+vjZv3qzo6GjdddddKioqUr9+/TpxpgA6Gx+BAegxIiIiFBERobVr16qxsfGs43/6058kScuXL9fhw4e9+/X19brtttvkdDq1detWZWdn6/bbb1dVVZUkac2aNbriiiv00ksv6fDhwzp8+LAkac+ePcrOztakSZO0fft2rVq1Sp9++qlmzJjRRTMG0Fm4AwSgR3n//fc1ffp0ff311xo7dqzGjRunKVOmaMyYMZK+XQP0wQcfaOLEiecd5+qrr9bDDz/sDTMJCQmaOXOmZs6c6e3z4IMPKiQkRL/61a+8bZ9++qnGjRunhoYGhYWFdfj8AHQN7gAB6FEmTZqkQ4cO6Xe/+52ys7NVVlamsWPHasWKFec8p76+Xk899ZRGjhypAQMGKCIiQjt27PDeATqXP//5z1qxYoX3zlNERITsdrtaWlq0d+/eDp4ZgK7EImgAPU5YWJhuueUW3XLLLZo1a5YefPBBFRYWatq0aa32f+qpp/Txxx9r4cKFSkpKUnh4uO655x41NTWd9/fU19frJz/5iR5//PGzjg0ZMqQjpgIgQAhAAHq8UaNGeR99v+SSS9Tc3Oxz/LPPPtO0adN01113Sfo22Ozbt8+nT2ho6FnnjR07Vl9++aWSkpI6rXYAgcFHYAB6jGPHjummm27S22+/re3bt2vv3r1avXq1FixYoDvvvFPSt2t5nE6nXC6X/va3v0mSkpOTtWbNGm3btk1//vOf9Q//8A9qaWnxGTshIUF//OMfdfDgQR09elSS9Oyzz+rzzz/XjBkztG3bNu3atUsffvghi6CBXoAABKDHiIiIUGZmpn7xi1/oRz/6ka6++mrNmjVL06dP15IlSyRJr7zyij7++GPFx8frmmuukSQtWrRIUVFRuu6663T77bfLbrdr7NixPmO/9NJL2rdvn4YNG6bLL79ckjRmzBht2LBB//u//6sbbrhB11xzjQoKChQXF9e1EwfQ4XgKDAAAGIc7QAAAwDgEIAAAYBwCEAAAMA4BCAAAGIcABAAAjEMAAgAAxiEAAQAA4xCAAACAcQhAAADAOAQgAABgHAIQAAAwDgEIAAAY5/8DRUe2Kgz1DzAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nb_shots = 500\n", + "task = device.run(bell_pair_with_pulses, shots = nb_shots)\n", + "counts = task.result().measurement_counts\n", + "\n", + "\n", + "plt.bar(sorted(counts), [counts[k]/nb_shots for k in sorted(counts)])\n", + "plt.xlabel(\"State\")\n", + "plt.ylabel(\"Population\")" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Task Summary\n", + "{'arn:aws:braket:eu-west-2::device/qpu/oqc/Lucy': {'shots': 84600, 'tasks': {'COMPLETED': 86}}}\n", + "Note: Charges shown are estimates based on your Amazon Braket simulator and quantum processing unit (QPU) task usage. Estimated charges shown may differ from your actual charges. Estimated charges do not factor in any discounts or credits, and you may experience additional charges based on your use of other services such as Amazon Elastic Compute Cloud (Amazon EC2).\n", + "Estimated cost to run this example: 55.410 USD\n" + ] + } + ], + "source": [ + "print(\"Task Summary\")\n", + "print(t.quantum_tasks_statistics())\n", + "print('Note: Charges shown are estimates based on your Amazon Braket simulator and quantum processing unit (QPU) task usage. Estimated charges shown may differ from your actual charges. Estimated charges do not factor in any discounts or credits, and you may experience additional charges based on your use of other services such as Amazon Elastic Compute Cloud (Amazon EC2).')\n", + "print(f\"Estimated cost to run this example: {t.qpu_tasks_cost() + t.simulator_tasks_cost():.3f} USD\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.9.14", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.14" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/modules/1_Continue_Exploring/A_qtm_hw/pulse_control/3_Bell_pair_with_pulses_Rigetti.ipynb b/modules/1_Continue_Exploring/A_qtm_hw/pulse_control/3_Bell_pair_with_pulses_Rigetti.ipynb new file mode 100644 index 000000000..ff2ea2159 --- /dev/null +++ b/modules/1_Continue_Exploring/A_qtm_hw/pulse_control/3_Bell_pair_with_pulses_Rigetti.ipynb @@ -0,0 +1,541 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Creating a Bell state with pulses on Rigetti's Aspen M-3\n", + "\n", + "Let's create a Bell state program, the `Hello world!` example in quantum computing, with pulses on a Rigetti's device. \n", + "\n", + "The canonical circuit to generate a Bell pair is constitued of an Hadamard gate on a first qubit followed by a CNOT gate between this qubit and a second qubit. In this notebook, we will realize that creating entangled states requires specific mechanisms that are tightly connected to the hardware type and device architecture. Specifically here, we will focus on the native gate set of the Rigetti's device and choose to use specific waveforms and frames that enable native CZ gates." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# Use Braket SDK Cost Tracking to estimate the cost to run this example\n", + "from braket.tracking import Tracker\n", + "t = Tracker().start()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's first import few packages." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "from braket.aws import AwsDevice\n", + "from braket.pulse import PulseSequence, ArbitraryWaveform\n", + "\n", + "from braket.circuits import Circuit\n", + "import braket.circuits.circuit as circuit\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will use two qubits, #10 amd #113, that are physically connected to each other. We also instantiate a Rigetti device to extract frames and submit circuits." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "a=10\n", + "b=113\n", + "\n", + "device = AwsDevice(\"arn:aws:braket:us-west-1::device/qpu/rigetti/Aspen-M-3\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Bell pair with the H and Ctrl-Z gates" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "First we show how to transform our common Bell state circuit into one that contains a CZ gate instead of a CNOT gate.\n", + "\n", + "As, CNOT and CZ only differ by a basis transform, we will add Hadamard gates before and after the CZ gate. " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : |0|1|2|\n", + " \n", + "q10 : -H-C---\n", + " | \n", + "q113 : -H-Z-H-\n", + "\n", + "T : |0|1|2|\n" + ] + } + ], + "source": [ + "bell_pair_with_gates = Circuit().h(a).h(b).cz(a, b).h(b)\n", + "print(bell_pair_with_gates)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The circuit is then executed on the Aspen-M-3 device and we plot the measurement histogram which hints that we created $$\\frac{|00\\rangle+|11\\rangle}{\\sqrt{2}}$$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We use `disable_qubit_rewiring = True` to be sure that the Bell pair will be created on the specified qubit and not on remapped qubits so we have a fair comparison with the rest of the notebook." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Population')" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAkTUlEQVR4nO3df3RT9f3H8VdaaEIpLWBnazFQaRlQFSrtWotT1EXLAUUUz0E3pVSpc1rR5bijuNEqbicoWOsPZtWt4M/J8Yio07HjIuDQAoNSfyJTD7UIpBQRSou22OT7h8f4zVqgDWlv++H5OCfnkJt7b97ZPYOnNzeJLRAIBAQAAGCIKKsHAAAAiCTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABG6Wf1AD3N7/dr165dGjRokGw2m9XjAACATggEAjp48KBSUlIUFXX0czMnXNzs2rVLTqfT6jEAAEAYduzYoVNPPfWo65xwcTNo0CBJ3/+PEx8fb/E0AACgMxobG+V0OoP/jh/NCRc3P7wVFR8fT9wAANDHdOaSEi4oBgAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABglH5WD2Ca1Dtft3qEE1btwqlWjwAA6AU4cwMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACM0iviZsmSJUpNTZXD4VBubq42btx4xHWXLVsmm80WcnM4HD04LQAA6M0sj5vly5fL7XartLRU1dXVGj9+vPLz87Vnz54jbhMfH6/du3cHb1988UUPTgwAAHozy+OmrKxMRUVFKiwsVEZGhioqKhQbG6vKysojbmOz2ZScnBy8JSUlHXHdlpYWNTY2htwAAIC5LI2b1tZWbd68WS6XK7gsKipKLpdLVVVVR9yuqalJI0aMkNPp1GWXXaaPPvroiOt6PB4lJCQEb06nM6KvAQAA9C6Wxs3evXvV1tbW7sxLUlKSfD5fh9uMHj1alZWVeuWVV/Tss8/K7/dr4sSJ+vLLLztcf968eTpw4EDwtmPHjoi/DgAA0Hv0s3qArsrLy1NeXl7w/sSJEzV27Fg9/vjjuvfee9utb7fbZbfbe3JEAABgIUvP3CQmJio6Olr19fUhy+vr65WcnNypffTv319nnXWWPvvss+4YEQAA9DGWxk1MTIyysrLk9XqDy/x+v7xeb8jZmaNpa2vTBx98oFNOOaW7xgQAAH2I5W9Lud1uFRQUKDs7Wzk5OSovL1dzc7MKCwslSbNmzdKwYcPk8XgkSQsWLNDZZ5+t9PR07d+/X4sWLdIXX3yhOXPmWPkyAABAL2F53MycOVMNDQ0qKSmRz+dTZmamVq1aFbzIuK6uTlFRP55g+vrrr1VUVCSfz6chQ4YoKytL7777rjIyMqx6CQAAoBexBQKBgNVD9KTGxkYlJCTowIEDio+Pj/j+U+98PeL7ROfULpxq9QgAgG7SlX+/Lf8SPwAAgEgibgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYpVfEzZIlS5SamiqHw6Hc3Fxt3LixU9u98MILstlsmj59evcOCAAA+gzL42b58uVyu90qLS1VdXW1xo8fr/z8fO3Zs+eo29XW1ur222/Xueee20OTAgCAvsDyuCkrK1NRUZEKCwuVkZGhiooKxcbGqrKy8ojbtLW16Ve/+pXuuecejRw5sgenBQAAvZ2lcdPa2qrNmzfL5XIFl0VFRcnlcqmqquqI2y1YsEAnn3yyrr/++mM+R0tLixobG0NuAADAXP2sfPK9e/eqra1NSUlJIcuTkpL0ySefdLjNunXr9Ne//lU1NTWdeg6Px6N77rnneEcFAPQxqXe+bvUIJ6zahVMtfX7L35bqioMHD+raa6/Vk08+qcTExE5tM2/ePB04cCB427FjRzdPCQAArGTpmZvExERFR0ervr4+ZHl9fb2Sk5Pbrf/555+rtrZWl156aXCZ3++XJPXr10/btm1TWlpayDZ2u112u70bpgcAAL2RpWduYmJilJWVJa/XG1zm9/vl9XqVl5fXbv0xY8bogw8+UE1NTfA2bdo0XXDBBaqpqZHT6ezJ8QEAQC9k6ZkbSXK73SooKFB2drZycnJUXl6u5uZmFRYWSpJmzZqlYcOGyePxyOFw6IwzzgjZfvDgwZLUbjkAADgxWR43M2fOVENDg0pKSuTz+ZSZmalVq1YFLzKuq6tTVFSfujQIAABYyPK4kaTi4mIVFxd3+NiaNWuOuu2yZcsiPxAAAOizOCUCAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKGHFTX19va699lqlpKSoX79+io6ODrkBAABYpV84G82ePVt1dXWaP3++TjnlFNlstkjPBQAAEJaw4mbdunX697//rczMzAiPAwAAcHzCelvK6XQqEAhEehYAAIDjFlbclJeX684771RtbW2ExwEAADg+Yb0tNXPmTB06dEhpaWmKjY1V//79Qx7ft29fRIYDAADoqrDipry8PMJjAAAAREZYcVNQUBDpOQAAACIirLiRpLa2Nq1cuVJbt26VJJ1++umaNm0a33MDAAAsFVbcfPbZZ5oyZYp27typ0aNHS5I8Ho+cTqdef/11paWlRXRIAACAzgrr01Jz585VWlqaduzYoerqalVXV6uurk6nnXaa5s6d2+X9LVmyRKmpqXI4HMrNzdXGjRuPuO6KFSuUnZ2twYMHa+DAgcrMzNQzzzwTzssAAAAGCuvMzdq1a7V+/XoNHTo0uOykk07SwoULdc4553RpX8uXL5fb7VZFRYVyc3NVXl6u/Px8bdu2TSeffHK79YcOHarf//73GjNmjGJiYvT3v/9dhYWFOvnkk5Wfnx/OywEAAAYJ68yN3W7XwYMH2y1vampSTExMl/ZVVlamoqIiFRYWKiMjQxUVFYqNjVVlZWWH659//vm6/PLLNXbsWKWlpenWW2/VuHHjtG7dunBeCgAAMExYcXPJJZfohhtu0IYNGxQIBBQIBLR+/XrdeOONmjZtWqf309raqs2bN8vlcv04UFSUXC6Xqqqqjrl9IBCQ1+vVtm3bdN5553W4TktLixobG0NuAADAXGHFzcMPP6y0tDTl5eXJ4XDI4XDonHPOUXp6uh566KFO72fv3r1qa2tTUlJSyPKkpCT5fL4jbnfgwAHFxcUpJiZGU6dO1SOPPKKLLrqow3U9Ho8SEhKCN6fT2en5AABA3xPWNTeDBw/WK6+8ok8//VSffPKJJGns2LFKT0+P6HBHMmjQINXU1KipqUler1dut1sjR47U+eef327defPmye12B+83NjYSOAAAGCzs77mRpFGjRmnUqFFhb5+YmKjo6GjV19eHLK+vr1dycvIRt4uKigqGVGZmprZu3SqPx9Nh3Njtdtnt9rBnBAAAfUun48btduvee+/VwIEDQ86EdKSsrKxT+4yJiVFWVpa8Xq+mT58uSfL7/fJ6vSouLu7saPL7/Wppaen0+gAAwFydjpstW7bo8OHDwT9HitvtVkFBgbKzs5WTk6Py8nI1NzersLBQkjRr1iwNGzZMHo9H0vfX0GRnZystLU0tLS1644039Mwzz+ixxx6L2EwAAKDv6nTcrF69usM/H6+ZM2eqoaFBJSUl8vl8yszM1KpVq4IXGdfV1Skq6sfrnpubm3XTTTfpyy+/1IABAzRmzBg9++yzmjlzZsRmAgAAfZctEAgEurrRddddp4ceekiDBg0KWd7c3KxbbrnliN9R0xs0NjYqISFBBw4cUHx8fMT3n3rn6xHfJzqnduFUq0cA0Ivw97F1uuPv4678+x3WR8GfeuopffPNN+2Wf/PNN3r66afD2SUAAEBEdOnTUo2NjcEv7Tt48KAcDkfwsba2Nr3xxhsd/mQCAABAT+lS3AwePFg2m002m00//elP2z1us9l0zz33RGw4AACArupS3KxevVqBQEAXXnihXnrppZAfzoyJidGIESOUkpIS8SEBAAA6q0txM2nSJEnS9u3b5XQ6Qz7FBAAA0BuE9Q3FI0aMkCQdOnRIdXV1am1tDXl83Lhxxz8ZAABAGMKKm4aGBhUWFuof//hHh4+3tbUd11AAAADhCut9pdtuu0379+/Xhg0bNGDAAK1atUpPPfWURo0apVdffTXSMwIAAHRaWGdu3nrrLb3yyivKzs5WVFSURowYoYsuukjx8fHyeDyaOpUvUwMAANYI68xNc3Nz8PtshgwZooaGBknSmWeeqerq6shNBwAA0EVhxc3o0aO1bds2SdL48eP1+OOPa+fOnaqoqNApp5wS0QEBAAC6Iqy3pW699Vbt3r1bklRaWqrJkyfrueeeU0xMjJYtWxbJ+QAAALokrLi55pprgn/OysrSF198oU8++UTDhw9XYmJixIYDAADoqrDi5n/FxsZqwoQJkdgVAADAcel03Ljd7k7vtKysLKxhAAAAjlen42bLli2dWs9ms4U9DAAAwPHqdNysXr26O+cAAACICH75EgAAGCWsC4ovuOCCo7799NZbb4U9EAAAwPEIK24yMzND7h8+fFg1NTX68MMPVVBQEIm5AAAAwhJW3Dz44IMdLr/77rvV1NR0XAMBAAAcj4hec3PNNdeosrIykrsEAADokojGTVVVlRwORyR3CQAA0CVhvS11xRVXhNwPBALavXu3Nm3apPnz50dkMAAAgHCEFTcJCQkh96OiojR69GgtWLBAF198cUQGAwAACEdYcbN06dJIzwEAABARx/XDmZs2bdLWrVslSRkZGcrKyorIUAAAAOEKK26+/PJLXX311XrnnXc0ePBgSdL+/fs1ceJEvfDCCzr11FMjOSMAAECnhfVpqTlz5ujw4cPaunWr9u3bp3379mnr1q3y+/2aM2dOpGcEAADotLDO3Kxdu1bvvvuuRo8eHVw2evRoPfLIIzr33HMjNhwAAEBXhXXmxul06vDhw+2Wt7W1KSUl5biHAgAACFdYcbNo0SLdcsst2rRpU3DZpk2bdOutt2rx4sURGw4AAKCrwnpbavbs2Tp06JByc3PVr9/3u/juu+/Ur18/XXfddbruuuuC6+7bty8ykwIAAHRCWHFTXl4e4TEAAAAiI6y4KSgoiPQcAAAAERH2l/i1tbVp5cqVwS/xO/300zVt2jRFR0dHbDgAAICuCituPvvsM02ZMkU7d+4Mfhzc4/HI6XTq9ddfV1paWkSHBAAA6KywPi01d+5cpaWlaceOHaqurlZ1dbXq6up02mmnae7cuZGeEQAAoNPC/hK/9evXa+jQocFlJ510khYuXKhzzjknYsMBAAB0VVhnbux2uw4ePNhueVNTk2JiYo57KAAAgHCFFTeXXHKJbrjhBm3YsEGBQECBQEDr16/XjTfeqGnTpkV6RgAAgE4LK24efvhhpaena+LEiXI4HHI4HDrnnHOUnp6uhx56KNIzAgAAdFqXrrnx+/1atGiRXn31VbW2tmr69OkqKCiQzWbT2LFjlZ6e3l1zAgAAdEqX4uZPf/qT7r77brlcLg0YMEBvvPGGEhISVFlZ2V3zAQAAdEmX3pZ6+umn9ec//1n//Oc/tXLlSr322mt67rnn5Pf7u2s+AACALulS3NTV1WnKlCnB+y6XSzabTbt27Yr4YAAAAOHoUtx89913cjgcIcv69++vw4cPR3QoAACAcHXpmptAIKDZs2fLbrcHl3377be68cYbNXDgwOCyFStWRG5CAACALuhS3HT0a+DXXHNNxIYBAAA4Xl2Km6VLl3bXHAAAABER1pf4AQAA9FbEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACM0iviZsmSJUpNTZXD4VBubq42btx4xHWffPJJnXvuuRoyZIiGDBkil8t11PUBAMCJxfK4Wb58udxut0pLS1VdXa3x48crPz9fe/bs6XD9NWvW6Oqrr9bq1atVVVUlp9Opiy++WDt37uzhyQEAQG9kedyUlZWpqKhIhYWFysjIUEVFhWJjY1VZWdnh+s8995xuuukmZWZmasyYMfrLX/4iv98vr9fb4fotLS1qbGwMuQEAAHNZGjetra3avHmzXC5XcFlUVJRcLpeqqqo6tY9Dhw7p8OHDGjp0aIePezweJSQkBG9OpzMiswMAgN7J0rjZu3ev2tralJSUFLI8KSlJPp+vU/u44447lJKSEhJI/9+8efN04MCB4G3Hjh3HPTcAAOi9uvTDmb3NwoUL9cILL2jNmjVyOBwdrmO322W323t4MgAAYBVL4yYxMVHR0dGqr68PWV5fX6/k5OSjbrt48WItXLhQ//rXvzRu3LjuHBMAAPQhlr4tFRMTo6ysrJCLgX+4ODgvL++I291///269957tWrVKmVnZ/fEqAAAoI+w/G0pt9utgoICZWdnKycnR+Xl5WpublZhYaEkadasWRo2bJg8Ho8k6b777lNJSYmef/55paamBq/NiYuLU1xcnGWvAwAA9A6Wx83MmTPV0NCgkpIS+Xw+ZWZmatWqVcGLjOvq6hQV9eMJpscee0ytra268sorQ/ZTWlqqu+++uydHBwAAvZDlcSNJxcXFKi4u7vCxNWvWhNyvra3t/oEAAECfZfmX+AEAAEQScQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKJbHzZIlS5SamiqHw6Hc3Fxt3LjxiOt+9NFHmjFjhlJTU2Wz2VReXt5zgwIAgD7B0rhZvny53G63SktLVV1drfHjxys/P1979uzpcP1Dhw5p5MiRWrhwoZKTk3t4WgAA0BdYGjdlZWUqKipSYWGhMjIyVFFRodjYWFVWVna4/s9+9jMtWrRIV111lex2ew9PCwAA+gLL4qa1tVWbN2+Wy+X6cZioKLlcLlVVVUXseVpaWtTY2BhyAwAA5rIsbvbu3au2tjYlJSWFLE9KSpLP54vY83g8HiUkJARvTqczYvsGAAC9j+UXFHe3efPm6cCBA8Hbjh07rB4JAAB0o35WPXFiYqKio6NVX18fsry+vj6iFwvb7XauzwEA4ARi2ZmbmJgYZWVlyev1Bpf5/X55vV7l5eVZNRYAAOjjLDtzI0lut1sFBQXKzs5WTk6OysvL1dzcrMLCQknSrFmzNGzYMHk8HknfX4T88ccfB/+8c+dO1dTUKC4uTunp6Za9DgAA0HtYGjczZ85UQ0ODSkpK5PP5lJmZqVWrVgUvMq6rq1NU1I8nl3bt2qWzzjoreH/x4sVavHixJk2apDVr1vT0+AAAoBeyNG4kqbi4WMXFxR0+9r/BkpqaqkAg0ANTAQCAvsr4T0sBAIATC3EDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACj9LN6AKAvSL3zdatHOGHVLpxq9QgA+hjO3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIzCD2cCOKHxo6jW4UdR0V04cwMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMEqviJslS5YoNTVVDodDubm52rhx41HXf/HFFzVmzBg5HA6deeaZeuONN3poUgAA0NtZHjfLly+X2+1WaWmpqqurNX78eOXn52vPnj0drv/uu+/q6quv1vXXX68tW7Zo+vTpmj59uj788MMenhwAAPRGlsdNWVmZioqKVFhYqIyMDFVUVCg2NlaVlZUdrv/QQw9p8uTJ+t3vfqexY8fq3nvv1YQJE/Too4/28OQAAKA36mflk7e2tmrz5s2aN29ecFlUVJRcLpeqqqo63KaqqkputztkWX5+vlauXNnh+i0tLWppaQneP3DggCSpsbHxOKfvmL/lULfsF8fWXcdU4rhaqTuPq8SxtRLH1lzdcWx/2GcgEDjmupbGzd69e9XW1qakpKSQ5UlJSfrkk0863Mbn83W4vs/n63B9j8eje+65p91yp9MZ5tTorRLKrZ4A3YHjai6Orbm689gePHhQCQkJR13H0rjpCfPmzQs50+P3+7Vv3z6ddNJJstlsFk7WuzQ2NsrpdGrHjh2Kj4+3ehxEEMfWXBxbM3FcOxYIBHTw4EGlpKQcc11L4yYxMVHR0dGqr68PWV5fX6/k5OQOt0lOTu7S+na7XXa7PWTZ4MGDwx/acPHx8fyfyVAcW3NxbM3EcW3vWGdsfmDpBcUxMTHKysqS1+sNLvP7/fJ6vcrLy+twm7y8vJD1JenNN9884voAAODEYvnbUm63WwUFBcrOzlZOTo7Ky8vV3NyswsJCSdKsWbM0bNgweTweSdKtt96qSZMm6YEHHtDUqVP1wgsvaNOmTXriiSesfBkAAKCXsDxuZs6cqYaGBpWUlMjn8ykzM1OrVq0KXjRcV1enqKgfTzBNnDhRzz//vP7whz/orrvu0qhRo7Ry5UqdccYZVr0EI9jtdpWWlrZ7Cw99H8fWXBxbM3Fcj58t0JnPVAEAAPQRln+JHwAAQCQRNwAAwCjEDQAAMApxAwAAjELcnICWLFmi1NRUORwO5ebmauPGjcHHvv32W91888066aSTFBcXpxkzZrT70kT0Xkc7tk888YTOP/98xcfHy2azaf/+/dYNik57++23demllyolJUU2m63d7+gFAgGVlJTolFNO0YABA+RyufTpp59aMyy65FjHdsWKFbr44ouD36hfU1NjyZx9EXFzglm+fLncbrdKS0tVXV2t8ePHKz8/X3v27JEk/fa3v9Vrr72mF198UWvXrtWuXbt0xRVXWDw1OuNYx/bQoUOaPHmy7rrrLosnRVc0Nzdr/PjxWrJkSYeP33///Xr44YdVUVGhDRs2aODAgcrPz9e3337bw5Oiq451bJubm/Xzn/9c9913Xw9PZoAATig5OTmBm2++OXi/ra0tkJKSEvB4PIH9+/cH+vfvH3jxxReDj2/dujUgKVBVVWXFuOiCox3b/2/16tUBSYGvv/66hyfE8ZIUePnll4P3/X5/IDk5ObBo0aLgsv379wfsdnvgb3/7mwUTIlz/e2z/v+3btwckBbZs2dKjM/VlnLk5gbS2tmrz5s1yuVzBZVFRUXK5XKqqqtLmzZt1+PDhkMfHjBmj4cOHq6qqyoqR0UnHOrYw0/bt2+Xz+UKOe0JCgnJzcznuOKERNyeQvXv3qq2tLfjtzz9ISkqSz+eTz+dTTExMux8W/eFx9F7HOrYw0w/HluMOhCJuAACAUYibE0hiYqKio6Pbffqpvr5eycnJSk5OVmtra7tP0fzwOHqvYx1bmOmHY8txB0IRNyeQmJgYZWVlyev1Bpf5/X55vV7l5eUpKytL/fv3D3l827ZtqqurU15enhUjo5OOdWxhptNOO03Jyckhx72xsVEbNmzguOOEZvmvgqNnud1uFRQUKDs7Wzk5OSovL1dzc7MKCwuVkJCg66+/Xm63W0OHDlV8fLxuueUW5eXl6eyzz7Z6dBzD0Y6tpOB1VZ999pkk6YMPPtCgQYM0fPhwDR061MrRcRRNTU3BYyZ9fxFxTU2Nhg4dquHDh+u2227TH//4R40aNUqnnXaa5s+fr5SUFE2fPt26odEpxzq2+/btU11dnXbt2iXp+//YlBQ8046jsPrjWuh5jzzySGD48OGBmJiYQE5OTmD9+vXBx7755pvATTfdFBgyZEggNjY2cPnllwd2795t4bToiqMd29LS0oCkdrelS5daNzCO6YeP7v/vraCgIBAIfP9x8Pnz5weSkpICdrs98Itf/CKwbds2a4dGpxzr2C5durTDx0tLSy2duy+wBQKBQM/mFAAAQPfhmhsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGQK/S0NCg3/zmNxo+fLjsdruSk5OVn5+vd955R5Jks9m0cuXKLu83NTVV5eXlkR0WQK/ED2cC6FVmzJih1tZWPfXUUxo5cqTq6+vl9Xr11VdfWT0agD6C35YC0Gvs379fQ4YM0Zo1azRp0qR2j6empuqLL74I3h8xYoRqa2v1+eefy+12a/369WpubtbYsWPl8XjkcrkkSeeff77Wrl0bsq8f/upbt26d5s2bp02bNikxMVGXX365PB6PBg4c2I2vFEB34m0pAL1GXFyc4uLitHLlSrW0tLR7/D//+Y8kaenSpdq9e3fwflNTk6ZMmSKv16stW7Zo8uTJuvTSS1VXVydJWrFihU499VQtWLBAu3fv1u7duyVJn3/+uSZPnqwZM2bo/fff1/Lly7Vu3ToVFxf30CsG0B04cwOgV3nppZdUVFSkb775RhMmTNCkSZN01VVXady4cZK+v+bm5Zdf1vTp04+6nzPOOEM33nhjMFRSU1N122236bbbbguuM2fOHEVHR+vxxx8PLlu3bp0mTZqk5uZmORyOiL8+AN2PMzcAepUZM2Zo165devXVVzV58mStWbNGEyZM0LJly464TVNTk26//XaNHTtWgwcPVlxcnLZu3Ro8c3Mk7733npYtWxY8YxQXF6f8/Hz5/X5t3749wq8MQE/hgmIAvY7D4dBFF12kiy66SPPnz9ecOXNUWlqq2bNnd7j+7bffrjfffFOLFy9Wenq6BgwYoCuvvFKtra1HfZ6mpib9+te/1ty5c9s9Nnz48Ei8FAAWIG4A9HoZGRnBj3/3799fbW1tIY+/8847mj17ti6//HJJ30dLbW1tyDoxMTHttpswYYI+/vhjpaend9vsAHoeb0sB6DW++uorXXjhhXr22Wf1/vvva/v27XrxxRd1//3367LLLpP0/bUzXq9XPp9PX3/9tSRp1KhRWrFihWpqavTee+/pl7/8pfx+f8i+U1NT9fbbb2vnzp3au3evJOmOO+7Qu+++q+LiYtXU1OjTTz/VK6+8wgXFQB9H3ADoNeLi4pSbm6sHH3xQ5513ns444wzNnz9fRUVFevTRRyVJDzzwgN588005nU6dddZZkqSysjINGTJEEydO1KWXXqr8/HxNmDAhZN8LFixQbW2t0tLS9JOf/ESSNG7cOK1du1b//e9/de655+qss85SSUmJUlJSevaFA4goPi0FAACMwpkbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARvk/sB5fCZxy68sAAAAASUVORK5CYII=\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nb_shots = 100\n", + "task = device.run(bell_pair_with_gates, shots = nb_shots, disable_qubit_rewiring=True)\n", + "counts = task.result().measurement_counts\n", + "plt.bar(sorted(counts), [counts[k]/nb_shots for k in sorted(counts)])\n", + "plt.xlabel(\"State\")\n", + "plt.ylabel(\"Population\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Bell pair with the pulse implementation of CZ" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Since Hadamard gates are not native gates on Aspen, we cannot add them to circuits containing pulse sequences. We need to first decompose them into a sequence of native gates. We will use the RX and RZ gates here.\n", + "\n", + "We will annotate this decomposition with `circuit.subroutine` to register this as a custom gate in the circuit allowing easy reuse." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : | 0 | 1 | 2 | 3 |\n", + " \n", + "q10 : -Rz(3.14)-Rx(1.57)-Rz(1.57)-Rx(-1.57)-\n", + "\n", + "T : | 0 | 1 | 2 | 3 |\n" + ] + } + ], + "source": [ + "@circuit.subroutine(register=True)\n", + "def rigetti_native_h(q0):\n", + " return (\n", + " Circuit()\n", + " .rz(q0, np.pi)\n", + " .rx(q0, np.pi/2)\n", + " .rz(q0, np.pi/2)\n", + " .rx(q0, -np.pi/2)\n", + " )\n", + " \n", + "print(Circuit().rigetti_native_h(a))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For the CZ gate, we will use an arbitrary waveform with parameters (amplitude, rise/fall time, duration) that have been predetermined beforehand. This waveform will be applied on the `q10_q113_cz_frame frame`." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "a_b_cz_wfm = ArbitraryWaveform([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00017888439538396808, 0.00046751103636033026, 0.0011372942989106456, 0.002577059611929697, 0.005443941944632366, 0.010731922770068104, 0.01976701723583167, 0.03406712171899736, 0.05503285980691202, 0.08350670755829034, 0.11932853352131022, 0.16107456696238298, 0.20614055551722368, 0.2512065440720643, 0.292952577513137, 0.328774403476157, 0.3572482512275353, 0.3782139893154499, 0.3925140937986156, 0.40154918826437913, 0.4068371690898149, 0.4097040514225177, 0.41114381673553674, 0.411813599998087, 0.4121022266390633, 0.4122174383870584, 0.41226003881132406, 0.4122746298554775, 0.4122792591252675, 0.4122806196003006, 0.41228098995582513, 0.41228108334474756, 0.4122811051578895, 0.4122811098772742, 0.4122811108230642, 0.4122811109986316, 0.41228111102881937, 0.41228111103362725, 0.4122811110343365, 0.41228111103443343, 0.4122811110344457, 0.4122811110344471, 0.41228111103444737, 0.41228111103444737, 0.41228111103444737, 0.41228111103444737, 0.41228111103444737, 0.41228111103444737, 0.41228111103444737, 0.41228111103444737, 0.41228111103444737, 0.41228111103444737, 0.41228111103444737, 0.41228111103444737, 0.41228111103444737, 0.41228111103444737, 0.41228111103444737, 0.41228111103444737, 0.41228111103444737, 0.41228111103444737, 0.41228111103444737, 0.41228111103444737, 0.41228111103444737, 0.41228111103444737, 0.41228111103444737, 0.41228111103444737, 0.41228111103444737, 0.4122811110344471, 0.4122811110344457, 0.41228111103443343, 0.4122811110343365, 0.41228111103362725, 0.41228111102881937, 0.4122811109986316, 0.4122811108230642, 0.4122811098772742, 0.4122811051578895, 0.41228108334474756, 0.41228098995582513, 0.4122806196003006, 0.4122792591252675, 0.4122746298554775, 0.41226003881132406, 0.4122174383870584, 0.4121022266390633, 0.411813599998087, 0.41114381673553674, 0.4097040514225176, 0.4068371690898149, 0.40154918826437913, 0.3925140937986155, 0.37821398931544986, 0.3572482512275351, 0.32877440347615655, 0.2929525775131368, 0.2512065440720641, 0.20614055551722307, 0.16107456696238268, 0.11932853352131002, 0.08350670755829034, 0.05503285980691184, 0.03406712171899729, 0.01976701723583167, 0.010731922770068058, 0.005443941944632366, 0.002577059611929697, 0.0011372942989106229, 0.00046751103636033026, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To draw this waveform as it will be played on the device, we need to know the frame and the corresponding time separation between each sample. This information is stored in the device capabilities. \n", + "\n", + "First we retrieve the frame that we will use to create a CZ gate between qubit 10 and 113. The minimum time increment can then be extracted through the corresponding port.\n", + "\n", + "The pulse length will be the product of the number of samples and the minimum time increment. " + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CZ pulse duration: 124.0 ns\n" + ] + } + ], + "source": [ + "a_b_cz_frame = device.frames[f'q{a}_q{b}_cz_frame']\n", + "dt=a_b_cz_frame.port.dt\n", + "\n", + "a_b_cz_wfm_duration = len(a_b_cz_wfm.amplitudes)*dt\n", + "print('CZ pulse duration:', round(a_b_cz_wfm_duration * 1e9,0), 'ns')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "With all these data, we call also plot the waveform and see that it is rounded square pulse. " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAABeIklEQVR4nO3deVzUdf4H8NfMADPcIDADKIpXIl4opGF5rKJorm67meavEtHM8qrcdst206wMNXNdzdW1u+xwLW2rNfPIs8gLycwzU/HgFGGQa2Dm8/sD5osj5+jAd47X8/FgN77zne/3PR+H77zn/Tm+CiGEABEREZGTUModABEREZEtMbkhIiIip8LkhoiIiJwKkxsiIiJyKkxuiIiIyKkwuSEiIiKnwuSGiIiInAqTGyIiInIqTG6IiIjIqTC5oVumUCjw4osvyh2GU8jOzsbYsWMRFBQEhUKB5cuXyx2STUyaNAk+Pj5yh+HyXnzxRSgUCuTl5TW6b2RkJCZNmtT8QTmQSZMmITIyUu4wyApMblzEe++9B4VCIf1oNBrccccdmDlzJrKzs+UOzy5lZ2fjmWeeQVRUFLy8vODt7Y3Y2Fi88sorKCgoAFC7Xev7OX/+fIPnevrpp/Htt99i7ty5+PDDDzFixIjmf4EO6l//+hfee+89ucNwGcePH8eLL77Y6HvYLDMzE8899xx+97vfwdfXFwqFArt27ap3/x9++AH33HMPvLy8EBoaitmzZ+P69eu2Cb6FHThwANOnT0dsbCzc3d2hUCjq3Xf16tV44IEH0LZtWygUinoTyj179mDMmDGIiIiARqNBaGgoRowYge+//76ZXoVzcJM7AGpZL730Etq3b4+ysjLs27cPq1evxubNm3Hs2DF4eXnJHZ7dOHjwIO69915cv34dDz/8MGJjYwEAhw4dwqJFi7Bnzx5s3boVAwcOxIcffljnMS5fvoy5c+ciMjISWq22wfN99913+MMf/oBnnnnG5q/F2fzrX/9CcHAwqwvN5NSpU1Aqa773Hj9+HAsWLMDgwYObVL04deoUFi9ejM6dO6NHjx5ITU2td9/09HQMHToUXbt2xbJly3Dp0iUsXboUZ86cwTfffGOLl9OiNm/ejLfeegs9e/ZEhw4dcPr06Xr3Xbx4MYqKitC3b19kZmbWu9/p06ehVCrx+OOPIzQ0FNeuXcO6deswcOBA/O9//+MXoXowuXExI0eORFxcHADg0UcfRVBQEJYtW4b//ve/mDBhgszR2YeCggL88Y9/hEqlwpEjRxAVFWXx+MKFC/Hmm28CADp06IAOHTrUOobRaMSQIUPg5uaGTz75pNHEMScnBwEBAY3GVlxcDG9v76a/GCIrqdXq23p+bGwsrl69ilatWuGzzz7DAw88UO++zz//PAIDA7Fr1y74+fkBqOoWmzp1KrZu3Yrhw4ffViwt7YknnsCzzz4LT09PzJw5s8HkZvfu3VLVpqGu20cffRSPPvqoxbbp06ejQ4cOWL58OZOberBbysUNGTIEAHDu3DkAwODBgzF48OBa+zWlz7moqAhPPfUUIiMjoVarodVqMWzYMKSlpVnst3//fowYMQL+/v7w8vLCoEGDmlxizcnJwZQpU6DT6aDRaNCrVy+8//77FvucP38eCoUCS5cuxdq1a9GxY0eo1WrceeedOHjwYKPn+Pe//43Lly9j2bJltRIbANDpdPj73//e4DEWLFiAPXv24JVXXkG/fv3q3c/crSWEwKpVq6RurBsf2717N6ZPnw6tVos2bdoAAC5cuIDp06ejS5cu8PT0RFBQEB544IFaXQfmY+zbtw+zZ89GSEgIAgICMG3aNBgMBhQUFGDixIkIDAxEYGAg/vrXv0IIYXEMk8mE5cuXo1u3btBoNNDpdJg2bRquXbvWaFua/fbbb0hMTIS3tzfCw8Px0ksv3dJ5IiMj8csvv2D37t1SWw0ePBgFBQVQqVRYsWKFtG9eXh6USiWCgoIszvXEE08gNDTU4txNfU9evnwZkydPhk6ng1qtRrdu3fDOO+9Y7LNr1y4oFAr85z//wcKFC9GmTRtoNBoMHToUv/76a5Paa9++fbjzzjuh0WjQsWNH/Pvf/5bGzZiZ3+d1ddHVNx4uLy8P48aNg5+fH4KCgvDkk0+irKzMYp8bx9y89957UnLyu9/9TmrzhrqZfH190apVq0Zfo16vx7Zt2/Dwww9LiQ0ATJw4ET4+PvjPf/7T4PMNBgPmzZuH2NhY+Pv7w9vbGwMGDMDOnTst9rP2evDFF1+ge/fu0Gg06N69OzZt2tToazHT6XTw9PRs0r7t2rVrsNuqIV5eXggJCZG6x6k2Vm5c3NmzZwEAQUFBt32sxx9/HJ999hlmzpyJ6OhoXL16Ffv27cOJEyfQp08fAFXdLyNHjkRsbCzmz58PpVKJd999F0OGDMHevXvRt2/feo9fWlqKwYMH49dff8XMmTPRvn17bNiwAZMmTUJBQQGefPJJi/0//vhjFBUVYdq0aVAoFFiyZAn+9Kc/4bfffoO7u3u95/nyyy/h6emJsWPH3lI7fPfdd1i4cCESExPxl7/8pcF9zd1ajzzyCIYNG4aJEyfW2mf69OkICQnBvHnzUFxcDKCq2+yHH37Agw8+iDZt2uD8+fNYvXo1Bg8ejOPHj9eqFM2aNQuhoaFYsGABfvzxR6xduxYBAQH44Ycf0LZtW7z66qvYvHkzXnvtNXTv3t0ijmnTpuG9995DcnIyZs+ejXPnzuGNN97AkSNH8P333zfYlkBVFWvEiBG46667sGTJEmzZsgXz589HZWUlXnrpJavOs3z5csyaNQs+Pj7429/+BqDqAyUgIADdu3fHnj17MHv2bABVCYJCoUB+fj6OHz+Obt26AQD27t2LAQMGWPx7NeU9mZ2djbvuugsKhQIzZ85ESEgIvvnmG0yZMgV6vR5PPfWUxetetGgRlEolnnnmGRQWFmLJkiV46KGHsH///gbb6+eff8bw4cMREhKCF198EZWVlZg/fz50Ol2Dz2uKcePGITIyEikpKfjxxx+xYsUKXLt2DR988EGd+w8cOBCzZ8/GihUr8Pzzz6Nr164AIP3/7fj5559RWVkpVZLNPDw8EBMTgyNHjjT4fL1ej7feegsTJkzA1KlTUVRUhLfffhuJiYk4cOAAYmJiLPZvyvVg69atuP/++xEdHY2UlBRcvXoVycnJ0pcKOen1ehgMBuTl5eGDDz7AsWPH8Pzzz8sdlv0S5BLeffddAUBs375d5ObmiosXL4pPP/1UBAUFCU9PT3Hp0iUhhBCDBg0SgwYNqvX8pKQk0a5dO4ttAMT8+fOl3/39/cWMGTPqjcFkMonOnTuLxMREYTKZpO0lJSWiffv2YtiwYQ2+huXLlwsAYt26ddI2g8Eg4uPjhY+Pj9Dr9UIIIc6dOycAiKCgIJGfny/t+9///lcAEF999VWD5wkMDBS9evVqcJ/6ZGdni7CwMBEaGiqys7Ob/DwAtdrO/G92zz33iMrKSovHSkpKah0jNTVVABAffPBBrWPc3Obx8fFCoVCIxx9/XNpWWVkp2rRpY/Hvv3fvXgFAfPTRRxbn2rJlS53bb5aUlCQAiFmzZknbTCaTGDVqlPDw8BC5ublWn6dbt251vkdnzJghdDqd9PucOXPEwIEDhVarFatXrxZCCHH16lWhUCjEP//5TymWpr4np0yZIsLCwkReXp7FeR988EHh7+8v/Zvs3LlTABBdu3YV5eXl0n7//Oc/BQDx888/N9hm9913n9BoNOLChQvStuPHjwuVSiVuvGSb3+fvvvturWPc/Lc5f/58AUCMGTPGYr/p06cLAOKnn36StrVr104kJSVJv2/YsEEAEDt37mww7ro09FzzY3v27Kn12AMPPCBCQ0MbPHZlZaVF+wohxLVr14ROpxOTJ0+WtllzPYiJiRFhYWGioKBA2rZ161YBoNb1rzEzZswQTf2I9fb2tmjzuiQmJgoAAoDw8PAQ06ZNE6WlpVbF5ErYLeViEhISEBISgoiICDz44IPw8fHBpk2b0Lp169s+dkBAAPbv348rV67U+Xh6ejrOnDmD//u//8PVq1eRl5eHvLw8FBcXY+jQodizZw9MJlO9x9+8eTNCQ0Mtxga5u7tLsyt2795tsf/48eMRGBgo/W7+tv7bb781+Dr0ej18fX0bfb03E0Jg4sSJyM7OxocfftjoIOKmmjp1KlQqlcW2G0vfFRUVuHr1Kjp16oSAgIBa3YAAMGXKFIsSeL9+/SCEwJQpU6RtKpUKcXFxFu2zYcMG+Pv7Y9iwYdK/V15eHmJjY+Hj41OrC6A+M2fOlP7bXPkwGAzYvn27zc4zYMAAZGdn49SpUwCqKjQDBw7EgAEDsHfvXgBV1RwhhPReaOp7UgiBzz//HKNHj4YQwiLGxMREFBYW1mr35ORkeHh4WMQHNPz+MxqN+Pbbb3Hfffehbdu20vauXbsiMTGx0TZozIwZMyx+nzVrFoCqv62WVlpaCqDuMT4ajUZ6vD4qlUpqX5PJhPz8fKkSVNffQGPXg8zMTKSnpyMpKQn+/v7SfsOGDUN0dLSVr872Fi1ahK1bt+Ltt9/GXXfdBYPBgMrKSrnDslvslnIxq1atwh133AE3NzfodDp06dLFYmbE7ViyZAmSkpIQERGB2NhY3HvvvZg4caI04PbMmTMAgKSkpHqPUVhYaHEButGFCxfQuXPnWvGaS+QXLlyw2H7jhwMA6biNjRXx8/NDUVFRg/vUZfHixdJ07oSEBKufX5/27dvX2lZaWoqUlBS8++67uHz5ssWYksLCwlr739wW5ot3REREre03ts+ZM2dQWFhYb6KWk5PTaPxKpbLWoOs77rgDAKQxQrY4j/nDau/evWjTpg2OHDmCV155BSEhIVi6dKn0mJ+fH3r16iWdF2j8PVlRUYGCggKsXbsWa9eubVKMt/L+y83NRWlpKTp37lzrsS5dutx2EnLzcTt27AilUtnkad62ZE7Qy8vLaz1WVlbWpLEr77//Pl5//XWcPHkSFRUV0va6/mYa+/cwXz/qa/u6EqaWdGM328MPP4w+ffpg0qRJ+Oyzz+QLyo4xuXExffv2rdXHfSPz4NabGY3GRo89btw4DBgwAJs2bcLWrVvx2muvYfHixdi4cSNGjhwpVWVee+21Wv3hZrZc8O3maodZXa/vRlFRUUhPT4fBYLD45t2Q1NRUvPDCC+jfv7/FOBJbqOsiP2vWLLz77rt46qmnEB8fD39/fygUCjz44IN1Vr/qa4u6tt/YPiaTCVqtFh999FGdzw8JCWnqy2iQLc4THh6O9u3bY8+ePYiMjIQQAvHx8QgJCcGTTz6JCxcuYO/evejfv7+UIDf1PXn16lUAVR8q9SVCPXv2tPj9Vt9/TVXfYNSm/K02doyWEBYWBgB1ToPOzMxEeHh4g89ft24dJk2ahPvuuw9/+ctfoNVqoVKpkJKSIo0lvFFz/3u0JA8PD4wZMwaLFi1CaWlpkwcxuxImN2QhMDCwzrL5zVWR+oSFhWH69OmYPn06cnJy0KdPHyxcuBAjR45Ex44dAVRVRm6lstGuXTscPXoUJpPJonpz8uRJ6XFbGD16NFJTU/H55583aXr8tWvXpC6+jz/+GG5uzf9n9dlnnyEpKQmvv/66tK2srMzmsyc6duyI7du34+67777lC6jJZMJvv/0mVWsASFNkzTPwrDlPQx/IAwYMwJ49e9C+fXvExMTA19cXvXr1gr+/P7Zs2YK0tDQsWLDA4vUBjb8nQ0JC4OvrC6PRaNOqXF3n8fT0lCpKNzJ3t5mZKw83/5s39Ld65swZi6rGr7/+CpPJ1OBMyOZKgLp37w43NzccOnQI48aNk7YbDAakp6dbbKvLZ599hg4dOmDjxo0WMc6fP/+W4jFfP5rS9vagtLQUQggUFRUxuakDx9yQhY4dO+LkyZPIzc2Vtv3000+NTtU2Go21ukO0Wi3Cw8OlsnNsbCw6duyIpUuX1rkC6Y3nrMu9996LrKwsrF+/XtpWWVmJlStXwsfHB4MGDWr09TXF448/jrCwMPz5z3+uc52KnJwcvPLKK9LvkydPRkZGBt5++22bJViNUalUtb5xrly50qpv7U0xbtw4GI1GvPzyy7Ueq6ysbHIy9cYbb0j/LYTAG2+8AXd3dwwdOtTq83h7e9d73gEDBuD8+fNYv3691E2lVCrRv39/LFu2DBUVFRYzpZr6nlSpVLj//vvx+eef49ixY/Xud7tUKhUSExPxxRdfICMjQ9p+4sQJfPvttxb7+vn5ITg4GHv27LHY/q9//ave469atcri95UrVwKoWv+qPuZ1lWydOPv7+yMhIQHr1q2z6Ab+8MMPcf369QbXxwFqKjE3/h3s37+/wUUDGxIWFoaYmBi8//77Fteybdu24fjx47d0TFuoq0u2oKAAn3/+OSIiImw2ts/ZsHJDFiZPnoxly5YhMTERU6ZMQU5ODtasWYNu3bpBr9fX+7yioiK0adMGY8eORa9eveDj44Pt27fj4MGDUnVBqVTirbfewsiRI9GtWzckJyejdevWuHz5Mnbu3Ak/Pz989dVX9Z7jsccew7///W9MmjQJhw8fRmRkJD777DN8//33WL58+S0NAq5LYGAgNm3ahHvvvRcxMTEWKxSnpaXhk08+QXx8PABgzZo1+OKLL9CzZ0+UlJRg3bp1dR5z2LBhNpnKa/b73/8eH374Ifz9/REdHY3U1FRs377dJlP6bzRo0CBMmzYNKSkpSE9Px/Dhw+Hu7o4zZ85gw4YN+Oc//9nolHmNRoMtW7YgKSkJ/fr1wzfffIP//e9/eP7556XuJmvOExsbi9WrV+OVV15Bp06doNVqpfWazInLqVOn8Oqrr0oxDBw4EN988420vomZNe/JRYsWYefOnejXrx+mTp2K6Oho5OfnIy0tDdu3b0d+fr5N2nzBggXYsmULBgwYgOnTp0sJfLdu3XD06FGLfR999FEsWrQIjz76KOLi4rBnz54GF447d+4cxowZgxEjRiA1NRXr1q3D//3f/0ljkOoSExMDlUqFxYsXo7CwEGq1GkOGDGnwQ9Wc/P/yyy8AqhKWffv2AYDFGlELFy5E//79MWjQIDz22GO4dOkSXn/9dQwfPrzRxel+//vfY+PGjfjjH/+IUaNG4dy5c1izZg2io6Nv+fYNKSkpGDVqFO655x5MnjwZ+fn5Uts35ZgXLlyQViw/dOgQgJq2aNeuHR555BFp36+++go//fQTgKpJAUePHpX2HTNmjNTNOXLkSLRp0wb9+vWDVqtFRkYG3n33XVy5csXiix7dpOUnaJEczFOCDx482Oi+69atEx06dBAeHh4iJiZGfPvtt41OBS8vLxd/+ctfRK9evYSvr6/w9vYWvXr1Ev/6179qHf/IkSPiT3/6kwgKChJqtVq0a9dOjBs3TuzYsaPR2LKzs0VycrIIDg4WHh4eokePHrWmwpqnfr722mu1no+bpsg25MqVK+Lpp58Wd9xxh9BoNMLLy0vExsaKhQsXisLCQiFEzVTnxn4am0aLBqaC1/Vvdu3aNakdfHx8RGJiojh58mStabz1HcM8Ndg8FdssKSlJeHt71zrf2rVrRWxsrPD09BS+vr6iR48e4q9//au4cuVKg6/LfLyzZ8+K4cOHCy8vL6HT6cT8+fOF0Wi8pfNkZWWJUaNGCV9fXwGg1rRwrVYrAFhMxd+3b58AIAYMGFBnnE19T2ZnZ4sZM2aIiIgI4e7uLkJDQ8XQoUPF2rVrpX3MU8E3bNhg8dyGpm7fbPfu3SI2NlZ4eHiIDh06iDVr1kj/ZjcqKSkRU6ZMEf7+/sLX11eMGzdO5OTk1DsV/Pjx42Ls2LHC19dXBAYGipkzZ9aaTnzze0gIId58803RoUMHaTp6U97P9f3cbO/evaJ///5Co9GIkJAQMWPGDGlZh4aYTCbx6quvinbt2gm1Wi169+4tvv7661rXKmuvB59//rno2rWrUKvVIjo6WmzcuLHO619dzP/2df3c/D5t6Npx43vkjTfeEPfcc48IDg4Wbm5uIiQkRIwePbrOKfRUQyGEA46mIiJyMS+++CIWLFjgkANgiVoax9wQERGRU2FyQ0RERE6FyQ0RERE5FY65ISIiIqfCyg0RERE5FSY3RERE5FRcbhE/k8mEK1euwNfXV9b7qhAREVHTierbTYSHhzd6w2eXS26uXLlS607IRERE5BguXryINm3aNLiPyyU35iX6L168CD8/P5mjISIioqbQ6/WIiIho0q12XC65MXdF+fn5MbkhIiJyME0ZUsIBxURERORUmNwQERGRU2FyQ0RERE6FyQ0RERE5FSY3RERE5FSY3BAREZFTYXJDREREToXJDRERETkVJjdERETkVJjcEBERkVNhckNEREROhckNERERORWXu3Em0a0wmgQqjCaUV5pgMgkYhYBJCJhMgICAEFX7iQaOIURDjxI5tsZuZqgAoFAACiigVABKpQJKhQIqhQLubgp4qJRQKRVNuikiUWOY3JDLy7hagpNZevyWV4xzucXIyC9BYWkFCksroC+rQInBCKOJiQlRc1MoAE93Ffw93eGncYefpxtaB3iifbAP2od4o1OID6JCfaFUMgGihjG5IZcjhMAvV/T49pcsbDmWhTM512/pOEoFoFQopG+jqL7e8rJLZElU/4+5ymkSAnV9XxACKDEYUWIwIrOwDABwENcs9tH6qpHYLRQjuoeiX/tWcFNxdAXVphAuVivX6/Xw9/dHYWEh/Pz85A6HWtixy4V4ftPPOHqpUNrmplQgKswXHYJ90D7YG5HBXgj08qj69ujpDh+1GzxUSni4KeGuUsJNWZ3QsHxOdFvMXbwVRhMMlSYYjCaUlBuhL6uAvrQSBaUGXMwvxbm86ziXV4wTmUW4Xl4pPT/MX4MXx3RDYrdQGV8FtRRrPr9ZuSGXUGowYvn203hr3zkYTQIadyUG36HFiO6h+F2UFv6e7nKHSORylEoFlFDAXaWEl0f1Rt/69y+vNOKHs1fx7bEsbD2ejczCMkz78DBGdAvFgj90g85P0yJxk/1j5Yac3rHLhZj+URoy8ksAAKN6hmH+6GhofXkhJHJUZRVGrNhxBmv3/IZKk4Cvxg0pf+qB3/cMlzs0aias3BBVu1xQiknvHkTe9XKE+Wvw8h+6IyFaJ3dYRHSbNO4q/HVEFEb3Csdznx/FT5cK8dSn6Qj08sDdnYLlDo9kxpFY5LSKyiow5b2qxCYq1BffPj2QiQ2Rk+ka5oeN0+/GmF7hqDQJPL7uMH7NKZI7LJKZXSQ3q1atQmRkJDQaDfr164cDBw406XmffvopFAoF7rvvvuYNkBxOpdGEWZ8cwcmsIoT4qvHOpDvhp+G4GiJnpFIqsGRsT8S2C0RRWSUmv3cI+cUGucMiGcme3Kxfvx5z5szB/PnzkZaWhl69eiExMRE5OTkNPu/8+fN45plnMGDAgBaKlBzJK/87gV2ncqFxV+LtpDiEB3jKHRIRNSONuwprH4lFRCtPZOSX4LEPDqGswih3WCQT2ZObZcuWYerUqUhOTkZ0dDTWrFkDLy8vvPPOO/U+x2g04qGHHsKCBQvQoUOHFoyWHMHu07l474fzAIDl42PQs02ArPEQUcsI8lHj3Ul3wlfjhkMXrmHN7rNyh0QykTW5MRgMOHz4MBISEqRtSqUSCQkJSE1Nrfd5L730ErRaLaZMmdLoOcrLy6HX6y1+yHkJIbB8+2kAQPLdkRjRPUzmiIioJXXS+mLhH3sAAN7edw6FpRUyR0RykDW5ycvLg9FohE5nOchTp9MhKyurzufs27cPb7/9Nt58880mnSMlJQX+/v7ST0RExG3HTfZrz5k8HMkogNpNiScGd5Q7HCKSwe97hOEOnQ+Kyirx3vfn5Q6HZCB7t5Q1ioqK8Mgjj+DNN99EcHDTpvrNnTsXhYWF0s/FixebOUqSixAC/6yu2jx8VzuuY0PkopRKBWYN6QwAeHvfb9CXsXrjamRd5yY4OBgqlQrZ2dkW27OzsxEaWns57bNnz+L8+fMYPXq0tM1kMgEA3NzccOrUKXTsaPltXa1WQ61WN0P0ZG/2nslDWnXVZtogjsUicmX39gjDih1ncCbnOt77/jxmD+0sd0jUgmSt3Hh4eCA2NhY7duyQtplMJuzYsQPx8fG19o+KisLPP/+M9PR06WfMmDH43e9+h/T0dHY5uTAhBP654wwA4KF+rNoQuTqVUoFZ1QnNW3tZvXE1sq9QPGfOHCQlJSEuLg59+/bF8uXLUVxcjOTkZADAxIkT0bp1a6SkpECj0aB79+4Wzw8ICACAWtvJtez7NQ+HL1yD2k2Jx1m1ISIAo3qE4Z/bT+NsbjHe//68lOyQ85N9zM348eOxdOlSzJs3DzExMUhPT8eWLVukQcYZGRnIzMyUOUqydyu/+xUA8H/92kLLm+cREaqqN+buqLf2nUOJobKRZ5Cz4I0zyeFlFpYiPuU7KBTAD88NQZg/F+wjoipGk8Cg13bi0rVSrH6oD0b24PIQjsqaz2/ZKzdEt2vb8aoB6bFtA5nYEJEFlVKBEd2qJqhsPZ7dyN7kLJjckMP79peqNZESu9WeYUdElNi96tqw40Q2KowmmaOhlsDkhhxaYUkFfvwtHwAwjHf8JqI69GkbiCBvD+jLKrG/+npBzo3JDTm0HSezYTQJdNH5IjLYW+5wiMgOqZQK6cvP1uN1r35PzoXJDTm0mi4pVm2IqH7Dq68RW3/JhsnkUvNoXBKTG3JYpQYjdp/OBQAM53gbImpA/47B8PZQIUtfhp8vF8odDjUzJjfksPaeyUVZhQmtAzzRLZzT+omofhp3FQZ30QKoqfiS82JyQw7LPK1zWLQOCoVC5miIyN5JXVOcEu70mNyQQ6o0mrDjRNUFilPAiagpfhelhbtKgV9zruNs7nW5w6FmxOSGHNLB89dwraQCgV7uuDMyUO5wiMgB+GncEd8xGEDVwGJyXkxuyCF9d7LqwjQkSgc3Fd/GRNQ05pmV5sovOSd+KpBDOnzhGgDg7k5BMkdCRI6kf3Xl5ujlQhgquVqxs2JyQw7HUGnCsSt6AEBMRIC8wRCRQ4kM8kKAlzsMlSacyNTLHQ41EyY35HBOZRXBUGmCv6c72nNVYiKygkKhQK82AQCAny4VyBoLNR8mN+Rw0i9WdUn1igjgFHAispq54pueUSBrHNR8mNyQwzlysQAAu6SI6NbEtA0AAKRXX0vI+TC5IYdjviD1ZnJDRLcgprpb6re8YhSWVMgbDDULJjfkUApLKvBbbjGAqm4pIiJrBXp7oF2QFwAgneNunBKTG3Io5gGA7YK80MrbQ95giMhhcdyNc2NyQw4lneNtiMgGpOSmeoICORcmN+RQmNwQkS3UJDcFEELIGwzZHJMbchhCCCY3RGQT0eF+8FApca2kAhn5JXKHQzbG5IYcxsX8UuQXG+ChUiI63E/ucIjIgandVOhafR3hlHDnw+SGHMaR6r7xruF+ULupZI6GiBydeTmJIxxU7HSY3JDD4Po2RGRLN467IefC5IYcBsfbEJEtma8lx6/oUV5plDcYsikmN+QQDJUm/MI7gRORDbUL8kKglzsMRhNOZBbJHQ7ZEJMbcgjmO4EHeLlLK4sSEd0OhUIhrXT+E7umnAqTG3IIp7OrvlV1DfXjncCJyGa6hlXNmDqTw8qNM2FyQw7hbO51AEBHrbfMkRCRM+kY4gMAOJtTLHMkZEtMbsgh/JpTldx0qr4QERHZQidt1TXl1+ovUOQcmNyQQ6ip3DC5ISLb6RBSVQ3OLSpHYWmFzNGQrTC5IbtXYTThwtWq5dE7MbkhIhvy07hD56cGUPMlihwfkxuyexeulqDSJODloUKon0bucIjIydSMu2Fy4yyY3JDdk7qkQnw4U4qIbM5cET6by0HFzoLJDdk9aTAxu6SIqBmYKze/snLjNJjckN2rqdxwGjgR2Z75i9NvHHPjNJjckN07y8oNETUjc+XmQn4JDJUmmaMhW2ByQ3ZNCCH1g3fkGjdE1Ax0fmr4qN1gNAlcuMpxN86AyQ3ZtWx9Oa6XV0KlVKBdELuliMj2FAqF1O3NcTfOgckN2TXzeJt2rbzg4ca3KxE1D2k6OMfdOAV+WpBdM19oOrBLioiaUUdOB3cqTG7IrnEaOBG1BE4Hdy5MbsiucRo4EbWEmoX8rkMIIXM0dLuY3JBdY+WGiFpCuyAvuCkVKDEYkVlYJnc4dJuY3JDdKiqrQLa+HADH3BBR83JXKdEuyAsABxU7AyY3ZLfMA/tCfNXw93SXORoicnYcd+M8mNyQ3ZJWJmbVhohawI3jbsixMbkhuyUNJtZyMDERNT9prZscTgd3dExuyG79ysoNEbUgc+XmV1ZuHB6TG7JbNZUbJjdE1Pw6VC85kVtUjsLSCpmjodvB5IbskskkcDG/FAAQyXtKEVEL8NW4I9hHDQC4mF8iczR0O5jckF3KvV4Og9EElVKBMH+N3OEQkYuIaOUJALh0jcmNI2NyQ3bJfGEJ89fATcW3KRG1jDaBVWvdXLpWKnMkdDv4qUF2ydwl1SbQU+ZIiMiVmK85TG4cG5Mbskvmyo35WxQRUUswJzccc+PYmNyQXTJ/a2LlhohaErulnAOTG7JLNckNKzdE1HJquqVKeHdwB8bkhuySuVsqgpUbImpBrQOqrjnFBiMKSrjWjaNickN2x2QSuFxQXblpxcoNEbUcjbsKWt+qtW7YNeW4mNyQ3ckuKkOFUcBNqYCu+iJDRNRSbuyaIsfE5IbsjvnbUlgA17ghopbHQcWOj58cZHekaeAB7JIiopYnTQdn5cZhMbkhu3OJC/gRkYxYuXF8TG7I7pgvKBEcTExEMuD9pRwfkxuyO5cKzKsTs3JDRC3vxsoN17pxTExuyO7U3FeKlRsiannhARoAQInBiGtc68YhMbkhu2I0CVwp4JgbIpKP2k0FnZ95rRt2TTkiJjdkV7L1Zag0Va9x46eROxwiclEcVOzYmNyQXTFfSMIDPKFSKmSOhohcFRfyc2x2kdysWrUKkZGR0Gg06NevHw4cOFDvvhs3bkRcXBwCAgLg7e2NmJgYfPjhhy0YLTUnaY0bdkkRkYyktW7yWblxRLInN+vXr8ecOXMwf/58pKWloVevXkhMTEROTk6d+7dq1Qp/+9vfkJqaiqNHjyI5ORnJycn49ttvWzhyag7SNHAOJiYiGUVI3VKs3Dgi2ZObZcuWYerUqUhOTkZ0dDTWrFkDLy8vvPPOO3XuP3jwYPzxj39E165d0bFjRzz55JPo2bMn9u3b18KRU3O4mM/KDRHJj2NuHJusyY3BYMDhw4eRkJAgbVMqlUhISEBqamqjzxdCYMeOHTh16hQGDhxY5z7l5eXQ6/UWP2S/zBeSNq2Y3BCRfGrG3HCtG0cka3KTl5cHo9EInU5nsV2n0yErK6ve5xUWFsLHxwceHh4YNWoUVq5ciWHDhtW5b0pKCvz9/aWfiIgIm74Gsq2aBfzYLUVE8gkL0EChAEorjMgvNsgdDllJ9m6pW+Hr64v09HQcPHgQCxcuxJw5c7Br16469507dy4KCwuln4sXL7ZssNRklUYTMgvKALBbiojkpXZTQedbtRwFu6Ycj5ucJw8ODoZKpUJ2drbF9uzsbISGhtb7PKVSiU6dOgEAYmJicOLECaSkpGDw4MG19lWr1VCr1TaNm5pHdlE5Kk0C7ioFtL5c44aI5NUm0BNZ+jJculaKXhEBcodDVpC1cuPh4YHY2Fjs2LFD2mYymbBjxw7Ex8c3+Tgmkwnl5eXNESK1IPNg4tZc44aI7ID55r0XOWPK4chauQGAOXPmICkpCXFxcejbty+WL1+O4uJiJCcnAwAmTpyI1q1bIyUlBUDVGJq4uDh07NgR5eXl2Lx5Mz788EOsXr1azpdBNiANJuZ4GyKyA1zIz3HJntyMHz8eubm5mDdvHrKyshATE4MtW7ZIg4wzMjKgVNYUmIqLizF9+nRcunQJnp6eiIqKwrp16zB+/Hi5XgLZCBfwIyJ7cuOMKXIssic3ADBz5kzMnDmzzsduHij8yiuv4JVXXmmBqKilmW+YGR7A5IaI5Nc6oKqKfJnJjcNxyNlS5JwyC6tmSoX5czAxEckvtPpalKUvkzkSshaTG7Ib2dUXkFAmN0RkB8zXoqKyShSXV8ocDVmDyQ3ZDVZuiMie+Kjd4KuuGr3B6o1jYXJDdqG4vBJFZVXfjHR+TG6IyD7oqr9sZRcyuXEkTG7ILpi/Ffmo3eCrcZc5GiKiKuZKciaTG4fC5Ibsgvlbkc6Pq0kTkf0wV5LZLeVYmNyQXagZb8Np4ERkP8yVmyxWbhwKkxuyC1mcKUVEdiiU3VIOickN2QXzt6JQDiYmIjtiviZls1vKoTC5Ibtg/lbEyg0R2RNWbhwTkxuyC9ICfqzcEJEdMV+T8q6Xw1BpkjkaaiomN2QXWLkhInvUytsDHqqqj8qcIlZvHAWTG5KdodKEq8XlALg6MRHZF4VCUXOPKXZNOQwmNyS7nKIyCAF4qJRo5e0hdzhERBZCudaNw3GzZueCggJs2rQJe/fuxYULF1BSUoKQkBD07t0biYmJ6N+/f3PFSU7MPN5G56+GQqGQORoiIkus3DieJlVurly5gkcffRRhYWF45ZVXUFpaipiYGAwdOhRt2rTBzp07MWzYMERHR2P9+vXNHTM5mUxOAyciO8YZU46nSZWb3r17IykpCYcPH0Z0dHSd+5SWluKLL77A8uXLcfHiRTzzzDM2DZScl7TGDVcnJiI7xG4px9Ok5Ob48eMICgpqcB9PT09MmDABEyZMwNWrV20SHLmGmgX8eF8pIrI/7JZyPE3qlmossbnd/cm1ZepZuSEi+8XkxvHYbLZUZmYmMjIybHU4ciHZ0k0zOeaGiOyP+dqUrS+DySRkjoaawmbJzZAhQ9C+fXtbHY5ciHmQno4DionIDoX4qKFUAJUmgavFBrnDoSawaip4Qz744AOUlJTY6nDkIkwmIa36ycoNEdkjN5USIb5qZOvLkVVYhhBfjg+0dzZLbu68805bHYpcyNViAyqMAgoFeMEgIrsV6qdBtr4cmYWl6NHGX+5wqBFcoZhkZR6gF+KjhruKb0cisk+hN4y7IftndeVGqVQ2uIqs0Wi8rYDItZjXjWCXFBHZs7Dq2ZxcyM8xWJ3cbNq0yeL3iooKHDlyBO+//z4WLFhgs8DINWQVlgLgYGIism86LuTnUKxObv7whz/U2jZ27Fh069YN69evx5QpU2wSGLkGVm6IyBGEca0bh2KzQQ533XUXduzYYavDkYuQpoEzuSEiOyZVbpjcOASbJDelpaVYsWIFWrdubYvDkQvJZuWGiByAVLnRl0EILuRn76zulgoMDLQYUCyEQFFREby8vLBu3TqbBkfOjwv4EZEjMM+WKjEYoS+rhL+nu8wRUUOsTm6WL19u8btSqURISAj69euHwMBAW8VFLkAIIZV4w3hfKSKyYxp3FQK83FFQUoFsfRmTGztndXKTlJTUHHGQCyoqr0SJoWrpgFBWbojIzoX6aVBQUoHMwjLcofOVOxxqAFdNI9mYqzb+nu7w9FDJHA0RUcNq7g5eKnMk1BgmNyQb82BiVm2IyBGESjOmymWOhBrD5IZkk62vukBo/XhPKSKyf9rq5MZ8s1+yX0xuSDbmC4TWl5UbIrJ/2uqb++YUsXJj75jckGxyqis3OlZuiMgBmJesyOEtGOyezZKb559/HpMnT7bV4cgFmMfccI0bInIE5i9i5i51sl9WTwWvz+XLl3Hx4kVbHY5cgLm0ay71EhHZM3MXeu71cphMAkqlopFnkFxslty8//77tjoUuQhz5UbLyg0ROYBgHw8oFIDRJHC12IAQfjGzWxxzQ7IQQrByQ0QOxU2lRJC3eVAxx93Ys1uq3BQXF2P37t3IyMiAwWCweGz27Nk2CYycW2FpBQyVJgCcCk5EjkPnp0be9XLk6MvRLVzuaKg+Vic3R44cwb333ouSkhIUFxejVatWyMvLg5eXF7RaLZMbahJz1SbAyx1qN65OTESOQeurxi9g5cbeWd0t9fTTT2P06NG4du0aPD098eOPP+LChQuIjY3F0qVLmyNGckLSTCmucUNEDsQ8u5Mzpuyb1clNeno6/vznP0OpVEKlUqG8vBwRERFYsmQJnn/++eaIkZxQDlcnJiIHVLOQHys39szq5Mbd3R1KZdXTtFotMjIyAAD+/v6cCk5Nls3ViYnIAWlZuXEIVo+56d27Nw4ePIjOnTtj0KBBmDdvHvLy8vDhhx+ie/fuzREjOSFWbojIEUmVG65SbNesrty8+uqrCAsLAwAsXLgQgYGBeOKJJ5Cbm4u1a9faPEByTuaSro7TwInIgUi3YOD9peya1ZWbuLg46b+1Wi22bNli04DINdTcEZzdUkTkOMzV5twirlJsz7iIH8lCqtywW4qIHEiwjxoKBVBpEsgvMTT+BJJFk5KbESNG4Mcff2x0v6KiIixevBirVq267cDIeQkhaio3HFBMRA7E/YZVirM57sZuNalb6oEHHsD9998Pf39/jB49GnFxcQgPD4dGo8G1a9dw/Phx7Nu3D5s3b8aoUaPw2muvNXfc5MD0pZXS6sS8NwsRORqtb/UqxUXl6CZ3MFSnJiU3U6ZMwcMPP4wNGzZg/fr1WLt2LQoLCwEACoUC0dHRSExMxMGDB9G1a9dmDZgcn3kaeICXOzTuXJ2YiByLzk+N45mcMWXPmjygWK1W4+GHH8bDDz8MACgsLERpaSmCgoLg7u7ebAGS85HuBs6qDRE5IHN3Ote6sV+3dONMoGrRPn9/f1vGQi7CvMaNjjOliMgBmSdCcJVi+8XZUtTizN1SHG9DRI4ohKsU2z0mN9TiWLkhIkemk+4vxeTGXjG5oRaXU8QxN0TkuMyLj3JAsf1ickMtjpUbInJkuptWKSb7c0vJTUFBAd566y3MnTsX+fn5AIC0tDRcvnzZpsGRc8pm5YaIHBhXKbZ/Vs+WOnr0KBISEuDv74/z589j6tSpaNWqFTZu3IiMjAx88MEHzREnOQkhBCs3ROTQqlYp9kDedQNy9OUI9uEXNXtjdeVmzpw5mDRpEs6cOQONpubD6d5778WePXtsGhw5H31pJcq5OjERObgQ81o3nA5ul6xObg4ePIhp06bV2t66dWtkZWXZJChyXuYLgb8nVycmIsclrXXDQcV2yerkRq1WQ6/X19p++vRphISE2CQocl41XVKs2hCR49L5mmdMcTq4PbI6uRkzZgxeeuklVFRUAKi6t1RGRgaeffZZ3H///TYPkJxLza0XON6GiByXtvoLGrul7JPVyc3rr7+O69evQ6vVorS0FIMGDUKnTp3g6+uLhQsXNkeM5ETMi15pWbkhIgdWs9YNKzf2yOrZUv7+/ti2bRv27duHo0eP4vr16+jTpw8SEhKaIz5yMqzcEJEzMC9lkc1Viu3SLd8485577sE999xjy1jIBeQWccwNETk+81IWuRxQbJealNysWLGiyQecPXv2LQdDzo+VGyJyBtob7i9lMgkolQqZI6IbNSm5+cc//mHxe25uLkpKShAQEACgasViLy8vaLVaJjfUIPPgO1ZuiMiRmdfpMq9SzIX87EuTBhSfO3dO+lm4cCFiYmJw4sQJ5OfnIz8/HydOnECfPn3w8ssvN3e85MBuXJ2YlRsicmTmVYoBDiq2R1bPlnrhhRewcuVKdOnSRdrWpUsX/OMf/8Df//73Wwpi1apViIyMhEajQb9+/XDgwIF6933zzTcxYMAABAYGIjAwEAkJCQ3uT/bjxtWJOVuKiBydecYUp4PbH6uTm8zMTFRWVtbabjQakZ2dbXUA69evx5w5czB//nykpaWhV69eSExMRE5OTp3779q1CxMmTMDOnTuRmpqKiIgIDB8+nDftdAA51RcAP40bVycmIodnHneTy8qN3bE6uRk6dCimTZuGtLQ0advhw4fxxBNP3NJ08GXLlmHq1KlITk5GdHQ01qxZAy8vL7zzzjt17v/RRx9h+vTpiImJQVRUFN566y2YTCbs2LHD6nNTy8rmDTOJyImYxw5mc8aU3bE6uXnnnXcQGhqKuLg4qNVqqNVq9O3bFzqdDm+99ZZVxzIYDDh8+LBFUqRUKpGQkIDU1NQmHaOkpAQVFRVo1apVnY+Xl5dDr9db/JA8cqTBxExuiMjxma9lOVzrxu5Yvc5NSEgINm/ejNOnT+PkyZMAgKioKNxxxx1WnzwvLw9GoxE6nc5iu06nk47dmGeffRbh4eH1Vo1SUlKwYMECq2Mj28uWBhNzvA0ROT5pIT9WbuzOLS/id8cdd9xSQmNLixYtwqeffopdu3ZBo6m7GjB37lzMmTNH+l2v1yMiIqKlQqQbmCs3WlZuiMgJaFm5sVtWJzeTJ09u8PH6xsrUJTg4GCqVqtZA5OzsbISGhjb43KVLl2LRokXYvn07evbsWe9+5q4zkl8OKzdE5ESkhfxYubE7Vo+5uXbtmsVPTk4OvvvuO2zcuBEFBQVWHcvDwwOxsbEWg4HNg4Pj4+Prfd6SJUvw8ssvY8uWLYiLi7P2JZBMOOaGiJyJdAuG61WrFJP9sLpys2nTplrbTCYTnnjiCXTs2NHqAObMmYOkpCTExcWhb9++WL58OYqLi5GcnAwAmDhxIlq3bo2UlBQAwOLFizFv3jx8/PHHiIyMRFZWFgDAx8cHPj4+Vp+fWo405oZr3BCREzCvSlxhFLhWYkAQVym2G1ZXbuo8iFKJOXPm1LpNQ1OMHz8eS5cuxbx58xATE4P09HRs2bJFGmSckZGBzMxMaf/Vq1fDYDBg7NixCAsLk36WLl1qi5dCzUQIIQ2603F1YiJyAh5uNasUZ3OtG7tyywOKb3b27Nk6F/dripkzZ2LmzJl1PrZr1y6L38+fP39L5yB56cu4OjEROR+tnwZXiw3IKSpDNPzkDoeqWZ3c3DjzCKj6Rp6ZmYn//e9/SEpKsllg5FzMA+64OjEROROtrxonMnl/KXtjdXJz5MgRi9+VSiVCQkLw+uuvNzqTilyXeaokBxMTkTMxr1Kcw/tL2RWrk5udO3c2Rxzk5MzjbdglRUTORFs9hpBjbuyL1QOKhwwZUueUb71ejyFDhtgiJnJCUuWGg4mJyImwcmOfrE5udu3aBYPBUGt7WVkZ9u7da5OgyPmYKzchrNwQkRMJYeXGLjW5W+ro0aPSfx8/flxaXwYAjEYjtmzZgtatW9s2OnIarNwQkTMyV25yeQsGu9Lk5CYmJgYKhQIKhaLO7idPT0+sXLnSpsGR8zDPluKAYiJyJjV3Bi+DEAIKhULmiAiwIrk5d+4chBDo0KEDDhw4gJCQEOkxDw8PaLVaqFSc4kt1M1duOKCYiJyJ5SrFFWhVvagfyavJyU27du0AVN1qgcgaXJ2YiJyVeZXiq8UGZOvLmNzYiSYlN19++SVGjhwJd3d3fPnllw3uO2bMGJsERs6jqLwSZRVcnZiInFOIr7p6leJydA2TOxoCmpjc3HfffcjKyoJWq8V9991X734KhQJGo9FWsZGT4OrEROTMdH4anMwqkirUJL8mJTc3dkWxW4qsVXM3cHZJEZHz0fpWr3XD5MZu2OSu4EQNMS9upWOXFBE5oZoZU5wObi+aVLlZsWJFkw84e/bsWw6GnJNUueFgYiJyQuaxhOyWsh9NSm7+8Y9/NOlgCoWCyQ3VkqPnNHAicl7mL26s3NiPJiU3586da+44yIllF3EaOBE5L+n+UrwFg924rTE3QggIIWwVCzmpXFZuiMiJaW9apZjkd0vJzdtvv43u3btDo9FAo9Gge/fueOutt2wdGzkJqXLD2VJE5IRCblqlmOTX5BWKzebNm4dly5Zh1qxZiI+PBwCkpqbi6aefRkZGBl566SWbB0mOSwhRM+bGl5UbInI+Hm5KtPL2QH6xATlFXKXYHlid3KxevRpvvvkmJkyYIG0bM2YMevbsiVmzZjG5IQtF5ZUoraha2JGzpYjIWWl91cgvNiBbX46oULmjIau7pSoqKhAXF1dre2xsLCorK20SFDkPc9XGV+MGTw+uTkxEzkkad8Pp4HbB6uTmkUcewerVq2ttX7t2LR566CGbBEXOw/yHzvE2ROTMdOZVijkd3C5Y3S0FVA0o3rp1K+666y4AwP79+5GRkYGJEydizpw50n7Lli2zTZTksLK5OjERuQDzFzgu5GcfrE5ujh07hj59+gAAzp49CwAIDg5GcHAwjh07Ju2nUChsFCI5shyuTkxELkDLtW7sitXJzc6dO5sjDnJS2ZwpRUQuwPwFzlytJnnxxpnUrMwl2lB/Vm6IyHmZr3HZhUxu7IHVlZuysjKsXLkSO3fuRE5ODkwmk8XjaWlpNguOHF9mYSkAIJQDionIiZmvcdlF5TCaBFRKDs2Qk9XJzZQpU7B161aMHTsWffv25dgaapC5W4qVGyJyZiG+aqiUChhNAlevl0tTw0keVic3X3/9NTZv3oy77767OeIhJ2I0CalbKszfU+ZoiIiaj0qpQIiPGln6MmQWljG5kZnVY25at24NX1/f5oiFnMzV6+WoNAkoFUCwD5cjJyLnZq5QZ3E6uOysTm5ef/11PPvss7hw4UJzxENOxPwHrvXVwE3FsetE5NzCzMkNBxXLzupuqbi4OJSVlaFDhw7w8vKCu7u7xeP5+fk2C44cW2b1H7iO422IyAWYF/LLZHIjO6uTmwkTJuDy5ct49dVXodPpOKCY6iWNt2HfMxG5AHPlhqsUy8/q5OaHH35AamoqevXq1RzxkBMxf3vhTCkicgXma515CQySj9UDIaKiolBayn84alwWkxsiciHSWje8BYPsrE5uFi1ahD//+c/YtWsXrl69Cr1eb/FDZGZObsKY3BCRC7ixciOEkDka12Z1t9SIESMAAEOHDrXYLoSAQqGA0Wi0TWTk8MyzpXQcc0NELsB8rSurMKGwtAIBXlwCQy68cSY1CyEEKzdE5FI07ioEernjWkkFsvRlTG5kZHVyM2jQoHofO3bs2G0FQ85DX1qJ0oqqKh4rN0TkKkL9PXGtpAKZhWWICvWTOxyXddsrqxUVFWHt2rXo27cvZ1CRJFNfNeg80MsdGneVzNEQEbWMMN4d3C7ccnKzZ88eJCUlISwsDEuXLsWQIUPw448/2jI2cmA1M6V4Tykich1cyM8+WNUtlZWVhffeew9vv/029Ho9xo0bh/LycnzxxReIjo5urhjJAUnJjZ9a5kiIiFoOF/KzD02u3IwePRpdunTB0aNHsXz5cly5cgUrV65sztjIgWWyckNELiiUlRu70OTKzTfffIPZs2fjiSeeQOfOnZszJnIC5m8toRxMTEQuJJQ3z7QLTa7c7Nu3D0VFRYiNjUW/fv3wxhtvIC8vrzljIweWyWngROSCpOSG3VKyanJyc9ddd+HNN99EZmYmpk2bhk8//RTh4eEwmUzYtm0bioqKmjNOcjBS5YbJDRG5EPM1r7C0AqUGLmorF6tnS3l7e2Py5MnYt28ffv75Z/z5z3/GokWLoNVqMWbMmOaIkRwQb5pJRK7IV+0GL4+q5S9YvZHPba1z06VLFyxZsgSXLl3CJ598YquYyMGVGowoLK0AwOSGiFyLQqHg3cHtwG0v4gcAKpUK9913H7788ktbHI4cnPnbipeHCr5qqxfBJiJyaJwOLj+bJDdENzJ/Wwn110ChUMgcDRFRy+JCfvJjckM2x2ngROTKwjgdXHZMbsjmOJiYiFyZ+Ysdkxv5MLkhm8viGjdE5MLMK7NztpR8mNyQzdXcV4rJDRG5HlZu5MfkhmwuS1rAj/eVIiLXY+6Sz71ejgqjSeZoXBOTG7I5Vm6IyJUFeXvAXaWAEEBOUbnc4bgkJjdkUxVGE3KvV/0xc0AxEbkipVIBrS+7puTE5IZsKqeoHEIA7ioFgrw95A6HiEgWnA4uLyY3ZFNZ1Qv4aX01UCq5gB8RuSYdb8EgKyY3ZFOXrlX9IbcO5GBiInJdbQKqroGXC5jcyIHJDdmUOblpw+SGiFyY+RpoviZSy2JyQzZVk9x4yRwJEZF82rSqugYyuZEHkxuyqUvXSgAAEazcEJELM18DL+WXQAghczSuh8kN2RQrN0REQOuAqmtgUXkl9KWVMkfjepjckM2YTAKXOeaGiAieHioE+1Qth3GxuqJNLYfJDdlM7vVyGIwmqJQK3jSTiFxe60COu5ELkxuyGfN4m1A/DdxUfGsRkWurmTHFyk1L4ycQ2QyngRMR1Yhg5UY2TG7IZjiYmIioBis38mFyQzYjTQNvxcoNEREX8pOP7MnNqlWrEBkZCY1Gg379+uHAgQP17vvLL7/g/vvvR2RkJBQKBZYvX95ygVKjWLkhIqrR5oZuKa5107JkTW7Wr1+POXPmYP78+UhLS0OvXr2QmJiInJycOvcvKSlBhw4dsGjRIoSGhrZwtNSYi/lVlRuOuSEiqrkWXi+vRGFphczRuBZZk5tly5Zh6tSpSE5ORnR0NNasWQMvLy+88847de5/55134rXXXsODDz4ItVrdwtFSQ0wmId0gjskNERGgcVch2Kfqs4pdUy1LtuTGYDDg8OHDSEhIqAlGqURCQgJSU1Ntdp7y8nLo9XqLH7K9nKJyVBgFVEoFQv24xg0REVAzBpGDiluWbMlNXl4ejEYjdDqdxXadToesrCybnSclJQX+/v7ST0REhM2OTTXMf7hh/lzjhojIrA2ng8vC6T+F5s6di8LCQunn4sWLcofklLjGDRFRbeZronlMIrUMN7lOHBwcDJVKhezsbIvt2dnZNh0srFarOT6nBZgrN5wpRURUg9PB5SFb5cbDwwOxsbHYsWOHtM1kMmHHjh2Ij4+XKyy6ReY/3AgmN0REEnZLyUO2yg0AzJkzB0lJSYiLi0Pfvn2xfPlyFBcXIzk5GQAwceJEtG7dGikpKQCqBiEfP35c+u/Lly8jPT0dPj4+6NSpk2yvg9gtRURUlxtXKRZCQKFQyByRa5A1uRk/fjxyc3Mxb948ZGVlISYmBlu2bJEGGWdkZECprCkuXblyBb1795Z+X7p0KZYuXYpBgwZh165dLR0+3eDiNa5xQ0R0s9YBVdfEYoMRBSUVCPT2kDki1yBrcgMAM2fOxMyZM+t87OaEJTIykqs82iGjSeCKeY2bVuyWIiIy07iroPVVI6eoHJeulTK5aSFOP1uKml9OURkqjAJuSgV0vhy8TUR0I2nGFNe6aTFMbui2mcfbhAVwjRsiopvVDCpmctNS+ElEt02aBh7ALikioptxOnjLY3JDt+1SfvU08FYcTExEdDNOB295TG7ottVMA2flhojoZry/VMtjckO37VIBp4ETEdXnxsoNZ/y2DCY3dNsu5rNyQ0RUn/AADQCgxGBEfrFB5mhcA5Mbui3llUap1NouiMkNEdHN1G4qaTG/c3nFMkfjGpjc0G05n1cCkwB81W7Qco0bIqI6dQjxBgD8mnNd5khcA5Mbui1nc6v+UDtqfXjPFCKienTS+gCouWZS82JyQ7fF/C2kY4iPzJEQEdkv8zWSlZuWweSGbov5W4j5WwkREdVWU7nhmJuWwOSGbktN5cZb5kiIiOyXuXJz8VoJyiqMMkfj/Jjc0C0zmQR+q/4WwsoNEVH9gn084O/pDiE4Y6olMLmhW5apL0NphRHuKgUiWnEaOBFRfRQKhVTh5qDi5sfkhm6ZuUuqXZA33Hk3cCKiBnFQccvhJxLdsrPVf6CdOFOKiKhRHFTccpjc0C37VVrjhoOJiYgaw8pNy2FyQ7dMqtxwMDERUaPM18rfcq/DZOINNJsTkxu6ZdLqxOyWIiJqVJtAT3iolCivNOFyQanc4Tg1Jjd0SwpKDMi7XnV3WyY3RESNc1Mp0T64+h5TnDHVrJjc0C0xV23C/DXwVrvJHA0RkWMwj1E8y3E3zYrJDd2SszlVo/1ZtSEiajrzNZNr3TQvJjd0S37lPaWIiKxmvmZyxlTzYnJDt+Qs7ylFRGS1msoN17ppTkxu6JZIM6VYuSEiarIO1V8I84sNyC82yByN82JyQ1YrqzAiI78EAFcnJiKyhpeHG1oHeALguJvmxOSGrHbhaglMAvDVuCHEVy13OEREDsVc8eaMqebD5Ias9mtOzeJ9CoVC5miIiByLeawiBxU3HyY3ZDWuTExEdOuke0yxW6rZMLkhqx27XAgA6BLK5IaIyFpRob4AgF+u6CEE7zHVHJjckFWEEEi/WAAAiIkIlDcYIiIH1C3cHyqlArlF5bhSWCZ3OE6JyQ1ZJbOwDDlF5VApFejR2l/ucIiIHI6nh0qq3qRnFMgbjJNickNWMVdtuuh84emhkjcYIiIHFRMRAABIv3hN3kCcFJMbsorUJdU2QNY4iIgcWU1yUyBrHM6KyQ1ZpWa8TYCscRARObLe1V8Qf75ciEqjSd5gnBCTG2qySqMJP1+qminVm8kNEdEt6xDsA1+NG8oqTDiVXSR3OE6HyQ012ens6yitMMJX7cY1boiIboNSqUCvNgEA2DXVHJjcUJOZ/wB7RvhDqeTKxEREt0Mad8MZUzbH5IaazDyq3/xtg4iIbl0vDipuNkxuqMk4mJiIyHbM19Jfc6+jqKxC3mCcDJMbapKisgqcqb7JG6eBExHdvhBfNVoHeEII4Gj1ZA2yDSY31CQ/XyqEEEDrAE9ofTVyh0NE5BTMXxbZNWVbTG6oSY6wS4qIyObMy2oc4aBim2JyQ03C8TZERLZ340rFvEO47TC5oUZZ3Amc422IiGyme2t/uCkVyLtejssFpXKH4zSY3FCjrhSWIbf6TuDdw3kncCIiW9G4qxAVVn2HcI67sRkmN9SovadzAQDdw/14J3AiIhuLa9cKALD3dJ7MkTgPJjfUqK3HswEAw6J1MkdCROR8ErpWXVu3n8iG0cRxN7bA5IYadL28EvvOVH2bGN4tVOZoiIicT78OreCnccPVYgMOX7gmdzhOgckNNWjXqRwYjCa0D/ZGZy1vlklEZGvuKiWGVldvtv6SJXM0zoHJDTVo6y9VXVLDo3VQKHizTCKi5pDYrSq5+fZ4FqeE2wCTG6qXodKEnSdzALBLioioOQ28IwRqNyUu5pfiZFaR3OE4PCY3VK/U366iqLwSIb5qaRVNIiKyPS8PNwzoHAIA+JZdU7eNyQ3Vy/wHNixaB6WSXVJERM3J3DVlHg5At47JDdXJZBLYdrxmvA0RETWvoV11UCqA45l6XMwvkTsch8bkhup05GIBcovK4at2Q/+OwXKHQ0Tk9Fp5e6Bv+6oF/czri9GtYXJDdTJPRxwcpYWHG98mREQtYXh01eQNjru5PfzUoloqjSb87+dMADV9wERE1PyGV19zD53PxxXeSPOWMbmhWr786QouXStFoJc7hkRp5Q6HiMhltAn0QnyHIJgEsGb3WbnDcVhMbshCpdGEld/9CgCYOrADvDzcZI6IiMi1zB7aGQDw6YGLyCxk9eZWMLkhC18dvYJzecUI8HLHxPhIucMhInI58R2D0Ld9KxiMJqzZxerNrWByQxKjSWDljuqqzYAO8FGzakNEJIenEqqqN58cuIiswjKZo3E8TG5I8tVPV/BbddUmqX+k3OEQEbms+A5B6BtZXb3h2BurMbkhAFVVmxXfnQHAqg0RkdwUCoVUvfn4QAay9azeWIPJDQEANqZdwm+5xfD3dMfE+HZyh0NE5PLiOwbhzshAGCpNWL79jNzhOBQmN4SfLhbghf8eAwA8NrADfDXuMkdEREQKhQJPD7sDAPDJgQysP5ghc0SOg8mNi7tcUIpHPziEsgoTftclBNMGdpA7JCIiqta/YzCerJ4a/rdNx/DDr3kyR+QYmNy4sKKyCkx57yByi8oRFeqLlf/XB24qviWIiOzJUwmdMaZXOCpNAo+vO4yzudflDsnu8ZPMRZUYKjHrkyM4mVWEYB813p50JwcRExHZIYVCgSVje6JP2wDoyyox+b2DvDVDI5jcuKBdp3IwbNke7DqVC427Em8nxaF1gKfcYRERUT007iq8OTEOEa08ceFqCYb/Yw8+SD0Pk0nIHZpdsovkZtWqVYiMjIRGo0G/fv1w4MCBBvffsGEDoqKioNFo0KNHD2zevLmFInVsOUVleOrTI5j07kFcLihF6wBPvDPpTvSKCJA7NCIiakSQjxrrpvRDn7YBuF5eiXn//QVj1/yAE5l6uUOzOwohhKxp3/r16zFx4kSsWbMG/fr1w/Lly7FhwwacOnUKWm3tmzb+8MMPGDhwIFJSUvD73/8eH3/8MRYvXoy0tDR079690fPp9Xr4+/ujsLAQfn5+zfGS7MqVglJs/SULW37JwoFz+TAJQKkAJvVvjz8PvwPe7IoiInIoJpPAuv0XsGTLKVwvrwQARIX6YkT3UCR2C0VUqC8UCoXMUdqeNZ/fsic3/fr1w5133ok33ngDAGAymRAREYFZs2bhueeeq7X/+PHjUVxcjK+//lradtdddyEmJgZr1qxp9HzNldyUVxqRW1Rus+M1RAigrMKI0gojSgxGlBgqUVhaAX1p1f9fzC/BubxinMsrxtVig8Vz+7QNwPzR3VitISJycJmFpXj56+P49pdsGG/onvJRu6F9sDfaB3sjMtgbYf4a6PzU0Plp4KdxR0vkPR5uSmh9NTY9pjWf37J+bTcYDDh8+DDmzp0rbVMqlUhISEBqamqdz0lNTcWcOXMstiUmJuKLL76oc//y8nKUl9ckHXp985Tvfrmix5/+9UOzHPt2KBRAXLtAJHaryugjWnnJHRIREdlAmL8n/vVQLApKDNh+IgdbjmVhz5lcXC+vxM+XC/Hz5ULZYuvTNgAbp98t2/llTW7y8vJgNBqh0+kstut0Opw8ebLO52RlZdW5f1ZWVp37p6SkYMGCBbYJuAEKAGq3lhnCpFAAnu4qeLqroPFQwdvDDf6e7vDzdIOfxh1h/p5oH+KNDtVZO2dBERE5rwAvD4yNbYOxsW1QXmnExfwS/JZbVb0/f7UEOfoyZOnLkK0vQ1FZZYvE5C7zsiJO/6k3d+5ci0qPXq9HRESEzc/Tu20gTr0y0ubHJSIiaiq1mwqdtL7opPWVOxRZyZrcBAcHQ6VSITs722J7dnY2QkND63xOaGioVfur1Wqo1WrbBExERER2T9a6kYeHB2JjY7Fjxw5pm8lkwo4dOxAfH1/nc+Lj4y32B4Bt27bVuz8RERG5Ftm7pebMmYOkpCTExcWhb9++WL58OYqLi5GcnAwAmDhxIlq3bo2UlBQAwJNPPolBgwbh9ddfx6hRo/Dpp5/i0KFDWLt2rZwvg4iIiOyE7MnN+PHjkZubi3nz5iErKwsxMTHYsmWLNGg4IyMDSmVNgal///74+OOP8fe//x3PP/88OnfujC+++KJJa9wQERGR85N9nZuW5mqL+BERETkDaz6/7eL2C0RERES2wuSGiIiInAqTGyIiInIqTG6IiIjIqTC5ISIiIqfC5IaIiIicCpMbIiIicipMboiIiMipMLkhIiIipyL77RdamnlBZr1eL3MkRERE1FTmz+2m3FjB5ZKboqIiAEBERITMkRAREZG1ioqK4O/v3+A+LndvKZPJhCtXrsDX1xcKhcKmx9br9YiIiMDFixd536p6sI0axzZqGrZT49hGjWMbNY09tJMQAkVFRQgPD7e4oXZdXK5yo1Qq0aZNm2Y9h5+fH/9IGsE2ahzbqGnYTo1jGzWObdQ0crdTYxUbMw4oJiIiIqfC5IaIiIicCpMbG1Kr1Zg/fz7UarXcodgttlHj2EZNw3ZqHNuocWyjpnG0dnK5AcVERETk3Fi5ISIiIqfC5IaIiIicCpMbIiIicipMboiIiMipMLmxkVWrViEyMhIajQb9+vXDgQMH5A5JNikpKbjzzjvh6+sLrVaL++67D6dOnbLYp6ysDDNmzEBQUBB8fHxw//33Izs7W6aI5bdo0SIoFAo89dRT0ja2UZXLly/j4YcfRlBQEDw9PdGjRw8cOnRIelwIgXnz5iEsLAyenp5ISEjAmTNnZIy4ZRmNRrzwwgto3749PD090bFjR7z88ssW999xxTbas2cPRo8ejfDwcCgUCnzxxRcWjzelTfLz8/HQQw/Bz88PAQEBmDJlCq5fv96Cr6J5NdRGFRUVePbZZ9GjRw94e3sjPDwcEydOxJUrVyyOYa9txOTGBtavX485c+Zg/vz5SEtLQ69evZCYmIicnBy5Q5PF7t27MWPGDPz444/Ytm0bKioqMHz4cBQXF0v7PP300/jqq6+wYcMG7N69G1euXMGf/vQnGaOWz8GDB/Hvf/8bPXv2tNjONgKuXbuGu+++G+7u7vjmm29w/PhxvP766wgMDJT2WbJkCVasWIE1a9Zg//798Pb2RmJiIsrKymSMvOUsXrwYq1evxhtvvIETJ05g8eLFWLJkCVauXCnt44ptVFxcjF69emHVqlV1Pt6UNnnooYfwyy+/YNu2bfj666+xZ88ePPbYYy31EppdQ21UUlKCtLQ0vPDCC0hLS8PGjRtx6tQpjBkzxmI/u20jQbetb9++YsaMGdLvRqNRhIeHi5SUFBmjsh85OTkCgNi9e7cQQoiCggLh7u4uNmzYIO1z4sQJAUCkpqbKFaYsioqKROfOncW2bdvEoEGDxJNPPimEYBuZPfvss+Kee+6p93GTySRCQ0PFa6+9Jm0rKCgQarVafPLJJy0RouxGjRolJk+ebLHtT3/6k3jooYeEEGwjIYQAIDZt2iT93pQ2OX78uAAgDh48KO3zzTffCIVCIS5fvtxisbeUm9uoLgcOHBAAxIULF4QQ9t1GrNzcJoPBgMOHDyMhIUHaplQqkZCQgNTUVBkjsx+FhYUAgFatWgEADh8+jIqKCos2i4qKQtu2bV2uzWbMmIFRo0ZZtAXANjL78ssvERcXhwceeABarRa9e/fGm2++KT1+7tw5ZGVlWbSTv78/+vXr5zLt1L9/f+zYsQOnT58GAPz000/Yt28fRo4cCYBtVJemtElqaioCAgIQFxcn7ZOQkAClUon9+/e3eMz2oLCwEAqFAgEBAQDsu41c7saZtpaXlwej0QidTmexXafT4eTJkzJFZT9MJhOeeuop3H333ejevTsAICsrCx4eHtIfiJlOp0NWVpYMUcrj008/RVpaGg4ePFjrMbZRld9++w2rV6/GnDlz8Pzzz+PgwYOYPXs2PDw8kJSUJLVFXX9/rtJOzz33HPR6PaKioqBSqWA0GrFw4UI89NBDAMA2qkNT2iQrKwtardbicTc3N7Rq1col262srAzPPvssJkyYIN04057biMkNNasZM2bg2LFj2Ldvn9yh2JWLFy/iySefxLZt26DRaOQOx26ZTCbExcXh1VdfBQD07t0bx44dw5o1a5CUlCRzdPbhP//5Dz766CN8/PHH6NatG9LT0/HUU08hPDycbUQ2UVFRgXHjxkEIgdWrV8sdTpOwW+o2BQcHQ6VS1ZrFkp2djdDQUJmisg8zZ87E119/jZ07d6JNmzbS9tDQUBgMBhQUFFjs70ptdvjwYeTk5KBPnz5wc3ODm5sbdu/ejRUrVsDNzQ06nc7l2wgAwsLCEB0dbbGta9euyMjIAACpLVz57+8vf/kLnnvuOTz44IPo0aMHHnnkETz99NNISUkBwDaqS1PaJDQ0tNakkMrKSuTn57tUu5kTmwsXLmDbtm1S1Qaw7zZicnObPDw8EBsbix07dkjbTCYTduzYgfj4eBkjk48QAjNnzsSmTZvw3XffoX379haPx8bGwt3d3aLNTp06hYyMDJdps6FDh+Lnn39Genq69BMXF4eHHnpI+m9XbyMAuPvuu2stI3D69Gm0a9cOANC+fXuEhoZatJNer8f+/ftdpp1KSkqgVFpeylUqFUwmEwC2UV2a0ibx8fEoKCjA4cOHpX2+++47mEwm9OvXr8VjloM5sTlz5gy2b9+OoKAgi8ftuo1kHc7sJD799FOhVqvFe++9J44fPy4ee+wxERAQILKysuQOTRZPPPGE8Pf3F7t27RKZmZnST0lJibTP448/Ltq2bSu+++47cejQIREfHy/i4+NljFp+N86WEoJtJETV7Aw3NzexcOFCcebMGfHRRx8JLy8vsW7dOmmfRYsWiYCAAPHf//5XHD16VPzhD38Q7du3F6WlpTJG3nKSkpJE69atxddffy3OnTsnNm7cKIKDg8Vf//pXaR9XbKOioiJx5MgRceTIEQFALFu2TBw5ckSa6dOUNhkxYoTo3bu32L9/v9i3b5/o3LmzmDBhglwvyeYaaiODwSDGjBkj2rRpI9LT0y2u5eXl5dIx7LWNmNzYyMqVK0Xbtm2Fh4eH6Nu3r/jxxx/lDkk2AOr8effdd6V9SktLxfTp00VgYKDw8vISf/zjH0VmZqZ8QduBm5MbtlGVr776SnTv3l2o1WoRFRUl1q5da/G4yWQSL7zwgtDpdEKtVouhQ4eKU6dOyRRty9Pr9eLJJ58Ubdu2FRqNRnTo0EH87W9/s/gAcsU22rlzZ53XoaSkJCFE09rk6tWrYsKECcLHx0f4+fmJ5ORkUVRUJMOraR4NtdG5c+fqvZbv3LlTOoa9tpFCiBuWsSQiIiJycBxzQ0RERE6FyQ0RERE5FSY3RERE5FSY3BAREZFTYXJDREREToXJDRERETkVJjdERETkVJjcEBERkVNhckNELW7SpEm47777ZDv/I488It1p/HYZDAZERkbi0KFDNjkeEd0+rlBMRDalUCgafHz+/Pl4+umnIYRAQEBAywR1g59++glDhgzBhQsX4OPjY5NjvvHGG9i0aZPFjRiJSD5MbojIprKysqT/Xr9+PebNm2dxZ28fHx+bJRW34tFHH4WbmxvWrFljs2Neu3YNoaGhSEtLQ7du3Wx2XCK6NeyWIiKbCg0NlX78/f2hUCgstvn4+NTqlho8eDBmzZqFp556CoGBgdDpdHjzzTdRXFyM5ORk+Pr6olOnTvjmm28sznXs2DGMHDkSPj4+0Ol0eOSRR5CXl1dvbEajEZ999hlGjx5tsT0yMhKvvvoqJk+eDF9fX7Rt2xZr166VHjcYDJg5cybCwsKg0WjQrl07pKSkSI8HBgbi7rvvxqeffnqbrUdEtsDkhojswvvvv4/g4GAcOHAAs2bNwhNPPIEHHngA/fv3R1paGoYPH45HHnkEJSUlAICCggIMGTIEvXv3xqFDh7BlyxZkZ2dj3Lhx9Z7j6NGjKCwsRFxcXK3HXn/9dcTFxeHIkSOYPn06nnjiCanitGLFCnz55Zf4z3/+g1OnTuGjjz5CZGSkxfP79u2LvXv32q5BiOiWMbkhIrvQq1cv/P3vf0fnzp0xd+5caDQaBAcHY+rUqejcuTPmzZuHq1ev4ujRowCqxrn07t0br776KqKiotC7d2+888472LlzJ06fPl3nOS5cuACVSgWtVlvrsXvvvRfTp09Hp06d8OyzzyI4OBg7d+4EAGRkZKBz586455570K5dO9xzzz2YMGGCxfPDw8Nx4cIFG7cKEd0KJjdEZBd69uwp/bdKpUJQUBB69OghbdPpdACAnJwcAFUDg3fu3CmN4fHx8UFUVBQA4OzZs3Weo7S0FGq1us5Bzzee39yVZj7XpEmTkJ6eji5dumD27NnYunVrred7enpKVSUikpeb3AEQEQGAu7u7xe8KhcJimzkhMZlMAIDr169j9OjRWLx4ca1jhYWF1XmO4OBglJSUwGAwwMPDo9Hzm8/Vp08fnDt3Dt988w22b9+OcePGISEhAZ999pm0f35+PkJCQpr6comoGTG5ISKH1KdPH3z++eeIjIyEm1vTLmUxMTEAgOPHj0v/3VR+fn4YP348xo8fj7Fjx2LEiBHIz89Hq1atAFQNbu7du7dVxySi5sFuKSJySDNmzEB+fj4mTJiAgwcP4uzZs/j222+RnJwMo9FY53NCQkLQp08f7Nu3z6pzLVu2DJ988glOnjyJ06dPY8OGDQgNDbVYp2fv3r0YPnz47bwkIrIRJjdE5JDCw8Px/fffw2g0Yvjw4ejRoweeeuopBAQEQKms/9L26KOP4qOPPrLqXL6+vliyZAni4uJw55134vz589i8ebN0ntTUVBQWFmLs2LG39ZqIyDa4iB8RuZTS0lJ06dIF69evR3x8vE2OOX78ePTq1QvPP/+8TY5HRLeHlRsicimenp744IMPGlzszxoGgwE9evTA008/bZPjEdHtY+WGiIiInAorN0RERORUmNwQERGRU2FyQ0RERE6FyQ0RERE5FSY3RERE5FSY3BAREZFTYXJDREREToXJDRERETkVJjdERETkVP4fLamNmH9MwLIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(np.arange(0, len(a_b_cz_wfm.amplitudes))*dt*1e9, a_b_cz_wfm.amplitudes)\n", + "plt.xlabel('Time (ns)')\n", + "plt.ylabel('Amplitude (a. u.)')\n", + "plt.title(f'Pulse on CZ frame between qubit {a} and {b}');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Playing the CZ waveform on a frame that is related to a fast-flux port enable a CZ interaction that causes the systems to oscillate between $|11\\rangle$ and $|20\\rangle$." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "a_rf_frame = device.frames[f'q{a}_rf_frame']\n", + "b_rf_frame = device.frames[f'q{b}_rf_frame']\n", + "frames = [a_rf_frame, b_rf_frame, a_b_cz_frame]\n", + "\n", + "cz_pulse_sequence = (\n", + " PulseSequence()\n", + " .barrier(frames)\n", + " .play(a_b_cz_frame, a_b_cz_wfm)\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "One side-effect of this pulse that that the mean qubit frequencies will be shifted during the process.\n", + "The qubit frames rotate at the different rates and a relative phase is acquired with respect to the all frames connected to these qubits. \n", + "\n", + "These phase shifts was measured via Ramsey sequences beforehand (and given here as hardcoded information via `phase_shift_a` and `phase_shift_b`). We apply corrections by using shift_phase instructions on RF and XY frames after the CZ pulse. (see Caldwell et all, https://arxiv.org/abs/1706.06562 for more information). " + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "phase_shift_a=1.1733407221086924\n", + "phase_shift_b=6.269846678712192\n", + "\n", + "cz_pulse_sequence = (\n", + " cz_pulse_sequence\n", + " .delay(a_rf_frame, a_b_cz_wfm_duration)\n", + " .shift_phase(a_rf_frame, phase_shift_a)\n", + " .delay(b_rf_frame, a_b_cz_wfm_duration)\n", + " .shift_phase(b_rf_frame, phase_shift_b)\n", + " .barrier(frames)\n", + ")\n", + "for phase, q in [(phase_shift_a/2, a), (-phase_shift_b/2, b)]:\n", + " for neighbor in device.properties.paradigm.connectivity.connectivityGraph[str(q)]:\n", + " xy_frame_name = f\"q{min(q, int(neighbor))}_q{max(q, int(neighbor))}_xy_frame\"\n", + " if xy_frame_name in device.frames:\n", + " xy_frame = device.frames[xy_frame_name]\n", + " cz_pulse_sequence.shift_phase(xy_frame, phase)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Pulse sequences can be exported as time series via the function `to_time_trace` for visualization. This method returns an object that contains all the numerical values of our pulse sequences, and can be used to plot the traces for each frames." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJ8AAAGGCAYAAADVbCCFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAACXFElEQVR4nOzdeVhUZfsH8O+wDvsiu6KgolIuuCJmuZG4S5qpaaL5qplrqBnmkrbgkqalSeZeGv7wNeo1w4zcJRfUFLdcUFwYXNhkG2Dm/P7AmZwAZWCGwzDfz3XNFfOc55y5zzRnxrnnee5HIgiCACIiIiIiIiIiIj0wETsAIiIiIiIiIiKqvZh8IiIiIiIiIiIivWHyiYiIiIiIiIiI9IbJJyIiIiIiIiIi0hsmn4iIiIiIiIiISG+YfCIiIiIiIiIiIr1h8omIiIiIiIiIiPSGySciIiIiIiIiItIbJp+IiIiIiIiIiEhvmHwiIiIiouc6efIkOnXqBBsbG0gkEpw9e1bskIiIiMhAMPlEREREovntt98wduxYNG/eHKampvDx8Sm3r1KpxNKlS+Hr6wupVIqWLVvihx9+qDHxffrppxgwYADc3d0hkUjw0Ucfldnvxx9/REhICLy8vGBpaYl69erh9ddfR1JSkn5OQgeKioowZMgQpKen44svvsB3332HBg0aiB0WERERGQgzsQMgIiIi47V9+3bs2LEDbdq0gZeX1zP7fvjhh1i8eDHGjRuH9u3b46effsKbb74JiUSCYcOGiR7f3Llz4eHhgdatW2Pv3r3l9jt//jycnJwwbdo0uLi4QCaTYePGjejQoQMSEhLQqlUrXZ9GlV2/fh23bt3Ct99+i//85z9ih0NEREQGRiIIgiB2EERERGSc7t27B1dXV5ibm6Nfv35ISkrCzZs3S/W7e/cufH19MX78eKxevRoAIAgCunTpguTkZNy8eROmpqaixQcAN2/ehI+PDx4+fAhXV1csWLCg3NFP/5aWloZ69eph7NixiIqK0t0J6MihQ4fQpUsXxMTE4PXXX39m39zcXNjY2FRTZERERGQIOO2OiIiI9OLIkSNo3749pFIpGjVqhG+++QYfffQRJBKJuo+XlxfMzc2fe6yffvoJRUVFePfdd9VtEokEEydOxJ07d5CQkKDz2LSJD8Azp+Q9j5ubG6ytrZGZman1vsePH0efPn3g5OQEGxsbtGzZEqtWrQIAHDhwABKJpMxbReMdPXo0unTpAgAYMmQIJBIJunbtqt5ma2uL69evo0+fPrCzs8OIESMAAIcPH8aQIUNQv359WFpawtvbG++99x7y8/NLHd/W1hYpKSno168fbG1tUbduXaxZswZAyUix7t27w8bGBg0aNMD27dtLxZiZmYnp06fD29sblpaWaNy4MZYsWQKlUqn180lERES6x2l3REREpHPnz59Hz5494erqio8++gjFxcVYsGAB3N3dK3W8M2fOwMbGBv7+/hrtHTp0UG/v3LmzKLFVVmZmJoqKiiCTybBy5UpkZ2ejR48eWh1j37596NevHzw9PTFt2jR4eHjg0qVL2L17N6ZNmwZ/f3989913pR43PDwcbm5uFXqMCRMmoG7duvjss88wdepUtG/fXuO5Ki4uRkhICDp37ozPP/8c1tbWAICYmBjk5eVh4sSJqFOnDk6cOIGvvvoKd+7cQUxMjMZjKBQK9O7dG6+88gqWLl2Kbdu2YfLkybCxscGHH36IESNGYNCgQYiKisKoUaMQFBQEX19fAEBeXh66dOmCu3fvYsKECahfvz6OHTuGiIgIpKamYuXKlVo9p0RERKR7TD4RERGRzs2fPx+CIODw4cOoX78+AGDw4MFo0aJFpY6XmpqqLuT9NE9PTwAl0+PEiq2yOnbsiCtXrgAAbG1tMXfuXIwdO7bC+ysUCkyYMAGenp44e/YsHB0d1dtUVRXc3d0xcuRIjfYBAwbA0tISmzdvrtDjBAUFQS6X47PPPsPLL79catqdXC7HkCFDEBkZqdG+ZMkSWFlZqe+PHz8ejRs3xpw5c5CSkqJ+7gGgoKAAI0eOREREBADgzTffhJeXF95++2388MMPGDp0KADg1VdfRbNmzbBlyxb1lMYVK1bg+vXrOHPmDPz8/ACUJMy8vLywbNkyzJgxA97e3hU6VyIiItIPTrsjIiIinVIoFNi7dy9CQ0M1Egz+/v4ICQmp1DHz8/NhaWlZql0qlaq3ixVbZW3atAlxcXH4+uuv4e/vj/z8fCgUigrvf+bMGSQnJ2P69OkaiScApZJ0Kh9//DF2796NzZs344UXXqhK+BomTpxYqu3pxFNubi4ePnyITp06QRAEnDlzplT/pwuZOzo6omnTprCxscEbb7yhbm/atCkcHR1x48YNdVtMTAxefvllODk54eHDh+pbcHAwFAoFDh06pKvTJCIiokpi8omIiKiSDh06hP79+8PLywsSiQSxsbFaH2Pv3r3o2LEj7Ozs4OrqisGDB5db0NpQPHjwAPn5+epRKE9r2rRppY5pZWUFuVxeqr2goEC9XazYKisoKAghISGYOHEi9u7di++//1498qcirl+/DgBo3rx5hfrHxcVh4cKFiIiIwODBgysVc1nMzMxQr169Uu0pKSkYPXo0nJ2dYWtrC1dXV3XtqKysLI2+UqkUrq6uGm0ODg6oV69eqUSag4MDMjIy1PevXr2KuLg4uLq6atyCg4MBAPfv39fJeRIREVHlcdodERFRJeXm5qJVq1Z4++23MWjQIK33T05OxsCBAxEeHo5t27YhKysL7733HgYNGoTTp0/rIWLD5enpif3790MQBI1kRGpqKoCSwuCGzMnJCd27d8e2bdvw+eef6/z4ycnJGDFiBF599VV88sknOj22paUlTEw0f89UKBR49dVXkZ6ejtmzZ6NZs2awsbHB3bt3MXr06FKFwMtbqbC89qcXa1YqlXj11Vfx/vvvl9m3SZMm2pwOERER6QGTT0RERJXUu3dv9O7du9ztcrkcH374IX744QdkZmaiefPmWLJkiXqlsMTERCgUCnzyySfqL+8zZ87EwIEDUVRUVOFV1moaV1dXWFlZ4erVq6W2qWocaSsgIADr16/HpUuXNKaLHT9+XL1drNh0JT8/v9SIoGdp1KgRACApKUk9yqe84w4aNAiOjo744YcfSiWK9OH8+fP4+++/sWXLFowaNUrdvm/fPp0/VqNGjZCTk/PM54CIiIjExWl3REREejJ58mQkJCQgOjoa586dw5AhQ9CrVy914qNt27YwMTHBpk2boFAokJWVhe+++w7BwcEGm3gCSkarhISEIDY2FikpKer2S5cuYe/evZU65sCBA2Fubo6vv/5a3SYIAqKiolC3bl106tRJtNi0VdY0sJs3byI+Ph7t2rWr8HHatGkDX19frFy5EpmZmRrbnh4Z9M477+Dvv//Gjz/+CCcnp0rHrQ3ViKWn4xAEAatWrdL5Y73xxhtISEgo8/9fZmYmiouLdf6YREREpB2OfCIiItKDlJQUbNq0CSkpKeopYTNnzkRcXBw2bdqEzz77DL6+vvjtt9/wxhtvYMKECVAoFAgKCsKePXtEjr7qFi5ciLi4OLz88st49913UVxcjK+++govvvgizp07p+537tw5/PzzzwCAa9euISsrSz0trFWrVujfvz8AoF69epg+fTqWLVuGoqIitG/fHrGxsTh8+DC2bdtW7vSsqsSmTXwA8N133+HWrVvIy8sDUFITTNX3rbfeQoMGDQAALVq0QI8ePRAQEAAnJydcvXoVGzZsQFFRERYvXlzh8zAxMcHatWvRv39/BAQEYMyYMfD09MTly5dx4cIF7N27F7/88gu2bt2KwYMH49y5cxrnZ2tri9DQ0Ao/njaaNWuGRo0aYebMmbh79y7s7e3x3//+V6NWk67MmjULP//8M/r164fRo0ejbdu2yM3Nxfnz57Fz507cvHkTLi4uOn9cIiIi0oJAREREVQZA+PHHH9X3d+/eLQAQbGxsNG5mZmbCG2+8IQiCIKSmpgp+fn7CrFmzhNOnTwsHDx4UunTpIvTo0UNQKpUinYnuHDx4UGjbtq1gYWEhNGzYUIiKihIWLFggPP3Pj02bNgkAyryFhYVpHE+hUAifffaZ0KBBA8HCwkJ48cUXhe+//15vsWkbX5cuXcrtu3//fnW/BQsWCO3atROcnJwEMzMzwcvLSxg2bJhw7ty5Sp3LkSNHhFdffVWws7MTbGxshJYtWwpfffXVc+Nv0KBBhR9j//79AgAhJiZGoz0sLEywsbEpc5+LFy8KwcHBgq2treDi4iKMGzdO+OuvvwQAwqZNm557jC5duggvvvhiqfYGDRoIffv21Wh7/PixEBERITRu3FiwsLAQXFxchE6dOgmff/65UFhYWOHzJCIiIv2QCMJT46GJiIioUiQSCX788Uf1SJIdO3ZgxIgRuHDhQqlROba2tvDw8MC8efMQFxeHkydPqrfduXMH3t7eSEhIQMeOHavzFKrFRx99hIULF6Im/vOjJsdGREREZMg47Y6IiEgPWrduDYVCgfv37+Pll18us09eXl6p4s+qRNW/VwMjIiIiIjJUTD4RERFVUk5ODq5du6a+n5ycjLNnz8LZ2RlNmjTBiBEjMGrUKCxfvhytW7fGgwcPEB8fj5YtW6Jv377o27cvvvjiCyxatAjDhw/H48ePMWfOHDRo0ACtW7cW8cwMU05ODnJycp7Zx9XVVav6UGJJT09HYWFhudtNTU3h6upa5cepTc8ZERER1VxMPhEREVXSqVOn0K1bN/X98PBwAEBYWBg2b96MTZs24ZNPPsGMGTNw9+5duLi4oGPHjujXrx8AoHv37ti+fTuWLl2KpUuXwtraGkFBQYiLi4OVlZUo52TIPv/8cyxcuPCZfZKTk+Hj41M9AVXBoEGDcPDgwXK3N2jQADdv3qzy49Sm54yIiIhqLtZ8IiIiolrhxo0buHHjxjP7dO7cGVKptJoiqrzExMRnrgxnZWWFl156qcqPU5ueMyIiIqq5mHwiIiIiIiIiIiK9MXl+FyIiIiIiIiIiosoxuppPSqUS9+7dg52dHSQSidjhEBFViSAIePz4Mby8vEqtmkb6wc8RIqot+BkiDn6OEFFtoc3niNEln+7duwdvb2+xwyAi0qnbt2+jXr16YodhFPg5QkS1DT9Dqhc/R4iotqnI54jRJZ/s7OwAlDw59vb2IkdDRFQ12dnZ8Pb2Vr+3kf7xc4SIagt+hoiDnyNEVFto8zlidMkn1dBWe3t7vtkTUa3BYfvVh58jRFTb8DOkevFzhIhqm4p8jnByNxERERERERER6Q2TT0REREREREREpDdMPhERERERERERkd4YXc0nIqoeSqUShYWFYodh8MzNzWFqaip2GERERERERJXG5BMR6VxhYSGSk5OhVCrFDqVWcHR0hIeHBwvCEhERERGRQWLyiYh0ShAEpKamwtTUFN7e3jAx4ezeyhIEAXl5ebh//z4AwNPTU+SIiIiIiIiItMfkExHpVHFxMfLy8uDl5QVra2uxwzF4VlZWAID79+/Dzc2NU/CIiIiIiMjgcEgCEemUQqEAAFhYWIgcSe2hSuIVFRWJHAkREREREZH2mHwiIr1gfSLd4XNJRERERESGjMknIiIiIiIiIiLSG9Z8okq7n12Av+5k4cK9LNzLzMejnEJk5RehoFiBwmIlipUCFEoBSkEAADz5D9VybtYmmNLeAcKDHJiYF0ICCSQAJJKSETymJhKYmUhgbmoCKwtTWJmbwsLMOPLgo0ePRmZmJmJjY8UOhYiIiIiIqNow+URaUSoF7L9yH5uP3cThqw/FDodqIKHYFMVKexQplJBIlBXax8bSDC42FrC3Mhdtitno0aOxZcsWAICZmRnq1auHIUOGYNGiRZBKpaLEVJtFRkZi165duHz5MqysrNCpUycsWbIETZs2feZ+MTExmDdvHm7evAk/Pz8sWbIEffr0AVBSE2vu3LnYs2cPbty4AQcHBwQHB2Px4sXw8vJSH8PHxwe3bt0qFc8HH3yg+xMlIiIiIiImn6jisvKLMHn7aXXSSSIBmrjZoXldB/i6WMPF1hIOVuaQWpjC0tQEpiYlo1wkEknJqBewdo0xEIoLYZLzAN7O1rC0lEIAAEGAEoAgCFAogWKlEoVFSuQXKVBQpECuvBi58mJYW5ihQR1rmJuKMxKqV69e2LRpE4qKipCYmIiwsDBIJBIsWbJElHhqs4MHD2LSpElo3749iouLMWfOHPTs2RMXL16EjY1NmfscO3YMw4cPR2RkJPr164ft27cjNDQUp0+fRvPmzZGXl4fTp09j3rx5aNWqFTIyMjBt2jQMGDAAp06d0jjWokWLMG7cOPV9Ozs7vZ4vEREREZExY/KJKuTWo1y8vfkkrj/IhZW5Kd4KaoCRgQ1Qv4612KFRDVNQUIDk5EewtjCD1PL5bzGFxUqk5xbiUa4ceYXFuH4/Bz4uNpCam1ZDtJosLS3h4eEBAPD29kZwcDD27duHJUuWQKlUYsmSJVi3bh1kMhmaNGmCefPm4fXXXwdQssrf+PHj8ccff0Amk6F+/fp49913MW3atGo/D0MQFxencX/z5s1wc3NDYmIiXnnllTL3WbVqFXr16oVZs2YBAD7++GPs27cPq1evRlRUFBwcHLBv3z6NfVavXo0OHTogJSUF9evXV7fb2dmp/18TEREREZF+MflEz5WVX4Sh3/wJWXYBPOyl2DC6HV70chA7LDIQgiAgv0jxzD72VmawMJPgdnoesguKcOFeFhq72VZ5BJSVuWmlR9slJSXh2LFjaNCgAYCSaVnff/89oqKi4Ofnh0OHDmHkyJFwdXVFly5doFQqUa9ePcTExKBOnTo4duwYxo8fD09PT7zxxhtVOg9jkJWVBQBwdnYut09CQgLCw8M12kJCQp5ZQysrKwsSiQSOjo4a7YsXL8bHH3+M+vXr480338R7770HMzN+JBIRERER6UON+Jf2mjVrsGzZMshkMrRq1QpfffUVOnTo8Nz9oqOjMXz4cAwcOJAFfPVo8a+XIcsuQIM61vi/CUFwt2f9G6q4/CIFXpi/V5THvrgoBNYWFX+b2717N2xtbVFcXAy5XA4TExOsXr0acrkcn332GX7//XcEBQUBABo2bIgjR47gm2++QZcuXWBubo6FCxeqj+Xr64uEhAT83//9H5NPz6FUKjF9+nS89NJLaN68ebn9ZDIZ3N3dNdrc3d0hk8nK7F9QUIDZs2dj+PDhsLe3V7dPnToVbdq0gbOzM44dO4aIiAikpqZixYoVZR5HLpdDLper72dnZ2tzekRERERERk/05NOOHTsQHh6OqKgoBAYGYuXKlQgJCcGVK1fg5uZW7n43b97EzJkz8fLLL1djtMbnzxuP8MOJFADAksEtmXiiWq1bt25Yu3YtcnNz8cUXX8DMzAyDBw/GhQsXkJeXh1dffVWjf2FhIVq3bq2+v2bNGmzcuBEpKSnIz89HYWEhAgICqvksDM+kSZOQlJSEI0eO6OyYRUVFeOONNyAIAtauXaux7enRUy1btoSFhQUmTJiAyMhIWFpaljpWZGSkRmKRiIiIiIi0I3ryacWKFRg3bhzGjBkDAIiKisIvv/yCjRs3lrvykEKhwIgRI7Bw4UIcPnwYmZmZ1Rix8SgoUiBi13kAwPAO9dGxYR2RIyJDZGVuiouLQrTaR5ZVgIc5cpibmqCxmw1MTSo3/c5Ky7pRNjY2aNy4MQBg48aNaNWqFTZs2KAejfPLL7+gbt26GvuokhXR0dGYOXMmli9fjqCgINjZ2WHZsmU4fvx4pWI3FpMnT8bu3btx6NAh1KtX75l9PTw8kJaWptGWlpZWqnaTKvF069Yt/PHHHxqjnsoSGBiI4uJi3Lx5s8zV9iIiIjQSVtnZ2fD29n7eqRERERER0ROiJp8KCwuRmJiIiIgIdZuJiQmCg4ORkJBQ7n6LFi2Cm5sbxo4di8OHDz/zMThdovL2nE9F8sNcuNlZIqJPM7HDIQMlkUi0mvoGAD51bFCkUEJerIS8SICLXfW/VZmYmGDOnDkIDw/H33//DUtLS6SkpKBLly5l9j969Cg6deqEd999V912/fr16grX4AiCgClTpuDHH3/EgQMH4Ovr+9x9goKCEB8fj+nTp6vb9u3bp54KCfyTeLp69Sr279+POnWenzQ/e/YsTExMyh1ta2lpWeaIKCIiIiIiqhhRk08PHz6EQqEos4bH5cuXy9znyJEj2LBhA86ePVuhx+B0icrbmXgHAPBWxwawl5qLHA0ZExMTCerYWuJeZj4y8grhYifOF/8hQ4Zg1qxZ+OabbzBz5ky89957UCqV6Ny5M7KysnD06FHY29sjLCwMfn5+2Lp1K/bu3QtfX1989913OHnyZIWSKsZo0qRJ2L59O3766SfY2dmp6zY5ODjAysoKADBq1CjUrVsXkZGRAIBp06ahS5cuWL58Ofr27Yvo6GicOnUK69atA1CSeHr99ddx+vRp7N69GwqFQn1cZ2dnWFhYICEhAcePH0e3bt1gZ2eHhIQEvPfeexg5ciScnJxEeCaIiIiIiGo/0afdaePx48d466238O2338LFxaVC+3C6ROXcycjDseuPIJEAg9o+eyoMkT44WpkjNasA+UUK5BcqYGWh3RQ6XTAzM8PkyZOxdOlSJCcnw9XVFZGRkbhx4wYcHR3Rpk0bzJkzBwAwYcIEnDlzBkOHDoVEIsHw4cPx7rvv4tdff632uA2Bqg5T165dNdo3bdqE0aNHAwBSUlJg8tSUy06dOmH79u2YO3cu5syZAz8/P8TGxqqnRd69exc///wzAJSqtbV//3507doVlpaWiI6OxkcffQS5XA5fX1+89957pVbRIyIiIiIi3ZEIgiCI9eCFhYWwtrbGzp07ERoaqm4PCwtDZmYmfvrpJ43+Z8+eRevWrWFq+s+XUKVSCaBkisyVK1fQqFGjZz5mdnY2HBwckJWV9dw6IMbsy/irWLHvb7zUuA62/aej2OGQASkoKEBycjJ8fX0hlVatQP2tR7nIyi+Ci60lvBytdBSh4XnWc8r3tOrH55yIagu+n4mDzzsR1RbavJ9VroqvjlhYWKBt27aIj49XtymVSsTHx2vU8FBp1qwZzp8/j7Nnz6pvAwYMQLdu3XD27FmOaNIRpVJQT7l7naOeSERO1hYAgMy8IijFy5MTERERERFRFYg+7S48PBxhYWFo164dOnTogJUrVyI3N1e9+t3TNT+kUql6eoWKo6MjAJRqp8o7eTMdKel5sLU0Q8iLHs/fgUhP7KRmMDMxQbFSiccFxXCwYu0xIiIiIiIiQyN68mno0KF48OAB5s+fD5lMhoCAAMTFxamLkP+75gfp369JJQV6ezf30HqVMiJdkkgkcLI2x4McObLzi5h8IiIiIiIiMkA1IrMwefJkTJ48ucxtBw4ceOa+mzdv1n1ARu7kzXQAwCtNXEWOhAiwlZrhQY4cufJisUMhIiIiIiKiSuCQItLwuKAIl1KzAQAdfJ1FjoYIsLYwgwRAoUKJwmKl2OEQERERERGRlph8Ig2JtzKgFID6ztZwt6/aSmVEumBqIoHUvGSFy7xCjn4iIiIiIiIyNEw+kQbVlLt2Pk4iR0L0DxvLkhnCnHpHRERERERkeJh8Ig0nb2YAADr4cMod1Rw2FiUjn3ILFSJHQkRERERERNpi8onU5MUKnL2dCQBoz3pPVINYPxn5VFCkQLGCdZ+IiIiIiIgMCZNPpHb+ThYKi5WoY2OBhi42YodDpGZuagJLM1XdJ45+IiIiIiIiMiRMPpHaiafqPUkkEpGjIdL0z9Q7/dR9Gj16NEJDQ/VybCIiIiIiImPG5BOpnXpS76k96z1RDWStLjrOkU9ERERERESGhMknUrt4LxsA0Lq+o7iBEJXB+snIp4IiBQRB0Otjde3aFVOmTMH06dPh5OQEd3d3fPvtt8jNzcWYMWNgZ2eHxo0b49dff1Xvo1AoMHbsWPj6+sLKygpNmzbFqlWrNI5bXFyMqVOnwtHREXXq1MHs2bMRFhbGEVdERER6smbNGvj4+EAqlSIwMBAnTpx4Zv+YmBg0a9YMUqkULVq0wJ49e8rt+84770AikWDlypU6jpqIqPZh8okAANkFRZBlFwAAGrvZiRwN1SqCABTmVvlmocyHSXE+hMJcFOU/rth+VUhSbdmyBS4uLjhx4gSmTJmCiRMnYsiQIejUqRNOnz6Nnj174q233kJeXh4AQKlUol69eoiJicHFixcxf/58zJkzB//3f/+nPuaSJUuwbds2bNq0CUePHkV2djZiY2Or+gwTERFRGXbs2IHw8HAsWLAAp0+fRqtWrRASEoL79++X2f/YsWMYPnw4xo4dizNnziA0NBShoaFISkoq1ffHH3/En3/+CS8vL32fBhFRrSAR9D2EoIbJzs6Gg4MDsrKyYG9vL3Y4NcaZlAy89vUxuNlZ4sSHwWKHQwasoKAAycnJ8PX1hVQqLUkCfSbSP8zm3AMsKlY8f/To0cjMzERsbCy6du0KhUKBw4cPAygZ1eTg4IBBgwZh69atAACZTAZPT08kJCSgY8eOZR5z8uTJkMlk2LlzJwDAw8MDM2fOxMyZM9XHbdiwIVq3bv3MJFSp5/QpfE+rfnzOiai2qO3vZ4GBgWjfvj1Wr14NoOSHIm9vb0yZMgUffPBBqf5Dhw5Fbm4udu/erW7r2LEjAgICEBUVpW67e/cuAgMDsXfvXvTt2xfTp0/H9OnTKxxXbX/eich4aPN+xpFPBAC4ej8HANDYzVbkSIhqhpYtW6r/NjU1RZ06ddCiRQt1m7u7OwBo/Hq6Zs0atG3bFq6urrC1tcW6deuQkpICAMjKykJaWho6dOigcdy2bdvq+1SIiIiMTmFhIRITExEc/M+PqiYmJggODkZCQkKZ+yQkJGj0B4CQkBCN/kqlEm+99RZmzZqFF198UT/BExHVQmZiB0A1w/UnySc/Jp9I18ytS0Yg6UBadgHuP5bD2cYCdR2tKvbYlWRubq5xXyKRaLSpVoRUKpUAgOjoaMycORPLly9HUFAQ7OzssGzZMhw/frzSMRAREVHlPHz4EAqFQv1jkYq7uzsuX75c5j4ymazM/jKZTH1/yZIlMDMzw9SpUysci1wuh1wuV9/Pzs6u8L5ERLUFk08EALjGkU+kLxJJhae+PY+ltTmEAlMUwExnx9SVo0ePolOnTnj33XfVbdevX1f/7eDgAHd3d5w8eRKvvPIKgJJpd6dPn0ZAQEB1h0tERERaSkxMxKpVq3D69Gn1j1AVERkZiYULF+oxMiKimo/T7gjA09PuWGycai5Lsycr3hXrf8U7bfn5+eHUqVPYu3cv/v77b8ybNw8nT57U6DNlyhRERkbip59+wpUrVzBt2jRkZGRo9Q9YIiIiej4XFxeYmpoiLS1Noz0tLQ0eHh5l7uPh4fHM/ocPH8b9+/dRv359mJmZwczMDLdu3cKMGTPg4+NTbiwRERHIyspS327fvl21kyMiMkBMPhEKihS4nVGyYhdHPlFNZmlW8palUAooVtas5NOECRMwaNAgDB06FIGBgXj06JHGKCgAmD17NoYPH45Ro0YhKCgItra2CAkJKVVEnIiIiKrGwsICbdu2RXx8vLpNqVQiPj4eQUFBZe4TFBSk0R8A9u3bp+7/1ltv4dy5czh79qz65uXlhVmzZmHv3r3lxmJpaQl7e3uNGxGRseG0O8L1BzkQBMDR2hwuthZih0NULhMTCSzMTFBYrIS8SAFzU93lzzdv3qz++8CBA6W237x5s1Tb06OvLC0tsWnTJmzatEmjT2RkpPpvMzMzfPXVV/jqq68AlPwj2N/fH2+88UbVgiciIqJSwsPDERYWhnbt2qFDhw5YuXIlcnNzMWbMGADAqFGjULduXfVn9bRp09ClSxcsX74cffv2RXR0NE6dOoV169YBAOrUqYM6depoPIa5uTk8PDzQtGnT6j05IiIDw+QT/VPvydWW03+oxpOamZYkn4qVMLRxerdu3cJvv/2GLl26QC6XY/Xq1UhOTsabb74pdmhERES1ztChQ/HgwQPMnz8fMpkMAQEBiIuLUxcVT0lJgYnJPz9kderUCdu3b8fcuXMxZ84c+Pn5ITY2Fs2bNxfrFIiIag0mn+ifle7cDe2rPBkjS3MToAAoKFaKHYrWTExMsHnzZsycOROCIKB58+b4/fff4e/vL3ZoREREtdLkyZMxefLkMreVNdJ5yJAhGDJkSIWPX9bIaCIiKo3JJ1IXG2/kyuQT1XyqouPyIoXIkWjP29sbR48eFTsMIiIiIiKiasWC46SedufnzpXuqOaTmpe8bckNcOQTERERERGRMWLyycgVKZRIfpgLgCvdkWFQrXhXpFCiWMEElKGKjIxE+/btYWdnBzc3N4SGhuLKlSvP3S8mJgbNmjWDVCpFixYtsGfPHo3tgiBg/vz58PT0hJWVFYKDg3H16lWNPunp6RgxYgTs7e3h6OiIsWPHIicnR6fnR0RERERE/2DyycilZhagWCnA0swEnvZc7p105+mV4HTJ1MQEZk9WuSs0kuSTUln7zvPgwYOYNGkS/vzzT+zbtw9FRUXo2bMncnNzy93n2LFjGD58OMaOHYszZ84gNDQUoaGhSEpKUvdZunQpvvzyS0RFReH48eOwsbFBSEgICgoK1H1GjBiBCxcuYN++fdi9ezcOHTqE8ePH6/V8iYiIiIiMmUTQ1zfEGio7OxsODg7IysqCvb292OGI7tj1h3jz2+No6GKDP2Z2FTscqgUUCgWuXr0Ka2truLq66mUFxVuPclFQpICXoxR2UgudH7+mEAQBhYWFePDgARQKBfz8/DRW5QFqz3vagwcP4ObmhoMHD+KVV14ps8/QoUORm5uL3bt3q9s6duyIgIAAREVFQRAEeHl5YcaMGZg5cyYAICsrC+7u7ti8eTOGDRuGS5cu4YUXXsDJkyfRrl07AEBcXBz69OmDO3fuwMvL67mx1pbnnIiI72fi4PNORLWFNu9nLDhu5O5llowGqOtkJXIkVFuYmpqiXr16uHPnjt5WgEnPLUReoQKFGeawldb+tzFra2vUr1+/VOKpNsnKygIAODs7l9snISEB4eHhGm0hISGIjY0FACQnJ0MmkyE4OFi93cHBAYGBgUhISMCwYcOQkJAAR0dHdeIJAIKDg2FiYoLjx4/jtdde0+FZERERERERwOST0bubkQ8A8HJg8ol0x9bWFn5+figqKtLL8X87eB3/dyoVg9rUw6Ruvnp5jJrC1NQUZmZmehlBVlMolUpMnz4dL730Epo3b15uP5lMBnd3d402d3d3yGQy9XZV27P6uLm5aWw3MzODs7Ozus+/yeVyyOVy9f3s7OwKnhkREREREQFMPhm9e5klySeOfCJdMzU1hampqV6O7Whng7uPFbj6UA6plLXKDN2kSZOQlJSEI0eOiB1KmSIjI7Fw4UKxwyAiIiIiMli1dw4HVcjdJ8knL0cmn8hwqF6vqtcvGa7Jkydj9+7d2L9/P+rVq/fMvh4eHkhLS9NoS0tLg4eHh3q7qu1Zfe7fv6+xvbi4GOnp6eo+/xYREYGsrCz17fbt2xU/QSIiIiIiYvLJ2KlHPjH5RAakLpNPBk8QBEyePBk//vgj/vjjD/j6Pn/6ZFBQEOLj4zXa9u3bh6CgIACAr68vPDw8NPpkZ2fj+PHj6j5BQUHIzMxEYmKius8ff/wBpVKJwMDAMh/X0tIS9vb2GjciIiIiIqo4TrszYoIgqL+8M/lEhkT1ek3PLUR+oQJWFvqZ3kf6M2nSJGzfvh0//fQT7Ozs1PWWHBwcYGVV8v931KhRqFu3LiIjIwEA06ZNQ5cuXbB8+XL07dsX0dHROHXqFNatWwcAkEgkmD59Oj755BP4+fnB19cX8+bNg5eXF0JDQwEA/v7+6NWrF8aNG4eoqCgUFRVh8uTJGDZsWIVWuiMiIiIiIu1x5JMRe5RbCHmxEhIJ4OHAujlkOOytzGBrWZI75+gnw7R27VpkZWWha9eu8PT0VN927Nih7pOSkoLU1FT1/U6dOmH79u1Yt24dWrVqhZ07dyI2NlajSPn777+PKVOmYPz48Wjfvj1ycnIQFxenURts27ZtaNasGXr06IE+ffqgc+fO6gQWERERERHpHkc+GTHVSndudpawMGMekgyHRCKBl6MUf6fl4F5mPhq72YodEmlJEITn9jlw4ECptiFDhmDIkCHl7iORSLBo0SIsWrSo3D7Ozs7Yvn17heIkIiIiIqKqY8bBiLHeExky1n0iIiIiIiIyDEw+GTGudEeGTPW6vcfkExERERERUY3G5JMRUxcbd2LyiQyP6nWrmj5KRERERERENROTT0ZM9aWd0+7IEHHaHRERERERkWFg8smI3cti8okMF5NPREREREREhoHJJyOmGvnEmk9kiFSvW1lWARTK56+cRkREREREROJg8slI5RUWIyOvCABrPpFhcreXwtREgmKlgPuPC8QOh4iIiIiIiMrB5JORUq0QZmdpBnupucjREGnP1EQCD3spABYdJyIiIiIiqsmYfDJSdzNLRopw1BMZMvWKd6z7REREREREVGMx+WSkZE+KjXs6SEWOhKjyvJ68flOzOO2OiIiIiIiopmLyyUg9eCwHALjZMflEhsvtybS7h09ez0RERERERFTzMPlkpO4/+bLuamcpciREledqW/L6vc/kExERERERUY3F5JOResDkE9UCqtfvAyafiIiIiIiIaiwmn4zUP9PumHwiw6V6/T7IYfKJiIiIiIiopmLyyUhx2h3VBhz5REREREREVPMx+WSEBEHgtDuqFVSv36z8IhQUKUSOhoiIiIiIiMrC5JMRyi1UIP/JF3Umn8iQOViZw8K05G3sIafeERERERER1UhMPhkh1agnW0szWFuYiRwNUeVJJBJOvSMiIiIiIqrhmHwyQvezCwBw1BPVDi5MPhEREREREdVoTD4ZIdXKYK62TD6R4VO9jrniHRERERERUc3E5JMRYrFxqk1Ur+P72Uw+ERERERER1URMPhkhJp+oNnGz48gnIiIiIiKimozJJyN0n8knqkVYcJyIiIiIiKhmY/LJCHHkE9UmTD4RERERERHVbDUi+bRmzRr4+PhAKpUiMDAQJ06cKLfvrl270K5dOzg6OsLGxgYBAQH47rvvqjFaw6f6ku7G5BPVAm5MPhEREREREdVooiefduzYgfDwcCxYsACnT59Gq1atEBISgvv375fZ39nZGR9++CESEhJw7tw5jBkzBmPGjMHevXurOXLDxWl3VJs8PfJJEASRo6GKOnToEPr37w8vLy9IJBLExsY+d581a9bA398fVlZWaNq0KbZu3aqxvWvXrpBIJKVuffv2VfcZPXp0qe29evXS9ekREREREdFTRE8+rVixAuPGjcOYMWPwwgsvICoqCtbW1ti4cWOZ/bt27YrXXnsN/v7+aNSoEaZNm4aWLVviyJEj1Ry5YVIoBaTnMvlEtYeLbcnruFChRHZ+scjRUEXl5uaiVatWWLNmTYX6r127FhEREfjoo49w4cIFLFy4EJMmTcL//vc/dZ9du3YhNTVVfUtKSoKpqSmGDBmicaxevXpp9Pvhhx90em5ERERERKTJTMwHLywsRGJiIiIiItRtJiYmCA4ORkJCwnP3FwQBf/zxB65cuYIlS5boM9Ra41GuHEoBMJEAdWyYfCLDJzU3hb3UDNkFxXiQUwAHa3OxQ6IK6N27N3r37l3h/t999x0mTJiAoUOHAgAaNmyIkydPYsmSJejfvz+AkpGxT4uOjoa1tXWp5JOlpSU8PDyqeAZERERERFRRoo58evjwIRQKBdzd3TXa3d3dIZPJyt0vKysLtra2sLCwQN++ffHVV1/h1VdfLbOvXC5Hdna2xs2Yqeri1LG1hKmJRORoiHTDzV4KALifzbpPtZVcLodUKtVos7KywokTJ1BUVFTmPhs2bMCwYcNgY2Oj0X7gwAG4ubmhadOmmDhxIh49eqS3uImIiIiIqAZMu6sMOzs7nD17FidPnsSnn36K8PBwHDhwoMy+kZGRcHBwUN+8vb2rN9gaRl3vyZajnqj2UL2eH+Qw+VRbhYSEYP369UhMTIQgCDh16hTWr1+PoqIiPHz4sFT/EydOICkpCf/5z3802nv16oWtW7ciPj4eS5YswcGDB9G7d28oFIpyH5s/YhARERERVY1W0+4uXbqE6OhoHD58GLdu3UJeXh5cXV3RunVrhISEYPDgwbC0rHhSw8XFBaampkhLS9NoT0tLe+aUCBMTEzRu3BgAEBAQgEuXLiEyMhJdu3Yt1TciIgLh4eHq+9nZ2UadgHrAYuNUC7lyxbtab968eZDJZOjYsSMEQYC7uzvCwsKwdOlSmJiU/h1lw4YNaNGiBTp06KDRPmzYMPXfLVq0QMuWLdGoUSMcOHAAPXr0KPOxIyMjsXDhQt2eEBERERGREanQyKfTp08jODgYrVu3xpEjRxAYGIjp06fj448/xsiRIyEIAj788EN4eXlhyZIlkMsr9gXQwsICbdu2RXx8vLpNqVQiPj4eQUFBFT4JpVJZ7mNaWlrC3t5e42bMmHyi2ojJp9rPysoKGzduRF5eHm7evImUlBT4+PjAzs4Orq6uGn1zc3MRHR2NsWPHPve4DRs2hIuLC65du1Zun4iICGRlZalvt2/frvL5EBEREREZkwolnwYPHoxBgwZBJpMhPj4ekZGRmDJlCv7zn//g/fffx9atW5GcnIzdu3fjzJkzWL58eYUDCA8Px7fffostW7bg0qVLmDhxInJzczFmzBgAwKhRozQKkkdGRmLfvn24ceMGLl26hOXLl+O7777DyJEjtTx146T6cu7G5BPVIm5MPhkNc3Nz1KtXD6ampoiOjka/fv1KjXyKiYmBXC6v0OfCnTt38OjRI3h6epbbhz9iEBEZrjVr1sDHxwdSqRSBgYE4ceLEM/vHxMSgWbNmkEqlaNGiBfbs2aPeVlRUhNmzZ6NFixawsbGBl5cXRo0ahXv37un7NIiIDF6Fpt39/fffMDd//gpSQUFBCAoKKrf4a1mGDh2KBw8eYP78+ZDJZAgICEBcXJy6CHlKSorGF4vc3Fy8++67uHPnDqysrNCsWTN8//336hWQ6NlUNXFcWPOJahEX1nwyODk5ORqjjZKTk3H27Fk4Ozujfv36iIiIwN27d7F161YAJZ9DJ06cQGBgIDIyMrBixQokJSVhy5YtpY69YcMGhIaGok6dOqUec+HChRg8eDA8PDxw/fp1vP/++2jcuDFCQkL0e8JERFTtduzYgfDwcERFRSEwMBArV65ESEgIrly5Ajc3t1L9jx07huHDhyMyMhL9+vXD9u3bERoaitOnT6N58+bIy8vD6dOnMW/ePLRq1QoZGRmYNm0aBgwYgFOnTolwhkREhkMiCIIgdhDVKTs7Gw4ODsjKyjLKX6+Hr/sTCTceYdWwAAwMqCt2OEQ6sf/KfYzZdBIveNpjz7SXxQ6nWhnqe9qBAwfQrVu3Uu1hYWHYvHkzRo8ejZs3b6oXk7h06RLefPNNXLlyBebm5ujWrRuWLFmCpk2baux/5coVNGvWDL/99lupVVDz8/MRGhqKM2fOIDMzE15eXujZsyc+/vjjUquuPouhPudERP9W29/PAgMD0b59e6xevRpASakOb29vTJkyBR988EGp/kOHDkVubi52796tbuvYsSMCAgIQFRVV5mOcPHkSHTp0wK1bt1C/fv0KxVXbn3ciMh7avJ9pVXD8WU6dOoW8vDy88sorujok6UF6biEAwNnGQuRIiHSnzpPXs+r1TTVf165d8azfPjZv3qxx39/fH2fOnHnucZs2bVruca2srLB3716t4iQiIsNUWFiIxMREjfIdJiYmCA4ORkJCQpn7JCQkaCxUBJSsthobG1vu42RlZUEikcDR0bHcPnK5XKM+LVdNJSJjVKGaTxXx1ltvlfkrNtUs6XlMPlHto3o9p+cVPjOhQURERMbh4cOHUCgUpUa2uru7QyaTlbmPTCbTqn9BQQFmz56N4cOHP/MX/8jISDg4OKhvxrzyNhEZL50ln+Lj43Hjxg1dHY70QBAEZHDkE9VCqtdzYbESuYUKkaMhIiKi2q6oqAhvvPEGBEHA2rVrn9mXq6YSEelw2p2Xl5euDkV6kp1fjGJlyagQJp+oNrG2MIPU3AQFRUqk5xTC1lJnb21ERERkgFxcXGBqaoq0tDSN9rS0NHh4eJS5j4eHR4X6qxJPt27dwh9//PHcOieWlpawtORiP0Rk3Co98un+/ftISkrCuXPnNG5Ucz3KLZlrbmtpBkszU5GjIdKtOjYl/6hTvc6JiIjIeFlYWKBt27aIj49XtymVSsTHxyMoKKjMfYKCgjT6A8C+ffs0+qsST1evXsXvv/9eamVVIiIqm9bDAxITExEWFoZLly6pa6tIJBIIggCJRAKFglNeaioWG6fazNnGAncz81l0nIiIiAAA4eHhCAsLQ7t27dChQwesXLkSubm5GDNmDABg1KhRqFu3LiIjIwEA06ZNQ5cuXbB8+XL07dsX0dHROHXqFNatWwegJPH0+uuv4/Tp09i9ezcUCoW6HpSzszMsLPhvbCKi8midfHr77bfRpEkTbNiwAe7u7pBIJPqIi/TgEZNPVIupXtePmHzSm+TkZBw+fBi3bt1CXl4eXF1d0bp1awQFBUEqlYodHhERkYahQ4fiwYMHmD9/PmQyGQICAhAXF6cuKp6SkgITk38mgnTq1Anbt2/H3LlzMWfOHPj5+SE2NhbNmzcHANy9exc///wzACAgIEDjsfbv34+uXbtWy3kRERkirZNPN27cwH//+180btxYH/GQHrHYONVmqtd1BpNPOrdt2zasWrUKp06dgru7O7y8vGBlZYX09HRcv34dUqkUI0aMwOzZs9GgQQOxwyUiIlKbPHkyJk+eXOa2AwcOlGobMmQIhgwZUmZ/Hx8frqpLRFRJWiefevTogb/++ovJJwPEkU9Um6le15x2p1utW7eGhYUFRo8ejf/+97+lloeWy+VISEhAdHQ02rVrh6+//rrcf7QTEREREZFx0jr5tH79eoSFhSEpKQnNmzeHubm5xvYBAwboLDjSLdWX8jpMPlEtxGl3+rF48WKEhISUu93S0hJdu3ZF165d8emnn+LmzZvVFxwRERERERkErZNPCQkJOHr0KH799ddS21hwvGZjwXGqzepw5JNePCvx9G916tThqj9ERERERFSKyfO7aJoyZQpGjhyJ1NRUKJVKjRsTTzUbp91RbcaRT/rXvXt3LFy4sFR7RkYGunfvLkJERERERERkCLQe+fTo0SO899576lUiyHCk58oBAHVsmXyi2kf1ula9zkn3Dhw4gPPnz+PMmTPYtm0bbGxsAACFhYU4ePCgyNEREREREVFNpfXIp0GDBmH//v36iIX0LCO3CADgZM3kE9U+qte16nVO+vH7779DJpOhY8eOrO9EREREREQVovXIpyZNmiAiIgJHjhxBixYtShUcnzp1qs6CI916pBr5ZGMpciREuqd6XefIiyEvVsDSzFTkiGonT09PHDx4EGPGjEH79u0RExMDf39/scMiIiIiIqIarFKr3dna2uLgwYOlpllIJBImn2qovMJiFBQpAQDOnHZHtZC9lRnMTCQoVgpIzy2Ep4OV2CHVOhKJBEDJCnfbt2/HJ598gl69emH27NkiR0ZERERERDWZVsknQRBw4MABuLm5wcqKX+wMyaOckiLMFmYmsLHgiBCqfSQSCZxsLPDgsRyPcph80gdBEDTuz507F/7+/ggLCxMpIiIiIiIiMgRa1XwSBAF+fn64c+eOvuIhPVEtP1/HxkI9eoGotqljoyo6zhXv9CE5ORkuLi4abYMHD8aff/6JjRs3ihQVERERERHVdFqNfDIxMYGfnx8ePXoEPz8/fcVEeqD6Ms5i41SbqV7fTD7pR4MGDcpsb968OZo3b17N0RARkSFQKpU4ePAgDh8+jFu3biEvLw+urq5o3bo1goOD4e3tLXaIRERUDbSu+bR48WLMmjULa9eu5ZcNA6Ie+cR6T1SLqeqZMfmkW4MGDapQv127duk5EiIiMhT5+flYvnw51q5di/T0dAQEBMDLywtWVla4du0aYmNjMW7cOPTs2RPz589Hx44dxQ6ZiIj0SOvk06hRo5CXl4dWrVrBwsKiVO2n9PR0nQVHuqP6Mu5sw+QT1V6cdqcfDg4OGve3b9+O/v37w87OTqSIiIiopmvSpAmCgoLw7bff4tVXXy21QjYA3Lp1C9u3b8ewYcPw4YcfYty4cSJESkRE1UHr5NPKlSv1EAbp2yMmn8gIqF7fj5h80qlNmzZp3N+5cyeWLl2Khg0bihQRERHVdL/99hv8/f2f2adBgwaIiIjAzJkzkZKSUk2RERGRGLROPnFVI8OUnisH8M/IEKLa6J+RT3KRIyEiIjJuz0s8Pc3c3ByNGjXSYzRERCQ2rZNPAKBQKBAbG4tLly4BAF588UUMGDAApqamOg2OdOefaXeWIkdCpD+q1zen3REREYnr3LlzFe7bsmVLPUZCREQ1gdbJp2vXrqFPnz64e/cumjZtCgCIjIyEt7c3fvnlF/5qUUP9M+2u9Hx7otrC6cnrm9PuiIiIxBUQEACJRAJBECCRSJ7ZV6FQVFNUREQkFq2TT1OnTkWjRo3w559/wtnZGQDw6NEjjBw5ElOnTsUvv/yi8yCp6jI48omMQJ0nr+8MJp906ueff9a4r1QqER8fj6SkJI32AQMGVGdYRERUgyUnJ6v/PnPmDGbOnIlZs2YhKCgIAJCQkIDly5dj6dKlYoVIRETVSOvk08GDBzUSTwBQp04dLF68GC+99JJOgyPd4cgnMgaqguOZ+UVQKAWYmjz7l1aqmNDQ0FJtEyZM0LgvkUi0+uX60KFDWLZsGRITE5Gamooff/yxzMd52po1a7B69WrcvHkT9evXx4cffohRo0apt2/evBljxozR2MfS0hIFBQXq+4IgYMGCBfj222+RmZmJl156CWvXroWfn1+FYycioudr0KCB+u8hQ4bgyy+/RJ8+fdRtLVu2hLe3N+bNm/fc938iIjJ8JtruYGlpicePH5dqz8nJgYUFi1nXRMUKJR4XFAMAnKz5/4hqL0frkuSqIABZ+UUiR1N7KJXK5960nTKRm5uLVq1aYc2aNRXqv3btWkREROCjjz7ChQsXsHDhQkyaNAn/+9//NPrZ29sjNTVVfbt165bG9qVLl+LLL79EVFQUjh8/DhsbG4SEhGgkqIiISLfOnz8PX1/fUu2+vr64ePGiCBEREVF103rkU79+/TB+/Hhs2LABHTp0AAAcP34c77zzDqdc1FCZT30Jd7DiyCeqvcxNTWBnaYbH8mJk5BWqR0JRzdO7d2/07t27wv2/++47TJgwAUOHDgUANGzYECdPnsSSJUvQv39/dT+JRAIPD48yjyEIAlauXIm5c+di4MCBAICtW7fC3d0dsbGxGDZsWBXOiIiIyuPv74/IyEisX79e/WN1YWEhIiMjtVoVj4iIDJfWI5++/PJLNGrUCEFBQZBKpZBKpXjppZfQuHFjrFq1Sh8xUhVl5pVMuXOwMoeZqdb/y4kMipNq6l0e6z7pwp9//lnhvnl5ebhw4YJe4pDL5ZBKpRptVlZWOHHiBIqK/kmw5+TkoEGDBvD29sbAgQM14klOToZMJkNwcLC6zcHBAYGBgUhISHjmY2dnZ2vciIio4qKiorB3717Uq1cPwcHBCA4ORr169bB3715ERUWJHR4REVUDrTMRjo6O+Omnn3DlyhXs3LkTO3fuxJUrV/Djjz/CwcFBHzFSFaXnlnwxc7LmqCeq/VSvc9XrnqrmrbfeQkhICGJiYpCbm1tmn4sXL2LOnDlo1KgREhMT9RJHSEgI1q9fj8TERAiCgFOnTmH9+vUoKirCw4cPAQBNmzbFxo0b8dNPP+H777+HUqlEp06dcOfOHQCATCYDALi7u2sc293dXb2tLJGRkXBwcFDfvL299XKORES1VYcOHXDjxg188sknaNmyJVq2bIlPP/0UN27cUM+kICKi2k3raXcqfn5+LNBqIDKejABxZL0nMgKq13kGRz7pxMWLF7F27VrMnTsXb775Jpo0aQIvLy9IpVJkZGTg8uXLyMnJwWuvvYbffvsNLVq00Esc8+bNg0wmQ8eOHSEIAtzd3REWFoalS5fCxKTkd5SgoCD1KkoA0KlTJ/j7++Obb77Bxx9/XOnHjoiIQHh4uPp+dnY2E1BERFqysbHB+PHjxQ6DiIhEonXySaFQYPPmzYiPj8f9+/ehVCo1tv/xxx86C450QzX9iCOfyBioXuecdqcb5ubmmDp1KqZOnYpTp07hyJEjuHXrFvLz89GqVSu899576Natm8YKqPpgZWWFjRs34ptvvkFaWho8PT2xbt062NnZwdXVtdzYW7dujWvXrgGAuhaUan+VtLQ0BAQElPvYlpaWsLS01N3JEBEZqYsXLyIlJQWFhZqf0awbS0RU+2mdfJo2bRo2b96Mvn37onnz5pBIuJR5Taeedsfiy2QEVK9zTrvTvXbt2qFdu3aixmBubo569eoBAKKjo9GvXz/1yKd/UygUOH/+vHppb19fX3h4eCA+Pl6dbMrOzsbx48cxceLEaomfiMgY3bhxA6+99hrOnz8PiUQCQRAAQP09QtsVU4mIyPBonXyKjo7G//3f/6n/MU813z8jn5h8otpP9TrnyKeaLScnRz0iCSgpBn727Fk4Ozujfv36iIiIwN27d7F161YAwN9//40TJ04gMDAQGRkZWLFiBZKSkrBlyxb1MRYtWoSOHTuicePGyMzMxLJly3Dr1i385z//AVDyJWf69On45JNP4OfnB19fX8ybNw9eXl4IDQ2t1vMnIjIm06ZNg6+vL+Lj4+Hr64sTJ07g0aNHmDFjBj7//HOxwyMiomqgdfLJwsICjRs31kcspCcZnHZHRkT1OmfNp5rt1KlT6Natm/q+qqZSWFgYNm/ejNTUVKSkpKi3KxQKLF++HFeuXIG5uTm6deuGY8eOwcfHR90nIyMD48aNg0wmg5OTE9q2bYtjx47hhRdeUPd5//33kZubi/HjxyMzMxOdO3dGXFxcqZX0iIhIdxISEvDHH3/AxcUFJiYmMDExQefOnREZGYmpU6fizJkzYodIRER6pnXyacaMGVi1ahVWr17NKXcGIiOP0+7IeKhe56rXPdVMXbt2VU+7KMvmzZs17vv7+z/3y8kXX3yBL7744pl9JBIJFi1ahEWLFlU4ViIiqhqFQgE7OzsAgIuLC+7du4emTZuiQYMGuHLlisjRERFRddA6+XTkyBHs378fv/76K1588UWYm2uOptm1a5fOgiPdyMjltDsyHqrXuep1T0REROJq3rw5/vrrL/j6+iIwMBBLly6FhYUF1q1bh4YNG4odHhERVQOtk0+Ojo547bXX9BEL6Ylq+pEjp92REXBUT7vjyCddu3HjBr8kEBGR1ubOnYvc3FwAJfX5+vXrh5dffhl16tTBjh07RI6OiIiqg9bJp02bNukjDtKjTNW0O458IiPwdMFxQRA4PViHGjdujC5dumDs2LF4/fXXWSeJiIgqJCQkRP1348aNcfnyZaSnp8PJyYmf00RERqLs9amp1lAqBWTmlySfnFnziYyAKvlUrBSQIy8WOZra5fTp02jZsiXCw8Ph4eGBCRMm4MSJE2KHRURENVhRURHMzMyQlJSk0e7s7MzEExGREalQ8qlXr174888/n9vv8ePHWLJkCdasWVPlwEg3HhcUQ6EsKerLaXdkDKwsTCE1L3lry8jl1DtdCggIwKpVq3Dv3j1s3LgRqamp6Ny5M5o3b44VK1bgwYMHYodIREQ1jLm5OerXrw+FQiF2KEREJKIKJZ+GDBmCwYMH44UXXsDs2bMRExODo0ePIjExEb///ju+/PJLvPHGG/D09MTp06fRv39/fcdNFaSq92RtYQpLM1ORoyGqHuqi43ksOq4PZmZmGDRoEGJiYrBkyRJcu3YNM2fOhLe3N0aNGoXU1FSxQyQiohrkww8/xJw5c5Ceni52KEREJJIK1XwaO3YsRo4ciZiYGOzYsQPr1q1DVlYWgJJlq1944QWEhITg5MmT8Pf312vApB3Vl2/WeyJj4mhtgdSsAiaf9OTUqVPYuHEjoqOjYWNjg5kzZ2Ls2LG4c+cOFi5ciIEDB3I6HhERqa1evRrXrl2Dl5cXGjRoABsbG43tp0+fFikyIiKqLhUuOG5paYmRI0di5MiRAICsrCzk5+ejTp06MDfndK6aSp18suH/IzIezjaqFe+YfNKlFStWYNOmTbhy5Qr69OmDrVu3ok+fPjAxKRlE6+vri82bN8PHx0fcQImIqEYJDQ0VOwQiIhKZ1qvdqTg4OMDBwUGXsZAeqGrecOQTGRNH1bQ71nzSqbVr1+Ltt9/G6NGj4enpWWYfNzc3bNiwoZojIyKimmzBggVih0BERCKrdPKJDINq5Icjk09kRJyeFNfP5Mgnnbp69epz+1hYWCAsLKwaoiEioppMEASuZkdERGoVKjhOhiszr2TkhzNXuiMj4qwuOM6RT7q0adMmxMTElGqPiYnBli1bRIiIiIhqqhdffBHR0dEoLHz2D0FXr17FxIkTsXjx4mqKjIiIxMCRT7VcOkc+kRFSvd7TOfJJpyIjI/HNN9+Uandzc8P48eM54omIiNS++uorzJ49G++++y5effVVtGvXDl5eXpBKpcjIyMDFixdx5MgRXLhwAZMnT8bEiRPFDpmIiPSIyadaLlO92h1HPpHxUBXY57Q73UpJSYGvr2+p9gYNGiAlJUWEiIiIqKbq0aMHTp06hSNHjmDHjh3Ytm0bbt26hfz8fLi4uKB169YYNWoURowYAScnJ7HDJSIiPatU8ikzMxM7d+7E9evXMWvWLDg7O+P06dNwd3dH3bp1dR0jVYG64LgNRz6R8WDBcf1wc3PDuXPnSq1m99dff6FOnTriBEVERDVa586d0blzZ7HDICIikWmdfDp37hyCg4Ph4OCAmzdvYty4cXB2dsauXbuQkpKCrVu36iNOqqQM9cgnJp/IeKhqPnHkk24NHz4cU6dOhZ2dHV555RUAwMGDBzFt2jQMGzZM5OiIiIiIiKim0rrgeHh4OEaPHo2rV69CKpWq2/v06YNDhw7pNDiqOiafyBg5seaTXnz88ccIDAxEjx49YGVlBSsrK/Ts2RPdu3fHZ599JnZ4REREpaxZswY+Pj6QSqUIDAzEiRMnntk/JiYGzZo1g1QqRYsWLbBnzx6N7YIgYP78+fD09ISVlRWCg4MrtBosEZGx0zr5dPLkSUyYMKFUe926dSGTyXQSFOmGIAjq1b4cWfOJjIjjk5pPBUVKFBQpRI6m9rCwsMCOHTtw+fJlbNu2Dbt27cL169exceNGWFgwwU1ERDXLjh07EB4ejgULFuD06dNo1aoVQkJCcP/+/TL7Hzt2DMOHD8fYsWNx5swZhIaGIjQ0FElJSeo+S5cuxZdffomoqCgcP34cNjY2CAkJQUFBQXWdFhGRQdI6+WRpaYns7OxS7X///TdcXV11EhTpRn6RAoXFSgCAM2s+kRGxszSDmYkEwD+j/0h3mjRpgiFDhqBfv35o0KCB2OEQERGVacWKFRg3bhzGjBmDF154AVFRUbC2tsbGjRvL7L9q1Sr06tULs2bNgr+/Pz7++GO0adMGq1evBlDyw+7KlSsxd+5cDBw4EC1btsTWrVtx7949xMbGVuOZEREZHq1rPg0YMACLFi3C//3f/wEAJBIJUlJSMHv2bAwePFjnAVLlpeeWfOm2MDWBtYWpyNEQVR+JRAJHaws8zJEjPbcQng5WYodUKygUCmzevBnx8fG4f/8+lEqlxvY//vhDpMhqPkEQkM9ReESkZ1bmppBIJGKHUSMUFhYiMTERERER6jYTExMEBwcjISGhzH0SEhIQHh6u0RYSEqJOLCUnJ0MmkyE4OFi93cHBAYGBgUhISNBr/UN+jhBRddDn54jWyafly5fj9ddfh5ubG/Lz89GlSxfIZDIEBQXh008/rVQQa9aswbJlyyCTydCqVSt89dVX6NChQ5l9v/32W2zdulU9/LVt27b47LPPyu1vzDKfmnLHf4iQsXGyNsfDHLn6OqCqmzZtGjZv3oy+ffuiefPmfF/RQn6RAi/M3yt2GERUy11cFAJri0otZq13169fx6ZNm3D9+nWsWrUKbm5u+PXXX1G/fn28+OKLOn+8hw8fQqFQwN3dXaPd3d0dly9fLnMfmUxWZn9VaRHVf5/VpyxyuRxyuVx9v6xZJM/DzxEiqg76/BzR+qgODg7Yt28fjhw5gnPnziEnJwdt2rTR+AVAG6q52FFRUQgMDMTKlSsREhKCK1euwM3NrVT/AwcOYPjw4ejUqROkUimWLFmCnj174sKFC6hbt26lYqitWGycjJnqdc9pd7oTHR2N//u//0OfPn3EDoWIiAzIwYMH0bt3b7z00ks4dOgQPv30U7i5ueGvv/7Chg0bsHPnTrFD1KvIyEgsXLhQ7DCIiERV6ZRW586d0blz5yoH8PRcbACIiorCL7/8go0bN+KDDz4o1X/btm0a99evX4///ve/iI+Px6hRo6ocT22iKjbuZMNi42R8VK/7DI580hkLCws0btxY7DAMkpW5KS4uChE7DCKq5azMa2aZhQ8++ACffPIJwsPDYWdnp27v3r27up6Srrm4uMDU1BRpaWka7WlpafDw8ChzHw8Pj2f2V/03LS0Nnp6eGn0CAgLKjSUiIkJjOl92dja8vb21Oh9+jhBRddDn50iFkk9ffvllhQ84derUCvetzFzsf8vLy0NRURGcnZ0r/LjGIiOXI5/IeKlHPuVy5JOuzJgxA6tWrcLq1as55U5LEomkxk6FISLSt/Pnz2P79u2l2t3c3PDw4UO9PKaFhQXatm2L+Ph4hIaGAgCUSiXi4+MxefLkMvcJCgpCfHw8pk+frm7bt28fgoKCAAC+vr7w8PBAfHy8OtmUnZ2N48ePY+LEieXGYmlpCUtLyyqdDz9HiMjQVegd7IsvvtC4/+DBA+Tl5cHR0REAkJmZCWtra7i5uWmVfKrMXOx/mz17Nry8vMqd9qeLOdaGSjXdyJHJJzJCjpx2p3NHjhzB/v378euvv+LFF1+EubnmqMpdu3aJFBkREdVkjo6OSE1Nha+vr0b7mTNn9Fo2Izw8HGFhYWjXrh06dOiAlStXIjc3Vz3jYtSoUahbty4iIyMBlNQ27NKlC5YvX46+ffsiOjoap06dwrp16wCUJICmT5+OTz75BH5+fvD19cW8efPg5eWlTnAREVHZKpR8Sk5OVv+9fft2fP3119iwYQOaNm0KALhy5QrGjRuHCRMm6CfKcixevBjR0dE4cOAApFJpmX2MeY61qtCykzWn3ZHxUb3uWXBcdxwdHfHaa6+JHQYRERmYYcOGYfbs2YiJiYFEIoFSqcTRo0cxc+ZMvZbNGDp0KB48eID58+dDJpMhICAAcXFx6h++U1JSYGJiou7fqVMnbN++HXPnzsWcOXPg5+eH2NhYNG/eXN3n/fffR25uLsaPH4/MzEx07twZcXFx5X4XISKiJwQtNWzYUDh9+nSp9lOnTgk+Pj5aHUsulwumpqbCjz/+qNE+atQoYcCAAc/cd9myZYKDg4Nw8uTJZ/YrKCgQsrKy1Lfbt28LAISsrCytYjVEU384LTSYvVv49tB1sUMhqnY7TqYIDWbvFsI2Hhc7FL3KysoyyPe0gwcPCv369RM8PT0FAKU+B8qyevVqoVmzZoJUKhWaNGkibNmyRWP7unXrhM6dOwuOjo6Co6Oj0KNHD+H4cc3//2FhYQIAjVtISIhWsRvqc05E9G/V9X4ml8uF//znP4KZmZkgkUgEc3NzwcTERBg5cqRQXFys18euifg5QkS1hTbvZybl5KTKlZqaiuLi4lLtCoWiVIG+53l6LraKai62am51WZYuXYqPP/4YcXFxaNeu3TMfw9LSEvb29ho3Y5Gey2l3ZLxY80k/iouL8fvvv+Obb77B48ePAQD37t1DTk6OVsfJzc1Fq1atsGbNmgr1X7t2LSIiIvDRRx/hwoULWLhwISZNmoT//e9/6j6q1VD379+PhIQEeHt7o2fPnrh7967GsXr16oXU1FT17YcfftAqdiIi0o6FhQW+/fZb3LhxA7t378b333+Py5cv47vvvoOpac0skk5ERLqlddW6Hj16YMKECVi/fj3atGkDAEhMTMTEiRPLrbv0LNrOxV6yZAnmz5+P7du3w8fHBzKZDABga2sLW1tbrR+/NuO0OzJmqtc9V7vTnVu3bqFXr15ISUmBXC7Hq6++Cjs7OyxZsgRyuRxRUVEVPlbv3r3Ru3fvCvf/7rvvMGHCBAwdOhQA0LBhQ5w8eRJLlixB//79AVR8NVRLS8tyVzoiIiL98fb2hre3NxQKBc6fP4+MjAw4OTmJHRYREVUDrUc+bdy4ER4eHmjXrp165YYOHTrA3d0d69ev1zqAoUOH4vPPP8f8+fMREBCAs2fPlpqLnZqaqu6/du1aFBYW4vXXX4enp6f69vnnn2v92LWdqtCykw1HPpHxUb3uWXBcd6ZNm4Z27dohIyMDVlZW6vbXXntNYwSrPsjl8lL1NKysrHDixAkUFZWdYCxvNdQDBw7Azc0NTZs2xcSJE/Ho0aPnPnZ2drbGjYiIKm769OnYsGEDgJLZEl26dEGbNm3g7e2NAwcOiBscERFVC61HPrm6umLPnj34+++/1SvSNWvWDE2aNKl0EJMnTy53ydN/fyDdvHmz0o9jbFTTjZw47Y6MkOp1/7igGEUKJcxNtc61078cPnwYx44dg4WF5nuKj49PqaltuhYSEoL169cjNDQUbdq0QWJiItavX4+ioiI8fPgQnp6epfYpazXUXr16YdCgQfD19cX169cxZ84c9O7dGwkJCeVO/TDmhSuIiHRh586dGDlyJADgf//7H27cuKGedvfhhx/i6NGjIkdIRET6pnXySaVJkyZVSjiRfhUWK5FbqADAaXdknByszCGRAIJQMgXV1c5S7JAMnlKphEKhKNV+584d2NnZ6fWx582bB5lMho4dO0IQBLi7uyMsLAxLly7VWKlIpbzVUIcNG6b+u0WLFmjZsiUaNWqEAwcOoEePHmU+dkREBMLDw9X3s7Oz4e3trcOzIyKq3R4+fKie7rxnzx688cYbaNKkCd5++22sWrVK5OiIiKg6aJ18evvtt5+5fePGjZUOhnQn88lUIxMJYC9l8omMj6mJBPZSc2TlFyEzr5DJJx3o2bMnVq5ciXXr1gEAJBIJcnJysGDBAvTp00evj21lZYWNGzfim2++QVpaGjw9PbFu3TrY2dnB1dVVo+/nn3+OxYsX4/fff0fLli2fedyGDRvCxcUF165dKzf5pJpiTkRElePu7o6LFy/C09MTcXFxWLt2LYCS6dEsOE5EZBy0Tj5lZGRo3C8qKkJSUhIyMzPRvXt3nQVGVaMqsuxobQETE4nI0RCJw9nGAln5RSw6riPLly9HSEgIXnjhBRQUFODNN9/E1atX4eLiUm0rxpmbm6NevXoAgOjoaPTr109j5NPSpUvx6aefYu/evc9dDRUoGbX16NGjMqftERGRbowZMwZvvPEGPD09IZFI1NOhjx8/jmbNmokcHRERVQetk08//vhjqTalUomJEyeiUaNGOgmKqi79Sb0nR065IyOmev2rrgeqmnr16uGvv/5CdHQ0zp07h5ycHIwdOxYjRozQKEBeETk5Obh27Zr6fnJyMs6ePQtnZ2fUr18fERERuHv3LrZu3QoA+Pvvv3HixAkEBgYiIyMDK1asQFJSErZs2aI+xvNWQ83JycHChQsxePBgeHh44Pr163j//ffRuHFjhISE6OAZIiKisnz00Udo3rw5bt++jSFDhqhHk5qamuKDDz4QOToiIqoOla759DQTExOEh4eja9eueP/993VxSKoi1bQ7FhsnY6Z6/WdyxTudMTMzUxeNrYpTp06hW7du6vuqmkphYWHYvHkzUlNTkZKSot6uUCiwfPlyXLlyBebm5ujWrRuOHTsGHx8fdZ+nV0N92oIFC/DRRx/B1NQU586dw5YtW5CZmQkvLy/07NkTH3/8MafVERHp2b/fm4GS93wiIjIOOkk+AcD169dRXFysq8NRFammGbHYOBkz1cgnTrvTDdUopPKMGjWqwsfq2rUrBEEod/vmzZs17vv7++PMmTPPPObzVkO1srLC3r17KxoiERHpUG5uLg4ePIiUlBQUFmr+KDR16lSRoiIiouqidfLp6RV/AEAQBKSmpuKXX37hrxc1SAZHPhHB+cnrP4Mjn3Ri2rRpGveLioqQl5cHCwsLWFtba5V8IiIi43HmzBn06dMHeXl5yM3NhbOzMx4+fAhra2u4ubkx+UREZAS0Tj79+5dnExMTuLq6Yvny5c9dCY+qT8aTGjdONkw+kfFSvf4zWPNJJ/694AQAXL16FRMnTsSsWbNEiIiIiAzBe++9h/79+yMqKgoODg74888/YW5ujpEjR5b6YYOIiGonrZNP+/fv10ccpGP/rHbHaXdkvDjtTv/8/PywePFijBw5EpcvXxY7HCIiqoHOnj2Lb775BiYmJjA1NYVcLkfDhg2xdOlShIWFYdCgQWKHSEREemby/C6aunfvjszMzFLt2dnZ6N69uy5iIh1QFVh25rQ7MmLOLDheLczMzHDv3j2xwyAiohrK3NwcJiYlXzvc3NzUC0o4ODjg9u3bYoZGRETVROuRTwcOHChVJBAACgoKcPjwYZ0ERVWX/uTLtiOTT2TEVK//dCafdOLnn3/WuK+q+bd69Wq89NJLIkVFREQ1XevWrXHy5En4+fmhS5cumD9/Ph4+fIjvvvsOzZs3Fzs8IiKqBhVOPp07d07998WLFyGTydT3FQoF4uLiULduXd1GR5WWydXuiOBkU/L6z+S0O50IDQ3VuC+RSODq6oru3btj+fLl4gRFREQ13meffYbHjx8DAD799FOMGjUKEydOhJ+fHzZu3ChydEREVB0qnHwKCAiARCKBRCIpc3qdlZUVvvrqK50GR5WnXu2OBcfJiDk9Ne1OqRRgYiIROSLDplQqxQ6BiIgMULt27dR/u7m5IS4uTsRoiIhIDBVOPiUnJ0MQBDRs2BAnTpyAq6urepuFhQXc3NxgamqqlyBJOwqlgKx81cgnJp/IeKkKjisF4HFBMRw4EpCIiIiIiKjaVTj51KBBAwD85dsQZOUXQRBK/uZqd2TMLM1MYWNhitxCBdLzCpl8qqLw8PAK912xYoUeIyEiIkOSlpaGmTNnIj4+Hvfv34eg+ofqEwqFQqTIiIioulQo+fTzzz+jd+/eMDc3L1Vw9t8GDBigk8Co8lRT7uwszWBuqvWChkS1iqO1BXIL85GRVwhf2IgdjkE7c+YMzpw5g6KiIjRt2hQA8Pfff8PU1BRt2rRR95NIOL2RiIj+MXr0aKSkpGDevHnw9PTk5wQRkRGqUPIpNDQUMpkMbm5upQrOPk0ikfCXixpAtay8ow1HeRA52Zjjbma++rqgyuvfvz/s7OywZcsWODk5AQAyMjIwZswYvPzyy5gxY4bIERIRUU105MgRHD58GAEBAWKHQkREIqlQ8unpqXacdlfzpeeW1HtyZr0nInXdM9V1QZW3fPly/Pbbb+rEEwA4OTnhk08+Qc+ePZl8IiKiMnl7e5eaakdERMaFc7JqIdW0O0cmn4g0VryjqsnOzsaDBw9KtT948EC9hDYREdG/rVy5Eh988AFu3rwpdihERCSSCo18+vLLLyt8wKlTp1Y6GNIN1ZdsJxZXJlJfB+m5TD5V1WuvvYYxY8Zg+fLl6NChAwDg+PHjmDVrFgYNGiRydEREVJM4OTlp1HbKzc1Fo0aNYG1tDXNzzX+jpqenV3d4RERUzSqUfPriiy8qdDCJRMLkUw3w6MmXbGcbS5EjIRKf6jrI4MinKouKisLMmTPx5ptvoqioZBqjmZkZxo4di2XLlokcHRER1SQrV64UOwQiIqpBKpR8Sk5O1nccpEMZ6uQTRz4Rqa4DjnyqOmtra3z99ddYtmwZrl+/DgBo1KgRbGy4iiAREWkKCwsTOwQiIqpBqlTzSRAEFg+sgdI58olITXUdMPmkO6mpqUhNTYWfnx9sbGz4OUBERGVSKpVYsmQJXnrpJbRv3x4ffPAB8vPzxQ6LiIhEUKnk04YNG9C8eXNIpVJIpVI0b94c69ev13VsVEn/TLtjwXEi1XXwiMmnKnv06BF69OiBJk2aoE+fPkhNTQUAjB07livdERFRKZ9++inmzJkDW1tb1K1bF6tWrcKkSZPEDouIiESgdfJp/vz5mDZtGvr374+YmBjExMSgf//+eO+99zB//nx9xEhaUo3wqGPL5BOR6jrgyKeqe++992Bubo6UlBRYW1ur24cOHYq4uDgRIyMioppo69at+Prrr7F3717Exsbif//7H7Zt2walUil2aEREVM0qVPPpaWvXrsW3336L4cOHq9sGDBiAli1bYsqUKVi0aJFOAyTtpedw5BORiuo6yMwrQrFCCTPTKs02Nmq//fYb9u7di3r16mm0+/n54datWyJFRURENVVKSgr69Omjvh8cHAyJRIJ79+6V+iwhIqLaTetvYUVFRWjXrl2p9rZt26K4uFgnQVHlyYsVeCwv+f9Qh8knIjhamUO10nNGXpG4wRi43NxcjRFPKunp6bC0ZI05IiLSVFxcDKlUqtFmbm6uXjGViIiMh9Yjn9566y2sXbsWK1as0Ghft24dRowYobPAqHIyn3y5NjWRwF7K1e6IzExN4GBljsy8ImTkFcLVjkmSynr55ZexdetWfPzxxwAAiUQCpVKJpUuXolu3biJHR0RENY0gCBg9erTGDxQFBQV45513NFZK3bVrlxjhERFRNdI6+QSUFBz/7bff0LFjRwDA8ePHkZKSglGjRiE8PFzd798JKtK/R0+m3DlZm8PERCJyNEQ1g7ONBTLzikquD3exozFcS5cuRY8ePXDq1CkUFhbi/fffx4ULF5Ceno6jR4+KHR4REdUwYWFhpdpGjhwpQiRERCQ2rZNPSUlJaNOmDQDg+vXrAAAXFxe4uLggKSlJ3U8iYeJDDOlc6Y6olDo2FrjxIJdFx6uoefPm+Pvvv7F69WrY2dkhJycHgwYNwqRJk+Dp6Sl2eEREVMNs2rRJ7BCIiKiG0Dr5tH//fn3EQTryKFcOgMknoqeprof0J9cHaa+oqAi9evVCVFQUPvzwQ7HDISIiIiIiA8Jln2oZ1ciOOjasa0Ok4vzkenjEkU+VZm5ujnPnzunseIcOHUL//v3h5eUFiUSC2NjY5+6zZs0a+Pv7w8rKCk2bNsXWrVtL9YmJiUGzZs0glUrRokUL7NmzR2O7IAiYP38+PD09YWVlheDgYFy9elVXp0VERERERGXQOvlUUFCAZcuWoU+fPmjXrh3atGmjcSNxZXDaHVEpqpUfM5h8qpKRI0diw4YNOjlWbm4uWrVqhTVr1lSo/9q1axEREYGPPvoIFy5cwMKFCzFp0iT873//U/c5duwYhg8fjrFjx+LMmTMIDQ1FaGioxpTwpUuX4ssvv0RUVBSOHz8OGxsbhISEoKCgQCfnRUREREREpWk97W7s2LH47bff8Prrr6NDhw6s7VTDqEZ2ODH5RKSmuh448qlqiouLsXHjRvz+++9o27atxkpFgHaLTPTu3Ru9e/eucP/vvvsOEyZMwNChQwEADRs2xMmTJ7FkyRL0798fALBq1Sr06tULs2bNAgB8/PHH2LdvH1avXo2oqCgIgoCVK1di7ty5GDhwIABg69atcHd3R2xsLIYNG1bheIiIiIiIqOK0Tj7t3r0be/bswUsvvaSPeKiK/pl2x+QTkUoddc0nJp+q4ukFJ/7++2+Nbfr+IUIul0MqlWq0WVlZ4cSJEygqKoK5uTkSEhI0VlwFgJCQEPWUvuTkZMhkMgQHB6u3Ozg4IDAwEAkJCeUmn+RyOeTyf+qFZWdn6+isiIiIiIiMg9bJp7p168LOzk4fsZAOPOK0O6JSnJl8qpIbN27A19dX1AUnQkJCsH79eoSGhqJNmzZITEzE+vXrUVRUhIcPH8LT0xMymQzu7u4a+7m7u0MmkwGA+r/P6lOWyMhILFy4UMdnRERERERkPLSu+bR8+XLMnj0bt27d0kc8VEUc+URUmjOn3VWJn58fHjx4oL4/dOhQpKWlVWsM8+bNQ+/evdGxY0eYm5tj4MCBCAsLAwCYmOh37YyIiAhkZWWpb7dv39br4xERERER1TZa/4u9Xbt2KCgoQMOGDWFnZwdnZ2eNG4lLlXxytmXyiUilju0/BccFQRA5GsPz7+dsz549yM3NrdYYrKyssHHjRuTl5eHmzZtISUmBj48P7Ozs4OrqCgDw8PAolRRLS0uDh4eHeruqrbw+ZbG0tIS9vb3GjYiIiIiIKk7raXfDhw/H3bt38dlnn8Hd3Z0Fx2sQhVJAZh6n3RH9m5N1yfVQrBSQXVAMBytzkSOiyjI3N0e9evUAANHR0ejXr5965FNQUBDi4+Mxffp0df99+/YhKCgIAODr6wsPDw/Ex8cjICAAQEn9puPHj2PixInVeh5ERERERMZE6+TTsWPHkJCQgFatWukjHqqCrPwiKJ8MUFB92SYiQGpuChsLU+QWKpCeW8jkk5YkEkmpHxqq+sNDTk4Orl27pr6fnJyMs2fPwtnZGfXr10dERATu3r2LrVu3AigpcH7ixAkEBgYiIyMDK1asQFJSErZs2aI+xrRp09ClSxcsX74cffv2RXR0NE6dOoV169apY54+fTo++eQT+Pn5wdfXF/PmzYOXlxdCQ0OrdD5ERERERFQ+rafdNWvWDPn5+fqIhaooPbdkNSZ7qRnMTfVbA4XI0KimoqquE6o4QRAwevRoDBo0CIMGDUJBQQHeeecd9X3VTRunTp1C69at0bp1awBAeHg4Wrdujfnz5wMAUlNTkZKSou6vUCiwfPlytGrVCq+++ioKCgpw7Ngx+Pj4qPt06tQJ27dvx7p169CqVSvs3LkTsbGxaN68ubrP+++/jylTpmD8+PFo3749cnJyEBcXV2olPSIiMmzp6ekYMWIE7O3t4ejoiLFjxyInJ+eZ+xQUFGDSpEmoU6cObG1tMXjwYI2p2n/99ReGDx8Ob29vWFlZwd/fH6tWrdL3qRAR1Qpaj3xavHgxZsyYgU8//RQtWrSAubnmCALWwhDPo5wnxcZtLUWOhKjmcbaxxO30fPV1QhWnKuytMnLkyCofs2vXrs+sv7V582aN+/7+/jhz5sxzjztkyBAMGTKk3O0SiQSLFi3CokWLKhwrEREZnhEjRiA1NRX79u1DUVERxowZg/Hjx2P79u3l7vPee+/hl19+QUxMDBwcHDB58mQMGjQIR48eBQAkJibCzc0N33//Pby9vXHs2DGMHz8epqammDx5cnWdGhGRQdI6+dSrVy8AQI8ePTTaBUGARCKBQqHQTWSkNXWxcdZ7IipFtQJkOle809qmTZvEDoGIiKjCLl26hLi4OJw8eRLt2rUDAHz11Vfo06cPPv/8c3h5eZXaJysrCxs2bMD27dvRvXt3ACWff/7+/vjzzz/RsWNHvP322xr7NGzYEAkJCdi1axeTT0REz6F18mn//v36iIN0IJ3FxonKpbouVNcJERER1U4JCQlwdHRUJ54AIDg4GCYmJjh+/Dhee+21UvskJiaiqKgIwcHB6rZmzZqhfv36SEhIQMeOHct8rKysLK74TURUAVonn7p06VLutqSkpCoFQ1WTrpp2x+QTUSnqkU+cdkdERFSryWQyuLm5abSZmZnB2dkZMpms3H0sLCzg6Oio0e7u7l7uPseOHcOOHTvwyy+/PDMeuVwOufyfmpPZ2dkVOAsiotqlylWpHz9+jHXr1qFDhw5cAU9kj55MJ3Ji8omoFCdOuyMiIjJoH3zwgXoF1vJuly9frpZYkpKSMHDgQCxYsAA9e/Z8Zt/IyEg4ODiob97e3tUSIxFRTaL1yCeVQ4cOYcOGDfjvf/8LLy8vDBo0CGvWrNFlbKQl1ZdqjnwiKk017e4Rk09EREQGacaMGRg9evQz+zRs2BAeHh64f/++RntxcTHS09Ph4eFR5n4eHh4oLCxEZmamxuintLS0UvtcvHgRPXr0wPjx4zF37tznxh0REYHw8HD1/ezsbCagiMjoaJV8kslk2Lx5MzZs2IDs7Gy88cYbkMvliI2NxQsvvKCvGKmCWHCcqHwsOE5ERGTYXF1d4erq+tx+QUFByMzMRGJiItq2bQsA+OOPP6BUKhEYGFjmPm3btoW5uTni4+MxePBgAMCVK1eQkpKCoKAgdb8LFy6ge/fuCAsLw6efflqhuC0tLWFpydWoici4VXjaXf/+/dG0aVOcO3cOK1euxL179/DVV1/pMzbS0sOckrnkLrb8cCP6N9V1obpOiIiIqHby9/dHr169MG7cOJw4cQJHjx7F5MmTMWzYMPVKd3fv3kWzZs1w4sQJAICDgwPGjh2L8PBw7N+/H4mJiRgzZgyCgoLUxcaTkpLQrVs39OzZE+Hh4ZDJZJDJZHjw4IFo50pEZCgqPPLp119/xdSpUzFx4kT4+fnpMyaqpAePS75Uu9ox+UT0b6rr4mGOHEqlABMTicgRERERkb5s27YNkydPRo8ePWBiYoLBgwfjyy+/VG8vKirClStXkJeXp2774osv1H3lcjlCQkLw9ddfq7fv3LkTDx48wPfff4/vv/9e3d6gQQPcvHmzWs6LiMhQVTj5dOTIEWzYsAFt27aFv78/3nrrLQwbNkyfsZEWihRKdS0bNyafiEpRjXwqUgjIzC/i9FQiIqJazNnZGdu3by93u4+PDwRB0GiTSqVYs2ZNuXVsP/roI3z00Ue6DJOIyGhUeNpdx44d8e233yI1NRUTJkxAdHQ0vLy8oFQqsW/fPjx+/FifcdJzPHqyfLypiQRO1vxSTfRvFmYmcLI2B/DPKEEiIiIiIiLSvwonn1RsbGzw9ttv48iRIzh//jxmzJiBxYsXw83NDQMGDNBHjFQBqi/TLrYWnE5EVA7V1Dsmn4iIiIiIiKqP1smnpzVt2hRLly7FnTt38MMPP+gqJqqEBzkFAFjviehZ1MmnJ9cLERERERER6V+Vkk8qpqamCA0Nxc8//6yLw1El3M8uGcnhZicVORKimkt1faiuFyIiIiIiItI/nSSfSHzqle5sOfKJqDycdkdERERERFT9RE8+rVmzBj4+PpBKpQgMDMSJEyfK7XvhwgUMHjwYPj4+kEgkWLlyZfUFWsM9yHmSfOK0O6JyqZKzquuFiIiIiIiI9E/U5NOOHTsQHh6OBQsW4PTp02jVqhVCQkJw//79Mvvn5eWhYcOGWLx4MTw8PKo52ppNPfKJySeicnHkExERERERUfUTNfm0YsUKjBs3DmPGjMELL7yAqKgoWFtbY+PGjWX2b9++PZYtW4Zhw4bB0pJJlqfdf6yq+cTnhag8quvjPpNPRERERERE1Ua05FNhYSESExMRHBz8TzAmJggODkZCQoJYYRksjnwiej6OfCIiIiIiIqp+ZmI98MOHD6FQKODu7q7R7u7ujsuXL+vsceRyOeTyf75oZmdn6+zYNYUgCEw+EVWA6vrIyi+CvFgBSzNTkSMiIiIiIiKq/UQvOK5vkZGRcHBwUN+8vb3FDknncgsVyC9SAABcuNodUbkcrMxhbioBADzMKRQ5GiIiIiIiIuMgWvLJxcUFpqamSEtL02hPS0vTaTHxiIgIZGVlqW+3b9/W2bFrivvZBQAAGwtT2FiKNpiNqMaTSCTqFe9U1w0RERERERHpl2jJJwsLC7Rt2xbx8fHqNqVSifj4eAQFBenscSwtLWFvb69xq21UU+7c7KUiR0JU87k+uU5Y94mIiIiIiKh6iDpMJjw8HGFhYWjXrh06dOiAlStXIjc3F2PGjAEAjBo1CnXr1kVkZCSAkiLlFy9eVP999+5dnD17Fra2tmjcuLFo5yG2BzlP6j1xyh3Rc6muE9V1Q0RERERERPolavJp6NChePDgAebPnw+ZTIaAgADExcWpi5CnpKTAxOSfwVn37t1D69at1fc///xzfP755+jSpQsOHDhQ3eHXGPezWWycqKJU14nquiEiIiIiIiL9Er3g+OTJk3Hr1i3I5XIcP34cgYGB6m0HDhzA5s2b1fd9fHwgCEKpmzEnnoCnRj4x+UT0XKrrhCOfxHXo0CH0798fXl5ekEgkiI2Nfe4+27ZtQ6tWrWBtbQ1PT0+8/fbbePTokXp7165dIZFISt369u2r7jN69OhS23v16qWPUyQiIiIioidETz5R1alq1zD5RPR8bqrkE2s+iSo3NxetWrXCmjVrKtT/6NGjGDVqFMaOHYsLFy4gJiYGJ06cwLhx49R9du3ahdTUVPUtKSkJpqamGDJkiMaxevXqpdHvhx9+0Om5ERERERGRJi6NVgsw+URUca5MPtUIvXv3Ru/evSvcPyEhAT4+Ppg6dSoAwNfXFxMmTMCSJUvUfZydnTX2iY6OhrW1dankk6WlpU5XVSUiIiIiomfjyKda4D6TT0QVxuSTYQoKCsLt27exZ88eCIKAtLQ07Ny5E3369Cl3nw0bNmDYsGGwsbHRaD9w4ADc3NzQtGlTTJw4UWPqHhERERER6R5HPtUC6pFPXO2O6LnUq909lkMQBEgkEpEjoop46aWXsG3bNgwdOhQFBQUoLi5G//79y522d+LECSQlJWHDhg0a7b169cKgQYPg6+uL69evY86cOejduzcSEhJgampa5rHkcjnk8n+SldnZ2bo7MSIiIiIiI8CRTwauWKFEem7JlyI3jnwiei7VyKdChRJZ+UUiR0MVdfHiRUybNg3z589HYmIi4uLicPPmTbzzzjtl9t+wYQNatGiBDh06aLQPGzYMAwYMQIsWLRAaGordu3fj5MmTz1y4IjIyEg4ODuqbt7e3Lk+NiIiIiKjWY/LJwN1/LIdSAMxMJKjDkU9EzyU1N4WTtTkAIDWrQORoqKIiIyPx0ksvYdasWWjZsiVCQkLw9ddfY+PGjUhNTdXom5ubi+joaIwdO/a5x23YsCFcXFxw7dq1cvtEREQgKytLfbt9+3aVz4eIiIiIyJhw2p2Bu5uZDwDwdJTC1ITTh4gqoq6TFTLyinA3Ix/+nvZih0MVkJeXBzMzzY8s1TQ5QRA02mNiYiCXyzFy5MjnHvfOnTt49OgRPD09y+1jaWkJS0sm94mIiIiIKosjnwzcvSfJJy8HK5EjITIcquvlXla+yJEYr5ycHJw9exZnz54FACQnJ+Ps2bNISUkBUDLaaNSoUer+/fv3x65du7B27VrcuHEDR48exdSpU9GhQwd4eXlpHHvDhg0IDQ1FnTp1Sj3mrFmz8Oeff+LmzZuIj4/HwIED0bhxY4SEhOj3hImIiIiIjBhHPhm4OxklX57rOjH5RFRRquvlbgaTT2I5deoUunXrpr4fHh4OAAgLC8PmzZuRmpqqTkQBwOjRo/H48WOsXr0aM2bMgKOjI7p3744lS5ZoHPfKlSs4cuQIfvvtt1KPaWpqinPnzmHLli3IzMyEl5cXevbsiY8//pgjm4iIiIiI9IjJJwOnGvlU15HJJ6KKUl0vqmmrVP26du1aarrc0zZv3lyqbcqUKZgyZcozj9u0adNyj2tlZYW9e/dqFScREREREVUdp90ZuLtMPhFpjcknIiIiIiKi6sPkk4FT13xi8omowlTXyz0mn4iIiIiIiPSOyScDJgiCumYNaz4RVZzqern/WI7CYqXI0RAREREREdVuTD4ZsOz8YuQWKgBw2h2RNurYWMDSzASCAMiyCsQOh4iIiIiIqFZj8smA3cnMA1DyRVpqbipyNESGQyKRqBO2quuIiIiIiIiI9IPJJwN2L7NkxAan3BFpT3XdqK4jIiIiIiIi0g8mnwzY3YySERteDkw+EWlLdd2o6qYRERERERGRfjD5ZMDuZXHkE1Fl/TPyicknIiIiIiIifWLyyYCpRmx4sdg4kdZU181dJp+IiIiIiIj0isknA6b60syV7oi0p7puOPKJiIiIiIhIv5h8MmBMPhFVXt2nRj4JgiByNERERERERLUXk08GSl6swIPHcgCs+URUGR4OUkgkgLxYiUe5hWKHQ0REREREVGsx+WSgUp8sD29lbgona3ORoyEyPBZmJnC3kwLgindERERERET6xOSTgVJNufNylEIikYgcDZFh8nJ8knxi3SciIiIiIiK9YfLJQN14mAsAaFDHRuRIiAyX6vpJfnI9ERERERERke4x+WSgrt/PAQA0drMVORIiw6W6fq49uZ6IiIiIiIhI95h8MlBX7z8GwOQTUVWorh/V9URERERERES6x+STgbrGkU9EVaa6fq7fz4VSKYgcDRERERERUe3E5JMByi4oQlq2HACTT0RV0cDZGuamEuQXKXAvi0XHiYiIiIiI9IHJJwOkGvXkbm8Je6m5yNEQGS4zUxP4upQUHb/Kuk9ERES1Rnp6OkaMGAF7e3s4Ojpi7NixyMl59md9QUEBJk2ahDp16sDW1haDBw9GWlpamX0fPXqEevXqQSKRIDMzUw9nQERUuzD5ZIA45Y5Id/6ZesfkExERUW0xYsQIXLhwAfv27cPu3btx6NAhjB8//pn7vPfee/jf//6HmJgYHDx4EPfu3cOgQYPK7Dt27Fi0bNlSH6ETEdVKTD4ZIFXyyc/NTuRIiAxf4yfX0dU0Jp+IiIhqg0uXLiEuLg7r169HYGAgOnfujK+++grR0dG4d+9emftkZWVhw4YNWLFiBbp37462bdti06ZNOHbsGP7880+NvmvXrkVmZiZmzpxZHadDRFQrMPlkgFTJp0Yc+URUZaqRT9ceMPlERERUGyQkJMDR0RHt2rVTtwUHB8PExATHjx8vc5/ExEQUFRUhODhY3dasWTPUr18fCQkJ6raLFy9i0aJF2Lp1K0xMKvZVSi6XIzs7W+NGRGRsmHwyQKpl4f2YfCKqMtV1dDXtMQSBK94REREZOplMBjc3N402MzMzODs7QyaTlbuPhYUFHB0dNdrd3d3V+8jlcgwfPhzLli1D/fr1KxxPZGQkHBwc1Ddvb2/tToiIqBZg8snA5BcqcCejZFUu1nwiqjpfFxuYSIDsgmI8yJGLHQ4RERGV44MPPoBEInnm7fLly3p7/IiICPj7+2PkyJFa75eVlaW+3b59W08REhHVXEw+GZjrD3IgCICjtTnq2FiIHQ6RwZOam8Lb2RoAcI11n6rNoUOH0L9/f3h5eUEikSA2Nva5+2zbtg2tWrWCtbU1PD098fbbb+PRo0fq7Zs3by71JUQqlWocQxAEzJ8/H56enrCyskJwcDCuXr2q69MjIiI9mDFjBi5duvTMW8OGDeHh4YH79+9r7FtcXIz09HR4eHiUeWwPDw8UFhaWWrkuLS1Nvc8ff/yBmJgYmJmZwczMDD169AAAuLi4YMGCBeXGbWlpCXt7e40bEZGxMRM7ANLO9QeqYuO2kEgkIkdDVDv4udni1qM8XHuQg06NXcQOxyjk5uaiVatWePvtt8tdSehpR48exahRo/DFF1+gf//+uHv3Lt555x2MGzcOu3btUvezt7fHlStX1Pf//T65dOlSfPnll9iyZQt8fX0xb948hISE4OLFi6USVUREVLO4urrC1dX1uf2CgoKQmZmJxMREtG3bFkBJ4kipVCIwMLDMfdq2bQtzc3PEx8dj8ODBAIArV64gJSUFQUFBAID//ve/yM/PV+9z8uRJvP322zh8+DAaNWpU1dMjIqrVmHwyMKoVuTjljkh3GrnZ4vdL9/F32mOxQzEavXv3Ru/evSvcPyEhAT4+Ppg6dSoAwNfXFxMmTMCSJUs0+kkkknJ/1RYEAStXrsTcuXMxcOBAAMDWrVvh7u6O2NhYDBs2rJJnQ0RENYm/vz969eqFcePGISoqCkVFRZg8eTKGDRsGLy8vAMDdu3fRo0cPbN26FR06dICDgwPGjh2L8PBwODs7w97eHlOmTEFQUBA6duwIAKUSTA8fPlQ/3r9rRRERkSZOuzMwf93JBAD4e3K4LpGuvPDkejp3J0vkSKg8QUFBuH37Nvbs2QNBEJCWloadO3eiT58+Gv1ycnLQoEEDeHt7Y+DAgbhw4YJ6W3JyMmQymcZKRg4ODggMDNRYyYiIiAzftm3b0KxZM/To0QN9+vRB586dsW7dOvX2oqIiXLlyBXl5eeq2L774Av369cPgwYPxyiuvwMPDQ2N0LRERVR5HPhmQYoUSp29lAADa+ziLHA1R7aG6ni7cy0auvBg2lnxrrGleeuklbNu2DUOHDkVBQQGKi4vRv39/rFmzRt2nadOm2LhxI1q2bImsrCx8/vnn6NSpEy5cuIB69eqpVytyd3fXOPbTKxmVRS6XQy7/pxg9l8gmIqr5nJ2dsX379nK3+/j4lFrlViqVYs2aNRqfLc/StWtXrpRLRFRBHPlkQC6mZiO3UAE7qRmauNuJHQ5RreHlaIW6jlZQKAWcTskQOxwqw8WLFzFt2jTMnz8fiYmJiIuLw82bN/HOO++o+wQFBWHUqFEICAhAly5dsGvXLri6uuKbb76p0mNziWwiIiIioqph8smAnEhOBwC0a+AEUxMWGyfSpfY+TgCAk0+uM6pZIiMj8dJLL2HWrFlo2bIlQkJC8PXXX2Pjxo1ITU0tcx9zc3O0bt0a165dAwB1Lai0tDSNfk+vZFQWLpFNRERERFQ1TD4ZkFM3n0y58+WUOyJdU11XJ29y5FNNlJeXBxMTzY8sU1NTACh3yoNCocD58+fh6ekJoKRIuYeHB+Lj49V9srOzcfz4cfVKRmXhEtlERERERFXDwiYGQhAEnLxZMiKjA+s9Eemc6ro6czsDhcVKWJgxN69POTk56hFJQEkx8LNnz8LZ2Rn169dHREQE7t69i61btwIA+vfvj3HjxmHt2rUICQlBamoqpk+fjg4dOqhXLlq0aBE6duyIxo0bIzMzE8uWLcOtW7fwn//8B0DJSnjTp0/HJ598Aj8/P/j6+mLevHnw8vJCaGhotT8HRERERETGgsknA3HjYS4e5RbCwswELeo5iB0OUa3T2M0WTtbmyMgrQtK9LLSp7yR2SLXaqVOn0K1bN/X98PBwAEBYWBg2b96M1NRUpKSkqLePHj0ajx8/xurVqzFjxgw4Ojqie/fuWLJkibpPRkYGxo0bB5lMBicnJ7Rt2xbHjh3DCy+8oO7z/vvvIzc3F+PHj0dmZiY6d+6MuLg4SKXSajhrIiIiIiLjJBGMbImG7OxsODg4ICsry6CmTkSfSMEHu86jg68z/m9C+dNDiKjyxm09hX0X0xDRuxkmdGkkdjgVYqjvaYaMzzkR1RZ8PxMHn3ciqi20eT/jvBIDceLJlDtVUWQi0j110fGbLDpORERERESkK0w+GQCFUsCxa48AAO1Z74lIbzr41gEAHE9OR0GRQuRoiIiIiIiIagcmnwxAwvVHkGUXwF5qho4N64gdDlGt1aKuAzwdpHhcUIz4S/fFDoeIiIiIiKhWYPLJAOxMvA0AGBDgBam5qcjRENVepiYSDGpTF8A/1x0RERERERFVDZNPNVx2QRHiLsgAAK+39RY5GqLab3CbegCAg38/wP3sApGjISIiIiIiMnxMPtVwe86loqBIicZutmhVz0HscIhqvYautmjbwAlKAfjxzF2xwyEiIiIiIjJ4TD7VcDsT7wAAXm9bDxKJRORoiIzD621LRj/tTLwDQRBEjoaIiIiIiMiwMflUgyXeSsepWxkwkQCDWtcVOxwio9G3pSek5ia4ej8HB648EDscIiIiIiIig8bkUw0lL1Zg9n/PAyipQeNmLxU5IiLjYS81x1sdGwAA5sYmIUdeLHJEREREREREhovJpxrq6/3Xce1+DlxsLfBhX3+xwyEyOu+92gT1nKxwNzMfn++9InY4REREREREBqtGJJ/WrFkDHx8fSKVSBAYG4sSJE8/sHxMTg2bNmkEqlaJFixbYs2dPNUVaPRJvpePrA9cAAB8NeBGO1hYiR0RkfKwtzPDZay0AAFsSbuLg35x+R0REREREVBmiJ5927NiB8PBwLFiwAKdPn0arVq0QEhKC+/fvl9n/2LFjGD58OMaOHYszZ84gNDQUoaGhSEpKqubI9ePnv+5h+LfHUaQQ8OoL7ujbwlPskIiM1itNXPF623oQBGDs5pP44USK2CEREREREREZHIkg8lJOgYGBaN++PVavXg0AUCqV8Pb2xpQpU/DBBx+U6j906FDk5uZi9+7d6raOHTsiICAAUVFRz3287OxsODg4ICsrC/b29ro7kSpKupuFjUeTset0ydLuwf7uWDUsADaWZiJHRmTcCooU+OC/5xB79h4AoG8LT7zd2Rdt6jvWiBUoa+p7Wm3G55yIagu+n4mDzzsR1RbavJ+JmtkoLCxEYmIiIiIi1G0mJiYIDg5GQkJCmfskJCQgPDxcoy0kJASxsbH6C1QQcPfBIxQUKat0mGKlEnnyYmTLi5GRU4hHuYW4mvYYSfeycf1BDgDACsCYTj6Y0bMpTCVyoFCugxMgosqSAvjiNT80cTbFV39cxR/nk/HH+WQ0cLZG87oO8Pe0R31na9R1soKlmWmVHsvBygwuTk5ADUhqERERERER6YqoyaeHDx9CoVDA3d1do93d3R2XL18ucx+ZTFZmf5lMVmZ/uVwOufyfBE52drb2gRbloe7XjbTfTxtPL2Z3+smNiGoECYB3Abz79HWaB+Dqk5suzbkHWNjo+KBERERERETiEb3mk75FRkbCwcFBffP29hY7JCIiIiIiIiIioyHqyCcXFxeYmpoiLS1Noz0tLQ0eHh5l7uPh4aFV/4iICI1petnZ2donoMytS0YjEBHpm7m12BEQERERERHplKjJJwsLC7Rt2xbx8fEIDQ0FUFJwPD4+HpMnTy5zn6CgIMTHx2P69Onqtn379iEoKKjM/paWlrC0tKxaoBIJp8EQEREREREREVWC6EuphYeHIywsDO3atUOHDh2wcuVK5ObmYsyYMQCAUaNGoW7duoiMjAQATJs2DV26dMHy5cvRt29fREdH49SpU1i3bp2Yp0FERERERERERGUQPfk0dOhQPHjwAPPnz4dMJkNAQADi4uLURcVTUlJgYvJPaapOnTph+/btmDt3LubMmQM/Pz/ExsaiefPmYp0CERERERERERGVQyIIgiB2ENUpOzsbDg4OyMrKgr29vdjhEBFVCd/Tqh+fcyKqLfh+Jg4+70RUW2jzflbrV7sjIiIiIiIiIiLxMPlERERERERERER6w+QT/X979x4cVX2/cfxZckXJBQ0JSY0wQYEWoQYpTBCEOiFSaSrtlNjqxABNbWuwVXrBFktAWgoOdtoyiFPaRpnSRNGE6WAaKChjoXS4RqWkUS6CnRosY1PCNST76R/82J8Lgdz2nN2TvF8zO5P95nv2PBv27EO+Z3cDAAAAAADgGBafAAAAAAAA4BgWnwAAAAAAAOAYFp8AAAAAAADgGBafAAAAAAAA4JjocAdwm5lJkk6ePBnmJADQfZeeyy49t8F59AiAnoIOCQ96BEBP0Zke6XWLT01NTZKkzMzMMCcBgNBpampSUlJSuGP0CvQIgJ6GDnEXPQKgp+lIj/isl53q8Pv9+te//qWEhAT5fL4Ob3fy5EllZmbq/fffV2JiooMJQ8uLub2YWSK3m7yYWXImt5mpqalJGRkZ6tOHd1K7gR6JfF7MLHkztxczS97MTYf0HL2pR7yYWfJmbi9mlsjtpnD3SK975VOfPn100003dXn7xMREzzy4Ps6Lub2YWSK3m7yYWQp9bs5Wu4se8Q4vZpa8mduLmSVv5qZDvK839ogXM0vezO3FzBK53RSuHuEUBwAAAAAAABzD4hMAAAAAAAAcw+JTB8XFxam0tFRxcXHhjtIpXsztxcwSud3kxcySd3MjNLz67+/F3F7MLHkztxczS97M7cXMCC0vPga8mFnyZm4vZpbI7aZwZ+51HzgOAAAAAAAA9/DKJwAAAAAAADiGxScAAAAAAAA4hsUnAAAAAAAAOIbFp49ZuXKlBg8erPj4eI0bN047d+685vx169Zp+PDhio+P18iRI1VdXe1S0mCdyb169WpNnDhR/fv3V//+/ZWbm9vu/XRCZ3/Wl1RUVMjn82n69OnOBryKzuZubGxUSUmJ0tPTFRcXp6FDh7r+OOls5l/84hcaNmyY+vbtq8zMTD3++OM6d+6cS2kveuONN5Sfn6+MjAz5fD6tX7++3W22bt2q0aNHKy4uTrfccouef/55x3N+XGczV1ZWasqUKRowYIASExOVk5OjjRs3uhMWjqFH3EOPuMdrPeLFDpHoEVzkxR7xYodI3uwRL3aIRI+4JeJ7xGBmZhUVFRYbG2u/+93v7O9//7t9/etft+TkZDt+/Hib87dv325RUVH29NNP24EDB+zJJ5+0mJgYe/vttyM69wMPPGArV660ffv2WV1dnc2cOdOSkpLsn//8Z8RmvuTIkSP2iU98wiZOnGj33XefO2E/prO5z58/b2PGjLF7773Xtm3bZkeOHLGtW7dabW1txGZeu3atxcXF2dq1a+3IkSO2ceNGS09Pt8cff9y1zGZm1dXVNn/+fKusrDRJVlVVdc35hw8ftuuuu87mzp1rBw4csBUrVlhUVJTV1NS4E9g6n/k73/mOLVu2zHbu3GnvvPOO/fCHP7SYmBjbu3evO4ERcvQIPdIeesQdXuwQM3oE3uwRL3ZIV3JfEs4e8WKHdCU3PdJ1kd4jLD79n7Fjx1pJSUngemtrq2VkZNjPfvazNucXFBTYtGnTgsbGjRtn3/jGNxzNebnO5r5cS0uLJSQk2AsvvOBUxCt0JXNLS4uNHz/efvOb31hRUVFYfmnobO5Vq1ZZVlaWNTc3uxXxCp3NXFJSYnfffXfQ2Ny5c+3OO+90NOe1dOSJ8wc/+IGNGDEiaOz++++3e+65x8FkV9eRzG351Kc+ZYsWLQp9ILiCHqFH2kOPuM+LHWJGj/RWXuwRL3aImTd7xIsdYkaPhEsk9ghvu5PU3NysPXv2KDc3NzDWp08f5ebmaseOHW1us2PHjqD5knTPPfdcdb4TupL7cmfOnNGFCxd0ww03OBUzSFczP/XUU0pNTdXXvvY1N2JeoSu5//jHPyonJ0clJSVKS0vTbbfdpiVLlqi1tTViM48fP1579uwJvBT28OHDqq6u1r333utK5q6KhOOxu/x+v5qamlw7FhFa9Ag90h56JHJ7JBKOxVCgR7zNiz3ixQ6RvNkjXuwQiR6hR4JFO3KrHnPixAm1trYqLS0taDwtLU3/+Mc/2tymoaGhzfkNDQ2O5bxcV3Jfbt68ecrIyLjiYHFKVzJv27ZNv/3tb1VbW+tCwrZ1Jffhw4f12muv6cEHH1R1dbUOHjyoRx55RBcuXFBpaWlEZn7ggQd04sQJTZgwQWamlpYWffOb39SPfvQjx/N2x9WOx5MnT+rs2bPq27dvmJJ13PLly3Xq1CkVFBSEOwq6gB6hR9pDj0Ruj/SEDpHoEa/zYo94sUMkb/aIFztEokfokWC88qkXW7p0qSoqKlRVVaX4+Phwx2lTU1OTCgsLtXr1aqWkpIQ7Tqf4/X6lpqbq17/+te644w7df//9mj9/vp577rlwR7uqrVu3asmSJXr22We1d+9eVVZW6tVXX9XixYvDHa1H+8Mf/qBFixbppZdeUmpqarjjAB1GjziLHkFH0SPwIi90iOTdHvFih0j0SLi40SO88klSSkqKoqKidPz48aDx48ePa+DAgW1uM3DgwE7Nd0JXcl+yfPlyLV26VJs3b9aoUaOcjBmks5kPHTqk9957T/n5+YExv98vSYqOjlZ9fb2GDBnibGh17Wednp6umJgYRUVFBcY++clPqqGhQc3NzYqNjY24zD/+8Y9VWFio4uJiSdLIkSN1+vRpPfzww5o/f7769InM9eqrHY+JiYkRf6ahoqJCxcXFWrdunatn/RBa9Ag90h56JHJ7xMsdItEjPYUXe8SLHSJ5s0e82CESPUKPBIu8f7kwiI2N1R133KEtW7YExvx+v7Zs2aKcnJw2t8nJyQmaL0l//vOfrzrfCV3JLUlPP/20Fi9erJqaGo0ZM8aNqAGdzTx8+HC9/fbbqq2tDVy+8IUv6LOf/axqa2uVmZkZkbkl6c4779TBgwcD5SRJ77zzjtLT0115su9K5jNnzlzxhH6psMzMubDdFAnHY1eUl5dr1qxZKi8v17Rp08IdB91Aj7iHHqFHQi0SjsWuokd6Di/2iBc7RPJmj3ixQyR6hB65jCMfY+5BFRUVFhcXZ88//7wdOHDAHn74YUtOTraGhgYzMyssLLQnnngiMH/79u0WHR1ty5cvt7q6OistLQ3bn8juTO6lS5dabGysvfzyy/bBBx8ELk1NTRGb+XLh+itFnc197NgxS0hIsDlz5lh9fb1t2LDBUlNT7Sc/+UnEZi4tLbWEhAQrLy+3w4cP26ZNm2zIkCFWUFDgWmYzs6amJtu3b5/t27fPJNnPf/5z27dvnx09etTMzJ544gkrLCwMzL/0502///3vW11dna1cudL1P2/a2cxr16616OhoW7lyZdCx2NjY6FpmhBY9Qo+0hx5xhxc7pCu56ZGex4s94sUO6Uruy4WjR7zYIV3JTY+4l9vtHmHx6WNWrFhhN998s8XGxtrYsWPtb3/7W+B7kyZNsqKioqD5L730kg0dOtRiY2NtxIgR9uqrr7qc+KLO5B40aJBJuuJSWloasZkvF65fGsw6n/uvf/2rjRs3zuLi4iwrK8t++tOfWktLS8RmvnDhgi1cuNCGDBli8fHxlpmZaY888oj95z//cTXz66+/3ubj9FLWoqIimzRp0hXb3H777RYbG2tZWVlWVlYW0ZknTZp0zfnwJnokMjNfjh5xLnMk9IgXO6QruemRnsmLPeLFDuls7suFq0e82CFm9Eik5na7R3xmEfraNQAAAAAAAHgen/kEAAAAAAAAx7D4BAAAAAAAAMew+AQAAAAAAADHsPgEAAAAAAAAx7D4BAAAAAAAAMew+AQAAAAAAADHsPgEAAAAAAAAx7D4BAAAAAAAAMew+AR8zMyZMzV9+vSw7b+wsFBLlizp0NyvfOUreuaZZxxOhMu98cYbys/PV0ZGhnw+n9avX+/o/gYPHiyfz3fFpaSkxNH9AugaegTtoUcAXAs9gvZ4tUeiHcoHRByfz3fN75eWluqXv/ylzMylRMHefPNNVVdXa9WqVR2a/+STT+quu+5ScXGxkpKSHE6HS06fPq1Pf/rTmj17tr70pS85vr9du3aptbU1cH3//v2aMmWKZsyY4fi+AQSjRxAK9AjQe9EjCAWv9ojPwvXIBlzW0NAQ+PrFF1/UggULVF9fHxjr16+f+vXrF45okqTi4mJFR0frueee6/A2n/nMZzRz5kzOXoaJz+dTVVVV0Nmp8+fPa/78+SovL1djY6Nuu+02LVu2TJMnTw7JPh977DFt2LBB7777brv/gQEQWvQIQo0eAXoXegSh5qUe4W136DUGDhwYuCQlJcnn8wWN9evX74qXuU6ePFmPPvqoHnvsMfXv319paWlavXq1Tp8+rVmzZikhIUG33HKL/vSnPwXta//+/frc5z6nfv36KS0tTYWFhTpx4sRVs7W2turll19Wfn5+0Pizzz6rW2+9VfHx8UpLS9OXv/zloO/n5+eroqKi+z8chMycOXO0Y8cOVVRU6K233tKMGTM0depUvfvuu92+7ebmZv3+97/X7Nmz+YUBCAN6BG6gR4Ceix6BGyK1R1h8AtrxwgsvKCUlRTt37tSjjz6qb33rW5oxY4bGjx+vvXv3Ki8vT4WFhTpz5owkqbGxUXfffbeys7O1e/du1dTU6Pjx4yooKLjqPt566y3997//1ZgxYwJju3fv1re//W099dRTqq+vV01Nje66666g7caOHaudO3fq/Pnzztx5dMqxY8dUVlamdevWaeLEiRoyZIi+973vacKECSorK+v27a9fv16NjY2aOXNm98MCcA09go6iRwC0hR5BR0V0jxjQC5WVlVlSUtIV40VFRXbfffcFrk+aNMkmTJgQuN7S0mLXX3+9FRYWBsY++OADk2Q7duwwM7PFixdbXl5e0O2+//77Jsnq6+vbzFNVVWVRUVHm9/sDY6+88oolJibayZMnr3o/3nzzTZNk77333jXvL5whyaqqqgLXN2zYYJLs+uuvD7pER0dbQUGBmZnV1dWZpGte5s2b1+b+8vLy7POf/7wbdw1AO+gRhAI9AvRe9AhCwUs9wgeOA+0YNWpU4OuoqCjdeOONGjlyZGAsLS1NkvThhx9KuvhBfa+//nqb79c+dOiQhg4desX42bNnFRcXF/TSxSlTpmjQoEHKysrS1KlTNXXqVH3xi1/UddddF5jTt29fSQqc5UB4nTp1SlFRUdqzZ4+ioqKCvnfp8ZCVlaW6urpr3s6NN954xdjRo0e1efNmVVZWhi4wAFfQI+goegRAW+gRdFQk9wiLT0A7YmJigq77fL6gsUtP0H6/X9LFAz4/P1/Lli274rbS09Pb3EdKSorOnDmj5uZmxcbGSpISEhK0d+9ebd26VZs2bdKCBQu0cOFC7dq1S8nJyZKkjz76SJI0YMCA7t1JhER2drZaW1v14YcfauLEiW3OiY2N1fDhwzt922VlZUpNTdW0adO6GxOAy+gRdBQ9AqAt9Ag6KpJ7hMUnIMRGjx6tV155RYMHD1Z0dMcOsdtvv12SdODAgcDXkhQdHa3c3Fzl5uaqtLRUycnJeu211wJ/UnP//v266aablJKSEuq7gas4deqUDh48GLh+5MgR1dbW6oYbbtDQoUP14IMP6qGHHtIzzzyj7Oxs/fvf/9aWLVs0atSoLj9R+/1+lZWVqaioqMOPKQDeRY/0bPQIAKfRIz2bV3uEDxwHQqykpEQfffSRvvrVr2rXrl06dOiQNm7cqFmzZqm1tbXNbQYMGKDRo0dr27ZtgbENGzboV7/6lWpra3X06FGtWbNGfr9fw4YNC8z5y1/+ory8PMfvE/7f7t27lZ2drezsbEnS3LlzlZ2drQULFki6eEbgoYce0ne/+10NGzZM06dP165du3TzzTd3eZ+bN2/WsWPHNHv27JDcBwCRjR7p2egRAE6jR3o2r/YIpz6AEMvIyND27ds1b9485eXl6fz58xo0aJCmTp2qPn2uvt5bXFysNWvWaM6cOZKk5ORkVVZWauHChTp37pxuvfVWlZeXa8SIEZKkc+fOaf369aqpqXHlfuGiyZMn6+Jn+7UtJiZGixYt0qJFi0K2z7y8vGvuE0DPQo/0bPQIAKfRIz2bV3vEZzQREBHOnj2rYcOG6cUXX1ROTk6781etWqWqqipt2rTJhXQAgEhHjwAAuoMegZN42x0QIfr27as1a9boxIkTHZofExOjFStWOJwKAOAV9AgAoDvoETiJVz4BAAAAAADAMbzyCQAAAAAAAI5h8QkAAAAAAACOYfEJAAAAAAAAjmHxCQAAAAAAAI5h8QkAAAAAAACOYfEJAAAAAAAAjmHxCQAAAAAAAI5h8QkAAAAAAACOYfEJAAAAAAAAjmHxCQAAAAAAAI75H/VEEdctqNiMAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJ8AAAGGCAYAAADVbCCFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAABjIElEQVR4nO3deXxMZ///8fdkD5LYsgixNpaKXRGllBTl1iottYZqdbFvVdVSXQS9tVTVVkvdpVG9VXu3aqnSFmmRaFH7UlHEUiTWiOT8/ujPfDtNRCbmZDLyej4e87jNNdc5533m5lw9nznnOhbDMAwBAAAAAAAAJnBzdgAAAAAAAADcvSg+AQAAAAAAwDQUnwAAAAAAAGAaik8AAAAAAAAwDcUnAAAAAAAAmIbiEwAAAAAAAExD8QkAAAAAAACmofgEAAAAAAAA01B8AgAAAAAAgGkoPgEAALiAVatWqXbt2vLx8ZHFYtGFCxdytNyBAwfUqlUrBQQEyGKxaMWKFabmBAAA+CeKTwAAAP+wZs0a9e3bVxEREXJ3d1f58uVv2TcjI0OTJ09WhQoV5OPjo5o1a+qTTz5xaJ4///xTnTt3lq+vr2bMmKH//Oc/Kly4cI6WjY6O1s6dO/XWW2/pP//5j+rXr+/QbAAAALfj4ewAAAAA+c2SJUu0dOlS1a1bV6Ghodn2HTNmjCZOnKhnnnlG9913n7744gt169ZNFotFTz75pEPybN26VRcvXtQbb7yhqKioHC939epVxcXFacyYMRowYIBDsgAAANiLK58AAAD+YcKECUpJSdGmTZtUq1atW/Y7fvy4pkyZov79+2vOnDl65pln9L///U9NmzbVyJEjlZ6efkc5Ll++LEk6ffq0JKlo0aJ2LX/mzJkcL3dzWwAAAI5G8QkAABQoGzdu1H333ScfHx9VqlRJs2fP1muvvSaLxWLtExoaKk9Pz9uu64svvlBaWppeeOEFa5vFYtHzzz+vP/74Q3FxcTnOdTPD7t271a1bNxUrVkxNmjRR8+bNFR0dLUm67777ZLFY1Lt37xytr1y5cpKkkSNHymKxWG8fvNW2JGnHjh3q3bu3KlasKB8fH4WEhOipp57Sn3/+mWXe/fv3q0ePHgoICFBgYKBeffVVGYahY8eO6dFHH5W/v79CQkI0ZcqUTBlTU1M1btw43XPPPfL29lZYWJhefPFFpaam5vh7AwAA+R+33QEAgAJj586datWqlQIDA/Xaa6/pxo0bGjdunIKDg3O1vu3bt6tw4cKqVq2aTXuDBg2sn98s6uTUE088ofDwcE2YMEGGYSg8PFxVqlTRnDlz9Prrr6tChQqqVKnSbdfTsWNHFS1aVEOHDlXXrl3Vtm1bFSlSJNttSdLatWt1+PBh9enTRyEhIfrtt980Z84c/fbbb/rpp59sinSS1KVLF1WrVk0TJ07U119/rTfffFPFixfX7Nmz1aJFC02aNEmLFy/WiBEjdN999+mBBx6Q9NdcWY888og2btyofv36qVq1atq5c6feffdd7d+/n4nRAQC4i1B8AgAABcbYsWNlGIZ+/PFHlS1bVpLUqVMn1ahRI1frO3nypIKDgzMVZEqVKiVJOnHihN3rrFWrlpYsWWLTdvz4cc2ZM0cPP/xwjicMr1mzpvz9/TV06FDVrVtXPXr0yNG2XnjhBQ0fPtymrVGjRuratas2btyopk2b2nzWoEEDzZ49W5LUr18/lS9fXsOHD1dMTIxGjRolSeratatCQ0M1f/58a/FpyZIl+vbbb/X999/bFOgiIiL03HPPafPmzWrcuHGO9hUAAORv3HYHAAAKhPT0dK1evVodOnSwFp4kqVq1amrdunWu1nn16lV5e3tnavfx8bF+bq/nnnsuV1lyI6tt+fr6Wv987do1nT17Vo0aNZIkJSQkZOr/9NNPW//s7u6u+vXryzAM9e3b19petGhRValSRYcPH7a2LVu2TNWqVVPVqlV19uxZ66tFixaSpPXr19/5DgIAgHyB4hMAAHnohx9+UPv27RUaGiqLxZKrW4s+/fRT1a5dW4UKFVK5cuX09ttvOz7oXejMmTO6evWqwsPDM31WpUqVXK3T19c3y/mJrl27Zv3cXhUqVMhVltzIalvnzp3T4MGDFRwcLF9fXwUGBlr7JScnZ+r/90KeJAUEBMjHx0clS5bM1H7+/Hnr+wMHDui3335TYGCgzaty5cqS/m+SdQAA4Pq47Q4AgDx0+fJl1apVS0899ZQ6duxo9/LffPONunfvrunTp6tVq1bas2ePnnnmGfn6+mrAgAEmJEZ2SpUqpfXr18swDJtb706ePCnpr4nL7ZWbglVuZbWtzp07a/PmzRo5cqRq166tIkWKKCMjQ23atFFGRkam/u7u7jlqk2SdV0r6a86nGjVq6J133smyb1hYWE53AwAA5HMUnwAAyEMPP/ywHn744Vt+npqaqjFjxuiTTz7RhQsXFBERoUmTJql58+aSpP/85z/q0KGD9XapihUravTo0Zo0aZL69++fae4h/J/AwED5+vrqwIEDmT7bt29frtZZu3Ztffjhh9qzZ4/uvfdea/vPP/9s/dyVnD9/XuvWrdP48eM1duxYa3tW39mdqlSpkn799Ve1bNmSv7cAANzluO0OAIB8ZMCAAYqLi1NsbKx27NihJ554Qm3atLGe/KemplrnE7rJ19dXf/zxh44ePeqMyC7D3d1drVu31ooVK5SYmGht37Nnj1avXp2rdT766KPy9PTUBx98YG0zDEOzZs1S6dKlXW7C7JtXLP39CiVJmjp1qsO31blzZx0/flxz587N9NnVq1d1+fJlh28TAAA4B1c+AQCQTyQmJmrBggVKTEy03q41YsQIrVq1SgsWLNCECRPUunVrDR06VL1799aDDz6ogwcPasqUKZL+utWrfPnyTtyD/G/8+PFatWqVmjZtqhdeeEE3btzQ9OnTVb16de3YscPab8eOHfryyy8lSQcPHlRycrLefPNNSX89Ia59+/aSpDJlymjIkCF6++23lZaWpvvuu08rVqzQjz/+qMWLF9/y9rP8yt/fXw888IAmT56stLQ0lS5dWmvWrNGRI0ccvq2ePXvq008/1XPPPaf169fr/vvvV3p6uvbu3atPP/1Uq1evzvGT/QAAQP5G8QkAgHxi586dSk9Pt064fFNqaqpKlCghSXrmmWd06NAh/etf/1JaWpr8/f01ePBgvfbaa3Jz44Lm26lZs6ZWr16tYcOGaezYsSpTpozGjx+vkydP2hSfEhIS9Oqrr9ose/N9dHS0tfgkSRMnTlSxYsU0e/ZsLVy4UOHh4fr444/VrVu3vNkpB1uyZIkGDhyoGTNmyDAMtWrVSt98802u5q/Kjpubm1asWKF3331XixYt0ueff65ChQqpYsWKGjx4cKZ/BwAAwHVZjH9eVw0AAPKExWLR559/rg4dOkiSli5dqu7du+u3337LdMVMkSJFFBISYn2fnp6upKQkBQYGat26dWrbtq1Onz6twMDAvNyFu8Zrr72m8ePHZ7rdDAAAAHeOK58AAMgn6tSpo/T0dJ0+fVpNmzbNtq+7u7tKly4tSfrkk08UGRlJ4QkAAAD5EsUnAADy0KVLl3Tw4EHr+yNHjuiXX35R8eLFVblyZXXv3l29evXSlClTVKdOHZ05c0br1q1TzZo11a5dO509e1afffaZmjdvrmvXrmnBggVatmyZvv/+eyfuFbJz6dIlXbp0Kds+gYGBds0PdfXqVSUnJ2fbp3jx4vLy8srxOgEAAMxC8QkAgDy0bds2Pfjgg9b3w4YNk/TXPEILFy7UggUL9Oabb2r48OE6fvy4SpYsqUaNGulf//qXdZmPPvpII0aMkGEYioyM1IYNG9SgQYM83xfkzL///W+NHz8+2z5Hjhyxa7L4pUuXqk+fPtn2Wb9+vZo3b57jdQIAAJiFOZ8AAABMdPjwYR0+fDjbPk2aNJGPj0+O13ny5En99ttv2fapV6+eihUrluN1AgAAmIXiEwAAAAAAAEzDM5kBAAAAAABgGuZ8coCMjAydOHFCfn5+slgszo4DANkyDEMXL15UaGio3Nz4DSKvMFYAcCWMFc7BWAHAldgzVlB8coATJ04oLCzM2TEAwC7Hjh1TmTJlnB2jwGCsAOCKGCvyFmMFAFeUk7GC4pMD+Pn5SfrrC/f393dyGgDIXkpKisLCwqzHLuQNxgoAroSxwjkYKwC4EnvGCopPDnDzklh/f38GCQAug8v58xZjBQBXxFiRtxgrALiinIwV3MANAAAAAAAA01B8AgAAAAAAgGkoPgEAAAAAAMA0zPkEIF9JT09XWlqas2O4NE9PT7m7uzs7BgAAAABIovgEIJ8wDENJSUm6cOGCs6PcFYoWLaqQkBAmigUAAADgdBSfAOQLNwtPQUFBKlSoEEWTXDIMQ1euXNHp06clSaVKlXJyIgAAAAAFHcUnAE6Xnp5uLTyVKFHC2XFcnq+vryTp9OnTCgoK4hY8AAAAAE7FhOMAnO7mHE+FChVycpK7x83vkvmzAAAAADgbxScA+Qa32jkO3yUAAACA/ILiEwAAAAAAAExD8QkA8rnevXurQ4cOzo4BAAAAALlC8QkA7kDv3r1lsVhksVjk6empChUq6MUXX9S1a9ecHQ0AAAAA8gWedgcAd6hNmzZasGCB0tLSFB8fr+joaFksFk2aNMnZ0QAAAADA6bjyCQDukLe3t0JCQhQWFqYOHTooKipKa9eulSRlZGQoJiZGFSpUkK+vr2rVqqXPPvvMumx6err69u1r/bxKlSqaNm2as3YFAAAAAByOK58A5EuGYehqWnqeb9fX0/2OnhS3a9cubd68WeXKlZMkxcTE6OOPP9asWbMUHh6uH374QT169FBgYKCaNWumjIwMlSlTRsuWLVOJEiW0efNm9evXT6VKlVLnzp0dtVsAAAAA4DQUnwDkS1fT0nXv2NV5vt3dr7dWIS/7Do1fffWVihQpohs3big1NVVubm56//33lZqaqgkTJujbb79VZGSkJKlixYrauHGjZs+erWbNmsnT01Pjx4+3rqtChQqKi4vTp59+SvEJAAAAwF2B4hMA3KEHH3xQM2fO1OXLl/Xuu+/Kw8NDnTp10m+//aYrV67ooYcesul//fp11alTx/p+xowZmj9/vhITE3X16lVdv35dtWvXzuO9AAAAAABzUHwCkC/5erpr9+utnbJdexUuXFj33HOPJGn+/PmqVauW5s2bp4iICEnS119/rdKlS9ss4+3tLUmKjY3ViBEjNGXKFEVGRsrPz09vv/22fv755zvcEwAAAADIHyg+AciXLBaL3be/5Qdubm56+eWXNWzYMO3fv1/e3t5KTExUs2bNsuy/adMmNW7cWC+88IK17dChQ3kVFwAAAABMx9PuAMDBnnjiCbm7u2v27NkaMWKEhg4dqo8++kiHDh1SQkKCpk+fro8++kiSFB4erm3btmn16tXav3+/Xn31VW3dutXJewAAAAAAjuN6lxUAQD7n4eGhAQMGaPLkyTpy5IgCAwMVExOjw4cPq2jRoqpbt65efvllSdKzzz6r7du3q0uXLrJYLOratateeOEFffPNN07eCwAAAABwDIthGIazQ7i6lJQUBQQEKDk5Wf7+/s6OA7ica9eu6ciRI6pQoYJ8fHycHeeukN13yjHLOfjeAbgSjlnOwfcOwJXYc8zitjsAAAAAAACYhuITAAAAAAAATEPxCQAAAAAAAKah+AQAAAAAAADTUHwCABRYEydOlMVi0ZAhQ7LtN3XqVFWpUkW+vr4KCwvT0KFDde3atbwJCQAAALg4D2cHAADAGbZu3arZs2erZs2a2fZbsmSJXnrpJc2fP1+NGzfW/v371bt3b1ksFr3zzjt5lBYAAABwXVz5BAAocC5duqTu3btr7ty5KlasWLZ9N2/erPvvv1/dunVT+fLl1apVK3Xt2lVbtmzJo7QAAACAa6P4BAAocPr376927dopKirqtn0bN26s+Ph4a7Hp8OHDWrlypdq2bWt2TAAAAOCuwG13AIACJTY2VgkJCdq6dWuO+nfr1k1nz55VkyZNZBiGbty4oeeee04vv/xytsulpqYqNTXV+j4lJeWOcgMAAACuiiufAAAFxrFjxzR48GAtXrxYPj4+OVpmw4YNmjBhgj744AMlJCRo+fLl+vrrr/XGG29ku1xMTIwCAgKsr7CwMEfsAgAAAOByLIZhGM4O4epSUlIUEBCg5ORk+fv7OzsO4HKuXbumI0eOqEKFCjkuCOQXvXv31oULF7RixQpnR7GR3XdakI9ZK1as0GOPPSZ3d3drW3p6uiwWi9zc3JSammrzmSQ1bdpUjRo10ttvv21t+/jjj9WvXz9dunRJbm5Z/46T1ZVPYWFhBfJ7B+B6CvJY4Ux87wBciT3HLG67AwAUGC1bttTOnTtt2vr06aOqVatq1KhRmQpPknTlypVMBaab/bL7/cbb21ve3t4OSA0AAAC4Npe77W7GjBkqX768fHx81LBhw9s+bWjZsmWqWrWqfHx8VKNGDa1cufKWfZ977jlZLBZNnTrVwakBFATNmzfXwIEDNWTIEBUrVkzBwcGaO3euLl++rD59+sjPz0/33HOPvvnmG+sy6enp6tu3rypUqCBfX19VqVJF06ZNs1nvjRs3NGjQIBUtWlQlSpTQqFGjFB0drQ4dOuTxHro+Pz8/RURE2LwKFy6sEiVKKCIiQpLUq1cvjR492rpM+/btNXPmTMXGxurIkSNau3atXn31VbVv3z7LYhUAwDVwXgEAecelik9Lly7VsGHDNG7cOCUkJKhWrVpq3bq1Tp8+nWX/zZs3q2vXrurbt6+2b9+uDh06qEOHDtq1a1emvp9//rl++uknhYaGmr0bAHLCMKTrl/P+dYd3In/00UcqWbKktmzZooEDB+r555/XE088ocaNGyshIUGtWrVSz549deXKFUlSRkaGypQpo2XLlmn37t0aO3asXn75ZX366afWdU6aNEmLFy/WggULtGnTJqWkpOS72/zuJomJiTp58qT1/SuvvKLhw4frlVde0b333qu+ffuqdevWmj17thNTAgDuBOcVAJC3XGrOp4YNG+q+++7T+++/L+mvk7awsDANHDhQL730Uqb+Xbp00eXLl/XVV19Z2xo1aqTatWtr1qxZ1rbjx4+rYcOGWr16tdq1a6chQ4ZoyJAhOc7FvdnAnclyfqLrl6UJTviPtpdPSF6Fc9z973M+NW/eXOnp6frxxx8l/XVVU0BAgDp27KhFixZJkpKSklSqVCnFxcWpUaNGWa5zwIABSkpK0meffSZJCgkJ0YgRIzRixAjreitWrKg6dercsgjFnE/5D987AFdytx+zOK8AgDtnzzHLZa58un79uuLj4xUVFWVtc3NzU1RUlOLi4rJcJi4uzqa/JLVu3dqmf0ZGhnr27KmRI0eqevXq5oQHUGDUrFnT+md3d3eVKFFCNWrUsLYFBwdLks0vqzNmzFC9evUUGBioIkWKaM6cOUpMTJQkJScn69SpU2rQoIHNeuvVq2f2rgAAcFfivAIA8p7LTDh+9uxZpaenW0/cbgoODtbevXuzXCYpKSnL/klJSdb3kyZNkoeHhwYNGpTjLFk9wQiAg3kW+usqJGds904W9/S0eW+xWGzaLBaLpL/+A1WSYmNjNWLECE2ZMkWRkZHy8/PT22+/rZ9//vmOcgAAgKxxXgEAec9lik9miI+P17Rp05SQkGA9IcyJmJgYjR8/3sRkAGSx2HX7m6vatGmTGjdurBdeeMHadujQIeufAwICFBwcrK1bt+qBBx6Q9NdtdwkJCapdu3ZexwUAAFngvAIAsucyt92VLFlS7u7uOnXqlE37qVOnFBISkuUyISEh2fb/8ccfdfr0aZUtW1YeHh7y8PDQ0aNHNXz4cJUvX/6WWUaPHq3k5GTr69ixY3e2cwAKrPDwcG3btk2rV6/W/v379eqrr2rr1q02fQYOHKiYmBh98cUX2rdvnwYPHqzz58/b9R+3AADgL5xXAEDec5nik5eXl+rVq6d169ZZ2zIyMrRu3TpFRkZmuUxkZKRNf0lau3attX/Pnj21Y8cO/fLLL9ZXaGioRo4cqdWrV98yi7e3t/z9/W1eAJAbzz77rDp27KguXbqoYcOG+vPPP22ugpKkUaNGqWvXrurVq5ciIyNVpEgRtW7dOtNE4gAA4PY4rwCAvOdSt90NGzZM0dHRql+/vho0aKCpU6fq8uXL6tOnjySpV69eKl26tGJiYiRJgwcPVrNmzTRlyhS1a9dOsbGx2rZtm+bMmSNJKlGihEqUKGGzDU9PT4WEhKhKlSp5u3MAXNLChQutf96wYUOmz3///fdMbX9/yKi3t7cWLFigBQsW2PS5eRyTJA8PD02fPl3Tp0+X9Nd/IFerVk2dO3e+s/AAABRQnFcAQN5yqeJTly5ddObMGY0dO1ZJSUmqXbu2Vq1aZZ38LzExUW5u/3cxV+PGjbVkyRK98sorevnllxUeHq4VK1YoIiLCWbsAAHY7evSo1qxZo2bNmik1NVXvv/++jhw5om7dujk7GgAALonzCgDIWxbj7z/BI1dSUlIUEBCg5ORkLpUFcuHatWs6cuSIKlSowK1kWTh27JiefPJJ7dq1S4ZhKCIiQhMnTrROQJ6V7L5TjlnOwfcOwJVwzHIOvncArsSeY5ZLXfkEAAVRWFiYNm3a5OwYAAAAAJArLjPhOAAAAAAAAFwPxScAAAAAAACYhuITgHwjIyPD2RHuGnyXAAAAAPIL5nwC4HReXl5yc3PTiRMnFBgYKC8vL1ksFmfHckmGYej69es6c+aM3Nzc5OXl5exIAAAAAAo4ik8AnM7NzU0VKlTQyZMndeLECWfHuSsUKlRIZcuWtXlMNAAAAAA4A8UnAPmCl5eXypYtqxs3big9Pd3ZcVyau7u7PDw8uHoMAAAAQL5A8QlAvmGxWOTp6SlPT09nRwEAAAAAOAj3YwAAAAAAAMA0FJ8AAAAAAABgGopPAAAAAAAAMA3FJwAAAAAAAJiG4hMAAAAAAABMQ/EJAAAAAAAApqH4BAAAAAAAANNQfAIAAAAAAIBpKD4BAAAAAADANBSfAAAAAAAAYBqKTwAAAAAAADANxScAAAAAAACYhuITAAAAAAAATEPxCQAAAAAAAKah+AQAAAAAAADTUHwCAAAAAACAaSg+AQAAAAAAwDQUnwAAAAAAAGAaik8AAAAAAAAwDcUnAAAAAAAAmIbiEwAAAAAAAExD8QkAAAAAAACmofgEAAAAAAAA01B8AgAAAAAAgGkoPgEAAAAAAMA0FJ8AAAAAAABgGopPAAAAAAAAMA3FJwAAAAAAAJiG4hMAAAAAAABMQ/EJAAAAAAAApqH4BAAAAAAAANNQfAIAAAAAAIBpKD4BAAAAAADANBSfAAAAAAAAYBqKTwCAAm3ixImyWCwaMmTILfs0b95cFosl06tdu3Z5FxQAAABwUR72dN6zZ49iY2P1448/6ujRo7py5YoCAwNVp04dtW7dWp06dZK3t7dZWQEAcKitW7dq9uzZqlmzZrb9li9fruvXr1vf//nnn6pVq5aeeOIJsyMCAAAALi9HVz4lJCQoKipKderU0caNG9WwYUMNGTJEb7zxhnr06CHDMDRmzBiFhoZq0qRJSk1NNTs3AAB35NKlS+revbvmzp2rYsWKZdu3ePHiCgkJsb7Wrl2rQoUKUXwCAAAAciBHxadOnTqpY8eOSkpK0rp16xQTE6OBAwfq6aef1osvvqhFixbpyJEj+uqrr7R9+3ZNmTLFtMAzZsxQ+fLl5ePjo4YNG2rLli3Z9l+2bJmqVq0qHx8f1ahRQytXrrR+lpaWplGjRqlGjRoqXLiwQkND1atXL504ccK0/ACA/KF///5q166doqKi7F523rx5evLJJ1W4cOFb9klNTVVKSorNCwCQf3BeAQB5J0fFp/379+uFF15Q0aJFs+0XGRmp2NhYjRw50hHZMlm6dKmGDRumcePGKSEhQbVq1VLr1q11+vTpLPtv3rxZXbt2Vd++fbV9+3Z16NBBHTp00K5duyRJV65cUUJCgl599VUlJCRo+fLl2rdvnx555BFT8gMA8ofY2FglJCQoJibG7mW3bNmiXbt26emnn862X0xMjAICAqyvsLCw3MYFADgY5xUAkLcshmEYzg6RUw0bNtR9992n999/X5KUkZGhsLAwDRw4UC+99FKm/l26dNHly5f11VdfWdsaNWqk2rVra9asWVluY+vWrWrQoIGOHj2qsmXL5ihXSkqKAgIClJycLH9//1zsGQDknYJ+zDp27Jjq16+vtWvXWud6at68uWrXrq2pU6fedvlnn31WcXFx2rFjR7b9UlNTbW5DT0lJUVhYWIH93gG4lrt9rOC8AgDunD3HLIc97W7btm364YcfHLW6TK5fv674+Hib2yPc3NwUFRWluLi4LJeJi4vLdDtF69atb9lfkpKTk2WxWLK9yotbKQDAdcXHx+v06dOqW7euPDw85OHhoe+//17vvfeePDw8lJ6efstlL1++rNjYWPXt2/e22/H29pa/v7/NCwDgfJxXAEDec1jxqWfPnnrwwQcdtbpMzp49q/T0dAUHB9u0BwcHKykpKctlkpKS7Op/7do1jRo1Sl27ds32JIFbKQDAdbVs2VI7d+7UL7/8Yn3Vr19f3bt31y+//CJ3d/dbLrts2TKlpqaqR48eeZgYAOBInFcAQN5zWPFp3bp1Onz4sKNWl+fS0tLUuXNnGYahmTNnZtt39OjRSk5Otr6OHTuWRykBAHfKz89PERERNq/ChQurRIkSioiIkCT16tVLo0ePzrTsvHnz1KFDB5UoUSKvYwMAXATnFQCQmYejVhQaGuqoVWWpZMmScnd316lTp2zaT506pZCQkCyXCQkJyVH/mwPE0aNH9d1339321ghvb295e3vnYi8AAK4gMTFRbm62v8/s27dPGzdu1Jo1a5yUCgDgCJxXAEDey/WVT6dPn9auXbu0Y8cOm5dZvLy8VK9ePa1bt87alpGRoXXr1ikyMjLLZSIjI236S9LatWtt+t8cIA4cOKBvv/2WX7MBoADasGGDzWTjGzZs0MKFC236VKlSRYZh6KGHHsrbcAAAh+K8AgDynt1XPsXHxys6Olp79uzRzQflWSwWGYYhi8WS7UStd2rYsGGKjo5W/fr11aBBA02dOlWXL19Wnz59JP11m0Tp0qWtj84ePHiwmjVrpilTpqhdu3aKjY3Vtm3bNGfOHEl/DRCPP/64EhIS9NVXXyk9Pd1633bx4sXl5eVl2r4AAAAAcA7OKwAgb9ldfHrqqadUuXJlzZs3T8HBwbJYLGbkylKXLl105swZjR07VklJSapdu7ZWrVplnfzvn7dJNG7cWEuWLNErr7yil19+WeHh4VqxYoV1To/jx4/ryy+/lCTVrl3bZlvr169X8+bN82S/AADZO3LkiH788UcdPXpUV65cUWBgoOrUqaPIyEj5+Pg4Ox4AwMVwXgEAecti3Lx8KYf8/Py0fft23XPPPWZlcjkpKSkKCAhQcnIyj9IGkO+50jFr8eLFmjZtmrZt26bg4GCFhobK19dX586d06FDh+Tj46Pu3btr1KhRKleunLPjZsuVvncA4JjlHHzvAFyJPccsu698atmypX799VeKTwAAU9WpU0deXl7q3bu3/vvf/2Z6/HRqaqri4uIUGxur+vXr64MPPtATTzzhpLQAAAAAbsXu4tOHH36o6Oho7dq1SxEREfL09LT5/JFHHnFYOABAwTVx4kS1bt36lp97e3urefPmat68ud566y39/vvveRcOAAAAQI7ZXXyKi4vTpk2b9M0332T6zOwJxwEABUd2had/KlGiBE8VAgAAAPIpt9t3sTVw4ED16NFDJ0+eVEZGhs2LwhMAwAwtWrTQ+PHjM7WfP39eLVq0cEIiAAAAADll95VPf/75p4YOHWp9EgQAAGbbsGGDdu7cqe3bt2vx4sUqXLiwJOn69ev6/vvvnZwOAAAAQHbsvvKpY8eOWr9+vRlZAAC4pW+//VZJSUlq1KgR8zsBAAAALsTuK58qV66s0aNHa+PGjapRo0amCccHDRrksHAAANxUqlQpff/99+rTp4/uu+8+LVu2TNWqVXN2LAAAAAC3kaun3RUpUkTff/99plsdLBYLxScAgMNZLBZJfz3hbsmSJXrzzTfVpk0bjRo1ysnJAAAAANyOXcUnwzC0YcMGBQUFydfX16xMAADYMAzD5v0rr7yiatWqKTo62kmJAAAAAOSU3cWn8PBw/fbbbwoPDzcrEwAANo4cOaKSJUvatHXq1ElVqlRRfHy8k1IBAAAAyAm7ik9ubm4KDw/Xn3/+SfEJAJBnypUrl2V7RESEIiIi8jgNAOBOZWRk6Pvvv9ePP/6oo0eP6sqVKwoMDFSdOnUUFRWlsLAwZ0cEADiQ3XM+TZw4USNHjtTMmTP5D34AgKk6duyYo37Lly83OQkAwBGuXr2qKVOmaObMmTp37pxq166t0NBQ+fr66uDBg1qxYoWeeeYZtWrVSmPHjlWjRo2cHRkA4AB2F5969eqlK1euqFatWvLy8so099O5c+ccFg4AULAFBATYvF+yZInat28vPz8/JyUCANyJypUrKzIyUnPnztVDDz2U6cnZknT06FEtWbJETz75pMaMGaNnnnnGCUkBAI5kMf45i+ttfPTRR9l+XhAnf01JSVFAQICSk5Pl7+/v7DgAkC1XPmb5+fnp119/VcWKFZ0dxW6u/L0DKHjMOmbt2bNH1apVy1HftLQ0JSYmqlKlSg7bfn7HWAHAldhzzLL7yqeCWFwCAAAAcOdyWniSJE9PzwJVeAKAu5ndxSdJSk9P14oVK7Rnzx5JUvXq1fXII4/I3d3doeEAAAAA3D127NiR4741a9Y0MQkAIC/ZXXw6ePCg2rZtq+PHj6tKlSqSpJiYGIWFhenrr7/m1wkAAAAAWapdu7YsFosMw5DFYsm2b3p6eh6lAgCYze7i06BBg1SpUiX99NNPKl68uCTpzz//VI8ePTRo0CB9/fXXDg8JACiYvvzyS5v3GRkZWrdunXbt2mXT/sgjj+RlLABALh05csT65+3bt2vEiBEaOXKkIiMjJUlxcXGaMmWKJk+e7KyIAAAT2D3heOHChfXTTz+pRo0aNu2//vqr7r//fl26dMmhAV0BEwMCcCWudMxyc3O7bR+LxeISv4670vcOAHlxzGrQoIFee+01tW3b1qZ95cqVevXVVxUfH2/KdvMzxgoArsTUCce9vb118eLFTO2XLl2Sl5eXvasDAOCWMjIynB0BAGCSnTt3qkKFCpnaK1SooN27dzshEQDALLf/Sfkf/vWvf6lfv376+eefZRiGDMPQTz/9pOeee47bHgAAAADkSLVq1RQTE6Pr169b265fv66YmBi7nooHAMj/7L7y6b333lN0dLQiIyPl6ekpSbpx44YeeeQRTZs2zeEBAQAF008//aRGjRrlqO+VK1d05MgRVa9e3eRUAABHmTVrltq3b68yZcpYn2y3Y8cOWSwW/e9//3NyOgCAI9ldfCpatKi++OILHThwQHv37pX0168W99xzj8PDAQAKrp49e6pixYp6+umn1bZtWxUuXDhTn927d+vjjz/WggULNGnSJIpPAOBCGjRooMOHD2vx4sXW84ouXbqoW7duWR7zAQCuy+7i003h4eEKDw93ZBYAAKx2796tmTNn6pVXXlG3bt1UuXJlhYaGysfHR+fPn9fevXt16dIlPfbYY1qzZk2mB2EAAPK/woULq1+/fs6OAQAwmd3Fp/T0dC1cuFDr1q3T6dOnM00G+9133zksHACg4PL09NSgQYM0aNAgbdu2TRs3btTRo0d19epV1apVS0OHDtWDDz6o4sWLOzsqAOAO7N69W4mJiTZzP0liPlkAuIvYXXwaPHiwFi5cqHbt2ikiIkIWi8WMXAAAWNWvX1/169d3dgwAgAMdPnxYjz32mHbu3CmLxSLDMCTJen6Rnp7uzHgAAAeyu/gUGxurTz/9VG3btjUjDwAAAIACYPDgwapQoYLWrVunChUqaMuWLfrzzz81fPhw/fvf/3Z2PACAA9ldfPLy8mJycQAAAAB3JC4uTt99951KliwpNzc3ubm5qUmTJoqJidGgQYO0fft2Z0cEADiIm70LDB8+XNOmTbNeFgsAAAAA9kpPT5efn58kqWTJkjpx4oQkqVy5ctq3b58zowEAHMzuK582btyo9evX65tvvlH16tXl6elp8/ny5csdFg4AAADA3SkiIkK//vqrKlSooIYNG2ry5Mny8vLSnDlzVLFiRWfHAwA4kN3Fp6JFi+qxxx4zIwsAAFk6fPgwJyIAcJd55ZVXdPnyZUnS66+/rn/9619q2rSpSpQooaVLlzo5HQDAkewuPi1YsMCMHAAA3NI999yjZs2aqW/fvnr88cfl4+Pj7EgAgDvUunVr65/vuece7d27V+fOnVOxYsV4ojYA3GXsnvMJAIC8lpCQoJo1a2rYsGEKCQnRs88+qy1btjg7FgAgl9LS0uTh4aFdu3bZtBcvXpzCEwDchXJUfGrTpo1++umn2/a7ePGiJk2apBkzZtxxMAAAbqpdu7amTZumEydOaP78+Tp58qSaNGmiiIgIvfPOOzpz5oyzIwIA7ODp6amyZcsqPT3d2VEAAHkgR8WnJ554Qp06ddK9996rUaNGadmyZdq0aZPi4+P17bff6r333lPnzp1VqlQpJSQkqH379mbnBgAUQB4eHurYsaOWLVumSZMm6eDBgxoxYoTCwsLUq1cvnTx50tkRAQA5NGbMGL388ss6d+6cs6MAAEyWozmf+vbtqx49emjZsmVaunSp5syZo+TkZEmSxWLRvffeq9atW2vr1q2qVq2aqYEBAAXXtm3bNH/+fMXGxqpw4cIaMWKE+vbtqz/++EPjx4/Xo48+yu14AOAi3n//fR08eFChoaEqV66cChcubPN5QkKCk5IBABwtxxOOe3t7q0ePHurRo4ckKTk5WVevXlWJEiXk6elpWkAAAN555x0tWLBA+/btU9u2bbVo0SK1bdtWbm5/XcBboUIFLVy4UOXLl3duUABAjnXo0MHZEQAAecTup93dFBAQoICAAEdmAQAgSzNnztRTTz2l3r17q1SpUln2CQoK0rx58/I4GQAgt8aNG+fsCACAPJLr4hMAAHnlwIEDt+3j5eWl6OjoPEgDAMgtwzB4mh0AFEA5mnAcAABnWrBggZYtW5apfdmyZfroo4+ckAgAkBvVq1dXbGysrl+/nm2/AwcO6Pnnn9fEiRPzKBkAwExc+QQAyPdiYmI0e/bsTO1BQUHq168fVzwBgIuYPn26Ro0apRdeeEEPPfSQ6tevr9DQUPn4+Oj8+fPavXu3Nm7cqN9++00DBgzQ888/7+zIAAAHoPgEAMj3EhMTVaFChUzt5cqVU2JiohMSAQByo2XLltq2bZs2btyopUuXavHixTp69KiuXr2qkiVLqk6dOurVq5e6d++uYsWKOTsuAMBBclV8unDhgj777DMdOnRII0eOVPHixZWQkKDg4GCVLl3a0RkBAAVcUFCQduzYkelpdr/++qtKlCjhnFAAgFxr0qSJmjRp4uwYAIA8YnfxaceOHYqKilJAQIB+//13PfPMMypevLiWL1+uxMRELVq0yIycAIACrGvXrho0aJD8/Pz0wAMPSJK+//57DR48WE8++aST0wEAAADIjt0Tjg8bNky9e/fWgQMH5OPjY21v27atfvjhB4eGy8qMGTNUvnx5+fj4qGHDhtqyZUu2/ZctW6aqVavKx8dHNWrU0MqVK20+NwxDY8eOValSpeTr66uoqKgcPVUJAJB33njjDTVs2FAtW7aUr6+vfH191apVK7Vo0UITJkxwdjwAgAvivAIA8o7dxaetW7fq2WefzdReunRpJSUlOSTUrSxdulTDhg3TuHHjlJCQoFq1aql169Y6ffp0lv03b96srl27qm/fvtq+fbs6dOigDh06aNeuXdY+kydP1nvvvadZs2bp559/VuHChdW6dWtdu3bN1H0BAOScl5eXli5dqr1792rx4sVavny5Dh06pPnz58vLy8vZ8QAALobzCgDIY4adAgMDjYSEBMMwDKNIkSLGoUOHDMMwjDVr1hhlypSxd3V2adCggdG/f3/r+/T0dCM0NNSIiYnJsn/nzp2Ndu3a2bQ1bNjQePbZZw3DMIyMjAwjJCTEePvtt62fX7hwwfD29jY++eSTHOdKTk42JBnJycn27A4AOAXHrP8TExNjSDIGDx6cbb/z588bL7zwghESEmJ4eXkZ4eHhxtdff23XtvjeAbiSu/2YxXkFANw5e45Zds/59Mgjj+j111/Xp59+KkmyWCxKTEzUqFGj1KlTJ8dVxf7h+vXrio+P1+jRo61tbm5uioqKUlxcXJbLxMXFadiwYTZtrVu31ooVKyRJR44cUVJSkqKioqyfBwQEqGHDhoqLizNtHhEjI0NXr1w0Zd0ACh7fQn6yuNl9IatLSU9P18KFC7Vu3TqdPn1aGRkZNp9/9913dq9z69atmj17tmrWrJltv+vXr+uhhx5SUFCQPvvsM5UuXVpHjx5V0aJF7d6mPQzD0NW0dFO3AaDg8PV0l8VicXaMfOGuOq9grADgQGaOFXYXn6ZMmaLHH39cQUFBunr1qpo1a6akpCRFRkbqrbfeMiOjJOns2bNKT09XcHCwTXtwcLD27t2b5TJJSUlZ9r95e+DN/82uT1ZSU1OVmppqfZ+SkpLzHZF09cpFFfp3WbuWAYBbuTIiUYWKBDg7hqkGDx6shQsXql27doqIiLjjQfHSpUvq3r275s6dqzfffDPbvvPnz9e5c+e0efNmeXp6SlKmp+6Z4Wpauu4du9r07QAoGHa/3lqFvHL1oGtTHTp0SAsWLNChQ4c0bdo0BQUF6ZtvvlHZsmVVvXp1U7Z5V51XMFYAcCAzxwq71xoQEKC1a9dq48aN2rFjhy5duqS6devaVPnvdjExMRo/fryzYwBAgREbG6tPP/1Ubdu2dcj6+vfvr3bt2ikqKuq2xacvv/xSkZGR6t+/v7744gsFBgaqW7duGjVqlNzd3W+53J2eUADA3e7777/Xww8/rPvvv18//PCD3nrrLQUFBenXX3/VvHnz9Nlnnzk7ouk4rwBQUOS6pNWkSRM1adLEkVmyVbJkSbm7u+vUqVM27adOnVJISEiWy4SEhGTb/+b/njp1SqVKlbLpU7t27VtmGT16tM1ltykpKQoLC8vxvvgW8tOVEYk57g8A2fEt5OfsCKbz8vLSPffc45B1xcbGKiEhQVu3bs1R/8OHD+u7775T9+7dtXLlSh08eFAvvPCC0tLSNG7cuFsud6cnFL6e7tr9eutcLw8Af+freetiubO89NJLevPNNzVs2DD5+f3fWNaiRQu9//77pm33rjqvYKwA4EBmjhU5Kj699957OV7hoEGDch0mO15eXqpXr57WrVunDh06SJIyMjK0bt06DRgwIMtlIiMjtW7dOg0ZMsTatnbtWkVGRkqSKlSooJCQEK1bt846KKSkpOjnn3/W888/f8ss3t7e8vb2zvW+WNzc7vpbZADAkYYPH65p06bp/fffv6Nb7o4dO6bBgwdr7dq18vHxydEyGRkZCgoK0pw5c+Tu7q569erp+PHjevvtt7MtPt3pCYXFYsmXt8gAgKPs3LlTS5YsydQeFBSks2fPmrbdu+q8grECgIvI0ZHq3XfftXl/5swZXblyxTrZ6oULF1SoUCEFBQWZVnySpGHDhik6Olr169dXgwYNNHXqVF2+fFl9+vSRJPXq1UulS5dWTEyMpL/mCGnWrJmmTJmidu3aKTY2Vtu2bdOcOXMk/XWwHjJkiN58802Fh4erQoUKevXVVxUaGmodiAAAzrdx40atX79e33zzjapXr26de+mm5cuX52g98fHxOn36tOrWrWttS09P1w8//KD3339fqampmW6lK1WqlDw9PW3aq1WrpqSkJF2/fl1eXl5ZbutOTygA4G5XtGhRnTx5UhUqVLBp3759u0qXLm3qtjmvAIC8laPi05EjR6x/XrJkiT744APNmzdPVapUkSTt27dPzzzzjJ599llzUv5/Xbp00ZkzZzR27FglJSWpdu3aWrVqlXViv8TERLn97YlPjRs31pIlS/TKK6/o5ZdfVnh4uFasWKGIiAhrnxdffFGXL19Wv379dOHCBTVp0kSrVq3K8S/iAADzFS1aVI899tgdr6dly5bauXOnTVufPn1UtWrVW87hdP/992vJkiXKyMiwjjH79+9XqVKlbll4AgDc3pNPPqlRo0Zp2bJlslgsysjI0KZNmzRixAj16tXL1G1zXgEAectiGIZhzwKVKlXSZ599pjp16ti0x8fH6/HHH7cpVBUUKSkpCggIUHJysvz9/Z0dBwCyxTHLVvPmzVW7dm1NnTpVUuZfu48dO6bq1asrOjpaAwcO1IEDB/TUU09p0KBBGjNmTI63w/cOwJXkxTHr+vXr6t+/vxYuXKj09HR5eHgoPT1d3bp108KFC7N9qMPdirECgCux55hl9w3CJ0+e1I0bNzK1p6enZ5qEDwAAR7lx44Y2bNigQ4cOqVu3bvLz89OJEyfk7++vIkWKOGw7//y1OywsTKtXr9bQoUNVs2ZNlS5dWoMHD9aoUaMctk0AKIi8vLw0d+5cjR07Vjt37tSlS5dUp04dhYeHOzsaAMDB7C4+tWzZUs8++6w+/PBD65wZ8fHxev755xUVFeXwgAAAHD16VG3atFFiYqJSU1P10EMPyc/PT5MmTVJqaqpmzZqV63Vv2LAh2/fSXxPN/vTTT7neBgDg1sLCwhQWFqb09HTt3LlT58+fV7FixZwdCwDgQG6372Jr/vz5CgkJUf369a2TqTZo0EDBwcH68MMPzcgIACjgBg8erPr16+v8+fPy9fW1tj/22GNat26dE5MBAHJryJAhmjdvnqS/7qJo1qyZ6tatq7CwsCx/CAAAuC67r3wKDAzUypUrtX//fu3du1eSVLVqVVWuXNnh4QAAkKQff/xRmzdvzjTBd/ny5XX8+HEnpQIA3InPPvtMPXr0kCT973//0+HDh7V371795z//0ZgxY7Rp0yYnJwQAOIrdxaebKleuTMEJAJAnMjIylJ6enqn9jz/+kJ+fnxMSAQDu1NmzZxUSEiJJWrlypTp37qzKlSvrqaee0rRp05ycDgDgSHYXn5566qlsP58/f36uwwAAkJVWrVpp6tSpmjNnjiTJYrHo0qVLGjdunNq2bevkdACA3AgODtbu3btVqlQprVq1SjNnzpQkXblypUA+6Q4A7mZ2F5/Onz9v8z4tLU27du3ShQsX1KJFC4cFAwDgpilTpqh169a69957de3aNXXr1k0HDhxQyZIl9cknnzg7HgAgF/r06aPOnTurVKlSslgs1ocX/fzzz6pataqT0wEAHMnu4tPnn3+eqS0jI0PPP/+8KlWq5JBQAAD8XZkyZfTrr78qNjZWO3bs0KVLl9S3b191797dZgJyAIDreO211xQREaFjx47piSeekLe3tyTJ3d1dL730kpPTAQAcyWIYhuGIFe3bt0/NmzfXyZMnHbE6l5KSkqKAgAAlJyfL39/f2XEAIFscs5yD7x2AK+GY5Rx87wBciT3HrFxPOP5Phw4d0o0bNxy1OgAArBYtWpTt57169cqjJAAAR7p8+bK+//57JSYm6vr16zafDRo0yEmpAACOZnfxadiwYTbvDcPQyZMn9fXXXys6OtphwQAAuGnw4ME279PS0nTlyhV5eXmpUKFCFJ8AwAVt375dbdu21ZUrV3T58mUVL15cZ8+eVaFChRQUFETxCQDuInYXn7Zv327z3s3NTYGBgZoyZcptn4QHAEBu/PNhF5J04MABPf/88xo5cqQTEgEA7tTQoUPVvn17zZo1SwEBAfrpp5/k6empHj16ZPrRAQDg2uwuPq1fv96MHAAA2CU8PFwTJ05Ujx49tHfvXmfHAQDY6ZdfftHs2bPl5uYmd3d3paamqmLFipo8ebKio6PVsWNHZ0cEADiIm70LtGjRQhcuXMjUnpKSohYtWjgiEwAAOeLh4aETJ044OwYAIBc8PT3l5vbX6UhQUJASExMlSQEBATp27JgzowEAHMzuK582bNiQaTJASbp27Zp+/PFHh4QCAODvvvzyS5v3N+cbfP/993X//fc7KRUA4E7UqVNHW7duVXh4uJo1a6axY8fq7Nmz+s9//qOIiAhnxwMAOFCOi087duyw/nn37t1KSkqyvk9PT9eqVatUunRpx6YDAEBShw4dbN5bLBYFBgaqRYsWmjJlinNCAQDuyIQJE3Tx4kVJ0ltvvaVevXrp+eefV3h4uObPn+/kdAAAR8px8al27dqyWCyyWCxZ3l7n6+ur6dOnOzQcAACSlJGR4ewIAAAHq1+/vvXPQUFBWrVqlRPTAADMlOPi05EjR2QYhipWrKgtW7YoMDDQ+pmXl5eCgoLk7u5uSkgAAAAAAAC4phwXn8qVKyeJX58BAHlv2LBhOe77zjvvmJgEAOAop06d0ogRI7Ru3TqdPn1ahmHYfJ6enu6kZAAAR8tR8enLL7/Uww8/LE9Pz0yTvv7TI4884pBgAADctH37dm3fvl1paWmqUqWKJGn//v1yd3dX3bp1rf0sFouzIgIA7NS7d28lJibq1VdfValSpTiGA8BdLEfFpw4dOigpKUlBQUGZJn39O4vFwi8UAACHa9++vfz8/PTRRx+pWLFikqTz58+rT58+atq0qYYPH+7khAAAe23cuFE//vijateu7ewoAACT5aj49Pdb7bjtDgCQ16ZMmaI1a9ZYC0+SVKxYMb355ptq1aoVxScAcEFhYWGZbrUDANyd3JwdAACA20lJSdGZM2cytZ85c8b6mG4AgGuZOnWqXnrpJf3+++/OjgIAMFmOrnx67733crzCQYMG5ToMAABZeeyxx9SnTx9NmTJFDRo0kCT9/PPPGjlypDp27OjkdACAnCpWrJjN3E6XL19WpUqVVKhQIXl6etr0PXfuXF7HAwCYJEfFp3fffTdHK7NYLBSfAAAON2vWLI0YMULdunVTWlqaJMnDw0N9+/bV22+/7eR0AICcmjp1qrMjAACcwGJwo/UdS0lJUUBAgJKTk+Xv7+/sOACQLVc+Zl2+fFmHDh2SJFWqVEmFCxd2cqKcc+XvHUDBwzHLOfjeAbgSe45ZdzTnk2EYTBIIAMgzJ0+e1MmTJxUeHq7ChQszBgGAC8rIyNCkSZN0//3367777tNLL72kq1evOjsWAMBEuSo+zZs3TxEREfLx8ZGPj48iIiL04YcfOjobAACSpD///FMtW7ZU5cqV1bZtW508eVKS1LdvX550BwAu5q233tLLL7+sIkWKqHTp0po2bZr69+/v7FgAABPZXXwaO3asBg8erPbt22vZsmVatmyZ2rdvr6FDh2rs2LFmZAQAFHBDhw6Vp6enEhMTVahQIWt7ly5dtGrVKicmAwDYa9GiRfrggw+0evVqrVixQv/73/+0ePFiZWRkODsaAMAkOZpw/O9mzpypuXPnqmvXrta2Rx55RDVr1tTAgQP1+uuvOzQgAABr1qzR6tWrVaZMGZv28PBwHT161EmpAAC5kZiYqLZt21rfR0VFyWKx6MSJE5mO8wCAu4PdVz6lpaWpfv36mdrr1aunGzduOCQUAAB/d/nyZZsrnm46d+6cvL29nZAIAJBbN27ckI+Pj02bp6en9WmmAIC7j91XPvXs2VMzZ87UO++8Y9M+Z84cde/e3WHBAAC4qWnTplq0aJHeeOMNSZLFYlFGRoYmT56sBx980MnpAAD2MAxDvXv3tvnx4Nq1a3ruuedsnmK6fPlyZ8QDAJjA7uKT9NeE42vWrFGjRo0kST///LMSExPVq1cvDRs2zNrvnwUqAAByY/LkyWrZsqW2bdum69ev68UXX9Rvv/2mc+fOadOmTc6OBwCwQ3R0dKa2Hj16OCEJACCv2F182rVrl+rWrStJOnTokCSpZMmSKlmypHbt2mXtZ7FYHBQRAFDQRUREaP/+/Xr//ffl5+enS5cuqWPHjurfv79KlSrl7HgAADssWLDA2REAAHnM7uLT+vXrzcgBAECW0tLS1KZNG82aNUtjxoxxdhwAAAAAdrJ7wnEAAPKSp6enduzY4ewYAAAAAHLJ7iufrl27punTp2v9+vU6ffq0MjIybD5PSEhwWDgAAKS/5gKZN2+eJk6c6OwoAAAAAOxkd/Gpb9++WrNmjR5//HE1aNCAuZ0AAKa7ceOG5s+fr2+//Vb16tWzeRqSxAMuAAAAgPzM7uLTV199pZUrV+r+++83Iw8AAJn8/WEX+/fvt/mMH0EAAACA/M3u4lPp0qXl5+dnRhYAAGwcPnxYFSpU4GEXAAAAgAuze8LxKVOmaNSoUTp69KgZeQAAsAoPD9eZM2es77t06aJTp045MREAAAAAe9ldfKpfv76uXbumihUrys/PT8WLF7d5AQDgKIZh2LxfuXKlLl++7KQ0AAAAAHLD7tvuunbtquPHj2vChAkKDg5mrg0AAAAAAADckt3Fp82bNysuLk61atUyIw8AAFYWiyXTjxz86AEAAAC4Frtvu6tataquXr1qRpZsnTt3Tt27d5e/v7+KFi2qvn376tKlS9kuc+3aNfXv318lSpRQkSJF1KlTJ5u5Qn799Vd17dpVYWFh8vX1VbVq1TRt2jSzdwUAkEOGYah3797q2LGjOnbsqGvXrum5556zvr/5AgAgpzivAIC8Z/eVTxMnTtTw4cP11ltvqUaNGvL09LT53N/f32Hh/q579+46efKk1q5dq7S0NPXp00f9+vXTkiVLbrnM0KFD9fXXX2vZsmUKCAjQgAED1LFjR23atEmSFB8fr6CgIH388ccKCwvT5s2b1a9fP7m7u2vAgAGm7AcAIOeio6Nt3vfo0cNJSQAAdwvOKwAg71mMf87mehtubn9dLPXP2x4Mw5DFYlF6errj0v1/e/bs0b333qutW7eqfv36kqRVq1apbdu2+uOPPxQaGpppmeTkZAUGBmrJkiV6/PHHJUl79+5VtWrVFBcXp0aNGmW5rf79+2vPnj367rvvcpwvJSVFAQEBSk5ONq34BgCOwjHLOfjeAbiSu/WYxXkFADiOPccsu698Wr9+fa6D5VZcXJyKFi1qHSAkKSoqSm5ubvr555/12GOPZVomPj5eaWlpioqKsrZVrVpVZcuWzXaQSE5O5ql9AAAAwF2I8woAcA67i0/NmjW75We7du26ozC3kpSUpKCgIJs2Dw8PFS9eXElJSbdcxsvLS0WLFrVpDw4OvuUymzdv1tKlS/X1119nmyc1NVWpqanW9ykpKTnYCwAAAADOxHkFADiH3ROO/9PFixc1Z84cNWjQwO4n4L300kvWJxnd6rV37947jZgju3bt0qOPPqpx48apVatW2faNiYlRQECA9RUWFpYnGQEAAABkxnkFAORvdl/5dNMPP/ygefPm6b///a9CQ0PVsWNHzZgxw651DB8+XL179862T8WKFRUSEqLTp0/btN+4cUPnzp1TSEhIlsuFhITo+vXrunDhgs2vFKdOncq0zO7du9WyZUv169dPr7zyym1zjx49WsOGDbO+T0lJYaAAAAAAnITzCgDI3+wqPiUlJWnhwoWaN2+eUlJS1LlzZ6WmpmrFihW699577d54YGCgAgMDb9svMjJSFy5cUHx8vOrVqydJ+u6775SRkaGGDRtmuUy9evXk6empdevWqVOnTpKkffv2KTExUZGRkdZ+v/32m1q0aKHo6Gi99dZbOcrt7e0tb2/vHPUFAORvEydO1OjRozV48GBNnTo1yz4LFy5Unz59bNq8vb117dq1PEgIALgdzisAIH/L8W137du3V5UqVbRjxw5NnTpVJ06c0PTp083MZlWtWjW1adNGzzzzjLZs2aJNmzZpwIABevLJJ61PpDh+/LiqVq2qLVu2SJICAgLUt29fDRs2TOvXr1d8fLz69OmjyMhI66SAu3bt0oMPPqhWrVpp2LBhSkpKUlJSks6cOZMn+wUAcK6tW7dq9uzZqlmz5m37+vv76+TJk9bX0aNH8yAhAMCROK8AAOfI8ZVP33zzjQYNGqTnn39e4eHhZmbK0uLFizVgwAC1bNlSbm5u6tSpk9577z3r52lpadq3b5+uXLlibXv33XetfVNTU9W6dWt98MEH1s8/++wznTlzRh9//LE+/vhja3u5cuX0+++/58l+AQCc49KlS+revbvmzp2rN99887b9LRbLLW/JAAC4Ds4rACDvWQzDMHLS8aefftK8efO0dOlSVatWTT179tSTTz6pUqVK6ddff83VbXd3i5SUFAUEBCg5OVn+/v7OjgMA2eKY9Zfo6GgVL15c7777rpo3b67atWtne9vd008/rdKlSysjI0N169bVhAkTVL169VuuP6snGIWFhRX47x2Aa2CscA6+dwCuxJ5jVo5vu2vUqJHmzp2rkydP6tlnn1VsbKxCQ0OVkZGhtWvX6uLFi3ccHACAvBAbG6uEhATFxMTkqH+VKlU0f/58ffHFF/r444+VkZGhxo0b648//rjlMjzBCAAAAPhLjotPNxUuXFhPPfWUNm7cqJ07d2r48OGaOHGigoKC9Mgjj5iREQAAhzl27JgGDx6sxYsXy8fHJ0fLREZGqlevXqpdu7aaNWum5cuXKzAwULNnz77lMqNHj1ZycrL1dezYMUftAgAAAOBS7C4+/V2VKlU0efJk/fHHH/rkk08clQkAANPEx8fr9OnTqlu3rjw8POTh4aHvv/9e7733njw8PJSenn7bdXh6eqpOnTo6ePDgLft4e3vL39/f5gUAAAAURDmecDw77u7u6tChgzp06OCI1QEAYJqWLVtq586dNm19+vRR1apVNWrUKLm7u992Henp6dq5c6fatm1rVkwAAADgruGQ4hMAAK7Cz89PERERNm2FCxdWiRIlrO29evVS6dKlrXNCvf7662rUqJHuueceXbhwQW+//baOHj2qp59+Os/zAwAAAK6G4hMAAP+QmJgoN7f/uzP9/PnzeuaZZ5SUlKRixYqpXr162rx5c4F+0isAAACQUxbDMAxnh3B1PBIVgCvhmOUcfO8AXAnHLOfgewfgSuw5Zt3RhOMAAAAAAABAdig+AQAAAAAAwDQUnwAAAAAAAGAaik8AAAAAAAAwDcUnAAAAAAAAmIbiEwAAAAAAAExD8QkAAAAAAACmofgEAAAAAAAA01B8AgAAAAAAgGkoPgEAAAAAAMA0FJ8AAAAAAABgGopPAAAAAAAAMA3FJwAAAAAAAJiG4hMAAAAAAABMQ/EJAAAAAAAApqH4BAAAAAAAANNQfAIAAAAAAIBpKD4BAAAAAADANBSfAAAAAAAAYBqKTwAAAAAAADANxScAAAAAAACYhuITAAAAAAAATEPxCQAAAAAAAKah+AQAAAAAAADTUHwCAAAAAACAaSg+AQAAAAAAwDQUnwAAAAAAAGAaik8AAAAAAAAwDcUnAAAAAAAAmIbiEwAAAAAAAExD8QkAAAAAAACmofgEAAAAAAAA01B8AgAAAAAAgGkoPgEAAAAAAMA0FJ8AAAAAAABgGopPAAAAAAAAMA3FJwAAAAAAAJiG4hMAAAAAAABM4zLFp3Pnzql79+7y9/dX0aJF1bdvX126dCnbZa5du6b+/furRIkSKlKkiDp16qRTp05l2ffPP/9UmTJlZLFYdOHCBRP2AAAAAICzcV4BAHnPZYpP3bt312+//aa1a9fqq6++0g8//KB+/fplu8zQoUP1v//9T8uWLdP333+vEydOqGPHjln27du3r2rWrGlGdAAAAAD5BOcVAJD3XKL4tGfPHq1atUoffvihGjZsqCZNmmj69OmKjY3ViRMnslwmOTlZ8+bN0zvvvKMWLVqoXr16WrBggTZv3qyffvrJpu/MmTN14cIFjRgxIi92BwAAAIATcF4BAM7hEsWnuLg4FS1aVPXr17e2RUVFyc3NTT///HOWy8THxystLU1RUVHWtqpVq6ps2bKKi4uztu3evVuvv/66Fi1aJDe3nH0dqampSklJsXkBAAAAyN84rwAA53CJ4lNSUpKCgoJs2jw8PFS8eHElJSXdchkvLy8VLVrUpj04ONi6TGpqqrp27aq3335bZcuWzXGemJgYBQQEWF9hYWH27RAAAACAPMd5BQA4h1OLTy+99JIsFku2r71795q2/dGjR6tatWrq0aOH3cslJydbX8eOHTMpIQAAAIDb4bwCAPI3D2dufPjw4erdu3e2fSpWrKiQkBCdPn3apv3GjRs6d+6cQkJCslwuJCRE169f14ULF2x+pTh16pR1me+++047d+7UZ599JkkyDEOSVLJkSY0ZM0bjx4/Pct3e3t7y9vbOyS4CAAAAMBnnFQCQvzm1+BQYGKjAwMDb9ouMjNSFCxcUHx+vevXqSfrrAJ+RkaGGDRtmuUy9evXk6empdevWqVOnTpKkffv2KTExUZGRkZKk//73v7p69ap1ma1bt+qpp57Sjz/+qEqVKt3p7gEAAADIA5xXAED+5tTiU05Vq1ZNbdq00TPPPKNZs2YpLS1NAwYM0JNPPqnQ0FBJ0vHjx9WyZUstWrRIDRo0UEBAgPr27athw4apePHi8vf318CBAxUZGalGjRpJUqaB4OzZs9bt/fOebgAAAACujfMKAHAOlyg+SdLixYs1YMAAtWzZUm5uburUqZPee+896+dpaWnat2+frly5Ym179913rX1TU1PVunVrffDBB86IDwAAACAf4LwCAPKexbh5QzJyLSUlRQEBAUpOTpa/v7+z4wBAtjhmOQffOwBXwjHLOfjeAbgSe45ZTn3aHQAAzjZx4kRZLBYNGTIkR/1jY2NlsVjUoUMHU3MBAAAAdwuKTwCAAmvr1q2aPXu2atasmaP+v//+u0aMGKGmTZuanAwAAAC4e1B8AgAUSJcuXVL37t01d+5cFStW7Lb909PT1b17d40fP14VK1bMg4QAAADA3YHiEwCgQOrfv7/atWunqKioHPV//fXXFRQUpL59++aof2pqqlJSUmxeAAAAQEHkMk+7AwDAUWJjY5WQkKCtW7fmqP/GjRs1b948/fLLLzneRkxMjMaPH5/LhAAAAMDdgyufAAAFyrFjxzR48GAtXrxYPj4+t+1/8eJF9ezZU3PnzlXJkiVzvJ3Ro0crOTnZ+jp27NidxAYAAABcFlc+AQAKlPj4eJ0+fVp169a1tqWnp+uHH37Q+++/r9TUVLm7u1s/O3TokH7//Xe1b9/e2paRkSFJ8vDw0L59+1SpUqVM2/H29pa3t7eJewIAAAC4BopPAIACpWXLltq5c6dNW58+fVS1alWNGjXKpvAkSVWrVs3U/5VXXtHFixc1bdo0hYWFmZ4ZAAAAcGUUnwAABYqfn58iIiJs2goXLqwSJUpY23v16qXSpUsrJiZGPj4+mfoXLVpUkjK1AwAAAMiM4hMAAP+QmJgoNzemRQQAAAAcgeITAKDA27BhQ7bv/2nhwoWmZQEAAADuNvysCwAAAAAAANNQfAIAAAAAAIBpKD4BAAAAAADANBSfAAAAAAAAYBqKTwAAAAAAADANxScAAAAAAACYhuITAAAAAAAATEPxCQAAAAAAAKah+AQAAAAAAADTUHwCAAAAAACAaSg+AQAAAAAAwDQUnwAAAAAAAGAaik8AAAAAAAAwDcUnAAAAAAAAmIbiEwAAAAAAAExD8QkAAAAAAACmofgEAAAAAAAA01B8AgAAAAAAgGkoPgEAAAAAAMA0FJ8AAAAAAABgGopPAAAAAAAAMA3FJwAAAAAAAJiG4hMAAAAAAABM4+HsAHcDwzAkSSkpKU5OAgC3d/NYdfPYhbzBWAHAlTBWOAdjBQBXYs9YQfHJAS5evChJCgsLc3ISAMi5ixcvKiAgwNkxCgzGCgCuiLEibzFWAHBFORkrLAY/Z9yxjIwMnThxQn5+frJYLDlaJiUlRWFhYTp27Jj8/f1NTugYrpbZ1fJKrpfZ1fJKZJb++mXi4sWLCg0NlZsbd1/nFcaK/MnV8kqul9nV8kpklhgrnIWxIn9ytbyS62V2tbwSmSX7xgqufHIANzc3lSlTJlfL+vv7u8xf1JtcLbOr5ZVcL7Or5ZXIzK/YeY+xIn9ztbyS62V2tbwSmRkr8h5jRf7mankl18vsanklMud0rOBnDAAAAAAAAJiG4hMAAAAAAABMQ/HJSby9vTVu3Dh5e3s7O0qOuVpmV8sruV5mV8srkRmuxRX/v3e1zK6WV3K9zK6WVyIzXIsr/n/vapldLa/kepldLa9EZnsx4TgAAAAAAABMw5VPAAAAAAAAMA3FJwAAAAAAAJiG4hMAAAAAAABMQ/HJRDNmzFD58uXl4+Ojhg0basuWLdn2X7ZsmapWrSofHx/VqFFDK1euzKOk/8eezHPnzlXTpk1VrFgxFStWTFFRUbfdR0ez9zu+KTY2VhaLRR06dDA3YBbszXzhwgX1799fpUqVkre3typXrpynfzfszTt16lRVqVJFvr6+CgsL09ChQ3Xt2rU8Siv98MMPat++vUJDQ2WxWLRixYrbLrNhwwbVrVtX3t7euueee7Rw4ULTc95kb97ly5froYceUmBgoPz9/RUZGanVq1fnTViYgrHCfIwV5mOsMBdjBRgrzMdYYT7GCnPl+7HCgCliY2MNLy8vY/78+cZvv/1mPPPMM0bRokWNU6dOZdl/06ZNhru7uzF58mRj9+7dxiuvvGJ4enoaO3fuzLeZu3XrZsyYMcPYvn27sWfPHqN3795GQECA8ccff+TLvDcdOXLEKF26tNG0aVPj0UcfzZOsN9mbOTU11ahfv77Rtm1bY+PGjcaRI0eMDRs2GL/88ku+zLt48WLD29vbWLx4sXHkyBFj9erVRqlSpYyhQ4fmSV7DMIyVK1caY8aMMZYvX25IMj7//PNs+x8+fNgoVKiQMWzYMGP37t3G9OnTDXd3d2PVqlX5Mu/gwYONSZMmGVu2bDH2799vjB492vD09DQSEhLyJC8ci7Ei/+W9ibHCvLyMFebnZay4uzBW5L+8NzFWmJeXscL8vHk9VlB8MkmDBg2M/v37W9+np6cboaGhRkxMTJb9O3fubLRr186mrWHDhsazzz5ras6/szfzP924ccPw8/MzPvroI7Mi2shN3hs3bhiNGzc2PvzwQyM6OjrPBwl7M8+cOdOoWLGicf369byKaMPevP379zdatGhh0zZs2DDj/vvvNzXnreTkoPviiy8a1atXt2nr0qWL0bp1axOTZS0nebNy7733GuPHj3d8IJiOscJ8jBXmY6zIW4wVBQ9jhfkYK8zHWJG38uNYwW13Jrh+/bri4+MVFRVlbXNzc1NUVJTi4uKyXCYuLs6mvyS1bt36lv0dLTeZ/+nKlStKS0tT8eLFzYppldu8r7/+uoKCgtS3b1/TM/5TbjJ/+eWXioyMVP/+/RUcHKyIiAhNmDBB6enp+TJv48aNFR8fb72E9vDhw1q5cqXatm1ret7ccva/vTuVkZGhixcv5sm/OzgWYwVjRVYYK/InZ//bu1OMFa6LsYKxIiuMFfmTs//t3SmzxwoPU9ZawJ09e1bp6ekKDg62aQ8ODtbevXuzXCYpKSnL/klJSabl/LvcZP6nUaNGKTQ0NNM/ODPkJu/GjRs1b948/fLLL6bny0puMh8+fFjfffedunfvrpUrV+rgwYN64YUXlJaWpnHjxuW7vN26ddPZs2fVpEkTGYahGzdu6LnnntPLL79satY7cat/eykpKbp69ap8fX2dlCxn/v3vf+vSpUvq3Lmzs6PATowVjBVZYazInxgr4CyMFYwVWWGsyJ8YK7LHlU9wiIkTJyo2Nlaff/65fHx8nB0nk4sXL6pnz56aO3euSpYs6ew4OZaRkaGgoCDNmTNH9erVU5cuXTRmzBjNmjXL2dGytGHDBk2YMEEffPCBEhIStHz5cn399dd64403nB3trrRkyRKNHz9en376qYKCgpwdB7gtxgpzMFYgO4wVcDWMFeZgrEB28mKs4MonE5QsWVLu7u46deqUTfupU6cUEhKS5TIhISF29Xe03GS+6d///rcmTpyob7/9VjVr1jQzppW9eQ8dOqTff/9d7du3t7ZlZGRIkjw8PLRv3z5VqlQpX2WWpFKlSsnT01Pu7u7WtmrVqikpKUnXr1+Xl5dXvsr76quvqmfPnnr66aclSTVq1NDly5fVr18/jRkzRm5u+a/efat/e/7+/vn614nY2Fg9/fTTWrZsWZ78KgjHY6wwH2MFY4WjMFbAWRgrzMdYwVjhKIwV2ct//4/dBby8vFSvXj2tW7fO2paRkaF169YpMjIyy2UiIyNt+kvS2rVrb9nf0XKTWZImT56sN954Q6tWrVL9+vXzIqok+/NWrVpVO3fu1C+//GJ9PfLII3rwwQf1yy+/KCwsLN9llqT7779fBw8etA5okrR//36VKlXK1AEit3mvXLmSaSC4OcAZhmFe2Dvg7H97ufHJJ5+oT58++uSTT9SuXTtnx0EuMVaYj7GCscJRnP1vLzcYK+4OjBXmY6xgrHAUZ//by408HStMmcYcRmxsrOHt7W0sXLjQ2L17t9GvXz+jaNGiRlJSkmEYhtGzZ0/jpZdesvbftGmT4eHhYfz73/829uzZY4wbN84pj0S1J/PEiRMNLy8v47PPPjNOnjxpfV28eDFf5v0nZzyVwt7MiYmJhp+fnzFgwABj3759xldffWUEBQUZb775Zr7MO27cOMPPz8/45JNPjMOHDxtr1qwxKlWqZHTu3DlP8hqGYVy8eNHYvn27sX37dkOS8c477xjbt283jh49ahiGYbz00ktGz549rf1vPhJ15MiRxp49e4wZM2bk6SNR7c27ePFiw8PDw5gxY4bNv7sLFy7kSV44FmNF/sv7T4wVjs/LWGF+XsaKuwtjRf7L+0+MFY7Py1hhft68HisoPplo+vTpRtmyZQ0vLy+jQYMGxk8//WT9rFmzZkZ0dLRN/08//dSoXLmy4eXlZVSvXt34+uuv8zixfZnLlStnSMr0GjduXL7M+0/OGCQMw/7MmzdvNho2bGh4e3sbFStWNN566y3jxo0b+TJvWlqa8dprrxmVKlUyfHx8jLCwMOOFF14wzp8/n2d5169fn+Xfy5s5o6OjjWbNmmVapnbt2oaXl5dRsWJFY8GCBfk2b7NmzbLtD9fDWJG/8v4TY4Xj8zJWmJ+XseLuw1iRv/L+E2OF4/MyVpifN6/HCoth5NNr1gAAAAAAAODymPMJAAAAAAAApqH4BAAAAAAAANNQfAIAAAAAAIBpKD4BAAAAAADANBSfAAAAAAAAYBqKTwAAAAAAADANxScAAAAAAACYhuITAAAAAAAATEPxCXCw3r17q0OHDk7bfs+ePTVhwoQc9X3yySc1ZcoUkxNBkn744Qe1b99eoaGhslgsWrFihanbK1++vCwWS6ZX//79Td0ugJxhrEBWGCsA/B1jBbLiqmOFh0n5gLuSxWLJ9vNx48Zp2rRpMgwjjxLZ+vXXX7Vy5UrNnDkzR/1feeUVPfDAA3r66acVEBBgcrqC7fLly6pVq5aeeuopdezY0fTtbd26Venp6db3u3bt0kMPPaQnnnjC9G0DBR1jBXKLsQIoOBgrkFuuOlZYDGf9bQZcUFJSkvXPS5cu1dixY7Vv3z5rW5EiRVSkSBFnRJMkPf300/Lw8NCsWbNyvMx9992n3r178ytnHrJYLPr8889tfslKTU3VmDFj9Mknn+jChQuKiIjQpEmT1Lx5c4dsc8iQIfrqq6904MCB2/7HDoA7w1gBR2CsAO5ujBVwBFcaK7jtDrBDSEiI9RUQECCLxWLTVqRIkUyXxzZv3lwDBw7UkCFDVKxYMQUHB2vu3Lm6fPmy+vTpIz8/P91zzz365ptvbLa1a9cuPfzwwypSpIiCg4PVs2dPnT179pbZ0tPT9dlnn6l9+/Y27R988IHCw8Pl4+Oj4OBgPf744zaft2/fXrGxsXf+5eCODBgwQHFxcYqNjdWOHTv0xBNPqE2bNjpw4MAdr/v69ev6+OOP9dRTT3EyAeQBxgqYhbECuHswVsAs+XWsoPgE5IGPPvpIJUuW1JYtWzRw4EA9//zzeuKJJ9S4cWMlJCSoVatW6tmzp65cuSJJunDhglq0aKE6depo27ZtWrVqlU6dOqXOnTvfchs7duxQcnKy6tevb23btm2bBg0apNdff1379u3TqlWr9MADD9gs16BBA23ZskWpqanm7DxuKzExUQsWLNCyZcvUtGlTVapUSSNGjFCTJk20YMGCO17/ihUrdOHCBfXu3fvOwwIwDWMFssNYAUBirED28vVYYQDIlQULFhgBAQGZ2qOjo41HH33U+r5Zs2ZGkyZNrO9v3LhhFC5c2OjZs6e17eTJk4YkIy4uzjAMw3jjjTeMVq1a2az32LFjhiRj3759Web5/PPPDXd3dyMjI8Pa9t///tfw9/c3UlJSbrkfv/76qyHJ+P3337PdXziOJOPzzz+3vv/qq68MSUbhwoVtXh4eHkbnzp0NwzCMPXv2GJKyfY0aNSrL7bVq1cr417/+lRe7BuAfGCuQW4wVQMHBWIHccqWxggnHgTxQs2ZN65/d3d1VokQJ1ahRw9oWHBwsSTp9+rSkvyb4W79+fZb3eR86dEiVK1fO1H716lV5e3vbXP740EMPqVy5cqpYsaLatGmjNm3a6LHHHlOhQoWsfXx9fSXJ+usI8t6lS5fk7u6u+Ph4ubu723x28+9AxYoVtWfPnmzXU6JEiUxtR48e1bfffqvly5c7LjAAUzBWIDuMFQAkxgpkLz+PFRSfgDzg6elp895isdi03TywZ2RkSPrroNG+fXtNmjQp07pKlSqV5TZKliypK1eu6Pr16/Ly8pIk+fn5KSEhQRs2bNCaNWs0duxYvfbaa9q6dauKFi0qSTp37pwkKTAw8M52ErlWp04dpaen6/Tp02ratGmWfby8vFS1alW7171gwQIFBQWpXbt2dxoTgMkYK5AdxgoAEmMFspefxwqKT0A+VLduXf33v/9V+fLl5eGRs3+mtWvXliTt3r3b+mdJ8vDwUFRUlKKiojRu3DgVLVpU3333nfWxnLt27VKZMmVUsmRJR+8G/ubSpUs6ePCg9f2RI0f0yy+/qHjx4qpcubK6d++uXr16acqUKapTp47OnDmjdevWqWbNmrk+wGdkZGjBggWKjo7O8d8jAK6DseLuw1gBwNEYK+4+rjpWMOE4kA/1799f586dU9euXbV161YdOnRIq1evVp8+fZSenp7lMoGBgapbt642btxobfvqq6/03nvv6ZdfftHRo0e1aNEiZWRkqEqVKtY+P/74o1q1amX6PhV027ZtU506dVSnTh1J0rBhw1SnTh2NHTtW0l+/JPTq1UvDhw9XlSpV1KFDB23dulVly5bN9Ta//fZbJSYm6qmnnnLIPgDIXxgr7j6MFQAcjbHi7uOqYwU/bwD5UGhoqDZt2qRRo0apVatWSk1NVbly5dSmTRu5ud26Zvz0009r0aJFGjBggCSpaNGiWr58uV577TVdu3ZN4eHh+uSTT1S9enVJ0rVr17RixQqtWrUqT/arIGvevLn+mhMwa56enho/frzGjx/vsG22atUq220CcG2MFXcfxgoAjsZYcfdx1bHCYjDaAHeNq1evqkqVKlq6dKkiIyNv23/mzJn6/PPPtWbNmjxIBwDIDxgrAAC3w1gBR+O2O+Au4uvrq0WLFuns2bM56u/p6anp06ebnAoAkJ8wVgAAboexAo7GlU8AAAAAAAAwDVc+AQAAAAAAwDQUnwAAAAAAAGAaik8AAAAAAAAwDcUnAAAAAAAAmIbiEwAAAAAAAExD8QkAAAAAAACmofgEAAAAAAAA01B8AgAAAAAAgGkoPgEAAAAAAMA0FJ8AAAAAAABgmv8HSSUZ16JRxZEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJ8AAAGGCAYAAADVbCCFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAABy+klEQVR4nO3deVxUZf//8feAbMrixiKKO6K5p0mU3ZqiuNym2aLmgmabuRVZSppbKZq33dqGWa6VYZr67VsmFaVl4q6puZQrpeAaoCiLcH5/+HO+TSCBzjAMvp6Pxzxu55rrnPM+c+e5PJ855zomwzAMAQAAAAAAADbgZO8AAAAAAAAAKLsoPgEAAAAAAMBmKD4BAAAAAADAZig+AQAAAAAAwGYoPgEAAAAAAMBmKD4BAAAAAADAZig+AQAAAAAAwGYoPgEAAAAAAMBmKD4BAAAAAADAZig+AQAAOLBZs2apbt26cnZ2VosWLYq83Lp169SiRQu5u7vLZDIpNTXVZhkBAMDtjeITAAC4rX399dcaOnSomjRpImdnZ9WuXfuGfadNm6YHHnhA/v7+MplMmjx5coH9Vq9erYiICAUGBsrNzU01atTQww8/rH379lk9+0svvaR7771XixYt0vTp04u03Pnz5/Xoo4/Kw8ND77zzjj788ENVqFDBqtkAAACuK2fvAAAAAPa0bNkyLV++XHfeeacCAwML7TthwgQFBASoZcuWio+Pv2G/vXv3qlKlSho9erSqVq2qlJQULVy4UG3atFFiYqKaN29ulezfffednJyctGDBArm6uhZ5uW3btunixYt69dVXFR4ebpUsAAAAN0LxCQAA3NamT5+u999/Xy4uLvr3v/9d6NVJx44dU+3atXXu3Dn5+vresN/EiRPztT3xxBOqUaOGYmNjNW/evFvKfPnyZZUvX15nzpyRh4dHsQpPknTmzBlJUsWKFYu8LQAAgJvFbXcAAKDM2rhxo+666y65u7urXr16eu+99zR58mSZTCZzn8DAQLm4uBRpfYXdkvdP/Pz8VL58+WLPrdS+fXs1adJEO3bs0L/+9S+VL19eL7/8skwmkxYtWqSMjAyZTCaZTCYtXry4SOuLjIyUJN11110ymUwaPHhwoduSpP/5n/9R9+7dzbcS1qtXT6+++qpyc3MLzLtnzx61a9dO5cuXV/369bVy5UpJ0oYNGxQaGioPDw+FhITo22+/zZfx5MmTevzxx+Xv7y83Nzc1btxYCxcuLNb3BgAASg+ufAIAAGXS3r171blzZ/n6+mry5Mm6evWqJk2aJH9//xLLkJqaqpycHKWkpGjOnDlKT09Xx44di72e8+fPq2vXrurbt68GDBggf39/tW7dWvPnz9fWrVv1wQcfSJLuueeef1zX+PHjFRISovnz52vq1KmqU6eO6tWrV+i2JGnx4sXy9PRUVFSUPD099d1332nixIlKT0/XrFmzLLbx559/6t///rf69u2rRx55RLGxserbt68+/vhjPffcc3rmmWf02GOPadasWXr44Yf1+++/y8vLS5J0+vRp3X333TKZTBoxYoR8fX311VdfaejQoUpPT9dzzz1X7O8PAADYmQEAAFAG9erVy3B3dzdOnDhhbtu/f7/h7Oxs3OifQN27dzdq1ar1j+s+e/asIcmYNGlSof1CQkIMSYYkw9PT05gwYYKRm5tbnN0w2rVrZ0gy5s2bl++zyMhIo0KFCsVan2EYxqJFiwxJxrZt24q8rcuXL+dre/rpp43y5csbmZmZ+daxbNkyc9vBgwcNSYaTk5OxefNmc3t8fLwhyVi0aJG5bejQoUa1atWMc+fOWWyrb9++ho+PT4E5AABA6cZtdwAAoMzJzc1VfHy8evXqpZo1a5rbGzVqpIiIiBLLsWjRIq1bt07vvvuuGjVqpCtXruS7Ta0o3NzcNGTIEBskLPq2PDw8zH++ePGizp07p/vuu0+XL1/WwYMHLfp6enqqb9++5vchISGqWLGiGjVqpNDQUHP79T8fPXpUkmQYhj777DP16NFDhmHo3Llz5ldERITS0tK0c+dOq+4vAACwPYpPAACUoB9++EE9evRQYGCgTCaT1qxZU+x1fPrpp2rRooXKly+vWrVq5bvlCdLZs2d15coVBQcH5/ssJCSkxHKEhYUpIiJCw4YNU3x8vD766CNFR0cXez3Vq1cv9qTiN+tG2/rll1/04IMPysfHR97e3vL19dWAAQMkSWlpaRZ9a9SoYTGvliT5+PgoKCgoX5t07TY96dr/b6mpqZo/f758fX0tXtcLYtcnSwcAAI6DOZ8AAChBGRkZat68uR5//HH17t272Mt/9dVX6t+/v9566y117txZBw4c0JNPPikPDw+NGDHCBolhLZUqVVKHDh308ccf6z//+U+xlv3rVUe2VtC2UlNT1a5dO3l7e2vq1KmqV6+e3N3dtXPnTo0dO1Z5eXkW/Z2dnQtc943aDcOQJPN6BgwYYJ4U/e+aNWtW5H0BAAClA8UnAABKUNeuXdW1a9cbfp6VlaXx48frk08+UWpqqpo0aaKZM2eqffv2kqQPP/xQvXr10jPPPCNJqlu3rqKjozVz5kwNHz4839UmtytfX195eHjot99+y/fZoUOH7JDomitXruS7SsgRrF+/XufPn9eqVav0r3/9y9x+7Ngxq27H19dXXl5eys3NVXh4uFXXDQAA7Ifb7gAAKEVGjBihxMRExcXFac+ePXrkkUfUpUsXcxElKytL7u7uFst4eHjojz/+0IkTJ+wRuVRydnZWRESE1qxZo6SkJHP7gQMHFB8fb/PtF3Rr2PHjx5WQkKDWrVvbfPvWdv2KpetXKElSdna23n33Xatv56GHHtJnn32mffv25fv87NmzVt0eAAAoGVz5BABAKZGUlKRFixYpKSlJgYGBkqQxY8Zo3bp1WrRokaZPn66IiAg9//zzGjx4sO6//34dPnxYs2fPliQlJyerdu3adtyD0mXKlClat26d7rvvPj377LO6evWq3nrrLTVu3Fh79uwx99uzZ48+//xzSdLhw4eVlpam1157TZLUvHlz9ejRw9z3ww8/1IkTJ3T58mVJ1+bwut534MCBqlWrliSpadOm6tixo1q0aKFKlSrpt99+04IFC5STk6MZM2aUyP5b0z333KNKlSopMjJSo0aNkslk0ocffmhRjLKWGTNm6Pvvv1doaKiefPJJ3XHHHbpw4YJ27typb7/9VhcuXLD6NgEAgG1RfAIAoJTYu3evcnNz1aBBA4v2rKwsValSRZL05JNP6siRI/r3v/+tnJwceXt7a/To0Zo8ebKcnLig+a+aNWum+Ph4RUVFaeLEiapRo4amTJmi5ORki+LTzp079corr1gse/19ZGSkRfFpwYIF2rBhg/n9999/r++//16S1LZtW3PxadiwYfryyy+1bt06Xbx4UX5+furcubNefvllNW3a1Gb7bCtVqlTRF198oRdeeEETJkxQpUqVNGDAAHXs2NHqTw/09/fX1q1bNXXqVK1atUrvvvuuqlSposaNG2vmzJlW3RYAACgZJsMWP1kBAIB/ZDKZtHr1avXq1UuStHz5cvXv31+//PJLvomZPT09FRAQYH6fm5urlJQU+fr6KiEhQd26ddOZM2fk6+tbkrvgkCZPnqwpU6bY5KodAAAA5MeVTwAAlBItW7ZUbm6uzpw5o/vuu6/Qvs7Ozqpevbok6ZNPPlFYWBiFJwAAAJRKFJ8AAChBly5d0uHDh83vjx07pt27d6ty5cpq0KCB+vfvr0GDBmn27Nlq2bKlzp49q4SEBDVr1kzdu3fXuXPntHLlSrVv316ZmZlatGiRVqxYYXErGBzDhQsXlJ2dfcPPnZ2di11QTEtL05UrVwrt89cr6AAAAEoCxScAAErQ9u3bdf/995vfR0VFSbo2t9DixYu1aNEivfbaa3rhhRd08uRJVa1aVXfffbf+/e9/m5dZsmSJxowZI8MwFBYWpvXr16tNmzYlvi+4Nb179y60aFirVi0dP368WOscPXq0lixZUmgfbjcEAAAljTmfAAAA7GDHjh36888/b/i5h4eH7r333mKtc//+/Tp16lShfcLDw4u1TgAAgFtF8QkAAAAAAAA2wzOZAQAAAAAAYDPM+WQFeXl5OnXqlLy8vGQymewdBwAKZRiGLl68qMDAQDk58RtESWGsAOBIGCvsg7ECgCMpzlhB8ckKTp06paCgIHvHAIBi+f3331WjRg17x7htMFYAcESMFSWLsQKAIyrKWEHxyQq8vLwkXfvCvb297ZwGAAqXnp6uoKAg87ELJYOxAoAjYaywD8YKAI6kOGMFxScruH5JrLe3N4MEAIfB5fwli7ECgCNirChZjBUAHFFRxgpu4AYAAAAAAIDNUHwCAAAAAACAzVB8AgAAAAAAgM0w5xOAUiU3N1c5OTn2juHQXFxc5OzsbO8YAAAAACCJ4hOAUsIwDKWkpCg1NdXeUcqEihUrKiAggIliAQAAANgdxScApcL1wpOfn5/Kly9P0eQmGYahy5cv68yZM5KkatWq2TkRAAAAgNsdxScAdpebm2suPFWpUsXecRyeh4eHJOnMmTPy8/PjFjwAAAAAdsWE4wDs7vocT+XLl7dzkrLj+nfJ/FkAAAAA7I3iE4BSg1vtrIfvEgAAAEBpQfEJAAAAAAAANkPxCQBKucGDB6tXr172jgEAAAAAN4XiEwDcgsGDB8tkMslkMsnFxUV16tTRSy+9pMzMTHtHAwAAAIBSgafdAcAt6tKlixYtWqScnBzt2LFDkZGRMplMmjlzpr2jAQAAAIDdceUTANwiNzc3BQQEKCgoSL169VJ4eLi++eYbSVJeXp5iYmJUp04deXh4qHnz5lq5cqV52dzcXA0dOtT8eUhIiObOnWuvXQEAAAAAq+PKJwClkmEYupKTW+Lb9XBxvqUnxe3bt0+bNm1SrVq1JEkxMTH66KOPNG/ePAUHB+uHH37QgAED5Ovrq3bt2ikvL081atTQihUrVKVKFW3atElPPfWUqlWrpkcffdRauwUAAAAAdkPxCUCpdCUnV3dMjC/x7e6fGqHyrsU7NH7xxRfy9PTU1atXlZWVJScnJ7399tvKysrS9OnT9e233yosLEySVLduXW3cuFHvvfee2rVrJxcXF02ZMsW8rjp16igxMVGffvopxaebEBsbq9jYWB0/flyS1LhxY02cOFFdu3YtsH9OTo5iYmK0ZMkSnTx5UiEhIZo5c6a6dOli7jN58mSL/48kKSQkRAcPHrTZfgAAAABlCcUnALhF999/v2JjY5WRkaH//ve/KleunB566CH98ssvunz5sjp16mTRPzs7Wy1btjS/f+edd7Rw4UIlJSXpypUrys7OVosWLUp4L8qGGjVqaMaMGQoODpZhGFqyZIl69uypXbt2qXHjxvn6T5gwQR999JHef/99NWzYUPHx8XrwwQe1adMmi/+PGjdurG+//db8vlw5hk8AAACgqPjXM4BSycPFWfunRthlu8VVoUIF1a9fX5K0cOFCNW/eXAsWLFCTJk0kSV9++aWqV69usYybm5skKS4uTmPGjNHs2bMVFhYmLy8vzZo1S1u2bLnFPbk99ejRw+L9tGnTFBsbq82bNxdYfPrwww81fvx4devWTZI0bNgwffvtt5o9e7Y++ugjc79y5copICDAtuEBAACAMoriE4BSyWQyFfv2t9LAyclJL7/8sqKiovTrr7/Kzc1NSUlJateuXYH9f/rpJ91zzz169tlnzW1HjhwpqbhlWm5urlasWKGMjAzzbY9/l5WVJXd3d4s2Dw8Pbdy40aLtt99+U2BgoNzd3RUWFqaYmBjVrFnTZtkBAACAssTxzuwAoJR75JFH9OKLL+q9997TmDFj9PzzzysvL09t27ZVWlqafvrpJ3l7eysyMlLBwcFaunSp4uPjVadOHX344Yfatm2b6tSpY+/dcFh79+5VWFiYMjMz5enpqdWrV+uOO+4osG9ERITeeOMN/etf/1K9evWUkJCgVatWKTf3/ya7Dw0N1eLFixUSEqLk5GRNmTJF9913n/bt2ycvL68b5sjKylJWVpb5fXp6uvV2EgAAAHAgFJ8AwMrKlSunESNG6PXXX9exY8fk6+urmJgYHT16VBUrVtSdd96pl19+WZL09NNPa9euXerTp49MJpP69eunZ599Vl999ZWd98JxhYSEaPfu3UpLS9PKlSsVGRmpDRs2FFiAmjt3rp588kk1bNhQJpNJ9erV05AhQ7Rw4UJzn79OVt6sWTOFhoaqVq1a+vTTTzV06NAb5oiJick3UTkAAABwOzIZhmHYO4SjS09Pl4+Pj9LS0uTt7W3vOIDDyczM1LFjx1SnTp18t0Dh5hT2nd5ux6zw8HDVq1dP77333g37ZGZm6vz58woMDNS4ceP0xRdf6Jdffrlh/7vuukvh4eGKiYm5YZ+CrnwKCgq6bb53AI7tdhsrSgu+dwCOpDjHLKcSygQAgF3k5eVZFIEK4u7ururVq+vq1av67LPP1LNnzxv2vXTpko4cOaJq1aoVuk43Nzd5e3tbvAAAAIDbEbfdAQDKjOjoaHXt2lU1a9bUxYsXtWzZMq1fv17x8fGSpEGDBql69ermK5a2bNmikydPqkWLFjp58qQmT56svLw8vfTSS+Z1jhkzRj169FCtWrV06tQpTZo0Sc7OzurXr59d9hEAAABwNBSfAABlxpkzZzRo0CAlJyfLx8dHzZo1U3x8vDp16iRJSkpKkpPT/130m5mZqQkTJujo0aPy9PRUt27d9OGHH6pixYrmPn/88Yf69eun8+fPy9fXV23bttXmzZvl6+tb0rsHAAAAOCSKTwCAMmPBggWFfr5+/XqL9+3atdP+/fsLXSYuLu5WYwEAAAC3NeZ8AgAAAAAAgM1QfAIAAAAAAIDNUHwCAAAAAACAzVB8AgAAAAAAgM1QfAIAAAAAAIDNUHwCAAAAAACAzVB8AoBbMHjwYPXq1cveMQAAAACg1KL4BAAAAAAAAJtxuOLTO++8o9q1a8vd3V2hoaHaunVrof1XrFihhg0byt3dXU2bNtXatWtv2PeZZ56RyWTSnDlzrJwawO2gffv2GjlypJ577jlVqlRJ/v7+ev/995WRkaEhQ4bIy8tL9evX11dffWVeJjc3V0OHDlWdOnXk4eGhkJAQzZ0712K9V69e1ahRo1SxYkVVqVJFY8eOVWRkJFdcAQBwCzivAICS41DFp+XLlysqKkqTJk3Szp071bx5c0VEROjMmTMF9t+0aZP69eunoUOHateuXerVq5d69eqlffv25eu7evVqbd68WYGBgbbeDQBFYRhSdkbJvwzjlmIvWbJEVatW1datWzVy5EgNGzZMjzzyiO655x7t3LlTnTt31sCBA3X58mVJUl5enmrUqKEVK1Zo//79mjhxol5++WV9+umn5nXOnDlTH3/8sRYtWqSffvpJ6enpWrNmzS3lBADgdsZ5BQCULJNh3OKZVgkKDQ3VXXfdpbffflvStZO2oKAgjRw5UuPGjcvXv0+fPsrIyNAXX3xhbrv77rvVokULzZs3z9x28uRJhYaGKj4+Xt27d9dzzz2n5557rsi50tPT5ePjo7S0NHl7e9/8DgK3qczMTB07dkx16tSRu7v7tcbsDGm6Hf7R9vIpybVCkbsPHjxYqampWrNmjdq3b6/c3Fz9+OOPkq5d1eTj46PevXtr6dKlkqSUlBRVq1ZNiYmJuvvuuwtc54gRI5SSkqKVK1dKkgICAjRmzBiNGTPGvN66deuqZcuWNyxCFfid/n8cs+yD7x2AIynrxyzOKwDg1hXnmOUwVz5lZ2drx44dCg8PN7c5OTkpPDxciYmJBS6TmJho0V+SIiIiLPrn5eVp4MCBevHFF9W4cWPbhAdw22jWrJn5z87OzqpSpYqaNm1qbvP395cki19W33nnHbVq1Uq+vr7y9PTU/PnzlZSUJElKS0vT6dOn1aZNG4v1tmrVyta7AgBAmcR5BQCUvHL2DlBU586dU25urvnE7Tp/f38dPHiwwGVSUlIK7J+SkmJ+P3PmTJUrV06jRo0qcpasrCxlZWWZ36enpxd5WQBF5FL+2lVI9tjurSzu4mLx3mQyWbSZTCZJ1/6BKklxcXEaM2aMZs+erbCwMHl5eWnWrFnasmXLLeUAAAAF47wCAEqewxSfbGHHjh2aO3eudu7caT4hLIqYmBhNmTLFhskAyGQq1u1vjuqnn37SPffco2effdbcduTIEfOffXx85O/vr23btulf//qXpGu33e3cuVMtWrQo6bgAAKAAnFcAQOEc5ra7qlWrytnZWadPn7ZoP336tAICAgpcJiAgoND+P/74o86cOaOaNWuqXLlyKleunE6cOKEXXnhBtWvXvmGW6OhopaWlmV+///77re0cgNtWcHCwtm/frvj4eP3666965ZVXtG3bNos+I0eOVExMjP7nf/5Hhw4d0ujRo/Xnn38W6x+3AADgGs4rAKDkOUzxydXVVa1atVJCQoK5LS8vTwkJCQoLCytwmbCwMIv+kvTNN9+Y+w8cOFB79uzR7t27za/AwEC9+OKLio+Pv2EWNzc3eXt7W7wA4GY8/fTT6t27t/r06aPQ0FCdP3/e4iooSRo7dqz69eunQYMGKSwsTJ6enoqIiMg3kTgAAPhnnFcAQMlzqNvuoqKiFBkZqdatW6tNmzaaM2eOMjIyNGTIEEnSoEGDVL16dcXExEiSRo8erXbt2mn27Nnq3r274uLitH37ds2fP1+SVKVKFVWpUsViGy4uLgoICFBISEjJ7hwAh7R48WLzn9evX5/v8+PHj+dr++tDRt3c3LRo0SItWrTIos/145gklStXTm+99ZbeeustSdf+gdyoUSM9+uijtxYeAIDbFOcVAFCyHKr41KdPH509e1YTJ05USkqKWrRooXXr1pkn/0tKSpKT0/9dzHXPPfdo2bJlmjBhgl5++WUFBwdrzZo1atKkib12AQCK7cSJE/r666/Vrl07ZWVl6e2339axY8f02GOP2TsaAAAOifMKAChZJuOvP8HjpqSnp8vHx0dpaWlcKgvchMzMTB07dkx16tThVrIC/P777+rbt6/27dsnwzDUpEkTzZgxwzwBeUEK+045ZtkH3zsAR8Ixyz743gE4kuIcsxzqyicAuB0FBQXpp59+sncMAAAAALgpDjPhOAAAAAAAABwPxScAAAAAAADYDMUnAKVGXl6evSOUGXyXAAAAAEoL5nwCYHeurq5ycnLSqVOn5OvrK1dXV5lMJnvHckiGYSg7O1tnz56Vk5OTXF1d7R0JAAAAwG2O4hMAu3NyclKdOnWUnJysU6dO2TtOmVC+fHnVrFnT4jHRAAAAAGAPFJ8AlAqurq6qWbOmrl69qtzcXHvHcWjOzs4qV64cV48BAAAAKBUoPgEoNUwmk1xcXOTi4mLvKHBQsbGxio2N1fHjxyVJjRs31sSJE9W1a9cC++fk5CgmJkZLlizRyZMnFRISopkzZ6pLly4W/d555x3NmjVLKSkpat68ud566y21adPG1rsDAAAAlAncjwEAKDNq1KihGTNmaMeOHdq+fbs6dOignj176pdffimw/4QJE/Tee+/prbfe0v79+/XMM8/owQcf1K5du8x9li9frqioKE2aNEk7d+5U8+bNFRERoTNnzpTUbgEAAAAOzWQYhmHvEI4uPT1dPj4+SktLk7e3t73jAEChbrdjVuXKlTVr1iwNHTo032eBgYEaP368hg8fbm576KGH5OHhoY8++kiSFBoaqrvuuktvv/22pGtPEgwKCtLIkSM1bty4Iue43b53AI6NY5Z98L0DcCTFOWZx5RMAoEzKzc1VXFycMjIyFBYWVmCfrKwsubu7W7R5eHho48aNkqTs7Gzt2LFD4eHh5s+dnJwUHh6uxMTEQreflZWl9PR0ixcAAABwO6L4BAAoU/bu3StPT0+5ubnpmWee0erVq3XHHXcU2DciIkJvvPGGfvvtN+Xl5embb77RqlWrlJycLEk6d+6ccnNz5e/vb7Gcv7+/UlJSCs0RExMjHx8f8ysoKMg6OwgAAAA4GIpPAIAyJSQkRLt379aWLVs0bNgwRUZGav/+/QX2nTt3roKDg9WwYUO5urpqxIgRGjJkiJycbn14jI6OVlpamvn1+++/3/I6AQAAAEdE8QkAUKa4urqqfv36atWqlWJiYtS8eXPNnTu3wL6+vr5as2aNMjIydOLECR08eFCenp6qW7euJKlq1apydnbW6dOnLZY7ffq0AgICCs3h5uYmb29vixcAAABwO6L4BAAo0/Ly8pSVlVVoH3d3d1WvXl1Xr17VZ599pp49e0q6Vshq1aqVEhISLNaXkJBww3mkAAAAAFgqZ+8AAABYS3R0tLp27aqaNWvq4sWLWrZsmdavX6/4+HhJ0qBBg1S9enXFxMRIkrZs2aKTJ0+qRYsWOnnypCZPnqy8vDy99NJL5nVGRUUpMjJSrVu3Vps2bTRnzhxlZGRoyJAhdtlHAAAAwNFQfAIAlBlnzpzRoEGDlJycLB8fHzVr1kzx8fHq1KmTJCkpKcliPqfMzExNmDBBR48elaenp7p166YPP/xQFStWNPfp06ePzp49q4kTJyolJUUtWrTQunXr8k1CDgAAAKBgJsMwDHuHcHTp6eny8fFRWloac3oAKPU4ZtkH3zsAR8Ixyz743gE4kuIcs5jzCQAAAAAAADZD8QkAAAAAAAA2Q/EJAAAAAAAANkPxCQAAAAAAADZD8QkAAAAAAAA2Q/EJAAAAAAAANkPxCQAAAAAAADZD8QkAAAAAAAA2Q/EJAAAAAAAANkPxCQAAAAAAADZD8QkAAAAAAAA2Q/EJAAAAAAAANkPxCQAAAAAAADZD8QkAAAAAAAA2Q/EJAAAAAAAANkPxCQAAAAAAADZD8QkAAAAAAAA2Q/EJAAAAAAAANkPxCQAAAAAAADZD8QkAAAAAAAA2Q/EJAAAAAAAANkPxCQAAAAAAADZD8QkAAAAAAAA2Q/EJAAAAAAAANkPxCQAAAAAAADZTrjidDxw4oLi4OP344486ceKELl++LF9fX7Vs2VIRERF66KGH5ObmZqusAAAAAAAAcDBFuvJp586dCg8PV8uWLbVx40aFhobqueee06uvvqoBAwbIMAyNHz9egYGBmjlzprKysmydGwCAfGJjY9WsWTN5e3vL29tbYWFh+uqrrwpdZs6cOQoJCZGHh4eCgoL0/PPPKzMz0/z55MmTZTKZLF4NGza09a4AAAAAZUaRik8PPfSQevfurZSUFCUkJCgmJkYjR47UE088oZdeeklLly7VsWPH9MUXX2jXrl2aPXu2zQK/8847ql27ttzd3RUaGqqtW7cW2n/FihVq2LCh3N3d1bRpU61du9b8WU5OjsaOHaumTZuqQoUKCgwM1KBBg3Tq1Cmb5QcA2E6NGjU0Y8YM7dixQ9u3b1eHDh3Us2dP/fLLLwX2X7ZsmcaNG6dJkybpwIEDWrBggZYvX66XX37Zol/jxo2VnJxsfm3cuLEkdgcAYEOcVwBAySlS8enXX3/Vs88+q4oVKxbaLywsTHFxcXrxxRetkS2f5cuXKyoqSpMmTdLOnTvVvHlzRURE6MyZMwX237Rpk/r166ehQ4dq165d6tWrl3r16qV9+/ZJki5fvqydO3fqlVde0c6dO7Vq1SodOnRIDzzwgE3yAwBsq0ePHurWrZuCg4PVoEEDTZs2TZ6entq8eXOB/Tdt2qR7771Xjz32mGrXrq3OnTurX79++U5AypUrp4CAAPOratWqJbE7AAAb4bwCAEqWyTAMw94hiio0NFR33XWX3n77bUlSXl6egoKCNHLkSI0bNy5f/z59+igjI0NffPGFue3uu+9WixYtNG/evAK3sW3bNrVp00YnTpxQzZo1i5QrPT1dPj4+SktLk7e3903sGQCUnNvlmJWbm6sVK1YoMjJSu3bt0h133JGvz7Jly/Tss8/q66+/Vps2bXT06FF1795dAwcONF/9NHnyZM2aNUs+Pj5yd3dXWFiYYmJi/nGMyMrKsrgNPT09XUFBQWX+ewdQNpT1sYLzCgC4dcU5ZlntaXfbt2/XDz/8YK3V5ZOdna0dO3YoPDzc3Obk5KTw8HAlJiYWuExiYqJFf0mKiIi4YX9JSktLk8lkKvQqr6ysLKWnp1u8AAClw969e+Xp6Sk3Nzc988wzWr16dYGFJ0l67LHHNHXqVLVt21YuLi6qV6+e2rdvb3HbXWhoqBYvXqx169YpNjZWx44d03333aeLFy8WmiMmJkY+Pj7mV1BQkFX3EwBwczivAICSZ7Xi08CBA3X//fdba3X5nDt3Trm5ufL397do9/f3V0pKSoHLpKSkFKt/Zmamxo4dq379+hVateOEAgBKr5CQEO3evVtbtmzRsGHDFBkZqf379xfYd/369Zo+fbreffdd820SX375pV599VVzn65du+qRRx5Rs2bNFBERobVr1yo1NVWffvppoTmio6OVlpZmfv3+++9W3U8AwM3hvAIASl45a60oISFBOTk51lpdicvJydGjjz4qwzAUGxtbaN/o6GhFRUWZ31+/lQIAYH+urq6qX7++JKlVq1batm2b5s6dq/feey9f31deeUUDBw7UE088IUlq2rSpMjIy9NRTT2n8+PFycsr/G03FihXVoEEDHT58uNAcbm5ucnNzs8IeAQAcCecVAJCf1YpPgYGB1lpVgapWrSpnZ2edPn3aov306dMKCAgocJmAgIAi9b8+QJw4cULffffdP96ryAkFADiOvLw8i7mX/ury5cv5CkzOzs6SpBtNiXjp0iUdOXJEAwcOtG5QAECJ4LwCAEreTd92d+bMGe3bt0979uyxeNmKq6urWrVqpYSEBHNbXl6eEhISFBYWVuAyYWFhFv0l6ZtvvrHof32A+O233/Ttt9+qSpUqttkBAIDNRUdH64cfftDx48e1d+9eRUdHa/369erfv78kadCgQYqOjjb379Gjh2JjYxUXF6djx47pm2++0SuvvKIePXqYi1BjxozRhg0bdPz4cW3atEkPPvignJ2d1a9fP7vsIwDg1nBeAQAlr9hXPu3YsUORkZE6cOCA+Vdhk8kkwzBkMpmUm5tr9ZDXRUVFKTIyUq1bt1abNm00Z84cZWRkaMiQIZKunVRUr15dMTExkqTRo0erXbt2mj17trp37664uDht375d8+fPl3RtgHj44Ye1c+dOffHFF8rNzTXft125cmW5urrabF8AANZ35swZDRo0SMnJyfLx8VGzZs0UHx+vTp06SZKSkpIsrnSaMGGCTCaTJkyYoJMnT8rX11c9evTQtGnTzH3++OMP9evXT+fPn5evr6/atm2rzZs3y9fXt8T3DwBgHZxXAEDJMhk3uq/gBpo3b6569epp7Nix8vf3l8lksvi8Vq1aVg34d2+//bZmzZqllJQUtWjRQm+++aZCQ0MlSe3bt1ft2rW1ePFic/8VK1ZowoQJOn78uIKDg/X666+rW7dukqTjx4+rTp06BW7n+++/V/v27YuUiUeiAnAkpe2YdezYMf344486ceKELl++LF9fX7Vs2VJhYWFyd3e3dzyrKW3fOwAU5nY4ZnFeAQC3pjjHrGIXn7y8vLRr1y7zZK5gkADgWErLMevjjz/W3LlztX37dvn7+yswMFAeHh66cOGCjhw5Ind3d/Xv319jx461+Q8bJaG0fO8AUBQcs+yD7x2AIynOMavYt9117NhRP//8M8UnAMBNa9mypVxdXTV48GB99tln+Z7sk5WVpcTERMXFxal169Z699139cgjj9gpLQAAAIBbUezi0wcffKDIyEjt27dPTZo0kYuLi8XnDzzwgNXCAQDKphkzZigiIuKGn7u5ual9+/Zq3769pk2bpuPHj5dcOAAAAABWVeziU2Jion766Sd99dVX+T6z9YTjAICyobDC099VqVKFJwYBAAAADszpn7tYGjlypAYMGKDk5GTl5eVZvCg8AQCKq0OHDpoyZUq+9j///FMdOnSwQyIAAAAA1lTsK5/Onz+v559/Xv7+/rbIAwC4zaxfv1579+7Vrl279PHHH6tChQqSpOzsbG3YsMHO6QAAAADcqmJf+dS7d299//33tsgCALhNffvtt0pJSdHdd9/N/E4AAABAGVPsK58aNGig6Ohobdy4UU2bNs034fioUaOsFg4AcHuoVq2aNmzYoCFDhuiuu+7SihUr1KhRI3vHAgAAAGAFN/W0O09PT23YsCHf7RAmk4niEwCgWEwmk6RrT7hbtmyZXnvtNXXp0kVjx461czIAAAAA1lCs4pNhGFq/fr38/Pzk4eFhq0wAgNuIYRgW7ydMmKBGjRopMjLSTokAAAAAWFOxi0/BwcH65ZdfFBwcbKtMAIDbyLFjx1S1alWLtoceekghISHasWOHnVIBAAAAsJZiFZ+cnJwUHBys8+fPU3wCAFhFrVq1Cmxv0qSJmjRpUsJpAAAlIS8vTxs2bNCPP/6oEydO6PLly/L19VXLli0VHh6uoKAge0cEAFhRsed8mjFjhl588UXFxsZyUgAAuGm9e/cuUr9Vq1bZOAkAoKRcuXJFs2fPVmxsrC5cuKAWLVooMDBQHh4eOnz4sNasWaMnn3xSnTt31sSJE3X33XfbOzIAwAqKXXwaNGiQLl++rObNm8vV1TXf3E8XLlywWjgAQNnl4+Nj8X7ZsmXq0aOHvLy87JQIAGBrDRo0UFhYmN5//3116tQp35OzJenEiRNatmyZ+vbtq/Hjx+vJJ5+0Q1IAgDWZjL/P9PoPlixZUujnt+MEsenp6fLx8VFaWpq8vb3tHQcAClVaj1leXl76+eefVbduXXtHsYnS+r0DQEFsdcw6cOCAGjVqVKS+OTk5SkpKUr169ay2/dKOsQKAIynOMavYVz7djsUlAAAAALeuqIUnSXJxcbmtCk8AUJYVu/gkSbm5uVqzZo0OHDggSWrcuLEeeOABOTs7WzUcAAAAgLJjz549Re7brFkzGyYBAJSkYhefDh8+rG7duunkyZMKCQmRJMXExCgoKEhffvklv04AAAAAKFCLFi1kMplkGIZMJlOhfXNzc0soFQDA1opdfBo1apTq1aunzZs3q3LlypKk8+fPa8CAARo1apS+/PJLq4cEAJQ9n3/+ucX7vLw8JSQkaN++fRbtDzzwQEnGAgDY0LFjx8x/3rVrl8aMGaMXX3xRYWFhkqTExETNnj1br7/+ur0iAgBsoNgTjleoUEGbN29W06ZNLdp//vln3Xvvvbp06ZJVAzoCJgYE4EhKyzHLycnpH/uYTKYy88t3afneAaAoSuKY1aZNG02ePFndunWzaF+7dq1eeeUV7dixwybbLc0YKwA4EptOOO7m5qaLFy/ma7906ZJcXV2LuzoAwG0qLy/P3hEAAHa0d+9e1alTJ197nTp1tH//fjskAgDYyj//7Pw3//73v/XUU09py5YtMgxDhmFo8+bNeuaZZ7g1AgAAAECRNGrUSDExMcrOzja3ZWdnKyYmplhPxQMAlH7FvvLpzTffVGRkpMLCwuTi4iJJunr1qh544AHNnTvX6gEBAGXP5s2bdffddxep7+XLl3Xs2DE1btzYxqkAACVp3rx56tGjh2rUqGF+st2ePXtkMpn0v//7v3ZOBwCwpmIXnypWrKj/+Z//0W+//aaDBw9KuvarRf369a0eDgBQNg0cOFB169bVE088oW7duqlChQr5+uzfv18fffSRFi1apJkzZ1J8AoAypk2bNjp69Kg+/vhj83lFnz599NhjjxU4LgAAHFexi0/XBQcHKzg42JpZAAC3if379ys2NlYTJkzQY489pgYNGigwMFDu7u76888/dfDgQV26dEkPPvigvv7663wPuQAAlA0VKlTQU089Ze8YAAAbK3bxKTc3V4sXL1ZCQoLOnDmTb8LY7777zmrhAABlk4uLi0aNGqVRo0Zp+/bt2rhxo06cOKErV66oefPmev7553X//fercuXKxVpvbGysYmNjdfz4cUlS48aNNXHiRHXt2vWGy8yZM0exsbFKSkpS1apV9fDDDysmJkbu7u7mPu+8845mzZqllJQUNW/eXG+99ZbatGlzU/sOALC0f/9+JSUlWcz9JIn5ZAGgDCl28Wn06NFavHixunfvriZNmshkMtkiFwDgNtG6dWu1bt3aKuuqUaOGZsyYoeDgYBmGoSVLlqhnz57atWtXgbftLVu2TOPGjdPChQt1zz336Ndff9XgwYNlMpn0xhtvSJKWL1+uqKgozZs3T6GhoZozZ44iIiJ06NAh+fn5WSU3ANyOjh49qgcffFB79+6VyWSSYRiSZD6/yM3NtWc8AIAVmYzrR/kiqlq1qpYuXapu3brZKpPDSU9Pl4+Pj9LS0uTt7W3vOABQqNvtmFW5cmXNmjVLQ4cOzffZiBEjdODAASUkJJjbXnjhBW3ZskUbN26UJIWGhuquu+7S22+/LUnKy8tTUFCQRo4cqXHjxhU5x+32vQNwbCVxzOrRo4ecnZ31wQcfqE6dOtq6davOnz+vF154Qf/5z39033332WS7pRljBQBHUpxjllNxV+7q6srk4gCAUi83N1dxcXHKyMhQWFhYgX3uuece7dixQ1u3bpV07Vf4tWvXmn9gyc7O1o4dOxQeHm5exsnJSeHh4UpMTLT9TgBAGZaYmKipU6eqatWqcnJykpOTk9q2bauYmBiNGjXK3vEAAFZU7NvuXnjhBc2dO1dvv/02t9wBAEqdvXv3KiwsTJmZmfL09NTq1at1xx13FNj3scce07lz59S2bVsZhqGrV6/qmWee0csvvyxJOnfunHJzc+Xv72+xnL+/v/nJTDeSlZWlrKws8/v09PRb3DMAKFtyc3Pl5eUl6drdFadOnVJISIhq1aqlQ4cO2TkdAMCail182rhxo77//nt99dVXaty4sVxcXCw+X7VqldXCAQBQXCEhIdq9e7fS0tK0cuVKRUZGasOGDQUWoNavX6/p06fr3XffVWhoqA4fPqzRo0fr1Vdf1SuvvHJLOWJiYjRlypRbWgcAlGVNmjTRzz//rDp16ig0NFSvv/66XF1dNX/+fNWtW9fe8QAAVlTs4lPFihX14IMP2iILAOA2dPToUaueZPz19vBWrVpp27Ztmjt3rt577718fV955RUNHDhQTzzxhCSpadOmysjI0FNPPaXx48eratWqcnZ21unTpy2WO336tAICAgrNER0draioKPP79PR0BQUF3eruAUCZMWHCBGVkZEiSpk6dqn//+9+67777VKVKFS1fvtzO6QAA1lTs4tOiRYtskQMAcJuqX7++2rVrp6FDh+rhhx+Wu7u7Vdefl5dncfvbX12+fFlOTpbTHzo7O0uSDMOQq6urWrVqpYSEBPXq1cu8voSEBI0YMaLQ7bq5ucnNze3WdwAAyqiIiAjzn+vXr6+DBw/qwoULqlSpEtN7AEAZU+wJxwEAsKadO3eqWbNmioqKUkBAgJ5++mnzBODFFR0drR9++EHHjx/X3r17FR0drfXr16t///6SpEGDBik6Otrcv0ePHoqNjVVcXJyOHTumb775Rq+88or5CUySFBUVpffff19LlizRgQMHNGzYMGVkZGjIkCG3vvMAcJvKyclRuXLltG/fPov2ypUrU3gCgDKoSFc+denSRZMnT9bdd99daL+LFy/q3Xfflaenp4YPH26VgACAsq1FixaaO3euZs+erc8//1yLFy9W27Zt1aBBAz3++OMaOHCgfH19i7SuM2fOaNCgQUpOTpaPj4+aNWum+Ph4derUSZKUlJRkcaXThAkTZDKZNGHCBJ08eVK+vr7q0aOHpk2bZu7Tp08fnT17VhMnTlRKSopatGihdevW5ZuEHABQdC4uLqpZs6Zyc3PtHQUAUAJMhmEY/9RpwYIFmjhxonx8fNSjRw+1bt1agYGBcnd3159//qn9+/dr48aNWrt2rbp3765Zs2apZs2aJZG/VEhPT5ePj4/S0tLk7e1t7zgAUKjSfszKysrSu+++q+joaGVnZ8vV1VWPPvqoZs6cqWrVqtk73k0r7d87APxVSRyzFixYoFWrVunDDz9U5cqVbbINR8NYAcCRFOeYVaQrn4YOHaoBAwZoxYoVWr58uebPn6+0tDRJkslk0h133KGIiAht27ZNjRo1uvU9AADcdrZv366FCxcqLi5OFSpU0JgxYzR06FD98ccfmjJlinr27HnTt+MBAEqft99+W4cPH1ZgYKBq1aqlChUqWHy+c+dOOyUDAFhbkSccd3Nz04ABAzRgwABJUlpamq5cuaIqVarIxcXFZgEBAGXbG2+8oUWLFunQoUPq1q2bli5dqm7duplvj6tTp44WL16s2rVr2zcoAMCqrj/IAQBQ9hX7aXfX+fj4yMfHx5pZAAC3odjYWD3++OMaPHjwDW+r8/Pz04IFC0o4GQDAliZNmmTvCACAEnLTxScAAKzht99++8c+rq6uioyMLIE0AABbMgyDp9kBwG3I6Z+7AABgO4sWLdKKFSvyta9YsUJLliyxQyIAgK00btxYcXFxys7OLrTfb7/9pmHDhmnGjBkllAwAYEtc+QQAsKuYmBi99957+dr9/Pz01FNPccUTAJQhb731lsaOHatnn31WnTp1uuFTtH/55ReNGDFCw4YNs3dkAIAVUHwCANhVUlKS6tSpk6+9Vq1aSkpKskMiAICtdOzYUdu3b9fGjRu1fPlyffzxxzpx4oSuXLmiqlWrqmXLlho0aJD69++vSpUq2TsuAMBKbqr4lJqaqpUrV+rIkSN68cUXVblyZe3cuVP+/v6qXr26tTMCAMowPz8/7dmzJ9/T7H7++WdVqVLFPqEAADbVtm1btW3b1t4xAAAlpNjFpz179ig8PFw+Pj46fvy4nnzySVWuXFmrVq1SUlKSli5daoucAIAyql+/fho1apS8vLz0r3/9S5K0YcMGjR49Wn379rVzOgAAAAC3qtgTjkdFRWnw4MH67bff5O7ubm7v1q2bfvjhB6uGK8g777yj2rVry93dXaGhodq6dWuh/VesWKGGDRvK3d1dTZs21dq1ay0+NwxDEydOVLVq1eTh4aHw8PAiPXkJAGAdr776qkJDQ9WxY0d5eHjIw8NDnTt3VocOHTR9+nR7xwMAlFGcVwBAySl28Wnbtm16+umn87VXr15dKSkpVgl1I8uXL1dUVJQmTZqknTt3qnnz5oqIiNCZM2cK7L9p0yb169dPQ4cO1a5du9SrVy/16tVL+/btM/d5/fXX9eabb2revHnasmWLKlSooIiICGVmZtp0XwAA17i6umr58uU6ePCgPv74Y61atUpHjhzRwoUL5erqau94AIAyiPMKAChZJsMwjOIs4Ofnp/j4eLVs2VJeXl76+eefVbduXX3zzTd6/PHH9fvvv9sqq0JDQ3XXXXfp7bffliTl5eUpKChII0eO1Lhx4/L179OnjzIyMvTFF1+Y2+6++261aNFC8+bNk2EYCgwM1AsvvKAxY8ZIktLS0uTv76/FixcX+XaP9PR0+fj4KC0tTd7e3lbYUwCwHY5Z9sH3DsCRlPVjFucVAHDrinPMKvacTw888ICmTp2qTz/9VJJkMpmUlJSksWPH6qGHHrq5xEWQnZ2tHTt2KDo62tzm5OSk8PBwJSYmFrhMYmKioqKiLNoiIiK0Zs0aSdKxY8eUkpKi8PBw8+c+Pj4KDQ1VYmKizeYaMfLydOXyRZusG8Dtx6O8l0xOxb6QtdTIzc3V4sWLlZCQoDNnzigvL8/i8++++85OyezLMAxdycm1dwwAZYSHi7NMJpO9Y5QKZeq8grECgBXZcqwodvFp9uzZevjhh+Xn56crV66oXbt2SklJUVhYmKZNm2aLjJKkc+fOKTc3V/7+/hbt/v7+OnjwYIHLpKSkFNj/+u2B1/+3sD4FycrKUlZWlvl9enp60XdE0pXLF1X+PzWLtQwA3MjlMUkq7+lj7xg3bfTo0Vq8eLG6d++uJk2acHL0/13JydUdE+PtHQNAGbF/aoTKu97Ug65t6siRI1q0aJGOHDmiuXPnys/PT1999ZVq1qypxo0b22SbZeq8grECgBXZcqwo9lp9fHz0zTffaOPGjdqzZ48uXbqkO++806LKX9bFxMRoypQp9o4BAGVCXFycPv30U3Xr1s3eUQAAJWjDhg3q2rWr7r33Xv3www+aNm2a/Pz89PPPP2vBggVauXKlvSPaHOcVAG4XN13Satu2rdq2bWvNLIWqWrWqnJ2ddfr0aYv206dPKyAgoMBlAgICCu1//X9Pnz6tatWqWfRp0aLFDbNER0dbXHabnp6uoKCgIu+LR3kvXR6TVOT+AFAYj/Je9o5wS1xdXVW/fn17xyh1PFyctX9qhL1jACgjPFyc7R0hn3Hjxum1115TVFSUvLz+byzr0KGDeS4mWyhT5xWMFQCsyJZjRZGKT2+++WaRVzhq1KibDlMYV1dXtWrVSgkJCerVq5ekaxMDJiQkaMSIEQUuExYWpoSEBD333HPmtm+++UZhYWGSpDp16iggIEAJCQnmQSE9PV1btmzRsGHDbpjFzc1Nbm5uN70vJicnh75FBgCs6YUXXtDcuXP19ttvc8vdX5hMplJ5iwwAWMvevXu1bNmyfO1+fn46d+6czbZbps4rGCsAOIgiHan++9//Wrw/e/asLl++rIoVK0qSUlNTVb58efn5+dms+CRJUVFRioyMVOvWrdWmTRvNmTNHGRkZGjJkiCRp0KBBql69umJiYiRdm0ekXbt2mj17trp37664uDht375d8+fPl3TtYP3cc8/ptddeU3BwsOrUqaNXXnlFgYGB5oEIAGBbGzdu1Pfff6+vvvpKjRs3louLi8Xnq1atslMyAIAtVaxYUcnJyapTp45F+65du1S9enWbbpvzCgAoWUUqPh07dsz852XLlundd9/VggULFBISIkk6dOiQnnzyST399NO2Sfn/9enTR2fPntXEiROVkpKiFi1aaN26deaJ/ZKSkuT0lyc+3XPPPVq2bJkmTJigl19+WcHBwVqzZo2aNGli7vPSSy8pIyNDTz31lFJTU9W2bVutW7dO7u7uNt0XAMA1FStW1IMPPmjvGACAEta3b1+NHTtWK1askMlkUl5enn766SeNGTNGgwYNsum2Oa8AgJJlMgzDKM4C9erV08qVK9WyZUuL9h07dujhhx+2KFTdLtLT0+Xj46O0tDR5e3vbOw4AFIpjln3wvQNwJCVxzMrOztbw4cO1ePFi5ebmqly5csrNzdVjjz2mxYsXy9m59M1TZWuMFQAcSXGOWcW+QTg5OVlXr17N156bm5tvEj4AAIri6tWrWr9+vY4cOaLHHntMXl5eOnXqlLy9veXp6WnveAAAG3B1ddX777+viRMnau/evbp06ZJatmyp4OBge0cDAFhZsYtPHTt21NNPP60PPvhAd955p6RrVz0NGzZM4eHhVg8IACjbTpw4oS5duigpKUlZWVnq1KmTvLy8NHPmTGVlZWnevHn2jggAsKGgoCAFBQUpNzdXe/fu1Z9//qlKlSrZOxYAwIqc/rmLpYULFyogIECtW7c2P52hTZs28vf31wcffGCLjACAMmz06NFq3bq1/vzzT3l4eJjbH3zwQSUkJNgxGQDAlp577jktWLBA0rW7KNq1a6c777xTQUFBWr9+vX3DAQCsqthXPvn6+mrt2rX69ddfdfDgQUlSw4YN1aBBA6uHAwCUfT/++KM2bdokV1dXi/batWvr5MmTdkoFALC1lStXasCAAZKk//3f/9XRo0d18OBBffjhhxo/frx++uknOycEAFhLsYtP1zVo0ICCEwDgluXl5Sk3Nzdf+x9//CEvLy87JAIAlIRz584pICBAkrR27Vo9+uijatCggR5//HHNnTvXzukAANZU7OLT448/XujnCxcuvOkwAIDbT+fOnTVnzhzNnz9fkmQymXTp0iVNmjRJ3bp1s3M6AICt+Pv7a//+/apWrZrWrVun2NhYSdLly5dvyyfdAUBZVuw5n/7880+L15kzZ/Tdd99p1apVSk1NtUFEAEBZNnv2bP3000+64447lJmZqccee8x8y93MmTOLta7Y2Fg1a9ZM3t7e8vb2VlhYmL766qsb9m/fvr1MJlO+V/fu3c19Bg8enO/zLl263PT+AgCuGTJkiB599FE1adJEJpPJ/PCiLVu2qGHDhnZOBwCwpmJf+bR69ep8bXl5eRo2bJjq1atnlVAAgNtHjRo19PPPPysuLk579uzRpUuXNHToUPXv399iAvKirmvGjBkKDg6WYRhasmSJevbsqV27dqlx48b5+q9atUrZ2dnm9+fPn1fz5s31yCOPWPTr0qWLFi1aZH7v5uZWzL0EAPzd5MmT1aRJE/3+++965JFHzMdWZ2dnjRs3zs7pAADWZDIMw7DGig4dOqT27dsrOTnZGqtzKOnp6fLx8VFaWpq8vb3tHQcACnW7HbMqV66sWbNmaejQof/Yd86cOZo4caKSk5NVoUIFSdeufEpNTdWaNWtuKcft9r0DcGwcs+yD7x2AIynOMeumJxz/uyNHjujq1avWWh0A4DaxdOnSQj8fNGjQTa03NzdXK1asUEZGhsLCwoq0zIIFC9S3b19z4em69evXy8/PT5UqVVKHDh302muvqUqVKoWuKysrS1lZWeb36enpxd8JACjjMjIytGHDBiUlJVlciSpJo0aNslMqAIC1Fbv4FBUVZfHeMAwlJyfryy+/VGRkpNWCAQBuD6NHj7Z4n5OTo8uXL8vV1VXly5cvdvFp7969CgsLU2Zmpjw9PbV69Wrdcccd/7jc1q1btW/fPi1YsMCivUuXLurdu7fq1KmjI0eO6OWXX1bXrl2VmJhY6IS4MTExmjJlSrGyA8DtZNeuXerWrZsuX76sjIwMVa5cWefOnVP58uXl5+dH8QkAypBi33Z3//33W7x3cnKSr6+vOnTooMcff1zlylntYiqHweWxAByJIxyzfvvtNw0bNkwvvviiIiIiirVsdna2kpKSlJaWppUrV+qDDz7Qhg0b/rEA9fTTTysxMVF79uwptN/Ro0dVr149ffvtt+rYseMN+xV05VNQUFCp/t4B4LqSGCvat2+vBg0aaN68efLx8dHPP/8sFxcXDRgwQKNHj1bv3r1tst3SzBHGaAC4zqa33X3//fc3HQwAgKIIDg7WjBkzNGDAAB08eLBYy7q6uqp+/fqSpFatWmnbtm2aO3eu3nvvvRsuk5GRobi4OE2dOvUf11+3bl1VrVpVhw8fLrT45ObmxsTkAFCI3bt367333pOTk5OcnZ2VlZWlunXr6vXXX1dkZORtWXwCgLLKqbgLdOjQQampqfna09PT1aFDB2tkAgBA5cqV06lTp255PXl5eRZXIBVkxYoVysrK0oABA/5xfX/88YfOnz+vatWq3XI2ALidubi4yMnp2umIn5+fkpKSJEk+Pj76/fff7RkNAGBlxb7yaf369fkmA5SkzMxM/fjjj1YJBQC4fXz++ecW76/PJfj222/r3nvvLda6oqOj1bVrV9WsWVMXL17UsmXLtH79esXHx0u6Nnl59erVFRMTY7HcggUL1KtXr3yTiF+6dElTpkzRQw89pICAAB05ckQvvfSS6tevX+zbAQEAllq2bKlt27YpODhY7dq108SJE3Xu3Dl9+OGHatKkib3jAQCsqMjFp7/OgbF//36lpKSY3+fm5mrdunWqXr26ddMBAMq8Xr16Wbw3mUzmuQRnz55drHWdOXNGgwYNUnJysnx8fNSsWTPFx8erU6dOkqSkpCTzr+zXHTp0SBs3btTXX3+db33Ozs7as2ePlixZotTUVAUGBqpz58569dVXuaUOAG7R9OnTdfHiRUnStGnTNGjQIA0bNkzBwcFauHChndMBAKypyBOOOzk5yWQySbr2q/TfeXh46K233tLjjz9u3YQOgIkBATgSjln2wfcOwJFwzLIPvncAjsQmE44fO3ZMhmGobt262rp1q3x9fc2fubq6ys/Pr9BHTgMAAAAAAOD2U+TiU61atSRdm7gVAABriYqKKnLfN954w4ZJAAAl6fTp0xozZowSEhJ05syZfHdX5Obm2ikZAMDailR8+vzzz9W1a1e5uLjkmxj27x544AGrBAMA3B527dqlXbt2KScnRyEhIZKkX3/9Vc7OzrrzzjvN/a7f+g0AKBsGDx6spKQkvfLKK6pWrRrHeQAow4pUfOrVq5dSUlLk5+eXb2LYvzKZTPxCAQAolh49esjLy0tLlixRpUqVJEl//vmnhgwZovvuu08vvPCCnRMCAGxh48aN+vHHH9WiRQt7RwEA2FiRik9/vdWO2+4AANY0e/Zsff311+bCkyRVqlRJr732mjp37kzxCQDKqKCgoAIfZAQAKHuc/rkLAAC2k56errNnz+ZrP3v2rPkR3ACAsmfOnDkaN26cjh8/bu8oAAAbK9KVT2+++WaRVzhq1KibDgMAuP08+OCDGjJkiGbPnq02bdpIkrZs2aIXX3xRvXv3tnM6AIA1VapUyWJup4yMDNWrV0/ly5eXi4uLRd8LFy6UdDwAgI0Uqfj03//+t0grM5lMFJ8AAMUyb948jRkzRo899phycnIkSeXKldPQoUM1a9YsO6cDAFjTnDlz7B0BAGAHJoMbrW9Zenq6fHx8lJaWJm9vb3vHAYBCldZjVkZGho4cOSJJqlevnipUqGDnRNZVWr93ACgIxyz74HsH4EiKc8y6pTmfDMNgkkAAgFUkJycrOTlZwcHBqlChAuMLAJRReXl5mjlzpu69917dddddGjdunK5cuWLvWAAAG7qp4tOCBQvUpEkTubu7y93dXU2aNNEHH3xg7WwAgNvA+fPn1bFjRzVo0EDdunVTcnKyJGno0KE86Q4AyqBp06bp5Zdflqenp6pXr665c+dq+PDh9o4FALChYhefJk6cqNGjR6tHjx5asWKFVqxYoR49euj555/XxIkTbZERAFCGPf/883JxcVFSUpLKly9vbu/Tp4/WrVtnx2QAAFtYunSp3n33XcXHx2vNmjX63//9X3388cfKy8uzdzQAgI0UacLxv4qNjdX777+vfv36mdseeOABNWvWTCNHjtTUqVOtGhAAULZ9/fXXio+PV40aNSzag4ODdeLECTulAgDYSlJSkrp162Z+Hx4eLpPJpFOnTuUbCwAAZUOxr3zKyclR69at87W3atVKV69etUooAMDtIyMjw+KKp+suXLggNzc3OyQCANjS1atX5e7ubtHm4uJifuIpAKDsKfaVTwMHDlRsbKzeeOMNi/b58+erf//+VgsGALg93HfffVq6dKleffVVSZLJZFJeXp5ef/113X///XZOBwCwNsMwNHjwYIsfGDIzM/XMM89YPOl01apV9ogHALCBYhefpGsTjn/99de6++67JUlbtmxRUlKSBg0apKioKHO/vxeoAAD4u9dff10dO3bU9u3blZ2drZdeekm//PKLLly4oJ9++sne8QAAVhYZGZmvbcCAAXZIAgAoKcUuPu3bt0933nmnJOnIkSOSpKpVq6pq1arat2+fuZ/JZLJSRABAWdakSRP9+uuvevvtt+Xl5aVLly6pd+/eGj58uKpVq2bveAAAK1u0aJG9IwAASlixi0/ff/+9LXIAAG5DOTk56tKli+bNm6fx48fbOw4AAAAAGyj2hOMAAFiLi4uL9uzZY+8YAAAAAGyo2Fc+ZWZm6q233tL333+vM2fOKC8vz+LznTt3Wi0cAKDsGzBggBYsWKAZM2bYOwoAAAAAGyh28Wno0KH6+uuv9fDDD6tNmzbM7QQAuCVXr17VwoUL9e2336pVq1YWTzqSeHgFAAAA4OiKXXz64osvtHbtWt177722yAMAuM389UEWv/76q8Vn/MABAAAAOL5iF5+qV68uLy8vW2QBANxGjh49qjp16vAgCwAAAKCMK/aE47Nnz9bYsWN14sQJW+QBANwmgoODdfbsWfP7Pn366PTp03ZMBAAAAMAWil18at26tTIzM1W3bl15eXmpcuXKFi8AAIrCMAyL92vXrlVGRoad0gAAAACwlWLfdtevXz+dPHlS06dPl7+/P/NxAAAAAAAA4IaKXXzatGmTEhMT1bx5c1vkAQDcJkwmU74fMG71B43Y2FjFxsbq+PHjkqTGjRtr4sSJ6tq1a4H927dvrw0bNuRr79atm7788ktJ167QmjRpkt5//32lpqbq3nvvVWxsrIKDg28pKwAAAHC7KPZtdw0bNtSVK1dskaVQFy5cUP/+/eXt7a2KFStq6NChunTpUqHLZGZmavjw4apSpYo8PT310EMPWcwn8vPPP6tfv34KCgqSh4eHGjVqpLlz59p6VwAAulbUGTx4sHr37q3evXsrMzNTzzzzjPn99Vdx1KhRQzNmzNCOHTu0fft2dejQQT179tQvv/xSYP9Vq1YpOTnZ/Nq3b5+cnZ31yCOPmPu8/vrrevPNNzVv3jxt2bJFFSpUUEREhDIzM29p/wEA9sF5BQCUvGJf+TRjxgy98MILmjZtmpo2bSoXFxeLz729va0W7q/69++v5ORkffPNN8rJydGQIUP01FNPadmyZTdc5vnnn9eXX36pFStWyMfHRyNGjFDv3r31008/SZJ27NghPz8/ffTRRwoKCtKmTZv01FNPydnZWSNGjLDJfgAAromMjLR4P2DAgFteZ48ePSzeT5s2TbGxsdq8ebMaN26cr//f5yqMi4tT+fLlzcUnwzA0Z84cTZgwQT179pQkLV26VP7+/lqzZo369u17y5kBACWL8woAKHkm4+8zvv4DJ6drF0v9/dYIwzBkMpmUm5trvXT/34EDB3THHXdo27Ztat26tSRp3bp16tatm/744w8FBgbmWyYtLU2+vr5atmyZHn74YUnSwYMH1ahRIyUmJuruu+8ucFvDhw/XgQMH9N133xU5X3p6unx8fJSWlmaz4hsAWMvtcszKzc3VihUrFBkZqV27dumOO+74x2WaNm2qsLAwzZ8/X5J09OhR1atXT7t27VKLFi3M/dq1a6cWLVoU+qt2VlaWsrKyzO/T09MVFBRU5r93AGVDWR0rOK8AAOspzjGr2Fc+ff/99zcd7GYlJiaqYsWK5gFCksLDw+Xk5KQtW7bowQcfzLfMjh07lJOTo/DwcHNbw4YNVbNmzUIHibS0NJ7aBwAObO/evQoLC1NmZqY8PT21evXqIhWetm7dqn379mnBggXmtpSUFEmSv7+/RV9/f3/zZzcSExOjKVOm3MQeAABshfMKALCPYhef2rVrd8PP9u3bd0thbiQlJUV+fn4WbeXKlVPlypVv+I//lJQUubq6qmLFihbthZ0wbNq0ScuXLzdPMnsjBf2aDQAoHUJCQrR7926lpaVp5cqVioyM1IYNG/6xALVgwQI1bdpUbdq0sUqO6OhoRUVFmd9fv/IJAGA/nFcAgH0Ue8Lxv7t48aLmz5+vNm3aFPsJeOPGjTM/7ehGr4MHD95qxCLZt2+fevbsqUmTJqlz586F9o2JiZGPj4/5xckEAJQerq6uql+/vlq1aqWYmBg1b978Hyd9zcjIUFxcnIYOHWrRHhAQIEkWk8pef3/9sxtxc3OTt7e3xQsAYBucVwBA6VbsK5+u++GHH7RgwQJ99tlnCgwMVO/evfXOO+8Uax0vvPCCBg8eXGifunXrKiAgQGfOnLFov3r1qi5cuHDDf/wHBAQoOztbqampFr9SFHTCsH//fnXs2FFPPfWUJkyY8I+5+TUbABxHXl6exa/KBVmxYoWysrLyTXpep04dBQQEKCEhwTznU3p6urZs2aJhw4bZKjIAoJg4rwCA0q1YxaeUlBQtXrxYCxYsUHp6uh599FFlZWVpzZo1RZpP4+98fX3l6+v7j/3CwsKUmpqqHTt2qFWrVpKk7777Tnl5eQoNDS1wmVatWsnFxUUJCQl66KGHJEmHDh1SUlKSwsLCzP1++eUXdejQQZGRkZo2bVqRcru5ucnNza1IfQEAJSc6Olpdu3ZVzZo1dfHiRS1btkzr169XfHy8JGnQoEGqXr26YmJiLJZbsGCBevXqpSpVqli0m0wmPffcc3rttdcUHBysOnXq6JVXXlFgYKB69epVUrsFAPgHnFcAQOlW5OJTjx499MMPP6h79+6aM2eOunTpImdnZ82bN8+W+SRJjRo1UpcuXfTkk09q3rx5ysnJ0YgRI9S3b1/zEylOnjypjh07aunSpWrTpo18fHw0dOhQRUVFqXLlyvL29tbIkSMVFhZmnhRw37596tChgyIiIhQVFWW+Z9vZ2blIgxcAoHQ5c+aMBg0apOTkZPn4+KhZs2aKj49Xp06dJElJSUnmp7Zed+jQIW3cuFFff/11get86aWXlJGRoaeeekqpqalq27at1q1bJ3d3d5vvDwDAujivAAD7KHLx6auvvtKoUaM0bNgwBQcH2zJTgT7++GONGDFCHTt2lJOTkx566CG9+eab5s9zcnJ06NAhXb582dz23//+19w3KytLERERevfdd82fr1y5UmfPntVHH32kjz76yNxeq1YtHT9+vET2CwBgPX99Ul1B1q9fn68tJCREhmHccBmTyaSpU6dq6tSptxoPAFAKcF4BACXPZBT2L+6/2Lx5sxYsWKDly5erUaNGGjhwoPr27atq1arp559/vqnb7sqK9PR0+fj4KC0tjQllAZR6HLPsg+8dgCPhmGUffO8AHElxjllFftrd3Xffrffff1/Jycl6+umnFRcXp8DAQOXl5embb77RxYsXbzk4AAAAAAAAypYiF5+uq1Chgh5//HFt3LhRe/fu1QsvvKAZM2bIz89PDzzwgC0yAgAAAAAAwEEVu/j0VyEhIXr99df1xx9/6JNPPrFWJgAAAAAAAJQRt1R8us7Z2Vm9evXS559/bo3VAQAAAAAAoIywSvEJAAAAAAAAKAjFJwAAAAAAANgMxScAAAAAAADYDMUnAAAAAAAA2AzFJwAAAAAAANgMxScAAAAAAADYDMUnAAAAAAAA2AzFJwAAAAAAANgMxScAAAAAAADYDMUnAAAAAAAA2AzFJwAAAAAAANgMxScAAAAAAADYDMUnAAAAAAAA2AzFJwAAAAAAANgMxScAAAAAAADYDMUnAAAAAAAA2AzFJwAAAAAAANgMxScAAAAAAADYDMUnAAAAAAAA2AzFJwAAAAAAANgMxScAQJkRGxurZs2aydvbW97e3goLC9NXX31V6DKpqakaPny4qlWrJjc3NzVo0EBr1641fz558mSZTCaLV8OGDW29KwAAAECZUc7eAQAAsJYaNWpoxowZCg4OlmEYWrJkiXr27Kldu3apcePG+fpnZ2erU6dO8vPz08qVK1W9enWdOHFCFStWtOjXuHFjffvtt+b35coxfAIAAABFxb+eAQBlRo8ePSzeT5s2TbGxsdq8eXOBxaeFCxfqwoUL2rRpk1xcXCRJtWvXztevXLlyCggIsElmAAAAoKzjtjsAQJmUm5uruLg4ZWRkKCwsrMA+n3/+ucLCwjR8+HD5+/urSZMmmj59unJzcy36/fbbbwoMDFTdunXVv39/JSUllcQuAAAAAGUCVz4BAMqUvXv3KiwsTJmZmfL09NTq1at1xx13FNj36NGj+u6779S/f3+tXbtWhw8f1rPPPqucnBxNmjRJkhQaGqrFixcrJCREycnJmjJliu677z7t27dPXl5eN8yRlZWlrKws8/v09HTr7igAAADgICg+AQDKlJCQEO3evVtpaWlauXKlIiMjtWHDhgILUHl5efLz89P8+fPl7OysVq1a6eTJk5o1a5a5+NS1a1dz/2bNmik0NFS1atXSp59+qqFDh94wR0xMjKZMmWL9HQQAAAAcDLfdAQDKFFdXV9WvX1+tWrVSTEyMmjdvrrlz5xbYt1q1amrQoIGcnZ3NbY0aNVJKSoqys7MLXKZixYpq0KCBDh8+XGiO6OhopaWlmV+///77ze8UAAAA4MAoPgEAyrS8vDyL29/+6t5779Xhw4eVl5dnbvv1119VrVo1ubq6FrjMpUuXdOTIEVWrVq3Q7bq5ucnb29viBQAAANyOKD4BAMqM6Oho/fDDDzp+/Lj27t2r6OhorV+/Xv3795ckDRo0SNHR0eb+w4YN04ULFzR69Gj9+uuv+vLLLzV9+nQNHz7c3GfMmDHasGGDjh8/rk2bNunBBx+Us7Oz+vXrV+L7BwAAADgi5nwCAJQZZ86c0aBBg5ScnCwfHx81a9ZM8fHx6tSpkyQpKSlJTk7/97tLUFCQ4uPj9fzzz6tZs2aqXr26Ro8erbFjx5r7/PHHH+rXr5/Onz8vX19ftW3bVps3b5avr2+J7x8AAADgiEyGYRj2DuHo0tPT5ePjo7S0NG6rAFDqccyyD753AI6EY5Z98L0DcCTFOWZx2x0AAAAAAABshuITAAAAAAAAbIbiEwAAAAAAAGyG4hMAAAAAAABshuITAAAAAAAAbIbiEwAAAAAAAGyG4hMAAAAAAABshuITAAAAAAAAbIbiEwAAAAAAAGyG4hMAAAAAAABsxmGKTxcuXFD//v3l7e2tihUraujQobp06VKhy2RmZmr48OGqUqWKPD099dBDD+n06dMF9j1//rxq1Kghk8mk1NRUG+wBAAAAAHvjvAIASp7DFJ/69++vX375Rd98842++OIL/fDDD3rqqacKXeb555/X//7v/2rFihXasGGDTp06pd69exfYd+jQoWrWrJktogMAAAAoJTivAICS5xDFpwMHDmjdunX64IMPFBoaqrZt2+qtt95SXFycTp06VeAyaWlpWrBggd544w116NBBrVq10qJFi7Rp0yZt3rzZom9sbKxSU1M1ZsyYktgdAAAAAHbAeQUA2IdDFJ8SExNVsWJFtW7d2twWHh4uJycnbdmypcBlduzYoZycHIWHh5vbGjZsqJo1ayoxMdHctn//fk2dOlVLly6Vk1PRvo6srCylp6dbvAAAAACUbpxXAIB9OETxKSUlRX5+fhZt5cqVU+XKlZWSknLDZVxdXVWxYkWLdn9/f/MyWVlZ6tevn2bNmqWaNWsWOU9MTIx8fHzMr6CgoOLtEAAAAIASx3kFANiHXYtP48aNk8lkKvR18OBBm20/OjpajRo10oABA4q9XFpamvn1+++/2yghAAAAgH/CeQUAlG7l7LnxF154QYMHDy60T926dRUQEKAzZ85YtF+9elUXLlxQQEBAgcsFBAQoOztbqampFr9SnD592rzMd999p71792rlypWSJMMwJElVq1bV+PHjNWXKlALX7ebmJjc3t6LsIgAAAAAb47wCAEo3uxaffH195evr+4/9wsLClJqaqh07dqhVq1aSrh3g8/LyFBoaWuAyrVq1kouLixISEvTQQw9Jkg4dOqSkpCSFhYVJkj777DNduXLFvMy2bdv0+OOP68cff1S9evVudfcAAAAAlADOKwCgdLNr8amoGjVqpC5duujJJ5/UvHnzlJOToxEjRqhv374KDAyUJJ08eVIdO3bU0qVL1aZNG/n4+Gjo0KGKiopS5cqV5e3trZEjRyosLEx33323JOUbCM6dO2fe3t/v6QYAAADg2DivAAD7cIjikyR9/PHHGjFihDp27CgnJyc99NBDevPNN82f5+Tk6NChQ7p8+bK57b///a+5b1ZWliIiIvTuu+/aIz4AAACAUoDzCgAoeSbj+g3JuGnp6eny8fFRWlqavL297R0HAArFMcs++N4BOBKOWfbB9w7AkRTnmGXXp90BAAAAAACgbKP4BAAAAAAAAJuh+AQAAAAAAACbofgEAAAAAAAAm6H4BAAAAAAAAJuh+AQAKDNiY2PVrFkzeXt7y9vbW2FhYfrqq68KXSY1NVXDhw9XtWrV5ObmpgYNGmjt2rUWfd555x3Vrl1b7u7uCg0N1datW225GwAAAECZUs7eAQAAsJYaNWpoxowZCg4OlmEYWrJkiXr27Kldu3apcePG+fpnZ2erU6dO8vPz08qVK1W9enWdOHFCFStWNPdZvny5oqKiNG/ePIWGhmrOnDmKiIjQoUOH5OfnV4J7BwAAADgmik8AgDKjR48eFu+nTZum2NhYbd68ucDi08KFC3XhwgVt2rRJLi4ukqTatWtb9HnjjTf05JNPasiQIZKkefPm6csvv9TChQs1btw42+wIAAAAUIZw2x0AoEzKzc1VXFycMjIyFBYWVmCfzz//XGFhYRo+fLj8/f3VpEkTTZ8+Xbm5uZKuXRm1Y8cOhYeHm5dxcnJSeHi4EhMTC91+VlaW0tPTLV4AAADA7YjiEwCgTNm7d688PT3l5uamZ555RqtXr9Ydd9xRYN+jR49q5cqVys3N1dq1a/XKK69o9uzZeu211yRJ586dU25urvz9/S2W8/f3V0pKSqE5YmJi5OPjY34FBQVZZwcBAAAAB0PxCQBQpoSEhGj37t3asmWLhg0bpsjISO3fv7/Avnl5efLz89P8+fPVqlUr9enTR+PHj9e8efNuOUd0dLTS0tLMr99///2W1wkAAAA4IuZ8AgCUKa6urqpfv74kqVWrVtq2bZvmzp2r9957L1/fatWqycXFRc7Ozua2Ro0aKSUlRdnZ2apataqcnZ11+vRpi+VOnz6tgICAQnO4ubnJzc3NCnsEAAAAODaufAIAlGl5eXnKysoq8LN7771Xhw8fVl5enrnt119/VbVq1eTq6ipXV1e1atVKCQkJFutLSEi44TxSAAAAACxRfAIAlBnR0dH64YcfdPz4ce3du1fR0dFav369+vfvL0kaNGiQoqOjzf2HDRumCxcuaPTo0fr111/15Zdfavr06Ro+fLi5T1RUlN5//30tWbJEBw4c0LBhw5SRkWF++h0AAACAwnHbHQCgzDhz5owGDRqk5ORk+fj4qFmzZoqPj1enTp0kSUlJSXJy+r/fXYKCghQfH6/nn39ezZo1U/Xq1TV69GiNHTvW3KdPnz46e/asJk6cqJSUFLVo0ULr1q3LNwk5AAAAgIKZDMMw7B3C0aWnp8vHx0dpaWny9va2dxwAKBTHLPvgewfgSDhm2QffOwBHUpxjFrfdAQAAAAAAwGYoPgEAAAAAAMBmKD4BAAAAAADAZig+AQAAAAAAwGYoPgEAAAAAAMBmKD4BAAAAAADAZig+AQAAAAAAwGYoPgEAAAAAAMBmKD4BAAAAAADAZig+AQAAAAAAwGYoPgEAAAAAAMBmKD4BAAAAAADAZig+AQAAAAAAwGYoPgEAAAAAAMBmKD4BAAAAAADAZig+AQAAAAAAwGYoPgEAAAAAAMBmKD4BAAAAAADAZsrZO0BZYBiGJCk9Pd3OSQDgn10/Vl0/dqFkMFYAcCSMFfbBWAHAkRRnrKD4ZAUXL16UJAUFBdk5CQAU3cWLF+Xj42PvGLcNxgoAjoixomQxVgBwREUZK0wGP2fcsry8PJ06dUpeXl4ymUxFWiY9PV1BQUH6/fff5e3tbeOE1uFomR0tr+R4mR0tr0Rm6dovExcvXlRgYKCcnLj7uqQwVpROjpZXcrzMjpZXIrPEWGEvjBWlk6PllRwvs6PllcgsFW+s4MonK3ByclKNGjVuallvb2+H+Q/1OkfL7Gh5JcfL7Gh5JTLzK3bJY6wo3Rwtr+R4mR0tr0RmxoqSx1hRujlaXsnxMjtaXonMRR0r+BkDAAAAAAAANkPxCQAAAAAAADZD8clO3NzcNGnSJLm5udk7SpE5WmZHyys5XmZHyyuRGY7FEf+/d7TMjpZXcrzMjpZXIjMciyP+f+9omR0tr+R4mR0tr0Tm4mLCcQAAAAAAANgMVz4BAAAAAADAZig+AQAAAAAAwGYoPgEAAAAAAMBmKD7Z0DvvvKPatWvL3d1doaGh2rp1a6H9V6xYoYYNG8rd3V1NmzbV2rVrSyjp/ylO5vfff1/33XefKlWqpEqVKik8PPwf99HaivsdXxcXFyeTyaRevXrZNmABips5NTVVw4cPV7Vq1eTm5qYGDRqU6H8bxc07Z84chYSEyMPDQ0FBQXr++eeVmZlZQmmlH374QT169FBgYKBMJpPWrFnzj8usX79ed955p9zc3FS/fn0tXrzY5jmvK27eVatWqVOnTvL19ZW3t7fCwsIUHx9fMmFhE4wVtsdYYXuMFbbFWAHGCttjrLA9xgrbKvVjhQGbiIuLM1xdXY2FCxcav/zyi/Hkk08aFStWNE6fPl1g/59++slwdnY2Xn/9dWP//v3GhAkTDBcXF2Pv3r2lNvNjjz1mvPPOO8auXbuMAwcOGIMHDzZ8fHyMP/74o1Tmve7YsWNG9erVjfvuu8/o2bNniWS9rriZs7KyjNatWxvdunUzNm7caBw7dsxYv369sXv37lKZ9+OPPzbc3NyMjz/+2Dh27JgRHx9vVKtWzXj++edLJK9hGMbatWuN8ePHG6tWrTIkGatXry60/9GjR43y5csbUVFRxv79+4233nrLcHZ2NtatW1cq844ePdqYOXOmsXXrVuPXX381oqOjDRcXF2Pnzp0lkhfWxVhR+vJex1hhu7yMFbbPy1hRtjBWlL681zFW2C4vY4Xt85b0WEHxyUbatGljDB8+3Pw+NzfXCAwMNGJiYgrs/+ijjxrdu3e3aAsNDTWefvppm+b8q+Jm/rurV68aXl5expIlS2wV0cLN5L169apxzz33GB988IERGRlZ4oNEcTPHxsYadevWNbKzs0sqooXi5h0+fLjRoUMHi7aoqCjj3nvvtWnOGynKQfell14yGjdubNHWp08fIyIiwobJClaUvAW54447jClTplg/EGyOscL2GCtsj7GiZDFW3H4YK2yPscL2GCtKVmkcK7jtzgays7O1Y8cOhYeHm9ucnJwUHh6uxMTEApdJTEy06C9JERERN+xvbTeT+e8uX76snJwcVa5c2VYxzW4279SpU+Xn56ehQ4faPOPf3Uzmzz//XGFhYRo+fLj8/f3VpEkTTZ8+Xbm5uaUy7z333KMdO3aYL6E9evSo1q5dq27dutk8782y99+9W5WXl6eLFy+WyN87WBdjBWNFQRgrSid7/927VYwVjouxgrGiIIwVpZO9/+7dKluPFeVsstbb3Llz55Sbmyt/f3+Ldn9/fx08eLDAZVJSUgrsn5KSYrOcf3Uzmf9u7NixCgwMzPcXzhZuJu/GjRu1YMEC7d692+b5CnIzmY8eParvvvtO/fv319q1a3X48GE9++yzysnJ0aRJk0pd3scee0znzp1T27ZtZRiGrl69qmeeeUYvv/yyTbPeihv93UtPT9eVK1fk4eFhp2RF85///EeXLl3So48+au8oKCbGCsaKgjBWlE6MFbAXxgrGioIwVpROjBWF48onWMWMGTMUFxen1atXy93d3d5x8rl48aIGDhyo999/X1WrVrV3nCLLy8uTn5+f5s+fr1atWqlPnz4aP3685s2bZ+9oBVq/fr2mT5+ud999Vzt37tSqVav05Zdf6tVXX7V3tDJp2bJlmjJlij799FP5+fnZOw7wjxgrbIOxAoVhrICjYaywDcYKFKYkxgqufLKBqlWrytnZWadPn7ZoP336tAICAgpcJiAgoFj9re1mMl/3n//8RzNmzNC3336rZs2a2TKmWXHzHjlyRMePH1ePHj3MbXl5eZKkcuXK6dChQ6pXr16pyixJ1apVk4uLi5ydnc1tjRo1UkpKirKzs+Xq6lqq8r7yyisaOHCgnnjiCUlS06ZNlZGRoaeeekrjx4+Xk1Ppq3ff6O+et7d3qf51Ii4uTk888YRWrFhRIr8KwvoYK2yPsYKxwloYK2AvjBW2x1jBWGEtjBWFK33/j5UBrq6uatWqlRISEsxteXl5SkhIUFhYWIHLhIWFWfSXpG+++eaG/a3tZjJL0uuvv65XX31V69atU+vWrUsiqqTi523YsKH27t2r3bt3m18PPPCA7r//fu3evVtBQUGlLrMk3XvvvTp8+LB5QJOkX3/9VdWqVbPpAHGzeS9fvpxvILg+wBmGYbuwt8Def/duxieffKIhQ4bok08+Uffu3e0dBzeJscL2GCsYK6zF3n/3bgZjRdnAWGF7jBWMFdZi7797N6NExwqbTGMOIy4uznBzczMWL15s7N+/33jqqaeMihUrGikpKYZhGMbAgQONcePGmfv/9NNPRrly5Yz//Oc/xoEDB4xJkybZ5ZGoxck8Y8YMw9XV1Vi5cqWRnJxsfl28eLFU5v07ezyVoriZk5KSDC8vL2PEiBHGoUOHjC+++MLw8/MzXnvttVKZd9KkSYaXl5fxySefGEePHjW+/vpro169esajjz5aInkNwzAuXrxo7Nq1y9i1a5chyXjjjTeMXbt2GSdOnDAMwzDGjRtnDBw40Nz/+iNRX3zxRePAgQPGO++8U6KPRC1u3o8//tgoV66c8c4771j8vUtNTS2RvLAuxorSl/fvGCusn5exwvZ5GSvKFsaK0pf37xgrrJ+XscL2eUt6rKD4ZENvvfWWUbNmTcPV1dVo06aNsXnzZvNn7dq1MyIjIy36f/rpp0aDBg0MV1dXo3HjxsaXX35ZwomLl7lWrVqGpHyvSZMmlcq8f2ePQcIwip9506ZNRmhoqOHm5mbUrVvXmDZtmnH16tVSmTcnJ8eYPHmyUa9ePcPd3d0ICgoynn32WePPP/8ssbzff/99gf9dXs8ZGRlptGvXLt8yLVq0MFxdXY26desaixYtKrV527VrV2h/OB7GitKV9+8YK6yfl7HC9nkZK8oexorSlffvGCusn5exwvZ5S3qsMBlGKb1mDQAAAAAAAA6POZ8AAAAAAABgMxSfAAAAAAAAYDMUnwAAAAAAAGAzFJ8AAAAAAABgMxSfAAAAAAAAYDMUnwAAAAAAAGAzFJ8AAAAAAABgMxSfAAAAAAAAYDMUnwArGzx4sHr16mW37Q8cOFDTp08vUt++fftq9uzZNk4ESfrhhx/Uo0cPBQYGymQyac2aNTbdXu3atWUymfK9hg8fbtPtAigaxgoUhLECwF8xVqAgjjpWlLNRPqBMMplMhX4+adIkzZ07V4ZhlFAiSz///LPWrl2r2NjYIvWfMGGC/vWvf+mJJ56Qj4+PjdPd3jIyMtS8eXM9/vjj6t27t823t23bNuXm5prf79u3T506ddIjjzxi820DtzvGCtwsxgrg9sFYgZvlqGOFybDXf82AA0pJSTH/efny5Zo4caIOHTpkbvP09JSnp6c9okmSnnjiCZUrV07z5s0r8jJ33XWXBg8ezK+cJchkMmn16tUWv2RlZWVp/Pjx+uSTT5SamqomTZpo5syZat++vVW2+dxzz+mLL77Qb7/99o//2AFwaxgrYA2MFUDZxlgBa3CksYLb7oBiCAgIML98fHxkMpks2jw9PfNdHtu+fXuNHDlSzz33nCpVqiR/f3+9//77ysjI0JAhQ+Tl5aX69evrq6++stjWvn371LVrV3l6esrf318DBw7UuXPnbpgtNzdXK1euVI8ePSza3333XQUHB8vd3V3+/v56+OGHLT7v0aOH4uLibv3LwS0ZMWKEEhMTFRcXpz179uiRRx5Rly5d9Ntvv93yurOzs/XRRx/p8ccf52QCKAGMFbAVxgqg7GCsgK2U1rGC4hNQApYsWaKqVatq69atGjlypIYNG6ZHHnlE99xzj3bu3KnOnTtr4MCBunz5siQpNTVVHTp0UMuWLbV9+3atW7dOp0+f1qOPPnrDbezZs0dpaWlq3bq1uW379u0aNWqUpk6dqkOHDmndunX617/+ZbFcmzZttHXrVmVlZdlm5/GPkpKStGjRIq1YsUL33Xef6tWrpzFjxqht27ZatGjRLa9/zZo1Sk1N1eDBg289LACbYaxAYRgrAEiMFShcqR4rDAA3ZdGiRYaPj0++9sjISKNnz57m9+3atTPatm1rfn/16lWjQoUKxsCBA81tycnJhiQjMTHRMAzDePXVV43OnTtbrPf33383JBmHDh0qMM/q1asNZ2dnIy8vz9z22WefGd7e3kZ6evoN9+Pnn382JBnHjx8vdH9hPZKM1atXm99/8cUXhiSjQoUKFq9y5coZjz76qGEYhnHgwAFDUqGvsWPHFri9zp07G//+979LYtcA/A1jBW4WYwVw+2CswM1ypLGCCceBEtCsWTPzn52dnVWlShU1bdrU3Obv7y9JOnPmjKRrE/x9//33Bd7nfeTIETVo0CBf+5UrV+Tm5mZx+WOnTp1Uq1Yt1a1bV126dFGXLl304IMPqnz58uY+Hh4ekmT+dQQl79KlS3J2dtaOHTvk7Oxs8dn1/wbq1q2rAwcOFLqeKlWq5Gs7ceKEvv32W61atcp6gQHYBGMFCsNYAUBirEDhSvNYQfEJKAEuLi4W700mk0Xb9QN7Xl6epGsHjR49emjmzJn51lWtWrUCt1G1alVdvnxZ2dnZcnV1lSR5eXlp586dWr9+vb7++mtNnDhRkydP1rZt21SxYkVJ0oULFyRJvr6+t7aTuGktW7ZUbm6uzpw5o/vuu6/APq6urmrYsGGx171o0SL5+fmpe/futxoTgI0xVqAwjBUAJMYKFK40jxUUn4BS6M4779Rnn32m2rVrq1y5ov01bdGihSRp//795j9LUrly5RQeHq7w8HBNmjRJFStW1HfffWd+LOe+fftUo0YNVa1a1dq7gb+4dOmSDh8+bH5/7Ngx7d69W5UrV1aDBg3Uv39/DRo0SLNnz1bLli119uxZJSQkqFmzZjd9gM/Ly9OiRYsUGRlZ5P+OADgOxoqyh7ECgLUxVpQ9jjpWMOE4UAoNHz5cFy5cUL9+/bRt2zYdOXJE8fHxGjJkiHJzcwtcxtfXV3feeac2btxobvviiy/05ptvavfu3Tpx4oSWLl2qvLw8hYSEmPv8+OOP6ty5s8336Xa3fft2tWzZUi1btpQkRUVFqWXLlpo4caKka78kDBo0SC+88IJCQkLUq1cvbdu2TTVr1rzpbX777bdKSkrS448/bpV9AFC6MFaUPYwVAKyNsaLscdSxgp83gFIoMDBQP/30k8aOHavOnTsrKytLtWrVUpcuXeTkdOOa8RNPPKGlS5dqxIgRkqSKFStq1apVmjx5sjIzMxUcHKxPPvlEjRs3liRlZmZqzZo1WrduXYns1+2sffv2ujYnYMFcXFw0ZcoUTZkyxWrb7Ny5c6HbBODYGCvKHsYKANbGWFH2OOpYYTIYbYAy48qVKwoJCdHy5csVFhb2j/1jY2O1evVqff311yWQDgBQGjBWAAD+CWMFrI3b7oAyxMPDQ0uXLtW5c+eK1N/FxUVvvfWWjVMBAEoTxgoAwD9hrIC1ceUTAAAAAAAAbIYrnwAAAAAAAGAzFJ8AAAAAAABgMxSfAAAAAAAAYDMUnwAAAAAAAGAzFJ8AAAAAAABgMxSfAAAAAAAAYDMUnwAAAAAAAGAzFJ8AAAAAAABgMxSfAAAAAAAAYDMUnwAAAAAAAGAz/w+7jMlRszXLeAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "data = cz_pulse_sequence.to_time_trace()\n", + "for frame_id in data.amplitudes:\n", + " f=plt.figure(figsize=(12,4))\n", + " plt.subplot(1,3,1)\n", + " plt.plot(data.amplitudes[frame_id].times(), np.real(data.amplitudes[frame_id].values()), label=\"Real\")\n", + " plt.plot(data.amplitudes[frame_id].times(), np.imag(data.amplitudes[frame_id].values()), label=\"Imag\")\n", + " plt.xlabel(\"Time (s)\")\n", + " plt.ylabel(\"Amplitude (norm.)\")\n", + " plt.legend(loc=\"upper right\")\n", + "\n", + " plt.subplot(1,3,2)\n", + " plt.title(frame_id)\n", + " plt.plot(data.frequencies[frame_id].times(), data.frequencies[frame_id].values())\n", + " plt.xlabel(\"Time (s)\")\n", + " plt.ylabel(\"Frequency (Hz)\")\n", + "\n", + " plt.subplot(1,3,3)\n", + " plt.plot(data.phases[frame_id].times(), data.phases[frame_id].values())\n", + " plt.xlabel(\"Time (s)\")\n", + " plt.ylabel(\"Phase (rad)\")\n", + " f.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, we can build our own implementation of the Bell circuit using a `pulse_gate` instruction that encapsulates the pulse sequence into a gate instructions. \n", + "\n", + "Pulse gates are strictly defined by the pulse sequence and the associated frames. The qubit or a list of qubits provided to `pulse_gate` are for representational purposes." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : | 0 | 1 | 2 | 3 |4 | 5 | 6 | 7 | 8 |\n", + " \n", + "q10 : -Rz(3.14)-Rx(1.57)-Rz(1.57)-Rx(-1.57)-PG--------------------------------------\n", + " | \n", + "q113 : -Rz(3.14)-Rx(1.57)-Rz(1.57)-Rx(-1.57)-PG-Rz(3.14)-Rx(1.57)-Rz(1.57)-Rx(-1.57)-\n", + "\n", + "T : | 0 | 1 | 2 | 3 |4 | 5 | 6 | 7 | 8 |\n" + ] + } + ], + "source": [ + "bell_pair_with_pulse = (\n", + " Circuit()\n", + " .rigetti_native_h(a)\n", + " .rigetti_native_h(b)\n", + " .pulse_gate([a, b], cz_pulse_sequence)\n", + " .rigetti_native_h(b)\n", + ")\n", + "print(bell_pair_with_pulse)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Circuits with embedded pulse sequences can be executed normally.\n", + "\n", + "As pulse sequences are inherently hardware dependent since the timings and strength of the waveforms are tuned to be optimal for the frame they are played on, you can only use pulse gates with the flag `disable_qubit_rewiring=True` that prevents any compiler to remap qubits. Amazon Braket SDK toggles automatically the flag when it detects that pulse sequences are embedded in a circuit." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Population')" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAiJElEQVR4nO3df1RUdf7H8deAMiMi+IMNwlAUXH9kQsLCYl/TWgyPpqvZOdZuiZiWW6TunPaU7Qppu2dMjeiHm/1YtZ+rx5NZe3LdU5PaWqirSD82dasjQSqImSJoYMx8/+g0LQsqDAMXPzwf58w5cu+dO+/pnuzZvXcGm9fr9QoAAMAQQVYPAAAAEEjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACM0sXqAdqbx+PRkSNH1KNHD9lsNqvHAQAAzeD1enX69GnFxMQoKOjC52Y6XdwcOXJEsbGxVo8BAAD8UFZWpiuuuOKC23S6uOnRo4ek7//hhIeHWzwNAABojqqqKsXGxvr+O34hnS5ufrgUFR4eTtwAAHCJac4tJdxQDAAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKF2sHgAAgLYQ98BbVo/QaZUsnWjp63PmBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFG6WD2AaeIeeMvqETqtkqUTrR4BANABcOYGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGCUDhE3K1euVFxcnBwOh9LS0rR79+5mPW/dunWy2WyaMmVK2w4IAAAuGZbHzfr16+V0OpWXl6eioiIlJiYqMzNTx44du+DzSkpKdN9992n06NHtNCkAALgUWB43+fn5mjNnjrKzszVs2DCtWrVKoaGhWr169XmfU19fr1//+tdavHixBg4ceMH919bWqqqqqsEDAACYy9K4qaur0969e5WRkeFbFhQUpIyMDBUWFp73eUuWLNFll12mO+6446Kv4XK5FBER4XvExsYGZHYAANAxWRo3x48fV319vaKiohosj4qKUnl5eZPP2bFjh/7yl7/oueeea9ZrLFy4UKdOnfI9ysrKWj03AADouLpYPUBLnD59Wrfffruee+45RUZGNus5drtddru9jScDAAAdhaVxExkZqeDgYFVUVDRYXlFRoejo6Ebbf/HFFyopKdGkSZN8yzwejySpS5cuOnjwoOLj49t2aAAA0KFZelkqJCREycnJcrvdvmUej0dut1vp6emNth8yZIg+/vhjFRcX+x6TJ0/Wddddp+LiYu6nAQAA1l+WcjqdysrKUkpKilJTU1VQUKCamhplZ2dLkmbMmKG+ffvK5XLJ4XBo+PDhDZ7fs2dPSWq0HAAAdE6Wx8306dNVWVmp3NxclZeXKykpSVu2bPHdZFxaWqqgIMs/sQ4AAC4RlseNJOXk5CgnJ6fJddu2bbvgc9euXRv4gQAAwCWLUyIAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMEqHiJuVK1cqLi5ODodDaWlp2r1793m33bhxo1JSUtSzZ091795dSUlJeumll9pxWgAA0JFZHjfr16+X0+lUXl6eioqKlJiYqMzMTB07dqzJ7Xv37q3f//73Kiws1EcffaTs7GxlZ2frH//4RztPDgAAOiLL4yY/P19z5sxRdna2hg0bplWrVik0NFSrV69ucvuxY8dq6tSpGjp0qOLj4zV//nyNGDFCO3bsaHL72tpaVVVVNXgAAABzWRo3dXV12rt3rzIyMnzLgoKClJGRocLCwos+3+v1yu126+DBg7r22mub3MblcikiIsL3iI2NDdj8AACg47E0bo4fP676+npFRUU1WB4VFaXy8vLzPu/UqVMKCwtTSEiIJk6cqCeffFLjxo1rctuFCxfq1KlTvkdZWVlA3wMAAOhYulg9gD969Oih4uJiVVdXy+12y+l0auDAgRo7dmyjbe12u+x2e/sPCQAALGFp3ERGRio4OFgVFRUNlldUVCg6Ovq8zwsKClJCQoIkKSkpSfv375fL5WoybgAAQOdi6WWpkJAQJScny+12+5Z5PB653W6lp6c3ez8ej0e1tbVtMSIAALjEWH5Zyul0KisrSykpKUpNTVVBQYFqamqUnZ0tSZoxY4b69u0rl8sl6fsbhFNSUhQfH6/a2lpt3rxZL730kp5++mkr3wYAAOggLI+b6dOnq7KyUrm5uSovL1dSUpK2bNniu8m4tLRUQUE/nmCqqanR3Xffra+++krdunXTkCFD9PLLL2v69OlWvQUAANCB2Lxer9fqIdpTVVWVIiIidOrUKYWHhwd8/3EPvBXwfaJ5SpZOtHoEAB0Ifx9bpy3+Pm7Jf78t/xI/AACAQCJuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBR/IqbiooK3X777YqJiVGXLl0UHBzc4AEAAGAVv77Eb+bMmSotLdWiRYt0+eWXy2azBXouAAAAv/gVNzt27NA///lPJSUlBXgcAACA1vHrslRsbKw62RcbAwCAS4RfcVNQUKAHHnhAJSUlAR4HAACgdfy6LDV9+nSdOXNG8fHxCg0NVdeuXRusP3HiRECGAwAAaCm/4qagoCDAYwAAAASGX3GTlZUV6DkAAAACwq+4kaT6+npt2rRJ+/fvlyRdeeWVmjx5Mt9zAwAALOVX3Hz++eeaMGGCDh8+rMGDB0uSXC6XYmNj9dZbbyk+Pj6gQwIAADSXX5+WmjdvnuLj41VWVqaioiIVFRWptLRUAwYM0Lx58wI9IwAAQLP5deZm+/bt2rlzp3r37u1b1qdPHy1dulTXXHNNwIYDAABoKb/O3Njtdp0+fbrR8urqaoWEhLR6KAAAAH/5FTc33nij7rzzTu3atUter1der1c7d+7U3LlzNXny5EDPCAAA0Gx+xc0TTzyh+Ph4paeny+FwyOFw6JprrlFCQoIef/zxQM8IAADQbH7dc9OzZ0+98cYb+uyzz3TgwAFJ0tChQ5WQkBDQ4QAAAFrK7++5kaRBgwZp0KBBgZoFAACg1ZodN06nUw8//LC6d+8up9N5wW3z8/NbPRgAAIA/mh03+/bt07lz53x/BgAA6IiaHTdbt25t8s8AAAAdiV+flpo1a1aT33NTU1OjWbNmtXooAAAAf/kVNy+88ILOnj3baPnZs2f14osvtnooAAAAf7Xo01JVVVW+L+07ffq0HA6Hb119fb02b96syy67LOBDAgAANFeL4qZnz56y2Wyy2Wz66U9/2mi9zWbT4sWLAzYcAABAS7UobrZu3Sqv16vrr79er732WoNfnBkSEqL+/fsrJiYm4EMCAAA0V4viZsyYMZKkQ4cOKTY2VkFBft2yAwAA0Gb8+obi/v37S5LOnDmj0tJS1dXVNVg/YsSI1k8GAADgB7/iprKyUtnZ2fr73//e5Pr6+vpWDQUAAOAvv64rLViwQCdPntSuXbvUrVs3bdmyRS+88IIGDRqkN998M9AzAgAANJtfZ27effddvfHGG0pJSVFQUJD69++vcePGKTw8XC6XSxMnTgz0nAAAAM3i15mbmpoa3/fZ9OrVS5WVlZKkq666SkVFRYGbDgAAoIX8ipvBgwfr4MGDkqTExEQ988wzOnz4sFatWqXLL788oAMCAAC0hF+XpebPn6+jR49KkvLy8jR+/Hi98sorCgkJ0dq1awM5HwAAQIv4FTe33Xab78/Jycn68ssvdeDAAfXr10+RkZEBGw4AAKCl/Iqb/xUaGqqRI0cGYlcAAACt0uy4cTqdzd5pfn6+X8MAAAC0VrPjZt++fc3azmaz+T0MAABAazU7brZu3dqWcwAAAAQEv/kSAAAYxa8biq+77roLXn569913/R4IAACgNfyKm6SkpAY/nzt3TsXFxfrkk0+UlZUViLkAAAD84lfcPPbYY00uf+ihh1RdXd2qgQAAAFojoPfc3HbbbVq9enUgdwkAANAiAY2bwsJCORyOQO4SAACgRfy6LHXTTTc1+Nnr9ero0aPas2ePFi1aFJDBAAAA/OFX3ERERDT4OSgoSIMHD9aSJUt0ww03BGQwAAAAf/gVN2vWrAn0HAAAAAHRql+cuWfPHu3fv1+SNGzYMCUnJwdkKAAAAH/5FTdfffWVbr31Vr3//vvq2bOnJOnkyZMaNWqU1q1bpyuuuCKQMwIAADSbX5+Wmj17ts6dO6f9+/frxIkTOnHihPbv3y+Px6PZs2cHekYAAIBm8+vMzfbt2/XBBx9o8ODBvmWDBw/Wk08+qdGjRwdsOAAAgJby68xNbGyszp0712h5fX29YmJiWj0UAACAv/yKm+XLl+vee+/Vnj17fMv27Nmj+fPna8WKFQEbDgAAoKX8uiw1c+ZMnTlzRmlpaerS5ftdfPfdd+rSpYtmzZqlWbNm+bY9ceJEYCYFAABoBr/ipqCgIMBjAAAABIZfcZOVlRXoOQAAAALC7y/xq6+v16ZNm3xf4nfllVdq8uTJCg4ODthwAAAALeVX3Hz++eeaMGGCDh8+7Ps4uMvlUmxsrN566y3Fx8cHdEgAAIDm8uvTUvPmzVN8fLzKyspUVFSkoqIilZaWasCAAZo3b16gZwQAAGg2v+Jm+/btWrZsmXr37u1b1qdPHy1dulTbt29v8f5WrlypuLg4ORwOpaWlaffu3efd9rnnntPo0aPVq1cv9erVSxkZGRfcHgAAdC5+xY3dbtfp06cbLa+urlZISEiL9rV+/Xo5nU7l5eWpqKhIiYmJyszM1LFjx5rcftu2bbr11lu1detWFRYWKjY2VjfccIMOHz7sz1sBAACG8StubrzxRt15553atWuXvF6vvF6vdu7cqblz52ry5Mkt2ld+fr7mzJmj7OxsDRs2TKtWrVJoaKhWr17d5PavvPKK7r77biUlJWnIkCF6/vnn5fF45Ha7/XkrAADAMH7FzRNPPKGEhASNGjVKDodDDodD11xzjRISEvT44483ez91dXXau3evMjIyfhwoKEgZGRkqLCxs1j7OnDmjc+fONbhE9t9qa2tVVVXV4AEAAMzVok9LeTweLV++XG+++abq6uo0ZcoUZWVlyWazaejQoUpISGjRix8/flz19fWKiopqsDwqKkoHDhxo1j7uv/9+xcTENAik/+ZyubR48eIWzQUAAC5dLTpz86c//UkPPvigwsLC1LdvX23evFmbNm3SpEmTWhw2gbB06VKtW7dOr7/+uhwOR5PbLFy4UKdOnfI9ysrK2nlKAADQnlp05ubFF1/Un//8Z911112SpHfeeUcTJ07U888/r6Cgll/hioyMVHBwsCoqKhosr6ioUHR09AWfu2LFCi1dulTvvPOORowYcd7t7Ha77HZ7i2cDAACXphYVSWlpqSZMmOD7OSMjQzabTUeOHPHrxUNCQpScnNzgZuAfbg5OT08/7/OWLVumhx9+WFu2bFFKSopfrw0AAMzUojM33333XaPLP127dtW5c+f8HsDpdCorK0spKSlKTU1VQUGBampqlJ2dLUmaMWOG+vbtK5fLJUl65JFHlJubq1dffVVxcXEqLy+XJIWFhSksLMzvOQAAgBlaFDder1czZ85scJnn22+/1dy5c9W9e3ffso0bNzZ7n9OnT1dlZaVyc3NVXl6upKQkbdmyxXeTcWlpaYNLXk8//bTq6up08803N9hPXl6eHnrooZa8HQAAYKAWxU1Tvw38tttua/UQOTk5ysnJaXLdtm3bGvxcUlLS6tcDAADmalHcrFmzpq3mAAAACAi/vsQPAACgoyJuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGsTxuVq5cqbi4ODkcDqWlpWn37t3n3fbf//63pk2bpri4ONlsNhUUFLTfoAAA4JJgadysX79eTqdTeXl5KioqUmJiojIzM3Xs2LEmtz9z5owGDhyopUuXKjo6up2nBQAAlwJL4yY/P19z5sxRdna2hg0bplWrVik0NFSrV69ucvuf/exnWr58uW655RbZ7fZ2nhYAAFwKLIuburo67d27VxkZGT8OExSkjIwMFRYWBux1amtrVVVV1eABAADMZVncHD9+XPX19YqKimqwPCoqSuXl5QF7HZfLpYiICN8jNjY2YPsGAAAdj+U3FLe1hQsX6tSpU75HWVmZ1SMBAIA21MWqF46MjFRwcLAqKioaLK+oqAjozcJ2u537cwAA6EQsO3MTEhKi5ORkud1u3zKPxyO326309HSrxgIAAJc4y87cSJLT6VRWVpZSUlKUmpqqgoIC1dTUKDs7W5I0Y8YM9e3bVy6XS9L3NyF/+umnvj8fPnxYxcXFCgsLU0JCgmXvAwAAdByWxs306dNVWVmp3NxclZeXKykpSVu2bPHdZFxaWqqgoB9PLh05ckRXX3217+cVK1ZoxYoVGjNmjLZt29be4wMAgA7I0riRpJycHOXk5DS57n+DJS4uTl6vtx2mAgAAlyrjPy0FAAA6F+IGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYJQuVg8AAFaKe+Atq0fotEqWTrR6BBiKMzcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAo/AlfkAz8EVv1uGL3gC0FGduAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGKVDxM3KlSsVFxcnh8OhtLQ07d69+4Lbb9iwQUOGDJHD4dBVV12lzZs3t9OkAACgo7M8btavXy+n06m8vDwVFRUpMTFRmZmZOnbsWJPbf/DBB7r11lt1xx13aN++fZoyZYqmTJmiTz75pJ0nBwAAHZHlcZOfn685c+YoOztbw4YN06pVqxQaGqrVq1c3uf3jjz+u8ePH63e/+52GDh2qhx9+WCNHjtRTTz3VzpMDAICOqIuVL15XV6e9e/dq4cKFvmVBQUHKyMhQYWFhk88pLCyU0+lssCwzM1ObNm1qcvva2lrV1tb6fj516pQkqaqqqpXTN81Te6ZN9ouLa6tjKnFcrdSWx1Xi2FqJY2uutji2P+zT6/VedFtL4+b48eOqr69XVFRUg+VRUVE6cOBAk88pLy9vcvvy8vImt3e5XFq8eHGj5bGxsX5OjY4qosDqCdAWOK7m4tiaqy2P7enTpxUREXHBbSyNm/awcOHCBmd6PB6PTpw4oT59+shms1k4WcdSVVWl2NhYlZWVKTw83OpxEEAcW3NxbM3EcW2a1+vV6dOnFRMTc9FtLY2byMhIBQcHq6KiosHyiooKRUdHN/mc6OjoFm1vt9tlt9sbLOvZs6f/QxsuPDycf5kMxbE1F8fWTBzXxi52xuYHlt5QHBISouTkZLndbt8yj8cjt9ut9PT0Jp+Tnp7eYHtJevvtt8+7PQAA6FwsvyzldDqVlZWllJQUpaamqqCgQDU1NcrOzpYkzZgxQ3379pXL5ZIkzZ8/X2PGjNGjjz6qiRMnat26ddqzZ4+effZZK98GAADoICyPm+nTp6uyslK5ubkqLy9XUlKStmzZ4rtpuLS0VEFBP55gGjVqlF599VX94Q9/0IMPPqhBgwZp06ZNGj58uFVvwQh2u115eXmNLuHh0sexNRfH1kwc19azeZvzmSoAAIBLhOVf4gcAABBIxA0AADAKcQMAAIxC3AAAAKMQN53QypUrFRcXJ4fDobS0NO3evdu37ttvv9U999yjPn36KCwsTNOmTWv0pYnouC50bJ999lmNHTtW4eHhstlsOnnypHWDotnee+89TZo0STExMbLZbI1+j57X61Vubq4uv/xydevWTRkZGfrss8+sGRYtcrFju3HjRt1www2+b9QvLi62ZM5LEXHTyaxfv15Op1N5eXkqKipSYmKiMjMzdezYMUnSb3/7W/3tb3/Thg0btH37dh05ckQ33XSTxVOjOS52bM+cOaPx48frwQcftHhStERNTY0SExO1cuXKJtcvW7ZMTzzxhFatWqVdu3ape/fuyszM1LffftvOk6KlLnZsa2pq9H//93965JFH2nkyA3jRqaSmpnrvuece38/19fXemJgYr8vl8p48edLbtWtX74YNG3zr9+/f75XkLSwstGJctMCFju1/27p1q1eS95tvvmnnCdFakryvv/6672ePx+ONjo72Ll++3Lfs5MmTXrvd7v3rX/9qwYTw1/8e2/926NAhryTvvn372nWmSxlnbjqRuro67d27VxkZGb5lQUFBysjIUGFhofbu3atz5841WD9kyBD169dPhYWFVoyMZrrYsYWZDh06pPLy8gbHPSIiQmlpaRx3dGrETSdy/Phx1dfX+779+QdRUVEqLy9XeXm5QkJCGv1i0R/Wo+O62LGFmX44thx3oCHiBgAAGIW46UQiIyMVHBzc6NNPFRUVio6OVnR0tOrq6hp9iuaH9ei4LnZsYaYfji3HHWiIuOlEQkJClJycLLfb7Vvm8XjkdruVnp6u5ORkde3atcH6gwcPqrS0VOnp6VaMjGa62LGFmQYMGKDo6OgGx72qqkq7du3iuKNTs/y3gqN9OZ1OZWVlKSUlRampqSooKFBNTY2ys7MVERGhO+64Q06nU71791Z4eLjuvfdepaen6+c//7nVo+MiLnRsJfnuq/r8888lSR9//LF69Oihfv36qXfv3laOjguorq72HTPp+5uIi4uL1bt3b/Xr108LFizQH//4Rw0aNEgDBgzQokWLFBMToylTplg3NJrlYsf2xIkTKi0t1ZEjRyR9/z+bknxn2nEBVn9cC+3vySef9Pbr188bEhLiTU1N9e7cudO37uzZs967777b26tXL29oaKh36tSp3qNHj1o4LVriQsc2Ly/PK6nRY82aNdYNjIv64aP7//vIysryer3ffxx80aJF3qioKK/dbvf+4he/8B48eNDaodEsFzu2a9asaXJ9Xl6epXNfCmxer9fbvjkFAADQdrjnBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAHQoVRWVuo3v/mN+vXrJ7vdrujoaGVmZur999+XJNlsNm3atKnF+42Li1NBQUFghwXQIfGLMwF0KNOmTVNdXZ1eeOEFDRw4UBUVFXK73fr666+tHg3AJYLfLQWgwzh58qR69eqlbdu2acyYMY3Wx8XF6csvv/T93L9/f5WUlOiLL76Q0+nUzp07VVNTo6FDh8rlcikjI0OSNHbsWG3fvr3Bvn74q2/Hjh1auHCh9uzZo8jISE2dOlUul0vdu3dvw3cKoC1xWQpAhxEWFqawsDBt2rRJtbW1jdb/61//kiStWbNGR48e9f1cXV2tCRMmyO12a9++fRo/frwmTZqk0tJSSdLGjRt1xRVXaMmSJTp69KiOHj0qSfriiy80fvx4TZs2TR999JHWr1+vHTt2KCcnp53eMYC2wJkbAB3Ka6+9pjlz5ujs2bMaOXKkxowZo1tuuUUjRoyQ9P09N6+//rqmTJlywf0MHz5cc+fO9YVKXFycFixYoAULFvi2mT17toKDg/XMM8/4lu3YsUNjxoxRTU2NHA5HwN8fgLbHmRsAHcq0adN05MgRvfnmmxo/fry2bdumkSNHau3ated9TnV1te677z4NHTpUPXv2VFhYmPbv3+87c3M+H374odauXes7YxQWFqbMzEx5PB4dOnQowO8MQHvhhmIAHY7D4dC4ceM0btw4LVq0SLNnz1ZeXp5mzpzZ5Pb33Xef3n77ba1YsUIJCQnq1q2bbr75ZtXV1V3wdaqrq3XXXXdp3rx5jdb169cvEG8FgAWIGwAd3rBhw3wf/+7atavq6+sbrH///fc1c+ZMTZ06VdL30VJSUtJgm5CQkEbPGzlypD799FMlJCS02ewA2h+XpQB0GF9//bWuv/56vfzyy/roo4906NAhbdiwQcuWLdMvf/lLSd/fO+N2u1VeXq5vvvlGkjRo0CBt3LhRxcXF+vDDD/WrX/1KHo+nwb7j4uL03nvv6fDhwzp+/Lgk6f7779cHH3ygnJwcFRcX67PPPtMbb7zBDcXAJY64AdBhhIWFKS0tTY899piuvfZaDR8+XIsWLdKcOXP01FNPSZIeffRRvf3224qNjdXVV18tScrPz1evXr00atQoTZo0SZmZmRo5cmSDfS9ZskQlJSWKj4/XT37yE0nSiBEjtH37dv3nP//R6NGjdfXVVys3N1cxMTHt+8YBBBSflgIAAEbhzA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACj/D/jTJmds6AcQAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nb_shots = 500\n", + "task = device.run(bell_pair_with_pulse, shots=nb_shots, disable_qubit_rewiring=True)\n", + "counts = task.result().measurement_counts\n", + "plt.bar(sorted(counts), [counts[k]/nb_shots for k in sorted(counts)])\n", + "plt.xlabel(\"State\")\n", + "plt.ylabel(\"Population\")" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Task Summary\n", + "{'arn:aws:braket:us-west-1::device/qpu/rigetti/Aspen-M-3': {'shots': 600, 'tasks': {'COMPLETED': 2}}}\n", + "Note: Charges shown are estimates based on your Amazon Braket simulator and quantum processing unit (QPU) task usage. Estimated charges shown may differ from your actual charges. Estimated charges do not factor in any discounts or credits, and you may experience additional charges based on your use of other services such as Amazon Elastic Compute Cloud (Amazon EC2).\n", + "Estimated cost to run this example: 0.810 USD\n" + ] + } + ], + "source": [ + "print(\"Task Summary\")\n", + "print(t.quantum_tasks_statistics())\n", + "print('Note: Charges shown are estimates based on your Amazon Braket simulator and quantum processing unit (QPU) task usage. Estimated charges shown may differ from your actual charges. Estimated charges do not factor in any discounts or credits, and you may experience additional charges based on your use of other services such as Amazon Elastic Compute Cloud (Amazon EC2).')\n", + "print(f\"Estimated cost to run this example: {t.qpu_tasks_cost() + t.simulator_tasks_cost():.3f} USD\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.15" + }, + "vscode": { + "interpreter": { + "hash": "e8fe7b1d737818ec041fd05b4c8bbd1804e351a931e38c7cd860a34c69554183" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/modules/1_Continue_Exploring/A_qtm_hw/pulse_control/4_Build_single_qubit_gates.ipynb b/modules/1_Continue_Exploring/A_qtm_hw/pulse_control/4_Build_single_qubit_gates.ipynb new file mode 100644 index 000000000..95797d3ce --- /dev/null +++ b/modules/1_Continue_Exploring/A_qtm_hw/pulse_control/4_Build_single_qubit_gates.ipynb @@ -0,0 +1,548 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Construct single qubit quantum gates\n", + "\n", + "A quantum circuit is a powerful representation of an algorithm specifically designed to be executed on a gated-based universal quantum processor. While the usual way to define a circuit is using common gates, gates however abstract the underlying details of how qubits operate. \n", + "\n", + "A simple example of pulse-level control is using a parametric gate like $R_X$. An $R_X(θ)$ gate rotates the quantum state of a qubit by an angle θ with respect to an X axis defined by some properties of the pulse sequence. While this is equivalent to applying a pulse of a certain duration on a specific frame used to drive the qubit, it is not the most convenient implementation of the $R_X$ gate as it requires to calibrate and carefully map between the pulse duration and the angle.\n", + "\n", + "In this tutorial, we will describe how a method to create any single-qubit gate with pulses, based on a decomposition to a product of $R_X(\\pi/2)$ and $R_Z$ gates." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# Use Braket SDK Cost Tracking to estimate the cost to run this example\n", + "from braket.tracking import Tracker\n", + "t = Tracker().start()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's first import some packages." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "\n", + "from braket.aws import AwsDevice\n", + "from braket.pulse import PulseSequence, GaussianWaveform, ConstantWaveform, DragGaussianWaveform\n", + "from braket.parametric import FreeParameter\n", + "from braket.circuits import Circuit, circuit\n", + "\n", + "## Imports for function fitting\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import scipy.optimize\n", + "from scipy.fft import fft, fftfreq" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "While we use Rigetti's Aspen M-3 device here, this notebooks can be easily adapted to OQC's Lucy device by changing the parameters of the $\\pi$/2 pulse." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "device = AwsDevice(\"arn:aws:braket:us-west-1::device/qpu/rigetti/Aspen-M-3\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We use qubit #4 and define a couple of frame to drive and readout the qubit" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "qubit = 4\n", + "drive_frame = device.frames[\"q4_rf_frame\"]\n", + "readout_frame = device.frames[\"q4_ro_rx_frame\"]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Calibrating $\\pi$/2 pulses via Rabi spectroscopy \n", + "\n", + "As single-qubit gates are rotations around the Bloch sphere, we can get the intuition that any of them can be decomposed as a series of rotations around the X axis and the Z axis. Here, Z is defined as the axis along the measurement basis and X by the direction of the driving field with a phase equals to 0. We formalize the decomposition in more details below where we will see that it is only necessary to calibrate a single operation per qubit, namely a $\\pi$/2 pulse, to build any single-qubit gate.\n", + "\n", + "Let's optimize the pulse power to realize a $\\pi$/2 pulse. First we write the short sequence that will drive the qubit with a single pulse around the X axis (since the phase is set to 0). Unlike in the [tutorial](./1_Bringup_experiments.ipynb) where we presented a $\\pi/2$-pulse calibration based on a length sweep, here we will keep the pulse length fixed to 40ns and its width to 5ns and find the best pulse amplitude." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "width = 5e-9\n", + "length = 40e-9\n", + "waveform = GaussianWaveform(length, width, FreeParameter(\"amplitude\"), False)\n", + "\n", + "rabi_sequence = ( \n", + " PulseSequence()\n", + " .play(drive_frame, waveform)\n", + " .capture_v0(readout_frame)\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We create the sweep range and execute the batch of pulse sequences" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "start_amp=0.01\n", + "end_amp=0.75\n", + "amps = np.arange(start_amp, end_amp, 0.02)\n", + "N_shots = 1000\n", + "\n", + "pulse_sequences = [rabi_sequence(amplitude=amplitude) for amplitude in amps]\n", + "\n", + "batch = device.run_batch(pulse_sequences, shots=N_shots)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We define a fit function that is the product of an exponential and a sine function as we expect the qubit to oscillate between the state $|0\\rangle$ and the state $|1\\rangle$. The projected state after measurement must display this oscillatory dynamics." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "rx(pi/2) amplitude: 0.16392 ns\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAABlGklEQVR4nO3deVwV9f7H8decw+YCKBqCihvmgvsS5pZampZh3TZbTNtv3nav/crbQrbZYmWrlplWVlZmmWlYaWomRYmUuJWIoQZuKOCCwDnz+2MCJUHZBw7v5+NBDHO+5/ieRM6Hme98voZpmiYiIiIiHsJhdwARERGRiqTiRkRERDyKihsRERHxKCpuRERExKOouBERERGPouJGREREPIqKGxEREfEoXnYHqGput5u//voLf39/DMOwO46IiIiUgGmaZGVl0bRpUxyOU5+bqXXFzV9//UVYWJjdMURERKQMduzYQfPmzU85ptYVN/7+/oD1PycgIMDmNCIiIlISmZmZhIWFFbyPn0qtK27yL0UFBASouBEREalhSjKlRBOKRURExKPYWtysWrWKqKgomjZtimEYfP7556d9zooVK+jZsye+vr60bduWOXPmVHpOERERqTlsLW4OHz5Mt27deO2110o0Pjk5mZEjRzJkyBASEhK45557uPnmm1m6dGklJxUREZGawtY5NxdccAEXXHBBicfPmDGD1q1b8/zzzwPQsWNHVq9ezYsvvsjw4cMrK6aIiIjUIDVqzk1sbCxDhw4ttG/48OHExsYW+5xjx46RmZlZ6ENEREQ8V40qbtLS0mjSpEmhfU2aNCEzM5OjR48W+ZwpU6YQGBhY8KEeNyIiIp6tRhU3ZTFp0iQyMjIKPnbs2GF3JBEREalENarPTUhICLt37y60b/fu3QQEBFCnTp0in+Pr64uvr29VxBMREZFqoEaduenbty/Lli0rtO+bb76hb9++NiUSERGR6sbW4ubQoUMkJCSQkJAAWLd6JyQkkJKSAliXlMaOHVsw/rbbbmPbtm383//9H5s3b+b111/n448/5t5777UjfiEut0ls0n4WJuwiNmk/LrdpdyQREZFaydbLUr/88gtDhgwp+HrChAkAjBs3jjlz5pCamlpQ6AC0bt2axYsXc++99/LSSy/RvHlz3nrrLdtvA49JTGXyoo2kZmQX7AsN9CM6KoIRnUNtTCYiIlL7GKZp1qpTDJmZmQQGBpKRkVEha0vFJKYyfm48//yfmL/yxfQxPVXgiIiIlFNp3r9r1Jyb6sblNpm8aONJhQ1QsG/yoo26RCUiIlKFVNyUQ1xyeqFLUf9kAqkZ2cQlp1ddKBERkVquRt0KXt3sySq+sDndOJfbJC45nT1Z2QT7+xHZOgin4/TLuIuIiMipqbgph2B/vzKN0wRkERGRyqPLUuUQ2TqI0EA/DMCXHGZ6T+V6ZwwtjTTAmlQcGmidlcmXPwH5n5ez0jKyGT83npjE1Co8AhEREc+j4qYcnA6D6KgIAPo4NjPMGc+j3u+y0ncCy33+y23OL3hyWHDB5SZNQBYREal8Km7KaUTnUKaP6cnB+m14MvcafnB1Isd00saRyv3e8zh3yRD47DZI36YJyCIiIlVAc24qwIjOoQyLuJK45KHsycomwTeX3kdX41g7G3b9Ar9+COs/IbTFvwjiPNI59f35JZ2oLCIiIidTcVNBnA6DvuGNTtjTCnqOgV1r4bunYOu3tNr+Cct8v+KJ3DF86h7I8VZ/hZV0orKIiIicTJelKluzXjDmU7jhK8wmnWloHOJ5nxm84/0MjckoNLSoCcgiIiJSOipuqkrLfhi3rmBLl4kcNX0Y5PyNJb6T6OvYABw/hxMdFaF+NyIiIuWg4qYqOb1pf9nD/DJ8AUlGGMHGQd73foqbnYsJCfDVOlQiIiIVQMWNDQb2G0irB35iT/gVOAyTh7zf54cuXzKiY2O7o4mIiNR4Km5s4vStR/CYmTB8CmBYd1Z9eBXkHLE7moiISI2m4sZOhgF9/wNXfQDedWHrt/D+FXAsy+5kIiIiNZaKm+qgw4Vw3Wfg4w9/rob3/gXZGad/noiIiJxExU110eJsGLcQ/BrAzp/hg9G6RCUiIlIGKm6qk2a9YNwi8A2ElFj4+DrIy7E7lYiISI2i4qa6Ce0K1358fA7OZ/8Gt9vuVCIiIjWGipvqqMXZMHouOLxhwwJY/pjdiURERGoMFTfVVdvzYNQr1vbqFyH+PVxuk9ik/SxM2EVs0n5cbtPejCIiItWQFs6szrpfDelJsOo53Ivu4c6vDrAkK7zg4dBAP6KjItTVWERE5AQ6c1PdDXmQ1OYX4jDzmJzzHCHsL3goLSOb8XPjiUlMtTGgiIhI9aLipppzmXD1nuvY5G7BGUYmr/u8hA+5AORflJq8aKMuUYmIiPxNxU01F5eczvZMk3/n3kuGWZeejq085DW34HETSM3IJi453b6QIiIi1YiKm2puT1Y2AClmE+7OvR2AsV7fMNzxc5HjREREajsVN9VcsL9fwfYKdw9m5F0EwNPeM2lCepHjREREajMVN9VcZOsgQgP9MP7++vm8K1nvbkVD4xAver+OEzehgX5Etg6yNaeIiEh1oeKmmnM6DKKjIgAwgFy8uDv3Do6YvvRzbuQW55dER0XgdBinfiEREZFaQsVNDTCicyjTx/QkJNC69LTNbMqjeWMB+D+f+Yxo+Jed8URERKoVNfGrIUZ0DmVYRAhxyensycomuH4fzLW7cWz6Aj4bD7d9D16+dscUERGxnYqbGsTpMOgb3uj4jqYvWauH79sCq56Dcx+yL5yIiEg1octSNVndILhwqrW9+kVIW29vHhERkWpAxU1NF3ExdLgI3Hmw8A5w5dmdSERExFYqbmo6w4CRz4NfIKQmQOyrdicSERGxlYobT+AfAsOnWNsrpsC+rfbmERERsZGKG0/R/RoIPxfysuGr+8DUQpoiIlI7qbjxFIZhTS52+kDScti0yO5EIiIitlBx40kahUP/u63tmEmQc9jePCIiIjZQceNpBkyAwBaQuRP3queJTdrPwoRdxCbtx+XWpSoREfF8auLnaXzqwoin4KMx5K1+iUnLmrLdDAUgNNCP6KgIRnQOtTmkiIhI5dGZGw8Uk9eLla6u+JDHo17vAtYZm7SMbMbPjScmMdXegCIiIpVIxY2HcblNJn+5iUfzxpFjOhns/JVzHeuA/BIHJi/aqEtUIiLisVTceJi45HRSM7JJNkN523UBAJO8PsSJC7AKnNSMbOKS021MKSIiUnlU3HiYPVnZBduv511MulmfMx27GO1cUew4ERERT6LixsME+/sVbGdSj5fyLgPgXq9PqMfRIseJiIh4EhU3HiaydRChgX4Yf3/9ges8trlDOMPI5N9eizCw7pqKbB1kZ0wREZFKo+LGwzgdBtFREQAYQC5ePJN3NQC3OJcQwn6ioyJwOoxTvIqIiEjNpeLGA43oHMr0MT0JCbQuPS119+YndwfqGDnMb79MfW5ERMSjqYmfhxrROZRhESHEJaezJyubOsemwFf/otmfC2HPJgjuaHdEERGRSqHixoM5HQZ9wxv9/VUz2D4KNn0B3z0Jo+famk1ERKSy6LJUbTLkQcCwVgz/a53daURERCqFipvaJLgDdB1tbS9/wt4sIiIilUTFTW0z+AFweMHWb+HPNXanERERqXAqbmqboNbQ4zpre9njYGqNKRGRU3G5TWKT9rMwYRexSfu1Nl8NoAnFtdE590HCB5CyBpKWQduhdicSEamWYhJTmbxoI6kZx5esCQ30IzoqokLbarjcZsHdrcH+VqNV9SMrOxU3tVFgMzjrZvjxNVj+JISfB4b+EYmInCgmMZXxc+P553matIxsxs+NZ/qYnkUWOKUtVKqqgKpNDNOsXdclMjMzCQwMJCMjg4CAALvj2OfQXpjWBfKOwphPdfZGROQELrfJgGeWFyo4TmQAIYF+rL7/3EKFS2kLleIKqPxXLK6Aqo1K8/6tOTe1Vf0zoPeN1vaKZzT3RkTkBHHJ6cUWNgAmkJqRTVxyesG+/ELln8/LP9MTk5haaL/LbTJ50caTCpv81weYvGij5viUgYqb2qz/XeD0hZ1xkLzS7jQiItXGnqziC5uixpWlUClLASUlozk3tZl/CPS6HuLegJXPQpvBdicSEakWgv39itzvTR5djG30cGwl3NjFkDWHYOU+zEP7iM3NAj9wmwaH8GO/GcBeGpDkbsofZnPWZ7bm560dObtdU6D0BZSUnIqb2q7/3bB2Nvz5A2xfDa0G2J1IRMR2ka2DCA30Iy0jm8YcYLjzF4Y7fqa343fqGDnHB+6xPp34ZuowTAI4SoBxlNbsJtKxpeAx17ynoUUf6DCS5nVL9vO2uEJLiqfiprYLbGb1vflllnX2RsWNiAhO08VrPXdxaPWbDHAk4jCOX07aZwaw1t2O8E5n0TaiFwQ2Z91+J7d+/AcmBgYm/sYRgsgk1EinrWMX7Y2d9HJs4Qx3Jmz/HrZ/Ty/gszoRvHNsMF+5IzmGT6EM+ZOWI1sHVe3BewDdLSVwcAe83APcuXDjUmhxtt2JREQqxWlv0849CvHvwg8vQeaugt3r3G1Z4opkubsHR/zbED2qU6G7mPLvrkrLyC5y3o0BhAT4svrmMJxJy6xFjFN+JH9GTrpZnzl5I5jjOp9M6utuqSKU5v1bxY1YvrjT+gfdbgRc85HdaUREKtwpb9PueIZ1iX7Vc3Bot/Vg3cbQ8zpcPcYRdzDgtH1r8u+WAgoVOMUWKhm7YN1cjv40mzpHrTupssw6zHYNZ2HdK7hvVC8VNidQcXMKKm6KsW8rvNobMGF8LDSJsDuRiEiFOVU/mXMcv/Jq40/xz9xq7QxsAQPugR5jwMu31H9OqRvyuV24N3zO0WXPUO+gNT/HrBeMMeR/0HMsOJylyuCpVNycgoqbU/joOtj0BXvaXEps1yfUAlxEPEJxDfmCyCTa+10udlqLCJt1G/1dUIwDp3e5/rwyLaXgdsPmL+HbRyE9ydrXrBdEvQwhncucx1PUqCZ+r732Gq1atcLPz48+ffoQFxd3yvHTpk2jffv21KlTh7CwMO69916ys3WbXEVYE2otqNkwaSFPz1vG1TN/ZMAzy09qPCUiUpMU1U9mhCOOb3zv42LnGlymwVt5F/Bz1DJraZpyFDYATodB3/BGXNy9GX3DG5X8F0SHAyJGwX9+hBFPg28A7FoLbw6CZY9BXs7pX0MAm4ubjz76iAkTJhAdHU18fDzdunVj+PDh7Nmzp8jxH3zwAQ888ADR0dFs2rSJWbNm8dFHH/G///2vipN7npjEVK5dkssaVwTehoubvJYAxXfWFBGpKU7sE+NLDk96zWKGzzQaGVlscofxr5zHeCLvOlKP+ZziVaqQlw+cPR5uj4OOo8CdB98/D7OGwb4/7E5XI9ha3Lzwwgvccsst3HDDDURERDBjxgzq1q3L22+/XeT4NWvW0L9/f6655hpatWrF+eefz9VXX33Ksz3Hjh0jMzOz0IcUdmJnzTdcUQBc7VxOIIfUAlxEarz8PjGtjFQW+jzMtV7LcJsGr+eNYlTOk/xmhhcaV20EhMLo9+DKd6FOQ0hNgBkD4Vfd9HE6thU3OTk5rF27lqFDjy/Y6HA4GDp0KLGxsUU+p1+/fqxdu7agmNm2bRtLlizhwgsvLPbPmTJlCoGBgQUfYWFhFXsgHuDEU7Yr3V3Z6G5JPeMY1zm/AdQCXESqL5fbJDZpPwsTdhGbtL/IX8IiWwdxif8mFvo8TAfHDvaagYzNfYBn864iFy8MrEm/1bafTMTFMH6N1UU+7yh8dit89QC4cu1OVm3Z1sRv3759uFwumjRpUmh/kyZN2Lx5c5HPueaaa9i3bx8DBgzANE3y8vK47bbbTnlZatKkSUyYMKHg68zMTBU4/1C4tbfBjLyLeNnnNa73WspM18iCxlJqAS4i1UlJ70xyxs3gxdwnMQw3a91nclvOPeylIXD8Nu3oqIjqffNEQFMY8xmsmAKrnoWfpkPaerhijrUQshRi+4Ti0lixYgVPPfUUr7/+OvHx8SxYsIDFixfz+OOPF/scX19fAgICCn1IYf88FbvYfTY73GfQ2MjkCufKYseJiNilRCtwmyZ8Ew0xD2DgZkery7nX74mCwgasDsA1plGewwHnPgij3wef+vDnanhzMOzeaHeyase2MzeNGzfG6XSye/fuQvt3795NSEhIkc95+OGHue6667j55psB6NKlC4cPH+bWW2/lwQcfxOGoUbVatXHiGiom4MLJTNeFPOZ4h1uci5nnOpczAutV31O2IlKrnG4FbgN44ov1nL/1cRwJ71sPnBdN2IB7+c6kbLdpVycdL8IVtIyc96+iTmYyebOGY1zzEc5W/exOVm3YVg34+PjQq1cvli1bVrDP7XazbNky+vbtW+Rzjhw5clIB43RazY1qWbueCuV0GERHWU378v+Jf+IaRLpZn5aOPYxwxFX/U7YiUmsUdWv3iXzIIfroFKuwMRww6lUYOAEMo+y3aVcjMYmpDHh7F2fvmcRa95l45WSSN+di4r+ea3e0asPWUx0TJkxg5syZvPPOO2zatInx48dz+PBhbrjhBgDGjh3LpEmTCsZHRUUxffp05s2bR3JyMt988w0PP/wwUVFRBUWOlM2IzqFMH9OTkEDr0tNR/HjXdT4AT4SsqhmnbEWkVjjV/D9fcnjLeyrDnPG4HL7WJZye11Vhusp14uW4DOpzbc7/+NbVA19y6PbDHSQuetnuiNWCrauCjx49mr179/LII4+QlpZG9+7diYmJKZhknJKSUuhMzUMPPYRhGDz00EPs2rWLM844g6ioKJ588km7DsGjjOgcyrCIkIJTts28wjE/+5IG6b/Cjp8h7Cy7I4qIFDv/z4dcZni/yEBnIodNX5KHvkPnDhdUcbrKU9TluGx8+XfuBJ4yZzHaawWd1z6MO6Q+jrNuLPL5Nf6SXAlp+QU5tc//AwnvQ6dL4YrZdqcRESlyBW5v8njd+yWGOddy1PThvz4P88qkOz3qzTs2aT9Xz/yxmEdN/uf1Abd6Lba+vOhF6H28wCnTmlfVTI1afkGqubPHW583LoSMnfZmERHh5HmCTly85P0qw5xryTa9uTl3IqMuvsKjChs4XTsOg6fyrmFm3t993768F36xfiEt0Z1lHkbFjZxaSBdoNRBMF8S9aXcaERHghHmCAb487jWbC51xHDO9mORzP9ddM7bGnI0ojdO34zB4Mu9a/ur49xmbL+/BvfadU95ZBp7ZgV7FjZze2f+xPq+dAzmHbY0iIpJvROdQfuifwDVeyzEx2D74FaZOmuiRhQ0cb9tR3Pkoq9NyHZpc/jycfbu178t76Jr1fbGv6akd6FXcyOm1Gw4NW0N2Bvz6od1pREQsv36E4zuriatxwbO0H3KNx12KOlFRbTvyFeq07HTA8Ceh51gM083L3q/Sx9h0ytf2tA70Km7k9BzO43NvfpwObre9eUREtq2EhdbZCfrdCX1utTdPFfln2458J3VaNgwY+SLpYefja+Qy02cqHY0/i31dT+tAr7ulpGSOZcELEXAsE675BNqdb3ciEamt9m2FmefCsQzrTs7LZllLE9QiJb2t23XsCL89fR49zI3sMRtwac6j7DSDCx43sAqj1fefW+3PeuluKal4vv7Qc6y1/eNr9mYRkdorOxPmXWMVNmF94JLpta6wAUrcadnpW5f9UXPY7A4j2DjILO+p1OcIUIMWDS2D2vcdIWUXeavVynzbCi3UJiJVz+2Gz8fDvi3gHwpXvgfennU5pTIM7dme1Ki57CWI9o6dvOL9Ck5cNWvR0FJScSMl17AldLjI2o57w94sIlL7rHoONn8JTh8YPRf8m9idqMYYclZ3gm5egMvpxxDnr6zuvozV95/rkYUNqLiR0or8e9Lebx/D0YO2RhGRWmTLV7DiKWt75AvQvLe9eWogZ/MeOC+1fjEN3TwHZ7zndp1XcSOl02oAnNERco/otnARqRoH/oTP/m1tn3WLRy2EWeU6XQLnPmRtL54I23+wNU5lUXEjpWMYEHmztR03U7eFi0jlcuXCpzdZfbaa9YbhT9mdqOYbOBG6XGF1nv/kesjU8gsi0HU0+PhDehJs+87uNCLiyZY/Djt/Bt9AuPxt8PKxO1HNZxgQ9TI06QyH98An4yAvx+5UFUrFjZSerz90v9ra/vkte7OIiOf64xv44SVr++JXrZsapGL41IUr37WKxh0/wdcP2Z2oQqm4kbI56+9LU7/HwMEUe7OIiOfJTC08zyZilL15PFGjcPh7gjFxb1g3ingIFTdSNme0h9aDwHTDL2/bnUZEPIlpWv1sjuyHkC5w/hN2J/Jc7S+Ac+6zthfdDXu32Jungqi4kbKLvMX6HP8u5HrWomsiUvVcbpPYpP38+tnzsO07TC8/uOxtNeqrbIMnWb+s5h6B+TdC7lG7E5Wbihspu3YXQEBz67erDZ/ZnUZEarCYxFQGPLOcSW99RrtfnwHgBa4lZre/zclqAYcTLp0J9c6A3YkF82/yi82FCbuITdqPy11zlqL0sjuA1GBOL+h9PSx/An6eeXySsYhIKcQkpjJ+bjwOXMz3mU4dI4fVrk68lj0Ec268xy4RUK34N4F/zYC5l8HPb7HO2YX/rAsjNeP4WfnQQD+ioyJqxN+FztxI+fQcBw5v2LUWdsXbnUZEahiX22Tyoo2YwG3ORfRwbCXTrMt9ubfh/vstavKijTXqrEGN1XYo9L8HgPDYSTgzdxR6OC0jm/Fz44lJrP59cVTcSPnUD4ZO/7K2f5llbxYRqXHiktNJzcimo/En93h9CkB07jhSaQSACaRmZBOXnG5jytrDNfhBEo0zCTCOMM37NRwcb9SaX17WhGJTxY2UX+8brc+JC6wuoiIiJbQnKxsnLp71fgNvw0WM6yw+cw8ocpxUvriULG7LvoMssw69Hb/zb+eXhR6vKcWmihspvxZnwxkdrJn2HtQnQUQqX7C/Hzc5l9DFsZ0Msy4P594AGEWOk8q3JyubneYZTM4bC8C9Xp8QYWwvclx1puJGys8woNf11vbaOVaPChGREogMOMB/va3LUU/kjWEvDQo9bmBNZI1sHVT14Wqh/CJyvuscvnb1wsdw8YL3dHzJKXJcdaXiRipGt6vAy8+6jXDnL3anEZGawDRxLr4HX3JY7erMfNegQg/nn7+JjorA6Tj5bI5UvMjWQYQG+mFgMCn3ZvaaAXRw7OBer/lAzSk2VdxIuRT0QdhyhD0tLrR2rp1tbygRqRni34Ht34N3XVwXTSMksE6hh0MC/XQbeBVzOgyioyIASCeQSblWs9ZbnYvpY2wCakaxaZhm7bqGkJmZSWBgIBkZGQQEBNgdp0aLSUxl8qKNBX0Qehq/s8D3UVxOP5wTt0CdBvYGFJHqK2s3vHoWHMuA4VOg739wuU3iktPZk5VNsL91dqC6v4l6qhN/vj/j9SajvVbwF8FsuHgJw3qcaUum0rx/q4mflEl+060TK+N480w2u8PowA42Lp1JxCX32ZZPRKq5bx62CpumPaCPtUCm02HQN7yRzcEEYETnUIZFhBCXnE56eluyV1xK08M7aZryEvR41e54p6XLUlJqJzbdKszgQ9e5APj++i4ul/ukESIibF8Nv30EGDDyBav9v1Q7+cXmyLPa43fFm4AB696DpO/sjnZaKm6k1PKbbhXlM9cAjpo+hJspbIz7toqTiUi158qFxROt7d43QLOe9uaRkmnV//hiyYvugpzD9uY5DRU3Umqn6m+QST2+dJ0NQODGuVUVSURqih+nw95NULcRnPuw3WmkNM57BALD4GCKtaZgNabiRkrtdP0NPnCdB0Dzv2Lg6IGqiCQiNUHGLljxtLU97DGoW71vJ5Z/8PWHqGnW9o/TYUecrXFORcWNlNrxPghFSzDb8ofREofrGPz6UZVmE5FqbOn/IPcwhPWBbtfYnUbKou3Qv//uTFh4B+QdsztRkVTcSKmd2AfhnwWO8fd/c7qPs3asna2OxSICW5fBxs/BcMDI58Ght58aa/iTUC8Y9m2BVc/ZnaZI+u6SMhnROZTpY3oSElj4ElV+061Ow28G77qwdzOk/GhTShGpFvJy4Kv/s7Yjb4WQLvbmkfKpGwQjp1rbq1+EtPX25imC+txImZ3YB6HIpludL4V1c62zNy372htWROzz80zYv9X6bX/I/+xOIxUh4mLoGAWbFsEXd8LNy6rVLf06cyPlkt8H4eLuzegb3qhwN9FeN1ifNy6EowdtySci9shfmmVJ3Abyvvt7EvG5D4FfoL3BpOJc+Dz4BsJf6+Dnt+xOU4iKG6k8zXrBGR0hLxsS59udRkSqSExiKgOeWc7VM39kzxeP4pWTye9GK2J8zrM7mlQk/yYw9BFre9njkPmXvXlOoOJGKo9hQM+x1nb8e/ZmEZEqkb80S2pGNuHGLsY4rWaejx67lvHv/0pMYqrNCaVC9boRmvWGnCyIecDuNAVU3Ejl6joaHN6QmlAtJ52JSMX559IsD3q9j5fh5htXL9a4OwEwedFGXG7dQekxHA6r943htKYg/P613YkAFTdS2eo1gg4jrW2dvRHxaCcuzTLQ8RvnOhPINZ08lWf1tDGB1Ixs4pLTbUwpFS6kC5w93tpe8l/IOWJvHlTcSFXoeZ31+bePILf4pRtEpGbLX5rFiYuHvKzlV951nU+yGVrkOPEggydBQHNraYaVz9idRsWNVIE2Q6xv+uyDsPlLu9OISCXJX5rlKud3tHfs5IBZn5fy/lXsOPEgvvXhwuegThAEd7Q7jYobqQIOJ/S41tpep0tTIp4qsnUQ4QFu7vWy7o6clncZmdQveNwAQgOtfljigTpcCHf/Ct2usjuJihupIt2vBQzYtgIObLc5jIhUBqfD4I3wNTQ2MtnmDuV91/Fbv/M7YEVHRRTuhyWexS/A7gSAihupKg1bQptB1va69+3NIiKV49Ae2m59B4CZPmPIO6EJfv7SLCM6hxb3bJEKo+UXpOr0uM46c5PwPgx+oFq16haRCrDyWWvV72a9eOLG/zFq+4Gil2YRqWQqbqTqdLgI/BpA5i42rV7I7wF99ENPxFOkb7PWkQMY+ihOp4O+4Y3szSS1loobqTrefvzZ/CJabp3Ltm+mc3euL2BNMIyOitDpapGabPmT4M6D8POg9Tl2p5FaTnNupMrEJKYyfoPVpXSYYy1BZAKQlpHN+LnxassuUlOl/np8/bih0fZmEUHFjVSR/LbsG82W/OZujY/h4l/O1QAFrdrVll2khvp2svW58+UQ2s3eLCKouJEqcmJb9o9dgwG40rmC/NJGbdlFaqjkVZC0zFpD7tyH7E4jNnO5TWKT9rMwYRexSftt+4VVc26kSpzYbv0LVz8e8ppLe8dOuhtJJJhtixwnItWcacK3j1rbvW+AoNa2xhF7xSSmMnnRxoJfZMG+OZU6cyNV4sR265nUY4m7DwBXOr8rdpyIVHNblsCuteBdD865z+40YqOYxFTGz40vVNiAfXMqVdxIlYhsHURooF9Bl9L8S1NRzh+pQ7basovUNG43fPeUtX32bVA/2N48Ypv8OZVFXYCya06lihupEk6HQXRUBGC1Yf/R3ZFkdxP8jaNc6IgD1JZdpDo7aS7Fxi9gdyL4BkDfO+yOJzY6cU5lUeyYU6k5N1JlRnQOZfqYngXXZOe7BnGf42Ou8V3NsMvuUZ8bkWrqn3MpHLj5ts5DtAE4+z9QV2dca7OSzpWsyjmVKm6kSo3oHMqwiBDiktPJ2h2M+fUn9DITodkxu6OJSBHy51KceEHhIkcsbcwdZJh1+bnBZQy1LZ1UByWdK1mVcyp1WUqqnNNh0De8Eef3OwsjfzHNX+fZG0pETlLUXAonLu7x+hSAmXkX8XDMDvWnquX+Oafyn+yYU6niRuzVfYz1OeF9a4KiiFQbRc2l+JdzNW0caaSb9ZntGq7+VHLSnMoT5X9d1XMqy1Tc7N69m+uuu46mTZvi5eWF0+ks9CFSYh1GWhMSD6bAnz/YnUZETvDPORJe5HGXcwEAM/KiOEydIsdJ7ZM/pzIksPClp5BAP6aP6VnlcyrLNOfm+uuvJyUlhYcffpjQ0FAMQ3e4SBn51IXOl8LaOZDwAbQeaHciEfnbP+dIXO5cRQvHXvaagbzrOr/YcVI7nTinck9WNsH+1qUoO+6CLVNxs3r1ar7//nu6d+9ewXGkVup+rVXcbPwcLnwWfP3tTiQiHJ9LkZaRjTe53OH1OQDT80aRjS8G1m/m6k8l+fLnVNqtTJelwsLCME1NIJMK0vwsaHQm5B6BjQvtTiMifztxLsXlzlU0N/ax22zA+67zbJtLIVISZSpupk2bxgMPPMD27dsrOI7USoYB3a+xthM+sDeLiBQyonMoM67pwh3eiwBrrs0xfGybSyFSEmW6LDV69GiOHDlCeHg4devWxdvbu9Dj6emaOS+l1O0qWP64Nak4fRsEtbE7kYj8bbjre2APOX6N6HXRPZzfsKFtcylESqJMxc20adMqLMBrr73Gc889R1paGt26deOVV14hMjKy2PEHDx7kwQcfZMGCBaSnp9OyZUumTZvGhRdeWGGZxAYBTaHNEEhaBgkfwrkP2p1IRABcefD9VAB8Bt7NRb3b2hxI5PTKVNyMGzeuQv7wjz76iAkTJjBjxgz69OnDtGnTGD58OFu2bCE4+ORF2HJychg2bBjBwcHMnz+fZs2a8eeff9KgQYMKySM263GtVdz8+iEMngQOtWESsd2GBdbZ1DpB0Psmu9OIlEiZl19wuVx8/vnnbNq0CYBOnToxatSoUvW5eeGFF7jlllu44YYbAJgxYwaLFy/m7bff5oEHHjhp/Ntvv016ejpr1qwpuBTWqlWrsh6CVDftR4JvIGTsgO2roM1guxOJ1G5uN6yyztrQ9z/gW9/ePCIlVKZfjbdu3UrHjh0ZO3YsCxYsYMGCBYwZM4ZOnTqRlJRUotfIyclh7dq1DB16fFUSh8PB0KFDiY2NLfI5X3zxBX379uX222+nSZMmdO7cmaeeegqXy1Xsn3Ps2DEyMzMLfUg15e0HXS6ztjWxWMR+mxbCvi3gFwiRt9qdRqTEylTc3HXXXYSHh7Njxw7i4+OJj48nJSWF1q1bc9ddd5XoNfbt24fL5aJJkyaF9jdp0oS0tLQin7Nt2zbmz5+Py+ViyZIlPPzwwzz//PM88cQTxf45U6ZMITAwsOAjLCys5AcqVS9/OYaNX0B2hr1ZRGoztxtWPmdt9xlvFTgiNUSZipuVK1fy7LPPEhR0vHFTo0aNePrpp1m5cmWFhfsnt9tNcHAwb775Jr169WL06NE8+OCDzJgxo9jnTJo0iYyMjIKPHTt2VFo+qQDNekLj9pB3FDZ8bncakdpryxLYswF8/OHs2+xOI1IqZSpufH19ycrKOmn/oUOH8PHxKdFrNG7cGKfTye7duwvt3717NyEhIUU+JzQ0lHbt2hWa19OxY0fS0tLIyckpNmtAQEChD6nG1PNGxH6mCauetbYjb4E6De3NI1JKZSpuLrroIm699VZ++uknTNPENE1+/PFHbrvtNkaNGlWi1/Dx8aFXr14sW7asYJ/b7WbZsmX07du3yOf079+frVu34j5h9ejff/+d0NDQEhdVUgN0uwoMB+z4EfZttTuNSO3zxzeQ+it414O+d9idRqTUylTcvPzyy4SHh9O3b1/8/Pzw8/Ojf//+tG3blpdeeqnErzNhwgRmzpzJO++8w6ZNmxg/fjyHDx8uuHtq7NixTJo0qWD8+PHjSU9P5+677+b3339n8eLFPPXUU9x+++1lOQyprvxDoO3fE81/1dkbkSplmrDyGWv7rBuhnv3rBImUVpluBW/QoAELFy7kjz/+YPPmzYB1eaht29I1dxo9ejR79+7lkUceIS0tje7duxMTE1MwyTglJQXHCb1OwsLCWLp0Kffeey9du3alWbNm3H333dx///1lOQypzrpfA398Db/OgyEPgqPkLQZEpBy2rYBdv4CXH/S90+40ImVimLVsBczMzEwCAwPJyMjQ/JvqLO8YTG0H2QdhzAJoe57diURqh3eiIHkVRP4bLnzW7jQiBUrz/l3iMzcTJkzg8ccfp169ekyYMOGUY1944YWSvqxI0bx8ocsV8PNMa2KxihuRyrdzrVXYOLygn+baSM1V4uJm3bp15ObmFmyLVLru11jFzeYv4ehBqNPA7kQinu2HF63PXa6ABi3szSJSDiUubr777rsit0UqTdMeEBwBezZa69v0vtHuRCKea+/vsOlLa7v/PbZGESmvMt0tdeONNxbZ5+bw4cPceKPegKSCqOeNSNX54SXAtNZ4C+5gdxqRcilTcfPOO+9w9OjRk/YfPXqUd999t9yhRAp0uRIMJ+z82frNUkQqXsZO+O0ja3vAvfZmEakApSpuMjMzycjIwDRNsrKyCi1GeeDAAZYsWUJwcHBlZZXayL8JnHk+ALtWzGJhwi5ik/bjcteqm/xEKlfs6+DOhVYDIewsu9OIlFup+tw0aNAAwzAwDIN27dqd9LhhGEyePLnCwokArGt0AT34CmfiR9y7dgBuHIQG+hEdFcGIzqF2xxOp2Y6kw9o51vaAe+xMIlJhSlXcfPfdd5imybnnnsunn35aaOFMHx8fWrZsSdOmTSs8pNReMYmp3PVdA370rU+IcYCBjvWsdHcjLSOb8XPjmT6mpwockfKIexNyD0NIVwhXywXxDKUqbgYNGgRAcnIyYWFhhboHi1Q0l9tk8qKN5ODFQld/bvBayuXOlax0d8MEDGDyoo0MiwjB6TDsjitS8+Qchp9mWNsD7rUm8Yt4gDItv9CyZUsAjhw5QkpKykkrcnft2rX8yaTWi0tOJzUjG4D5rnO4wWsp5zvWEsAhMqmPCaRmZBOXnE7fcK1/I1Jq8e/C0QPQsDVEXGx3GpEKU6biZu/evdxwww189dVXRT7ucrnKFUoEYE9WdsH2BrMVm9xhdHTsIMr5I++7hhY5TkRKKC8H1rxibfe/W+u3iUcp03Wle+65h4MHD/LTTz9Rp04dYmJieOeddzjzzDP54osvKjqj1FLB/n4nfGUw33UOAJc7V51inIicjsttsnX5bMjcRU6dYFxdr7Y7kkiFKlNxs3z5cl544QV69+6Nw+GgZcuWjBkzhmeffZYpU6ZUdEappSJbBxEa6Ef+LIDPXQPINZ30cGwl3NiFAYQG+hHZOuhULyMiJ4hJTGXg09/C6mkATM08jwHP/0BMYqq9wUQqUJmKm8OHDxf0s2nYsCF79+4FoEuXLsTHx1dcOqnVnA6D6KgIwJo8vJ9AVri7A8fP3kRHRWgysUgJxSSmMn5uPF0O/UBbx19kmHX5wHVewd2HKnDEU5SpuGnfvj1btmwBoFu3brzxxhvs2rWLGTNmEBqq23Kl4ozoHMr0MT0JCbQuPRVcmvJazYxruuo2cJESyr/70MRkvJc1feBd1/kcoi75LTEnL9qoBpniEco0ofjuu+8mNdWq8KOjoxkxYgTvv/8+Pj4+zJkzpyLziTCicyjDIkKIS05nb0YEuUvncMaxAwyvsxkIszueSI2Qf/fhWcYWujuSOGZ6MydveMHjuvtQPEmZipsxY8YUbPfq1Ys///yTzZs306JFCxo3blxh4UTyOR3G3z9wG8Hu0VZvjoT34cxhdkcTqRHy7yq8xWsxAJ+6BrKfwGLHidRkFdKFr27duvTs2VOFjVSN/JXCNy+2enSIyGkF+/vRxviLoQ5rXuRbrguLHSdS05X4zM2ECRNK/KIvvPBCmcKIlEhIV2jSGXYnQuKncNbNdicSqfYiWwdxZ52vcbhNvnH1YptZeKkcAwjR3YfiIUpc3Kxbt65E4wy175bKZhjW2Zul/4OED1TciJSA8+h+RrESgLfyCp+1yf+prbsPxVOUuLj57rvvKjOHSOl0uRK+eQR2rYU9myG4g92JRKq3n9/C6T7GwYZdSDncHTKPFTwUEuhHdFSE7j4Uj1GmCcUitqt/Bpw5HLYshl8/gGGP2Z1IpPrKPWqt/g00OG8CqyPOIy45nT1Z2QT7W5eidMZGPEmZipshQ4ac8vLT8uXLyxxIpMS6X/N3cTMPzn0EnKrVRYr064dwZD80aAEdR51w96GIZyrTu0H37t0LfZ2bm0tCQgKJiYmMGzeuInKJnN6Z50PdRnBoNyQth3bn251IpPpxuyH2NWv77P/olwCpFcr0Xf7iiy8Wuf/RRx/l0KFD5QokUmJePtbcm5+mWz1vVNyInOz3GNi/FfwCoceY048X8QAV0ucm35gxY3j77bcr8iVFTi2/582WJXAk3d4sItXRmlesz71vBF9/e7OIVJEKLW5iY2Px81MDKKlCoV2hSRdw5Vg9b0TkuJ1rIWUNOLwh8t92pxGpMmW6LHXppZcW+to0TVJTU/nll194+OGHKySYSEmkpKSwr84ASE2AL94Ar16FHm/cuDEtWrSwJ5yI3WL/PmvT5QoI0G3eUnuUqbgJDCy8HonD4aB9+/Y89thjnH++5j1I1UhJSaF9+/ZkZ+evhbMWnixc3Pj5+bFlyxYVOFL7HNgOGxda2/3usDWKSFUrU3Eze/bsis4hUmr79u07obApWnZ2Nvv27VNxI7XPj9PBdEP4edCkk91pRKpUue4J/OWXX9i0aRMAERER9OrV6zTPEBGRSnf0AMS/Z23rrI3UQmUqbnbu3MnVV1/NDz/8QIMGDQA4ePAg/fr1Y968eTRv3rwiM4qISGn8MhtyD1sLzLYZYncakSpXprulbr75ZnJzc9m0aRPp6emkp6ezadMm3G43N9+sRQxFRGyTlwM/vWFt97vTWmhWpJYp05mblStXsmbNGtq3b1+wr3379rzyyisMHDiwwsKJiEgpJc6HQ2ng3xQ6XXr68SIeqExnbsLCwsjNzT1pv8vlomnTpuUOJSIiZWCax5v29fm31cVbpBYqU3Hz3HPPceedd/LLL78U7Pvll1+4++67mTp1aoWFExGRUkhaBns2gk996HW93WlEbGOYpmmW9kkNGzbkyJEj5OXl4eVlXdnK365Xr16hsenp1aslfmZmJoGBgWRkZBAQEGB3HCmHk/vcnEx9bqRWefdi2LYCzr4dRjxldxqRClWa9+8yzbmZNm1aWZ4mUqFatGjBli1b2LdvX+EHlj4I27+HrqNpHBWtwkZqh7T1VmFjOOHs2+xOI2KrMhU348aNq+gcImXSokWLk4uXunfCvDXkZK0gZt/D7MrdT2TrIJwO3TUiHmzNq9bnTpdAAxX0UruVuYmfy+Xi888/L2ji16lTJ0aNGoXT6aywcCJlsTSnM2cRQFD2Pj6f/x7L3T0JDfQjOiqCEZ21vo54oIxd1l1SAH3VtE+kTBOKt27dSseOHRk7diwLFixgwYIFjBkzhk6dOpGUlFTRGUVKLCYxlds+WM+CvP4AXO5cBUBaRjbj58YTk5hqZzyRyhH3BrjzoNVAaNbT7jQititTcXPXXXcRHh7Ojh07iI+PJz4+npSUFFq3bs1dd91V0RlFSsTlNpm8aCMmMN81CIChjrU0IIv8WfOTF23E5S71HHqR6is70+pIDDprI/K3MhU3K1eu5NlnnyUoKKhgX6NGjXj66adZuXJlhYUTKY245HRSM6w7pzabLUh0t8LHcDHKuQYAE0jNyCYuuXrdwSdSLuveg2OZ0LgdnHm+3WlEqoUyFTe+vr5kZWWdtP/QoUP4+KhplNhjT1bhW8Lnu84Bjl+aKm6cSI3lyrNW/wbrrI2jTD/SRTxOmf4lXHTRRdx666389NNPmKaJaZr8+OOP3HbbbYwaNaqiM4qUSLC/X6GvF7r6kWM66epIpr2RUuw4kRpr4+eQsQPqnQFdR9udRqTaKFNx8/LLL9O2bVv69euHn58ffn5+9O/fn7Zt2/LSSy9VdEaREolsHURooB/5N3wfIIBlbmty5WXO7zGA0EA/IlsHFfsaIjWGacKal63tyFvBW0W7SL5SFTdut5tnnnmGkSNHsmvXLi655BI++eQT5s+fz5YtW/jss88IDAysrKwip+R0GERHRQAUFDj5l6YudX6PF3lER0Wo3414hu2rIfVX8KoDvW+yO41ItVKq4ubJJ5/kf//7H/Xr16dZs2YsWbKEzz//nKioKNq2bVtZGUVKbETnUKaP6UlIoPVb7Ep3N/aaATQ2Mpl37iH1uRHPkb9AZo9roV4je7OIVDOlWlvqzDPPZOLEifz73/8G4Ntvv2XkyJEcPXoURw2ZyKa1pWoHl9skLjmdPVnZnLXleZpumgUdLoKr3rc7mkj57d0Cr0UCBty5FhqF251IpNKV5v27VBVJSkoKF154YcHXQ4cOxTAM/vrrr7IlFakkTodB3/BGXNy9GU2H3GLt/D0GDu2xN5hIRYj9e6mFDiNV2IgUoVTFTV5eHn5+hSeteXt7k5ubW6GhRCpUcEdofpbVwfXXD+1OI1I+h/bAr/Os7X5qmipSlFKtLWWaJtdffz2+vr4F+7Kzs7ntttuoV69ewb4FCxZUXEKRitDjOtj5M8S/a70hGJpULDVU3Exw5UDzSGjRx+40ItVSqYqbolYDHzNmTIWFEak0nS+FmEmwfyuk/Agt+9qdSKT0co7AzzOt7X7Hl1o4cY5ZsL/V7kB3BUptVqriZvbs2ZWVQ6Ry+fpD53/BurlWu3oVN1ITJbwPRw9Aw1bWBHmsxWInL9pYsPQIWP2coqMidHeg1Fo14xYnkYrQY6z1ecNn1mKDIjWJ2wWxr1nbfe8Ah5OYxFTGz40vVNgApGVkM35uPDGJqTYEFbGfihupPcIircUFc49A4qd2pxEpnS1L4EAy1GkI3a/B5TaZvGgjRfXyyN83edFGXO4Sd/sQ8RgqbqT2MAzo+ffZm/h37c0iUlr5Tft63wQ+9YhLTj/pjM2JTCA1I5u45PSqySdSjai4kdql61Xg8IK/4mH3BrvTiJzE5TaJTdrPwoRdxCbtt868pPwEO34Cp4+1jhQlX92+pONEPEmpJhSL1Hj1z4D2F8KmLyD+PbjgabsTiRQobnLwZ42nEwLWyt/+TYCSr25f0nEinkRnbqT2yb809ds8yDtmbxaRvxU3OdgvM5ngnd9aX/S7s2B/ZOsgQgP9KO6GbwOrMIpsHVQ5gUWqMRU3UvuEnwsBzaxbajd/aXcakVNODr7R+RUOw2S1ozeuRu0K9jsdBtFREQAnFTj5X0dHRajfjdRKKm6k9nE4ofu11nb8e/ZmEYFiJwcHkckVzpUAvHL0gpMmB4/oHMr0MT0JCSx86Skk0I/pY3qqz43UWppzI7VTj2th1bOw7Ts48Cc0bGl3IqnFipv0O8b5LX5GLr+62/CT2aHIcSM6hzIsIkQdikVOoDM3Ujs1bAWtB1nbCe/bGkWkqEm/vuQw1utrAGbmjQSMYicHOx0GfcMbcXH3ZvQNb6TCRmo9FTdSe+VPLF431+r+KmKToiYHX+b8nsZGJjvNxsS4IzU5WKQUVNxI7dXhIvBrAJm7IOk7u9NILfbPycEGbm52LgZgVt4FuHBqcrBIKai4kdrL2w+6XWVtr1PHYrHXiZODhzriaeNII8Osy6p6IzQ5WKSUqkVx89prr9GqVSv8/Pzo06cPcXFxJXrevHnzMAyDSy65pHIDiufqcZ31efMSOLTX3ixS643oHMrq+8/l+earADjUeSxfPzBShY1IKdle3Hz00UdMmDCB6Oho4uPj6datG8OHD2fPnj2nfN727duZOHEiAwcOrKKk4pFCOkOzXuDO1cRiqRacu34hYM8v4PCm2Yh7dSlKpAxsL25eeOEFbrnlFm644QYiIiKYMWMGdevW5e233y72OS6Xi2uvvZbJkyfTpk2bU77+sWPHyMzMLPQhUkivGwAw184hduvewmv6iFS12L8XyOw6GvxD7M0iUkPZWtzk5OSwdu1ahg4dWrDP4XAwdOhQYmNji33eY489RnBwMDfddNNp/4wpU6YQGBhY8BEWFlYh2cWDdL6UXK/6GAeSee3tWdw9L4GrZ/7IgGeWE5OYanc6qU3St8GmRdZ2vzvszSJSg9la3Ozbtw+Xy0WTJk0K7W/SpAlpaWlFPmf16tXMmjWLmTNnlujPmDRpEhkZGQUfO3bsKHdu8Swxv2fyYXZfAK5xLivYn5aRzfi58SpwpOrEvg6mG9oOg+COdqcRqbFsvyxVGllZWVx33XXMnDmTxo0bl+g5vr6+BAQEFPoQyZe/ps/7rvMAGOZYyxkcBChY52fyoo26RCWV70i61XMJCi2QKSKlZ+vyC40bN8bpdLJ79+5C+3fv3k1IyMnXmpOSkti+fTtRUVEF+9xuNwBeXl5s2bKF8PDwyg0tHiV/TZ9UWrDWfSa9HH9whXMFr7suAawCJzUjm7jkdPqGN7Izqni6n2dB3lEI6Qqtz7E7jUiNZuuZGx8fH3r16sWyZccvBbjdbpYtW0bfvn1PGt+hQwfWr19PQkJCwceoUaMYMmQICQkJmk8jpXbiWj0f5Flnb652foeBu9hxIhUuNxvi3rC2+90Fhu6QEikP2xfOnDBhAuPGjaN3795ERkYybdo0Dh8+zA03WHewjB07lmbNmjFlyhT8/Pzo3Llzoec3aNAA4KT9IiVx4lo9X7rP5hHzXcIceznHsZ6V7m5FjhOpcL/Ng8N7IaA5dLrE7jQiNZ7txc3o0aPZu3cvjzzyCGlpaXTv3p2YmJiCScYpKSk4HDVqapDUIPlr+qRlZHMMHxa4BnKD11KucS5jpbsbBhCiNX2kMrndsOZVa7vvf8DpbW8eEQ9gmKZZq2ZKZmZmEhgYSEZGhiYXCwAxiamMnxsPQLixk299/48800H/Y6+wh4ZqfS+Va8tX8OFV4BsIEzaAr7/diUSqpdK8f+uUiNR6J67ps9Vszk/uDngZbm6q970KG6l8P7xkfe41ToWNSAWx/bKUSHUwonMowyJCiEtOx2vjDbD2fm6ptxojItjuaOLJUn6ElFhw+sDZ/7E7jYjH0Jkbkb85HQZ9wxvRa8T1UCcII3Mn/PGN3bHEk62eZn3uOhoCdIZQpKKouBH5J28/6H6Ntb12tr1ZxHPt3gi/fwUY0P9uu9OIeBQVNyJF6XW99fmPr+GgluyQSrDmZetzxyhofKa9WUQ8jIobkaI0PhNaDbTW+Yl/x+404mkOpsD6T6ztAffYGkXEE6m4ESnOWTdbn9fOgbxjtkYRDxP7GrjzrGUWmvWyO42Ix1FxI1KcDiPBv6nVOXbjF3anEU9xeD/Ev2ttD7jX3iwiHkrFjUhxnN7Q21oGhLg37c0iniPuTcg9AqHdoM0Qu9OIeCQVNyKn0nMcOLxhZxz8lWB3Gqnpjh06vkDmgHu1QKZIJVFxI3Iq/k0g4mJr++eZ9maRmi/+XTh6AILaQMdRdqcR8VgqbkROJ/JW6/P6+XAk3d4sUnPl5VgTiQH63QUOp715RDyYihuR0wmLhJAukJcN6+banUZqqsT5kLkT6jeBblfbnUbEo6m4ETkdwzh+9uaXWeB22ZtHah63+/hSC2f/x+qCLSKVRsWNSEl0vhz8GsCB7bD1WwBcbpPYpP0sTNhFbNJ+XG7T1ohSPbncJptXfQL7tpDn7Y+r1w12RxLxeFoVXKQkfOpCjzEQ+yrEvUlMTlcmL9pIakZ2wZDQQD+ioyIY0VkLIIolJjGVyV9s4LXsZ8EBbx4dwnvTftH3iUgl05kbkZI66ybAgK3f8vT7SwoVNgBpGdmMnxtPTGKqPfmkWolJTGX83HhaHlpHT8dWjpnezM4boe8TkSqg4kakpILaYLYdBsA459KTHs6/KDV50UZdoqrlXG6TyYs2YgJ3OD8D4GPXIPbSQN8nIlVAxY1IKWxqeS0AVzhX4s+Rkx43gdSMbOKSdct4bRaXnE5qRjY9jd8Z4NxArulkRl5UweP6PhGpXCpuRErhj/q92eJuTn0jmyud3xU7bk9WdrGPiefL//u/w+tzAD51DWQXZxQ7TkQqloobkVIIDqjD264LALjBaylOir4tPNhft/rWZsH+fnQ2tnGuMwGXafC66+Jix4lIxVNxI1IKka2D+KneuaSb9Wlu7GOYY22hxw2su6YiWwfZE1CqhcjWQdxXx1pJfqG7Pylmk0KP6/tEpHKpuBEpBafD4IFRPfjANRSAG72+KngsfwnE6KgInA4tiFibOfduZJA7Drdp8Hpe4bM2+j4RqXwqbkRKaUTnUDpdfC+5eBHp2EIXYxsAIYF+TB/TU/1LBFZNBWB32HAOB4QXekjfJyKVT038RMpgyFndcadcCus/5vXwH9k55BoiWwfpN3GBfX/ABuv279CLHmZ1cCfiktPZk5VNsL+fvk9EqoCKG5EycvT9D6z/mLC/Ygg74xjoDUsAvn8eMKH9SAjpjBPoG97I7lQitYouS4mUVdMe0KIfuPPg57fsTiPVQXoy/PaxtX3ORHuziNRiKm5EyqPvf6zPv7wNOSc39ZNaZvWLYLqg7VBo1tPuNCK1loobkfJofyE0aAlHD8CvH9idRux0cAck/P09cM7/2ZtFpJZTcSNSHg4nnP332Zs1r4K76KZ+UgusfhHcudBqILToY3cakVpNxY1IefW8DuoEwYFk2PSF3WnEDgdTIP5da3vwA/ZmEREVNyLl5lMPIm+1tldPA1MrPXsql9skNmk/CxN2EZu0//iq3qumWmdtWg+CVgPsDSkiuhVcpEJE3go/vASpCZC8EtoMtjuRVLCYxFQmL9pIasbxxS5DA/14eog/gxLet3YMedCmdCJyIp25EakI9RpZl6fAKnLEo8QkpjJ+bnyhwgYgLSObPV8+brUDaDtUc21EqgkVNyIVpe8dYDghaTmk/mp3GqkgLrfJ5EUbKepiY0sjlUud31vjBk2q2mAiUiwVNyIVpWFL6PQva/uHl+3NIhUmLjn9pDM2+e7y+gynYfKtqwdxOa2rOJmIFEfFjUhF6n+39XnDAjiw3dYoUjH2ZBVd2IQbu7jE8QMAL+ZdXuw4Eal6Km5EKlJoVwg/D0y31fdGarxgf78i99/j9SkOw2SpqzcbzNbFjhORqqfiRqSi5Z+9WTcXDu+zN4uUW2TrIEID/ThxWdT2RgojHT8BMC3vckIDrdW+RaR6UHEjUtFan2Mtqpl3FH6cbncaKSenwyA6KgKgoMCZ6PUJDsNkiSuSzWYLoqMicGpVeJFqQ8WNSEUzDBj4X2s77k1r3Smp0UZ0DmX6mJ6EBPrRy9jCMOdaXKbBu35jmD6mJyM6h9odUUROoOJGpDK0HwnBneBYJvz0ht1ppAKM6BzK6v8bwuywxQDsO/NK3p80VoWNSDWk4kakMjgccM5Ea/vH1yE70948UiGcSd8QsOcX8PKjSVS0LkWJVFMqbkQqS8TF0LgdZGfAzzPtTiPl5XbDt5Ot7chbIbCZvXlEpFgqbkQqi8MJA/8+e7PmVTh2yN48Uj7rP4E9G8A3EAbca3caETkFFTcilanzZdCwNRxNh1/etjuNlFXeMfjuCWt7wN1QV7d9i1RnKm5EKpPT6/idU2texnXsMLFJ+1mYsIvYpP243EWtWCTVzto5cDAF6odAn/F2pxGR0/CyO4CIx+t2Fax6Fg6m8PqzD/D84REFD4UG+hEdFaE7bqqzY1mw8llre9D/gU9de/OIyGnpzI1IZXN6s77tvwG4Nm8B9Tha8FBaRjbj58YTk5hqVzo5nTWvwJF9EBQOPcfanUZESkDFjUglc7lNxv/Wjm3uEIKMQ9zgjCl4LP+i1ORFG3WJqjrK2HV8hffzHgGnt715RKREVNyIVLK45HR2ZuYyLe9yAG71WkwAx++cMoHUjGziktNtSijFWjbZWkajRV/r1n4RqRFU3IhUsj1Z2QAscp/NZncYAcYRbvFaUuw4qSZ2roXfPrK2hz9pLashIjWCihuRShbs7weAiYMX/j57c6PzK4LILHKcVAOmCUv/Z213vQqa9bI3j4iUioobkUoW2TqI0EA/DOBrd29+c7emnnGM8V5fANZK06GBfkS2Vu+UamPDZ7DjR/CqY821EZEaRcWNSCVzOgyioyIAMDB4Pu9KAMY6v6EZ+wCIjorQOkXVRW42fBttbfe/W8ssiNRAKm5EqsCIzqFMH9OTkEA/Vrq7EuuKwNfI5cG6C5g+pqf63FQnP023Gvb5h0L/u+xOIyJloCZ+IlVkROdQhkWEEJecTk5KNKwczQXulRiN9gIqbqqFQ3tg1fPW9nnR4FPP3jwiUiY6cyNShZwOg77hjRg0ZAR0vgwD8/glELHfssmQkwVNe0DX0XanEZEyUnEjYpdzHwaHNyQth63L7E4jO+Jg3Vxre8Qz4NCPR5GaSv96RewS1Boib7G2v4kGt8vePLWZ2wWL/17gtPsYaNHH3jwiUi4qbkTsdM594BsIu9cfbxgnVcblNolN2s+vn78Iab9h+gXC0EftjiUi5aTiRsROdYNg4L3W9rLH4NihU4+XChOTmMqAZ5Zzx8yltPrVmkQ8Ne9KYrbn2ZxMRMpLxY2I3fqMh4atICsVvn/e7jS1QkxiKuPnxpOakc39XvMINI6Q6G7FjEODtEq7iAdQcSNiN28/GP6UtR37KuxPsjePh3O5TSYv2ogJ9DY2c6XXSgAezr0B198/ErVKu0jNpuJGpDpofyGEnwuuHFj6oN1pPFpccjqpGdn4kMvT3m8B8GHeENaZZwJapV3EE6i4EakODANGPA0OL/j9K/jjW7sTeaz81ddv91pIW8df7DUDmZJ3dbHjRKTmqRbFzWuvvUarVq3w8/OjT58+xMXFFTt25syZDBw4kIYNG9KwYUOGDh16yvEiNcYZ7SHy39Z2zAOQl2NvHg8V7O/HmcZOxjsXAhCdO45M6hc5TkRqJtuLm48++ogJEyYQHR1NfHw83bp1Y/jw4ezZs6fI8StWrODqq6/mu+++IzY2lrCwMM4//3x27dpVxclFKsHg+6HeGbD/D/jxNbvTeKTIVg14wW8WPoaLb1w9WeIu3NNGq7SL1HyGaZq2zprr06cPZ511Fq+++ioAbrebsLAw7rzzTh544IHTPt/lctGwYUNeffVVxo4de9rxmZmZBAYGkpGRQUBAQLnzi1S4hA/g8/HgVQf+E2s1+5OKEzcTlkzkkOnH+cee4y8aFTyUvy67FjMVqX5K8/5t65mbnJwc1q5dy9ChQwv2ORwOhg4dSmxsbIle48iRI+Tm5hIUVPRvWceOHSMzM7PQh0i11u1qaDUQ8o7C4glg7+8fnuXAn/DtowCk9LgPM7BZoYdDAv1U2Ih4AFtXBd+3bx8ul4smTZoU2t+kSRM2b95cote4//77adq0aaEC6URTpkxh8uTJ5c4qUmUMA6Jegtf7WutOrZ8PXa+wO1XN53bD5/+BnEMQdjYRoyawepRBXHI6e7KyCfa3LkU5HcbpX0tEqjXb59yUx9NPP828efP47LPP8PMrevLfpEmTyMjIKPjYsWNHFacUKYNG4dbSDGBNLj6i25LLLe4N+HM1eNeDf00Hh6NglfaLuzejb3gjFTYiHsLW4qZx48Y4nU52795daP/u3bsJCQk55XOnTp3K008/zddff03Xrl2LHefr60tAQEChD5Eaof/dmGd0gCP7+HPef4lN2q/GcmW19/eCy1Gc/zgEtbE1johULluLGx8fH3r16sWyZcsK9rndbpYtW0bfvn2Lfd6zzz7L448/TkxMDL17966KqCJVLmbzfm47eB0ALVMW8PqsNxnwzHItDVBarjz4/DbIy7YaJfa+0e5EIlLJbL8sNWHCBGbOnMk777zDpk2bGD9+PIcPH+aGG24AYOzYsUyaNKlg/DPPPMPDDz/M22+/TatWrUhLSyMtLY1Dh7TgoHiO/LWPlma1Zk7e+QA86/0mRzL2ae2j0lr9Auxaa62+PupVa06TiHg024ub0aNHM3XqVB555BG6d+9OQkICMTExBZOMU1JSSE09/oN8+vTp5OTkcPnllxMaGlrwMXXqVLsOQaRCnbj2EcAzeVexzR1CqJFOtPe7gNY+KrGUH2HF09b2hc/BP+6OEhHPZHufm6qmPjdS3cUm7efqmT8W2tfD+IP5Po/iNExuy7mHGHckH95yNn3DGxXzKsKRdJgxEDJ3Qpcr4dI3ddZGpAarMX1uRORkRa1ptM48k+muUQA85f0WjcnQ2kenYprwxZ1WYRPUBi56QYWNSC2i4kakmiluTaOX8i5jo7slQcYhnvZ+k+D6vlWcrAaJexM2fwlOH7h8Nvj6251IRKqQihuRaiaydRChgX788zxDLl7cmzueY6YXQ53r6LNnni35qiuX2yQ2aT8rVnyDe+lD1s5hj0PT7rbmEpGqp+JGpJpxOgyioyIATipwfjdb8ESedXu449to2PHzSc/Pf5NfmLCr1vTGiUlMZcAzy7l95te0/e42HO4cVjnOIqbeKLujiYgNbF1+QUSKNqJzKNPH9GTyoo2kZhyfWxMS6Ef/i/4PNh+EDZ/BJ9fDbd9DXWtttZjE1JOeExroR3RUhMeul5R/27yTPN71fpnmxj6S3U24M/sWMt9fx/Qxhsceu4gUTXdLiVRjLrdZ9NpH2Znw5iBI3wZnDoer5xGzcTfj58bzz3/QnrzStcttMuCZ5aRmZPOI17vc6BXDIdOPf+U8xh9mcwysgnD1/edqaQWRGk53S4l4iGLXPvILgCveAacv/LEU9+oXC/XGOVH+Pk/sjROXnE5qRjaXOVZxo1cMABNyx/OH2Rywjj01I5u4ZK3NJVKbqLgRqalCu8IFzwBgLH+cLlnfFzvUU9/k92Rl09P4nae8ZwEwLe9SvnafVeQ4Eak9VNyI1GS9rofeN2JgMs37dSKM7acc7mlv8i3cfzHLZyq+Ri5fu3rxUt6lRY4r7vZ6EfFMKm5EajLDgAue5WBIP+oax3jLZypncKDY4R71Jp+VRvdVN9LQOMQ6d1vuzr0d8x8/0gysCdWRrYPsySgitlBxI1LTOb3xv+4D/jSa0tRIZ6bPC/iSU2iIx73JZ2fC+5djHEzhcP2W3JwzkWwKF27504ejoyI0mVikllFxI+IBnPUa8uf5b3PQrEd3RxKver+MF3lAzX2TL7ZfT242fHwdpK2HemdQ78bPeXLMYEICCxc3IYF+HnmHmIicnm4FF/EgP333Bd1X3oQvOXzqGsDE3NsICaxb4/rcFNev59EL2zI8cSL88TV414Prv4RmPYFT3DYvIh6hNO/fauIn4kH6DBmFK+QdzI/HcJlzNf0i2hB85Us4nTXnJG1+U75//ta1P+MQjvk3gHMteNWBaz4qKGzg+G3zIiI15yeeiJSIs+OFGP+aAUDolndxxtwHbrfNqUrG5TaL7NfjSw7TvV9kmHMtx/DBddWH0HqgLRlFpPpTcSPiibpeCaNeBQz4+S348p4aUeDkN+U7UX2O8K7P05znXEe26c0tOfcSZ3S1KaGI1AQqbkQ8Vc/r4JLpYDgg/h349CbIO2Z3qlP6Zx+eYA7woc8T9HFsJtOsw3U5k1jl7uZx/XpEpGJpzo2IJ+t+NTi94bN/w4YFcGgPXPU+1GlQMKQ6TcQ9sQ9PhLGdt3ym0tRIZ7/pz9icB9hgtj5pnIjIP6m4EfF0XS6Huo3go+vgz9Uw63yrwGl8ZrVbRTyydRChgX50z1rFVO/p1DOOsdXdlBtz7yPFbFKwEKbH9OsRkUqhy1IitUH4ELjxK/APhX1b4M0hxC99j/Fz40+a45KWkc34ufHEJKZWeUynO5cPwz5nus806hnH+N7VmUtzJhcUNlDz+vWISNVTcSNSW4R0gVtXQot+kJNFz9g7eNjr3ZO6Gdu2ivjeLfD2cFptfReA95yXcEPu/5FJPSu+mvKJSAmpiZ9IbePKJfWTiYRungPAVndTJuSO5zcz/KShH95ydoX0jjnlvB5XHsS+Ct89Ba5j4BcI/3oD15kjqs1cIBGxn5r4iUjxnN7Edfg/PvstmGe836St4y8+93mED1znMjXvSg7iXzC0uLuSSjMJ+ZTzeur+DjGTYM8G64G2wyDqJQhshhPUlE9EykTFjUgtFOzvxwp3d4Yfe4Zo73f5l/MHxngtY6TzJ2bkRfGeaxhH8CvyrqTSTEIurttw48yNOD960uo2DODXAIY/Cd2vtVY6FxEpB12WEqmFXG6TAc8sJy0jGxPoY2ziUe85dHTsACDdrM+nXhdx452P4GzQrOB5xRUr+eXIiXNi8v+M/CLIgZtzHL8xzrmUIc5fAcjDgeOsm3AM+R/U1R1QIlK80rx/q7gRqaXyCxWwJhE7cXGJ4wfu8PqM1o7d1iDDAWeeDxEX4wofxoBXfzvp7qp8+bdpr77/XJwOg9ik/YyZ+QM9jD84z7mOi50/0NRIByDPdPCFux+v5V3MEzdfpstPInJaKm5OQcWNyHFFXWJqHuDNa9230y3tM0hZU7DfxGCjuwXr3a3ZYLYi1WzEHrMBh/HDxMCJm8ZGBo8NacSZxk52/x6H7+51NDAOF7zGAbM+n7kGMNs1nB1mEwBeuqo7F3c/fnZIRKQomlAsIiUyonMowyJCipkcfKt1e/b6T+D3pRhpv9HJ8SedHH+e+kV/sD41ATDgoFmPle5ufO3qzTfuXuTgXWi4ug2LSEXTmRsRKZG16zfw5ocf09mxnQ7GDoKNAwQbB6mLddbHhYP9ZiDBTVsQ2LQd7pBu3PJNLiuzmpKH86TX++dlLBGRU9GZGxGpcN07RfCb/zl8nRF50oRiOKFYufVccBg4gCvqprJ8bjwGFHqOug2LSGVSh2IRKRGnwyA6KgI4XpzkK65YGdE5lOljehISWPjSk7oNi0hl0mUpESmVsiy2WZ1WHheRmkl3S52CihuR8lOxIiJVTXNuRKRSOR2GetOISLWlOTciIiLiUVTciIiIiEdRcSMiIiIeRcWNiIiIeBQVNyIiIuJRVNyIiIiIR1FxIyIiIh5FxY2IiIh4FBU3IiIi4lFU3IiIiIhHqXXLL+QvpZWZmWlzEhERESmp/PftkiyJWeuKm6ysLADCwsJsTiIiIiKllZWVRWBg4CnH1LpVwd1uN3/99Rf+/v4YRtlWMc7MzCQsLIwdO3bUqpXFa+txQ+099tp63KBjr43HXluPG2rGsZumSVZWFk2bNsXhOPWsmlp35sbhcNC8efMKea2AgIBq+01QmWrrcUPtPfbaetygY6+Nx15bjxuq/7Gf7oxNPk0oFhEREY+i4kZEREQ8ioqbMvD19SU6OhpfX1+7o1Sp2nrcUHuPvbYeN+jYa+Ox19bjBs879lo3oVhEREQ8m87ciIiIiEdRcSMiIiIeRcWNiIiIeBQVNyIiIuJRVNwU4bXXXqNVq1b4+fnRp08f4uLiTjn+k08+oUOHDvj5+dGlSxeWLFlSRUkrXmmOfcOGDVx22WW0atUKwzCYNm1a1QWtBKU59pkzZzJw4EAaNmxIw4YNGTp06Gm/T6qr0hz3ggUL6N27Nw0aNKBevXp0796d9957rwrTVqzS/lvPN2/ePAzD4JJLLqncgJWoNMc+Z84cDMMo9OHn51eFaStOaf/ODx48yO23305oaCi+vr60a9euxv6ML82xDx48+KS/c8MwGDlyZBUmLgdTCpk3b57p4+Njvv322+aGDRvMW265xWzQoIG5e/fuIsf/8MMPptPpNJ999llz48aN5kMPPWR6e3ub69evr+Lk5VfaY4+LizMnTpxofvjhh2ZISIj54osvVm3gClTaY7/mmmvM1157zVy3bp25adMm8/rrrzcDAwPNnTt3VnHy8intcX/33XfmggULzI0bN5pbt241p02bZjqdTjMmJqaKk5dfaY89X3JystmsWTNz4MCB5sUXX1w1YStYaY999uzZZkBAgJmamlrwkZaWVsWpy6+0x33s2DGzd+/e5oUXXmiuXr3aTE5ONlesWGEmJCRUcfLyK+2x79+/v9Dfd2Jioul0Os3Zs2dXbfAyUnHzD5GRkebtt99e8LXL5TKbNm1qTpkypcjxV155pTly5MhC+/r06WP++9//rtSclaG0x36ili1b1ujipjzHbpqmmZeXZ/r7+5vvvPNOZUWsFOU9btM0zR49epgPPfRQZcSrVGU59ry8PLNfv37mW2+9ZY4bN67GFjelPfbZs2ebgYGBVZSu8pT2uKdPn262adPGzMnJqaqIlaa8/9ZffPFF09/f3zx06FBlRaxQuix1gpycHNauXcvQoUML9jkcDoYOHUpsbGyRz4mNjS00HmD48OHFjq+uynLsnqIijv3IkSPk5uYSFBRUWTErXHmP2zRNli1bxpYtWzjnnHMqM2qFK+uxP/bYYwQHB3PTTTdVRcxKUdZjP3ToEC1btiQsLIyLL76YDRs2VEXcClOW4/7iiy/o27cvt99+O02aNKFz58489dRTuFyuqopdISriZ9ysWbO46qqrqFevXmXFrFAqbk6wb98+XC4XTZo0KbS/SZMmpKWlFfmctLS0Uo2vrspy7J6iIo79/vvvp2nTpicVutVZWY87IyOD+vXr4+Pjw8iRI3nllVcYNmxYZcetUGU59tWrVzNr1ixmzpxZFRErTVmOvX379rz99tssXLiQuXPn4na76devHzt37qyKyBWiLMe9bds25s+fj8vlYsmSJTz88MM8//zzPPHEE1URucKU92dcXFwciYmJ3HzzzZUVscLVulXBRSra008/zbx581ixYkWNnWRZGv7+/iQkJHDo0CGWLVvGhAkTaNOmDYMHD7Y7WqXJysriuuuuY+bMmTRu3NjuOFWub9++9O3bt+Drfv360bFjR9544w0ef/xxG5NVLrfbTXBwMG+++SZOp5NevXqxa9cunnvuOaKjo+2OV2VmzZpFly5diIyMtDtKiam4OUHjxo1xOp3s3r270P7du3cTEhJS5HNCQkJKNb66Ksuxe4ryHPvUqVN5+umn+fbbb+natWtlxqxwZT1uh8NB27ZtAejevTubNm1iypQpNaq4Ke2xJyUlsX37dqKiogr2ud1uALy8vNiyZQvh4eGVG7qCVMS/dW9vb3r06MHWrVsrI2KlKMtxh4aG4u3tjdPpLNjXsWNH0tLSyMnJwcfHp1IzV5Ty/J0fPnyYefPm8dhjj1VmxAqny1In8PHxoVevXixbtqxgn9vtZtmyZYV+azlR3759C40H+Oabb4odX12V5dg9RVmP/dlnn+Xxxx8nJiaG3r17V0XUClVRf+dut5tjx45VRsRKU9pj79ChA+vXrychIaHgY9SoUQwZMoSEhATCwsKqMn65VMTfu8vlYv369YSGhlZWzApXluPu378/W7duLShkAX7//XdCQ0NrTGED5fs7/+STTzh27Bhjxoyp7JgVy+4ZzdXNvHnzTF9fX3POnDnmxo0bzVtvvdVs0KBBwW2P1113nfnAAw8UjP/hhx9MLy8vc+rUqeamTZvM6OjoGn0reGmO/dixY+a6devMdevWmaGhoebEiRPNdevWmX/88Yddh1BmpT32p59+2vTx8THnz59f6HbJrKwsuw6hTEp73E899ZT59ddfm0lJSebGjRvNqVOnml5eXubMmTPtOoQyK+2x/1NNvluqtMc+efJkc+nSpWZSUpK5du1a86qrrjL9/PzMDRs22HUIZVLa405JSTH9/f3NO+64w9yyZYv55ZdfmsHBweYTTzxh1yGUWVm/3wcMGGCOHj26quOWm4qbIrzyyitmixYtTB8fHzMyMtL88ccfCx4bNGiQOW7cuELjP/74Y7Ndu3amj4+P2alTJ3Px4sVVnLjilObYk5OTTeCkj0GDBlV98ApQmmNv2bJlkcceHR1d9cHLqTTH/eCDD5pt27Y1/fz8zIYNG5p9+/Y1582bZ0PqilHaf+snqsnFjWmW7tjvueeegrFNmjQxL7zwQjM+Pt6G1OVX2r/zNWvWmH369DF9fX3NNm3amE8++aSZl5dXxakrRmmPffPmzSZgfv3111WctPwM0zRNm04aiYiIiFQ4zbkRERERj6LiRkRERDyKihsRERHxKCpuRERExKOouBERERGPouJGREREPIqKGxEREfEoKm5ERETEo6i4EZEK1apVK6ZNm2Z3DACuv/56LrnkklOOGTx4MPfcc88px8yZM4cGDRqUKcPDDz/MrbfeWqKxDzzwAHfeeWeZ/hwROU7FjYgUuP766zEMA8Mw8PHxoW3btjz22GPk5eXZHa1MXnrpJebMmVOq51RkcZaWlsZLL73Egw8+WKLxEydO5J133mHbtm0V8ueL1FYqbkSkkBEjRpCamsoff/zBf//7Xx599FGee+45u2OVSWBgYJnPuFSEt956i379+tGyZcsSjW/cuDHDhw9n+vTplZxMxLOpuBGRQnx9fQkJCaFly5aMHz+eoUOH8sUXXwBFX8K55JJLuP7664t8LdM0efTRR2nRogW+vr40bdqUu+66q+DxY8eOMXHiRJo1a0a9evXo06cPK1asKDbbxIkTueiiiwq+njZtGoZhEBMTU7Cvbdu2vPXWW8DJl6UOHz7M2LFjqV+/PqGhoTz//POFXn/w4MH8+eef3HvvvQVnsE60dOlSOnbsSP369QuKwFOZN28eUVFRhfbNnz+fLl26UKdOHRo1asTQoUM5fPhwweNRUVHMmzfvlK8rIqem4kZETqlOnTrk5OSU6bmffvopL774Im+88QZ//PEHn3/+OV26dCl4/I477iA2NpZ58+bx22+/ccUVVzBixAj++OOPIl9v0KBBrF69GpfLBcDKlStp3LhxQUG0a9cukpKSGDx4cJHPv++++1i5ciULFy7k66+/ZsWKFcTHxxc8vmDBApo3b85jjz1GampqoeLlyJEjTJ06lffee49Vq1aRkpLCxIkTiz329PR0Nm7cSO/evQv2paamcvXVV3PjjTeyadMmVqxYwaWXXsqJ6xdHRkayc+dOtm/fXuxri8ipedkdQESqJ9M0WbZsGUuXLi3zJNeUlBRCQkIYOnQo3t7etGjRgsjIyILHZs+eTUpKCk2bNgWsMzMxMTHMnj2bp5566qTXGzhwIFlZWaxbt45evXqxatUq7rvvPj7//HMAVqxYQbNmzWjbtu1Jzz106BCzZs1i7ty5nHfeeQC88847NG/evGBMUFAQTqcTf39/QkJCCj0/NzeXGTNmEB4eDliF2WOPPXbKYzdNs+DYwCpu8vLyuPTSSwsuVZ1Y7AEF4//8809atWpV7OuLSPF05kZECvnyyy+pX78+fn5+XHDBBYwePZpHH320TK91xRVXcPToUdq0acMtt9zCZ599VjA5ef369bhcLtq1a0f9+vULPlauXElSUlKRr9egQQO6devGihUrWL9+PT4+Ptx6662sW7eOQ4cOsXLlSgYNGlTkc5OSksjJyaFPnz4F+4KCgmjfvn2JjqVu3boFhQ1AaGgoe/bsKXb80aNHAfDz8yvY161bN8477zy6dOnCFVdcwcyZMzlw4ECh59WpUwewzhSJSNnozI2IFDJkyBCmT5+Oj48PTZs2xcvr+I8Jh8NR6BIKWGc0ihMWFsaWLVv49ttv+eabb/jPf/7Dc889x8qVKzl06BBOp5O1a9fidDoLPa9+/frFvubgwYNZsWIFvr6+DBo0iKCgIDp27Mjq1atZuXIl//3vf8t45Kfm7e1d6GvDME76f3Gixo0bA3DgwAHOOOMMAJxOJ9988w1r1qzh66+/5pVXXuHBBx/kp59+onXr1oB1OQsoeI6IlJ7O3IhIIfXq1aNt27a0aNGiUGED1hvuifNQXC4XiYmJp3y9OnXqEBUVxcsvv8yKFSuIjY1l/fr19OjRA5fLxZ49e2jbtm2hj39eEjpR/rybZcuWFcytGTx4MB9++CG///57sfNtwsPD8fb25qeffirYd+DAAX7//fdC43x8fArm9JRHeHg4AQEBbNy4sdB+wzDo378/kydPZt26dfj4+PDZZ58VPJ6YmIi3tzedOnUqdwaR2krFjYiU2LnnnsvixYtZvHgxmzdvZvz48Rw8eLDY8XPmzGHWrFkkJiaybds25s6dS506dWjZsiXt2rXj2muvZezYsSxYsIDk5GTi4uKYMmUKixcvLvY1zznnHLKysvjyyy8LFTfvv/8+oaGhtGvXrsjn1a9fn5tuuon77ruP5cuXk5iYyPXXX4/DUfjHYKtWrVi1ahW7du1i3759pf5/lM/hcDB06FBWr15dsO+nn37iqaee4pdffiElJYUFCxawd+9eOnbsWDDm+++/Z+DAgQWXp0Sk9FTciEiJ3XjjjYwbN46xY8cyaNAg2rRpw5AhQ4od36BBA2bOnEn//v3p2rUr3377LYsWLaJRo0YAzJ49m7Fjx/Lf//6X9u3bc8kll/Dzzz/TokWLYl+zYcOGdOnShTPOOIMOHToAVsHjdruLnW+T77nnnmPgwIFERUUxdOhQBgwYQK9evQqNeeyxx9i+fTvh4eHlvjR08803M2/ePNxuNwABAQGsWrWKCy+8kHbt2vHQQw/x/PPPc8EFFxQ8Z968edxyyy3l+nNFajvDPNVFYxERKTPTNOnTpw/33nsvV1999WnHf/XVV/z3v//lt99+O+mSoIiUnM7ciIhUEsMwePPNN0u8fMXhw4eZPXu2ChuRctKZGxEREfEoOnMjIiIiHkXFjYiIiHgUFTciIiLiUVTciIiIiEdRcSMiIiIeRcWNiIiIeBQVNyIiIuJRVNyIiIiIR1FxIyIiIh7l/wEDDvubKiEzFgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "def damped_oscillation_fit(x, A, A0, Tau, f, x0):\n", + " return A*np.exp(-x/Tau)*np.cos(2*np.pi*(x-x0)*f)+A0\n", + "\n", + "population = [result.measurement_counts['0']/N_shots for result in batch.results()]\n", + "x, y = amps, population\n", + "\n", + "initial_guess=[0.5, 0.5, 1, 0.4, 0]\n", + "optimal_params, _ = scipy.optimize.curve_fit(damped_oscillation_fit, x, y, p0=initial_guess)\n", + "x_fit = np.arange(x[0],x[-1], np.diff(x)[0]/10)\n", + "y_fit = damped_oscillation_fit(x_fit, *optimal_params)\n", + "\n", + "plt.plot(x,y, 'o')\n", + "plt.plot(x_fit,y_fit)\n", + "plt.xlabel(\"Pulse width (s)\")\n", + "plt.ylabel(\"Population\")\n", + "\n", + "frequency = optimal_params[3]\n", + "phase_offset = optimal_params[4]\n", + "x90_amplitude=(np.pi/2)/(2*np.pi*frequency)+phase_offset\n", + "plt.plot(x90_amplitude, damped_oscillation_fit(x90_amplitude, *optimal_params), 'ks')\n", + "\n", + "print('rx(pi/2) amplitude: ', round(x90_amplitude, 5), ' ns')\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We save the $\\pi$/2 calibration to reuse it later." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "x90 = GaussianWaveform(length, width, x90_amplitude, False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Canonical decomposition of single-qubit gates\n", + "Native gates are directly related to the Hamiltonian of the qubits and do not require a complex design. Their implementation could essentially rely on the application of a single pulse. An example of a native gate is the $R_X(π/2)$ gate, also known as the V or SX gate (equivalent up to a global phase $e^{-i\\pi/4}$) that we just calibrated. \n", + "\n", + "On the other hand, non-native gates cannot be directly understood from a continuous Hamiltonian and usually requires a sequence of pulses with varying parameters. The concept of native gates is rather loose and gates that could be designed with a single pulse such as the Hadamard gate are often decomposed into a series of native gates during the compilation stage. \n", + "\n", + "As the state of a single qubit can be represented as a vector on the Bloch sphere, any gate operated on this qubit can be expressed via the following unitary matrix:\n", + "\n", + "$$\n", + " U(θ,ϕ,λ) = \n", + " \\begin{pmatrix}\n", + " \\cos⁡(\\theta/2) & -ie^{iλ} sin⁡(θ/2)\\\\\n", + " -ie^{iϕ} \\sin⁡(θ/2) & e^{i(ϕ+λ)} \\cos⁡(θ/2)\n", + " \\end{pmatrix}\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It is then convenient to decompose any 1-qubit gate (including the $R_X(\\theta)$ gate) into a sequence of three $R_Z$ gates, which will be [absorbed](https://aip.scitation.org/doi/10.1063/1.5089550) into an instantaneous and perfect shift of the phase of the frame, and two $R_X$ gates with a fixed angle of π/2. The result is that 1-qubit gates have all the same θ-independent duration (up to a global phase):\n", + "\n", + "$$U(θ,ϕ,λ)= R_Z (ϕ- π/2) R_X (π/2) R_Z (π-θ) R_X (π/2) R_Z (λ- π/2)$$\n", + "\n", + "We implement the parametric sequence by composing a sequence with `shift_phase` and `play` instructions\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "lambda_ = FreeParameter(\"lambda_\")\n", + "theta = FreeParameter(\"theta\")\n", + "phi = FreeParameter(\"phi\")\n", + "\n", + "U_sequence = (\n", + " PulseSequence()\n", + " .shift_phase(drive_frame, lambda_ - np.pi/2)\n", + " .play(drive_frame, x90)\n", + " .shift_phase(drive_frame, np.pi - theta)\n", + " .play(drive_frame, x90)\n", + " .shift_phase(drive_frame, phi - np.pi/2)\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAHHCAYAAABwaWYjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB1x0lEQVR4nO3dd1zU9R8H8NfdsTeyQRBRxIEoCO6VkrhD09Q0cbRMSzMztVyV4s5Sc+aqTNPU+pkjw524QBRFRVSGyhTZ++77+wO5JEDu8I5jvJ6Px/cR973P9/N9n8Hd+z5TJAiCACIiIiJSmFjTARARERHVNkygiIiIiJTEBIqIiIhISUygiIiIiJTEBIqIiIhISUygiIiIiJTEBIqIiIhISUygiIiIiJTEBIqIiIhISUygiKjeS0xMxLBhw2BhYQGRSITVq1crdF1RURFmzpwJR0dHiMVi+Pv7qzVOIqo5tDQdABGRItLS0tCsWTMkJydj7969GDZsmMrq/vjjj3Hs2DHMnz8ftra28Pb2Vui6rVu3Yvny5Zg2bRq8vLzg5OSkspiIqGZjAkVEtcK8efOQk5OjlrpPnDiB1157DTNmzFD6OgcHB3zzzTdqiYuIai524RFRjXfjxg2sX78en332mcrqLCoqQkFBAQAgKSkJZmZmSteh6HXP34uI6gYmUESkEefOnYOPjw/09PTQpEkTbNy4EQsWLIBIJCpTdurUqRgyZAi6detWpXtFR0dDJBJhxYoVWL16NZo0aQJdXV18//33EIlEEAQB69atg0gkKvf+FdV38uRJ3Lx5U37dqVOnKrxXREQECgoKMG/ePLRr1w6mpqYwNDREt27dcPLkyQrjXbduHVxcXGBgYIA+ffogLi4OgiDgq6++QsOGDaGvr4/XXnsNqampZeI8cuQIunXrBkNDQxgbG2PAgAG4efNmlf4Niag0duERUbULDw9Hnz59YGVlhQULFqCoqAjz58+HjY1NmbJ79+7F+fPncevWLURHR7/Ufbdt24a8vDy8++670NXVhZeXF3788Ue89dZbePXVVzF27FiF6rGyssKPP/6IRYsWISsrC4GBgQCAFi1aIDc3t9x7NWjQABkZGdiyZQtGjRqFd955B5mZmfjhhx/g5+eHS5cuoW3btqXu8/PPP6OgoAAffvghUlNTsWzZMrzxxhvo1asXTp06hc8++wxRUVFYs2YNZsyYga1bt8qv/fHHHxEQEAA/Pz8sXboUOTk5WL9+Pbp27YqrV6/C2dn5pf4tieo9gYiomvn7+wt6enpCTEyM/FxERIQgkUiE59+WcnJyBCcnJ2H27NmCIAjCyZMnBQDC3r17lbrfgwcPBACCiYmJkJSUVOZ5AMLkyZOVfh09evQQWrVqpfC9ioqKhPz8/FLnnj59KtjY2AgTJkwoU4eVlZWQlpYmPz979mwBgNCmTRuhsLBQfn7UqFGCjo6OkJeXJwiCIGRmZgpmZmbCO++8U+peCQkJgqmpaZnzRKQ8duERUbWSSqU4duwY/P39S81aa9GiBfz8/EqVXbJkCQoLCzFnzhyV3Pv111+HlZWVSuqqyr0kEgl0dHQAADKZDKmpqSgqKoK3tzdCQ0PL1DF8+HCYmprKH3fo0AEAMGbMGGhpaZU6X1BQgEePHgEAjh8/jrS0NIwaNQopKSnyQyKRoEOHDmW6DIlIeezCI6JqlZycjNzcXLi6upZ5zs3NDYcPHwZQPA5o+fLlWLduHYyMjFRy78aNG6uknpe5144dO7By5Urcvn0bhYWFLyz/32URSpIpR0fHcs8/ffoUAHD37l0AQK9evcqNwcTERJGXQEQvwASKiGqkefPmwcHBAT179pSPfUpISABQnIRFR0fDyckJYrHiDen6+vrqCFXhe/30008YN24c/P398emnn8La2hoSiQSBgYG4d+9emfISiaTcuis6LwgCgOLWLaB4HJStrW2Zcs+3XhFR1fCviIiqlZWVFfT19eWtJM+7c+eO/OfY2FhERUXBxcWlTLkPPvgAQHGLS1WWH9CUffv2wcXFBfv37y8122/+/PkqvU+TJk0AANbW1vD19VVp3URUjAkUEVUriUQCPz8/HDx4ELGxsfJuqlu3buHYsWPycl9//TVSUlJKXXvjxg3MnTsXM2fORKdOnWBoaFitsb+skpYjQRDkCdTFixcRHBys0lXM/fz8YGJigsWLF+OVV16BtrZ2qeeTk5OrbSwYUV3FBIqIqt3ChQtx9OhRdOvWDR988AGKioqwZs0atGrVCtevXwcAdO3atcx1Ja1NPj4+tXLfuYEDB2L//v0YMmQIBgwYgAcPHmDDhg1o2bIlsrKyVHYfExMTrF+/Hm+99Ra8vLwwcuRIWFlZITY2Fn/++Se6dOmCtWvXqux+RPUREygiqnYeHh44duwYpk+fjnnz5qFhw4ZYuHAh4uPj5QlUXTRu3DgkJCRg48aNOHbsGFq2bImffvoJe/fuxalTp1R6rzfffBP29vZYsmQJli9fjvz8fDg4OKBbt24YP368Su9FVB+JhJJRh0REGrZgwQIsXLgQfFsiopqO60ARERERKYldeERUa0mlUiQnJ7+wjJGRkdLrSJUsl1ARfX39UgtcElH9wwSKiGqtuLi4ShfHnD9/PhYsWKBUvXZ2di98PiAgANu3b1eqTiKqWzgGiohqrby8PJw7d+6FZVxcXMpdS+pF/v777xc+b29vj5YtWypVJxHVLUygiIiIiJTEQeRERERESuIYKDWQyWR4/PgxjI2NS23XQERERDWXIAjIzMyEvb19pftsMoFSg8ePH5fZLZ2IiIhqh7i4ODRs2PCFZZhAqYGxsTGA4v8BJiYmGo6GiIiIFJGRkQFHR0f55/iLMIFSg5JuOxMTEyZQREREtYwiw284iJyIiIhISUygiKqZIAi48SgdUUlZmg6FiAA8SstFSMxTFEllmg6FahF24RFVk+TMfOwPfYg9V+JwPzkbANCmoSlG+DhhUBs7GOtpazhCovojv0iK4xGJ2HM5DueiUiAIgI2JLoa1a4g3vB3RyMJQ0yFSDceFNNUgIyMDpqamSE9P5xioek4qE3AmMhm7L8ci6FYSimTFf2762hIUSmWlHg/wsMMIH0d4NzLn8hdEahKZmIndl+Jw4OpDPM0plJ831tVCZn6R/HEnFwuMbO8Iv1a20NOWaCJU0gBlPr+ZQKkBEygCgLxCKcZvu4zg+0/k59o6mmGkjyMGtrFHXqG0uEXqchzuPWuRAoBh7Rpi2eseEIuZRBGp0venorDs6B35Y1sTPQz3bojh7RxhY6qLvyOSsOdKHM7eTUbJJ6OLlSH2vNsJVsa6GoqaqhMTKA1jAkVSmYApu0Jx5EYCDHQkGOnjhBE+jnCzLTs1VhAEhMY+xe5Lcdh/9RGkMgHv92iCWf2aayByorpp75U4fLrvOgDg1ZY2eLO9E7o3s4KknC8qD5/mYF/IQ/x0IRYpWfnwaGiKX97pCENdjnqp65hAaRgTqPpNEAQs+OMmdgTHQEcixvYJPujcxFKha59/k18wqCXGdWmszlCJ6oWTd5Lw9o4rkMoETOrZBJ/1VezLyYOUbLy+/jxSswvQo5kVtgR4Q1vCuVd1mTKf3/xNIFKxDafvY0dwDABg5RttFE6eAGC4tyNm9GkGAFh4KAKHw+PVEiNRfXEtLg0f/BQKqUzAUE8HzPRzU/jaxpaG+CHAG/raEpyOTMas38LBNgcqUScSqHXr1sHZ2Rl6enro0KEDLl26VGHZmzdv4vXXX4ezszNEIhFWr15dpsyCBQsgEolKHc2bszuFKrc/9CGWHr0NAJg7sCUGtbFXuo7JrzTFmI5OEARg2p4wXHxuDBURKS46JRsTtl9GbqEU3VwtseR1D6UnaHg6mWPdaE9IxCL8FvoQK/+KVFO0VNvU+gRqz549mD59OubPn4/Q0FC0adMGfn5+SEpKKrd8Tk4OXFxcsGTJEtja2lZYb6tWrRAfHy8/zp07p66XQHXEmchkzHzW/fZOt8aY2LVq3W8ikQgLB7ujT0sbFBTJ8PbOK7iTkKnKUInqvJSsfARsu4Qn2QVoZW+C9WPaQUerah95vZrbYJG/OwBg7cko/HghRpWhUi1V6xOoVatW4Z133sH48ePRsmVLbNiwAQYGBti6dWu55X18fLB8+XKMHDkSuroVz6rQ0tKCra2t/LC0VLwbhuqfiMcZmPRTCIpkAl5ra4/Z/Vq8VH0SsQjfjfKEdyNzZOYVYdy2S0jKyFNRtER1W16hFBO3X0bMkxw4NtDHtvE+MHrJAeAj2zvhY9/i7vV5v9/A8YhEVYRKtVitTqAKCgoQEhICX19f+TmxWAxfX18EBwe/VN13796Fvb09XFxcMHr0aMTGxlZYNj8/HxkZGaUOqj9kMgGz919HdoEUnZtYYPmwNipZgkBPW4ItAd5oam2E+PQ8LDp8SwXREtV9m8/cx7WH6TA30MaO8e1hbaynkno/6t0Uo9oXd6/PORCOrOfWjaL6p1YnUCkpKZBKpbCxsSl13sbGBgkJCVWut0OHDti+fTuOHj2K9evX48GDB+jWrRsyM8vvRgkMDISpqan8cHR0rPK9qfb5LfQhrj1Mh6GOBKtHtq1yN0F5zAx08M0bbSESAb+HPcaV6FSV1U1UF8Wn5+L7U/cAAAsGt4KLlZHK6haJRFgwuCWcLQyQnJmPtSeiVFY31T61OoFSl379+mH48OHw8PCAn58fDh8+jLS0NPz666/llp89ezbS09PlR1xcXDVHTJqSmVeIpc8W5vuwt6vKvuk+r3VDU7zRrjgpX/i/CMhknAVEVJElR24jt1AK70bmGFyFSRyV0dWS4IsBLQEAW889QHRKdiVXUF1VqxMoS0tLSCQSJCaW7otOTEx84QBxZZmZmaFZs2aIiir/24auri5MTExKHVQ/rD0ZhZSsfDhbGGB8F2e13WeGnxuMdbUQ/igd+0Iequ0+RLXZlehU/B72GCJRceuTurZE6t3CGt2bWaFAKsPXf7Jrvb6q1QmUjo4O2rVrh6CgIPk5mUyGoKAgdOrUSWX3ycrKwr1792BnZ6eyOqn2e5CSja3nHgAAvhjQErpa6tsvy8pYFx/1dgUALDt2Gxl5hZVcQVS/yGQCFvzvJgBghLcj3B1M1XYvkUiEeQNbQEsswt+3EnEmMllt96Kaq1YnUAAwffp0bN68GTt27MCtW7cwadIkZGdnY/z48QCAsWPHYvbs2fLyBQUFCAsLQ1hYGAoKCvDo0SOEhYWVal2aMWMGTp8+jejoaJw/fx5DhgyBRCLBqFGjqv31Uc216M8IFEoFdG9mhd4trNV+v4DOznCxNERKVgHHXhD9x96QONx4lAFjXS3MUGKxzKpqam2MsZ2cAQBfHopAoVSm9ntSzVLrE6gRI0ZgxYoVmDdvHtq2bYuwsDAcPXpUPrA8NjYW8fH/rub8+PFjeHp6wtPTE/Hx8VixYgU8PT3x9ttvy8s8fPgQo0aNgpubG9544w1YWFjgwoULsLKyqvbXRzXT6chk/H0rCVri4m+i6uoqeJ6OlhhzBxaPvdj2zwPcT85S+z2JaoOMvEIsP1Y8FnGqryssjapn49+pvq5oYKiDqKQs/BjMtaHqG+6FpwbcC69uK5TK0O/bs4hKysKELo0xb1DLar3/+G2XcPJOMl5xs8K28e2r9d5ENdGiPyOw+ewDuFgZ4ujU7iqdCVuZXRdjMedAOIz1tHBqRk9YVFPyRurBvfCI1OjH4BhEJWWhgaEOpvq6Vvv9vxjYElpiEU7eScbJ2+WvuE9UX9xLzsK2f6IBFG+fVJ3JEwCM8HFESzsTZOYVYeVxbvNSnzCBIlLC0+wCfPN38ZvkjD5uMNXXrvYYmlgZyWf8fcWxF1TPLf7zFopkAl5xs8Irbuofi/hfErEI85+1Qv9yKRYRj7mQcn3BBIpICdvORyMzrwjNbY0xwkdzC6Z+2Lt47MX9lGz8eT2+8guI6qDwh+kIup0EiViELwZWb1f68zq4WKB/a1sIArDuJCd41BdMoIgUlJ1fhJ3B0QCAKb2aQqKC7VqqykRPG+M7OwMANpy+Bw5lpPpow5niFccHedihiQpXHK+KD3sVd+cfuRGPB1xcs15gAkWkoN2X45CWU4hGFgbo5675NcHGdnKGoY4EtxMyceoO16Gh+iU6JRtHwotbX9/v2UTD0QAt7EzwipsVZAKw6cx9TYdD1YAJFJECCopk+OFs8Zvie92baLT1qYSpgTbe7OAEAFh/+p6GoyGqXpvO3odMAF5xs0Jz25ox23lSz6YAgN9CHiIpI0/D0ZC6MYEiUsAf1x7jcXoeLI10MdTLQdPhyE3s6gJtiQiXHqQiJOappsMhqhZJmXnyLY1KkpaawMfZHF5OZiiQyrD12cxAqruqlEClpaVhy5YtmD17NlJTi3eHDw0NxaNHj1QaHFFNIJMJ2PishWdi18bQ01bfli3KsjXVwxDP4oRuA1uhqJ7Y9k80Copk8HIyg4+zuabDkROJRPKE7ucLMdxyqY5TOoG6fv06mjVrhqVLl2LFihVIS0sDAOzfv7/UlilEdUXQ7STcTcqCsa4WRnd00nQ4ZbzbvQlEIuB4RCLuJmZqOhwitcrIK8RPz1b9ntSzabXsAqCM3s2t4WpthMz8Ivx8IVbT4ZAaKZ1ATZ8+HePGjcPdu3ehp6cnP9+/f3+cOXNGpcERaZogCFh/qnha8uiOjWCiV/3rPlWmqbUR+rQs3rpow2kOXqW67ecLscjML4KrtRF6N6/+dZ8qIxaL8F6P4kHtP5x7gLxCqYYjInVROoG6fPky3nvvvTLnHRwckJCQoJKgiGqKy9FPERqbBh0tMSY8W7yyJnr/2Rv272GP8DgtV8PREKlHXqEUW/95AAB4r0cTiGvAZI7yDG5jD3tTPaRk5WN/KIe21FVKJ1C6urrIyCi70mpkZCQ326U6p6T1aVi7hrA20auktOZ4Opmjk4sFimQCtpx9oOlwiNRif+gjJGfmw95UD4Pb2Gs6nArpaInxdjcXAMCmM/cglXGdtrpI6QRq8ODB+PLLL1FYWDw4TiQSITY2Fp999hlef/11lQdIpCm34jNw8k4yxCLg3WdvhjVZyVo4uy/H4ml2gYajIVItqUzApmcLZ07s5lLte94pa2R7R5gZaCP6SQ6O3mDvTF2k9G/gypUrkZWVBWtra+Tm5qJHjx5o2rQpjI2NsWjRInXESKQRJTPv+rW2g7OloYajqVx3V0u0tDNBToEUO58NsiWqK47eSED0kxyYGWhjpAa3UVKUgY4WAjo5AwDWn47ibgF1kNIJlKmpKY4fP47//e9/+O677zBlyhQcPnwYp0+fhqFhzf+QIVJEQnoe/vdsj7n3u2t+lWNFiEQieSvUjxeikV/EwatUd2w5VzxBYmwnZxjqamk4GsUEdHaGvrYENx5l4OKDVE2HQypW5d/Crl27omvXrqqMhajG+PliDKQyAe0bN0DrhqaaDkdh/d1tEWiqh/j0PPx5PR5DvRpqOiSil3b9YRquxqZBRyLGWx0baTochTUw1MEQLwfsuhiLHeej0dHFQtMhkQoplEB99913Clf40UcfVTkYopogv0iKXy4Vr98y7tmGvbWFlkSMMR0bYfmxO9hxPpoJFNUJ289HAwAGeNjBylhXs8EoKaCTM3ZdjMVfEYl4nJYLezN9TYdEKqJQAvXNN9+UepycnIycnByYmZkBKF6Z3MDAANbW1kygqNb783o8UrIKYGeqJ19fqTYZ6eOIb4Pu4trDdFyNfQpPp5qzUjORslKy8nHoWnF3ekAt+0IDAG62xujkYoHg+0/w04UYzOzbXNMhkYooNAbqwYMH8mPRokVo27Ytbt26hdTUVKSmpuLWrVvw8vLCV199pe54idRux7Nvu2M6NoKWpGbP9CmPhZEuBnkUT/EueS1EtdXuS7EokMrQxtEMbR3NNB1OlZQkfrsvx3FhzTpE6U+HuXPnYs2aNXBzc5Ofc3NzwzfffIMvvvhCpcERVbersU9x7WE6dLTEtWKmT0VKuh7/DI9HUiZ3hafaqVAqw08XSrrTa8/Yp//ybWENBzN9pGYX4H/XHms6HFIRpROo+Ph4FBUVlTkvlUqRmJiokqCINKWkxWaQhz0sjGrXWIvntW5oCi8nMxRKBfxyMU7T4RBVyV83E5GQkQdLIx30b22n6XCqrGRsIgDsCI7mkgZ1hNIJVO/evfHee+8hNDRUfi4kJASTJk2Cr6+vwvUUFhYiLi4Od+7cQWoqp3eS5iVl5uHP8OKxFrVt8Hh5SroNfr4Yg4IimWaDIaqCki80b7Z3gq6WRLPBvKSRPo7Q1RLjxqMMhMY+1XQ4pAJKJ1Bbt26Fra0tvL29oaurC11dXbRv3x42NjbYsmXLC6/NzMzE+vXr0aNHD5iYmMDZ2RktWrSAlZUVGjVqhHfeeQeXL1+u8oshehm/XIxDoVSAl5NZrVq6oCL93ItnLCVl5uPoTa6ETLVLxOMMXIpOhZZYhNG1aOmCipgb6uC1tsVjE7ef50K3dYHSCZSVlRUOHz6M27dvY+/evdi7dy9u3bqFw4cPw9q64p2xV61aBWdnZ2zbtg2+vr44ePAgwsLCEBkZieDgYMyfPx9FRUXo06cP+vbti7t37yoc07p16+Ds7Aw9PT106NABly5dqrDszZs38frrr8PZ2RkikQirV69+6Tqp9isokuHni8VvarVxpk95dLTEGN3BCQAHk1PtU/I729fdFjY1eB9KZZS8txwJj0diBscm1nZVnmLUrFkzDB48GIMHD0azZs0qLX/58mWcOXMGly5dwty5c+Hn54fWrVujadOmaN++PSZMmIBt27YhISEB/v7+OHv2rEJx7NmzB9OnT8f8+fMRGhqKNm3awM/PD0lJSeWWz8nJgYuLC5YsWQJbW1uV1Em135Eb8UjKzIeVsS76udfesRb/9WYHJ2hLRAiJeYrwh+maDodIIU+zC3Aw7BGAutGdXqKVvSl8nM1RJBPw8wW2QtV2IkHJ0WwTJkx44fNbt259qYCU1aFDB/j4+GDt2rUAAJlMBkdHR3z44YeYNWvWC691dnbGtGnTMG3aNJXVCQAZGRkwNTVFeno6TExMqvbCqFoN/f4fhMamYZqvK6b5Vv6FoDaZuvsqfg97jNe9GmLlG200HQ5RpdafuoelR2+jlb0JDn3YFSKRSNMhqcyh648xZddVWBrp4J9ZvWr92K66RpnPb6VboJ4+fVrqSEpKwokTJ7B//36kpaVVNeYqKSgoQEhISKnB62KxGL6+vggODq62OvPz85GRkVHqoNoj/GE6QmPToC0R4c1nXV51SUm3wf+uP8aTrHzNBkNUiSKpDD9d+Lc7vS4lTwDg18oWtiZ6SMkqwOFnk1aodlJ6L7wDBw6UOSeTyTBp0iQ0afJym65+//33SElJwbx58xQqn5KSAqlUChub0qtF29jY4Pbt21WKoSp1BgYGYuHChVW6H2leyTYR/Vvbwdq4boy1eJ6noxk8Gpri+sN07L4ch8mvNNV0SEQV+vtWEh6l5cLcQBuD29hrOhyV05YUj01ceTwS28/HYIgnt1uqrVSyzLJYLMb06dPLbPmirN9++w3bt29XRUjVavbs2UhPT5cfcXFcd6e2eJKVj/9dL17Yrq4MHv8vkUiEgE7OAICfLsSgSMolDajmKhk8PrK9E/S062b31qgOTtCRiHEtLg1hcWmaDoeqSGX7VNy7d6/cBTaVERQUhPv37ytc3tLSEhKJpMwCnomJiRUOEFdHnbq6ujAxMSl1UO2w+3IcCopk8GhoCs9auk2EIga2sYOFoQ7i0/NwPIIL3lLNdCchE8H3n0AsgnzhybrI0kgXAz2KJ6vs5AzZWkvpLrzp06eXeiwIAuLj4/Hnn38iICBAZYEpQkdHB+3atUNQUBD8/f0BFHcnBgUFYcqUKTWmTqqZSo216FT3xlo8T1dLglHtnbD2ZBS2n49Gv1q8qjPVXTuCowEAfVrawsFMX7PBqFlAZ2fsv/oIh67HY86AFrCsxTsf1FdKJ1BXr14t9VgsFsPKygorV66sdIZeiZ07d77w+bFjxyocz/Tp0xEQEABvb2+0b98eq1evRnZ2NsaPHy+vy8HBAYGBgQCKB4lHRETIf3706BHCwsJgZGSEpk2bKlQn1Q3HIxIRn54HC0MdDGxT9xOK0R2dsP70PVx8kIpb8RloYceWUqo50nMLcSC0eOmCutqd/rw2jmZo42iGa3Fp+OViLD7s7arpkEhJSidQJ0+efOmbTp06tdTjwsJC5OTkQEdHBwYGBkolUCNGjEBycjLmzZuHhIQEtG3bFkePHpUPAo+NjYVY/G9P5ePHj+Hp6Sl/vGLFCqxYsQI9evTAqVOnFKqT6oaSweOj6sA2EYqwM9WHXysbHA5PwM7gaAQO9dB0SERye6/EIbdQCjcbY3R0aaDpcKrFuM6N8PGeNPx0MQbv92wCbYnKRtVQNVB6HahevXph//79MDMzK3U+IyMD/v7+OHHiRJUCuXv3LiZNmoRPP/0Ufn5+VaqjpuA6UDXfrfgM9Pv2LCRiEc599grsTOt2d0GJi/efYMSmC9DTFuPC7N4wM9DRdEhEkMkEvLLyFGKe5GDxkNZ1cjmR8uQXSdFlyQmkZBVg7ZueGOhR92Yd1jZqXQfq1KlTKCgoKHM+Ly9P4dXDy+Pq6oolS5aUaZ0iUoedz8Za9G1lW2+SJwBo37gBmtsaI69Qhl+vcLYo1QynIpMQ8yQHJnpa8PesP0mErpYEb7bndku1lcIJ1PXr13H9+nUAQEREhPzx9evXcfXqVfzwww9wcHB4qWC0tLTw+PHjl6qDqDJpOQU4cLX+jLV4nkgkkm+NsTM4BlKZUg3QRGpRsrnuCB9HGOgoPbKkVhvdsRG0xCJcjn6Km4+53VJtovBvatu2bSESiSASidCrV68yz+vr62PNmjUK1fXHH3+Uelwyk2/t2rXo0qWLoiERVcmvV+KQVyhDCzsT+DibazqcavdaWwcEHrmNh09zcfJ2Enxbcmwfac695CyciUyGSAS81dFZ0+FUOxsTPfR1t8Wh6/HYeT4GS4dxbGJtoXAC9eDBAwiCABcXF1y6dAlWVlby53R0dGBtbQ2JRLGBuCXLA5QQiUSwsrJCr169sHLlSkVDIlKaVCZgZ3Dxt91xnRvV6aULKqKvI8FIH0dsPHMfO4KjmUCRRv347O+xd3NrOFkYaDgazRjX2RmHrsfjYNgjzOrXHOaGHJtYGyicQDVqVLyomUz28qsYq6IOoqo4cTsJD5/mwlRfG4PbvFyXc202pmMjbD57H2fvpiAqKQtNrY00HRLVQ1n5RdgX8hAAMPbZavn1UbtG5mhlb4KbjzOw50oc3u/xctuiUfVQKIH6448/0K9fP2hra5fpfvuvwYMHqyQwInWQbxPh4wh9nbq/dEFFHBsYoHcLGxyPSMTO4Gh8+Zq7pkOieui3kIfIyi+Ci5Uhuja11HQ4GiMSiRDQ2Rkz913Hj8ExeKebCyTi+tc6XtsolED5+/sjISEB1tbWZbrfnicSiSCVSlUVG5FKRSVl4lxUSp3fJkJR4zo743hEIn4LeYgZfm4w0dPWdEhUj8hkgnzl8YBOzhDX84RhcBt7BB6+hUdpufj7ViL8WlVtOzKqPgrNwpPJZLC2tpb/XNHB5Ilqsi1nHwAAfFvYwLFB/Rxr8bzOTSzgam2E7AIpdl+K1XQ4VM+cvJOE+8nZMNLVwuvtGmo6HI3T05Zg5LMlDbacVXxPWNIcLntK9UJSZh72P9sm4p3uLhqOpmYQiUR4p1vxv8XWc9EoKOLYRKo+G88UJwlvdnCCkW79WrqgIuM6O0NbUrykQWjsU02HQ5VQ6Lf2u+++U7jCjz76qMrBEKnLjvPRKJDK4OlkBu9G9W/pgoq85mmPFX/dQUJGHv537TFbAqhahMWl4dKDVGiJRRjfxVnT4dQYNiZ68G/rgL0hD7Hp9H1seKudpkOiF1Aogfrmm28UqkwkEjGBohonO78IP10o7qJ6r7tLvVy6oCK6WhKM6+KMZUfvYPPZ+xjq5cB/H1K7TWfuAQAGt7WvVzsBKOLd7i7YG/IQxyIS8CAlG40tDTUdElVAoQTqwYMH6o4DANCiRQtERkZyLBWp1J7LcUjPLYSzhQFebcmBmf81ukMjrDsRhdsJmTgdmYyebtaaDonqsJgn2Th6IwFAcbJApbnaGKNXc2ucuJ2ELWfvY9GQ1poOiSrwUmOgBEGAknsRv1BgYCC2bt2qsvqIiqQy/HCu+AvA25waXC5TfW354NVNZzh4ldRry9kHkAlAj2ZWaG7LzdbLU5JY7gt5iJSsfA1HQxWpUgL1ww8/wN3dHXp6etDT04O7uzu2bNny0sH4+/sjICDgpeshKvFneDwepeXCwlAHwzi+p0ITujaGRCzC+XtPcOMR9+Mi9UjNLsDekOJNrN9j61OFOjRugDYNTZFfJJPvnEA1j9IJ1Lx58zB16lQMGjQIe/fuxd69ezFo0CB8/PHHmDdvnjpiJKoSQRDkLSoBnZ2hp11/F86sjIOZPgZ52AH4d3YUkartDI5GXqEMrR1M0amJhabDqbFEIhHe7V68GvmPwdHILeCwlppI6bmj69evx+bNmzFq1Cj5ucGDB8PDwwMffvghvvzyS4Xq2bdvH3799VfExsaioKCg1HOhoaHKhkVUxvl7T3DzcQb0tSV4iwtnVurd7k1wMOwxDofHY6afG9fKIpXKLZDKW1Pe5WSOSvV1t4VTAwPEpuZgb0hcvd7qpqZSugWqsLAQ3t7eZc63a9cORUVFCtXx3XffYfz48bCxscHVq1fRvn17WFhY4P79++jXr5+yIRGVq6Ql5Q3vhtycUwEt7U3QzdUSUpkgHzdGpCr7Qh8iNbsADc310c+dkzkqIxGL8Ha3xgCKx41JZaobb0yqoXQC9dZbb2H9+vVlzm/atAmjR49WqI7vv/8emzZtwpo1a6Cjo4OZM2fi+PHj+Oijj5CezvEX9PJuxWfgTGQyxKLiweOkmJLBq3suxyEtp6CS0kSKkcoE+erab3dtDC0J13BWxPB2jjA30EZsao585iLVHC81iPztt9/G22+/jdatW2Pz5s0Qi8WYPn26/KhIbGwsOnfuDADQ19dHZmYmgOLk7JdffqlKSESlbH7W+tSvtR27opTQtaklWtqZILdQip8ucPAqqcZfNxMQ8yQHZgbaeMPHUdPh1Br6OhK89azrbtOZeyqd9U4vT+kE6saNG/Dy8oKVlRXu3buHe/fuwdLSEl5eXrhx4wauXr2Kq1evIiwsrMI6bG1tkZqaCgBwcnLChQsXABSvN8VfEHpZcak5+OPaYwCc6aMskUiE93oU/5tt+yca2fmKdcsTVUQQBHx/qnjhzLc6NoKBDrdtUUZAp0bQ1RLj2sN0nItK0XQ49Bylf5NPnjz50jft1asX/vjjD3h6emL8+PH4+OOPsW/fPly5cgVDhw596fqpfvvm70gUyQR0c7WER0MzTYdT6wxobYdvjkci+kkOtv3zAFN6uWo6JKrFjt1MQPijdBjqSDCus7Omw6l1LIx08WYHJ2z7Jxorjt1B16aWHIBfQ2ikI3rTpk34/PPPAQCTJ0/G1q1b0aJFC3z55Zfljq8iUlRkYiYOXC3eNPhTPzcNR1M7aUnE+PjVZgCKB+JzLBRVlVQmYMVfkQCAiV0bw8JIV8MR1U4f9GwKAx0Jrj1Mx18RiZoOh55RugUqLy8Pa9aswcmTJ5GUlASZrPQO7oosQSAWiyEW/5u7jRw5EiNHjlQ2FKIyVv0VCUEA+rayZevTSxjkYY/1p+7hdkImNp65j8/6Ntd0SFQLHbz6CFFJWTDV18bb7E6vMitjXUzo0hhrT0Zh5V934NvChrsq1ABKt0BNnDgRy5YtQ6NGjTBw4EC89tprpY6KxMbGKnWfR48eKVx23bp1cHZ2hp6eHjp06IBLly69sPzevXvRvHlz6OnpoXXr1jh8+HCp58eNGweRSFTq6Nu3r1LxU/W7FpeGozcTIBYBn/RppulwajWxWIQZfYpb8Lb98wBJGXkajohqm4IiGb75u7j1aVLPJjDR09ZwRLXbO91dYKqvjcjELPwepvjnI6mP0i1Qhw4dwuHDh9GlSxelrvPx8YG/vz/efvtt+Pj4lFsmPT0dv/76K7799lu8++67+Oijjyqtd8+ePZg+fTo2bNiADh06YPXq1fDz88OdO3dgbV12U9Tz589j1KhRCAwMxMCBA7Fr1y74+/sjNDQU7u7u8nJ9+/bFtm3b5I91ddn0XNOt+OsOAGCIZ0O42hhrOJrar3cLa3g5mSE0Ng1rT0bhy9fcK7+I6Jndl2Px8GkurI11EcBFIF+aqb423u/RBEuP3sY3f0dioIc9dLS4HIQmKf2v7+DgAGNj5T+cIiIiYGhoiFdffRW2trYYMGAA3nnnHXz44YcYM2YMvLy8YG1tja1bt2LZsmUKJU8AsGrVKrzzzjsYP348WrZsiQ0bNsDAwKDCTYm//fZb9O3bF59++ilatGiBr776Cl5eXli7dm2pcrq6urC1tZUf5ubmSr9mqj7n76Xg7N0UaEtEmObLQc+qIBKJ8KlfcdfdL5diEZeao+GIqLbIKSjCd0FRAIAPe7tCX4fbKKlCQOdGsDLWRVxqLvZcidN0OPWe0gnUypUr8dlnnyEmRrk1YiwsLLBq1SrEx8dj7dq1cHV1RUpKCu7evQsAGD16NEJCQhAcHIz+/fsrVGdBQQFCQkLg6+srPycWi+Hr64vg4OByrwkODi5VHgD8/PzKlD916hSsra3h5uaGSZMm4cmTJ8q8XKpGgiBgxbHi1qdR7Z247pMKdWpigW6uliiUClj9911Nh0O1xI7zMUjJyodjA32M8Oa6T6pioKOFD3s1BQCsCbrLPfI0TOkuPG9vb+Tl5cHFxQUGBgbQ1i7dr12yvlNF9PX1MWzYMAwbNkzZW5eRkpICqVQKGxubUudtbGxw+/btcq9JSEgot3xCwr+rvPbt2xdDhw5F48aNce/ePcyZMwf9+vVDcHAwJJKy36Ty8/ORn58vf5yRkfEyL4uUdOJ2EkJj06CnLcaUV5pqOpw6Z0YfN5y9m4IDVx/i/R4u7B6lF0rPLcSG08XrPn3s24zdTCo20scJm87cx8OnudgZHI33ejTRdEj1ltIJ1KhRo/Do0SMsXrwYNjY2dXI9iudnBLZu3RoeHh5o0qQJTp06hd69e5cpHxgYiIULF1ZniPSMTCZg+bPWp3GdG8PaRE/DEdU9bRzN4NfKBsduJmLV8UisH9NO0yFRDbbl7H2k5xbC1doIr7V10HQ4dY6OlhjTfJthxt5rWH/6HkZ1cOIAfQ1ROoE6f/48goOD0aZNG3XEoxRLS0tIJBIkJpZeFyMxMRG2tuVvVmlra6tUeQBwcXGBpaUloqKiyk2gZs+eXWrrmoyMDDg6stm6Ovzv+mPcTsiEsa4W3u/BadLq8kkfN/wVkYgjNxJw/WEal4igciVn5ss3ov6kjxun2qvJEE8HbDh9D1FJWdhy5j6m9+Gad5qgdNtq8+bNkZubq45YlKajo4N27dohKChIfk4mkyEoKAidOnUq95pOnTqVKg8Ax48fr7A8ADx8+BBPnjyBnZ1duc/r6urCxMSk1EHql51fhGVHi1uf3u3uAjMDHQ1HVHc1szHGkGetCQv/FwEZd4anciw/dhs5BVJ4NDSFXyubyi+gKpGIRfjk2WK3m88+4AQPDVE6gVqyZAk++eQTnDp1Ck+ePEFGRkapo7pNnz4dmzdvxo4dO3Dr1i1MmjQJ2dnZGD9+PABg7NixmD17trz81KlTcfToUaxcuRK3b9/GggULcOXKFUyZMgUAkJWVhU8//RQXLlxAdHQ0goKC8Nprr6Fp06bw8/Or9tdHFVv5VyQepeXCwUwfE7s11nQ4dd4MPzcY6kgQEvMUP19Sbl03qvvO30vBr1ceAgDmDmxZJ4d31CR93W3RoXED5BZK8fnBG9xHVgOUTqD69u2L4OBg9O7dG9bW1jA3N4e5uTnMzMw0MtV/xIgRWLFiBebNm4e2bdsiLCwMR48elQ8Uj42NRXx8vLx8586dsWvXLmzatAlt2rTBvn37cPDgQfkaUBKJBNevX8fgwYPRrFkzTJw4Ee3atcPZs2e5FlQNci0uDdvPF3cVLBrizg1Kq4G9mT5mPNseZ9mR20hI5+KaVCyvUIo5+8MBAKM7OMHHuYGGI6r7RCIRFg9tDR0tMc5EJss3UKfqIxKUTFtPnz5d4XPh4eHylpz6LCMjA6ampkhPT2d3nhoUSmUYvPYf3IrPwGtt7fHtSE9Nh1RvSGUCXl9/HmFxafBrZYONb3lrOiSqAZYfu411J+/BxkQXx6f34KDmarQm6C5WHo+EhaEO/p7eA+aGHMrwMpT5/Fa6BapHjx6lDi8vL9y5cweffvoppk6dWuWgiRS15ewD3IrPgJmBNuYObKnpcOoViViEwKGtoSUW4djNRBy9kVD5RVSn3YrPwMbT9wEACwe7M3mqZu/1aIJmNkZ4kl2Ar/+8pelw6pUqL9Bx5swZBAQEwM7ODitWrECvXr1w4cIFVcZGVEZ0SjZWP9tf6/P+LWDJ3d2rXQs7E7z7bGPYeb/fQEZeoYYjIk2RygTM2h+OIpmAPi1t0Ne94tnMpB46WmIEDvWASAT8FvoQ5+6maDqkekOpBCohIQFLliyBq6srhg8fDhMTE+Tn5+PgwYNYsmRJhXvcEamCIAj4/GA48otk6NLUAsPaNdR0SPXWR71d4WxhgKTMfCw9Uv6itVT37QyOxrW4NBjranGvRA1q18gcb3VsBACYcyCcK5RXE4UTqEGDBsHNzQ3Xr1/H6tWr8fjxY6xZs0adsRGVsi/kIf6JegJdLTEW+bfmLB8N0tOWYPHQ1gCAny/G4nL0i3cgoLrnUVqufBHbmf2aw9aUi9hq0qd+brA10UNsag5WB0VqOpx6QeEE6siRI5g4cSIWLlyIAQMGlLulCZG6pGTlY9Hh4v79ab7N4GxpqOGIqHMTS7zhXdwKOOu368gv4rfe+kIQBMw7eAM5BVJ4NzLH6PZOmg6p3jPW08ZX/sWtgFvOPsCNR+kajqjuUziBOnfuHDIzM9GuXTt06NABa9euRUoK+1pJ/YqkMkzbHYa0nEK0sDPB21zzqcaY078FLI10cC85Gwv/F6HpcKiabPsnGkG3k6AtKZ5UIOaK4zXCqy1t0L+1LaQyAR/9chXpuRyfqE4KJ1AdO3bE5s2bER8fj/feew+7d++Gvb09ZDIZjh8/jszMTHXGSfXY4sO3cS4qBfraEqx6ow20JdyctKYwM9DB8mFtIBIBuy7G4scLMZoOidTs3N0UeWvwZ32bc3PpGubL19xhZ6qH+ynZmLr7KqTcNUBtlP4kMjQ0xIQJE3Du3DmEh4fjk08+wZIlS2BtbY3BgwerI0aqx/ZeicPWf4oXzFz1Rhu0sOO6WjXNK82t8emzBTYX/nETF+4/0XBEpC4xT7IxeVcopDIBQ70cMLErW4NrGksjXWx6yxu6WmKcupMsH6dGqvdSX+Xd3NywbNkyPHz4EL/88ouqYiICAITGPsXnB24AKJ711a91+XsRkuZN6tEEg9rYo0gm4IOfQ/HwKffmqmuy8ovwzs4rSM8tRFtHMywewokcNVXrhqZYNswDALDh9D38HvZIwxHVTSrpC5FIJPD398cff/yhiuqIkJiRh/d/DEGBVIY+LW0wrberpkOiFxCJRFj2ugfcHUyQml2Ad3aGIKegSNNhkYrIZAI+3hOGyMQsWBvrYuNb7aCnzYlENdlrbR3wfo8mAICZ+64j/CEHlasaB5NQjZNXKMW7P4YgKTMfzWyMsGpEWw5SrQX0dSTY+JY3LI10cCs+A5/uvc4NTuuI1X9H4nhEInS0xNj4VjvYmHDJgtrgUz83vOJmhfwiGd798QqSM/M1HVKdwgSKahRBEDBnfziuxaXBzEAbW8b6wEiXGwXXFg5m+lg/ph20JSL8GR6PtSeiNB0SvaTD4fH47tn/x8AhreHpVP2bxlPVSMQifDvKEy5WhohPz8Okn0K43IgKMYGiGqNIKsPMfdex/+ojSMQirHvTC04WBpoOi5Tk49xAvir1yuORWHviLluiaqnfwx5h6u6rAICJXRvjda7+X+uY6Glj81hvGOtp4UrMU4zfdhmZ3H5JJZhAUY2QWyDF+z+FYG/IQ4hFwJKhrdGlqaWmw6IqGtXeCR/1agoAWPFXJBb8cRMyTqeuVbb98wBTd4ehUCpgoIcdZvdrrumQqIqaWBlh01veMNSR4Py9Jxi1+QK781SACRRpXHpOId764SL+vpUEXS0xNoxph+HejpoOi17S9D5uWDCoJQBgR3AMpu4JQ0GRTMNRUWUEQcDyY7flC6MGdGqE70Z6Qovrr9VqnZpYYPe7nWBhqIMbjzIwfMN5xKVytuzL4F8EaVRCeh7e2BiMKzFPYaynhR8ndkCfVtzRva4Y16UxvhvlCW2JCP+79hgTd1xGVj5n59VURVIZZu8Px7qT9wAAM/o0w4LBrTiJo45o3dAU+yZ1RkNzfUQ/ycHQ9ecR8ThD02HVWkygSGPuJWfh9fXncScxE9bGutj7fie0b9xA02GRig1uY4+t43xgoCPB2bspeHPzBTzJYvdBTZNXKMUHP4di9+U4iEVA4NDWmNLLlWs91TGNLQ2xf1JnNLc1RnJmPkZsDObit1XEBIqqnVQmYPs/DzBozTk8SstFY0tD/DapM5rbcpXxuqqbqxV+eacjGhjq4PrDdPitPovD4fEcXF5DXI5OxYDvzuKvZ0sVfD+6HUZxg+A6y9pED3veK/7CmplfhNFbLmLp0dvIK+QMPWWIBL6DqVxGRgZMTU2Rnp4OExMmBc+7m5iJz367jtDYNACAj7M51o9pB0sjXc0GRtXiXnIW3t15BfeSswEAfVra4Ct/d64rpCGZeYVYdvSOfA9DSyNdrH3TEx1dLDQcGVWHvEIpZu67jj+uPQZQ3DoVOLR1vf7/r8znNxMoNWACVVZBkQzfn4rCupNRKJQKMNSR4LN+zTGmQyOOr6hn8gqlWHcyCutP3UORTICxrhZm92+BkT6O/F2oRkG3EvHFwRuIT88DALzh3RBz+reAmYGOhiOj6nb0RgLm/X4DSc9m5o1q74TZ/ZvDRE9bw5FVPyZQGsYE6l8ymYATt5Ow7NhtRCZmAQB6NbfG1/7usDfT13B0pEm34jMw67fruPZsi4n2jRtgRh83+Dibc9yNGt1JyMR3J+7iz+vxAACnBgYI5LIh9V56biGWHLmFXy7FAQBsTHQxo48bBre1h65W/dm2hwmUhjGBKu4a2HvlIXYERyPmSfFU2QaGOpg/qCUGt7HnByQBKB4Pt+2fB1j5VyRyn42/aGVvggldGmNgG7t69catTjKZgJN3krD1nwf4J6p4wLBYBLzdzQUf+zaDvg7/nalY8L0nmL3/OqKfvW9bGungzQ6NMKajE6yN635XOxMoDavPCdSDlGzsOB+NfSEP5dPVTfS0MKq9E97r0QQNDNk9QGXFpeZg3ckoHLj6CPnP1oqyNNLF6A5OGN3BCdYcI1UlmXmF2BfyEDvOR8s/EMUiwK+VLT7o2RStG5pqOEKqifIKpdj6zwPsPB+DhIziLl5tiQgDPewxvoszWjuY1tkvwfUugVq3bh2WL1+OhIQEtGnTBmvWrEH79u0rLL93717MnTsX0dHRcHV1xdKlS9G/f3/584IgYP78+di8eTPS0tLQpUsXrF+/Hq6urgrFU58SqLxCKS4+SMWZyGSciUzG3aQs+XNNrY0wrrMzhno5wECH+9lR5VKzC/DLpVj8GPzvG7dIBLR2MEV3Vyv0cLNCW0czaHNRx3LJZAIi4jNw5m7x32NIzFMUSovf4ku+yLzVqREamnOLJKpcoVSGozcSsP18NEJinsrPO5jpo3szS/RoZoXOTS3r1FipepVA7dmzB2PHjsWGDRvQoUMHrF69Gnv37sWdO3dgbW1dpvz58+fRvXt3BAYGYuDAgdi1axeWLl2K0NBQuLsX79+1dOlSBAYGYseOHWjcuDHmzp2L8PBwREREQE+v8m/CdTWBkskEPErLxZ2ETNxJzMTFB6m4eP+JvMUAKP5226OZFcZ3aYxurpZ19lsKqVehVIZjNxOw7Z/Sb9wAYKyrhc5NLeDj3ADNbIzhZmsMa2Pdevm7lppdgMjETEQmZuJqbBrO3k1GSlZBqTKu1kYI4BcZeknX4tKw/Xw0/rwejwLpv+/5ErEIno5m6NzEAs3tTNDMxhjOFga1duX6epVAdejQAT4+Pli7di0AQCaTwdHRER9++CFmzZpVpvyIESOQnZ2NQ4cOyc917NgRbdu2xYYNGyAIAuzt7fHJJ59gxowZAID09HTY2Nhg+/btGDlyZKUx1dYESiYTkJpTgMSMPCRl5CMpMw+JGfl4+DQHdxKzcDcxEzkFZdcJsTXRe/ZtxBpdmlpwFg+pVGJGXnEL590UnL2bjLScshuhmuprw83GGK42RrA304e1sS5sTPSeHbow1deudQmWIAjIyi9CYkY+kjLykJSZj8SMPMSn5yEqKQt3EjPL3c/MQEeCTi4W6OFmhe6uVnC2NNRA9FRX5RQU4eL9VJx+1utwPyW7TBkdiRhNrI3gZmMEJwvD5/4ei/9rYahTYxMsZT6/a/XXkYKCAoSEhGD27Nnyc2KxGL6+vggODi73muDgYEyfPr3UOT8/Pxw8eBAA8ODBAyQkJMDX11f+vKmpKTp06IDg4GCFEih1SUrPxcXIh5AJAmQCIBMECIIAqaz4Z5lMQJEASGUyFMkESKUCCmUCCoqkyC+UoUAqQ0GRDPlFUuQUSJGVV4TM/CJk5xchK68IWQVFkFay4aupRAxnS0M0szFCK3tTdGlqiaZWhs99OBUCBdzpm1THRg8Y7tEAwz0aQCpzxc3HGTh/LwW3EzJwNzEL0U+yUZCbh/DoTIRHl1+HllgEI10tGOtpw1BXC8a6WjDSk0BfRwu6WmLoSMTQ0RJDV0sCHS0xtCUiSMRiaIlFkIhF0BIDIlHxz2JR8c9iUcnPkP8NCs//bT77eyySCsV/jzIZCqUCCp/7O8wvKv45t1CK7DwpMgsKkZ1XhKz84r/NyvYO1AfQ0FwfTa2M4GZrjI4uFvB0Mis9+L6g7AccUVUZAHjFxRCvuBgCfZ3x8GkuzkUl4/rDdEQlZSEqKQu5hVJEx+cgOj6p3DpEIsBIVwtGOlow0tOGkZ4WjHQlMNTRgq72s79FiaT4b1NLDG2JGBKJ6NnfoxhaIkAsFsHOTA89WzkXV6gBtTqBSklJgVQqhY2NTanzNjY2uH37drnXJCQklFs+ISFB/nzJuYrK/Fd+fj7y8//9JpiRoZ69hSIfJWHQn95qqRsAoGjDUfqzIxLAKbVFQ1SGBIDHs0NO0TVYBQC5z47aQAuKvUPnAoh9dlxSa0REZTQEMPLZAaD4j1TRSZ0Fz46X+chs9hjQ0Uwra81sQ6tlAgMDYWpqKj8cHR3Vch9zdo0RERHVCLW6BcrS0hISiQSJiYmlzicmJsLW1rbca2xtbV9YvuS/iYmJsLOzK1Wmbdu25dY5e/bsUt2CGRkZakmiWjWyBeY8Vnm9REREtZK25maU1uoESkdHB+3atUNQUBD8/f0BFA8iDwoKwpQpU8q9plOnTggKCsK0adPk544fP45OnToBABo3bgxbW1sEBQXJE6aMjAxcvHgRkyZNKrdOXV1d6OpWw15uIpHGmiqJiIjoX7U6gQKA6dOnIyAgAN7e3mjfvj1Wr16N7OxsjB8/HgAwduxYODg4IDAwEAAwdepU9OjRAytXrsSAAQOwe/duXLlyBZs2bQJQPDh02rRp+Prrr+Hq6ipfxsDe3l6epBEREVH9VusTqBEjRiA5ORnz5s1DQkIC2rZti6NHj8oHgcfGxkIs/neoV+fOnbFr1y588cUXmDNnDlxdXXHw4EH5GlAAMHPmTGRnZ+Pdd99FWloaunbtiqNHjyq0BhQASKXFU/0fPnxYq5YxICIiqs9KJoGVfI6/SK1fB6omunz58gtXQiciIqKa69KlS/Dx8XlhGSZQavD06VM0aNAAcXFxbIEiIiKqJUomgaWmpsLc3PyFZWt9F15NJJEUL4JhYmLCBIqIiKiWKfkcfxGuA0VERESkJCZQREREREpiAkVERESkJCZQREREREpiAkVERESkJCZQREREREpiAkVERESkJCZQREREREpiAkVERESkJCZQREREREpiAkVERESkJCZQREREREpiAkVERESkJCZQREREREpiAkVERESkJCZQREREREpiAkVERESkJCZQREREREpiAkVERESkJCZQREREREpiAkVERESkJCZQREREREpiAkVERESkJCZQREREREpiAkVERESkJCZQREREREpSWwJ1//59dVVNREREpFFqS6CaNm2KV155BT/99BPy8vLUdRsiIiKiaqe2BCo0NBQeHh6YPn06bG1t8d577+HSpUvquh0RERFRtVFbAtW2bVt8++23ePz4MbZu3Yr4+Hh07doV7u7uWLVqFZKTk9V1ayIiIiK1Uvsgci0tLQwdOhR79+7F0qVLERUVhRkzZsDR0RFjx45FfHy8ukMgIiIiUim1J1BXrlzBBx98ADs7O6xatQozZszAvXv3cPz4cTx+/BivvfaaukMgIiIiUiktdVW8atUqbNu2DXfu3EH//v2xc+dO9O/fH2Jxcc7WuHFjbN++Hc7OzuoKgYiIiEgt1JZArV+/HhMmTMC4ceNgZ2dXbhlra2v88MMP6gqBiIiISC1EgiAImg6irsnIyICpqSnS09NhYmKi6XCIiIhIAcp8fqttDNS2bduwd+/eMuf37t2LHTt2qOu2RERERGqntgQqMDAQlpaWZc5bW1tj8eLF6rotERERkdqpLYGKjY1F48aNy5xv1KgRYmNj1XVbIiIiIrVTWwJlbW2N69evlzl/7do1WFhYqOu2L7RkyRKIRCJMmzbtheVWr14NNzc36Ovrw9HRER9//DG3oyEiIiI5tc3CGzVqFD766CMYGxuje/fuAIDTp09j6tSpGDlypLpuW6HLly9j48aN8PDweGG5Xbt2YdasWdi6dSs6d+6MyMhIjBs3DiKRCKtWraqmaImIiKgmU1sC9dVXXyE6Ohq9e/eGllbxbWQyGcaOHVvtY6CysrIwevRobN68GV9//fULy54/fx5dunTBm2++CQBwdnbGqFGjcPHixeoIlYiIiGoBtXXh6ejoYM+ePbh9+zZ+/vln7N+/H/fu3cPWrVuho6OjrtuWa/LkyRgwYAB8fX0rLdu5c2eEhITINz6+f/8+Dh8+jP79+1d4TX5+PjIyMkodREREVHeprQWqRLNmzdCsWTN136ZCu3fvRmhoKC5fvqxQ+TfffBMpKSno2rUrBEFAUVER3n//fcyZM6fCawIDA7Fw4UJVhUxEREQ1nNoSKKlUiu3btyMoKAhJSUmQyWSlnj9x4oRC9RQWFiIhIQE5OTmwsrJCgwYNFI4hLi4OU6dOxfHjx6Gnp6fQNadOncLixYvx/fffo0OHDoiKisLUqVPx1VdfYe7cueVeM3v2bEyfPl3+OCMjA46OjgrHSURERLWL2lYinzJlCrZv344BAwbAzs4OIpGo1PPffPNNhddmZmbip59+wu7du3Hp0iUUFBRAEASIRCI0bNgQffr0wbvvvgsfH58XxnDw4EEMGTIEEolEfk4qlUIkEkEsFiM/P7/UcwDQrVs3dOzYEcuXL5ef++mnn/Duu+8iKytLvpffi3AlciIiotpHmc9vtbVA7d69G7/++usLxw6VZ9WqVVi0aBGaNGmCQYMGYc6cObC3t4e+vj5SU1Nx48YNnD17Fn369EGHDh2wZs0auLq6lltX7969ER4eXurc+PHj0bx5c3z22WdlkicAyMnJKZMklZTjrjdEREQEqDGB0tHRQdOmTZW+7vLlyzhz5gxatWpV7vPt27fHhAkTsH79emzfvh1nz56tMIEyNjaGu7t7qXOGhoawsLCQnx87diwcHBwQGBgIABg0aBBWrVoFT09PeRfe3LlzMWjQoHITLiIiIqp/1JZAffLJJ/j222+xdu3aMt13L/LLL78oVE5PTw/vv/9+VcOTi42NLdXi9MUXX0AkEuGLL77Ao0ePYGVlhUGDBmHRokUvfS8iIiKqG9Q2BmrIkCE4efIkGjRogFatWkFbW7vU8/v376+0jp07d8Lb2xstW7YsdT4vLw+//vorxo4dq9KYVYVjoIiIiGofZT6/1ZZAjR8//oXPb9u2rdI6xGIxDA0NsX37drz++uvy84mJibC3t4dUKn3pONWBCRQREVHtUyMGkSuSICli4cKFeOuttxAeHo4FCxaopE4iIiKil6G2lcgBoKioCH///Tc2btyIzMxMAMDjx4+RlZWlcB1jxozBiRMnsHHjRgwbNgy5ubnqCpeIiIhIIWpLoGJiYtC6dWu89tprmDx5MpKTkwEAS5cuxYwZMxSqo2TweceOHXHx4kVERUWhc+fOiI6OVlfYRERERJVSWwI1depUeHt74+nTp9DX15efHzJkCIKCghSq4/nhWU5OTjh//jycnZ3x6quvqjxeIiIiIkWpbQzU2bNncf78+TIbBzs7O+PRo0cK1TF//nwYGRnJHxsYGODAgQOYP38+zpw5o9J4iYiIiBSltgRKJpOVO0vu4cOHMDY2VqiO+fPnl3ueG/cSERGRJqktgerTpw9Wr16NTZs2ASgez5SVlYX58+dXur3LH3/8UWn9IpEIgwYNUkmsRERERMpQ2zpQDx8+hJ+fHwRBwN27d+Ht7Y27d+/C0tISZ86cgbW1dYXX/ncvOpFIVGYfOpFIVO/WgRIEAbmFNfM1ExERVTd9bYlSu51UpkYspAkUL2Owe/duXL9+HVlZWfDy8sLo0aNLDSpXhLGxMa5duwYXFxc1Rapa6kqgcgqK0HLeMZXVR0REVJtFfOkHAx3VdabViIU0AUBLSwtjxoxR5y2IiIiIqp3aEqidO3e+8Pmauo9dTaavLUHEl36aDoOIiKhG0NeWaOzeakugpk6dWupxYWEhcnJyoKOjAwMDAyZQVSASiVTaVElERERVo7aFNJ8+fVrqyMrKwp07d9C1a1f88ssvStUlEolUOkiMiIiI6GWodRB5ea5cuYIxY8bg9u3bFZYxNzcvlTClpaXBxMSkzOy81NRUtcX5MtQ1iJyIiIjUp8YMIi/3hlpaePz48QvLrF69unqCISIiIqoCtSVQ/10MUxAExMfHY+3atejSpcsLrw0ICFBXWEREREQvTW0JlL+/f6nHIpEIVlZW6NWrF1auXKlUXZmZmaUW0hSLxaX2yCMiIiKqTmrdC6+qwsLCMGfOHBw+fBgAYG9vj5ycHPnzIpEIwcHB8PHxeek4iYiIiJRVI+fEr1mzBl27di117scff4SDgwMEQcDWrVvx3Xff4ccff9RQhERERFSfqS2Bmj59usJlV61aVerx+fPnMWXKlFLnOnbsKN/KRV9fH2+88cbLB0lERERUBWpLoK5evYqrV6+isLAQbm5uAIDIyEhIJBJ4eXnJy5W3vlNMTAysrKzkj7/88ktYWlrKH9vZ2SExMVFdoRMRERG9kNoSqEGDBsHY2Bg7duyAubk5gOLFNcePH49u3brhk08+qfBaPT09xMTEoGHDhgCAjz/+uNTzcXFxMDAwUFfoRERERC+ktpXIV65cicDAQHnyBBQvkPn1119XOgvP09MTBw8erPD5/fv3w9PTU1WhEhERESlFbS1QGRkZSE5OLnM+OTkZmZmZL7z2gw8+wMiRI+Hs7IxJkybJVyCXSqX4/vvvsWbNGuzatUstcRMRERFVRm0J1JAhQzB+/HisXLkS7du3BwBcvHgRn376KYYOHfrCa19//XVMnz4dH374IebMmSMfPH7//n1kZWVh+vTpGDZsmLpCJyIiInohte2Fl5OTgxkzZmDr1q0oLCwEULyNy8SJE7F8+XIYGhpWWseFCxfwyy+/4O7duwAAV1dXjBo1Ch07dlRHyCrDvfCIiIhqH2U+v9W+mXB2djbu3bsHAGjSpEmliVNsbCycnJwUrv/Ro0dwcHB4qRhVjQkUERFR7aPM57faBpGXiI+PR3x8PFxdXWFoaIjK8jUfHx+89957uHz5coVl0tPTsXnzZri7u+O3335TdchEREREL6S2MVBPnjzBG2+8gZMnT0IkEuHu3btwcXHBxIkTYW5uXuFMvIiICCxatAivvvoq9PT00K5dO9jb20NPTw9Pnz5FREQEbt68CS8vLyxbtgz9+/dX10sgIiIiKpfaWqA+/vhjaGtrIzY2ttSaTSNGjMDRo0crvM7CwgKrVq1CfHw81q5dC1dXV6SkpMjHQY0ePRohISEIDg5m8kREREQaobYWqL/++gvHjh2TL4ZZwtXVFTExMZVer6+vj2HDhnG2HREREdU4amuBys7OLne18NTUVOjq6qrrtkRERERqp7YEqlu3bti5c6f8sUgkgkwmw7Jly/DKK6+o67ZEREREaqe2Lrxly5ahd+/euHLlCgoKCjBz5kzcvHkTqamp+Oeff9R1WyIiIiK1U1sLlLu7OyIjI9G1a1e89tpryM7OxtChQ3H16lU0adJEXbclIiIiUju1JFCFhYXo3bs3kpKS8Pnnn+PXX3/F4cOH8fXXX8POzk4dt1TIkiVLIBKJMG3atBeWS0tLw+TJk2FnZwddXV00a9YMhw8frp4giYiIqMZTSxeetrY2rl+/ro6qq+zy5cvYuHEjPDw8XliuoKAAr776KqytrbFv3z44ODggJiYGZmZm1RMoERER1Xhq68IbM2YMfvjhB3VVr5SsrCyMHj0amzdvhrm5+QvLbt26FampqTh48CC6dOkCZ2dn9OjRA23atKmmaImIiKimU9sg8qKiImzduhV///032rVrV2YPvFWrVqnr1mVMnjwZAwYMgK+vL77++usXlv3jjz/QqVMnTJ48Gb///jusrKzw5ptv4rPPPoNEIin3mvz8fOTn58sfZ2RkqDR+IiIiqllUnkDdv38fzs7OuHHjBry8vAAAkZGRpcqIRCJV37ZCu3fvRmho6Av31nve/fv3ceLECYwePRqHDx9GVFQUPvjgAxQWFmL+/PnlXhMYGIiFCxeqMmwiIiKqwURCZbv7KkkikSA+Ph7W1tYAirdu+e6772BjY6PK2ygkLi4O3t7eOH78uHzsU8+ePdG2bVusXr263GuaNWuGvLw8PHjwQN7itGrVKixfvhzx8fHlXlNeC5Sjo6NCuzkTERFRzZCRkQFTU1OFPr9V3gL133zsyJEjyM7OVvVtFBISEoKkpCR5SxgASKVSnDlzBmvXrkV+fn6Zbjk7Oztoa2uXOt+iRQskJCSgoKAAOjo6Ze6jq6vL1dWJiIjqEbWNgSqh4gYupfTu3Rvh4eGlzo0fPx7NmzevcExTly5dsGvXLshkMojFxWPsIyMjYWdnV27yRERERPWPymfhiUSiMmOcqnPM0/OMjY3h7u5e6jA0NISFhQXc3d0BAGPHjsXs2bPl10yaNAmpqamYOnUqIiMj8eeff2Lx4sWYPHmyRl4DERER1Txq6cIbN26cvEsrLy8P77//fplZePv371f1raskNjZW3tIEAI6Ojjh27Bg+/vhjeHh4wMHBAVOnTsVnn32mwSiJiIioJlH5IPLx48crVG7btm2qvG2NoswgNCIiIqoZNDqIvC4nRkRERESAGlciJyIiIqqrmEARERERKYkJFBEREZGSmEARERERKYkJFBEREZGSmEARERERKYkJFBEREZGSmEARERERKYkJFBEREZGSmEARERERKYkJFBEREZGSmEARERERKYkJFBEREZGSmEARERERKYkJFBEREZGSmEARERERKYkJFBEREZGSmEARERERKYkJFBEREZGSmEARERERKYkJFBEREZGSmEARERERKYkJFBEREZGStDQdQF0klUoBAA8fPoSJiYmGoyEiIiJFZGRkAPj3c/xFmECpQVRUFACgVatWGo6EiIiIlBUVFQUfH58XlhEJgiBUUzz1xtOnT9GgQQPExcWxBYqIiKiWyMjIgKOjI1JTU2Fubv7CsmyBUgOJRAIAMDExYQJFRERUy5R8jr8IB5ETERERKYktUEREVTTv9xs4dD1e02EQ1UudXCywbrSXxu7PBIqIqAoEQcCui7EoknEYKZEmZOQVavT+TKCIiKogv0gmT55+n9wFBjqVj5kgItXR1/DfHBMoIqIqyMovkv/c2sEUYrFIg9EQUXXjIHIioirIfpZAGehImDwR1UNMoIiIqqCkBcpIlw35RPUREygioirIzi/e6oEJFFH9VOcTqPXr18PDw0O+qGWnTp1w5MiRF16zd+9eNG/eHHp6emjdujUOHz5cTdESUW1R0oVnyASKqF6q8wlUw4YNsWTJEoSEhODKlSvo1asXXnvtNdy8ebPc8ufPn8eoUaMwceJEXL16Ff7+/vD398eNGzeqOXIiqsmy5AkUZ98R1Uf1ci+8Bg0aYPny5Zg4cWKZ50aMGIHs7GwcOnRIfq5jx45o27YtNmzYoFD9GRkZMDU1RXp6OrdyIaqjdl+Kxaz94fBtYY0tAS/edJSIagdlPr/rfAvU86RSKXbv3o3s7Gx06tSp3DLBwcHw9fUtdc7Pzw/BwcEV1pufn4+MjIxSBxHVbVnswiOq1+pFAhUeHg4jIyPo6uri/fffx4EDB9CyZctyyyYkJMDGxqbUORsbGyQkJFRYf2BgIExNTeWHo6OjSuMnopqnZBA5Eyii+qleJFBubm4ICwvDxYsXMWnSJAQEBCAiIkJl9c+ePRvp6enyIy4uTmV1E1HNlF3AZQyI6rN68Zevo6ODpk2bAgDatWuHy5cv49tvv8XGjRvLlLW1tUViYmKpc4mJibC1ta2wfl1dXejq6qo2aCKq0eRdeDr14m2UiP6jXrRA/ZdMJkN+fn65z3Xq1AlBQUGlzh0/frzCMVNEVD9lcxYeUb1W5786zZ49G/369YOTkxMyMzOxa9cunDp1CseOHQMAjB07Fg4ODggMDAQATJ06FT169MDKlSsxYMAA7N69G1euXMGmTZs0+TKIqIbJ5krkRPVanf/LT0pKwtixYxEfHw9TU1N4eHjg2LFjePXVVwEAsbGxEIv/bYjr3Lkzdu3ahS+++AJz5syBq6srDh48CHd3d029BCKqgTgLj6h+q/N/+T/88MMLnz916lSZc8OHD8fw4cPVFBER1QXcyoWofquXY6CIiF4Wt3Ihqt+YQBERVUEmB5ET1WtMoIiIqoCDyInqNyZQRERKkskE5BRwJXKi+owJFBGRkkpWIQfYAkVUXzGBIiJSUskMPIlYBF0tvo0S1Uf8yyciUtK/27hIIBKJNBwNEWkCEygiIiVxADkRMYEiIlIS14AiIiZQRERK4jYuRMQEiohISSWz8Iz1mEAR1VdMoIiIlJT1bBaeoQ4TKKL6igkUEZGSOAaKiJhAEREp6d9ZeNwHj6i+YgJFRKQkDiInIiZQRERKYhceETGBIiJSUslWLlxIk6j+YgJFRKQkduERERMoIiIlcRA5ETGBIiJSElugiIgJFBGRkphAERETKCIiJf3bhccEiqi+UmsCde/ePXzxxRcYNWoUkpKSAABHjhzBzZs31XlbIiK1KpmFxxYoovpLbQnU6dOn0bp1a1y8eBH79+9HVlYWAODatWuYP3++um5LRKRWBUUyFEhlAAAj7oVHVG+pLYGaNWsWvv76axw/fhw6Ojry87169cKFCxfUdVsiIrUq6b4DAEPOwiOqt9SWQIWHh2PIkCFlzltbWyMlJUVdty0jMDAQPj4+MDY2hrW1Nfz9/XHnzp0XXrN9+3aIRKJSh56eXjVFTEQ1WckAcl0tMbQkHEZKVF+prf3ZzMwM8fHxaNy4canzV69ehYODQ6XX37p1C7t378bZs2cRExODnJwcWFlZwdPTE35+fnj99dehq6tbaT2nT5/G5MmT4ePjg6KiIsyZMwd9+vRBREQEDA0NK7zOxMSkVKIlEokqvRcR1X3ZBRxATkRqTKBGjhyJzz77DHv37oVIJIJMJsM///yDGTNmYOzYsRVeFxoaipkzZ+LcuXPo0qULOnTogCFDhkBfXx+pqam4ceMGPv/8c3z44YeYOXMmpk2b9sJE6ujRo6Ueb9++HdbW1ggJCUH37t0rvE4kEsHW1lb5F05EdRr3wSMiQI0J1OLFizF58mQ4OjpCKpWiZcuWkEqlePPNN/HFF19UeN3rr7+OTz/9FPv27YOZmVmF5YKDg/Htt99i5cqVmDNnjsJxpaenAwAaNGjwwnJZWVlo1KgRZDIZvLy8sHjxYrRq1arcsvn5+cjPz5c/zsjIUDgeIqpdsjgDj4gAiARBENR5g7i4OISHhyMrKwuenp5wdXV9YfnCwkJoa2srXL8y5WUyGQYPHoy0tDScO3euwnLBwcG4e/cuPDw8kJ6ejhUrVuDMmTO4efMmGjZsWKb8ggULsHDhwjLn09PTYWJiovBrIaKa73B4PD74ORQ+zubY+35nTYdDRCqUkZEBU1NThT6/1Z5AlZBKpQgPD0ejRo1gbm5eHbcsY9KkSThy5AjOnTtXbiJUkcLCQrRo0QKjRo3CV199Veb58lqgHB0dmUAR1UG/XonDzH3X0dPNCtvHt9d0OESkQsokUGprg542bRpat26NiRMnQiqVokePHjh//jwMDAxw6NAh9OzZs9zrvvvuO4Xv8dFHHylcdsqUKTh06BDOnDmjVPIEANra2vD09ERUVFS5z+vq6io0oJ2Iaj+OgSIiQI0J1L59+zBmzBgAwP/+9z/cv38ft2/fxo8//ojPP/8c//zzT7nXffPNN6UeJycnIycnRz4eKi0tDQYGBrC2tlYogRIEAR9++CEOHDiAU6dOlZkVqIiS1rP+/fsrfS0R1S3ybVy4iCZRvaa2RUxSUlLks9gOHz6MN954A82aNcOECRMQHh5e4XUPHjyQH4sWLULbtm1x69YtpKamIjU1Fbdu3YKXl1e5XWnlmTx5Mn766Sfs2rULxsbGSEhIQEJCAnJzc+Vlxo4di9mzZ8sff/nll/jrr79w//59hIaGYsyYMYiJicHbb79dxX8NIqorSgaRG+kxgSKqz9SWQNnY2CAiIgJSqRRHjx7Fq6++CgDIycmBRKLY6r1z587FmjVr4ObmJj/n5uaGb7755oUz+Z63fv16pKeno2fPnrCzs5Mfe/bskZeJjY1FfHy8/PHTp0/xzjvvoEWLFujfvz8yMjJw/vx5tGzZUqF7ElHdxS48IgLU2IU3fvx4vPHGG7Czs4NIJIKvry8A4OLFi2jevLlCdcTHx6OoqKjMealUisTERIXqUGSM/KlTp0o9/uabb8p0JRIRAc914XEbF6J6TW0J1IIFC+Du7o64uDgMHz5cPshaIpFg1qxZCtXRu3dvvPfee9iyZQu8vLwAACEhIZg0aZI8ISMiqk5ZbIEiIqgxgQKAYcOGlTkXEBCg8PVbt25FQEAAvL295Ws9FRUVwc/PD1u2bFFZnEREiuJWLkQEqDmBys7OxunTpxEbG4uCgoJSzykyg87KygqHDx9GZGQkbt++DQBo3rw5mjVrppZ4iYgqI1+JnLPwiOo1tb0DXL16Ff3790dOTg6ys7PRoEEDpKSkKLUEQYlmzZoxaSKiGiErrxAAu/CI6ju1vQN8/PHHGDRoEDZs2ABTU1NcuHAB2traGDNmDKZOnapwPQ8fPsQff/xRbivWqlWrVB02EdELZZcsY8AEiqheU9s7QFhYGDZu3AixWAyJRIL8/Hy4uLhg2bJlCAgIwNChQyutIygoCIMHD4aLiwtu374Nd3d3REdHQxAE+aByIqLq9O8yBpyFR1SfqW0dKG1tbYjFxdVbW1sjNjYWAGBqaoq4uDiF6pg9ezZmzJiB8PBw6Onp4bfffkNcXBx69OiB4cOHqyt0IqJyCYLAQeREBECNCZSnpycuX74MAOjRowfmzZuHn3/+GdOmTYO7u7tCddy6dQtjx44FAGhpaSE3NxdGRkb48ssvsXTpUnWFTkRUrtxCKWTPlpbjGCii+k1tCdTixYthZ2cHAFi0aBHMzc0xadIkJCcnY9OmTQrVYWhoKB/3ZGdnh3v37smfS0lJUX3QREQvULIGlEgEGOiwC4+oPlPbVyhvb2/5z9bW1jh69KjSdXTs2BHnzp2Tb6nyySefIDw8HPv370fHjh1VGS4RUaWyn1vCQCQSaTgaItKkGt0GvWrVKmRlZQEAFi5ciKysLOzZsweurq6cgUdE1Y4DyImohNoSqMTERMyYMQNBQUFISkoqsyedVCp94fVSqRQPHz6Eh4cHgOLuvA0bNqgrXCKiSnEbFyIqobZ3gXHjxiE2NhZz586VbyisDIlEgj59+uDWrVswMzNTT5BEREr4dyNhJlBE9Z3a3gXOnTuHs2fPom3btlWuw93dHffv30fjxo1VFxgRURXJW6C4jQtRvae2WXiOjo5luu2U9fXXX2PGjBk4dOgQ4uPjkZGRUeogIqpO8kHkbIEiqvfU9i6wevVqzJo1Cxs3boSzs3OV6ujfvz8AYPDgwaW6AAVBgEgkqnQcFRGRKv3bhcdB5ET1nUoTKHNz81KJTnZ2Npo0aQIDAwNoa2uXKpuamlppfSdPnlRleEREL4WDyImohErfBVavXv3SdcTGxsLJyQlA8QrmlXn06BEcHBxe+r5ERJXhIHIiKqHSd4GAgABIpVKsWLECf/zxBwoKCtC7d2/Mnz8f+vr6CtXh4+MDf39/vP322/Dx8Sm3THp6On799Vd8++23ePfdd/HRRx+p8mUQEZWrZB88tkARkcrfBRYvXowFCxbA19cX+vr6+Pbbb5GUlIStW7cqdH1ERAQWLVqEV199FXp6emjXrh3s7e2hp6eHp0+fIiIiAjdv3oSXlxeWLVsmHydFRKRuWc8GkbMFiohEwstOlfsPV1dXzJgxA++99x4A4O+//8aAAQOQm5sLsVjxSX+5ubn4888/ce7cOcTExCA3NxeWlpbw9PSEn5+fwhsSa0JGRgZMTU2Rnp4OExMTTYdDRCoyYftlnLidhGWve+ANH0dNh0NEKqbM57fKv0bFxsaWahXy9fWFSCTC48eP0bBhQ4Xr0dfXx7BhwzBs2DBVh0hEVCUcRE5EJVS+DlRRURH09PRKndPW1kZhYaGqb0VEVK2y8rgXHhEVU/nXKEEQMG7cOOjq6srP5eXl4f3334ehoaH83P79+1V9ayIitSoZRM4xUESk8haogIAAWFtbw9TUVH6MGTMG9vb2pc5Vl8DAQPj4+MDY2BjW1tbw9/fHnTt3Kr1u7969aN68OfT09NC6dWscPny4GqIloposm114RPSMyt8Ftm3bpuoqX8rp06cxefJk+Pj4oKioCHPmzEGfPn0QERFRqkXseefPn8eoUaMQGBiIgQMHYteuXfD390doaGiNHrxOROqVxXWgiOgZlc/Cq+mSk5NhbW2N06dPo3v37uWWGTFiBLKzs3Ho0CH5uY4dO6Jt27bYsGFDpffgLDyiuqdIKkPTz48AAELnvooGhjoajoiIVE2Zz2+1bSZcU6WnpwMAGjRoUGGZ4OBg+Pr6ljrn5+eH4OBgtcZGRDVXdsG/e29yEDkR1at2aJlMhmnTpqFLly4v7IpLSEiAjY1NqXM2NjZISEgot3x+fj7y8/PljzMyMlQTMBHVGCXjn7QlIuhqMYEiqu/qVQvU5MmTcePGDezevVul9QYGBpYaIO/oyAX2iOoaDiAnoufVmwRqypQpOHToEE6ePFnpgp62trZITEwsdS4xMRG2trbllp89ezbS09PlR1xcnMriJqKaQb6Ipg4TKCKqBwmUIAiYMmUKDhw4gBMnTqBx48aVXtOpUycEBQWVOnf8+HF06tSp3PK6urowMTEpdRBR3ZLNffCI6Dl1/p1g8uTJ2LVrF37//XcYGxvLxzGZmppCX18fADB27Fg4ODggMDAQADB16lT06NEDK1euxIABA7B7925cuXIFmzZt0tjrICLN+ncbF45/IqJ60AK1fv16pKeno2fPnrCzs5Mfe/bskZeJjY1FfHy8/HHnzp2xa9cubNq0CW3atMG+fftw8OBBrgFFVI9xDBQRPa/OvxMosszVqVOnypwbPnw4hg8froaIiKg24jYuRPS8Ot8CRUSkCllsgSKi5zCBIiJSQDa3cSGi5zCBIiJSQMksPA4iJyKACRQRkULYhUdEz2MCRUSkAHbhEdHzmEARESmAK5ET0fOYQBERKYBdeET0PCZQREQKKOnCM9ZjAkVETKCIiBTy7yw8JlBExASKiEghWfJB5FzGgIiYQBERVUoQBO6FR0SlMIEiIqpEfpEMRbLifTWZQBERwASKiKhSJa1PAJcxIKJiTKCIiCpRMoBcX1sCiVik4WiIqCZgAkVEVAmuAUVE/8UEioioEtkFnIFHRKUxgSIiqgRboIjov5hAERFVgksYENF/MYEiIqpEtnwRTSZQRFSMCRQRUSWyuI0LEf0HEygiokpkcxsXIvoPJlBERJWQj4HiIppE9AwTKCKiSnAWHhH9F98NapHge08weVeopsMgqneyOIiciP6D7wa1SJFMhtTsAk2HQVQviURAKwcTTYdBRDVEnU+gzpw5g+XLlyMkJATx8fE4cOAA/P39Kyx/6tQpvPLKK2XOx8fHw9bWVo2RVs7LyRzHP+6u0RiI6itTfW1Ym+hpOgwiqiHqfAKVnZ2NNm3aYMKECRg6dKjC1925cwcmJv9+27S2tlZHeEox1NWCq42xpsMgIiKq9+p8AtWvXz/069dP6eusra1hZmam+oCIiIio1uMsvAq0bdsWdnZ2ePXVV/HPP/+8sGx+fj4yMjJKHURERFR31fkWKGXZ2dlhw4YN8Pb2Rn5+PrZs2YKePXvi4sWL8PLyKveawMBALFy4sMx5JlJERES1R8nntiAIlZYVCYqUqiNEIlGlg8jL06NHDzg5OeHHH38s9/n8/Hzk5+fLHz969AgtW7Z8mVCJiIhIQ+Li4tCwYcMXlmELlALat2+Pc+fOVfi8rq4udHV15Y+NjIwQFxcHY2NjiEQilcaSkZEBR0dHxMXFlRrkXpfwNdYNfI11A19j3cDXqBhBEJCZmQl7e/tKyzKBUkBYWBjs7OwULi8WiyvNXF+WiYlJnf0jKMHXWDfwNdYNfI11A19j5UxNTRUqV+cTqKysLERFRckfP3jwAGFhYWjQoAGcnJwwe/ZsPHr0CDt37gQArF69Go0bN0arVq2Ql5eHLVu24MSJE/jrr7809RKIiIiohqnzCdSVK1dKLYw5ffp0AEBAQAC2b9+O+Ph4xMbGyp8vKCjAJ598gkePHsHAwAAeHh74+++/y11ck4iIiOqnOp9A9ezZ84Wj6bdv317q8cyZMzFz5kw1R1V1urq6mD9/fqkxV3UNX2PdwNdYN/A11g18japXr2bhEREREakCF9IkIiIiUhITKCIiIiIlMYEiIiIiUhITKCIiIiIlMYGqRdatWwdnZ2fo6emhQ4cOuHTpkqZDUqkzZ85g0KBBsLe3h0gkwsGDBzUdksoFBgbCx8cHxsbGsLa2hr+/P+7cuaPpsFRq/fr18PDwkC9m16lTJxw5ckTTYanNkiVLIBKJMG3aNE2HolILFiyASCQqdTRv3lzTYanco0ePMGbMGFhYWEBfXx+tW7fGlStXNB2Wyjg7O5f5/ygSiTB58mRNh6YyUqkUc+fORePGjaGvr48mTZrgq6++Umg/u5fBBKqW2LNnD6ZPn4758+cjNDQUbdq0gZ+fH5KSkjQdmspkZ2ejTZs2WLdunaZDUZvTp09j8uTJuHDhAo4fP47CwkL06dMH2dnZmg5NZRo2bIglS5YgJCQEV65cQa9evfDaa6/h5s2bmg5N5S5fvoyNGzfCw8ND06GoRatWrRAfHy8/XrSlVW309OlTdOnSBdra2jhy5AgiIiKwcuVKmJubazo0lbl8+XKp/4fHjx8HAAwfPlzDkanO0qVLsX79eqxduxa3bt3C0qVLsWzZMqxZs0a9NxaoVmjfvr0wefJk+WOpVCrY29sLgYGBGoxKfQAIBw4c0HQYapeUlCQAEE6fPq3pUNTK3Nxc2LJli6bDUKnMzEzB1dVVOH78uNCjRw9h6tSpmg5JpebPny+0adNG02Go1WeffSZ07dpV02FUq6lTpwpNmjQRZDKZpkNRmQEDBggTJkwodW7o0KHC6NGj1XpftkDVAgUFBQgJCYGvr6/8nFgshq+vL4KDgzUYGb2s9PR0AECDBg00HIl6SKVS7N69G9nZ2ejUqZOmw1GpyZMnY8CAAaX+Luuau3fvwt7eHi4uLhg9enSpXRvqgj/++APe3t4YPnw4rK2t4enpic2bN2s6LLUpKCjATz/9hAkTJqh8o3tN6ty5M4KCghAZGQkAuHbtGs6dO4d+/fqp9b51fiXyuiAlJQVSqRQ2NjalztvY2OD27dsaiopelkwmw7Rp09ClSxe4u7trOhyVCg8PR6dOnZCXlwcjIyMcOHAALVu21HRYKrN7926Ehobi8uXLmg5FbTp06IDt27fDzc0N8fHxWLhwIbp164YbN27A2NhY0+GpxP3797F+/XpMnz4dc+bMweXLl/HRRx9BR0cHAQEBmg5P5Q4ePIi0tDSMGzdO06Go1KxZs5CRkYHmzZtDIpFAKpVi0aJFGD16tFrvywSKSEMmT56MGzdu1LlxJQDg5uaGsLAwpKenY9++fQgICMDp06frRBIVFxeHqVOn4vjx49DT09N0OGrz/Ld3Dw8PdOjQAY0aNcKvv/6KiRMnajAy1ZHJZPD29sbixYsBAJ6enrhx4wY2bNhQJxOoH374Af369YO9vb2mQ1GpX3/9FT///DN27dqFVq1aISwsDNOmTYO9vb1a/z8ygaoFLC0tIZFIkJiYWOp8YmIibG1tNRQVvYwpU6bg0KFDOHPmDBo2bKjpcFROR0cHTZs2BQC0a9cOly9fxrfffouNGzdqOLKXFxISgqSkJHh5ecnPSaVSnDlzBmvXrkV+fj4kEokGI1QPMzMzNGvWDFFRUZoORWXs7OzKJPUtWrTAb7/9pqGI1CcmJgZ///039u/fr+lQVO7TTz/FrFmzMHLkSABA69atERMTg8DAQLUmUBwDVQvo6OigXbt2CAoKkp+TyWQICgqqc+NK6jpBEDBlyhQcOHAAJ06cQOPGjTUdUrWQyWTIz8/XdBgq0bt3b4SHhyMsLEx+eHt7Y/To0QgLC6uTyRMAZGVl4d69e7Czs9N0KCrTpUuXMsuIREZGolGjRhqKSH22bdsGa2trDBgwQNOhqFxOTg7E4tLpjEQigUwmU+t92QJVS0yfPh0BAQHw9vZG+/btsXr1amRnZ2P8+PGaDk1lsrKySn27ffDgAcLCwtCgQQM4OTlpMDLVmTx5Mnbt2oXff/8dxsbGSEhIAACYmppCX19fw9GpxuzZs9GvXz84OTkhMzMTu3btwqlTp3Ds2DFNh6YSxsbGZcasGRoawsLCok6NZZsxYwYGDRqERo0a4fHjx5g/fz4kEglGjRql6dBU5uOPP0bnzp2xePFivPHGG7h06RI2bdqETZs2aTo0lZLJZNi2bRsCAgKgpVX3PvYHDRqERYsWwcnJCa1atcLVq1exatUqTJgwQb03VuscP1KpNWvWCE5OToKOjo7Qvn174cKFC5oOSaVOnjwpAChzBAQEaDo0lSnv9QEQtm3bpunQVGbChAlCo0aNBB0dHcHKykro3bu38Ndff2k6LLWqi8sYjBgxQrCzsxN0dHQEBwcHYcSIEUJUVJSmw1K5//3vf4K7u7ugq6srNG/eXNi0aZOmQ1K5Y8eOCQCEO3fuaDoUtcjIyBCmTp0qODk5CXp6eoKLi4vw+eefC/n5+Wq9r0gQ1LxUJxEREVEdwzFQREREREpiAkVERESkJCZQREREREpiAkVERESkJCZQREREREpiAkVERESkJCZQREREREpiAkVEREQac+bMGQwaNAj29vYQiUQ4ePCgWu8nlUoxd+5cNG7cGPr6+mjSpAm++uorKLssJhMoIqoXxo0bB39/f43d/6233sLixYsVKjty5EisXLlSzRER1QzZ2dlo06YN1q1bVy33W7p0KdavX4+1a9fi1q1bWLp0KZYtW4Y1a9YoVQ9XIieiWk8kEr3w+fnz5+Pjjz+GIAgwMzOrnqCec+3aNfTq1QsxMTEwMjKqtPyNGzfQvXt3PHjwAKamptUQIVHNIBKJcODAgVJfdvLz8/H555/jl19+QVpaGtzd3bF06VL07NmzSvcYOHAgbGxs8MMPP8jPvf7669DX18dPP/2kcD1sgSKiWi8+Pl5+rF69GiYmJqXOzZgxA6amphpJngBgzZo1GD58uELJEwC4u7ujSZMmSr2ZE9VVU6ZMQXBwMHbv3o3r169j+PDh6Nu3L+7evVul+jp37oygoCBERkYCKP6Cc+7cOfTr10+pephAEVGtZ2trKz9MTU0hEolKnTMyMirThdezZ098+OGHmDZtGszNzWFjY4PNmzcjOzsb48ePh7GxMZo2bYojR46UuteNGzfQr18/GBkZwcbGBm+99RZSUlIqjE0qlWLfvn0YNGhQqfPff/89XF1doaenBxsbGwwbNqzU84MGDcLu3btf/h+HqBaLjY3Ftm3bsHfvXnTr1g1NmjTBjBkz0LVrV2zbtq1Kdc6aNQsjR45E8+bNoa2tDU9PT0ybNg2jR49Wqh4mUERUb+3YsQOWlpa4dOkSPvzwQ0yaNAnDhw9H586dERoaij59+uCtt95CTk4OACAtLQ29evWCp6cnrly5gqNHjyIxMRFvvPFGhfe4fv060tPT4e3tLT935coVfPTRR/jyyy9x584dHD16FN27dy91Xfv27XHp0iXk5+er58UT1QLh4eGQSqVo1qwZjIyM5Mfp06dx7949AMDt27chEoleeMyaNUte56+//oqff/4Zu3btQmhoKHbs2IEVK1Zgx44dSsWmpdJXSkRUi7Rp0wZffPEFAGD27NlYsmQJLC0t8c477wAA5s2bh/Xr1+P69evo2LEj1q5dC09Pz1KDwbdu3QpHR0dERkaiWbNmZe4RExMDiUQCa2tr+bnY2FgYGhpi4MCBMDY2RqNGjeDp6VnqOnt7exQUFCAhIQGNGjVSx8snqvGysrIgkUgQEhICiURS6rmSLnEXFxfcunXrhfVYWFjIf/7000/lrVAA0Lp1a8TExCAwMBABAQEKx8YEiojqLQ8PD/nPEokEFhYWaN26tfycjY0NACApKQlA8ViJkydPljuW6d69e+UmULm5udDV1S010P3VV19Fo0aN4OLigr59+6Jv374YMmQIDAwM5GX09fUBQN76RVQfeXp6QiqVIikpCd26dSu3jI6ODpo3b65wnTk5ORCLS3fASSQSyGQypWJjAkVE9Za2tnapxyKRqNS5kqSn5I01KysLgwYNwtKlS8vUZWdnV+49LC0tkZOTg4KCAujo6AAAjI2NERoailOnTuGvv/7CvHnzsGDBAly+fFk+0D01NRUAYGVl9XIvkqiGy8rKQlRUlPzxgwcPEBYWhgYNGqBZs2YYPXo0xo4di5UrV8LT0xPJyckICgqCh4cHBgwYoPT9Bg0ahEWLFsHJyQmtWrXC1atXsWrVKkyYMEGpephAEREpyMvLC7/99hucnZ2hpaXY22fbtm0BABEREfKfAUBLSwu+vr7w9fXF/PnzYWZmhhMnTmDo0KEAigerN2zYEJaWlqp+GUQ1ypUrV/DKK6/IH0+fPh0AEBAQgO3bt2Pbtm34+uuv8cknn+DRo0ewtLREx44dMXDgwCrdb82aNZg7dy4++OADJCUlwd7eHu+99x7mzZunVD1MoIiIFDR58mRs3rwZo0aNwsyZM9GgQQNERUVh9+7d2LJlS5kxGkBxC5KXlxfOnTsnT6AOHTqE+/fvo3v37jA3N8fhw4chk8ng5uYmv+7s2bPo06dPdb00Io3p2bPnC1cB19bWxsKFC7Fw4UKV3M/Y2BirV6/G6tWrX6oezsIjIlKQvb09/vnnH0ilUvTp0wetW7fGtGnTYGZmVmZMxfPefvtt/Pzzz/LHZmZm2L9/P3r16oUWLVpgw4YN+OWXX9CqVSsAQF5eHg4ePCgfzE5ENQ9XIiciUrPc3Fy4ublhz5496NSpU6Xl169fjwMHDuCvv/6qhuiIqCrYAkVEpGb6+vrYuXPnCxfcfJ62trbS+3IRUfViCxQRERGRktgCRURERKQkJlBERERESmICRURERKQkJlBERERESmICRURERKQkJlBERERESmICRURERKQkJlBERERESmICRURERKSk/wNE1UGiywqRTgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "data = U_sequence(theta=np.pi/2, phi=0, lambda_=np.pi).to_time_trace()\n", + "for frame_id in data.amplitudes:\n", + " f, ax = plt.subplots(nrows=3, sharex=True)\n", + " f.subplots_adjust(hspace=0)\n", + "\n", + " ax[0].set_title(frame_id)\n", + " ax[0].plot(data.amplitudes[frame_id].times(), np.real(data.amplitudes[frame_id].values()), label=\"Real\")\n", + " ax[0].plot(data.amplitudes[frame_id].times(), np.imag(data.amplitudes[frame_id].values()), label=\"Imag\")\n", + " ax[0].set_ylabel(\"Amplitude\\n(a. u.)\")\n", + " ax[0].tick_params('x', labelbottom=False)\n", + "\n", + " ax[1].plot(data.frequencies[frame_id].times(), np.array(data.frequencies[frame_id].values())*1e-9)\n", + " ax[1].set_ylabel(\"Frequency\\n(GHz)\")\n", + " ax[1].tick_params('x', labelbottom=False)\n", + "\n", + " ax[2].plot(data.phases[frame_id].times(), data.phases[frame_id].values())\n", + " ax[2].set_xlabel(\"Time (s)\")\n", + " ax[2].set_ylabel(\"Phase\\n(rad)\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "With this sequence, we can create the U Gate via the `pulse_gate` function. For instance, the Hadamard gate is implemented by:\n", + " \n", + "$$ U(π/2,0,π)=R_Z (-π/2) R_X (π/2) R_Z (π/2) R_X (π/2) R_Z (π/2) $$\n", + "\n", + "In the following, we test our implementation of the U gate by probing its behavior when we sweep the angle $\\theta$ fixing $\\phi$ and $\\lambda$ to zero. We expect to achieve the $R_X$ gate that makes the qubit oscillate between $|0\\rangle$ and $|1\\rangle$ around the X axis. We initialize the state along both the X and Y axis before applying the U gate, to confirm that the $R_X$ gate was created successfully. If we initialize the qubit along the X axis which should coincide with the rotation X, we should observe a flat line as the qubit remains in the same state. " + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "@circuit.subroutine(register=True)\n", + "def U_pulses(theta, phi, lambda_):\n", + " return (\n", + " Circuit()\n", + " .pulse_gate(\n", + " [qubit], \n", + " pulse_sequence=U_sequence(theta=theta, phi=phi, lambda_=lambda_)\n", + " )\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "nb_shots=500\n", + "thetas=np.linspace(0, 2*np.pi, 25)\n", + "\n", + "# initialization along the X axis\n", + "b_X=device.run_batch([Circuit().rx(4, np.pi/2).rz(4, np.pi/2).U_pulses(t, 0, 0) for t in thetas], shots=nb_shots, disable_qubit_rewiring=True)\n", + "\n", + "# initialization along the Y axis\n", + "b_Y=device.run_batch([Circuit().rx(4, np.pi/2).U_pulses(t, 0, 0) for t in thetas], shots=nb_shots, disable_qubit_rewiring=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAABxNElEQVR4nO3dd3hT5f/G8Xe6W2hLGW0plCF7FmgBGQoqiIIoTr4qMsWFOPg5QETcuHAjKILgQMABoiAIqCgbCmXvVQTasrp3kt8fB4qV2ZL2JOn9uq5cfXJ6ktwNI58+5xkWu91uR0RERMRNeJgdQERERMSRVNyIiIiIW1FxIyIiIm5FxY2IiIi4FRU3IiIi4lZU3IiIiIhbUXEjIiIibsXL7AClzWazcfjwYQIDA7FYLGbHERERkUtgt9tJS0sjIiICD48L982UueLm8OHDREZGmh1DREREiuHgwYNUr179gueUueImMDAQMN6coKAgk9OIiIjIpUhNTSUyMrLgc/xCTC1u/vrrL95++21iY2M5cuQIs2bNolevXhd8zJ9//smwYcPYsmULkZGRPP/88/Tv3/+SX/P0paigoCAVNyIiIi7mUoaUmDqgOCMjg6ioKMaNG3dJ5+/bt48ePXpwzTXXEBcXxxNPPMH999/PggULSjipiIiIuApTe25uvPFGbrzxxks+f8KECdSuXZuxY8cC0KhRI5YuXcp7771Ht27dSiqmiIiIuBCXmgq+YsUKunTpUuhYt27dWLFixXkfk5OTQ2pqaqGbiIiIuC+XGlCckJBAWFhYoWNhYWGkpqaSlZWFv7//WY8ZM2YML730UpFfy2q1kpeXV+ys4nq8vb3x9PQ0O4aIiFwmlypuimPEiBEMGzas4P7p0dbnY7fbSUhIIDk5uRTSibOpUKEC4eHhWgNJRMSFuVRxEx4eTmJiYqFjiYmJBAUFnbPXBsDX1xdfX99Lfo3ThU1oaCgBAQH6kCsj7HY7mZmZJCUlAVC1alWTE4mISHG5VHHTrl075s2bV+jYwoULadeunUOe32q1FhQ2lSpVcshzius4XSAnJSURGhqqS1QiIi7K1AHF6enpxMXFERcXBxhTvePi4oiPjweMS0p9+/YtOP+hhx5i7969PPPMM2zfvp1PPvmEmTNn8uSTTzokz+kxNgEBAQ55PnE9p//sNd5KRMR1mVrcrF27lpYtW9KyZUsAhg0bRsuWLXnhhRcAOHLkSEGhA1C7dm3mzp3LwoULiYqKYuzYsXz++ecOnwauS1Fll/7sRURcn6mXpTp37ozdbj/v96dMmXLOx6xfv74EU4mIiIgrc6l1bkREREQuRsVNGWaxWJg9e7bDn7d///4X3SNMRESkpKi4cRPFKSiOHDlSsP3F/v37sVgsBYO73cG8efPw8fFh3bp1hY6PHTuWypUrk5CQYFIyESkVOWmQn2N2CjGBS00FF8cKDw83O0KJ6t69O3379qVv377Exsbi6+vL1q1bef7555kyZYrb//wiZZI1D3YugPVfwa7fwOIBVRpB1Sio2tz4GtYUfMubnVRKkHpuLsJut5OZm2/K7UKDrS+mc+fOPPbYYzzzzDNUrFiR8PBwXnzxxULn/PuyVO3atQFo2bIlFouFzp07n/N5rVYrgwYNonbt2vj7+9OgQQM++OCDC2bJycnhscceIzQ0FD8/Pzp27MiaNWsKvv/nn39isVhYvHgxMTExBAQE0L59e3bs2FHoeV599VVCQ0MJDAzk/vvvZ/jw4bRo0eKCr/3ee++Rnp7O6NGjyc/Pp1+/fvTs2ZPevXtf8HEi4mKO7YLfRsG7jWHGvbBzPthtYMuHxE0Q9zX8+gxM7gZjqsNHMfD9IFj2Aez9EzJPmP0TiAOp5+YisvKsNH5hgSmvvfXlbgT4FP+PaOrUqQwbNoxVq1axYsUK+vfvT4cOHejatetZ565evZo2bdqwaNEimjRpgo+Pzzmf02azUb16db777jsqVarE8uXLeeCBB6hatSp33XXXOR/zzDPP8MMPPzB16lRq1qzJW2+9Rbdu3di9ezcVK1YsOG/kyJGMHTuWKlWq8NBDDzFw4ECWLVsGwDfffMNrr73GJ598QocOHZg+fTpjx44tKMrOJzAwkMmTJ9OtWzf27dvHwYMHmT9//qW+hSLizHIzYMssWPcVHFx55ni5KhB1N7S8D7z94cgGSNhofD2yEdIOw/Fdxm3z92ceF1zjTO9O+KmvgeGgJSJcjoobN9a8eXNGjx4NQL169fj4449ZvHjxOYubKlWqAFCpUqULXq7x9vYutBFp7dq1WbFiBTNnzjxncZORkcH48eOZMmVKwfieiRMnsnDhQiZNmsTTTz9dcO5rr71Gp06dABg+fDg9evQgOzsbPz8/PvroIwYNGsSAAQMAeOGFF/jtt99IT0+/6Ptw7bXXcscddzB9+nRmzJih1adFXJndDodiYd2XsPlHyE0zjls8oN71RkFTvxt4ep95TIVIaHTTmfvpSUaRk7DhTMFzch+kxBu37b+cObdclVOXtFpAq/sgpFZp/JRymVTcXIS/tydbX3bsIoFFee3L0bx580L3q1atWrB30uUYN24ckydPJj4+nqysLHJzc897eWjPnj3k5eXRoUOHgmPe3t60adOGbdu2nTfv6b2dkpKSqFGjBjt27OCRRx4pdH6bNm34/fffL5r30KFDzJ8/n4CAAP7+++/z9jCJiBPLOA4bpxu9NEf/9X9HSG2j6Ii6B4IucU+48qFQr4txOy0rGRI2Fe7hObYDMo7C7kXGbeUn0OVFaD0YPDSqw5mpuLkIi8VyWZeGzOTt7V3ovsViwWazXdZzTp8+naeeeoqxY8fSrl07AgMDefvtt1m1atVlPS8Uznt6peDLzQswePBgoqOjGTlyJF27duWOO+4o6CESESdms8KeP2D9l7B9HthObYvi5QeNb4FWfaFmB8dcNvKvALWvMm6n5WZC0lY4EgebfoD45ca4nS2z4OaPoXLdy39dKRGu+aktDnd6jI3Var3gecuWLaN9+/aFelH27Nlz3vPr1KmDj48Py5Yto2bNmoCxb9OaNWt44oknLjlfgwYNWLNmTaG9xv49KPl8Pv/8c5YuXcqmTZuoWbMmDz/8MAMHDmTjxo2UK1fukl9fRErRyQOw/muImwap/5w5fvrSUNM7jGKkpPkEQPUY4xY9ENZOgoWjIX4FTOgA14yEdkPAQ5vsOhv1qwkAoaGh+Pv7M3/+fBITE0lJSTnnefXq1WPt2rUsWLCAnTt3MmrUqAsWGeXKlePhhx/m6aefZv78+WzdupXBgweTmZnJoEGDLjnf0KFDmTRpElOnTmXXrl28+uqrbNy48YJ7QR04cIBhw4bxzjvvFBRWb775JhaLheHDh1/ya4tIKTmxF6b9Dz6Igr/eMgobvwrQ5kF4aCk8uARa3186hc1/eXhAm8HwyAq44hrIz4aFo2BSV0jaXvp55IJU3AgAXl5efPjhh3z66adERERwyy23nPO8Bx98kNtuu43evXvTtm1bjh8/ftZYmP964403uP3227nvvvto1aoVu3fvZsGCBYSEhFxyvnvvvZcRI0bw1FNP0apVK/bt20f//v3x8/M75/l2u51BgwbRrl07HnjggYLjAQEBTJkyhfHjx7NkyZJLfn0RKUH5ObDkbfikHez8FbBD7U5w+yT4vx3Q/S0Ib2Z2SkNITbhvFtz8EfgGGYObP70K/nrHWGNHnILFfjmLqbig1NRUgoODSUlJISgoqND3srOz2bdvH7Vr1z7vh6Y4j65duxIeHs5XX33lsOfU3wGRUrbvb5g7DI7tNO7X7gTd34Eq9c3NdSlSDsEvTxiLBYIxfbzXJ85TiLmZC31+/5fG3IhLyMzMZMKECXTr1g1PT0++/fZbFi1axMKFC82OJiLFkXHMWHRvwzTjfrkq0G0MNLvDddaVCa4G98yEjTPg12eNmVafdYar/g+uegq8zr1emJQ8XZYSl2CxWJg3bx5XX3010dHR/Pzzz/zwww906dLl4g8WEedhsxlr1Hwcc6qwsUDMQHh0DTS/03UKm9MsFoj6HwxZDQ1vMlZEXvImfNYJDq27+OOlRKjnRlyCv78/ixYtMjuGiFyOpG3wy5PGbCMw9ni66X2IbG1qLIcIDIPeXxvTxOc9ZUwh//w6aP8YdB4B3rrMXZrUcyMiIiUrNxMWvQgTOhqFjXcAXP8qPLDEPQqb0ywWaHqb0YvT9HZjb6tl75/6uS9/LTC5dCpuRESk5Oz8DT5pC0vfMy7ZNOhhfPi3HwqebnrxoFxluGMy9P4GyocZe1hN7gbzRxiFnpQ4FTciIuJ4qYdhxn0w7U5Ijoeg6vC/aXD3NGOvp7Kg0U0wZJWxNQR2Y/uG8e2NGWJSolTciIiI49issHI8fNwats0Biye0e9T4kG/Yw+x0pc8/BG4dD/d+D0HVjA06p95kbPopJUbFjYiIOMahdTDxGpg/HHLToXprY1Xhbq+Bb3mz05mrXldjdePmvY37vzwBKf9c8CFSfCpuyjCLxcLs2bMd/rz9+/enV69eDn9eEXFS2akw72mYeK2xo7ZfMNz0Hgz8TQva/ZtfMNwyDiJaQXYKzH7YmBovDqfixk0Up6A4cuQIN954IwD79+/HYrEQFxfn+HAmWLJkCd7e3ixdurTQ8YyMDK644gqeeuopk5KJuBm7Hab1htWfAXZodic8utZYu8ZDHzFn8fSG2yYaM8b2/QWrxpudyC3pb14ZFh4ejq+vr9kxSkSnTp0YOnQo/fv3JyMjo+D4M888g7+/P6+++qqJ6UTcyI5fIX658WF932y4/XMoH2p2KudWua4xFR5g0UuQuNXcPG5IxY2b6ty5M4899hjPPPMMFStWJDw8nBdffLHQOf++LFW7dm0AWrZsicVioXPnzud8XqvVyqBBg6hduzb+/v40aNCADz744IJZcnJyeOyxxwgNDcXPz4+OHTsW2kn8zz//xGKxsHjxYmJiYggICKB9+/bs2LGj0PO8+uqrhIaGEhgYyP3338/w4cNp0aLFeV/39ddfx8fHh2effRaAP/74g88//5wvv/xS+0aJOILNBn+8ZrTbPgh1rjE3jyuJGQj1rgdrDvz4gLF5qDiMipuLsdshN8Oc22XuaTp16lTKlSvHqlWreOutt3j55ZfPuxfT6tWrAVi0aBFHjhzhxx/PPZLfZrNRvXp1vvvuO7Zu3coLL7zAc889x8yZM8+b45lnnuGHH35g6tSprFu3jrp169KtWzdOnDhR6LyRI0cyduxY1q5di5eXFwMHDiz43jfffMNrr73Gm2++SWxsLDVq1GD8+At35/r5+fHll1/y2Wef8dNPPzFw4ECee+45oqOjL/g4EblEW2dD4mZjd+z2j5mdxrVYLHDzxxBQCRI3nSkSxSHcdAUlB8rLhNcjzHnt5w6DT7liP7x58+aMHj0agHr16vHxxx+zePFiunbteta5VapUAaBSpUqEh4ef9zm9vb156aWXCu7Xrl2bFStWMHPmTO66666zzs/IyGD8+PFMmTKlYHzPxIkTWbhwIZMmTeLpp58uOPe1116jU6dOAAwfPpwePXqQnZ2Nn58fH330EYMGDWLAgAEAvPDCC/z222+kp6df8D2IiYlhxIgR3HbbbbRs2ZKRI0de8HwRuUTWfPjjdaPdbggEVDQ3jysKDIOeH8CMPrDsQ6jXDWp1MDuVW1DPjRtr3rx5oftVq1YlKSnpsp933LhxREdHU6VKFcqXL89nn31GfHz8Oc/ds2cPeXl5dOhw5h+st7c3bdq0Ydu2befNW7VqVYCCvDt27KBNmzaFzv/v/fMZNWoUNpuN4cOH4+Wlel7EITbNNFbe9Q+BKx8xO43ratQTWvQB7DDrIWMWlVw2/U9/Md4BRg+KWa99OQ/39i5032KxYLvMaYfTp0/nqaeeYuzYsbRr147AwEDefvttVq26/H1T/p3Xcmpn4MvNCxQUNCpsRBwkPxf+fMNod3gC/IJMjePybnwD9v8NyQfg12fh1glmJ3J56rm5GIvFuDRkxu3UB3xp8PHxAYwBwxeybNky2rdvzyOPPELLli2pW7cue/bsOe/5derUwcfHh2XLlhUcy8vLY82aNTRu3PiS8zVo0KDQIGTgrPsiUkrivjY+iMuFQpvBZqdxfb6BcNtnYPGADd/CltlmJ3J5Km4EgNDQUPz9/Zk/fz6JiYmkpJy7a7RevXqsXbuWBQsWsHPnTkaNGnXBIqNcuXI8/PDDPP3008yfP5+tW7cyePBgMjMzGTRo0CXnGzp0KJMmTWLq1Kns2rWLV199lY0bNxb08IhIKcnLhiVvG+2rn7qscYHyLzWuhI5PGu1fnoDUI6bGcXUqbgQwLtl8+OGHfPrpp0RERHDLLbec87wHH3yQ2267jd69e9O2bVuOHz/OI49c+Hr7G2+8we233859991Hq1at2L17NwsWLCAkJOSS8917772MGDGCp556ilatWrFv3z769++vKd0ipW3tZEg7bGyEGd3f7DTupdNwqBoFWSfhpyGXPWO2LLPY7WXr3UtNTSU4OJiUlBSCggpfJ87Ozmbfvn3Url1bH5ouoGvXroSHh/PVV1857Dn1d0DkAnLS4cMWkHHUmOWj4sbxju6AT6+G/Gy48W1o+4DZiZzGhT6//0s9N+ISMjMzeffdd9myZQvbt29n9OjRLFq0iH79+pkdTaTsWP2ZUdiE1IYW95qdxj1VaQBdXzbaC0cZxY4UmYobcQkWi4V58+Zx9dVXEx0dzc8//8wPP/xAly5dzI4mUjZkJcOyU6uRdx5h7JEkJaP1YKhzrdF78+NgY3aaFInmxopL8Pf3Z9GiRWbHECm7Vn4C2clQuQE0u8PsNO7Nw8PYPfyTdsYu60vehOtGmZ3KpajnRkRELizjOKz4xGhf8xx4eJqbpywIioCe7xvtpe9C/OWvJVaWqLg5hzI2xlr+RX/2Iuew/APITYPw5tDoZrPTlB1NboXm/wO7DWY9ADlpZidyGSpu/uX0CrmZmZkmJxGznP6z/+/qziJlVloCrPrMaF/7vHHJREpP97cgOBJO7of5I8xO4zI05uZfPD09qVChQsF+RgEBAVokroyw2+1kZmaSlJREhQoV8PRUt7sIAH+/C/lZUL011Lve7DRlj1+wsR3DlJtg/VdQ/wZodJPZqZyeipv/OL0jtiM2mBTXU6FChQvuii5SpiQfhNgvjPa1o0p1Sxj5l1odof1QWP4h/PyYUWgGhpmdyqmpuPkPi8VC1apVCQ0NJS8vz+w4Uoq8vb3VYyPyb3+9DdZcqHUVXNHJ7DRl27XPw57fIXEzzHkU7pmpYvMCVNych6enpz7oRKTsOr4H1n9ttK/VNGTTefkam2t+1hl2/Wb0qMUMNDuV09LIMBEROduSN8FuNcbZ1GhrdhoBCGsC14022gtGwrHd5uZxYipuRESksKTtsHGm0b7mOXOzSGFXPgK1r4a8TGN6uFXDJ85FxY2IiBT2x2uAHRr1hIiWZqeRf/PwgF7jwTcYDsXCX++YncgpqbgREZEzDsfBtjmABa4ZaXYaOZfg6tBjrNH+621I3GJuHiek4kZERM7443Xja7M7IbSRuVnk/JrfCQ1vMsZFLXzB7DROR8WNiIgYDq6GXQvA4gmdh5udRi6m68vg4QW7F8GeP8xO41RU3IiIiOH3V4yvLe6BSnXMzSIXV6kOxAwy2gtfAJvN3DxORMWNiIjA3iWw7y/w9IFOz5qdRi5Vp2fBNwgSNsKmmWancRoqbkREyjq7/dQMKSC6P1SINDWOFEG5StDxSaO9+BXIyzI3j5NQcSMiUtbtXgQHV4GXH1z1f2ankaK68mEIqgap/8CqT81O4xRU3IiIlGV2+5mxNm0GQ6A2jnU53v7G3lNg7OKeecLcPE5AxY2ISFm27Wc4sgF8ykOHJ81OI8XVvDeENYOcFFjyltlpTKfiRkSkrLJZz6xrc+UjxvgNcU0entD1JaO95nM4sdfcPCZTcSMiUlZt/gGObgO/YGg3xOw0crnqXgd1rgVbHix+2ew0plJxIyJSFlnz4M8xRrvD4+BfwdQ44iBdXwEssGUW/LPW7DSmUXEjIlIWbfjWuHQRUBnaPGh2GnGU8KbGIowAv40yBoyXQSpuRETKGrsdVowz2h2fAN/ypsYRB7tmpDGtP3457JhndhpTqLgRESlr9v0FR7cbM6Ra9TM7jThacDVjgDjAwtHGJcgyRsWNiEhZs/oz42vU/8AvyNwsUjI6PgEBleD4Llg31ew0pc704mbcuHHUqlULPz8/2rZty+rVqy94/vvvv0+DBg3w9/cnMjKSJ598kuzs7FJKKyLi4pLjz1yqaPOAuVmk5PgFQ6dTO7v/+QbkpJmbp5SZWtzMmDGDYcOGMXr0aNatW0dUVBTdunUjKSnpnOdPmzaN4cOHM3r0aLZt28akSZOYMWMGzz33XCknFxFxUWsng90GtTtBlQZmp5GSFN0fKl4BGUdh2YdmpylVphY37777LoMHD2bAgAE0btyYCRMmEBAQwOTJk895/vLly+nQoQP33HMPtWrV4vrrr+fuu+++aG+PiIhgbKoYe+oShXpt3J+XD3R50Wiv+BhSj5gapzSZVtzk5uYSGxtLly5dzoTx8KBLly6sWLHinI9p3749sbGxBcXM3r17mTdvHt27dz/v6+Tk5JCamlroJiJSJm3+EbJOQHAkNLjR7DRSGhrdDNXbQF4m/Pm62WlKjWnFzbFjx7BarYSFhRU6HhYWRkJCwjkfc8899/Dyyy/TsWNHvL29qVOnDp07d77gZakxY8YQHBxccIuMjHTozyEi4hLsdlh9asfo1oOM5frF/VkscP2rRnv915C0zdw8pcT0AcVF8eeff/L666/zySefsG7dOn788Ufmzp3LK6+8ct7HjBgxgpSUlILbwYMHSzGxiIiT+GeNsUGml5+mf5c1NdpCo57GWKuFL5idplR4mfXClStXxtPTk8TExELHExMTCQ8PP+djRo0axX333cf9998PQLNmzcjIyOCBBx5g5MiReHicXav5+vri6+vr+B9ARMSVnJ7+3fQOCKhobhYpfV1egh2/wq7fYO8SuKKT2YlKlGk9Nz4+PkRHR7N48eKCYzabjcWLF9OuXbtzPiYzM/OsAsbT0+hatZfRJaZFRC4qLRG2zDbabQabGkVMUqkOxAw02gtHgc1mbp4SZuplqWHDhjFx4kSmTp3Ktm3bePjhh8nIyGDAgAEA9O3blxEjRhSc37NnT8aPH8/06dPZt28fCxcuZNSoUfTs2bOgyBERkf+InWLsFB3ZFiJamJ1GzNLpWfAJNC5Pbv7e7DQlyrTLUgC9e/fm6NGjvPDCCyQkJNCiRQvmz59fMMg4Pj6+UE/N888/j8Vi4fnnn+fQoUNUqVKFnj178tprr5n1I4iIOLf8XGNtG9D077KuXGVj5eLfX4HFLxszqbz9zE5VIiz2MnY9JzU1leDgYFJSUggK0rLjIuLmNv8A3w+E8mHwxGZj7RMpu3Iz4aNoSDsMXV+BDo+ZneiSFeXz26VmS4mISBGtnmh8jR6gwkbAJwCufd5o//0OZJ4wN08JUXEjIuKujmyE+BXg4WUsxS8CxoapoU0gOwX+esfsNCVCxY2IiLs6Pf278S0QVNXcLOI8PDzh+peN9urP4OR+U+OUBBU3IiLuKPMEbPrOaGsgsfxX3S5wxTXGLLrFL5udxuFU3IiIuKP1X0F+NoQ3N6aAi/xX15cBizHo/FCs2WkcSsWNiIi7sVlhzedGu80Dxv5CIv9Vtbkx/gbgtxeM/cfchIobERF3s3MBJMeDfwg0u8PsNOLMrn3e2G/swFLYOd/sNA6j4kZExN2cHkjcqi94+5ubRZxbcHW48mGjvXC022zLoOJGRMSdHN0Je/8AiwfEDDI7jbiCjk+CXzAc2wE75pqdxiFU3IiIuJM1pxbtq38jhNQ0N4u4Br9gaH2/0V76vluMvVFxIyLiLrJTIW6a0dbu31IUbR8CT184tNZY+NHFqbgREXEXG6ZDbjpUrg9XdDY7jbiS8qHQ4h6jvewDc7M4gIobERF3YLefGUis6d9SHO2HAhZj1lTSNrPTXBYVNyIi7mDvH3B8F/gEnlm7RKQoKtWBRj2N9vKPzM1ymVTciIi4g9O7f7e4B3wDzc0irqvD48bXjTMh5ZC5WS6DihsREVd3cj/s+NVon571IlIc1WOgZkdjz6lV481OU2wqbkREXN2aSYDd2AixSn2z04irO917s3YKZCWbmaTYVNyIiLiy3ExY96XRbvuguVnEPdTrCqGNITcNYr8wO02xqLgREXFlm7+H7GSoUAPqXW92GnEHFgu0f8xorxwP+Tnm5ikGFTciIq7q39O/Ww8GD09z84j7aHo7BFWD9ETYOMPsNEWm4kZExFXFr4SETcauzi37mJ1G3ImXD1z5iNFe9qHLbaip4kZExFWd7rVpdicEVDQ3i7if6H7GvlPHd8GOeWanKRIVNyIirij1CGybY7TbPGBuFnFPvoFnlhZY9r5Lbaip4kZExBXFfgG2fKjRDqo2NzuNuKs2Dxobav6zxrgM6iJU3IiIuJr8XFh7aoquem2kJAWGQYu7jbYLbaip4kZExNVs/QkykqB8+Jm9gERKSrvTG2r+CknbzU5zSVTciIi4mtMDiWMGgqe3uVnE/VWuC41uMtousqGmihsREVdyeD38sxo8vCG6v9lppKzo8ITxdeMMSD1sapRLoeJGRMSVnN79u0kvYzyESGmoHgM1Oxgbaq50/g01VdyIiLiKjOOw6Xuj3Ub7SEkpK9hQ8wvITjE3y0WouBERcRWLXgBrDlRtYfwmLVKa6naFKo2MDTXXOveGmipuRERcwcbvYP3XgAWuf9XY3FCkNHl4QAfX2FBTxY2IiLM7vgd+ecJod3oGal9lahwpw5recWpDzQSn3lBTxY2IiDPLz4HvB0BuujGg8+pnzE4kZZmLbKip4kZExJktfAGObAD/inD75+DpZXYiKeui+4HvqQ01d/5qdppzUnEjIuKsts+FVROM9q0TICjC3DwicGpDzUFG20m3ZFBxIyLijJIPwuxT3f/tHoX63czNI/JvbR8CTx84uMopN9RUcSMi4mys+fDD/ZCdDBGt4LrRZicSKSwwDKKcd0NNFTciIs7mz9fh4ErwDYI7JhuDOEWcTftTG2rumAdHd5idphAVNyIizmTPH/D3u0a75wdQsba5eUTOp3I9aNjDaC//0Nws/6HiRkTEWaQnwY8PAHZjU8ymt5mdSOTCTm+ouWEGpB4xNcq/qbgREXEGNptR2GQkQWhjuOENsxOJXFxka6jR3thQc5XzbKip4kZExBksew/2/gFe/nDHF+Dtb3YikUvjhBtqqrhxJJvV2LVXRKQo4lfB768Z7e5vQ2hDc/OIFEW9640NNXNSnWZDTRU3jrLnD3i/Ocx+yOwkIuJKMk/AD4PAboVmd0LLPmYnEikaJ9xQU8WNowRHQuo/sHuRUw2qEhEnZrfDnKGQchBCakOPd7Xbt7impndAYMSpDTVnmp1GxY3DVK4LNdqB3QYbp5udRkRcweqJsP0X8PCGO78AvyCzE4kUj5cPtDu1ovZy8zfUVHHjSC3uNb6u/8b4jUxE5HyObIDfRhrt61+BiJbm5hG5XK1Obah5bCfsnG9qFBU3jtSkF3gHGDulHlxtdhoRcVY5afDdALDmQoPuxj49Iq7OLwhaDzTaJm/JoOLGkXwDoXEvox33talRRMRJ2e0w9//gxB4Iqga3jNM4G3EfbR+CclWgxpVgzTMthoobRzs902HzLMjNMDeLiDifuGmwcQZYPOH2SRBQ0exEIo4TGA7DtkHXl8DT27QYKm4crWZ7Y9ZDbhpsnWN2GhFxJkd3wLynjPY1I6BmO3PziJQEE4ua01TcOJrFcmZgcdw35mYREeeRl2WMs8nLhNqdoOMwsxOJuC0VNyWhxd2ABfb/DSf2mZ1GRJzBgucgaYsxHuG2ieDhaXYiEbel4qYkBFeHOtcY7Q3fmptFRMy3ZRasnWy0b/0UAsPMzSPi5lTclJSCS1PTTF/MSERMlHEM5pzaWLDjk1D3OnPziJQBKm5KSsObwC/YWFZ93xKz04iIWTbOgJwUCGsK14w0O41ImaDipqR4+xl7bYAGFouUZacvTUf3d4pZJCJlgYqbknR6zZttP0NWsqlRRMQECZshYZOxd1TT281OI1JmqLgpSREtIbQx5GfD5h/MTiMipe10r02DG7RYn0gpUnFTkrTmjUjZZc2HjTONdtTd5mYRKWNU3JS05r3BwwsOxULSNrPTiEhp2fsHZCRBQCWo29XsNCJliunFzbhx46hVqxZ+fn60bduW1asvvJt2cnIyQ4YMoWrVqvj6+lK/fn3mzZtXSmmLoXwVqH+D0V6vzTRFyoy4acbXpneAl4+5WUTKGFOLmxkzZjBs2DBGjx7NunXriIqKolu3biQlJZ3z/NzcXLp27cr+/fv5/vvv2bFjBxMnTqRatWqlnLyITl+a2jjD1F1SRaSUZCXD9rlGu4UuSYmUNi8zX/zdd99l8ODBDBgwAIAJEyYwd+5cJk+ezPDhw886f/LkyZw4cYLly5fj7W1MqaxVq9YFXyMnJ4ecnJyC+6mpqY77AS5Vva7GkusZR2HXQmjYvfQziEjp2foTWHOgSkOo2sLsNCJljmk9N7m5ucTGxtKlS5czYTw86NKlCytWrDjnY+bMmUO7du0YMmQIYWFhNG3alNdffx2r1Xre1xkzZgzBwcEFt8jISIf/LBfl6W2MvQENLBYpC07Pkoq625hYICKlyrTi5tixY1itVsLCCu+xEhYWRkJCwjkfs3fvXr7//nusVivz5s1j1KhRjB07lldfffW8rzNixAhSUlIKbgcPHnToz3HJTq95s3M+pB81J4OIlLwTeyF+BWCB5neZnUakTCpWcZOYmMh9991HREQEXl5eeHp6FrqVFJvNRmhoKJ999hnR0dH07t2bkSNHMmHChPM+xtfXl6CgoEI3U4Q2gmrRYMs3xt6IiHvacOrf9xWdISjC1CgXsvlQCiN+3MS8TUfIzdf+d+JeijXmpn///sTHxzNq1CiqVq2KpRjdrpUrV8bT05PExMRCxxMTEwkPDz/nY6pWrYq3t3ehAqpRo0YkJCSQm5uLj4+Tz0hoca8xJTzuG2g3RN3VIu7Gbj9zSarFPeZmuYDtCancM3Elqdn5fLs6norlfLi1ZTV6t46kflig2fFELluxipulS5fy999/06JFi2K/sI+PD9HR0SxevJhevXoBRs/M4sWLefTRR8/5mA4dOjBt2jRsNhseHkan086dO6latarzFzZgLL++4DlI2gqH10O1VmYnEhFHil8ByQfApzw07GF2mnM6eCKTvpNWk5qdT73Q8qRk5ZGUlsOkpfuYtHQfLSIr8L/WkdwUFUF5X1PnnIgUW7EuS0VGRmK32y/7xYcNG8bEiROZOnUq27Zt4+GHHyYjI6Ng9lTfvn0ZMWJEwfkPP/wwJ06c4PHHH2fnzp3MnTuX119/nSFDhlx2llLhX8HYLRy05o2IOzrda9O4F/iUMzXKuSSlZdNn0iqS0nJoEBbI9w+1Z/nwa5nUL4brG4fh5WEh7mAyw3/cRJvXFvH0dxtYu/+EQ/6/FylNxSrL33//fYYPH86nn3560anYF9K7d2+OHj3KCy+8QEJCAi1atGD+/PkFg4zj4+MLemjAKKoWLFjAk08+SfPmzalWrRqPP/44zz77bLEzlLqWfWDz98at2+vG7uEi4vrysmDLbKMd9T9To5xLSlYe/Sav4cDxTCIr+vPloDYEBxhLalzXKIzrGoVxNC2HH9f9w4y1B9l7NIPvYv/hu9h/uKJKOXrHRHJbq+pUCfQ1+ScRuTiLvRgleUhICJmZmeTn5xMQEFCw5sxpJ06ccFhAR0tNTSU4OJiUlBRzBhfbbPBBc0g5CLdPgmZ3lH4GEXG8Td/DD4MguAY8vgE8TF8AvkBWrpW+k1exZv9JKpf35fuH2lGr8vl7lux2O2sPnGTGmoPM3XiErDxjuQ0vDwvXNgyld+tIOtWvgpen8/yM4v6K8vld7J4bKSYPD2Pti7/eMi5NqbgRcQ8Fa9v0dqrCJs9q49Fp61iz/ySBfl58ObDNBQsbAIvFQutaFWldqyKjezbml41HmLHmIHEHk/ltayK/bU0kLMiX21tV566YyIs+n0hpK1bPjSszvecG4MQ++LAFYIEnNkEFExYWFBHHSUuAdxuB3QZD10GlOmYnAsBms/N/321g1vpD+Hp58PX9bWldq2Kxn29nYhoz1hxk1vpDnMjILTjetnZFbmtVjVY1QriiSnk8PTQTVByvxHtuAKxWK7Nnz2bbNmOn6yZNmnDzzTeX6Do3bqNibah1Fez/GzZMh05Pm51IRC7HxplGYVO9jdMUNna7nVfmbmXW+kN4elgY36fVZRU2APXDAhl1U2OevaEhi7YlMmPNQf7adZRV+06wap8xHMHP24NGVYNoEhFE04hgmlYLpl5YeXy99NkgpadYPTe7d++me/fuHDp0iAYNGgCwY8cOIiMjmTt3LnXqOMc/7nNxip4bgLhvYfZDEFILhq53qm5sESkCux3GtzeWeLjpPYgZaHYiAD5avIuxC3cC8F7vKG5tWb1EXudwchbfx/7DXzuPsvVIKpm5Z2+H4+VhoX5YoFHwVAumSUQQjaoGUc5Npprn5FtJzszjREYuJzNyOZmZx4lMo30iI5eTmcax0/dzrTaaRgQRU6siMTVDiIqsgJ+3ir+LKcrnd7GKm+7du2O32/nmm2+oWNH4TeD48eP06dMHDw8P5s6dW7zkpcBpipvcDHinAeSmQf+5UKujeVlEpPiObIRPrwJPX3hqB/iHmJ2Ir1YeYNTszQCM7tmYAR1ql8rrWm129h/PYMvhVLYcSmHL4VQ2H04hOTPvrHMtFriicjmaRATTtFoQTSKMoqdCgLlrluXm20g+VYycLkz+XbQU3D/1NTkzj/Sc/Mt6TW9PC02rBdO6VkWia4YQUzOESuU1K+2/Sry4KVeuHCtXrqRZs2aFjm/YsIEOHTqQnp5e1KcsNU5T3AD89Cis/wqi7oFbx5ubRUSKZ/4IWPmJsbbNXVPNTsPPGw7z2PT12O3w2HX1GNa1vql57HY7h1Oy2XwopVDBk5iac87zq1Xwp2alAPy9PfHz8cTf27j5eXucdczfxxO/gu+fPuZR6FhmrvVfhUguJzLyChUsJ/7Vq3IyI5e0YhYqnh4WQgK8qRDgQ8UAH0LKeVOxnA8hAadu5XyoWM6bkAAf7MD6+GRiD5xgzf6THE07+724onI5YmqFEFOzIjG1QqhduVyxdgNwJyU+5sbX15e0tLSzjqenp7vGSsHOouV9RnGzdTZ0fwt8tey5iEux5sGm74x21N3mZgGW7DzKsJlx2O1w35U1ebJLPbMjYbFYqFbBn2oV/OnW5MzWOkfTcthy2Ch2Tn89cDyTQ8lZHErOMjGx0atkFCVGgVKhoO1bUKCcKViMYibQzwuPIgykblUjhEEda2O32zl4Ios1+0+w9sBJYg+cYGdiOnuPZbD3WAYz1/4DQKVyPkavTq0QomtWpFm1YHy8NJzhfIrVc9O3b1/WrVvHpEmTaNOmDQCrVq1i8ODBREdHM2XKFEfndBin6rmx2+Hj1nB8F9z8MbS6z9w8IlI0O+bDt72hXBUYtg08vS/+mBISe+AkfT5fRVaelZ5REXzQu0WRPmydQUpWHlsPp5KUlk12npWsXCtZeTay86zG/YJj/71/9jk5pzYDtViggr93QTESEnCqB+V0+z+9KiEBPgT5e5s64ys5M5d18SdZs/8ksftPEvdP8lmbm/p6eRBVvQJX1atM/w61CPQz7+9eaSnxy1LJycn069ePn3/+uWABv/z8fG6++WamTJlCcHBw8ZKXAqcqbgD+fhcWvwSRV8KgBWanEZGimNnP6Hm98hG4YYxpMXYkpHHXpytIycqjU/0qTOwbU+Z/q7fZ7GTnW/H18nT5qek5+VY2H0otuIwVe+Bkoan4lcv78swNDbijVXWXK2iLosSLm9N27drF9u3bAWN37rp16xb3qUqN0xU3qUfgvcbGNNJHY6Gy87+HIgJknYR36oM1Fx78G6o2NyXGwROZ3D5+OUlpObSqUYGv729LgI97zEKSc7Pb7ew9lsHqfSeY+Nde9h7LACCqejCjb25CqxrmD2ovCaVW3LgipytuAL65E3b9Bh2HQZfRZqcRkUuxdjL88iSENoGHlxnXP0rZ0bQc7pywnP3HM2kQFsiMB680fbaRlK7cfBtTl+/ng8W7CmZt3dqyGsNvbEhYkHvtXVgiA4qHDRvGK6+8Qrly5Rg2bNgFz3333Xcv9WkFoMW9RnGz4Vu49nnw0HoHIk4v7tR2Cy3uNqWwSc3Oo9/k1ew/nkn1EGMjTBU2ZY+PlweDr76CXi2r8faC7XwX+w+z1h9iwZYEhlxTl0Eda5fJNXQuubhZv349eXl5BW1xoAY3GmtjpB2BPb9Dva5mJxKRCzm+B/5ZDRYPaHZnqb98dp6V+6esZeuRVCqX9+XrQW3d7rd0KZoqgb68dUcUfa6syYtztrAuPpm3F+xgxpqDjOzRiOsbh5WpqeS6LOUs5j0Dqz91mrUyROQCfn8V/nob6naFPt+X6kvnWW08/HUsi7YlEejnxYwH2tE4won+LxPT2e12foo7zJhftxWsJ9ShbiVG92xC/bCSWXLEZrOz9Ugqf+86xtLdR6kXGsiLNzdx6GsU5fO7WMPpBw4ceM51bjIyMhg40DmWHnc5LfsYX3fMg8wT5mYRkfOz2WDDDKMd9b9Se1m73U5CSjbPfr+RRduS8PXyYFK/1ips5CwWi4VeLavx+/915tFr6uLj5cGy3ce58YO/eXHOFlLOsWJ0cRxJyWLm2oMM/XY9rV9bxE0fLeXN+dtZtvs4i7YlYmbfSbF6bjw9PTly5AihoaGFjh87dozw8HDy8y9vKeqS5LQ9NwATOkLCJrjxLWj7oNlpRORc9v0NU28C3yB4aid4+zv8Jex2O/EnMo3VfA+dWejuWLox/dfTw8Jn90VzXaMwh7+2uJ/445m8Pm8b87ckABAS4M2w6xtwT5saRZomn5GTz8q9x0/1zhxjd1Lh3QjK+Xhy5RWV6FivMlfVq0KdKo5dVbnEVihOTU3Fbrdjt9tJS0vDz+/MNV6r1cq8efPOKnikCFr0gfnPwvqvVdyIOKsN042vTXo5pLDJt9rYeyyDLYdT2HzozGq9adln/5LoYYF6oYE82bWeChu5ZDUqBTDhvmiW7T7Gyz9vZUdiGqNmb+ablQcY3bMJ7epUOufjrDY7mw6l8PfOo/y9+xjr40+SZz3TH+JhgeanFhLsWLcyLWuEOM36SkXqufHw8LhgFWaxWHjppZcYOXKkQ8KVhJLsuXlv4U66NQkvfjdxxnEY2wBsefDQUghvdvHHiEjpyc2Ed+pBbjoMmA812xXp4Tn5VnYmpBuFzKliZntCKtl5trPO9fH0oGFVYyft05tKNgwPwt+n7M18EcfJt9qYtjqesb/tJCXLuDzVvVk4z3VvRPWQAA6eyCwYN7Ns9/GCc06LrOjPVfWqcFXdyrSvU5nggNJbGbnE1rlZsmQJdruda6+9lh9++KFgR3AAHx8fatasSURERPGTl4KSKm5+ijvE49Pj8PXy4LVbm3FHdPXiPdHMvrD1J2j7MNz4hsPyiYgDbJwJPw6GkFrwWNxFp4CfzMhl2Z5jLNt9jA0HU9iZmEa+7ez/csv5eNL4X0VM02rB1A0tj7enc/wWLO7nZEYu7y7cyTerDmCzG9s5hAf7ceB4ZqHzAv28aF+nEh3rVeHqepWpWamcSYlLYRG/AwcOEBkZiYeH6/3DK6niJjkzlydmxPHnjqMA3N2mBqN7Ni76+gI7f4Npd4J/Rfi/HeCldStEnMZXtxrLNXQeAZ2Hn/XtnHwrsQdOGr/57jrG5sMp/Pd/2JAAb6OIqWYUM00jgqhVqZxbL5svzmvbkVRe+nkLK/caE1k8PSy0qlGBjnWr0LFeZaKqB+PlJEV2qa1QnJmZSXx8PLm5uYWON29uzjLkl6IkL0vZbHY++n037y/eid0OzasHM+6eVkRWDLj0J7Hmw3tNID0B7voSGt/i0IwiUkyph41/m3ab0WtT0djReWdiOn/vOsrfu46xet8JsvKshR7WMDyQjnUr07p2RZpWCyYi2K9MrTcizs9ut7Ny7wkyc/NpU7ui027CWWIDik87evQoAwYM4Ndffz3n961W6zmPuzsPDwuPd6lHixoVeHz6ejb+k0LPj5fyfu8WdG5wiQOtPb2M6aXL3je6wFXciDiHjTPBbiO32pXMPeDN34viWLrrGElpOYVOqxLoy1V1K9Px1CDLUC2uJ07OYrGcd1CxqypWcfPEE0+QnJzMqlWr6Ny5M7NmzSIxMZFXX32VsWPHOjqjy+lUvwq/DO3IkG/WseGfFAZMWcNj19bj8evqXVrXc9PbjOJm92JjAKNPEXp+RMShsnKtrN53nMZLp1AFGLW/GTP2bCj4vp+3B21rVzJmjNSrTIOwQPXMiJisWMXN77//zk8//URMTAweHh7UrFmTrl27EhQUxJgxY+jRo4ejc7qc6iEBzHyoHa/8spWvV8bzweJdxB1M5v3eLQgpd5FxNOHNITgSUg7C3j+hYfdSySwiZ8zZcJgZa+JZs/8k9a27+cV3H9l2b+ZZ29K0WhAd6xoDLFvVDCmTe/eIOLNiFTcZGRkF69mEhIRw9OhR6tevT7NmzVi3bp1DA7oyXy9PXu3VjFY1Qnhu1iaW7DzKTR8t5ZN7WxEVWeH8D7RYoGEPWDUBts9VcSNSyiYt3ccrv2wtuN+33HKwwrHIrvz5v5upVN7XxHQicjHFGgLdoEEDduzYAUBUVBSffvophw4dYsKECVStWtWhAd3Bba2qM+uRDtSqFMCh5CzunLCCb1YduPDS1A1OFTQ7fwVb2RzDJGKGyf8qbPq3r8Wix9txp+8qAKp3GqTCRsQFFKu4efzxxzly5AgAo0eP5tdff6VGjRp8+OGHvP766w4N6C4aVQ1iztCOXN84jFyrjZGzNvN/320gK/c8hUvN9uBXATKPw8FVpZpVpKyasmwfL58qbIZeW5fRPRtTN2UFlszjUD4MruhsbkARuSTFuizVp0+fgnZ0dDQHDhxg+/bt1KhRg8qVKzssnLsJ8vPm0/ui+fSvvbw1fzs/rjvE1sOpTOgTTa3K/1kYydMb6t8AG6cbl6ZqtjcntEgZMXX5fl782ShshlxTh2Fd6xsDgzd8a5zQ7E5jNqOIOD2HrMwTEBBAq1atVNhcAovFwkOd6vDN/VdSubwP2xPS6PnRUn47taFZIafH2mz/hbNWAhMRh/lyxX5Gz9kCwMOd6/DU9Q2MwibzBOyYb5zU4h4TE4pIUVzyryHDhg275Cd99913ixWmLGlXpxJzH7uKId+sY+2BkzzwVSwPdarDU9fXP7MaZJ3rwNMXTu6HpK0Q1sTUzCLu6KuVB3jhJ6OweahTHZ7p1uDMVO7NPxh7vYU3078/ERdyycXN+vXrL+k8re9w6cKC/Pj2gSsZM287k5ftY8KSPWw4mMyHd7ekSqAv+JaHOtfAzvmwfZ7+cxVxsK9XHmDU7M0APHj1FTx7Q4PC/4edviQVpV4bEVdyWdsvuKKS3H7hcvyy8TDPfr+RjFwrYUG+jLunFTG1KsK6L2HOUKjaAh5cYnZMEbcxbVU8z83aBMADV1/BiBsbFi5sju6Eca3B4gn/tx3KX+Iq4yJSIkp8+wVxvJuaR9AwPJCHvl7H7qR0/vfZSuqFBRLmWZHJWPA4EsfIqfPJCaiKv7cn/j6e+Hl7Gm1vj4L7Bcd8jK9+/2r7e3vi6+WhDfqkzPt29ZnC5v6Otc8ubMAYzA9Qr6sKGxEXU6zi5pprrrng5afff/+92IHKsrqhgfw0pAPP/rCRXzYeYduRVLZhIdanHq09duKx81e+t15/2a/j5+1xpvD5TwF0pn3qHB9P/LzOfL9SeR9a1gihWgV/B/zEIqVvxpp4RvxoFDYDO9RmZI9GZ/9/Zs2HDaeKm6j/lXJCEblcxSpuWrRoUeh+Xl4ecXFxbN68mX79+jkiV5lVzteLj+5uyZBr6nIsPYesXCv+W2+GLe/wcNg2Ipo/Rnaelew8K1l5VrJyja+F79uM+7lnjuVabQWvkZ1nIzvPBuQVO2dEsB/RtSrSulYI0TVDaBgehKd6hMTJzVxzkOGnCpsBHWox6qZzFDZgDCROPQTlqkD9G0s5pYhcrmIVN++99945j7/44oukp6dfViAxBmU3qvqv64nh98CWd4hIjuXhtpXAv0KRn9NqsxcqgHLyrWTl2oz7p46dq2A6c8womA6ezGTL4VQOp2RzeMNhft5wGIDyvl60rFGB1rUqElMzhBY1KhDgo6ue4jxmrj3Isz9uxG43Vh5+4abG5y5sbDZYeur/uCsfBm/t6i3iahw6oHj37t20adOGEydOOOopHc5ZBxRf1Li2cHQ73PY5NL/T1CiZufnExSez9sBJ1uw/wfr4ZNJz8gud4+lhoUlEENE1QwoKntAgfUiIOb6P/Yenv9+A3Q792tXkxZubnP/S+o758G1v8AmEJzcX65cJEXE80wYUr1ixAj8/fYCViIY9jOJm+y+mFzcBPl60r1uZ9nWNRRutNjvbE1KJPXCSNftPErv/BIdTstn4Twob/0nhi2X7AahRMYCYmiHE1KpITK0Q6lYpr8HNUuJ++Fdhc9+VFyls4EyvTeuBKmxEXFSxipvbbrut0H273c6RI0dYu3Yto0aNckgw+Y8GPeDvsbB7EeTngJfzbN5n9NIE0yQimL7tagFwKDmLtftPFBQ82xNSiT+RSfyJTH5cfwiAhuGBTOwbQ2TFABPTizubtf4fnjpV2PS5sgYv33KRwubAcji40lg888pHSi+oiDhUsYqb4ODgQvc9PDxo0KABL7/8Mtdff/mzeeQcIlpCYFVIOwL7/jKmpzqxahX8qdaiGre0qAZAanYe6+OTid1/grUHTrIu/iTbE9K4bfxyvujfmqbVgi/yjCJFM3v9If5vplHY3Nu2Bi/f3PTii4ye7rVpcQ8Ehpd8SBEpEVrEz5X8MgzWToLo/tDzA7PTXJYjKVkM+GIN2xPSKO/rxfg+rbiqXhWzY4mb+CnuEE/OiMNmh7vb1OC1Xk0vfgk0YTNM6AAWD3h0LVSqUzphReSSFOXz+7I2zly7di1fffUVX331FbGxsZfzVHIpTm+kueNXY0aHC6sa7M/Mh9rR7opKpOfkM+CLNcxa/4/ZscQNzNlwuKCw+V/ryEsrbACWvW98bdxLhY2IiyvWZal//vmHu+++m2XLllGhQgUAkpOTad++PdOnT6d69eqOzCin1boafIMgPREOxUJka7MTXZYgP2+mDGzNU99t5OcNh3lyxgYSUnJ4qNMV2qPMidjtdlKy8jicnM3h5CwOp2RxKDmL4+m5XF2/Cj2bV3WKPy+73c63qw/y/OxN2OzQOyaS129tdmmFzYl9xto2AB2fLNmgIlLiilXc3H///eTl5bFt2zYaNGgAwI4dOxgwYAD3338/8+fPd2hIOcXLxxhrs/kHY9aUixc3AL5ennzQuwXhQb5M/Hsfb87fTkJKFi/0bKJFAUtJdp6VhBSjcDmUnMWRc7Qzc63nfOz3sf8wY008r9zSlCuqlC/l5GfsTkpj5KzNrNpnLENxV0x1xtx2iYUNwPKPwG6Dul2gavMSTCoipaFYY278/f1Zvnw5LVu2LHQ8NjaWq666iszMTIcFdDSXHnMDRmHz/UCoVA+GrjU7jUN9/vdeXp27DYAbmoTz/v9a4OftaXIq95GdZ+WXjUfYcjiFI8nZHE7J4nByFsfScy/p8ZXL+1A12J+ICn5EVPDHw2Lh65UHyMm34ePpwSPX1OGhTnVK9c8sO8/Kx7/v5tO/9pBntePn7cETXerzwFVXXHphk54E7zUFaw70nwu1OpZsaBEplhJf5yYyMpK8vLOX7rdarURERBTnKeVS1e0KHt5wfJexa3GV+mYncpj7r7qCsCA//m/mBuZvSeC+SauY2DeGCgE+ZkdzaSlZeXy98gBfLNvPsfScc57j7+1ZULREBPsbX0/fr+BP1WC/cxYtfdvVZNRPW/hr51HeX7SLOXGHebVX04I1kErSXzuPMuqnzRw4bvwydW3DUF66uUnRlxZYOd4obKq3hpodSiCpiJS2YhU3b7/9NkOHDmXcuHHExMQAxuDixx9/nHfeecehAeU//IKg9tWwZzHsmOtWxQ1Az6gIKpf35YGv1rJm/0numLCCqQPbaKPOYkhIyWbysn1MWxVfsIJ0RLAfPZpXpXpIwJkCJtifCgHexRo3U7NSOaYOaM3cTUd46eet7D2WwT2fr+LWltV4rnsjqgQ6fj2mpNRsXv5lK79sPAJAeJAfL97cmG5Nwov+M2SnwJrPjXbHYeAEY4dE5PIV67JUSEgImZmZ5Ofn4+Vl1Een2+XKlSt0rrNtxeDyl6UA1kyCucOM3zTvX2R2mhKxPSGV/pPXkJCaTViQL1/0b0PjCBf98yplu5PS+HTJXmbHHSLPavzzbhAWyIOdrqBnVATenpc1SfK8UrPzGLtgB1+uPIDdDkF+Xgy/sRH/ax3pkJWorTY736w6wNvzd5CWk4+HBfq3r82w6+tT3reYi60vfQ8WvQhVGsLDK8CjZN4bEbl8Rfn8LlZxM3Xq1Es+19l2CXeL4ib1CLzbELDA/21328XGDidn0f+L1exMTKe8rxef3RddIpc77HY7mw+lMmfDIf7edQyLxYKftwf+3p74e3vi5+NZ0Pb38cTvdNvbo/D9U+f5nWoH+XmXSM/F+cQeOMmEJXtYuDWx4FibWhV5qPMVXNMgtNRmNG38J5nnZm1i86FUAFrVqMBrtzYrvBlsEW0+lMLIWZvY8E8KAM2rB/P6rc0ub/HHvGx4vxlkJEGvCdDi7uI/l4iUuBIvblyZWxQ3ABOvNaaD3/Q+xAwwO02JScnMY/BXa1m97wTenhbeuTOqYNXjy7XnaDpz4oydzfcey3DIc/5XRLBfwV5aMTUr0iA80KGzwOx2O3/sSGLCn3tZvf9ML2nXxmE81KkO0TVDHPZaRZFvtfHligOM/W0HGblWPD0s3N+xNo93qVek3eLTc/J597edTFm+D5sdAn29ePqGBtzbtublv49rJ8MvT0JwJDy2Hjy9L+/5RKRElUpxY7VamT17Ntu2GbNbmjRpws0334ynp3PPbnGb4ubvsbD4ZWOAcZ/vzU5TorLzrPzfzA3M3WSMsXiue0MGX1W8tXAOJ2fx84bDzNlwmC2HUwuO+3p50KVRGN2bVSXI34usXCtZeVay86yn2rb/3D/1/X+1s3JPff9UOz0nH9t//nUF+nrRsmbIqQ1EQ2gRWaFIH/an5Vlt/LzhMJ8u2cuOxDQAvD0t3NqyGg9cfQV1QwOL/JwlISElm5d+3sKvmxMAY1uOl25uQpfGYRd8nN1uZ8GWBF6cs5WE1GwAbmpelVE3NSbMEbvLW/Ph42g4uR9ufAvaPnj5zykiJarEi5vdu3fTvXt3Dh06VGidm8jISObOnUudOs67uqfbFDdJ2+GTtuDpA8/sBV/n+DArKTabnVfmbi3YYXxAh1qM6tH4ksZyHE/PYd7mBH6OO1yod8PLw8JV9Spzc4sIujYOL/64jfPIyMkn7mAya05tILruwEky/rNejJeHhSYRQUTXrEjrWiFE1wohNPD8H96ZuflMX32QSUv3cSg5C4ByPp7ce2VNBnaoTXiwAz74S8Dv2xN54act/HPSyHx94zBevLkJEecYKH7wRCYvztnC4u1JgLGb/Cu9mtKpvgO359j0PfwwCAIqwRObwUebt4o4uxIvbrp3747dbuebb76hYsWKABw/fpw+ffrg4eHB3Llzi5e8FLhNcWO3w0fRcGIP3DkFmtxqdqISZ7fbmfj3Xl6ftx2AHs2qMvauqHNOUU7LzuO3LYnM2XCYpbuPYT3VhWKxQOtaFbmlRQQ3Nq1KxXKlN80832pje0LaqZ3ST7B2/8mCXol/q1kpgOiaIbSuVZGYmiHUqVKe5Kw8pizfz5cr9pOcaSzDULm8LwM61KLPlTUJ9nf+SypZuVY+WLyLz//eS77NToCPJ8O61qd/+1p4eXqQZ7Uxaek+Pli0i6w8K96eFh68ug6PXlvXsWvn2O0w4SpI3ATXjIROzzjuuUWkxJR4cVOuXDlWrlxJs2bNCh3fsGEDHTp0ID09vahPWWrcprgB+G0ULP8Qmt0Jt39udppS81PcIZ76bgN5Vjttaldk4n0xBAd4k51n5c8dSczZcJjF25LIyT+z/1azasHcHBXBTVFVqRrsHNPK7XY7h5KzChU7OxLT+O+/yAqnfrbsPOPnqVkpgAeuvoLbW1V3yUUOdySkMXLWJtYeOAlAo6pBDOpYm4l/nbnE1rZ2RV67tWnJXF7btQi+uR18ysMTmyCgouNfQ0QcrsQX8fP19SUtLe2s4+np6fj4aMG1UtOwh1Hc7PwNrHllZkDkLS2qUaW8Lw9+FcvqfSe489PlNK9egQWbE0g7tZ4LwBVVynFLVDV6RlU1dWuA87FYLFQPCaB6SEDBIOmUrDzWx58sKHjiDiYX9NQ0qxbMQ53qcEPTcJfemqJBeCAzH2zHd7EHGfPrdrYdSeWp7zYAEBLgzcgejbm9VbWSm9219F3ja3R/FTYibqpYPTd9+/Zl3bp1TJo0iTZt2gCwatUqBg8eTHR0NFOmTHF0Todxq54bmxXGNoCMo3DfbKhzjdmJStXWw6n0/2I1SWlnVt2NCPajZ1QEPaMiaBIR5BQbOl6OPKuNLYdT8bAYxY2r/zz/dTw9h9fnbefnDYfp1TKCETc2IqQkLxXGr4LJ1xurfD+xEYK0orqIqyjxy1LJycn079+fn3/+udAifjfffDNTpkwhOPgy1p4oYW5V3ADMGQrrvoTWg6FH2Vsd+p+Tmbz6yzYqB/pwc1Q1YmqGOGTBOCldVpu9dHqjvr0bdsyDlvfBLR+X/OuJiMOUWHFjs9l4++23mTNnDrm5udSoUYN+/fphsVho1KgRdevWvezwJc3tipudC2DaXRBUDZ7couXjRc4naRt8ciVggUfXQOV6ZicSkSIosTE3r732Gi+++CJdunTB39+fefPmERwczOTJky8rsFyG2p3AuxykHoIjcRDR8qIPESmTlr5vfG18swobETdXpI1UvvzySz755BMWLFjA7Nmz+fnnn/nmm2+w2WwXf7CUDG8/qHud0d7uvFPwRUyVHA+bvjPaHZ4wNYqIlLwiFTfx8fF079694H6XLl2wWCwcPnzY4cGkCBreZHxVcSNybss/BrsVrugM1VqZnUZESliRipv8/Hz8/AqvgOrt7U1eXp5DQ0kR1esKFk9I2gon9pqdRsS5ZBwzBt0DdHzS3CwiUiqKVNzY7Xb69+/PbbfdVnDLzs7moYceKnSsqMaNG0etWrXw8/Ojbdu2rF69+pIeN336dCwWC7169Srya7qVgIpQq4PR3j7P3CwizmbVBMjPgohWxhg1EXF7RSpu+vXrR2hoKMHBwQW3Pn36EBERUehYUcyYMYNhw4YxevRo1q1bR1RUFN26dSMpKemCj9u/fz9PPfUUV111VZFez23p0pTI2XLSYPVnRrvjk5pNKFJGFHtXcEdp27YtrVu35uOPjTUnbDYbkZGRDB06lOHDh5/zMVarlauvvpqBAwfy999/k5yczOzZs895bk5ODjk5ZxZ5S01NJTIy0n2mgp+WHA/vNwOLBzy1C8pVNjuRiPmWfwS/PQ+V6sGQ1eBRpN/nRMSJFGUquKn/0nNzc4mNjaVLly4Fxzw8POjSpQsrVqw47+NefvllQkNDGTRo0EVfY8yYMYV6lSIjIx2S3elUqAHhzcFug53zzU4jYr78HFgxzmh3eFyFjUgZYuq/9mPHjmG1WgkLCyt0PCwsjISEhHM+ZunSpUyaNImJEyde0muMGDGClJSUgtvBgwcvO7fT0qUpkTM2TIe0IxAYAc17m51GREqRS/0qk5aWxn333cfEiROpXPnSLrv4+voSFBRU6Oa2Gp6apr/nD8jNNDeLiJlsVlj2gdFu/yh4aUNfkbKkWLuCO0rlypXx9PQkMTGx0PHExETCw8PPOn/Pnj3s37+fnj17Fhw7vYCgl5cXO3bsoE6dOiUb2pmFNTUuTyXHw57fodFNZicSMce2n+HEHvAPgVb9zE4jIqXM1J4bHx8foqOjWbx4ccExm83G4sWLadeu3VnnN2zYkE2bNhEXF1dwu/nmm7nmmmuIi4tz3/E0l8pi0aUpEbsdlr5ntNs8CL7lzc0jIqXO1J4bgGHDhtGvXz9iYmJo06YN77//PhkZGQwYMACAvn37Uq1aNcaMGYOfnx9NmzYt9PgKFSoAnHW8zGrYA1Z+YgwqtuaDp+l/xCKla++fxj5r3gHQ5gGz04iICUz/5OvduzdHjx7lhRdeICEhgRYtWjB//vyCQcbx8fF4aJbDpYu80uiKzzoBB1dCrY5mJxIpXUvfNb626gflKpmbRURMYfo6N6WtKPPkXdash2HDNLjyEbhhjNlpRErPP7Hw+bXg4QWPxUGFMn6pWsSNuMw6N1JCGvYwvm6fa4w/ECkL7Hb441Wj3by3ChuRMkzFjTuqcw14+UHyAUjcYnYakdKxYpwxS9DTVxtkipRxKm7ckU85qHOt0dasKSkLDsXCoheN9g1joHI9U+OIiLlU3Lir05emdqi4ETeXnQLfDQBbHjS+BWIGmp1IREym4sZd1b/B2ETzyAZIduMtJ6Rss9vh58eNS7AVakDPD7Xzt4iouHFb5Sob08IBdswzN4tISYmdAltmGbOj7vgC/CuYnUhEnICKG3f271lTIu4mcQvMH260r3sBqseYm0dEnIaKG3d2eiPN/Ush66S5WUQcKTfDGGeTnw11u0K7oWYnEhEnouLGnVW8AkIbg90Kyz7UmjfiPn59Bo7tgPLhcOsE0CrmIvIv+h/B3bV90Pi69F347XkVOOL6Nn4H678GLHD7RGN8mYjIv6i4cXfR/aHbqS0YVnwMPz1qbKgp4oqO74FfnjDanZ6B2lebGkdEnJOKm7Kg3SPQazxYPCHua/iuH+Rlm51KpGjyc+D7AZCbDjU7wNXPmJ1IRJyUipuyosU9cNeX4OkD23+BaXdBTprZqUQu3cIXjHWb/CvC7Z+Dp5fZiUTESam4KUsa3QT3fg8+5WHfEvjyFsg8YXYqkYvbPhdWTTDat06AoAhz84iIU1NxU9Zc0Qn6zTF++z0UC1/cCKmHzU4lcn7JB2H2I0a73aNQv5u5eUTE6am4KYuqRcOAXyEwAo5uh8ndjIGaIs7Gmg8/3A/ZyRDRCq4bbXYiEXEBKm7KqtCGMGiBsRZOcjxMvgESNpmdSqSwP1+HgyvBNwjumAxePmYnEhEXoOKmLKtQAwYugPBmkJEEX/SA+JVmpxIx7PkD/n7XaPf8ACrWNjePiLgMFTdlXflQ6PcL1GgHOSnwZS/YtcjsVFLWpSfBjw8AdmOtpqa3mZ1IRFyIihsxdlLu86OxR09+Fnz7P9j8g9mppKyy2YzCJiPJ2D7khjfMTiQiLkbFjRh8AuB/06Dp7WDLg+8HwdrJZqeSsmjZ+7D3D/Dyhzu+AG9/sxOJiItRcSNnePnAbRMhZhBgh1+eNMY8aD8qKS3xq+D3V41297eNge8iIkWk4kYK8/CEHmPhqqeM+4tfMlaGVYEjJS3zBPwwyNjFvtmd0LKP2YlExEWpuJGzWSxw3Si4/jXj/vIPYc5QsFnNzSXuy243/o6lHDSWJ7jpPePvoYhIMai4kfNr/yjc/DFYPGD9V/Bdf2PzQhFHWz3R2PPM08cYZ+MbaHYiEXFhKm7kwlrdB3dONT50ts2Bab1V4IhjJWyC30Ya7a6vQEQLU+OIiOtTcSMX1/hmuPc78C5nzGI5PeBTxBF+fw2suVD/Rmj7oNlpRMQNqLiRS3NFZ7j9c6O9/CPYv9TUOOImTuyDnfON9vWvaJyNiDiEihu5dA27Q6u+gB1mPQTZKWYnEle3dhJghzrXQuV6ZqcRETeh4kaKptsYCKltzGqZ97TZacSV5WbCuq+MdhtdjhIRx1FxI0XjWx5u+8yYQbVxBmz+0exE4qo2fQfZyVChJtTranYaEXEjKm6k6CLbwFX/Z7R/eRJSD5ubR1yP3W5M/wZoM9hYPFJExEFU3EjxdHoWIloav3nPfsTY7FDkUsWvgMRNxv5RLe41O42IuBkVN1I8nt7GPlRe/sb08NWfmZ1IXMnpvy/N74SAiuZmERG3o+JGiq9yPWP6LsCi0ZC03dw84hpSD8PWOUa7zQPmZhERt6TiRi5P6/uhbhfIz4YfB0N+rtmJxNmt/cLYHLNGewhvZnYaEXFDKm7k8lgscMs48K8ICRvhzzFmJxJnlp8DsV8Y7bbqtRGRkqHiRi5fYDj0/MBoL3sfDqwwNY44sa0/QcZRCIyAhjeZnUZE3JSKG3GMxjdD1D1gt8GsByA71exE4oxODySOGWgMShcRKQEqbsRxbnwTKtSA5HiYP8LsNOJsDq2Df9aAhzdE9zM7jYi4MRU34jh+QXDrp4AF4r4+MyNGBM4s2tfkVigfam4WEXFrKm7EsWq2h45PGO2fH4e0RFPjiJPIOAabfzDabbWPlIiULBU34nidnzOm+GadgJ+GGEvtS9m2bipYc4xVratFm51GRNycihtxPC8fY/ViT1/YvRDWTjI7kZjJmg9rJhvtNg8ayweIiJQgFTdSMkIbQdeXjPaC5+HYLnPziHl2zIPUfyCgkjHeRkSkhKm4kZLT5kG4ojPkZ8GPD4A1z+xEYobT079b9QNvP3OziEiZoOJGSo6HB9zyCfgFw+F18NfbZieS0pa4Ffb/DRYPaD3I7DQiUkaouJGSFVwNbnrPaP/1DhxcY24eKV1rTk3/btgDgqubm0VEygwVN1Lymt4Oze4yNkv8cTDkpJudSEpDVjJsmG6022j6t4iUHhU3Ujq6vw1B1eHkPvhtpNlppDTETYO8TAhtDLU6mp1GRMoQFTdSOvwrwK3jAQvEToEdv5ocSEqUzXbmklSbwZr+LSKlSsWNlJ7aV0O7IUZ7zlBIP2puHik5exbDib3gG2xckhQRKUUqbqR0XfcChDaBjKPG9gzink5P/255L/iWNzeLiJQ5Km6kdHn5wu0TwcMLdsw1pgqLezm+B3YtNNqt7zc3i4iUSSpupPSFNYH6NxjtuG/MzSKOt2YSYIe6XaFSHbPTiEgZpOJGzNGyj/F1w3StXOxOcjNg/ddGW7t/i4hJVNyIOep2hXKhkHkMdi4wO404ysYZkJMCFa+AOteZnUZEyigVN2IOTy+I6m20dWnKPdjtsPrU9O/Wg43tN0RETKD/fcQ8LU5dmtq5ANKTzM0il2//UkjaCt4B0OIes9OISBmm4kbME9oQqsUY2zJsnGF2Grlcp6d/N+9tLNooImISFTdirpb3Gl/Xf21c1hDXlPIPbJ9rtNs8YG4WESnznKK4GTduHLVq1cLPz4+2bduyevXq8547ceJErrrqKkJCQggJCaFLly4XPF+cXNPbwcsPjm6HQ+vMTiPFtXay0QNX6yoIa2x2GhEp40wvbmbMmMGwYcMYPXo069atIyoqim7dupGUdO4xGH/++Sd33303f/zxBytWrCAyMpLrr7+eQ4cOlXJycQi/YGjU02jHfW1uFimevGxjvzBQr42IOAWL3W7utYC2bdvSunVrPv74YwBsNhuRkZEMHTqU4cOHX/TxVquVkJAQPv74Y/r27XvR81NTUwkODiYlJYWgoKDLzi8OsPdP+PIWYx+ip3aAt7/ZiaQo4r6F2Q9BUDV4fKMxE05ExMGK8vltas9Nbm4usbGxdOnSpeCYh4cHXbp0YcWKFZf0HJmZmeTl5VGxYsVzfj8nJ4fU1NRCN3Eyta6G4BrG+ijbfjE7jRTV6YHEMQNV2IiIUzC1uDl27BhWq5WwsLBCx8PCwkhISLik53j22WeJiIgoVCD925gxYwgODi64RUZGXnZucTAPD2hxt9HWpSnX8s9aOLwOPH0gur/ZaUREACcYc3M53njjDaZPn86sWbPw8/M75zkjRowgJSWl4Hbw4MFSTimX5PS6KHuXQLL+jFzG6V6bprdDucrmZhEROcXU4qZy5cp4enqSmJhY6HhiYiLh4eEXfOw777zDG2+8wW+//Ubz5s3Pe56vry9BQUGFbuKEQmoZM22ww4ZvzU4jlyI9CbbMMtoaSCwiTsTU4sbHx4fo6GgWL15ccMxms7F48WLatWt33se99dZbvPLKK8yfP5+YmJjSiCql4fRmmuu/BpvN3CxycbFTwZprLMRYrZXZaURECph+WWrYsGFMnDiRqVOnsm3bNh5++GEyMjIYMGAAAH379mXEiBEF57/55puMGjWKyZMnU6tWLRISEkhISCA9Pd2sH0EcpdHN4BMIyQfgwDKz08iFWPOMtW1Au3+LiNMxvbjp3bs377zzDi+88AItWrQgLi6O+fPnFwwyjo+P58iRIwXnjx8/ntzcXO644w6qVq1acHvnnXfM+hHEUXwCoOltRlubaTq3v96GtMNQrgo0vsXsNCIihZi+zk1p0zo3Tu7gapjU1dh88f92gJ/+jJzOqs/g16eNds8PIbqfuXlEpExwmXVuRM5SvTVUqgd5mWcGq4rz2PjdmcKm83MqbETEKam4EedisZzZTFOXppzLzt+MlYgB2jwInZ4xN4+IyHmouBHnE3U3WDzh4Co4tsvsNAIQvxJm9gVbPjS7E254wyhERUSckIobcT6B4VD31IrT6r0xX8JmmHYX5GdB3a7Qa7yxqrSIiJPS/1DinAouTX0L1nxzs5RlJ/bB17dBdgpEXgl3fQme3manEhG5IBU34pzq3wj+FSE9Afb8bnaasiktEb7qBemJENoE7pluTNcXEXFyKm7EOXn5QPPeRlubaZa+rGSjx+bkfmNrjPt+BP8Qk0OJiFwaFTfivE5fmto+DzKOm5ulLMnNhGm9IXEzlA+D+2Yb46BERFyEihtxXuHNILw52PJg03dmpykbrHnwXT84uBJ8g6HPj1CxttmpRESKRMWNOLfTm2nq0lTJs9lg9iOw6zfw8od7ZkB4U7NTiYgUmYobcW7N7gRPH0jYBEc2mp3GfdntMH84bJoJHl7GrKia7cxOJSJSLCpuxLkFVIQG3Y221rwpOUvegtWfGu1eE6D+9ebmERG5DCpuxPmdvjS1cQbk55ibxR2tngh/vm60b3wLmt9pbh4Rkcuk4kacX51rIbAqZJ2EHb+anca9bPoe5p3aCLPTcGj7oLl5REQcQMWNOD8PT2O/KdClKUfatQhmPQjYofVg6Dzc7EQiIg6h4kZcQ4tTa97sXgSpR8zN4g7iV8GMPsZGmE3vMC5HaSNMEXETKm7ENVSua+xtZLfBhm/NTuPaErfAtDu1EaaIuC39jyauo2AzzW+MqctSdCf2wVenN8Jsa0z59vIxO5WIiEOpuBHX0eRW8A6A47vh4Gqz07ie5PhTG2EmQGhjY5E+bYQpIm5IxY24Dt9AaNzLaGvF4qI5ugMmdTM2wqxQ09hWQRthioibUnEjruX0panNP0JuhrlZXMWhdTD5Bkg7DJUbwMD5EFTV7FQiIiVGxY24lpodIKQ25KbD1jlmp3F++/6CqT0h6wREtIIBv0JQhNmpRERKlIobcS0Wy5lp4Vrz5sK2z4Wv7zAKwdpXQ785UK6S2alEREqcihtxPS3uBiyw/29j9o+cLW4azLgPrDnQ8Ca45ztjzJKISBmg4kZcT3B1uKKz0Y6bZmoUp7RyPMx+GOxWo5frzqng7Wd2KhGRUqPiRlzT6c00N3wLNpu5WZyF3Q6/vwbzT22jcOUQuPlj8PQyN5eISClTcSOuqeFN4BcMKQdh3xKz05jPZjM2wPzrLeP+tc9Dt9e08rCIlEn6n09ck7efsScSaGCxNQ9mPQBrJgIW6P4OXP209ooSkTJLxY24rtNr3mz7GbKSTY1imrwsmH4vbPoOPLzg9s+hzWCzU4mImErFjbiuiFbGNgL52bD5B7PTlL7sFGOfqF0LwMsP/jcNmt1hdioREdOpuBHX9e81bxa+AEvfh/wcUyOVmvSjMOUmiF8OvkFw3yyo383sVCIiTkHFjbi2Vn2N3a1z02HRaPjkStgx3713DU8+CF/cAAkbIaAy9P8FarY3O5WIiNNQcSOuzS8IBsyHWz6BcqFwYi982xu+vh2O7jQ7neMd3QmTuxk7owdHwsAFUDXK7FQiIk5FxY24Pg8PY3Dx0Fjo8Dh4eMOexTC+Hcx/zn0GGx9aZ/TYpB6CyvWNwqZyXbNTiYg4HRU34j78gqDryzBkFdS/EWz5sHIcfBQNsVPAZjU7YfHt+9vYADPzOES0NHqrgquZnUpExCmpuBH3U6kO3DMd+vxg9HBkHoOfH4fPOsOBFWanK7qtc4zLbLnpUOsq6PezNsAUEbkAFTfivup2gYeXQ7cx4BtsDMD94gb4fiCk/GN2uovLOgmzHoaZpzbAbNAD7v1eG2CKiFyEihtxb57e0O4RYzxOq36AxVgT56MY+PNNYxE8Z7R9LoxrCxumARZjn6i7vtQGmCIil8Bit7vznNmzpaamEhwcTEpKCkFBQWbHkdJ2ZAP8+izEn7o8FVwDrn8FGt/iHNsVZByHX58+syhhpbpwyziocaW5uURETFaUz2/13EjZUjUKBvwKd0yGoOqQEg/f9TMG6yZsNjfbllkwro1R2Fg8jJlfDy1VYSMiUkTquZGyKzcTlr0Pyz4wtnCweEB0f7jq/yC4eunlSE+Cuf8H2+YY96s0gl7joFp06WUQEXFyRfn8VnEjkhwPv42CrbNPHbBA3eug5X3QoDt4+ZTM69rtsHEmzH/WGDzs4WUUVlf9H3j5lsxrioi4KBU3F6DiRs5r/1L48w3Y//eZYwGVoPn/oNV9ENrIca+Vehh+eRJ2zjfuhzc3xtZUbe641xARcSMqbi5AxY1c1PE9sP5riJsG6QlnjleLMYqcprcXfzq23W4894KRkJMCnj7Q6Rno8IQxs0tERM5Jxc0FqLiRS2bNh92LYP1XRg+LLd847h0ATW49s2nnpc6ySo43FhPc87txv1q00VvjyB4hERE3peLmAlTcSLGkJ8GGb2HdV3B815njleoZvTlRd0P50HM/1maD2MmwcLSxyrCXH1wzEq58BDy9Sie/iIiLU3FzASpu5LLY7XBwlVHkbPkR8jKN4x5eUP8GYxBy3S5nipYTe2HOY2fG8UReafTWaMNLEZEiUXFzASpuxGGyU40CZ91XcGjtmeOBVY2eHP8KxgDlvEzjUtZ1o6HNA8Yu5iIiUiQqbi5AxY2UiKRtRpGzcbqxc/e/1boKbv4IKtY2J5uIiBtQcXMBKm6kROXnwo55xiDkxK3Q6Wlo1V+9NSIil6kon98azSjiSF4+0KSXcRMREVPo10kRERFxKypuRERExK2ouBERERG3ouJGRERE3IqKGxEREXErKm5ERETErai4EREREbei4kZERETcioobERERcSsqbkRERMStqLgRERERt+IUxc24ceOoVasWfn5+tG3bltWrV1/w/O+++46GDRvi5+dHs2bNmDdvXiklFREREWdnenEzY8YMhg0bxujRo1m3bh1RUVF069aNpKSkc56/fPly7r77bgYNGsT69evp1asXvXr1YvPmzaWcXERERJyRxW63280M0LZtW1q3bs3HH38MgM1mIzIykqFDhzJ8+PCzzu/duzcZGRn88ssvBceuvPJKWrRowYQJEy76ekXZMl1EREScQ1E+v71KKdM55ebmEhsby4gRIwqOeXh40KVLF1asWHHOx6xYsYJhw4YVOtatWzdmz559zvNzcnLIyckpuJ+SkgIYb5KIiIi4htOf25fSJ2NqcXPs2DGsVithYWGFjoeFhbF9+/ZzPiYhIeGc5yckJJzz/DFjxvDSSy+ddTwyMrKYqUVERMQsaWlpBAcHX/AcU4ub0jBixIhCPT02m40TJ05QqVIlLBaLQ18rNTWVyMhIDh48qEte56D35/z03lyY3p8L0/tzYXp/zs+V3hu73U5aWhoREREXPdfU4qZy5cp4enqSmJhY6HhiYiLh4eHnfEx4eHiRzvf19cXX17fQsQoVKhQ/9CUICgpy+r8kZtL7c356by5M78+F6f25ML0/5+cq783FemxOM3W2lI+PD9HR0SxevLjgmM1mY/HixbRr1+6cj2nXrl2h8wEWLlx43vNFRESkbDH9stSwYcPo168fMTExtGnThvfff5+MjAwGDBgAQN++falWrRpjxowB4PHHH6dTp06MHTuWHj16MH36dNauXctnn31m5o8hIiIiTsL04qZ3794cPXqUF154gYSEBFq0aMH8+fMLBg3Hx8fj4XGmg6l9+/ZMmzaN559/nueee4569eoxe/ZsmjZtataPUMDX15fRo0efdRlMDHp/zk/vzYXp/bkwvT8Xpvfn/Nz1vTF9nRsRERERRzJ9hWIRERERR1JxIyIiIm5FxY2IiIi4FRU3IiIi4lZU3DjIuHHjqFWrFn5+frRt25bVq1ebHclp/PXXX/Ts2ZOIiAgsFst59wEri8aMGUPr1q0JDAwkNDSUXr16sWPHDrNjOY3x48fTvHnzggXG2rVrx6+//mp2LKf0xhtvYLFYeOKJJ8yO4hRefPFFLBZLoVvDhg3NjuVUDh06RJ8+fahUqRL+/v40a9aMtWvXmh3LIVTcOMCMGTMYNmwYo0ePZt26dURFRdGtWzeSkpLMjuYUMjIyiIqKYty4cWZHcTpLlixhyJAhrFy5koULF5KXl8f1119PRkaG2dGcQvXq1XnjjTeIjY1l7dq1XHvttdxyyy1s2bLF7GhOZc2aNXz66ac0b97c7ChOpUmTJhw5cqTgtnTpUrMjOY2TJ0/SoUMHvL29+fXXX9m6dStjx44lJCTE7GiOYZfL1qZNG/uQIUMK7lutVntERIR9zJgxJqZyToB91qxZZsdwWklJSXbAvmTJErOjOK2QkBD7559/bnYMp5GWlmavV6+efeHChfZOnTrZH3/8cbMjOYXRo0fbo6KizI7htJ599ll7x44dzY5RYtRzc5lyc3OJjY2lS5cuBcc8PDzo0qULK1asMDGZuKKUlBQAKlasaHIS52O1Wpk+fToZGRnabuVfhgwZQo8ePQr9HySGXbt2ERERwRVXXMG9995LfHy82ZGcxpw5c4iJieHOO+8kNDSUli1bMnHiRLNjOYyKm8t07NgxrFZrwYrKp4WFhZGQkGBSKnFFNpuNJ554gg4dOjjFitvOYtOmTZQvXx5fX18eeughZs2aRePGjc2O5RSmT5/OunXrCrankTPatm3LlClTmD9/PuPHj2ffvn1cddVVpKWlmR3NKezdu5fx48dTr149FixYwMMPP8xjjz3G1KlTzY7mEKZvvyAihiFDhrB582aNC/iPBg0aEBcXR0pKCt9//z39+vVjyZIlZb7AOXjwII8//jgLFy7Ez8/P7DhO58YbbyxoN2/enLZt21KzZk1mzpzJoEGDTEzmHGw2GzExMbz++usAtGzZks2bNzNhwgT69etncrrLp56by1S5cmU8PT1JTEwsdDwxMZHw8HCTUomrefTRR/nll1/4448/qF69utlxnIqPjw9169YlOjqaMWPGEBUVxQcffGB2LNPFxsaSlJREq1at8PLywsvLiyVLlvDhhx/i5eWF1Wo1O6JTqVChAvXr12f37t1mR3EKVatWPesXhEaNGrnNpTsVN5fJx8eH6OhoFi9eXHDMZrOxePFijQuQi7Lb7Tz66KPMmjWL33//ndq1a5sdyenZbDZycnLMjmG66667jk2bNhEXF1dwi4mJ4d577yUuLg5PT0+zIzqV9PR09uzZQ9WqVc2O4hQ6dOhw1rITO3fupGbNmiYlcixdlnKAYcOG0a9fP2JiYmjTpg3vv/8+GRkZDBgwwOxoTiE9Pb3Qb0v79u0jLi6OihUrUqNGDROTmW/IkCFMmzaNn376icDAwIJxWsHBwfj7+5ucznwjRozgxhtvpEaNGqSlpTFt2jT+/PNPFixYYHY00wUGBp41NqtcuXJUqlRJY7aAp556ip49e1KzZk0OHz7M6NGj8fT05O677zY7mlN48sknad++Pa+//jp33XUXq1ev5rPPPuOzzz4zO5pjmD1dy1189NFH9ho1ath9fHzsbdq0sa9cudLsSE7jjz/+sANn3fr162d2NNOd630B7F988YXZ0ZzCwIED7TVr1rT7+PjYq1SpYr/uuuvsv/32m9mxnJamgp/Ru3dve9WqVe0+Pj72atWq2Xv37m3fvXu32bGcys8//2xv2rSp3dfX196wYUP7Z599ZnYkh7HY7Xa7SXWViIiIiMNpzI2IiIi4FRU3IiIi4lZU3IiIiIhbUXEjIiIibkXFjYiIiLgVFTciIiLiVlTciIiIiFtRcSMiIiJuRcWNiDi9/v3706tXr8t+nh07dhAeHk5aWtrlhzoHi8XC7NmzATh27BihoaH8888/JfJaInJ+Km5E5LKsWLECT09PevToYXaUixoxYgRDhw4lMDCwxF+rcuXK9O3bl9GjR5f4a4lIYSpuROSyTJo0iaFDh/LXX39x+PBhs+OcV3x8PL/88gv9+/c/7zlWqxWbzeaw1xwwYADffPMNJ06ccNhzisjFqbgRkWJLT09nxowZPPzww/To0YMpU6YU+v6ff/6JxWJh8eLFxMTEEBAQQPv27dmxY0eh81599VVCQ0MJDAzk/vvvZ/jw4bRo0eK8r2uz2RgzZgy1a9fG39+fqKgovv/++wtmnTlzJlFRUVSrVq3g2JQpU6hQoQJz5syhcePG+Pr6Eh8fz5o1a+jatSuVK1cmODiYTp06sW7dukLPt2vXLq6++mr8/Pxo3LgxCxcuPOs1mzRpQkREBLNmzbpgNhFxLBU3IlJsM2fOpGHDhjRo0IA+ffowefJkzrUX78iRIxk7dixr167Fy8uLgQMHFnzvm2++4bXXXuPNN98kNjaWGjVqMH78+Au+7pgxY/jyyy+ZMGECW7Zs4cknn6RPnz4sWbLkvI/5+++/iYmJOet4ZmYmb775Jp9//jlbtmwhNDSUtLQ0+vXrx9KlS1m5ciX16tWje/fuBWN1bDYbt912Gz4+PqxatYoJEybw7LPPnvN127Rpw99//33Bn0dEHMzkXclFxIW1b9/e/v7779vtdrs9Ly/PXrlyZfsff/xR8P0//vjDDtgXLVpUcGzu3Ll2wJ6VlWW32+32tm3b2ocMGVLoeTt06GCPiooquN+vXz/7LbfcYrfb7fbs7Gx7QECAffny5YUeM2jQIPvdd9993qxRUVH2l19+udCxL774wg7Y4+LiLvhzWq1We2BgoP3nn3+22+12+4IFC+xeXl72Q4cOFZzz66+/2gH7rFmzCj32ySeftHfu3PmCzy8ijqWeGxEplh07drB69WruvvtuALy8vOjduzeTJk0669zmzZsXtKtWrQpAUlJSwfO0adOm0Pn/vf9vu3fvJjMzk65du1K+fPmC25dffsmePXvO+7isrCz8/PzOOu7j41MoH0BiYiKDBw+mXr16BAcHExQURHp6OvHx8QBs27aNyMhIIiIiCh7Trl27c76uv78/mZmZ580lIo7nZXYAEXFNkyZNIj8/v9AHvN1ux9fXl48//pjg4OCC497e3gVti8UCUOyBu+np6QDMnTu30PgZAF9f3/M+rnLlypw8efKs4/7+/gWZTuvXrx/Hjx/ngw8+oGbNmvj6+tKuXTtyc3OLnPfEiRNUqVKlyI8TkeJTz42IFFl+fj5ffvklY8eOJS4uruC2YcMGIiIi+Pbbby/5uRo0aMCaNWsKHfvv/X/798DfunXrFrpFRkae93EtW7Zk69atl5Rp2bJlPPbYY3Tv3p0mTZrg6+vLsWPHCr7fqFEjDh48yJEjRwqOrVy58pzPtXnzZlq2bHlJrysijqGeGxEpsl9++YWTJ08yaNCgQj00ALfffjuTJk3ioYceuqTnGjp0KIMHDyYmJob27dszY8YMNm7cyBVXXHHO8wMDA3nqqad48sknsdlsdOzYkZSUFJYtW0ZQUBD9+vU75+O6devG/fffj9VqxdPT84KZ6tWrx1dffUVMTAypqak8/fTT+Pv7F3y/S5cu1K9fn379+vH222+TmprKyJEjz3qezMxMYmNjef311y/pvRARx1DPjYgU2aRJk+jSpctZhQ0Yxc3atWvZuHHjJT3Xvffey4gRI3jqqado1aoV+/bto3///uccH3PaK6+8wqhRoxgzZgyNGjXihhtuYO7cudSuXfu8j7nxxhvx8vJi0aJFl/TznTx5klatWnHffffx2GOPERoaWvB9Dw8PZs2aRVZWFm3atOH+++/ntddeO+t5fvrpJ2rUqMFVV1110dcUEcex2O3nmLcpImKirl27Eh4ezldffeXQ5x03bhxz5sxhwYIFDn3e87nyyit57LHHuOeee0rl9UTEoMtSImKqzMxMJkyYQLdu3fD09OTbb79l0aJF51wU73I9+OCDJCcnk5aWVuJbMBw7dozbbrutYDaZiJQe9dyIiKmysrLo2bMn69evJzs7mwYNGvD8889z2223mR1NRFyUihsRERFxKxpQLCIiIm5FxY2IiIi4FRU3IiIi4lZU3IiIiIhbUXEjIiIibkXFjYiIiLgVFTciIiLiVlTciIiIiFv5f/tJJ6JV34UoAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "population_init_X = [result.measurement_counts['0']/nb_shots for result in b_X.results()]\n", + "plt.plot(thetas, population_init_X, label=\"Init along X\")\n", + "\n", + "population_init_Y = [result.measurement_counts['0']/nb_shots for result in b_Y.results()]\n", + "plt.plot(thetas, population_init_Y, label=\"Init along Y\")\n", + "\n", + "plt.xlabel(\"Angle (rad)\")\n", + "plt.ylabel(\"Population\")\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We observe that applying $U(\\theta, 0, 0)$ after initializing the qubit along the X axis does not seem to change the qubit state. On the other hand, the qubit undergoes a rotation of period $2\\pi$ if initialized on the Y axis. This indicates that we have construct an $R_X$ gate.\n", + "\n", + "The fidelity of the gate is noticibly low. This is mainly due to the $\\pi/2$ pulse characterization that is too simplistic. To go further, we could switch to DragGaussianWaveform that suppresses excitations in the second excited state during driving and implement a better calibration scheme that would optimize the detuning, phase and length of pulse and limit the impact of SPAM errors." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Construct a Hadamard gate with a single pulse\n", + "A trade-off to the previous construct is that any gate will have the same duration, i.e., the duration equivalent to a π-equivalent which is longest optimal duration for a 1-qubit gate. If you were able to use a single π/2-pulse, you would theoretically improve your gate duration and fidelity. In particular, let’s see that this decomposition is not the most performant for the Hadamard gate.\n", + "\n", + "The Hadamard gate is describable by a single rotation using the $U_2$ decomposition. \n", + "\n", + "$$ U(π/2,ϕ,λ)=U_2 (ϕ,λ)=R_Z (ϕ+π/2) R_X (π/2) R_Z (λ-π/2) $$\n", + "\n", + "Identifying that the Hadamard gate is given by $U_2(0, \\pi)$, we can write a sequence directly from this decomposition as the following pulse sequence:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "single_x90_sequence = ( \n", + " PulseSequence()\n", + " .shift_phase(drive_frame, lambda_ - np.pi/2)\n", + " .play(drive_frame, x90)\n", + " .shift_phase(drive_frame, phi + np.pi/2)\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can visualize that we have only a single pulse." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAHHCAYAAABwaWYjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAABqiUlEQVR4nO3deVhUZf8G8Htm2JVFZEcUUXBXUARxSVOU1Eg0NZcU0Ta1XMhKK7fKUEui3FMRtXIrpX5lmuGWihtI4r4DKouA7LLNnN8f5LxNLM5BhmHg/lzXuXLOPOc53/POC3NzznOeIxEEQQARERERqU2q7QKIiIiIdA0DFBEREZFIDFBEREREIjFAEREREYnEAEVEREQkEgMUERERkUgMUEREREQiMUARERERicQARURERCQSAxQRNXipqakYOXIkmjZtColEgrCwMLW2Ky0txfvvvw8nJydIpVIEBARotE4iqjv0tF0AEZE6srKy4ObmhocPH2L37t0YOXJkjfU9e/ZsHDhwAAsXLoSdnR08PT3V2i48PBxffPEFZs2aha5du6J58+Y1VhMR1W0MUESkExYsWICCggKN9H3o0CEMGzYMc+bMEb2do6MjvvrqK43URUR1Fy/hEVGdd/HiRaxduxYffPBBjfVZWlqK4uJiAEBaWhosLCxE96Hudv/eFxHVDwxQRKQVx48fR/fu3WFkZIRWrVph/fr1WLRoESQSSbm2M2fOxPDhw9GnT59q7evu3buQSCT48ssvERYWhlatWsHQ0BBr1qyBRCKBIAhYvXo1JBJJhfuvrL/Dhw/j0qVLyu2OHDlS6b4uX76M4uJiLFiwAN26dYO5uTkaNWqEPn364PDhw5XWu3r1ari4uMDExASDBg1CUlISBEHAp59+imbNmsHY2BjDhg1DZmZmuTp///139OnTB40aNYKpqSmGDh2KS5cuVet/QyJSxUt4RFTr4uPjMWjQIFhbW2PRokUoLS3FwoULYWtrW67t7t27cfLkSVy5cgV37959pv1u3rwZhYWFeOONN2BoaIiuXbti27ZtmDBhAgYOHIiJEyeq1Y+1tTW2bduGJUuWIC8vDyEhIQCAdu3a4fHjxxXuy9LSEjk5Odi4cSPGjh2L119/Hbm5udi0aRP8/Pxw5swZuLu7q+zn+++/R3FxMd555x1kZmZi+fLlGD16NPr3748jR47ggw8+wM2bN7Fy5UrMmTMH4eHhym23bduGwMBA+Pn5YdmyZSgoKMDatWvRu3dvnD9/Hs7Ozs/0vyVRgycQEdWygIAAwcjISEhISFCuu3z5siCTyYR//1oqKCgQmjdvLsybN08QBEE4fPiwAEDYvXu3qP3duXNHACCYmZkJaWlp5d4HIEyfPl30cfTt21fo0KGD2vsqLS0VioqKVNY9evRIsLW1FSZPnlyuD2trayErK0u5ft68eQIAoUuXLkJJSYly/dixYwUDAwOhsLBQEARByM3NFSwsLITXX39dZV8pKSmCubl5ufVEJB4v4RFRrZLL5Thw4AACAgJU7lpr164d/Pz8VNouXboUJSUl+PDDD2tk3y+//DKsra1rpK/q7Esmk8HAwAAAoFAokJmZidLSUnh6eiI2NrZcH6NGjYK5ubnytbe3NwDg1VdfhZ6ensr64uJi3L9/HwBw8OBBZGVlYezYsUhPT1cuMpkM3t7e5S4ZEpF4vIRHRLXq4cOHePz4MVxdXcu916ZNG+zbtw9A2TigL774AqtXr0bjxo1rZN8tW7askX6eZV9btmzBihUrcPXqVZSUlFTZ/r/TIjwJU05OThWuf/ToEQDgxo0bAID+/ftXWIOZmZk6h0BEVWCAIqI6acGCBXB0dES/fv2UY59SUlIAlIWwu3fvonnz5pBK1T+RbmxsrIlS1d7Xd999h0mTJiEgIADvvfcebGxsIJPJEBISglu3bpVrL5PJKuy7svWCIAAoO7sFlI2DsrOzK9fu32eviKh6+FNERLXK2toaxsbGyrMk/3bt2jXlvxMTE3Hz5k24uLiUazdt2jQAZWdcqjP9gLb8+OOPcHFxwZ49e1Tu9lu4cGGN7qdVq1YAABsbG/j6+tZo30RUhgGKiGqVTCaDn58fIiMjkZiYqLxMdeXKFRw4cEDZ7rPPPkN6errKthcvXsT8+fPx/vvvw8fHB40aNarV2p/VkzNHgiAoA9Tp06cRHR1do7OY+/n5wczMDJ9//jmef/556Ovrq7z/8OHDWhsLRlRfMUARUa1bvHgx9u/fjz59+mDatGkoLS3FypUr0aFDB1y4cAEA0Lt373LbPTnb1L17d5187tyLL76IPXv2YPjw4Rg6dCju3LmDdevWoX379sjLy6ux/ZiZmWHt2rWYMGECunbtijFjxsDa2hqJiYn47bff0KtXL6xatarG9kfUEDFAEVGt69y5Mw4cOIDg4GAsWLAAzZo1w+LFi5GcnKwMUPXRpEmTkJKSgvXr1+PAgQNo3749vvvuO+zevRtHjhyp0X2NGzcODg4OWLp0Kb744gsUFRXB0dERffr0QVBQUI3ui6ghkghPRh0SEWnZokWLsHjxYvDXEhHVdZwHioiIiEgkXsIjIp0ll8vx8OHDKts0btxY9DxST6ZLqIyxsbHKBJdE1PAwQBGRzkpKSnrq5JgLFy7EokWLRPVrb29f5fuBgYGIiIgQ1ScR1S8cA0VEOquwsBDHjx+vso2Li0uFc0lV5c8//6zyfQcHB7Rv315Un0RUvzBAEREREYnEQeREREREInEMlAYoFAo8ePAApqamKo9rICIiorpLEATk5ubCwcHhqc/ZZIDSgAcPHpR7WjoRERHphqSkJDRr1qzKNgxQGmBqagqg7AMwMzPTcjVERESkjpycHDg5OSm/x6vCAKUBTy7bmZmZMUARERHpGHWG33AQOREREZFIPANFRPSMCopLcTUlF4XFcrS1N4NlIwNtl0REGsYARUQkQlZBMS49yMGlB9n//DcHtx/mQfGvGfXszY3QwcEM7R3M0cHBDB0czOBoYcy7conqEQYoIqJKpOYUIv5eWVC6+CAblx/k4H7W4wrbWpsaopGBDHczCpCcXYjk7EL8eSVN+b6Fif4/Yep/oaqVdWOGKiIdxQBFRPQfCRn5WL7/Gn6LT67w/eaWJsoQ1MGxLBDZmBoBAPKKSnElOQcX7//vDNWN1FxkFZTgxM0MnLiZoeyno6MZPhzcDj1bW9XKcRFRzeGjXDQgJycH5ubmyM7O5l14RDokq6AYKw/dxNbouyiRC5BIADcbU5Wg1N7BDGZG+qL6LSqV40Zq3r9CVdl/i0oVAID+bW0wb3BbuNo+/dZpItIcMd/fDFAawABFpFuKSuXYejIBKw/dQE5hKQCgj6sV5g1uh/YOmvkZTs8rwjdRN/D96UTIFQKkEuCV7s0xe6Cr8mwWEdUuBigtY4Ai0g2CIOD/LiRj+f6ruPeobGxTWztTzBvSDn3drGulhlsP87Ds96v443IqAMDEQIa3+rbCa31awsSAoyyIapOY7+96MQ/U6tWr4ezsDCMjI3h7e+PMmTOVtr106RJefvllODs7QyKRICwsrFybRYsWQSKRqCxt27bV4BEQUW07fTsDAatPYMb287j36DFszQyx/OXO+G1Gn1oLTwDQyroxvp3oiV1v+qBLM3MUFMsRevA6nv/yCHadTYJcwb9xieoinQ9QO3fuRHBwMBYuXIjY2Fh06dIFfn5+SEtLq7B9QUEBXFxcsHTpUtjZ2VXab4cOHZCcnKxcjh8/rqlDIKJadPthHt7Yeg6vfHsKf9/LhomBDMED3XB4Tj+M7u4EmVQ7d8V5tbTE3mm98M1YDzRrYozUnCK8/9MFDP3mLxy9/lArNRFR5XT+Ep63tze6d++OVatWAQAUCgWcnJzwzjvvYO7cuVVu6+zsjFmzZmHWrFkq6xctWoTIyEjExcVVqyZewiOqe0rkCiz7/SoiTt5F6T9jjsZ4Nccs37o35qiyMVkrRnWBjVndqpWoPmkwl/CKi4sRExMDX19f5TqpVApfX19ER0c/U983btyAg4MDXFxcMH78eCQmJlbatqioCDk5OSoLEdUd2QUlmLT5DDYev4NShYABbW1wYNZz+Hx4pzoXngDAUE+G159zwbH3n8eU3i2hL5PgrxvpCFh9Apcf8PcLUV2g0wEqPT0dcrkctra2KuttbW2RkpJS7X69vb0RERGB/fv3Y+3atbhz5w769OmD3NzcCtuHhITA3NxcuTg5OVV730RUsxIy8jFi7QmcuJkBEwMZvp3QDZsmddeJKQMsTAww/8X22D/rObhYNcKD7EKMWncSh66mars0ogZPpwOUpgwePBijRo1C586d4efnh3379iErKwu7du2qsP28efOQnZ2tXJKSkmq5YiKqyLm7mRi+5iRuPcyHvbkRfnyrJwZ1qHzsY13Vyrox9k7rBR+XpsgvluO1LecQceKOtssiatB0OkBZWVlBJpMhNVX1r7HU1NQqB4iLZWFhATc3N9y8ebPC9w0NDWFmZqayEJF2/Rx3H+M2nEZmfjE6OZojcnovjc3pVBvMTfSxZbIXRns2g0IAFv3fZSz8+SJK5Qptl0bUIOl0gDIwMEC3bt0QFRWlXKdQKBAVFQUfH58a209eXh5u3boFe3v7GuuTiDRDEASE/XkdM3fEoViuwKD2ttj5Zg/Y1oPB1wZ6Uix7uTM+eKFsWpUt0Ql4bes55BaWaLkyooZHpwMUAAQHB2PDhg3YsmULrly5gqlTpyI/Px9BQUEAgIkTJ2LevHnK9sXFxYiLi0NcXByKi4tx//59xMXFqZxdmjNnDo4ePYq7d+/i5MmTGD58OGQyGcaOHVvrx0dE6isskWPWzjiE/XkDAPBmXxese7VbvZqQUiKRYGq/Vlg7viuM9KU4cu0hRq2LrvQhx0SkGTr/W+WVV17Bw4cPsWDBAqSkpMDd3R379+9XDixPTEyEVPq/nPjgwQN4eHgoX3/55Zf48ssv0bdvXxw5cgQAcO/ePYwdOxYZGRmwtrZG7969cerUKVhb197kekQkTkZeEd7YFoOYhEfQk0rwaUBHjPVqru2yNGZwJ3s4WBjjta3ncDUlF8NWncCmQE90cbLQdmlEDYLOzwNVF3EeKKLadTMtF0ERZ5GU+RimRnpY92o39Gptpe2yasX9rMeYEnEWV1NyYaQvxVej3TG4E4cbEFVHg5kHiojo+I10DF9zEkmZj9Hc0gR7p/VsMOEJABwtjPHj1J54vo01CksUmPp9LNYcuQn+bUykWQxQRKSzfo67j0mbzyC3sBSeLZpg77SeaG1T9+d3qmmNDfWwYaInJvV0BgAs338NH0VehILP0SPSGAYoItJJ+y+mIHjX3yhVCBjm7oDvXvNG08aG2i5La/RkUix6qQM+GdYBUgnww+lEfPrbZZ6JItIQBigi0jnHrj/EjO3nIVcIGNmtGb4a7Q4jfZm2y6oTJvo444uRXQAAm0/cxVf/3JFIRDWLAYqIdMrZu5l4Y9s5FMsVGNLJDktHdIJUKtF2WXXKy92a4ZNhHQAA30TdwLfHbmm5IqL6hwGKiHRG/L1sTN58FoUlCvR1s0bYKx7Qk/HXWEUm+jjj/RfaAAA+33cV359O0HJFRPULf/MQkU64kZqLieGnkVtUCq+Wllj3ajcY6PFXWFWm9WuNaf1aAQA+jryIyPP3tVwRUf1Rrd8+WVlZ2LhxI+bNm4fMzEwAQGxsLO7f5w8nEdW8xIwCjN94Go8KStC5mTk2BXrC2IBjntTxnl8bTPRpAUEA3t39N/64lKLtkojqBdEB6sKFC3Bzc8OyZcvw5ZdfIisrCwCwZ88elUemEBHVhJTsQozbeAppuUVoY2uKLUFeMDXS13ZZOkMikWCRfwe83LUZ5AoBb/9wHsdvpGu7LCKdJzpABQcHY9KkSbhx4waMjP73cM4hQ4bg2LFjNVocETVs6XlFGL/xFO49egznpibYNsULTRoZaLssnSOVSrDs5U4Y3NEOxXIFXt96DufuZmq7LCKdJjpAnT17Fm+++Wa59Y6OjkhJ4alhIqoZ2Y9LMHHTGdx6mA97cyN895o3bMyMnr4hVUhPJkXYGHf0dbPG4xI5gjafxcX72doui0hniQ5QhoaGyMnJKbf++vXrfNguEdWI/KJSBG0+g8vJObBqbIDvX/NGsyYm2i5L5xnqybDu1W7wcrZEblEpJoafwc20XG2XRaSTRAeol156CZ988glKSkoAlF1fT0xMxAcffICXX365xgskooalsESON7adQ2xiFsyM9LB1sjdcrBtru6x6w9hAhk2TPNG5mTky84sxfuNpJGUWaLssIp0jOkCtWLECeXl5sLGxwePHj9G3b1+0bt0apqamWLJkiSZqJKIGolSuwDvbz+PEzQyYGMgQMdkL7R2qfiI6iWdqpI8tQV5ws22M1JwijNt4Cqk5hdoui0inSIRqPijp+PHjuHDhAvLy8tC1a1f4+vrWdG06KycnB+bm5sjOzoaZGX/5E6lDEATM//kivjuVCAM9KSKCuqNnKyttl1WvpeUUYtT6aCRkFKCDgxl2vemDRoZ62i6LSGvEfH9XO0BR5RigiMTbcOw2luy7AokEWDu+K17oaK/tkhqExIwCDF9zAhn5xRjQ1gbfTvSEjI/GoQZKzPe3Wn9qfPPNN2rvfMaMGWq3JSICgN/jk/H571cAAB8NacfwVIuaNzXBxkBPjPn2FKKupuGT/7uERS91gETCEEVUFbXOQLVs2VLl9cOHD1FQUAALCwsAZTOTm5iYwMbGBrdv39ZIobqEZ6CI1Hc+8RHGfHsKRaUKTOjRAp8M45e3Nvwen4yp38cCAOa/2B5Terd8yhZE9Y+Y72+1BpHfuXNHuSxZsgTu7u64cuUKMjMzkZmZiStXrqBr16749NNPa+QAiKhhSMoswGtbzqGoVIHn21hjoX97hictGdzJHvMGtwUAfPbbZRzgI1+IqiR6DFSrVq3w448/wsPDQ2V9TEwMRo4ciTt37tRogbqIZ6CIni67oAQj1p7ArYf5aG9vht1vcQCztgmCgI8iL+KH04kw0pdi5xs+6OJkoe2yiGpNjZ+B+rfk5GSUlpaWWy+Xy5Gamiq2OyJqgIpLFXjruxjcepgPOzMjhE/qzvBUB0gkEnzyUgf0dbNGYYkCU7ac4xxRRJUQHaAGDBiAN998E7Gxscp1MTExmDp1qqipDEpKSpCUlIRr164hM5PPZCJqKARBwNw9FxB9OwONDGQIn9QdduZ8REtdoSeTYtU4D7S1M0V6XhEmR5xF9uMSbZdFVOeIDlDh4eGws7ODp6cnDA0NYWhoCC8vL9ja2mLjxo1Vbpubm4u1a9eib9++MDMzg7OzM9q1awdra2u0aNECr7/+Os6ePVvtgyGium/loZvYE3sfMqkEq8Z35USZdZCpkT42B3WHrZkhbqTlYdr3MSiRK7RdFlGdIjpAWVtbY9++fbh69Sp2796N3bt348qVK9i3bx9sbGwq3S40NBTOzs7YvHkzfH19ERkZibi4OFy/fh3R0dFYuHAhSktLMWjQILzwwgu4ceOG2jWtXr0azs7OMDIygre3N86cOVNp20uXLuHll1+Gs7MzJBIJwsLCnrlPIlJP5Pn7CD14HQCw+KUOeL5N5b8zSLvszY2xKbA7TAxkOHEzAx/tjQenDST6n2oPOnBzc4Obm5va7c+ePYtjx46hQ4cOFb7v5eWFyZMnY926ddi8eTP++usvuLq6PrXfnTt3Ijg4GOvWrYO3tzfCwsLg5+eHa9euVRjoCgoK4OLiglGjRmH27Nk10icRPd3p2xl4/8cLAIA3nnPBqz1aaLkiepqOjuZYNc4Dr205h13n7qFF00aY/nxrbZdFVCeIvgtv8uTJVb4fHh7+TAWJ5e3tje7du2PVqlUAAIVCAScnJ7zzzjuYO3dulds6Oztj1qxZmDVrVo31CfAuPKL/uvUwDyPWnET24xIM7miH1eO6QsrZrnXG1ui7WPDzJQDA12PcMczdUcsVEWmGRu/Ce/TokcqSlpaGQ4cOYc+ePcjKyqpuzdVSXFyMmJgYlcHrUqkUvr6+iI6OrrU+i4qKkJOTo7IQUZmMvCIEbS4biOzuZIGvXnFneNIxE32clRNrvrf7As7e5Y0/RKIv4e3du7fcOoVCgalTp6JVq1bPVMyaNWuQnp6OBQsWqNU+PT0dcrkctra2KuttbW1x9erVatVQnT5DQkKwePHiau2PqD4rLJHj9a3nkJhZACdLY2wM9ISRvkzbZVE1fDikHe49KsCBS6l4fes57J3WCy2tGmm7LCKtEX0GqsJOpFIEBwfjq6++eqZ+fvrpJ0RERNRESbVq3rx5yM7OVi5JSUnaLolI6xQKAe/u+huxiVkwM9LD5kndYdXYUNtlUTXJpBKEveKBLs3MkVVQgqDNZ5CZX6ztsoi0pkYCFADcunWrwgk2xYiKihL1LD0rKyvIZLJyE3impqbCzs6uWjVUp09DQ0OYmZmpLEQN3Rd/XMNv8cnQl0mwfoInWtuYarskekbGBjJsDOwORwtj3M0owBtbz6GwRK7tsoi0QvQlvODgYJXXgiAgOTkZv/32GwIDA2usMHUYGBigW7duiIqKQkBAAICyy4lRUVF4++2360yfRA3N9jOJWHvkFgBg6YjO8GnVVMsVUU2xNjVERFB3jFh7EucSHuH9Hy8gjOPaqAESHaDOnz+v8loqlcLa2horVqx46h16T2zdurXK9ydOnKh2PcHBwQgMDISnpye8vLwQFhaG/Px8BAUFKftydHRESEgIgLJB4pcvX1b++/79+4iLi0Pjxo3RunVrtfokosodu/4QH0deBADMGOCKl7s103JFVNNcbU2x7tVuCAw/g1/+foDmliaY49dG22UR1SrR0xjUhCZNmqi8LikpQUFBAQwMDGBiYiL60S6rVq3CF198gZSUFLi7u+Obb76Bt7c3AKBfv35wdnZWjq26e/cuWrZsWa6Pvn374siRI2r1+TScxoAaqmspuXh57UnkFZViuIcjQkd3gUTCMxP11a5zScq5vZaP7IzRnk5arojo2Yj5/hYdoPr37489e/bAwsKi3E4DAgJw6NAh0QUDwI0bNzB16lS899578PPzq1YfdQUDFDVEaTmFCFh9Ag+yC+HV0hLbpnjBUI933NV3Xx64hlWHb0JPKsGWyV7o1dpK2yURVZtG54E6cuQIiovL33lRWFiIv/76S2x3Sq6urli6dClmzpxZ7T6ISDsKiksxZcs5PMguhItVI3w7oRvDUwMRPNAN/l0cUKoQ8NZ3MbiRmqvtkohqhdpjoC5cuKD89+XLl5GSkqJ8LZfLsX//fjg6PtvstHp6enjw4MEz9UFEtUuuEDBjexzi72fDspEBNgd1h4WJgbbLoloilUrwxcjOSM56jHMJjxAUcRZ7p/WCtSmnrKD6Te0A5e7uDolEAolEgv79+5d739jYGCtXrlSrr19++UXl9ZM7+VatWoVevXqpWxIR1QGf/XYZf15JhYGeFBsmdkOLppxcsaEx0pfh24meGLHmBO5mFOC1LWex4w0fGBvwLCTVX2qPgUpISIAgCHBxccGZM2dgbW2tfM/AwAA2NjaQydT7YZFKVa8cSiQSWFtbo3///lixYgXs7e1FHELdwzFQ1FBEnLiDRf9XdlfrqnEeeLGzg5YrIm26k56P4WtOIKugBH4dbLF2fDdOb0A6RaODyOnpGKCoIYi6UvZID4UAvP9CG0zr11rbJVEdcPZuJsZvOI1iuQKv92mJj4a213ZJRGoT8/2t1iW8X375BYMHD4a+vn65y2//9dJLL6lfKRHppIv3s/H2D+ehEIAx3Z0wte+zPQeT6o/uzpb4YlRnzNwRhw1/3UHzpo0woUcLbZdFVOPUOgMllUqRkpICGxubcpffVDqTSCCXc1p/noGi+uzeowKMWHMSablF6ONqhfBJ3aEvq7GnQlE9serQDXz5x3VIJcCGiZ4Y0M726RsRaVmNT2OgUChgY2Oj/HdlC8MTUf2WnleECZvOIC23CG1sTbF6fFeGJ6rQ9OdbY1S3ZlAIwLTvY3H2rrgJkonqOv7mIyK15BSWIDD8DO6k58PRwhhbJnvBzEhf22VRHSWRSPD5iE4Y0NYGRaUKTI44i0sPsrVdFlGNUesS3jfffKN2hzNmzHimguoDXsKj+qawRI6J4Wdw5k4mrBobYPdbPdHSitMV0NMVlsgxcdMZnLnL/+9Q3Vfjd+FV9Oy4CjuTSHD79m31qqzHGKCoPimRK/DWthhEXU2DqaEetr/RAx0dzbVdFumQnMISjFl/CpeTc+BoYYyfpvaEnbmRtssiKkdnpzFo164drl+/rvNjqRigqL5QKAS8u/tv7D1/H4Z6Umyb4g2vlpbaLot00MPcIoxadxJ3MwrgatMYu970QZNGnLGe6haNPgvv3wRBQE3mr5CQEISHh9dYf0RUfYIg4JNfL2Pv+fuQSSVYM74rwxNVm7WpIbZN8YadmRFupOUhKOIs8otKtV0WUbVVK0Bt2rQJHTt2hJGREYyMjNCxY0ds3LjxmYsJCAhAYGDgM/dDRM/um6ibiDh5FwCwYlQX3oZOz8zJ0gTbpnjBwkQfcUlZeHNbDIpKdfuKAzVcogPUggULMHPmTPj7+2P37t3YvXs3/P39MXv2bCxYsEATNRJRLdty8i6++vM6AGCRf3sEeDzbg8KJnnC1NUVEkBdMDGQ4fjMds3fGQa6oMyNJiNQmegyUtbU1vvnmG4wdO1Zl/fbt2/HOO+8gPT1drX5+/PFH7Nq1C4mJiSguLlZ5LzY2VkxJdQ7HQJEu+znuPmbuiAMAzBzgitkD3bRbENVLx2+kY3LEWRTLFRjT3QkhIzpBIuFz80i7NDoGqqSkBJ6enuXWd+vWDaWl6l3P/uabbxAUFARbW1ucP38eXl5eaNq0KW7fvo3BgweLLYmIasjhq2l4d9ffAIBAnxaY5euq5YqovurtaoWvx7hDKgF2nE3Csv3XtF0SkSiiA9SECROwdu3acuu//fZbjB8/Xq0+1qxZg2+//RYrV66EgYEB3n//fRw8eBAzZsxAdjYnWiPShjN3MvHWdzEoVQgIcHfAQv8OPCNAGjW4kz0+H94JALDu6C2sO3pLyxURqU+thwn/16ZNm/DHH3+gR48eAIDTp08jMTEREydORHBwsLJdaGhohdsnJiaiZ8+eAABjY2Pk5uYCKAtnPXr0wKpVq6pTFhFV06UH2ZgScRZFpQr0b2uDL0Z1gVTK8ESaN8arObIel2Dp71ex9PersDDWxxiv5toui+ipRAeoixcvomvXrgCAW7fK/lqwsrKClZUVLl68qGxX1V+udnZ2yMzMRIsWLdC8eXOcOnUKXbp0wZ07d2p0WgQieroL97IQGH4GuUWl6O7cBKvH8fl2VLve6tsKjwqKsf7obczbGw+FAIzzZoiiuk10gDp8+PAz77R///745Zdf4OHhgaCgIMyePRs//vgjzp07hxEjRjxz/0SkntO3MzBlyznkFZWiSzNzbAzsDmMDmbbLogZo7gttUVAkx7ZTCfhwbzzyikrwxnOttF0WUaW0MhO5QqGAQqGAnl5ZftuxYwdOnjwJV1dXvPnmmzAw0O3ZaXkXHumCw9fS8Na2GBSVKtDDxRIbA7ujsWG1ruoT1QhBELBs/zXlWKgZ/Vtj9kA3jsWjWqPRR7kUFhZi5cqVOHz4MNLS0qBQKFTe1/UpCGoCAxTVdb9dSMasnedRIhfQv60N1ozvCiN9nnmiumH14Zv44kDZXXmTejpjwYvtOSaPaoVGpzGYMmUKli9fjhYtWuDFF1/EsGHDVJbKJCYmitrP/fv31W67evVqODs7w8jICN7e3jhz5kyV7Xfv3o22bdvCyMgInTp1wr59+1TenzRpEiQSicrywgsviKqfqK7adTYJ72yPRYlcgH8XB6yf0I3hieqU6c+3xifDOgAAIk7exfs/XUCpXPGUrYhql+jz9b/++iv27duHXr16idque/fuCAgIwGuvvYbu3btX2CY7Oxu7du3C119/jTfeeAMzZsx4ar87d+5EcHAw1q1bB29vb4SFhcHPzw/Xrl2DjY1NufYnT57E2LFjERISghdffBE//PADAgICEBsbi44dOyrbvfDCC9i8ebPytaGhoajjJaqLNh2/g09/vQwAGNPdCUuGd4KMf9lTHTTRxxmNDfXw3o8X8GPMPRQUlyLsFQ8Y6PEGB6obRF/Ca9++PXbs2IHOnTuL2lFGRgaWLFmC8PBwGBkZoVu3bnBwcICRkREePXqEy5cv49KlS+jatSvmz5+PIUOGqNWvt7c3unfvrpz6QKFQwMnJCe+88w7mzp1brv0rr7yC/Px8/Prrr8p1PXr0gLu7O9atWweg7AxUVlYWIiMjRR3jE7yER3WNIAj4Juqm8vEsr/dpiQ+HtOPYEqrz9l9MwYzt51EsV6CvmzXWvdqNNzqQxmj0Et6KFSvwwQcfICEhQdR2TZs2RWhoKJKTk7Fq1Sq4uroiPT0dN27cAACMHz8eMTExiI6OVjs8FRcXIyYmBr6+vsp1UqkUvr6+iI6OrnCb6OholfYA4OfnV679kSNHYGNjgzZt2mDq1KnIyMgQc7hEdYYgCFjy2xVleAoe6MbwRDrjhY522DTJE8b6Mhy9/hCB4WeQU1ii7bKIxF/C8/T0RGFhIVxcXGBiYgJ9fX2V9zMzM6vc3tjYGCNHjsTIkSPF7rqc9PR0yOVy2NqqPiXe1tYWV69erXCblJSUCtunpKQoX7/wwgsYMWIEWrZsiVu3buHDDz/E4MGDER0dDZms/F8+RUVFKCoqUr7Oycl5lsMiqjFyhYCP9sZjx9kkAMCCF9tjcu+WWq6KSJw+rtbYNsULQRFnceZuJsZtOIWtk71h2Ui379gm3SY6QI0dOxb379/H559/Dltb23r5V+yYMWOU/+7UqRM6d+6MVq1a4ciRIxgwYEC59iEhIVi8eHFtlkj0VCVyBWbvjMOvF5IhlQBLR3TG6O5O2i6LqFo8nS2x/fUeCAw/g4v3c/DK+mhsm+INO3MjbZdGDZToAHXy5ElER0ejS5cumqhHFCsrK8hkMqSmpqqsT01NhZ2dXYXb2NnZiWoPAC4uLrCyssLNmzcrDFDz5s1TeYRNTk4OnJz4RUXa87hYjuk/xOLQ1TToyyQIe8UDQzvba7ssomfS0dEcO9/0wYRNp3EjLQ+j1p/EtsnecLZqpO3SqAESPQaqbdu2ePz4sSZqEc3AwADdunVDVFSUcp1CoUBUVBR8fHwq3MbHx0elPQAcPHiw0vYAcO/ePWRkZMDevuIvIENDQ5iZmaksRNpyJz0fw9ecwKGraTDUk+LbiZ4MT1RvtLZpjF1v+qBFUxMkZT7GS6uO49DV1KdvSFTDRAeopUuX4t1338WRI0eQkZGBnJwclaW2BQcHY8OGDdiyZQuuXLmCqVOnIj8/H0FBQQCAiRMnYt68ecr2M2fOxP79+7FixQpcvXoVixYtwrlz5/D2228DAPLy8vDee+/h1KlTuHv3LqKiojBs2DC0bt0afn5+tX58RGL8cSkFL608jqspubBqbIDvXvPG823KT+dBpMucLE2w+00fuDtZIKewFJMjziH0j2uQK/gsVao9oqcxkErLMtd/xz4JggCJRAK5XF5z1alp1apV+OKLL5CSkgJ3d3d888038Pb2BgD069cPzs7OiIiIULbfvXs3Pv74Y9y9exeurq5Yvny58s6/x48fIyAgAOfPn0dWVhYcHBwwaNAgfPrpp+UGn1eG0xhQbSuVK7Di4HWsPVL2CAzPFk2wenxX2JpxfAjVX0Wlcnz26xVsO1V2V3gfVyt8PcaDg8up2jT6KJejR49W+l58fLzyTE5DxgBFtSk9rwgztp/HyVtlU21M7tUS84a0hb6MEw5Sw7D3/D3M2xOPwhIFHC2MsWZ8V3RxstB2WaSDNBqg/is3Nxfbt2/Hxo0bERMTo5UzUHUNAxTVlpiER5j+fSxScgphYiDDspc7w7+Lg7bLIqp1V1Ny8Na2GNzNKICBTIqFL7XHOK/m9fJOcdIcjU6k+cSxY8cQGBgIe3t7fPnll+jfvz9OnTpV3e6ISARBELDl5F2M+TYaKTmFaGXdCD9P78XwRA1WWzsz/PJObwxqb4tiuQIf7b2IObsv4HEx/6gnzRA1jUFKSgoiIiKwadMm5OTkYPTo0SgqKkJkZCTat2+vqRqJ6F8Kiksxb088fo57AAAY2skey0Z2RmND0bOSENUrZkb6WD+hG9Yfu43l+6/ip9h7uJycg3WvdkWLppzqgGqW2meg/P390aZNG1y4cAFhYWF48OABVq5cqcnaiOg/bj/Mw/DVJ/Fz3APoSSWY/2J7rBrnwfBE9A+JRIK3+rbC96/1gFVjA1xJzsGLK4/jz8uc6oBqltpjoPT09DBjxgxMnToVrq6uyvX6+vr4+++/eQbqXzgGimqaIAjYF5+CD366gLyiUtiYGmL1+K7o7myp7dKI6qyU7EJM/yEWMQmPAADT+rXCTF9XGOrxYcRUMY2MgTp+/Dhyc3PRrVs3eHt7Y9WqVUhPT3/mYomoaokZBZgccRbTf4hFXlEpvFta4tcZvRmeiJ7CztwIO97ogaBezgCANUduYfDXf+HETX530bMTfRdefn4+du7cifDwcJw5cwZyuRyhoaGYPHkyTE1NNVWnTuEZKKoJhSVyrDt6C2uO3EJxqQL6srJLEzMHuEKPUxQQibIvPhkLfr6E9LyyB7+/2NkeHw9tz2fpkYpam8bg2rVr2LRpE7Zt24asrCwMHDgQv/zyS3W7qzcYoOhZHb6WhkW/XEJCRgEAoHdrKywe1gGtrBtruTIi3ZX9uARfHbyOrdF3oRCARgYyzB7ohsCezpw3jQDU8jxQACCXy/F///d/CA8PZ4ACAxRV3/2sx/j0/y5j/6UUAICtmSHmv9geQzvZcz4bohpy8X42Po68iLikLABAWztTfDKsI7xa8rJ4Q1frAYpUMUCRWMWlCmw6fgffRN3A4xI5ZFIJgno6Y9ZAN95hR6QBCoWAXeeSsHT/VWQVlAAAXu7aDPOGtIVVY0MtV0fawgClZQxQJMbJW+lY8PMl3EzLAwB4OVvik4AOaGvH/+8Qadqj/GIsP3AV288kAQDMjPTwnl8bjPNuAZmUZ30bGgYoLWOAInUkZORjxR/X8cvfZRNiWjU2wLzB7TCiqyMv1xHVstjER5gfeRGXHuQAADo5muPDIe3Qw8WSP48NCAOUljFAUVViEjKx4dgdHLicAkEAJBJgQo8WeHdQG5gb62u7PKIGS64Q8N2pBHz5xzXkFpYCADo3M8drfVwwpKMd735tABigtIwBiv5LrhBw4FIKNvx1G+cTs5Tr+7pZY86gNujUzFx7xRGRioe5RQj78zp+jLmHolIFAMDRwhhBvZzxSncnmBrxD536igFKyxig6In8olLsPpeETSfuICnzMQDAQCZFgIcDXuvjAjdbzp1GVFdl5BVh26kEbItOQEZ+MQDA1FAPY7ycENSrJRwsjLVcIdU0BigtY4Ci1JxCRJy8i+9PJSDnn0sBFib6mNCjBSb4tICNKSfvI9IVhSVy7D1/Hxv/uo1bD/MBADKpBEM72eP1Pi48g1yPMEBpGQNUwyQIAi7ez8Hmk3fwf38/QIm87EfLuakJpvRuiZe7NYOJAackINJVCoWAI9fTsOHYHUTfzlCu7+FiiSm9XdDXzRoGehwnpcsYoLSMAarhkCsExCQ8woFLKThwKQX3Hj1WvtfduQle6+MC33a2vB2aqJ65eD8bG/+6jV8vJKNUUfY1amqkB992tvDrYIvn3Kz5B5MOYoDSMgao+q2oVI6TtzLwx6UUHLycivS8YuV7RvpSDGxvhym9W8LdyUJ7RRJRrXiQ9RhbTt7FT7H3lc/ZA8p+F/RxtcYLHewwoJ0NLEwMtFglqYsBSssYoOqf/KJSHLn2EAcupeDw1TTkFpUq3zP756/OQR3s0NfNGsYGMi1WSkTaIFcIOJ/4CPsvpuDA5RTlTSNA2XipHi6WeKGDHQZ1sIOtGcdA1lUMUFrGAKX7CkvkuHg/G3FJWYi+lYG/bqaj+J/bmQHA2tQQfh1s4dfBDj1cmvJBpESkJAgCriTnYv+lFPxxKQVXU3JV3nd3skBfN2u4N7eAezMLNGnEs1N1BQOUljFA6RaFQsDt9DycT8zC3/eyEJeUhavJucpxDU+0aGqi/AvSw8kCUo5rIiI13E3Px4FLKdh/KUVlHrgnWjQ1gbuThXJp72AGQz2eydYGBigtY4CquwRBQGpOkfLsUlxSWWh6Muvwv1k1NoS7kwU8mltgQDsbtLE15SMdiOiZpOYU4s8rqYi5+whxSVm4nZ5fro2+TIL29mZlgaq5BTo3s0ALSxPOhF4LGlyAWr16Nb744gukpKSgS5cuWLlyJby8vCptv3v3bsyfPx93796Fq6srli1bhiFDhijfFwQBCxcuxIYNG5CVlYVevXph7dq1cHV1VaseBijtKpUrcD/rMRIyCpCQWYCE9HwkZBYgMaMAiZkFeFwiL7eNkb4UnRzN//kLsAncm1vAwdyIgYmINCqroBh/38tG3L/OgGfmF5drJ5NK4GhhjBZNTcoWy0Zo3tQEzk0bobmlCcde1pAGFaB27tyJiRMnYt26dfD29kZYWBh2796Na9euwcbGplz7kydP4rnnnkNISAhefPFF/PDDD1i2bBliY2PRsWNHAMCyZcsQEhKCLVu2oGXLlpg/fz7i4+Nx+fJlGBk9ffAfA5RmCIKA3KJSZOQVIyOvCBn5xcp/p+YWlgWmjALcz3oMuaLy/1tLJUAr68bKv+66NLNAGztTjmMiIq0TBAFJmY9xPqnsDNXfSVm49CBH+UiZytiYGv4TrhrBwcIYTRsZoGljAzRtZPjPfw1gYWLAKVWeokEFKG9vb3Tv3h2rVq0CACgUCjg5OeGdd97B3Llzy7V/5ZVXkJ+fj19//VW5rkePHnB3d8e6desgCAIcHBzw7rvvYs6cOQCA7Oxs2NraIiIiAmPGjHlqTQxQFZMrBOQVlaKguBT5RaXIK5Ijv6js3/nF/3td8M97jwqKkZ5XhIy8YmTmFyMjv0g5OeXTGOpJ0dyy7C+15paN4Gxl8s/rRnC0MOZkd0SkMxQKQflHYmJGARIy85V/MCZk5CufdvA0UgnQxKQsWFk2MkDTxoZo2sgAjQ310MhQD40N9WBiIFO+LltkaGSgp1xX3393ivn+1ulZvoqLixETE4N58+Yp10mlUvj6+iI6OrrCbaKjoxEcHKyyzs/PD5GRkQCAO3fuICUlBb6+vsr3zc3N4e3tjejoaLUClKbkPi7G4Yt3IQgoW1D214oAAAIgQPjX+v+9hiBAIQAKAAqhbBvFk3XCP9v881quEKBQCChVCJArFP/8959F+N+/n7xfXPpkEVCs8vqfRa5AiVyBolK52uGnMnr/LI0N9dDExACWjQ1gaVL2i8C6sSGaNTFGc0sTNG9qAuvGhpUP8lY8BsqfISciqpOkAOyNAftmRujRzAiApcr7WQXFSMp8jMRHBUjKLEBqTiEy84uRmV+CzPyys/XZj0sAASjIL0RBPpBUzVr0pBIY6EmhL5PCQCaFgd6TRQYDPSkMpVIY6EmgryeFoZ4UMqkEelIJZNKyf8ukEsgkkv+tl5X9VyqVQiaRQCoBpFIJJBJA+uS1RALJk3+jLAhCIoGZsT6Gdm0FaGmohU4HqPT0dMjlctja2qqst7W1xdWrVyvcJiUlpcL2KSkpyvefrKuszX8VFRWhqOh/E6jl5OSIOxA1pT/Kwku/dddI3xolAaD/z1JTHv+zEBE1cBb/LJ2qalTTU08JAEr/WbSp0wPAoJFWdl2/z8XVkpCQEJibmysXJycnjezHhIMEiYiI6gSdPgNlZWUFmUyG1NRUlfWpqamws7OrcBs7O7sq2z/5b2pqKuzt7VXauLu7V9jnvHnzVC4L5uTkaCRE2Ta1BD58UOP9EhER6SR9E63tWqcDlIGBAbp164aoqCgEBAQAKBtEHhUVhbfffrvCbXx8fBAVFYVZs2Yp1x08eBA+Pj4AgJYtW8LOzg5RUVHKwJSTk4PTp09j6tSpFfZpaGgIQ0PDGjuuSkkkWjtVSURERP+j0wEKAIKDgxEYGAhPT094eXkhLCwM+fn5CAoKAgBMnDgRjo6OCAkJAQDMnDkTffv2xYoVKzB06FDs2LED586dw7fffgsAkEgkmDVrFj777DO4uroqpzFwcHBQhjQiIiJq2HQ+QL3yyit4+PAhFixYgJSUFLi7u2P//v3KQeCJiYmQSv831Ktnz5744Ycf8PHHH+PDDz+Eq6srIiMjlXNAAcD777+P/Px8vPHGG8jKykLv3r2xf/9+teaAAgC5vGyixnv37nEaAyIiIh3x5CawJ9/jVdH5eaDqorNnz1Y5EzoRERHVXWfOnEH37lXf9c4ApQGPHj2CpaUlkpKSeAaKiIhIRzy5CSwzMxNNmjSpsq3OX8Kri2SysukGzMzMGKCIiIh0zJPv8apwHigiIiIikRigiIiIiERigCIiIiISiQGKiIiISCQGKCIiIiKRGKCIiIiIRGKAIiIiIhKJAYqIiIhIJAYoIiIiIpEYoIiIiIhEYoAiIiIiEokBioiIiEgkBigiIiIikRigiIiIiERigCIiIiISiQGKiIiISCQGKCIiIiKRGKCIiIiIRGKAIiIiIhKJAYqIiIhIJAYoIiIiIpEYoIiIiIhEYoAiIiIiEokBioiIiEgkBigiIiIikRigiIiIiETSWIC6ffu2promIiIi0iqNBajWrVvj+eefx3fffYfCwkJN7YaIiIio1mksQMXGxqJz584IDg6GnZ0d3nzzTZw5c0ZTuyMiIiKqNRoLUO7u7vj666/x4MEDhIeHIzk5Gb1790bHjh0RGhqKhw8famrXRERERBql8UHkenp6GDFiBHbv3o1ly5bh5s2bmDNnDpycnDBx4kQkJydrugQiIiKiGqXxAHXu3DlMmzYN9vb2CA0NxZw5c3Dr1i0cPHgQDx48wLBhwzRdAhEREVGN0tNUx6Ghodi8eTOuXbuGIUOGYOvWrRgyZAik0rLM1rJlS0RERMDZ2VlTJRARERFphMYC1Nq1azF58mRMmjQJ9vb2FbaxsbHBpk2bNFUCERERkUZIBEEQtF1EfZOTkwNzc3NkZ2fDzMxM2+UQERGRGsR8f2tsDNTmzZuxe/fucut3796NLVu2aGq3RERERBqnsQAVEhICKyurcuttbGzw+eefa2q3RERERBqnsQCVmJiIli1bllvfokULJCYmamq3RERERBqnsQBlY2ODCxculFv/999/o2nTpprabZWWLl0KiUSCWbNmVdkuLCwMbdq0gbGxMZycnDB79mw+joaIiIiUNHYX3tixYzFjxgyYmpriueeeAwAcPXoUM2fOxJgxYzS120qdPXsW69evR+fOnats98MPP2Du3LkIDw9Hz549cf36dUyaNAkSiQShoaG1VC0RERHVZRoLUJ9++inu3r2LAQMGQE+vbDcKhQITJ06s9TFQeXl5GD9+PDZs2IDPPvusyrYnT55Er169MG7cOACAs7Mzxo4di9OnT9dGqURERKQDNHYJz8DAADt37sTVq1fx/fffY8+ePbh16xbCw8NhYGCgqd1WaPr06Rg6dCh8fX2f2rZnz56IiYlRPvj49u3b2LdvH4YMGVLpNkVFRcjJyVFZiIiIqP7S2BmoJ9zc3ODm5qbp3VRqx44diI2NxdmzZ9VqP27cOKSnp6N3794QBAGlpaV466238OGHH1a6TUhICBYvXlxTJRMREVEdp7EAJZfLERERgaioKKSlpUGhUKi8f+jQIbX6KSkpQUpKCgoKCmBtbQ1LS0u1a0hKSsLMmTNx8OBBGBkZqbXNkSNH8Pnnn2PNmjXw9vbGzZs3MXPmTHz66aeYP39+hdvMmzcPwcHBytc5OTlwcnJSu04iIiLSLRqbifztt99GREQEhg4dCnt7e0gkEpX3v/rqq0q3zc3NxXfffYcdO3bgzJkzKC4uhiAIkEgkaNasGQYNGoQ33ngD3bt3r7KGyMhIDB8+HDKZTLlOLpdDIpFAKpWiqKhI5T0A6NOnD3r06IEvvvhCue67777DG2+8gby8POWz/KrCmciJiIh0j5jvb42dgdqxYwd27dpV5dihioSGhmLJkiVo1aoV/P398eGHH8LBwQHGxsbIzMzExYsX8ddff2HQoEHw9vbGypUr4erqWmFfAwYMQHx8vMq6oKAgtG3bFh988EG58AQABQUF5ULSk3Z86g0REREBGgxQBgYGaN26tejtzp49i2PHjqFDhw4Vvu/l5YXJkydj7dq1iIiIwF9//VVpgDI1NUXHjh1V1jVq1AhNmzZVrp84cSIcHR0REhICAPD390doaCg8PDyUl/Dmz58Pf3//CgMXERERNTwaC1Dvvvsuvv76a6xatarc5buqbN++Xa12RkZGeOutt6pbnlJiYqLKGaePP/4YEokEH3/8Me7fvw9ra2v4+/tjyZIlz7wvIiIiqh80NgZq+PDhOHz4MCwtLdGhQwfo6+urvL9nz56n9rF161Z4enqiffv2KusLCwuxa9cuTJw4sUZrrikcA0VERKR7xHx/ayxABQUFVfn+5s2bn9qHVCpFo0aNEBERgZdfflm5PjU1FQ4ODpDL5c9cpyYwQBEREemeOjGIXJ2ApI7FixdjwoQJiI+Px6JFi2qkTyIiIqJnobGZyAGgtLQUf/75J9avX4/c3FwAwIMHD5CXl6d2H6+++ioOHTqE9evXY+TIkXj8+LGmyiUiIiJSi8YCVEJCAjp16oRhw4Zh+vTpePjwIQBg2bJlmDNnjlp9PBl83qNHD5w+fRo3b95Ez549cffuXU2VTURERPRUGgtQM2fOhKenJx49egRjY2Pl+uHDhyMqKkqtPv49PKt58+Y4efIknJ2dMXDgwBqvl4iIiEhdGhsD9ddff+HkyZPlHhzs7OyM+/fvq9XHwoUL0bhxY+VrExMT7N27FwsXLsSxY8dqtF4iIiIidWksQCkUigrvkrt37x5MTU3V6mPhwoUVrueDe4mIiEibNBagBg0ahLCwMHz77bcAysYz5eXlYeHChU99vMsvv/zy1P4lEgn8/f1rpFYiIiIiMTQ2D9S9e/fg5+cHQRBw48YNeHp64saNG7CyssKxY8dgY2NT6bb/fRadRCIp9xw6iUTS4OaBEgQBj0vq5jETERHVNmN9mainnTxNnZhIEyibxmDHjh24cOEC8vLy0LVrV4wfP15lULk6TE1N8ffff8PFxUVDldYsTQWoguJStF9woMb6IyIi0mWXP/GDiUHNXUyrExNpAoCenh5effVVTe6CiIiIqNZpLEBt3bq1yvfr6nPs6jJjfRkuf+Kn7TKIiIjqBGN9mdb2rbEANXPmTJXXJSUlKCgogIGBAUxMTBigqkEikdToqUoiIiKqHo1NpPno0SOVJS8vD9euXUPv3r2xfft2UX1JJJIaHSRGRERE9Cw0Ooi8IufOncOrr76Kq1evVtqmSZMmKoEpKysLZmZm5e7Oy8zM1Fidz0JTg8iJiIhIc+rMIPIKd6inhwcPHlTZJiwsrHaKISIiIqoGjQWo/06GKQgCkpOTsWrVKvTq1avKbQMDAzVVFhEREdEz01iACggIUHktkUhgbW2N/v37Y8WKFaL6ys3NVZlIUyqVqjwjj4iIiKg2afRZeNUVFxeHDz/8EPv27QMAODg4oKCgQPm+RCJBdHQ0unfv/sx1EhEREYlVJ++JX7lyJXr37q2ybtu2bXB0dIQgCAgPD8c333yDbdu2aalCIiIiasg0FqCCg4PVbhsaGqry+uTJk3j77bdV1vXo0UP5KBdjY2OMHj362YskIiIiqgaNBajz58/j/PnzKCkpQZs2bQAA169fh0wmQ9euXZXtKprfKSEhAdbW1srXn3zyCaysrJSv7e3tkZqaqqnSiYiIiKqksQDl7+8PU1NTbNmyBU2aNAFQNrlmUFAQ+vTpg3fffbfSbY2MjJCQkIBmzZoBAGbPnq3yflJSEkxMTDRVOhEREVGVNDYT+YoVKxASEqIMT0DZBJmfffbZU+/C8/DwQGRkZKXv79mzBx4eHjVVKhEREZEoGjsDlZOTg4cPH5Zb//DhQ+Tm5la57bRp0zBmzBg4Oztj6tSpyhnI5XI51qxZg5UrV+KHH37QSN1ERERET6OxADV8+HAEBQVhxYoV8PLyAgCcPn0a7733HkaMGFHlti+//DKCg4Pxzjvv4MMPP1QOHr99+zby8vIQHByMkSNHaqp0IiIioipp7Fl4BQUFmDNnDsLDw1FSUgKg7DEuU6ZMwRdffIFGjRo9tY9Tp05h+/btuHHjBgDA1dUVY8eORY8ePTRRco3hs/CIiIh0j5jvb40/TDg/Px+3bt0CALRq1eqpwSkxMRHNmzdXu//79+/D0dHxmWqsaQxQREREukfM97fGBpE/kZycjOTkZLi6uqJRo0Z4Wl7r3r073nzzTZw9e7bSNtnZ2diwYQM6duyIn376qaZLJiIiIqqSxsZAZWRkYPTo0Th8+DAkEglu3LgBFxcXTJkyBU2aNKn0TrzLly9jyZIlGDhwIIyMjNCtWzc4ODjAyMgIjx49wuXLl3Hp0iV07doVy5cvx5AhQzR1CEREREQV0tgZqNmzZ0NfXx+JiYkqcza98sor2L9/f6XbNW3aFKGhoUhOTsaqVavg6uqK9PR05Tio8ePHIyYmBtHR0QxPREREpBUaOwP1xx9/4MCBA8rJMJ9wdXVFQkLCU7c3NjbGyJEjebcdERER1TkaOwOVn59f4WzhmZmZMDQ01NRuiYiIiDROYwGqT58+2Lp1q/K1RCKBQqHA8uXL8fzzz2tqt0REREQap7FLeMuXL8eAAQNw7tw5FBcX4/3338elS5eQmZmJEydOaGq3RERERBqnsTNQHTt2xPXr19G7d28MGzYM+fn5GDFiBM6fP49WrVppardEREREGqeRAFVSUoIBAwYgLS0NH330EXbt2oV9+/bhs88+g729vSZ2qZalS5dCIpFg1qxZVbbLysrC9OnTYW9vD0NDQ7i5uWHfvn21UyQRERHVeRq5hKevr48LFy5ooutqO3v2LNavX4/OnTtX2a64uBgDBw6EjY0NfvzxRzg6OiIhIQEWFha1UygRERHVeRq7hPfqq69i06ZNmupelLy8PIwfPx4bNmxAkyZNqmwbHh6OzMxMREZGolevXnB2dkbfvn3RpUuXWqqWiIiI6jqNDSIvLS1FeHg4/vzzT3Tr1q3cM/BCQ0M1tetypk+fjqFDh8LX1xefffZZlW1/+eUX+Pj4YPr06fj5559hbW2NcePG4YMPPoBMJqtwm6KiIhQVFSlf5+Tk1Gj9REREVLfUeIC6ffs2nJ2dcfHiRXTt2hUAcP36dZU2EomkpndbqR07diA2NrbKZ+v92+3bt3Ho0CGMHz8e+/btw82bNzFt2jSUlJRg4cKFFW4TEhKCxYsX12TZREREVIdJhKc93VckmUyG5ORk2NjYACh7dMs333wDW1vbmtyNWpKSkuDp6YmDBw8qxz7169cP7u7uCAsLq3AbNzc3FBYW4s6dO8ozTqGhofjiiy+QnJxc4TYVnYFycnJS62nOREREVDfk5OTA3Nxcre/vGj8D9d889vvvvyM/P7+md6OWmJgYpKWlKc+EAYBcLsexY8ewatUqFBUVlbssZ29vD319fZX17dq1Q0pKCoqLi2FgYFBuP4aGhpxdnYiIqAHR2BioJ2r4BJcoAwYMQHx8vMq6oKAgtG3bttIxTb169cIPP/wAhUIBqbRsjP3169dhb29fYXgiIiKihqfG78KTSCTlxjjV5pinfzM1NUXHjh1VlkaNGqFp06bo2LEjAGDixImYN2+ecpupU6ciMzMTM2fOxPXr1/Hbb7/h888/x/Tp07VyDERERFT3aOQS3qRJk5SXtAoLC/HWW2+Vuwtvz549Nb3raklMTFSeaQIAJycnHDhwALNnz0bnzp3h6OiImTNn4oMPPtBilURERFSX1Pgg8qCgILXabd68uSZ3W6eIGYRGREREdYNWB5HX52BEREREBGhwJnIiIiKi+ooBioiIiEgkBigiIiIikRigiIiIiERigCIiIiISiQGKiIiISCQGKCIiIiKRGKCIiIiIRGKAIiIiIhKJAYqIiIhIJAYoIiIiIpEYoIiIiIhEYoAiIiIiEokBioiIiEgkBigiIiIikRigiIiIiERigCIiIiISiQGKiIiISCQGKCIiIiKRGKCIiIiIRGKAIiIiIhKJAYqIiIhIJAYoIiIiIpH0tF1AfSSXywEA9+7dg5mZmZarISIiInXk5OQA+N/3eJUEHXb06FHhxRdfFOzt7QUAwt69e5+6TWFhofDhhx8KzZs3FwwMDIQWLVoImzZtUr6/efNmAYDKYmhoKKquM2fOlOuDCxcuXLhw4aIby5kzZ576Xa/TZ6Dy8/PRpUsXTJ48GSNGjFBrm9GjRyM1NRWbNm1C69atkZycDIVCodLGzMwM165dU76WSCSi6mrdujUAICkpiWegiIiIdEROTg6cnJyU3+NV0ekANXjwYAwePFjt9vv378fRo0dx+/ZtWFpaAgCcnZ3LtZNIJLCzs6t2XTKZDEBZEGOAIiIi0i1Pvser0qAGkf/yyy/w9PTE8uXL4ejoCDc3N8yZMwePHz9WaZeXl4cWLVrAyckJw4YNw6VLl7RUMREREdVFOn0GSqzbt2/j+PHjMDIywt69e5Geno5p06YhIyMDmzdvBgC0adMG4eHh6Ny5M7Kzs/Hll1+iZ8+euHTpEpo1a1Zhv0VFRSgqKlK+fjIIjYiIiOqnBnUGSqFQQCKR4Pvvv4eXlxeGDBmC0NBQbNmyRXkWysfHBxMnToS7uzv69u2LPXv2wNraGuvXr6+035CQEJibmysXJyen2jokIiIi0oIGFaDs7e3h6OgIc3Nz5bp27dpBEATcu3evwm309fXh4eGBmzdvVtrvvHnzkJ2drVySkpJqvHYiIiKqOxpUgOrVqxcePHiAvLw85brr169DKpVWenlOLpcjPj4e9vb2lfZraGioHDDOgeNERET1n04HqLy8PMTFxSEuLg4AcOfOHcTFxSExMRFA2ZmhiRMnKtuPGzcOTZs2RVBQEC5fvoxjx47hvffew+TJk2FsbAwA+OSTT/DHH3/g9u3biI2NxauvvoqEhAS89tprtX58REREVDfp9CDyc+fO4fnnn1e+Dg4OBgAEBgYiIiICycnJyjAFAI0bN8bBgwfxzjvvwNPTE02bNsXo0aPx2WefKds8evQIr7/+OlJSUtCkSRN069YNJ0+eRPv27WvvwIiIiKhOkwiCIGi7iPomJycH5ubmyM7O5uU8IiIiHSHm+1unL+ERERERaQMDFBEREZFIDFBEREREIjFAEREREYnEAEVEREQkEgMUERERkUgMUEREREQiMUARERERicQARURERCQSAxQRERGRSAxQRERERCIxQBERERGJxABFREREJBIDFBEREZFIDFBEREREIjFAEREREYnEAEVEREQkEgMUERERkUgMUEREREQiMUARERERicQARURERCQSAxQRERGRSAxQRERERCIxQBERERGJxABFREREJJJOB6hjx47B398fDg4OkEgkiIyMfOo2RUVF+Oijj9CiRQsYGhrC2dkZ4eHhKm12796Ntm3bwsjICJ06dcK+ffs0dARERESki3Q6QOXn56NLly5YvXq12tuMHj0aUVFR2LRpE65du4bt27ejTZs2yvdPnjyJsWPHYsqUKTh//jwCAgIQEBCAixcvauIQiIiISAdJBEEQtF1ETZBIJNi7dy8CAgIqbbN//36MGTMGt2/fhqWlZYVtXnnlFeTn5+PXX39VruvRowfc3d2xbt06tWrJycmBubk5srOzYWZmJuo4iIiISDvEfH/r9BkosX755Rd4enpi+fLlcHR0hJubG+bMmYPHjx8r20RHR8PX11dlOz8/P0RHR1fab1FREXJyclQWIiIiqr/0tF1Abbp9+zaOHz8OIyMj7N27F+np6Zg2bRoyMjKwefNmAEBKSgpsbW1VtrO1tUVKSkql/YaEhGDx4sUarZ2IiIjqjgZ1BkqhUEAikeD777+Hl5cXhgwZgtDQUGzZskXlLJRY8+bNQ3Z2tnJJSkqqwaqJiIiormlQZ6Ds7e3h6OgIc3Nz5bp27dpBEATcu3cPrq6usLOzQ2pqqsp2qampsLOzq7RfQ0NDGBoaaqxuIiIiqlsa1BmoXr164cGDB8jLy1Ouu379OqRSKZo1awYA8PHxQVRUlMp2Bw8ehI+PT63WSkRERHVXtQPUrVu38PHHH2Ps2LFIS0sDAPz++++4dOlSjRX3NHl5eYiLi0NcXBwA4M6dO4iLi0NiYiKAsktrEydOVLYfN24cmjZtiqCgIFy+fBnHjh3De++9h8mTJ8PY2BgAMHPmTOzfvx8rVqzA1atXsWjRIpw7dw5vv/12rR0XERER1W3VClBHjx5Fp06dcPr0aezZs0d5Rufvv//GwoULa7TAqpw7dw4eHh7w8PAAAAQHB8PDwwMLFiwAACQnJyvDFAA0btwYBw8eRFZWFjw9PTF+/Hj4+/vjm2++Ubbp2bMnfvjhB3z77bfo0qULfvzxR0RGRqJjx461dlxERERUt1VrHigfHx+MGjUKwcHBMDU1xd9//w0XFxecOXMGI0aMwL179zRRq87gPFBERES6R+PzQMXHx2P48OHl1tvY2CA9Pb06XRIRERHpjGrdhWdhYYHk5GS0bNlSZf358+fh6Oj41O2vXLmCHTt24K+//kJCQgIKCgpgbW0NDw8P+Pn54eWXX+ZdbURERFRnVesM1JgxY/DBBx8gJSUFEokECoUCJ06cwJw5c1QGbf9XbGwsfH194eHhgePHj8Pb2xuzZs3Cp59+ildffRWCIOCjjz6Cg4MDli1bhqKiomofGBEREZGmVGsMVHFxMaZPn46IiAjI5XLo6elBLpdj3LhxiIiIgEwmq3C7li1b4r333sO4ceNgYWFRaf/R0dH4+uuv0blzZ3z44Ydiy9M6joEiIiLSPWK+v5/pYcJJSUmIj49HXl4ePDw84OrqWmX7kpIS6Ovrq92/2PZ1BQMUERGR7hHz/f1MM5E7OTnByckJcrkc8fHxePToEZo0aVJpe7FhSBfDExEREdV/1QpQs2bNQqdOnTBlyhTI5XL07dsXJ0+ehImJCX799Vf069evwu3+Pd/S08yYMaM6pRERERFpXLUu4TVr1gyRkZHw9PREZGQkpk2bhiNHjmDbtm04dOgQTpw4UeF2/71r7+HDhygoKFCOh8rKyoKJiQlsbGxw+/Zt8UdTR/ASHhERke7R+DxQ6enpyofr7tu3D6NHj4abmxsmT56M+Pj4Sre7c+eOclmyZAnc3d1x5coVZGZmIjMzE1euXEHXrl3x6aefVqcsIiIiolpRrQBla2uLy5cvQy6XY//+/Rg4cCAAoKCgoNI78P5r/vz5WLlyJdq0aaNc16ZNG3z11Vf4+OOPq1MWERERUa2o1hiooKAgjB49Gvb29pBIJPD19QUAnD59Gm3btlWrj+TkZJSWlpZbL5fLkZqaWp2yiIiIiGpFtQLUokWL0LFjRyQlJWHUqFHKWcNlMhnmzp2rVh8DBgzAm2++iY0bN6Jr164AgJiYGEydOlUZyIiIiIjqomeaB+pZPHz4EIGBgdi/f79yuoLS0lL4+fkhIiICNjY22iirRmhqELkgCHhcIq+x/oiIiHSZsb4MEomkxvqrlXmg8vPzcfToUSQmJqK4uFjlPXWmILC2tsa+fftw/fp1XL16FQDQtm1buLm5Vbekeu9xiRztFxzQdhlERER1wuVP/GBi8ExTWlZbtfZ6/vx5DBkyBAUFBcjPz4elpSXS09OVUxCImcPJzc2NoYmIiIh0SrUC1OzZs+Hv749169bB3Nwcp06dgr6+Pl599VXMnDlT7X7u3buHX375pcKzWKGhodUprV4z1pfh8id+2i6DiIioTjDWV+/Of02oVoCKi4vD+vXrIZVKIZPJUFRUBBcXFyxfvhyBgYEYMWLEU/uIiorCSy+9BBcXF1y9ehUdO3bE3bt3IQiCclA5qZJIJFo7VUlERET/U615oPT19SGVlm1qY2ODxMREAIC5uTmSkpLU6mPevHmYM2cO4uPjYWRkhJ9++glJSUno27cvRo0aVZ2yiIiIiGpFtQKUh4cHzp49CwDo27cvFixYgO+//x6zZs1Cx44d1erjypUrmDhxIgBAT08Pjx8/RuPGjfHJJ59g2bJl1SmLiIiIqFZUK0B9/vnnsLe3BwAsWbIETZo0wdSpU/Hw4UN8++23avXRqFEj5bgne3t73Lp1S/leenp6dcoiIiIiqhXVGlDj6emp/LeNjQ32798vuo8ePXrg+PHjaNeuHYYMGYJ3330X8fHx2LNnD3r06FGdsoiIiIhqhdZGJIeGhiIvLw8AsHjxYuTl5WHnzp1wdXXlHXhERERUp1UrQKWmpmLOnDmIiopCWloa/juZuVxe9WzZcrkc9+7dQ+fOnQGUXc5bt25ddUohIiIiqnXVClCTJk1CYmIi5s+fr3ygsBgymQyDBg3ClStXYGFhUZ0SiIiIiLSmWgHq+PHj+Ouvv+Du7l7tHXfs2BG3b99Gy5Ytq90HERERkTZU6y48JyencpftxPrss88wZ84c/Prrr0hOTkZOTo7Koo5jx47B398fDg4OkEgkiIyMrLL9kSNHIJFIyi0pKSnKNosWLSr3ftu2bZ/lUImIiKieqdYZqLCwMMydOxfr16+Hs7NztXY8ZMgQAMBLL72kcglQEARIJJKnjqMCyh5o3KVLF0yePFmt2c+fuHbtmspTlm1sbFTe79ChA/7880/laz09zv5NRERE/6N2MmjSpIlK0MnPz0erVq1gYmICfX19lbaZmZlP7e/w4cMiyqzY4MGDMXjwYNHb2djYVDn2Sk9PD3Z2ds9QGREREdVnageosLCwZ95ZYmIimjdvDqBsBvOnuX//PhwdHZ95v//l7u6OoqIidOzYEYsWLUKvXr1U3r9x4wYcHBxgZGQEHx8fhISEKOuuSFFREYqKipSv1b0ESURERLpJ7QAVGBgIuVyOL7/8Er/88guKi4sxYMAALFy4EMbGxmr10b17dwQEBOC1115D9+7dK2yTnZ2NXbt24euvv8Ybb7yBGTNmqFviU9nb22PdunXw9PREUVERNm7ciH79+uH06dPKBxh7e3sjIiICbdq0QXJyMhYvXow+ffrg4sWLMDU1rbDfkJAQLF68uMbqJCIiorpNIogYDf7pp59i0aJF8PX1hbGxMQ4cOICxY8ciPDxcre0zMjKwZMkShIeHw8jICN26dVOe6Xn06BEuX76MS5cuoWvXrpg/f75ynJRaByKRYO/evQgICFB7G6DsTFjz5s2xbdu2Ct/PyspCixYtEBoaiilTplTYpqIzUE5OTsjOzlYZa0VERER1V05ODszNzdX6/hZ1F97WrVuxZs0aHDhwAJGRkfi///s/fP/991AoFGpt37RpU4SGhiI5ORmrVq2Cq6sr0tPTcePGDQDA+PHjERMTg+joaFHh6Vl4eXnh5s2blb5vYWEBNze3KtsYGhrCzMxMZSEiIqL6S9TtZYmJiSrBxtfXFxKJBA8ePECzZs3U7sfY2BgjR47EyJEjxexeI+Li4pQPRq5IXl4ebt26hQkTJtRiVURERFSXiQpQpaWlMDIyUlmnr6+PkpKSGi1KXXl5eSpnhu7cuYO4uDhYWlqiefPmmDdvHu7fv4+tW7cCKBsI37JlS3To0AGFhYXYuHEjDh06hD/++EPZx5w5c+Dv748WLVrgwYMHWLhwIWQyGcaOHVvrx0dERER1k6gAJQgCJk2aBENDQ+W6wsJCvPXWW2jUqJFy3Z49e2quwiqcO3cOzz//vPJ1cHAwgLIB7xEREUhOTkZiYqLy/eLiYrz77ru4f/8+TExM0LlzZ/z5558qfdy7dw9jx45FRkYGrK2t0bt3b5w6dQrW1ta1ckxERERU94kaRB4UFKRWu82bN1e7oPpAzCA0IiIiqhvEfH+LOgPV0IMREREREVDNZ+ERERERNWQMUEREREQiMUARERERicQARURERCQSAxQRERGRSAxQRERERCIxQBERERGJxABFREREJBIDFBEREZFIDFBEREREIjFAEREREYnEAEVEREQkEgMUERERkUgMUEREREQiMUARERERicQARURERCQSAxQRERGRSAxQRERERCIxQBERERGJxABFREREJBIDFBEREZFIDFBEREREIjFAEREREYmk0wHq2LFj8Pf3h4ODAyQSCSIjI6tsf+TIEUgkknJLSkqKSrvVq1fD2dkZRkZG8Pb2xpkzZzR4FERERKRrdDpA5efno0uXLli9erWo7a5du4bk5GTlYmNjo3xv586dCA4OxsKFCxEbG4suXbrAz88PaWlpNV0+ERER6Sg9bRfwLAYPHozBgweL3s7GxgYWFhYVvhcaGorXX38dQUFBAIB169bht99+Q3h4OObOnfss5RIREVE9odNnoKrL3d0d9vb2GDhwIE6cOKFcX1xcjJiYGPj6+irXSaVS+Pr6Ijo6WhulEhERUR3UoAKUvb091q1bh59++gk//fQTnJyc0K9fP8TGxgIA0tPTIZfLYWtrq7Kdra1tuXFS/1ZUVIScnByVhYiIiOovnb6EJ1abNm3Qpk0b5euePXvi1q1b+Oqrr7Bt27Zq9xsSEoLFixfXRIlERESkAxrUGaiKeHl54ebNmwAAKysryGQypKamqrRJTU2FnZ1dpX3MmzcP2dnZyiUpKUmjNRMREZF2NfgAFRcXB3t7ewCAgYEBunXrhqioKOX7CoUCUVFR8PHxqbQPQ0NDmJmZqSxERERUf+n0Jby8vDzl2SMAuHPnDuLi4mBpaYnmzZtj3rx5uH//PrZu3QoACAsLQ8uWLdGhQwcUFhZi48aNOHToEP744w9lH8HBwQgMDISnpye8vLwQFhaG/Px85V15RERERDodoM6dO4fnn39e+To4OBgAEBgYiIiICCQnJyMxMVH5fnFxMd59913cv38fJiYm6Ny5M/7880+VPl555RU8fPgQCxYsQEpKCtzd3bF///5yA8uJiIio4ZIIgiBou4j6JicnB+bm5sjOzublPCIiIh0h5vu7wY+BIiIiIhKLAYqIiIhIJAYoIiIiIpEYoIiIiIhE0um78OqqJ+Py+UgXIiIi3fHke1ud++sYoDQgNzcXAODk5KTlSoiIiEis3NxcmJubV9mG0xhogEKhwIMHD2BqagqJRFKjfefk5MDJyQlJSUn1eooEHmf90RCOEeBx1jc8zvpDzDEKgoDc3Fw4ODhAKq16lBPPQGmAVCpFs2bNNLqPhvLIGB5n/dEQjhHgcdY3PM76Q91jfNqZpyc4iJyIiIhIJAYoIiIiIpEYoHSMoaEhFi5cCENDQ22XolE8zvqjIRwjwOOsb3ic9YemjpGDyImIiIhE4hkoIiIiIpEYoIiIiIhEYoAiIiIiEokBioiIiEgkBqg6aPXq1XB2doaRkRG8vb1x5syZKtvv3r0bbdu2hZGRETp16oR9+/bVUqXPRsxxRkREQCKRqCxGRka1WK14x44dg7+/PxwcHCCRSBAZGfnUbY4cOYKuXbvC0NAQrVu3RkREhMbrfFZij/PIkSPlPkuJRIKUlJTaKbgaQkJC0L17d5iamsLGxgYBAQG4du3aU7fTtZ/N6hynLv5srl27Fp07d1ZOrOjj44Pff/+9ym107bMExB+nLn6W/7V06VJIJBLMmjWrynY18XkyQNUxO3fuRHBwMBYuXIjY2Fh06dIFfn5+SEtLq7D9yZMnMXbsWEyZMgXnz59HQEAAAgICcPHixVquXByxxwmUzSKbnJysXBISEmqxYvHy8/PRpUsXrF69Wq32d+7cwdChQ/H8888jLi4Os2bNwmuvvYYDBw5ouNJnI/Y4n7h27ZrK52ljY6OhCp/d0aNHMX36dJw6dQoHDx5ESUkJBg0ahPz8/Eq30cWfzeocJ6B7P5vNmjXD0qVLERMTg3PnzqF///4YNmwYLl26VGF7XfwsAfHHCejeZ/lvZ8+exfr169G5c+cq29XY5ylQneLl5SVMnz5d+VoulwsODg5CSEhIhe1Hjx4tDB06VGWdt7e38Oabb2q0zmcl9jg3b94smJub11J1NQ+AsHfv3irbvP/++0KHDh1U1r3yyiuCn5+fBiurWeoc5+HDhwUAwqNHj2qlJk1IS0sTAAhHjx6ttI2u/mz+mzrHqes/m080adJE2LhxY4Xv1YfP8omqjlOXP8vc3FzB1dVVOHjwoNC3b19h5syZlbatqc+TZ6DqkOLiYsTExMDX11e5TiqVwtfXF9HR0RVuEx0drdIeAPz8/CptXxdU5zgBIC8vDy1atICTk9NT/4rSRbr4WT4Ld3d32NvbY+DAgThx4oS2yxElOzsbAGBpaVlpm/rweapznIBu/2zK5XLs2LED+fn58PHxqbBNffgs1TlOQHc/y+nTp2Po0KHlPqeK1NTnyQBVh6Snp0Mul8PW1lZlva2tbaXjQ1JSUkS1rwuqc5xt2rRBeHg4fv75Z3z33XdQKBTo2bMn7t27Vxsl14rKPsucnBw8fvxYS1XVPHt7e6xbtw4//fQTfvrpJzg5OaFfv36IjY3VdmlqUSgUmDVrFnr16oWOHTtW2k4Xfzb/Td3j1NWfzfj4eDRu3BiGhoZ46623sHfvXrRv377Ctrr8WYo5Tl39LHfs2IHY2FiEhISo1b6mPk89Ua2JtMTHx0flr6aePXuiXbt2WL9+PT799FMtVkZitWnTBm3atFG+7tmzJ27duoWvvvoK27Zt02Jl6pk+fTouXryI48ePa7sUjVL3OHX1Z7NNmzaIi4tDdnY2fvzxRwQGBuLo0aOVhgtdJeY4dfGzTEpKwsyZM3Hw4MFaH/DOAFWHWFlZQSaTITU1VWV9amoq7OzsKtzGzs5OVPu6oDrH+V/6+vrw8PDAzZs3NVGiVlT2WZqZmcHY2FhLVdUOLy8vnQgkb7/9Nn799VccO3YMzZo1q7KtLv5sPiHmOP9LV342DQwM0Lp1awBAt27dcPbsWXz99ddYv359uba6/FmKOc7/0oXPMiYmBmlpaejatatynVwux7Fjx7Bq1SoUFRVBJpOpbFNTnycv4dUhBgYG6NatG6KiopTrFAoFoqKiKr1m7ePjo9IeAA4ePFjlNW5tq85x/pdcLkd8fDzs7e01VWat08XPsqbExcXV6c9SEAS8/fbb2Lt3Lw4dOoSWLVs+dRtd/Dyrc5z/pas/mwqFAkVFRRW+p4ufZWWqOs7/0oXPcsCAAYiPj0dcXJxy8fT0xPjx4xEXF1cuPAE1+HmKH+tOmrRjxw7B0NBQiIiIEC5fviy88cYbgoWFhZCSkiIIgiBMmDBBmDt3rrL9iRMnBD09PeHLL78Urly5IixcuFDQ19cX4uPjtXUIahF7nIsXLxYOHDgg3Lp1S4iJiRHGjBkjGBkZCZcuXdLWITxVbm6ucP78eeH8+fMCACE0NFQ4f/68kJCQIAiCIMydO1eYMGGCsv3t27cFExMT4b333hOuXLkirF69WpDJZML+/fu1dQhqEXucX331lRAZGSncuHFDiI+PF2bOnClIpVLhzz//1NYhPNXUqVMFc3Nz4ciRI0JycrJyKSgoULapDz+b1TlOXfzZnDt3rnD06FHhzp07woULF4S5c+cKEolE+OOPPwRBqB+fpSCIP05d/Cwr8t+78DT1eTJA1UErV64UmjdvLhgYGAheXl7CqVOnlO/17dtXCAwMVGm/a9cuwc3NTTAwMBA6dOgg/Pbbb7VccfWIOc5Zs2Yp29ra2gpDhgwRYmNjtVC1+p7crv/f5clxBQYGCn379i23jbu7u2BgYCC4uLgImzdvrvW6xRJ7nMuWLRNatWolGBkZCZaWlkK/fv2EQ4cOaad4NVV0fABUPp/68LNZnePUxZ/NyZMnCy1atBAMDAwEa2trYcCAAcpQIQj147MUBPHHqYufZUX+G6A09XlKBEEQxJ2zIiIiImrYOAaKiIiISCQGKCIiIiKRGKCIiIiIRGKAIiIiIhKJAYqIiIhIJAYoIiIiIpEYoIiIiIhEYoAiIiIirTl27Bj8/f3h4OAAiUSCyMhIje5PLpdj/vz5aNmyJYyNjdGqVSt8+umnEDstJgMUETUIkyZNQkBAgNb2P2HCBHz++edqtR0zZgxWrFih4YqI6ob8/Hx06dIFq1evrpX9LVu2DGvXrsWqVatw5coVLFu2DMuXL8fKlStF9cOZyIlI50kkkirfX7hwIWbPng1BEGBhYVE7Rf3L33//jf79+yMhIQGNGzd+avuLFy/iueeew507d2Bubl4LFRLVDRKJBHv37lX5Y6eoqAgfffQRtm/fjqysLHTs2BHLli1Dv379qrWPF198Eba2tti0aZNy3csvvwxjY2N89913avfDM1BEpPOSk5OVS1hYGMzMzFTWzZkzB+bm5loJTwCwcuVKjBo1Sq3wBAAdO3ZEq1atRP0yJ6qv3n77bURHR2PHjh24cOECRo0ahRdeeAE3btyoVn89e/ZEVFQUrl+/DqDsD5zjx49j8ODBovphgCIinWdnZ6dczM3NIZFIVNY1bty43CW8fv364Z133sGsWbPQpEkT2NraYsOGDcjPz0dQUBBMTU3RunVr/P777yr7unjxIgYPHozGjRvD1tYWEyZMQHp6eqW1yeVy/Pjjj/D391dZv2bNGri6usLIyAi2trYYOXKkyvv+/v7YsWPHs/+PQ6TDEhMTsXnzZuzevRt9+vRBq1atMGfOHPTu3RubN2+uVp9z587FmDFj0LZtW+jr68PDwwOzZs3C+PHjRfXDAEVEDdaWLVtgZWWFM2fO4J133sHUqVMxatQo9OzZE7GxsRg0aBAmTJiAgoICAEBWVhb69+8PDw8PnDt3Dvv370dqaipGjx5d6T4uXLiA7OxseHp6KtedO3cOM2bMwCeffIJr165h//79eO6551S28/LywpkzZ1BUVKSZgyfSAfHx8ZDL5XBzc0Pjxo2Vy9GjR3Hr1i0AwNWrVyGRSKpc5s6dq+xz165d+P777/HDDz8gNjYWW7ZswZdffoktW7aIqk2vRo+UiEiHdOnSBR9//DEAYN68eVi6dCmsrKzw+uuvAwAWLFiAtWvX4sKFC+jRowdWrVoFDw8PlcHg4eHhcHJywvXr1+Hm5lZuHwkJCZDJZLCxsVGuS0xMRKNGjfDiiy/C1NQULVq0gIeHh8p2Dg4OKC4uRkpKClq0aKGJwyeq8/Ly8iCTyRATEwOZTKby3pNL4i4uLrhy5UqV/TRt2lT57/fee095FgoAOnXqhISEBISEhCAwMFDt2higiKjB6ty5s/LfMpkMTZs2RadOnZTrbG1tAQBpaWkAysZKHD58uMKxTLdu3aowQD1+/BiGhoYqA90HDhyIFi1awMXFBS+88AJeeOEFDB8+HCYmJso2xsbGAKA8+0XUEHl4eEAulyMtLQ19+vSpsI2BgQHatm2rdp8FBQWQSlUvwMlkMigUClG1MUARUYOlr6+v8loikaisexJ6nvxizcvLg7+/P5YtW1auL3t7+wr3YWVlhYKCAhQXF8PAwAAAYGpqitjYWBw5cgR//PEHFixYgEWLFuHs2bPKge6ZmZkAAGtr62c7SKI6Li8vDzdv3lS+vnPnDuLi4mBpaQk3NzeMHz8eEydOxIoVK+Dh4YGHDx8iKioKnTt3xtChQ0Xvz9/fH0uWLEHz5s3RoUMHnD9/HqGhoZg8ebKofhigiIjU1LVrV/z0009wdnaGnp56vz7d3d0BAJcvX1b+GwD09PTg6+sLX19fLFy4EBYWFjh06BBGjBgBoGywerNmzWBlZVXTh0FUp5w7dw7PP/+88nVwcDAAIDAwEBEREdi8eTM+++wzvPvuu7h//z6srKzQo0cPvPjii9Xa38qVKzF//nxMmzYNaWlpcHBwwJtvvokFCxaI6ocBiohITdOnT8eGDRswduxYvP/++7C0tMTNmzexY8cObNy4sdwYDaDsDFLXrl1x/PhxZYD69ddfcfv2bTz33HNo0qQJ9u3bB4VCgTZt2ii3++uvvzBo0KDaOjQirenXr1+Vs4Dr6+tj8eLFWLx4cY3sz9TUFGFhYQgLC3umfngXHhGRmhwcHHDixAnI5XIMGjQInTp1wqxZs2BhYVFuTMW/vfbaa/j++++Vry0sLLBnzx70798f7dq1w7p167B9+3Z06NABAFBYWIjIyEjlYHYiqns4EzkRkYY9fvwYbdq0wc6dO+Hj4/PU9mvXrsXevXvxxx9/1EJ1RFQdPANFRKRhxsbG2Lp1a5UTbv6bvr6+6OdyEVHt4hkoIiIiIpF4BoqIiIhIJAYoIiIiIpEYoIiIiIhEYoAiIiIiEokBioiIiEgkBigiIiIikRigiIiIiERigCIiIiISiQGKiIiISKT/B4osL26UP/pVAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "data = single_x90_sequence(phi=0, lambda_=np.pi).to_time_trace()\n", + "for frame_id in data.amplitudes:\n", + " f, ax = plt.subplots(nrows=3, sharex=True)\n", + " f.subplots_adjust(hspace=0)\n", + "\n", + " ax[0].set_title(frame_id)\n", + " ax[0].plot(data.amplitudes[frame_id].times(), np.real(data.amplitudes[frame_id].values()), label=\"Real\")\n", + " ax[0].plot(data.amplitudes[frame_id].times(), np.imag(data.amplitudes[frame_id].values()), label=\"Imag\")\n", + " ax[0].set_ylabel(\"Amplitude\\n(a. u.)\")\n", + " ax[0].tick_params('x', labelbottom=False)\n", + "\n", + " ax[1].plot(data.frequencies[frame_id].times(), np.array(data.frequencies[frame_id].values())*1e-9)\n", + " ax[1].set_ylabel(\"Frequency\\n(GHz)\")\n", + " ax[1].tick_params('x', labelbottom=False)\n", + "\n", + " ax[2].plot(data.phases[frame_id].times(), data.phases[frame_id].values())\n", + " ax[2].set_xlabel(\"Time (s)\")\n", + " ax[2].set_ylabel(\"Phase\\n(rad)\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can register this gate with the subroutine decorated as follow. Executing the gate indicates that we have created an equal-weigth superposition of $|0\\rangle$ and $|1\\rangle$." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Counter({'0': 517, '1': 483})\n" + ] + } + ], + "source": [ + "@circuit.subroutine(register=True)\n", + "def short_h_4():\n", + " return (\n", + " Circuit()\n", + " .pulse_gate(\n", + " [qubit], \n", + " pulse_sequence=single_x90_sequence(phi=0, lambda_=np.pi)\n", + " )\n", + " )\n", + "\n", + "circ = Circuit().short_h_4()\n", + "print(device.run(circ, shots=1000).result().measurement_counts)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Task Summary\n", + "{'arn:aws:braket:us-west-1::device/qpu/rigetti/Aspen-M-3': {'shots': 63000, 'tasks': {'COMPLETED': 88}}}\n", + "Note: Charges shown are estimates based on your Amazon Braket simulator and quantum processing unit (QPU) task usage. Estimated charges shown may differ from your actual charges. Estimated charges do not factor in any discounts or credits, and you may experience additional charges based on your use of other services such as Amazon Elastic Compute Cloud (Amazon EC2).\n", + "Estimated cost to run this example: 48.450 USD\n" + ] + } + ], + "source": [ + "print(\"Task Summary\")\n", + "print(t.quantum_tasks_statistics())\n", + "print('Note: Charges shown are estimates based on your Amazon Braket simulator and quantum processing unit (QPU) task usage. Estimated charges shown may differ from your actual charges. Estimated charges do not factor in any discounts or credits, and you may experience additional charges based on your use of other services such as Amazon Elastic Compute Cloud (Amazon EC2).')\n", + "print(f\"Estimated cost to run this example: {t.qpu_tasks_cost() + t.simulator_tasks_cost():.3f} USD\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.9.14", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.15" + }, + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "e8fe7b1d737818ec041fd05b4c8bbd1804e351a931e38c7cd860a34c69554183" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/modules/1_Continue_Exploring/B_qtm_sims/Simulating_Noise_On_Amazon_Braket.ipynb b/modules/1_Continue_Exploring/B_qtm_sims/Simulating_Noise_On_Amazon_Braket.ipynb new file mode 100644 index 000000000..bfffa293b --- /dev/null +++ b/modules/1_Continue_Exploring/B_qtm_sims/Simulating_Noise_On_Amazon_Braket.ipynb @@ -0,0 +1,1172 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Simulating noise on Amazon Braket" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# Use Braket SDK Cost Tracking to estimate the cost to run this example\n", + "from braket.tracking import Tracker\n", + "t = Tracker().start()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This notebook gives a detailed overview of noise simulations on Amazon Braket. Amazon Braket provides two noise simulators: a local noise simulator that you can use for free as part of the Braket SDK and an on-demand, high-performing noise simulator, DM1. Both simulators are based on the density matrix formalism. After this tutorial, you will be able to define noise channels, apply noise to new or existing circuits, and run those circuits on the Braket noise simulators. \n", + "\n", + "### Table of contents:\n", + "* [Background](#Background)\n", + " * [Noise simulation based on the density matrix formalism](#density_matrix)\n", + " * [Quantum channel and Kraus representation](#quantum_channel)\n", + "* [General imports](#imports)\n", + "* [Quick start](#start)\n", + "* [Defining noise channels](#noise_channels)\n", + " * [Pre-defined noise channels](#pre-defined)\n", + " * [Defining custom noise channels](#self-defined)\n", + "* [Adding noise to a circuit](#apply_noise)\n", + " * [Build noisy circuits bottom-up](#apply_noise_directly)\n", + " * [Applying noise to existing circuits with global methods](#apply_noise_globally)\n", + " * [Applying gate noise to the circuit](#gate-noise)\n", + " * [Applying initialization noise to the circuit](#initialization-noise)\n", + " * [Applying readout noise to the circuit](#readout-noise)\n", + " * [Using both the direct and global methods to apply noise](#both)\n", + "* [Running a noisy circuit](#run)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Background \n", + "\n", + "### Noise simulation based on the density matrix formalism \n", + "In an ideal case, a quantum state prepared by a noise-free circuit can be described by a state vector $|\\psi\\rangle$ -- we call it a 'pure state'. However, the presence of noise in realistic quantum devices will introduce classical uncertainty to the quantum state. For example, a bit flip error with 50% probability acting on a qubit flips the $|0\\rangle$ state into either $|0\\rangle$ or $|1\\rangle$ with a 50-50 chance. Note that this is different from an Hadamard-gate acting on $|0\\rangle$: The latter results in a coherent superposition of $|0\\rangle$ and $|1\\rangle$, whereas the former is a classical, so-called mixture of $|0\\rangle$ and $|1\\rangle$. The most general way of describing a quantum state in the presence of noise is through the so-called density matrix: $\\rho = \\sum_i p_i|\\psi_i\\rangle\\langle\\psi_i|$. It can be understood as a classical mixture of a series of pure states $|\\psi_i\\rangle$ (each of which could be highly entangled), where $p_i$ is the probability of the state being in $|\\psi_i\\rangle$. Because the $p_i$ are classical probabilities they have to sum up to 1: $\\sum_i p_i = 1$. The density matrix of a pure state is simply $\\rho = |\\psi\\rangle\\langle\\psi|$ and, in the bit-flip example from above, the density matrix would be $\\rho = 0.5|0\\rangle\\langle 0| + 0.5|1\\rangle\\langle 1|$. \n", + "\n", + "The density matrix formalism is a very useful way to describe a noisy system with probabilistic outcomes. It gives an exact description of a quantum system going through a quantum channel with noise. Besides, the expectation value of an observable $\\langle O\\rangle$ can be easily calculated by $\\rm{Tr}(O\\rho)$, where \"$\\rm{Tr}$\" is the trace operator. \n", + "\n", + "### Quantum channel and Kraus representation \n", + "\n", + "A [quantum channel](https://en.wikipedia.org/wiki/Quantum_channel) describes the time evolution of a quantum state which is expressed as a density matrix. For instance, to understand what a series of noisy gates does to the state of a quantum computer, you can apply a quantum channel corresponding to the different gate and noise operations. \n", + "Mathematically speaking, a quantum channel is a completely positive and trace-preserving (CPTP) linear map acting on a density matrix. Completely positive means the channel maps positive operators into positive operators (even if the operator is applied to part of a larger system) to make sure the density matrix describes a proper quantum state after the map. Trace-preserving means the trace of the density matrix remains unchanged during the mapping process (this is so that after the map the classical probabilities $p_i$ still sum to 1). \n", + "\n", + "The so-called _Kraus representation_ is a commonly used representation for CPTP maps. [Kraus's theorem](https://en.wikipedia.org/wiki/Quantum_operation#Kraus_operators) states that any quantum operation acting on a quantum state $\\rho$ can be expressed as a map $\\varepsilon(\\rho) = \\sum_i K_i\\rho K_i^{\\dagger}$, and it satisfies: $\\sum_i K_i^{\\dagger}K_i = \\mathbb{1}$, where $\\mathbb{1}$ is the Identity operator.\n", + "\n", + "Let's get started and have a look how you can define and simulate noisy circuits on Amazon Braket." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## General imports " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's begin with the usual imports." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from braket.circuits import Circuit, Observable, Gate, Noise, FreeParameter\n", + "from braket.devices import LocalSimulator\n", + "from braket.aws import AwsDevice\n", + "import numpy as np\n", + "from scipy.stats import unitary_group" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Quick start \n", + "\n", + "Let's start with a simple example of running a noisy circuit on Amazon Braket. " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "measurement results: Counter({'11': 441, '00': 381, '01': 94, '10': 84})\n" + ] + } + ], + "source": [ + "# build a simple circuit\n", + "circ = Circuit().h(0).cnot(0,1)\n", + "\n", + "# define a noise channel\n", + "noise = Noise.BitFlip(probability=0.1)\n", + "\n", + "# add noise to every gate in the circuit\n", + "circ.apply_gate_noise(noise)\n", + "\n", + "# select the local noise simulator\n", + "device = LocalSimulator('braket_dm')\n", + "\n", + "# run the circuit on the local simulator\n", + "task = device.run(circ, shots = 1000)\n", + "\n", + "# visualize the results\n", + "result = task.result()\n", + "measurement = result.measurement_counts\n", + "print('measurement results:', measurement)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Ideally, in the noise-free case, the circuit we defined prepares a Bell-state, and we would expect to measure only '00' and '11' outcomes. However, the presence of noise, in our case a bit flip error, means that sometimes we find the state in '01' and '10' instead.\n", + "\n", + "The local simulator is suitable for fast prototyping on small circuits. If you want to run a noisy circuit with more than 10~12 qubits, we recommend using the on-demand simulator DM1. Using DM1, you can run circuits with up to 17 qubits, and benefit from parallel execution for a group of circuits. The code below shows an example of preparing a 13-qubit GHZ state in the presence of noise." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "measurement results: Counter({'0000000000000': 2, '1100111111111': 1, '0000000000001': 1, '1000001111100': 1, '1111100000000': 1, '0000000010000': 1, '1111111111111': 1, '1000010000001': 1, '0011111111111': 1})\n" + ] + } + ], + "source": [ + "def ghz_circuit(n_qubits: int) -> Circuit:\n", + " \"\"\"\n", + " Function to return simple GHZ circuit ansatz. Assumes all qubits in range(0, n_qubits-1)\n", + " are entangled.\n", + " \"\"\"\n", + " circuit = Circuit().h(0) \n", + "\n", + " for ii in range(0, n_qubits-1):\n", + " circuit.cnot(control=ii, target=ii+1) \n", + " return circuit\n", + "\n", + "# build a 13-qubit GHZ circuit\n", + "circ = ghz_circuit(13)\n", + "\n", + "# define a noise channel\n", + "noise = Noise.Depolarizing(probability=0.1)\n", + "\n", + "# add noise to every gate in the circuit\n", + "circ.apply_gate_noise(noise)\n", + "\n", + "# select the on-demand density matrix simulator DM1\n", + "device = AwsDevice(\"arn:aws:braket:::device/quantum-simulator/amazon/dm1\")\n", + "\n", + "# run the circuit on DM1\n", + "task = device.run(circ, shots = 10)\n", + "\n", + "# visualize the results\n", + "result = task.result()\n", + "measurement = result.measurement_counts\n", + "print('measurement results:', measurement)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We now start exploring the detailed instructions and use cases of each step in the following sections." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Defining noise channels \n", + "\n", + "To apply noise to a quantum circuit, first, you need to define the noise channel, which is defined in Kraus representation. We offer many commonly-used noise channels in the `Noise` class of the [Amazon Braket SDK](https://amazon-braket-sdk-python.readthedocs.io/en/latest/_apidoc/braket.circuits.html). In addition, you can also define your own custom noise channel as a list of Kraus operators.\n", + "\n", + "### Pre-defined noise channels \n", + "\n", + "The pre-defined single-qubit noise channels include `BitFlip`, `PhaseFlip`, `Depolarizing`, `AmplitudeDamping`, `GeneralizedAmplitudeDamping`, `PhaseDamping` and `PauliChannel`. \n", + "The pre-defined two-qubit noise channels include `TwoQubitDepolarizing` and `TwoQubitDephasing`. The Kraus representations for all of the pre-defined channels are summarized in the following table.\n", + "\n", + "__single-qubit noise channels__\n", + "\n", + "| Noise channel |
    Kraus representation
    | Parameter |\n", + "|:-------------- |:-------------------------------------------------- |:------------|\n", + "| `BitFlip` | $(1-p)\\rho$ + $pX\\rho X$| $p$ is the probability of the bit flip noise. |\n", + "| `PhaseFlip` | $(1-p)\\rho$ + $pZ\\rho Z$| $p$ is the probability of the phase flip noise. |\n", + "| `Depolarizing` |$(1-p)\\rho$ + $p/3(X\\rho X$ + $Y\\rho Y$ + $Z\\rho Z)$|$p$ is the probability of the depolarizing noise (the three possible error cases share the same probability of $p/3$).|\n", + "|`AmplitudeDamping`|$K_0\\rho K_0^\\dagger$ + $K_1\\rho K_1^\\dagger$|$K_0=[1,0;0,\\sqrt{1-\\gamma}]$, $K_1=[0,\\sqrt{\\gamma};0,0]$, where $\\gamma$ is the rate of amplitude damping.|\n", + "|`GeneralizedAmplitudeDamping`|$K_0\\rho K_0^\\dagger$ + $K_1\\rho K_1^\\dagger$ + $K_2\\rho K_2^\\dagger$ + $K_3 \\rho K_3^\\dagger$|$K_0=\\sqrt{p}[1,0;0,\\sqrt{1-\\gamma}]$, $K_1=\\sqrt{p}[0,\\sqrt{\\gamma};0,0]$, $K_2=\\sqrt{1-p}[\\sqrt{1-\\gamma},0;0,1]$, $K_3=\\sqrt{1-p}[0,0;\\sqrt{\\gamma},0]$, where $\\gamma$ is the rate of amplitude damping, and $p$ is the probability of the system been excited by the environment [1].|\n", + "|`PhaseDamping`|$K_0\\rho K_0^\\dagger$ + $K_1 \\rho K_1^\\dagger$|$K_0=[1,0;0,\\sqrt{1-\\gamma}]$, $K_1=[0,0;0,\\sqrt{\\gamma}]$, where $\\gamma$ is the rate of phase damping.|\n", + "|`PauliChannel`|$(1-p_x-p_y-p_z)\\rho$ + $p_xX\\rho X$ + $p_yY\\rho Y$ + $p_zZ\\rho Z$|$p_x$, $p_y$ and $p_z$ are probabilities for the Pauli X, Y, Z noise respectively.|\n", + "\n", + "\n", + "__two-qubit noise channels__\n", + "\n", + "|
    Noise channel
    |
    Kraus representation
    | Parameter |\n", + "|:----------------------- |:-------------------------------------------------- |:------------|\n", + "| `TwoQubitDepolarizing`| $(1-p)\\rho$ + $p/15(IX\\rho IX$ + $IY\\rho IY$ + $IZ\\rho IZ$ + $XI\\rho XI$ +....+ $ZZ\\rho ZZ)$| $p$ is the probability of the two-qubit depolarizing noise (the 15 possible error combinations share the same probability of $p/15$).|\n", + "| `TwoQubitDephasing` | $(1-p)\\rho$ + $p/3(IZ\\rho IZ$ + $ZI\\rho ZI$ + $ZZ\\rho ZZ)$| $p$ is the probability of the two-qubit dephasing noise (the three possible error combinations share the same probability of $p/3$). |" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The following code block takes the example of the bit flip noise channel: $\\rho\\rightarrow(1-p)\\rho$ + $pX\\rho X$, where $p$ corresponds to the `probability` parameter when defining the noise. This noise channel is equivalent to applying a bit flip error (applying an X gate) with probability $p$ and doing nothing with probability $1-p$. You can check the target qubit count and the Kraus operators of the noise channel defined." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "name: BitFlip\n", + "qubit count: 1\n", + "Kraus operators: \n", + "[[0.9486833+0.j 0. +0.j]\n", + " [0. +0.j 0.9486833+0.j]] \n", + "\n", + "[[0. +0.j 0.31622777+0.j]\n", + " [0.31622777+0.j 0. +0.j]] \n", + "\n" + ] + } + ], + "source": [ + "# define a bit flip noise channel with probability = 0.1\n", + "noise = Noise.BitFlip(probability=0.1)\n", + "\n", + "print('name: ', noise.name)\n", + "print('qubit count: ', noise.qubit_count)\n", + "print('Kraus operators: ')\n", + "for matrix in noise.to_matrix():\n", + " print(matrix, '\\n')\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Other pre-defined noise channels can be used in a similar way:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# define a phase flip noise channel\n", + "noise = Noise.PhaseFlip(probability=0.1)\n", + "# define a single-qubit depolarizing noise channel\n", + "noise = Noise.Depolarizing(probability=0.1)\n", + "# define a two-qubit depolarizing noise channel\n", + "noise = Noise.TwoQubitDepolarizing(probability=0.1)\n", + "# define a two-qubit dephasing noise channel\n", + "noise = Noise.TwoQubitDephasing(probability=0.1)\n", + "# define an amplitude damping noise channel\n", + "noise = Noise.AmplitudeDamping(gamma=0.1)\n", + "# define a generalized amplitude damping noise, where gamma is the amplitude damping rate, and\n", + "# probability is the probability of the system being excited by the environment.\n", + "noise = Noise.GeneralizedAmplitudeDamping(gamma=0.1, probability=0.1)\n", + "# define a phase damping noise channel\n", + "noise = Noise.PhaseDamping(gamma=0.1)\n", + "# define a Pauli noise channel\n", + "noise = Noise.PauliChannel(probX=0.1, probY=0.2, probZ=0.3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Defining custom noise channels \n", + "Apart from the pre-defined noise models, you can also define your own noise model by specifying a list of Kraus operators. The following code shows an example of defining a two-qubit Kraus channel with randomly generated unitary operators." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# create an arbitrary 2-qubit Kraus matrix\n", + "E0 = unitary_group.rvs(4) * np.sqrt(0.2) \n", + "E1 = unitary_group.rvs(4) * np.sqrt(0.8)\n", + "K = [E0, E1] \n", + "\n", + "# define a two-qubit noise channel with Kraus operators\n", + "noise = Noise.Kraus(K) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that the noise channel you define needs to form a CPTP map. If the input matrices do not define a CPTP map, an error will be raised." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The input matrices do not define a completely-positive trace-preserving map.\n" + ] + } + ], + "source": [ + "K_invalid = [np.random.randn(2,2), np.random.randn(2,2)] \n", + "\n", + "try:\n", + " noise = Noise.Kraus(K_invalid)\n", + " pass\n", + "except ValueError as err:\n", + " print(err)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding noise to a circuit \n", + "\n", + "There are two methods to build a 'noisy' circuit. First, you can add noise to the circuit 'bottom-up', by using the noise operations in the same way as you would add a gate to the circuit. Second, you can use the methods `apply_gate_noise()`, `apply_initialization_noise()` and `apply_readout_noise()` to apply gate error, qubit initialization error and measurement error globally to existing circuits. \n", + "\n", + "The direct method is more flexible as you can apply noise to any place in a circuit. But for an existing large circuit with lots of gates, you may want to use the global methods to conveniently apply noise to the circuit.\n", + "\n", + "\n", + "### Build noisy circuits bottom-up \n", + "Noise channels can be applied to the circuit the same way as gates. The following example shows how to apply single- and two-qubit noise channels directly to a circuit. The noise applied can be visualized in the circuit diagram with the `print()` method." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : |0| 1 | 2 |\n", + " \n", + "q0 : -X-C-----------X-DEPH(0.1)-\n", + " | | \n", + "q1 : -X-X-DEPO(0.2)---DEPH(0.1)-\n", + "\n", + "T : |0| 1 | 2 |\n" + ] + } + ], + "source": [ + "# apply depolarizing noise\n", + "circ = Circuit().x(0).x(1).cnot(0,1).depolarizing(1, probability=0.2).x(0).two_qubit_dephasing(target1=0, target2=1, probability=0.1)\n", + "print(circ)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Applying noise to existing circuits with global methods\n", + "\n", + "We offer three methods to apply noise globally to the circuit: `apply_gate_noise()`, `apply_initialization_noise()` and `apply_readout_noise()`. In the following, we explain in detail the usage of these three methods.\n", + "\n", + "#### Applying gate noise to the circuit \n", + "\n", + "`apply_gate_noise()` is the method to conveniently apply gate-noise to the circuit. It accepts the following input parameters:\n", + "\n", + "- __noise__: A single or a list of noise channel in `Noise` type.\n", + "- __target_unitary__: A single unitary gate in the form of a matrix in `numpy.ndarray` type. The noise will be applied to that unitary gate. \n", + "- __target_gates__: A single or a list of gates in `Gate` type. Note that `target_gates` and `target_unitary` can not be provided at the same time. If none of `target_gates` and `target_unitary` is given, noise will be applied to all the gates in the circuit. \n", + "- __target_qubits__: A single or a list of qubit indexes. If not given, noise will be applied to all the qubits in the circuit.\n", + "\n", + "When calling the method, the noise channel(s) will be applied right after all `target_gates` in `target_qubits`." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + " Note When you call this method, noise will be inserted right after the gate. If you like to apply more than one noise operation, be aware of the order. Alternatively, you can provide a list of noise operations in one call, and the noise will be applied in forward order. \n", + "
    " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The code below is an example of applying phase damping noise to all gates in the circuit." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Noise is applied to every gate in the circuit:\n", + "\n", + "T : | 0 | 1 |\n", + " \n", + "q0 : -X-PD(0.1)-BF(0.1)-C-PD(0.1)-\n", + " | \n", + "q1 : -------------------X-PD(0.1)-\n", + "\n", + "T : | 0 | 1 |\n" + ] + } + ], + "source": [ + "noise = Noise.PhaseDamping(gamma=0.1)\n", + "\n", + "# the noise channel is applied to every gate in the circuit\n", + "circ = Circuit().x(0).bit_flip(0,0.1).cnot(0,1)\n", + "circ.apply_gate_noise(noise)\n", + "print('Noise is applied to every gate in the circuit:\\n')\n", + "print(circ)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If you want to apply noise to some particular gates in the circuit, you can specify them as `target_gates`. Below is an example in which noise is applied to all X gates in the circuit." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + " Note The target_gates must be a Gate type. You can find all available gates with the following commands:\n", + " \n", + "\n", + "from braket.circuits import Gate\n", + "gate_set = [attr for attr in dir(Gate) if attr[0] in string.ascii_uppercase]\n", + "print(gate_set)\n", + "\n", + "
    " + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Noise is applied to every X gate:\n", + "\n", + "T : | 0 | 1 |2|\n", + " \n", + "q0 : -X-PD(0.1)-C-------------\n", + " | \n", + "q1 : -Y---------|-X-PD(0.1)---\n", + " | \n", + "q2 : -----------X-----------Z-\n", + "\n", + "T : | 0 | 1 |2|\n" + ] + } + ], + "source": [ + "# the noise channel is applied to all the X gates in the circuit\n", + "circ = Circuit().x(0).y(1).cnot(0,2).x(1).z(2)\n", + "circ.apply_gate_noise(noise, target_gates = Gate.X)\n", + "print('Noise is applied to every X gate:\\n')\n", + "print(circ)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If you define custom unitary gates as part of your circuit, and you want to apply noise to them, you can use the `target_unitary` criterion." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Noise is applied to U2:\n", + "\n", + "T : |0|1| 2 |3| 4 |\n", + " \n", + "q0 : -X-U-C---------------\n", + " | | \n", + "q1 : -Y-U-|-X---U-PD(0.1)-\n", + " | | \n", + "q2 : -----X---Z-U-PD(0.1)-\n", + "\n", + "T : |0|1| 2 |3| 4 |\n" + ] + } + ], + "source": [ + "U1=unitary_group.rvs(4)\n", + "U2=unitary_group.rvs(4)\n", + "circ = Circuit().x(0).y(1).unitary((0,1),U1).cnot(0,2).x(1).z(2).unitary((1,2),U2)\n", + "circ.apply_gate_noise(noise, target_unitary = U2)\n", + "print('Noise is applied to U2:\\n')\n", + "print(circ)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If you want to apply noise to some particular qubits in the circuit, you can specify them as `target_qubits`. Below is an example to apply noise to all gates in qubits 0 and 2 in the circuit." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Noise is applied to every gate in qubits 0 and 2:\n", + "\n", + "T : | 0 | 1 | 2 |\n", + " \n", + "q0 : -X-PD(0.1)-C-PD(0.1)-----------\n", + " | \n", + "q1 : -Y---------|-X-----------------\n", + " | \n", + "q2 : -----------X-PD(0.1)-Z-PD(0.1)-\n", + "\n", + "T : | 0 | 1 | 2 |\n" + ] + } + ], + "source": [ + "# the noise channel is applied to every gate on qubits 0 and 2\n", + "circ = Circuit().x(0).y(1).cnot(0,2).x(1).z(2)\n", + "circ.apply_gate_noise(noise, target_qubits = [0,2])\n", + "print('Noise is applied to every gate in qubits 0 and 2:\\n')\n", + "print(circ)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `target_qubits` and `target_gates` criteria can be used at the same time. The code block below applies the gate noise to all X gates in qubit 0." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Noise is applied to X gates in qubits 0:\n", + "\n", + "T : | 0 | 1 | 2 |\n", + " \n", + "q0 : -X-PD(0.1)-C---X-PD(0.1)-\n", + " | \n", + "q1 : -Y---------|-X-----------\n", + " | \n", + "q2 : -----------X---Z---------\n", + "\n", + "T : | 0 | 1 | 2 |\n" + ] + } + ], + "source": [ + "# the noise channel is applied to X gate on qubits 0\n", + "circ = Circuit().x(0).y(1).cnot(0,2).x(0).x(1).z(2)\n", + "circ.apply_gate_noise(noise, target_gates = Gate.X, target_qubits = 0)\n", + "print('Noise is applied to X gates in qubits 0:\\n')\n", + "print(circ)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If a list of noise channels is provided, the first noise channel in the list will be applied first, then the second. " + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Noise channels are applied to every gate in qubits 0 and 1:\n", + "\n", + "T : | 0 | 1 |2|\n", + " \n", + "q0 : -X-DEPO(0.1)-BF(0.2)-C-DEPO(0.1)-BF(0.2)-------------\n", + " | \n", + "q1 : -Y-DEPO(0.1)-BF(0.2)-|-X---------DEPO(0.1)-BF(0.2)---\n", + " | \n", + "q2 : ---------------------X-----------------------------Z-\n", + "\n", + "T : | 0 | 1 |2|\n" + ] + } + ], + "source": [ + "# define two noise channels\n", + "noise1 = Noise.Depolarizing(probability=0.1)\n", + "noise2 = Noise.BitFlip(probability=0.2)\n", + "\n", + "# apply a list of noise channels \n", + "circ = Circuit().x(0).y(1).cnot(0,2).x(1).z(2)\n", + "circ.apply_gate_noise([noise1, noise2], target_qubits = [0,1])\n", + "print('Noise channels are applied to every gate in qubits 0 and 1:\\n')\n", + "print(circ)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If you want to apply multi-qubit noise channels to a gate, the number of qubits associated with the gate must equal to the number of qubits defined by the noise channel, or otherwise the noise will not be applied. Below shows an example." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The two-qubit noise channel is applied to all the two-qubit gates in the circuit:\n", + "\n", + "T : |0| 1 | 2 |\n", + " \n", + "q0 : -X-C-DEPH(0.1)---SWAP-DEPH(0.1)-\n", + " | | | | \n", + "q1 : -Y-|-|---------X-SWAP-DEPH(0.1)-\n", + " | | \n", + "q2 : ---X-DEPH(0.1)---Z--------------\n", + "\n", + "T : |0| 1 | 2 |\n" + ] + } + ], + "source": [ + "# define a two-qubit noise channel\n", + "noise = Noise.TwoQubitDephasing(probability=0.1)\n", + "\n", + "# apply the noise to the circuit\n", + "circ = Circuit().x(0).y(1).cnot(0,2).x(1).z(2).swap(1,0)\n", + "circ.apply_gate_noise(noise)\n", + "print('The two-qubit noise channel is applied to all the two-qubit gates in the circuit:\\n')\n", + "print(circ)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Applying initialization noise to the circuit \n", + "\n", + "`apply_initialization_noise()` is the method to apply initialization noise to the circuit. By using the method, the noise will be applied to every qubit at the beginning of a circuit. It accepts the following input parameters:\n", + "\n", + "- __noise__: a single or a list of noise channel in `Noise` type.\n", + "- __target_qubits__: a single or a list of qubit indexes. If not given, noise will be applied to all the qubits in the circuit.\n", + "\n", + "If you want to apply the initialization noise to an empty circuit, you need to provide `target_qubits` to the method. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + " Note When you call this method, noise will be inserted at the very beginning of the circuit. If you like to apply more than one noise operation, be aware of the order. Alternatively, you can provide a list of noise operations in one call, and the noise will be applied in forward order. \n", + "
    " + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Initialization noise is applied to the circuit:\n", + "\n", + "T : | 0 | 1 |2|\n", + " \n", + "q0 : -DEPO(0.1)-X-C-----\n", + " | \n", + "q1 : -DEPO(0.1)-Y-|-X---\n", + " | \n", + "q2 : -DEPO(0.1)---X---Z-\n", + "\n", + "T : | 0 | 1 |2|\n" + ] + } + ], + "source": [ + "# define a noise channel\n", + "noise = Noise.Depolarizing(probability=0.1)\n", + "\n", + "# the noise channel is applied as the initialization noise to the circuit\n", + "circ = Circuit().x(0).y(1).cnot(0,2).x(1).z(2)\n", + "circ.apply_initialization_noise(noise)\n", + "print('Initialization noise is applied to the circuit:\\n')\n", + "print(circ)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If you want to apply a multi-qubit noise channel as the initialization noise to a circuit and if the number of the qubits in the existing circuit doesn't match the number of qubits as defined by the noise channel, you need to provide `target_qubits` with the number of qubits matching the noise channel. " + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Initialization noise is applied to the circuit:\n", + "\n", + "T : | 0 |1|2|\n", + " \n", + "q0 : -DEPH(0.1)-X-C-Z-\n", + " | | \n", + "q1 : -DEPH(0.1)-Y-X-X-\n", + "\n", + "T : | 0 |1|2|\n" + ] + } + ], + "source": [ + "# define a two-qubit noise channel\n", + "noise = Noise.TwoQubitDephasing(probability=0.1)\n", + "\n", + "# the noise channel is applied as the initialization noise to the circuit\n", + "circ = Circuit().x(0).y(1).cnot(0,1).x(1).z(0)\n", + "circ.apply_initialization_noise(noise)\n", + "print('Initialization noise is applied to the circuit:\\n')\n", + "print(circ)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Applying readout noise to the circuit \n", + "\n", + "The method of `apply_readout_noise()` is very similar to the method to apply initialization noise, except that the noise channel is applied to every qubit in the end of a circuit. It accepts the following input parameters:\n", + "\n", + "- __noise__: a single or a list of noise channel in `Noise` type.\n", + "- __target_qubits__: a single or a list of qubit indexes. If not given, noise will be applied to all the qubits in the circuit.\n", + "\n", + "If you want to apply the readout noise to an empty circuit, you need to provide `target_qubits` to the method. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + " Note When you call this method, noise will be inserted at the very end of the circuit. If you like to apply more than one noise operation, be aware of the order. You can also provide a list of noise operations in the one call, and the noise will be applied in forward order. \n", + "
    " + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Read-out noise is applied to the circuit:\n", + "\n", + "T : |0| 1 | 2 |\n", + " \n", + "q0 : -X-C---DEPO(0.1)-----------\n", + " | \n", + "q1 : -Y-|-X-DEPO(0.1)-----------\n", + " | \n", + "q2 : ---X---Z---------DEPO(0.1)-\n", + "\n", + "T : |0| 1 | 2 |\n" + ] + } + ], + "source": [ + "# define a noise channel\n", + "noise = Noise.Depolarizing(probability=0.1)\n", + "\n", + "# the noise channel is applied as the readout noise to the circuit\n", + "circ = Circuit().x(0).y(1).cnot(0,2).x(1).z(2)\n", + "circ.apply_readout_noise(noise)\n", + "print('Read-out noise is applied to the circuit:\\n')\n", + "print(circ)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If you want to apply a multi-qubit noise channel as the readout noise to a circuit and if the number of the qubits in the existing circuit doesn't match the number of qubits as defined by the noise channel, you need to provide `target_qubits` with the number of qubits matching the noise channel. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Using both the direct and global methods to apply noise \n", + "You can apply noise to the circuit using both the direct and global methods. " + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Noise channels are applied to the circuit:\n", + "\n", + "T : | 0 | 1 |2|\n", + " \n", + "q0 : -X-PF(0.2)-BF(0.1)---------------\n", + " \n", + "q1 : -Y-----------------C-DEPO(0.1)---\n", + " | | \n", + "q2 : -------------------X-DEPO(0.1)-Z-\n", + "\n", + "T : | 0 | 1 |2|\n" + ] + } + ], + "source": [ + "# define a noise channel\n", + "noise = Noise.PhaseFlip(probability=0.2)\n", + "\n", + "# create a circuit and add noise directly to the circuit\n", + "circ = Circuit().x(0).y(1).bit_flip(0,0.1).cnot(1,2).two_qubit_depolarizing(1, 2, probability=0.1).z(2)\n", + "circ.apply_gate_noise(noise, target_qubits=0)\n", + "print('Noise channels are applied to the circuit:\\n')\n", + "print(circ)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Running a noisy circuit \n", + "\n", + "Running a noisy circuit is like running any other task on Amazon Braket. In the example below we will pick the local simulator to run our circuit. \n", + "\n", + "With shots = 0, you can obtain the exact values of probability, density matrix and expectation values of the mixed state by attaching the corresponding result type. The reduced density matrix is also available if providing the targets qubits. If no target qubit is provided, the full density matrix will be returned. \n", + "\n", + "An example is shown in the code block below." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : | 0 | 1 | 2 | Result Types |\n", + " \n", + "q0 : -X-AD(0.1)-C-AD(0.1)-----------Probability-Expectation(Z)-DensityMatrix-\n", + " | | | \n", + "q1 : -Y---------|-X-----------------Probability----------------DensityMatrix-\n", + " | | \n", + "q2 : -----------X-AD(0.1)-Z-AD(0.1)-Probability------------------------------\n", + "\n", + "T : | 0 | 1 | 2 | Result Types |\n", + "- Probability is: \n", + "[0.1171 0.0729 0. 0. 0.1539 0.6561 0. 0. ]\n", + "- Expectation value is: \n", + "-0.6199999999999997\n", + "- The reduced Density Matrix is: \n", + "[[0.19+0.j 0. +0.j 0. +0.j 0. +0.j]\n", + " [0. +0.j 0. +0.j 0. +0.j 0. +0.j]\n", + " [0. +0.j 0. +0.j 0.81+0.j 0. +0.j]\n", + " [0. +0.j 0. +0.j 0. +0.j 0. +0.j]]\n" + ] + } + ], + "source": [ + "# define the noise channel\n", + "noise = Noise.AmplitudeDamping(gamma=0.1)\n", + "# create a circuit\n", + "circ = Circuit().x(0).y(1).cnot(0,2).x(1).z(2)\n", + "# apply the noise to qubits 0 and 2 in the circuit \n", + "circ.apply_gate_noise(noise, target_qubits = [0,2])\n", + "\n", + "# attach the result types\n", + "circ.probability()\n", + "circ.expectation(observable = Observable.Z(),target=0)\n", + "# attach the density matrix with target=[0,1], and the reduced density matrix of qubits 0,1 will be returned\n", + "circ.density_matrix(target=[0,1])\n", + "print(circ)\n", + "\n", + "# choose the noise simulator, which is called \"braket_dm\"\n", + "device = LocalSimulator(\"braket_dm\")\n", + "# run the circuit\n", + "task = device.run(circ, shots=0)\n", + "result = task.result()\n", + "\n", + "\n", + "print('- Probability is: ')\n", + "print(result.values[0])\n", + "print('- Expectation value is: ')\n", + "print(result.values[1])\n", + "print('- The reduced Density Matrix is: ')\n", + "print(result.values[2])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "With shots > 0, the results are sampled from the probability distributions. The result type `density_matrix` is not available for shots > 0. \n", + "\n", + "The code below shows the expectation value $\\langle Z_0\\rangle$ and the probability that the mixed state collapsing into different states. We see those values here are different from the exact values obtained in the shots = 0 case." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : | 0 | 1 | 2 | Result Types |\n", + " \n", + "q0 : -X-AD(0.1)-C-AD(0.1)-----------Probability-Expectation(Z)-\n", + " | | \n", + "q1 : -Y---------|-X-----------------Probability----------------\n", + " | | \n", + "q2 : -----------X-AD(0.1)-Z-AD(0.1)-Probability----------------\n", + "\n", + "T : | 0 | 1 | 2 | Result Types |\n", + "- Probability is: \n", + "[0.12 0.11 0. 0. 0.22 0.55 0. 0. ]\n", + "- Expectation value is: \n", + "-0.54\n" + ] + } + ], + "source": [ + "# create a circuit\n", + "circ = Circuit().x(0).y(1).cnot(0,2).x(1).z(2)\n", + "circ.apply_gate_noise(noise, target_qubits = [0,2])\n", + "\n", + "circ.probability()\n", + "circ.expectation(observable = Observable.Z(),target=0)\n", + "print(circ)\n", + "\n", + "# run the circuit\n", + "task = device.run(circ, shots=100)\n", + "result = task.result()\n", + "\n", + "print('- Probability is: ')\n", + "print(result.values[0])\n", + "print('- Expectation value is: ')\n", + "print(result.values[1])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can also create circuits with parametrized noise operations and specify the parameter values later:" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : | 0 | 1 | 2 | Result Types |\n", + " \n", + "q0 : -X-AD(gamma)-C-AD(gamma)-------------Probability-Expectation(Z)-\n", + " | | \n", + "q1 : -Y-----------|-X---------------------Probability----------------\n", + " | | \n", + "q2 : -------------X-AD(gamma)-Z-AD(gamma)-Probability----------------\n", + "\n", + "T : | 0 | 1 | 2 | Result Types |\n", + "- Probability when gamma=0.1 is: \n", + "[0.12 0.18 0. 0. 0.09 0.61 0. 0. ]\n", + "- Expectation value when gamma=0.1 is: \n", + "-0.4\n", + "- Probability when gamma=0.3 is: \n", + "[0.42 0.1 0. 0. 0.21 0.27 0. 0. ]\n", + "- Expectation value when gamma=0.3 is: \n", + "0.04\n" + ] + } + ], + "source": [ + "# define the free parameter\n", + "gamma = FreeParameter('gamma')\n", + "# define the noise channel\n", + "noise = Noise.AmplitudeDamping(gamma=gamma)\n", + "# create a circuit\n", + "circ = Circuit().x(0).y(1).cnot(0,2).x(1).z(2)\n", + "circ.apply_gate_noise(noise, target_qubits = [0,2])\n", + "\n", + "circ.probability()\n", + "circ.expectation(observable = Observable.Z(),target=0)\n", + "print(circ)\n", + "\n", + "# run the circuit with gamma = 0.1\n", + "task = device.run(circ(gamma=0.1), shots=100)\n", + "result = task.result()\n", + "\n", + "print('- Probability when gamma=0.1 is: ')\n", + "print(result.values[0])\n", + "print('- Expectation value when gamma=0.1 is: ')\n", + "print(result.values[1])\n", + "\n", + "# run the circuit with gamma = 0.3\n", + "task = device.run(circ(gamma=0.3), shots=100)\n", + "result = task.result()\n", + "\n", + "print('- Probability when gamma=0.3 is: ')\n", + "print(result.values[0])\n", + "print('- Expectation value when gamma=0.3 is: ')\n", + "print(result.values[1])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Reference\n", + "[1] Srikanth R, Banerjee S. \"Squeezed generalized amplitude damping channel\", Physical Review A, 2008, 77(1): 012318." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Task Summary\n", + "{'arn:aws:braket:::device/quantum-simulator/amazon/dm1': {'shots': 10, 'tasks': {'COMPLETED': 1}, 'execution_duration': datetime.timedelta(microseconds=639000), 'billed_execution_duration': datetime.timedelta(seconds=3)}}\n", + "Note: Charges shown are estimates based on your Amazon Braket simulator and quantum processing unit (QPU) task usage. Estimated charges shown may differ from your actual charges. Estimated charges do not factor in any discounts or credits, and you may experience additional charges based on your use of other services such as Amazon Elastic Compute Cloud (Amazon EC2).\n", + "Estimated cost to run this example: 0.004 USD\n" + ] + } + ], + "source": [ + "print(\"Task Summary\")\n", + "print(t.quantum_tasks_statistics())\n", + "print('Note: Charges shown are estimates based on your Amazon Braket simulator and quantum processing unit (QPU) task usage. Estimated charges shown may differ from your actual charges. Estimated charges do not factor in any discounts or credits, and you may experience additional charges based on your use of other services such as Amazon Elastic Compute Cloud (Amazon EC2).')\n", + "print(f\"Estimated cost to run this example: {t.qpu_tasks_cost() + t.simulator_tasks_cost():.3f} USD\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.15" + }, + "vscode": { + "interpreter": { + "hash": "590fab68195cf107911461461f81d5c472d3d6127f579badfcfad30f03e5cab2" + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/modules/1_Continue_Exploring/B_qtm_sims/TN1_demo_local_vs_non-local_random_circuits.ipynb b/modules/1_Continue_Exploring/B_qtm_sims/TN1_demo_local_vs_non-local_random_circuits.ipynb new file mode 100644 index 000000000..1743c0112 --- /dev/null +++ b/modules/1_Continue_Exploring/B_qtm_sims/TN1_demo_local_vs_non-local_random_circuits.ipynb @@ -0,0 +1,914 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Testing the tensor network simulator with 2-local Hayden-Preskill circuits\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# Use Braket SDK Cost Tracking to estimate the cost to run this example\n", + "from braket.tracking import Tracker\n", + "t = Tracker().start()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Abstract:** We study a class of random quantum circuits known as Hayden-Preskill circuits using the tensor network simulator backend in Amazon Braket. The goal is to understand the degree to which the tensor network simulator is capable of detecting a hidden local structure in a quantum circuit, while simultaneously building experience with the Amazon Braket service and SDK. We find that the TN1 tensor network simulator can efficiently simulate local random quantum circuits, even when the local structure is obfuscated by permuting the qubit indices. Conversely, when running genuinely non-local versions of the quantum circuits, the simulator's performance is significantly degraded.\n", + "\n", + "This notebook is aimed at users who are familiar with Amazon Braket and have a working knowledge of quantum computing and quantum circuits." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from braket.circuits import Circuit\n", + "from braket.aws import AwsDevice\n", + "from braket.devices import LocalSimulator\n", + "\n", + "import numpy as np\n", + "import random\n", + "import matplotlib.pyplot as plt\n", + "import time\n", + "import os" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Setup the tensor network simulator:\n", + "In this notebook we will use the TN1 simulator on Amazon Braket [[1]](#References):" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "device = AwsDevice(\"arn:aws:braket:::device/quantum-simulator/amazon/tn1\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Local Hayden-Preskill Circuits" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Hayden-Preskill circuits are a class of unstructured, random quantum circuits. To produce a Hayden-Preskill circuit, one chooses a gate at random from some universal gate set at each time step and applies this gate to random target qubits. For example, one can choose to either apply a random single qubit rotation to a random qubit, or a CZ gate to a random pair of qubits at each time step. As a concrete example, consider the following pseudocode:\n", + "```\n", + "Choose either {single qubit, two qubit} gate w/ prob. {1/2, 1/2}\n", + " \n", + "If single qubit:\n", + " Choose either {Rx, Ry, Rz, H} randomly w/ prob. {1/4, 1/4, 1/4, 1/4} \n", + " Apply the chosen gate to a randomly chosen qubit\n", + " If the gate is Rx, Ry, or Rz, rotate by a randomly chosen angle\n", + " \n", + "If two qubit gate:\n", + " Choose (qubit 1, qubit 2) to be two randomly chosen qubits out of the set of N qubits\n", + " Apply CZ(qubit 1, qubit 2) # This means the couplings are long range, all-to-all\n", + "```\n", + "\n", + "Using the strategy above, one can quickly generate random circuits with all-to-all, long-range couplings. These circuits generate unitaries that rapidly converge to Haar random unitaries, and they are difficult to simulate. \n", + "\n", + "A much simpler class of random circuits, which we call **local Hayden-Preskill circuits**, can be generated using the same strategy as above, but in which the two qubit CZ gates are applied to nearest neighbour qubits instead of random pairs:\n", + "```\n", + "Choose a random qubit j from [0, N-2]\n", + "Apply CZ(qubit j, qubit j+1)\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### In this notebook, we will focus on both local and non-local Hayden-Preskill circuits, defined using the helper functions below." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "def CZtuple_generator(qubits):\n", + " \"\"\"Yields a CZ between a random qubit and its next nearest neighbor.\n", + " For simplicity, we choose a random qubit from the first N-1 qubits for\n", + " the control and we set the target to be qubit i+1, where i is the control.\"\"\"\n", + " a = np.random.choice(range(len(qubits)-1), 1, replace=True)[0]\n", + " yield Circuit().cz(qubits[a],qubits[a+1])\n", + "\n", + "def local_Hayden_Preskill_generator(qubits,numgates):\n", + " \"\"\"Yields the circuit elements for a scrambling unitary.\n", + " Generates a circuit with numgates gates by laying down a\n", + " random gate at each time step. Gates are chosen from single\n", + " qubit unitary rotations by a random angle, Hadamard, or a \n", + " controlled-Z between a qubit and its nearest neighbor (i.e.,\n", + " incremented by 1).\"\"\"\n", + " for i in range(numgates):\n", + " yield np.random.choice([\n", + " Circuit().rx(np.random.choice(qubits,1,replace=True),np.random.ranf()),\n", + " Circuit().ry(np.random.choice(qubits,1,replace=True),np.random.ranf()),\n", + " Circuit().rz(np.random.choice(qubits,1,replace=True),np.random.ranf()),\n", + " Circuit().h(np.random.choice(qubits,1,replace=True)),\n", + " CZtuple_generator(qubits), # For all-to-all: Circuit().cz(*np.random.choice(qubits,2,replace=False)),\n", + " ],1,replace=True,p=[1/8,1/8,1/8,1/8,1/2])\n", + " \n", + "def non_local_Hayden_Preskill_generator(qubits,numgates):\n", + " \"\"\"Yields the circuit elements for a scrambling unitary.\n", + " Generates a circuit with numgates gates by laying down a\n", + " random gate at each time step. Gates are chosen from single\n", + " qubit unitary rotations by a random angle, Hadamard, or a \n", + " controlled-Z between a qubit and its nearest neighbor (i.e.,\n", + " incremented by 1).\"\"\"\n", + " for i in range(numgates):\n", + " yield np.random.choice([\n", + " Circuit().rx(np.random.choice(qubits,1,replace=True),np.random.ranf()),\n", + " Circuit().ry(np.random.choice(qubits,1,replace=True),np.random.ranf()),\n", + " Circuit().rz(np.random.choice(qubits,1,replace=True),np.random.ranf()),\n", + " Circuit().h(np.random.choice(qubits,1,replace=True)),\n", + " Circuit().cz(*np.random.choice(qubits,2,replace=False)),\n", + " ],1,replace=True,p=[1/8,1/8,1/8,1/8,1/2])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We use the helper functions above to generate local Hayden-Preskill (random) quantum circuits. For example:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : | 0 | 1 | 2 |3| 4 |5|6|7|8|9|\n", + " \n", + "q0 : -H------------------C---------C-Rx(0.389)--C-C-C-----\n", + " | | | | | \n", + "q1 : -C--------Rx(0.37)--Z---------Z-Rx(0.464)--Z-Z-Z-----\n", + " | \n", + "q2 : -Z--------Ry(0.508)-Rz(0.562)-C------------------C---\n", + " | | \n", + "q3 : -Rx(0.26)---------------------Z-Ry(0.0278)-C-C-C-Z-C-\n", + " | | | | \n", + "q4 : -------------------------------------------Z-Z-Z---Z-\n", + "\n", + "T : | 0 | 1 | 2 |3| 4 |5|6|7|8|9|\n" + ] + } + ], + "source": [ + "# Generate an example of a local Hayden Preskill circuit\n", + "test_circuit = Circuit()\n", + "test_circuit.add(local_Hayden_Preskill_generator(range(5),20))\n", + "print(test_circuit)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : | 0 | 1 | 2 |3| 4 | 5 | 6 |7|8|9|10 | 11 |\n", + " \n", + "q0 : -Z---C-----------Rz(0.0273)---C---------Ry(0.634)-------------------------------\n", + " | | | \n", + "q1 : -|---|-----------C----------C-Z-----------------------------Z-------C-----------\n", + " | | | | | | \n", + "q2 : -|---|-----------|----------Z-Ry(0.435)-Rx(0.527)-Rz(0.172)-C-C---Z-|-Ry(0.643)-\n", + " | | | | | | \n", + "q3 : -|-H-|-Rz(0.375)-|--------------------------------------------Z-Z-|-Z-----------\n", + " | | | | | \n", + "q4 : -C---Z-----------Z----------H-Ry(0.921)-------------------------C-C-------------\n", + "\n", + "T : | 0 | 1 | 2 |3| 4 | 5 | 6 |7|8|9|10 | 11 |\n" + ] + } + ], + "source": [ + "# Generate an example of a non-local Hayden Preskill circuit\n", + "test_circuit = Circuit()\n", + "test_circuit.add(non_local_Hayden_Preskill_generator(range(5),20))\n", + "print(test_circuit)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Simulating _local_ random circuits using the TN1 tensor network simulator" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Testing and timing" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's start with a reasonably sized circuit" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "20 qubits, 10 layers = 200 total gates\n" + ] + } + ], + "source": [ + "num_qubits = 20 # Number of qubits\n", + "num_layers = 10 # Number of layers. A layer consists of num_qubits gates.\n", + "numgates = num_qubits * num_layers # Total number of gates.\n", + "print(f\"{num_qubits} qubits, {num_layers} layers = {numgates} total gates\")\n", + "circ = Circuit()\n", + "circ.add(local_Hayden_Preskill_generator(range(num_qubits), numgates)); # Create the circuit with numgates gates." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Time this circuit using TN1. It should take about a minute or so." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Running: 20 qubits, 10 layers = 200 total gates\n", + "ID of task: arn:aws:braket:us-west-2:586882978732:quantum-task/4e870cf6-c25b-4457-b03d-b40e6438e96f\n", + "Status of task: CREATED\n", + "Status: RUNNING\n", + "Status: RUNNING\n", + "Status: COMPLETED\n", + "CPU times: user 895 ms, sys: 7.99 ms, total: 903 ms\n", + "Wall time: 1min 1s\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb0AAAD4CAYAAAB4zDgvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAJh0lEQVR4nO3dX4il913H8c83u6uVWiyYUcQ0TpESKAWtDvEiIBhEUit640UDFgRlbyxUEGQFL/RKr8QbbxYtKv4pgi1Ign8KGqSg1dlaJTEtlppAqZAJpdhUaE3y9WI3EOImuzs7u8/zy/f1gmHnzHnOPh92Lt6cZ+acre4OAExwz9YDAOBuET0AxhA9AMYQPQDGED0Axji/9YA77d577+3Dw8OtZwAs48qVK89398HWO+6EN330Dg8Pc3x8vPUMgGVU1bNbb7hTXN4EYAzRA2AM0QNgDNEDYAzRA2AM0QNgjOVeslBVzyT5apKXkrzY3UfbLgJgFctF75of6e7ntx4BwFpc3gRgjBWj10n+pqquVNXF6x1QVRer6riqjk9OTu7yPAD2asXoPdTdP5DkfUl+oap++LUHdPfl7j7q7qODgzfl28cBcArLRa+7v3Ttz+eSfDzJg9suAmAVS0Wvqt5aVW975fMkP5bkyW1XAbCK1X578zuTfLyqkqvb/6S7/2rbSQCsYqnodfcXknzf1jsAWNNSlzcB4HaIHgBjiB4AY4geAGOIHgBjiB4AY4geAGOIHgBjiB4AY4geAGOIHgBjiB4AY4geAGOIHgBjiB4AY4geAGOIHgBjiB4AY4geAGOIHgBjiB4AY4geAGOIHgBjiB4AY4geAGOIHgBjiB4AY4geAGOIHgBjiB4AY4geAGOIHgBjLBm9qjpXVf9SVY9tvQWAdSwZvSQfTvL01iMAWMty0auq+5K8P8nvbr0FgLUsF70kv53kl5O8/HoHVNXFqjququOTk5O7t+wWHV56fOsJAKMsFb2q+okkz3X3lTc6rrsvd/dRdx8dHBzcpXUA7N1S0UvyUJKfrKpnknw0ycNV9UfbTgJgFUtFr7t/pbvv6+7DJB9I8rfd/TMbzwJgEUtFDwBux/mtB5xWdz+R5ImNZwCwEM/0ABhD9AAYQ/QAGEP0ABhD9AAYQ/QAGEP0ABhD9AAYQ/QAGEP0ABhD9AAYQ/QAGEP0ABhD9AAYQ/QAGEP0ABhD9AAYQ/QAGEP0ABhD9AAYQ/QAGEP0ABhD9AAYQ/QAGEP0ABhD9AAYQ/QAGEP0ABhD9AAYQ/QAGEP0ABhD9AAYY6noVdVbquqfqupfq+qpqvr1rTcBsI7zWw+4RV9P8nB3v1BVF5J8sqr+srv/cethAOzfUtHr7k7ywrWbF6599HaLAFjJUpc3k6SqzlXVZ5I8l+QT3f2prTcBsIblotfdL3X39ye5L8mDVfWe1x5TVRer6riqjk9OTu7+yDvs8NLjW0/gdfjewL4tF71XdPdXkjyR5JHr3He5u4+6++jg4OCubwNgn5aKXlUdVNXbr33+LUl+NMlnt10FwCqW+kWWJN+V5A+q6lyuBvvPuvuxjTcBsIilotfd/5bkvVvvAGBNS13eBIDbIXoAjCF6AIwhegCMIXoAjCF6AIwhegCMIXoAjCF6AIwhegCMIXoAjCF6AIwhegCMIXoAjCF6AIwhegCMIXoAjCF6AIwhegCMIXoAjCF6AIwhegCMIXoAjCF6AIwhegCMIXoAjCF6AIwhegCMIXoAjCF6AIwhegCMIXoAjCF6AIyxVPSq6h1V9XdV9XRVPVVVH956EwDrOL/1gFv0YpJf6u5PV9Xbklypqk90979vPQyA/VvqmV53/1d3f/ra519N8nSS7952FQCrWCp6r1ZVh0nem+RT17nvYlUdV9XxycnJbZ/r8NLjt/T1Wz3mdo4/7d9zeOnxMzvXac5/1o87C68+95Y7uHtW+j6vtHXPloxeVX1rkj9P8ovd/d+vvb+7L3f3UXcfHRwc3P2BAOzSctGrqgu5Grw/7u6Pbb0HgHUsFb2qqiS/l+Tp7v6trfcAsJalopfkoSQfTPJwVX3m2sePbz0KgDUs9ZKF7v5kktp6BwBrWu2ZHgCcmugBMIboATCG6AEwhugBMIboATCG6AEwhugBMIboATCG6AEwhugBMIboATCG6AEwhugBMIboATCG6AEwhugBMIboATCG6AEwhugBMIboATCG6AEwhugBMIboATCG6AEwhugBMIboATCG6AEwhugBMIboATCG6AEwhugBMMZS0auqj1TVc1X15NZbAFjPUtFL8vtJHtl6BABrWip63f33Sb689Q4A1lTdvfWGW1JVh0ke6+73vMExF5NcTJL777//B5999tlTnevw0uOnetzteuY33/+692216RVvtC3Z9749b0u23bfnbcm+9+112412vZGqutLdR2c4ZzeWeqZ3s7r7cncfdffRwcHB1nMA2Ik3ZfQA4HpED4AxlopeVf1pkn9I8kBVfbGqfm7rTQCs4/zWA25Fdz+69QYA1rXUMz0AuB2iB8AYogfAGKIHwBiiB8AYogfAGKIHwBiiB8AYogfAGKIHwBiiB8AYogfAGKIHwBiiB8AYogfAGKIHwBiiB8AYogfAGKIHwBiiB8AYogfAGKIHwBiiB8AYogfAGKIHwBiiB8AYogfAGKIHwBiiB8AYogfAGKIHwBiiB8AYogfAGMtFr6oeqarPVdXnq+rS1nsAWMdS0auqc0l+J8n7krw7yaNV9e5tVwGwiqWil+TBJJ/v7i909zeSfDTJT228CYBFVHdvveGmVdVPJ3mku3/+2u0PJvmh7v7Qa467mOTitZsPJPncKU/5ziTffIrHXUjyv6c85522523JvvfteVuy73173pbse99pt309yX+e8pzf090Hp3zsrp3fesAtqut87f9Vu7svJ7l82yer+lqSt5ziofdkv/+2e96W7Hvfnrcl+963523Jvveddlt199FZj1ndapc3v5jkHa+6fV+SL220BYDFrBa9f07yrqp6Z1V9U5IPJPmLjTcBsIi9Pp2/ru5+sao+lOSvk5xL8pHufuoOnvJjSd51isd9R5LnznjLWdnztmTf+/a8Ldn3vj1vS/a977Tb/uOsh7wZLPWLLABwO1a7vAkApyZ6AIxxUz/Tq6rnk3z7Hd4CAKf1cpLzfYOf2d3wmV5VXUjy9iT/k+Sls9kGAGfqniS/ejMH3cjPJnkhyZO5zgvBAWAHXk7y6I0OupnoPZDka7n6K7PXe0cUANiDG/4Y7maiJ3QArOCGVyNvJnqfTfLWXH2BpMubAOzVl290wM1E7w9zNXrfm6vXTAFgb+7J1f9u7g3d1DuyVNVXknzbGYwCgDvlG0l+o7t/7fUO8DZkAIzhHVkAGEP0ABhD9AAYQ/QAGEP0ABhD9AAYQ/QAGOP/ALj+tk0kvGadAAAAAElFTkSuQmCC", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "%%time\n", + "# define task\n", + "print(f\"Running: {num_qubits} qubits, {num_layers} layers = {numgates} total gates\")\n", + "task = device.run(circ, shots=1000, poll_timeout_seconds = 1000)\n", + "\n", + "# get id and status of submitted task\n", + "task_id = task.id\n", + "status = task.state()\n", + "print('ID of task:', task_id)\n", + "print('Status of task:', status)\n", + "\n", + "# wait for job to complete\n", + "terminal_states = ['COMPLETED', 'FAILED', 'CANCELLED']\n", + "while status not in terminal_states:\n", + " time.sleep(20) # Update this for shorter circuits.\n", + " status = task.state()\n", + " print('Status:', status)\n", + "\n", + "# get results of task\n", + "result = task.result()\n", + "\n", + "# get measurement shots\n", + "counts = result.measurement_counts\n", + "plt.bar(counts.keys(), counts.values());" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### The importance of locality in circuits" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The goal of this section is to understand the importance of a local structure in quantum circuits being simulated in the tensor network simulator. We will first generate and benchmark a local Hayden-Preskill circuit, and then we will re-run the exact same circuit with the qubits randomly permuted. By permuting the qubits, we produce a circuit that appears to be have non-local, long-range coupling, but for which we know that there exists an underlying local structure.\n", + "\n", + "An example of a circuit and its permuted version is shown below. A local Hayden-Preskill circuit is generated, and then a version of the same circuit is created in which the qubits are randomly permuted, according to the permutation [0,1,2,3,4,5]$\\mapsto$[5,2,4,1,0,3]." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzAAAAROCAYAAAALh9ckAAAMR2lDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnltSSWiBCEgJvYkiSJcSQosgIFWwEZJAQokxIYjYkUUF1y4iYMOKKLoWQNaKvSyKvT8sqKysiwUbKm9SQFe/9973zvfNvX/OnPOfkrn3zgCgU82TSnNQXQByJXmyuPBg1tiUVBbpCUCAGdAG9gDn8eVSdmxsFIDSf/+nvLsBraFcdVFy/Tz/X0VPIJTzAUBiIU4XyPm5EO8HAC/mS2V5ABC9od56ap5UicdDbCCDCUIsVeJMNS5W4nQ1rlDZJMRxIN4JAJnG48kyAdBugnpWPj8T8mjfgthVIhBLANAhQxzAF/EEEEdAPCQ3d7ISQzvgkP4dT+Y/ONMHOHm8zAGsrkUl5BCxXJrDm/Z/tuN/S26Ooj+GHRw0kSwiTlkz7Nut7MmRSkyDuEuSHh0DsT7EH8QClT3EKFWkiEhU26OmfDkH9gwwIXYV8EIiITaFOEySEx2l0adniMO4EMMVghaI87gJGt8FQnlovIazWjY5LqYfZ8g4bI1vPU+miqu0P6nITmRr+G+JhNx+/reFooRkdc4YNV+cFA2xNsRMeXZ8pNoGsykUcaL7bWSKOGX+NhD7CiXhwWp+bGKGLCxOYy/LlffXiy0QibnRGlyZJ0qI0PDs5PNU+RtB3CSUsBP7eYTysVH9tQiEIaHq2rHLQkmipl6sXZoXHKfxfS3NidXY41RhTrhSbwWxqTw/XuOLB+TBBanmx6OlebEJ6jzx9CzeqFh1PngBiAIcEAJYQAFHOpgMsoC4tauxC/5Sz4QBHpCBTCAELhpNv0eyakYCr/GgEPwFkRDIB/yCVbNCkA/1Xwa06qsLyFDN5qs8ssFTiHNBJMiBvxUqL8lAtCTwBGrEP0Xnw1xz4FDO/axjQ02URqPo52Xp9FsSQ4khxAhiGNERN8EDcD88Cl6D4HDDvXGf/my/2ROeEtoIjwjXCe2E25PERbIf6mGB0aAdRgjT1Jz+fc24HWT1wINxf8gPuXEmbgJc8BEwEhsPhLE9oJajyVxZ/Y/c/6jhu65r7CiuFJQyiBJEcfjRU9tJ22OARdnT7zukzjV9oK+cgZkf43O+67QA3iN/tMQWYPuwM9hx7Bx2CGsELOwo1oRdxA4r8cAqeqJaRf3R4lT5ZEMe8U/xeJqYyk7KXetcO10/q+fyhAXK9yPgTJZOk4kzRXksNnzzC1lcCX/oEJabq5srAMrviPo19Yap+j4gzPPfdPO8APAv7uvrO/RNF7kFgH0pAFCvfdPZf4TvYmsAzq7jK2T5ah2uvBAAFejAJ8oYmANr4ADrcQOewA8EgVAwCsSABJACJsIui+B6loGpYAaYC0pAGVgKVoFKsB5sAtvBLrAXNIJD4Dg4DS6Ay+A6uAtXTwd4AbrBO9CLIAgJoSMMxBixQGwRZ8QN8UYCkFAkColDUpA0JBORIApkBjIPKUOWI5XIRqQW+Q05iBxHziFtyG3kIdKJvEY+oRhKQw1QM9QOHYZ6o2w0Ek1AJ6CZ6BS0EC1GF6MVaA26E21Aj6MX0OtoO/oC7cEApoUxMUvMBfPGOFgMloplYDJsFlaKlWM1WD3WDP/nq1g71oV9xIk4A2fhLnAFR+CJOB+fgs/CF+GV+Ha8AT+JX8Uf4t34VwKdYEpwJvgSuISxhEzCVEIJoZywlXCAcAo+TR2Ed0QikUm0J3rBpzGFmEWcTlxEXEvcTTxGbCM+JvaQSCRjkjPJnxRD4pHySCWkNaSdpKOkK6QO0geyFtmC7EYOI6eSJeQicjl5B/kI+Qr5GbmXokuxpfhSYigCyjTKEspmSjPlEqWD0kvVo9pT/akJ1CzqXGoFtZ56inqP+kZLS8tKy0drjJZYa45WhdYerbNaD7U+0vRpTjQObTxNQVtM20Y7RrtNe0On0+3oQfRUeh59Mb2WfoL+gP5Bm6E9VJurLdCerV2l3aB9RfulDkXHVoetM1GnUKdcZ5/OJZ0uXYqunS5Hl6c7S7dK96DuTd0ePYbecL0YvVy9RXo79M7pPdcn6dvph+oL9Iv1N+mf0H/MwBjWDA6Dz5jH2Mw4xegwIBrYG3ANsgzKDHYZtBp0G+objjBMMiwwrDI8bNjOxJh2TC4zh7mEuZd5g/lpkNkg9iDhoIWD6gddGfTeaLBRkJHQqNRot9F1o0/GLONQ42zjZcaNxvdNcBMnkzEmU03WmZwy6RpsMNhvMH9w6eC9g++YoqZOpnGm0003mV407TEzNws3k5qtMTth1mXONA8yzzJfaX7EvNOCYRFgIbZYaXHU4k+WIYvNymFVsE6yui1NLSMsFZYbLVste63srRKtiqx2W923plp7W2dYr7Ruse62sbAZbTPDps7mji3F1ttWZLva9oztezt7u2S7+XaNds/tjey59oX2dfb3HOgOgQ5THGocrjkSHb0dsx3XOl52Qp08nEROVU6XnFFnT2ex81rntiGEIT5DJENqhtx0obmwXfJd6lweDmUOjRpaNLRx6MthNsNShy0bdmbYV1cP1xzXza53h+sPHzW8aHjz8NduTm58tyq3a+509zD32e5N7q9GOI8Qjlg34pYHw2O0x3yPFo8vnl6eMs96z04vG680r2qvm94G3rHei7zP+hB8gn1m+xzy+ejr6Zvnu9f3bz8Xv2y/HX7PR9qPFI7cPPKxv5U/z3+jf3sAKyAtYENAe6BlIC+wJvBRkHWQIGhr0DO2IzuLvZP9Mtg1WBZ8IPg9x5czk3MsBAsJDykNaQ3VD00MrQx9EGYVlhlWF9Yd7hE+PfxYBCEiMmJZxE2uGZfPreV2j/IaNXPUyUhaZHxkZeSjKKcoWVTzaHT0qNErRt+Lto2WRDfGgBhuzIqY+7H2sVNifx9DHBM7pmrM07jhcTPizsQz4ifF74h/lxCcsCThbqJDoiKxJUknaXxSbdL75JDk5cntY4eNnTn2QopJijilKZWUmpS6NbVnXOi4VeM6xnuMLxl/Y4L9hIIJ5yaaTMyZeHiSziTepH1phLTktB1pn3kxvBpeTzo3vTq9m8/hr+a/EAQJVgo6hf7C5cJnGf4ZyzOeZ/pnrsjsFAWKykVdYo64UvwqKyJrfdb77Jjsbdl9Ock5u3PJuWm5ByX6kmzJycnmkwsmt0mdpSXS9im+U1ZN6ZZFyrbKEfkEeVOeAdywX1Q4KH5RPMwPyK/K/zA1aeq+Ar0CScHFaU7TFk57VhhWuGU6Pp0/vWWG5Yy5Mx7OZM/cOAuZlT6rZbb17OLZHXPC52yfS52bPfePItei5UVv5yXPay42K55T/PiX8F/qSrRLZCU35/vNX78AXyBe0LrQfeGahV9LBaXny1zLyss+L+IvOv/r8F8rfu1bnLG4dYnnknVLiUslS28sC1y2fbne8sLlj1eMXtGwkrWydOXbVZNWnSsfUb5+NXW1YnV7RVRF0xqbNUvXfK4UVV6vCq7aXW1avbD6/VrB2ivrgtbVrzdbX7b+0wbxhlsbwzc21NjVlG8ibsrf9HRz0uYzW7y31G412Vq29cs2ybb27XHbT9Z61dbuMN2xpA6tU9R17hy/8/KukF1N9S71G3czd5ftAXsUe/78Le23G3sj97bs895Xv992f/UBxoHSBqRhWkN3o6ixvSmlqe3gqIMtzX7NB34f+vu2Q5aHqg4bHl5yhHqk+Ejf0cKjPcekx7qOZx5/3DKp5e6JsSeunRxzsvVU5Kmzp8NOnzjDPnP0rP/ZQ+d8zx08732+8YLnhYaLHhcP/OHxx4FWz9aGS16Xmi77XG5uG9l25ErgleNXQ66evsa9duF69PW2G4k3bt0cf7P9luDW89s5t1/dyb/Te3fOPcK90vu698sfmD6o+Zfjv3a3e7Yffhjy8OKj+Ed3H/Mfv3gif/K5o/gp/Wn5M4tntc/dnh/qDOu8/Oe4PzteSF/0dpX8pfdX9UuHl/v/Dvr7YvfY7o5Xsld9rxe9MX6z7e2Ity09sT0P3uW+631f+sH4w/aP3h/PfEr+9Kx36mfS54ovjl+av0Z+vdeX29cn5cl4qq0ABgeakQHA620A0OHegXEZ7h/Gqc95KkHUZ1MVAv8Jq8+CKvEEoB7elNt1zjEA9sBhN0d1JAHKrXpCEEDd3QeGRuQZ7m5qLho88RA+9PW9MQOA1AzAF1lfX+/avr4vm2GytwE4NkV9vlQKEZ4NNvgr0XUjwRzwg/wbYl9/KxcEKiYAAAAJcEhZcwAAFiUAABYlAUlSJPAAAAGeaVRYdFhNTDpjb20uYWRvYmUueG1wAAAAAAA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA1LjQuMCI+CiAgIDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+CiAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAgICAgIHhtbG5zOmV4aWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vZXhpZi8xLjAvIj4KICAgICAgICAgPGV4aWY6UGl4ZWxYRGltZW5zaW9uPjgxNjwvZXhpZjpQaXhlbFhEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlBpeGVsWURpbWVuc2lvbj4xMTAyPC9leGlmOlBpeGVsWURpbWVuc2lvbj4KICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+Cot2I40AAAAcaURPVAAAAAIAAAAAAAACJwAAACgAAAInAAACJwAAsD1QCR3GAABAAElEQVR4AeydB9Qctbm/ZSBAuPBPQjXlEnAILWByyIGQUC8J4YDhOJhACJfeAg7NEGoIvRfTezPg0DsELsV0AgZMMJiOaTbFgDG9w/z1G6JBOzuzO7M7uzu7++ic75sijfTqkVajV3qlGRBYZ3AQgAAEIAABCEAAAhCAAAS6gMAAFJguKCVEhAAEIAABCEAAAhCAAARCAigwVAQIQAACEIAABCAAAQhAoGsIoMB0TVEhKAQgAAEIQAACEIAABCCAAkMdgAAEIAABCEAAAhCAAAS6hgAKTNcUFYJCAAIQgAAEIAABCEAAAigwJa0DX3/9tZkyZYqZZ555zPTTT19SKRELAhCAAAQgAAEIQAAC7SXQMgXmm2++MdNNN117c9Pm1J5//nnz4YcfhqnON998ZuDAgYVI8M4775if/exn5q233jKbb765GTVqVCHx9nMk2i18wIABbUXw5Zdfmqefftp89dVXFenOPffcZoEFFqi4xwUEykCgE7+TMuS7LDLQZpSlJJADAhAoO4HCFJhHH33U3H777eaRRx4xDzzwgJk8ebKZbbbZzIUXXmh+//vfl51Dbvn+8Y9/mE022SR6bo011jC33nprdN3MyYMPPmh+9atfhVEMHjzYjB8/vpno+vbZF154wZx++unm4YcfNvfee29YH5dbbjmz0UYbma233rrlCvaWW26ZqHzqd/HBBx/0bbmQ8WIJaCDlzjvvDNsf1XPV+WHDhmVKRDO9F110kbntttuM2p0XX3zRLLrooubXv/61+fvf/24GDRqUKR4CFUOANqMYjsQCAQj0AQF9B6YZZ1+AwZFHHqmPYSb+XXDBBc1EX9pnx4wZU5HflVdeuTBZH3vssSjuZZddNle8O+ywQ7DiiisGr776aq7neimwHcUMDjvssIhhUt1UeX300UctzbbtAKbK0NKEibwvCJx22mmBncmrqmOHHHJIpvw//vjjgVXoq573fy+XX355priaDTR27NhAbd2xxx7bbFRNPd/p9pM2o7L4pk2bFqy++urBhhtuGKivgYMABCDgCBh30shRjcu6664bvQCtaUywzz77BPfff3/w3HPPBZ988kkj0XbNM+oo25H8MP9FKjCffvppsPHGGwdDhgwJLrnkksw8Pvvss6gsrrzyyszP9VpAO+sXcVBnbI899giuv/764Iorrgg7Sa6DNnz48JZn3ZqPBe+9916g38pxxx0XydXyhEmg5wnYmZKoPqntdfU6qwLjPyPl4ayzzgrsTEyw//77R3EpTjvD03KWBx10UJim8tQpV5b2kzbjuxpgZxajuvjGG29858EZBCDQ9wSaUmBGjBgRNS7qbH/88cd9B3THHXcMGRSpwDQKUQqj68SMHj260Wi6/rmTTz454iBl2ndiZM1iIv92vhTPPPPMKF1fJs4h0AiBZ555JtBAhVMw3G8/qwLjwluTykCDJr47//zzo7q60047+V4tOT/ggAPC9DSj1ClXxvaz39sMa5Ye1cOXX365U1WDdCEAgRISaFiB0UvTvQDt+o/giy++KGH2Wi9SLyowmlmya5iChx56KJxN07mbvrfrSgK7cUHrwTaRwhNPPBGoTl533XWJsZxyyilR3b3lllsSw7TiZjOdEbspRvDSSy8F48aNC+66665gwoQJHRswkOmdzBxlRqlOhasbzTJ77bXXArt+rm6+ur1+Nssp7XnXHmdVYDRbrpnepIEnlaldqxX+TlZYYYW0JAu7X6QCo5mUp556KvytaPYzqytSgXnzzTcDu3YxuOeeewK7LjSYOnVqVjEqwjXTZlRE1MELu94vePLJJ8N3iQaU9DtXe5bFFanAKE2ZVmtWR2UiufI4KfkTJ04M86Hn7WY74eOaMVP+dMRBAALtI9CwAiObVPfClC11p5wUKc0EaQZEL1yNruulfOmll4YiyX7WySmTCXXA9cKWyYR/Xy8v5+yGBFW25bvuuqvzrjj6Cow6VmeccUZgF/cHMoVQepqZkkmG3RK54rn4hV1IG3UYnFw62gW58aBV13ohqAGVwuGeVSdGHXn/T51emTKlOTXQhx56aCi3i8c/OpOVMsw2peUhy32ty3L5ymOilyXuWmEa6Yy8/vrrwXbbbZdYN5SHLbbYIrFuqdyT1kcsueSSFYMNMgF1HVXHRGuo4kqJXv4XX3xxxeyVC6/j9ttvn9pJu+GGG6rq1G677RaiknKs36+rWy5OrQWIu07XTylu+o1Jycr6ZzeQCNQutMM5dlkVmHoyORMztamtcGpzNYukuupMcVUX/TbLnaudr9XpVefx7LPPrqpHYqJ8qI6ltX1FtZ8axDv44INTfyP6XUnxz+MaaTPyxF8rrN7ranvcu9JuKBNsu+224btGZrqu3dBRs95xp3dw2horlcnVV18dfyS8VllKUdD7Su9TV69vuummqrqh997nn3+eGI+7qfJVn8DF4x/V7tx4440uaOJx0qRJgdZG+c+5c+XD/U5kBomDAATaR6AhBUYvAvcDliIjp8ZbLyNfEWhlNvQy802FnDz+cb311ovkdPc1+vL2229X3VeD6ZzWSrjw7qjGO8k5BUadRV9Zcs+5oxr5tAZb8aYt3tT6jVpOi2xdGlmOkiOtQ+WbBCoup4TF41Uc3ez8eqE62y7XSGdk6NChdctXnYT46N8dd9yR+pwbOVS+k5Qclbe/wYFGj2vVbVc/VC/uvvvuKpz+jJcLq3zpt6hn3L34UR0P33W6fqZ1guJyx69POOEEPxstO3fpFqHAaBDHxbfpppu2RGbflNOlVeuoTQuSnN05LbWj7MenuqZOsO+KbD9Vzn56aefxeu3LEz9vpM2Ix9HI9VFHHVUzL/HfbbyOaIYiLf/+/STlQWsT/TD1zjfYYIPULGpgsN7z8pcZZdJ7UcpRXAlTXyCef8Wh9gEHAQi0j0BDCoz/cjv88MMDNSB+I6GRJk2ft9Kd79loK23NCuy9997hn859eXSukWr7TY5IJJ0fccQRUTjNzDgnZUydq5tvvjnKm0auk5xTYPz0Nt988+Ckk04Kd2eTKZPvJ/OfJCfFT35KU3+uY1lPgdGiWz/+eudSSpIaao0ou2fXX3/9cJrfyakRKN1z/mq8u9X5vFZbbbW2ZqORzshWW20Vctdv6tRTTw1HcFVXNDK95pprRmUipdt3UvA1W7DWWmtFYfbaa6+q3elUtv5LXi9hzYr4zv99y5xIvw036qmwO++8c5SGRiNlPuM7zZyoQyP2SYqQ6pM6LZLD5Vfp+LNAZaifSb9195uoddRodTuck6FZBUbKsOqbiy9JKS0iP34aLq1ax6TZ0ngHU+206pmUbv1ONOMRVzzdmiHlwW8PaqXt/NLaT8XlNg+RYqYykPmYBgL0G9GMo4tD9Sira6TNyBp3WjjNnDhZddS7U+9KDbKJr++n37vdfrvKDFHvV4XTb1vWC5qF1cDhu+++G5x33nlRHOIZdwceeGDk76eVdq5ZoiTn91P0rGZI3JpHmRlKefKVaM2exZ2vyKmv45udqU2SMuPkkhKEgwAE2kegIQVGC0fdj7bW8dprr21JTtTp8kdAkrb6jM+iHH300VWyqCPm5PcVGD+gs83OosCoMdcahbiT6Y1LRw2mP7odD+uu3bR9PQVG4fWiVsOqjqNLRy8+3Yv/ufjjR+1A5J5Nm5VQA68waSzicZbt+pVXXqmoN3rBtdM10hmRIpJm+qKZFFdm++67b2JWNJDgwqQpbHvuuWcURox8549QS/nQiz/JuV2klJY6PGnOmQo5mTRyG1+DIQU7bi5UlvqpjrG4Z/1LK7s0Ps3cd0ybVWBUl1xcGrholZOC6tonVwfVhrp7/jGt3rk2SfLKXNcp1nGZNaDk8hRf01NE++nSUwc9yak+O4VNI/pZXSNtRta4k8JJfvduVVlooMR3GtzTO8mxTFJAXPj3338/cbBM/r7FQdKaSt1T+asP4dKSSZtfJ3Qebztc2uIt2dyz8Zk3F06zYcqnC6fdU33nlF+FSRr40+CM6p2e1wwxDgIQaB+BhhQYf1RCP1w1FBphkb236/DrvhrCRhcv1kIwcuTIqMHR9z7S3DHHHBOFa4cCU0thcy9ocakVzuUljwLjntGLWPHrL+8uZFrM7p5VQywlJqnBth/KCzq55snlNe9RHUl/tKxdZj2+nI12RtQp06yc1kPtt99+4YtSo5Qa8XUvX2fK6afnzv31ahoV9p1GJF25J40MazbR+fsj134cOlfHxu/4xP3dta/A5Hnh93r9dHyaObpyakaB8deHaRa4Fe13Uh7de0Np5nH+b7qWaZY6tP7sX9J3spppP32ZNTIvCwEpV5p90G9Wv103Y6rfSVbXaJuRNf54OP93lvae0nvBmVXVUmAUt9oMDeCpz6Dfu2aBtZ28zl191VqXNNfoIn6l6+KvNaCidH3Tv/hsqcrOxaM1Vqpj/sywnte1zMPrrXNVWBwEIFAcgYYUGL/xUWPs29RLNH2MzP3oNe1atFOD5OJPG/FSmhqhceFarcDUeyn5DWrSVHWcUbsVGO3W4zrDjpk7qlOh0UMt1JYCE2/A47KX7Vp506iry4/qT3yEvx0yN9IZkd1/Wrm4/OiodT1pTh0EF1Ymjb7zR1M1sxl3vomFOou1/lwaOr711lvxqMJrp8CoPuUpgzLUT3XuZOKmWaOsf8qvdsRqh3P8G1VgZKLl4tAx74LzZvLYiALjr8XUKHg95//+kkbkm1VgZI7m2m2fY9J5PVmdvy+zu9fKo//uTpv1UvpuEDNNgdH7zl9rmMTA3as1E96oAhOvy7XaLTfwInnigyq+6aqTV0c9o7xrVlub9KRZLbSyrIgbAv1OoCEFxjVe+iFr3Unc+S+CWgvs4s9lvfZfEvWecZ2/ViswcbOEuFwatXINoKal6zmXxywmZC4un3veGRjFIXMBN7LmZE06al1F0uyMk6NMR3VyfOVF9bFTsuftjMQXv6vTrxesdorTSKY/olxLgVF5qMPtytJ9G8effUnaZU9rIdwzeY8aPEhyToHRIv68rtP105mK5GXRqEKRl4+Tq5H04h0+V0fyytBo+EYUGHUaXZ6T6m9cFn+9S9Lujs20n9pS3MmioxR/reuSaaXMpWSK53eU47KlXedtM9LiyXpf73OXj1rPOLmSFBjtnOjeu4pL+dagkTiIhwYB3BpP+bdCgdHAqctHnmPS4KLMaH150+KrZQ1SiyV+EIBAYwQaUmB8u3h1spKcGjb90DXyUbTzOxJpNrBKU36usamnwGjEKMk5e/C0dR9uYa8a7FpOawucLDInq+eaVWBkwtCo00i8tq/UwlPNusiMyO8sKx+aTi+706JRx1Eyq5OfZiPfjry4l75kqeckp6svenmmbYrhfgv1FBi/sycFVM6ffUkzv3EvbtVvddLq/d13331VmwD4eW1GgXHxdKp+atRegw95/vTbqWUi4/JUxNHVl7wKjL+oWnGkbTRShIxpcTgFpl476j/vKxxZFOJzzz03+k0lbQjgx5e3/fQHSfR+TJpdlOmUKyM/H7XO87QZteLJ6uebEKa9ExWXtlNWXpIUGH99iwZakmZy/C3/syowteSJ58/fmERKWb12S+thtdGITGHTnNrgI488MjQL1HtR7YD/fhEPf6OgtHi4DwEIFEOgfk8qIR3tOuIaYtniJzk32uQ6S0lhGr3n26XGbVb9OP3GOEmBUWfL5UPnSc5tY1tPgVE8Mq9Kc76drWyC6znXMOaZgfFnefSyzOP0EtHsS63Oiz4M6XipI1rPaa2MFFi95NxfWke8Xlx5/WW7r7SdvHrZ1Ho55Y2/kfB5OiP+NqRJnS2lr06SM/Gqp8AovNvhS0z8xbG77767vBOdq/96Rotym3WNKjCtqJ/N5qVsz7u6nkeB0UCEe05tdrtnXhxDzSo6Ody9LEe1y3pOsmvAopZzyr7C+9vmu2cabT/VrjjZ1bFNc9oty4VLCxO/n6fNiD/byLU2oXEy6htRSebCvvKRpMC4wS61TWnO39imlgKjNXtOHqWb1SlO95wUqkadFCHlJ2nNlIvT32FO4XEQgEB7CDSkwMi0RA2XGgiN0GonDt9p203XeGSZbfCfzXIuRcHFrxeXOntxp8bOKVEKm6TA6CviLp4kRcy3f82iwKjBTlpH4Df4Si9ttNvPQyMKjJ53+dHHNJOcpvc1uhhXVJyCJWZpI13+izqLaaBsg508OirupB1nkuRs5p7WS/imcBotjH8nRS9GdShUB9rl8nRG/DouhT3u1Nny16JlUWC0055fHu7cbS0aT0PX/u5N9RbDysRLJhhp3+tQfI0qMK2on5Knl5wrz6wKjD9Krd9mfAdF/d7Vfqvettr55pJJ6wn0+9UouWaG9ft2zh/t1za28d+5C6c2z/FJ6nS7cC5MnvbTny1NMyWWSa+LW8esLk+bkTXOeuGkuDhZtcZDSq3Wmup7O/FvryWxdAqM4khSKqVc+CZmtRQYrcNyspxzzjmJoqvdUZvjv7c0m+a//2utQ5OlhspHs0XxXcjcAI7Md9PMYn0lS1vd4yAAgfYQyN6SxuTxR1DUeXK71ajBcaPCanhqNU6xKHNdOtMt17ipk6oGTiOKrpPk/HRMUmDUCfQbOXXW1AjqBeo6TC4ONbh6wTtlTSNTCusaOBdO8akTd9VVVwXaytn/RobCyFwj7qTQ6CXh/zmGUhT8+zqvpQD538DR7JQUKiliWpzpfxNEcvrO39lNcoqjvzmDmGh00eVT4es536xCz7ViQ4ckGfxdt5Suyl759/+cAp53piopvbR7YuaXna9w+Pd1Hu+0qcPgWOuoTqkUdf2e1Ilz8rswYj127Ni6O+H4Zahn9dKu5dSJdcq0wqtzI4VcL339BlQXVaf9eqdwvmmnvoPh8ut2YpK87p47qiOS5lpRP9PS6pb7Yq8yd/xcXZCiqXv63avjlmQ26W+vrec0Q+n/PnTut11JJlFFcpJy4uTXRhOqC5olkTnWTjvtVLEGwe8kqj12szB6Xh1N5Vv1T+272uj4V9TjipqfD78e52k//d+IfmNafK6vxOuTA36H3uVRMibNAjXTZvj5aOZcv1f/vehkTjomKTD+jpsqS5Wh8qU1SP4ssItP722Vt8or7jTg5cJpsFT1RO80bagh5dXnHh9Uu+aaa6JnlR/VG/1m1G6pfqgM1Cb7eT3ggAMqRPCVOb2TlQfXtkletYX+e047seIgAIH2EGhYgdGPV4qLa1x09BsCXWdZWNloNtWw6aXrpx8/9z++mKTAKO3jjz++ZhzxOKUoyfmjly5MvFPp7rujzMHiHQEpfs4/67GWnbg6LlniUafAd/5Iu/+80oqXq/JZ7/sWMjfy49F5rR3jfFmaOffXGsXTT7pOWszbTPruWX/BcFK6Sffio39SLpLCuXsqF7/zpvu16oZk82cdFT7L1p/qiLm1MC7tWkdfUfU3Cqj1jPNLG/Aoun66curWozpRjlm9o9q4uEvqSKbFo3rWaqf3SXzgIUkeyRJfZyAlrV7b6+KqZ+LTaPupjyK6NNKOUq7ifv73x4poM4oqJ+0imFYeapcOsB195SVJgZG5VfydEc93klInk+8kF5/1icflrvUBzrjz1/m5cGlHtaV+eSiu+ACle1btrDt3x7RZu7hMXEMAAsUQaFiBUfKarvdHW9wPWUcpDGnT+cWI/m0s+v6MRl7cjIWOUmzcOhPX8UpTYPTi9L8X4/KghlmjPP4Uvvy0A5tc/EWndKSMSJZ44y1zpvj3N76VPghHR+OdUCdD2lGjhLWcRoF8EyoXj9jIHClpe1TNGLlw/qiWu+eOsvdN2yLXl8n/noCebcYO2Y+33rnKMynvTv74Ma3DXC+dev7qZMXrQTxt/1ovxPjMmkbOXUfBD6t4Ncso8wx/m1GF0QxHLeebke2zzz61glb46eOrCu/L4Z+rzqijIRNF38mUw/02/fBJ52IQ70C4uIquny7ebj2qnvtrvJJ4unuaCY47fyMWFy7tqPa0HU55UvuS1DnUYJmUjzQTVC0Ul+Kc9ptTHjSzkMU10n4qXq1VS5JdsxBaD6jBAt9f7wzffLOINiNL/vKE0e9ZbYzYyzTcDUJp3Zzqi95dSU4Mk94jCu++L+NmYxWPyk3vjDQnE8AkJVVKoawlapWt3tVJsrj6rrb0jjvuSOyvuFlIlVtS+opDfmr7NFuNgwAE2kdggJKyP8KmnO3cGNsRNHYE2djOirEvVjPnnHM2FWcjD9upYTP99NNXPPrf//3fxjZuxiowxo7GVPj5F/blaezovbEzB2bBBRc0c801l++d69zOshhrL2zsS9XYRs/MOOOMuZ4vKrDypDKRPPZlaX70ox+lRq1qoDKcf/75zcCBA41tjI01cTDWjMwMGDAg5CGWs8wyS2ocvofdvc0cccQR0S378ja2oY+uOclOQHVS5aiyUH1aeOGFzXTTTZc9Ai+kfVkba/IV3rEKUO7fqeqJVbSMNc0x+r2pXulv1lln9VIp/rTo+lm8hMRYJAE7SGLsSH7YZsw333xmhhlmyBy92hrVT6s8m0UWWcT8+Mc/rnovZIksT/vp4rODDmHaepeovVx88cU71v47mVpxtLMzxirGxioGxprkJSah985LL70UvkfUPiy99NLGKiqJYbPeVF9DZav49K7K+j5S/KoPdoDEWBO0sN1T+cwzzzw164Y1UTTW3DLs0ygtuw4mzJOOaoMlg9q/PPUza14JBwEI1CZQiAJTO4nO+mZVYDorZe+lvvzyyxs7ChdmzI6qGrvWpPcy2WU50otfCpCc3WDB2G8ydFkOEBcCEOg0ASmIGuSSszu7GWs+12mRSB8CEOhDAigwfVjorc6y3SWoYrZHM2AaqcJ1lsBmm21mrClIKIQ1dzSzzz57ZwUidQhAoNQEZEnwve99L5yx0AyGNYUzf/3rX8PZegluN3sx22yzTanzgHAQgEBvEugpBcYubDX/+7//G04Ru+KSWZScpq5XWmklM2rUKEyZHJwWHa3ddKSw2B15jF0o36KUiLYWAWu/baz9dxTE/RZ0w9qOG5mTbbnllpE/JxCAAAQcAbvzYThT667jR7vW0Nh1Meb73/9+3ItrCEAAAi0n0FMKjN2KMbRVrUVN092a9sa1loBd7Gns14/Nb3/724rZmNamSuyOgN1AIxw5dddJR7sZhLGbSyR5cQ8CEOhzAnZzG2M36UmkYDdMCGdiNDuDgwAEINAJAj2lwGihr919zMiEKcnNMcccZtiwYT25qDIpv9zrbwK33npruOA1iYI2u/if//kfs9hiiyV5cw8CEOhzAhoEue+++8JNcGTdoM0QtIau0U0R+hwn2YcABAom0FMKTMFsiA4CEIAABCAAAQhAAAIQKBkBFJiSFQjiQAACEIAABCAAAQhAAALpBFBg0tngAwEIQAACEIAABCAAAQiUjAAKTMkKBHEgAAEIQAACEIAABCAAgXQCKDDpbPCBAAQgAAEIQAACEIAABEpGAAWmZAWCOBCAAAQgAAEIQAACEIBAOgEUmHQ2+EAAAhCAAAQgAAEIQAACJSOAAlOyAkEcCEAAAhCAAAQgAAEIQCCdAApMOht8IAABCEAAAhCAAAQgAIGSEUCBSSiQIAjMgAEDEny41SkCZSiTMsjQKf6kCwEIQAACEIAABMpCoGMKzAcffGDOOuss89Zbb6WymGeeeczWW29tfvjDH6aGKcLj/fffN6eeeqr517/+ZR5++OFQpuWWW8789re/Nfvss4+ZbbbZikgmdxzbbLONufzyy83PfvYzc+yxx5oVV1wxdxyNPPDVV1+Zf//73+aOO+4w//d//2eeeuopM3bsWLPQQgs1El3Dz7zxxhvm5JNPNrfccot59NFHzeqrr27WXHNNs8suu5iZZpqp4XjzPKg6cfbZZ5t77rnHvPjii2FdUN3YYYcdzB/+8Ic8UREWAhCAAAQgAAEIQKAAAk0rMI8//ri59tprzTfffBOJo47uFltsEV0nnfzzn/8066yzTpJXxb0zzzzTbLfddhX3iryQ7H/+859TFakFFlgg7EAvueSSRSZbN657773XrLLKKlG4kSNHmhEjRkTXrThRGapjfskll5gPP/ywIom77767Qp4KzxZcTJkyJUzvueeeq4p96NChoWI344wzVvkVeUO8TzjhhNQoN954YzN69Oi6s3WfffaZOf30040UZedmnnlms9lmm5n55pvP3eIIAQhAAAIQgAAEIJCBQNMKzO9+9ztz2223VSX18ccfm1lmmaXqvrvhKzCDBg1ytyuO888/vznjjDNMq5SHiRMnmkUWWSRKc4MNNjDDhg0LR9kvvvhioz+5wYMHm4ceeqhto/6aAfnFL35hpBw61w4FRjMefodaM09OkWmnAiNFSrMcmnWR23777UMeUjZVb9w9KQWtck8++aRZaqmlwujFYaONNjJrrLGGmTp1qtlzzz0jLppF3HbbbWuKobrzy1/+sirMfvvtZw455JCq+9yAAAQgAAEIQAACEKhBwNr1N+VWXnnlwEYf/p100kmB/m688ca6cSqMe65u4BYFsB3kSAY70l6Vip1FivyvvPLKKv9W3TjttNPCdK3iFNgZoPDcKjCtSq4iXmsqFZafnQEJfD5WgakI18qLO++8M+K+xx57REl9+eWXgVUiIr+333478iv6xM6aBFZRCU455ZTgk08+qYj+mWeeiWRYbbXVKvySLiT3BRdcEP42DjrooOjZ3XffPSk49yAAAQhAAAIQgAAEahAwNfwyeTkFRh3tPK4MCoydJQqsOVJw8MEHJ4r+2GOPRZ1NO1qeGKbom+qU2xH/MF07sxXY2anwvF0KjJ+fTikwm2yyScQ9rjyMHz8+8ktSOn35W3lu1+KEcqis8ji75iuSHwUmDznCQgACEIAABCAAgW8J9LUCU68SvPDCC1Fn05ox1QteiL9dgxKmOWTIkDC+flNgrPlcxHz99devYmrNy4K55547DGM3Najyb8cNyeDKRTNCeRwKTB5ahIUABCAAAQhAAALVBEqhwNgF68Hhhx8eSEnQqPRFF10UTJo0qVraNt+xO2BFnelzzz235amPGzcuSm/ChAlheq6j3C8zMG+++WbEQOZbSc6Z9kmRabeT8qL66cwfjz/++FwioMDkwkVgCEAAAhCAAAQgUEWgFAqM6wzGj+eff36VwO26oY60M+XS8d13321p0l9//XWgGQUxGD58eJRWvykwvomY3UI64uCf7LXXXpECofUl7XDPP/98YLeyDuzmAlHayy67bJB3HQ4KTDtKizQgAAEIQAACEOhlAh1TYLS+w1dY7E5jweabb17RQZT/eeed13b+n3/+eaDF2U6+tJmAIgXzR/WlPDnXbwqM/eZLxF11JMkdffTRURi7c1pSkMLvOeXS1Qmt+dIaqrwOBSYvMcJDAAIQgAAEIACBSgIdU2DUSV9rrbWCI444IvA77BJPO365jqJmP9rVSVXamgmxH8+M0l9vvfXCe/JrlbPfB4nWdRx55JEVyfSbAmO3So7Yp+18psX7rn689NJLFbxadSHFSkqMm5VT+osuumjwwAMP5EoSBSYXLgJDAAIQgAAEIACBKgIdU2CqJIndOOqoo6JOqragbYfT+oYdd9wxSlezQu+9917Lk95///3DNLWmIz6q7ysw2pFLi9zb5TqxC5kUAqecXHfddYlZPfDAA6MwcV6JDxR4U6aEe++9d5S+FBopoFkdCkxWUoSDAAQgAAEIQAACyQSa/pClvhavr8bri/V24b3texbj7KyMmXfeecPI7LdAjDUbKibilFis8mJ22WUXY83FwhB2dN3Yb6KYeeaZJ+WJ4m4rDduxDRmus846FRHrQ55ydr2FmTx5srFbDJvjjjuuIkyrLv7973+H6Sr+dn3I0s6oGKu0hVmya6CMXbAfnvv/dtppp7CcrPJgPvjgA9+rbedOBiV4ySWXhB+6zJK4XTNjrKIaBrUbVhi7ribLY4SBAAQgAAEIQAACEHAEkvWa7Hcb/Q5MvRS0ONvKGP7puyCtdErLNxvTrMdrr73WyiQr4nb5zHLUAvZ2uU7MwGhGxXHwP2Lp59nVOc2Qdcr5H9s85JBDMovBDExmVASEAAQgAAEIQAACiQRKOwPz9NNPG9tBtX1ZY+wWy2afffYJz4v+Z9e8mG222caMGjUqjFppjhkzxgwcOLDopFLjGzFihLEfzUz0v+uuu8L7muFaYoklwhH7wYMHJ4Yt+mYnZmCUh5/97GfmqaeeCmdiJk6cWJGtadOmmdlnnz28t91225kzzzyzwr9dF//617+MXRMTJmfXcRlrVpYpaWZgMmEiEAQgAAEIQAACEEgnkKjW5LjpRsO1K1ORTovnrdThX9puVM2mpzUv7sORSkvb4r7zzjsV0b7yyivh92msIlFxv10X/hqYdqXp0unEDIzSPvXUU6Oyt2Z8TpzweNJJJ0V+Dz74YIVfkRdjx44N7r///kB1JMltuOGGkRxpmw0kPccMTBIV7kEAAhCAAAQgAIHsBDoyA2N3FTNDhw41WsPwxz/+0dhva4SzCzPNNJPRiPu+++5rrrjiilDr0ii3ZiFmmGGGdC2sQR+N3tuPZ0ZPK103uu9uau3HDTfcYIYMGWJuvPFGd7ulR80K2Q9ZGmtOZawiF66PsYqW0Z9miKaffvqWpf/ss88azXJoTZBmQbbddtswLas4mF/84hdh2nPOOaf5yU9+0jIZ/FkWrRdR+S+++OLhzJj98n2Yrjg8+eSTLZHh9ddfN/PPP38Yt2a7NtpoI7PqqquapZde2rz88svG7hRnLr744tBf63Ukx8wzz5xJFmZgMmEiEAQgAAEIQAACEEgl0BEFRh1jmQnVc1Jw7IcNzcILL1wvaEP+//3f/x0ujM/ysB1xN5dddlmWoE2HGT16tNl0000T48mzYDwxgho3b7/9duMUhBrBQq9HHnkkVGjqhWvU/x//+Ee4YUHS86oXUmq0sUErnN3pzSy22GLmxRdfrBu9TP+WWWaZuuFcABQYR4IjBCAAAQhAAAIQaJBA9sma5JCNmpDpw43OPMqKHpnjuHO7+1Tur5wnS5h+1+4CVZWuSz9+POuss9IjKtjHKhKJctmOe2DX5xSc2nfRPfPMMxXfOYkzcNfa7llfpm+1s7uQVXFQ2q00HXN5mjp1arildlodXXfddRtigAmZI8wRAhCAAAQgAAEINEagIzMwtiMcOZkLyVxKpksDBgww2r5Y5kJzzTVXFIaT/iXwxRdfmIcffthoe2WZcy211FJmuummaysQzZqMGzcunK3TbOBPf/pTs+CCCzYkAzMwDWHjIQhAAAIQgAAEIBAR6LgCE0nCCQT6gAAKTB8UMlmEAAQgAAEIQKClBFBgWoqXyCFQSQAFppIHVxCAAAQgAAEIQCAvgcIUGCWsxdVyMvXRIutW7BwWJsA/CHQRAe1c9pvf/MZIeZH78MMPw6NdgxV+1ye84B8EIAABCEAAAhCAQCYCTSswf/3rX81xxx1XkZi2vp08ebL53ve+V3GfCwj0I4EXXnghXDcTz7vdyCJ1p7V4WK4hAAEIQAACEIAABL4l0LQCo2g++OCD8LshDuqss87K7IuDwREClsBnn30W/jkYM844o5llllncJUcIQAACEIAABCAAgYwEClFgMqZFMAhAAAIQgAAEIAABCEAAAk0RQIFpCh8PQwACEIAABCAAAQhAAALtJIAC007apAUBCEAAAhCAAAQgAAEINEUABaYpfDwMAQhAAAIQgAAEIAABCLSTAApMO2mTFgQgAAEIQAACEIAABCDQFAEUmKbw8TAEIAABCEAAAhCAAAQg0E4CKDDtpJ0jreWXX948/PDD5vXXXzfzzjtvjicJCoHWE6B+tp4xKTROoAz185///KdZZ511zIgRI8zIkSMbz0yTT+69997mqKOOMldddZUZNmxYk7HxOAQgAIFyEECBKUc5VEmx2GKLmeeee85MmjTJLLDAAlX+3IBAJwlQPztJn7TrEShD/bz66qvN+uuvb7bffntz+umn1xO5Zf677LKLOemkk8wll1xiNtpoo5alQ8QQgAAE2kkABaadtHOkVYYXcA5xCdpnBKiffVbgXZbdMtRPFJguqzSICwEIdBUBFJiSFlcZXsAlRdOwWEEQmAEDBjT8PA9+R4D6+R0LzspHoIj62Wx7UZQC06wczMCUr34iEQQgUAAB2zjiSkhg0UUXDWzxBtaErITSdY9Idh1RYE04AmuGF8w222zBBhtsEFhTiu7JQEklpX4WUzBTpkwJLr/88mDbbbcNBg0aFOy+++7FRNznsTRaP8eMGRNst912wbLLLhu2v3PPPXew7rrrBnfeeWduonbNSRiH2p887ssvvwzrxJAhQwKlr/eA2q/11lsvePTRR/NEFYbdeeedwzho93Kj4wEIQKDEBHLPwNx8881m7NixuVSnH/7wh+Yvf/mL+d73vpfruX4OXMQIYj/zU97/9a9/mRVXXDERgxa17rnnnol+3KxPgPpZn1GtEPfee6/Zddddje2QVgRbbbXVjO0sV9zjIj+BvPVz6tSp4WL7iy66KDUxq1yaY489NtU/7tHIDMy0adPChfZ33XVXPLro+owzzjB//vOfo+t6J8zA1COEPwQg0JUE8ipXNpPhaE7e4/333583qb4O3+gIYl9D8zL/6quvRvVUMy8HHXRQcPLJJwdLLrlkdJ8RSQ9YzlPqZ05gseA77rhjVA/9ttQqMLGQXDZCIG/93GqrraLyUHtxzDHHBLfccktw5plnhjO3row0W5bVNTIDY5WTSA7NyNkdxILrrrsu+Pvf/x7dlyzjx4/PKkbADExmVASEAAS6iIDJI+sXX3wRNaKDBw8O1lhjjfBv5ZVXju7rxeHu6+ga/ptuuilPUn0fNu8LuO+BxQBIYXF174Ybboh833jjjcgsQ2YiuMYIUD8b4+aeevvtt4MrrrgiGDduXCCToaFDh4b1FQXGEWrumLd+yjxL7YWee+211yoSf/rpp6O2RP5ZXSMKzIsvvhhIuZXS8s0331QkdeGFF0ZyHHLIIRV+tS5QYGrRwQ8CEOhWArkUmI8++ihqQDU65Zyd9o7uX3rppe522AC7TqSdTo/uc1KfQN4XcP0Y+yeEOoTOdnzNNdesyvipp54a1Vd1IHH5CVA/8zOr9QQKTC06+f3y1k8pk2ornnnmmcTEnIKj99mHH36YGCZ+sxEFJh6Hf612zb1PN9xwQ9+r5jkKTE08eEIAAl1KIJcCY+2EowbU2nBHWU5TYBTANbjdYK6jF4QUs0MPPTR48MEHq0bAogy34STvC7gNInVNEg888EBU70455ZQquV944YXI/4ADDqjy50Z9AtTP+ozyhECByUOrftii6+cWW2wRtRkyT83iilZgfLPYww8/PIsIYRgUmMyoCAgBCHQRgVwKjKbWnULyyCOPRNmspcDInljPnHfeeVH4Mp589dVXFesjJPPmm2/eMVGLfgF3LCMdSNh1HFSGjz32WKIEboZGHRNcfgLUz/zMaj2BAlOLTn6/Iuvnxx9/HM3oqt2Im3alSefaoby7kCXF9+mnn4amZUnv36Tw/j0UGJ8G5xCAQK8QyKXAyD7XNaATJ06MGNRSYNyiabu7SxS+jCc33nhjlDeXRx21ZqITrsgXcCfk72SamnVxZRi3Z3dyuW1StU4Ll58A9TM/s1pPoMDUopPfr8j66S+gz7P2pAgF5p577gk3IHEDLmrXNOjy9ddfZ4aCApMZFQEhAIEuIpBLgZGJlRaZqtOnGQvnaikwMtGRElP2tQa33XZb1Ol1nV8dn3vuOZfNth6LfAG3VfASJLbffvtFZanR0yS31lprhWHEGZefAPUzP7NaT6DA1KKT36+o+qnNZ9z7QEpE1vUvkrhZBUZpubTdceutt84NAwUmNzIegAAEuoBALgUmLT+1FJi0Z8p2XwqZPhbmXhQ66gNmnXJFvYA7JX8n0x0xYkRUjlK6k5zrMKrMcfkJUD/zM6v1hKuP7EJWi1J2vyLqp7Yq9t8HWheZxzWrwCito48+OvqoppNF76W0meUk+VBgkqhwDwIQ6HYCKDBeCX7wwQfhV9p32223cDG/to3ulCviBdwp2Tudrv1IZdTxeOeddxLFsR+4DMOssMIKif7crE2A+lmbT15fFJi8xGqHb7Z+PvHEExXffzn//PNrJ5jgW4QC46J9/vnng/XXXz9q15J2V3Rh40cUmDgRriEAgV4ggAJT0lJs9gVc0my1RSytt3KjlXrxJznHd4MNNkjy5l4dAo7fpEmT6oTEOwsBFJgslLKHaaZ+xpWXk046KXvCXsgiFRgXrcuX2resu6GhwDh6HCEAgV4igAJT0tJ0Lyo6iPkLyF/P5H/E0sXkf89I5ma4/ASon/mZ1XoCBaYWnfx+jdZP7a7pds6UknDMMcfkT/w/T7RCgfE/0Hv33Xdnkg0FJhMmAkEAAl1GAAXGK7Drr78+cIu7N95442Ds2LGeb3tPG30Bt1fKcqb25ptvRjMww4cPrxLSX5h78cUXV/lzoz4B6md9RnlCoMDkoVU/bCP1M6686IO3zbhWKDBHHnlk1Lbdf//9mcRDgcmEiUAQgECXEUCB+U+Bvf7669GLwZkf6SWYdc//osu9kRdw0TJ0c3wyDVM5ajT17bffrsiK+6q2/NJ2Kat4gIsqAtTPKiRN3UCBaQpf1cN566cW7PszL0lrXs4666xg9913D7KujcyrwLgPKaftfPn+++8HgwYNit5TWdsuFJiq6sENCECgBwgMUB5sRy+3s42nefLJJ43dvcvYhtWsvfbaYRz777+/sQsMw/N5553XLLzwwrnj7sQDo0ePNptuumlV0vZDiGaZZZaput/qG4sttpixLzJjTciM3Smr1cn1XPy33nprVA/trJq54IILjO2gmBNPPNHsvffeYX6t+ZgZOXJkz+W9HRmifjZHWW2mXZ9lbGc4jMh2jI3d5crYLefN2WefHd6bddZZzUILLWT+3//7f80l1odP56mfn3zyiVH4yZMnh6Ss8mO22267Cmp6Te6xxx7hvYceesgst9xyFf5JF1dffbWxC++N/ZClOf3005OCVNy78sorjR14Ce8NGTLE6G+VVVYJ2/9///vfRnXk0UcfDf3tR5bNqFGjKp5Pu9hll12MXcdjLrnkErPRRhulBeM+BCAAge4i0KgS5kYMbW6jEaGk86yjRI3KUdRzL730UlU+NCKXZ9//omRRPHlHEItMuxfi0ofe9AXspDqpe4MHDw6mTp3aC1ntSB6on81hd7vgpdVPd7+TW7k3l8POPp2nfl544YWp7YQrB/+oRf5ZXN4ZGC3K99NJO1feNBuT1TEDk5UU4SAAgW4i0LAJmR3FrtvY6gOWad/hKCOkww47LHBfPNZL4tJLL+2YmHlewB0TsuQJS4nZYYcdquqpHT0N3nrrrZJLX27xqJ/NlY/rVKZ1Ut19mSzh8hPIUz9lsuXafcc97ajvRn366aeZBMqrwChSO8MSyMTVN2fzZbGzQMF7772XKX0XyNU1OwPjbnGEAAQg0PUEGjYhs41qTzqZxE2ZMsXMP//8Hc1fHhOIjgraBYnbF76xC16N7XiY5Zdf3iy44IJdIHW5RaR+lrt8+l26MtTPvCZkfpnZnoWxVgFm3LhxYbu1yCKLmMUXX9zMPvvsfrBM55iQZcJEIAhAoMsIoMCUtMDK8AIuKRrEKgEB6mcJCgERUgmUoX42o8CkZqwBDxSYBqDxCAQgUHoCKDAlLaIyvIBLigaxSkCA+lmCQkCEVAJlqJ8oMKnFgwcEIACBpgmgwDSNsDURlOEF3JqcEWsvEKB+9kIp9m4eylA/UWB6t36RMwhAoPMEUGA6XwaJEpThBZwoGDchYAlQP6kGZSZQhvqJAlPmGoJsEIBAtxNAgSlpCZbhBVxSNIhVAgLUzxIUAiKkEihD/USBSS0ePCAAAQg0TQAFpmmErYlAHwa13xsId6GxW3y2JhFihUCDBKifDYLjsbYQKEP9vP32282WW25pttpqK3PQQQe1Jd9JiRx66KHmzDPPNGeccUb4ccykMNyDAAQg0G0EUGC6rcSQFwIQgAAEIAABCEAAAn1MAAWmjwufrEMAAhCAAAQgAAEIQKDbCKDAdFuJIS8EIAABCEAAAhCAAAT6mAAKTB8XPlmHAAQgAAEIQAACEIBAtxFAgem2EkNeCEAAAhCAAAQgAAEI9DEBFJg+LnyyDgEIQAACEIAABCAAgW4jgALTbSWGvBCAAAQgAAEIQAACEOhjAigwfVz4ZB0CEIAABCAAAQhAAALdRgAFpttKDHkhAAEIQAACEIAABCDQxwRQYPq48Mk6BCAAAQhAAAIQgAAEuo0ACky3lRjyQgACEIAABCAAAQhAoI8JoMD0ceGTdQhAAAIQgAAEIAABCHQbARSYbisx5IUABCAAAQhAAAIQgEAfE0CB6ePCJ+sQgAAEIAABCEAAAhDoNgIoMN1WYsgLAQhAAAIQgAAEIACBPiaAAtPHhU/WIQABCEAAAhCAAAQg0G0EUGC6rcSQFwIQgAAEIAABCEAAAn1MAAWmjwufrEMAAhCAAAQgAAEIQKDbCKDAdFuJIS8EIAABCEAAAhCAAAT6mAAKTB8XPlmHAAQgAAEIQAACEIBAtxFAgem2EkNeCEAAAhCAAAQgAAEI9DEBFJg+LnyyDgEIQAACEIAABCAAgW4jgALTbSWGvBCAAAQgAAEIQAACEOhjAigwfVz4ZB0CEIAABCAAAQhAAALdRgAFpttKDHkhAAEIQAACEIAABCDQxwRQYPq48Mk6BCAAAQhAAAIQgAAEuo0ACky3lRjyQgACEIAABCAAAQhAoI8JoMD0ceGTdQhAAAIQgAAEIAABCHQbARSYbisx5IUABCAAAQhAAAIQgEAfE0CB6ePCJ+sQgAAEIAABCEAAAhDoNgIoMN1WYsgLAQhAAAIQgAAEIACBPiaAAtPHhU/WIQABCEAAAhCAAAQg0G0EUGC6rcSQFwIQgAAEIAABCEAAAn1MAAWmjwufrEMAAhCAAAQgAAEIQKDbCKDAdFuJIS8EIAABCEAAAhCAAAT6mAAKTB8XPlmHAAQgAAEIQAACEIBAtxFAgem2EkNeCEAAAhCAAAQgAAEI9DEBFJg+LnyyDgEIQAACEIAABCAAgW4jgALTbSWGvBCAAAQgAAEIQAACEOhjAigwfVz4ZB0CEIAABCAAAQhAAALdRgAFpttKDHkhAAEIQAACEIAABCDQxwRQYPq48Mk6BCAAAQhAAAIQgAAEuo1AqRSYIAjMgAEDuo0h8kIAAn1OoAxtVxlk6PNqQPYhAAEIQKBNBEqhwFx55ZXmiiuuMDfffLP5wQ9+YNZee22z5ZZbmhVWWKFNGEgGAhDodwJ5FYA33njDnHzyyeaWW24xjz76qFl99dXNmmuuaXbZZRcz00wztQXn22+/bY444ghz9913hzLMNtts5uc//7n5/e9/b/7yl7/UlOP55583l1xyifnoo49SZf3JT35i/vznPyf6i9eJJ55oXn/99UR//+bgwYPNJpts4t9KPM9bBomRcBMCEIAABHqeQMcVmFNOOcXstNNOiaDvvPNOs9pqqyX6cTOZwKeffhp2Sh555BEzduxYo07KvPPOa5ZZZhkzbNgw8/jjj5sJEyaY0047zSywwALJkXAXAgURuPfee80dd9xh1DGNu+mnn97MOuusRp3uJZZYwvz617/u2AzsqFGjzM4772xuv/12s/zyy8dFrbqeMmWKWWWVVcxzzz1X5Td06FBz+eWXmxlnnLHKr8gb99xzj1lnnXXMhx9+mBjtoosuatSGzjfffIn+e++9tznqqKMS/fybTz75pFlyySX9W+G52pGll1666n7SDbU1kyZNSvKK7o0cOdIcf/zx5qKLLupYu0/7GRUHJxCAAATKTcB2LDrmrrvuOvVqwj/7sg3syys49NBDA9uhie7bDnjH5Ou2hG2HIrAdjYidY5t0tB2sbsse8nYhgeWWWy5TfVQdHTRoUPDggw+2PZd25jeScfLkyXXT//rrr4Nll102emb77bcPzj777GDIkCEV9+pG1ESAt956q6KdPPLIIwM7OBE8/PDDwfDhwyM5Vl555eDLL79MTGnPPfeMwol90t/6668ffPzxx4nP25mn6Hk7Wx4k/bm2x85OJcbh37z00kvD+NT+P/30075XW85pP9uCmUQgAAEIFEJAI6Mdc3q56gWnF9bLL78cyWFHbKMX41577RXd5ySdwA033BAxE9ONN944OPPMM4Prr78+UEdFnRPXmdDRjnKmR4YPBAoioHppZzYCX5HZbrvtAnX6t91222DdddcN5p577qhuqi1o56CFrwjYmZNMubazGpG8e+yxR/SMFIU11lgj8rPmXZFf0SfnnXdelM7o0aOrot9tt90i/3HjxlX564ZTYKR4NeKeeOKJMI2tt9469XFrOhaGsTPtqWGcx2effRbVBWuK52635Uj72RbMJAIBCECgMAIdU2CeeeaZ6AWr0cO422CDDUJ/dWjstH7cm2uPwLRp06IXv5STq666yvP99nTq1KkVYc4///yqMNyAQKsISJl2CrRmMHz3xRdfBGoDnL8UnHa5gw46KErXmmRlStau5Yie+eSTTyqeGT9+fOR3wgknVPgVeSHlz/FKmmHRbILzP/fccxOTblaBUaQquzT32GOPRTK8+uqracEq7vv14IEHHqjwa9UF7WeryBIvBCAAgdYRaFiB+eqrr4Jzzjkn2HDDDcPRfSkadr1KoBmT1157LbC25BUmDnpZ+u7oo4+OXm566cfdBRdcEPkrrnY4dQRkFiEzNpmyfPPNN+1Ituk0NMLtOiu1FBNxdOFk8oKDQLsI1FJgnAxutF6zhc5pVF6mSa7euqNmbTQD4Nxhhx1W0d4onF13EUycONEFqTrKNErtlsIqvrhiVfWAvaF2z8kg86q4U5vhZpRWXHHFuHdh13b9SiRHkgIjczIn57XXXpuYbhEKTGLE/7np4lf5ZXXvvPNOJPdaa62V9bGmwtF+NoWPhyEAAQh0hEBDCswLL7wQOPMv95L0j+oU+KYU8lN437mXhsImKQpKw8UpZabVTh2T+PqRzTffvNXJNh2/ZlYcJ60jSurMuESUR2dKpvVHOAi0i0AWBUZmQ64uq67Kvf/++9E95+eON954YyS+zJjcff8oc680p5kJFzY+wJL2zJtvvhk9k2YWtcUWW4RhpMi0yvlmthdeeGFVMq59Vf7URiQ5p2BI0ZKp6f777x+I44EHHhhcffXVgd0cIOmxTPfUDjlFLu9MlF8PWj0LQ/uZqTgJBAEIQKB0BHIrMBq1dJ1gvRylgGy11VbBIYccEh7diKbrGOh43333BZqm951GL+Xnj7b6/u+9917UUbDbhPpeLTlXZ8iX2Z3brVJbkl5Rkd5///2R3AcffHDdaF988cVAC/ib6ZzUTYQAEIgRqKfAvPTSS9FsiBRx38nc1J9x0GCI3RmrYuBD7YW/NkVxaBailvMHLLJ2lH0TsbSNMDQL7dqPWgMKtWSr56eZKV/+ww8/PJBsDz30ULi+yKWvNUZpzikwLmz8qLY5K5d4Gv7GCP76xni4pGu7Q2LET6ZyrXS0n62kS9wQgAAEWkcgtwLjv/Q0Uma3E62QTtea+vdfhhUB/nPhzELSzAs0K+PisNssJ0VR6L3bbrstSs+lq6PdJrXQdIqOzF/Me/HFFxcdPfFBoBACvgKjHaaklDz11FOB/X5JcNxxx0Wj9frNJc1saK2JG9HXIMm7775bJZc/CJGmXLiHNBDjfueKN4v5mJ71d95Sm5HkfPPYVg6AaHYq3ta6POk4YsSI4PPPP08SMbz397//PWKg8FIMtb7HGOL9SwAAQABJREFUH6DSfSmLeZ02EdGz2rwhr9Mgi57VX9r7IW+caeFpP9PIcB8CEIBAuQnkUmB8+291ImSvnOTUuXCdDb2EkpwbPdS6mTTnXmK1drlJezbvfeVNNvMuTR1rjV7mjb9V4f3R3lrmMq1Kn3ghkIWAr8D4v7H4uWZz02YtTj/99Oj3qXVqvtOAh9vaWG2LM0Hzw/jnUp5c2rXaIP8ZnWs9iXtOyleSk8mUC6OZpVY5+wHJQOZfLq34UQM/tRQY+42eQINQ2pHQfswyElML8/fdd98oXqWRVcFTJJptd7LYb7tE8eY5cc/rPdNKR/vZSrrEDQEIQKB1BJK1i5T0tL2pe7H424cmBd9nn32isEn+zs5ZC3eTnHYec2lppLAd7oMPPgjsl6kDbUGqkdZaO+wUJY/94GSUT5ffesdjjjkmSt5+iC56vt6oc/RQwok2Y6iXru8vBdU3Q1NHyVda/bBp5/HtW4uIo1meQqMZgDSZk+6rk6XOoO/g6dMIwi29k9j592RqWsvJbMoNMoi5ZiCc87fBTdqFz4Vzx5tuuikqY806ZHUyqXIyp60j0xoSFybtGypZ00sLpy2a/d/bAQccENZBzQq5NTiSQcpH0hrDtHj9+/7sjtYkZnX+rEatTRRqxScTQMdQW12nuWZ/72VpP5W/MrQZaZy5DwEIQKBsBHIpMP5L/+STT66ZF3+BbFJAt+hWL+Ekp9FF9wKTTXSvOt8kxeW33nHHHXeMcPgfA21mrZD/nY566Tt/lZFzUmbc/azH+FqHIuJolqfy448+Z83LFVdc4VCER3hW4KhQYDSar1kWrddwO4+Js9Zx1HN+u+K2X/dnXxRfltmCU089NaqvGoXP6nzzpvPPPz/xMf0+lZ9Wzh5o1sTVzaRdxvbbb7/I39+tLVHglJtXXnllFIcUxKzObfCiGbFGnb8JTK11OM3+3svSfopTGdqMRsuL5yAAAQi0m0AuBUYdDvfS1I41tZw/CpkUzre/TjJF8xfkXnPNNUlR9MS9RkYQjz322Cjv/vd0ZC/e6GjreuutF5WtK+NaR3XO4mYnulfrmbhffAZGM17NxtEsT4GVch6Xtd61FgP7Dp4+jcoZGF/B0PdB/DJP2lLdj0mzdP4sjJRef/YlqTPvP+/O/e+NZNn8wj3nr51Jm4V2HXiZsrXKudH6tE1Q/O2ItcaoEadZRVfvtWV+FufvHunPFGd51g8j812XtpSUNNfs770s7afyV4Y2I40z9yEAAQiUjUAuBcYfIdfoedoHJrXg1jcBSMq0b0ueZPrk2ybn3cUmKb0s97SVqDOb0CLUsWPHZnms6TBSOtSpy/rnJ6iRbH/RbZYOnExxklzW9BUuSVFqJh9OnrLE0SwL5afZOMrCogg5/DUw4uI7mW26zqpG7dPWwLhntG2wC69Oslv7oqNkzeLU5rg4/BnNLM+69XtJyoPW/7l4s3yQUyyOP/74cCZKs9FaeD958uS6Yri1L/FZTPegFD0nx/Dhw93tXMezzjoriqOeeZ+LWLtRunRlctyoc2WquLReqZZrpn6Wqf1UHsvQZtRijR8EIACBshDIpcBIaH9qf/vttw/inWEpNf5XovUCSnJ6wbqRV8Xpd2q0Jaqz75ZC0Q7nm6y5F7A6B1k7RO2QMS0Nf8tScdNMWZKTAup2kdO2tDgItItALQVGMgwdOjTq+NYbuY93Ot3vNY+Z06OPPhqll/RBylpcfPOze+65pyLoSSedFMWrj+HWc74Jk8tHFoVKC/Rd+KSNAvxdFcU+r1Mb7Ga6lI7ajnpObaUbTElb21gvDufv3g1Ku1XriFxatJ+OBEcIQAAC3UMgWbuoIb9vIqCXizr5sl3XFr46+jMv7gWbFp2/1kCLUDVzow+LbbDBBtHLuV3mY75NuZNbx8ceeyxN/FLdd9/VcbLLhG/MmDHBK6+8Eio0uvY7Bd3wkc5SAUaYhghoYwx15DWz4OqmRvPjW/O+9tprFfVTWyKr7qY5f9ZG8Wr9QJ7BBv8DmRrtz+P8WRYNGGiGQGn7SkNW8zG3FtCxccd68vjrEZV3f7ZDa0Z85cP3c/HqQ5hqqzfaaKPwu1DaLl47t0k5lOmYvzZJ62myOP+bKloc36jTe8BxEN92ONrPdlAmDQhAAALFEcitwChpvTzdDIl70fhHdZSdKZbupzltt1lr4aJ206m3HWpa3HnvaxTTz4POlY8sI49502pFeHUU/d2H4nnxr1U2SeuOWiEXcfY3AWfq5Nc/d37nnXdWwPFNw1wYdWaTnDra/mCJ2qS8zm/Dau10lRTv6NGjq9oLJ7PajXHjxiU9VnUvKZ6ss87actqlqaOUFj9PuifztCTnz4j5ccTPta5Os+VZnGbk3fNaW9Ko8xVBzc63w9F+toMyaUAAAhAojkC6dlEnDc2UaJ2K30HR9xS0sFU23P6MRq2oNJrpx+FegLW+B1Ervmb8DjvssKgDoM7RpZde2kx0HXlWtv3OjMOxdEctLtaC2Dwj1R3JBIn2DAG3I5erg+6ojnZSJ9/ffl2zGFJUkpxvRtbo5hW+wi9FIq/TLmQuP+6ofGUxHXNpyeTWffRRceg3mnXWV4qF/9FMJ4OOkkOzVGm/dT2rGXB/VtZ/Xufa6CDPVvJu1qdZ87Eddtgh4qotmdvpaD/bSZu0IAABCDROYIAetS+rppyLYsCAAVE8tkNgNt100/Da+UeeCSdW6TF20byZccYZzUorrWR+9KMfJYRq/S0742OmTJli5p9//tYn1sIUrA27mTBhghHXBRdc0FilxgwcOLCFKRI1BNpHwA6QmM022yxM0Crl5ne/+13uxJ999lmz+OKLh8/ZXb3MZZddljsO28E3Dz/8sLEzuMZ23M1SSy1lpptuutzx2B39jOKaffbZcz9rZ7LN008/bawZmJl55pnNT3/6U7PEEkuYWWaZJVNc1nzPPP7448aa7JlZZ501fHaxxRYLzzNF8J9A4ilZrCIT/uV51oVV+ysGdubbWOUqbIu///3vO++2HWk/24aahCAAAQg0RKAQBSYp5bwKTFIc3IMABCAQJ2BnX0LFw36TxdjZW2PX1MSDZL6WEiRlSE4DF3bmIvOzBCyegDUrNKuvvnoY8aGHHmr+9re/FZ8IMUIAAhCAQNcTQIHp+iIkAxDoLwLWdMtYE9Mw07fffrv5zW9+0zAAu1YjnHFQBNaE1Fizqobj4sHmCQwbNszYjVvCiOy6JDPXXHM1HykxQAACEIBAzxEoTIGx60XMyJEjjd0OOYQk0yW9gOSsjXpoTma/RxBe8w8CEIBAVgKjRo0yp512WtS22F21QhMjPW83ATG/+tWvzIknnpg1uqpw22yzjTn33HNDkyW1WTLDwrWfgMrVrj0ME7abDBj7HZ32C0GKEIAABCDQFQQKU2BkQ37FFVekZtpuVWrsot1UfzwgAAEIJBFYe+21jf1WR5JXdM9+KyTzmo/oof+c2J3OjF08b+y3YUyzMzrxuLnOTuCEE04wdrvtcLDL7kiX/UFCQgACEIBA3xEoTIGRKYbsl+2uN1UQtah11VVXNXZXoSo/bkAAAhCoReCJJ54w9tsk2jExMdjSSy9tVllllUS/rDe1iN5+CDPcDGCOOebI+hjhCiRgv6djJk6caNZZZx3jbwhTYBJEBQEIQAACPUKgMAWmR3iQDQhAAAIQgAAEIAABCECgxARQYEpcOIgGAQhAAAIQgAAEIAABCFQSQIGp5MEVBCAAAQhAAAIQgAAEIFBiAigwJS4cRIMABCAAAQhAAAIQgAAEKgmgwFTy4AoCEIAABCAAAQhAAAIQKDEBFJgSFw6iQQACEIAABCAAAQhAAAKVBFBgKnn0zNXUqVPNnHPOaQYPHmzGjx/fM/kiIxCAAARaTYD2s9WEiR8CEIBAcwRQYJrjV9qnp0yZYgYOHGgGDRoUfluhtIIiGAQgAIGSEaD9LFmBIA4EIACBGAEUmBiQXrnkBdwrJUk+IACBdhOg/Ww3cdKDAAQgkI8ACkw+Xl0Tmhdw1xQVgkIAAiUjQPtZsgJBHAhAAAIxAigwMSC9cskLuFdKknxAAALtJkD72W7ipAcBCEAgHwEUmHy8uiY0L+CuKSoEhQAESkaA9rNkBYI4EIAABGIEUGBiQHrlkhdwr5Qk+YAABNpNgPaz3cRJDwIQgEA+Aigw+Xh1TWhewF1TVAgKAQiUjADtZ8kKBHEgAAEIxAigwMSA9MolL+BeKUnyAQEItJsA7We7iZMeBCAAgXwEUGDy8eqa0LyAu6aoEBQCECgZAdrPkhUI4kAAAhCIEUCBiQHplUtewL1SkuQDAhBoNwHaz3YTJz0IQAAC+QigwOTj1TWheQF3TVEhKAQgUDICtJ8lKxDEgQAEIBAjgAITA9Irl7yAe6UkyQcEINBuArSf7SZOehCAAATyEUCBycera0LzAu6aokJQCECgZARoP0tWIIgDAQhAIEYABSYGpFcueQH3SkmSDwhAoN0EaD/bTZz0IAABCOQjgAKTj1fXhOYF3DVFhaAQgEDJCNB+lqxAEAcCEIBAjAAKTAxIr1zyAu6VkiQfEIBAuwnQfrabOOlBAAIQyEcABSYfr64JzQu4a4oKQSEAgZIRoP0sWYEgDgQgAIEYARSYGJBeueQF3CslST4gAIF2E6D9bDdx0oMABCCQjwAKTD5eXROaF3DXFBWCQgACJSNA+1myAkEcCEAAAjECKDAxIL1yyQu4V0qSfEAAAu0mQPvZbuKkBwEIQCAfARSYfLy6JjQv4K4pKgSFAARKRoD2s2QFgjgQgAAEYgRQYGJAeuWSF3CvlCT5gAAE2k2A9rPdxEkPAhCAQD4CKDD5eHVNaF7AXVNUCAoBCJSMAO1nyQoEcSAAAQjECKDAxID0yiUv4F4pSfIBAQi0mwDtZ7uJkx4EIACBfARQYPLx6prQvIC7pqgQFAIQKBkB2s+SFQjiQAACEIgRQIGJAemVS17AvVKS5AMCEGg3AdrPdhMnPQhAAAL5CKDA5OPVNaF5AXdNUSEoBCBQMgK0nyUrEMSBAAQgECOAAhMD0iuX06ZNM4MHDzaLLrqoGTNmTK9ki3xAAAIQaDkB2s+WIyYBCEAAAk0RQIFpCh8PQwACEIAABCAAAQhAAALtJIAC007apAUBCEAAAhCAAAQgAAEINEUABaYpfDwMAQhAAAIQgAAEIAABCLSTAApMO2mTFgQgAAEIQAACEIAABCDQFAEUmKbw8TAEIAABCEAAAhCAAAQg0E4CKDDtpE1aEIAABCAAAQhAAAIQgEBTBFBgmsLHwxCAAAQgAAEIQAACEIBAOwmgwLSTNmlBAAIQgAAEIAABCEAAAk0RQIFpCh8PQwACEIAABCAAAQhAAALtJFAKBeb55583d955p7n11lvNvffea04//XQzbNiwdnIgLQhAAAIQgAAEIAABCECgCwh0VIGRonL44YebyZMnV6A65JBDzH777Vdxj4vaBN577z1z3nnnmQ8++CA14IABA8wiiyxi/vSnP5npppsuNRweEGgVgU8//dRccskl5pFHHjFjx441GryYd955zTLLLBMOWjz++ONmwoQJ5rTTTjMLLLBAq8QgXghUEKD9rMDBBQQgAIHSE+ioArPYYouZ5557LoQ099xzm7feeis8R4HJX29GjRplttxyy0wPjhkzxqy++uqZwhIIAkURePLJJ82GG25onnrqqbpRXn755WaDDTaoG44AECiCAO1nERSJAwIQgED7CHRUgXn22WfD0VaNvmpmQDMEcigw+SvAcccdZ/7617+GD66xxhpVEdx2223RPZnprbTSStE1JxBoNYEbb7zRrLvuulEyG2+8sVl11VXD2Zf77rvPXHnllebFF1+M/C+66CKzySabRNecQKCVBGg/W0mXuCEAAQgUT6CjCkw8OygwcSLZrw8++GBzwAEHmMGDB5vx48dXPDh69Giz6aabhvek3GitEQ4C7SIg8xzNtroZ1quuuqpqjdu7775rllhiiSjM+eefb7bYYot2iUg6fU6A9rPPKwDZhwAEuo9A0KD76quvgnPOOSewJiHBoEGDgtlmmy1YbbXVgr322it47bXXgttvvz28Z4kE+ttzzz3rpuTC2hmYumFbEeDLL78MbrnlluDQQw8NHnzwweCbb75pRTItiXOPPfYIOa+44ooV8b/yyitROaiMdI2DQDsJ7LzzzmHd1O/bKiapSavNcG3A2WefnRoODwgUTYD2s2iixAcBCECgtQRMI9G/8MILwcorrxx1Nlynwx3VUbYj/RX+Cl/Puec7ocBIIVtyySUrZN58883riVwa/x133DGUfa211opk+vrrrwO71iXK04UXXhj5cQKBdhCYOnVqVP8WXXTRQIMEaU6/QQ2GqB247rrr0oJxHwKFE6D9LBwpEUIAAhBoKYHcCszHH38cdTLU0ZCystVWWwVSOnTUtVNE3NHauAfTpk2rmxEXvhMKjLXRr5Jb8rzxxht15S5DgKOPPjqUf/jw4ZE4J598cpSn9dZbL7rPCQTaReD++++P6qA106mbrF0HE9gF/MGHH35YNywBIFAUAdrPokgSDwQgAIH2EMi9BsaaiBnb2Nu+vTFrrrmmsaP6RjuIOSc7d9mu33zzze6WlKTovNZJJ9fAWPMVk7T4Xbuk/fSnP60ldin8rLmbmThxoll44YXNDDPMYJ555plwTYGEs0qlsbNmFeVUCqERoucJWJMxYwc2wnxefPHF4RbePZ9pMth1BGg/u67IEBgCEOhzArkUGGuSFHaOxUyd4pdeesnMMcccVQjtbItZfPHFowW53aDAKG8LLbRQxTdptGvS9ddfX5W/st+wZjrGroUxDz/8cCiq8uDvAFV2+ZGvdwjsvffe5qijjgozpI/V2nVyvZM5ctKTBGg/e7JYyRQEINBrBPJM9NiPzkXmIFr0WMvts88+Udha4Xw/yzZ8phMmZJLDfgQysB/ZC3bbbbdwMf8XX3zhi9eSc/tBv4iTy3+94zHHHFNTloMOOiiKU2Z9zmlTAvshQXdZcdRmDPXS9f3trFuFmc/nn38e6J4fpt75kCFDKmQoIo4ieJ5yyim58iGzSbs1dUVe4PktDqu8RCxlGtaog+d35Kif37Eo4vf+XWzfnnWi/VTKZajjcRZcQwACECgrgVxrYG666aaoM6L1FbXcueeeG4WtFc73cx3eTikwviztOteuZy7fWY9acJrm7KxLFJ/9knlgt7CNgm600UahnzZhiLvlllsuei6rHK+//noUjdYsZH3OhdOibt8VEUcRPPfdd9/cebniiiv8rATw/BaHFuO78j7iiCMqGOW5gOd3tKif37Eo4vf+XWxB0Kn2UzKUoY77LDiHAAQgUGYCuRSYhx56KOqM7L///jXzdeCBB0Zhawb0PF1Hp58UmEZGEI899liP2nen2mBBSoHjeNddd0We2uHJ3bfrk6L77kSL/J1/lqNmHT766CP3eKDZKt3L8qwLE5+BKSKOInj6mx84WesdtVjdd/D8loZdixXViRVWWKHhrcnh+V3ton5+x6KI37uLrZPtp2QoQx13LDhCAAIQKDuBXGtgbIc1XPtiO3PGdpTDDybOPPPMuqxw1kzJ/PznPzdaAC9nIVT4p110chG/ZLrhhhvM6aefHm5AoC+F77LLLmb55ZdPE7ew++KTlZESnW666RLTtqZv5vjjjw/9dK6vSztnzePMD37wg/DynnvuMXZba+cVHbWQNatTWbnycs8UkY+yxNEsCzFpNo6ysGhGDqs4hx+xtLuLhdXk2muvNUOHDnVVJvFoTQnNTDPNVOUHz++QNMtCMTUbRzP1wuWkLHFInk63n5KhDGUiOXAQgAAESk/AvkByOf/7Lttvv33w2WefVTyvNRbbbrttNOpqAVT417pQWP11YgZG5lAufXfUbIZ9odQSuTR+Y8aMieSX3J988kmFbPq4qMvXuHHjKvy4gEArCWjGz9U9rZPSTG6SkwmhPnirsHbxf1IQ7kGgJQRoP1uClUghAAEItIxArhkY27EIt+pdZJFFdBo6zcRo22Tt4PXyyy+bUaNGRTMvLoyV3p1WHK3SEO76pVFaOe2cJaf4rBIUzjRo1uAnP/mJmXHGGUO/Vv0bPXq02XTTTauif+yxx8wyyyxTdb9MN7SDmv0IZ8RdszDxmaNJkyYZuwYmFFtbLC+22GJlygKy9DiBP/zhD+aqq66KcmlNTMNZQLUlU6ZMMXZ9XThjaJWYMIz9iGzYlkQPcAKBFhGg/WwRWKKFAAQg0EICuRUYyaJvvEjJ0Ddfkpy2WF5ppZWib8EkKTB2hsD813/9V9LjVffUId91112r7hd5Q8qXvqHiO+VDStass87q3y7deZLstYSUMmMX+NcKgh8ECiUgxWTnnXfOpJSstdZa5qKLLkrcor1QoYgMApYA7SfVAAIQgED3EWhIgVE233333fCDlvfdd5+xC5jDnOsbD3YnlXDtiL754GY0khQYzbr84he/MI8//nhdanaHJ6MR3Fa7ww8/3Jx44omhYqaZJfvlcPPHP/6x1ck2Hb/4al2B1vDUc8rXE0880fIZrXpy4N+fBPRb1rdh3JoYn4LWZe23337hB2Xj66v8cJxDoEgCtJ9F0iQuCEAAAu0h0LAC44vnFBS/0+GbZDl//5mynkuxkknL/PPPX1YRkQsCXU/Abu9tJkyYEJqQLrjggmbQoEFm4MCBXZ8vMgABCEAAAhCAQOsJFKLAJInZrQpMUl64BwEIQAACEIAABCAAAQiUgwAKTDnKASkgAAEIQAACEIAABCAAgQwEClNgLr30UjNy5EijHV3kJk+eHC3ytx+wC9fDDB8+PINIBIEABCAAAQhAAAIQgAAEIJBMoDAFZsMNNzRaoJvmll12WWO/P5LmzX0IQAACEIAABCAAAQhAAAJ1CRSmwOjbItp5LOlLwvpy/Kqrrhp+q6SuRASAAAQgAAEIQAACEIAABCCQQqAwBSYlfm5DAAIQgAAEIAABCEAAAhAojAAKTGEoiQgCEIAABCAAAQhAAAIQaDUBFJhWEyZ+CEAAAhCAAAQgAAEIQKAwAigwhaEkIghAAAIQgAAEIAABCECg1QRQYFpNmPghAAEIQAACEIAABCAAgcIIoMAUhpKIIAABCEAAAhCAAAQgAIFWE0CBaTVh4ocABKoITJ061cw555xm8ODBZvz48VX+3IAABCAAAQhAAAJpBFBg0shwHwIQaBmBKVOmmIEDB5pBgwaZiRMntiwdIoYABCAAAQhAoPcIoMD0XpmSIwiUngAKTOmLCAEhAAEIQAACpSWAAlPaokEwCPQuARSY3i1bcgYBCEAAAhBoNQEUmFYTJn4IQKCKAApMFRJuQAACEIAABCCQkQAKTEZQBIMABIojgAJTHEtiggAEIAABCPQbARSYfitx8guBEhBAgSlBISACBCAAAQhAoEsJoMB0acEhNgS6mQAKTDeXHrJDAAIQgAAEOksABaaz/EkdAn1JAAWmL4udTEMAAhCAAAQKIYACUwhGIoEABPIQQIHJQ4uwEIAABCAAAQj4BFBgfBqcQwACbSGAAtMWzCQCAQhAAAIQ6EkCKDA9WaxkCgLlJoACU+7yQToIQAACEIBAmQmgwJS5dJANAj1KAAWmRwuWbEEAAhCAAATaQAAFpg2QSQICEKgkgAJTyYMrCEAAAhCAAASyE0CByc6KkBCAQEEEUGAKAkk0EIAABCAAgT4kgALTh4VOliHQaQIoMJ0uAdKHAAQgAAEIdC8BFJjuLTskh0DXEkCB6dqiQ3AIQAACEIBAxwmgwHS8CBAAAv1HAAWm/8qcHEMAAhCAAASKIoACUxRJ4oEABDITQIHJjIqAEIAABCAAAQjECKDAxIBwCQEItJ4ACkzrGZMCBCAAAQhAoFcJoMD0asmSLwiUmAAKTIkLB9EgAAEIQAACJSeAAlPyAkI8CPQiARSYXixV8gQBCEAAAhBoDwEUmPZwJhUIQMAjgALjweAUAhCAAAQgAIFcBFBgcuEiMAQgUAQBFJgiKBIHBCAAAQhAoD8JoMD0Z7mTawh0lAAKTEfxkzgEIAABCECgqwmgwHR18SE8BLqTAApMd5YbUkMAAhCAAATKQAAFpgylgAwQ6DMCKDB9VuBkFwIQgAAEIFAgARSYAmESFQQgkI0ACkw2ToSCAAQgAAEIQKCaAApMNRPuQAACLSYwbdo0M3jwYLPooouaMWPGtDg1oocABCAAAQhAoJcIoMD0UmmSFwhAAAIQgAAEIAABCPQ4ARSYHi9gsgcBCEAAAhCAAAQgAIFeIoAC00ulSV4gAAEIQAACEIAABCDQ4wRQYHq8gMkeBCAAAQhAAAIQgAAEeokACkwvlSZ5gQAEIAABCEAAAhCAQI8TQIHp8QImexCAAAQgAAEIQAACEOglAigwvVSa5AUCEIAABCAAAQhAAAI9TgAFpscLmOxBAAIQgAAEIAABCECglwiUSoEJgsAMGDCgl/iSl4IIlKFuFC1DEfF98803ZrrppiuIMtFAAAIQgAAEIACB8hPouAJzxx13mMsuu8w88sgj5tFHHzVzzz23+eUvf2l22203s9pqq5WfIBJmJpC3w/7GG2+Yk08+2dxyyy1h3Vh99dXNmmuuaXbZZRcz00wzZU63mYAvvviiOfjgg80DDzxgnnvuObPccsuZlVZaKZThxz/+ca6oP/nkE3P11VebcePGmQcffDD8UwQrr7yy0e9ghhlmqBvf5MmTzQ033BDGIZmeeuopM9tss5nhw4ebI488su7zecugboQEgAAEIAABCEAAAm0m0DEFZurUqWbEiBHmoosuSs3y7rvvbo499thUfzyMuffee8POrzqmcTf99NObWWedNezgLrHEEubXv/51x2a4Ro0aZXbeeWdz++23m+WXXz4uatX1lClTzCqrrBIqDXHPoUOHmssvv9zMOOOMca9Cr2+++Waz9tprJ8YppeG2224Lle3EALGbzz//vPnDH/5gHn/88ZiPMYsuuqh54okn6uZH8vzxj380H374YVUcW2+9tTnnnHOq7vs3Ro4caY4//vjwN9fuwYH33nvPnHfeeeaDDz7wRao41+zrIossYv70pz8xq1RBhot2Efj000/NJZdcEg6ojR071uh3O++885plllnGDBs2LPz9TpgwwZx22mlmgQUWaJdYpAMBCEAAAnECtuPbEbfVVlupxx3+2c5gcMwxxwR2pD0488wzA107P9tR7Yh83ZKonRGIWDlmacdBgwYFduS/7VmzHe9IRjuDUDf9r7/+Olh22WWjZ7bffvvg7LPPDoYMGVJxr25ETQR49913K+qhnREMrrzyyuCggw6KZBDn1157rW4q11xzTcUzdhYpsJ2kYPz48Zmet2Ziwd///veKOLbYYovw9/Lkk08GkjWLu/TSS8M49Pt6+umnszxSWJjzzz+/Qv60Oqr7Y8aMKSxdIoJAVgJWMQmWXHLJTPWU91JWqoSDAAQg0BoCpjXR1o91vfXWC18UdvS5qhOnzpXr4Mgfl07AmhMFdmYj8BWZ7bbbLlCnf9tttw3WXXfdwJrlRTzVebWjiukRFuzz1ltvRYqAnTnJFPudd94ZybvHHntEz3z55ZfBGmusEfm9/fbbkV/RJ9ZsLErn1FNPrYj+rrvuivzsLGGFX/xi0qRJUVjV6ZtuuikepO61rwBJCX3hhRfqPpMU4LPPPovqgpSodjo7kxpxUBnG/9zvXUc7q9hO0UgLAoHaUb8ObrzxxuFg2vXXXx/sueeegX53vr+1HIAaBCAAAQh0kEDHFJgrrrgiUCfqmWeeScy+U3D00rAmM4lhuPkdAc1cuResZjB898UXXwR2fUTkLwWnXc6fsbjnnnsyJbvJJptEstp1IxXPaNbC5fOEE06o8CvyQoqf0pHCJ35x5/wVptYMiDXtiuS161zi0dS9Vtqu8yRZXn/99brP1Arg1wO7hqZW0EL9XD0YPHhwVbzqDLoylWKDg0A7CUybNi1S7FUPr7rqqqrkrclzRRjNKOIgAAEIQKBzBBpWYL766qvA2twHG264YdjBUufK2tUHe+21VzijYtc6RCPveiloFCuPk4mM69S8+uqreR5tOKxG+GXGduihh4amVjLd6RZXS4FxeVDnUUzVIU5yhx9+eKAZL8c97bjCCisEL730UlIUFfc+/vjjqA5oFiiuWFUE/s+F6pVLd/31168KojJxM0orrrhilX9RN5zSoLwmOd+k6/77708KEtj1LlFe9DtpxJ1xxhlRHDpv1r3zzjtRfGuttVaz0WV+XjNpKtd4mb3yyitRHVEbomscBNpJQDPYrs2ppZjonebCyaQVBwEIQAACnSPQkAIjExa7c1LUmLtG3R3VEfFNfXRf4bM6dXxdJ1XHdigS6jjH7Z8333zzrCJ3PFwWBUYzXq6MlN+4s4tSI38XLu0oE6t67txzz43iy6rAvvnmm9Ezp5xySmISTrlV3WiVq6fs7bvvvpGcWs+S5KTMO352kX4YxO6sFsisLKtza4GUV83G6LcwceLEmrM+9eL260G7ZmF23HHHkIWvNEmhtTvLRYwuvPDCeqLjD4FCCWhmxf1GNXijQaw0pzbTDWxcd911acG4DwEIQAACbSCQW4GRcuEacTX8Ula0IP+QQw4Jj7p2LwR3vO+++wJN02d1/ui24m2Hu/HGG6vklvzqcHaDq6fAaMbElU3auiKnwOy6667hTJRmo9yfb+YjLlkWWvsKYdaOsm8ilrZQ1lcManU4mik3pyQpr075cPEpTafgyP+II45wXhVHZwYp7lJy/Nkt3TvggANqdpikrCh+/WkGR0qTU+x1T7/DNEYVgsQu7A5KUbxaJ9UOd/TRR4dp2u2eo+TsFtmRHGKFg0C7CWj21P3GsgzK2G3Vw98cZs3tLinSgwAEIFBJILcCo5F01+BrJNdud1sRo641yurC6JjHaZGze1adtXa9KOyWuFG6Ln0d7bc/8ojfsbC+AqNNELS2yH4jJLj77ruD4447rqLjmzaz4RSY+IyCzI78DvuBBx5YN59SdB1HlWMW8zFFKoXJPacySXKuM6xwrVIwtXjXyaENElw6Ul60cN/56ZimwPgKix/eP5dJlRbXJzml6YdNO5dCl8epE+biSjORyxNflrAqf/2WnMLpb9QhZS7ejmSJkzAQaJaA3do7+i1cfPHFzUbH8xCAAAQg0CYCubQLf32COh3q2CY5LWr2R4qTwiTd80ff1cFq55a/ypvrwLvOnRZqd4vzFRgnf9JRs2WuExnPm2a71KGViZJzceVFswBZnJQnl77WRmV11157bfSclK8kp8X7Lm7NLLXKuRkUl5aUDb9eu/tJsyBi7Pzdce+99w4eeuihQLN9/uzUYYcdlpgFzVq5Z93xrLPOCuwHX4Pz7SJi/Qbd/bw7d7nnFEe7nUzh/F3zpCziINAJAv5srnY/xEEAAhCAQHcQyKXAaPtd1/Hxt7dNyuo+++wThU3yj9+TmY7fIVMHrd3OfmQvNPXRNz80E5C0+1TRMj3yyCMRJ8e23lHfzIm7LAqMTPnyOG1TnHfmxcXvz6RpV7Gszu+0p9mZawbIMdJMT6ucZv/87xW5NHX0v0kzbty4KhG0fbQfPm6eYj/sWKEMJc3C+NsnKy5t3+w7Kfgujby7d/mzQ5I1zRVVP/343Y5kkl18nZPJnP2QoLusOMqEzuU1yzE+e/v5559X8M4Sh8rYd0XEUQRPzaBmkd+FUbsaV3Dh+W3JHnXUURHLpIEIv/xrnTfLU3E3G0cR9bNWHvGDAAQgUCYCuRQYv1Mq+/Vazl/AXSuc/OLKy0knnVTvkZ7x902mXIej3lELouPOV2BkrqMZAI32+wqIdhnL6uLKS9osQVp8+naKy0ceEyffvClNiXULwts1e2C/yB2o0yjFVgvNtSue1o64/CVto+zPVirc+++/X4VKTF0c2rEs7nxlTjMWSc4tgs/Lwt9ko9b6pKLqp5P94YcfjvKsGU8pcs5ttNFGoV/Sd278GRvHrN7R33Jaymi98HH/+FqxIuIogqe/gURc5rRrbVvvO3h+S0ODJI5Zmimozy3tvFmeirfZOIqon2n54z4EIACBshHIpcCoQ+wa+/33379mXvxR8loBNSLpz7wkzS7Uer7b/RoZkdVHAeMursA4f3W2fb4y06vn4spLI2Xif28kPvtQK31/7UzaLJ/bAU9mWJ1w2rnIMY13cn15/M0u/PvuXJ1K93tKmm167bXXIv+0Re5OmVM8aSadLj3/6H/HRp3qNFdU/VT8Klt/5sefUfIVvptvvrlKnLg5n+OWdlT5fPTRR1E8mk11ZZb2TPx+fAamiDiK4OlvfhCXOe06vtU3PL+tGlor6JjJfLbRHS+b5Slpmo2jiPoZ/WA4gQAEIFByArkUGH+ERx2RNHMPfXzQ76ikMYgrL/Evnqc916r7ssV3GxDoS8waeW+H00tTsyZZ/5JkSlNgFFaL8t1LWtvypq2BUdi48hL/WKQ6l1oLUs8cTeYYLs2kGSOllebc+hApAHGn2Q4Xb5YPcorp8ccfH85EyaxoxIgRweTJk+PR5rr2N7LQmp005+qS5I1/kFPP6FsSLi9J6738Tn38+ykuTdVTF4fCZ3Vue2Y9q/VKtVwR9VPxi72TVbNZvtMMlfNL++Bp1t+HwiV1RIvIR1niaJaF2DcbR1lYNCOH2kJ/oKHW79nV1yRzzyJ4FhFHMyxc/jhCAAIQ6AYCuRQYZcg3Pdl+++2rdlCSUuOb16hTkuQ0E+CPiCaZC2nBsnZ8asdaFJmbuA6UO0oJ0wuhG1wtBUbyDx06NMpf2oxKfMF+kkLpvixfzyxMC80dx6QPUtZi6pufxTuzMi908SZ1+uPx+iYi7rm8CpUfp0zIXDxpSoULf+mll0Zhkz5858y/FF+SGZri2WGHHaI4nnzySRd1eNQz7jckhSSPc88p7VauI3Iyadttx02/q7hC5882Ja0pcvFwhEDRBDQo4+qmBjlkaZDkNIDnBi+0IQcOAhCAAAQ6RyBZu6ghj+zTXWOvozojWluhLSjTvuQej04dJn/HL8Uhsyj/T51sl07aCyUebzPX8e+cuLQfe+yxZqJt+bPaeEAdeX90W7Mj8c6uOoh+p1U7YflfPdfovTPNUt41si+zk/ifdhSTf70PU/oj6nk71/4sizoUmiGQIulvdZ3VfMwpXK483TFvwWgL4Pj2yVrPUcv5o7tirxk+jXprBNff5EKmI2nOXxOk38mECRPCoFp478/wpG2NnRSvlAfHQXxb7VS3JLtLUzNi8XrlK3sy68FBoJ0ENMji6qeOMoGW0q02Uu8fXfvtZzd95LidHEkLAhCAQLsI5FZgJJgW86vj4zf4/rkaer9zFc+MP4rtP5d2Hv+QYDy+Iq5fstvxxtNXPjTqVmanWYC43O76zti2oEnc3Uh4XDF1caQd6ykwYubXkVo7XSXxHT16dGq+VC5ZR+mT4lHdrOe0qF4zNQrrTNocC13rOyZZnMrAPZd2fPnll2tGJcXef9bvSOl+PbPAeOS+Iph397J4XFmuk35bfn7i55MmTcoSLWEgUBgBDQT5H6+N10n/Wm1CnvVmhQlJRBCAAAQgEBFoSIHR01rILDMivwOt0XktvNYaA39GI0rtPycazfY7t/7LIX6umZq0tTbxeJu91q5QTi6NGGtUuOzOX8Tts1M+kjr5/si/OuJuPYxmBnyl048rfq4ykRJbz/kdAikSeZ3MCuNpK19ZTMdcWqo7/joRzTJlmVXzTbecDEp7p512ym1yJWXIn3F08UnxyDrb4K8pcs/rqC2q/Z28XL5rHf286UN+rXaaPfM3DfDlj5/rd6ftYHEQ6AQB/c78NTF+/VTboQ0vusWsuBP8SBMCEIBAuwgMUEK2kW7KuSgGDBgQxWM7rGbTTTcNr51/5FniE2vuYuxXwc38889fYim7Q7Rnn33WLL744qGw9hsH5rLLLsstuF3/ZKyplrGj+MZuCW2WWmopM9100+WOx+5IZRTX7LPPnulZ1QE7e2KsKZxZeOGFzdJLL23mnXfeTM8mBdJvwH4g1NiNK0JvxbfYYouZGWaYISl44j2rbBprQmbs+jEzxxxzhDIttNBCiWHTbqp+i4GdWTR2Jies69///vfTgnMfAn1JwA4KhL81OxhnFlxwQWOVGjNw4MC+ZEGmIQABCJSRQCEKTFLGulWBScoL9xonsNlmmxk7GxdGIKXAzmI0HhlPNk1ASpndPCCM59BDDzV/+9vfmo6TCCAAAQhAAAIQgEA7CaDAtJN2H6ZlTaTMEkssEebcmugZ+xG+PqRQniwPGzbMXHPNNaFAdl2SmWuuucojHJJAAAIQgAAEIACBDAQKU2DsehEzcuRIY9dShMlq6l0dJDn7gbDQnGz48OHhNf/6i8A222xjzj333NBkSXVi5pln7i8AJcnt888/b+wak1Aau+22sd/RKYlkiAEBCEAAAhCAAASyEyhMgdEaB/tl8dSU7YJlYxeVp/rj0bsE7E5nxi6ANfbbMOb22283v/nNb3o3syXOmf0oqbHbbYeDCXZHuhJLimgQgAAEIAABCEAgnUBhCoxMhWRfb3doqUpNi65XXXVVY3e9qvLjRn8Q0CL6G264wfzud78LF6D3R67LlUv7PZ1wI4F11lnH+BtulEtKpIEABCAAAQhAAAK1CRSmwNROBl8IQAACEIAABCAAAQhAAALNE0CBaZ4hMUAAAhCAAAQgAAEIQAACbSKAAtMm0CQDAQhAAAIQgAAEIAABCDRPAAWmeYbEAAEIQAACEIAABCAAAQi0iQAKTJtAkwwEIAABCEAAAhCAAAQg0DwBFJjmGRIDBCAAAQhAAAIQgAAEINAmAigwbQJNMhCAAAQg0B0Epk6dauacc04zePBgM378+O4QGikhAAEI9BEBFJg+KmyyCgEIQAAC9QlMmTLFDBw40AwaNCj8dlL9JwgBAQhAAALtJIAC007apAUBCEAAAqUngAJT+iJCQAhAoM8JoMD0eQUg+xCAAAQgUEkABaaSB1cQgAAEykYABaZsJYI8EIAABCDQUQIoMB3FT+IQgAAE6hJAgamLiAAQgAAEINBPBFBg+qm0ySsEINCNBFBgurHUkBkCEIAABFpGAAWmZWiJGAIQgEAhBFBgCsFIJBCAAAQg0CsEUGB6pSTJBwQg0KsEUGB6tWTJFwQgAAEINEQABaYhbDwEAQhAoG0EUGDahpqEIAABCECgGwigwHRDKSEjBCDQzwRQYPq59Mk7BCAAAQhUEUCBqULCDQhAAAKlIoACU6riQBgIQAACEOg0ARSYTpcA6UMAAhCoTQAFpjYffCEAAQhAoM8IoMD0WYGTXQhAoOsIoMB0XZEhMAQgAAEItJIACkwr6RI3BCAAgeYJoMA0z5AYIAABCECghwigwPRQYZIVCECgJwmgwPRksZIpCEAAAhBolAAKTKPkeA4CEIBAewigwLSHM6lAAAIQgECXEECB6ZKCQkwIQKBvCaDA9G3Rk3EIQAACEEgigAKTRIV7EIAABMpDAAWmPGWBJBCAAAQgUAICKDAlKAREgAAEIFCDAApMDTh4QQACEIBA/xFAgem/MifHEIBAdxFAgemu8kJaCEAAAhBoMQEUmBYDJnoIQAACTRJAgWkSII9D4P+zdx9AcxN3H8fXToYWmGECIRQP7QUbEzAlgRAIJRBgCCYOpgQYWqiGUAIZeq+mmg4JxGDAA6YXU0KwMb1DKKZjmk0vNr2jd3+arLynk+6k53S69t0Z++5UVquP7tHpry1CAAEEukuAAKa7jid7gwAC3SdAANN9x5Q9QgABBBBoQIAApgE8VkUAAQRKECCAKQGZTSCAAAIIdI4AAUznHCtKigACvSlAANObx529RgABBBBIESCASYFhMgIIINAmAgQwbXIgKAYCCCCAQHsIEMC0x3GgFAgggECaAAFMmgzTEUAAAQR6UoAApicPOzuNAAIdJEAA00EHi6IigAACCDRfgACm+cZsAQEEEGhEgACmET3WRQABBBDoOoHp06ebIUOGmIEDB5qJEyd23f6xQwgggECnCxDAdPoRpPwIIIAAAggggAACCPSQAAFMDx1sdhUBBBBAAAEEEEAAgU4XIIDp9CNI+RFAAAEEEEAAAQQQ6CEBApgeOtjsKgIIIIAAAggggAACnS5AANPpR5DyI4AAAggggAACCCDQQwIEMD10sNlVBBBAAAEEEEAAAQQ6XYAAptOPIOVHAAEEEEAAAQQQQKCHBAhgeuhgs6sIIIAAAggggAACCHS6QFsFMEEQmH79+nW6KeVHAIEeE2iHc1cRZSgijx479OwuAggggEALBFoewNx///3mggsuMHfffbd55ZVXzFxzzWVWWmkls9tuu5lNN920BSRsEgEEelEg78X722+/bc466yxz2223mccff9ysvfbaZv311zd77723mXXWWUshfP/9983IkSPNXXfdFZZB58/ll1/e/OlPfzJ//etf65bju+++M9ddd525+OKLzSOPPGLee+89M2DAgPAcfNhhh5kVVlgh935ceumlZttttzVLL7202XPPPc2IESMy55H3GGTOmAURQAABBLpKoKUBzD777GNOP/30VNCtttrKjB07llqZVCFjvvrqK/Ovf/3LfPDBB9FSP/rRj8wiiywSXkR8+eWX5sILLzQffvih+eGHH6JlBg0aZLbccsvoM28QaIbAPffcY+644w6jC9N40vd0zjnnDG9aDB482Ky66qot+1sfM2aM2WuvvcyECRPMyiuvHC9q1ed3333XrLHGGubFF1+smjds2DBz5ZVXmllmmaVqXpETdNNn6NCh5tNPP03MduDAgWbSpElmwQUXTJw/ffp0M3z4cHPnnXcmztfEf/zjH2bXXXdNnR+f8dFHH5lFF100KtNGG21kbrzxxvhiiZ9HjRplTjvtNKMAaK211kpcplkTZ8yYEZ4nP/nkk9RNqHXAEkssEZ43+/fvn7ocMxBAAAEEShCwFxYtSZMnT9YVTfjP3jUMdt5558D+6AfnnXdeoM9u3vnnn9+S8nXKRu3FYWTlzNzr1KlTg1tuuSV1vr2A6ZTdpJwdKmBrU1O/f+576l4XX3zx4MEHHyx9T2+99daojNOmTau7/e+//z5YccUVo3VsDUNga5GDDTfcsGJa3YwaWMDWlFScJ0844YTgqaeeCmwtSrD77rtH5Vh99dWDb7/9NnFLNjiJlpP9gQceGNxwww2BrXmJpuvYPPnkk4nrJ020NS4V69oAJmmxxGnjxo0L19X5/7nnnktcplkTL7rooopyu+9k0uvEiRObVQzyRQABBBDIKKA7oy1JtuYg2H///YOzzz47+OKLLyrK8Pzzz0c/JvZOXMU8PlQKfPzxx8Euu+xScTGji4aDDjoo+OabbwJ7RzSwNVmBbdoSmbqLlcqc+IRA8QLjx48PbM1G4Acy+r7qol83LfRdnW+++aLvpi5eX3rppeILkpKjHwjYmpOUpSon21qNqLz77bdfNFOBwrrrrhvNs827onlFv7G1qtF2bC11Vfb77rtvNP+xxx6rmq8JtslusMcee4RBi62drVjmkksuidY/5phjKualfVCg4y743fkmTwCj3wT3XdD6ZaZTTjklKruOYfyf2y+92lrFMovGthBAAAEEEgRaFsAklKVikvsB1AUNqb7ANttsE/4Ar7baaqkLux9h22wvdRlmINAMgX/+85/RBaJqMPykQFs1CO77qQCnrHTUUUdF27VNsjJtduutt47Wid988S/im/l3puDPeSXVsPg13KNHj860X/5CytPlv/nmm/uzEt8rAFJtj9Y5/PDDo1qgPAGMMva/Bw888EDitpox0X0PhgwZUpW9bdIWWSiwISGAAAIItF6gzwGM7fwZ2L4XgX7cdEdfgYZqSw444IDgzTffDGxb8opaAdW2ZE36MVSe+jEs8wdDP9q2Q25w7LHHhk1Z4ncls5a/FcsRwLRCnW1mFagVwLg8dPGov3n97Sel448/PrD9OqKLSXeBHX9dZZVVgldffTUpi4ppn3/+eXSO0p3/eGBVsfD/Pui857a3ySabVC2ic4arRah1M6FqxZwT1NzLlSMpgFFzMjf/+uuvz5l7ELzxxhvR+nKvl/zmX6oVds3Y8gYwti9ftN0NNtig3mYLm6+aNHnFj9nrr78efUf0G6fPJAQQQACB1gv0KYB5+eWXo7tt7kfSf9WJXoGHP01357IkXQD4d7xsp84sqzW8jC5M7Kg5FWXebrvtGs63rAwIYMqSZjt9EcgSwLhaV5039PcYT3Z0rIq/T//8En9/9NFHx1ev+qyaCbde1hss77zzTrSOmr8mpe233z5cRoFMs5Lf903NveJJzfbcvtkBPOKza362A3+ETcvc+o8++mjN5e0gAlHQpr5ASn0NYLSu/z0oqxZGTem0v37QpIDWjiwXOSY5q7wkBBBAAIHyBXIHMLpr6WpHdMJXsLLDDjsEaietV312P3zu9d577w3qdRhXu3e1Q/bbyqujbDPbkfvcN910U1W5VX47VKq/WNu+J4Bp20NDwaxAvQBGNSbu3KFalqTkApi//e1vYU2pakvdP/+mh/5us3S09m9YZL1Q9puIadCRpKRaaHfuS6odSVon7zT1F/HLr1oSle3hhx8O+xe57eepAVETOjWlcjVIykPBWL2aqUMPPTTcX5XH7W8jAcy5554b+ampXBnppJNOCrepcrtkh8iOyrHxxhu7ybwigAACCLSBQO4ARncq3Y+j7pTZ4UQrdkOfdRfLLaPXLElV9/46ulhRsFRWuv322yu278pih0ktqwgNbccFMCq3gsCkf26fmtk2v6GdYOWuFfADGI0wpYE6nn322cA+vyQ49dRTKy6a02o2XABz+eWXVzip2ZFrfqbv+JFHHlkxP+mDzi3u7yFr8zHlo4DJradzRlJyF8Narpk3QNRUK36udWXTqx2mPvj666+Tilg1TbUo/rp6v+OOO1YtF5+gG09uPY3m5lIjAYwGF3B5qjlgGUlBms71LgDTd9SVQYF1/HeujDKxDQQQQACBdIFs0cX/1vfbf+ukrguHpKSRr/y7eEnLxKfpwkBBjLsLqx8P3YnNemc0nl/ez9o3d4Hkfrjy3L3Mu72il/cDGFf+tFcCmKL1ya+egB/ApH0vNV21uO4iMp6nanl1QTtlypRoVjx4Ofjgg6N5td4oeHLlyDPSofqTuPUUfCUl/X25ZbL0xUnKI8u0t956Kzxnum3FXzWkcdYARttT4OUPD638dA5Un8a05IaO1s0sPzUSwCgfty/6PSg7aVAJvyWAfY5N2UVgewgggAACdQRyBTD+3TZ/+NCkbWgYX/cjlDQ/bZqCH7+Dqn7AdKexjGQfYhbo7q6GIFVApR+yZie1L3dOWV9PPvnkqmK5AEZB2GWXXZb4z+WfFMBoMAY3P8urAlTdtXVJF0p+0JolD138+KmIPIrwVA1AlvK7ZfQdjQ+tiqd/ZCubkDm3+KuamuZJal6at+bF5e8/H0mjimVNuqHiyq1npiQl1QC5ZZpVi6x99//ejjjiiPA7qFoh1wdHZdBNobyDkeg8rwEK3D7EgxO3z36ttZqv+ckPYBSQxkdr85dNeu8P1qChrtNSEX/v8bzdiGTafwXULslR/YOSUqN/78qz0TyKOH8m7RvTEEAAgXYUyBXA+D/6ah9cK/kdZGstlzbPdarUj0i8yUjaOp043W+S4i4Y6r3KJp5cABMfRcdfzuWbFMD4dxzdcvVedQfYpaQmKPXWj/d1KCKPIjx1F79e2ePzr7rqKkcRvuJZwVHVB0YXteqv4QcgWUa7crnGg5fjjjvOzcr0es4550THWH1Wsia/edNF9uGHScmdu5pZe+D3+UkaZcz1S9H39Omnnw7oKKAAAC/xSURBVE4qZt1pfhChUcniyQ+U9Fwf/5/rJ6kgS8dY//IkfxCYWrXwRfy9++XSg0Dd37ZuBs2YMSOavcUWW4TzNIhNPDX69678Gs2jiPNnfL/4jAACCLSrQK4ARhcc7uSusf5rJf8uZK3l0ub5D4vL+iC1tLzaeXpf7iBqsIN4ajSAUSdVd2yzvOri7LPPPouKodoqTcuyrlsmXgNTRB5FePqdd11Z673ed999kYXe4FnBURXAuLm6MPa/N/E7+W45/zUevCTVSPrLJ733nzeSZcQyl4ffdyatFto9D0Wd2puV3N36tCGn/eGI1ceoL8mviUhqLqfmZfX+Ltx8NU3Lk/y8FaSkpSL+3l3eOrZ+0HbnnXe6WeGoeG5f/L4+boFG/96VT6N5FHH+dPvDKwIIINDuArkCGP8Oj070adXpai7g/xD0BUEXhO4HY+TIkX3JIvc6auvsOsXq6fUPPfRQ7jz6soKaJqgTadZ/SdtoNIBRnlm3r+WSmqUUsR/tkkejFnhWfkv9PjCy9ZNqWN3fui500/rAaJ148BKvTdTFpWoh6zVH0whibptJNZp++eLv3ehfScGDmsC6fLM8kFMWGipeNRSqrVDH+2nTpsU3WfVZ+6jt6DyblNScyJXDH1kradm0aX6QFw/Qtc7FF18cPvtLfYji/1xQqlfNy1uL7vfFUX+lWqmIc4byl70zUzNiP6kZs5uX9sDTbjln+PvNewQQQKBdBXIFMNoJv2pfTQY0nKefFNT4T4nWST8pKTjQj2LShbCWd3cYtX7S3b+kPBuZpuZQ7gfKveriIK18jWyrGesWEcA0o1zkiYAEagUwmj9s2LDo7y+tRiXeYV/NwOJJI2fp77des7DHH3882l7SAynj+fqf/eZn8YvZM888M8r3wQcf9FdLfK9+NO58416zBFTqoO+WTxoowO+fIvt4UpComo20URZ1we6agWk7efvy+H1g4tvO8tkFQH3Zdpb848to2G3nqfN+vM+OBjJw8x977LH46nxGAAEEEChZIDm6qFEItf91J3K96mSvtuvqOK5Xffbn6308+T8GuvOo9RTMqBO9niCt2g+Xh35E02p64vk28tlvU+62rdcnnniikWxLWVft8t0D1+SvNuP+E6N1R9fvfKwLJH9+KYVkIz0poL9pXcj7d7dVO/LMM89UeOic4F+06rlM/ndUowS6pln6u9Q5QueM+D/d7df8eg+m9O+o523e5NeyqNZENQS60eEHDVmbj7mAyz/n6H295PdHVN8Jdbx3SX/r/oiK/jy3jPpsuW2qKaeevTJ58uSwz8ekSZMqRiPL80BfbUvHxDUBU9nUzCtPAKTgwZVNvs1O+m75v1uqEYt/r8aNGxeVSUOAkxBAAAEEWitQ/5cyoXz68dQPi/uRib/qQsQ1xdK8eNLdP//uXnx9/3NZAYTuYvrb1Xvth5rNtXPSxWC83O6znsDtX1S56e41z0VFOxtQtvYVcE2d3HfOf9WFsp/0pHN/vt67O+HxGyfx5eKf6wUw2q5/Dqs10pVfRvd+7NixVWV1ZdB5I+td+qR8dO7MkjRCltumXhW0+PukaboYT0rqe+Svm/ZeF/ZZR4H0BziI56fa+qzJP2epxr/ZKencHy+//3nq1KnNLhL5I4AAAgjUEaiOLuqs4Gbr4ljNNPwLFN39VMdW3fH3azTcOv6r1ldNQFogozt4SXcO/TyKfq+RjNwFgH64ddet3ZOeieHfuXY/tLoDrBF0dLfQ7ZObp1c9T6NWX4N232/K1xkC+hv3v3fuvb6TSRf5/vDr+g6776j6F/g3RVw+Sa+6kNdNlnrJH0VLgUTepFHI4tvXfmVpOua2pdplv8ZZtUxZb9qon4v/0Ey/LCqH+p3UagKrZnTqOJ50/lBeOpf7o3C5Mqe9qmYqLS/1p8madtttt8j1wgsvzLpan5eTkasx8g2T3ut3Qe4kBBBAAIHWCvTT5u2JuqHksujXr1+Uj70gMLZfRvjZzY9mxt7YjrnGXswYG/iYxRZbzCy55JJm4YUXji1VzkfbnMDYpy6bhRZaqJwNshUEEGiJwAsvvGCWWmqpcNu2z5254oorcpfDjvxk7NC7xt7FN7Y5rFlmmWVM//79c+djR/QzyuunP/1p7nWnT59u7JPjje3PYmabbbbw/Dl48GAzxxxzZMpL52eVX+dgG1CZJZZYInTpS1kybbDGQjr/aru25tvYYCg8F88+++w11mAWAggggEAvChQSwCTB5QlgktZnGgIIINBsgW233dbY2uJwM7pxYWsumr1J8q8hYJsVGtufL1zi2GOPNYccckiNpZmFAAIIINCrAgQwvXrk2W8EEDC2iaVRbYWSbUJq7ENMUWmhwPDhw811110XlsD2SzI/+9nPWlgaNo0AAggg0K4ChQUwtr+IGTVqlLFt1cN9VXMw/QAp2f4WYXMyO7Rm+Jn/EEAAgXYR2Gmnnczo0aPDJks6Z6kZFql8Advn0dg+JuGG7dDPxj5Hp/xCsEUEEEAAgY4QKCyAURtyOzRn6k7boUrDNtapCzADAQQQaIGAHenM2M7zxnZqNxMmTDDrrLNOC0rBJu1DSY0dbju82WVHpAMEAQQQQACBVIHCAhg1xVD7ZTuiS9XG1Kl1zTXXNHZUoap5TEAAAQRaLaBO9OPHjzfrrbeemWeeeVpdnJ7cvn2ejrGjKpqhQ4caf0CYnsRgpxFAAAEEagoUFsDU3AozEUAAAQQQQAABBBBAAIECBAhgCkAkCwQQQAABBBBAAAEEEChHgACmHGe2ggACCCCAAAIIIIAAAgUIEMAUgEgWCCCAAAIIIIAAAgggUI4AAUw5zmwFAQQQQAABBBBAAAEEChAggCkAkSwQQAABBBBAAAEEEECgHAECmHKc2QoCCCCAAAIIIIAAAggUIEAAUwAiWSCAAAIIIIAAAggggEA5AgQw5TizFQQQQAABBBBAAAEEEChAgACmAESyQAABBBBAAAEEEEAAgXIECGDKcWYrCCCAAAIIIIAAAgggUIAAAUwBiGSBAAIIIIAAAggggAAC5QgQwJTjzFYQQAABBBBAAAEEEECgAAECmAIQyQIBBBBAAAEEEEAAAQTKESCAKceZrSCAAAIIIIAAAggggEABAgQwBSCSBQIIIIAAAggggAACCJQjQABTjjNbQQABBBBAAAEEEEAAgQIECGAKQCQLBBBAAAEEEEAAAQQQKEeAAKYcZ7aCAAIIIIAAAggggAACBQgQwBSASBYIIIAAAggggAACCCBQjgABTDnObAUBBBBAAAEEEEAAAQQKECCAKQCRLBBAAAEEEEAAAQQQQKAcAQKYcpzZCgIIIIAAAggggAACCBQgQABTACJZIIAAAggggAACCCCAQDkCBDDlOLMVBBBAAAEEEEAAAQQQKECAAKYARLJAAAEEEEAAAQQQQACBcgQIYMpxZisIIIAAAggggAACCCBQgAABTAGIZIEAAggggAACCCCAAALlCBDAlOPMVhBAAAEEEEAAAQQQQKAAAQKYAhDJAgEEEEAAAQQQQAABBMoRIIApx5mtIIAAAggggAACCCCAQAECBDAFIJIFAggggAACCCCAAAIIlCNAAFOOM1tBAAEEEEAAAQQQQACBAgQIYApAJAsEEEAAAQQQQAABBBAoR4AAphxntoIAAggggAACCCCAAAIFCBDAFIBIFggggAACCCCAAAIIIFCOAAFMOc5sBQEEEEAAAQQQQAABBAoQIIApAJEsEEAAAQQQQAABBBBAoBwBAphynNkKAggggAACCCCAAAIIFCBAAFMAIlkggAACCCCAAAIIIIBAOQIEMOU4sxUEEEAAAQQQQAABBBAoQIAApgBEskAAAQQQQAABBBBAAIFyBAhgynFmKwgggAACCCCAAAIIIFCAAAFMAYhkgQACCCCAAAIIIIAAAuUItFUA8+WXX5pf/epX5oMPPjArrLCCGTt2rJl33nnLkWArCCCAAAIIIIAAAggg0PYCbRXAHHfccebQQw+N0B555JEwoIkm8AYBBDpaQDcpLr/8cvPoo4+ahx56yLz00ktmgQUWMMstt5wZPny4eeqpp8zkyZPNueeeawYMGNDR+0rhEUAAAQQQQKA5Am0TwLzxxhtmkUUWqdhLApgKDj4g0NECzzzzjNl8883Ns88+W3c/rrzySrPZZpvVXY4FEEAAAQQQQKD3BNomgNGFzVVXXWU22mgjM378+PBIEMD03heSPe5OgZtuuin823Z7t9VWW5k111wzrH259957zdVXX21eeeUVN9tceumlZuutt44+8wYBBBBAAAEEEHACbRHA3HHHHWadddYxc801l7nrrrvMiiuuGJaPAMYdJl4R6FyBGTNmmEGDBpn33nsv3IlrrrkmbC7m79FHH31kBg8eHC1z0UUXme23395fhPcIIIAAAggggEAo0OcA5vvvvzdjxowx//nPf8L27O+//7755S9/aX7961+bvfbayzz33HNm4403Np9++mm4of3339+ceOKJVezffvutWX755cNmJaeccorZcsstzUILLRQuV3YA89133xkFU9ru73//e7Pyyiubfv36VZWZCQggkF1g7733NmeeeWa4Qq3AZOLEieHfnRa84IILzE477ZR9IyyJAAIIIIAAAj0j0KcAZsqUKeYvf/mLueeeexKhVJOyyiqrmNtvvz2av/rqq5u77747+uzenH322WbPPfcMO+yqQ6/uxLYigFFANmTIkIr2+dttt10YpLmy8ooAAvkE9Pc8zzzzhCsNHDjQqB/Mj3/848RM9DeoZdSU7IYbbjB//OMfE5djIgIIIIAAAgj0tkDuAOaLL74wyy67bNReXcGKOtsutthi5tVXXw37sbhaF0erNu6/+MUvzNxzz+0mha/vvvuuWXLJJcNaGtdp96233mpJAHPzzTeboUOHVpRPH95++20z//zzV01nAgII1Be4//77zWqrrRYuePTRR5vDDjus5ko6h2iEsg022MDMOeecNZdlJgIIIIAAAgj0pkDuAOaAAw4wJ510Uqi1/vrrm0suucTMN998kZ7auavt+q233hpNC4Igeu+/UROR0aNHh7U1utBRc61WBTATJkww6667rl+88P2LL74YBllVM5iAAAJ1BdRkbIcddgiXu+yyy8ImonVXYgEEEEAAAQQQQKCGQK4ARk08XPMP1bzobqlrHuJvY/r06WappZaKOuQmBTAPP/xw2F9G6913331m1VVXDbNoVQCjfVt00UXNtGnTol3RiGg33nhj9Jk3CCCQT+DAAw+M+r5NmjTJrLXWWvkyYGkEEEAAAQQQQCAuYIOLzMn2UVFVSvhvv/32q7neQQcdFC2btKBtVhLOt8MnV8x+8803o/VsZ/rANkermN/MD5988klgH7IX7LvvvsFtt90WfPPNN83cXJi3bS4T7a+zrfd68sknV5TL9iPKlYcNPgPbf6kiDx2Hetv159tat4pj8/XXXwea5i9T7/2GG25YUYYi8sBzJmk7eNqBO6LvhG0mOrNwOd/x/ZwJxt/7TItu+XvXHrXDd3ymLO8QQACB9hYweYp3yy23RBcjZ511Vs1VbdOwaNn4gi+//HI0z3buD0aMGBH922KLLaJ5a6+9dvjeduiNZ9E1nxUo1bvQj8/fY489Kvb/4IMPzp2HfeZORR4rrbRS7jxsbVmUhwLNeDnrfbYdtqP19aaIPPCcSdoOnvrbdd+DkSNHzixcznd8P2eC8fc+06Jb/t61R+3wHZ8pyzsEEECgvQVyBTC22Vd0MXL44YfX3LMjjzwyWja+oGpW3EVNllf7ELx4Fl3zuS93EO1w0xX7r2Ayi6O/jG22V5GHHfI6Vx6qxfnss8+iPFRbpWn+Nuq9j9fAFJEHntEhCWsQGz0mjXo+//zz0XfCjkwY/PDDDzMLmOMd38+ZWPy9z7Ro9PupnNrBU+Voh++4ykFCAAEEOkEgVx8Ye8EaPmzSXpiGw50++eSTZrbZZtPHivTll1+Gz3ZRB3glC1Ex/+OPPzbbbLNN9IwYf+bnn38ePodF05ZeeunwAXh6KvdPfvITf7GmvB8/frw577zzwgEI9KRwPb9Cz4JpdpJP3KjWNvv37181214YVk1Lm6DBEpKeb9NoHkXsR7vk0aiF7BvNo10sGimHnq2kh1hqaGSl66+/3gwbNix8n/afbfpmZp111qrZeM4kadRCOTWaRyPfC7cn7ZJHoxZFeBaRRxGe7tjwigACCLSzQK4ARjuy3nrrRc93sU2/zOmnn15xsfHVV1+FD7LUg+hc0kk1a2pVJ34Nl7zgggtWFFPPpLB3kBMv9isW5AMCCKQK/Pvf/w6HRdYCGrHQ1qga21ymanndIDnmmGPCUQ7V+d82OatahgkIIIAAAggggEDuAEYPsVxiiSUiOV3ka9hkjeD12muvhQ9+dDUvbqEsAYyeL/P0008b24nfbLLJJuGq559/vllnnXXM4osv7rJq2uvYsWPDWqH4Bp544gmz3HLLxSfzGQEEcghsuumm5pprronWsE1MjR5uq3OJngdl+9eZU089NaqV5SGyERVvEEAAAQQQQCAmkDuA0fp6xouCFj3zJSnZdvfmt7/9bfQsmCwBjHsmTFJ+CowWWWSRpFmFTdM29DBOP2k/VCPEA/V8Fd4jkF/ADigQ1syOGTOm7sp6iKWajSYN0V53ZRZAAAEEEEAAga4X6FMAI5WPPvoobOpx7733hs9x0TQ940FNQ9R3RM98UD8XpSwBjJqO2IEBwuX9/wYMGGD++9//mnnnndef3JT3xx9/vDnjjDPCwEw1S3py+J///OembItMEehFATv6nVHzMNcnxjdQjcyhhx4aPlA2qY+WvyzvEUAAAQQQQKB3BfocwPhkLkDxLzr8Jlluvr9Ou75Xp2M1aVlooYXatYiUC4GOF5gxY4aZPHly+ODYhRdeOGwmOv/883f8frEDCCCAAAIIINB8gUICmKRidmoAk7QvTEMAAQQQQAABBBBAAIH2ECCAaY/jQCkQQAABBBBAAAEEEEAgg0BhAcy4cePMqFGjzPfffx9udtq0aVEnf/sAu7A/zO67756hSCyCAAIIIIAAAggggAACCCQLFBbAbL755kYddNPSiiuuaB577LG02UxHAAEEEEAAAQQQQAABBOoKFBbA6IGPGnks6YnGenL8mmuuaZZeeum6BWIBBBBAAAEEEEAAAQQQQCBNoLAAJm0DTEcAAQQQQAABBBBAAAEEihIggClKknwQQAABBBBAAAEEEECg6QIEME0nZgMIIIAAAggggAACCCBQlAABTFGS5IMAAggggAACCCCAAAJNFyCAaToxG0AAAQQQQAABBBBAAIGiBAhgipIkHwQQQAABBBBAAAEEEGi6AAFM04nZAAIIxAU+/PBDM++885ohQ4aYJ598Mj6bzwgggAACCCCAQKoAAUwqDTMQQKBZAu+++66Zf/75zeKLL26mTJnSrM2QLwIIIIAAAgh0oQABTBceVHYJgXYXIIBp9yNE+RBAAAEEEGhfAQKY9j02lAyBrhUggOnaQ8uOIYAAAggg0HQBApimE7MBBBCICxDAxEX4jAACCCCAAAJZBQhgskqxHAIIFCZAAFMYJRkhgAACCCDQcwIEMD13yNlhBFovQADT+mNACRBAAAEEEOhUAQKYTj1ylBuBDhYggOngg0fREUAAAQQQaLEAAUyLDwCbR6AXBQhgevGos88IIIAAAggUI0AAU4wjuSCAQA4BApgcWCyKAAIIIIAAAhUCBDAVHHxAAIEyBAhgylBmGwgggAACCHSnAAFMdx5X9gqBthYggGnrw0PhEEAAAQQQaGsBApi2PjwUDoHuFCCA6c7jyl4hgAACCCBQhgABTBnKbAMBBCoECGAqOPiAAAIIIIAAAjkECGByYLEoAggUI0AAU4wjuSCAAAIIINCLAgQwvXjU2WcEWixAANPiA8DmEUAAAQQQ6GABApgOPngUHYFOFSCA6dQjR7kRQAABBBBovQABTOuPASVAoOcECGB67pCzwwgggAACCBQmQABTGCUZIYBAVgECmKxSLIcAAggggAACcQECmLgInxFAoOkCBDBNJ2YDCCCAAAIIdK0AAUzXHlp2DIH2FSCAad9jQ8kQQAABBBBodwECmHY/QpQPgS4UIIDpwoPKLiGAAAIIIFCSAAFMSdBsBgEEZgoQwMy04B0CCCCAAAII5BMggMnnxdIIIFCAAAFMAYhkgQACCCCAQI8KEMD06IFntxFopQABTCv12TYCCCCAAAKdLUAA09nHj9Ij0JECBDAdedgoNAIIIIAAAm0hQADTFoeBQiDQWwIEML11vNlbBBBAAAEEihQggClSk7wQQCCTAAFMJiYWQgABBBBAAIEEAQKYBBQmIYBAcwWmT59uhgwZYgYOHGgmTpzY3I2ROwIIIIAAAgh0lQABTFcdTnYGAQQQQAABBBBAAIHuFiCA6e7jy94hgAACCCCAAAIIINBVAgQwXXU42RkEEEAAAQQQQAABBLpbgACmu48ve4cAAggggAACCCCAQFcJEMB01eFkZxBAAAEEEEAAAQQQ6G4BApjuPr7sHQIIIIAAAggggAACXSVAANNVh5OdQQABBBBAAAEEEECguwUIYLr7+LJ3CCCAAAIIIIAAAgh0lQABTFcdzu7dmSAITL9+/dpqB9uxTG0FRGEQQAABBBBAAIEmCLQsgPnkk0/M+eefb957773U3fr5z39udtxxRzP33HOnLsOMzhHIe8H/9ttvm7POOsvcdttt5vHHHzdrr722WX/99c3ee+9tZp111lJ3XGW/5ZZbzEMPPWQefvhhc//995tPP/3UDBgwwNx7771mkUUWqSrPSy+9ZC6//HLz2WefVc1zE/7v//7P7Lrrru5jzde8fjUzYyYCCCCAAAIIINChAi0LYG6++WYzdOjQumz//Oc/zS677FJ3uV5d4J577jF33HGH0cVtPP3oRz8yc845p5lrrrnM4MGDzaqrrtqyWowxY8aYvfbay0yYMMGsvPLK8aJWfX733XfNGmusYV588cWqecOGDTNXXnmlmWWWWarmNWOCgu2dd9453GZS/s8++2zoG5934IEHmhNPPDE+uerzM888Y5Zeeumq6f6EUaNGmdNOO81ceumlZq211vJndcT7GTNmmAsvvNDIMi2phm2JJZYwW265penfv3/aYkxHoDCBr776yvzrX/8yH3zwQZSnzpu6IbHtttuaL7/8Mvzefvjhh+aHH36Ilhk0aFD4PY0mNPhm2rRpZuzYsUblcUk3aVZZZRXzu9/9zrz66qvm6quvNl988UV0rtffy7rrrhue1906vCKAAAI9I2AvfFuSbrrpJl1xh/8WX3zxIOnf6quvHtiLu5aUr1M2utJKK0WOzjPtVcYPPvhg6bt26623RmW0P9R1t//9998HK664YrTOiBEjggsuuCDYcMMNK6bVzaiABfT9GzhwYLRdG2gEtlYoePTRRwN7URF8++23qVvZf//9o/WSvt+atskmmwSff/55ah5uxrhx48K8bDAaPPfcc25yx7xedNFFkUXa99NNnzhxYsfsFwXtbAF78yf1ezl16tTA1rqmzp8+fXphO3/UUUclbkfnCKV99tkncb7OkyQEEECgFwV0N6clyQ9gWlKALtno+PHjA1uzEfiBjK2xCnTRb2sNgo022iiYb775oh8/XQDbpk2l7b1tIhhom7o4tTUnmbY7adKkqLz77bdftI6CBXvHMZr3/vvvR/Oa8ea7774LhgwZEm1PFxl5kgtgFHg1muyd2eg42mZ0jWZX+vqnnHJK5KhjGP/nghe92lrF0svHBntT4OOPPw50vnTnKH3/dM486KCDgm+++Sb46KOPgq222irQ35z7jiqosLWrhYLZJrLh+dFtQ+fszTbbLLxxow099thj4Xz/xo6tnQl0Y4CEAAII9KIAAUyXHHXb1C76gVUNhp/0Q3zCCSdE8/WDXVby7yzefffdmTa79dZbR2W1TSYq1nnyySejeaeffnrFvKI/2OZa0bbyBi8qS5EBjPLzj+EDDzygSR2T3PdAAWE8+c4KbEgIlC2wzTbbhH/rq622WuqmXXDRzPOOu9l0xBFHJJbD9sGLzkkKakgIIIBArwr0OYDR3WnbdjjYfPPNw+ZfuoNl2+YHBxxwQPDmm28Gtq9DxV0tXcz5qR1rYHSH33YYD4499tiwqZVt8+wXua3f1wpgXMFdbYJrlqDpurOvO3nux9m96of06aefdqsGxx13XMXx1HK2A3swZcqUaJn4GzWNcnc2lV88sIovr8/6XrkyqHlVPOmYuB/5Whcb8fXyflbg5Laj13gglSW/ogMY204/stlggw2yFKFtllFNmo5r/Ji9/vrr0XdE3xV9JiFQtgABTNnibA8BBBBoTKBPAczLL78cqH+Ku9CMv+pCxG/qo/la3k9+AKMmI8cff3zY7Onvf/97oDuyan9cZtKFs/o3+Puy3XbblVmEhraVJYDxm0Fof5XUhMLfZ/+9jpFLdjS4xOXU3CstjR49OlonHsCmrfPOO+9E65x99tmJi22//fbhMgosmpX8tu/nnXdeuBnbAT1sfufs6m3bBTC6aL/xxhuDww8/PJDjkUceGVx77bWBHcWsXhZV8/1j2Em1MHvssUd4zPzASwGtHVkuOt6XXHJJ1f4yAYEyBAhgylBmGwgggEBxArkDGN1V1x18d6GrYGWHHXYIjjnmmPDV3XF38/Vqh5kN4h0e/QDGX9Z/f1GJ7XvTymOH8i1Ou4k51Qtg1OHcHRt1SvfT888/H7bpdvZu8AS/BsqOIhUoWHHLKI+nnnrKz6bqvR8QZr3Y9puI2ZHGqvLUBNXyuXLU6kSfuHLGieqo77Zx2WWXVdVSbbHFFkG9PjgugHH5xF/1d5TVxRX73HPPjcqlPk6dkk466aSw3LvvvntUZN944403jqbzBoGyBQhgyhZnewgggEBjArkDGP+iTHeD7XC3FSXQZ91l9S/WKhb434fbb7+9Yhld7KrGw++Mrjzs0KtJqxc+LV4eV347jG/h22pGhn4Ao1GqFJTY4X2Du+66Kzj11FOj5lDar6SaDb/JlAIddV6NJz/ISwsu3DoKdJ2hakqyNB/TumrC59bTMUlK7mJYyzUrwNxzzz2jcrjyxF+1X7UGRDjssMMq8lBgqP49/g0A5ZlnpL1XXnklylNN/zol6fjrb8kFnPqOOk993+LnkU7ZL8rZHQIugNF3Ur9BSf/c97WMPjD6m0gqg3/uoA9Md3z32AsEEOibQK4Axu+foBOs2uQnJV386uLOnfCTllFTIQU6I0eODPTeT3a8+2hdbadZF6n+NrVv6tPhyqxXjUbTKckPYPx9iL9XbZm7iIzvm5pKueXVD8hPqo1xI+Ao2KzXjErBk8tLfaOypuuvvz5aT8FXUtIFhMtbNUvNSH5TLW1L3wWVR80dNTqQ276aSvo1VX5ZtKzyUZNI+zDLaJYGVTj44IOjPNTELGuAp0zctvW30YlJ++/fqFDzOhICrRTwAxj395X2WkYAk7ZtfzoBTCu/MWwbAQRaLZArgNHdZncC9Ye3TdoJDUPplk2aX2+afQBgtP7FF19cb/FC5quPg31yerDvvvuGNQG60Gp20vNEnFPW15NPPrmqWFkCGDXlq5XUod8Fcbo4Vv8YlzRcsyvfNddc4yanvvp9SFTrkDWpSZXbzg033JC4mvqQuGWyPEMlMZM6E/3mb+qn4QcYClj8Z9LUc03blF9TqX5lWZP/XBoNU52Wvv7664obCc6s1mt8yOeivp9+Gd2IZCqHAmqX5GofHOg+VrxqsJBa5Y7P0w0Uv49RERZF5FGEp2pQ4/tb67P+luNDU+NZ8fUKXACj85+ajCb9c8ZJAUyjnq407safbpgklUH96Fw54gFMEd9PVw5eEUAAgXYXyBXA+Belar9eK/kduGstlzZPtS7uRF0vWErLoxOm+02m3P7We1WH6HjyAxhdbKuW5eGHH654jokGSqiX/OOmYXuV/NoXjWTmX8yn5XfOOedEx099VrImv4lUWh8o1yG8mTUQfg2MvvfxpAtCd5zUL6Uvya9pVICYNfkDZNTqQ6MLeFfGrK/x/lFFfT/dvj3yyCNRmXSxqL5VLqlfkcqZFMz5NTZZ9+Wtt95yWYfBTNb13HJxi3bx9GvvXFnrvV511VWRhd7gWcERBTDxUfL8pZxxUgDTqKfbjgtg+jKMchHfT1cOXhFAAIF2F8gVwOiC2J3EdSeoVvLvktdaLm2eLsDdtvLcwU/Lr12n9+WOrB4KGE/xAMbNf+ONN6LO+/JUJ/laSXfx/FoY/Sj6tS9q4pUl+c8sOfroo7OsEi7j951JC1zdCHiqJWlWUmdz9/174oknqjaji2M3XzV2fUl+EKQhybMm3Z1121aAkZZUg6ggzy2b5bWIGpik76fKqGPr1x7deeedUdH95qm33nprNN29USf/LOV3y2i/4832GrVoF09/8AO3v/Ve77vvPkcZvuJZwdFwANOopytNIwFMEd9PVw5eEUAAgXYXyBXA+Hd4dCGS1txDHcL9C5W+IPh9KLLUHPRlG/F11BbfNevR05f10LAykmo4VKuR9V9SmdICGC2rZnHuAkf9WNL6wLh8NZytW17N1VzfF72qrFmSOvm7PJJqjGrl4ZpvqcNqPKl/lcs3ywM5ZXraaaeFNVG6ONhnn32CadOmxbOt+qz9dtuZOHFi1Xy/E3pSk76qFRImnH/++dE28jRDc8dD5dPfSa1UxHeriDxURtk703jQ5w/nnfbA06x/H1ou6XtaxH60Sx6NWuh4NJpHu1gUUQ7XhKyvNTBFeCqPRgIYrV+EhfIhIYAAAu0ukCuA0c74zVdGjBgRPgjR30kFNRre1V2o6LUvyb+jlTYaVV/yTVvHv6Puyq4gTD8InZBqBTAq/7Bhw6JjUu+CWwGOP9qN88jTzOnxxx+Ptpf0QMpapn7zs/jF7Jlnnhnl++CDD9bKJpynfjSu/O41S0D12muvRespmI0nDRvu8vOflxNfLu2zmk65mi7lo5sDWZNfk9CsPkBZy5J1OQWBzkt/V/EHg+rht25+vG1/1m2wHAJ9FSgigOnrtv31Gg1g/Lx4jwACCHSzQO7oQu3T3YWGXnUxohoSdTjUq1/z4paLAypYUJthdY7WhbcudhX4KFjQQAH+KE+6I1avxiCef18+a6QoV17/Nan5UF/yb9Y6GnhAF/L+3W3dzY8PzasLRP/CVxfdtZ567tfayEPHK08w599RV41BnuTXsugHXbUM2rY/1HXW5mNpD+DMUh7V8LjvwnHHHReoeZ3uWvu1SypfUvBxxx13hH8L6teh5TWEsJpJ6buspmPqS+TyPvTQQ7MUJ1xGF/5uPW27E5L22z8vqEZMTZr8f+PGjYv2S0OAkxAoS0D97twDVfU9Vb8y/9yoGlt/cBHdAPHnF1FOnRcmT54cnaMVUOm8/uGHH4bZa75+G/2RIvWIgaTh7osoD3kggAAC7S6QO4DRDqlTs7tT5C6m/FddKLumWJoeT7q49pdPe6989ONSRnr11VeryqTtJ12cllGerNtQgJfmN8k+eNJPftMwt078TrhbXj+Y/kVnUkd2t2zaq/8dqTVaVtL6Y8eOTd0vHZesd+mT8tF3M0vShYtv4Mz812uvvTYxK79GzF8+/l7PclFglDX5QZxqQzshJf1txR38z1OnTu2E3aKMXSCgmz3+d89/r+DB/3vz5+l9kbWfuvkXz1+fdeNIKf5MKbesAi8SAggg0IsC1dFFRgWd3DW6lH8Bred9qOO1Lvz8Go2kLDU/qZmSOzFvv/32dZ90npRvI9N0l91ddOvCVXeF2z25Ebmcm3vVfiRd5PvDW6sWQ4FKUtJ0d3x0kZ2n9sXlp2PoyqNAIm/SKGRuffeq/crSdMxtSzV7agLm1tcAAHlq1XSH0x+RzOWjIKpWUKegRKNFaTm3TvxVAx3kHap7t912i/Ir6yGvzrKvr/ru+AMPxB38z/q7yxPQ9bVMrIeABKZMmZL4N6pzo5p5qjbQ/Sb431OdE9POnX2R9Uck9Lfjmq/q/Jl0LlEzbhICCCDQiwL9tNP2hNlQcln069cvyseecI2tBg8/u/nRTO/N9OnTja06Ny+88ILR+vYCxiy11FLmZz/7mbdUeW9tcxdjnwpuFlpoofI22oZbsgGm2XbbbcOS2ZGuzHrrrZe7lDqmOpZK9jkJ5oorrsidh73AN3boXWPv4hvb7Moss8wypn///rnzsSNSGeX105/+NPe6WkHfCTtinLE1ScZe3Jhll13WzDHHHJnyss33zFNPPWVssxMz55xzmsGDB5tBgwaF7zNl8L+F9N1U+W2toLEXM2GZZp999jxZsCwCCCCAAAIIINDxAoUEMEkKWQOYpHWZ1loBe2cxDDxs8z1ja9iMbWbR5wIpCFIwpKQgwN7N7HNevb6ibRJobJORkOHYY481hxxySK+TsP8IIIAAAggg0IMCBDA9eNDr7bJtumXsE9LDxSZMmGDWWWedequkzrdNMMIaBy1gm+gZ26wqdVlm1BYYPny4ue6668KFVBPUqlrK2qVkLgIIIIAAAggg0FyBwgIY21/EjBo1ythRmsIS234wYXMbfbDthcPmZPbhgM3dG3Lvk8CYMWOMfZp8dOzsaDdhMyVlZjuRmt/85jfmjDPO6FPeWmmnnXYyo0ePDps96cJ7ttlm63NevbqijomaVyrZAQKMHSGtVynYbwQQQAABBBDocYHCAhj1cbjqqqtSOe1QusZ2Kk+dz4zWCfzhD38w9unnNQtgR9zJ3OcjnpEd6czYzvPGDpdtGq3RiefdK59PP/10Y4fKDm8E2NHkemW32U8EEEAAAQQQQKBKoLAARk2F1EbfjjhUtRF1ul5zzTXDzs9VM5nQcoGnn37a2GeTaES6xLKow/oaa6yROC/rRHWitw/CDAcDmGeeebKuxnL/E7DPwjF2xCQzdOjQcLALYBBAAAEEEEAAgV4VKCyA6VVA9hsBBBBAAAEEEEAAAQTKEyCAKc+aLSGAAAIIIIAAAggggECDAgQwDQKyOgIIIIAAAggggAACCJQnQABTnjVbQgABBBBAAAEEEEAAgQYFCGAaBGR1BBBAAAEEEEAAAQQQKE+AAKY8a7aEAAIIIIAAAggggAACDQoQwDQIyOoIIIAAAggggAACCCBQngABTHnWbAkBBBBAAAEEEEAAAQQaFCCAaRCQ1RFAAAEEEEAAAQQQQKA8AQKY8qzZEgIIIIAAAggggAACCDQoQADTICCrI4AAAggggAACCCCAQHkCBDDlWbMlBBBAAAEEEEAAAQQQaFCAAKZBQFZHAAEEEEAAAQQQQACB8gQIYMqzZksIIIAAAggggAACCCDQoAABTIOArI4AAggggAACCCCAAALlCRDAlGfNlhBAAAEEEEAAAQQQQKBBAQKYBgFZHQEEEEAAAQQQQAABBMoTIIApz5otIYAAAggggAACCCCAQIMCBDANArI6AggggAACCCCAAAIIlCdAAFOeNVtCAAEEEEAAAQQQQACBBgUIYBoEZHUEEEAAAQQQQAABBBAoT4AApjxrtoQAAggggAACCCCAAAINChDANAjI6ggggAACCCCAAAIIIFCeAAFMedZsCQEEEEAAAQQQQAABBBoUIIBpEJDVEUAAAQQQQAABBBBAoDwBApjyrNkSAggggAACCCCAAAIINChAANMgIKsjgAACCCCAAAIIIIBAeQIEMOVZsyUEEEAAAQQQQAABBBBoUIAApkFAVkcAAQQQQAABBBBAAIHyBAhgyrNmSwgggAACCCCAAAIIINCgAAFMg4CsjgACCCCAAAIIIIAAAuUJEMCUZ82WEEAAAQQQQAABBBBAoEEBApgGAVkdAQQQQAABBBBAAAEEyhMggCnPmi0hgAACCCCAAAIIIIBAgwIEMA0CsjoCCCCAAAIIIIAAAgiUJ0AAU541W0IAAQQQQAABBBBAAIEGBQhgGgRkdQQQQAABBBBAAAEEEChPgACmPGu2hAACCCCAAAIIIIAAAg0KEMA0CMjqCCCAAAIIIIAAAgggUJ4AAUx51mwJAQQQQAABBBBAAAEEGhQggGkQsFmrr7zyyuaRRx4xb731lllggQWatRnyRaBPAnw/+8TGSiUJtMP38+abbzZDhw41++yzjxk1alRJe169mQMPPNCceOKJ5pprrjHDhw+vXoApCCCAQAcKEMC06UEbNGiQefHFF83UqVPNgAED2rSUFKtXBfh+9uqR74z9bofv57XXXms22WQTM2LECHPeeee1DG7vvfc2Z555prn88svNFlts0bJysGEEEECgSAECmCI1C8yrHX6AC9wdsuoyAb6fXXZAu2x32uH7SQDTZV8qdgcBBNpK4P8BAAD//4LjqtsAAEAASURBVOydCdjVxL3/B/f2r622St2eq1LFam+xl1Zq61p7rVXw8SqVWlurYEXcReu+ouAuWjfEfWul4r7WCuJaRcSKuKLgAqKIiIq7Yv7zSzthTt7knOScnGRy8pnned/kJJOZ33xmksw3s3XztFM45wisu+66atq0aWrmzJlq9dVXd86+MhokRb1bt25lNN05mymfzmUJBlkEsiifrT4vbrrpJtW/f381ZMgQNWrUKMu6dLut2nHggQeqc889V1133XVq5513Thc5viEAAQi4SkA/HHEOEujZs6cIS08LGAetK49JkyZN8nQFwtMi0FtuueW8nXbaydMv8vIkwFFLKZ/ZZMycOXO866+/3ttzzz29Hj16eIccckg2AVc8lGbL5/jx473Bgwd7vXv39p+/3bt397bbbjtvwoQJqYneeOONfhjy/EnjvvjiC79M9O3b15P45T0gz68ddtjBe/LJJ9ME5fs94IAD/DB47qVGxwUQgIDDBLqJbWnE1d13360mTpyY5hK1/PLLq3333VctueSSqa6rsucsviBWmZ+k/Z///KfaeOONIzGcdtpp6rDDDos8x8HGBCifjRnV8/HQQw+pgw46SOkKaY23LbbYQunKcs0xfqQnkLZ8zps3Tw0dOlRdc801sZFpcanOPPPM2PPhE820wMyfP1/tuOOO6v777w8HF/y+6KKL1F577RX8brRDC0wjQpyHAARKSSCtuNKJ9L/mpN0+8sgjaaOqtP9mvyBWGpqV+Ndffz0op9LyMmzYMO+8887z1l9//eA4XyQtYCl3KZ8pgYW877fffkE5tJ+lWsCEfPKzGQJpy+egQYOC/JDnxRlnnOHdc8893ujRo/2WW5NH0lqW1DXTAqPFSWCHtMgdccQR3q233uode+yxwXGxZcqUKUnN8GiBSYwKjxCAQIkIqDS2fv7558FDtFevXt5WW23l/2266abBcXlxmOOyNQ/+u+66K01Ulfeb9gVceWAhACJYTNm7/fbbg7Nvvvlm0C1DuongmiNA+WyOm7lq7ty53tixY73Jkyd70mVo++2398srAsYQam2btnxK9yx5Xsh1b7zxRk3kzz//fPAskfNJXTMCZsaMGZ6IWxEtX331VU1UV199dWDHSSedVHOu3g8ETD06nIMABMpKIJWA+fDDD4MHqHydMk43ewfHx4wZYw77D2BTidTN6cFxdhoTSPsCbhxidXxIhdD0Hd966627JPyCCy4IyqtUIHHpCVA+0zOrdwUCph6d9OfSlk8Rk/KseOGFFyIjMwJH3mcLFiyI9BM+2IyACYdh/5bnmnmfDhgwwD5Vdx8BUxcPJyEAgZISSCVgdD/h4AGq+3AHSY4TMOLBPHDL0F1HXhAizIYPH+499thjXb6ABQnOYSftCzgHk0oTxaOPPhqUu/PPP7+L3S+//HJw/vjjj+9yngONCVA+GzNK4wMBk4ZWY79Zl8/dd989eGZI99QkLmsBY3eLPfnkk5OY4PtBwCRGhUcIQKBEBFIJGGlaN4LkiSeeCJJZT8BIf2K55vLLLw/8u7jz5Zdf1oyPEJt32223wkzN+gVcWEIKiNhUHCQPn3rqqUgLTAuNVExw6QlQPtMzq3cFAqYenfTnsiyfH330UdCiK8+NcNeuOOvMcyjtLGRR4X3yySd+17Ko92+Uf/sYAsamwT4EINApBFIJGOmfax6g06dPDxjUEzBm0LSe3SXw7+LOHXfcEaTNpFG2MmaiCJflC7gI+4uMU1pdTB6G+7Mbu8w0qTJOC5eeAOUzPbN6VyBg6tFJfy7L8mkPoE8z9iQLAfPggw/6E5CYDy7yXJOPLgsXLkwMBQGTGBUeIQCBEhFIJWCki5UMMpVKn7RYGFdPwEgXHRExro81uPfee4NKr6n8ylYvJmmSmes2yxdwroY7ENkxxxwT5KV8PY1y22yzje9HOOPSE6B8pmdW7woETD066c9lVT5l8hnzPhARkXT8i1jcqoCRuEzcZrvHHnukhoGASY2MCyAAgRIQSCVg4tJTT8DEXePacRFksliYeVHIVhYwK8pl9QIuyv4i49XrOQT5KKI7ypkKo+Q5Lj0Bymd6ZvWuMOWRWcjqUUp+LovyKVMV2+8DGReZxrUqYCSu008/PVhU09gi76W4luUo+xAwUVQ4BgEIlJ0AAsbKwQ8++MBfpf3ggw/2B/PLtNFFuSxewEXZXnS8epHKoOLxzjvvRJqjF7j0/Wy00UaR5zlYnwDlsz6ftGcRMGmJ1fffavmcOnVqzfovV1xxRf0II85mIWBMsC+99JLXv3//4LkWNbui8RveImDCRPgNAQh0AgEEjKO52OoL2NFk5WKWjLcyXyvlxR/lDN+ddtop6jTHGhAw/GbOnNnAJ6eTEEDAJKGU3E8r5TMsXs4999zkEVs+sxQwJliTLnm+JZ0NDQFj6LGFAAQ6iQACxtHcNC8qKojpM8gez2QvYmlCstczku5muPQEKJ/pmdW7AgFTj076c82WT5ld08ycKSLhjDPOSB/5f65oh4CxF+h94IEHEtmGgEmECU8QgEDJCCBgrAy77bbbPDO4e5dddvEmTpxonc13t9kXcL5WuhnbW2+9FbTA7LPPPl2MtAfm/vWvf+1yngONCVA+GzNK4wMBk4ZWY7/NlM+weJEFb1tx7RAwp556avBse+SRRxKZh4BJhAlPEIBAyQggYP6TYbNnzw5eDKb7kbwEk875n3W+N/MCztqGMocnXcMkH+Vr6ty5c2uSYlbVlnNxs5TVXMCPLgQon12QtHQAAdMSvi4Xpy2fMmDfbnmJGvNy8cUXe4cccoiXdGxkWgFjFlKOm/ny/fff93r06BG8p5I+uxAwXYoHByAAgQ4g0E3SoCt6qZ1+eKpnn31W6dm7lH6wqm233dYP47jjjlN6gKG/v8oqq6i11lorddhFXHDttdeqXXfdtUvUeiFEtcEGG3Q53u4D6667rtIvMqW7kCk9U1a7o+u48P/xj38E5VC3qqmrrrpK6QqK+vOf/6yOOOIIP726+5gaOXJkx6U9jwRRPlujLM9MPT5L6cqwH5CuGCs9y5XSU86rSy65xD+27LLLqjXXXFN94xvfaC2yCl6dpnx+/PHHSvzPmjXLJ6XFjxo8eHANNXlNHnroof6xxx9/XG244YY156N+3HTTTUoPvFd6IUs1atSoKC81x2644QalP7z4x/r27avkb7PNNvOf///617+UlJEnn3zSP68XWVZXXnllzfVxPw488EClx/Go6667Tu28885x3jgOAQhAoFwEmhVh5ouhTm3wRShqP+lXombtyOq6V155pUs65Itcmnn/s7JFwkn7BTHLuDshLFnoTVbAjiqTcqxXr17evHnzOiGphaSB8tkadjMLXlz5NMeLnMq9tRQWe3Wa8nn11VfHPidMPthbGeSfxKVtgZFB+XY8cfuSNmmNSepogUlKCn8QgECZCDTdhUx/xW74sJUFLOPW4XAR0ogRIzyz4rG8JMaMGVOYmWlewIUZ6XjEImL23nvvLuVUfz313n77bcetd9s8ymdr+WMqlXGVVHNcuizh0hNIUz6ly5Z57hvucVtZN+qTTz5JZFBaASOB6hYWT7q42t3ZbFt0K5D33nvvJYrfeDJlTbfAmENsIQABCJSeQNNdyPRDtSOddImbM2eOWm211QpNX5ouEIUaWoLI9Qtf6QGvSlc8VJ8+fdR//dd/lcBqt02kfLqdP1W3zoXymbYLmZ1numahdK8ANXnyZP+5tfbaa6vvfe976lvf+pbtLdE+XcgSYcITBCBQMgIIGEczzIUXsKNoMMsBApRPBzIBE2IJuFA+WxEwsQlr4gQCpgloXAIBCDhPAAHjaBa58AJ2FA1mOUCA8ulAJmBCLAEXyicCJjZ7OAEBCECgZQIImJYRticAF17A7UkZoXYCAcpnJ+Ri56bBhfKJgOnc8kXKIACB4gkgYIrPg0gLXHgBRxrGQQhoApRPioHLBFwonwgYl0sItkEAAmUngIBxNAddeAE7igazHCBA+XQgEzAhloAL5RMBE5s9nIAABCDQMgEETMsI2xOALAyq1xvwZ6HRU3y2JxJChUCTBCifTYLjslwIuFA+x40bpwYOHKgGDRqkhg0blku6oyIZPny4Gj16tLrooov8xTGj/HAMAhCAQNkIIGDKlmPYCwEIQAACEIAABCAAgQoTQMBUOPNJOgQgAAEIQAACEIAABMpGAAFTthzDXghAAAIQgAAEIAABCFSYAAKmwplP0iEAAQhAAAIQgAAEIFA2AgiYsuUY9kIAAhCAAAQgAAEIQKDCBBAwjmZ+nz591KRJk9Ts2bPVKqus4qiVmAWB4gjceeedql+/fmro0KFq5MiRxRlCzBCAAARKRoDnp3sZ5kqelKX+iYBxrwz7FrmwjoGjaDALAj4BV9bZIDsgAAEIlI0Az0/3csyVPClL/RMB414Z9i0qSwFyFB9mVYCAKw/7CqAmiRCAQIcR4PnpXoa6kidlqX8iYNwrw75FZSlAjuJri1me56lu3bq1JWwCTU/AlYd9esu5AgIQgECxBDrp+dkp7+as8qRVHqWpf+qE4hwk0LNnT08/3ryZM2c6aF21TBo7dqw3YMAAb7nllvNWX311b/Dgwd6jjz5aLQgOpvbGG2/075EhQ4Y4aB0mVZXAF1984T3++OPeqaee6m2xxRZe9+7dvVdeeaWqOEi3owTK/vx86aWXvIMPPtjbdNNN/feAvJ+33HJL7+KLL/YWLlzoKPX6ZjWbJ/Pnz/fOO+88b6ONNvLrKVJ3XH/99b199tnHe/PNN+tHGnG2LPXP1C0wd999t5o4cWKqTwfLL7+82nfffdWSSy6Z6roqey6NAu7wTDr//PPV/vvvH5nKCRMmKF1BiTzHwfYTyOprVfstJYYqEPjqq6/U3nvvra677jq1YMGCmiQ/8MADarPNNqs5xg8IFEmgrM/PL7/8Up1++unq6KOPjsWnRY2Suur/+3//L9aPiyeayZMpU6b4k9nMmjUrMkla2Kn77rtP/fjHP448H3WwNPXPCPFV95BOrK92024feeSRuuFyspZAWRRwrdWd9evWW28Nyrrkx9lnn+0NHz48+MIh94B8BcIVQ6DZr1XFWEusnU5AzxgZPC/k2SBfhM17UguYTk8+6SsZgbI+P6+++urgvpL769BDD/Vuu+02T3pK9O7dOzgnrQ9lc83kifQOMc+ZjTfe2DvjjDO8W265xdtll12C4z169PA++uijxDjKUv9UiVOkPX7++ecBkF69enlbbbWV/2ea8ASiJNwcl60Be9ddd6WJqvJ+y1KAOjmjTLmWisirr74aJFV/zQjK9eGHHx4cZydfAs087PO1kNiqRuDBBx/07rjjDm/OnDnek08+GTwnEDBVKwnup7esz0/pKmXqleEP4x9//LEnlXVzvpnuU0XmXDN5IvUR3UvEf96EbR80aFDAIs0zqCz1z1QC5sMPPwxg3HPPPQEr6X9nCsyYMWOC47pJPTium8aC4+w0JlCWAtQ4JeX08cILLwRlV/qyh91OO+3knxdx88knn4RP8zsHAs087HMwiygg4BNAwFAQXCZQ1ufn1KlT/Y/k0kMiyulu38G7266nRvl17VjWeSJjdU3dfPTo0YmTW5b6ZyoBM2/evADGQw89FMCIEzDiwcDT/YID/67uyOBLKfDSTeixxx7zRIAV5cpSgIri0+54dR/boOzqPqZdorvqqquC8+PGjetyngPtJ5D1w779FhNDlQggYKqU2+VLa6c+P+13cxnqnXbJyTpPJP2mDv7www/bUdXdL0v9M5WAeeONNwIYTzzxRACgnoAx/YAvv/zywL+LO3pgmD9rg8ls2e62226FmVqWAlQYoDZHfMABB/hlXcpvlJB9+eWXg3tBHpi4/Alk/bDPPwXE2MkEEDCdnLvlT1unPj932GGH4N0sPSnK5LLME+nGKrOSSV1W6jEyBCSpK0v9M5WAmTFjRlAwpk+fHrCoJ2BkKjcBeM011wT+XdyRfsu2eDH7RfWhLEsBcjEvs7Cpf//+fnmQ/rRR7r333gvKyymnnBLlhWNtJpDlw77NphJ8BQkgYCqY6SVKcic+P++9997gvSxTmJfNtZon0ovo+uuv9w466KCAg9RlZWrpNK4s9c9UAkbgSKGQwfnSYmFcPQFz/PHH+y0bkydPNt6d3NoF34gX2U6bNq0Qe8tSgAqBk0Ok5suFbKOcPb5LBtDh8ifQ6sM+f4uJsUoEEDBVyu3ypbXTnp+vvfZazcx/cv+VzbWaJzIEwq6/yr49Lj0pj7LUP1MJmLjE1xMwcde4dlwEmSxSaGf+dtttV5iZZSlAhQFqc8Sm5bDeVxxTVvbYY482W0PwUQRafdhHhckxCGRFAAGTFUnCaQeBTnp+Sh1UZsY17+RzzjmnHcjaHmareSLj1HfddVd/NmDDQrYyW2qayYbKUv9EwFhF8oMPPvBk0JOs7ipKNk2fQSuYTHbLUoAySayDgWy99db+w1AeilFOHgbmAXHsscdGeeFYmwm0+rBvs3kEX3ECCJiKFwDHk98pz0/pzm16TMg7effdd48ct+p4dvjmZZkn48ePrxF1UbOpxjEpS/0TAROXgwUfL0sBKhhT26KXVhV5GHbv3j0yDnvRugsvvDDSDwfbSyDLh317LSX0KhJAwFQx18uT5k54fkrLiy1eZHkDGepQVpd1ntgTb8WN541iVZb6JwImKvccOFaWAuQAqraYIK0qpoXlnXfe6RLHhAkTgvM333xzl/McaD+BrB/27beYGKpEAAFTpdwuX1rL/vycO3eu17t37+A9LLOPffbZZ+XLCMviduSJWZBb6jNJexWVpf6JgLEKz2233eZts802/g2xyy67eBMnTrTO5rtblgKUL5X8YrvllluCB6PM6hF20qfUCJxXX301fJrfORBox8M+B7OJoiIEEDAVyeiSJrPMz08Z62GPeZH6WtLKucvZ1Y48Md3hETAxOd8Jg/jtLkGmYioiImoNkBgMmR5GwGSKM3Vg8iXHrGEks+4tXLgwCEP63ErXMiknInhxxRBox8O+mJQQaycSQMB0Yq52TprK+vyU9++GG24YfEDcc889a2bFlRx68MEHvcGDB3tl+7iYNk+k7i0f3qU1Kso99dRTAad6ExKFry1L/bPpFpgPP/zQb6F45JFHvLvuuiuAdNxxx3lyTP5k3ZiyOFmnxggXeysFoAhXlgJUBJu84jzqqKOCMiHTgX/88ceefPmRframjNB9LK/c6BpP2od91xA4AoFsCcjCeY8++qj//rvkkkuC58S5557rH3vsscc8WQQXB4GiCZT1+TlgwIDgvpL38Omnn+6deeaZNX+m/nTWWWcVjTlV/GnzZL/99gtYDBo0yJ+EaubMmZ4sYil1WvOhVThdccUViW0x/CQsl13TAmb77bcPwJnKXNT2o48+cjn9gW2vvPJKl/TIF/gFCxYEfvLcKUsBypNJ3nHJ1w37S0+4fMtsJ/Z6SHnbV/X40j7sq86L9LeXQNxaYuHnhvx+4okn2msMoUOgAYEyPj9lrZeo+ynu2KhRoxpQcOt02jy54YYbEvGQLnZpXFnqn00LmCOOOKIhOFlLo0wzQowYMSJQrJKBzSwAlKaQ1PNblgJULw2dcO7dd9/1Nt544y5lXb52lKlsd0JehNOQ9mEfvp7fEMiSgLS+mG6ncRUqOS5fRV966aUsoyYsCKQmUMbnp7xz631UDN930o2zTK6ZPBk7dqy/wHw47fJbnkcXX3xx6rpKWeqf3SRzdUJx/yGgv6gr3fymVltttUKZrLvuumratGlKN+EpvcBmobYQuVKzZs1SelIHtdRSS6lNNtlErbDCCmApmMBNN92k+vfvr4YMGaL0l7aCrSF6CEAAAuUhwPPTvbxqJU+k7vrcc88pPexBfe1rX1Nrr722knrk17/+9dQJLUv9EwGTOmvzuaAsBSgfGsQCga4EWnnYdw2NIxCAAASqQ4Dnp3t57UqelKX+iYBxrwz7FpWlADmKD7MqQMCVh30FUJNECECgwwjw/HQvQ13Jk7LUPxEw7pVh36KyFCBH8WFWBQi48rCvAGqSCAEIdBgBnp/uZagreVKW+icCxr0y7FtUlgLkKD7MqgABVx72FUBNEiEAgQ4jwPPTvQx1JU/KUv9EwLhXhn2LylKAHMWHWRUg4MrDvgKoSSIEINBhBHh+upehruRJWeqfCBj3yrBv0bbbbqumTp2qJk+erPS0m45aiVkQKI7AuHHj1MCBA5We0loNGzasOEOIGQIQgEDJCPD8dC/DXMmTstQ/ETDulWEsggAEIAABCEAAAhCAAARiCCBgYsBwGAIQgAAEIAABCEAAAhBwjwACxr08wSIIQAACEIAABCAAAQhAIIYAAiYGDIchAAEIQAACEIAABCAAAfcIIGDcyxMsggAEIAABCEAAAhCAAARiCCBgYsBwGAIQgAAEIAABCEAAAhBwjwACxr08wSIIQAACEIAABCAAAQhAIIYAAiYGDIchAAEIQAACEIAABCAAAfcIIGDcyxMsggAEIAABCEAAAhCAAARiCCBgYsBwGAIQgAAEIAABCEAAAhBwjwACxr08wSIIQAACEIAABCAAAQhAIIYAAiYGDIchAAEIQAACEIAABCAAAfcIIGDcyxMsggAEIAABCEAAAhCAAARiCCBgYsBwGAIQgAAEIAABCEAAAhBwjwACxr08wSIIQAACEIAABCAAAQhAIIYAAiYGDIchAAEIQAACEIAABCAAAfcIIGDcyxMsggAEIAABCEAAAhCAAARiCCBgYsBwGAIQgAAEIAABCEAAAhBwjwACxr08wSIIQAACEIAABCAAAQhAIIYAAiYGDIchAAEIQAACEIAABCAAAfcIIGDcyxMsggAEIAABCEAAAhCAAARiCCBgYsBwGAIQgAAEIAABCEAAAhBwjwACxr08wSIIQAACEIAABCAAAQhAIIYAAiYGDIchAAEIQAACEIAABCAAAfcIIGDcyxMsggAEIAABCEAAAhCAAARiCCBgYsBwGAIQgAAEIAABCEAAAhBwjwACxr08wSIIQAACEIAABCAAAQhAIIYAAiYGDIchAAEIQAACEIAABCAAAfcIIGDcyxMsggAEIAABCEAAAhCAAARiCCBgYsBwGAIQgAAEIAABCEAAAhBwjwACxr08wSIIQAACEIAABCAAAQhAIIYAAiYGDIchAAEIQAACEIAABCAAAfcIIGDcyxMsggAEIAABCEAAAhCAAARiCCBgYsBwGAIQgAAEIAABCEAAAhBwjwACxr08wSIIQAACEIAABCAAAQhAIIYAAiYGDIchAAEIQAACEIAABCAAAfcIIGDcyxMsggAEIAABCEAAAhCAAARiCCBgYsBwGAIQgAAEIAABCEAAAhBwjwACxr08wSIIQAACEIAABCAAAQhAIIYAAiYGDIchAAEIQAACEIAABCAAAfcIIGDcyxMsggAEIAABCEAAAhCAAARiCCBgYsBwGAIQgAAEIAABCEAAAhBwj4BTAsbzPNWtWzf3KGERBCAAAQhAAAIQgAAEIOAEAScEzA033KDGjh2r7r77bvXNb35TbbvttmrgwIFqo402cgISRkAAAhCAAAQgAAEIQAACbhAoXMCcf/75av/994+kMWHCBLXFFltEnuMgBCAAgWYJTJ482f9g8sQTT6hHH33UD2adddZRv/jFL9T666+v/va3v6nNNttMHXTQQc1GwXUQgAAEIAABCLSJQKEC5rbbblPbb7+9n7SePXuqvffeW3300UfqtNNOUwsWLPCPv/TSS2rttdduU/IJFgIQqBKBL7/8Up166qnq2GOPbZhseSa9+OKLDf3hAQIQgAAEIACBfAkUKmDkC+dDDz2klltuOTV16lS1xhpr+KmXlpctt9zS3z/88MP9Cke+WIgNAhDoNAKff/652nrrrdX999/vJ2311VdXf/zjH9UGG2yg3n77bXXXXXepW2+9NUi2nJ85c2bwmx0IQAACEIAABNwgUJiAkS+b3/ve93wK8kVUhIrtBgwY4I+LEXEjlYtlllnGPs0+BCAAgVQEzjjjDHXYYYf51/Tt21ddc801aoUVVqgJY+TIkeqQQw7xj3Xv3l3NmTOn5jw/IAABCEAAAhAonkDTAmbhwoXqyiuvVP/4xz+U9COfO3eu+tGPfqR+8pOfqAMOOEA9//zzaocddgi6gknFQbqGGWdXJqZMmaJ69eplTvnbq6++Wu22227+/rhx4/y+6TUe2vBDupfcd999atKkSep///d/VZ8+fZgVrQ2cCRICeRN47bXX1JprrulH26NHD//5tNRSS3Ux46uvvvLH3ZmW4Q8++KCLHw5AAAIQgAAEIFAsgaYEzPTp0/1ZwuQlH+Wk1URmELv33nuD05tuuql68MEHg98HHnigOvfcc/3uY++//34XoSBxmLEvV111lfrDH/4QXNuOHRFkIqKee+65IHgRUCLScBCAQLkJSAvv6aef7ifiuuuuUzvvvHNsgq699lq16667+s8D+biCgwAEIAABCEDALQKpBczHH3+sfvCDH6gZM2b4KRGxstNOO6m11lpLvfLKK363LzMA3yT14YcfVt///vfV8ssvbw6pX//61+rGG29U8jVUxErYiagx/k855RR1xBFHhL1k+vvOO+9U/fr16xLmm2++qVZeeeUuxzkAAQiUh8CvfvUrdc899/gGf/rpp2rppZeONV5aYmVK99VWW0317t071h8nIAABCEAAAhAohkBqAWN/yZQBsdLVS/qKGyfjVXbffXe/AmCOyQKVYffTn/5UPfbYY35LjZnG1PYj1yy22GL+IZlmWVpr2umkm9pWW23VJYpp06YpmV4VBwEIlJfAd77zHX8sHQPzy5uHWA4BCEAAAhAwBFIJGOlmtcQSS/jXSsuLtLh8+9vfNmEF2/nz5/sD9EXMiIsSMNIiI921ZJ0XmXUsynXr1s0/vMcee6hLL700yktmxyRt0kd+1qxZQZjbbbedkqmecRCAQHkJ2K254a6s5U0VlkMAAhCAAAQqTECLi8ROr8kiTSn+36GHHlr3uiOPPDLwG+VRt9745/W4k6jT3ieffBJcr9dsiPST9UE9YNfT/eO9gw8+2NPdTTw97WrWUXQJT0+AEKTTsG201RMg1ISjFwNNFYYWn54ev1QThp71LVUYutXN010FgzA+++wzT441st0+r2eCCq6XnSzCgOcipPD8d/n84osvgnKp13ZZBCjlHjy53+X51Y7npxRFF57BnfL8hGe273d4wtPU3cL1TykbRTlpHUns9DoJQUXgvPPOq3vdZZddFviN8qhbVfzzUumNcrNnzw6uv/DCC6O8dMQxEUqmYCTd7rfffjVpP+qoo1KHMXbs2JowNtxww9RhSB4ZJ2Imqf3GX7gymUUY8DQ54vkC07BOug3nSafwlA8lhoEImmYc5ZP73ZShrJ+fUh5deAZ3yv0Oz2zf7/CEp3n2heufUjaKcqkEzOOPPx5UAo477ri6Np9wwgmB3yiP0qpigLzzzjtdvOhuZcH5m2++ucv5TjnQzBevM888syb5IiYNy6TbRx55pCYMPeV1qjDkK+SHH34YhCGtVXIsafziL9wCk0UY8AyyxG9BbDVPOoXn73//+6BsSiWtGUf55H43z7esn59SHl14BnfK/Q7PbN/v8ISnefaF659SNopyqcbA6AqrP+2xTojSX2qVTDEatcCk7v6lfvjDHyoZAC9OJ87f2v9kxev/+7//8w9df/31/kxm9nmZdcysG/Pqq6+qNdZYwz7dlv3bb79djRo1yp+AYJdddlEy1bOsBdNuJ3yiGMXFayY3sM/L+hVJnYwtMuOL7GtaDSOLdLgSRqsshGurYbjCIgs7WmXRKk9ZtNJMxS7Tpf/rX/8KJgmx7wGzL/bKuLgll1zSHPK3WbDIIoyieQqMLNLhShgu8BSmrdoBT6G4yMEzOxYSEjzhGVX/XEQl371UAkZM++Uvfxms7zJkyBB1zjnn1ExJKlOUykKWl1xySZASeaiGnf6aqVZccUV/oUuZ/evvf/97UKGQQbcikGQSgG222UbprmvhyzP/LdMlr7rqqjXhig0vvPBCZGW/xiM/IAABpwnIi3fjjTf2Zz4UQ3UzuDrrrLNU1GKWDzzwgP8Mk0lKZEFemU4ZBwEIQAACEICAOwRSCxh7gUlJhlTyZdpkmcFLWkpk4UfT8mKSGSVg5NzRRx+tTj75ZN/b8ccfr2SKZmm9EWGk+xj7x3X3saClxj/Qpn9m8bpw8E899ZTaYIMNwof5DQEIlIyAtLrY67rIYrsiZKS1WNaFmTp1qv/hRdaAMU5PXBIsqGuOsYUABCAAAQhAoFgCqQWMmCsveBEtZprkcBJ0v3u1ySabBGvBxAmY9957z2/RmTRpUjgI/7fEIdMnL7744pHnszwo4ksW47SdpEMPVFfLLrusfZh9CECgpARkvaff/e53sc8uO1lRXVvt8+xDAAIQgAAEIFAMgaYEjJj67rvvqtNPP109/PDDSg9o9K2XNV30TCr+2BFZ22XXXXf1j8cJGDkpa8bIeismDP8C/W/QoEFq9OjRwboz5ng7t9Ia9Oc//9mv3EjL0oknnqh+85vftDNKwoYABHImMHfuXL+L2JgxY7rELB8t9DTqat9991UrrbRSl/McgAAEIAABCECgeAJNCxjbdCNQ7IHhdpcsc96+JrwvC0hOnDjR75MurTcrrLBC2Esuv7/88ks1Z84c+r3nQptIIFAcARmkP2PGDPXMM8/4z50ePXr4rbBRE5MUZyUxQwACEIAABCAQJpCJgAkHKr/TCpioMDgGAQhAAAIQgAAEIAABCEDAJoCAsWmwDwEIQAACEIAABCAAAQg4TSAzASP9yUeOHOmvnSApli5hZpC/zPYj42H22Wcfp2FgHAQgAAEIQAACEIAABCDgNoHMBMyAAQOCqY+jkizTl06ePDnqFMcgAAEIQAACEIAABCAAAQgkIpCZgJEFH2XmsaiVWmXlzs0331ytv/76iYzCEwQgAAEIQAACEIAABCAAgSgCmQmYqMA5BgEIQAACEIAABCAAAQhAIEsCCJgsaRIWBCAAAQhAAAIQgAAEINBWAgiYtuIlcAhAAAIQgAAEIAABCEAgSwIImCxpEhYEIAABCEAAAhCAAAQg0FYCCJi24iVwCEAAAhCAAAQgAAEIQCBLAgiYLGkSFgQgAAEIQAACEIAABCDQVgIImLbiJXAIQMBlAnfeeafq16+fGjp0qL8Qr8u2YhsEIAABCEAAAv8mgIChJEAAApUlcNNNN6n+/furIUOGqFGjRlWWAwmHAAQgAAEIlIkAAqZMuYWtEIBApgQQMJniJDAIQAACEIBALgQQMLlgJhIIQMBFAggYF3MFmyAAAQhAAAL1CSBg6vPhLAQg0MEEEDAdnLkkDQIQgAAEOpYAAqZjs5aEQQACjQggYBoR4jwEIAABCEDAPQIIGPfyBIsgAIGcCCBgcgJNNBCAAAQgAIEMCSBgMoRJUBCAQLkIIGDKlV9YCwEIQAACEBACCBjKAQQgUFkCCJjKZj0JhwAEIACBEhNAwJQ48zAdAhBojQACpjV+XA0BCEAAAhAoggACpgjqxAkBCDhBAAHjRDZgBAQgAAEIQCAVAQRMKlx4hgAEOokAAqaTcpO0QAACEIBAVQggYKqS06QTAhDoQgAB0wUJByAAAQhAAALOE0DAOJ9FGAgBCLSLAAKmXWQJFwIQgAAEINA+AgiY9rElZAhAwHECCBjHMwjzIAABCEAAAhEEEDARUDgEAQhUgwACphr5TCohAAEIQKCzCCBgOis/SQ0EIJCCAAImBSy8QgACEIAABBwhgIBxJCMwAwIQyJ8AAiZ/5sQIAQhAAAIQaJUAAqZVglwPAQiUlgACprRZh+EQgAAEIFBhAgiYCmc+SYdA1QkgYKpeAkg/BCAAAQiUkQACpoy5hs0QgEAmBBAwmWAkEAhAAAIQgECuBBAwueImMghAwCUCCBiXcgNbIAABCEAAAskIIGCSccIXBCDQgQQQMB2YqSQJAhCAAAQ6ngACpuOzmARCAAJxBBAwcWQ4DgEIQAACEHCXAALG3bzBMghAoM0EEDBtBkzwEIAABCAAgTYQQMC0ASpBQgAC5SCAgClHPmElBCAAAQhAwCaAgLFpsA8BCFSKAAKmUtlNYiEAAQhAoEMIIGA6JCNJBgQgkJ4AAiY9M66AAAQgAAEIFE0AAVN0DhA/BCBQGIFx48apgQMHqkGDBqlhw4YVZgcRQwACEIAABCCQnAACJjkrfEIAAhCAAAQgAAEIQAACBRNAwBScAUQPAQhAAAIQgAAEIAABCCQngIBJzgqfEIAABCAAAQhAAAIQgEDBBBAwBWcA0UMAAhCAAAQgAAEIQAACyQkgYJKzwicEIAABCEAAAhCAAAQgUDABBEzBGUD0EIBAcQSOOOIIddppp6kbb7xR7bjjjsUZQswQgAAEIAABCCQmgIBJjAqPEIBApxE48MAD1bnnnquuu+46tfPOO3da8kgPBCAAAQhAoCMJIGA6MltJFAQgkIQAAiYJJfxAAAIQgAAE3CKAgHErP7AGAhDIkQACJkfYRFVpAp7nqW7duhXOIAs7sgijcBAYAIGSE3BCwLz00ktqwoQJ6h//+Id66KGH1KhRo+iPXvKChfkQKAMBBEwZcgkbXSKQtvJ+ww03qLFjx6q7775bffOb31TbbrutGjhwoNpoo41yS9bUqVPVqaeeqp544gk1bdo01b17d/WjH/1I7bXXXmr77bdvaMd7772nrr32WvWXv/xFPfvss2rBggVq/fXXV1tssYU69thj1corr9wwjLCHP/7xj+r6669X3//+99WZZ56pNt5447CXyN9p+UcGwkEIdACBQgWMCJWTTz5ZzZo1qwblSSedpI455piaY/yIJvDpp5+qSy+9VL3zzjuBh8UXX1ytscYa6g9/+IP65JNP1OWXX67mzZunvvrqq8DPuuuuq377298Gv9mBQBUJIGCqmOvupfmaa65R06dPjzRsqaWWUt/4xjfUsssuq376058qeXYX4b788kslk15cfPHF6t1331VLLLFEQzPOP/98tf/++0f6k4+WIgDa7c455xw1dOjQ2Gh22GEHX0jEpWfKlCmqX79+XeopJsDllltO3XffferHP/6xOdRwKx9qN9tss8DfyJEj69poPH7++edqxRVXVDvttJO66KKL1JJLLmlOsc2ZwIsvvugLc7kv4txiiy3ml3E7r+P8crwJAlrNF+Z69uzpaZP9P/1FJNjXAqYwm8oWsX5wBtwMS7OdOXOmd9ddd8Wenz9/ftmSi70QyJTAAQcc4N8fehB/puESGASSEtBf92Of0eZZbm91pd+bO3du0uAz83fUUUf5dsp7O4m79dZbg3TJNWeffbY3fPhwT1f4g+O690WSoJr2c//99wdxSR3jr3/9q/f888978t4UjoarbkWJjWPAgAGBP91K4p1xxhneLbfc4u2yyy7B8R49engfffRRbBj2iS+++MLr1atXcK3YoAWM7aXuvsQl1wwZMqSuP062l8Cuu+5ak4emLEVt5R7HZU9AZR9k8hBfeOEFTzcve+YhZjIeAZOc4fvvv+8NHjy45qWw3XbbeUceeaSnv9Z4+kuZ/6Ddeuutg5tNHoD6S1rySPAJgQ4lgIDp0IwtWbJ0K4G3zz77eKuvvrr/nJZKvlRQ5W/33Xf37Oe3vCd196vEFeYsUNgfyvSsfYmC3HTTTYO0vPrqq8E1dliHH354cLwdO3YlU3cdq4lC3o8bbrhh8F7UX9JrzpsfYq9uRfKefPJJcyjYDho0KLj+gQceCI7X27nwwgv9a0TEmPxOI2DM9VIOHn300XpRca6NBPr27evnowjjrbbaquavd+/eQbmQfEoqbttobkcGXaiACRNFwISJJP9tHtTyhSjOGb7yssRBAAKeh4ChFLhEQE/l7Vd8pEIUdtJirrsOBRUjaU3IyxkxIu8Q+WjWyMnHSfO+0WNPung36RChprs5dzmf1QEjEKJ4Shy6G1Zgp9ic1omAMOkcPXp0w8ul5cy0QN17772eaU1JI2D0+JsgDBG2uGIImHvikEMO6WLAHnvsEZSLESNGdDnPgWwINC1g5GuFHnvhSfOq3IRyU0qTrHxReeONN7xx48YFN5nc4IcddlhDi82DoKgWGGnaveeee/xm7scee8zTY0Ya2uyKBwSMKzmBHWUigIApU251vq31BIykXo9lDCpGUV2IpFVBujbZXbLNe9XeyvtaRIS88xo5PfA9iFNag5K4008/PbhGjyHpcslVV10VnJe6QrucaWGJEzB2a8bbb7+d2gzpemq4Pvzwww2v33vvvX3/8vVeXDMCRq6TepaJl1YYIZK/M90ATzjhhJrIb7vttiBvpPzJPYlrD4GmBMzLL7/sGfVpbiJ7Kw9HeWDYx8R/I2f8FyFgRJDpWUVqbN5tt90amezMeQSMM1mBISUigIApUWZVwNRGAkYEh3lPRlXKpauWOZ9kK2NEGjnzbpHw7rjjjkbe/fPmvpK6QNSHQKlDGPtEzLTLDRs2LIhHxr7Y7rPPPvNMVx/ZpnVz5szxu/JJOiSdjSqqkydPDmx55pln/OiaFTB2y88222yT1nT8Z0DAjOGWMVHGSZmQsmDKdrjMGX9ssyGQWsBIXz5z05kbV/qBiuiQrZ15JhPly0SSAePGfxECRh7MJn57++abb2ZDus2hmJcMXcjaDJrgO4qAqWgxiL+jsrW0iWkkYG6++ebgPSXjMsLulVdeCc5fcsklfo8C6VVg/uwKvbyrpUWnnps9e3YQnrwXP/7443reg3P9+/f3r5O6QpSzJy445ZRTorxkcuy5554L6iTSKqWnQvYH8Y8fP77mI6xMMJDEiYDUUx97Bx10UA0XPTNb3csXLlzoybtZGMpYJ+NMXSpNFzK5Vuyw61r2GCMTNtv2EhDhKPkp5cE4PaNdUC70DHzmMNs2EUgtYKQrmKngS/9LUZy2k98mY40/+3y9feO/CAEj/VFN/PY2PPCvnv1FnjMCRmyXZsuoP5MuxsAUmVPE7RIBBIxLuYEtRsDI81vGZMjf008/7cn7Sfram2e4bJ966qkuwF577bXAj8xCaTvpCmZXekXUNHL2e1G6piV1MsmA2CjbKCetMiYtUUIs6ppmjwnDel3qrr766sRBCzNjt9mOGTOm4fV6muzgurfeeivw36yAkQDscRaST7h8CYiY11OfB5FKOTJlYsstt/REtOLaSyCVgJFuViaD5EGo1x6JtE5mvrIfGJGeIg6asIsQMJI2M+DP2CGzeZXF2QLG2B+3RcCUJVexs90EEDDtJkz4aQgYARP37Jbj8p6SfvZRTipNMr5CL85YM74lLF5uv/32qMu7HJOWBWPLiSee2OV83AHTHVvGxcY5E65UxNvpJk6cWFMfMfGarV4nLXH00mIl71rTfciEIWNS4iYjkEkPTH0oPKFBKwJGvvCb+GUsD644AtICZj4OyFY+JODaTyCVgJHpjs0Nc+ihh9a1TqbxNX7rerROGv9FCBgx44MPPvCkK8nBBx/sN7k36tNqmd70rj1A0qS/0dbuc2kiNgJGXm4yO03Unwk3SsDYc90bf/W28kCW2VCMk/7E5iFd7zr7nBnImGUYWfC0Xwy2vXH78sDSC5OZZPhbeC7C4QLPRdbU7qURMFmUccrnIv7wXPT8NFQaCRgRBEm7cZkwJ02aFFSu5Bl29913m1MNt/ZgcZm0J6kz0z7LQOcoJ5V98zyttwZL1LVpjunFMoN45P0kgkwm6JF1XEyXLrHj+OOPTxOs71e6oZmB3BJGWJyYAI877jjfBok/PJ2uLWAkX+VDalInS1AYhnqhzrqXtfo+ksBbDaOT7ncbtnw0kBYXkxd2i57UIeMmyugUnjaLvPdTCRh7UcTzzjuvrq2XXXZZkKF1PVonTQEoSsBYpuS2G9UkbTjEbffbb78u9hkB0+wYGOmyEBdf3HHpH22ciJk4f3HHwwuiZRFGFjzNgm1xdkcdHzt2rEHhb+G5CIcLPBdZU7uXRsBQPrnfzb2f9f1uSqURMGaA/ocffujJgpDm667En3S9EQkzLF7SdjUy0x1LvPL+T+pM9yaptEc5e2xNO1sPjB3CLzxORCqWRsTI+TTiwaRJZlw1ZULESJQzH/bk46JZ28dszbUyiYD4k4+nSZ2MLTbXN5pOudX3kdjUahid9Py080jWRTL5IGNgjBNBKnku9ZyoiSw6hadJbxHbVALm8ccfDzJKvirUczK1nMnUev7sc8Z/lQRMM19kzzzzTBubv9+qgLEHn5l8qLeVB768XI2TLw32S7beteZcuAUmizCy4Cni3NiYdPvII48YFP4WnotwuMBzkTW1e2kEDOWT+908D7K+302pDAsYc9yeZEYqRfaz1/gJb8PiRVoj0jrTkiLpTjJjmQlfWlUMq6iu5nbLiExM0A4ngsS8k6KmnJY4RRwaO6V+04yzZ2SVZ0TYmfCTbKXFK6mz33VSGa7nWn0fSdithtFJz0/DWiaJMPkqZc0eEy4tfeac9O4Ju07hGU5Xnr9TCRhbQYuqjOvzKcrT7iOaNEEms4sSMNKv2ExAIAMWpe9sHk7UuTRDJv2LsqlVASNhJo1f/EV9UcgiHa6E0SoLeNaWUhd41lr0719pBIxcQflcRNEVFlnY4Ur5jBMwQl0q4eYd2ehLvVTGTeVdrgmvUXLaaaf53V7sCteinF20J639Js5wq9MiX133pIuWuc6epcn4tLumhVtGjB97K2vJyBo0kibprpNk4LzUQ4wNUb0WJHwRZcZPlJ22DXH7tsiLEjAyY5l0/Yv6M3GLKJVWt6g1c+LitUVtkgkWXCjjWdyrWYSRBQvJazMNt+RjeFya3WMprhtZq3ZkwSKLMOLKaLuPpxIwYoy9vos8UD/99NMaG0XU7LnnnsFDQTI2qTM3cxECxm7SNnbENf0lTU+e/rIQMHnaS1wQcIFAWgHjgs3Y0LkE6gkYmXrYdEeSd1TcAoZ2y4tU+KP8SYVZwmjULcxuPU0zLayMdzACSuoMUlEzzk5HkjVMpIJljzUx7+dZs2aZIGO35kOqTCoQJS7slqJnn322Sziy/INUTOfOndvlnByQmeCMPfUmLIi8WB+0x8DE+Yk7bk+w0MwYnrhwOZ6MgD0luSwhEnYiiE3ZCJ/jdzYEkquL/8RnL0AlmSMPiJNPPtkfNC5b88AwGSfbOCf9R6WVQ5rj5c9cI19a5Lc8eKWJTh6G7Xb2NIfGDtlGTVXZblvShj9jxoxgEJnwF272LBjyoJdjJl3yNco+nzY+/EOgUwggYDolJ8udDvmAJu880x1JKuzyzH799ddrEmZ/1TXPepn10zh5pxrhIM/7s846K3i/mves/a5ttDClHV+a7k1ijz32TSrY0iIis3jZ42qSdB+z17Yx7zDZJhFUdkuPVDJlRjBxIorsaW9F0Nkiy/ek/9ktUHK9TPIj01NLy5XUGWxBecUVV5jL6m6la5vUKyQfzPV77723P112mnE4wtTwaOdioHUTU9GT4TIp94l9f8m+Kf9yP+LaQyBeXdSJTzLL3HjmBrK3kmGmK5Ycj3IyG4d9Tb39pItMRcWT9Fi4QIo9kg7pNueyswfyhRnKy8Kexz98PjwjisvpxDYItIMAAqYdVAkzDQHpHx9+Ntu/TaXbhCkVafu8PYBbKtH2uUb7jQSMPfOotGKkcdJ6UW+gsnyoTFJhF2FhWirs9MgYg0ZO3nHhj6oSli3yJMy4sOyZvuy4w/tJunAZW+M+lkqYaRbUNRMQyHXhLoImLrbtIVAvD8NlI25yh/ZYVq1Qo9VFAgZSOZavG/ZNJE2oMr2yfPG3MzgqOOkTGNUsHM58+Z2m721UXEmPjRgxIhBm8tBL0s82adjt8icLKYUfxsJMXjbSVB+3iJcsMBbXL7NdthIuBFwjgIBxLUeqZ488h826KeH3n/SxD3d9kkq5Pe7CHt8hLevhCns4TPNb3r/hxS7D9MU2091MrksyXsUOQ1qH7DqCiVtEWJr3j3TjMozkfSdft5O6t99+u2bRR2ODbEVgNRq8L/UPqdvY15l9sUW6cqVJy7hx42LDkqmZkzjJN2OD5E+a+JOEj5/6BIR/0vts8ODB9QPjbNMEusmV+kZoyZkgunXrFoRz7bXXKj0uw/9tzgcnHd7RX4SUbh5Wq622msNWYhoEIJAFgQMPPFDpaTCV/vKp9PiDLIIkDAh0FAHdqqO04PDTdNFFF6m99tordfr0R02lu4urpZZaSm2yySZqhRVWSB2GXKC72ind+0MtscQSqa/X3evU888/r7QIUyuttJLSFVD/b/HFF08UltQNdJd2pbt/qa997Wtq7bXXVuuuu676+te/nuj6LD3pqafVvvvu6wcpz6/9998/y+AJCwKlIJCJgIlKaVkFTFRaOAYBCHQmAQRMZ+YrqcqOgG4BUt/97neViBDdIqQmT56cXeCE1BSBzTbbTOnFk/1rdRdD9Y1vfKOpcLgIAmUmgIApc+5hOwQg0BIBBExL+Li4IgQuv/xypReF9FMrFWdpRcEVQ0BPtax++MMf+pHrbvzq1FNPLcYQYoVAwQQyEzB6vIgaOXKk0gPu/CTJ1xrd99Tf1+Mt/O5k++yzT8HJJXoIQAACiwggYBaxYA8CcQSkFeYHP/iBmjZtmtIL8KmbbropzivH20xAT36g9KxjSg8OV//6179ofWkzb4J3l0BmAmbAgAFKD3aLTSlNz7FoOAEBCBREAAFTEHiiLR2BF198UelB70rPzKn0RAKFjP0oHbSMDZYPxGb8j7TE6IkYMo6B4CBQHgKZCRg925WaMGGC0vOrd0n9YostpjbffHOlZxHpco4DEIAABIoigIApijzxlpGAnn1JPfDAA+r3v/99Gc3vCJuvvPJK9ctf/lKtuuqqHZEeEgGBZglkJmCaNYDrIAABCBRFYPjw4Wr06NFKZlfq27dvUWYQLwQgAAEIQAACKQggYFLAwisEIAABCEAAAhCAAAQgUCwBBEyx/IkdAhCAAAQgAAEIQAACEEhBAAGTAhZeIQABCEAAAhCAAAQgAIFiCSBgiuVP7BCAAAQgAAEIQAACEIBACgIImBSw8AoBCEAAAhCAAAQgAAEIFEsAAVMsf2KHAAQKJHDnnXeqfv36qaFDh/oL8RZoClFDAAIQgEBJCcybN0+tuOKK/to8skYPrv0EEDDtZ0wMEICAowRkRfH+/furIUOGqFGjRjlqJWZBAAIQgIDLBObMmaNWXnll1aNHDzV9+nSXTe0Y2xAwHZOVJAQCEEhLAAGTlhj+IQABCEAgTAABEybS/t8ImPYzJgYIQMBRAggYRzMGsyAAAQiUiAACJv/MQsDkz5wYIQABRwggYBzJCMyAAAQgUGICCJj8Mw8Bkz9zYoQABBwhgIBxJCMwAwIQgECJCSBg8s88BEz+zIkRAhBwhAACxpGMwAwIQAACJSaAgMk/8xAw+TMnRghAwBECCBhHMgIzIAABCJSYAAIm/8xDwOTPnBghAAFHCCBgHMkIzIAABCBQYgIImPwzDwGTP3NihAAEHCGAgHEkIzADAhCAQIkJIGDyzzwETP7MiRECEHCEAALGkYzADAhAAAIlJoCAyT/zEDD5MydGCEDAEQIIGEcyAjMgAAEIlJgAAib/zEPA5M+cGCEAAUcIIGAcyQjMgAAEIFBiAgiY/DMPAZM/c2KEAAQcIYCAcSQjMAMCEIBAiQkgYPLPPARM/syJEQIQcIQAAsaRjMAMCEAAAiUmgIDJP/MQMPkzJ0YIQMARAggYRzICMyAAAQiUmAACJv/MQ8Dkz5wYIQABRwggYBzJCMyAAAQgUGICCJh/r7sSAABAAElEQVT8Mw8Bkz9zYoQABBwhgIBxJCMwAwIQgECJCSBg8s88BEz+zIkRAhBwhAACxpGMwAwIQAACJSaAgMk/8xAw+TMnRghAwBECCBhHMgIzIAABCJSYAAIm/8xDwOTPnBghAAFHCCBgHMkIzIAABCBQYgIImPwzDwGTP3NihAAEHCGAgHEkIzADAhCAQIkJIGDyzzwETP7MiRECEHCEAALGkYzADAhAAAIlJoCAyT/zEDD5MydGCEDAEQIIGEcyAjMgAAEIlJgAAib/zEPA5M+cGCEAAUcIIGAcyQjMgAAEIFBiAgiY/DMPAZM/c2KEAAQcIYCAcSQjMAMCEIBAiQkgYPLPPARM/syJEQIQcIQAAsaRjMAMCEAAAiUmgIDJP/MQMPkzJ0YIQMARAggYRzICMyAAAQiUmAACJv/MQ8Dkz5wYIQABRwiMGzdODRw4UA0aNEgNGzbMEaswAwIQgAAEykRg/vz5qlevXqpnz55q/PjxZTK9tLYiYEqbdRgOAQhAAAIQgAAEIACB6hFAwFQvz0kxBCAAAQhAAAIQgAAESksAAVParMNwCEAAAhCAAAQgAAEIVI8AAqZ6eU6KIQABCEAAAhCAAAQgUFoCCJjSZh2GQwACEIAABCAAAQhAoHoEEDDVy3NSDAEI/IfAEUccoU477TR14403qh133BEuEIAABCAAgdQE7rzzTtWvXz81dOhQNXLkyNTXc0F6AgiY9My4AgIQ6BACBx54oDr33HPVddddp3beeecOSRXJgAAEIACBPAmwplietP8dFwImf+bECAEIOEIAAeNIRmAGBCAAgRITQMDkn3lOCRjP81S3bt3yp0CMEIBAJQkgYCqZ7SQaAhCAQKYEEDCZ4kwUWOEC5r777lN/+9vf1BNPPKGefPJJ1b17d/WTn/xEHXzwwWqLLbZIlAg8QQACEGiGAAKmGWpcAwEIQAACNgEEjE0jn/3CBMy8efP8wU7XXHNNbEoPOeQQdeaZZ8ae5wQEIFAOAu+99566/PLL1QcffBBrsLS+rr322uq3v/2tWmyxxWL9ZXkCAZMlTcLKisAbb7yhxo4d63/UmzhxonrzzTfVOuuso/r06aO22WYbdcMNN/j3yJVXXplVlIQDgdIQkHfJ66+/XtfelVZaSf3ud79Tyy+/fF1/WZ1EwGRFMkU4uttWIW7QoEGeNtP/W2655bwzzjjDu+eee7zRo0d78tucu/766wuxj0ghAIHsCFxxxRXBPW3u7bjt+PHjs4u4QUgHHHCAb5cexN/AJ6chkA+BW265peYdGHefyHEtdPIxilgg4AiBadOmJX6XnHDCCblZrWey9O0aMmRIbnFWPaLCWmBkytKbb75Z9ezZU02YMEGtuuqq+nn8b/fCCy+o9dZbz/8h51988UVzii0EIFBCAmeddZb605/+5Fu+1VZbdUnBvffeGxx76KGH1CabbBL8bucOLTDtpEvYaQkce+yxavjw4cFlMiXrhhtu6I8NHTdunNIf9NSCBQuC8zNmzFBrrbVW8JsdCHQ6gccff9wfZiDp3HTTTdUyyyxTk2T7XTJixAh11FFH1Zxv1w9aYNpFtk64RSk43Tzubb311p4WK5Em7LDDDoHK1g/sSD8chAAEykFg2LBh/v3cq1evLgbrbqTBva7FTZfz7TxAC0w76RJ2GgKPPvpocB/06NHDmzp1apfLbT/6te699NJLXfxwAAKdTECPmw7uEz0UoSapUp+U+0L+pCfPO++8U3O+nT9ogWkn3eiwVfThxke//PJL79JLL/UGDBjgycNWCosedO8dfvjhfrO2/lpU0wx+2GGHNQ7U8rH77rsHBVH3dbTOtG/3iy++8Lux6S9g3mOPPeZ99dVX7YuMkCFQIQKHHnqofz9vvPHGNal+7bXXgueEPEPkd54OAZMnbeKKIyDvHhH3pvIV92FPrj/++OMDf88//3xckByHQEcSuP3224Py/8knnwRp/Pzzzz3dWhmcu+2224JzeewgYPKgXBtHUwLm5Zdf9nTTXVBQzEPXbKUiIl9SzW/Ziv+k7qOPPvL0bGT+9bLNQ0iIIFt//fVrbN5tt92Smow/CECgDoH99tvPv7f0AOTA18KFC70tt9wyuOeuvvrq4FxeOwiYvEgTTz0Cd9xxR3AfNOpDP3369MDv22+/XS9YzkGg4whI7x1Tt7QTd9JJJwXHZYx13g4Bkzdxve5K2ihFXEiLiylAIlaksEjhka38NufM9uGHH/bmz5+fOCrdDzgIQ8LNw9kvEGO3bPXsL3lETxwQ6GgCp59+un9P77PPPkE6zzvvvOA+ly6jRTgETBHUiTNM4NRTTw3uhfvvvz98ustv6Uom7ywcBKpGwHSjlHqocXoZjuD+WX311T0966U5ldsWAZMb6iCi1AJGuoKZCr6MYZkzZ04QmOzIb/nKavzINo276667gmul9SWv8S964FcQr227zHiBgwAEWiMgrS1yL0lXGXHS9cXcZ/LRI/wcaS225FcjYJKzwmf7COy6667B/ZB3N8r2pYqQIdAeAq+++qr34Ycf+oHLR3U92VNw/yT5ANAOqxAw7aBaP8xU6kK6WdmVjrgBUu+++27QBSyNgJkyZUoQvlwn41DycpI2Ue4mfbLdbrvt8oqeeCBQGQJF91W2QSNgbBrsF0Wgd+/ewbtH7g8cBCCQjICeqS+4d/QC6MkuaoMvBEwboDYIMpWAkRlPTAVfBuXWc0ceeWTgt54/c05mXLG7n12h143I2+lF9jxZD0JuAlmTJo8Xid30adg22sqaObY7//zzA9aNrpXzwllPVWsH4U/GkORa4yfcOvbZZ5/ViFbjr962b9++NTZkEQY8FyF1hecii/69Z2Ykk7Jh91WWsW72oEz7OpkspF5ZCp8Ll087LHs/jYBxhSf3+6Ic7JT7XXozmDLc7NoulM/a2UpbfWbA0z2ei+78f+/ZM5JJK8zHH38ceLH3g4N6J4vnpx2e2U8rYDqlfJr0F7FNJWDs7l3Sf72eu+yyy4IHcj1/ci4sXs4999xGl3TMeRFK5sWVdCsDom2n5zlPHYYMhLOdPXtHUjtmz54dBCFd/ZJeZ/zJA8d2WYQBz0VEXeG5yCLPmzRpUlBOwn2Vd955Z/+cTBISdq2Wz3B45ncaAeMKT+53k3ue/6HJPE+Sbl18fspHM2P/I488siiBKfYon4veR4Kt1WcGPN3jad8OMq7a7jUjHzOMu+iii/z7acyYMeZQsM3i+RkEZu2kFTCdUj4tBLnvphIwegGh4CF73HHH1TVWVkA1D+R6HqXQ2S0v4daFetd2wrlmviCeeeaZNUm3B0Mb5o224Zekve5Oo2vlvOSZ6YMqxkhrlZ2PScIIt8BkEQY8FxUNV3gai+r1Vba7p959993mkmDbavkMAgrtpBEwrvDkfl+UiZ1yv8uSBOaZKRWsZhzl899jIgy7Vp8Z8HSPp8lb2dpLbZx44on2qWActvQECrssnp/hMOV3WgHTKeUzikVex7pJRPrBmcjpCqvSlVTfr/56rvSYlS6roMpJ3Q1E/fCHP1R60K7vNy6KyZMnq5///OfBysIXXHCB0rMU+dcU8U/PL65GjRqldAVK7bLLLkpW6e7Tp0/bTRE+cYyiIl9sscW6HNbdb7ocizvQrVs3f2Xn8PlWw8giHa6E0SoLYdtqGK6wyMIO4aG/Mquzzz5bdv39s846y9+Xf7r7pvrmN7/p/37wwQf9FZaDk//ZaZVnODz5Lfe4bvFVuuuo0i1AUV5qjmXBIoswsmDRahhZpMOVMFplIYWklTB092wl71TjdDcyteqqq5qfkVvdxUktvfTSNefgWYOjpTyRkODpHk+x6JZbblFaAPjG6ZYMpT/IqiWXXDIwVupturVf6TX91NFHHx0cNzut3KsmjPD2pptuUv3791d6GnS/Hhk+H/W7VTtcKZ9RacvlmAaQytnru8h89Z9++mnN9dKHfc899wy+JulE1Jw3P2TAvv3FPmrMy8UXX+wdcsghuYxFke5QYqv9J12cdAEzJrOFAASaJDB+/Pjg3pL7Ktw/Wfr9m3tPf9hoMpb0l6VpgUkfOldAIDkBe9yorJsWN4X/jBkzvO23396/X2RRPxwEqkTgrbfeqqk7Ri3mKu8YeZ+cc845uaFJ2wKTm2EdHFGqFhhdIJReREutvfbasus7+Wqkm/LUmmuuqfTUdurKK68MWl6MH83P7PpbXXlR6667rpo1a1YQxuDBg2v8yDV6ogD/mO66pkRlt9Nde+21Sk9l2SWKp556Sm2wwQZdjnMAAhBIRkBPoaz0IrHBc0FaYcItmzNnzgxaQPQq5P7zIVnorflK2wLTWmxcDYF4AtLD4bvf/a7Si1P6nvREFEp3xVY/+tGP1He+8x2lhYv6y1/+ovT40iAQ/eHPf/8GB9iBQIcTkF460lNGnLTC/OlPf+qS4l/96ld+zx7dNVPtscceXc6340AzLTDtsKNSYTYjzmQwv8zyo0FF/knLir0WTDgOWXE77tqo4zLIv93ulVde6WKTpEMG8uEgAIHmCUTdW1H3uTmmxUzzkaW8khaYlMDw3lYCMtNn0sG90mJj1lVqq1EEDgGHCNgD9807I24rs8rm5WiByYv0onii+3ctOh+7N2/ePO/www/3Nt5446Div8UWW3gyvbJuWfGuueaa4Hg4EFnQrp4AsgujFNa4qVXD4bb6e8SIEYFd0gQZNYNFq3FwPQSqRkC6YcqaSvZ9Hbcv951MX5qXQ8DkRZp4khKQweMySY7dxdq+X3bbbTfv2WefTRoc/iDQUQROPvnkRO8SuX+efvrp3NKOgMkNdRBR6i5k+kHaxenQ/GMyONw4u0uWOW/OubzVsyEpvSq4Wm211Vw2E9sgAIEMCNCFLAOIBNE2AnpsptKVMKVn8FM9evTw/8xkF22LlIAhAIHUBOhClhpZyxdkImCirCirgIlKC8cgAIHOJICA6cx8JVUQgAAE8iSAgMmT9r/jQsDkz5wYIQABRwggYBzJCMyAAAQgUGICCJj8My8zAaPHi6iRI0cqmXFInMwwZmZT2WijjfwZvopc4yV/tMQIAQi4TgAB43oOYR8EIAAB9wkgYPLPo8wEzIABA9TYsWNjU9C7d28lC1fiIAABCLhCAAHjSk5gBwQgAIHyEkDA5J93mQkYWbthwoQJkSvfysrxm2++ub8WRP5JJEYIQAAC0QQQMNFcOAoBCEAAAskJIGCSs8rKZ2YCJiuDCAcCEIBAXgSGDx+uRo8erS666CLVt2/fvKIlHghAAAIQ6CAC48aNUwMHDlSDBg1Sw4YN66CUuZsUBIy7eYNlEIAABCAAAQhAAAIQgECIAAImBISfEIAABCAAAQhAAAIQgIC7BBAw7uYNlkEAAhCAAAQgAAEIQAACIQIImBAQfkIAAhCAAAQgAAEIQAAC7hJAwLibN1gGAQhAAAIQgAAEIAABCIQIIGBCQPgJAQi0n8C8efPUiiuuqHr16qWmTJnS/ghjYjjiiCPUaaedpm688Ua14447xvjiMASKIXDnnXeqfv36qaFDh/oLRRdjBbFCwG0Cffr0UZMmTVKzZ89Wq6yySiHGcq/mjx0Bkz9zYoRA5QnMmTNHrbzyyqpHjx5q+vTphfFgHZjC0BNxAgKsLZEAEl4qT2DddddV06ZNUzNnzlSrr756ITy4V/PHjoDJnzkxQqDyBBAwlS8CAEhAgEpRAkh4qTwBBEw1iwACppr5TqohUCgBBEyh+Im8JAQQMCXJKMwslAACplD8hUWOgCkMPRFDoLoEEDDVzXtSnpwAAiY5K3xWlwACppp5j4CpZr6TaggUSgABUyh+Ii8JAQRMSTIKMwslgIApFH9hkSNgCkNPxBCoLgEETHXznpQnJ4CASc4Kn9UlgICpZt4jYKqZ76QaAoUSQMAUip/IS0IAAVOSjMLMQgkgYArFX1jkCJjC0BMxBKpLAAFT3bwn5ckJIGCSs8JndQkgYKqZ9wiYauY7qYZAoQQQMIXiJ/KSEEDAlCSjMLNQAgiYQvEXFjkCpjD0RAyB6hJAwFQ370l5cgIImOSs8FldAgiYauY9Aqaa+U6qIVAoAQRMofiJvCQEEDAlySjMLJQAAqZQ/IVFjoApDD0RQ6C6BBAw1c17Up6cAAImOSt8VpcAAqaaeY+AqWa+k2oIFEoAAVMofiIvCQEETEkyCjMLJYCAKRR/YZEjYApDT8QQqC4BBEx1856UJyeAgEnOCp/VJYCAqWbeI2Cqme+kGgKFEkDAFIqfyEtCAAFTkozCzEIJIGAKxV9Y5AiYwtATMQSqSwABU928J+XJCSBgkrPCZ3UJIGCqmfcImGrmO6mGQKEEEDCF4ifykhBAwJQkozCzUAIImELxFxY5AqYw9EQMgeoSQMBUN+9JeXICCJjkrPBZXQIImGrmPQKmmvlOqiFQKAEETKH4ibwkBBAwJckozCyUAAKmUPyFRY6AKQw9EUOgugQQMNXNe1KenAACJjkrfFaXAAKmmnmPgKlmvpNqCBRKAAFTKH4iLwkBBExJMgozCyWAgCkUf2GRI2AKQ0/EEKguAQRMdfOelCcngIBJzgqf1SWAgKlm3iNgqpnvpBoChRJAwBSKn8hLQgABU5KMwsxCCSBgCsVfWOQImMLQEzEEqksAAVPdvCflyQkgYJKzwmd1CSBgqpn3CJhq5juphkChBBAwheIn8pIQQMCUJKMws1ACCJhC8RcWOQKmMPREDIHqEkDAVDfvSXlyAgiY5KzwWV0CCJhq5j0Cppr5TqohUCgBBEyh+Im8JAQQMCXJKMwslAACplD8hUWOgCkMPRFDoLoE5s+fr3r16qV69uypxo8fXxiI4cOHq9GjR6uLLrpI9e3btzA7iBgCUQTGjRunBg4cqAYNGqSGDRsW5YVjEKg8gW233VZNnTpVTZ48WXXv3r0QHtyr+WNHwOTPnBghAAEIQAACEIAABCAAgSYJIGCaBMdlEIAABCAAAQhAAAIQgED+BBAw+TMnRghAAAIQgAAEIAABCECgSQIImCbBcRkEIAABCEAAAhCAAAQgkD8BBEz+zIkRAhCAAAQgAAEIQAACEGiSAAKmSXBcBgEINE9g3rx5asUVV/RnIpsyZUrzAXElBDqYwJ133qn69eunhg4dqkaOHNnBKSVpEGieQJ8+fdSkSZPU7Nmz1SqrrNJ8QC1cyb3aArwmL0XANAmOyyAAgeYJuLIOTPMp4EoItJ8A68C0nzExlJ8A68CUPw+bSQECphlqXAMBCLREAAHTEj4urggBBExFMppktkQAAdMSvtJe7JSA8TxPdevWrbQwMbx9BFwsGy7a1L4cyDZkBEy2PAmtMwkgYDozX0lVtgQQMNnyLEtohQuYf/7zn+qSSy5RDz74oJoxY4Zabrnl1IYbbqj23ntv9etf/7osHLEzAYG0Ff4333xTnXfeeeqee+5RTz75pNpyyy3V1ltvrQ488EC19NJLJ4gxOy9i+1133aUmTpyoHn/8cSXldsGCBWr11VdXDz/8sFpjjTW6RPbSSy+p6667Tn344YddzpkD3/3ud9Vee+1lftbdpuVXN7CCTyJgCs4Aoi8FAQRMKbIJIwsmgIApOAMKir5QASMDE88555zYpO+yyy7q2muvpVUmlpBSDz30kLrvvvuUVG7DbvHFF1fLLrusLwrXW2899bOf/awwlldeeaU64IAD1Lhx45QMuGvkpIK72WabqWnTpnXxuv3226vrr79eLbXUUl3OtePABx98oPbcc08/zqjwn3vuOSV8w+6II45Qp512Wvhwl9/PPvusWn/99bsctw/IAN6zzz5bXXPNNWqLLbawT5VyvygBM378eF9wRt0vBuQyyyzjfzxZe+21zSG2ECiEAAKmEOxEGiIwa9Ysvy726aefBmfkI+JGG22kfv7zn6tXXnlF3XDDDerjjz8O6iLSm2arrbby6x3BRW3aqaKAkQ+pf//739VXX30VUJX63nbbbaeEh3xYlYaBzz//PDgvdSapV6+55prBsVLv6Bd5Ie6ZZ56RGrf/p1tdPF1B9HSl1Bs1apQnv825iy++uBD7yhKpbq0KWBlmcdsePXp4jz32WO5Ju/vuuwMb9YOwYfwLFy70evfuHVwzZMgQT7fSeX379q051jCgDDxoceH17NkziFcLDU+3CnlPPPGEpx/a3hdffBEby2GHHRZcJ+yj/vr37+999NFHsWGYE2PGjPHDknvj+eefN4dLu33rrbf89AiTPF337t2DPIm7T+T4xhtvnKdZxAWBSAI33nijX17lGYiDQFEEhg0bFvncNM9v/TE68ry8x/Nw5h09c+bMPKKLjCPve3XTTTeNZL7PPvv49kldJeodJ/WSTnGilgtxWsl7AvL888/3tGqvseGFF14IwOuvzTXn+FFL4Pbbb/d0y4ZnC5nBgwd78sITUajVuGdX2qQCrLs21QbSxl9vv/12IEh1y0mimCZMmBDk/6GHHhpcI2JBf9EJzs2dOzc4146dL7/80uvVq1cQnzzE0zgjYER4terkfjH5qLvRtRpc4dcXJWDMA10e7lKW7D/7w4nurlg4IwyAQN6VIohDIIqA7sLtyfvbPD/lXbTTTjv5HxbF/+TJk/3z9odH3TrjXXHFFVHBZX6sigLmr3/9q/+hzeSJ1FV22203T3dz9/nq3hreNtts4+lu7kG+SZ498sgjmfMvKsDCBEyjBEslTTJGKhW4xgRGjx4dFFJpwbCdbkL0Tj311OC8CJy8nP3lRjdnJor297//fWBrWNzqNUOCc7r7YaLwmvUkDwDzcEgrXiTOLAWMhGfn4aOPPiqHSuuKEDAiAk1+3nbbbTXspJyZl6D4SVpWawLhBwQyJoCAyRgowbVEwHxEO/744yPDkcqzecaKqMnLmWd3lVpghK39sV93z4/EfeaZZwZ5EumhxAebFjDydfrSSy/1BgwY4HeNEaEhrSWHH36498Ybb3gC0/6imabZSvfp88OUG0G+kObl5Au/HjDuDR8+3O9qJXaUxdUTMCYNpjXBNPvKcanUyZcS89AxW3lQTZ061VzqjRgxoiY/xZ8o++nTpwd+wjvSNcqUAQkvLKzC/uW3lCtjg3SvCjvJE/MQbWc3H6nQmnhkGxZSYbuifmctYN55552AjXxZKbMrQsC8++67AT89FqYG3yGHHBKcO/jgg2vO8QMCRRFAwBRFnnijCJh3IgKmK50i7lUETNd8aHjk5Zdf9uL630nlUyqtdlcfOSb+kzipoNpfvvXA5SSXtexHKs7hPoPSHFcWl0TAmFYtyQ9Jr7j3338/qLgZ4WC2d9xxR5D8PfbYI9KfdPeKc5dddllwTVIBayq2YoN0L4xyu+++ux+uPEzb5fSMY4HtMi5LnB7M73e/M+waxW0EjAgt+eJ/3HHHecLxhBNO8PTgXE/PYtYoiC7n7TwscyuMyWdbTHdJbMYH9CrNQZ7aY8Huv//+4Lh8yWtGrGZsKsFBwCdQRKUI9BCII4CAiSPjeUXcqwiY+PyIPCNf1aXSYSq5IlYGDRrknXTSSf7WfHE352WrZ0Pw5s+fHxmeOSjjMqSpyx7LIf0p2z3OwcQvlXXbZrOvp/I1XpzeNhIwr+gB5yZvpJJmO7kJ9IxZQfpFbMrgdbsF6r333vPssSkSxtNPP20H02XfFoRJK9t2FzGZ1CHKSSufyZ96g+ijrk16TAbqmzikr2m4lWrnnXduWDaNgDHhhLdyHyXlYuy+8MILA7tkjFNZXREC5rPPPgvYma4GUq7tPsIyOQMOAq4QKKJS5ErascM9AgiY+Dwp4l5FwMTnR+QZu1ImX4P1dKg1/uS3dG+xK2s1HmJ+yFdq+xqpVCSZnSkmuNSH77333pr4jS16Gt/UYRVxgS1gZJYqKdh6el/vgQce8M4666ygO5SkK6plw+4yJUJHutuEnS3y4sSFuUbyzjCUh16S7mNyrXThM9dJnkS5008/PfDTLoG5//77B3EYe8JbSVe9CRGOPfbYmjBEGMr4HvsDgIQpYjGp02slBWGKqCqrK0LACCv5IGI/s+Tji8nXE088saw4sbtDCRRRKepQlCQrAwJGwEgdQT42h//sdxtjYDIA3iAIW8AI+3B+yG+TZ/Ke6zSXKkX2+AQpwNInP8pJ5TctNKm4iogxrQQCW77yp/1CHWVPkmOSNvtLrMQvM3iVxdkCxlTIorZSYYtrtZCuUuYaGQdkO2mNMTOMSMtKo25UIp5MWGlmkrvllluC60R8RTkZvG/Clpaldji7q5bEJWVB7NHr7vizr5j4pauk3VJl2yJ+JRzpEqkXswxOyaQKRx11VJAGKfdJBZ4EYuKWe6WsrigBY/Oyy5o86CVfcBBwiQACxqXcwBa7XmfeQ3FbBEz7y4stYOLywT7efovyjSGVgJGvzQaGPb1tlMlHHnlk4DfqfNwxET92dyappMk4jTycjHHQK6d7MohXBFUeFRrpsmKYJt2eccYZXXAkETDSla+ekwH9RsSFuct0zcY+eak2cvYYEml1SOpEsJp4br311sjLZAyJ8dOuVjq7+5tMqWsLDBEs9po0jbhGJkIftFsqZVxZUifC3qRfpqmOc9JlKs0LR8IMT/mcVfkM25hWwMhkISbNSbaS7npjjCR++2OJvbZO3BgYV3hKC2oSBsaPpFPEtO1a5ZkFiyzCyKJ8usDTzht7P42AgWftmEIXyninlU/zPpEPetK1Ovwn4zzNcycsYLIon/a9Ye+bd6LpGmyfC+9ncb+Hw5Tfae5V8d9q+ZQwbAEjvaPC+SG/Zepkkydyje2yKJ92eHnvpxIwdqVUxgjUc/YA7nr+4s7tt99+AXQRFZ3q7C5TppA12gqbsLMFjFS2pZVFr9Ras47JySefHL6sy28732TaXnF264vMZGZX5rsE8J8DF1xwQZB/MmYlqbO7SF1xxRWRl5myIRWzdjm7BUbKfdhJhdDkk4xLacbplYuDMEQgJnX2BBn1WiilAm9sTLqVF4Htsiqfdpiyn1bASAtJ0jQYfzJoP87ZaxrYzzJ56cr1ZjEw+3pXeNqtdyatjbZjx461k1Iz1rDRtea8zTMLFlmEkUX5dIFnTeZYP9JUiuBZe7+3+syAZy1PKZZGwDQzC1kWPK1bo2Y3jYDJ4n6vifw/P9Lcq3JJq+VTwrAFTDPTKGfx/BQ7inKpBIxUiM3LTJR2PWd/Ja/nL+6cPWBcJgjoVNeMApbJDsIuLGDM+ddff73mS7MMkq/n5CuJ3QojDx279UW63SRx9polacYW2GNn4lr5zAx40krSLicVWFPWn3rqqS7R2DNaNTvtri2CZErypE6+fhnb5AEU56QF0W5lMNfU22bRAhNVPsM2phUwO+ywQ5Dmevabc5Juu9ueHb8IY+Mv3LomrZtyTl4uYecKT3uCCZOORtvw4mWt8syCRRZhZPH8dIFnuKyZ32kqRfBc1E1X+LlQxjutfLYiYLIon+a+CG/TCJgs7vdw/PI7zb0q/lstnxJGqwImi/IpdhTlUgkYW0FLgfnkk08i7ZYuGKZAyYu1GScvXPNSPuWUU5oJIvU1MtWt6dazyy67BCuapg4o5QXSwiGtGkn/ooKPEzDiV1qwDEsZxxI3BsaEe/XVVwf+pUJnxr7INm68h7nWbGWQv4kzqsXI+Ivamu5bMigt7Oy1PJIsyClMZSpuaTmSh+/QoUO9WbNmhYPt8ttUZCUN4TVDxLN0OTLpi+rS1yXAiAMXX3xxEEaabmgmPyR+GWtUz2VRtrIII2xjWgEj1ye9P8RfXDmVMVMm30TkvPbaazWmme6rImyiXBYssggjCxathpFFOlwJo1UWUlayCCNc5tJWiuBZS7DVPIFnLc9WBIyElAXPWov+/cvUN5N0IZMrWi0XUTakvVezsKNVASM2tCtPohhlfSy1urC7rwwZMsRfCNE2SkSNTO9qKgmyjXKyYquIFIEX5ez+gXGDuaOua/aY/UXd2C43RZx9zcbTruvqCRiJ0+4y06jCLQLHnk3E8EjTzenJJ58MykDUgpT1ONjdz8Irop977rlBuPZaHnHhyTgaY7/ZJhFUr776anCdiNmwk1ZBE569Xk7YX9zv8PS98nEgqbNbVdo1BiipLc36a0bANBuXuU5eWjKhhMk3EephZ7onyv2Cg0DRBJqpFBVtM/F3LoFWBUy7yKQVMO2wo4h7NQsB0w4WeYUZrS7qxC6DjU0FQLZScGRshQwWkq0pSLafcHBvvPFGEIZ8GZfrRMzIIHpZW0QqjOZ6qUjHtfSEw23lt714polbtlHdh1qJJ+trhZlU5KVlwdgtX/PDU/MKc7viK5Xu8Ndn2za71UbClS41acScvUCmtBikcXYrizwwpZVB4ranuk7afSxuAc4k9kgLj2E6YsQIT7rXSSXYbl0S+6LEx3333effC7JejPiX6bhl5jYRh9J1TMq9CfuYY45JYo7vR1o3zXUSd1ldEQJmzJgxNezkmRP+My2waSaeKGseYLf7BIqoFLlPBQvzJiDvrWeeeSaoQ+y6665+vWPevHm+KXJeJnmyZzK9/PLLI5djaIftpt6ZtAWmHTbkfa9KF2kZ22jqA7JchnQJk8mYxMnHTalPS0OD8SNjPM35djDIO8zUAkYMlEHNRokbMPZWKsqmIiDHwy7uC78dhtnPS0DYXUtM3JKOqMppOD1F/g6vn2Nsl+2ECRNqTLO7hhl/cTMuSR6Zh4L4jRrIXhN4xA+7jNSbLSviUu/aa68Nbjpjq9lKvoRnOIkKQ45FhSNlM4mTrmY2AxO/vb3pppsig7JbxGz/4X1Zy0WEUVJnizhpDS2rK0LAxInZcJ7Ib3no4yBQNIG8K0VFp5f43SQgH5mjnpNmrGB4zTPjN64rbtapNO/pKgkYuzeU4S1bmQFYXHjxbeNHPsZ2iuuqLhKmTJS3zC5lV6Cle4YMvJaKn92iERWkXC/dNaK6KgloGahcb5HAqDBbPSYZayrdckPIF1vXnenyYgqn2Uo6oir59vTW0oohQiXK2SJTboQ0rS8mvN133z146ImQSOvswdZ2upJ0HTNxSeud3aInEwCkEcXSGmTPSGbsEBFVT9SJKJHZTsSfuSa8lYkOZGBjGrf33nsH4ckXrrK6IgSMTHhQLz/s/ImbAa+svLG7nAQQMOXMt06z2p4x035Omu7V8n6Perbm9SGoigJG6tp2Xsi+5MEll1ziF7+ouqHUCzvp3dZNUqoT3pIzQXTr1i0IRxdopZsZ/d/mfHAytKNXx1a6sq208FFrrbWWWmedddR//dd/hXzl81N381F6pW612mqr5ROho7FoAar+8Ic/+Nbpip/65S9/mdrSF198UX3ve9/zr9NjmtTf/va31GHoCr6aNGmS0i1kSne7Uv/93/+tFltssdTh6OZWJWF961vfSn2tXCBlQjfPKt2SpLTwUz/4wQ/U17/+9URh6e57SjflKt1lTy277LJqvfXWU+uuu66/nyiA/3iSsin261ZBpR9Uvk1f+9rX0gThjF/hufLKKyv9AUNNnz7dGbswBAIuEdAtvEqPIVS6Iqh09xyXTMMWCDhDQN6nupu20i0wSs+iWohd3Kv5Y89EwESZnUbARF3PseII6NYXX3joNVmUbmFTekxN08aICBIxJE4qrfoLQNNhVf1C3SVQ6SZ5H8Pw4cPV0UcfXVokCJjSZh2G50iASlGOsImqtAQQMKXNupYMR8C0hK8zL9ZNjGrQoEF+4vTiSOoXv/hF0wnVs2T4LQ4SgO6ip3S3qqbDqvqFO+64o7r55pt9DNIStNJKK5UWCQKmtFmH4TkSQMDkCJuoSksAAVParGvJ8MwEjB4vokaOHKn0LE2+QdIdTCpZ4vQYCr87mV4c0P/NP7cIXHnllUqvJh/knR575HdTEiv1ID3105/+VP35z39u2ug//vGP6rLLLvO7PUmZWGaZZZoOq6oXSp7ofr5+8vUEAUrPkFZqFAiYUmcfxudEAAGTE2iiKTUBBEyps69542UMTBZup5126jKgSFsVHEs7lW4WNhFGMgL2jHF2ntn7raw3IteaxRd1i04yo/BVQ0AW45T8kOkrO8EVMYi/E7iRhmoRYBB/tfKb1DZHoIqD+Jsj1VlXZdYCI12FpI++nq1K17NqnQy63nzzzf3Bz7Vn+OUCgalTpyq9NonMSBdpjgxY32yzzSLPJT0og+j1Qpj+ZADf/va3k16Gv/8Q0Gvh+IPd+/Xrp+zJMsoKiBaYsuYcdudJgBaYPGkTV1kJ0AJT1pxrze7MBExrZnA1BCBQJQLz58/3Z5WTbnHjx4+vUtJJKwQSE5AxiAMHDvTHJA4bNizxdXiEQJUIbLvttko+xMpstkVNFMS9mn+JQ8Dkz5wYIQABCEAAAhCAAAQgAIEmCSBgmgTHZRCAAAQgAAEIQAACEIBA/gQQMPkzJ0YIQAACEIAABCAAAQhAoEkCCJgmwXEZBCAAAQhAAAIQgAAEIJA/AQRM/syJEQIQgAAEIAABCEAAAhBokgACpklwXAYBCDRPYN68eWrFFVf0ZyKbMmVK8wFxJQQ6mMCdd96pZOr0oUOH+gtFd3BSSRoEmibQp08fNWnSJDV79my1yiqrNB1OKxdyr7ZCr7lrETDNceMqCECgBQKsA9MCPC6tDAHWgalMVpPQFgiwDkwL8Ep8KQKmxJmH6RAoKwEETFlzDrvzJICAyZM2cZWVAAKmrDnXmt0ImNb4cTUEINAEAQRME9C4pHIEEDCVy3IS3AQBBEwT0DrgEgRMB2QiSYBA2QggYMqWY9hbBAEETBHUibNsBBAwZcuxbOxFwGTDkVAgAIEUBBAwKWDhtbIEEDCVzXoSnoIAAiYFrA7yioDpoMwkKRAoCwEETFlyCjuLJICAKZI+cZeFAAKmLDmVrZ0ImGx5EhoEIJCAAAImASS8VJ4AAqbyRQAACQggYBJA6kAvCJgOzFSSBAHXCSBgXM8h7HOBAALGhVzABtcJIGBcz6H22IeAaQ9XQoUABOoQQMDUgcMpCPyHAAKGogCBxgQQMI0ZdaIPBEwn5ippgoDjBBAwjmcQ5jlBAAHjRDZghOMEEDCOZ1CbzEPAtAkswUIAAvEEEDDxbDgDAUMAAWNIsIVAPAEETDybTj6DgOnk3CVtEHCUAALG0YzBLKcIIGCcyg6McZQAAsbRjGmzWQiYNgMmeAhAoCsBBExXJhyBQJgAAiZMhN8Q6EoAAdOVSRWOIGCqkMukEQKOEUDAOJYhmOMkAQSMk9mCUY4RQMA4liE5mYOAyQk00UAAAosIIGAWsWAPAnEEEDBxZDgOgUUEEDCLWFRpDwFTpdwmrRBwhAACxpGMwAynCSBgnM4ejHOEAALGkYzI2QwETM7AiQ4CEFAKAUMpgEBjAgiYxozwAQEETDXLAAKmmvlOqiFQKAEETKH4ibwkBBAwJckozCyUAAKmUPyFRY6AKQw9EUOgugQQMNXNe1KenAACJjkrfFaXAAKmmnmPgKlmvpNqCBRKAAFTKH4iLwkBBExJMgozCyWAgCkUf2GRI2AKQ0/EEKguAQRMdfOelCcngIBJzgqf1SWAgKlm3iNgqpnvpBoChRJAwBSKn8hLQgABU5KMwsxCCSBgCsVfWOQImMLQEzEEqksAAVPdvCflyQkgYJKzwmd1CSBgqpn3CJhq5juphkChBBAwheIn8pIQQMCUJKMws1ACCJhC8RcWOQKmMPREDIHqEkDAVDfvSXlyAgiY5KzwWV0CCJhq5j0Cppr5TqohUCgBBEyh+Im8JAQQMCXJKMwslAACplD8hUWOgCkMPRFDoLoEEDDVzXtSnpwAAiY5K3xWlwACppp5j4CpZr6TaggUSmD+/PmqV69eqmfPnmr8+PGF2kLkEHCVwLhx49TAgQPVoEGD1LBhw1w1E7sgUCiBbbfdVk2dOlVNnjxZde/evRBbuFfzx46AyZ85MUIAAhCAAAQgAAEIQAACTRJAwDQJjssgAAEIQAACEIAABCAAgfwJIGDyZ06MEIAABCAAAQhAAAIQgECTBBAwTYLjMghAAAIQgAAEIAABCEAgfwIImPyZEyMEIAABCEAAAhCAAAQg0CQBBEyT4LgMAhBonsC8efPUiiuu6M9ENmXKlOYD4koIQAACEKg0gT59+qhJkyap2bNnq1VWWaXSLKqUeARMlXKbtELAEQKsA+NIRmAGBCAAgZITcGEdmJIjLKX5CJhSZhtGQ6DcBBAw5c4/rIcABCDgCgEEjCs5ka8dCJh8eRNbkwQ8z1PdunVr8upsLsvahizC++qrr9Riiy2WTQJzDAUBkyNsooIABCDQwQQQMB2cuXWS5pSA+eSTT9SPf/xj9c4776j/+Z//Uddee63fT76O/ZwqEYG0FfY333xTnXfeeeqee+5RTz75pNpyyy3V1ltvrQ488EC19NJL55LyGTNmqBNPPFE9+uijatq0aWrDDTdUm2yyiW/DGmuskcqGjz/+WN10003+asGPPfaYkj9xm266qbrvvvvUEkss0TC8WbNmqdtvv90PQ2x67rnn1HLLLaf22Wcfdeqppza8Pm0eNAywSQ8ImCbBcRkEIAABCNQQQMDU4KjMD6cEzIgRI9QxxxwTwJdBWSJocPEEHnroIb/yKxXTsFt88cXVsssu61dw11tvPfWzn/2ssFaMK6+8Uh1wwAFq3LhxSgbcNXJSwd1ss8180RD2u/3226vrr79eLbXUUuFTmf6+++671bbbbhsZpoiGe++9V/3kJz+JPB8++NJLL6lf//rX6umnnw6fUj179lRTp05tmB6x5ze/+Y1asGBBlzD22GMPdemll3Y5bh8YOXKkOvvss9U111yjtthiC/tU7vsImNyRE2EJCLz44otq7Nix6ssvv4y1Vlpc5f6V5yMOAhBQqkgB88Ybb/j3rHxknThxopIPr+uss45fz9lmm23UDTfc4PeSkDoQLmMCuuLrhHvttdekBl7zpwWME7a5bIRuEahhFmZo/+7Ro4env/rnnhxd8Q5s1C0IDeNfuHCh17t37+CaIUOGeJdcconXt2/fmmMNA2rBw7vvvutpkRLEd/DBB3v6QeQNGzYsOCZs9cOrYSw333xzzTW6Fcm77rrrPD37VqLrdTcx79hjj60JY/fdd/d0y5T37LPPemJrEjdmzBg/DEnX888/n+SStvl56623fFukTOIgAIF/E9h1111r7nP7+R3ef++998AGAQhoAvojoH/fzJw5M1cet9xyS009IXyP2r+T1BVyNb4DIlOupGGnnXbyC+B2220XPMARMI1zR3cn8nTLhmcLmcGDB3tS6d9zzz094dm9e/eAqVRedWtA44Az8vH2228HN7huOUkU6oQJEwJ7Dz300OCaL774wttqq62Cc3Pnzg3OZb2ju40F8VxwwQU1wd9///3BuUP+f3tnAjRHUf7hjoLlUSoioAjq3wuEkmihWCkjqChSIhYiZUpTKgKKJAIFKocoIAKC3IUUp4CihWgknEKpCZFIiiuJYEQ5BSWAoBjlFBTn37/Bd9I738zuzO7szszu01XfN7M9Pd1vP93T02/32z1f/nLHtfQPNahhI3bFFVekg/T8HSpA6vDfeeedPe/JCvCvf/0rqQtSoup0KDB10iftphKwQRq12Wrrwr9wUEdtyuOPP97UbCAXBEZKoA4FxlsLdbzb99133+j888+PBye9RUTS77H3vzdHHymTSUisEQrMwoUL44qgzrWfhksqBQpM8Sp4xhlnJNw0gxG6p59+OvLrI5LrUnBG5cIZi8WLFxdK9lOf+lQiq1830nGPZi2sQTjppJM6rlX5wxRp1UnxSzu7Llm6zYCoITN5/TqXdDQ9fyttKS2KQ7L4fe573tMtQFgP/BqabkGHeg0FZqh4ibylBPx6uPhZzxoYCdsSb27d0hwiNgSqJzBqBUbvTnuv6/3sTcCnZCoMo7CjHDieIsyYevStwHgb3cjb3EezZs2KO1jqXHm73OiAAw6IzWL8WocODXT//ffPRKgO2qabbhpXhuOOOy6+1yrGqBUYjfDLLOeII46ITa1kutMW102BsTxMnz495pxntvOtb30rmYq1Msg6zpgxI7r77rst2tyjRghVLxSHRhTTilXWjapXluZOO+00JYjKxGaUZs6cOeV6VR6mNCivWS406VqyZElWkMivd0nyouekH3f66acnceh8UOc3yEji8/a5g0bX9/0oMH2j48YxJmBt9De+8Y2OXF566aXJc6vZ9qxBlY4b+AGBCSIwSgVG/UR7TtVXufXWW3NJH3rooclzW7fZdq6QLb7QlwIjExYbKbLOZnhUpzU09dE1hc9yfpepuIA33HDDyO9CVpsCo46zKVKWl5133jlL5Eb6FVFgZDZkeVN+005lYNd7HWVi1cudffbZSXx5Cmw6DuvYKv1TTjklfTn+rfUfui5FZljOGqg8Ze+ggw5K8qb1LFlOyrxxtBEav8AvKmOna2Yjyqs6LVLg7rrrrq6zPlmyhH5hPahrFsbKOY9vKC/nEJgUAtYRO/bYY5Ms+w0vkoEgtSd0hBI0nEAgJmDPTZl3a7/oLr/88uS9LlP9bk7vausDyJweVy2B0gqMRtVtdFoFI2Vl1113jQ4//PD4aCPuVmg6XnPNNdGqVaumSK5OjIX3u0rF17XQye4d5QxMWCktfR3V4WyD66XAaMbEWOthz3KmwOyzzz7xTJRmo+zP71yVlIu4yOyvlwsVwqId5dBEzOpEOp1QMdBoyDCcKUnKqykflk56BOaoo46ySx3HHXfcMWYm7lJyrJFVnPLT6Ew3+aWsKKz+NIMjpclmn+Sn5zCPUYcgqR+nnnpqEq/WSdXhUGDqoE6aTSegWVE92+Fzbe2I/PMGdZqeL+SDwDAJ2Lt1FApMaIat9bC9nPo+6l/iqidQWoHRSLoaUv1pJFejQ6HTb2uELVx4PTw3m16Z6Zi5Vl0KjN8SN8mXya2j//ZHKHJjz0MFRiN0mtb03wiJrr766uj444/v6PjmvQRNgUnPKMjsyGYkxCRt3pAFRYqucVSnu4j5mOKRwmT3qUyy3DHHHJOEGZaCmTbZsHSkcMg+3WTUMU+BsUY1DJs+lxmcFtdnOaWZDp/1WwpdGafFhBZPnolcmfj6CYsC0w817hl3Alrzp1Fbc+edd17yrPrvYBVuR+1+jhCYBAL2rh2FAhPuFKjdc3H1ESilwITrEzSCrI5tltOi5nCkOCuM3y87aZjDNQR1KTDKm3XgrXOnhdptcaECY/JnHTVbljfqr1k0dWjDF2haedEsQBEn5cnS19qook7bEtp9Ur6ynBbvWxjNLA3LhSOfSk/KRlivTYZwtNRkEWO7bscDDzwwuuGGG+LRmHB2Km9BbnoRoOI588wz440uzj333GRGTf7+e0CWdKGjyaTnuA6HAlMHddJsE4F77rknecb1nNJZalPpIesoCYxSgTGzbr1DWYs2ylKemlYpBUa7KFjHJ9zedmq0UfTVr341CZt1XZ1BxZVe3JxWYPxH+7JuH4rfI488Epv66JsfmgkYReVcunRpwsnY9jqG9tEGoogCI1O+Mk7bFJedebH4tV2w5UO7ihV1Yaf9kksuybxNM0AW9zC3ElXdk8JnaYVH2+5UfsuWLZsip+xdw/DpNUP6hkOoDGXNwoTbJyuu9HS1vuljaWjNWRlnDb7u72abW1X9TMtWVoFRO2F5LXIU27DteOqppzp4F4lDZRy6KuKogqdmUIvIb2HU+U0ruPBcXbJN4LlammfPNGOtGRcrQ83EmNN7KWsQivrZ2VdoQh0fl+ddda8JPO0ZSB/tfVZkBmbQ5z1cQ6r+ar+uCTyrqJ/95r+K+0opMGGnVIvvu7lwAXc6nDYBsIZZi/u1EMr+PvGJTyTXrAHP68im423j79Bkypj0Ou65555TshoqMHr56QWn0f5QAdEuY0VdWnnJmyXIi0/fTrF8lDFxCs2bNMuQ5ZR/xT2q2QPNFqrRk2KrjsSf//zn+Bs7lr+sbZTD2UqF++c//zklK2JqcWjHsrQLlTntPJTl7BkpyyLcZEPp5Lmq6mc6/rIKTPidI2PW6xhuOS1lplf49HW9FENXRRxV8Aw3kEjLnPfbf909zErHd6Py7kn7w/NZ02lxqZpnR+H4HyeffHJSXzUTbE4mZrIUUN00s2u7Rv3s3GK+CW3GuDzvqmNN4Gl1PX0so8AM2n6qH2BtY2g9lJap1+8m8KyifvbK5zCvl1Jg1CG2gjvkkEO6yhWOkqcDanG+xVPkOM4LoPrRgLXddNqlFRi7rs62OrfGWYvke7m08pI149MrjnChW3r2odu94dqZvFk+2wFPZlh1uIcffjhhmu7khvKEm12E/nauTpCVS5aSHs5Ghp0Yu19HU+YUT55JZxjezsPv2KgRy3NV1c90/GUVmLQ5n3HLO6rOP/bYY0myGrUOn4O8+0L/9AxMFXFUwdN2bgxl7XWeftHCM6kaURN4rpYmitcuWnmqzobrTMNZV1kMhI76ufp5F5cm1PFxed6bwjOs7+F5GQVm0Oddnw+x57OoSX0oq52PS/20/NRxLKXAhCM8qjDa9jjLaZTIKpQKOu1kPqMOlNZGpP9CrVQdVBVy2BFJx1Xlby3ctg0IZs+eHWnkfRROI2maNSn6lyVTngKjsFqUbw+c7DezzA8szrTykv5Y5JVXXhmvBelljqZ1IZZm1oyRpZd1tPUhWVvsarbD4i3yQU4xPfHEE+OZKJkV6Wu5K1euzEq2sF+4kYXW7OQ5q0uSN/1BTt1z1llnJXlRxyTtwlmcvG/eqJ4aD4Uv6kI7Xq1X6uaqqJ/p+MsqMLq/6POhcOnRad1fRT6aEsegLOApAqtdE3hKGikh4bOpd1LoQiuIrHac+hnSGp82oyn1c1A5qqifnSX87C/rbxYxIdMdg+RDGzvZO1fHImZkWSbig8qh+6vgWUUckqUON1W76CFFaHois690wUip0dasYQH3iLLjcjjqPMptlGUeEcqscz0UKtw2uG4KjOTfYYcdkvzlzaikF+zLDCztbOe4XmZhy5cvT9LL+iBlOt7wd2h+tnjx4vBSh2lFVqe/I7D/oZmNdLmWVajCOMNdgfKUCgt/wQUXJGlLWUk7M/+SfFlmaAo/Z86cJI5bbrmlIwrdY7MK6vSUcXaf0h7mOqI8mfpRYPLiwh8C40LgsMMOS553rb9Lu3BgKH2N3xCYVAJlFZhBOYVrvGURYruUpuOVSbz1vS677LL0ZX4PSKC0AhOuX7FOvtZWnH/++VHel9yLyKhOlDqkF154YdKAa8elcEesIvH0Gyb9nRPr9N500039RjmS+2RGIG6aWTCZNTuS7uxKMQw7rTLLC3e10ei9mWYpHo3sy+wk/acZM13v9WFKrfkwecp2rsNZFs2aaIZAimS41XVR8zFTuEwWO5YtHI26pLdP7qVga4TUzMjEXqOpGvmR0h82gJplzHPhmiA10r/73e/ioFp4H87waI1OUafZIOMgvnU4FJg6qJNmkwloR0V7LnXUbEu6/TX7fbUnOAhA4FkCo1ZgZI2kd6c9rzrX99VktaPdA6+66qoo3ffIW9NLGfZPoLQCo6TUsIaFZ4VoRzWuYeeqiHjpwra4dFSFGLZLvzyUrvKhitpkZ7u5hbzsfNGiRR2ih7MHFsZMm9KKqV3PO/ZSYJRwWEe67XTVIeT/fvzwhz9MGoe0DCqXrJ2/isajutnLaVG9ZmoU1kzaTA79Lvo1bJWB3Zd37FW/teYpvFf5D39LQcwyJ8nLY6gIlt29LC/Osv4oMGWJEX7cCeQNooXPup1nmdeOOx/yB4E8AqNWYCSHduUNlzzYs5l11IBlmXd0Xj7x7yTQlwKjKLSQWWZEYQdao/NaeK01BmFj3Jlk9i8t9M4qeO24onUZo3DaFco63XogZALUdBcu4g75KR9Znfxw5F8dZ86UTQAAK8RJREFUcXuoNDMQKp1hXOlzlYmU2F4u/Jq9FJKyTiMW6bSVryKmY5aWTBrDdSKaZSoyqxaabpkMSnuvvfYqbXIlZSj9jSHFKcVDHxwt4kLTEZNHR21RrTVlZVyYt3POOafMrZWFRYGpDCURjQkB2e9bRyx8xrPOi6z/GxMsZAMCPQnYc1N0DUzPCAsG0Jo1bWiVHlS0Z3bnnXeeYg1TMGqCFSAwTWE87IGcRTFt2rQkHt9hdf6LpfFvu55cbPCJN6VyftcXt8EGGzRYynaIdtttt7k3v/nNsbB+z3P34x//uLTgvoFw3lTL+Rky57eEdm95y1vcc57znNLx+I0gnOJae+21C92rOuBnT5w3hXOve93r3GabbebWX3/9QvdmBdIz4M0hnd+VJr6s+DbeeGO3xhprZAXP9PPKpvMmZM7vJOde/vKXxzL93//9X2bYPE/VbzHwM4vON7pxXX/BC16QF3xo/uL7yle+0vmR5JjL0BIiYghAAAIQGGsCepd6M2/nFRjnBwtryatfR+38YKXzyyHi95rebS996UtrkWVSEq1EgcmC1VYFJisv+PVP4DOf+Yzzs3FxBOq0+lmM/iPjzoEJSCnzmwfE8RxxxBHua1/72sBx9hMBCkw/1LgHAhCAAATSBJqgwKRl4vfwCaDADJ/xRKfgTaTcJptsEjPwJnrOL0KdaB51Z/5jH/uYu+iii2Ix/Lokt+6669YiEgpMLdhJFAIQgMDYEUCBGbsiLZShyhQYv17EnXDCCc6vpYgT9utgnDpIcjNmzIjNyebOnRv/5t9kEfjc5z7nzj777NhkSXXi+c9//mQBaEhu/aJD522FY2n8ttvO29HXJhkKTG3oSRgCEIDAWBFAgRmr4iycmcoUGK1x8F8Wz03YL1h2flF57nUujC8Bv9OZ84vnnf82jFuwYIF7//vfP76ZbXDO/EdJnd9uOx5M8DvS1SopCkyt+EkcAhCAwNgQQIEZm6IslZHKFBiZCsm+3n+vY4oAWnT9nve8x/ldr6Zcw2MyCGgRvf+Qk/vgBz8YL0CfjFw3K5f+ezrxgvntt9/ehRtu1CElCkwd1EkTAhCAwPgRQIEZvzItkqPKFJgiiREGAhCAgAisWrUq3lVOJm0LFy4ECgQgAAEIQKAvAtttt51bsWJFbOXDRkF9IWzlTSgwrSw2hIYABCAAAQhAAAIQgMBkEkCBmcxyJ9cQgAAEIAABCEAAAhBoJQEUmFYWG0JDAAIQgAAEIAABCEBgMgmgwExmuZNrCEAAAhCAAAQgAAEItJIACkwriw2hIQABCEAAAhCAAAQgMJkEUGAms9zJNQRqJfDwww+7ddZZJ96J7Oabb65VFhKHAAQgAIH2EnjnO9/pbrzxRnf//fe79ddfv70ZQfJSBFBgSuEiMAQgUAUBvgNTBUXigAAEIAABvgMzmXUABWYyy51cQ6BWAigwteIncQhAAAJjQwAFZmyKslRGUGBK4SIwBCBQBQEUmCooEgcEIAABCKDATGYdQIGZzHIn1xColQAKTK34SRwCEIDA2BBAgRmboiyVERSYUrgIDAEIVEEABaYKisQBAQhAAAIoMJNZB1BgJrPcyTUEaiWAAlMrfhKHAAQgMDYEUGDGpihLZQQFphQuAkMAAlUQQIGpgiJxQAACEIAACsxk1gEUmMksd3INgVoJoMDUip/EIQABCIwNARSYsSnKUhlBgSmFi8AQgEAVBFBgqqBIHBCAAAQggAIzmXUABWYyy51cQ6BWAigwteIncQhAAAJjQwAFZmyKslRGUGBK4SIwBCBQBQEUmCooEgcEIAABCKDATGYdQIGZzHIn1xColQAKTK34SRwCEIDA2BBAgRmboiyVERSYUrgIDAEIVEEABaYKisQBAQhAAAIoMJNZB1BgJrPcyTUEaiWAAlMrfhKHAAQgMDYEUGDGpihLZQQFphQuAkMAAlUQQIGpgiJxQAACEIAACsxk1gEUmMksd3INgVoJoMDUip/EIQABCIwNARSYsSnKUhlBgSmFi8AQgEAVBFBgqqBIHBCAAAQggAIzmXUABWYyy51cQ6BWAigwteIncQhAAAJjQwAFZmyKslRGUGBK4SIwBCBQBQEUmCooEgcEIAABCKDATGYdQIGZzHIn1xColQAKTK34SRwCEIDA2BBAgRmboiyVERSYUrgIDAEIVEEABaYKisQBAQhAAAIoMJNZB1BgJrPcyTUEaiWAAlMrfhKHAAQgMDYEUGDGpihLZQQFphQuAkMAAlUQQIGpgiJxQAACEIAACsxk1gEUmMksd3INgVoJoMDUip/EIQABCIwNARSYsSnKUhlBgSmFi8AQgEAVBFBgqqBIHBCAAAQggAIzmXUABWYyy51cQ6BWAigwteIncQhAAAJjQwAFZmyKslRGUGBK4SIwBCBQBQEUmCooEgcEIAABCKDATGYdQIGZzHIn1xColcCqVavc9OnT3UYbbeQWLlxYqywkDgEIQAAC7SWw3XbbuRUrVrhly5a59dZbr70ZQfJSBFBgSuEiMAQgAAEIQAACEIAABCBQJwEUmDrpkzYEIAABCEAAAhCAAAQgUIoACkwpXASGAAQgAAEIQAACEIAABOokgAJTJ33ShgAEIAABCEAAAhCAAARKEUCBKYWLwBCAAAQgAAEIQAACEIBAnQRQYOqkT9oQgAAEIAABCEAAAhCAQCkCKDClcBEYAhCAAAQgAAEIQAACEKiTAApMnfRJGwIQgAAEIAABCEAAAhAoRQAFphQuAkMAAhBoJoEoity0adNqF64pctQOAgEgAAEIQGBoBGpTYB555BF35plnuoceeig3c694xSvcbrvt5tZaa63cMFyAAAQgME4EyioAP/3pT928efPclVde6V760pc6fZV6l112cTNmzBgZlssuu8yddtpp8Zew1aZvtNFGbvPNN3df/epX3fTp07vKsWjRIvfLX/7S/ec//8kMJ6Vsm222cR/4wAcyrz/88MPulFNOcY8//njm9dDzox/9qHvXu94Vek05L8t/SgR4QAACEIDA0AnUpsD87Gc/c9tvv33PDJ5xxhlu99137xmOABCAQPMJPPnkk+5HP/qRW7p0qbv++uvdHXfc4dZff3331re+1X3sYx9zv/3tb93vfvc7d+qpp7oNN9ywkgw99thj8WCJBk3STp3j5z//+e7FL36xW3vttd373/9+t+6666aDjeS3OvAHHnhgLOvf//53t8Yaa/RMVx33vfbaKzOcFIP3vve9mdeq8nzmmWfcJz/5yViByovz2GOPdV/5ylfyLru3v/3tbvny5bnXdUHlk1V+unb66ae7OXPm6LSn07tE75Q89/TTT7t11lnHffzjH4/jXXPNNfOC4g8BCNRMQAMnS5YscTfeeGP8p7b7TW96U9y3fO5zn+vUz9x3333jdr1mUUl+GAT8aFMt7vLLL498fuK/17/+9VHW35ZbbhndcssttchHohCAQLUEvGISbbrppslzb89/1vEnP/lJZYlfccUVhdI0OebOnRt5ZaKy9ItGdNBBB8Vy+tmLQrdccsklSb50z4knnhgdccQRke/sJ/5eQSwUV7+Bvv3tbydpzZw5M/IzKdGtt94aqfy8Appc+/nPf56bhJ+picNJ7qz3gPJ26KGH5t5v3HS/n3XK/LOyFZ9eTjIo/B577NErKNchAIEaCPgBnsgPMiTtiz3fWcc999yzBglJchQE3CgSyUojVGCyruMHAQiMDwE/Utbxspk9e3bkR8KjSy+9NNp///3jjmv48vnBD35QWeb/+c9/RurkqkNqaXizpvi3/D71qU9F6nzbNR39qF1l6ReJ6KqrrkrSP/nkk4vcEmmAR7Kq437PPfck94RxHXDAAYn/ME7WW2+9WAYppn52rSOJP/3pT4kytcMOO3RcC3+YAnP88ceH3oXPzz777FiG8847L/Oev/zlLwnbm266KTNM6Oln/5Lw1157bXiJcwhAoGYCd955Z8fgiNru4447LlKf8qijjooHMMK23C9DqFlikh8WARSYYZElXghAICawatWqyDq6erFceOGFU8j4dQwdYc4999wpYarwsNmJb33rW1Oi04vRRt8lpzrgo3KmjChdKVy9nGY57CV99NFHTwluo5PKb1qxmBK4T49QMcjiqWhnzZoVy6nyz3ODKjCK15t+5UUfeTO7WAaVbRH36KOPJorXtttuW+QWwkAAAiMi8KEPfShp+w4++ODo3//+d0fK//3vf6OPfOQjSZjPfvazHdf5MT4E+lZgZGLx3e9+N35B6cWgF6W3t4404nffffdFCxYsSF4CetFqlDV0TZyB0YMgUweZGVx33XWRHgQcBCAwGIG99947eZl0U0zUZlin/Kyzzhos0Zy7uykwukUzQiaDX6uTxLJixYqOUT8Lo5mHsPOsF6elYWE0QujXiiRxpU/8eqAkzaIv22OOOSa55+abb05HGX3/+99ProvrMJzMOCyPGvnMcqZIiVOeq0KByYtb/ha/OjtFnd5jljdmYYpSIxwEhktAg1/2XO688865if3tb39Lwmm2HzeeBPpSYDRSGY4YWoWyo17gfteYpALJX+FDFyowv/71ryON4Mmc48tf/nIk85F77703DD70cylkafv8bg/I0AUiAQiMAQHNrFi7oLUM6dGyMIt6Bm0GROs7huFMucibMVBn1eQNO+WhWZZdt6NelubCdR92XUe/kYAFmXL89Kc/naSpdrGIM6VQ+ckaaFEbbelLmRmWs/eAyvaJJ57oSOaPf/xjIkN6ACsMaArGPvvsEyteCvv5z38+8ov/44GwbspfGE/WuRRP47Bs2bKsIJl+YT3QiC8OAhCon4C1FXqm1b50czIdU7gvfelL3YJxrcUESiswfqvKpJOhyqEX6K677hodfvjh8dE6CPbS0PGaa66JZEYSulCBCcOG591Ga8O4qjjPk+eBBx6oInrigMBEEvA7xCQdyG9+85s9GeilpAXgMuMZhrP2KU+B0doXa4P89sSJCFISbrjhhig0X9Ao/Z///OckjE408KIBGItDo38rV67sCBP+uP/++5OwuietBIRhw/Oddtopvi/PLOof//hHEm+oiIVxVHF+/vnnJ+loAb0W8f/hD3+Ysoi/2yxG2CkxbuFRZlzdGHbLh9/GOZZPimWWopd3rxRtqyuSJVxjlHcP/hCAwPAI6Jm0dkHWPr2c2kDNoo96MLyXXFyvjkBpBUajY1aJ9GJ58MEHO6TR7/Alr7BZTi86i0dHzX5oxmOLLbbo8D/nnHOybq/cLy2PyXb77bdXnhYRQmBSCOj5tWdJnd26nXVKNYOhdST608i8ZnzM3Enyas1G1qyJzLUsP3kv0bCN7LWOJmx3ypg6SFmQHDpmOXXWTU6/zXJWkMr80hs0WLo6iqPf4rRrWpYXhVf5aMG/FDQrK/lLUdPgWRmnDo+tvZIiU9bZCK7SVznhIACB+gioL6ZnUX9+O/T6BCHlxhDI1i5yxJOJh1UgvVxC04nwFtlG24tD4bOcFoBK0dHooM5Dp5HPMJ1RzIIob2nzD9mz4yAAgf4JhGsJ/HdJ+o+oojvDTrG1MemjwmgNXJ6zhem6b/HixR3B1FZZfEW27/Qf803CF5mhssTM3DVPiVI4k2PYu/BolNPSSh/1HvDf+zGxM49aZC/lUfUjNDH861//2jEY9vWvfz3z/jzPUDnspURlxWGL/5Un7UyGgwAE6iMQbod/2GGH1ScIKTeGQLZ2kSOevilgL6j99tsvJ9Sz3jZ1r/D9uPD7AsO04Q5l8x9Ki6ccZTOpxfzh4twwXJXn4QJeY9vrKNvw0IUv2l736ro6aFp3FLqwU1YkDnVMQjOfp556qkNpLRLHhz/84VCEqIo44LkaaRN4hs/xIN92GbR+GpVeCoxG9jQA083pezZWv7XWL3RqF+1aEdOFUMHTpihFnWa/lY62g85y2nnM5CizeD0rrm5+2vrY0tHs+fz582PlTzNv4SBWt+/AdIs/HAxTfGWcrS0qaz5maYQDab221a6ifg4aRxOed7FrwvtIcsBTFJ51g7JQLIPGMWj9DNelFRkc+l/Wpxyon6uRVNFfWh3b6M9KaRehBvyd73ynq7S2N79ebv24cCSzl7LUT/xNuUcvdusAFD2mH177kFvR+xVu3rx5HQjSpntF4pL9vjkpM0XuCcNo4W/oqogDnquJNoFn+LHFQdZiDFo/jYopMLYGRrO/+oaA1Ut1ktNmsXZveLTOse7TOh+5sM3SgvQiLjRbU/ta1Jl5U16nPlxbM8zZA5u1VvmkB3y0G6XxVuenXycTOCufXsqlpaGtqO0eKYn9OK3dtDh6badcRf0cNI4mPO/i3IT3keSApyg86wZloVgGjWPQ+hnuLJYeOPpfNgsdqJ+rMVXRX1od2+jPSmkXWsRqDfohhxzSVdpvfOMbSdiuAXMuhgu29KG5cXX9aMDqcIVOyqSVS9Gjdbosnh133LFUHOqYhGsE1HmxzkpRGdIzMFXEAU8r0We/jTFomQzKM/xeidY6lFlIvTonUTRo/bS4jIcpMOYfzoR84hOfMO/cY5gv26UqnH1R572Is5kUPTO/+tWvitwSh9Gsij1nWaa8Msey6xdddFHheMsEDHf4CrecDuPQbLbJoRHYftyRRx6ZxCErgCIu3Ea6mzlgt7jCuq/OWzdXRf0cNA7az86d/uC5usYOykIxDRpHFfXT2m+1KQ899NDqDJY4a0J/qSk8wzbO2ulex3T/swT6yoOWUmBCDVqj53kfSNNOOrpuIPqR+ve//31yf7qz0U98Re7RNyBsAwItqO1lu10kziJh1KnTVqFF/7LiLHqvwuV1IgeNo4p8NCWOQVmojAaNoyksBpFDAxG2NbLag4svvjir+nb4/etf/+r4bT8G5al47AWYblOUpq0rkZxFtnHW7ovWxilfdq6t4Is6zabafelZ0W5xhOllmeaFClmRHbS0OYG+QSM+W2+9dXTBBRd0Sz6+tnDhwp6ya12P5a+oUpdOWG2xxRGukUmHC39rbZDu0QyV6k0/LtyZssgGC1XUz0HjGORZNUZVxDFoPiRLE+KogkUVcTSBRRVlMiiLsM3tZdYpeaU0iV3awXM1kUHLZHVMoz8rpcBIvPD7LvpuS7qzIaVGe/jbC0fHflyo7Y9iB5jQ5MJklxKmwsVBAAL9E7jyyiuT9kAdSs3kZjkNkNgOXgceeGBWkIH98hQYRRzOMEvOXuZK4bdWrM3QscymI+FooGyzizrNZlhe1CaHL2ltHyr5JYvNDnWLV22c1tKEedB5r62LQ5O5OXPmTElCMukjnopLsvbTloYjhHk7rqUTvvvuu5O8DGJ+HG6wcOihh6aT4TcEIDBiAuqnWbundiXvUxtqe/QxZIXV7Gk/bc+Is0ZyfRAorV2kX9rq5Gs0U1uk6hjOvNgLMS2XKqEqlUb6zjjjjGj58uXxbI4qmUwEQrtwvQCLjrql0ynzO/x2g8mt40033VQmGsJCAAIZBOy7JfZsycRUI/jaZliKg36HLyZtqV6VU7sik6/wmzRaQyLTorSSIsXJZJTpqnavSg/ShHJpEMfC61h2vUW4rrDsvaEttzrYmvnWh0PD9rOI+VjY4Q/zUkShCr/hovDazVFOWx6H39TJ2wlNG5LonaE1Q2JhszS6X21yWCcWLFgQos8911ory0e378/kRvC/C2Jq8YxqI5leMnEdApNOIL0IX+sRNWN+1113RTJrVZ8ynE0fZBZ20lk3Pf+lFRhlSC8aG+GzBj486qVjpljyT7tbbrkleTGE96XPFU+vr62m4+73d9ZLXOlrVBgHAQgMRkA7/MlEKf2MZ/1W25G1rqNfCUJTp3R6+pJ86NLmrwp/9NFHh0E6zmWeFcZZZAOAMIJwZ0e9dMs4fRy428Ja8TaFolu8Gq0MzfwsP0XWjuijlRZeR7WZ6bi00D+tKJo8Wm8U3p93rpm5Ik7KqqU/aMfFZo8kkxb04yAAgfoJqL068cQTC7UbagtkHosbTwJTtYuC+dRIn0YMw0ZedseaspfpQTijkRWlrtuLJuulpZevvgMwSqfFoqaYaVSwiB34KOUjLQi0nYDWa+Q991ImtCtK1dP96mSrY53VzmTNDGi2JpQxb4G6yiKcke7nY4maXbadvCRfkfUqYR2QYhC2wZZH2YqXmbnW+j8btRQrze4UdeogZMkgWbR2xGZVsuLTtXCNi8lvR7XHRdZNWdyhQllmLZLdb0dtgW0yqHzKsLQ4OEIAAsMjIOuY8CO49rzqqPZbO+F2mz0fnmTEPCoC05SQL/CBnEUxbdq0JJ4f/vCHzk/txb/tenIxOPGjiM5/V8HddtttTvd7xcG9+c1vduuuu24QanSnfsTS+VFUt8EGG4wuUVKCwIQR8Os04ufeD3a417zmNc6/cNwrX/nK1lHwCpDz3zyJ5fYDLm6dddYpnQdvx+28whHfd/rpp7svfOELpeMQR7/piHve857n3v3ud7uXvexlpePQDd6813mlwa2xxhql7vdKp/OzSc5/Ldv5randa1/72rgdV9kWcX5U1Xll0P32t791fvbNveIVr3CbbLKJe+Mb3+jWXHPNIlHEYfSu8SbJzisczitk7iUveUnhe8OAfutp98UvfjH2Ovnkk53fyjm8zDkEINAQAl5JcX6QKm571G/Uu+TVr361e+5zn9sQCRFjWAQqUWCyhCuqwGTdix8EIACBphNQh10DLnJ+W3nnvw7dl8h+pxz3hje8wUkJ8WtK3LJly/qKh5uqI7DVVls5/7HfOEL/TZm+FaHqJCImCEAAAhAICaDAhDQ4hwAEIFCQwGc+8xnnTWHj0N6k1q299toF75waTLM4ms2RU8dZsyi4egh4kzj3tre9LU7cm0k7vwaqHkFIFQIQgAAEcglUpsD49SLuhBNOcDIFkNNoov/QUHzu7RRjc7K5c+fGv/kHAQhAoG0E9t57b+d3MkvElqmSOb8GJFZAdtllF/MqddQszGabbRabQfgt5N38+fNL3U/g6gj49ZfO7zoWm6L85je/YfalOrTEBAEIQKAyApUpMLNmzXL+Q2y5gmEakYuGCxCAQMMJaG1cr7UYfhMCt3jx4r5zonWAflcx53c+dH4bYffCF76w77i4sT8CGoCz9T+aifHfx+kvIu6CAAQgAIGhEqhMgfE797hFixY5LeZMu+c85znuPe95T7yoMn2N3xCAAATaQOAXv/hFvFA9S1YtGH3f+97nNt5446zLhf387lfu6quvdv4bNIXvIWC1BL73ve+5D37wg+5Vr3pVtRETGwQgAAEIVEagMgWmMomICAIQgAAEIAABCEAAAhCAQA4BFJgcMHhDAAIQgAAEIAABCEAAAs0jgALTvDJBIghAAAIQgAAEIAABCEAghwAKTA4YvCEAAQhAAAIQgAAEIACB5hFAgWlemSARBCAAAQhAAAIQgAAEIJBDAAUmBwzeEIAABCAAAQhAAAIQgEDzCKDANK9MkAgCEIAABCAAAQhAAAIQyCGAApMDBm8IQAACEIAABCAAAQhAoHkEUGCaVyZIBAEIQAACEIAABCAAAQjkEECByQGDNwQgAAEIQAACEIAABCDQPAIoMM0rEySCAAQgAAEIQAACEIAABHIIoMDkgMEbAhCAAAQgAAEIQAACEGgeARSY5pUJEkEAAhCAAAQgAAEIQAACOQRQYHLA4A0BCEAAAhCAAAQgAAEINI8ACkzzygSJIAABCEAAAhCAAAQgAIEcAigwOWDwhgAEIAABCEAAAhCAAASaRwAFpnllgkQQgAAEIAABCEAAAhCAQA4BFJgcMHhDAAIQgAAEIAABCEAAAs0jgALTvDJBIghAAAIQgAAEIAABCEAghwAKTA4YvCEAAQhAAAIQgAAEIACB5hFAgWlemSARBCAAAQhAAAIQgAAEIJBDAAUmBwzeEIAABCAAAQhAAAIQgEDzCKDANK9MkAgCEIAABCAAAQhAAAIQyCGAApMDBm8IQAACEIAABCAAAQhAoHkEUGCaVyZIBAEIQAACEIAABCAAAQjkEECByQGDNwQgAAEIQAACEIAABCDQPAIoMM0rEySCAAQgAAEIQAACEIAABHIIoMDkgMEbAhCAAAQgAAEIQAACEGgeARSY5pUJEkEAAhCAAAQgAAEIQAACOQRQYHLA4A0BCEAAAhCAAAQgAAEINI8ACkzzygSJIAABCEAAAhCAAAQgAIEcAigwOWDwhgAEIAABCEAAAhCAAASaRwAFpnllgkQQgAAEIAABCEAAAhCAQA4BFJgcMHhDAAIQgAAEIAABCEAAAs0jgALTvDJBIghAAAIQgAAEIAABCEAghwAKTA4YvCEAAQhAAAIQgAAEIACB5hFAgWlemSARBCAAAQhAAAIQgAAEIJBDAAUmBwzeEIAABCAAAQhAAAIQgEDzCKDANK9MkAgCEIAABCAAAQhAAAIQyCGAApMDBm8IQAACEIAABCAAAQhAoHkEUGCaVyaxRO985zvdjTfe6O6//363/vrrN1RKxIJAfQR+9rOfue23397tu+++7oQTTqhPEFKGAAQg0DICtJ/NK7CmlElb+p8oMM2rw7FEG2+8sbv99tvdvffe6zbccMOGSolYEKiPwPz5891OO+3k9thjD3faaafVJwgpQwACEGgZAdrP5hVYU8qkLf1PFJjm1eFYorZUoIbiQ6wJINCUxn4CUJNFCEBgzAjQfjavQJtSJm3pf6LANK8OxxK1pQI1FN9QxIqiyE2bNm0ocRNpeQJNaezLS84dEIAABOolME7t57i8m6sqk0F5tKb/6TOKayCBjTbaKPLNW+RNyBoo3WSJNG/evGjWrFnRi1/84sib80W77757dO21104WhAbm9sILL4yfEW9C1kDpEGlSCfz73/+Obrjhhujoo4+O3vve90brrbdedPfdd08qDvLdUAJtbz/vuOOO6Etf+lK05ZZbxu8BvZ+33nrr6Mwzz4yeeeaZhlLvLla/ZbJq1aroO9/5TjRjxoy4n6K+46abbhrNnTs3euCBB7onmnG1Lf3P0jMwV155pbv++utLDR2stdZa7otf/KJbc801S903yYFbowGPeSGdcsopbq+99srM5aJFi5zvoGRew3P4BKoarRq+pKQwCQT++9//ujlz5rgf/ehH7tFHH+3I8tVXX+222mqrDj9+QKBOAm1tP//zn/+4Y445xn3ta1/LxeeVGqe+6ote9KLcME280E+Z3HzzzfFmNitXrszMklfs3FVXXeXe8Y53ZF7P8mxN/zND+erq5TMba7tlj0uWLOkaLxc7CbRFA+6Uerx+XXLJJUldV3mceOKJ0RFHHJGMcOgZ0CgQrh4C/Y5W1SMtqY47Ab9jZNJeqG3QiLC9J70CM+7ZJ38tI9DW9vO8885Lnis9X/vtt1906aWXRrKU2HzzzZNrmn1om+unTGQdYu3MzJkzo2OPPTa6+OKLo9mzZyf+r3/966PHH3+8MI629D9d4Rz5gE8//XQCZPr06dE222wT/9kUniAq4+avo4G94ooryiQ18WHbUoHGuaCsXqsjcs899yRZ9aMZSb0+4IADEn9ORkugn8Z+tBKS2qQRWLx4cXT55ZdHDz74YLR8+fKknUCBmbSa0Pz8trX9lKmU9SvTA+NPPPFEpM66Xe/HfKrOkuunTNQf8VYicXuTln3XXXdNWJRpg9rS/yylwDz22GMJjJ///OcJK9nfWYW54IILEn8/pZ74+6mxxJ+T3gTaUoF656SdIW699dak7sqWPe0+/vGPx9el3Dz55JPpy/weAYF+GvsRiEUSEIgJoMBQEZpMoK3t54oVK+JBcllIZDlv9p28u8N+albYpvlVXSZaq2t98zPOOKNwdtvS/yylwDz88MMJjF//+tcJjDwFRgEMnrcLTsI39USLL1XhZSZ03XXXRVLA6nJtqUB18Rl2ut7GNqm73sZ0SnLf//73k+sLFiyYch2P4ROourEfvsSkMEkEUGAmqbTbl9dxbT/Dd3Mb+p1hzam6TJR/64Nfc801YVJdz9vS/yylwNx3330JjKVLlyYAuikwZgd8zjnnJOGbeOIXhsW7Nlhh67jzzjvXJmpbKlBtgIac8N577x3XddXfLEX2zjvvTJ4FNZi40ROourEffQ5IcZwJoMCMc+m2P2/j2n7uuOOOybtZlhRtclWWicxYtSuZ+rLqx2gJSFHXlv5nKQXmj3/8Y1Ix7rrrroRFNwVGW7kJ4A9+8IMkfBNPZLccKi92XpcNZVsqUBPLsgqZ/Bfe4/oge9os949//COpL0cddVRWEPyGTKDKxn7IohL9BBJAgZnAQm9Rlsex/fzlL3+ZvJe1hXnb3KBlIiuin/zkJ9E+++yTcFBfVltLl3Ft6X+WUmAER5VCi/M1Y2GumwJz6KGHxjMby5Yts+CNPIYV35QXHW+//fZa5G1LBaoFzggStZELHbNcuL5LC+hwoycwaGM/eolJcZIIoMBMUmm3L6/j1n7+6U9/6tj5T89f29ygZaIlEGH/VefhuvSiPNrS/yylwORlvpsCk3dP0/ylkOkjhWHhf+QjH6lNzLZUoNoADTlhmznsNopjdWW33XYbsjREn0Vg0MY+K078IFAVARSYqkgSzzAIjFP7qT6odsa1d/JJJ500DGRDj3PQMtE69U9/+tPxbsDGQkftllpms6G29D9RYIIq+cgjj0Ra9KSvu0qTLWMzGERTyWlbKlAlmW1gJNtuu23cGKpRzHJqDKyBOPjgg7OC4DdkAoM29kMWj+gnnAAKzIRXgIZnf1zaT5lzm8WE3smf/exnM9etNrw4YvGqLJOFCxd2KHVZu6nmMWlL/xMFJq8Ea/ZvSwWqGdPQktesihrD9dZbLzON8KN1p556amYYPIdLoMrGfriSEvskEkCBmcRSb0+ex6H91MxLqLzo8wZa6tBWV3WZhBtv5a3nzWLVlv4nCkxW6TXAry0VqAGohiKCZlVshuVvf/vblDQWLVqUXL/oooumXMdj+ASqbuyHLzEpTBIBFJhJKu325bXt7edf//rXaPPNN0/ew9p97KmnnmpfQQQSD6NM7IPc6s8UtSpqS/8TBSaoPJdeemn0oQ99KH4gZs+eHV1//fXB1dGetqUCjZbK6FK7+OKLk4ZRu3qknWxKTcG555570pf5PQICw2jsRyA2SUwIARSYCSnolmazze2n1nqEa17UXyvaOW9ycQ2jTMwcHgUmp+THYRF/aBJkHVMpEVnfAMnBUKk3CkylOEtHppEc+4aRdt175plnkjhkcyvTMtUTKby4eggMo7GvJyekOo4EUGDGsVTHJ09tbT/1/t1iiy2SAcTPf/7zHbviqoQWL14c7b777lHbBhfLlon63hp412xUlrvpppsSTt02JErf25b+Z98zMI899lg8Q7FkyZLoiiuuSCAdcsghkfz0p+/GtMXpOzWmuIRHVYA6XFsqUB1sRpXmQQcdlNQJbQf+xBNPRBr5kZ2t1RHMx0ZVGlPTKdvYT40BHwhUS0Afzrv22mvj999ZZ52VtBMnn3xy7HfddddF+gguDgJ1E2hr+zlr1qzkudJ7+JhjjomOO+64jj/rPx1//PF1Yy6Vftky2XPPPRMWu+66a7wJ1b333hvpI5bq09pAqzide+65hWUxfoqrya5vBWaHHXZIwFlnLuv4+OOPNzn/iWx33333lPxoBP7RRx9NwozypC0VaJRMRp2WRjfCkZ50/dZuJ+H3kEYt36SnV7axn3Re5H+4BPK+JZZuN/R76dKlwxWG2CHQg0Ab20996yXrecrzO+2003pQaNblsmXy05/+tBAPmdiVcW3pf/atwBx44IE9welbGm3aEeLII49MNFYVYD8fACpTSbqFbUsF6paHcbj297//PZo5c+aUuq7RjjbV7XEoi3Qeyjb26fv5DYEqCWj2xcxO8zpU8teo6B133FFl0sQFgdIE2th+6p3bbVAx/dzJjLNNrp8ymTdvXvyB+XTe9Vvt0Zlnnlm6r9KW/uc0Fa7PKO5/BPyIuvPTb26DDTaolcnGG2/sbr/9duen8Jz/wGatspC4cytXrnR+Uwf3vOc9z7373e92L3vZy8BSM4H58+e7nXbaye2xxx7Oj7TVLA3JQwACEGgPAdrP5pXVIGWivuvvf/9755c9uBe84AXujW98o1M/8oUvfGHpjLal/4kCU7poR3NDWyrQaGiQCgSmEhiksZ8aGz4QgAAEJocA7WfzyropZdKW/icKTPPqcCxRWypQQ/Eh1gQQaEpjPwGoySIEIDBmBGg/m1egTSmTtvQ/UWCaV4djidpSgRqKD7EmgEBTGvsJQE0WIQCBMSNA+9m8Am1KmbSl/4kC07w6HEvUlgrUUHyINQEEmtLYTwBqsggBCIwZAdrP5hVoU8qkLf1PFJjm1eFYorZUoIbiQ6wJINCUxn4CUJNFCEBgzAjQfjavQJtSJm3pf6LANK8OxxJtt912bsWKFW7ZsmXOb7vZUCkRCwL1EViwYIHbZZddnN/S2h122GH1CULKEIAABFpGgPazeQXWlDJpS/8TBaZ5dRiJIAABCEAAAhCAAAQgAIEcAigwOWDwhgAEIAABCEAAAhCAAASaRwAFpnllgkQQgAAEIAABCEAAAhCAQA4BFJgcMHhDAAIQgAAEIAABCEAAAs0jgALTvDJBIghAAAIQgAAEIAABCEAghwAKTA4YvCEAAQhAAAIQgAAEIACB5hFAgWlemSARBCAAAQhAAAIQgAAEIJBDAAUmBwzeEIAABCAAAQhAAAIQgEDzCKDANK9MkAgCEIAABCAAAQhAAAIQyCGAApMDBm8IQAACEIAABCAAAQhAoHkEUGCaVyZIBAEIQAACEIAABCAAAQjkEECByQGDNwQgAAEIQAACEIAABCDQPAIoMM0rEySCAAQgAAEIQAACEIAABHIIoMDkgMEbAhCAAAQgAAEIQAACEGgeARSY5pUJEkEAAhCAAAQgAAEIQAACOQT+HybZB2HgHT0NAAAAAElFTkSuQmCC", + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": { + "image/png": { + "width": 400 + } + }, + "output_type": "execute_result" + } + ], + "source": [ + "from IPython.display import Image\n", + "Image(filename='permuted_circuit.png', width=400)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "With these two circuits (that seem to have vastly different locality, but which are \"secretly\" the same), we can explore the tensor network simulator's ability to discern structure in a given circuit." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "First generate a modest sized local Hayden-Preskill circuit. Then make a copy of that circuit by permuting the qubit indices randomly. We'll compare the runtime to sample from the outputs of these two circuits." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "50 qubits, 10 layers = 500 total gates\n" + ] + } + ], + "source": [ + "num_qubits = 50 # Number of qubits\n", + "num_layers = 10 # Number of layers. A layer consists of num_qubits gates.\n", + "numgates = num_qubits * num_layers # Total number of gates.\n", + "qubits=range(num_qubits) # Generate the (1D) qubits\n", + "print(f\"{num_qubits} qubits, {num_layers} layers = {numgates} total gates\")\n", + "\n", + "# Generate the circuit with numgates gates acting on qubits.\n", + "circ = Circuit()\n", + "circ.add(local_Hayden_Preskill_generator(qubits,numgates));\n", + "\n", + "# Choose a random permutation of the qubits\n", + "permuted_qubits=np.random.permutation(qubits)\n", + "\n", + "# Copy the circuit circ acting on the permuted qubits\n", + "perm = Circuit().add_circuit(circ, target_mapping=dict(zip(qubits, permuted_qubits)))\n", + "\n", + "##Uncomment for testing:\n", + "# print(permuted_qubits)\n", + "# print(circ)\n", + "# print(perm)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Time both circuits using the tensor network simulator for a **single shot**." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Running the local circuit with 50 qubits, 10 layers = 500 total gates\n", + "The sample was: 01011001101000001000011100110000001011010001100100.\n", + "CPU times: user 100 ms, sys: 2.76 ms, total: 103 ms\n", + "Wall time: 10.6 s\n" + ] + } + ], + "source": [ + "%%time\n", + "# define task\n", + "task = device.run(circ, shots=1, poll_timeout_seconds = 1000)\n", + "\n", + "# get results of task\n", + "result = task.result()\n", + "\n", + "# get measurement shots\n", + "print(f\"Running the local circuit with {num_qubits} qubits, {num_layers} layers = {numgates} total gates\")\n", + "counts = result.measurement_counts\n", + "print(f\"The sample was: {next(iter(counts))}.\")" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Running the non-local circuit with 50 qubits, 10 layers = 500 total gates\n", + "The sample was: 11000010100100011011001010000100000110001000100001.\n", + "CPU times: user 161 ms, sys: 3.42 ms, total: 164 ms\n", + "Wall time: 28.2 s\n" + ] + } + ], + "source": [ + "%%time\n", + "# define task\n", + "task = device.run(perm, shots=1, poll_timeout_seconds = 1000)\n", + "\n", + "# get results of task\n", + "result = task.result()\n", + "\n", + "# get measurement shots\n", + "print(f\"Running the non-local circuit with {num_qubits} qubits, {num_layers} layers = {numgates} total gates\")\n", + "counts = result.measurement_counts\n", + "print(f\"The sample was: {next(iter(counts))}.\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If you repeat these experiments, you'll find that the two runtimes are (typically) very similar! Even though the permuted circuit seems to be highly non-local at first glance, the simulator discovers the underlying local structure, and the total runtime is comparable to the manifestly local circuit. This similarity is due to the rehearsal phase of the tensor network simulation [[1]](#References). A sophisticated algorithm works behind the scenes to find an efficient path for contracting the tensor network. Thus, when the tensor network has an underlying structure, the tensor network simulator can often tease it out." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Simulating _non-local_ random circuits using the TN1 tensor network simulator" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us now compare the efficiency of simulating local and genuinely non-local random quantum circuits. When using the non-local Hayden Preskill circuits above, the circuits we generate have no underlying structure, making them especially difficult for the tensor network simulator." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will generate one local random circuit and one non-local quantum circuit of the same size, and we will compare their runtimes. In this section, the we will not be comparing identical quantum circuits as we were above, so our results can be understood by repeating these experiments several times and noting that our claims are true on average." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "50 qubits, 8 layers = 400 total gates\n" + ] + } + ], + "source": [ + "num_qubits = 50 # Number of qubits\n", + "num_layers = 8 # Number of layers. A layer consists of num_qubits gates.\n", + "numgates = num_qubits * num_layers # Total number of gates.\n", + "qubits=range(num_qubits) # Generate the (1D) qubits\n", + "print(f\"{num_qubits} qubits, {num_layers} layers = {numgates} total gates\")\n", + "\n", + "# Generate the local circuit with numgates gates acting on qubits.\n", + "localcirc = Circuit()\n", + "localcirc.add(local_Hayden_Preskill_generator(qubits,numgates));\n", + "\n", + "# Generate the non-local circuit with numgates gates acting on qubits.\n", + "nonlocalcirc = Circuit()\n", + "nonlocalcirc.add(non_local_Hayden_Preskill_generator(qubits,numgates));\n", + "\n", + "##Uncomment for testing:\n", + "# print(permuted_qubits)\n", + "# print(circ)\n", + "# print(perm)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Run the local circuit:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Running the local circuit with 50 qubits, 8 layers = 400 total gates\n", + "The sample was: 01000011010100011111010010101101000000000000111010.\n", + "CPU times: user 99.7 ms, sys: 436 µs, total: 100 ms\n", + "Wall time: 10.5 s\n" + ] + } + ], + "source": [ + "%%time\n", + "# define task\n", + "task = device.run(localcirc, shots=1, poll_timeout_seconds = 1000)\n", + "\n", + "# get results of task\n", + "result = task.result()\n", + "\n", + "# get measurement shots\n", + "print(f\"Running the local circuit with {num_qubits} qubits, {num_layers} layers = {numgates} total gates\")\n", + "counts = result.measurement_counts\n", + "print(f\"The sample was: {next(iter(counts))}.\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Run the non-local circuit:" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Running the non-local circuit with 50 qubits, 8 layers = 400 total gates\n", + "The sample was: 01000110001010011000000001001010001000001000111100.\n", + "CPU times: user 118 ms, sys: 13 ms, total: 131 ms\n", + "Wall time: 20.3 s\n" + ] + } + ], + "source": [ + "%%time\n", + "# define task\n", + "task = device.run(nonlocalcirc, shots=1, poll_timeout_seconds = 1000)\n", + "\n", + "# get results of task\n", + "result = task.result()\n", + "\n", + "# get measurement shots\n", + "print(f\"Running the non-local circuit with {num_qubits} qubits, {num_layers} layers = {numgates} total gates\")\n", + "counts = result.measurement_counts\n", + "print(f\"The sample was: {next(iter(counts))}.\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When running this notebook several times, we find that the non-local circuit generally takes 2-3 times longer to run than the local circuit. However, on occasion the non-local circuit fails to run, for a reason we will explore below." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Non-local circuits quickly become too difficult for tensor network methods" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this section, we will compare larger circuits with and without locality. We will see that the local circuits execute very efficiently on the tensor network simulator, whereas the non-local circuits actually fail in the rehearsal phase.\n", + "\n", + "We start by generating these larger circuits:" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "50 qubits, 20 layers = 1000 total gates\n" + ] + } + ], + "source": [ + "num_qubits = 50 # Number of qubits\n", + "num_layers = 20 # Number of layers. A layer consists of num_qubits gates.\n", + "numgates = num_qubits * num_layers # Total number of gates.\n", + "qubits=range(num_qubits) # Generate the (1D) qubits\n", + "print(f\"{num_qubits} qubits, {num_layers} layers = {numgates} total gates\")\n", + "\n", + "# Generate the circuit with numgates gates acting on qubits.\n", + "localcirc = Circuit()\n", + "localcirc.add(local_Hayden_Preskill_generator(qubits,numgates));\n", + "\n", + "# Generate the circuit with numgates gates acting on qubits.\n", + "nonlocalcirc = Circuit()\n", + "nonlocalcirc.add(non_local_Hayden_Preskill_generator(qubits,numgates));\n", + "\n", + "##Uncomment for testing:\n", + "# print(permuted_qubits)\n", + "# print(circ)\n", + "# print(perm)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The local Hayden Preskill circuit executes in a reasonable amount of time, generally about a minute or so:" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Running the local circuit with 50 qubits, 20 layers = 1000 total gates\n", + "The sample was: 01010111001000001010000000100011110000110001110101.\n", + "CPU times: user 201 ms, sys: 7.95 ms, total: 209 ms\n", + "Wall time: 32.7 s\n" + ] + } + ], + "source": [ + "%%time\n", + "# define task\n", + "task = device.run(localcirc, shots=1, poll_timeout_seconds = 1000)\n", + "\n", + "# get results of task\n", + "result = task.result()\n", + "\n", + "# get measurement shots\n", + "print(f\"Running the local circuit with {num_qubits} qubits, {num_layers} layers = {numgates} total gates\")\n", + "counts = result.measurement_counts\n", + "print(f\"The sample was: {next(iter(counts))}.\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Conversely, the non-local Hayden Preskill circuit actually fails to execute:\n", + "\n", + "
    \n", + "Note: The following cell can take several minutes to run on TN1. It is only present to illustrate a task that will result in a FAILED state. To run this cell, uncomment it.\n", + "
    " + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Task is in terminal state FAILED and no result is available\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Running the non-local circuit with 50 qubits, 20 layers = 1000 total gates\n", + "CPU times: user 411 ms, sys: 19.4 ms, total: 431 ms\n", + "Wall time: 1min 56s\n" + ] + } + ], + "source": [ + "#%%time\n", + "## define task\n", + "#task = device.run(nonlocalcirc, shots=1, poll_timeout_seconds = 1000)\n", + "\n", + "## get results of task\n", + "#result = task.result()\n", + "\n", + "## get measurement shots\n", + "#print(f\"Running the non-local circuit with {num_qubits} qubits, {num_layers} layers = {numgates} total gates\")\n", + "## counts = result.measurement_counts\n", + "## print(f\"The sample was: {next(iter(counts))}.\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To see why this circuit `FAILED` to run, we can check the `failureReason` in the task's `_metadata`:" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Predicted runtime based on best contraction path found exceeds TN1 limit. Single-shot FLOPS estimate = 2^105\n" + ] + } + ], + "source": [ + "#print(task._metadata['failureReason'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Evidently, without any structure to exploit, this tensor network would take too long to simulate, and the simulator returns with a `FAILED` state." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Conclusions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We saw that structured quantum circuits can be simulated much more efficiently than unstructured random quantum circuits. That said, structure in a quantum circuit may not be immediately evident, as the tensor network simulator was able to discover the hidden structure in our permuted quantum circuits, leading to efficiency on-par with their unpermuted, local counterparts. Note, however, that discovering this underlying structure is analogous to the graph isomorphism problem, and finding an efficient contraction path for a tensor network is a hard problem." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Appendix" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Version: 1.5.0\r\n" + ] + } + ], + "source": [ + "# Check SDK version\n", + "# alternative: braket.__version__\n", + "!pip show amazon-braket-sdk | grep Version" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## References\n", + "[1] [Amazon Braket Documentation: Tensor Network Simulator](https://docs.aws.amazon.com/braket/latest/developerguide/braket-devices.html#braket-simulator-tn1)" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Task Summary\n", + "{'arn:aws:braket:::device/quantum-simulator/amazon/tn1': {'shots': 1006, 'tasks': {'COMPLETED': 6, 'FAILED': 1}, 'execution_duration': datetime.timedelta(seconds=124, microseconds=18000), 'billed_execution_duration': datetime.timedelta(seconds=124, microseconds=18000)}}\n", + "Note: Charges shown are estimates based on your Amazon Braket simulator and quantum processing unit (QPU) task usage. Estimated charges shown may differ from your actual charges. Estimated charges do not factor in any discounts or credits, and you may experience additional charges based on your use of other services such as Amazon Elastic Compute Cloud (Amazon EC2).\n", + "This estimate does not inclued the task which fails after rehersal, for which charges may apply. See https://docs.aws.amazon.com/braket/latest/developerguide/braket-devices.html for more details.\n", + "Estimated cost to run this example: 0.568 USD\n" + ] + } + ], + "source": [ + "print(\"Task Summary\")\n", + "print(t.quantum_tasks_statistics())\n", + "print('Note: Charges shown are estimates based on your Amazon Braket simulator and quantum processing unit (QPU) task usage. Estimated charges shown may differ from your actual charges. Estimated charges do not factor in any discounts or credits, and you may experience additional charges based on your use of other services such as Amazon Elastic Compute Cloud (Amazon EC2).')\n", + "print('This estimate does not inclued the task which fails after rehersal, for which charges may apply. See https://docs.aws.amazon.com/braket/latest/developerguide/braket-devices.html for more details.')\n", + "print(f\"Estimated cost to run this example: {t.qpu_tasks_cost() + t.simulator_tasks_cost():.3f} USD\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.8.10 ('venv': venv)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + }, + "vscode": { + "interpreter": { + "hash": "590fab68195cf107911461461f81d5c472d3d6127f579badfcfad30f03e5cab2" + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/modules/1_Continue_Exploring/B_qtm_sims/Using_The_Adjoint_Gradient_Result_Type.ipynb b/modules/1_Continue_Exploring/B_qtm_sims/Using_The_Adjoint_Gradient_Result_Type.ipynb new file mode 100644 index 000000000..8b5dd7511 --- /dev/null +++ b/modules/1_Continue_Exploring/B_qtm_sims/Using_The_Adjoint_Gradient_Result_Type.ipynb @@ -0,0 +1,1300 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# Use Braket SDK Cost Tracking to estimate the cost to run this example\n", + "from braket.tracking import Tracker\n", + "t = Tracker().start()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Using the Adjoint Gradient Result Type on Amazon Braket" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this tutorial we'll introduce the `AdjointGradient` result type, discuss what a gradient is and how to compute one on a quantum circuit, explain how they can be used to accelerate your workflows, and show an example of gradients in action on a hybrid quantum algorithm." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "Note: This notebook requires amazon-braket-sdk-python>=1.35.0\n", + "
    " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Table of Contents" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "- [Background: What is a gradient?]()\n", + "- [Why compute gradients?]()\n", + "- [Computing gradients of parameters in a quantum circuit]()\n", + " - [Finite differences]()\n", + " - [Parameter shift]()\n", + " - [Adjoint gradient]()\n", + "- [The `AdjointGradient` result type]()\n", + "- [Accelerating QAOA with `AdjointGradient`]()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Background: What is a gradient?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A [gradient](https://en.wikipedia.org/wiki/Gradient) refers to a vector derivative of a scalar-valued function of multiple variables. If we have a function $f(x)$, which depends only on $x$ and maps $x \\to \\mathbb{R}$ (maps $x$ to a single real number), then $f$'s gradient is just its derivative with respect to $x$: $\\frac{df}{dx}$. The gradient is denoted $\\nabla$, so that $\\nabla f(x) = \\frac{df}{dx}$. However, if $f$ is a function of multiple variables, mapping $\\mathbb{R}^n \\to \\mathbb{R}$, we must take partial derivatives with respect to each variable. For example:\n", + "\n", + "$$ \\nabla f(x, y, z) = \\left[\\frac{\\partial f}{\\partial x}, \\frac{\\partial f}{\\partial y}, \\frac{\\partial f}{\\partial z}\\right] $$\n", + "\n", + "The gradient of $f$ is itself a function and can be evaluated on specific values of $x$, $y$, and $z$. In general, for a function $f$ of $n$ independent real variables, $\\nabla f$ is a length $n$ vector." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Why compute gradients?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Gradients are of interest to us because many quantum algorithms -- hybrid classical-quantum algorithms such as the quantum approximate optimization algorithm (QAOA) or the variational quantum eigensolver (VQE) especially -- can be formulated as a problem of optimizing parameters (i.e. variables) in a quantum circuit with respect to some cost function, for example an expectation value of a Hamiltonian. To efficiently perform this optimization it's common to use a gradient based optimization method, such as gradient descent (stochastic or not). An efficient means of computing gradients allows us to arrive at a good solution to the optimization problem in fewer circuit evaluations, and thus less cost." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Computing gradients of parameters in a quantum circuit" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's make this a little more concrete. Suppose we have a quantum circuit which depends on a set of parameters $\\vec{p}$. We can compactly represent this circuit as $U(\\vec{p})$, where $U$ is the unitary that represents the action of all the gates in the circuit. Further suppose that after running this circuit, we will compute the expectation value of some operator $\\hat{O}$ (for example, a Hamiltonian) and use the result to determine how good our choice of parameters $\\vec{p}$ was. This situation arises often when running hybrid algorithms or quantum machine learning workflows. \n", + "\n", + "
    \n", + "Note Although, for the sake of simplicity, we will only discuss measuring expectation values to generate the function to differentiate, one can equally well compute variances or any other scalar valued function.\n", + "
    \n", + "\n", + "We can express this whole procedure as:\n", + "\n", + "$$ f(\\vec{p}) = \\left\\langle \\psi \\right| \\hat{O} \\left| \\psi \\right\\rangle = \\left\\langle 0 U^\\dagger(\\vec{p}) \\right| \\hat{O} \\left| U(\\vec{p}) 0 \\right\\rangle $$\n", + "\n", + "$f(\\vec{p})$ is a scalar valued function and we can compute its gradient -- all its partial derivatives with respect to the parameters $\\vec{p}$ -- in order to optimize those parameters. There are a variety of methods available to compute these derivatives, three of which will be discussed below. Of the three, the adjoint differentiation method is the fastest and most frugal in circuit executions and should be preferred when available, that is, when running on a state vector simulator in exact (`shots=0`) mode. We'll introduce these other two common approaches to better understand the benefit of using the adjoint differentiation method." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Finite differences" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The [finite difference method](https://en.wikipedia.org/wiki/Finite_difference) is a common technique used to approximate derivatives. Suppose we have a function $f(\\vec{p})$ and we want to compute the $i$-th partial derivative of $f$, $\\frac{\\partial f}{\\partial p_i}$. We can do so by approximating:\n", + "\n", + "$$ \\frac{\\partial f}{\\partial p_i} \\approx \\frac{f(p_1, p_2, ..., p_i + h, ..., p_n) - f(p_1, p_2, ..., p_i, ..., p_n)}{h} $$\n", + "\n", + "Where $h$ is some small real number. This formula might seem familiar from introductory calculus. The smaller $h$ is the better approximated the derivative is. By keeping all other parameters fixed, we can approximate the partial derivative with respect to $p_i$, but as we can see, computing *each* partial derivative would require *two* full circuit executions (one to compute each value of $f$). Thus, the total number of circuit executions needed to compute the gradient of $f$ for *one* set of values $\\vec{p}$ would be $2n$, if the length of $p$ is $n$.\n", + "\n", + "For a quantum circuit there can be additional problems. On a real quantum device, we can't compute the exact expectation value (or variance) of a circuit. We can only run many shots, each of which is a full circuit execution, and approximate the expectation value from the measurement statistics that result. This means that for very small $h$, it may be very difficult to approximate the gradient accurately." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Parameter shift rules" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's return to our original formula for the gradient of $f$:\n", + "\n", + "$$ \\nabla f(\\vec{p}) = \\left(\\frac{\\partial f}{\\partial p_1}, \\ldots , \\frac{\\partial f}{\\partial p_n}\\right) $$\n", + "\n", + "and examine one of the vector elements a little more closely:\n", + "\n", + "$$ \\frac{\\partial f}{\\partial p_i} = \\frac{\\partial}{\\partial p_i} \\left\\langle 0 U^\\dagger(\\vec{p}) \\right| \\hat{O} \\left| U(\\vec{p}) 0 \\right\\rangle = \\frac{\\partial}{\\partial p_i} \\left\\langle 0 \\right| U^\\dagger(\\vec{p}) \\hat{O} U(\\vec{p}) \\left| 0 \\right\\rangle $$\n", + "\n", + "We can pull the derivative operator inside the expectation value so that:\n", + "\n", + "$$ \\frac{\\partial f}{\\partial p_i} = \\left\\langle 0 \\left|\\frac{\\partial}{\\partial p_i} \\left( U^\\dagger(\\vec{p}) \\hat{O} U(\\vec{p})\\right) \\right| 0 \\right\\rangle $$\n", + "\n", + "We'll assume that each gate depends on at most one parameter, and each parameter appears in only one gate. What if we have repeated parameters? We can write down a mapping of each repeated parameter to a unique copy and sum the derivatives of those copies at the end using the [product rule](https://en.wikipedia.org/wiki/Product_rule). But for now, for simplicity we will assume that each parameter appears only once and each gate has at most one parameter. Further we'll state that gate $i$ is associated with the $i$-th parameter (every gate has a parameter). If non-parametrized gates are present, we can contract them into parametrized gates to achieve this, or assign them constant parameters (remember, the derivative of a constant is always 0).\n", + "\n", + "We can write that the overall circuit unitary $U$ is a product of individual gates:\n", + "\n", + "$$ U(\\vec{p}) = \\otimes_{i=1}^N U_{i}(p_i) $$\n", + "\n", + "if there are $N$ gates in the circuit.\n", + "\n", + "Then, using the product rule, we can write:\n", + "\n", + "$$ \\frac{\\partial f}{\\partial p_i} = \\left\\langle 0 \\left| \\otimes_{j=1}^{i-1} U^\\dagger_j \\otimes \\frac{\\partial U^\\dagger_i(p_i)}{\\partial p_i} \\otimes_{j=i+1}^{n} U^\\dagger_j \\hat{O} U(\\vec{p}) + U^\\dagger(\\vec{p}) \\hat{O}\\otimes_{j=i+1}^{n} U_j \\otimes \\frac{\\partial U_i(p_i)}{\\partial p_i}\\otimes_{j=1}^{i-1} U_j \\right| 0 \\right\\rangle $$\n", + "\n", + "We can absorb the non-differentiated products so that:\n", + "\n", + "$$ \\frac{\\partial f}{\\partial p_i} = \\left\\langle \\phi \\left| \\frac{\\partial U^\\dagger_i(p_i)}{\\partial p_i} \\hat{\\mathcal{O}}U_i(p_i) + U^\\dagger_i(p_i)\\hat{\\mathcal{O}}\\frac{\\partial U_i(p_i)}{\\partial p_i}\\right| \\phi \\right\\rangle $$\n", + "\n", + "where\n", + "\n", + "$$ \\phi = \\otimes_{j=1}^{i-1} U_j \\left| 0 \\right\\rangle $$\n", + "\n", + "and \n", + "\n", + "$$ \\hat{\\mathcal{O}} = \\otimes_{j=i+1}^{n} U^\\dagger_j \\hat{O} \\otimes_{j=i+1}^{n} U_j $$.\n", + "\n", + "Now we can see that\n", + "\n", + "$$ \\frac{\\partial U^\\dagger_i(p_i)}{\\partial p_i} \\hat{\\mathcal{O}}U_i(p_i) + U^\\dagger_i(p_i)\\hat{\\mathcal{O}}\\frac{\\partial U_i(p_i)}{\\partial p_i} = \\frac{\\partial}{\\partial p_i} \\left( U_i^\\dagger(p_i) \\hat{\\mathcal{O}} U_i(p_i)\\right) $$\n", + "\n", + "so, in sum:\n", + "\n", + "$$ \\frac{\\partial f}{\\partial p_i} = \\left\\langle \\phi \\left|\\frac{\\partial}{\\partial p_i} \\left( U_i^\\dagger(p_i) \\hat{\\mathcal{O}} U_i(p_i)\\right)\\right| \\phi \\right\\rangle $$\n", + "\n", + "and in many cases (but not all!) we can define a *shift* $s$ such that:\n", + "\n", + "$$ \\frac{\\partial}{\\partial p_i} \\left( U_i^\\dagger(p_i) \\hat{\\mathcal{O}} U_i(p_i)\\right) = U_i^\\dagger(p_i + s) \\hat{\\mathcal{O}} U_i(p_i + s) - U_i^\\dagger(p_i - s) \\hat{\\mathcal{O}} U_i(p_i - s) $$\n", + "\n", + "Thus the name \"parameter shift\". What makes this different from the finite differences method is that $s$ is not necessarily small. Detailed guides to choosing shifts and identifying which gates support the method can be found in Refs. [1](https://arxiv.org/abs/1803.00745) and [2](https://arxiv.org/abs/1811.11184). If a gate does *not* support a parameter shift rule, we can always fall back to the finite difference method.\n", + "\n", + "We can see that the parameter shift method *also* requires two circuit executions to compute the partial derivative of each parametrized gate. The advantage over finite difference is in numerical accuracy. Parameter shift can be used both when `shots=0` or when `shots>0`. Since the introduction of the method, many extensions and generalizations have been published, including Refs. [3](https://arxiv.org/abs/2107.12390), [4](https://arxiv.org/abs/2005.10299), and many more. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Adjoint differentiation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The two methods we've examined so far, finite differences and parameter shift, both require two full circuit executions per parameter to compute the gradient. This can become very expensive, in both time and charges, for deep circuits and/or circuits with many parameters. Is there a way to compute gradients in a more \"execution-frugal\" way? For `shots=0`, the answer is yes. First introduced in Ref. [5](https://arxiv.org/abs/2009.02823), the adjoint differentiation method allows us to compute all partial derivatives in \"1+1\" circuit executions. How does it work? Recall that:\n", + "\n", + "$$ \\frac{\\partial f}{\\partial p_i} = \\left\\langle 0 \\left| \\otimes_{j=1}^{i-1} U^\\dagger_j \\otimes \\frac{\\partial U^\\dagger_i(p_i)}{\\partial p_i} \\otimes_{j=i+1}^{n} U^\\dagger_j \\hat{O} U(\\vec{p}) + U^\\dagger(\\vec{p}) \\hat{O}\\otimes_{j=i+1}^{n} U_j \\otimes \\frac{\\partial U_i(p_i)}{\\partial p_i}\\otimes_{j=1}^{i-1} U_j \\right| 0 \\right\\rangle $$\n", + "\n", + "In the adjoint method, we take a different approach to computing this derivative. We realize that:\n", + "\n", + "$$ \\left( \\left \\langle 0 \\left| \\otimes_{j=1}^{i-1} U^\\dagger_j \\otimes \\frac{\\partial U^\\dagger_i(p_i)}{\\partial p_i} \\otimes_{j=i+1}^{n} U^\\dagger_j \\hat{O} U(\\vec{p}) \\right| 0 \\right\\rangle \\right)^\\dagger = \\left \\langle 0 \\left| U^\\dagger(\\vec{p}) \\hat{O}\\otimes_{j=i+1}^{n} U_j \\otimes \\frac{\\partial U_i(p_i)}{\\partial p_i}\\otimes_{j=1}^{i-1} U_j \\right| 0 \\right\\rangle$$\n", + "\n", + "and thus, because all the gates are unitaries and the operator $\\hat{O}$ is Hermitian,\n", + "\n", + "$$ \\frac{\\partial f}{\\partial p_i} = 2\\Re \\left\\langle 0 \\left| U^\\dagger(\\vec{p}) \\hat{O}\\otimes_{j=i+1}^{n} U_j \\otimes \\frac{\\partial U_i(p_i)}{\\partial p_i}\\otimes_{j=1}^{i-1} U_j \\right| 0 \\right\\rangle $$\n", + "\n", + "where $\\Re$ denotes the real part. Now we can absorb some factors so that:\n", + "\n", + "$$ \\frac{\\partial f}{\\partial p_i} = 2\\Re \\left\\langle b_i \\left| \\frac{\\partial U_i(p_i)}{\\partial p_i} \\right| k_i \\right\\rangle $$\n", + "\n", + "where\n", + "\n", + "$$ \\left\\langle b_i \\right| = \\left\\langle 0 \\right| U^\\dagger(\\vec{p}) \\hat{O}\\otimes_{j=i+1}^{n} U_j(p_j) $$\n", + "\n", + "and\n", + "\n", + "$$ \\left | k_i \\right\\rangle = \\otimes_{j=1}^{i-1} U_j(p_j) \\left| 0 \\right\\rangle $$\n", + "\n", + "The basis of the adjoint method is realizing that we can iteratively compute each partial derivative by \"back stepping\" through the circuit after having applied all its gates once. This is very similar to classical back propagation, if you're familiar with that technique from classical machine learning. We first apply all gates to compute $ \\left| k_n \\right\\rangle = \\otimes_{j=1}^{n} U_j \\left| 0 \\right\\rangle $, copy the state and apply $\\hat{O}$ to acquire:\n", + "\n", + "$$ \\left\\langle b_n \\right| = \\left\\langle 0 \\right| U^\\dagger(\\vec{p}) \\hat{O} $$\n", + "\n", + "then compute $\\frac{\\partial f}{\\partial p_n}$:\n", + "\n", + "$$ \\frac{\\partial f}{\\partial p_n} = \\left\\langle b_n \\left|\\frac{\\partial U_n(p_n)}{\\partial p_n}\\right| k_n \\right\\rangle $$\n", + "\n", + "In a moment we'll address how to find $\\frac{\\partial U_n(p_n)}{\\partial p_n}$. Once we've computed the first partial derivative, we update $\\left\\langle b_n\\right|$ and $ \\left| k_n \\right\\rangle$ to generate:\n", + "\n", + "$$ \\left\\langle b_{n-1} \\right| = \\left\\langle b_n \\right| U_n(p_n) $$\n", + "$$ \\left | k_{n-1} \\right\\rangle = U^\\dagger_{n-1} \\left| k_n \\right\\rangle $$\n", + "\n", + "By iteratively updating these two states, we can compute all partial derivatives with only one circuit execution plus one \"back step\" execution, significantly less than what is required by finite differences or parameter shift. The cost is that there is additional memory overhead, as we have to store an additional state vector and compute a third in the expectation value $\\left\\langle b_i \\left|\\frac{\\partial U_i(p_i)}{\\partial p_i}\\right| k_i \\right\\rangle$.\n", + "\n", + "How do we compute the derivative $\\frac{\\partial U_i(p_i)}{\\partial p_i}$? In many cases, if $U_i(p_i)$ is continually differentiable with respect to $p_i$, we can simply take a matrix derivative. In particular, many parametrizable gates can be written as exponentials of Paulis, so that:\n", + "\n", + "$$ \\frac{\\partial U_i(p_i)}{\\partial p_i} = \\frac{\\partial}{\\partial p_i}\\exp\\left\\{ i c p_i \\hat{P}\\right\\} = i c \\hat{P} \\exp\\left\\{ i c p_i \\hat{P}\\right\\} $$\n", + "\n", + "where $c$ is some constant, $\\hat{P}$ is some Pauli gate, and $i$ is the imaginary number $\\sqrt{-1}$. This is easily generalizable to exponents of sums of Paulis through the [chain rule](https://en.wikipedia.org/wiki/Chain_rule). In cases where $U(p_i)$ is *not* continuously differentiable, the derivative can be computed numerically, e.g. through finite differences as discussed above.\n", + "\n", + "
    \n", + "Note Because it is formulated only for exact computations, the adjoint method can only be used on simulators, such as SV1, when running with shots=0.\n", + "
    \n", + "\n", + "The adjoint differentiation method is available through the `AdjointGradient` result type on Amazon Braket, which we'll introduce in the next section. With this result type, all gradients are computed using the adjoint differentiation method." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## The `AdjointGradient` Result Type" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Amazon Braket now supports a result type, `AdjointGradient`, which allows you to conveniently compute gradients of free parameters with respect to the expectation value of some observable on your circuits.\n", + "\n", + "
    \n", + "Note Currently, the AdjointGradient result type is only supported on SV1 when running in shots=0 mode. All gradients are computed using the adjoint differentiation method.\n", + "
    \n", + "\n", + "Let's see an example of this result type in action:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# general imports\n", + "! pip install seaborn\n", + "import numpy as np\n", + "from scipy.optimize import minimize\n", + "import matplotlib.pyplot as plt\n", + "import networkx as nx\n", + "import seaborn as sns\n", + "import time\n", + "from datetime import datetime\n", + "import pickle\n", + "import random\n", + "# magic line for producing visualizations in notebook\n", + "%matplotlib inline\n", + "\n", + "# AWS imports: Import Braket SDK modules\n", + "from braket.circuits import Circuit, Observable, FreeParameter\n", + "from braket.aws import AwsSession, AwsDevice" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "device_arn = \"arn:aws:braket:::device/quantum-simulator/amazon/sv1\"\n", + "device = AwsDevice(device_arn)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can prepare a simple parametrized circuit and compute its gradient with respect to some observable. Note that you supply the observable to the `AdjointGradient` result type. Supported observables are:\n", + " - Any of `Observable.Z()`, `Observable.X()`, `Observable.Y()`, `Observable.H()`, or `Observable.I()`\n", + " - A `TensorProduct`\n", + " - A `Hermitian`\n", + " - A `Sum`\n", + " \n", + "You can also supply the list of parameters to compute partial derivatives with respect to. If a parameter is present in the circuit, but not in the `parameters` argument to `adjoint_gradient`, its corresponding partial derivative will not be computed. If the list of `parameters` is empty, the gradient will be computed with respect to all free parameters present in the circuit." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Circuit('instructions': [Instruction('operator': H('qubit_count': 1), 'target': QubitSet([Qubit(0)])), Instruction('operator': CNot('qubit_count': 2), 'target': QubitSet([Qubit(0), Qubit(1)])), Instruction('operator': Rx('angle': theta, 'qubit_count': 1), 'target': QubitSet([Qubit(0)])), Instruction('operator': Rx('angle': theta, 'qubit_count': 1), 'target': QubitSet([Qubit(1)])), Instruction('operator': XX('angle': gamma, 'qubit_count': 2), 'target': QubitSet([Qubit(0), Qubit(1)]))], 'result_types': [AdjointGradient(observable=TensorProduct(Z('qubit_count': 1), Z('qubit_count': 1)), target=QubitSet([Qubit(0), Qubit(1)]), parameters=[])])" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "theta = FreeParameter('theta')\n", + "gamma = FreeParameter('gamma')\n", + "circuit = Circuit().h(0).cnot(0, 1).rx(0, theta).rx(1, theta).xx(0, 1, gamma)\n", + "# add the adjoint gradient result type\n", + "#circuit.adjoint_gradient(observable = Observable.Z() @ Observable.Z(), target = [0, 1], parameters=['theta', gamma])\n", + "circuit.adjoint_gradient(observable = Observable.Z() @ Observable.Z(), target = [0, 1], parameters=[])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we can compute the gradient of the circuit with respect to our two free parameters for a given set of parameter values, which we supply to `device.run` with the `inputs` argument:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Gradient when theta = 0.1, gamma = 0.05: {'expectation': 0.9800665778412416, 'gradient': {'gamma': 6.938893903907228e-18, 'theta': -0.3973386615901225}}\n", + "Gradient when theta = 0.2, gamma = 0.1: {'expectation': 0.9210609940028854, 'gradient': {'gamma': -4.336808689942018e-19, 'theta': -0.7788366846173014}}\n" + ] + } + ], + "source": [ + "result_1 = device.run(circuit, shots=0, inputs = {'theta': 0.1, 'gamma': 0.05}).result()\n", + "result_2 = device.run(circuit, shots=0, inputs = {'theta': 0.2, 'gamma': 0.1}).result()\n", + "\n", + "print(f\"Gradient when theta = 0.1, gamma = 0.05: {result_1.values[0]}\")\n", + "print(f\"Gradient when theta = 0.2, gamma = 0.1: {result_2.values[0]}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can immediately see that although `theta` appears twice in the circuit (in two `Rx` gates), it only appears once in the result. `AdjointGradient` computes gradients **per parameter**, and **not** per-gate. We can also see that if `parameters` is empty, derivatives with respect to all free parameters will be computed. This is useful in cases when your circuit has a large number of free parameters." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Gradient when theta = 0.2, gamma = 0.1: {'expectation': 0.9210609940028854, 'gradient': {'gamma': -4.336808689942018e-19, 'theta': -0.7788366846173013}}\n" + ] + } + ], + "source": [ + "circuit = Circuit().h(0).cnot(0, 1).rx(0, theta).rx(1, theta).xx(0, 1, gamma)\n", + "# add the gradient result type\n", + "circuit.adjoint_gradient(observable = Observable.Z() @ Observable.Z(), target = [0, 1], parameters=[])\n", + "result_all = device.run(circuit, shots=0, inputs = {'theta': 0.2, 'gamma': 0.1}).result()\n", + "print(f\"Gradient when theta = 0.2, gamma = 0.1: {result_all.values[0]}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Accelerating QAOA with `AdjointGradient`" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we can see how using the `AdjointGradient` result type can improve performance for a hybrid algorithm such as QAOA. For an introduction to QAOA, see [its example notebook](../hybrid_quantum_algorithms/QAOA/QAOA_braket.ipynb). We'll modify the `train` function to use `AdjointGradient` and determine a Jacobian, and compare this approach with the Jacobian-free method used in the QAOA notebook. Much of the code here is further explained in that notebook, so we strongly suggest you review it before proceeding. We'll run the entire QAOA workflow in `shots=0` mode so that we can compare with `AdjointGradient`, which means we can directly compute the cost (energy). First, we set up the problem and import the circuit generator and training functions:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEuCAYAAADx63eqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd1hUx/oH8O/C0kQRBAQiWBEQFWEpIVYUFBUbsthijLGQaO41xpgYu2JJ7L1hFzsrgg1RELA3MKIC9gL2gijI0nZ+f/iDiwYVlrN7lt338zz38Sp7Zr5E3Hdn5swcAWOMgRBCCNEQWnwHIIQQQpSJCh8hhBCNQoWPEEKIRqHCRwghRKNQ4SOEEKJRqPARQgjRKFT4CCGEaBQqfIQQQjQKFT5CCCEahQofIYQQjSLkOwAhhFQlL7LzIEnMQNqTN3gjLYSRvhAOlkYIdLWGaXU9vuORchDQWZ2EEPJll9NfY0X8LSTceA4AyCuUlXxNX6gFBsDL3hwj29mihY0xTylJeVDhI4SQL9h69h5mHUqDtLAIn3vHFAgAfaE2JnZ1wEDP+krLRyqGpjoJIeQz3he9VOQWyL74WsaA3IIizDqUCgBU/FQU3dxCCCGfcDn9NWYdSitX0Sstt0CGWYfSkJzxWkHJSGVQ4SOEkE9YEX8L0sIiua6VFhZhZfwtjhMRLlDhI4SQMrzIzkPCjeefXdP7HMaAuOvP8TI7j9tgpNKo8BFCSBkkiRmVbkMAQJJU+XYIt6jwEUJIGdKevPlgy4I8pIUypD1+y1EiwhUqfIQQUoY30kKO2ingpB3CHSp8hBBShmocbfYy0tfhpiHCGdrHRwgh/+/t27c4cOAAJBIJTrzQg6FnHzAt+QuXvlALDlY1OExIuEAjPkKIRsvKykJoaCh69uyJOnXqYOvWrejWrRtOhS6Erm7lzt5kAMQia26CEs7QiI8QonFevXqFffv2QSKR4Pjx4/Dy8oJYLMbmzZthbPy/czbb2ZnjaOpTubY0CARAe3tzOrhaBVHhI4RohBcvXiAiIgISiQSnT5+Gj48PBgwYgO3bt8PIyKjMa372ssWJmy+QW1DxTez6Qm2M9LKtbGyiAHRINSFEbT19+hQREREICwvDhQsX4OvrC7FYjK5du6J69erlaqMiZ3UWM9DRwsSuTeisThVFhY8QolYeP36M8PBwSCQSXLp0CV26dIFYLEbnzp1haGgoV5v0dAb1QoWPEFLlZWRkYM+ePZBIJLh69Sq6desGsViMTp06wcDAgJM+kjNeY2X8LcRdfw4B3m9OL1b8PL729uYY6WULJ2t6Hp8qo8JHCKmS7t+/X1Ls0tLS0KNHDwQGBsLHxwd6eoq7oeRldh4kSRlIe/wWz99k41jUAUz5ZTg9gb0KocJHCKky7ty5A4lEAolEgjt37qBXr14Qi8Xo0KEDdHV1eclkY2OD+Ph4NGrUiJf+ScXRXZ2EEJV248YN7NmzB2FhYcjIyEDv3r0xe/ZstGvXDjo6/J+K4urqiqSkJCp8VQgVPkKIyklNTS0Z2T179gy9e/fGggUL0KZNGwiFqvW2JRKJkJiYiMDAQL6jkHJSrZ8gQohGYozh2rVrCAsLg0QiQVZWFgICArB8+XK0bNkS2trafEf8JFdXVyxevJjvGKQCaI2PEMILxhguX75cMrJ79+4dxGIxAgMD8fXXX0NLq2qcqPjkyRM4Ojri5cuXEAgEfMch5UAjPkKI0jDGkJiYWFLsZDIZxGIxtmzZAnd39ypZOCwtLWFgYID79++jfv36fMch5UCFjxCiUIwxnD9/vqTYCYVCBAYGYvfu3XBxcamSxe5jxet8VPiqBip8hBDOyWQynDlzBhKJBHv27EG1atUQGBiIiIgIODk5qUWxK83V1RWJiYkICAjgOwopByp8hBBOFBUV4dSpUyXFrlatWhCLxYiKioKjo6PaFbvSXF1dsXz5cr5jkHKiwkcIkVthYSGOHz8OiUSC8PBwWFpaIjAwELGxsXBwcOA7ntIUj/gYY2pd4NUFFT5CSIUUFBQgLi4OEokEERERqFu3LsRiMU6cOIHGjRvzHY8XVlZWEAqFSE9PR926dfmOQ76ACh8h5Ivy8/MRGxsLiUSCyMhI2NraQiwW49y5c2jQoAHf8XgnEAhKRn1U+FQfFT5CSJmkUimOHj0KiUSC/fv3o0mTJhCLxZg6dSq9uZehuPD5+/vzHYV8ARU+QkiJ3NxcREdHIywsDIcOHYKTkxPEYjFmz56NOnXq8B1Ppbm6umL16tV8xyDlQCe3EKLhcnJyEBUVBYlEgsOHD8PV1RVisRj+/v6wtLTkO16VkZGRAZFIhKdPn9INLiqOCh8hGujt27c4ePAgJBIJjh49iq+//hqBgYHo1asXzM3N+Y5XJTHGYGFhgaSkJFhbW/Mdh3wGTXUSoiGysrJw4MABSCQSHDt2DK1atYJYLMaaNWtgamrKd7wqr/QNLlT4VBsVPkLUWGZmJvbt2weJRIKEhAR4eXlBLBZjw4YNMDEx4Tue2ikufD179uQ7CvkMKnyEqJmXL18iMjISYWFhOHXqFLy9vdGvXz9s27YNRkZGfMdTa66urli3bh3fMcgX0BofIWrg2bNniIiIgEQiwblz59CpUyeIxWJ07doVNWrU4Duexrh//z48PT3x+PFjvqOQz6DCR0gV9eTJE4SHh0MikSApKQldunSBWCxG586dYWhoyHc8jcQYg7m5OZKTk/HVV1/xHYd8Ak11ElKFPHz4sKTYJScnw8/PD6NGjYKvry8MDAz4jqfxSt/gQoVPdVHhI0TFPXjwAHv27IFEIkFqaip69OiB33//HR07doSenh7f8chHigtf9+7d+Y5CPoEKHyEq6O7duyUPbr19+zZ69uyJSZMmwdvbG7q6unzHI58hEomwZcsWvmOQz6A1PkJUxK1bt0qK3YMHD+Dv7w+xWAwvLy/o6OjwHY+U0927d9G6dWs8fPiQ7yjkE6jwEcKjtLS0kmL35MkTBAQEQCwWo02bNhAKaUKmKmKMwczMDNeuXaMj31QU/csiRIkYY0hJSYFEIkFYWBgyMzMREBCApUuXolWrVtDW1uY7IqkkgUAAkUiExMRE+Pn58R2HlIEKHyEKxhhDcnJyycguJycHYrEYISEh8PT0hJaWFt8RCceKb3ChwqeaqPARogCMMSQlJZUUu8LCQojFYmzevBnu7u50er+aE4lE2L59O98xyCfQGh8hHGGM4cKFCyXFTktLC4GBgRCLxRCJRFTsNMjt27fh5eWF9PR0vqOQMlDhI6QSZDIZzp49C4lEgj179sDAwKCk2Dk5OVGx01CMMdSqVQvXr19H7dq1+Y5DPkJTnYRUUFFREU6fPl1S7IyNjSEWi3Hw4EE0bdqUih354AaXLl268B2HfIQKHyHlUFhYiBMnTkAikSA8PBwWFhYQi8U4evQomjRpwnc8ooJEIlHJGapEtVDhI+QTCgoKEB8fD4lEgr1798LGxgaBgYE4fvw4GjduzHc8ouJcXV2xe/duvmOQMtAaH6kyXmTnQZKYgbQnb/BGWggjfSEcLI0Q6GoN0+rcnFmZn5+PY8eOQSKRIDIyEg0bNoRYLEZAQAAaNmzISR9EM9y8eRM+Pj64f/8+31HIR6jwEZV3Of01VsTfQsKN5wCAvEJZydf0hVpgALzszTGynS1a2BhXuP28vDzExMQgLCwM+/fvh4ODA8RiMXr37o169epx9W0QDSOTyWBiYoLbt2/DzMyM7zikFCp8RKVtPXsPsw6lQVpYhM/9pAoEgL5QGxO7OmCgZ/0vtpubm4sjR45AIpHg4MGDaN68OcRiMfz9/WFtbc3dN0A0mpeXFyZMmIBOnTrxHYWUQmt8RGW9L3qpyC2QffG1jAG5BUWYdSgVAMosfu/evUNUVBQkEgmioqIgEokgFosxd+5cWFlZcR2fkJITXKjwqRaFFz5lrMsQ9XM5/TVmHUorV9ErLbdAhlmH0uBkbQwna2NkZ2fj0KFDkEgkOHLkCDw8PCAWi7FkyRLaX0UUztXVFeHh4XzHIB9R2FSnotdliHoLCr2Io6lPPzu9+SkCAI5G+dC7EIrY2Fi0bNkSgYGB6NmzJ0xNTTnPSsinXL9+HZ07d8bdu3f5jkJKUUjhU9S6DNEML7Lz0GrOsQ8+LFWUQFaI3+2y0L93d5iYmHCYjpDyk8lkMDY2xt27d+lDlwrh/Fj4/63LfL7oAR+uy2w9e4/rKKSKkiRmVLoNPV1daDduRUWP8EpLSwvOzs64dOkS31FIKZwWvsquyyRnvOYyDqmi0p68qdRoDwCkhTKkPX7LUSJC5Fd8gwtRHZwWvhXxtyAtLJLrWmlhEVbG3+IyDqmi3kgLOWqngJN2CKkMKnyqh7PC9yI7Dwk3nst1MwLwftoz7vpzvMzO4yoSqaKM9Lm52dhIX4eTdgipDCp8qoezwsfFuowAgCSp8u2Qqs3B0gh6wsr9aOoLteBgVYOjRITIz87ODs+ePUNmZibfUcj/46zw0boM4YrYtfInpzAAYhGdwEL4p62tjRYtWtANLiqEs8JH6zKEK2bV9dDOzhzyPtZOIADa25vTAQlEZdB0p2rhrPDRugzh0s9ettDTlu/HU1+ojZFethwnIkR+VPhUC2eFj4t1GW3IYFWtctOlRD3Ym+vD8EY0tFnFZhIMdLQwsasDnKzpNCCiOoqfxk5UA2eFj5N1GcYw50d/9OjRA/v370dhITfTp6RqKSoqwnfffYdG7BGm9nCCEDKAff4DkQCAgY42JnZtQqcAEZXj4OCAx48fIysri+8oBBwWPi7WZTo1+woPbqagV69emD17NurXr4+pU6fiwYMHXMUkKo4xhv/+97949eoVQkND0dvJHNmRM9GyXnXoCbWg/9Gsgr5QC1qsCHXwAruCPKnoEZUkFArh5OREN7ioCE43sP/sZQt9obZc1xavyxgaGmLIkCE4c+YMDh06hFevXsHFxQVdu3ZFREQECgro5hd1NmPGDJw9exZ79+6Fnp4eVq5cCS+nBtg+oj1Oj+uAXzvawd+5DrwdasPfuQ5+7WiH8O8dkRoyBnUM5Ds8gRBloHU+1cH5IdUVeYZaMVaQh6EiE0wZ0L7Mr7979w4SiQQhISG4c+cOfvjhBwwbNgwNGjTgKjZRAatXr8b8+fNx6tQpWFhYICcnB40aNUJsbCyaNm362WuHDx8OCwsLzJw5U0lpCamYTZs24ciRI9i+fTvfUTQe54dUD/Ssj4ldm8BAR/uL054Cwft1mf5N9LDi135ISkoq83XVqlXDoEGDcPLkScTExODdu3dwd3eHr68vJBIJ8vPzuf42iJLt2bMHM2bMQHR0NCwsLAC8L4Rt2rT5YtEDgAkTJmDVqlV49eqVoqMSIheRSPTJ9ziiXAp7Hl9yxmusjL+FuOvPIcD7zenFip/H197eHCO9bOFkbYy9e/dixIgRiImJQbNmzb7YvlQqRXh4OEJCQpCWlobBgwdj2LBhsLWl29irmvj4ePTp0wfR0dFwcXEB8H6U36hRI0RHR8PJyalc7QwdOhR16tRBcHCwIuMSIpfCwkLUrFkTT548QY0adKoQnxRW+Iq9zM6DJCkDaY/f4o20AEb6OnCwqgGx6N9PYN+xYwfGjh2LY8eOwd7evtx9XL9+HevWrcPmzZvRvHlzDB8+HP7+/tDTow3Mqu6ff/5Bp06dsGvXLrRv/7+p7sWLF+P48eMVenr1nTt34OHhgZs3b9LjiIhK8vT0xNy5c9G2bVu+o2g2pmI2btzIbGxs2O3btyt8rVQqZTt37mTe3t7M3Nyc/fbbbywtLU0BKQkXbt++zb766isWFhb2wZ+/e/eOWVlZsUuXLlW4zcGDB7Np06ZxFZEQTo0cOZItXLiQ7xgaj/M1vsoaPHgwxo8fD29vb6Snp1foWj09PfTt2xcxMTE4ffo0hEIh2rVrh3bt2mHbtm2QSqUKSk0q6tmzZ/D19cWkSZMgFos/+Nq6devg7u4OZ2fnCrc7ceJELF++nPZLEZVEG9lVg8KnOuW1cOFCrF69GgkJCbCyspK7nfz8fOzfvx8hISFITEzEwIEDMXz48HLdMEEU4+3bt/Dy8kL37t0xbdq0D74mlUpha2uLyMhIuLq6ytX+999/D1tbW0yePJmDtIRw559//sGAAQOQkpLCdxSNprKFDwBmzZqF7du3Iz4+Hubm5pVu7+7du1i/fj02bNiABg0aICgoCIGBgahWrRoHaUl55OXlwc/PD7a2tli1ahUEH936u3LlShw6dAgHDhyQu4+bN2+iZcuWuH37NoyMjCobmRDOFBQUwNjYGE+fPkX16tX5jqOxVLrwAe+nrg4dOoRjx45xdsNCYWEhDh48iJCQEJw9exb9+/dHUFBQue8eJPKRyWTo378/CgsLsXv3bmhrf3jYQV5eHho3bgyJRAIPD49K9fXdd9/BwcEBEydOrFQ7hHDNw8MDCxcuROvWrfmOorFUbo3vYzNnzkT79u3RuXNnvHnzhpM2hUIhevbsiYMHD+LSpUswMzODn58fPD09sX79emRnZ3PSD/kfxhh++eUXPH36FNu2bftX0QPeb/Bt2rRppYseAEyaNAlLlizB27f0fEeiWmidj38qX/gEAgEWLFgAkUiEbt26IScnh9P269ati2nTpuHu3buYNGkS9u3bh7p162LEiBG02ZRDs2fPxokTJxAZGQl9ff1/fT0/Px9//fUXpk6dykl/9vb26NixI5YvX85Je4RwxdXVld5beKbyhQ94X/xWrFiBRo0aoVevXgq5O1MoFKJbt26IjIzElStXUKdOHfj7+8PNzQ0hISE0cqiEtWvXYsOGDYiKikLNmjXLfM2WLVtgb28PT09PzvqdNGkSFi9eTCN4olLozE7+qfwaX2lFRUX49ttvkZ2djfDwcOjq6iq8v6NHjyIkJARxcXEQi8UICgqCm5vbv27KIGWLiIjAyJEjkZCQgMaNG5f5moKCAtjb2yM0NBStWrXitP/+/fvD2dkZ48aN47RdQuSVn58PY2NjPH/+HIaGhnzH0UhVYsRXTFtbG6GhodDR0Sm5SULR/XXu3Bnh4eFISUlBw4YN0a9fP7i4uGDlypW0V+wLjh8/jqCgIOzfv/+TRQ8Atm7dioYNG3Je9ID3o76FCxfSqI+oDF1dXTg6OuLy5ct8R9FYVarwAYCOjg527tyJd+/e4fvvv0dRkXIeRWNlZYXx48fj5s2bmD9/PuLj41GvXj388MMPOHPmDKrQwFkpkpOTERgYiO3bt392P15hYSFmzZqFKVOmKCRH06ZN0a5dO6xatUoh7RMiD7rBhV9VrvAB709oCQ8Px+PHj/Hjjz9CJiv/I5AqS0tLCz4+Pti9ezdu3LgBR0dHDBo0CE5OTli6dCkyMzOVlkVV3bt3D127dsWyZcvg4+Pz2ddu374dNjY2Cj27cPLkyViwYAHnN0YRIi+6wYVfVbLwAYCBgQH27duHtLQ0jBo1ipcRV+3atfH777/jxo0bWLZsGc6ePYsGDRpg0KBBOHHihEaOAp8/fw5fX1+MGzcOffr0+exrCwsLMXPmTIWN9oo1b94crVu3xurVqxXaDyHlRTe48KtK3dxSlqysLPj4+MDLywtz587l/aaTFy9eIDQ0FCEhIQCAoKAgDBo0CKamprzmUobs7Gy0b98evr6+5Xog7LZt27BmzRokJCQo/O8tOTkZvr6+uH37Np3UQ3iXl5cHExMTvHz5EgYGBnzH0ThVdsRXrGbNmoiOjsaRI0f+de4jH8zMzPDrr78iJSUFISEhuHTpEho1aoQBAwYgLi5ObUeB+fn56N27N5ydnTFjxowvvr6oqAgzZszAlClTlPJhxcnJCd988w3WrFmj8L4I+RI9PT3Y29vTDS48qfKFDwBq1aqFo0ePIiwsDH///TffcQC833vYpk0bbNmyBXfu3IGnpydGjRoFe3t7zJs3D8+ePeM7ImdkMhkGDx4MQ0PDMs/fLEtYWBhMTU3h7e2thITvTZkyBfPmzUNubq7S+iTkU2idjz9qUfiA9+ttMTExWLduHZYsWcJ3nA/UqlULo0aNQnJyMjZv3oyUlBTY29ujT58+iImJUerNOVxjjGHMmDHIyMjA9u3bIRQKv3iNTCZT6mivmLOzMzw8PEqmoQnhE63z8Uj5jwBUrHv37rF69eqxNWvW8B3lszIzM9mKFStYixYtWMOGDdns2bPZ48eP+Y5VYX/99Rdr3rw5y8zMLPc1u3fvZl9//TWTyWQKTFa2xMRE9tVXX7Hc3Fyl901IaefOnWMtWrTgO4ZGUrvCxxhjt27dYtbW1mzz5s18R/kimUzGzp8/z4YNG8aMjY2Zv78/i4qKYoWFhXxH+6L169ez+vXrs4cPH5b7mqKiItasWTN28OBBBSb7vO7du7Nly5bx1j8hjDH27t07pq+vTx/CeKCWhY8xxlJSUpiVlRXbtWsX31HK7c2bN2zNmjXM1dWV1atXjwUHB7OMjAy+Y5UpMjKSWVpasuvXr1fouj179jA3NzdeRnvFLl68yKytrZlUKuUtAyGMMebk5MTOnTvHdwyNozZrfB9r0qQJDh8+jFGjRiEyMpLvOOVSo0YNBAUF4eLFiwgPD8ejR4/QvHlz9OzZEwcOHFDaKTVfcvLkSQwbNgz79u2DnZ1dua+TyWQIDg5W+trex1xdXdGiRQusX7+etwyEAHSDC2/4rryKduHCBWZubs4OHz7MdxS5vH37lq1bt459/fXXzNramk2dOpXdv3+ftzxXrlxhtWvXZtHR0RW+NiIigrm4uPA62it2/vx5ZmNjQ6M+wqvly5ezYcOG8R1D46jtiK+Ym5sbIiIi8N133yE+Pp7vOBVWvXp1DB06FGfPnsWBAwfw4sULuLi4wM/PD5GRkQo/qLu0+/fvo0uXLli0aBE6depUoWsZY5g+fTrvo71i7u7uaNasGTZu3Mh3FKLB6M5OnvBdeZXl2LFjzNzcnJ0+fZrvKJWWk5PDNm3axFq2bMmsrKzYxIkT2Z07dxTa5/Pnz5m9vT1bvHixXNfv37+ftWjRQiVGe8XOnj3L6taty/Ly8viOQjRUTk4OMzAwoJkHJVP7EV+x9u3bY8uWLejVq1eV/4RVrVo1fP/99zh16hSOHj2K7OxsuLu7w9fXF3v27EFBQQGn/eXk5MDPzw/+/v745ZdfKnw9+//R3uTJk1VitFfs66+/RpMmTbBp0ya+oxANVa1aNTRq1AhXr17lO4pG0ZjCBwCdO3dGSEgI/Pz8kJyczHccTjRt2hSLFy9Geno6Bg0ahKVLl8LGxgZ//vknbt26Ven2CwoKIBaL0axZM8yePVuuNg4fPgypVAp/f/9K5+Ha1KlTMXv2bOTn5/MdhWgomu5UPo0qfADQs2dPLFmyBJ07d0ZaWhrfcThjYGCAb7/9FgkJCYiPj0dhYSFatmwJHx8f7Nq1C3l5eRVuUyaTYciQIdDR0cGaNWvkGq2VHu1paanej9s333yDxo0bY8uWLXxHIRqKCh8P+J5r5cumTZuYtbU1u3XrFt9RFEYqlbKdO3eyDh06MHNzczZ27Nhy77uTyWRszJgxrFWrViwnJ0fuDNHR0czR0ZEVFRXJ3YainThxgjVo0IDl5+fzHYVooJMnTzJXV1e+Y2gU1fsIriTff/89Jk2aBB8fHzx48IDvOAqhp6eHvn37IjY2FqdOnYKWlhbatm0LLy8vbN++HVKp9JPXzp8/H9HR0di3b5/cj/Fh/z/amzRpkkqO9oq1bt0aDRo0QGhoKN9RiAZydnZGSkoKTbcrE9+Vl2+LFi1itra2FTp2qyrLy8tjYWFhrFOnTszMzIyNHj2aXbt27YPXbNq0idWrV4+lp6dXqq+YmBhmb29fJY5fS0hIYA0bNqRRH+GFo6MjS0pK4juGxlDdj+FKMnr0aAwZMgQ+Pj5q9aigT9HV1YVYLEZ0dDTOnTuHatWqwdvbG61bt8aWLVsQHh6OcePG4fDhw7C2tpa7H1ZqtKetrc3hd6AYbdu2Rd26dbFt2za+oxANROt8yqXxhQ8Axo8fD7FYjE6dOuHVq1d8x1Gahg0bYtasWXjw4AHGjh2LVatWQSwWo02bNpXeEpGQkIAnT56gX79+HKVVvKlTp2LmzJlKPRSAEAAQiURU+JSICt//mz59Onx8fNC5c2dkZWXxHUepdHR0YGdnhzt37mDjxo1wdHREly5d4OnpiQ0bNiAnJ6fCbU6fPh0TJ04s1/P5VIWXlxfq1KmD7du38x2FaBga8SkZ33OtqkQmk7GRI0eyVq1asezsbL7jKM2DBw+YjY0NCw0NLfmzgoICtn//fta9e3dmYmLCRowYUe41iISEBNaoUSNWUFCgqMgKExsbyxo3blwls5Oq6+3bt8zAwIDWmJWERnylCAQCLFu2DPb29ujRowdyc3P5jqRwL1++hK+vL0aPHo2BAweW/LlQKES3bt2wb98+JCcnw9LSEr169YK7uztCQkLw9u3bT7YZHByMCRMmVKnRXrH27dvDwsICO3fu5DsK0SDVq1dHvXr1kJKSwncUjUCF7yNaWloICQmBpaUlAgIC5Nr4XVXk5OSgW7du6NatG8aMGfPJ11lbW2PKlCm4c+cOgoODcfjwYdStWxdBQUG4cOECGGMlrz116hRu376N7777ThnfAucEAkHJWp+qPAaKaAaa7lQeKnxl0NbWxubNm2FgYID+/ftzfvalKigoKECfPn1gb2+POXPmlOsabW1tdOnSBeHh4UhJSUH9+vXRt29fiEQirFq1CllZWSWjPR0dHQV/B4rj7e0NU1NT7N69m+8oRIPQDS7KI2ClP66TD+Tn58Pf3x9GRkbYunVrlbgtvzwYYxg8eDBevHiBiIiIShUpmUyG2NhYhISE4PDhw2CMISoqCq1bt1apA6kr6siRIxg9ejSuXLmiNn/vRLUlJCRg3LhxOHv2LN9R1B4Vvi+QSqXo1q0bbGxssH79epU+gaS8/vjjD5w4cQIxMTEwNDTkrF1vb2/UrFkTV65cgb6+PoKCgjBw4ECYmJhw1oeyMMbQsmVLjB49Gn379uU7DtEAb968gZWVFbKysqrk+nhVUvXfxRVMX18fkUJnM6oAACAASURBVJGRuHXrFv7zn/+gqn9OWLBgAQ4cOIADBw5wWvQuXLiAGzduYMeOHbh+/TqWLl2K06dPo0GDBhg0aBBOnjxZpf7bFa/1zZgxAzKZjO84RAMYGRnB2toaqampfEdRe1T4ysHQ0BAHDx5EYmIixo4dW6XewEsLDQ3FkiVLEB0dDVNTU07bDg4Oxp9//gk9PT1oaWmhffv22LFjB27dugVnZ2cMGzYMTZs2xaJFi/Dy5UtO+1YUX19fGBoaYs+ePXxHIRqC1vmUgwpfORkZGeHw4cM4duwYpkyZwnecCouKisLYsWNx+PBh2NjYcNp2UlISLl26hKFDh/7ra2ZmZhgzZgxSU1OxevVqJCUloVGjRvj2228RHx+v0h8iikd9wcHBNOojSkF3dioHFb4KMDExwZEjRxAeHi73Q1n5cO7cOQwaNAgRERFwdHTkvP3g4GD88ccf0NfX/+RrBAIB2rZti9DQUNy5cwceHh74+eef4eDggPnz5+P58+ec5+JCly5doK+vj7179/IdhWgAV1dXJCUl8R1D/fGzb75qe/ToEbO1tWULFy7kO8oXpaSkMAsLC3bgwAGFtH/p0iVmZWXF3r17V+FrZTIZO3XqFPv+++9ZzZo1WZ8+fVhMTIzKPbtv//79zMnJSeVyEfWTmZnJDA0Nq8QTTaoyGvHJwcrKCrGxsVi6dClWr17Nd5xPysjIQJcuXTBnzhz4+fkppI8ZM2bg999/h4GBQYWvFQgEaNmyJTZt2oR79+6hbdu2GDNmDBo3boy///4bT548UUDiivPz84NQKERkZCTfUYiaMzY2hqWlJdLS0viOot74rrxV2e3bt5mNjQ3btGkT31H+5eXLl6xp06Zs7ty5CusjOTmZWVpaVuoJ7R+TyWTs3LlzbOjQoaxmzZqsd+/e7PDhw7yPtiIiIpizszOTyWS85iDqr0+fPmzz5s18x1BrNOKrhIYNG+Lo0aOYMGECdu3axXecEu/evUOPHj3g6+uLsWPHKqyfGTNm4LfffpP7Ce1lEQgE8PDwwLp16/DgwQN06tQJEyZMQKNGjTBz5kw8evSIs74qokePHgCAffv28dI/0Ry0zqcEfFdedZCcnMwsLCzY3r17+Y7CCgoKWLdu3djAgQMVOkq6evUqq127ttKeYnHx4kX2448/MmNjY9ajRw924MABpa+DhIeHMxcXFxr1EYWKiYlhrVu35juGWqOTWziSlJSELl26YPPmzejcuTMvGRhjGDp0KB4/fox9+/Yp9LzM/v37w9nZGePGjVNYH2XJzs7Gzp07sXbtWjx+/BhDhw7FkCFDON+iURaZTAYXFxfMnDkT3bt3V3h/RDNlZmaibt26eP36NR2Xpyg8F161cvr0aWZubs5iY2N56f/PP/9kHh4e7O3btwrtJzU1lZmbmyu8ny+5dOkSGzlyJDMxMWF+fn4sMjJS4c/Rk0gkzNXVlUZ9RKEaNGjAUlJS+I6htmiNj0PffPMNwsLC0K9fP5w6dUqpfS9evBh79+7FwYMHUb16dYX2NXPmTIwePVrh/XyJs7MzVqxYgfT0dIjFYvz999+oV68eJk+ejHv37imkT39/f+Tl5eHQoUMKaZ8QgDayKxoVPo61a9cOW7duhb+/Py5evKiUPrdv344FCxYgOjoaZmZmCu3rxo0biI6Oxn/+8x+F9lMRhoaGGDx4ME6fPo3o6Gi8efMGrq6u6Ny5M8LDwzl9rJSWlhamTJmC6dOnq/SpM6RqoxtcFIsKnwJ06tQJ69evR7du3ZCcnKzQvo4cOYJff/0VUVFRqFevnkL7AoBZs2Zh1KhRMDIyUnhf8mjWrBmWLFmCjIwMDBw4EIsXL0bdunUxfvx43L59m5M+AgIC8O7dO0RHR3PSHiEfoxGfgvE916rOdu/ezaysrBQ2V3/u3Dlmbm7OTpw4oZD2P3bz5k1mamrKXr9+rZT+uJKSksLGjBnDzMzMmLe3N9u1axfLy8urVJs7d+5knp6etNZHFOLFixesRo0avO9fVVd0V6eChYaGYvz48YiPj4etrS1n7V6/fh1eXl4ICQlR2h2GQ4YMQd26dTFt2jSl9Mc1qVSKvXv3Yu3atbh27RoGDRqE4cOHw87OrsJtFRUVoXnz5li8eDFELdtBkpiBtCdv8EZaCCN9IRwsjRDoag3T6noK+E6IJqhfvz6io6Nhb2/PdxS1Q4VPCdauXYtZs2YhISGBk+nIR48eoVWrVpg8eTKGDBnCQcIvKz5Y+ubNm1XywbIfu3nzJtatW4dNmzbB0dERw4cPR+/evT970PbH5q7fhQ1nM8As3x/8nVf4vyc46Au1wAB42ZtjZDtbtLAx5vpbIGouICAAYrEY/fv35zuK2qE1PiUYPnw4xowZA29vbzx8+LBSbb1+/Rq+vr4ICgpSWtEDgL/++gsjRoxQi6IHAI0bN8acOXOQnp6OkSNHYtOmTbCxsSl5hNKXbD17DxvuG0Fayw55hbIPih4ASP//z46kPEW/tWex9ew9BX0nRF3ROp/i0IhPiebMmYNNmzYhISEBtWvX/uBrL7LzvjhdlpubC19fX4hEIixatAgCgUApue/duwdXV1fcvHkTtWrVUkqffLh9+zbWr1+PjRs3wtbWFkFBQRCLxf86gHvr2XuYdSgVuQXlf0afgY4WJnZtgoGe9TlOTdTV4cOHMWfOHMTFxfEdRe1Q4VOyadOmYe/evYiLi0OtWrVwOf01VsTfQsKN98+j+9R02Y+tGyB49FBUq1YNW7duhZaW8gbrP/30E2rVqlWlnkFYGQUFBThw4ABCQkJw/vx5fPvttxg+fDiaN2+Oy+mv0W/tWeQWFFW4XQMdbewK8oSTNU17ki97/vw5bG1tkZmZqdR/75qACp+SMcYwbtw4HDt2DD/O24qFcfcgLSzC5/4WBAJAICuE2YMEnNz0N3R1dZWW98GDB3BxccH169cVvkdQFd2/fx/r16/H+vXrUbduXdT0G4vrOfqQ5x+NQAD4Olpg9UA3znMS9VS3bl3ExsaicePGfEdRK1T4eMAYQ4/f5uGqsDGYdvmLmL6OFiYpebrs559/RvXq1TFnzhyl9amKCgsLsTsyChPPy8C0hHK3oyfUwulxHehuT1Iu/v7+6NevH/r27ct3FLVC42ceJGdk4Wb15hUqegAgLZBh1qE0JGe8VlCyD2VkZGDHjh347bfflNKfKhMKhXhj5ljp0bYAgCQpg5tQRO3RDS6KQYWPByvib/3rLsDykhYWYWX8LY4TlW3u3LkYMmTIv27E0RSMMeTn5+PNmzd49uwZEu88kfvvrZi0UIa0x285SkjUnUgkosKnADTVqWQvsvPQas6xSr2BKmO67NGjR2jWrBlSU1NhYWGhsH7KUlxwpFIp8vLyePs1Ly8PQqEQenp60NfXh4HvGGjZOFX6+6uWeRsOz+JhYmJS8j9jY+NP/l6Za7pEtTx9+hQODg549eqV0u7i1gTyL1YQuUgSKz/NVTxd9mPbRpUPVApjrOQNf/r06ejduzeysrLw7NmzchULLguOjo4O9PX1S4pO6f9f3l9r1KgBc3PzCl9X+tfSd9ON3nUJEf9U/gnwTk0aQ+zzFTIzM5GZmYnXr18jIyPjg9+X/v+6urqfLYyf+321atXoDbMK0zY0RnV3fwzfcBIyoT6dCsQRGvEpGVdvns2r56KLSfkKUnl/zc/Ph66uLnR1dZGTkwMrKytUq1ZN7qIh768fFxxVsTrhNhbF3KjUaF1fqIVfO9qV+0MLYww5OTklhfDjwlhWoSz9taKiogoVytK/NzIyUsm/B01QeptTfn7+BzdU0alAlUeFT8mGbL6AY2nPKt2OqfQRPKRJZRYPeQuOrq4utLS0MHbsWOTn52Pp0qUcfMfqo6pMU5cmlUo/Wxg/9/t3797ByMiowoXT2NgYxsbG0NHRUcr3qG7eH5CQVq5tTvpCbUzs6kAHI1QQTXUqmZE+N//J23q6Y1Hf4Zy0VdqzZ8+wYcMGXLlyhfO2qzqz6npoZ2eOo6lPP/uG9CkCAO3tzZU6RaWvrw9LS0tYWlpW+NrCwkJkZWV9dnR57969Mr+WlZUFAwMDuUebH5+WoykqcioQY0BuQRFmHXp/xB4Vv/KjwqdkDpZG0BNW7u5AfaEWHKxqcJjqfxYsWID+/fujTp06Cmm/qvvZyxYnbr6Q6+QWVpSPno2rzhu6UCiEqakpTE1NK3ytTCZDdnb2Z0eX169f/+TXBQJBhdczi/9XvXr1KrmueTn9NWYdSqvQUXgAkPv/25ycrI3pVKByoqlOJVPl6bIXL17Azs4Oly9fho2NDadtqxN5z+psWe0p9i/8A2vWrIG/v78CE1ZtjDFIpdJyT8l+/HupVPqvqdfyFs6aNWtCW1ubl+87KPSi/LMJdCpQhdCIT8kqO10GJoO7dXWFTJctXLgQffr0oaL3BcVTShVfh+mC8x0c0bdvXyQkJGDu3Lm0VaEMAoEABgYGMDAwwFdffVXh6/Pz8z87Rfvy5UvcunWrzK+9efMG1atXl+sO2spsPXmRnYeEG8/le0/A+2nPuOvP8TI7j+72LAca8fGgMgcdCyFDVvh0DA/ohAkTJqB69eqcZHr58iXs7OyQlJTEyTMDNUFyxmusjL+FuOvPIcD7zenFdAQMBYVF6OxUByO9bD+YgsrMzMTgwYPx5MkT7N69m/57qxCZTIY3b97IPdr80taTT30tPPUtVhy/p9Q7hjUZFT6eVObRNu1tdPDnn38iLi4Oc+bMwYABAyq9pjF58mQ8efIEa9eurVQ7muhldh4kSRlIe/wWb6QFMNLXgV1tQ8wY4ofYQ5Fo0qTJv65hjGHhwoWYO3cu1q1bh+7du/OQnHCpeOuJPHfRFrkPhH6TtpXO4O9cB4v6OnPw3ag3Knw8quxty6dPn8aoUaOgp6eHpUuXwtXVVa4cmZmZsLW1xcWLF9GgQQO52iD/9ueff6KoqAjz5s375GvOnDlTcgjxrFmzaAuAhuJqm5O3Q22s/96dg0TqjXan8migZ33sCvKEr6MF9IRa0Bd++NehL9SCnlALvo4W2BXk+a/blVu2bInz589jyJAh8PPzw/Dhw/HsWcX/8SxZsgQ9e/akosexIUOGIDQ0FAUFBZ98zTfffIPExERcvXoVXl5eyMigA6w1EVfbnIz06YNTeVDh45mTtTFWD3TD6XEdMNqnMbKvHkMHh9rwd66DXzva4fS4Dlg90O2TtylraWlh6NChSEtLQ40aNdC0aVMsXrz4s2+2pb1+/RrLly/HxIkTufy2CAA7OzvY2dnhwIEDn32dmZkZDhw4gO7du8PNzQ2HDx9WUkKiKt5vc6rc27EitzmpG5rqVCG5ubmoVasWcnNz5W4jNTUVo0ePRnp6OpYsWYKOHTt+9vUzZszArVu3sHnzZrn7JJ+2efNmhIWFfbH4FTt+/DgGDBiA77//HtOnT4dQSDdeawJV3uakjqjwqZBXr16hUaNGyMzMrFQ7jDHs378fv/76K5o3b46FCxeiYcOG/3rdmzdv0KhRI5w6dQp2dnaV6pOULScnBzY2Nrhy5Uq5DwV49uwZBg4ciPz8fGzfvl2uW/pJ1cIYQ9e/IpCSJYRAjvNRaR9fxdBUpwrJzc3l5KgmgUCAHj164Nq1a/j666/h4eGBiRMnIjs7+4PXLV++HL6+vlT0FMjQ0BCBgYEVGlHXrl0bUVFR8Pb2hpubG2JjYxWYkPDt8ePH6NmzJx5ErYW+jnxvyfpCbYz0suU4mfqiwqdCpFIp9PX1OWtPX18f48ePx+XLl3H//n04ODhg+/btYIzh7du3WLx4MSZNmsRZf6RsQ4cOxYYNGyCTlX8aS1tbG5MnT8bWrVvx3XffYdq0aSgqqvi+T6K6GGMIDQ1FixYt4OzsjEuxEZjcrSkMKlj83m9zcqDjyiqApjpVyNWrV9G3b19cu3ZNIe2fOnUKo0aNgoGBAUQiEZ4/f44dO3YopC/yP4wxODk5YdmyZfDy8qrw9U+ePEH//v2hra2Nbdu2Kf3BwIR7jx49wk8//YR79+5h06ZNEIlEJV8r9zYnMOjrCOnpDHKgEZ8K4XrE97FWrVrh/Pnz6NevH1asWIGCggI8f/5cYf2R9wQCAYYOHYr169fLdb2lpSViYmLQsmVLuLq6IiEhgeOERFmKR3nOzs5wdnbGxYsXPyh6wIfbnIQCQFD04R3a+kItCAUMus/SsHP411T05ECFT4Vwtcb3Odra2pBKpejRowdsbGzg6OiIJUuWlHv7A5HPwIEDsX//frx+/Vqu67W1tREcHIwNGzagX79+mD17doWmTgn/Hj16hB49emDevHk4fPgwgoODP3m2Z/E2p64Fp+Cm9xT+znXgXXqb05/eYCdC8ObeVSV/F2qCEZVx5MgR5u3trdA+cnJymIWFBUtOTmaMMXbt2jXWsWNH5ujoyI4cOaLQvjVdYGAgW7lyZaXbycjIYK1bt2adO3dmz58/5yAZUSSZTMY2b97MzM3N2ZQpU1heXl65r3V3d2cJCQllfm3NmjXMz8+Pq5gahQqfComMjGTdunVTaB8LFy5kvXv3/uDPZDIZi4iIYA0bNmS9evVit2/fVmgGTXX48GHm6urKSVsFBQVs3LhxzMbGhp08eZKTNgn3Hj58yLp168acnJxYUlJSha7NyspihoaGLDc3t8yv5+bmMktLS3blyhUuomoUmupUIVKpVKFTnbm5uZg3bx4mT578wZ8LBAL07NkT165dg7u7Ozw8PDBp0iTk5OQoLIsm8vHxwbNnz3D58uVKtyUUCvH3339j1apVCAgIwLx582jqU4UwxrBlyxY4OztDJBLhwoULcHFxqVAbp06dgru7+yfX/fX19fHf//4X8+fP5yKyRqHCp0Jyc3MVenPL2rVr4eHhAWfnsk9v19fXx4QJE/DPP//g7t27cHBwwI4dO8Doxl9OaGtr44cffpD7Jpey+Pn54fz58wgPD0fPnj3x6tUrztom8iley1uwYAGio6Mxffp0uZ7Tl5CQgHbt2n32NSNGjMD+/fuRnp4ub1yNRIVPhSjy5hapVIo5c+ZgypQpX3yttbU1tm3bhp07d2L+/Plo27YtLl26pJBcmuaHH37A9u3bIZVKOWuzbt26SEhIgJ2dHUQiEc6dO8dZ26T8GGPYvHlzpUZ5pcXHx39x+4uJiQkGDx6MxYsXy92PRuJ5qpWUsmjRIjZq1CiFtL18+XK51g8LCwtZSEgIs7CwYEFBQezZs2cKSKdZfHx82I4dOxTS9t69e5m5uTlbtGgRk8lkCumD/NvDhw+Zn5+fXGt5ZXn79i0zNDRk7969++Jr09PTWa1atdirV68q3a+moBGfClHUiC8vLw9///13uUZ7H9PW1sbw4cORlpaGatWqwdHREUuXLqXtD5UwdOhQrFu3TiFt9+rVC+fOncO2bdsQEBAg9/YJUj6s1CjPzc2t0qO8YqdPn4ZIJCrX+4G1tTW6d++OVatWVbpfTUGFT4UoagP7xo0b0bx5c7i7y/+ASmNjYyxatAgJCQnYv38/nJ2dERMTw2FKzdGrV6+SdVRFaNCgAU6ePAlra2uIRCJcvHhRIf1ouocPH6J79+5YtGgRjhw5gmnTpsm1lleW8kxzlvb7779j2bJlnE6hqzMqfCpEESO+/Px8/PXXX3KN9sri6OiII0eOYNasWQgKCkLv3r0V9gaurvT19TFgwABs3LhRYX3o6elh6dKlmDNnDrp06YIVK1bQTUocKR7lubi4wM3NDefPn//kDWPyKs+NLaU1bdoUbm5u2LJlC6c51BbPU62klP/+979syZIlnLa5Zs0a1qlTJ07bLJabm8tmzZrFTE1N2aRJk1h2drZC+lFH//zzD7O2tmaFhYUK7+vmzZvM2dmZBQYGsqysLIX3p84yMjKYn58fa9GiBbt06ZJC+sjOzmaGhoYsJyenQtcdP36c2draKuVnqqqjEZ8K4Xo7Q0FBAWbPno2pU6dy1mZppbc/3Llzh7Y/VECLFi1gYWGBo0ePKrwvW1tbnDlzBrVq1YKrqyv++ecfhfepbhhj2LRpE1xcXODu7q6QUV6xM2fOwNnZGdWqVavQda1bt4aZmRkiIiIUkkudUOFTIVxPdW7ZsgW2trZo2bIlZ22WpXj7w44dOzBv3jza/lBOlTm4uqL09fWxevVqBAcHo2PHjggJCaEPKOX08OFDdOvWDYsXL8aRI0cwdepUztbyylLRac5iAoEA48aNw5w5c+jv9guo8KkQLm9uKSgowKxZsxQ22itL69atceHCBQwaNAhdunTBTz/9hBcvXiit/6qmf//+OHr0qFKfkNG/f3+cPHkSy5cvx8CBA//1cGLyP6VHeR4eHgod5ZUmb+EDgB49eiArK4ue4PEFVPhUCJcjvm3btqFevXpo06YNJ+2VV/H2h9TUVOjr66NJkya0/eETjI2N0b17d2zdulWp/drb2+Ps2bMwMDCAu7s7rl6lE/4/VjzKW7JkCY4eParwUV6x3NxcJCUlyT1Lo6Wlhd9//x1z587lOJma4XWFkXygQ4cO7OjRo5Vup6CggNna2rK4uLjKh6qkq1evMh8fH9a0aVMWExPDdxyVExcXx5o2bcrbZvPNmzczMzMztmHDBl76VzUymYxt2LCBmZmZsWnTprH8/Hyl9n/s2DHm6elZqTakUimzsrJily9f5iiV+qERnwrhasS3Y8cOWFlZyT1dwqWmTZviyJEjmDlzJoYPH46AgADa/lBKu3btIJVKcf78eV76HzRoEBISEjBv3jz88MMPePfuHS85VEHxKG/p0qWIiYnB1KlToaOjo9QMCQkJFdq/VxY9PT388ssvmDdvHjeh1BAVPhXCxRpfUVERZs6cialTp0IgEHCUrHIEAgF69eqFlJQUiEQiuLm5YfLkyfT0B7z/bzNkyBCl3eRSFkdHR1y4cAFFRUXw8PBAamoqb1n4wBjDxo0b4eLigq+//hrnz59HixYteMkSHx/PyQfWH3/8EYcOHcL9+/c5SKWG+B5ykv9xcHBg165dq1Qb27ZtY61atVLpcxrT09NZ//79mY2NDduxY4dKZ1WGjIwMZmxszPs+SJlMxtatW8fMzMxYaGgor1mUJT09nXXp0oU5Ozuzf/75h9csubm5zNDQkL1584aT9n7//Xc2evRoTtpSN1T4VEj9+vXZnTt35L6+sLCQNWnShEVHR3OYSnGOHz/OnJ2dWZs2bRS2Gbiq8PPzYxs3buQ7BmOMscuXLzM7Ozs2fPjwch2SXBWVXsubPn260tfyypKQkMA8PDw4ay8jI4OZmJiwly9fctamuqCpThVS2Q3sEokENWvWRMeOHTlMpTht2rTBxYsXMXDgQPj6+mr09gdl7un7EicnJ1y8eBFv377FN998gxs3bvAdiVMZGRno2rUrli1bhpiYGEyZMkXpa3ll4Wqas1idOnXQq1cvrFy5krM21QbflZf8j5GREcvMzJTr2qKiIta0aVN26NAhjlMpx6tXr9ioUaOYubk5W7p0KSsoKOA7klLl5+czCwsLlpaWxneUEjKZjK1atYqZm5uzXbt28R2n0mQyGVu/fj0zMzNjwcHBKjHKK61Dhw7swIEDnLaZkpLCLCws1HbkLi8qfCpEV1eX5ebmynVtWFgYc3d3r/LrZVevXmXe3t6sWbNmLDY2lu84SjV27Fj2xx9/8B3jXxITE1mjRo3YyJEjmVQq5TuOXNLT01nnzp2Zi4uLSt7mL5VKWfXq1dnr1685b7tHjx5s5cqVnLdblVHhUxGFhYVMIBDIVbiKioqYk5MT279/vwKSKZ9MJmPh4eGsfv36rHfv3uzu3bt8R1KK1NRUZmlpqXIjEcYYe/36NQsICGAikYjdvn2b7zjlpuqjvGInTpxgrq6uCmn75MmTrGHDhnR4dSm0xqci8vLyoKenJ9cWhMjISAiFQvj5+SkgmfIJBAL4+/sjJSWl5NEvU6ZMUfs9Zg4ODmjYsCEOHTrEd5R/qVmzJsLCwjB48GB4enpi7969fEf6ovT0dHTt2hXLly9HbGwsJk+erBJreWWpzDFlX9KqVStYWVkhPDxcIe1XSXxXXvLeixcvmImJSYWvk8lkzNnZmUVERCgglWp48OAB69evH7OxsWE7d+6s8tO5n7N+/XrWvXt3vmN81rlz51j9+vXZL7/8wvLy8viO8y+lt2Wo8iivtI4dO7J9+/YprP3IyEjm6uqq1v92KoIKn4rIyMhgX331VYWvi4yMZC1atNCIH+iEhATWokUL1rZtW7Xd/vD27VtmbGzMHj16xHeUz3r16hXr0aMH8/DwYPfu3eM7TokHDx6wzp07M5FIpJJreWXJz89nNWrUkPvGtvIoKipiTZo00bh180+hqU4VIc9WBsYYgoODMWXKFJU5pUWR2rZti8TERAwYMAC+vr4YMWKE2m1/qF69OgICArB582a+o3yWiYkJIiIi0KdPH3h4eGD//v285mGMYf369RCJRGjVqhXOnj0LJycnXjOV18WLF9GoUSMYGxsrrI/iw6vnzJmjsD6qEip8KkIqlVb4nM5Dhw4hPz8fvXr1UlAq1aOtrY0ff/wRaWlp0NHRgaOjI5YvX47CwkK+o3Fm6NCh2LBhg8o/U00gEOC3335DREQE/vOf/+CPP/7g5Skc6enp6NKlC1auXInY2FhMmjRJZdfyyhIfH1/p8znLY8CAAbh69So9iBhU+FRGRUd8xaO9yZMnQ0tL8/4aTUxMsHTpUhw7dgx79+6Fi4sLjh07xncsTnh6ekIoFOLEiRN8RymXb775BomJibh69Sq8vLyQkZGhlH5Lj/LatGlTpUZ5pSnyxpbS9PT0MHr0aDq8GqCbW1RFQkICa926dblfHxUVxRwdHVlRUZECU1UNMpmM7dmzh9WvX58FBASoxfaH+fPns0GDBvEdo0KKiorYX3/9xSwsLFhU/JDOQgAAH4BJREFUVJRC+7p//z7r1KkTE4lELDk5WaF9KVLx+t6LFy+U0l9WVhYzNTVVi38jlaF5QwUVVZEnMzDGMH36dI0d7X1MIBCgd+/eSElJQYsWLeDm5oapU6dW6e0P3333HSIjI5GVlcV3lHLT0tLCn3/+id27d2PYsGGYOHEi51PQjDGsW7cOrq6uaNu2Lc6ePYvmzZtz2ocyJSUloUGDBjA1NVVKf0ZGRhg2bBgWLlyolP5UFb1rqoiKPIsvJiYGr1+/RmBgoIJTVS0GBgaYPHkykpKScP36dTRp0gS7du1S+bWystSuXRve3t7YuXMn31EqrG3btkhKSsKFCxfg4+ODR48ecdLugwcP0LlzZ6xatQrHjh3DxIkTq9RaXlmUNc1Z2i+//IKtW7eq3Y1hFUGFT0WUd8RXPNqbNGkStLW1lZCs6qlbty527tyJ0NBQ/PXXX/Dy8sLly5f5jlVhqnRwdUXVrl0bUVFR8Pb2hpubG2JjY+VuS91GeaXxUfisrKwQEBCAFStWKLVflcLrRCspsXHjxnKt6cTGxjI7Ozs6fqicCgsL2apVq1jt2rXZiBEjlLaWwoXCwkJWp06dKr2Gxdj7n1krKys2derUCv/cFq/lubq6sitXrigoIT8KCgqYkZERe/bsmdL7TktLY+bm5iwnJ0fpfasCGvGpiPJuZwgODsbEiRNptFdO2tra+Omnn5CamgptbW00adKkymx/0NbWxuDBg6vsqK9Yhw4dkJSUhISEBPj6+uLp06dfvIYxhrVr15aM8s6cOYNmzZopIa3y/PPPP7CxsYG5ubnS+7a3t0erVq2wceNGpfetCqjwqYjybGdISEhARkYGBgwYoKRU6qNWrVpYtmzZB9sf4uLi+I71RUOGDMG2bduQl5fHd5RKsbS0RExMDFq2bAlXV1ckJCR88rUPHjyAr68v1qxZg7i4OLVYyysLH9OcpY0bNw7z58+vEh8CuUaFT0WU5+aW4tGeUChUUir106xZM8TExGDatGn44YcfEBgYiPv37/Md65MaNmyI5s2bIzIyku8olaatrY3g4GBs2LAB/fr1w+zZsyGTyUq+XnqU5+XlhbNnz6rdKK80ZW1c/xRPT0/Y2NhAIpHwloEvVPhUxJdubjl58iTu3r2LgQMHKjGVehIIBAgICEBqaiqaN28OkUik0tsfqvJNLmXp1KkTLl68iKioKPj5+eHFixf/GuVNmDBBrT/gFRUV4eTJk2jbti2vOf744w/MnTu3St75XBlU+FTEl0Z8wcHBmDBhglpO+fDFwMAAU6ZMwaVLl0q2P4SFhancm0Dv3r1x8eJFlR6ZVlSdOnUQFxcHJycn2NnZwcnJCe3bt1f7UV6x5ORkWFpawsLCgtccXbt2RX5+PmJiYnjNoWxU+FTE50Z8Z86cwY0bNzBo0CAlp9IMxdsftmzZgpkzZ6J9+/ZITk7mO1YJAwMD9OvXD5s2beI7CqcePnyIS5cuwdTUFEKhEEKhUGMOZOB7mrNY8eHVc+fO5TuKUmnGT1kV8LkRX3BwMMaPHw9dXV0lp9Is7dq1Q2JiIvr27YuOHTti5MiRePnyJd+xALyf7ty4ceMHa2JVFWMMISEhcHNzQ/v27ZGamoqkpCSEh4ejZ8+eePXqFd8RFY7vG1tK69+/P9LS0pCUlMR3FKWhwqciPjXiO3/+PK5du4bBgwcrP5QGEgqFGDFixAfbH1auXMn7nW8ikQgmJiaV2giuCu7fv49OnTph7dq1iIuLw/jx4yEUClG3bl0kJCTAzs4OIpEI586d4zuqwshkMpw4cUJlCp+uri5+/fVXjRr1UeFTEZ8a8QUHB+PPP/+Enp4eD6k0V/H2h9jYWEgkEohEIsTHx/OaqSrf5FJ6lNehQ4cy9+Xp6upiwYIFWLx4Mbp3747Fixer3HorF65cuQIzMzNYWVnxHaXE8OHDERMTgzt37vAdRTl43DxPSunatSs7cODAB3924cIFVqdOHSaVSnlKRRh7//SHsLAwVq9ePSYWi3l74virV69YzZo1q9TpM4wxdu/ePebj48Pc3NzY1atXy3XNnTt3mJubG/P391fok8n5sGTJEjZ8+HC+Y/zLhAkT2M8//8x3DKWgEZ+KKGsD+4wZMzBu3Dga7fFMIBBALBZ/sP1h2rRpSt/+YGJigq5du2Lbtm1K7VdejDGsWbMGbm5u8Pb2xpkzZ9C0adNyXdugQQOcPHkS1tbWcHV1RWJiooLTKo8qre+V9t///hfbt2/H8+fP+Y6ieHxXXvKep6cnO3XqVMnvk5KS2FdffcVyc3N5TEXKcv/+fdanTx9Wr149tnv3biaTyZTWd0xMDHNyclJqn/IoHuW5u7uXe5T3Kbt372bm5uZs+fLlKv99f0lRUREzNTVl6enpfEcpU1BQEJsyZQrfMRSOCp+KcHZ2ZomJiSW/9/f3Z4sWLeIxEfmSuLg45uTkxLy8vNjly5eV0mdRURFr0KABu3DhglL6qyiZTMZWr17NzMzM2F9//cUKCgo4affmzZvM2dmZ9enTh2VlZXHSJh+uXLnCGjVqxHeMT7px4wYzNzdn2dnZfEdRKJrq5NGL7DysTriN0bsuIatFfyy7+AarE27jxPlLOHPmDIKC/q+9ew9q6sz7AP4NBERErGIQ8IoiILYqCi2tFnG94LKtbl3F1uIFFWxBE1u1OtNBh1p8d3XXliAV6wW8v4qtu52uda0LAdtqq9IVEVCRgCBguMlF7sl5//Al6ym3kJzkJOH3mXEmoj7nh0P48jzPOb8nnO8SSTcCAgJw8+ZNBAcHY86cOYiMjNT74w8WFhYIDQ01yptcCgsLMXfuXBw+fBhpaWnYtm0bZ91X3NzccPXqVQwePBg+Pj4mecwU8GyZ0xie3+vK+PHj4e/vb5RfX1wSMIwZ3jZl5G4VPUG8LA9p956tpTe3/ffZLBuhBZpbWuBq04jP1s7H5JEv8FUm6YWqqips374dycnJ2LFjB8LDw/XWcquoqAiTJ09GcXExbG1t9XKN3mD+fy8vKioKmzdvxqZNm/Tabuz06dMQi8WIiYlBWFgYBAKB3q7FtSVLlmDBggVYvnw536V06ZdffkFwcDDu379vtp2iKPgM7MS1AsRcyEVTmxLd/c8LANhYWeLjIE+E+I0xVHlER5mZmZBIJKiqqkJsbKzefrr//e9/j2XLlvH+DbSgoABr1qxBXV0dkpKS4OXlZZDr5ubmYsmSJZg0aRIOHDgAOzs7g1xXFwzDwMnJCdevX8eoUaP4Lqdbs2bNQlhYmNmeBENLnQb0LPRy0NjafegBAAOgsVWJmAs5OHGtwBDlEQ5MmjQJKSkpiIqKwsqVKxEcHIyHDx9yfh2+n+ljGAYJCQnw9fXFvHnz8NNPPxks9ADA09MTP//8M2xsbODr64usrCyDXVtbubm5GDBggNGHHmD+zasp+AzkVtETxFzIRWNr71pONbaqEHMhF5nFT/RUGeHa848/TJw4Ed7e3oiOjkZjYyNn11iwYAGys7ORl5fH2ZiaKigowJw5c5CYmIi0tDRs3bqVl5MUbG1tcfjwYWzbtg2zZs0y+kNVZTKZUT7G0Jn58+dDpVLh0qVLfJeiFxR8BhIvy0NTm1Krf9vUpsQXMsN/gyO6sbW1xY4dO5CRkYE7d+5gwoQJOHfuHCc/RVtbWyMkJARHjhzhoFLNqFQq7N+/Hz4+Ppg3bx5+/PFHg87yurJy5UrIZDLs2bMHoaGhRnu8lLE+v9cZgUCgnvWZI9rjM4CK+mZM/0sK6yaW3uontMBPW38HBzt6mN1UyWQyiMViODg4QCqV4qWXXtJpvDt37mDevHkoLCzU+4yrfS+vvr4eiYmJRhF4v1VfX4+IiAhkZGQgOTkZEyZM4LskNYZh4OLigqtXr2LMmDF8l6OR1tZWjBs3Dl9//TV8fHz4LodTNOMzgHM3i3UeQwDgXIbu4xD+BAQEICMjA4sXL8bs2bOxfv16nU4imDhxIkaOHImLFy9yWCVb+yzP19cXgYGBRjPL64ydnR2OHj2KjRs3wt/fHydOnOC7JLV79+7B2traZEIPAKysrPDhhx+a5ayPgs8AcstqdZrtAUBTmwrX7z1CTU2N2W449wVCoRCRkZHIyckBwzCYMGEC9u/fD6VSu2Vwfd7kIpfLMWfOHCQlJSE9PR0fffSR0Z+KLhAIsHbtWvz73//Gzp07ER4ezuneqrZMaZnzeWvXrkVqaiove8n6REudBrD66HWk5Cp0HkdQkoXK8zFobm6Go6MjRCIRHB0dWb9++zGRSGQUz3qRzmVmZkIsFqO6uhpSqbTX3xxra2sxatQo3L17l7PTvFUqlfq5vI8++ggffvih0QdeZ+rq6hAeHo6cnBycPXsW7u7uvNWybNkyzJkzB6tXr+atBm1FRUWhoqIC+/fv57sUzlDwGcDGM7/i7/8p0Xmct6YMx2dLp6CxsRHl5eUoLy+HQqFg/ersY0KhsMeAbP+YSCQy24dWjRXDMEhOTsaWLVvg5+eHPXv29OqW99DQUHh5eWHLli061yKXy7FmzRo0NDQgMTHRqPbJtNH+cP327duxb98+BAcH81LDiBEjkJ6ejnHjxhn8+rpSKBTw9PRETk4OZz9c8Y2CzwAS0h7gs8v3dFrutBFa4IO57ljn37s3DsMwqK+v1yggy8vLUVFRgYEDB/YYkO2vhwwZAgsLWjHnQkNDA3bv3o19+/ZBLBZjy5YtnZ7R+Fs//PAD1q5di5ycHK27mKhUKiQkJGDHjh3qWZ6lpaVWYxmjjIwMBAcHIzAwEHv37jXoiSd5eXkICAhAUVGRSXWZeV5ERAQcHBywc+dOvkvhBAWfAZjSXZ0qlQrV1dU9BmT769raWjg4OGi07Oro6IiBAwea7JvfUAoLC7F582bcuHEDf/3rX7Fo0aJu/8/a9wr3fnEQDy1dkFtWi9qmNtjbCOHpZI8l00Z0+3VjbrO8rtTU1GDNmjWQy+VITk7G2LFjDXLdQ4cOQSaTGdXNNr2Vl5eHV199FXK53CS65PSEgs9Awo/fwPc5j3vs2NIZgQAI9BqGhBDju6W4tbUVFRUVGi+7trS0aLzs6ujoqNGMx1ylpqZCLBZDJBIhNja2y8cfbhU9wcaD36GwZQCsrKw69H5lAAR4iBAx043V+7V9lrd9+3Zs3brV7GZ5nWEYBvv27cPOnTtx4MABvPXWW3q/5vLly+Hv74+wsDC9X0ufgoOD8dprr2Hjxo18l6IzCj4DuVX0BG8fvIbG1t7fvdffyhJnwv0waYTpN6xu35/UZNlVoVDAyspK42XXoUOHmt3+ZFtbGw4cOIDo6GgsXboU0dHRGDJkiPrP1b1fW5Xo7o0sEAA2wv/2fm2f5TU2NiIxMRGenp76/2SMyC+//IKlS5di4cKF2L17N6ytrfVyHYZhMHr0aFy+fJnXm2u4cOPGDSxatAgPHjww+fcZBZ8B/bdXp+ZLnv2tLPBx0IQ+2aiaYRjU1dVpvOxaWVkJe3t7jZddBw8ebDL7k5WVlYiKisJXX32F6OhohIWF4fT1Iq2+nmYMUOD8nk19ZpbXlerqaqxatQplZWU4e/YsRo8ezfk18vPzMWPGDDx69Mgslvhnz56NVatW8d4cXVcUfAam8ekMv/kJnfRMpVKhqqqq04DsLDjr6urg4OCg8bKrMexP3rp1C2KxGJWwQ8uMCLRos22sbIF0gSsWzJjCeX2mhmEY7N27F7t378ahQ4fw5ptvcjp+YmIiLl26hNOnT3M6Ll/+9a9/YfPmzcjMzOT9vaALCj4eZBY/wReyPKTeLYcAzx5Ob9e+JzPLQ4SIADezWN40Vu37k5re8dra2tptQD7/cZFIpLf9SYZh8MZfvkFWtQUEWsxYjXnPmC9Xr17F22+/jaVLlyImJoazpbxVq1bBz88P7733Hifj8Y1hGHh7e2PXrl0ICgriuxytUfDxqLK+GecyipFbWofaplbY21jB03kgFk/t/i48wo+GhgZWKPa09NqvXz+NGw0MHTpU44fETekuYVNSUVGBFStWoKamBmfOnMGIESN0HnPMmDG4ePGiWe2hnjp1Cl9++SVkMhnfpWiNgo8QPWAYBrW1tRoFpEKhQFVVFezt7TXam7wgb8WBn4p5eS7U3KlUKuzevRuff/45kpKSMH/+fK3HKiwsxCuvvILS0lKTXhb8rba2Nri5ueHMmTN45ZVX+C5HKxR8hBgBpVLJen6yu1ll3Yt/grX7dJ2v2d4JiHSUnp6OZcuWYeXKlYiOjtaqZduxY8fw7bff4uzZs3qokF9xcXGQyWT46quv+C5FKxR8hJgYrnq/ug9oxuaX7TB8+HC4uLjghRdeMKuZia4UCgVCQkLQ0tKCU6dOwcXFpVf/fvXq1fDx8UFERISeKuTP06dP4erqih9++MEkH9Mwvc6zhPRx9jbcvG2rH5dg9+6/o6SkBI8ePUJLSwtcXFzUQfjb1+2/7ytNzx0dHfHdd99h165d8PHxwfHjxzF79uwu/35FfTPO3SxWd85JaRyF0UMno7K+2ez2UgcMGID3338ff/vb33DgwAG+y+k1mvERYmK46P0KZSueXjuDydblCAgIQEBAALy8vFBZWakOwpKSkg6vS0pK0K9fvx4D0tnZ2eQfcn5eSkoKQkJCEB4ejqioKNazj7eKniBeloe0e+UAoHHnHFNXXl4ODw8PZGdnw8nJie9yeoWCjxATw9VdnRcjfHHn5jXIZDLIZDLcvXsXfn5+6iD09fXt0NGEYRhUV1d3GYrtv1coFBg8eHCPASkSiUymiUBZWRneeecdWFpa4uTJkxg2bFiffy53/fr1sLe3x65du/gupVco+AgxQfro/frkyRNcuXJFHYT379/vEISazuKUSiUUCkWnofj865qaGjg5OXW5rNr+etCgQUax/6hUKhEdHY0jR45g9f8kIvl+W5/uxJSfn4+XX34ZcrkcAwcO5LscjVHwEWKCDNH7tbq6mhWE7R3624PQx8dH5+XM5uZmlJWVdbu0+ujRIyiVym73HdtfG6qp+ZfnLiLm5wYIhL3fuzOn3rsA8M4778DHxwebNm3iuxSNUfARYqIM3fu1uroa6enp6iB88OABXnvtNXUQTps2TW/7enV1dSgtLe02IEtKSmBra9tjQA4bNkznOsOP38D32Y+7bQzeFXPrnPPrr7/izTffRH5+vt6afXONgo8QE8bnHlNVVRUrCOVyeYcg1Ob5N20xDIOqqqpu9x5LSkpQXl4OBweHHgPSwcGh0/1H6pzT0bx58/Duu+9i5cqVfJeiEQo+QkycsfR+raysZAVhQUEBpk+frg7CqVOnGjQIu9LW1sbaf+xqFllXVwdnZ+cOgfjAeixSK2zRi4l2B+bWOefy5cuQSCS4ffu2SdysRMFHiJkwtt6vFRUVrCAsLCzEjBkz1EHo7e1tFEHYlaamJpSWlnYIxdSmUSgf4Krz+ObUOYdhGEybNg2ffPIJ3njjDb7L6REFHyHEIMrLy1lBWFRU1CEITeFsQK4658z2dMThlb4cVGQczpw5g/j4eKSnp/NdSo8o+AghvFAoFKwgLC4uxuuvv64OwilTphhlEG488yv+/p8Snccxpxkf8GwJ2d3dHSdPnsSrr77KdzndouAjhBgFhUKBtLQ0dRCWlJSwgnDy5MlGEYRcdM4xtz2+dvHx8bh8+TLOnz/PdyndouAjhBilx48fs4KwrKysQxDycSMFF3d1ClRt2DOjH/70RqBRPJjPlYaGBri6uiItLc2ozyCk4COEmISysjJWED5+/Bj+/v7qIJw0aZLBglCnzjkAPAY0oTT5E7S0tEAsFmP58uWws7PjvE4+fPLJJ3j48CEOHTrEdyldouAjhJik0tJSVhCWl5ezgvCll17SWxBy0TnnpeGDkJaWhtjYWKSnpyM0NBTr16/HmDFjuC/YgCorKzF+/HhkZWX1+ignQ6HgI4SYhZKSElYQVlRUYObMmeogfPHFFzkNQi4758jlcsTHxyMxMRH+/v6QSCSYOXOmyS6DSiQS9O/fH3/+85/5LqVTFHyEELP06NEjVhBWVVWxgnDixIk6ByHXnXPq6+tx/PhxSKVSWFtbQywWY9myZQbrQcqVgoICTJs2Dfn5+Rg0aBDf5XRAwUcI6ROKi4vVQZiamoqampoOQajNDEsfnXNUKhW+//57SKVSXL9+HWFhYYiIiMDw4cN7XR9f3n33XUyZMgVbtmzhu5QOKPgIIX1SUVERKwjr6upYQejl5dWrINRX55x79+4hLi4OJ0+eRGBgIMRiMfz8/Ix+GfTWrVsICgpCfn4++vUzrp6kFHyEEALg4cOHrCCsr69Xh2BAQAAmTJjAa9jU1NQgMTERcXFxcHBwgEQiwZIlS4z6RIT58+cjODgYq1ev5rsUFgo+QgjpRGFhISsIGxoaWEHo6enJSxAqlUr885//hFQqRXZ2Nt577z2sW7cOw4YNM3gtPUlJSUFkZCTu3LljVM2rKfgIIUQDBQUFSEtLQ2pqKlJTU9Hc3MwKQg8PD4MHYVZWFqRSKZKTk7Fw4UKIxWJMnTrVoDV0h2EYvPzyy4iKisKCBQv4LkeNgo8QQrRQUFCgng2mpqaitbWVFYTu7u4GC8LKykocOnQI8fHxGD16NCQSCf74xz8axekXycnJ+Pzzz/Hjjz/yXYoaBR8hhOiIYZgOQahUKllBOH78eL0HYVtbG86fP4/Y2Fg8fPgQkZGRCAsLw5AhQ/R63e4olUp4eHjg6NGjmD59Om91PI+CjxBCOMYwDORyOSsIGYZhBaGbm5teg/DmzZuQSqX45ptvEBwcjA0bNuDFF1/U2/W6k5CQgO+++w7/+Mc/eLn+b1HwEUKInjEMg/z8fHUQymQyAGAF4bhx4/QShI8fP0ZCQgISEhIwceJESCQS/OEPfzDozSaNjY1wdXVFSkoKvLy8DHbdrlDwEUKIgTEMgwcPHrCC0MLCghWEY8eO5TQIW1pacPbsWcTGxqK6uhrr16/H6tWrYW9vz9k1uvPpp58iPz8fR44cMcj1ukPBRwghPGMYBnl5eawgFAqFrCB0dXXlJAgZhsG1a9cQGxuLS5cuISQkBBs2bMD48eM5+Ey6VlVVBTc3N2RmZmLEiBF6vVZPKPgIIcTIMAyD+/fvs4LQ2tpaHYKzZs3i5BSH4uJi7N+/HwcPHoSvry8kEgnmzp2rt73HDz74AEKhEHv27NHL+Jqi4COEECPHMAzu3bvHCkIbGxtWEI4ePVrr8RsbG3Hq1CnExsaira0NGzZswIoVKzBgwAAOP4tn3XG8vb3x4MEDvPCCZn1L9YGCjxBCTAzDMLh79646BGUyGWxtbVlBOGrUKK3GbT8j8MqVKwgNDUVkZCSnZwSuWLECXl5e2LZtG2dj9hYFHyGEmDiGYZCbm8sKQjs7O1YQjhw5sldjyuVy7Nu3D0lJSZg5cyYkEgn8/f11Xga9ffs2AgMDkZ+fDxsbG53G0hYFHyGEmBmGYZCTk8MKQnt7e9bNMpoGYX19PY4dOwapVAobGxv1GYG6hFZQUBAWLVqEtWvXaj2GLij4CCHEzDEMg+zsbHUQpqWlYdCgQawg7OlOS5VKhUuXLkEqleLmzZvqMwJdXFx6XU9aWhrCw8ORnZ0NS0tLbT8trVHwEUJIH6NSqToE4eDBg1lB2N2ht3fv3kVcXBxOnTqF+fPnq88I1BTDMPDz88O2bdvw+twgnLtZjNyyWtQ2tcHeRghPJ3ssmabbOYbdoeAjhJA+TqVS4c6dO6wgdHBwYAVhZzO7mpoaHDlyBHFxcRCJRJBIJFi8eLFGZwR+duxrJKTLAednnVyaOzm5PsBDhIiZbpg8kts7QCn4CCGEsKhUKmRlZbGCUCQSsYLQ2dlZ/feVSiW+/fZbSKVS5OTk4P3338e6devg6OjY6fgnrhXg0ws5aGpuA7ppnSYQADZCS3wc5IkQvzGcfX4UfIQQQrqlUqlw+/ZtdRCmp6fD0dGRFYROTk4Ant21KZVKce7cOSxcuBASiQTe3t7qsU5cK0DMhRw0tqq6ulwH/a0s8HHQBM7Cj4KPEEJIryiVyg5B6OTkxApCoVCIgwcPIj4+Hq6urpBIJHCdFoB3j1xHY6uy19fsb2WJM+F+mDRC92VPCj5CCCE6USqVyMzMVAfhlStX4OzsjICAAMyYMQNPnz5FUlISil2DIBg5GUDvnwUUCIBAr2FICPHRuV4KPkIIIZxSKpW4desWKwhdXN3ROO9jMBbanwrfT2iBn7b+Tue7PSn4CCGE6JVSqcSO//0Bp7NqoYT25wDaCC3wwVx3rPMfp1M9hjuJkBBCSJ9kaWmJeqG9TqEHAE1tKuSW1ulcDwUfIYQQvattauNonFadx6DgI4QQonf2Ntrv7bHHsdJ5DAo+QggheufpZI9+Qt0ix0ZoAU/ngTrXQsFHCCFE7xZP674JtiYYAIun6j4OBR8hhBC9G2rXDzPdRdD2OD+BAJjlIeKkcTUFHyGEEIOIDHCDjVC7Y4hshJaICHDjpA4KPkIIIQYxeeQL+DjIE/2tehc9z3p1enLSrgwAuLnNhhBCCNFAe6PpmAu5aGpTorsWKnQ6AyGEELORWfwEX8jykHq3HAI8ezi9Xft5fLM8RIgIcONspteOgo8QQghvKuubcS6jGLmldahtaoW9jRU8nQdi8VQ6gZ0QQgjhBN3cQgghpE+h4COEENKnUPARQgjpUyj4CCGE9CkUfIQQQvoUCj5CCCF9CgUfIYSQPoWCjxBCSJ9CwUcIIaRP+T8qL63fS/4ztQAAAABJRU5ErkJggg==", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# setup Erdos Renyi graph\n", + "n = 10 # number of nodes/vertices\n", + "m = 20 # number of edges\n", + "seed = 2\n", + "\n", + "# define graph object\n", + "G = nx.gnm_random_graph(n, m, seed=seed)\n", + "# positions for all nodes\n", + "pos = nx.spring_layout(G)\n", + "\n", + "# choose random weights\n", + "for (u, v) in G.edges():\n", + " G.edges[u,v]['weight'] = random.uniform(0, 1)\n", + "\n", + "# draw graph\n", + "nx.draw(G, pos)\n", + "plt.show()\n", + "\n", + "# set Ising matrix \n", + "Jfull = nx.adjacency_matrix(G).todense()\n", + "Jfull = np.array(Jfull)\n", + "\n", + "# get off-diagonal upper triangular matrix\n", + "J = np.triu(Jfull, k=1).astype(np.float64)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "from utils_qaoa import circuit, train, train_adjoint\n", + "# auto reload external files, so that we can edit the external .py file and immediately see the changes here\n", + "%load_ext autoreload\n", + "%autoreload 2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we define hyperparameters. We'll use an optimization method that can benefit from information about the Jacobian, in this case `'BFGS'`, when running with the `AdjointGradient` result type. Without it, we'll use `'Powell'`, as we did in the other QAOA notebook, which uses the finite differences method to compute gradients and adjust the parameters. See the [scipy documentation](https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize) for more information about possible optimization methods." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Circuit depth hyperparameter: 2\n", + "Problem size: 10\n" + ] + } + ], + "source": [ + "##################################################################################\n", + "# set up hyperparameters\n", + "##################################################################################\n", + "\n", + "# User-defined hypers\n", + "DEPTH = 2 # circuit depth for QAOA\n", + "OPT_METHOD = {'adjoint': 'BFGS', 'gradient-free': 'BFGS'}\n", + "\n", + "# set up the problem\n", + "n_qubits = J.shape[0]\n", + "\n", + "# initialize reference solution (simple guess)\n", + "energy_init = 0.0\n", + "\n", + "##################################################################################\n", + "# run QAOA optimization on graph \n", + "##################################################################################\n", + "\n", + "print('Circuit depth hyperparameter:', DEPTH)\n", + "print('Problem size:', n_qubits)\n", + "\n", + "# set options for classical optimization\n", + "options = {'disp': True, 'maxiter': 30}\n", + "verbose = True\n", + "\n", + "np.random.seed(2)\n", + "p = DEPTH\n", + "# randomly initialize variational parameters within appropriate bounds\n", + "gamma_initial = np.random.uniform(0, 2 * np.pi, p).tolist()\n", + "beta_initial = np.random.uniform(0, np.pi, p).tolist()\n", + "params0 = np.array(gamma_initial + beta_initial)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We're now ready to run the optimization. We'll set up separate cost trackers for each run to compare not only running time, but also billing incurred. First, using the adjoint differentiation method:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Starting the training.\n", + "====================================================================\n", + "OPTIMIZATION for circuit depth p=2\n", + "Initial energy: -0.05267587615473164\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 2\n", + "Energy expectation value (cost): -0.05267587615473156\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 3\n", + "Energy expectation value (cost): 0.3531762574841993\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 4\n", + "Energy expectation value (cost): -1.9354434136131804\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 5\n", + "Energy expectation value (cost): -0.3498090866453894\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 6\n", + "Energy expectation value (cost): -1.79710493450284\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 7\n", + "Energy expectation value (cost): -2.048613457094462\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 8\n", + "Energy expectation value (cost): -2.090456572339379\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 9\n", + "Energy expectation value (cost): -2.1335721563595507\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 10\n", + "Energy expectation value (cost): -2.1466520627954995\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 11\n", + "Energy expectation value (cost): -2.146589390426477\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 12\n", + "Energy expectation value (cost): -2.1548795821625237\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 13\n", + "Energy expectation value (cost): -2.158405687757965\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 14\n", + "Energy expectation value (cost): -2.160231466558164\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 15\n", + "Energy expectation value (cost): -2.170885714298184\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 16\n", + "Energy expectation value (cost): -2.2017257216438497\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 17\n", + "Energy expectation value (cost): -2.2204782717518112\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 18\n", + "Energy expectation value (cost): -2.231745254745078\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 19\n", + "Energy expectation value (cost): -2.272653720288545\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 20\n", + "Energy expectation value (cost): -2.338598305165878\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 21\n", + "Energy expectation value (cost): -2.406813607483334\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 22\n", + "Energy expectation value (cost): -2.4140539585680183\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 23\n", + "Energy expectation value (cost): -2.4226083364070496\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 24\n", + "Energy expectation value (cost): -2.425918124006462\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 25\n", + "Energy expectation value (cost): -2.42837089364217\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 26\n", + "Energy expectation value (cost): -2.428440753686318\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 27\n", + "Energy expectation value (cost): -2.4284433319360255\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 28\n", + "Energy expectation value (cost): -2.428443347240679\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 29\n", + "Energy expectation value (cost): -2.4284433472812954\n", + "Optimization terminated successfully.\n", + " Current function value: -2.428443\n", + " Iterations: 20\n", + " Function evaluations: 28\n", + " Gradient evaluations: 28\n", + "Final average energy (cost): -2.4284433472812954\n", + "Final angles: [2.65349514 0.60430877 1.10839027 1.38078709]\n", + "Training complete.\n", + "Code execution time using adjoint differentiation [sec]: 100.16227006912231\n", + "Optimal energy using adjoint differentiation: -2.4284433472812954\n" + ] + } + ], + "source": [ + "adjoint_costs = Tracker().start()\n", + "#set up trackers to keep track of results\n", + "adjoint_tracker = {\n", + " 'count': 1, # Elapsed optimization steps\n", + " 'optimal_energy': energy_init, # Global optimal energy\n", + " 'opt_energies': [], # Optimal energy at each step\n", + " 'global_energies': [], # Global optimal energy at each step\n", + " 'costs': [], # Cost (energy) at each step\n", + " 'res': None, # Quantum result object\n", + " 'params': [] # Track parameters\n", + "}\n", + "\n", + "# kick off training for adjoint\n", + "start = time.time()\n", + "result_energy, result_angle, adjoint_tracker = train_adjoint(\n", + " device = device, options=options, p=DEPTH, ising=J, n_qubits=n_qubits,\n", + " opt_method=OPT_METHOD['adjoint'], tracker=adjoint_tracker, params0=params0, verbose=verbose)\n", + "end = time.time()\n", + "\n", + "# print execution time\n", + "print('Code execution time using adjoint differentiation [sec]:', end - start)\n", + "\n", + "# print optimized results\n", + "print('Optimal energy using adjoint differentiation:', adjoint_tracker['optimal_energy'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's also examine the costs incurred by running QAOA with the `AdjointGradient` result type and a gradient-aware optimization method:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Adjoint Gradient Aware Task Summary\n", + "{'arn:aws:braket:::device/quantum-simulator/amazon/sv1': {'shots': 0, 'tasks': {'COMPLETED': 29}, 'execution_duration': datetime.timedelta(seconds=1, microseconds=860000), 'billed_execution_duration': datetime.timedelta(seconds=87)}}\n", + "Estimated cost to run this example: 0.109 USD\n" + ] + } + ], + "source": [ + "print(\"Adjoint Gradient Aware Task Summary\")\n", + "print(adjoint_costs.quantum_tasks_statistics())\n", + "print(f\"Estimated cost to run this example: {adjoint_costs.simulator_tasks_cost():.3f} USD\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, we'll run without using the adjoint differentiation method to compute the gradient and compare the running time and costs:" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Starting the training.\n", + "====================================================================\n", + "OPTIMIZATION for circuit depth p=2\n", + "Initial energy: -0.05267587615473153\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 2\n", + "Energy expectation value (cost): -0.05267587615473145\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 3\n", + "Energy expectation value (cost): -0.05267583401081515\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 4\n", + "Energy expectation value (cost): -0.052675832946504964\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 5\n", + "Energy expectation value (cost): -0.052675775205400364\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 6\n", + "Energy expectation value (cost): -0.05267578407188134\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 7\n", + "Energy expectation value (cost): 0.35317625639201633\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 8\n", + "Energy expectation value (cost): 0.35317635436937445\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 9\n", + "Energy expectation value (cost): 0.35317631990683873\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 10\n", + "Energy expectation value (cost): 0.35317628774530807\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 11\n", + "Energy expectation value (cost): 0.3531763197484072\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 12\n", + "Energy expectation value (cost): -1.9354434155579512\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 13\n", + "Energy expectation value (cost): -1.9354433768795676\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 14\n", + "Energy expectation value (cost): -1.9354433767431884\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 15\n", + "Energy expectation value (cost): -1.935443382335277\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 16\n", + "Energy expectation value (cost): -1.9354433899609917\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 17\n", + "Energy expectation value (cost): -0.34980910143980903\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 18\n", + "Energy expectation value (cost): -0.3498090652567156\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 19\n", + "Energy expectation value (cost): -0.34980906705689274\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 20\n", + "Energy expectation value (cost): -0.3498091824665031\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 21\n", + "Energy expectation value (cost): -0.34980906522353905\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 22\n", + "Energy expectation value (cost): -1.797105044442033\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 23\n", + "Energy expectation value (cost): -1.7971051019761821\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 24\n", + "Energy expectation value (cost): -1.7971051015680377\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 25\n", + "Energy expectation value (cost): -1.7971050144192944\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 26\n", + "Energy expectation value (cost): -1.797105015189591\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 27\n", + "Energy expectation value (cost): -2.0486134643105225\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 28\n", + "Energy expectation value (cost): -2.048613463165455\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 29\n", + "Energy expectation value (cost): -2.048613463165\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 30\n", + "Energy expectation value (cost): -2.048613433174286\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 31\n", + "Energy expectation value (cost): -2.048613434025501\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 32\n", + "Energy expectation value (cost): -2.0904565914685818\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 33\n", + "Energy expectation value (cost): -2.0904565917957267\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 34\n", + "Energy expectation value (cost): -2.090456594815293\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 35\n", + "Energy expectation value (cost): -2.0904566099986406\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 36\n", + "Energy expectation value (cost): -2.0904566127559843\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 37\n", + "Energy expectation value (cost): -2.133572157281146\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 38\n", + "Energy expectation value (cost): -2.1335721627107724\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 39\n", + "Energy expectation value (cost): -2.1335721621067916\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 40\n", + "Energy expectation value (cost): -2.1335721543128763\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 41\n", + "Energy expectation value (cost): -2.1335721553545866\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 42\n", + "Energy expectation value (cost): -2.1466520873072668\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 43\n", + "Energy expectation value (cost): -2.1466520963683533\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 44\n", + "Energy expectation value (cost): -2.1466520940265736\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 45\n", + "Energy expectation value (cost): -2.1466520819905996\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 46\n", + "Energy expectation value (cost): -2.146652080835302\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 47\n", + "Energy expectation value (cost): -2.146589380341281\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 48\n", + "Energy expectation value (cost): -2.146589379851874\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 49\n", + "Energy expectation value (cost): -2.1465893856205946\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 50\n", + "Energy expectation value (cost): -2.1465893820672637\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 51\n", + "Energy expectation value (cost): -2.146589378670433\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 52\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Energy expectation value (cost): -2.1548796100967627\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 53\n", + "Energy expectation value (cost): -2.1548796153793828\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 54\n", + "Energy expectation value (cost): -2.1548796166539845\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 55\n", + "Energy expectation value (cost): -2.1548796073363605\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 56\n", + "Energy expectation value (cost): -2.1548796054619683\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 57\n", + "Energy expectation value (cost): -2.158404763282674\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 58\n", + "Energy expectation value (cost): -2.1584047788181904\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 59\n", + "Energy expectation value (cost): -2.1584047719619237\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 60\n", + "Energy expectation value (cost): -2.1584047631043077\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 61\n", + "Energy expectation value (cost): -2.158404752934861\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 62\n", + "Energy expectation value (cost): -2.160231194220481\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 63\n", + "Energy expectation value (cost): -2.1602312040395066\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 64\n", + "Energy expectation value (cost): -2.160231202042433\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 65\n", + "Energy expectation value (cost): -2.1602311924177826\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 66\n", + "Energy expectation value (cost): -2.1602311872981423\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 67\n", + "Energy expectation value (cost): -2.170884827927509\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 68\n", + "Energy expectation value (cost): -2.1708848389024\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 69\n", + "Energy expectation value (cost): -2.170884835803945\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 70\n", + "Energy expectation value (cost): -2.17088482564214\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 71\n", + "Energy expectation value (cost): -2.170884819532099\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 72\n", + "Energy expectation value (cost): -2.2017231916882922\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 73\n", + "Energy expectation value (cost): -2.201723212932062\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 74\n", + "Energy expectation value (cost): -2.201723198044966\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 75\n", + "Energy expectation value (cost): -2.201723185647768\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 76\n", + "Energy expectation value (cost): -2.2017231732806297\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 77\n", + "Energy expectation value (cost): -2.2204622418515827\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 78\n", + "Energy expectation value (cost): -2.220462273882845\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 79\n", + "Energy expectation value (cost): -2.2204622350878593\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 80\n", + "Energy expectation value (cost): -2.2204622201326245\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 81\n", + "Energy expectation value (cost): -2.2204622246198986\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 82\n", + "Energy expectation value (cost): -2.231736377725677\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 83\n", + "Energy expectation value (cost): -2.2317364024077575\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 84\n", + "Energy expectation value (cost): -2.2317363787387268\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 85\n", + "Energy expectation value (cost): -2.231736364291387\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 86\n", + "Energy expectation value (cost): -2.2317363587687113\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 87\n", + "Energy expectation value (cost): -2.2726472425821527\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 88\n", + "Energy expectation value (cost): -2.272647273945502\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 89\n", + "Energy expectation value (cost): -2.27264724314604\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 90\n", + "Energy expectation value (cost): -2.2726472396051567\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 91\n", + "Energy expectation value (cost): -2.2726472148737265\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 92\n", + "Energy expectation value (cost): -2.3385936445782365\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 93\n", + "Energy expectation value (cost): -2.3385936660991997\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 94\n", + "Energy expectation value (cost): -2.338593642992647\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 95\n", + "Energy expectation value (cost): -2.338593644550744\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 96\n", + "Energy expectation value (cost): -2.338593619749116\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 97\n", + "Energy expectation value (cost): -2.406820073747788\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 98\n", + "Energy expectation value (cost): -2.4068200747963573\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 99\n", + "Energy expectation value (cost): -2.406820071488685\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 100\n", + "Energy expectation value (cost): -2.4068200596241356\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 101\n", + "Energy expectation value (cost): -2.406820068389814\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 102\n", + "Energy expectation value (cost): -2.41406981099362\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 103\n", + "Energy expectation value (cost): -2.4140698069381004\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 104\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Energy expectation value (cost): -2.4140698046521014\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 105\n", + "Energy expectation value (cost): -2.4140698082790046\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 106\n", + "Energy expectation value (cost): -2.414069804579258\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 107\n", + "Energy expectation value (cost): -2.422620526817567\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 108\n", + "Energy expectation value (cost): -2.422620521827577\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 109\n", + "Energy expectation value (cost): -2.4226205261068987\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 110\n", + "Energy expectation value (cost): -2.4226205248456\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 111\n", + "Energy expectation value (cost): -2.4226205215500163\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 112\n", + "Energy expectation value (cost): -2.4259152579388106\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 113\n", + "Energy expectation value (cost): -2.425915261165225\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 114\n", + "Energy expectation value (cost): -2.425915257684496\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 115\n", + "Energy expectation value (cost): -2.4259152537174233\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 116\n", + "Energy expectation value (cost): -2.425915260265329\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 117\n", + "Energy expectation value (cost): -2.428371640379875\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 118\n", + "Energy expectation value (cost): -2.4283716402941264\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 119\n", + "Energy expectation value (cost): -2.428371640769982\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 120\n", + "Energy expectation value (cost): -2.4283716398172084\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 121\n", + "Energy expectation value (cost): -2.4283716403928652\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 122\n", + "Energy expectation value (cost): -2.4284408105996813\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 123\n", + "Energy expectation value (cost): -2.428440810542444\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 124\n", + "Energy expectation value (cost): -2.4284408105924773\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 125\n", + "Energy expectation value (cost): -2.4284408105075745\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 126\n", + "Energy expectation value (cost): -2.428440810494738\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 127\n", + "Energy expectation value (cost): -2.428443332137185\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 128\n", + "Energy expectation value (cost): -2.428443332133395\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 129\n", + "Energy expectation value (cost): -2.4284433321437477\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 130\n", + "Energy expectation value (cost): -2.4284433321496195\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 131\n", + "Energy expectation value (cost): -2.428443332137407\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 132\n", + "Energy expectation value (cost): -2.4284433472406057\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 133\n", + "Energy expectation value (cost): -2.428443347241153\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 134\n", + "Energy expectation value (cost): -2.428443347240252\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 135\n", + "Energy expectation value (cost): -2.4284433472406293\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 136\n", + "Energy expectation value (cost): -2.4284433472403757\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 137\n", + "Energy expectation value (cost): -2.428443347281297\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 138\n", + "Energy expectation value (cost): -2.428443347281339\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 139\n", + "Energy expectation value (cost): -2.428443347281304\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 140\n", + "Energy expectation value (cost): -2.4284433472813154\n", + "====================================================================\n", + "Calling the quantum circuit. Cycle: 141\n", + "Energy expectation value (cost): -2.4284433472812643\n", + "Optimization terminated successfully.\n", + " Current function value: -2.428443\n", + " Iterations: 20\n", + " Function evaluations: 140\n", + " Gradient evaluations: 28\n", + "Final average energy (cost): -2.428443347281297\n", + "Final angles: [2.65349514 0.60430877 1.10839025 1.38078708]\n", + "Training complete.\n", + "Code execution time without adjoint differentiation [sec]: 491.3400547504425\n", + "Optimal energy: -2.428443347281339\n" + ] + } + ], + "source": [ + "no_adjoint_costs = Tracker().start()\n", + "energy_init = 0.0\n", + "tracker = {\n", + " 'count': 1, # Elapsed optimization steps\n", + " 'optimal_energy': energy_init, # Global optimal energy\n", + " 'opt_energies': [], # Optimal energy at each step\n", + " 'global_energies': [], # Global optimal energy at each step\n", + " 'costs': [], # Cost (energy) at each step\n", + " 'res': None, # Quantum result object\n", + " 'params': [] # Track parameters\n", + "}\n", + "\n", + "# kick off training for gradient-free\n", + "start = time.time()\n", + "result_energy, result_angle, tracker = train(\n", + " device = device, options=options, p=DEPTH, ising=J, n_qubits=n_qubits, \n", + " opt_method=OPT_METHOD['gradient-free'], tracker=tracker, params0=params0, verbose=verbose)\n", + "end = time.time()\n", + "\n", + "# print execution time\n", + "print('Code execution time without adjoint differentiation [sec]:', end - start)\n", + "\n", + "# print optimized results\n", + "print('Optimal energy:', tracker['optimal_energy'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can examine the costs incurred by running QAOA without the `AdjointGradient` result type, using a finite-differences based optimization method:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Gradient-Unaware Task Summary\n", + "{'arn:aws:braket:::device/quantum-simulator/amazon/sv1': {'shots': 0, 'tasks': {'COMPLETED': 141}, 'execution_duration': datetime.timedelta(seconds=6, microseconds=22000), 'billed_execution_duration': datetime.timedelta(seconds=423)}}\n", + "Estimated cost to run this example: 0.529 USD\n" + ] + } + ], + "source": [ + "print(\"Gradient-Unaware Task Summary\")\n", + "print(no_adjoint_costs.quantum_tasks_statistics())\n", + "print(f\"Estimated cost to run this example: {no_adjoint_costs.simulator_tasks_cost():.3f} USD\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## References" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[1] Mitarai K., Negoro M., et al., \"Quantum Circuit Learning\", Physical Review A 98: 032309 (2018)\n", + "\n", + "[2] Schuld M., Bergholm V., et al., \"Evaluating analytic gradients on quantum hardware\", Physical Review A 99: 032331 (2019)\n", + "\n", + "[3] Weirechs D., Izaac J, et al., \"General parameter-shift rules for quantum gradients\", Quantum 6: 677 (2022)\n", + "\n", + "[4] Banchi L., Crooks G., \"Measuring Analytic Gradients of General Quantum Evolution with the Stochastic Parameter Shift Rule\", Quantum 5: 386 (2021)\n", + "\n", + "[5] Jones T., Gacon J., \"Efficient calculation of gradients in classical simulations of variational quantum algorithms\", arXiv:2009.02823" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Task Summary\n", + "{'arn:aws:braket:::device/quantum-simulator/amazon/sv1': {'shots': 0, 'tasks': {'COMPLETED': 173}, 'execution_duration': datetime.timedelta(seconds=7, microseconds=958000), 'billed_execution_duration': datetime.timedelta(seconds=519)}}\n", + "Note: Charges shown are estimates based on your Amazon Braket simulator and quantum processing unit (QPU) task usage. Estimated charges shown may differ from your actual charges. Estimated charges do not factor in any discounts or credits, and you may experience additional charges based on your use of other services such as Amazon Elastic Compute Cloud (Amazon EC2).\n", + "Estimated cost to run this example: 0.649 USD\n" + ] + } + ], + "source": [ + "print(\"Task Summary\")\n", + "print(t.quantum_tasks_statistics())\n", + "print('Note: Charges shown are estimates based on your Amazon Braket simulator and quantum processing unit (QPU) task usage. Estimated charges shown may differ from your actual charges. Estimated charges do not factor in any discounts or credits, and you may experience additional charges based on your use of other services such as Amazon Elastic Compute Cloud (Amazon EC2).')\n", + "print(f\"Estimated cost to run this example: {t.qpu_tasks_cost() + t.simulator_tasks_cost():.3f} USD\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.15" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/modules/1_Continue_Exploring/B_qtm_sims/Using_the_tensor_network_simulator_TN1.ipynb b/modules/1_Continue_Exploring/B_qtm_sims/Using_the_tensor_network_simulator_TN1.ipynb new file mode 100644 index 000000000..b93b14dbb --- /dev/null +++ b/modules/1_Continue_Exploring/B_qtm_sims/Using_the_tensor_network_simulator_TN1.ipynb @@ -0,0 +1,923 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Using the Amazon Braket tensor network simulator TN1" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# Use Braket SDK Cost Tracking to estimate the cost to run this example\n", + "from braket.tracking import Tracker\n", + "t = Tracker().start()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This tutorial serves as an in-depth introduction to TN1, the Amazon Braket tensor network simulator. TN1 was previously introduced in [Running quantum circuits on simulators notebook](../getting_started/1_Running_quantum_circuits_on_simulators/1_Running_quantum_circuits_on_simulators.ipynb). This tutorial explains what makes TN1 different from SV1, Braket's state vector simulator, and it discusses which use cases are well suited for tensor network simulations. We examine what circuit properties affect TN1's performance and how TN1 can be used to simulate some types circuits for many more qubits than SV1 can handle." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## How TN1 Works\n", + "\n", + "A tensor network simulator models the execution of circuits on a quantum computer by representing each gate in the circuit as a *tensor*. Tensors generalize the concept of vectors and matrices to higher dimensions. The gates in the network form a graph. The simulator works by finding an efficient way to multiply all the different tensors on the graph during the _rehearsal_ stage and then, after a suitable multiplication sequence or _path_ is found, it performs these multiplications in the _contraction_ stage. For more information about TN1 and how it works, see the [TN1 docs](https://docs.aws.amazon.com/braket/latest/developerguide/braket-devices.html#braket-simulator-tn1).\n", + "\n", + "## How is this different from SV1, the state vector simulator?\n", + "\n", + "SV1 works differently -- SV1 simulates all the evolution of all amplitudes as gates are applied. This means that SV1 cannot simulate large numbers of qubits for any circuit, because the memory required becomes infeasible. However, this restriction does not necessarily apply to TN1. Because TN1 works by contracting gates, it is able to work only with worldlines through the circuit which are relevant to the final outcome. However, TN1 can be slower than SV1 for circuits with complex geometry. In circuits which include multi-qubit gates, gates with long range, or circuits with few qubits (fewer than 28), SV1 is often the better choice. To use TN1 effectively it is important to understand that circuit geometry can pose more of a barrier than simple qubit number, as we will see below." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Can my circuit be simulated on TN1?\n", + "\n", + "While SV1 will simulate every circuit within the service limits (i.e., smaller or equal than 34 qubits), TN1 can only decide if a circuit can be contracted after it has the full information from the rehearsal stage. In the best case, this enables you to simulate circuits of much larger size than SV1 (up to 50 qubits) but, on the flip side, that means that in some cases you might find that TN1 will terminate the simulation after the rehearsal if it finds that the projected contraction time exceeds its runtime limit. In this case the `failureReason` for the task will be `Predicted runtime based on best contraction path found exceeds TN1 limit.` The rehearsal stage of TN1 is limited to 10 minutes, but in most cases you will find that TN1 will arrive at a decision much faster. \n", + " \n", + "As we will see below, if this situation occurs for a task for which you have requested a large number of shots, the task may be successful if you lower the shot count. It can also occur, albeit rarely, that the time to find a single contraction path candidate exceeds TN1's internal rehearsal runtime limit -- circuits for which this occurs are extremely unlikely to be contractable in reasonable time. In this case, the `failureReason` for the task will be `No viable contraction path found.`\n", + " \n", + "To learn more about why these two stages are present and what the simulator does in each, you can read the TN1 documentation [here](https://docs.aws.amazon.com/braket/latest/developerguide/braket-devices.html#braket-simulator-tn1)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "Note: In the worst case, the TN1 runtime can scale linearly with the number of shots requested. It is strongly recommended to test your circuit or circuit class with a small number of shots first.\n", + "
    " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "scrolled": false + }, + "outputs": [], + "source": [ + "# general imports\n", + "import numpy as np\n", + "import math\n", + "\n", + "import boto3\n", + "# AWS imports: Import Braket SDK modules\n", + "from braket.circuits import Circuit, circuit, Gate, Instruction\n", + "from braket.aws import AwsDevice\n", + "\n", + "tn_device = AwsDevice('arn:aws:braket:::device/quantum-simulator/amazon/tn1')\n", + "sv_device = AwsDevice('arn:aws:braket:::device/quantum-simulator/amazon/sv1')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Two simple examples: The GHZ state and Quantum Fourier Transform\n", + "\n", + "We already presented the GHZ example circuit in the [Running quantum circuits on simulators notebook](../getting_started/1_Running_quantum_circuits_on_simulators/1_Running_quantum_circuits_on_simulators.ipynb). Here, we'll compare the performance of SV1 and TN1 for this relatively simple circuit. The GHZ state is simple to prepare:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "def ghz_circuit(n_qubits: int) -> Circuit:\n", + " \"\"\"\n", + " Function to return simple GHZ circuit ansatz. Assumes all qubits in range(0, n_qubits-1)\n", + " are entangled.\n", + "\n", + " :param int n_qubits: number of qubits\n", + " :return: Constructed GHZ circuit\n", + " :rtype: Circuit\n", + " \"\"\"\n", + "\n", + " circuit = Circuit() # instantiate circuit object\n", + " circuit.h(0) # add Hadamard gate on first qubit\n", + "\n", + " for ii in range(0, n_qubits-1):\n", + " circuit.cnot(control=ii, target=ii+1) # apply series of CNOT gates\n", + " return circuit" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will simulate the measurement counts for this circuit on SV1 and TN1. SV1 can only simulate up to 34 qubits, but TN1 can work with substantially more in this case because of the circuit's geometry. In this case we will not run up to 34 qubits on SV1, because the runtime on that simulator can become quite long. 30 qubits is enough to see that TN1 can equal or outperform SV1 for circuits like GHZ, which has a simple, compact nearest-neighbor circuit geometry. Because the GHZ state is a \"cat state\", with only two possible measurement outcomes (all up or all down), it is easy for TN1 to explore all possible output bitstrings." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "GHZ circuit:\n", + "T : |0|1|2|3|4|5|6|7|8|9|10|11|12|13|14|15|16|17|18|19|\n", + " \n", + "q0 : -H-C-----------------------------------------------\n", + " | \n", + "q1 : ---X-C---------------------------------------------\n", + " | \n", + "q2 : -----X-C-------------------------------------------\n", + " | \n", + "q3 : -------X-C-----------------------------------------\n", + " | \n", + "q4 : ---------X-C---------------------------------------\n", + " | \n", + "q5 : -----------X-C-------------------------------------\n", + " | \n", + "q6 : -------------X-C-----------------------------------\n", + " | \n", + "q7 : ---------------X-C---------------------------------\n", + " | \n", + "q8 : -----------------X-C-------------------------------\n", + " | \n", + "q9 : -------------------X-C-----------------------------\n", + " | \n", + "q10 : ---------------------X--C--------------------------\n", + " | \n", + "q11 : ------------------------X--C-----------------------\n", + " | \n", + "q12 : ---------------------------X--C--------------------\n", + " | \n", + "q13 : ------------------------------X--C-----------------\n", + " | \n", + "q14 : ---------------------------------X--C--------------\n", + " | \n", + "q15 : ------------------------------------X--C-----------\n", + " | \n", + "q16 : ---------------------------------------X--C--------\n", + " | \n", + "q17 : ------------------------------------------X--C-----\n", + " | \n", + "q18 : ---------------------------------------------X--C--\n", + " | \n", + "q19 : ------------------------------------------------X--\n", + "\n", + "T : |0|1|2|3|4|5|6|7|8|9|10|11|12|13|14|15|16|17|18|19|\n", + "20-qubit TN1 task COMPLETED.\n", + "Tensor network simulator:\n", + "This task ran 100 shots and the total runtime was 2364 ms\n", + "Measurement results: Counter({'11111111111111111111': 54, '00000000000000000000': 46})\n", + "\n", + "20-qubit SV1 task COMPLETED.\n", + "State vector simulator:\n", + "This task ran 100 shots and the total runtime was 177 ms\n", + "Measurement results: Counter({'00000000000000000000': 55, '11111111111111111111': 45})\n", + "\n", + "GHZ circuit:\n", + "T : |0|1|2|3|4|5|6|7|8|9|10|11|12|13|14|15|16|17|18|19|20|21|22|23|24|\n", + " \n", + "q0 : -H-C--------------------------------------------------------------\n", + " | \n", + "q1 : ---X-C------------------------------------------------------------\n", + " | \n", + "q2 : -----X-C----------------------------------------------------------\n", + " | \n", + "q3 : -------X-C--------------------------------------------------------\n", + " | \n", + "q4 : ---------X-C------------------------------------------------------\n", + " | \n", + "q5 : -----------X-C----------------------------------------------------\n", + " | \n", + "q6 : -------------X-C--------------------------------------------------\n", + " | \n", + "q7 : ---------------X-C------------------------------------------------\n", + " | \n", + "q8 : -----------------X-C----------------------------------------------\n", + " | \n", + "q9 : -------------------X-C--------------------------------------------\n", + " | \n", + "q10 : ---------------------X--C-----------------------------------------\n", + " | \n", + "q11 : ------------------------X--C--------------------------------------\n", + " | \n", + "q12 : ---------------------------X--C-----------------------------------\n", + " | \n", + "q13 : ------------------------------X--C--------------------------------\n", + " | \n", + "q14 : ---------------------------------X--C-----------------------------\n", + " | \n", + "q15 : ------------------------------------X--C--------------------------\n", + " | \n", + "q16 : ---------------------------------------X--C-----------------------\n", + " | \n", + "q17 : ------------------------------------------X--C--------------------\n", + " | \n", + "q18 : ---------------------------------------------X--C-----------------\n", + " | \n", + "q19 : ------------------------------------------------X--C--------------\n", + " | \n", + "q20 : ---------------------------------------------------X--C-----------\n", + " | \n", + "q21 : ------------------------------------------------------X--C--------\n", + " | \n", + "q22 : ---------------------------------------------------------X--C-----\n", + " | \n", + "q23 : ------------------------------------------------------------X--C--\n", + " | \n", + "q24 : ---------------------------------------------------------------X--\n", + "\n", + "T : |0|1|2|3|4|5|6|7|8|9|10|11|12|13|14|15|16|17|18|19|20|21|22|23|24|\n", + "25-qubit TN1 task COMPLETED.\n", + "Tensor network simulator:\n", + "This task ran 100 shots and the total runtime was 2441 ms\n", + "Measurement results: Counter({'1111111111111111111111111': 56, '0000000000000000000000000': 44})\n", + "\n", + "25-qubit SV1 task COMPLETED.\n", + "State vector simulator:\n", + "This task ran 100 shots and the total runtime was 604 ms\n", + "Measurement results: Counter({'0000000000000000000000000': 53, '1111111111111111111111111': 47})\n", + "\n", + "GHZ circuit:\n", + "T : |0|1|2|3|4|5|6|7|8|9|10|11|12|13|14|15|16|17|18|19|20|21|22|23|24|25|26|27|28|29|\n", + " \n", + "q0 : -H-C-----------------------------------------------------------------------------\n", + " | \n", + "q1 : ---X-C---------------------------------------------------------------------------\n", + " | \n", + "q2 : -----X-C-------------------------------------------------------------------------\n", + " | \n", + "q3 : -------X-C-----------------------------------------------------------------------\n", + " | \n", + "q4 : ---------X-C---------------------------------------------------------------------\n", + " | \n", + "q5 : -----------X-C-------------------------------------------------------------------\n", + " | \n", + "q6 : -------------X-C-----------------------------------------------------------------\n", + " | \n", + "q7 : ---------------X-C---------------------------------------------------------------\n", + " | \n", + "q8 : -----------------X-C-------------------------------------------------------------\n", + " | \n", + "q9 : -------------------X-C-----------------------------------------------------------\n", + " | \n", + "q10 : ---------------------X--C--------------------------------------------------------\n", + " | \n", + "q11 : ------------------------X--C-----------------------------------------------------\n", + " | \n", + "q12 : ---------------------------X--C--------------------------------------------------\n", + " | \n", + "q13 : ------------------------------X--C-----------------------------------------------\n", + " | \n", + "q14 : ---------------------------------X--C--------------------------------------------\n", + " | \n", + "q15 : ------------------------------------X--C-----------------------------------------\n", + " | \n", + "q16 : ---------------------------------------X--C--------------------------------------\n", + " | \n", + "q17 : ------------------------------------------X--C-----------------------------------\n", + " | \n", + "q18 : ---------------------------------------------X--C--------------------------------\n", + " | \n", + "q19 : ------------------------------------------------X--C-----------------------------\n", + " | \n", + "q20 : ---------------------------------------------------X--C--------------------------\n", + " | \n", + "q21 : ------------------------------------------------------X--C-----------------------\n", + " | \n", + "q22 : ---------------------------------------------------------X--C--------------------\n", + " | \n", + "q23 : ------------------------------------------------------------X--C-----------------\n", + " | \n", + "q24 : ---------------------------------------------------------------X--C--------------\n", + " | \n", + "q25 : ------------------------------------------------------------------X--C-----------\n", + " | \n", + "q26 : ---------------------------------------------------------------------X--C--------\n", + " | \n", + "q27 : ------------------------------------------------------------------------X--C-----\n", + " | \n", + "q28 : ---------------------------------------------------------------------------X--C--\n", + " | \n", + "q29 : ------------------------------------------------------------------------------X--\n", + "\n", + "T : |0|1|2|3|4|5|6|7|8|9|10|11|12|13|14|15|16|17|18|19|20|21|22|23|24|25|26|27|28|29|\n", + "30-qubit TN1 task COMPLETED.\n", + "Tensor network simulator:\n", + "This task ran 100 shots and the total runtime was 2649 ms\n", + "Measurement results: Counter({'111111111111111111111111111111': 54, '000000000000000000000000000000': 46})\n", + "\n", + "30-qubit SV1 task COMPLETED.\n", + "State vector simulator:\n", + "This task ran 100 shots and the total runtime was 17147 ms\n", + "Measurement results: Counter({'111111111111111111111111111111': 54, '000000000000000000000000000000': 46})\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "35-qubit TN1 task COMPLETED.\n", + "Tensor network simulator:\n", + "This task ran 100 shots and the total runtime was 2660 ms\n", + "Measurement results: Counter({'11111111111111111111111111111111111': 54, '00000000000000000000000000000000000': 46})\n", + "\n", + "40-qubit TN1 task COMPLETED.\n", + "Tensor network simulator:\n", + "This task ran 100 shots and the total runtime was 2899 ms\n", + "Measurement results: Counter({'0000000000000000000000000000000000000000': 53, '1111111111111111111111111111111111111111': 47})\n", + "\n", + "45-qubit TN1 task COMPLETED.\n", + "Tensor network simulator:\n", + "This task ran 100 shots and the total runtime was 2958 ms\n", + "Measurement results: Counter({'000000000000000000000000000000000000000000000': 51, '111111111111111111111111111111111111111111111': 49})\n", + "\n", + "50-qubit TN1 task COMPLETED.\n", + "Tensor network simulator:\n", + "This task ran 100 shots and the total runtime was 3198 ms\n", + "Measurement results: Counter({'11111111111111111111111111111111111111111111111111': 51, '00000000000000000000000000000000000000000000000000': 49})\n", + "\n" + ] + } + ], + "source": [ + "qubit_range = range(20, 31, 5)\n", + "tn_qubit_range = range(35, 51, 5)\n", + "n_shots = 100\n", + "ghz_circs = {}\n", + "sv_tasks = {}\n", + "tn_tasks = {}\n", + "sv_results = {}\n", + "tn_results = {}\n", + "for num_qubits in qubit_range:\n", + " ghz = ghz_circuit(num_qubits)\n", + " sv_tasks[num_qubits] = sv_device.run(ghz, shots=n_shots)\n", + " tn_tasks[num_qubits] = tn_device.run(ghz, shots=n_shots)\n", + " ghz_circs[num_qubits] = ghz\n", + "\n", + "# Run qubit numbers which only TN1 supports\n", + "for num_qubits in tn_qubit_range:\n", + " ghz = ghz_circuit(num_qubits)\n", + " tn_tasks[num_qubits] = tn_device.run(ghz, shots=n_shots)\n", + " ghz_circs[num_qubits] = ghz\n", + "\n", + "for num_qubits in qubit_range:\n", + " tn_status = tn_tasks[num_qubits].state()\n", + " sv_status = sv_tasks[num_qubits].state()\n", + " while tn_status != 'COMPLETED':\n", + " tn_status = tn_tasks[num_qubits].state()\n", + " while sv_status != 'COMPLETED':\n", + " sv_status = sv_tasks[num_qubits].state()\n", + "\n", + " tn_results[num_qubits] = tn_tasks[num_qubits].result()\n", + " sv_results[num_qubits] = sv_tasks[num_qubits].result()\n", + "\n", + " # get the running time of the tasks\n", + " sv_runtime = sv_results[num_qubits].additional_metadata.simulatorMetadata.executionDuration\n", + " tn_runtime = tn_results[num_qubits].additional_metadata.simulatorMetadata.executionDuration\n", + "\n", + " # get the 'shots' parameter from metadata\n", + " tn_num_shots = tn_results[num_qubits].task_metadata.shots\n", + " sv_num_shots = sv_results[num_qubits].task_metadata.shots\n", + "\n", + " # get the measurement counts\n", + " tn_counts = tn_results[num_qubits].measurement_counts\n", + " sv_counts = sv_results[num_qubits].measurement_counts\n", + " \n", + " print(\"GHZ circuit:\")\n", + " print(ghz_circs[num_qubits])\n", + " print('{}-qubit TN1 task {}.'.format(num_qubits,tn_status))\n", + " print('Tensor network simulator:')\n", + " print('This task ran {} shots and the total runtime was {} ms'.format(tn_num_shots,tn_runtime))\n", + " print(\"Measurement results: {}\\n\".format(tn_counts))\n", + " print('{}-qubit SV1 task {}.'.format(num_qubits,sv_status))\n", + " print('State vector simulator:')\n", + " print('This task ran {} shots and the total runtime was {} ms'.format(sv_num_shots,sv_runtime))\n", + " print(\"Measurement results: {}\\n\".format(sv_counts))\n", + "\n", + "for num_qubits in tn_qubit_range:\n", + " tn_status = tn_tasks[num_qubits].state()\n", + " while tn_status != 'COMPLETED':\n", + " tn_status = tn_tasks[num_qubits].state()\n", + "\n", + " tn_results[num_qubits] = tn_tasks[num_qubits].result()\n", + "\n", + " # get the running time of the tasks\n", + " tn_runtime = tn_results[num_qubits].additional_metadata.simulatorMetadata.executionDuration\n", + "\n", + " # get the 'shots' parameter from metadata\n", + " tn_num_shots = tn_results[num_qubits].task_metadata.shots\n", + "\n", + " # get the measurement counts\n", + " tn_counts = tn_results[num_qubits].measurement_counts\n", + " \n", + " # we will not print the circuits here as they are quite large\n", + " print('{}-qubit TN1 task {}.'.format(num_qubits,tn_status))\n", + " print('Tensor network simulator:')\n", + " print('This task ran {} shots and the total runtime was {} ms'.format(tn_num_shots,tn_runtime))\n", + " print(\"Measurement results: {}\\n\".format(tn_counts))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "There are many circuits which can be efficiently simulated by TN1 even up to very large qubit counts. Another example is the quantum Fourier transform (QFT) and its inverse, shown in [the QFT notebook](../advanced_circuits_algorithms/Quantum_Fourier_Transform/Quantum_Fourier_Transform.ipynb). TN1 is able to efficiently simulate the QFT on an input state of |00..00> because in this case it amounts to a simple rotation, even up to many qubits:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "@circuit.subroutine(register=True)\n", + "def qft(qubits): \n", + " \"\"\"\n", + " Construct a circuit object corresponding to the Quantum Fourier Transform (QFT)\n", + " algorithm, applied to the argument qubits. Does not use recursion to generate the QFT.\n", + " \n", + " Args:\n", + " qubits (int): The list of qubits on which to apply the QFT\n", + " \"\"\"\n", + " qftcirc = Circuit()\n", + "\n", + " # get number of qubits\n", + " num_qubits = len(qubits)\n", + " \n", + " for k in range(num_qubits):\n", + " # First add a Hadamard gate\n", + " qftcirc.h(qubits[k])\n", + " \n", + " # Then apply the controlled rotations, with weights (angles) defined by the distance to the control qubit.\n", + " # Start on the qubit after qubit k, and iterate until the end. When num_qubits==1, this loop does not run.\n", + " for j in range(1,num_qubits - k):\n", + " angle = 2*math.pi/(2**(j+1))\n", + " qftcirc.cphaseshift(qubits[k+j],qubits[k], angle)\n", + " \n", + " # Then add SWAP gates to reverse the order of the qubits:\n", + " for i in range(math.floor(num_qubits/2)):\n", + " qftcirc.swap(qubits[i], qubits[-i-1])\n", + " \n", + " return qftcirc" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "20-qubit task COMPLETED.\n", + "QFT:\n", + "This task ran 100 shots and the total runtime was 7408 ms\n", + "Measurement results: Counter({'00011011011110110110': 1, '11110101000111110010': 1, '00110011000001111111': 1, '10101011000111000110': 1, '10010000010001000011': 1, '00110110001011010101': 1, '01010111111111100100': 1, '11100111011110100011': 1, '00011011011010001011': 1, '01010000101011110000': 1, '10100011111111101011': 1, '10101001110110100000': 1, '01010011101100011110': 1, '10011001011101111000': 1, '01001111100011000011': 1, '00001011000000110000': 1, '11101111110010000001': 1, '01111111010111000101': 1, '01000111101111010011': 1, '10000101110111000011': 1, '01000110010111101101': 1, '11110010101000101010': 1, '01111110000000111101': 1, '00100110111000010100': 1, '00100100010101010101': 1, '01101010010010110011': 1, '11010101100111110001': 1, '10101010001100110001': 1, '11100010110101110101': 1, '10110110100010100001': 1, '01110110010001011110': 1, '01001110001101101000': 1, '00011100111010111111': 1, '10100011000001001100': 1, '00010110110011111000': 1, '01111101000000010110': 1, '01000010101110111101': 1, '10101101110011101001': 1, '01101000010001011010': 1, '01101010001001111000': 1, '01101010111010010001': 1, '01011111001001011011': 1, '10000010111001110110': 1, '01110001110100111110': 1, '11100010010001111010': 1, '11100111011000000001': 1, '10111010001110111100': 1, '11010001110111101001': 1, '10011010100010011101': 1, '11110000100001000011': 1, '11110001011100001101': 1, '00111100001010110010': 1, '10000100000100101000': 1, '11111001111001111010': 1, '01100000010010101100': 1, '01011110110011011001': 1, '00100111010110101101': 1, '10010001110001010111': 1, '11001010111110001101': 1, '10110111001110111011': 1, '11000111000111011111': 1, '11110011010110001011': 1, '10100101010000110010': 1, '01000110000111000010': 1, '11101100010001010010': 1, '01110100111111000000': 1, '01000010001101100101': 1, '10001000011000110111': 1, '11000100010111011100': 1, '00111000000110101111': 1, '01011101111011001010': 1, '10001001100010110010': 1, '00101010101011010111': 1, '00101111111001011010': 1, '10001010000100110010': 1, '10101100100111011100': 1, '00111011011000110110': 1, '11000010110011001001': 1, '01101110010010111011': 1, '11001001000111000000': 1, '01111010100001111000': 1, '11010100011100000101': 1, '11001110011001101100': 1, '11010110011001100111': 1, '11010100100000010000': 1, '11110010100110100100': 1, '11000000001000111001': 1, '11011111010001110010': 1, '00000110010101111001': 1, '01010111101100010001': 1, '11101011110100101000': 1, '10011111100001110001': 1, '11011111110011011010': 1, '01101100101000100100': 1, '11001111001110001100': 1, '10101000011110010100': 1, '10011110011011011011': 1, '11101001111001011001': 1, '01010011011100100111': 1, '00110110111001101001': 1})\n", + "\n", + "30-qubit task COMPLETED.\n", + "QFT:\n", + "This task ran 100 shots and the total runtime was 16040 ms\n", + "Measurement results: Counter({'110101100001110001110111101110': 1, '100000001001111111111100100110': 1, '111011001011001000110111110110': 1, '000010110010010100011101011101': 1, '010101100001001011011010010100': 1, '001000000011010100010111111000': 1, '101110110111000111010001100010': 1, '101001111010110011100100111010': 1, '111010100001110100100011100010': 1, '110110000010111010010000000101': 1, '101110111111001111101101100100': 1, '110010101010101000001100111111': 1, '111001101100110111111111100111': 1, '001000010111001101111100101000': 1, '000001110101111111001110011111': 1, '001111101101001000000010011010': 1, '111101000100111110100111010101': 1, '110011101010111001011100111110': 1, '001011111010000110111000001110': 1, '000111000010000010010010001111': 1, '110110101111010001011110110011': 1, '110110101101100010001111010101': 1, '111000101110001111010000110000': 1, '110110111111101011010001100011': 1, '100011010011100011001111001111': 1, '110001000011100011111110001010': 1, '000111000110101000111100101011': 1, '001101110010110111101010000100': 1, '011010101000001110001001000101': 1, '001000101000110000110110000110': 1, '111001111001100010101111110001': 1, '010110001111111110101000101001': 1, '001001110111100100001101000101': 1, '101000010111010100001010001001': 1, '110010101101010000001101100111': 1, '011101000011010000100001001110': 1, '111110011110100101101100000100': 1, '110111001101010111100010111101': 1, '010011111011000110000100010011': 1, '100000000111001000110001101001': 1, '000001101000110011111000000010': 1, '010111111101100101101001010110': 1, '100100011110011011011111110000': 1, '111011101000111110000101001101': 1, '101000011110000000111111111110': 1, '111010011001010001010111101001': 1, '100011000111111111110011111001': 1, '010101101011101001010111110110': 1, '001111111000001011010100101011': 1, '011000110101000010010010011011': 1, '011010011100111001011111011100': 1, '101000101000001110011111000010': 1, '011111111100111100010111101001': 1, '101010100100000001001011111000': 1, '000111101010110010101000100010': 1, '001000101110000011011111011010': 1, '000110101011101100111010110101': 1, '011001001010010101101111100001': 1, '000000010110110100000111100101': 1, '010100100001101010110001111011': 1, '010110101110010010111111101011': 1, '110111000001101001001110000110': 1, '100010100111000010000000010010': 1, '110100011111101111111010111101': 1, '100000010111000100010101111110': 1, '110010010000010111110010110001': 1, '001101000101000100001010110010': 1, '010001010011100011010011110011': 1, '011010110001000110011110100101': 1, '010100010111110011101111001111': 1, '011111100100001001000010011101': 1, '110110001110001100011000001011': 1, '101010010111001000100110100100': 1, '101010011110100100000000111000': 1, '100010101110110111010111010010': 1, '101000011011101101100001001101': 1, '101101000100010000111111111111': 1, '010100110001100101000101000011': 1, '001000101001001110110110011100': 1, '011000010010011010111000111010': 1, '101110011001011010011100000011': 1, '100101010000111101110101110010': 1, '001011101010110001000010110010': 1, '110100100011001010100111110000': 1, '100111011001010111000110001111': 1, '010001110011010111010011110010': 1, '100101000000110110110010000011': 1, '010110000100111101101111001111': 1, '011101001100001001001001110111': 1, '000011000100100110000011000010': 1, '110110000101000101000001010100': 1, '011110011100110011101110110011': 1, '011100110100100110101100010010': 1, '111101100011001111111010100000': 1, '011111011111011000111111111010': 1, '000110000000110101001011011011': 1, '101110110110110010101000011011': 1, '000100010001101011001001111011': 1, '000010101011100111100110001111': 1, '011010110111010111000101110101': 1})\n", + "\n", + "40-qubit task COMPLETED.\n", + "QFT:\n", + "This task ran 100 shots and the total runtime was 29304 ms\n", + "Measurement results: Counter({'0111101100100010100100000111011001110100': 1, '1110111000001001011001101100110010000001': 1, '1010000111110100011100010011100110011101': 1, '0101111100111000100110010111000101010000': 1, '1000001001101000010100101000111010001111': 1, '1110100101100010101101000100100000011010': 1, '1100001000100100011001010001001110100100': 1, '1000100101010110101101001010100010010000': 1, '1011010111101011111111010111011011100100': 1, '0110011100010101011011111110010010010001': 1, '1101100011011101001100111001011010110010': 1, '1001000110101001110010111001101101110110': 1, '0010110001111001110100011100111110010101': 1, '1111000010101010100111001011100011110110': 1, '1001011111001100010010111101000101011010': 1, '1011000001011001011100111101110111000000': 1, '0000110001010011011001101111110000010100': 1, '1000110111101010000000101111001100111000': 1, '1111110100111011001010010101011101101000': 1, '0000101100110001101110111011000111000010': 1, '1111010100010110101101001111101111111111': 1, '1100100010000111101111011001100110011010': 1, '1111011001111010010111001110111011001110': 1, '0111010111100101000111111111100000111010': 1, '0110110110011100011111010100011010100000': 1, '0011111001110110111001100011000011001100': 1, '1100110001111011000100000010000011011010': 1, '1110100001010011000001000000110100011011': 1, '0100100001010001000101111110101110111100': 1, '0001001001011101110010011000100010001110': 1, '0111011010100010011010101000000100111101': 1, '1101001100110000010000001011101100101010': 1, '1000001000101001101001000101011100000100': 1, '0010100011010001111010011101100011100000': 1, '0010110100101110111000000011111100110110': 1, '0000101111110101111110101010110101101000': 1, '1111111010000100001010100000101011111011': 1, '0110110101000111010111010011110011101100': 1, '0101001100011100110011110100001010001010': 1, '1011001001011110101101010101100010011010': 1, '0000111101110111101011111111111011001011': 1, '0101000101011110010101111000110011000000': 1, '1100011010101110000101100111111000011110': 1, '1001010101100000011011101100010111000111': 1, '1001001100011111010010101000010000110110': 1, '1011110100001010111010011111011001110111': 1, '0011111111101011000100001111111111011111': 1, '1101110100000100010100001110001110100101': 1, '1110110011011100000010100011110010111101': 1, '0111111011111000010111010000101001110010': 1, '0010100110100001100001100111101100011001': 1, '1100100101000011001010010101100100100100': 1, '0110111100110101101010000000000011011001': 1, '0111101001111011110100100101010001010000': 1, '1001111010001010000010110100111111111000': 1, '1000010100010101000000000110000010000110': 1, '0011011101100111101001110001100100101110': 1, '1110010111000101011100011000110100000111': 1, '1100001000110010010110100101101110000001': 1, '1010010100111000000000010101000101011011': 1, '0110111011000111001011000110010110001001': 1, '1101100111011111100001011000001001100100': 1, '0111001110101011001010000010000111001100': 1, '0000001000011001011110011110110110010101': 1, '0101110011101110000101010100000111100000': 1, '1010111001000010010011000000001010010111': 1, '0001010001101000000111101010011100110110': 1, '0001001000011011011100000011011100111000': 1, '1100101001000011111110101100010101001110': 1, '1100000001000110100110101011111111101110': 1, '1000010100110100100110110001011110100001': 1, '0100111000000000100110001101110111111001': 1, '0000011111000010000111010111000010100000': 1, '0010000100100100010000000000111001100111': 1, '1101101101100101000111111000110100100100': 1, '1001111100101101100101001110011101100011': 1, '0111100100011111010001011010101110111111': 1, '0001001100101000010110001010110110011011': 1, '1100100110101000001110100101010111010010': 1, '1101100010110001011001001010110000101010': 1, '0100011111111100101010011110001110001101': 1, '1000011000101111110001110101101110000011': 1, '0001010110111010010110011011110110101101': 1, '0011000001000011011111010111001010100110': 1, '0110000000001010001100100111001100101100': 1, '0010011000101101010001101101100010001100': 1, '1010101101010111001100001011111100110111': 1, '0010001100001100111111100101001000000001': 1, '1011010001101100111101111010101011001011': 1, '1110110111011001100001110001001100000001': 1, '0000010011101111000000000110000001001000': 1, '0010000111010011010001110011111111100101': 1, '0010010110001100000111110010010000011011': 1, '0111011101001000100000101111100111100100': 1, '1101100100101100111111101110110010011001': 1, '0100101010010111111100100110001011110101': 1, '0001011111001010001001100100110010100111': 1, '0011001100011101011110110000011110000110': 1, '0111010100001110010100111001010101000100': 1, '1101110011101101111011001100001100110010': 1})\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "50-qubit task COMPLETED.\n", + "QFT:\n", + "This task ran 100 shots and the total runtime was 54215 ms\n", + "Measurement results: Counter({'01011100010101111100101011110011110000011011010110': 1, '10001100110100010110011100001010110001011000110101': 1, '00111001110000001011000110110110011010100110000011': 1, '10110001100100100101001001100100111001001100101110': 1, '10100011101000100101011001111110010010100011010010': 1, '00000011110001001110111001111010110100010001011010': 1, '10000001110001010000110101011100111111111111100110': 1, '11111100010110111000001111000010111000100110101010': 1, '11001111010100100010110111110100100110110111100011': 1, '10110000100011101000010100101000001101100100011000': 1, '00111110010111110100000001100010000100110001111110': 1, '11001001111010010010011100001000001001010001001011': 1, '10010100011011111010011000001111100011001001011111': 1, '01000111011100000100100101010001010001011111111001': 1, '01010001001100111101011000000101010101100100101001': 1, '00010011000011010010111100100011010110111101110100': 1, '00001100010000011101101111000010011010010011010000': 1, '10010111100100100010010101000110010110001110100011': 1, '01101000110000101111101101100000011100100010001011': 1, '01001010111011110000111000100110111011110001111100': 1, '10101101010000100101001101011110001001100001010001': 1, '11000011101100111110010100000111000010010100101101': 1, '00001011011000000101101100111111100110110100111100': 1, '11010111010001010010011011110011111111010010010011': 1, '10001101111000111000001001111011010100001000011010': 1, '10000110010111101100011001111001110000111110100010': 1, '01010000011100011110111001001010111001011010011001': 1, '10011111010011001011110010101111101011101111111101': 1, '01011011100100101111000101111111101101010110011010': 1, '00000110100010101111000110110111101111011111011010': 1, '00000010010010010100001000000101001001011110010100': 1, '01100100001100001111010000101000110100010110000110': 1, '11100010111001011100001001001010010110000011001111': 1, '11010011011010010100110101101010110110100010010100': 1, '10000000010001101111101101101110001001011001010011': 1, '01110011010111110101001001000001101010110000011001': 1, '01000001111000011001101110110101011111101011001111': 1, '10010101100100111000100000001010010011100010010100': 1, '01000000100110011100111110101100001001010011111010': 1, '00101011111110111110101100100000011100011100111101': 1, '11100100011111101100111000110011000001111101010000': 1, '11010011101001110100101010000101100101000111000010': 1, '11010111001001010101001011101110010101010000011100': 1, '11110100111111110110101011110011001100110110010010': 1, '01000011000111111111011111100010000111000001010001': 1, '10100101101000101111010011111001111010011100010001': 1, '01100011010001101010110000101011110101111101011000': 1, '01011000101110001010011110010010110001001100011010': 1, '01101100110110001100100000010110001111101010000001': 1, '00111100010000000111111110100101001100000110010001': 1, '01001100111001111100100101010011110110100011101000': 1, '01000011011011010110110000001000111010101111110101': 1, '10000100001010100011000100110100110110110101011101': 1, '01011100010010101011000110010110110011001100010111': 1, '00010000100010000010110111110101001111001000010001': 1, '11001110110011101110000011011000100010001010111000': 1, '00000000110101110110111101011000010011010100010101': 1, '00100000000010110001101100110001001110010111011100': 1, '00101101010100101010011011000000001001000000010010': 1, '01100011110100111111100101010001100101000010001100': 1, '10110010101110000001110101101011111010000111011111': 1, '11110011010111000100101110010111000001111001000011': 1, '01010000010000001101111111111111000000111100010100': 1, '11001100010101001100111101010110001010111011100000': 1, '10000000111011000111001000001011011011001101010011': 1, '00011000100100101010010001011010000101011011011100': 1, '01001101000110011001111100010010100111010100001010': 1, '10011000001000001000111001110010001111001110101011': 1, '00111011001010101111100000111011101111001110100111': 1, '01000001101110000011111011011001010101101010110001': 1, '01010001001111101111101111011010011001111001111011': 1, '00111110001110101100101011101101000110001010100001': 1, '00001010011000111100111001110011110110011100001101': 1, '01110101101111011010010011111010111110100011001010': 1, '10111011001101010010010010100110001000000010011110': 1, '11000101010010010111110010100110101011001010100000': 1, '11000101110011010101100001100011101110001001011010': 1, '10110101100000001111101001111010011100010100111100': 1, '00001000011110010100111000001101001100110100010101': 1, '00111000011000110001001000000101111111001001100011': 1, '00011001100011001000101111010001011100011111011110': 1, '10010001100100001111100111011001110110010001011100': 1, '01010011001101010001110100011001001100010010001111': 1, '00001001110100000011110010010001010010001101010100': 1, '01001101111011001010000000101001010110000001111001': 1, '01010110011010111110010100111101110000011111010010': 1, '11111011101111011010111001010100001001000110011011': 1, '10010011110100011110101110110010101111111100111011': 1, '01001001001000110010001111000111111100011010001010': 1, '11010100010100001000010110000100010110111010000001': 1, '10100011011111011110111101110001101001011010000110': 1, '01101011100011001100011011110111111000001001101110': 1, '01001010111011000011001011010010001111011101001011': 1, '11110110110000000111010001110101101100101110010101': 1, '01111010110111111110010110001011000000111100110101': 1, '01101110110110011010111100000100111110001110100111': 1, '01111001100001101011010000011001000101011011011000': 1, '01000000110100111000100000110100010010000010000010': 1, '01000011000100111010101110011101001100111000111000': 1, '01001100000111011100011001011110001110010100000011': 1})\n", + "\n" + ] + } + ], + "source": [ + "qubit_range = range(20, 51, 10)\n", + "tn_tasks = {}\n", + "tn_results = {}\n", + "for num_qubits in qubit_range:\n", + " # generate QFT circuit\n", + " qft_circ = qft(range(num_qubits))\n", + " tn_tasks[num_qubits] = tn_device.run(qft_circ, shots=n_shots)\n", + "\n", + "for num_qubits in qubit_range:\n", + " tn_status = tn_tasks[num_qubits].state()\n", + " while tn_status != 'COMPLETED':\n", + " tn_status = tn_tasks[num_qubits].state()\n", + "\n", + " tn_results[num_qubits] = tn_tasks[num_qubits].result()\n", + " # get the running time of the task\n", + " tn_runtime = tn_results[num_qubits].additional_metadata.simulatorMetadata.executionDuration\n", + "\n", + " # get the measurement counts\n", + " tn_counts = tn_results[num_qubits].measurement_counts\n", + " \n", + "\n", + " print('{}-qubit task {}.'.format(num_qubits,tn_status))\n", + " print('QFT:')\n", + " print('This task ran {} shots and the total runtime was {} ms'.format(tn_num_shots,tn_runtime))\n", + " print(\"Measurement results: {}\\n\".format(tn_counts))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Circuit geometry is extremely important for TN1\n", + "\n", + "We'll now examine a type of circuit that is harder for the tensor network simulator: local Hayden-Preskill circuits. \"Local\" here means that multi-qubit gates only act on qubits which are nearest-neighbors. In this case, we will simulate a one-dimensional chain, and so any 2-qubit gates will act on qubits `q` and `q+1`. These circuits are generated in the following way:\n", + "\n", + "For each of `N` gates:\n", + "- Choose a single qubit gate with 50% chance\n", + " - Choose between x-, y-, or z-rotations and Hadamard with equal likelihood.\n", + " - If a rotation is chosen, the angle is chosen from a uniform random distribution between `0` and `2*pi`.\n", + " - The qubit `q` to which to apply the gate is chosen randomly with equal likelihood from among all the available `N` qubits\n", + "- Choose a CZ gate with 50% chance\n", + " - The qubit `q` to which to apply the control is chosen randomly with equal likelihood from among `N-1` qubits. The `Z` gate is applied to `q+1`.\n", + "\n", + "Circuits of this type are effective at generating entanglement among qubits. We can see this by scaling the number of gates applied quadratically with the number of qubits. This is enough gates to spread entanglement throughout all the qubits. We see that the circuit becomes more time consuming to simulate as we apply more gates." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "@circuit.subroutine(register=True)\n", + "def local_Hayden_Preskill(num_qubits, num_gates):\n", + " hp_circ = Circuit()\n", + " \"\"\"Yields the circuit elements for a scrambling unitary.\n", + " Generates a circuit with numgates gates by laying down a\n", + " random gate at each time step. Gates are chosen from single\n", + " qubit unitary rotations by a random angle, Hadamard, or a \n", + " controlled-Z between a qubit and its nearest neighbor (i.e.,\n", + " incremented by 1).\"\"\"\n", + " qubits = range(num_qubits)\n", + " for i in range(num_gates):\n", + " if np.random.random_sample() > 0.5:\n", + " \"\"\"CZ between a random qubit and the next qubit to its left.\"\"\"\n", + " a = np.random.choice(range(len(qubits)-1), 1, replace=True)[0]\n", + " hp_circ.cz(qubits[a],qubits[a+1])\n", + " else:\n", + " \"\"\"Random single qubit rotation.\"\"\"\n", + " angle = np.random.uniform(0, 2 * math.pi)\n", + " qubit = np.random.choice(qubits,1,replace=True)[0]\n", + " gate = np.random.choice([Gate.Rx(angle), Gate.Ry(angle), Gate.Rz(angle), Gate.H()], 1, replace=True)[0]\n", + " hp_circ.add_instruction(Instruction(gate, qubit))\n", + " return hp_circ" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Visualizing the Hayden-Preskill circuit\n", + "\n", + "Let's examine the geometry of some HP circuits of varying depths. We can see that the deeper the circuit, the more likely it is for (mediated) connections to exist among all qubits." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "HAYDEN PRESKILL CIRCUIT WITH 5 GATES:\n", + "T : | 0 |1|2|\n", + " \n", + "q0 : -Ry(4.4)-----\n", + " \n", + "q1 : -C-------C---\n", + " | | \n", + "q2 : -Z-------Z-H-\n", + " \n", + "q4 : -H-----------\n", + "\n", + "T : | 0 |1|2|\n", + "\n", + "HAYDEN PRESKILL CIRCUIT WITH 10 GATES:\n", + "T : | 0 | 1 | 2 | 3 | 4 |\n", + " \n", + "q0 : -Rx(2.55)-C--------Ry(2.69)-------------------\n", + " | \n", + "q1 : -Rz(3.43)-Z-----------------------------------\n", + " \n", + "q2 : -------------------C--------------------------\n", + " | \n", + "q3 : -C--------Rz(1.55)-Z--------Ry(1.85)-Ry(2.18)-\n", + " | \n", + "q4 : -Z--------Rz(4.75)----------------------------\n", + "\n", + "T : | 0 | 1 | 2 | 3 | 4 |\n", + "\n", + "HAYDEN PRESKILL CIRCUIT WITH 15 GATES:\n", + "T : | 0 | 1 | 2 | 3 | 4 |5|\n", + " \n", + "q0 : -Rx(5.92)-Rx(4.39)-Ry(4.23)---------------------\n", + " \n", + "q1 : -C-----------------C--------H-------------------\n", + " | | \n", + "q2 : -Z--------Ry(3.48)-Z--------Ry(4.12)-C--------C-\n", + " | | \n", + "q3 : ----------C--------------------------Z--------Z-\n", + " | \n", + "q4 : -Rz(3.71)-Z--------Rz(3.6)--Rz(5.85)-Ry(3.85)---\n", + "\n", + "T : | 0 | 1 | 2 | 3 | 4 |5|\n", + "\n", + "HAYDEN PRESKILL CIRCUIT WITH 20 GATES:\n", + "T : |0| 1 | 2 |3|4| 5 | 6 |7|8|9| 10 |11|12|\n", + " \n", + "q0 : -C-Rz(0.617)-Ry(5.44)-C-C-C--------H-----------------------------\n", + " | | | | \n", + "q1 : -Z-C---------C--------Z-Z-Z--------------------------------------\n", + " | | \n", + "q2 : ---Z---------Z--------C-C-Rz(3.42)------------C---------------C--\n", + " | | | | \n", + "q3 : ----------------------Z-Z-Ry(5.33)-Rx(4.68)-H-Z-C-Rx(4.48)-C--Z--\n", + " | | \n", + "q4 : ------------------------------------------------Z----------Z-----\n", + "\n", + "T : |0| 1 | 2 |3|4| 5 | 6 |7|8|9| 10 |11|12|\n", + "\n", + "HAYDEN PRESKILL CIRCUIT WITH 25 GATES:\n", + "T : | 0 | 1 | 2 | 3 | 4 |5| 6 | 7 | 8 | 9 |\n", + " \n", + "q0 : ----------C--------Rz(2.4)-Rz(2.91)-Ry(5.41)-C-Ry(1.73)----------------------------\n", + " | | \n", + "q1 : -C--------Z----------------------------------Z-C--------C--------------------------\n", + " | | | \n", + "q2 : -Z--------H--------H-------Ry(1.62)-C--------H-Z--------Z--------Ry(2.88)-Ry(1.73)-\n", + " | \n", + "q3 : -H----------------------------------Z--------C-Rx(1.78)-Ry(4.73)-Ry(3.26)----------\n", + " | \n", + "q4 : -Rz(0.39)-Rx(2.86)-H-------Ry(6.23)----------Z-------------------------------------\n", + "\n", + "T : | 0 | 1 | 2 | 3 | 4 |5| 6 | 7 | 8 | 9 |\n" + ] + } + ], + "source": [ + "num_qubits = 5\n", + "for num_gates in range(5, 26, 5):\n", + " print('')\n", + " print(f\"HAYDEN PRESKILL CIRCUIT WITH {num_gates} GATES:\")\n", + " my_hp_circ = local_Hayden_Preskill(num_qubits, num_gates)\n", + " print(my_hp_circ)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Experimenting with Hayden-Preskill circuits\n", + "\n", + "We will examine runtimes for various depths of circuits at relatively low (for TN1) qubit counts. This is to ensure that our job finishes in a reasonable amount of time. We'll examine the measurement counts at the end of each simulation. Because these are random circuits, we should not expect to see the measurement counts highly concentrated in a few outcomes." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "Caution: Running the following cell will take about 2 minutes. Only uncomment it if you are happy to wait.\n", + "
    " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "50-qubit 33-depth task COMPLETED.\n", + "Hayden-Preskill circuit:\n", + "This task ran 10 shots and the total runtime was 16752 ms\n", + "Measurement results: Counter({'10000011001011101000000100111011111110000010001010': 1, '00000111110011001110011101101011010101101111001000': 1, '01010111011111010110000100100011011101001111001101': 1, '10010011111110101000010010101010010010010110001000': 1, '10010111010010101111000011101011010110011100101000': 1, '10010111001000001110011100100010010110110101101001': 1, '10011110101011101101010100101011110110011010001001': 1, '10001011110000101101011111111111011111101101101000': 1, '11000011111101011001010111010010010111000111101000': 1, '10000111111111001111001000101101010111010101101000': 1})\n", + "\n", + "50-qubit 44-depth task COMPLETED.\n", + "Hayden-Preskill circuit:\n", + "This task ran 10 shots and the total runtime was 28063 ms\n", + "Measurement results: Counter({'01110001110011011110010000011001000000101101010011': 1, '10111011100100110111000110011000001000001010000001': 1, '10100001110011110011101100011000000011101100010010': 1, '01001001101101110111100010101101000011111011010011': 1, '11101011100000111000000000101001000010100011010011': 1, '01110001100001110011100101011001000000000100011011': 1, '10000001110101110101100110101011001010101100110011': 1, '00011001110101011011100110101100000011101001101000': 1, '00100001110001110001100010000110010000100001010011': 1, '10110011010011010010000010111000000011110010110011': 1})\n", + "\n", + "50-qubit 61-depth task COMPLETED.\n", + "Hayden-Preskill circuit:\n", + "This task ran 10 shots and the total runtime was 41970 ms\n", + "Measurement results: Counter({'01101001011011100001000111011010110000000111010111': 1, '01101100011000000000011100111111111000011101111011': 1, '01000011010111001100100111101111011000110001111101': 1, '01111011110111101000010000011010100101110001010111': 1, '01000001110111111100110010010000000010001001110010': 1, '01000110010111010000000101001110010010011011010111': 1, '01010111000111111100001110010101111110000100110111': 1, '01000100011010010010001111010000011101011001111011': 1, '11101000011011111100100100011000100100001111110111': 1, '01010111111011000001001111010100101100000101110111': 1})\n", + "\n" + ] + } + ], + "source": [ + "#num_qubits = 50\n", + "#n_shots = 10\n", + "#gate_range = range(500, 1001, 250)\n", + "#tn_tasks = {}\n", + "#tn_results = {}\n", + "#for gates in gate_range:\n", + "# # construct HP circuit\n", + "# circ = Circuit()\n", + "# # ensure the HP circuit is runnable -- circuits must have depth <= 100\n", + "# while True:\n", + "# circ = local_Hayden_Preskill(num_qubits, gates)\n", + "# if circ.depth <= 100:\n", + "# break\n", + "# tn_tasks[circ.depth] = tn_device.run(circ, shots=n_shots)\n", + "#\n", + "#for depth in tn_tasks.keys():\n", + "# tn_status = tn_tasks[depth].state()\n", + "# while tn_status != 'COMPLETED':\n", + "# tn_status = tn_tasks[depth].state()\n", + "#\n", + "# tn_results[depth] = tn_tasks[depth].result()\n", + "# # get the running time of the task\n", + "# tn_runtime = tn_results[depth].additional_metadata.simulatorMetadata.executionDuration\n", + "#\n", + "# # get the measurement counts\n", + "# tn_counts = tn_results[depth].measurement_counts\n", + "# \n", + "#\n", + "# print('{}-qubit {}-depth task {}.'.format(num_qubits,depth,tn_status))\n", + "# print('Hayden-Preskill circuit:')\n", + "# print('This task ran {} shots and the total runtime was {} ms'.format(n_shots,tn_runtime))\n", + "# print(\"Measurement results: {}\\n\".format(tn_counts))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## The effect of shot counts on runtimes in TN1\n", + "\n", + "In order to generate samples from a quantum circuit, TN1 first partitions the qubits into groups, and then contracts each group in turn, generating a prediction for the current group's configuration based on the results of previously encountered groups. Because of this, in the worst case, the time to generate `n` shots may scale linearly with `n`. However, if the number of possible outcomes is small (as it is in the GHZ or QFT case), the runtime is effectively constant no matter the number of shots. We will examine this behavior below. It's therefore important to understand that your job may be rejected if the time to contract all the shots you have requested is too large. In this case your task will finish with a `FAILED` message, and the `failureReason` will be `Predicted runtime based on best contraction path found exceeds TN1 limit.` -- in this case you can attempt to retry the computation with fewer shots." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "Note: Because the runtime of the task can scale linearly with the number of shots in the worst case, it is strongly advised that users run their circuits with a small number of shots (20 or fewer) to explore typical runtimes for their circuit before running the circuit for many shots.\n", + "
    " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "Caution: Running the following cell will take about 3 minutes. Only uncomment it if you are happy to wait.\n", + "
    " + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "GHZ task ran 10 shots and the total runtime was 2510 ms\n", + "QFT task ran 10 shots and the total runtime was 7197 ms\n", + "HP task ran 10 shots and the total runtime was 22564 ms\n", + "GHZ task ran 40 shots and the total runtime was 2545 ms\n", + "QFT task ran 40 shots and the total runtime was 10201 ms\n", + "HP task ran 40 shots and the total runtime was 36307 ms\n" + ] + } + ], + "source": [ + "#num_qubits = 30\n", + "#ghz_circ = ghz_circuit(num_qubits)\n", + "#qft_circ = qft(range(num_qubits))\n", + "#hp_circ = Circuit()\n", + "#while True:\n", + "# hp_circ = local_Hayden_Preskill(num_qubits, 750)\n", + "# if circ.depth <= 100:\n", + "# break\n", + "#ghz_tasks = {}\n", + "#ghz_results = {}\n", + "#qft_tasks = {}\n", + "#qft_results = {}\n", + "#hp_tasks = {}\n", + "#hp_results = {}\n", + "#for n_shots in [10, 40]:\n", + "# ghz_tasks[n_shots] = tn_device.run(ghz_circ, shots=n_shots)\n", + "# qft_tasks[n_shots] = tn_device.run(qft_circ, shots=n_shots)\n", + "# hp_tasks[n_shots] = tn_device.run(hp_circ, shots=n_shots)\n", + "#\n", + "#for n_shots in [10, 40]:\n", + "# ghz_status = ghz_tasks[n_shots].state()\n", + "# while ghz_status != 'COMPLETED':\n", + "# ghz_status = ghz_tasks[n_shots].state()\n", + "#\n", + "# qft_status = qft_tasks[n_shots].state()\n", + "# while qft_status != 'COMPLETED':\n", + "# qft_status = qft_tasks[n_shots].state()\n", + "#\n", + "# hp_status = hp_tasks[n_shots].state()\n", + "# while hp_status != 'COMPLETED':\n", + "# hp_status = hp_tasks[n_shots].state()\n", + "#\n", + "# ghz_results[n_shots] = ghz_tasks[n_shots].result()\n", + "# qft_results[n_shots] = qft_tasks[n_shots].result()\n", + "# hp_results[n_shots] = hp_tasks[n_shots].result()\n", + "# # get the running time of the task\n", + "# ghz_runtime = ghz_results[n_shots].additional_metadata.simulatorMetadata.executionDuration\n", + "# qft_runtime = qft_results[n_shots].additional_metadata.simulatorMetadata.executionDuration\n", + "# hp_runtime = hp_results[n_shots].additional_metadata.simulatorMetadata.executionDuration\n", + "#\n", + "# print('GHZ task ran {} shots and the total runtime was {} ms'.format(n_shots,ghz_runtime))\n", + "# print('QFT task ran {} shots and the total runtime was {} ms'.format(n_shots,qft_runtime))\n", + "# print('HP task ran {} shots and the total runtime was {} ms'.format(n_shots,hp_runtime))" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Task Summary\n", + "{'arn:aws:braket:::device/quantum-simulator/amazon/sv1': {'shots': 300, 'tasks': {'COMPLETED': 3}, 'execution_duration': datetime.timedelta(seconds=20, microseconds=365000), 'billed_execution_duration': datetime.timedelta(seconds=25, microseconds=596000)}, 'arn:aws:braket:::device/quantum-simulator/amazon/tn1': {'shots': 1280, 'tasks': {'COMPLETED': 20}, 'execution_duration': datetime.timedelta(seconds=250, microseconds=608000), 'billed_execution_duration': datetime.timedelta(seconds=250, microseconds=608000)}}\n", + "Note: Charges shown are estimates based on your Amazon Braket simulator and quantum processing unit (QPU) task usage. Estimated charges shown may differ from your actual charges. Estimated charges do not factor in any discounts or credits, and you may experience additional charges based on your use of other services such as Amazon Elastic Compute Cloud (Amazon EC2).\n", + "Estimated cost to run this example: 1.181 USD\n" + ] + } + ], + "source": [ + "print(\"Task Summary\")\n", + "print(t.quantum_tasks_statistics())\n", + "print('Note: Charges shown are estimates based on your Amazon Braket simulator and quantum processing unit (QPU) task usage. Estimated charges shown may differ from your actual charges. Estimated charges do not factor in any discounts or credits, and you may experience additional charges based on your use of other services such as Amazon Elastic Compute Cloud (Amazon EC2).')\n", + "print(f\"Estimated cost to run this example: {t.qpu_tasks_cost() + t.simulator_tasks_cost():.3f} USD\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.8.10 ('venv': venv)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + }, + "vscode": { + "interpreter": { + "hash": "590fab68195cf107911461461f81d5c472d3d6127f579badfcfad30f03e5cab2" + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/modules/1_Continue_Exploring/B_qtm_sims/permuted_circuit.png b/modules/1_Continue_Exploring/B_qtm_sims/permuted_circuit.png new file mode 100644 index 0000000000000000000000000000000000000000..be109b67b904b4ab0e492a60855707ea61327acd GIT binary patch literal 92772 zcmeFYWmr{P7d8wCDkUHw9nvA)%@OI64r!&kr8Xdl(%mVIba#V_HqCwO{qUp%Kp7Jj2)#*St8GMKFTA0r7ciU0>xxbm7Fb>*o)0+< z^{|CMv>X-e?)e{dMdeAOPGN-&Ud!QhU)Q1^K7(P}kT!IIL2vxA;A)nl?B69~LF$9} z_KnJl3&u#eu7 zz2^MNEfaxBlr@}V{Jp&fy&e0@tM8{Zi1>>LZ(U3p{K_>sc^I=vjJvrlf~^JQvjg%g zgz~!OKAB%x`}@v8pw(Z~eLp!4;Bx3DVWF0CcF4Fmxo6HiEvLn@O~1AL6u@l=kYpwoZX|0uEu$u?IuH|M=9Zvc6o6qBTNk9>0*zYT&cAR)oBbu8b^~ zQp6qpP=n0kaOD30LG zI)p?w+qLYM-VfXtd=!z563f`yG~7P>@KVJ8b;ol9++hr^)+aVX{75=JOE&F|wy98y z=4s57mov{ppHCw0`_4voh?bG;=z9;R5s5t?9ZQ0G^w$u5I&bl@_3TEgwWYFx(>lUn zeo27lTPlzilhLE4aUVMOkh@%8WWGmJgcZg5{pCB`t6`;C$=Q!yqSK>?e3=6r9%;o% z-ti=>_D#DLFbm|K6&{hk@A!wWtPj;f6@aLF~sJ5TRv9I})!o;s4Mw^RwS z1>9^aV+juX7m+1yZd69E-%GqT$ZGP>KEu|v@(l%&K1cjPj?#f!Dr|va+<|&51{e08 z0?A)QF^ru8Gn^FZ(^FP7T9Fv?=x(vhSJ$XK-wDMBUR!osuDu@dZx9pwfh#3~`krm< z1(Ba?h6VdeSz+q5_${mobOte;3~UqBI!sI9&Jyn>EBYn#m$3a)XhUwzfKSrmTRI_3XYta%CWz&uDC)|0Hn1%)NxeP0{cQ*NEbyFbJ9Wsj zuLXAk<%Q2+T-Q_|cjp!}DgG3J4Qd%mFNzah1-=8p4nYXB4C@=_0#<&Dsez6-CmBYz zZ?(R)u`WK>reV{h7o^K+Uww9-Y2%$On3O1lg%9P9nN$xuX2}0~v-*D3V%6|h@UKf* z8%*j*7Ahs#iTEVeZF~#nDQjj=o9(4WpToHHY`JXP>`_^+cpdhA7B((quE>N!7C!w6 z!vS_Q)v3hZZRp~)hX$hVsTYL7vMhHXa#H{M4`k9NMeK$V0`cL)OPQgxt z`@ws)7hf+NFD?nUUU-CfNh>)k_iDOo^8<%V=F8~=*@I#+?ojj)b*`0|XYC&=y4*uwg)*h+q_7UU z4$3hR6tfqb6(=q{T_{}$Y#6*jcmLvHbW3=0y|ufYxLH4WX)T1)Y|%^v85Exh#R{3@ zKPhdF78>--@N|QrCuPtR5q3*6BxNe0I#LL83?nr$A7ZN_=L>9%yl0)_P=Do4dL_^m z%NA+>1|As^jTY4ubsS9=r4Ypf-3U7dPZei^=m0}d;7%R>H5sdcMu%(>UhH7ux>M*0 zK8O8SkA&tY_fLjv88kUG8p@|84rjT;^kR#FRlzauxPE!zTJ;6Q-IiXIDj9f^h!A4( zWt;Vl)-2nytqgRqtx$I!e)o(;Pb#5Uwn`UCCo83tq&9U|v>drz3tL<7+5h-0IGN|- zZGdC|cNT4QR6RYi^ zL1dch!qR}RBhSm#$lI7WxLmx^j1G^eip2XB+P2$*Ww`V!+!PCQ2Z{JgETKkOhCc>hpr)MJ)nW|bcIg4`Sg0@LXRdzc@ zw704k;~L&YDFt?}L|2)c2BN^)_sFsa*;M3q7H*$QmV7_71`QFMjk$u~yMXGdiqQGS+*<|{Z*^us*92shUhrqR<54aI7?NbQ4t; z9mP-Nke+le!cx&GMk<=ow$yAaxw+SDouS|TGBIAv^+C4^I{Nh3?*l-Q!n9@2 z8P5rv*_>ndVcoFYpmz-W)dX(jmsNYG3u?`aPM+tmzr07DX6kE-IA`RRHqvJ0?Jwo} zF!V$EpFv1&ZmUFMzWsbbK&)fu>za8bu{hk8A<&iCRTpAR>^aApw|?MXN?nvpXkT`& zyp~s<(=M0F-7aWt(KJ) z!L-ww)Kc`Snn+Pf)2~LSW!JOwDgu8lt9e4t^81*jiPKr0YTfys=21820fDy0k=we< z-z0H@x!19)%}&*BRU{DHlcSZ4D{*I%QGP5nK9z?AEOJNoj0;P@ft&E!O_swJ)CK3VoKC6tA^#~6!mCQM#4xz<-DRFb|h~l zJo33CFwpg+$APD#0>}cOe{P+JWR~2 zOsuR7;0^|R7b^$-&kR=fk z|9taLi~o937Y>cq7w%L$WxaLUy zEywyxo97IAcHQ1#@0k#ny_UJ-grCPQz`f{4H+$ZQGwQ~+G{gtb*y#ZGRE9Y&#FVqs zi>0ys?wla~4?ezf@VB0?{&p+rFp(_yY$sebL(Me{4_)2Z2Hgt=o)iZ5xiAdet<`tyM_^XF+T4zdcbY5x5JQZG0WqW|lielSQflUUea z-u|bJznY_ArYwA->v>-p&uSPDZ=B-NcQz`ot4NE1{AW-8x@(_uh!tTY(YlER?vj# z+*`b0Ek%#kV|5d9QXw<$=i_SF+XDiZb4K0>uX1a;5a4@-(=eMOS=Z{{unrkTWl@AZ zfkUU^^KQe66DRQ)n}gi$Z-k2zv!L-GdByX)l*LA`bf=Gm#;96tkp?kKUndU4~r4RgZ|g8BVELNu!_%h-*G-}eMWL-SsQk2fM`Ox4n~PGOEPXh zey!i`XDIcKtr17tA-s0KYBp#l8AsQB_)Xnb`o?54wDS6P@xkgTDt;6#F&wst7iR`; zNCzD3^D|gjk7wC<#=2guU_g1H`czPDn^uJWce*piT|szC;fv8~IaDVspK|HR6srqy$*xI2Wp~<}61JQ#?INDFP?i-~ z+`fq9%qY9cmQ8$B&~&rY>PKLOn_KMd1FUfAIj-|aw?gpmy4@mzMwmiVnUX=lTlmXG zPtT({`$2?M_Y+C-VW)n!9h%wjJLU&bI_6Z!jcLj8FM?+xekh2HwQCW5{DQZ8<+*Q) z8curq2G2Ex`F3$^-y2(m3S2xdYKGn{1<)5g=aVe*;dH+`iZPx~2t_z-ywpis?6vJ8 z!s!`5@s&*5M4XC`$Q8`ncRc6Khg%gQUtcaLA3)lZktunA-iq7O%JH?2+QmF0a(Ew? zeKJO?76Zn#T92=1{3@gF>KB2v`(`U1Jn7ISe1f8$SP(7-2jh-~=iPCa$1{g6B4-pl zth^R>Bn705-Hsq)fx2OnI%sXAydcjCso{*X!KZ!$vInOotU>D2JEd;vM_93!Y*oUf#@8Rw=qpogLj_+EBfk$Y`>q*-gdj{yyuZ!}LO#g0a# znGjZg1tTATh0|;EMI<6%4%<%dBQzAtllz)a(9i0&UpWa^4=J*0s%wOB{-)h`nItw= z(PRHm6u*$^O&y)5osSKbQ&rdhT0wzaubT;%5g(P4;!1Z{XmY`pPp|0ha@x=Jq~3|8 zW;4YNuAY%Sj@Qvlm4&X2W7J6b-B>Gf{Q}eHlOF1JXaA>BXMAdIF`d|XEi|(6s^+TV zhGexT+_cx2)N&}NKQ{M`_?A}_Sd^d+9e=>U?UN6cz>y~^U$#XtIOZf_(e}feK7Gfe z6qpiDndqU7M09L9Z;R>i_0(lz+T8PlSE*XBKd8$;E#kgG3gT5YPO=r# z!?}FM`t`kQLVSdz-~7wkmD;PX+7bkgxJg>PGYGZEX)2ShuXACe+m=&QsKtm}9^{jC z;#sqJIEKKqo6uATb_wxDMzi*DX05;e?NRvK?z;D5dMxFErau05Py_U4x7BIZGFF`{ z>KjAV6j`ZN-dyB__#0sI*gmMNu#QA3UGL0uSET%Ppuj)acJ4(Z7q4E-TBpuP)-U@J z{M;F{s^5Q=9${CoSe*ZXQLYf-d%fJGJgwDDuw+l~jWJi)^D)MXb{;1U>^N6e9!$2% zyh0l@dyc@&x*Zu?6`Xs{-^uyO#pBy5o5y?QgGE2Z4bt6nL$WG8L@QJAJNT}ae3U%N zZ?q+k2Uqb;*-koi=?fNi&D`edN33WtE$a8Hmg~ig>Wb!v6v`KDbDV8v@ady_#?^F* zJSiGfHKY`VZlw;D)QYX^wzGfM{kUA%O!Z8`4Xw{RQAus-TqPMlnESjM%xJP=JCZ5s zJt1~ISZlxDelPdwsXy=?GvaBl5yY6_E}z7Zk>~vSz(lT#VPeR6#(FCIHHjZ;+ju?^ zxaM%ladQHuL~UNpXFF*^s^;h*_ZMFe4}w^-sIG?HU~LBeb;Z*U$Jq=EV>iK?a)B1w z_!=P*%Lzo@=~PAVOPotb=4bep#{WDwgM7 zh8H4W;B(%7^`pfEy{of&J3F!JozY^{XqL)ut}Jpy(mW4CWyW4tPF=QK$zgznkjenW z)pYaNb^kY}kacGN_pagYa|LlC6*i{hMazZ|6F)MB2k1S;`XA<)_sr)5TvK{JV{gp# zN)}E}V(|<|+!T5hv=EhaNmD#Ke_X&mgMD5RDlCE&^kBz#chvrbgA_vkBb-V$wR$A^ zaN304vL9)$@p54~b-=^Lp(xz!RyIU}BALXt14DtkzmJ>RP$oGagkqlFM6sgCBqhDO zGtNc#)1}NvIV5M}NZQCl>eEyT>P~rxl#*xBM-6%J;q(teP}faGsR(?tV48a4Nsu1c zBrNviVbILmL(LlM$FCbyKUh{)8D)eIbc0XWc9YgSV@mR<;x;O3?5vF&3FcykWLdM$ zibotDN+vYTMfERc%!_}{Z!1?prFEF}`va~99z1?0Ni?H!?c|m49X8lU`H7Jm3a;|? zC*_KeUq}Xo?L_i2M6|D~ZC{lO8|J1;HalJ><~ojn+(y3}lj|WgruR z;4>C#c4bbFe14|1U$GM(WpyvdzKWs7KcDb=z114cENlO6WJbPoof9qGAe%MpI_@dl z8NqN+Mxe+!O}=?%e>c9fCU<`lw}#_bz0#o+YMFoWVa{UxJfyxCMd48G>!|gI3FL&Y z<1NeehfM@Y&I>LIge!Q?&xk+ktsUk>I~8f9Q*2%;ofQ~K%q57&<4L)kM4R-dbS4*f z=M}FeCg;gUu&%B}y!8EhGa!r4hgMA-gITeZlpEVV5f_fAx(OOgCj@a^r7V|xW9Ku(UX8won}r+HTQ&g@*uw*z$S0YWvTS3~6yD!TG?4+N)LZ zec`nf*~IAgPl}mM->lfi?B9S)A}^QAwY74TV+1dpEW+p}JswNV==PxA+CY^(Y^g1i z*23+e))-4H$bB>Pz4Y}^piob(c4kxzFTd$PJQ7blyB&e9&uaueD@Ns*o4kdSS>C58k6YAFFP~TYR|^~>fE3#g$uQuk|(`dle81I@f>MuCs?|p zO7CvBN0gok^yCTheU&A@(a@GZcAN0q#Bi7<-ZI;*b?3GYUkZ-Q zv2+n)el`CFrzEX!&tzhohdr=P849lh z&pOAU0+FO=MS-@FKvPn%lh_#TXhG71$bR)AWI0eVBMSf6kxAFMcROcu;QrhUANwL% zj6%DXIvB;AbNKp}d=f&)tJd}F@T%i}zOuMw&1L!0_1?iffv3*SOw9Xu@|)?a8ti>% zMdEok5z`G@sC8Y8X$)@#bWeB0xh%m{$RnPEl?fS^RxQC}$Xc~oo9pAxMM>33lf-Zi z=x6Q+=a`F>5x3TOm2pKqtm+vQ)TO+^w8eTO@5f?n*I7TDpVB zX!DgtUhhC>28Zg;kI=r7l*!7z_T55z6?H;*()Waq^Voc>@NsW;Oq$&zsPBG@V_&mE z$!Bdvp5Rz90sn{XvSwk+m>cais@aILW0FEWHtzn!DsOv8Jl{{HAHyOHV=-`;)-9`L zvHO}Xqq+INLwDreeVd6`xqw~HdurC!+->DL3Yf|f!Q-e>1vj0FD{++LIXC%#1}NrhXi85zt6(W-70r?9F&MkV`yQys<)Oll30H z9ndw8>u8zJ=fGUZg~KfVT{*+RbwuW};zQT8{WDTcTp**tT=hfZS*8X7wX8NLuytguF*m$A)@;t>hxmlH-*|yxbMhm~v4mB-1YnLas>kZW> zM#faP1w7o&*Y>bnWgDMldCjy%NA`juGi1aa?cCQz&r6lcHur-%aGLW+i*X8^0!AgW zh0?X8y%k(?+xL4%JP5i{JtSug<;`EuvAKle^Gn#tc@L988;VBHN8EUrZs&FK+(l5r})08tuPI|*ioxhm?)~anNcT}RGs(7qTslTo}sQd5@ zJxPKbQ~hYVLYD$-eq^c<`C>>zO>EPryiJOnd?r_yY|DUU2=Y0w)N*PB@BCSxU?2OI@+m_h-)}&mb}h+ELq4^yES$l>?_0 zc$F(XJDZ8<*^QXku~kZ{I$+K`Jp!LtbduiHuN?j^ zqd%H7vqT=s&&rNG=BBXk^#H*@^UO%A_*{bq`y5Lo4I)qXnrNSQ1>azLg_?(JW{p=` zQXju@b2jUjrRqKR{V#4wZw2Gu>mr+y1C}2@$a^dBvldI)HzgNZeA(rhWZsDPJ~nna zE9+Z5dpW!(T{sXZh_d}Tk6d%mv@i%uy>V?$S5v$}N6Y2ju)eq=xxsaM%#~+7xHHjV?+g-`|!IIsG7Onh>+YxJi8sIsWtLDzjYcQ z*`MUBI$o?r&fy$9mfUfuw_%h?xfo4lkY%Hckt`1U&{e=F58}aq>vCodw?^eJ5vjt7 zgdI1&W9wqdQU|1<6$wSUEUhalqe?8?!gjl|B>Mp#|MdKMg~Zk7YWBp9<_Ggak;p8+ zUh#6#W9{xan2ttE4dA7wFv!5x>@s#ov#)*wv5cw%TU2nSD0nkSnFJ z*XA8%n5@Z*{P|RlJfJ9Y?ao0)QEv?KjDW{+V(j@2!Va$t;|q=&*H%75S#l+$U3_jF zx#K)c=W!J^gqhyy2Qk04ZY}bI%%LsH&2Ggy(la?S_93bZBNX1 zb~giy)3SB}8O=OCaV8GK>q^VJJc|Wy2P+LkzER-aX;()T_3B(-J|w}VIA_z*HdeS9 zY{VuP+gx2b5+7FNwJ)jf=E~(^Io_v?`P-k=GaCp1R-}$^`N}ZY_jeazpnx1ufI zp8Ts8lgIs2WgL~9d)FMBCexfIpXHNXCxeKFgA~4>q>2GH6S4st(kb!ROo*3JLIFLdr@)6ZsZflw}o{DR;qqD z0JN{JO*XWe)gBtRKFRS?(K16r66vI)f1G4-NI>6|1j-*;MpyUJAFwa2x0#kGpT9d~ zx6FOLKE6pzqFfL1^>pKCl5v82qcN*ING{44)vb#F;4A3f9YymrMn*rItdi8J{0eoG z<11bHbJZWIicqzHKyxjJGXgkmV-59b6VCCH?X2A#5}`|>rnt-&n*G&Kp(Z23W9}@P zp6iTQMwtes?SuM^zSb2YSX#({&~9l=at$w|#)?8ti!)TB{-I$cAU6L*L7J?I};ha3LzSe88bCC(mN8_of)nZ zW;vIV?n|#FiF;n^8k15M>dfx0{4`z}HMz|TC97i}2~jLsfj}?20!-Kf=&1L};#7&v zVqcUHd8|`PdWYAl+$CcSI!7o{M;=n(q@MeCtrwlc4%D1ZUf0@~idSYqTxg1}V6xm) z_Y3%(yDBv5Yh<)UVBk8@!4xW-BotkWf0#ql5T`{k9lh@S4z+x90}T?>nG5XNG|TJX8J_-gWd zYLOX*4ByHmF>iNFI-Jm{ZbDj9H|2iZS{rC?O#Nm^*`@3(*<@_bLyA|5<*yghq16ku zy==6Ha?mT5!gejDWLN0Ur_S9!_$?nanL4ie62u0y#aq$xKXd%1IYseIRQNiKBF?ax z7`|UVC|LPL^=f-HAL;P-a%%oSZpLd&(Z!yq_Iu9zBgstz^h4pAnt-BI#sw>ZpDDNI z4H2K~+!7E&_&mv9;V|y!UQ`gtxhUR7jPZ==#Ycs*V=6OX#jYe>Bq|ZJmxpz7j6mpg z3RR>dw9C;o(Q;ei7IhC%7TwFgbCOF#Pke_DH7tXsezVV^zBQds+6i3HmXt$@Tp&j} zY+_n9`iLFcD|;BkPL0_@L8&73qkz&Zx^Q7!vaIH&sOl_)??7U&xJE-F`h((4fC$9w zmig|3PoM4nY*dZ^X7S;E z@fWAnFFNL5A-|Nbu5m8bP4~7MOWB?owIblK+xK(C9wzV34V2-UGg<6Ok57pW_HnNU z)uu4fm7HXPKi1Pmi3iqvCpQ*?SMo&&yx?9Y$qi1>l%6Jv0c+Pp}tC zk=`FH=I!{aR0MJKv)nZ1>1(n2e?ZZsNvJJcy)`6LYXBp_2peUB8rAD&S+ zVdD(`xO_f;qUbA)j=QTap(0nNPyTP@Z?{*!8eU(BfseA{PoKhlyyZ6^RLc|dT#_3?|z~=d3C5` zR+Ioh*T*)<&#~*rp};;d$GSI4!%+W%sxLCc%!krvrkVeo&0Gf&a35n-@4v$-@%azj z7^&#-(i0v!hqeTyBI z_B;Ms1W;Y@%mpV+!zD<-MG>H(c&Kj`4wTJP<{DIqv+3dIwK>ML7$sU770^o1_;NV2 z1H*PRMj&&1E}S+7|4H(w@z8@QsdNa%kK-$w=l!m3`?M>f6_*>!tVOwO-l-RmZ-lL1 zZqXwAVzl6RxNUwQki)27iO`5j$}UpVG^J!S8>5klCro-pR5%`L z>J_Ycvt_}(Ggim_D~I-(5Q6wf%i8sra3ShP8HfQN=nK^5veGus?OMY09R6Q8>#tHDu1U(L3<4=#?EmvleE8bKrrS1I zn@{s;{pb~bMZ>ZfH-yyF-(cX8s6dBhS}ncZ%!vZSZ9^RJ*sQqlO^P;og~|jwr%zPa*+!#=|8W5 zR%A#Fxmtdo4aoa}yNl{(4j`0-J}O)R5>(EFz|ewgf!X&DLN3_s_e#4Gu+_9!oC$;Z zj{r#2v{#TzB$Eq^}c&*infm^MxXWKdVb)k>hg_WSuM{cl8lB+#R8{0bPa z{#mv(7&uva=1?JMO)Vhy`hoMn^v?)6c=f>oLz_DJ?lkp*eYc=oE<&xd5$y3%i|TnN z?8|_Lusu)cX{r)-9>Obi(mi1&K#z-3ec&o`J8YaRDC?zDs0k+*Prx7-dpB9gt$_FQ zBcz8iHV#ebu7u405pldtK^lCeB@@p|DRWr6nUWvi0XW_t23)H_Y^vATE+P$ptMwhD z;ad3oky5<0`IYB?uN7&Sx9})Z-y!6Z z&wkdjT7~lbxQirF!zey$r>TCKp4sOqs$DgG$myU^GY@D=CO_(%KPGho@Q@Tz_CBbb z%@+J?)0}Vw2ZC~JZ=1fXD#gK?cBe1RPG-wGv{3EsyZ&~En+0lWQP$+Z>SY8 zf;wBeAh#l`rB?_gL~9aH`9^f21Cm7p?uvmNNB5vQ&%IwU+U8KWf;EMgb~Fbtom3H- zjyWB6OlmSLqPw7~ci!{K-ax?CvaK|A5xc#U^tfJ+^;RJxYX*!L-wFLq$3OzSssf@M z&wA7n(9H6_LxG~~|4H4la-8lif|2490Y?iR%K3tKD{X5Uz;OXu?#qAeE;DpyjyqNt zK=~8x^B18Y1tn7=74Rt99JM~94uDR53>8h5<e;UTc# z3c7!eQf;PXZt{DzCU9YU(k@TR|0o&hQ^m4=$U@lTOf7Pz8|IIW5;z5${EYa4LSD z#m_TojTCghA>Es`P)bJ`FG@k=fizFdu2Ac;Lk&P z=9zHmz`5CV-csavEV!H`tw-rqLjb%!gV|Qc9}VlXQnoMfXwFehSopMQ8bnAks)~=q z|6lXj1D^m5%W8U6T>NV{@Z4#+ao_FL>Rv%mJWv(dyZ5SvgE$E2s8*uX3r-B2rVVjE z_II|SJ2}ixS*ORjY{XNq`>$Bhqt2G1;uVz-@M2@^ilo>%HGX|8h$#JllDHbeS41Y0 z&j`Ig^!&C>2X*r39vR5R&9C?hMC7y}?Glod+Xqk?kW-RWaH1!8we(~$-*Qv#DdlJ2 zYkf)T`XXwy**+Ge<3Ft=P{pk;qWb;O_g{h420r3EVb7W1{)J2Ngj`XhD~GapOcU1^tTCb)VfB+=WxETwjZcSf}lgkiqum^f*s{m}BoX$t?d`m&ANOAUHUbVDaWD{SJlPNjV&ShKd=9!GP16uO zwqGcO+$CF?imL=H2EL^v{W53GyG8YFw+YLd2L6<77`MO=Q~NR87*QMPMSc6TCM7Q? z1r>yOf?GBWn5yA5@rHry_BX_x^qt7Ff)S?hH!7IJ5y5Tq~LdiY;^We=X0^~pzPY&MZ^FE}*YkGh1Q!&BDg zzU9bl{p^v$-*17WXaTKmWBwShUi@QJZh%4gezg~-E2wy&* z)a3#Z)DySbsGf7iguHy`XMRFftjP%lhlX@_9Vxm1E=ZDm^?%PiNoObIflQgW8OGZ)RE{Yc0qx$L9=$&y2n3y^ z!cmJQdCwcA@})1xoD@&km{IjtU;iCi&@r}Z;4mfI5aDmUKoU%X#j5e&eVUd9GIPy< z*zVWwB|(NA@l5US1e=rz)N0{U7Ico=v7Qf;?W*n(zM^UodhUP$yRUVTxOn$V!X^Cn zs2#06L)!-%GD+RAMDq8HdI?iKCY6uysvlJQsD;N>H6;V5cD-=fq-L9n{QQjE8&qt) z*5bk(te@{DbIhsytX}l`pQ5=Y%ApFl3=`nee2(g0zt{m)LA`r{KCKvVF)hZa98*TKsu+pTY}nRBk2{ z;h+2w^nqOz%muAGKg$1Ht%wAZ$7dS(>Yq`9I530-Fi7^%G4uakl>;bdKQo!U5LC!5 z@B^iP63tPk)WBA-u57i~@n0X-3fg;9y_U`}|Ibc7cyjN;?IxUo< zqb2HppvS>JdCGprj|LIA;SQ|BMj^;_llH+ z-moYRs>Sis3Eu+W5ywyoCn5zsS#CIUKb$_!S&P=E1QzJ(N&yEw!jhC(kXK5~O4%}q zjLml^dLW}m1r>N$d%!DpzMI=DW!Dq}HFlVfprp0zHzPq+Gswl9OF((lQxJlUtNg4tTr4 zmO1y+extpq(pu%5N6fUrT?snWv3d9i2wBYMN|c~yA;(n){F zT!FmTjYg_MAv&l+ES`3p)DGScQ-ud57UMztZ`9^i$%MQc&h2-`@|F#5K`ukX!IH0) z@G(??b6n_PxErOf!gRFl>jm%>YW#IuH$iLz%#T1TW7n0suVswfR|wc#H2evj8fWCP ziQK{?>`dj#YkIM`_1r*LhHZxuU_JVjm_RVTn=pda~%YUPP-FL4Z@?B6Cg~5^T^9=39g!;$e zBkT2OwUC3|&gFyMEqrLARUNIoq6Z1*A#%;3cPEU5zOCaSs7?Itz6i>Wy5EQxk=6Wq z{$7Y+btA>~cE8$(zNm%_m&;0vH1fv}k#BzI*a*Kc%nstJA-(+4`(INYE8gf{dIICl zsCowlbqGj(pxzEwqBeTu1fW@E3diNIIAV5$cHOVBA(f2p^~{D_ANdVcxLT~ZP{A7- zGhq(i^`zvBkON)U?W_Z*DVTb>%w)OH1AE0(;RPIgzDNX@YSYS~Igupt#At#cUawJst1C^fY>F`#5Vnmo) z5YX^lpP7I+oKm11q?v4Yvx~%&uz&04{P#qsEXmE89}V?kl%1E`IjMfxhLVSinMY6o zEZo$mn}BaCM(+l#3QlsQfzrVs+%ZMHxpdR|dTFetAnHc~Ac`wioT$<$9kZw#$A)_C z@KZv9qpcxswXw5Zt)*h69CBlk8h3zzrMweSwR_!-fTAnv7&&(%#|z(XZlvj^^MYZ<^6Evkr&9RJy2q3Ove( zv2Dj>U7}RC1D@FaD&jzQ*lLxdmlVL4-ijLL4UbY(gL0^^`W<-xck{V7dHu$7x585I zCeE26YCwULX>G;4?QUW90O}J2DlS%H;B4!>gc%X27=$XZ;wp@Loph1n1z&CGVDaue zF-o=*ZS>-!^rRjoVljB99HLkknY7FNv+r+<^UV+4d#f6#=+sQMlT$@^vG`0AC%%g# zzlEkSBUF(0CO11$^f0R;ex2g_y&l2Tzbg|+ZKwXA)6-4m30~34E zlLwT%ZPS8rsnB#27HUe$%YOQT*zXkWaN%-2OlzsEN`O9zL{o2enrPd%JI^=wdr(| zVdLTy{*IlgE~x+UqlMd*@bR@|kFOnZV4~ywevRC%JGkcAG19r_IViDVRC5R7)^+^2 zD;z@htK>UK@Pzz+(YDh-RD=z1Z)@^*Lh==Fy^n>4+%D&xjU!MIs4%JEKu)d=XvSak zCA-DVf;NHm!17l0KmRwadN$+dzzsx&0ej@yik2IJe_Y9JOov3_;i( zV-GQxw*b`tP!X~qKW8gy*z&3FuTiC81_|n?v8s6hJL5Y=OAQ(=fY8^_+rwvo^9oo{(wJq$ ziu<|KiV7m!v*#%9i7mvLs>_3OTtJKno^Sj;<37WXd%&YLZkmJGQ%h6;=`?HKjp+X`OUmkP?qkmaMcq@{VlWLB&hfM;xYZX3K?`M^7T`oNIyus>m#UgfBATTAPZqt@GZjX^L zTP}G9Sz}*<7}QqiJJ&B|jmtYXM}DZ~iftbdOwNJm05_hu?@RyeAy*Wtp#|!R7}0UX19`%VcGhO zN0-2U?xC0mh@Y7j6YCNGz=fPWLzm-;-4<+eZX3bPkWt z`MNyVOrAHsLpGkZvrp*Zj;LRk81s7w(hP$CEKXA?vQF^+=eWl#_)X2y7j06Ad8RAyb(9S0tPNh$ z0Z&V%gnbYa84eVm(lF$y409&*G|0tU+6yb< z-uFTZdal)wa5m8NDF8{lx=;OIg8PzaaJgRVfxw^l)R5}E-;F<<(gyw)3$UfDF+pB# ziWswupry$ET?Gzo)R$OrWSK8P9{$c-l7X22ku+kL1u3?vZ=t_1$iJ{~dp;QyNG-+<*N?hzQ`2xf!yTeGnppLAR=-aZmo{cpuaAP_S%gw#$(~(fcor z0@4@)&@C%^mbHJFTd*c1U`@7H+o*T{r(2w$Tl1<0-Tx>&z!(InzzDj&%1``HxBlP6 z{=bQZ`~PLJ!g*M6|Iricf?q!xt_Q&QmTGvPwoc82Fa9*HG}%W@LCa-5dIOx1Vg`y^ z`E@HAL~laJ&9WS5h6&iJ>OW+0C7yz;%^A)G+Y4kO?Mdz@JsZFwumH%CtKo4z-k)Gz zWco-dvyIBIRU&N8S~pvUaIZYK2RXnuaJXgGVq;V2q4pYZ$JWr3*ygdQ)$7evu2?NQ z|Ld)cP({Og!1EbE?>2>~ZvrR%sZ&gJJnzrnc|L3`wfgi^C0eX3O7RbVcVPeSES0JfhV$Y?g^_jt0=9}2=)H4l&nUf$m&{wdJe^-$h_SgxH32mEE- z4rBzik|UBzR_Y|+AefM6gb*Ai+W^n+sMpKi;$c7gQ_Am^ZE9sdlT}CAjWg;SW zllMnUK4?_}u}&LY5w<65J&vOffT{6$JRs<51aL3f00@D4-C?h>FL%Vo-g$w%DnC7$ zAE2}+eB2n1oKox2ayvQCqcpe#*bNyO(?NmDpf-Pxkwx$#5_fP6&VO(=K4;5??*lQ# zeQj0OfE?wo<;6!urTuCQDg;uaCbbU(rb4q{;@|xr_TDlm%eIXg1q4Mf=u)J+y9Gr+ zQW`-@1f-D$B~_FVknRwWknRoxkp}5Tx{**C_Hm)l`#$fU*+2Hop4orCKaTf(bDe#i zv5vLYiA?(hwla@)EMpT2MyH?7SiHh|a~Hw4BsQ>xyye zQ@fe38v84+)C|*I`KFUxr~NsDK-ek#%g$1m=v5KVTK2<)W&|4S$FK}ou&J24dpJzg zP74A}i4;yGFoc}T7cp{rK39$!zPNnb%gJoD)N?G}GNcg@msH}0i13{J>elV!-;RLI z5I*dLz03zr0Mv3Y@5VY~m6~$8@506e-QrwA13`jw)r%{_jB3u4_{+?qQGB^KEe$k@(>@nm#J&%r(5bNc58%!RE|AGOr*0 zn)11DBkQMSKgQbQoNsu@!t67E3yiXTfO4J#BF`}Nr}hj%$x-{$F3^EeWa-Dk;n7IZ>4CZgiuk1YlaOJMD8`4TVhr!`@gG6H-% z#~;R9&tFK?V8S6g;gU_Meu;0Vxw?LaZ2m-bnyEGKxv4SOGivrsFed1^;3^~t_F!ZS zxAMxZMSWtfuQby5&%B3QO-M%YAQtTTF5e8Rv#IPj~W3vS>q9bF?5#64JldQ}!(Xj6NdvB|=&g5!sqmDz~A$30el1a^}xV|~eX-G+YSq&Y@Y zl54&V{8DyiM5$5R7g&p(BRuenN`p9gvDZdIbk1Rw8Rsly#xfb4AVAPttE*x=%9Zus z-WTvmn|CsCvRfTxl?$;%yON!J#XLFq>ROp@StDumliV*e0;Ya)J@9o&UEHl%EqpS>4DvNb+N@J7jdY_XvPG8pT z7!cfU(2g9NiOIz_Z>8X%)uW}6XQW4nLLklO*i-h&m|e3}+OLBSx(+L|JpXGwgOn{m z7kNMzEshzQp zf0&E+etQD!GH;2hi?bkkIJ9-5HZDk*?W=l{c)9LnSi&{2zUo-s1%0D3=PKD}{2Lx~ ziu~K`isY6-`tv~z8b6MECUoYx^W>6Usowf}7c}lQ6zx@+I`o>dDZ!k(xSQ={QQzzR zdUWKzbs*2J?azA)s!6&dWh0cQq=}Yd{?C+JwZg(%BCyk9-)jmTqP9rP8?fi?shk6- zh~zLRN#cd_NNBfbJ2##h_BJf`lZ^WBLp46C(Z*T36c5?f+}WHLvg=wA>y?u^9G0v8 zav2$xPUvA}fe|~Ub=l8~_C{aRV@$$anOZ1&(%Gqv?Gm2ge8a)qJiU;79rX2>tI^r# ztZ#h?9ncY3C7=sAo-&TO7d`p3`BAVCz1)PSAN$k#i7ba5#lcT5?uHy{c z>cFbv6AZi6D)XJ}bE)g`;mK<70IjLhNv?FBB7sE{1HMGF@&mohDpRiw6Lay%2JTW) z^MoppU`V7`q1ywWTK*KK>-<<^FCQyaiHb!{jvus{JyN@9;fjt0!jrU3a}^U1wsLv% zWRK#UwQ1hl)5PGXOCny8p$@91W5>D8dpfVFr_G`=w`M|aKJI9P2*3~Jmol!JQ(4M} zym18(IURf=65?MnVAtp1Su076z#wY)x!OH3z7GXtzFo`i+ZixQ#W%T*Z$>6- zcHS@>_|o5zuJ;vGvkl)SC-c};rXu3C^xaGdUK4!D?X>=xN?IhH*lytXP81iUuWascqs}eF!AVs_cBJla|H- z%yx)z<7C&-m}6qmYz0sO;>bLf866p?&S_JIYOR&nN(1-v(meVdUwc^Z`9#{^h%TEb zBRY3@CFy2RD=CS=$L`%*N8I;DRL4VPOB_#F-$dwp{ie(2*%068Jl+U09zOacwos5L z8}I8(?iyQM)>_qbP^zeWwB}d#H48UWTS{xA%*2yuVdKV97r|qvumgJTkc)v!a+R?;*EX%>|jhBy#FgjG*9m&AcqU zklo*O;zK6B6Rp%=Xma*XKURloH7&VVl+t}D*@(K`b7dhuw~Dw>_=2{`owc`IY?r;- zRPA~dw8O&DmYqX;%S+FeLpBU)?n~styvut7*Q!EXgvU4dLSlOXASQbsy>qKoN7sG3 z1PFqe)QhqVi3CkKAwLEj>Mw@3$q@Ob0l#y{@2 zyhcXzI??e<{?B^$WSk-rnWEM+g{&*IEq|ms_hwg+Tj-3rZCDcYcD?9~3}K}SaqG2^ za&;m&9)CUUwppM783gN45!?M1Kz+PCJ1Fkr2|HfR#!bb~x+G4f;R(VcCx-qb>9w7< zpDorLBMCN;t?&poL&-=G?1bsWG@Uq@k{~QTVn6aeJ1v4p{9ZM~b}8*bm*2kKm#(sW zrII=A1k>5^ZJh_-v$hFub#zvI?(r;t!EKJ9CXB%n)y^smmpdZN5(6f0_3RRq7HaU1 zfm$Iii#Kkm`G>xDS^WhSmU`18#FixMTuNsTLhw*0Y^4Vl=LzdSaY#`Y^s*bXi?3(7n{bgk zn77Ohc_{edlZbjeJ7R5rf!3{F!r^uAHXk&}@SXatrtDx&3*hWz7>y+23xWs)v3XfAO% z_teJPeI@OXW63i{2>Ns{EsohlW*%iI#2U>5<86Rp;1faa<(gQ|htF{bVGG@T|NR*s z$(IR_58MtKue^=v;2&jG=w_aqcWF4(TmJ$)ChZa+)xPc;)~joW16!2HmC=s^2)DI} zr}C@wScj@Sn@I*NXJeZ~rN%#*a~ts0IAl5RJU@DWj@c@( z;q-VzWTTuM4sfsHUY<3_ofI4ldZxKrECto;XV4%HgW+R?+fAQ6!<&YNA3PfD`|`rL zJ_?W4ByTl{n+UbiO-F1rELKy;)xFNpSX$is5Izn% z)|3g;a_sVCq1}!PS$ubzFqGK&Mo-jswc?>d36Jn*WmTur)JuFNPUo7nCxvb6ccYJQ z-Tu=&lSqw1nO?0%ujLD9;FM)Kf#QwNS?e9MxD8V0EU76dG3W15+7T`;t|0*Etu+C; zxYLj;Q06z`iODl|$uL-G{@Ve`4=h^4hRjDmX)^<92lVm`S172Mu2+Kv0uOQU-lxB4l{tM z>RVG-|3+wW7!iyYkN8UJe|TzV=|n??`dqh5!zHQ(q51j`+!6*DE?2i9_vwSpHm4H7?3J z`xfj2%PXNKjHh;_kK8^t>EX`Ap2{fDp?`LqY%16Bt23jU=AV zg%Lj~h@jnvdW<0T82=)BHW+V0;`^>nie~zadTQ#JSZB(Gwa5P`7rp?V{>6Kzm5yUd zpGkHL71@fRtUa#r55Iv_%pDTn+FXw7uJx|T$ig9jsh1RWr0XAzgdafc{-{fl^7@T+ zs$sL>k!2!5g7XF8apC~#j(_euOLVRG zv-h+u5Y*_lfuGmtm7XHqu?2~@H0M~}-bP!GOTDcO+h1dJGjVxMNilPVLS`fhHDnt2)cpB>zZHRL zr!<`3{C_8y|EB^gV`0oA*fmhPGOK{N)dA6DOE^nA0=8V}Y){Gd@7Yfx1sl^*-6u5F ze(%TYcnB72r3eE>8PQj0*@Xm-piey85ObJtTZjd!E+yX-D1X|i16hqub~43d!48O> z@A?fKGeVzx;>UfufDWJ8)B&59kE}KZ3edsb#)^MM2U)63f$KjHP&f}ZYoSEW7fO9h zb)1yr+{TX>$eaHie=!RU(NiHDJ@%KpuvWzbhRY%<5cz!W z(G04$FqPmzw}+XEr4df9k52$Re|0s#=qs59E}}E(5sO{QEB!9l!^ePQ#^-a*wzel1 zY_(Ll;eSQiux5Q8js_Q*uCt&7z?^T6II0(^OIqmT?+hkLq(s8J@IW@Y5;>F++)GKr zQVSG(zBW_h?*(AKCax371USCb9^ z!1}==XcX`q%c%QC{*3L=skXq+4RrRuE9{{JlWrFa3L-D74w2|iIs6CyETpIUm~!jI zbI|*+A@Y;wKvQ6G1=`nhI4g_QKK4gH7==Kx#cF*(oAHi15fO8wfBy0BrtT%>Z3%FSs3&?AxLFIO8B5YwD*& zdX7C11U6S{xOMqe7I`I*7{5Qaqd@b8m5}v16E3phFk|u=!)iyURZiS}J#UMP`!ye6 zs0uswm8sns>lvxM024z_JT7rPKGvJEo`SFkTZmrFX^vge8zBZoc~0^C zi7+6myDp-SNKFC68M2(h*P9)mt9Jo^2;=A@L{9Dtu%c2b6TpO$dKd31GNi#Epbpfb zex##AqxE%Mmibi~MQI1pB7Q;)A}+)E;6&B29u<+kSUVugFxYs1n=rg|Pp>BZ7~ZTr zI%lS%+^YCkLAz9KMB#dgr~M3)f1>E~vPABEQHd$xoI2J!+|-4O_rtj!UEu%Zt`DH+ z526XNWOMEzCm4Y>`QLCz&eV=o1SFPW1kS-t3W?Lv`cGSc)pK0~bImGH8y-o+s2Wdc zWVFR*D^+e1FfX-uVW%KmTP&XR zkp2-T`?_!;`|sh9b0os#739{sO_kZ0kvf>#H3@70tG1|0WNY}Gr1You*{dyYH#vSo4_>ff);TR~JBJ4}V1#$V!DySs*ww)jfBK^?v{En!e zOlC4c%pa`ke#nSR=7`}fIiDHVK|L3#q>&#j;}t96sfX)#0*?~CqS8#sZyqet?7F55 zGmp1zbCsD;klXyxuT)=St6ogT8ogz51UrZo-G0zM)@=B;^`El}0>2CJ3tA3GVHm!4N< z_i*X6dgbx153h>X^U>Eg{L4D(T?w*<>Yv#(wKVtL`;6>P%7 zFTT6!np5b!>7|OZek+9zSuLJN-bGf6(l-+Mq$Hz7m=()<#-UPr?yDi-U24M;1_w~)+N2c0-q-ElCe${w1=yk01eMV!qk7^Q#-Z|^UZj!Ch z_3x%d<|O3?0GwH#WFL16TP=GT!TpGMZxHJ_1v(ZTWs@;LJ)P+hxn%=7NN`zhEVWMg zo!=$2D3mpZei($_61%u&cYRd&AzC#4^FEuNl&C$24movNM(d0n&Fy8L@PSb5FKGR8({pH`}w&^BMTr=g>Nc zkn*-j^PbvIO(vu7JQ%2WI2K2e{CvRV%<$}j$;?X5(USzpl)G@Akor!`j_k13sKCN= zCUAj(prQ9iys?niX>4(ld{LNe+tGHHfhKM!Hk#hOMw<<5dW9IAxVP*;_%iKIxrNvX z>m_q=|8p3XSh+}$+DPj^oChd{ekHP~B6WuLhQEk-0mllVR#c{cpIuRWE+J=lb|BjE z*w5ZgBiEayzn65KZL5N!5PR_RC5oG(FYcoMOWB4b_ErJT%%-0&3-Ics#Lq{8mgrG~ zc-VZ0$G@|KoSiNbWHc_0QjfT?F3Ep7us?!fLgty1o_`1ZZ<+on-dp4pPEY4)^KU{G zGG`!1p@)qAnE$B-@`M>596L4f={^4^KZr#$a{9ibrT*V<`(c-?qZqS?yfXh}hvM@I zj(-HN!uQ{gNGG!Ms+R={% z;>6rxhx$ygJ+S`^HvFr8DFN^hA>J9_an|&q@L5_J9nS6nh#LR8ywUSNS?wS+El(D^ zEo>h=M8|TAiW2Rt-z8Gy;Yi?U{*j6wy*d^i7l^)5{I{Kj<$*C)awJQR=79)QI06$D z{{DhR1*v07Q$yEpL2@mUfrbAJq&=v+J6Qt!p*8$b?_Vka^vj|w^njRlt}zzc96da~ zzI99ZPn%1`LJ=aW9N%6>6O)6CWU!;G{vJ?9B;fPqx3Xw}=+MGLEiYL9>8E1oj+V}V zxA4~9f;_R%WO@IT!RIFYW$$ZWr6{UybI3E19rZi1_CXgrazHbzvx(5YmKX%EW@#i< z^2y&aG$YMWi;07Rb__@8jMLVH>wha7fH0m3WT&CB+(@2p0=)mJ>>m)~$wioNk^WmD z4gaTAwII12i$Ls(f^zhW0T5V~Lb#WK^q~hY|nN zRY-Yu1R>=c9EQdJo_EgJT`e~Weh02+YwsOJn)$L5Gnfp9EX=V z>_i0+c2;CEC7vn$+ltR8V3!>OLjGYmb+SDizyE)ykeMh|#Cn6;GgSygcOB=hiWMhbiI*tRi;#S>pS%_zqzA9uHB7SRf~G9;u;2tfshU!w@`YvaU_ewuE;e zG@-9lv1jHL0My3*`20E^Z1IZMx82%OY+n9rVzs94=E5)q#*OJ0Kisp$uw!ezX2T{J z;*#FE{q*|ZWlNIQen%K?IB@xU{_$!^jA zD}qU_ojE5LkNL7)7ifm!;5ayj*!9>I+%7;=`6UoJV))AR{s(Z#u_M>MpcKV}c)oW3 zGsTJF4WN9*gm59qirch5!}7e$))83I^HO;3J=D1Vz_zXordx*(>xTl;!Pm`^FyK#t z!S#43R^w1q3y2HDY6+|vFu;>Ez3)^v^ zVf+e^IqT7}QVi!u#OWO|(Km~}pZ>=%#SX1}W)!yqPI}qRR(S@Uxr56eo#^}8=*YTgVpJcjdZ!_7^P6?-Fq@AztoNDKD-B7~?De%P7x=8Q^=xCLU)ZrozN@Ls(y8 zlPXM&K2DyV>;?!TC-E=F$z!>gGx10hae9gS^3;Jj1y0Y9@da%JipMYK|5 z96pA#Da}v9Sa9TLSI+c8B!B}Tq-~6wlM?NBD@zMl!X;WoOj)D?yc3052o4inCP-Uq z5KoIPci4)5B(u!L-LC^aH9{*Juws>40DI#+zZ2l^1stuiKJ+y>G6JV-mHYim2m|3p z`g&ObitI%Xkc}^N1{GVUch$J7vG9o!cNA^_VHrF$WZUc2p6q-tr04N}Sh-J* z+M!!Tocj;G%-Q44EC)uWUT1O<;=s;LSA$?M#UoBMgk5F>pXRn943YJdW$Si8^7qhB z44!riM}!#zm;CtF0%prrbfNH34w`sKzGG}#HAJ)|1xtdoQn%%dLb;U?TU7u*w zE?=tVjx>6KKpqP5{A{YL8dnRdmp^=%&1-RxBI#fRQ#fSWc0ec7Gz45Kr*UNL!Zn-9 zheID#7g|U9FF?dZOEAr7Q1}kb##1IU0+x_)|2Hdr2%pXEhP7a>^q$FA=f!ugAy@A4 zB_b_(A3HbY1r>#UDkXb>62;r2{LK+m1&Ln$9TFOGO~zdrB?6&}8}wz!mqf@P>Y|tLX2Dn14xxgYAT7Nso!AK94!`plfU$0`icnTuZgQ4gyyRo}v7X?DsK?iSwUY(h2`80*N%; zZ_#M*iE12F`(kRO$I1I~Hx)e`4StjeJGtvIXf!)B;w=j{uO$P8bUT;YMN}70u^wz`dU!Gu?B$H`l&Unw%_4I$SJwdd3Qf@I z3Y$%D7x8os^(6VSo=fyCmo>-1(kDWz(?)l ziX+w3nT@M(zrYWL2-CE&WZQWfc5Nb^L#&4b!Ns=JQRT`5T9+)G1ml(X$y5++T{xXxzgJq?izomW?DDWDt74^jc9Q z`gU}4Hvasy98YK)zClzWv)6G{!lxzMJ}MLTiC|;@a84YvDDUwRkpniwcCACYdHc^k zgC4D_6x++=xiIcPKaQLt{;##ae}GadM6>GfHt$~klm((6-YRw1kq6u zmmBnJ4rNOyjaHAw?SOfBJbp<#eZ9RsNTaZ1{)S!hUW4KmC1Jh8dj_~3j14v)@lhZ z^G!_~UFqgpMY)|DrJ2LAmgm25eOI`blVEy!v_V+K>$KA#%VRTE$&6d-QA%;sCdo*A z_5Qm{bRD1eMj2SxttVGSnD*F%YHM8fOC-biItVqykN3udjl=ZZ6T@2)j^C!#qs#To%B_yA=7&DW8b>vhEtykZdNx?R8qs>VDdt?&%a!PcuHxZ1B0G zJ6~#P{a{1H)l**b1#Pf)98*>o+gh!5Qb5J9U_e%~`Tig2TQM&5aF*mM*&*o78%*_& zRJL?b`KXt=YH2&z`<~X19+Q!V_RFBou;(`ldO4MQ)N}XdEI=)3Os2hTX>T4Xvv_!| zDU7ftkD}f)y`T7Gr0N@2kc+*C+ffJm(c!voqTKE?xj5^mfa+79mP)NF#j1&#(c^$5LxOZ=4rE~eQaBOlUWr_`cI4o{*xrVbS-%jRc`?^ZpdiCwW@ zjrjGa$4)lSOvQ43$(8Bi{!-h7n-MiiwCj5>MQ+O2#@7BD~GAh#1Cev zh0XHfPlfo=$6}j*EOvIcXx1T!jjy~CAtHCN7yI2cU0{}NT?J-YtHH<{IropAVYip+ zSq-{a6|g(Vo71nV4j3)RCpU?daC10r(mNf@Y#z{4uUFM#MN(uceA5**m-EH;f;(TN zABNv_UubV2FbE@!n?}Tnse(y>H4;0y_VKI>(E8GbICL?sY39?|bDNJ^H!C*eRNh|b z;-|}Fvfq62QlbZ)mvLq}nN%&r}GeNjl-Bq;%nq@bU!4uX%VS+fSx716v zPKo{Q?M%A)qT^h)AI-3*_I|hMbg8uMr_~r0klqY>YKcBLIeR;U#=O%2KYg<0j#}f&Hp#`F zI$G4Lvun#Ng-@%D=Ps0H>GSYmttgCK$JSdBq1R4mZ3GPqveCAbrfZt;8rZnI?iW$JrT_RiT- zh=bssJ-s^LSb3-$&gJ#EvDFTco%52Wky{gIAnW)oQgPBo<(VHFS6aru=^9@*kgu%7 z9zirn;b|MOH>T&^-}i>Fc;<75;yvivCr4w#b4zT;nlWcF z&{k;H)%hTDB8=O?Z4#@otyqz8N$wdij#{nl=}f*Q+c|E^ZhjLUoho3m?^?-X`*56C zt6OhLeq6gG>6zyoC$=qc`R80n@`_95nxP%eB0B1E=Mf*5=dt?eyUQHaO}Ul$M|Tm~ z6!gg@<=f?%We>1| zd(ykY-`6h8Lo}g{ty1sQI5#`0C~fbn%|+`d9SbHNV7Sc%H?Q9{AsB?CT+)(uKdQ(x zqg^0w*f0T)m6 zb%&SSY^B||{U7$)eDDnPNz~?brf0}qK~8zS&mAZLc5A$X^|FCagyb=i?vq=OBFT83 zOf}XU-^xHx!iZ1_DnN3-R%`gkwqoy+F%&|emQ>^#u{7oT#!e&N8>IL66(!_i$3-dM zEI>S#5By9gLI&uXtLQC zvG&~L5piVZ!AwsL`l{07uk7A@zehRefvzpk093fA0wr{vvB!+rMWfcQUtDySsm7BJ zF#8V}M42e@5cW8}#s;=7X4!Izf%#zTqw&b4?!(rMv=>e{^#Po)J|3;RG++~_?8@Y~ zMamzFB|f3?0Udnv-Zh&DdAaoe;!R};WZkE9-r%2-{%y$)1Q|}E`a`z+gES(?0l*D= z>APwFpb7sJiT56$P;Rfj{1@0l5-CN%t$2y>OaDf^D7!@gGn*&HJNLie(gV6>ji$)` zXA?_~4ia~Z`2+_g1d!wLJlb2wA!9-Y$PO+%ev{d%7`RhVo?jQi^|J{q-?}f6@iHDc zs~$68{%Q0zS}5s%?3mso0ObMoZ3#Gxb|L7Z8wTa!SziA(t7=8$#8!0AMgNpS11i}BSi~8P@o}p(;18JJp$)`n3f

    qPK3CWujrMp;6j(JVwH&QIZfhQX(FAuy)4 zPq-em!wQnLUMSTcyQ$JJ=q;8dJON1DXC9h}x9cs*pVRwmz;7Cvxn|NVZ-nEo}rtq zl2AHP6Q4g#q>KhFPREFT2Z1G(k?753LDxUWf>T64-oVY!3>mo~|IgpLt@Ec02*Hr( z9Q{+|lOlAJIUZ$*}9=Q4=ZZWnUZNit?Uic{p^uS;|Bip#Cd3|~)QaIF44PI|bm zu9*|E-m_G|b{hp1y;|NIC8H*o;n@omv~dOrlwObK2r=Xb95V^{1yxj23O>l;PJqo83r2BV-VEL>-i3qV1uV}eKGn-lA#kw@<0QhLk!Jmf~hr0k|gL+7-%r(`@2 zACQ*CX)JBFOCdl$#KH4%mwIs};F+hYkPE|A5s@GiG;&%3|z4Rq%1g#!ahsAnekMTug)Sk5WR68KPi$#QqIK2X>>fmO+SJUki^+PJ8vPo ztK?SBgzzkqCH&)~L`>9 zT>|mySVe*HQVd!vJZMK1%8jN&2xwa)uFQzpZ!GX)#t;t^Q^1Y{5T$P{OrP>p?x)AQ z9l$v50N9W)>efORVn=bbbkB<$F{oRKngL*j2iOIPRY2;)h;_vyMCqm8omW26 z`i5L2N+(vG>JeaREZYTM$8A7Iy3nI4e$W$w5YO=R?;yLUd9Xl4Fy?praD+=W0kW(y z!Vg>IvBfca)d&mMqxH&}D{0uhuHSbZJB1c5+3Fw{pymQ{$9DLDg2(jDFc@~W!)CG_ z;U#fc^e;dQ4(0*{?9Bc!P5^Y+4$z))h#9hleki_U?_;oBo(D?0V!JcMXiWhGMa=FM z62v_Y9C_ULo;X09n!a=Ji`UT%g()9NlrII8~<^83~myH?`OmN6tkQfk!3we;Ba>%x%xWK+4z&gDI_LhlMQFM zH$bSk*EPX+34r{C#*@VhkgtA9m(2v6&L_jRoLZ&VnjRX@wU4a;^Z3OBn<_e|`a18W zi1G9Ua%MwIHMIt>^=Hfaz`EI-g3Dc5J???C>_FBVgbY=4ywPxa^S)gZVVaZGWl2NJ z&=(M$C^XU;e?xY^aUeoHfdO%voGRhlEx-mK2JFWBmD({%OWu9IG9_1!X8jYoc_0xZj9NGi#A+%>QyoG$)KGq|6vDJZ*tqFTCB{tE(gzc(ThxF71?t}W}R09FF z9lb;dbEIx$u_d;U6`PaBZ)gNt-c#_^$%!ktSl(h&2x$7tTY-6rdH3hTX9D%j39uJgy>PkjOgg??l>+g;Z3?lvfHv5B1I35$RAp zv5)7Nql|&iD+~E6f>Yj8AV9uk^bRNJ;C8&m@E)#FxmkEDoEj+W;zRDG2Ob8`!L5jo zDKNksv0ru!{+@X1YN%24^YrFo?Lv74p#SP@sSdAlq_UiN-dQvy;P;KSMba>Nt2l5A zAcg^5vCnW2j$hA#eL?imyuk-T=Z>MR^PJ@z2BqVd`G-;_OtIq&;&|PfLWV)Df5Ss& z=UQeL?b(_zfW5=y?FN%iT8;I(%y+MTe|?|V;)*T{#k6`TdoHzBnVqaTe6?@b6;`u^ z2u&tH&QI1^k$VZ#urR-(YpF3CM-$J~I1d#6WuUS0skG;0+cy(Q3NbFF(%`rT`uD&sxv4AdqfinyxvSVwH!a)od#rvKRdl+<(zE=W*Gt8=u>-KT zFzc9GqeN5b&Zw7=^SEqSntv+Bm_sD3xK!HU*`4k^5X?#}L@$(6`==6H81@%9t1Xu- zWE?+f6&8aT61oLLo|cERxcmAqn8+_LJCSJBxRgo$9&OD@v*H;IJscAlcU04;((n{f z|Il!Mw4TA+d{k2MW3EIUiZmbn`q(?2sPtL1n1=CUsTfm~LHVT1P<@n&0r4qoIMOy5@yiL2HYvQbs=h56pw^WANg z{CK}EE*o+48#9P(UbCe^ZAa*M``OvLq+rCUgjJDkUt|3GTX1U;bY)FT?b&{y)JI|+ zMcRdVJS1&BV)(}$7H7$1C*n4?v_V!`jolOB>ia5%>YCLM**GaGy`HjPa!UX#)W3nry_$DcA1Vhy~5htJ0vpIZyn=?SqgZsqC$|&R^^(y)J!` zw|tzAT=L&=7hOIZgpNK|Jx!+ryQ5w!>G{~N)6+u>j%r+G+rDHjeUiBKrUpBQ;_A46 z$J58WNd^;LBLXfyv!0b(V|DE{b*a(2=SZ|pO102pQh&7+BzaRbrh9Pk>6KNkQ*$R} zTDUpg5;19wFw+!uMS|LCZe``S>ywfDxO4C+)#?F3R zZQW$Rmu@$JB0Z`$HFx!D-jU-K_2jRmv#){&I#|W|@ERE@DmV_r7)8vLFE-G5dju;E zOBp^p+wVA`+hcH^jPrZ#b*EdKkr?dKMDU7R$33TLc=5rr(J`~=jWLB0(c*gkD@qNC z_Y}pZ3}qZHO42)#y#-^3kqG9eR5+wbCc) zqTo|VH5+u!#S=8{xm+K&|E2GAVd#B2J>#!|kXsZ zO8*6E;SjSt!$lKUhqy*;^ZF@@@*V8vACYyW`E5UTZ`gZ- ztRFcN`6$xF*VkwBi%u-*PT7s~=DyGGUkz+Kpe!q`9dUbVuuf@F_`=nK*IR`_!^Ntk zc6l0LoST6G??#vv+luoa(CeR5yK_Uz^&rtjPkW_q0(Nqtz7tbWby!TQsyTl*2yBY% z+X$WV-KeGQzkATeP`8^b5N7g)JNosc3w<8Zh}c!B#F6;OvGIdas?6gbe*Mi^94!U@ zcP-d6=S_Z{u#dU(DYk_l)e@$szo$N#(3=o0_w06teOI;ik1SUkgQNPJHa^m)6Os4Q z+z9MW91lOUz#hGO9jywDJ#l0seqF4))Nh5OA^proo$yxj>+~WTD zWHq~E??IzkqU%q*0>!?j_ZCzud@{Y5MmF)Xd~u%p(;MT92C^St#5GpCmx#VqBO+tg z=Og%#r`&u97Vu31+P}09v(^?x<0JYKzD0hf&}K0oE;aXjOMJDvtP?~H*KZ!md-zSC z>MDQG>S%iqxW3z@;`Lr9+t1ZGRDS@Wa>j#)wfx3L8U50 zP9N9fe9T4M4!8C^45vpsw}vq!Jcga4j%M1-hO8H|w>@jSg3oh5*+vlVy=C{a!z-gU zrBHR23TD}<6N7!-vT;HA%Cca-mdEdf6%WyU@$=Q&S-%L{v+(PZDDy_HM!)vF(`)f` zdY^x5*j8=5Ja3R8$u%|9N?u!QZEO78;A{c^%n5#)lg!|TdoDJumnW02F^w2gN`txH zw?mf-4UsJ{u2XkiOqen#U9M6%aZyi0ug=gusOb~Bz3^sFe0**2=;_srosFyo>xtRH z;;ex?eCX9ZKQ3I>jt{BwZWCWv^r)NNl~JF(=v3<>>$P&?7jPn4@#es)%K8ISW>OtD z$nXohn!!nwS(>J8Tf)FvzWECus@ia0JIg(k^r?@LiuD~z2R8c+4?f@qdKG*Px<(u+ zE9o76wma2fQ9h04e&>F$*>^SYFx0_!4rQ8%tE|hFW6=Q5g3vc(7~Ya2%Wx*uJ6J>qj=)<%pRot0%A559qIDTce#35RWZ@=JJ z++MAd9338-!?kred}77r*81PwE7nf${F;CDyV>H!!2*MbkUC1vas%nT;f@f~uMXGCMr2E1BZQ=Ic(G_mXW^!)Jol zx{Tn?vGSisLJ0N=h`MpB{KDf%g9XED%CX>PM(wyHugz^;`1Q8%sYOls{OFJ&qbP9~ zAO(B_hD2xR2L~1bUL)Hj1CPm&$=1pTjIRcUMy8+eRNFnYWRI(p-726mj3*=; zP3F*@1{W#5*Vpau2EC8 zfTK2{&(KZ!AFtNByT0C($vnDUD0Q~03&vq& z^;WrNFT(qHS!wj0+-LrQY;4YRfDxJbc#|)+4|Q&Tb+!<|r&r)aZkNKA`$)egDH}v? zBT_qTB9nd&{SRuT?(+$ags(~Y&_pCvzW-}qwi9@8^E#`)`{1U4AX_?YDM~wV{1t!$ zVG?kw+;sF3lE&&il7frUnB#!@N9H9Flk~+f^9-J`z#<@O>>I=4`4$^f`^{c-toq=o(g!Y}~SBk;aU^xtnVDU}gyP^i-imls7!3r-9@qtF1 z(GU(TXB%5Z0_jcnO1I_g%yxvB45w~O2*Y;w9LoLpI|-x+p;_ZMA`pscs1#B5kUUxp z)|H!--92bsqT6qVLDSd)d-De_;y{j-L++gG*9*q@`y!?6qL0vf_xN^bXz7_CH{l>* zub+2u8h0j$!^GB=d=NtE(Wvt?guNTfH>k^#>wz$uJK&-}Yw&F(6c{~2l@U1W<~G#j zPr6UgtZ^HG`$uk?=rq8E+&x+acP_MpStv3)~jr{Ajpkk+4Z z#ytTJj|cp`O%%k+rZYhT{BU28dF4Cc{7fQ(B8^ob59euvB>A%`9k3e%hJi|s*mM)H zYdNEAgB*|)Lv3Vz!|U`}39v5X0q@s{jJ=3S`Bu*m=w|#dKbuzG&TBND{sKFVM50=7 z2yX|}IKqR5)&K8&B}UVoiDKFs!E|=x2K3i6ym#v1aG_vM45IdpYXF*QJOK702dfha zfM%G2>E$Jn)en*d>tD*Ly;UUm;jXuU-}|t6&?8B&D&B&a%|80ht|;{8OP0$Jb46ke7M5MuHQ$My*d@?_+@QC_8eK5Omz- z!=g$ZVwoKN^@hDBj&|UDuF?Az0I@P(8&toab;t(Icfpy`LKejVnEUat2x&&#qnPkK zwB`ZFd@aStXlR&y#FgMs*a4Sr5V0e-ki-LQl{+sd{MzhgF@ScBh@^)v+Jyd}@?;?8 zfjb^J84?{;v&z6WJ|3?1_<~&Z8k#gxm9usLIg%-2Kc{@U(V&7K+LI>px{R;7Tg4$y z6NB??mCdioH>myjf3f$KL0Nt6yYL7Cq5`54N=TQ0AP7hqh;)NAN~eN!qaq^R9ZGk1 ziU>+eHzExZ(#^TI@xH(JJu_$K%$!eW{$HGt=Xv&CYwfkyTK9Ed_jMg1-WaDc2N7l5o#>unAbVMQzLE}RCr`wjw4%hBWh)DbvJ;pjTJr1rm%Vhli-ouYpV77=XA!m?T0;X zzh8Z2PRCdDjCbPaQ7lf=#DS!b#h%judC5mR=Tw$ecu_sJFS9$mwSzV0J`pw8_b9h3 znfK%y4eh>QgT?4(r|k;f17Bi-qmd^**WWupa>jOd+;-m2@GDosC5FDLu7J)7uzg|L zJ^>xrjyNxuS!oe+=A2^r6@D{w)le@~yFKrcODS1t($-e$8~(LevElRa`y)0JFTq%| zgGHmm&RNLt#m^nVp7-j<<0YcYYh($Gt+!!F6Kjx=wRA|u`UawbFfdvKIV}z~?%G5X z-;yu5jdW!Ke z_hL=JK>fuatoX0ja7^*92+;XC3c^hOYS-W|Nes9;9w%<(6xl>))T6_i&SIm@gN)eW z4+=9zUaRFTcaY2~-yKR73Sy@Zq=IJMT9L0m#sSLGn(Gd4H+hFt`RL_Whsf6#19vO zPO{e{6C=G8z{JOq>I>(D?F93E17yX`9J24AG48#~%M~q3J%L+B{|l-RvA-N7N)W#? zxCSc&?!#(c_v%)WQlbJAl zwZCMLA-}XzXfnJsSfKk+?cMHaP|w9d3VS}$Z;+s4SYew%brJZ+=X&?&OG)~XTVy@= zj>pnJ7>N2MR~R;Pt&rf-(?44tC0*cc_pkeoO+GI!3vAFb4%zO^men1ZZ?Z%}6P)NI z=rh>fzpGmliS>QlxG?wdH(ioH|gu{yYPIe;bHiq^`6$zDbGpqdWIi z%TE9DpM$MOF44RK8g&?A%wx8Qkd$9{T7JDLFm*@jUauWgbjS)3rNE7%{RchJ8)lA9 zU^mw}hJlPm+$s`ALw5j4sYa|_8|o#wBpj`F!Ch-E)yzkdU|t0M_I{k)2KxYg(=A!Q zHqg2v6_n-92nerZS^aw$u*2NHTEDBuD*Tg;?~qQ_qP9-Ds#YaUm&;hy=$+?q$(vAI z4}YS_8@jK-q|s{k+aRbo@R-r@!TVr$=vr{<&(rF1_PC3ROnzc(f)-ND2IY$XT2>Ji z1xk10fGJ_dKO_363kI~zpy1EU~yWW{_qp+|YE;g2r z9Koi+g?PpciVYr+S@(3q@xX{2;GN*fZ}DKnfME-c62Hhlp}G@=jG^ z{(HIq-3qD1d^9@qQ~z~=w-+EP0AZznHaKwsq5>&;gTFogHA!VdA^4CBo(5{g-)Rf{ z4qzS_^WC`eAEC>82wmQSY|!5w0J*(UCH%U_dkB8qh$(ouc8?R@@Mwhf0D=`9f-#+c zuPK}fUt~H5S>!}j6teL~A%5#H%Pm0FtvkCtknPXyt>3{HiO3agaXf61R_svU-}~JO zBW;L&wgtFD&wAuu0%pYUy;lEU*+0rIYxpFUum~FT2FMkSBELXg2vtpI-aOh=uh`9B9WCZbp-^1=i%2^AF&|o4RZfWaGOh4LFdPV0}1?O z4X*qi5bHF!mL0ju_8E^-xQp@9$9t21dT9z*C>7+tc-~{>BHX`YszvK}n`K|aZ%A6q zAR=dii!t%+{$6F!P`vP8E1d!c=;gm!f;6DZ2X0?u-#cW8p~eEe{C=u__IF?Ab>J@N z1??}Ac}OE;*-I^2@u!zHaF?Y3bXwuWIk>FjN?_5)-);W)2ns91ue0S@y#Dmk68>9` zoj@S`Uo*@)2d*_hu4a4IV;k;bJfVB<%b#A_!B1?3?uO!dup+%|c-g}GryMuU!zTt2Y=Y|9`cb&} zuTYMu6PP-Bzam3K@}m7Y;qmIpaVJvSw4&QSQ0>aasr&bYP1*Ghbsbm70*XU9t>?Qc z&0yCMYDf4Nb`@Hh-w>S+2tK{Oelq7jnimz~K#WomDry^ImH>(Y!-ZL&s*fA*!6LoIGPb5VX**)@V_gfB^v`;uFoY(Gzrgg+rUMqk~%4j&EavY9>OTE`D z)a1PhCjmo(T>(G3o4W?E?I6a74`wXIZW)7E;iZkLiK7mryl)m1nYe*uBVwI9Fwu%o zN8$&@_F$`DM^|{B=@e^TF~TTS zW4bP$e)B4uuK1MH6hK4b^7sq(~rZVbxr%1u;pG z$nZ{&R05CXlja{pn9FA9P8;-FPP{gYz4iT-sT~P|E{>0Hy8+3B)4ri`6Ky0_ zDrLFGoQl{erjnk^;Ly&ysuHQlYvr=1kO!BP3Vb*=RrgUg9^ z2mgHH%NKBax?KQ4UI6cmscRzkz@I5Sza-1^#SmTL&G)d@L|nBQ>1EybP&)TIVe_6dSQ*^k*m|j{yuQjZ4q_xx+*KeO zC8}Q{MaR^SIEN)Ufboapr|S1YgR^R1OV>}cF-ZiW`>t;UOhO5Hq8M4o=#DV@WB$F4 zGiDF5L$BvU175i;W#yErEv9Nd``WhQUo~XiNFYiR{&D+*PlwnUlZVJEm3L;7*Zu35 z@rW(YAcS=vXSFL|>W|D~VO@PDyaq(5)1`U$K51UpY}?BqGu5&7ny@9tLu$tJGs4U_ zeh^jUObndS(fFWg{=zgoaiOv(@3zBA^H9yA7n1(9%{mQ*^BSLi_F9#ma$-j)0#UnH zxcsc_xWlyh^WU=Nb?$3baHKmZ@h?P{Q|ze`UHQ4S?yCH4x-@CPo-&NK?)@p^5ow{q zA#jo?y!g&MTuv(5-}Er@m!F&6{fSF1bk}4{VK|4ro8ciR8_7f&^fts$Bi-$7RhKW4 zTza~gw5K*Mdp#F9B{t^O9<`7(K~xh9x@e zuyhq6)RmKrpbMC}&iz<4AHig=G^zv0>*X&OfGHq-kZ3?%uLs$uY^}>m8%Mf>VkPW| zEr)&EVZ8);4w)(|-#A#ui1i(Fp#SsuA#91NI7K|BG(hHT_by9EA3+m9&opwaZ_Lte zW6Q)V>fCoS@*}h+?S3~mIqzkso)%rN_3P4A-n@OdI=z#lWLIp&cY1(_Pf@yHyKS+C zQFpqZ}tyfs}F5XWlw`%fUOkXXv z9MX?a>XSDI#oRkJf;_D5mV1rbTXvy+pDrCBCAlprg3@up(tHca`J?c*IVtKPR-?E4 zQ#Vd~6vBqqa@i2!ZwTumeK~nAY4>vZS=lApF2gbXEw+B9%exa^fIZbbA<_Ji+4OPM zH<$lMSC&{7k>GVLauwIxzE3AdOdh<3Cn=YCF?4X!YFyyWO}bzeeJ zWHwrU^g^E{a9KzB&REC2GZ8PmNzqej(lFQGb3;sg<;kN~F6Me@u0WDi`Ff*viFV29 z`#eALKQgV$>ZBhF9G^p*i84&Cf$f8~MM3I>k9J{q>FF2D*nNLK8JCIgb3xKWY%N1% zC|38ccJg(1#7;(cN_+*`_hTM1y>wei#FMmh-Wh}>$9xQgu1%{6iGGx8P?7J(eATMXCDH!SRpGk1 z!~|xTXge7fU*Je>wD>-klB;TQ_PSii!vpqKqwv#8JP1vPzqgUa)ICjdv~;WNtGC#} z>O{Ki2Hyo#&PAXx?d*hY17Sa;)ZC2^j%Rf@%&s75pg?9=Eez~XTV7>S!#L;eErd%& zYd?*4LDMNdhSa~t)1P-|vjSeaSUKiH!0?(2y|T;1wtM4#tU~_)h+_=km0JY8gimRdQKrOycPhvw^wjFvinV)KhM3dO>iXv z5)G3V$|PdigyQPFpmMcIexTZne`n9Ri**5V1eZmo=&2He>gTSR?a`SmUjzM!_&}tvZSe-}Rht?at3++`D$My=*B!Ffmqi zkL21rrPsT7FA3LPr71h_=dqlKi_lmtQt&GmWnGY7tHhe29n=zav2BlwTXkm!fJ-Y? zuMd*_TccK%KDIwMO;mIee}DtE=-b z2ICrS=+j}R3La2nHIHYlA1hrS{UFntr-}Sh`Hh?U;9!-Hx_3zqU;_NuJ|&Yvh#Y(OvxM4$mG?umUP{v0dmAwTJG!7Yz8pP zOmB|W$kCs$%-FRW)lIc;la?3}$+)eZDy!SlTCG|Y6eU5ZO<$iOU1XM`{@)*^oxSz7 z;QrBjWDQ5SVYQUIE)0deS2y*q{Iu!4Ji)c}wI^b$E1x6Sghw$eXiHl@svAXoJg1~UgH3!*W+tPbW_&c^&u|NCz14b(SKo2i zIL(twu99aEiqT#m%$lN{{p=zuaY(&t=9=qMjjn|bL1T`WZ1U%A(B-h1ABZ>DEL zEJv}?F6#}y;)9{vJ@#F5cyn>Uq{()pP-9(iQfqWAmLT_2o43CiEn4;HqTKm`SJ`=7 z>>~C|0S{2bIohv0*MHG(msyclxns9o1p!Y5vA<4;VRDg<_i3ijm#}@QOA6yARnlIU zQg5zHT4~9ploY~_3j}5j(@Fm0kMDKmS6`^3`wI>GZG7%&LkevJN+ULfThvlrH;Q&Y z{eTQH$;<)Zt^F-@v1zV1a}QUzB!m$dO=O8N(vSY!m6i34ga|@y*5#sT>56F9nWUIg zsv+7TUD<-ds;$8`yqF#x5^gF#v0g4tmRYz~o4fU!=U+v+TwC>O;mX*P)n0$v&qr!6OtgMHWfh zamsVvoRWXw2tq?yEy>IDnz7+>@!2D??h&)Mz6jcP%YgKJne?G_xw@86KhgSq7Jya`!&S^-7Jgkws+NErhIpwd0iN_VjuBt?h6CLP_o$%ykdiv;~i~I<4e% zLb>+t#G2f@eU0|W{1e$>r$U03Kxhg~5&~xTo(x*yT4-ZNGl3BQfGNOWS-#{`N zHVM}8p--uMtRu!Wt(O{<>^w&VDhMiKW1RY2X*8z~KB{M3zULt>-)(K@Y#kJrw*6@) zO?SQ}Nto(sH-nyq%TDG|OSg5KxdfM!32L@~01eH-q|e%`ha#wLCW$grSvD>4ev*hW zFN})PDY9v@Oee5i^I2zJx|Y{bn3uP|vU>`z5jwbE)k@g4RU(<~<&FVpS@79tM|8Ur3UP!z9dRx}TcR|ZWmD04i-%Fxta6+de>!?p+_U{^NY+Yqb7_FBr8)kY zU(RVfp{l*FlB?~T3q5{0e7D%D*IsV@d3LlEA73?2%~Z37dUh^kP&RK9TWZC)J26Y+DLS55sb+j&jh)$dnEezdR@ zwQ;1nog7ze6i~~P%xv`}9N*ljRJ${QbNfkb0hd^l)@URUXZsNy*r@fw_MJ9BuJz4| z2suHjDH@R`hD537DyRNho#*D5;+}a7cK9m%S~a!r%`X_4g#-mo{w3q& zh2)?7fkwJs0wg0~-?g+{XkMxRgRuMKClE%|0dfC0$E@UzGAZ^3QmpGbG4muN*-SR7 z2ECVwAyr)gvcCWGeh8J(k!5BkIFIUiw8n)B6rZj3nrFd1uIua@&qF$TX* zJL;DW$^3<<62$>(ejw%9`(VPKN3n#!rV_C!`q0Zv+%fPl21B)kpB z!@qw-$7liAkFhiQ`ah5}cVXl?okJD!{hb8}rWHyLC~Q2J`X9XR*EKv&L##lGp=a}t z3*s}#0LI2|T8c!_ztAw`pK|~r-o*aA`0u{}&KM8zphLeI&Oh5j3IL%oeqi5kxb!zd z4n-=c$o1?YHk0UAD|T15NL_80-4nR-W9`JX8Ok97nu zE;5k##|0_75}`dW-Lw7w-U7ML41j~7hV9}19x(tv?m&A^qpOnrv*G_UkpCLC{~rf3 zUo|Ta5X@iN_fSh0uBzjK8C^oME|MsNauzyhY!au%DgL;#0Z0rt=n-=r{3r?l`k06$#_T?9!f-uUQ+m#5{<2s2L@3*L(2g*#Vn8U;Fl17JI1BLeFC!^NQ&vs5s5 zUAGs5R(+2wyjBqhNmK42JwnbWjo64(f5};kKm3u@3b24}zpQTdwa_a6F--i#hcG*- zxNzID$XwlVN688oInZkpG;M{e%RCD>qasVS@4vCC-D-3( zP5EBif9AWINaNe`_uo+O-@JKS_2hU%;`U?d@#)y<*jPQQ^{6?AiD{aUs0n9-;I>;u zHXFqXJagEH;=T!>t0uE;Q6_M*vFoViAf*whQ7^O5zd6Pm!~U<8ztxGPG7&SLF;_0z8}v7=a4Zvf7vctRqdtTZ`0*mx~JvU9~)aVScD6 z4O>D6ml!LDIRM0vrPi%68+xd^02iLAj4OtMgFP5C2Ld1gcF1nOlJcM#6W`taBSxjSxp8A3Fh+79 z(-Ap)p#&ah766MX*MXs%k(*UG$5KnF9F>rK1bN%EVYmzR4MY-gG5_OvAO7YKO&AOb zek6SxKY<380acL?7tR>_m0d3#yt~k1)qcY@nLe=8xg+M5%sDbXMNQaI3WAI+GY|#u z!Hr46_Tu`s1R?F^@+tpCfM4;jhz@H(IkXq?w>`8dzK1JGeK!{LL&e1?bIQBDH|u7T z#{?m8HBQPbJ~61HR3?oM+a1t$6JSW|Ugv;Q(QdWyUalTg(kC$; zuj0>SmW>4C5ECzw0sQvCvH-wIMzQuaBM&j(GXYRY?~R>)v()u?Z|=jrVwF6tabr?XsmLr3fXAHag9S@YVC&aXbu30lrw!$7&I$40GQDe#lF# zbmuq@>03@%&CR|fy5|q@bQHXM+ZR4q+L97JJV04oePZMM(6eikYy!@LRWyf?0l;p_ zQlzw8z>yW~;moqbM5U6)ZO(Ov%MgUDXM=wL5fwEjN_5;1_cF_yO+vvzUw0g@$0y-) z(GCgcAqOO=WJiInK!it+_|9B-NULKlH2DoZ^WYhlm_H%=_YeHfTDvqwweYFhUgJ@$ zAYiy=tve=8$7A|sTpp|tal%iCOQB9|6d7g+zWkxKmH_z!QA&67OTk;}9FG-Fh(%UQpP< zsxtKt-JVp;f&x0;VO2T8g6#JVz>l#5&RTWmrMBk`%Pe|wlP>V?xkCNK&eKr017cKD>IXp(qF_YY zu#jL%p4gKngGby;$ZpV896v_8w)(vT>?sJ6+mq!=ISk%oN6g@sV;}hVDyV5nlD|GE zx>D74GlN4KHzFQwhEt%(QH4@x@vE2{YwNl(UZM==HVrQN21L~Rgn^NGtm_&f0j#)0 ztdeIj(L;zYk;Cv`Ab{ad_6a-75hk8c{D@cudQU_~a3eQ>3$g!xDV~>c*rLovXB-^0 z#NA5tEcf+o{2@5U6Hcc%3;040PY`5% z=<{ea(>5072l(uAiael-9U6y*YHIla*{yo*lp`3EZLE#f;;$kV zEL!yw^nK0Rl1w)Yb zeKr*hOOYdN>JEczI+FRIl^Hxx=XUa~;xbp&`=3|FsdO6d?}E9jH88k+lPU%maR%LW=~rzBh@5C84oG;+;WY)+zW{2U0}PqF!b78>=lj-EM8x* zDRr{Xg4WImKWDj9gr@CJ#O^Gv-L7ni=vl3DCCLcr>s~6ZN2=j8eT%VXkGJyNmjCyc zu06Cf-#!TQsk-GdK071{OxDbtrh`N;M0x%5PRAjSiwrx@Yn@F!2&%>i>DWuKslBy< z>KJ~_;YF|ck%nT%baAxexoPkd<-YLemPMg`8ubCJ&@;`zVrw+?o(r|CL}}L(ICLf~ z9K1<4tl-Sz1pDKg2x~JvHFVv}^8PV<>yWwJaon6Is7?zOtios4e2awz6Yo4_msEEm zvtve_t9>TGXvzyiRiUo=nMgqg-V|&<3XbmY>gs^inhsP*W}86~jb|WzmkGOiiA1mC zwfiL>PG7O+9bY*G#NXU*Hjb34Kt=%t<*KBm^0gC?BgUAKEz8URLmlyjGjI1d5>B$A zrW0GJrt%Hq%BKKQ(2G6C?DFl1jt8eDXEdToP2p z_ehE3RjW8&lYp~HIs+S5vqkyj=@g;r-RAx6<*ezaMeW?ssuS=b3Jnbc{!X`09+9dt zBro*aw=9LuLjitD^UrkXo%Ay7p_b!3=Mm9a4UFhZk7s?}Nt>^UFqjA}sJu5={=8U; zq|7DwrhPP`9Zrf0MH<8oFmJS$-@eA8IxnSM@6Qxsm5uC$)eakc*D^elJ=TXvZ8>qZ zH1=*b`^2`?lw7>*WD~va0B5ddL3&BSL3NVpgvJzekDxnyw)~a{!Q94vVvDfFil1?V zSsI0XbIeoH?UTiBei$apRR82Nf^JAl^A~+DsHTC9Pa!hOSgYQXWWm0X>d7{c5?E&x z-2}D}hHrC@-3Wh+q3ND3QF$US5_?5Rc|dqzClb+Rt=rn zWAXB3z`KUWhRoEhnFC=pT%~6Qdx)RdQ>THRGeX@ z!8_|bG%kmAy_1R(5Wmh^by;;ICcsIHun*P^maZ8YpyZ9vL+BDWl63Ybe``=L~p--Pad{>2&V0 zpcA#wqv*Juco0daM12%?WH>=7JsOc#{jwOzJ6jYiuk_PT=2Aa+u6w&LjIN8c!0YlI zhf?Ql=gWt<8usX-q)m6Qjo{XAJz6m|7!t6FBP6g(K~YGb-re2uCYGi>`t7%;i>^`% z?^#n4vR?~#$DJWWCyWt@MHGm-IM6X9Td_w7-C53N4qRC?eD_tsxs?9GT~FZH`(?@9ANYm>%D;M1Iret9%sYET#f!(yzmgw_ltB~u^f<>J^{0hS2v!UY(73wuM1tFzhb$x7rY z8E%WOzF(#3Dl(Lj5gMPFiZ$vCpS& zgFyY}Y7p@Kc#O#Cl)~x}7bO8Wc8!BJ%OaB8)!JDZL-L;~nLH26k}z7151m0pvKop< z21j5)I@)osPAD6-l2`>Q;Pz!!jd_NxeFLr-`i;5H9oTjGpC_|Qjx2?4W?-H@TSXf9?BF}1-A z&|{G~+HDr{=clmAzq!?k{ZnZtP&zx$w#R}3Dq$)otqQ}1RWClv>5JQ10x9%!EtS*F zz=$~CL8Z!c0+Hp$7y5)(G8?zCkmfyS_hF#?28)3#z6PCa|J)pa8b<-s z-S?o%88z0}a`JIjX?w4j-=j$JT8`70h2b|mR82J*b6hBy5@9&GaqZ)Q!hAU!rs9Yxj-v!MK34> zDAD-08Wx4fi1w0b`fi_j5GdI>&o`gw{<2qJ-(=xt?ytxH;M>D@fgkp|pFGwOKz|Nr zo`dUGK!%EYJZ^LtbK(urkaP@p4!#r2&NCh%_mXE@JDcB^?nTQoe-bW~3av-){9T(s@@AS12IEw7ucvvG6l&xMaPSbx|W{9DUwB5{O0_gD24CCQG#jbDvxqFY8oxGG?FrhDb;fZ z7?TSZnnCI8#Rk+rJ&)M9Y9!>5O|iXP7D=3WAGY9>QC4lW*5kw2+jhAFRd%c21Xzj! zV7WJ(X~k~+ZaeL*8mPX=Ddu!34B0RX&UC`DeAXOR=;Lz*Q1E3>NH1O7FkoasA`Gb1Bx12UQ>$J_;k7bac!9Vd%~(6e|%s3nQzSsllhP ztB#;2_Y0`gKPZpnmPuZ@PBEUs#nd7I3?%e4N5Tu9dDkV5iWV+MLd90s(|7g|DpeyO zk-Ie%89G==9_x)o7V@a3HDMDuF=HlTtH5iI5mWu0e=$Aj1;@1>53odOj(6S*axG2u z?Q&ts8=WVW8TN7+z~@1EnBjbGaDZ}+^poSN>0pT$bB$26w}j|SH1n%s5Mg<|#|hoq z;{`Q6*j9GdfPS|U2lnS&ZmGxCkPExy$E$Q`yrBmvQrt%%2>LnU6@rh(vpiw6QQLT@ z#G?t)ZQkZL4ry2-G<#4608ru8N4045Zo|33iucIF9Dr)^h|SMLyO_9_Ff|$>iMYLsuYm44a;PcP|lG zZGuAjIT7gxj4OjsgF!0$Y{`0iu#@Rzo95E0pD(#6o}IAk_A8Rijp9cNV(aRid6w7J z<3-^>WVu)=4h+TIGOy1vF%>&};`^|{b7dh8{X>rb6tKaCUsWzd7S+oxm zj8Wjn9hYTOZ3Tpb9qc#_raN1`I53+C(L?x5H!2cYFc~OF8&Mv)7-|lKcIW(l`G9BM zLr$a)%l|x)hNYnKzQrqI5=M@Vn6e@F;k^41d+pGg?VjeB5LhG$*jK_HPrNU@NGbaB zu`(uh`FegHnn^G=035{V@d+#X>C6uD$coTZ!|_915mp2S!8RxaQ6b;HBrJ6Skf!t0 zNaN4i(8~N;0LxWgyZFH7dG(W*>Lto=Egx%9>0(q6B0R>hcdd+gmpd&6BZ*DC(~|%6 zD{OaJpkJE_+=cAT;uwE5Z&iE-|9apN_ttxy3XAVnJ9mXUo9EseL^2j|45Z;7HU8aj zsLc6iB=7{b;wSab5JlO4|NR-zLYiv$Km4cn8|7;>6y52wUjGaa(9n0_0;8>j|8v>@ z8HE3t3ICU`gS!H%X@kEnNB!0g!()PfzLu2VFwp5S+JL~B*yK-^wNiUvvDN<6Rlyt} zNfVGjHGu%p3U%SZ-!T1m#BPDlpiz&I-AtfPAt3q2;|7cp5S6(fKSc=__b|YbjOQOZ z(OGXKlu3u``(8YxMnw)O4)2BIXWsF4SzQLu-X+PbyY93<_+ayQO(^yjeutWcl}7<# z7bg_Q3pi!M`BmKoDjXKUS6l&-8*2e|AZB0!*r0{NI?iR#hQ8qOD|m#&z#<$L%_Gem z=xRVg^xV-T`k&Rt!x`rylg>2m9K;sM;p!H=TsDh}B~7HJyBQJT5!cH`yC;MW*FGMd z5v_gn<{a46-9$m%M8z=VUitveT%|V$piBiRiSIjo#VirQwLm$>E(5Sxu7{AmCDqQ3Or z2!xkvfIC|pAH$k{Si8VQKD>6XGGY`$d=n79U35FyaZ>{1CGt|vxmcVFCT&p5q~lQJ*xLm zZd5^OPasRx4gS5t6*v!ZSCMlQ{dcIjQ2^7p=VmW*A>b$h_;kPX)L!`u#Ek}-to7GX z8JLJacsAGzQ=~(A&@LlEK_S!)WdP1Bfp}rLma%c7P0%1gwlbpd-v?=^r{^=Y0jgaD z1V(Y4OR-UW&^!Icu?+9bMH?v1cvYjfe*pN2;?e%r(gjHQ*Jdb#cm-=SFM=w0)#tfx zG24I)!|rJ}@P0D^NXDN_OYMoi_ztLENNoXl&`&}Cuc!H1*aThI?Moy1E9!<=b?4TUQDdW#oI3}29_~J}%L>x90=h7~U5XFCpTR(hdSh{Lw-_X-L*03eR zctwQQm`v=)CLhink#7LRXE}`lnsa&AZ#`XI>2O1S!OsfGq2wZl_es^(jW-CyQ*~&@ zRv^L6Wh?~ofxOoZ+aH6`?A#!a-23<;ISKs}x{RYH?Q)JN5#qI*yx;dwJ^9j==jO!H z)e{O`hi%WL1bObaRv8#=P~SwZ zi1NR^QeMfO@T>vHV}c=|JM)PbE_J3?wQ~mszETQEB={MclCSj5{NK5LISB_I$cRx}vk)W|j(|1e^pXhyB zIytC2*}&5Tpz&DJVA~Xze3XX*z!J4n>2VA}ccO6KC$#L`*Wn=bO z&^x~;{`AR|?pA(h>;5ININ$3WQ$9aT)y`4-SeIXTkj3)KH0yDB0~PLVHT|zlGOESh zlAl<6Qcj@6?+hJI!76$Y+jdKNIhag#UtKR#&Hqg0``+PV|0IdhiN<}}i5f-J1IYuh4JFB5K&LR;>JBV|8<7aY=G z#~nv!C__rp?VUu_(GpUuB>OJ#P8n68-UWB_(xC?nxu%n?oF~_NXc0d_uF1FOfDC$9 z547K?k;Oa>=d+I;08iV7f*0@EaF+9d@RwrmlW-7Yc0V~AA||ePM=MI2-xibQ6D7K#Pudcd)A)>lhEo+kAl)ojt0+rxK#Q1Nfnh|a>=89&nP~d z%#%rxe)k*FG8z|H(oOx5{O7L)EAbJmr@oQQZ1x1#4Wg%?U9hfmDnSYjO+Pf^M8e|U z`SfelO=Ec;?31#_Yd!SfpZYy$u85!EyTs+G;<)5{c#0~3C}g`tg6(u-GKOAF+QiX{ zT|p=7ZB;o<_2rEpe^wAm*|V^H_(twSp?@YMm^B4phZe^(+RTaI(%h6}IvylY9nptf zcq^b8hnSbqwCS@WGu_z})X`J0*fs%J@k1r&to`k>Zqm&;p_8G!(TA2bF+4){d7Ir(ygAr}p4Z~W~iK3$-B)^|3)bsD{^U}=aeK63v;nj1 zMMgkUFiTH_bUZ)r;>G5_ThO0=(oh9Pxd&lV=+73UhpFk$bbz|IMo!)FzPB%u4Eufd z``rc)22>PIWO_aCe>Im<0#Gs*;|rJnkUH~q!vyR~dN5EM4#0n+#*CG2XT#e(Em@IP0 zflpe(v>*M+vf;yTTF@aSsS0D+Vj%Fl(H<87X%FSuU?&5YY7j3><#N@4R~nf?3?Pk> zioMtf9@sp0AT@cPTL}DQGW`nb6N}(Je9S^(=P)P(p_z1;EY*MVepjzSPLqb3{S*rSa{_$gHroid zL|SJQ2A5EJp#iT#C^EFgs$P@7CZp_QXuugmK`}4kJ{Z1CE!0DyUmXn%g0J~jyl#il zq(h#k4h{aF=b4K<&+l{`&}Ld_bA;6?^*?P!7#YEq4d7|h<$*lU$P5~s-_J81t~ON^ zi2*IOgikE>er4#PWzQl2#u%&q09Q+FhfmB;ORoKSO}K$wQjE?7qCcn^N_TfgQNhQw zevq+U6l6vxcY{11thmVF@>@%a!GxyK?c~J_WTq(Ao6EC{`mTm0T#jEB_%Kxe#gt~{AW!6^b8Xo;l)_=`~SI?&_EJdtm90=?*{)_ ze1wsyjA@AW_3ssbzx!Wcc!P@?=zsU%&*CD>4zuY4iSQk;8UYU^0s8cd+WJGh-#8-9S-f` zuNjJlF-ip!gjp#6G)xe9zI394_mzxMztganIw)~(7h)$p!zTuo8{xCN^@#AD3Gg!) zDNc61fVAP&3-A1VfY$m8&pmtw(E5-hvBJ5cNflVS?)vfEt@Hxj=1eGvRd<0+LJ{m$ za!7feB@P=U`B_QyLn5mW60ezvSP&Q3toPM8*=;3J96f}vNXrCZ*r!I#ptO*N1R`4z zb%!DXKms=T@B-5W+*ef8%?dpE;1u5nG21A+Z@!n%@y~!o2!~aE#T-zGm4N`H`4OKd zjQ2!OH{8LtM)SCf>5Cl($vxHfXs)c&Gr%WIMrw(pbr0XrA;57aoXZsvlV1-nq^2_m zyiFGI+;(5?gRVp`u;_AU+hd?q6D*56AyCS4h4cRDx*-qYOUQc?xwMk92jQF?@ZSP% znt_U${KRh4tzPh0%W~cCNnmoYC7P^-9gQ|b3$bTi1Q1tAf~Da8J zKsXiJ@G=~au5v-e!Jv`t;A1T9hm9$QK+{B$^O}o{boG!gkcMBoEP`cv0dMa!W(t#A zz+3PZl8WN(<>C;8ZO{uzW@G7s_NaQ0XPd`;UcvT#6jZ}zBP?&{ zO&wZQ90?tX&PBBt+h%1Uh` z?Z8C%XLcq!CEyi!?2%xB1(^<{+hDfHIywe2S{Wp1%K&0aI$AV&|0odn&& z)pO+h<+CaIP#5ojobuD^`tA26qD~UW0KIq_BSr4MF99#s8ji<#T6gz_F5l~_h1Sd- zWuUHM50QK2No=@yt)lGAQ%Gg){Fp1NrnlM2YP>YdB0EUYvYGAT{Q{vjy(~uLET@f}4XRcAJ){25Uz)`>YQO5rRNCKKz<-xo#cRi#(1%Wq|K48wYULGWowUK& zes6d7g{$D}_^~x*rma|b4Bp~+V<|Ceoz2}C%CiKeWdI$tG9B`iyxiYV;c*Fpuu}w7*PDzf5dA zTm$-zhXyMUQ@8c#J|G?b@fHiimzmdtOdr-YMga998JnWI_l%Oyb0)*%gOqdmIf#4L2ig+xOapy@wMPO&M`E^@F)87Qvm%a zpC%uE5%4y}L$Dj5eEcBUGPa;{V#X77&>3uQbfY#rB)X<^KX5@+#KdeI(uAZ@KiV8H zd^uG;uF)c0kTX!K?|p!JfZ^pJ^FXO3B`cgaL62GYJ}K{pMbH{B7W^NKA8pLm23HFA zdI@LTBR;s_R@@4?1eQ0VO|^q7Ky=)YRG}D3wRt|<_OohTjE^SHk0}$9(dW$|OJ;aD zAAO14wzU&P@k08o4-JLueJ8_j$Tf*Y1s3YG*p|1ExS17Q3skFrs4e)sC+dpIzQ^17 zz??V-I>MRO`@!f_O>P9J2jp#Zu1*Jl+!)-eY=0LSaaQy5@Y(2Zx8J&F7~ObNmsD6% z>}^bgsNc+f6QG^qXjlnT(ZcD_20csH0Mvq#&hd{kHPu-uB5Cn40#3I0@zq2^K+JI* zfBF3AU}q;Ur1EZP5j`upIEIks044P9)@FOG75;bp3=5oNHXB>aZbBkdr#x=H_3^ zi$4;HhevM~VbGc`6vEn6e=$m-aT%P$d?hM8u0N>%yrJHt_jv*))$*4EvHjr~!*Vl( zZ_Qc{onfM<R3y%u$N_}}tRQh-4*e$} z9JzVF`1`N~u;ha*l<8hh-$@@J_b!$;s4b)*4vMEbAD!=m&mPRp`K@#CT9HH8ry*3+ zAVrx-eJHI;LD3kTS(fP}ca5=$(Fu2cgio!<2fJ>|Ni#`t)ZS(5c*I#t%c5lgY1Q=B zs;eR4n7XYH4i3&ZkD~XGsW*LU;w8*gY#dnt0`4OPiW@(pbF}EMTW)qgpAq<3M<}bkB`Eje_)?$xI)c9tufN*zm-Pit==f+grs0UgW z9Ji%<6L4;c*AG4)yW+N0x-J|(B08q0(A`fl8i zD7{^Ed)9_YRHsOP?@9^*yK1Oq%N*75n#ShgO+`{1Vgd}YD$6K#da3A(in-Gywy@mC zD4Z+X*0GE#rqAH)5o{HnW1tUn+2GG9J1x;$V(h>0iQ}dH^bySqNxJzU8x6?_)`BUZ z{L2t#uc}nOi}Dz~@ZeEwBwE1j6`qOH-a`Cwxz}}Qv}f*_$kR*662EqQ*HIZ!vM(51 zuYN8mWX0}Esq@Xi%S0hWwm$K_*QV%N<}b!``&92J;1D~>HNqJtFERS^&BWd$oH+G`TFjx5Asa17j!VIQ0S@*;3{ zDYr4fx`qG;$lu+zTpT@Q64mR+GK-QsbQ#5>yiR6Px7G1{$r{-BrSCI^KWO~Cck}xP zu!Ym$(!bmIFqD&GdwS}<>PWL$dkKfP`))`;8Uj&q58Q%k`M#Z?!Cn*MxXr`jjfedr z9D9_yI=+N=m>gKQV$;1@_&n3Zo)U}z_X^+|JPz?%rrzfqC9z+69glxJZ*mL6kmS_X z1Cd_ID=~EwneGKx2~p1JWnozVi@mpus%qW)KxGL^iIkKg-6=>&2uQbtAPv&psg#0B zSahQ_k^<5tAkruyQX(xO-Fg30_daKz_Z{QjamT$M?ilxc+S|DnYt8k{dY)g_*Xlou zi(rc)7fb3V zlyh-$$Xv%#%w$-lcS?u$upFDGq;=`~g!&_B7gTsmcd2CLmOg0#bxOM;sE_XyD6We({jmGn=PL9?EV6i?Z*H;?o|+p5#+LmMVF%UX&s}6G zl}nHZ`OdI|Uf*K?$ij{BC3+>CeGbxP{R+R6(5ZzH`{nkfITk17DZ4==}RXS9DZIyeN zkwDW!@r5RjxeT{6ZRoPKqx9!t+RojK(_xO=E_F&9bp0BNozVm2b`svOGKuS4bjY+# z9AKlT>e_~hRE3ygZrCwW+QLwx<)>sd}+#HL0hsSOPVLR5J= z$Gqmwl~hESWU<9udEvry`H8P`-El^klJv*Ot-F=tp`sCZ3;gpXrRO(-$vZlmQa*`2 zxG6#x+PToek6DJ`CX||3ycf_GsHpt-M;nwgM}t@{Ss&Jl2I#SV*{PB_e1;w_x|vgU zFT=UdN6qnd$%7mvbrVt(6J6Hjtv0epGAiGlCttiJjN#az@2V_bj;~*?Y(A8)b|TlC zz8RwsXH7D|M}*(zKFRrzk+b|4&26rW&E|9tE>CvuY8Bj0ACyL&Q@;^Yba_XaUO9)S zuH?ab1+O5h-~tiZAp4b`2m8rctM;1u@-Lo&_6Of$$I4bLI_*7AkOlkRGk$=%egcNaZyc+IU+YcQm|dX^wErJ!d_(1i_`=3 zApgEYJJ4KjpPjbrN3U*=K9I3$kEgD7Um^)|g>^lvC};Djeb0F&%I{x{f}$L*YC%w2 zLbKLA3IHZB0>RjOd%>DJ`eY+_Ywr>JLwa0HH)6E$x9Md+*7_k~k2DwJ582!gwq%tv zYr^s}V{{elA&D5_c;zS`>%XoUVHrP^K=X;@Ze3cjT6DiAI@4X(izah_Gwf}T-EROR=%miMLcc9 zM`Pt{&FlEkGgjOJWdSR0g^M0x$}Gyg@2n831u>#~#P>?$pbP|+nA(EGszPs9?v@lP zIQ*EIvMl^U%*7UqqZef@KSRiPo(KM*zI_!SZ8Fi(=mc()hkcuQp7O_lIArmIpfb~v zV8P}2Sp*^rMbBI_})0#bbCMFGQF+-*4ZCGTFvOhj~d+nq)y>IJ~|P`E`Q6z@H@xs4QxHEzG0MiMbRbBq)I|Ia_TqTaUc?H&`44c`NvyEdexrWk@>pG98!o7v3OyMSDUrEYc#KT2EtPP= zx15e{CcXX-6#a$`g9R+f;gwEw5G$qw9d14dA^|=q&W%<6MK%gZYGgD$I_x}rcVrCN z$?u(~Ryu=5#MpN-0SGcL<2gWM)c}o^P`K*z@I3l!Jo z0OaT*$U~?NID-zdX8&B zG>F@Tag@tNVTvHPAuEuOW|7)$fFM`L;9}Db_y47%;38N zqSTr)55(AQJQR2(QmP?-VemZF1AN=!vU))BM;0N=zd+aS-N$>!=H4i@NCxGmj?hM6 zH{O6?ZpnWjQP4Tf2TW6gz}}}r8%R0?2wipuE@5xC4KSnlJ5fPr1N-n_dbUHXgyGQl zXf0iNc=k4E0J!$Rz+Wd>s?kiEM_RCYREx#|nCle&{?p&l6udox%{71))-AZowztMV6wQj~^OO2|PFY=C3z)s_h`HPgJj7ziJdIY&w6 zncC*e;kI!t^e*)e%s>zcG5EzMfq0}!r@*pg>lX!&nVf^OmS|d&uCZB1ALvJPwwH%B zl;gN1kf+#z_mSf+7=Cg93GY3nnMbmYT|+rwxNf1K;UflUf|D7&dXP1_%YOi=-sLOz z5t4;5(T?!QVIGfz`&WkIH*2gbAbz)jXWs{N9)=|l>;HUlfl|OBsgG)F;2{Ri!%bd` zuG_W+@3jyWotsb~$hF3(ET|U{2kPV6#*zxt^vYglzcqVj67=J4^IXNE7(=OsXx8#uVp|0?wa_r_W z5pf(P;RQku3KUYV>_i1m)bVm+^NfKAD4#b?ska;V)@!)1aWW zDaT(7awb~&a{XY+_i#Q)L~_P61rIHf$$l!7j(YVf!EV;ZrCk%%LIim{>yM;S=)b)3 zL|m4z63MpMI0ai4y7duI6Qbj~tB}DK+OR`wBy!qaQk+b|3tDTbcIJ9hQw3Sa zFA8ExHgz`-bK#p-*ljO!c}uBY!T)K6f_SWIf7Mk$k0peVBlP2DEN8m3Ai5I4KnSnW z515Z$SP2HYMC?Izr{jVG<0|_V^tUpNZs}1zInF-h&wrfg!0?NTE@j?`9wkAGyu3)A zHh_|;ei)BkA8rDEO%?pO5u$ z)CC+aT=LrF&VAb-$1FF#&>dZ|<|v=hrbC!h%R@{gZ2iOWOHYB0oy^deG@q}cz+m`x z7k=VFV5h9R=&**! z&oq5|!zF@WZH3XdWE`xC8=)y))VIk|(z|!cCFqRpD3(d3Ujv`=p+a zc)i(pK|)9T|_m)!Qg>khb*t@ zDaam6m;+gMm{Y^P%RVd^v^*y=K5adL$5S}6!beBN8(xFBs}HTgaXELpxO-}!9Npqq z#wG4#^_v{%RjXNq+&*Y;e$d67fQ(D{_tyJ8}-!%x-nQU@R6+ZM3%`l2-_icWkAx8kBX z^Imtzk6(~FUV9>@>GQd8Re&=TLU!_yKAI05O{DrxfqkXK`$NR*s=Zu=GS4V7-7pjo z;#5IvVFftqQDuUg&f#gaM({AMzVdb4vHD7w@MjRU`9BS zzG>jeL#paLj*pT4go#-H>cgyqIe~_SQ$J82A76@j6nQ#q9c?Knvd^(w>9BsMdMT%m zLtM?!=D9fn+Lai8u_4pRXpZLAHKz&Ah~{?NwPRS-oOTo7c@LJ;gw$7h;~(WY;DNz6 z|3l|ddZx&$mp>M+s=oUPDswg6GkdKIF}RsxZErz-$iuC*XkY!_Xo2r|0F-)^R|JF$ z#_|}$*LJcJ9n^s}()OWnYq&~&lWM!>j<7yUs+x7@Y}~n*9m7jCZ4b7Q;<@haz9+s& zy<0uwg495gfS6fh{qe_}HeH>-{x4Iyw9!N>9fQf>A@rQE;&s~w_u8g?qoBS=>cOP6ObWNH#AoQUJS66(Cb>?J~M(1b2 zzQQP~U)N6mLZBC_uXz%>84CNtG!9a>q=*$fKWd4ADt-XbLuUqu9l+{5ZELTO8vl5* z*Z=g~`EP;ZPl#R`3iWBoB$YKCEvWi0Mob|EjDEdW$N4mVf#uksr(#;17iKcW>FOr@ zbUkL=4P6`Q64EE~ouPFkN`iPg&cZ7rInz9C4dVz)xNt8rL-O3lBusGUu%yQI)OM?G zWPMcHe3e-nK@u0$xb|HO#nW%u_o1%up6S;+HhF63cxX>Bzn$If7N&DxEA5z@wF+zx z+e-6FJM`obqN)*a{4TNzZslD>AM$#t0h|_IfWtZHtQS_zCH(Lb#Mk*;m~y5BC!P3f zW$vBk$?}8yEl&vo4f@c@`5sBf08C{E(0|^Fq0s3hHKR37%V*95%nAo|iGe-zAXeylz;Fjyh-|<= z+9P)wrvJ~N04`p%^iN?q&;`dD?<|+p#cg4sF$~I`Bl7xC{b>gOGDJvLsRHW{A3PH( zWG%J(8zxBqBaIw@%r8@o&o!Qo3^>|T2pUj{tW^|LjL#!$l?`y5&ZK$*LZnk;0)nDf zY!e+F>xkUCfkf&=o*tltGpH}HsQRKW_y=tHBbMsuu(UuivOU5)kE~`4(IH){Q0B$e z0?z86w1X9n6SZj!SCK!(|4EGk|GLK6^LUz%&RtN4UX-QRQB{e==;1ZqkIer@Zjg5d zh$FZNdeDDLwgPJ4%U9+u#QcU~{*qXpLD9fc4Ikg{Kb2rB@M9_y1@8W*crys#m0RL_ zpcgDlZG?r=0OZc*fLSCH>5w|XG`%M{^^|S^(o(Y=ApY$A^mF0Xy(w<=P@4ZlkfcdX zG2Y#3v`4|DPYvSs)IlzOLLnU{`qDvq!t=WxEb1+yV#@PrQ1ir($51}a776u zUsuBmgOK--@|R#v3zU3W3EnRPaxLm3Z7_)yV3E!2N6Q5frAqQV*t|F(pI+zQ%NHtys7IJoO0M7 zjqc81BER$+`deffKVHi;`D5k}FcbC=$R z<9TbHl;j4;owlTK0~g^NGzC`Wy-RPR?BVw8m-_KeoBT?LvQ`hpdb>+p1{u$L7LgMl#_+-D5r?% zfM=}^|LR!YzNzfrQ0nh{+#ghk5l-<0^iTieo^}Ff`X5LZxyAkMHjsz2nel@&`9GmA z>X%}0)%}5X|9&I;N?QguP40wlr!ke6hn6Q)5JPBsyzcdZg z`&z9px<315&XIxoD{cH{=t|`xSOvT=FhaaW@^{K%EQUAO6|I7C;`~oGQx`!EsfM`g z5};;L7jjDn07J=vpe@I3u(?#TUwOxi7Fc%a1i~LQ;3s-7f?ZBc_2z!Y2-Fb|Li|ku z5-;{1U=60H*Mzz59YU&FCg@ypuKFK2Gt7D*8db#M2x$n#x~9+gs-<=S%gBYg;8Xm$W@>$ekx3wubBHv&-idS}d4RjemxE%pA& z4TcBJD^Ka3--bkQ-94w+2@pBv>jHXFbEV>9+nMjkTHv?G5}?9j)o7OnW;E!h_A+vk z8Rt4T13=TXzlaXZLc3|o@tJ`%$iiQiqM+rr{mKs76Oh}Uvz(!ulDTZ3;RgpL5B61h z97?$sk>06A+P*{!;08CAC_hNskL0EWyt)WcEr%0Of9iYbcJ#q_m|SHCJ$Z09`f(sY zH6nss?u@zGMKFW=@J@a8C#g5h3TS{|QB<5}>lug`NNl-f4qWE5iDGK#t^$~-692G+ zFxQ~~`!2bK^C%)D1z!8^ihK>=NoOx_KPomkf|SWEpWPKoeO@pusaEuP`yTET-1y4< z8dt>1c@j`P-ly6)7gQ^-y&>l&D4S~JI}l?8mpe_KP?G2~EvKJA{J|<>wS8w2M+BVw zdUM46>HYasfhUSJzEDkew1pWdVgQL#k3>RhRA=_U8<~`?(}EEwhk{b$bR)xA@~4l) z)zBe5jAVc8davX0HKC2#+E1HKbCjYW<`YQ^3#VJX?+ylxXJ++qX!dsG4HyJ~p$q@`bw&RELp{o;(@wf&r$FYhVzCx=KGjJwVnTwPI*Sr$8N4p}L@D@cbMApSj? z_NgRwXuwJnDC0&&#AXe^jV!!RMe^|!O4N@xcb>?O3r!=z9BLoT{qjRmbBHSV^bMp# z4ctLy)vBJZyZejZDZYbjaeBdFMWS9l1u1}u-{fL#Y(iH`M^|J}=8<8&RN0CS(?d#P zb?Xns$qu)+R3NkDM=fSjZPM|qjDRI$=ng_R8r$9-TjY~`=vsYflD3wxO@Hysrjs0- zA$<=!MtG3r{3IZFtWOk{Lh-q2QObVExyQGhkrW^MdQVjis@#RM!3))Yk`|vetgySV*&KCQqWkHpV3tp^dQtZn_!SM9y`mH8>>{4Wu9SGMqWOFbn|dArv0 zTdds@DI=yIRvJ!EepEhax0T7auw(ro(a3aLDid=H|0$>|Lg=QwrN{CxExz!adf~5|O*}Ww;-L!hnbXu~6h_`PgLf)!PlRR4 zP`a^YUUr7OMxD{<(Y9L--^omco8vn+TfVFJ{Mxi_4k>aq>En}G7%K;!AR$-@d(Sw0 zC?*C>E;$Es7@NhgvV8OLF)&x4NB(Nm}&{GlG*6t zj(TDkv0~~{;5NxSB%dNxg@~@#`Z)uuzyNXHne2X(p1gJ)76DSWm%uGW*0Fc>@N7U3 z%e`y4{k9AkCZRd3d2mKzvh7pf6DysW4r?C*{_0)6;JX@0EMhg5#oJNzY-dq2jdGL{ zH~F8OE_+@!HRd_-Ae2tJ#)Tu5J=$`~GF2`WyxMc{5?_XV-YcX=OaM@!{rozp#yGGypmmb)S1IT4x{C{u^`_SbQ*cjX=!9lQB1= zUGSMmQn>SHw(R>nPqoqST)jlGP;xJhaXbYK6$Vc91l)bmMJbVJ$1-q?I^DWkZ+hqQ zyX=q=TD!|FN);z~IRGWp)@gt{?(E}^#%VRSnb9zI%a=#2_?U*%`yHBw)Rn7@k&$V8 zDd5-;o@;%Pq0v(IOLsONBaFSNE$u;dV}H+O1iTKk{1tbLw8JYqT6Od0tBXE;?}d(- zrbW74nb?gX$bP5JWHr$T#n6L#D&`n|$!+naFTO>(+(nut(fd)Qs*s=;YhF%$X=hJEiJq(!gIOtf?Mx zC8=7CayasR*U9{Oti*bTZ7II>@^~+FY+GF8KJ?M{8Y%E(EO=H9)kE(i)p@@be|bMw z+s%tZ0xC)AeYZeM<+;0JeVU;^bnZ7)9CQU(a;UPz$TVK(#nB-VDbP!|5O@~QKIK;w zawI0!HT!DKodgE!R+4X~mQ%X>UASI- z3VobRm+oqO{jGWb@{L!QPxx0M$3ruPjSQ7~Kl0HTG~)RTj4ux6+(QGS7GF?AcWyTG zXICo9PLp|T)%y>zBA?5Qu1%R2Y;--8 zCNVKvKY|gc%#WY2W|dykA5hlbtGeAPT<`z{0C3Fb>MvXgs++D|dqQ{X6 zW_J`LWN&*A&q8v!o`hl`QXfqFD~6LSOT0boJvkGX{-*j(upA^{(Qfnc3>GYWEd{SN zI$J^(9`h_lUlUCMh5TvS!xs>)sI6O!t4RKdP~co^(0!QupFhdGW!YNa#_v%3r0T1k z`OAh7-nSpy_QFOIR`ht7IhL2-i$t)uu_&3dI#}O`c(VHWjbt4tN`oK$+8EU|W4JKM zC)rZ!c7tajY_V^Mq4DWiB%2FgCc(jqQHcm=%^lwC8 z(_oyCnyG~VUcRjOl{{LzG<_0wcoz;y!Q)rbLi$+gcSzK=V1xc#pB9`dip7H>ftDP- zTIk_HQ5e0tVJF9(0|Jq5G?8q&9HeUe&<0sroDSk){xUYzG%|Bv_V?ArHAUd7YB9q6 z!ml9pOlj4I6|3Z#OUb>wr^JDzv&$!e&X20n3vGAej-|)HaSBK$`F6MV7cPO)Hl%-r zr$48O1NA9Ixn)hRzk30$D%=k7frnAsg5Sn_o7mD|)lnr;xubj4d9q!Q!n6UAl>(t> z z!`Xu^OoTf#T4Jg^yIN($m)!xahki#6=Y@$75c8_lL-GvY91I8#(^@_Or!+r-Q(_pt z7rRhtKF3e+q|aTcqYmpZ&h)wbz2~d4x&qzqgr3Nw-U3)JzU7&Cq7z<@Vr#|}X4|XA z6^H1dImA_}7&x1Z)T;$hY{Zx&iO{Bgb*8YauV-;FWb`hv#Vc|D>F&swnwroz7IGd*6e*O}GnqUEC-L9tye4 zy`#n2kwr`WshM*Hr-AbEaId2HHv>hbv54n69oB-P(kFODsit8;tO*}TgpD<5@{cm=(X6LPWtL}N(ZT_TZRc*U*JHd2Q4APPAP4U-an_QZ(k3rWs{c9 zj@=ulr>2TePl>e1H}>l0ofar$bNHHjeRY8qi>yW(51JW zgjq^a6+OIS3KgO+%2~8bOBe;~I&o$1MR?UiKMV_PY_^L67TThgc+?I9RMY4@l zZzy?T;~sYQu!2w;>;BHx*S=7iTMQk;v>FaU*9*89Yr(fE>h&|^rQFi;hp!&h5pI;c z&hksi<7rGpXEF#r_EDJi%2_Pq6Wmc92w{FTtkRNN#aJ61f@fxIN>KrU5a%b`NefG= zY0<-#yl!)eEgyv>q7~)WzN<+Blw-E5LZx&h*+A=_?1OEU8syBKh&e+yf_`vUKfFTGb^5 zWov4nB#F@lb;|Gb@8Acsn;M>*YCf3`??-I%W{KXUzq3Mndjcfn-q(fD)B_0lh#%=g zG@_6IKCxNUZ<;VL0TERLCO@(36RulF^l_Lec-E+&9#5PWK+n#*fytk9S_~$>OL`Lu zz6JW!=C=fTS;r$X%GNZ*_C8!3Kq3L9Ocqw|D+tW8j+?7;0RLM4mkCS zC}G)I(vrxe(yUiDIvg45L!S&cnyi8_BDP~RN#)d=;6m zuf!@flVA!;ihs|pPAu=^;8y5O(|u}yz-+xzjZ*Q+GL2FOz3-+le|{x3^7_fA6Xjr{ z;iIJ7-})4j@EW}eYrz4Ic)!V=<6Gklw-*?_shZa&n+Ji4G|;90qY#^y104N%amd>; zI5e5v)iJoTjb%Yayj)+E!)-vD;~a@!z-UpyTvLn^}T1K6^a(-aG*>?=7i9%1^&~zm08lG=<)mS~kR(aq5;-t@D7vMG{%1vG4&{m0Mcm zJ#CJwMB)H2(IU@lIlW6)6osQ5Ncah4cu+gx&K@blhXwfpv_lCWN!`O#c+%JINQ#q8 zM;*OfU=#ju3H*UXm9HM#5E$e8zu!n4;FoOTI^``&VI78RJQk+S2B0SV_rUhBu>PdNLvT%GfLxYl5O`&7rK(Ig%cm> zu^3QDsJCTwq=PdOL#y5=&xTG&^zzzMV3f8#(c^)^a^2l4NIV+T4wOI&H(NUF%B7Ww zTj~=0L;fXr{r?V1Yqq%cTaPU5>7*`Cfu6wlIa`&A&$^GE@BWV6d#H)HPN~91>QYpG ztEkGBfVd z%Ktk8Uk`Z&Bu1rn@K*EAcXrFtjb_cSZUbIS3|m-?C*PMKAJXkZnDP)njSQpk;4zw z{@QRO{!u_X*7YyIfBwTK@F#>LP#X3v?5?KuMI`8$vEbi&?`#;Hq@Jtcu73pJZNs?e zN5@$|K>- zfQAbQX8FfQQ2WDCKZ+-!`wvp-Gn{cskv}S-;le8AZ~FUZuM|J@jm@2%QuzH5IoAVk z`X1y!i(Kw-sb$_BEuG9h_P0@9=t|KpiDkFIOpt%}U-D)MATgngi=boA+=r)-#bp`E z*JH3hvpr(@NZ`;9Y&gZ)ZoDd@#Eg63O{5ozF4C(pUhQtXv1rHHIr5mj=@4m701rxx zGRhUHkD{|nLqc``&KYu#n2QQPmVg5<{EtkxA&)TUbU*b}ZOHI`!Gvo4^W!8|0$_!9 z{;ye~`G^e&M$7?NN=+0B3w~Gffr42x(XJ%Ku^Fiv?Rfk`?Bwn^=y6YMJ^=F&7a``1 zgg7E>&H$kz`xow7SPbTZ#B=WS+i{&r=gU%a3 z?n^&%x-Mp;cR`!X08(+)7%QPeYvr_#4h=gr4I6Bi`iu1-dSnou^Gn)J|00TtwZhqo zYSk&78qsXVDxDS1jq$mte;9`c>Vq%%J4m(Lzj&fajrbD~j@JxA)a7OJtf!B`yr+FU z!z30WLUnTwp}BqsJp#Lfm#Qv$e@7DvkL}~GzMB_l*ng&5Y%CGW4XG^`-66!$s2WH8j7>~GE1YvK_je3FHvLAr>)gQYNFNN?qO;OcTOF=+E4P~4&+|0%Z zCn~S93vwXHF(I+AI$ima{v^BMU_RxF!8)GZ00-uUX`@P~H@_3z6ClsZ3zF$VhCo%4 zV0z)K&4*?{oR_R$5w>`O*zNv-#0-+MAjoL9-JEB_js(Sb^HpDJhurfe5z#}fv?X_e zYpal;T7YGWWP!MKM(slFl+Qg|LIH~|GBI5FA+V>V&P0^&djlKvKrcfHWHN#NMBhO8 zZ@c1pxKH`rACT5YAYiRf2XwFfC!kG{SNkebK%y*4^WeouL*&3E7ry$lv>JsOCNTNh z!1)2p1gS_P0rxXkSx=^oe=|Jl3los$E;>03U5f#^nuhMS;?n`V8|%OWofoKdxFJux z2x~IbeV`OS|42Z>R7P#`3Ld(;&i7pCF|SLnd4{pB@ALtK@56-u>G6ju$rJzkmZmYYmV3HZ`tM8#l!}UuJBp3>_dD*6 ziW;4`z>51KUycc#2k_7tkG75|S;ZIECV-_7U2Vr+1A>Sx7e_s9(T$ngy^rZv7Gbdj z#rt8KrKSd_+p_i@Kq`J8u%jkLmr;0)htaBs<6b)ohh^d?5M(dTGu25;^{u|!Z4i*9 zVu_TO%O}9@0wMNv=V%@Hb z`m@=yaD+;h?D?+T|K86be)r-LMS_FG6Q2th7CBxawVCKgK9zeqy%c0vqlAtQ<9%0X z`O)7paob?Xtg75ES~^}U-CW z{R}vZ_q6-ok?s?`3vLjy(<_yOHv$q#3hl=rIpVAzVr|X2MD}d0lYJhj-lxh1X4U;9 zL&|~gM3ho*iq0ijmTwj~`m)7`zUOHZ>WRBXR}EJ`$H-W^4CWm!;wLi1{h@chK6|Sj zGlw`{7@l^tSVTb=+>KeEJ6E%=GZ*P_USH5HF_YJN*;eE!zmYbdLFEZ4u1wB9AKac7 zXp@`T+^KpbGqiim%#-Fl7D*nUf(e*M{VeM1PYZ+Fcb-pQAUetvlmEf9;ATLDAn zSn9sYpmr5FC|u>KAcLyiRj*>$qwpn1{pVN|9TCZ8mXaO|FU@Se>)T)Wf_q*3Vsk44 z1Ry=MZS|H`A}alPDT{hcEb#g_6lY`(E~y!t@tb*T`1Pxp8xP&5G`~04nG979@(;YR z?S$}_zOf!_sN7)iy>U{oO;yb)ZE?4UB1go0_4Ok>g^jFjb{&p}+^Zb#Y1{AAN(kw-{_^%tUY1;;N_g;Yjl##F_n+HWC}(k%?y_+BQVveqJzC0av}$d+ zyJXVqlJ&d&Ze1zLB7M1cRX;i^tg>ynC>G~ZQyS&$XQ{45DWT-s*FIadaVN3JcjU29 z#i;n8&*h{)FHxlY1ZJjd7K|(EF8QzSByIHnR1(kAkFe;g{NUtm%Q&>q`f zkbb%&%j{y>D~TaP=a%qwYXUO_aZUV0sx*J@&DEhR2g>&{w=K6>(6`Xre}9P~9a`wD znO*aAKW^$(li6;rQpp%RCnJN%V;;uy4;Q;-IJMmzHygO78u(6z4>$2ikmZfc zc)ZkYJ!}K=?2kbtswpA*@p}hYVW|F#d@JOhDBaC$H9c2g;S4wO4_1vYImrI4qgGpI(f>Vv){ucdKSnD_!p|?BWCcpuP;d=S=A%! zX1~xGOqZ&l+97kdNcpi-*?<{=X^q1ta8q+vL%qb*mpCU6R!0d3AA;9YH#WO?r=M~5 zKry44jPl9JeeoE#H|gye^Obl{P#Wjm`|OAU0fS}oZrx7m)3MQ5pjl$Z3Re%jR_ahE zsT0QEp`MbU#eyMI!+iG>)7W6 zOg#9RNR@y^COxZP?PlH7{%uF-@y?fXX-`pf8udIXqr|bv-tYF_8x+q<)`VViH_1K* zbxwP&GOswvE_Vgto$<&fOY30S(G^X<&KQnF+U#Y6=CuVr$%Ds|Ik@KCO+lkfY=v8H z@9P&#t*yFs$Sp6_udG@m>fJe3>eSK-R1-Gw=5Qe%E&k;N6DJ`r(hy1WE7h!1IS;cf zZilrwnhfkKvsJF?8imbjhRsLb^F6zsk-iSNm_m;}o-qcDoDkgVm zm2oXU&2Oh;p1UYk-FSee{Gss7OUdevOV1;+&)PWGf7F-}?7?|`@Fn2=xZ6nPC9;~r zo^qjzR-Le!`&DHd5q#7AY|owE==tot8LgWfiLceUIf|xgao4>Pv=V|Q2`e*?H-Zuk zf=)aNRbECb#zb80k$Idz%<~woHal6dpO{l|8h_9`_jalOQA;ORT#qf2#{kG@v zl2WsdwhnI4^Mk4bZ_-%Cfpur^?}<&k`Ky!O}bH5 z9WH%3k+<9c!eU-^Ly;Yz|sd>re8-e_%JF|`)W91hx5zmbE zj4!bYopk~q%RwxIMhYsuSU1Y?V$!leY1c*e9vGFAyECAVCojTSFn^xqP7`DCHT+d( ztb5rujgH>3O?mSa$A*N;HPQ7JqUm_%_)816RczXYT?*yJMwPFEzb?<*$Wx3EIF?Wu zcZHf925+@b^uL;Pl4>2l=cG_v4CY$AC2Uxry*T$aCv{=3la;%=;pgTXr-d)p<3`dq z69_-OX8*y0$}=GHQlMa=nJmrqRR4L4?P&35NxkS=%Pvj4K1uQaqU>5S!4 z?dv?CHW&K7=4s_u?zKL(rvAiQS}VJOuK4s#{4=+zm^(R5g3Shj8&TLe{vR+%>8%xY zL9xcknA!K)1b&<*3eGBt8^N}<<^=a@qOzu=plOU$} z4;@sxma*Bh49{%QBB7z(L9_Si<7bh0ZszgbHobmD@*P$9>FF5*#gBt6gRNxw3QgwU zKJ{8?Dz9|Y3??gAY!Hbm+;|f@VrE%W6N>c&w{ zcV(-8xee0HocbLB)u2T2qzsoeHb1!`v^BkYxYJs#&ccTHtI~)P-ZAF^pIvm|c&z90 zord>wEVbJE7yT6_x_Fq{J56&iW5(;)xq3=Yn7PeE2>iydW-g=!_f{uc#t%IgrrJ0k zD1!VR`X?T<7h*-emBzad1enKrx*6VFU!{lXWjb@&OC1X-lk>Xio4Q^FeCJF|$KuU) zxHz_YSiOE#rn!@+JB?iG5E}QPHbV`#k#bJq?XytnBp*4=7*SgGL@A#+!`31%C86nj zKj%6xK5Mdx{(@_CNYpn&&ZC4n;)oIzI+BI5=px!I)0h|~ie`7(1anrNJdy;5cwB}1 z&;iG4@4{fteEf{&Bg;ogsw*5*xB3YpWo7Nv3i!;;_2Vj#-nOoS=wRu5178B+`FK`ZS(LF zHMg>f$Z}wk^fmjDGWx3%ChjL;nd^=t2 zU9n%U>+UqwX=T}u`aq}enw|UPJo6Pn9**9fdSk9Bn@N4^d(WtorgULBjx(Mo^utm$ zNg&v@=>GW97_8doke2&fyA~LIyg#~Wk|&}W>+|=(qGMVC#Uf@Hy<3|dS(}VzJ*)Kd zh9?`bpLl>jIySQSCZam%cx{b0tVf{Q*}(q;j^Rtv2UaIjhaKAWefzIw;yOPQ(%$=x zHj&w)d}4ig9p^8R&7a4yZO=23{dHuVx!FlGwVUwWp38SZ(e{C#u?_E2p zrmuiC!&h2DY$c9w^2G2djo%2w1IcS>IilWl5R)|+wj_hiyr(GhDbdc7agvan3%I>&pFH6pd{t>pxNne^1zV|LPyWj9UB-t`OiW{seg&TxkKJDX-M`2* z^o*|CamsG(r+tH>Ed6Fv9!x8Oy3?1Dhd<7Xk#UKqhU*Kk#h%<3T7S5YIOT#bI}Fe; zU@K7$$U|;+K;s^=mkm4|5$PSoakL=>kW?HHfSIrRp7r}36-IlI>7rx*fgWFTp^zF4 zy?6Jd?Pi;0Bz$S?W|f(_3)uOCAe$TUApOQI8_fvC1LM0~n1=p|Zdx&*5yxqfT)y?s zTnA$wIDSeNRgt#;ggnb4&R{FCg{;URu^wb~Z zwf-z`y!#mp3!ctoeaY8aC}!^WQ%ugt-k3_lX1mZ5O__iEDRCStGa=%zLc>IMobvA< zniCDX{J)M80dbsqB_?E6XiA*H$ifb7K{}Psz;{IIod5Ta2|#JE`TgF1ZhqL!)+}a4 zb99U>Vonqc)g3tExesZb{~*HHU1ncl7~9!BT`mOb!q^RjrnVrX6n+6Vzhmi8Czl9h z2@Y!nF!>UE*4x)|SAHLa0Mvhf=6{do|2kCWWa z_n%u8;2!knwEf3@L_8VJ;KdBpk$>Js0>oM1`pI-6_|Iy-oJjbx}4qEVCwBVhP7lnE>osmqJ6nD)n4Oyo+6~u zYb8oU#Tlpzuet5dn~>F>bAPDj`z0Uc8(f|K3g}+HZvu^$GHEZeIA(Jzj`MOvHIjYG~U_o*aL!w&AReB|j?up?{}aC{SNI7 z&Kd})`Q@;`Fy-9A1XWgXpB`nSaD5V8t6r;z@|OwEY#%v$k30hG&okE z8SBLZzo`a9;-dC-0!;4YpJYLym^Qb2uy?f zuHQhO``+ehC0k)KQ2TcNqszf?*sThENK}@uck6{HUNTCUoxECIW;!vHU??~Y?`4XN%ON2Mi~ zQVmsjn2#W;`wJWM5V(vfF!#_>+Ai|Y{|XbG(D?*dQt3G?c^6{zF=oPc1v*XRlEP`I z*$KahCZ_&%y(AtYoo8g5(*KY4zA~=L?cG+FfFOv3Gzc4zMp9Bjkd8$t(umYTTp+20 z3y==!5b0Qy(jg6!f^j%{C=I=zmtb)D^`(5-7uIjevX8%DB!B0@<<>nW@6(;<8dqEZuR3VSs@KI~&qlcvFa<#&5X4{6LMZNJi0}CU z2H7tM%=q-+2 zpfiQQHFned-Qw{eJ3wpF&KL?Ake|JqBQ}@mkR8fq#BNxhWGT9N7itcIcETr#bqbzo&-Xw`38Nma zwWU#@zkCT3TmW10NDkNlDjLJw242M6cT!989`Iq%zMep32wa~d?_dF)6JAPh!1xz; zO>ojy9k$fX!F(?3rREw)s;y<`t&tOuVev8f6x~|-ye&9PQwl#bA)xr+Ger*C)KpMr zbu5_K9u3F1r7`zp@JyP8iLz9$fQ(38f$A+tC*g%58@x%~B3$9rC*2O&ib2{bpJYI{ zzQF}~qnNl{@{C!Wu%&6R785O&zlyYv$)O?8&+4rX0z27LrP;cYUN{BoRO^|b7F8If zzF%pk@f>RGLl&&lWL}nngBL_q5!3s*&ZI?fq&YAjM1oqSFoEPRM|N}TGmP!6Z~fSe zV3%IK+VferHm!nSZJ?Al#0>|D^Jqide_plvTOyx^)yUFK@#S>AIHNC_#&JKJo#|bS z6dEJFuoE0GzjCCKv+`U@0tL_-C!N#?O&a8yN&;0}*^yV*A&9_L#h*|qnNim53MT>L zMmyMmq@2b#pm>wq54l|QF1GD5p@ffC--a(1zZ@_9%#Z-81^t0Mpv0M*>QzDJmOawo zGAuck*NyW*|Pbl>cNZIcAmDmn{$j(?HLzwD45?maL; zVdH~2Yz@NIBC)NS_h%C{>1R8KP)6oZb-~??tCS(KnVtYc+QcQjr~=&@(Zw~a1z5hO zEeGIEVQ=8+@T-=d+#Hv^1Qi zbom}I+b$Xh54MQQh<{yl8~KSd>aL+#%!=c{nOrpEM!elM(L5TNiI= zSQI90jV+&PrW5q*xhp8cif0Y%?A|RZ)>G#Z3sF$$K_S}BKsVy*uGC7BW2tS?6c2ZJ zrwcF>d745_Eb~kYclD&gN-24|CfQl}zE8R{^XbsHI!ll4DW&}vJ@TWUgSsoYq+EFh zir;Tmgt5GQ-St6CQ7?j4%u>{OR876H$3Z8e3o{6wzBOXOnX?P!Hu`ZCeos#jUmI@= za&n%iXb#QkQRNVZ7t}{FYLAZN77jiYg`_J^adUaHtu#GR;=fL@{#tG)`Zjvcp*1=v z;0Z&$q0CUwF8R3pWQgp1SrWOI^1#4qTCZ$QWFK#`X7@WbJL`j6<7JEBuUz2y+TdYc zE1ibtW{9__msIerWi}&j8m5%_t<~7=Ews^n9oEtFkgMGJMSq~yOp%aY+S)yJA0DJ7 z5^eUQb{7#dG^kAf`_As{8DEJ&xV|~hvgU6lK|TyxquwN!#Z3xBjjAPdtSAB z25TvwC$u=AR}RUcwGhZ_!^|&$3?+7D9%gJdxxqHM+waFSVSKb+BZkm_eY>VuTZfs@ zSye_L6;zD!Wv#hMIs&9H^BTUn!6I|j)YhbL{QLG8W?iVtQPi=zVWlS{U2j18;w>2;WJ?OtLldn3VFXp5RS{V_POd4f4PFk6NT z*v&KOeA#Jo3X!5E(DtxMD&Xd@k+ih-y=GlsIZ~K`BBWLzO?h2n(|o4r(4>7k#o4D+ zgUhF#4{=T~h9;w;JvAB4q0LSG6#00-M4xVQwNKfaA{_^lyyKDcsk~CS(b)F9>J@WY zeCaS8qgJiJ;9Jw-4raT{EkvC+h_VaFZR52d=IvJV1Fxlg z3KH_RIxcB@IQpDGU+R4@J8vb9d|BhEzt@P0bJUP!iHqHv^4^l|Au;;u;-0~GzZmZc z8fc&C4=1>48|O$G8VGccUrVgeImx>2QBH&2(^<(eVI>veOf~L8qtgp=x9+e9or@Gq zmy5U|a}4FqX$8Yr9_%bk`5r|sdF8M@*ub$!*Ts2n)_+R1%@ub?7^|ir;=H^nG=QD= zCw;H4#{y|8@6MFj2cAhZN77r(mHNQ4gxeAVji)0;!BZpw1D}H>tn{+$_&Z8BD2$vm z=ihwCB6xj#<4Y3ZV*ks^&UE4*sHsSWI|;3Sae6V{o06|d6n*xks=219*Fg9ww0y#e zzTV`Ex$2sB!Y&!Uo74(qzlSF5D%c?o#5zHoh>eVA9{Yn9q27r#;|{0GGOW`spE#{& zGB@=zS6t~8ht$PtY#B}?PoWM{2hW<{TL~Q zvz+&46Z?a$c1(5wXJnFGrTyr3$Y?veiA!O@T!>gt_QcyYy#ZT$-!+SbpME#=BI(M@ zMZFsyGD(7T$k_>C+fFKy4VACvn^Q_{jKY_Ta<$^sb&(})#D$Sc0r;La$cXI$g4lI6 zse4lirQdMypA7dsT%=smyD$Hwl@B4wtU?OPWO8Kog5Gju7W`}>#XVaVqwKC|!62iF zua5U4AAUD?R?U>+L^mnc?VjB`wNrhgkx6tdaB_CwD`72%SToB9lf3eO>!qiwZ(yqpLxFuBs%%zs8gjtWtV7 z6z9+6>ndJ|CWW|4(RBpRQM9(juRva#9X&4$GMeYG^&Gw09GAO0+B7fRfAN|7jci&= zA^QT$Os*NLUSei2XnudP_?Wt2xTwso4vtmV5DDc>6Ob+9JtXx`9ush6uNEZ(e7=l&x0TE8kNH~%T949iG|p%2PV{K18{7$)9qydOQ=^GmO-{cr``ollu*L-Gpvy|m zrAw62Co!ha`CZ}5PT!LJZX^El7ki;Em=cWn?df3A>J0U`CL6@}%}{_*Ajfa>B$Yo& zjozHxWl&F8;u4hMEEIXDY39ptBpK;GtNrMG9HF zp7}K|-gmF86zZM6i@c?+nrznJ6Y|S2sG}|*=)rJF$&H4sX2y~mD^w(`Rh9Qk6|jAL zpl^43CiQh;LN%j$S3X(_(a~lZ&Kynt3%VRn@p9|MK(PzIg60Lj`JE6NI83`D*k-#l1F;Ydk7GfEHQj`-Zfo}Ns-$tWSVrZn-(|iR@(t_If`33P2I0`jLCv*ZPwlI~UL*VN3MFDF@X$c%u0j z0_{WZX==S|@+IEg5L{T9x#dzdR`>IMZ{w>ePVoF4)!e-iaWMNJX!-EkJzHQh&YpbT zu4AjNnRpiB?9}pj%;TdMi4+>w0^Mg0QdVYwibZXF{iX$avH#{w-Iy!-E99Am-ab;! zIVe-=_2iyBDaf0K5b`Rzr{m=IsK+C&7X9bIu-qAS*i*kiR`d!YMY=E2%&v|aI`%MX zwwnGb++*qN<)rQ9G~d3<lxWeml`Js|1K&2+6=b-kMIt>XG9d63Ez`}h6QeFG}-R~T; z{d5};a$PQH1pRjYdRBo2aG9OzTfkO)`$>`8lL}(ezwJgJ%ct>UXY&UI;{FRd^O7b6 zuW(x4H~)m|ufTekykJ9h{0|xbiPuXr1OW7nkh1Qdcs-Dl1E8L@aRLMJzhJ=#0IRcH zCz$ysP6t3M0H+HUsYd*J65syvf<<4$vHRCxX|4bk{P>hb5&H7~!;@YDKzZj?A8`5n z1DWi90Kmc?PEzJSpY;Fye+MwylGoRNgN2AYV8K6Q@kqc$`j5$pg3%nB=KkYS`X6vn zFdQuSpbIPLpMzcTrUj#kKHL2_w)s&3fRL^h?;ic*kAl7Nzn}Nd&+-53=Ph}( z{a$!x6$oRXz5tX~__1>9JL$Jr08&b=hAMSifDjEGVYzT3Eoe{m^TWzhdpL`;W0VX| zQ^Cgm)Kc;YNPCw+4Dx9JA#Fe=?*7U_xebKxYEzMar;q1Mbe2{EXXy_3=p1# z9V8WK*!|nH8m++@-_#O?kZks()~+x$>&@>fy>!t2Ucbw$zO_~80QejR0Vb;eoC}*dn>msPgl=Oe0C~eX2=}KoU`RWu9pKcrs$z1g zRSwKM+jp+krvme~ja6V|9SVuf`fKgn(`mFQ1!&@``0R|pknuHY9tv^1a=B~UF>ZAzBM7ZFdg=

    GAA_l^IFHGT`OP_WZ4n4YJ<95>G1}?y$nT8;Qyr$?(_yrCkB)l_GI2HC z7;B%2!An3IdjNt1FBF2{@Hoe3_57;m-rW!j4BMy`!AqoWfiw5yW)wF`Gm0&W?g@+D$isqtr zhskxdEvOedKeA7r7_sPovUz&|#PTy=xlH~&2T=FH3x&Em@IoJ8%U>l(`GT+BEd2XX z2+xyw3l=A!DJiGbwC;e+lXl*ta;ceV7s{)hX?Id~fSh=vHvqc)!GSJ(o;0_ngubCQ zi&qKUSilW#GJeb+Db@1Yk>)hnv?s4dHO6zp#{}$QQ!S&uzlVk@CU~J}m3WpbHSD~W z*FAtQF7tfin*|F0wpt-w(~T+s=Z~?xFyPQYdif{q&baT;jX96Za>*Tn_8rv}?E4?8 z2L6oumQc|?2`oRjSS`Ho;C!39-paU9Rhx$uM z73_TMUR;ujNPN07!>R@q{MA>Pth@*_DYqac`zVMApk@7qr)Y5$bpa{z{y2g6nLq<) z+$A!-e6liM^DE=Q-}`OJq9G9${Te=mK}W1H`I*jpE-}&PsdaE;OZrk5c8H^|woMs$&>5$Ut(EuSn9ziyNwamM59((q8d;9~dkP5}3<|JNEMr zi2a6po(}EVHnqzrY{ltYmZgK}(|q=h;{=%OJ<|V`RaC1S&21(?`AECd8hqBf3CL&6 zz%m*+MVYVJ?eK!&v$qIPoho}bCu|P$5jvD54_{?Xx^ko2_oPUQJsK3B9KK7|XLvtDi9Pd;mvOHyo>A}pIjJMhVk$yhht&&@}dVr(9-mml2Il-64ZnA!3TtTkc;$+`7o3>yK(C)=>Y3>?0;n*lt0 z?5ZT-YbkMT9WGaFZLL6|g#dL}_)N>h+f87J{lerS7Rjwl)lHwN^}gE`954RNJNH4n zv77ZTsM>>KfC!>SK#A|`$UsUZ8umV}YgMZj9C6Y9nze3O$uE`Fz5;5o`(XTu1Ps=K z*i>K;Qc}eQqvElz##xs2Y~_r)`Pu-NVa^FrI|uulnX28icd%JGd(w_N8x=g!+x@nY%xg+Ng{|G629eCytWR?`MvSx{efw*oj zdECJY2iL~$i)qkm7j?B2@Q@DZY8Uc-$$5-vw*VZYIf+B@Juc{UhWgFe%g1rGK*oVY zeOicFd3F*6-mCyGq{R0?w#2+MY86Q4Dl$Mq+>xNzveRDPwkCc*yUJJLiI{DyBCWZ z=N|_hRHWpfzssf$Zvq8ULpG1-YW8Tk#4;B2Wv(OIP5?B-~HtAX2+c*Y& z2*RS5K`)^)TMPz)bpdW!wdT zQ&Tt)CN#2T&lcizr%UK??d;^HHxRctZ0lA(5PQ5omb(goTuqBXAWb-kHSq(ro;-=v z;5(n{3@uYDOyy4ywll_fpE%9@HrN^fnu~fhMT2n{D}rQ&eQevFSeU??gCRRxpPNFt zv7Ml2ZxdL?x~$~vCS5jJ7L-O*IfBf=38j7gsBT4~uO1LkU3lEbzc*9Yy*-YwcZYLvv3N5h^Qi)H~)Yzl{99SQp2ABnbTbDZcRtbxjv^Mn_p0pY{D2nqj zNuQ0^!H~)c<G*;{PhY1+uU%wr#;= zw&SH1y>_+Z8tlaQu;0YG#m~GaE#i%mW(OzefMxt|Jee+Nk^1sphh?tVqcQw{&c19{ kXUhM568^uxxG(5g#;=>s(MjCA0{$tPx# literal 0 HcmV?d00001 diff --git a/modules/1_Continue_Exploring/C_qtm_algorithms/canonical_algorithms/Grover/Grover.ipynb b/modules/1_Continue_Exploring/C_qtm_algorithms/canonical_algorithms/Grover/Grover.ipynb new file mode 100644 index 000000000..0b8590712 --- /dev/null +++ b/modules/1_Continue_Exploring/C_qtm_algorithms/canonical_algorithms/Grover/Grover.ipynb @@ -0,0 +1,1069 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Grover's Search Algorithm" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# Use Braket SDK Cost Tracking to estimate the cost to run this example\n", + "from braket.tracking import Tracker\n", + "t = Tracker().start()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this tutorial, we provide a step-by-step walkthrough explaining Grover's quantum algorithm. We show how to build the corresponding quantum circuit with simple modular building blocks using the Braket SDK. Specifically, we demonstrate how to build custom gates that are not part of the basic gate set provided by the SDK. A custom gate can used as a core quantum gate by registering it as a subroutine. \n", + "\n", + "After building the circuit, we will run it on two types of devices: 1) classical simulator, and 2) ion-based quantum machine provided by IonQ. For the latter, we will demonstrate how to recover quantum tasks that may be waiting in queue.\n", + "\n", + "1. [Introduction](#introduction)\n", + "2. [Background: What is a Quantum Oracle?](#background)\n", + "3. [Anatomy of Grover's Algorithm](#steps)\n", + "4. [Circuit Diagram](#diagram)\n", + "5. [Code](#code)\n", + " 1. [Libraries and Parameters](#setup)\n", + " 2. [Helper Functions](#wrappers)\n", + " 3. [Device: Classical Simulator](#sim_c)\n", + " 4. [Device: IonQ](#ionq)\n", + "6. [References](#ref)\n", + "\n", + "This tutorial is based on ion-trap experiments published as *C. Figgatt, D. Maslov, K. A. Landsman, N. M. Linke, S. Debnath & C. Monroe (2017), \"Complete 3-Qubit Grover search on a programmable quantum computer\", Nature Communications, Vol 8, Art 1918, doi:10.1038/s41467-017-01904-7, arXiv:1703.10535*. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Introduction" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Grover's algorithm is arguably one of the canonical quantum algorithms that kick-started the field of quantum computing. In the future, it could possibly serve as a hallmark application of quantum computing. Grover's algorithm allows us to find a particular register in an unordered database with $N$ entries in just $O(\\sqrt{N})$ steps, compared to the best classical algorithm taking on average $N/2$ steps, thereby providing a __quadratic speedup__.\n", + "\n", + "For large databases (with a large number of entries, $N$), a quadratic speedup can provide a significant advantage. For a database with one million entries, a quantum computer running Grover's algorithm would need about 1000 runs, while a classical computer would need, on average, $500$k runs.\n", + "\n", + "Research has been shown that any optimal quantum solution to an unstructured search problem has a speed limit of $O(\\sqrt{N})$ runtime. This research finding matches the performance of Grover's algorithm, thus proving that the algorithm is asymptotically optimal [2]. In fact, Grover's algorithm can be generalized to accelerate any type of search where one can construct a quantum oracle, as described in the next section. \n", + "\n", + "Consider the following problem [2]: \n", + "In a search space with $N$ elements, we are searching the index of those elements, which is a number in the range $0, 1, \\dots, N-1$. \n", + "We have $n$ bits at our disposal, with which we can store up to $2^{n}$ elements. \n", + "Our search problem can then be expressed with the help of a function $f$, which takes as input an element out of our set of indices (that is, an integer $x$) and generates two possible outputs: $f(x^{*})=1$, if $x^{*}$ is the solution to the search problem or $f(x)=0$ otherwise (if $N<2^{n}$ we can just set $f(x)=0$ for all extra unused elements). \n", + "This is done with the help of a quantum oracle, which recognizes solutions to the search problem. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Background: What is a Quantum Oracle? " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Grover's algorithm, like many other quantum algorithms, utilizes the concept of a quantum oracle which we will denote as $\\mathcal{O}$. In essence, an oracle $\\mathcal{O}$ is a black-box operation that serves as a subroutine to another algorithm. Typically, oracles are defined using a classical function $f:\\{0,1\\}^{n} \\rightarrow \\{0,1\\}^{m}$, that maps an $n$-input bitstring to an $m$-output bitstring. With $x \\in \\{0,1\\}^{n}$, i.e., $x=(x_{0}, x_{1}, \\dots, x_{n-1})$ is a bitstring vector, and $y \\in \\{0,1\\}^{m}$, the oracle $\\mathcal{O}$ is a unitary operator, commonly defined by its effect on an arbitrary computational basis state as:\n", + "\n", + "$$\\mathcal{O} (\\left|x\\right> \\otimes \\left|y\\right>) = \\left|x\\right> \\otimes \\left|y \\oplus f(x)\\right>,$$ where $\\oplus$ denotes addition modulo 2. \n", + "\n", + "This means that the second qubit register of size $m$ stores the result of the computation. \n", + "For $m=1$, which is the scenario we will focus on here, the second register $\\left|y\\right>$ is a single qubit that is flipped if (and only if) $f(x)=1$. \n", + "In short, the quantum oracle flips the ancilla qubit only if the function $f(x)$ evaluates to one. \n", + "Accordingly, we can check if $x$ is a solution to our search problem by first preparing the state $\\left|x\\right> \\otimes \\left|0\\right>$, then applying the oracle $\\mathcal{O}$ to that state, before finally measuring the state of the oracle qubit. \n", + "\n", + "In Grover's algorithm, it is useful to initialize the oracle qubit in a superposition, as $\\left|y\\right> = (\\left|0\\right> - \\left|1\\right>)/\\sqrt{2}$. \n", + "We can distinguish two cases: \n", + "(i) If $x$ is not a solution to our search problem (i.e., $f(x)=0$), then the application of the oracle operator $\\mathcal{O}$ to the input state $\\left|x\\right> \\otimes (\\left|0\\right> - \\left|1\\right>)/\\sqrt{2}$ leaves this state simply untouched. \n", + "(ii) Conversely, if $x$ is a solution to our search problem (i.e., $f(x)=1$), then the oracle states $\\left|0\\right>$ and $\\left|1\\right>$ are flipped, such that the state picks up a minus sign, giving the final output state $-\\left|x\\right> \\otimes (\\left|0\\right> - \\left|1\\right>)/\\sqrt{2}$. \n", + "Note that global phase factors do not matter in quantum computing, but the relative minus sign we encounter here does make all the difference for a superposition state, which would include the solution among all other possible input states. \n", + "\n", + "For both cases (i) and (ii), the action of the oracle can be summarized as: \n", + "\n", + "$$\\left|x\\right> \\otimes (\\left|0\\right> - \\left|1\\right>)/\\sqrt{2} \\longrightarrow (-1)^{f(x)} \\left|x\\right> \\otimes (\\left|0\\right> - \\left|1\\right>)/\\sqrt{2}.$$ \n", + "Accordingly, the solution to our search problem gets *marked* by shifting the corresponding phase. \n", + "Because the oracle qubit remains unchanged, one can omit this oracle qubit from further discussion and simply express the action of the oracle as: \n", + "\n", + "$$\\left|x\\right> \\longrightarrow (-1)^{f(x)}\\left|x\\right>.$$ \n", + "\n", + "This expression also captures the definition of a *phase oracle*, which will be used in our examples below. \n", + "If a phase oracle is applied on a computational basis state $\\left|x\\right>$, then we only get a global phase that is not observable. However, when applied to a superposition of computational basis states, this phase oracle becomes a powerful tool. As it turns out, the search oracle needs to be applied only $O(\\sqrt{N})$ times to obtain the solution with high probability [2]; more generally, if there are $G$ solutions, the oracle needs to be applied only $O(\\sqrt{N/G})$ times). " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Anatomy of Grover's Algorithm " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this tutorial, we will be working with three bits $(n=3)$, leading to eight possible items $(N=2^{3}=8)$. \n", + "To find a given target item, Grover's algorithm uses the following steps:\n", + "\n", + "1. **Initialize**: Start with a uniform superposition of all possible bit strings by applying Hadamard gates. This will result in all inputs having the same amplitude. Since we do not have any prior knowledge about the solution, we initialize to an equal superposition of all possible candidate solutions. \n", + "\n", + "2. **Oracle**: Item bits are then passed through an oracle. The oracle produces only two results. If it detects the target item, its amplitude will be flipped to negative. For all other items, their amplitudes will remain positive. Because the oracle is specifically engineered to change amplitudes based on a certain bit pattern, each target item would have its own associated oracle.\n", + "\n", + "3. **Amplification**: While the oracle in step 2 distinguishes the target item by flipping its amplitude in the negative direction, this difference remains too small to detect. Hence, we use a trick to magnify the difference in amplitudes; by flipping every amplitude around the mean amplitude. Recall that only the target item's amplitude was flipped to negative. In other words, the mean amplitude would still be positive, and its value would only be slightly lower than the amplitudes of other items. By flipping all amplitudes about the mean, the amplitudes of non-target items would decrease only slightly. On the other hand, the amplitude of the target item, being much less than the mean value to start, would be reflected back up into the positive direction by a large margin.\n", + "\n", + "4. **Repeat**: By repeating steps 2 and 3, we can magnify the amplitude of the target item to a point where it can be identified with overwhelming probability. To get to this point, we need to repeat these steps approximately $\\sqrt{N}$ times (again assuming a single solution and large $N$). As discussed in more detail in our Quantum Amplification Algorithm (QAA) tutorial, to ensure we measure a solution with high probability, we apply the Grover iterator $\\left\\lfloor\\frac{\\pi}{4\\theta}\\right\\rfloor=\\left\\lfloor\\frac{\\pi}{4}\\sqrt{\\frac{N}{G}}\\right\\rfloor$ times, with $G$ denoting the number of solutions. Since we may not know $G$ in advance, we not know the ideal number of iterations a priori. To address this issue, however, we may use quantum counting techniques with the help of the phase estimation procedure (QPE); for details we refer to Ref.[2]. \n", + "\n", + "5. **Measurement**: Measure the resulting amplitudes to identify the target item." + ] + }, + { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/8AAAD+CAYAAABstrVuAAABQWlDQ1BJQ0MgUHJvZmlsZQAAKJFjYGASSSwoyGFhYGDIzSspCnJ3UoiIjFJgf8LAAYY8DCKJycUFjgEBPkAlDDAaFXy7xsAIoi/rgsyyidpR4W293KfOps2wYflcFUz1KIArJbU4GUj/AeK05IKiEgYGxhQgW7m8pADE7gCyRYqAjgKy54DY6RD2BhA7CcI+AlYTEuQMZN8AsgWSMxKBZjC+ALJ1kpDE05HYUHtBgMcpNS9Qwd3HyNzMgIBzSQclqRUlINo5v6CyKDM9o0TBERhKqQqeecl6OgpGBkZAK0FhDlH9+QY4LBnFOBBimTIMDOaXgIJOCLG0RwwMu7IYGHg3I8TUgP7iPcrAcMSiILEoEe4Axm8sxWnGRhA293YGBtZp//9/DmdgYNdkYPh7/f//39v///+7jIGB+RYDw4FvAP8RXwRJQkptAAACC2lUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNS40LjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAgICB4bWxuczp0aWZmPSJodHRwOi8vbnMuYWRvYmUuY29tL3RpZmYvMS4wLyI+CiAgICAgICAgIDx0aWZmOlJlc29sdXRpb25Vbml0PjI8L3RpZmY6UmVzb2x1dGlvblVuaXQ+CiAgICAgICAgIDx0aWZmOkNvbXByZXNzaW9uPjE8L3RpZmY6Q29tcHJlc3Npb24+CiAgICAgICAgIDx0aWZmOk9yaWVudGF0aW9uPjE8L3RpZmY6T3JpZW50YXRpb24+CiAgICAgICAgIDx0aWZmOlBob3RvbWV0cmljSW50ZXJwcmV0YXRpb24+MjwvdGlmZjpQaG90b21ldHJpY0ludGVycHJldGF0aW9uPgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4KD0UqkwAAQABJREFUeAHt3QeAJFWd+PG3u7OBDSyw7BKWJFFyRhAR1MO/4olwZ0AMIKjcnQEDhwh4gNwZQT3hUBAwIWA8UAE5ki6o5AwCShCWzC4ZFjb951vwhpqa6p7unuqa6u7vg97urq56VfWp7pr6vVRjlvanYFJAAQUUUEABBRRQQAEFFFBAga4VGNu1e+aOKaCAAgoooIACCiiggAIKKKBAImDw7xdBAQUUUEABBRRQQAEFFFBAgS4XMPjv8gPs7imggAIKKKCAAgoooIACCihg8O93QAEFFFBAAQUUUEABBRRQQIEuFzD47/ID7O4poIACCiiggAIKKKCAAgooYPDvd0ABBRRQQAEFFFBAAQUUUECBLhcw+O/yA+zuKaCAAgoooIACCiiggAIKKGDw73dAAQUUUEABBRRQQAEFFFBAgS4X6Ovy/XP3FFBAAQUUUEABBRRQQAEFOlhg3rx54cknn0z2YOzY/vrrMf0vl/Y/eO6kxDb3p6VsfP//S5YsCePH94VZs1YKkyZNeunDNv5r8N9GXLNWQAEFFFBAAQUUUEABBRQYmcC1114b5syZE6ZOnRqmTJkSxo0bF5YuXRrGjOms6J9tjmnRokVJgcbkyZPD3nvvHVZZZZX4UdueDf7bRmvGCiiggAIKKKCAAgoooIACIxW45ZZbwjnnnBM233zzsPrqq4cJ4ycMBP9JLXpqBWP6mwMwjeeY4vvsvHyenT87b/w8PW98zXPMM64vvuezIYnY/+XNWrBgQbjhhhvCs88+G3bbbTeD/yFYTlBAAQUUUEABBRRQQAEFFOgpgWnTpoXtttsuqSHfcMMNkybynVrzT2sFtn3BCwvCueeeF373u9+Fvr5y6uTLWUtPfTXdWQUUUEABBRRQQAEFFFBAgaIECJgnTpwYKASYPn16mDBhQlFZj1o+E1+YGKb2d2Ho6+/CUFb3BYP/UTvcrlgBBRRQQAEFFFBAAQUUUGA4AWrKGRxv8eLFyYP3Van5j9vBM9tHYlBCAvpYyx+De+aJiT7/zM+09PT4eTueDf7boWqeCiiggAIKKKCAAgoooIAChQjEQDr9TMYxqC5kJS1kQtCe3oZ4RwJaKNA6IX4Wn9OrYFr6kf6sXa/775NgUkABBRRQQAEFFFBAAQUUUECBRgRibX18ZpkXX3wxXHPNNYHBCenPn/6skTzLmMfgvwxl16GAAgoooIACCiiggAIKKNAVAtTYx1p/Xi9cuDA8+OCD4aKLLgq33357WLJ4SbKfzFOlZLP/Kh0Nt0UBBRRQQAEFFFBAAQUUUKCyAjGgjwUA9O+fN29emDNnTtLXf6211koGJuTzqiVr/qt2RNweBRRQQAEFFFBAAQUUUECBSgrEoD9u3AsvvBD+/ve/J8H/uuuuGzbddNOkECAWEsTnOP9oPhv8j6a+61ZAAQUUUEABBRRQQAEFFOgIAQJ5HgMFAP2V+/fff3+46aabkgH+NtpoozBr1qxB81SpBYDN/jvia+ZGKqCAAgoooIACCiiggAIKjKYAgTy3HIzpxRdeTAL/v/zlL+GNb3xjWHvttcO4ceMGgn/mq1Lwb81/PHI+K6BAWwS++93vhi233DIcc8wxbcnfTBVQQIF2CVx99dXJ+esjH/lIePrpp9u1GvNVQAEF2i7w6U9/Orz+9a8Pp59+etvX1a0riLX+cf94T60/A/zxervttgszV5yZFA6k5+V1VZLBf1WOhNuhQJcKcPFM+slPfhL22muv8MADD3TpnrpbCijQbQLx/MXz2972thDfd9t+uj8KKND9Ar///e+TQsyvf/3r4TOf+YwFmk0ecgL42NQ/1uTHW/s9+eSTScHKjBkzwthxL4XXcR6e4+smV9mW2Q3+28JqpgookCdAySgFAJdccknex05TQAEFKitAzT8tAE488cTKbqMbpoACCjQiwHUY12Ncl5kaEyCAjwUALEHT/3vvvTfQ3H/69OlJrf/EiROTzGKwH5dpbA3lzNWzwT8lNffcc085yg2uhS/QQw891ODcztZuAS70KCXlQo8HzaQ8SY5cHVdKnO0GMDLL559/PjzxxBMjy2SYpa+88sph5hj68eLFi8NTTz019AOnlC5wzTXXDJy/OIdxPjONXICuTN3QDYCL2KuuuqohkL/97W8156v3Wc2FKv4B5zDOZc2kK664opnZC5n3kUceGdT3uFamnX7twnXDb37zm4HzGddjtiKsdbQbn44hBQB2AxjejPNl+sESCxYsCJdffnlYuHBh2HzzzcPMWTMH+vqnc4wFAelpo/m664P/5557LkyePDk8+uijg5wXLVoUPvCBD+SeNDfYYINw6aWXDpo/Lx9GdeSA5j0uuOCCQcvvtNNO4Ze//OWgadk3XJydfPLJ2cmD3h922GHhwAMPHDQt+yZvXX/4wx8SByzyHlzIpFPc37x5eyFoo0SUJp70j+JCjwfNpDhJYtXpf0jTx3q0XtsNoHl5/vCccMIJyR+ZZZddNqywwgphvfXWCwcffHCgMCAvZX/Lyy23XNhhhx3Cr3/967zZB03j+3/ZZZcNmlbrze9+97uw4447BraLEvCVV145HHrooTULKBo9l+Wdg3bfffdam+H0fgHOT5ynPvzhDw+cvziHcTw5r9nyZuRfk27oBnDhhReGz3/+88NiPPPMMzXnmz9/fjjiiCNy8+CcMGnSpIEHo1/z/ePaKZvOP//8sNVWW2UnD3pf65zB9LzzBOe6dBpuHQT8//Zv/xZe9apXJecw8tx5553DRRddlM4m9zUFsXvuuWd49tlncz9n4oorrph7vcj2p1Ot/Yzz3H333eGd73xnMpr4SiutlGzrG97whrrn6lNPPTWw/9n0ox/9KLzlLW/JTq7Ue66N+d78x3/8x8D5jOsxpvHdo2DANDKBTukGkA6+eT2SlM1ruPfpGnxeE/hTiXzjjTeG1VdfPWyxxRZh3NhxA79x8ksvM5JtLXrZrg/+AeOiOO9LwkXtV77ylSGmHND0KI5xhmw+G2+8cVLDxR+Mf//3fw8f/OAHB94z2mM6cf/HeqXItEQ45ZRTwve+972681G6xKNeylvXa1/72uT+k9yDMv04+uijw7Rp03Id2F8ucNLz85o/jt2cCIrq9YXCxAKAYr4BBCl2A2jMkvPSrrvumrSY+MIXvpD8Lrnw5sKIkmdKne+6667czPgt//GPf0yCQr6/XDgSGP7v//5v7vxMvOGGG8Kf/vSn5GKr5kwvf3DIIYckeRKUsy333Xdf+M53vhO4+N9jjz0Cha3Z1Oi57Nvf/vaQc9CPf/zjbHa+f1kgBv4c57xETQ/nt0YKf/KWd9orAgQd/C3gN9iJid/oxRdfHO644466m0/rgLPPPntIJQoLUWNI5UJe4jqKi2JaBvCgUoTrJgYcy56ruD7iHFcv1TpnMP0973nPkPNEtkVCvXXcdtttycU7zXePP/74pFaZ39A222wT3vGOd+QGzultJYh+8MEHwxlnnJGePOg1gQLXi1hSwMBrHtnCk1r7SWZnnXVWcq6ncJXzK4W7HB8C4be+9a3hqKOOGrTO+IZr4A996ENh3rx5cVLyjAnXjFVN2FBwWSvA5zzGb7DW51XdrypuVyd0A8hWtjbqmBfY5y7bH9STsuvJBvG8f+yxx5KKYkb133DDDZPCuGS+MPg2gEyrWuqJ4L8e+pFHHhloGtlKGjt2bBI4EzxPmDAhjB8/fuA9X4ZmEhfhr371qwOluOeee24zizY0L9s2c+bMQQ9O+v/1X/+V/KFjgIq8REl1djlKw7s1ceGc/UOct6/8oeEC2jRygWjZCy1KRqJFwE8NHKXMBO+rrrpqoGaLgkaac++yyy5h3333zS24ZL2zZ89OLsTXXXfd8NnPfjZ86lOfCl/+8pdrbhIXXB//+MfDb3/72+SPXK0Z+fykk05KzqOf+9znwqabbhpWW221pBaMi2daARx00EG1Fh92Oi0Jsucg8jTlC9QruEwvwXnOZrNpkdZf81vptABk7ty5SQuQAw44YNjCi9isNa/QjRplRromv7zEtQfnAx4UUH7ta19L+sVS8FBkWmaZZYacJ7h+aSRRSLHPPvuE3XbbLanlJ5BeZZVVknPZscceG/7v//4vObdS414rsT+c5+rt19SpU5NrRK6hstePtfJNT8eZAJ6KIgooaCnBfnPtyLrpdvCNb3wjKWRJLxdfUzjx0Y9+NL6t/DOBfSOFlFy3UXNtGrlA1bsBZIP44fY4VvwSgGcf6WXjfEv7zwW8Jj5avHjRy8+8XjyoEpmCSgowKXjjvEbwP5D6GyTEdQ1Mq9iLng/+999///C+970vKT0dzWNDU14uHnjU++NR5DZSg09TsXe9611FZtvReXER12jiJNnIH6ZG8+v1+ewGUPsbwIU1F3s//OEPAxeQ2cSF5Le+9a3kIrxebX56OS4cqaHPSxTIUINFiyYuhLnAr5UoSODCi+5S2cR2nXbaacmt0qihMrVXgN9QMwF9M+e79m555+dOQRe/lVotLqq2h7QypBCRriCcV+rVuhP8c77Ingeuv/76pEafAkXmaTRx69dahQWN5lHkfD/96U/D448/nrSq4pyVTbSc/NnPfpbU7Gc/4z01pgQHtCSli2krY6Xk5ZudRq0+rRBqXbNttNFG4atf/WrNiol/+qd/Smoqs8cxu56qvG+mRQ3jATRz7qvKPlZ1O6raDYAR9WnJSIFdDNizhnE6zwThPGcfcfk4nfe0uKEVDPk/++wzSWsSWuY8/czTSXceptNKm5aMd919V9J9icpffndUoJJHfxFDf+T/0hal188U3lcl9VVlQ0ZrO6hNu+6665JSUwLw0Ui33HJLuPnmm8M///M/J18qSnApYaZZWLsSf8hoqse666WXSr8GD3rDH0d+UN2Ymh0Qi9qzRloKdKNVO/YpdgPgwjQvmGzHOjshT2p0Ntlkk7om1CYRfPz5z39OziXD7RfNdWnSmpeo4eOCd4011kgKJCkkpSAg+7unCelf//rXpMltXj5M448jtWqtJv6gch5KJ7Yj7yI9PU8vvm428OSCmYepGAEKzSjAJ0ir8rgUXLwyvhAFheuvv35ybiEArvU7JbCnYInCAgJb7mNNIoik2xaJefh8uMRv+cwzzwyf+MQnhpu1qc/zzhNk0EgrTLo3EVQzPkGtxFhKtRIVNnSjYl377bdfUoETjWot08p0zu15XVXTeb373e8OH/vYx5LAhXNvOtGylFYDVHgxlsE666yT/rhSr7kWaDaY5++fqTgBCrU4Dvxes9+l4tbSXE433HhDeOThR5JYKXs9EnOK03mOAXcMxJmH15wDCfQJ+AnoKfzkmUeczvPSJUvDuL5xSetuWnjzYDR/xoXj7y0tL2MLo2S9Sez/yh0B0uuN2xW3czSfhxZxjubWjMK6+/r6kpopLnbPOeecUdiCkPRnYvBB/vBQq8fJu5kSz2Y3mn4qNOf95je/mQzKVW95mhZjlH50a213s39o6rn5WesCXEBboDLYjz651K4Nl5inVv9dLtQp4KRZKIE9g1jxOi9xMRubh3KRyEVt3mBRXBjQ9zSvNUJevq1Me+973zvo/MO5iNYGpqECNOs1jb4A5y/OY1VN9DmnK00MUOu1OKRpK7XiDOZJ0BhrjbkwpkCAoHf77bdPmpzn7S/jktAqiQeVLWuvvXbSvZFrkCIT10zp6xRe1yrczK6X8xgDp7aS+M1x7bhvf5crEsH/L37xi8QsmVDgPxS0Dvd3gEFg6RbFvHnp7W9/e+CcyjVntlA1b/7Rmlbl389omYzGerkurlKXivvuvS9Q+09hXwzsceF13iOa8RnnLL5XtM6hgpVKVwrUGIvkvPPOS7r3zJkzJyngpFUT43/cfsft4dZbb00qiamEoYKQgtJzzzk3aQlEQE93HMbzoDKEAT8pUEjSy4UP6e1iOu9HO/V8zT8HgJMpF8HUbuWNQtvOg8QXhYFiGHSHLyaJkzIl6F/84heTUqai18/dAvijyACFw6U777wzGcQiPV+90vH0fJ32uiolmyNxiyeVKpUwtrI/9Lc0vSJAn87h7hbC3FzwMW9e4o8cf/B4UOtHE1D642YTA6Fy+6h/+Id/GDgnca6gQCA7KjQX8g8//HDSbapdY4HQJJltTae87U5/3quv21kI06umrew3x6HKf0/4LVPLH685qDElGKcVJE3y04ka/c022yzpW06gT1dBKg5oMcI4IhQgsL8sT20aQXc60VQ2dgnA5PDDD08C5aJ/w2wb25VOjbYO4jyWHYAwnU+919Skv/nNb04CbjypXeduKj/4wQ+SLhX1lm32M1rDcY6v1yqOAITgiBYdtRLXuxxnxnxiQEZT8QJci8XrsPTr4tfU/hypBKxKojUiwXv2tx2t2U4KBvg8FhBQyPVMfzP+xx59LLleYXma8xN/URjAWEqcu6jR5xw1ZQp3RZuS3EGkb3xfWPjiwmRe5iePCy68IOkawO+cwj/yYLnll18+KVTl+pXXkyYtE8aOoyPASy2l09fn8fVouQ4+S4/WVlRgvZR8U3pLAUCZB4WSc76EeSXUlB7vvffeherwB5sBuijxaiTxR71XLij58bKvnAgaTfzIq3RijLU0a6655kBTpEb3pV3zUavSjCkXLRR8mV4R4AKb0mdGpK4V3POHid929gI45kJXCv4gcjsaLhBrXXzTOoDgn99DOlH7zxgB6YtFav0JAGg+TK1gXuLY01qIZrVTpkzJm6XutNgiqu5MfpgIZI/ZcCyc7+oFEsMt3wufU/PVTIsKTIe7Ze9ounE+ptUPj+ygtRQKMHhnOhG4U7NPImCkqTgFkYzlwfUSicGuaA7LHUK23nrrZFr8h/MDzYbbnTiftXqtwvmVgf24+1Gt8yKFpyQu+GMiqMCL82K2UuTee+9NBlVNByVxuVafabFFreM//uM/1syCzxl0tZ4F52GuPbnrQq2uHjVXUNIHrVxXce3Q7DmwXbvDOSO2JuW7Qbe9KqRmBzjfZZddwr/8y79UYdOTbSBWuvmmm8OE8RMGClf4IBu38dvkQX/9Rx95NMy9b26Ye//c8NBDDyXXo7SOYRBS7j7CLUj53nAOGzumv1vz2DFJa0d+u1wzkQ+JLgFchz340INh5oozk7trPPX0U0me3AmNgjkGYSYumL3a7DB71dlJYQCDcnL9lBQDpFoDFHluSDawiX8M/lNYXBxTws2Xo6zEH1tKjrO18FyA81mRwT/3oeVHzGi76Qv4sva1E9ZDrUYzfWAJUvMKbkZjX7ntT7xnM800+T7TtHO0EzUyjf7B4ftO33LTYAEuoGmxw3mCi/bsBQ4l3J/85CeTcUIIsmsl+qZx0cctobhIf81rXjNoVoJ+Anm6DmTHHOFWWlzocoGcTtylgVq/173udYFCp3SiJoxb/REwFHkuS6/D168IcP6iWWKjiQKbKl3YNbrdZc7HoIiNdsPjN0XhW/b3Web2Drcu9ofzCNcd6cT4PzTt5/fMHTZiIvhP98/nfM6gcrQKZNwQEhexBNDMmw3+Yz5Vfqa15X//938nrRLYt2yiSTDzcLvUdKKwlZYOBAXpC3lqETl/0qLzTW96U3qREb3mPvcEkRSmxLEW0hlSqcNtV+nWMVzadtttw2GHHZZ0xSDAq1oi+Oe71Oi1Qyx0q8pvj+4xxx13XMJKa5CqFAhmW/bUO+6MP1arUL/ecu38jOM8cdLEJEDnN0fQzyO+Zt0E60ktfX8XZ5rjc8vPWKFB5cnKK60cll1u2bDstGWTQjIKw2oV+qX3hYpaWk5yPUbB2Wabb5aMFcC6+IxKFQp8mId1EmdRIEUhA91xKAQa2/8fKb296XWU9fqlrShrbRVfD4FS7M9Wxqbyh5IvCSfxbF81/jhz0suroedLxhc6PgjqG0n0k11rrbWSi3Bq49KPWiP98qVOz8frgf4sjay0w+bhQrheiXl6d/jDVJXAn2ZM6du28R2pdb/f9D5U5TXmNEU08K99RI488shkRFlqdajdobaJPzb0V2MwKgat+v73vz/oIjQvN/rwc4FI1yK+N+nE+Y8gnv6v2XMSYwAQMHBhm06MUcLo07QoILAgKKDWg2avNIflnBEvgtLL8bqRcxnnpuw5qNb5Kpt/r71nkLlGgy9+c1W7sOvk48Ut87jAr0rwkWdJE3y60fBbzv6+uV0V55b07fz4ndH3Ndb8kyeFeLQwo5CRC9qY6vX7j/MM98y1Rbyu4bmsihgu/Ol+yb7TJ57BvGg6T7BPgMz5jWObbSVDBQ2tH1g+7clF/r79YwAUfTcNahQ5fnzXuFZh8EXOjRTcMBAgx4BzO4WAjSQqC2hNUNXUTMEk57Iq//aqapy3XXzPKGCq4t8HAvvYnD8G/el94JxFV0S6MHFtRJxF4RyFZq/f+fVJAee2220bNtpwoyQop6aeWvl0nrFAgWlxOncromaffAnqN9l0k6RbAKP8U+nBuZNWQVw/cY1Fd3LGV2NgdQoBGT/g0cceHYifWAcpXWiY3o92vzb4zwhTI8ZIqc0mTvyNlByl8+UPBz+uvL6yfCG5OM/740HNHaXK8VGrmW96XfwIuLAnQKBUn5Nk+vH+978/PfvAa/rCpefjdTffj53SZv7ID1cAQGleI+4DkG1+8aUvfSkJpNKr4cLl5z//eXpSJV9jSTDb6AVLJXeihI2iPxo1UIceemjSeofadAosqZWjFJo/Stma91qbRb9b3LmQ548biWdqOONAf9lld91116RZ3FlnnZX9KPzP//xP0tKEFktcIPM7YrsoEKAlDc3p8lIj5zKapWbPQfVaN+Stp5emcV7i2NZLnN+qHqjW2/4qfYYlrayaCVRGa/u5oOfCnhr+vJQd+O/aa69NfnvpwfBoLkswHJv8x3wIPLnQzqZmLm6pLYvXNTzT2qisROEHYz5x7bXnnnsmzxSq0qKOFg60YEonCjm5qGeAv7yED92d8rqM0JSY83kriSb/bCet+zgPcm4kgL/wwguTYIe/D40mgh4KPMijionKlUYqMSiw6YTfXxWNs9uEJddj2YKu7Hyj9Z7zSfLob0RPigUAFApQEfqXW/+S/C6vuuqqpPafGIbfMdcvW2+1ddIdluVjgB+X5zdJSp+v4mue+R1TKMj5gVv7rbD8SwWfLB8LCIgBGZOA8ysVHxQGcI1GqwPunHDZpZclBadUqsb18jwaaUz/ikdnzaOxtw2uk9JxDlajF9INZutsHSRA0x2a2GWbnMXasiqVMqeb+2eJqYHgto6j2c2jXrN/m/lnj1jj72lST4l21S7cOH8ywjcFAPGPZ+N75ZxFCDAAEQXHsVl2Os94oczxMQ0vgGOtZv+0sqh6M//h97D5ORh7hOCgm3/fjODNhX4r45Q0L9r6ErT+ogXGSI4FtZKM21DVxC3V+B1mr8coyCLor+JtNdPN/gkIG+mKUYZ/rWb/XNvS8rKKlmkXXKnooGUN/fUpRKPFEIVhtJRO+uT3B+o0tSf45jxFn/sYbKfz4jcTp6ef4zxM40FrAu4CQOEphYB0k6EQlJTOIy7HM8uRKJC48cYbk1ZEXLPxXaCgkZYBXLtR6MA1E2POUVhIC8/h7uiRZDzCf+zznwPIF8XAPwemhybFFgAUAvCIo3lWpZl/PBTZ5v5xenzmpMXtlThhxpLN+NloPvOHhovmqnmOpkmz6+aPXqu1R82uq5n5OX/SJ840egJcVHAhx4ML53j+4kKoaoVFo6c0sjXHptcjy6Uzl6416Ghn7k3+VnfKOYxmxyNNVQ782TeuE2iplL4e4xqtqrXTIz0eZS9PSzHGr+oUzxhwE2DTDZHvBd2TeHD9QStSmuUvv9zyQ1pkx2UxZvn4nueYYuAeP6NFEl1rGBgQo3TgzzJx2Th/nEY+tLSmkHjd9dYNV191dTIoKgUC1P7TVYC84vJx/WU8G/yXoew6OlaAPzBVriGjSRz9puslRmA+44wzKtN/q1dry+odIz9ToF0CFrAVK2vBZbGe5qZAowJVvx5rdD+qNB8twSgk7qRC4Ri0L16yODw1/6nAnTgI/Gniz/Ul3ZQIutPBOJVfLJcO7ONxSAff8XWcl77+tDRgjKXddtstiQdiXsxLk/9YsRa3K66D/Olagy1/NybuODHZrmuuviZcOufSpFURBW/MU3Yy+C9b3PUpUJAA/fmzow/Xyvr4449P+oWPZvN/tq2Xa8tqHRunK6BAZwhYcNkZx8mtVECB+gKd0sw/by8GguwlS8M9/QODMsAfgf8u/c3x1+of1JwxhtIBeCwEiIF9Xp5xWlyOeWlVwNge3MaPWv+tttoqCeKZJz0fr5k/vZ44jXzjuErcbYm7otBiky4KjCNAC6P0wKlxO9r9bPDfbmHzV6ANApRCMjp+o2k0m//HPmT0zbMWstEj5nwKKFAFAc5fdJ3g3OWgYlU4Im6DAgq0KkAFzO23356cyzqlmX92XweC7LFjkmCcczN9/AmkGXw9HXjHZVmmkZQO6umLz7mf4J1R/BkDhFr6dP7ZfOP7+Jyel9cUutDnn/EquFNHtqCikW0sYh6D/yIUzUOBkgXox09A30yi+f8P+m+/Vmt04mbyamZeLp5jAUAzyzmvAgooMNoCNDWmv7FJAQUU6HSBbirA7BvXl/TBJ6iOQT/Hh8CbRzrwbvS4xaCdgJ8utQyoyd8AAvax417qOpDOv9460p/F1zwziOir+u9mEhOFDGWnl+5tUPZaXZ8CCrQsQHN/AvlWEreXvOOOO1pZ1GUUUEABBRRQQAEFFBg1gRjYE0hTEx/7zMegPH4en5vZ0HSQTrN/gv5tt902qbHvL1JIsmKeOB/rqJXiZ3nzxjzic6082jXd4L9dsuarQBsEmm3un90ETma0GuDWKCYFFFBAAQUUUEABBTpFIAbT2e2NwX78PD5n56v3PubBIH708yfw524IFDAQ/PN5fJB/IynmWWt7+LzsZPBftrjrU6BFAZohtdLcP7s6av5POeWU7GTfK6CAAgoooIACCihQWYEYLMdnNjQG2DzH6fG52R1hOYL/yZMnB26lST/9JPXH6Ok806+HWwfzxvnj6/g83LLt+Nzgvx2q5qlAGwTor99qc//s5hD82/w/q+J7BRRQQAEFFFBAgU4QSAfQMbgeyXbHPKilTz/iemrV3o9knaOxrMH/aKi7TgWaFCBQp79+Ucnm/0VJmo8CCiiggAIKKKBAuwXSAXk7X2f3I66L6fF1u56z627He0f7b4eqeSpQsMCkSZOGDf5pFXD88ccPrJnCAkZArZeee+65MH369Hqz+JkCCiiggAIKKKCAAqMqEGvg089sUKyxH9WNa3Hl6X0paz/qRwYt7oiLKaBAsQJrrLFG4FEvEcin09Zbbx3Gjx+fnuRrBRRQQAEFFFBAAQU6UoAa98WLFw88eJ8EzQzAx+B5cRw+xtHjdavj6cVlM/ktHdO/vv7/+jsGJH68JqXf83rM0v7pcRv4nOX6p8X54jKM58UjtiRgeruTwX+7hc1fAQUUUEABBRRQQAEFFFCgZQHuVPXEE0+EuXPnhmnTpiWD8hE4l1Vj3vKGZxYk0I9pwYIF4ZFHHgnPP/98UggQp7fz2eC/nbrmrYACCiiggAIKKKCAAgooMCIBRuEnUL7kkkvCnXfeGegSSyL4H2gBMKI1lLNw3FaeCf5vueWWpJsutxQsIxn8l6HsOhRQQAEFFFBAAQUUUEABBVoSWHvttcOWW26ZBPoEzbG5fKfU/A/0JHi5qwJdABYtXBRWWmmlMGvWrFduK9iSTuMLGfw3buWcCiiggAIKKKCAAgoooIACJQtsv/32YbPNNnupf3x/4Dx2zNiXa/zZkFY797eyEzGMZ9n063p5vTJfHBOAcQBYnBYAjNFFV4YyksF/GcquQwEFFFBAAQUUUEABBRRQoCWByZMnJ/38CZa7LZXZesHgv9u+Pe6PAgoooIACCiiggAIKKNBFAjFAjs9dtGul7orBf6ncrkwBBRRQQAEFFKiYwAvPhnD92a1t1JQZIWzy/1pb1qUUUEABBUoVMPgvlduVKaCAAgoooIACFRN44ZkQrjiztY2atZ7Bf2tyLqWAAgqULjC29DW6QgUUUEABBRRQQAEFFFBAAQUUKFXA4L9UblemgAIKKKCAAgoooIACCiigQPkCBv/lm7tGBRRQQAEFFFBAAQUUUEABBUoVMPgvlduVKaCAAgoooIACCiiggAIKKFC+gMF/+eauUQEFFFBAAQUUUEABBRRQQIFSBQz+S+V2ZQoooIACCiiggAIKKKCAAgqUL2DwX765a1RAAQUUUEABBRRQQAEFFFCgVAGD/1K5XZkCCiiggAIKKKCAAgoooIAC5QsY/Jdv7hoVUEABBRRQQAEFFFBAAQUUKFXA4L9UblemgAIKKKCAAgoooIACCiigQPkCBv/lm7tGBRRQQAEFFFBAAQUUUEABBUoVMPgvlduVKaCAAgoooIACCiiggAIKKFC+gMF/+eauUQEFFFBAAQUUUEABBRRQQIFSBQz+S+V2ZQoooIACCiiggAIKKKCAAgqUL2DwX765a1RAAQUUUEABBRRQQAEFFFCgVAGD/1K5XZkCCiiggAIKKKCAAgoooIAC5QsY/Jdv7hoVUEABBRRQQAEFFFBAAQUUKFXA4L9UblemgAIKKKCAAgoooIACCiigQPkCBv/lm7tGBRRQQAEFFFBAAQUUUEABBUoVMPgvlduVKaCAAgoooIACCiiggAIKKFC+gMF/+eauUQEFFFBAAQUUUEABBRRQQIFSBQz+S+V2ZQoooIACCiiggAIKKKCAAgqUL2DwX765a1RAAQUUUEABBRRQQAEFFFCgVAGD/1K5XZkCCiiggAIKKKCAAgoooIAC5QsY/Jdv7hoVUEABBRRQQAEFFFBAAQUUKFXA4L9UblemgAIKKKCAAgoooIACCiigQPkCBv/lm7tGBRRQQAEFFFBAAQUUUEABBUoVMPgvlduVKaCAAgoooIACCiiggAIKKFC+gMF/+eauUQEFFFBAAQUUUEABBRRQQIFSBQz+S+V2ZQoooIACCiiggAIKKKCAAgqUL2DwX765a1RAAQUUUEABBRRQQAEFFFCgVAGD/1K5XZkCCiiggAIKKKCAAgoooIAC5QsY/Jdv7hoVUEABBRRQQAEFFFBAAQUUKFXA4L9UblemgAIKKKCAAgoooIACCiigQPkCBv/lm7tGBRRQQAEFFFBAAQUUUEABBUoVMPgvlduVKaCAAgoooIACCiiggAIKKFC+gMF/+eauUQEFFFBAAQUUUEABBRRQQIFSBQz+S+V2ZQoooIACCiiggAIKKKCAAgqUL2DwX765a1RAAQUUUEABBRRQQAEFFFCgVAGD/1K5XZkCCiiggAIKKKCAAgoooIAC5QsY/Jdv7hoVUEABBRRQQAEFFFBAAQUUKFXA4L9UblemgAIKKKCAAgoooIACCiigQPkCBv/lm7tGBRRQQAEFFFBAAQUUUEABBUoVMPgvlduVKaCAAgoooIACCiiggAIKKFC+gMF/+eauUQEFFFBAAQUUUEABBRRQQIFSBQz+S+V2ZQoooIACCiiggAIKKKCAAgqUL2DwX765a1RAAQUUUEABBRRQQAEFFFCgVAGD/1K5XZkCCiiggAIKKKCAAgoooIAC5QsY/Jdv7hoVUEABBRRQQAEFFFBAAQUUKFXA4L9UblemgAIKKKCAAgoooIACCiigQPkCBv/lm7tGBRRQQAEFFFBAAQUUUEABBUoV6Ct0bXMPDmHh3OazHLNMCGudkr/cPfuEsHRh/mf1pk5YK4TZXxo6x9MXh/DYyUOnNzJl5gEhTN156JzzTw/hyd8Ond7IlFWOCGHSBoPnXPp8CPfsP3hao++W2SyElQ8ZOveLd4dw/2FDpzcyZdk3hzBj38Fzvnhvf3456xk8V/67aW8KYcUa+zf/tH7Lc/OXG27qqkeFMHG94eby814XeOJXITz+i9YUVjoohMlbtbZss0vdvXezS7w0f61z3+LHQ7j3Y63lyT6z79k07/shPHVBdmpj71c9uv/3us7QeR8+NoTnrhk6vZEpaxwfwrgVBs/56AkhPHPZ4GmNvlvt6yGMnz147qLzG5y77xRQQAEFFFBAgbYJWPPfNlozVkABBRRQQAEFFFBAAQUUUKAaAgb/1TgOboUCCiiggAIKKKCAAgoooIACbRMw+G8brRkroIACCiiggAIKKKCAAgooUA0Bg/9qHAe3QgEFFFBAAQUUUEABBRRQQIG2CRj8t43WjBVQQAEFFFBAAQUUUEABBRSohoDBfzWOg1uhgAIKKKCAAgoooIACCiigQNsEDP7bRmvGCiiggAIKKKCAAgoooIACClRDwOC/GsfBrVBAAQUUUEABBRRQQAEFFFCgbQIG/22jNWMFFFBAAQUUUEABBRRQQAEFqiFg8F+N4+BWKKCAAgoooIACCiiggAIKKNA2AYP/ttGasQIKKKCAAgoooIACCiiggALVEDD4r8ZxcCsUUEABBRRQQAEFFFBAAQUUaJtAX9tyNmMFFFBAAQUUUECBYgWWPBXC079vLc++mSFM2aG1ZZtdauHcEJ67ttmlXpp/4johTNp46LKLHgrh2SuHTm9kyoQ1Qlhmi6FzPnddCAvvGzq9kSlTtg+hb9bQOZ+/KYQX7x46vZEpk7cOYfzs/DmfuiCEpc/nfzbc1Om758/xwh0hLLgt/7Phpi6zaQgTXjXcXH6ugAIVEjD4r9DBcFMUUEABBRRQQIG6AoueCGH+mXVnqfnhMpuUF/y/cE/r2zl9t/zg/8UHWs9z2i75wf+zl4fwzKU1yep+QIFCXvBPocdT59ddtOaHFNDUCv6fODuExfNrLlr3g1rB//O3hPD4z+suWvPDGRMN/mvi+IEC1RSw2X81j4tbpYACCiiggAIKKKCAAgoooEBhAgb/hVGakQIKKKCAAgoooIACCiiggALVFDD4r+ZxcasUUEABBRRQQAEFFFBAAQUUKEzA4L8wSjNSQAEFFFBAAQUUUEABBRRQoJoCBv/VPC5ulQIKKKCAAgoooIACCiiggAKFCRj8F0ZpRgoooIACCiiggAIKKKCAAgpUU8Dgv5rHxa1SQAEFFFBAAQUUUEABBRRQoDABg//CKM1IAQUUUEABBRRQQAEFFFBAgWoKGPxX87i4VQoooIACCiiggAIKKKCAAgoUJmDwXxilGSmggAIKKKCAAgoooIACCihQTQGD/2oeF7dKAQUUUEABBRRQQAEFFFBAgcIEDP4LozQjBRRQQAEFFFBAAQUUUEABBaopYPBfzePiVimggAIKKKCAAgoooIACCihQmIDBf2GUZqSAAgoooIACCiiggAIKKKBANQUM/qt5XNwqBRRQQAEFFFBAAQUUUEABBQoTMPgvjNKMFFBAAQUUUEABBRRQQAEFFKimgMF/NY+LW6WAAgoooIACCiiggAIKKKBAYQIG/4VRmpECCiiggAIKKKCAAgoooIAC1RQw+K/mcXGrFFBAAQUUUEABBRRQQAEFFChMwOC/MEozUkABBRRQQAEFFFBAAQUUUKCaAgb/1TwubpUCCiiggAIKKKCAAgoooIAChQkY/BdGaUYKKKCAAgoooIACCiiggAIKVFPA4L+ax8WtUkABBRRQQAEFFFBAAQUUUKAwAYP/wijNSAEFFFBAAQUUUEABBRRQQIFqCvQVulkTZocwZnzzWY6dUHuZCWuFsHRR7c9rfTJ+lfxPxk0LYcKr8j8bburY/mXzUt8KI8hzUk6O/WUyrW7j+JVz8uufNGZi63n2zRiaJ8es1W3Myy+uYdwILNlHkwLDCYydHELfrOHmyv98TM656ulHQnjwtvz5h5s6c50Qlu8/b+alVreR81Fu6j+vtJrnuOm5OYaxU1vPc0yNPz+sq9XtDDnl2eOWbT2/vG0sOr98WacqUFuA8xDXRq2kvhrXCH39ec7epJUc+89hq+UvN67//NDqdo5bPj/Pscu0nmffivl59s1sPU/+nuQlrnNa3fexU/JyfGnahNVDWNx/TisyjVuu9W3lfGhSQIGOEhiztD911Ba7sQookCswZ86ccOCBBw58duWVV4bx41sojBvIwRcNCdw+J4Tzj2lo1iEz7bRfCFvuMWSyExRQQAEFFFCgMwVOPfXUcNxxxyUbv8Yaa4Szzz67M3fEre5KgZxqkq7cT3dKAQUUUEABBRRQQAEFFFBAgZ4VMPjv2UPvjiuggAIKKKCAAgoooIACCvSKgMF/rxxp91MBBRRQQAEFFFBAAQUUUKBnBQz+e/bQu+MKKKCAAgoooIACCiiggAK9ImDw3ytH2v1UQAEFFFBAAQUUUEABBRToWQGD/5499O64AgoooIACCiiggAIKKKBArwgY/PfKkXY/FVBAAQUUUEABBRRQQAEFelbA4L9nD707roACCiiggAIKKKCAAgoo0CsCBv+9cqTdTwUUUEABBRRQQAEFFFBAgZ4VMPjv2UPvjiuggAIKKKCAAgoooIACCvSKgMF/rxxp91MBBRRQQAEFFFBAAQUUUKBnBQz+e/bQu+MKKKCAAgoooIACCiiggAK9ImDw3ytH2v1UQAEFFFBAAQUUUEABBRToWQGD/5499O64AgoooIACCiiggAIKKKBArwgY/PfKkXY/FVBAAQUUUEABBRRQQAEFelbA4L9nD707roACCiiggAIKKKCAAgoo0CsCBv+9cqTdTwUUUEABBRRQQAEFFFBAgZ4VMPjv2UPvjiuggAIKKKCAAgoooIACCvSKQF+v7Kj7qYACCrRFYLmVQ9jk/7WW9Yy1WlvOpRRQQAEFFFBAAQUUaFLA4L9JMGdXQAEFBgmstH4IPEwKKKCAAgoooIACClRYwGb/FT44bpoCCiiggAIKKKCAAgoooIACRQhY81+Eonk0LLB06dKG53XG5gSmTp3a3ALOrYACCiiggAIKKKCAAj0jYPDfM4e6Gju6ePHiamxIF27Fmmuu2YV75S4poIACCiiggAIKKKBAEQI2+y9C0TwUUEABBRRQQAEFFFBAAQUUqLCAwX+FD46bpoACCiiggAIKKKCAAgoooEARAgb/RSiahwIKKKCAAgoooIACCiiggAIVFjD4r/DBcdMUUEABBRRQQAEFFFBAAQUUKELA4L8IRfNQQAEFFFBAAQUUUEABBRRQoMICBv8VPjhumgIKKKCAAgoooIACCiiggAJFCBj8F6FoHgoooIACCiiggAIKKKCAAgpUWMDgv8IHx01TQAEFFFBAAQUUUEABBRRQoAgBg/8iFM1DAQUUUEABBRRQQAEFFFBAgQoLGPxX+OC4aQoooIACCiiggAIKKKCAAgoUIWDwX4SieSiggAIKKKCAAgoooIACCihQYQGD/wofHDdNAQUUUEABBRRQQAEFFFBAgSIEDP6LUDQPBRRQQAEFFFBAAQUUUEABBSosYPBf4YPjpimggAIKKKCAAgoooIACCihQhIDBfxGK5qGAAgoooIACCiiggAIKKKBAhQUM/it8cNw0BRRQQAEFFFBAAQUUUEABBYoQMPgvQtE8FFBAAQUUUEABBRRQQAEFFKiwgMF/hQ+Om6aAAgoooIACCiiggAIKKKBAEQIG/0UomocCCiiggAIKKKCAAgoooIACFRYw+K/wwXHTFFBAAQUUUEABBRRQQAEFFChCwOC/CEXzUEABBRRQQAEFFFBAAQUUUKDCAgb/FT44bpoCCiiggAIKKKCAAgoooIACRQgY/BehaB4KKKCAAgoooIACCiiggAIKVFjA4L/CB8dNU0ABBRRQQAEFFFBAAQUUUKAIAYP/IhTNQwEFFFBAAQUUUEABBRRQQIEKCxj8V/jguGkKKKCAAgoooIACCiiggAIKFCFg8F+EonkooIACCiiggAIKKKCAAgooUGEBg/8KHxw3TQEFFFBAAQUUUEABBRRQQIEiBAz+i1A0DwUUUEABBRRQQAEFFFBAAQUqLGDwX+GD46YpoIACCiiggAIKKKCAAgooUISAwX8RiuahgAIKKKCAAgoooIACCiigQIUFDP4rfHDcNAUUUEABBRRQQAEFFFBAAQWKEDD4L0LRPBRQQAEFFFBAAQUUUEABBRSosIDBf4UPjpumgAIKKKCAAgoooIACCiigQBECBv9FKJqHAgoooIACCiiggAIKKKCAAhUWMPiv8MFx0xRQQAEFFFBAAQUUUEABBRQoQsDgvwhF81BAAQUUUEABBRRQQAEFFFCgwgIG/xU+OG6aAgoooIACCiiggAIKKKCAAkUI9BWRiXkooMDoC8ybN2/QRpx00klh3Lhxg6b5RgEFFFBAAQUUUKB9Atddd137MjdnBUYoYPA/QkAXV6AqAvPnzx+0KSeffPKg975RQAEFFFBAAQUUaK/A0qVLw5gxY9q7EnNXoEUBm/23COdiCiiggAIKKKCAAgoooIACCnSKgDX/nXKk3E4FhhGYNm1a2GabbYaZy48VUEABBRRQQAEF2iXw4IMPhvvvv79d2ZuvAiMSGNPfNGXpiHJwYQWaEFi0aFETcztrMwI0MbOPfzNizquAAgoooIACoyGwZMmS0VhtKeukz/+VV16ZrGv69Olhr732KmW9cSVcD9rtIGr4nBUw+M+K+L6tAgb/7eM1+G+frTkroIACCiigQDEC1DsuXry4mMzMZYjA2LFjAw+TAnkCfjPyVJymgAIKKKCAAgoooIACCiigQBcJGPx30cF0VxRQQAEFFFBAAQUUUEABBRTIEzD4z1NxmgIKKKCAAgoooIACCiiggAJdJGDw30UH011RQAEFFFBAAQUUUEABBRRQIE/A4D9PxWkKKKCAAgoooIACCiiggAIKdJGAwX8XHUx3RQEFFFBAAQUUUEABBRRQQIE8AYP/PBWnKaCAAgoooIACCiiggAIKKNBFAn1dtC/uigIKKKCAAgookCvwzDPPhL/97W+5n02YMCFstNFGuZ85UQEFFFBAgW4RMPjvliPpfiiggAIKKKBATYETTjghPPzww2HmzJlD5pk+fbrB/xAVJyiggAIKdJuAwX+3HVH3RwEFFFBAAQWGCPzxj38MZ511VhgzZsyQz5yggAIKKKBALwjY578XjrL7qIACCiigwAgFli5dGq666qoR5tL84o8//nh44YUXml8wtcRtt90WNthgg8oH/rW6JbAr9T5L7WpTL5988smm5ndmBRRQQIHOFjD47+zj59YroIACCnSIwHPPPRcmT5488FhuueXCDjvsEH79618P2YPsvOnljjnmmCHzv+51rwuTJk1KHsxL//WvfOUrYeHChUPm3WmnnQa2IZ3v7rvvPmTe9IQLL7wwfP7zn09PGvT6pptuSoJratazjwsuuGDQvMO9efbZZ8OnP/3psPbaa4cVVlghTJs2LWy55Zbh5JNPHm7R3M/POOOMsNdeew367MUXXwz33HPPoGmtvmlm3/H/5S9/mbuqz3zmM7nHjJk/+clP5i7T7HeFgP/www8PW2+9ddh0003D6quvHt7znveEu+66Kzd/JyqggAIKdI+Azf6751i6JwoooIACFRd4/vnnw7XXXhtWXHHFpDb77LPPDh/+8IfDiSeeGPbcc89BW8+8t9xyy5A+6lOmTBk0H28IZL/5zW+Gt7/97YEaepq4f+1rXwtz584Nxx9//KD5qUX/9re/Hd7xjncMms6gd/XSd77znXDxxReHO+64I6y//vpDZt14443DU089lUw/+uijk/71cd0UMjSayP8tb3lLWGuttcKpp56aBP1PP/10sk8HH3xw+NWvfpU03x9ue9Prw/yoo45KTwqLFi0KH/jAB8If/vCHMHbs4LoQWglQ0ECg3khqZt/xX7x48ZBsmX7++eeHc845J+yxxx6DPr/55pvDeeedl9T+r7vuuoM+400z35V99tkn8B2aM2dO8sxAiF/96lfD+9///nDppZeGcePGDcnfCQoooIAC3SFg8N8dx9G9UEABBRToEIHZs2eHWbNmJVv72c9+NikE+PKXvzwk+GcGCgnyBqjL29UZM2aE1VZbLfmIWu4111wz7LjjjoG8qTlPp2WXXbbhfFmOQoRLLrkkHHDAAUlBxbHHHpvOLnlNAB3XQ2A+fvz4gfdDZq4xgaD4gx/8YNhtt93CcccdN9BMnwH5qJ1+61vfGnbZZZfwxS9+Mfznf/5njVwGT77mmmuSWu7BU196d9lllyUtJA499NBBHy9YsCAsWbJk0LR6b4rYdwooKMShwCMb/DONdPnll4e84J/PGvmuUMBw7rnnhltvvTUJ/Flu6tSpiecb3/jGQEEA1iYFFFBAge4UGFzU3Z376F4poIACCihQWYGtttoq3HfffYVvH026qcV94IEHRpz39773vfDOd74zaYr/wx/+MBActyP99Kc/DfTxp3Ahb2A+Ci1+9KMfBbo+MHJ/I4km/+9973trznrkkUcGCghGOxHYb7HFFknt/0MPPTSwOXTdOO200wLfE+YZSeL7QKEMXTjSCes3vOENBv5pFF8roIACXShg8N+FB9VdUkABBRToHIHTTz89bLPNNrkbTE149kGz/kbSmWeemdTqrrPOOkNmp1Y7m2+tmm6ax9ME/iMf+UjS3H+TTTYJBOntSH/+858DYw9MnDixZvasn24HjQw+yD7RjYBm/LXS/vvvH973vvcF+s6PZiKwp4CFlg0UcMT0m9/8Jiy//PKB8QDqBf/Z48n77Helr68vKTj5xCc+kTTzZ7wJxlcwKaCAAgr0hoDBf28cZ/dSAQUUUKAiAjTh5p7z3/jGN8JrX/vacNFFFyWv8zZv1VVXDQRs6UfeAIEsS3Pub33rW8mDZuMEeCeddFKybDZvasLTefKaLgh5iXEJ6Hqw3XbbJR9TCED//3YkAvVazdrT62Me5h0u0ayfwRDrpS984QuBwRcPOuigerO1/TMKPrbffvtkDIjYzJ+V8poCCgaHvPHGG5P+/Xkb0+h35V//9V+TghNaUfCa7gKM/4CVSQEFFFCguwUM/rv7+Lp3CiiggAIVEyDI++53vxuOOOKIcOCBByYjzq+33nq5W3nnnXcGBrtLP972trflzkswTM3wlVdemYz2z/O73vWu3Hlpup/Ok9fcHSAvEegzSBz9xXmw/ttvvz1cd911ebOPaNqrX/3q8Ne//nXYPJiHebOJJvKMcRATrR+yo/zHz+IzBR80q//xj3+cDLYXp5f5TNeM+++/P2y77bZJID5v3rzwpz/9KemyQeEQ/tz5gEIKxgbIS818V+heQAEUYzkwyB+FO/T5r1WwlLc+pymggAIKdJ6AA/513jFzixVQQAEFOliA/vMMEEcARpBHH+xaicHYeDSSPvWpT4V3v/vdjcya3BKwkXwJ8gk+edDsPJ0oFKBlQZGJlhDUxDOYH7cuzEvUfnPPewLlbGIgQEaup3UCA9cRVK+xxhrZ2Ya8pyUBLTGoYee2fWUnCm023HDDQG08iUEPqfFnu7jzwUorrZRMp2UA8zKQYzY1812Jy9LXny4ndOtgPADuzjDcLR/jsj4roIACCnSegDX/nXfM3GIFFFBAgQ4XoKn1T37yk6Sp+RVXXFHZvaGFAoEoNerpx/XXXx8YqyDe2q+oHaClAndCoKAh21+ddTzxxBNJLfjnPve5IXcr4NZ13O2AWmxq8hnUbtddd2140ygwILimACBv3Q1n1MKMBPSvec1rBpbk9o8/+9nPAgVFvI4pBv/xfbPPf//735NBG+fPnz9kUQof8gZZHDKjExRQQAEFOlbA4L9jD50broACCijQyQI777xzOOSQQ5JB3h599NHcXWEwNm6/ln4QhI80MVp/Ok9eZ0fw597xdA/46Ec/OmR8gM033zxwNwGayheZaBHBOi+44IJk9HlaHBCoErRSWMI6V1999XDYYYcNWeHcFrAAAAMQSURBVC0139yKkCby1JoTPNfq9jBk4ZcnEGwzkGA77r5Qa51MJ/gnsI+JQHyzzTZLullQ8x8T89QqLGrku8LtH2nNgRPdDGKiiwjjRTTaciQu57MCCiigQGcJGPx31vFyaxVQQAEFukjg8MMPT0au33vvvXPvK08/72nTpg16cJu7bGq2xpYAOZsvg76lE/3lV1llldwm5sxXb+A/+tHX686QXk/2NXcnuOGGG5Jm/XFAOkb3JzilWT/90vPy5lZ4pP322y9puk+BCq0Imkm0GkgPttfMsnHeZveduylcffXVg2r+yYsa/3333Tdpjh/zpqsDQXve7Rsb/a6ceOKJiR8tDWbPnp10KaClBa0paPVgUkABBRToXoEx/U3bGrtnUPcauGclCnCRY2qPABf/9Nk0KaCAAt0kQNcC+v9PmDCh4d2iVQWB84c+9KGay3BrvylTpoSHH354SCHBxz/+8aTVAPmMVqImnzEhGhmzoNVtpEXFjBkzGh5XotX1uJwCaQFCD25FaWqPAC2oeJgUyBMw+M9TcVrbBAz+20ab9NU0+G+frzkroEDnCDAmAS0IaN3QSqLLwyOPPBJoJm9SQIFiBQz+i/XM5mbwnxXxfVrA4D+t4eu2Cxj8t4/Ymv/22ZqzAgoooIACChQjYPBfjGOtXAz+a8k4HQHbhPg9UEABBRRQQAEFFFBAAQUUUKDLBQz+u/wAu3sKKKCAAgoooIACCiiggAIKGPz7HVBAAQUUUEABBRRQQAEFFFCgywUM/rv8ALt7CiiggAIKKKCAAgoooIACChj8+x1QQAEFFFBAAQUUUEABBRRQoMsFDP67/AC7ewoooIACCiiggAIKKKCAAgoY/PsdUEABBRRQQAEFFFBAAQUUUKDLBQz+u/wAu3sKKKCAAgoooIACCiiggAIKGPz7HVBAAQUUUEABBRRQQAEFFFCgywUM/rv8ALt7CiiggAIKKKCAAgoooIACChj8+x1QQAEFFFBAAQUUUEABBRRQoMsFDP67/AC7ewoooIACCiiggAIKKKCAAgr8fxP00X9BypVJAAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Circuit Diagram " + ] + }, + { + "attachments": { + "circuit.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABGwAAADsCAYAAAAhDzCXAAABRWlDQ1BJQ0MgUHJvZmlsZQAAKJFjYGASSSwoyGFhYGDIzSspCnJ3UoiIjFJgf8LAysDOIMRgyqCWmFxc4BgQ4ANUwgCjUcG3awyMIPqyLsis4q+p2suv3BQWcPtwNnV50kZM9SiAKyW1OBlI/wHitOSCohIGBsYUIFu5vKQAxO4AskWKgI4CsueA2OkQ9gYQOwnCPgJWExLkDGTfALIFkjMSgWYwvgCydZKQxNOR2FB7QYDHKTUvUMHdx8jczICAc0kHJakVJSDaOb+gsigzPaNEwREYSqkKnnnJejoKRgZGQCtBYQ5R/fkGOCwZxTgQYpkyDAzml4CCTgixtEcMDLuyGBh4NyPE1ID+4j3KwHDEoiCxKBHuAMZvLMVpxkYQNvd2BgbWaf//fw5nYGDXZGD4e/3//9/b////u4yBgfkWA8OBbwDi+2E+A4JvJQAAAZ5pVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IlhNUCBDb3JlIDUuNC4wIj4KICAgPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4KICAgICAgPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIKICAgICAgICAgICAgeG1sbnM6ZXhpZj0iaHR0cDovL25zLmFkb2JlLmNvbS9leGlmLzEuMC8iPgogICAgICAgICA8ZXhpZjpQaXhlbFhEaW1lbnNpb24+MTEzMjwvZXhpZjpQaXhlbFhEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlBpeGVsWURpbWVuc2lvbj4yMzY8L2V4aWY6UGl4ZWxZRGltZW5zaW9uPgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4KW2oCAQAAQABJREFUeAHtnQncVdP6xxdpUkLznOYRRUkyFZLIeJFkirh0jeHmItO9yHAzkzEhUxIpSopooEJRaS5RSiJpQPX+3++6//0673nPPmefeZ+zf+vzeTunvddee63vWnufvX77Wc+zS0FhMkoiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAK+IbCrb2qiioiACIiACIiACIiACIiACIiACIiACIiACFgCEmw0EERABERABERABERABERABERABERABETAZwQk2PisQ1QdERABERABERABERABERABERABERABEZBgozEgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAj4jIMHGZx2i6oiACIiACIiACIiACIiACIiACIiACIiABBuNAREQAREQAREQAREQAREQAREQAREQARHwGQEJNj7rEFVHBERABERABERABERABERABERABERABCTYaAyIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgM8ISLDxWYeoOiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgwUZjQAREQAREQAREQAREQAREQAREQAREQAR8RkCCjc86RNURAREQAREQAREQAREQAREQAREQAREQAQk2GgMiIAIiIAIiIAIiIAIiIAIiIAIiIAIi4DMCu/msPqqOCIiACIiACIhAgAj8+uuvZubMmWaXXXbx1Ory5cubgw8+2FP+n376ycyZM8dTuWSqXbu2adGihaf8S5cuNStXrvSUl0ytW7c2NWrU8JR/1qxZBi5eEtw6depkypUrFzP7n3/+aaZNm2Z27NgRMy8ZKlSoYA466CBPrNevX2/mzp3rqVwy1alTxzRv3txT/sWLF5tVq1Z5ykumNm3amOrVq3vKz9jbtGmTp7w7d+40BxxwgKlcubKn/MokAiIgAiIgAskSkGCTLEEdLwIiIAIiIAIikDCBRYsWmUsuucS0b9/eUxk1a9a0IkKpUqVi5v/uu+/MU089ZQoKCmLmJUPXrl2tiOBFPPr000/NmDFjPJd9+eWXexZsRo8ebZYsWeKpznDYd999PQk227ZtM88884z5448/PJVdt25d06FDB0+CDeJVPKy7detmmjVr5qnsGTNmmHHjxnlmfdVVV3kWbN544w2zYsUKTzxmz55thg4darp06eKp3p4KVSYREAEREAERiEJgl8KHGG9PMVEK0S4REAEREAEREAERSITAlClTzD333GNef/11s+uusVdqk6d06dKeTsUjjldxggJ3220340UIIi/WFliseE1lypTxPMnfvn27ZysYxCXK9prg4fXRDxYw8ZLSyRqLIJh4Telife6555rzzjvPHHfccZ770mudlU8EREAEREAEIhHw9isc6UhtEwEREAEREAEREIEUEECEYUmPF8uWeE5HeWXLlo3nEM95qXO6ykYk8SqUeK7w/2eMR9yJp+x0skY48iqkxVNn8sbD2ougGO/5lV8EREAEREAEohGI/Sor2tHaJwIiIAIiIAIiIAIiIAIiIAIiIAIiIAIikHICEmxSjlQFioAIiIAIiIAIiIAIiIAIiIAIiIAIiEByBCTYJMdPR4uACIiACIiACIiACIiACIiACIiACIhAygnIh03KkapAERABERABERABERABEQgOgffee886s06X76VUkXScV3fv3j3lPrNSVUeVIwIiIAKhBCTYhNLQdxEQARHIMwLLly8369atM7vvvrsvWrZ+/XrTqVMnTyGIfVFhn1bi999/N9OmTTNVq1b1RQ23bNliwyg3bNgwLfX5+OOPzV577ZWWsuMtlChL5cuXN61atYr3UOUPI0BI940bN/rmfrBhwwZz+OGHp2Uiv2rVKkOY+YoVK4ZRyM5/uRd37NgxZb8NRNBq0qSJqV27dnYa5PGstPuLL74wP//8c1r62WM1lE0EREAEPBOQYOMZlTKKgAiIQO4RGDZsmGGy26FDB19U/tlnnzXTp0+3D/a+qFCOVmL16tXmzDPPNBdccIEvWjBz5kzTuXNnc/vtt6dlEtSnTx/Tq1cvX7R1yZIlpkKFCub5559PS1t90cgMVeLBBx80K1euNK1bt87QGaOfZvjw4VZUSUdEqldffdWMGjXKHHbYYdErkaG9zz33nJk0aZJp06ZNSs7Ytm1bc8cdd1gRKCUFpqkQXmKceuqpaSpdxYqACIhA6glIsEk9U5UoAiIgAr4hwBvdevXqmZ49e/picolg89NPP0mwSXKE8Ja4oKDAnHDCCcYPoYZ/+OEH8/333yfZKvfDKd8vbR03bpyZOnWq5Z/qMOTuBPJzD/enxo0b++b+NGTIkLTdJ2kr1id+uRcjOK5du9aKZRrH+Xl9qVUiIAL5QUCCTX70o1ohAiIgAhEJVKlSxYojWD/44aF8v/32M+l4ex2x8Xm8EYb77ruvOfTQQ33Rr/Pnzzcsb0lXYkkfY9gP4tSvv/5qeEvvh+spXbwzVW716tVtv/rl/oTlVLoSS/oaNGhg2+uHsYPVZenSpfNqHLNUFB86+o1J1yhWuSIgAtkgIMEmG9R1ThEQgbgJ4DeCN/jJ+Mjg+MqVK1v/E3FXQAf4hgAWOjt37oxZn3Llypk99tgjar4dO3ZYXwZYq0RLTLD23nvvmBOBTZs2GSYNscpDeEBMUzK2j+rUqSMUIuB7ArVq1TKVKlXKK5HD99A9VpB77sSJE0379u1NjRo1PB6lbCIgAiLgfwISbPzfR6qhCIhAIYEff/zRPPbYY+aee+5J+GGZKBYIPl26dEm4DHVG9gm89NJL9s0wb4ejJd5mH3300VH7+rfffjNjxowxCDfREgILfg9iOb799NNPzYoVK6IVZf7880+DAHnFFVdErVvUQvJoJ45Kzz77bLHIoz7N16acccYZpnnz5vnavJxuF0vO/vOf/5hhhX7bJNjkdFeq8iIgAmEEJNiEAdF/RUAE/EkAqwomw7xFCzcnx6KBCBxMurG8YPlE3bp1S1hDYCHx6KOP2iggfg896s9e8EetnnjiCdOtWzcblShajWJZ13AsY4coWrEEG0zsyRsrMU4RF6NZ2LD/3XffNZdffnmJsRyr/HzcTz+xtEtJBPxO4OCDD/Z7FQNZP+7fQ4cOtcvNmjZtGkgGarQIiED+EpBgk799q5aJQCAI4E+CSBcINoRLZVK9fft260gRvwhlypQp4nDMMceYQYMG2bzJLK0qKlBfskIA4a1fv34piSyDD41//vOfKWsHkZtipQULFpgZM2bEyqb9IiACIiACHgh88803ZsKECeb111+XCO6Bl7KIgAjkFgEJNrnVX6qtCIhACAGsGN58803zzDPPmEceecTg0JZEFJcbb7zR3HnnnebII4+02/iHN/ndu3c3I0eONNdee60e7IrI/PUFplu2bLFsHAevbMNyCfHLWYZEHhLWTuRjP39YLpUtW/avAvXNFwSC1q+bN28uGpt0AGMTBljfORZ6vJXftm2bHb9sc8Z5aB5fdJ4qUUQgSP0atGu2qJPj/MJLGsLD9+rVy9SvXz/Oo5VdBERABPxPQIKN//tINRQBEXAhsHr1anPrrbea66+/3kbMcbL16NHDvPPOO+bmm28248ePt5M0Zx8PdVdeeaXp379/se3O/qB/4l8F6w8eglnew0QWoYtJbKNGjWwIXhh9+eWXBge7LO8hj+Pgt1q1aqZdu3ZBx+i79gepX7GwYwwzud+4cWNRX2CZ1bVr16LrntDokydPtqINQmP58uWtlR55HGGy6GB9yTqBoPVrkK7ZZAbXZ599ZubNm2cGDx5cJMYmU56OFQEREAG/EZBg47ceUX1EQAQ8E0CUWblypfVn4rw1dw7Gxwm+TniQI3ypkw488ED7FcHhkEMOcTbr8/8JMElgedmSJUushRIT18suu8zgF2DPPfcsEmyIuIWTR5aY4bi3d+/eplOnTtahbtu2bfXg7LMRFaR+xXKG+wJj+PHHHze//PKLadOmjenTp4/1cYH4SELMeeGFF8yUKVOsdR5h0lu3bm2OOOIICTY+G79UJ2j9GqRrNtHhxm8P1jW8gInlED7Rc+g4ERABEcg2AQk22e4BnV8ERCBhAqxZ5814vXr1SpSBaTQiDpGhCPPpCDp8nnPOOWb48OFWYHC2lyggoBsqVKhgzj//fDN79mxz1113GSL43H333SWWOZ1++unWwub22283HEOeSP2QaxiZ3DORZ5kXFhn4RcqHFKR+ZUle37597RKnZcuWmddee82Kttddd53tV6c/Ga+ItkSUwUqvRYsWzq6c/szXMRy0fg3SNZvoBYcFLZaeRPDTb3miFHWcCIiA3wlIsPF7D6l+IiACrgSIGsWEOlLEpypVqtjjIjl3PfHEE220KJb8VK1a1bX8IO/A6gAfCkcddVQxx82hTObMmWNw+tyxY0dTp06d0F05950lYF999ZX55JNPzKJFi2ybW7ZsaS0y+CRKVD6kIPUrE7iLL77YvPXWW2bs2LHmhx9+MLVr17bdSFj1Dz/80FqHDRkyxFqP5Xr/BmUMB61fg3TNxnMNsqQRK1rEVvlNi4ec8oqACOQaAQk2udZjqq8IiIAlgBNRHtgqV64ckQg+VUiEbEZ4CH37xqRt//33t9Y3Z599drF9EQsL4EYms6RQp812Q8g/zkSCJSShfEOy5MRXxscHH3xgbrnlFjNr1qxidcZJ9R133GGttIrtyNH/BKlf6aLDDz/cLnfCzwURZK644gq7tObjjz+2/mtuuOGGvBBrgjSGg9SvtDVo1yxtjpUY76+88oohyh8+p3L59ydWW7VfBERABHYVAhEQARHIRQK8TWaNvxPJKLwNzgMc5tKREsuieODDkaVScQJbt241THB5a4n1jMOyeC5jfX+wLZqoE36MH/+P82qWy4SLNdSVJXU4r3YbR35sj1udgtavcMD6jhDw3CeGDRtml7tNnz7dvPvuu2bAgAF22Zsbr1zaHpQx7PRJUPo1iNes08fRPvGfNmLECHvfzhfrx2jt1T4REIFgE5CFTbD7X60XgZwlgANKEm/aIiWWPJDcBBmsQjClxsdF8+bNIxURc9vixYvNmjVrYubLZobly5ebmjVrxlWFBQsWWMsknLDWqlUr4rFE4MHPDQ5cceTsJuqEH0x/wAynsIkmxDomqKnyL/Pqq68a2uyWEG0mTZpkcKacikTdacO3337rmVv4eeGHrxLGv1f26e5XlsdRL6/1cdrEtUyYeKKRuSW369gtf+h2/FvgawlH4/Q11+3ll19ufdeE5vP6nfoy/hNpq9dzxJsv02M43vq55WfinWjfprpfqSPXE/3q9iIA4ZZoYpGW4bq10dlOufH+1qT7ml27dq1ZsWJF3Nes06bQT5YYY/maTOLa4rfb+eM+SSpTpoz94yUCAs3QoUOt/yksZZVEQAREIN8JSLDJ9x5W+0QgTwnw0MyDm9vDvmMR4TYJZMkUDkcxN2/WrFlCD6xPP/20eemll1xFIz+gRxxw/HZ4rc9HH31k24RTVqxOIk3AEbp4QMcCx21ZWqTzMdFl+dHChQsj7fa0jaVwOJzGh04qEj5O3IQ/p3yiCTHRT0Vimd6GDRvMyJEjEy7u888/txHQ4ikgnf2KJQC+fxJpE8ITE1OijLklxk2iifF51llnmXvvvddaS3HNN2jQINHi7GQSoSGRtiZ80hgHZnoMx6iO5904jUV4SSSlul+pA4IB/Rrpnsd+LA8bNWqUkO+zN954w1xyySUU4zml85olwhLXAkJSKtIXX3xhrV7jKQve3Av5LeHv559/NtxLtm3bZj/5zr2Z33vnj/8///zz5qmnnrIvFhgHRDNUEgEREIF8JSDBJl97Vu0SgTwngFhDFB8e7CIl3vaTcD4c6eGbhz7yEKo60YTlyn777Zfo4Rk5jjeS8TpkZJJAQuwaPXp0xHryoA/DeP3XOP1WrVq1iP0S8WRhG3k45yE9mTJCi8TxNGOE9rgl+jpV50NkpA3JlIfvBjcx0q0N6exXLBKwtkqkTUzSsATDGXika5X2JGLREMqBSHFcB0xS3c4Rmj/ad46nrETaGq3cZPZlegwnU9fQY+vWretqzRKaz+17KvvVOQf96mZhs2rVKhsNL5G+5x4S7zhO5zXLvZhQ2Im0xWEV+un2Wxuax/mOSItQhPAJUz754zeZ33X+uMfzST2dewSOw9988037ogAfakuXLrX9wThChHWCDTjn0acIiIAI5AMBCTb50ItqgwgElABiCUtVEG2YLIYmLGyYgLdu3Tp0c9F3luVgofHwww8nPIG7+uqrDX9+Tiz7IjS31+T4TMAC6f7773ddEoUzXiau8fqvYRnT8ccfn5QTX6KD9e7dOykriVAeTAyw+nGz4mBC849//CNlYZ+ZoLAc6txzz0147LVp08bMnTvX8/Hp7ldCELdq1SqhNjHxIkJXNB5XXnllaJfF9R3LKMpnck8UsOHDh5s777zTM7vwk3Ft7LPPPlHrG35Muv+f6TGcqvbg/Dle4dE5d6r7lXIRVBiHboINvo+InHfcccfFPX6wSoznBUG6r1m4H3vssdYxt8M0mc8XX3zRNaKgU+7GjRutpSLLE7l/IcBw3+jQoYON6Fa/fn0na8RPxgv9/tBDD9nlzFj1sI3xz/MAy1abNm0q4SYiPW0UARHIVQISbHK151RvERAB+0aeiTZv5ljWFJpYdoKg0K1bt9DNRd9HjRplxQbe4Cn9ReCbb74x+DXg4bdGjRp/7Qj5hrDh+K9hEpysxUJI0Z6+3nbbbXEtw4pV6NFHH21FJEI/h4s2TAQuuOCCuH1PRDsnb4PxqZJJbrnQr9GYJboPy52XX37ZTkrxtYTYh7Pxa6+9Nq8mdZkew4n2R6qOC0K/5tM1y0sVlsHOnDnTzJgxwwo7p512mjnssMNiijzOmME67sEHHzT9+/e39+MWLVqYHj162GXRlMlSNhyKs0z3oIMOMi1btjQIyUoiIAIikOsEJNjkeg+q/iIQYAK8HWQpAG/YeKvmTICxrOHBDV8D+MVwtjuocGTIw91//vOfEvucPEH9dHwmEA45nJvDhDej+B3goRhBI9OJPk9lwmLi7rvvtg/3+OzBAoa271NoRcHb9IEDB7qySKQelJ3qNsSqRy70a6w2xLsfIfe1114zWCPRj0waEXbnzZtnEOeIFOc2xuM9V7bzh49hLBloP05Z0zGGs9neoPRrvlyzWBMilGINy3JQLJgQauK99vB3hOUsPo9Cj8Uq6tBDD7V/3L/xb8MLBaw/8VPHc0Bo/myOXZ1bBERABBIhoLDeiVDTMSIgAr4ggEhz/vnnmzFjxliHp4T5xowch6yYSrMcKJIFzddff23z8SZOqTgBfNOQeNh1S85EIl7/NW7l+WF7w4YNzeOPP27uu+8+65eHtmF2f88990QcQ36oczx1CFq/YiWGFR0Ot0855RQ7YcNpad++fe13HIa7+b+Kh6uf8oaOYe59+NnBIiFfxjCsg9SvuX7NIs4gnDz77LNWOMXa9YknnrDWbvEKKDia51gs46L5ZMPik/t2r169zLhx48yTTz5pX944USP9dL2qLiIgAiLglYAEG6+klE8ERMB3BHjou/HGG+1bc96+YXKN9QfROJiknXfeeRHfrPEGDh8oODNU+ouA4zOBB2KsZ9weqr1MJP4qNXe+0W4mFVhl0f7OnTu7MsidVhkrThLdJij9in8qoiZhddKnT59ifXjmmWdaJ6vTpk2zom4u9aOXujpjmGUjfM+XMUzbg9SvuX4vRiDhd+KBBx4wWLQ+9thj9jc5kd9cLGZZxoij9a5duxa7niNdE/xuHXPMMVaswWcQoiXPBzBVEgEREIFcJCDBJhd7TXUWAREoIsAD2eDBg80JJ5xgI81gLn/hhReaAQMGRFwbT7QJHiRPPvnkmA9+RScJyBecMPMGGyfFtWrVithq+PHWlMlwNvzXRKyUNkYlEJR+5Y3+/PnzrSNxQgRfdNFFJa7xOnXqWFFu586dZujQoXYyGRWedmadQBD7NdevWXzKIJSwHI+lxzhuTzTxmz5ixAhz3XXXxfWSBafK//rXvwwiLdc6L3OUREAERCAXCciHTS72muosAiJQjABv1Finzl+s9P7779toP7GiUcQqJ1/28/aS5WMsJxs2bJh9IObhGueQOB3ep9CPCwkHmPjFwFKD0Kv4YCFaBwKPWyQue6D+yQqBIPUr45FljiybwHoO6xoiQfGWH2HRSTt27LDjulKlSjYa0DvvvGPee+89K07i5yY80pxznD6zQyBo/ZpP1yx+5XDW7ixHTHQEcc0ituCLBn9MiSR83vBihzDiWE4qiYAIiECuEZBgk2s9pvqKgAgkTICHv5deesm+eU+4kDw7kEkCE1cicPzyyy/mpJNOsiFtR48ebaNtNGjQwFop8AC+aNEiuyzhxBNPNFgosPQMvxmEZXVbPpVnuHKmOUHqV4QanAt///33dhxibUf0OJyShwo2WGrgbJx8PXv2tHnffvttu9QCAVeCjb+Gd9D6NZ+u2WuuucbgMyrZxAsBrmWWRCXzG4Olj5IIiIAI5CoBCTa52nOqtwiIQNwECAW7bNky06VLl6Qe/uI+sY8P2HXXXc2gQYNi1rBfv34x8yiDfwgEqV+xrMNXRqyETxecSivlBoGg9Ws+XbOpEGsYpevWrbNLnGURmxvXrGopAiKQHgISbNLDVaWKgAikmECZMmUMa9KTecvGmzpMtCtUqJDi2qk4ERCBRAlgBcMyJSUR8DsBxmmqxAi/t9UP9Wvbtq3hT0kEREAEgkxAgk2Qe19tF4EcIoBflR49eiRV47322sscffTRSYk+SVVAB4uACJQgUK9ePXPccceV2K4NIuA3AiytwfInmRcHfmuT6iMCIiACIuBvAhJs/N0/qp0IiMD/E6hSpYohVG0yiWgRSrlPAP85LB/I5ZQPbUgVfyKSnX322akqTuWIQNoInHHGGWkrWwWLgAiIgAiIQCQCEmwiUdE2ERABEcgTAkR/IhQ3f354K0ykKZxrJpM+/fRTGzEkV53Ebt261UbmIvJJMgmWGzZs8IV4xfhirKUr4TCYc/hBqIP577//nq6mBqpcInn56f7EOEtXcsawX+7FOJlP9l6cLlYqVwREQARE4C8CEmz+YqFvIiACIpB3BLZt22aI8FSzZk1ftG3evHk2pHIylbnppptsqNcmTZokU0zWjl2zZo2hDRMnTkxYgNhtt93M/PnzzZgxY3whxDHG6tSpkzamW7Zs8VVbN23alLa2BqngzZs3mylTphSL5pXN9lOfdCUEzVmzZpnGjRun6xRxlTt37tyk78VxnVCZRUAEREAEEiIgwSYhbDpIBERABHKDQPv27Q0WHUuXLvXFxJ4IXcmKR4hQuWzhQN3pk2RSjRo1TNeuXW3UMz9YTlWuXNkw1tKVunfv7pu2Em3qsMMOS1dTA1UuVmYLFy70zf2JcZau66ldu3bmu+++801bO3funFKR9aeffjLTp0833J/TxTAVF8e3335rJLimgqTKEAERyBQBCTaZIq3ziIAIiEAWCFx44YU2LGoWTq1TppEAgs3YsWPTeAZ/FR2ktvqLfHprc80116T3BD4qvVevXoa/fE1Vq1a1VnCzZ8/2tWDDkrSGDRv6uo75OkbULhEQgcQISLBJjJuOEgEREAEREAEREAEREAERKCQwevTonLF8LF26tAQbjVoREIGcISDBJme6ShUVAREQAREQAREQAREQAf8RKF++vOFPSQREQAREILUEcjsuampZqDQREAEREAEREAEREAEREAEREAEREAER8AUBCTa+6AZVQgREQAREQAREQAREQAREQAREQAREQAT+IiDB5i8W+iYCIiACIiACIpBhAjt37lTUlgwz1+kSI/Dbb7+ZHTt2JHawjhIBERABERCBBAhIsEkAmg4RAREQAREQARFIDYEff/zRTJgwwRQUFKSmQJUiAmkiMHnyZLNmzZo0la5iRUAEREAERKAkAQk2JZloiwiIgAiIgAiIQIYILFy40Dz//PMZOptOIwKJExgxYoSZO3euxMXEEepIERABERCBOAlIsIkTmLKLgAiIgAiIgAiIgAiIgAiIgAiIgAiIQLoJSLBJN2GVLwIiIAIiIAIiIAIiIAIiIAIiIAIiIAJxEpBgEycwZRcBERABEcgugZYtW5oKFSpktxJJnJ26t2rVyuyyyy5JlKJDRUAEREAEREAEREAE8p2ABJt872G1TwREQATyjMDAgQNNvXr1crZVderUMTfccIMEm5ztQVVcBERABERABERABDJDYLfMnEZnEQEREAEREIHUEGjSpElqCspSKaVKlTK53oYsodNpRUAEREAEREAERCBQBGRhE6juVmNFQAREQAREQAREQAREQAREQAREQARygYAEm1zoJdVRBERABERABERABERABERABERABEQgUAQk2ASqu9VYERABERABERABERABERABERABERCBXCAgwSYXekl1FAEREAEREAEREAEREAEREAEREAERCBQBCTaB6m41VgREQAREQAT8RWDXXXdVxCx/dYlq40KAscqfkgiIgAiIgAhkioCiRGWKtM4jAiIgAiIgAiJQgkCVKlVMu3btSmzXBhHwG4H99tvPVK9eXQJjhI557733TEFBgSlTpkyEvf7Z9Oeff9p6du/eXf3on25RTURABKIQ2KXw5loQZb92iYAIiIAI5DCB1atXmx9//NGUK1fOF6345ZdfzAEHHGBKly7ti/pEqsTgwYPNzp07zcCBA337QM+k44svvjB77rlnpCZkfNu2bdtMtWrVTO3ateM+N48hW7duNbvvvrvrsZ9//rmpUKGC6/5M7ti+fbspX768adSoUSZPG/e59t57b/PTTz/52iJk5cqV5tdff/XNJH/Tpk2mffv2rqwZp9xLd9llF9c8bjvWrl1r1qxZY8eOW55Mbt+4caPZf//9TdmyZVNyWoQsron69esnxCcllfBQyLp168zs2bMNv0WylvIATFlEQASyTkAWNlnvAlVABERABNJH4JVXXjFTpkwxbdu2Td9J4ij5zTffNGPGjLEP9XEcpqxhBJj89evXz5xyyilhe7Lz3y+//NIceuihZsCAAXFP1pj8RhNraNEVV1xhjj766Ow0LuysiAyVKlUyDzzwQNxtDSsq8P996qmnzLJly0yzZs18wWLcuHFmxowZrhN5hLpE01tvvWVGjx5tDjrooESLSOlx3ItHjhxpmjZtmpJyEX9uueUW07Fjx5SUl65Cli9fbk4//fR0Fa9yRUAERCDlBCTYpBypChQBERAB/xBgIk3q0KGDLyaXjz76qPn+++8l2CQ5RLCc4g9rAD+8JWaczZkzJ8lWuR8+c+ZMa/Hkh7auX7/efPbZZ3ZZRSKWFu6tDN6eWbNmmZo1a/rm/nTnnXemrRO4PrCM88u9+IknnjCIj02aNEnJbwPXApaTfraepHOpnx/uI2kbaCpYBEQg7whIsMm7LlWDREAEROAvAkyGsHzo0aNHSh7K/yo5sW/4gEj2gf6bb74xDRs2TJkpf2ItSfyoP/74wyxdutS0bNky4UJ22203s++++5rjjz/eF/2KCLdo0aKE2xPrQCxwGMN+mGgxMd2wYYMvuMfi5vf99erVM8ccc4xv7k/pXHbHkkHEEb/cixGO8DeTT6Ljjh07bHv8cJ/w+7Wn+omACOQOAbm6z52+Uk1FQAREQAQKCdxzzz0GPwS5mvApdO+991oLjVxtg+otAiIgAn4jwPJfxFQlERABEcgnAhJs8qk31RYRyGMCWCWw9jyZhBUATiOVcpvAwoULraPSXG0FTlYXLFggwSZXO1D1FgER8B0BHDrjQ4cli0oiIAIikE8EJNjkU2+qLSKQxwSwSnjssceSmuQSdnT69OlJlZHHiNU0ERABERABEcg5AkT1e/bZZ02bNm1M8+bNc67+qrAIiIAIRCMgHzbR6GifCIiAbwgQnvbTTz+1Ykv4mvvff//drFq1yrB+nQc3/F3UrVvXlCpVqlj9CXOL09vDDz/c4ANESQREQAREQAREILcJ4BPs7bffNi+++GJe+eTJ7V5R7UVABFJFQDOWVJFUOSIgAlkhwPKSSZMmWcGmYsWKBvFm+/btpnXr1qZz587WqaJTMZxbDho0yObFaa1SSQIFBQVmy5YtxRw3sg0hDAeVjsNg8pAQz3DwyH7+EMLKli1bsmBtySqBoPXr5s2bi8Ym4BmbMEDMdQRfBN5t27bZ8cs2Z5yH5slqp+nkJQgEqV+Dds2W6GyPG4i89fDDD5uePXtap84eD1M2ERABEcgZAhJscqarVFEREIFwAjzQvvnmm+aZZ54xjzzyiCECEWncuHHmxhtvNIRoPfLII+02/tljjz1M9+7dzciRI821115bNHEryqAvNuzsjBkzrPCFVRMTWbgxiW3UqJFp3LixpUQY502bNhmWqpGnXLlyNh+RUNq1ayeSPiPApMbP/YrImiqrN8qirUzuN27cWNQTWNh17drVjmU24uti8uTJVrTh3OXLlzeIvuRxhMmig/Ul6wT80K+IfOGWm+kC4/drNl3tjrdcfouwvh0zZox+0+OFp/wiIAI5QUCCTU50kyopAiIQicDq1avNrbfeaq6//nob4tjJQ9jUd955x9x8881m/PjxRRM09vfq1ctceeWVpn///sW2O8cG/ZNJAsvLlixZYgUvJq6XXXaZadq0qdlzzz2LBBscOH/33XfWYum3334zvXv3Np06dbKCT9u2bfXg7LOB5Od+/fnnn838+fOtRVwqsDGpXrlypR3Djz/+uPnll1+sb4s+ffrYcyA+khBzXnjhBUNkGcRewqRjmXfEEUdIsElFR6S4DD/066xZs+w9sGrVqiluXcni/HzNlqxtdrZg6fnAAw+Yfv36GV4WKImACIhAPhKQYJOPvao2iUBACCDKMDHr1q1bCYGAbU888YSZN2+e6dChQxGRAw880H7nrdwhhxxStF1f/kegQoUK5vzzzzezZ882d911lzUxv/vuu0ssczr99NOthc3tt99uOIY89erVy3mMTO75w3oLIQrronxIfu5XImbdd9999np0lislw5wleX379rV9uGzZMvPaa6/Ze8B1111nlz85ZTNeuQfUqFHDir4tWrRwduX0J+MXMYplYIzhSpUq5XR7nMr7oV+x5DznnHMMy2tTMVadtkX69PM1G6m+2dj20UcfGV7cnHXWWWnvj2y0T+cUAREQAQgoSpTGgQiIQM4SmDBhgl1GEUkoqF+/vn2AIzIUk28n8ZDNA/fw4cOLbXf26/N/BLA6gNtRRx1VzA9QKJ85c+bY8NpYJ9SpUyd0V859x/cRb8+HDRtmPvzwQ/Pxxx+bESNGmK+//to6s865BrlU2I/9ylIXrCdSnbjWL774Yis2jh071vzwww9Fp/jjjz9sPyNoDBkyxOSDWBM6hgcPHmyXNebjGM5mvzJW+ctk8uM1m8n2u50LYRIB7ZprrpG1rBskbRcBEcgLAhJs8qIb1QgRCCYB1q3jcyKS74sqVapYKPiyCE8nnniimTp1qsFHi1JkAogWpFAfQHZDyD/ORIIlJOl+2xxy2pR/RZj64IMPzKWXXmquvvpq6/9k2rRp5u9//7vBKuOLL75I+TmzVWCQ+hXGRIRDUFy3bp15/fXXrQjJhBtBDv81LKdkqV+up/AxzFIwBBzGdL6N4SD1K20N2jXr9VrEfx1WV8cdd1xO//54ba/yiYAIBJeABJvg9r1aLgI5TQBzf5yG4uw2UnK2M1ELtbAhb+3atc3+++9vwq1vIpUTxG1bt241n332mX0Y7tixo+vDMIINKZqokwv8MKlnUouFTXhijOALCQfLuZ6C1q/0F2Iu/i2IZIb1FEuFpk+fbt59910zYMAAgyPifEhBGcNOXwWlX4N4zTp9HO1zzZo15rnnnrOCa6QXNtGO1T4REAERyDUC8mGTaz2m+oqACFgCvD3GKSMTsUjJsfhwm2izLIpQoGeeeWbCDka//fZbKxpFOr9fti1fvtwKVPHUB58iCF04Ya1Vq1bEQ4nAg58bHLjiF8jhHTFzyEaWviC08cCdaGI5C9Gpkikj9Nwvv/yyoc1uCdEGceqAAw5wyxLXdurO2KX+buM3VoEcy9hGjPTKPt39ypigXl7r47QRSzfCa0c7NpllKKeeeqrB1xJ+q1599VWzePFic/nll1vfNU4d4vlELI5V33jKS0XeTI/hVNSZMujzRJfDpbpfqQ/XE3Vyuy7p9w0bNkQdq5QTKVEukcjiSem+Zrn2EPvivWYjtYGyuDaSSfDn3sgf93k+2VamTBn7O80nUboQa9q0aWN4oaAkAiIgAvlOQIJNvvew2icCeUrAecjnYS5S4mGP5DbRYxkPyyFwStq8efNIRcTc9vTTT5uJEyeWsOCJeWAGM7AkDIuieBKOHOGKbyCsTiI9zMONB3QemCtXruy5eCb1mPgvXbrU8zHhGXmIpwwcSqciEQ7WbRw55b/00ktmxYoVzn+T+kSwog2jR49OuByWaS1atCiu49PZr0RrQQhhmUK8iYhk+JeJdizjJtHE+MQp6b333mutpRg7DRo0SLQ4u9SIKGnR6ptw4QkemOkxnGA1SxzGsjSWqCaSUt2v1IHfC/o10j2P/UTQY7lkaLh4tntJ48aNs+PQS14nTzqvWQRflgYi2KQicU9yfne9lsd9F5b8liCE8YdVEcIYL2X4Iw9Ln7Ca5RPBht9e/NcQYW6vvfZyFdi81kP5REAERMDPBCTY+Ll3VDcREAFXAryp5MHNTZBxLGvcovzw8EeEGCZvzZo1c31Ad61A4Q4eKnlY9HNq2LChFQfiqSOTBBLs3EQFuPEgHa//Go5BbOPPbVIUq67HH3+85Z7s21znPERjoS7UzS1hSZRMnUPLxWfKCSeckFR51IWQ6/GkdPer07fx9iv9GOvYZJc9tG/f3k72cDIcb/3CGVNf/lI1HsLLT+T/mR7DidQx0jH4GoNjoimV/UodGBv0bbQxEmusurWF36x425ruazaV45i+pDwvCQEWC1WEz++++87+8X3t2rXWapN7JL+tfNIXiDr8IXYTHfKggw4yM2fOtJZOdevWtU7vEWHdfu+91El5REAERMCvBCTY+LVnVC8REIGoBBBr8D+BaBIp/frrr3YzD5GRHr556CZPMg5H77nnnkin9tU2rIiaNGniuU6OzwQErfvvv991SVT37t0t13j918CbZWhMtPySELVY8uRmxVGtWjVz7bXX+iqS0Oeff25D2kca25G4prtfCR3drl07u9TIa52cesKepXssU3I7dtCgQU72uD+x/Pnqq6/smPvkk09shLg777zT9VyxToA40rRp06j1jVVGqvfn4hiGwdy5c43jID5eJqnuV86PMPiPf/zD1WID65qePXsm5OgWK5J4fm/Sfc3y+8myMhxzpyJh5YWwHS1hiYdFHdH36HssNbHkbNu2rTnppJNMy5YtIwYRcMpEpOGYO+64wwo+LHNkySpRIXEuzjJefu/yJZS90259ioAIBJuABJtg979aLwI5TYAHtEmTJlnRJvxB0fHv0bp164htxJ8AYanxY+M2SYx4YJ5v/Oabb+xbTtjWqFEjYmsRNhz/NQgvuc7v6KOPNljtEPo5XLRh2cUFF1yQ8LK5iACzsDGI/QpmhCD8uzApxdcSkeVeeeUVK8AlKhRkoftinjIIYzgUQhD6NZ+uWZaAItSwbAqn37wsYSncDTfc4FnEQux54IEHrBPxTp06WQvZXr162Xs2Fp8sZaNslulyrWM56wQfCB07+i4CIiACuUZAgk2u9ZjqKwIiUESABz7CMWNSzcNZaMJpLkJCt27dQjcXfR81apTBOiRfosQUNSzJL47PBCa4bkIMb0bxNYBZejz+a5KsWtoO56H+7rvvNlhO4LMHPxW0fZ999jFHHXWUGThwoCuLtFUqxQUHsV+5L7z22mvWOSn9iDUe9wl8HyHO4XjcbYynGH/aiwsfwywfof1Ew8uXMexADEq/5ss1i38qLGMQVVjyhIUlFpqJLOlk2RT+qEKvW+7bCO6E9+YFzogRI+wLBX7fEW9YMhWa3xlH+hQBERCBXCEQObxKrtRe9RQBEQg0gWOPPdZUrVrVOk5kiZOT+M6btkaNGhnexIU/rOHIcOTIkSUe/Jzjg/zJQzWJh1235Ewk4vVf41aeH7azpOTxxx839913n/XLQ9seeughw7K3fBD1gtavTAwRZXG4fcopp9h7AD5E+vbta7/jtNRtOaUfxmMidQgdwyyFxEHrgw8+mDdjGCZB6tdcv2bxZ8PSp+HDh5thw4bZ5UpPPfWUXVIWr1jzyy+/WCfD11xzjeuyKyJ7YWn25JNP2t8vIsI9++yz1qrHzdddIteZjhEBERCBTBOQYJNp4jqfCIhAygjgR+L88883rJ0nYg5m16z7x78HptdMWiJNtnmIJJ9CghbvCsdnAhM9rGfChS4nt5eJhJM3lz5pNxZZiHy0v3Pnzq4Mcqldfu9XnIuGW8glw5fljm+99ZZdDtGnT59ifcjbfXwS4YuEe0S+JWcM9+/f3wo2+TKG6Sc/9Cv+UbAqdLs3pmo8+f2ajdVOBBKuMURvnAv/97//tb/V8YY1d87DcifGdo8ePWKyxw/R3/72N/Poo4/a33mWUfGbFW8EK+fc+hQBERCBbBOQYJPtHtD5RUAEEibAQ/ONN95oJ3vjx483CxcutI4M33jjDftW/bzzzov4cPf888+b3r172yhTCZ88Dw/Epw9vsJmU1KpVK2ILCaOK/xqWYOSD/5qIjcyzjX7v1xYtWlhHr8lOgpkkzp8/3/qlwsHrRRddVOL6r1OnjhXlePs/dOhQGzY4z7o775rjp37t16+fda6dbsh+v2ZjtZ8lUDitx4fckCFDDBGcEk0IdVjK8AImnmhx1atXN3fddZfp0qWLFY5wPK4kAiIgArlIQD5scrHXVGcREIEiAkTdGDx4sHUuim8K3qJdeOGFpnHjxkV5Qr8gOPC2bcCAASUmc6H5gvKd5WNYGmCdhNk60bewQOCBG6fD+HEh4QATvxifffaZdRjJUjSitCDwuDl2tgfqn6wQyKV+LVOmTNE4SwQWDkyxmiPkL2Is1jUsw+BeEOp0lJDKjGsiyDDxIzwwEWYQJ9u0aeO61CKROumY5An4sV+JRpSulEvXbCwGEydOtFGf3F6axDre2Y+w+txzz9nrMxGLWERgnMbznLBgwQJzwAEHOEXrUwREQARyhoAEm5zpKlVUBETAjQAPZfir4S9Wev/992145nQ+eMeqg5/2M0lg4vrbb78Z/AQQWhVfAKNHj7ZLxngzCt+PP/7YLjvjbSfOnnmQxpIJvxmtWrWS+OWnTi2sS5D6FaEG58I4JGWsnnDCCdYZOT6uQgUbLDXwXUU+QjOT9+233za8ied+EB5pzmddGrjqBK1f8+mavfTSS61/uWQHLcEDuEYRYLleE02EL1cSAREQgVwlIMEmV3tO9RYBEYibAG/YX3rpJbtUIu6D8/QAxJlBgwbFbB1LAZRyh0CQ+hWhFj8VsRI+MHAqrZQbBILWr/l0zWKBmYqEuIrfKfzVKYmACIhAUAlIsAlqz6vdIhBAAsuXLzfLli2za9qTeVsXQHRqsgiIgAiIgAhklABLmPjT73VGsetkIiACPiMgp8M+6xBVRwREIDIB/FzsscceST24ffDBB9YZcYUKFSKfRFtzggBRR1jekquJutMGJREQAREQAXcCCDUSa9z5aI8IiEAwCEiwCUY/q5UikPMEcIRLSM9kEuGDk3WCmMz5dWxqCDz55JPWwWxqSst8KRs2bLARivBZoSQCIiACIiACIiACIiACbgS0JMqNjLaLgAj4ikCVKlVM//79k6oTa+GDlvDbg0PhzZs3++JN5ZYtW5LugsmTJ5uzzjrL1KxZM+myslEAIacnTZpkHQMn8/YYlvQtvi+ynagHYy1dCaskxrBf2prLFl7p6qNEymXM0K9+uT+ls19x1O6ntqbiXpxIn+sYERABERCB+AhIsImPl3KLgAiIQE4R2Lp1q/nkk09MnTp1fCHY4EeIkMpKyRGAISzHjRvni35ljBFtKV2JyaVf2jplyhQb4j5dbQ1SuQh9RKDzyzJVBJV0pd9//93Mnj3bOtBNRqhNVf0WLVpkSpUqlariVI4IiIAIiECaCOipOU1gVawIiIAI+IFA8+bNzcqVK8306dP9UB3rQDJVEUR80aAsVQKG7du3902/btu2zTRr1ixtNLp37+6btv7444+mTZs2aWtrkApu1aqV+eqrr8y0adN80WzGWbrEFK4P2uqXe/G+++6bUitFLAc//fRTgyVRuhimYpCsWLHCbNq0KRVFqQwREAERyAiBXQrX0GsRfUZQ6yQiIAIiIAKpINC5c2eDH5vWrVunorgSZQwePNhOOgYOHJiWiceCBQtM3759zdSpU32xxKcEgAxvwHpm9erVpkmTJhk+c36fbu+99zZMov2wjCxfSBNlEEuyihUr5kuTUtaOLl262LHWuHHjtNw3U1VRBFeuC5bW6tpIFVWVIwIikE4CsrBJJ12VLQIiIAIiIAIiEJUAb7yffvppc//99/t6ohe1EdoZCALPPPOMOfXUU82BBx4YiPbG08gRI0YYln352brGaQ9LwSTWODT0KQIi4HcCEmz83kOqnwiIgAiIgAjkMYH169ebJUuW5HEL1bR8IYCFzdq1a5N2GJ4vPELbUatWrdD/6rsIiIAIiECKCGQ/tESKGqJiREAEREAEREAEREAEREAEREAEREAERCBfCEiwyZeeVDtEQAREQAREQAREQAREQAREQAREQATyhoAEm7zpSjVEBERABERABERABERABERABERABEQgXwhIsMmXnlQ7REAEREAEREAEREAEREAEREAEREAE8oaABJu86Uo1RAREQAREQAREQAREQAREQAREQAREIF8ISLDJl55UO0RABEQgIASqV69uypYtm7Otpe41atTIifC3OQtZFRcBERABERABERCBPCAgwSYPOlFNEAEREIEgETj77LOt4JGrbUZw6tOnT65WX/UWAREQAREQAREQARHIEIHdMnQenUYEREAEREAEUkLgb3/7W0rKyVYhFStWNLnehmyx03lFQAREQAREQAREIEgEZGETpN5WW0VABERABERABERABERABERABERABHKCgASbnOgmVVIEREAEREAE8pPAHnvsYerUqZOfjVOr8opA7dq1TaVKleR/Kq96VY0RAREQAX8T0JIof/ePaicCIiACIiACeU2gSZMm1qfPLrvsktftVONyn8AZZ5xhmjVrlvsNUQtEQAREQARyhoAEm5zpKlVUBERABERABPKPABY2nTt3zr+GqUV5R6Bjx4551yY1SAREQAREwN8EtCTK3/2j2omACIiACIiACIiACIiACIiACIiACASQgASbAHa6miwCIiACIiACIiACIiACIiACIiACIuBvAhJs/N0/qp0IiIAIiIAIiIAIiIAIiIAIiIAIiEAACciHTQA7XU0WAREQAREQAREQAREQgVQR+OCDD0xBQYEpW7ZsqopMSznbt28327ZtM927d1e0r7QQVqEiIAKpJiDBJtVEVZ4IiIAI+IjAjz/+aDZs2GDKlCnji1r99ttvplWrVqZUqVJpqw/tXbduXcITB45n4rF8+fKEHuh///13U716dVO5cuW0tXHHjh1m/vz5pmLFimk7RzwF//HHH7a91apVi+cwz3m/+eabhPvT80k8ZoR9+fLl0x6KPNk279y5047hXXdNzJh669at9lr1iCWhbD/88IPZtGmT2W03fzyOMpFv2bJlQm2JdVCy96VY5ce7n3txixYtTOnSpeM9NGL+Cy+80NSvX980bNgwoftmxELTsHH9+vVm8uTJdtwpMl0aAKtIERCBlBPwxy9kypulAkVABERABCDw5ptvmqlTp6Z94uWV9qRJk8ywYcNMrVq1vB5SIh8P3IghbhPR9957z7z11lvmgAMOKHGslw0rVqywgs3rr7/uJXuJPJ9//rk58cQTTe/evSNOXJhIM3mrWrVqiWO9boDBddddZ7p06eL1kLTmmzdvnjnkkEPMJZdcErHNyZ785ptvNu3bt0+2mJQcv2rVKjv+brvttrS01ankv/71L5NMVCLG18iRI53i4v6cNm2aGTVqVFrF1eeff94sW7bMNGrUKO76peOA6dOn23tmOiby7777rnnnnXdM27Zt01H1uMvkXjx06FCzzz77xH1spAMaNGhgrr/++qTGbKRyU70NIX7x4sWpLlbliYAIiEDaCEiwSRtaFSwCIiAC2Sfw4YcfmjVr1phjjz02rZNLry1FzEAQSUawefXVV81ZZ53lasHyySefmKVLl5qTTjopoTY7ljGJWq+88cYbZsqUKVawicRl48aNhjZcdtllCdWPMleuXGlmz55tzjnnHFfhKtK507UNkYyxhmCTjvT222+bk08+2Rdt/frrrw0T+1tvvTXh/vPCaOzYsea0005LuM2XX365tfRKVHy45ZZbzJ9//plWwWbChAlmzz33NEcccURaWXrhTR6EQazrEmUW7Twff/yxvS/17NkzLeVHO3ekfXPmzLHCBUJLKtrLUihEwmSE6Ej1TPU2LLp23333VBer8kRABEQgbQQk2KQNrQoWAREQgewTqFu3rjnyyCOtwJGKh/JkW/T0008nbYI/YsQI2yZHWAmvU82aNa1YgqiTjTazzANRxi2x/8UXXzSXXnppwvVjCcm+++7rasXjdu50bWd5xaJFi9JVvJ1g0Z9uVlVpO3GEgvfaay/zwgsvJNx3EYqMuIlJZTbbfOWVV6a9jVjWHHPMMeb0009P+7kiQg7biIiarsR9if7M1n0pvF3cRxFZsnGPDK9Lqv6P2EbKpzalio3KEQERyF0CiS1szt32quYiIAIiIAIiIAI+IoAVByKWkgj4nQC+sfBRpeRPAp9++qn55Zdf/Fk51UoEREAEEiQgwSZBcDpMBEQgswRwasra82TS999/b3CkqSQCIuAfAqtXrzavvfaaXYrin1qpJiJQkgA+wViOqOQ/AjjYv+mmm6zDef/VTjUSAREQgcQJSLBJnJ2OFAERyCABHsYee+yxpCZ1+NnA94RjNp3B6utUIiACLgSYAE+cONFlrzaLgH8I4KdpyZIl+g3xT5fYmvCb/tJLL9nIbU2bNvVZ7VQdERABEUiOgHzYJMdPR4uACGSIwE8//WQwd47kEBITdSK3EG6XCDz4fsB3S3jo6L333ts8+uij5vDDD/dNGNkM4dNpREAEREAERCAvCXz77bfmlVdeMU899ZQv/FzlJWQ1SgREIGsEJNhkDb1OLAIikAoCv/76qyE8KYINUX0Qb7Zv325at25tOnfubMqUKVN0GpxbDho0yOZt2LBh0XZ9+YsAgtiWLVus00bHwSvbEMJgWbp0aZuZPCScO5KP/fzhDBdHlrmYNm/e7PnNeaIRpLLFJWj9Sl86YxPmjE0YIOY6DkkReLdt22bHL9uccR6aJ1v9leh583kMwyRI/Rq0azbRMc/v/eOPP266dOli2rRpk2gxOk4EREAEfEtAgo1vu0YVEwERiEWAB1p8CjzzzDPmkUceMfvtt589ZNy4cebGG280d955p40m5JSzxx57mO7du5uRI0eaa6+9tmji5uzXp7FhfGfMmGGFL6yamMjCjUksEV0aN25sMX355ZeG8KgsVSNPuXLlbL5q1aqZdu3a5RzKDRs22LHEwz+CE4JM+fLli1lp4cyS6E8VKlQwvXr1yikrLRz7BqVf6UPayuQ+NFoXFnZdu3a1Y5kBun79ejN58mQr2iA00t/0O3kcYTKXBnK+j+Gg9WuQrtlkrrP583WK44sAAC+ESURBVOfblzajRo3Sb3oyIHWsCIiAbwlIsPFt16hiIiACsQjgrPTWW281119/vQ1x7OTv0aOHeeedd8zNN99sxo8fXzRBYz8TbcLV9u/fv9h259igfzJJwFoJPw0IXkxcCXWLX4A999yzSLDBgfN3331nLZYI6dy7d2/TqVMnK/i0bds25x6c8aHCmGjWrJnZf//9Tf369U316tWtEMWYwJJr+PDhNnT1KaecYsMQM8nPlRSkfsVyBr84jGHevCO08ea9T58+1uoO8ZGEmEN47ilTplixlzDpWOYdccQROSnY5PsYDlq/BumaTfQ+ioXcgw8+aK/tOnXqJFqMjhMBERABXxPInadNX2NU5URABLJBAFGGiVm3bt1KCARse+KJJ8y8efNMhw4diqp34IEH2u9YiBxyyCFF2/XlfwSwHjn//PPN7NmzzV133WWaNGli7r777hLLnE4//XRrYXP77bdbixPy1KtXL2cxvvXWW+awww6z4h8WFqH+j4gshkNL/CSw7/777y/Bw+8ND1K/YiHVt29fu8Rp2bJlNgIV94DrrruumH8Lxiv3gBo1ath+b9Gihd+7MWr98n0MB61fg3TNRh3YUXZiSbdw4UJ7T3aWOkbJrl0iIAIikJMEFCUqJ7tNlRYBEYDAhAkT7LKUSEIBFhI8wBEZiqVTTmLbOeecY60lQrc7+/X5PwJYHcDnqKOOKuYHKJTPnDlzrOUJS9Fy+e0mS7uY2N97770GP0ehYg3h5BEGBw4caK24HnjggZxua5D6lWv94osvtuLa2LFjzQ8//FA0fOlXIv5gHTZkyBCT62JNkMZwkPqVARuka7boAvXwBatHrGsuv/xya/3p4RBlEQEREIGcJCDBJie7TZUWARGAAFGj8DkRaWlKlSpVLCTewIWnE0880UydOtXgo0UpMgEms6QjjzzSfkb6x5lIsISESVSuppkzZ5rjjz/eLoUKbQNLMPBxcs0111jrISb2zZs3D82Sc9+D1K90DhHhEBTXrVtnXn/9dStC4gvl448/tn3LckqW+uV6CtIYDlK/0tagXbNer8V3333X+p86+eSTc/r3x2t7lU8ERCC4BCTYBLfv1XIRyGkCRH3BaSjObiMlZzsTtXBLmtq1a9vJebj1TaRygriNJUCfffaZtUzo2LGj68Mwgg0pmqiTDn6IdKl0CssYOeuss4q1kzGDIHj11VdbX0eDBw827du3T0lzqDuOnDMtcvm9X1MCN6wQxNx+/frZpVDDhg2zfmumT59umOwNGDDA4Ig4H1Kmx3C2mQWlX4N4zXoZWzi7Hzp0qF3KGBoJ0suxyiMCIiACuUZAPmxyrcdUXxEQAUuA8N04ZXRCT4djcSbDLBWIlFgW9fDDD5szzzwz4ck/kyQcmvo5LV++PG7fMgsWLLAWCThhrVWrVsTmEYEHPzc4cMUvkMM7YuaQjQhtOHtNxroJ58acz60MtjuCXcipXb/iRDg8FPlXX31lJ/S0E7GGpVLxtJGJFvVwO4Y2RNvvWtn/38GxhFZHWHI7R3gZ6e5XHIAm0iaWNrBEKdqxWMUkmk499VSDryX8Vr366qtm8eLFdhkFvmsSSYxh7j/R6ptIueHHxNPmVI9h6sLYIvJUOifEMIRnIinV/eq0mTq5/a4wTvlNSaTvOQa/NPGkdF+zXHu8+PB6D4lW959//rnEy5Fo+d32MR74beePa4BxiMjNH0IdfYNPMZZC57p1pxsDbRcBERCBUAISbEJp6LsIiEDOEGC5ComHuUiJB2uS26SHBz2WQ+C7JNFlLs8995z54osvXOsQqV6Z3vbGG2/ELdh89NFHtk08EM+aNSviwzzcmIBggVO5cmXPzUIAoXycRSea8E/Ekha3NGnSJBu+3W1/+PZwsYboQvisQey66aabrKgXz4SGNuII8+233w4/VdH/GzRoEHV/UUaXL4w76hdPSme/Ih4tXbo0oTZxHGMpGi+YJpoYn1hQ4aOIyHEsMYF/ool7CxHqotU30bJDj4unzakew9SDe+eYMWMiLjkNrWcy31myetxxxyVURKr7lUrwu0K/ul3va9euNSw/i6dvnMYx7ohgGE9K5zWL/6ZPPvnEivPx1MktLz7NnN9dtzyRtnPv4PpHHET04f+UgyjKJ7/xjG+EQz4RbbCuue+++2w/YK2oJAIiIAL5TECCTT73rtomAnlMoHz58tY5rJsg41jWuD3MYYFBhBgeognl7PaAHg0hEah4Q+nntM8++9g3qPHUkUkCCXajR4+OeCjceJCO9w0nb00xZ+dtaSLMI1YmbCMP+olMqCiGkOa33XabXQ6FM0tCmsdbTyYZjAtCn8d7bFhTXP9LSHVHtHTNFLYjnf1Km7nmEmkzjNq1axf1WCZpySSWszHZY5KabJ8whrGgSqSt8bQh0TanYgxTTywdEKYSrYeXtlI2llmJplT2K3Xgnkab3cYIVocIB+SJNyVyX0rnNcs4xroGqx+39sbTRnxBUSYMY5UHC+5hcOQ64o//I4hxL6lUqZL9/XGWjnJv4Q+LVpbitmzZ0kaA5P84vGeZMy8YeC5QEgEREIF8I5DcE1C+0VB7REAEcoYAkXzwP+H2sO8IKTgfjvTwyEMleZJxODp8+HDf88KKiNDcXpPjMwFBi/DVbkuiunfvbrnG67+Gt+IXXnhhyvzBRGoXE0383MSbWOJGmwmPfMEFF5gbbrih2NII2HiZEDDmcHaLdU6ksRdvvSLl//zzz821117rufxM9OvBBx+ctjbTL4kmlkCxxI3JPRYFXLd33nmnZ3bh52US2apVq7S11TlfIm1O1RimDghcXAN8pithaZfo0rRU9yttREi+8cYbi133qWo7Lxfi+b1J9zXLfercc8+196pUtBEhhftutHseQg2WgSz14ppctGiRXVa7//77m9NOO836lnN7yUIdOaZv377mn//8pxV5pk2bZi1z+I1DTOO6bNy4saf7dCrarDJEQAREIBMEJNhkgrLOIQIikBYCRH9h+QuiDb5UQhNv4xBlWrduHbq56PuaNWsMJtz4sYn2gFl0QEC+fPPNN/YtJ2zdJlJYrzj+a5gE5wM/3tRiZv/000/bicO///3vYhNV3hzjhDheiyK/DJug9iuTw5dfftlOSvG1RB++8sorVuxyIsn5pY+SrUe+j+FQPkHo13y6ZrEGXLFihZk7d67B6fe3335runXrZsWXunXrhnat63d+5x944AGD/zmWljm/O4iUEydOtEI7ZbNMt23btla4QYBTEgEREIFcJ6AoUbneg6q/CASYAOG5EWUwpQ5PPMTxQMdDYaQ0atQoG90oX6LERGpjItscnwlYiDgPxOHl8NCNvwHeaMbjvya8HL/8HwEKJ5b33HOPOfroo62vk/C3vLwJjuY3xy9tcatHEPuV+8Jrr71m2rRpY4466ih7L2D5IxPHsWPH2nuHG69c2x6EMez0SVD6NV+uWX4rJk+ebPD5hljKy4BnnnkmLrGGvsffEb7BsAoK/W2qXr266d27t3n22WfNoYcean0QUf6ECRPsywdn3OhTBERABHKVgASbXO051VsERMAce+yxpmrVqnYijXDjJL7zpq1Ro0bGiSjk7OMTs+yRI0eWCOUcmieo3/FNQ4q21MmZSOSqtYlt4P//w1jATw/OaDt06GCGDBlimACEJt4OI+gg/oVOFELz+P170PoVXxiIsvi2IIIS/cZyNpZT8B1LKrfllH7vy/D6BWUM0+4g9WuuX7P8DiN0jxgxwjzxxBOmWrVq1oqxT58+cUfLwmL2wQcftNHd3JaVsXSPZVVc2y1atLACDssfv/7664QjkYVfa/q/CIiACGSDgASbbFDXOUVABFJCoGnTpub888+3kUx4MHScgeLfgyg6+G+JZEHDAxz+ATCdVvqLgOMzgQffgw46yFWc8DKR+KtU/37Dp8T7779vrrvuOuvnB7GmYcOGJSrM0jne7uIYNxdT0PqV5Y74IcIPE5PDUJHtzDPPtBNHfF9wj8j1FJQxTD8FqV9z/ZrFjxjLZh999FH7iSP3K6+80uy1114JXXLvvvuuFVhPPvnkYtdzpMJYHo2fNKJIYU330EMPGa53twAFkcrQNhEQARHwEwEJNn7qDdVFBEQgLgJMxHAQyTKH8ePHW3NplusQypq36uedd17Eh7vnn3/emlDjuFjpLwIIE7zBxoGjm7Nhwq7yIM5kOJf91zChmDp1qrn66qutqMfDPY4vncTbYXyCfPbZZ9b6Bp8IueoPISj9yoRs/vz51i8VYYIvuuiiEtc/EWWwlKL/8VmEdUqupqCM4aD1K+Mx16/ZL7/80i4txQIW0cbNl5yXa4+ogljo8AKGCF1eE+I7Pm9wRPzf//7XWtp4PVb5REAERMBPBOR02E+9obqIgAjETQDz6MGDB9vIE4TZJiQob9eIFBEpIThgITJgwIASk7lI+fN9G8IElgZYJw0bNsyGSsd0febMmdbp8D6FYcFJOMDcuHGjFTCIrsWDOFFaEHiSeRi3hWfhn6VLl1qxZtmyZeaaa66x7UbAIcGC8M9LliwxiHuIAFjhhFpqZKHKcZ0ySP3KeMRqjhDF9BfWNSyF4F6AsOgklrYxrgkZTDjpd955x7z33ntWnMTPTbjjcuc4v37m+xgOWr/m0zWLj6hDDjnELmHaddfE3w3DhCVVhOxOZAkuIvtVV11lo3MhIoWK8n69rlUvERABEQgnIMEmnIj+LwIikHMEmEjjr4a/WIklMKxvr1+/fqysgdjPAzETVwQKLEpOOukkG9IWvy4sGWvQoIEVKnC4y7IzliXg7Jm3+1gy8RaTN5i5JGbQsYSHrVmzpsHiguUHOMN0EhNFJv+wwdIICy5CVudSClK/0lc4F/7+++/tODzhhBPMBx98YH1chQo2WGrgu4p8PXv2tHnffvtt67OI+0GuCTb5PoaD1q/5dM3iGBiRJRmxhvstwQO4Nz/55JNJlXXBBRcYBNtc+53Kpd8c1VUERCB9BCTYpI+tShYBEfAZAcd5LEsllP5HgAfqQYMGxcTRr1+/mHkylQEHlBUrVkzq4fvUU081/GUjMTFDIAuPRJXKuuRivybafoRalj7ESvhmYulbvqRsjuFMMAxav+bTNYvQn4q0cuVKG8IbC7hkk5ZAJ0tQx4uACGSLQOJ2itmqsc4rAiIgAgkSWL58uWEJTJcuXZKa7Cd4eh2WIgJYBGEFk6sJwYk2INwoGWutBRMlEfA7AYRWhH+lzBDA0fvAgQP1e50Z3DqLCIiATwlIsPFpx6haIiACxQngbBCLhGRMmlkmgTPiChUqFC9c/8spAg8//LD57rvvcqrOoZVlSQ6RSyTY/I8KTkUnTJggHqGDRN99SWDy5Ml2WagvK5eHlcIHTa46e8/D7lCTREAEskRAgk2WwOu0IiAC8RHAEW6PHj3iOygsNyFF3SJHhWXVf31MIBnRzsfNCmzVFi5caJ0FBxaAGp4zBHCASyRCia0502WqqAiIgAjkPAH5sMn5LlQDRCAYBKpUqWL69++fVGPPPPPMpI7PxYOZWBAth8hHfhA6cPya7kSbaW+22sx5M5FgSd8m69gzFXWlzemcxLIMhXP4oa0wx+l2ulO22xyEazW8D9O53Cnb96Xwtmaif8PPqf+LgAiIgAjET0CCTfzMdIQIiIAI5AyBLVu2mNmzZ9vwxX4QbIgylW7nj7///rtZsGBB1tpM+Nh0RyEjLDUsx48f7wshbtasWQanvulKRPLyS1s/+eQTG1EtXW11ys12mzdv3pz2sYUvqhkzZthQ6067s/kJ83Ql7kuLFy/O2n0pvF2rVq1K+704/Jz6vwiIgAiIQPwEJNjEz0xHiIAIiEDOEKhbt64hJPebb77pizo3adLEsLwtnYk2I5pkq82ER+/UqVM6m2iqVq1qw41nq43hjVu7dq3p3Llz+OaU/b9bt25Z68/wRtDWdAtynDPbbT7qqKPSPqGH4/z5882oUaPCMWfl/8ccc0zaRCruSyyn8ss1C/saNWqkjPNPP/1kPv/8c4OY7IeXA24NI/iAnJy70dF2ERABPxLYpdBEU2Eq/NgzqpMIiIAIiEBEAggDTz75pGndunXE/X7fiPVP3759zdSpU32xxCfbvKZMmWLDbb/11lu+nuhlm5POn30CZ511ljnnnHPMcccdp7Ea1h3clwkM0Lx587A9/vovgiuizfTp03X/9VfXqDYiIAIuBGRh4wJGm0VABERABERABERABERABGITePrppw3LvvzgZyp2bU3O1NNLW5RHBEQgvwlIsMnv/lXrREAEREAEREAEREAERCCtBFq2bJnW8lW4CIiACASVgMJ6B7Xn1W4REAEREAEREAEREAEREAEREAEREAHfEpBg49uuUcVEQAREQAREQAREQAREQAREQAREQASCSkCCTVB7Xu0WAREQAREQAREQAREQAREQAREQARHwLQH5sPFt16hiIiACIiACkQjg2JKw3Rs3bowaqWWvvfYysfwqbNmyxYbajRUwkTC1++67r6lQoUKkKhVtIwIUYb2jpRUrVljnnNHyBGnfjh07LDOitngJB1ymTBlzwAEHeMpLqOFFixZ5xlmlShUbLt3LAUSa+eGHH7xktXkaNWrkOYwy43vr1q2eyobZ/vvvb8qXLx8zv3Pt7Ny5M2ZeMpQtW9a0a9fOE+v169ebxYsXeyqXTNWqVTNNmjTxlH/p0qVm3bp1nvKSqXHjxqZ69eqe8n/xxRdm27ZtnvIynrZv3+4przKJgAiIgAiIQCoISLBJBUWVIQIiIAIikDECTZs2NRMmTDBM3KMlBJYWLVpEnWwirgwbNswgGkRLRD4ZNGhQTMFm4sSJVgCKVtYff/xhaIMXcSJaOfmyr2LFijYc8HPPPeepSXvvvbdnEeHbb781lBtLkHNO3LFjR899M2PGDDNp0iTn0Jif5513nmfBZvTo0eb777+PWSYZSpUqZW699VZPgs3mzZvN8OHDDWPQS6patapp27atp7GKgBUPa8JAI6x4uQ4Q8z766CMvVbZ5+vbt61mwGTVqlGfhrXTp0naseq6IMoqACIiACIhAkgR2KXyIKUiyDB0uAiIgAiIgAhkjsHbtWk8TToQAJvfREj+BTIxj/RQyqaxdu3bMULAIQJs2bYp2SrsPsalGjRox8wUhA+yZ7DMZ9pKw+vBqPYEwgWVGrP51zlupUiWz5557Ov+N+kk/Y+XltWwsSsqVKxe1TGfnjz/+6Nnqw+vYpGzqunr1ahOPhU26WMMZ3l5SvKypM+PES4qH9Z9//mn22WefmPcBL+dVHhEQAREQARHwQkCCjRdKyiMCIiACIiACIiACIiACIiACIiACIiACGSQgp8MZhK1TiYAIiIAIiIAIiIAIiIAIiIAIiIAIiIAXAhJsvFBSHhEQAREQAREQAREQAREQAREQAREQARHIIAEJNhmErVOJgAiIgAiIgAiIgAiIgAiIgAiIgAiIgBcCEmy8UFIeERABERABERABERABERABERABERABEcggAQk2GYStU4mACIiACIiACIiACIiACIiACIiACIiAFwISbLxQUh4REAEREAEREAEREAEREAEREAEREAERyCABCTYZhK1TiYAIiIAIiIAIiIAIiIAIiIAIiIAIiIAXAhJsvFBSHhEQAREQAREQAREQAREQAREQAREQARHIIAEJNhmErVOJgAiIgAiIgAiIgAiIgAiIgAiIgAiIgBcCEmy8UFIeERABERABERABERABERABERABERABEcggAQk2GYStU4mACIiACIiACIiACIiACIiACIiACIiAFwISbLxQUh4REAEREAEREAEREAEREAEREAEREAERyCABCTYZhK1TiYAIiIAIiIAIiIAIiIAIiIAIiIAIiIAXAhJsvFBSHhEQAREQAREQAREQAREQAREQAREQARHIIAEJNhmErVOJgAiIgAiIgAiIgAiIgAiIgAiIgAiIgBcCEmy8UFIeERABERABERABERABERABERABERABEcggAQk2GYStU4mACIiACIiACIiACIiACIiACIiACIiAFwISbLxQUh4REAEREAEREAEREAEREAEREAEREAERyCABCTYZhK1TiYAIiIAIiIAIiIAIiIAIiIAIiIAIiIAXAhJsvFBSHhEQAREQAREQAREQAREQAREQAREQARHIIAEJNhmErVOJgAiIgAiIgAiIgAiIgAiIgAiIgAiIgBcCEmy8UFIeERABERABERABERABERABERABERABEcggAQk2GYStU4mACIiACIiACIiACIiACIiACIiACIiAFwISbLxQUh4REAEREAEREAEREAEREAEREAEREAERyCABCTYZhK1TiYAIiIAIiIAIiIAIiIAIiIAIiIAIiIAXAhJsvFBSHhEQAREQAREQAREQAREQAREQAREQARHIIAEJNhmErVOJgAiIgAiIgAiIgAiIgAiIgAiIgAiIgBcCEmy8UFIeERABERABERABERABERABERABERABEcggAQk2GYStU4mACIiACIiACIiACIiACIiACIiACIiAFwISbLxQUh4REAEREAEREAEREAEREAEREAEREAERyCABCTYZhK1TiYAIiIAIiIAIiIAIiIAIiIAIiIAIiIAXAhJsvFBSHhEQAREQAREQAREQAREQAREQAREQARHIIAEJNhmErVOJgAiIgAiIgAiIgAiIgAiIgAiIgAiIgBcCEmy8UFIeERABERABERABERABERABERABERABEcggAQk2GYStU4mACIiACIiACIiACIiACIiACIiACIiAFwISbLxQUh4REAEREAEREAEREAEREAEREAEREAERyCABCTYZhK1TiYAIiIAIiIAIiIAIiIAIiIAIiIAIiIAXArt5yaQ8IiACIiACIpBNAn/++af54YcfzG+//WZ27NhhypUrZypVqmSqVq1qdt3V3+8eqPumTZvMH3/8Yfhep04d39c5m32dinMvXrzYlCpVyjRq1CgVxaWljHSNC8bad999Z8qWLWuqVatm9thjj7TUX4WKgAiIgAiIgAikn8AuBYUp/afRGURABERABEQgfgKIM998841Zs2aN+f77782WLVvM9u3bTfny5Q0/X82aNTMHHHCAryelq1evNlOmTDHz5s2z9b/zzjvtZDp+GjrCCwFEvb///e9mn332MXfccYfZZZddvByW8TxexsXOnTvN8uXLzZ577mnFyViV3Lhxo3njjTessMl1svfee5vzzz8/IoN4y4517lTu93PdUtlOlSUCIiACIiACsQj4+7VkrNprvwiIgAiIQN4SYOL90UcfmWeeecZMnDjRNG/e3FxwwQXm8ssvNyeeeKLZvHmzuf32282IESOsEOJXELTjxx9/NI8++qh56623zG67ybg1nX313nvvmVdffdUsWbIknadJumwv4wKhEtFp/PjxVqCMddKxY8eaBx980PTq1ct8++235pZbbjGIH5FSvGVHKiORbb/88ouZPXt21PZkq26JtEfHiIAIiIAIiEA6CUiwSSddlS0CIiACIpAQASZsTLqHDBliOnbsaO666y5z8MEH26VQFFi9enVz1VVXWeFmwIAB5oMPPog6AUyoEik6CCugiy66yJQuXdocdthhWg6VIq6RimHcPPfcc3bZHN/9bETsZVwsW7bMzJkzxyByxErbtm0z999/v71OsMhBFOnatavreIun7Fjnjmf/mDFjzDXXXBO1b7JVt3jaobwiIAIiIAIikAkCEmwyQVnnEAEREAER8EwAy4OHH37YijT9+vUzZ5xxRsQlHRSIEIKPDqwQWC7l17RgwQKzfv16c8QRR/i1ijlfL5bPvfLKK1bgozH4PPJ7ijUuDjzwQCtaYlkWa2kXFkVffvml6dChgylTpox54oknrLWN23HxlJ0qjgho1Ovnn3+OWmQ26ha1QtopAiIgAiIgAlkiIMEmS+B1WhEQAREQgZIEmNDxBh7LmgsvvND07Nkz6kS1QoUKpmXLlmbmzJlm0aJFJQv0yZYPP/zQLoXq3Llz1Pb4pLo5WY2vv/7aYJmByIdIgWDjZwsbIMcaF7vvvrs58sgjDZ+x0meffWbb27ZtW9v+1q1bW983bsfFU7ZbGfFux1Jo7ty5Vrh0E5IoMxt1i7ctyi8CIiACIiACmSAgwSYTlHUOERABERABTwSI7oPfDRzGXnLJJZ7EDaIuMfljwh46QSdaDpN2LC9I7MOXDBF0WD7ilrZu3Wrz/Prrr25Zim2n/J9++skew7GREhPzunXrRo1a9Pvvv5t169ZZ58pElFLyTgB/RsOHD7djhshIWJjQ/25WV+FjgzORF8fW+H4J70f2MW6w/nJL7MORMNGfnMS2VatWGZwBR0pu4wK/M4xd6hkrkYfyES1ZdlejRg3D2A29FkLLiKdsL2ObsqNdM5RBfajjtGnTrO8pHIWzLXycJ1I3+svNYsfp51A/Pk4/r1271tW/TygvfRcBERABERCBbBKQ58Ns0te5RUAEREAEiggw0SWCEks78MVBhBsvick6CZ8lTmIyhsUNk2UmsPiOQQxauXKl2bBhg/WFg+NiJvZO4vxffPGFnVAyAaxSpYpp2LChLaNBgwZWcHHy8smEmDI5FxNDjicfk2asG5zEBBHrh+7du0f0J8Jx1JUJOpF9EJPw0UNIauquFJvA5MmTbQhruCPeIdrQ9zAND2sdOjZq1qxpunTpYpYuXWrFPAQzxDdCYvfo0cNaemC1g5hGtCYcRterV89gxRKaWO7G8ibEA8btMcccY8cxgg1jjuNZqoTfGie5jQtEDMqingiMWNggSkZKCBHTp0+3wgdiCGHuWRZFPQ855JASFjZey/Y6tr1cM7CZNWuWvV7wS8U1h4jz8ccf2zHeqlUr27R46wYbGCL87Lrrrvb6bNeuXZFTb/qe65NxEKmfaWO5cuXMoYceaipWrBgJr7aJgAiIgAiIQNYJyMIm612gCoiACIiACEAAoYaIT0yiTjrpJE/WNUy6mGzzWbly5SKQhDZGyGHyjp8bLBlwTIwQwoT80ksvtZNh5wBEkgkTJljBiDDi+NBgkk19CIs8adKkYhYLTFRnzJhhl269/fbbts6dOnWy57jhhhus8OKUPX/+fHuuSP5rOAdRjR566CFrfVC/fn3Tvn17K/Dgj4V2KUUngLBBHzhLochdq1Yte1CoiOeU4owN/s8xOOelfymHCT+iCo6sieiFgMfYQXg56KCDbHj2K6+8soTlDsv4GFeVKlWyY4voZu+//74VUuhPysdyLNTSxm1cfP755/Y8++67r3nggQfMyy+/7DoOED4QJrDsQeRp0aKF9ZVEWyI5KvZSttex7fWagR3iCn9Ee2vcuLEpVaqU/X+oY2gvdUPQ5Loj4tq7775r9tprLyu4ILBeccUV1kGz08+vv/560T0gUj8jbl188cW2PF1nDjV9ioAIiIAI+I5A4Y+UkgiIgAiIgAhkncA999xTUCiwFBRaLxQUTkQ91afQIqKgUOApKHzDXjBlyhR7TOEEsaBwglZQaH1QUCjS2DLPOeecgsI38XZ/oW+cgsLJd0GhNUTROQonfwWFE/WCRx55xB7n7KAc6lQ40Sy2vdCqoaBwcl9QGGK8oFB0sdkLJ5MFhZY8BbVr1y4oXCLiFFFw3333FRRaFRQsXLiwaBtfqN+4ceMKCsWFgkKLomJtLhSNCv72t78VO2exg/UfSwDmhWJXwciRI4uxKhT8bL8VWnQU214o4hUUTtLtNmds0MeFVjTFiBZa6hQUinYFTz75ZEGh5UfRvkIRpqBQbCgoFFuKttHXjCnGbKH4Y8di7969CwotuYryFFoA2e2F4lxRfSKNC8oqjH5WwBguFEQKmjRpUnDeeecVHVNUYNiXQrHTlk+ZjKtIyWvZXsd2vNcMPAotWQoKBa8SdYynboXLqQpuvvnmYtcL4wBWzjUDP/ok9B4QqZ/322+/gkLxtkR9IvHTNhEQAREQARHIBgFZ2PhOQlOFREAERCCYBFg2RGLpCJYxXhJWM1ipYFGBdQQJ6wJCgJOwnmB5yGWXXVa0NIaQwkOHDrVLW8jDm3+sH1g2wRv30HOz1AKrCSxunO0s8SB/4STTRqdyllUVTg5tPTgXS2qchIUG/muwLAhN+EsZOHCgtfrhGI7HAqNQ2DFjx461IZlD8+t7SQJYleC7hWVDjp8UGDrL6cItbBgbhIknOWOjcJJv9in0meQkLExYGoX1Sq9evewSN2cfxzv95GzDuoOxx/jAIodP/C85dSAfS7RIn376qf3kn0jjgrGFlQxOd/HJxDIsZywXHRjhC8ugCh8izf777x9h7/82eSnb69iO95qhBlzfWL3RV+EpnrrRzn/+85/FlhdiscPSKqya6D/6iSVhpGj9jFUUSySVREAEREAERMCvBOTDxq89o3qJgAiIQMAIMMliMta0aVNPLWd5xIsvvmgnbmeffbYhYhSJifLJJ59sJ86FVjdWRGFZipMcnxnO/0ePHm0n/Y8//niR/wv2MWHHLwgOUvfcc08nu41ixcRw0KBBVsxxduC75qWXXipWhpufEo7hvF999ZW5+uqrre8TfHgwgZw3b56ddP79738vEomcc+jzLwKwLbSAsQIHflwcQY0ciGmkcMGGJTThYwMfNqHH4oeGfii0nirh24TxgE+c0DGK/xMn9DwiDL6PWD4VmhBeGNv8kdzGBWUhIFEfxhJi4XHHHVesfqHlOt8RbBh/bdq0cc3rpWyWdnkZ2/FeM9QTNix3RDAL5c2+eOrGMrFIUbPoM8RbBJtI94DwfqZPWE7G9a0kAiIgAiIgAn4lIMHGrz2jeomACIhAwAgwmWMix+TNS8KaAd8ghcsa7OTamQQ6lg3OpPjoo4+2PjPcyhw1apQVWY466qhiE0km+/izuemmm4odSn7e6J922mnF8pMJa57QhPiC9UAk/zWIDFjw7FNo3YFfDqxysBRi8o9/DaXoBBDjsG7CMgqLj9DkjKFwwSZ8bOAcOLzPpk6daouiz5wxxQZEIMYbYkyovyQEHP4Q3DgWX0ahFlYc61jWOBYwbuMCQYmEldCbb75pGJP4NYqVEGwYO/hockteyvY6tuO9ZhCq8OvTvHnziI60vdaNvsJ5d2i/0F789XCtFi6LMuXLly8Sb517QKR+xgcO13H4de/GT9tFQAREQAREIBsEij9ZZqMGOqcIiIAIiIAIFBLAySpOScMn35HgMEH797//bSdmLE+KFEXHmRQffvjhkYqw25hIYuXCZJeoTKGJKDZY2RBhigkiwgtCypw5c+wSl3BLndBjne9YFTAp7Ny5c7Ey2M9yHix3sKTBOkLJOwGWLGHlwRiIJG6x7dlnny1hYeOcwRkbkZbnIARh2RIeCYp+J5oXzm1J1IGlTo54sGLFChsRCsuc0IQlGEIPdaJM8kcbFxxLfsKIDxkyxBbFudzEGMYoYxgxyKlL6PnDv0cr28vYTuSa4XqdO3eudQDu1BFrGP5g7aRYdYNh+NJCjmVpJEvTCv39FGPg1s/0CeMHgQfBl/+zpC5UiHPqpE8REAEREAERyCYB+bDJJn2dWwREQAREoIgA4XWxssFagEmoWyKENpFzWJ5S6EzY9OzZs9gkzTmON/pYsDhiibM99BN/JEz08BviTCTZz6QU8QhLDZZMYD3BUhG2Y2lR6Fi4WP7QMola5dSfyT9iEhNDouXwf8ogYYWBdQiCTqQUWk6k/UHdxuSaCEBYRrD8KFJCgKM/WfLi8A7N5zY2WE6DlQw+i8LDgTPmWHZ3/PHH26KIIhVaNmXyf0fgc86H5QfWYCzbI+w7Kdq4YD9L/Rg3tJH2EgUr9FzkcRICJ+JOuMDk7A//dCub8r2MbRjFe80QAQprl1CBDN9D1Ds0RasbUamwNgq9TjkW0eeFF16w+84999xi+936mVDrWLVhJYfVDuG/Eb2UREAEREAERMBvBCTY+K1HVB8REAERCCiBY4891mANg2ULIY8jJRyEvvbaa3aCdn5huG2WKyHKREpYMSCIsAzDLSGWFEYEKlYGIg4OX5nQcSwTdyZ0zuSSCTn1YKIYmhBpqDcOg5nUkhBd8J9DHVkWg9NVJ+FTAxHH8bfibI9UjrMv6J/OsiNCoTu+aCIxcSwlWBKF4BGeGBuIOghpoYk+Jrx8qLDg7Mf6A/EOB9IIQVhIhYoHlEk/Ow6GOQ5h48EHH7RjDGfXTv5o44L+p6wePXpYwRAn1OFLu5w68YnQwJj1IthEK5u6eRnbnCvea4b2khyH4lirsSSJPnCSl7oh+oT2J9cZwirXHXyxlglNbv2M2MuxiL0IVdxT3MS/0PL0XQREQAREQAQyTSDyU26ma6HziYAIiIAIBJ4AjkRvu+02K5IwycUqgYkdkzSsCFiuURi+2U6u+vfvbwYPHuy6hIHJmBM9KNxHSTjovn372vKZGBO5ifO88847pmXLlgbfGmwbP368nUAzqWXJC5ZATAaZSOMsmUk+Sz6YhCLQsJ/EBB+fGqtWrbJCFL40nEk7ghNLPJhwco5o5YTXOWj/Z5KO4IWlyfXXX28n7ZEsIhDAiEZEXvodayz6yYmiBLdoYwORjv4Jd1DLcSxJQsBD1KHPHOfA7ENIQgTAGTEWOuRh+RROfAtDhpvCsO1FUcnIH21cIFxwLpb+YAnCch+iVTnjhuNDE9cJbfWyJCpW2V7HdrzXTLNmzezyP0RO2gQjLOoc3zW0J1bd/vGPf9ilg4Uh0u31xDUH86eeesoutQqP8Batn7GUQojl+mPZlCPchnLVdxEQAREQARHwA4FStxYmP1REdRABERABERABrBcIx8uE24msg/8LLFwcgYRQ2LEchbJ8ApHloosuspNst8kuxPFFg1iCOIQfCyb3p5xyip1Qcl6EJAQDx9lpw4YN7ZIoJp34niE6DWIPE9HTTz/dCj1OT2JBgHUB+XB4S4hmpy680UcAYPLPhBFrDLdynPKC+slE/9FHHzWffPKJnfgjUCDkMel3eMIGy5fhw4fbUM4IHggFiGUIfs7SOGds9OvXz+4PPR4RiP1XXnllCWfEWO3gDBgrGv66detWdG7GyV133WXFJPqSfFh9INYwXkOjlFHPaOOC41kuh+UVdWFplGOZwrHh6ZFHHrGWW9GszZxjYpXtdWzHe83QBvzwYM3CdUb/YUEUyt5L3bBeYmkix3Fdca2eeuqpdmkkZYamaP1MfYgGxjXIkjWWUkWKPBVanr6LgAiIgAiIQDYI7FL44/m/xfTZOLvOKQIiIAIiIAIRCCCQMNlFtEGwYaKGnxl8x3hNCCj16tWzk2svxyDaMMkLPYa39IgAbAtP1JFzMNFj6VXo5DM0L2WyhMqt7lgWUA6WONHKCS1T35Mj4DY2EIEQh5xoUuFnYSwi1oQ6yiUP4cUvu+wyKzTi/wZxgghWoRYk4WXFGheUgRUI4yI8UUdEHZYnEcr7yCOPtIKW2xgMPz5a2eT1OrbjvWawPMJ6CDZuKVbdsGZCbOGegNPuaMmtnzmGx1/qE+najlam9omACIiACIhAJglIsMkkbZ1LBERABERABEQg7wj07t3bLl1CIHCWw6WrkZwDSyOszBAdEDJZKkj4eq+CTbrqpnJFQAREQAREQARSS0A+bFLLU6WJgAiIgAiIgAgEhADWHvgxwpcKy4Swlkp3IlrVVVddZX2v4OC6Y8eO1lm3xJp0k1f5IiACIiACIpB5AhJsMs9cZxQBERABERABEcgDAji+Jbw3/lNY6jN9+vQSUb9S3UyWSOEUmWVFONa+/fbb7fKoVJ9H5YmACIiACIiACGSfgJZEZb8PVAMREAEREAEREIEcJIADXPws4VQavy/4PMLxdGho71Q3C+fURCPDQTZRqbp27aqlUKmGrPJEQAREQAREwCcEJNj4pCNUDREQAREQAREQAREQAREQAREQAREQARFwCGhJlENCnyIgAiIgAiIgAiIgAiIgAiIgAiIgAiLgEwISbHzSEaqGCIiACIiACIiACIiACIiACIiACIiACDgEJNg4JPQpAiIgAiIgAiIgAiIgAiIgAiIgAiIgAj4hIMHGJx2haoiACIiACIiACIiACIiACIiACIiACIiAQ0CCjUNCnyIgAiIgAiIgAiIgAiIgAiIgAiIgAiLgEwISbHzSEaqGCIiACIiACIiACIiACIiACIiACIiACDgEJNg4JPQpAiIgAiIgAiIgAiIgAiIgAiIgAiIgAj4h8H+5hIr1Nh2x7wAAAABJRU5ErkJggg==" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Following Ref.[1], we will examine Grover's search algorithm for $n=3$ qubits, which corresponds to a search database of size $N = 2^{3} = 8$. Below we show the circuit used to find the item ```111```. To find other items, we can simply swap out the phase oracle, using the table given in Ref.[1].\n", + "\n", + "
    " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Code " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Libraries and Parameters " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Version: 1.0.0.post1\r\n" + ] + } + ], + "source": [ + "# Check SDK version\n", + "!pip show amazon-braket-sdk | grep Version" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# Import Braket libraries\n", + "from braket.circuits import circuit, Circuit, Gate, Moments\n", + "from braket.circuits.instruction import Instruction\n", + "from braket.aws import AwsQuantumTask, AwsDevice\n", + "from braket.devices import LocalSimulator\n", + "import matplotlib.pyplot as plt\n", + "# magic word for producing visualizations in notebook\n", + "%matplotlib inline\n", + "import numpy as np" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Helper Functions " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We develop a set of useful helper functions that we will explain in detail below. Specifically, we provide simple building blocks for the four core modules of Grover's search algorithm: 1) initialization, 2) oracle, 3) amplification, and 4) measurement. This approach allows us to solve the problem in a clean and modular way. " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Helper function to build C-C-Z gate\n", + "@circuit.subroutine(register=True)\n", + "def ccz(targets=[0, 1, 2]):\n", + " \"\"\"\n", + " implementation of three-qubit gate CCZ\n", + " \"\"\"\n", + " # define three-qubit CCZ gate\n", + " ccz_gate = np.array([[1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],\n", + " [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],\n", + " [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0],\n", + " [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0],\n", + " [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0],\n", + " [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0],\n", + " [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0],\n", + " [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0]],\n", + " dtype=complex)\n", + " \n", + " # instantiate circuit object\n", + " circ = Circuit()\n", + " \n", + " # add CCZ gate\n", + " circ.unitary(matrix=ccz_gate, targets=targets)\n", + " \n", + " return circ\n", + "\n", + "\n", + "# All possible items and their corresponding oracles\n", + "# define oracle dictionary using this CCZ gate\n", + "oracle_sim = {\"000\": Circuit().x([0,1,2]).ccz(targets=[0, 1, 2]).x([0,1,2]),\n", + " \"001\": Circuit().x([0,1]).ccz(targets=[0, 1, 2]).x([0,1]),\n", + " \"010\": Circuit().x([0,2]).ccz(targets=[0, 1, 2]).x([0,2]),\n", + " \"011\": Circuit().x([0]).ccz(targets=[0, 1, 2]).x([0]),\n", + " \"100\": Circuit().x([1,2]).ccz(targets=[0, 1, 2]).x([1,2]),\n", + " \"101\": Circuit().x([1]).ccz(targets=[0, 1, 2]).x([1]),\n", + " \"110\": Circuit().x([2]).ccz(targets=[0, 1, 2]).x([2]),\n", + " \"111\": Circuit().ccz(targets=[0, 1, 2])\n", + " }\n", + "\n", + "\n", + "# helper function for initialization\n", + "def initialize(n_qubits=3):\n", + " \"\"\"\n", + " function to apply hadamard to all qubits\n", + " \"\"\"\n", + " # Initialize with superposition\n", + " circ = Circuit();\n", + " circ.h(np.arange(n_qubits))\n", + " #print(circ)\n", + " return circ\n", + "\n", + "\n", + "# helper function for phase oracle\n", + "def oracle(item):\n", + " \"\"\"\n", + " function to apply oracle for given target item\n", + " \"\"\"\n", + " # instantiate circuit object\n", + " circ = Circuit()\n", + " \n", + " # add oracle\n", + " circ.add_circuit(oracle_sim[item])\n", + " \n", + " return circ\n", + "\n", + "\n", + "# helper function for amplification\n", + "def amplify(n_qubits=3):\n", + " \"\"\"\n", + " function for amplitude amplification\n", + " \"\"\"\n", + " # instantiate circuit object\n", + " circ = Circuit()\n", + " \n", + " # Amplification\n", + " circ.h(np.arange(n_qubits))\n", + " circ.add_circuit(oracle_sim['000'])\n", + " circ.h(np.arange(n_qubits))\n", + " \n", + " return circ\n", + "\n", + "\n", + "# helper function for grover algorithm\n", + "def grover(item, n_qubits=3, n_reps=1):\n", + " \"\"\"\n", + " function to put together individual modules of Grover algorithm\n", + " \"\"\"\n", + " # initialize\n", + " grover_circ = initialize()\n", + " # oracle and amplify\n", + " for ii in range(n_reps):\n", + " # get oracle\n", + " or_circ = oracle(item)\n", + " grover_circ.add(or_circ)\n", + " # amplify\n", + " amplification = amplify()\n", + " grover_circ.add(amplification)\n", + " \n", + " return grover_circ\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# Function to run quantum task, check the status thereof, and collect results\n", + "def get_result(circ):\n", + " \n", + " # get number of qubits\n", + " num_qubits = circ.qubit_count\n", + "\n", + " # specify desired results_types\n", + " circ.probability()\n", + "\n", + " # submit task: define task (asynchronous)\n", + " task = device.run(circ, shots=1000)\n", + "\n", + " # Get ID of submitted task\n", + " task_id = task.id\n", + "# print('Task ID :', task_id)\n", + "\n", + " # Wait for job to complete\n", + " status_list = []\n", + " status = task.state()\n", + " status_list += [status]\n", + " print('Status:', status)\n", + "\n", + " # Only notify the user when there's a status change\n", + " while status != 'COMPLETED':\n", + " status = task.state()\n", + " if status != status_list[-1]:\n", + " print('Status:', status)\n", + " status_list += [status]\n", + "\n", + " # get result\n", + " result = task.result()\n", + "\n", + " # get metadata\n", + " metadata = result.task_metadata\n", + "\n", + " # get output probabilities\n", + " probs_values = result.values[0]\n", + "\n", + " # get measurement results\n", + " measurement_counts = result.measurement_counts\n", + "\n", + " # print measurement results\n", + " print('measurement_counts:', measurement_counts)\n", + "\n", + " # bitstrings\n", + " format_bitstring = '{0:0' + str(num_qubits) + 'b}'\n", + " bitstring_keys = [format_bitstring.format(ii) for ii in range(2**num_qubits)]\n", + "\n", + " # plot probabalities\n", + " plt.bar(bitstring_keys, probs_values);\n", + " plt.xlabel('bitstrings');\n", + " plt.ylabel('probability');\n", + " plt.xticks(rotation=90);\n", + " \n", + " return measurement_counts" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Device: Classical Simulator \n", + "We demonstrate Grover's algorithm on a classical simulator first. \n", + "You can choose between a local simulator or an on-demand simulator. \n", + "In the next section, we will run the same problem on a quantum IonQ device." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# Set up the cloud-based simulator \n", + "# device = AwsDevice(\"arn:aws:braket:::device/quantum-simulator/amazon/sv1\")\n", + "\n", + "# set up the local simulator\n", + "device = LocalSimulator()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Quantum Gates supported by StateVectorSimulator:\n", + "['ccnot', 'cnot', 'cphaseshift', 'cphaseshift00', 'cphaseshift01', 'cphaseshift10', 'cswap', 'cv', 'cy', 'cz', 'ecr', 'h', 'i', 'iswap', 'pswap', 'phaseshift', 'rx', 'ry', 'rz', 's', 'si', 'swap', 't', 'ti', 'unitary', 'v', 'vi', 'x', 'xx', 'xy', 'y', 'yy', 'z', 'zz']\n" + ] + } + ], + "source": [ + "# get device name\n", + "device_name = device.name\n", + "# show the properties of the device \n", + "device_properties = device.properties\n", + "# show supportedQuantumOperations (supported gates for a device)\n", + "device_operations = device_properties.dict()['action']['braket.ir.jaqcd.program']['supportedOperations']\n", + "# Note: This field also exists for other devices like the QPUs\n", + "print('Quantum Gates supported by {}:\\n {}'.format(device_name, device_operations))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Since the ```CCZ``` gate is not part of the default gate set, we have used the ```unitary``` method to build a custom, doubly-controlled Z gate ```CCZ``` for the phase oracle operator. \n", + "We will leverage the Amazon Braket `circuit.subroutine` functionality, which allows us to use such a custom-built gate as if it were any other built-in gate. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we are ready to run our circuit for a few test cases. \n", + "To recap, the steps are as follows:\n", + "\n", + "1. Create a uniform superposition\n", + "2. Apply the phase oracle corresponding to our target item\n", + "3. Define the diffusion operator to magnify the amplitude difference created by the oracle\n", + "4. Collect the measurement counts for our target item" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : |0|1|2|3|4|5|6|\n", + " \n", + "q0 : -H-U-H-X-U-X-H-\n", + " | | \n", + "q1 : -H-U-H-X-U-X-H-\n", + " | | \n", + "q2 : -H-U-H-X-U-X-H-\n", + "\n", + "T : |0|1|2|3|4|5|6|\n", + "Status: COMPLETED\n", + "measurement_counts: Counter({'111': 776, '000': 39, '010': 35, '011': 33, '001': 33, '100': 31, '101': 28, '110': 25})\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEQCAYAAAC9VHPBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAYMUlEQVR4nO3df5hddWHn8feHUKqCxR+MaEliUo1oKoo6BXxqLa5QQ3mauIISWCtYNN3HRmWxraG1WZuyLdZq1W4sRmplQQ0p7tpRRmOtqG01mOG3SRqYRiATtzIiKK5VCHz2j3MGbm7unbkZcu65yfm8nmee3HO+37n3k/ljPnN+yzYREdFch9QdICIi6pUiiIhouBRBRETDpQgiIhouRRAR0XApgoiIhju0yjeXtAT4IDAHuMz2JW3j84HLgSeVc1bZHp3uPY866igvWLCgmsAREQep66+//nu2hzqNVVYEkuYAa4FTgQlgs6QR21tbpr0L2GD7ryUtBkaBBdO974IFCxgbG6sodUTEwUnSnd3Gqtw1dAIwbnuH7QeA9cCytjkGfq58fSTwnQrzREREB1XuGjoG2NmyPAGc2Dbn3cAXJb0VOBw4pcI8ERHRQd0Hi88GPm57LvDrwBWS9sokaYWkMUljk5OTfQ8ZEXEwq7IIdgHzWpbnlutanQ9sALD9DeBxwFHtb2R7ne1h28NDQx2PdURExCxVWQSbgUWSFko6DFgOjLTNuQt4JYCk51EUQf7kj4joo8qKwPZuYCWwEdhGcXbQFklrJC0tp70DeLOkm4FPAec5t0ONiOirSq8jKK8JGG1bt7rl9Vbgl6vMEBER06v7YHFERNQsRRAR0XCV7hqKiDiYLFh1Ta2ff8clp1fyvtkiiIhouBRBRETDpQgiIhouRRAR0XApgoiIhksRREQ0XIogIqLhUgQREQ2XIoiIaLgUQUREw6UIIiIaLkUQEdFwKYKIiIZLEURENFyKICKi4SotAklLJG2XNC5pVYfxv5R0U/l1m6T7qswTERF7q+zBNJLmAGuBU4EJYLOkkfI5xQDY/m8t898KvKiqPBER0VmVWwQnAOO2d9h+AFgPLJtm/tnApyrMExERHVRZBMcAO1uWJ8p1e5H0TGAh8OUK80RERAeDcrB4OXC17Yc6DUpaIWlM0tjk5GSfo0VEHNyqLIJdwLyW5bnluk6WM81uIdvrbA/bHh4aGtqPESMiosoi2AwskrRQ0mEUv+xH2idJei7wZOAbFWaJiIguKisC27uBlcBGYBuwwfYWSWskLW2ZuhxYb9tVZYmIiO4qO30UwPYoMNq2bnXb8rurzBAREdMblIPFERFRkxRBRETDpQgiIhouRRAR0XApgoiIhksRREQ0XIogIqLhUgQREQ2XIoiIaLgUQUREw6UIIiIaLkUQEdFwKYKIiIZLEURENFyKICKi4VIEERENlyKIiGi4FEFERMNVWgSSlkjaLmlc0qouc14naaukLZI+WWWeiIjYW2XPLJY0B1gLnApMAJsljdje2jJnEXAR8Mu275X0tKryREREZ1VuEZwAjNveYfsBYD2wrG3Om4G1tu8FsH13hXkiIqKDKovgGGBny/JEua7Vc4DnSPoXSZskLakwT0REdFDZrqF9+PxFwMnAXOBrko6zfV/rJEkrgBUA8+fP73fGiIiDWpVbBLuAeS3Lc8t1rSaAEdsP2v42cBtFMezB9jrbw7aHh4aGKgscEdFEVRbBZmCRpIWSDgOWAyNtcz5DsTWApKModhXtqDBTRES0qawIbO8GVgIbgW3ABttbJK2RtLScthG4R9JW4Frg92zfU1WmiIjYW6XHCGyPAqNt61a3vDZwYfkVERE1yJXFERENlyKIiGi4FEFERMOlCCIiGi5FEBHRcCmCiIiGSxFERDRciiAiouFSBBERDZciiIhouBRBRETDpQgiIhouRRAR0XApgoiIhksRREQ0XIogIqLhUgQREQ1XaRFIWiJpu6RxSas6jJ8naVLSTeXXm6rMExERe6vsUZWS5gBrgVOBCWCzpBHbW9umXmV7ZVU5IiJielVuEZwAjNveYfsBYD2wrMLPi4iIWaiyCI4BdrYsT5Tr2p0h6RZJV0uaV2GeiIjooO6DxZ8FFth+AfAPwOWdJklaIWlM0tjk5GRfA0ZEHOx6KgJJ/1vS6ZL2pTh2Aa1/4c8t1z3C9j22f1ouXga8pNMb2V5ne9j28NDQ0D5EiIiImfT6i/3DwDnA7ZIukXRsD9+zGVgkaaGkw4DlwEjrBEnPaFlcCmzrMU9EROwnPZ01ZPtLwJckHQmcXb7eCXwUuNL2gx2+Z7eklcBGYA7wMdtbJK0BxmyPAG+TtBTYDXwfOG9//KciIqJ3PZ8+KumpwOuB3wRuBD4BvAw4Fzi50/fYHgVG29atbnl9EXDRvoaOiIj9p6cikPR/gGOBK4DfsP1/y6GrJI1VFS4iIqrX6xbBR8u/7h8h6Wdt/9T2cAW5IiKiT3o9WHxxh3Xf2J9BIiKiHtNuEUh6OsVFYI+X9CJA5dDPAU+oOFtERPTBTLuGXkVxJs9c4P0t6+8H/qCiTBER0UfTFoHty4HLJZ1h+9N9yhQREX00066h19u+Elgg6cL2cdvv7/BtERFxAJlp19Dh5b9HVB0kIiLqMdOuoY+U//5xf+JERES/zbRr6EPTjdt+2/6NExER/TbTrqHr+5IiIiJq08tZQxERcRCbadfQB2xfIOmzgNvHbS+tLFlERPTFTLuGrij//Yuqg0RERD1m2jV0ffnvV8uHyzyXYstge/lA+oiIOMD1ehvq04FLgX+juN/QQkm/bfvzVYaLiIjq9Xob6vcBr7A9DiDpWcA1QIogIuIA1+ttqO+fKoHSDoobz0VExAFu2iKQ9BpJrwHGJI1KOk/SucBnKR5OPy1JSyRtlzQuadU0886QZEl5yE1ERJ/NtGvoN1pefxf41fL1JPD46b5R0hxgLXAqMAFsljRie2vbvCcCbweu24fcERGxn8x01tAbH8N7nwCM294BIGk9sAzY2jbvT4D3AL/3GD4rIiJmqdezhh4HnA/8IvC4qfW2f2uabzsG2NmyPAGc2Pa+Lwbm2b5GUoogIqIGvR4svgJ4OsUTy75K8cSyx3SwWNIhFE89e0cPc1dIGpM0Njk5+Vg+NiIi2vRaBM+2/UfA/yvvP3Q6bX/dd7ALmNeyPLdcN+WJwPOBr0i6AzgJGOl0wNj2OtvDtoeHhoZ6jBwREb3otQgeLP+9T9LzgSOBp83wPZuBRZIWllclLwdGpgZt/8D2UbYX2F4AbAKW2h7bp/9BREQ8Jr0WwTpJTwb+iOKX+VaKA7xd2d4NrAQ2AtuADba3SFojKTeri4gYED0dLLZ9Wfnyq8Av9PrmtkeB0bZ1q7vMPbnX942IiP2npy0CSU+V9FeSbpB0vaQPSHpq1eEiIqJ6ve4aWg/cDZwBnAl8D7iqqlAREdE/vd507hm2/6Rl+WJJZ1URKCIi+qvXLYIvSlou6ZDy63UUB4EjIuIAN9OjKu+neBCNgAuAK8uhQ4AfAb9babqIiKjcTPcaemK/gkRERD16PUZAee7/y8vFr9j+XDWRIiKin3o9ffQSiltFby2/3i7pz6oMFhER/dHrFsGvA8fbfhhA0uXAjcBFVQWLiIj+6PWsIYAntbw+cn8HiYiIevS6RfCnwI2SrqU4g+jlQNdHT0ZExIFjxiIonxvwMMVton+pXP1O2/9eZbCIiOiPGYvA9sOSft/2BlpuIx0REQeHXo8RfEnS70qaJ+kpU1+VJouIiL7o9RjBWRRXGL+lbX3Pt6SOiIjB1GsRLKYogZdRFMI/AZdWFSoiIvqn1yK4HPgh8KFy+Zxy3euqCBUREf3TaxE83/biluVrJW2tIlBERPRXrweLb5B00tSCpBOBGR8yL2mJpO2SxiXtdd2BpP8q6VZJN0n6Z0mLO71PRERUp9ctgpcAX5d0V7k8H9gu6VbAtl/Q/g2S5gBrgVOBCWCzpBHbrVsSn7R9aTl/KfB+YMns/isRETEbvRbBbH45nwCM294BIGk9sIzipnUA2P5hy/zDKQ5ER0REH/VUBLbvnMV7HwPsbFmeAE5snyTpd4ALgcOA/zSLz4mIiMdgX246Vwnba20/C3gn8K5OcyStkDQmaWxycrK/ASMiDnJVFsEuYF7L8txyXTfrgVd3GrC9zvaw7eGhoaH9GDEiIqosgs3AIkkLJR0GLKftXkWSFrUsng7cXmGeiIjooOdHVe4r27slrQQ2AnOAj9neImkNMGZ7BFgp6RTgQeBe4Nyq8kRERGeVFQGA7VFgtG3d6pbXb6/y8yMiYma1HyyOiIh6pQgiIhouRRAR0XApgoiIhksRREQ0XIogIqLhUgQREQ2XIoiIaLgUQUREw6UIIiIaLkUQEdFwKYKIiIZLEURENFyKICKi4VIEERENlyKIiGi4FEFERMNVWgSSlkjaLmlc0qoO4xdK2irpFkn/KOmZVeaJiIi9VVYEkuYAa4HTgMXA2ZIWt027ERi2/QLgauDPq8oTERGdVblFcAIwbnuH7QeA9cCy1gm2r7X943JxEzC3wjwREdFBlUVwDLCzZXmiXNfN+cDnK8wTEREdHFp3AABJrweGgV/tMr4CWAEwf/78PiaLiDj4VblFsAuY17I8t1y3B0mnAH8ILLX9005vZHud7WHbw0NDQ5WEjYhoqiqLYDOwSNJCSYcBy4GR1gmSXgR8hKIE7q4wS0REdFFZEdjeDawENgLbgA22t0haI2lpOe29wBHA30m6SdJIl7eLiIiKVHqMwPYoMNq2bnXL61Oq/PyIiJhZriyOiGi4FEFERMOlCCIiGi5FEBHRcCmCiIiGSxFERDRciiAiouFSBBERDZciiIhouBRBRETDpQgiIhouRRAR0XApgoiIhksRREQ0XIogIqLhUgQREQ2XIoiIaLgUQUREw1VaBJKWSNouaVzSqg7jL5d0g6Tdks6sMktERHRWWRFImgOsBU4DFgNnS1rcNu0u4Dzgk1XliIiI6VX58PoTgHHbOwAkrQeWAVunJti+oxx7uMIcERExjSp3DR0D7GxZnijXRUTEADkgDhZLWiFpTNLY5ORk3XEiIg4qVRbBLmBey/Lcct0+s73O9rDt4aGhof0SLiIiClUWwWZgkaSFkg4DlgMjFX5eRETMQmVFYHs3sBLYCGwDNtjeImmNpKUAkn5J0gTwWuAjkrZUlSciIjqr8qwhbI8Co23rVre83kyxyygiImpyQBwsjoiI6qQIIiIaLkUQEdFwKYKIiIZLEURENFyKICKi4VIEERENlyKIiGi4FEFERMOlCCIiGi5FEBHRcJXea2jQLFh1Ta2ff8clp9f6+RERnTSqCGJ2UqARB7cUwYDIL9vZGeSf2yBni2iVIohooJRUtEoRRMRASUn1X84aiohouBRBRETDVVoEkpZI2i5pXNKqDuM/K+mqcvw6SQuqzBMREXurrAgkzQHWAqcBi4GzJS1um3Y+cK/tZwN/CbynqjwREdFZlVsEJwDjtnfYfgBYDyxrm7MMuLx8fTXwSkmqMFNERLSpsgiOAXa2LE+U6zrOsb0b+AHw1AozRUREG9mu5o2lM4Eltt9ULv8mcKLtlS1zvlXOmSiX/62c872291oBrCgXjwW2VxJ6ZkcB35txVj2SbXaSbXaSbXbqzPZM20OdBqq8jmAXMK9leW65rtOcCUmHAkcC97S/ke11wLqKcvZM0pjt4bpzdJJss5Nss5NsszOo2arcNbQZWCRpoaTDgOXASNucEeDc8vWZwJdd1SZKRER0VNkWge3dklYCG4E5wMdsb5G0BhizPQL8DXCFpHHg+xRlERERfVTpLSZsjwKjbetWt7z+CfDaKjPsZ7XvnppGss1Oss1Oss3OQGar7GBxREQcGHKLiYiIhksRREQ0XIqgB5KeIukpdeeIiKhCiqALSfMlrZc0CVwHfFPS3eW6BfWmG3ySjpb04vLr6LrzzETSEXVniKhLDhZ3IekbwAeAq20/VK6bQ3GW0wW2T6ozXzeSbrV9XI2ffzxwKcXFgVMXEM4F7gPeYvuGurJNR9JdtucPQI6jefRWLLtsf7fOPDORdITtH9WcQRT3Nnvk5wZ8c5CvSZL0XNv/WneOKSmCLiTdbnvRvo71g6TXdBsCLu12GXk/SLoJ+G3b17WtPwn4iO0X1pMMJF3YbQj4Q9u17f5Lgc76838N+DBwO3v+3J5N8XP7Yl3ZplP3z61dHlXZ3fWSPkxxd9Spm+fNo7gS+sbaUhWuAj4BdGrxx/U5S7vD20sAwPYmSYfXEajFnwLvBXZ3GKt7N+nH6V6gfwsMaoHWvUvtg8Aptu9oXSlpIcU1TM+rI1SZ4UPdhoAn9TPLTFIE3b2B4nkJf8yem5xTV0TX6RbgL2x/q31A0ik15Gn1eUnXAP+LPQv0DcAXaktVuAH4jO3r2wckvamGPK1SoLNzKMWdjdvtAn6mz1navRF4B/DTDmNn9znLtLJr6AAk6VeAO23f1WFs2PZYDbFaM5xG8ayJPQq0vNK8NpKOBe5pv7ttOXZ0nfvjy78en0XnAv126117a8j2deCtXQp0p+15Hb6tLyRdBLyO4nknrT+35cAG239WY7YvA++y/fUOY9+2vbCGWB2lCLoo74Z6PvBq9vyF9vfA39h+sK5scXAa8AL9vu3JDmO1FmiZ4Xl0/rltrS9Vcdo58BPbP64zRy9SBF1I+hTFgbrLeXTTcy7FMYKn2D6rxmxTJfWfgZ8vVw98SUlaZ3vFzDP7b5CzRVQtRdCFpNtsP2dfx/phwEuq25k3Am62PbefefYIMNjZjgQuovjL9miKEwHupij3S2zfNwDZXg08bZCyTUfS522fVneOTgYtWw4Wd/d9Sa8FPm37YQBJh1BcR3BvrcngJR2KaALYJOm2OgK1mATupPjlOsXl8tNqSfSoQc62Afgy8Arb/w4g6enAeeXYr9UX7ZFsJ7dlO7fubJJe3G0IOL6fWfYKMMDZ2mWLoIvy6uH3AK+g+OsbilO+rgVW2f52PclA0ibgfXQuqQttn1hjttuBV3Y5kF33gcVBzrbd9rH7OtYPA57tIeCr7FnuU06y/fg+R3rEIGdrly2CLmzfIendFNcM7HGwuM4SKC2nKKm1ktpLqu6H+3wAeDKw1y9b4M/7nKXdIGe7U9LvA5dPHXwtrzI+j0fPhqnLIGfbRnH9xe3tA5KSrUfZIuhC0jspfqmuZ88rFpcD621fUlc26HqmxN/b3lZfqoKk59L5LI5k60LSk4FVFNmmdlN9l+K6lUts17Y7csCznQncant7h7FX2/5MDbGmPn9gs7VLEXRR7mv/xfYzcMrnL2+p+RYTA1tS5V+O55TZWg9kJ9ssSXqj7b+tO0cnyTY7g5YtRdCFpH8FXmX7zrb1zwS+WPN+0UEuqWTbzwbtvjStkm12Bi1bjhF0dwHwj+UBxqn9efMpbmZV21WepYcprh+4s239M8qxOiXbLEi6pdsQxemktUm22RnkbO1SBF3Y/oKk57D37W03T92WukaDXFLJNjtHA69i71OTBex1i4I+S7bZGeRse0gRTKM8NXNT3TnaDXJJJdusfQ44wvZN7QOSvtL/OHtIttkZ5Gx7yDGCiIiGq/sWshERUbMUQUREw6UIonEkLZDU6aE+l0laXL7+gx7e5wJJT5hm/JH3ixhkOUYQjVPeR+pztp8/zZwf2Z72MYyS7gCGuzzoZs4AHICO6Em2CKKpDpX0CUnbJF0t6QmSviJpWNIlwOMl3VTOOVzSNZJulvQtSWdJehvFNQnXSroWivKQ9D5JNwMvnXq/lrH/Ub7HpvJePUh6Vrl8q6SLJf2oXP8MSV8rM3xLxVPpIiqRIoimOhb4sO3nAT8E3jI1YHsV8B+2j7f9X4AlwHdsv7DciviC7Q8B36G4bfQrym89HLiunPfPbZ93OLDJ9guBrwFvLtd/EPig7ePY89m75wAbbR9P8eD6vU5BjNhfUgTRVDtt/0v5+krgZdPMvRU4VdJ7JP2K7R90mfcQ8OkuYw9QnFcOcD2woHz9UuDvytefbJm/GXhjeQfc42zfP02+iMckRRBN1X5wrOvBMtu3AS+mKISLJa3uMvUn0xwXeNCPHpB7iBku5rT9NeDlFBe8fVzSG6abH/FYpAiiqeZLemn5+hygfVfOg5J+BkDSzwM/tn0l8F6KUgC4H3jiY8yxCTijfP3IsyTKmxt+1/ZHgctaPjNiv0sRRFNtB35H0jaKh9X8ddv4OuAWSZ8AjgO+Kekm4L8DF7fM+cLUweJZugC4sLxB2bOBqd1OJwM3S7oROIviWEJEJXL6aESNyusQ/sO2JS0Hzra9rO5c0Sy56VxEvV4C/E9Jong29m/VnCcaKFsEERENl2MEERENlyKIiGi4FEFERMOlCCIiGi5FEBHRcCmCiIiG+/+U4Suo6qcIUQAAAABJRU5ErkJggg==", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Select item to find. Let's start with '111' for now\n", + "item = \"111\"\n", + "\n", + "# get Grover circuit\n", + "circ = grover(item)\n", + "\n", + "# print circuit\n", + "print(circ)\n", + "\n", + "# Measurement\n", + "counts = get_result(circ)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "__DISCUSSION__: We observe a strong peak around the target solution given by the `111` bitstring, with all other bitstrings showing far smaller probabilities. \n", + "Let us try one more item: " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : |0|1|2|3|4|5|6|7|8|\n", + " \n", + "q0 : -H---U-H-X---U-X-H-\n", + " | | \n", + "q1 : -H-X-U-X-H-X-U-X-H-\n", + " | | \n", + "q2 : -H-X-U-X-H-X-U-X-H-\n", + "\n", + "T : |0|1|2|3|4|5|6|7|8|\n", + "Status: COMPLETED\n", + "measurement_counts: Counter({'100': 792, '111': 34, '011': 32, '010': 32, '001': 30, '110': 28, '000': 26, '101': 26})\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEPCAYAAABP1MOPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAX9UlEQVR4nO3dfZRddWHu8e9DkKpg8YURbV5MrkY09QVxDLjaWr1iDbKa2IKSUK9C0bRLo3Kxt4bW5tpI26jVim0oRtpK8SWk2GtTGY3XinpbDWbCq0kamEYgibcyIla8ViHw3D/2Hjw5OWfmZMg++yT7+aw1a87e+3fOedasZJ7Z+7fP3rJNREQ011F1B4iIiHqlCCIiGi5FEBHRcCmCiIiGSxFERDTc0XUHOFgnnHCC586dW3eMiIjDytatW79re6jTtsOuCObOncvo6GjdMSIiDiuS7uy2LYeGIiIaLkUQEdFwKYKIiIartAgkLZK0U9KYpJUdts+RdJ2kGyXdIulVVeaJiIgDVVYEkmYAa4EzgAXAMkkL2oa9C9hg+wXAUuCyqvJERERnVe4RLATGbO+yfT+wHljSNsbAz5aPjwe+XWGeiIjooMoimAnsblneU65r9W7gdZL2ACPAWzu9kKTlkkYljY6Pj1eRNSKiseqeLF4GfMz2LOBVwFWSDshke53tYdvDQ0MdPw8RERHTVGUR7AVmtyzPKte1ugDYAGD768CjgRMqzBQREW2q/GTxFmC+pHkUBbAUOLdtzF3Ay4GPSXo2RRHk2E8cEeauvLbW979jzZm1vn8cPirbI7C9D1gBbAJ2UJwdtE3SakmLy2HvAN4k6WbgU8B5zi3TIiL6qtJrDdkeoZgEbl23quXxduAXqswQERGTq3uyOCIiapYiiIhouBRBRETDpQgiIhouRRAR0XApgoiIhksRREQ0XIogIqLhUgQREQ2XIoiIaLgUQUREw6UIIiIaLkUQEdFwKYKIiIZLEURENFyKICKi4VIEERENlyKIiGi4SotA0iJJOyWNSVrZYfufSbqp/LpN0verzBMREQeq7J7FkmYAa4FXAHuALZI2lvcpBsD2f28Z/1bgBVXliYiIzqrcI1gIjNneZft+YD2wZJLxy4BPVZgnIiI6qLIIZgK7W5b3lOsOIOlpwDzgS122L5c0Kml0fHz8kAeNiGiyQZksXgpcY/vBThttr7M9bHt4aGioz9EiIo5sVRbBXmB2y/Kscl0nS8lhoYiIWlRZBFuA+ZLmSTqG4pf9xvZBkp4FPAH4eoVZIiKii8qKwPY+YAWwCdgBbLC9TdJqSYtbhi4F1tt2VVkiIqK7yk4fBbA9Aoy0rVvVtvzuKjNERMTkBmWyOCIiapIiiIhouBRBRETDpQgiIhouRRAR0XApgoiIhksRREQ0XIogIqLhUgQREQ2XIoiIaLgUQUREw6UIIiIaLkUQEdFwKYKIiIZLEURENFyKICKi4VIEERENV2kRSFokaaekMUkru4x5raTtkrZJ+mSVeSIi4kCV3apS0gxgLfAKYA+wRdJG29tbxswHLgZ+wfa9kp5cVZ6IiOisyj2ChcCY7V227wfWA0vaxrwJWGv7XgDbd1eYJyIiOqiyCGYCu1uW95TrWj0TeKakf5G0WdKiTi8kabmkUUmj4+PjFcWNiGimuieLjwbmAy8FlgEflfT49kG219ketj08NDTU54gREUe2KotgLzC7ZXlWua7VHmCj7Qdsfwu4jaIYIiKiT6osgi3AfEnzJB0DLAU2to35DMXeAJJOoDhUtKvCTBER0aayIrC9D1gBbAJ2ABtsb5O0WtLictgm4B5J24HrgP9h+56qMkVExIEqO30UwPYIMNK2blXLYwMXlV8REVGDuieLIyKiZimCiIiGSxFERDRciiAiouFSBBERDZciiIhouBRBRETDpQgiIhouRRAR0XApgoiIhksRREQ0XIogIqLhUgQREQ2XIoiIaLgUQUREw6UIIiIaLkUQEdFwlRaBpEWSdkoak7Syw/bzJI1Luqn8emOVeSIi4kA9FYGkv5d0pqSei0PSDGAtcAawAFgmaUGHoVfbPrn8uqLX14+IiEOj11/slwHnArdLWiPppB6esxAYs73L9v3AemDJNHNGRERFeioC21+0/RvAKcAdwBclfU3S+ZIe1eVpM4HdLct7ynXtzpJ0i6RrJM3u9EKSlksalTQ6Pj7eS+SIiOjRwRzqeRJwHvBG4EbgUopi+N+P4P3/EZhr+3nl61zZaZDtdbaHbQ8PDQ09greLiIh2R/cySNL/Ak4CrgJ+1fb/LTddLWm0y9P2Aq1/4c8q1z3M9j0ti1cA7+slT0REHDo9FQHwUdsjrSsk/Yztn9ge7vKcLcB8SfMoCmApxTxD62s8taVUFgM7eo8eERGHQq+Hhi7psO7rkz3B9j5gBbCJ4hf8BtvbJK2WtLgc9jZJ2yTdDLyN4tBTRET00aR7BJKeQjHB+xhJLwBUbvpZ4LFTvXi5FzHStm5Vy+OLgYsPMnNERBxCUx0aeiXFX+mzgA+2rL8P+L2KMkVERB9NWgS2rwSulHSW7U/3KVNERPTRVIeGXmf748BcSRe1b7f9wQ5Pi4iIw8hUh4aOLb8fV3WQiIiox1SHhj5Sfv/D/sSJiIh+m+rQ0Icn2277bYc2TkRE9NtUh4a29iVFRETUppezhiIi4gg21aGhD9m+UNI/Am7fbntxh6dFRMRhZKpDQ1eV3/+06iAREVGPqQ4NbS2/f0XSMcCzKPYMdpY3m4mIiMNcr5ehPhO4HPg3iusNzZP0W7Y/V2W4iIioXq+Xof4A8DLbYwCSng5cC6QIIiIOc71ehvq+iRIo7aK48FxERBzmpjpr6NfLh6OSRoANFHMEr6G48UxERBzmpjo09Kstj78D/HL5eBx4TCWJIiKir6Y6a+j8fgWJiIh69HrW0KOBC4CfBx49sd72b07xvEXApcAM4Arba7qMOwu4BniR7dHeokdExKHQ62TxVcBTKO5Y9hWKO5ZNOlksaQawFjgDWAAsk7Sgw7jHAW8Hru89dkREHCq9FsEzbP8B8P/K6w+dCZw6xXMWAmO2d5UfPlsPLOkw7j3Ae4Ef95glIiIOoV6L4IHy+/clPQc4HnjyFM+ZCexuWd5TrnuYpFOA2bavneyFJC2XNCppdHx8vMfIERHRi16LYJ2kJwB/AGwEtlP8FT9tko4CPgi8Y6qxttfZHrY9PDQ09EjeNiIi2vQ0WWz7ivLhV4D/0uNr7wVmtyzPKtdNeBzwHODLkqCYg9goaXEmjCMi+qenPQJJT5L055JukLRV0ockPWmKp20B5kuaV16wbinF3gQAtv/D9gm259qeC2wGUgIREX3W66Gh9cDdwFnA2cB3gasne4LtfcAKYBOwA9hge5uk1ZJyH4OIiAHR60Xnnmr7PS3Ll0g6Z6on2R4BRtrWreoy9qU9ZomIiEOo1z2CL0haKumo8uu1FH/pR0TEYW6qi87dR3GROQEXAh8vNx0F/BD4nUrTRURE5aa61tDj+hUkIiLq0escAeUE70vKxS/b/mw1kSIiop96PX10DcX1gLaXX2+X9CdVBouIiP7odY/gVcDJth8CkHQlcCNwcVXBIiKiP3o9awjg8S2Pjz/UQSIioh697hH8MXCjpOsoziB6CbCyslQREdE3UxZBeXG4h4DTgBeVq99p+9+rDBYREf0xZRHYfkjS79reQMu1giIi4sjQ6xzBFyX9jqTZkp448VVpsoiI6Ite5wjOofiE8Zvb1vd6SeqIiBhQvRbBAooS+EWKQvg/wOVVhYqIiP7ptQiuBH4AfLhcPrdc99oqQkVERP/0WgTPsb2gZfk6SdurCBQREf3V62TxDZJOm1iQdCqQO4lFRBwBet0jeCHwNUl3lctzgJ2SbgVs+3mVpIuIiMr1WgSLpvPikhYBlwIzgCtsr2nb/tvAW4AHKe5vsNx2DjlFRPRRT0Vg+86DfWFJM4C1wCuAPcAWSRvbftF/0vbl5fjFwAeZZulERMT0HMxF5w7WQmDM9i7b9wPrgSWtA2z/oGXxWIpTUyMioo96vjHNNMwEdrcs7wFObR8k6S3ARcAxwH/t9EKSlgPLAebMmXPIg0ZENFmVewQ9sb3W9tOBdwLv6jJmne1h28NDQ0P9DRgRcYSrsgj2ArNblmeV67pZD7y6wjwREdFBlUWwBZgvaZ6kY4CltF29VNL8lsUzgdsrzBMRER1UNkdge5+kFcAmitNH/9r2NkmrgVHbG4EVkk4HHgDuBd5QVZ6IiOisyslibI8AI23rVrU8fnuV7x8REVOrfbI4IiLqlSKIiGi4FEFERMOlCCIiGi5FEBHRcCmCiIiGSxFERDRciiAiouFSBBERDZciiIhouBRBRETDpQgiIhouRRAR0XApgoiIhksRREQ0XIogIqLhUgQREQ1XaRFIWiRpp6QxSSs7bL9I0nZJt0j6J0lPqzJPREQcqLIikDQDWAucASwAlkla0DbsRmDY9vOAa4D3VZUnIiI6q3KPYCEwZnuX7fuB9cCS1gG2r7P9o3JxMzCrwjwREdFBlUUwE9jdsrynXNfNBcDnOm2QtFzSqKTR8fHxQxgxIiIGYrJY0uuAYeD9nbbbXmd72Pbw0NBQf8NFRBzhjq7wtfcCs1uWZ5Xr9iPpdOD3gV+2/ZMK80RERAdV7hFsAeZLmifpGGApsLF1gKQXAB8BFtu+u8IsERHRRWVFYHsfsALYBOwANtjeJmm1pMXlsPcDxwF/J+kmSRu7vFxERFSkykND2B4BRtrWrWp5fHqV7x8REVMbiMniiIioT4ogIqLhUgQREQ2XIoiIaLgUQUREw6UIIiIaLkUQEdFwKYKIiIZLEURENFyKICKi4VIEERENlyKIiGi4FEFERMOlCCIiGi5FEBHRcCmCiIiGSxFERDRcpUUgaZGknZLGJK3ssP0lkm6QtE/S2VVmiYiIziorAkkzgLXAGcACYJmkBW3D7gLOAz5ZVY6IiJhclfcsXgiM2d4FIGk9sATYPjHA9h3ltocqzBEREZOo8tDQTGB3y/Kecl1ERAyQw2KyWNJySaOSRsfHx+uOExFxRKmyCPYCs1uWZ5XrDprtdbaHbQ8PDQ0dknAREVGosgi2APMlzZN0DLAU2Fjh+0VExDRUVgS29wErgE3ADmCD7W2SVktaDCDpRZL2AK8BPiJpW1V5IiKisyrPGsL2CDDStm5Vy+MtFIeMIiKiJofFZHFERFQnRRAR0XApgoiIhksRREQ0XIogIqLhUgQREQ2XIoiIaLgUQUREw6UIIiIaLkUQEdFwKYKIiIZLEURENFylF52LI8PcldfW+v53rDmz67ZBzhZHniP131uKYEAcqf/AIg5W/i/0X6OKIP/AIgr5vxCtMkcQEdFwKYKIiIZLEURENFylRSBpkaSdksYkreyw/WckXV1uv17S3CrzRETEgSorAkkzgLXAGcACYJmkBW3DLgDutf0M4M+A91aVJyIiOqtyj2AhMGZ7l+37gfXAkrYxS4Ary8fXAC+XpAozRUREG9mu5oWls4FFtt9YLv834FTbK1rGfLMcs6dc/rdyzHfbXms5sLxcPAnYWUnoqZ0AfHfKUfVItulJtulJtumpM9vTbA912nBYfI7A9jpgXd05JI3aHq47RyfJNj3JNj3JNj2Dmq3KQ0N7gdkty7PKdR3HSDoaOB64p8JMERHRpsoi2ALMlzRP0jHAUmBj25iNwBvKx2cDX3JVx6oiIqKjyg4N2d4naQWwCZgB/LXtbZJWA6O2NwJ/BVwlaQz4HkVZDLLaD09NItmmJ9mmJ9mmZyCzVTZZHBERh4d8sjgiouFSBBERDZciiIhouBRBDyQ9UdIT684REVGFFEEXkuZIWi9pHLge+Iaku8t1c+tNN/gknSjplPLrxLrzTEXScXVniKhLzhrqQtLXgQ8B19h+sFw3A3gNcKHt0+rM142kW20/t8b3Pxm4nOLDgRMfIJwFfB94s+0b6so2GUl32Z4zADlOBGaWi3ttf6fOPFORdJztH9acQRTXNnv45wZ8Y5A/kyTpWbb/te4cE1IEXUi63fb8g93WD5J+vdsm4PJu1xPpB0k3Ab9l+/q29acBH7H9/HqSgaSLum0Cft92bYf/UqDTfv9fAS4Dbmf/n9szKH5uX6gr22Tq/rm1OyyuNVSTrZIuo7g66u5y3WyKT0LfWFuqwtXAJ4BOLf7oPmdpd2x7CQDY3izp2DoCtfhj4P3Avg7b6j5M+jG6F+jfAINaoHUfUrsUON32Ha0rJc0DRoBn1xGqzPDhbpuAx/czy1RSBN29nuJ+CX/I/rucE5+IrtMtwJ/a/mb7Bkmn15Cn1eckXQv8LfsX6OuBz9eWqnAD8BnbW9s3SHpjDXlapUCn52hgT4f1e4FH9TlLu/OBdwA/6bBtWZ+zTCqHhg5Dkn4JuNP2XR22DdserSFWa4YzKO41sV+B2h6pLxVIOgm4p/0y5+W2E+s8Hl/+9fh0Ohfot1ov315Dtq8Bb+1SoLttz+7wtL6QdDHwWor7nbT+3JYCG2z/SY3ZvgS8y/bXOmz7lu15NcTqKEXQRXk11AuAV7P/L7R/AP7K9gN1ZYsj04AX6Pdsj3fYVmuBlhmeTeef2/b6UhWnnQM/tv2jOnP0IkXQhaRPUUzUXclPdz1nUcwRPNH2OTVmmyipXwN+rlw98CUlaZ3t5VOP7L9BzhZRtRRBF5Jus/3Mg93WDwNeUt3OvBFws+1Z/cyzX4DBznY8cDHFX7YnUpwIcDdFua+x/f0ByPZq4MmDlG0ykj5n+4y6c3QyaNkyWdzd9yS9Bvi07YcAJB1F8TmCe2tNBi/sUER7gM2SbqsjUItx4E6KX64TXC4/uZZEPzXI2TYAXwJeZvvfASQ9BTiv3PYr9UV7ONtL27K9oe5skk7ptgk4uZ9ZDggwwNnaZY+gi/LTw+8FXkbx1zcUp3xdB6y0/a16koGkzcAH6FxSF9k+tcZstwMv7zKRXffE4iBn22n7pIPd1g8Dnu1B4CvsX+4TTrP9mD5HetggZ2uXPYIubN8h6d0UnxnYb7K4zhIoLaUoqbWS2kuq7pv7fAh4AnDAL1vgfX3O0m6Qs90p6XeBKycmX8tPGZ/HT8+GqcsgZ9tB8fmL29s3SEq2HmWPoAtJ76T4pbqe/T+xuBRYb3tNXdmg65kS/2B7R32pCpKeReezOJKtC0lPAFZSZJs4TPUdis+trLFd2+HIAc92NnCr7Z0dtr3a9mdqiDXx/gObrV2KoIvyWPvPt5+BU95/eVvNl5gY2JIq/3I8t8zWOpGdbNMk6Xzbf1N3jk6SbXoGLVuKoAtJ/wq80vadbeufBnyh5uOig1xSyXaIDdp1aVol2/QMWrbMEXR3IfBP5QTjxPG8ORQXs6rtU56lhyg+P3Bn2/qnltvqlGzTIOmWbpsoTietTbJNzyBna5ci6ML25yU9kwMvb7tl4rLUNRrkkkq26TkReCUHnpos4IBLFPRZsk3PIGfbT4pgEuWpmZvrztFukEsq2abts8Bxtm9q3yDpy/2Ps59km55BzrafzBFERDRc3ZeQjYiImqUIIiIaLkUQjSNprqRON/W5QtKC8vHv9fA6F0p67CTbH369iEGWOYJonPI6Up+1/ZxJxvzQ9qS3YZR0BzDc5UY3MwZgAjqiJ9kjiKY6WtInJO2QdI2kx0r6sqRhSWuAx0i6qRxzrKRrJd0s6ZuSzpH0NorPJFwn6TooykPSByTdDLx44vVatv1R+Rqby2v1IOnp5fKtki6R9MNy/VMlfbXM8E0Vd6WLqESKIJrqJOAy288GfgC8eWKD7ZXAf9o+2fZvAIuAb9t+frkX8XnbHwa+TXHZ6JeVTz0WuL4c989t73cssNn284GvAm8q118KXGr7uex/791zgU22T6a4cf0BpyBGHCopgmiq3bb/pXz8ceAXJxl7K/AKSe+V9Eu2/6PLuAeBT3fZdj/FeeUAW4G55eMXA39XPv5ky/gtwPnlFXCfa/u+SfJFPCIpgmiq9smxrpNltm8DTqEohEskreoy9MeTzAs84J9OyD3IFB/mtP1V4CUUH3j7mKTXTzY+4pFIEURTzZH04vLxuUD7oZwHJD0KQNLPAT+y/XHg/RSlAHAf8LhHmGMzcFb5+OF7SZQXN/yO7Y8CV7S8Z8QhlyKIptoJvEXSDoqb1fxl2/Z1wC2SPgE8F/iGpJuA/wlc0jLm8xOTxdN0IXBReYGyZwATh51eCtws6UbgHIq5hIhK5PTRiBqVn0P4T9uWtBRYZntJ3bmiWXLRuYh6vRD4C0miuDf2b9acJxooewQREQ2XOYKIiIZLEURENFyKICKi4VIEERENlyKIiGi4/w9QHhqwzJ9D0wAAAABJRU5ErkJggg==", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Select item to find. Let's start with '111' for now\n", + "item = \"100\"\n", + "\n", + "# get Grover circuit\n", + "circ = grover(item)\n", + "\n", + "# print circuit\n", + "print(circ)\n", + "\n", + "# Measurement\n", + "counts = get_result(circ)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "__DISCUSSION__: By repeating steps 2 (oracle) and 3 (amplification), we can further magnify the amplitude of the target item, thus maximizing the single-shot probability of identifying the right answer. This repetition is demonstrated below." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : |0|1|2|3|4|5|6|7|8|9|10|11|12|13|14|15|16|\n", + " \n", + "q0 : -H---U-H-X---U-X-H---U--H--X-----U--X--H--\n", + " | | | | \n", + "q1 : -H-X-U-X-H-X-U-X-H-X-U--X--H--X--U--X--H--\n", + " | | | | \n", + "q2 : -H-X-U-X-H-X-U-X-H-X-U--X--H--X--U--X--H--\n", + "\n", + "T : |0|1|2|3|4|5|6|7|8|9|10|11|12|13|14|15|16|\n", + "Status: COMPLETED\n", + "measurement_counts: Counter({'100': 941, '011': 13, '010': 10, '000': 10, '111': 7, '101': 7, '110': 7, '001': 5})\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEPCAYAAABP1MOPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAUl0lEQVR4nO3de7BlZX3m8e8DaFQweKFFQ4NNFBGiEbELsTIxWvGCUgEnXmiIYyQoqXIwodBkMImMIU6CMVpiAqNoEhk1QaIZ0yOtOEbQmSjajdykSUsHQRprpL1lcIxy+80fex3cvfvsPrsPvffazfv9VJ3qvda7zt4Pp6jznLXedUlVIUlq1x59B5Ak9csikKTGWQSS1DiLQJIaZxFIUuP26jvAztpvv/1q1apVfceQpN3KlVde+e2qWrHY2G5XBKtWrWLDhg19x5Ck3UqSW8aNeWhIkhpnEUhS4ywCSWqcRSBJjbMIJKlxFoEkNc4ikKTGWQSS1DiLQJIat9tdWSztLladeUmvn3/zOcf2+vnafbhHIEmNswgkqXEWgSQ1ziKQpMZZBJLUOItAkhpnEUhS4ywCSWqcRSBJjbMIJKlxFoEkNc4ikKTGWQSS1DiLQJIaZxFIUuMsAklqnEUgSY2zCCSpcRaBJDXOIpCkxlkEktQ4i0CSGmcRSFLjLAJJapxFIEmNswgkqXEWgSQ1bqpFkOSYJJuSbE5y5iLjByW5LMlVSa5N8uJp5pEkbW9qRZBkT+A84EXA4cCJSQ4f2ewPgIur6unAGuD8aeWRJC1umnsERwGbq+qmqroTuAg4fmSbAn66e70v8M0p5pEkLWKaRXAAcOvQ8pZu3bC3AK9MsgVYB7x+sTdKcmqSDUk2bN26dRpZJalZfU8Wnwh8oKpWAi8GPphku0xVdUFVra6q1StWrJh5SEl6IJtmEdwGHDi0vLJbN+wU4GKAqvoi8BBgvylmkiSNmGYRrAcOSXJwkgczmAxeO7LNN4BfBkhyGIMi8NiPJM3Q1Iqgqu4GTgMuBW5gcHbQ9UnOTnJct9kbgNcmuQb4W+DVVVXTyiRJ2t5e03zzqlrHYBJ4eN1ZQ683Ar8wzQySpB3re7JYktQzi0CSGmcRSFLjLAJJapxFIEmNswgkqXEWgSQ1ziKQpMZZBJLUOItAkhpnEUhS4ywCSWqcRSBJjbMIJKlxFoEkNc4ikKTGWQSS1DiLQJIaZxFIUuMsAklqnEUgSY2zCCSpcRaBJDXOIpCkxlkEktQ4i0CSGmcRSFLjLAJJapxFIEmNswgkqXEWgSQ1ziKQpMZZBJLUOItAkhpnEUhS46ZaBEmOSbIpyeYkZ47Z5hVJNia5PsnfTDOPJGl7e03rjZPsCZwHPB/YAqxPsraqNg5tcwjwJuAXqup7SR4zrTySpMVNtEeQ5O+THJtkZ/YgjgI2V9VNVXUncBFw/Mg2rwXOq6rvAVTV7Tvx/pKkXWDSX+znAycBNyY5J8mhE3zPAcCtQ8tbunXDngQ8Kck/JbkiyTGLvVGSU5NsSLJh69atE0aWJE1ioiKoqs9U1a8BRwI3A59J8oUkJyd50P34/L2AQ4DnACcC70vyiEU+/4KqWl1Vq1esWHE/Pk6SNGriQz1JHg28GngNcBVwLoNi+J9jvuU24MCh5ZXdumFbgLVVdVdVfR34GoNikCTNyKRzBP8d+F/Aw4BfqarjquojVfV6YJ8x37YeOCTJwUkeDKwB1o5s83EGewMk2Y/BoaKbdvq/QpK0bJOeNfS+qlo3vCLJT1XVj6tq9WLfUFV3JzkNuBTYE/irqro+ydnAhqpa2429IMlG4B7gd6rqO8v+r5Ek7bRJi+CtwLqRdV9kcGhorK481o2sO2vodQFndF+SpB7ssAiSPJbBmT4PTfJ0IN3QTzM4TCRJ2s0ttUfwQgYTxCuBdw6tvwP4vSllkiTN0A6LoKouBC5M8tKq+tiMMkmSZmipQ0OvrKoPAauSbHccv6reuci3SZJ2I0sdGtq7+3fcKaKSpN3cUoeG3tv9+4eziSNJmrWlDg29e0fjVfVbuzaOJGnWljo0dOVMUkiSejPJWUOSpAewpQ4NvauqTk/yP4AaHa+q46aWTJI0E0sdGvpg9++fTTuIJKkfSx0aurL793PdHUSfzGDPYFP31DFJ0m5uopvOJTkWeA/wLwzuN3Rwkt+sqk9OM5wkafomvfvoO4DnVtVmgCRPAC4BLAJJ2s1N+oSyOxZKoHMTgxvPSZJ2c0udNfSr3csNSdYBFzOYI3g5gyeQSZJ2c0sdGvqVodffAn6pe70VeOhUEkmSZmqps4ZOnlUQSVI/Jj1r6CHAKcDPAQ9ZWF9VvzGlXJKkGZl0sviDwGMZPLHscwyeWOZksSQ9AExaBE+sqjcD/6+7/9CxwDOnF0uSNCuTFsFd3b/fT/IUYF/gMdOJJEmapUkvKLsgySOBNwNrGTyx7M1TSyVJmpmJiqCq3t+9/Bzws9OLI0matYkODSV5dJI/T/KVJFcmeVeSR087nCRp+iadI7gIuB14KfAy4NvAR6YVSpI0O5POETyuqv5oaPmtSU6YRiBJ0mxNukfw6SRrkuzRfb0CuHSawSRJs7HUTefuYHCTuQCnAx/qhvYAfgC8carpJElTt9S9hh4+qyCSpH5MOkdAkuOAZ3eLl1fVJ6YTSZI0S5OePnoO8NvAxu7rt5P8yTSDSZJmY9I9ghcDR1TVvQBJLgSuAt40rWCSpNmY9KwhgEcMvd53VweRJPVj0j2CPwauSnIZgzOIng2cObVUkqSZWXKPIMkewL3A0cDfAx8DnlVVS15ZnOSYJJuSbE4ytjiSvDRJJVm9E9klSbvAknsEVXVvkt+tqosZ3Hl0Ikn2BM4Dng9sAdYnWVtVG0e2eziDiegv7VRySdIuMekcwWeSvDHJgUketfC1xPccBWyuqpuq6k4G9ys6fpHt/gh4G/CjyWNLknaVSecITmBwhfHrRtbv6JbUBwC3Di1vYeSpZkmOBA6sqkuS/M64N0pyKnAqwEEHHTRhZEnSJCbdIzicwWGea4CrgT9n8CD7ZevmHt4JvGGpbavqgqpaXVWrV6xYcX8+VpI0YtIiuBA4DHg3gxI4vFu3I7cBBw4tr+zWLXg48BTg8iQ3M5iMXuuEsSTN1qSHhp5SVYcPLV+WZOPYrQfWA4ckOZhBAawBTloYrKp/BfZbWE5yOfDGqtowYSZJ0i4w6R7BV5IcvbCQ5JnADn9hV9XdwGkMbld9A3BxVV2f5OzuvkWSpDkw6R7BM4AvJPlGt3wQsCnJdUBV1c8v9k1VtQ5YN7LurDHbPmfCLJKkXWjSIjhmqikkSb2ZqAiq6pZpB5Ek9WNnbjonSXoAsggkqXEWgSQ1ziKQpMZZBJLUOItAkhpnEUhS4ywCSWqcRSBJjbMIJKlxFoEkNc4ikKTGWQSS1DiLQJIaZxFIUuMsAklqnEUgSY2zCCSpcRaBJDXOIpCkxlkEktQ4i0CSGmcRSFLjLAJJapxFIEmNswgkqXEWgSQ1ziKQpMZZBJLUOItAkhpnEUhS4ywCSWqcRSBJjZtqESQ5JsmmJJuTnLnI+BlJNia5Nsk/Jnn8NPNIkrY3tSJIsidwHvAi4HDgxCSHj2x2FbC6qn4e+Cjwp9PKI0la3DT3CI4CNlfVTVV1J3ARcPzwBlV1WVX9sFu8Alg5xTySpEVMswgOAG4dWt7SrRvnFOCTiw0kOTXJhiQbtm7dugsjSpLmYrI4ySuB1cDbFxuvqguqanVVrV6xYsVsw0nSA9xeU3zv24ADh5ZXduu2keR5wO8Dv1RVP55iHknSIqa5R7AeOCTJwUkeDKwB1g5vkOTpwHuB46rq9ilmkSSNMbUiqKq7gdOAS4EbgIur6vokZyc5rtvs7cA+wN8luTrJ2jFvJ0makmkeGqKq1gHrRtadNfT6edP8fEnS0uZisliS1B+LQJIaZxFIUuMsAklqnEUgSY2zCCSpcRaBJDXOIpCkxlkEktQ4i0CSGmcRSFLjLAJJapxFIEmNswgkqXEWgSQ1ziKQpMZZBJLUOItAkhpnEUhS4ywCSWqcRSBJjbMIJKlxFoEkNc4ikKTGWQSS1DiLQJIaZxFIUuMsAklqnEUgSY2zCCSpcRaBJDXOIpCkxlkEktQ4i0CSGmcRSFLj9prmmyc5BjgX2BN4f1WdMzL+U8B/A54BfAc4oapunlaeVWdeMq23nsjN5xzb6+cv1zz/3OY5m7S7mFoRJNkTOA94PrAFWJ9kbVVtHNrsFOB7VfXEJGuAtwEnTCuTpIF5LlCzjTetPzymuUdwFLC5qm4CSHIRcDwwXATHA2/pXn8U+IskqaqaYq659ED9H0zS/Mu0fucmeRlwTFW9plv+D8Azq+q0oW2+2m2zpVv+l26bb4+816nAqd3iocCmqYRe2n7At5fcqh9mWx6zLY/ZlqfPbI+vqhWLDUx1jmBXqaoLgAv6zpFkQ1Wt7jvHYsy2PGZbHrMtz7xmm+ZZQ7cBBw4tr+zWLbpNkr2AfRlMGkuSZmSaRbAeOCTJwUkeDKwB1o5ssxb49e71y4DPtjg/IEl9mtqhoaq6O8lpwKUMTh/9q6q6PsnZwIaqWgv8JfDBJJuB7zIoi3nW++GpHTDb8phtecy2PHOZbWqTxZKk3YNXFktS4ywCSWqcRSBJjbMIJpDkUUke1XcOSZoGi2CMJAcluSjJVuBLwJeT3N6tW9VvuvmXZP8kR3Zf+/edZylJ9uk7g9QXzxoaI8kXgXcBH62qe7p1ewIvB06vqqP7zDdOkuuq6qk9fv4RwHsYXBy4cAHhSuD7wOuq6it9ZduRJN+oqoPmIMf+wAHd4m1V9a0+8ywlyT5V9YOeM4TBvc3u+7kBX57na5KSPLmq/rnvHAssgjGS3FhVh+zs2Cwk+dVxQ8B7xt1PZBaSXA38ZlV9aWT90cB7q+pp/SSDJGeMGwJ+v6p6O/xngS77818AnA/cyLY/tycy+Ll9uq9sO9L3z23UbnGvoZ5cmeR84ELg1m7dgQyuhL6qt1QDHwE+DCzW4g+ZcZZRe4+WAEBVXZFk7z4CDflj4O3A3YuM9X2Y9AOML9C/Bua1QPs+pHYu8LzR55gkORhYBxzWR6guw7vHDQGPmGWWpVgE472KwfMS/pBtdzkXroju07XAn1XVV0cHkjyvhzzDPpnkEgYPHBou0FcBn+ot1cBXgI9X1ZWjA0le00OeYRbo8uzF4Hkno24DHjTjLKNOBt4A/HiRsRNnnGWHPDS0G0ryi8AtVfWNRcZWV9WGHmINZ3gRg2dNbFOgVbWuv1SQ5FDgO6O3Oe/G9u/zeHz31+MTWLxAvz58+/Yesn0BeP2YAr21qg5c5NtmIsmbgFcAF7Htz20NcHFV/UmP2T4L/EFVfWGRsa9X1cE9xFqURTBGdzfUU4CXsO0vtH8A/rKq7uormx6Y5rxAv1tVWxcZ67VAuwyHsfjPbeP475q+7pTzH1XVD/vMMQmLYIwkf8tgou5CfrLruZLBHMGjqqq3R2oOldS/B36mWz33JZXkgqo6dektZ2+es0nTZhGMkeRrVfWknR2bhTkvqXFn3gS4pqpWzjLPNgHmO9u+wJsY/GW7P4MTAW5nUO7nVNX35yDbS4DHzFO2HUnyyap6Ud85FjNv2ZwsHu+7SV4OfKyq7gVIsgeD6wi+12syeMYiRbQFuCLJ1/oINGQrcAuDX64Lqlt+TC+JfmKes10MfBZ4blX9H4AkjwVe3Y29oL9o92V7zki2X+87W5Ijxw0BR8wyy3YB5jjbKPcIxuiuHn4b8FwGf33D4JSvy4Azq+rr/SSDJFcA72Dxkjqjqp7ZY7YbgV8eM5Hd98TiPGfbVFWH7uzYLMx5tnuAz7FtuS84uqoeOuNI95nnbKPcIxijqm5O8hYG1wxsM1ncZwl01jAoqfOSjJZU3w/3eRfwSGC7X7bAn844y6h5znZLkt8FLlyYfO2uMn41Pzkbpi/znO0GBtdf3Dg6kMRsE3KPYIwk/4nBL9WL2PaKxTXARVV1Tl/ZYOyZEv9QVTf0l2ogyZNZ/CwOs42R5JHAmQyyLRym+haD61bOqareDkfOebaXAddV1aZFxl5SVR/vIdbC589ttlEWwRjdsfafGz0Dp3v+8vU932Jibkuq+8vxpC7b8ES22ZYpyclV9dd951iM2ZZn3rJZBGMk+WfghVV1y8j6xwOf7vm46DyXlNl2sXm7L80wsy3PvGVzjmC804F/7CYYF47nHcTgZla9XeXZuZfB9QO3jKx/XDfWJ7MtQ5Jrxw0xOJ20N2ZbnnnONsoiGKOqPpXkSWx/e9v1C7el7tE8l5TZlmd/4IVsf2pygO1uUTBjZlueec62DYtgB7pTM6/oO8eoeS4psy3bJ4B9qurq0YEkl88+zjbMtjzznG0bzhFIUuP6voWsJKlnFoEkNc4iUHOSrEqy2EN93p/k8O71703wPqcnedgOxu97P2meOUeg5nT3kfpEVT1lB9v8oKp2+BjGJDcDq8c86GbPOZiAlibiHoFatVeSDye5IclHkzwsyeVJVic5B3hokqu7bfZOckmSa5J8NckJSX6LwTUJlyW5DAblkeQdSa4BnrXwfkNj/6V7jyu6e/WQ5And8nVJ3prkB936xyX5fJfhqxk8lU6aCotArToUOL+qDgP+L/C6hYGqOhP4t6o6oqp+DTgG+GZVPa3bi/hUVb0b+CaD20Y/t/vWvYEvddv975HP2xu4oqqeBnweeG23/lzg3Kp6Kts+e/ck4NKqOoLBg+u3OwVR2lUsArXq1qr6p+71h4B/t4NtrwOen+RtSX6xqv51zHb3AB8bM3Yng/PKAa4EVnWvnwX8Xff6b4a2Xw+c3N0B96lVdccO8kn3i0WgVo1Ojo2dLKuqrwFHMiiEtyY5a8ymP9rBvMBd9ZMJuXtY4mLOqvo88GwGF7x9IMmrdrS9dH9YBGrVQUme1b0+CRg9lHNXkgcBJPkZ4IdV9SHg7QxKAeAO4OH3M8cVwEu71/c9S6K7ueG3qup9wPuHPlPa5SwCtWoT8B+T3MDgYTX/dWT8AuDaJB8Gngp8OcnVwH8G3jq0zacWJouX6XTgjO4GZU8EFg47PQe4JslVwAkM5hKkqfD0UalH3XUI/1ZVlWQNcGJVHd93LrXFm85J/XoG8BdJwuDZ2L/Rcx41yD0CSWqccwSS1DiLQJIaZxFIUuMsAklqnEUgSY37/5izyI9sbjyvAAAAAElFTkSuQmCC", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Select item to find\n", + "item = \"100\"\n", + "\n", + "# get Grover circuit\n", + "circ = grover(item, n_reps=2)\n", + "\n", + "# print circuit\n", + "print(circ)\n", + "\n", + "# Measurement\n", + "counts = get_result(circ)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "__DISCUSSION__: We observed how repeated application of the Grover operator has amplified the occurrence of the desired bitstring, while further suppressing wrong answers to our search problem. We get the correct result with high probability. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Device: IonQ \n", + "\n", + "Finally, we check whether this scheme works on quantum hardware, by submitting our circuit to the IonQ device. To achieve this check, we first need to express the ```CCZ``` gate in terms of the native gate set of IonQ. In doing so, we build a custom gate that can be registered as a subroutine and then used as if it were any other native quantum gate within our SDK. " + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# Set up a QPU device\n", + "device = AwsDevice(\"arn:aws:braket:us-east-1::device/qpu/ionq/Harmony\")" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Quantum Gates supported by IonQ Device:\n", + " ['x', 'y', 'z', 'rx', 'ry', 'rz', 'h', 'cnot', 's', 'si', 't', 'ti', 'v', 'vi', 'xx', 'yy', 'zz', 'swap', 'i']\n" + ] + } + ], + "source": [ + "# get device name\n", + "device_name = device.name\n", + "# show the properties of the device \n", + "device_properties = device.properties\n", + "# show supportedQuantumOperations (supported gates for a device)\n", + "device_operations = device_properties.dict()['action']['braket.ir.jaqcd.program']['supportedOperations']\n", + "# Note: This field also exists for other devices like the QPUs\n", + "print('Quantum Gates supported by {}:\\n {}'.format(device_name, device_operations))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For the 𝑁=8 Grover demonstration with three qubits shown in Figgatt et al. (2017), we need to implement the Controlled-Controlled-Z ```CCZ``` gate that is not natively provided on the IonQ device. We will construct this gate using native gates only such as ```CNOT``` and ```T```. Apart from our implementation, other alternative options are available (see [1] and references therein). " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "@circuit.subroutine(register=True)\n", + "def CCNot(controls=[0, 1], target=2):\n", + " \"\"\"\n", + " build CCNOT from H, CNOT, T, Ti\n", + " \"\"\"\n", + " cQb1, cQb2 = controls\n", + " circ = Circuit().h(target).cnot(cQb2,target).ti(target).cnot(cQb1,target).t(target).cnot(cQb2,target).ti(target).cnot(cQb1,target).t(target).h(target).t(cQb2).cnot(cQb1,cQb2).t(cQb1).ti(cQb2).cnot(cQb1,cQb2)\n", + " \n", + " return circ \n", + "\n", + "def CCZ_ionq(controls=[0, 1], target=2):\n", + " \"\"\"\n", + " build CCZ from H and CCNOT\n", + " \"\"\"\n", + " circ = Circuit().h(target).CCNot(controls, target).h(target)\n", + " return circ\n", + "\n", + "ccz_ionq = CCZ_ionq()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Following are oracles defined based on target items:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "# Four possible items and their corresponding oracles\n", + "oracle_ionq = {\"000\": Circuit().x([0,1,2]).add(ccz_ionq).x([0,1,2]),\n", + " \"001\": Circuit().x([0,1]).add(ccz_ionq).x([0,1]),\n", + " \"010\": Circuit().x([0,2]).add(ccz_ionq).x([0,2]),\n", + " \"011\": Circuit().x([0]).add(ccz_ionq).x([0]),\n", + " \"100\": Circuit().x([1,2]).add(ccz_ionq).x([1,2]),\n", + " \"101\": Circuit().x([1]).add(ccz_ionq).x([1]),\n", + " \"110\": Circuit().x([2]).add(ccz_ionq).x([2]),\n", + " \"111\": Circuit().add(ccz_ionq)\n", + " }" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "# Select some example item to find\n", + "item = \"111\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Same as with the classical simulator, we first initialize the qubits by applying the Hadamard gate ```H``` to every qubit." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : |0|\n", + " \n", + "q0 : -H-\n", + " \n", + "q1 : -H-\n", + " \n", + "q2 : -H-\n", + "\n", + "T : |0|\n" + ] + } + ], + "source": [ + "# Initialize with superposition\n", + "circ = Circuit();\n", + "circ.h(np.arange(3))\n", + "print(circ)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we apply the phase oracle corresponding to our target item.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : |0|1|2|3|4 |5|6|7|8 |9|10|11|12|\n", + " \n", + "q0 : -H----------C--------C-C--T--C--\n", + " | | | | \n", + "q1 : -H-----C----|---C-T--|-X--Ti-X--\n", + " | | | | \n", + "q2 : -H-H-H-X-Ti-X-T-X-Ti-X-T--H--H--\n", + "\n", + "T : |0|1|2|3|4 |5|6|7|8 |9|10|11|12|\n" + ] + } + ], + "source": [ + "# Construct phase oracle\n", + "circ.add_circuit(oracle_ionq[item])\n", + "print(circ)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To complete the circuit, we define the diffusion operator, whose job is to magnify the amplitude difference created by the oracle." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : |0|1|2|3|4 |5|6|7|8 |9|10|11|12|13|14|15|16|17|18|19|20|21|22|23|24|25|26|27|28|\n", + " \n", + "q0 : -H----------C--------C-C--T--C--H--X--------------C-----------C--C--T--C--X--H--\n", + " | | | | | | | | \n", + "q1 : -H-----C----|---C-T--|-X--Ti-X--H--X--------C-----|-----C--T--|--X--Ti-X--X--H--\n", + " | | | | | | | | \n", + "q2 : -H-H-H-X-Ti-X-T-X-Ti-X-T--H--H--H--X--H--H--X--Ti-X--T--X--Ti-X--T--H--H--X--H--\n", + "\n", + "T : |0|1|2|3|4 |5|6|7|8 |9|10|11|12|13|14|15|16|17|18|19|20|21|22|23|24|25|26|27|28|\n" + ] + } + ], + "source": [ + "# Amplification\n", + "circ.h(np.arange(3))\n", + "circ.add_circuit(oracle_ionq['000'])\n", + "circ.h(np.arange(3))\n", + "print(circ)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This circuit could potentially be optimized, as detailed in Ref.[1], but we will use this version for simplicity. \n", + "\n", + "In the final step, we retrieve the probabilistic counts for our target item. \n", + "To this end, we submit our circuit to the IonQ device, by setting the device as ```AwsDevice(\"arn:aws:braket:us-east-1::device/qpu/ionq/Harmony\")```. \n", + "\n", + "This task may not be executed immediately as it enters a queue for this machine. \n", + "Should we need to interrupt our kernel to work on something else, we can always recover our results using the unique ID of this task, as shown in the following lines. " + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Status of task: CREATED\n" + ] + } + ], + "source": [ + "# set up device\n", + "ionq = AwsDevice(\"arn:aws:braket:us-east-1::device/qpu/ionq/Harmony\")\n", + "\n", + "# run circuit \n", + "ionq_task = ionq.run(circ, shots=1000)\n", + "\n", + "# get id and status of submitted task\n", + "ionq_task_id = ionq_task.id\n", + "ionq_status = ionq_task.state()\n", + "# print('ID of task:', ionq_task_id)\n", + "print('Status of task:', ionq_status)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Status of (reconstructed) task: QUEUED\n" + ] + } + ], + "source": [ + "# print status\n", + "status = ionq_task.state()\n", + "print('Status of (reconstructed) task:', status)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Status of (reconstructed) task: COMPLETED\n" + ] + } + ], + "source": [ + "# print status\n", + "status = ionq_task.state()\n", + "print('Status of (reconstructed) task:', status)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Status of (reconstructed) task: COMPLETED\n", + "1000 shots taken on machine arn:aws:braket:us-east-1::device/qpu/ionq/Harmony.\n", + "Measurement counts: Counter({'111': 354, '011': 166, '010': 103, '001': 93, '110': 87, '100': 72, '101': 69, '000': 56})\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAAVrklEQVR4nO3df/BldX3f8edLQPwdQL4lK4tZo9tYjHW13xBsfoxiVcBpV200mEaJ0q6dYtVp2gmaaTUdmcGJhvFHZWYVBIxRicZK1WoIkjKmAVxwXfkR4qprYbOyKwKCRuKu7/5xP4vX9fv9er+w597Pl+/zMXPmnvM5n3O+73v3wGvOOZ97bqoKSZJ685BZFyBJ0kIMKElSlwwoSVKXDChJUpcMKElSlw6ddQEPxNFHH13r1q2bdRmSpAfg2muv/VZVzR3YvqIDat26dWzZsmXWZUiSHoAk31io3Ut8kqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLg0WUEkeluSaJF9KckOSP2jtFyb5epKtbdrQ2pPknUm2J9mW5BlD1SZJ6t+Qjzq6Fzipqu5Jchjw+ST/u637L1X10QP6nwKsb9MvA+e1V0nSmHVnfWrWJdxnxzkvGGzfg51B1cg9bfGwNi31+/IbgYvbdlcBRyRZM1R9kqS+DXoPKskhSbYCu4HLqurqtursdhnv3CSHt7ZjgVvGNr+1tR24z01JtiTZsmfPniHLlyTN0KABVVX7qmoDsBY4IckvAm8Angz8EnAU8HvL3Ofmqpqvqvm5uZ94Orsk6UFiKqP4qupO4Arg5Kra1S7j3Qu8HzihddsJHDe22drWJklahYYcxTeX5Ig2/3DgucDf7L+vlCTAC4Hr2yaXAq9oo/lOBO6qql1D1SdJ6tuQo/jWABclOYRREF5SVZ9M8rkkc0CArcC/b/0/DZwKbAe+B7xywNokSZ0bLKCqahvw9AXaT1qkfwFnDlWPJGll8UkSkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC4NFlBJHpbkmiRfSnJDkj9o7U9IcnWS7Uk+kuShrf3wtry9rV83VG2SpP4NeQZ1L3BSVT0N2ACcnORE4K3AuVX1JOAO4IzW/wzgjtZ+busnSVqlBguoGrmnLR7WpgJOAj7a2i8CXtjmN7Zl2vrnJMlQ9UmS+jboPagkhyTZCuwGLgO+CtxZVXtbl1uBY9v8scAtAG39XcBjF9jnpiRbkmzZs2fPkOVLkmZo0ICqqn1VtQFYC5wAPPkg7HNzVc1X1fzc3NwD3Z0kqVNTGcVXVXcCVwDPBI5IcmhbtRbY2eZ3AscBtPU/A9w+jfokSf0ZchTfXJIj2vzDgecCNzEKqt9o3U4HPtHmL23LtPWfq6oaqj5JUt8O/eld7rc1wEVJDmEUhJdU1SeT3Ah8OMlbgC8C57f+5wMfSLId+DZw2oC1SZI6N1hAVdU24OkLtH+N0f2oA9u/D7xkqHokSSuLT5KQJHXJgJIkdcmAkiR1yYCSJHXJgJIkdcmAkiR1yYCSJHXJgJIkdcmAkiR1yYCSJHXJgJIkdcmAkiR1yYCSJHXJgJIkdcmAkiR1yYCSJHXJgJIkdcmAkiR1yYCSJHXJgJIkdcmAkiR1yYCSJHVpsIBKclySK5LcmOSGJK9r7W9OsjPJ1jadOrbNG5JsT3JzkucPVZskqX+HDrjvvcDvVtV1SR4NXJvksrbu3Kp623jnJMcDpwFPAR4H/EWSf1xV+wasUZLUqcHOoKpqV1Vd1+bvBm4Cjl1ik43Ah6vq3qr6OrAdOGGo+iRJfZvKPagk64CnA1e3ptck2ZbkgiRHtrZjgVvGNruVBQItyaYkW5Js2bNnz5BlS5JmaPCASvIo4GPA66vqO8B5wBOBDcAu4O3L2V9Vba6q+aqan5ubO9jlSpI6MWhAJTmMUTh9sKr+DKCqbquqfVX1Q+C9/Ogy3k7guLHN17Y2SdIqNOQovgDnAzdV1R+Nta8Z6/Yi4Po2fylwWpLDkzwBWA9cM1R9kqS+DTmK71eAlwNfTrK1tb0ReFmSDUABO4BXA1TVDUkuAW5kNALwTEfwSdLqNVhAVdXngSyw6tNLbHM2cPZQNUmSVg6fJCFJ6pIBJUnqkgElSeqSASVJ6pIBJUnqkgElSeqSASVJ6pIBJUnqkgElSeqSASVJ6pIBJUnqkgElSeqSASVJ6pIBJUnqkgElSeqSASVJ6pIBJUnqkgElSeqSASVJ6pIBJUnqkgElSeqSASVJ6tJEAZXkdUkek5Hzk1yX5HlDFydJWr0mPYN6VVV9B3gecCTwcuCcpTZIclySK5LcmOSGJK9r7UcluSzJV9rrka09Sd6ZZHuSbUme8QDelyRphZs0oNJeTwU+UFU3jLUtZi/wu1V1PHAicGaS44GzgMuraj1weVsGOAVY36ZNwHkTvwtJ0oPOpAF1bZI/ZxRQn03yaOCHS21QVbuq6ro2fzdwE3AssBG4qHW7CHhhm98IXFwjVwFHJFmznDcjSXrwOHTCfmcAG4CvVdX3kjwWeOWkfyTJOuDpwNXAMVW1q636JnBMmz8WuGVss1tb266xNpJsYnSGxeMf//hJS5AkrTCTnkFdVlXXVdWdAFV1O3DuJBsmeRTwMeD17T7WfaqqgJq8XKiqzVU1X1Xzc3Nzy9lUkrSCLHkGleRhwCOAo9tghv33nR7D6OxmSUkOYxROH6yqP2vNtyVZU1W72iW83a19J3Dc2OZrW5skaRX6aWdQrwauBZ7cXvdPnwDevdSGSQKcD9xUVX80tupS4PQ2f3rb1/72V7TRfCcCd41dCpQkrTJLnkFV1TuAdyT5j1X1rmXu+1cYDUf/cpKtre2NjIanX5LkDOAbwEvbuk8zGoSxHfgey7jHJUl68JlokERVvSvJPwfWjW9TVRcvsc3nWXwo+nMW6F/AmZPUI0l68JsooJJ8AHgisBXY15oLWDSgJEl6ICYdZj4PHN/OciRJGtykw8yvB352yEIkSRo36RnU0cCNSa4B7t3fWFX/apCqJEmr3qQB9eYhi5Ak6UCTjuL7P0MXIknSuElH8d3Njx5J9FDgMOC7VfWYoQqTJK1uk55BPXr/fHtCxEZGP6EhSdIglv2T7+3nMP4n8PyDX44kSSOTXuJ78djiQxh9L+r7g1QkSRKTj+L7l2Pze4EdjC7zSZI0iEnvQfngVknSVE10DyrJ2iQfT7K7TR9Lsnbo4iRJq9ekgyTez+j3mh7Xpv/V2iRJGsSkATVXVe+vqr1tuhDw99YlSYOZNKBuT/LbSQ5p028Dtw9ZmCRpdZt0FN+rgHcB5zJ6osT/BX5noJokaerWnfWpWZdwnx3nvGDWJXRh0oD678DpVXUHQJKjgLcxCi5Jkg66SS/x/dP94QRQVd8Gnj5MSZIkTR5QD0ly5P6FdgY16dmXJEnLNmnIvB346yR/2pZfApw9TEmSJE3+JImLk2wBTmpNL66qG4crS5K02k18ma4FkqEkSZqKZf/cxqSSXNAei3T9WNubk+xMsrVNp46te0OS7UluTuJPeUjSKjdYQAEXAicv0H5uVW1o06cBkhwPnAY8pW3zniSHDFibJKlzgwVUVV0JfHvC7huBD1fVvVX1dWA7cMJQtUmS+jfkGdRiXpNkW7sEuH/o+rHALWN9bm1tPyHJpiRbkmzZs2fP0LVKkmZk2gF1HvBEYAOwi9Hw9WWpqs1VNV9V83NzPq9Wkh6sphpQVXVbVe2rqh8C7+VHl/F2AseNdV3b2iRJq9RUAyrJmrHFFwH7R/hdCpyW5PAkTwDWA9dMszZJUl8Ge1xRkg8BzwKOTnIr8CbgWUk2MHoi+g7g1QBVdUOSSxh9z2ovcGZV7RuqNklS/wYLqKp62QLN5y/R/2x8fJIkqZnFKD5Jkn4qA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktQlA0qS1CUDSpLUJQNKktSlwQIqyQVJdie5fqztqCSXJflKez2ytSfJO5NsT7ItyTOGqkuStDIMeQZ1IXDyAW1nAZdX1Xrg8rYMcAqwvk2bgPMGrEuStAIcOtSOq+rKJOsOaN4IPKvNXwT8JfB7rf3iqirgqiRHJFlTVbuGqk/DWnfWp2Zdwn12nPOCWZcg6X6Y9j2oY8ZC55vAMW3+WOCWsX63trafkGRTki1JtuzZs2e4SiVJMzWzQRLtbKnux3abq2q+qubn5uYGqEyS1INpB9RtSdYAtNfdrX0ncNxYv7WtTZK0Sk07oC4FTm/zpwOfGGt/RRvNdyJwl/efJGl1G2yQRJIPMRoQcXSSW4E3AecAlyQ5A/gG8NLW/dPAqcB24HvAK4eqS5K0Mgw5iu9li6x6zgJ9CzhzqFqkB5NeRkg6OlJD80kSkqQuGVCSpC4ZUJKkLg12D0paSbyvI/XHMyhJUpcMKElSlwwoSVKXDChJUpcMKElSlwwoSVKXDChJUpcMKElSl/yi7grSy5dJwS+UShqeZ1CSpC55BiVpML2c9XvGvzJ5BiVJ6pIBJUnqkgElSeqSASVJ6pIBJUnqkgElSeqSASVJ6tKq/x5UL9/TAL+rIUnjZhJQSXYAdwP7gL1VNZ/kKOAjwDpgB/DSqrpjFvVJkmZvlpf4nl1VG6pqvi2fBVxeVeuBy9uyJGmV6uke1EbgojZ/EfDC2ZUiSZq1WQVUAX+e5Nokm1rbMVW1q81/EzhmoQ2TbEqyJcmWPXv2TKNWSdIMzGqQxK9W1c4k/wi4LMnfjK+sqkpSC21YVZuBzQDz8/ML9pEkrXwzOYOqqp3tdTfwceAE4LYkawDa6+5Z1CZJ6sPUAyrJI5M8ev888DzgeuBS4PTW7XTgE9OuTZLUj1lc4jsG+HiS/X//T6rqM0m+AFyS5AzgG8BLZ1CbJKkTUw+oqvoa8LQF2m8HnjPteiRJfeppmLkkSfcxoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXTKgJEldMqAkSV0yoCRJXeouoJKcnOTmJNuTnDXreiRJs9FVQCU5BPgfwCnA8cDLkhw/26okSbPQVUABJwDbq+prVfUPwIeBjTOuSZI0A6mqWddwnyS/AZxcVf+2Lb8c+OWqes1Yn03Aprb4C8DNUy/0Jx0NfGvWRUxoJdUKK6teax2GtQ6jp1p/rqrmDmw8dBaVPBBVtRnYPOs6xiXZUlXzs65jEiupVlhZ9VrrMKx1GCuh1t4u8e0EjhtbXtvaJEmrTG8B9QVgfZInJHkocBpw6YxrkiTNQFeX+Kpqb5LXAJ8FDgEuqKobZlzWJLq65PhTrKRaYWXVa63DsNZhdF9rV4MkJEnar7dLfJIkAQaUJKlTBtSEFnoEUxvMcXVr+0gb2EGSw9vy9rZ+3RTrvCDJ7iTXj7UdleSyJF9pr0e29iR5Z6tzW5JnTKvOsdoW+lxf05YrydFjfWdW7yKf60uS3JDkh0nmD+j/hlbnzUmeP606x/7+co7XX09yXZK97buI0651Ocfsk5P8dZJ7k/znGdS6nON11rVOfMwmeWySK5Lck+Td0651MQbUBJZ4BNNbgXOr6knAHcAZbZMzgDta+7mt37RcCJx8QNtZwOVVtR64vC3D6P2sb9Mm4Lwp1Qgs+bn+FfAvgG8csMks672Qn/xcrwdeDFw53tjew2nAU9o272nvdSrux/H6/4DfAf5kWjUe4EImP2a/DbwWeNvUqmvux/E6s1qbC5nwmAW+D/xXYOpBuhQDajKLPYLpJOCjrc9FwAvb/Ma2TFv/nCSZRqFVdSWj/zDGjddzYJ0X18hVwBFJ1kyjzmbBz7WqvlhVOxboP7N6F/pcq+qmqlroSSYbgQ9X1b1V9XVgO6P3Oi3LOl6rakdVbQN+OMUa77OcY7aqdlfVF4AfTK3AH1nW8TrjWpd1zFbVd6vq84yCqhsG1GSOBW4ZW761td1ZVXsPaPux/m39XcBjp1Pqgo6pql1t/pvAMW1+sfc1Lcv9+7Oud1KzrnO5x2uPFjtmZ2nW/66rjgG1ytToewV+t0Arhsfs6mVATWaxRzAdkeTQA9p+rH9b/zPA7dMpdUG37b8U1l53t/ZZP1pquX9/1vVOatZ1Lvd47dFix+wszfrfddUxoCaz2COYrgD2j3o6HfhEm7+0LdPWf65m+43o8XoOrPMVbXTcicBdY5dVpmG5j7aadb2TuhQ4LaPRnE9gNKjjmin+/eUerz1a7JidJR/FNm1V5TTBBJwK/C3wVeD3W9vPM/ofz3bgT4HDW/vD2vL2tv7np1jnh4BdjG7M3spopNZjGY2E+grwF8BRrW8YjUr6KvBlYL6Tz/W1rfa9wN8B75t1vYt8ri9q8/cCtwGfHev/+63Om4FTOvlcFztef6m9j+8yOtO/Ycq1LueY/dnW5zvAnW3+MZ0er7OudbnH7A5GgyruaX2On/Zxe+Dko44kSV3yEp8kqUsGlCSpSwaUJKlLBpQkqUsGlCSpSwaUdBAkWTf+1Oix9ve1B4qS5I0T7Of1SR6xxPr79ic92DnMXDoIMvpJlU9W1S8u0eeeqnrUT9nPDkbf7/rWAusOqap9D7RWaaXwDEo6eA5N8sEkNyX5aJJHJPnLJPNJzgEenmRr6/PIJJ9K8qUk1yf5zSSvBR4HXJHkChiFWpK3J/kS8Mz9+xtbd3bbx1VJjmntT2zLX07yliT3tPY1Sa5sNVyf5Ndm8zFJkzGgpIPnF4D3VNU/YfT0gP+wf0VVnQX8fVVtqKp/w+h3ev6uqp7Wzro+U1XvZPQkgmdX1bPbpo8Erm79Pn/A33skcFVVPY3R7/v8u9b+DuAdVfVURk8E2O+3GD05YAPwNGDrwXrj0hAMKOnguaWq/qrN/zHwq0v0/TLw3CRvTfJrVXXXIv32AR9bZN0/AJ9s89cC69r8Mxk9ygh+/EcIvwC8MsmbgadW1d1L1CfNnAElHTwH3tBd9AZvVf0t8AxGQfWWJP9tka7fX+K+0w/qRzeR9wGHLtJv/9+8Evh1Rk/gvjDJK5bqL82aASUdPI9P8sw2/1vAgZfkfpDkMIAkjwO+V1V/DPwho7ACuBt49AOs4yrgX7f50/Y3Jvk54Laqei/wvrG/KXXJgJIOnpuBM5PcBBwJnHfA+s3AtiQfBJ4KXJNkK/Am4C1jfT6zf5DE/fR64D8l2QY8idEvOgM8C/hSki8Cv8noXpXULYeZSw8y7XtUf19VleQ04GVVtXHWdUnLteQ1a0kr0j8D3p0kjH6H6FWzLUe6fzyDkiR1yXtQkqQuGVCSpC4ZUJKkLhlQkqQuGVCSpC79f2WxTttsLRLVAAAAAElFTkSuQmCC", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# recover task\n", + "task_load = AwsQuantumTask(arn=ionq_task_id)\n", + "\n", + "# print status\n", + "status = task_load.state()\n", + "print('Status of (reconstructed) task:', status)\n", + "\n", + "# wait for job to complete\n", + "# terminal_states = ['COMPLETED', 'FAILED', 'CANCELLED']\n", + "if status == 'COMPLETED':\n", + " # get results\n", + " results = task_load.result()\n", + " \n", + " # get all metadata of submitted task\n", + " metadata = task_load.metadata()\n", + " # example for metadata\n", + " shots = metadata['shots']\n", + " machine = metadata['deviceArn']\n", + " # print example metadata\n", + " print(\"{} shots taken on machine {}.\".format(shots, machine))\n", + " \n", + " # get measurement counts\n", + " counts = results.measurement_counts\n", + " print('Measurement counts:', counts)\n", + "\n", + " # plot results: see effects of noise\n", + " plt.bar(counts.keys(), counts.values());\n", + " plt.xlabel('bitstrings');\n", + " plt.ylabel('counts');\n", + " plt.tight_layout();\n", + " plt.savefig('ionq.png', dpi=700);\n", + " \n", + "elif status in ['FAILED', 'CANCELLED']:\n", + " # print terminal message \n", + " print('Your task is in terminal status, but has not completed.')\n", + "\n", + "else:\n", + " # print current status\n", + " print('Sorry, your task is still being processed and has not been finalized yet.')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The output looks relatively noisy due to decoherence and gate errors in this relatively long gate sequence. However, we can still observe a dominant peak for the target item. \n", + "\n", + "In summary, we have shown how to implement Grover's search algorithm on a classical simulator, as well as on the IonQ device, using simple modular building blocks. We have also demonstrated how to build custom gates outside of the basic gate set provided by the SDK, and how to register these as subroutines that can be used as if they were any other pre-defined quantum gate. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "# References \n", + "\n", + "[1] C. Figgatt, D. Maslov, K. A. Landsman, N. M. Linke, S. Debnath & C. Monroe (2017), \"Complete 3-Qubit Grover search on a programmable quantum computer\", Nature Communications, Vol 8, Art 1918, doi:10.1038/s41467-017-01904-7, arXiv:1703.10535.\n", + "\n", + "[2] Nielsen, Michael A., Chuang, Isaac L. (2010). Quantum Computation and Quantum Information (2nd ed.). Cambridge: Cambridge University Press." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Task Summary\n", + "{'arn:aws:braket:us-east-1::device/qpu/ionq/Harmony': {'shots': 1000, 'tasks': {'QUEUED': 1}}}\n", + "Note: Charges shown are estimates based on your Amazon Braket simulator and quantum processing unit (QPU) task usage. Estimated charges shown may differ from your actual charges. Estimated charges do not factor in any discounts or credits, and you may experience additional charges based on your use of other services such as Amazon Elastic Compute Cloud (Amazon EC2).\n", + "Estimated cost to run this example: 10.31 USD\n" + ] + } + ], + "source": [ + "print(\"Task Summary\")\n", + "print(t.quantum_tasks_statistics())\n", + "print('Note: Charges shown are estimates based on your Amazon Braket simulator and quantum processing unit (QPU) task usage. Estimated charges shown may differ from your actual charges. Estimated charges do not factor in any discounts or credits, and you may experience additional charges based on your use of other services such as Amazon Elastic Compute Cloud (Amazon EC2).')\n", + "print(f\"Estimated cost to run this example: {t.qpu_tasks_cost() + t.simulator_tasks_cost():.2f} USD\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.8.10 ('venv': venv)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + }, + "vscode": { + "interpreter": { + "hash": "590fab68195cf107911461461f81d5c472d3d6127f579badfcfad30f03e5cab2" + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/modules/1_Continue_Exploring/C_qtm_algorithms/canonical_algorithms/Grover/anatomy.png b/modules/1_Continue_Exploring/C_qtm_algorithms/canonical_algorithms/Grover/anatomy.png new file mode 100644 index 0000000000000000000000000000000000000000..ef12832fac6bcc9b7e1633d4adc13f9096cad6b6 GIT binary patch literal 18105 zcmeHvWn9!v*FUV1f*>JCBhu2H3o0mG3P>ZJOG>jKB~l6^(kLY&A>AFKlz>u8$I`XL z0?Y3IhgaNQT+j3J|K|DJzSz$?%$%7yb86-zO%dA;iMMB362EPa6yC5(fB= z#>WLd9jhvxv9Pe^?e5;yRJwbYNz)BtZRco(g~jp8!pw|J={Cm~b8|DZFMZscgl=Bi z&!0zYn?c)Ju*0Q^ZbtTW;>2QO%gV75@zYTH*LStxzvo+j)>{@ip*82!2+Qx!>nk-s zHlkEL;0WSotrWlU0E0bWvH0vg87^)Y1(RWILk?EQ7FL&EJGo<{AI8WBApWrk{LJH>U`nX6sb<7g%plkh>BdYXK!I z(}YBGRvCwoO!mFjYt+gGgc&|PzLJEBxQcSz^5$2y&W>@#Z{O$?Cw-DENJO-p6!c6T z|8vECBBJ^-YHDvWmX47i^t{a17MG6qOrJTfZDDmmZg<*sDUymFJ;lZSX@|i;uiBWI zjar%^{mw9$nMn)=Qy(21e0=>*3)d$;apA<;CkI#0zn=;S-RMkl^DN zbO-GO1U0)Gzqz3pOu4L3V0V1MV+{N4Zewu}8WZ6O{IfY)wz7D~<@R&Ky# ze~$iZf&Y7tKWRzxowMsV_Wf}-zgmIAktLMo`}?3}2}u;V60or3u$1n}KlH}loWcvb z^(Y;=TU}osOnkd^gY3;MEjLBdYa{K=^N}t#azsoYVCmSGBJjO~U^nDt<}^w9na!j% zu_fYpKP(b~lu6(8^4_>EdImS#2~SB`%h<|TOIh364w>F6F7|zNP_UJ9()iHg&0)To zwj4GNh30P`!Nru+la+qUv7A{!AVQAcKICqi?QB!YU+m9I#gE+HyR@-&aRAWU>o>x` z#s&ZX?Y*+TcjkWdkNsfdNa~wSH~7r;uxF|snr)1sPu2y__>vC6-di~xqDT3;j{X>o z%A4B+3*ARykIQul6WG*zSKCF=4m&f7M&-Ky+yZrSOXa8u?Q(B2d7gSYO`d8pSyv1# z)f--8ny%>8Pb-;Dv3B3zD<}nbE%qd|Py21t>pr$hL~2cD5Thp*9lHL((I5~DWzEtX z!!`+c8oB6?M&^%8#!{O$bdMuUGwI#>#Vl9qw^_qq29 z74tR0%b6p`FiU*~rDpOqbK$gYc1ZV7uYGu+6GT-U8+s zmv-U=w!L%%goXo7RY2>ND{Zy#464AR`kAn%CbzZ4Z;w?p0z{@BUyzOWm+{}StEW+O zTz)GX;QN-}{EpV+I0IR7)3?-lhhF9@>)UObx<@!67%eGSvHm|L#Y`OA{_71o$nJb+ zPsq`ug5$W!R-wuJPc-jxA?0RRPae-Z7_#JYRXR2KS zA9yWUc`WY?W=w~B-v=3R3`#NwUe6pZG&4APh5lq*a=M-HKZv&C24hL(0J5vl|@>a-3eP|R~RQXdGmu(U8k<|fR z`1Br(;R1J+2|KdD&af+d4WwxFQ8Rlhrf$8MR&>f^IER$!I#~x?9Ahg>i;Bx@TE8Hb zEBM$TABIafSZ9f+M>9}p&1zn1JT_W%!Zw@V;pZoL#KQudpgy$Jyu-30*KaBf>^3?N zD_FXkE_$_-%0v}}X+|ya&BZ|cE%g01E8A;a7jU0JmkYIbAbn72H(Bm1Im63Mr&HVE zJk>BkI`>`yr=A&AN=>=orvyd;2S0j_*I5{kA9$av=1*4AARYm_Gr_yFssWX3Kp&Kl zO@RVA6AjhcufY@fq}L&P&4LiJK;`m3G{4z zPAKy@8Ye}K!3~5Q8v*}Z>^3}=IbKXqYW*60L#S=cl`m}6l_6tcolS52%{U-xZT5MD z9531BdN^>fl8oGxrn}X3fW>oh%k_bIu+*h@JH9$+)8+yE6295uNj+*|l$1V-!@ZIyFcf6g5^@T=$XrW%Jo4LN9*u*&YL|Unw;qClXZZ1| zW=Km&pR8nuq*3u0P{{5ClPqQki;bCuxUA+TT}=V=F)Dg41})3**33SW|F&H*tUi|n z2wIlixR_B|y8m9!cu&YQA<^eWeSrQn*!7WIKs^CK7bM zEAK?EaL~vkEv1J%oe4NHNS)gc#O~Kf%a=vXk&yi2zO+Qi_@4EmX@c_#uFG5)RrmlD zjc9)&jp!8;fv19@f#UPeS=syMs-6`-7Uw_>jHVZQ`u%M!h*r-tGF+(Hu=cJzwUFWIa;OhHz7yrMEWnp zh=u>qGnH}t+z8aPbl7r$9KG#1dYA$UVK}nO<_~7X)lpEk8W_EBi1$C zQI;0c;Hur;$rugA96?DKQL}h>(?Sy#lCGF;-`p=1_r#Z8>$Dv;9W~Y=wCXytO}-kA zI+&hLETR)&A%bV(fH<{R*bTeUkD2ni3?UFH;Ml1&{1DXJrBu8{wox^`MDf<{EVn(6w^2^t25cv+7s-R!jf1K_yVKNcBu+++-o~IITPW3r zb8nf6-p^lrQn;+j2X*~%TM(Ug}dvfrzTyaqXA5hnu*D;ghJsoj{IK_9+! zAB=;d795{8K_4^WqUqob_tZ$>)ry4By*FMH+@QG+2wAZDu$*H!-#}k@-s&> zf&*t|OvA0osOCxn4+<~k)&PdXStv?Wm~T?leYsbjMEwMFV2VjZy|V~<(Qr@6^QnY# zd%cM3T-w>)wCWPnyE)K=uv@V0_!S;y#rFy=8pL$Dy_dHElV_i09ra8x#eKW%8?QN_ zsC_&&mW|~$1M0jTqsCrSJL3a^qW)_-nS`e3y(9-`GAbiR46?f&0zI8vj58{_ag54I zP*?8H&OC*|+wxMKX><*pDs!$!N7)!)(|HWaS6*j)D#=4o24~t6Ub-^EU8Bm^>eFvs zZujb^DZ+5I0?Tp>R;zU7<)y3QW@BwpW1mDy24iTf6zkZU8#*fS;FlOEGy^vsOjS-g zwRbcv4Xl%`!qeDm0_|>TJ@`Bzdm1|RbdslFiT$OCRpO&~_wmo&47BHh$|q5+y~-fS>&3iOrWr7L(hphEFQGejYZjW@Kmr6iH#!E9U9miBnZ)AXkkc0ENy zAKnR8>IKbc3SkEb!Rrs5ec*6)d8+0_10LRwRS^|}Ii#t3zzZ@Wd6)4j zZskVVaa-grE~Ta`7ReTo+8dWUReV>RD>OZ`?|TsmJ;{eE+jEt73)E+PY=Gn`5HDa0 zyKfbKmDTl>`Zz%xbnU>d=RvSB(O7x7tK`7tIcXb4*JJVYql%h$ltjni(+wdd2Qq_Y z>9gKpB`=1&Vdc~}(Oy#ldP4z`UrhtO9%jYghhDo2UBnDs&mA40nAT%Gcw}`~(Lw5i zTK!htdc3v{Xy^NbYM7f!&GB+-I~aoivzu}$yKtK4J=U)$gMP97*j=}to21-~OXAzk zct22c>TL==Y1Blyq5+{t_9Ll7z;4dA3G=;m?3R>b*0A>w9k)!VV;f<+=8rlafU5Vi zwr^7PdD;!7Bz>4$c;*!&^78@VEzVoHOiZWs`2?$`n3K_*9w!r7)rB~gO8X)7WaW!G z^pz{gC`CQ8pBSHRR-0-ElgHTe41e|L-}EtlH0;v|M5b36Psh6BTf*ESlHbc->t1^3 zE%2sQa{W^Rx<6f{LdjHbupOtUGK%Y`|;mnBZuCdEMquc6EPfp@fIC-BA0QWqtv1c#$ZJzANqjxk5 zyL;-B$p);&QUbYz;b+TY&B;VxA3=Olu3Nkg^l)(UDu>#x)gC`y2N}s3W(khP$<~e( z6DPgR*Top~j&RQAJmv_N3DMt`dL28GXTK+t_pe!$d zy&5TL@J+sj_(85nyhI*{lE$Y)jjtSD-XtGYU0tUz8RdfY7AGO7FXdOoBl}!8Yaq}h zZn9PkU*K+3$L(azSujP#)g!MUd9&5)oee&#n-HkqY}!{5n<`Ba2>N@9?$XSFZE|#% zZ!K@JcG8Q}twui0Qw?)dq7BzM&uNyF-5c=RO?nmm@17+p>k*DnM=drW`c>+VdXt6N zfvrCxUx2~_yEo^48bZ{#A`3#_J$w0V$bCRU%#PrmoQ4-&7a~hA6dTN``C#Z<7|H79 z6UpuSQV0HhV7#CNPO8=s=cSlCll>tbRAIqSs68V1*dh}ISyxO^^Hd4idGALDra;K- zFIZvixl-E=LN_{Y%9u6|?e6=hAJ%cPrn0z3u_tmR@>i9C_p5~)Z^~u%&uv|AgBk4z zKuqT2=%72^n(Oz;HBT0-$uGTgJN*DfMnI{>*#D6loA^x%rqbry8csCwUXtG*iasT1S=?zS(Eu&IhqgP?PA00yR9&5yenTI` zpRUn3I+D|T+y_wyIZGE9!=1Un$X1egUdn?vPKQDU?XIyUqg=6Ap|j7g(^ry>*3;Q^ z`9G0U)Y%0YMRl&1?yt{}j-crZE`L&fFLJZh@35M_Xk48T7b$(6RP)P$DpUyF%@Aua}cH_}>*xC+WDs~;muKlgu`;B_M9LKw5C29CHYN#)T9#5hxg&m4(m*sSF z6pwO^5n6>q(VSE~6#mI3*JeSfLpF*z#gs5aMC8oVLy-9L9X&!clbaL`FR6pE|FC4x zZ05{eNv+cXYV6f01^Y7sEL&OCA~Tcuv0;Pf)|EPWsy(T>TNPtBKW?c8zQwnU8+W;# zw!MZ!*3L6?B~u6SLp6#}HKN{X+qTYCHtz>X+(uR<1tGt;jpVf&opOzvW;q4oIIp6Y zS`Ww~TZ?V4exturHSN1@X@H7ATeKv5zqcQ^rZeA=?yMCvrm_bBOa|o}< zNY8b1a6_WhxV~M2rHXB-UcS1KE5{m7daR2@+w+cc_7%3Um z=gWh=sl;dt*++qSl}qP$C-x$;v1-TnO8f|y`Vo)!rHOB@UdCCy;$weJ0y^{_p$75Q z@qKlzaas20@+*qGj?dSJZfF;@JL#?d6fl|qE)ng(mG_NDCsRwI!A&H*eq^Qc?ro34 zuaLMcfo^&)qc&xSmmewctql)Hq_(2Lx`mp}({7un=mlxlp^jT}aIyP?11wF}Qdd zG-XR2GFq9E(En|OCz*{FlLGUlDOZlmG?N%c&c?=7&({YhxkVffPL!r3!P*-Gx?OpD z5%GKk?7NPpB4}~

    Kun;3{2IlCt<~v`YI4#tuc5@lh`J3qx@REN6SU>I2>D!RXsD zpDNmy=kC;)MEdx8A=@7&wq#nXu1;3%(ieC(&+N-SToPFpRuJAP3Ah(4z4yiP-eY^u z4^!`|BEh2jdKUa#xJ4(xiyL_5rZAt_$&P#QgVCE!Vyhj;aZDNLl5ux33oKH87xPs0 zXsx!D;R+6>QYMb9pCQ&I!Vybp*Z7_decP>j<$eR6w;}Q2=P_3*w4~AIWvyZeU!eP= z`qK5qg-#wsO-qUL&MO-wa{s#TJBIz}rdnf4_?!Jr6f*t$k;qR}0(+Qu1%LL-S63$9 zt{t4lA&8E8D-{}w=W0K_pyoxb2KF=!vuCt6*h*@YY6SHj$5^B~vEIcYE@IS|-Rx07 zH=S8vQ3Qw)+fzsc`j6J=n(rv|$56odNtwEX+@->TVs3F=u~pOjF{0Xf3tq;BIs9m! zR&DG*z+v`reg+S8I+g~;JzEW!O;gajSI6(_bT3U|jxNl)Wajul2^(HD=|n3!;gWre zBR?<0;MgPMvs|#9tE3nAd+SVpf;F*mkAxgUtZbCdYHMwRuDlW0HAcb9txM0s%##rN z26*;+Hv|3iOnp2~W81gWaZj5?kpuWTEL{%@`q$q-*-6n;%9yIj`8%mmAm-ScyjIc;$`Y0HH#c#6%$r4L!7zmVu*$=R8( zY+ZWk6u6tq7r;r7GgLU&wgd-be0;T8O)Zr8Cs%M(SiRnd#=Hm9h-gMI_}UKnMof4R z-Y!VYrbq!RkEZ}{JPOT*u-cdKINC@Xd+`N1;C;wz%5ya5G3>ETdg2)eY5;@M7#a$_ zu42T5ka|+jL7K%%+_$=?%>oxp$+aGkKQItmEXq&Ha|PVPPnEQpj|?AvPNKO2!dZ(x zr4T$+bU3Zeg12SRpc`J(Be#KfO|?M3)z%$bUKM`2R8+S=zI5$if1Wk3a{*7(sEG9N z#D`D!=I|_JT{kO%3p3jQ#mAxdvDdFwm?^UpO4NR^32JT#C7DX!tBW3d{TAWF9m$4q zWG^}uCvkJW71X@bb|t|qqM0Oy?HL21^q1@xkzW%Pxdb>$S3_q^DPzhfLs>^H#-9~$ z_-7wvAe8o2Aonz0;9yY@YF;}@GQ`BAcuVTmKIR-|Qisn7jPe;mDm{nj-z-@KF($#q zl$0||<{dJQ>2)~190wbo7L}q@a58T*UcrBkeIp?V!A;3Xf$I{ZSa@kG&1F0{i4`aR z;m59nJ!u*{Rm_X~HhtNjtBH#fhFq`eW>XCjTdzCP-;x`qPZ_gHP3xQ}<4P3FPd&AX zEC`;hip?JH%Qh*8rXJhG=`U>CX=_A2{lNj$ULQX%ty?Nk>}@UE=a2`$UA_xKyq`OVL=`V z??_+2?q}ic7W(#z<7Lfm7j1&>J)`nn;aWVC%e&MFHA*p6#QXn+%nv7+*%a`uZ>DbZ#b!n|HPaXUu)-(0=6y)H-0ga%C9|bkc@422?NzIQ-N9~Coa zE76_ht+Ohc$u2|-aScNY^&Gyf(X)VcvW!93ODVY>TCF~3Ea%B(gB~?AICy|R3N!Mw za@^X=xid#y!Dmt?E-iv7Xh|2xN7>B}9I#Hk#;+T06;Cw1opg0$!Sw;&%&uozQWLsD z*ep8t{5>WT?}+HBZn`HFs334G$<0LH38Ud{;N^GI%-N+7!4}3~4DVUr?&uohNSZ+S5VrU2%g=)YOfp;zjADK49<_`y zz`EiLFhx}pTm@tic$>7Ee@fiPw8fBPMWc~ZWCkecS(JXRTviDmGT%{(?9Cv1% z%@KN8#Gu!A1SJEr?SxY?-LjVZedX87zOyX*6LM(cVE3DPq|d^ZvYtE=zv&zTBCOz& z!|C0up2G;b!|0jpf+%L;iqlr+ z)Ma(+3YyuU9BjX(_#_pWaEHe?V_E}I(y}%{f<|_^l__u^!M+1`#;4#XMIn6rUqV?p zmmfR$AsaRURjkME{QP2Lv$T4tRtmiWt&LYY%~4GM%Pz;HdfOGvkjK2iK+5 z08R(++I?J}t>;mkS#qC24xc_N&T8>p`;tElJO$8q#W7}PEIRzX5g`As9Yk}~8AU}R z?VWkKkEo@4*2k4jw(I+XXW_zXr%;m?FXVcyu(uu_bdYO=*1E&Pfh0R?$lf*aq(>Ihd*L?M zZw8)UG4(Y%^*NSYM0*Rr1Dl%+-AA)%Rc@lyyppj1F~Ov+c$>J$(K(q_kFJQ z&mTdN?BDXPEd&{3UFR{P&^55jJA`vIALP%M#Ami++EnZC@Sg=HnpqFALonL4#=mR9udz#4 zs8LCfEgB%*{*O8SyM^D(;eSuzZ`t^-ApJ+D<^E5r^9r|zlRL>(^EudZIbFFbzC(I^ zGfd_*wA8~KZF7*PuFoAhZb~EBJxmp`GuCrAUrf+y8Jk&k%4a1Fp+Pd&Gjlb4`pfG_ zvH0dgxFK+(6My`p4Y0RC_V%0c+o6dhHzbduydqpM=D$Xci$(BT%(S{Uc|)Lq66-gl z_0aWp5JK}#no}`MMc_AgL=vs@+Q<80{H~32%Xzco9oQcnKIs6?-8_V_1k|r#Na9deZ-8YfzX9g zDa|Yzz_R}kzv>+JPm3P}aw6wPLTHO_{1#sQvMid!fJL^a!>hjYw{HDmfq^-wQPnX& zqc57|58;3_5Qz;jyiiY;B{zAQ=zppMBz$-m@Iy4+twk4%yJnUXuw18X5sQnC=p!@W zKVlYUb$@qT=Mq0C3M{wkd&=jF`};x4k1XkOb>aStM}KX{HdW4a(oOU~Qv^T3c_U5P zHrx#18E8soRvmv=X_abhKL;btsIMB&HA#WaOERlYc(0U2F%Zs;b4RE{EWd_|+|jp= zdgm_dWsHAioA&&;bgD?+L4FQOWHxh#Qf)JwHzibGHAiirBr@xmLURY;P*K>(YCU{l zw~e0pb`1}vd@hf-+zy}ILqw*y^J5*P4UtKv5a^=ICTkn}Xvx!PM7O zsAd<9^+}0l3 zX{EgSXLArR0$A#@t83w3OZ|(z9IC+C@+%8nthLQbIhRCfUgyM%q{0BXqEfU|{Kv$= zIv(l(lv27oi~dE5A2{f9TDM^1ls&{R7Y zb_S|y<%^`+0MWgYEzI&SLF5D|^)1Zn{)^OGKnu)YTjyNlpa>8W75W&#xGs_+1T>H@ zdMNrL2S4PU>(l>%!`P>+drWQ}!Ef!4cpRIq>6c945LW7;wK?DrAQ+g4(&$pVV%}D` z2L>$Y7}^SQ=u(XgRNeODa;} zHLJA};h%L32i#R-z~E1XKQ@UZmc|#}ILS0OINg?P_J5qurD+(1ARSdK%4wn*#Sb|1 z>7UL?q&pojFI?giE5@J(*Pg~2%7OF{)&J>IqF(s! zf+0sV?Uz<6Vgi^fdnh8#&h{s>&}M}xzTuXDWf}ROB9bM9qb_qW;sSH+W~FWJqHzcX z%B|{!ygG`ul!Mdk8%LWiwzr(@$ zg$r8L2$aOnaNnOeyAZ^$JO-2~LuP-g=AW7^SAtKCI{NzRDfoiN@YMwr+lHi33NU%U z&oRgin21KVoGFces!H(x=`F~amTY`DEdW?ip6%4_KpvzoI6t-ipRtJmUw?Rc5>H1qNjX!zDxhM zxL*eNLn$CoVI;As|GHjY1I|@}BPHVE(kQP3PGqOmb@(DFjyu3+@f8sNiVxZVO8?6) z0Vnd#mf<&+{PJS}UuK)z@VeE`E1Z9yCJP^s+Ve-ce>Ten69P9+J>+bS-9=Iq=P?Mt z$lv|rxd3aL1C$6E>BQ77lDY{vktj`Jl7CDLtb^+|Kxr;yA@6s-{vs6$u<+W8<$py| zVSr9@`@6t|FOqrzggO5`jNk6W|2>Qga;t#9Px&emklL1&E4`^=kU_;Xk0B*<{MuVlCxbETRHyLdZ*l+e2@|Y4 zvmqqmr`yfV#^b3aAQm#};Td78)#q+5<~S*&`W3cXG_0ap>j+}Gk z3lPZ-=(zsN^cvp+OsWFju7d(rB3lYjpn0#CW^{^q-1e)$0PnMlM(yurbn< z`4BQdb#(tvISI!{0VU={=k?aq zLe{-62h#pfJvl!7F?cgoY}x6DUx(9zk8_R^D+Us(*OrG+^FUd*w>N+pNHOKF>;RGr z*F^!q#8*6YWgTlN_kpa+ro9dyAYwgv%U;&!CN8)ia1GlV3-F)6PRiqXi~E2K6`Mwe z^p3uB?NZxSsSVP=vvpIF@sN#%)umX8<+sd;<}J^XD*&KPnW0w&b5P>H#BDy;7It@e z$}T@0w~9G^d#iq1)^d736aXFZ`=b$=8X7eFCqNOj@-qkfpXES>R*l(ULwlnSfI4W; z2a0D)0W3}grLI1+YN{xYBk&qMx0s;8;QSpnFd)7VT{>#wM|`pYl)n=Jh?jvZyP_sL z>zQ555+5|V{^NlEvQTYzbTat3M`M|Hc*83!2m@5Akr+Z6J;ywT)!NqzOBkjR8AqW& zr7O1>l>HY}$s-OxF4e>J>)3xO5+#*4`WW7R4#Lwla_!6!J>4iDxXOs$iD-{x&!9d8 zrj<7wXaEXizrB=Q1B$b52s1+PEzgVI!m9xp2&VB(seuCJ*jL=){lwjjP*m1&fdb~R zx|#mGww@@ZKg;W2$g2sF?y}oS6(O}%!}19zCBADt<-HJdj=)J&1q0ZG1oVOH6osI0 z$`=d|#79LRC`)N8$j?Z*e5L_D^C;6ehn*mQlmsRU&oDas4X?MOfYN(q4Z^7FJcNwM z7QD9e74tvcn5`o*4{*w~!F%_mV{#y{#R&I)33i~;o*_iG`MlB>fPy5A zpi2POgvc(a3C$!19FDW^(5C>{vb|op=cZ?CdhMq(81y;jCfs$Qi@0Zo;1|cH04F^| z-~GMum!hqZ29KB9L_99HW;HxLFOBECjND6VmcE6w!6hWv!~O7W^2ZG!>reom!gKuG zU`u4wNN59qG6XjiNND5(C1O=`{*PntgsSk?-lB79!B&#*1lE|^&+DUxML&AiOg0dO z3_iMRT`Ulsg$!XtnT-Lm-R9a&FE*%}iGBPbJ#gJ{hUO`NyV>dF3lu=Xp=g^JBV3K9 z?!lgIk`D+d?6ML}&eGL?S1V)BQ< z01{{CiBy=^Oh6cfQLV0^GXS`JD5f2qLsE7C1c;E`3rssBnxB-en&oUiA56TzoA1I5 zF_R_a2?XFYICZl8ZcrAW-eNmo+s~ojck$JITta+BscT~p04Srhi2;CK!le=(Q{tNy z!=M@R32LGQmsd9*0QjTK zOBN)mY2u%)4?kr(3YdeSUxO`WjVl6?4LVi5bBfjjodVd-#__m7s79?QZuqVWN;j%Y-x`%d| zqbS6_ZP;fog%{r^(v@Jvw-iXavoh-7%V982Z-EXB`X+|gEf|*RdB1~TV8o4L?~M|6L@M#^n9#0GjR`aGq@2A=d~2*GauUF6|W^z08EnbjNCwL zCuIv1jR{IT&n0VS)dN9e{VB2zkRyQcl;libPPe?8X=4GL*7@C&jitY&dfKIb0_M5Onz6kpzF+%Sl29rG5Bmpv%Z2=i(_ zor>vAfsvKI@+a6Mko6hdkWS~I$g+}u75RpAq(kT}V>NHD%1EI5fFEed@d=ZhVsXAF z=+fx5hb5o8XvW9G8}eDPc?3R~!>a+t6qxFT2OOnKaf`KR=9zaiI*rk^*iKSTqm|dG*4c{Bm(usj>IO&O^RnWiU7KG0|7g1qizWid~hrhA?vC6#!PaM`0; zW-sp9pPsPIAOlDHy&EIWK=9_|J>u!e`%s|DB{I_4n2>z zK690mR6JrA&wUI&8$#?Y>w4#$9ZvGu)oBD17U8ETRnR;jsT%DqbDg$6O0VZUM+=A8 zqkE!gFaUH>%r2G@kym(0-fw!7miDYT&3isFl97kldLSd+gEK1^r-;+`;159eib=4* znc5^xy^ZD(O^ppJq01`^`#3Br%>KCWxq+IxB{vE>!2qDMcXLzkAK?TeB4qd9rF?U7 zXy(+(3yok5^nSqH+6_kU=KR1qj@Et8mMOqYbE7=#hf|J1Cx8y7VbFX3H6)18g)wlf4?^hO1}RcD*rW6>HJ4hloZtO72h#?_WuB} C;|i4k literal 0 HcmV?d00001 diff --git a/modules/1_Continue_Exploring/C_qtm_algorithms/canonical_algorithms/Grover/circuit.png b/modules/1_Continue_Exploring/C_qtm_algorithms/canonical_algorithms/Grover/circuit.png new file mode 100644 index 0000000000000000000000000000000000000000..1da54adbf4192c8567ec4ba9207c0e76b71a4ed9 GIT binary patch literal 29380 zcmcG0WmuJK*DWFvDpFF?iw@~-X{4mPySt=AQo36aL6in*3F#K;kPZn+={om=d++x> z=iA@UKe-PF2Zt&xC8h)ihhPKVZzCgu|H;spQ{dq4 zh+B$^zK|9bC4J#!Z)Ry@3I|6MXKY}ADa}CBZD?p<&^$t+9Uin)JMavAbxgv~aqwboMch!-WHWP%+1YB!|Q;6Gn~6^0rqf97lwj&1MMlnfM#2&Xt-#|$?_W8+cFxO*c+KLde}OE z0f&R*_uvI@ZB1PaNj+?B?3{T$1Yoz{;05oYUo*i-Z@=PVEdbMydqFB{?_^5K!N|_Y z3=_OhN=nM_WMamvBqs6K;ov6$n1zdr11}SkySqE1I~$|DlQ|O$4-XF$Gbr?QJ zr_P>sE`}aY?VQQ~oaFEGh?zPYJ6SroSlZi>LgzI!vUhb6fWe>({qyh7eVTe${^v?| z&VM}?ct9rT6DAf$W~P764G!gpe#`s9(!%!FUPY=V$t7>;>;@TfyIfgA<067JH`R zapzYS%BEPLxScxo;j6%TZf)}1z#rgyoz_VymG$yUT6+g$~-e9CX~1LJu%n9!BmB#&#TY)trcDjy6U@%|)L zD4HnMw_h8~+A7px9V=AsVz-~0Rle?s#LZCsq~_Txlh0{8ow_;p$*Xs0a;C~Mp`ek^ zeTN;1(80e@r>>&lvX|noh0}u>YmmV3jEL#)g%ryiARdX6Cc{|QUS&T&r;N{GJzfP9 zDO7rIw05)8u-mV!AYgj`{(Yl0O3{fD-QutXasKn)BMJklEXMpPK4+^bUN|-qF~qjX z44O-YgASAK^F9J7oHNz7Y(xBqug{iag!q$mYwUDK-ijhA1fnjf@)tF@ZkeTXSg#ds zaVpKCSs8C zH5AWYfkpBDFyns~tWZ7f%f|O?`3~}Eb;m$>_ZeHR zWpQK}(>RVsk%ydVZ{j|G&wP_lgE>83J7w>2`oiMTFd7c?e*E{ICy}J79&#H-K09^m z>4$@SLxk?Lj@cLAt+SF8{#vszjJ;!e!VM`~tbf*1z+-gbU_y7&;{GZ_in-cj^ zz{#A~5O1Y?%I!o;;TUd-08 z+tk3MRqcEAa->k1T7fLgN6|1xZRup*k831fjtwl)BXQIkn<=9<8ZMhj=BGzzr^_(| zdS1Vhk}H;>l*1!*$=DWHD_<75irOJukdax53Tr$;y6F)kP#z6SL6GrL)%glrcx595kN% zSg{7n_(`nLPzmo~;Bnfd8dl7J)u^v>J!PK5F;bvVgLd5X;YGBX(b4AET0h$mJFbpH z0FxH8^P22PowK>~#jlzIQ_Rr<1(K0Z>P-4ou08RT`693Gubr*uD9C9040k_NU1~)l zVFz2B9qjMHZ}{(W%ue?f)l{S<#XhR*`;5JQ!qH3UHfcCaANTglkibc18oOn@B^aLP zgOk;^+Rj}>?iv_0l=t!r(e;cnUv3s!(&={G-ts1jRGGAZauN+R15IQt1V3ILZKh=l zc%2(Lg&Q1>CDq^`62~ZwzrV{I z4=~$@zN4HoBk}n?tax!=Gw;i0-1(XXnQIsm{(&!=5l_<<6imUw&c!ypzC2V2g7fUa zRu?PQ9u+yTppJe%BzR#{-u+H+U?M-$u@gVv^Kk8Kx-ruZS7z|~Fy|)K@Rjcj#pH^M z`o{xshlbDwy)*15E{t#~4fp9jRa>L@11{>W+yG=k+4}NEgEO%o^{z4+q6TF9Ki|bn z(~$b232YAO?MW7Adn}=h6l-%4B++O^8EH;9Fc^o@Xq6)n$Zq!#(6h*6;J(wGEW7#P zKF^V&@9P;}PWb84dsacHyh=tI;ZlBKAqef*3;V97(9XPQ=%del1L>T$Poxm7s=!cP zLs_TU=TmaHFe&naLZB2bGH0-isnQpp3%4yPjAmpIifNY|`dPYCp9LXKHTEzR)6u=q zuMmM-EY@%Kr445YLW}YP&r55K6qjN2{@w$eRFFE_d-JcLX(5FtM)p1&;4=FfjIwq# zp`U`h6Od8?@WToYfEjgT`X7tIO(5SX!khCxlsg0)JXMm|vwh)Pve@Gk0{h0{SFX~{mOq0Ucd2M(!aNb zMjWU)*CvMZHd5N=okWxkvK}6kuMv?N7WROh0K7@r-i7AFyV5*k+gH1O%+4R~{89a}PGf;eHG z<72iqkYSF9Myx~8Nu`_}jSVHlW(*K_YlsznZey@;qGp}b`y=zEMh^E!on0tR@*c6| z-h~N|`1gb_uv-^nMISkGZXMpBFiRVFPQ_Eo6urX4n&@L}=wHA!0P&Im(SApT$V>Uk1@hx>?Eua=TG+0{z|QmSa0u*yKHNa&_0D!4SYqq*Qh?b8OERzfCs+up zd{Mu1Wc<7rdhcm+w%Fc?y=U%Y*Gzy^=RxAw_d+Z51skLUA?!&Ri zyTE=smTeVH@})|#*4XDu(%qI#IFkF4M6N0$%TX_O)*>U5K zrQiuD{jn5@C+XBn2;-0iRi%P$Bs`FPE;{pUZ>~;i#<{@4b1V13c<^9Bf~qp_MZtiZ zXt&UySRf_ETW`^dm3H;cE+i6f1G~Ca95(CmA|uyM=_4ZdS;OM0h+o~qHwcCL8@X+0 zLbHtSUx)5tn3U8m-EXK`1BkWy+S;ymF{BaQI*>giXtcD7!(xKLHaZD!x3uvff~=QB zu)yi;gj!Ae^DSa?!-l_IE8_5ta%NG@SUoh2sDpP2*S^PL_T_pkw8gzwa)bwKjziYL z(>naeb7-cel>?{I)kqGnq&Mxu8wE=Q$4Ck4p zj>rK3%Z=9h%t8Pn%K+~?RbPQvtIR%fo`Q zaH@7*st<(+OoyAFN}o(`C!^a^$)%e(*u zZqHyEG3K5-uUj==%CeZxuh%ampTN4>Jchw7CR-TAB`?;09-fk~+rJ*qyGRFttyr_% zNPHHIO#U~8WIW@ublIiprJ9+uWkG2=<^0!I%ari&1K-|?7T?e^m?lBBF)6fXdQOPd zF2qO`Q1-s{2W8B(H5p?pa-x{@Jbom}!etMNHW9QU1)-}d&yDvfI^yI)ZzKsFF5Nte zha^dSOlE?W)r#a{axED39>QJlUACH9d50{+rf0)nUp*lIbzBwo-hn%_GgO`qQ&4_3 zSg61|7lmb5LEI>94$N|YcN{qu$j}>p!@o#66@b-h*+v z8+hmH$wqdUF9R9@hgD+iZY9^8N1KjQ59Q-!p7)38lwUC?;6;?^zT@h98y4#=(>|D+ zeQ@@4ad$n(k8@V0+IGfF=xp#y+Pv3#%niWThiioe*%eGUct~PwDwrVJ2Y6Egh^FtQ z_6swBpW0tT^f3wXHjHxaIKe@XaAPqeRPX@(BkyqVYOn9buauvQ_&m{E@%y|cCh@`| z+fM{uy0pJMc!SpFaW%nxr3OlYuq(`c6GH+|?sYPOG**$w_I-Ba;Nx1#b6(YTQIkB> zp2W~yL@t)^#i$$G>I|4=)z96@yBOm^y4o}|tOSJy0V-2m(>gKcF1P$T zN8gv!7n9*t9fsKF8^_uN>0M{hQjsr$_fV7t&z8B;=3TFAyAGuVvb+$Y+vWkfxX6Vg zu>#fp=c`t3kzm(ARPOcR0*E$PxeEf@*|$imAY_C@I3pApRdm}_h7c+Sn^gZAyC1wR z&cp7>s|IiP_u9~?`2!lxH$S2J`N}g~z}RahR!(JG;5V)>cHMO`U$N;?mF%CF8sd+D zT$huGrJoygwDW_HmOlIivFyXLbH~ah1ChfRze{pc!<@7?WrUlv&O>q@+n+5*I{UNu zCJy((78F6R0gw8YlVu+!qRvhX(1WQ(O2-jVA5E{hlfvV&#kSB4zTL(VwuZd~N89bn zAwk700${uW?iswLf$S*Qb`jX-l_A1rx9Zc&J+yAaJM8>nipj;$BE(hjZGmX^cNk z*KiAb^9@v9-v-3zC8M60b|B6z&|ZlzWY{;coN_EI)<{G>@%x2*7E-o&T55=yS=1pS zHJsfv=Qd;O__QrT_2;l8iLE$=h)`%Grz`?v?LuI!kAfH^V$eUpA2?#>tH6&NPj9z+kL)* zEVp!??Xotb2>!v;R^A<`OuV`{sX1B3d8(C4EbwyDbU3j`iIXs*QugFc&?DBT+STmH zJ-1w6>=wZDD=*PLUc=B0;2VidXyNQ9JwC0;`j;0iwxa6aJ?(I)=KJ7a(%tq0g2$K_ znf%YLT)e5!AMs>nv;}j$J0)6pi}#FtBwSFz^sCVlAattHPENO5;X|r-l`X_uXMP9V zMXIlm$|Fw9+T?8iD9QNSx`?yAfrRYj^MoFo2KjJ|>=O*PbpY?s*TWvKb9OEZs8=6` z#uzf-TL{T(joMsnGbjeryWy}~Ju~!b3qc(K+1n00 zrQlXdXtkl6A3%;`grdG5ocUdmwVI76L$HY+)hO_+KISuQv$TX@mOEic!&!4g=%<{6 zkZ8jlpVO&U7@2-2a}mh_T+?y5Hx1iSVQZKU zUk_&SHL!MPso~ShWB#C`xr*?k%cU}O{a&DuW8~wpmS(O+{RuD%mAQ6|NAFVVd5u#| z$-ReCSY&5zpM^<+bkTh&0Ew7cqe>8zt;bwEaq~J1W}2O0?~Xv#kJFG%u8VbPN95ek zqE^&uj-E?7gv6|R8{Ty&KzPUXl5@qmgFyppxjVJc8Z>}HooPTmV8G}Huyy*KyNF^s z1PWCs#1smGXDg{_zT(s<-ME>|hlm8!9iY69n6x_GA5ZLY;Jlm=D@x>)phQpfU5&cF zJUc8VcN9U;cNrF^EZGNSsD`55`e2qBhzxG5_}JNQW?91M7aS9%n%=#niDiT_@4L9| z6xjDO1Oe7@{^2^&aTI^Ap!eo{qWK~0=>#v6bK-3-$Awrf#^dx&26)(u*Kqcu8U=&; zMZZB5ov{!q&sA)vqt-t@JdR&AW}qejtdI}s+TxS-SZ<=Zf^RVoP>@njJ6e>2zI{41 zAk#vEkI|-J^m=pMb3XuJ-Q_sbXoifImyfodz@F_VlNb(5^SN!8E!Qi(f6n>j8wi}n zfNv0>mtR_^;{TrMoGDl-N@{VHt}wyiyXr8$!yqZ^g5Wp+t6qpi^pg#z@SfW<3T0l> zkf#fWSgI0GIwe>O=xfzv}pI>nka z$9JdG@?$%4bIlmqk@ZY<@uGq>6k`Hq0gV;wrEiNHKnU~KPXdvbLUsAe@pK;{;AW)5 z1*KJmkpN$sNcy5wPrw-@vZTopRM-L+JVSBo0d*QKlCO2b<}D2hTd;?CpdUgXvyj7D zZm>Qmy^kPMv1JXnz<6G#0C&T~K+?UMh-NE=?FWm`@;RO=q?2C_6P`wf7#vG_?R$UG zvceSLG%&?s&fDq%3tr3*_L$4h*MnX*k2ceqDnan-w=w|>g?d)I-H-Y)i8a`PG%HFn zSgL!kJUUK|ir&*NGN(G9KKl@Kw%dG@U6POZQ3vLEwsGCgEu-$#S*E|!!JVdXte45C zMyC#qf!G2QxZ<_ZTYD%t#kwOvz%Fc0rP54Jzsh#5(UUXJi8ZNiBR|9D!vw(a6w0#W z(YlppQEySPsO4of{3mT|e)NM43$g#+WbG`SfImy%gxHaNRc$WY>BQ=4#KMJv46Y1X z<^0EyYe@sg$~i8S2m_jxW@#Yr7i>LtOae6BY~F5%W7dl_z*9ltAE-7|WH!7~&<{>Q z!hm%{#UTP9>ZqeV8(Fs}LNe?{oz0@~kBtNqB|yi?0wKb7lubxOUbRGLih2BdQoZ}` zPDVAR?PgiqBN=t&yQ++8W)E-~e-B)RJ0_QGK?Ly{V5tw~w86zQmEw*Ha(r0<@yj)v zGt$9~joSr^6l;pw{J^|kh}wP(R&^Sz_z;qygmI8{JQiPZGFair7c1w-!37RXmK%?F zAo^hw_qY7Uj=L&u*D+TyDKus^SlKI4@b z1$sq5I}os>UuQ%^arM7mG!)D)fB(!Z_h!(ouL8=M7Wir=85kJz`sdiUgvvi(zrmo< zZ)*H&U5k-^MsVU|w6fCt!2ZuS{;xNC_rT*c{X|q1xm^RdLk=y5zhBp2_}7?l&Z!_K z?RH@p!h>N_8BKo3HnD+8zBgmvoCdg53b(SqZ#n=0dI-4mNB>A^QmD6dsB9{8>*L3d z^YVq0VDOeOX3qnYO0$7<_M{S{KXWbih63CTWtv4K6hCeUI0TtNr}i5^s4DPzGvvwP z!?EyKjDpkn+)LU!+A%hzZXYIq8&qcDSg95Ni=Ccof|7&OhM$s+4=Sf@L?^U9G z|2&DcZZ3r3?TF=nu0r|(!Nd^j!;YHqe}4D()Ij?o0NjGkPs%aH|6JmqsS^VSQ%oX! zY#7t{zoz`Jg%zL!5$CusrCkAZ{_n;1=RGpC&I2~>IMn_+^`*E0V476h8T?$st(Han z%X@Qf!#tQKlL-G@G1G{u!9NiYjO&X)VL+J6Hn{zIZZm<1u}2Vabv!eqQmUs5ZyX%$ zx%=fr_Sv%l5C>#~zg$oK29@OWOSj!Q-K(EDc8YS~5pvNd-|wwyp_?|lL0J!!NX!9a zpVTuTT0N0oeGs?!6tDpOcaR7To~JPWiaZzl*bc!C0D}g=JosD)59KXGf{)iuop~OW zi8mkvXJi4=ko`6Nd0CJvh796dAaQD|90;p*g)iO)Ze7dnOajG^7HlBP(GQAL3Ir#0 zKpU`!bd0EWd(mC*y4AluRf*axUXgqNC#wmbxk6qT zhf{MGUiEf{ze_G8sq3+TA!4zesg|3UUZOc0;F@O#5ZJshwZ$;Dx{hJA;Q7yOcE;_Zu!mq?SkVBnI%|tc zPq%mDvsqZsUt!uO3$~(ntI=$&qgm%`{1PnB;CitUZTl~#kbVnv<~L%IQX7u5k&@Ab zmVmuak9WfGgUGXya^tSV#FP?|WF~z(d7-P{F4(0`&|)QB1*)ZVr7|2Xx4B-jg)4Y18Hp3J!*9%fj2-E}dPv$NugFd~$+s zb#|U}VGhX-xg~)God&p}T@aUg8W>fBpe+Kjooq;%_s`*XlFx~IZ|Hc+?N9xsjsvct zst}ccQ#Os(&*-W24%xN2>sOSrh>^Ay?&Y(?vR{CFXFiB9Ln=hI4~wu(pI5 z9PrwFQ!Q9nev}yoG1Yc0t({x}DT}R((D}9fj>3kHTUY$Ec8uoPNQ~$`t^|eLkA+PdA;AafrSa*g3&bQ{BKP?jC@rv+of$&)8JWwZclsrcP@9ou{IYPbv< zV9TrXy*L6$eUIo4A@8ziC}rfIa#8^*Czb6#K83}0A(TD$*e>siPhY`wb2^b=(+)ze3RJR(NJ-Ic1_!a|Lk@f0zSrnqdqK#r zFtF{R18{Q-=oOKjR15eS%)J+fVE;|+_i>tMhOYHk6>O|fLNGPRZ6NulO$Kz*&v?nvMJhKX}~`!zmW(cUXnEG*4hmT=qA z4{_k&^7mqR>yTiX{4uUTr_PC!B<{uZXKU(sLGqTo&Y`P_?sU3OT)nx)vO8RMvl^pV z8k4TSrpKa9IhVGK4pw^9supJIiGYU6^uuB*7I1rCu)Maml>eheE%%iZm;?1Xx&oVDCVOZB}v$JfK5xh=N@A$c<9%SX;|VPRy_US<|hglMA# z_}eP*?+2%G*=KJ6k{BcIE*k$g-}T~IvQR>$Dqa0+$v2P%;PP;Y3m`pC_aCk)94yU% zpO;~9<^`&5@v8x_y6w0__(6#1^L#D4bJq6q0onbnTyH7g9d(!)kWzh)U%DjIQ?_MN zdV);z*{2o+pu=hF(kZVNP&k>V2=SP*>D3{DMAa72^i-?L!EN<7^)fC?gsH*n#pg+M zt1e!dy%%rw%UAf$s-nZj4Qp!uoBb zMy7e5*ckw@?I30_LePxcnuB5mD|w+{Uf%6R=} z6eWpN`_W#|%wyhl~24PuB^C{ZJ@SCb7a$(XBNCEOxvrL5XP{g4*tw2_w&i2TK91pFMkxC};VK{j&NQD0ph&Fs@2%V-A{lrtxfpFdbK1I)} zr0Lvh>&9fd%5rVj@1~)Z4#E~vXFQdv2C?VZonpbFFLY|`vOKSjCW?`Jf(f2Iy5V3b zFe%h8DcED_S7JsW>~v|0S_JHXE$TGK){$1bACa0m@O9|O-&}jxmL7n$hL8fl+`{n} zEk<}AIXGv(%#fvRP9>*mHpK^@%gF2jZW#bc)BbC*JuC^U-4?OfYB;@F^%&UBb9J@K66J0ig z7PuhtC2y%`_-*p~_ulIVc?|IS5dLxoO3zx|dUj=?bsjF~a5N+pff40^KQR28c+h}v z6zHTS$10cVDL-|{u&88+c=5(O+tcjpBMIR9(58PP&fBbC{Zzkc_P)ygC{hj#S(n?e z7}P%PqTww;IRu2YOSs*OL@dtT63I=ZRr@Vj7DhY|h703q$$!rR98>Xjzz$^?(Q(uN z?jwgj%n7&6!O8d6cFSC90fc>%60d*v3jVn2O?{)Mx3ye_A;b06T9S`5&6K7f`{l>h z2~6KldOk<0l^**>&LAvk&vVEVEuD!mM61qw^va0O$;K?IjHa>vJQPc5gCr2N2`pEq z2F8sOkod)jJ|$w&Dl*1(FG+7SnbjSmUo3qwBmW#wQOg-Gy|+HsO>*KXIHi^^i+{m4 zK&@DhZVi@&vB%ptw?4Wvc@Q9*PRf8i%kz1QXZN}xqtcRL%nIkQF+N%!nZxtxM$bbj z@%Gtc;O)o=$D&RyTL||wKx8YUco>=Mff-G>7-3HeR3d@?wkRYQ;#6Q8+OG4UI!Zld z0x0B=Wf9*qtl%Nx^8y&gqj6h8p4DdHB{A!Wz#jBVI2S9+MSUk3BVS9HYzaaFP08}e zRH>NtGi1Xwk;d>alhc%NH-=@Z;r7#Z+Kn$KbJoT0@%T`muuD~OH;jhSSPpMyI4q(N zrve_|fJ26`vw}VO1691zkJ8bA`3L75-vwf>#J(BVnOM|%RC`G;cScn%f0NOpR^Tnw zM9@!0giYqb92J~=-M=Jv`QRpBCX)v5hpJ+H#bYu(B}bFVDNA3)Y7Lp!yPQBbv@88` z?1VkpI4*hyrTms5fIm*_+*P>1VpE52EL>?Fkc)L>u%6Am+}o23#-p+a%hK6L*u7YI z@ewhdr^at*tI4vr*hou-Kgsicdbddq!uS zU(EO|EYZFW^Ikwu#;SOZzKY%2&vQBXG*YvFOn-&9HEEI}0GS=-j~!SE z?XSM#E9+k?aS(s)Q&_oyxcpI;?<}WJf{b%%ldhf<;Sv0{tzyBnE~@|hYQD&0CVj`6 zGif=sDUY8CZ03Vi$?^cU ze3swEF#O@W`(;$x^L9W=p#k}9uEGQ$#0La)>ph_W3ryN8U@diHLyLseZjs+FHO^zk0P_TPO54la5sSP7jAV1}!&%7~sChKGt14WIn< zV&EuWu>t%X&qiK?EP!p~h!_sNVtI?Hd^@#m_XQc8O?v1Q$s8F6S@nE(4=5AAjM(`A z5)dH+giwQ%W-TTVLj94dAapoPb@^;~e|H!ZTw%8DIdF!B`^L+h(yu)Xvh6Q{O=eqL zescVSBDs+@1}EVS2QpLL;4ZK~accZRKj+b@GMwtThpQ92S5X%RS6Rjqc6Hw@nDnxN znYLpBGj3JSa}}Gug_7>E$=eH~Y*u7r?#CkN5HG5k><=3)v$8&1W>JX;7P$V7bSj1a)D1CC_5lB3j3 zdQeV_`6CH_WieJ7Xw$U#YRM=f0#rc}E?gfHAlSC@Qt0QlKjvWQVFEKxRcj~m&|YGn z!(a0y|Fv~|k=FF1^|#kR_TbczU#LV9!mjcGX@dorITG=?9p2DKR;ki;+(RnYuVZRF zp0*z6p}h*@AU;9yCLtSK^q94MU4Z8|9r=Kyje+Ftl~`L}3d^?e!{^OweH@W~bPUGm zsu~BuuPAZS!x=VArXF8^5GmE(nL*wOK3Tgr7=}T<{otPOJchjnD|Y%kzT`OsF#>eR z(0Ll4myGHifgh3C0|4?Jhnyz7@+RR438#Y@)j*NMpKE_5RJ7Rbu+kkzNqm{P9CX)rtd>nuU75E6d3pe3%sJ{4ogsetldP?x#vA|7+$qM+XBYyR4!vYs%M)MI?ZPL=55~#Abr!Y zEo5r-xq`q^qOKB7sm5U+Q?mwj+k}pD)K&#O%*)X780>-Rc_!Fb0iXblf9x8V(1lH; zMMKO^fGn_;CRi@o$eVQZ_LHWU@x&IO7n*&yYut+InP)_HmHSu(_br=(YZ8mr3JaWd|7q1x_ zWt1F#G_>{tH2boKcBF?xXVF5>1%vcXEwO?p^Ve`S>K?gS7#H6%-W4=N!rx z+{Im?v$15N4>2+^<&a%9diUU|vMn3|Ys3ZNZ(tsc#Ey30FS$+AbyC8DHcsUeD&}Ci zVDMr;@c2E-Tp1(m@6YAx0!lX@IM2mBMVd*u_o{6HokB_F{PryHAZyiFxWAumL$qd z*f1ahioHrPXI3x0op)|3rtBOr15;aU7?B!c2AQ3QnPmp8@XjrFkhsOSlp(&(DFg(< z%ndqK6_8n@;LuD@KP@t;y#&&Zt;d>+phwropqyhiX@jM6z~ACuBA{zw>%#%yP%YEx z!FGQhlv9(8e9N}fgV~<3o$)Bm_`r4%f4W*A|FlR30N%HV>tDGkOpCICqj(&jN3cZX z9svW#p02o{2wTDlRJS*Vulu4CTMnA*KB?VADAqsRNdE$GO0i#^3DVQnyR{M+26cK^ za=}dMeO^f4M=~paR@YKc? zcCo6srI!J9nFuG7dOEV}Dp9^=0-`QxTPbM!tNDbK_0FXZph1YG1!{fvT9L-_9betY zhUJK9I|srkN@~o-e+sW3LA<44(C@gzBXeL{&z@PtfKAT~s3sH%p-)M$*h2(|U>T_) z6U@b+1lPdS{xeq_D`bA)lpAlgv3lO;O$#)eGK`2l&9{H|VSw8JFFS-Pir%Q#)qvAJ zjksk~Z?3NrK4Muf1|{#!1c@#JCFNpCZWS;W@jHP%3Dg;tgS>sCMVf3I6%~qbWChf~ zXGL_E`tTSp`S;T%ri!c&NXAcfQ9e-s@n<@{4@Ylf^PO0)Y5%uU-#Vf9mHLjOI|bGG zOM017Ia_$QjBvmyc#QCv6eoyR7naAEtatqcS^Q){QSMDPxgZ%9+xxr+!=H?yD~ez} z(%1AghApjbc+Y$NX9M#4|1wk zVB4F3S~cn8lFFY38sT*0pM^Yf2C7BS44noD1Ab`$c)16DZ;V{MAledURmBkV9)821 z3Lo-orshPh8TdR0*saGIY}x-PJ=dUa1bs4`me$s>_wB|$CPA2`9{?2ZVVh3P`u4{q zXw#c1Ui(cKI~hv!;tWWDv{VkFRIJC#H;OINDF13RT}6v6Uik2~>Ol_By+85I8pB88 z#TLb%nJFaw28{nfBpHASD9EkFG<`_SKPk_P_=qqyIlL?I-UC_S9T)&5uupk=0fPTS z`<9nxpv=z)Xarx-**C`yP=FCP8UDno+lYvV0u)1*&Gb zlvNcG)Jq;Dk8e&(VXHz-7P0d16=l-Yx=FVTAapb6NpSX!psC2x8Eox~m$|r~F{bg6 z;i2vto}*Fa0U+q(g&lW}bc3=RFWKj8s=m__O{SG%oSXeOU~m@PL6v+tC;Aa0?4Z{Q zO8{V$Gbm+}R~#RVRe6*7zZw9vQi2;^HWR1t~dsb86cE`Q3jFnNuJXuzymi zD*biBgM=1huWds}L(Pd&{&Wx_3`z(&AQG+k(Urbbjk;Bk{II^o)A*glSpD4#JxToYB zpkR1TP;uO9u3|0oP$ZhadN&Ql)&KEAhy`~J=T@H%oD_d6YX5oj-)i{(I5bQc4zgju z@#)I__t>Hbs9>A|=H*r*0`l?42w54PnHqa8zyh)X1HO7yX%)KKTX2y=DllndVyfBD zeVvB2fV^eFX)|d6ItG>_wSeSgpARU9e9)C*`3db8)M@q=3n|)ssoeYQAei_k5NF(# zzr1u+u5((g`s~;hO=JcfClH%#$tTHw?*>52>Mvs-RU_A#hdi4BgByG?awyGj7VHE3 z?jytz{8OB}vvniUi@NS|{i!bjGkC0Z6h`^hM(A=cXbQC2P1$n!@kg`9*#ikk#5UaZ zMa9W`jn%G(952U6oTst?k}M0b8(lwOYWxOF{`2gh0qX6AS-Z$cnd8;@ks07=-DYW7 zb)Ud}0zzj%BGz6PlSyyJd-y*~h;$E>FX@HK1^GTpt4YUs(h2>bElL)o>PBKE7zx^J z7?~Z`Fx0jM8L!s>lS1QIl!8jHR#X-^06GSCD80h@A@Pd`*uCX;=f053>!eDtd42-k z|8V0kcK)pp&j>Zy9mQ6yf$oKDo|Rb9e##Ub%<_SrY^ZqR1R+?VIyI3HYQo~XwrluR zT~#$!xYB%m#FQYb0_&UrYL_GXTfI&A(;(VN6KG-IuEQzny~R)xumpU0R~d^Jq+cK+`;H z)vEQNhdL(}I8xFRAu&Ed`69XT^?eP5d9mhwG80#n!>e(Ds)t=3!t5GEM6aewSWxoRU`5; zwFAH(Soit&a~1E})nx5{F!E_?t!AJv#SA#n*d+-a#k4eEF3J%HKP%e8G{yPF55&&$ zFHA?PYs8lcC;i-seOG_tU{`q_KsB zH`L<$(4Gp|#`>ULQ^Er@hT@jEh|mKQ?cacSqP7hb0tTrWDoG8LQe{A_6l(;2NQmOB z?7yqn`Lz6|16Q9N_=+sQ9vP$bfJC`v)v@fh<6>*>*#YeR-&Gs442E;;)Ko3`9D@T- zrmdL{zdm51n03d9cwHMVZOS?0y_%$+|0POeoDdks*1#1NF6v++k7mNc(o5QX!ms^T%UF(EJ7GY4K-5OFIJ9ISe$4^6&M30}Vkt+fkP7x99!{`TBl^RN5Ipx}GqAT5wRzr*$#dM|(ssx>keL+? z>eO!1JH(wJB$ww=xt>n7oCF(lX0>i^set=qL`a2G$mAY2E#-{#_d{MNumnAT=cxM% zDU<1Y8Q0%sn5MdI0U|ll{Pm}kS}NM#`|lo1ldu+G7&l>dk6uB?#BznzpxdP&^Pl>* zxXXC_{0TU^8UFL1@74e#ejA^-@=p*KBV|JI2F-_SkV*{IsZ5tTtCS`jU>HcP z!3r=z{UQ&xLhOBbuwy=v@zVyPD*B+?SKH6qX@M3OUiTdvu*j8Np8O?~*-n-j4!ilB zMZyJ60!&#nBGJ`KKZE|&K(pS(G9!(jB9kvZ=IV0sA+BU{T`H&j-1gakXD&uwMF*wD z)pLDbW308;a(JX`ypNKHw`c}5rh+J{ zmBh*}Vz1Pl9}O9Cglu7!)^23$j*jnnSbgT_`iU}T}6CT0IV|CC{?!6i zQh9dh8nGM+2gei){Vjm?nG{aYaP{5(B`c{bgmLY`65F?(_+SJUQaSQM(eH6>dk)|- z_=4)Vy|O#}E)5L)KXMbiagk}46?09#+dD3lt@{J#>bc+^>5Gt~stPYB6 zq`p6Ba;}srYYjLA3X=KLWaN$626ua?_m=*&%65ixoj7y5R8E&8+Ja1@HgvY0p(N08)Zv8K%>CMMu93WIf9;Dxj^Oy_qy4zxR8fx| z;NQ?FPhsBBSR-<5$KauzT)Dt|q}7bLkuLXJFyhrLpjIqOe*x1bh1Ton+eT=8tnRD= zIelZ5RWRQb&)^h8!ZiVv^&A<&#%n2@x*u@kvZ0TNB0jnUqHKCsBaG0gn@oJ>Xcg#8 z#5}+SGypsk1G?@%Oaawtv;!g&W?v?79k^HlA>%ENGMFLZM&#wO3g-OV>R~r4egd7J9ENgpZIT;G?b+JJ?NxA@qfZ$ zHR)>)+VkfdSgfuNeEw=mk|3H?bTg8!aaa`bQgBP=mFOwag#uJ;0>WcTI_d_wBoK7{ zTY^!rwkr~)MDE~V^0#2%N4!^-H=5yD&onNk6sh66I64!8*C1+H|L`uFZVibhaVV3= zxo8zdX4vWM7nMvy>f}7=-#`?Sd~1ZdxPpO*^oY=+xR%&sAt2MvI`%xt`f4eXsd{M| zSj`4N_tXn^?+ta>wE+>QNjG}JmXTa+rvv!b9fCaT>YwmOd-py`7FjbkUpiS|Z7iaj z-V#)qP?-GtcHtD??eSn(T7o)Em4RZe!Ef9>a?%Up#Vcv6e0zNm5Ei$TOP?n+%#5>OeTd~U{j79Xv6UEx* zP}e=Z$kKyVuh& ztp$M$p=Ni?38UK*Ud*S}l4j73oYI^R>$8JQIw(wLdOT~7H*Tfw!UN#651_zk#_#T7oExW)amStzA`*l5qkS9 zkbkG%zW|2uN?&V8D@)x*#ba(+2;(ME%I|WhPWz*jy~Nk%ZXn@x`Jmg2_XOp8UwQAX z`w7stfLJQ-Qqc#Mf{g#(4{lQz5rt4=N2)dk?65=)oLjd5`1=QJi#Lhvg;gH%UTME7E*$5`fiHwpY-U$$>Sn&RJXlRq!--GQ10S?@5c*Sn zr%L856Qi9j*XW=~mlrrv2`Z($RQm#YO3VP9a>KvZWQ{5P+Hgk*h(S_yi(Ty_Ybr5@ zn_nkk2P(YO?aaaEFxs)J&8jrsx~mdq`7=4`yj>o|W_BQ>=vV4^HJ7@7XVaaMae)OSq z4*I1w{@GN2g8+c%O@{_V;NE&?ic_cWDYVDq)UaEAryywhVe5B#>`)%^Q{=Sh*>*jY z?LXiS1&44hAs+(T>XDG@@C^aG1-h%BqC^VQYraifh3DqYFyg1W_3Ups9SMzTpD?9T zrQ_vjyjXk}*6ql^65y8`?)3m;Gk1(@xI#20vS6T)xNS7ZYaO^?VT?Se#pbN@niVgB zWtdV$40Oai-)j(QuGihQo+#m95Q;3Y&+KH`2{XV`c)rdNd6N(9@$C_Z`=dQinFI$i z=XGoN zd&<56CC)fcQ3mO<#(1qjzhS_$U_9bnl-2EHe_~WJj1L~78|zg7SWj|&*dL9PhDUJ& z^k1|G&8$ak^a(1py&Q}Ax~(OwpInW~h8*oYT=oM^NbFk854Q~6N3YmqMAEyo6{zrE zKM=|3^0LuT*13_9a+R!d8F*Yxo^|y+qizk;lI=Cvp}0pHRF*vy$(1Zq#_{PkIm{vD zZ=UBB?^lrxa~2pqR90XhLeIx64o#_6;!M^I&sRC7cU{Pq$oSETtQLxlv=Yum>7)lh7zlav8mb_GL zGxc4(W#Lo0*-FX(dH)bc33m7K5y3VcUkeVf2JrBd)%T_TfTr9cE z+4c;LC5a4_81L45xTyqowQncCBTssyp);>JxJA0k=au8ye}S!n1U3YDd$#H>Wq)sh zZlBC*&Jm_?s$}8v_NX2KoO?Po5VSFOTUk3P&+ehe@F5wecXUGIE) zL(7z(->Xzk=xxQMnn0-%se4jr#m9uZboNF1grm;~YUuiW@=>JrJm0{1va?r@2oX=d{e06}&dp^3wkP!0Wu7{pMv2NU*V_P( zQNe`^-EsfVaA(d`h>Q>`>4c7nhtvD)wZ2rJ!hb)pjZ;XsuzOKeolDTo0TK#lpDQ*jKHlM zCy+xM=zC@zDd7JQx8f~#-*pm?g*!nvJjuyC&3s{r5PvShXId!>kZHAA?K6MnKfE*b z8ydyBxuB2D$NstS+d7%XE0>BZDYw2Q7UO%3Xwa}d2L}UWd%G09WQf5B{m`Na< z?Dq}>r|!UE+%Ko@^#UWmBf`2F_6t8kvCS<3pr{a*EDWtA4Kh~N5UHuR9G;j~ludnp z^U@3Ccdc1rhi~~Z=x-zKMhk`Yr^%n#KlqC7nanAD1p8Dq7Yr;9q0jZ;k8&Cnto-)y znf`kj{%=50;6>{nU}l-Y3B-n6w_C45z?~bx@T2VYdXxbAFi^V>27W|b^)go5Q`#*paAYu8 zRC(=o_zl&%eO%jnrPB?6d8Gz}>6PDJPFs+TU3+?I$FJ^DJ@DeU3*O8t&rDDhJ_M3a zNc`PhB;2{PI$`yXF--AZkU zVQ)b)JM=fg1->77UjBX-u4t-jE(m(Tf<^pI7Co*xwb;W^na8p<%rATge;Y@^otJy| z$2NEDssk68L0j!NP51E}Tv(E1+VxHhO|oH&qok{@wuBjm=G2$d(DR$thrL0tl2pCX zSJ){jGD_z1n#RBf_lnGG3zm4>ZYU;g^+;zWgNo@j?A_1uNOh;8rPAvM%zc6o(QNnn zflSKR(+BxPx0-SGfNOP2v6u%*l}%y9bYA6ysAg)}j*Xp9SQLYw{%?cE7zoqy&du$NfMSai>=;FXRY9L$fI_H?XpctntT_Ukl#s zD8z+5Gb(ymGZHjTp;+g}#C%S8hgkETl15U^aKeBZTIDN>Y}+uv%qgB6#xcJ`@(X-T zLUt`$ZzBF<(V8j3Z>Sc4q4;!Y@Gdtt!p$TQyT1;K7%(0Ii)|RF=E}S9GKldF&b>{|%{#U%yIX)>P-Vt47rnV*J8N=}! zsD|tr?&5A}ry2+i9wNl%EWR*0rN#9Sw8gM8>j@&5#Bd8YsOzDHwlRTufjh)>4 zgV^*#^3pyuFFW~@OOGwqzkkiVWCV6E$PMfLo=zF%eOZ(q> z$;Fy!4hqlo%CWfTwoawhzn~3qUCVkVO`7s3yI4BFg|m|{KltJGC$WL=xeKK?v;FJZ zAMgA$$kaoK%!SQ&Zn)i#rws&GadKag^}s@dAA>z!Hqmh+rfO&VjS>W!zZIQ6eUswv;Id1CnNR$Y|!)2QL7tB~X{1!|+UzY?~pKoV&* z)4p)NquY(fB~5O?;q-LggZHPi!bTBWTAu!cS{du{9T4Pe_oKzn0j+N&=<|cH+$ut#3LsSe+ErPxesc6 zjxA&+)o=L?;#YM4!}^H~lt0u?v8Z#X0vMt)W76tgd|Re3nRU850Z;(fcg`g4M}>#F zxj!XQ(RKjlK|Hm+E){en8zDK}cUG?S+~v&i#Y0`Av!~9EFwq8_R+p5KB4K8%O-i zdE7Db&|@nAU1bY5#qIlEG=%m?u}H^Cmmr~F;Ji`G5od7_AVZl~JjjLGf}Kd~Tq3s} z1SPP9Tz07^6@>|iEfIMGh&S_wA>PKT(I{7og;Vl#%U*Qq4*>ehZCv;1uadCkuV3qH&%`nD~7s3t>9p21&KDDWe4Voamf=~P|`grj0j*kXjgki zAm8&fJ;OIJ1PMr8F7*Og)Qk}ksF?)o;b#zt=#l?N0e&|R4_W1LxLk>Rbp6Sc0XVmUruVlSZuL_b@Jw)F%M zd6Rw9bu+y=_S0n$a>X1Ia-j@c$MMC~pgjMv+-N-}B5VZ^23u%!GLygWm72JG_}6k? zPy-a1P3tEb1K;;w4-P>PcyQpJUHt!&nfL%UfFjEE41OQ&pBD#00#GUZ_uWVZ{KwuV16&l*fB zH;@j;Pdz9|^rboC+nU?p0fvy>WC|DYDb0giNXd3$w z$_HdFc7Pn+gb$D_OYRR5+j`W=@oR7A^&`W}K`>DixGJL%M`kM! zfA3c31}*>xMyGNecwsptC-}KYF2b53R#Z@96|Gc3!rf!>i4oHGv z$|-M;uGJe)9m9*&Nxy308D)em{#%~)C&ON0d+o9?08f-XW^LxnW+YufML3YFhr)vB z#1&GFjfN4c?q9%@;g$Dl=P`*XQy#g0SF-GFg5$uL=FhV4zVFdZ$tw@ms$88iKHBWvvzf08w7k;2ah|F8ZMSz3)j3%1V2?k3#d;HJWg&llp8TwWOo7}PEXn1AVGFUE_jnuv7NA*>GRmPFH?Sh%D zi^oxTzPPwuCAA^f>o^r|Hxj-^4^OF z*W?mZee*^^3Yq^^j4Pz*s85=R!SVH$RtwV9gr3T29hK*h@B6VzS5(UPmozTWp6Snt zI{WuMuYXP<5tP!MLP1QJ6AKNhI8LeXCS|HjAsq|Z&<47AD`DbVv?{GJI5PXd1HBRw zJZd4lsxz{A-Dfc*T~BszK4hWTf@kOG13(lEot&4JnsCXoN^Hz$qeXb)Z{~BR)sr*M zgaM(izARGf+?7bB9P7&vztDMBR$C&Q@jJE-7A4FeEl8YrRfgZaVsm_>dv=C zlmrCHYquIslFQW}SF`vIF{s9Wn3V)4pDz~XI^Xm3O1oJDQz~}8aY?v-U*nt%iOZ5C z6GUejJ!

    H+V?obrcPnwmCb4G7{U%t94$Bk`YOMuBEV`G@mzOJ$LFLD4&>E6---J zl}js3ihsz%KwT_tL(H@j5MIfdzc7+;%75F(yFg>xPLV=C3UN-@`RYN^+J{PC z?;{ICF(Dpe=R^XCsyvFAthX??ANAJD!%rlPMAB`y%P3Cd`iq58sbo_}=Z8;*1dw`F zJ(VW!2itqD0wVeXH%{NO#(o9(6p45t}{iLNGSeFBKj)7lK84YX;0zYN@^hY2(>@j+YUGhvCB^qw*2!f zZKT}Kc8rw?jP%2`Z3o5`sUxp=iKfmCEZwR_AKIY^{Ly)e*FZ(U@tV(KL+QzD*7Wj- zMF`IETJ)LWn1sK>E7Ge$GI3E)l!!tZOQBFY=u;mbb?|53*BcTO^{F$J1|_q%_Aq(j zeWxHpJsV#=J<<2Qvh6U(2h|>5^zhHR4NscxsAkEdJC&$K{P%}2uLL0x!iOhj?{iIG zQtXr{t>}1?b>GS5x*oel`F%aN!af?2`28V-llvhARZ`T1e*~rP1PU$|lrakm@=l00 zoY(UpK4O%bx*;S;?QXV(gCr`7dVBR{70U_h!r&Di%$~nOEUwgmxbAMDIBL_ripAIs zHDD?_!h+IyKc`@A-$4p7Jl23`HJ(PHB0Tm3QgK5yYh1mvQjPK9eLZ_oQPkCl($1bp zu}1r>HA|8OsQ+lFkG_srLK*Mrn+q8+(f8$#qG=Y7^fRnxmqekdL2qH;^u=p}h5OC?@|fBYJnt4gG^2YA+vNAD ztP3t5hKt}k%(Ovji=}8^{>2ZwU^rC!w+Hqb^{(ltT?|1Q6W(NUtOD9%ijp8>%48^q zeQc&5=uS>GL#7rGPs}j$dJ7$fVezrhKWmXJY0TBPb@%-9d9VsKoZmZKi@M03Qb{@DV zmg%@P59!3#n0;MYa3N`}nmR zvk%j>+^6Q@Z-u6d$NcM#f|uC9OmFn})T{$0gV>7BE5l+LWu0wEZeIg|&7!dGy?B1= zq{@1@ka>>HR^(+AMsPQi6i!$5bMmpe#^!t5!x6!wy+~V#;c-K>xlu$sS0+c>4w4ZjvIQfzXY3Bms*E{Fijv*{`VC!? zH>1^-f^^GkoXlG4$pyutJL)hTh9$iXJXU@_u)Thp)^&p3;G7AP-G<+ur)>FU1s| z<~sRJii~))IG~V>!q0?DHHr&wo8wdyDs*hvavzUE7HK3b)K9cHLwtAuw-}(C)*%zI z!z{9VlApFR278(%mBEyKU^Dhp<9;hXUVWZMCW~Q!%&z47WsNHjGTO8IJM>RQ;o2X{ScR8dHX}1^jmkc+tXwk4xo7(IW4sFsszcowi!MtvR*%* z#cIekgY8yim4*#oH5`}N0nn%|d;FSwL?VMd`-wFh7mR5$>`J2*HyNHR%zOYe5g%P# z(H&J;>vhMbs>5`1#pxNVsvF=Ja}c>Hp&NlZM@m8Q_^l1cMi2**H7v$!ZzSbu zXN8L@VEY)%BdGXmY1EoQ&os-F95lNEb9JIUiE!r+PDbjM zv<{pQyV^nbZ0#j=PBt!#UoHM1e2M z`wLEbD~zD?!oEMlDAD)vdxqT$U(^@}Xy#qz$0@|RVlxaTwR@pME$S6)h2+|GEK$)S zyy(<2v%jGB@&f0GwqRd-4r-ASLr2gyJ5^)ASZZmjKZ$*X-R_VLHy-cGY*MjcVm_Na zzTn@?YaSBlP8p<=gEH31*;4)7IF?Fz278{kDQch=@Ib|AX=H)EbwUBGoWY5-r|;I* z1kt z7b76Vg{y=e+9Sxr&-|4G;Rs(dS_><~izm|79pxjS&XbE99^j{^zn;?JEWvz7*sX0W zj!J38ESo)*!8Y$WeQ-)w9K*GR%(L7^tic~Hiws}f$4FXyIbt7kDY{5%GPCW4fLhjx zN*jI|X9*!JQ^*iw20JHSnbI~Z{IqbnPabh-mbAWak)Gl`r7Bh zV4oHWhM#tdODf}A$E}L=aMX(TaQhSzs4h5eMfSE7;wvaGf4caozN%wsc{jBmwl&!c zyh|4yAKGPo``Px9XY7ea-+nWva3oH;sX;t2oICzlJ|(t5pS`kArvMnB+Yp&QTZRj4 zN@hMK`bk|=akA2Pqkk!do%wb6Hzea98HElE9k9 zY0T+l9DfHfv!0wM^ANBuFVs+#$I>)U1TkYyCOf%A+l=FSlx%ja%Ceye3YPgl#jbS{I(|%Sxl6qi30Ws2o;a2#Op2>=lr# zso5nJv`#;{fW$P{pnS22;pgqe82{ef;1Is|b1U`o6yG4pp;@woI%a|OS!Q8^8h(7; zvM)j4Q>e?w-CNASDqGkWXz-F%SmhGh9T^#sM?M=RsRcI>o*%qJBVoc7h|}vW091o4~_eW_i5$Sp^rZ_?JeWX5H(EQECi3+E$W$-D} zSsY~Ug#4n<)TeZGEmQ;C_x^D5#Ncl}k}U63-($Aaj$^c=ed&_66tv!i-T`1jKGSC@ zJbg_-k9SOF>W*jaftDmN5)bILQ68q;kGG=qYkRL~ZNChGUGoP|9frI3Ai2s^*7exA zAzJn$hqhrHG<0)pY(mtn4T9@&K3HGgZfVoA4-)j-VReogNrsKHxSQK1Sf(jsxr-Jay#+HqiW!K}5`{rrx(DysPl<}=aM!j_-pe9ie;2HZ8q!&cBL z^r6j`wlDrbqx{=Ad4j>Yh?6YF8I?b2LHrp7%2|W8(H~U}%YBM(+I~;wjFh~8O81>B zRwbHehh}p4kUTF?ih^diDBezr#M>|3L~|RxfbP z&*rhLdh`Uv&St8k7YE}7h7=SS0vW>6Yz&62%_aD|amvj?2ZtM^-ptA#IX1F$z&VK0 zFpE`i*s9?WTS6cUh+1Gx!D5Mh9wR^_yD-`L9To<}@c`v;|hqnP1m z;!QRC;f#O}^EOS-GL=F}*Qc4M`lAgWuKpgggb{X3&>DZcq2&HJREZ z>J}W4pmm4e7(ktCR=&@NhRUF!>^6E?pXwHW<;QQ>#S4L5+D)u?gLaS=`*t6hVx>^| z@$HM)X*u8ZWhVV9gU{LojbT)Z)j7rPN|@T_mhvuTs_$A{cBhvcnE?c}Rn@^u`+hEY zz)H9T1NND0N(^5*R3)``vUbtU#^&p#<1`apXn{Ia1^vfm9&=A}^&W@j@A^ZKYAu3P z>l}egbia@BPx#u2(nd4ktXk%;@BJ?lWr!JmhR=J(C!v2My8n2h2nSabMEr&SdgJcP y(~w))D8ij}>lbSF8=n0A@+{Cd|7#z;;QtyIv7*3T_!YTVqUJdrbb*>#(Ek8qP>AsW literal 0 HcmV?d00001 diff --git a/modules/1_Continue_Exploring/C_qtm_algorithms/canonical_algorithms/Quantum_Amplitude_Amplification/Quantum_Amplitude_Amplification.ipynb b/modules/1_Continue_Exploring/C_qtm_algorithms/canonical_algorithms/Quantum_Amplitude_Amplification/Quantum_Amplitude_Amplification.ipynb new file mode 100644 index 000000000..9da544b94 --- /dev/null +++ b/modules/1_Continue_Exploring/C_qtm_algorithms/canonical_algorithms/Quantum_Amplitude_Amplification/Quantum_Amplitude_Amplification.ipynb @@ -0,0 +1,934 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# QUANTUM AMPLITUDE AMPLIFICATION" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this tutorial, we provide a detailed discussion and implementation of the Quantum Amplitude Amplification (QAA) algorithm using the Amazon Braket SDK. \n", + "QAA is a routine in quantum computing which generalizes the idea behind Grover's famous search algorithm, with applications across many quantum algorithms. \n", + "In short, QAA uses an iterative approach to systematically increase the probability of finding one or multiple target states in a given search space. \n", + "In a quantum computer, QAA can be used to obtain a _quadratic speedup_ over several classical algorithms [[1]](#References)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## TECHNICAL BACKGROUND OF QAA" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "__Formal introduction of QAA__: We start off with a brief formal introduction to QAA, following standard references [[1-4]](#References). \n", + "In the lines that follow, we provide a pictorial derivation of QAA, giving an intuitive background to the derivation shown here. \n", + "Consider a unitary $\\mathcal{A}$ acting on $(n+1)$ qubits as follows \n", + "\n", + "$$\\mathcal{A}|0\\rangle _{n+1} = |\\psi\\rangle = \\sqrt{a} |G\\rangle |1\\rangle + \\sqrt{1-a} |B\\rangle |0\\rangle,$$\n", + "\n", + "where $a \\in [0,1]$ is the amplitude we wish to amplify. \n", + "Setting $\\sqrt{a} = \\sin(\\theta)$, equivalently we can write\n", + "\n", + "$$\\mathcal{A}|0\\rangle _{n+1} = |\\psi\\rangle = \\sin(\\theta) |G\\rangle |1\\rangle + \\cos(\\theta) |B\\rangle |0\\rangle.$$\n", + "\n", + "Here, we have introduced the $n$-qubit states $|G\\rangle$ and $|B\\rangle$ by convention referred to as _good_ and _bad_ states, respectively. \n", + "The states $|\\psi_{1}\\rangle = |G\\rangle |1\\rangle$ and $|\\psi_{0}\\rangle = |B\\rangle |0\\rangle$ are (unique) projections of the original state $|\\psi\\rangle$ into good and bad subspaces, denoted as $\\mathcal{H}_{1}$ and $\\mathcal{H}_{0}$, respectively. Note that $|\\psi_{1}\\rangle$ and $|\\psi_{0}\\rangle$ are orthogonal, i.e., $ \\langle \\psi_{0}|\\psi_{1}\\rangle = \\langle B|G\\rangle \\langle 0|1\\rangle =0$, because $\\langle 0|1\\rangle =0$.\n", + "\n", + "__Goal of QAA__: The goal of the algorithm is then to evolve the initial state $|\\psi \\rangle \\in \\mathcal{H}$ into a state with a higher overlap with the _good_ subspace $\\mathcal{H}_{1}$ by _amplifying_ the amplitude of the $|\\psi_{1}\\rangle$ component of the state.\n", + "\n", + "The amplification process that follows boosts the amplitude of the good state $|G\\rangle$ from $\\sin(\\theta)$ to $\\sin((2m+1)\\theta)$ with $2m$ denoting the number of _queries_ or applications of the unitary $\\mathcal{A}$. The probability of finding a _good_ outcome is maximized when $m=\\left\\lfloor\\frac{\\pi}{4\\theta}\\right\\rfloor$.\n", + "\n", + "__Procedure of QAA__: Rather than directly taking measurements on $|\\psi\\rangle$ (as prepared by a _single_ application of $\\mathcal{A}$), QAA proceeds by applying the following operator $\\mathcal{Q}$ (that is derived from $\\mathcal{A}$, i.e., taking $\\mathcal{A}$ as an input), \n", + "\n", + "$$\\mathcal{Q}=\\mathcal{A} \\mathcal{R}_{0} \\mathcal{A}^{\\dagger} \\mathcal{R}_{B}.$$\n", + "\n", + "Here, \n", + "$\\mathcal{R}_{0}=2|0\\rangle_{n+1} \\langle 0| - \\mathbb{1}$\n", + "is a reflection about $|0\\rangle_{n+1}$ (leaving the all-zero state $|0\\rangle_{n+1}$ untouched while giving a minus sign to all other states) and similarly \n", + "$\\mathcal{R}_{B} = \\mathbb{1} - 2 |G\\rangle |1\\rangle \\langle 1|\\langle G|$ \n", + "is a reflection about $|B\\rangle |0\\rangle$, giving a negative sign on the good state, as $\\mathcal{R}_{B} |G\\rangle |1\\rangle = -1|G\\rangle |1\\rangle$, while leaving the bad state $|B\\rangle |0\\rangle$ untouched.\n", + "Finally, $\\mathcal{A}^{\\dagger}$ denotes the adjoint of $\\mathcal{A}$. \n", + "As demonstrated in Refs.[[2,3]](#References), repeated application of the operator $\\mathcal{Q}$ ($m$-times) on $|\\psi\\rangle = \\mathcal{A}|0\\rangle _{n+1}$ gives\n", + "\n", + "$$\\mathcal{Q}^{m} |\\psi\\rangle = \\mathcal{Q}^{m}\\mathcal{A}|0\\rangle _{n+1} = \\sin((2m+1)\\theta) |G\\rangle |1\\rangle + \\cos((2m+1)\\theta) |B\\rangle |0\\rangle.$$\n", + "\n", + "In a nutshell, this equation shows that, for small values of the unknown parameter $a$, the repeated application of $Q$ (involving $2m$ queries of $\\mathcal{A}$ in total) yields a state for which the desired good state would be measured with a probability at least $4m^{2}$ times larger than that of a naive strategy as obtained from $\\mathcal{A}|0\\rangle _{n+1}$. \n", + "This result is because the probability of measuring the good state $|G\\rangle |1\\rangle$ is $P_{1}=\\sin^{2}((2m+1)\\theta) \\approx (2m+1)^{2}\\theta^{2}>4m^{2} \\theta^{2}$. \n", + "Compare this to $2m$ naive queries, i.e., $2m$ measurements from copies of the state $\\mathcal{A}|0\\rangle _{n+1}$ which gives the good state with linear increase in probability $2m$. \n", + "This reasoning is at the heart of the quadratic speedup obtained with QAA: the probability of measuring the good state after QAA scales quadratically with $m$ instead of linearly, meaning we only need $O(\\sqrt{m})$ queries of $\\mathcal{A}$ to achieve the same probability of measuring $|G\\rangle$ compared to the classical strategy. \n", + "Specifically, if $(2m+1)\\theta \\approx \\pi/2$, we have amplified the success probability to $\\sin(...)^{2} \\approx 1$. \n", + "\n", + "Because $\\mathcal{A}$ is an input to QAA that we assume is given, our goal is to figure out how to implement $\\mathcal{R}_{B}$, $\\mathcal{R}_{0}$, and $\\mathcal{A}^{\\dagger}$ as unitaries in a quantum circuit.\n", + "This work is shown in detail in the lines that follow. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "__Intuition for QAA__: The previous discussion follows the canonical, formal introduction to QAA. \n", + "This section provides a pictorial derivation of the QAA routine, which helps to get an intuitive understanding of the definition and the role of the operator $\\mathcal{Q}$ introduced previously. \n", + "As shown previously, the two states $|\\psi_{1}\\rangle = |G\\rangle |1\\rangle$ and $|\\psi_{0}\\rangle = |B\\rangle |0\\rangle$ are orthogonal, and the whole problem can be analyzed in the two-dimensional subspace spanned by these two orthogonal vectors, with real amplitudes. \n", + "Since the length of the vectors involved are preserved (that is, the vectors remain normalized) we can visualize the whole QAA procedure as transformations of a point on a simple circle, as shown below, using the good and bad states $|G\\rangle |1\\rangle$ and $|B\\rangle |0\\rangle$ as basis vectors, respectively. " + ] + }, + { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABngAAALQCAYAAACzAX47AAAgAElEQVR4AezdB3hUVf7/cbf99o+uqCxYQLAjKthQUbErNlzrrr1jL6tYEaVLh9B7L9J77733XkMnEAKBNEhC+/yf72UnmdSZSSbJlPd9Hp7M3Lnl3Ne9ZE7O95zvOU8sCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACQSVwXlCVlsIigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgiIAA8PAQIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQZAIEeILshlFcBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIAAD88AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIBBkAgR4guyGUVwEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAgAAPzwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEGQCBHiC7IZRXAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECAAA/PAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQZAIEeILshlFcBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIAAD88AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIBBkAgR4guyGUVwEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAgAAPzwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEGQCBHiC7IZRXAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECAAA/PAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQZAIEeILshlFcBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIAAD88AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIBBkAgR4guyGUVwEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAgAAPzwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEGQCBHiC7IZRXAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECAAA/PAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQZAIEeILshlFcBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIAAD88AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIBBkAgR4guyGUVwEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAgAAPzwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEGQCBHiC7IZRXAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECAAA/PAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQZAIEeILshlFcBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIAAD88AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIBBkAgR4guyGUVwEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAgAAPzwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEGQCBHiC7IZRXAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECAAA/PAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQZAIEeILshlFcBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIAAD88AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIBBkAgR4guyGUVwEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAgAAPzwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEGQCBHiC7IZRXAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECAAA/PAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQZAIEeILshlFcBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIAAD88AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIBBkAgR4guyGUVwEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAgAAPzwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEGQCBHiC7IZRXAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECAAA/PAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQZAIEeILshlFcBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIAAD88AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIBBkAgR4guyGUVwEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAgAAPzwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEGQCBHiC7IZRXAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECAAA/PAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQZAIEeILshlFcBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIAAD88AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIBBkAgR4guyGUVwEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAgAAPzwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEGQCBHiC7IZRXAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECAAA/PAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQZAIEeILshlFcBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIAAD88AApkEzpw5q+PHT+rs2bOZPim6t64y2c+8LqdPnymU6zK3lJTTSkk5ldeish8CCCCAAAIIeCngqiMEUr3F6hwnTpxSfuotJ0+eVnLyqQKvj506dcaps9hPFgQQQAABBBDwTcC+r0+cOOnbTgW8tatulJ96CO0nBXyTODwCCPhVgACPXzk5WCgIrF1/UK+/O0ybtxzOV8NEdhbW+OL6l93n7uvcG2rWrDugF18doo2bYtw38fq1VU4WLt6rN98fpn37473eLy8bxsae0I+1p6htx0UF3iiTl/KxDwIIIIAAAqEiYN/vi5fu1RvvDdeevXF+vyxXncW9TpLTSVzbWEPPnHm79P4no7Vte2xOm+e6PjExVSPHbHTqE4diknLdNr8fTpm2XbXrTXPK7LqG/B6T/RFAAAEEEAgXgaEj1umjz0fr6NHjfr/kvNRDrBC0n/j9VnBABBAIcAECPAF+gyhe4QsMHLxWxUo01+ixm5Tf3pxWIbHeLBb02L8/Tus3RmvJsn1OY4wFa6KjE51RNZmv0ho2tmw9nLZ63oJd+mvxJvr06zF5Cpqkpp5W246LdUHJFpq/cE/acQvixYEDCXrgiR667pY2BdLYVBBl5pgIIIAAAggEo0Bq6il16rpMF5RsqVlzduT7Es6cOTfa98iR49q795jWbYh26ixLl+/Tlq1HdOhQojMyx/1EVteJi0tR5I5zwRwbwTts5AZdfEVL1a4/LU/1lgMHE/R9rWm67Z4eWr32oPvp/Prayt53wCqVv7Wtvq81RUePJfv1+BwMAQQQQACBUBf4/Jvx+lvx37Q9MjZP3/nuPrSf+L+zjrsvrxFAIHQFCPCE7r3lyvIo8MeQdSpWorHGjNuc5wCPDQWOj0/Wtu1H1KvfKr31wTDdeV9nXVW+lcqVb6FrbmqtCre11dPP91OXHkudBhPX8GELCDVtOVfVnust65lri6U8q3x/J11xTQvFHPa9J6sFeNp1sgBPkzwHeOLikr0aep2UlKqIDgtVokwL9eizPI93gd0QQAABBBBAwJOABXg6d1uuC0o21ey5Oz1tnuPnVt84evSE1q2PVqduS/Xq20N02z0dddWNrXTVjS117U0Rqli5vV567Q/1H7Rahw8nOaOcrSHGOqvUazRTb9cYllZv2bXrmG6/t6Mq399Fh4/4Xm+xAM8Pv0zVbfd0zVOAx64nPj7Fq3SxNnL7pdeH6KnnB2jRkoLtBJPjDeADBBBAAAEEglTgi2/H6cJLGzhtH1YvyMtC+wntJ3l5btgHAQTSBQjwpFvwCgFHIL8BHgvQbN56WL81mKnrbonQRZc1dwI67348Qp27L9HUGZGaM3+nho5cr8/+O1ZX3dha1V8eqG3bjjgBlF79VuhvxX/Xp1+PzXBHItov1HnnN9SQ4eszrPfmTX4CPMnJJ52yWc/WCZO3ejydVc7WrDuoK69voeov9/eqccXjQdkAAQQQQAABBLII5DfAYw0xCQkpWrHqgGr+PFlXV2itEqVbOJ1QPv5qjNNRY9rMSM2cs0P9/litdz8erhsqttM7H43Ujh2xTqCnRZv5uuSKFqpdf3pa+ayTS52Gs1SybEuNGrspbb23L/Ia4HFdz8JFe1Sv0SzNX+Q5YGPzLjZoMkvlb22jTt2W5Llzj7fXxnYIIIAAAgiEkkB+Azy0n9B+Ekr/H7gWBIpKgABPUclz3oAVyGuAxxoVrPdr997LdX3FNvp/lzR1Un60bDtfe/Yey/F6V66Ocnq4PvZML/UbuEoXXf67zitWX4OHrc2wz46dsbqw1O96+Y1BOnXqdIbPPL3xNsBjwRmb0DgxMUXHjiVr7944pxz3P9ZTf7+kuX5rkN54k9s5LSXd2zWGq/S1rbVsxf7cNuUzBBBAAAEEEMijQH4CPDbKZf/+eFk95ZqbInRByWZOfaRzjyXaH5X9fH1Wn5g2Y7vufqCrnv/PAEW0X6DilzVWySuba9zEzWlXYSlu5y/cpZJlmsk6uPhab/E2wGPnsXqLBams7rFlS4zad1msW+/porLl26tz96VpZcrtxYTJW3TPg9314WdjSC+bGxSfIYAAAgggkEkgrwEe2k/SIWk/SbfgFQII5E2AAE/e3NgrhAXyEuCxwIgFQz76Yoz+dH5dXViqud6pMcIZpuwN1cbNMSpzXQv9rXh9nVesjv5RqoGTwzbzvq+8+YdKlWuuTZsPZf4o1/feBHisghV1IF79/1it9p0X66uaY1X1se66+H8Bp79f3Ej1G8/M9TyuDy3/vk22eEnp5qrTaEa+c/G6jstPBBBAAAEEEEgXyGuA5+TJ01q3LlqvvzdMf76gni4r11pffz9RO3cdTT94Dq9s31lzd+ryq5s79ZY/nV/HGf2ya3fGziwxMUl69uV+TvBo67b0eQVzOGyG1d4EeKwcm7fEqO/AVWrZZr5qfDZSd97fSReWauR0lClXPkLdei3LcNyc3uzec1Q1Ph+rKg9318QpW6m35ATFegQQQAABBDIJ5CXAQ/tJRkTaTzJ68A4BBHwXIMDjuxl7hLiArwEeC4zYXDvVnuvnNChcWKqJM9LFvqR9WRo1m+Xsf16xurrj3k7ZpjYbM36zzi/ZVM1azfPl0PImwGM9eWfM2qEbKrVRpbs66Knn+6puo1mq+dNEp1y+BHiscJZ//7Yq7Z1evtYjhQUBBBBAAAEE/CuQlwCPBUYWL9mrB6v11p/Or68y17ZSq3YLsq135FRam5fv+18m67xi9fR/xRvo2ZeypmS1lCvde69UiTIt1bbjopwOle16bwI8NsdO7/4rVb5SG2eeQxvhXKfhTL35/jCfAzynT59Vp65LVP7WCDVqOkeWto0FAQQQQAABBDwL+Brgof0ke1PaT7J3YS0CCHgnQIDHOye2CiMBXwM89kX88FO9nEaOv1/UUL/UnZqnnp+btsTo/H/aCJ4G+vTrMdmKx8Un65oKrVTl4a5OGrVsN8pmpTcBHtvN0pxEHUjQ0WPJzuTJ1gjUs8+KPAV4rOGldr3pTv59C0yxIIAAAggggIB/BXwN8FhKs+Ur9uveR7o79ZZLy7ZQ84i5PtdbrH5g8/IUK9FA/yjZRLXrT8tyYdaAs2lzjK69uZUef7a3kpJSs2yT0wpvAjw2j3NiYqoORicqPiHFqbccOpToBHks1a0vI3isHAsX79GT/xqgl18fqnUbonMqGusRQAABBBBAwE3A1wAP7SdueG4vaT9xw+AlAgj4LECAx2cydgh1AV8CPJbS44nqfZ1Gkr9e2EAffDrKGS2TFyMb8XPT7W2cAM+wketzPMQvdabp/H/+rvGTtuS4TeYPvA3wZN7PGnC6dF+WpwCPjQhavHSfylzb0kkB4+uIpsxl4T0CCCCAAAIIZBTwJcBj38srVu7XA0/0dOotF1/eVD/UnpLnesvOnbG6vmKESpVtKZvDJrvFRvrU/GmSSpVtrinTt2e3SbbrvAnwZLdjdHSifqk73ecRPHYsK+uv9Wfoljs7qFe/lbJgGAsCCCCAAAII5C7gS4CH9pOcLWk/ydmGTxBAwLMAAR7PRmwRZgLeBnisJ+pXNcc7jSSWVu2Wyu21Y6fn3PW5cT74RHcVK1FfkTtic9xs0ZI9uqR0U7370XCvGx+KIsBjF3D4cJJeeXOwrq7Qht6wOd5RPkAAAQQQQCBvAt4GeGw0zb59cXrv45FOvcXm/Hv06d7aszcubyeWdPBggqo83EXX3RKh3Xsyzr/jOqh1FJk2M1KlyjbT59+MlaVC82YpigCPlWvU2I2qfH8XffHtBGdEszdlZRsEEEAAAQTCWcDbAA/tJ56fEtpPPBuxBQIIZC9AgCd7F9aGsYC3AZ5xE7bo/H/aRL519H8XNVCXHkvzrfZQtZ6qWLldrr1pbehutef6qOwNrbVjZ86BIPfCFFWAx/Lv2+THJcu2UrNWvqeAcb8GXiOAAAIIIIBARgFvAzz2fdyr7yoVK9HQqbdcfnULDRyyJuPBfHxnAZ4HHu+hJ//VJ9d6y4EDiXr0mZ66+Y6O2h8V79VZiirAsz3yiN75aJQefrKPps+M9Dl1nVcXx0YIIIAAAgiEkIC3AR7aTzzfdNpPPBuxBQIIZC9AgCd7F9aGsYA3AR5L42GjbWzkjv27495Ozrw1+WV7qFp3ffntuFwPY71hu/VcrvNLNlHHrkty3db1YVEFeKzH8Jath3XTHe308JO9nPQnrjLxEwEEEEAAAQTyJ+BNgMe+i7duPax7Huri1Fn+r3gDPf1CP8XFp+Tr5BbgeaJ6L9VpOCPX41iP3TYdFumfV7bQ0BE5p6B1P0hRBXgsnWxE+4WqcHs7tYiYL2toYUEAAQQQQACBnAW8CfDQfpKzn/sntJ+4a/AaAQR8ESDA44sW24aFgDcBnuGj1usv/6iv84r9qj+dX0+t2i7wi42NAlqyfF+ux7Iv/W3bj6hc+XOTFnvT+FBUAR67EKvMffvjJF1aroWmzvA+/36uCHyIAAIIIIAAAvImwHP8+El17r4krd5SonQzde+9PN96CQkp6t1/pVatPZDrsSyn/Ko1B3RV+Vb69Oux8mZOvqIK8NiFzJm3U4882Uevvztcm7fG5HptfIgAAggggEC4C3gT4KH9xPunhPYT763YEgEE0gUI8KRb8AoBR8BTgMcm3X3hPwP+N/fObypRurG25zJnTkGwWlDno89H65LSzbRw8R6PpyjKAI+NOJoyfZtKXdlMX303wet5gzxeFBsggAACCCAQ5gLeBHiiouKdNGrnFaunP19QR7fc2V67cpgzp6A4Y2NP6J0aw3VX1W5au/6gx9MUZYAn+lCCvvlhku64t7Mz4ujMGe/mDfJ4UWyAAAIIIIBACAp4CvDQfuLbTaf9xDcvtkYAgXMCBHh4EhDIJOApwGMTCf+zTBOdV+w3J8jzRPXeXk8anOlUeX5rvWEnTtmqCy9rph9rT9FZD20PRRngsYvcvz/eyb9/y50dtXdf3id0zjMYOyKAAAIIIBCCAp4CPFZfWLRkry65orFTb/l/FzfSWx8OK/R6i43aGTpyva65uZ3adlzksd5SlAEeC+j0G7hKle7uoFq/TdfRYydC8MnhkhBAAAEEEPCPgKcAD+0nvjvTfuK7GXsgEO4CBHjC/Qng+rMIeArwjB636X9z7/zqBHgaNZ2d5RiFsSIm5rjuvK+DbqncQfY6t6WoAzyWf791u0UqWbalevVbkVtR+QwBBBBAAAEEvBTwFOA5fjxV3XuvSKu3XHx5U7XvvNjLo/tvM0svu3PnMd16T3u99NogHT2anOvBizLAYwVbs/agXn5jqJ55caAWL92ba1n5EAEEEEAAgXAW8BTgof3E96eD9hPfzdgDgXAXIMAT7k8A159FwFOAp3bdaTqvmM2/85v+8o96mjt/V5Zj5LTCAi3JyadkP23orQ1Xtt619s/euz73Jh2Ibd+15zIVK/G7OndfmtMpnfVFHeCx67E89pXu6qRHnuqlo0fpDZvrDeNDBBBAAAEEvBDwFOA5dixZX347Pi2tbJnrWmrJstzn+nM/rY28SUk5Vz/Jrt7i+tybeos1VtSuN13XV2yn4aM2uJ8my+uiDvBYXS2iw0LdcmcHtYiYL5vHiAUBBBBAAAEEsgp4CvDQfpLVzNMa2k88CfE5AghkFiDAk1mE92Ev4CnA8+FnI9MCPBdd3lB79h7zyswaNlq1na96v8+Ujfpp3HyOWrebr3adFjn/WrZZoIZNZqve77O0dp3n/PTWG3Z7ZKyuuamNHn+2t+z4OS1FHeCxctlkgTV/mqTS17XW1Bnbcyoq6xFAAAEEEEDASwFPAZ4jR47r1XeGOAGeP53/m26+s632R8V7PLrVMQ4eTFCLiHmq33iWU29p0mKOItovcOoslmbNAh8NGs9SizYLtGlzjMdjWmeWSVO36YaKbfXp12Nl8wnmtBR1gMfKNWfeTj3+bD+9+f4Ip5NKTmVlPQIIIIAAAuEs4CnAQ/tJ3p4O2k/y5sZeCISrAAGecL3zXHeOAp4CPO/UGPG/AE8dXXNTK8UnpOR4LPcPjsUl67/fT9DbHwzXG+8O1TMv9NNlVzXVpeWaqVTZZipXvqVeeu0PvfPhSC1Z5l06kLi4E7rnwS66qkILHYnNeVRMIAR4rPdrlx7LdEnplurWa5k7Da8RQAABBBBAIA8CngI8hw8n6eU3zgV4/nphPVV9rJsSEnPuEOIqgvUc3bX7qL6qOV5vfzBCr709RI890yut3mJ1lxsqttHLrw/Sl99O0Ko1Ua5dc/25fMU+J03b0y/0VVx8zvWnQAjwWNDq1XeGq9pzA7Rw8Z5cr4sPEUAAAQQQCFcBTwEe2k/y9mTQfpI3N/ZCIFwFCPCE653nunMU8BTg+ezrsWkBngq3t3VSruV4MLcPLB3b1u2HtX7jIa1ac0DTZ0WqZNkmOq9YHed4r7492Mnzvn5jtBJzGY3jOqT1rt2w8ZDKlW+t6i8N0PFcesIGQoDH0rJ9/s1YXXl9G6dXrOs6+IkAAggggAACeRPwFOCJjT2htz4Y7ozg+Vvx+nr06Z5OyjVvzmZpyrZsi9G6DYe0YlWUBg1bqxJlGjvz+Zxf4nd99MUoLV2+zxndkuRFCjMbwWN5+G+o2E5ffzdBySmncixGIAR4ps/croeq9dZ7H4/W9sgjOZaVDxBAAAEEEAhnAU8BHtpP8vZ00H6SNzf2QiBcBQjwhOud57pzFPAU4Gneel5agOeqG1t6PYIn8wktRcolpX935vL58wX1NHrcxsyb5PregjaWIsXm4Ondb6XHbdt1WqwLSjbR/IXe90K1fPtdui9zrvfvFzdS/cYzcz1PTh9aT+B1G6J1461t9fQL/RSfS6/dnI7BegQQQAABBBDIKOApwGPft7Xq2NyB9fSXf9TV/Y96N4In41nkzBW4bMV+XXR5I6fectlVzX1Ot5qYmKrva01R+UrtNXbC5synyPC+qAM81mu2ecR83XxHO6euZcEuFgQQQAABBBDIKuApwEP7SVYzT2toP/EkxOcIIJBZgABPZhHeh72ApwDPjFmRsl6w5xX7TRde2jDPvTqtcePPF9R1RvCUvLKJ9u6L88ne0q489ERPlb+1nfbuyz2fflGP4LGGkq49lqtE6ebq0HWJT9fJxggggAACCCCQvYCnAI8FJv4Yssapt9gcPDfe1tZJvZb90XJea/Pl9Oizwqm3WN3l1rs7KOpAQs47ZPrERh3v3n1MVR7qquovDVT0oaRMW2R8W9QBHkvP9vo7I5w5eOYu2JWxcLxDAAEEEEAAgTQBTwEe2k/SqLx+QfuJ11RsiAAC/xMgwMOjgEAmAU8BHgusVKzc3klRYiNvrOEkL8t3P0/630igunqoWnfZaBlvF0tzMmvOTl18RVN9/t+xsh4euS1FHeA5cCBB1V/urwq3d9CWrYdzKyqfIYAAAggggICXAp4CPFY/WL/+oBPYOa9YXV1arrnGjN/k5dHTN7M0IR99McYZCfT3ixro1XcG+1RvsXrIuIlbdHWFNmraco7HektRBnjMbPCwtbrzvi6q+dNkHYrJPRiVrsQrBBBAAAEEwk/AU4CH9hPfnwnaT3w3Yw8Ewl2AAE+4PwFcfxYBTwEe28GGGf/lHzaKp57+9coAr+bMcT9RzOHjqnRXh//Nv1NPP/821f1jj6+tR+63P0zUxaWba8bsHR6391eAp0GTWR7PlXkDm3to9rydKn1tS33w2SifGoQyH4v3CCCAAAIIIJAu4CnAY1ueS9M21am3FLukkT78bJS8mTPHdRYnTcj6aFW4vZ1Tbyl+aRM1az3P9bFXP5088v8dpzvv76alK/Z73MdfAZ7uvZd7PFfmDY7EHtePtafqtiqdNGDwGic9XeZteI8AAggggAAC5wQ8BXhsK9pPvH9aaD/x3ootEUAgXYAAT7oFrxBwBLwJ8FhjyYefjnICPP93UQP9WHuyLIjizWI56D/8bLT+fMG5NG9/+Uc9zZ7nOUjjOralOdmwKUaXX91cz70yUCm5TFLs2ic/AZ7O3dLn4KnbaIbrkF7/tEadj78co9LXttb8hbu93o8NEUAAAZmLtlgAACAASURBVAQQQCB3AW8CPFZv2LXrmF59e4hTbyl5ZTM1aTnHq3qL7btnT5xefWdoWr2l9LUttHjZ3twL5vapjTpevGyfylzbUt/8ONGr8+YnwFOrznRnhHTZG1qra89lbiXx7uXU6dtV9bGeeu/jUdqx86h3O7EVAggggAACYSrgTYCH9hPvHw7aT7y3YksEEEgXIMCTbsErBBwBbwI8tuHOXUf1n7eGOo0l/yzTXN/Xmuysy41x3YZoffDpaFW6q73efH+4s2+Z61ooxof0HxasiWi3QOeXbKq+A1fldrq0z7wN8Fgv3cSkVB2LO6EjsSe0fmO0Xn/n3DX+9cIGevalftq0JUbWuzUuPlnxCck6fTrn9HBOapiN0brultZ6+oV+suAWCwIIIIAAAgj4R8CbAI+dyXqDrlwVpeovD3QCNVeVb6P6jWflOv+fpY5dsGiPU1+pfH9nvfDqH84ooLsf6KojR457fQEJCSlq3HyOSpZtpfGTtni1n7cBHivjuXpLsqIPJTqjmp98rq9Tv7r48ib65Ksx2hZ5RLFHz9Vbko6n5lpvsbmGmraaqwq3t1W7Tou96kTj1QWxEQIIIIAAAiEq4E2Axy6d9hPaT0L0vwCXhUBACBDgCYjbQCECScDbAI+VOXJHrH76daouv7qlLindQvc/2l2WxmzS1K2yYM7W7YedVCQDB6/VV99N0P2P9tDz/x6kiVO2KnLHEVW6u5Oeer6vx1z07j6xscdV9bHuuqFSG+3f790Ex94EeKyX7v6oBL3+7hA99/IAWQPJXVU765Irmui8Yr85/y66rIkq39/J+ey5l/s7vYF37s65d6tNDti5+zL988oW6tBlsftl8BoBBBBAAAEE8ingbYDHTmNBntVrDujLmhN02VUtdWm5Vnr82d5OQGPazO1av/GQNm+N0YLFe9Sr7yp98tVYPfB4T731wQhNmxmpRUv26PYqnfXuxyN8qrfs2XNM9z3aTXfc20kxMd4FhrwJ8Nj1LFm2T6++PVjPvthfjz/TW5Xu7qDilzZ26ix/+Uddlbqyqao81FVPP99PVm/59seJ2hcVn6P6xk2H9Nq7I/RE9X6aO39XjtvxAQIIIIAAAgicE/A2wGNb034yRLSfBNf/nNOpqdo8fZr6vP6ylg7sr7NnzmS5gKTYWC3u3V2Daryn7fNmZ/mcFQgUhgABnsJQ5hxBJeBLgMcu7GB0giZN3ab/fj9Zlat21nU3Rzg9Py0QUvWxHnrgse6q9lwfffzFGPXsu1LWeGABF1tmzdmpGbMiffKZOWeHLrqimawiZWlPvFm8CfDYcWw4cJsOC9Sq3QK16bhQbTsucnqwtutkPxc5721dm44L1Lr9AkV0WKhDMYk5FuHAgXg99UJfla/UTtsjcw4E5XgAPkAAAQQQQACBHAV8CfDYQazesGfvMY0cs0mffj3eCbpcX7GNbrq9rdOpwzqQPPh4Dz3zYj99VXOCMwfNtu1HnHqLzf9n9ZYFi7xPt2r1j7ETN6tk2Rb6ofZkr+st3gR4bJTw9sgjatNhoVq1m++x3mJ1mz4DVjqjkLMDtY4ufwxZo1vv6ajvfpoimy+RBQEEEEAAAQRyF/AlwGNHov2E9pPcn6jA+vTYvr3qUO1h/Xr5JWp6R0Ud2Lg+QwHPnDql7XNmq/GtFfTblaXU67WXlRhzKMM2vEGgMAQI8BSGMucIKgFfAzx2cZYiZH9UvNasPeiM3hk4eI169Vsh+zl+0mYtW77P6a2SOUWZ7WcNJr4sX9UcpwsvbSoL9Hi7eBvgsYYfS7ti/yzYExeXnOHfsWMnZP/ss9jYE8521oM2u8XWz5obqcvKNVeNL0Y7RtltxzoEEEAAAQQQyJuArwEe11mSk0866dlWrIzShMlbNGDQavXuv1KDhq516jErVu7Xrt1HlZR00rWL89POl5Li3ZyDtsO5PPKjdcU1rTV3gfcjYrwJ8NjxrX6TXm85nqHOYnWYc/WWZKcctp29zym1rKWftXS7t97dUQOHrPE6GJUBiDcIIIAAAgiEmYCvAR7jof0k60NC+4mUkpSkpX/0V+zOHTqTzUiZrGoFu+b0yZPaOnO6filTUj+VvFCNK92oqPXrMpz0+NGjmtmutWpdWlw/X3qxur1UXQluAR7rQHR03x6tGTVcR3btzLAvbxDwpwABHn9qcqyQEMhLgMf9wu2L2XK4JyWlOj+t8uKvxRofrr05QlUf7y7Lae/t4m2Ax9vjebOdTaRYq840p9fuuIne5dz35rhsgwACCCCAAALnBPIa4HH3s3qKq95inU78VW9Jn4cvwklHm7mTi3sZMr/2NsCTeb/8vLeRSdWe669X3hjqpKvLz7HYFwEEEEAAgXARyEuAx92G9pNzGrSfSPtWrVSzCtdqVvsIWWq0ol6SE+I1tXFD1S5VXL9dWVL9P3xHpzKV6/DOSA14/y1nm8Y3XavprZvJgjquxa5j3fixanjLDZrYqG6Gz1zb8BMBfwgQ4PGHIscIKYH8BngKEmP4qPW6oFQTtWwz36fTFHaAx77QIncc1W1VOuq+R3ro8OEkn8rLxggggAACCCDgWcAfAR7PZ8nbFufm4Vuap3n4CjvAc/LkGbXvvFg33dFevzeb43TSydtVsxcCCCCAAALhJZDfAE9BatF+UpC6/j/2zsULVf/q0prWoolOpXjfodmbklgb1bF9+7R31QpvNne2SYiOVpfnntQvpS5Uwxuv1qapkzLsa8fcsXihk7qtVqniav/EQzqwYUOGbezN/rVr1PHJR9Wl+pNKij2S5XNWIOAPAQI8/lDkGCElEKgBHkuf9kT13ipzXUvt3nPMJ/PCDvBYT+A+A1apRJkWatnWt2CUTxfGxggggAACCISxQCAHeKKi4vVgte6qcFt7Jx2cL7epsAM827Yf1ts1RunhJ/v4lALXl2tiWwQQQAABBEJRIFADPLSfBN/TtmvJIifAM71lU78HeE4mJ2tqs9815MtPvII5c/q09q5YpnrXlNGvpUuo28vPKzUpY8dlG52zpF9v1brsYjW4vqzG1akl2y/zknDokKb+Xk+tK1fSrsULM3/MewT8IkCAxy+MHCSUBAI1wLNuw0EVu6SR3v90hCztiS9LYQd4Dh8+ruf/M1BX3dhaGzfF+FJUtkUAAQQQQAABLwUCNcBjad6mztiuElc01ZffjfO53lLYAZ4Rozfo9iqd9cU343UwOufJj728LWyGAAIIIIBA2AgEaoCH9pPgewQLMsCTkpiobi89pwU9unoFk5KUqHmd2p8bvVO+nFYOG5JlvxNxxzTsq8/0S6niavPgvdq9fGmWbWzFmVOntGXmDP1eqbzmdemoM6d9m4c724OyEoFMAgR4MoHwFoFADfDUbTRD553fQJOmbPX5JhVmgMd6yixeuleXlm2q198bKsupy4IAAggggAAC/hcI1ADPsWMn9M2Pk3TpVS01fWakzxdemAGeuLhk/VJ3mirc1la9+6/0ORjl88WxAwIIIIAAAiEkEKgBHtpPgu8hK6gAj6VSO7J7p5rfc4f2rVntFUzi4cPq88a/9dvll6jDU4/pRFxclv2ORe1X66p3q8E1pTW85tc6c/Jklm1cKw7viFT/997UsC8/0ZFdO12r+YmA3wQI8PiNkgOFikAgBnjiE1JUvlIbXXdLhOLifM9FWpgBnoSEFNVvPFsly7bS0BHrQuWx4DoQQAABBBAIOIFADPDYH9GbtxxW+Vvb6MEnesomDfZ1KcwAz9Ll+/TMi3/ohf8M0ao1Ub4Wle0RQAABBBAIa4FADPDQfhKcj2RBBXhsBM3GyRMU8eC9SsmUZi07qbNnzujgxg1qUOFaNbruSs3t3DHLZnbMyPlzVbvMPxVxX2Vtnj41yzbuK5IT4rW4Z3e1ffg+rZ84zv0jXiPgFwECPH5h5CChJPDHkLUqVqK5xo7fEjCjT6bPitRfLmyqX+rm/qWR031ID/C00PyFu3PazC/r9++PV+WqnVWxcgfFxBz3yzE5CAIIIIAAAghkFTgX4FmmC0q21Jx5u7JuUARrkpNPaeCQtSpRJkLNI+bmqQTnAjzTdNs9PbR67YE8HcObnSwY1b3Xct1Qqa1+qz9DiYmp3uzGNggggAACCCDwP4HPvxmn/7uojrZHHpF9rwbCQvtJINwF38tQUAEem39nUsO6GvjRe14V6uSJE1oxaIBqXXqxWlW9W3FRWTsApSQmaGar5qp7ZSkNqPFelvl5Mp/I/m/sWbFMTe+spMlNGnjcPvP+vEfAkwABHk9CfB52Ahs2RuvzbyZo2/bAqaBs3hKjDz8b41Sa8nJDbM6epcv26YtvJ8gaTQpysbQsvzefrV79VpDmpCChOTYCCCCAQNgL2Pf78hXnvt/37Y8PCA+bf8fqHDV/nqJdu4/mqUxJSamaMGmrGjWbq8NHMk5om6cD5rLTnHk7nUDUoiV7FCDtUrmUlo8QQAABBBAILIGx4zfru1qTZe0AgbLQfhIod8K3chRUgMfX+XeOH43V0C8/0e/XlNakRvWyvYjEmBh1f6m6Iu6qpFXDh2a7TeaVcVH71fe1lzTg7Ve9ThWX+Ri8RyAnAQI8OcmwPmwFbM6Yo0dPyOaSCZTFH2WyBhe7LmsMKsjFeibExyfr+PGc848W5Pk5NgIIIIAAAuEkUFjf776Y2shhm9smr3Upq0ukpJx26hMFXW9JSTmlxMQUWZlZEEAAAQQQQMA3ARu5a9/5gTJ6x0pP+4lv9zBQti6IAI89l4d3RqpFlTt1YL3nKQRs+5jI7Wp6Z0U1r3yrDm3bkoXnzOnT2rtyuepdd6X6vP5vWUDIm+VUSoqmNKynFlXu0JL+fWSp4FgQ8JcAAR5/SXIcBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAZ8ECiLAY3PlrJswRm0eul8pSYkey2NBmHVjR6tOucs06qea2W6fmpSkBT266Pdry2hRn57ZbpPTyrXjRiviwSoa9f03ij9YcGmIczo/60NXgABP6N5brgwBBBBAAAEEEEAAAQQQQAABBBBAAAEEEAhoAV8CPDaKxubKST1+XKdTc55D0ebfmVCntgZ9ViPLtbuOccpt/+SEeE1pVE+t7qioPcuXZtnHViTFxjrHa3n3bYrbvy/bbXJaaaODhn1aQ92eq6ats2fmtBnrEfBZgACPz2TsgAACCCCAAAIIIIAAAggggAACCCCAAAIIIOAPAW8DPDbKZsuMqRrx3df6o8Z7mt2hjRJjDmVbhOTEBHV7sboW9u6R4XML6myaNlmjan6pJf176/SpU87nNuIneutmbZg0QadPZj/tgK3ft3qVNs+YmuGY3ryxYNScDu2cFHCz20XodGqKN7uxDQIeBQjweCRiAwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIGCEPAmwGMBmBltWqrVvZU1u21rTW7SUL9eepF6vvaSUrNJwXZ4R6Sa33OHotatTSuyzX2zf/1a1b++rH4rVVx1ri6tfStXpH1e0C+2zZ2tbs89pcEfv6/orVnn+Cno83P80BQgwBOa95WrQgABBBBAAAEEEEAAAQQQQAABBBBAAAEEAl7AmwDP2jEj9XvFG3Vgw3rnek4cO6Z615dT7VLFtWHyxCzXuH7CWLV5uKps3hzXYqnZts6cpt9K/1M/lrxQ9cpepsX9e7s+LvCfCYeiNean7xTx4D1aM3qEzp49W+Dn5AShL0CAJ/TvMVeIAAIIIIAAAggggAACCCCAAAIIIIAAAggEpICnAM+J2Fg1v+d2LR/8R1r5969ZpdqlS+rXUsU1v2vntPWuF+N+/UWDv/zI9TbtZ3J8vCbUq61fS5dwAjxL+vVJ+6ygX1hAZ/mgAWp1X2VNqFtbx4/GFvQpOX4YCBDgCYObzCUigAACCCCAAAIIIIAAAggggAACCCCAAAKBKOApwLN80EC1vO9OnTxxIq34s9q20S+liuuXyy7S+onj0tbbC0vF1u2FZ7Wkb/ajc5KOHFaHag+rfrnLtWFK1tE/GQ7m5zcH1q/TwPfeVO9/v6BdS5f4+egcLhwFCPCE413nmhFAAAEEEEAAAQQQQAABBBBAAAEEEEAAgQAQyC3AY6Ne+r//piY1rJdW0lMpKWr/1KOqXepCNbrlBiVEH0z7zF7ERx9Us3vuSEvnluFDSbb/1GaNVO/aMorevDHzxwX6PiUpUdOaN1Hzu2/Xop7dZHMLsSCQHwECPPnRY18EEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBPAvkFuCxeXOmNvs9Q7Bm97Il+rVMSWf+neHffJnlvJunTVa7xx7UyePHs3xmK06lpmpRr25qftdtspRthb1snDJRHR5/UMP/+7mO7t1T2KfnfCEmQIAnxG4olxMcAieST2rX3jgtXX1A46ZFqvfQ9WrdbYXqtFygr+vM1DvfTNLzH47WE28M1/0vDtLtT/XXjQ/3Vtl7uumKyl1V6rbOKlGxky66uYP+cWN755+9/melTrr09s7ONuWqdFeFR3rrjqf7q+pLg1XtzeF6ocYYvfvtZH1Tb5bqtV6oNj1WqM/QDZowY4eWrzmovVEJSkmh50BwPEWUEgEEEEAAgcIRiItP0dYdRzV/6X6NmLhV3QauVfPOy/RLs/n6vPZ0vf7FBFV/b5QefXWYqvzrD91arZ+uf6CXytzVTZff2cWpt1xSsaOK39RBF5RvpwsrtNfFt3R06i2X3dFFpe/qqmvu76GbH+uju6oP1EOvDNFTb43QK5+MU40fpur7hnPUqN1ideizSgNHbdK0ubu1dlOMomOSdPr0mcJB4CwIIIAAAgggUCQCScdPasfuY1q8MkpjpmxXz8Hr1Krbcv3WYoG++m2m3vp6ov71wWg9/vow3ffCIN32ZH+Vf6iX037iqodkbj9x1UNc7SdX3Xuu/eTOZwbogZfPtZ+8WGOM3v9usr6tP1v1Ixapbc+V6jd8gybN2qmV66K1/2CCUlNPF4lJKJ40twBPdtc7vu6vTnCn1uUXa/PM6Vk2mVD3Nw3+Iuv8O64NTyYna1Kj+urzzmuuVYX689C2rRr6yQfq8fzTipw/t1DPzclCT4AAT+jdU66oiAWsoWHnnjin8aHHoHWq22qhPvhuilPZsEqGNWqcV7Z1QP+zYNFNj/bRk2+N0Ec/TlWDNoucINSshXu0Z3+8zpw5W8TKnB4BBBBAAAEE/CFgnU42bDmssVMjnQDKT43n6o0vJziNG9bY8ffr2gZ0neXP5Vo7ASTr0GKdY6yhx4JPg8ZsdhqCDsem52n3hxfHQAABBBBAAAH/CZw6dUbbdx3V5Nk7nQ4kFrSxTqnWacQ6i1jHkEBvP7FOLBUf76tn3hmpT36e5nRKsUDQ3CX7nCCQpRdj8SzgS4DnxNFYJ71Z7VLFFfHwfUpNSspwAkt51q7aI1oxeGCG9e5vEg/HqMtzT2tJ/z7uqwvt9bZ5c9T9hWc1+KP3Fb1lc6GdlxOFpgABntC8r1xVIQjEHjvh9GTtOmCN/lt3lvNlbgGcv13TxqcKiFVYrr6vhzNKxyoxL3001gkIWS+RX1vMV+P2SxTRfYXsPP1HbHQaLIaN36qRk7Y5vVesh4mN9LGeLNardui4Lc42VqHo0n+NMzLo93ZLVLv5fGfkzns1JzsjeR7+91CnZ4uN9Cl2vW+VJmvssQCQ9ZL5ruFs9Rqy3mlEiU9IKQR5ToEAAggggAACvgrYKF1rPLERw9Z545H/DNWVd3fTn3zsdGKNGDc82Et3Vx/ojA7+z2fj9fFP0/RDozlOp5amHZeqXa+Vsk4uA0Zu1OCxm2X1llGTt2nwmM3OqGPbdvT/6i1Dxm7RH6M3OR1JOvZdrZZdlzsdS35uMk9f/jrD6ZVro4NsNLKN8LGRzH+9OsKnupZ1XKn87AC99sV4p4x2znWbY+h16+tDxPYIIIAAAgjkUSDmyHHNXrRXnfqtdr7frTPpdQ/09Pk73TrM2qhfawd57LVhevnjsfrw+ylOu4QFh6z9xDKV2Ghjaz9x1UNc7SfXPdDLGSHsqoe42k/6Dtugzv3OtZ/YqGEbpWztPBZssg4kNrq40hP9nLqTr51frL3FAkA2Isg60ti5LIOKjUxiSRfwJcCzfe4c1brsYmcEz7g6tdMP8r9XR/ftUaNKN+pgDoGT06dOafP0KWpV9R7F7in89GinkpM1t2Nbtahyu2a3j9DJZDokZbmJrPBJgACPT1xsHI4CNiJn49YjTkoQSxFiw35tmK+nXiTW+GCBmwdfGaI3v5qoWk3nOZUZC8TY0GIbYpzfL/Qlqw445bBz2fHysyQkpjo9ZxYs2+80wrTvvUo//j7XSbtiaeIsPZz1kvV03dZYZGlV7HqtsrRt51HRYyU/d4Z9EUAAAQQQ8F7ARuRY/cA6eVgvUkuZ5s3o4fNvaOekdrWUrtZQYqlIrAOHKw3JvgP5T0NiDSZWj7BOIvkZDWz1iiNHTzj1MxtdbI03Lbosc9LcWuOJNfpYOltPdRarP1kK3H9/Os5pELJrPXgoYw9Q7+XZEgEEEEAAAQRsRI6lUbUghqWGt46lJW/t5PE72TrKXlu1p9MBxVLWWwdVq8tYSntLbW8p7q2Ok59l/PQdTjmsk21+R/i6p68dPmGrk77NOr9ax5d7nx/kpJ/11InGPrfR0taRxYJTFoSybDDhuvgS4JnavMm59GyXXqRts7KmZ1s/boxa3n+XTp7IPnCSeChafd99U+PrZQ0OFYa/pWcb/MmH6vpsNW2dPaMwTsk5QlyAAE+I32Auz3cB+0K1hgKrjNgXc26jW1xfyDYU10bcWM/TKXN2OYESq9gU9PL02yPTKkqWBq6gF8svuyUy1pmzx/LPWhoUawiy3Pm5NaJYw5IFuixgZKOMLFctCwIIIIAAAgjkT8A6oazecMgZ5Ws54m2Ey1+uynl0izWe2DYW0LCGE5sD0NKHRB1MzF9BvNjbRvna6B9XfcHqWgW9WOeVVesPOSOIbGSRBa4sN7+N6HGVI7uf1pHnufdHyUZAT5+3W4xQLug7xfERQAABBIJVwDp02kiZL2rPcObRy210i3UYtSCOZQKxzrMWwLHvWWuDKYw59Ww0r+t730YKF/SSnHzK6YxiaXBtBLXNW2hZW2z+QVc5svtp8wPZ6CQbRWT72pyD4bD4EuAZ9MkHToCnzrVldHTf3iw8o3/+QX988kGW9bbC5t5ZOqCvOjz5iI7s3JntNgW58syZM1o7ZpTaPVpVY36sqfiDBwrydBw7TAQI8ITJjeYysxewSoQNjbUJ+l6oMUY2wV52X7C2zhol7MvYemVYb5Rlaw4qMSk1+wMXwlrX6B1Xef0xiic/xbYeLItWRDkpWb6uM9PJ3Z9bj2Eb6WMNTDZSyHr4MMonP/rsiwACCCAQDgI28nfa3N1OClfrEZtbXnobeWspReq1XijrWWqjkU+eLLqJgF2jd1z1lvyO4snv/baglllaGhcLjtmEzDml2bUGqVse7+ukorO0c5bujgUBBBBAAIFwE7B6xMLlUbJOE8++O0olKuY8MsdG7VhnUEtJZt+dK9dF53sETn68XaN3XPUQf4ziyU95LOX/vCX7nE46FvixzsU2mtpVvsw/LTuMzZFoqfs3bTuSn1MH7L6+BHgGfvK+fi1VXPVvvEaJRw5nuCabf6f9k49qSd9eGdbbm9MnT2rnwvnq+Ew1rRg6OMvnhbHiRFycJjesp1b3VXYCTWfPFF39vDCul3MUjgABnsJx5iwBImDpQCygYxUSG/2SUwDC1luPCevdajnjbThwoC3uo3dcX/6FMYrHFwcL2liPHkvVZqN3bBRPTpUWC6BZQ5TNN2R58VkQQAABBBAIdwFLRTJ1zi7nO9RSrVlnDtd3vvtPG0lrc/g177zM6Qlr6csCack8esdV9sIYxeOLg41UtgaonoPXOcGcW6v1y3FElDW02LyG1umnMEZA+XIdbIsAAggggIA/BKxDrHXibNBmkdM+ktvf8pam3TqVWEo1S+saaIv76B1XPaQwRvH44mDtVRa8sbkJLUOMBX1yGhFlqWhf+WScOvRZ5WRZ8eU8gbqtLwGehb2665dSF6p26RLaPm9OhkuK3rxJjW+7SbG7dmVYfyLumJb1762er72iVUMH68zpogmsbJs7W92ef1qDPnpP0TnMEZSh4LxBwAsBAjxeILFJcAvs2R/vjCp59fPx+mel7HuY2DBh671pEwKv33I4X3nhC0Mr8+gdVwWlqEfxeHPtlrrOGk9sAkObm8hG8rjK7/7T0qNY7l0b7h0uQ5K98WMbBBBAAIHQFbCOEZZSrFmnpc6cf9n9UW8p2KyRomaD2U7qsWAYTZJ59I7r+76oR/F48yTZaG2b56dJhyWylLzFb8o+vZulvrPGmIkzd+j4ifzNEeBNudgGAQQQQACBghCI3HXMmTvY5rTLKaWpzV/38U/TnE4OlsI90LNxZB6946qHFPUoHm/un3U+sTmI2vVa6czvk1N6t3JVuqvGD1M1ZOwWZ55Cb44daNv4EuCJ3bNb7R5/yBnF88fHHyguan/a5Sz7o7/aPfGQTqWey7hz9swZJ5Ays3UL9f/gLWfUzKmUlLTtC/OFzQk0t2M7taxyp+a0j1Dq8eOFeXrOFcICBHhC+OaG66VZrwfrZWKjb6znpevL2/3n9Q/0ciYetp4Rgdi7xNO9y270juv6Am0Uj6drsc937D6mPkM3OEE2SynjuhbXT5vr6O7qA52eQxYcYkEAAQQQQCBUBCwYYPnVraEkuzntLKBjo3esl+mkWTuDbj6YnEbvuL7jA20Uj6fnynozr1gb7Yw4tvS+2QV8/t/1bZ3UNdaZJRgCcJ6umc8RQAABBEJXwDpgzl6015kTxwI3ru9n95/WicHm3x02fmtQdr7MbvSO6/oCbRSPN0+aBdW6DVyrt76eKOsY67oW10+rO1Z9abDTYWjDlozpy7w5xKLxewAAIABJREFUflFt40uAR2fPasOkCerxwjNqWP5qDa/5ldaPHysbvTPo0xoa/PnHijsQpX2rVmj5H/015qfvNPybL7Vh4ngVVXDHXGO2b9PQz2qoa/Vq2jprZsAHR4vqWeC8vgsQ4PHdjD0CUCAl5ZSsV4aNwrFcr64vNtdPyw1r873Yl2AgplvzhTSn0Tuuaw2GUTyertcqLDbU2CZfzC6NnjWAffbLdCcNjVVIWRBAAAEEEAgmAUuh1mvIeicIYMEA13e466eNLP601nSNmLhVR48lB9OlZSlrTqN3XNcaDKN4slyU2wqrh9h8BPUjFun+Fwdlm0bPOhxZ2hpS0LrB8RIBBBBAoMgErHOJ1TFsTpeLb+mYpR5icxNbtg3rhLn/YOClW/MFLqfRO656SDCM4vF0vVa/aN1thSxNXnZp9Cyt7Df1Zjlz/liH6EBdfArwSE6KtcgF8zSlUX31eetVDfrkA42p9YN+r3Sjer/xb01r3lgT6tbW+N9qaV6n9tq/dk2RXrqNdFs7bpTaP/aAxv5UU3FRUUVaHk4eWgIEeELrfobV1VheelelJLsgQMXH+6pW03nOH92B/CXm602LOXLcmSjZJku2gJarYmJz3Ng6+xfsjUHuJjaR48wFe5xUNDc82Cvtel3XbWn3bNTShBk7ZMOXWRBAAAEEEAhEgYOHkpz0pI+/PizLvC7WOePRV4c5f5xv3XE0EIuf5zLt3BOXVj8p/1D69/joKdvT1tt3fagscfEpTnqUt/87KdvUwFaXsfqpzQnJggACCCCAQGEJJCSmOnO7vPzx2CxBAMuYYaNcrDOCfT8Feso1X8wORCem1Tdszl9XO4LNy+xqPzGbUFms8/Pk2Tv1Re0Zuure7mnX67puG/FjnWVnzN8jG5UcSIuvAR5X2ZPj47Vv9UqtGztak36vrzrXlNastq21pF9vrR07SlHr1wZEKjRLzza5UT21rnq3lvbvo9MnSenruof8zL8AAZ78G3KEQhSwXpL2ZWVzs/zjxvYZvqxsGKo1jtjIj9374guxVEV3qu8bzkkzaNVtedEVpBDPbA1fLbsu130vDJJVRF0VFftpI7U++Xma5izeG1KV0kLk5VQIIIAAAn4UsPRkvYeu1xNvDM8S1LHOKa9/MUFDx22RBQXCYan0RHrq3HAYzWINJwuW7ddPjefqugd6ZqizWL3FUgbXbbUwZCZHDodnmGtEAAEEgknAOkBah4r/fDZexa5vl+F76G/XtJGlfu/+x1pFHUwMpsvKc1mtHcnVfmBz/YbDYvWtxu2X6M5nBqRdu8vA5vP5us5MLV4ZGCNJ8hrgcb+PK4cOUptHqiolMUE2904gLZYyrs+rL6vPG//W3lUrAqlolCUEBAjwhMBNDIdLWLbmoL78dYZK3dY5w5eSq1LSY9A6HY49EQ4UGa4xHAM87gBWEbWA3iP/GZql4ezKu7vph0ZzFEw5Z92vjdcIIIAAAsEpYJ1RxkzZrlc+GafM6dcuqdhR79WcrHHTImU9LMNtCbcAT+b7u3rDIf3WYoEsLZ2rccX10xpeIrqv0KHDTLab2Y33CCCAAAK+Ccxbsk8f/Tg1S/o1q5fY/HEW3DgWF9wpYH0TObd1OAZ43J1sugLrGJxdZ1lLD2x1lO27im4kuT8CPAM+fFsT6v/mftkB8frMqVOKnD9HLe6+XbPbttbJE9T3AuLGhFAhCPCE0M0MtUuxP3Atj6ilWnP98Ws/bdTGw/8e6synE0qpyPJy/8I9wONuFh2TpHa9Vuqe5/7I8LzYM3N39YHq0n9NWFZi3Y14jQACCCBQcALWocC+ly1vvXu9xXKh20gdC+qEUiqyvEiGe4DH3cx61FqqtszpU6zz0os1xmjs1Egxz6C7GK8RQAABBHIT2HcgwRmpYaND3eshlunE5mbpN3yDQikVWW4WOX0W7gEed5e9UQlq3nmZbnuyf4bnxZ6dB18Z4sy/lHS8cFOI5TfAk5KYqOZV7tCW6VPdLzUgXh+PjdXstq3UtXo1bZs9k4wzAXFXQqsQBHhC634G/dVYrtcpc3Y5f9jaH7juFROboNZSc1nFheWcAAGe7J+EyF3H1LDtYmWes8d6LL319UTNX7o/+x1ZiwACCCCAgA8CNklxz8HrnI4E7nWWP5dr7aQ9GThqkxKTQievuw802W5KgCcri9V9LY3b57Wny0Z4uT9HljrF0rvt2H0s646sQQABBBAIewFLBWop2CzVmtU93L9DrOOjZbtgZGj6Y0KAJ93C/ZXNRfRri/kqVyXjnD02LUKNH6YW2ryB+Q3w7Fu9Sk3vuEUJh6LdLy8gXkdv3qTur/xLo77/RpaqjQUBfwsQ4PG3KMfLk4ClV7PeA5nzk9sfupaabcXawPsFnacL9fNOBHg8g1ow54PvpmSZs+mWx/uqY9/VsvkRWBBAAAEEEPBFwP4QtpzlF93cIUNjinUssDzn+w/SGSU7TwI82amkr7O0fUPGbnF6Wrs31NnodWu8s9R/gTYhcnrpeYUAAgggUFgClqq8QZtFsrTk7kEd6xhgbQSkKc/+ThDgyd7FtfbMmbOaNne33vhyQpY0w3dVH6heQ9bLOjcV1JLfAM/87p3V6V9P6szp0wVVxDwd92RystaNHa2mt1XQ0v59ZOnaWBDwtwABHn+LcjyfBFaui5Z9yf79urYZKiaPvjrM+QM3HPPT+wJIgMd7LRtebBNdV/lXxhRuF5Rvp89+ma7N22O9PxhbIoAAAgiEnYD90Wu9ZC1NrHtjio0OtboMo0M9PxIEeDwbubawEeuN2i1W2XsyNt5ZY17TjksVeyz85p502fATAQQQCFcBG/H570/H6a9XR6TVRaxDwLPvjnI6AZDaM/cngwBP7j7un9ocTZ37rZFl0nGv9158S0d913C2bD4ffy/5DfD0/+BtTWpQ19/FyvfxbMTO2Fo/KOLeO7R35Yp8H48DIJCdAAGe7FRYV6AC1vNw5KRtTl5P9y8KG63zbf3Z2hJJQ7u3N4AAj7dSGbdbtf6QPvl5miy443oGXb1jLUWgpUthQQABBBBAwARspGebHit0zf090r4z7LvDRuvYRLU0tHv/nBDg8d7KtaXVm23+pmfeyZh+p9j17fRprenatO2Ia1N+IoAAAgiEoIDN32cpX20EhetvV/tpc/790mx+gTS0hyCjc0kEePJ2Zxcuj3I6M1mnJtczaHM7vfzxWM1bsi9vB81mr52LF6rB1aU1vUUTnUrxPdPK+gnjdHhnZDZHLrpVNppox8L5an7Pber9xr+VmpRUdIXhzCEtQIAnpG9vYF3cieSTTg7Yq+/L2EBif+zbUE/7nMU3AQI8vnll3toa7dr3XqXME1He/FgfZ1LBcJ8MO7MX7xFAAIFwErA0a9ZD8cIK7dP+mLXOANXfG+Wkr6AzgO9PAwEe383c99i5J85JvWO9Z10NLK4OKrMX7XXflNcIIIAAAkEuYH+rWhr7Kyp3Tfudb7/7bW6dQWM2KzU1sNJQBQM3AZ783aUjR0+oWaelWUYX3/nMAA0dtyXfaWRtnppmt92sxX176lSq73NYWiq0QEvPdvrkSW2aNkWtH7pPC3t2ozNx/h5B9s5FgABPLjh85B8B69lqE96XvLVTWsXEhhH/64PRmrlgj39OEqZHIcDjnxtvaXesd+xjrw1Le0at8mxpUCK6r2CCbP8wcxQEEEAgKAQsZafN3fZ/17ZJ+06wSWZtTsBtO48GxTUEaiEJ8PjnziQmpTqdpmwUmSvQYz8tDe2oydtoPPAPM0dBAAEEikTg4KEk1Wo6L8M8f5aS7dXPx2vRCiZnz89NIcCTH730fS0VoAV07nthUIZ6iM2p3XXAGiUn522OGQuG7FuzSsdjY0OqLnMiPk4HN23U8WNkK0p/injlbwECPP4W5XhpAtExSU4vQ2sUcf3xaUM6bb6T7btoIEmDyscLAjz5wMth17WbYvT2fydlyGts6QPrtV4oy0PLggACCCAQmgKWvvOlj8bKRkS46i2X39nF6anI73//3HMCPP5xdB3FRpFZB5UHXh6c9szas1vhkd7qP2JjvnvSus7DTwQQQACBghfYsz/eaStxn5/Y2lJsNPHeqISCL0AYnIEAj/9v8pJVB5xUbdaJ21V/vuyOLmrRZZlsHmRfF5uvJi+jd3w9T2Fub9eTFHtEp0/6PiqpMMvJuYJbgABPcN+/gCy99Tip2WC2LDe46xf8RTd3cPLDWtCHxX8CBHj8Z5n5SLv3xevrOjN1/g0Zn+O6rRbq6DECPZm9eI8AAggEq8DKddF6ocaYtDqL1V1sZES3gWuVkpK3HojBalHQ5SbAU3DCNvG2jY53D1Dac9x32AYCPQXHzpERQACBfAvY3502p5r7yOFSt3VWo3aL+bsz37oZD0CAJ6OHP9/ZXNo1fpia5Tm2lG428pgFAQQKVoAAT8H6htXRDx0+rm/rZwzsWFo2+4Vu+WNZ/C9AgMf/ppmPeDj2hH5tMV/Fb+qQ1vhnr+u0XKC4eJ7rzF68RwABBIJFwEbsWIO4qzOK/bQAxLDxW2WpO1n8L0CAx/+mmY+4YcthvfHlBLn3pLWUKRbo4bnOrMV7BBBAoOgEbFTOxz9N09+uSU8JW+aubs4cscxPXDD3hQBPwbi6HzXqYGKWDt+udsHjJ3wf0eN+bF4jgEDOAgR4crbhEy8FrJH7txYLdEH59JEO1uMkr0MyvTwtm0lOCjxXw1SrbssxKUABG7VjQR0bjeYyL1GxkzPxJRXwAoTn0AgggICfBWwende+GJ9hpMOt1fppxMStIZXv289sfjkcAR6/MHp1EJtL6q2vJ2YI9Nz8WB9njh6vDsBGCCCAAAIFIhBz5LjTAO6eis3mfu3YdzUjhwtEPP2gBHjSLQr6lWvKBveMKJb6uFO/1Tp58nRBn57jIxB2AgR4wu6W+++CrVHbgjjWyO1q8LbIfMuuy0Vk3n/OuR2JETy56RTMZzYPg6Vpu7BC+txSpe/qqi7918gmG2RBAAEEEAhMgf0Hz/WUtYmKXfUWCzgwKX3h3S8CPIVn7TqTpUzJHOi557k/NGP+Htcm/EQAAQQQKASBhMRUZ17XzH9Hdu63RqmpNHgXwi0QAZ7CUM54Dsv0Y+1WNh+3q/59zf09NGDkRkYWZ6TiHQL5EiDAky++8NzZJnS1X8Zl7+mW9gvaKik2Cb1VWlgKT4AAT+FZZz6TpW6zCS/dKyo3PtxbY6dGZt6U9wgggAACRShgeb9tpLH73IDXVu2pgaM28YdlId8XAjyFDO52unWbY7KkJHzmnZHauPWI21a8RAABBBDwt8Dp02eczoCX3t45rf3EOslaZ1kyQfhbO/fjEeDJ3acgP7WOVp/8PE3uHa1uf6q/Zi6gw0lBunPs8BEgwBM+99ovVzp3yT7dVX1gWsXEhhXXbDBb1tjNUvgCBHgK3zzzGfcdSHAmE/zLVek9wh/5z1DZpN0sCCCAAAJFJ2ANKt3/WCtLB+HqMUhqiKK7H3ZmAjxF629nX7g8Sg+9MiTt/4TVX2xyb+thy4IAAggg4F+BiTN3yNJjuuohltbeOp0wl6t/nb09mnuAp+/QdTpz6pTOniELh7d+/thu+66jev2LCRlSJT/3/ihZalkWBBDIuwABnrzbhdWeu/bG6aWPxqZVTKyCYvnrbT1L0QkQ4Ck6+8xntkmNrSesq/L+p7Kt9f53k2W5Z1kQQAABBApXYNbCPRmCCZb/29JrJh1nctfCvRMZz0aAJ6NHUb6zEcc28thVb7HR+M07LyNNUFHeFM6NAAIhI7Bp2xFVe3N42u/YP5dr7XQKPBCdGDLXGIwX4h7g+fiBt9Xsmksy/ru2hJpfX1Ityl+qljderlY3lVbrW65URKVyit6w1uMlj/j4TXV9+A51e7Syuj92t3o8UUU9n7xPvZ6uql7PVFXvZx9Un+ceVt/nH1W/Fx/X4e1bPB5zeoNaGv7haxr+0euy44/89G2N+vxdjf7yfY356kON/e9HGvfNxxpX8xON/+4zHdu72+Mxl/XqrFmN62h203qa3ay+5rRooLmtGmle68aa36apFrRrroUdWmpRx9Za1ClCiTGeO69unTpBa4b019phA7VuxCCtHzVEG0YN1cYxw7Vx3AhtmjBKmyeO0ZbJ42TbLli4XQ+6dTixkT1f15kpS4nPggACvgsQ4PHdLKz2sCHDlnrNPQ3V/S8O0uKVUWHlEKgXS4An8O7MtLm7ZZN1uxpMit/UQRHdVzA/T+DdKkqEAAIhKLA3KkGvfj4+7XewNahYsN3SQrAUvQABnqK/B+4lsLkDO/RZJZtD01VvKf9QL02evdN9M14jgAACCHgpEJ+Q4sw38rdr2qT9XrVAz9pNMV4egc0KUiBDgKdqNgGezAEft/cH1632WLQ+/3okY8DIbf8swaRrLhHHlDMX5vUP9Er7/2J1kh6D1pFG2ePTxgYIZBQgwJPRg3duAjbp8NX39Uj7RXvl3d00ZKznHgZuh+BlAQsQ4Clg4Dwe/syZs+o2cG2GBhMbmk9+2TyCshsCCCDgQcAmJ27cfolspI6robrqS4O1av0hD3vycWEKEOApTG3vz2Wpgizlsnte/BdqjNHOPYzU916RLRFAINwF+g3fkCEt7A0P9pKlaGMJHAH3AM8nD77jjNZpdm0Jr4Iy3ozg6V39Ia+O5Qr2cMxzz8bJk6fV8seOurJCo7R6vE0NsWTVgcB5eCgJAgEuQIAnwG9QURTPernaH3WuBhKbZ6d28/mkNSmKm+HhnAR4PAAV8cdHjyXry19nyH1+nvdqTlbsMeasKuJbw+kRQCCEBBYs26+bHk3Pb39F5a4aMHJjCF1h6FwKAZ7Avpcbtx7RY68NS/sbwAKmrbotl81nxYIAAgggkL1A5K5jGX532jw7TTsuJeVl9lxFutY9wNN/RNa64pnTp515eU6npupUSrJOnjiu1KREpSTEezVXT8LBKB3dvVOxOyN1ZMc2JwVbzNZNitm8UYc2rVf0xnU6uH6NDqxdpajVK5zjewLZt2yxts+You3TJ2vbtInaOmW8tkwaq80TR2vT+JHaOHa4Nowe5qRDWz9ysE4cO+rpkM62S7q31+KubbW4cxsnDdvCDq20oH0LzW/bTPMimmhuq981p2VDzWneQImHDno8pu076eevNfHHLzXh+881vuanGvftx076uLFf19CYLz/Q6C/e06jP3tHIT95KSyWXHHfMSS1nQa/tqzfr3W8np83PYyPxLW1bYlKqx/OzAQLhLkCAJ9yfALfrP3v2rLr0XyNLKeUK7jz77ijZJGgsgSlAgCcw70vmUq3ZeEgPvDw47f/Vpbd31uCxmzNvxnsEEEAAAR8EEhJTnSC6zXlm9RYbffBDozmy9SyBKUCAJzDvS+ZSDZ+wVWXv6ZZWb6n87ACt3sBouMxOvEcAgfAWsOC3zV1W7Pr00cM2TzFpYQP3ufAU4AnckodmySxw1bHKTWmjnlzBqUUronTH0/3T6iHlqnRnNFxoPgJclR8FCPD4ETOYD7UlMjbDBGfWAE06tsC/owR4Av8euUpoAdSuA9boopvTA6jV3xslmy+CBQEEEEDAN4Hx03fIUse6OqRYGgcLprMEtgABnsC+P+6lcwVQrfesK4Baq+k8JSefct+M1wgggEBYClgK2MwN0JNmMX9ZoD8MBHgC4w65j9pxpauzn2dOpdcxLIDaokvGAOobX05QzJHjgXERlAKBABMgwBNgN6Swi2O5Lhu1WyxLw+ZqJLHJiEkhVdh3Im/nI8CTN7ei3CvqYKJedEuBeGGF9urYdzWTCBblTeHcCCAQNAKHDh+X9Y511VlIIRU0t84pKAGe4LpfVtqFy6Nk8wi6/s/ZnBKzF+0NvguhxAgggIAfBE4kn9RPjeempeC2IPh/684ihZQfbAvjEAR4CkM593NYqrkO91RIG7XjCvC0qnBFtjtaCsTHX09PH/vPSp1k812xIIBARgECPBk9wurd0tUH5P6H9rVVe2r6vN1hZRDsF0uAJ3jv4IiJWzNMwnn/i4Nkue9ZEEAAAQSyF+gzdINKVOyU1tBc7c3hTAKfPVXArnWvd67bHBOw5aRgGQVSU0+rXuuF+r9r2zj//ywt4kc/TtWxuOSMG/IOAQQQCGGBmQv26LoHeqbVQ255vK8Wr4wK4SsOvUsjwFN099RG59jcPK6ATuafHe6+MdfC9R66XpdU7Jj2/+/Jt0Zo1964XPfhQwTCSYAATzjd7f9dq43a+bnJPLlSLtgE8Jaz/viJk2GoEdyXTIAnuO+fNYzU+GFqWiXFGk4sj/OZM2eD+8IoPQIIIOBHgYOHkvTUWyPSfldakKfvMHru+ZG40A5FgKfQqAvkRNYR5b4XBqX9X7yicldNnbOrQM7FQRFAAIFAEbB2ks9+mZ72u8+ynzRsu1jWrsISXAIEeIr2fh1Ys1IDXnkq2yBPt8fu8li46Jgkvfp5+kj+C8q3c9Lge9yRDRAIAwECPGFwk90v0ebaufOZAWmVk9uf6q8Va6PdN+F1EAkQ4Amim5VLUWct3KPrH+iV9v/y0VeHad8B5ubJhYyPEEAgTATGTo1UyVvTR+28/sUEWZo2luAUIMATnPfNvdTWCaVDn1X6x43tnXqLjeb5tv5spaSk5813357XCCCAQDALrFwXrQqP9E77O63qS4O1aRtZF4L1nhLgCYw71+e5h7MEefo+/6jXhRs3LTLDXJzPfzhah2NPeL0/GyIQigIEeELxruZwTd0GrpXlqrcc2jZq59cW83Xq1JkctmZ1MAgQ4AmGu+RdGS2f8+e103uG2fDj4RO2erczWyGAAAIhJmC9ZT+tlf470UbtjJy0LcSuMvwuhwBP6NxzS4tiDZ2uuXlurdZPG7YcDp0L5EoQQCCsBc6ePetM8P63a86lprRMCy27LpetZwleAQI8RX/vdi2YkyG40/rmMs77wW+94FPh4uJT9OZXE9PqIYwq9omPjUNQgABPCN7UzJdkkewX3CZ1v+re7pq/dH/mzXgfhAIEeILwpnko8vjpO1Tqts5pFZUPvpvCpJ0ezPgYAQRCSyBzb1mbWHX/QUY1hsJdJsATCncx/RpOnz7jpCn669URTr3l/13fVu17r0rfgFcIIIBAEApYneOx19Indb/p0T5atf5QEF4JRc4sQIAns0jhvj9z+rR6PV01LcAzudY3Sog+oPHffaZRn7+bp8IMHLVJxW/q4NRDGFWcJ0J2ChEBAjwhciNzuoxpc3fLItmu3nUW4bZIN0toCBDgCY37mPkqLLfsM++MTPt/a5N5Lll1IPNmvEcAAQRCSsBSP7XosixtInd6y4bU7XUuhgBP6N1TuyKro7hPPG51GKvLsCCAAALBJmAZFGzUsKv9xDIsWKYFltAQIMBTtPdxRd/uacGd1rdcqcSY9OkiThw7mufCMao4z3TsGEICBHhC6Ga6X4rlwa7ZYLYsgm2VE4toDxi50X0TXoeAAAGeELiJOVyCDf9v12ulrDes/R+23rGN2i2W9ZZlQQABBEJNwHrL2vxjrgYV6y27egO9ZUPtPhPgCbU7mn49iUmpev+7yWn/hy+9vbMmzNiRvgGvEEAAgQAWsN9hH34/Je13mGVUsHk+WEJLgABP0d3PlPh4tat8fVqAZ3HXtn4tDKOK/crJwYJQgABPEN40T0XeG5Wgu6sPTKucWH5si2izhJ4AAZ7Qu6eZr2j9lsNybxB74o3hTCCYGYn3CCAQ1AIz5u9RyVvpLRvUN9HLwrt/n63bHOPlXmwWTALDxm+VzSPoCtbWajqPzinBdAMpKwJhKLAlMlbWscT1e+vpt0fq4CFGIYbio0CAp+ju6vQGtdKCO50fuFWnUpILpDCZRxW/8sk4JSSmFsi5OCgCgSRAgCeQ7oYfyuLeSPKXqyLUoM0i/qjyg2ugHoIAT6DeGf+Wy0bkfVNvVtofHeWqdNfyNQf9exKOhgACCBSBQPPOy2T1FWtUsSAPvWWL4CYU4ikJ8BQidhGeat+BBD3876Fp9RY6pxThzeDUCCCQq8Coydt0YYX2zu8rSw1rGRQskwJLaAoQ4Cma+3p01w61KH9pWoBn65TxBVoQG5H3Xs30UcUVHumtzdtjC/ScHByBohYgwFPUd8CP58/cSDJ93m4/Hp1DBaIAAZ5AvCsFVybrFfuPG8/9AfL369qq15D1BXcyjowAAggUoID1pLMeda7esndVH6g9++ML8IwcOhAECPAEwl0onDJYqpQfGs1J+z9O55TCcecsCCDgnYD9jrIRhq56yJV3d9PS1cx56p1e8G5FgKdo7t2wD15NC+4MfPWZQitEt4FrZe0m9v/cArkjJ20rtHNzIgQKW4AAT2GLF8D5aCQpANQgOSQBniC5UX4s5satR3Tjw73T/hj55OdpshE+LAgggECwCFgPOutJ52pUqfHDVH6PBcvNy2c5CfDkEzAId8/cOaXn4HVBeBUUGQEEQkngcOyJ/8/eeYBHVax9/Ll+915vL+rtV0TAjmDBLoIgKqBIB0UQRUSxASKCCIgK0kIKCSQhCSWUhE4oafQaehJIIAVCgJDee+P9nndy92ST7Gb77in/eZ482T1nzsz7/ubs2dn5z7xDvLJQ1w/hPQBz8srV5CJ8MUIAAo8RMA48nHbkgCTuzLv3r5R5PtaBtbUsmoXbu5/2kz7v38xF6NiWlHBEDQQg8Ci8FTFIovAGtNF8CDw2AlTo5cUlVdR/zDapk/L0G2uJw6EggQAIgIDcCfDMOV0oFJ5RxzPrkLRDAAKPdtpa31NMTtGngdcgAAKuJMBhrnlFoU7c4ZWGvJoHSRsEIPA4t53r6+oo8PUXJIEnfOqXzjXgf7WxgNtj2Abpc99z+Absa+ySlkCljiQAgceRdB1cdvNBEv+1GCRxMHLZFQ+BR3ZN4jSDODb03CUxdFsbN9FR+VvnpbTvaLrT6kdFIAACIGDhDZUPAAAgAElEQVQJAR484RlzugEVnkmHUCiWEFRHXgg86mhHa7wwNDnlWgYmp1jDEteAAAhYR4DDW+vCNXHYa15hiKQtAhB4nNvep1f6S+KO2yP/pdKcLOcaoFcb/xb5+qeD0m8RhI7Vg4OXqiAAgUehzfiDx3HpwYRBEoU2oh3MhsBjB4gKLyLq4FW681Ef8Tzgjcp9g5275Fnh+GA+CICAEwjwRqe9R26W+i08gw6hUJwAXoZVQOCRYaM40aTmk1P+8fgyOhmb6UQLUBUIgIAWCdTX36IvZ+2T+iEc7ppXFiJpjwAEHue1eVVxMXk+0V4SeGL8PJ1XeSs1bdzZuK/xbzp4UGjYpVZy4xQIKIcABB7ltJWwtKamjkZPCpc6J4gXq7AGtLO5EHjsDFShxV29XkxP9A6Wngs8M4UHUZBAAARAwNUEbmSW0GOvrW7yfEIoFFe3iuvqh8DjOvZyqpknp9zRsWFyyu/u86StESlyMg+2gAAIqIhAeUUNvaUX2prDXPOKQiRtEoDA47x2j/7+G0ncWfpiJ6qtqnRe5SZqSkxu3Nf4F3e70TyfEyauwGkQkD8BCDzybyPJwqLiKuJYkbrwJh98FUEs+CBplwAEHu22fXPP+cdLvw+2Ss+HIR/voMrK2ubZ8B4EQAAEnEYgLjGH/vtUw6amv2y7mDg0CpK2CUDg0Xb763uffKWA2r8YIPotHG7WI+CM/mm8BgEQAAGbCWTllNFTfddIv4/4tzMmwdmMVdEFQOBxTvPlX0mlBff9TRJ4kiJ3OqdiC2opKKykboNDpefDR99EUW0t9uOyACGyyowABB6ZNYgxc3iG/iM9V0oPnx89jxvLiuMaIgCBR0ONbYarHH7g8xl7pefEc2+tw+aBZnBDFhAAAfsTiDiQRn980Es8j/700BKKPnTV/pWgRMURgMCjuCZzqMG5+RX0fP91Ur+F+zDcl0ECARAAAVsJ8Az9ts8tF88XDmO9dBXCWNvKVA3XQ+BxTituGD1EEnfWDO3tnEqtqKW6uo7e/WK31A95/d3NVFJabUVJuAQEXE8AAo/r28CkBafjsuifTywTD51ft3OntVsTTV6DDNogAIFHG+1sqZfuy08Tz4bl1X48OzbpcoGlRSA/CIAACFhNwH9tHPGKHX4G8Qam5y/lWl0WLlQXAQg86mpPe3jDq4151bEuQgGvRuZVyUggAAIgYC2BfUfT6S+PeIvnyh8e8KJdey9bWxSuUxkBCDyOb9C0w/slcWdeuzso87z8xdUZC49I/ZDOr64mDjGNBAJKIwCBR+YtFhaVSr+/31M8bDhW9cGY6zK3GOY5kwAEHmfSVlZdHM+e49rzgMmdj/rQ4RM3lOUArAUBEFAcAQ57MvXnQ9IPJN4b7GZWqeL8gMGOIwCBx3FslVwyPzumzDkoPTu69F1DmdllSnYJtoMACLiIwKqNF+hX97qL58m/u/jS2fPZLrIE1cqRAAQex7ZKfV0dBbz2vCTwhE+b4NgK7Vj6itDGZ8d/uvhRbAKeHXbEi6KcQAACjxMgW1uFz6pz0iz8di8E0KXUfGuLwnUqJQCBR6UNaye3TsZm0j8eb1j9d3t7D9qwI8lOJaMYEAABEGhKgPcEHD5+pzRA+8boLVRWjln4TSnhHQQe3AOtEfANjiUOpcSTU+551h+/fVqDhXMgAAItCPzgcVzqh/D3zbUMzMJvAUnjByDwOPYGOL3STxJ33B75L5XmZDm2QjuXvudwOv354SXiOcKhpqMOIsS0nRGjOAcSgMDjQLi2FD3P54TUOXm23zrKySu3pThcq1ICEHhU2rB2dCvtWhE99PIK8TzhQROemYIEAiAAAvYkwCGW+r63Req3fDp9D9XVYZNSezJWS1kQeNTSko7zY/e+K8QhlVjk+ftjSykuMcdxlaFkEAAB1RCY/OMBqR/y6ohNVFxSpRrf4Ij9CEDgsR/L5iVVFheR5xPtJYEnxt+reRZFvL9wKVdMMuF+CE+S3RaRogi7YSQIQOCR4T3w3YLG+I+9R26mikrMgJVhM8nCJAg8smgG2RtRWFRJLBRzJ+UXd7uR98pzsrcZBoIACCiDAK/S6TFsgzSoMndJjDIMh5UuIQCBxyXYFVfpmfgsuquTj3iu/LWjN504d1NxPsBgEAAB5xDgEI8fT4uW+iHvfLaLamsxycQ59JVXCwQex7VZ1KwpkrizrGtnqq1SrsjKIaYf6blSPFd4X9F12y46DhxKBgE7EYDAYyeQ9ipmwvf7pc7JoI/CiEOeIIGAMQIQeIyRwfHmBErLqqn7kFDp+cKrBJFAAARAwBYCRcVV9Hz/RvHYK+isLcXhWg0QgMCjgUa2k4sJSXn0ryd9Rb+Fw6RgH1I7gUUxIKAiArxaWH/AfuyUKKqvv6UiD+GKvQno3y+rNyXYu3jNlpd/OYUW3Pc3SeBJitypeBZ5BRXE+4nyJNnb2rhRwPp4xfsEB9RNAAKPTNqXOyLcIeGHB//xFw/Cm8ikcWRsBgQeGTeODE3jMEq8KlD3nOHVgkggAAIgYA2B3PymP3oCQ85bUwyu0RgBCDwaa3Ab3U1NK5TCpPy2gydFHEizsURcDgIgoBYCPBGWJ8TqftfwRFkkEDBFAAKPKULWnd/44XBJ3FkztI91hcjwquaT2TwDz8jQSpgEAg0EIPDI4E7gJcQjPt8ldU54iTEvNUYCAVMEIPCYIoTzzQlUVzf9MTRxNn4MNWeE9yAAAq0T4LAFD/do2NuLwxas346wBa0Tw1kdAQg8OhL4by4B3iT9vq6B4nfSr9u501bEwjcXHfKBgGoJ8KS1PqMa9/7DpDXVNrXdHYPAY3eklLo/ShJ35rW7g7IuxNm/EheWyOGoew5vDEc9xwvhqF3YHKi6FQIQeFqB44xTPNg64MPtkrjDA/ZIIGAuAQg85pJCPn0CCGegTwOvQQAELCFw9XoxdXixYbCVNx7dHplqyeXIq3ECEHg0fgNY6X5mdhl11IuFv3ZropUl4TIQAAGlE+Cw0y8PbRxsRdhppbeoc+2HwGNf3vV1dRTw6nOSwBM+bYJ9K5BJaSwqvzG6UVSeNu+wTCyDGSDQSAACTyMLp79icUc/XNIst6NOtwEVKpsABB5lt58rrW++IemoCeFYOejKBkHdIKAAAmnXiqjNM/5iUsrv7vOkqINXFWA1TJQTAQg8cmoNZdnCsfCf7NMYC3/lhgvKcgDWggAI2EyAxR39vf+WrMDefzZD1VgBEHjs2+CnVvhK4s7ijndTWU62fSuQUWkcFnLoJzukyfmTfkAkFBk1D0whIgg8LroNeAb9wLGNK3cW+p5ykSWoVskEIPAoufXkYbv+PcThIZFAAARAwBCBjMxSavdCgPhR86eHltDhEzcMZcMxEGiVAASeVvHgpAkCxSVV9MKA9eI59H/3LKYNO5JMXIHTIAACaiHAM+h1K3d4w/OgUOz9p5a2daYfEHjsR7uyuIg8n2gvCTwx/l72K1ymJfE47uhJ4ZLIg/CQMm0ojZoFgccFDV9ff4ve/WK39FBYsOykC6xAlWogoD84v8gPIqEa2tQVPvA+PLoNSvmeQgIBEAABfQI5eeX00MsNe+78/n5POnIS4o4+H7w2nwAEHvNZIadhAjyD/9l+60S/5Vf3utOO6MuGM+IoCICAagjwzHndnju/uBvijmoa1gWOQOCxH/SoWVMkcWdZ185UW1Vlv8JlXBJHQtG/jxAmUsaNpTHTIPC4oME/+iZKGkyduQhh2VzQBKqpEgKPaprS5Y6MndL4XEK4SJc3BwwAAdkQKCyqpMdeWy36LbznTvQhhGWTTeMo0BAIPApsNBmarP9c+k0HD9pzOF2GVsIkEAABexDgGfODx4VJ4ycIy2YPqtotQ39gfvWmBO2CsNHz/MsptOC+v0kCT3LULhtLVNbl/Fwa9FHjc8l75TllOQBrVUkAAo+Tm5XjNOpmyiNmo5Phq7A6CDwqbFQXucQrC0d8vkt6PiFspIsaAtWCgIwINJ8pHxaVKiPrYIoSCUDgUWKrydPm5isLj57KkKehsAoEQMBqAjxTnvcJ1Y2f/Ox9wuqycCEIMAEIPPa5DzaOGSaJO2uH9bVPoQorRX9PdV5ZuCIUewMqrAlVZy4EHic26YyFR6TOybip2OvCiehVWxUEHtU2rUscq62tpwEfNu4NtnRVrEvsQKUgAAKuJ9A81n1o2CXXGwULFE8AAo/im1BWDujvDfbnh5fQmfgsWdkHY0AABGwj8Mm30dL4yfQFh20rDFeDAAQeu9wDqfujJHFnXrs7KCsh3i7lKrGQisoa6j4kVDyneG9A/F5SYiuqx2YIPE5qy/lLT0qdE95/h2fLI4GArQQg8NhKENc3J8AzUV4bsUk8r3gmyqqNmInSnBHeg4DaCSDWvdpb2HX+QeBxHXu11px2rYj++5Sf6Lfc1cmHLlzKVaur8AsENEVg8o8HpPGTCd/v15TvcNZxBLCCxza29XV1FPDqc5LAE/HtRNsKVMHVzSMeYG9AFTSqQl2AwOOEhvMNjpU6JwPHbieO14gEAvYgAIHHHhRRRnMCPBPlpUEh4rnFM1G2hCc3z4L3IAACKiXAE1CGfLxD6rcg1r1KG9pFbkHgcRF4lVd7KTWf/v7YUvHc+teTvnQlvUjlHsM9EFA3gR89j0v9EN4nFAkE7EUAAo9tJE+t8JXEncUd76aynGzbClTJ1c33Btx/7JpKPIMbSiIAgcfBrbVr72XiAVKOG/v6u5uJZ8cjgYC9CEDgsRdJlNOcQElpNT39xlrx7PptB0+KOXuzeRa8BwEQUCEB/b0C5/kg1r0Km9ilLkHgcSl+VVcel5hDd3T0Ef2WB7sHUUFhpar9hXMgoFYCvPG9bs+ddz7bhcgnam1oF/kFgcd68JXFReTxeDtJ4Dnhv8T6wlR4pf7egH95xJsSk/NU6CVckjMBCDwObJ2z57PpDw94iQ7KU33XUHlFjQNrQ9FaJACBR4ut7jyf8woq6L6ugeIZxjNjMSPWeexREwi4goDPqnPSoArCobiiBdRfJwQe9bexKz08cvIG3d7eQzzHOCY+Jta5sjVQNwhYToBnvf+6nbv4DPd6ZyPx/qBIIGBPAhB4rKcZNetrSdxZ9tJjVFtVZX1hKr3yWkYJ8UpiFqnbPrecsnLKVOop3JIjAQg8DmoV/mD/uws+2A7Ci2L/RwACD24FRxNISSsgjmnPnRTMiHU0bZQPAq4jsHNP44rj/mO2Ycas65pC1TVD4FF188rCuZDtl4j3EOR+Cw/kIYEACCiDAM9251nv/Nnt2HMlFZdg8FgZLacsKyHwWNdeeZeTacF9f5MEnuRofL8aI8kT/X9/v6d4lnFEFEz0N0YKx+1NAAKPvYkSic6I7gcsluY5ADCKlAhA4JFQ4IUDCRw9lUG/6dAwI7bbYMyIdSBqFA0CLiGAHyIuwa7JSnX9Yx7Ai7+Yo0kGcNrxBH72PiEGVvg+m7noqOMrRA0gAAI2EcjOLRez3fkzy7PfebIsEgg4ggAEHuuobvxgmCTurB3+hnWFaOgqTJzTUGPLyFUIPHZuDF5G/OqITeJHxa/udad9R9PtXAOKA4FGAhB4GlnglWMJhIY1zogd8fkux1aG0kEABJxGAKEEnIYaFRERBB7cBs4iwBuz82Ax/63ccMFZ1aIeEAABCwlUVNZI+37yrPcz8VkWloDsIGA+AQg85rPS5UzdFymJO/Pa3UFZCfG6U/jfCgGEvm4FDk45hAAEHjtj/fDrSOnHxKqN+DFhZ7worhkBCDzNgOCtQwnwhuu6wZIZC484tC4UDgIg4HgCHP5EN+COFceO540aIPDgHnAeAZ5095repLu9RzDpznn0URMImEegvv4WcVhY/n3xf/csJp71jgQCjiQAgccyuvW1tbS817OSwBMxfZJlBWg8t/54nVfQWY3TgPuOJgCBx46E5y6JkQY/Z7khHIAd0aIoIwT0vzAW+Z0ykguHQcB+BD76pnFG7IpQiNj2I4uSQMC5BHjwkzcw5kEV3tCYNzZGAgFHE9AJinzfIUSbo2mj/JLSaurUa5V4zv354SWUkJQHKCAAAjIiMOH7/dL4Cc92RwIBRxOAwGMZ4VNByyRxZ/GjbagsF+F1LSHIIvbAsdvFc+62Nm4UFpVqyeXICwIWEYDAYxEu45n5g6rb0HPUhHDjGXEGBOxIAAKPHWGiKLMI8KDw6+9ulgaFj5/JMOs6ZAIBEJAXgS9m7pMGVVZvSpCXcbBGtQQg8Ki2aWXr2PWbJfSfLn7iedf+xQAqLKqUra0wDAS0RCAo9LzUD+HftEgg4AwCEHjMp1xZVEgej7eTBJ4T/kvMvxg5JQIchvLZfuvE8+4PD3hRYjImm0hw8MKuBCDw2AFnSloB8awwno3YdVAIVVfX2aFUFAECpglA4DHNCDnsT4BnxD7Sc6V45vGgSVZOmf0rQYkgAAIOI7B2a6I0qPLdAoRbdBhoFNyCAASeFkhwwAkEzp7Ppt928BTPvb7vbaFbt245oVZUAQIgYIzA6bgs+k0HD/GZ7PfBVuJZ7kgg4AwCEHjMpxw5c7Ik7ix76TGqq642/2LkbEIgJ6+c2jzjL555D3QLIh5PQQIBexOAwGMj0bLyGur4v4HOf3fxpcxsDHTaiBSXW0AAAo8FsJDVrgSSLhfQnx5qELa7DQ4lXtmDBAIgIH8CcYk59Lv7GgY6e4/cjEEV+TeZqiyEwKOq5lSUM7xSkSfj8d/3i48pynYYCwJqIpBXUEH3PNsw0Hn/S4HE+wEigYCzCEDgMY903uVkmt/hLkngSY7ebd6FyGWUwKnYTLq9fYOwPeDD7Ubz4QQIWEsAAo+15P533duf7hQ/FH51rzsdPYVQRTbixOUWEoDAYyEwZLcrgW0RKVJoyomz99u1bBQGAiBgfwIcmohDFPEAZ7sXAqigEKGK7E8ZJbZGAAJPa3RwztEEPvtur3j+cVjtXXuxmbujeaN8EGhOgFfq6Pb/+/39nnThUm7zLHgPAg4lAIHHPLwb3h8qiTtrh79h3kXIZZJAwPp40Q/h32I/e58wmR8ZQMASAhB4LKHVLK/78tPSh9N7JTYFbIYHb51AAAKPEyCjilYJfDv/sPQcDNl+qdW8OAkCIOA6AhySiEMT8Q8KDlUUm5DtOmNQs2YJQODRbNPLwvGamjp6vn9DHPy/dvSmy1cLZWEXjAABrRCYNq/xd0NoGH43aKXd5eQnBB7TrZG6N1ISd+a1u4OyE8+bvgg5zCYwdkqU+D32f/cspuhDV82+DhlBwBQBCDymCBk5fzDmOv2y7WLxweQvCSQQcAUBCDyuoI469QnwTLxXR2wSz0LMxNMng9cgIC8CHJKIxR3+41BFSCDgCgIQeFxBHXXqE7iZVUr/fGKZeBZ2fnU18ebHSCAAAo4nsFVv5f+kH7Dy3/HEUYMhAhB4DFFpPFZfW0vLez0rCTwR0yc1nsQruxCoqqqlp/quEf2Quzr5UPqNYruUi0JAAAKPFfdARmYp/eNx/DCwAh0usTMBCDx2BorirCLAsbTbPrdcdFLu6xpIRcWIpW0VSFwEAg4iwKGIOCQRizscoggJBFxFAAKPq8ijXn0Ch/Qm6r37BSbq6bPBaxBwBAH9vTu7D8HenY5gjDLNIwCBp3VOp4KWSeLO4kfbUFluTusX4KxVBK5llNDfOi8Vv82e7BNMLPoggYCtBCDwWEiQl/Y/9xaW9luIDdkdRAACj4PAoliLCZyJz6LfdGjYNPCtMdssvh4XgAAIOIbAlfQi4lBELO5waCLuxyCBgKsIQOBxFXnU25yAR8AZ8VzkZ+OSFWebn8Z7EAABOxEoK6+hh3usEJ+3/3Txo+zccjuVjGJAwHICEHiMM6ssKiSPx+6VBJ4Ty72NZ8YZmwnsPZJOHKaN+yFjJkfaXB4KAAEIPBbeA7q4sbe1caPd+65YeDWyg4B9CUDgsS9PlGYbgRWhFzBYYhtCXA0CdiVQW1tPz/ZrmJTCIYl4BTISCLiSAAQeV9JH3c0JvPPZLtFvub29B8UlYpZycz54DwL2IPDh15Hic/brdu50/EyGPYpEGSBgNQEIPMbRRc6cLIk7vt0ep7rqauOZccYuBOYvPSmNn2A/Y7sg1XQhEHgsaH7ed4eFHVZYWehBAgFXE4DA4+oWQP3NCYyeFC6ekbya58Kl3Oan8R4EQMCJBGYuOio+jxyejWeJIYGAqwlA4HF1C6B+fQK8soBDy/Jvu0d6rqTKSoRI0eeD1yBgK4HNu5PF54s/Y+7LT9taHK4HAZsJQOAxjDAvNYnmd7hLEnhSosMNZ8RRuxPo+94W8Zz8yyPexKHbkEDAWgIQeMwkV1hUSW2e8RcfvC591yDEiZnckM2xBCDwOJYvSrecQElpNbV/MUA8Kzv1WoV4spYjxBUgYBcCR07ekJb9f/3TQbuUiUJAwFYCEHhsJYjr7U3gVGwm/eped9FvwR5l9qaL8rRMgFcN3/moj/hsvTpiE926dUvLOOC7TAhA4DHcEBtGD5HEnXVvv2k4E446hACHrdTt8d5tcCjV1+NZ6RDQGigUAo+ZjTxs/A7ROfn9/Z6UfKXAzKuQDQQcSwACj2P5onTrCMScvUm/bNsQT3bi7P3WFYKrQAAErCZQXFJFbZ9bLvotj7++mqqrse+O1TBxoV0JQOCxK04UZicCc5fEiOclrzLYtfeynUpFMSCgXQIs5rzy9kbxubqrkw/dzEKIWO3eDfLyHAJPy/ZI3RspiTvz2t1B2YkXWmbCEYcS4L4H90H4j/skSCBgDQEIPGZQW7WxcV+J5evizbgCWUDAOQQg8DiHM2qxnMAPHsdFB4VDQ0UeSLO8AFwBAiBgNYF3v9gtPn+/7eBJF1PyrS4HF4KAvQlA4LE3UZRnDwI8W5ZnzfLACs+ixSbw9qCKMrRMYJHfKfF54s/UtogULaOA7zIjAIGnaYPU19bS8leekQSeyO++apoB75xGgFcR8zOTVxXz6mIkELCUAAQeE8SupBfRHx/0Eh+0AR9uN5Ebp0HAuQQg8DiXN2ozn0BdXT29MGC9eHb+60lfys2vMP9i5AQBELCawLptF6VBlWWrY60uBxeCgCMIQOBxBFWUaQ8CHPee49/z4ArHw0cCARCwjsC5C9n063YNYQ/HTY22rhBcBQIOIgCBpynYk4FLJXFn8aNtqCw3p2kGvHMaAd4HkPcD5H7I/S8FEu8TiAQClhCAwNMKLR6gfO6tdeID9u8uvpRXgAHKVnDhlAsIQOBxAXRUaTaBtGtF9KeHlohn6Ftjtpl9HTKCAAhYR+Dq9WL688MNn7k3399qXSG4CgQcSAACjwPhomibCYRsvyT6LDy44r3ynM3loQAQ0BqBisoaeujlFeJz9EC3ICqvwACl1u4BufsLgaexhSoKC8jjsXslgedkgE/jSbxyCYG4xBy6vb2HeIZ++HWkS2xApcolAIGnlbb7fvEx8cHiEEPRh662khOnQMA1BCDwuIY7ajWfwJotidJgid+aOPMvRE4QAAGLCHCIoa6DQsTn7Z9PLKOcvHKLrkdmEHAGAQg8zqCMOmwhMGpCuHiOcojLhKQ8W4rCtSCgOQLjv90jPj8cYuhMfJbm/IfD8icAgaexjSJnfCWJO77dHqe66urGk3jlMgKL/U9L4ydbwpNdZgcqVh4BCDxG2oyVU+6Y8AwuHkRHAgE5EoDAI8dWgU3NCbzz2S7xLOVwlxwCBQkEQMD+BDwCzojPGU9KicC+V/YHjBLtQgACj10wohAHEigpraZ2LwSI5+mz/dYRi+dIIAACpgnsP3aNuA/C4yfzl540fQFygIALCEDgaYCem3KJ5ne4SxJ4UqLDXdAaqNIQgVu3btGrIzaJZynvC1hQWGkoG46BQAsCEHhaICHi0GxP9V0jPlAPdg+iqqpaA7lwCARcTwACj+vbABaYJlBYVEm8ooB/8CGuvWleyAEClhLg0Gx/eKBhv0DEu7eUHvI7kwAEHmfSRl3WEjgYc10aqPYMPGNtMbgOBDRDgPeOuK9roOjrc4h7CKOaaXrFOQqBp6HJNoweIok7697pp7h2VLvBNzJLpFD370+KULu78M9OBCDwGACpWxLHM1AOn7hhIAcOgYA8CEDgkUc7wArTBDbtShI/+ljkWb/9oukLkAMEQMBsAr1HbhafL94vsKi4yuzrkBEEnE0AAo+ziaM+awl89E2UeK6yeJ5+o9jaYnAdCGiCwNSfD4nPy6/budOFS7ma8BlOKpMABB6ilD0Rkrgzv/2dlJ14QZmNqXKrl66KlcZP9hxOV7m3cM8eBCDwNKPIm4L//n5P8UH65NvoZmfxFgTkRQACj7zaA9a0TqD/mG3i2fr3x5ZSfmFF65lxFgRAwCwC+vtcbY1IMesaZAIBVxGAwOMq8qjXUgIslrNozhNTWERHAgEQMEwgNiGbftl2sfiszHI7ajgTjoKATAhoXeCpr60l/55PSwIP78ODJE8CHKrtxYHrxbOVQ8dWVNbI01BYJRsCEHiaNYUu1uF/uvhRcQlmwTbDg7cyIwCBR2YNAnNaJZCRWUp/fniJ6KS8NxFxfluFhZMgYAaB3PwKuquTj/hMDfoozIwrkAUEXEsAAo9r+aN2ywjw5sYs8PAfi+lIIAACTQlwaPsu/wtt/9DLK6i6uq5pBrwDAZkR0LrAczLARxJ33DvdQ+V5WHEns1u0iTkXU/Lp9vYeoh8y+UfsDd8EDt60IACBRw/J6k0JUid+e2Sq3hm8BAF5EoDAI892gVXGCfgGNy41jjp41XhGnAEBEDBJ4N0vdot+y18e8aabWaUm8yMDCLiaAAQeV7cA6reUAIvnLPD8rfNSYlEdCQRAoJHAIr9T4vPBoe2PnspoPIFXICBTAloWeCoKC8i9c1tJ4GGxB0n+BH70PC6es/93z2I6E58lf4NhocsIQOD5H/qcvHK689GGWbBDPt7hsgZBxSBgCeJhnCsAACAASURBVAEIPJbQQl45EOClxi8NChGdlHufX07lFVhqLId2gQ3KIxBxIE18jnjgcfm6eOU5AIs1SQACjyabXdFOs3jOIjo/a1lURwIBEGggcCW9iH53X0No+0+n7wEWEFAEAS0LPByObd69fxV/vt2foLrqakW0mdaNrKmpo449V4p+yOOvr6ba2nqtI4H/RghA4PkfmLc/3Sk+MH/t6E1ZOWVGcOEwCMiLAAQeebUHrDGPwKXUxqXGfA8jgQAIWEagrLyG7nnWX/Rbug8JJRZOkUBACQQg8CihlWBjcwIsorPAw38sriOBAAgQvfL2RvGZ+O9TflRSioFi3BPKIKBVgSc35RLN73CXJPCk7IlQRoPBSkEg5uxNuq1NQz9kns8JUAEBgwQg8BARhwnSddqDQs8bBIWDICBHAhB45NgqsMkcAj95xojnLi815s1ZkUAABMwnwDGYud/ymw4elHylwPwLkRMEXEwAAo+LGwDVW0WARXQW0/m5y6uPKytrrSoHF4GAWgis3ZoojZ/siL6sFrfghwYIaFXgCX1vsCTurB/xlgZaWn0ufjlrn3ju/raDJ129Xqw+B+GRzQQ0L/DwcrcHuweJD0q3waE2A0UBIOBMAhB4nEkbddmTAD97H+6xQjx7uw4KsWfRKAsEVE2AN9v81b3u4rPDQikSCCiJAAQeJbUWbNUnkHS5gH7druHZ+4PHcf1TeA0CmiJQWlZN/+7iK/ohg8eFacp3OKt8AloUeFKiwyVxZ377OynnYoLyG1KDHvCzl1dM8mSTgWO3a5AAXDZFQPMCz0Lfho0BeRZ5/MUcU7xwHgRkRQACj6yaA8ZYSGDvkXTRQeFOCs8ERAIBEDBN4NURm8Tnpv2LAVRVhVnkpokhh5wIQOCRU2vAFksJTP35kHj+8uzZ9BuYPWspP+RXB4Epcw6KzwHvv3Mto0QdTsELzRDQmsBTX1tL/j2flgQe3ocHSbkEQrZfksZPOBIVEgjoE9C0wMObZv7xQS/xAfli5j59LngNAoogAIFHEc0EI1shMOTjHeIZzDMBeVYKEgiAgHECWyNSpE49QqIY54Qz8iUAgUe+bQPLTBPgfsp/ujTMnh30EVYumCaGHGojoL+S7UdPrGRTW/tqwR+tCTwnA3wkcce90z1UnperhWZWtY8ceYonyHIkKo6KggQCOgKaFnhGTQgXH4y/dV5KhUWVOib4DwKKIQCBRzFNBUONEOAZsDwDkDsp38w9ZCQXDoMACPBqnbbPLReflb7vbQEQEFAkAQg8imw2GK1HYN22i+I5zP0WXomMBAJaItB75GZx/7d7AauItdTuavJVSwJPRWEBuXduKwk8JwOXqqkpNesLR57iCFTcD3HzO61ZDnC8JQHNCjxn4rPoF3e7iQ9FwPr4lmRwBAQUQAACjwIaCSaaJMCx7LmDcnt7D2wYaJIWMmiVwPylJ8XnhPeASEkr0CoG+K1wAhB4FN6AMF8Q4L0Dud/y2Gurqb7+FqiAgCYIRB5IE/c93/vbI1M14TOcVB8BLQk8kd99JYk7fi8/SXXViJahljv68xl7xfP4L494U15BhVrcgh82EtCswNN9SMOytk69VqFjbuNNhMtdRwACj+vYo2b7EaiorJE2DHz70532KxglgYBKCOTmV9CfH14iOvITZ+9XiVdwQ4sEIPBosdXV5/Op2ExpomBQ6Hn1OQiPQKAZARYydc/vl4duaHYWb0FAOQS0IvDkJl+k+R3ukgSe1L2RymkkWGqSAIs6LO6w4I7tRkzi0kwGTQo82/Ri2EcfwsZUmrnbVegoBB4VNqpGXVq9KUF0UHhlZczZmxqlALdBwDCBT6fvEZ+POzr6UEEhQsoapoSjSiCgGyDkH6QcYgIJBJRK4N0vdovnMu8hWF5Ro1Q3YDcImEVg+bp4cb/f1saNzp7PNusaZAIBORLQisATOmqQJO6sH/GWHJsCNtlIYJHfKfFc/tW97pR8BdEdbMSpiss1J/DU1tbT/S8Fig9Cn1GIYa+Ku1jDTkDg0XDjq8z1W7du0RO9g8Wz+YUB61XmHdwBAesJXEzJp1+2bYiz7BFwxvqCcCUIyIAABB4ZNAJMsAuBaxkl9NsODXsIfr/4mF3KRCEgIEcCpWXV9M8nlok++nsTw+VoImwCAbMJaEHgSYkOl8Sd+e3vpJyLCWbzQUblEKiuriPeD40nTfUfs005hsNShxHQnMDjGxwrPgC8KVVCUp7DwKJgEHAGAQg8zqCMOpxFYP+xa+L5jNjeziKOepRAYODY7eJz0eHFQKqpqVOCybARBIwSgMBjFA1OKJDAt/MPi+fzHx7wopy8cgV6AJNBwDSBHz0b9sr83X2edCOzxPQFyAECMiagdoGnrqaG/Hs8JQk8kTMny7g1YJqtBDbsSJLGT46dzrC1OFyvcAKaEnh4nwdeRs+Dh2MmIwalwu9dmE9EEHhwG6iNQO+Rm8UzmgcBsXGx2loX/lhKgPd54D4L/4Vsv2Tp5cgPArIjAIFHdk0Cg2wgUFxSRXc+6iOe0RO+x/5oNqDEpTIlkF9YQX96qGEPwKk/H5KplTALBMwnoHaB58Ryb0ncce90D5XnY1K7+XeHMnM+1XeN6IfwPvNI2iagKYFnwbKT4sa/vb0H8bJ6JBBQOgEIPEpvQdjfnMC5C9nSxsXBm7GcvDkfvNcWgVfe3ij6LY+/vpo4jCESCCidAAQepbcg7G9OYKFvQwx8/n2ZfqO4+Wm8BwFFE5j84wHRD+HNvLEHoKKbEsb/j4CaBZ6Kgnxy79xWEnhOBS1Du2uAAO8rr5sQGHkgTQMew0VjBDQj8BQVVxFvTsw3/sTZmGFl7IbAcWURgMCjrPaCteYRGDZ+h3hWc0xZhKQyjxlyqY/A3iPpUmd9974r6nMQHmmSAAQeTTa7qp2urKyl/3TxE8/rD76KULWvcE5bBDgcm26fqblLYrTlPLxVLQE1CzwR0ydJ4o7fy08Sh2tD0gaBHsM2iH7Ik32CMSlQG01u0EvNCDyz3I6KG/6PD3pRbn6FQRg4CAJKIwCBR2ktBnvNIZB8pUDaVJ73TUMCAS0SeO6tdaLf8tKgEC26D59VSgACj0obVuNu+a2JE89r3uOV+zBIIKAGAp98Gy3u638+sYzKKzBQrIY2hQ9EahV4cpMv0vz2d0oCT+pebEmhpfs95uxN8bzmBQ2bdydryXX4qkdAEwIPr97588MNsWO/W3BEz328BAFlE4DAo+z2g/XGCfA+adxBafOMP1bxGMeEMyolEHWwcan9oZjrKvUSbmmRAAQeLba6+n2ura0nXnXM/ZZRE8LV7zA8VD2B6zdL6Nft3MU97RV0VvX+wkHtEFCrwBMycqAk7qx/t792GhSeSgTefH+reGZ3fhWhvSUoGnuhCYHn+8XHxI3Oq3cQO1Zjd7jK3YXAo/IG1rB7V9KLpFU8PDMWCQS0ROCFAetFv+XloRu05DZ81QABCDwaaGSNuhgYcl48t3kVT0oaVvFo9DZQjdufTt8j7ud/PelLHIYQCQTUQkCNAk9y9G5J3OFVPDmXsI+tWu5XS/w4HZclnts82WRrRIollyKvSgioXuDh1Tu8KSDf5NMXHFZJs8ENEGggAIEHd4KaCXAse352t31uOVbxqLmh4VsTAvobZR44fq3JObwBAaUTgMCj9BaE/cYI8Cqee59fLvotoydhFY8xTjgufwK8987t7T3EvewRcEb+BsNCELCAgNoEHt5nx7/HU5LAEzlzsgU0kFVtBN4YvUU8ux9/fbXaXIM/ZhBQvcDzg8dxcYPz6p38Quy9Y8Y9gSwKIgCBR0GNBVMtJpCaViit4glYH2/x9bgABJRIoOugENFv6T4kVInmw2YQaJUABJ5W8eCkwgksXxcvnt+/bLuYLl8tVLg3MF+rBD6fsVfcx7z3DlbvaPUuUK/fahN4TvgvkcQd9073UHl+nnobD56ZJHAqNlM8v3mS7PbIVJP5kUFdBFQt8PBmgHd18hE3+LR5WL2jrlsX3jABCDy4D9RO4L2J4eIZfl/XQKqvv6V2d+GfxgkcOXlD6pTvO5qucRpwX40EIPCosVXhk45ATU0d3fOsv3iOfzwtWncY/0FAMQRy8srptx08xT282P+0YuyGoSBgLgE1CTwVBfnEos68e/8q/k4FLTMXA/KpmECfUQ2reJ7tt07FXsI1QwRULfDwhoCsXP6mgwdl55Yb8h/HQEDRBCDwKLr5YLwZBBKT8+gXd7uJZ/nGnUlmXIEsIKBcArpl9c+8uVa5TsByEGiFAASeVuDglCoILFnR+PszK6dMFT7BCe0Q+G7BEdHnvqOjD5WV12jHcXiqGQJqEngipk+SxB2/Hl2Iw7UhgcDhE40TBg/GXAcQDRFQrcDDcZB1M6g++RYzqDR0T2vKVQg8mmpuzTrbf8w28WOzS981mmUAx9VP4MKlXEnMxMaY6m9vrXoIgUerLa8dvxFBQjttrTZPS8uq6a8dG/YunrnoqNrcgz8gIAioReDJSUqk+e3vlASe1H2RaGEQkAg833+dGD/pPXKzdAwv1E9AtQJP8OYEcUP/3z2Igaz+21i7HkLg0W7ba8nz42cyxPOcV2TuOYywVVpqey35qvvB+WD3ILp1C+EItdT2WvIVAo+WWlu7vur2gP3LI95UUlqtXRDwXFEE3PxOi/727+7zpNx87F2sqMaDsWYT0PW3+Xfl6k0JZl8nt4whIwdI4g6/RgIBfQJhUanS+ElcYo7+KbxWMQHVCjydeq0SN/Tw8TtV3HxwTesEIPBo/Q7Qjv/dBoeKZ/prIzZpx2l4qhkCNzJLiDfl5h+bQaHnNeM3HNUeAQg82mtzLXqcX1hBv7+/YR8THjRHAgG5E+DoJ3c/7Sf6IZ/P2Ct3c2EfCFhNQA0CT3L0bknc4VU8vJoHCQT0CfBkwUd6rhTPdL7nkbRBQJUCD29MzIMk/Hc6LksbLQkvNUkAAo8mm12TTu+Iviye6bwfD+/LgwQCaiIw9edD4v7+5xPLqLq6Tk2uwRcQaEIAAk8THHijYgI8SM6/Rds+t5zq6upV7ClcUwOBkO2XxP3K0U/SrhWpwSX4AAIGCShd4OF9dni/nXn3/lX8Rc362qCfOAgCgSHnxXP91+3cKTMbewJq4Y5QpcDT74Ot4kZ+ceB6LbQhfNQwAQg8Gm58jbnOs1Du6xoonu3jpmJfNY01v6rdraisId7MmAcCOawPEgiomQAEHjW3LnzTJ5CSVkC3tWmYcLh5d7L+KbwGAdkReLZfw34NA8dul51tMAgE7ElA6QLPCf8lkrjj3ukeqijItycelKUiAlVVtfS3zkvFb8wZC4+oyDO4YoyA6gSe1LRCqTO9aVeSMb9xHARUQQACjyqaEU6YSWDJirOig8KxwTn8ia2ppq6adp/bTAcTo2wtyurrSyqL6eilvRQZu41q62qsLgcXKpeAb3CsuK9vb+9BOXnlynUEloOAGQQg8JgBCVlUQ+DN9xsmHXYdFGIXn/JKcygidiudueK6yQApmYm0+UQwZeSnY784u7Sq6wuJOXtT9EN4osmhmOuuNwgWgIADCShZ4CnPzyMWdXSrd06t8HUgKRStBgIzFx0Vz3cWeiora212CeMnNiN0aAGqE3i+mLlP3MBYDu/Q+waFy4QABB6ZNATMcAqB0rJq+vPDS8Qz/mfvEzbVWX+rnkqrSmic32CaEfqZTWXZcnFWUQZ5hM+mCWtG0uWsS7YUhWsVSuChl1eIe/qDryIU6gHMBgHzCUDgMZ8VciqfwN4jjWHDz8TbFjac+y0XM+Lpk+XDaFnUfJfBiY4Po7GB/SnszHoqrSxxmR2o2H4E3v50p+iHPNE72H6FoiQQkCkBJQs8Ed9OlMQdDtPG4dqQQKA1AhyajUO0sYDPIdtsSRg/sYWec65VlcBTVl4jDf4t8jvlHIKoBQRcSAACjwvho2qXEJj0w37RQbnnWX+qr79ltQ2ig1JZTMO9XqEJK0daXY6hC7nszMIbdOTSXqqurTKURTpWUlFMm2JW0GDPl2jDsRXScbzQBgH9PQPjEnO04TS81DQBCDyabn5NOq+7520V8blvcf7aWXrX+zVatGOGXVnW1FbT0aR9dLPwOtXVt74PXMrNBBrj/xZND/mErudftasdKMz5BLJyyuhX9zYM/q3aeMH5BqBGEHAyAaUKPDmXEmh++zslgSd1v+siUDi5yVCdjQR097ytIj7GT2xsCCdcriqBZ/m6eDHw95sOHnYJ3+ME/qgCBGwiAIHHJny4WIEEOKb9L+5uiGm/c89lqz3gAYySiiJ626sXTVw5yupyDF1YXl1G0XFhNG/bVKqobj3kFneU4tJP0XvefWja+o/FqiJDZeKYOgkM+XiH6Le8MAB7BqqzheFVcwK6wW6eSRh/EaJmcz54rz4Cy1Y3hOHk8LKFRZVWO8j9FhZ4Rnq/Tm47ZlpdjqELr+Veoe83TqBzaSeo/lbrAk9VTSXN2zaNhnq+TDEpBxFe1hBQBR2b4xUj+iF3PupDvF8DEgionYBusJv7Ias3JSjG3ZCRAyRxJ2TkQMXYDUNdT+D4mQzxnOd7/mRsptUGYfzEanROu1BVAs+TfYLFjTtqQrjTAKIiEHAlAQg8rqSPul1FoNc7G8Wz/o3RW6w2wZEdlJziTArY60Eeu2ebnAnLDmQV3aSFO6bTe7696fTlY1b7hAuVRYCXzOtmza7Zkqgs42EtCFhJAAKPleBwmWIJlJRW0x8e8BL9Fs/AM1b74UiBh/ci5BU5F2/Em2Ufh2l726cnBexzp4LSPLOuQSb5EeCV8Lwingf9Jv94QH4GwiIQcAABJQo8yVG7JHGHV/HkJOF3gwNuDVUX2fnV1eJZ//4k60OCY/xE/reIagQeViK5c8J/rFAigYAWCEDg0UIrw8fmBLaEJ4tn/W1t3Ojq9eLmp81678gOyuWsJJq9aSLtPrfZLFuqa6vpUGIkDXB7npaEz6Fbt+rNug6ZlE3gJ8+GWbN3dcKsWWW3JKy3hAAEHktoIa9aCHw8LVr0W3jPNWuTIwUevz2LyDviZxFe1hz7Csvy6MtVI+kjv4GUlGFbTH9z6kMexxDglfA8dsIr43mFPBIIaIGA0gQe3mfH7+UnJYEnatYULTQTfLQzAd/ghtXEv+1g/WpijJ/YuVEcUJxqBJ4xkyNFB4WVSSQQ0AoBCDxaaWn4qU+gtrae/t3FVzzzv1twRP+U2a8d1UHhcs9cOU6Tg8dQSqb5s6suZyfRFytH0ieBQ6iwLN9sP5BRmQRu3WqcNfv1TweV6QSsBgErCEDgsQIaLlE8gdiEbNFn4cH0QzHXrfLHUQJPTV01zQz9grafWk8lleZNmuHwskH7l9DAxS9QeOwWk+ForXIYFzmcwJvvbxX3Ja+MRwIBrRBQmsAT4+8liTvundtSRQF+J2rlXrWnn6Vl1fTHB21bTYzxE3u2iGPKUoXAU1ZeIy19X7oq1jGkUCoIyJAABB4ZNgpMcgoBFnZ4oOTup/2IQ0xYmhzVQSmvKhUrd74L+ZRKK0vNNqu4opDWHPGlIZ4v0dm0GLOvQ0ZlEog+dFUa7Eu+glmzymxFWG0NAQg81lDDNWog8Myba8Vzf/Qk60KJO0rgyS3Ooq+Dx1BMymGqqzd/D5YL187SaL8+NGf7FLpZYJ1opYZ2VaoPHCb2l20Xi3ty484kpboBu0HAYgJKEnjK8/PIvdM9ksBzaoWvxf7iAhDQERg3tWE18WOvWbcoAuMnOpLy/a8KgWflhguic/KbDh42bV4p32aCZSBgmAAEHsNccFT9BC5fLRQhJVjkiTyQZrHDjuqgZBffJL9oN1oS/hPxKg1zE9tz6vJRGubRg0KOBWLTYnPBKTTfO5/tEv2WroNCFOoBzAYB6whA4LGOG65SPgFdeJTf3+9JPJPW0uQogef8tbM0I/RTSr5p/qpjtr2iupxmhH5Owz17UuzVExb1eSz1HfntT2DBspOiH3Lnoz5UXV1n/wpQIgjIlICSBJ7waRMkcce/x1PE4dqQQMBaAjFnb4rnPo+fnD2fbXExGD+xGJnTL1CFwPPSoBBxow4fv9PpAFEhCLiSAAQeV9JH3a4m0G1wqNXPfkd1UBr235lEu89tshhPRsE1mr35S5qzbTLdyE+3+HpcoAwCRcVVxBNSuHMdFIq9C5TRarDSXgQg8NiLJMpRGgF+9nPse372B4ZY/ux3lMATHb+DvCPmmr3/jj737afX0bAl3WndUX+qrq3SP4XXMifA+0HxvfjFzH0ytxTmgYB9CShF4Mm5lEDz298pCTyp+6PsCwKlaZLAwz0anv2fz9hrsf8YP7EYmdMvULzAk5rWOIs76uBVpwNEhSDgSgIQeFxJH3W7moBu9ebt7T2ooLDSInMc0UHhFTscXu3rtWPpkhWbDpdXl1HY6VAa4/cWHUpEJ96iBlVQ5mWrGza5/MMDXlbN4laQqzAVBFoQgMDTAgkOaIjAiM8bVm++OHC9xV47QuDh/XfWHQ2gLSfWmL3/jr7h13LT6KOAgfRV8AdUVI5wo/ps5Pz6+JkMIe6wwHPuguWzuOXsG2wDAVMElCLwrH+3vyTuhI4aZMotnAcBswgs9D0lnv/WrN7E+IlZiF2aSfECz8xFR8UNau0+DC6lj8pBwEYCEHhsBIjLFU2A91/TbRbIoU8sSZZ0UFi4Ka8upaSMC5See5lq6gwvj+fju85tom/Xj6fyqrIm5lTVVNKNgnQqKm99Y8ykmxdoxJJXyXfPQuL9fJDUR+C5t9aJfsv7kyLU5xw8AgETBCDwmACE06omsOdwujSwzqFmLUmWCDy8l0520U1KvplAeSXZxNcaSrklWeQd8TOdTD1Ctc323+GQs9lFGUb7PFxe/a168gqfQwPcnqeLN+KM1mOobhxzHYFPvm3Yh+Hx163bh8F1lqNmELCdgBIEnqTInZK4M7/DXZSbfNF2x1ECCBBRVk7j/mubdydbxATjJxbhcklmxQs893UNFB3lqT8fcglAVAoCriQAgceV9FG3HAi8NzFcfAdwqE5LkrkdlOraajqatJc+DXqbPl4+mN7xeo1mb/rSYAi1sqqS/+2/M6eJKZmFGeS5+wfq7/YcTQ/5lLIKM5qc13+TV5pD00I/pqkhY+nijXj9U3itAgJX0oukwb29RxCGTwVNChcsJACBx0JgyK4qAvX1t+g/XfzE98CPnsct8s1cgYeFnaADXjQ+cDi9v/RNGus3gEKPBRlcYcP77ywM+45SMhsHD3lSy97zO2mM/1tiX8B953dTZU2FUVuPJe2nd5f1olUHl1JFddPJLUYvwgmXEaitrae7OvmIe9DN77TL7EDFIOAqAnIXeHifHb+Xn5QEnqhZU1yFCvWqlEDvkZvFd8Cgj8Is8hDjJxbhcklmRQs8J2MzpYGS+Is5LgGISkHAlQQg8LiSPuqWA4HIA2nie+AXd7vRtYwSs00yp4NSW18jZrW+v7QfhcduoZziTFp1aCm97taZ5m79psVM1YLSPJq9aSLtPrdZsoNn0cakHKLec5+gF79vT8O9u1NE7FbpfPMXtXU1tHyvO73j9QrtOB1Kt27VN8+C9womMMcrRtyv/+7iSzzQhwQCWiMAgUdrLQ5/mxPQ9d15DxRLkjkCT35Zrpho8sPmryj26kmKu3qKpm0YRyOW9qLIuO1ixY1+ndHxYbQwbEaT/XfKq8tpypqx1G32A9Ttx/Y0b/tUyioyPjGluKKIJge/L4SknKJM/eLxWoYEdu29LPoht7Vxo4xMrBSXYRPBJAcTkLvAE+PvJYk77p3bUkVB69EfHIwLxauQQPDmBPE9wHvCFpeYv38exk/kfzMoWuCZ8P1+cWN27LlS/qRhIQg4gIDuRyLHUF7kd8oBNaBIEJA3gbq6evrH48vEd8H8pSfNNtacDgqvvJm4ajStO+JHHKeeZ7BuPrGauv/QgUZ4vUo8kKJLPOP1Wt4V+mr1GErJTNQdJj6edDOBxgcMo67ft6eB7i9Q6LHWB3UOJkbSB779yG3XDMovbaxDKhQvFEvgkZ4rxb066Yf9ivUBhoOALQQg8NhCD9eqgcCZ+CzxPWDp/iemBB4+v+P0Bvph8yQ6kXKI6m/V0ZXsJJq54VPq+dND5Bu9kHivP13iCSVrjywXIdZKKop1h0VINr8oN3pj/lP00g/tadr6j+l6vvF9brmfs/rQMuo9/zGKST4o+ktSYXghOwK6faB6DNsgO9tgEAg4g4CcBZ7yvFxy73SPJPCcXunnDCSoQ2MESsuq6Xf3eYq+yIrQC2Z7j/ETs1G5LKNiBR6e+fqvJ33FTTl3SYzLAKJiEHAlAQg8rqSPuuVC4PMZe8V3QedXzY8lbqqDwnvm8EqcjwKGUElFkXCV/8/dNoW6/XAfvePVq4n4wgJQTPIBmh4ynsqa7Z0jzqUcosGe3WmoV1fafqr1zZUz8tPpp62TaXzQULGCSC6cYYdtBGITsqVBvdNxWbYVhqtBQKEEIPAotOFgtl0JPNAtSHwffP3TQbPLNSXw8CSThTtmCrFFF1ItJuUgjQscRD1+/J/Ao7c/IO/N4xP5MwUfXka82lg/FZUX0qxNE+i1+Y/S7M0T6WbBNf3TLV5zSNn+i58V4d5KKhvFohYZccClBMorauj39zcM6gWsRxhglzYGKncZATkLPOHTJkjijn/Pp6m+tumz2WXQULHqCAwbv0P0Q3q9s9Fs3zB+YjYql2VUrMBz4Pg1aaAk7VrD4JvLKKJiEHARAQg8LgKPamVF4NjpDOn7IPlKgVm2meqg5JXk0JTgD2nlQR9RHs9QTc+9TAPdXqSecx+mb9d/0iREG++/E7TPi5aEN91/R2dMbkk2LY2eJ+LU84BLa4lt2xizioa5v0zBh32ppra6tew4pxAC0xccFvfp/S8FKsRimAkC9icAgcf+TFGi8gjMdj8mvg/aPrfcbONNCTzh57bQsd4O4gAAIABJREFUDxsn0YnUw6LMGl6hc9iPes9/nAa5v0hhp0ObhGiLTz9NC7ZPJ77OUDqWtI9GLHuFfPcuJO4TtZZq62tpwspRNGhxV7qakypWL7eWH+dcQ2DjziRx3/26nTsVFlW6xgjUCgIuJiBXgSfnYgLNb3+nJPCk7ot0MSlUr2YC2yNTxffB/92zmHLzje+zp88A4yf6NOT5WrECj27Gdpe+a+RJFlaBgBMIQOBxAmSFVlF/q574BzevHqmqrRLhxTg0R2lVCZVUFlFRRUGLlSaGXOVr0vJS6HJuEqXmXKLk7ERKyrpAFzPjKfFmHF3IOEfnb5yhuOunKfb6SZHPUDn6x3JLs2j/pXDae3EXRSfuoKiE7RSRsI3CL2yhXec30Y64DRQWF0LbYtfR1nNrKeZK64IIiy9tuy0QnZSfvU/oV2X0dWsdFC7vRl4afb5iBCXfTBBl8IqeHWc3iH10+i54nHacaRraoqAsj75dP57C9fbf0a+8vKqUtpxcSx/69qe0nBT9UwZfc9z8CcEjafaWL8VgicFMOKgoAg92b5ix/e38hsE3RRkPY0HATgQg8NgJJIpRNIGEpDzRZ+Ewbeau6GxN4OFwaxuPryS/6EViv0CGk557hWZvnkBdZ7enr9aMpgvXzzZhFhW3nRaETadzaYb7TWk5qaLPsuXkGuI+jKm05UQw9V30BG0/vZ64z4QkPwLDx+8U912fUYZFPflZDItAwP4E5CrwrB/xliTubBg9xP6Oo0QQ0CNQVVVLf3zQS3wnmLuiE+MnegBl+lKRAg8Pvv33KT+LBvNkyh9mgYBNBCwRePhzww9l/hFYXVstfnzx4D2Hk9KFcmjNmIqacrpecJXS8y/T1bxUupKbTJdzLlFK9kVKzkqgS1nnxaB/ws1YupBxlq7mXW6tOHEuryyHDiVH08HkSNqfFE77Lu2mPRd3UnRiGEXyoP+FrbT7/GbaGb+RwuJC6WSa6YHRa/lXaPXxpbTymDcFHfWiwCMetPywO/kfciPfgwtp2YEF5LN/Hnnvm0te++YIMcGUoezb7B0TaVbYlzRz+xf03bbPaPq28TRt6yc0dcs4mrJ5LE3eNIYmbXyfJm54T9Rpqsyz6cdp9Io3aFRQHxoZ9DqNCHyN3gnoRcOX96Rh/j1oiF93Guz7Eg1c1pUGLH2B5u7+xlSRdDhlD3Vb9IDZf99u/UQ1ZX4wu2Efnif7BJv0iTO01kHh8zzztbAsT5rtWlieT1PXjRPh2d726knZRTelevizdT3vCn3oO0AShKST/3tRWllCW0+uoW/WjqWyStMDJcUVhbQkYg6N8ulNe8/val4c3iuMgP5gHu+/gAQCWiUAgUerLQ+/mxPQif7T5pnu2/K1rQk83A8pry4V/YtbdEtUdSAhgt5b1od6/PQQ+UT8TKV6odP4t8C6w/7kuftHyiy80dw08Z73E/xixbtiX53mIdwMXXCz8AYN9ehGk4PHiP6ToTw45joC+oN5gSHnXWcIagYBFxOQo8CTFLlTEnfmd7iLclMuuZgSqtcCAZ3o33vkZrPcxfiJWZhcmkmRAs/xM5aH43EpZVQOAg4iYEzgOZq6j3ou7kg93B6m7oseNDngz0KFqXTEQvFAy2VO3fKxKZx0NHWvyXbRF2tQZutIV0Q0xJHl2bBXr5uO/26qg6JfG6+G4pU8fed1oV4/d6Q5m7/WPy1WSR25uJfGLR9M5Xrx7fUzZRXdJN+oBeQV/pP+YaOvWXhdGjWf3l3yGkXGbTeaDyeUQeAHj+NiUool4XiU4RmsBAHLCEDgsYwXcquXgKVhO1sTeJpT4olbQfs8qdecR4knpfBqHf2UU5xF3hFzafXBpVRdW6V/Snq9J34HTQ/5lFjoMSfllebQcM+e9HnQCOJVzUjyIhAW1RiOJ6/AvHA88vIA1oCAfQjITeCpq64m3+5PSAJP9PemJ3XahwRK0ToB/bCdRcWG+wL6jDB+ok9Dnq8VKfBM/vGAGCjhH4lIIKBlAsYFHkvFg3EmMbJopC84mHrNK1tMJbWW+c3mj0y5Tpb6bk6Zxy7vl9qIhT0W+Fjo6+X+KL3q0Zle93yc+ng9SX2XPEVvej9DP+z8yqSd566dEKuMeLXR+yvfpDGr3qIPVw+gj4IH0bg1g+mTtUNp/Lrh9Nn6t+nz9SPESilThXKIN14N9f2OCfTDzkn0467JNGfX12KV0rzwaTQ/4ltaGDWD3KJm0eLo70WoNlNlZhRcp3883rCKZ7H/aVPZTa7g0S+AB0o4RAmHOem78EniQQ/9xPvvrDzgQ99vnKB/uMnrixnxNGXNWNqfENHkuLE3CddjaUrIh/TdxvGUmnnRWDYcVwiBzq+uFv0WfmYjgYCWCUDg0XLrw3d9AmfPZ4vvBZ6Ycv5Srv4pg68tEXiuZCfTzI2fU9cf2tPUkI/oUkbTFRvnr52lhWHf0W4jYWV5FdDCsBnkqxfyzaBRegd3n9tCby5+kjYcX0EV1eV6Z/BSDgTemxgu7reew5uGGJaDbbABBJxJQG4CT4yfpyTuuHduSxWF5u0n60xmqEudBMoraui3HTzFd0Pw5oaw9K15aonAg/GT1kg67pwiBZ4HujXEsZ/ldtRxZFAyCCiAgDGBR3+gX1+IedntIeqx+BF6xb0j9fLoRK95PEa9vZ4Qg+2m3D17LUaEEONQYiODetN7K/rS6JVv0ger+tGY1f1pbPBAMej/8Zoh9MnaYbT0wHxTRYqwbhzqjEOecegzHvTnUGgsPPzEg/67p9DP4VMbBvwjv6PNZ02H3+IQchySLfCIJ604uoRWHvMRIduCY3xp7Ql/WndyOYWcCqTQ0yto4+mVYiWNKUN5zxgOHcch5DiUHIeU49ByvKqJhZrjlw9QzJVDdCrtCJ2+ekzsVWOqTA6lwSHueH8bDmfHoeU4BF5G4TW6WXSdsoozKLskk7huDmXHe+eYkzhMh1bT2ClRooPSfUioSQSWdFCKygto1qYJ1O3H+8Ts1MzCjCblF5TmilmuoceDmhzXvSmpKKJNMatoSvCHVKIXIkV3vvl/HljZdnIdDXN/mYL2e1FVLWLZN2ekpPfpN4qlQbwjJw2HwlGSP7AVBGwhAIHHFnq4Vm0EeFUnCzxzl8SYdM0SgefwpT30oX9/evmnB8k78mfifoh+io4PE/vvnLlyXP+w9JoFoc8D36FjyftFaGfphJEXvNL5mzVjqd+CZyk166IU3tZIdhx2MoH6+lt0Vycfca95rzzn5NpRHQjIi4CcBJ7yvFxy73SPJPCcXukvL1iwRvUE+o/ZJr4bhn7SdAKrIccxfmKIiryOKU7gSUkrkAZKTsVmyosmrAEBJxMwJvDwD62aumqqra/Fjywntwmqsz8BFv54lc+aGD9i8ZLFL0NJF37il20XU2FR66KIJR2UnKJMGuXdm3rMeUgMYNTX10nVs6B2NTeVPlw2gBKvx0rHdS+4nrirp2jy6vdpz3nTHSe+jvf3mRc2lcYFDKLjyVjxoWOp1P8+q86JfgsPrvAgCxIIaJkABB4tt742fOc9+z5dN5wWRc2kLWfXEK+E5n31DKXPvtsrvh+e77/O0Okmx8wVeLhfsu3EWhrg9jz1d3uOtp1cS/qTf3gfzrWH/WjJ7jkG99+pqqmin7dOJZ/IuZRdZLi/1cQwIrqSnSTqmrNtChWXG/a1+TV47zwCR081hrc3J4yx8yxDTSDgfAJyEnjCp34piTv+PZ+m+tpa5wNBjaokwPtD82Tp9ScD6MSVQ2LSsCFHA9bHi37Inx9eQjU1jWMchvJi/MQQFXkdU5zA4778tLgB//Wkb5POqrywwhoQcA4BYwKPc2pHLSDgHALLDiyQQs/pVqTxyjMODacbQLmQcZZ4mfFvOniI74iQ7a1vTmlJByWjIJ2GeLws9t+Zt21aE6dZSD16ifffGUIcqk0/8YDKtbwr5LZzBi0Mm2k0zr3+Nfz6WNI++mj5AFqwYxplF99sfhrvFUaAN67kGdr8gxIJBLROAAKP1u8AbfjPq9t1/RXd/4HLuhIPuPjsn0fhF7bQjcJ0ijiQJr4fbmvjRrn5re+LYq7AU3+rjkKOBdEbC5+id7x7UXSzsLI5xZnkE/kzrT60rEW/pK6+lsJOr6evVo+h89fOmD1JLPRYEPWZ35kOXYokFpCQ5EVg2rzD4j7j5y8SCGidgFwEnuzECzS//Z2SwJO6P0rrTQP/7Uhg7u5vWvRD3vB+WoTUd98zm7bHrqfkrATKzC6jX9ztJr4j9h5Jb9UCjJ+0ikcWJxUn8PQYtkHcfGMmR8oCIIwAAVcSgMDjSvqo21kEYq+fbNFB0Q2Y8H/eX4hnpnDqM2qL+I5494vWB9Mt6aDwZsRj/QdSz7kP08wNnzeZXFBWVUorD3jT7E0Tm+BgcYdXGi3f607frB1HWc3CujXJrPeGB1dWHPCm4Z6v0OYTa8weXNErAi9lREBfdAwNa110lJHZMAUEHEYAAo/D0KJgGRHgUMH6/ZTmrzncMfcRqqpq6Q8PeIl+y6qNF1r1wFyBh/sfO85soCGe3Wiwx0u088zGJuWycMP764THbmlyvLa+ho5e2kefBY2gved3EcfPNyeVVpbQ1HXj6L2lb9LNQoQhNYeZs/Ponrss9CCBgNYJyEXgWfdOP0nc2fD+UK03C/y3MwHeVqB530P/fd8lXYgnyHJ6qu8a0Q+ZOHt/q1Zg/KRVPLI4qSiBp6S0mn51r7u4+bZFpMgCIIwAAVcSgMDjSvqo25EEqmoqxb5GPMNkkG9Xox2UPl5PUtz105IpS1fFiu+IOx9tPRyWJR0UFnF8oxdQjzkP0LtLXqWbhdel+nT772w8vkI6xmXfLLhGPhHzadLq9yklM1E6Z+pFQWkezdj0GU1eO5p4E2QkZRPQhQ3kvktRcZWynYH1IGAHArqBRl7VFn8xxw4loggQkAeBgvI8ikjYJvaTfN3zcaP9Fl7dk1+WKxk94MPtot9iKv69uQIPFxyffpq+WvMevTLnEVoaOa9JiDix/872b+lc2glhAwtCNbXVtP9CBI0PHEZbT64lFm3MTaevHKNRS1+j5fvcW6xkNrcM5HMcAf19ADlUGxIIaJ2AHASepIgdkrgzv8NdlJuCSWBavy/t4X95dZnYI3pB5HR6y+c5o/2Q/kufb7Jn9Gz3Y6Ifcv9Lga2agfGTVvHI4qSiBJ7tkanixuOBktIyLP+WxR0EI1xKAAKPS/GjcjsTyC3Nol3xG2n6tvHUy6OT0U6JbvZJP59nKSmr6YxXji3OA4f8d7KVfdos6aDwnlZpOSn0gW8/6r3oMZqzdQrll+YQx6m/nneFPvIfRAnXz4qNiMurSunMlWM0a9OXNG39JyIuvSWYkjMT6V3v12lp1DwqqSi25FLklSGBT6fvEfdit8GhMrQOJoGA8wlA4HE+c9ToOAJXcpNp7Ql/sedO90UPmuy3fLJ2GJVUNv1u918bJ74n7uhoemIKT/wY6f06ue2Y2apTvPpmU8wqGuLVjUYue422nV5PJRVFxJNn1h9ZTksifhITUWrqaqigLJdWHfKhjwOG0O5zmywSd7h/tCxqIfV3e57i088Qr0JGkheB5esa9lf4a0dv7AMor6aBNS4i4GqBp666mny7PyEJPNGzp7qIBKpVA4GbRddp67l1NGXzWOq5uKPJfsgQv+50vSCties8ZqIbP2ltnzaMnzTBJss3ihJ4dBtRvjQoRJYwYRQIOJsABB5nE0d99iTAs0YvZsZT0FEvGrdmcKsdEg7DphN2+P9g35foat5lg+bc1zVQdFLmeMUYPM8HLemg6PJfzrpEszdPpAGLnqOPA4ZS0H5PCtzvSSO9XqcjSXspKnY7zQubTpOC36c1R/yoqDzfaP2GTvCATETcFnpvaV/ad6H1EHOGrscx+RHgmVDcYf7J0/i9KD+rYREIOI4ABB7HsUXJjifA+8vEXDlIi6O/Jx4k0e+XNH/dfKLKpA2jqaKmvIWRadeKpIGVUyYmppgr8HAlvPo4MnYrfRY0nIZ79aCZoV9Q8GFfmh4ynuZvm0aHEqMp9PgKmrnxC/pp69dizx1L98/JLLxOnwQOpS9XjaSCsrwWvuGA6wnwyjDuhwweF+Z6Y2ABCMiAgKsFnuO+HpK44/HYvVRRWCADKjBBKQR4YsX5G2fI79AiMrTfn35fpPn4CYeHNbS/b339LeJJJvxdwZMCjCWMnxgjI5/jihJ4HugWhIES+dw7sEQGBCDwyKARYIJFBFjEOHZ5P7lFzaIBy15sdXCEOyG8GfHZazFUVFFAPdweFvnfCehFPFvFWBr/bcOqie5DjK+asLSDoqurpq6azqefpRUHl9CMkM9o8OKuNHDhi/TNmg/p+40TafOJ1XQ976ouu0X/Mwtv0NxtU+iHrRMpPfeKRdcis/wI6IdFOXHupvwMhEUg4AICEHhcAB1V2kQgryyHdp/fTDO2f06veTxmtN/ysttDYiUPr+hJz79Mh5KjpLy8Mrk18cTciSmWCDw6p/NKcmh/QjgtiZhDnwUOp/4Ln6P3l75J3677hNx2zqTouB1UUV2my27R/91nN9PbPj1o9eGlYnWQRRcjs8MJ8KAdhyzmQTu/NXEOrw8VgIASCLhS4CnPy6XFj7aRBJ7TK/2VgAw2upgAT9jgPsW88GnUz+cZqW+hL+boXo9e+Sb5H3IT++vcKEyX8o5Z9RZxKFljacjHDZMB+L+xhPETY2Tkc1wxAg8GSuRz08AS+RCAwCOftoAlxgnwTJGwuFCauuVj6uX+qNTR0HVEdP95WfGXoaMo9FQQZRRea1HglyEjiTstPNjSWuI92vjH7K/buVNZeY3BrNZ2UPQL4/1yvtvwGa055EtVtZX6pyx+zfacSztJ73j1ojWH/YiFJCRlEwhYj7Aoym5BWO8IAhB4HEEVZdqbQGrOJQo+vow+WTvUaJ+F+y59lzwl9tzhvXdKKouamMGx8F9x70hzdk8Rq4abnGz2xtyJKdYIPPpV7Tm/g+Ztm0bHUw6KsLL65yx9zWFqZ2+aRMM8eojQtLwqG0leBE7HZYn+MPeJr6Q3vT/lZSmsAQHnEXClwBM+9UtJ3Fn+yjNUX4uwls5reWXVlFl8gzafDabJm8ZQj8WPGO2L8NgK59lydg1ll2S2cHJUUB8av254i/CwzTOaEy4W4yfNqcnvvWIEnsCQ86KDgvix8ruJYJHrCEDgcR171GycAP/IT7gZK0KvjQ0eaLRDwoMjvI/O3N3f0N6Lu6i8utR4oUQiLErzARRDFxSXVNEv2y4W3xm79xleCWNrB4V9vCb23xkiwpoYssOSYxwbf/2x5TTQ/UU6lXrEkkuRV6YEho1HWBSZNg3MciEBCDwuhI+qjRLgvWl4dTGHXhvk27XVfsu7ga/Tkn1z6Ez6cao1sedMdOIOMkf42Ko3MaWi0vjEFFsEHt5vJ+RoIHnu/oluFhpfBW0UUrMTFzPiabRvX5q9aQLdyE9vdhZv5UBgns8J0Rfu8GLrG2fLwVbYAALOIuAqgSc78QLNa3eHJPBcPhDtLJeptrqaSnOyqbq8ZZhQpxmBilolwGMTcddPidU3I4N6t9oPGbisKy2M/E6s6uHoKK2lQ8nRZCoPX68fLpYnBxhKGD8xREVexxQj8IyaEC46KP3HbJMXQVgDAi4kAIHHhfBRdRMCPFP1SMoe0dnov/T5Vjsl3GlZdnCB6MRwHFlHpGfeXCu+M76Ze8hg8bZ2UHiFzfGkA/Tx8qFi42KDlVhw8Ep2sti75+PAQZRX2voKJQuKRVYXEvjXk77iHvRZdc6FVqBqEJAXAQg88moPLVuTW5pFO+M3EodPa75fjm5lMf/n8LCfrx9B608G0PUC60KwmuJcWFRJt7VxE98Ze48YFku432KLwJNbkk1LI+ZR8CFfswZ7WrOZ+26rDy2jgYtfoLAzoVaHeGutDpyznUDvkZvFPTV2SpTthaEEEFAJAVcJPOveflMSdza8P9QimlWlpVRdZnkozeqKcrq0bw+FfPwhrRz1Nq3/9CNK2L2T6qoRKcKiBnBQ5pLKYtqfFC5W+r7h/XSr4yccYi3gsAcl3owza+KINSbf+/xy8Z3h5nfa4OUYPzGIRVYHFSPwtH2u4WZb7G/4ZpMVVRgDAk4iAIHHSaBRjUECvHR4W+w6mrJ5rAhDoj8gov+aQ5Tw5sIbT68kvsYZ6eufDooOynNvrTNYna0dlLLKElp1aBnN3jTRYPmWHGSx6PDFPTRo0YvktmMm3XKQ6GWJTchrG4HkKwXi/uOwKBcu5dpWGK4GARURgMCjosZUmCu8kiY5K4FWHvOhj4IHtTqQ8qb3M/TDzkkUnRhGpVUlTvG086urxffGLLejBuuzVeC5cP0cLQybQeGxWwyWb8nBorICmhz8Pr2/7E26eMNxg02W2IS8TQnU1dXTnx5aIu6pNVsSm57EOxDQMAFXCDyXwsMkcWd+h7soLzXJZAvUVlXS8RUBtGLEUPLp8yq5d3uBAga/RYeWeVNxpum9PcsLC+logB95dHuB9i/xoKKbNyjq5zkUOHQgJe/fZ7J+ZHAMAQ5Dz2MiPDai219Yf9xE9/pVj85ijIXHWvJKsx1jTLNSR09qWFTR74Otzc40vMX4iUEssjqoCIFHf/+dM/GGl4vJiiqMAQEnEYDA4yTQqEYQ4BmbPGuEZ4/wLBJdB8TQf17Fw3HneVYKr+5xdtq557L4Ufure92pvKJluBNbOyj5pbn0XcintPXEGptdyynOpMW7v6dRvq9TTIrhFUc2V4ICnEpAt//OXZ18HDbLyqkOoTIQsBMBCDx2AolizCLAYUk49NqiqJk0YNmLrfZbOPSaz/55dO7aCZN75phVuYWZvpi5T/Rbug8JNXilLQIPi1tRcdvFJJL4dNsnS+5LCKcRS18h3z0LiftDSPIjoL//zrUM54iU8qMAi0CgJQFnCzy8Wsa32+OSwBM9e2pLo5odKS/Ip8C3B1Pg0AEUH7aNrseepfM7tlHAO4No9t3/IK9XutPlo8ZDeleVltCpNcG06KnOtHPWt1RT0RDGK37HdvJ6tTuF/zSbOA+S4wlwKFcOvcbRS0YEvtZqP2Sw70siGgpHRamqrXK8cc1qCApt2Bbljo6Gf79i/KQZMBm+VYTAE7w5QXR4eRYKz0ZBAgEQaCAAgQd3gqMJ8L44h5KjaF7Et2K/HENiju7Y6BVviLix52+ccfmgtn64kz2HW4Y7saWD0rD/zmUa5z+EOAa9LYlFswvXztLopX1pytoxdgn3Zos9uNY+BHQ/Hgd8uN0+BaIUEFAJAQg8KmlIGbuRXXyTwuJCaOqWj4k3H9b1UZr/77m4I30ZOopCT68gnlHr6rRpV5L4vfubDh5UXV3XwhxbBB5eKbz+SAD5RM6jrKKMFmVbcqCmtpoWhE2nIe4v0bGkfcRlI8mPAIfY4VXEHHIHCQRAoJGAro/On4/VmxIaTzjo1XFfD0nc8XjsXqosKmy9plu3KOTTj2jNh+9RZXEx1dfW0q36eqqrraXSnBwK/mAEffePv5Dbc10oJzW5RVmcN/XwQVr0/FPk+8ZrlJfWuB8tHw/o14c2fPQB5aSmtLgWB+xDgPcM5v2Ff9w1mfou6WK0H8L9Et6vOOioF13KOm+fym0oJTWtUHxv8Gcj/mLLkPEYP7EBrpMuVYTA89E3UeJG6zPK9iXlTuKKakDAKQQg8DgFs+Yq4YGOLWfX0ORNY6jH4keMdkp44ITzbD4bTDygIrf02GvGw53oOijDvV6hCStGWmQ6X5uSmUgLtn9HZVWlFl3bPDNfv+VkMA32eInWHwtofhrvFUpAF1bWfbntM6UVigBmg4BBAhB4DGLBQRsI8KSLi5nxYoDkw9UDjPZZeCCln8+z9NOuyWLghSewyCnl5JVLAytHTrYMZ6sTeN71fo0Whc2wyPTSyhIKOx1K4ee2ULWNs4IvZyfRuMBBNHX9R5Se2zhwaJFByOxwArxvMQ/SvTcx3OF1oQIQUBIBZwo8Zbk5tPjRNpLAc2aVacH15oV4mtm+DcVt2yKEHX22LN6knThO393zT5r5n7/RjhnT9E+L1xVFhRQyfiwteuxBOuTr06SMFBZ43upDK4f2p7QTMS2uxQHrCVwvSKPQU0Fi4sjLbg8Z7Yu85vGYmIASFhdK+WXyWwH7ny5+4rvDe2XLPWQxfmL9/eGsKxUh8Oh+DP7kiYeQs24M1KMMAhB4lNFOcreSv6wvZJwVq29Gr3zTaIeEB0c4xMm88GliVQ+HPpFz+nT6HtFBeW3EphZm8soZjqs/Zml/mrZ2XIvzpg5U1VTaJSxJdlEGLd41iz5dOVyIRqbqxXn5E8jKKZMG6U7GZsrfYFgIAk4koOvTG5sd6ERTUJWCCXDoVw5hsiByOnFI2Oarc/TfjwrqI0KjxF0/TfzdL+d0X9dA8f2xyO9UCzPZ9oTrcTTObxAtCZ/T4nxrB/jakooiKq+yPWRudFwYfeD/Bm05FUwlFcWtVYtzLiTwzyeWiXvJf22cC61A1SAgPwLOFHh2T/1CEneWv/KMWI1jigjvsTPtb3+kWff+W+yh0zx/ZXEReXR/nqb/4y/k8fKLVF3W+FznVT4sAM1q34aW9ulF+VfTmlyeGBVBS3t1o4B+vSnl0IEm5/DGMgK1dTV09lqMCO369vJXWu2HDPV7mdyiZomQsdW18l71OuTjHeK7490vdrcAgvGTFkhkd0D2Ak9pWTXd1sZN3GSGwuzIjigMAgEnEoDA40TYKquKxQ3eH2fu7m+INxPWHwxp/vqDVf3EvjsJN2NdHnrNkmbgZfc8iPiXR7xb2M0zflmkCTkWQLvOthSALKnHlrxF5QUUGbeNtpwIJu4oIimfwLaIFHHf3d7ecJgd5XsID0DAegIQeKxnp/UrM4tv0NZz68Smw6+4dzTab+FzvHnxpjOriK9RUtINPPIAS/NO6gfRAAAgAElEQVTE/RYOr7bhWBAdvrSn+WmnvT9/7SytOuBN6bmpshfMnAZFZhVdvV4s+iHcB45LbBlmR2bmwhwQcCoB3XOWPx+ODNGWnXie5rW7QxJ4Lh8077m9120Bzfj7H2nm3/9EG778tAUbFnT8B79J3/79zzT38Y5Ulte4CqSisIA2T/qC5nRoQztmfdtk9Q4XdGZDCLk91ZkC3+pDqUew72sLuCYOFFUUUHRiGM3eMZF6ez1htB/SfdGDNG7NYFp5zIeSsxNNlCqv07rwnh1eDGxhGMZPWiCR3QHZCzz7jqaLDgqLPMUlzt9oSnYtBoNAQI8ABB49GHhpkgCHXuMBDx746OH2sNFOSS+PTmIAhQdSckuzTJYr1wzJVwqkH7gXU/LlaibsUhmBqT8fEvfdc2+tU5lncAcEbCcAgcd2hlopQaxYuRkrJpjwRJPmk0/03/MqHp6wwhNXeHWPUpPPqnPi++Pup/2U6gLslgGBkO2XxH30hwe8sH+xDNoDJsiLgLMEnnVvvymJOxs/GGY2hKKMG7Ru3Pu04p3BdCMutsV1vC+PZ48XhcCz+KVnqaq0Idwoh2/LTLhAPz58H7k9/Rhd2Nl0okBtVRXt93Kn2R3a0Iphgyj9dMuVoi0qwwG6mneZ1p1cTp+vH0Es3Oj3PfRfv+75BE3fNp52xW+k/2fvOqCiPLp2yvcnscReo6ZYYqyxxJgYe+891mhsMdYUNcYO0ov0XgRUUBFFURELiogCKiCICKKggtIRUHrJ8587uOsC20CQXZg5Z8++Zd4pzzswd+9zS0aO8uodbtx+LtSfpL1Q7GgtfHlWREDhCR4ts0C2wHqNcao4en6FI1DPEeAETz1fADKmX1RSBApJYuWrh1/2T5QokJBwMsd6GAt1QiFPyLOlrpSWfSzYHuJ07F5dmRKfh4IjMGreMbbm/t7ro+Aj5cPjCLx7BDjB8+4xV6YeKS/OteiLLBQs5csRVZ6UP6aQsrbXDFiIWbIqrQslKCxJqFh5nqhYOYLqAr71ZQ4kf5B3AskjvHAEOAJlEXgXBE+U12khuaPbtRXSHj0oOwgpZ7SfFeTkoDAnp4IHDpE4z8LDsPurz7C7fUu4bnwTZpyeCXCww462zWA1YxJeJpUNE52dmoqT2zZjW9tmOLJmJVJjHkkZRf29VVhcgKAn/jC7oon5tqOlyiF038h7LwJjr4GeqwslL68I//eVEdtDPC/H1IUp1as5KDzBI0gQuHLLhXr1YvhkOQLyIMAJHnlQql91XuZlsuTBlER4itkgqUIJJSN2uGHKkhPXVZQmLTnBBJS1Oy7V1SnyeSkQAiUl/4EsZkmxQha0vHAEOAJlEeAET1k8+BlA3sUnQg5hy/GVGG3YS6LcMs6oD6vjHuKM5KyEOgldUVEJGnQ1YXvIyfMP6+Qc+aRqHoEhMw+zNUQexbxwBDgCZRGoaYKnuKAA1iP6Cwkeb7XtZQfwFmeFeXnwUt+Dna2bME+duJBgYWvZaWlwXr6YefboDu4Hj93bcHbvLuHH7e8NMPxpEHZ81grn9u5BbmaG8Nn6fvAiJw3nI05B5fSfIE+c8gYlgvNRBj2w1mU+DgVYISal7v7O+26KM9tDVAxu1PeloXTzV3iC5/PBtmxxWR6o6J6odGjzAXMEqhkBTvBUM6BK2lz8i8dwDXLEn65LQYKHQAgp/z3BuB+2ua/B6bCjSMuuHzG5d+tfZ3vID9N5uCwlXd5KNewHMW/CAj56zH84KdXL44N9JwhwguedwKzQnRSXFCP8WTDzvlnmOFWizEIyzCyrodA5v4N59eQV1o9QIYOnuTC5heQXXjgClUWADE0afV1KEh73lN9roLL98PocAWVFoKYJngArIyG5Y9y/M/KqiUgh752nQbewt9uX2PN5OwQ42aOkuJi9BvL6SX/6GHrf98fujq3gsGAOvNT2wFN1F/ucVd0Fx4Vzodq5AzR6d4O/oz1KSkqU9RVWy7hjU6PhHGiD9YcXSA29Ntl0IHZ7bITXPXdQDp76UH7fdonJIdOWn6wP061Tc1Rogic9I5ctLLKEDQh+XqeA55PhCFQHApzgqQ4Ula+NouJC3Im7CQsfHSyyHydVOfKzzUjsu7gH/jE+KCiqG67DlXlj7l7RbB9p2M2ExyGvDHC8bpUQEMS9b9LDDHUlZFCVgOAPcQQkIMAJHgnA1PHLr/Jfsvw4mue2Ypr5YKlyy8oDM1jenfsJYfXy/+ia7aWKlanL3Ov4quDTqwkEoh6lC/UnMU+4oUlNYMzbVG4EapLgyU5NgWGfz4UET/BB+2oD61VKCmxnTYFKxzbwtTRFUcGb3/UlRUWIueGHHR3bQP2bznhw9QrI20f4yc3FVcq/06UTbKdPxCM/32obl7I0RHqQW4/9YHJZHaQfKW8IK3pOoddMLmvg9uPrIL1LfSvWh0LZPtJxEM8HqGzvXqEJHm+/p2xhffC5AXJy698flrItJj7ed48AJ3jePea11SNZjFy6fxpqZzeBLElEhRDRY0r+t/rQHDj5WyA6KaK2hqsw/T6OyxT+0L0fnaYw4+IDqZsI/Kt1ja234XOO1s0J8llxBN4SAU7wvCWASvQ4hV5zC3LCpmPLMNqgp0S5ZZxxX2w98RtOhR5G6qskJZphzQzVxjmM7SMdvuOKlZpBuG63esQjkq2fpj25oUndftN8dlVFoCYJnnP/bhSSO3bjfgARL9VRyHvn8OplUPmiPW4fPlShyaK8PNxxc8W2Nk2g811fZCaWDWNK4diObfgd29s1x6l/t4DIovpQKGLJufAT2HVqAyiSiajORPSYIqBsOLIQLjdt8SSN5525eSdBqD9JTa8f3tN15e9BoQkefevbbGH1GOVYV/Dm8+AIVCsCnOCpVjgVrjESMI7cssfGI4ulhl6baNIfO0+tw9m7bqAYsryURaB5b3O2l7icvF/2Bj/jCFQzAuMXH2dr7U+VK9XcMm+OI1A3EOAET914j+JmUVRShLD427Dy1cMv+ydKVKSQUmWO9TDoX9iF6w+9kV+YJ665envtVmiiULGSkpZTb3HgE68aAls1fdn6GTHXtWoN8Kc4AnUcgZoieJIi7kKncwshwRPj611tSJ7ZtY155kR4eYptsyAnB/77bbCrfQtYTZ+EooL8MvVSYx/BavwoGP7QH8FurnXaO/ZRShQOBlhircs8qXLIFLPvWM6dCxEeoBzGvLxBIDevEB9+Ycj2kou+T97c4EcKj4BCEzyLN3qyRbVog/h/ZAqPLh8gR6CGEeAETw0D/I6bLywuQPDTAJhd0QS5BotalpQ/pvuGl1QRGHsN9BwvkhEYNe8Y20v+0ah/7uiSUeF3agKBNv0s2VpzOnavJprnbXIElB4BTvAo/SssMwFSilyO9IS65xZMMRskVW757dBsONwwRVRSeJk2+ElZBPLyivC/L7lipSwq/ExeBASGJn+p+sj7CK/HEahXCNQUweOyYKqQ3HFbOb/aML2opwW1nl1Y/h3RRsk7KC44CEX5eSjIzsZ1W0sWvs1l9XLRasyLKNrnClQ6d4DbH2vxIu5pmfvKfkJGIoGxvkwvMtd6uFQ5hELbm1/RYvoWMkrhRTICvcY4sd+0ela3JFfidxQOAYUmePpNOMgWlbb5TYUDjg+II6AICHCCRxHewtuNISMnHecjTjELkokmAyQKJRR6jSxRDgVYgSxTeJEfgY27L7O9ZPJSHs9eftR4zcoiQC7slDOQPkFhPMxQZfHj9esHApzgUf73HP/iMVxvO+BP16VSvYspHMo29zU4HeYKCpPCi/wIfDPSge0lRnZB8j/Ea3IEAFBoP5JD7I/c5XhwBDgCYhCoCYIn6pyHkNzR69YaaTHRYnqu/CU/G0to9++NhHtlDSMoz+eLp09gO2c68l++RGFuLgvdpvp5O7hv+atMR1mJCTizYyuMhgxE6MkTwH//lbmvjCcUzpUil+w4uRYU5rW8IazgnMLD/nH0FxYRhWQXXuRHYMG6s2wv+fVvL/kf4jVrHQGFJXhKSv5Dg64mbFF5XHhU60DxAXAEFBEBTvAo4luRPabY1GgW43X94QUg4kYghJT/nmQ6ALs9NrLYsRk5L2Q3zGuIRUCQKPCLH2zF3ucXOQLVgcDVgDgms7zfiecNrA48eRt1EwFO8Cjfe6UEwyFxgbDw0QFZv5aXVUTPKXGxwUUV+Mf4gBIa81I1BGb/5sH2k9+2XqxaA/ypeolAZlY+WzdE8AQEP6+XGPBJcwRkIVDdBE9Rfj6shvcTEjzeattlDUGu+8FuR2E6fiRexMdXqF9cVIQH3hfhuGQBu1dcWIgHV7yxu1NbnNj8p7A+efmQ947Wtz1wTm0PcjKUU59AhBblFnbyN2e5hkXljvLHU82/ZzmLL90/g1f5L4VY8IPKIaBmHMD2k0FTnCv3IK9dqwgoLMHz6HGGUEB5+Fg5/xHV6pvlndcLBDjBoxyvmZQctx9fh8lldcyzGSVVObLQbiyrR/VJqcLL2yNwLTCe7SekeM/O4Zi+PaK8BXEIWB4IZevsqyF24m7zaxwBjgAATvAoxzLIzH2BS/dPY++ZvzHZdKBEuYWMVH53ngsnfwtEJ/M8d9X1dnfrX2f7yU+zjlRXk7ydeoCAf9Bzof6EyB5eOAIcgYoIVDfBE2BpJCR3jPt3Rl5mRsVOK3kl6rI3dn/RDvbzZuHkv1twYstfwo/b3xtxZO1KGP00GB47/xW2nPYkFno/DoTTL2/Cw6XGPMKBJQtgNHQwkh8oVwSQvMJc3Hh0Bfsu7sEsq6ES5RAieCjvn+VVXdyJu4nikmIhJvyg6gicOBfN9pPG3U3rdM6mqiOkmE8qLMFDXjtkffJJV2OQNw8vHAGOQEUEOMFTERNFuZKenco8b8gDh8KUlLcuEZyPMugB8uRxuWkL8uzhpfoRSHvxJnTW7dDE6u+At8gRALBhV2kowCm/8lCAfEFwBCQhwAkeScjU/vUnaTE4fMsOG48slhp6baJJf+w8tQ6ed93wIiet9gdeB0dwxCOS/Q5u1su8Ds6OT6mmEKCwbKQ/oTBtvHAEOALiEahOgic7JRmGvTsJCZ7gg/biO63E1dhAf+z6vA12tW7CPnvaNEH5j0qbJtD4vC38nfYLW87PfoUrxgbQ7NMdyVFRSHkUjRObNsJk5BBEeiuHN2jyy0ScDjuKbe6/Y5xRH4n6k9GGvfCX61K4BjnieUacEAN+UH0IRD5MZ/sJ7SlP4rOqr2HeUo0ioLAEj47FTbagKA8PLxwBjoB4BDjBIx6X2rpKuXEoRw7lyhEQOOK+p5h9x3LuUO6drNy3t/KprfkqU79t+1uxPeWA2z1lGjYfqxIhMHr+MbbGtmr6KtGo+VA5Au8WAU7wvFu8pfVWWFyAoCf+MLuiifm2o6XKLXTfyHsvAmOvgZ7jpWYRCLufIlSsJCZn12xnvPU6g8AmNR+2bsYvPl5n5sQnwhGobgSqk+A59+9GIbljP/5HlBS/vfdI4AEHHFy6AAeWLZb4ObhsMQ7/vgIJ4WFl4KEQbJd0tGA7ayocFs7FqW2bGdlTppICnVDotcjEu9h/3QSrDs6SKodMtxgMDc8tuBJ1DjkFrxRoFnVzKEVFJfiosxHbU7x8YuvmJOvgrBSW4Fm55QJbTPPWnqmDsPMpcQSqBwFO8FQPjlVtJb8onyk7DC+pYq71cKlCCcWtJyVK8NMAFJUUVbVL/lwVERg25yjbU3bpXa9iC/wxjoB0BD4fbMvWGE9sLB0nfrd+I8AJntp9/xk56SDjEpXTf2KiyQCJcguFXlvrMp8ZrcSkKFdYl9pFuHp6z80rBIWVJctZCjPLC0dAHgSmrzjJ1gx5FPPCEeAIiEegugiepIi70OncQkjwxF5TjL87Ik3yX75E3kvF9LrIKciG30Nv6F3YiZmWQyTKIWQku9RhMqx99REWH4SS/0rEv1B+tcYQ6D7Cge0ppg4hNdYHb7h6EVBYgmfEXFe2mHbo+lXvjHlrHIE6hAAneN79y0x7lYyzd91YeJLxxt9KFEpGG/RkYU6O3LJHXDq3enj3b6psj8s3nWd7ysL1Z8ve4GccgWpAID+/CB98XqqMuxrAQwVUA6S8iTqKACd43v2LpfCvzoE2LBwsETfiPIvp2iTTAaCwsl733JGRw/Ofvvs3VbZHCrNFBI+Da3jZG/yMIyABgZ6jHdmaMbYPllCDX+YIcASqi+BxmT9FSO64rXyT94YjXBGBxKxnOHnnMP45vgpjjXpLlEPo3ia35TgefAD0DC+1iwCFHSc55I89V2p3ILx3uRFQWIKn4yAu1Mr9FnnFeosAJ3hq/tWTFUx0UgRLILz60ByJAgkpR6aafw+1s5tYYuKXeTVnNVNYXIhXeS9BfRRzbyC5FoGmaSATUAZNcZarPq/EEagMAvej09j6IiE4PuFlZR7ldTkC9QoBTvDU/OsuKCrArcd+MLmsjnk2o6TKLQvtxsLksgZuP76OouLCGh9cSUkJcgtzmAyTX5iL/8DzrEoCnRs7SkKGXxeHAP1eodzFJIecuRQjrgq/xhHgCACoDoIn6pyHkNzR69Ya6TEPObYiCJC3TURCKOz8jLDiwHSpcgh58Wid+xdXH5wHefe8q0L/M3MLcpCd9xK5BdncQ0gM8H+qXGF7yuSlPL+sGHgU8pJCEjzcLV0h1woflAIiwAmemnkpeYW58I/xwb6LezDbaphUoeSX/RNh4aODO3E3UVzy9nF3pc3ov/9KkJARD+97Z3DQ1xz7fUxwMfwMMrO5pa003OjeUY8oJqA0780TFsvCit+vPAKnLz5i66tBVxPQDwZeOAIcAfEIcIJHPC5vezU9OxXnwk9g16kNmGDcT6LcMsqgBzYcWQiXm7Z4nPZuFVJkmBL29CaO+jvA8aopXAOc8PxFHFeqSHj5gnDl89fxcOUSIOKXRRCIe/6SySFE8FBybF44AhwB8Qi8LcFTlJ8Pq2HfCgkeb/Ud4juqZ1cpL45v9AXoeG3HdIsfJMohZBS7zGkabP0Mce95SK38biJiJzzuNlwDHJk8csjPBtEJEdxwttyaNXMMYfvK18P3l7vDTxUVAYUkeO5FpQoFlOeJPIGWoi4ePq7aR4ATPNX3DpJfJuJ02FFsc1+DccZ9JQolow174U/XpXANcsSzjKfVNwAZLZElzLMXcdD12IntR9bA684JuN9yxnzj0Th1+3CtCEcyhqxQt4PCkoT7youMPIUaGx+M8iNgZBfE1levMU7KPxk+A45ADSLACZ7qA/dRShQOBlhircs8iTILKVKmmH3Hcu5ciPBAVm5G9Q2gEi29zM2AR7ArNjgugJmXFrxCT0LNfTOsLukh9WVSJVqqP1W1zW+yfWXg5EP1Z9J8plVGwMc/jq0XChdbUFCzBmdVHiR/kCOgAAi8LcETYGkkJHeM+3dGXlamAsyqdobwPCMOJ0IOYbPbCowxlBx6bZxRH/xzfCXcQ5yRnJVQO4N93St565AMsm7/PBifU8Ple57QPb0T2w6vxpNU7v0o+nK8fGLZvvJRZyOUlHADRlFsFPVYIQmec1dKF9LHXYy50lJRVw4fl0IgwAmeqr8GsrKPTLwLhxumWHVwllTlyHSLwdDw3ILLkZ7Izq8d0jkp4zlsvPWx2m42bsX4Cb2FNh9agUWm42tNaVP1N/Bun0x7kcsEFLJsvHMv+d12znur8wj8perD1hfFKuaFI8ARkIwAJ3gkYyPrTn5RPgJjfWF4SRVzrYdLlVsW2Y+D+RUtBD8NQFEth3KlsLKnbh/BLIMfYX1pH+icwsv6R/lgpdVMXLl3TijTyMKgPt0/4hHJ9pXW31rWp2nzuVYRAadj99h6odxNvHAEOAKSEXgbgic7JRmGvTsJCZ6QQ/XLs4GilYQ/C4bNtX1Y5jhVqhwyy2oodM7vwLXoS6DoKIpQSP7wuuOOafqDYOKlAQppS0a0jxIiMddwBJyumnN5RORFkTco6U7o8yyRhyAXgUZhDxWS4LE+FMoWUZeh9goLHB8YR0AREOAET+XeAsV9v/7QG3oXdmKW5U9ShZKlDpNh5auHsPigWg8fkl+Yj6P+9lhsPhang4+WIZksLmhjrGYP3Iq5Xjkw6mHtht1M2N5C4bR44QhUJwJzVp9ma2vN9kvV2SxviyNQ5xDgBE/lXmnaq2ScveuGHSfXYrzxtxLlltEGPfHH0V9w5JY94tJjK9dJDde+8/gm5hoPxVr7ecjMeRM6KuJZKH42HAm7y0ZIf5VSw6NQvuav33rG9hVSrOTlFSnfBPiI3ykC6iYBbL38MP3wO+2Xd8YRUDYE3obg8dy6QUju2I//ESXFdd9b7lX+S/hEeUHz3FZMMx8sUQ4hj+GVB2Zg/3Vj3E8IU0hD/btPgzDb6Ccst5qKF9mpwqWbnJWIRSbjsengr1weEaICZOcUCuWQgODnInf4oaIioJAEz049P7aQRv7sqqi48XFxBBQCAU7wyH4NSVnPcfLOYWw98RvGGkl2HSa34k3HluF48AEkZMbLbvgd1SBLmYj4UPxiORGbXVYgObOsW7P9ZSOM0+vFQp68oyEpbTfdRziwvcXc6Y7SzoEPXDER+H6qC1tbWmaBijlAPiqOgIIgwAke6S+CvIujkyLg5G+O1YfmSFWkTDX/HmpnN+HS/TN4mZclveFaukvhTpZYTMAs4yEIe3K7zCiiEyMwx2gYNE/9g9sxN8rc4yfA02dZQsVKdCzPtcjXhHQEVv97ka2XeWt5zibpSPG79R2BqhI8SffCoNO5hZDgib12pc5CGf/iCdyCnPD3sV9B4emJvBH3obD2/55YjVOhh5H6SrHDrcalPcZvdrMwSa8/gmMDyry7tFcpWGIxGcttpnJ5pAwyAOUvJkOTY2celLvDTxURAYUkeJb+5cUWEf3z5YUjwBGQjAAneCpiQ262EQmhsPczxooD08UKIwIBZYbFj9A69y98HnghpyC7YmMKcCUjOw0OV00xfd/3OOBrzlyJRYdldl4LY7V7YKvzb6KX+bEYBMYudGN7y79a18Tc5Zc4AlVHoN0AK7a2Dp2IqHoj/EmOQD1AgBM8FV8yhS658egK9l3cg9lWw6TKLb/snwjLq7q4E3dT4cOIkDxmeVEXwzW6QtXtT+QXls1/FxF/B7MMh2C32wZ43z1bEZh6fqWoqAQffmHI9pbL199dzsd6DrvSTn/iLyfYWqHfhrxwBDgCkhGoKsHjPG+ykNxxW7VAcgdKeIdCuYbF34bVVT0scZgkVQ6ZYz0M+hd24cajyxX2dUWdOskj+68YY4x2T/zr8luFcZMB7SKzcVhqNZHLI+VeYt9xB9jeYmATVO4OP1VEBBSS4Bk17xhbROTJwwtHgCMgGQFO8JRik1PwCteiL0LHazumW/wgVShZ5jQNttcMcO95SK2HXpP8ZkvvkCUvuRKvtJmB3x3mIPChb5lH6D4pTUZpdsfmg8vL3OMnFRFYvuk821sWbfCseJNf4QhUEQFKZvz+6/jEVwPiqtgKf4wjUD8Q4ARP6XtOfpmI02FHsc39d5AFrMDwpPw3Wc7+5boUrkGOeJahXEr+p6kxmG04DCM1u8MnwqvMAi8uLsLtR9cxUbsfdrquw/nQU2Xu85NSBDoOsmFyC+VX4YUjIA2BXmOc2Foxtg+WVo3f4wjUewSqQvBEep4Skjt63VojPeah0uP4Mi8T3pFnoe65BVPMBkmUQ0gu+e3QbDjeMENUUrhSzvtZ+lMsNp/IdCaX7p4uM4eSkhI8To7GNL3BWGI1gcsjZdABpi5zZ3sL5ZvlRfERUEiC55uRpWF0LA7wMDqKv4T4CGsTgfpM8FAYtRMhh7Dl+EpQeLXyShHBOYVlozruIc6gcG3KVAqK8nHY3x6jNXpAx2MbEjLKho6j+6tt5mKkWjfsddukTFOrlbHu0rvOBBQyIuCFI1BdCMQ9f8nWFbmv8zA61YUqb6euIlBfCR4yyIhMvIv9102w6uAsiTILyS7TLQZDw3MLrkSdK5NzT9nWhONVcwxX74I5BkPxIjutzPDJa8kr1B0j1b6GyvE/4Xv/Ypn7/KQUAUH4T23zmxwSjoBUBFr0tmCyCA+jIxUmfpMjgMoSPEX5+bAa9q2Q4LmssVNpUaQcfa63HfDn0SWg3H0CfUn57wnG/bD95FqcDnNFWrby58hzCzyAsVo9MdtwKNJfvcm9Qy+yqLgQt2NvYLT6N1hiMZHLI+VWtyD85/x1PPxnOWgU8lQhCR5BnL/jnjzOn0KuGj4ohUGgPhE85Fob/iyYed8sc5wqUSAhAWWW5U/QOb+DefXkFuYozPuq7EDSXyVjrcN8TNDpi1O3DlcIx0KxZKfqfodhql1wPPBAZZuvd/VNHULYj9+eox3r3dz5hGsOgaCwJCHBk/Uyv+Y64i1zBOoAAvWJ4CH5w++hN/Qu7GRySXkFiuj5UofJsPbVR1h8kMJ7F8uzDDNzXuBnw+EsPJvhWdUKj6S9TIHVJT0M39sV+87swoPn3EOlAkgApi0/yfYXbjkrDh1+TYBAYeEbT2LfwLLGYII6/JsjwBEoRaCyBI+/haGQ3DEZ0AV5WZlKAyWRFyFxgTD30cYi+3FS9Sc/24yEwUUVBMRcRX5R3fk9k5WTgTV2czFSoxt0T1ck53Lys3H4hj2Gq3XFaptZXB4pt7p365cayI782bXcHX6qiAgoHMFDAgpZwdLnGhdQFHHN8DEpEAJ1neDJzn/F8uNontuKaeaDpQolKw/MYHl37ieEgSxllb0UFRchPC4YE7T6YbLeQDheNWNJ/ygRseDj7GeF0eo9MULt6wrJi5V9/jUxftfTUWxvadXXolLNu528B0vbQCQkvqzUczVZmda4lf1NWNrexMsqkgpZWflQ1bqCyz4xoDBjNVk8zkZip+pFUJ91rXhejmHr6pOuxnVtanw+HIFqR6CuEzzkKXzyzmH8c3wVyINYlMQRPdozchsAACAASURBVCbP401uy3E8+ADII7muFf9oX4xQ646he7vC4oKOUG4RyC/nw05ig8MiTND+Fgd8LZCVm1HXIKiW+azccoHtLwvXVy5HkZG5P2wdblfLGKqrkYKCItg7BUHP6BpKSqomp2dk5GGHykX4XIutrmGJbYfyH504FYE96t7Iz69Z+UjsACp58XniK7ZOSH8S9Si9kk/z6hyB+oVAZQieVylJMOzdSUjwhBzar/BgZea+wMUID+w98zcmmw6UKIeM3PcNfneeiwMBFohOvq/w86rqAG/F3MBMgyEYqtoVRufUKsgj1yIvYovzSozR7IFth3/n8kg5oM0cSw1ke4yqnIHs/oPBsLILxKtXBeVarL1T0p8YW/jDyq7qXtEkv2jpX4Xz0dAanQj1cysoHpu3n0dC4iu5+1I4gudZ4ptQJw9iXsg9EV6RI1AfEaiLBA/FmHcLcsKmY8tAsedFFSKixxSzfuuJ33Aq9DBSXibVuddPyYg9go5gmGpXjNfsiz8cl2DH4bXYcaT0s/3wWiwwHovhKl0wTfcHkLUsL9IRoPwo9OOX8qXQj3d5SnHxf1ixxh0/jLDBndAEeR55J3Vo05+/9Ci++Hof7oQlVklZEhWdhq69zLBT9VKNEy+qmpfRsqMhvC5Go7hYPuzfCZDV0ImDazhbV1/8YFsNrfEmOAJ1G4G6RvCQd3FEQijs/Iyw4sB0iTILyS8zLH6E1rl/cfXBeeQUZNfpF21/2YiFZxu5tzv+clpaTn5Zg/X7F2CcRh/MNxnFQrURjrxURGCHrh/bX8YskC+0LMks9Ok90ATDxtpVbLAWr+TmFmLRMld06GKIyAdlQ+TIMyxSzNyLSEbLDjrMYESeZ6paJy+vEFt3nke7r0zg56/4ua9CwpOFBM+LjLyqTps/xxGoFwhUhuDx/Ge9kNyxnzAEJcWKSfg+SXuEw7fssOHIIowy6CFRFplo0h87T62H5103vMgpGzq1rr78Q9esMEn3W4xU646NDosryCN/H/iV6Vom6QyA+XntOuFFXZ3vksJ+kv6kZR/5DWRJDpk44wCGjLJFogIZyJL+ZMrsg/issx6SU6omh+fmFuHL7vqYOvtgdcJcoS3SVR05Fo4WHQxhbh1Y4b6kCwpH8ATffRPqJLMOWvpKehH8OkegKgjUBYKnuKQYYfG3YeWrhyUOkyQKJKQcmW01DPoXduH6Q28QAVKXy8u8LBieVcFIje5Yt38+wp4GIep5uPAT9vQWlphNxgj1LvjHeWWF8G11GZuqzu1+dJrwB3BCknyWELS5/rLiGAYMsUBwiPw5nGjzv3svCQE34xBwM/71Nx2/+fgHxqH8J/DWM/YceQvJIqHIOrdFB30Ymt1AdnblrWMiIlPQ/it9/LPjAjIza/bv6UZAHD5to4VV606ClDx1qVBuBBJ8B01xrkvT4nPhCNQIAnWB4MkpeAXf6AvQ8dqO6RY/SJVbljlNg62fIe49D6k3SoOSkmJsdVnNCJ5V1jOFcotAhrkXdwfWl/ZhhGo3/HVgCfdAlvKXZrI/mO0vvcc4San15hbJDfTp/q0RBg+3enNDjiOKohESmsDkElFZ5c1xfAWZhWSYwFvxCI9IQnKK9JDI1P5Bl1B80kITuoa+coyobBUieO6GJ+GT5irYurNmczaRIcpF70do0EIDf2ypnPdU2VG/m7PzVx+zdfJRZ6N30yHvhSOgxAjIS/AkhodCp3MLIcHz2E9xkswXFhcg6Ik/TK9oYoHdGKlyyHzb0TDy3oubsddAz9WnQvKIittfLP/OCqvpCHt6u4xMEvksDEdvOGC4ajfMNxmJC2Gn6hM8cs2Vwn5W1kCW5JDRk/bju6GWSEiQPwIKefvcDn5eaTnk5u1nuHc/GalpOTIj+ZhZBeD9Rho4eDhErvmXr0Q6l/Zf6WD81Mp5NJVvR9Y5yTwPH6WjQxc9jBhvJ7c3scIRPBdeCyj/9xUXUGS9dH6fI6CsBA+RF5cjPaHuuQVTzAZJFUp+OzQbDjdMEZUUXq9eOCUk3uCwAJP1+sHQUxX/oWw4iwcJ9zBr3xAMU+mC08E8Jqo8iyM1PZcJKCSkhEfJZz1KAgoRPAN/sqwUwXMrOB6TZhxEp256aP+VLtp9KfrRY9e/6K6PL7rrofRbH59/rYfPOuswoeGbfiaYu+gInI+G4cWLXLHTi4vPwjf9zDByon2lhCdBY28InvNyEzwPY9LheCgYu/Z6499dF2FqGYCw8CSZHkRE6gwbZ4sOnfUQE5suU/gSjFEZvreoX2XravJSd2UYLh8jR6BWEVBWgofCqJ0IOYTNbitA4dVEPYpFjyks2z/HV8I9xBkUrq0+lsycDCwyGc/y71he0KkAQU7+KybXjFT/GuYXNJGVyz2QK4D0+oLLyftsf2k3QD6y5m0Inkcx6ejZ35jJJ+2+1Hkttwi+9dCxq04ZmUUgu5Dygaxhe/Y3xS8r3XDqTJRYAxVSVsTHZ+HLb/Zh8HBr5ORUztijLMFzQRJkZa6Tte79yBTY7L+Nbbsv4N9dF2Bld4sRUmUqijlJS8vBoGFW6NbHqMqWvmKarZFLzu6l6+Sz76xrpH3eKEegLiEgL8HjPG+ykNw5vmphrUOQkZOO8/dOQuX0n5hoMkCiHEKh19a6zMehQGvEpETV+rhrcwAkj6yynoWRml/D+JwaCsrlFiLCy+6KEUaodcNGp0VIzqyfcpu0dxTx4I2BbJKcXi8Cgof20MoQPJevPkLv78zLySECHYoePv+6rO6E5BDSn7T/SpvpT3oPNMOSlcfhef6BWDmE5vnkaSaatNXEhOlOMvUX4nAhgof0NZUheOKfZcHFNYxFTdmy4zz0jPxwI+CpxDEK+s3JKcCKNSfQ7DNd+AfK502scASPIEdC628tBfPi3xwBjoAEBJSJ4Il/8Riutx3wp+tSjDboKVEoGW/8Lba5r8HpMFekvUqWMPO6fZm8mpIyE7DYfALmmPyEY/4VLQTo2hT9AZhpMBTx6Y/rNiDVNDsSNojcoY/fzWdytVpVgocsUMgS1sc3Fodd72LAjxb4sPEevNdgD+YvcYWb+z1cu/5Y+PG78YQdX/B+CCMzf3w/zBpN2mijZQddFiIu+mFaBVKELEx//8MDLdprw9snFmQdW5lSGYInLT0XKppX0GuAGcZOdcSOPZegpuWDmfOd0bmnIX7feBqkHCIFjKRiaumPhq20Ye8YXOmxSmpTEa6v+qc0R8KiDZ6KMBw+Bo6AQiOgLAQPhQwLfxYMm2v7sMxxqkSZhcidWZY/Qef8DlyLvoTcQuleDAr9cqppcPHpTzFF5zsM29sF3uEVvR/SXqVgtd1sTN03EOdDT0ndN6ppSErbzLkrsUxmkTfH29sQPJRrhrx1rlyNwcnT99GllwGTWd5roIK5i4+wfH0CWUUgv/j6PWaKFJ1919BzgAkaNNdCuy/18McWT2SJyQ9Ixh4b/j6Dpu11cdWvcnl0KkPwUN2k5Gxs3u6Fbn2MmSJHRf0y6DN19iF07W2MjZs98TROcu4nyk2oreeLRq21cfhYmEKvIXOnO2yd9Bxd8feCQg+cD44jUAsIyEPwRHqeFJI7et1aIz32US2MFIhJfQDnQBusO7wARNyIGpSIHk8yHYA9Hn/A6547MnjYduG7InlkruEIDN/bFWfvHEdRcVnDAsr3vMFhIcbr9obFBV0eEUWI3JsDinoi0J/Im+OtqgRPZmY+894hOcTJ+Q7afqGN9xrsZrIIyQ7kWSuQP+hbIJNQCHhNPV907W2Ehi200LqTDrbuvICsrIoRSkh/MnvhYTRorg7ShVS2VIbgyc8vYnqdngPMWbh/MjLR1vfF4uVu+KqHIWYtOMJC7UsaA4313PlofNxMHVu2e0mqVua6whE8Ns5hbAF1G6b4CczKIMlPOAK1gIAiEzxFJUUIiQuEhY8OFtmPlyiQkHAy12YEDC6qwD/GB/nlLCtqAdZa75KsSZ6/IIFkOBaZj8H1SO8yYyLhZPPBlRij3QPm57WQV8fD1ZWZ/FueNPrahO0xpy/KJ6hXleChYZLlKH2ePc/C8HH2+KDRbjRtqwGPs/eRl1ckvC+oR9+0kRcWliDqQQrGT3XCR01V8X9N1LDurzOIi8+sMPvLPjFo84U+Nm4+i4wM8Z4+FR56fUFegoeUJDPnu6Bxay3muZOQkAWKT09CC1ng2jneRpO22uj/oyXC70n25nkal4kOXfUxcsJ+hUq4KAkfea/P/f00W1PrdpT9O5X3eV6PI1CfEFBkgod+6PtEeUHz3FZMMx8sVW5ZeWAG9l83xv2EME5QlFvAMckPMEHzWxbyJCqhrPd1cUkR7sTexBj1XlhmPQVPU2PKPc1PRRHwD3ouVKzQniurvA3BQ20TMUKyCO3x3foYMqUKyS5+Nx6LlVkE8ktBQRHuR6aCrGeJEGrUShubtp2r8LdBMs41v8cs9NnvGz1kTafMfXkJHqpH8tLoSQ5o0lYXugbX8PJlPpNZCMMXL3JgbhWIhi018OMoe5ABjbhC7UTcT0HLjlosZj/NVVGLhkkgWydDZh5W1CHycXEEFAYBWQRPUX4+LIf2FRI8lzV2vrOxFxQV4NZjPxh7q2GezSipcshCu7EwuayB209uVCAu3tmAFbwjkkdm6Q9h8sidJzfLEDhkyPPg+T2WD3CGwQ8IjwtS8NnUzvBy8wqFckhgiHz5iKtK8NAMBXIFRfxo+6UOI3hafKaBB9FpTE8iuC/6TbIFGWWEhiUwkuf9hnvwUVN1qOv4sL2/PHJnz0XhvYZ7sWtv5cO9ykvw0HgoNP0nLXSw7LcTSEp6xfQ/Av3JhUsP0b6zPrr2MWUGNOXHKDhPT8/BwCEW6NLbAKlpsnU9Ckfw6FreYguIx7IXvFL+zRGQjICiETxZuRm4dP809p75G1PMvpMqlPzuPBdO/haITr4veYL19E5+YT6ekcWJ0Qj8aj0Zd+OCyyAR+fwu5hj9xCxkY5Ie1Ju4/mVAqOJJx0E2bI85eDxCrhbehuARdHDx8kP06GfOlB7fDjZHyB3Z7t8ktFjb30KnbqUWtBQu5fylhxVceclTiBIpUwgRcV4+gjGI+5aH4KEkiRs2nUaTtvpYsNRNrJs1KXZ2qV5Cg5baGDvFCRTWRFwhZcnSVW5o1EoDAYFxTIATV0/ZrlHya7JsomTYvHAEOALSEVA0gudZxlO4BTnh72O/YrRhL4lyyzjjvvj3xGqcCj2MlJdJ0idZz+/GJkczgme8Rl+kZiWWQeNV3kuYn9fElH39YXBWFUXFskmLMg3UsxPR3IHyhEZ5W4JHAO+dsER81FSFKVYo1OyLDPH7uqA+fZPSwswygMk6ZHHbvrMuoqIrhsPNzMzFT6Nt8Xl3fSQkypcPkdqXl+AhL6Flq93xSQtt9i2OGHv5Mg9bd1zAR800GXmTnSM+LwUpcuYsPIwWHXRYfH/R+SrSseD3IA8Vq0hvhY9FURGQRfD4WxgKyR2TAV2Qn5VVo1NJz06FZ/hx7Dq1ARNN+kuUQ0YZ9MCGIwtx+KYdHqc9rNEx1ZXGSR4hgmecRh88SXlYxuiAyDRb730Yp9sLu45uAOlfeBGPAOV3o9+6lO9NnvI2BI+gfdfj4cwQg4xGSGagfVtWIf3JHnVv5vFCUVMopNvjJxll3ju1QUYfXXoZMv0J7fOVKfISPPuMr+P/mmpi4BBLsUa4REq5Hr+LDxvvRe/vTEGGsOIKyTDa+tfQqLUOjhy7K65KmWsKR/Bs1/Fji2fcIrcyA+UnHAGOQEUEBAI9/cPdZ3O7YoV3cOVJWgwO37LDxiOLQYKHqLuw6DEJLDtPrYPnXTeQIMOLZARKSkqQnJmI5ZZTsdx6GmKSIoWVydrE6qIuxuv1gfUlfeRz7x0hNvIcUKJi+nsxdZAvsV51EDwGJtfxWed9TOnxy4rjiH0sX74BCl/Sa4AFU7C833AXLG0DmUBSfp66htfQ/DM9HHAJBSk25C3yEDw+12LZ2Bu2VAO5P0sKA/fkaQaLgfu/Jmqwsb8tsd5Zryg0aq2F7XsuibWokXfsilRv4ORDbE3pW9fO/2BFwoKPhSMgC4HaJngoBGpY/G1YXdXDEodJEmUWkl9mWw2D/oVduPHoMt9rZb1YkftJmc8xQ+8HTNX5HmT4IyikoI9OiMDMfT9hld1Mdiy4x7/FI1DZ0CjVRfBY2QW+JmpUMHX2QfGDK3eVeedcf4wPGu3Cew12McXM8ZMVjWnIqtXEPIAZhRxwkU8Wo67kIXhoDOcvPsTHzVTRooM2CzlXbpjslNqKepCKNp/roHEbbTg5lzWkEjxDeLq63cXHzdWhqXdVcFnhvlduKQ0Vu3gjDxWrcC+HD0jhEJBG8LxKSYJBr45CgifEuWaiCj1MjsTBAEuscf5ZqhxCBrOqZ/7ChQiPMvupwoGqoAMieWSByRhM1R6ExMxnZRT9z9KfYJbBMMw2Hop7cfLvRQo61RodVpt+luy37lEP+XI6VQfB8/fWc/ioqRqTRTZv82LeL/JM0uNs5GtiaBdIf+J95RHz/Cn/7PY9F/FBY3Wm3yh/T9q5PAQPkTXtvqTwcqrY7yRevqA+SB4aNNQKHzfXAs1RXCHS6m54Epp/psVC45P8Iq0oHMFDIU5I+UYhT3jhCHAEpCNQGwQPhQcLeuIPsyuaINdgURKn/DG5Fht570Vg7DWQlQQv8iNAiRR3HF2L5TZT8TDxjZdTeFwIVthOw2r7OXj2Qr5ka/L3Wvdr/jTrCNtjKJyFPOVtCR4Kt7ZyrTsat9JgoU609/mCXG3lKW88f0hZshMWNoFiY8lG3E9mnj6zFrggNTVbnqZZHXkInjV/eKBhSy2Q5xElR5ZUSNiYMc8F/2uijh9GWLMQKOLqZmXlo88gM3T/1oi5Kouro2zXKKQsyS22Loodo1/ZcOXjrZsI1AbB8zIvC96RZ6HuuQVTzAZJlVt+OzQbjjfMEJVUNrRY3XwbNTMrkvdWWM/EeM2+yBTJBUDWsUaeqphi0B/uN13KhEqpmZEof6s5uW9Co9y8Izs0SnURPIuXH2OKCbKcpRBn8hQiVy77xDKFCsksFALt2ImKf0ckL0RGpYBCrkyaeUCs4kVcf/QcKTk+aa7CYuuLq0NGLktXncAHjffi++FWUhVCr17lY9KMA/jwU3WMmrhfotHJ8+dZzNJ3wBBLVNbSV9wYa+Laz2vOMDmEh4qtCXR5m3UNAWkEj+c/64Xkzv6JP6GkuHL5TSVhRSHoA2N9YXhJhYWmL68zET2n0PbmV7QQ8jQAFPKel6ojQPLIRsdfMEm7Pwt/L6oct7igjfF6veB01YLLIzIgFvzWpXQq8pS3JXiI+Bg21pZ5t5AnjuvxsApRTCSN443nz06mP7no/VCsnHEn9Dn+9+le/LLimKSmxF6Xh+DRN7qG9xuqsdD8ZAQrrWzZdh7vN9yLr3roI06CroX6nD73IFp10mXyk7T2FI7gWbbJiwkoS/8Sz2BJmwy/xxGobwi8K4KHkvWdjzgFldN/gpL4iQohoseU/G+ty3wcCrBCTIp8DH99e2fyzje3IAfHbx7EEuvxCHxY+uOarqm6/YG5xiMR8iSQx9uVF0yReuQdSsp4ecNpvS3BE/+M8u/Ysfw7Tdqo4eTpCGatITIkiYdmVgHo0IU8f3ajaTt1nPaMFPssKVXmLTmK1p20cSvomVghRlwnsggeGnuvgcb4oNFezF54VCZ5tHXneWZp83GzvbgR8FRiCDZynW7QUhOnzkTKLayJG7+iXOvwXWnYP2f3N0SsooyNj4MjoGgIvCuCJy49Fq63HfDn0SUYbdBTotwy3vhbbD+5FqfDXJH2KlnR4FLa8Zhf0MZQlS54klKa7448p24+vIZJugOg7r4ZJM/wIhsBUka938mAyS0+/nEyH6gOgody633d1+h1/p098PWTLyQLKWT2Gfu99vzZhWbt1RF6t2yIPsEEsrPzsWDpMTT/TBd378kX8lAWwUP3Y2Jf4LPOuvjfp2pYsPSooDux35QLkSyEicRq1l4DIaHiCTSqt3nbeXzaVgfePvLlbxTbYQ1enPKrO1sjW9QV18uoBqfPm+YIVAoBSQRPYngodDq3EBI8j6+/3d8TyRRnwo5hx8m1IFlDVGciekwyyh9Hf8HR2/tBsgsv1YuA3WUjjNfqi/vxYcKw9nefBmG8dl/scl0Pyr/Ii3QE+k04yPYYIzv58hS9LcHzKIby75AHzG40b6+GyKjUMt5X0ka7bfeF154/u9GyY2nuHlFiT/As6U9IR9OsvSbLlyy4LutbFsFDxr0/jrTGew32okc/Y4nGI4J+HA4EMzmkQQt1uLiKJ9AogorL0TB80kITekbXBY+K/VY4gmf+ulILlDXbL4kdML/IEeAIvEGgJgme2NRoOAfaYP3hBSDiRlQQET2eaDIAuz02wuueO8jrhJfqQYA2orjUGKy0ngFjz71If5WCYwGOWGY9GefunEBBEY8TWxWkZ6w8xQSUv1R95Hr8bQkeb58Y9OhXmnS47/fmCA55Jle/6S9yMWu+CwszQsqHaXMOI+pBisRnD7uGoWXHfdDS9wXl5ZGnyCJ4KCRb6056TOggT54XL6Qn9jOx8McnzdWZ1a+5dSAoN4+4QhYzTdtpY9GyY8iREPde3HOKeq15b3O2pty9ohV1iHxcHAGFQaCmCB6ycg2JC4S5jzbI+lVUTil/PNdmBAwuqiAg5irIqpaX6kfgcfJDTNTpB8uLesgrzMWth9cw33g01Nw38TC9lYS7QVcTtsecuyJb8VcdBE9YeBI+arqHKVY6dNGV2+s4LS0Xg4ZaMpmBrGJn/OwsMVwrjdP91H0W+kxN+4pciMgieIqKinHGMwrvN1Rhyp0/t0gPV0aElL7R9deKFQ3YOtwSOw5SAvldfwxSvvy+0UNsndq+OGpeaS7APftu1PZQeP8cAYVHQBLB4zxvkpDcOb5qYaXnQf+jHiTdg5O/OVYfmiNVDplq/j3Uzm7GpftnQF7GvNQcAk9TY7HYfBxMzmkgMzcDYU9uY57RSOw6th6p3LBHLuB/nHGYySGapvJHQBk9aT8GDbMSm79XVqdu7veE+XeGjLJFVpZ0HYSgveSUbPQaaIr3G+5me/uy305K1TXY7r+N9xqqw2a/+P1f0K7otyyCh0LxN269l+lDiECSVTy9HjB5i8LRrf/7jMTq8fGZ+PIbAwwaZik1JL/CETzTlp9ki2eTmnzKN4kI8BscgXqAQHUSPIXFBbj12A8ml9Ux33a0VKFkgd0YmFzWwO3H17kXSQ2uM0o+HBRzHVudV2Gj4yKouP2BqOfhHPO3wHzBurNsj1n970W5WnlbgocS7LX/Sp9t8ktWnpA7/46OgS/afVn63Fc9jHDh0kOJihKaSFp6DvoOMseAIdJDqYlOWhbBQ7l9mrYtjR9LOXMovJq0cuhwKBq0oFB0qlj+u7tE4YNCx06ZfZBZzFKYFnFWNdL6UbR7H3cxZmvKy0e28k3Rxs7HwxF41whUJ8FD+V0uRnhg75m/QXHqyxM5oue/O8/FgQALRCdzT7t39c5DYgOxfv8CbDr0K/5wXISTt1xAcg0vlUOgZR8Ltscc93wg88HqIHis7G6yfbzUuOSQzD6pAiUB3qV6iSlU3m+ois49DXE/UrJRCj1DIWW79zViyhh5DFNkETw0Bg0dXzb2j5upQxZxRBax+51CWP3/a7IXZMgiqVA4t+Fj7fBZF108T3gpqVqtXR88zYWtEW3zm7U2Bt4xR0BZEBBH8ER6nhSSO3pft0F6rHzeepQL98ajK9C/uJvl7ROVO8ofL3GYCMurugiNv8VDgr3jxRIRfwd/H/gVfx9cirX2PzOjWS6PyP8SxiwoNSLYpSfde0TQIskib0PwkIFGaf4dVWzZfl5quFVBn/S97q/Twud69DNlXr3S9Awpqdlo2UEL3w+zRHGx9Nw2gn5kETxnzkUyD2iSoWbOcxE8JvGbop582Hg3PmysysLSEXbiSqk3sRcatdZmeYXE1aFrCkfwCBbPTj0/SWPm1zkCHIHXCLwtwfMiJw3nwk9g16kNmGjSX6JyZJRBD2w4shAuN23xOO0hx/8dI0B5j7LzX6KopPAd91z3ulux+Tz7EUzCvTzlbQgeenbFGnc0akleLXuYS62s/DtkKWrrcBuff23IlA5dexvjpMd9iWSJ6BwoRNqnrbUkhnITrUvHsgieDZvOoOFrwkZd5ypevpRO8Bw/+cbaZtSE/VJj1TMyqKU2DE1viA07V36sinpOiQ8p5B99fAPjFXWYfFwcAYVB4G0Jnidpj3D4lh02HFkEkk3KK1AE5yTT7Dy1Hp533bjHSC2+/f/wH/Pu5oqUqr+EjoNKw4AePB4hsxGSO+hDee4GD7eSWV9cBfKuJUMN+ugZyv49Tp4whqbXmXKCyJ0e/U3hHyg7nBwRMjtVvNGotQ48z8smr2QRPJR/Z+Wak2zc5E1MBjbSCuF02DWUyWekWJk866DE6kQGWdrcQoOWOrBzvC2xXm3d6DvuAJNDTPZLTuZcW2Pj/XIEFA2B8gRPUX4eLIf2FRI8lzV3SR1yysskeIQewTb33zHOuK9EOWS0YS/85boUx4Kc8CyD582VCuo7uEnySGbuC25oUgWsK+uEQftrVQke2m+HjqHw9ipsfyb9ArUnrZD+ZK/WFZBxB8kufb4zx53QBInh4kXbWrnGHSS73A6WL8qKLILH1DJAKEMtWuYq2pXY4+CQ52jQQpV5HXXrY4gXGXli65HO4br/E3zSXA2r1p0UW4cuKhzBM2Rm5dy/JM6M3+AI1AMEqkLwPEqJwsEAS6x1mSc19Npk04Es586FCA+QlSwvHIG6gMD6nd7sR/Cc1aflmg4JFJR8b+BPlqANuDKFctgMG1uaf6dZOw1ckJDkT9Dm/agUZkHa/DM9FupszsIjCAp5JlOoETwfcDMebb/Qefb4hAAAIABJREFUx6p1p2SGU6NnZBE8C5e54hMmKKlAS0926LfTnlFo+JrM6jfYHJmZ4gUU6jslNQeff62PwcOtkZUluZ5gbor6LZoA+1ao+FwDijp2Pi6OQG0gUFmChwwcgp74w/SKJhbajZWoSCFiZ57NKBh578XN2GugxLq8cATqAgJfD9/P5BZ5khuTzEKfqhI8RJII8u982HgPgu9IlntI2UAhVxf9epzFmqf8e7/+dgKyEgoL3gk9fzvoGQvDsnSVm+CyxG9ZBA/lDpo+95CQ4DE295fYFt0gnNxOhLPQKKRIojAwRFaJK9Q35fdp1VELY6c4yJ3rUFxbNXFNkADb1kV8/P6a6JO3yRFQVgTKEzz+5gZCcsdkYFfkZ5UNmUZ//5GJd7H/uglWHpwpVQ6ZbjEYmp7/4ErUOZ7bRVkXCB93BQTmrS1No7J2h3xpVGh/rSrBQ/l32nxRmn+nVUdNxMVnVhiP6IWgkOeYMc8Z/2uiyfQQq9efYjl16O9WnuLjG8tkmE3/ymf8K4vg2al6UUjwyCPbhN1NfB3SbTfzEpYmQ5HO5KfRtujYTR+JSeJzRykcwfP91FIXY11L+ePgyfPieB2OQF1EQB6Ch+LLB8b6wvCSKijuvMC6Vdw3xa03v6KF4KcBoHj2vHAElA2BwJAE+AdJVkhQ7h3ytqBcPPIUElCqSvBcuvLodf6d3WjdSQs7VC4y7xzy0Cn93ALlrdm+5wLGT3NE8/Ya6NhVn8V4v3rtMUhZUZlCiomxUxzRqZse5Al9JovgmTb3ED5qQjFkVaCzTzbBQxa4jVpRiLbd6NrbEMnJ4gUPwZzW/nmaEVnXrj9WOGWJYIyyvjOz8tl6ojV15x5P0C4LL36fIyAPwZOR8wLn751kRiaTTAdIlFsoP+Bal/k4FGiNmJQoDi5HQCkRcDv7AHHPJYf96jnake0zFgfuyJwfySz0qSrBE3o3Af/XhPLv7MInzVWYF8wbmeU2814huYWSGFNs+cat1fH51/tYCBVSslS2UOizURPs0b6zLsgoRlqRRfCQ0mXkBHshwUNWtNIK4XTSI+I1wbMHfb83k5rDkMivJSvc0KStNkLvKpZBx5c/2rE14uh6T9qU+T2OAEcAgCjB4+jgC4NeHYUET4iLA8MotzAHfg+9oXt+B2ZZ/iRRDiF9yq+OU2Dtq4+7z4JR8p90TwP+AjgCiojAlRtPpf6OXbTBk+0xv22VP8R9VQmeYyfCX+ff2Q3KA2hicaOC/sTI7AY2bzuHn0bb4JPmpWFht+2+iNCwRLm8dkTfAelPeg4wYX3JilZCz8kieDb8fUZI8CxbfVy0K7HHd8OT0KStGpNFWnTQQESkZH0CjdXMMpB5EzseEu+xq3AEz8DJh9ji2WejeO7PYt8Iv8gRqEUEJBE8adkpOHvXDTtOrsUE434ShZLRBj3xx9FfcOSWPZ6mx9TiTHjXHIHqQcDBNZztIeMXHxdL9Aj+ZqYuc5erw7cheCj82Ged9zH34h79TTB7gQsWLz8GctcVfBb+ehRzFx1hSol2X2qjWx8jUNxZ8tyRZEkqbeDm1oFo1l4Ptg7BUpMKUhvSCB6yrJ0084CQ4NE38gMpYqQVz/NRQoLni+76SEyUrLCidq5ei2VxZGm+FFdWGUt6Ri5bb0Tw3JWRb0AZ58fHzBGobgQkETwxqQ/gHGiDdYcXSPUunmgyAHs8/oDXPXcW+qu6x8fb4wi8awQoN+BHnY1AlrHiiB7B34ypQ4jMob0twcMSDrPwbLtBoULIwEUgrwi+F/7qip8XH2EeymS88nVfY+za640H0akyx1e+AoVisd0fxJQV1vbS88fIInhIRhk6xlZI8FjYSE8GTVidOn2fKVUoITMpeKR5HhcVFeOM5wN83FwDu9Xks2IuP9+aOu/0vfxh/GpqDLxdjoCyICBK8Jj8vEhI7liP+x7uQYfwz/FVGGvUW6L+ZIxhb2xyW47jwQeRkMnDMyvLe+fjlIyAjsVNvN/JADNXnhJL9Aj+ZijUvTyF9teqEjyb/vV6nUdnDwYOsQCFjRXIH4Jv0p+QXoVCuTVrr85y+amoX2a5juX13BGdh6buVbzXUB0nT8vO0ymL4CEPIkGY25VrZeubwu8lo2k7Ci23m32HhUs2IKG5PXyUDiKCJkx3EktmKRzB02/CQaYsMbILEsWcH3MEOAJiEBAoq0m5uNvSDU7+5lh9aI5EgYSsTKaYDYLa2U24dP8MXuZJd3kU0yW/xBFQaAQEBA/9TdCnPNGzVdOXXZ+05IRc86gqwVNYWILlvx9n+Xfeb7gHFCokIyNXap/kkkteLS0+00PTtlrMMoWuVUZQofqUt4c8eRITpVvDSiN4aN6TZh7E/31KcfhLrXgrQ/BQ+LUEGYmIidQZMtqGWf/GxWVWap5SgXyHN1PScoQET8SDtHfYM++KI6CcCAiU1e9/oQfXa2dh7K2G+bajpcotC+zGwOSyBm4/uQEK2cYLR6AuIUAEj0BmEUf09J9Y+tvY0Fb2b2Pau+lTVQ+e0vw7FPdehXkYS8NZoGhYtMwNHzbWQPPPtLBX00eunIGCdqkNkls6dNHD8HGSQ6RRfapLlq7kWbR15wVBE8JvklF+Gm0nJHgsbaUTRoSTKMHzTT9jkFeutJKamo2+35uyPEOZmdLrSmunuu999p01W0MuJ2Urp6q7b94eR0DZEBAoqzt02iwkd3S+ao7Zf34lURaZYfEjtL224eqD88gpkB6hQNnw4OPlCBDBI5BDxBE9yzeV5jBe+peXXGDR/loVgoeMW8krh8Kmkv7k7LkokHGFtBL1IBXTf3bG/zXRQIvPtEBGqUTCVKZQWDgKMz919kGUlEj3wpNF8BCpIyB4Vq2VnCtHMD5Rgoc8eWR5CJM3MYXDJW/i4DsJgmaE3wpH8PQe48QWl5mjbCsl4Sz4AUegniJABE+zIX/jB9X+EgUSInVGaw3FpJ2rMeMvY8xd44Gf15zhH45BnVwD301xFgooAkFFlOjZruPH7hPxI08hAaUqIdqexmWw8CUfNNqNZu3UceZcFMhSVVZJTcvBrPmH8XEzNXzQSBU7VS8hOTlb1mNl7lPiPRJwKMwbjV9SkUbwkAfP5FmiHjzXZXrwnPV648Hz5Tf6SJIQG1Z0POTl9EkLTRx0CZULH9FnFeE4MTlbuN6iHqUrwpD4GDgCCo0AETyfz16MoVq9ysgtE9RHYPFfWzFWazBG6H+DseoTMHnbJszaaFcn9youh3E5VLAGBN4XojKLKNEjkGv0rWVHt6A9nz5VIXgoLOyb/Du74R8oX1Lw1NQcfD/MmpFCnzRXh56hX6UMNkhZsXq9Bz5to4XAW5Kt4WURPKR0obyHpFihccjjwSMI0UYePL2/M5PqwUP/WPPzixiJ1bCVFk6dURwypW1/KyaLHPXgoSoVegPkg1MIBIjgaT16Pf4Z3E5I8Pw9um0ZmYTpTzRHYtKOdZj5pznXn3C9SZ2WRQXGV6JyiCjRs+qfC2yPWbzRU66/YZJDqkLwRD9MRdsvBfl3NJi3Cu39skpC4iu2h7/fUIXpT8gbWR69i2i7lMOPSJ7oh9INNmURPL9veOPBs2KNbINi0RBt5I10916S6LAqHBcXl+CsVzQatNTEDpWKxi4KR/D0GFUaZ9jyQGiFyfALHAGOQFkE9KxuodeUfRUEkmG6PdD3z1HoMP1XfNJ7j1ABKfpPmx+XenhwHOoXDp2H2LO/hzELjpX9Y5JwRgJKVQiei5cfokc/c6ZoGPiTNe6EVrSwkNAlzKwC0aELhXZTwZffGMDXL1asC66k54loaf25AXarXQEl45NUpBE89MyMeW9y8GjrX5Mam57qE4lFghG5GJOSKCVFNjH1KCYNrTrpsMTIlc05JGle7/L6s8SXwv+vDx+/eJdd8744AkqJAIV/6LlobQW5ZelqPeiMzYXW2Gys+ikS3/f2QuMvLYV/X3yvrl97NX/fpe+biJ42/Ur/DsjCVlZ5G4LnTthzfNSUvHZ3g7xwMzIlyw+i4yCLW0NTPyazkMXtF931EP9MeohW0edJWXH+4kN80lyD5fYRvSd6LA/BM3qSg5DgMbGQnYPnuPs9Nt8PGsnOwUNjIeOXkDvP0bi1BpMNRcdXm8et+lqw/5WUz4kXjgBHQDoC27Svoed0FSxd0gnq37SAVpfmmLSrC4bp9ECfDWPw2ZQV+LjnXi5/vI6Gwffj+i1/EdEjyPNGHsfylKoSPK7HBfl3VDFivINM41LRsVAOno+aUi4bFZBHrqxQ8aLP0jHl/qEwbWR8Kq3IInj+2PwmBw952sgqYXcT8Wmb0hw8LTtqIiJSOsFD7ZFhTY9+xugzyLyCrkfhCJ5erz14zJ1kJ5KUBRa/zxGoDwi8yi7AoJ3fY4h6X3yzcgpaj16HD7toc6GECyV8DZRbAyScTP71BMNl7EI3uf49VJXgMTC5gfZf6TMhY+mqE3j8RH7l/5lzkfi6rylTOnzYeA/sHW9XytWYFCWtP9cHCTpZUsKNyCJ4lv7mhk+aEWGjCjVtH8hKPHjiVMTrpIgqGPAjCRyyw5fExL5A2y/1MGXWASgjwfM88ZXw7yw6Vv53LNfi45U4AnUUAcdT1xnBM2jnIHRZNBfNftyM9UMfM4KHSB7BR2tMDlYPeYQf+1xAk69KQxBxRUP9VjTUt/c/fM5RfDPCge0zupa3ZP5HeBuCx9ruJtvvac8nS1Z5C4VPOXvuAd5rsAvvNdjJ5AAyNJG3EMHjfSUWHzdTFxt6TdCOLIKHZIg5Cw8LCR59o+uCR8V+E1aHXUNZnkQKB0P5e2RZ/BLBQ0mcm7bTYjkBxDZcCxdbf1tKAh47wwmeWoCfd6mECDx8nI51i49h+bJ9mD55HlqO2IgPvtIRyvT1ba/h8+WylaQ18M1IB4yef4z9bSxcX7MEz1//nBOSNBSKNS9P/rDMTs7BaNBC47X+ZDf8rj+ulIGs+6kIvNdQDboG16T+R5NF8OzV8nktS6mAchbKKiF3EtCwZalxTaevdfE0TnYKjbS0HPT5zrQ0d2A5fYvCETx9xx1gi8dkf7AsLPh9jgBHAGChGOzd/XD09H2QYM8/HIP6vAYoSXF5AYWIHbvDd9kPd7LaovsTajBEG+XfIZfcRi3VQa7CekZ+SE/Pkfv/lZt7OLr2NmECCilLyApVWuJf0YZJAfLb+tIQbVeuxlQ5RBu1uWnbOTRqSYKSKv7dJZ0sovrOR8JeC1aqGDfVSS5SiubWoKU2nA7dkalYEZ2nohwnpbwJ0Rb5kIdoU5T3wseh2AiQ55vdCd8y8oqd2nMYLcmAztgcIcEjIHpKv3Ng9EsGbPc+h4vLozLP1uc9j89d+WW+ITMPV5BbiNi5cqM0RNqASYfYfQObms3B88sKN2aUQtavshQcov9hiCg5fjKcESUkszRooQ4X17uiVaQeU4i23zecRJN22vAPjJNYVxbBQ3n91v91lsksRBapanpLbItuEJnjcOAOq/+/T/di2lxnqfXpJoVoU9e+ikatdeDuESGz/ruq0G5AaYi2Ix6R76pL3g9HQKkRSHxSUEbeMFyQCZtdiXB2iuHyBdcn1bs1QKHXyutPiNg5fCqSkSQrNpfm4KHwhvIUkgsqG6KNvIHJ0KI0/44KkyuoHXmLpW3gaz0EGZvsgqfXA5ABiTyF5IuZ85zRoIUaoh6kSH1EFsFjs/+WUJaa8bNsY5kbAU/wv093g0LF9uhvKjMXIAvRdu4BM4rZvkcJQrRVJpGkVOT5TY4AR4AjwBGodwg4uIYLBRRRYkcAxD8avuz+5KXugktSv0mwqGyItvhnmRgx3g6Uf6dJGzUWp52EFnkLKVbafanHhJMGLVRx1O2u3EmLKVlx197GGDvFEUlJ0kOkyPLgMTK7gWbtKA6uCtb/fQYZGdLDtVjY3GRx74kQWvvHaZljJkXJT6Nt0bGrHuLiMysVs19eLGu6Xmp6rnC93YtKrenuePscgTqPwKu0/xB0sggum/KhO/6NN09ZsicXTuvyEHC0EC+eyffjrc4DxyeotAhQyBOBYkWU2BFM6NvxB9l9Y3vZxo8ks9Cnsjl4iGT55lvj194se3Dt+mNB9zK/aS9X07ryWqGxE5+2Uce1609kPkcVSKny5EkmOnXbh2FjbSFNVpJF8NCzeoa+jLChMC2bt0lPBk31DU2vC+v/uUV2bgGymu07yJSFf8nIlO2lLBcI1VCpw3c2bI04uytOXqBqmBZvgiNQYwjcOl4kwZgkF7bL8uDrUIjkR1y+qLEXwBtWKAQoBKxADhEldgSD/PVvL3Z/2Sbp+6qgPskhlSV4KGx7u69K8+80b09ES1qldAPr/zr92vtnFxq33svCqZLXrTzlUUw6CzM/dfZBmX3KIngoTD+FuiX9ycgJ9jK7p8grZBzzYWNVjJ3iIJOUyskpwLLfTqBpe20EhVRMAaBwHjyVSSQpEy1egSPAEeAIcATqFQJE8IgjdgQgbFLzYQLKtOUnBZekfleF4LngHY1vvjVjSoMBQ6xwJzRRah+iN5OTszFtziF83IxcdVUwdKwdQsMqbt6iz4gem1kFoEUHfVjb35YZ8kwWweNzLfY10aSC+UtcQYoNaWXb7gvMmuT9hqqwdwyW6ZHj4xuDRq00QUoVsrxVxkI5CgQCcWhEsjJOgY+ZI6CwCORk/IeQM0U48o90ssfh9zzccC5EWhxXxijsy+QDk4gAETziiB3BA71fhy83cwwRXJL4XVWC505YAj5upsKUEp266iH9hfT9XnQAiYmvMPAnS0YOfdh4L4aOscHLVwWiVSQekxeNjX0QGrTUgrW99BB0sggesmq9cOkh/vepCv6viRqWrpIeipfkDiKBSNZq2FIDh45Iz/9Loeg8zkQyOWfX3osS51QbN774wZbJIk7H7tVG97xPjoDSIZCf8x/ueRfhhEo+9k2RbExi9UsefOwKkRDF5Qule8l8wHIjQASPOGJH0MAvf5xje8zKLRU9RgR1RL+rQvAcORb2OtS7KoaP2y8z969of/HxWejR34R5wdCePmX2wQq5aUTrlz/W0PHBB401QOHmZRVZBE/8syy07KDJ9EB9vzeVqQ9xOhTC5BAyTPlnh3R8SQ6KepCKNp9rYeIMJ7GRWhSO4Bk8zYUtHnkSScoCn9/nCHAEOAIcgfqFAIXMkhZD/Y89V9geM2uVh1zAVIXg2Wd8XZh/Z8nK43Ln3yFrUnIv7tTNgClZGrfSgKlVgEzPGcFEcnOLMH6aI77qsQ8R95Nlxp2VRfCkpGZj0FArfNhIFUNG2yJRhkfQwmWuoDAnzdtr4m54ktT+yaJm7Z+n0biNJnz9nsi0VhHMUdG+SYklIHiC78pOiqho4+fj4QgoCwK5Wf8hzKsIx7bnQ2+iZGWM3Yo8+B0oREosV8Yoy7ut7+OMT5DubdtjlCPbZywPSCcgCMeqEjxErpD3LX2mzTko9yshRYeJxQ0WUoVCorT4TLtS4dkyM3OZxzF58sqKOy+L4KFBP3uWha69jEBE06hJ+6XKIaU5e44wxUqHLrqIfpQmdd5kNbt01XE076CNkFD5DW+kNlpNNzv/ZM/WyP6j4dXUIm+GI1B/ECjM+w/3fYpwSr0ABlMlyxeWi/Jw2aoQzyKKZVr51x/0+EzrAgIJSa+k7peUe4d+767+Vz7jhqoQPGTwSSQHETT/7Dgvd/4dMtbYo36JGV+Q50zTtpo4cy5KLPkh7l2RLNBnkCm++FofZLgpq8gieEjHMWG6E5On2n6hDdKnSCuqGpSzRwVN2mpCVv5C0hWZWQaiYSsdOB4S79WtcATPsDlH2eJRMw6QhgO/xxHgCHAEOAIcgUojsGZ7aY6eeWvPyPVsZQkeIpdY/p1WlH9nD3QN5cu/Q+FRzl+KRv/BFvig0R40aK6OVetOgUKuyVuu+z9B2y/08dv6U3jxIlfmY7IIHmpg257zaNxKC22/0AVZ+Epydc7KykO/H8zxQaO9mDHPWab3UELiS3TuaYgfR9ogI0P2WGVOppYqkFApIHgCgp/X0ih4txyB+oVAfvZ/CL9YhOO786E/SbIyxubXPFzdX4ikh5zsqV8rpG7NtsvQUuW9/RHZeW2qSvAsXn6MKRhIyaC9z1cuALOz8+HpFY22X+gw752mbbVZOFfKQyhPIXki8GYcPm2jiWWrT8h8RB6Ch/bkP7ecZbJIp27SkxWTx/Q3/Uzwv0/VMH+pq0T5hgZGfUc/TEe7L3UwfpqTVEMimROpgQrdRzgwWcTqoGwSsAa6501yBOoMAkUF/+GBXzFOaxXAaIZk+cJ8fi4umRcgLqwY/8kZBqrOgMQnUu8QmLP6NNtjNuy6LNfcK0vwFBQUYehYQf6dPaB8xNSGrEJki+vxu2jVsTS0W+NWmti+5yLLlyfrWcF97yuPGBmzeZt8+YVkETzU7v4DQczQ5MPGKvDxjRV0VeGb5KDpPzszmaX/DxYyCSbSmQwbZ4cvuu/Ds+fijYMUjuChxNekLKFE2LxwBDgCHAGOAEegOhGoSgxZeXPwkAIg9nE6ho+zZ/l3mrbVgMfZSIkx5WlTp9j16em5oDw7/QZbMsuVJm20sHTVCaZMoDblKSUlJdi66zyat9OR2qdoW/IQPOERSejZ34wJKYamN/DqlfiY8+fOP0DTdlpo1FIdHmfvyxTKDrqEMusTapOsUZS5fPC5AZNbLl8vTYitzHPhY+cIKBsCBbn/IeJKEdxVpYdZsVychys2hXgeWcItb5XtJdfz8bYfaM32GEp2LKtUheB59aoA3V/n3yFlhK+fZGUEySQkt1DIVseDwczjmMKytuqoi983eiAzS7b1q2AO1M6OPd74tK2uTKtVeob6Ju/gT5qrYOtO8WFMSK4KCnmOdl/qsmTLtvtviSVuCCePM/fxUdO9aN1JDxe8HwqGJfablE8W1jeZ3GLneFtsndq8KMhhbGATVJvD4H1zBOoUAsWF/+FhQDHO6hXAeJZkssd0bi4umBTgcXAxSorl+91Wp4Dik6nzCExacoLJIVs15TMAqQzBQ3v7/chktPuKjEV2s/Bm0vLv0D5PhrGpqTmwsrvJwsmT127z9trY9K8XXr6UL0QsvTTSn6xc647/+1QNt4KeyfUe5SF4XmTkot9gc7zXUA3r/z4t0Sjk8ZMXzEjm0zY6MLbwl9o/haG95vcYjVppYPWGUxLrKhzBM3PlKbZ4KIwOLxwBjgBHgCPAEahOBH5ec4btMet2eMvVLAko0ggeUlCkpGSzsCDRD9Oga3gdHbtSiDVVdOlliLPnovDsWSaeP88q86FQJESeuLnfw9LfTjDLk8attNG1tzHUtHxAHi6VKSmpOfj2e3MMGmaFuLhMuR6Vh+ChhozMr+Ozzkbo/Z05bt1+VsYqhoSNpKRXmDTzIBq31sXaPzxkeu8QplPmHESrjlq4H5mq9MrWRl+bsDV11jtGLtx5JY4AR6BmEKAwK1HXiuGhUQDDaZKVMRYLcuFtWYD4cG55WzNvgrdanQg07WnG9piT56WTENQn7a/06f6tEQYPtxI7DLpPeXMonBklNTa3DmB5a95rsAfN22swgqS8zELnJLfcu5+MYyfuYcHSYyxXYJM2uuj+rQmMzP2RW8lcegkJWeg5wATffm8mFzEkD8FDEya5TFvfF03b/T97ZwEe5ZX9//96V3/b9e5udeuFuru3QN3LtqXebo0aRVqgSHGCBIIFCRaCu0vw4A5BQyAkeAQy8+p8/8+5aQwympnknZnvfZ48mZn3yrmf9857z9xz7zldcMMd/SDBk6XPpUn0luzsfDxYbyj+8Pcu+KLpTFh+FmULCty479FknH9ZF4h/faelu55NVWOkfa8Mp4lGeUggJgiI4Wbvagszu+vo9bx3/UIMQZJH8oqBiIkEYoHAfS+kqTmmdfflAXVH5twH6w1W6xK5VbihFQON6CEHDxaomDLffDf3Rxdr36POzb2xbduRSusmpTqJeDbZuDkXw0dvxJMvjMQ557bFH/7WCVff0Bv9Bq2utEYRiKB5h0/hr+d3xJ0PDECgp48DMfBI21NnZOLc8zrhj+f9gMVLsirJJvqM6BWffDkdv/5zRzz5wggUFFS9iba0H3JC+cumM/GHf3TC/EXe1xwcZ+Bp+MkMNXje+yYw/36lHeZ/EiABEiABEvBHoEGjiWqO+aptur+s6rooKL4MPOs25uKtDybh3kcG4aY7++LSa3rhwit6qL8LLu+GW+5Jwv2PJeOBx+VvcNnfnQ/0R92bE3HF9b1x7a1JePL5kejQZTE2bckL6UTLkOHr8Jfzu6JbzxVeT9mc2eFADTzK32v/DNx45yDc99hgpIzcgLXrDqmdtDPnZOL5hqm4tG6iUjqOHfcfmDlj9UGc+89OeOv98WoHzplyRdv7v16XpMbU2Gk7o010yksCMUtA3KzsWm5hWiffblYSX3RhTm8d2Ru58zZmB0OUd+yXl/RQc8yc9Cy/PRGdRf58GXj2ZZ1UwXlL9ZYLLk8o01suvEJcp/Y/S2cRHUYWQOrc1BuX1hGjTH88/2qqMuzs2XfCr1xnZhB3tqPGbMI5f2qHzt0D89oRqIFH2pIFGDHyXHV9Eh55IgXjJ23Dps152LgpF5OnbcfTL47C5df1QfPWc/0al8QgNG/BHvzurz+g8deBuXA5s7+Rfv9Iw3FqjLTovDTSTbF+Eoh7AmLs2b/eUqd2El/ybuwRF2/TO+vYvcKC6CRMJBCtBG59YpSaYzonrQ6oC/4MPIuX7Ue9Z0ao9ZPrb0vExVf1LNNDZP3krgcH4P7HBpWtm5SsoSQr/UQ2hlx+XaLyfPJCw1T0TlqJ/dkFIW0Y7dV3BX76u3YYOnx9QP2STIEaeCTv6LRNuO7WfqhzUx8MHLIWGzbmYsvWw0hfkoWPP5+Gf/2nO958f3xAMQj37DmOi6/qgXseHoBil+FVXscZeN5tMkcNnv+g9vjRAAAgAElEQVR+OsOr0LxAAiRAAiRAAqEQePDlsWqOadl1WUDF/Rl4DuQUYMy4LZAAxQMGr4a47kgetrbsb8DgNeqaXK/4J58PTlmHCZO3Yc26HBUzR44ch5JkR8ezr4zC+Zd2VTtvZTEikBSogUfqkjrnLtiD9z+ZgsefSoH462/07njUf2aEWuQZMXqjUnj8tSsLNE2/nYPf/72TcslimtHtnk36e8FtA9WYGjZ2q7/u8zoJkEAtELBMD/assjCjq283K7Ird1aCjn1rLUgZJhKobQIy95bGeVu6yr/7kEAMPMdPFCsdpVRvqaizyGvRT8TtSUWdpfS1XBe9Zd2GQygs8r3b1Be7wkINz748Cudd0hXbdhzxlbXsWjAGHikkLKZM36Zc3j7SYBhef2ccGr07AfWeHoGXXhujdDfRn/wl2Wn8ceOpOPdfnbF4mX8jm7/6InH9qbcnqXHy+feLIlE96yQBEvBCQJ5LBzZbKh5P31fd6PRw1QYfOVUscX3klLGcNmYigWgiUOehYWqOSRwamCHEn4Fn997jSB62rmz95Ew9pFTnOPO/6CdDUtarjRqbtx4OaO3BG2eZ2+98YCDOu7gzDuUGfjI3GAOPtL1q7UF1UkeMVK+8kYa3P5iIBs8OR72nh6NnnxU4me/fta1sikkeug7n/Kk9evVd6a1L6nPHGXgat16oBs/T73j3K+ezR7xIAiRAAiRAAl4IlO5A6dR3lZcclT/2Z+CpnLt23slCi+zAfbVRmvKLH6gUwRh4SuuU0zx79p3EoiX7MG/hHmzaIsqV910kpeVK/x89WqxcvYlLFglwHAvpqgeGKr2lb8qGWOgO+0ACMU1Adt6Kn/zZPXSI33xvizE9nnEpg9CeDLpZiekB4fDOFRRqan4RI8/6Lf4NIYEYeGq7y7KZRU7S/OXfnfDcq6P8ukcrlTdYA09pOdFbduw8hgXp+zB/0R7lZu50cWA++qXNrKx8XHxVd9z90CBIvCInplc/nq7GCT2gOPHuUKZ4ISDPi5xtNhb0N9DvNe/Gnm4NXJjUVsf2RSYkjiATCTidwMV3DlJzzOAxWwIS1Z+BJ6BKIpxpRUa2in383keTgmopWAOPVK50ieyTSF+apWL+SaxAidMTaMrPd6H+s8Px70sTIMYxX8lxBp5W3ZarwSN+/phIgARIgARIIJwELr93sJpj+o/YGFC1TjfwiMLQpsNC5Z5t9NhNcLsDN7aEYuAJCJqPTBJz6Dd/aY+2HdIr+aL1UcTxl+54erQaUz/0pu97x98sCkgCFQh4bI9yzTY3UUefl70bexKecmFqR125fDM0LsZUQBj0SzkZdXi3B3syPDi4xYbpzPXyoPsVqQLZOYVqfhEDz979+X6biQYDjxhcOnZdit/9rSNSx27y26fSDKLvbN5yGOec2xrffDun9OOI/pdds8NGbMA557ZD916BnfyOqEBeKv9fi3lqnEicSSYSIAFnEMjbaSM92cCARt6NPV3ruTChlYat801op6lf1MSdk40+2Rs8mN/XxuLBNk4esuEhep/oz63TR80xE2bu8pmv9KLTDTyiT3zeZAZ++cf2WJC+p1TsgP6HYuAJqGIvmWRTzKo1B3HueR3R8K005VXFS1b1seMMPD0GrVWD57pHh/uSm9dIgARIgARIIGgCf7u+JF7KmCmZAZV1uoHn+PFi3PnAIFx7ayJ27z4RlP/ZmjbwyELJK43S8Od/dVZu6UJ1SRfQjavBTPVen6D0libtF9dgq2yKBEggnATkx97BLRbmJ+lIauh9Mab7Ey5Mbqdjx2KLO2+DvAGnjttYmWpjWmcTCweYmPKDiYyxFgzuYPZKcuO2I2p+EQPPiQB2e0aDgefo0dO45e4kXHl9LxwO4iRvbRh4xJXcE88NV37yM3cd83qfavtC805L1TiRWDxMJEACziNwZK+NJUMNDHrbu37R5XEXxn2rYfNsE65CWhwicReLjnswqY2J3i8ZWDTIwuivDCQ8o+PYfhp5vPGWufenF3RXc8yCZdneslX63OkGHtFDLr4qAdff1ifok7k1beDRNBMt2yzA7//eEZOm7qjEuao3jjPwDE3bqgbPhbcPrEpefkYCJEACJEACIRMoDVY8O4BgxdKI0w08U2dsx1/P76J2sxYU+PfhWhFcTRt4MncexT8v6YYGz6WgsDA4WSvK7bTXdI3itDtCeUig+gQO7bCxaKCB/q97X4zpVt+Fid9r2LaAO2/9ES866sGsBBN9XtGxcoyF7E0eLBlmoGsDTRnL/JWP1+vpKw+o38U/Ob+7312bwsjpBh6JKTRn3m789i/t8XmT6UHd1po28MgmlLXrcvDnf3XCS6+nBuxKLqhOhSmzBL4WI+AtDUaGqUZWQwIkECkCx7NtLBthYPB73vWLzo+6MKaphg3TTZw+SWNPOO6FGM1Gfm6iWz0dO1dY8NhQhrTOj2kY+53B2EheIAfrKlaqcbqBZ8y4Tfh/v/4eHbqke+m1949r2sBz6FAhrrstEXVuTsTxE/7dujnOwDNp9m6loPzf1YneqfIKCZAACZAACQRJwOU21PwiP4Iz1ucGVNrJBh6Xy8Rzr47GhZd3w+q1hwJa/KnY6Zo28DT9bg5+99cOmDp9h1L8KsoSza/pGiWa7x5lJwH/BA7vtrF4iIGBb3lfjBE3K+Nbatgy14S7iIsxFanqxcC8RBPt79GxZJgJcdMmqeCwB+3ud2PklxosumqriKzs9eQffxf/4arAfhc73cBTVKTh+VdG47xLukECJAeTatrA43ab+PTL6fjjeZ2wMH1fMKLWeN4BIzcp/fbSuwfXeNtskARIIHQC4h5sZaqBof/zrl+IsWf0VxrWTTFRdIz6RSi0LQNqc0nrWzWsSjOhFZfXMvQjDa3vcCE/F3AXlX/OVyUE9h8sdxW7L7sgICxONvAUFxu468GB+Nd/uuJgTmFA/amYqSYNPOL9ZNCQtfjNX35Aj8TlFcXw+tpxBp5FK4LbqeS1Z7xAAiRAAiRAAhUI5OQVlRl4du49WeGK95dONvCsWZ+Di67siVffHAs5ahxsqkkDz5GjxWrnyY139sWh3NjSnlt0LnGN8tArY4O9BcxPAiQQZQSO7rOxNMVA8rveF2O6PObC2OYaNs40UVwQ34sx4td+UbKBtrdYmNDarBRzR+IN9HjWjY4PmiouT5QNhRoRt9SzxQW3BebZwskGHjkRs2FjLv5xcWc898poaLoZFMOaNPBIW/v2ncRldXvi7ocHocDhp47HTtup9Ns/1+0bFFNmJgEScA6BgsM2Vo01MPxT7/pFp4ddGPm5hjUTTBQesZ0jvIMlET1k1zIL/RuaGP2FieMHKutlqd/oaH61hd0rJC5j5WsO7laNibZha7mr2JP5gXngcLKBZ+XqA/j1n37Aux9NQiju4mvSwJOf70L9Z1Nw/uXdsSPzaED33HEGnm07j5ctwB0OYcEqoF4zEwmQAAmQQNwRCFVBafhmGq6/vY9y1eEkaN//sBDnntcJI1M3QnaaBptKDDzd8HXzOQjWvVuwbaWN36wCKrdutwDiSzaWUmnswLoPp8RSt9gXEiABPwROHLSxYpSBIR94X4yRnbepTTSsn2ri1In4WzjI2eZBwhMG2t2lI3tz5cUoMfD0el5Duzs92LbI8kM7Pi+Xut66OUDXW6UGnsvqJqg4N06iJnN/hy6L8es/t8fIMRuDFq3UwPOrP7ZGkxZzgi4fTAHZNTt0+Hr89q8d0CVhSTBFayUvN8jWCnY2SgIRIyAnddZMNJUxp9MjLohhp6q/lE/cyEgzkJ9beX6NmGBRWLG4iJ3S3kbLm3Rsnm3B0Cp3YtRXOr67Blg72cKm2dRFKtMB5qRnqfX5X1zcI+BYv6KL3P9YMm64ow9yHbaxUzyK/Pz3bTFvwZ4zuxrQezHw/P3CDni4/pCA8oeaSYxPK1cdwJ//3RmyFmUYgX3HHWfgOX7SVWbg2bQ9MCtVqNBYjgRIgARIIH4ISNwdcc8mcXgCTTK5ftlsJp5+cSS2bgvOnUigbYSST3YjvffxZNz/2GDs2nU8YIWrYltZ2Sdx6z0D0bXnsqADDFasJ5DXskBS5+YkZSQLZbdMIG3UVp7Rk3eocfX3G/rVlghslwRIoJYJyOLKyjEGUj72buyRRZpRX2pYOyk+3KyIf/uJbXW0vtFWsQS0U5Vv0umTNrrW19D+dg/WT4stw3/lnob+7su2i9T8Uv+NiQFVIvOr/D3cYAief3V0QGVqKpPLZeB/jafgzgeTkXMoeLcoYuDZu/cErrqhF7r1XBZRscUY1bbDQlx/+wBs3+H89Yjtu8o3yOYdCf5Ed0RhsnISIIFqEZAYPLJJZPTXGmTTSFWGHvls6IdurBht4PiBwBaCqyVUFBXeMs9C72dMJD5j4cieymwsExj0nhvfXg2sSDWxZhJ1kTNv7fDx25Qe8s+b+595yet70UP++/ZYPPPSyJC8jHituJoXZP2k4Ztjce8jySgsPMPSF2Ddoh/cdm8/vP3BhABLhJZNjGSTpmzHFdf3xZTpOwKuxHEGHlHefn5RghpEcxfvD7gjzEgCJEACJEACvgikjNuq5pZ/3zLAV7azrq3IOIBZc3bi5En/ge3OKhyhD2SunDN/N+bM2xXS6R0RS3zQpo3fgs1b8iIeE2f12hyMGbcZssATa2nBsmw1rn52YUJIR71jjQf7QwLxTkDcpqweb2JEY83rQowsxoz4TMOqcQYK8iovOMQKv7zdHnR93EDzujq2LbQhCymlSX5kywmo7+9wo+3tHqybyl2zpWwq/n/ts5lqfnnry9kVP/b7etqMTMydv9tvvprMIIsV8xfuwdQZO0LalCKyys7ZUWM2Kb0lkrJblo2M1QeUjiSneZyeTuSXb5DduO2I08WlfCRAAiEScBV6sHGGibRmGsQdrDdjz+D33Fg23MCx/bGpXwSKT3cBUzuZaF5XQ2oTE8X5lUuKG90ez2hodhWweryFDdOd/7yv3IPIv+s2YI3SQ254fHhQjc1fuBez5+4MeZ0iqMYCzCzrJ9NnVU8/kjomTN6K9CWRjc1n2zZ27zmB4aM2ID9A13iCwXEGHhHqvJv6q0E0cuL2AG8Vs5EACZAACZCAbwJd+q1Wc8uN9Ub4zsirJBAEgS2Zx9S4ktNhR45ViNoZRB3MSgIkEJsETh33qBM7cnLH187bYR+51QmgkzmxsxizoL+BVjd40K2+hqLjld3T2Rawa7mFb67W0fZOHdvTK1h/YnMohNSrRxqOU/NLs47OdxMWUgdZKCwEZMFJ3OeIHiLudJhIgARin4D7lAeb55gY962GrvW8G3sGvunG4iHGWadXYp8QcOKAB/3/a6H1zSYWDjRhmZV1kZxtNtrfr+GbK3Rsm29j1/LY0cHCdX+btF+s5pbHX4vsiZVwyRvv9TjSwHP9Y8PVIOo+YG283x/2nwRIgARIIEwEvmqbruaWeq9TQQkTUlYD4OjxYjWuZGFlcxS4cuFNIwESqB0CxfklrsjGfOPb2CMxfZaPNHA8O3oXGlwFQPIHbjS/2oMJrY2zfN6bOrBkmImmV9ho/4CGvJ3R29dIjqZrH0lR84vEemMiAV8ExH2O6CHiToeJBEggvghoxR5sW2BiQmsN3ep7N/b0f92NRYMM5GbG/pwrbmL3rrHR9k4T3RuYWDfVgF7sqfQnLtna3Gaj+XVuZG+xcGRf7HMJ9pvxxuez1NzS6ItZwRZl/log4EgDT4NGE9Ug+qLNolpAwiZJgARIgARikcDLH01Tc8u7TSIbnDcW2bFP3gnIzlmJ6yQLKzMXRva4tncpeIUESCCaCIiblU2zTIxtoaHL494XYwa97cbSFANHo2zRYXeGhYQnLXxzhYlxLQ1smmth6wK77E8CGQ98W0fza2wkvuyGVhRNd6/mZP1Tnb5qbkmbmllzjbKlqCRwS4ORaqx0SMyISvkpNAmQQHgIGG4PdqRbmNxOR/cnvOsXSQ3dWNDPQM42K2S3meGRODK1aKc9WDnGRNOrdHSrZ2BaZ0PF2VmRakH+Vo6xkPyehm+vtdHpETfkxLXhjows0Vzrgy+PVXNL805Lo7kbcSO7Iw08HzafpwbR8+9PjZsbwY6SAAmQAAlElsCdz4xWc0ubHisi2xBrjzsCl9yVrMbWgJGb4q7v7DAJkED1CMgixJa5Jsa39O1mZUAjN9IHG8jb5fwdpstGWvjhXhtN62jo/aIb/d5woX8jd9lfn1fdaFbXhe+uszGmuQ6JycNUmcDpYkPNK7J5YOW6Q5Uv8h0JnEHgufemqPHyvxbzzrjCtyRAAvFKwNQ92LnMwtQOOno87d3Y0+dlF+Ym6jiwyYLHjo0JufAIMK2ThaZX6+j0uEudKh7yPw2lfwPfdqP59cVoeoWFlE91SLweprMJXHbPYDW39Bu+8eyL/MRxBBxp4Pmhd4YaRLc+McpxwCgQCZAACZBAdBI4/9YBam4ZkrYlOjtAqR1L4L4X0tTY+q7LMsfKSMFIgAScT0B3ebBtoYmJ32vo1sD7Yky/19xYOMDAoe2243beSnydiW10tL7JRu+XNRzP9kA7jUp/2xfZ+OZqTblGWTOJQY2rGpk7dp9Q84oYeHLyeMSpKkb8rJxA49YL1Xh54s2J5R/yFQmQAAn8SMAyPNi90sL0Ljp6Putdv+j9gguze+rIWmfBtqLX2HNkr41B75poe4eBpSNMiG5SMeVs8+CHBzQ0vcrEqnEWLKPiVb4uJXDOpT3V3DJ9/t7Sj/jfwQQcaeAR37GizJ53U38Ho6NoJEACJEAC0ULAsmz87MIENbfMX5odLWJTzigh8HrjmWps0T9xlNwwikkCUUBA3KxkLrEwpb2OhCe9L8b0fcWF+Uk6Dm5xxs7b4pMeDP5Aw7d1bExuY8JVeDbs+UkWml3pQdd6Ok7mRO8C0tk9C98ncxfvV/PKzy9KgB0jO6rDR4c1nUlAYhfL+onEbWIiARIgAV8ExHCzd7WFWQk6ej3vXb8QQ9DMbrrKa5nRM1fLqeCDW210f1JHj6csbJl7hnUHwIrRFlrfIjF6NOUGlyeJzx4xFePMbtp+9OwM/MRxBBxp4Fm04oBSUH5yfnfo+tlfRsdRpEAkQAIkQAKOJnDgUJGaV+TH7869Jx0tK4WLPgItOi9V4+uBl8ZGn/CUmARIwPEExM3KruUWpnXy7WYl8UUX5vTWkb2x9nbeHsv2oG9Dl9oVKwsoZ7o9kcDHSa9raHmNB2nfanTP5mX0DR6zRc0rF9w20EsOfkwC5QTGTtupxsu5dfqUf8hXJEACJOCHgBh79q+3MKeXjsSXvBt7xMWb6CC7V1gQncTJSU7j7F9vo8MDOpLftpG1vrJrW9sERn6hoeW1NkZ9ZZylpzi5bzUp27rNh8vWT07mM0BRTbIPtS1HGnj2HywsG0i79nEhLtSby3IkQAIkQAIlBNJXlm8ccLtNYiGBsBIYOGqT0lsuvJ0LcWEFy8pIgATOIiC7aPessjCjq283K7IrV3bn7ltbs8ae3J02ejzvwtdXnlaBns9cCBK3KS2u0/DdjQb2rq686HJWZ+P4g2+7lGwcEBegTCTgj8DqjXll6yf5BVyI88eL10mABM4mIPF3Dmy2MK+vjr6vutHp4aoNPnKqWOL6yCljOW3stGS4gT2rbbS5y41RX9g4sreyjEf3e9DpEQ2tbjaweb7oSE7rgTPkGTe9ZOPA/12d6AyBKIVfAo408Mgx9F9e0kMpKTMX7vPbCWYgARIgARIgAV8EklM3qzlF4vAwkUC4CSxcnq3G108v4MnjcLNlfSRAAt4JyM5b8ZM/u4cO8ZvvbTGmxzMuZRDakyF+5isvdHivPbQrebts9HpRU8GLD26xz1o4mdFNR6s6wNBP3JDTPExVE3j5o2lqXnnn6zlVZ+CnJFCBgOyullPq8rdmY16FK3xJAiRAAsET8Hg8yNlmq3h/EvfPm34h8QIntdWxfZEJiSPohGSZwP6NNjo8qGHcdyYKDpfLJcacuUkmWt9oYVI7E8X55decILuTZOjYZ5WaU26sN8JJYlEWHwQcaeARea+4b4gaTL2HrPchPi+RAAmQAAmQgH8CzTvRhZZ/SswRKoGKLgAz95wItRqWIwESIIGQCcjOW3HNNjdRR5+XvRt7Ep5yYWpHXbl8O/N0TciNVyiYn+tRLtha3e5C7k6JC1R+seiYB23u0tD6VgMHNnHLbDmZs1/dVH+E+i3cITHj7Iv8hASqIPCnOn3VmEmdsqOKq/yIBEiABEInkLfTRnqygQGNvBt7utZzYUIrDVvnmdBO16LhxAPk7rDR6wUdE1paKDxSLktupgcDXzPR41kd+zdYEHdtTFUTkA0msmngpf9NqzoDP3UcAccaeBo0mqgG02etFjoOGgUiARIgARKILgIvfliyE/a9b+ZGl+CUNioIyC63cy7tqfSW6fP3RoXMFJIESCB2Ccgz6eBWC/OTdCQ19L4Y0/0JFya307FjscTKKV8AqQ4Z8X0/qokOMfDkbLcrGXimddbR8ipgXl+jOk3ERVlxiSILKxJbhYkEAiFw6xOj1Jhp34tGwUB4MQ8JkEBoBMTV6pKhBga97V2/6PK4C+O+1bBplglXYXj0i2CkPZnjQVpzE2nf2DhxoKR99ylgRlcTCfUNZIx1zomjYPpVk3nFRazoIRJrlik6CDjWwNO49UI1mOq/MTE6SFJKEiABEiABxxK44fHhak7p1HeVY2WkYNFN4KoHhqox1jN5XXR3hNKTAAnEHIHcTBuLBhro/7r3xZhu9V2Y+L2GbQuqv/N22QgL7e81sGuFp8wl3L51FppdZWDwBzosPeYQh7VDx0641HwiCyvrtxwJa92sLHYJvPrxdDVu3vxyVux2kj0jARJwFIHj2TaWjTAw+H3v+kXnR10Y01TDhukmTp+sGWOPVgysnWhjyHsWMpdacBcBGWkm+r5iYFpno8bkcNTNClKYf908QM0pQ9K2BFmS2WuLgGMNPH1TNqjBdMldybXFhu2SAAmQAAnEAAHZyfyby3qpOWXS7N0x0CN2wYkEnnlnshpjHzSb50TxKBMJkAAJKAKHd9tYPMTAwLe8L8aIm5Vx32nYMteEuyj4xZiCwzYGf2Bi7LcGju6zkbnMRrd6BkZ9WbLIwlvhm8DSVTlqPvnJ+d1x6jStYb5p8Wopge8TVqhxc9uTo0o/4n8SIAESqDECJw/ZWJlqYNhH3vULMfaM/krDuikmTh0PXr8IpjPiFnZWTxOpTQxMam1h4vcWtsy1cTo/mFriM2/RKV3NJ7LRZNnqnPiEEIW9dqyBJ33lATWgJGBxsYvH+KNwbFFkEiABEnAEgX3ZBWUKys69Jx0hE4WIPQJyfF2U4HueHxN7nWOPSIAEYpLA0SwbS1MMJL/rfTGmy2MupDXTsHGmieKCwBdj8nYBI78yMPQjqd/E0hQLEviYyT+BASM3qfnkgtsG+s/MHCTwIwFx5yd6yB+uSiQTEiABEqhVArLRY9VYA8M/1dDpYe9xAUd+rmHNBBOFRyoE7AuT5BIDUOQ4sNmD/es9OJYFaMXhbydM4jqqmlUbcsvWT07mux0lG4XxTsCxBp6jx4vLBtS6zYe994BXSIAESIAESMAHAYmJIj94f/WfnrAsKnU+UPFSNQiMnLhdjbM/1+1bjVpYlARIgARqh8CJgzZWjDIw5APvxh7ZeZvaRMP6qQG6WfEAxfmAyb16Qd1UiUEreku91ycEVY6Z45vA1sxjZesnB3OL4hsGe08CJOAYAnKSZs1EE2LM6fSId2NPyiduZKQZyM8N7+913QW4ilApJqBj4DhUEHHLJnrIeTf1d6iEFKsqAo418Iiwf7m2rxpUIyZsq0p2fkYCJEACJEACfgl0Tlqt5pJrH0nxm5cZSCBUAhu2HilbWDl89HSo1bAcCZAACdQ6AVlckUWWlI+9G3tkkWbkFxrWTjIhizdM4SPw8Kvj1HzyVdv08FXKmmKegGFY+PlFCWrszE7Pivn+soMkQALRR0Bi8MgmkdFfa5BNI95O9wz90I0Vow3I5hOmmifwdbt0NZc89MrYmm+cLYZMwNEGnvteSFODqlnHJSF3kAVJgARIgATim0CjL2apueSVj6bHNwj2PqIE3G4T4lZWdjstXJ4d0bZYOQmQAAnUFAFxm7J6vIkRjX27WRnxmYZV4wzlDqWmZIvVdmTHrMwlDGwcq3c4cv266oGhauwkDFwbuUZYMwmQAAmEgYCr0IONM0zlBlbcwXoz9gx+z41lww2IW1mmmiEgJ4hFD5ETxUzRQ8DRBp6Pv52vBlX9NyZGD1FKSgIkQAIk4CgC1z82XM0l7XtlOEouChN7BC67Z7Aaaz0GcWEl9u4ue0QCJCABkddNNjHqS987byXAsgRaPpnDxZhgR82xEy41j8jCyuqNecEWZ/44J/Dih9PU+JHNTUwkQAIkEC0E3Kc82DzHxLhvNXSt593YM/AtNxYPMXBkD/WLSN7bf908QM0lA0dtimQzrDvMBBxt4ElO3awG1T9u7BfmbrM6EiABEiCBeCCg6xZ+eUkPNZfMWLA3HrrMPtYigZf+V7Kw8sbnXFipxdvApkmABGqAgLhZ2TDdxJhvfBt7JKbP8pEGju3nYkwgt2Xu4v1KZ/nZhQmQk6FMJBAMgQ6JGWr80C1xMNSYlwRIwEkEtGIPti0wMaG1hm71vRt7+r/uxqJBBnIzqV+E8/4dPV6s5hHZaLKGG03CiTbidTnawLNu8+GygUV/9hEfC2yABEiABGKOwPot5XFRcg+firn+sUPOItCxzyqlt9R9mPGenHVnKA0JkEAkCYiblU2zTIxtoaHL494XY5LfcWPJMANH93Exxtv9KI0bWOehYd6y8HMS8Epg1qJ9Sg+RWDyaRgOhV1C8QAIkEBUEdJcHO9ItTG6no/sT3vWLpIZuLOhnIGebBY+HcQGrc/MieusAACAASURBVHPnpGeVzSPcaFIdkjVf1tEGHtl5/YuLS3Zez1y4r+bpsEUSIAESIIGoJjB4zBaloPz9Bp4EjeobGSXCS1Bj2e3EhZUouWEUkwRIIOwEtNMebJlrYnxL325WBjRyIz3ZQN4uGnsq3gSJFyjzyOuNZ1b8mK9JICACsilWxo/8rd10OKAyzEQCJEAC0UDA1D3YuczC1A46ejzt3djT52UX5ibqOLDJgsemsSfYe9upLzcsBsvMKfkdbeARSNc9WhI74YfejJ3glEFDOUiABEggWgh88t0C9SP38dcmRIvIlDOKCRw5xiPtUXz7KDoJkECYCcjO220LTUxqo6FbA++LMf1ec2PhAAOHtttxv/P2ivuGKL0lYSBjuYV5OMZNdefd1F+NoUGjN8dNn9lREiCB+CJgGR7sybAwvYuOns961y96v+DC7J46stZZsC0aewIZJS9/RJfjgXByYh7HG3je/mq2UlCeeWeyE/lRJhIgARIgAQcTuO3JUWoO+bbLUgdLSdFiicC/bykJSpmUsjGWusW+kAAJkEC1CBhuDzKXWJjyg46EJ70vxvR91Y35SToObom/nbf5BW785MfTF4szDlaLNwvHL4En3pyodN/3m86NXwjsOQmQQNwQEMPNvjUWZiXo6PW8d/1CDEEzu+nYu9qCZdLY422AXHznIDWH9Exe5y0LP3coAccbeAaM3KQG1z9upHsdh44hikUCJEACjiQgvsd/eUmJm8+pc/c4UkYKFXsEXvhgqtJb3vh8Vux1jj0iARIggTAQEDcru5ZbmNbJt5uVxJdcmNNbx/4N8bHzttTv/c8uTMDpYiMMpFlFPBJo3ytD6SHXPsJ4gPF4/9lnEohnAmLsEZ1hTi8dokN0erjqP3HxJjrI7hUWRCdhKiFQ0RtFxvpcYokyAo438GzaflQpKOJHNjunMMrwUlwSIAESIIHaIrBy3aGy+ePo8eLaEoPtxhmBrv3XqHF3+b2D46zn7C4JkAAJBE9AdtHuWWVhRlffblZkV67szpVdurHqZqVtz5Vq/rj+seHBg2QJEviRwLwl+9U4EkPhqdM6uZAACZBAXBKQ+DtyGnheXx1yOtibsUdOFcvpYjllLKeN4znJplhZe5dNsrpuxTOKqOy74w08lmXjd1f0VoMsbWpmVEKm0CRAAiRAAjVPQI4Vi4JyyV3JNd84W4xbAktX5ahxJ252TuS74pYDO04CJEACwRIQw434yZ/dQ4f4zfe2GCNuVsQgJP73xQ9/rKT6b5S41vqg2bxY6RL7UQsECos0/PSC7koXWbg8uxYkYJMkQAIk4CwCHo8HOdtsFe9P4v550y8kXqDEDdy+yITEEYy31KLzUjV3iJt7pugj4HgDjyC9/8U0Nci+aLMo+ghTYhIgARIggVoh8MpH09Xc8erH02ulfTYanwRcbgM/vyhBjb1Zi/bFJwT2mgRIgASqSUB23mZvtDA3UUefl70be8TNytSOunL5Fu1uVv5ct6+aO4amba0mvcgVz830YMN0G67C+Fv4ihzV8Nd8zUPD1Fjq2GdV+CtnjSRAAiQQ5QTydtpITzYwoJF3Y0/Xei6Mb6lh6zwT2un4mPMefHmsmjsat17o2DtcdNSDncttHNhsw9QcK2atCBYVBp5SK+ItDUbWCiQ2SgIkQAIkEH0ESoPdJw5dH33CU+KoJnBzg5FKORb9hYkESIAESKB6BGTn7cGtFuYn6Uhq6H0xpvsTLkxup2PHYivqdt5u33VczRty8jhzz4nqAYtQaXehB0M+cqNnAw8WDmKMoAhhDku17zaZo8aTnApjIgESIAES8E7gyF4bS4YZGPS2d/2iy+MujG2hYdMsM2Y3OJimjd9e3kvNHWOmONN7lm0CGWkm+rxkYMxXNvatoxu5iiM7Kgw8s9Oz1CATP7JFp+hHtuIN5GsSIAESIIGzCezdn1+2UCKx3JhIoCYJfNl2kRp/dz+XWpPNsi0SIAESiAsCuZk2Fg000P9174sx3eq7MPF7DdsWmNCKnb/ztt/wjWre+PsN/bzew+ICD7YutHBwiw3UQpcyl1n4/hYLza8ExreqbOApOmZjXl8L+Xm1IJhXYvF7Yfj4bWo8/d/VibBt3pP4HQnsOQmQQDAEjmfbWD7SwOD3vesXnR91YUxTDRummzh9MnaerxXjF+cePuUV26pxJralm16vR/JCcb4HY76x0PxqG72fs7B9kV3WnF7swfZ0Gwe22DDj1GwQFQYeMeqIcUd2NImxh4kESIAESIAEfBEQ9yYyZ5xbpw9k5y8TCdQkgSlzygNUut21owDXZH/ZFgmQAAnUFoHDu20sHmJg4FveF2PEzcq47zRsmWvCfcqZOoG4kxW95cUPp3lFeTzbg9RvdCwbacJTvqbhNX8gF4KpZ3oXAy3qeNC8joHtCyvPbSJbmzsMLEyu/HkgMjBP+Alk5xSq8SRjat3mw+FvgDWSAAmQQIwTOJljY2WqgWEfedcvxNgz+isN6yabOHXcmfpFoLepc9JqNW9cds9gr0UkVmLPF10Y+214LSiB6iLH9nuQ+IKFZlfbSP3awLGscmVINsHM6m5jUnsT+bnRfS+83gA/F6LCwCN9EPdsoqA070R3J37uKS+TAAmQQNwTePPLWWrOeOrtSXHPggBqnsCJfBd+cn5JgONFKw7UvABskQRIgATikMDRLBtLUwwkv+t9MabLYy6kNdOwcaYJWQxwSvrXzQOU3tJn2AavIh3d58HQjzSkJ5uww+CVpOgYkD7YCmgHssQf6PWiGy2u9qBPQze005XFNNweJL6io9uTbujFla/xXe0QuPD2gWpM9Ri0tnYEYKskQAIkECMECg7bWDXWwPBPNXR62HtcwJGfa1g93kThkXLDQ7QgaNBoopoz3vl6jleRRffo9KgbKZ+FJ/iN1HdkrwdLhll+9RrJu3e1pTaTdLjfxIpUE1aFw8SW6cHKVAsJT7uxb63ttz6vnYziC1Fj4PmqbboabHc9S3cnUTzeKDoJkAAJ1AiBi+8cpOaMbgPW1Eh7bIQEziRQ9+EUNQa/T1hx5iW+JwESIAESiDCBEwdtrBhlYMgH3o09svM2tYmG9VNr183Knqxyt7Kbd3h3KytxAoZ9HD4Dz47FJlI+01F41L+hK3ujB61u1dDsahPrplZtXVox2kCLa2zsyaj6eoRvOas/g8DrjWcqPeSZdyafcYVvSYAESIAEQiVQdMyDNRNNjPxCQ6dHvBt7Uj5xIyPNQH6u8409lmVDXHrKoQpx8ektiZGl8+NuDG8cHgOP7gLWTDSQ2lSH7QeT+xSwfKSFplfrGNHYgrjrPTOJC9tu9UwsGWI7ahPPmXJG6n3UGHimzdurBtvPL2IcnkgNBtZLAiRAArFAYF92gZov6JYiFu5m9Pbhs1YL1Ti85/kx0dsJSk4CJEACMUBAFldkkSXlY+/GHlmkkcWatZNMyOJNTab+I0ri7/zl2r4+3cqG28Azu6eBGV2NgBZBFvQz0fJaG92fdEN84FeVCg4Dbe7UMb51eF23VNUWP/NPYEjaFqWH/PGaPpDFOyYSIAESIIHwEpAYPLJJRDaLyKYRb6d7hn7oVptOZPOJE1PG+tyy9ZMDh4q8ihhuA4/oExPb6Fg0yL971xMHPUhraqLdXQaWDDVguM8WU04XD37PRPIHGkRnircUNQaeU6d1/OLiHmrQTZ27J97uE/tLAiRAAiQQIIFAF0oCrI7ZSCAkAqUbU0R3kViCTCRAAiRAArVPQNymiPuUEY19u1kRNyyrxhkQtyyRTs+/P1X9xn35I+/xd0SGcBp4LMODYZ9q2DDNgrhX85UM3YN+jVxofrWFRckV/KGcUUh8849prqPjQzoK8nzXeUZRvo0AgYO5RWULdhI8m4kESIAESCByBMTt68YZpnIDK+5gvRl7Br/nxrLhBsStrFNSu14r1XxxxX1DfIoUbgNP/iEbg95zY0+Gbxa27cH+jTa61tcw5H0T2ZuqPinssT1YOMhE58c0bJ1nw4yzn+BRY+CRUXbv82PUoPvkuwU+Bx0vkgAJkAAJxC+BQBdK4pcQe14TBLgxpSYosw0SIAESCJ2ABESWwMijvvS981YCLEugZQm4HO4kJyvOrdNH/cYdPGaLz+rDaeA5metB0usaDu2w4S+4cd5OG23vMtDxYQ3HsnwbbnavtNHyRhMZY/3vxvXZWV4MC4Er7x+ixlbbnivDUh8rIQESIAES8E/AfcqDzXNMjPtOQ9d63o09A99yY/EQA4d3h1+/8C9leY7StfZPW/peaw+ngccygawNNvo30vzGApTYfmsmWGh1q44F/c2z4gCW9wTI2Waj13MWpvwgsZB86ywVy8XC66gy8ARqVYyFG8M+kAAJkAAJBE9AdneULpQkp24OvgKWIIEwEhD3bOIq0J+yHMYmWRUJkAAJkEAIBMTNyobpJsZ849vYM/h9N5aPNHA82/9ijNTpLwXqFkXqCaeBZ+t8CymfaCg47F/GpSNMtLrOhrh0M/y43ddOe5DwlIYBb2owNP91++PD69UjIPqH6CF0F1s9jixNAiRAAqES0Io92LbAxITWGrrV927s6f+6G4sGGVXGlgm17UDKBbMpMZwGHr3Yg5VjTKR+o0Pq9ZXy8zyY+L2Jrg/Z2LvGgseHeiGu28Y01dDreQ0SP1DWh+IlRZWBp6ICnJ1TGC/3iP0kARIgARIIkADniQBBMVuNEODGlBrBzEZIgARIIKwEXIUebJplYmwLDV0e974YM+htN5YMM3B0X9XGHonps36a75MscrJCFuD9uUWRDobTwDMjwcTMBB3SV19J3K4N/sCNH+7R1aKTvyDIUte8JBNtb7eRvalqLr7a47XwEqC72PDyZG0kQAIkUB0CusuDHekWJrfT0f0J7/pFUkM3FvQzcHCrGDN8z9PVkUfKSggU0UMCiXcfTgOPbIIZ/72BxUO9u34V+aT/ciqn9wsaBr9n+NVbpMyGmRa61TOxcrQN96nqEoqe8lFl4JEj7H+u21cNvqSUjdFDmZKSAAmQAAnUCIGWXZepOeKqB4bWSHtshAR8EVi9MU+NR1Ga92Tl+8rKayRAAiRAAg4kICdSts4zMb6lbzcrAxq5kZ5sIG9XiVHj1AkPOj1Ssnizbop3I89tT45S80Tj1gv99j5cBh7xST/0I7cyYvk7kXNsv432d9kY31qHuEgJJB3cbqPNHTqmdfG9aBNIXcxTPQKyM/tX/+mpxtj4GTurVxlLkwAJkAAJhI2AqXuwc5mFqR109Hjau7Gnz8suzE3Ukb3RgsSY8ZbEYCJ6QrDpg2bz1Bxx3wtpfouG08Bz4qAHA99xI2ud7+M7ciJn/VQLXR+1sXSE4detrHSi4AgwoJGBlM80HNvvnZnfDkdZhqgy8Ajb1z6bqQZf/TcmRhlqiksCJEACJBBpAjc8PlzNEU3aL450U6yfBPwSkB1H/7ixnxqTPQat9ZufGUiABEiABJxLQHbebl9kYlIbDd0aeF+M6feaG6lNtEoBltdOOtvIc+RYMX56QXc1R8xbst9vxwMx8OTnerB8lIWFAyzsWCI7V89e2BD3cv1edyN3t6dsoUTi8OxZZWPZMEvF2Sl1aXIyx4MJrWwc2CILS35FVBncRcCwTzQV5Pj08QALBVY1c4VA4NH/jldjrNEXs0IozSIkQAIkQAKRJmAZHuzJsDC9i46ez3rXL3q/4MLsnroyisgJ24pp/VRTlQ02ns+/bxmg5oiu/ddUrK7K14EYeCSP6BML+ltIT7ZwYMvZeoD0d+9qS7lzLS4qb0rctm2abWHtRBtFR0v6JxtRJL7fnB4WTuRU7nN5ycqvPBYwu7eJLvXc2LHIhBUn+02izsAzZkqmGnznXNoTxa44uUuVxyrfkQAJkAAJVEEgJ69IzQ9yWmJxxsEqcvAjEqh5Au98PUeNy4deGVvzjbNFEiABEiCBiBAw3B5kLpEgvjoSnvS+GNPp4fJrayZUNvIMTduq5offX9kbuu57B6t0wp+B5+BWGzO6Gcq4M7mthX6vWsgYa5/lzmTzbBspn2pliydSd95OD5Ia2uh0nwfjWhowXCWLKLIokp8LGNrZCzTewNomsH66hZY3mNgwo3KfvZXh55EjkDh0vRpnf7s+Ka5iEUSOKGsmARIggcgREMPNvjUWZiXo6PV8uQ5RUZ+Q12IImtlNV4YSy/Rg9NclG0vk80CNPBu2HilbP9mx+4TfTgVi4Fk+ysToJjqWjbCQ+rWFvi9Z2Le2smFGTkevGGVhTDO9bPOI6BuZS2x0edRGr6dsLE0xAY+4aAMkf+FRwDYr1+NL4Kz1Nno8ZWJWgomiY4GX81Wn069FnYGnoFBTvgFlAU98BTKRAAmQAAmQgBDoP2KjUlDOrdMH4tKTiQScQGDS7N1qXP7i4h4oLPITndoJAlMGEiABEiCBoAiIm5Vdyy1M6+TbzYosyKwaV75B8fn3p6r5Qf4HknwZeMTVyZzeOuYkGjh5yFaxf7o/ZmPg28ZZLlumdtIxp7cJV1H5goe4fvnhfhNNrzDRrYEGcfUSapLTqwWHgS71dAz5SPMbPDnUdlguMAJZBwrKFvBWrjsUWCHmIgESIAESqHUCYuzZv8HCnF46El/ybuwRF2+dHy2/3uMZF/J2+l8PKY0X+5+7kwPqqz8Dz+6VFga9qyFrnY3CIx4sGGCgZV0b41rpleoXHSPtW00ZgUoviPvYjTNMNL/GxHfXG8r4IxtGQk26Cxj5pYHEV904tN2jDEWh1hUt5aLOwCNg738xTSkp7zaZEy2cKScJkAAJkECECTRoNFHNDQ0/mRHhllg9CQROoKL/+7HT6P8+cHLMSQIkQALRR0B20c7rq1dyz3bmrtuMNAOaZkJO7simRTnJE0jyZuAR12lrp1iY1M7A/vW2WsRYMcZE5wc86P2sgUM7yo01pgEM/lDH1vkmZDGlNGmngTl9DLS+yULX+hqK88vLlOYJ5r+heTCjm4l2d1nI3Vm9uoJpl3mrJnDNQ8PUWGveaWnVGfgpCZAACZCAowlI/J2DWyylY/R91e1TzxC9Q4w+uZm+jTy3NBip5oZA4gAKHF8GHjmBI/qFnOCxTDn5C0z+wUCrOsCQD8sVDjmRUxJ/R8eBzeWnl+Xz/EPA8M9MtLzBQGpTHdUx8Ii8qyda6Pq4idUT7IDjCDp6EPgRLioNPD2T16lB+NfrkrhL288N5mUSIAESiAcCcjKiNIhs2tTMeOgy+xhFBCRuoCzivfzRtCiSmqKSAAmQAAmEQiCtWeX4O2caeGRhZvTAA2pe+NmFCTh2whVQM94MPBJ3Z3oXAwsHmtCKPTA1ILWphtY32Ej52MTRrPIFnuMHPOj/hhuH95TH3yltvPCwBz2e0dH3NTfE4FOdJEan/Rs8aHWrgXl9y08tVadOlg2dQIvOS9V4u+K+IaFXwpIkQAIkQAKOICAnZQ9tt7FwgAGJ+3emnlH6Xow8kq+qdOBQuXv7RSsOVJXlrM98GXiy1toq5k3R8ZJNHUVHgW5PuNCyrgdTO5XrAWII2rXSwsC33JCYfRWT1L91roWOD2uY0sGo9qmbEzlAUkMDqd8YyqhUsa1YfB2VBh4ZiD85vyQg5cLl2bF4X9gnEiABEiCBIAiMmrRd/XCV+GxyYoKJBJxEYEjaFjU+f3dFb7jd1Thr7qROURYSIAESIIGzCLiLPOjyWIlv/OGfapjeWceKUQZ2LLaUqzQ52SJJAt6L4f/BlwOPz+bNwHMo08bCQYbyXS91H9xio/fzJprV0ZE+xIKroFzMbQssjPhcQ9Hx8s9KX8nu2ZRPdYxvqUNiDFU3FRfYGPSege5PuVFcQYbq1svywRNYv6U8zsLWzGPBV8ASJEACJEACjiQgekdF92ylxp3S/wlPuZCzrfykTGknegxaq/SQYA5O+DLwrJlsYmrHEqOMnODZOs9Ci7oGWt1iYHdGuZHJfdqDJcMsjPtWr9KAI/EEB76tYemw6v9mllPV07uJ61k3dq6wY14XiUoDjwzIW58YpQbjx9/OLx2f/E8CJEACJBCnBJ57b4qaE55+Z3KcEmC3nUzg+ElXWfzAKXMYP9DJ94qykQAJkEB1CIhhxFXo2zhimjYkXqAYePqmbAi4OW8GHr0YKMiz4T5VUtWiwQZ+uNuDzo/o2LvKqhQDZ34/E/P7G3CfqkJGDzDsEw0ZY03IDtvqJqljRaqJVjfZyFxavrhT3XpZPjQCF985SI25Nj1WhFYBS5EACZAACTiOwOY5ZpUneLrWcyH5XTcmfq+pjSbi4q1iuvu5VDUnvPfN3Iof+3zty8BTdNQDOVEsyXDLSWIdLa4C+jaUkzrlbUv8nTHNdaxMq9qAk7PVRsqnGnYuC4/ekLnUQsITNtKTrZjXRaLWwNM5abUajP+8uT/keBoTCZAACZBAfBIodhn4zWW91JwwYsK2+ITAXjuewMOvjlNj9I3PZzleVgpIAiRAAiQQOQJz0rPUfCAeKXIP/2iVCaA5bwaeikXFRduwT3S0qGtjTDOzkksS5bqtmYbti2yY+tm/n2Vxpu9/3TiUaUFcrFU3iYFH3Me0usVC1oaz26tu/SwfHIGv26WrcXftIynBFWRuEiABEiABxxKYm6hDXMPK/7WTTOxbY6HgsI0zDToVO5B35DR+ekGJV6zZ6VkVL/l87cvAU1pQluePZVtof5+Gb6/1YH7/yoac4/tt9GvkRs62s/UCqX9Huhh43Cg4cvb10jaC+b95tomu9SwsH23HvC4StQaePVn5SkGRnU9LMg4Gc3+ZlwRIgARIIIYISMwdmQt+eUkPFBRqMdQzdiWWCPQbvlGN0/+7OlEF146lvrEvJEACJEACgRN45+s5aj6469nUwAsBysXbsI81pCeblU7lVKxEjEA9n7HQvK6OlWOsSrF0JBbP8M91HM2yqnSLsmqsXHfDVVixxtBfF+d70OdVHX0batCqOjEUetUsGQKBlesOla2fZO45EUINLEICJEACJBALBBKHrlfzgZwmNoyz3bd562MgBh7bBNZPs9DsahPf36FDXK6VJim/c7mFge9q0E6Xf156XU4Xz+5lYUaCDqmnuknqmNBGR8/nNOxbbce8LhK1Bh650Tc3GKkG5YfN51X3vrM8CZAACZBAlBIQt2xi4HnyrUlR2gOKHQ8Ejh4vLnPTNnHWrnjoMvtIAiRAAiRwBgFdt/DHa0rcs8kCSzApkBM84tKk8/0edHxIw941lU/ibJpjIq2FxN85e1ds4WGPWnDZMN0Mz6KKBexaYaH1LTaWDg/DKk0woJi3SgLi9eSiO0rctLXqtrzKPPyQBEiABEgg9gnc8fRotX4iG06CSYEYeOS08KS2Jr69xoPEl93Qi8t1DjnZu2CQjgmttbM2mkjdBzfbSPlMx4HNgRudfMl/eI+NPi9ZmNjGKnMf5yt/tF+LagNPwsCSoFB/rts3KKtjtN80yk8CJEACJFBC4GS+W53cEQPPmCmZxEICjiZQ7/UJSpl+/v2pjpaTwpEACZAACUSGwKTZu9U88LMLE3DkWHFQjQRi4Nk400T7O2wk/ddA3q7yRRVpaE5vA3P7mJVO9cjntuXBjO4GxrfWUZAXlEheM0ssonGtDHS4z8CxA2fv0vVakBciSqB5p6Vq/F169+CItsPKSYAESIAEnElgX3aBmgdk/WTBsuyghAzEwKO7gCEfutGyLjDqa71S/XIttYmBVePP3vhRdMzGuJYGFg8xYYTJKYtsMOn6uIH1MyyIXhLrKaoNPOKzuNRv4PT5e2P9XrF/JEACJEACZxAYOGqTUlB+d0VvSCweJhJwMgGJESXK9DmX9kRhUZg0Vyd3mLKRAAmQAAlUIvDih9PUPPDYf8dX+jyQN4EYeLbON9Hhbht9G+rI21luWNF/DHi8bqoJs8J6i20DK0abSGnsRs5WD6yz11wCEa1SHvG/fzzbRocHdKQ1N8JyIqhSA3wTMoEtmcfKFvZWbcgNuR4WJAESIAESiE4CP/TOUPOAxLO37eCMHoEYeAw3MPprDS3reDDyq8q/d/MPe9DvDQ15u8r1E6F4usCjNqCkNtNQFKbYO65CD4b+T0fyuwbyMj1nnRiKzrvnW+qoNvBI1x56ZawanK9+PN13T3mVBEiABEgg5gjc/2KamgNe+2xmzPWNHYo9AqdO6/jNZb3UmB2atjX2OsgekQAJkAAJeCVQdEpXBn4x9KeMC34OCMTAI6d2utc30fZODVsX2BB3KJIO77Yx8ksd+9bYZYsc2mlgUbKJEV/o2JNhwQzTPhlpc+UYE61utLAtPQwWI69EeSEUAnUfTlF6SOPWC0MpzjIkQAIkQAJRTOCah4apOeCLNouC7kUgBh7RAVaPt9HsKgNd62soPFLSjJTdk2Ej+X2tzG2bGJjycz2Y0c3EmBYGDp9h+AlawAoFdi6z0L2Bhfn9TJw+GZwhq0I1UfUy6g08g8dsUYPz15f24m7YqBp6FJYESIAEqkdg/8FC/OT87moOmLVoX/UqY2kSqCECr3w0XY1ZMU4ykQAJkAAJxA+B5NTN6vkvhn4x9gSbAjHwyM7ZuYkG2t9rYmAjC9sWWnAXARtmiA96HUf3eWC4gN0ZHkxsbWJcK10FHg6n6xJpr18jDT2e1VTbwfaT+SNLoFPfVWoc/vW6JLq5jyxq1k4CJEACjiKwdtNh9fyXjSbyOtgUiIFHTvHm59kY9YWBb6+zkNbUVCd2dJcHiwZZmNpJVxtNik96sGm2jbSmFqZ21pVxx1P5YE+w4pXll3omd9CR8JSB3SttWCYNPGVwnPxClOPfXl6yG3bAyE1OFpWykQAJkAAJhJHA9wkrlIIix4stK0zaQBjlY1UkUBWB2elZatyKcVJ8IDORAAmQAAnEB4E7nykJahzqqeNADDxCsugYsHqChRGNLQx820BaCw1Jr+tIes2NKR11TGprYUIrE8tHrhRfxgAAIABJREFUW2rRpfSUT7juwr61HrS+zcLCATy9Ey6m4aznUN4pSAwoWeCTmFBMJEACJEAC8UHgoxbz1bO/zkPDQupwIAYeqVhO5hzbDyzoZ2PgWyYGvathfGtDbfwY8qGGWT0NjG9lYnI7A+un2Th5KLwu1I5le5DU0MbYFiZOHIyfdaKoP8Ejg6fRF7PUIL39qdEhDVIWIgESIAESiC4CHo8HF90xSD37m3VcEl3CU9q4JiAK779vGaDGbqtuy+OaBTtPAiRAAvFCYOfek+q5L4vqC5cHF9S4lFGgBh7J7z7lwbGsEncoayZa6PWyGxO+N7BqrIEd6TZyd3ogu2dlp22409QOBtrdZeDwnghUHm5h47S+eq9PUOPxybcmxSkBdpsESIAE4ouAppk4t04f9exPGLg2pM4HauCRykW/ED0jd4cH2xfbWDrcRPsH3FgwwMT66SZ2LbdxNMsD7VT4dQVxE9v1cQNrJ3vK3MGF1OEoKxQTBp70lQfKFObtu45H2S2guCRAAiRAAsESWLAsu+y5L4smTCQQTQRadF6qxu8Ftw0MOrhlNPWTspIACZAACZQQkM0oYtyRzSmySSWUFIyBp7R+2wRytnqQ8qmGnUstFOcDuju09kvr9PW/uMCDTo9oSGmswzQi144vGXjNP4Fx03eq8fjzixJw+Ohp/wWYgwRIgARIIKoJjJmSqZ77v7i4B44eLw6pL8EYeCo2IO7ZMtM96POqG4VHxagDmHpkdAT3aQ9GNDaR9LqGg1utiGxkqdg3J72OCQOPKMmX3JWsBuvX7dKdxJeykAAJkAAJRIDAfz+doZ75dz2bGoHaWSUJRJbA7qzyndxzF++PbGOsnQRIgARIoFYJmKaN827qr/QWcS8bagrFwCNtyU7Zid/rkPKRTptmm2h5o43Nc61IN8X6q0FA1y38uW5fNSa79FtdjZpYlARIgARIIBoIPNJwnHrmP/PO5JDFDdXAI8ac+f11TPzeCLntQAvuWWWhx9M25vS2cOp4ZIxIgcpS0/liwsAj0H7onaEG61+u7Qs5esZEAiRAAiQQmwSOn3ThV//pqZ75Q9K2xGYn2auYJ3DfC2lqDD/33pSY7ys7SAIkQALxTGDCzF3qef/TC7ojO6cwZBShGHjksNDMBAOLBpkoOhrZhQ7b8mDI/9zo9oSu3LKE3FEWrBECjVsvVOPyP3cnh3yqrEYEZSMkQAIkQALVIrAnKx8S/1VOEk+btzfkukI18GinPRj2iYb1UyO70cRjezCzh45uDeTUso1wxxgMGVwNFYwZA0/ekdOQo2YyYEdO3F5D+NgMCZAACZBATROQnYbyrP/jNX3gckd+F0hN94/txQeB1Ck71DgW9ygS8JiJBEiABEggNgmU7pp94s2J1epgKAYeicUzuomGTbMtiIuUSKYjez1oeaOBWT2MuHKJEkmmkax7x+4TSg8RnXpOelYkm2LdJEACJEACtUigSfvF6nlfXffgoRh4ZKPJyRwbvV9y48i+yBp4Tp8E+r1mYPRXJo7uj2xbtXg7vTYdMwYe6eGLH05Tg5Yue7zeb14gARIggagmIC45Zaeh/BiVnYdMJBCtBMQ9yt+uT1JjuU2P0F32RGv/KTcJkAAJxAMBcclZumt2+vzQd80Kq1AMPAe22hj+uY7sDTYQWfsO5ifpaF7HQM62+FtUidaxfP+LJaeJn32Xp4mj9R5SbhIgARLwRUA8XImnK1k/ad8rw1dWv9dCMfBYJrBtkY1+b7hh6X6bqFaGfWssdHlUx8oxNuTUULylmDLwLFxeHnR7846j8XYv2V8SIAESiHkCssNQlBP5k52HTCQQzQRKg27/+5YBsCwuiEXzvaTsJEACJFAVAYkPKzrLhbcPhG1Xb7FBTsiIC7SFAw3IIksg6eBWG8tHGyjIq17b/tpyFXnQ+XENSa9pMCO8gONPFl4PnEBp0G05TZyTVxR4QeYkARIgARKICgLi4Ur0EPF4JZ6vqpNE9+j0qBspn7oDrkYMPJlLTSwbEdlQKqJ7LEo20OcVHdmb7Lg8SRxTBh4ZYVfcN0QN3g+azQt4wDEjCZAACZBAdBB48q1J6hkvOw6ZSCDaCWQdKIDEZBCle/yMndHeHcpPAiRAAiRQgUCxy8Cf6pTsmpV4sdVNx7JtjG1uYMVoE54ADTx6MXDqpCfifugP77HR+jYdayZGdgGnugxZvjIBw7Dw9xv6KT3kuy7LKl/kOxIgARIggagncPtTo9UzXjxeVTeJu7XEVzSMbxX4Tg7xwOIqBMR9WiTTqRMeTO9iYnZPA0XHIrupJZL9qE7dMWfg6TNsgxq8v7msF07ku6rDhmVJgARIgAQcREDcnJQuhkvAYiYSiAUCT71dYrS8+7nUWOgO+0ACJEACJPAjgf4jNqrfpedc2hNHjxdXm4vuAg7tsHEyp9pVhb0C7RSwfYGN0/k8jRp2uBGusFW35Wqc/vW6JLjdNNBFGDerJwESIIEaI5CxPlc932Uz4ZKMg2Fpd+8aC7mZzjOgyAmevEwPThywIKeG4jHFnIHn1GldBd6WAdyxz6p4vKfsMwmQAAnEJIFPWy5QCspFdwyiO6uYvMPx2amK7mXXbjocnxDYaxIgARKIMQKyY/WqB4YqveXtr2aHpXe25YH7FGAE7hklLO0GUonHBgqPeiD9ZoouAuKy55eX9FBjNTl1c3QJT2lJgARIgAS8Enjlo+nq2X5jvRFe8wR7oTjfA616nt6CbTKw/B7AfcoDQ49fPSTmDDxy579qW+LrWHzamyZ3EQX2bWAuEiABEnAugcIiDb+/srdSULoPWOtcQSkZCYRA4NpHUtTYfu2zmSGUZhESIAESIAGnEZhdIWYgY8M67e5QnjMJvPH5LKWH1H045cxLfE8CJEACJBCFBA7mFkHiq8nhh+Hjt0VhDyhysARi0sCz/2AhfnZhyUAePXlHsEyYnwRIgARIwGEExKgjysnvruiNgkLNYdJRHBKoHoEhaVvU+JYdtLmHT1WvMpYmARIgARKodQKP/Xe8eq4/+PLYWpeFApCAPwLrtxxR41V07flLs/1l53USIAESIAGHE2jaYYl6rv/jxn7Q9QAD9zm8TxTPN4GYNPBIl1/4YKoazDc8Ptw3AV4lARIgARJwNAEJACsnMuVHp7hpYyKBWCOgaSb+dn2SGuPf/LA41rrH/pAACZBAXBHYuK18sXzavL1x1Xd2NnoJ3PdCmtJDHv3v+OjtBCUnARIgARKAeD/5v6sT1TO9Xa+VJBInBGLWwLNmY54azLIgKEfkmUiABEiABKKTwNC0rep5LkeM5YQmEwnEIoEfemeocf6HqxJ5Si0WbzD7RAIkEDcEGn4yQz3Pr3loGGPSxM1dj/6Ozliwt2z9RE70MJEACZAACUQngS79VqvnuXg/OZHvis5OUOqgCcSsgUdIyJF4MfA88BKPxgc9MliABEiABBxAoGKQ4v9+OsMBElEEEogMgfwCd1mcqY59VkWmEdZKAiRAAiQQUQL7sgvKXIWnjNsa0bZYOQmEm0BpTMCX/jct3FWzPhIgARIggRogIJ4hzrupv1oL/6LNohpokU04hUBMG3jmLt5ftgtl1YZcpzCnHCRAAiRAAgESmDx7d9lznEGKA4TGbFFL4Ot26Wq8//2GfnC7zajtBwUnARIggXgl8PG389Vz/ILbBkJczDKRQDQRGDlxuxq/Es94T1Z+NIlOWUmABEiABAAMGr1ZPcd/cXEPHMwtIpM4IhDTBh65jzfWG6EG99PvTI6j28qukgAJkEBsELj1iVHqGd6g0cTY6BB7QQI+CBzKO4VfXtJDjfk+wzb4yMlLJEACJEACTiOQd+Q0zrm0p3qG90xe5zTxKA8J+CVgmjYuumOQGsPvNpnjNz8zkAAJkAAJOIeAZdm49O7B6hn+5peznCMYJakRAjFv4Bk/Y6ca3OKqbcNW+pKtkVHFRkiABEggDARmLtxX9vxevuZQGGpkFSTgfAIfNJunxv2/bxkAXefub+ffMUpIAiRAAiUEPv9+kXp+/+36JBS7DGIhgagk0G/4RjWOZfc3Y19G5S2k0CRAAnFKQFzDytr3Ty/ojsw9J+KUQvx2O+YNPBK/oe7DKWqQP8NTPPE70tlzEiCBqCNw25Mlp3ceaTgu6mSnwCQQKgFZTJFFFVHOk1I2hloNy5EACZAACdQggcNHT+PXl/ZSz24JbsxEAtFKQDaXnH/rADWW3286N1q7QblJgARIIK4IyOmdy+4pOb3T8BPGLo6rm/9jZ2PewCP9HDe95BTPT87vjo3beIonHgc6+0wCJBBdBGanZ6kflrLIvWx1TnQJT2lJoJoE3vtmrhr/ssDCUzzVhMniJEACJFADBL5sW3J656/XJeF0MU/v1AByNhFBAn1TNig9RDacZOcURrAlVk0CJEACJBAOAsPHb1PPbTm9s2M3T++Eg2m01REXBh45xVPnoWFqsD/77pRou0eUlwRIgATijsDtT41Wz+yHXhkbd31nh0kg60ABT/FwGJAACZBAlBCQ2Du/uazk9E7nJJ7eiZLbRjF9ENA0E/+6mad4fCDiJRIgARJwDAE5vXP5vSWnd179eLpj5KIgNUsgLgw8gnTstPJYPKs35tUsZbZGAiRAAiQQMIEpc/Yo446c3lm6iqd3AgbHjDFFQIIby3fgnzf3h8vN3eAxdXPZGRIggZgi8Ml3C9Tzmqd3Yuq2xn1n+gwrOcXz84sSsDvrZNzzIAASIAEScCqB5NTNSg+R0zvbdx13qpiUK8IE4sbAI6d4bnh8uBr0D7/KeA4RHlesngRIgARCImDb5XHT6r0+IaQ6WIgEYoHAgUNF+NV/eiq9hTvCY+GOsg8kQAKxSEBOXP7ykpK4aT0GrY3FLrJPcUpAXMRefOcgpYdwR3icDgJ2mwRIwPEE5MRlady0Rl/Mcry8FDByBOLGwCMIZy3apxQU2RG7YFl25KiyZhIgARIggZAIjJhQ4jtWYqZt2MqYaSFBZKGYIfBFm5KYDn+q0xcFhVrM9IsdIQESIIFYIfDG57PU70tZXJFFFiYSiCUCpTEdGMs4lu4q+0ICJBBLBBIGrlV6iGw2kU0nTPFLIK4MPHKb731+jBr8tz4xKn7vOntOAiRAAg4kYBgWLrkrWT2jX/5omgMlpEgkULMEjp1w4fdX9lbfiW+7LK3ZxtkaCZAACZCATwJbM49B3KHI5sHBY7b4zMuLJBCNBORk/TU/xjJu0GhiNHaBMpMACZBAzBIoOqXjL9f2VXrIpy0XxGw/2bHACMSdgWf5mkNq8IsinjY1MzBKzEUCJEACJBBxAj2T16nns/j63rWPvr4jDpwNRAWB7xNWqO+FBPDOySuKCpkpJAmQAAnEA4H6b0xUz+cr7x8CCXDMRAKxSGDy7N1l6yeLVhyIxS6yTyRAAiQQlQRadF6qns+/vbwXDh89HZV9oNDhIxB3Bh5B9+y7U9SXQHzK8ih9+AYTayIBEiCBUAmczHdD3FCJ8f2jFvNDrYblSCDmCJw6reMfN/ZT3403v6Rf5Zi7wewQCZBAVBKYt2S/ei6L3iIL4EwkEMsE7n4uVY33G+uNgMQ2ZiIBEiABEqhdAhKv9deX9lLPZtkQyEQCcWngkZ3hv7i4JBhm1/5rOApIgARIgARqmcCXbUtijfzhqkQcPV5cy9KweRJwFoFBozcr5V1cATE2lbPuDaUhARKIPwLituq6R4er5/J9L6TFHwD2OO4IrNqQC4nDIwbNlHFb467/7DAJkAAJOI3Aa5/NVM/kf97cH6eLDaeJR3lqgUBcGniEc+PWC9WX4Y/X9MHxk65aQM8mSYAESIAEhMCerHxIUED50dip7ypCIQESOIOAuP6p+3CK+o48+PLYM67yLQmQAAmQQE0SkHg7orPIgvfaTYdrsmm2RQK1RqDhJzPUuP/XzQNQ7OJiYq3dCDZMAiQQ9wRE9yg1ug9JYwzAuB8QPwKIWwPPiXwXzq3TRykpdAfErwMJkAAJ1B6BZ96ZrJ7FF94+kG4za+82sGWHE5iTnqW+J7KoOInugBx+tygeCZBArBKQgMalbjNfbzwzVrvJfpHAWQT2HyzEOZf2VLpI6+7Lz7rOD0iABEiABGqGQKnbTDlNLKeKmUhACMStgUc6XxrQ+2cXJtDlCb8PJEACJFALBCouWqdNzawFCdgkCUQPgdKA3hJD0O02o0dwSkoCJEACMULg63bpaoFbAhofzC2KkV6xGyQQGIHSgN4S9yHrQEFghZiLBEiABEggbARGTtxetulv4fLssNXLiqKfQFwbeEzTxjUPDVNfDrGAMpEACZAACdQcAcOwcOX9Q9Qz+P4X6cO+5sizpWglIDEES90ZtunBYJrReh8pNwmQQHQS2LH7RFkc1w6JGdHZCUpNAtUgIHEe/n3LAKW7P/vulGrUxKIkQAIkQALBEpBTxOfd1F89g1/8cFqwxZk/xgnEtYFH7q1YPMXdifyJJZSJBEiABEigZgh07b9GPXt/flECtmQeq5lG2QoJRDmBZh2XqO+N7J4VdylMJEACJEACNUPgkYbj1PP30rsH06VszSBnKw4kMGZKpvoeyPqJnMRnIgESIAESqBkCTdovVs/f31zWCwcO8RRxzVCPnlbi3sAjt0osn6KgiCW0oFCLnrtHSUmABEggSgmIW5PfX9lbPXsbt14Ypb2g2CRQ8wRk96wEOBa9ReJXMZEACZAACUSewLjpO9VzV5690+fvjXyDbIEEHExATt7Ld+GK+4bQ2Ong+0TRSIAEYofAtp3Hy04Rt+/FU8Sxc2fD1xMaeABl+fzdFSULje83nRs+uqyJBEiABEigSgJPvjVJ/TD8+w39aFivkhA/JAHvBCRelSysyN/4GTu9Z+QVEiABEiCBahPIL3DjHzf2U89c0V+YSCDeCcjJ+19c3EN9J77rsizecbD/JEACJBBRAh6PB3c+M1o9c3mKOKKoo7pyGnh+vH29Bq9TX5afnN8dizMORvVNpfAkQAIk4GQCFRenx07j4rST7xVlcy6BBo0mKr1FTh/L4iMTCZAACZBAZAi822SOet7KyWO6RIkMY9YafQS+7bJUfS/E0ENXy9F3/ygxCZBA9BDoM2yDet7K5j4JM8JEAlURoIHnRyq27cFtT45SX5rL76Vf5aoGCz8jARIggeoSOJnvhpzaEeXkqbe5C7a6PFk+fgnIImOpm0NZfGQiARIgARIIP4FFKw5ANgCK3iILLEwkQAIlBDTNVC7a5Lsh6yiynsJEAiRAAiQQXgIVf/O98zV/84WXbmzVRgNPhftZ8ahxi85LK1zhSxIgARIggXAQeOvL2WqR5A9XJSInj4EBw8GUdcQvgcSh69X3SRYfZRGSiQRIgARIIHwE3G4T4gpFFrDveHo0F7DDh5Y1xQiBJRkHywygPZPXxUiv2A0SIAEScA6BJ94s8dogrmLptcE598WJktDAc8Zdadl1mVLi5ajxpu1Hz7jKtyRAAiRAAqESmL80Wz1fZaEkKWVjqNWwHAmQwI8EZLesLDrKd+qyewZDFiOZSIAESIAEwkOgaYcl6vn6y0t6QIIbM5EACZxN4INm89T35LeX98L+g4VnZ+AnJEACJEACIRFInbKjbP2EcVdDQhhXhWjgOeN2y1HjK+8for5EtzQYyZ1aZ/DhWxIgARIIhYDLbeA/dyerZ+vdz6VCAgUykQAJVJ+ALDrK4qMYeZp1XFL9ClkDCZAACZAANmw9gp9flKCerd8nrCAREiABLwQKCjX88+b+6rvy+GsTvOTixyRAAiRAAsEQOJHvwt+uT1LP1mfemRxMUeaNUwI08FRx45euyik7apwwcG0VOfgRCZAACZBAMASatF+slJNf/acnduw+EUxR5iUBEvBDoHX35er7JYuRsijJRAIkQAIkEDoBy7JxU/0R6rl69YNDoetW6JWxJAnEAYFJs3er74tsNhk5cXsc9JhdJAESIIHIEmj0xSz1XBXX9ofyTkW2MdYeEwRo4PFyG//Xovyo8b7sAi+5+DEJkAAJkIA/Ams3HcbPLizZBdu250p/2XmdBEggSAKy+CiLkLKwIouSpmkHWQOzkwAJkAAJlBLo0m+1ep7+9ILuWLH2UOnH/E8CJOCDwPPvT1Xfm79c2xdHjxf7yMlLJEACJEACvgjMSc9Sz1P5bdd/BF3b+2LFa+UEaOApZ1HpVWGRhn/dPEB9qe58ZjRkJ9f/Z+88wKK68v7/7O67fbO77+677b+7qSYxvZmY2BNj7zX23mNi1GgSTWLvghRpAkoTO4oKCth7FxUVVMSG2ABFiv33f77HzDgzDFNgZpjyPT4+zMy999xzPufec8/9VRYSIAESIAHrCBQV35OX6z4Oe/l6/Qi5d49WsNYR5N4kYBmBnfuzBcJIvAh8P3OHZQdxLxIgARIgAT0CqcevCryNMZcO/X6j3jZ+IQESKJtAztVC+fNrc9W9g6TgLCRAAiRAAtYTQGg2TdjL2u0WM7S99Qg99ggqeEwMfcq2c9pQbYy9bAIUN5EACZBAGQQ0iVeRI4Sho8qAxJ9JwEYENAnB4TGHcLMsJEACJEAClhMoKbmv9YZ8qU64FBbds/xg7kkCJCC6CcEDI2l1zkuCBEiABKwl0LZ/vFKUP1XVTzLP5Vt7OPf3YAJU8JgZ/BETN6ubC8ISuuibgcXNJEACJKBDID7pjJo/YQU7O2S/zhZ+JAESsAcBeMi92+Rx3ohnPpwnSHzMQgIkQAIkYBmBz8duUOuWXz43RxBeloUESMB6At2HJar76LdVfOXEqRvWV8AjSIAESMBDCYTGHtXKTyKXpXkoBXa7vASo4DFDDnHt32oYpW6y52uGScHtu2aO4GYSIAESIIHLV24LYnBDuVO/01K6FvOSIAEHEUg/kyu/e9FX3XtdhiY46Kw8DQmQAAm4NoGEjZlaocq0uXtduzNsPQlUIgGEun+uRqi6n95uFCWQp7CQAAmQAAmYJnDqbJ78/qXH73CfDVljemduJQEjBKjgMQLF8KfjGTcEFigQVPb4ap3hZn4nARIgARLQIfDo0SNp2HW5mjP/8nqAZOfc1tnKjyRAAvYmEBJzRCuojIk7Ye/TsX4SIAEScGkCV68Xyd/fDlTzZt32S+Thw0cu3R82ngQqmwDyAiICCuQnX0/aUtnN4flJgARIwKkJIArD+81i1Jz53w9CJP9miVO3l41zTgJU8Fg4LnMjDmuFJYvj0y08iruRAAmQgOcRmBN6QDtfrkg85XkA2GMScAICrfquUvfhH1/xl6wLN52gRWwCCZAACTgngaY94tR8iQTxF7ILnLORbBUJuBiBcV471X31s/96yYbt512s9WwuCZAACTiOwHfTt6v58udPe8mW3Rccd2Keya0IUMFjxXA268nFvxW4uCsJkIAHEjhy4pr8+gUftUDpNyrJAwmwyyTgHASu5xbLv94LVvdizTaL5MGDh87RMLaCBEiABJyIgP+CQ2qehKfBktU04nOioWFTXJwA1h0ftYpV99e/q4VIbn6xi/eIzScBEiAB2xPYuueiQLGDdQgUPSwkUF4CVPBYQQ7u+/94J0jdeHXaLaawxAp23JUESMD9CRSX3JPX6keoOfLF2uFSWHTP/TvNHpKAExNI2pIlsJzFC8N4711O3FI2jQRIgAQcT+BY+nX5TZXHRik9hzMMt+NHgGd0dwKZ5/Llqap+ah3Spl+8u3eX/SMBEiABqwjk5ZfI09XnqTmyWrMYQag2FhIoLwEqeKwkp5uAc9TkrVYezd1JgARIwH0JdPsyUS1OfvncHNmXmuO+HWXPSMCFCAyfsFndl7AMW78ly4VazqaSAAmQgP0I3Lx1R2CMAgX48zXDpOD2XfudjDWTgAcTiFyWpu4z3Gszg/Z5MAl2nQRIgASeEEC+v8bdVqj58fcv+cqps3lPNvITCZSDABU85YD2zdRt2kXKsrUZ5aiBh5AACZCAexHwm/8kxIlP2EH36hx7QwIuTODu3QfyYcvHIVL+8noA8/G48Fiy6SRAArYh8OjRI2nZZ6V6n4MHz8GjV2xTMWshARIwSqD3iPXqfvvFM96yaSfz8RiFxB9JgAQ8isAPs3Zo5coLV57wqL6zs/YhQAVPObginmz9TkvVzfiHl/3kxKkb5aiFh5AACZCAexDYse+SwGsHlnmdP1/rHp1iL0jAjQhcyimQv78dqO7RdxpHSUnJfTfqHbtCAiRAAtYRmOy7RytUWbAkzbqDuTcJkIDVBLDueK9ptLrv/vZWoFy8XGB1HTyABEiABNyFwOrkM9ow2sPGbXKXbrEflUyACp5yDgCSF2tiJb5cdz7d+svJkYeRAAm4NoGcq4XaRO5vfBopRcXMu+PaI8rWuyuBzbsuyP88662EK8w14a6jzH6RAAmYI4BQlZpkxoO+SzG3O7eTAAnYiMC5i7fkr28EqHXIB80XCjyMWUiABEjA0wiczsqTP73qr+bC2u0Wy/37Dz0NAftrJwJU8FQA7P7UHPn1C48TczJpYAVA8lASIAGXJIAkgLXaLlKLkz+/NlewWGEhARJwXgJeIQfU/Qpvu8DIVOdtKFtGAiRAAnYgkHXhpiBUJeZAhK6kgNkOkFklCZggkLz1nFbBOuCbZBN7chMJkAAJuB8BGMPCKBbrkH+9FywwlmUhAVsRoIKngiRDY49qhSXT5u6tYG08nARIgARch8CXP25S89/P/usla1IyXafhbCkJeDCBjoPXqPv2V8/Pkd0Hsz2YBLtOAiTgSQQQIgohKiFUQchKhK5kIQEScDyBqf5PQiSGLz7m+AbwjCRAAiRQSQQQzh7rEIS337mf72GVNAxue1oqeGwwtP1HJ6ubFEkDU7ads0GNrIIESIAEnJsAEgFicYL/P87e6dyNZetIgAS0BAqL7slr9SPUvfvvaiFy5Rotx7Rw+IEESMBtCSA0JdYsCFWJkJUsJEAClUPg0aO6rz1EAAAgAElEQVRH0rrvKnU/IhrKgSNXKqchPCsJkAAJOJDAnNAnkRT8Fxxy4Jl5Kk8hQAWPDUb6zp378n6zGLVIQVzZM1n5NqiVVZAACZCAcxLAi9jvXvRVc16T7ivk4cNHztlQtooESMAogYzMPPnjK09iP2Mdw0ICJEAC7krAN/ygWrNAwYNQlSwkQAKVS+BWwR1BHmPck8hrzDBFlTsePDsJkIB9CWzYfl6bC7X7sET7noy1eywBKnhsNPQXsgvkb28FqkXKS3XCJTe/2EY1sxoSIAEScB4C5y/dkn++G6TmuudrhklefonzNI4tIQESsJjAqvWnBeEVIVzpMjRBYFHLQgIkQALuRiA+6Yw258dnQ9a4W/fYHxJwWQLHM27IU1X91DqkWrMYQW4KFhIgARJwNwKY6/706mPDurcbRUlxCec6dxtjZ+kPFTw2HAnEsv9NFR+1SKndbrHQItaGcFkVCZBApRO4eeuONrTT/74+V06ezq30NrEBJEAC5ScwK3i/WrNAyTN25vbyV8QjSYAESMAJCexPzdF6HH/YMpZCFSccIzbJswkkbjorCHOPdUjLPisZFcCzLwf2ngTcjgC8E5/5cJ6a4xAa++Jl5v9zu0F2og5RwWPjwViekKG1iEUCLVrE2hgwqyMBEqgUAvfuPZBPOy9TixMkZ9+ym/HrK2UgeFISsDGBQd+laJU8THZsY7isjgRIoNIInLuo73F87UZRpbWFJyYBEiibQHB0qnYd8sUPG8vekVtIgARIwIUIwCsR3olQYP/hZT85nHbVhVrPproiASp47DBquhaxY2bQItYOiFklCZCAgwn0HrFe+/IVE3fCwWfn6UiABOxF4MGDh9K0R5y6v5F8PGXbOXudivWSAAmQgEMI6Hoc/+X1AEk/Q49jh4DnSUignARGT9mqfc9AInIWEiABEnBlAshRDK9EKHfgpQhvRRYSsDcBKnjsRHjwmCcWsWGLjtrpLKyWBEiABOxPYJLvbu1L10Sf3fY/Ic9AAiTgUAK3C+8KYkLjJeSPr/jLsfTrDj0/T0YCJEACtiIAj+P6nZaq+Qwex1v3XLRV1ayHBEjATgQQ9aTDoDXqvv35016ycv1pO52J1ZIACZCA/QnAGxHvVfgPL0UWEnAEASp47ETZ0CI2eSstYu2EmtWSAAnYkQC8dTSLE3jxsJAACbgngeyc2/Kf90PU/f7fD0Lk8pXb7tlR9ooESMCtCfQasU67blm4kh7Hbj3Y7JxbESgpuS81Wseq+/d3L/rKvtQct+ofO0MCJOAZBHzCDmrXIfBOZCEBRxGggseOpGER+07jJxaxR05cs+PZWDUJkAAJ2JYA8uzA+hUKHljDwiqWhQRIwH0JYJ3yVFU/dc+/2yRasI5hIQESIAFXITBhzi6tUAXexywkQAKuReB6brFUqRWu7uN/vBMkZ8/fdK0OsLUkQAIeTSBu3SmBFyLkJ/BKZE52j74cHN55KnjsjBwWsbCExQ2ORUpGZp6dz8jqSYAESKDiBGA1pxH0vlY/QhDPnoUESMD9CazfkiXIxYN1S70OS6S45J77d5o9JAEScHkCfvMPqXkLc1efkfQ4dvkBZQc8lsCps3ny1zcC1P38fM0wuZRT4LEs2HESIAHXIYA8pr9+wUfNXfBGhFciCwk4kgAVPA6gnZZ+XbtIgbLn3MVbDjgrT0ECJEAC5SMAK/7/fX2uWpw8XX2eXMjmi1X5SPIoEnBNAhFL0+RnP8WNbtJ9hdy9S+891xxJtpoEPIMA8p1q5qxmPePocewZw85eujGBXQey5fcv+ap3kar15su1G0Vu3Ft2jQRIwNUJbN97SRBaEkYmr36yQOCNyEICjiZABY+DiB84ckUlLsYN/0KtMIFnDwsJkAAJOBuB9DO58ve3A9Xi5F/vBcvpLHodOtsYsT0k4AgCAZGH1TyAdUvb/vGC3IIsJEACJOBsBBbFn9SGQ/nks6W0mHW2AWJ7SKCcBDbuOC+/qfLYGv6thlGSl19Szpp4GAmQAAnYj8D+1Bw9WS/zmNqPNWs2TYAKHtN8bLp1x75LWkuUVz6mVtemcFkZCZBAhQlkXbipTbKO0AjwPmQhARLwXAIzAvdplTzdvkyUhw8feS4M9pwESMDpCMQnndGGlPyoVawUFjGkpNMNEhtEAhUgsHZDpvzyucf5QKu3WMjcgBVgyUNJgARsT+AYozXZHiprLDcBKnjKja58B+rGZXyncZTk36QlSvlI8igSIAFbEoBXIeJcw1r/T6/6y8GjV2xZPesiARJwUQI/zNqhVfIM/DbFRXvBZpMACbgbgeStT2Ldv9skmrkC3W2A2R8S+InA0jUZ8otnHucGrNueuQF5YZAACTgHAeQL++e7Qeo9CfnW8Z2FBCqTABU8lUB/dfIZrSUKrM1uF96thFbwlCRAAiTwmADiWsOrEModxLveuT+baEiABEhAS2D4hM1aJc+IiZu1v/MDCZAACVQGAca6rwzqPCcJVB4B3dyAjbsxN2DljQTPTAIkAALIq4786pCf/OX1AIEnDwsJVDYBKngqaQQWx6dr40V/3HGpFJcwpEAlDQVPSwIeTQDxrN9uFKUWJ4hzvWH7eY/mwc6TAAkYJzDgm2StkgdePSwkQAIkUBkE9jHWfWVg5zlJoNIJGOYGvH+fuQErfVDYABLwQAKIfIK86lDu/PEVf0EOHhYScAYCVPBU4ijMX3JMfvZfLzUxwN244DY9eSpxOHhqEvA4AlevFwmSlmJxgvjWa1IyPY4BO0wCJGAZAeTfQR4ezBf4/+20bZYdyL1IgARIwEYEkM8UYWQxB8FyFha0LCRAAp5DQDc3YKu+q+TOnfue03n2lARIoNIJYN2hUe787kVfgUcxCwk4CwEqeCp5JIKiUrVKHiQOhDU9CwmQAAnYm8ClnAKpWm++VrmzPCHD3qdk/SRAAi5O4MGDh/LZkDVaJc8XP2yUR48euXiv2HwSIAFXIIA8pggjC+XOf94PYax7Vxg0tpEE7EBgku9u7TqkYdflUlTMSCh2wMwqSYAEDAhkZOZpw7JBucPIJwaA+LXSCVDBU+lDIIKYsprEgbCmRz4MFhIgARKwF4Gz52/KczVC1csRwrKt3UDPHXuxZr0k4G4E4MnTe8R6rXClz8j1gt9YSIAESMBeBJC/9Ncv+Kh55/maYZJ14aa9TsV6SYAEXICAV8gB7TqkdrvFcqvgjgu0mk0kARJwVQLIsfOPd4LUvIOwbPTccdWRdO92U8HjJOO7dE2GCpEEqzRY1cO6noUESIAEbE0g/Uyu/Lva44SAsITduIM5d2zNmPWRgLsTgNfO0O83aoUr8OphLHx3H3X2jwQqh8CS1enad6RXPl4giH3PQgIkQALB0ananMbvN4uR3PxiQiEBEiABmxNAjp2/vB6g3nv++kaAHDhyxebnYIUkYAsCVPDYgqKN6oAVPazpoeSBdT2s7FlIgARIwFYEUo9flb+/HajmGMSw33Ug21ZVsx4SIAEPJPDN1G1aJU+L3isZC98DrwF2mQTsSQD5Sn/+9OO8X283YpQDe7Jm3STgigSiVxzXRkJ549NIuXKt0BW7wTaTAAk4KQF46sBjBzLaf74bJPDkYSEBZyVABY+TjQys6TXxpWFlD2t7FhIgARKoKIG9hy/L/74+Vy1O/u/NADl07GpFq+TxJEACJCC6sfA/7byMsfB5TZAACdiEgP+CQ9o8pR+2jJX8m8xTahOwrIQE3IzAisRT8qvn56h3nJfqhMvFy4yE4mZDzO6QQKUQSN56TpBrB8qd/37A3H+VMgg8qVUEqOCxCpdjdoZVPazrMZHA2v7gUboAOoY8z0IC7kkAiuOnqvqpOeVf7wXL8Ywb7tlR9ooESKBSCMwJfRILv2abRZKXT0FspQwET0oCbkJgit8etWbBu9DHHZfK7cK7btIzdoMESMAeBNZtPiu/rfJYEPvsR6GCZOgsJEACJFBeAlAca3L/vVArTM5dvFXeqngcCTiMABU8DkNt3YlgXQ8re7zYwKOHSdCt48e9SYAEHhOIWJqmjV3/zIfz5ExWPtGQAAmQgM0JzFt4RBtK6eW68yXzHOcam0NmhSTg5gSQy6v/6GStcqdpjzgpKbnv5r1m90iABGxBYMvuC/KHlx8btCFfxrY9F21RLesgARLwMALe8w5o32le/WSBXL7C3H8edgm4bHep4HHioTt5OldggQIlzy+e8ZaAyMNO3Fo2jQRIwNkIjPPaqRWSIC41QxY42wixPSTgXgSWrsnQ5hL821uBsufQZffqIHtDAiRgNwIFt+9Ko67LteuW7sMS5d69B3Y7HysmARJwPwJIhv6Pd4LUPALr+9hVJ92vk+wRCZCAXQg8fPhIhn6/UbsOqdE6Vm7kFdvlXKyUBOxBgAoee1C1YZ1XrxfJB80XaieZERM3CyYeFhIgARIoi8Dduw8EghEoh/G/YdflcqvgTlm783cSIAESsBmBnfuztR7ICJeCEAcsJEACJGCKAAxQ3mwQqV23/Dh7p6nduY0ESIAEyiSQdeGmwOoe70A/+6+XIOQjCwmQAAmYIlBYdE9a9F6pXYd0HLyGHsSmgHGbUxKggscph0W/UcUl96R131XayaZt/3jBbywkQAIkYEgASYjrdViinS/6jUoShDxhIQESIAFHETidlScv1g5X89DPn/aS2SH7HXVqnocESMDFCBxOuyr/rhai5otfPjdHEFqWhQRIgAQqQgDvQ8jfpTF26/s134cqwpPHkoA7E8i5WijvNY3Wzhejp2yVR49oVO/OY+6ufaOCx0VGFl47X43frJ10qrdYKNduFLlI69lMEiABRxCAxdorHz+xWJvqT4s1R3DnOUiABEoTQEiDWm0XadctQ8ZskAcPqGwuTYq/kIDnEkjcdFabM+NPr/rLxh3nPRcGe04CJGBTAgjx2OOrddp1SIMuyxjRwKaEWRkJuD6BtPTr8nT1eWqe+J9nvSUk5ojrd4o98FgCVPC42ND7LzikTfj1fM0wST+T62I9YHNJgATsQWDv4ct6MacXxTPmtD04s04SIAHLCdy5c186DVmrFa406xkntwvvWl4B9yQBEnBbAkFRqSrHKCzsn/lwnhzPuOG2fWXHSIAEKo/AeO9d2nUIcpJeyC6ovMbwzCRAAk5DIGXbOYFxCdYhT1X1k3WbzzpN29gQEigPASp4ykOtko9ZnXxGfv+Sr5qIMCHFJ52p5Bbx9CRAApVJYMGSNG1i87++ESDb916qzObw3CRAAiSgJYAQB99N364VrrxWP0JOnc3TbucHEiABzyKAPIGDvkvRzgnVmsUIwqOwkAAJkIC9CEQtPy6/en6Omnf+/nagbN51wV6nYr0kQAIuQMB73gGBxw6UOwgTm3r8qgu0mk0kAdMEqOAxzcdptx44ckX+X7VgNSEheeD3M3cIwrixkAAJeA4BQyHJS3XCKTj1nOFnT0nApQiExh4V5NfAixSNU1xq6NhYErAZgYuXCwRhpjEP4D9yjBYVM6+ozQCzIhIggTIJbNp5Xv7yeoCaeyDYZX7AMlFxAwm4LYHConvy2ZA12nXIO42j5FIOvfrcdsA9rGNU8LjwgF+5Vih12i3WTk6Nui6X3PxiF+4Rm04CJGApASxEdIUkrfqukpu37lh6OPcjARIgAYcT2HUgW884ZezM7TROcfgo8IQkUDkEYDEPy3kodn7+tJdM9t3DJMaVMxQ8Kwl4LAHkK4VAV6Nk7jh4jUDgy0ICJOD+BBBBAJEENPc/cnQVl/D+d/+R95weUsHj4mN9//5D+Wr8Zu0k9exHoXLoGN0LXXxY2XwSMEmAQhKTeLiRBEjAiQnQOMWJB4dNIwE7EfAKeRIKBRb067dk2elMrJYESIAETBMoKbkvPYev08pPIPDNyGToWNPUuJUEXJsA0lpo8u0gokBA5GHX7hBbTwJGCFDBYwSKK/6EhOqavDy/qeIjEUvTXLEbbDMJkIAZAggnoIkXSyGJGVjcTAIk4JQEaJzilMPCRpGAzQnAMh4W8hprWVjOw4KehQRIgAQqm0BgZKo2L88fX/GXVetPV3aTeH4SIAEbE0AaC0QMQFoLrEWQ5gIRBVhIwB0JUMHjRqN6LP26VKkVrn2JGjwmRZCjg4UESMD1CdwuvEshiesPI3tAAiSgQ4DGKTow+JEE3IwALOJ1Q6HAYh6W8ywkQAIk4CwEdh/MVgnWIfiFAHjMDIaOdZaxYTtIoKIEkL4CaSw0RiZIb4FIAiwk4K4EqOBxs5FFDo4WvVdqJ7F3m0RL+plcN+slu0MCnkVgf2qOvFTnifKWQhLPGn/2lgTcmQCMU16s/WR+Qzzsgtt33bnL7BsJuD2BBUvS5A8v+6n3kV89P0dgKc9CAiRAAs5I4Or1IqnbfolWfgIh8PlLt5yxqWwTCZCAhQQQ0v4/74do72uktUAEARYScGcCVPC44eg+evRIJvnull88460mtN+96CvB0XyxcsOhZpfcnABciqf67xHEiYXlya9f8KGQxM3HnN0jAU8kAOOUln2eGKc8VyOU4RM88UJgn12eQF5+iXQY9CQkG4QrsJBnIQESIAFnJgDB74iJT/Ia//m1ubI4Pt2Zm8y2kQAJGCFw794D+WbqNvn5049DssHYBBEDWEjAEwhQwePGo7x97yV55sN5Wq11q76r5HpusRv3mF0jAfchcCG7QM+aDGFOjpy45j4dZE9IgARIwIDA3IjD8tsqvmrdAiOV8d675MEDWtsZYOJXEnBKAobWsu0HrhYofFhIgARIwFUIJG46K/94J0grP6FXsauMHNtJAqIiF73XNFp7/37QfKGczsojGhLwGAJU8Lj5UMMqtsvQBO0k96/3giVpS5ab95rdIwHXJgCLMViOaeLFDv1+I+PWu/aQsvUkQAIWEjiecUPebhSlnf9qtI6Vs+eZlN1CfNyNBBxOwJi1bPjiYw5vB09IAiRAArYggJBtzXvFadch9Cq2BVXWQQL2JRASc0QQuQjyE3jvjJ25nSHZ7IuctTshASp4nHBQ7NGkmLgT8sdX/NWEhwSCiEF55w4TndqDNeskgfISQN4J5NfRKHb+/nagJGzMLG91PI4ESIAEXJLA3bsPVKgUrFcwHz5V1U+ilh93yb6w0STgzgSQ55PWsu48wuwbCXgugYBIehV77uiz565C4EZesbTuu0orP0EEo217LrpK89lOErApASp4bIrTuSvLunBTarZZpJ383mwQyZBPzj1kbJ0HEdix75I8XzNMe3826xknsCBjIQESIAFPJZCy7Zz8v2rB2nmx05C1kpvPULOeej2w385DAPk+g6JSaS3rPEPClpAACdiBgKFX8UetYhnyyQ6cWSUJlIfAus1nBRGKNMaxnT9fK4hgxEICnkqACh4PG3nEsp/os1v+51lvNREieTvcF+nN42EXArvrNATgtfP52A2isVRH/gnkoWAhARIgARIQgWVem37x2pc3eDYyWSqvDBKoPAIZmXl6OQJpLVt5Y8EzkwAJ2J8AvIpHTtyi9642PWAvwz/ZHz3PQAJGCeDdoPuwRO27ASIVRa+gp79RWPzRowhQweNRw/2ks3sOXZaq9eZrJ8WX6oTLVroyPgHETyTgAAKrk8/If94P0d6H1ZrFCCzFWEiABEiABPQJhC06Kn969XGoWVjqwcvxQnaB/k78RgIkYDcC9+8/lKn+e+Q3VXy06xYkIKe1rN2Qs2ISIAEnIgCvYii0Nd4CyBd48OgVJ2ohm0IC7k9g4coT8re3ArX3Yb0OSwSRilhIgAREqODx4KsAXjvfz9wh8OLBQgUeBAO/TeGLmgdfE+y6YwhcuVYonw1Zo12YICGgV8gBgYcdCwmQAAmQgHEC2Tm39eJsIzeP/4JD8vDhI+MH8FcSIAGbENifmiNvNYzSrlue/ShUkrZk2aRuVkICJEACrkKgsOieDBu3SSVxh/zkF894y6jJW6W45J6rdIHtJAGXJHD+0i1p0n2Fdh3y59fmyryFRwQhY1lIgAQeE6CCh1eCHEu/LtVbLNROloh3v3L9aZIhARKwA4EFS9LkL68HaO+3Bl2WydnztDqxA2pWSQIk4KYElidkyD/fDdLOozVax9L70U3Hmt2qXAJFxfdkxMTNSoipEWYOn7BZIORkIQESIAFPJYBoKK/Xj9CuQ5BHdcP2856Kg/0mAbsRgBGXb/hB+cPLftr7rW3/eLl85bbdzsmKScBVCVDB46ojZ+N2Y+L0CTsov3/JVztxthuwmhOnjTmzOs8lkHkuX+p3Wqq9v/76RoBELE3zXCDsOQmQAAlUgED+zRLpNypJGxP/V8/PkfHeuwSx8llIgAQqTiB56zl5rkaodt3yZoNI2ZeaU/GKWQMJkAAJuAGBe/ceqNzGv37hSdjK3iPWS25+sRv0jl0ggconYMwQPW7dqcpvGFtAAk5KgAoeJx2YymrWuYu3pHG3J66PSFiG0FGIu81CAiRgPQG47P84e6dezPpOQ9bK1etF1lfGI0iABEiABPQIbN51QarUCtcKoZFTMHHTWb19+IUESMByAsht1WHQkzCyyLkzxW+PQJjJQgIkQAIkoE/g5OlcqdV2kXYd8n9vBqjQUQwfq8+J30jAUgK3Cu4o7+H/edZb3VdIJTHgm2SmkrAUIPfzWAJU8Hjs0JvueEycfvKyVz9ZQLdj08i4lQRKEViReEovGefT1efJ2g2ZpfbjDyRAAiRAAuUnUFJyX76Zuk00L4IIJdWyz0qB5yQLCZCAZQSQm3Oy7x5BXkDcQ/hft/0SycjMs6wC7kUCJEACHkoAeUACI1MFxrGa+bNasxjZfTDbQ4mw2yRgPQHcR4hw8o93noRhhuHW1j0Xra+MR5CABxKggscDB93SLufll8jQ7zdq425jsYKwbRSYWEqQ+3kqgaMnr8mnnZdpF/hw3R87c7sglj0LCZAACZCAfQgcz7ihFwoTngeYe28X3rXPCVkrCbgJAeTefKFWmHbdgnycMPZiIQESIAESsJzAlWuF0nP4Om34WHge4Ht2DvOFWE6Re3oiAeS1+qhVrHYdgpw70+buZehlT7wY2OdyE6CCp9zoPOfAIyeuSZ12i7WTLeLcj5y4RRD/noUESOAJgZyrhdJ/dLKeUrR5rzg5k0Ur8ieU+IkESIAE7Etg2doMgcekxooWloDzFh6RBw8Ybta+5Fm7qxHYn5qjt8b/5XNzZNTkrVSKutpAsr0kQAJORWDXgWx5r2m0dh0Cz8hxXjulsIjGfk41UGxMpRNAiojOn6/VKkWxdsf3SzkFld42NoAEXI0AFTyuNmKV2N5F8Sf1wk0hSbxv+EHG5K7EMeGpnYMAPHMm+e4WWJpoBIqvfLxAEjYyHJtzjBBbQQIk4GkEMC9DmKIbbur1+hGybjPz83jatcD+liZw/tIt6fZlop5ABQYp6WdyS+/MX0iABEiABKwmgBw8MC7RDTf1r/eCJXzxMWF+Hqtx8gA3I3Dz1h0VXhmRTjTyk3ebRDMcm5uNM7vjWAJU8DiWt8ufDXHu4SqpG1/2uRqhEr3iOBcqLj+67IC1BJBwOCDysPzz3SdxYv/2VqD67f59Wopby5P7kwAJkICtCSAsSq8R6+TnTz/OKYKXyHodljAuvq1Bsz6XIHDtRpEMn7BZdAUqbzeKYp5Nlxg9NpIESMAVCSBMLMLF/rbKk/xmyG8ct+6UK3aHbSaBChEoLrknM4P2yV9eD9Aqdv7zfohELksT5OBhIQESKD8BKnjKz86jj8QL4uAxKXoJjWEZG590xqO5sPOeQQBWV1BqPl/zSbx65HpAku9bBXc8AwJ7SQIkQAIuROBw2lW9/DxQ9LTss1KOpV93oV6wqSRQPgIFt+8qj7anqj7xNP53tRCZv4SW5OUjyqNIgARIwDoCFy8XSPdhiXoGJx80X0gFu3UYubeLEoDxa3B0qiDHn8ZjB2sSREGB0oeFBEig4gSo4Kk4Q4+u4XRWnnQaoh8zEwsVhqby6MvCbTsPxc6S1enyWv0I7cLkf571Vnl3GCfWbYedHSMBEnAjAinbzkm1ZjHaORyePYj1feLUDTfqJbtCAo8JQLEz1X+PIKyyRqACq1lYz1KgwquEBEiABBxP4OjJa9Ki90rtnIy5+eOOS2XL7guObwzPSAJ2JgDFDoxJXqj1xDAWXsTwJr6eW2zns7N6EvAsAlTweNZ42623sIxt2iNOb6HyfrMYWbuBOUjsBp0VO4wAFDvIQQV3eo2A5Gf/9ZLPhqyRU2fzHNYOnogESIAESMA2BJYnZAhypWnmdCh6MKen0aPHNoBZS6USgGJnit8evRAoyBP4/cwdgrj3LCRAAiRAApVLYOf+bKnbfol2HYL1CL5v2nm+chvGs5OADQhAsRO26KhexJNfPOMtfb9OkgvZBTY4A6sgARIwJEAFjyERfq8QASxUGnZdrrdQea9ptECQwmSCFULLgyuBAHLsRCxNk6r15muvaSh22vaPl9TjVyuhRTwlCZAACZCArQg8ePBQopYfl5fqhOvN8e0HrpYDR67Y6jSshwQcRuBGXrGM996lp9j5/Uu+MmryVrl6vchh7eCJSIAESIAELCOQvPWc1GyzSLsOgaKndrvFkrjprGUVcC8ScCICyNkdGJkqz34Uqr2modhBeMKMTBrGOtFQsSluSIAKHjccVGfo0q4D2dLIQNEDAUpo7FG5e/eBMzSRbSCBMgkUFt2TOaEH5L8fhGgXJlDsQOgHt3oWEiABEiAB9yEARU9M3Al5ue4TZT4ELJ92XsbY+O4zzG7dk/OXbsmwcZsEyhyNVxo+j56yVZA3k4UESIAESMC5CWzYfl4pdjRzOP6+2SBSFq48IVinsJCAMxPIv1miPIf//nagdh0CxU6Pr9Yx4okzDxzb5lYEqOBxq+F0vs7sOXRZWvVdJRCOaxYrSKw2PWCv5OYz5qbzjZhntyjnaqEKX4L49JrrFXsfbxoAACAASURBVDl2ugxNYCJuz7402HsSIAEPIABP49hVJ+WthlHaZwCeBfBExu8IN8FCAs5E4NCxq8oqFmsVzbrlz6/NlbEztzO2vTMNFNtCAiRAAhYSQIi2Bl2Waed0zO3P1QgV3/CDgvCbLCTgTATOXbwlIydukaeq+mmvWeTY6T86WZCvm4UESMBxBKjgcRxrjz4Tkhf3GrFOfvncHO3E/7sXfWXQdyly8nSuR7Nh5yufwMGjV5SA5FfPP7k+f1vFVz4fu0GyLtys/AayBSRAAiRAAg4lsG7z2VKx8f9dLUQlrEcYLBYSqCwCUETGrTslddot1q6pIQDE9Tk7ZD8FgJU1MDwvCZAACdiQAN5POw5eI8gRqFHg//EVf5Wc/ux5vp/aEDWrKgeB7XsvSbsBqwVeOrrXJ0LCXr5yuxw18hASIIGKEqCCp6IEebxVBC5eLlAa/j+96q99EMC7B+HcViefofuxVTS5c0UIIFTg4vj0Uq7wf3srUH6cvZMhTSoCl8eSAAmQgJsQ2H0wW4Xn1H2BhQEALBPhPcFCAo4iAMXirOD9ypJbI0zB39frR0j44mMMgeyogeB5SIAESMCBBOAFMXhMisA4VjP3Q+nTpl+8pGw7J48ePXJga3gqTyZQXHJPFixJU57tmmsRf//zfoiK0HPz1h1PxsO+k0ClE6CCp9KHwDMbcLvwrvjNPyRVaj1JbIyHw9PV58kk392CUFksJGAPAvDI+W76dtGND4trDzGOISC5c+e+PU7LOkmABEiABFyYAEJQfD1piyD8le5LbfUWCyViaZrgpZeFBOxBYOf+bOn2ZaIg5Inm2oNxVPNeccwRZQ/grJMESIAEnJBAXn6JzAjcp5cjFs+EF2uHK+9Nehc74aC5SZPSz+TKV+M3y/++XnoNvCieIYzdZJjZDTcgQAWPGwyiK3cBYSbguQMPHt08PQjlBpfPtRsy6dXjygPsJG2Ht86ytRnSpPsKPTd3xKyH9dPGHeedpKVsBgmQAAmQgDMTKCy6JwGRh+W1+hFaYTsELHjp/eKHjXI4jV49zjx+rtK267nF4hN2UN74NFLvOoOC8csfNzFhsasMJNtJAiRAAjYmgHyAS1ani2GYzt9U8ZGuXySo91p69dgYugdWV1R8T6JXHJd6HZborUNgbIL8xPBwZyEBEnAuAlTwONd4eHRrMs/ly+gpWwUhsjQWivj7r/eC5Zup2wSWAywkYA0BCNogcPvrGwF61xTciMd775LsHMaHtYYn9yUBEiABEnhCYNuei+olVzd/G9YtbzeKUsmQaU37hBU/mSfw4MFDZdgEAyfDa6pasxjlZQyBCwsJkAAJkAAJgMDxjBvqXVc3/D3WIc9+FCrjvHYylywvE6sJQHGDMMTI96Qrk3u+ZpjyIIMBCgsJkIBzEqCCxznHxaNbhRBZsatOyqedl+l59eAB80HzhcqikSHcPPoSMdl5hNGZNndvKatXeOu06L1SVq0/Ta8wkwS5kQRIgARIwBoC124Uqdwor3y8QO9lGEL6ln1WKktbhnCzhqhn7bv38GUZNm6T/PPdIL3rBwK7Qd+lyIEjVzwLCHtLAiRAAiRgFQEo/xFqvGabRXrPEURIqd1usQRHpwqNTqxC6lE7Z2TmKePXl+rop0+At06HQWtk/ZYs5nryqCuCnXVVAlTwuOrIeUi7IayfMGdXqYSySHYMBdD8JccE8WhZPJvAlWuFKmQOFrW6of6gFHz1kwVK8IZ9WEiABEiABEjAngT2HLosA75JFkNr2j+87CfdhyVK4qazcu/eA3s2gXW7AIG09Ovyw6wd8kKtsFLCOKxvF648ISUlzAnoAkPJJpIACZCAUxGAsB75Zv9dLUTv+YIQ+MjdhudLwe27TtVmNsbxBC5eLhDveQcEHsK6njr4/E7jKPFfcEhy8+mt4/iR4RlJoPwEqOApPzse6UACiCO7dc9FJTT5y+v64bawWGnYdbmExByRq9eLHNgqnqoyCWBR4ht+UBB/+OdPe+ktTGAFC2vYfak5ldlEnpsESIAESMBDCcBjZ3F8uvLgMQy3BeUPlD3wKKUQ33MukINHr8iYGdvl5brz9dYsEKYg1870gL1y/tItzwHCnpIACZAACdiNAMJ+Jm3Jkp7D18lTVf30njvwzEBki4ilaTSWtdsIOF/FSIkwM2ifVG+xsJRR7NPV56m0CEdOXHO+hrNFJEACFhGggsciTNzJmQjA8nV18hnpNGSt/P4lX73FCgT9EPjPCt4vJ08zZ48zjZst2pJ6/KpM8t2tQvUZeuog8XDvEeslZds5hmCzBWzWQQIkQAIkYBMC8DSet/CISlRraJAAzx7kXIGQBaHeWNyHwN27D9SaBAYnz9UI1VuvQqmD32BlfSz9uvt0mj0hARIgARJwOgIwJlm6JkNa910lv6nio/c8grFsgy7LlOEkFAAs7kMARtIIAwuPYeSHNPTU+b83A1QoWOSUxL4sJEACrk2ACh7XHj+Pbz0sZOPWnZKuXySUCoeCBxhCX+DFGtYrtJJ1vcvlduFdpcxDDPr/vK/vZo7xxaKk79dJDHnjekPLFpMACZCARxJAuFDEwocwBbnhdF+2ofz5sGWsTPbdI/D24Mu2610i2Tm3ZcGSNKW0M7SYxljDewdePBhfFhIgARIgARJwNAGEZ1sUf1LaD1xdylgWzymENx89Zats3nVBYKjA4loE8m+WyPKEDGX4+o939HP7YXz/9V6wDBmzQTbuOE+jWNcaWraWBMwSoILHLCLu4CoEsABJ2JgpA781rgyAtQrims8I3CeH065ScOKEAwtXcuQvgJcOEkLCokhX+IXPGqUdFyVOOIBsEgmQAAmQgMUEENscyoC2/eNLhU/B8w5GDJ8NWSNhi44ydJfFVB27Y2HRPbX2/Gr8ZnmtfkSpNQuUdgiFgnUN8u6wkAAJkAAJkICzENAYyyIKhjFlAKKlNO0RJ3NCD8jxjBvO0my2Q4cAotvAAwdeOjASQq5qQ/nJKx8vkFGTt8qOfZcoA9Nhx48k4G4EqOBxtxFlf7QEoMTBCzVerA1DouCh99c3ApSbMpLLwZISygUWxxLAgmTXgWwVdx6Lxz++4l9qQQIlD8LuIV7siVNcWDp2hHg2EiABEiABRxCAkUry1nPy5Y+blCGD4cs5vj9fM0xZZEIpdPb8TUc0i+cwIHCr4I5S6HwzdZt81CrWqCEK1jIIu4dxYm5IA4D8SgIkQAIk4JQE4DUMQ8vvZ+6QdxpHlcrRgnUIlEAdBq0R/wWH5OjJa1QWVMJI3rlzX+WmhpwLxsuGKQswTsixxLB7lTA4PCUJVDIBKngqeQB4escQQPz7ZWszZMA3yUbjoONBiBfyhl2Xy4+zd6qQXzfyih3TOA86C0LTIKn0t9O2qVwEv3tRP4cSxgH/EcLkix82qvBscCNnIQESIAESIAFPIgAFDkK5QVHwv6/PLWX8gGclQpdC0OIVckB27s9mKFobXyAQdmVk5knksjQZPCZFCbyMWcYi1F6N1rEy3nuXGof792kwZOOhYHUkQAIkQAIOJgADhYUrT0ivEevk39VKh0rHOuQvrwdIs55xyqgWRio3b91xcCvd/3QXLxcoOdbXk7ZIrbaLlPJGIzPR/fvGp5EycuIWWb8lS+CZxUICJOB5BKjg8bwxZ49F5ExWvoQvPiY9vlonz35UOvGt5mH5Yu1w6fz5WuU9krLtnFDpY/nlk3O1UCnKpvjtUTF+n/lwnlEBFVi/VCdc+o1KkugVxwWLGBYSIAESIAESIIHHBOBhvC81R2aH7JcWvVeWqfCBx2u1ZjHKmCUoKlVZ4vIl37KrCMqcU2fzZMnqdGWEAoOfshRrUOjAOxzhTtZuyBR49bCQAAmQAAmQgDsTOHk6V7C2gGykLIXPz37K4dN9WKIgSgry+CAnDItlBCAHWZ18RibM2aUizZjijLCwyKWzOD5dIHdhIQESIAEqeHgNkICIim0fE3dCPh+7QQlHjOV+0Sh9/vtBiIpFixd7hN+A0OV2oed6mWDRBsvh0NijMnzCZuUF9c93Syf00/CDyzDCmmDfpWsyuCDhHUgCJEACJEACVhB4+PCRpB6/KnMjDku3LxOlSq3wMg0o4HGChMkdB69RHibwZkYcfYRI9dRyKadAhcNDToH+o5OV981TVf3KZAgL5cbdVih+sFBG3h0WEiABEiABEvBkAjCYhSwE+Y/fahhlNPeL5v3/uRqh0rLPSmVAAYNOhMcvKvbcZymMhpE3BwozRC355LOlKu+ihpfhX0Q9Qch6yJ9Wrj9No2NPvvHYdxIwQYAKHhNwuMlzCZSU3FdJ6BD2pOsXCSpxrrGwHJqHL6xVYGFRt/0S6TNyvUz136OUF/tTcwRhyWAZ6qoFgqTsnNvKEnhR/Enlgt1z+Dqp2WaR0WSMGib4C0UZFnxw7UasXijDkGeAhQRIgARIgARIwHYEICxI2Jgp47x2KiEKjFF0n8eGn+GFAi9lKC6Gfr9RfMIOKm+UY+nXXT7ECtYZmefyleUwvLW/m75dhbJDTgFjuf502UDRU7vdYpULCaHZEKLNlddwtrvCWBMJkAAJkAAJlE0Axg/w2JkRuE8+G7JGRegwlgdZ88yF/OTp6vOUcgPGFjhuReIppfy5dqOo7BO5wBZ4XsMbB0awUGghhCsMcj5sGWtSkQM2MIZ9r2m0im4CBdChY1eFoV9dYNDZRBJwAgJU8DjBILAJrkEAYU6QeBAx8TWWFqY8VTSLF82D+oVaYSrvDBRG8F6ZHrBXWb0kbjorUASdzspT1hiOeIDDchcLJ4Qj2Xv4sqxJyVQh66CYGjZuk3QaslYJOBC+zpQ3k24fkQugUdflqm8QqMAyh8oc17i22UoSIAESIAH3IwClD8LLIrRb7xHrVVgxU54qus907AfPHyiAcCxy5yHcCuLxb9h+Xg6nXZVzF28pZZAjFCBYg12+clt5H+3Yd0kJgSD4gNAE+XHa9IuX95vFCNZlEBrp9sXYZyi4qtabL237x6uE0vAoxjrMEX1xvyuNPSIBEiABEiCB0gQQ5QTPbHgc41kNY9j/ezPA7DMaz+3fVPFRhijwbkHIN+SXmRm0T+XFQ56ZA0euKGOO3PxigULF3gVyDeQlSj+TK7sPZqtQaohgMtl3j5INwVMa+fhgYGPKMFizJsFaBbKWpj3iBPl1YFRy5MQ1KnPsPZCsnwTcmAAVPG48uOyaYwhgUYGFC1yUx87crixWYHXx59eMJ0XWPNRN/f3Dy37KIwi5ad5uFKVCmtXvtFSa94pTQgwkVYYSBsoi5BHCf3yGtUz7gavVPtgXCyJYisCLBpa6/69asMDF19S5TW376xsBSkDUZWiC/Dh7p0QtP66UXow/75hrjWchARIgARIggYoSuJBdIElbsiQg8rAyykBen1c+XqCEKabWAGVtg4Uu1jzItYd63m0SrRIBI48NQrJAiYJ1C+L2w4IVXsAQ1mAtgXVLuwGrVaz5Jt1XKOHPB80Xyuv1I+T5mmHy97cD5VfPzynXugXCEwha6nVYoixhYVizPCFD4KVEA5SKXkU8ngRIgARIgATKRwCGplt2X5CwRUeVAQnkF5B5WGqEYmw9gmNhcPpy3fmqLihbPu28TOUu1KxDDOUnmnWIRn7SrGecfNxxqZJ3vNkgUoXA/dd7wfLbKuWXn2Adg7Zg3YPcOjCUgXEvw72W79rhUSRAAmUToIKnbDbcQgIVJnDz1h0lSICXTkjMEaUAQgg3LB6QCBluyXDDNbZIceRvWLTAggRJgyHo6TcqSSlwsOiCEOjEqRsenWeowhcCKyABEiABEiABJycA7xWElYXgIW7dKfENP6isSqGUadBlmUDYAQ8ZSyxT7b2G+dOr/ir8C8KpQTCDHIrwQkY+xa17LsrZ8zepxHHy643NIwESIAESIAFDAnn5JcqTBRFGAiNTVZhVhHuHEQiMaKHEKa/hhy3XJr9/yVcZoiC3cKu+q2TAN8lKgTN/yTHlPY0Qr56cZ8hwXPmdBEjA/gSo4LE/Y56BBMwSgPsy4rQePXlNJdxbnXxGxWuFUghJgKf47VEhREZM3Kziwg8Zs0ElNIQiBqFT8B+fB32XooQcX/64Sbkx/zBrhxJ4ILb+vIVHlOBj7YZM5XGUln5dkGiYCw+zw8MdSIAESIAESIAEfiKA3HwQwECJgtjwm3aeVwqhiKVpShiDkHCTfHcroQxC0iKsLdYtEH70/TpJ5eWDsQti7mPdghxACA87espWlUMIcfiRtw9GJovj0wWhWBAiF2FREB6F3je8FEmABEiABEjAswkggsj5S7eUMgiGHfFJZ1R0EYTTR0hZyE8QXQXyE806ZOC3KUpmopGfaNYhMBKB/ASh0iA/mTZ3rzJyQQg2eNwgxyHy6RzPuKFyEyNsLAsJkAAJOBsBKnicbUTYHhIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIwQ4AKHjOAuJkESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEnI0AFTzONiJsDwmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmYIUAFjxlA3EwCJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACzkaACh5nGxG2hwRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgATMEKCCxwwgbiYBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABZyNABY+zjQjbQwIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAJmCFDBYwYQN5MACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZCAsxGggsfZRoTtIQESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEzBKjgMQOIm0mABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEjA2QhQweNsI8L2kAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkIAZAlTwmAHEzSRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiTgbASo4HG2EWF7SIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESMAMASp4zADiZhIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARJwNgJU8DjbiLA9JEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJGCGABU8ZgBxMwmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAk4GwEqeJxtRNgeEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEjBDgAoeM4C4mQRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgAScjQAVPM42ImwPCZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZghQAWPGUDcTAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQALORoAKHmcbEbaHBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABMwQoILHDCBuJgESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAFnI+CUCp5Hjx46jNOjR48cdi6eqDQBW431g4cPSlduwS8PHXitWdAck7vYipXuSVyp/7rtdpfP9x/ct0lXynttVOb4l2fufSSPpDzHmYNsjzrNnZPb3YfA4+vHMWsJXquVd908fPgAM5BNGoC5tzxjWVlztrO0tTztsMmAsRJFwHZrFjzLrX/Xw/jb6h60dkjLe++V9zhT7bNHnabOx22uQaA891R5e8a5uLzkKn6crdYiGEPUVZ5SGXNQea85e7S1vG0pD2seo08A4/nwofXrB/1aRK3ByzNnYuwrax2izlwO2XV5jzNkpvud94AuDef67FQKnqxrp+XYhYMya80PUlhSYFdSd+/fkS0n1otPwkS5c/+OXc/FyvUJPHh4X05cOioBSdMlr/CG/sZyfCsoviWRWwNk58mNFh99516JbDi2RkJSvBw6SRffLZKEg8skOGWWgIMlBQ+yC9czZfqq7+RS3gVLDrFon4LimzJvg5esPbTMov25k+0I3CzKl8htAbLj5IYKVwrl5tmrGRKQNE1ybmZbXB/GPzBphuxIr3gbLD6piJpvd6SniPfacVJ8r8jiQy/nXZSobQGy9USSxceY2xEM1h9ZKfM3+wqeCSwkYC0BrFvi9kXLusNxdr+GsvMuSOyOEEk5ulruW/j8sLY/3N84gTNXTsr8TX5y9topsYWwAGO4al+sXC+4avyERn49lXNcApNnyJmckw5dt5zMPipz10+RjMtpFvf93oO7smCzv2xOS5TCO7eN9KZ8P206liDhm30E9wKLYwlsOLpWYnfMs8l43n1wR8I2zJHdpzbL3ft3Le5I4uEVsmCLn9y28zuiYYNuFFyVqSu/keMXj1i8dkcdeC/Bu86tonzDKsv9XdOWtIupVrWl3CfkgU5PwNHyk60nk2TO2vFy536J07NxpwZi3oPsavHOcMEztiIF6xisZxZs8pPTOScsrgptwPoF77D3H9yz+LiK7nj11mWJ3hokaw4ssbgq9PH0lRPqXffslQyLjzO3I9oSsy1Y1hy0vC3m6uR2ywikZ6fJ8j2RcvT8AcsOMLEXZADrUuNkfeoqq+TOxy+mysIdIXIoa4+J2m2/CbLx+P2LJG5fjECOZGnBtR+7I1R2Z2yx9BCz+/F91CyiSt3BqRQ8e05vlfWpcdLOu65cvXm5QmAgrIMwvCxrM7xQbDy2VtrPqe3wG7RCHXPxg7EYSD1/QD4P7yTx+xaVOT6abkI7nFt4XQlhI7f4y5qDS0u9KGEsd6RvlCHhnWTz8XWaQ03+vV1yS4KTZ8jgsE5m22CsIrQLdRw9v1/i9i6UsI1zJGTDbFmxJ1oyso/pWeaW3CtW7cu9fU3wedX+WPnMr65kWrjYgCLo4Nk90mZ2LTlmgweapj+3ivNlatw3Mii0gxTdLdT8zL92JpBfmCtea8bJj0u+lLzC62bPhvHPvJohi3fPVwqOfWe2l7J8vVmcJ+EbfWV0TF+5nHfJbJ3YAXNsv5A2ErMjyKL9MadCUIdrBYpKzX98x++6//HSV5YQFPfr9pMp0s67luw7s8Oic2MnvIAMj+glkVsDLT7G3I5o88p9MdIvpJWkXThsbnduJ4FSBLBumRI3SvzWTxW8LFSk5BXlKqOHsizT8FI5a/VYmbJylFy4kVWRU/FYKwhkZKfJt7ED1QuSJUYpELwcPLtbFu0MUwJxKGbuGQhC8HI0YdlwtW64divHotbsytik5uy9Z7ZLebyWsf7CdbP5eKJEbw+W4JTZErHVX3amb5T8ojy9dUvahUOScfm4WrNkXkmXAfPaSuzO0FLrr7IaXlhyW4ZH9JTQTT6Se9v8c66segx/h5Khe0AT2Xp8vVWKAcN6+N06AmsPLpPBoR1kf+Yui4R6t4ryJOXoGnV9rT64RPKKbuhdX1hDY+4cHPaZUgJaamjnmzBZhi3oZtE1hfc/rE8sWbNgPVPW+yJIYb3cM6CZ+CROkIKSWxbDgxCod1AruVZg2T1uScVoS6/A5jInYbxVbbGkbu7jmgRsKT/B88uc/GTbySS1hsdzjsUxBDDvwChkVExfOZy1V28+NdYCPO/PXT8jK/ZGS/T2INmZsamUEVLe7RtKWfRt7CBlwGGsHsPfbty+poxUv47uq9YHhtvNfX/w4L5cu3VF9pzeIkt2z5fQDV4SvtlXko7EyaXc83qH41x7Tm1V75tXbl5W787DIrtLvoXGwWCwK2OL9A1qLVg32aqgLd5rxsuXEd0sboutzu3J9Ry/eFimrBgl4Zt85YYF60qsa3dmbJSY7cESvz9WLtw4q3ffYB198Owumbx8pCzeFa7kepbw3XI8Sb6JGSCJh5ab3R3nuHO/WMlINHIT/NWsTXRlJ0V3CuXew7KVppAhhm3ykRFRvVS7zZ78px32Z+6UMYsHy7I9kZYeYna/Kzezte+jF2+cM7s/d3AsAadS8Ow+tUVgndVhTl3BhVPegpvpTM4JNQmUZV2Cl4tLeeelV1BzmbN2QnlP5dLHYbEAJVdSarwU2dDCsiwoEPhCqfF5+GcyL8VLis0oFbDI3H9mp+BhPilupMQfiJVxS7+SsUs+l5tFuXqngVY74dAy6RXYTA5n7dPbZuwLLFACk6bJoLCOJl/qDI/FtXXxRpaEb/KR/sFtpIP3xzIsoqvMiB8j/uunqHZ+vqCTegmEQgeT9ZJd86VvcGuBEAcMzlw9KZ39PpX5m/0Nqzf6XSl4MndLm9k1LbZYALv0S2mSnn3UaJ34EYJ2KMRazqpulaC9zAq5wSwBXHdQBA4J/0wuXM8qUwmiqQj3CKwuBoW1l/mbfJXVysCwDhK7fZ6eBTfmsys3L6nr8NuFA+R2sXkBBITFfQJbStQ28woTKKVmrf5BtXvgvPYycF4HGRDSXgaEtJOh87vIF/O7qv9Dw7vI5/M7y+DQz2R0TD+J2DpXWZtr+qP5ezn/gvQLbiUz4sdqfjL799Tl4/JVVE+J2BJgcl8sgE5cOiKJh1bI2sPLlKDVcL7QVID78ei5/TIwrJ1S0mp+518SsJQA1i2T4r4W/3VTpKCk/AoeLPZX7VsoiYeXlylAhQBy2e4F8sX8LrIxLcHSJrrNfpjnzl49JUlHVkrquX0CT1x7l5z8S/Jt7ADxXz9VLuWeMztnY3/vxPFKCBO7c56y3ocQYMfJjXre4g8ePRDMacOjeqmXT8yx5go8PvsGtpS9p7dZpeDBc2dj2lr5fvHn0tmvvvQPaS0/LB0qvomTZPaaH2R4ZC8Zob9NygAAIABJREFUtbCv7D61VQlsjp0/pOZ1eKXhurx7745Mjvta9Qn8LSl4aR0e2UOt9W4UXLPkEIHQ5Mj5/SYVpdcLcmRI2GfilzhJraksqpg7VYjArozN0n1uE0k+Gm923Y4THcjcJcMje8qUuK9lzYHFMiZ2oPyweKjk3LykJ1zBOhXvfL0DmytDOwjjzBUlVIvsKpZcUwmHlsuohX2UERMMmdS6ZV47tY7BWkV33YJrCmuZmau/ly0nkkrNLVgrBKbMlG5+jeT89Uy9fphqM6y8ewe2EKy3TBV45UAAG39gsaQcWS2nr6SX+RxQbUmeKV19G8r5G5a3xdT5uc21CdhSfpJ5Nf0n+UmxUShKfnLjnPQJbqmeH0Z3cuMf0f8bt68K5hc81+9Z4YFYXix4r9lwbK0MCe+o/po7J5TAK/bGyJcRXWVu0lRZvCNURkb1Ut6vutEKMJdczr+oPIO/ix0oWL+YK5irgpJmyMjI3krxYm5/zXas146cP6CiN3QPaCzd/BvK6Jj+4r32R5mTMEHGLBosX0X1kCU7w39S6GSLd8IEmbR8pPIUw/EpR+Olm38j2XJ8vaZak38fK3g2S5+glkpRZHLnnzZivQTvEENlk+6xj6PArFZtgbEJi/0JwEsRXrRea39UhkqmQqvhHk27eEgZw41b9oVSJM5cPVbGLR1WSkYIWdimtAT5buEg5R2DdYm5siktUUbF9FNyR1P7oo0wQB+zaIiSNw4M+Ul+Mq+9WpcYyk+GhHVS65CpK0dL0tF4wb2mWxBmbdvJFPlyQTclBzI0HNPdV/fz/jM75NuFA2XZngjdn0t9hiw17eJhZVQPGcqhs3uU8VepHUWU7BTvo5hjNh7zvPdRY0yc6TenUvDAAsUWCh48COFuN2P1WJOLcEziwckzpYt/Q4Ew3pMKtMew6mg+u5p0mFtHCRjs3f/8olyZsHyEDIvsUUpBY3huLEB2ZWyUboGNZMLy4cpar/BOgRw4u0spJGK2hRgeoiZCrzU/Ku8gc54RGPug5OkyKNRyBQ88dpbuXiBd5zaUVl4fqofMgbO7BRYmN4vylFAit+CawMJgctxo+XbRQFmyc7609vpQvonurw2pc7MwT2bEfyd9g1tZpFizRsEDBVR23nmJ3hGs2gmrclPlct4F6RfUSqbHjzG1G7fZgACuabi1d/Spp0KzYWFtqkBABsumjn511Es/rlnMU/AW6+T/iZzOOa53OMb+9OUT0m9eG4tCD0Lg0DeolUUKHix4Tl46KtvTN0pQ0kypM+FFaTL9LZm4fKQSNmLxoPmPeXztwaUydvEQaTzjTekR0EQJrXUbC4UyLLY6+X6ihHq628r6rBQ8kWUreLCQR+jHSStHqheZ0I1zJHJboFrQweINymxjYa2UJVbCePnCQqvgstrH3z2TAK53Wyh4zl8/q6zSUo6tMbluOXrhoIyK6a9eyDEneFKBYHXaqtHSwquaDI3oLBBq2bNgzoaAAYKMEyo0k+lY9Qgj+eOyoTIotL2yTtXM2fBk+W7RILlw/axec/FsT0pdJX2D2wheGM0prOBpgzl7jxUKHoSQwFzcxvsj+Sqiuwopcu7aGeUphrBRWLvk3LyorHiHR/RQnj1DF3SR9l515GDWLq0iCd4Y3eY2UeFh8EJsrigFT0QPmbfB26y3Bbx9dp/eIt/E9lPrN4SgK6vgOQcjiUHzOsixi4dM3itl1cHfLSdwOf+SEo7NXT9NLFFCwlq6a0ADmbhipFKIIgwrhATtfWorC1kYPekWvK/NWDVWCSzg1QbBjKkCgzwIFCzxCsP9CGVT8pF4+WzOx/LJ5KrS1b+hJKWulH2nt2vXLPszdwjCxoakzJI2XjWk+axqMmPVGCXE1W0P5oBWsz4SeDOZu1c1fVAKnqCWZSp4IKiFF/GQ+Z2U8GrhzlAJSJohQ+d3klmrvy9TqYz1WKvZH6moBpa2RdMm/nU/AraSn+BagtHn9NVjTN6LmN9DNnhJZ78GyhvD/YiW3SMYxyK8f3Ovd6VzQH31TCx774pvwbsiPGq/XNBdAtZPNzv35BXmSvS2IOkW0EgW7giWW8U35fqtK7JoV5j0DGqmPCd1W4X6MZ+Mju4v3okTSnn56O6LzwgrG5Q8U76O6mORggf1w3PYf91k5fWFdiF8K0K/wiMaaxCsRfBOuuX4OrVWwtw3N2mydPSpI2EbfbTX4qnLJ9T73fRVY4y+zxm2VSl4TsGDp5VZBQ/WNeAAz8h+81qZDb+GtgyP6qmeFcbeLQ3bwu/lJ4BrGOu+0TEDlNGmubxR8CwcGdNbGYQfOX9QydrgwTUyupf4rptUav1QdPe2koVAaYP1tbkC4+hR0f1KyTYMj8P6AffLoay9SiH8VWR3qTfxZekV1FSitwUL1h4a2QnWJNvTU2T+Zh91/bWY/b6MX/6VuiZ1683Jz5ZpK79REQAsjeSgFDyxg8pU8GBdfThrj0xaMVK+iR0g8zZ6S/hmf2UU9v2SIUqhirWaYdG8jwalzHR42FzDtvC7PgG3VPDgQeG3frKsPrBYv7cG32BBiZw/rWZ9KKutiOlpUI1LfoWyIihlhtSdWkUazXxdZq/+0a79wMSA8WjjXUMOmXHphvsulCQdfT9RFkK64frg2dXZt6H0D26r3B11G41FBKxLO/k2kLlmFBvWKHgeL07OKvfGxjPfEHhQILQUhD/YZlgQXudK/iX5KrKHfDr9VSUI1/WSwAvdrlNbpfnM91WoKsPjDb+bU/CALSxtZ6z+Tr6O6i3d/BpLg6lvSMPpbygXYsP6dL9D0A6PiI4+dS2y3NE91trPeNCV5VFnbV2utj/6Dlf5noFNlScMxtRUgQIWMZabe70nPusmicaiBNfctvRkaTT9TZm3cU6pKvBytu7wCiWkgDLUVLFGwYN6cK1DOINwK3XGV5FWs6srKycsDLBN9z8W1fBYG7fiK6k7sYq080YozL3a5uCYk5eOSBuvmrJib5T2d1MfTCl4wBOW3/1D2sjwqB6SdfWUsqpDnH9YpIVsnCUdfevJ0l0LSt2zYIp44rAKgwKOhQSsIWArBQ/qCd3obdZLE4KVoOQZypsC17wnFQhYRy/qq9YtXebWl/WpK+3afXgsdPVrIElHVpkNRYLwfBPjRkqLWdWV9Zvuy9CchInS2usj2X4iRTuXaxp+936JTFk5WoYt6K48ejS/G/trjYIHzwLkS+noX08ZxSzY6q8848uy+MPvCOPSwa+O1Jv0ogyP7K6eWZp2IMQWPMe8E8ZZ5GFvTsED4Q6ud3gSwaqx9awa8snUqtIzsJkgpJ2pAgvDXkHNJG5vpN1fKvHsxbuCJxY8p2Ex2zOwhVzMzdIK2cpikXH5mFLuwLL/nI6XC8KkdPFvIAND2xkVBkOx09n3EwneYF5IYI2CB+su9AHr8U6+9aXupBcleMNsJfDUXa/gM/a7++CuJBxcIc2mv6uuxZANswSGZZqCewRCnZHRfQShjSwpphQ8OG/oBm+lUFq2O0Ip0LAewf+MS8ekR2ATZbGPsDLYV7egLRDIfm1FW3SP52f3ImArBQ+eY/D4WLlvoUlAuF+OXzosbWbXMLuvyYpccCOMVRGeCfKTZl7vynIzVvEV7eKV/GyZteZ7NReYi26D5y6inbSZU0NmrPpOq4DBOxkM9CDv8kmcWGo+wXoh5Rg8Uhqq9Y6pNluj4MFchrwfA8PaS4s578vE5SPU8x3zl+GchnOinYjcgnZ8MuUV6exfX7bp5KqFZxKUV3jGwNPMXDGn4IGHBELpTlwxQr5c0FU6+nwsH0+qKh18aqlw+qbqR1sQ+gttOWtBW0zVZW4bWGEtAg8OTyt4jq8/skoGh3WUJbsWlAp3bMgDa8sxSwbJwPB2si09RTTKIBg0T4kfJZ8v+Mxo1BrIDcYtGybwnsnONZ3j0VIFD9qGMcN8iQhGWO/WHv+CTIv/VmCAgnHV+491yE8eRb2Cm8vHk19W+bexRtIU1BW3N0Z5+iQfsUxmYUrBg/bh3QKRYn5c+oUgxxHeS+7cuyNg5ps4UXoGNpGV+xeWUv7evgNj+RlqHXL0QsVzImn6yL8VJ+CWCh5YKoxZNMjsSyLw5d2+rhbJI6L7WGQNUHHkzlEDJgi4O05eOUqmxo+2OB9MeVqPyfnSjXPSK7iFmjzu3TcdhuFGwRX1AtXSu5okHFqh91IJbxmEKIFXDNpvWJRnwEZfZS0IgXBZxVIFj5qUr6bL4LAO0mjmG0qohgnPnLWGmqCPJ0i9SS9Li5kfyF6DXCNXbyHMSCeZuHy4Xv+MtdcSBQ+sgOdt8lIWAgczd6nQE41mmVfwoH9K0D7bckG7sTaa+w19OHbhkFoUI/aupxVcl7BCaj37Q7NCPLA6fG6vtJr1gXQLaKi30MBiFcrFuhNflu8WDtQuXHR55tzMVq6/I6P6lHoY6+5nrYIHx+LlD5Z99aa8LL0DWqq49Lp16n7Gwh6hRmpNeEEpG5EcXLfAcgshg4bO71ZmKBLd/U0peLD4gcVw9+AGsvVEst6LA+YfvAgMj+4lfcNayJFzpYXiWHghVMCkFaMsaotuu/jZswnYQsGDaxSK2Ygt/mVaemsoY99NxxJl6PyusnR3hNE5QLOvu/2F4nvDsTUyfsVXsnDHPMFz1F4FQhzEuR67ZIhkXTtj8jQYk4Xb50k7nxoyZdVo0X0Zw4GwdoVXADyAjeXvQHzsnkFNJXaX6Rw3lip4wCk4Zaa09akh7X3qKMENwgeinaZKTt4lFWKz3uSXBB4buuEhcCzinsPbCM9yc3VZouCBQmnRjjBlxYiwvW18P1IWxqbWbmg/Xj5/WPKFCuly/oa+V5Sp/lm7rehukQpBlIwEvA4IY2xt++y9P8Idt51TU5bsehwyx9T5sMb5OqavfDLpFVl3ZIWelTmux76BraXJtPdUngdDwR6upZAUL2k3p5Ycv5Sq9Rozdj5rFDya4xHSpPnMasrzeNvJZJPrInj/d/NvrPbtEdhMYC2rWxIOx0nLmdVVqCGs1cwVUwoehFps71tLxiwZItcL9NfFYJR4OE5a+Xwgs9f8aHTeUNtnVpfUc/vFkraYayu3uy4BWyl4MOcjVBaUteYKvOjGxA6WYRE9HRKmzFx7HLUd72HIgTNm6RDxXTdZWejb69yQJUBI3cWvgSzeFab3bmN4zoePHqh3R4SAhwHEiUup2l3wrn8gc6e0mFFdRkT2MjqfwIscoaRGRPcymR/WUgUPjFzgmdzBt560mlNd5q6bot4Z0RZTBdfVvE2zpfaEKjJgXhs9z2cceyhrt/QKaiGLdoaaqkZtM6fgQV9W7ImUyG0Bqq2bjyWoEPod/MwreDBHoy29g1rKwu2lo8qYbZyFO2Buxxw/OW6UMl608DC32Q2h8pB39Puln6tcvKY6hmvHf/1kaTHrA+WFomuggWfsjDVjpKNvXRUtynANC0UQDE77BbdWBumG6xTd81qj4NEchxya/UPbSOMZ70jU1kC9kM2afTR/ITOFTKP2hBdkQGhrFb5Vsw1/j186omQW/kmW5X41peCBR//ElcOlX2grdQ/o9hvKn+MXU2X04n4yNLKzUr7qtgMMNe+jyO9j7t7WPZaf7UvA7RQ8mAiPXzwi30QPULHDzeGD1cLaQ8uk9eyPTOYrMVePK26Hpwn6byohui36hXPEH1wsrbw+kK0nkkxWiQXBqgOL5NMpr8rn87tI4R39XCJ4GPcOaiGtvKuXUpqgYkwuyDvTcnZ18UmYVOa5LFHwYOKC++PQ+Z2l/rSq0jektVzMO2dWsIGTPj72rLT1qq0WC7m39eNoIq49BEJtZ9c0Gef1cZ/uy0EzOXjgFQTrDvxFbHK4DVui4EH9ELSPXQRBe9dS1sVlArRyA9qGF+vWsz6Us9csi+Fv5SmcdndcC4iT3smnvvywZKjJBTo6AcEiXrCazn5H5m/x07vesFhFWKLa46rIwND2RoVO8LJBmI+23h8KBIdllfIoeHBMn8AW8um011S+KfStrPJ4zFOk1rgXpMHU10qFAYQCCIrJVrM/FCQxN1fKUvDgPBB8Np/xvnwZ0cVouE2EAEBS8aYz3xG/xMmCFyHdAsVV7I4QZYllKjyQ7jH8TAIgYAsFD+IeI6/Wst2RFglKkAtm0ooRMn3Vt3b3vHS2UUYeIqxZMH+Ymn8q2m547SCc5qr9C82GUk3PPib9QlsrY47tJzeUsjAMSJquvDGDN84ymjsEuda+WzRYPg/vKBkmDFMsUfDgGYF8bQgjC09P5PTA/GZJgafKrPjvpdG0t1V4EsNwWnjRQ55DCESwhjJVzCl4MAdjvQIvS6zb4MHQzq+mRQoenHftgcXSY24T2Xlqk92U8jAA+zysk0RuC7IoPJkpHq62DS/2yLvU3ruuZF3LMLtuidsbLS28q8mQ+Z/J1Zv6ilcof/oEtZJ6E16Wvae3Gx0vhJeFl1vA+qkmr63yKHiCU2ZJoxlvSmuvWnL2aobJeQPRDXoHtpS6E1+U9t51VIg03XkGuTcQlgoKVEuUfmUpeHD9j1v6pXw69TVZc2ipnkJMc61cu3VZus5tIC2mf6AE7obCk9zCa4/bkmze80lTJ/+6JwFbKHgg4ET+SiU/sUChjWcwDFMgPzlx8YkywT0J6/cK9yLkFfZeh8BjB9E5+sIr0oyhCTx9IMDGPIz3HKyVNAXzzb4z26XJ1HdlwLy2kpN3UbNJ+xfzNPJAdvCpJ+sPx2l/N/xgiYIHiqndpzbLZ34fS5OZb8vklV8rz0nDuox9B1PkRGk09W0VYhvfdQsMaKauHCUjI3uZnYPNKXgwt2MNgvZCfojrH2H4LVHwoE3IXzQ17mvVFngz2KOgbZvTEqV3QHNJPe95XhLrj6xUcr/IrXNNGmdgLJOPrpaugQ1laEQnOXh2l96zHgZh0+O/labT31MRUgyfpxg7jP+o2L5GDbV0x9ZaBQ+UJnH7YqSV10fqmW4uWgjyFcKTCN4+PQIbK8WL7vmx9kBYtK9j+piN+oDjylLwIEdQwuHl0sGnjkyMGy5Q8hqWxxGfpkvTae+p/OOG+dPxPgrPPE98HzVk5Uzf3U7BA0sxLJa91o6ziDMmhAs3Mn9asM+y6BjuZB0BvCQjiW+3uY1UrFVTR2NSgwC52ex3Zdnu+Xq7YqwQJgKLj5beH5TSaGt2xvngvdDF71MVQ1vzu+5fSxQ8CPUHa9x6k16SlrM/EAhu0AZLC7yNBga3USEddDXiOB7fIbBuO6uWso40VScWHeYUPLrHI3SENQoeLJ4QoxyC9mPnD+pWZbPPSth/IlnaetVUYfRsVrELVAQFZ0Lqcmk5+z2VG8xUk+G2DiHep1NeU2Hzzhl4qd1RSpF4FSKtd0ALwYPXsGDRcjL7iDSfUU0lDDbcrvlurYIHL39Hzx+UhlPflKYz3y0zlqumfrwszN/irxYoUKzAel234F6CZU6PgKYStTVAd5PRz2UpeJS110ZvaTz9TZX7CveLYcEYYEH18cRXlBsyXKN1C+7HQ+f2Sp/gViouru42fiYBUwRsoeDJvHpKwjb5WJyoEh6kC3eEypcR3WXbiWRTzeO2chDAM3Hc0uEqsTyeiaae+5gXA5KmSXOvajJ26ed61qY4NbbPjB+r8pEh9rehpb6meYt3hqlQlshDqRveTbMdfy1R8EDgBqFKnQlVVCgWcyFddOvHZ+TMgQfDoczdpYT6mEeRpBbKKORDMlXMKXgMj0X4TGsUPPCsGDivnUB4D6MWe5T8whsyNLyLRHmgggfPZli6jl/2lUlPXXCHUUq/4LZKKbJ8b3Sp6xfhWjv71pdaPz4vuzI2GzUkwnN7eFQv6eTzqclwcNYqeCDgQ0i1T6ZUVR55GFNT5XHo2BrKchbx8vE+oVswF3ivnSA9Apqr8CW624x9LkvBg/un/Zw6Un/Sa3Lk3D6jHjgQ0H4V2UvqT3lFlu6J0IZb0pwHbUH4xx4BzeRy/pMQLprt/Os5BGyh4MFzZ83BZcpjzBJyuP4u5Gap3Gzw+GSxLQG8l8BTqLNPQxUqE3NZWeX+w3tqbm0xs7p0C2ys8pTo7otwS5vTEuSTSa8qZZGx3B0YT4Q/7Ta3sYxb9lWZwnRzCh7UA0OVIeEd5ZPJL8ug8A4WhVPTtBf9hnC+q18jJVDW/K75i+sU0V26+zc2m1fHnIJHU6fmL4x1rFHwoC3rUldKN79GZtuiOYe1f6HgQW6iPoEtleeotce78v4wzkRIwYFhbWVH+kaTXUE49unx38mnk1+TgKSpcrMoX29/KEjHrxgmjae9LTHbQ4wamqgQlclTpU9QC5MG6dYqeCBPRA4qRPUZGdNLpQfRa5zBF3jJj4juKbUnviDDo7uXijyCe2xT2jqLIzmUpeDB+mZO4gQ1L8xdP8WoMRicAZbtiVKG8/CiOnNFPzQi5FbwpkMeY76PGgxkJX51WQUPHgDGCmJizlk7XnnlGNtu7DeVMG/teOkZ0NToxW3sGGf+DcJ0CD0hSECCUxRMBqbyn2C7qWK4HUKLssZAtx4Im+FR02xGNZm04muTgpKSu8XK2hQKlY5z6invGcO60i48FjC3mPW+Su6uu13zGd4xMTtCpKX3+ypck+Z33b/mFDwQ8OChjaSssLCbEjfa6MNAt07Dz1DwwPoTyd6NFSSsHb9smAwO+8ykq6a9FTwYW7zMdw9oJn6JZXs9GeuDpb85SsGDviAZH7ySyhKSGbYZx2AOwD2Da8eSgmsfc821ghxB6BsU1INz4q9uwQJl3NIvpd2cmsqTR3eb4WdcE2MWD5YG01+TH5d+WcrdFUqTyG2BghA6cCPGd2MFAi8koUZC4ZtFucZ2UaGgkHhSNz+U0R1/+hF9W7k/VmqPe0HlmUCerLIK+EA51cnvU6k3+UXpHdyqlFUvjsV9GLh+mnwV1d2sEKksBQ8sTkbH9pNms98R3zKuX7XIP71Vmkx7V4W9M5ZEEYvDGau+VTl8jCnOyuorf/dsApYqeDAv4J+xAktHPCesUbAjl93IqF4qj0nJT895Y3W7wm9YJ2AeRXhWzN945sGyDC8OxhS26JPhPGvYz9LbH6k6S/9ueKSo8K8IpYB42bBOM1VO55yQfiGtpO6El2Tl/phSFqVQdHyzcIASMAcmTy8znEtq1j7pGdRYvBPHlxmmz5yCB3ne4EFRd9JLyqAGOSYtWafp9g8KnjGxg5Sng+7vms8Jh5ZK97mNBeEmTAmc7K3gQb/8102Vz8M7CYQy9iiOUvDAMC2v6PH6w5LrE33Feh7rHKxDLB1jrG8Qgin39jXt2gL1IO+lYUk4vEJazH5P5SEwt5ZauTdG7dvKq6ZkXkkv1R6ECmo5q7rUHvei8kCG55axErllrjSb8Y5sPbleWVQb28daBQ9i6XfwrqPy74Rt9hF4S5ZVwN5rzTjlcVxvclWV2xLvAoYlNWuvCre78djaMtupOaYsBQ9CFyFsXLPp7yuBSVljOG7JF9JgxmsyYflwowZyum2BEJfFMwlYo+Ap61rDXOK3brKs3m86f7EuYazh566b/JMBp/F3Dd39nfkz7n/MdfDSwzyJ91YUPOc0n42139ycbbgdaxv8N1fgQYs1RXuf2rJib7TJ3ZGreNaasfLp1FdlzOIhpbwgMU7IFVRz3PPSL7hNmesarHfGLf1C+oe2LnMNYE7BA3bIg4ycZ629a8iSnfO1zxuTnfhpI9bJUGwhSgWE2MZKxuU0FYreJ3FCqeeN7v72VvDgXGjLl/O7yZyE/8/eWbhXcW1t/H/5bt2dUoq7u1txKFCkpUgFTUiIkgRNCARIsODu7k5xL0WqtLe3t967vue3wqRzTmbmnNAEmmbt54E5OWdkzzsze9Ze71rvCu6Lu1/F+fygCB7edfgLsMUjlSFw+g+++E8I8gjyMTrrs+R8WB97H9uHVvCM/VrkuUCylYya0fkDAzPYeMaoIUX2DnWbCFoOf+5OfXpEhs7vKg3iX5QFezI9z5FtqBeO4kr2tjRf31xxCZ5Ln59TuWcCr+JWjPS18cGCQCoIqIYJr0r9+Bdl1o7JnsG8t775VJUcJq4YHlHJwY/ggYgduaCPBu5mb0/3zCSmT+uO5UubyVWkV1YzT6INqcKhOV0la1uK/HTvmuqFtf8eGgJliuBh8Nl2Zr0WQ8P5ufzgvCIvXaQBqL/jMIw4Dj796rJMWDpM0tbHyH9/KeoQZWChqFvj+Ndkx+kND+1i/JUDMyhBKMzZma4TASJG41d9oJqdM7ckSfLaMZK3p0CvlAF15eEFMmn1KBm7ZIh8vGSgrDycV3h453dSfccsHqxOjqUH5ijWx64dUAcEUX04oievHycnrhWtaeHsjGuGTnTDhMiFCJlME8FXK+4p1fUNf8GQvbDpxEqVfGqU8Jqc+eyYc5iQJYbY3gvbpE7Ms5KxPjbkN+ePSATP7bs3VfsVZzYGCo6S4jaY8TH5Q1T31mvbgrTbtdJk0mshBejD1y1tgofjOY52Ile+/W9whGN4/6L5u7QJHp5rpBaHze+pknpEbFJ8lohpHHBejZfotjPrZEz+YHl/fk/V9B82v4ckrP7I19GKAUPh7XFLhmhEVfzKUTI+/11JXjNGn70JS98r8oKkZlP71NrSN7ONFvH16gvfMVad/uyYRpc0THhZn9HwdSGLxi4dopKBg+Z09nUuYHClrB0tzZIrFInkcvZZ3AweIltiVwyXajGPSY9pzTwNDvbNWETaujo1Yx+XzlPqydFroanSTh/03r56QDpn1NUMOed7r6UfwcP3b01rpA6mGVuSvDZVbI9c2SdNEl+X1pPf1AKF4StyP5AKTvTavvPbw3+2vw0BTwQiETyQ58hx8p6lQP3xa/tDJrs8L2uP5QvOzS/v1WEgMINxJmbpMJ2oeE2cnMi2kXl9A2W9PDv9N/kSgnrH2Y1a5yR2xfuacRizbJiO20zcZ25NLrTlyHJCZhHZAgoKQcUzAAAgAElEQVSBJq75SI5fO1B4JvxOYAe/I4WJrAkSldTUWH9imcSv/EBtGWq38K7AmeXXmLy1z6guc3Zm6ETUbz2+z90zQ5onvy6tUqtplF248+zGV1el98xmUnnMI4H7IyDn7Vlt1anh2K/hxw0ieDgudUwaTXpV3hzzL8nanqIEQPg+Iv09V+viZPoSUWQE9Z7RUusKBWXOlDbBw3kwaUW+Yu2xJYWOgkjnV5zfS5PgYd5x4OJO1ZYfmN1R3p3bTTNMmPx/8tlRX/Ls0p0zWvdheG4vDQIZNq+HjFrUT8kIvwCV87dPSeq68YJ9MmnVB/qMYLfgRBg2v7sSZOFE6qRVH6otcvLT4Pou2PhDcrpJzZgn1IFBkEp4W398hTSa9LLUjnlWbatw295Zf++F7VpzZtrmeF/7orgED+MLRErVcY8JtXj8HLWMw8xzGie+KjVin5TMLany/Y9FM6Tp60+//iT9Z3VQ/BmHg5ofwTN7R7pKFzVPqqTZcBzfq8WtHCV14p5WWSWv5415EX35aPHAcicj6IVXef0uEsGj/pPTjv9koCw/VNR/8tW/qb9D/eKCORPvFOSl9Z28brznM8m4gW3dOKGCbD21tkzCz9yLgLSMTRNl/NJ3dYxkHKbmyewdaSpHzdhBYx40Z0eGxK0aKWMWD1LH874LOwrPm/GPQDh+J9t17NLB6jDGr4JEWtLa0fo9tf3I/CVS369B2qSsHytdZ9QTAkD8GtcJdYW2aTV1zkf/whu1qdM2xEi1cY/JwNkdPaWs2ebuD9/I7F3p0i6jmtqg4fvh7yCCh/fawcu7pXliRaky9jF5Z07HQGe21/51LnzjmM43/QJsCG6YsSVRes1sHphJSX/2XdwhBDPyvo3UipvBw/7oC3623pnBfYl0bL/fS5PgIVj7/K3Tei8Ozukig+d0VluEoFTsZOxnr0ZWLpJjo5e8I8xBkJUfkddHZm1PVZUWr2A2fA75B+fqeDJxxQiV9JqQ/57wvsfvsnhfdpExhiCKzlPqSzrZJfeCab36w3sYcrr6+MdleF4vz6CfHWc2qARwi+SKsuJQXkDA3Q7pndVSJq7yJ06KS/DsvbBVesxsKvXjX1LJX66pV2Oc3nBihQZ71Yt/XhJWf+xLxpLhm7c3SwZmd9ISCF77c77zI3h4b/Sd1UpVWbBVCKrzaptPrZaOU2qplBvz1fAG/vjBCuq3+dc/D9/O/i49BMoMwUNUBSmZDCRHru2V3L0ztYAschZOw9AgvXTE/N6F0ftEa8Eo1ox/Utffe36bs3rIkhcWUgwfR1EjI2TDv8EfTAyIPn8/lyLh7+pkAbyI/iC6ffqWeHV+ohlNYxKYv3+OvJ/XS2qMe1IaJL2gBXWdU0FfEbmMEQv6SP2JL+rvFPnc8slalebYdW6jXP3ysuy7sFW6TG0gbdKqyu7zW5zNQ5YQB2nrx0vT5NfEK2reWZmXDCRKvdgXdKCh0Fl4o1jatE3xKgPRLq2mZ0YA22DsXLpzThrFvSpD53XzjAAOInicAbbKuEel+vgnNJrVb1IY3kf33/RDIyF8BkzWxflPscDk1f6SguoEj1CDx33c4kq0sa0e4+oBaZrwumw8sdK9uxL5XFoEDxjfvPupvlSaJLyqBt+1ry4Lxuz526cle3uadJveWA1r50R4Xsi8oWhfh4xakn8wRzCkv//pWzl/57SkbxgvrSdXUY1Wt4Yxzkgm5b2mt5Cj1/YrKQYpQObPuhNLpXliJek+pWkIwQOux64ekLqxz6mz1umD15LnLmfHVL2/W6dU9azNxDj11pSGUjvuGTWSvPbDdzz/SKU0THpZo7a81isuwfP5d7flrSmNpPbEpwViK9whwd9oEGNE9clsKfXintdi6BBsGOx+DfwGz+kiCas+LFIbx72NF8HDMU9+ekRapFRWxwxFwL0a9wkRYS1TKmv9rpwd3pJwRLO8M7ujRvFGE2HndSz7rnwhEETwXPvykkzdGKc1UXhvfrCkv4xY2EvtFAclHAYQQEsP4HApMK7Jjhu+sJfUiHtCPs4fqFHxzvrOkgnU+uPLZMCs9rLm6KIiz6Oz3t91iW2GgxkieMsnq+Tb/97VCECyCwgK6T2ruYxY1Es1sTkH3umZ21JUXoSs2i7T6oVI2l28fVZtvd6ZLbX2TJdpdXX/vAMI7qHAMPtgDG+S9JraEkSaerWsralKlKyPQBww3g3P7aPZORB4Xs4InD/U0SDDZ82xxWqXeR2TCd9Hi96R5omV5eiVfZ5jZhDBg63XN7OlVB7zqLRIflMlToLGXa8+8N0PP/1HyAgLH9+d9RlLic59O6udnLt1yvm6yPJBEDzYcQRnkB0OkVrSrbQIHibDUzZNlOZJFSVm+XtC4BQ2C+MFhbRxaGz7ZG1I9Cjvo2UH50q79BoSt+oDfS7YD44WZJU6ZtSS0fmDhPoE7msHydltamNZtC9bIOd0bvDLDxp1jHRyjQlPqY2CreI0rn+fzNbSMqmqECXq3p+zjrNUSTOceWMe0VqbZOKHt/QNsVoDp0VylUD5NWTLwIQAHbD3asUleBh/qb/TKqWaBp6E75O5B9Itias/1EC0LlMbyrpjS4s4msK3W7w/W1okvSkXb38SGEHuR/BMXjtO6sQ/K61TqgVigiIF9l6b1Bq+jswl+2ff68tpz3EjvO/29z8PgSCCR/0nR/NlZF4fOXJ1T6H/BAeu03j+T392QkbM71NIljPnmbV9svpPmqdWlN33SA5nG2fJvATn8Ad5/YpE4Dvr/F2XvCPP3zwlvWa2kMxtyToXZF5H0CDO/tH5Q6T55AoaJMI5kGGMMx+SBNK4SfIrsvrIosLTYz6zcN8srY3RIP4laZbyupYMwFYjoJY6xNQB23hypXSb1ki6zWgofn6pq19cVPuu58xmcueuvwQj70HI6apjH5EuU+rLietFg24ZW9/N7S41Y5+SjxcP8pVfg4giYIJAEWSDvVoQwYNNhTO+yrh/SaOEV3UOHvT+8No/30HMEKiIveHVuF+xrTpn1JcVhxd4raLfPQiCx+lLl4wGmvHq25n7/KG0CB58hKuOLpTOU+rKoJyOsvX0GkG+HL8Uwa8461PXj9PvnK5zLU9cPygjFvRW5Y0NJ1eoLw4iiPp62MFkkW89vTbkHrvx9VVJWPWRBpmcunFU8Odxr928e0Pvs2aJb2jAOFJmTsNvxByBOoB5uzMD321k5yB9VmP8k0oYsf/wRhYc9bk7a00bfzIagnvU4r7y3oJuvgRscQge7uGl9yTOuk6rL9s9stLwNfGMEtTWOqWKzhmQbca+C3p+CHIbqkoOSWq3h5+z87cfwYP0X9dpDaThpFd03OJ58WrUgAK3xomvyaJ9s1V62r2eez66qgzOR93n8k/5XCYIHh4O0v7fnddNJ+gMSkyU60x8RvUWnYuhmSdHF0jq2nHOVxqtxUug8aRXpVHiy2q4F/7o+sC2i/bPFieayvVTVB8ZgA9e3imTVn8gE5eP+Ev/YpcNl4yNsVpUM5qDY7wxcFHfBF3V8BciWuVMmJiUOw0SAyf32PyhUjfhOT2e8xtLficjCEKlZuyT0jezlWLN4M8AwICDUZF/IEdqxDypjD/bhDciG4bl9tL6Lte+uBj+c+Hf4I9RVHnsv6TWhGfU0YERVfhvc5JGGBBdD0NPxKDjDCvcievD59/elA7pdVSj1UtuKYjgYdI8Nn+w9oX0SAiA0mo4QTjH9pP96wVhPJRmDR7n3Aoc7W/pJIBJb0m20iJ4KJqHg7BR8ss6EeE4zv2vEnj5g1Vib0Run8KIWDKrxi4dKi1SK8rmk6s1C8Z5gaI1+s0PX+vz0CylgvCCpekk4NYn0jKpsiw/NL9Iau9/fvpOo8u7Tw0leDTr7NRKqTfpeV9j2cGZZ+WdOZ2kyrhHpFHcazJlU9yf9/+WJJmxOVESV30sNSc8LfUnFaQYO9uGL3kWcSjXjnlG0tbFhP+sfxeH4OEePHX9qNSOfVaqj3tC+ma2Fpw2RMzwj8gNNJu7TmkoDSe9JCMX9NbMIcYm53p4duIeGYUTlugnL11oZzsvgofrglYzmTk4bWdvT3NWD1nSBwxACJ5GCa8oERiywr0/uGdwIvfJbFEqDkOvY9p3ZRsBP4KHdxp1p5gkk1l8/asrWsSyfXotzcpxzppsDdZBssdpziS5btzz8l5uN6G4vVe78vmFe9ksH/tGZHpt53zH5GHF4VwhSvyv2C3YLPErR8rSQ3MjSgU4x2bCMXRuN8nZTuHUP6PZGIuRcMrdM1OzKx0pSN5Jv/z+i0qD9Z/dVjpNrStE9znN+f3U9SMq6dA06XUZkN1Br8E333+hYziTkM++vqYTmuZJb8iRq0WJFPZDdGGT+Ndl78Udhe8N5zjuJdG3XabW14yZ3pkt1PYstFm2JKl8HhkWXEckqg5d2RM4SZ28bpw0mPiSnpeXPRVE8OBkoqYHmt0fLOyn5+nua0l+BrcuGfVl9dHFhc7A8P0/CIKHY0JcdJvW+L4JrfB+u/8uDYKH65q+PkYaJ72qUd68837/vcDewqZNWjVa6kx8VgbMbheSRYUMWvPJb2jmGs4UbBWaPi+//yK7zm6R5skVNYoW252GPTQ4p6t8tHBAkdpPvDvJgodgOHqVrMI/CR4CXlolv6l2P3ZhUKM+Ub24F1T6B8nh6ZsmhdgtBNh1SKurcj3UhsT+8mvY3p3S60rHtHq+Ud/FIXg4/yE5XaX6uMc1eImsJMdmYYnSwaDZnfSZa59eW5YczJFvfvgq8Jl3+n7zmxvSKrmyzN85I1Da14/gYYxR4ialuty660+iMZ+FCGJuCgHo2KpOP1jeuvuZ9mXezumBfXFvY5//WQj4ETzYvtgY+E8IgijwnyyR2hOfURUCBwXsFRxz2PJO4/nZfxH/yWvqP/GK3GZd7Pz8/XOlefIbgTJKzn7Dl7z/j1zZU3L+k02x4tgN4ccK/xsSIWn1x9JjalN9l7mfL8ZYyN/u0xuHyP4jhQiR3ntmS2mU9LK+B539OuMxz/Tk9RM02KTXjOb6GbKccZZ1kKjK2ztDasYUyHGDf3g7+9kJrQ89ZE5X+Y+PHDfbENyAWgj+E4I0k9Z8HDIGY5NMWjlKGsW/JqhD8Ldfw7+z+/xWnYMyRnnN34IIngt3zqhkLX3pmF5XbSy/Y/3V7yENyOb+YEH/kMBK934fBMHD8bQviwbKBwv7Ry1V5u5n0OfSIHiwNdYcXaxEwuD5nVXFCJuAe5MlGRuQhe3SasiGE8sKs12USMntJoPmdpQDl3YU2NX3sk8hKZinf7RkoD4zkDzs74///S5L9ufIO7M7KXHk9i/xO8/SpFWj9N2MDeA0fHcEiLdNqSbuYH7nd/eSsal1ahUleDjOjM0JIc/A1I3xWg6BDLYh87oGqvJAcKEogEyhX92f4hA8nBP2RpUxjwnzDu4RbEC+Q2WGrGqCbbAnCDomC4r5IuMv+AQ16gxRo2hkbh/NxPJb14/goTZx+4xaSsYWSCn+aQe698X5QgThE52/e3rInM1Z78oXF1Q9gYSASHajs40tSw+BMkHwwMTO3TFVHwZeNjC8PHz1Ep9XJ6gDDw8R0U5Ef7obEbI5u6dqFsmeC95Futgv0Z2tk6spY+zePprPOHJ5AN7L7a4TCiYV9/sPNpaoXSLOo2lElCSu/kiaJVUUtK7DG5GyOTunSvLqPw031lGSY/NExdFN/jjbY3As2JelRdKbJlbQKBP3YMOLk6jYamMfl3apNZRpdrZ1lhgCpMa2Sq2qkTHO9+FL5FKQnsK53WRSBY3IjFn+vjj/Jix7T96b20Prf9SOfaYIIRW+PwaXt7PaSLPEip6O2iCC5/Y3N5QcehN5tqQ3AqNUw49b3L9//x+ZS0ek6aTXfcnHB0XwYKQvw4mQ/IbgOCzJxouK4muQkEQllUTj/oSUJSKJCFUm5k4rMBo+VdkcouD7ZbbRaFjOceWRhepAQeKEfoU3xgL62Dy5srSZXE0nChhYu89vUkcGY1F4UwLk0yPSf1b7kAk22XJ5e2ZKw+SXZdmBollpzn5wPHJMolhwRnSf1kzrPjn3P0vI2G5TGqkzkQnXkat/yhM5+3GW9Of41UNSY/zTmkLtfO9eFofgAbelh+br80c9LTRqD1zYqSnvpL3zmeLJRH59nP+O1tCKWfG+1t9yH9PrM9fq0OU90nVKIy3k57UO33kTPL+pTE/D+FeV4PGSJmBbrqlD8DDBIarXq4Hb/gs7tWjx8kO5XqvYd4ZACAJ+BA8ZqUhwEK3F842jpO/sVtJ9ZmOVCnJ2gpxo1tbkEBKHZ+LsrZMyYmFv+XDx24UyZc42zpJIU+75wXO6hmQpOr9HWhKwkbNzirw7v9t92yuOnTN03luStS1Zo9AiHZffN5xYrtKMM7cmepIEZAKmbZigBcjd+zt947gSOJ01g+dPgsdZB4fMx0vekSpj/yUjF/SV87c/CZkk4dBhnK425jGdNDK2uRtjNlkhLZOqyInrhzwdHM76qw4vkFaTK2uBUsiqCcuHFdosjNnj84eqDVJ57CPSL6tVxPfq7O3p0iThNZXPgSAJb34ED+MbxdYpHos8W86uKZ71OsL3d79/k+Xz/vxeMi7/XU/7iv0+KIKHukM9pjeWuTunlvg5lwbBwzyh49Ra+q4nu8YtV0bUOLZMtYmPSce0OoUkB7YBjhYcdGSZcr3DG+8upKvrxT+ncszcxzgR2yRX1WebzO7wBmE6YFZHzUjGnncadTObJr4uBMawD7/GuAapUzPmKWma+IZKD7ltltjlwwWCs1bMU/o8FkivFY2sdfYPsfv2rHbSJK6CRrl7nWdxCJ7Pvr4urZMqC7r3OJB2n92stTvVZsFuubhTJSKJ3O+UXkfezmqt2VDhY4LTP/eSviF513dmqyLkmXs9P4IHtYVaE5+WNqnV5fa3oVlX7u0dgqdJwuty7cuLnteevpDF1i+ztec8zL0/+/zPRMCP4MF/Mm/XNK1PyX2i/pOVw+/N+ycWgsEcPHXtWJWLLfwSPwH+l11TpUnSqyF2i3sd9ssY1Sa5utoT7t+i+QxhQnZQiflPlgyI2h7CVzAwu53WEPIa6/gOiToC+9yNgDzsBIILCXQIb2yXszNDJeU7Tamj8yNwchrnTJZE9XFPSu8ZzYsExjCec02bJlTUjBu/umXs7+KdM5rZXGPCkzp3oWawexxm7sgxKo/9P2k72V96jX1BamH3tEqqoufnRTz5ETzMpxlj60x4TiqPQZ6t030FHjkYRVri2+K6INPqJ3X3oAgest0IluoypZ7K5UXqe3F+Lw2C5/SNYzIsr7s0SnxV5u2eEUKQEYRCuYfaE5+Vpsmvq1+IDGICz1LWjZUG8a8Iahle9wb3OMRR27Rq8sHit3XeznrMuQne2HJqdZFTxwYiK4Q6pDxXTiPQZOLK4dJ1agPPrBdnPSSts7amSK2YZ6RpYkV5b273kPsfO+TdeT3Uz4ZfD/WWO99+5mxeZEkfIEnbplaXjSdXFPmdL4pD8ECwI6NbZeyjMjyvjyoPHLy0q8B/cmGn2iQ7z2zUbLd+yDRntZRF+2ZF9S7HBttwfLmWJlh9ZGHIXMfdcT+Ch3lY27TqqoDCNWDc8WoOwUOwGu8DrwA05qPMYZiPItNo7eEiUCYIHqKqxy4ZqjICDB5M4JslVpImk14Nkf1CfmBEbm81NNywMnicvH5EOqTXlqsBjmsMHDXYM9t4DlzufXp95kXCQFYS/5hg+D1o4cdmIq0ydBOfkF4zW8qWU2t0wuGw5PQLA2B/mP4oJMeUTbGBBA9ZNdUmPC7dpjQRshTcDVxxYlUf86S0SKwkTKbCG7U42qbUUOPJK5PGWZ8I525TG2lEGxMVBgr3P7alaBoEENlYOJODGhNzspaaJb4uF++cLrKqH8FD5MK5myekbuzzKnXSbWqTQK1+Z8dELhCl4CbA+I1rwD6DGhPvYfN6ac0YtySYsw33wYPI4KHvV7+8IO0n15ZZPpkQTp+Ku1TD79wWvU+ufnmpuJt7rk/2To/pTaVu/DMaARGOPc/QxhPLJX71yMIoDDSm+2W1lgaJL2rGj+eORdSpQWZQ3YRnNL2ea4DONJJ9zZMrCRJfRFP+8vufWWtMnDadXBWSWcbkCmnEximvyMaTq/wOp0QTafpVxzyqEVZbT60Juf95FqjRAAlKDZyeM1rI9wE1JAru41N6Hw+a09VzLCkOwcPYiFFUbcJjKt3CefH8h/9jEoJOfNqGcVIz9gmNbo+mcDzSRuPyh8jw+b19x14/gufQpd3SaNJr9zJ40j0x5r2BhnXL5MqKL5mJfo0If2qMjczr59sXv23t+/KHgB/Bw3t49vYMzaTAGJ63a7oW90TCABuGxn1J5sXcHVOKOAl556ExTuFW5Jv82v6L21XikDGJiWBxGscnOKUkbBb28etvP3s6IL36hFQJ8iRtJleV6ZsTNJACmUqnEdV37Or+IoEhBQRPdwkieEbnv6ORfODHWOVuSEgNndNVo+moPcjE3N2Y3CF7R5FVJFr8Gu8bAmOoL4ikFuOc22bh87UvL2vtDAie9I0xgdeR4yDP1SL1Dc0GdUcyOn3wI3jAHk3/auOeVLJp6ydkpv75bnK2dy95R/BeczJBnN+wWbgvwt+nzu/OcvH+OSrZycTRy8Z5UAQP5xC/YpQMzekml++cc7pXIkuuAfVx5u6cViLkEffEuKXvSZ24Z1TiBFk9dwPzHec2qs1CwWDWp03fnCj1Jj0nA2d3CIyMRDasYeJLam9je0PE9ZrRUnD8IQ90+MpulUJ0X1uk4O58dzPkuT18ZZ+QwTxu2buB9i/Bc8wNsEmofYUDKPwZWH98uTSKf1mqT3hC9p7b5hlU42CAEwm7vda4pzWwxuu+Kg7BA7leUH/ncZ3/4AgKt1m4fyC69pzbKmT91ZrwlMzZOaXIuOD00b3cc36bNEl8Tcl7r2Ah1vUlePLfvSe9FkzwELRYJ+5ZdVwxf+XZ9GpEGkMOMzfy64vXdvbdPwMBP4IH/wlEPHNI7h1qzTRPelOaJL4aUpPk829vqXoDainuxjNIbdAOabUDx1fmPxT7RsLaKzjBvU+vz2QUlJQdUhz/CUQM9YQZkwn6IxCHQvNO4z1KjWZIb3fDThieG5ngqTrucRk0p1PIPtkPfhlqjtUZ/6x0n9a4SGAMthxO1YYTX9bsavex3Z/ZD9e+/sSXpUXKGyqvHz4GE7SavjFWie7eM5vLp1+Gvnfc++MzspvYP29ntfWUyvQjeMgOIzCuyuhHpPaEZ4XMbscPFX4M52/eRdxj4evxPT4V/vk11qEsAyS7X1YS+JR2DR76R1/ItKcvqG3wd0k1ng3sZYKl8WX+1QYmC/dlS+PECtIzs6lgV4Y3ZMpm7UiVeXumFd6bvGN6ZjaTDhk1lfjwO0ckZ8nwaZpUQSi38OMvPyrJXDf2Ra1tzT3y2TfXQ95TF26f1iBMd3AF2c1jlw1RuWYC4fwaJSriVozQDLaPFg+Qy5+fK2KHkO3/1oyGWgMH2bcgwlQzh9ZNkOYJlTSY1eu4xSF4IK+7z2wiDSa9LHl7svS8w+0QrgnPPEpQA3LaCfV3INzxa0dqkOvU4EtY86EvoRpE8BA8RO3BQILn9DrpMq2+BjkXzDW95xeMn4Nmd9aAq+LORyOdp/1ePATKBMGDAQ558OvvP2sqMAXsaox/XPpltZP/3pu8sw61GEbm9i0yseW3MzdOyOCctzRrxQ8iXuRkGVDL48jV/X6r/e2+5+WI1EKL5MpSfcKjWiOjZWJlGZLTRYsGUtiPBw0c3C1agqdGzBMyZO5bEk4+cFw3wRMur8Tgj+O2RWJllW4Kd6Q4fcHoZEBGlgrpKSQ3wpumUa/5WB3MPaY3C3Rus60abQv66YSNSIXw5k/wFDjyq455TGqMf0KGze/h6bxw9ochtemT1dIvu630y2yrE/D35nXXCAIGOQwk0pyJpvRr7AMN9eZJr2u0Q/h6XLcHQfBwXCbspHJTSyZaI53+o8M6eG5neSe7k+e/gdkdBH3aamOf0LR2ZDH81v14yYCIRgyYUFQSyTBSRnFseDVemhQoZ+ncr3VinlMZMbf+dPi2hfdbzGPSY1oz1WNH9uSDRf2l6vhH9BlrGPeKUO8hbvkIzRpENoXjuBv3WdqG8dI49dUQCSb3OnzGqMk/MFez5UjThTxyN54lUv7bptbUCF00jv2MK7bjmcJAaxD7kjorvSb8xSF4kHnk+lF/h+KjQY1jU7QRfGrGPCkfLni7CC7h2/N8rDqySAkhv8xFb4Lnd3UCE92KgZK93b8GD7WQIOeQaPObDNAvjcQ6skDT09EKtmYIBCHgR/DgHKaeDGMVz/OYJe8Imuzzdk8rtFEgTnN3zZBlB+eFRPJzPMYOshIooskY69eYbDNmk7WChnNZacioUveC6H+cv43jX5Xu05pqkA0ZgtRWY8wOH+eiJXh4L+TuySwy9kDwvJvzlhI8RH8SBepuENR9Z7aWTml1tE6J+zf3519+/VlGLxmkUfijFr3tKYmG87xdenUtLo8EH++ioMY7oFVaJZm9M93TseJH8OBcGzy7s9b5QaLFS3rOfVycfGRY9stqK2/PaitD5nTRTAuyschugtSgDhCOBb+GhESP6U18M2ceFMFD/3ac2aikhmL8q/fEM/w8eCaRxhg0x9tucey3uhNekNap1aR/VjtfmwXbZ8HezEDyheMjpdNzRjOB8EOeg6CN8Oa2WfiNe4YiujVin5AxS4cEEk3bz2zQ9xtZ9USIsq/8A3OUWGZ75F07ptWVEXm9Zc6OdM0G+umXovWWmKQ3nVxBbVdsQr8GgUlWduUx/9IMX7dzxtkGWTSCcN6a2qhIlLqzjns5Kq+P1Bz/tJy4drjInIX1ikPwkEHp1N/57JtrRcYS93EZp5H6qRH7pJCljBoC409Qg2K4otwAACAASURBVDzGVk5c87HW5vBa14/goY4hMllk8Ny8e923b8jyIuVGjUcCA8LHQ+eYZH/1mNpMElZ/qHa8870tywcCfgQP97Xbf7JC/SePSZ+sNiH+EzIgqF8c/o7iGUAqbFBOF/n+x3/7gskcA5KUAMyyFL2Nb2TH6XWCMkj1mMelTsyz0jalpgyf31Oytk8W/AdgED4WREvw1Iih5s07RWw4xmYInroTntPg1vA5H/YFEuL1Yl+UpNUf+eIOKUbGBDXQOk+pp9mY4StT86f/7PY6d0xY+aHnuOreBmd75/S6KtFJUGR48yN4UJNBsYIsYuZZZGQENfYDmf52dhv1nyCtRcbne3O7aWbp4LldlCAPJ3/c++QdOnl9jL6fmYOHN3B+EAQPx9W+rJugdlW0ElXYSVs+Wa3+Os7fyy8ycFZHrTVUe/xz0n16E5UV9VoPm2XcsqERs9fwZSBLiB0yLLeHnLsZSl5yLszjf/n1Jw1+IPACHAtIodekx8ym4qeGxLZaw2ZRP6k69lGVfESWlXn94LkdVaq1VszTmsGMnYks8e7zm9V24jq73288E6OXvSN9s1upPRN+bZ2/8TdQE6jauMclY+PEIu9innEkn5l/IQUfKUCca4JEPokEyw7NL5Snc47HMlqCh3Ej/+BcaZzwmlB/xy3F7d6f85ljz9icpLYawW9rjiz2DepwtsF3PWd7hsq8+Y29fgQPGVUdMmqrRBsB/bwvvNrWT9ZKpyl11d/GnNWPvNH56KpRMjp/cJmaj3qdc1n/rkwQPIDsPPQFL9Ve0iDpxRBnHi+55YdzJW1D0XoT/Lb66CLVWw66YKTMwvI2mfSaRmMGrft3+40H/MjlvTJgTnt1lpDpUj32Mak98Sl1ZiMVgt6+u0VL8FCDh5TH8EgKBq6IBM/d61r8k9ocfgTP778XOOtrjn9K1Di8VDS1DykZomTrJzyvzlnnfnCfj/uzQ/A0S66o0Ufu3/gcRPCgR15t3BPqeBqbPyR805C/wYBUzwMXd2gK6dRNcWpo4djulF5f0Lc8c/N44ADNpJgCbM0T3yji2OdgDLgPiuDB4Ui0FzVWwg39kBN3/cFAf/DSTkla+5HWcohf9YG4/01a/aHWb0JHuPb4Z+TDhQNCfg9fd8rmiZ5FxV2HVMfTrnObVPe9UcLLsvbYUvfPnp+ZgLANKbpsg8asX+P+IOK66vhHteDdza8/1WuIhvLElSP1JYdTo3rMo1Jr4pMa/QVmRL66GxOitPXjpHFKMMHDs5G1bbIrQyY0qhyMieBBP5Z7GrmxoKYEz+0zGv2F0ejlqIuW4OH+O3ntsNSa8LRmv6w6vDDo0Prb53cLamCBUce02kXGnvAdYNRgSKH5iwPXq3kRPKx35sZxaTOZFGN/4obnlOcayUaiinCy+zWuPXW3uk5pUFjg3W9d+94Q8CN4QMZ5TxFJ3nV6femT3VLfFQ5qlz4/J5lbU2XH2Q3OV4VLMh0hIjcHZP6xMhFescsKJBwJqCgrjTEKQoosGJ7LKuMelWoxj0qN2MelduzTmvmy/cy6IhOJaAkeIvcX7i06YYlE8DBBIQoT/figDB7GiXfndpPqEx7XLE2n7omDP+c3ed0EaZjwogzK6RxRno3tqKUIwYPEGjZMePMleH78TkkrooWRlSACN6jR99M3jmg9I8g0yCyyU+vGPqcFavde2KoTbuf+9drXlS/Oq9Meh44XCcCYDnE0c0tyROKD/S/eN1taplWSrtMaega6ePXB+Q4HSaeMuhqg5RXM4KznXhL1OXf3VElYHWqvuO0RssmRyOk1o5lKYGHLuH93PlN7c8PJ5YHZLhz7kxvHVW6EOklZ21PESzbN3Uc+M+fpnF5Pqk54VGJXDPfE2tkGYqZxwqvqYMMmghgmyxjpXepXIhFSddwj+ozVnIis2usyd/f0Irb5vgvblOCJWzki8HhkrTVOqCBVlVDaWYRMJRK+a0ZDtaMyt6UWOY7Tb/eSQvC1xj+jNg5RruEtWoKH++Cd7M5KjLFPr+cpfN+Qbjh6cVCuu4df+Druv4n07ZxRT+sE+Dm//QgegnTIzKG2zo2vrxS+K9z753PcilFqX6JAASnu15y+4DAjQMla+ULAj+ABBWcc5xkYPr+X1E98oYj/ZMWRBZK6bnwR0Jifrjm6JGJgF3MUCnEjH00wVVlqZJ6g9tBlagN1ehPE5/hP8ElQvyM8SDNaggdnNn6E8IyBiATPbz/LplOrpO6E54WaFn6NZ33xvmx5c/QjGnBI/RB3YxzEbqg/8SVpn1FDtnkUeHevz2cIHuS0mNMSpBTe/AgexiCykBk/KRnA56DG++nyF+dk3/ltsv74Uq3fgUpE3bgX5P3cnvo+Dye+wvf3xXe3VE7rnTkd5TsPVYsHSfBgiyevGS3aF1ctmfA+u//m+Tp8ZY8GCUD6OzaFexm3aqTKrDaY+IoGZ8Sv9LZZyOCYuS1Rs5rcxwj/rJkxSwtqNn24qL9QOyVS4xmZuTVJuJ/7zGIes9N3E64ZSgXM/5EH5Hi8y8nIH7XwbZUSpkZT9ZjHtMZ3g0kvyej8QXI2jGhCknT00oEqbU3Ail87fv2gZgzh1yFAPNxuoEYdCiRVxz6m9l64LzR8v9iuUzfFS/OEN+/J0xXNxoqW4CGDkkwcfDfDcntG9CkwbyA7vtGkV6XGhKdk5pbEImNPeH95jqjbQ4AWGHs1P4IHv9Jb0xsK1yCXzCaPsgXsD39Zx4zaBVlZB+b6+jR1Prr8fRm3FPnmsjMf9cKsrH9XZggegObGv/T5WWkY96pmO7gzM4iWTVzzoWw8sbLINYFJp8jo7vNbivzm/oIHkUiLAdmd5KcIkZbu7ZzPGFEQLTxsf+Uf+8BYKm7DiUkExfFrB2Th/mzVg8dJ8eaY/1N5B+Tn3EYGk/xoJNqIaCOqorgED/1HZqVtcjWdfBNl6tVwICN/VWX0oxoNGB6FDBY7zqyX6uMfl7aTq8uNMFkLr31ifL03v4c0SyYr5myRVTj3aZvipG9mm5DMJO6xC3e4x15RWYuPFg0osm34F1x3Xig//fpf2XNui75E6scX6FRiXHBdghr3JwPzBwve9lz3QRE8Bc/XOa2fkrd7RlCXi/xGdlfQPU+ko1ODh/o+Qety/0fCjHXYX6XR/6dkTVA2jtNZtuFlVunj/5NGk16SjSeLjhXOutwf1H/AqdImuZrcvjex5lojI3Tp8/Oy9ni+6tH2y2qjL+JqEx6Vt6Y2DInkxlBADgyJtvUnlju7L7IEn+lbEqRW/FOa8RK+As913MqRUjv+GRmzZIgnYePeBvxw8tWLfUGGzuvmGYESLcGDAUoESmVqUiVWlAsekofuY4MRBSebJ7+pqfod0+vIV/8pGgXm3gYD8MNFA+SDhQPkF5+x14/goXYaxRAbJLyohQvd+3U+8wwduLRLGsS9Iq3TqshaD81sZ91Pv76qRRA/XjzIty/OurY0BIIIHtDh+cneniZ1Jz4vscuHCdJJTuN9AYnj5ZBH7nHapkma3eqs77Xcc36LDJzdSetu/PaHf8aF17Z8x1gRNB5H+xvja1Ckpdfxeecgm3Tli4uy8cQKDdAZMLuDNIh/Wcnu/nPaFIlGLG2Ch1puA2Z1kHaTa8rZMFkW9zlgLw7O6awBHUsP5BTJDifwQ98N459UmQreBZEauttItM3fO0NrJYSv70fwFGQTDdaCza1TqgqZh4zDfo3fuO7YdESdDsjuINXGPyaDc7rq/Raere21n9zdM4VsaiaUXMfw9qAIHoIXxi8dJsPm9ywizxzeJ/ff9Bl7OOj+xrnFvZCza5p8+d2dwHV59oIw59hEyaMnD8HDxB07NVKDOKQeT9UJj0nsyuGe94WzD+4PMllxsK0/sawwU5Bn88t/35Zd57eoY3fEgr5KXBFhC7FHAWNwcBo18ZBoG790aCBphdIBEmWN4ysIhF/4fQCx3STpNWmWVEku3Tlb5HfneM6S7d+d213qTHhezt066WkHRkvwME9onVxFZVvm7IhOci1m6TB1YIEfhB24BTU9v4TX5dDlvUXILWc7P4Jn0d4sqZ/woioX+NXWYR84h2vHPS1vz2oTSJTuOL1BGk+qIAcv7fHti9MnW/7zEAgieDhbni38J9Txap5UMaTIOP6TpFUfaV28cGQgofGLMHcKauxj3NKh0jezrfz8W2hdu6DtnN8YO3negsbjaH5jH24/h7P/SEtkGhlrIcln78gQHN+tUqvp+NEk6RUNunDvo/QJnl+0Rg9OfVRAqLXh1QjKnL9nhgb2InEdbmfgX5jB3HLi0zJqQb+oyN8z9yTaUN7guoY3P4KHYOq1R5cUZBJHCKRz9olELP4T7K7ZO9KUFGifXlPrPWGfhL9TnO1Ycs8Q7NhzRnOZvSPd8/37oAge+nJS+9JC7f1ItoD7PDj/oHsbqVV8YN2nNpFj1w8FrostGO6rcx+LzwUEz2C9t5H2jUbalvsKqVgy7ntntVBZwPD9On+TMfbRkgG6f8YEMpdp2Jzf/vdrtU/xKVAbp+vUhho8CgEyftl7If4TJGzHLRssvbKaaTCSs//wJf5DZM3aZdRQojb8d3y/PbOaaqbKphMrA+8ptv3Pj/+W9PUTpEXimyqhHb4//o6W4NFspoV9NZuJYCJkbIMa49e8XVOlbszzQtA7WXCQa0ENH+cHC99WOe+7PxQNDGNbP4IH+33AnHY6P6Weq5/Ns/74MmmbXk3r9Ww4EVrn3t233ee2yDtzOhfMRwMUANzb2OfSQaBMETxoxZMRwaSEyAJeJk4jGg8SIrwODOusPLxQPlo0sAir62zLkoFHC4tOqqgaou7fovnMcfIP5EiLlErSLKHiX/731rSGWnQwmmMT/U/kpxejzoth1dFFygYj3eHWkX0QBA9yJ71ntpCWSW8KMk9eDefrieuHpdqYJ1Xnl/o57qbZOHl9pX7SC5q66P7N7zNGTZ+ZLfW4kEzhzY/gYT2VaMlqrZG5ep+FFWEO35fzN1IvWdtTVee2SUIFQYc0UsP4oNBuo/hX9QXutf6DIniIUMrbPdMXM6++RfsdUQEOwYNe6F9tPK9kbtSJfU7qx78gOTunRtwl20AK1455VqMVeF79GmRk7Ir372XUtJLvf/pOjbf5u6cX2YRryP3bN6uVNEh8QSVrnJUYFxbtnyUNk16WJfvnOF8XWfIMz9qWKnUTnpWEVaHp+Bi4RJJzjzRNipy9w871nrl6QKVORi8eVOR4fBEtwYOBPyZ/sGJR8Dz8Oe567RgDAWcthY3R/h+9+J1Ag5PzI2WaSFgcTX7Nj+Dh+caIrDvpWa3FwHUOb/SJ7Mwa45/S2h3U4/FqXEt0hiHGKT5ozRCIhEAkggdCh+ixehMZG6YVRkhxn644vEDHi3BHLxFw6RtiZeXhBYGTEcgjJl1Dc97SwriR+hr+O2MxGYktkt74yzZLi+RKMmHZu4GyZu7jH7y0W52ovKvdjWeQifL7ub10rEauwF2bp7QJHjCluDyTO97hfg4GSHdq+VAkmfHO7SDnfIjCIyNl0JyOURMPFK4lco9sdK+MZz+Ch+PN3p6mzvS6sS+o7egXiefGms/IuSHtQkQljqDw6xG+Pn9z7mSGIgdF7Qav9qAIHt6NZP0s2Z9dhGTz6ldxvsMWheCZu2uaQOj91cZY0HtGC60lqdh9dzviLnl30Qfkg0Yu6BeYibLhxApplPCSSuGSsfrtf77S+lbh2WUctEDaZrzUjXtW3pndMYRswmHQLOl1fQbDxyZ3h09eP6wRnZCh4VrxkIQ8RzXjnlSpI6/72b0vPnOuyCM2m/SGXPvqkqfDLlqCh5qdRPQi20JwB+NKUOO+75JRX2tvEkSIveH37LMffhuZ11cl/oKeGT+CBykVauZQGJpMKC+7BUed1iSa+KRGdntlyhX2JbeP1mIL6kvQ+dtvZRuBSAQP/hMyHfGf9JnZKiQq/M53t9R/El4TjHfh6qOL5cOF/QODyngWLtw6LU0T3lA/SHGR5DhI72NDlIj/ZHoDQR41msYzxXv32lcFdRGdbXDQQ/BD9tRQacs6IbKppU3wMB6Q2dEs4Q1VvWBs9GpO1kyt2GdU3tY9ZnEOZ2+elE5T6kmHqTUECc9Ije1PXDuo9s+IvL4aoBS+jR/Bw7ZIcbVIflPn5dSPjJboQEITJzXqM32zWkcl50n20sK9WfLWtEZaZzq8n/zNuP8gJNrcfbl054xXV+77OyfIGYIH2/ivNu5dMo3IaBk8r0tERRCOh0+BjPiGk16RrtMbyo6AewnJt/fzemjG8OR147WO5rbTa9Uudd+f7Bdf3Lrj+dJ9ZmPpkF5Ta20750emTfyqUWqfBkmbYacPntdJumc2VmLQ2d7ZP3WQkX0l0zpS9g7bgE/imo+k3eRa6nN278/5HC3BAzHedVoDaZjwiizYm+UrgebslxrA1Fom+6ltWnX1iQQ9QxC/+Lj7z2oX6LPwI3iQWh6TP0gDfaZujPO0oZHoQ2GFgPl+2UWD7py+4+9iPoqygZ+PxVnXlqWPQNkieH79SVYeWagayRjWTmMAP3btoHywoF+IEcILEu1YIkK9sjic7Vky+Zi9PV1apVSNagBwb8tnBr9Lt8+qtM/i/bNVbgLJieL+W7Q3W9h+9bFFmv0Sfhyvv3HAwoSj1ezVOLfsHenSNLVCYbF51nsQBI+SMwv66WTR7xow4FODp3FcBZWicGf6cG2ZnCGb0GN6U42w8TrH8O8+/+6mtJ9cW7pmNCiise+cu1cGD7/BluftzdRU7SaJr0ct18fEqn92O5WjQJIuGocARkHKmnHq3MZQ82oPiuDBaOuX2VrG5Q/16sZf+q6kCR46Q3/Bu9bEp3QC4vcS5Hoy2b/+1WXdhpoDECnJa8b4nhPXsk9mSyUNcLRiXEMuU+QwPEKKnXCNMLzqT3whhKBR2cfTa1QHnsKLfo0JDi9QSIrUteNCVuM5zdgwQeomPKeSPyE/+vyhBuHZDVJn4rOSsWGi51rREjyQ5x0y6qhMCHr6kRpELrWJMFCaJlQQ0qeDGsQihgWTziDjy4/gYYKWu3eGGigUSfWKdgFDahEgYYRUoFdUGn0kuobrDZEV1Jeg87HfyhcCkQgestnGLh0szZPfUEPcQYf3AzV2IHnckx7GF5yCZPRFugdxbg/P7S2T148PlFJyjhm+xFGP9MHiA3NEbY/7sFnUxsHm2T9bkPaK5r1HP5AGI6uYWmpejcwk9MaT1nwU4nwubYKH98iklR9Ig7iXhWg0P6KE7yGva094TtCxdjtgGEcG5XSSehNf1PdGOPnjdb58l7punMpqInXjlcUdRPCQHYLEzJtjo5f/4pjzdk1TJz11WzaeXCFI2EVqREQi4cI70X3e7u0eFMGD3Y5tyPvXzwZw96s4n0ua4CFSN37FKM2op25jeEFzd98gay7fOa+2ReaWFKmf+LzKhn4RJrXs3gYbg/W6TW2kBA7jB9k/SMd6ERxcO7LYO0yuLV9+/6eE81f//lwzuXtOb6YBT+5juD/jHCCrl3shfKyi9ifZO0idUk8rmmvDfIGMX+x2v/OMluDBjqoT/2xBjZtv/GvcOOeTtTVV6sY9J1XG/0tlCrEZgtrVLy6pfYP8HfabX/MjeLAxOdfKYx7V4Cev553Aom5TG2uwjDsjK/xY1EJqMqmCLD0wL7Av4dvZ3/8cBCISPNR6PbZIasQ8qcSrc+aMC8evH5JReUX9J+dvnirwn0RwWBOAQfBKy+TKUTnmnWM7S+ZPKDssOZCjdkRx/SbO+o7/ZOWRBVrE3dl/0JJ5JJkqKw7lea7GXIFae2Q9udVFSpvgoTNKzqTV1dq+2GpeDacqChZ1JjynMno4Y52mNibZAHEFv/m9q531WXI/YPcQUMi7ym2bOuv5ETz8rgF3y4ZqQOCAWe2LvBecfbiXvBvIOm6dUkV9PePz3/V8X7m34TOBUO/P76U+C96tXo3zeRAED30ZNq9nYF+8+hfNdyVN8OAbJYiIOUnHKZAY/nL1kDUEj3P/EYjZe1YLaZ5cUZ8Xv6yyvRe2adZNy5RKGqSGbws1gvT1MSG2vHPuPP+5uzM1a55yBc5+1Ue5IVZaJ1fTOlPO+uFLJAVHLe4rvWY1VzlC9++HLu2W/jltpFcWtXe2uX/y/YzMYczKYZqp5FevJxqCB5yRjGs46WV5a0YwKUZnCIpZcThXlYwgOmOWvx/RD0xAOrUkP148MDCQzI/gwU7HbiT4FZWYL7770w50AMK+QYWidswzMn6Zv/Qa9wrzUdRv/IJRnH3asvQRKFMEDwM1RkzVMQURKE6NEIyLxfvmqGaiAxkP1rlbp4SiYzyIkRryBRRT5wYvaw1ChH5TAMvLcclLnWj0JkkVNIPBOT8Gz2mb46Re4vMyxcMJXJB9MFsJtffn9SQh1tlUl2B8+rPjUn3Mk9IisZJ8di8N070Sx8jYGCtNUl4LIZfc6/CZQn69Z7aU1slVQ0icb77/SvXrmSj6DbTh+8IgIZqI4oREELoNHmddPXcPiTZ+x9i49e0N6TatsUoj4MTxqmHi7IslL2CcMlXHPSY1JzwlY5Z4Z024t+E4OP/aT66lUZbu39yfi0vwYNQh+QaJkbomlCxw79f9mWeL1HSKy+JEKulWGgRPQc2s1RqhScSQV70E7gWkQXpOb65pyWxDFBtFvXE8hGeLcd5ggUQJ17FNajVh8sz13XZmrerb7z1f1EjQa/nNNY16ouaA05T4uX5YnYBjfDJpWJf1SDOuNeEZTccP2R7iKO5FLYbt1V9nXfey4NnNlkYpL4c4ld3rREPw0C8isqqNfaJACu/oEvcuQj6DAVHBaOlWGf+I9nnJ/tkh63j9gXxbv8y2WovD63fnOz+Ch2tMmj6Tg+4zmnhKWn3+3W1JXPuhNEt9Xebu8s/2YkIFuQPhZM0QiAaBSARPQTTYx5pyTwYg4wuN8Spza3JIpi7vJaLkKIB64XZwFGBB5NYCeTurrWaQRNPXv9M6a48tkV4zWvhqXPNMD8l5SyiU7ibVz3x2Qobl9dBMPK8oXScijRo8OH7CZeMgWyjiW2XMY5qt7ZVZwGSGWgKrji4IyR4Kx2/m5iThOOjHu528jDFEu03ZNFGDCsK38/qbdxP65G2SqwqZEV6OlSCCh2h/agU0SnpF2qbVkJOfUqS+aDaj+9hk3wzIbq92S+vUqiohxjge1LCnIMCQp7v8+XnfVYtL8JBR23JypYJo3Aj3vnNQbF/07hNWfahRos73JbUsaYKHfvE+7TKtvtoX2OXu+8bpNzUneTYIUOMa3r57U96a2kCqjX9CI1S9SEdkRbChq457VFYeXahE3df/+UJaJlXWQsZ+NWJG5vZV2wJHgdOo2wPx0zzxTeF58rsnmHv1mt5ckAV0Z8ozNxs8p7OQXY295NVf51juJRmFZA4RwAfZ49WiIXg4Xv9Z7TXriWcqEum86sgiaRD3ototBIl8EUVmFWNE25TqvplGTt/9CB5+pw4PgTvIdCLTG95Of3ZM6yQRSXwrgCSD5KQvV7+86Hutwvdtf/+zEIhE8BT4T3Zp1D7jxM/3SEkCrPL35+h71kGEMQf7ZPCcLkJx7UgNMhbFDBzzZa0x7iGl+h4y9B7vS95j0zclSMvkKiH1aBifRuT2UvltahSFN3wx1NIjOHXckqGFdp+zHnOrfRd2SN0Jz0n3aY11nun85iwhDXi/9ZzRVH0FzvfuJdfqyOU90jyxkjDHZL807AdsgHaTq8vb2W3k+pdX3Jv5fuZ+WH10odo/OTumeK4XRPAw9jLmExzbLLmCBpB47sT1JTbyzK2JmkXcNOl1meehlOFaXT9yHFRBUFsg0MSvcd8Xl+Chnl/r9MpKTvjt1/290xdUKAgmLelW0gQP/ePeok4OKhsEiHm9I7Gv8GfwrkOhhr+nbU5Q5ZRJq0bJl99/XuRUsa+5b+rFvSCjl7yj9gPPUMaGGCVSySz2aquPLJI+M1sL8wKncS/n7slUG2burum+fjjuRzKikb91ZxYhL5m6fqwGoSzYkxl1XWnGvhELe8nwhb3Uj+z0x72MhuDhvk5eO0YDNEYs6C3nbn3i3kXIZwhKspyohwO5g30dTbYW5NugOZ0lZ2eGLz4cyI/g4TeyjLrNbCTv5r4VIt3pdJDMcxRtmBMt2je7cIxxfmfJfBSSnEwiFA2sPXwEyhTBA1zf/OcLGTa/hzRKfqUw4oKBiaJju89tVkQZYBjw+2W1DRz4HfgLBufNQjE9UmLLWoMpjV81UokaChaHN/BBQ5cJD3VinIZ2K9IxRLmpxmvYxJ5BGdYdaYi3s9qFpHSzD3Dbc36bOkqaTHo9hDxyjgG5tO7EMqmf+KJGJTvfhy9xsuTgFEmpKGc+Kyiyzgslc1uKNEh4STXsw7fx+5t+7T6/WerFPa8vJq/1ggge1scooJYRBVDJqkjbEOOZCcS6BS/fdTrJpbAguto46SI17lMib5BzuxgQIcVL7uiV/WrA4fQKakzEP/vmunSb1khqxj6l0oRM1iO1gnvoA+k+rUmIMy3SdtH+7hhALZIqBUYZRLs/Zz2uIw7AGjFPyOCcLkXkZZh4fLRwYMh9wH1NxEKduGeUGOU6OA2jGMOn18xm0jjpVY3M5jeH4EEntk9mqyLHIeqZ7EKeg/B6GrwcIfF6TG0WIivpHNNZEgHbN7OV9M1qUzjRuHP3pvSb1Vo6TqkTMQvR2Q9LricFoZsmV5QLPkZFNAQPTgecD8j3cO2Isgtv3HOMMRQE7Tm9iVSf+Li0Tq0iaLZGajxnEItEAEeSNPQjeDgGky00mBsnvqKate7jMgFCBrFVShWdLJGR5NWY2CCJhZwBDlZrhkA0CEQieHg+yPDoOr2+DMntWnhvYVRnb0srJCQZt6dsiNUoTIJTIjWCIijESgACY1ZZa46ms9ekgnEY2dmB2R1l06nQZhZJJQAAIABJREFUCfORK3ul/+y20iatmk4Gw53PYPd+Xk+pG/u8jgmQ3e6G44XIUiLn5++e5hkUw+St/ZQaMnNbUpGx3r0v5M26TK8nObunFO6H+6HjlNoa9XvLI+jFvb37MxJXyHwSlOR3PYMIHvYFITFmyWB1GuPUOX7tkG89AnTYkURpm1pdC91SAJaAk0gNGZ8eM5pIzo4MT6eAsz3v2SFzuqiDIJJsFO8B3slIarVMqSw4ARxHlbM/r+XOMxulY3ptld9EgqikW2kQPPRx2cFcaZVWSaXleO+5zxXCh2vIexf7xmkEOLWc/KZ0nlJfLt85G0LeYZ+krY+RupOek8TVHxXWWYDgaZdaQwNHvIgWriUEENK8vP/cDanYOrHPqoQf18evZW5JVvlJgr1419K4ltjf6OyHP39+++H7Xec2S5OUV3Uu4JZldG8TDcFDkXcyi7BbyMYPPzf2h01KIBiFrWvHPSNVxj2q8yBkmcLHFPfx+cz+yOZm20iRqkEED7UJOqbXkjaTq8n1L4tK0pExjZ267KB/Zg41zOgLc7hIfQk/D/v7n4NAJIKHMyWz9P35PaVRyisaWMF32O4Q5E6NHeZDBMG9ndUmsE6pg5z6Ac5tU2lRL5l4Z72/65J3U79ZbaRR8kuy6vDCIt2k/iqZjDzrTmYBK+FUVlnuJG/fBlmQ6RtjdW5KbRzUOtwNnMmYpc4GY7q7prSzHkRzyvqx0nl63SK1CJ11WCJvBikOUeUQ47zfR+T1ki5T6+sY7l4/6DNO6cztKdJpWi3futVBBA/75lzJxKgT95y0mlxZyKjye4dQM2Te7mkqzYeMFbYT93KkxnwZ+S8UORiz/RrHjZbgYV0UY5omVpSmSa9J9tbJ8vv/goNkOK7Kna4dr9JyQX3x62Ok70uD4OGYZO/3m91Gr1H4O4ag5tVHF8nE5SNC5J8Jwhi7bIi0THlTFvBuddWH4f2/9fQ66TajkfSf005JBY6DLTh1U5zUGv+0SsNx/7gbRAyKKiMX9FVpVPdvSKt3yqgnKevGFNrY7t/5zHHJpO0ypYHOG/iO/i89OFfap9fSjNxINqh7n9hKPWc2k4Q1H/rWzIlE8GBDnLh+SH0O2BYpa8cI5xneGD8JlCLIvkVqJbVFqEccRAY5+2Bb6gsSTMO1DGpBBA9zIgg4/Je5e2YUmTNs4RpMqSMf5w+Uaz4lFrimZBIxH0Utx9rDR6DMETxM/NEo/HjxAGmc8JpQX4IoTaKuSWHnRUK9HR6QszdPRIUwRMf4pe9pJJqTFRTVhn+Tleg/UidkX/CgT1j+nuw6t0mlxTaeWikfLnpb+mW1FoqR01g/bsUojRpBg/PN0f+S6mOfkL7ZbSR39wwh0o/BuFdmc6kx7in9HR3rTun1lSjCabHlk7XSL7u1NI5/TQu6Vh7ziDSdVFGG5XYXCkc7jet18c45aTjxlUAZLQZDItR4Wb83v4dm6yStGS1tJ1eT1S5G39lv0BKyKHNbqhaJRefaq0UieNiGSfcnnx6T/rPbKcmFEZa3J1NOfXpYo/ZO3zghKw7lyvAFvaVnZjON4kUKg4GQKM1IDecBUUND53YrnBh7bROJ4MFQpCDsOzmd1MBjwv7m6P/Tf2S7dUyrqw6tUQv7eTrRwZ4BuU1SNZm1fbJXF/7yd7yISrIGj7tDOALm7ZwuDRNelg5pdSRvz0zN2svbmyVD53ZViTKO7244HRbuy1bNZ54NHBFovFL4uH1aTb2e+y/sKNykQGpttRrjg+Z2lsGzO8nKI4vk5I0jQjpy2voJqt+OXnV4c8YXIrqDIp4hQyGpmydXUukmXqqDcjrK29ltC5/d8H37/U1WDHq9/POKUGc7P4KHZ2PW9lQZMLud3juVRv+fVBn3L5VAY6JD7YV3sjvqPxylHANiq/LoRzTFGucOkizRNCUWV47SNHuvSGb3PoIIHtZDGi6eeiIplSVv7ww1pkgN575jLOszq2Wg1jD12yDCh+f2kV9++5P0c/fBPhsC4QhEInhYnzF68yerpHdmc81QmLY5Xt/Bk1aOkvUnlmsmz8gFfWTOzgwhej+aBjE6aE4XHSvCx7dotn/Y6zB57DKlvmZSovWOljqO/f0Xt0vGxonSP7u9yhswOaQdvLxLZQjIFqg8+lF9vxEcMSKvjzoEIGVjV46QtpOra8YhhdIbxL+sQQtE7yHjAAlMUVfq5vB73ZjnNOtvzo70kMxhbEze6cPzekp4XQI3bkTdTd0ULz1mNNOAIyRmqJ+Iwyza6+jsjwlYlxl1ZermuJC+OL+zjETwsA4OO6IsGye8Ig3iX1L5XqIaKfaKFC7Sd8hXke2Yum6sBiQgczJrW0ogmeX0A3u7y5SGcvTq3kC7JRLBQ7BA3MpRGtX51pSGqpHOuwbbpUl8Bc1GQeaOrDevyTmT+rgVI2VIThfPwAOnv39lWVoED45CSN8uU+uprFH6ugmaIYyTYmhOV0lY/ZF851HzB11zAj4gBJAYJroeaVfqPDE5z96eEfK+x/GEbFKfmS20EDU1lg5e2qmOh6UH5ytRF7t8hNz9IbQOFphtPLlSmqS8Iov2ZweSNNT36ZPVWslCAquS1o7WYCd04SO908OvjRJDE5+X/Zd2+joE/QgeCLCRC/uotG6t8c9qFCyRsK1TqmlUqWOzQBr3y2yjtgrjQJ2Y59Q5yriDIy2ahtRLo/hXNDglUkH3IIKHY5Et3i6thkbZE7H7488/6P0+Y0uS1I9/UbMA3URfeP/2X9j+Z1/C7Nzwde3vfy4C0RA8zMdvfnNdPlo8QOs/kW1f6D85vkxWHMlTG5jfvQgHL/SI6qeOHwoo7gBSr3X/jt8xfvWa3kyzXpnPQBqAJfbEisN5Oq9GCYT1wO/WN9dVhoigtIL31b+k9vhnZeTCvipRi1oAgbbdpjfWLE3sjBrjn1YZdjJfr3xxQefr1CYmIp7fq4x9XJonvKGF6d0yUhDJZNM0S3pDnel++DFu7bmwVW1LSCWySIbn9VbfxfGrkX0R7v06xFDPmc3FL0AlEsHD/ggOpBh7h4zaWueN9zSZTgTgXP3ighy+vFfm7Jyi8nPDcnvoWEqdWjKWwuu5ufvnfCa7lXp20zcnOF95LiMRPJwLwSrYGr1mNJeGca+oz4trW3Pc0yp3So06CD6yWb0aQcm9Z7SM2BevbaP5rrQIHo5Nltf7uT2EGt1k3Kw9ukRr4hBc8NGiAYIfJFwFh/sCGa52k2sIfqWVR/Jk3bGlGmjePq2WfLiov5Bp77T//IzMfIzaBWT6jVv6rt4bJ64fVDKZGr/UmqP+bfixyKYZvqiXfLC4X2EwnLNf95IMYpSM3pvbXdYez5cZWxKld2YLyd4+2dN+dG/r/oxtBjnZLrWmBqX7Sf/5ETwEl8SsGCa97j3fSNVXHvuINE96Q+0O7A/HFoFE75hWW2pPeFYVHobM7arPrpcSk7uPzmfIto8W9ZfE1RBR/iQn6wcRPPyO/GTsiuHSMaOOLNiXqfvDP4Mfqk9WKxk8t3MI0ef0wVkWzEc7l9n5qHMe/6RlmSN4HPAZtJmwM/nDSY5TO27VKGGijnPdiSRz1vdb8sJGB5vtMcTLYsNZzUPIRAGDgKgQmNQJy4Ypa7z+5PKQyC6cTfsubtfJIYYMzC+aq9vOrFNSCGc2UbIw56yHhiWTp+2n16uz9Psfv5VrX1zS7CgmdGhtsw8igLafXqtSWG4ciShBl7FNavVAPVauBRErs3emSdyKETJ7R1qRfbn36/cZZwCGGhJcfnVtoiF4nP0z4WIwpxAZkl3I0SGHQH0AIg4oDnn3XqFo7kscQk76u7OP8CX35yc3jkrTSRVkzbH88J9D/o5E8HDMS5+f0+tFBCQDLfcCAzrXbs+5rbLj7EbZdW6jpz4yk3BSK5smvi5XPr8YcuyS+qM0CR76CJ68oPL2ZakGbsyyYTJzW0pg/STuN5xwRHmgdTouf4jWQIAcdZyKzvlzDZBMWn4oVyM/Mf6RHuQ4GEJ5e2b4Gn9EFpNRSCYaUTJBDZyI+iCtl2d47bH8In0J2p7fMEjoH85NHKV+zY/gwZg8cnWvEpYY6IwtjAWbT65Wo2zd8aVqzGHQ8XnjieU6ubh0+1ygIyi8H25iEYItUotE8LA9kWMQ/e/n9lQiCsKbzK5ZO1KFbCi/xv3DGEaKPdHV1gyBaBGIhuBx9oXznTo11Hki6pqISwrREphC9gTPRDQNMpjiv2R7RIrcimZ/D2MdasZAvn757881azdr+2SJXf6+ZiVB0kNIuCVTiHbH3sDO2H8Ru2Wnvtd2ntukTiucAjhpeVcjfYJdAiGy9fQanWzioGEyS4Qh9gy/40whWpnMWHeUP+M9dQ15z2NP8q7wa9hTm06ukuS1oyV1/Th9//plH/jtg++RtWie+IZKvTIGe7VoCB5nO6RJs7alKFGCfds6uYrW/ECSjaxXnBLcRzTeBdybnHdQw9YcNq+HjF0yVANygtaNRPBAKnAdIJ+wP7mP1Wa5vEc136nzs/X0WpUB9soCQToVG2zuzj+zp4L6cz+/lRbB4/SFex95P97145e+qzbF4at7A4kGsAAvZFWwWSauGC6L98+Rm19fKzLvIVhr4b5ZqnuPHN/CfVlKqmG3cA8curLb91hESCPbB/nnRIU7/Q5fkhmQs3OKOliytqeo3FC0czBnX9g+yE1itwc5+PwIHuzuLadWyfoTS9XegkDDbmE+FG6zkD0IOXbi00MqDx30fDv9cy+pU0nNQAi0SC0SwcP2yFunb5igconIKw+c3UGQimMsc55Rv+PgLItUv9BvW/v+n4NANASPc7Z/+k9myLD5PdX/gQObOXdx/CfYKxAWSKsTSV4WG0ohzOuoqfXdj3cl/8Bcfffj7GT+hL3mkLicL3WxeC/tOL1eiSDeW8wZd57doP4K3nv4T7ArCu2MiwXvOewNMlaQUoSEwaHN9lw73ce5jRrA7ODI8SDayGDA2e70w/ndvcRmIIsyfWOMZnGiKEE2TnEa4yBBBO0n19TMDWRfvVo0BA/bsb8vv7styw7Nk6Fz35JWSVVUxhxFCyRIwZjzdt7vLAm0i/TuIGuEwAaCbvGjBDXu9aAMHmy1E9exC9dqxhJZaI7/hKAi7JAdpzfIgUs7VKIs/FgEUHL/0JdICivh20b7N9d2x5n1GkwZjWxXtPt11sORT6AqxOTY/CFCcDXqMtiFfo17EZ8IcnooAU1Y+q5kbU2Ro1f3hWT1sH2Bz3GHPheQF1zzyesm6HbMf9YcW+z7zmdODzn01rRGGoTr1x++x2ZhLsVYNnNrkl6PSOUVwveHrUO2DTWYeX79mh/Bg0+J88MOQX1gy6k1OhbwvOObUL/JPd8Jth/jBIFtd+5+Fiix5tUPJH5RV4IEjjR3jETwsH/mAFx35OQGzu6o80uCpLHtCMD3a9goc+7NR5lXWft7IFBmCR4HPl4IyOogJXY/je0pDkw6P5EL1koeARzcDHTIbxCtXJoNB8WJa4elQdxLkrUt1fdQxSF43DvhRYuBR8G5vxI1TXQL0hZtUqpHjC7gnKKVaHP3NdrPGIE4Ckfk9g50ZEW7P6/1eAHw0muaWKHUom29jvt3+e72NzekU1pdzdYqrjOhuOdQIG2Yqlr24XJx7n35ETzudUrzM8QihjGRQze+ijz2RkPwOP1lggAO3/73rm8ksLMuSwwb5CAp1h1t9pF7e/tcfhEoDsHjoEQ27eztabLrbIGsrPN9tEucKh8u7K+6017ZDdHux9bzRwAiqX1GDbUPw+VV/Le6v1+wR9DcpuaBnzwbey4OweP0BJIMh8h3P36r2R1/5f2DJF3HtDpCpqrjlHGOE76MRPCEr1/cv5HB7Uom0ZW9pWa3ELjTd2ZrocZJJJKjuP0vC+snrR6t0ksXb50pNYwdHHBkNk1+XaO6/bKOWdeP4HH2U9pLHDgtk95UtQM3Kex33GgIHmdb5hTY4zw7kRw2bHPr7mfSKpngxBkhBLWzP1uWHwSKQ/A4qDj+kykb7q/mJDY8hAg2fNB7yzmeLYuPgEqRrR+vNTKYA5Vmw87BH9Yho6YG3/gdK1qCx7094xmBrzj4CTzwy4xwb+P3GV8dmQsjF/STX1wS617rRyJ4vLYpznf0BVt8VBR9Kc5+3evidyJYoUtGfSXg3L+Vh88EY1A+ANIGOfzSbBDcWtdx9QeB9TP9CJ7S7Jt732ROTl43ThUMSHaI1KIheJx94D8hOB71mWgIMuajHyx4WzPPbT7qoPjwl2We4GHShdyYox9bXEjRsac2zceLB0ZlUBd3/7Z+AQJk5pCaSTGwaAaM+8UNAwUtT6TdmPz4tfslePz2V9zv73x3U2VOmEBHaqVJ8LBvdPpJFScKubQaLwwiipGuISq2vDUmUkidNE2qEJjm+ldxwYgm0qJTej0Zu2RwoFPmYRM8GAJITI3M6xPYTweT4hA8zjbRLskWGJjdQfWB3Trb0W5v65VfBO6H4MFembUtVbNU7gc5ItCRM111pKhm/P3sz7YpigCkCPJvSFIiKVKabdvp9dJ2cg1ZeXRBiMRW+DHvh+AJ38df+Ttt3QStbXn+tn+xWGf/pUnwcG3em9tNpZXJ7CqtRuTprG2TlViLRGiVVh8e5n55LzZLfF2DpYJIl5LoI5nQZMwR3R5EQj5sgmfRvmytzRkt6VUcgqe4OBYEJ1aSCzdPB2JW3P3a+mUPgfsheAhsInsQZ+X9NGx4Ir1H5fUNqU9zP/uybbwRYI5Olk+HtNpaz857rZL5FjuHIBOUSYLed/dD8JRMDwuk88ngRm2B4O5IrTQJHq4NfSF4M5q+ROqr3+/4T5AqI5DdTzbPb9t/wveQnPGrR8l787rJ6RsFNbpL47zwTVKmoueM5rI5gj/sYRM8SMEh6UageDRSuMUheIqLLVlJZF+vOrqouJva+qWIQJkmeHBmUsCcooEUwituY+A/dHmvam7uOLuhuJvb+sVAgAiE7afXScP4lwMjQ4qxyyKr6kvw9ilpmlBR5u2aVuR39xcPk+ABi22n1wr1A45FUaunNAkecECqo31abd8Cdm7c7PP9I8AYRVo6qfZBDoz7P4JopPaCvVmavRMp2uthEjzc08euHrxHLIYWUfc7/9IieHDikTrdKaNuYEq2X7/s+/KNQHEJHu59tN3n757hKfkQCU0iIJEQoG5NNJFbkfZnv/sjQH0LirQiYVpaDm4cKdT9QsYWmdGg9jAJHmSz0Lyn5lAkvW/OoTQJHmQgOqbXUQnTaCa3QZjab8EIINtCpvm1Ly+WWhAcGY1IBFPjEvIuqD1MgocMG+q9Ukg4Wp380iJ46Au1hOgLjnpr5RuB4hI8+E8INFT/SUAwpB+q2DFHruzT2r9E2FsrPQSQl522MU66T28s178MthHutxfYN9il+AKQeQ9qD5PggVSk7g71cm7fvRHUTf2tNAke+kKtl14z6Yt/QHHETtoKERFAAQYSYe7OqRFlSyPuzGcF6gYNm99DktZ8LN941CV0b/YwCR58nQv2ZmopCnCJppUWwYMdlLxmtM5HI/mcoumnrVNyCJRpggcD9/ClvfLRooHipxUaBJVme6weo5EAOLqtlS4C6HxSVLfb1MYqcVbSRyObi1RZIm4jSSc8TIKHAXH0onekb2abqGTeSpPgIRoERwl6qNZKFwHGK2pDNE2sKFtPrSnxg/HSv3DrE2mVXCWqemIPk+Dh+ctYHysd0qMnFkuL4MEwn7h8uBbrxilpzRAoDgLFJXiYrM/bNV1WH11UpKBoNMdFr5lC7Ohdm3M7GsTufx3kzaZujFOn7tmbJ0vFwb3kQI68NbWR1jvEGRHUHibBs/rIIiXBKbqLTRKplSbBk7punE72L9yKLE0RqZ/2ezAC2Ks9pjfT+jrIgpR0++3331QemNoz1PKJ1B4mwXPs2gENzCJAi0CtaFppETxIyRAkRo2xaPsSTX9tnbKJQHEJHuYjR67sV/WSaMbzcFSQ2UpbN17fCcztrZUuAsx/Bs3uJJNWflDiAYKQfTi3Ia+nbYoPqX3odVYPk+DhnU/dEWwA+h2plSbBwzXpP6ud1tGMpi+R+mq/+yNAINTsHemqAkSdpJJuBT7BeHl3XjetQxZp/w+T4Pnsm+sybulQrVkaVK/QfQ6lRfAwHx2S08Xmo26w/yafyzTBQ8RB3t4smbE5sdhwMhgTLdk2teZ9bV/sA9oG+jK+8+1NeSe7o04W3QWU/yo8EDp5uzOlw+RaUWkBPyyCh8wNDJTmSZUEqYdoWmkRPNTFoUhb40kV5Mxnx6Lpiq3zFxEouE9nahHLktasxuh+N6ebFkmMZsL/sAgexl5k5Dqm1ZX0DTFRI1oaBA/P47Gr++WtKY00oyLqztiKhsA9BIpL8DCRztyarMV7iwsiuuVICAzI7iC7z91f/Z7iHrO8r4/zCn31CcveDyw0ej84UdwXbfGlB+YKNkmk9rAIHmyFDxcNkFF5/eTG11cjdVN/Ly2CB0KeiNnpmydFrF8YVUdtpYgInPnsuLROqSYrDuaVOKlMtn2njPpy6c6ZiMW16ejDJHgoPt1lSgPNfIgI2r0VSovgQd65c0b9YvUl2j7bemUPgeISPPhPyPYnA6G4DRue9wCyYVM23l/9nuIes7yvDyFHZg2ZK8sP5ZUoHMicxq4YrnZONGTdwyJ4CGhaeyxfg1IPXt4VFQalRfCE9OVSyRMOUZ1cOVsJ/yEE59j8IXLti0sldvb4Igm4G5Lzlmw8uSKqwLuHSfBsO71O+me3E4LDolWDKQ2Cp2A+OlMGZne0+WiJ3Y0lt6O/FcGz7+J2WXs8X5olVpRoWEkG7qtfXLwveTYKda08ulBrYuA4tPZgEGAw4ppRP2DmlqQSqcfDtVx9bLF0zmggJ68fjupEiD7K2BgjPaY1EyIIH1TDqM7ZOVWaJ70ht76JnF5MvyB4SIWnTs6J64dKrKvUwhk2v6emeZZmXaQS6/A/ZEc48mZsTpC+ma3kVhQp5tGcNgZ3zPL3tZ4NxfGiaYyxXTMaaFRMNOuX1DpIoq07sUyaJlWU08UgFpGjejurvWRvTy+prqjMyrzd06XbzMZy5fPzJbZf21H5QQC7ZUz+EEldO1a+/ylyJOvd/3wt17+6fF9ZrDhVxiwdLBNXjZDPv71VfkB+yGd6+y5SNr0kfX2MfP7vksH94u3TMnB2J5WTJfs4mrb7/Gbpkl5fHT1kbD6o9smNo9JlWn1Zemie/PBzZCKKfkHwDJjVXt910Ui6RXsuyw7mSvu0miqneT+R59Eex9YLRWDfhe0alEGx559/+zn0x/v4i1p3a44t0cLRZMZEyl5zDpG46mPpl9VGyIR8kI3somYJb8j0TQl6b0d7bOx9ajQQUFNSjb40T6ykUkWWdVxSqJbt/TxI/wk2PHPupskV5dzNk2UbuDLUe0iFLafWaKYNsnglUS+UeWDGhokyPLeX4ECPpn31788lY2OsDJrdObBWTzT7Ks46N7+5LmOWDJEhc7vIDz9Fp7bAe2XvhW3SOb2+HIggPVecvhCkOGbxEBmc07lY74PiHMPWLYoA/sPY5cMlcfXHJSKLhw3JszR8fi9ZcXhBVKo69IptyDpefXRx0U6W4jc//PS9pK2foLWyTn16NOojHby0W96b1z3qwPJodkySROF89LuSs2+iObatExmBvxXBg57m5Tvn1IEXSWIr8qkFr0GE++Ere1Tz+X7k3YL3br8GIQDJg3Mqb89M+fa/XwetGtVvTHCW7J8jl+6cjWp9Vvr515+1cGH+/jlRpflGveMIK2IY7zy7SZYfmhdhzT9/xojD8Jq1fbJQbK6kGo6a/AM5WiSwpPZp+4kOAdKNN51cWSLY4+gjG2jh3qxiGZo8Nwv3ZAnOlQfZiERDXoTI1uKQq199/7msOrxIjlzdV2LdBQOMfwpkRhsJU2IHtx39IxDAbtlyarXsPrcl6snB/Z444/+640vl0OU9dr/eL4j3uR0kxYrDufLpl1dKBPudZzfKnnNbBKngaNuNr6/Jon2zhOWDlAS59sVFyduTJZ99E/1xie5D0//wlb0l6gSi4PTKI4sEJ5O1B4vAqetHZMWRhSVSj+rn335Sm+XynfNRSf45Z8o4u+LQghLpg7PPaJbf/fcbydyWKje+uhJVppGzT+psLto/K6oMPWebSMv77Uuk/drvZRcBx38ye3t6RInyv3qW+E+OXtuv2cQPMtDgr/b7n7A92bSffHpM1hxbLL9GKRPpd97Mea5/eVmWH5oflTyms58ff/lBDvAePrygWGOhs/39Lql5s/boEtl9bmvUu1C1nq+vysJ9s0osoJKDF/blfPR9ibrTtmIgAgTGQnQim/xXGxlr2OKHLu0uVsD5lc8vyJqjS+TczVN/tQvF2h7f0fYz62Tb6fXCcxhtQ9aNuePJT6MLgo9mv8xH1zIfvWTz0WjwetDr/K0Ingd98nY8Q8AQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMAQMAUPAEDAEDAFDwBAwBMoiAkbwlMWrZn02BAwBQ8AQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMAQMAUPAEDAEDIFyjYARPOX68tvJGwKGgCFgCBgChoAhYAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAoZAWUTACJ6yeNWsz4aAIWAIGAKGgCFgCBgChoAhYAgYAoaAIWAIGAKGgCFgCBgChoAhUK4RMIKnXF9+O3lDwBAwBAwBQ8AQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMAQMAUPAECiLCBjBUxavmvXZEDAEDAFDwBAwBAwBQ8AQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMATKNQJG8JTry28nbwgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAoaAIWAIGAKGgCFgCBgCZREBI3jK4lWzPhsChoAhYAgYAoaAIWAIGAKGgCFgCBg4jvypAAAgAElEQVQChoAhYAgYAoaAIWAIGAKGQLlGwAiecn357eQNAUPAEDAEDAFDwBAwBAwBQ8AQMAQMAUPAEDAEDAFDwBAwBAwBQ6AsImAET1m8atZnQ8AQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMAQMAUPAEDAEDAFDwBAo1wgYwVOuL7+dvCFgCBgChoAhYAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAoaAIWAIlEUEjOApi1fN+mwIGAKGgCFgCBgChoAhYAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAuUaASN4yvXlt5M3BAwBQ8AQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMAQMAUPAEDAEDIGyiIARPGXxqlmfDQFDwBAwBAwBQ8AQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMAQMAUOgXCNgBE+5vvx28oaAIWAIGAKGgCFgCBgChoAhYAgYAoaAIWAIGAKGgCFgCBgChoAhUBYRMIKnLF4167MhYAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAoaAIWAIGAKGgCFgCJRrBIzgKdeX307eEDAEDAFDwBAwBAwBQ8AQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMATKIgJG8JTFq2Z9NgQMAUPAEDAEDAFDwBAwBAwBQ8AQMAQMAUPAEDAEDAFDwBAwBAyBco2AETzl+vLbyRsChoAhYAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAoaAIWAIGAKGQFlEwAiesnjVrM+GgCFgCBgChoAhYAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAoaAIVCuETCCp1xffjt5Q8AQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMAQMAUPAEDAEDAFDwBAoiwgYwVMWr5r12RAwBAwBQ8AQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMAQMAUPAEDAEyjUCRvCU68tvJ28IGAKGgCFgCBgChoAhYAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAmURASN4yuJVsz4bAoaAIWAIGAKGgCFgCBgChoAhYAgYAoaAIWAIGAKGgCFgCBgChkC5RsAInnJ9+e3kDQFDwBAwBAwBQ8AQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMAQMAUOgLCJgBE9ZvGrWZ0PAEDAEDAFDwBAwBAwBQ8AQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQKNcIGMFTri+/nbwhYAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAoaAIWAIGAKGgCFgCJRFBIzgKYtXzfpsCBgChoAhYAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAoaAIWAIGALlGgEjeMr15beTNwQMAUPAEDAEDAFDwBAwBAwBQ8AQMAQMAUPAEDAEDAFDwBAwBAyBsoiAETxl8apZnw0BQ8AQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMAQMAUPAEDAEDAFDoFwjYARPub78dvKGgCFgCBgChoAhYAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAoaAIVAWETCCpyxeNeuzIWAIGAKGgCFgCBgChoAhYAgYAoaAIWAIGAKGgCFgCBgChoAhYAiUawSM4CnXl99O3hAwBAwBQ8AQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMAQMAUPAEDAEyiICRvCUxatmfTYEDAFDwBAwBAyBcovA77+J/PbzH/K//5VbCOzEDQFDwBAwBAwBQ+AhIYD98fN/zQh5SPDbYQ0BQ8AQMAQMgSIIGMFTBBL7whAwBAwBQ8AQMAQMgb8nAj/cFdme9bvk9P9NTqz/XSB7rBkChoAhYAgYAoaAIfAgEPjlx//JkWV/SFb3P2Rf3q8WbPIgQLdjGAKGgCFgCBgCERAwgicCQPazIWAIGAKGgCFgCBgCXgjcOveH3Dr7P/n3lw8uivXS/j9keuff5MMXfpX1yb/JT/8pOPavP4l8dvoPuX3+d/njd6/e2nf/JAQ+PfmHfH39jxIh+L648ofcPPuH/PxD9Pfxrz+LXD7wh9y99ccDvd9+/VGEZ+DbO3/I//6I/oreOvc/ufHJ7/LLf6PfJtKaPPeX9v8uP3wbPW7/z951eEdtfN3/5ktPfgkppJCQkA7phYQ0UkjvCWBTXcCAMdhgsAGDTTe9995777330EJZSTOS7nfuKMLaXUm7xjYkoDnH3ibNjJ5G0sy7792bqs7o9/QsYBrArmUSsb/T2z7VVvvXWrhwwq7WWL70F7BzSe2OqVT9dH8/stkE7wGmcL9J/Rr728aORSb4WluF1+Du5SbOHq6e7Wqr/age4NBGS/2d2lt75zWVXS+eslHSzEDW/yxU/KDDMp22TWGD/di/pho351SNRb//ay1w9YKNA+stxC7WfOxx/nFki4m/DqdfF+8/50/wOWxBaOnvV1ODco59/pit5kDSSL9d3nsPrrfx1+Hauz44Fzuxx8KhDdHEv6bntbr7W9LGyb2WuufVxrqLz1GuK6szF9evAEe22OA8/oayOtjA6f02Dm+xoF9O33K8TrlWPbmnFtcOnr5ol9K/HtPv9X9rywjg+W+dr6i3kQUiC0QWiCwQWSCywL/EAvP7S0wvENi+4MYsrLiAWD5CotNTAt1flFgzXl5zcl/6y8a0LhYmdDRx9kg0wf2XDJFa7wYXcGsmSAz/w8D+dSasNDK46AS5eBpqXEg9uUsnd1sY/ruOlaMkrqbpqDl3DOj/mY61E2vm4JYGcPkslFOHDhMubBMXqTxG7YqtjvXCKRsDPheY10/gyvn0x/mUrgbGtjOUIzrZAtf3DZ2YfT6Q2DzzxjqXrq+3t85exhUbE3IMTOxk4NJf6TnKpG7j7BHg4kl/p8KGaQIDW+g4tNkZZ+lYa9MsgZ6vx/DXwRvsWAEwvYdAn2a6cjKm01duc2iDhfxXNeWQqQ1nFOtkBintNqadAJ29UbnxFhifJTA+y8DMomqgfTXoJs/5/nUW2j2koePDNhaVG9dqo7NxwQAdPd/UwTlJVG5dC5w7ZmNyFwNTuwnE/gk0SnW0DNBQ9+HTyWMjdsnG2gkSw37VcXRrevd146qN9VNs9P/MqBFowjmSdhm4cMKZi3DsEqz0Fs5LpObQEtJJvXGGiT4fCOxbk/78n877iu91LB+exsTN23jI+8vnbCzob6LsCwkCr1G5MRYgsLdhisSYdgZ2LjJhWaltz7ns32csnD8GXxCHwMeEHB2LytMPXjm2w8SoDB0Ly0TSmK1LS1gWsGyYQPl3OnYuTv8aOHfUBp9ZfF65AYo17Sf7smKERPl3hgpiqWl9//X9I4Dnv34Go/5HFogsEFkgskBkgcgCN8UCs4sdJ+PWOelPbv06Skf1tgUWDq4Pr4eLzom5Ehn36hj5h4nTB6oWwVLYWDJYot9nBrbMDq/Hrw/Rd9W3gG1CZRDcSJq8jdMlSj/VsGGqTCtq7thOE1PyTAz71cCQHwVGZwqVdWbKqsUoswB2LTXR7zNdgYbpLLro1C56J4aVo0wFvlTHegSZ9q+xMb2Hif7NDfR8S0evdzT0ek9Hv88EZhdLBUbR6cK/JUMMLBokcPG0DUsA4zpIDPhCw4ldVceQqn06QAlinTmQ/j5cwLP9oEJgiv0d11Hg/PH06w2qL/o+tQU4VifnGShroeHkHlzLHAjbc+tcE0N/NjDyTxODWkjM7i1w9WL8Hszsmt9foO9HMZzczWyU1Odz/RSJzo00Fb2bCErG1w6cPWZhVaWFRYMklg4VWD7CVA4J3rPpzPH+LS6XWD3WxL6VFq6eTwY8WfeuJSZyGhjYNsdGuhHke1dZyH1Gw8H1/iBXYp/prKfTk86TsEKwNe9553oMu17C6oh+u34LjG5jYHSmgSldawbw0KF9bCewclR4PQThFw20kHm3hYLXDFw4WdV31rF3lY3sp3SsnxLNQ6osU3fvFPCgA9qlumsjsWZmO07pYmDIT7oCVlJd9+zbuikCw3+VGPaLUH8LygSMWFXNPA7WO7dEYNA3Ok7tTXHjgeMkXz1GovCdmMomqKot9TuC3BdPAWvGWRjxh0Tv93Q1F+Fr8Qc6hv8usHmWCQah2Lat5g7TCgxsmydVEMrhjRb6figwo4eRFJQS1Dod+JxncT6TbqFtw+7x7N+W2Ra6Nzaiay5do9ZwO46dzbMkhvxoYPlIAT2NzPATuyxM6y4x9GeBIT9KjO8gwcxh77XDc8ks26G/alg6WKalcXZkq4UhP+uY00eqsRp2aAzg2rHQUvMN1r9suFTzkKVD4+cgnI8sruBvJrbNs3D2oP88g+uG/p/rmNNXgCwS6ZS/DtkY2cp5XqW8Z9mAoQHa30iZrbxrmYkBXzh2SLcv6fT3v7hNBPD8F89a1OfIApEFIgtEFogsEFngpltgTh+BSZ0FagrwML2eTkdO7MPKwQ3kvDfR5RmJZSMYrRW/9f41Jsq+0jGjZ+1FRsW3EH1yLcDI0bklEqUfSkztIsGotLouhzfRoaBjwQCJS2dTt8eoutJmEuPaCxUR+9dBGwO/MTD8Dz0pk4ULy2XDJEo+1rF7aWptJwfg0RTAky6dBBfFe1eZGPm7ibyGEn3eF5jVS2L7Qqko4o5tN7F1joWRfwhU/GDg4EZTRfT2aGxjcbl1zSm/ZY6pMhE2Tk8/c6Y6AA8X3NsXWajM0HFkUzD1FLeb21coYIpOczuNCM66HiO3ev2M0uzeWMfe1aQnC78GCLwuLJPo+pKOJUOkynYhnVjXFwTo0Eik6yPNCEFAOm0IJqYqBHgIbJCSKhXAc2ybhYk5dG4a6PxcDB0ftZD1iIl+zQ1UttJVBC6jcPnHPhQ31dH5aRvF70usHM2+xveHfS1+X8fIDD3tzBkH4IkpgMcL8HqPk2N61xILY9oIjPhdYMQffDWxbKjElXP+x0mqldyGBpYNYzZffD+9dUfv68YCCuBpU3OAh8D+0iEWZhZVZeT49ZgZA4Na6MipZ2NmoRHnoOT2zCIY8Ln+D3WbXw3Rd7VlAT5Tj241MeQngYGfm9g41Uw6H7XVllsPM/UIVPf5UE8LLL50xlbP+d7vSKyslArE2TTdROHbOpYOi5/E8v5DYGdUhoGRrURK6jeC0AR4GGxCuqh0y6UzUA5s9qnLcw7otGqMxIH1Eif22Diw1sSigSYGfmlgZqHA8d2WCizp8z7psBzg6eIpC5PyhLLD36fTa7k6AA+fKX+fsrGgzMSUfAPMfgoqJ/fYKP9WV8+SxHVB0D7R99dvgQPrLDVP4FqL98OwwjG9e5mFshZ81hvqmjm2w1bBVgQWCfx4C+fiq0ZLBXJumJb6eibAM/QXA1yPct+wcuGEheXDTPVc7/WuhqzHBbIesdDzdYmhv8TPQ0a21NH/cw35L5no0djE5DypaNW89XOexACnob+IpN+823nfOwCPrgISguhimXG9f62NqV2lAlo5Dxn5h8TCARJnDvrbm5TJ7AsBZF4Pt3OJAJ7b+exHxx5ZILJAZIHIApEFIgtctwVqC+DZMltiVi9mVsRP9L0d42Jv7USJrs8LDP7exLHtydtevQC14Kz4TlxbhHrriN7XngVIi9D3fRuZ91joWF/DnhW1o4cT1ENGujH6lQsp6iylciiTNqTkAwvlLSQOb3F0mbjQ5Jjt2sjA5lkWhB6/CGKUHB3QzPY548kO8+tTdQEeOocZYdjzFRtdGwnM7Wvi1D5bRR0zK4eOKv5xgXrpFDAx10C/j03kNjDQ4TFN0SAyS43lyjlmzhiK5oEaQOmUMICHDhFq+vD62zhVYlQmbWSqdncsDtc5oQ5K4ZsCS4bUrrZJOsd0u23D85P/ko75/QRI55OqLBki0PVpG7N6mooGkNcMHQcEMXu8GfMFZUmh0+0lDQsHSl8KFW+b1QF4OK6ZNXT5rK0c3+3us1HQWAe1oZjB6f2jw4h0hdMLTWQ9aisHzOLB8YAUj4WZM12e10CKRV7bqUoqgIe6RgRcu78sMLeU9xkbfx2ysHW2heL3BCq+kzi1PzmrjbQzg39i9p0GOnOjcmMtUFsAD8fgmDZ8NgTTR3GcndhpIetxDV1fMHDSR/eHWRmk7un0nMCp29zRVtcjgfOCZUNNtL3PQpsHJMq/1+OyYmq7fT4r9yy30esdAwvKZEqQnWNqfj8T+S+amNunKiOB9yxG/g9oLkAtM29hG7uXWiqrl9mMYaW6AA8zYQ6us1DxrUTeUwQiJbYvsNT9l+OWWdkc4+wDnzG7l1gY8LmBXm+ZaP+wjrIW+jUaW97TGZDSvTEzqsODs9xjCAN42C6B+9MHTKXtt6CfQMknAlmPOYFbsRCdE4JuPB9Fbwv1THHbi15r3wIEsCflCAz+UXfWWSkeeftWmyj/0kLF1yYOrLEVrSm1e5ghk984pmi3Off1FrYxMcdQwI3fWs+7bXUAHrbDa+byOahM4rxnJHKfkgqw5bw6fh5iqQy3dVNM9Glqof2DtmKO4BzJLRyzBKP6fqxh3cTwa9XdJxXAw/4tH2GhpJnElE6mopY9c9ACA7vIQjDoa6EYBxKzrFVfxjBITVOBYW57t+NrBPDcjmc9OubIApEFIgtEFogsEFmgxhaoDYCHTusVI6WKNE+kDfJ2kKn15DrPflJT6fV+Wip0+m2c5kxwSRvACW9U6sYCpMsb8qOOtg8IlHzkLKpTgS416cnySoHurwhsmWWDorphhdz4A7+U6PS0gR3z4wGKteNN5D9nY06R7auRQOH6Hk0YsW+GUr5UB+ChoPDw3wRyHrbQ/xOJvSssFY0aZi9mRJV+ZCDjbgu93xU45l1U0rldKlD4lob9a1NHONJWYQDPyd1cOEr0fNPAwBZcVAtkPy7Qrp6GnSkAHjqCqIdU8Z2BU/vq9oJjBt/hzWadOvDCxtXN/I3ZOMN/09U5P3/EP5PE2z9mr3V5xlbR1eeOxZ8XRqa2+Z+B3cuos+Ddy3HuzSg0FAhKHYhEx4t36+oAPO5+dMT1fDOGNnfbGNuWEeruL8mvzIzr20xD5j02OjfUVYS6l+f/9EFSrulYVBEP/iTX5HyTCuBZXCHQ6XEb80tNXDlPXSHHc0UAh/ShnZ4WKgqZkbKJhaAAnf67l8ffbxK3iz7XvgVqA+DhqT572FJR4+ePB/fRiNlYNdpCVj1baWD5zTFY1+l9Nrq+oGFW74QLLLjq6JfrsABBhm3zTXRqoCO7vsSMQhF6z7qOJuJ2ob7j8D8N9P9M4nICMBO3IaCeUxumWkozcvD3QmUAutvw+T42w0Thq7YCjNzv3VfOr2YWSvR+x8LxnQneb3cjRdGWfgYPMzY3TjeR/5JAlyctTO8uwXsZQZ2gwozEdZMstPufQMdHTTUH985bGKRCDRI+m8Jo1Nz6wwAe0mGuHc/5l4HeTUl/Z6DfpxIZ9wiUfaUpuky3nsRX0mgeXG+j8G0N80rq9pojNTQzWHiObreiQISxEsXva0pHic/GsMJstMo/GJgisXqchDdzdt0kqUDyCdlSAS5x9dhQQU2lnxiY3Ss82KQ6AI/bBu/jc4oF2j8o0LepqQBV97fEV95jFpYZ6PioRNajUgGJ3uCwYzssDP7BwMSc1NlMrDsM4OF8ixqj3V/VMaGjk+3HOQ+vOdr+GljWgmMw+cJlENDgHw1MyDaSbZp4YLfw5wjguYVPbnRokQUiC0QWiCwQWSCyQN1ZoDYAnr9P28pZvWqsDAVkGMU1/AcLFV+ZOLQx3mHpPULSVAz/XWJsOxEJrnoNU8vvueAgLceBtRbOHWPEZ90tdqn1wkjT8h/o5A0+9zxELoKm9xToVN/E2PbJ2jBrJgoUNLIx8neBs0eS66IThBRVxc200IyydAEeOteH/CDR8SELfT8QylEs0/A/qOPoIZD7mIWxmSJJTP7oNhOFb0kwwjf2d+qTGwbwEDC7eNIGaVs0Ru0ut9DjVRvtH04N8LDldZO5INWwbZ6ZBBik7lmaW9jAqEwdY9oavuctzVr+s5vtW2MhrwGpgcyUmTWMQi1pJtD2Aakoi7zOCBqAOlQdHqCjmmBZ8nXLe2juMwYm5RmhIOf1ADyHNlhKn6TVHRIrR1m+7XtPUmVrgbb3W2h591UVteoFpHiNUJC870eaclR69/N7HwbwEBTu/qpAbsMYzjBLJ8EsdLxUtjaUY58OT4qMewuzR3s00TC5k0AQ7Yp3++h97VmgNgAejivqKTB70+uETOzllfNQGhKdn5Y4sjXZweZuH7toY2x7HYVvamlpxbn7Ra/VtwDvYaf2QEW6h2V5VL/m+D3o6KXWS7cXDSwsF0n3CO/WvH8w06tvM4GCFyylv+O9pzBDkTSQ+c9aWFGZPCHg/WbPcgv5L2uKnoz3Or+SbgYPs3M2zpBgxkKnxy0F1BBA9/bJr35+R6cx5y7dG9lYOyG+r5x7cA7CuQjnJKlKGMDDY2R9tA3vp+ePWZjd21JZ4qkAHrbL7cd2MJSuIQMJ6qosHy5Q8aOOPctTH29d9eFm1cuM1lGtbAz90cn4DusHx9z8fhLZ9QXGZCbTOG+YYqLgZRMjf7N8g4M47x+fJVD6mVDARlBb1wPwEGAdlSHQ8g5HFysVveH6yaS2lWh1p4HxOYbKRHb7QxCUIFTZF5rKPHO/D3oNA3gYJFX5m4WeTSQ2T09mKqC2zrwSEzlP6oo6kRlv3kIaQ7JhlH2hKw1D72+30/sI4LmdznZ0rJEFIgtEFogsEFkgskCtWaA2AJ7Dm2zMLBLYsTB8sUQu5sI3dczuFS9Mm3gwXITPL5Xo11wHo9ijUncWoHMgLMK/tlpeP8VAt+dNLBtiKQAirN5DmywUvSWRVd/AzoXJWjorRpro1pDUbQKnD/g7AciT37WRxJpx1NTwby0dgIcRqXTidKjHBZmBbXOTaeH8a3e+XTVWoOuzFpYOtpJAHDokR/xhKN75dDJnwgAetuZ19FCnpcerSBvgoVAzRZmndBMgYFsnhQBPhlAgD6Oob7cyrr2BnKd0RU0Z5OxzbUJqtk6PMXuHAvDJtiIo0v5+W/G500GYWFg/+ejznospCirv2PBuez0AD7WAsh8B2j+k4dB6GXr/YD/Kv9XQ5l4TmfdpOLTBoXfx9oEi4E7mTGpwMQzgWT5cIvdRW4GxBMj8CvWPuM3g7w1F5eLdhjaaXiDQ7WVN0boF2cy7T/S+dixQGwAPrwPqVXEuElR4Tnmv7dTwqrr3hj37COJzTpP1hJFybhPUXvR9+hbguQk7H+nXFLzlhRM2xrUz0OtNE16aJr89mHG+sMxSGc7l3xlJWjrM6h35m4kuDWwsGOA/5vicYyBK3/dNcHu/kg7Aw+Ab3vsKXpVo94CpMm4YzJFuoTO8spVArzfsJGpkZs4wm6UozcyZMIDH7Y9776SDf1aRmTbAQ+c3M6byGWyyoO7m/nxWVHxvgKL2t1thBljRmzpmFYWvw2gXZpuUfWYi/wUTq8cnB/CtGS/R9TmJod9Z4LhIKjZU1k9Bkxjm9ZOB+jrXA/DsW21hwKcW2t4vMD2fgSz+z3zVJxsKhO3UQCDjbgPT8uODqjhet84zUfqZrqjemG0dVgIBHpvjl6CXxOBvLKUb6lfPxmncRqDiayuJipx9YUZjv890LCwTig7Pr45b/bsI4LnVz3B0fJEFIgtEFogsEFkgskCdWKA2AB5S28zqbeDE7uDFEiMN6TyjdgTFOlOV3ctMJY45t0QqzYlU20e//3stQKfNmPaO1sbeVeF0ZHQIT+nqZL1UfC99s31mFwt0fsLGoK+CAZ6j2y3lzBiTaeLcUf/xlg7As3iwQN4zFlrdJZWjorqUHptnmuj5uo7tC8j1n3yOSHFBHZN0MmdSATze2qsL8JBCYlq+QJ9m/3CyeyurrfcK4DFuS4CHQtPdXtQx4Esdl86GOCKoz3QeKHrnKjLuNrF4kJWU7UNqyz4fxdD2HmpDkPrE/wQRCM2pb2PtxORsFXeP6wF4RrTUFLhU+LaBiyf9ry23fjpR8xoZyLjTVmPr/Ink7Rmp3aOJjsmdjZSZM0EAjwNoGehwv41JIRk4OxYK5Dxuq+jZk3uTdX+ObLaQ08DAuklmUoaPe0zRa+1boDYAHuo+jcqgYzjYO8dMR0Zy5z4JleWY6kj+Pgn0bqphZKsUnKKpKop+v+kWoOP08CYLBa9rGPqzEUoTy22Z9UJq1S4NLEUhye+85dReG/0/FSorc35/n4c7nGyWJYMtdH3WxNoJ/vPjdAAeirJX/CCQeZeFgsZC6SUm9sfbt8T3SnOlk8CA5rzHJt+DVeZMewMDPhdIlTmTDsDjtl9dgIf7kcq2f3NdUdLWFeDnADz6bQfwEAQhuNHjNU1R/YWNIf2qjbl9BdrXMzD4OxPHd8RfAKR2YxZc9mNCgRkEafwKafcGfmGhsqWpqM38trkegEfRwz0v0KWhiZWjw7PxOP5JI5dxNzVgJVaPFyCw6S3M1B+dKTGypYGzh+OP1bsd3wcBPLyWCZxl3q+j8k8zsJ4di6l/aqHgJQnOwRLL+ePMDpSobCkCgeHEfW61zxHAc6ud0eh4IgtEFogsEFkgskBkgRtigVQAD/V1uJAl1QQntYnUJ3RaLxsu/tHfcSbFXDRcOG4r4WwK6LLQMT6nWGJuicCVNKgXyCs+rqNQAp1+Isg3xDj/wUboqD93xAaj4km7sXSoqTReSN+1Z4V1jZaAWVKXz9g4c8jCse22osxjxKpbvL8f5+8bSLlBOhBbOWEPbrSUsC91Lai7lLhYcuvhKxdXxe87zoNUmSon99goektHq7uEorJK1Pfggn90W4GOD1oY+pMMXDAy82ZQCwMFr11Vmi/e/rjvUwE8J3ZRmF0i4y4TBU0MHNlkwasf4tYT9rp2osSAr3QELX7/PgX0/kDH1PzUmTN1CfDwGPauNNHjNQOrx1rg4r7Wyw0AeGjPLXMsLB4ksXiwVBmApIwJc2RcOWdj+3wLSwabWFIhsU0JVlO/JTxHCwYAACAASURBVNgCbGfzbEfnaXG5ic2zSI9nY+9qiZP7LCTy2u9cYqLzE3BEugMAGbc1Rsrm1Gf2VQxHNttJUe1su9tLGlrfyT4Ha9fQEdfpKVM5CoKcdtUFeFgPKavoaHT0d4KNRAq0ES2FAoOyHjWwbZ7lq/FAO0/rLpD/io6zh8Iph4IAHvaLukDsF58zQaDXwXUmsp800PKuGHYsMJFItSh1GwO+0DHkB/LfBx+be66i19qxQCqAh2OEmkq7ltqgjhfPk7fwd97PB32jg84xtzAj4PAmE7xmWBhosnyEiWG/6TANd6vgV44jgqh5z+lI1MEK3iv6hc9pnoets4GlQ0z1x+ufmSTHdpig5gULgVk+qy8cs0HA9fBmCyf3VOmGJf7OZzCfy6yfUfac6/DeunOpQxHlF0Thng03O4QakPNKkp2q7nZ8pSOcIumt7tRR+Aap/OK9wRxvBIu6UQvnaRtLh/rXx+fAjkUmcp+OYXyWnnQvZ1upAB7OoZcPN5F5r0THhyXGZaU3dr3HQ8q0iZ0MjO1o+D7XaJuNUy10e1XD9hSZ+HUN8PC+S4qq3u/R0e49itp7X9cADyk+D66zFYXpokEC66ea+Otgcvaq94iYac4xtXqMM3dnkAHnEmFjmu0cWGdj9RgLSypMrB7HzDRbXUOHNptJYB31lkinpjJHNsePaW9f+J6Z9OVfOxlsM3uKJP0ktk0NqDb3Sgz50VTXZWId/MwM5LFtTKWTE8TIUF2Ah5SOc4uF0pVy9Hf8wVO2z+w32qXbCyba/09icq70zYrmtbpsqETppxq2zAquj3UGATy8zkZlkjZOx+i2RiDF+P7Vpso+ynqE2rVm0rzIks49pd+nOhgkdjuWCOC5Hc96dMyRBSILRBaILBBZILJAjS0QBvCQ5oZUQSP+EBj8nUTpJwJrxppxkY8XT1kKtKH4JhfjLNRoqPjWROeGAqTzoX4EF8TkOfbTi/A7CNa1aoyJkk80MFIrKqktQCcnAZ0hPwnM7ClVhN7K0SbGtDNQ/K5A98Y6Dm90HNd7V1oo+9xG+0c1tH3QQJeXdEXT4Z7DPSskBjZ3f9fR+TkdhzbaijqgsqXEmLYCE7IFer0jFAhCWoIgpyqBg6LGNiZ0FL4LK++RLR0m0fUZG9lP6GAWSiKgePmshX7NDWTeZWJ8BwFSrvgVAlETcg1Vz5bZ/tRPoQCPDVCoPusxE63uMJVYMqNRq1vIaU+anyDKKCdzRqJPMy2JqiGxrboGeLTLFsq/MTCyJbWN/O2a2Kdqfa5DgCd2yQaz/fJfNtUCfXoPgRk9BIb+LDHoGwO7liSDC8yEWTpEovg9E8N/NbFwIIFqE+XfCvR+1wDpRxLvV7w+Vo6UGPCFgRkFQtFxbJhmqettwJcGsuubWD6CoEu8/Wb3EehYzwFeCZ4GFcu0MeQXHe3vsxVvvV/G2L5VFrKfEPjzDh2bptnq/upXHzOBujfW0PPNq4HXXXUBHkd/x1C896v4LND8WgYunbEwrr1Edj1LUSWSFoZ8/kHFzZxZO9EEz0tQCQJ4zhyylfZO6ztsLBpoQg+gZaQjKevJGFrfYWLVaP/n0fKRAjlP68rZVlcR5EHHd7t+Hwbw0EHHgIKK7wyMzhDo01RiVOt4hyOdoDsWS6Xn5J4z7bKNWYUU1bYUyM7PLCJmp62pw+vxyBYLnZ6hIPnt6Wir7phkUMaKURJlXwqlMbF+qsT6yZbK4OYcsugNEwv6OXO6y2eZhWgi71kTbR7S0PExgcoM4xqVE3+fV+pE6bu/j/jTUM99Uj4N+VGqecjw3wwUvEqdEH8tEB4D65rT20TBizY2TvPPuHGPlRH8fHa0u89CxQ9aUsAD7+FbZgk1d8p/3saGqcH1UXuy4A0N/T41wGCCxJIK4CGgRarO1neQos1U86LEOlJ9ZpDDrqVS6QcGbXt0h6m0byju7l5DftvWNcBDR/uuJSZ6vK5j+ci6mfvXFcDDoIZt8y0M/IqaRkI5+UkZSZrf8m8NFQiXSLnK4927wsLw30wMaC4xvUAqmjDqT5Z8KDA5TyRlsnM9dWCtibFthLoXcs7BZyyDTYb/IdD9ZYnKP6UCerznkPOgPk0Z9GHh/PFggMe2CIpIdHlWIv8lE+unJGvJcP488k9TzQVIvUvw1q/wuT+zUCDv+RhWjvLPtKkuwOPo70i0vMNQeq3McPMr+mUbq8ZIFL1mIbe+xOQ8J6uG9vMrB9aZGNhCqHtV0HqG+wUBPASuh/xgIeNuoTLQGKjoV6hBO/BLG5n3CswokL46iQfWWyj7SlfjwX12+dV1q34XATy36pmNjiuyQGSByAKRBSILRBaoUwsEATzScAS8mVlwbJulovsHfS4x4idLRYi5neJEdVahUFGK7ndb51ooetNE6zslxrUXgVFM7vZBr1xI0qkzubNQWSJB2wV9T2csHb/UF7lwgn92Df6AK+fCo+mC+nEjvmc068pKLk50tdCj45WOMTq+rv5tYXy2oQAeRj9zccOo0GPbgBk9BXKfstC5oYH9a6soixjByt/pLM1rKJH7tJNlMr4jKfacBQnbIFBU9LqNvOc10PHs5xhYMZI6NHS8WvBmCSXahc70ob9oaPeAI2zMyGv2w/u3ZyWzabiwE1gwIDlC0VvngjKBTk+aWDHcSoo+5HZhAA8XvyXNGOmvI+sxXQEEtGd1C+1h8y9kVwJgBU0EVo8lSBa8YV0DPDy2JUMM9HyD4Fq4tkp17aC2ryOAh2OKIHTWwzZm9JCgNgGpmOiEY+Za+TcCec9pinLHHZ8EYCj+m/OkAB36BEO4Pf/0Szbm9JXIfUJgdm8RB1ySG73rCzp2LHTGFK8v9WeQw91C7uMCy4YlgxnUzGnzUEwBrG4f/GxIoeDOz+oqO2dKngFSRHnHP9/P728g62GgXT0NBzcEnye2M7CFgQ71Y0pvwgVvve1WF+Bx9XfaPqBh80ypIuiZrck/giyH1lvKydSnqUD+SxKTcgVO7g4Gody+0O4EzYb8qIdmzgQBPEe3MjNHV07QRYOCryM6YHKeJsBD/aL4c+v25cIJ0srpmFdiQQu5Ht3to9eaWyAI4OF9k6Lg1EzaMtfE5b8cKsmuT1rYMrvKQUkHGM/nrF5VDmGC6nTSZ9xhq+dXKs2VoKNgRsHgn3UVbMJxWt3CY6Bw9sWTtTMPYaZgKo2I6vaxtrang3vTTBO93tGxeYYTDOTeIwkybJpGkMK4lkHD3zg3YwbkoBYCbR8wlTaSa2fndxvb5lHLxlR6OH0/jmFOX4HZRQIXjpN+0skSmNPHRMd6lqLT89PdY9DCiN8cHRpmCgUV3jdJJZvbQEPOYxamFRBMjJ+HMFJ/Th9nHtLjNaGyHYLqO73fwqCvBXq/5WS1J24XBvDQOb5uskCb+3Rk3Geg4lvd1xmcWKffZ44ZzkWCyuVzjrh7r3fCKarqGuBh/+hAH/prDIN/MJKCLIL6X53v6wLg4fx15SgT3V8yMegrC9SI4djkXITBV4sHmej+Kp8rzDB15nkc3+smSxS9JRQdF59P3J7fcwyTurffR1KBQ8zucQufqaQSm5jLIKd/5iACKjiCVGrMbh/+i5kE8DBopcvzmsoY51wiqDCwZGKuQ2nW7xOJ3UtNBYp75yI7FkqUNjPR5j6BaQXBGjicdywfaaLzczHM7p0cNMM+VBfgcfV3mD00tr2Ok7ssNQfhPOTcESidKVJxjvhdKuC34jupsnJ4HsLm4pxLTu1CME7H4S3BF0sQwENGg7IvLLS+Wyj7EVT2K1zbDGpB6mehMvL8gCBmSE3pIsC+H95Sde796rsVv4sAnlvxrEbHFFkgskBkgcgCkQUiC9S5BYIAHgIBU7oa2DLbcZhsnWui9xsmBn5uqcgxt2ObZpiY1Vso4WL3Oy6G55Wa6PiYjnEdUlNPufslvnJxxOg36lbsWxU82U7cz/1MQGd8lkSb/2nIuD9Wo7829wv0/dChfHLr/ze9nj9BGgQLI3+3k6L92E8uVga1YBZOPPXUyd0Wit4y0elpPQ7gcY+NGVp9PtTR9gEDhW9pKpLa66CmI0Y5r+83sWiQlUQJwXrodOtY38AaUn+FOExP77NR+JaOP/5PQ5v/xVREPheF7l9eoxiyHo+h1V38XceWOcnUBm6/+Up6tO6NbMwuMuGXfRMG8JDirtsLttIO6d88fnx726iN98xYGPStDkYh05kZVG4EwMPI5cK3dcztY4Y62oP6GPp9HQA8XKxPzDGQ85CNIT8SqIlfUDMDMedRIONOYNWoKuCFFDC59WyVecP7VWJhvUN/0dHufoE146s0bIb+YqDnWzH8fTp5H9bB87h0qFDOGbdOZjAWN9WR+8xVdW2GORjWjCenPdDy/3R0eCymgCl3/KvXRjG0fSimwPOC13QQjAgrozIMtHmAoKx/Flt1AB72e/jvBtreb6FjfR1lX2kY/IOOiu915Ygb9J2B4g80ZNXXkVWf4JgzhphNl05ZM85E1pNaKAgWBPAw8pZZf4xyX1QeTFvHaPjsfwAeOpuConTpNCp8W4uj+0rnGKJtrs8CQQAP6bvmlRqY1NlBVhRo85NA7qM2VoyoAnMIwtDhSbout/A5Rcdhl0YGchroijLW/a06r3zGbZpuIftJETf3SbcO3l+YOdLufxZa33e1RvOQjPti6PKsqbIE0m3/Rm6n5lwdDfR+n0BtcsuMvCdV2Kxe8UgZz/PyYRbaPCAw4nf9WgaPWwOfkcySaX1vTIHyE3LiNXToRN63xkJuAx2Fr1m+DlFSv5V8JFD0tgjUxmB7PF/ULyPNUsu7NXR47Co49/Deh3kvb/eQpuYi/Zr7H6vbd4JBY9tIFDWm7lPV+HR/DwN4mO0xKZfBUkDOE6bSRHH3q+1XXi/7Vlro3iQWSDnHNm8EwMN5IueL+Y117F8T/oy7HjvUBcCzaaZEr9dM9HrDxNY58ed532oTZZ9ZyLwLGPGrfW29RPq+kvdMlH9hKupJv2NZPVYi71lDZeQQWGBZM06i13uaypTz22flaKkySKgj5RZmw6ugp4YxLBggk2jB3O34SgC0/CtmrzvrJ1IMesd/50YaOj5+FRn3COQ2MLCikgwOwc95zjO6vWhgQpbwnVdWB+DhdGLtBIkujSTaPSjVc9o7Dyn/3kC/zzR0eV5Hh0d1leVHGrtENgDv8Xrfb5wm0fdjTWViI+CQggAejtX+n1rKLpyXBtG8MiuU9Het7xQY09YIzLDeOL2qL34BOt5+32rvI4DnVjuj0fFEFogsEFkgskBkgcgCN8QCfgAPF3rLhkuV3cEFO4EWim22e9BAZSumuDuLBkaZkVKL1EaJ0WCHN5PqiOnl/lHS6R4cI9hI00Yea1IZVKewf2f2k6PdUjRZpMq63r+di2xF2cMIsH9joWN+1J82erzi8HDznHnLpb+gIsWot+P1t57YZaPoTYlOT2u+AM+Fkxb6fqQrHZqpXU1fx/b4jgayHrIwvbupdEi87bIt/t7+kasgGOhG5nq3cd9vmSPR/SUbre/WlFYJnbZHt9nKSccFIDnFmdHFKN8e1MRJEdW2fYGFni/bmNDB9KWjCAN4GCFMhwqjv6fmyevOQnOPLdUrdaxISUJHvBdA8+53IwAeLiJ5vko/08CxUduFgMPY9gbOHqlyPNSkDY6B3AZCaSWQNz1xfG2ZK5H7pKmodBhxyt+pKdapoaGAXwKeQfZmJHpufRv5r2jKIcixXP6djg4PC6yb4ETnJvadgDQdMl6KNi7yu72sodsrsUBKQbce0rF0eNBWgOvWeRJHt1rXxj8daxTn7dQwpoDH0W1SC2ITpO/4EB3U/lk01QF46Fzv8Tp1bihYTLFut9dVr7QRt5vbVyKrHpRTh/pGzAhNVf4+bSHveV05f/1AN+4fBPDQgZbzpENjtLgiGOBhFoebwTO7l6mcuX79YlZd9hMGts6x0+q7Xx3Rd+lbIAjgISBABzqvc96bGLnesb6GnCflNbCFY476FgO/1sGABG+ho5hznC4vaNf057y/p/ueejIEVCfmxgMT6ezP+wszTXYtwXXPP6rmLRL7ViE0EzadPtXVNryvj2plIr+RQ41Eijtv4b1h1WjSYcZP5jh/XDY0GODhfGb9VEe8vOAlhyrWWy/f8/7I7KDCl+24jHJ3O/7e/VUNfT7UlCak+33iK8H7yZ2lyqIseC2msjWPbDWr7sNbbayZINH5GQMd6pnqXhj0DGHdrG96Nwvdn7cUpWdie2EADzUL+38m1Dwk/0UL2+bF2y2xrpp+5jxy+O86yr8Lzpy5EQAPj4PXfB+lT1j9ay6VHVaMlKj4QceeFfFATKr9gn7n/WFsW4lWdxqKjo3rJm85vsvRjGSgGDNj+KxjpjGziDPv15UGHUFOv0KKv6E/WMh5QijgjZlYq0ZTF8zA6Namrw4lgaP5/UScLg5pS6f3MJQe1DKC4/FdjGuawVOkUuxQT6gsEmaQcA7OP55/ZtCMbKkrirE+75tK6zCugoQPDBDs9aaJMRk2zh1Lbrg6AA+z2ggQt3tAoPQj0/cc8pnA7Qi0lTSl7UylF5QqIIbdJt3biN+FOp/UD/UrQQAP5yH9PnEAnkm5wQCPAtC+ttDqDofGL6hfZ0iD94dUfUmk9vPr1630XQTw3EpnMzqWyAKRBSILRBaILBBZ4IZZwA/g4WJ663wnW4UL1xO7bQz7yULWYwboPHPpQbiImVvCCHdyUMV3mQvFKV0M0HHNyfb1FlJlkd+ZuiBh2Q3XW3+d7mcDl87aitLu6FZbOWvpsK3OHxe5jMLjQiPMiUCHKHVH2twvkfWYoztCkdbju+xrWTOkHyDo5S1pATzNNLS8S8PKUdJX24KL1OyHLUzrauJiQmYD+zw600CHRzVFNyFDaM4Wlkl0ftJSzu2D6+MzjdjnK+eA0k9jyLzbwoSOMqWzfPcyC4Wv2qj8Q/ryg4cBPIwQpqAxOb6XDXWo4rx2876nTbkA3rnIBNs8uN7RbTi0yQQXfLsW22rsJtreW8dfh21Fa8PMkqCovxsB8LBPFFkmlcj6yTJQY8Xbd74n9cvZo+Fjm2N50DeaynIhcEvwzv9asBWInAjWJLbJz7x/ZT1kI/vJmAJuqGmUWJilRgFv1/4LBnC8At1e0sHo6qBCuhRSE3IMbJxG6hQbs/sayHkYyLzPwIDPDSwul9i3xsSls44Dmg5l/Wo8iEqauE7PXkXPNzRfgNRtn9dKWQsd7e61Uf61/zgg8JDzhDMumVXAPoUVAk7Z9SjC7K+XUx2Ah5z/2U8ayimxVgFc4W3TUdjhAVtRHdEpFHb/co9hfEeBwrdjvtcrtwkCeEiNkqUyeGwsKjfjMqjcuvlKgDv7qauKom1OcXAGD2lyejfVUdnaSMoK89YXva8dC/gBPAR0/jpiYX5/oYBZUhZRY67NPQz60K9pAfI+QYcmMyATo5yZ+cExzmyzdMZf0NHQ+Uo6024vhYMDQfvf7O9pBwqsH9kSdM8Nv3c792kbfx2uuo/6HRMDYBYMsND6Dom2DxkY+LWhKCup/ec+16RuJ1GmpgfwSLS+9yqK3jFw5kA8kMe+KK2bxgI9XraxfX6y455gfpcXYij9VAd1goIKKdXKv5Zo/4ClwI7EwCKC1VvnEIzSQP0dRvyHFdJdzS60kP8cKbyStw0DeDj3K2hC4Fqi8E09NOiC82xSGO5aamHnYkvRzB3axPNqg/OpXcskDqyxEbsYfN/m84vaagVNdEXL7HdcNwrgITBGiug+H1BzKfl8+/WN2aKkWD2x21IAkf/8wsK0fKGyNAh0BG3D70/vdyhS/dryfrdzMYEEE+0fEphbavjqyJGGiwEGrg7TnhUW+jUzkfO4VMBN4r3LrZ9zf+rxcB4yKoNzWQu7lpro29RE5t0SBY0NTOkqwAApzmkdelpb0Yu6cx7WRcqvyXmGChAhQBRU2A9qH3V6SqLHqyY2z0y+lgioE3ggVTLXZ2HzKLZDgLrPeyYqf7dw5kDy+KsOwMMAw8pWzhyIOkNuVlPQ8TDbp9vzUs3nOV/kGA8rpGImAF36Gal4k4+d+wYBPE4Gj5kyg4drA9L4tUqRwcO19oKBEv0+07F9gX9fwo7lv/xbBPD8l89e1PfIApEFIgtEFogsEFngplnAD+BJ7AwdJD1eNtH/YysuWoqLxpmFFDBPnnjSmUthTUZu1aRwsj23VKB/cx17lqe3yKtJe7W5Lx1StG/7RzS0vieGVndfvY6/GDLu0xTVXWJUYGJfj263FB1B5t0m2twJtL6T/NjU3jEwtyQ5u4b7pwPwMOK11b1XlcM/UXSedbgAz9Qu/gDPiD+oA6KBGRTeBWdi/yd3MZDzqIXSj0QSdzi35Tjr/rKFzHsNbJji77D21klneFETqIUo+fcTSxjAwywTLtYz7tWwYVq48DudWuOzBYre0dDtZR1tHryKlndeVVRz7R+JoaCxxNrxzBZI7EHVZy6qh/ysY/BPuu8CmFveKICHgESvdw11/dI5lU5hRGq/LzRk3qeFjnHa5c87Y2iproUrvttm3CNR3NSIiz4N6gPpAdvdD/R4zVB6O0Hbeb8nlVP7+20UvW0kZZx5t2P2QF4jTdF+zewpVbYHtXoGfauh/X1Q1xip3/68g7RBOkb+IRSYm0gFQodMToOYohKhfkZQoV5Y0dsaMu+2MUPpPiRvOaOngY4P2opH/9yReCApeWsorQoCUqtGWb5aBtUBeAjuU+eo/cOaiuJN5TBfNcZE1qOkOQTmlQTr4nj7vXGGRPtHr+LQen9KlSCA59gOG1lPUlvHwoKy4LbonHS2oyZY8HbsE7Op8hs7WVdBzjdv36P3128BP4AnsTbqGfT7zEDuI1BZw+7vvK/OLxWY0yc50p+BD0uHSOUAdbe/nlcp6KRkJLgMdHxfT703Yh9m0RDYzHkqhtb36L733LTmJvfE0OcDamqFz8NOH7Ax+Aehsgw5D2EWLNvt/JyBce0J7CfPCdMHeK6gd1P/TEgvwMMAAm8h+EHa4c7PxtD/82C9EO5DGkc+G3LrW5hVlBARw4ycMzZmFpgqq7lvM4IPwfd01keqOlL0dXu2+gAP71fdXjLQ+i6Bko+00ExijlHOedingtc05D7DwJyraHkH553O5+G/WaHnT9lpvYUer2tYOCj52Hk8NwrgYaDZhsmmmlP5Udt5z6/7nuAGteHaPnxVZYIHjWtllzuvOvYJmJdn3KMj/2WpAGK3/qDXtRNMdHmOoIip6MoSA9789ls3SSL/BRN5z5gq69dvG3539QIwubOhQIOyzx0qNwaRLB3CfaWah2TeCQW2kDaw5CMD6yaaSn/UWyfnqcxAJN3a6nHBAA91tOaWSjX/VZTc6+KvJda5fYFE8TsmsutLLKkQ14L+vO153xN0JABW+VsVPZ339+oAPNTH4lq07QNCzVGZmRRWCOxSF4fzkIpvHOAvbHv+tmW2iZKPNSwd4h+gGATwEFAd+KWFjLsFJmSLwExB9onb8bpmNnTYPJtZSH0/0UD9w9tpHhIBPKlGafR7ZIHIApEFIgtEFogsEFnAxwKpAB46T0izlnk/QQZSC1QtZjdON5UI+el9yQv+DVMdijfyntekkPpgtMrgCRd+rUkbdbbvP3RFjCak8+F6/riYPrbToXNI5VDlcTDjaXGFqUCSzAeo1WFdc0RTeDUx8jVdgKf1fbHrAni4IBnZihk8MZByys3+8rP5uA4GsupZGN3aP+NmRqFAp/oWSj82VLaGXx3e7+gUYAbP6Fb+9YUBPNR86PiIqegzuNhLh2KKzhFmVPA42j/k0IJtmFql++LtW+J7LhgpTD27WF6LdE7c5kYBPIwUVBk8CkSrut4T++P9zLFJsd9j283Acc6xTOoXZvGQPu/YNv9tmdlDQC5VBg/tzYyXtvc62k3ee5O3b9735ImnTg73IYgVBrjwWiLAk3mnjUk5UkXAsi79so3lwy2UfmKg42MaWt5pIOMOB/Dp/IxQWSZeIJP15DaMoeebetz909svvqcDu9srmuJlXz02GcAkYNy7qYY291A7iMLfiTUkf57VWyL7IRvUt0mkbeTW1QF4qL9DYKz3e3pSpl5yy07d2Y/ZaH0Haf9EWrRSvHYIlAZFBAcBPKSGcsE4ip8HRenSsZL1hKa0BUgV5WcTHgudXMUf6BjZWlcONr/ji76rPQukAnh4f+G5a/tgDJ0axlMP0YE+4g8Nu5cmzzV4TQ37rebRz+48KP9lvUZUb7VnserVZJKa8oBDr3Q98xC1zzYLfx2x06LKZeYygbW+Hxpo/6im9GzoYOW9tOdrMikoqDoAD3W+/EAV9rHgnwweP4CHIvWdG8VUNDyzmYMKn1PdXzFUxg21ThILAa6+zQQ6P2EnaQklbsvPKoOnyFT1kb4zsYRm8Oy00PMNAxl3myj9NH2aQV4vB9abKrsjU2W8GWnpiakMnjFOBg9puPzKjQJ4VAZPN2bw6IEaJX79I6h7ap8DRAWN9endhcoCXD5cgIFR/ttRz9JOop/2a5MZL7lPSXR+WmLVmORznLgPM41WVpIaWaJLQ9IqB+/DjKspXYQCeJjxs3elc144P2LQ26hWAnmNdJVVrIK67gQ6PmxiZs94HUWOec5rc5+JgcEXQYVjgNmKGfcaGPm7VJRl3m05t6GGT4dHBAZ+wYz14Lrc/Zhh2fc9S9FIJ65BuE11AB5m5HRtZKLrcxKrfK4nt033lXVXfGOqeUhJM2bZh/dXHV+ZVEGF7LdfCQJ4SCE69CfqdwmMaWcEzvf2rzUxoLmFNvdJTOtuJIFxbpvXsomaB2cTudveaq8RwHOrndHoeCILRBaILBBZILJAZIEbYoFUAA8Xs8N+tv6hERDXIoi4uKD+zqJBMmkBREoBRj7y93Qc42EHygwgLmwpnJ0OwOGti30kLQmps0jZUZO/HQuowcNoumDHgLfthOW8wAAAIABJREFUG/2etCekQKGzgIXHzkha0iuQT7r9Iw610uJBZpyjtc4BHmrwZDkaPJtnhFNKje3A7AQLMwpMFSXrtSHHVL9PnEXnihHB2hnefQhUOBo8/nRuYQAPx1unpywVBbp2olR83t66g94zsnLwjzra3Geh1zvxjsigffj9smFSiRvvXXHzNXgoMN//c9LB+Dt4wo4j1W+1rcEz9BcDbe+zUdBYT8uBxf4N+9XZh5Q3fwdwrHM70kzmNiSdlwU3g4eORUYJsxC85Ljct8oCwUdy4re9y8ky8AJHpG/r9nJMafkQsA4qpNfp+lIMf94VU5z2XpCI+zCDjXQu2U9oIKd/OtGcU7rq6KA0ePyvvXQBnjj9nSzhq7+TeFwzewl0eMjJ4JnbNzxbhvtSP4XCyOTXd+9jiXUGATz6ZaDo3Rja3G1jen5y9LJbz65lJnKfsBTlJGl1Em3sbrd3hYXsxw1snRtOSeVuH73WzAKpAB5qWi0bRno2GwO+0K6dN4K8pPwhFRizCL2F55YUO2Vf63GaWN5t0n3PbL6CJjHlIE13H3c7zluYbUcdv5rMQZx9mUFk48q/dR4iHECDYDQLzwG1Iwi+Te1GYXQDmfdYKPtKx+VzVeerrgEe9kUBN401FH8Qw+W/nP75/Sc1V/4rhqJ64z3CW0h1x8CmNvfr6vlOPbdUhUDF9G4mCl6wwcCnxBIG8NAZXvGdowfU+30N545V2SyxHu9njjkGuGQ/oSPrUSvtDDbSII/43VBBEAS5/cqNAnjIAtD7/ZgKMPPrR02+q20NHgI0XZ7js0UqerN0ns2ktmbWjwKFSJnmb25FEToxR0fruwXcDB6CNVcvOnMQ3gNJv8YsPc6N+zU30P5/Et1fZPZRFX22doU0zk4Gz/IRwdkgHI/TCwy0vjeGcR2Ts0uoCzXyNxPtHjJU1mRQkIT3/GydK1GkNHisGmnwxOnvNKP+TurrgSBN73dNlcFT/nXqDB4+T0j3ObZdfECj93iCAB5SCY5pK9DyTh2jGKgWQAG8e7mFkg9MZD8mFM1vUOAbqfBG/CZVXzjXvJ1KBPDcTmc7OtbIApEFIgtEFogsEFmg1iyQCuChCGn/j0z0fsuMo1ujo3JuX4E1E0XcwoQTVfI7T803FA92TTqqIsl6SAxqYeDAutQT+cS2OCEmbVhuA11FbWc9EcP1/lFwe2ALSy2aE9v5N3w+vc/G9J4C6ybHOyRU32xgzXipIkiH/SKU49rtc10DPGyHDtvsxwVWj7YCHbfcjpRIWY9YmF9qxkXNcwHLBWn+s7bSPeECM52ybqJE90Y25vSyfKOuwwAe0g9SZLbVHRIzeshQCgVvX6jbwohbggJj24m0QAdSc5V/YyjRWmYiBJUbkcFzaq+Fwrd1zO8na9+JaAMEeEZl6ipDJ+g4q/P9vFKJjvVslSF2fFuwThUBTzpB6HjhPln1bHR6WlMZbRxffuXQBgvZTxloeafA5hnM4gKG/GQoJy3fJxYK4vZ+x1AUZke2VQEwBF+Lm8aQ+7SmAOeg9tg/6vRk3E+KMgteqjc6SklH1+F/NsK0YxL7VJkhkPGApu5bfmBGugAPo7npLGx1p8TaiZbKcElsy/uZAFfR23RKSWTV10ENjlQAPa/x3Gd0pZ0QtG0QwMO2CRJ0/J+NypYi7v7h7dea8QI5jwF5zzpUiH7ngt+NzhRQmQInAwaHt9LofY0tkArgif0NRWWTUw+Y0rXq4uN1yGyNES11MDvPLTyHBGXKv9WwrYbaBXTqk04p92mBI5uD789u24mvdKwu6G8i9ynqRF3/HIT7Zj+po6AJRc2TgYLEdm/GZ4Lik/I0MAMxsfCaPryRFGISRa/Z2L+26nzdCICHYEzJRzp6vU2tkqq2E/tJnZSitwSKXgMOJNBT0bE7/FeJLg0szC0x0tKXZDbiuDYSRY1tX4d0GMDDgCLOhzLuYlaRxK6l6Z13PkuWDJZK46NrIxvrJvvTrXmPnVpDdIaTnm1FZfD2NwLgYRYOnwcFr+vgc7i2y/LhEhXf6yDgXxuFmjglH1po94BQwW0uwJlYN68BrmsIinCf0g8tpQ2zsIw6Y/5jkvcxggUt7zIwOlPiwnEnI5d6jX6ZbMxanNFTIvtxDTMLqZvp1Mvzu3Cgk8HD+Z3fHIb9Zd9Id9nuoZi613IsuYXzJ2YodW0kMfgbC8yKS6cQaOryoq6ojF0tLu9+6WbwEIAc+aczrke2NFPqsjLwY3ZvofTA2j0oMKtQQLvkbTn+PZ8b7Cs13laOloHXdxDAw2cFbdv+Ial0a4/v8h9fm2eZKHzNRGETE5tm+F/T7AsZAEpT9CX+CG6dTxHAc+ucy+hIIgtEFogsEFkgskBkgRtogVQAD0UjB31moc87pqJVcrtGYXHq73jT3Qnu7FgkMTHHUJGznKDWpFActuJ7Qzn+6eCpdrG5mAIunraUSCsjSWvyd/U8dSGq3YsbssOZ/VwEChWhxwVkYqGocMnHBip+0OOcG6kAnvMnLfT5MIa0Kdp8osyWjzDQ9Vk6uaxQ0GDhQKEcJ3RoXD5fdQyMiitrLhVQR3FjN4Mi8RgTP7O+3CdNLBtu+dJZhQE8jF4dlelkFBW/J3Bkqxm42HPb5eJ96RADnZ+2VbQlBcHDFpPufoxCpFDu6nHB4vDctiYAT6JQtNt24iudQqQSI5d/kJM9cZ+0P9cBwENAjVHhre8UyiHECE+/snmOqQSbeR3QgedQmugKtPYDPnjvWjxYIPdR6vtoKgKf31F4d0oeM1iqxqe3PVLsta13BUcSAI3hvwm0eUhLAm68+xLQGfSNgcwHXA2aql/pDGJ0cO+munJcp3Nv5fkb2EJHh/oxlY3lF1WcLsCzaCD1d4D29a7i6NbwsUFAi3pazN5pez9pjChsXHUsfu/obKKQ8NCfdBWx7LcNvwsDeJQTvr6lbMR7vl+hLlxuPah7ZVA25vljTibRvFLS4PmfZ7+6o++u3wKpAB7eR6d1lch5yHFeui0RHJ9dbGB+vyqHNK8N6qRM7qwrjYZ0rhW3Pr9XUsAN/lFDv+ZaoFPUbz/vd7wv/X0KSiesJnMQ6qMx0+/fOg8hwFOZYYDZuH7PD15z1L4ideqelVXOz9QAj411UyVa33vFAV59dG+uUbS9ZCvQz2t/vift5/BfDRS9bis9nsTf3c/Mmin/hgCPHQfw0PG9cZpETn2B8m9FUpaxu3/i6+n9FgZ9I9DrLds36CkM4KEND6w1lQ5P9qPMghIgbVOqQmqxoT86gSZFbwsc35V6HwIDM4sker8rQgMwrhfgGdhC852H+R3LmYO2yrRlQEVQJpHfful+V9sAD4PJxneUyLxHgEFUJ/f6P394HkhvtnOJqbJ/J2SR/lpXGptBGRp85g341ETnBgLLhktFkciMb2aKu3RticfNzLPe7+uY0kUHQQ63qKyh53WV0cVrzq9wnkDKOeoGkhrOO4dlcNWI3wnwCAWApHMfcuvr/FxMgS1+GT/pAjw83n7NLLS9nxqRzPT1PwYeF+dTZDAoepPnhUFUZkpAivenSXkC5d8bijbOzz78Lgjg4W9bZksUvi7R/yPLVzeW9mAGWaenCAKZvvcE1qOo+VRfnKCXoL7cqt9HAM+temaj44osEFkgskBkgcgCkQXq1AKpAB5Gj43JtNDpaYFlw6rENDdOMzG7WCh+ZjpQpAZsmy8xpp3A+snpaZaEHRgnweSoZiQVnZBRCbcAnRKVv9ugKOq+NVXZA+5edC4VN9WUk5uUITxntLGKVn1TKgHmA2stSFm1YOLvpLDq86Gu6BrWTxbwRiZaFpQTZ3yWQPbDTrYUnVeJDjXyhNOhMzGLQFtV/W7f3FdSivRqQool65rzhM73OcUUkxWYXxLPKe7u5/fKPkygoGwDHdvnSUgfp0gYwMM6D2+xUPw+uc8lpnQ2lS5I4rG5bRNAObrDVJoDpNLo8KiOXUuslHoFtDGd4X0/0pXj3K3P7zUVwGNZToYKnUIEBHq8YqN9PR3bF0owspBtBfWf7aWbSeTXt7S+qwOAh+3OLRHo9JiF3u8JnD1kg+PSLTxeOgHKv9exaoy4RrW3oEyi8+M2hv5Maid3a+eV+1A3oU9TAx3qGVgznhkr5GRzAJO853Qc22kmUaTR7pPyHIFrUjJ5bU2Qo+NDFkhTGBQ5y9ZnFZPWzMTOhTYoms3CiNd+nxro0lAoh44fIOVsGf+ftGrdG+uKuiyIii4M4GH/OWbY3pCfNbS/z0afDwylv6OufV7/HFP/3AcYgUxnODXbmFXV5gEbE7KCNaW8vT28yUb2U7rKQAwDcMMAHopRF7+vo8PDBvatIv1a/L2GjlTqJrV7WGDHAt4TvD2oer9ipImcp7XQTKKqraN3tWGBVAAPx8SGqRY6PGgq3S3X6Uun9Ig/DOz5R5eCDscLxy1M6iwwriOfV/FjoLp95TWttFueMbBiRMCAqW6lt/D2zEAd8ZtQGd8EXHhv8JZLZwHqghU3NfHXYedH3mfozKRofJsHBIb+qoGaQXyeuYXzjk3TTLS+96rSxmLQh7du3oeObCFVp1DUaszq4u/eezDv6XOKLEWVtnF6Qsfchv7RQptV5IBQOxZW9fH4DgaamOj1lsT+NVXglGdX37ekzurxRkzRnvI4E0sYwMNtFShWYaLt/wS6vyzBIJegZwCPl4FIS4cLtX3mvQSj9LSAleM7bJR8EsOEHCPOton9TQfgceciBC2oBZN5t4myL3U1x1DnJeHceNtIN5PIu09139c2wMP2OeeiRk63RhIrK52MX+/4oz4js5I4R3C1STnnHfCJhT7vmmBWB+833kLtr7l9JXKeMJQ2JYEvlhUjJLq9rKlsZCMWP6bY5uZZEiWf6lhSEU9tzQytPu+ZGJtpBercsf4di00UvycxvoOj/8nveA1y3tS1kY6ZBZyLq66k/Edwm4EVXV+MgRpUXpu4O4cBPGp7m4ANs4cEujSU6Pa8qVgJ/OYhBHYYEMhrvPhdE5n3kt7ZVOfHr223D3zlGoj0kdQg8q51vNvwfRjAwzXO+PYmOj9jKOrlRBCMwQcTskm1q2PhIGdunli/6ss6CwNbGJjeI1hT0G+/W+W7COC5Vc5kdByRBSILRBaILBBZILLADbVAKoCHizHq4PRtysgpE5tnWmpiv2SIUBQQ5IH+67CNhQMlhv9hYPPM4NT/6hzYxdM2xrbnYt9AupRc1an/VtuWAM/I3y20+5+p6IVO7LaVU5+LSvJ1z+0jFZ85Kfe4gGYmAylLFg4S6PqcrTjl55YKHN0K6FcdZ/+Z/VAipt1eFGh9F3mg6Ti1ceGUUzfBP2Z69G0WQ7v7LJR+bCi6AfbF66SlyHxxU4HSTw2QAiyokMpm2M8CA77QFV8+F4brJhGokJic50Q8Bu2b+D2jE0ntV/i2pgR0E3/n51QAD7fhgpgRgG3uExjTViqnL6P6CZjQUc/jpAOGWh39PzMw/HepdER6vZeehg0Xg73e1zC9h4BXt8Wvv2EAj02dh6M2mJFFcWU6aXIft9D6LieamtQux3cC5w6zz/EOAbctlUnUJHUmkbt9tV/rCOAhgDMxV6BTfRtDfpag0C2/o+ODYOakzrqihrt0pmrs0UHMaOicx01M7mTizEFmT3EfZ/FOGp6sx6RyrlyLErWBQd9qyH6IQroSJ/c4+3AMsK29q00lzk1dsmv7/GOkrfMl8h6nNlm4fhQ1z/IakRZQ4Mo5qOhZAqh5z0psmm7GXVep7M9MG+pIje8g4nS3vPsFATwc23QmHdtmYc0EgZynDWTeZaPiWwHSF57aY1/7I0i8b7Wp9Nh6vqUh52Eg/0WJZUPNJDt423bf0+lC2q38xpqijwxzwoQBPKyPdFxdG9oY8oPExRO2coTSwcLrlRlZXZ6yMbFTcAYWj5uab0NSZBK5fY9ea8cCqQAetkLHGOl5CMzO7k3aTChHafl3Oggc0Km3Y5GFwT/pmJbPrDH/+1x1esw66GDt3Kh6Qu/VaeNW2pYAT+UfEjn1LAz9RYDZK4bmPC+ZCUDgpe9HBuaVCOXMZuDFhRPA7qW20gpsc6+lqB3pYD5/7B8Nn1OW0jljhgTnId1elFgxSoDzk6t/20oDkvepxRUUftfQ6QkLk/MMNYfw6jK584mcp3QVnBRkd86P6Hjv8ZqTAUZwn7oc4zpI9GwisWVO1XMkqA73ewVWLJTo1FBToKOfzkoqgId18TlG2q12D9K5LRQFHgErZVvDub+xHs6vFID2noHBPzILQ1PPObc/Qa98fjEwK/9VTWWXBG3H78MAHt67mTFCAOPYNtYp0beZoSjmur7g0F4d2WLi5F5movm3ci2TiAEbR2p+Dfu1UhcADwMcSKnV+23nb91ES2Wj0rYMPmCGaWVrTWV4uOAkn00EY4rflQo83DbfROyipeYhf58BlpRzTiHU8+ywhx5yZaVAl2clit8ysXYi9+FYcAJRmL01tr0BZg0TZPWWE7tNjPjZQvlXVmgWG++1E7NNlH0lsH+1pdYE6yeZKH5fqu95nadbCMaObWOh5EMZx/jg3T8I4CHgxbXgiZ02ti80MfhHanhJ9HzNVHpD3nkINSMPbpBqzUBtxs4NTOQ1sDC2rQTB2VSFbfEewnXK1jkJSFvCzmEADzfdvcxCaTOHxo4ZeASsCTxx3rluoomeTQQqW0p1X0moWn1kX5YM5ppJV+PDb5tb/bsI4LnVz3B0fJEFIgtEFogsEFkgskCdWCAVwMNGOdkkD/a4dib6fChQ9qWBXu9qSjdkfEehouBnFpmgc7K2CgXFSYlCR0BYxHtttfdfr+f0ARvjsyRGtjQwtatQWiFT8wWmdXO4xkkpQvo8lx6BvM8UbO3+KjMOYujeWEP+ywZ6N3Ui10mfUv4NxYZ1RVFFmioKxfdoIrFwoKkcCaPbCHRvoql9e76hq4hCRtCO+MNU2iauTTl+Rrc10KWRpjIQLDN40X50u43y7yRG/ilUxGLJxxQhFbhy3q0tvdej2y30esPG2Lam4iz32ysdgIf70YFN4dTcBhKdG9KeAjN6GMrxNyHLQP/mAv0/lVg5ylTCt6vHCgWcBVFuePuydoKp7LdjQbDgu7t9GMBz5ayNMe0N9H7PAJ3sBU00FLyuocfrzrktfMsRhSaXOxeniYUOhynXMolq7zqOa6eOAB62QecKM/6ondC9sYERfwiMa2ti4NcEB4VykCUCBxyX6yZZKGkm0LupgVGtJIb/qoOUNmXNBbbNJaDisZUNxdtP4Hlqvo7B30nFKT+7l4mxbRxH1sIy6kx59vnHAMwS6vaijgFfJosWx9kIwJpxQmUjTcyRGPSdjrLPJfYsNwMzThL3dz8vHyGQU99x3HkBV/d3vgYBPLyX92sukP+qgc7PaujUMKaclHnPx9C9ScJfYw1dXtTUvaT8WwOLB0ucPRofYe9tM/E9r+2CxrpyRHrpYBK34+dUAA+32ThdKspD0iyRT5+ZdFO6CaUbMLlzeEbR4Y1OJtGGKfEgtV9fou9qzwLpADxsjWNlQT+JPk3piBMo+4rjTsf0fKk0qnjdb19Qe/cv0vUVN9VRmanX3sHewjXR8Tuug1COWGbect4xuZNUEfGjMwQGfilV1LobHU/KuWn5Us0r8l/R1FyEIEOP1wxM7GTg4inqhpjqdzX/eI2/aWpeUv61E5XPzAnqxjFbkfMYasjkv2KgT1OBxRVVjlre/5mNxTnLkB/1a3Mhv9PBoJgVo0wUfyAV9dbQHzinql7mDut1tHAs5FMHZ1JVX7xtpgPwuHWxDjrZOzwiUPiWoUCnuX0MzCiUyqHPZ9mYTBOHNjpi9tRSIYCQqpw7Skc4g2uMQPpRt44wgIdz9d1LTPT+QEOvdwz0eIPzw9g/cxGeX34v0P8ziaVD/fvFTKLST7SUmURuf67ntS4AHvaDcwpmdw3/VagxWPaFwJg2EsN+IbgjVWYMQT9v4dyL4M2YtqayDa+ZUa0E+n2io+8HAvNKJHh+vIU6p4N/cKjWKlsbqPyTQSEm+Hwb9LXAuPZCZbR59+F7Pl+ndef1pmPj9HDa4cObTFS2Eqj4TqCytTM2FpaZai6VWG/YZ+pYDfzCwujW1rWsvcTtgwAeApsELAuaGOjygo7cZ2JqPkK6t26vaPFzkcbOd/kv6+C6gc98Bp4QYEunKK2jDIlRGbR3+D6pAB6Og52LLZR9KdG/ucTyEaQ4l5jVy1Rz9LFtTEWbG9Qvtk+9Jc7X6wrkDGr73/J9BPD8W85E1I/IApEFIgtEFogsEFngP2WBdAAe94A4aWVE5LIREoyQmtNHqgk0HdleOg13++t9ZbQ1FzX9PzdAoCcqqS1AhwmdqpfOOkLzpIjaOtvCltm2Wui5DhW3JkaSMYuHkX90SDMrJXaJ2ShO1Cwd2/yN2/B3tY363dmWi1TSR1y9aKmITdbPyE06RrS/nWg1ty2+rp9qomsjE0sHmykdCKSk2rvCwo5FtgJnOO6qW5YNdxy66ybagTQ96QI8bJt9YGbS6jEmJuYQxNIxtp1UmVG7FjvAju1BELho93z07T5tPPw3RtoaYNRlqhIG8LC92CVLLeC5iGcWlvPHc+d8T2eT9rczPhLbYhQ1M4mmFaTOJErcN+3PCuARGJWp19milc6ywxstbJ7tRHxSEyLV+KED4OhW7mOqCPPju4Jp1PibK1p87rgFAnMbp9vYs8xUGQU8D0GFGXAUSae2WBjIyf25qN82z8aB1Ry/QTUGf89jHvKzgS7Px1SUaNBYDAJ4GFlMijcCh1fO2Yr2h9Q/fM8Ia+/flbNOFhsj5IPaCe4psGGaRMfHNaXJkej8StwvHYCH+5CSctUoUzmJmQE1t9jEoQ2kvQu+ztj3KV0JEKbOJErsV/S5ZhZIF+BxW+Hz6MB6C0N/1VHZylDR3cxIZZR0bRVS+G2bZ6HjE3pg5HlttXWr1MN7Ke+5fIbzWj53zML2BTY2zbSwd5WdlKXK+5R2yVLzDPXc4lzkkkOxxPmF+v0yMyD4fdVcxJ278BlKzS/OW0gxyvu/motcAq5csJLuncwmHtfBRNEbFo5tD59YkAbt1D5bAf0HN1zffZi2GPaLgb5NJc4d8z/L6QI87t60AwH/OcUCozI4FzEwJU9i1WgGWcXTfPGeFvZMYp38nZqaDAKhPkyqEgbwcA7EbAV1vi47c0Q+L50/5/xxfsi5iB99IsfP+smWyiRiFlddFQfgMbBrWd20wTHJDNidi2xsmWuqZz7Hc1jhs4njZfdSzttN7F/nUBL7PVMJfJw/YSmKVM65mVW7aaaJ7fMtlZnPNVRQIbDT43UdM1PQkHF/AuoH1trYtcTG+aMOBXBQvX7fc2ytHmsqgG/BAOpH+W0FpXfjrCnjA/pIwcbrg/OQy2ctXD3vUBBeOWf9813VXIQZz5yf0M6cv1Sn0MbUziFF4aJyIyW1ciqAx22b52njNEsF2o3vaCi66d3LnHucu03iK/tC1gxm7ywqdzSXEre5HT5HAM/tcJajY4wsEFkgskBkgcgCkQVq3QLVAXjcxjfNMDG3xPDNBHC3qckrBUopVMooNFIFROW/b4HLf9kY0FyojIR0wIyaHDEdB6TQ6vuJhuM7gxfw1QF4atKfoH2p8VP4psTSIVI5r4K2c78PA3jcba73dc14Zj3o2MlMomoujtNu0wZGt9Expi0BnhAkJO0K/1sb7lttIa8B6Sz9s3xq82jo7M59mhl8pnJ8BtUdBPAEbV/b3ztAlMCAz4207vXpAjzX0086pXkNUBOLTtSo3DgLVBfgYc94vka11lVWV130lE7qMW0NFL2jQb8czUPqwsY3uk5mmGyZZaLbCwYWDBTXBUin22fe2wjEdH9Fx7QeRmBb1QV40m0/3e0IljFLquht0rgGz5fc+sIAHneb631l5sKYNoZiCWAwSl0VathU/BhT56eu2vi31ktwYlRLC0N/sHBsR93ZmMfP9dv4jiYGNJfYvzZ4zheUwXOjbMiAAQJeA78ysH9NcD/d/qQL8LjbV+eVYOisQqm0gDhnvF1LBPDcrmc+Ou7IApEFIgtEFogsEFmgRhaoLsDDKO1lw6TSM7ieyPJUnVURX+MFSj7RVeSXX/Raqjqi3/+dFlg9jrQVOkh/lC5tQnWPREXizZEofN3CqkpLZSYF1XEzAR6O81m9qIukqcyCdMZ5XQE8+lVLUfoN/VXEUesF2a0m3xPUoui0iNWklv/mvgTOKjMM9HidGVtWoMOvpkdnCuoOGcqxeHxXeNTtzQZ4ju2w0IkC9iOF0h1Idex1CfBQyyD7KU05olJlEqXqZ/R79SxQXYCH90+CmNTEqi59Zzo9Y/3Ubch73sD8soCw83Qqirb511ng3DEbozINlHykB9K31kanL5y0FT1oyYcWTu8NdqTfbICH2iUDWwjwGgzKsPDao64AHgWIrZDo+YaGRR5qPW/btfWemTKHNjqZZrVV53+lHt7b1pLq7wMnQ6SuKLCZpbx5lqmus/n9wqnSbjbAc2QzqaENTOkqlZZbqnNZlwAP6fpUX7rIQO3EVP27FX6PAJ5b4SxGxxBZILJAZIHIApEFIgvccAtUF+Bh5P3sPtQ2kHXioKSzZlIngYrvjSSB0BtunKjBWrUAo+JH/OboA53YbdfJ+GFU99AfDaXHcOZgePTbzQR4SN1Q+rGOCTnpi3fXFcBDeo+ebxogbUkqGpFaHRC3YWXHdpjo9rKOuSXM2gp2+tXENEe2WIqvftEg6asH5K37ZgI8BDX5LOnygqaokNKh+awrgIdOrorvdRU1S/HyqNxYC1QX4KGm1OZZQgGm6YDj1T0aBq9QcDvvOQeMre7+0fb/XgsQxNiz3FZaGPP7B9NG1eQISFO2fQGzYjQsrggHCG8mwEOKO0ezTAd1GdMpdQXwXLlgg0BAr3eFoppLpy/RNtdngYunLEzIcbSyCChNoOE0AAAgAElEQVSgDh55F07YGNvB0WglWB5WbibAQ2BxxUiJko81bJiaOoONx1FXAI/bl9JPNaUfGGazW/23COC51c9wdHyRBSILRBaILBBZILJAnVigugDP/tUWZhcL7F2Z3kS4up3eu8pU9AyzeolrWhfVrSPa/t9rAS4m+36oY/4Agb9r2ZFKp9+iQQIlHwmlmZCKauxmAjx0pnSn0O0ME3SypFPqAuBhlOXMIlGtTKJ0+hptE2wBOhOo87J7pZlWxHRwTcm/xP6GEl8e+pOBi6dTj6ubCfBQM4NC3GM7GEqDI/lokr+pK4Dn+E67WplEyT2LvqmJBaoL8DBYgBoki8rDnefX2ydmXzCLeNhvekq9rOttI9rv5lmA9HuLKqTKYqAIPB2rtVWYIXFil43hv+uobM2MgPD78M0EeDjOJ+QYaqynS4dcVwAP6eHKvjLSziSqrfN1u9bDwJ7BP+qY3kMo7c7atIPQoAKGyr7SQc0fXhNh5WYCPNSQHdtOYPhvAqf2pejoPwdRVwAP+zK+g4lhvxk4tTe9voTZ9b/8WwTw/JfPXtT3yAKRBSILRBaILBBZ4KZZYHaxoYSot85Jb4W7a4nEilES5Mqu7cLIyoUDJfp9Zihh29quP6rv32EBghr9PiVVW+1lMXDsbF8glTDpmglmyswFWsIBeGJYOcqEdqX2x3OQtdnXykwDA1sYOLkn/UVcXQA8l88ApR8LTMg2QGdPVOreAgQeqfMy4EtdaR7UlnOR2lO8n5d8rOPEbiulU4VHSoCncyNN0V3VRSZEmDUZ4Z7TwMCOBSYoaJ9OcQAeTYlK15bd2O6s3ga6Pp9+JlE6fY22Sd8CCuDJJEVOegMhdtHG9J66ollKv5X0tuT9eddSiewnNWyamf79Ob3ao63+LRa4eNLGlG5CAeKcC6RyQqfTb95Dzx+3wQCl8m/1tBzG1P9YPUai8J0Y6lqf0HsMFLA/tMFGr/c11V/vb2Hv6wLgURl5MywUNDawaXp6mURhfYx+S20BjvfNs01U/KBj6TCR1pw5da1QQSvb5kkM/VnHkiEyLepVAjxDftYxp49EXVHGBfV95yITpZ/pmF+aftsOwOM8r2pTr2/HIon+zXXMK5VpB34FHdd//fsI4Pmvn8Go/5EFIgtEFogsEFkgssBNscC8/hLTCgR2LEzPkUENHi5IuTis7fL/7Z2HWxXX1sb/gptybzTGXmI3xhhN1NhLLDFGjSXRGHs0puq9GlERREEQUapYUBQUsYLYBQvYwK7YULCBIqKCoIigvt+ztt+QA6cwKJAjvvt5eGbOzJ699/z2njFZ76y15AvCMMdnCJnxVP1PcnG3z/ash8DR0FwE/JGNhGPPUBz5Lm5eeKa+wIteW/gXsxoFicW/eNgTSO6NksgnpfVTcCtf6S0Z/hSRS59CwpLoLWHOT7DONgcSP764injieQ58gjO7nr3x/0NZXEz1tCNiTMisHGyYkYPMu8XzMj0e9hR+o7MheY4K817Txnh6Zy7m986GhDMsbYFni6t8OZ5VJGHx2olncOnxGImxz4rtq3sx6As3EVAfpRffs6Ux5rZwAhvscxR/yUump4hxUt6dete5nja1OuJRsXtxLjz7PUHmfa4HjUtZ3N5PeiHybHJ6gqzMV59rMfbGrM9F4J/6QwxLPrrjYc+waOgTpF4vnn8L9MyVeFmc3i4e1bmQ96reIt5JEs7ywEp9z6qedjPuPke4Tw4Wj3yCjLt6rmCd4iAg//ad2JyLtdNy1AdSxfHfAImxz7FhxhMV4vJRId5r2j3If79LXqx9frnIzXn151Brt7Ct/DuyPzBXeTJdOqj/GZAPHOXfrO3uTyD/XhRHkbHIM7X8l2xc3K/vg8vi6Nda26DAY60zw3GRAAmQAAmQAAlYNQFJsHrrwjM8uKP/P25L6obkK77Ec0+RfFmMd6X3H/kldT9s1zIB+WrvfiKKxUh358pz5Q1RFKFGQqPFxzyFfMlbnN4Alu8aEIOOhCKUPDzyP3V6S9KFpyovVVHusbC2M1KB+JhcSMgaltIlIHka4qOf6krqq2dkCUefQuLeF2UtS76ZuAOlK3Bq9yJfgotQo9d7R67LyhDvimeFhj3S+tCzlWdQnsd7iSgSOz1ts44+AtdPPcW1k7kqF5O+K0qulnxwcOvyM0joLpayTyArHbh68hmK40t8+fgp6exzSK5KvUXeP2nJz9Q7KDdb71WvXk/+nUi7+eK/gcTQr7cIpyvHnxbpHgtrW/5b7Pbl55D3AEvpEnj+FMpzLCW+eD6auHv9GW5efI7sR/rvQ0QS+W+BO1dK+UOT50DKleeQ/xZ5XASBV/5fNem8rNniYaZIqbE8Q9K558yFCYACj/7nhzVJgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIwCoIUOCximngIEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEhAPwEKPPpZsSYJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJWAUBCjxWMQ0cBAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAnoJ0CBRz8r1iQBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABqyBAgccqpoGDIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAH9BCjw6GfFmiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRgFQQo8FjFNHAQJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJKCfAAUe/axYkwRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgASsggAFHquYBg6CBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABPQToMCjnxVrkgAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkIBVEKDAYxXTwEGQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQgH4CFHj0s2JNEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABErAKAhR4rGIaOAgSIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAES0E+AAo9+VqxJAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAlZBgAKPVUwDB0ECJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEAC+glQ4NHPijVJgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIwCoIUOCximngIEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEhAPwEKPPpZsSYJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJWAUBCjxWMQ0cBAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAnoJ0CBRz8r1iQBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABqyBAgccqpoGDIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAH9BCjw6GfFmiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRgFQQo8FjFNHAQJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJKCfAAUe/axYkwRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgASsggAFHquYBg6CBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABPQToMCjnxVrkgAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkIBVEKDAYxXTwEGQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQgH4CFHj0s2JNEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABErAKAhR4rGIaOAgSIAESIAESIAESIAESIAESIAESIAESsG4Cz58/R87jLDx/9sxooHIu9/Fj4Plzo3M8QAIkQAIkQAIkUDIEKPCUDFe2SgIkQAIkQAIkQAIkQAIkQAIkQAIkQAJligAFnjI1nbwZEiABEiCBMkCAAk8ZmETeAgmQAAmQAAmQAAmQAAmQAAmQAAmQwJtDQDxo5O9Zbm6p3fTTJ09wftd2zGvVHGt+G4Mnjx7l9Z2bnY2zmzepc+sm/Ibc7Md550QUepqTk/ebO6VLwBrYyxqQtSrbopRnT5+W6hrXxib9Pn/6VPupa/uy92ipcdWmMCjiWCy1yXP6CWhzqv+Kkqn5TN73L7EGnubm/iNr52W4ldRa/6feISWzEsy3SoHHPBueIQESIAESIAESIAESIAESIAESIAESIAGrI3Az9gwSTxxXgktpDe7R/XtYM240bMu/DdcWzZB5Ozmv64d37yJw+GDYvv8O5rVtCakrRYxrd+Iv4dTG9ch98iSvPndKnoAYTDNTUnB222ZkZ2aWfIeAEh2l34JF1sfF3eHISEnWLfKIgJh48jgu7dtdsLmX+q2M5GIoNzE+wwafPHyIqzHRuBS5p9C62nXS5v3EGzi7ZVPe2tfOvcpWnqOLEbuQdPrUqzTDa1+CQE52NlLiLiJ+/76XEleK2qWsIVOhL0VYT7kUh7h9eyD7esvjB+mI3x+F60di9F5SLPVEVLqbEI8zmzfhcUaG7jYf3rur1nryuXO6rymsYk5WFm6cOoG4PeEm2RZ2/et0ngLP6zRbHCsJkAAJkAAJkAAJkAAJkAAJkAAJkMAbT2DXnNnYbDcNC3p2feWcN2JYfJqdbZGp1Ll7NQEuzT+GfdUKCLH5X57BTM6JAdKpcT3MqF4RWx1s8wzj4tkTGxYCp0a1kXDogMU+yvpJ4VRaRc1XQgJWjh6K0KmT8PSJ5fl91XFJ7qX027eQHHsG929cg8y7YUm/dRPbZ9ojeOxo3L9xPW99GNYpuJ+WlIjQyROx/MfvimTY1toRQUfW9eP0dNy7fg3J588i+Wws0pJuKO8zQ48IMeZn3rmDnMeP8eB2MjbbTYV3145Iv3lTa87iVu73dFgI5rVrhetHi8+gLgLD8iEDsfrn0S/FwOKgedIsAZlPEdaWDeqPmFUBee86sxe8wgkRwR/dv4+Uy3FIuXgBjzMe5PO6Ec+3K4cPYsWwQTiwZKHudXA77iIChg1GyF//LXR08r4QTz+5b71/yiPPRC42eYZOh2zA3FbNcG771kL71iqIiLmoT0/scZ+rHSp0W9g7NTM1FeFzZ8Ozc1ukJsQX2t7rXIECz+s8exw7CZAACZAACZAACZAACZAACZAACZDAG0cg3NUZW+xtlUHM1FffeoGIgUyM3zvnOEE8F8wVMfqd3boZNhXehVPj+rhx/GheVTHonVi/BpPLvw3nTxrh5tnYvHNKaLiaALfWLRA6ZaIuw37exWVk56kYcO/dQ/rNJN3G2Ve9dREmVo4aioDhP1j03pF5fZKZqUSNBym38TgzQ4kieteUzG/mnRTsdpuDhV93Q8CwQVjUqxuiFnobheW7d+0qJHyfiBVieC2siMCzyWaSMlI/zdHvuSDCjog6V2MOYbujvRJBXZo3wdyWn8KtTQt4dGyD4J9H41LUXjUf8pX/uR1bEfTzKKTGxysDd+zmMLh98Zla14WNU84LxzObQuDeqS2uHYnWc4ky4ouXkvA3V8Twv89rPjw6fIGbZ86Yq8bjxUhAhIv4A1FY/G0v7PFwMyvuSD2Zv6z79/EgORmP0u6p38+KEI5SPOsu7QlH0OjhWDqgD5YP7o+gMSMgHpqG4oV47lzcvQu+X3dHdKC/Lo8iEd0DRwxBqM3EQulk3L6Nw/5+2OXiiIi5ztg93xUR8+Ygws0F4a6zscvgT37v8/bAmU0blIeTvP8Nxyqd3TxzGou+/RohkybkE6ssDUSu0ZhbqieCmOJ+7x4ykpORlZamhFk5XrDIHF0M34V5bT7HIX+/gqfL1G8KPGVqOnkzJEACJEACJEACJEACJEACJEACJEACZZ1AcQk8Ypg+v3O7MgSKMcxckXA/YVP+gn3l8ggaOzJfXpRHafcR8r8/4VDlfaz98xcjjyK5dqu9rfqiOzP1jrkuyuRxCVckYca8u3bAvJZNEbNyRYnfZ1Z6mhI23L74HPduXDfZnxhD7169gr3z52L5DwPh1783fHt1x8Kvu2LrjGlqzIWFgxKj7r0rVxA44ge4tWiG+IP7laH1xPq1mFm/hvJoMexc6iedPIFFfb/Gtll2hYpdLyPwiOFXxMe1v46BQ53qmPNZE2y1n4bLkXsVi4zbybhx4hi2z5oB3x5dcMBvoQrfJKKP/+ABeSLn7YsXsGxwfwSPG1PoOOUe9Qo8Ipzl5uQgOyNDeWWs+/1n7PNyN8SUb1/qi9gwv2Mb7PN2NzKk56vMH69MQNaoeNEEjhyC1WNG5a0Hw4aljoTOE++Utb+Pg9+APmpN+/bshlWjflSioIQbK0wkzXqQjpiA5Zj3RXNsmT4FWWn3lWDiP6g/AoYOUsKFYb/i2ROzwl+JiPEHIgtdC0UReORdsG2mHVYMHaSEzSnl3oJtxffg2qoZVo8bjTW/jkXwL2PUVoRjnx5dMK1mJeW1ucXWxsgrT7zhdjrPgmfndro9Z/QIPPLcxO2NUNz9v++nvPv8fxiIHTOnI+nMaSNRWfiJ507gyBdid24JezIazldp71PgKW3i7I8ESIAESIAESIAESIAESIAESIAESIAEXoFAcQk8YmQMnzsHu+dZDosjYbXEi8D5o7qIi9yTN3Jl5L96BXNaNIVzkwa4GnM475y2I8LR1cMHMbNhbRxbHaQdfiO24hUV5eutchNNrfhv+A3om08cK24IIjSc3bYFjh/Xw4n160w2L6GYEqJeeChstp2s5ky8i1LjLyPK1wf2tSrD6aM6iFzgbTZ0n8x7emIiVo0YgjkfN1D5dbTOxFNnTvOPsaR/byNxJCfrEU6sDYZb2xY4ExZq0QheFIFHjOlpiYmIWuCJOc0+wrzmjbF9lp0yPGvjMtw+yXqE2C2b4NbmM7g0aQDHejVVKCetzqO0NET5esGjQ2sknTqpHTa7LUzgkfN3r8Qj4cB+HA1ehXV//qqeF8c61bDFfprZduWEPHsbJvwBv/7fKE8wi5Vf8aQIf+LRJF5Qb2LJuJOCcBcneHVpj5tnjT2mZN3LfGx3nIEVQ77D8eAg3Ll8Gek3ExG3O0J54DjUqoSVQwfh1rmzZkWY7IeZOLZ6JVw+bYS1v/6swrIJb/HYivRww7zPmkC8yAoWebbW/vkrlg7sCwl7aKkUReDR2hFxeP8iH9iUewvzW3+Oy/sjtVP5tk8ePVTPr+tnTWBf7X2sHDFU5dfSKomwfWnvHszv8IUKKyfcCiuFCTwZKSnY6zUfbl80wxa7KUq4eZyWhivRB7F67Ch4dmyN42uDjd452ZkZOLxiGea3bQkJW1dWCwWesjqzvC8SIAESIAESIAESIAESIAESIAESIIEySaC4BB750nr1uFGIs5DIXgSBy1F7YVujovJyeJr9OI+peHmc37kN06tWQODIH42Ma1pFMc75fd8Xy4d8h9wiJArXrn9dt0pMObgfrp9/ArfPPsZez/lmjb7FcY9pSUnw69cLi77tpQz1ptq8n5iIRX2/wvLv+yH1akK+8Yjgt81+OuQL/ln1a+UTbgzbEkNwhKsz7Kt9gLBpf+VrQ8I9eXZpB+dPGkJEmoIlNeEyVo4cimXffQtLHl16BR4Rd1KvJGCzrQ3salSEZ/tWOBW6sVAhTdbkLicHTH3/HYih2tCgLm0mHNoPjy7tsWe+a6GCR2ECj8pBNMseC7t3wdLv+6kQcZKjZFad6spzoiAjw9/ilXR87WoVZurCrh2Gp4p1X8QdmZtTIRtUiLtibfw1aEyE6Ev7dsO9Q2sl4JgSJUQsEC8aty+aIyZwBUSw1IqsGcmV4/JpY8yoVgFrxv2ExxkZ2um8rfSTcCgKHh1aYUHn9sqjTDspIRKlffE+k/CCBYu8b8/t2Aa31p8r4dhUWDLtmpcReES8Wv/Hr5j6/rvqHWLp+ZTnZ6fjDEwu9y+4Nm1kJN6L58zqsSOx4sfvlceaNi5zW0sCjzwDpzeug/MnDbD2t7HIefQ3d2lP7nXZwL7waNdSfUxg2IfMo3j1effoAvEulHkqi4UCT1mcVd4TCZAACZAACZAACZAACZAACZAACZBAmSVQHAKPGLpS4uKUaJORctssKzFqRrjMxuz6NXFq44Z89TRBwKXhhyrUW76TBj/EQHdo2RI4Nq5n8st4g6plblcMumKAlFBtT0swRJCIDKdC1sOhbjUjY6sGVXlTRR+CTaVymFrpPSU25BoYqcWAfHbbZvxV7i0l2kkOjYJF2pAQUTPr1cTcz5tCwpkZFllLXl07wLF+LVw7esTwlNoX74WjqwKV6HUsOCifOGRYWY/AI8bbtBvXsWW6DaZXLgf31p/jTNgmw2bM7st9XNgdDvu61eHVuS1uX4rLV1fznFnS7xuVZyXfyQI/ChN4pC/Jw/Qw9Y4SOF8YpPvAUYfAI12J8Xth368Q8tcEXflXCgxP109NSJrfvpXyPtF1URmq9OB2MrbaTYNXxzZIOm3aa0vWxNrff8a08m9jXoumOBmyMR+BO/GXsGLwACWQurdtoUIS5qsAqFCBGyf8ruZ+60y7fDlqnjzMVALPtCrlsfqXsSZDjt29kqAE0kW9uivPoYLta79fRuCR3D/eXdtjRo1K2PC/8RbXmoSMO+i3WL0rZokHnOtsrWu1lX83ov/fcybh0IF850z9sCTwpFy+hIAh38G9xSc4t32b0eXyTole4Q/7DysrDyd5Hg2LCKxhUyerUHgSUrQsFgo8ZXFWeU8kQAIkQAIkQAIkQAIkQAIkQAIkQAJllkBxCDxiBIvdtkV58Fj6qjn91i0s7NMDPt074VF6Wj6mYjjz6toei3p/ZTFZvLR/+8J5zPnsE4TPdTFr1M/XOH8UiUBmaioChg+GW8tmZsM3idAgxtbpNSrCrtr78OnRGSLSaUW8qy6G78DkCu/Ctkp5rPl9rHYqbyv9rPnlJzhUraAEh7wT/7+TdjMJ81p/Bqe6NXApcm/B0+r3jRPH4dGpjTJU5zx6aLKOHoHn4b17iPTxhG3V8nBqVAd7PdyK9IV+0ulTmN+hNZYP+d4o34qEcZOQT5Kg/XwhnjOFCTwFb1BCRS3t10u3wKNymsyeqYQz8VYqiaIJPOJ9JYb+N6mIUHj9aIzKdbTqpxEql5Sp+xeBZ+Ofv2FGlfKY1/xjRAf456uWmpCAwOE/KIFHnoErh/MLG7JOzu/YqsRRzw6tlWeJYQPiGXfA1xtTKv4HK4YNRu7jv70ltXoirBz294Nrs8Y4unqVdthoW1SBR7wNL4bvwow61eDSuB4O+i0yatPwgLwHds91xuT3/qWevf2LFhieVu94zXNGwiVa8jaSC80JPGpcu3ZgRp3q8PqyPYRxwSJtS/hDh4Yfwqtja9w6G5uvivq3bvMmLBs0wGQY0XyVX9MfFHhe04njsEmABEiABEiABEiABEiABEiABEiABN5MAnoEHjFaSq6E7IwHJo1rYkzc6eyISB+vPIhyTc7jx3mGRTGcXTtyGE6fNMCRlQF59WRH8+SY9XE9nNxgOt+L4QXSX9iUSXDv2AYP76Yannrt9oWT3I94q2TcTsbDu3dVeLqc7GzFW7shqSechKmEc5L8JoZFOy8GSAk7ZBjySQybjx+kqz85b6nIPCWeOIZZDWtjzW/GoozhtTLuQ36LsWWaDeIiduUT28TIf3jZYmW0lVw8kQv+XhvShghA58N3KIHIuXF9xB/ab9i0EldEHJhRrwYc69bA5ah9+c5rP0S82ThxAjzbtDBrcC1M4JGxSh4fp4/qKrFq9ZgRyLx3V+tC11byrPgN6I2ds2earJ987iz8vuuLdeN/g6U5kHNnNoXAvVNbXDsSbbItw4NFFXhkDUlyeffObSCGdFk3xV1KQ+ARoTc7MxOZKSlIT76lvJrEa8xSkXuVXFYicomXjXhCWZoLaUv6kfBoWj/yvsl5nKU8YuR4QUFb5Wnx98OcTxri0DI/s8ORfq8djVY5YKIWeKnn37DyrdgzSoSY8v67WPhNd6McUBK2LHjsSBXaUPIwFbwPub9t06fAttJ7CBgxJO89bNiHjF3yzri2aoagMSON3ila3aIKPJL/Z5+XOyaXfxvubVspwUtrq+BWcuxcOxIDnx6dYPvBf7Cod3eTXl8SrlG8lBZ81RmSP8hSMSfwyLt19zwXTKnwLpZ+1xfmPHBErBWvqTkf11deUAX7unP5Ehb17aUE4dwS9KQs2G9p/abAU1qk2Q8JkAAJkAAJkAAJkAAJkAAJkAAJkAAJFAOBwgQeMZreOn8OsZs3KfHlxoljRsbCB8nJCPppuMo1IkMSQ6qIFbFhoTi7Y5sSG8SwfO3oUayf8DskAblheZFf5gA2ThyPR/fvGZ4yua++xN4dDqfG9XBms74wWiYb+gcPCqPH6elIPHYUJzeuR0yAvwo9JyHHLkfuheRIEUO/FGGXevkSLoTvQuzmUBxfsxqX9+3JG72p8xf3hCsx7t71a4jfH4XToRtV3ogLO7YjNf6ykUFYa0yEo6NBgZhVuyoOL1uqHba4NSUSSF4NWRPTKryrcpGkFEhKLvO8/s9fYfvBv7GwV3ej3BoiAAmDqRX/g5n1a+La0RiTY1BeCH6LMfujeioJu6lKlgQeGfuduDgEDB2kvCXcWjR9qTWVfP4cgn8do54TU2MQ43KE2xxltE8pEIrOsH5JCzzS172rVxD8y09YrnKa/O11ZTiOV9kvSYFHRIms+/dx44iSNzcAACAASURBVPgxHFsThChfL+z39UJM4HKV3+tB8k0jEVo9aw8eQEST05s24rD/Euxf6IOYgOW4GLET8oyYEodEQBKx4MzmUBxZuUI9nyJOyzWX9u7GiQ3rIN5ZhiX9ZhJCJo5XguOVmEOGp3Tvi4gbuyUMDnWrw6lhbexynY1nuTl518v773z4Tsxq+KESko4Grcw7p+2Id9aq4T/Arur7CFYh2kyLXyJW+A3sC58v2+PO5cva5fm2RRV47l+/pvIGybPtN7CPWbFU3lsply5ik80kTK/yPjw7fIEjqwJNhnOT+Tm/Yxsk7J+8nywVcwKPeE2t++3nF6LX8B+M8u9obcqzvKB7J8yqXQ1bHWy1w3lbEbbX/PYz1vwyFhLmrqwVCjxlbUZ5PyRAAiRAAiRAAiRAAiRAAiRAAiRAAmWagCWBRwyJV4/EYOPEP7HN3hZBPw2DT9eOuGrgWSAG11vnzmLZ4AF4dPeF14MSCVavxIxaleD6eZO85N/iHVIwqbUG19I5rY7hVsJ3+X7TA0FjRylvEMNzRdmXfsXQ+Kp/8iV6UUr2gweIWbkCK4YNUob/05tCcHb7Fhz2X4p1f4xTOWkCR/6omhRD88ElC+Hbowvs69bAjOoVsXL0sLzutPMLv/oSMxp8CLtqHyjjfUrcBexymY3QvyZg97w52Dx9Cjw6tcaKQf1xNfqwSe8NMV5umjwRs+vXQsLBqLw+9O48E4+H9HSc274Vjo3qwL1VM0QHrsjXl6wZGZtLs8bqXjbbTzVqXnJhRHrNV4nXZ3/SCHevXDGqIwdECDq7dTNmNqylcn3IfBYslgQe8cY4tXG9yrkhYtLyId/hoQ6RsWAfIuDE7Ykw8sTQ6sn6urg3Ah7iObPYNx8PrY5sS0PgES+TmBXL4dG+FS7vjzTsvlj2S0rgkbm9n3gDB5b4YlGfr+D/fT+Ez3FC1EIfbHOYjlWjh6kcSoZChaw1EZuPBQUicNhgrB03GpELPJVgs8PJAYFDB2Hj+N9w9fBB5ZmjAZD1F7tlM4LGDMdWh+k4uX4tzm3booSkjZMmwL19ayz+9mtkFcjDIuEjF/bqBp9unSDrrqhFxB0Rotb9Pg6z6lTH6rGjjNb+w9RUhM9xhE25t+HZuS1uFggjJoKW5Oma364FZn5YFVvsp5ldbxIac4vNJHi0+hQXdm03OdyiCjyJp06qcTnUrIyNf/1XPaOG71dZH5l3UpRou9nWBi5NG2Lx192UcGMqlJw2KBGjJNyceBuJR6m5Yk7gkeuXDuwLuyrlsXL0cLPh8yQX2KLePWBfrQLW/v6LkeAka0q83xb3/VqJwfK7LBUKPGVpNnkvJEACJEACJEACJEACJEACJEACJEACZZ6AOYFHjITqi+fxv6hQQyLMnFgbDIdqH0CMcloRg9zpTaFY8/u4vHBFUvfQsiUqwbZjnWo4FhykVS+2rYgakd4ecGneGKkJpr88t9SZGOUyU24jbncELkaEv9KftBEfFYl0nQZdEYOuH4nB3Jaf4kCB/BQyruTzZ7Hgqy8ROGqougUxbD+4dUt59gT8+D3sKpXLJ/C8OH9TCTLr/vhFfaG+oGdX7HSaiX0LvPK8ojRmDtUqKAHoSWamESIJXyWGa/GOupsQb3Te1AFZK9KWhCG7Gn1IGcG9u3aEd6c2EO+Cpzn5vQfEiC0Gc5v334FdzcoId5mtwjhJ7pIbx46oP/GQWP7DQEyt8K7KFyOihKkifUvoP5fmn2Dp9/1U2K6C9SwJPHJOPC6mlHsLjg0/xB7PeQUvL7bf8rX/6nH/7zljkK/IsIPSEHiE2Y1jR+HTs6sSL8T4XpylJAQeGXNGcjLC58yGS5N6WDXyR4jwoBXxGNvlPAuOjWpj64zpKoSanBMxZP9Cb8z/ojk22fwPD5JvaZcoMS1+fySW9PsGi7/pjsv79ynvH+kr8eQJLBnQG5umTsrnsSjn7sZfxuqxo7GwT8/8As/z50o4df60MfyHDDTKxZTXcYEdESnlXZt08rgSRkMnjceczz5G6KQ/YcrbS8Ly+fXrhWkV/g3vHp0Qt293vudHnkEREe0+rKzCjB1ebt4TTzzpREh1+bg+Di1dXGBkL34WReART5tzO7bBvnYVzKxbA2HTJuH60SO4En0YCYcPIf7AAeWdtNvVBYt798D8di2x1XaKEqRQSLhAEZ+jfH3g0VFyDh0zOVY5aE7gEfHNt2dXTK9SXglnOdnGeYnkeuG7uG9PTK9cDoEjh+JJgXCYUufK4YNY9n0/iEiYnWH63WR2gFZ+ggKPlU8Qh0cCJEACJEACJEACJEACJEACJEACJEAChgTMCTzihXNi/VpIovDc7MeQUFg7Zs3AjKoVlEeI1oYY3Xa6OCHS21M7pL4Wf5CUhMCRQ1Ty91MhG/LOFdeOiBqJp07A+dOPVLilorYrhnRJeO/TrQM8urR9pT/PLm2xpM9XOLF+ja5hSB4Q8UJwql8T8Qfy556RBkSIObBwATQPHq1Rdd3iBUYCj3Ze7ul06AZMFrHiozrKq8FQXBFmN04eh22NinD6uD7uXLqoXZq3FcHD9YvmmPtFc2TqzG8k7d6Ou6BCLQWNHanyZMz7rAlCp0yEhDt68jC/kCT5gMKmToZNubdgW6MS/Pp9g2WDB+b7W/BND9hWrwDbKuVVODFLxl/J1ePRqQ18unfGg1s38+5F27Ek8IgxWOZvcrl/Yd4XzRG/33SuH62tV9mKSHUkYIVFz5nSEHjkHkTo2Go3Db69ur2Up4klDiLwnFgXDM8u7SBzUxxF2hRPKxFwvDq0VgZ2w3bVPHZuA9uK/4H/DwORlfFACTNnt4VhTrOPseib7rh77ZrhJWpf3nMSCtGxYW0EDPlOhWtTz9GmjXBq0gAHly4x8uAQUfvMlk0qrJ9hSEnxeDy3fRscGtTEmt/GASa8yYwGICLU3bvKe2X9H7/Af1B/tQ7FQ+nk+nUQDxt5vrQi+/EHouD4UT1MrfgeXFt+Cv8fvsv37CwZ0AeuLT7FpHJvYd4XnyH+gHkvLXnXHAlYjhl1q5vNH1UUgScrLU0J75PLvQ2HBh9i7W8/Y7vDdGydYYttM2yx2W4q1o//DX79v4Fnh9YI+mmECr0mOcgKKyJ+i7Di1bUjds+fm4+L4bXmBB4RoH26dVRh68Qzylz+HAknKQLa9ErlXgjhD429hWTONttOUR6YIgaWpUKBpyzNJu+FBEiABEiABEiABEiABEiABEiABEigzBMwJ/BIouzNU//CuR3bIWG37lyKw9wWn8Kxfk31BbYG5n5iIlaO/BGJp45rh9RWjJ2XovbCtUVT3Dx9Kt+54voh4lLo5Ilw79xWhfwpSrvyJb4YI5Njz0BCCr3KX9Kpk7h1NhaSgF1PEWN1zIplsK38HpYO6IMTG9Yi+dyL68W4LB4+EsLsyMr8uSZE4Dnkt9CiwHMqdAMmvfcvODdpoL5kNxyP3HPK5UuY1ag2HBvUQsLhg4anlTAnHgOzGtVRRlTxtNFbREh6eO+u+rt/7ZrK+ePb80vMb9VceRJJbhKtpN+6Be/undR9SB4YCZ0keYG0PzHEigfClPffgUPdasrbR7vW1FZCKi3u01Pl8Eg+d86oijmBR4VN270LM+pUg8377ypPDvEEMVeEn8yBhJeSPFIP793D4wcPVEg6eV7E+0nWpBiiTRW5XuZ52aB+2PDfP/KFBNPql5bAI89n3N7d8OzcHgf9FpkN4aWNy3Ar14rgK0Kdqb+MlGREB/hjfofWuHYk2mJdCbVlKGAY9mO4L3MsRvcZNSohZNKEPA8drY6EYROPvg2/jcXR4CB1XoSJFT8MhFO9mtjl4qhVNdrK+lv+fT841q2BHbNnITcrC2e3bYF97WoqF0v0imW4cfy4CvUmIf1kHu9du6JyYcl60Irk4zmxdjXsPqyKsGl/aYcL3cp6eZyRgUf37qo+JN/U1ulT4fJpIwSNGIILEbtUCElpSERCGc+UD95VXj6Sj+uOwbMjz9DF3eEqTJwIFCt+/D7Pg8/UQJQ3Xch62NWuqtak3FvBUhSBJzUhHqtGDIFtpXIIGDYYj9Lu42luTr4/ySf0KC1N5RGT+ZlZrybW/zEOty9cKNi10W8RgrY52MG3V1fcvXrV6LwcMCfwSChR764dXgg8P4828izUGhOBRwQ24ecveapMeDoKJwkN6de/DyJ9vMzmNNPafJ22FHhep9niWEmABEiABEiABEiABEiABEiABEiABN54AuYEHvmy/VLkXmWwl30JsyYJu+Xrac0ILkJE4olj6itnMfgaFjknYaAkT45e4cPwej37Etro/K5tmNWoLi7s2qHnEquoIwbtGyeOK0+OqRX+DbcWn6pcIJumTETUAi+c37ldhXsTscCwiDH54BLfQgWev8q/jbmtP0Nm6h3Dy5VhWgywjo3rYpbyHsqfY0cMzbfOxcK+TnX49upu1gCar1EzPzQRS8IhzapfA3vc3ZQRVAyj4jnk2LgeHGpWQsQ8V6MWZC3tdHTAlPLvYH7blkhLvGFUx/DAi9wafeDVrpXy6jI8J/vmBB4xbp8JDcHUKuUwrUr5QvM5iRhxOSoSO2bZY/tMOxXeTDwTttrbImz6FGyfZY9jwasgz4u5IiHDdrnOhnf3jkiNNw6BV1oCj4wv9Uo8Vv00HIEjhugOJybG7rjd4corY4vdNJj6E++spd99i5kNayvvK1N15Jh4EEX5eCDl4nlzuNRxEeJEjJrZ4EPMblQH+7w9jOrL2pV8OBJWUNaP8nSJ2gunj+qq8GMxAf5G12gHJK/Pxgm/Y9oH/1Him3iuJV84r0Jw2VYuhzlNG2H5oP4ImTQeez3m4+yWTUqM1PrR2pG8PUdXrsCMD6tiq4OtdrjIW7mXpNOnlGgp+WKWDxqQJ5KLiLhztgNsyr8Dnx6dce9afpFD7vtK9EG4Nm8CpwYfKk8Xac9ckZBqZ7eEwb5udaz+ZayRt5Jcp1fgkWf7+rEjygNJ8gdtm2VvVuyUduV9diR4FaZX/0B5M8pzIeKhpSLjjd26BfPatTQr/JoTeMSbcMFXXVSINsnjY86D54Vg3EOFaAsYPsTs8yx5wdb88hPW/j4O969ftzTs1+ocBZ7Xaro4WBIgARIgARIgARIgARIgARIgARIggTedgDmBx5DLo3v3sHrsSMysXhFbZvydsFuM+EeDV6kv6gt++S1G7uPr1mDtH+NMGg0N23/ZfTEGXo7ai1kN6+B0WOjLNvOPXKeFnFrWvzcc69fC1A/+jakfvIuZdavBu3M7bLWbCvmS3LDoFXgml38b7h3bqK/nDa+XOSpM4LkZe1p9zS/C3LNCjK2GbRfcV0LO5Ti4NGsMm/ffxrzWnylDvhigrx8/osLEzaxTA7FbNxe8FOIVJsbrGdU+QOjk/+Z5LxhV/P8DIvD4f/8tPNu1QtLpk0bVLAk8p0M2YlqVcrCrWdHkOjZsTNb01ZjDiPTxQISrCwKHD8HUquUxvXpFeHRqiwi3Ocq7TUQac0U8ffZ5zlNJ6CUnSMFSmgKPiAPBv46B/+D+eGwmx1HB8YmoERu2CWt/HaMEsaCxo4y2q0YPV+Hy7GpXU3mRVv882qiOXCdhsrbZT4V4wFkqwv3khnWYUuk9uH7SEDErV1iqrs5JGLWTG9dhapXymPvpRzi+drXZayRcnXgrSshAzy/b4058vBIfxBMmcNhgzPmkAaZWeg825d+Gw4dV4NGuJUInTVB5bwzFExF4YgKWw752VSUAmu1Qx4nM1FSVb0jGNLNuTeycPUs9B+IJFzrxT0yvXB4iPhiFP8x4AMm5I6ENPTu2UR5Ulrp7IZhsxox6NVRYuecG4eC06/QKPML8VOhGTK/xAVw//UjNmdaGqa14hl45dFCJveKRtGxQf6N3VsHrROwTjybJ3ROzMqDgafXbnMAj9yGh4SS3zsqRQ2HOQ1Hl6vm6q/qgIXjcGLPvwbTERKz7fZxax6lXEkyO5XU8SIHndZw1jpkESIAESIAESIAESIAESIAESIAESOCNJVCYwCMGTMmv4ty0ERwb1Ebcnog8VhLiTDwXolcYfx0voXQ2/O8PFS4p74Ji3hFj8645TnBr/RkkgX1Ri4QVEy8XCbn1qn/ipSTGUr1FwhRlP3qE60ejcXDJQoTaTMKqkT9gQZf2sK9RCTNqVUbIX+OVN4LWpl6Bx+b9d15K4BGDa/KFcyp3hnf3zhbDDomhVcL2xW4KQcKhAxBvqoJFvA0WftMDNuX+BYc6VXE0aJUyUksejckV31PeFTdj84fvE9Hu0p4I2NWqBNdPGyP+0IGCzRr9fpF0/ht4dfgCt86eNTpvTuCRvi7+f4g2uxoVsXHiBFjK9SMNCyOZZ5nvQ0v9MOWDf6uwhTtdHFUoJ+Fiqdy5HIdVo4chaPQIFZarYN3SEniUp8fhg/D9qqvyKJLfeoq8DyTvjAiFIqyZ+rt19gz2+XjCrW0LnNuxzWQd7br7N64jJ+uRxa4l9JkINDYV3lUCz5FV+UMXmrpYhUtbF4wpFf8D16aNChV4JKTaFBF4OrdVHisyjxI27VbsGUSvWIrN06ciaNRQ+HbvjFn1aihRL/jnkRAvDq2Ih9fR1SuVB8/m6TbaYaOtiJ+P7t9VXkkXd25TeX8KVpK2jqxeCZuK/4ZNhX/Db0CfF+EPb1zHut/GYmbNytg0ZZKRh4yIdmt+Hg2HmpWxcdIEIwGoYD9qvYWFKFF3/YTfTYbq0yvwSF6a8LmzlaDr1bltofmXZM3F749Unlkyt0v694YIoJaKfGwg+Xe8u3VAkpn8TuYEHiVojh0J24rvYfmP35kMvSZ9S7hN767tMbNWFWya+pdJJlLvcuReLB3UDxFznc22ZelerPUcBR5rnRmOiwRIgARIgARIgARIgARIgARIgARIgARMEChM4BFj9tntWzGtcjl4dGyNzNS/c5SkJSUhcOQQJJ3Kn2RavoyW/ASrxoxQScJNdPvKh8RIevfqFeUpsPF/f+rK42HYqRj3bxw/hjCbScpzQ4yhr/K3fcY0XN6fP+SZYX+G+2JUvXL4kEqWLsfF0Clf7KdcOI/zO7dh20w7uDRtiDlNGuBq9OG8S0ta4FFMryTAudnHcO/QClnp6Xl9F9x5mHpH8XJv3RzLB/bF9aNHClZR9ySeNSLwiGC1x2O+yi90LfowplQuh9nNGyM96e/cPNKA5OzYNHki7KuUV95fhRn/5RoJveTVvRN8vuxgUugzJ/DI/SaeOK7uVb7qDxw11Gw4poI3J6HWdrrMgk35tzC3ZTOV96RgnYK/RQQTwcOjUxuzXiilJfBI+L/9i3yVEHj9aEzBob7Sb/G4ObF+DTy7tFNz80qNAUo8lLCFdrUqw/mjuiqMYWFtvmD94po5H9dXXi3mrpEQgBvG/46p77+rcq+k3UxS3nPnd+1QAoo8n5IfR4TEuD27Ee46W+V7cv2kQT4vEpm705tCYFenKjb8b7yR+KL1L3zkOfft3gneXdohfK6z0brTvJZsKr+HSeXegk+PLirUoIx1/Z+/wLl+TYTPcdKaVFu557g94cprzrNdS1za+7cYn6+iwQ/xJBTxTPINbbGbanDm7129Ao+IXRLuTwQU/x++U3l2/m7FeC/rQToOLVui/m0RD7qN/xtvUVSWFiQ/l/8PA7Bu/G8mc1hJHXMCjwjOO5wkvN27WPJtLzy8ZzpnWuLJY3Br2QwuH9VF5AIv44EDqm8J17ekfx/IOilLhQJPWZpN3gsJkAAJkAAJkAAJkAAJkAAJkAAJkECZJ1CYwCOGxmOrV8K20nsqJ4UWkkgEkoSDBxAwIn+OAjkuYXcChv2gQhiVFEAZlyRyd/y4gcm8K4X1K0bbu1fiEb18GQ4uXfzKf0dWBiD5vLH3iKlxiOfRbjdXZQyVcRQs4hl1cMkizKxdFYdXLMs7XdICj3Qk+ZUWfP0lZjdpiNSrf3sn5A0C4uTyHBKSyOnjerB5719wqlMNR4JWGlZR+5kpKfDu1hGTxYOnbjWcClmvPGBSLl7AzAa1MbdVM4hQpBUxUF/aHa48JLy/7KjyqWjnLG1vHD+KOS2aYUn/b/DYhChlTuCRNjPupGCnMvq+Dfd2rVQINkt9aeckR8vCXt0gOZSW9OuFjDu3tVNmtzIOERElTJQYm02V0hJ4bsaewZIBvbFx4vgieZ6ZGnPBY5poIAKP9FMcRUQ8v2+/hn21Cljz689m86fIfJ7etBGSR0XmaGm/XnD8sCo2200164khdRd90w1Odapj+6wZePzgAY6vC4b/4AFqfRQcv9zf6ZD1cG7aEJumTc47Le/GhIP7lbfjiqGDjEQbraKIuRHi6VLuXyqXzuJvv1ZeUdp52WZnZCBmxXL89f47mPLBf+A/ZKAal9zfLkd7ODesjX1e7oaXqHw8a8aNgghakd4ehYolcrES+hZ6K+HMnJihR+CRe78afQjOn34Ex3o1EeE62yxv6Vc8pK4cOgDPTm0wtcI78P6yg8rfk++GCvxQIfACA1TuMskPZ66YE3jk2YrdEqaEQq9ObXD7vHGIRPn360LETtipUHyt1EcApvpJPHkCAcMGI2za5BLLMWeq39I4RoGnNCizDxIgARIgARIgARIgARIgARIgARIgARIoJgKFCTxi8Lq4JwK2VcrBq1tHZXiUrsXYdmjpEmyePiVvJEr0OXQQq38ehVMb1+syMOZdXMQdMZBLmB3J2yC5H16miLiSnZmhwqCJ6PIqf9KO3L+eInXD58yGa/PGRnl25HrFPGInHOpWxxmD3EI5jx7hoN9C2FUqh5Wjhxl1pQyYm0MhIdokJ4zcT8EiXk+OjevCsUEtk+HPJESS5FeRBO2Sb8ZcSb91Cz5fdVbhqDZNGq+8qQzrisFX8vk41K+JKRXegUeH1pCcFVIeJCfDp2cXOH3SKJ+Hl+RCka/zZzeqgzObQnR5ZYmh+EL4DsxsXAfr/vjVZL4MSwKPMjQfPgjvLm3hUKsKwqZMUmvC8F4K7j8Wz4OlSzC9egWVu0e8NaQdS0UzgHt364TwuS5m762oAo/KKyIixv8ntbc0Bu2ciKOnNqzD/HYtELs1TDtcbNuSEHiEuYRKc6hdBd4d25hcm/LcxB+IQvAvP+HO5ctq/YuAO7NudSzu3QP3rl0zukdhIWvNoV4NLOjaATdOHIMKtRa0Eq4tmiJ2i3GOKBE4xbPOrc3nypvHsNGkM6fh3qkNFvbsCglTaarI8y+5emyrfYBFX3dVYSwLvjse3E7G1ulTlDgqz8M+b3e1Zl6IHCvg2OBDFVpPa1+OHw9erTz/1owbjfTkm9opi1sZo3gfurf4RIkfpirrEXjUnK8JVvms5n7exGRuLa1tEXKvHzuCgB+/h12V8nBr0RTH1gSZFcS06+TdtebXMVg+5DtkpZsP5WZO4JF5k/w6/gP7Yl7zxjgZsk5rOm8rgteBRQtUmMzgX8aYDHEn7cjHBYv6fIXja1abfZbzGn3NdijwvGYTxuGSAAmQAAmQAAmQAAmQAAmQAAmQAAm82QQKE3jEmCWGeUnEPrtBLUT7L4Xkrnl47y5CJ/8XZzaHKoBiGDu+Jgirfx6J42uDkW1CXCgu0k/l6+/oQ3BqUh/iOfO6FU3gcahWQYVbenj/Xr5bEJZbbKfAvePfooiEynthjLXD9Ir/weJvv4FcJ3MhRQQGyU8R5euFv8q/BdcWnyL54gXlnSHigohZYrhOOHQQM2pXwcw61XB87RplVDUUJ6ROpI+HWa8cbaBi0D3svxQuzRrh6OpVRkZOEZd2Os1UHi4z69dETODyPBFE7n/PPFdlpJav/qUoJq7OcG5ST4Xgkt96SnZmploDsxvXR+QCT5OXWBJ45AIZqxhqxdA8p2lDyDNhzjgv3hdi3PXu0VklkndpXB+Hli422a/hwReGY18V5vDaEfMh0fQIPDKXudmP8SQzE5ej9sG9XUvYV/8Aa8aNQUbqHZU8XtbFcxPeYTKm+4k3DDyJ/g65aDjeV9kvCYFH3kP3rl7BJpuJysNr1U/DcTfh77xbwuTm2TMI+eu/2Os5T/FR11y7is3TbODcpD42T5uscm5p9ybPlLxH/Pr1wjwRGVavUuzEU05y6Uyt+j5W/DBQiUXaNbJ9lJaG/Qt9ML9jG+WxY3hORIjVY0bCq11LXD9+zPBU3r48j0mnT6n8LatGDcXdq1fzzsmOPI8iVLm3bQG7au9j5fAheQKqXHst5jDcO7dB8K9j1RyLOCTeMAu/7goJiSgCh9y7niK5lFaOGAKvjq2V15OpaywJPLk5OSpcWUrcBfUusyn/Njw7Sf6dWPVuyn2Srbytnj7JViEfxRNLBJQFPTrDsW4NLOz5JU5uWGcxHKTGRHLeeHZpq9hbuj9zAo+0I++VY0Er4dK0AYLHjFAeTNo9S5vJZ2Ox9Nte8GzTQuWbM9WPiGmhk/6LoNHDiiUEoda/tWwp8FjLTHAcJEACJEACJEACJEACJEACJEACJEACJKCDQGECjzQhBsTEY0ch4X+8urRXwk6kjxcWfPUlDvotxpGAFQibOglbpk9B3L7dJSruyHiUeODsCLdWzfK8QnTcqtVUkfHvcnFSngVBPw3HxknjlcAQtzcCJzeshSR8X/ZdP8Ru2aSMvWKU3OvticBhg+Dc7COVs8KhXk0EDP0eez3nQwzSknh+5fDBmPtFM3XetlZlLOrbE6F/TcCtc2eVsXnV6OHw/fpL2FQqB9vqH2Be+1ZY+9sYnArZmMdGGZf3R2JG7aoItflv3vGCO2L4fJB8E3vmzcXSAX2xzWG6yi8jic8lp8uOWTPg/FEduH3eBPsXLYCEndOKGKlvnTuHpQN6I3DEj4jdHIptDnZY1KsbDi72Vbl7tLqFbZWng91UuLdqjkuRe0xWL0zgkXvJun8Ppzasx+LeX8H543oqHGGUr4/KaSL3c3F3OPYvXID1v4/Dml/GICbQH9Erwe4roQAAD+xJREFUliljsITlKqykxl9G4PAfsOqnEcr7zVz9wgQe8WQ5ExaixrBy9HCVm8W2ViVMrVJeCZ4SVix43E/YZjdNeaMU7EfYX40+CJ9CPIkKXleU3yUh8Ej/sjZT4uKw09EB89u0wLKBfbHP0x0n1gUj0scTGyb8jj3z5+bzChMxODU+HrvdXODbowtW/TRMzaOEndzhNFOFy1s+qD9OhWzIExlePE8BsK9THYFDB2H9hN9UKEdZA6dCN2CHgx0Cfhyk8vqIIGpYxAMuyssdrk0b4lhwkOGpfPviOXRp724Ejx2p/qL9/XD9SDQST59WOXH8vu2FWXWrY83Ykbh2/Gg+sU6E3H3eHir84YElCxET4I/AoYOV593140d1exLKuk88cQzu7Vtj+Y/f48mjzHxj1H6YE3jSb91UvFePHoZFvXtgRr0a+Ou9f8GudjXlXbl67CjIX9DYUWrdi+eNeP3Na/s5lvTuqebkxonj6v2l9WVu+/DuXUTMc9WV18mSwCP3LLnjds91VsKoiH4SRjA9+RYSDkSp58qzU2tEB/qb9N6R8YmI5zegjxp/wfk3N/7X6TgFntdptjhWEiABEiABEiABEiABEiABEiABEiCBN56AHoFHIIlhTBKNJ50+iSNBgVjz+89KTIhwdUb0Cn+Vq0CMm2JQLcki45Av+d3atkSY7WSV06Uk+yuJtsWIH78/Eme3hqmcN5f378M+z/nYNXsW9ri7qZBR6Uk3VHJ56V88DSTPzIXwnYjbu1tdG7cnAhciduHGsSPKoJt8LhYXdu3Axb0R6nx81D5c2L0Ll/btUfleMm7fxsXwnbi4J1x5fSTsj1RfqEs7t+Mu5LtNCb+2sE8PzG/XSs15vpMGP2QuxIvkxsnjiJgzB6tG/agMn379eyNg6HfY5zEPty+cMxl6STwu7l27ikPLFitj62H/ZUi+eN5kXYMujXZvno2F79ddsfS7b5F133TYpsIEHq1RETLFu+V06Eb1hb4IZJLcflHfrxEwfDC2zbDF2a2blbAlcyjCm+Qiki/6LRWpK9fNa9sCJ9avtVRVhTWUkGHundri2pFoo7rS1u24i7gYsROXo/aquRYvHjFOy1Zyk8ici+iUaSJEmDyj+7znw7Nja8iaKYlSUgKPjFXWnOTIuXUuFkcC/bHd0QHhc5zUfuKpkybD66l1+vChEoeOrw1CxBxnbHecgUgfb1zaG4EHKbfz5SGSEGLSvoSZTE9OVuHEDizyxS4XR+yZ74qT69eq0Io5j7OM8Mm6lnmR8G7r/jQdMlC7SASr+zeu48TaYCVOLf2+H5b0741l332LjZP+xLntW9WaljYNi9xPVtp9xO0Oxx43V5WLR8QnEVEL1jW8ruB+TtYj5XU5u2lDJcIWPK/9NifwyPq/Gh2N8zu2qrHGbtuSb3tOjv//39kdW3F+1zZcitqrBOeHd1Mh/cu96Ckiwiz8tidC/pqQT+wyda0lgUfqv+CXpp6VMFsbiBfVahHaxo1Wc5x08oTZ95C8I+S9K++4uH2mBWVTY3qdjlHgeZ1mi2MlARIgARIgARIgARIgARIgARIgARJ44wnoFXg0UGJAfJh6B1ELvBE23QbiUZDz6KHur8a1dl52m/P4MU5sWAvHRnVM5uF42XZL+zox1MufFDEaCkcJ46V4ZmUZGT7FGCxCj9RV+zk5eb+lDZkXo/M5OaoP8doQo6bq00Qb0p5hEQ+Gg36LMLt+LZzbud3wlMl96VtC8mWkpEDy6MiX/Rl37ihjuyWDs4wp++FDdc9PHmZCxlmUImtBPC/mNP8YUb7eRsy0tvQKPFJf4yRzIbmC0m8mqb+Hd+4oA7r0KXW0omfMwiRsqg18vvpSiUPataa2MkeWBB65xnCutfUgc5i3LmSNyF8BYUCuvX3xApYN6gfJL6KtP1PjeJVjIvAcC14F9w6tcCv2zKs0ZfbaZ8+eKSO89syIJ0XBdVzwYpk38ZyRa9R1kjfryYsQhwXrSltSV4p6PjMz/n4+H2eZZKu1ce/6Naz97Wcs6NZReQ9px01t1XrLysKj+/eQkZyMtJtJKjygiDWFzY8IUVkP0tWzZ+4+TPWpHUtLvKHyVvl0aWc2PJvUNSfwyNiFk3qvZGe/eP/I++XJk7xj2jltK/VNrUttTKa2LwTDYMxr8znO63gfFSbwaH3IvIpQJuL3g1u38DA1VfG0tI4k99su51kImTjebBhHrf3XdUuB53WdOY6bBEiABEiABEiABEiABEiABEiABEjgjSRQVIFHIEmIoA0T/8DpsBf5d0oTnITqWTl6KHy/+Qo5jx6VZtdvTF9iuL1zKQ7u7Vop1pYMnv8kFPF+EC+JBT26KG8gc2MpisBjro2XPS4sxftKxJ3ts+wKNW6LIbwwgedlxyJtx24J0+VJ9LJ9yHWyXm4cP4adLk7KeP4qbb2O14oIeCYsFHNbNUXkAi+rvAURWcSLb17bltg6086iOGZO4CmtG5PnfMN//1Th9OT9X1jRK/AU1o6p8yJYLvq2p8oppkfcNdWGtR+jwGPtM8TxkQAJkAAJkAAJkAAJkAAJkAAJkAAJkIABgaIKPGKwvn/tKiSfgoRKK80iRsmkUycwu4mEFPItza7fuL7kq/nD/n5walwPCYcOWN39i5fA2e1bML9tS0geEkteAf+kwCNhrKID/NU49XAsSYFHPKvEk2hBz8I9iV51wmV+HmdkWJyXV+3Dmq+/f/0aNkz4A77fdId4ylhbUV5ltlOwoEdn3L540eLw/kmBR0SUK4cPwKNLe+ye76rLy6+kBJ4nKqTdauVJJOEAy2qhwFNWZ5b3RQIkQAIkQAIkQAIkQAIkQAIkQAIkUCYJFFXgkbA2l/dHInDU0LwcMaUFRnKd7PWYD+emH+HulYTS6vaN7EeEvPSbNxE46kcs6d9H5dqxJhB34i9j5aihCBo9Ag/vpVoc2j8p8Mg6DRozEit+/B7ZmZZz9chNlJTAo3kSeffogu3isWEifJtFiDxZJALixZRwaD98e3XHjtkzdQkTRergFSqLh1Hs1jB4dGqDmJUBhea0+ScFnkdpaYjy9YJHh9Yq/5ue2y4pgUc8idZP+EN5Eul5lvWM1RrrUOCxxlnhmEiABEiABEiABEiABEiABEiABEiABEjADIGiCjzikRC50Bs7nBzMtFhyh9MSE+HTrTPW/D42Xx6UkuvxzW5Zvp6/df4cfLp3xhb7aVbDPCPlNnY4zcTivj0t5g7RZu+fEnjEyB+3Oxzz27XAIX8/bTgWtyUl8DzOeIBDSxdjftsWr3XuKovwrOykeMGdDtkAry874OSGtVYxOnmmb5w4Br8BfbB9ln2heX5k0P+kwKNyRg3ujzW/jjWbL6kg2JIQeIRb/IH9mN+hNfZ5u1vNu7DgvRfHbwo8xUGRbZAACZAACZAACZAACZAACZAACZAACZBAKRHY5eyILdOnYsFXXXR9ZS4ePLcvnC/18GwS8uncti2Y1eBDXNi1o5TosBsRKa4eOQyvbp0Q5ev9j3t+PLx3D/sX+mBJv29w/WiMrjV7P/EGQiZOwLLB/fE050mpTWpm6h0lhHp1aovUhHhd/YrAczp0A9xaf44r0Yd0XaOnkng8BQwbrDyJcrKYu0oPs+Kok5WehphAfyzs/ZUS+4qjzZdtQwm252IRNHYkQmwmQrxj9JSUuIvw/2EgNk4cr6d6sdWRZyF2UwhcPmtSJIEs6dRJ5TkV4eZSbGN5dP8+9nq4wavjF7gVG1ts7VpjQxR4rHFWOCYSIAESIAESIAESIAESIAESIAESIAESMEPgQvhOFa5nn4+HmRrGh8VQ+OzZM+MTJXhEhKVrR2PUV+dlOTxOCSJ86aaF/a1zZ7DH3Q3ZGRkv3U5xXCjeOAeXLkLiqRO6xSYxssduDsXh5UuB58+LYxi62shKu4+TG9YhesUy3WOV0GnCOnyuC+Rei6uk3UxC1CIfnNu+tbiaZDs6Ccj6k/fsseCgQsOh6WzypapJaLZrR6JxaOkSyJj0loyUFMQELsep0A16LymWevLeuX4sBiLUZN5J0d2mPDdRixYgbm+E7msKqygecLFbwnBgsS+e5eQUVv21Pk+B57WePg6eBEiABEiABEiABEiABEiABEiABEjgTSPwNDcX8idfS1t7EeN37uPH1j7MMjk+EfRkjUgul3+ySP/izVXUHDK5OTm6QzwV1/3JWF+mXxFQFetiFFHzuOXmFtftsZ0iEFDv2Sel5z1mbmgvMw61dnJy/hFhQ73zi/jeKam1/jLPsrl5sObjFHiseXY4NhIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIwQYACjwkoPEQCJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEAC1kyAAo81zw7HRgIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAImCFDgMQGFh0iABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEjAmglQ4LHm2eHYSIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESMAEAQo8JqDwEAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAlYMwEKPNY8OxwbCZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZggQIHHBBQeIgESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAFrJkCBx5pnh2MjARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARMEKPCYgMJDJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJGDNBCjwWPPscGwkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkYIIABR4TUHiIBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABKyZAAUea54djo0ESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAETBCgwGMCCg+RAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQgDUToMBjzbPDsZEACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZCACQIUeExA4SESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESsGYCFHiseXY4NhIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIwQYACjwkoPEQCJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEAC1kyAAo81zw7HRgIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAImCFDgMQGFh0iABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEjAmgn8H1HoHaMhJoHTAAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

    " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Going from left to right in the image above, the QAA routine proceeds as follows:\n", + "\n", + "1. __Original situation__: First, the original state prepared by $\\mathcal{A}$ as $|\\psi\\rangle = \\mathcal{A}|0\\rangle _{n+1} = \\sin(\\theta) |G\\rangle |1\\rangle + \\cos(\\theta) |B\\rangle |0\\rangle$ resides in the two-dimensional plane spanned by the basis vectors $|G\\rangle |1\\rangle$ and $|B\\rangle |0\\rangle$, respectively, with (typically small) projection $\\sin(\\theta)$ onto the $|G\\rangle |1\\rangle$ axis.\n", + "2. __Reflection about $|B\\rangle |0\\rangle$__: We then apply a reflection around $|B\\rangle |0\\rangle$, transforming $|\\psi\\rangle$ to $|\\psi'\\rangle$, keeping the projection along $|B\\rangle |0\\rangle$ unchanged, but adding a minus sign to the $|G\\rangle |1\\rangle$ component. Reflection about $|B\\rangle |0\\rangle$ means that all terms apart from $|B\\rangle |0\\rangle$ pick up a negative sign. Because there are only two terms, only $|G\\rangle |1\\rangle$ picks up a negative sign, which is accomplished by the operator $\\mathcal{R}_{B} = \\mathbb{1} - 2 |G\\rangle |1\\rangle \\langle 1|\\langle G|$, as defined previously. \n", + "3. __Reflection about $|\\psi\\rangle$__: Finally, we apply a reflection around the original state $|\\psi\\rangle$, giving the final state $|\\psi''\\rangle$, with an amplified $|G\\rangle |1\\rangle$ amplitude of $\\sin(3\\theta)$, adding an angle of $2\\theta$ from the rotation around $|\\psi\\rangle$ to the original angle $\\theta$.\n", + "Reflection about $|\\psi\\rangle$ means that all terms except for $|\\psi\\rangle$ pick up a minus sign, as can be done by applying the operator $\\mathcal{R}_{\\psi} = 2|\\psi\\rangle\\langle\\psi| - \\mathbb{1}$. \n", + "Using the definition $|\\psi\\rangle = \\mathcal{A}|\\vec{0}\\rangle$ and conversely $\\langle \\psi | = \\langle \\vec{0}|\\mathcal{A}^{\\dagger}$ as well as the unitarity condition $\\mathcal{A}\\mathcal{A}^{\\dagger}=\\mathbb{1}$, this reflection can be rewritten as $\\mathcal{R}_{\\psi} = \\mathcal{A}\\mathcal{R}_{0}\\mathcal{A}^{\\dagger}$, where $\\mathcal{R}_{0}=2|\\vec{0}\\rangle\\langle\\vec{0}| - \\mathbb{1}$ is a reflection about the all-zero state $|\\vec{0}\\rangle$ where all terms except for $|\\vec{0}\\rangle$ pick up a minus sign. \n", + "\n", + "This sequence completes one cycle of the QAA routine, that is one application of $\\mathcal{Q}$. \n", + "In total, each application of $Q$ involves two reflections, first through $|B\\rangle |0\\rangle$ and then through $|\\psi\\rangle$. \n", + "The product is a rotation with angle $2\\theta$. \n", + "Based on our analysis above we can write the rotation $\\mathcal{Q}$ as \n", + "\n", + "$$\\mathcal{Q} = \\mathcal{R}_{\\psi}\\mathcal{R}_{B} = \\mathcal{A}\\mathcal{R}_{0}\\mathcal{A}^{\\dagger}\\mathcal{R}_{B},$$\n", + "\n", + "thereby confirming the formal definition above. \n", + "Repeating this sequence, after $m$ iterations of $\\mathcal{Q}$ we get the generalized equation\n", + "\n", + "$$\\mathcal{Q}^{m} |\\psi\\rangle = \\sin((2m+1)\\theta) |G\\rangle |1\\rangle + \\cos((2m+1)\\theta) |B\\rangle |0\\rangle.$$\n", + "\n", + "\n", + "__Obtaining a quantum speedup__:\n", + "To see that QAA indeed provides a quantum speedup, suppose we use it to query an unsorted database with $N$ elements and $G$ _good_ elements. \n", + "The classical algorithm for finding good entries is to query each element in the database until a good one is found. Thus, the classical solution requires $O(N/G)$ queries. \n", + "A quantum solution would be to query the database in superposition using the state $1/\\sqrt{N}\\sum_i|j\\rangle$, where $j$ enumerates the $N$ elements of the database. \n", + "The oracle prepares the state\n", + "\n", + "$$|\\psi\\rangle = \\sqrt{\\frac{G}{N}} |G\\rangle |1\\rangle + \\sqrt{\\frac{N-G}{N}} |B\\rangle |0\\rangle.$$\n", + "\n", + "Thus, $\\sqrt{a}=\\sin(\\theta)=\\sqrt{G/N}$ and $\\theta \\approx \\sqrt{G/N}$ for the typical scenario where $\\theta \\ll 1$.\n", + "\n", + "We then apply the QAA algorithm to amplify the amplitude of the good states, such that the probability of obtaining a _good_ outcome is amplified. \n", + "To ensure that we measure a good outcome with high probability, we apply the Grover iterator $\\left\\lfloor\\frac{\\pi}{4\\theta}\\right\\rfloor=\\left\\lfloor\\frac{\\pi}{4}\\sqrt{\\frac{N}{G}}\\right\\rfloor$ times. \n", + "In other words, we only need to query the oracle $O(\\sqrt{N/G})$ times in order to find a good outcome to the search problem with high probability.\n", + "This outcome is a quadratic improvement over the $O(N/G)$ oracle calls required classically. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## CIRCUIT IMPLEMENTATION OF QAA" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "__Implementation of QAA on a QC__: Now that we have an intuitive understanding for QAA (after all, it is just a rotation, as illustrated previously), the final puzzle piece that remains to be solved is the actual implementation of the reflections $\\mathcal{R}_{B}$ and $\\mathcal{R}_{0}$ as a quantum circuit (since $\\mathcal{A}$ is given as input to the QAA problem). \n", + "Rather than implementing $\\mathcal{R}_{0}$ below, we will show how to implement \n", + "\n", + "$$-\\mathcal{R}_{0} = \\mathbb{1} - 2|0\\rangle_{n+1} \\langle 0|,$$ \n", + "\n", + "which gives a minus sign to $|0\\rangle_{n+1}$ only, leaving all other states untouched. \n", + "To compensate for this minus sign, overall we will show how to implement the unitary \n", + "$$\\mathcal{Q}=\\mathcal{A} (-\\mathcal{R}_{0}) \\mathcal{A}^{\\dagger} (-\\mathcal{R}_{B}).$$\n", + "\n", + "__Implementation of $-\\mathcal{R}_{B}$__: First, let us consider \n", + "\n", + "$$-\\mathcal{R}_{B} = 2 |G\\rangle |1\\rangle \\langle 1|\\langle G| - \\mathbb{1},$$ \n", + "\n", + "which is a reflection about $|G\\rangle |1\\rangle$, because $-\\mathcal{R}_{B} |G\\rangle |1\\rangle = +1|G\\rangle |1\\rangle$ and $-\\mathcal{R}_{B} |B\\rangle |0\\rangle = -1|B\\rangle |0\\rangle$. \n", + "This transformation can be achieved by applying $X_{n+1}Z_{n+1}X_{n+1}$ to the (last) ancilla qubit. \n", + "This way, we obtain a minus sign whenever the ancilla is in the $|0\\rangle$ state. \n", + "\n", + "__Implementation of $-\\mathcal{R}_{0}$__: We must implement the transformation $|0, \\dots, 0\\rangle \\rightarrow -|0, \\dots, 0\\rangle$, while leaving all other states untouched. \n", + "To this end, we can flip all the qubits (using single-qubit $X$ gates), flipping the sign of $|11...1\\rangle$, and flipping the qubits back. \n", + "Thus, the last operation that remains to be defined explicitly is flipping the sign of $|11...1\\rangle$ , which can be done with ancilla qubits. \n", + "One possible way to do this task is by using a multiply-controlled Toffoli gate:\n", + "First apply a Pauli-$X$ gate to each qubit. \n", + "Then apply the $N+1$ qubit Toffoli, controlled on all $N$ of the qubits we want to test, and targeted on a single ancilla qubit. \n", + "If (and only if) all of the qubits were in the zero state, then the ancilla qubit will be flipped to $|1\\rangle$. \n", + "We then apply a $Z$ gate to the ancilla qubit, so the overall wavefunction picks up a minus sign whenever all of the register qubits are in the $|0\\rangle$ state. \n", + "Finally, we uncompute the ancilla by applying another $N+1$ qubit Toffoli gate." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can decompose the $N+1$ qubit Toffoli gate into $N-1$ CCNOT (that is, 3 qubit Toffoli) gates and $N-1$ ancilla qubits, shown as follows for $N=4$ register qubits: " + ] + }, + { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABl8AAAQZCAYAAABLtxzUAAAgAElEQVR4AezdC5QdRZ0/8IyQEEdAcEMCSHiIAREID0lERDCgIiISBIX43jiJ7qpHXTXquvtPdtfXqhs96vHtqlGcKKiIGBEThQhiREwAQSEDAmJ8rYkQMSKe0/9TYYdNpnoyd2b63ttd9elzODPTt7uqfp8qkq77zU0mFA4CBAgQIECAAAECBAgQIECAAAECBAgQIECAAIHKBCZU1pKGCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECuGLRUCAAAECBAgQIECAAAECBAgQIECAAAECBAgQqFBA+FIhpqYIECBAgAABAgQIECBAgAABAgQIECBAgAABAsIXa4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUKGA8KVCTE0RIECAAAECBAgQIECAAAECBAgQIECAAAECBIQv1gABAgQIECBAgAABAgQIECBAgAABAgQIECBAoEIB4UuFmJoiQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECAhfrAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQIUCwpcKMTVFgAABAgQIECBAgAABAgQIECBAgAABAgQIEBC+WAMECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgQoFhC8VYmqKAAECBAgQIECAAAECBAgQIECAAAECBAgQICB8sQYIECBAgAABAgQIECBAgAABAgQIECBAgAABAhUKCF8qxNQUAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQED4Yg0QIECAAAECBAgQIECAAAECWQhs2rSpWLZsWTF//vxi1qxZxZQpU4pJkyZt/S98H86F18I14VoHAQIECBAgQGCsAsKXscq5jwABAgQIECBAgAABAgQIEGiEwLp164p58+ZtDVkmTJhQtPJfCGXCPeFeBwECBAgQIEBgtALCl9GKuZ4AAQIECBAgQIAAAQIECBBohMDGjRu3fpKlp6enpcClLJQJ94ZPw4S2HAQIECBAgACBVgWEL61KuY4AAQIECBAgQIAAAQIECBBojMCaNWuK6dOnjzl0GRrEhLZCmw4CBAgQIECAQCsCwpdWlFxDgAABAgQIECBAgAABAgQINEZgxYoVRW9vb2XBy2AQE9oMbTsIECBAgAABAiMJCF9GEvI6AQIECBAgQIAAAQIECBAg0BiB1atXF5MnT648eBkMYELboQ8HAQIECBAgQGBHAsKXHel4jQABAgQIECBAgAABAgQIEGiMwIYNG4pp06a1LXgZDGBCH6EvBwECBAgQIEBgOAHhy3AyzhMgQIAAAQIECBAgQIAAAQKNEpg7d27bg5fBACb05SBAgAABAgQIDCcgfBlOxnkCBAgQIECAAAECBAgQIECgMQKrVq3qWPAyGMCEPh0ECBAgQIAAgTIB4UuZinMECBAgQIAAAQIECBAgQIBAowTmzJnT8fAl9OkgQIAAAQIECJQJCF/KVJxrtMDmzZuL/v7+YsGCBcXs2bOLvfbaq5g0adLW/8L34dzChQuL5cuXF+FaBwECBAgQIECAAAECBAg0W2BgYKDo6enpePgS+gx9OwgQIECAAAECQwWEL0NF/NxYgfXr1xd9fX1Fb29vyw/c4dpwT7jXQYAAAQIECBAgQIAAAQLNFFi6dGnL+8DBvzKsqq+hbwcBAgQIECBAYKiA8GWoiJ8bJ7Bly5Zi0aJFxcSJE8f8sB3uDW2EthwECBAgQIAAAQIECBAg0CyBuXPnjnk/ON4QJvTtIECAAAECBAgMFRC+DBXxc6MEwse7Z86cWdlDdmjLR8YbtQQMlgABAgQIECBAgAABAsWMGTMq2xeONowJfTsIECBAgAABAkMFhC9DRfzcGIG1a9cWU6dOrfwBO7QZ2nYQIECAAAECBAgQqJPA4sWLK3/2He2bzK6fYA4mMPD/gTVgDVgD1oA1YA2kvwaWLFky7q2A8GXchBrohkD4dEo7gpfBXzhD2z4B042Z1ScBAgQIECBAgMBwAsKX9Df5g/sRX821NWANWAPWgDVgDVgD3V0D4dl7vIfwZbyC7u+4QPh3War8q8aG+4Us9OHfgOn49OqQAAECBAgQIEBgGAHhS3c34MPtG5w3L9aANWANWAPWgDVgDaS3BoQvw2xKnE5bYNGiRR37qH/oy0GAAAECBAgQIECgDgLCl/Q29d6oMafWgDVgDVgD1oA1YA3Ucw0IX+qwAzKGjgqsX7++mDhxYsfCl9BX6NNBgAABAgQIECBAoNsCwpd6bsy9YWJerAFrwBqwBqwBa8AaSG8NCF+6vfvRf8cF+vr6Oha8DP6iGfp0ECBAgAABAgQIECBAgEB9BZYuXdrxveLgnjH07SBAgAABAgQIDBXwb74MFfFzbQU2b95c9Pb2dvyBOvQZ+nYQIECAAAECBAgQIECAQD0FBgYGip6eno7vF0Oft912Wz1RjIoAAQIECBDoqoDwpav8Oh+NQH9/f8cfpAf/JFPo20GAAAECBAgQIECAAAEC9RWYM2dOx/eMoU8HAQIECBAgQKBMQPhSpuJcLQUWLFjQ8QfpwfBl4cKFtTQxKAIECBAgQIAAAQIECBB4UGDlypUd3zOuWrUKPwECBAgQIECgVED4UsriZB0FZs+e3fEH6cHwJfTtIECAAAECBAgQIECAAIF6C8ydO7dj+8bQl4MAAQIECBAgMJyA8GU4GedrJzBlypSOPUQPhi6DX/faa6/aeRgQAQIECBAgQIAAAQIECGwvsGHDhmLatGlt3zuGPkJfDgIECBAgQIDAcAIdD18WL17c9oegwTfMfZ3AegID/x90Zw0sWbJkuF93nSdAgAABAgQIECBAoI0Cq1evLiZPnty2/XBoO/ThIECAAAECBAjsSED44s35tj2QetO/O2/6c6+HewiaHQQIECBAgAABAgQIdEdgxYoVRW9vb+X73dBmaNtBgAABAgQIEBhJQPgifKn8YdSb//V48988dHcehC8j/fbjdQIECBAgQIAAAQLtFVizZk0xffr0yva8oa3QpoMAAQIECBAg0IqA8EX4UtmDqDf7u/tmP/96+QtfWvktyDUECBAgQIAAAQIE2iuwcePGYv78+UVPT8+Y977h3tBGaMtBgAABAgQIEGhVQPgifBnzA6g3++v1Zr/5qNd8CF9a/W3IdQQIECBAgAABAgTaL7Bu3bpi3rx5xaRJk1reA4drwz3hXgcBAgQIECBAYLQCHQ9fRjtA1xMYFOjv72/5IbnqIGL58uWDw/CVAAECBAgQIECAAAECBBoqED69smzZsq2fZJk1a9bWfxdmp512KsJ/4d9z2Xfffbe+Fq7xSZeGTrJhEyBAgACBmggIX2oyEYYxssDmzZvb8g8mjhTUhAfw0LeDAAECBAgQIECAAAECBNISCKHL0D3h3/72t7SKVA0BAgQIECDQFQHhS1fYdTpWgb6+vujBeOiDctU/hz4dBAgQIECAAAECBAgQIJCewM477xztMR944IH0ClURAQIECBAg0HEB4UvHyXU4HoH169cXEydOjB6Oqw5cBtsLfYU+HQQIECBAgAABAgQIECCQnkDZ/vKvf/1reoWqiAABAgQIEOi4gPCl4+Q6HK/AokWLOha+hL4cBAgQIECAAAECBAgQIJCmwC677BLtL++///40i1UVAQIECBAg0FEB4UtHuXVWhcCWLVuKmTNnRg/Ig59Wqepr6CP05SBAgAABAgQIECBAgACBNAUmT54c7S3tA9Oca1URIECAAIFOCwhfOi2uv0oEBgYGiqlTp0YPyVUFL6Ht0IeDAAECBAgQIECAAAECBNIVePjDHx7tK//85z+nW7DKCBAgQIAAgY4JCF86Rq2jqgXWrl3blgAmBC+hbQcBAgQIECBAgAABAgQIpC3Q29sbhS/33Xdf2kWrjgABAgQIEOiIgPClI8w6aZdA+HRKlX8FWWjLJ17aNVvaJUCAAAECBAgQIECAQL0Edt111yh82bx5c70GaTQECBAgQIBAIwWEL42cNoPeViD8fbyLFi0qJk6cGD00t/rXkIV7Qxv+bt9tZX1PgAABAgQIECBAgACBtAV22223aB957733pl206ggQIECAAIGOCAhfOsKsk04IrF+/vujr6yvKPjY+XAgTrg33hHsdBAgQIECAAAECBAgQIJCXwO677x6FL/fcc09eCKolQIAAAQIE2iIgfGkLq0a7KRA+It7f318sWLCgOPDAA7eGMTvttFMR/nvEIx5RHHPMMVtfC9f4OHk3Z0rfBAgQIECAAAECBAgQ6K7AHnvsEYUvmzZt6u6g9E6AAAECBAgkISB8SWIaFTGcwNFHHx09SK9du3a4y50nQIAAAQIECBAgQIAAgYwE9txzz2jPuHHjxowElEqAAAECBAi0S0D40i5Z7dZCQPhSi2kwCAIECBAgQIAAAQIECNRS4FGPelQUvvzhD3+o5VgNigABAgQIEGiWgPClWfNltKMUEL6MEszlBAgQIECAAAECBAgQyEhgypQpUfjy+9//PiMBpRIgQIAAAQLtEhC+tEtWu7UQOOqoo6IH6XXr1tVibAZBgAABAgQIECBAgAABAt0V2GuvvaI94+9+97vuDkrvBAgQIECAQBICwpckplERwwkIX4aTcZ4AAQIECBAgQIAAAQIEpk6dGoUvv/3tb8EQIECAAAECBMYtIHwZN6EG6iwgfKnz7BgbAQIECBAgQIAAAQIEuiuw9957R+HLr3/96+4OSu8ECBAgQIBAEgLClySmURHDCcycOTN6kL7++uuHu9x5AgQIECBAgAABAgQIEMhIYJ999on2jBs2bMhIQKkECBAgQIBAuwSEL+2S1W4tBIQvtZgGgyBAgAABAgQIECBAgEAtBfbdd98ofPnVr35Vy7EaFAECBAgQINAsAeFLs+bLaEcpIHwZJZjLCRAgQIAAAQIECBAgkJHAfvvtF4Uvd999d0YCSiVAgAABAgTaJSB8aZesdmshcOSRR0YP0jfccEMtxmYQBAgQIECAAAECBAgQINBdgenTp0d7xrvuuqu7g9I7AQIECBAgkISA8CWJaVTEcALCl+FknCdAgAABAgQIECBAgACB/fffPwpf7rzzTjAECBAgQIAAgXELCF/GTaiBOgsIX+o8O8ZGgAABAgQIECBAgACB7goccMABUfhyxx13dHdQeidAgAABAgSSEBC+JDGNihhO4IgjjogepG+88cbhLneeAAECBAgQIECAAAECBDISOOigg6I94+23356RgFIJECBAgACBdgkIX9olq91aCAhfajENBkGAAAECBAgQIECAAIFaCjzmMY+JwpfbbrutlmM1KAIECBAgQKBZAsKXZs2X0Y5SQPgySjCXEyBAgAABAgQIECBAICOBgw8+OApfBgYGMhJQKgECBAgQINAuAeFLu2S1WwuBww8/PHqQ/ulPf1qLsRkEAQIECBAgQIAAAQIECHRXYMaMGdGe8dZbb+3uoPROgAABAgQIJCEgfEliGhUxnIDwZTgZ5wkQIECAAAECBAgQIEDgkEMOicKXW265BQwBAgQIECBAYNwCwpdxE2qgzgLClzrPjrERIECAAAECBAgQIECguwKHHnpoFL78/Oc/7+6g9E6AAAECBAgkISB8SWIaFTGcgPBlOBnnCRAgQIAAAQIECBAgQOCwww6Lwpebb74ZDAECBAgQIEBg3ALCl3ETaqDOAo9//OOjB+mbbrqpzkM2NgIECBAgQIAAAQIECBDokIA9Y4egdUOAAAECBDIUEL5kOOk5lexBOqfZVisBAgQIECBAgAABAgRGJ+BvSxidl6sJECBAgACB1gWEL61bubKBAsKXBk6aIRMgQIAAAQIECBAgQKBDAkceeWT0tyXccMMNHepdNwQIECBAgEDKAsKXlGdXbYW/v9ciIECAAAECBAgQIECAAIHhBGbOnBmFL9dff/1wlztPgAABAgQIEGhZQPjSMpULmyggfGnirBkzAQIECBAgQIAAAQIEOiNw1FFHReHLunXrOtO5XggQIECAAIGkBYQvSU+v4oQv1gABAgQIECBAgAABAgQIDCdwzDHHROHL2rVrh7vceQIECBAgQIBAywLCl5apXNhEgcc97nHRg/TPfvazJpZizAQIECBAgAABAgQIECBQscCxxx4b7Rmvu+66invRHAECBAgQIJCjgPAlx1nPqGbhS0aTrVQCBAgQIECAAAECBAiMUuAJT3hCFL78+Mc/HmUrLidAgAABAgQIxALCl9jEmYQEhC8JTaZSCBAgQIAAAQIECBAgULHAcccdF4Uv1157bcW9aI4AAQIECBDIUUD4kuOsZ1TzoYceGj1I//znP89IQKkECBAgQIAAAQIECBAgMJzA7Nmzoz3jmjVrhrvceQIECBAgQIBAywLCl5apXNhEAeFLE2fNmAkQIECAAAECBAgQINAZgSc+8YlR+PLDH/6wM53rhQABAgQIEEhaQPiS9PQqTvhiDRAgQIAAAQIECBAgQIDAcALHH398FL5cc801w13uPAECBAgQIECgZQHhS8tULmyiwCGHHBI9SN9yyy1NLMWYCRAgQIAAAQIECBAgQKBigRNOOCHaM1599dUV96I5AgQIECBAIEcB4UuOs55RzcKXjCZbqQQIECBAgAABAgQIEBilwJOf/OQofLnqqqtG2YrLCRAgQIAAAQKxgPAlNnEmIQHhS0KTqRQCBAgQIECAAAECBAhULHDiiSdG4cv3v//9invRHAECBAgQIJCjgPAlx1nPqGbhS0aTrVQCBAgQIECAAAECBAiMUuCkk06Kwpcrr7xylK24nAABAgQIECAQCwhfYhNnEhKYMWNG9CB96623JlShUggQIECAAAECBAgQIEBgrAInn3xytGe84oorxtqc+wgQIECAAAECDwkIXx6i8E2KAsKXFGdVTQQIECBAgAABAgQIEKhG4KlPfWoUvnzve9+rpnGtECBAgAABAlkLCF+ynv70ixe+pD/HKiRAgAABAgQIECBAgMBYBU455ZQofFm1atVYm3MfAQIECBAgQOAhAeHLQxS+SVHgsY99bPQgvX79+hRLVRMBAgQIECBAgAABAgQIjFLg1FNPjfaMK1euHGUrLidAgAABAgQIxALCl9jEmYQEhC8JTaZSCBAgQIAAAQIECBAgULHA0572tCh8+c53vlNxL5ojQIAAAQIEchQQvuQ46xnVLHzJaLKVSoAAAQIECBAgQIAAgVEKPOMZz4jCl8svv3yUrbicAAECBAgQIBALCF9iE2cSEjj44IOjB+mBgYGEKlQKAQIECBAgQIAAAQIECIxV4LTTTov2jJdddtlYm3MfAQIECBAgQOAhAeHLQxS+SVFA+JLirKqJAAECBAgQIECAAAEC1Qg885nPjMKXb33rW9U0rhUCBAgQIEAgawHhS9bTn37xwpf051iFBAgQIECAAAECBAgQGKvA6aefHoUvK1asGGtz7iNAgAABAgQIPCQgfHmIwjcpCjzmMY+JHqRvu+22FEtVEwECBAgQIECAAAECBAiMUuCMM86I9oyXXnrpKFtxOQECBAgQIEAgFhC+xCbOJCQgfEloMpVCgAABAgQIECBAgACBigWe/exnR+HLN77xjYp70RwBAgQIECCQo4DwJcdZz6hm4UtGk61UAgQIECBAgAABAgQIjFLgzDPPjMKXSy65ZJStuJwAAQIECBAgEAsIX2ITZxISOOigg6IH6dtvvz2hCpVCgAABAgQIECBAgAABAmMVOOuss6I948UXXzzW5txHgAABAgQIEHhIQPjyEIVvUhQQvqQ4q2oiQIAAAQIECBAgQIBANQJz586Nwpevfe1r1TSuFQIECBAgQCBrAeFL1tOffvHCl/TnWIUECBAgQIAAAQIECBAYq8DZZ58dhS9f/epXx9qc+wgQIECAAAECDwkIXx6i8E2KAsKXFGdVTQQIECBAgAABAgQIEKhG4JxzzonCl4suuqiaxrVCgAABAgQIZC0gfMl6+tMv/sADD4wepH/xi1+kX7gKCRAgQIAAAQIECBAgQGBEgXPPPTfaM1544YUj3ucCAgQIECBAgMBIAsKXkYS83mgB4Uujp8/gCRAgQIAAAQIECBAg0FaB5z3veVH48uUvf7mtfWqcAAECBAgQyENA+JLHPGdbpfAl26lXOAECBAgQIECAAAECBEYUOO+886LwZfny5SPe5wICBAgQIECAwEgCwpeRhLzeaIEDDjggepC+4447Gl2TwRMgQIAAAQIECBAgQIBANQLnn39+tGfs7++vpnGtECBAgAABAlkLCF+ynv70ixe+pD/HKiRAgAABAgQIECBAgMBYBebNmxeFL1/84hfH2pz7CBAgQIAAAQIPCQhfHqLwTYoCwpcUZ1VNBAgQIECAAAECBAgQqEbghS98YRS+XHDBBdU0rhUCBAgQIEAgawHhS9bTn37x+++/f/Qgfeedd6ZfuAoJECBAgAABAgQIECBAIBLYtGlTsWzZsmL+/PnFrFmzil122SXaM5588slbrwnXOggQIECAAAECYxUQvoxVzn2NEBC+NGKaDJIAAQIECBAgQIAAAQJtFVi3bl0R/oqxSZMmRWHLhAkTSs+Fa8M94V4HAQIECBAgQGC0AsKX0Yq5vlECwpdGTZfBEiBAgAABAgQIECBAoFKBjRs3bv2US09PT2nAMlzwsu35cG/4pExoy0GAAAECBAgQaFVA+NKqlOsaKTB9+vToAfuuu+5qZC0GTYAAAQIECBAgQIAAAQKtC6xZs6Yo2xNuG6yM5vvQVmjTQYAAAQIECBBoRUD40oqSaxorUPagLXxp7HQaOAECBAgQIECAAAECBFoSWLFiRdHb2xv9YbzRhC1l14Y2Q9sOAgQIECBAgMBIAsKXkYS83mgB4Uujp8/gCRAgQIAAAQIECBAgMGqB1atXF5MnT648eBkMY0LboQ8HAQIECBAgQGBHAsKXHel4rfEC++23X/TA/ctf/rLxdSmAAAECBAgQIECAAAECBGKBDRs2FNOmTYv2gYPBSVVfQx+hLwcBAgQIECBAYDgB4ctwMs4nISB8SWIaFUGAAAECBAgQIECAAIGWBObOndv24GUwwAl9OQgQIECAAAECwwkIX4aTcT4JAeFLEtOoCAIECBAgQIAAAQIECIwosGrVqo4FL4MBTOjTQYAAAQIECBAoExC+lKk4l4yA8CWZqVQIAQIECBAgQIAAAQIEdigwZ86cjocvoU8HAQIECBAgQKBMQPhSpuJcowU2b95c9Pf3FwsWLCgmTZoUPXwfffTRxcKFC4vly5cX4VoHAQIECBAgQIAAAQIECDRbYGBgoOjp6Yn2f4OfUGnX19Bn6NtBgAABAgQIEBgqIHwZKuLnxgqsX7++6OvrK3p7e1t+4A7XhnvCvQ4CBAgQIECAAAECBAgQaKbA0qVLW94HVh3EhL4dBAgQIECAAIGhAsKXoSJ+bpzAli1bikWLFhUTJ04c88N2uDe0EdpyECBAgAABAgQIEKijwOLFi8f8vFv1m83am2AuJjDw/4E1YA1YA9aANWANpLsGlixZMu4tgfBl3IQa6KZA+Hj3zJkzK9v4hLZ8ZLybM6pvAgQIECBAgACB4QSEL+lu7r1xY26tAWvAGrAGrAFrwBqo1xoIz97jPYQv4xV0f9cE1q5dW0ydOrWy4GXwF7jQZmjbQYAAAQIECBAgQKBOAsKXem3IB/cPvpoXa8AasAasAWvAGrAG0lsDwpc67YSMpaMC4dMp7QheBn+hDG37BExHp1RnBAgQIECAAAECIwgIX9Lb1A/uP3w1t9aANWANWAPWgDVgDdRrDQhfRticeDlNgfDvslT5V40N9wtb6MO/AZPmGlIVAQIECBAgQKCJAsKXem3Ih9tHOG+erAFrwBqwBqwBa8AaaP4aEL40ccdkzOMWWLRoUeV/1dhwvyCGvhwECBAgQIAAAQIECBAgUG+BGTNmdGyfOHT/eMghh9Qbx+gIECBAgACBrgj4N1+6wq7TsQqsX7++mDhxYsceqkNfoU8HAQIECBAgQIAAAQIECNRXYO7cuR3bJw4NX0LfDgIECBAgQIDAUAHhy1ARP9daoK+vr+MP1KFPBwECBAgQIECAAAECBAjUV2Dp0qUd3ysOhjChbwcBAgQIECBAYKiA8GWoiJ9rK7B58+ait7e34w/Uoc/Qt4MAAQIECBAgQIAAAQIE6ikwMDBQ9PT0dHy/GPq87bbb6oliVAQIECBAgEBXBYQvXeXX+WgE+vv7O/4gPfgnmULfDgIECBAgQIAAAQIECBCor8CcOXM6vmcMfToIECBAgAABAmUCwpcyFedqKbBgwYKOP0gPhi8LFy6spYlBESBAgAABAgQIECBAgMCDAitXruz4nnHVqlX4CRAgQIAAAQKlAsKXUhYn6ygwe/bsjj9ID4YvoW8HAQIECBAgQIAAAQIECNRbYO7cuR3bN4a+HAQIECBAgACB4QSEL8PJOF87gSlTpnTsIXowdBn8utdee9XOw4AIECBAgAABAgQIECBAYHuBDRs2FNOmTWv73jH0EfpyECBAgAABAgSGE+h4+LJ48eK2PwQNvmHu6wTWExj4/6A7a2DJkiXD/brrPAECBAgQIECAAAECbRRYvXp1MXny5Lbth0PboQ8HAQIECBAgQGBHAsIXb8637YHUm/7dedOfez3cQ9DsIECAAAECBAgQIECgOwIrVqwoent7K9/vhjZD2w4CBAgQIECAwEgCwhfhS+UPo978r8eb/+ahu/MgfBnptx+vEyBAgAABAgQIEGivwJo1a4rp06dXtucNbYU2HQQIECBAgACBVgSEL8KXyh5Evdnf3Tf7+dfLX/jSym9BriFAgAABAgQIECDQXoGNGzcW8+fPL3p6esa89w33hjZCWw4CBAgQIECAQKsCwhfhy5gfQL3ZX683+81HveZD+NLqb0OuI0CAAAECBAgQINB+gXXr1hXz5s0rJk2a1PIeOFwb7gn3Oq4va5cAACAASURBVAgQIECAAAECoxXoePgy2gG6nsCgQH9/f8sPyVUHEcuXLx8chq8ECBAgQIAAAQIECBAg0FCB8OmVZcuWbf0ky6xZs0r/XZijjz566zU+6dLQSTZsAgQIECBQEwHhS00mwjBGFti8eXPpg3HVQcvQ9sI/qBj6dhAgQIAAAQIECBAgQIBAWgLveMc7oj/k97a3vS2tIlVDgAABAgQIdEVA+NIVdp2OVaCvry96MB4allT9c+jTQYAAAQIECBAgQIAAAQLpCbzzne+M9phvfetb0ytURQQIECBAgEDHBYQvHSfX4XgE1q9fX0ycODF6OK46cBlsL/QV+nQQIECAAAECBAgQIECAQHoC73rXu6L95Vve8pb0ClURAQIECBAg0HEB4UvHyXU4XoFFixZFD8eDYUnVX0NfDgIECBAgQIAAAQIECBBIU+Dd7353tL9885vfnGaxqiJAgAABAgQ6KiB86Si3zqoQ2LJlSzFz5szoAbnq4CX0EfpyECBAgAABAgQIECBAgECaAu95z3uiveWb3vSmNItVFQECBAgQINBRAeFLR7l1VpXAwMBAMXXq1OghuaoAJrQd+nAQIECAAAECBAgQIECAQLoC733ve6N95Rvf+MZ0C1YZAQIECBAg0DEB4UvHqHVUtcDatWvbEsCE4CW07SBAgAABAgQIECBAgACBtAXe9773ReHLG97whrSLVh0BAgQIECDQEQHhS0eYddIugfDplCr/CrLQlk+8tGu2tEuAAAECBAgQIECAAIF6CSxdujQKX17/+tfXa5BGQ4AAAQIECDRSQPjSyGkz6G0Fwr/LsmjRomLixInRQ3Orfw1ZuDe04d942VbW9wQIECBAgAABAgQIEEhb4P3vf3+0j3zd616XdtGqI0CAAAECBDoiIHzpCLNOOiGwfv36oq+vr+jt7Y0enocLYcK14Z5wr4MAAQIECBAgQIAAAQIE8hL4wAc+EO0fX/va1+aFoFoCBAgQIECgLQLCl7awarSbAps3by76+/uLBQsWFDvvvHP0IH3sscdufS1cE651ECBAgAABAgQIECBAgECeAh/84AejPeNrXvOaPDFUTYAAAQIECFQqIHyplFNjdRPYc889owfpjRs31m2YxkOAAAECBAgQIECAAAECXRD40Ic+FO0ZX/3qV3dhJLokQIAAAQIEUhMQvqQ2o+rZTkD4sh2HHwgQIECAAAECBAgQIEBgG4EPf/jDUfjyqle9apsrfEuAAAECBAgQGJuA8GVsbu5qiIDwpSETZZgECBAgQIAAAQIECBDogsBHPvKRKHz5h3/4hy6MRJcECBAgQIBAagLCl9RmVD3bCeyxxx7Rg/SmTZu2u8YPBAgQIECAAAECBAgQIJCnwEc/+tFoz/jKV74yTwxVEyBAgAABApUKCF8q5dRY3QSEL3WbEeMhQIAAAQIECBAgQIBAfQQ+9rGPReHLK17xivoM0EgIECBAgACBxgoIXxo7dQbeioDwpRUl1xAgQIAAAQIECBAgQCBPgU984hNR+LJw4cI8MVRNgAABAgQIVCogfKmUU2N1E3jkIx8ZPUj/8Y9/rNswjYcAAQIECBAgQIAAAQIEuiDwyU9+Mtoz9vX1dWEkuiRAgAABAgRSExC+pDaj6tlOQPiyHYcfCBAgQIAAAQIECBAgQGAbgU996lNR+PLyl798myt8S4AAAQIECBAYm4DwZWxu7mqIgPClIRNlmAQIECBAgAABAgQIEOiCwKc//ekofJk/f34XRqJLAgQIECBAIDUB4UtqM6qe7QR233336EH6nnvu2e4aPxAgQIAAAQIECBAgQIBAngKf+cxnoj3jy172sjwxVE2AAAECBAhUKiB8qZRTY3UTEL7UbUaMhwABAgQIECBAgAABAvUR+OxnPxuFLy996UvrM0AjIUCAAAECBBorIHxp7NQZeCsCwpdWlFxDgAABAgQIECBAgACBPAU+97nPReHLS17ykjwxVE2AAAECBAhUKiB8qZRTY3UT2G233aIH6XvvvbduwzQeAgQIECBAgAABAgQIEOiCwOc///loz/iiF72oCyPRJQECBAgQIJCagPAltRlVz3YCwpftOPxAgAABAgQIECBAgAABAtsIfOELX4jClxe+8IXbXOFbAgQIECBAgMDYBIQvY3NzV0MEhC8NmSjDJECAAAECBAgQIECAQBcELrjggih8ecELXtCFkeiSAAECBAgQSE1A+JLajKpnOwHhy3YcfiBAgAABAgQIECBAgACBbQT6+/uj8OX888/f5grfEiBAgAABAgTGJiB8GZubuxoisOuuu0YP0ps3b27I6A2TAAECBAgQIECAAAECBNopsHz58mjPeN5557WzS20TIECAAAECmQgIXzKZ6FzLFL7kOvPqJkCAAAECBAgQIECAwMgCX/rSl6Lw5fnPf/7IN7qCAAECBAgQIDCCgPBlBCAvN1tA+NLs+TN6AgQIECBAgAABAgQItFPgwgsvjMKXc889t51dapsAAQIECBDIRED4kslE51rmIx7xiOhB+k9/+lOuHOomQIAAAQIECBAgQIAAgW0ELrroomjPeM4552xzhW8JECBAgAABAmMTEL6Mzc1dDREQvjRkogyTAAECBAgQIECAAAECXRD4yle+EoUvz33uc7swEl0SIECAAAECqQkIX1KbUfVsJyB82Y7DDwQIECBAgAABAgQIECCwjcDXvva1KHw5++yzt7nCtwQIECBAgACBsQkIX8bm5q6GCPT29kYP0vfdd19DRm+YBAgQIECAAAECBAgQINBOgYsvvjjaM5511lnt7FLbBAgQIECAQCYCwpdMJjrXMoUvuc68ugkQIECAAAECBAgQIDCywNe//vUofHnOc54z8o2uIECAAAECBAiMICB8GQHIy80WEL40e/6MngABAgQIECBAgAABAu0UuOSSS6Lw5cwzz2xnl9omQIAAAQIEMhEQvmQy0bmW+fCHPzx6kP7zn/+cK4e6CRAgQIAAAQIECBAgQGAbgUsvvTTaM55xxhnbXOFbAgQIECBAgMDYBIQvY3NzV0MEhC8NmSjDJECAAAECBAgQIECAQBcEvvnNb0bhy7Oe9awujESXBAgQIECAQGoCwpfUZlQ92wkIX7bj8AMBAgQIECBAgAABAgQIbCOwYsWKKHw5/fTTt7nCtwQIECBAgACBsQkIX8bm5q6GCEyePDl6kN6yZUtDRm+YBAgQIECAAAECBAgQINBOgcsuuyzaM5522mnt7FLbBAgQIECAQCYCwpdMJjrXMoUvuc68ugkQIECAAAECBAgQIDCywLe//e0ofHnGM54x8o2uIECAAAECBAiMICB8GQHIy80WEL40e/6MngABAgQIECBAgAABAu0UuPzyy6Pw5elPf3o7u9Q2AQIECBAgkImA8CWTic61TOFLrjOvbgIECBAgQIAAAQIECIwssHLlyih8OfXUU0e+0RUECBAgQIAAgREEhC8jAHm52QK77LJL9CD9l7/8pdlFGT0BAgQIECBAgAABAgQIVCKwatWqaM94yimnVNK2RggQIECAAIG8BYQvec9/8tULX5KfYgUSIECAAAECBAgQIEBgzALf/e53o/Blzpw5Y27PjQQIECBAgACBQQHhy6CEr0kKCF+SnFZFESBAgAABAgQIECBAoBKBK664IgpfTj755Era1ggBAgQIECCQt4DwJe/5T776SZMmRQ/S999/f/J1K5AAAQIECBAgQIAAAQIERha48soroz3jSSedNPKNriBAgAABAgQIjCAgfBkByMvNFhC+NHv+jJ4AAQIECBAgQIAAAQLtFFi9enUUvjzlKU9pZ5faJkCAAAECBDIREL5kMtG5lil8yXXm1U2AAAECBAgQIECAAIGRBa666qoofDnxxBNHvtEVBAgQIECAAIERBIQvIwB5udkCEydOjB6k//rXvza7KKMnQIAAAQIECBAgQIAAgUoErr766mjPeMIJJ1TStkYIECBAgACBvAWEL3nPf/LVC1+Sn2IFEiBAgAABAgQIECBAYMwCP/jBD6Lw5UlPetKY23MjAQIECBAgQGBQQPgyKOFrkgLClySnVVEECBAgQIAAAQIECBCoROCaa66Jwpfjjz++krY1QoAAAQIECOQtIHzJe/6Tr37nnXeOHqQfeOCB5OtWIAECBAgQIECAAAECBAiMLLBmzZpozzh79uyRb3QFAQIECBAgQGAEAeHLCEBebraA8KXZ82f0BAgQIECAAAECBAgQaKfAj370oyh8mTVrVju71DYBAgQIECCQiYDwJZOJzrVM4UuuM69uAgQIECBAgAABAgQIjCxw7bXXRuHLcccdN/KNriBAgAABAgQIjCAgfBkByMvNFthpp52iB+m//e1vzS7K6AkQIECAAAECBAgQIECgEoHrrrsu2jMee+yxlbStEQIECBAgQCBvAeFL3vOffPXCl+SnWIEECBAgQIAAAQIECBAYs8BPfvKTKHw55phjxtyeGwkQIECAAAECgwLCl0EJX5MUEL4kOa2KIkCAAAECBAgQIECAQCUCa9eujcKXo48+upK2NUKAAAECBAjkLSB8yXv+k69e+JL8FCuQAAECBAgQIECAAAECYxa4/vrro/Bl5syZY27PjQQIECBAgACBQQHhy6CEr0kKPOxhD4sepJMsVFEECBAgQIAAAQIECBAgMGqBG264IdozHnnkkaNuxw0ECBAgQIAAgaECwpehIn5OSkD4ktR0KoYAAQIECBAgQIAAAQKVCtx4441R+HLEEUdU2ofGCBAgQIAAgTwFhC95zns2VQtfsplqhRIgQIAAAQIECBAgQGDUAjfddFMUvjz+8Y8fdTtuIECAAAECBAgMFRC+DBXxc1ICPT090YN0UgUqhgABAgQIECBAgAABAgTGLHDzzTdHe8bDDjtszO018cZNmzYVy5YtK+bPn1/MmjWrmDJlSjFp0qSt/4Xvw7nwWrgmXOsgQIAAAQIEWhMQvrTm5KqGCghfGjpxhk2AAAECBAgQIECAAIEOCPzsZz+LwpfHPe5xHei5+12sW7eumDdv3taQZcKECZFD2bkQyoR7wr0OAgQIECBAYMcCwpcd+3i14QLCl4ZPoOETIECAAAECBAgQIECgjQK33HJLFDoceuihbeyx+01v3Lhx6ydZyvbLZYFL2blwb/g0TGjLQYAAAQIECJQLCF/KXZxNRKDsITGR0pRBgAABAgQIECBAgAABAuMUuPXWW6PwZcaMGeNstb63r1mzppg+fXpUc9neuZVzoa3QpoMAAQIECBCIBYQvsYkzCQmUPSwmVJ5SCBAgQIAAAQIECBAgQGAcAuvXr4+CiMc+9rHjaLG+t65YsaLo7e2N6i3bN4/mXGgztO0gQIAAAQIEthcQvmzv4afEBMoeGBMrUTkECBAgQIAAAQIECBAgMEaBgYGBKIw4+OCDx9hafW9bvXp1MXny5KjWsj3zWM6FtkMfDgIECBAgQOD/BIQv/2fhuwQFyh4aEyxTSQQIECBAgAABAgQIECAwBoHbb789CiQOOuigMbRU31s2bNhQTJs2LaqzbL88nnOhj9CXgwABAgQIEHhQQPhiJSQtUPbgmHTBiiNAgAABAgQIECBAgACBlgV+8YtfRKHEgQce2PL9Tbhw7ty5UY1le+UqzoW+HAQIECBAgMCDAsIXKyFpgbKHx6QLVhwBAgQIECBAgAABAgQItCxwxx13RMHEAQcc0PL9db9w1apVUX1l++Qqz4U+HQQIECBAgEBRCF+sgqQFhj5A9vT0JF2v4ggQIECAAAECBAgQIECgdYG77rorCiemT5/eegM1v3LOnDlRfUP3yVX/HPp0ECBAgAABAsIXayBxgaEPkcKXxCdceQQIECBAgAABAgQIEBiFwC9/+csonNhvv/1G0UJ9Lx0YGCjCHnjovrjdP4c+Q98OAgQIECCQu4BPvuS+AhKvf+hDpfAl8QlXHgECBAgQIECAAAECBEYhcPfdd0fhxKMf/ehRtFDfS5cuXRrVNnSP3K6fQ98OAgQIECCQu4DwJfcVkHj9Qx8khS+JT7jyCBAgQIAAAQIECBAgMAqBDRs2RAHFPvvsM4oW6nvp3Llzo9qG7pHb9XPo20GAAAECBHIXEL7kvgISr3/og+TDHvawxCtWHgECBAgQIECAAAECBAi0KvDrX/86Cij23nvvVm+v9XUzZsyIahu6R27Xz6FvBwECBAgQyF1A+JL7Cki8/qEPksKXxCdceQQIECBAgAABAgQIEBiFwG9+85sooJg2bdooWqjvpbvttltU29A9crt+Dn07CBAgQIBA7gLCl9xXQIL1b9q0qVi2bFkxf/780gfNWbNmbX0tXBOudRAgQIAAAQIECBBogsDixYtLn2/b9eapdifwnsDA/wfWgDVgDVgD1oA1kOcaWLJkybi3CMKXcRNqoC4C69atK+bNm1dMmjSp5U1SuDbcE+51ECBAgAABAgQIEKizgPAlz42/N3zMuzVgDVgD1oA1YA1YA51fA+HZe7yH8GW8gu7vusDGjRu3fpKlp6en5dBl6C9Y4d7wSZnQloMAAQIECBAgQIBAHQWEL53fdA/dN/jZHFgD1oA1YA1YA9aANZDHGhC+1HFHZEwdFVizZk0xffr0MYcuQ3+xDG2FNh0ECBAgQIAAAQIE6iYgfMljoz90j+Jn824NWAPWgDVgDVgD1kDn14DwpW67IePpqMCKFSuK3t7eyoKXwV/EQpuhbQcBAgQIECBAgACBOgkIXzq/6R7cI/jK3hqwBqwBa8AasAasgbzWgPClTjshY+mowOrVq4vJkydXHrwM/iIa2g59OAgQIECAAAECBAgQIEAgXYE//vGP0b7ykY98ZBIFDwwMFOP567kH98ej/Rr6vO2225IwVAQBAgQIEBiPgH/zZTx67u2KwIYNG4pp06ZFD8ijfSAc6frQR+jLQYAAAQIECBAgQIAAAQJpCtxzzz3R3nL33XdPptg5c+ZE9Y20Fx7v66FPBwECBAgQIFAUwheroHECc+fO7djDY+jLQYAAAQIECBAgQIAAAQJpCmzevDnaX+66667JFLty5cqovvGGKyPdv2rVqmT8FEKAAAECBMYjIHwZj557Oy4QHuJGetCr+nUPjh2fZh0SIECAAAECBAgQIECgIwJ/+tOfoj3mIx7xiI703alO/AHGTknrhwABAgQIbC8gfNnew081F/CR6ZpPkOERIECAAAECBAgQIECgQQL33XdfFL709vY2qIKRh+qv7h7ZyBUECBAgQKAdAsKXdqhqsy0C3fzHAkPfDgIECBAgQIAAAQIECBBIS2DLli1R+DJ58uS0iiyKYvXq1UWoq+q/KWKwvdB26MNBgAABAgQI/J+A8OX/LHxXc4GlS5e27UFx8IFxuK+hbwcBAgQIECBAgAABAgQIpCXwl7/8Jdpn7rLLLmkV+b/VrFixogif6hlu3zvW86HN0LaDAAECBAgQ2F5A+LK9h59qLNDJv6d26ENn6NtBgAABAgQIECBAgAABAmkJ3H///VEYMWnSpLSK3KaaNWvWFNOnT49qHroHbvXn0FZo00GAAAECBAjEAsKX2MSZmgrMmDGjsgfEVh8kB68LfTsIECBAgAABAgQIECBAIC2BBx54INpn7rzzzmkVOaSajRs3FvPnzy96enqi2gf3wCN9DfeGNkJbDgIECBAgQKBcQPhS7uJsDQV22223MT8YjvTgONLroW8HAQIECBAgQIAAAQIECKQl8Le//S3aZ+60005pFTlMNevWrSvmzZtXhE/6jLQnHnw9XBvuCfc6CBAgQIAAgR0LdDx8Wbx4ccu/qQ/+5u7rBGYTGPj/oFlrYMmSJTv+1derBAgQIECAAAECBAjUQmDoXuthD3tYLcbVqUGET68sW7Zs6ydZZs2aVfr+Q/iUS7jGJ106NSv6IUCAAIEUBIQv3tQvfbAa+vDp52a98W++uj9fIWh2ECBAgAABAgQIECBQf4Gy/VP9R92+EfJon62WCRAgQCAvAeGL8EX4Yg1YA21YA8KXvH4zVS0BAgQIECBAgEBzBYQN288dj+09/ESAAAECBMYqIHxpw5uuZQ8qznX/kwjmwBx0cg0IX8b625L7CBAgQIAAAQIECHRWoOwfnu/sCOrVW9m+qV4jNBoCBAgQINAMAeGL8MWnHqwBa6ANa0D40ozfBI2SAAECBAgQIECAwE477RTtiXJWEb7kPPtqJ0CAAIEqBToevlQ5eG3lJTAwMFCU/YmksgfDKs+FPm+77ba8sFVLgAABAgQIECBAgACBTAR23nnnKHx54IEHMqk+LrNsPx1f5QwBAgQIECAwkoDwZSQhr9dKYM6cOdFDcdmDYZXnQp8OAgQIECBAgAABAgQIEEhTYOLEidE+869//WuaxbZQVdl+uoXbXEKAAAECBAgMERC+DAHxY70FVq5cGT0Ulz0YVnlu1apV9UYxOgIECBAgQIAAAQIECBAYs8CkSZOifeb9998/5vaafmPZfrrpNRk/AQIECBDohoDwpRvq+hyXwNy5c6MH47KHwyrOhb4cBAgQIECAAAECBAgQIJCuwOTJk6M95pYtW9IteITKyvbSI9ziZQIECBAgQKBEQPhSguJUvQU2bNhQTJs2LXo4LntAHM+50Efoy0GAAAECBAgQIECAAAEC6Qo8/OEPj/aXf/7zn9MteITKyvbRI9ziZQIECBAgQKBEQPhSguJU/QVWr15dlP3ppLKHxLGcC22HPhwECBAgQIAAAQIECBAgkLZAb29vFL7cd999aRe9g+rK9tA7uNxLBAgQIECAwDACwpdhYJyuv8CKFSuKsofksgfF0ZwLbYa2HQQIECBAgAABAgQIECCQvsCuu+4ahS+bN29Ov/BhKizbPw9zqdMECBAgQIDADgSELzvA8VL9BdasWVNMnz49elAue1hs5VxoK7TpIECAAAECBAgQIECAAIE8BHbbbbdoT3nvvffmUXxJlWV755LLnCJAgAABAgRGEBC+jADk5foLbNy4sZg/f37R09MTPTCXPTSWnQv3hjZCWw4CBAgQIECAAAECBAgQyEdg9913j/aS99xzTz4AQyot2zMPucSPBAgQIECAQAsCwpcWkFzSDIF169YV8+bNKyZNmhQ9OJc9PIZz4dpwT7jXQYAAAQIECBAgQIAAAQL5Ceyxxx7RHnLTpk35QfxvxWX752wxFE6AAAECBMYhIHwZB55b6ykQPr2ybNmy4sUvfnH0AB0+4TJr1qytn3IJ1/ikSz3n0KgIECBAgAABAgQIECDQKYE999wz2jvmvFcUvnRq5emHAAECBFIXEL6kPsMZ1xf+gcShD43hH1J0ECBAgAABAgQIECBAgACBQYFHPepR0d7xD3/4w+DL2X0duo8OPzsIECBAgACB0Qv4HXT0Zu5oiIDwpSETZZgECBAgQIAAAQIECBDoosCUKVOi8OX3v/99F0fU3a6FL9311zsBAgQIpCMgfElnLlUyRODee++NHqB32223IVf5kQABAgQIECBAgAABAgRyFthrr72ivePvfve7bEmEL9lOvcIJECBAoGIB4UvFoJqrj4DwpT5zYSQECBAgQIAAAQIECBCoq8DUqVOj8OW3v/1tXYfb9nEJX9pOrAMCBAgQyERA+JLJROdYpvAlx1lXMwECBAgQIECAAAECBEYnsPfee0fhy29+85vRNZLQ1cKXhCZTKQQIECDQVQHhS1f5dd5OgXvuuSd6gN59993b2aW2CRAgQIAAAQIECBAgQKBhAvvss0+0d9ywYUPDqqhuuMKX6iy1RIAAAQJ5Cwhf8p7/pKsXviQ9vYojQIAAAQIECBAgQIBAJQL77rtvFL786le/qqTtJjYifGnirBkzAQIECNRRQPhSx1kxpkoEhC+VMGqEAAECBAgQIECAAAECSQs8+tGPjsKXu+++O+mad1Sc8GVHOl4jQIAAAQKtCwhfWrdyZcME/vjHP0YP0I985CMbVoXhEiBAgAABAgQIECBAgEA7BaZPnx7tHe+66652dlnrtoUvtZ4egyNAgACBBgkIXxo0WYY6OgHhy+i8XE2AAAECBAgQIECAAIEcBfbff/8ofLnzzjtzpNhas/Al26lXOAECBAhULCB8qRhUc/UREL7UZy6MhAABAgQIECBAgAABAnUVOOCAA6Lw5Y477qjrcNs+LuFL24l1QIAAAQKZCAhfMpnoHMvctGlT9AC9xx575EihZgIECBAgQIAAAQIECBAYRuCggw6K9o633377MFenf1r4kv4cq5AAAQIEOiMgfOmMs166ICB86QK6LgkQIECAAAECBAgQINAwgcc85jFR+HLbbbc1rIrqhit8qc5SSwQIECCQt4DwJe/5T7p64UvS06s4AgQIECBAgAABAgQIVCJw8MEHR+HLwMBAJW03sRHhSxNnzZgJECBAoI4Cwpc6zooxVSIgfKmEUSMECBAgQIAAAQIECBBIWmDGjBlR+HLrrbcmXfOOihO+7EjHawQIECBAoHUB4UvrVq5smMDGjRujB+g999yzYVUYLgECBAgQIECAAAECBAi0U+CQQw6J9o633HJLO7usddvCl1pPj8ERIECAQIMEhC8NmixDHZ2A8GV0Xq4mQIAAAQIECBAgQIBAjgKHHnpoFL78/Oc/z5Fia83Cl2ynXuEECBAgULGA8KViUM3VR0D4Up+5MBICBAgQIECAAAECBAjUVeCwww6Lwpebb765rsNt+7iEL20n1gEBAgQIZCIgfMlkonMs8w9/+EP0AP2oRz0qRwo1EyBAgAABAgQIECBAgMAwAo9//OOjveNNN900zNXpnxa+pD/HKiRAgACBzggIXzrjrJcuCAhfuoCuSwIECBAgQIAAAQIECDRM4PDDD4/Cl5/+9KcNq6K64QpfqrPUEgECBAjkLSB8yXv+k65e+JL09CqOAAECBAgQIECAAAEClQgceeSRUfhy4403shTjGQAAIABJREFUVtJ2ExsRvjRx1oyZAAECBOooIHyp46wYUyUC//M//xM9QP/d3/1dJW1rhAABAgQIECBAgAABAgTSEJg5c2a0d7z++uvTKG4MVQhfxoDmFgIECBAgUCIgfClBcSoNAeFLGvOoCgIECBAgQIAAAQIECLRT4KijjorCl3Xr1rWzy1q3LXyp9fQYHAECBAg0SED40qDJMtTRCQhfRuflagIECBAgQIAAAQIECOQocPTRR0fhy9q1a3Ok2Fqz8CXbqVc4AQIECFQsIHypGFRz9RH4/e9/Hz1AT5kypT4DNBICBAgQIECAAAECBAgQ6LrAscceG+0dr7vuuq6Pq1sDEL50S16/BAgQIJCagPAltRlVz0MCwpeHKHxDgAABAgQIECBAgAABAsMIPOEJT4jClx//+MfDXJ3+aeFL+nOsQgIECBDojIDwpTPOeumCgPClC+i6JECAAAECBAgQIECAQMMEjjvuuCh8ufbaaxtWRXXDFb5UZ6klAgQIEMhbQPiS9/wnXf3vfve76AF6r732SrpmxREgQIAAAQIECBAgQIDA6ARmz54d7R3XrFkzukYSulr4ktBkKoUAAQIEuiogfOkqv87bKSB8aaeutgkQIECAAAECBAgQIJCGwBOf+MQofPnhD3+YRnFjqEL4MgY0txAgQIAAgRIB4UsJilNpCAhf0phHVRAgQIAAAQIECBAgQKCdAscff3wUvlxzzTXt7LLWbQtfaj09BkeAAAECDRIQvjRosgx1dALCl9F5uZoAAQIECBAgQIAAAQI5CpxwwglR+HL11VfnSLG1ZuFLtlOvcAIECBCoWED4UjGo5uoj8Nvf/jZ6gJ46dWp9BmgkBAgQIECAAAECBAgQINB1gSc/+cnR3vGqq67q+ri6NQDhS7fk9UuAAAECqQkIX1KbUfU8JCB8eYjCNwQIECBAgAABAgQIECAwjMCJJ54YhS/f//73h7k6/dPCl/TnWIUECBAg0BkB4UtnnPXSBQHhSxfQdUmAAAECBAgQIECAAIGGCZx00klR+HLllVc2rIrqhit8qc5SSwQIECCQt4DwJe/5T7r63/zmN9ED9LRp05KuWXEECBAgQIAAAQIECBAgMDqBk08+Odo7XnHFFaNrJKGrhS8JTaZSCBAgQKCrAsKXrvLrvJ0Cwpd26mqbAAECBAgQIECAAAECaQg89alPjcKX733ve2kUN4YqhC9jQHMLAQIECBAoERC+lKA4lYaA8CWNeVQFAQIECBAgQIAAAQIE2ilwyimnROHLd7/73XZ2Weu2hS+1nh6DI0CAAIEGCQhfGjRZhjo6gV//+tfRA/Tee+89ukZcTYAAAQIECBAgQIAAAQJJC5x66qnR3nHlypVJ17yj4oQvO9LxGgECBAgQaF1A+NK6lSsbJiB8adiEGS4BAgQIECBAgAABAgS6IPC0pz0tCl++853vdGEk9ehS+FKPeTAKAgQIEGi+gPCl+XOogmEEhC/DwDhNgAABAgQIECBAgAABAg8JPP3pT4/Cl8svv/yh13P7RviS24yrlwABAgTaJSB8aZesdrsusGHDhugBep999un6uAyAAAECBAgQIECAAAECBOojcNppp0V7x8suu6w+A+zwSIQvHQbXHQECBAgkKyB8SXZqFSZ8sQYIECBAgAABAgQIECBAYCSBZz7zmVH48q1vfWuk25J9XfiS7NQqjAABAgQ6LCB86TC47jonIHzpnLWeCBAgQIAAAQIECBAg0FSB008/PQpfVqxY0dRyxj1u4cu4CTVAgAABAgS2CghfLIRkBX71q19FD9D77rtvsvUqjAABAgQIECBAgAABAgRGL3DGGWdEe8dLL7109A0lcofwJZGJVAYBAgQIdF1A+NL1KTCAdgkIX9olq10CBAgQIECAAAECBAikI/DsZz87Cl++8Y1vpFPgKCsRvowSzOUECBAgQGAYAeHLMDBON19A+NL8OVQBAQIECBAgQIAAAQIE2i1w5plnRuHLJZdc0u5ua9u+8KW2U2NgBAgQINAwAeFLwybMcFsXEL60buVKAgQIECBAgAABAgQI5Cpw1llnReHLxRdfnCtHZBHCGAcBAgQIECAwegG/g47ezB0NEbj77rujh8ZHP/rRDRm9YRIgQIAAAQIECBAgQIBAJwTmzp0b7R2/9rWvdaLrWvbhky+1nBaDIkCAAIEGCghfGjhphtyagPClNSdXESBAgAABAgQIECBAIGeBs88+OwpfvvrVr2ZLInzJduoVToAAAQIVCwhfKgbVXH0EhC/1mQsjIUCAAAECBAgQIECAQF0FzjnnnCh8ueiii+o63LaPS/jSdmIdECBAgEAmAsKXTCY6xzJ/+ctfRg/Q++23X44UaiZAgAABAgQIECBAgACBYQTOPffcaO944YUXDnN1+qdzCF82bdpULFu2rJg/f34xa9asYsqUKcWkSZO2/he+D+fCa+GacK2DAAECBAiMRUD4MhY19zRCQPjSiGkySAIECBAgQIAAAQIECHRV4HnPe14Uvnz5y1/u6pi62XnK4cu6deuKefPmbQ1ZyuosOxdCmXBPuNdBgAABAgRGIyB8GY2WaxslIHxp1HQZLAECBAgQIECAAAECBLoicN5550Xhy5e+9KWujKUOnZYFEHUY13jGsHHjxq2fZOnp6YnmuqzesnPh3vBpmNCWgwABAgQItCIgfGlFyTWNFLjrrruih6rp06c3shaDJkCAAAECBAgQIECAAIH2CJx//vnR3rG/v789nTWg1bLgoQHDHnaIa9asKcJ7AWV1jeVcaCu06SBAgAABAiMJCF9GEvJ6YwWEL42dOgMnQIAAAQIECBAgQIBAxwTCXyk19E34L37xix3rv24dDbUIPzf1WLFiRdHb2xvNb1mNozkX2gxtOwgQIECAwI4Emvs76I6q8hqBoiiEL5YBAQIECBAgQIAAAQIECIwk8IIXvCB6c/6CCy4Y6bZkXy8LIZpY7OrVq4vJkydHc1tW31jOhbZDHw4CBAgQIDCcgPBlOBnnGy9w5513Rg9Z+++/f+PrUgABAgQIECBAgAABAgQIVCfwohe9KNo7fv7zn6+ug4a1VBZENKyEYsOGDcW0adOieS2rbTznQh+hLwcBAgQIECgTEL6UqTiXhIDwJYlpVAQBAgQIECBAgAABAgTaKvDiF784epN+2bJlbe2zzo2XhRF1Hm/Z2ObOnRvNaVldVZwLfTkIECBAgECZgPClTMW5JASEL0lMoyIIECBAgAABAgQIECDQVoGXvOQl0Rv1n/vc59raZ50bLwsk6jzeoWNbtWpVNJ9lNVV5LvTpIECAAAECQwWEL0NF/JyMwB133BE9cB1wwAHJ1KcQAgQIECBAgAABAgQIEBi/wMte9rJo7/iZz3xm/A03tIWyUKJJpcyZMyeaz7KaqjwX+nQQIECAAIGhAsKXoSJ+TkZA+JLMVCqEAAECBAgQIECAAAECbRP4+7//++jN+v/+7/9uW391b7gslKj7mAfHNzAwUPT09ETzWVZTledCn6FvBwECBAgQ2FZA+LKthu+TEhC+JDWdiiFAgAABAgQIECBAgEBbBObPnx+9Wf/pT3+6LX01odGyUKIJ4w5jXLp0aTSXZfW041zo20GAAAECBLYVEL5sq+H7pASEL0lNp2IIECBAgAABAgQIECDQFoG+vr7oDftPfvKTbemrCY2WBRNNGHcY49y5c6O5LKunHedC3w4CBAgQILCtgPBlWw3fJyXwi1/8InroOvDAA5OqUTEECBAgQIAAAQIECBAgMD6BBQsWRHvHT3ziE+NrtMF3lwUTTSlnxowZ0VyW1dOOc6FvBwECBAgQ2FZA+LKthu+TEhC+JDWdiiFAgAABAgQIECBAgEBbBBYuXBi9Yf/xj3+8LX01odGyYKIJ4w5j3G233aK5LKunHedC3w4CBAgQILCtgPBlWw3fJyUgfElqOhVDgAABAgQIECBAgACBtgi88pWvjN6w/+hHP9qWvprQaFkw0YRxhzHutNNO0VyW1dOOc6FvBwECBAgQ2FZA+LKthu+TErj99tujh66DDjooqRoVQ4AAAQIECBAgkI/A4sWLo+fbdryBqM0JnCcw8P+BNWANWAPWgDVgDeS9BpYsWTLujYbwZdyEGqirgPClrjNjXAQIECBAgAABAmMREL7k/QaAN4DMvzVgDVgD1oA1YA1YA51bA+HZe7yH8GW8gu6vncDmzZuL/v7+4vzzz4/+xFr4GPDs2bOL8Hf6Ll++vAjXOggQIECAAAECBAg0QUD40rnNtjc2WFsD1oA1YA1YA9aANZD3GhC+NGGHZIwdE1i/fn3R19dX9Pb2RqHLcL9YhmvDPeFeBwECBAgQIECAAIE6Cwhf8n4DYLg9jfPWhTVgDVgD1oA1YA1YA9WvAeFLnXdGxtYxgS1bthSLFi0qJk6c2HLoMvQXpHBvaCO05SBAgAABAgQIECBQRwHhS/Wb6qH7Aj8ztgasAWvAGrAGrAFrwBoIa0D4UscdkTF1VGBgYKCYOXPmmEOXob+YhrZCmw4CBAgQIECAAAECBAgQyEPgta99bbSn/MAHPpBH8SVVDt0nh5+bdMyZMyeaz7KaqjwX+nQQIECAAIGhAs36HXTo6P2ctcDatWuLqVOnVv5QFdoMbTsIECBAgAABAgQIECBAIH2B17/+9dG+cunSpekXPkyFZaHEMJfW8vTKlSuj+Syrqcpzq1atqqWFQREgQIBAdwWEL9311/sYBcKnU9oRvAw+fIW2fQJmjJPjNgIECBAgQIAAAQIECDRI4J/+6Z+iN+v/67/+q0EVVDvUwX3xtl+r7aH9rc2dOzea023rqfL70JeDAAECBAiUCQhfylScq7VA+HdZqvyrxoZ76Ap9+Ddgar0UDI4AAQIECBAgQIAAAQLjFnjDG94QvVH/vve9b9ztNrWBsj1y02rZsGFDMW3atGhey2obz7nQR+jLQYAAAQIEygSEL2UqztVaYNGiRW1/gBp8+Ap9OQgQIECAAAECBAgQIEAgXYE3velN0R7zPe95T7oFj1DZ4H54268j3FLLl1evXl1Mnjw5mttt6xrP96Ht0IeDAAECBAgMJyB8GU7G+VoKrF+/vpg4cWLbHp6GPniFvkKfDgIECBAgQIAAAQIECBBIU6DsD/j953/+Z5rFtlDV0H1x+Lmpx4oVK4re3t7K30MIbYa2HQQIECBAYEcCzf0ddEdVeS1Zgb6+vsofmsoeLLc9F/p0ECBAgAABAgQIECBAgECaAm9+85ujfea73/3uNIttoapt98OD37dwW20vWbNmTTF9+vRojgdrG+3X0FZo00GAAAECBEYSEL6MJOT12ghs3ry5LX9iZaQHrfAnWkLfDgIECBAgQIAAAQIECBBIT+Ctb31r9Mb8O9/5zvQKbbGisj1yi7fW9rKNGzcW8+fPL3p6eqK5Lqu37Fy4N7QR2nIQIECAAIFWBIQvrSi5phYC/f39Y35IKntwGs250LeDAAECBAgQIECAAAECBNIT+Od//udor/mOd7wjvUJbrKhsr9zirbW/bN26dcW8efOKSZMmRXNeVnc4F64N94R7HQQIECBAYDQCwpfRaLm2qwILFixo+eFouIemsZ5fuHBhV2vXOQECBAgQIECAAAECBAi0R+Btb3tbtNd8+9vf3p7OGtBq2b65AcMe1RDDp1eWLVu29ZMss2bNiuY/GIRPuYRrfNJlVLQuJkCAAIFtBIQv22D4tt4Cs2fPLn0gKnswrPpc6NtBgAABAgQIECBAgAABAukJ/Ou//mu01/z3f//39AptsaKy/XSLtzb2shxrbuxkGTgBAgQaJNDx8GXx4sXRQ03Zb3LOTeA0gYH/D5q7BpYsWdKg3woMlQABAgQIECBAgEC+Av/v//2/aP/9b//2b9mClO1DU8fIsebU51R9BAgQqIOA8MUb/NFDZtlDh3PNDQHMXXfmLgTNDgIECBAgQIAAAQIE6i9Q9odEc/7DVGV7yPrP4vhGmGPN4xNzNwECBAi0IiB8Eb4IX6wBa6ANa0D40spvQa4hQIAAAQIECBAg0H2B8CmXoW++5/w8P9Qi/Jz6kWPNqc+p+ggQIFAHgY7/Dlr2J0rKfpNzrjt/Wp87d2ugmjWQ82atDr+5GQMBAgQIECBAgACBVgXCv+8ydB8U/h2YXI+hFuHn1I8ca059TtVHgACBOgh0/HdQ4Us1b+yWPRg4x9YaqM8aEL7U4bc4YyBAgAABAgQIECAwssB//Md/ROHLv/zLv4x8Y6JXlO0rEy31obJyrPmh4n1DgAABAm0T6Hj40rZKNJy8wIIFC6IH4rIHpHacW7hwYfK+CiRAgAABAgQIECBAgECOAm9/+9ujvebb3va2HCm21ly2p04dI8eaU59T9REgQKAOAsKXOsyCMbQk0N/fHz0Qlz0gtePc8uXLWxqjiwgQIECAAAECBAgQIECgWQLvfOc7o73mW9/61mYVUeFoy/bUFTZfy6ZyrLmWE2FQBAgQSExA+JLYhKZczubNm4ve3t7oobjsIanKc6HP0LeDAAECBAgQIECAAAECBNITeNe73hXtM9/ylrekV2iLFZXtp1u8tbGX5VhzYyfLwAkQINAgAeFLgybLUIuir68veigue0iq8lzo00GAAAECBAgQIECAAAECaQq8+93vjvaZb37zm9MstoWqyvbTLdzW6EtyrLnRE2bwBAgQaIiA8KUhE2WYDwqsX7++mDhxYvRgXPagVMW50Ffo00GAAAECBAgQIECAAAECaQq85z3vifaYb3rTm9IstoWqyvbSLdzW6EtyrLnRE2bwBAgQaIiA8KUhE2WY/yewaNGi6MG47EGpinOhLwcBAgQIECBAgAABAgQIpCvw3ve+N9pjvvGNb0y34BEqK9tLj3BL41/OsebGT5oCCBAg0AAB4UsDJskQtxfYsmVLMXPmzOjhuOxhaTznQh+hLwcBAgQIECBAgAABAgQIpCvwvve9L9pfvuENb0i34BEqK9tHj3BL41/OsebGT5oCCBAg0AAB4UsDJskQY4GBgYFi6tSp0QNy2QPTWM6FtkMfDgIECBAgQIAAAQIECBBIW2Dp0qXR3vL1r3992kXvoLqyPfQOLk/ipRxrTmLiFEGAAIGaCwhfaj5Bhje8wNq1a9sSwITgJbTtIECAAAECBAgQIECAAIH0Bd7//vdH4cvrXve69AsfpsIcg4gcax5m+p0mQIAAgQoFhC8VYmqq8wLh0ylV/hVkoS2feOn8POqRAAECBAgQIECAAAEC3RL4wAc+EIUvr33ta7s1nK73m2MQkWPNXV9oBkCAAIEMBIQvGUxy6iWGf5dl0aJFxcSJE6MH5rIHqLJz4d7Qhn/jJfXVoj4CBAgQIECAAAECBAhsL/DBD34w2ku+5jWv2f6ijH4q2zOnXn6ONac+p+ojQIBAHQSEL3WYBWOoRGD9+vVFX19f0dvbGz04lz1IhXPh2nBPuNdBgAABAgQIECBAgAABAvkJfOhDH4r2kK9+9avzg/jfisv2z6lj5Fhz6nOqPgIECNRBQPhSh1kwhkoFNm/eXPT39xfnnntu9AC98847F7Nnzy4WLFiw9ZpwrYMAAQIECBAgQIAAAQIE8hX48Ic/HO0dX/WqV2ULkmMQkWPN2S5whRMgQKCDAsKXDmLrqrMCP/3pT6MH6MMPP7yzg9AbAQIECBAgQIAAAQIECNRa4CMf+Ui0d/zHf/zHWo+5nYPLMYjIseZ2riFtEyBAgMCDAsIXKyFZgRtvvDF6gD7iiCOSrVdhBAgQIECAAAECBAgQIDB6gY9+9KPR3vGVr3zl6BtK5I4cg4gca05kuSqDAAECtRYQvtR6egxuPALCl/HouZcAAQIECBAgQIAAAQJ5CHzsYx+LwpdXvOIVeRRfUmWOQUSONZdMvVMECBAgULGA8KViUM3VR0D4Up+5MBICBAgQIECAAAECBAjUVeDjH/94FL4sXLiwrsNt+7hyDCJyrLntC0kHBAgQIFAIXyyCZAVuuOGG6AH6yCOPTLZehREgQIAAAQIECBAgQIDA6AU++clPRnvHvr6+0TeUyB05BhE51pzIclUGAQIEai0gfKn19BjceASEL+PRcy8BAgQIECBAgAABAgTyEPjUpz4VhS8vf/nL8yi+pMocg4gcay6ZeqcIECBAoGIB4UvFoJqrj4DwpT5zYSQECBAgQIAAAQIECBCoq8CnP/3pKHyZP39+XYfb9nHlGETkWHPbF5IOCBAgQMBfO2YNpCtw/fXXRw/QM2fOTLdglREgQIAAAQIECBAgQIDAqAU+85nPRHvHl73sZaNuJ5Ubcgwicqw5lfWqDgIECNRZwCdf6jw7xjYuAeHLuPjcTIAAAQIECBAgQIAAgSwEPvvZz0bhy0tf+tIsai8rMscgIseay+beOQIECBCoVkD4Uq2n1mokIHyp0WQYCgECBAgQIECAAAECBGoq8LnPfS4KX17ykpfUdLTtH1aOQUSONbd/JemBAAECBIQv1kCyAsKXZKdWYQQIECBAgAABAgQIEKhM4POf/3wUvrzoRS+qrP2mNZRjEJFjzU1bl8ZLgACBJgoIX5o4a8bcksC6deuiB+ijjjqqpXtdRIAAAQIECBAgQIAAAQJ5CHzhC1+I9o4vfOEL8yi+pMocg4gcay6ZeqcIECBAoGIB4UvFoJqrj4DwpT5zYSQECBAgQIAAAQIECBCoq8AFF1wQhS8veMEL6jrcto8rxyAix5rbvpB0QIAAAQKF8MUiSFZA+JLs1CqMAAECBAgQIECAAAEClQn09/dH4cv5559fWftNayjHICLHmpu2Lo2XAAECTRQQvjRx1oy5JYG1a9dGD9BHH310S/e6iAABAgQIECBAgAABAgTyEFi+fHm0dzzvvPPyKL6kyhyDiBxrLpl6pwgQIECgYgHhS8WgmquPgPClPnNhJAQIECBAgAABAgQIEKirwJe+9KUofHn+859f1+G2fVw5BhE51tz2haQDAgQIEPDXjlkD6QoIX9KdW5URIECAAAECBAgQIECgKoELL7wwCl+e97znVdV849rJMYjIsebGLUwDJkCAQAMFfPKlgZNmyK0J/OQnP4keoI855pjWbnYVAQIECBAgQIAAAQIECGQhcNFFF0V7x3POOSeL2suKzDGIyLHmsrl3jgABAgSqFRC+VOuptRoJCF9qNBmGQoAAAQIECBAgQIAAgZoKfOUrX4nCl+c+97k1HW37h5VjEJFjze1fSXogQIAAAeGLNZCsgPAl2alVGAECBAgQIECAAAECBCoT+OpXvxqFL2effXZl7TetoRyDiBxrbtq6NF4CBAg0UUD40sRZM+aWBK677rroAfrYY49t6V4XESBAgAABAgQIECBAgEAeAhdffHG0dzzrrLPyKL6kyhyDiBxrLpl6pwgQIECgYgHhS8WgmquPgPClPnNhJAQIECBAgAABAgQIEKirwNe//vUofHnOc55T1+G2fVw5BhE51tz2haQDAgQIECiELxZBsgLCl2SnVmEECBAgQIAAAQIECBCoTOCSSy6Jwpczzzyzsvab1lCOQUSONTdtXRovAQIEmiggfGnirBlzSwI//vGPowfoJzzhCS3d6yICBAgQIECAAAECBAgQyEPg0ksvjfaOZ5xxRh7Fl1SZYxCRY80lU+8UAQIECFQsIHypGFRz9REQvtRnLoyEAAECBAgQIECAAAECdRX45je/GYUvz3rWs+o63LaPK8cgIsea276QdECAAAEC/toxayBdAeFLunOrMgIECBAgQIAAAQIECFQlsGLFiih8Of3006tqvnHt5BhE5Fhz4xamARMgQKCBAj750sBJM+TWBIQvrTm5igABAgQIECBAgAABAjkLXHbZZVH4ctppp2VLkmMQkWPN2S5whRMgQKCDAsKXDmLrqrMC1157bfQAfdxxx3V2EHojQIAAAQIECBAgQIAAgVoLfPvb3472js94xjNqPeZ2Di7HICLHmtu5hrRNgAABAg8KCF+shGQFhC/JTq3CCBAgQIAAAQIECBAgUJnA5ZdfHoUvT3/60ytrv2kN5RhE5Fhz09al8RIgQKCJAsKXJs6aMbckIHxpiclFBAgQIECAAAECBAgQyFpg5cqVUfhy6qmnZmuSYxCRY83ZLnCFEyBAoIMCwpcOYuuqswI/+tGPogfoWbNmdXYQeiNAgAABAgQIECBAgACBWgusWrUq2juecsoptR5zOweXYxCRY83tXEPaJkCAAIEHBYQvVkKyAsKXZKdWYQQIECBAgAABAgQIEKhM4Lvf/W4UvsyZM6ey9pvWUI5BRI41N21dGi8BAgSaKCB8aeKsGXNLAsKXlphcRIAAAQIECBAgQIAAgawFrrjiiih8eepTn5qtSY5BRI41Z7vAFU6AAIEOCghfOoitq84KrFmzJnqAnj17dmcHoTcCBAgQIECAAAECBAgQqLXAlVdeGe0dTzrppFqPuZ2DyzGIyLHmdq4hbRMgQIDAgwLCFyshWQHhS7JTqzACBAgQIECAAAECBAhUJrB69eoofHnKU55SWftNayjHICLHmpu2Lo2XAAECTRQQvjRx1oy5JQHhS0tMLiJAgAABAgQIECBAgEDWAt///vej8OXEE0/M1iTHICLHmrNd4AonQIBABwWELx3E1lVnBX74wx9GD9BPfOITOzsIvREgQIAAAQIECBAgQIBArQWuvvrqaO94wgkn1HrM7RxcjkFEjjW3cw1pmwABAgQeFBC+WAnJCghfkp1ahREgQIAAAQIECBAgQKAygR/84AdR+PKkJz2psvab1lCOQUSONTdtXRovAQIEmiggfGnirBlzSwLCl5aYXESAAAECBAgQIECAAIGsBa655poofDn++OOzNckxiMix5mwXuMIJECDQQQHhSwexddVZAQ/QnfXWGwECBAgQIECAAAECBJoo4N8L3X7Wcgwicqx5+1n3EwECBAi0Q0BznaQlAAAgAElEQVT40g5VbdZCQPhSi2kwCAIECBAgQIAAAQIECNRa4Ec/+lH0yZdZs2bVesztHFyOQUSONbdzDWmbAAECBB4UEL5YCckKCF+SnVqFESBAgAABAgQIECBAoDKBa6+9NgpfjjvuuMrab1pDOQYROdbctHVpvAQIEGiigPClibNmzC0JCF9aYnIRAQIECBAgQIAAAQIEsha47rrrovDl2GOPzdYkxyAix5qzXeAKJ0CAQAcFhC8dxNZVZwV+8IMfRA/QT3rSkzo7CL0RIECAAAECBAgQIECAQK0FfvKTn0R7x2OOOabWY27n4HIMInKsuZ1rSNsECBAg8KCA8MVKSFZA+JLs1CqMAAECBAgQIECAAAEClQmsXbs2Cl+OPvroytpvWkM5BhE51ty0dWm8BAgQaKKA8KWJs2bMLQkIX1pichEBAgQIECBAgAABAgSyFrj++uuj8GXmzJnZmuQYRORYc7YLXOEECBDooIDwpYPYuuqswNVXXx09QJ9wwgmdHYTeCBAgQIAAAQIECBAgQKDWAjfccEO0dzzyyCNrPeZ2Di7HICLHmtu5hrRNgAABAg8KCF+shGQFhC/JTq3CCBAgQIAAAQIECBAgUJnAjTfeGIUvRxxxRGXtN62hHIOIHGtu2ro0XgIECDRRQPjSxFkz5pYEhC8tMbmIAAECBAgQIECAAAECWQvcdNNNUfhy+OGHZ2uSYxCRY83ZLnCFEyBAoIMCwpcOYuuqswJXXXVV9AD95Cc/ubOD0BsBAgQIECBAgAABAgQI1Frg5ptvjvaOhx12WK3H3M7B5RhE5FhzO9eQtgkQIEDgQQHhi5WQrIDwJdmpVRgBAgQIECBAgAABAgQqE/jZz34WhS+Pe9zjKmv//7N3L3BWVvXi/x1kJhhRFBUs4yDHUDt6LDtB1imDc1JPeaM0jbw2AmYWKCje7zc0RTPNa5mk4iXNLOmiWMHp6IQe0FA7Mih5wQ4ahECI2Hl+ry//9v+1fdaambWf/VzWWt/Per18zexnP89a3+97re3ez/oyM6F1pLEQoTHn0NYl8SKAAAIhClB8CXHWiNlJgOKLExMnIYAAAggggAACCCCAAAKqBf7whz8YxZedd95ZrYnGQkSMOa9cuTKZOXNm0tHRkYwcOTLZZpttkra2to3/yfdyTJ6Tc+RcGgIIIIBA/gIUX/I3pUdPBObNm2d8gP7kJz/pSXSEgQACCCCAAAIIIIAAAggg4IPA888/b9w7jhgxwofQKokhxkJEb5Ax5bxw4cJk3LhxG4sstrxsx6QoI9fItTQEEEAAgfwEKL7kZ0lPnglQfPFsQggHAQQQQAABBBBAAAEEEPBQYPHixUbx5QMf+ICHkZYTkm1zvpyRqxslhpxXrFix8SdZWlpajPVsy892TK6Vn4aRvmgIIIAAAs0LUHxp3pAePBWg+OLpxBAWAggggAACCCCAAAIIIOCRQFdXl7FZveOOO3oUYbmh2Dbly42g/NFCz7mzszMZOnSosY5tebkck76kTxoCCCCAQHMCFF+a8+NqjwXmzp1rfPD41Kc+5XHEhIYAAggggAACCCCAAAIIIFC2wAsvvGDcOw4fPrzsMLwZz7Y5701wBQUScs6zZ89O2tvbjTVsy6mRY9Kn9E1DAAEEEMguQPElux1Xei5A8cXzCSI8BBBAAAEEEEAAAQQQQMADgRdffNHYuN5hhx08iKyaEGwb9NVEUt6ooeYs+x79+vUz1q8tnyzHpG8Zg4YAAgggkE2A4ks2N64KQIDiSwCTRIgIIIAAAggggAACCCCAQMUCS5cuNTavhw0bVnFU1Q1v26SvLppyRg4x52XLliVDhgwx1q4tl2aOyRgyFg0BBBBAoHEBii+Nm3FFIAIUXwKZKMJEAAEEEEAAAQQQQAABBCoUeOmll4wNbPmbF1qbbaM+dosQcx47dqyxbm155HFMxqIhgAACCDQuQPGlcTOuCETgN7/5jfFBZK+99gokesJEAAEEEEAAAQQQQAABBBAoQ+Dll1827h3f//73lzG0l2PYNuu9DDTHoELLec6cOcaateWQ5zEZk4YAAggg0JgAxZfGvDg7IAGKLwFNFqEigAACCCCAAAIIIIAAAhUJvPLKK8ZG9vbbb19RNNUPa9uwrz6qYiMILecxY8YYa9aWQ57HZEwaAggggEBjAhRfGvPi7IAEKL4ENFmEigACCCCAAAIIIIAAAghUJCB/zyK9Sf3e9763omiqHzZtIY9jbyHl3NXVlbS0tBhr1pZDnsdkTBmbhgACCCDgLhD/O6i7BWdGJvDrX//a+DDy6U9/OrIsSQcBBBBAAAEEEEAAAQQQQKAZgddee824d9xuu+2a6TLoa20b9kEn5BB8SDnPmDHDWK+2+Is4JmPTEEAAAQTcBSi+uFtxZmACFF8CmzDCRQABBBBAAAEEEOhR4Nxzz61sw62ITTz63IT53AQDXgesAdYAa4A1wBpgDfi5Bs4777weP5u7PEnxxUWJc4IUoPgS5LQRNAIIIIAAAggggEA3AhRf/LwxZ8OEeWENsAZYA6wB1gBrgDUQ3xqQz97NNoovzQpyvbcCv/rVr4x/STZ69Ghv4yUwBBBAAAEEEEAAAQR6EqD4Et9NPRs1zClrgDXAGmANsAZYA6wBP9cAxZee7kx4Tr0AxRf1SwAABBBAAAEEEEAgKgGKL37emLNhwrywBlgDrAHWAGuANcAaiG8NUHyJ6laKZPIWoPiStyj9IYAAAggggAACCFQpQPElvpt6NmqYU9YAa4A1wBpgDbAGWAN+rgGKL1Xe+TC2twIrV65MZs6cmXz2s581fu1Ya2trMnLkyKSjo2PjOXIuDQEEEEAAAQQQQAABBBBAQK+A3BemN7623HJLtSBpC3kcewsp5xEjRhjr1RZ/Ecd22mmn2JcC+SGAAAK5CsT/DporF535LLBw4cJk3LhxSVtbm/MHETlXrpFraQgggAACCCCAAAIIIIAAAvoE/vKXvxj3kAMHDtQH8feMbZv2sWOElPPYsWON9WqLv4hjMjYNAQQQQMBdgOKLuxVneiqwYsWKjT/J0tLSkvkDiFwrPw0jfdEQQAABBBBAAAEEEEAAAQT0CKxatcq4l9xiiy30AKQytW3ap06J7mFIOc+YMcNYr7b4izgmY9MQQAABBNwFKL64W3GmhwKdnZ3J0KFDc/vgIX1JnzQEEEAAAQQQQAABBBBAAAEdAqtXrzbuKQcMGKAjeUuWtk17y2lRHQop566urqSZf3xqy9XlmIy5ZMmSqOadZBBAAIGiBSi+FC1M/4UJzJ49O2lvbzc+JLt8aOjpHOlT+qYhgAACCCCAAAIIIIAAAgjEL7BmzRrjvnKzzTaLP/FuMrTdL3dzajSHQ8t5zJgxxpq15ZDnMRmThgACCCDQmADFl8a8ONsTgblz5yb9+vUr7MOG9C1j0BBAAAEEEEAAAQQQQAABBOIWWLt2rXFvKf8oT2uzbdjHbhFazo888oixZm055Hlszpw5sS8D8kMAAQRyF6D4kjspHRYtsGzZsmTIkCGFf9CQMWQsGgIIIIAAAggggAACCCCAQLwC69atM+4v5R/kaW22DfvYLULMeezYsca6teWRxzEZi4YAAggg0LgAxZfGzbiiYgE+YFQ8AQyPAAIIIIAAAggggAACCEQk8NZbbxmb2O95z3siyrCxVGyb9Y31EN7ZIebMP0wNb50RMQII6BOg+KJvzoPOWH7M1fahqMhj/Ght0EuG4BFAAAEEEEAAAQQQQACBHgXWr19v3Ge2tbX1eE3MT9rur2POV3ILNWd+JXvsK5P8EEAgdAGKL6HPoLL4+aNyyiacdBFAAAEEEEAAAQQQQACBggU2bNhgbL737du34FH97T7UQkQzoiHnPHv27ET+RpEth2aOSZ/SNw0BBBBAILsAxZfsdlxZskBXV1fS0tKS+weK3j6MyJgyNg0BBBBAAAEEEEAAAQQQQCA+gXfeece4z9x0003jS9QxI9s9suOlwZ4Wes6dnZ3J0KFDjXVsy8vlmPQlfdIQQAABBJoToPjSnB9XlygwY8aM3D5IuHzYqD9HxqYhgAACCCCAAAIIIIAAAgjEKVB//yff9+nTJ85EHbJKW8jj2FsMOa9YsSLp6Oho6h+tyj8+lT6kLxoCCCCAQPMC8b+DNm9ED54IjB07trLii4xNQwABBBBAAAEEEEAAAQQQiFMgvfkum9BaW9qC4ktYK2HhwoXJuHHjEvm7Rba5tB2Tc+UauZaGAAIIIJCfQOnFl3PPPdf5f/62NwSObYLfJhjwOvB/DZx33nn5/Z+anhBAAAEEEEAAAQQQQKBQAds9VqEDety5RosYc5afXpk5c+bGn2QZOXKkdS9JfspFzuEnXTx+QRIaAggELUDxhY186xuw7YMHx/zf8GeO/JkjKTTTEEAAAQQQQAABBBBAIAwB298XDSPy/KO03VfmP4pfPWrIWUOOfq0qokEAAQSShOILxReKL6wB1kABa4DiC2+xCCCAAAIIIIAAAgiEIyB/4yW9OR1O9PlGmnaQx7E3DTlryDH2dUp+CCAQnkDp76D82jF//mW+7Y2XY8wPayCfNUDxJbw3RCJGAAEEEEAAAQQQ0CvQt29fo/iyYcMGlSC2e8LYITTkrCHH2Ncp+SGAQHgCFF8K+Bfvtjc0juWzoY0jjqGsAYov4b0hEjECCCCAAAIIIICAXoHW1laj+PL222+rBLHdc8UOoSFnDTnGvk7JDwEEwhMovfgSHhER+yIwduxY48Ow7cNDEcdkbBoCCCCAAAIIIIAAAggggECcAm1tbcb95vr16+NMtpesbPfUvVwS/NMactaQY/ALkQQQQCA6AYov0U1pvAnNmDHD+DBs+/BQxDEZm4YAAggggAACCCCAAAIIIBCnQL9+/Yz7zXXr1sWZbC9Z2e6pe7kk+Kc15Kwhx+AXIgkggEB0AhRfopvSeBPq6upKWlpajA/Etg8QeR6TMZcsWRIvLJkhgAACCCCAAAIIIIAAAsoF+vfvb9xr/vWvf1WpYrufjh1CQ84acox9nZIfAgiEJ0DxJbw5Ux3xmDFjjA/Etg8QeR6TMWkIIIAAAggggAACCCCAAALxCrS3txv3mmvXro034R4ys91P93B6FE9pyFlDjlEsRpJAAIGoBCi+RDWd8SfzyCOPGB+IbR8g8jw2Z86c+GHJEAEEEEAAAQQQQAABBBBQLDBgwADjXnP16tUqRWz307FDaMhZQ46xr1PyQwCB8AQovoQ3Z+ojHjt2rPGh2PYhIo9jMhYNAQQQQAABBBBAAAEEEEAgboHNN9/cuM9888034066m+xs99LdnBrNYQ05a8gxmgVJIgggEI0AxZdoplJPIsuWLUuGDBlifDC2fZBo5piMIWPREEAAAQQQQAABBBBAAAEE4hbYYostjHvMVatWxZ10N9nZ7qO7OTWawxpy1pBjNAuSRBBAIBoBii/RTKWuRObOnZv069fP+HBs+zCR5Zj0LWPQEEAAAQQQQAABBBBAAAEE4hfYcsstjfvLlStXxp+4JUPbPbTltKgOachZQ45RLUqSQQCBKAQovkQxjTqTmD17dmL7o4i2DxSNHJM+pW8aAggggAACCCCAAAIIIICADoGtttrKKL6sWLFCR/KpLG33z6lTonuoIWcNOUa3MEkIAQSCF6D4EvwU6k6gs7MzGTp0qPEh2fahwuWY9CV90hBAAAEEEEAAAQQQQAABBPQIDBo0yLiv/POf/6wHoC5T271z3dNRfqshZw05Rrk4SQoBBIIWoPgS9PQRvAjIv0bq6OhIWlpajA/Ltg8XtmNyrfSh9V82sZIQQAABBBBAAAEEEEAAAc0C22yzjXE/+cYbb6gksd0zxw6hIWcNOca+TskPAQTCE6D4Et6cEXE3AgsXLkzGjRuXtLW1GR+abR8y5JicK9fItTQEEEAAAQQQQAABBBBAAAGdAttuu61xH7l8+XKVGLb759ghNOSsIcfY1yn5IYBAeAIUX8KbMyLuRUB+emXmzJnJPvvsY3x4lmLLyJEjN/6Ui5zDT7r0gsnTCCCAAAIIIIAAAggggIACgcGDBxv3j//7v/+rIHMzRY2b9Bpy1pCjuZo5ggACCFQrQPGlWn9GL1DgoYceMj48f+5znytwRLpGAAEEEEAAAQQQQAABBBAIUWDIkCHG/eOf/vSnEFNpOmaNm/QactaQY9OLnw4QQACBnAUovuQMSnf+CPz0pz81Pjzvt99+/gRIJAgggAACCCCAAAIIIIAAAl4IvPe97zXuH5ctW+ZFbGUHoXGTXkPOGnIs+7XCeAgggEBvAhRfehPi+WAFKL4EO3UEjgACCCCAAAIIIIAAAgiUKvC+973PKL68+uqrpcbgy2AaN+k15KwhR19eQ8SBAAII1AQovtQk+BqdAMWX6KaUhBBAAAEEEEAAAQQQQACBQgS23357o/jyyiuvFDKW751q3KTXkLOGHH1/bREfAgjoE6D4om/O1WT8k5/8xPjwvP/++6vJn0QRQAABBBBAAAEEEEAAAQTcBIYOHWrcP7700ktuF0d2lsZNeg05a8gxspci6SCAQAQCFF8imERSsAtQfLG7cBQBBBBAAAEEEEAAAQQQQODdAv/wD/9gFF/++Mc/vvskJY80btJryFlDjkpeoqSJAAIBCVB8CWiyCLUxAYovjXlxNgIIIIAAAggggAACCCCgVWDYsGFG8WXp0qUqOTRu0mvIWUOOKl+wJI0AAl4LUHzxenoIrhkBii/N6HEtAggggAACCCCAAAIIIKBHYPjw4Ubx5YUXXtADUJepxk16DTlryLFuGfMtAggg4IUAxRcvpoEgihB48MEHjQ/PBxxwQBFD0ScCCCCAAAIIIIAAAggggEDAAv/4j/9o3D8uWbIk4Iyyh65xk15DzhpyzL7quRIBBBAoRoDiSzGu9OqBAMUXDyaBEBBAAAEEEEAAAQQQQACBAAR23HFHo/jS1dUVQOT5h6hxk15DzhpyzP/VQI8IIIBAcwIUX5rz42qPBSi+eDw5hIYAAggggAACCCCAAAIIeCQwYsQIo/jy/PPPexRheaFo3KTXkLOGHMt7lTASAggg4CZA8cXNibMCFPjxj39sfHg+8MADA8yEkBFAAAEEEEAAAQQQQAABBIoU2GmnnYz7x//5n/8pckhv+9a4Sa8hZw05evuiIjAEEFArQPFF7dTHnzjFl/jnmAwRQAABBBBAAAEEEEAAgTwEdt55Z6P48oc//CGProPrQ+MmvYacNeQY3IuNgBFAIHoBii/RT7HeBCm+6J17MkcAAQQQQAABBBBAAAEEGhH44Ac/aBRfnnvuuUa6iOZcjZv0GnLWkGM0L0ISQQCBaAQovkQzlSSSFnjggQeMD88HHXRQ+jQeI4AAAggggAACCCCAAAIIKBf4p3/6J+P+8ZlnnlGponGTXkPOGnJU+YIlaQQQ8FqA4ovX00NwzQhQfGlGj2sRQAABBBBAAAEEEEAAAT0Cu+66q1F8WbRokR6Aukw1btJryFlDjnXLmG8RQAABLwQovngxDQRRhADFlyJU6RMBBBBAAAEEEEAAAQQQiE9gt912M4ovv//97+NL1CEjjZv0GnLWkKPD8uYUBBBAoFQBii+lcjNYmQI/+tGPjA/PY8eOLTMExkIAAQQQQAABBBBAAAEEEAhAYPfddzfuH5966qkAIs8/RI2b9Bpy1pBj/q8GekQAAQSaE6D40pwfV3ssQPHF48khNAQQQAABBBBAAAEEEEDAI4EPfehDRvFl4cKFHkVYXigaN+k15Kwhx/JeJYyEAAIIuAlQfHFz4qwABSi+BDhphIwAAggggAACCCCAAAIIVCDw4Q9/2Ci+LFiwoIJIqh9S4ya9hpw15Fj9q4cIEEAAgXcLUHx5twePIhK4//77jQ/Pn//85yPKkFQQQAABBBBAAAEEEEAAAQTyEPjIRz5i3D8++eSTeXQdXB8aN+k15Kwhx+BebASMAALRC1B8iX6K9SZI8UXv3JM5AggggAACCCCAAAIIINCIwL/8y78YxZcnnniikS6iOVfjJr2GnDXkGM2LkEQQQCAaAYov0UwliaQFKL6kRXiMAAIIIIAAAggggAACCCBgE/joRz9qFF/mz59vOzX6Yxo36TXkrCHH6F+cJIgAAsEJUHwJbsoI2FWA4ourFOchgAACCCCAAAIIIIAAAroFRo0aZRRfOjs7VaJo3KTXkLOGHFW+YEkaAQS8FqD44vX0EFwzAvfdd5/x4fkLX/hCM11yLQIIIIAAAggggAACCCCAQIQCH/vYx4z7x8cffzzCTHtPSeMmvYacNeTY++rmDAQQQKBcAYov5XozWokCFF9KxGYoBBBAAAEEEEAAAQQQQCBggT333NMovjz22GMBZ5Q9dI2b9Bpy1pBj9lXPlQgggEAxAhRfinGlVw8EKL54MAmEgAACCCCAAAIIIIAAAggEIPCJT3zCKL789re/DSDy/EPUuEmvIWcNOeb/aqBHBBBAoDkBii/N+XG1xwI//OEPjQ/PBx98sMcRExoCCCCAAAIIIIAAAggggEAVAv/6r/9q3D/+53/+ZxWhVD6mxk16DTlryLHyFw8BIIAAAikBii8pEB7GI0DxJZ65JBMEEEAAAQQQQAABBBBAoEiBT37yk0bxZd68eUUO6W3fGjfpNeSsIUdvX1QEhgACagUovqid+vgTp/gS/xyTIQIIIIAAAggggAACCCCQh8Bee+1lFF/mzp2bR9fB9aFxk15DzhpyDO7FRsAIIBC9AMWX6KdYb4L33nuv8eH5kEMO0QtC5ggggAACCCCAAAIIIIAAAlaBT3/608b9469//WvrubEf1LhJryFnDTnG/tokPwQQCE+A4kt4c0bEjgIUXxyhOA0BBBBAAAEEEEAAAQQQUC4wevRoo/jyq1/9SqWKxk16DTlryFHlC5akEUDAawGKL15PD8E1I0DxpRk9rkUAAQQQQAABBBBAAAEE9AiMGTPGKL48+uijegDqMtW4Sa8hZw051i1jvkUAAQS8EKD44sU0EEQRAvfcc4/x4fmLX/xiEUPRJwIIIIAAAggggAACCCCAQMAC//7v/27cPz7yyCMBZ5Q9dI2b9Bpy1pBj9lXPlQgggEAxAhRfinGlVw8EKL54MAmEgAACCCCAAAIIIIAAAggEIPCZz3zGKL48/PDDAUSef4gaN+k15Kwhx/xfDfSIAAIINCdA8aU5P672WIDii8eTQ2gIIIAAAggggAACCCCAgEcCe++9t1F8+eUvf+lRhOWFonGTXkPOGnIs71XCSAgggICbAMUXNyfOClDg7rvvNj48H3rooQFmQsgIIIAAAggggAACCCCAAAJFCuy7777G/ePPf/7zIof0tm+Nm/QactaQo7cvKgJDAAG1AhRf1E59/IlTfIl/jskQAQQQQAABBBBAAAEEEMhD4D/+4z+M4svPfvazPLoOrg+Nm/QactaQY3AvNgJGAIHoBSi+RD/FehOk+KJ37skcAQQQQAABBBBAAAEEEGhE4LOf/axRfJk9e3YjXURzrsZNeg05a8gxmhchiSCAQDQCFF+imUoSSQtQfEmL8BgBBBBAAAEEEEAAAQQQQMAmsN9++xnFl5/+9Ke2U6M/pnGTXkPOGnKM/sVJggggEJwAxZfgpoyAXQXuuusu48PzYYcd5no55yGAAAIIIIAAAggggAACCCgR2H///Y37x5/85CdKsn93mho36TXkrCHHd69kHiGAAALVC1B8qX4OiKAgAYovBcHSLQIIIIAAAggggAACCCAQmcABBxxgFF8efPDByLJ0S0fjJr2GnDXk6LbCOQsBBBAoT4DiS3nWjFSyAMWXksEZDgEEEEAAAQQQQAABBBAIVOCggw4yii8PPPBAoNk0F7bGTXoNOWvIsbmVz9UIIIBA/gIUX/I3pUdPBGbNmmV8eP7Sl77kSXSEgQACCCCAAAIIIIAAAggg4IvA2LFjjfvHH/3oR76EV2ocGjfpNeSsIcdSXygMhgACCDgIUHxxQOKUMAUovoQ5b0SNAAIIIIAAAggggAACCJQt8PnPf94ovtx///1lh+HFeBo36TXkrCFHL15ABIEAAgjUCVB8qcPg27gEKL7ENZ9kgwACCCCAAAIIIIAAAggUJXDwwQcbxZf77ruvqOG87lfjJr2GnDXk6PULi+AQQEClAMUXldOuI+k777zT+PA8btw4HcmTJQIIIIAAAggggAACCCCAgLPAIYccYtw/3nvvvc7Xx3Sixk16DTlryDGm1yG5IIBAHAIUX+KYR7KwCFB8saBwCAEEEEAAAQQQQAABBBBAwBD44he/aBRf7rnnHuM8DQc0btJryFlDjhpen+SIAAJhCVB8CWu+iLYBAYovDWBxKgIIIIAAAggggAACCCCgWODQQw81ii933323ShGNm/QactaQo8oXLEkjgIDXAhRfvJ4egmtG4I477jA+PH/5y19upkuuRQABBBBAAAEEEEAAAQQQiFDgS1/6knH/KH9HVGPTuEmvIWcNObq8XleuXJnMnDkz6ejoSEaOHJlss802SVtb28b/5Hs5Js/JOXIuDQEEEGhGgOJLM3pc67UAxRevp4fgEEAAAQQQQAABBBBAAAFvBOTvg6Y3p+W3KWhsaQd5HHvTkLOGHHtapwsXLkzkdS6FFpuF7ZicK9fItTQEEEAgi0D876BZVLgmCgGKL1FMI0kggAACCCCAAAIIIIAAAoULyG9JSG++yj2lxpZ2kMexNw05a8jRtk5XrFix8SdZWlpajNe4zcR2TK6Vn4aRvmgIIIBAIwLxv4M2osG5UQncfvvtxhvr4YcfHlWOJIMAAggggAACCCCAAAIIINC8wBFHHGHcP/7gBz9ovuMAe7BtPgeYRkMha8hZQ47pSe/s7EyGDh1qvLZtFi7HpC/pk4YAAgi4ClB8cZXivOAEKL4EN2UEjAACCCCAAAIIIIAAArwdfEMAACAASURBVAhUInDkkUcaG7TyNx80NtsmdOwOGnLWkGP9Op09e3bS3t5uvK5tDo0ckz6lbxoCCCDgIkDxxUWJc4IUoPgS5LQRNAIIIIAAAggggAACCCBQusBRRx1lbNLedtttpcfhw4C2jWgf4ioyBg05a8ixtkbmzp2b9OvXz3hN2wyyHJO+ZQwaAggg0JsAxZfehHg+WAGKL8FOHYEjgAACCCCAAAIIIIAAAqUKHHPMMcZG7a233lpqDL4MZtuM9iW2ouLQkLOGHGV9LFu2LBkyZIjxerbl38wxGUPGoiGAAAI9CVB86UmH54IWkN/Pm34jld/jS0MAAQQQQAABBBBAAAEEEECgXuArX/mKcf/4ve99r/4UNd+n76PlcexNQ84acpR1OnbsWOO1bMs9j2MyFg0BBBDoSSD+d9Cesue5qAUovkQ9vSSHAAIIIIAAAggggAACCOQm0NHRYWzYfve7382t/5A6sm1KhxR/llg15Kwhxzlz5hivY1veeR6TMWkIIIBAdwIUX7qT4XjwAhRfgp9CEkAAAQQQQAABBBBAAAEEShEYP368sWl78803lzK2b4PYNqZ9izHveDTkrCHHMWPGGK9jW955HpMxaQgggEB3AhRfupPhePACM2fONN50jzzyyODzIgEEEEAAAQQQQAABBBBAAIF8BSZMmGDcP9500035DhJIb7aN6UBCzxymhpxjz7GrqytpaWkxXse2vPM8JmPK2DQEEEDAJkDxxabCsSgEKL5EMY0kgQACCCCAAAIIIIAAAggULjBx4kRj0/bGG28sfFwfB7BtTPsYZ54xacg59hxnzJhhvIZtORdxTMamIYAAAjYBii82FY5FIUDxJYppJAkEEEAAAQQQQACBvwuce+65lW0sFbFZRZ+bMJ+bYMDrgDXAGmANsAZYA6wBP9fAeeed1/R9CMWXpgnpwFeB2267zbiZOeqoo3wNl7gQQAABBCoQWL9+ffLWW2/xn4PB3/72twpmiCERQKBegOKLnzfmbJgwL6wB1gBrgDXAGmANsAbiWwPy2bvZRvGlWUGu91aA4ou3U0NgCCCAgBcCixYtMor0fGDu/gPzlClTvJg3gkBAswDFl+7/H8X/v7FhDbAGWAOsAdYAa4A1wBrIcw1QfNF850XuvQpQfOmViBMQQAAB1QLz58+n+NLAr3s5/vjjVa8XkkfABwGKL2wo5LmhQF+sJ9YAa4A1wBpgDbAGWAPdrwGKLz7cARGDtwLf//73jU21o48+2tt4CQwBBBBAoFwBii/df8i0fQCn+FLu+mQ0BGwCFF8a+/+W7f9lHMOQNcAaYA2wBlgDrAHWAGvAZQ1QfLHdkXAMgb8LUHxhKSCAAAII9CRA8aWxD9wUX3paTTyHAAIIIBC6wKRJk4x/vPetb30r9LQyxW/bkMrUUUAXacg59hxHjBhhvIZtORdxbKeddgpotRMqAgiUKcDffClTm7FKFaD4Uio3gyGAAALBCVB8ofgS3KIlYAQQQACBwgQmT55sbNxeffXVhY3nc8e2zWmf480jNg05x57j2LFjjdewLecijsnYNAQQQMAmQPHFpsKxoAVWrlyZzJw5M/nUpz5lvPH269cvGTlyZNLR0bHxHDmXhgACCCCgU4DiC8UXnSufrBFAAAEEbAInnXSScf84Y8YM26nRH7NtTseetIacY89RXq+2HMs4pvX/FbH/f4H8EMhDgOJLHor04YXAwoULk3HjxiVtbW3Ob7hyrlwj19IQQAABBHQJUHyh+KJrxZMtAggggEBPAlOmTDHuI6+88sqeLon2OdtmdbTJ/j0xDTnHnmNXV1fS0tJivI5teed5TMZcsmRJ7C8R8kMAgYwCFF8ywnGZPwIrVqzY+JMszbzJyrXy0zDSFw0BBBBAQIcAxReKLzpWOlkigAACCLgITJ061di0veKKK1wuje4c28Z0dEmmEtKQs4Ycx4wZY7yObXnneUzGpCGAAALdCVB86U6G40EIdHZ2JkOHDs3tzVX6kj5pCCCAAALxCyxbtiyR38980EEH8Z+DwQ9+8IP4FwUZIoAAAgioFTjllFOM+8rLL79cpYdtYzp2CA05a8jxkUceMV7HtrzzPDZnzpzYXx7khwACTQhQfGkCj0urFZg9e3bS3t6e+xur9Cl90xBAAAEEEEAAAQQQQAABBHQITJs2zbi3vOyyy3Qkn8rStjGdOiW6hxpy1pCjLEz5x1W2XIs4JmPREEAAgZ4EKL70pMNz3grMnTs36devX2FvqNK3jEFDAAEEEEAAAQQQQAABBBCIX+DUU0817i+nT58ef+KWDG2b1JbTojqkIWcNOcqilJ9uHzJkiPF6tuXfzDEZQ8aiIYAAAj0JUHzpSYfnvBTgjdTLaSEoBBBAAAEEEEAAAQQQQCBYgdNPP93YrL3kkkuCzaeZwG0b0s30F8K1GnLWkGNtrfEPdmsSfEUAgaoFKL5UPQOM37AAP0LaMBkXIIAAAggggAACCCCAAAII9CBwxhlnGMWXiy++uIcr4n1K0yZ9bRY15Kwhx9p8yld+VX29Bt8jgEBVAhRfqpJn3EwC8ofMbB8YijzGH0/LNFVchAACCCCAAAIIIIAAAggEI3DmmWca95oXXXRRMPHnGajt/jrP/n3sS0POGnJMr63Ozs5k6NChxmvbZuFyTPqSPmkIIICAqwDFF1cpzvNCYMyYMbm9abq8sco5MiYNAQQQQAABBBBAAAEEEEAgXoGzzz7buNe88MIL4024h8xs98o9nB7FUxpy1pCjbTGuWLEi6ejoSFpaWozXuM3EdkyulT6kLxoCCCDQiADFl0a0OLdSga6urqbeLG1voC7H5E1WxqYhgAACCCCAAAIIIIAAAgjEKXDOOecYG7Pnn39+nMn2kpXtPrmXS4J/WkPOGnLsaSEuXLgwGTduXNLW1ma81m02ckzOlWvkWhoCCCCQRYDiSxY1rqlEYMaMGc5vkN29cWY9LmPTEEAAAQQQQAABBBBAAAEE4hQ499xzjfvN8847L85ke8nKdt/cyyXBP60hZw05uixE+emVmTNnbvxJlpEjRxqve3GSn3KRc/hJFxdRzkEAgZ4ESi++2D7Q2N4AOLaJ9Q0AF1xYA2GsAa03aj294fAcAggggAACCCCAAAK+Csjn9/S9luxfaGxpB3kce9OQs4Ycs6xTXLKocQ0CCLgKlP4OSvEljI1j25sPx5g71oD7GtB6o+b65sN5CCCAAAIIIIAAAgj4JHDBBRcYxRf5OzAam+2+L3YHDTlryDHLOsUlixrXIICAqwDFl03cN1Nt/0PmGH6sAdaAbQ1QfHF9G+I8BBBAAAEEEEAAAQSqF7jwwguN4stZZ51VfWAVRGC7v6kgjFKH1JCzhhyzLBpcsqhxDQIIuApQfKH4YnzAtL3xcIwCA2ugsTVA8cX1bYjzEEAAAQQQQAABBBCoXuCiiy4y7o3PPPPM6gOrIALbvV8FYZQ6pIacNeSYZdHgkkWNaxBAwFWA4gvFF+MDpu2Nh2ONbbzjhRfFF9e3Ic5DAAEEEEAAAQQQQKB6gUsuucS4Nz799NOrD6yCCGz3sxWEUeqQGnLWkGOWRYNLFjWuQQABV4HSiy+ugXEeAmmBESNGGB+GbW+SRRzbaaed0uHwGAEEEEAAAQQQQAABBBBAIBKBSy+91LjfPO200yLJrrE0bPfUjfUQ3tkactaQY5aVh0sWNa5BAAFXAYovrlKcV7nA2LFjjQ/DtjfJIo7J2DQEEEAAAQQQQAABBBBAAIE4BaZPn27cb5566qlxJttLVrZ76l4uCf5pDTlryDHLQsQlixrXIICAqwDFF1cpzqtcYMaMGcaHYdubZBHHZGwaAggggAACCCCAAAIIIIBAnAKXX365cb95yimnxJlsL1nZ7ql7uST4pzXkrCHHLAsRlyxqXIMAAq4CFF9cpTivcoGurq6kpaXF+EBse6PM85iMuWTJksrzJwAEEEAAgXwFXn311eTAAw9M9t9/f/5zMLjtttvynQB6QwABBBBAwCOBb37zm8a95sknn+xRhOWFYrufLm/0akbSkLOGHLOsHlyyqHENAgi4ClB8cZXiPC8ExowZY3wgtr1R5nlMxqQhgAACCMQnMH/+/NLfU/J8fyq7r+OPPz6+RUBGCCCAAAII/F3giiuuMD4XTJ06VaWP7TNG7BAactaQY5Z1iksWNa5BAAFXAYovrlKc54XAI488Ynwgtr1R5nlszpw5XuROEAgggAAC+QpQfNmkofdUii/5rj96QwABBBDwS8D2a65POukkv4IsKRrb/XRJQ1c2jIacNeSYZQHhkkWNaxBAwFWA4ourFOd5IzB27NiGNotsb6Sux2QsGgIIIIBAnAIUXyi+xLmyyQoBBBBAIIvAVVddZdxnnnjiiVm6Cv4a2/1y8En1koCGnDXk2Ms0W5/GxcrCQQQQyEmA4ktOkHRTnsCyZcuSIUOGGB+MbW+YzRyTMWQsGgIIIIBAnAIUXyi+xLmyyQoBBBBAIIvA1VdfbdxjTp48OUtXwV9ju48OPqleEtCQs4Yce5lm69O4WFk4iAACOQlQfMkJkm7KFZg7d27Sr18/48Ox7U0zyzHpW8agIYAAAgjEK0DxheJLvKubzBBAAAEEGhW45pprjPvLSZMmNdpNFOfb7qGjSKyHJDTkrCHHHqa426dw6ZaGJxBAIAcBii85INJFNQKzZ89O2tvbjQ/ItjfORo5Jn9I3DQEEEEAgbgGKLxRf4l7hZIcAAggg0IjAt7/9bePe8utf/3ojXURzru3+OZrkuklEQ84acuxmens8jEuPPDyJAAJNClB8aRKQy6sV6OzsTIYOHWp8SLa9ebock76kTxoCCCCAQPwCFF8ovsS/yskQAQQQQMBV4NprrzXuK0844QTXy6M6z3bvHFWClmQ05KwhR8vU9noIl16JOAEBBJoQoPjSBB6X+iGwYsWKpKOjI2lpaTE+LNveRG3H5FrpQ/qiIYAAAgjoEFi0aFHm9w3be0nsx6ZOnapjYZAlAggggIBKgeuuu874XPC1r31NpYXtM03sEBpy1pBjlnWKSxY1rkEAAVcBii+uUpznvcDChQuTcePGJW1tbcaHZtubqRyTc+UauZaGAAIIIKBPYMOGDQn/uRn83//9n74FQsYIIIAAAmoErr/+euM+8qtf/aqa/OsTtd0/1z8f4/cactaQY5a1iUsWNa5BAAFXAYovrlKcF4yA/PTKzJkzk0984hPGh+d+/folI0eO3PhTLnIOP+kSzLQSKAIIIIAAAggggAACCCBQmMANN9xg3D8ed9xxhY3nc8caN6M15KwhxyyvK1yyqHENAgi4ClB8cZXivOAEvvOd7xgfno8//vjg8iBgBBBAAAEEEEAAAQQQQACBYgVuvPFG4/5x4sSJxQ7qae8aN6M15KwhxywvKVyyqHENAgi4ClB8cZXivOAE+J29wU0ZASOAAAIIIIAAAggggAAClQjcfPPNRvFl/PjxlcRS9aAaN6M15KwhxyyvHVyyqHENAgi4ClB8cZXivOAEKL4EN2UEjAACCCCAAAIIIIAAAghUInDLLbcYxZdjjz22kliqHlTjZrSGnDXkmOW1g0sWNa5BAAFXAYovrlKcF5wAxZfgpoyAEUAAAQQQQAABBBBAAIFKBL773e8axZeOjo5KYql6UI2b0Rpy1pBjltcOLlnUuAYBBFwFKL64SnFecAIUX4KbMgJGAAEEEEAAAQQQQAABBCoRuPXWW43iyzHHHFNJLFUPqnEzWkPOGnLM8trBJYsa1yCAgKsAxRdXKc4LTuDaa681PjyfcMIJweVBwAgggAACCCCAAAIIIIAAAsUKfP/73zfuH48++uhiB/W0d42b0Rpy1pBjlpcULlnUuAYBBFwFKL64SnFecAIUX4KbMgJGAAEEEEAAAQQQQAABBCoRuO2224ziy1FHHVVJLFUPqnEzWkPOGnLM8trBJYsa1yCAgKsAxRdXKc4LToDiS3BTRsAIIIAAAggggAACCCCAQCUCP/jBD4ziyxFHHFFJLFUPqnEzWkPOGnLM8trBJYsa1yCAgKsAxRdXKc4LTuDb3/628eH561//enB5EDACCCCAAAIIIIAAAggggECxArfffrtx/3j44YcXO6invWvcjNaQs4Ycs7ykcMmixjUIIOAqQPHFVYrzghOg+BLclBEwAggggAACCCCAAAIIIFCJwB133GEUX7785S9XEkvVg2rcjNaQs4Ycs7x2cMmixjUIIOAqQPHFVYrzghOg+BLclBEwAggggAACCCCAAAIIIFCJwKxZs4ziy7hx4yqJpepBNW5Ga8hZQ45ZXju4ZFHjGgQQcBWg+OIqxXnBCVxzzTXGh+dvfOMbweVBwAgggAACCCCAAAIIIIAAAsUK3HXXXcb942GHHVbsoJ72rnEzWkPOGnLM8pLCJYsa1yCAgKsAxRdXKc4LToDiS3BTRsAIIIAAAggggAACCCCAQCUCd999t1F8OfTQQyuJpepBNW5Ga8hZQ45ZXju4ZFHjGgQQcBWg+OIqxXnBCVB8CW7KCBgBBBBAAAEEEEAAAQQQqETgnnvuMYovX/ziFyuJpepBNW5Ga8hZQ45ZXju4ZFHjGgQQcBWg+OIqxXnBCXzrW98yPjxPmjQpuDwIGAEEEEAAAQQQQAABBBBAoFiBH/7wh8b948EHH1zsoJ72rnEzWkPOGnLM8pLCJYsa1yCAgKsAxRdXKc4LToDiS3BTRsAIIIAAAggggAACCCCAQCUC9913n1F8+cIXvlBJLFUPqnEzWkPOGnLM8trBJYsa1yCAgKsAxRdXKc4LToDiS3BTRsAIIIAAAggggAACCCCAQCUC999/v1F8+fznP19JLFUPqnEzWkPOGnLM8trBJYsa1yCAgKsAxRdXKc4LTuDqq682PjxPnjw5uDwIGAEEEEAAAQQQQAABBBBAoFiBBx54wLh/POigg4od1NPeNW5Ga8hZQ45ZXlK4ZFHjGgQQcBWg+OIqxXnBCVB8CW7KCBgBBBBAAAEEEEAAAQQQqETgxz/+sVF8OfDAAyuJpepBNW5Ga8hZQ45ZXju4ZFHjGgQQcBWg+OIqxXnBCVB8CW7KCBgBBBBAAAEEEEAAAQQQqETgwQcfNIovBxxwQCWxVD2oxs1oDTlryDHLaweXLGpcgwACrgIUX1ylOC84AYovwU0ZASOAAAIIIIAAAggggAAClQj89Kc/NYov++23XyWxVD2oxs1oDTlryDHLaweXLGpcgwACrgIUX1ylOC84gauuusr48HziiScGlwcBI4AAAggggAACCCCAAAIIFCvw0EMPGfePn/vc54od1NPeNW5Ga8hZQ45ZXlK4ZFHjGgQQcBWg+OIqxXnBCVB8CW7KCBgBBBBAAAEEEEAAAQQQqERg9uzZRvHls5/9bCWxVD2oxs1oDTlryDHLaweXLGpcgwACrgIUX1ylOC84AYovwU0ZASOAAAIIIIAAAggggAAClQj8/Oc/N4ov++67byWxVD2oxs1oDTlryDHLaweXLGpcgwACrgIUX1ylOC84gRkzZhgfnk866aTg8iBgBBBAAAEEEEAAAQQQQACBYgV+8YtfGPeP++yzT7GDetq7xs1oDTlryDHLSwqXLGpcgwACrgIUX1ylOC84AYovwU0ZASOAAAIIIIAAAggggAAClQj88pe/NIove++9dyWxVD2oxs1oDTlryDHLaweXLGpcgwACrgIUX1ylOC84AYovwU0ZASOAAAIIIIAAAggggAAClQg88sgjRvHlM5/5TCWxVD2oxs1oDTlryDHLaweXLGpcgwACrgIUX1ylOC84gSuvvNL48DxlypTg8iBgBBBAAAEEEEAAAQQQQACBYgXmzJlj3D/+27/9W7GDetq7xs1oDTlryDHLSwqXLGpcgwACrgIUX1ylOC84AYovwU0ZASOAAAIIIIAAAggggAACpQgsXbo0uf3225OzzjorOfTQQ5MRI0YYxZfW1tZk2LBhyR577LHxHDlXrpFrY24aN6M15KwhxyyvS1yyqHENAgi4ClB8cZXivOAEKL4EN2UEjAACCCCAAAIIIIAAAggUIrBhw4bkoYceSjo6OpLhw4cbhRbbBmxPx6QP6Uv6lL5jara8Y8rPlouGnDXkaJvb3o7h0psQzyOAQDMCFF+a0eNarwWuuOIK4wP11KlTvY6Z4BBAAAEEEEAAAQQQQAABBPITeP7555NJkyYlgwcPNu4PbZuuWY5J3zKGjBVDsxnEkFdPOWjIWUOOPc1xd8/h0p0MxxFAIA8Bii95KNKHlwIUX7ycFoJCAAEEEEAAAQTUCqxb/06y9LU1ye+efSP52WOvJHf8fEly/X3/k1w2c1Fy9o0LkqlXz0+Ov+zxpOPC/0oOP2deMu7Mucmhp/8mOXjar5OxJ/8qufMXL6i1I3EEGhVYsGDBxl8V1qdPn8KKLulNWxlLfoWZjB1yS+clj2NvGnLWkGOWdYpLFjWuQQABV4H430FdJTgvOgGKL9FNKQkhgAACCCCAAALBCPxl9frkP59antz6k8XJ2TcsSI45/7cbiyjHXfr4xsdXzXo2ue2hruSB37yU/OqJ15L5z76RPPvCyo3FmT/9+a/JyjfXJ2v+uiH561vvJOs3/C1552//F0zuBIpAlQLLly/f+OvAWlpaSiu6pDdvZWz5lWQSS4gtnY88jr1pyFlDjlnWKS5Z1LgGAQRcBeJ/B3WV4LzoBL75zW8aH7ZPPvnk6PIkIQQQQAABBBBAAAE/BKRY8qNfv5ScdNX85Cvn/3bjT7Tc9+gfkyeeeyP53xXr/AiSKBCIWODGG29MttxyS+M+0La52rdv3+TjH/94IveIt9xyS3L99dcb140aNSp58cUXk3nz5m08R86Va+RaW5/pYxKLxBRaS+chj2NvGnLWkGOWdYpLFjWuQQABV4H430FdJTgvOgGKL9FNKQkhgAACCCCAAALeCnQ+83oy4eLHktt/tiT545/WeBsngSEQo8DKlSuTgw8+uNeCSP/+/ZPDDjssefDBB5M1a979Ov2v//ov43optNja6tWrN/YhfUmfts3b+mMSm8QYSquPvfZ9KLFnjbOWZ/3XrH35el19brXvfY21zLhqFvVfyxyfsRBAIG4Bii9xz6/q7Ci+qJ5+kkcAAQQQQAABBEoVOOyM3/DTLaWKMxgC/5/AU089lQwbNqzHAsj222+fzJgxI3nzzTe7ZXvssceMPvbcc89uz689sWrVquTKK69MZIz6zdv09xKjxBpCS8cuj2NvGnLWkGOWdYpLFjWuQQABV4H430FdJTgvOgGKL9FNKQkhgAACCCCAAALeChw45VFvYyMwBGIVePTRR5Mtttii26LHoEGDkuuuuy5Zv359rwSdnZ1GP/Jrx1ybjHHttdcmMqZtM1eODRw4MJGYfW+2+H2Pudn4NOSsIccs6wCXLGpcgwACrgIUX1ylOC84gcsvv9z40HvKKacElwcBI4AAAggggAACCPgvQPHF/zkiwrgE7r///qStrc2456ttpB577LHJ66+/7pz07373O6OvkSNHOl9fO1HGlLFrcaS/SswSu88tHbM8jr1pyFlDjlnWKS5Z1LgGAQRcBeJ/B3WV4LzoBCi+RDelJIQAAggggAACCHgrQPHF26khsAgFHn744W4LL1tttVWm4sb8+fONgslHP/rRzHpSYJFYbBu7UoCRHHxttph9jTWvuDTkrCHHLOsBlyxqXIMAAq4CFF9cpTgvOAGKL8FNGQEjgAACCCCAAALBClB8CXbqCDwwAfkJlQEDBliLGrvuumuydOnSTBk9+eSTRp8f+chHMvVVu0hikZhsm7uSg+TiY7PF62OcecakIWcNOWZZE7hkUeMaBBBwFaD44irFecEJXHbZZcaH3GnTpgWXBwEjgAACCCCAAAII+C9A8cX/OSLC8AWWL1/e7R+232uvvZKVK1dmTvK///u/jfvHPfbYI3N/tQslJonNtsG7/fbbJ5KTb80Wq28x5h2Phpw15JhlXeCSRY1rEEDAVYDii6sU5wUnQPEluCkjYAQQQAABBBBAIFgBii/BTh2BBySw9957W4sYUtxYt25dU5ksWLDA6PvDH/5wU33WLpbYuivA7LPPPrXTvPmqcTNaQ84acszyIsIlixrXIICAqwDFF1cpzgtOgOJLcFNGwAgggAACCCCAQLACFF+CnToCD0TAdn8nm6by0ymrVq1qOounnnrKKL586EMfarrfWgcSo8Rq2+iV3Hxqthh9iq+IWDTkrCHHLGsDlyxqXIMAAq4CFF9cpTgvOIHp06cbH2xPPfXU4PIgYAQQQAABBBBAAAH/BSi++D9HRBiuwIsvvpi0t7cb93eDBw9OXn311VwSe/rpp43+//mf/zmXvmudSKzbbrutMY7kJjn60jRuRmvIWUOOWV5DuGRR4xoEEHAVoPjiKsV5wQlQfAluyggYAQQQQAABBBAIVoDiS7BTR+ABCOy3335GwaJPnz7Jww8/nFv0v//9740xdtttt9z6r3UkMUvs6Q1fydGXlo5NHsfeNOSsIccs6xSXLGpcgwACrgLxv4O6SnBedAIUX6KbUhJCAAEEEEAAAQS8FaD44u3UEFjgAnPmzDEKFbJZOnXq1FwzW7RokTHOrrvumusYtc6mTJlijCU5Sa5VtdWrVyezZs1KJkyYYI1t1KhRycSJE5O77rorkXNjaxo24DXkmGVd4pJFjWsQQMBVgOKLqxTnBSdw6aWXGh8aTzvttODyIGAEEEAAAQQQQAAB/wUovvg/R0QYpsDo0aON+7qhQ4cma9asyTWhZ5991hjngx/8YK5j1DqT4oXkkN70lVzLbosXL07Gjx9v/bVu6fhqj+XXpMk1cm0srZZb/ddYcqvlUZ9b7fvac5q/1izqv2r2IHcEEMhXgOJLvp705pEAxRePJoNQEEAAAQQQQACByAUovkQ+waRXG7YZhwAAIABJREFUicC8efOMAoVskN599925x/Pcc88ZY+2yyy65j1PrUHKo3+ytfS85l9HWrVuXTJs2LWltbbXGUYunp69yrfQhfYXebHmGnlM6fg05pnN2eYyLixLnIIBAVgGKL1nluM57AYov3k8RASKAAAIIIIAAAtEIUHyJZipJxCOBcePGGYWBon4V2B/+8AdjrJ133rlQDcklvfErORfdurq6kt13390YOx2L62PpS/oMudlyDTkfW+wacrTl3dsxXHoT4nkEEGhGgOJLM3pc67XAJZdcYnyYPP30072OmeAQQAABBBBAAAEEwhSg+BLmvBG1vwKrVq1K+vfvb9zT3XnnnYUE/fzzzxtjjRgxopCxap1KLumNX8lZci+qLViwIBk8eLAxbjqORh9Ln9J3qM2Wb6i5dBe3hhy7y72n47j0pMNzCCDQrADFl2YFud5bAYov3k4NgSGAAAIIIIAAAtEJUHyJbkpJqGKBm2++2SgQbLvttsnbb79dSGTy90vSm7Af+MAHChmr1qnkIjmlx5Xci2jy0ylFFF5q8Uvfof4ETC2H+q9FzEGVfdbnVvu+ynh8GbtmUf/Vl9iIAwEEwheg+BL+HJJBNwIUX7qB4TACCCCAAAIIIIBA7gIUX3InpUPlAgcddJBRlJg8eXJhKlI0qN98le933HHHwsardSw5pceV3PNu8ndZ8vxVY+mYa49ljBD/Bkwt/vqvec9B1f3V51b7vuqYfBi/ZlH/1Ye4iAEBBOIQoPgSxzyShUWA4osFhUMIIIAAAggggAAChQhQfCmElU6VCrzzzjvJwIEDjaLE448/XpjICy+8YIw3fPjwwsardSw51W/6yveSuxjk2aZNm2aMkx43r8cyVmjNlntoOfQWr4YcezOwPY+LTYVjCCCQlwDFl7wk6cc7gYsvvtj4cHnGGWd4FycBIYAAAggggAACCIQvQPEl/DkkA38EOjs7jXu5IgoS9Rm/+OKLxpg77LBD/SmFfN9doUkM8mryK9VaW1uN/Gybznkck7FkzJCaLe+Q4neJVUOOLg7pc3BJi/AYAQTyFKD4kqcmfXklQPHFq+kgGAQQQAABBBBAIGoBii9RTy/JlSxw3XXXGYWCIn4VV31aS5cuNcYcNmxY/SmFfW/7FWtikFcbP368kZttwznPYzJmSM2We0jxu8SqIUcXh/Q5uKRFeIwAAnkKUHzJU5O+vBKg+OLVdBAMAggggAACCCAQtQDFl6inl+RKFpg0aZJRLLjwwgsLjeKll14yxhw6dGihY9Y6l9zSG8BikEdbvXp10t7ebvSfHi/vxzKmjB1Ks+UfSuyucWrI0dWi/jxc6jX4HgEE8hag+JK3KP15I3DRRRcZHzDPPPNMb+IjEAQQQAABBBBAAIF4BCi+xDOXZFK9wD777GPcy917772FBvbyyy8bY77//e8vdMxa55JbegNYDPJos2bNMvpOj1XUYxk7lGYzCCV21zg15OhqUX8eLvUafI8AAnkLUHzJW5T+vBGg+OLNVBAIAggggAACCCAQvQDFl+inmARLFNh5552NgsHTTz9daASvvPKKMeb2229f6Ji1ziW39AawGOTRJkyYYPSdHquoxxMnTswjhVL6sBmUMnCJg2jIMQsnLlnUuAYBBFwFKL64SnFecAIUX4KbMgJGAAEEEEAAAQSCFSij+HLHz5ckMg7/YRD7Gug3YJvKCga2jdgqjolBHvO85XYfrMxSxs4jhzL6sM1xGeOWOYaGHLN44sJ7apZ1wzU61s2dv3ih6XsTii9NE9KBrwK235t71lln+RoucSGAAAIIIIAAAggELCA34UU3ii86bvTZ0Hk02bSt/L9RYtuArfKYGOSxFtr6D6ys+CJj55FDGX3Y5rqMccscQ0OOWTxx4b01y7rhGh3rRj57N9sovjQryPXeClB88XZqCAwBBBBAAAEEEIhOQG7Ci24UX3Tc6LOh82jS0tKnsoKBbSO2imNikMda6LNpa2WWMnYeOZTRh22Oyxi3zDE05JjFExfeW7OsG67RsW4ovhR9d0P/QQtQfAl6+ggeAQQQQAABBBAISkBuwotuFF903OizocNPvshmcF4/+ULxxe3/Gxo24DXkmOX/n7i4vUay2HINtqGvAYovRd/d0H/QAhdccIHxL3zOPvvsoHMieAQQQAABBBBAAAE/BeTmsuhG8YVNjNA3MVzj52++bJLk9Tdf+LVjbv/f0LABryFH1//H1J+Hi9trpN6M7zHTsgYovhR9d0P/QQtQfAl6+ggeAQQQQAABBBAISkBuQmkIIJCPwM4772z8Q7qnn346n8676eWNN94wxtx66627OTvfw5JbegNYDPJoo0aNMvpOj1XUYxk7lGYzCCV21zg15OhqUX8eLvUafI8AAnkL8Ddf8halP28EKL54MxUEggACCCCAAAIIRC9A8SX6KSbBEgX22Wcfo2Bw7733FhrBn//8Z2PMQYMGFTpmrXPJLb0BLAZ5tAkTJhh9p8cq6vHEiRPzSKGUPmwGpQxc4iAacszCiUsWNa5BAAFXAYovrlKcF5zA+eefb3zIPOecc4LLg4ARQAABBBBAAAEE/Beg+OL/HBFhOAKTJk0y7uXkb3oW2VauXGmMueWWWxY55P/ft+3vlYpBHm3WrFlGXrbN5iKO3XXXXXmkUEoftvxLGbjEQTTkmIUTlyxqXIMAAq4CFF9cpTgvOAGKL8FNGQEjgAACCCCAAALBClB8CXbqCNxDgeuuu84oGBx00EGFRvqXv/zFGHPgwIGFjlnrXHJLbwCLQR5t9erVSXt7u9F/ery8H8uYMnYozZZ/KLG7xqkhR1eL+vNwqdfgewQQyFuA4kveovTnjQDFF2+mgkAQQAABBBBAAIHoBSi+RD/FJFiiQGdnp1EskELIO++8U1gUq1atMsbcYostChuv1rHkJLmlN4DFIK82fvx4o//0eHk/ljFDarb8Q4rfJVYNObo4pM/BJS3CYwQQyFOA4kuemvTllQDFF6+mg2AQQAABBBBAAIGoBSi+RD29JFeyQHcFiccff7ywSOSnNNKbsAMGDChsvFrHjz32mDFu3oWmxYsXJ62trcY46XzzeixjyZghNVvuIcXvEquGHF0c0ufgkhbhMQII5ClA8SVPTfrySuC8884zPlyee+65XsVIMAgggAACCCCAAAJxCFB8iWMeycIfAduv4po8eXJhAa5Zs8a4f9xss80KG6/WseSU3vwt4lesTZs2zRgnPW5ej2Ws0Jot99By6C1eDTn2ZmB7HhebCscQQCAvAYoveUnSj3cCFF+8mxICQgABBBBAAAEEohWg+BLt1JJYRQK33HKLUSzYdtttk7fffruQiNauXWuMJ3+3pMgmuUhO6c1fyT3vtm7dumT33Xc3xkqP3exjGUPGCq3Z8g4th97i1ZBjbwa253GxqXAMAQTyEqD4kpck/XgnQPHFuykhIAQQQAABBBBAIFoBii/RTi2JVSQgf4Olf//+RrHgzjvvLCQiKRikN2H79etXyFi1TiWX9JiSs+ReROvq6koGDx5sjJmOIetj6VvGCLHZcg4xj55i1pBjT/l39xwu3clwHAEE8hCg+JKHIn14KSC/Yiz9JioFGRoCCCCAAAIIIIAAAnkLUHzJW5T+EEiScePGGfd0u+66ayE0b731ljHWe97znkLGqnUquaTvWSXnItuCBQsKKcBI4UX6DrWl50Eex9Y05JhlznDJosY1CCDgKhDfu4lr5pwXvQDFl+inmAQRQAABBBBAAAFvBCi+eDMVBBKRwLx584zihGyU3n333blnuX79emOstra23MepdSg52DZ9Jeeim/x0Sp6/gkz6CvUnXmrWtrmoPRfLVw05ZpkrXLKocQ0CCLgKUHxxleK84AQovgQ3ZQSMAAIIIIAAAggEK0DxJdipI3DPBUaPHm0UKYYOHZqsWbMm18g3bNhgjNPa2prrGLXOVq9enUgO6U1fybWsJr9mbdq0aYnkmI7D9bFcK32E+Dde0s62nNPnhP5YQ45Z5giXLGpcgwACrgIUX1ylOC84gXPOOcf4EHn++ecHlwcBI4AAAggggAACCPgvQPHF/zkiwjAF5syZY9zXyWbplClTck3onXfeMcbZdNNNcx2j1pnEbtvwffTRR2unlPZ18eLFyfjx45P29nZrTLY45Vy5Rq6NpdnyjCW3Wh4acqzl2shXXBrR4lwEEGhUgOJLo2KcH4wAxZdgpopAEUAAAQQQQACB4AUovgQ/hSTgscB+++1nFAb69OmTPPzww7lGnd6ElTHybhKz9JseS3KssslP48yaNSuZMGGCEZvEOmrUqI3PyTlybmwtPR/yOLamIccsc4ZLFjWuQQABV4H43k1cM+e86AUovkQ/xSSIAAIIIIAAAgh4I0DxxZupIJAIBV588UXrT2Zsu+22yauvvppbxulN2JaWltz6lo4kVok5PY78JInk6EtLxyePY28actaQY5Z1iksWNa5BAAFXgfjfQV0lOC86gbPPPtv4UHvBBRdElycJIYAAAggggAACCFQvQPGl+jkggrgFLrvsMuP+TjZN99hjj2TVqlW5JF/kJqzEKLHaxpDcfGq2GH2Kr4hYNOSsIccsawOXLGpcgwACrgIUX1ylOC84AYovwU0ZASOAAAIIIIAAAsEKUHwJduoIPCCBvffe21q82GuvvXL5o+/yky7pjdg8eOQP0kuM6b7lseTkW7PF6VuMecejIWcNOWZZF7hkUeMaBBBwFaD44irFecEJUHwJbsoIGAEEEEAAAQQQCFaA4kuwU0fgAQksX7482X777a1FDClurFy5sqlsbH+LpakOk2RjTN0VXiQXycm3pnEzWkPOGnLM8lrCJYsa1yCAgKsAxRdXKc4LTuCss84yPpRfeOGFweVBwAgggAACCCCAAAL+C1B88X+OiDAOgd/97nfJgAEDjHs92UDdddddk6VLl2ZOtG/fvka/GzZsyNyfxCIx2TZ3JQfJxcdmi9fHOPOMSUPOGnLMsiZwyaLGNQgg4CpA8cVVivOCE6D4EtyUETACCCCAAAIIIBCsAMWXYKeOwAMUePjhh5O2tjZrUWOrrbZK7r///kxZtba2Gn2+/fbbmfqSGCQW28auxC45+NpsMfsaa15xachZQ45Z1gMuWdS4BgEEXAUovrhKcV5wAhRfgpsyAkYAAQQQQAABBIIVoPgS7NQReKACUtzorgAjm6nHHnts8sYbbzSUna2/9evXN9TH66+/vnFs24auHJMxshaHGgqkiZNtsTfRXRCXashZQ45ZFhsuWdS4BgEEXAUovrhKcV5wAhRfgpsyAkYAAQQQQAABBIIVoPgS7NQReMACjz76aDJw4EDrT5fIhuqgQYOS6667LnEtoPTr18/oa926dU5CMoaMJWPaNnPlmMQqMfvebPH7HnOz8WnIWUOOWdYBLlnUuAYBBFwFKL64SnFecAJnnnmm8aH3oosuCi4PAkYAAQQQQAABBBDwX4Dii/9zRIRxCjz11FPJsGHDjHu/+g1V+cP2M2bMSN58880eEfr372/089e//rXHa1atWrWxbxmjfsz09xKjxBpCS8cuj2NvGnLWkGOWdYpLFjWuQQABV4H430FdJTgvOgGKL9FNKQkhgAACCCCAAALeClB88XZqCEyBwMqVK5ODDz64x+KHbLBKceWwww5LHnzwwWTNmjWGTHt7u9HH2rVrjfPkWulD+rIVbNKbuRKbxBhKS8cvj2NvGnLWkGOWdYpLFjWuQQABV4H430FdJTgvOgGKL9FNKQkhgAACCCCAAALeClB88XZqCEyRwI033phsueWWRgHFtrnat2/f5OMf/3hy8sknJ7fccksyb968ZLPNNjOufeaZZzY+J+fIuXKNXGvrM31MYpGYQmvpPORx7E1DzhpyzLJOccmixjUIIOAqEP87qKsE50UncMYZZxgfiC+++OLo8iQhBBBAAAEEEEAAgeoFKL5UPwdEgIAILF++POno6EhaWlqM+0HbJmsRx2RsiUFiCbHZTELMo5GYNeSsIcdG5rx2Li41Cb4igEARAhRfilClTy8EKL54MQ0EgQACCCCAAAIIqBCg+KJimkkyIIEFCxYkhx56aNKnT5/SijAylowpY4fcNG5Ga8hZQ45ZXne4ZFHjGgQQcBWg+OIqxXnBCVB8CW7KCBgBBBBAAAEEEAhWgOJLsFNH4JELPP/888mkSZOSwYMHF1aEkb5lDBkrhqZxM1pDzhpyzPL6wyWLGtcggICrAMUXVynOC07g9NNPNz5cX3LJJcHlQcAIIIAAAggggAAC/gtQfPF/johQt8CGDRuShx56aOOvA9thhx2Me0XbBmxPx6QP+dVi0qf0HVOz5R1TfrZcNOSsIUfb3PZ2DJfehHgeAQSaEaD40owe13otQPHF6+khOAQQQAABBBBAICoBii9RTSfJKBBYunRpcvvttydnnXXWxl8VtsceeyTDhg1Ltt5666StrW3jf/K9HJPn5NeJyblyjVwbc9O4Ga0hZw05Znld4pJFjWsQQMBVgOKLqxTnBSdA8SW4KSNgBBBAAAEEEEAgWAGKL8FOHYEjgEBKQONmtIacNeSYWspOD3FxYuIkBBDIKEDxJSMcl/kvcNpppxk/Sn7ppZf6HzgRIoAAAggggAACCAQnQPEluCkjYAQQ6EZA42a0hpw15NjNku7xMC498vAkAgg0KUDxpUlALvdXgOKLv3NDZAgggAACCCCAQGwCFF9im1HyQUCvgMbNaA05a8gxy6sWlyxqXIMAAq4CFF9cpTgvOAGKL8FNGQEjgAACCCCAAALBClB8CXbqCBwBBFICGjejNeSsIcfUUnZ6iIsTEychgEBGAYovGeG4zH+BU0891fi1Y9OnT/c/cCJEAAEEEEAAAQQQCE6A4ktwU0bACCDQjYDGzWgNOWvIsZsl3eNhXHrk4UkEEGhSgOJLk4Bc7q8AxRd/54bIEEAAAQQQQACB2AQovsQ2o+SDgF4BjZvRGnLWkGOWVy0uWdS4BgEEXAUovrhKcV5wAhRfgpsyAkYAAQQQQAABBIIVoPgS7NQROAIIpAQ0bkZryFlDjqml7PQQFycmTkIAgYwCFF8ywnGZ/wIUX/yfIyJEAAEEEEAAAQRiEaD4EstMkgcCCGjcjNaQs4Ycs7x6ccmixjUIIOAqQPHFVYrzghOYNm2a8TdfLrvssuDyIGAEEEAAAQQQQAAB/wUovvg/R0SIAAJuAho3ozXkrCFHtxX+7rNwebcHjxBAIF8Bii/5etKbRwIUXzyaDEJBAAEEEEAAAQQiF6D4EvkEkx4CigQ0bkZryFlDjlleprhkUeMaBBBwFaD44irFecEJUHwJbsoIGAEEEEAAAQQQCFaA4kuwU0fgCCCQEtC4Ga0hZw05ppay00NcnJg4CQEEMgpQfMkIx2X+C5xyyinGrx27/PLL/Q+cCBFAAAEEEEAAAQSCE6D4EtyUETACCHQjoHEzWkPOGnLsZkn3eBiXHnl4EgEEmhSg+NIkIJf7K0Dxxd+5ITIEEEAAAQQQQCA2AYovsc0o+SCgV0DjZrSGnDXkmOVVi0sWNa5BAAFXAYovrlKcF5wAxZfgpoyAEUAAAQQQQACBYAUovgQ7dQSOAAIpAY2b0Rpy1pBjaik7PcTFiYmTEEAgowDFl4xwXOa/wMknn2z82rFvfvOb/gdOhAgggAACCCCAAALBCVB8CW7KCBgBBLoR0LgZrSFnDTl2s6R7PIxLjzw8iQACTQpQfGkSkMv9FaD44u/cEBkCCCCAAAIIIBCbAMWX2GaUfBDQK6BxM1pDzhpyzPKqxSWLGtcggICrAMUXVynOC06A4ktwU0bACCCAAAIIIIBAsAIUX4KdOgJHAIGUgMbNaA05a8gxtZSdHuLixMRJCCCQUYDiS0Y4LvNfYOrUqcavHbviiiv8D5wIEUAAAQQQQAABBIIToPgS3JQRMAIIdCOgcTNaQ84acuxmSfd4GJceeXgSAQSaFKD40iQgl/srQPHF37khMgQQQAABBBBAIDYBii+xzSj5IKBXQONmtIacNeSY5VWLSxY1rkEAAVcBii+uUpwXnADFl+CmjIARQAABBBBAAIFgBSi+BDt1BI4AAikBjZvRGnLWkGNqKTs9xMWJiZMQQCCjAMWXjHBc5r/AlClTjF87duWVV/ofOBEigAACCCCAAAIIBCdA8SW4KSNgBBDoRkDjZrSGnDXk2M2S7vEwLj3y8CQCCDQpQPGlSUAu91eA4ou/c0NkCCCAAAIIIIBAbAIUX2KbUfJBQK+Axs1oDTlryDHLqxaXLGpcgwACrgIUX1ylOC84AYovwU0ZASOAAAIIIIAAAsEKUHwJduoIHAEEUgIaN6M15Kwhx9RSdnqIixMTJyGAQEYBii8Z4bjMfwGKL/7PEREigAACCCCAAAKxCFB8iWUmyQMBBDRuRmvIWUOOWV69uGRR4xoEEHAVoPjiKsV5wQmcdNJJxt98mTFjRnB5EDACCCCAAAIIIICA/wIUX/yfIyJEAAE3AY2b0Rpy1pCj2wp/91m4vNuDRwggkK8AxZd8PenNIwGKLx5NBqEggAACCCCAAAKRC1B8iXyCSQ8BRQIaN6M15KwhxywvU1yyqHENAgi4ClB8cZXivOAEKL4EN2UEjAACCCCAAAIIBCtA8SXYqSNwBBBICWjcjNaQs4YcU0vZ6SEuTkychAACGQUovmSE4zL/BU488UTj145dddVV/gdOhAgggAACCCCAAALBCVB8CW7KCBgBBLoR0LgZrSFnDTl2s6R7PIxLjzw8iQACTQpQfGkSkMv9FaD44u/cEBkCCCCAAAIIIBCbAMWX2GaUfBDQK6BxM1pDzhpyzPKqxSWLGtcggICrAMUXVynOC06A4ktwU0bACCCAAAIIIIBAsAIUX4KdOgJHAIGUgMbNaA05a8gxtZSdHuLixMRJCCCQUYDiS0Y4LvNfYPLkycavHbv66qv9D5wIEUAAAQQQQAABBIIToPgS3JQRMAIIdCOgcTNaQ84acuxmSfd4GJceeXgSAQSaFKD40iQgl/srQPHF37khMgQQQAABBBBAIDYBii+xzSj5IBC/wJo1a5Jf/OIXyRVXXJFMnDgxGT16dDJixAjjHzHK5rQcl+flPDlfrpPrY2kaNuA15JhlPeKSRY1rEEDAVYDii6sU5wUnQPEluCkjYAQQQAABBBBAIFgBii/BTh2BI6BKYNGiRclZZ52V7Lnnnknfvn2thRbbZrTtmFwv/Uh/0m/IzZZfyPnYYteQoy3v3o7h0psQzyOAQDMCFF+a0eNarwUmTZpkfJD81re+5XXMBIcAAggggAACCCAQpgDFlzDnjagR0CCwatWq5Morr0w+9KEPGffIto3nrMekfxlHxgut2XIOLYfe4tWQY28GtudxsalwDAEE8hKg+JKXJP14J0DxxbspISAEEEAAAQQQQCBaAYov0U4tiSEQrMCf/vSn5LTTTksGDhxYaNElvXkt48m4Mn4oLZ2DPI6tacgxy5zhkkWNaxBAwFUgvncT18w5L3oBii/RTzEJIoAAAggggAAC3ghQfPFmKggEAfUC69evT6ZPn54MGDCg1KJLehNbxpc4JB7fWzp2eRxb05BjljnDJYsa1yCAgKtAfO8mrplzXvQC3/jGN4wPmtdcc030eZMgAggggAACCCCAQPkCFF/KN2dEBBAwBebMmZOMGDHCuBe2bTDLseHDhydHH310csUVVyQPPvhg8uyzz1qvlePyvJwn58t13fWZPi7xSFw+t3TM8ji2piHHLHOGSxY1rkEAAVeB+N5NXDPnvOgFKL5EP8UkiAACCCCAAAIIeCNA8cWbqSAQBFQKbNiwYeOv+urTp0+vRZGPf/zjybXXXpv88Y9/tFq5bkbL9dKP9Ge7pv6YxCW/ikzi9LHVx1r73sc4m4mpllf912b6i+Xaeo/a97HkRh4IIFC9AMWX6ueACAoSoPhSECzdIoAAAggggAACCBgCFF8MEg4ggEBJAq+99lrysY99rMcCSP/+/ZMTTjgh6erq6jWq2gZ0/dfeLpJ+v/a1ryUyTv116e/33HPPROL1raXjlMexNQ05ZpkzXLKocQ0CCLgKxPdu4po550UvQPEl+ikmQQQQQAABBBBAwBsBii/eTAWBIKBK4Lnnnkt22GGHbgseffv2TU488cRk+fLlzi7NbEbLODKejGvrR45JvBK3T80Wq0/x5RGLhhyzOOGSRY1rEEDAVYDii6sU5wUn8PWvf934sPftb387uDwIGAEEEEAAAQQQQMB/AYov/s8RESIQm8Djjz+eDBo0yLjvrW0mjx49OnnmmWcaTrt2ff3XRjuRcWX8+j7qv5e4Ozs7G+22sPPrY6t9X9hgFXVcy6v+a0WheDVsvUfte68CJBgEEAhagOJL0NNH8D0JUHzpSYfnEEAAAQQQQAABBPIUoPiSpyZ9IYBAbwJPP/10stVWW1mLG62trcn06dN766Lb52sb0PVfuz25lyckDomnvq/a9xK/5OFDq8VU/9WHuPKMoT632vd59h9qXzWL+q+h5kLcCCDgnwDFF//mhIhyEqD4khMk3SCAAAIIIIAAAgj0KkDxpVciTkAAgZwE5O+rbLfddtaCxuDBgxP5iZhmWv0mdO37Zvp77LHHEomr1lf9V8nD5e/QNDO+y7X1MdW+d7kupHNqedV/DSn+omKt96h9X9RY9IsAAvoEKL7om3M1GcsfE6y9cda+XnvttWryJ1EEEEAAAQQQQACB8gQovpRnzUgIaBZYu3Ztsttuuxn3unLPu9NOOyVLlixpmqd2/1z/tdlOJS6Jr77P2veSj+RVZavFUv+1yniKGLs+t9r3RYwTWp81i/qvoeVAvAgg4K8AxRd/54bImhSg+NIkIJcjgAACCCCAAAIIOAtQfHGm4kQEEGhC4IgjjrAWMHbZZZdE/th9Hq1+E7r2fR79SnwnoGKuAAAgAElEQVQSZ63P+q+SV5WtPpba91XGU8TYtbzqvxYxTmh91nvUvg8tB+JFAAF/BSi++Ds3RNakAMWXJgG5HAEEEEAAAQQQQMBZgOKLMxUnIoBARoHvfe971sLFsGHDkpdffjljr+ZltQ3o+q/mWdmOSJwSb33fte8lv6paLYb6r1XFUtS49bnVvi9qrJD6rVnUfw0pfmJFAAG/BSi++D0/RNeEwNe+9jXjA911113XRI9cigACCCCAAAIIIICAXYDii92FowggkI+A/NTIoEGDjHvczTbbLFm0aFE+g/y9l/pN6Nr3eQ4g8Urctb5rXyW/vH56p9F4azHUf220D9/Pr8+t9r3vMZcRX82i/msZ4zIGAgjoEKD4omOeVWZJ8UXltJM0AggggAACCCBQiQDFl0rYGRQBNQLd/bqxO+64I3eD+k3o2vd5DyJx1/qu/1rVrx+rj6H2fd45V91fLa/6r1XH5MP49R61732IixgQQCAOAYovccwjWVgEKL5YUDiEAAIIIIAAAgggUIgAxZdCWOkUAQSSJJk/f761UHHUUUcV4lPbgK7/WsRARx55pDUvybeMtnr16mTWrFnJhAkTrHGMGjUqmThxYnLXXXclcm7orX4+a9+HnlMe8dcs6r/m0S99IIAAAiJA8YV1EK3A8ccfb3yA+s53vhNtviSGAAIIIIAAAgggUJ0AxZfq7BkZgdgFDjjgAOPeduutt05ef/31QlKv34SufV/EQBK/5FEbo/ZV8i2yLV68OBk/fnzS3t5ujF2LIf1VzpVr5NpQWzoneUxLrGsAFwQQQCAvAf5Pm5ck/XgnQPHFuykhIAQQQAABBBBAIFoBii/RTi2JIVCpwJNPPmndHL7pppsKi6vMTXrJwzae5J13W7duXTJt2rSktbXVOqYtjvQxuVb6kL5Ca+lc5DGN4gtrAAEEihXg/7TF+tJ7hQIUXyrEZ2gEEEAAAQQQQECZAMUXZRNOugiUJNDR0WEUCoYPH55s2LChsAjK3KSXPCSf9JiSd56tq6sr2X333Y1x0uO6Ppa+pM+Qmi23kOIvKlZcipKlXwQQEAGKL6yDaAW++tWvGh+srr/++mjzJTEEEEAAAQQQQACB6gQovlRnz8gIxCqwdu3aZPPNNzfua2+++eZCUy57M1rySY8peUv+ebQFCxYkgwcPNsZIj9noY+lT+g6l2fILJfYi48SlSF36RgABii+sgWgFKL5EO7UkhgACCCCAAAIIeCdA8cW7KSEgBIIXmDlzplEwGDhwYOG/8qrszWj5FV6SV3pcyb/ZJj+dUkThpRar9B3KT8DUYq7/2qxvDNfXe9S+jyEvckAAAT8EKL74MQ9EUYAAxZcCUOkSAQQQQAABBBBAwCpA8cXKwkEEEGhC4JBDDjEKEscdd1wTPbpdWtuArv/qdmX2sySv+vHke8m/mSZFnTx/1Vg6vtpjGSOEvwFTi7f+azO+sVxb71H7PpbcyAMBBKoXoPhS/RwQQUECFF8KgqVbBBBAAAEEEEAAAUOA4otBwgEEEGhSYNCgQUZBYu7cuU322vvltQ3o+q+9X9XcGZJX/XjyveTfTJs2bZrRZ3qMvB7LWL43W66+x1xGfLiUocwYCOgVoPiid+6jz9z2L2duuOGG6PMmQQQQQAABBBBAAIHyBSi+lG/OiAjELPDEE08YhQP5OyjyB+qLblVsRktetr9vIw5Z2uLFi5PW1lbD0JZbHsdkLBnT52bL0+d4y4oNl7KkGQcBnQIUX3TOu4qsKb6omGaSRAABBBBAAAEEvBCg+OLFNBAEAtEIXH/99UbhYP/99y8lv6o2oyW/9NjikKWNHz/e6Cvdd96PZUyfmy1fn+MtKzZcypJmHAR0ClB80TnvKrKm+KJimkkSAQQQQAABBBDwQoDiixfTQBAIRCMwefJko3hw/vnnl5JfVZvRkl96bHFotK1evTppb283+kr3nfdjGVPG9rXZ8vU11jLjwqVMbcZCQJ8AxRd9c64m44kTJxoftm688UY1+ZMoAggggAACCCCAQHkCFF/Ks2YkBDQI7Lvvvsb97D333FNK6lVtRkt+6bHFodE2a9Yso590v0U9lrF9bbacfY21zLhwKVObsRDQJ0DxRd+cq8mY4ouaqSZRBBBAAAEEEECgcgGKL5VPAQEgEJXALrvsYhQQnnrqqVJyrGozWvJLjy0OjbYJEyYY/aT7Leqx7EP42mw5+xprmXHhUqY2YyGgT4Dii745V5MxxRc1U02iCCCAAAIIIIBA5QIUXyqfAgJAICqB973vfZUVEGyb0VUdE4dG26hRoyqzk7F9bbY59DXWMuPCpUxtxkJAnwDFF31zriZj2792uemmm9TkT6IIIIAAAggggAAC5QmUUXy54+dLEhmH/zBgDcS/BjZtK/9vltg2oas+Jg6Nrve2/gMrK77I2I3GW9b5trksa2yfx8El/v+f+rz+iM3v9XfnL15o+maC4kvThHTgqwDFF19nhrgQQAABBBBAAIH4BOTmuehG8cXvG3Q2UJifPNdAS0ufygoIts3oqo6JQ6OufTZtrcxOxm403rLOt81hWWP7PA4u/L/b5/VJbNWuT/ns3Wyj+NKsINd7K0DxxdupITAEEEAAAQQQQCA6Abk5LrpRfKn2BpwNEPzLXAP85MsmGwsoWX7yheKL/bVKkQGXMv8fxlj29YZLWC4UX4q+u6H/oAXGjx9v/GuXm2++OeicCB4BBBBAAAEEEEDATwG5mS66UXwJ64adDRbmq5k10G/ANsb9rG3zPPZj4tCoI792zP7as62VRm1jPB8X+3qJca7JibludA1QfCn67ob+gxag+BL09BE8AggggAACCCAQlIDczBXdKL6wadDopgHnh7tmNh/0D0bxZfSRtzRciMiyBqrajJb80mOLQ6M5bLndB41+0v0W9VjGbjTess635VzW2D6Pg0u4/5/0eV0RWxzriuJL0Xc39B+0AMWXoKeP4BFAAAEEEEAAgaAE5CabhgACCOQlsO+++xoFhHvuuSev7nvsx7YZ3eMFOT0p+aXHFodGm+1XkKf7LerxxIkTGw23tPNtOZc2uMcD4eLx5BAaAhEI8DdfIphEUrALHHvsscYHt1tuucV+MkcRQAABBBBAAAEEEGhCgOJLE3hcigAChsDkyZON+9nzzz/fOK+IA1VtRkt+6bHFodE2a9Yso590v0U9vuuuuxoNt7TzbTmXNrjHA+Hi8eQQGgIRCFB8iWASScEuQPHF7sJRBBBAAAEEEEAAgfwFKL7kb0qPCGgWuOGGG4wCwv77718KSVWb0ZJfemxxaLStXr06aW9vN/pK9533YxlTxva12fL1NdYy48KlTG3GQkCfAMUXfXOuJmOKL2qmmkQRQAABBBBAAIHKBSi+VD4FBIBAVAJPPPGEUTzYfPPNkw0bNhSeZxWb0ZKX5JceWxyyNNuvIU/3nfdjGdPnZsvX53jLig2XsqQZBwGdAhRfdM67iqwpvqiYZpJEAAEEEEAAAQS8EKD44sU0EAQCUQkMGjTIKEbMnTu38Byr2IyWvNLjSv5Z2+LFi5PW1lajz/QYeT2WsWRMn5stV5/jLSs2XMqSZhwEdApQfNE57yqy7ujoMD5offe731WRO0kigAACCCCAAAIIlCtA8aVcb0ZDQIPAIYccYtzTHnfccYWnXsVmtOSVHlfyb6ZNmzbN6DM9Rl6PZSzfmy1X32MuIz5cylBmDAT0ClB80Tv30WdO8SX6KSZBBBBAAAEEEEDAGwGKL95MBYEgEI3AzJkzjeLBwIEDk3Xr1hWaY9mb0ZKP5JUeV/Jvpkm/u+++u9FvepxmH8sYRc9JMw61a2151p7T/BUXzbNP7ggUL0DxpXhjRqhIgOJLRfAMiwACCCCAAAIIKBSg+KJw0kkZgYIF1qxZY/07KDfffHOhI5e9GS35pMeUv/+ydu3apvPs6upKBg8ebPSfHi/rY+lbxgih2XIMIe6iY8SlaGH6R0C3AMUX3fMfdfZf+cpXjA9Y3/ve96LOmeQQQAABBBBAAAEEqhGg+FKNO6MiELuA7R8VDh8+PJE/UF9UK3MzWvKQfNJjSt55tQULFhRSgJHCi/QdSksby2NaYqw9XFgVCCCQpwD/p81Tk768EqD44tV0EAwCCCCAAAIIIBC1AMWXqKeX5BCoTODJJ5+0bg7fdNNNhcVU5ia95GEbT/LOs8lPp+T5K8ikr1B+4qXmaHOuPaf5Ky6aZ5/cEShegOJL8caMUJEAxZeK4BkWAQQQQAABBBBQKEDxReGkkzICJQkccMABRoFi6623Tl5//fVCIihrM1rilzzS40m+RTT5uyzTpk1LWltbjTHTMXT3WK6VPkL4Gy9pQ1tO6XM0PsZF46yTMwLlCVB8Kc+akUoWOOaYY4wPVLfeemvJUTAcAggggAACCCCAgAYBii8aZpkcEahGYP78+ca9rWwYH3nkkYUEVNZmtMRvG0vyLbItXrw4GT9+fNLe3m4d3xaTnCvXyLWhNlteoeaSZ9y45KlJXwggkBag+JIW4XE0AhRfoplKEkEAAQQQQAABBLwXoPji/RQRIAJBCxxxxBHWQsEdd9yRe15lbEZL3LZxJM+y2urVq5NZs2YlEyZMsMYyatSojc/JOXJu6M3mHXpOecSPSx6K9IEAAt0JUHzpTobjwQtQfAl+CkkAAQQQQAABBBAIRoDiSzBTRaAIBCmwfPnyZNCgQUaRYLPNNksWLVqUa05Fb0ZLvBJ3ehzJT/KsoqVjkcexNQ05ZpkzXLKocQ0CCLgKxPdu4po550UvcPTRRxsf5r7//e9HnzcJIoAAAggggAACCJQvQPGlfHNGRECbgPwabdtG8bBhw5KXX345Nw7bGHl1LnFKvLYxqvw14bZ48srZl3405JjFGpcsalyDAAKuAhRfXKU4LzgBii/BTRkBI4AAAggggAACwQpQfAl26ggcgaAEDj/8cGvhYpdddsntp0aK2oyWn2rZeeedrfGX+evGbBNeVM62sao6piHHLLa4ZFHjGgQQcBWg+OIqxXnBCVB8CW7KCBgBBBBAAAEEEAhWgOJLsFNH4AgEJbB27dpkt912sxYwpLDxwgsvNJ1PEZvREtdOO+1kjVvykbyqbEXkXGU+trE15GjLu7djuPQmxPMIINCMAMWXZvS41muBo446yvhgd9ttt3kdM8EhgAACCCCAAAIIhClA8SXMeSNqBEIU6OrqSrbbbjvjflc2kQcPHpw8/vjjTaWV92a0xCNx2fqVPCSfqpsttqpjynt8DTlmMcMlixrXIICAqwDFF1cpzgtOgOJLcFNGwAgggAACCCCAQLACFF+CnToCRyBIgaeffjrZaqutrAWN1tbWZPr06ZnzynMzWuKQeGx9SvyShw/NFp8PceUZg4Ycs3jhkkWNaxBAwFWA4ourFOcFJ0DxJbgpI2AEEEAAAQQQQCBYAYovwU4dgSMQrID8REl3BRjZUB49enTyzDPPNJxfHpvRMq6Mb+tLjg0aNCjp7OxsOLaiLrDFWdRYVfWrIccstrhkUeMaBBBwFaD44irFecEJUHwJbsoIGAEEEEAAAQQQCFaA4kuwU0fgCAQt8NxzzyU77LBDt0WOvn37JieeeGIif+zetTWzGS3jyHgyrq0fOSbxStw+NVusPsWXRywacszihEsWNa5BAAFXAYovrlKcF5zAkUceaXzYmzlzZnB5EDACCCCAAAIIIICA/wIUX/yfIyJEIFaB1157LfnYxz5m3P/Wbyr3798/OeGEE5z+vkr9dbXve7OTv9si/cs4tWtsX/fcc89E4vWt2WL1Lcb/1969QNlVnvfBj2RFQbKMQFjCsUJkWmO3kVNbaWhMmhJIA2lKHHBxpFCnaSpWm0tXhYv52iQf8arLShx1FTldRXWJlaahGAeTYAdXvlSRbCPbILDNxTaOCViCmIsFRtbFVoRkv996pt8Zzpy9R3PmnL332ZffXos1c/bZ+32f5/cedGb2f2bPuPV0ocdRjLiMouYcAgSGFRC+DCvluMYJCF8at2QKJkCAAAECBAg0VkD40tilUziBVggcP348/fqv/3pauHDhScOPuNB83nnnpRtuuCE99thjub0PezE6zo9xYry8c/r3RV1RX9RZx62/1t7ndaxznJp6ffV/HGe8tpzb79H7vC296YMAgckLCF8mvwYqKElA+FISrGEJECBAgAABAgQyAsKXDIkdBAhMQGDnzp3pnHPOmTMM6V1kPvvss9Mv/dIvpeuvvz7dcccd6aGHHso9N/bH83FcHB/n9caY62PUE3XVecvroc71jlJbF3rkMoqAcwgQKFNA+FKmrrEnKvALv/ALmS8G/9f/+l8TrcnkBAgQIECAAAEC7RQQvrRzXXVFoIkCx44dS+94xzvSsmXLMt8T512AL2tfzB91RD113/IM6l7zfOvrQo/zNYnjuYyi5hwCBIYVEL4MK+W4xgkIXxq3ZAomQIAAAQIECDRWQPjS2KVTOIHWCjz99NNTt/pavnx57gXmvIvOReyL+eIWYzF/U7a8vptS+7B1dqHHYS36j+PSr+FzAgSKFhC+FC1qvNoICF9qsxQKIUCAAAECBAi0XkD40vol1iCBxgocPHhw6nZhr33ta0sNYWL8uC1ZzNe0rQsX4LvQ4yivOy6jqDmHAIFhBYQvw0o5rnECb37zmzNfWN58882N60PBBAgQIECAAAEC9RcQvtR/jVRIgEBKX/jCF9K1116bXv/616dFixZlvmfOuxA92744P8aJ8WLcJm95PTa5n7zau9BjXt9z7eMyl5DnCRAYR0D4Mo6ec2stIHyp9fIojgABAgQIECDQKgHhS6uWUzMEOiFw+PDh9NGPfjT95//8n9O/+lf/Kl1wwQXpnHPOSS972cum/l7Mi170oqmP8Tj2x/NxXBwf5x05cqQ1Tl24AN+FHkd5QXIZRc05BAgMKyB8GVbKcY0TEL40bskUTIAAAQIECBBorIDwpbFLp3ACBAjk/gZQ21iEDPkryiXfxV4CBIoREL4U42iUGgr803/6TzNfQL3nPe+pYaVKIkCAAAECBAgQaLqA8KXpK6h+AgS6LNCFC/Bd6HGU1zCXUdScQ4DAsALCl2GlHNc4AeFL45ZMwQQIECBAgACBxgoIXxq7dAonQIBA5gc344J82zYhQ/6Kcsl3sZcAgWIE2vduUoyLUVogIHxpwSJqgQABAgQIECDQEAHhS0MWSpkECBDIEejCBfgu9JiztHPu4jInkQMIEBhDQPgyBp5T6y1wxRVXZH565ZZbbql30aojQIAAAQIECBBopIDwpZHLpmgCBAhMCXThAnwXehzl5cxlFDXnECAwrIDwZVgpxzVOQPjSuCVTMAECBAgQIECgsQLCl8YuncIJECCQ+cHNuCDftk3IkL+iXPJd7CVAoBiB9r2bFONilBYICF9asIhaIECAAAECBAg0RED40pCFUiYBAgRyBLpwAb4LPeYs7Zy7uMxJ5AACBMYQEL6MgefUegsIX+q9PqojQIAAAQIECLRJQPjSptXUCwECXRPowgX4LvQ4yuuWyyhqziFAYFgB4cuwUo5rnMDP//zPZ351+L3vfW/j+lAwAQIECBAgQIBA/QWEL/VfIxUSIEBgNoEuXIDvQo+zre/J9nM5mY7nCBAYV0D4Mq6g82srIHyp7dIojAABAgQIECDQOgHhS+uWVEMECHRIoAsX4LvQ4ygvWS6jqDmHAIFhBYQvw0o5rnECwpfGLZmCCRAgQIAAAQKNFRC+NHbpFE6AAIHMXTPignzbNiFD/opyyXexlwCBYgTa925SjItRWiCwYcOGzBdQf/zHf9yCzrRAgAABAgQIECBQNwHhS91WRD0ECBAYXqALF+C70OPwK/7CkVxesPAZAQLFCwhfijc1Yk0EhC81WQhlECBAgAABAgQ6ICB86cAia5EAgdYKdOECfBd6HOUFymUUNecQIDCsgPBlWCnHNU5A+NK4JVMwAQIECBAgQKCxAsKXxi6dwgkQIJC5a0ZckG/bJmTIX1Eu+S72EiBQjED73k2KcTFKCwTWr1+f+QLq1ltvbUFnWiBAgAABAgQIEKibgPClbiuiHgIECAwv0IUL8F3ocfgVf+FILi9Y+IwAgeIFhC/FmxqxJgLCl5oshDIIECBAgAABAh0QEL50YJG1SIBAawW6cAG+Cz2O8gLlMoqacwgQGFZA+DKslOMaJyB8adySKZgAAQIECBAg0FgB4Utjl07hBAgQyNw1Iy7It20TMuSvKJd8F3sJEChGoH3vJsW4GKUFAj/3cz+X+QLqfe97Xws60wIBAgQIECBAgEDdBIQvdVsR9RAgQGB4gS5cgO9Cj8Ov+AtHcnnBwmcECBQvIHwp3tSINREQvtRkIZRBgAABAgQIEOiAgPClA4usRQIEWivQhQvwXehxlBcol1HUnEOAwLACwpdhpRzXOAHhS+OWTMEECBAgQIAAgcYKCF8au3QKJ0CAQOauGXFBvm2bkCF/Rbnku9hLgEAxAu17NynGxSgtEHjTm96U+QLqtttua0FnWiBAgAABAgQIEKibgPClbiuiHgIECAwv0IUL8F3ocfgVf+FILi9Y+IwAgeIFhC/FmxqxJgLCl5oshDIIECBAgAABAh0QEL50YJG1SIBAawW6cAG+Cz2O8gLlMoqacwgQGFZA+DKslOMaJyB8adySKZgAAQIECBAg0FgB4Utjl07hBAgQyNw1Iy7It20TMuSvKJd8F3sJEChGoH3vJsW4GKUFAsKXFiyiFggQIECAAAECDREQvjRkoZRJgACBHIEuXIDvQo85SzvnLi5zEjmAAIExBIQvY+A5td4Cl19+eeanV/7kT/6k3kWrjgABAgQIECBAoJECwpdGLpuiCRAgMCXQhQvwXehxlJczl1HUnEOAwLACwpdhpRzXOAHhS+OWTMEECBAgQIAAgcYKCF8au3QKJ0CAQOYHN+OCfNs2IUP+inLJd7GXAIFiBNr3blKMi1FaICB8acEiaoEAAQIECBAg0BAB4UtDFkqZBAgQyBHowgX4LvSYs7Rz7uIyJ5EDCBAYQ0D4MgaeU+st8E/+yT/J/PTKn/7pn9a7aNURIECAAAECBAg0UkD40shlUzQBAgSmBLpwAb4LPY7ycuYyippzCBAYVkD4MqyU4xonIHxp3JIpmAABAgQIECDQWAHhS2OXTuEECBDI/OBmXJBv2yZkyF9RLvku9hIgUIxA+95NinExSgsEhC8tWEQtECBAgAABAgQaIiB8achCKZMAAQI5Al24AN+FHnOWds5dXOYkcgABAmMICF/GwHNqvQXe+MY3Zn565fbbb6930aojQIAAAQIECBBopIDwpZHLpmgCBAhMCXThAnwXehzl5cxlFDXnECAwrIDwZVgpxzVOQPjSuCVTMAECBAgQIECgsQLCl8YuncIJECCQ+cHNuCDftk3IkL+iXPJd7CVAoBiB9r2bFONilBYICF9asIhaIECAAAECBAg0RED40pCFUiYBAgRyBLpwAb4LPeYs7Zy7uMxJ5AACBMYQEL6MgefUegtcdtllmZ9eef/731/volVHgAABAgQIECDQSAHhSyOXTdEECHRQYN++fenmm29O1157bVq/fn1at25d5tpBXJBfs2bN1HNxTBwb58S5Td2EDPkrxyXfxV4CBIoREL4U42iUGgoIX2q4KEoiQIAAAQIECLRUQPjS0oXVFgECjRc4fvx42r59e9q4cWM6++yzc4OWvAvws+2LMWKsGDPGbsqW109Tai+zTi5l6hqbAAHhi9dAawWEL61dWo0RIECAAAECBGonIHyp3ZIoiACBjgs8/PDDadOmTWnVqlVjBy55F+hjX4wdc8Rcdd/yeqh7zVXUx6UKZXMQ6K6A8KW7a9/6zi+99NLMF1gf+MAHWt+3BgkQIECAAAECBKoXEL5Ub25GAgQI5Ancd999U7cTW7hwYeaaQN6F9iL2xVxxe7KYu65bXp91rbXKurhUqW0uAt0TEL50b80707HwpTNLrVECBAgQIECAwMQFhC8TXwIFECDQcYH9+/dP3Q5swYIFlYUugxfuY+64JVnUUrdtsNZ4bEu5rxUuBAgQKErAv7RFSRqndgLCl9otiYIIECBAgAABAq0VEL60dmk1RoBAAwRuvPHGdNppp+VeSB8MHRYtWpTOO++8dM0116Rt27al3bt35563d+/eqefimDg2zolzB8fLexy1RE112vLqrFN9k6qFy6TkzUugGwLCl26scye7FL50ctk1TYAAAQIECBCYiIDwZSLsJiVAoOMCBw4cSJdffvmcgciSJUvShg0b0h133JGOHDmSURv2Avzhw4enxoixYsy88/r3RW1RYx22/rp6n9ehrknX0LPo/zjpmsxPgEB7BIQv7VlLnQwI/OzP/mzmC6E/+7M/GzjKQwIECBAgQIAAAQLjCwhfxjc0AgECBOYj8MADD6Q1a9Zkvu/vv4i+evXqtGXLlnTo0KGTDt1/Tu/zk56QUjp48GC6/vrrU8zROyfvY9QYtU56y6tt0jXVYX4udVgFNRBor4Dwpb1r2/nOhC+dfwkAIECAAAECBAhUJiB8qYzaRAQIEEi7du1Kp5566qyhx4oVK9LWrVvTsWPHhtIa5wJ8zHHDDTekmDNvnNi3fPnyqZqHKqakg/JqK2mqRg3LpVHLpVgCjRMQvjRuyRQ8rIDwZVgpxxEgQIAAAQIECIwrIHwZV9D5BAgQGE7g9ttvT4sXL5416LjyyivTM888M9xg//9RRVyAjzlj7ryxYl/UHLVPasura1K11GleLnVaDbUQaJ+A8KV9a6qj/1/gDW94Q+aLnri/q40AAQIECBAgQIBA0QLCl6JFjUeAAIGswI4dO2YNXk4//fSRw40iL8BHwBK15I0ZAUz0MIktr55J1FG3ObnUbUXUQ6BdAsKXdq2nbvoEhC99GD4lQIAAAQIECBAoVUD4UrV8IqQAACAASURBVCqvwQkQIJDuueeetGzZstxQY+3atWnfvn0jKxV9AT5qiZryxo0eopeqt7xaqq6hjvNxqeOqqIlAewSEL+1ZS50MCAhfBkA8JECAAAECBAgQKE1A+FIarYEJECCQ9u/fP+sftj///PPTgQMHxlIq4wJ81BS15Y29evXqqZ7GKnqeJ+fVMc8hWnk4l1Yuq6YI1EZA+FKbpVBI0QI/8zM/k/ki54Mf/GDR0xiPAAECBAgQIECAQBK+eBEQIECgPIGLLroo8/19XDSPcOPo0aNjT1zWBfiobbYA5uKLLx677vkMUFaP86mhjsdyqeOqqIlAewSEL+1ZS50MCAhfBkA8JECAAAECBAgQKE1A+FIarYEJEOi4wObNm3ODl3Xr1qWDBw8WolPmBfioMWrNmyN6q2rLm7+ques8D5c6r47aCDRfQPjS/DXUwSwCwpdZYOwmQIAAAQIECBAoXED4UjipAQkQIJD27t2bli5dmgkuVq1alZ544onChMq+AB+1rly5MtNH9BY9VrGV3WMVPZQxB5cyVI1JgEBPQPjSk/CxdQKXXHJJ5gub//2//3fr+tQQAQIECBAgQIDA5AWEL5NfAxUQINA+gbzv6xcuXJh27NhRaLNVXICPmqP2wbmixyq2wXnjsS1l1oOLVwUBAkUK+Je2SE1j1Uog74s04UutlkgxBAgQIECAQIUCx44dS3feeWf68Ic/nD772c/mzjzMMbkn2ulvvngNECBAoGCBnTt35l4Yf+tb31rwTNVdgL/66qtze4pey96EL/nCXPJd7CVAoBgB4UsxjkapoYDwpYaLoiQCBAgQIECgVIFDhw6l73znO7lz/NEf/dGMCz5f/epXM8cNc0zmJDumBPzmixcCAQIEihW44IILZrxvxUXys846Kx05cqTYiVJ14cvhw4enehi84B+9lrEdOHAg3XTTTWnjxo0Zy6jh3HPPnXoujolju7gNrkU8thEgQKAoAf+iFCVpnNoJ/ON//I8zX1xs3769dnUqiAABAgQIEJiMwDe+8Y3027/92yl+CjX++93f/d0UF0WauL3//e9Pq1evnvraJ+6D//jjj2fa+B//43/M+NroscceG+mYzEl2TAkIX7wQCBAgUJzA7t27Z7xn9S6Q33rrrcVN0jdSb/z+j31PF/pp9NA/T+/z6Lmo7f77709XXHFFWrx4ce5cvTn7P8axcU6c26Wt36D3eZf61ysBAuUKCF/K9TX6BAWELxPENzUBAgQIEGiAwNvf/vbMBYnf+Z3faUDl2RLf+MY3zuglfoJ1cBO+DIoU+1j4Uqyn0QgQ6LZAhAC9C+G9j2vXri0NpTdH/8fSJkspRS/9c8Xn0fO423PPPTf1mywLFizIjD8432yP49z4TZkYqwtbnkMX+tYjAQLVCAhfqnE2ywQEhC8TQDclAQIECBBokMA555yTuTDxAz/wAw3q4IVS3/SmN83oJYKWwU34MihS7GPhS7GeRiNAoLsCBw8eTEuWLJnxvhYXyG+55ZbSUKq+AB+9DM4ZPUfvo2579uzJvaXZ4DzDPo5bvMWYbd/yPNres/4IEKhOQPhSnbWZKhYQvlQMbjoCBAgQINAggbvvvjtz0aP3zfdsf4y+zu3dfvvtU7cdi59Wfd3rXpf+6q/+KlOu8CVDUugO4UuhnAYjQKDDAu9+97sz79ErV65Mzz//fGkqva8B+j+WNllKU71ET/3zxefR+yjbhz70obR06dLMeIPjz/dxjBljt3nLM2lzv3ojQKBaAeFLtd5mq1Dgp3/6pzNfeLT9i4YKeU1FgAABAgQaLfCv//W/znyd0Pvm+y1veUtjezt69OistQtfZqUp5AnhSyGMBiFAgEC69NJLM+/RV111Vakyva8B+j+WOmFKKXrqny8+j97nu915553plFNOyYw1OPaoj2PsmKOtW55LW3vVFwEC1QsIX6o3N2NFAsKXiqBNQ4AAAQIEGiYQPzn70pe+dPoixS//8i+nM888c/rxy172snTixImGdTV3ucKXuY3GOUL4Mo6ecwkQIPB/BeL9d/ny5dPvyb0L4/Ebq2VuvXn6P5Y5X4yd91u40ft8vgZ58sknZ3wN019/kZ/H10kxVxu3PKc29qknAgQmIyB8mYy7WSsQEL5UgGwKAgQIECDQQIEPfvCDMy7q7N69O/2bf/NvZuz7yEc+Mmdn3/nOd9KXv/zl9PnPfz4dOHBgxvFxz/Y77rgjvetd70qf/OQn0ze/+c0Zzw/7IG4fFr+5+9/+239Lf/zHf5w+97nPpZh3cIt9X/nKV6Zqme3iSNHhS1wcuvfee9Ott96abrjhhvRf/+t/TR/4wAfSI488klvjYM1teyx8aduK6ocAgUkIxN8YGbwYPt9AYpS6B+eMx2VvswVN8/k7K5dddlnGK6+XIvbFXG3c8mza2KeeCBCYjED57yaT6cusBNI/+kf/KPNFyIc//GEyBAgQIECAQMcF1q9fP/01Qvwx2Qgu7rrrrul98U34m9/85jmV3vOe90yf88M//MNTx3/84x9Pr3/969OLXvSi6edivHj8cz/3c+nw4cNzjhv1bN26NZ1xxhkzxuhdHFi9enX6vd/7vRk/Gdtfy8KFC9NTTz2Vmaeo8OX+++9P//yf//N06qmn5tYXdYbHpz/96UwNbd4hfGnz6uqNAIGqBOL9r/d+1/s4yq245ltvb67+j/MdY5Tj826xFgbDbDt37sxY9ddfxucxZ9u2PKe29agfAgQmJyB8mZy9mUsWEL6UDGx4AgQIECDQQIH4jZT++6Jfc801012cffbZ0xcxXvziF6cjR45MP5f3SX+Y8YM/+IPpd37nd1L8wfu8b+J7++K4Z555Jm+4qX3xWys/+ZM/edIxemNdccUV0+P01xLPP/bYY9PP9T4p4pj/+T//ZyZY6tUz+DEs4rdiurIJX7qy0vokQKBMgU2bNmXeA6+77royp5wae/A9LB5XsUVvg3OHwTDbhRdemDl3cKyiH8ecbdvyjNrWo34IEJicQDXvJpPrz8wdFhC+dHjxtU6AAAECBGYR+IM/+IMZFyo++9nPTh/5m7/5mzOeu+mmm6afy/tkMMzo/+Z9xYoV6fzzz0/xWyr9++Pza6+9Nm+4qX15PwH7qle9Kr3hDW9Ir3vd69KiRYumx1u8ePH0OIO1lBW+vPGNb5yeP3o555xz0oYNG9Jb3vKW9PM///Np5cqVM56P3ywa9ZZr08015BPhS0MWSpkECNRa4OKLL57xPhLvNbfddlvpNQ++V8fjKrbobXDuMJhri1t8zvUDH4PjFvE45oy527TlubSpP70QIDBZgWreTSbbo9k7KvBTP/VTmS9ihrl/e0e5tE2AAAECBDoh0P9TohEc9G9f+MIXZnztMNfFj8HAo/fN+9VXXz3jt2b+03/6TzMukEQwkxdIDN4+JI6LvxfTv8UFj7h9Wcz1kpe8ZPqpwVrKCl/+2T/7Z1Nz/8zP/Ez61Kc+NT1/75PnnnsuXXDBBTMc3/e+9/WebvVH4Uurl1dzBAhUJPDqV796xntIvN89+OCDpc/eew/v/1j6pClN9dY/Z3weBnNtW7ZsyTgNjlPW45i7TVueU5v60wsBApMVEL5M1t/sJQoIX0rENTQBAgQIEGigwOOPP57i76H0vsl+29velukibgvWez7+Tkve307pnTQYeMR5/+E//Ife0zM+RljRGzc+9v/GTe/A+M2W/mPij9nPtv3Jn/zJ1N+F6T0/WEtZ4cvXv/719Oijj/amzf34wAMPzOhj8+bNuce1aefXnjuaNvzmJ0pv6T0feTRFyOM/Bl4DXgNtfQ2csuylM95D+t8Xu/J5GMy1vi975Y9NzCnmnqu+Jj2f97pqUv1q9X7gNVDea+CWj35l7K/vhS9jExqgrgLCl7qujLoIECBAgMBkBH73d393xoWKhx56KFPIO97xjhnHXH/99ZljejsGA4/Zgpc4/vbbb58x7gc/+MHeMFMfv/GNb8x4Pn57ZD7bYC1lhS/D1hR/M6d3MeNXfuVXhj2tccc99vSRdPOHH03/8rfvSnu+OPvf8imqMeFLed9cu3DB1mugHq+BFy1eOv3+0Xsf6drHMJjr9fji07O3Na3KKeaeq74mPZ/n1qT61VqPf7usQzvXIb72HncTvowr6PzaCuTdK/ajH/1obetVGAECBAgQIFCuwGte85rpCzqvfe1rcyfbt2/fjFuErVu3Lve42DlM4NE7+f7775+eO77J//3f//3eU1MfP/OZz8x4ftu2bTOen+vBMLUUdcxctcTzr3zlK6f7+YVf+IVhTqn9MfHbLZ/50rPpT3c9ljbf9IX0L97+qfRv33lvev/HH09Hjp6opH7hSzu/sXfBxrp6DbzwGliw4IXfUM27KN6FfWEw12tikiHVMOHQXPXX6fm811Sd6lPLC/8+sGBR9WtA+FLJtzgmaaqA8KWpK6duAgQIECBQvMBg+BG/4TLb9qM/+qPTwUF8Q/7FL34x99BhwozeiU8//fSMMd/5znf2npr6+N73vnfG8/H3X+azDVNLUcf06nryySfTH/7hH6b/+B//Y/rVX/3VdNlll6X4zeP4b9GiRdP91CV8OfHt76Rjx7+dvvXXJ9KRbx1PBw4dS09//Vtp31NH0kNfOZDufejZ9LHPPJU+8InH0x9tfyS9870Ppd/67/elX37H3enyf/fx9Etv/9TU4z/84F+mTz6wP33j8LEeRWUfhS8uOlR90cF8XnNVvwYmGSrkXYSfxL5hwo1JhlTDhENVv27GmS9vjccZz7n+3fQaaM9rQPhS2bc5JmqigPCliaumZgIECBAgUI7AW9/61ukwIL7JvuGGG9L27dtz/3vDG94w49hf//Vfzy1qmDCjd+KBAwdmjDkYvlx33XUznv/Sl77UO3Woj8PUUtQx8TddfuInfmLG38/Ju3DR21eH8GW+ocUb/5+PpbdsuTdtve0v0ic+99RUUDPUQpR80Hz78M1/e775t5bWsiuvAX/z5bvSMH/zZZIh1TDhUJNer72vV/o/Nql+tXp/8Boo7zUgfCn5mxvDN1vgoosumnERI95I/8//+T/Nbkr1BAgQIECAwLwFTpw4kV7+8pdnvi7o/yb7ZJ9///d/f/rOd76TmXeYMKN30lzhy2/8xm/MqC/v79H0xsr7OEwtRRzz+c9/Pp1xxhkzau3ZLV68OK1YsWLqv96++FiH8CXM2vCbL3lrbx8BAgTaJPDqV7868x7z4IMPlt5i//tW7/PSJ00pRW+9+Xofw2Cu7Zxzzsmc1zu/7I+vetWr5iqvUc/neTWqAcUSIFBrAX/zpdbLo7hxBIQv4+g5lwABAgQItEcgfvgi7xvr+ez72Mc+lgEZJszonTRX+PKud71rRo07duzonTrUx2FqGfeYCLG+93u/d0adP/uzP5ui1q9//esz6uy/eFaX8GVGgSM8qMPffBmhbKcQIECgUQJ5d7C47bbbSu8h72uC0idNKUVvg3OHwVxb3Opz8LyqHsfcbdry3NrUn14IEJisgPBlsv5mL1FA+FIirqEJECBAgECDBH7xF39xxgWKSy65JEVocLL/fuRHfmTGOVdeeWWm42HCjN5Jc4UvH/nIR2bMd+ONN/ZOHerjMLWMe8xnPvOZGTVu3Lhx1traGL7kNfvY00fSzR9+NP3L374r7fniM3mH2EeAAAEC8xDYtGnTjPeauDAet+Yse5vUBfjB245GHWEw17Zly5aMU14PZeyLudu05Rm1qT+9ECAwWQHhy2T9zV6igPClRFxDEyBAgACBhgh885vfTMuWLZu+QPGa17xmqMq/9rWvzfij8cuXL09Hjx6dce4wYUbvhLnCly9/+cvTNcZFgAh/5rMNU8u4x/yX//JfZtR47733zlpiV8KXHkD8VsyG3/xE76GPBAgQIDCiwNatW2e818R74qWXXjriaMOfNqkL8NHb4NxhMNf2yCOPpAULFmTOHRyr6Mcx56OPPjpXeY16Ps+oUQ0olgCBWgsIX2q9PIobR+Anf/InM1+IzPcWHuPM71wCBAgQIEBg8gLvec97Znw9MJ+fnv2pn/qpGee+733vm9HQMGFG74S5wpfnn38+fd/3fd+M+Wb7W3XHjx9Pb3vb26b+6H3vb9EMU8u4x2zevHlGfXfffXevvRkf47d2Fi1aNH1sW247NqPJnAfxx05tBAgQIDCewJ49e6bfP3oXxeMHIOLWl2Vuvbn6P5Y5X4wdPUVv/XPG52EwzHbhhRdmzh0cq+jHMWfbtjyjtvWoHwIEJicgfJmcvZlLFhC+lAxseAIECBAg0ACBn/7pn55xYeLhhx8euuqbbrppxrlxm7L+bZgwo3f8XOFLHDf4d19OOeWUFDVEMBNbBC0RyKxbt26qrvgD973fxhmmlnGP+ehHPzrDI+5J/9xzz/VaTBEK/ft//+9nHBMXNIQv00Q+IUCAAIE5BGYLJGYL/OcYbuinJ3EB/q677sq8Z84naPrzP//zzPl5fRS5b+fOnUObNuXAPJ+m1K5OAgTqLyB8qf8aqXBEAeHLiHBOI0CAAAECLRF4+umnZ/wGxg/90A/Nq7NDhw6lJUuWTF/Y+O7v/u707LPPTo8xTJjRO3iY8CVClle84hXT8/UuBnzP93zP1G/FvPjFL848961vfWtqimFqGfeY6GHFihUzagiTCGEimDr11FNnPNerX/jSexX4SIAAAQLDCOTdiuuqq64a5tSRj+m9Z/V/HHmwIU+Mnvrni8/ne4u1yy67LDPG4JhFPY652rjl+bSxTz0RIDAZAeHLZNzNWoHAP/yH/zDzRUj8ZIiNAAECBAgQ6IbA4H3j47ZZ893Wr18/4+uJ3//9358eYpgwo3fwMOFLHPvQQw+l+Ls0eRcCBvf1X4gappYijvmzP/uzOWs788wz0yWXXDJ9nPCl9yrwkQABAgSGEdi2bdv0e0jvvW/lypXTvwk6zBjzPaY3T//H+Y4xn+PjBy6ip/754vPofT7bk08+meJ9d3Ccoh/HHDFXG7c8qzb2qScCBCYjIHyZjLtZKxAQvlSAbAoCBAgQIFBjgd/6rd+avhgRvzXy+OOPz7vaj3zkIzP+oG38rZXedtttt02PH78B8rWvfa33VObjN7/5zRS3Eet9g/8Hf/AHmWN6O+K3WX7t134t92JK/C2V+Bpn8O/BDFNLUcd87GMfS+eee+50L72e4lYpb3rTm9JTTz2Vor/e/l/5lV/ptdbqj/7mS6uXV3MECFQocPDgwRm/edp7P7nllltKq6I3R//H0iZLKUUv/XPF5/HbttH7fLc777xzxtcYg+OO+zi+fok52rrl+bS1V30RIFC9gPClenMzViQgfKkI2jQECBAgQKCmAvE3UuLWY0888cT030YZpdS4EPLVr351aqzeH7jvjRN/8ySei3Blri2OiWO//vWvz3Xo9PMRZETQ8qEPfSjt3r07xW/QzLYNU0tRx0QNUVtcjNm+fXv6/Oc/n7797W/PKC3CqDhmcP+Mg1r0QPjSosXUCgECExe44oorMuHE2rVrS6ur6gvw0cvgnNHzqFt8nbB06dLMmINzzPdxjBljt3nLM2lzv3ojQKBaAeFLtd5mq1DgJ37iJzJfeLTxj8NVSGoqAgQIECBAgACBWQSEL7PA2E2AAIERBOIHDvIuit96660jjDb3KXlzzX3WaEdED3nzRc/jbHv27ElnnXVW7th58821L8aKMdu+5Tm0vWf9ESBQnYDwpTprM1UsIHypGNx0BAgQIECAAIEOCwhfOrz4WidAoBSBCy64IBMkRCBw5MiRwuer6gL84cOHcwOS6LWILX7DdePGjTNumZrX28n2LViwYGqMGKsLW55FF/rWIwEC1QgIX6pxNssEBIQvE0A3JQECBAgQIECgowLCl44uvLYJEChNIO5ckXdh/Oqrry58zrx5Cp8kpRS15821a9euQqe7//77U9zGbPHixbnz5dUQx8Y5cW6XtjyLLvWvVwIEyhUQvpTra/QJClx44YWZLzKK/oJmgu2ZmgABAgQIECBAoEYCwpcaLYZSCBBojcAll1yS+b5+4cKFaceOHYX2WMUF+Kg5ah+cK3osa4vfXrnpppumfpNlcN54fO655049F8d05TddBq3zXAaP8ZgAAQKjCghfRpVzXu0FhC+1XyIFEiBAgAABAgRaIyB8ac1SaoQAgRoJ7N27N/cPya9cuTI98cQThVVa9gX4qDVqHpwn/qB99FjFNjh3PLalzJpw8aogQKBIAf/SFqlprFoJCF9qtRyKIUCAAAECBAi0WkD40url1RwBAhMU2Lx5c+4F8nXr1qWDBw8WUlmZwUTUGLXmzRG9VbXlzV/V3HWeh0udV0dtBJovIHxp/hrqYBaBvD/O97GPfWyWo+0mQIAAAQIECBAgMLqA8GV0O2cSIEBgLoGLLrooN7w4//zz09GjR+c6fc7ny7oAH7VFjXnjR09Vbnk1VDl/XefiUteVUReBdggIX9qxjrrIERC+5KDYRYAAAQIECBAgUIqA8KUUVoMSIEBgSmD//v1p9erVuSFGhBsHDhwYS6qMC/BR02zBS/QSPVW5ldFjlfWXNReXsmSNS4BACAhfvA5aKyB8ae3SaowAAQIECBAgUDsB4UvtlkRBBAi0TOCee+5Jy5Ytyw1g1q5dm/bt2zdyx0VfgI9aoqa8caOH6KXqLa+Wqmuo43xc6rgqaiLQHgHhS3vWUicDAsKXARAPCRAgQIAAAQIEShMQvpRGa2ACBAhMC+zYsSMtXrw4N9Q4/fTT0+233z597Hw+KfICfNQQteSNGbVHD5PY8uqZRB11m5NL3VZEPQTaJSB8add66qZP4Md//MczX+x8/OMf7zvCpwQIECBAgAABAgSKERC+FONoFAIECMwlEOHGbAFMXEi/8sor07PPPjvXMDOeL+IC/DPPPDM1d95YsS9qHjUcmlHsiA/y6hpxqFadxqVVy6kZArUTEL7UbkkUVJSA8KUoSeMQIECAAAECBAjMJSB8mUvI8wQIEChOYNeuXWn58uWZH7jsXUhfsWJF2rp1azp27NhQk/bO6/841IkpTc0Rc8Wc/ef3fx61Rs2T3Prr6X0+yXrqMnfPov9jXWpTBwECzRcQvjR/DXUwi4DwZRYYuwkQIECAAAECBAoXEL4UTmpAAgQInFTggQceSGvWrJk18IiL6fGH7bds2ZIOHTp00rH6L7z3Pj/pCSmlgwcPTo0dc/TOyfsYNUatk97yapt0TXWYn0sdVkENBNorIHxp79p2vrPzzz8/8wXQJz7xic67ACBAgAABAgQIECheQPhSvKkRCRAgMJfAgQMH0uWXX5753n/wgvqSJUvShg0b0h133JGOHDmSGXbw+Hict8W5MUaMFWPmnde/L2qLGuuw9dfV+7wOdU26hp5F/8dJ12R+AgTaI5D/btKe/nTSYQHhS4cXX+sECBAgQIAAgYoFhC8Vg5uOAAECfQI33nhjOu200+YMQ+IC+6JFi9J5552XrrnmmrRt27a0e/fu3PP27t079VwcE8fGOXFu/0X62T6PWqKmOm15tdapvknVwmVS8uYl0A0B4Us31rmTXQpfOrnsmiZAgAABAgQITERA+DIRdpMSIEBgWmD//v1p48aNacGCBUMFJHkX3cfdF3NHDVFL3ba83upW4yTq4TIJdXMS6I6A8KU7a925Tv/BP/gHmS+47rzzzs45aJgAAQIECBAgQKB8AeFL+cZmIECAwDAC9913X1q/fn1auHBh5ppA3oX2IvbFXDFnzF3XLa/PutZaZV1cqtQ2F4HuCQhfurfmnelY+NKZpdYoAQIECBAgQGDiAsKXiS+BAggQIDBD4OGHH06bNm1Kq1atKi2EibFjjpir7puQIX+FuOS72EuAQDECwpdiHI1SQwHhSw0XRUkECBAgQIAAgZYKCF9aurDaIkCg8QLHjx9P27dvn7od2Cte8Yqxg5gYI24tFmPG2E3ZhAz5K8Ul38VeAgSKERC+FONolBoK/NiP/Vjmi6r4Q3o2AgQIECBAgAABAkULCF+KFjUeAQIEyhHYt29fuvnmm9O11147dauwdevWpTVr1qQzzjgjLV68eOq/+Dz2xXNxO7E4Ns6Jc5u6CRnyV45Lvou9BAgUIyB8KcbRKDUUEL7UcFGURIAAAQIECBBoqYDwpaULqy0CBAi0REDIkL+QXPJd7CVAoBgB4UsxjkapoYDwpYaLoiQCBAgQIECAQEsFhC8tXVhtESBAoCUCQob8heSS72IvAQLFCAhfinE0Sg0F/v7f//uZ24598pOfrGGlSiJAgAABAgQIEGi6gPCl6SuofgIECLRbQMiQv75c8l3sJUCgGAHhSzGORqmhgPClhouiJAIECBAgQIBASwWELy1dWG0RIECgJQJChvyF5JLvYi8BAsUICF+KcTRKDQWELzVcFCURIECAAAECBFoqIHxp6cJqiwABAi0REDLkLySXfBd7CRAoRkD4UoyjUWooIHyp4aIoiQABAgQIECDQUgHhS0sXVlsECBBoiYCQIX8hueS72EuAQDECwpdiHI1SQ4Ef/dEfzfzNl0996lM1rFRJBAgQIECAAAECTRcQvjR9BdVPgACBdgsIGfLXl0u+i70ECBQjIHwpxtEoNRQQvtRwUZREgAABAgQIEGipgPClpQurLQIECLREQMiQv5Bc8l3sJUCgGAHhSzGORqmhgPClhouiJAIECBAgQIBASwWELy1dWG0RIECgJQJChvyF5JLvYi8BAsUICF+KcTRKDQXOO++8zG3HPv3pT9ewUiURIECAAAECBAg0XUD40vQVVD8BAgTaLSBkyF9fLvku9hIgUIyA8KUYR6PUUED4UsNFURIBAgQIECBAoKUCwpeWLqy2CBAg0BIBIUP+QnLJd7GXAIFiBIQvxTgapYYCwpcaLoqSCBAgQIAAAQItFRC+tHRhtUWAAIGWCAgZULRRVwAAIABJREFU8heSS76LvQQIFCMgfCnG0Sg1FHj961+fue3YXXfdVcNKlUSAAAECBAgQINB0AeFL01dQ/QQIEGi3gJAhf3255LvYS4BAMQLCl2IcjVJDAeFLDRdFSQQIECBAgACBlgoIX1q6sNoiQIBASwSEDPkLySXfxV4CBIoREL4U42iUGgoIX2q4KEoiQIAAAQIECLRUQPjS0oXVFgECBFoiIGTIX0gu+S72EiBQjIDwpRhHo9RQ4Ed+5Ecytx27++67a1ipkggQIECAAAECBJouIHxp+gqqnwABAu0WEDLkry+XfBd7CRAoRkD4UoyjUWooIHyp4aIoiQABAgQIECDQUgHhS0sXVlsECBBoiYCQIX8hueS72EuAQDECwpdiHI1SQwHhSw0XRUkECBAgQIAAgZYKCF9aurDaIkCAQEsEhAz5C8kl38VeAgSKERC+FONolBoK/L2/9/cytx3bs2dPDStVEgECBAgQIECAQNMFhC9NX0H1EyBAoN0CQob89eWS72IvAQLFCAhfinE0Sg0FhC81XBQlESBAgAABAgRaKiB8aenCaosAAQItERAy5C8kl3wXewkQKEZA+FKMo1FqKCB8qeGiKIkAAQIECBAg0FIB4UtLF1ZbBAgQaImAkCF/Ibnku9hLgEAxAsKXYhyNUkMB4UsNF0VJBAgQIECAAIGWCghfWrqw2iJAgEBLBIQM+QvJJd/FXgIEihEQvhTjaJQaCpx77rmZv/lyzz331LBSJREgQIAAAQIECDRdQPjS9BVUPwECBNotIGTIX18u+S72EiBQjIDwpRhHo9RQQPhSw0VREgECBAgQIECgpQLCl5YurLYIECDQEgEhQ/5Ccsl3sZcAgWIEhC/FOBqlhgLClxouipIIECBAgAABAi0VEL60dGG1RYAAgZYICBnyF5JLvou9BAgUIyB8KcbRKDUU+OEf/uHMbcfuvffeGlaqJAIECBAgQIAAgaYLCF+avoLqJ0CAQLsFhAz568sl38VeAgSKERC+FONolBoKCF9quChKIkCAAAECBAi0VED40tKF1RYBAgRaIiBkyF9ILvku9hIgUIyA8KUYR6PUUED4UsNFURIBAgQIECBAoKUCwpeWLqy2CBAg0BIBIUP+QnLJd7GXAIFiBIQvxTgapYYCf/fv/t3Mbcc+85nP1LBSJREgQIAAAQIECDRdQPjS9BVUPwECBNotIGTIX18u+S72EiBQjIDwpRhHo9RQQPhSw0VREgECBAgQIECgpQLCl5YurLYIECDQEgEhQ/5Ccsl3sZcAgWIEhC/FOBqlhgLClxouipIIECBAgAABAi0VEL60dGG1RYAAgZYICBnyF5JLvou9BAgUIyB8KcbRKDUU+KEf+qHMbcc++9nP1rBSJREgQIAAAQIECDRdQPjS9BVUPwECBNotIGTIX18u+S72EiBQjIDwpRhHo9RQQPhSw0VREgECBAgQIECgpQLCl5YurLYIECDQMIF9+/alm2++OV177bVp/fr1ad26dWnNmjWZH06N0CGei2Pi2Dgnzu3aJnzp2orrl0C1AsKXar3NVqGA8KVCbFMRIECAAAECBDouIHzp+AtA+wQIEJiQwPHjx9P27dvTxo0b09lnn50bsuQFDLPtizFirBgzxm77lufQ9p71R4BAdQLCl+qszVSxQPwEx+Cb6Oc+97mKqzAdAQIECBAgQIBAFwSEL11YZT0SIECgPgIPP/xw2rRpU1q1alXm2sfgtZBRH8fYMUfM1dYtz6atveqLAIHqBYQv1ZubsSIB4UtF0KYhQIAAAQIECBBIwhcvAgIECBCoQuC+++6bulXYwoULSwtdBgOJmCtuTxZzt20b7DUe2wgQIFCUgH9RipI0Tu0EhC+1WxIFESBAgAABAgRaKyB8ae3SaowAAQK1ENi/f//U7cAWLFhQWegyGEzE3HFLsqilLdtgj8KXtqysPgjUQ0D4Uo91UEUJAsKXElANSYAAAQIECBAgkCsgfMllsZMAAQIEChC48cYb02mnnTZU6LJo0aJ03nnnpWuuuSZt27Yt7d69O+3duzf33Hgujolj45w4Ny+MGNwXtURNbdgGexO+tGFV9UCgPgLCl/qshUoKFnjd616X+aKhjb8iWzCb4QgQIECAAAECBEYQEL6MgOYUAgQIEDipwIEDB9Lll1+eubYxGBgsWbIkbdiwId1xxx3pyJEjuWMOnpMXMhw+fHhqjBgrxsw7p39f1BY1Nnnr76f3eZP7UTsBAvUSEL7Uaz1UU6CA8KVATEMRIECAAAECBAicVED4clIeTxIgQIDAPAUeeOCBtGbNmpMGIKtXr05btmxJhw4dmnP0XrDQ//FkJx08eDBdf/31KeboP2fw86gxam3qNthPPLYRIECgKAH/ohQlaZzaCQhfarckCiJAgAABAgQItFZA+NLapdUYAQIEKhfYtWtXOvXUU2cNPVasWJG2bt2ajh07NnRto4YMMccNN9yQYs68MWLf8uXLU9TcxC2vpyb2oWYCBOopIHyp57qoqgCB1772tZkvDO6///4CRjYEAQIECBAgQIAAgZkCwpeZHh4RIECAwGgCt99+e1q8eHHmekYvJLjyyivTM888M+/Be+f3f5zPIDFnzN1/fv/nUXPU3rStv4fe503rQb0ECNRXQPhS37VR2ZgCwpcxAZ1OgAABAgQIECAwtIDwZWgqBxIgQIDALAI7duyYNXg5/fTTxwo3esFC/8dZyjjp7ghYopb+cXqfRwATPTRp69Xe/7FJ9auVAIF6Cwhf6r0+qhtDQPgyBp5TCRAgQIAAAQIE5iUgfJkXl4MJECBAYEDgnnvuScuWLcsNNdauXZv27ds3cMb8HvaHC73P5zfCC0dHLVFTb5z+j9FD9NKUrb/23udNqV2dBAjUX0D4Uv81UuGIAn/n7/ydzBcCTf4jcCMyOI0AAQIECBAgQKACAeFLBcimIECAQEsF9u/fP+sftj///PPTgQMHxu68Fyz0fxxn0Kgpausfr/f56tWrU/TUhK1Xc//HJtStRgIEmiEgfGnGOqlyBAHhywhoTiFAgAABAgQIEBhJQPgyEpuTCBAgQCCldNFFF+WGGBFuHD16tBCj/nCh9/m4A0dtswUwF1988bjDV3J+z6L/YyUTm4QAgU4ICF86sczdbFL40s111zUBAgQIECBAYBICwpdJqJuTAAECzRfYvHlzbvCybt26dPDgwcIa7A8Xep8XMXjUGLX2xuz/GL3Vfeuvt/d53WtWHwECzREQvjRnrVQ6T4Ef/MEfzLz5P/jgg/McxeEECBAgQIAAAQIE5hYQvsxt5AgCBAgQmCmwd+/etHTp0sy1i1WrVqUnnnhi5sFjPuoFC/0fxxxy+vSodeXKlZk+orfosc5bv0fv8zrXqzYCBJolIHxp1nqpdh4Cwpd5YDmUAAECBAgQIEBgLAHhy1h8TiZAgEAnBS655JJMYLFw4cK0Y8eOwj16wUL/xyIniZqj9v7x4/Posc7bYL3x2EaAAIGiBPyLUpSkcWonIHyp3ZIoiAABAgQIECDQWgHhS2uXVmMECBAoRWDnzp2ZoCIu/L/1rW8tZb4qQoarr746t6fota5bFS517V1dBAiULyB8Kd/YDBMSeM1rXpN50//85z8/oWpMS4AAAQIECBAg0GYB4UubV1dvBAgQKF7gggsuyFyzOOuss9KRI0eKnyylzFxl/IbH4cOHU/QwGGhEr3XaDhw4kG666aa0cePGTK1R+7nnnjv1XBwTx9oIECAwqoDwZVQ559VeQPhS+yVSIAECBAgQIECgNQLCl9YspUYIECBQusDu3btzL/rfeuutpc09GIiUEb5E8dFD3lzR86S3+++/P11xxRVp8eLFuTXm1R3Hxjlxro0AAQLzFRC+zFfM8Y0REL40ZqkUSoAAAQIECBBovIDwpfFLqAECBAhUJhAX8wcv9K9du7bU+Qfni8dlbdHL4HzR86S25557buo3WRYsWJCpa7DO2R7HufGbMjGWjQABAsMKlPcv7bAVOI5ASQLCl5JgDUuAAAECBAgQIJAREL5kSOwgQIAAgRyBgwcPpiVLlmRCgFtuuSXn6OJ25YUKxY0+c6ToZXC+6Dl6r3rbs2dP7q3QBusb9nHcVi3GtBEgQGAYAeHLMEqOaaRA3k9afOELX2hkL4omQIAAAQIECBCot4Dwpd7rozoCBAjUReDd7353JphYuXJlev7550stMS9cKGvC6CV6Gpwzeq9y+9CHPpSWLl2aqWOwrvk+jjFjbBsBAgTmEhC+zCXk+cYKCF8au3QKJ0CAAAECBAg0TkD40rglUzABAgQmInDppZdmwoCrrrqq9FryAoYyJ42eBueM3qva7rzzznTKKadkahisadTHMXbMYSNAgMDJBIQvJ9PxXKMFhC+NXj7FEyBAgAABAgQaJSB8adRyKZYAAQITEThx4kRavnx5JhC4++67S68nL2Qoc9LoaXDO6D0Myt6efPLJdOaZZ2bmH6xn3McxR8xlI0CAwGwCwpfZZOxvvMAP/MAPZN5ov/jFLza+Lw0QIECAAAECBAjUT0D4Ur81UREBAgTqJhB/K2Twgn9VgcTgvPG4zG22oKmKv5dy2WWXZZzz+i9iX8xlI0CAwGwC5f5LO9us9hOoQED4UgGyKQgQIECAAAECBKYEhC9eCAQIECAwl8DWrVszoUBVt+LKCxrmqnfc5/NusRYGZW47d+7MGOf1XuS+mNNGgACBPAHhS56Kfa0QEL60Yhk1QYAAAQIECBBohIDwpRHLpEgCBAhMVGDTpk2ZYOC6666rpKa8sKHsiaO3wXnDoMztwgsvzMw5WEPRj2NOGwECBPIEhC95Kva1QuBv/+2/nXnDfeihh1rRmyYIECBAgAABAgTqJSB8qdd6qIYAAQJ1FLj44osz1yluu+22SkrNCxzKnjh6G5w3DMraHnnkkbRgwYLMnIM1FP045oy5bQQIEBgUEL4MinjcGgHhS2uWUiMECBAgQIAAgdoLVBG+vOcjj6aYx38MvAa8BrwGmvkaePHpZ2WCgQt+cVsl/67nBQ5lv46it8F5w6Csedf++K9l5hucv6zHMXdZfRm3mf+/W7fmr9stH/3K2N+DCF/GJjRAXQWEL3VdGXURIECAAAECBNonEN9gl70JX5r/TbwLMdbQa6Dbr4FTlr10YuFAWaHDfMcNg7L+P3jZK39sYr4xd1l9Gbfb/25Y/8mtf3ztPe4mfBlX0Pm1Ffhbf+tvZd50v/SlL9W2XoURIECAAAECBAg0VyC+MS57E75M7ptvFz7Yew14DRTxGnjR4qWZ6xTzDS+afnwYFGGZN8aLT189Md+YO68m+/zb4TXQ3NeA8KXs726M32gB4Uujl0/xBAgQIECAAIFGCcQ31mVvwpfmfvPuwou18xrwGojXwIIFCycWDtQltAmDsv5/mGS4VWaoVJaXcf275DVw8teA8KXs726M32gB4Uujl0/xBAgQIECAAIFGCcQ3r2VvwpeTf4PsAgIfrwGvgbq/BiYZDtQlfCkzpJhkuFVmqFT317X6/Nvb1teA8KXs726M32iBV7/61ZmfKPmLv/iLRvekeAIECBAgQIAAgXoKxDedNgIECBAgcDKBl7/85ZnrFHUJRaqqIwzK2l7ykpdMzDfmthEgQGBQwN98GRTxuDUCwpfWLKVGCBAgQIAAAQK1FxC+1H6JFEiAAIGJC+Rdp3jwwQcrqSsvXCl74uhtcN4wKGs755xzMvMNzl/W41e96lVltWVcAgQaLCB8afDiKf3kAnlf1PjNl5ObeZYAAQIECBAgQGA0AeHLaG7OIkCAQJcELr744kw4cNttt1VCkBc6lD1x9DY4bxiUtV122WWZ+QbnL+txzG0jQIDAoIDwZVDE49YICF9as5QaIUCAAAECBAjUXkD4UvslUiABAgQmLrBp06ZMOHDddddVUlde6FD2xNHb4LxhUNa2ZcuWzHyD85f1OOa2ESBAYFBA+DIo4nFrBOJXPgffVL/85S+3pj+NECBAgAABAgQI1EdA+FKftVAJAQIE6iqwdevWzHWKSy+9tJJyB6+PxOOyt+htcN4wKGt75JFH0oIFCzJzDtZQ9OOY89FHHy2rLeMSINBggfL/pW0wjtKbLSB8afb6qZ4AAQIECBAg0CQB4UuTVkutBAgQmIzAnj17MsHA8uXL04kTJ0ovKC9wKHPS6Cl6G5w3DMrcLrzwwsycgzUU/TjmtBEgQCBPQPiSp2JfKwSEL61YRk0QIECAAAECBBohIHxpxDIpkgABAhMVmC2QuPvuu0uvKy9wKHPSu+66KxOCVBE0/fmf/3lm3rzei9y3c+fOMimNTYBAgwWELw1ePKWfXOCcc87JvOE+/PDDJz/JswQIECBAgAABAgRGEBC+jIDmFAIECHRQIO9WXFdddVXpEnlhQ5mTRk+Dc1Z1i7XLLrssM/dgLUU9jrlsBAgQmE1A+DKbjP2NFxC+NH4JNUCAAAECBAgQaIyA8KUxS6VQAgQITFRg27ZtmWBg5cqV6fnnny+1rrywoawJo5foaXDO6L2K7cknn0xnnnlmZv7BesZ9HHPEXDYCBAjMJiB8mU3G/sYLCF8av4QaIECAAAECBAg0RkD40pilUigBAgQmKnDw4MG0ZMmSTDBwyy23lFpXXtBQ1oTRy+B80XP0XtV25513plNOOSVTx2Bdoz6OsWMOGwECBE4mIHw5mY7nGi3wyle+MvMm+5d/+ZeN7knxBAgQIECAAAEC9RQQvtRzXVRFgACBOgpcccUVmesVa9euLbXUvJChrAmjl8H5oueqtw996ENp6dKlmVoGa5vv4xgzxrYRIEBgLgHhy1xCnm+sgPClsUuncAIECBAgQIBA4wSEL41bMgUTIEBgYgK7d+/ODQRuvfXW0mrKCxjKmCx6yJsrep7EtmfPnnTWWWfl1pRX51z7YqwY00aAAIFhBIQvwyg5ppECwpdGLpuiCRAgQIAAAQKNFBC+NHLZFE2AAIGJCVxwwQWZQCAu7B85cqSUmvJChaInOnz4cG7QEb1OcnvuuefSxo0b04IFCzLmeS55++LcGCPGshEgQGBYAeHLsFKOa5zA3/ybfzPzpvrII480rg8FEyBAgAABAgQI1F9A+FL/NVIhAQIE6iSwc+fOzDWLuOh/9dVXl1JmXqBQ9ERRe948u3btKnqqkca7//77U9z+bPHixbl15tUex8Y5ca6NAAEC8xUQvsxXzPGNERC+NGapFEqAAAECBAgQaLyA8KXxS6gBAgQIVC5wySWXZEKAhQsXph07dhReS16wUOQkUXPUPjhP9Fi3LX575aabbpr6TZbBeuPxueeeO/VcHOM3Xeq2euoh0CwB4Uuz1ku18xAQvswDy6EECBAgQIAAAQJjCQhfxuJzMgECBDopsHfv3tw/CL9y5cr0xBNPFGqSFzIUNUHUGjUPzhF/mD56rPM2WHM8thEgQKAoAf+iFCVpnNoJ/I2/8Tcyb/yPPvpo7epUEAECBAgQIECAQPMFhC/NX0MdECBAYBICmzdvzly7iABg3bp16eDBg4WVVFbIEDVGrXnjR2913/LqrnvN6iNAoDkCwpfmrJVK5ykgfJknmMMJECBAgAABAgRGFhC+jEznRAIECHRe4KKLLsoNL84///x09OjRQnzKCBmitqgxb+zoqQlbXu1NqFuNBAg0Q0D40ox1UuUIAsKXEdCcQoAAAQIECBAgMJKA8GUkNicRIECAQEpp//79afXq1bkhRoQbBw4cGNup6JAhapoteIleoqcmbEW7NKFnNRIgUJ2A8KU6azNVLCB8qRjcdAQIECBAgACBDgsIXzq8+FonQIBAAQL33HNPWrZsWW4As3bt2rRv376xZikyZIhaoqa8MaOH6KUpW14PTaldnQQI1F9A+FL/NVLhiAJnn3125guBr3zlKyOO5jQCBAgQIECAAAECswsIX2a38QwBAgQIDCewY8eOtHjx4sy1jAgITj/99HT77bcPN1DOUUWFDFFD1JI3XtQePTRpy+ujSfWrlQCBegsIX+q9PqobQ0D4MgaeUwkQIECAAAECBOYlIHyZF5eDCRAgQGAWgQg3ZgtgIii48sor07PPPjvL2bPvHjdkeOaZZ6bmzhsn9kXN44RDs1de7jN5/ZQ7o9EJEOiSgPClS6vdsV6FLx1bcO0SIECAAAECBCYoIHyZIL6pCRAg0DKBXbt2peXLl+f+dkmEBStWrEhbt25Nx44dG7rzUUOGmCPmijnzxoh9UWvU3MQtr6cm9qFmAgTqKSB8qee6qKoAgVe84hWZLwz27t1bwMiGIECAAAECBAgQIDBTQPgy08MjAgQIEBhP4IEHHkhr1qzJXNfoDwviD9tv2bIlHTp0aM7J+s/rfX6ykw4ePDg1dszROz7vY9QYtTZ1y+upqb2omwCB+gkIX+q3JioqSED4UhCkYQgQIECAAAECBOYUEL7MSeQAAgQIEJinwIEDB9Lll19+0vAjwoMlS5akDRs2pDvuuCMdOXIkd5ZhQoY4N8aIsWLMvHP690VtUWOTt/5+ep83uR+1EyBQLwHhS73WQzUFCghfCsQ0FAECBAgQIECAwEkFhC8n5fEkAQIECIwhcOONN6bTTjttzjAkwoNFixal8847L11zzTVp27Ztaffu3Wnfvn2558ZzcUwcG+fEub0A4mQfo5aoqQ1bXp9t6EsPBAjUQ0D4Uo91UEUJAnm/nhtfcNgIECBAgAABAgQIFC0gfCla1HgECBAg0C+wf//+tHHjxrRgwYKhApK8UGHcfTF31BC1tGXLM2lLb/ogQGDyAsKXya+BCkoSEL6UBGtYAgQIECBAgACBjIDwJUNiBwECBAiUIHDfffel9evXp4ULF1YWwsRcMWfM3bZN+NK2FdUPgXoJCF/qtR6qKVBA+FIgpqEIECBAgAABAgROKiB8OSmPJwkQIECgYIGHH344bdq0Ka1ataq0ECbGjjlirrZuwpe2rqy+CNRDQPhSj3VQRQkC3//935/5AuSxxx4rYSZDEiBAgAABAgQIdF1A+NL1V4D+CRAgMBmB48ePp+3bt0/dDizvb9/mhQsn2xdjxK3FYswYu+1bnkXbe9YfAQLVCQhfqrM2U8UCwpeKwU1HgAABAgQIEOiwgPClw4uvdQIECNRIIP7W7c0335yuvfbaqVuFrVu3LsWdQc4444y0ePHiqf/i89gXz8XtxOLYOKeLfydX+FKjF69SCLRQQPjSwkXV0v8VEL54JRAgQIAAAQIECFQlIHypSto8BAgQIECgOAHhS3GWRiJAICsgfMma2NMSgbPOOitz27HHH3+8Jd1pgwABAgQIECBAoE4Cwpc6rYZaCBAgQIDAcALCl+GcHEWAwGgCwpfR3JzVAAHhSwMWSYkECBAgQIAAgZYICF9aspDaIECAAIFOCQhfOrXcmiVQuYDwpXJyE1YlIHypSto8BAgQIECAAAECwhevAQIECBAg0DwB4Uvz1kzFBJokIHxp0mqpdV4Cwpd5cTmYAAECBAgQIEBgDAHhyxh4TiVAgAABAhMSEL5MCN60BDoiIHzpyEJ3sc3v+77vy/zNl7/6q7/qIoWeCRAgQIAAAQIEShYQvpQMbHgCBAgQIFCCgPClBFRDEiAwLSB8mabwSdsEhC9tW1H9ECBAgAABAgTqKyB8qe/aqIwAAQIECMwmIHyZTcZ+AgSKEBC+FKFojFoKCF9quSyKIkCAAAECBAi0UkD40spl1RQBAgQItFxA+NLyBdYegQkLCF8mvACmL09g9erVmduOffWrXy1vQiMTIECAAAECBAh0VkD40tml1zgBAgQINFhA+NLgxVM6gQYICF8asEhKHE1A+DKam7MIECBAgAABAgTmLyB8mb+ZMwgQIECAwKQFhC+TXgHzE2i3gPCl3evb6e6EL51efs0TIECAAAECBCoVEL5Uym0yAgQIECBQiIDwpRBGgxAgMIuA8GUWGLubL/Dyl788c9uxJ554ovmN6YAAAQIECBAgQKB2AsKX2i2JgggQIECAwJwCwpc5iRxAgMAYAsKXMfCcWm8B4Uu910d1BAgQIECAAIE2CQhf2rSaeiFAgACBrggIX7qy0vokMBkB4ctk3M1agYDwpQJkUxAgQIAAAQIECEwJCF+8EAgQIECAQPMEhC/NWzMVE2iSgPClSaul1nkJfO/3fm/mtmNPPvnkvMZwMAECBAgQIECAAIFhBIQvwyg5hgABAgQI1EtA+FKv9VANgbYJCF/atqL6mRYQvkxT+IQAAQIECBAgQKBkAeFLycCGJ0CAAAECJQgIX0pANSQBAtMCwpdpCp+0TUD40rYV1Q8BAgQIECBAoL4Cwpf6ro3KCBAgQIDAbALCl9lk7CdAoAgB4UsRisaopcDLXvayzG3HnnrqqVrWqigCBAgQIECAAIFmCwhfmr1+qidAgACBbgoIX7q57romUJWA8KUqafNULiB8qZzchAQIECBAgACBzgoIXzq79BonQIAAgQYLCF8avHhKJ9AAAeFLAxZJiaMJCF9Gc3MWAQIECBAgQIDA/AWEL/M3cwYBAgQIEJi0gPBl0itgfgLtFhC+tHt9O92d8KXTy695AgQIECBAgEClAsKXSrlNRoAAAQIEChEQvhTCaBACBGYREL7MAmN38wXOPPPMzN98efrpp5vfmA4IECBAgAABAgRqJyB8qd2SKIgAAQIECMwpIHyZk8gBBAiMISB8GQPPqfUWEL7Ue31UR4AAAQIECBBok4DwpU2rqRcCBAgQ6IqA8KUrK61PApMREL5Mxt2sFQgIXypANgUBAgQIECBAgMCUgPDFC4EAAQIECDRPQPjSvDVTMYEmCQhfmrRaap2XwKpVqzK3Hfva1742rzEcTIAAAQIECBAgQGAYAeHLMEqOIUCAAAEC9RIQvtRrPVRDoG0Cwpe2rah+pgWEL9MUPiFAgAABAgQIEChZQPhSMrA6coptAAAZ7ElEQVThCRAgQIBACQLClxJQDUmAwLSA8GWawidtExC+tG1F9UOAAAECBAgQqK+A8KW+a6MyAgQIECAwm4DwZTYZ+wkQKEJA+FKEojFqKbBy5crMbcf2799fy1oVRYAAAQIECBAg0GwB4Uuz10/1BAgQINBNAeFLN9dd1wSqEhC+VCVtnsoFhC+Vk5uQAAECBAgQINBZAeFLZ5de4wQIECDQYAHhS4MXT+kEGiAgfGnAIilxNAHhy2huziJAgAABAgQIEJi/gPBl/mbOIECAAAECkxYQvkx6BcxPoN0Cwpd2r2+nu3vpS1+aue3YM88802kTzRMgQIAAAQIECJQjIHwpx9WoBAgQIECgTAHhS5m6xiZAQPjiNdBaAeFLa5dWYwQIECBAgACB2gkIX2q3JAoiQIAAAQLTAvv27Us333xzuvbaa9P69evTunXr0po1azI/tBthTDwXx8SxcU6cayNAgMAoAsKXUdSc0wgB4UsjlkmRBAgQIECAAIFWCAhfWrGMmiBAgACBlggcP348bd++PW3cuDGdffbZuSFL3m+9zLYvxoixYswY20aAAIFhBIQvwyg5ppECZ5xxRubN9dlnn21kL4omQIAAAQIECBCot4Dwpd7rozoCBAgQ6IbAww8/nDZt2pRWrVqVuSY0W7Ay3/0xdswRc9kIECBwMgHhy8l0PNdoAeFLo5dP8QQIECBAgACBRgkIXxq1XIolQIAAgZYJ3HfffVO3Clu4cGFpoctgSBNzxe3JYm4bAQIE8gSEL3kq9jVOIO/enXlvuGeddZZ7dzZudRVMgAABAgQIEKi/gPCl/mukQgIECBBon8D+/funbge2YMGCykKXwRAm5o5bkkUtNgIECPQLCF/6NXzeGAH37mzMUimUAAECBAgQINAJAeFLJ5ZZkwQIECBQI4Ebb7wxnXbaaUOFLosWLUrnnXdeuuaaa9K2bdvS7t270969e3PPjefimDg2zolzBwOXvMdRS9RkI0CAQE9A+NKT8LERAu7d2YhlUiQBAgQIECBAoHMCwpfOLbmGCRAgQGBCAgcOHEiXX375nIHIkiVL0oYNG9Idd9yRjhw5klttXogyeODhw4enxoixYsy8c/r3RW1Ro40AAQLCF6+BRgi4d2cjlkmRBAgQIECAAIHOCghfOrv0GidAgACBCgUeeOCBtGbNmpMGIKtXr05btmxJhw4dmrOy/tCk9/nJTjp48GC6/vrrU8zROz7vY9QYtdoIEOi2gPCl2+tf++7du7P2S6RAAgQIECBAgACBlJLwxcuAAAECBAiUK7Br16506qmnzhp6rFixIm3dujUdO3Zs6ELygpNhTo45brjhhhRz5o0R+5YvX56iZhsBAt0VEL50d+1r3/m49+6MN7nBN8D7779/6r6e7t1Z++VXIAECBAgQIECgUQLCl0Ytl2IJECBAoGECt99+e1q8eHHmOk/vus+VV16ZnnnmmXl31Tu//+N8Bok5Y+7+8/s/j5qjdhsBAt0UEL50c91r3XVR9+48/fTTM29+zz33XKZ39+7MkNhBgAABAgQIECAwTwHhyzzBHE6AAAECBIYU2LFjx6zBS1z7GSfc6A9Kep8PWdaMw6KGvOtQMWYEMNGDjQCB7gkIX7q35rXuuMh7d+a96eWFL/0g7t3Zr+FzAgQIECBAgACBYQWEL8NKOY4AAQIECAwvcM8996Rly5Zlfrg2Qo21a9emffv2DT9YzpG9wKX/Y85hQ+2KWqKm/rF6n0cP0YuNAIFuCQhfurXete626Ht3nnbaaZk3vPitmmE29+4cRskxBAgQIECAAAECPQHhS0/CRwIECBAgUIxA/B3g2f6w/fnnn5+GvcZzsmp64Uj/x5MdP9dzUVPU1j9e7/PoJXqyESDQHQHhS3fWutadlnHvznHClx6We3f2JHwkQIAAAQIECBA4mYDw5WQ6niNAgAABAvMXuOiii3JDjAg3jh49Ov8Bc87oBSP9H3MOm9euqG22AObiiy+e11gOJkCg2QLCl2avXyuqL+venUWELz1g9+7sSfhIgAABAgQIECCQJyB8yVOxjwABAgQIjCawefPm3OBl3bp1KW4ZX9TWH7r0Pi9i7Kgxau2N2f8xerMRINANAeFLN9a5tl2Wee/O5cuXZ97kvvGNb4xs4d6dI9M5kQABAgQIECDQegHhS+uXWIMECBAgUJHA3r1709KlSzPXdFatWpWeeOKJQqvoD0V6nxc1QdS6cuXKTB/RW/RoI0Cg/QLCl/avcW07LPvenUWHLwHp3p21fTkpjAABAgQIECAwUQHhy0T5TU6AAAECLRK45JJLMoHFwoULU9w5peitF7j0fyxyjqg5au8fPz6PHm0ECLRfQPjS/jWubYdl37uzjPAlMN27s7YvKYURIECAAAECBCYmIHyZGL2JCRAgQKBFAjt37swEFRFWvPWtby2ly8FQJB4XvV199dW5PUWvNgIE2i1Q/L8o7fbSXUECVdy789RTT828uRV1X1D37izohWAYAgQIECBAgEBLBIQvLVlIbRAgQIDARAUuuOCCzLWcs846Kx05cqSUuqoIXw4fPpyih8G5olcbAQLtFhC+tHt9a9ldVffuLDN8CVj37qzly0tRBAgQIECAAIGJCAhfJsJuUgIECBBokcDu3bszAUUEFrfeemtpXQ4GIvG4jC16yJsrerYRINBegXL+RWmvl84KEKjq3p1lhy9B4d6dBbwgDEGAAAECBAgQaIGA8KUFi6gFAgQIEJiowBVXXJEJKNauXVtqTXmBSFkTRi+D80XPNgIE2isgfGnv2taysyrv3VlF+BLI7t1Zy5eaoggQIECAAAEClQoIXyrlNhkBAgQItEwgbu++ZMmSTDhxyy23lNrpYBgSj8vaopfB+aLnom6RX1bdxiVAYHSB8v5FGb0mZ7ZYoMp7d77kJS/JvKkdOnSocF337iyc1IAECBAgQIAAgcYJCF8at2QKJkCAAIEaCbz73e/OXMNZuXJlev7550utcjAMKTN8iV6ip8E5o3cbAQLtFBC+tHNda9lV1ffurCp8CWz37qzlS05RBAgQIECAAIHKBIQvlVGbiAABAgRaKHDppZdmQomrrrqq9E4Hg5Ayw5doJnoanDN6txEg0E4B4Us717WWXVV9784qw5cAd+/OWr7sFEWAAAECBAgQqERA+FIJs0kIECBAoIUCJ06cSMuXL8+EEnfffXfp3Q4GIWWHL9HT4JzRexjYCBBon4DwpX1rWsuOJnHvzmXLlmXe0OIWYWVt7t1ZlqxxCRAgQIAAAQL1FxC+1H+NVEiAAAEC9RTYs2dP5vpNVYHEYBBSdvgyW9AUBjYCBNonIHxp35rWsqNJ3Luz6vDFvTtr+dJTFAECBAgQIECgEgHhSyXMJiFAgACBFgps3bo1E75UdSuuqsOXWL68W6yFgY0AgfYJCF/at6a17CjvjaXse3dWHb4EvHt31vLlpygCBAgQIECAQOkCwpfSiU1AgAABAi0V2LRpUyZ8ue666yrpdhLhS/Q2OG8Y2AgQaJ+A8KV9a1q7jmb7lcqy79354he/OPNmduTIkVJ93LuzVF6DEyBAgAABAgRqKyB8qe3SKIwAAQIEai5w8cUXZ67f3HbbbZVUPRiCxOOyt+htcN4wsBEg0D6B8v9FaZ+ZjuYpMKl7d04ifJktaHLvznm+aBxOgAABAgQIEGiYgPClYQumXAIECBCojcCrX/3qTBjx4IMPVlLfYAhSRfgSvQ3OGwY2AgTaJyB8ad+a1q6jSd27cxLhS+Dn3WLNvTtr97JUEAECBAgQIECgUIEqwpf3fOTRFPP4j4HXgNeA14DXQJteA6cse2kmjBgMJ9r+OAzatKZ68W9UG14Dt3z0K2N/vyB8GZvQAHMJTOrenUuXLs28eX/zm9+cq9yxn3fvzrEJDUCAAAECBAgQaJxAfINZ9iZ8cSGjDRcy9OB17DXgNTD4GnjR4uz1m7aHLYP9hcGgi8f+X/EamOxrIL72HncTvowr6Pw5BSZ1785JhS/u3TnnS8IBBAgQIECAAIHWCcQ3x2VvwpfJfgPuAgh/rwGvAa+Bcl4DCxYszPzw7GA40fbHYeD1Vc7riyvXUV8Dwpeyv7sxfiECk7p356TCF/fuLORlYxACBAgQIECAQKME4pu6sjfhi4sHo148cJ7XjteA10CdXwN+8+W7kt988f9onf8f7WptjQxffMPQvX9M3Lvzu5J7d3bvdV/EfSHLvoBjfAIECBAgQKA4gfimtOzN91Ld+5qyqxc79O217jXQrdeA60auG/l/vlv/zzdlvYUv/thkI34l0U8w+AmGpvyjWmSdRfwDXfYFHOMTIECAAAECxQnE1xE2AgQIECBAYP4Ck7pjSlSadzuz+XcwvzPcMWV+Xo4m0GSByv/mi5/W6l6S6d6d35Xcu7N7r3vhS5PfGtVOgAABAgTmLyB8mb+ZMwgQIECAQAhM6m8Fx9yTCF/8rWCvewLdERC++O2Z0n97xm+++M2XIn+jpCljCV+680aqUwIECBAgEALCF68DAgQIECAwmsCmTZsyIch111032mDzPGsS4Uv0NjhvGNgIEGifgPBF+FJ6+OLene7d2ZTApMg6hS/te8PUEQECBAgQOJmA8OVkOp4jQIAAAQKzC2zdujUTRlx66aWzn1DgM4MhSDwue4veBucNAxsBAu0TKP9flPaZ6WieApO6d+cpp5ySeTM7evToPKuf/+Hu3Tl/M2cQIECAAAECBJouIHxp+gqqnwABAgQmJbBnz57M9Zvly5enEydOlF7SYAhSdvgSPUVvg/OGgY0AgfYJCF/at6a162hS9+6cVPji3p21ewkqiAABAgQIECBQuoDwpXRiExAgQIBASwVmCyTuvvvu0jseDEHKDl/uuuuuTPBSVdBUOqYJCBDICAhfMiR2FC0wqXt3fs/3fE/mDe2v//qvi24vM557d2ZI7CBAgAABAgQItF5A+NL6JdYgAQIECJQokHcrrquuuqrEGf/v0FWHL9HT4JxV3WKtdEwTECCQERC+ZEjsKFpgUvfunFT4kvcFg3t3Fv2qMh4BAgQIECBAoF4Cwpd6rYdqCBAgQKBZAtu2bcuEEitXrkzPP/98qY0MBiFl/uZL9BI9Dc4ZvdsIEGingPClnetaq64mde/OSYQvs/2qrHt31uolqRgCBAgQIECAQOECwpfCSQ1IgAABAh0SOHjwYFqyZEkmmLjllltKVRgMQsoMX6KXwfmi5+jdRoBAOwWEL+1c11p1NVsgUfa9OxcvXpx5Uzt27FipNu7dWSqvwQkQIECAAAECtRUQvtR2aRRGgAABAg0RuOKKKzLXcdauXVtq9YNhSJnhS/QyOF/0bCNAoL0Cwpf2rm2tOsu7FVfZ9+6cRPji3p21etkphgABAgQIECBQmYDwpTJqExEgQIBASwV2796dCScirLj11ltL63gwDCkrfIke8uaKnm0ECLRXQPjS3rWtVWeTuHdn1eGLe3fW6iWnGAIECBAgQIBApQLCl0q5TUaAAAECLRW44IILMiHFWWedlY4cOVJKx3mBSNETHT58OEUPg3NFrzYCBNotIHxp9/rWprtJ3Lvzu7/7uzNvbGX+oTb37qzNy00hBAgQIECAAIHKBYQvlZObkAABAgRaKLBz587MtZwILa6++upSuh0MROJx0VvUnjfPrl27ip7KeAQI1Eyg+H9RatagcuojUPW9O6sOX9y7sz6vNZUQIECAAAECBKoWEL5ULW4+AgQIEGirwCWXXJIJKxYuXJh27NhReMt5oUiRk0TNUfvgPNGjjQCB9gsIX9q/xrXpsOp7d1YZvrh3Z21eZgohQIAAAQIECExEQPgyEXaTEiBAgEALBfbu3ZuWLl2aCSxWrlyZnnjiiUI7HgxF4nFRW9QaNQ/OEb1FjzYCBNovUNy/KO230mEBAlXeu3PRokWZN7jjx48X0MXMIdy7c6aHRwQIECBAgACBLgoIX7q46nomQIAAgbIENm/enLmmEyHGunXrUtzavqhtMBgpKnyJGqPWvPGjNxsBAt0QEL50Y51r02WV9+6sKnxx787avLwUQoAAAQIECBCYmIDwZWL0JiZAgACBlgpcdNFFueHF+eefn44ePVpI13nhyLgDR21RY97Y0ZONAIHuCAhfurPWtem0qnt3VhG+uHdnbV5WCiFAgAABAgQITFRA+DJRfpMTIECAQAsF9u/fn1avXp0bYkS4ceDAgbG7zgtIxhk0apoteIleoicbAQLdERC+dGeta9NpVffuLDt8ce/O2rykFEKAAAECBAgQmLiA8GXiS6AAAgQIEGihwD333JOWLVuWG8CsXbs27du3b6yuiwxfopaoKW/M6CF6sREg0C0B4Uu31rs23VZx784XvehFmTe8EydOFGLg3p2FMBqEAAECBAgQINAaAeFLa5ZSIwQIECBQM4G468jixYsz13gi5Dj99NPT7bffPnLFeUHJKINFDVFL3nhRe/RgI0CgewLCl+6teW06LvvenWWFL+7dWZuXkEIIECBAgAABArUREL7UZikUQoAAAQItFIhwY7YAJgKPK6+8Mj377LPz7jwvLJnPIM8888zU3HnjxL6oeZxwaD61OJYAgfoJCF/qtyadqajse3eWEb64d2dnXp4aJUCAAAECBAjMS0D4Mi8uBxMgQIAAgXkL7Nq1Ky1fvjz3t0si6FixYkXaunVrOnbs2NBj54Umw5wcc8RcMWfeGLEvao2abQQIdFdA+NLdta9F52Xeu3PhwoWZN8BxmnbvznH0nEuAAAECBAgQaLeA8KXd66s7AgQIEKiHwAMPPJDWrFmTud7TH4DEH7bfsmVLOnTo0JxF95/X+/xkJ8Vt6GPsmKN3fN7HqDFqtREg0G0B4Uu3178W3Zd1784iwxf37qzFS0URBAgQIECAAIHaCghfars0CiNAgACBlgnEXUkuv/zyk4YfEYgsWbIkbdiwId1xxx3pyJEjuQp5wcnggXFujBFjxZh55/Tvi9qiRhsBAgSEL14DtRAo496dRYQv7t1Zi5eHIggQIECAAAECtRcQvtR+iRRIgAABAi0TuPHGG9Npp502ZxgSwciiRYvSeeedl6655pq0bdu2tHv37hR3OOkPTXqfx3NxTBwb58S5vedO9jFqiZpsBAgQ6AkIX3oSPk5coOh7dy5YsCDz5jhsk+7dOayU4wgQIECAAAECBEJA+OJ1QIAAAQIEqheIvye8cePGlHcN6GRBSZHPxdxRQ9RiI0CAQL+A8KVfw+cTFyjy3p15b7xzNejenXMJeZ4AAQIECBAgQCBPQPiSp2IfAQIECBCoRuC+++5L69evT3l3QSkyaOkfK+aKOWNuGwECBPIEhC95KvZNVKCoe3cOG764d+dEl9vkBAgQIECAAIFWCGz4zU+krz13tBW9aIIAAQIECDRV4OGHH06bNm1Kq1atytwNpT84GefzGDvmiLlsBAgQOJmA8OVkOp6bqMC49+7MeyPdu3fv1H093btzoktrcgIECBAgQIBA6wT2fPGZ9C9/+65084cfTY89nf9HfVvXtIYIECBAgEBNBY4fP562b98+dTuwV7ziFWMHMTFG3FosxoyxbQQIEBhGQPgyjJJjJibg3p0TozcxAQIECBAgQIDAPAWOfOt4ev/HH0//9p33pn/x9k+lzTd9If3prsfSZ770rN+KmaelwwkQIECAQJEC+/btSzfffHO69tprp24Vtm7durRmzZp0xhlnpMWLF0/9F5/HvngubicWx8Y5ca6NAAECowgIX0ZRc07lAu7dWTm5CQkQIECAAAECBMYQ+MbhY+mTD+xPf/jBv0y/9d/vS7/09k+ly//dx9Mvv+PuqcfvfO9D6Y+2P5I+8InH08c+81S696Fn00NfOZD2PXUkPf31b6UDh46lCHO+9dcn0rHj304nvv2dMapxKgECBAgQIECAAAECVQsIX6oWN99YAu7dORafkwkQIECAAAECBCYocPTYialw5Z6Hnk0fvuur6T0feTS960+/PPUbMhHQvPX37k2/uvnutPG6T6c3v213uuL/vTOt/41PTIU2l13zsXTLR78ywepNTYAAAQIECBAgQIDAfASEL/PRcmxtBNy7szZLoRACBAgQIECAAAECBAgQIECAAAECBAgQGBAQvgyAeNhMAffubOa6qZoAAQIECBAgQIAAAQIECBAgQIAAAQJtFBC+tHFV9USAAAECBAgQIECAAAECBAgQIECAAAECBAhMTED4MjF6ExMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJtFBC+tHFV9USAAAECBAgQIECAAAECBAgQIECAAAECBAhMTED4MjF6ExMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJtFBC+tHFV9USAAAECBAgQIECAAAECBAgQIECAAAECBAhMTED4MjF6ExMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJtFBC+tHFV9USAAAECBAgQIECAAAECBAgQIECAAAECBAhMTED4MjF6ExMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJtFBC+tHFV9USAAAECBAgQIECAAAECBAgQIECAAAECBAhMTED4MjF6ExMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJtFBC+tHFV9USAAAECBAgQIECAAAECBAgQIECAAAECBAhMTED4MjF6ExMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJtFBC+tHFV9USAAAECBAgQIECAAAECBAgQIECAAAECBAhMTED4MjF6ExMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJtFBC+tHFV9USAAAECBAgQIECAAAECBAgQIECAAAECBAhMTOD/AwZ2jZsWGQQEAAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Thus, the final circuit can be implemented using ancilla qubits as" + ] + }, + { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB1kAAAQWCAYAAAB2cQGGAAAgAElEQVR4Aezdf9AV1134cR4IT4CWAg4tSRsaaCEUWmiLfWKtpYRUW0tTS221/HCiPqYxGXWiidaYzJD8o37zY4ijjhqNY4IWojRSSUVEMC3yhCBiaCktv3+USkkdIQVCoPw43zk33cvec/bcZ+/unr3nx3tnnrl39+6ecz6vc3b32f3cH0MEEwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAboEhuddkRQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABQZKVQYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgh0IECStQMsVkUAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRIsjIGEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEOiCwJAhQwR/fqYr/Wx1FwY5VSKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQpQAJ1teSzFWa1lUWSda6pKkHAQQQQAABBBBAAAEEEKhRgAt1fy/UaxwmVIUAAggggAACCCCAAAJdFuDazd9rN5KsXd55qB4BBBBAAAEEEEAAAQQQsCHAhbq/F+o2xgNlIoAAAggggAACCCCAgJsCXLv5e+1GktXNfYpWIYAAAggggAACCCCAAAKlBLhQ9/dCvVTHszECCCCAAAIIIIAAAgh4JcC1m7/XbiRZvdrVaCwCCCCAAAIIIIAAAgggkE+AC3V/L9Tz9TBrIYAAAggggAACCCCAQAgCXLv5e+1GkjWEPZAYEEAAAQQQQAABBBBAAAFFgAt1fy/Ula5kFgEEEEAAAQQQQAABBAIWMF27hRpySPGSZA11lBIXAggggAACCCCAAAIIRC1gunCNbXnUg4DgEUAAAQQQQAABBBBAwHkB0zWa8w0v2MCQ4iXJWnAQsBkCCCCAAAIIIIAAAggg4LJASBeueZxjizePCesggAACCCCAAAIIIICA+wKxXcuEFC9JVvf3L1qIAAIIIIAAAggggAACCHQsENKFa57gY4s3jwnrIIAAAggggAACCCCAgPsCsV3LhBQvSVb39y9aiAACCCCAAAIIIIAAAgh0LBDShWue4GOLN48J6yCAAAIIIIAAAggggID7ArFdy4QUL0lW9/cvWogAAggggAACCCCAAAIIdCwQ0oVrnuBjizePCesggAACCCCAAAIIIICA+wKxXcuEFG9QSVZTx8S23P1DBi1EAAEE/BKI7TxiitevXqO1CCCAAAKxHc9ji5cRjgACCCCAAAIIIIAAAmEIxHYtE1K8JFmHDBGmDvV1eRiHFaJAAAEE3BHw9XxQdbvd6RFaggACCCCQR8B0HsizrY/rxBavj31EmxFAAAEEEEAAAQQQQEAXiO1aJqR4SbKSZNX3aJYggAACCLQImE78sS1vQWEGAQQQQMB5AdN5yvmGF2xgbPEWZGIzBBBAAAEEEEAAAQQQcEwgtmuZkOIlyUqS1bHDCc1BAAEE3BMwnfhjW+5ez9AiBBBAAIF2AqbzVLttfH4ttnh97ivajgACCCCAAAIIIIAAAlcEYruWCSlekqwkWa/syTxDAAEEEMgUMJ34Y1ueicNCBBBAAAFnBUznKWcbXLJhscVbkovNEUAAAQQQQAABBBBAwBGB2K5lQoqXJCtJVkcOIzQDAQQQcFfAdOKPbbm7PUTLEEAAAQSyBEznqax1Q1gWW7wh9BkxIIAAAggggAACCCDQTuDkyZNi+fLlor+/X/T19Ynx48eL3t7exp98LpfJ1+Q6cl1fp9iuZUKKN4okq6871mDtDmkgDhYrryOAAALdFIjteBtbvN0cW9SNAAII2BSI7XgeWryx3FCyuQ9QNgIIIIAAAggggICfAjt27BCLFi1qJFNN/+ery2XyVW4jt/VtUmNJ5quI49SpU2JgYGDQv+eff15cunSpWeXZs2fbbiPXv3z5cnP9Tp4k8amPnZThyrokWV3piQLtUAdgMl+gKDZBAAEEEGgjkBxf1cc2m3j9khpnMu91UDQeAQQQiFAgOX6rj6FSqHEm877FG9sNJd/6h/YigAACCCCAAAII2BM4ceJE45OpPT09Ivl/vtNHua38dKssy5fJFGMV7V+3bp0YNWrUoJ7jxo0TR48ebVa5ZcsWMXr0aON2w4YNEy+99FJz/U6e2Iy3k3ZUsS5J1ioUu1RGSAOxS4RUiwACCOQSiO14G1u8uQYBKyGAAAIeCsR2PPc93lhvKHm4a9FkBBBAAAEEEEAAAQsCW7duFRMnTjQm9Uz/75uWy7JkmT5Mphiqarv8hKpMms6YMUPznTx5stizZ09mVfKTqqtWrWrZZujQoWLx4sVi7969mdvkWWg73jxtqGodkqxVSXahnJAGYhf4qBIBBBDILRDb8Ta2eHMPBFZEAAEEPBOweTznK6eqHQwx31CqVpLSEEAAAQQQQAABBHwUWLt2ba5PW5qucUzL5Sc4ZdmuT6b2V93unTt3CpkkTdd37733tq1m+/btzfVHjBghnn322bbr53kxXX/6eZ5tXVuHJKtrPdJBe9KDL/28gyJYFQEEEEAgh0D6GJt+nmNTL1dJx5h+7mUwNBoBBBCIWCB9DE8/r4KEr5yqQvG1MmK/oVSdJCUhgAACCCCAAAII+CiwadMmIZN36WuWKp/LsmUdLk+meG20+ZZbbmmxnj17trGa06dPi1mzZjXWl795u379euO6nbxQZ7ydtKvIuiRZi6g5sk1IA9ERUpqBAAIIZArEdryNLd7MTmchAgggEICA7eM5XzlVfpBwQ6m8ISUggAACCCCAAAII+Ctw7NgxMWHChJakn+k6psxyWYesy9XJFJuN9q5Zs0bzlp9WVaeLFy+K+fPnN9aVv7/6zDPPqKsUnq8z3sKNzLkhSdacUC6uFtJAdNGXNiGAAAKJQGzH29jiTfqZRwQQQCA0gbqO53zlVLGRww2lYm5shQACCCCAAAIIIBCOwIIFC7SEn+k6puxyWZerkyk2G+2VydPrrruuxf3OO+/UqpLLknY9/vjj2utlFiTlqo9lyuzWtiRZuyVfQb3qAEzmKyi6q0WcPHlSLF++XPT394u+vj4xfvx4IT+KLv/kc7lMvibXkesyIYAAArYFkuOr+mi73m6Vr8aZzHerPdSLAAIIIFBMIDl+q4/FSmu/FV851d4n61VuKGWpsAwBBBBAAAEEEEAgFoGNGzc2k3jqNYuteVmni5MpXlttXbp0aYv9mDFjxNmzZ5vVPfroo83X77vvvubyqp7UHW9V7c4qhyRrloony0IaiJJ8x44dYtGiRY1kqik2dblMvMpt5LZMCCBgR4A3PojmPxXqMciOePdLVeNM5rvfMlqAAAIIINCJQHL8Vh87KSPvunzlVF6p19bjhlJnXqyNAAIIIIAAAgggEJ7AvHnzjPfc1GuYquZlnS5OpvhstfXIkSNi6NChLf5PPfVUozr5tcDJa0uWLBGXL1+uvBl1x1t5AKkCSbKmMHx7GspAPHHiROOTqT09PS07tSm+rOVyW/npVlkWEwIIVCPAGx+uOGYdd+SyUKfY4g21H4kLAQQQqPN4zldOdTbeuKHUmRdrI4AAAggggAACCIQlsH//flEmH2C61hlsuaxT1u3aZGq3zXYmv7ea1D1nzhzxwgsviJEjRzbyNDfddJM4f/68lSYkdaqPViqzXGhQd4jVDknmLRt2rfgkPvWxaw0qUPHWrVvFxIkTCydX1dhlWbJMJgQQKC7AGx90O/VYk8zra4axJIlPfQwjOqJAAAEE4hFQj+PJvC0BvnIqnyw3lPI5sRYCCCCAAAIIIIBAuALLli2rLCeQXOfkfZR1uzaZ2m6znatXr9b6YPjw4Y1lM2bMsPpTjd2I15YlSVZbsjWU6/tAXLt2rRg1apS2I5viyrtclinLZkIAgc4FeONDtpnp+JO9tv9LY4vX/x4jAgQQQCBboO7jOV85ld0P6lJuKKkizCOAAAIIIIAAAgjEJrBgwYLK8wKm6x91uazbtUltYzJvs50XLlwQ1157rdYP11xzjTh8+LDNqrU664jXVkAkWXPKnjp1SgwMDAz69/zzz4tLly41S5U/FtxuO7l+0e+0Tgae+tis3OEnmzZtEiNGjDDuTGpMnc7LsmUdTAggkF+ANz6YrUzHIPMW+V/h/JLfijURQAABBDoTsHn+MrWEr5wyyVxZzg2lKxY8QwABBBBAAAEEEIhTYOrUqdZyA6broGS5rNu1KWmb+mi7nffff7/WD5s3b7ZdrVZnErf1ii1UQJI1J+q6detyfepy3Lhx4ujRo81St2zZIkaPHm0cNMOGDRMvvfRSc/1OniQDT33spIxurHvs2DExYcIEo4kaT9F5WYesiwkBBAYX4I0P7Y1Mx6H2W+V7lfNLPifWQgABBBDoXMDm+cvUGr5yyiRzZTk3lK5Y8AwBBBBAAAEEEEAgToF2ORPTdUxVy2Xdrk2m2Gy38+DBg1qeZsWKFbar1epM4rdesYUKSLJ2gCo/oSqTpvL7qJNOTx4nT54s9uzZk1ma/KTqqlWrWrYZOnSoWLx4sdi7d2/mNnkWJnWrj3m27eY6db5z28WP/nfTnroRyBLgjQ9ZKq3L1ONsMt+6VvE5zi/F7dgSAQQQ8FHggQceaLk2SM4rdT3aNHPxK6fqcqWeIV0d1/jjzxhgDDAGGAOMAcYAY4AxENoYsHntJsteunSp9j/83LlzbVer1elavz344IO5DUiy5qa6suLOnTuFTJKmO/7ee++9skLGs+3btzfXl19l++yzz2as1dmidP3p552VUu/aGzdubDqk22zzuayTCQEEzAK88cFsk7xiOkYlr1f1yPmlKknKQQABBNwWCDnJKuVd+8op03mc5dyEYwwwBhgDjAHGAGOAMcAYYAwwBlweAzavbJ988kljrmb37t02qzbW60pfyGv2vBNJ1rxSynq33HJLy0CYPXu2ssaV2dOnT4tZs2Y11u/t7RXr16+/8mKJZ6YBV6JI65vOmzevxc0UQ5XLZZ1MCCCQLcAbH7Jd1KWmY5K6XhXznF+qUKQMBBBAwG2B0JOsrn3llOk8znJuqDEGGAOMAcYAY4AxwBhgDDAGGAMujwFbV7bynvDw4cMbuRr5javTpk1rydvcc889tqpulOuyuWwbSdYhrQcGG6NhzZo1LYNOwstPq6rTxYsXxfz58xvryt9ffeaZZ9RVCs+bBmLhAi1vuH//ftHT06O5meKoarmsU9bNhAACugBvfNBNspaYjkdZ65ZdxvmlrCDbI4AAAu4LhJ5k5SunWq9HTf9HsBwnxgBjgDHAGGAMMAYYA4wBxgBjoN0YsHF1u2vXLjF27NhGnkZ+NfD58+fFY4891pK3GT9+vDh37pyN6htltovZhddIstaQZJXJ0+uuu65l4N15553aoJPLkkHx+OOPa6+XWZCUqz6WKdPmtsuWLWtaqG22PS/rZkIAgVYB3vjQ6tFuznSMardN0dc4vxSVYzsEEEDAH4GQk6x85RQ3iUz/N7GcscEYYAwwBhgDjAHGAGOAMcAY6GwMVH2Ve/z4cTFp0qRGnmb69OnixIkTjSrko/yZy3T/rFixourqm+Wl63HxOUnWGpKscjSo79AeM2aMOHv2bHOgPProo81Bed999zWXV/XENPiqKr/qcur83UfVRtbNhAACrQK88aHVo92cekxJ5tttU+Y1zi9l9NgWAQQQQCARSM5X6mPyetWPrn7lVNVxli2P/8HKCrI9AggggAACCCCAgO8C3fzwx4EDB5zjU6/ZkvkqG3rmzBnR19fXyFlNmDBBHDp0qKX4W2+9tZnPkvXLT7nampL41Edb9dksl99kLaF75MgRMXTo0JaB99RTTzVKlF8LnLy2ZMkScfny5RI1ZW+qDsBkPnvt7i+dOnVqi1XS3joeZd1MCCDQKsAbH1o92s2ZjlPttinzGueXMnpsiwACCCCQCNR5/nL5K6cSD1ceuaHkSk/QDgQQQAABBBBAAIFuCvAzZlf0bV+7XbhwofmzlqNGjRLbtm27UvkPnw0MDGj5m927d2vrVbHAdrxVtDFvGR0nWbv91VYm/HbL82IUWS/5vdWk/jlz5ogXXnhBjBw5sjEgb7rppsZ3Whcpe7Btkjp57Owj9njhxRhgDFQ1BgY7Tpd5nfNL8XH64IMPlqFnWwQQQCAYAdP5ruoAXf/KqarjraI8bihVoUgZCCCAAAIIIIAAAj4LbNiwQUvqma5hqlouv33HxckUXxVtlR8A7O/vb1gPGzZMrFmzxljszJkzW/rk7rvvNq5b5gWb8ZZpV5FtSbIWUUtts3r16pZBJwfH8OHDG8tmzJghTp48mVq72qemgcjy4jfmscOOMcAY6GQMVHtUby2N80vxsdjJ7ya0qjOHAAIIhCVgOqdVGSVfOVVMkxtKxdzYCgEEEEAAAQQQQCAsgTq/ac/lnxS0de0mE6x33HFHM4f10EMPtR1AjzzySHNd2aaxY8eKl19+ue02RV60FW+RtpTdhiRrSUH5Metrr722ZeDJAXLNNdeIw4cPlyy9/eamgcjy4jfmscOOMcAY6GQMtD9Kl3uV80vxsUiStdzYY2sEEAhHwHROqypCvnKqnCQ3lMr5sTUCCCCAAAIIIICA/wLHjh0T8vdBTdcuVS2Xdci6XJ1McZZpr0yOpq855LevXrp0qW2Rzz33nNYXd911V9ttirxoI94i7ahiG5KsFSjef//92sDbvHlzBSW3L8I0EFle/MY8dtgxBhgDnYyB9kfp8q9yfik2Hkmylh97lIAAAmEImM5pVUTHV06VV+SGUnlDSkAAAQQQQAABBBDwX2DTpk1ixIgRWo7FdD3T6XJZtqzD5ckUU5E2y28beuKJJ8SUKVM004cffljs27dPyDfMpif5EzDyd1rVny9L2rVw4UKxfPlycfTo0fRmhZ8n5aqPhQvs4oYkWSvAP3jwoDZYV6xYUUHJ7YtQByDzxW7G44YbY4AxUHQMtD9Kl3+V80uxsUmStfzYowQEEAhDwHR+KxsdXzlVVvDK9txQumLBMwQQQAABBBBAAIF4BdauXStGjRql5VlM1zR5l8syZdmuT6Z4irR75cqVgzoODAw0i37llVeE/K1WUxvSy2+++ebmdmWepMtMPy9TZre27TjJ2q2G5qk33Rnp53m2LbPO0qVLtQE4d+7cMkXm2jYdY/p5ro27sNKyZcs0p3S7bT6XdTMhgECrQPrrImzuf1llu/wbCK1Kr81lxSCX2Z44v9gWpnwEEEAgbAEb5y++cqr6MRP7DaXqRSkRAQQQQAABBBBAwEeBrVu3iokTJ1aWQ5BlyTJ9mGxcu7kcd0jx2r9DXGNPdqNjnnzySeNOv3v3bqvRdyPeMgHt379f9PT0GL1M8ZRdLus8cOBAmaazLQJBCvDGh/zdajoO5S+h8zU5v3RuxhYIIIAAAq0CVZ6/+MqpVtuq52K+oVS1JeUhgAACCCCAAAII+Ctw4sQJ0d/fXyqPIPMBsgxZli9TldduPsQcUrwkWUuMuI0bN4rhw4c3koaLFy8W06ZNa0kg3nPPPSVKH3xTHwfivHnzWoxMMVS5XNbJhAACugBvfNBNTEtMxyTT+mWXc34pK8j2CCCAAAJSoMrzF185ZX9MxXpDyb4sNSCAAAIIIIAAAgj4JrBjxw6xaNEi0dvba7yuUa935LpyG7mtb5MaSzLvWxx525vEpz7m3d6l9UiyFuyNXbt2ibFjxzZ2cPnVwOfPnxePPfZYyw4/fvx4ce7cuYI1DL6ZOgCT+cG37N4aGzZsaDFK2mzzUSYrmBBAIFuANz5ku6hLTccodb0q5jm/VKFIGQgggAACUqDO85cL4qHEG9sNJRfGDm1AAAEEEEAAAQQQcFNAvhFx+fLljU+m9vX1NX63Vf5+qPyTv7f65je/ufGaXMenT66q2qFcy6hxmeZDipckq6mX2yw/fvy4mDRpUuOmxfTp05s7r9yJR4wY0XIzY8WKFW1KKveSrwOxzt+B9O13H8uNCLZGoHMB3viQz6yu4y3nl3z9wVoIIIAAAvkE6jp/5WuN/bVCizeWG0r2RwY1IIAAAggggAACCIQiIJOr6v/9Fy9e9D48NaZk3vvADAEk8amPhtWdXkyStcPukb9FJN8xITt/woQJ4tChQy0l3HrrrS07ufyUq61JHYDJvK36qir32LFjDbukvbYeZf/IupgQQKC9AG98aO8jXzUdpwbfMv8anF/yW7EmAggggEA+gTrOX/laUs9aoccb6g2lekYHtSCAAAIIIIAAAgiEIHDVVVdp9+kuXLjgfWihX8uoHRRSvCRZ1d5tMy931vnz5zd2YvlR9G3btmlrDwwMaDv57t27tfWqWODzQNy0aZP2qV9TPEWWy08UyzqYEEBgcAHe+DC4kek4NPiW+dbg/JLPibUQQAABBDoTsH3+6qw19tcOPd5QbyjZHxnUgAACCCCAAAIIIBCKwPDhw7X8yw9+8APvwwv9WkbtoJDiJcmq9q5h/vLly43v9padL99BvGbNGsOaQsycObNlR7/77ruN65Z5wfeBuHbt2sb3ppviKLpcJsBl2UwIIJBfgDc+tLcyHY/ab5XvVc4v+ZxYCwEEEECgcwGb56/OW2N/i9DjDfWGkv2RQQ0IIIAAAggggAACoQhcffXVLbkXeQ1w/vx578ML/VpG7aCQ4iXJqvZuxry8AX7HHXc0d96HHnooY60rix555JHmunKwjB07Vrz88stXVqjoWQgDcevWrWLixIktXqa48iyXZckymRBAoHMB3vhgNjMdf8xb5HuF80s+J9ZCAAEEECgmYOv8Vaw19rcKPd5QbyjZHxnUgAACCCCAAAIIIBCKgPwGS/X//ldffdX78NSYknnvAzMEkMSnPhpWd3oxSdZBukcmR9O/Vzhy5Ehx6dKltls999xz2o5+1113td2myIvqAEzmi5TVzW1OnDjR+JRwT0+P5pbENNij3La/v1/IspgQQKC4AG98yLYzHYOy1863lPNLPifWQgABBBAoLmDj/FW8Nfa3DD3eUG8o2R8Z1IAAAggggAACCCAQioDMz6j/9589e9b78NSYknnvAzMEkMSnPhpWd3oxSVZD95w5c0Y88cQTYsqUKdpO+/DDD4t9+/YJ9QeVjx8/3vid1uR3W9UBsnDhQrF8+XJx9OhRQ62dLVbLT+Y7K8WdtXfs2CEWLVokent7NfMkNvVRriu3kdsyIYBANQK88UF3VI89yby+5uBLOL8MbsQaCCCAAALVCCTnK/WxmtLdK0WNM5l3r6XFWhTqDaViGmyFAAIIIIAAAgggEKOA/KnA5P/85PGVV17xniKJRX30PjBDAGqcybxhdacXk2Q1dM/KlSu1nTXp6ORxYGCgubXckeVvtSavtXu8+eabm9uVeWKqo0yZLmwrEzwyGS0/mXr99dc3frdV2so/eRB9z3ve03hNrsMnV13oMdoQqgBvfLjSs1Uebzm/XHHlGQIIIICAXYEqz192W1pN6aHHG+oNpWp6n1IQQAABBBBAAAEEYhB4/etfr+VgTp8+7X3ooV/LqB0UUrwkWdXe9Wg+pIFoYpcJVTXOF1980bQ6yxFAwIJA+o0PfX19Qv4zk37jw1ve8pbGJ8pDfuODehxK5i1wO1FkEp/66ETjaAQCCCCAQG4B9TiezOcuwLMVk/jUR8/CMDY31BtKxoB5AQEEEEAAAQQQQAABRWD06NFavuDUqVPKWv7Nqtcwybx/keRrcRKf+phva7fWIsnqVn901Bp1ACbzHRXi+MokWR3vIJoXpUCM+2VyfFUfQx0AapzJfKjxEhcCCCAQqkBy/FYfiddPgVBvKPnZG7QaAQQQQAABBBBAoBsCb3jDG7Qk6/e///1uNKXSOtVrtmS+0kocKiyJT310qIm5m0KSNTeVeyuqAzCZd6+lxVsUYzKnuBZbIlCPQIz7ZXJ8VR/rEa+/FjXOZL7+llAjAggggEAZgeT4rT6WKdPlbdU4k3mX29xJ20K9odSJAesigAACCCCAAAIIxC0wduxYLcl68uRJ71GSaxf10fvADAGocSbzhtWdXkyS1enuad+4ZOCpj+238uvVd7/73dpBU/5OJBMCCHRPgCTrkOZxqXu9YLdm9bySzNutldIRQAABBKoWSI7f6mPV9bhSnhpnMu9K+8q2I9QbSmVd2B4BBBBAAAEEEEAgHoFx48Y178sl/+/LnzrzfUpiUR99j8vUfjXOZN60vsvLSbK63DuDtC0ZeOrjIJt59TJJVq+6i8ZGIhDjfqkeZ5P5ULs8iU99DDVe4kIAAQRCFVCP48k88fopEOoNJT97g1YjgAACCCCAAAIIdEPgR37kR7Qk6//93/91oymV1plcq8X+WClqTYWRZK0J2kY1ph3ORl3dKjPGZE63rKkXgbwCMe6XMRxv0/0fW7zp2HmOAAIIhCQQ2/E89HhDvaEU0j5HLAgggAACCCCAAAJ2BcaPH68lWf/3f//XbqU1lG66lolteQ3UlVdBkrVy0voKNO1g9bXAfk2zZs3SDppf+9rX7FdMDQggYBQgycrXBRsHBy8ggAACCDglYLpeiG25U51SojGh3lAqQcKmCCCAAAIIIIAAApEJvPGNb9TyBd/73ve8V4jtGs0Ur48dSZLVx177YZtDGoimbiDJapJhOQLdE4hxv4zheJseUbHFm46d5wgggEBIAqbjeWzLQ+nTUG8ohdI/xIEAAggggAACCCBgX+BNb3qTlmR96aWX7FdsuYbYrtFM8VpmtlI8SVYrrPUUGtJANInFmMwxWbAcAVcEYtwvYzjepsdXbPGmY+c5AgggEJKA6Xge2/JQ+jTUG0qh9A9xIIAAAggggAACCNgXuOaaa7Qk63e/+137FVuuIbZrNFO8lpmtFE+S1QprPYWGNBBNYjNnztQOml//+tdNq7McAZ8ixsAAACAASURBVARqECDJytcF1zDMqAIBBBBAoAIB0/VCbMsroHSiiFBvKDmBSyMQQAABBBBAAAEEvBC49tprtXzBsWPHvGh7u0bGdo1miredkauvkWR1tWdytCukgWgKlySrSYblCHRPIMb9MobjbXpExRZvOnaeI4AAAiEJmI7nsS0PpU9DvaEUSv8QBwIIIIAAAggggIB9gTe/+c1akvV//ud/7FdMDQgYBEiyGmB8WGy6OeJD2/O2McZkTl4b1kOgWwIx7pcxHG/T4ym2eNOx8xwBBBAIScB0PI9teSh9yg2lUHqSOBBAAAEEEEAAAQSKClx33XVakvU73/lO0eLYDoHSAiRZSxN2rwDTzZHutaj6mt/1rndpB82dO3dWXxElIoBAbgGSrHxdcO7BwooIIIAAAgggUJkAN5Qqo6QgBBBAAAEEEEAAAU8FJk6cqOULvv3tb3saDc0OQYAkq8e9SJLV486j6Qh4LBDjmx9iON6mh2Rs8aZj5zkCCCCAAAKuCnBDydWeoV0IIIAAAggggAACdQm89a1v1ZKsR44cqat66kFAEyDJqpH4syCGm+AxJnP8GYG0NFaBGPfLGI636fEcW7zp2HmOAAIIIICAqwLcUHK1Z2gXAggggAACCCCAQF0C119/vZZkPXz4cF3VUw8CmgBJVo3EnwUx3AR/5zvfqR00v/GNb/jTSbQUgQAFSLLydcEBDmtCQgABBBBAwHkBbig530U0EAEEEEAAAQQQQMCywOTJk7V8wcGDBy3XSvEImAWiSLKakpGhLjd3t3+vkGT1r89ocfgCMe6XoZ4vOo0r/NFNhAgggAACCLgrwA0ld/uGliGAAAIIIIAAAgjUI/C2t71NS7IeOHCgnsqpBYEMAZKsQ658IqnTm82urp/Rz94uijGZ421n0fBoBGLcL1093tfdrmgGOYEigAACCCDgoAA3lBzsFJqEAAIIIIAAAgggUKvA29/+di3Jun///lrbQGUIpAVIspJkTY8H557HmMxxrhNoEAKKQIz7Zd3JTFfrU4YCswgggAACCCBQowA3lGrEpioEEEAAAQQQQAABJwWmTp2qJVn37t3rZFtpVBwCJFlJsjo90mfMmKEdNHft2uV0m2kcAqELkGQN7xsQ8iZ1Qx/bxIcAAggggIDLAtxQcrl3aBsCCCCAAAIIIIBAHQI33HCDli/Ys2dPHVVTBwKZAiRZSbJmDgxXFpJkdaUnaAcCVwRi3C/zJiFDX+/KKOAZAggggAACCNQtwA2lusWpDwEEEEAAAQQQQMA1gWnTpmlJ1t27d7vWTNoTkQBJVpKsTg/3GJM5TncIjUNACBHjfhl68jRvfOwACCCAAAIIINA9AW4odc+emhFAAAEEEEAAAQTcEJg+fbqWZP3mN7/pRuNoRZQCQSVZo+zBwIPmoBl4BxOelwIxJlm97CgajQACCCCAAAJBCXBtFFR3EgwCCCCAAAIIIIBAAQHuSxZAYxOrAiRZrfJSeFkBbiSUFWR7BKoXYL+s3pQSEUAAAQQQQACBwQS4oTSYEK8jgAACCCCAAAIIhC7wzne+U/sk6ze+8Y3QwyY+hwVIsjrcOTRNCJI5jAIE3BNgv3SvT2gRAggggAACCIQvwA2l8PuYCBFAAAEEEEAAAQTaC8ycOVNLsn79619vvxGvImBRgCSrRVyKLi/wjne8Qztofutb3ypfMCUggEBhAZKshenYEAEEEEAAAQQQKCzADaXCdGyIAAIIIIAAAgggEIjArFmztHzB1772tUCiIwwfBUiy+thrEbWZJGtEnU2o3giwX3rTVTQUAQQQQAABBAIS4IZSQJ1JKAgggAACCCCAAAKFBN797ndrSdYdO3YUKouNEKhCgCRrFYqUYU2AZI41WgpGoLAA+2VhOjZEAAEEEEAAAQQKC3BDqTAdGyKAAAIIIIAAAggEIvDe975XS7K++OKLgURHGD4KkGT1sdciavO0adO0g+bu3bsjEiBUBNwTIMnqXp/QIgQQQAABBBAIX4AbSuH3MREigAACCCCAAAIItBeYPXu2li/Yvn17+414FQGLAiRZLeJSdHkBkqzlDSkBgaoF2C+rFqU8BBBAAAEEEEBgcAFuKA1uxBoIIIAAAggggAACYQv86I/+qJZk/a//+q+wgyY6pwVIsjrdPTSOZA5jAAH3BNgv3esTWoQAAggggAAC4QtwQyn8PiZCBBBAAAEEEEAAgfYC73vf+7Qk67Zt29pvxKsIWBQgyWoRl6LLC9xwww3aQXPPnj3lC6YEBBAoLECStTAdGyKAAAIIIIAAAoUFuKFUmI4NEUAAAQQQQAABBAIRuPHGG7V8wdatWwOJjjB8FCDJ6mOvRdRmkqwRdTaheiPAfulNV9FQBBBAAAEEEAhIgBtKAXUmoSCAAAIIIIAAAggUEvixH/sxLcn6wgsvFCqLjRCoQoAkaxWKlGFNgGSONVoKRqCwAPtlYTo2RAABBBBAAAEECgtwQ6kwHRsigAACCCCAAAIIBCLw/ve/X0uybtmyJZDoCMNHAZKsPvZaRG0mmRNRZxOqNwLsl950FQ1FAAEEEEAAgYAEuKEUUGcSCgIIIIAAAggggEAhgQ984ANaknVgYKBQWWyEQBUCJFmrUKQMawJTp07VDpp79+61Vh8FI4DA4AIkWQc3Yg0EEEAAAQQQQKBqAW4oVS1KeQgggAACCCCAAAK+CfzET/yEli/YvHmzb2HQ3oAESLIG1JkhhkKSNcReJSbfBdgvfe9B2o8AAggggAACPgpwQ8nHXqPNCCCAAAIIIIAAAlUKfPCDH9SSrP/xH/9RZRWUhUBHAiRZO+Ji5boFSObULU59CAwuwH45uBFrIIAAAggggAACVQtwQ6lqUcpDAAEEEEAAAQQQ8E3gQx/6kJZk/epXv+pbGLQ3IAGSrAF1ZoihTJkyRTto7tu3L8RQiQkBbwRIsnrTVTQUAQQQQAABBAIS4IZSQJ1JKAgggAACCCCAAAKFBObOnavlC77yla8UKouNEKhCgCRrFYqUYU2AJKs1WgpGoLAA+2VhOjZEAAEEEEAAAQQKC3BDqTAdGyKAAAIIIIAAAggEInDTTTdpSdbnnnsukOgIw0cBkqw+9lpEbSaZE1FnE6o3AuyX3nQVDUUAAQQQQACBgAS4oRRQZxIKAggggAACCCCAQCGBm2++WUuybty4sVBZLm00ZMgQLa4Yl7nUJ3nbQpI1rxTrdUXg7W9/u3Zw2b9/f1faQqUIIPCaAElWRgICCCCAAAIIIFC/QKg3lOqXpEYEEEAAAQQQQAABXwU+/OEPa/mCDRs2+BpOs90xJlSzYm6CePSEJKtHnRVjU0myxtjrxOy6APul6z1E+xBAAAEEEEAgRIFQbyiF2FfEhAACCCCAAAIIIGBH4Cd/8ie1JOu//du/2amsxlKzEo4xLquRvLKqSLJWRklBNgRI5thQpUwEygmwX5bzY2sEEEAAAQTqEojxojwr5rq8bdcT6g0l226UjwACCCCAAAIIIBCOwEc+8hEtybp+/XrvA8y6jolxmY8dSZLVx16LqM1ve9vbtIPmgQMHIhIgVATcEyDJ6l6f0CIEEEAAAQSyBGK8KM+KOcvGx2Wh3lDysS9oMwIIIIAAAggggEB3BD760Y9q+YJ169Z1pzEV1pp1HRPjsgpJayuKJGtt1FRURIAkaxE1tkHArgD7pV1fSkcAAQQQQKAqgRgvyrNirsqz2+WEekOp267UjwACCCCAAAIIIOCPwE//9E9rSdZ/+Zd/8ScAQ0uzrmNiXGbgcXoxSVanu4fGkcxhDCDgngD7pXt9QosQQAABBBDIEojxojwr5iwbH5eFekPJx76gzQgggAACCCCAAALdEfjYxz6mJVnXrl3bncZUWGvWdYxcFuoUUrzh9lKooy+yuCZPnqwdNA8ePBiZAuEi4JYASVa3+oPWIIAAAgggYBIwXbjGttzk49vyUG8o+dYPtBcBBBBAAAEEEECgewIf//jHtXzBl7/85e41qKKaTddoFRXvXDEhxUuS1bnhRYPSAiRZ0xo8R8ANAfZLN/qBViCAAAIIIDCYgOnCNbblgzn58nqoN5R88aedCCCAAAIIIIAAAt0XuOWWW7Qk67PPPtv9hpVsgekarWSxzm4eUrwkWZ0dZjRMCpDMYRwg4J4A+6V7fUKLEEAAAQQQyBII6cI1Kz51WejxhnpDSe1H5hFAAAEEEEAAAQQQMAl84hOf0JKsa9asMa3uzfLQr2XUjggpXpKsau8y75QAyRynuoPGINAQYL9kICCAAAIIIOCHQEgXrnnEQ4831BtKefqWdRBAAAEEEEAAAQQQkAKf/OQntSTrl770Je9xQr+WUTsopHhJsqq9y7xTApMmTdIOmocOHXKqjTQGgdgESLLG1uPEiwACCCDgq0BIF655+iD0eEO9oZSnb1kHAQQQQAABBBBAAAEpsGDBAi1fsHr1au9xQr+WUTsopHhJsqq9y7xTAiRZneoOGoNAQ4D9koGAAAIIIICAHwIhXbjmEQ893lBvKOXpW9ZBAAEEEEAAAQQQQEAKfOpTn9KSrP/4j//oPU7o1zJqB4UUb1BJVlPHxLZcHbA+z5PM8bn3aHuoAjHul7GdR0zxhjqmiQsBBBAIVSC243no8YZ6QynU/Y+4EEAAAQQQQAABBKoX+PSnP60lWb/4xS9WX1HNJYZ+LaNyhhQvSdYhQ7Sd0tTBvixXB6zP89dff73WP4cPH/Y5JNqOgPcCJFnDO2/kPb95P3gJAAEEEIhMwHR8D5Uh9HhDvaEU6ngkLgQQQAABBBBAAIHqBT7zmc9o+YJVq1ZVX1HNJYZ+LaNyhhQvSVaSrOr4dmqeJKtT3UFjEGgIxLhfmk78sS1nF0AAAQQQ8EvAdJ7yK4r8rQ093lBvKOXvYdZEAAEEEEAAAQQQiF3g537u57Qk6z/8wz94zxL6tYzaQSHFS5KVJKs6vp2ajzGZ41QH0BgEMgRi3C9NJ/7YlmcMBxYhgAACCDgsYDpPOdzkUk0LPd5QbyiV6nQ2RgABBBBAAAEEEIhK4LOf/ayWZH366ae9Nwj9WkbtoJDiJclKklUd307Nv/Wtb9UOmkeOHHGqjTQGgdgESLLydcGxjXniRQABBHwVCOnCNU8fhB5vqDeU8vQt6yCAAAIIIIAAAgggIAUWLlyo5QtWrlzpPU7o1zJqB4UUL0lWkqzq+HZqniSrU91BYxBoCMS4X5pO/LEtZxdAAAEEEPBLwHSe8iuK/K0NPd5Qbyjl72HWRAABBBBAAAEEEIhdYNGiRVqSdcWKFd6zhH4to3ZQSPFGkWRVOzCU+ZAGoqlPYkzmmCxYjoArAjHulzEcb9PjK7Z407HzHAEEEAhJILbjeejxhnpDKaR9jlgQQAABBBBAAAEE7AosWbJES7J+4QtfsFtpDaXbvJY5deqUGBgYGPTv+eefF5cuXWpGe/bs2bbbyPUvX77cXL+TJzbj7aQdVaxLkrUKxS6VEdJANBFOnDhRO2h++9vfNq3OcgQQqEGAJOuVrwuugbsrVcRwfukKLJUigAACNQvEdjwPPd5QbyjVvFtQHQIIIIAAAggggIBHAidPnhTLly8X/f39oq+vT1x99dVavmDu3LmNdeS6vk42r2XWrVsnRo0apbmpdY4bN04cPXq0SbhlyxYxevRo43bDhg0TL730UnP9Tp6odSfznZThyrokWV3piQLtSAae+ligKGc3IcnqbNfQsIgFYtwv1eNsMh/qMEjiUx9DjZe4EEAAgVAF1ON4Ml9FvLwbugrF9mXEckOpvQKvIoAAAggggAACCMQosGPHDiG/yaW3t9eY5Euub5JHua7cRm7r25TEoD5WFYf8hKpMms6YMUPznDx5stizZ09mVfKTqqtWrWrZZujQoWLx4sVi7969mdvkWajGmczn2da1dUiyutYjHbQnGXjqYwdFOL9qjMkc5zuFBkYvEON+qR5nk/lQB0MSn/oYarzEhQACCIQqoB7Hk/kq4uXd0FUoZpcR2w2lbAWWIoAAAggggAACCMQocOLEicanVnt6eloSe8m1TJ5Hua385Kssy5fJFFfV7d+5c6eQSdJ0fffee2/barZv395cf8SIEeLZZ59tu36eF9P1p5/n2da1dUiyutYjHbQnPfjSzzsowvlVr7vuuuYOnMSY/si68wHQQAQCFCDJytcFBzisCQkBBBAIUiD5/1l9rCpY3g1dleRr5cR6Q6laRUpDAAEEEEAAAQQQ8FVg69atIuu+o3o9k3deliXL9GEyxWSj7bfccktLzmX27NnGak6fPi1mzZrVWF9+Unj9+vXGdTt5oc54O2lXkXVJshZRc2SbkAaiiZQkq0mG5Qh0TyDG/TKG4216RMUWbzp2niOAAAIhCdR1POfd0OVHTcw3lMrrUQICCCCAAAIIIICA7wJr167N9buhpmsc03L5W6SybNcnU/tttHvNmjUtSVZZt/y0qjpdvHhRzJ8/v7Gu/P3VZ555Rl2l8Hyd8RZuZM4NSbLmhHJxtZAGosk3xmSOyYLlCLgiEON+GcPxNj2+Yos3HTvPEUAAgZAE6jye827o4iMn9htKxeXYEgEEEEAAAQQQQCAEgU2bNgn5NbSm65eyy2XZsg6XJ1OMNtosk6fq/d0777xTq0ouS9r1+OOPa6+XWZCUqz6WKbNb25Jk7ZZ8BfWqAzCZr6BoZ4pQd3YZI18X7Ez30JBIBWLcL5Pjq/oY6hBQ40zmQ42XuBBAAIFQBZLjt/poI17eDV1MlRtKxdzYCgEEEEAAAQQQQCAMgWPHjokJEyY0k3nqtUtV87IOWZerkylOW+1dunRpi/mYMWPE2bNnm9U9+uijzdfvu+++5vKqntQdb1XtziqHJGuWiifLQhqIJvK3vOUtzZ05ifc73/mOaXWWI4BADQIkWflN1hqGGVUggAACCFQgkPz/rD5WULRWBO+G1kgGXcANpUGJWAEBBBBAAAEEEEAgcIEFCxZo9//V65eq5mVdrk6mGG2198iRI2Lo0KEt9k899VSjOvm1wMlrS5YsEZcvX668GXXHW3kAqQJJsqYwfHsa0kBM2588eVIsX75c9Pf3C/ljymqc7373uxuvyXXkukwIIFCvQIxvflCPQ8l8vfL11ZbEpz7W1wJqQgABBBCoQkA9jifzVZSdVQbvhs5SMS/jhpLZhlcQQAABBBBAAAEEwhfYuHGjdu8/uWax9SjrdHEyxWuzrcnvrSZ1z5kzR7zwwgti5MiRjX656aabxPnz5600IalTfbRSmeVCSbJaBrZZvDoAk3mbddose8eOHWLRokWZidUkNvVRJmHlNnJbJgQQsCOQfuNDX19f851M6f1x4cKFjTdHhPrGh3Ss6ed2xLtfajrG9PPut4wWIIAAAgh0IpA+hqefd1JGJ+vybuj8WtxQym/FmggggAACCCCAAAJhCsybN6/2JKus08Upfb2Wfm6zratXr9b8hw8f3lg2Y8YMqx9wS8eYfm4zXltlk2S1JVtDuenBl35eQ9WVVnHixInGJ1N7enq0nTodV7vnclv5yVdZFhMCCFQjwBsfrjiajj9X1gjrWWzxhtV7RIMAAghcEejG8Zx3Q1/xb/eMG0rtdHgNAQQQQAABBBBAIHSB/fv3izL5ANO1zmDLZZ2ybtcmU7tttvPChQvi2muv1XIy11xzjTh8+LDNqrU6k/itVmqpcJKsOWFPnTolBgYGBv17/vnnxaVLl5qlyh8LbredXL/od1onA099bFbuwZOtW7eKiRMnGncqNbbB5mVZskwmBBAoLsAbH3Q707FHX7PzJZxfOjdjCwQQQACBfAI2z1+mFvBuaJPMleXcULpiwTMEEEAAAQQQQACBOAWWLVtWWU7AdN1jWi7rdm0ytdV2O++//36tHzZv3my7Wq3OJH7rFVuogCRrTtR169aJUaNGGTs/GQTjxo0TR48ebZa6ZcsWMXr0aON2w4YNEy+99FJz/U6eJHWqj52U0c11165dm8tUjW+wedlPsmwmBBDoXIA3PmSbmY472Wt3tpTzS2derI0AAgggkF/A5vnL1AreDW2SubKcG0pXLHiGAAIIIIAAAgggEKfAggULjDkT03VMVctl3a5Npthst/PgwYNaP6xYscJ2tVqdSfzWK7ZQAUnWDlDlJ1Rl0lR+H3XS6cnj5MmTxZ49ezJLk59UXbVqVcs2Q4cOFYsXLxZ79+7N3CbPwqRu9THPtt1eZ9OmTWLEiBEtJmocZeZl2bIOJgQQyC/AGx/MVqbjkXmLzl7h/NKZF2sjgAACvgs88MAD1v4PNp2z0stt+7n2buh07Dwf0tWxhz/+jAHGAGOAMcAYYAwwBhgDjIH8Y8D2tdvSpUu164O5c+farlar07Ux8eCDD+Y2IMmam+rKijt37hQySZru+HvvvffKChnPtm/f3lxfJgCfffbZjLU6W5SuP/28s1LqX/vYsWNiwoQJTY9026t8LuuQdTEhgMDgArzxob2R6djUfqvOX+X80rkZWyCAAAI+CoSeZHXt3dCm8zjL89/cwQorxgBjgDHAGGAMMAYYA4wBxkD9Y8Dm9e6TTz5pzNHs3r3bZtXGel0ZY/KaPe9EkjWvlLLeLbfc0jIQZs+eraxxZfb06dNi1qxZjfV7e3vF+vXrr7xY4plpwJUospZN6/wqABc/+l8LMpUg0IEAb3wYHKvO4y3nl8H7gzUQQAAB3wVCT7Lybuj6b76Y/ldhOX3BGGAMMAYYA4wBxgBjgDHAGPB3DNi69t24caMYPnx4I2clv3F12rRpLfmue+65x1bVjXJdH5MkWYe07jQ2RsOaNWtaBp0cFPLTqup08eJFMX/+/Ma68vdXn3nmGXWVwvOmgVi4wBo2lDuvqd22lss6mRBAwCzAGx/MNskrpuNT8nqVj5xfqtSkLAQQQMBNgZCTrLwbuvVa1PQ/BMtxYgwwBhgDjAHGAGOAMcAYYAwwBgYbAzauaHft2iXGjh3byNPIrwY+f/68eOyxx1ryNuPHjxfnzp2zUX2jzMHi7vbrJFlrSLLK5Ol1113XMvDuvPNObdDJZcmAePzxx7XXyyxIylUfy5Rpe9t58+Y1PdR225qXdTIhgEC2AG98yHZRl5qOT+p6VcxzfqlCkTIQQAABtwVCTbLybmhuEpn+Z2I5Y4MxwBhgDDAGGAOMAcYAY4Ax0PkYqPrK9vjx42LSpEmNHM306dPFiRMnGlXIR/kzl+k+WrFiRdXVN8tL1+Pic5KsNSRZ5WhQvwZrzJgx4uzZs82B8uijjzYH5X333ddcXtUT0+Crqvyqy9m/f7/o6elpmpjaX/VyWaesmwkBBHQB3vigm2QtMR2XstatYhnnlyoUKQMBBBBAoM7zl8vvhnZtJEydOrX2a6JkLNxwww2ucdAeBBBAAAEEEEAAgQgF6vxmveR/4eTRxZ8YTNqmPlY5NM6cOSP6+voa1yITJkwQhw4dain+1ltvbblOkZ9ytTWpcSbztuqzWS6/yVpC98iRI2Lo0KEtA++pp55qlCi/Fjh5bcmSJeLy5cslasreNBl46mP22t1fumzZshYrtd0252XdTAgg0CrAGx9aPdrNmY5P7bYp8xrnlzJ6bIsAAgggkAjUdf5y/d3QiYcrj9xQcqUnaAcCCCCAAAIIIIBAtwTIFbTK2752u3DhQvNnLUeNGiW2bdvW2gAhxMDAgJa/2b17t7ZeFQtsx1tFG/OWQZI1r5RhveT3VpNBMWfOHPHCCy+IkSNHNgbkTTfd1PhOa8PmpRYndaqPpQq1uDE3EyziUjQCBQT4ZyY/mnqcTebzl9D5mpxfOjdjCwQQQACBVoHkfKU+tq5Vbo53Q3fux/9gnZuxBQIIIIAAAggggEBYAt388MeBAwecw1Sv2ZL5KhoqPwDY39/fyFcNGzZMrFmzxljszJkzWxKtd999t3HdMi8k8amPZcrs1rYkWUvKr169umXQyUExfPjwxrIZM2aIkydPlqzBvLk6AJN58xbdfaWbX4sl62ZCAIFWAd740OrRbi45vqqP7bYp+xrnl7KCbI8AAgggoJ63kvmqZHg3dDFJbigVc2MrBBBAAAEEEEAAgbAE+BmzK/2ZXKupj1fWKPZMJljvuOOOZg7roYcealvQI4880lxXtmXs2LHi5ZdfbrtNkRfVOJP5ImV1e5uOk6zyB1+TgH15tIksbyxce+21msk111wjDh8+bLNqrU5f+oN2dv4D15hhxhhwcwzYPMhzfine5w8++KDNrqFsBBBAwBsB0/8PVQTAu6HLKXJDqZwfWyOAAAIIIIAAAgj4L7Bhw4bacxwbN250Es7GtZtMjqY/ZCO/ffXSpUtt43/uuee0PrnrrrvablPkRRvxFmlHFduQZK1A8f7779cG3ubNmysouX0RpoHI8uI35rHDjjHAGOhkDLQ/Spd/lfNLsfEo3xDGhAACCCAgtGuU5BxX1oZ3Q5cVFIIbSuUNKQEBBBBAAAEEEEDAf4F0EjC5XrH1KOtydTLFXKS98iddnnjiCTFlyhTtmvDhhx8W+/btE/LDHenp+PHjjd9pVX++LGnXwoULxfLly8XRo0fTmxV+npSrPhYusIsbkmStAP/gwYPaYF2xYkUFJbcvQh2AzBe7GY8bbowBxkDRMdD+KF3+Vc4vxcYmSdbyY48SEEAgDAHT+a1MdLwbuoxe67bcUGr1YA4BBBBAAAEEEEAgPoFjx46JCRMmaPkV07VM0eWyDlmXq5MpriLtXbly5aCeAwMDzaJfeeUVIX+r1dSG9PKbb765uV2ZJ+ky08/LlNmtbUmyViC/dOlSbQDOnTu3gpLbF5EefDwvdiMeN9wYA4yBMmOg/VG6/KucX4qNT5Ks5cceJSCAQBgCpnNckeh4N3QRtfbbcEOpvQ+vIoAAAggggAACCMQhsGnTJjFixAgtx2K6nul0uSxb1uHyZIrJ5TaXaVtI8ZJkLTMShBBPPvmkceffWdCHHQAAIABJREFUvXt3ydLbb24aiCwvdlMeN9wYA4yBTsdA+6N0uVc5vxQfjyRZy409tkYAgXAETOe1IhHybugiaoNvww2lwY1YAwEEEEAAAQQQQCB8gbVr14pRo0YZcy2ma5vBlssyZdmuT6Y4XG930faFFG/HSdaiaHVsV3fHyB9JHj58eGPHX7x4sZg2bVrLQeCee+6xGnbd8ZYNZtmyZS0+pvbbWC7rZkIAgVaBOr+iTt2vXf4NhFal1+bU9ifzWetWsYzzSxWKlIEAAgggkJyv1MdQZdQ4k3nX4439hpLr/UP7EEAAAQQQQAABBOoR2Lp1q5g4cWJlOQRZlizThym5dlEffWh7kTaqcSbzRcrq9jYkWQv2wK5du8TYsWMbO7z8auDz58+Lxx57rOUAMH78eHHu3LmCNQy+WTLw1MfBt+zOGvv37xc9PT0tRmrbbczLOg8cONCdoKkVAYcFeOND/s4xHZvyl5B/Tc4v+a1YEwEEEECgvUCd56/2LannVZ/jjfmGUj2jg1oQQAABBBBAAAEEfBA4ceKE6O/vL5VHkPkAWYYsy5fJ52uZIsYhxUuStcAIOH78uJg0aVIjWTh9+vTmzip3WvW7w1esWFGghnyb+DgQ582bV3uSVdbJhAACugBvfNBNTEvqOt5yfjH1AMsRQAABBIoI1HX+KtI2G9v4Hm+sN5RsjAXKRAABBBBAAAEEEPBbYMeOHWLRokWit7c3dz5Briu3kdv6Nvl+LdOpd0jxkmTtsPfPnDkj+vr6Gjv2hAkTxKFDh1pKuPXWW1t2evkpV1uTjwNxw4YNLT6mGKpcLr92kwkBBLIFeONDtou61HRMUtcrM8/5pYwe2yKAAAIIZAnUcf7Kqrdby0KJN7YbSt0aL9SLAAIIIIAAAggg4L6AfCPi8uXLG59MlXmZrN9tfc973tNYx6dPrqryoVzLqHGZ5kOKlySrqZczll+4cEHMnz+/kSSUO/O2bdu0tQYGBrQk4u7du7X1qljg60Cs83cgffvdxyrGBWUg0IkAb3zIp2X7eMv5JV8/sBYCCCCAQGcCts9fnbXG/tqhxRvLDSX7I4MaEEAAAQQQQAABBEIR+P3f/30t/3L//fd7H15o1zKDdUhI8ZJkHay3f/j65cuXG++WkJ0/bNgwsWbNGuOWM2fObNnR7777buO6ZV7wdSAeO3ZMyE8Bm9pf1XJZh6yLCQEE2gvwxof2PvJV03Fp8C0HX4Pzy+BGrIEAAgggUEzA5vmrWIvsbhV6vKHeULI7KigdAQQQQAABBBBAICSBP/iDP9Du0/3e7/2e9yGGfi2jdlBI8ZJkVXs3Y17eAL/jjjuaO+9DDz2UsdaVRY888khzXTlYxo4dK15++eUrK1T0zOeBuGnTJu33a03xFFkufxtX1sGEAAKDC/DGh8GNTMehwbdsvwbnl/Y+vIoAAgggUE7A1vmrXKvsbR16vKHeULI3IigZAQQQQAABBBBAIDSBP/zDP2zJvchrgHvvvdf7MEO/llE7KKR4SbKqvavMy+Ro+lNeI0eOFJcuXVLWap197rnntB39rrvual2pgjnfB+LatWszv0PdFFfe5fKrnGXZTAggkF+ANz60tzIdf9pv1f5Vzi/tfXgVAQQQQKC8gI3zV/lW2Ssh9HhDvaFkb0RQMgIIIIAAAggggEBoAv/v//0/Lffyu7/7u96HGfq1jNpBIcVLklXt3R/OnzlzRjzxxBNiypQp2k778MMPi3379gn5G3rp6fjx443faU1+t1UdKAsXLmz8APPRo0fTmxV+rpafzBcusAsbbt26VUycOFEzTmLp9FGWJctkQgCBzgV444PZzHQsMm9hfoXzi9mGVxBAAAEEqhWo8vxVbcvslBZ6vKHeULIzGigVAQQQQAABBBBAIEQBmZtR/+//nd/5He9DVWNK5r0PzBBAEp/6aFjd6cUkWQ3ds3LlSm1nVTt8YGCgufUrr7zS+K1WdZ2s+Ztvvrm5XZknWWXLZb5NJ06caPzebU9Pz6Dmppjltv39/UKWxYQAAsUFeONDtp3p2JO9dvulnF/a+/AqAggggEB1AlWev6prlb2SQo831BtK9kYEJSOAAAIIIIAAAgiEJqD+VKO8Bvjt3/5t78MM/VpG7aCQ4vUvI6f2Rmo+pI5JhWV8Glq8O3bsEIsWLRK9vb25k61yXbmN3JYJAQSqEeCND7pjaMdbPcLWJbHF2xo9cwgggEA4ArEdz0OPN9QbSuHscUSCAAIIIIAAAgggYFvg0Ucf1XIH99xzj+1qrZcf+rWMChhSvCRZ1d71aD6kgZhmlwme5cuXNz6ZetVVV2kHzfe+972N1+Q6fHI1LcdzBKoV4I0PVzxDPd5eibD1WWzxtkbPHAIIIBCOQGzH89DjDfWGUjh7HJEggAACCCCAAAII2BZYtmyZli/4rd/6LdvVWi8/9GsZFTCkeEmyqr3r0XxIA9HEPm7cOO2gSWLVpMVyBOwIpN/40NfXJ7K+2nvJkiWNN0eEun/GcLxNj57Y4k3HznMEEEAgJIHYjuehxxvqDaWQ9jliQQABBBBAAAEEELAr8Nhjj2n5gt/8zd+0W2kNpYd+LaMShhQvSVa1dz2aD2kgmthJsppkWI5A9wRi3C9jON6mR1Rs8aZj5zkCCCAQkkBsx/PQ4w31hlJI+xyxIIAAAggggAACCNgV+KM/+iMtyXrXXXfZrbSG0k3XMrEtr4G68ipIslZOWl+Bph2svhbYrynGZI59VWpAoJxAjPtlDMfb9KiILd507DxHAAEEQhKI7Xgeeryh3lAKaZ8jFgQQQAABBBBAAAG7An/8x3+sJVl/4zd+w26lNZRuupaJbXkN1JVXQZK1ctL6CjTtYPW1wH5NY8eO1Q6aJ0+etF8xNSCAgFGAJOuQ5nHJiOT5CzGcXzzvIpqPAAII5BKI7Xgeeryh3lDKNZhZCQEEEEAAAQQQQAABIcSf/MmfNO/LJf////qv/7r3NkkssT/62JEkWX3stR+22bTDeRyS1nSSrBoJCxDoukCM+2UMx9v0wIot3nTsPEcAAQRCEjAdz2NbHkqfhnpDKZT+IQ4EEEAAAQQQQAAB+wJ/+qd/qiVZf+3Xfs1+xZZriO0azRSvZWYrxZNktcJaT6EhDUSTWIzJHJMFyxFwRSDG/TKG4216fMUWbzp2niOAAAIhCZiO57EtD6VPQ72hFEr/EAcCCCCAAAIIIICAfYE/+7M/05Ksd955p/2KLdcQ2zWaKV7LzFaKJ8lqhbWeQkMaiCaxMWPGaAfNl19+2bQ6yxFAoAYBkqx8XXANw4wqEEAAAQQqEDBdL8S2vAJKJ4oI9YaSE7g0AgEEEEAAAQQQQMALgT//8z/X8gV33HGHF21v18jYrtFM8bYzcvU1kqyu9kyOdoU0EE3hkmQ1ybAcge4JxLhfxnC8TY+o2OJNx85zBBBAICQB0/E8tuWh9GmoN5RC6R/iQAABBBBAAAEEELAv8Bd/8RdakvVXf/VX7VdMDQgYBEiyGmB8WGy6OeJD2/O2McZkTl4b1kOgWwIx7pcxHG/T4ym2eNOx8xwBBBAIScB0PI9teSh9yg2lUHqSOBBAAAEEEEAAAQSKCvzlX/6llmS9/fbbixbHdgiUFiDJWpqwewWYbo50r0XV1/yGN7xBO2h+//vfr74iSkQAgdwCJFn5uuDcg4UVEUAAAQS6KmC6XohteVc7ocLKuaFUISZFIYAAAggggAACCHgp8Fd/9VdavuC2227zMhYaHYYASVaP+9F0c8TjkLSmk2TVSFiAQNcFYtwvYzjepgdWbPGmY+c5AggggAACrgpwQ8nVnqFdCCCAAAIIIIAAAnUJPPHEE1qS9Vd+5Vfqqp56ENAESLJqJP4siOEmeIzJHH9GIC2NVSDG/TKG4216PMcWbzp2niOAAAIIIOCqADeUXO0Z2oUAAggggAACCCBQl8Bf//Vfa0nW/v7+uqqnHgQ0AZKsGok/C2K4CT569GjtoHnq1Cl/OomWIhCgAElWvi44wGFNSAgggAACCDgvwA0l57uIBiKAAAIIIIAAAghYFvibv/kbLV/wS7/0S5ZrpXgEzAIkWc02zr9CktX5LqKBCAQpEOObH2I43qYHa2zxpmPnOQIIIIAAAq4KcEPJ1Z6hXQgggAACCCCAAAJ1CTz55JNakvUXf/EX66qeehDQBKJIsppuFoe6XOtljxfEmMzxuLtoeiQCMe6XoZ4vOo0rkiFOmAgggAACCDgpwA0lJ7uFRiGAAAIIIIAAAgjUKPDUU09pSdZbb721xhZQFQKtAiRZh1z52sdObza7un5rF/s9F2Myx+8eo/UxCMS4X7p6vK+7XTGMb2JEAAEEEEDAVQFuKLnaM7QLAQQQQAABBBBAoC6Bv/3bv9WSrL/wC79QV/XUg4AmQJKVJKs2KFxa8PrXv147aJ4+fdqlJtIWBKITIMka3ptz8iZroxvsBIwAAggggIBDAtxQcqgzaAoCCCCAAAIIIIBAVwT+7u/+TssXLFmypCttoVIEpABJVpKsTu8JJFmd7h4aF6lAjPtl3iRk6OtFOuQJGwEEEEAAAScEuKHkRDfQCAQQQAABBBBAAIEuCnzhC1/QkqyLFy/uYouoOnYBkqwkWZ3eB2JM5jjdITQOASFEjPtl6MnTvPGxAyCAAAIIIIBA9wS4odQ9e2pGAAEEEEAAAQQQcENg5cqVWpJ14cKFbjSOVkQpQJKVJKvTA/91r3uddtA8c+aM022mcQiELkCSla8LDn2MEx8CCCCAAAIuCnBDycVeoU0IIIAAAggggAACdQo8/fTTWr7gs5/9bJ1NoC4EWgSCSrK2RMZMEAIkWYPoRoIITID9MrAOJRwEEEAAAQQQ8EKAG0pedBONRAABBBBAAAEEELAo8Pd///dakvXnf/7nLdZI0Qi0FyDJ2t6HV7ssQDKnyx1A9QhkCLBfZqCwCAEEEEAAAQQQsCzADSXLwBSPAAIIIIAAAggg4LzAqlWrtCTrZz7zGefbTQPDFSDJGm7fBhHZqFGjtIPmK6+8EkRsBIGArwIkWX3tOdqNAAIIIIAAAj4LcEPJ596j7QgggAACCCCAAAJVCHzxi1/U8gWf/vSnqyiaMhAoJECStRAbG9UlQJK1LmnqQSC/APtlfivWRAABBBBAAAEEqhLghlJVkpSDAAIIIIAAAggg4KvAM888oyVZf/Znf9bXcGh3AAIkWQPoxJBDIJkTcu8Sm68C7Je+9hztRgABBBBAAAGfBbih5HPv0XYEEEAAAQQQQACBKgRWr16tJVk/9alPVVE0ZSBQSIAkayE2NqpLYOTIkdpB8+zZs3VVTz0IIJAhQJI1A4VFCCCAAAIIIICAZQFuKFkGpngEEEAAAQQQQAAB5wW+9KUvafmCT37yk863mwaGK0CSNdy+DSIykqxBdCNBBCbAfhlYhxIOAggggAACCHghwA0lL7qJRiKAAAIIIIAAAghYFPinf/onLcn6Mz/zMxZrpGgE2guQZG3vw6tdFiCZ0+UOoHoEMgTYLzNQWIQAAggggAACCFgW4IaSZWCKRwABBBBAAAEEEHBeYM2aNVqS9ROf+ITz7aaB4QqQZA23b4OIbMSIEdpB89VXXw0iNoJAwFcBkqy+9hztRgABBBBAAAGfBbih5HPv0XYEEEAAAQQQQACBKgS+/OUva/mCj3/841UUTRkIFBIgyVqIjY3qEiDJWpc09SCQX4D9Mr8VayKAAAIIIIAAAlUJcEOpKknKQQABBBBAAAEEEPBV4J//+Z+1JOv8+fN9DYd2ByBAkjWATgw5BJI5IfcusfkqwH7pa8/RbgQQQAABBBDwWYAbSj73Hm1HAAEEEEAAAQQQqEJg7dq1WpL1Yx/7WBVFUwYChQRIshZiY6O6BEjm1CVNPQjkF2C/zG/FmggggAACCCCAQFUC3FCqSpJyEEAAAQQQQAABBHwVWLdunZZk/ehHP+prOLQ7AAGSrAF0YsghXH311dpB89y5cyGHTGwIOC9AktX5LqKBCCCAAAIIIBCgADeUAuxUQkIAAQQQQAABBBDoSOBf//VftXzBRz7ykY7KYGUEqhQgyVqlJmVVLkCStXJSCkSgtAD7ZWlCCkAAAQQQQAABBDoW4IZSx2RsgAACCCCAAAIIIBCYwPr167Uk60/91E8FFiXh+CRAktWn3oqwrSRzIux0QnZegP3S+S6igQgggAACCCAQoAA3lALsVEJCAAEEEEAAAQQQ6Ehgw4YNWpL1wx/+cEdlsDICVQqQZK1Sk7IqF+jt7dUOmufPn6+8HgpEAIH8AiRZ81uxJgIIIIAAAgggUJUAN5SqkqQcBBBAAAEEEEAAAV8FNm7cqOULbr75Zl/Dod0BCJBkDaATQw6BJGvIvUtsvgqwX/rac7QbAQQQQAABBHwW4IaSz71H2xFAAAEEEEAAAQSqEPj3f/93Lck6b968KoqmDAQKCZBkLcTGRnUJkMypS5p6EMgvwH6Z34o1EUAAAQQQQACBqgS4oVSVJOUggAACCCCAAAII+Crwla98RUuyzp0719dwaHcAAiRZA+jEkEMYPny4dtD8wQ9+EHLIxIaA8wIkWZ3vIhqIAAIIIIAAAgEKcEMpwE4lJAQQQAABBBBAAIGOBL761a9q+YIPfehDHZXh4spDhgzR4opxmYt9M1ibSLIOJsTrXRUgydpVfipHIFOA/TKThYUIIIAAAggggIBVgVBvKFlFo3AEEEAAAQQQQACBoAQ2bdqkJSPnzJnjfYwxJlSzYvaxI0my+thrEbWZZE5EnU2o3giwX3rTVTQUAQQQQCBygayL1hiXhTIMQr2hFEr/EAcCCCCAAAIIIICAfYHNmzdrSdYPfvCD9iu2XEOM12lZMVtmtlI8SVYrrBRalcBVV12lHTQvXLhQVfGUgwACBQRIshZAYxMEEEAAAQS6IJB10Rrjsi7QW6ky1BtKVrAoFAEEEEAAAQQQQCBIgYGBAS1f8IEPfMD7WGO8TsuK2ceOJMnqY69F1GaSrBF1NqF6I8B+6U1X0VAEEEAAgcgFsi5aY1wWyjAI9YZSKP1DHAgggAACCCCAAAL2BZ5//nktyfrjP/7j9iu2XEOM12lZMVtmtlI8SVYrrBRalQDJnKokKQeB6gTYL6uzpCQEEEAAAQRsCmRdtMa4zKZxnWWHekOpTkPqQgABBBBAAAEEEPBbYMuWLVqS9f3vf7/fQQmhxRTjdZuM2cfJz1b7KE2bCwkMGzZMO8BcvHixUFlshAAC1QiQZK3GkVIQQAABBBCwLRDrhbkat23nusoP9YZSXX7UgwACCCCAAAIIIOC/wNatW7V8wY033uh9YOo1TDLvfWCGAJL41EfD6k4vJsnqdPfQOJKsjAEE3BNgv3SvT2gRAggggAACWQLqBWus81k2Pi4L9YaSj31BmxFAAAEEEEAAAQS6I/Cf//mfWpK1r6+vO42psFbTtVqFVThVVEjxkmR1amjRGFWAZI4qwjwC3Rdgv+x+H9ACBBBAAAEE8giEdOFKvEKEekMpT9+yDgIIIIAAAggggAACUmDbtm1akvV973uf9zhcuw1p9KuPHUmS1cdei6jNJHMi6mxC9UaA/dKbrqKhCCCAAAKRC3Ch7u+FetbQDfWGUlasLEMAAQQQQAABBBBAIEtg+/btWpJ19uzZWat6tYxrN3+v3UiyerWrxdfYoUOHagfN+BSIGAG3BEiyutUftAYBBBBAAAGTABfq/l6oZ/VpqDeUsmJlGQIIIIAAAggggAACWQL//d//reUL3vve92at6tUyrt38vXYjyerVrhZfY0myxtfnROy+APul+31ECxFAAAEEEJACXKj7e6GeNYJDvaGUFSvLEEAAAQQQQAABBBDIEnjxxRe165z3vOc9Wat6tYxrN3+v3YJKspoGYmzLvTp6DNJYkjmDAPEyAl0QiHG/jO08Yoq3C8ONKhFAAAEESgjEdjwPPd5QbyiVGOJsigACCCCAAAIIIBCZwNe+9jUtyTpr1izvFUK/llE7KKR4SbIOeS1DbupUH5erA9bn+Z6eHu2g6XM8tB2BEARIsoZ33sh7rgth/BIDAgggEJOA6fgeqkHo8YZ6QynU8UhcCCCAAAIIIIBAO4GTJ0+K5cuXi/7+ftHX1yfGjx8vent7G3/yuVwmX5PryHWZXhP4+te/ruULZs6c6T1P6NcyageFFC9JVpKs6vh2ap4kq1PdQWMQaAjEuF+aTvyxLWcXQAABBBDwS8B0nvIrivytDT3eUG8o5e9h1kQAAQQQQAABBPwX2LFjh1i0aFEjmWr6/1VdLpOvchu5bezTzp07tSTru971Lu9Z1D5P5r0PzBBAEp/6aFjd6cUkWUmyOj1AY0zmON0hNA4BIUSM+6V6wo91nh0AAQQQQMAvAdP5yq8o8rc29HhDvaGUv4dZEwEEEEAAAQQQ8FfgxIkTjU+mZt1XM/0fqy6X28pPt8qyYp127dqlJVlnzJjhPYfa18m894EZAkjiUx8Nqzu9mCQrSVa3B2hG/zjdYBqHQAQCWf8Mhh62esKPdT70fiY+BBBAIDQB0/kqtDiTeEKPN9QbSkn/8YgAAggggAACCIQqsHXrVjFx4kQtOWj6/3Ww5bIsWWaM0ze/+U3Ncfr06d5TmPrc+8AMAYQUL0nWjCSeqYN9WW4Yt14uzjL3MhAajUBAAjHul1kxx7gsoGFMKAgggEAUAqZzVajBhx5vqDeU8o5HfrcsrxTrIYAAAggggIBLAmvXrhWjRo3SEoOm/13zLpdlyrJjm771rW9plu94xzu8ZzD1u/eBGQIIKd4okqyGfvR+cUgD0dQZWTGa1mU5AgjUIxDjfpkVs1wW6hRbvKH2I3EhgAACsR3PQ4831BtKg+2p/G7ZYEK8jgACCCCAAAKuCmzatEmMGDFCSwqa/m/tdLksW9YR07Rnzx7Nc9q0ad4TmPq+isBOnTolBgYGBv17/vnnxaVLl5pVnj17tu02cv3Lly831+/kic14O2lHFesGdYc4pI7J07kxxJsVYx4b1kEAAXsCMe6XWTHLZaFOscUbaj8SFwIIIBDb8Tz0eEO9oWTaU/ndMpMMyxFAAAEEEEDAB4Fjx46JCRMmaAlB0/+sRZfLOmRdsUx79+7VTKdOnep9+Kb+ryKwdevW5fo09bhx48TRo0ebVW7ZskWMHj1a807aOmzYMPHSSy811+/kSVKG+thJGa6sG9QdYrVDknlXsKtuRxKf+lh1Pd0sT41NzjMhgEB3BWLcL7NiDvl4FFu83d2jqB0BBBCwJxDb8Tz0eEO9oZS1B/C7ZVkqLEMAAQQQQAABnwQWLFhgTE6Z/m8tulzWFcu0b98+zXXKlCneh2/q+6oCk59QlUnTGTNmaH6TJ08W8g2dWZP8pOqqVatathk6dKhYvHixkNcnRSfb8RZtV5HtgspYhdQxeTozhnizYsxjwzoIIGBPIMb9MitmuSzUKbZ4Q+1H4kIAAQRsHs/5yqn6x1eoN5RUSX63TBVhHgEEEEAAAQR8E9i4cWNLUsr0f3mVy2WdMUz79+/XbN/+9rd7H7ppLFQd2M6dO4VMkqbru/fee9tWs3379ub68iuqn3322bbr53kxXX/6eZ5tXVsnqDvE6c5IP3cNvar2pGNMP6+qfBfKSccln/f09LjQLNqAQNQC6n4p50OfsmIOOe7Y4g19/BIfAgjEK2DzeM5XTtU/rkK9oZSW5HfL0ho8RwABBBBAAAFfBebNm9dMSpn+J696uawzhungwYOarfwkpu+TaTzYiOuWW25pMZw9e7axmtOnT4tZs2Y11u/t7RXr1683rtvJC3XG20m7iqwb1J3xkDomT2fGEK8aI0nWPCODdRCwKxDjfqnGnMzble5e6Ul86mP3WkTNCCCAAAJFBNTjeDJfpKysbfjKqSwVe8tCvaGUiPG7ZYkEjwgggAACCCDgs4B8Y5y8h538713Xo6xT1h36dOjQIc120qRJ3odtGic2AluzZo1mKD+tqk4XL14U8+fPb6wrf3/1mWeeUVcpPF9nvIUbmXNDkqw5oVxcLaSBaPJVYyTJapJiOQL1CcS4X6oxJ/P1qddbUxKf+lhvK6gNAQQQQKCsgHocT+bLlqtuz1dOqSJ25kO9oZRo8btliQSPCCCAAAIIIOCzwLJly7QEVvJ/uO1HWXfo0+HDhzXf66+/3vuwTWPDRmAyeXrddde1ON55551aVXJZ0q7HH39ce73MgqRc9bFMmd3aliRrt+QrqFcdgMl8BUU7U0QSU/JIktWZrqEhEQsk+2PyGMN+mcSqPoY6DNQ4k/lQ4yUuBBBAIFSB5PitPtqIl6+csqHaWmaoN5RklPxuWWtfM4cAAggggAAC/grU+cYx9f98WXfo07e//e1m4i+Jf+LEid6HncSiPtoKbOnSpS2OY8aMEWfPnm1W9+ijjzZfv++++5rLq3qixpnMV1V+neWQZK1Tu+K6koGnPlZcTVeLU2OTP8rMhAAC3RVQ90uSrN3tDxu1q32czNuoizIRQAABBOwJJMdv9dFGjXzllA3V1jJDvaEko+R3y1r7mjkEEEAAAQQQ8Fdg6tSpzeSU+n+47XlZd+jT0aNHNV/5qUzfJ9PYsBXXkSNHhMy1pOt96qmnGtXJrwVOXluyZIm4fPly5c1I15t+XnlFNRRIkrUGZFtVpAdf+rmt+rpRbjou+Zwkazd6gToRaBWIcb9UY07mW2XCmUviUx/DiZBIEEAAgTgE1ON4Mm8jer5yyoZqa5mh3lDid8ta+5k5BBBAAAEEEPBbYPTo0S2Jq+R/8DoeZd2hT9/5znc037e85S3eh20aHzYDS35vNal7zpw54oUXXhAjR45sGN90003i/PnzVpqQ1Kk+WqnMcqEkWS0D2yxeHYDJvM066y47iSl5JMladw9QHwK6QLI/Jo8x7JdJrOqjrhPGEjXOZD6M6IgCAQQQiEcgOX6rj7YE+MopW7IXbnY7AAAgAElEQVSvlRvqDSV+t8zuuKF0BBBAAAEEEKhXYNiwYVoSUP1/3Na8rDv06dixY5rvtdde633YpjFhM7DVq1drlsOHD28smzFjhjh58qS16rsRr61gSLLakq2h3JAGYppL7rzLly8Xv/zLv6zt5DLmvr4+0d/f31jH5o6ebhPPEYhZ4PTp02LlypXic5/7nLjxxhsz98vbb79dPP3000KuG+IU6vHW1FexxWtyYDkCCCDgu0Ddx3O+csruiAn1hhK/W2Z33FA6AggggAACCNQrwCdZ7Xp/97vf1e5NXnPNNXYrraH0uq/dZEgXLlwQMkGt1i09Dx8+bDVqtc5k3mqllgonyWoJto5ik4GnPtZRt406duzYIRYtWiR6e3u1HVuNMZmX68pt5LZMCCBQrcC+ffvEbbfdJkaNGpV7n5Trym3ktiFNyTFHfQwpxnQsapzJfHodniOAAAIIuC+QHL/VR5st5yun7OmGekOJ3y2zN2YoGQEEEEAAAQTqF+jm/zY33HBD/QHXXOPx48e1+5QTJkyouRXVV6desyXz1dfUWuL999+veW7evLl1JQtzSXzqo4WqrBdJkjUn8alTp8TAwMCgf88//7y4dOlSs9SzZ8+23UauX/SHg9UBmMw3K/fkyYkTJxqfTO3p6dF26CSmwR7ltvLTrbIsJgQQKCfw6quvis9//vMi+XqIwfa/rNfltrIMWVYIU1aMclkVE+eXKhQpAwEEEEAgS8Dm+SurPrmMr5wyyZRfHuoNJT7tUX5sUAICCCCAAAIIuCPAt3TY7Yvvfe97Wg7hjW98o91Kayi9G9duMqyDBw9qnitWrLAecbfitRFYNXeIbbSsQJk2O2bdunW5Ps01btw4cfTo0Wbrt2zZItpdNMrvSX/ppZea63fyxGa8nbSjzLpbt24VEydO1HZkU2yDLZdlyTKZEECgmMD+/fvFrFmzKtsnZVmyTN8n07Gnirg4v1ShSBkIIICAXwIPPPBAZeda0zmq3XKbWi5+5VQ7C14b0tWxiD/+jAHGAGOAMcAYYAwwBhgDjAHzGLB57SbLXrp0qXY9MHfuXNvVanW6NgYefPDB3AYkWXNTicYnVGXSVP7or9rpkydPFnv27MksTX5SddWqVS3bDB06VCxevFjs3bs3c5s8C9U2JPN5tnVhnbVr1+ZKXCdx5X2UX1cqy2ZCAIHOBF588UXxpje9qeVYlXe/a7eeLFOW7fNkiq+qmOQ3IHB+qUqTchBAAAH3BUJOskp9175yynQeZ7n5Zg422DAGGAOMAcYAY4AxwBhgDDAGuj8GbF7dPvnkk8b7wLt377ZZtbFeV8acvGbPO5FkzSuVWm/nzp1CJknTHX7vvfem1tCfbt++vbn+iBEjxLPPPquv1OGSdP3p5x0W05XVN23aJKRDut1VPpdlyzqYEEAgn4D8tKmNBGuyX8uyff5EaxKH+phPN/9anF/yW7EmAggg4LNA6ElW175ySj1/M9/9m0X0AX3AGGAMMAYYA4wBxgBjgDHAGBh8DNi67t24cWPzp+LkhwGnTZvWkqu55557bFXdKNf1vifJOqR1cNoYDbfcckvLoJs9e7axmtOnTze/frO3t1esX7/euG4nL5gGYidldGPdY8eOCflj1Kb2V7Vc1iHrYkIAgfYC8ndTq/yKYNM+LOvw9TdaTTG1ly32KueXYm5shQACCPgkEHqSla+car0eNf0fwXKcGAOMAcYAY4AxwBhgDDAGGAOMgXZjwMZ17q5du8TYsWMb+Rn51cDnz58Xjz32WEu+Zvz48eLcuXM2qm+U2S5mF14jyVpDknXNmjUtg052vPy0qjpdvHhRzJ8/v7Gu/P3VZ555Rl2l8LxpsBUusKYN6/zxb1kXEwIItBf4/Oc/rx3PTMeXsstlXT5OprhtxML5xYYqZSKAAAJuCYScZOUrp7hJZPq/ieWMDcYAY4AxwBhgDDAGGAOMAcZAZ2Og6ivZ48ePi0mTJjXuBU+fPl2cOHGiUYV8VL95dMWKFVVX3yzP9XFAkrWGJKtMnl533XUtiYk777yzOUiSJ3JZMmAef/zxZHElj0m56mMlhVsqRH4MXW2v7XlZJxMCCGQL7Nu3r/nVELb3RVn+8OHDhazTt8lkYyMOzi82VCkTAQQQiFOgzvOXFHb1K6dC6f2XX35Zu5YaM2aM9+HJn5To6enRYjON36qWyzoPHDjgvR8BIIAAAggggICbAnybo51++f73v6/93/iGN7zBTmU1lmr6H7fKJpw5c0b09fU1/OS3gB46dKil+FtvvbXFVn7K1dZUR7y22q6Wy2+yqiIdzKtfgyUvcM+ePdss4dFHH20Oyvvuu6+5vKonPg7EefPmNU1M7a96uayTCQEEsgVuu+222vdJWadvk+m4ZCsOzi+2ZCkXAQQQiEugzvOXy185FUqvh3pDSfYP14mhjFLiQAABBBBAAIG0wKZNm7RPB5r+Ry+yXH7yUNYR0yR/mlG1ev3rX+89gRpTMl9VYBcuXGh+4+qoUaPEtm3btKIHBgY02927d2vrVbEgiU99rKLsussgyVpC/MiRI2Lo0KEtA++pp55qlCi/Fjh5bcmSJeLy5cslasreVB2AyXz22t1f2s13KMu6mRBAoFVA/lMiT6rJsaOuR1mnrNunyWRjKwbOL7ZkKRcBBBCIS6Cu85frXzkVSq+HekNJ9s+GDRtq/5+UbzwKZc8gDgQQQAABBNwWWLt2rZX7b/L+miw7tkl+GlO9znnd617nPYMaUzJfRWAyN9Xf399wkz9pKX+qzDTNnDmzxffuu+82rVpqeRKf+liq0C5tTJK1JHzye6vJYJgzZ4544YUXxMiRIxuD8aabbmr8cHDJajI3T+pUHzNXdmDhsmXLWnZQtd0252XdTAgg0CqwcuXKru2Tsm6fJtPxyWYMnF9s6lI2AgggEIdAHecvvnKqvrEU6g2lRHDBggW1/W8q62JCAAEEEEAAAQTqEti6dauYOHFiZf/ryLJkmTFOr7zyiuYoE86+T7au3WSC9Y477miaPfTQQ22pHnnkkea6sk1jx44V8mdLqp5sxVt1O/OUR5I1j1KbdVavXt0y6OTgkL85KB9nzJghTp482Wbrci/5NhDrvGhWbbiILjfW2DpMgc997nPa8Uvdd2zN33777V6hmhxsBsH5xaYuZSOAAAJxCNg+f/GVU/WOo1BvKCWK/G5ZIsEjAggggAACCIQocOLEicanCcv8Fr3cVn4iUZYV6/Tqq69q9zPl1yb7Ptm4dpPJ0XRORn4w8NKlS22pnnvuOc33rrvuartNkRdtxFukHVVsQ5K1pKK8sXDttddqA++aa64Rhw8fLll6+819G4hTp07VnEwxVL1c1s2EAAKtAjfeeGPX9klZt0+T6ZhkMwbOLzZ1KRsBBBCIQ8Dm+YuvnKp/DIV6Qyktye+WpTV4jgACCCCAAAIhCuzYsUMsWrRI9Pb25r4vJ9eV28htY5/OnTunuV199dXes1R57Sa/AeeJJ54QU6ZM0awefvhhsW/fPiHvO6Yn+RMw8nda1W/WS9q1cOFCsXz5cnH06NH0ZoWfJ+Wqj4UL7OKGHSdZH3jgAa1jVAjX5m373n///ZrJ5s2bbVer1emaO+0ZQh8NwYD9IOwxYPtAz/ml2Ph58MEHbXcN5SOAAAJeCJj+DynbeL5yqqxgse1DvaGkavC7ZaoI8wgggAACCCAQooD8NKpMWslPpvb19WXeR5avyXVi/uSq2vfnz5/XrGQS2vepymu3PD8RNzAw0CST35gjf6vV1Ib08ptvvrm5XZkn6TLTz8uU2a1tSbJWIH/w4EFtAK5YsaKCktsXkR58PC92Ix433BgDjIEyY6D9Ubr8q5xfio1P+YYwJgQQQAABoV2jJOe8MjZ85VQZvXLbhnpDKUuF3y3LUmEZAggggAACCIQskPyvnn4MOd6isclPYKaN5POrrrqqaHHObKfGlMw708CKG5LEpz5WXE0txZFkrYB56dKl2o49d+7cCkpuX4Q6AJkvdjMeN9wYA4yBomOg/VG6/KucX4qNTZKs5cceJSCAQBgCpvNbkej4yqkiatVuE+oNJZMSv1tmkmE5AggggAACCIQokPW/e4hxlo3p4sWLWi5GfgrT9ymr/+WyUKeQ4u24l/i64NZh/eSTT2o7dTJAdu/e3bpyxXNJPTwWuwmPG26MAcZA2TFQ8WG9pTjOL8XHJ0nWlqHEDAIIRCxgOs8VIeErp4qoVbtNqDeUBlPid8sGE+J1BBBAAAEEEAhBIOt/9xDishGDajV06FAb1dRaphpTMl9rI2qsLIlPfayxCZVVRZK1BOXGjRvF8OHDG0nWxYsXi2nTprUkXO+5554SpQ++qToAmS9+Qx477BgDjIEiY2DwI3WxNTi/lBuPJFmLjTu2QgCB8ARM57bwIn0tohjiVWMM4YZS3vHI75bllWI9BBBAAAEEEPBRQP0/T84zZQuEaJUVU8hjIKR4g9pT6+yYXbt2ibFjxzaSqvKrgeXv4zz22GMtSdbx48eLc+fOZR8JKlhaZ7wVNFcsW7asxcfUfhvLZd1MCCDQKvC5z32ua/vk7bff3toYx+dMxyUbzeb8YkOVMhFAAIE4Beo8f7kgHEO8WTG6YN+NNmDRDXXqRAABBBBAAAFbAvxvk182RKusmOSyUKeQ4g2ql+rqmOPHj4tJkyY1khPTp08X8h21cpKPI0aMaElarFixwtp+UFe8VQWwf/9+0dPT0+JjiqHK5bLOAwcOVBUG5SAQjECer/2rcl9Ml/X000975Zhue/p51UFwfqlalPIQQACBuAXS56z081BV0jGmn4cUbzqu5HlI8XUSSxJ/+rGT7VkXAQQQQAABBBBwSSD9P03y3KX2udSWrByDS+0r0pakz9XHImX5sI0aZzLvQ9vVNpJkVUUGmT9z5ozo6+trJAonTJggDh061LLFrbfe2pJElJ9ytTUlA099tFVfFeXOmzevxUdtu415WScTAgjoAqdPnxajRo2qfZ+Udcq6fZpMx6YqY+D8UqUmZSGAAAIISIE6zl8uSccQb4g3lIqOoaz+LloW2yGAAAIIIIAAAt0W4H+b/D0wbNgw7Von/9ZurpnV/3JZqFNI8QbVS7Y75sKFC2L+/PmNHVgmCbZt26aN8YGBAW0H3717t7ZeFQtsx1tFG9UyNmzYoPmY4qhqufxtQyYEEMgWuO2222rfJ2Wdvk2m41FVcXB+qUqSchBAAAEE0gK2z1/pulx4HkO8Id5QKjp2svq7aFlshwACCCCAAAIIdFuA/23y98BVV12l3c+U99Z8nrL6Xy4LdQop3qB6yWbHXL58WfT39zd2Xnlhu2bNGuP4njlzZstOfvfddxvXLfOCzXjLtGuwbRcsWNDiY4qjiuWyLiYEEDAL7Nu3TwwfPry2fVLWJev0bTIdj6qIg/NLFYqUgQACCCCQJWDz/JVVX7eXxRBviDeUio6brP4uWhbbIYAAAggggAAC3Rbgf5v8PZB1L/MHP/hB/gIcXDOr/+WyUKeQ4g2ql2x1jLwBfscddzSTEA899FDbsf3II48015VtGjt2rHj55ZfbblPkRVvxFmlLJ9scO3ZMyK9aNrW/quWyDlkXEwIItBf4/Oc/b31/TPZrWZePU9J+9bFsLJxfygqyPQIIIIBAOwH1vJXMt9vG59eS+NRHn2NS2x7iDSU1xrzzaj/LeSYEEEAAAQQQQMBXAf63yd9zvb292r3M8+fP5y/AwTWz+j/k/29DijeoqxAbHSOTo+lPXo4cOVJcunSp7W743HPPaTv5XXfd1XabIi/aiLdIO4pss2nTJjFixAjNyRRTp8tl2bIOJgQQGFzg1VdfFbNmzbK2Pyb7r6xD1uXjlMSgPpaJhfNLGT22RQABBBDII6Cet5L5PNv6uE4Sn/roYyymNod4Q8kU62DL1X6W80wIIIAAAggggICvAvxvk7/nsvIKvt5zTKLO6v+Q/78NKd6grkKq7JgzZ86IJ554QkyZMkVLPDz88MONr7tUv+f7+PHjjd9pTX63VW3PwoULxfLly8XRo0eTfafUo1p+Ml+q0Bo3Xrt2rZC/bZu0u6pHWaYsmwkBBPIL7N+/X7zpTW+qfH9M9mtZtqzD1ymJQ30sEg/nlyJqbIMAAgggUERAPW8l80XK8mGbJD710Ye2521jiDeU8saurqf2s5xnQgABBP4/e2cDdUdR33+SmBioQLCRgBAB5aUECRhItAhCsFYNqEFFCSi1aUKhL4cKNSL0D7S1Vl4aPG2PlooVYk1QRDRoSikRDDxAjDFBRAMJr8EYfEmQQIBCsv8zT7rPvbsze5/d2Zm7O/P7zDnP2d25M7+Z7+c3M7t3fs+9FwIQgAAEQiXAs015z6kPwuV5bd26tbyBFpbM60mvW9hVJ11K9eWPToz32UhU70LyDkmvbZguWrRIm6ipvfQ4MDAwZPq5555L1G+1pq/1Op544olD9eqcFLVRx2a/6y5fvjyZOHFiKW5FervzlS1lkwQBCFQnsGrVKi+BVhVgVbZDTt3rTPe5jSbuLzbUqAMBCEAAAjYEuu9Z3ec2tkKo062x+zyEvpftY4wbSmW158t1+zg9z5fhGgIQgAAEIAABCIRCIH2e6T6G0vd+99P0wS0Vnwk5dfu9+zxkTb363q2x+7xXnba+RpC1rZ4p0a/uwdd9XqJqq4ps2rQpmT17djJixAjrYKuqq2woWyQIQMCegPq0qcuvDla2Qv4Ea0qye43tPk9fj+3YrbH7PDad6IEABCAQO4HuNbz7PFbd3Rq7z2PSG+OGkq1/un2cntvaoh4EIAABCEAAAhBomkD6PNN9bLpPbW3/Va96lRZH2LJlS1u7W6pf3X7vPi9VOcBC3Rq7zwOUkhBkDdFr/9fn7sHXfR6qpNWrVyezZs1KTL8z1K2v+1yVVXVUXRIEIOCGgPoNg3nz5iWjR4/WHli651+vc1VX2Qj99xBSokVa09djO0rTG5v/0AMBCEAgJSBtPZegN8YNpXS8Vj2a/F3VBuUhAAEIQAACEIBAWwjwbFPeE7vuuqu2Z/nMM8+UN9DCkib/q7xYU0x6o/JSTI4pM3li1as+jap+u/ajH/2otliqT6xOnTp18FOrqgyfXC0zUigDATsCa9euTebMmVPpt5PVpytUHVU3phTrelvkI2l6iziQDwEIQCB0AtLWcwl6Y9xQsp1nJn/b2qIeBCAAAQhAAAIQaJoAzzblPbDbbrtpcYPf/va35Q20sKTJ/yov1hST3qi8FJNjykye2PWqj/jnNar/3CZBAAL9JaDmovod0blz5yZHHXWUNi/V71Gr11SZ0L+ao4hsfi1Kr4vKh56f6ssfQ9dF/yEAAQhII5Bfx9PrWDmk+vLHmPTGuKFk65+8n9U1CQIQgAAEIAABCIRKgGeb8p4bN26ctj+5efPm8gZaWNLkf4l5LXTNsF2K6l1I0aAblkKgBWLXqz7in9eo/nObBAEINEdA6j8/5Nei9Lo5T/htOdWXP/ptFesQgAAEIOCaQH4dT69dt9MWe6m+/LEt/XPRjxg3lGy55P2srkkQgAAEIAABCEAgVAI825T33B577KHFDUL/xkuT/yXmlR8F7SkZ1buQokHXHtxuexK7XoKsbscL1iDggoDUeRn7epsfG9L05vVzDQEIQCAWAkXrubT8WPypdMS4oWTrH9M4trVFPQhAAAIQgAAEINA0AZ5tynvg1a9+tRZk/c1vflPeQAtLmvwvMa+Frhm2SwRZh0XU3gJFk6y9Pa7WM6nBnGqUKA2B/hKQOi9jX2/zo0ia3rx+riEAAQjEQqBoPZeWH4s/lY4YN5Rs/WMax7a2qAcBCEAAAhCAAASaJsCzTXkPjB8/Xguy/upXvypvoIUlTf6XmNdC1wzbJYKswyJqb4GiSdbeHlfrmfqx6rxG9RtEJAhAoDkCBFl3yqxLzXnCb8v5tTe99tsq1iEAAQhAwDWBdP2WfnTNtUl7MW4o2fI0jWtbW9SDAAQgAAEIQAACTRPg2aa8B17zmtdk9ucUu1/+8pflDbSwpMn/EvNa6Jphu0SQdVhE7S1QNMna2+NqPSPIWo0XpSHQDwJS52Xs621+7EjTm9fPNQQgAIFYCBSt59LyY/Gn0hHjhpKtf0zj2NYW9SAAAQhAAAIQgEDTBHi2Ke+BPffcUwuyPvXUU+UNtLCkyf8S81rommG7RJB1WETtLVA0ydrb42o9kxrMqUaJ0hDoLwGp8zL29TY/iqTpzevnGgIQgEAsBIrWc2n5sfhT6YhxQ8nWP6ZxbGuLehCAAAQgAAEIQKBpAjzblPfAXnvtpQVZN27cWN4AJSHgkABBVocw+23KtPCqvFjS008/rS2Wu+++eyzy0AGBIAkQZOXrgoMcuHQaAhCAgFACRe8XpOXH5H42lDreNI3jzqucQQACEIAABCAAgbAI8GxT3l977723FjfYsGFDeQOUhIBDAvFE5JJEm1jpwuSQV6tMpfryx1Z1skZnCLLWgEdVCHgiIHVe5tfZ9NoT5sbNpvryx8Y7RgcgAAEIQAACwgmwodQZAPnnFHVNggAEIAABCEAAAqES4NmmvOde+9rXarGgn//85+UNUBICDglE9S7EtBDF/EYrdr1SgzkO5zemIOCcgNR5Gft6mx8o0vTm9XMNAQhAAAIQaCsBNpQ6njE9r3Re5QwCEIAABCAAAQiERYBnm/L+2meffbQg65NPPlneACUh4JAAQVaHMPttyrTwqrxY0ubNm7XFcty4cbHIQwcEgiRAkJWvCw5y4NJpCEAAAhCAQCQE2FDqONL0frjzKmcQgAAEIAABCEAgLAI825T318SJE7W4wRNPPFHeACUh4JBAPBE5vi54aGFxOD4aNUWQtVH8NA4BIwGp89L0oBvTP7XknS1Nb14/1xCAAAQgAIG2EmBDqeMZ0/NK51XOIAABCEAAAhCAQFgEeLYp76/Xve51Q7GQlNvjjz9e3gAlIeCQgIggazrRpBwdjo9GTUkN5jQKncYhMAwBqfNSyv1jOJ3DDA9ehgAEIAABCEDAMwE2lDqATc8tnVc5gwAEIAABCEAAAmER4NmmvL/2228/Lcj62GOPlTdASQg4JECQdafsVz+aFrPQ8hyOj0ZNSQ3mNAqdxiEwDAGp8zK0+4Cv/g4zPHgZAhCAAAQgAAHPBNhQ6gA2Pe90XuUMAhCAAAQgAAEIhEWAZ5vy/jrggAO0IOsjjzxS3gAlIeCQAEFWgqwOh5NbU5s2bdIWyz322MNtI1iDAAQqESDIGt8/5pge4ovyKg0WCkMAAhCAAAQg4JwAG0odpKbnlc6rnEEAAhCAAAQgAIGwCPBsU95fr3/967W4wcMPP1zeACUh4JAAQVaCrA6Hk1tTBFnd8sQaBFwQkDovTQ+6EvNcjCFsQAACEIAABCBgT4ANpQ4707NY51XOIAABCEAAAhCAQFgEeLYp7683vOENWpB13bp15Q1QEgIOCRBkJcjqcDi5NSU1mOOWItYg4JaA1HlpetCVmOd2NGENAhCAAAQgAIGqBNhQ6hAzPYt1XuUMAhCAAAQgAAEIhEWAZ5vy/jrooIO0IOtDDz1U3gAlIeCQAEFWgqwOh5NbU7/5zW+0xfLVr36120awBgEIVCJAkJWvC640YCgMAQhAAAIQgIBTAmwodXCyEdlhwRkEIAABCEAAAuET4NmmvA8PPvhgLW7w4IMPljdASQg4JBBVkNUhF0y1gABB1hY4gS5AIEeAeZkDwiUEIAABCEAAAhDoIwE2lDqw2YjssOAMAhCAAAQgAIHwCfBsU96HhxxyiBZkXbNmTXkDlISAQwIEWR3CxJRbAgRz3PLEGgRcEGBeuqCIDQhAAAIQgAAEIGBHgA2lDjc2IjssOIMABCAAAQhAIHwCPNuU9+Ghhx6qBVl/+tOfljdASQg4JECQ1SFMTLkl8Otf/1pbLH/3d3/XbSNYgwAEKhEgyFoJF4UhAAEIQAACEICAUwJsKHVwshHZYcEZBCAAAQhAAALhE+DZprwPJ02apMUNHnjggfIGKAkBhwQIsjqEiSm3BAiyuuWJNQi4IMC8dEERGxCAAAQgAAEIQMCOABtKHW5sRHZYcAYBCEAAAhCAQPgEeLYp78PDDjtMC7L+5Cc/KW+AkhBwSIAgq0OYmHJLgGCOW55Yg4ALAsxLFxSxAQEIQAACEIAABOwIsKHU4cZGZIcFZxCAAAQgAAEIhE+AZ5vyPjz88MO1IOv9999f3gAlIeCQAEFWhzAx5ZbAr371K22xHD9+vNtGsAYBCFQiQJC1Ei4KQwACEIAABCAAAacE2FDq4GQjssOCMwhAAAIQgAAEwifAs015H06ePFmLG9x3333lDVASAg4JEGR1CBNTbgkQZHXLE2sQcEGAeemCIjYgAAEIQAACEICAHQE2lDrc2IjssOAMAhCAAAQgAIHwCfBsU96HRxxxhBZkXb16dXkDlISAQwIEWR3CxJRbAgRz3PLEGgRcEGBeuqCIDQhAAAIQgAAEIGBHgA2lDjc2IjssOIMABCAAAQhAIHwCPNuU9+GRRx6pBVlXrVpV3gAlIeCQAEFWhzAx5ZbAL3/5S22xfM1rXuO2EaxBAAKVCBBkrYSLwhCAAAQgAAEIQMApATaUOjjZiOyw4AwCEIAABCAAgfAJ8GxT3odTpkzR4gYrV64sb4CSEHBIgCCrQ5iYckuAIKtbnliDgAsCzEsXFLEBAQhAAAIQgAAE7AiwodThxkZkhwVnEIAABCAAAQiET4Bnm/I+POqoo7Qg6w9/+MPyBigJAYcECLI6hIkptwQI5rjliTUIuCDAvHRBERsQgAAEIAABCEDAjgAbSh1ubER2WHAGAQhAAAIQgED4BHi2Ke/Do48+WguyrlixorwBSkLAIQGCrA5hYsotAYI5bnliDQIuCDAvXVDEBgQgAAEIQAACELAjwIZShxsbkR0WnEEAAhCAAHMGFBAAACAASURBVAQgED4Bnm3K+3DatGlakHX58uXlDVASAg4JEGR1CBNTbgk89dRT2mK55557um0EaxCAQCUCBFkr4aIwBCAAAQhAAAIQcEqADaUOTjYiOyw4gwAEIAABCEAgfAI825T34Zvf/GYtbnDvvfeWN0BJCDgkQJDVIUxMuSVAkNUtT6xBwAUB5qULitiAAAQgAAEIQAACdgTYUOpwYyOyw4IzCEAAAhCAAATCJ8CzTXkfvuUtb9GCrPfcc095A5SEgEMCBFkdwsSUWwIEc9zyxBoEXBBgXrqgiA0IQAACEIAABCBgR4ANpQ43NiI7LDiDAAQgAAEIQCB8AjzblPfhMcccowVZBwYGyhugJAQcEiDI6hAmptwS2Lhxo7ZYTpgwwW0jWIMABCoRIMhaCReFIQABCEAAAhCAgFMCbCh1cLIR2WHBGQQgAAEIQAAC4RPg2aa8D9/61rdqcYO77rqrvAFKQsAhAYKsDmFiyi0BgqxueWINAi4IMC9dUMQGBCAAAQhAAAIQsCPAhlKHGxuRHRacQQACEIAABCAQPgGebcr78Nhjj9WCrHfeeWd5A5SEgEMCBFkdwsSUWwIEc9zyxBoEXBBgXrqgiA0IQAACEIAABCBgR4ANpQ43NiI7LDiDAAQgAAEIQCB8AjzblPfh2972Ni3I+v3vf7+8AUpCwCEBgqwOYWLKLYFf/OIX2mK51157uW0EaxCAQCUCBFkr4aIwBCAAAQhAAAIQcEqADaUOTjYiOyw4gwAEIAABCEAgfAI825T34fHHH6/FDe64447yBigJAYcECLI6hIkptwQIsrrliTUIuCDAvHRBERsQgAAEIAABCEDAjgAbSh1ubER2WHAGAQhAAAIQgED4BHi2Ke/DE044QQuy3n777eUNtLCkyf8S81rommG7RJB1WEQUaIoAwZymyNMuBIoJMC+L2fAKBCAAAQhAAAIQ8E0gxg0lW2amTSdbW9SDAAQgAAEIQAACTRPg2aa8B0488UQtyPq9732vvIEWljT5X2JeC10zbJcIsg6LiAJNEdiwYYO2WO69995NdYd2IQCBJEkIsjIMIAABCEAAAuEQkPim3KQ5HI8N39MYN5SGV20uEbuvzarJhQAEIAABCEAgVgI825T37Nvf/nYtbnDbbbeVN9DCkib/S8xroWuG7RJB1mERUaApAgRZmyJPuxAoJsC8LGbDKxCAAAQgAIG2EZD4ptykuW1+qdOfGDeUbHnE7mtbLtSDAAQgAAEIQCBMAjzblPfbH/zBH2hB1v/5n/8pb6CFJU3+l5jXQtcM2yWCrMMiokBTBAjmNEWediFQTIB5WcyGVyAAAQhAAAJtIyDxTblJc9v8Uqc/MW4o2fKI3de2XKgHAQhAAAIQgECYBHi2Ke+3d7zjHVqQ9dZbby1voIUlTf6XmNdC1wzbJYKswyKiQFMEfv7zn2uL5Wtf+9qmukO7EIBAkiQEWRkGEIAABCAAgXAISHxTbtIcjseG72mMG0rDqzaXiN3XZtXkQgACEIAABCAQKwGebcp79p3vfKcWN7jlllvKG2hhSZP/Jea10DXDdokg67CIKNAUAYKsTZGnXQgUE2BeFrPhFQhAAAIQgEDbCEh8U27S3Da/1OlPjBtKtjxi97UtF+pBAAIQgAAEIBAmAZ5tyvvtXe96lxZk/a//+q/yBlpY0uR/lRdriklvvF6KdfQJ0kUwR5CzkRoMAeZlMK6ioxCAAAQgAAFt46HojWzs+TENhRg3lGz9Yxq3traoBwEIQAACEIAABJomwLNNeQ+8+93v1t7rLFmypLyBFpY0+V/lxZpi0huvl2IdfYJ0EcwR5GykBkOAeRmMq+goBCAAAQhAQNt4SN/Ixoom1Zc/xqQ3xg0lW//k/ayuSRCAAAQgAAEIQCBUAjzblPfcSSedpL3X+c53vlPeQAtLmvwf8/NtTHp5F9LCCUWXdhB48skntcVyn332AQ8EINAgAYKsDcKnaQhAAAIQgEBFAjG9cS0jXYLeGDeUyvjWVMbkb1M58iAAAQhAAAIQgEAIBHi2Ke+lk08+WYsb3HzzzeUNtLCkyf8qL9YUk954vRTr6BOkiyCrIGcjNRgCzMtgXEVHIQABCEAAAtrGQ/pGNlY0qb78MSa9MW4o2fon72d1TYIABCAAAQhAAAKhEuDZprzn3vOe92jvdRYvXlzeQAtLmvwf8/NtTHp5F9LCCUWXdhAgmMNIgED7CDAv2+cTegQBCEAAAhAoIhDTG9cijd35EvTGuKHU7cMq5yZ/V6lPWQhAAAIQgAAEINAmAjzblPfG+973Pi3I+q1vfau8gRaWNPlf5cWaYtIblZeKHCMtP5aJt379em2x3HfffWORhw4IBElAapBV2n2kSG+Qg5ZOQwACEBBMQNp6LkFvjBtKtlPU5G9bW9SDAAQgAAEIQAACTRPg2aa8B2bOnKnFDW666abyBlpY0uR/lRdriklvVF4qcoy0/FgmHkHWWDyJjpgISJ2X0u4jRXpjGstogQAEICCBgLT1XILeGDeUbOeiyd+2tqgHAQhAAAIQgAAEmibAs015D5xyyilakPWb3/xmeQMtLGnyv8qLNcWkNyovFTlGWn4sE09qMCcW/6EjTgJS56W0+0iR3jhHNaogAAEIxEtA2nouQW+MG0q2M9Dkb1tb1IMABCAAAQhAAAJNE+DZprwHPvCBD2hB1m984xvlDbSwpMn/Ki/WFJPeqLxU5Bhp+bFMvCeeeEJbLCdOnBiLPHRAIEgCBFl30tYlSfeYIActnYYABCAgmEDRPSpWJBL0xrihZDseTf62tUU9CEAAAhCAAAQg0DQBnm3Ke+CDH/ygtj93ww03lDfQwpIm/6u8WFNMeqPyUpFjpOXHMvEIssbiSXTEREDqvJR2HynSG9NYRgsEIAABCQSkrecS9Ma4oWQ7F03+trXV5nqbN29OFixYkMyePTuZOnVqMn78+GTMmDGDf+pc5anXVBlVlgQBCEAAAhAIlYD0e56UZxsX4/PUU0/Vgqxf//rXXZhuzIbJ/yov1hST3qi8VOQYafmxTDypwZxY/IeOOAlInZfS7iNFeuMc1aiCAAQgEC8Baeu5BL0xbijZzkCTv21ttbHe6tWrk1mzZg0GU01aTXkq+KrqqLokCEAAAhCAQCgEuOft8JTp3h6KD/vdzw9/+MNakPVrX/tav7vhtD2T/1VerCkmvVF5KSbHlJk8set9/PHHtcXyda97XRk0lIEABDwRIMia/bpgT5gbNxv7/aVxwHQAAhCAQJ8ISFvPJeiNcUPJdjqY/G1rq031Nm3aNPjJ1BEjRmjvh02aTXmqrvp0q7JFggAEIAABCLSVAPe8rGdM9/RsCa5SAqeddpr2nLRo0aL05SCPJv+rPBfpmWeeSQYGBob9u/vuu5Nt27YNNbl169aedVT57du3D5WvcuJTb5V+uCjrxksueuLARkyOKYMjdr0EWcuMAspAoL8EpM7L2Nfb/CiSpjevn2sIQAACsRCQtp5L0BvjhpLtfDP529ZWW+otX748mThxorZpaNJaJk/ZUjZJEIAABCAAgbYR4J6ne8R0b9dLkaMIqG/uyPNauHBh0HDyetJrF6JuueWWZJdddtGYpW2kxz322CNZv379UJP33HNPsuuuuxbWGzVqVPLUU08Nla9ykraZP1ax0ZayBFnb4gmLfuQHYHptYaqVVaQGc1rpDDoFgf8jIHVeputr/hjrwMjrTK9j1YsuCEAAArESSNfv/BG94RKIcUPJ1hv5ca2uQ05Lliwptfll0t0rT22oKdskCEAAAhCAQFsIcM8ze8J0PzeXJPf000/XAn9f/epXgwZj8r/Kc5XUJ1RV0HTSpEkauwMOOCB58MEHjU2pT6recMMNmTojR45MlA8eeughY50ymb71lumDqzLuvOSqRzXsxOSYMhhi1/vYY49lJq/Su99++5VBQxkIQMATAYKsfF2wp6GFWQhAAAIQ8EDA5/sFvnLKg8NKmIxxQ6mEbGMR0/g2Fgwgc9myZcnYsWO1978mjTZ5yrZqgwQBCEAAAhBomgD3vGIPmO7xxaVlv/KRj3xEe276yle+EjQUk/9Vnut0//33JypI2t3eBRdc0LOZlStXDpVXz5U333xzz/JlXuxuv/u8TN22lXHvpQYVdjuj+7zBLnltultj97nXRvtonCBrH2HTFARKEpA6L7vX2O7zktiCK9atsfs8OCF0GAIQgIBwAt1rePe5Cyx85ZQLitVtxLihVJ3CjhrdYzo9t7XVZL0NGzYkEyZMGNq4SrW4Pqo2VFskCEAAAhCAQFMEuOf1Jm+69/euIffVj370o9qz04IFC4IGYvK/yvORTj755Ay/KVOmFDazZcuWZPLkyYPlx4wZk9x6662FZau80E+9VfplU9aPl2x64qBOTI4pgyN2vVKDOWV8TxkINEVA6ryMfb3NjydpevP6uYYABCAQCwHf6zlfOdX/kRLjhpItRdP4trXVZL2ZM2dmNrlMulzlqbZIEIAABCAAgaYIcM/rTd50v+9dQ+6rZ555pvb8dN111wUNxOR/lecjLV68WOOnPq2aTy+//HIyY8aMwbLq91dvvPHGfBHr637qte5kyYp+vFSycdfFYnJMGTax65UazCnje8pAoCkCUudl7OttfjxJ05vXzzUEIACBWAj0az3nK6f6N2Ji3FCypWca37a2mqq3dOlSbYPLpMtlnmqTBAEIQAACEOg3Ae55wxM33e+HryWzxMc+9jHtGerLX/5y0DBM/ld5PpIKnu67774Zhuecc47WlMpL+3X11Vdrr9fJSO3mj3VsNlXXj5caUpN3SHrdUHe8N5vqyx+9N9ynBh599NGhSZxq3H///fvUOs1AAAImAgRZ+U1W07ggDwIQgAAE2kkgfYbOH330lq+c8kFVtxnjhpKuslxOflyr69DS9OnTtfe8Jl0u81SbJAhAAAIQgEC/CXDPG5646X4/fC2ZJf74j/9Ye4b6j//4j6BhmPyv8nyliy++OMNw9913T7Zu3TrU3JVXXjn0+oUXXjiU7+qk33pd9dtkx5+XTK15zovJMWVQxa6XIGuZUUAZCPSXgNR5Gft6mx9F0vTm9XMNAQhAIBYC/VzP+cqp/oyaGDeUbMmZxretrSbqrVu3LhkxYsTQ5pVJj4881aZqmwQBCEAAAhDoFwHueeVIm+775WrKKzV79mztGepLX/pS0CBM/ld5vtLjjz+ejBw5MsMx/cpl9bXA6WtnnHFGsn37dufd6Lde5wK6DPrzUlcj/TqNyTFlmMWuV2owp4zvKQOBpghInZexr7f58SRNb14/1xCAAARiIdDP9ZyvnOrPqIlxQ8mWnGl829pqot78+fMzm1omPb7yVNskCEAAAhCAQL8IcM8rR9p03y9XU16pOXPmaM9RX/ziF4MGYfK/yvOZ0t9bTds+7rjjknvvvTfZeeedB/mecMIJyYsvvuilC2mb+aOXxjwb9eslz53Pm887JL3Ol4vlOtWXP8ai75FHHtEWywMOOCAWeeiAQJAECLLydcFBDlw6DQEIQEAogfz7hPTaFw6+csoX2Y7dGDeUOuqqnaXjuftYzUKzpWfOnKm93+3W4vNctU2CAAQgAAEI9IsA97xypE33/nI15ZWaO3eu9hz17//+70GDMPlf5flMN910k8Zx9OjRg3mTJk1KNm/e7K35JvT6EuPXS756XWA3JscUSMxkx66XIGvG3VxAoBUEpM7L2Nfb/OCSpjevn2sIQAACsRDo93rOV075HzkxbijZUjONb1tbTdQ76KCDtE0tkyYfeaptEgQgAAEIQKBfBLjnlSNtuueXqymv1FlnnaU9R1199dVBgzD5X+X5TC+99FKy9957ayz32muv5LHHHvPZtNZmqt9ro56M+/WSp04XmU0dkT8Wla+S/8wzzyQDAwPD/t19993Jtm3bhkyrHwvuVU+Vt/1O67zO9Hqo8cBPpAZzAncb3Y+cgNR5ma6v+aMLd3N/cUERGxCAAAQgYCKQv2+l16ayrvL4yilXJM12YtxQMisdPjcdz93H4Wu1p8Suu+5auLnUrcnHuWqbBAEIQAACEOgXAe555Uib7vnlasordfbZZ2vPUV/4wheCBmHyv8rznS666CKN5V133eW7Wa3NVL/3hj004N9LHjpdZDJ1RP5YVL5K/i233JLssssuhc5P29xjjz2S9evXD5m+5557kl43klGjRiVPPfXUUPkqJ2mb+WMVG20sqz6GvmDBguTUU0/VeCteU6dOTdRvEakyPj+y3kY29AkCTRDYsmVLsmjRokR9cuKII47Q5uUrX/nKRG34XX/99YkqG2PKr7PptQut3F9cUMQGBCAAAQiYCKT3q/zRVNZVHl855Yqk2U6MG0pmpcPn5se1ug4pqfe2Jg39yFNtkyAAAQhAAAL9IsA9rxxp0zNAuZrySp1zzjnac9TnP//5oEGY/K/yfCfTB2oWLlzou1nNf6l+7w17aMC/lzx0ushk6oj8sah81Xz1CVUVNFXfR51vQ/1W6IMPPmg0qT6pesMNN2TqjBw5Mjn99NOThx56yFinTGa+D+l1mbptLLN69epk1qxZyZgxYzKsUl2moyqr6qi6JAhAwC2BtWvXJup3v8r8g0k6P1VZVUfVjSml+vJHVxq5v7giiR0IQAACYRC45JJLSj/v5u89Lq59UmrjV065YIaN7O/SwwMejAHGAGOAMcAYYAwwBhgDjAH/Y8Dnezdl++KLL9bemx5//PG+m9XabNtYuvTSS0szIMhaGlWn4P3335+oIGm34y+44IJOAcPZypUrh8qPHTs2ufnmmw2lqmV1t999Xs1K86U3bdo0+MnUESNGDDHq1lPmXNVVn25VtkgQgEA9As8//3wyb968JP2h8zJzMF9G1VU2lK0YUl5feu1aG/cX10SxBwEIQKCdBGIOsiribfvKqfS+zdH/JhCMYcwYYAwwBhgDjAHGAGOAMcAYcDcGfL6jvfbaawvjMWvWrPHZdGG7bRk76j172USQtSypXLmTTz45MxCmTJmSK9G5VF+fOXny5MHy6pOXt956a+fFGmdFA66Gyb5XXb58eTJx4sQMyyJdZfKVLWWTBAEI2BFYt27d0HpVZs4NV0atfcpm6KlIpw9d3F98UMUmBCAAgXYRiD3I2ravnCq6j5PvbvMHlrBkDDAGGAOMAcYAY4AxwBhgDLgfA77eyS5dunToAzbqG1cPOeSQTIzm/PPP99X0oN22jxWCrDtlB7OP0bB48eLMoFODQn1aNZ9efvnlZMaMGYNl1ffP33jjjfki1tdFA9HaYJ8rLlmypNLXkBbpzeerrytVtkkQgEA1AqtWrUr23HNPbW3Lz7Gq18qmsh1yKtLsQxP3Fx9UsQkBCECgXQRiD7LylVPZ96NFzxHkw4kxwBhgDDAGGAOMAcYAY4AxwBjoNQZ8vJN94IEHknHjxg3uAauvBn7xxReTq666KrMnPH78+OSFF17w0fygzV6a2/AaQdY+BFlV8HTffffNDDz1g8v51P0jzFdffXX+5VrXRYOtltE+VV62bFmivja5SEPdfGVbtUGCAATKEVCfNvURYE3nsrId8idaUx35Yzm61Upxf6nGi9IQgAAEQiQQc5CVr5xikyj/vMQ1Y4IxwBhgDDAGGAOMAcYAY4AxYDcGXL/f3bhxY7L//vsPxmUOPfTQoZ9fVD/DmI/XLFy40HXzQ/baPh4IsvYhyKpGQ/4/tHffffdk69atQwPlyiuvHAoiXnjhhUP5rk6KBqIr+77sbNiwIZkwYcIQmyIddfNVG6otEgQg0JuA+t3U9CvN6867XvVVG6H+RmuRrt5k7V/l/mLPjpoQgAAEINAh0O/7V1u/cqpDJPyzc889V3sf9bnPfS58YRYKTOPbwkyjVaZPn67506TLZZ5qkwQBCEAAAhDoNwHuecMTN93vh68ls8THP/5x7Rlq/vz5QcMw+V/luUzPPvtsMnXq1EF2Knby6KOPZsyfeeaZGa7qU66+Uj/0+up73q5bL+Wt9/m63455/PHHk5EjR2YG3nXXXTeoWn0tcPraGWeckWzfvt05jX7rdSVg5syZGWZFOlzkq7ZIEIBAbwLz5s3r25xUbYWYitYjX1q4v/gii10IQAACsgj08/7V5q+cisnrMW4o2frHNL5tbTVV77bbbuvbc3jKS/0zBAkCEIAABCDQbwLc84Ynnt6ru4/D15JZ4rzzztOeof7pn/4paBjdfu8+dyXqpZdeGvpZS/VziytWrNBMDwwMaFzXrFmjlXOR0a2x+9yF7X7bIMhak3j6e6vpQDjuuOOSe++9N9l5550HB+QJJ5ww+J3WNZsxVk/bzB+NhVuSqd7Q5fvr+5o3kS1xPt1oJYG1a9cO/ci577mo7I8ePTpRbYaWitj41MH9xSddbEMAAhCQQaBf96+2f+VUTN6OcUPJ1j+m8W1rq8l6/BNyk/RpGwIQgAAE+kmAe15v2rE82/RW6ebV888/X4sxqG8VDTmZ/K/yXCT1AcDZs2cPMhs1alSyePHiQrOHH354hq16/+Ej+dTro7+9bLrxUq8W+vhaE4656aabMoNO9UEFEdRx0qRJyebNm70RaEJvXTF8NURdgtSHgFsCc+bM0daworXFVb5qM7RUpN2nDu4vPuliGwIQgIAMAv24f/GVU/0dSzFuKNkSNI1vW1tN1uPndJqkT9sQgAAEINBPAtzzetOO5dmmt0o3r37iE5/Q9jMvv/xyN8YbsmLyv8qrm1SA9eyzzx7iddlll/U0ecUVVwyVVe2PGzcuefrpp3vWsXnRl16bvtStU99LdXvgsH4TjlEfs957770zA0/1Y6+99koee+wxh+p0U03o1XtRPmfdunXJiBEjNFZFOlzlqzZV2yQIQCBLYMuWLYn6eghXc62sHdWmajukVKTNpwbuLz7pYhsCEICADAK+71985VT/x1GMG0q2FE3j29ZW0/WWLVuWjB071ttzubKt2iBBAAIQgAAEmibAPa/YAzE92xSrdPOK6afPhgseumnZnxWT/1VenaSCo92fIFffvrpt27aeJm+//XbtmfTcc8/tWcfmRR96bfrhok49L7nogUMbTTnmoosu0gbeXXfd5VCZ2VRTes29GT5X/fh0UZ9954f+w9fD06UEBKoTWLRoUWNzUrUdUipao3xr4P7imzD2IQABCMRNwOf9i6+cambsxLihZEvSNL5tbbWh3pIlS7z8A6T6B0dlmwQBCEAAAhBoCwHueWZPxPZsY1bpJveTn/yktqf52c9+1o3xhqyY/K/ybJL6tqFrrrkmOfDAAzVO6hO/6qfc1D/Mdif1EzDqd1rzP1+W9uu0005LFixYkKxfv767mvV5ajd/tDbYYEU7LzXY4V5N5x2SXveq4+K1Rx55RBusCxcudGG6p41UX/7Ys1KDL3b/10S+z76vVdskCEAgS2Du3Lna2uV7Lqb2zzrrrGxnWn6V9jt/9N1t7i++CWMfAhCAQNwE8vet9Lquar5yqi5B+/oxbijZ0kjHc/fR1lZb6i1fvjyZOHGis2d0ZUvZJEEAAhCAAATaRoB7nu6R7mea9FwvRY4i8KlPfUp7XvrMZz4TNJzU5/mjjagyH6wZGBgYMv3cc88l6rda822brk888cShenVOTLZVXoipcq8vueSSUrCLIDWR79sxF198scbk+OOP992s1mYTbGlzJ/ywEwyYB3LHgO+FnvuL3di69NJLfbsG+xCAAASCIFD0jFKn83zlVB169evGuKFkS8U0vm1ttanepk2bktmzZ9f6qR31kznKhrJFggAEIAABCLSVAPe8rGdifbbJqnRzdeGFF2p78v/wD//gxnhDVkz+V3mxppj0VvYSQdbssL722mu1CZ0OkDVr1mQLO75K2+FotwkPN7gxBhgDdceA42U9Y477i/34VM8qJAhAAAIQSArfp9iw4SunbKi5rxPjhpItJdNznK2tNtZbvXp1MmvWrGTMmDGFcznPQJVVdVRdEgQgAAEIQCAUAtzzdngqf19X1yQzAdPPa3360582Fw4k1+T/mMdATHorz1SCrJ1ZuXTp0mT06NGDb3hOP/305JBDDsm8+Tn//PM7hT2cFQ1E8u035mEHO8YAY6DKGPCwtA+a5P5SbxwSZPU1MrELAQiERqDonmajg6+csqHmvk6MG0q2lEzj29ZWm+upT/mo379Sn0ydOnVqZs8hZaBeU2X45GqbPUnfIAABCEBgOALS73npfb37OBwzqa//v//3/7Rnor/7u78LGke337vPgxbVo/PdGrvPe1Rp7UsEWS1d88ADDyTjxo0bnMzqq4FffPHF5KqrrspM7vHjxycvvPCCZQvDV+sefJzX25CHH/wYA4wBmzEw/EpdvQT3l/pjkSBr9XFHDQhAIE4CRfe2ONW6/eRuWxnFuKFky9o0vm1thVRPqu6QfERfIQABCEDADQFp9zxpeuuMEtPPa/3t3/5tHZON1zX5X+XFmmLSW9lLfJI1STZu3Jjsv//+gwHVQw89dOi/RdV/24wdOzYTaF24cKG3eVA0EMmvv0EPQxgyBhgDZcaA6wWe+4ubcUeQ1fXIxB4EIBAqgaJ7Wah6huu3BL0xbigN59ei103+LiobU75U3TH5EC0QgAAEIFCOgLR7njS95UaBuZQpRnXppZeaCweSa/K/yos1xaQ3Ki/1wzHqt4jSr+iZMGFC8uijj2bG+ZlnnpkJsqpPufpK/dDrsu8zZ87MsCnqv4981TYJAhDIEpg2bVpjc1K1HVIqWpdcauD+4pImtiAAAQhAQBHox/2rTaQl6I1xQ8l2DJn8bWsrpHpSdYfkI/oKAQhAAAJuCEi750nTW2eUqE+t5nmF/g/3eT3pdR1Oba6b6ssf29znor4RZC0iY8h/6aWXkhkzZgxO4F122SVZsWKFVmpgYECb4GvWrNHKucjID8D02oVtHzbmz5+vrT0+8AAAIABJREFUsUn77Puo2iZBAAJZAnPnzm1sTp511lnZzrT8qmiNctVt7i+uSGIHAhCAAAS6Cfi+f3W31YZzCXpj3FCyHTsmf9vaCqmeVN0h+Yi+QgACEICAGwLS7nnS9NYZJer3V/O81M9qhJzyetLrkDX16nuqL3/sVaetrxFkLemZ7du3J7Nnzx6cvKNGjUoWL15cWPPwww/PTPLzzjuvsGydF/IDML2uY9Nn3XXr1iUjRozIsEn77POo2nz44Yd9SsM2BIIksGjRor7Px3SuX3/99UExS/udP7oQwf3FBUVsQAACEICAiUD+vpVem8rGkJfqyx9j0JZqiHFDKdVW9Zj3s7qWkKTqluBbNEIAAhCAQJaAtHueNL1Zb1e7+vu//3ttT/Nv/uZvqhlpWWmT/1VerCkmvVF5yZdj1Ab42WefPTRxL7vssp5j+4orrhgqq/o0bty45Omnn+5Zx+ZFX3pt+lK2zvTp0zNsijS4zFdtkiAAAZ3Ali1bEvWpfJfzrYwt1aZqO6RUpKuuBu4vdQlSHwIQgAAEehHwdf/q1WaTr0nQG+OGku2YMfnb1lZI9aTqDslH9BUCEIAABNwQkHbPk6a3zij59Kc/re1nXnTRRXVMNl7X5H+VF2uKSW9UXvLhGBUc7f4t0Z133jnZtm1bz7F9++23a5P83HPP7VnH5kUfem36UaXObbfdprEp0uEqf+nSpVW6SFkIiCIwZ86cvs9J1WZoqWg9qqOD+0sdetSFAAQgAIEyBHzcv8q021QZCXpj3FCyHS8mf9vaCqmeVN0h+Yi+QgACEICAGwLS7nnS9NYZJZ/5zGe0/cxPfepTdUw2Xtfkf5UXa4pJb1RecumYZ599NrnmmmuSAw88UJuwl19+ebJ27dpE/YZed9q4cePg77Smv9ua789pp52WLFiwIFm/fn13NevzvP302tpgnyp2B63TPvs6qrZIEIBAMQG1lo0ePVpb53zNSdWWajO0VMTDRgf3Fxtq1IEABCAAARsCLu9fNu33u44EvTFuKNmOE5O/bW2FVE+q7pB8RF8hAAEIQMANAWn3PGl664ySf/zHf9T2Mi+44II6Jhuva/K/yos1xaQ3Ki+5dEyZ3yocGBgYGuPPPfdcon6rtagP3fknnnjiUL06J902u8/r2OxH3Q0bNiQTJkwoxapbV9Vz1YZqiwQBCPQmMG/ePO/zMZ2/qq0QU9r//NFGC/cXG2rUgQAEIAABGwL5+1Z6bWMrhDqpvvwxhL6X7WOMG0pltefL5f2sriUkqbol+BaNEIAABCCQJSDtnidNb9bb1a4++9nPanuZn/zkJ6sZaVlpk/9VXqwpJr1ReSkmx5SZPCHrXbZsWTJ27FhtMSzSVDVf2VZtkCAAgeEJPP/888nkyZO9zcd0/qo2VFshplRD/hiiljJ9zutMr8vUpQwEIAABCLSHQLp+54/t6aHbnuR1ptduW2nWWowbSrZEU/92H21thVSvW296HlL/6SsEIAABCECgLIH0Ptd9LFs3xHLdOtPzEHX0o8/qm0ZTRunxE5/4RD+a9tZGqiN/9NZgw4bzOtPrhrtl1TxBVits7aiUDrz8sR29G74XS5YsSXbZZRdtQczrqXqtbCrbJAhAoDyBdevWJXvuuafz+ZjOX2VbtRFqSnXkj6HqGa7feZ3p9XD1eB0CEIAABNpFIF2/88d29dJdb/I602t3LTRvKcYNJVuqqX+7j7a2QqrXrTc9D6n/9BUCEIAABCBQlkB6n+s+lq0bYrlunel5iDr60ecrrrhC28P867/+63407a2N1Of5o7cGGzac15leN9wtq+YJslpha0eldODlj+3oXbleLF++PJk4caK2KOY1lb1WtpRNEgQgUJ3AqlWrvARaVYBV2Q45Fa1BIWvq1Xdpenux4DUIQAACIROQtp5L0BvjhpLtHDP529ZWSPWk6g7JR/QVAhCAAATcEJB2z5Omt84oufLKK7V4wvnnn1/HZON1Tf5XebGmmPRG5aWYHFNm8sSid9OmTcns2bOTESNGaItjkcZ8vqqrbChbJAhAwJ6A+rSpy68OVrZC/gRrSjK/5qTX6euxHVN9+WNsOtEDAQhAIHYC+XU8vY5Vd6ovf4xJb4wbSrb+yftZXUtIUnVL8C0aIQABCEAgS0DaPU+a3qy3q13Nnz9fiyN8/OMfr2akZaVN/ld5saaY9EblpZgcU2byxKZ39erVyaxZs5IxY8Zoi2SRVlVW1VF1SRCAgBsC6ndT582bl4wePbr0XMzPUVVX2Qj1N1jzJPP60ut8uViuU335Yyz60AEBCEBACoH8Op5ex6o/1Zc/xqQ3xg0lW//k/ayuJSSpuiX4Fo0QgAAEIJAlIO2eJ01v1tvVrq666iptz/Kv/uqvqhlpWWmT/yXmtcwtpboT1buQokFXikSAhWLVqz6NumDBguSUU07RFstRo0YlU6dOHfzUqirDJ1cDHLh0ORgCa9euTebMmVPpt5PVbyKrOqpuTCnW9bbIR9L0FnEgHwIQgEDoBKSt5xL0xrihZDvPTP62tRVSPam6Q/IRfYUABCAAATcEpN3zpOmtM0o+97nPaXGDc889t47Jxuua/C8xr3FHWHSAIKsFtLZUKZpkbelf3X785Cc/0RbLww47rK5Z6kMAAhUJbNmyJVm0aFEyd+7c5PDDD9fm5c477zz4miqjysaYYl9v8z6Tpjevn2sIQAACsRAoWs+l5cfiT6Ujxg0lW/+YxrGtrZDqSdUdko/oKwQgAAEIuCEg7Z4nTW+dUfLP//zP2v7kX/7lX9Yx2Xhdk/8l5jXuCIsOEGS1gNaWKkWTrC39q9uP+++/X1ss3/jGN9Y1S30IQKAGAan//BD7epsfEtL05vVzDQEIQCAWAkXrubT8WPypdMS4oWTrH9M4trUVUj2pukPyEX2FAAQgAAE3BKTd86TprTNK/uVf/kWLG/zFX/xFHZON1zX5X2Je446w6ABBVgtobalSNMna0r+6/SDIWpcg9SHgnoDUeRn7epsfKdL05vVzDQEIQCAWAkXrubT8WPypdMS4oWTrH9M4trUVUj2pukPyEX2FAAQgAAE3BKTd86TprTNK/vVf/1ULsv75n/95HZON1zX5X2Je446w6ABBVgtobalSNMna0r+6/ZAazKnLjfoQ8ElA6ryMfb3NjxlpevP6uYYABCAQC4Gi9Vxafiz+VDpi3FCy9Y9pHNvaCqmeVN0h+Yi+QgACEICAGwLS7nnS9NYZJZ///Oe1IOuf/dmf1THZeF2T/yXmNe4Iiw4QZLWA1pYqRZOsLf2r248f//jH2mKpfg+SBAEINEeAIOtOmXWpOU/4bTn2+4tfeliHAAQg0B4CReu5tPz2eKR+T2LcULKlYhrHtrZCqidVd0g+oq8QgAAEIOCGgLR7njS9dUbJF77whcz+nGJ39tln1zFJXQhYEyDIao2u+YqmhVflxZIIssbiSXTEREDqvIx9vc2PUWl68/q5hgAEIBALgaL1XFp+LP5UOthQ6njTNI47r8Z7JlV3vB5FGQQgAAEIFBGQds+TprfI72Xy/+3f/k0Lsv7pn/5pmaqUgYBzAvFE5JJEm1jpwuScWksMpvryx5Z0r3Y3pAZzaoPDAAQ8EpA6L/PrbHrtEXWjplN9+WOjnaJxCEAAAhCAAAQSNpQ6gyD/nKKuJSSpuiX4Fo0QgAAEIJAlIO2eJ01v1tvVrq6++motFnTWWWdVM0JpCDgiENW7ENNCpPJiTbHrve+++7TFcvLkybG6E10QCIIAQVa+LjiIgUonIQABCEAAApESYEOp41jT++HOq/GeSdUdr0dRBgEIQAACRQSk3fOk6S3ye5n8L37xi1rcYM6cOWWqUgYCzglEFYE0LUQqL9YUu16CrLGOXHSFTEDqvIx9vc2PSWl68/q5hgAEIAABCLSVABtKHc+Ynlc6r8Z7JlV3vB5FGQQgAAEIFBGQds+TprfI72Xyr7nmGi3I+id/8idlqlIGAs4JRBWBNC1EKi/WFLteqcGcWMcruuIgIHVexr7e5kenNL15/VxDAAIQgAAE2kqADaWOZ0zPK51X4z2Tqjtej6IMAhCAAASKCEi750nTW+T3Mvlf+tKXtCDr7Nmzy1SlDAScE4gqAmlaiCTmOR8lDRmUGsxpCDfNQqAUAanzUuK9xKS51CChEAQgAAEIQAAC3giwodRBK/VZRarujuc5gwAEIAABKQSk3fOk6a0zjr/85S9rQdaPfexjdUxSFwLWBAiy7pT9fT3TYhZanvVoaFnF1atXa4vlEUcc0bJe0h0IyCJAkDW+e0aVe5ys0Y5aCEAAAhCAQPsIsKHU8YnpGabzarxnUnXH61GUQQACEIBAEQFp9zxpeov8Xib/2muv1eIGf/RHf1SmKmUg4JwAQVaCrM4HlSuDBFldkcQOBNwRkDovTQ+6EvPcjSQsQQACEIAABCBgQ4ANpQ4107NY59V4z6TqjtejKIMABCAAgSIC0u550vQW+b1M/nXXXacFWc8888wyVSkDAecECLISZHU+qFwZlBrMccUPOxDwQUDqvDQ96ErM8zGmsAkBCEAAAhCAQHkCbCh1WJmexTqvxnsmVXe8HkUZBCAAAQgUEZB2z5Omt8jvZfK/8pWvaEHWj3zkI2WqUgYCzgkQZCXI6nxQuTK4atUqbbE88sgjXZnHDgQgYEGAICtfF2wxbKgCAQhAAAIQgIAjAmwodUBK3YiUqrvjec4gAAEIQEAKAWn3PGl664zj//zP/9TiBmeccUYdk9SFgDUBgqwEWa0Hj++KBFl9E8Y+BKoTkDovTQ+6EvOqjxhqQAACEIAABCDgkgAbSh2apmexzqvxnknVHa9HUQYBCEAAAkUEpN3zpOkt8nuZ/K9+9atakPX0008vU5UyEHBOIKogq3M6GGyUgNRgTqPQaRwCwxBgXg4DiJchAAEIQAACEICARwJsKHXgSt2IlKq743nOIAABCEBACgFp9zxpeuuM40WLFmlB1tNOO62OSepCwJoAQVZrdFT0TeBHP/qRtli+6U1v8t0s9iEAgR4ECLL2gMNLEIAABCAAAQhAwDMBNpQ6gKVuRErV3fE8ZxCAAAQgIIWAtHueNL11xvH111+vxQ0+/OEP1zFJXQhYEyDIao2Oir4JEGT1TRj7EKhOgHlZnRk1IAABCEAAAhCAgCsCbCh1SErdiJSqu+N5ziAAAQhAQAoBafc8aXrrjOOvfe1rWpD1Qx/6UB2T1IWANQGCrNboqOibAMEc34SxD4HqBJiX1ZlRAwIQgAAEIAABCLgiwIZSh6TUjUipujue5wwCEIAABKQQkHbPk6a3zji+4YYbtCDrqaeeWsckdSFgTYAgqzU6KvomsHLlSm2xnDJliu9msQ8BCPQgQJC1BxxeggAEIAABCEAAAp4JsKHUASx1I1Kq7o7nOYMABCAAASkEpN3zpOmtM46/8Y1vaHGDD3zgA3VMUhcC1gQIslqjo6JvAgRZfRPGPgSqE2BeVmdGDQhAAAIQgAAEIOCKABtKHZJSNyKl6u54njMIQAACEJBCQNo9T5reOuP4xhtv1IKs73//++uYpC4ErAkQZLVGR0XfBAjm+CaMfQhUJ8C8rM6MGhCAAAQgAAEIQMAVATaUOiSlbkRK1d3xPGcQgAAEICCFgLR7njS9dcbxN7/5TS3Iesopp9QxSV0IWBMgyGqNjoq+Cfzwhz/UFsujjjrKd7PYhwAEehAgyNoDDi9BAAIQgAAEIAABzwTYUOoAlroRKVV3x/OcQQACEICAFALS7nnS9NYZx9/61re0uMH73ve+OiapCwFrAgRZrdFR0TcBgqy+CWMfAtUJMC+rM6MGBCAAAQhAAAIQcEWADaUOSakbkVJ1dzzPGQQgAAEISCEg7Z4nTW+dcfztb39bC7K+973vrWOSuhCwJkCQ1RodFX0TIJjjmzD2IVCdAPOyOjNqQAACEIAABCAAAVcE2FDqkJS6ESlVd8fznEEAAhCAgBQC0u550vTWGceLFy/Wgqzvec976pikLgSsCRBktUZHRd8ECOb4Jox9CFQnwLyszowaEIAABCAAAQhAwBUBNpQ6JKVuRErV3fE8ZxCAAAQgIIWAtHueNL11xvF3vvMdLch60kkn1TFJXQhYEyDIao2Oir4JrFixQlssjz76aN/NYh8CEOhBgCBrDzi8BAEIQAACEIAABDwTYEOpA1jqRqRU3R3PcwYBCEAAAlIISLvnSdNbZxx/97vf1eIGM2bMqGOSuhCwJkCQ1RodFX0TIMjqmzD2IVCdAPOyOjNqQAACEIAABCAAAVcE2FDqkJS6ESlVd8fznEEAAhCAgBQC0u550vTWGcdLlizRgqzvfve765ikLgSsCRBktUZHRd8ECOb4Jox9CFQnwLyszowaEIAABCAAAQhAwBUBNpQ6JKVuRErV3fE8ZxCAAAQgIIWAtHueNL11xvEtt9yiBVnf+c531jFJXQhYEyDIao2Oir4J/OAHP9AWy6lTp/puFvsQgEAPAgRZe8DhJQhAAAIQgAAEIOCZABtKHcBSNyKl6u54njMIQAACEJBCQNo9T5reOuP4v//7v7W4wR/+4R/WMUldCFgTIMhqjY6KvgkQZPVNGPsQqE6AeVmdGTUgAAEIQAACEICAKwJsKHVISt2IlKq743nOIAABCEBACgFp9zxpeuuM41tvvVULsr7jHe+oY5K6ELAmQJDVGh0VfRMgmOObMPYhUJ0A87I6M2pAAAIQgAAEIAABVwTYUOqQlLoRKVV3x/OcQQACEICAFALS7nnS9NYZx7fddpsWZH37299exyR1IWBNgCCrNToq+iawfPlybbGcNm2a72axDwEI9CBAkLUHHF6CAAQgAAEIQAACngmwodQBLHUjUqrujuc5gwAEIAABKQSk3fOk6a0zjpcuXarFDU488cQ6JqkLAWsCBFmt0VHRNwGCrL4JYx8C1QkwL6szowYEIAABCEAAAhBwRYANpQ5JqRuRUnV3PM8ZBCAAAQhIISDtnidNb51x/L3vfU8Lsk6fPr2OycbrmvwvMa9xR1h0gCCrBTSq9IcAwZz+cKYVCFQhwLysQouyEIAABCAAAQhAwC2BGDeUbAmZNp1sbYVUT6rukHxEXyEAAQhAwA0Bafc8aXrrjJI77rhDC7KecMIJdUw2Xtfkf4l5jTvCogMEWS2gUaU/BO69915tsXzzm9/cn8ZpBQIQMBIgyGrEQiYEIAABCEAAAhDoC4EYN5RswZk2nWxthVRPqu6QfERfIQABCEDADQFp9zxpeuuMku9///ta3OBtb3tbHZON1zX5X2Je446w6ABBVgtoVOkPAYKs/eFMKxCoQoB5WYUWZSEAAQhAAALNEpD4ptykuVkvuG09xg0lW0Kx+7qIi1TdRTzIhwAEIACBeAlIu+dJ01tn5C5btkwLsh533HF1TDZe1+R/iXmNO8KiAwRZLaBRpT8ECOb0hzOtQKAKAeZlFVqUhQAEIAABCDRLQOKbcpPmZr3gtvUYN5RsCcXu6yIuUnUX8SAfAhCAAATiJSDtnidNb52Re+edd2pB1mOPPbaOycbrmvwvMa9xR1h0gCCrBTSq9IfAPffcoy2Wb3nLW/rTOK1AAAJGAgRZjVjIhAAEIAABCLSSgMQ35SbNrXSOZadi3FCyRKG9V1S+l5BiH+MSfIhGCEAAAhAoR0DaPU+a3nKjwFxqYGBAexY85phjzIUDyTX5X2JeIO7KdFPGu5CMZC5CIUCQNRRP0U9JBJiXkryNVghAAAIQCJ2AxDflJs2h+7G7/zFuKHXrq3Ieu6+LWEjVXcSDfAhAAAIQiJeAtHueNL11Ru7dd9+tBVl///d/v47Jxuua/K/yYk0x6Y3XS7GOPkG6COYIcjZSgyHAvAzGVXQUAhCAAAQgoG08FL2RjT0/pqEQ44aSrX9M49bWVkj1pOoOyUf0FQIQgAAE3BCQds+TprfOKIlxf9Lkf5UXa4pJb7xeinX0CdIV42IpyH1IjZQA8zJSxyILAhCAAASiJFD0xlVafkzO5Vms403TOO68Gu+ZVN3xehRlEIAABCBQREDaPU+a3iK/l8lfvny59g+l06ZNK1O1tWVM/ld5saaY9MbrpVhHnyBd/Je2IGcjNRgCbOwF4yo6CgEIQAACENA2HtI3srGiSfXljzHpjXFDydY/eT+rawlJqm4JvkUjBCAAAQhkCUi750nTm/V2tasf/OAH2nudqVOnVjPSstIm/6u8WFNMeuP1UqyjT5AugqyCnI3UYAgwL4NxFR2FAAQgAAEIaBsP6RvZWNGk+vLHmPTGuKFk65+8n9W1hCRVtwTfohECEIAABLIEpN3zpOnNerva1YoVK7T3OkcffXQ1Iy0rbfK/yos1xaQ3Xi/FOvoE6SKYI8jZSA2GAPMyGFfRUQhAAAIQgIC28ZC+kY0VTaovf4xJb4wbSrb+yftZXUtIUnVL8C0aIQABCEAgS0DaPU+a3qy3q12tXLlSe68zZcqUakZaVtrkf5UXa4pJb7xeinX0CdI1MDCgLZbHHHOMIAJIhUD7CBBkbZ9P6BEEIAABCECgiEBMb1yLNHbnS9Ab44ZStw+rnJv8XaV+qGWl6g7VX/QbAhCAAATsCUi750nTaz8ykuRHP/qRFjd405veVMdk43VN/ld5saaY9EblpSLHSMuPZeIRZI3Fk+iIiYDUeSntPlKkN6axjBYIQAACEghIW88l6I1xQ8l2Lpr8bWsrpHpSdYfkI/oKAQhAAAJuCEi750nTW2eUrFq1SguyHnnkkXVMNl7X5H+VF2uKSW9UXipyjLT8WCae1GBOLP5DR5wEpM5LafeRIr1xjmpUQQACEIiXgLT1XILeGDeUbGegyd+2tkKqJ1V3SD6irxCAAAQg4IaAtHueNL11Rsl9992nBVknT55cx2TjdU3+V3mxppj0RuWlIsdIy49l4t11113aYvnWt741FnnogECQBAiy7qStS5LuMUEOWjoNAQhAQDCBontUrEgk6I1xQ8l2PJr8bWsrpHpSdYfkI/oKAQhAAAJuCEi750nTW2eU/PjHP9b25w4//PA6Jhuva/K/yos1xaQ3Ki8VOUZafiwTjyBrLJ5ER0wEpM5LafeRIr0xjWW0QAACEJBAQNp6LkFvjBtKtnPR5G9bWyHVk6o7JB/RVwhAAAIQcENA2j1Pmt46o+T+++/XgqxvfOMb65hsvK7J/yov1hST3qi8VOQYafmxTDypwZxY/IeOOAlInZfS7iNFeuMc1aiCAAQgEC8Baeu5BL0xbijZzkCTv21thVRPqu6QfERfIQABCEDADQFp9zxpeuuMkgceeEALsh522GF1TDZe1+R/lRdriklvVF4qcoy0/Fgm3p133qktlscee2ws8tABgSAJEGTl64KDHLh0GgIQgIBQAkXvg2LFIUFvjBtKtuPR5G9bWyHVk6o7JB/RVwhAAAIQcENA2j1Pmt46o+SnP/2pFjc49NBD65hsvK7J/yov1hST3qi8FJNjykye2PUSZC0zCigDgf4SkDovY19v86NImt68fq4hAAEIxEJA2nouQW+MG0q2883kb1tbIdWTqjskH9FXCEAAAhBwQ0DaPU+a3jqj5Gc/+5kWZP293/u9OiYbr2vyv8pzkZ555plkYGBg2L+777472bZt21CTW7du7VlHld++fftQ+SonPvVW6YeLsm685KInDmzE5JgyOGLXKzWYU8b3lIFAUwSkzsvY19v8eJKmN6+fawhAAAKxEJC2nkvQG+OGku18M/nb1lZI9aTqDslH9BUCEIAABNwQkHbPk6a3zihZs2aNFmQ95JBD6phsvK7J/yrPRbrllluSXXbZRWOWb3OPPfZI1q9fP9TkPffck+y6666F9UaNGpU89dRTQ+WrnOTbTq+r2GhLWTdeaoma1BH5Y0u657wbeZ3ptfOGGjK4bNkybQIfd9xxDfWGZiEAAUWAIGv264JjHRXp/SR/jFUvuiAAAQjESiC/jqfXLvTy39AuKFa3EeOGUnUKO2qk47n7aGsrpHrdetPzkPqf7+vmzZuTBQsWJLNnz06mTp2ajB8/PhkzZszgnzpXeeo1VUaVJUEAAhCIiQBrYG9vpve57mPvGmG/2q0zPQ9bkb/eP/TQQ1rc4KCDDvLXYB8spz7PH101rT6hqoKmkyZN0tgdcMAByYMPPmhsSn1S9YYbbsjUGTlyZHL66acnyg+2Ka8zvba112Q9gqxN0q/Zdjrw8seaZltTnSBra1xBRyAwREDqvMyvs+n1EJjITlJ9+WNkMpEDAQhAIHoC+XU8vXYhnP+GdkGxuo0YN5SqU9hRIx3P3UdbWyHV69abnofU/7Svq1evTmbNmjUYTE11DHdUwVdVR9UlQQACEAiZAGtgOe+Z7gvlaoZZSpreOl5au3ZtJuin2B144IF1TDZe1+R/lec63X///YkKkna3d8EFF/RsZuXKlUPlx44dm9x88809y5d5sbv97vMyddtWxr2XGlTY7Yzu8wa75LXpbo3d514b7aNxqcGcPiKmKQhUJiB1Xnavsd3nlQEGUqFbY/d5IN2nmxCAAAQg8H8Eutfw7nNXgPhvaFcky9uJcUOpvPpsye4xnZ5nS8R5lWrtPoakdNOmTYOfTB0xYsTQZl23ljLnqq76dKuyRYIABCAQEgHWwGreMt0TqlkIq7Q0vXW8s27dOu054g1veEMdk43XNflf5flIJ598cobflClTCpvZsmVLMnny5MHy6h/ebr311sKyVV7op94q/bIp68dLNj1xUCcmx5TBEbteqcGcMr6nDASaIiB1Xsa+3ubHkzS9ef1cQwACEIiFQL/Wc/4bun8jJsYNJVt6pvFtayukeiHrXr58eTJx4sTMpp5JT9k8ZUvZJEEAAhAIgQBrYHUvme4H1a2EU0Oa3jqeeeSRR7TnCfWVtyEnk/9Vno+0ePFijZ/6tGo+vfzyy8mMGTMGy6o/AZupAAAgAElEQVTfX73xxhvzRayv+6nXupMlK/rxUsnGXReLyTFl2MSu9/vf/7422d/2treVQUMZCEDAEwGCrPwmq6ehhVkIQAACEPBAoJ/vF/hvaA8ONJiMcUPJILNUlml8l6oYeKFQdS9ZsiTZZZddtPf4Jj1V8pRNZZsEAQhAoM0EWAPtvGO6H9hZCqOWNL11vPLoo49qzxT7779/HZON1zX5X+X5SCp4uu+++2YYnnPOOVpTKi/t19VXX629XicjtZs/1rHZVF0/XmpITd4h6XVD3fHebKovf/TecJ8aIMjaJ9A0A4EKBKTOy/w6m15XQBdU0VRf/hiUCDoLAQhAAAJDb4j7sZ7z39D9GXAxbijZksuPa3UtIYWoW/2jpvr9LlPfXeQp26oNEgQgAIE2EmANtPeK6R5hb639NaXpreORxx57THuu2G+//eqYbLyuyf8qz1e6+OKLMwx33333ZOvWrUPNXXnllUOvX3jhhUP5rk76rddVv012/HnJ1JrnvJgcUwZV7HqlBnPK+J4yEGiKgNR5Gft6mx9P0vTm9XMNAQhAIBYC/VzP+W/o/oyaGDeUbMmZxretrZDqhaZ7w4YNyYQJE4Y26Uz9d5Gn2lBtkSAAAQi0iQBrYD1vmO4P9Sy2u7Y0vXW88cQTT2jPFupnBEJOJv+rPF/p8ccfT0aOHJnheN111w02p74WOH3tjDPOSLZv3+68G/3W61xAl0F/XupqpF+nMTmmDLPY9d5xxx2ZSa70Hn/88WXQUAYCEPBEgCArXxfsaWhhFgIQgAAEPBDo9/sF/hvagxNzJmPcUMpJLH1pGt+lKwdcMDTdM2fO1N7XmzS4yFNtkSAAAQi0iQBrYD1vmO4N9Sy2u7Y0vXW8sX79eu35Qn39bcjJ5H+V5zOlv7eatn3ccccl9957b7LzzjsP8j3hhBOSF1980UsX0jbzRy+NeTbq10ueO583n3dIep0vF8t1qi9/jEUfQdZYPImOmAhInZf5dTa9jsm33VpSffljdxnOIQABCECg/QTy63h67avn/De0L7IduzFuKHXUVTtLx3P3sZqFMEt3603P26pk6dKl2gZo2mdfR9UmCQIQgEAbCLAG1veC6V5R32p7LUjTW8cTTz75pPaMsc8++9Qx2Xhdk/9Vns900003aRxHjx49mDdp0qRk8+bN3ppvQq8vMX695KvXBXZjckyBxEx27HqlBnMyTuYCAi0jIHVexr7e5oeZNL15/VxDAAIQiIVAE+s5/w3td/TEuKFkS8w0vm1thVQvJN3Tp0/XNu5M/XeZp9okQQACEGgDAdbA+l4w3R/qW22vBWl663hCfRV3ntfee+9dx2TjdfN60mufHXvppZcSxS1tKz3utddeifqZEp8pbSt/9NmmL9sEWUuSfeaZZ5KBgYFh/+6+++5k27ZtQ1bVjwX3qqfK236ndX4AptdDjQd+cvvtt2sTXH1EnQQBCDRHgCCr+68L5v7S3HimZQhAAAKxE0jfH+SPPnXz39A+6SaDvzmZ92foG0q2xPIc1LWEFIrudevWJSNGjNDe05v67zJPtanaJkEAAhBokgBroBv6pvuDG8vttCJNbx0v/OIXv9CeMVRgMORk8r/K850uuugijeVdd93lu1mtzVS/94Y9NODfSx46XWQydUT+WFS+Sv4tt9yS7LLLLoXOT9vcY489EvUVTmm65557kl133bWw3qhRo5KnnnoqLV7pmLaZP1Yy0uLCBFlb7By6JpaA1HmZX2fTaxcDgfuLC4rYgAAEIAABE4H0fpU/msq6yuO/oV2RNNuJcUPJrHT43Py4VtcSUii658+fX7gPYtLgMk+1TYIABCDQJAHWQDf0TfcGN5bbaUWa3jpe2Lhxo/acMWHChDomG69r8r/K850eeeQRjeXChQt9N6u1mer33rCHBvx7yUOni0ymjsgfi8pXzVefUFVBU/V91Pk2DjjggOTBBx80mlSfVL3hhhsydUaOHJmcfvrpyUMPPWSsUyYz34f0ukzdEMpIDeaE4Bv6KJeA1HmZrq/5o6uRwP3FFUnsQAACEAiDwCWXXJJ5b5C/v/i+9k2pbf8N7Zsn9rPf9AEPeDAGGAOMAcYAY4AxwBhgDDAG3IwB3+/dLr74Yu296fHHH++7Wa3Nto2XSy+9tDQDgqylUXUK3n///YkKknY7/oILLugUMJytXLlyqPzYsWOTm2++2VCqWlZ3+93n1ay0r/SWLVuSRYsWJSeddNIQs1Sf+uHladOmJWeddVZy/fXXJ6osCQIQ6B8BgqzZByTX5Lm/uCaKPQhAAALtJBB7kLVt/w2dvpfgmH2OgQc8GAOMAcYAY4AxwBhgDDAGGAPtHgM+39Fee+21WvwlHQ9r1qzx2XRhu2n7TR/Ve/ayiSBrWVK5cieffHJmIEyZMiVXonOpAoGTJ08eLD9mzJjk1ltv7bxY46xooNUw2WjVtWvXJnPmzCn1tcypdvUVzqqOqkuCAAT8ENi8eXOyYMGCZPbs2ckhhxySWfvUXNxtt90GX1NlVNkYU7rm5I8+tHJ/8UEVmxCAAATaRSD2ICv/Dd3ujZr88wzX+IsxwBhgDDAGGAOMAcYAY4Ax0M4x4Oud7NKlSxP1gTbld/WNq/k93/PPP99X04N22z7eCLLulJ0QPkbD4sWLtUCD+rRqPr388svJjBkzBsuq31+98cYb80Wsr4sGorXBhio+//zzybx584YmdZGuXvlqQVA2lC0SBCDghsDq1auTWbNmJeqfQ3rNv+7XVFlVR9WNKXVr7D73oZH7iw+q2IQABCDQLgIxB1n5b+jse9Hu5wbOYcMYYAwwBhgDjAHGAGOAMcAYYAxUGQM+3sk+8MADybhx4wb3e9VXA7/44ovJVVddldn/HT9+fPLCCy/4aH7QZhUGTZQlyNqHIKsKnu67776ZgXfOOedog07lpYPg6quv1l6vk5HazR/r2Ox33XXr1g19yjevw+ZafWJY2SRBAAL2BDZt2jT4ydQRI0YMrV9V56Oqqz75qmzFkIr0+9DG/cUHVWxCAAIQaBeBWIOs/Dc0G0ZFz0zkMzYYA4wBxgBjgDHAGGAMMAYYA9XHgOt3shs3bkz233//wT3fQw89dGjvVu3hqp+57PbRwoULXTc/ZK+7nTaeE2TtQ5BVjYb812DtvvvuydatW4cGypVXXjk0KC+88MKhfFcnRYPPlX3fdlatWpXsueeeQ4yK9FTNVzaVbRIEIFCdwPLly5OJEyc6m5fKlrIZeipah3zp4v7iiyx2IQABCMgi0M/7V5v/Gzomr6ufZsj7Vf0XusSU56CuJaRQdB900EHaWDX13UfewQcfLGEooBECEGgxAdZAN84x3SPcWG6nFWl663jh6aef1p4zVGwm5GTyv8pzmZ599tlk6tSpg+wmTJiQPProoxnzZ555Zoar+pSrr9QPvb76nrfr1kt5632+7rdjHn/88WTkyJGZgXfdddcNqlZfC5y+dsYZZyTbt293TqPfel0KUJ829RFgTZko23yi1aXHsCWBwJIlSyr9JnI634Y7qt9OVrZDTkUafWni/uKLLHYhAAEIyCLQr/tX2/8bOiavx7ihZOsf0/i2tRVSvVB0z5w5M7NXYuq3rzzVNgkCEIBAkwRYA93QN90n3FhupxVpeut44be//a32nLHbbrvVMdl4XZP/VZ6r9NJLLw39rKXaq12xYoVmemBgQOO6Zs0arZyLDN96XfSxrA13XirbosdyTTgm/b3VtO3jjjsuuffee5Odd955cECecMIJg99p7UN22mb+6KMtlzbV76aqr/XN99v1tWqD32h16TlsxUxg2bJl2ldCuJyT6usmVBuhpiIWPvVwf/FJF9sQgAAEZBDox/2L/4bu71iKcUPJlqBpfNvaCqleKLrnz5/v/T2/iYXKU22TIAABCDRJgDXQDX3TOu/GcjutSNNbxwtbtmzRnjNe9apX1THZeF2T/1Wei6Q+AKh+1k3ZGzVqVLJ48eJCs4cffniG7XnnnVdYts4LPvXW6ZdNXTdesmnZQ50mHHPTTTdlBp3qw+jRowfzJk2alKivc/KVmtDrQsu8efM0ZkVa6uartkgQgEBvAhs2bEjUV0TUnW/D1VdtqLZCTEXafGrh/uKTLrYhAAEIyCDg+/7Ff0P3fxzFuKFkS9E0vm1thVQvFN3qm6VGjBjh/T1Gnodq8+GHHw7JpfQVAhCIkABroBun5td4dR1zkqa3ji/VP3rmef3O7/xOHZON183rSa/rdkwFWM8+++whXpdddllPk1dcccVQWdUH9dMk6tt0XKdUX/7oup1+2ItqZco7JL32CVJtLOy9996Zgafa3WuvvZLHHnvMZ9Nam/3QW1fQ2rVrh4LQaX99HlXAW7VJggAEign082tsQv3qrqJ1qphq/Ve4v9RniAUIQAAC0gn4vH/x39DNjK4YN5RsSZrGt62tkOqFpHv69OmF+xYmHS7yVJskCEAAAm0gwBpY3wum+0J9q+21IE1vHU8899xz2jOG+grckJPJ/yqvTlLB0e59X/Xtq9u2betp8vbbb9fYnnvuuT3r2LzoQ69NP1zUqeclFz1waKMpx1x00UXawLvrrrscKjObakqvuTflcufMmaOxKtLhKl+1SYIABMwEli5d2vc5qdoMLRWtR751cH/xTRj7EIAABOIm4Ov+xX9DNzduYtxQsqVpGt+2tkKqF5Lu2267jfcaIQ0u+goBCDglwBpYH2dI97z6ahPjPdOF3RhtqJ8IzI8P9VNlIae8nvTaRpP6x8xrrrkmOfDAAzVOl19++eCH0tSHO7rTxo0bB3+nNf/zZWk/TjvttGTBggXJ+vXru6tZn6d280drgw1WJMjqAP4jjzyiDdaFCxc6sNzbRH4Apte9azX3qvpqK/UfJWk/+3VUbaq2SRCAgE6A/6zUmZhyitYrU1mXedxfXNLEFgQgAAF5BHzcv/hv6GbHUYwbSrZETePb1lZI9ULT3f3pCVPfXeaF+q05IY0/+goBCFQjwBpYjVe+tOkekS8T07U0vXV898ILL2gxhle+8pV1TDZe1+R/lWeTFi1apPHJ2x8YGBgyrf6RU/1Wa76M6frEE08cqlfnxGRb5YWYwux1AemmHHPxxRdrA/D4448v6KW77Kb02iooM7mLNNXNV22TIACBLIEmfyNEtR1SKlqDfGvg/uKbMPYhAAEIxE3A5f2L/4Zux1iJcUPJlqxpfNvaCqleaLo3bNiQTJgwQdszMemok6faUG2RIAABCLSJAGtgPW+Y7gv1LLa7tjS9dbzx4osvas8WY8aMqWOy8bom/6u8WFNMeqPyUhOOufbaa7UJnfZjzZo1XudA2k7+6LXRGsbnzp1byCqvwfX1WWedVaPnVIVAnATmz5/f2JxUbYeUitYknxq4v/iki20IQAACMgi4vH+V+YdJ/hva/7iKcUPJlpppfNvaCqleiLqXLVuWqK/wM/XdRZ6yrdogQQACEGgjAdZAe6+Y7hH21tpfU5reOh5RX3Wb5/WKV7yijsnG6+b1pNeNd8xTB1J9+aOn5ryarRxkveSSS7QBnAfRtmtfBNXvCo4ePXqQx+mnn54ccsghGTbnn3++r6YH7baNM/3ZKeN/eMCDMRD/GPC1yHN/qTd2Lr30Ul+uwS4EIACBoAgUPYsEJaJCZyXojXFDqYKLM0VN/s4UiPQiVN1Llizx8vNB6ueBlG0SBCAAgTYTYA20806o9zw7tfwmaxVuL7/8srYPr77uNuRkGu8qL9YUk97KXiLIumNYP/DAA8m4ceMGJ7P6amD1H8VXXXVVZnKPHz8+UV/n5CsVDUTy623Oww9+jAHGQNkx4GN95/5Sf/ypZxUSBCAAAQiYN2rUPS7WVHT/jklvjBtKtv4x+dvWVkj1Qta9fPnyZOLEiZl9E5OesnnKlrJJggAEIBACAdbA6l4y3Q+qWwmnhjS9dT2T5zVy5Mi6Jhutn9eTXjfaKY+Np/ryR49NejNd+R02QdYk2bhxY7L//vsPvjE49NBDk02bNg06SB3zX4GzcOFCf87bqf5GdH4Qcw1TxgBjgDFQfgy4XuC5v5Rn32ucEmR1PTKxBwEIhEqgaK0MVc9w/ZaiN68z9A2l4fxa9Hqeg7qWkELXrfZNZs+enYwYMcI62KrqKhvpXowEv6MRAhCIgwBrYDU/hn7Pq6bW/A+SVW1IKp8fH+r5IOSU15Neh6ypV99Tffljrzptfa3yuxDpQdZnn302mTp16uCbgQkTJiSPPvpoxrdnnnlm5o2C+pSrr5QfgFy72ZyHIxwZA4yBsmPA5frO/cXduCPI6nJkYgsCEAiZQNH9LGRNvfouRW9eZ+gbSr182uu1PAd1LSHFonv16tXJrFmzkjFjxmT2UEz60jxVVtVRdUkQgAAEQibAGljOe+n6330sVzPMUt060/MwlfSn1ymj7mN/WvbTSreO7nM/rTVvtVtj93nzPaveg8rvQiQHWdXv38yYMWPwDYD63Y8VK1ZoxAcGBrQ3CGvWrNHKucjoHnycu9uchyUsGQOMgbJjwMVarmxwf3E75giyuhqZ2IEABEInUHQ/C11XUf+l6DXpLGISc75UDrHpVp/qWrBgweAnU9N/aM9rVJ9aVWX45GrMMxptEJBJgDWwt9/z9wN1HXOSpreuL03filHXZpP1Tf6PeczHpDeqlcmnY7Zv3z740K/aUD+ivHjx4sI5d/jhh2cCreedd15h2Tov+NRbp19FdadNm5bhUtR/H/mqbRIEIJAlcNBBBzU2Jw8++OBsZ1p+VbQuueg29xcXFLEBAQhAAAImAj7vX6b2ms6Toje2DSXbcWPyt62tkOrFrjt2fSGNNfoKAQj0nwBrYJa5NB7S9Ga9Xf1K/WRGnll1K+2pkdeSXrenh257kurLH9220h9rBFlLcFYb4GefffbQpL3ssst61rriiiuGyqpBMm7cuOTpp5/uWcfmxfwATK9tbPWjzty5czNc0v7243jWWWf1QyJtQCAoAjNnzmxsTqq2Q0pF61RdDdxf6hKkPgQgAAEI9CLg6/7Vq80mX5OiN7YNJdsxY/K3ra2Q6sWuO3Z9IY01+goBCPSfAGtglrk0HtL0Zr1d/eoVr3iFtq+pviku1GTyv8qLNcWkNyov+XCMCo52ByJ23nnnZNu2bT3H9u23365N8HPPPbdnHZsXfei16UfZOosWLdK4FGlwnX/99deX7SblICCGwPz58xubk6rtkFLRmlRHA/eXOvSoCwEIQAACZQj4uH+VabepMlL0xrahZDteTP62tRVSvdh1x64vpLFGXyEAgf4TYA3MMpfGQ5rerLerX40ePVrb1/zf//3f6oZaUsPkf5UXa4pJb1RecumYZ599NrnmmmuSAw88UJusl19+ebJ27drB39DrHuQbN24c/J3W9Hdb8/057bTTBn9HZP369d3VrM/z9tNra4OeK27ZsiVRv2Wb9rNfR9WmapsEAQhkCaxbty4xfd2c77mp2nz44YeznWn5VRETm25zf7GhRh0IQAACELAh4PL+ZdN+v+tI0RvbhpLtODH529ZWSPVi1x27vpDGGn2FAAT6T4A1MMtcGg9perPern41ZswYLc7w4osvVjfUkhom/6u8WFNMeqPykkvHlPnU5cDAwNAYf+655wZ/q7WoD935J5544lC9OifdNrvP69j0XXfOnDna4tfddx/nqk0SBCBgJjB9+vS+z0nVZmipaG2y0cH9xYYadSAAAQhAwIaAy/uXTfv9riNFb2wbSrbjxORvW1sh1Ytdd+z6Qhpr9BUCEOg/AdbALHNpPKTpzXq7+tXYsWO1Pc3nn3++uqGW1DD5X+XFmmLSG5WXYnJMmckTol71CWDTf14Xaambr9pSbZIgAAEzgdtuu017IKk774arv3TpUnNnWpxbpKnFXa7VNWl6a8GiMgQgAIEWE5C2nkvRG9uGku0UMvnb1lZI9WLXHbu+kMYafYUABPpPgDUwy1waD2l6s96ufqV+1jHPbOvWrdUNtaRGXkt63ZLuOe9Gqi9/dN5QHwwSZO0DZF9N5Adgeu2rPVd2582bpy2Aad9dH1VbJAhAoDeB7t+ddj0H8/ZUWyGmvI70OkQtZfqc6ssfy9SlDAQgAAEItIdAfh1Pr9vTQ7c9SfXlj25bad5abBtKtkTzflbXElLsumPXJ2GMohECELAnwBqYZSeNhzS9WW9XvzL9LKH6ttFQk8n/Ki/WFJPeqLwUk2PKTJ5Q9aqP7U+ePNl7oFW1EfJXBJQZA5SBgAsCGzZsSCZMmOB9Tqo2VFshplDXW1vW0vTacqIeBCAAgbYTkLaeS9Eb24aS7Twy+dvWVkj1Ytcdu76Qxhp9hQAE+k+ANTDLXBoPaXqz3q5+9apXvUrby9yyZUt1Qy2pYfK/yos1xaQ3Ki/F5JgykydkvevWrUv23HNPbSEs0lQ1X9lWbZAgAIFyBJYtW5aYvnqu6twrKq9sqzZCTUW6QtUzXL+l6R2OB69DAAIQCJWAtPVcit7YNpRs55fJ37a2QqoXu+7Y9YU01ugrBCDQfwKsgVnm0nhI05v1dvWrXXfdVYstPPPMM9UNtaSGyf8S81rijkrdIMhaCVe7ChdNsnb1srg3q1at8hJoVQFWZZsEAQhUI7BkyZLE9MmIorWmbL6yqWyHnIq0hqypV9+l6e3FgtcgAAEIhExA2nouRW9sG0q2c8zkb1tbIdWLXXfs+kIaa/QVAhDoPwHWwCxzaTyk6c16u/rVbrvtpgVZf/vb31Y31JIaJv9LzGuJOyp1gyBrJVztKlw0ydrVy969UZ82dfnVwcoWn2DtzZxXIdCLwPLly5OJEydqDylF681w+cqWshl6KtIZuq6i/kvTW8SBfAhAAAKhE5C2nkvRG9uGku08M/nb1lZI9WLXHbu+kMYafYUABPpPgDUwy1waD2l6s96ufjVu3Dht/3Lz5s3VDbWkhsn/EvNa4o5K3SDIWglXuwoXTbJ29XL43qjfTZ03b14yevRobWEs0pjPV3WVDX6DdXjelIDAcAQ2bdqUzJ49OxkxYoT1nFR1lQ1lK4aUX3PS6xi0mTSk+vJHU1nyIAABCECgvQTy67jU6/Z6yK5nsW0o2VFIjM+ptrZCqmeaxyH1f7i+xq5vOP28DgEIyCbAGpj1vzQe0vRmvV39ao899tCeB0PehzT5X2Je9ZHQfA2CrM37wLoHRZPM2mDDFdeuXZvMmTOn0teVqq8hVXVUXRIEIOCWwOrVq5NZs2YlY8aM0R5aitYfVVbVUXVjSkV6Y9LYrUWa3m7tnEMAAhCIiUDRei4tPyafKi2xbSjZ+sc0jm1thVQvdt2x6wtprNFXCECg/wRYA7PMpfGQpjfr7epXr371q7X9yt/85jfVDbWkhsn/EvNa4o5K3SDIWglXuwoXTbJ29bJ6b7Zs2ZIsWrQoede73qUtlCqAM23atGTu3LmDZVRZEgQg4JeA+i+wBQsWDH4y9eCDD9bm5e677z74mioT8n+M9aIY63pbpFma3iIO5EMAAhAInUDRei4tP3Q/5vsf24ZSXl/Za9M4Lls35HKx645dX8hjj75DAAL+CbAGZhlL4yFNb9bb1a/Gjx+v7VH++te/rm6oJTVM/peY1xJ3VOoGQdZKuNpVuGiStauX9r35zne+oy2UJ510kr1BakIAArUJfPe739Xm5YwZM2rbbbuB2NfbPH9pevP6uYYABCAQC4Gi9Vxafiz+THXEtqGU6qp6NI3jqjZCLB+77tj1hTjm6DMEINA/AqyBWdbSeEjTm/V29avXvOY12h7lL3/5y+qGqAGBmgQIstYE2GR108Kr8mJJBFlj8SQ6YiIgdV7Gvt7mx6g0vXn9XEMAAhCIhUDRei4tPxZ/pjrYUNpBwjSOU0YxH2PXHbu+mMcm2iAAgfoEWAOzDKXxkKY36+3qV3vuuacWZH3qqaeqG6IGBGoSiCcilyTapEoXppqMWls91Zc/trbDFTsmNZhTERPFIdBXAlLnZX6dTa/7Cr+PjaX68sc+doGmIAABCEDAAYH8Oi712gHKVplgQ2mHO0zjuVWO8tSZ2HXHrs/TsMAsBCAQCQHWwKwjpfGQpjfr7epXEyZM0OJBGzdurG6IGhCoSYAga02ATVY3LbwqL5Z08803awvlySefHIs8dEAgSAIEWXfKrEtBOrFEp2O/v5RAQBEIQAACEIBAawmwobTDNabnldY6zWHHYtcduz6HQwFTEIBAhARYA7NOlcZDmt6st6tf7b333pk9OsVvw4YN1Q1RAwI1CcQTkeOTrEOLSs0x0ZrqBFlb4wo6AoEhAlLnpelBV+XFmqTpjdWP6IIABCAAgTgJsKG0w6+m55U4PZ5VFbvu2PVlvckVBCAAgSwB1kDZPPB/1v/DXb32ta8dioek7H7+858PV43XIeCcQFQ7xOlkyh+dU2uJwbzO9Lol3avdDanBnNrgMAABjwSkzst0fc0fPaJu1HReZ3rdaKdoHAIQgAAEIACBQQJsKO0YCOnzSfdRwhDp1puex6Q71dR9jEkfWiAAAQj0ItC99qXnvcrH/lrKoPsYs+Zunel5zHrrattnn320IOuTTz5Z1yz1IVCZAEHWysjaUyFdbPPH9vSwXk+kBnPqUaM2BPwSkDov8+tseu2XdnPWU335Y3M9omUIQAACEIAABFICbCjtIJF/TlHXElLsumPXJ2GMohECELAnwBqYZSeNhzS9WW9Xv5o4caIWZH3iiSeqG6IGBGoSiOpdiGkhkphXc0y0pvrixYu1hfI973lPa/pHRyAgkQBB1uxvskq7x0gc82iGAAQgAAEItI0AG0o7PGJ6Dmubr3z0J3bdsevzMSawCQEIxEOANTDrS2k8pOnNerv61ete9zotdvD4449XN0QNCNQkQJB1p/g2zGuOidZUJ8jaGlfQEQgMEZA6L00PuhLzhgYCJxCAAAQgAAEINEaADaUd6E3PYkEfVL0AACAASURBVI05pY8Nx647dn19HCo0BQEIBEiANTDrNGk8pOnNerv61X777acFWR977LHqhqgBgZoECLISZK05hPxVlxrM8UcUyxCoT0DqvDQ96ErMqz+CsAABCEAAAhCAQF0CbCjtIGh6FqvLNoT6seuOXV8IY4w+QgACzRFgDcyyl8ZDmt6st6tfHXDAAVqQ9ZFHHqluiBoQqEmAICtB1ppDyF/1b3/729pC+d73vtdfg1iGAASGJUCQNb5vPzA9xBflDTtAKAABCEAAAhCAgHcCbCjtQGx6XvEOvwUNxK47dn0tGEJ0AQIQaDEB1sCsc6TxkKY36+3qV69//eu12MHDDz9c3RA1IFCTAEFWgqw1h5C/6gRZ/bHFMgRsCUidl6YHXYl5tuOGehCAAAQgAAEIuCPAhtIOlqZnMXeU22spdt2x62vvyKJnEIBAGwiwBma9II2HNL1Zb1e/esMb3qAFWdetW1fdEDUgUJMAQVaCrDWHkL/qUoM5/ohiGQL1CUidl6YHXYl59UcQFiAAAQhAAAIQqEuADaUdBE3PYnXZhlA/dt2x6wthjNFHCECgOQKsgVn20nhI05v1dvWrgw46SAuyPvTQQ9UNUQMCNQlEFWStyYLqLSPwrW99S1so3/e+97Wsl3QHArIISA2yyvIyaiEAAQhAAAIQaDMBNpR2eEfqRmTsumPX1+a1hb5BAALNE2ANzPpAGg9perPern518MEHa7GDBx98sLohakCgJgGCrDUBUt0fAYKs/thiGQK2BJiXtuSoBwEIQAACEIAABNwQYENpB0epG5Gx645dn5tVACsQgECsBFgDs56VxkOa3qy3q18dcsghWpB1zZo11Q1RAwI1CRBkrQmQ6v4IEMzxxxbLELAlwLy0JUc9CEAAAhCAAAQg4IYAG0o7OErdiIxdd+z63KwCWIEABGIlwBqY9aw0HtL0Zr1d/erQQw/Vgqw/+9nPqhuiBgRqEiDIWhMg1f0RuOmmm7SFcubMmf4axDIEIDAsAYKswyKiAAQgAAEIQAACEPBKgA2lHXilbkTGrjt2fV4XB4xDAALBE2ANzLpQGg9perPern41adIkLXbwwAMPVDdEDQjUJECQtSZAqvsjQJDVH1ssQ8CWAPPSlhz1IAABCEAAAhCAgBsCbCjt4Ch1IzJ23bHrc7MKYAUCEIiVAGtg1rPSeEjTm/V29avDDjtMC7L+5Cc/qW6IGhCoSYAga02AVPdHgGCOP7ZYhoAtAealLTnqQQACEIAABCAAATcE2FDawVHqRmTsumPX52YVwAoEIBArAdbArGel8ZCmN+vt6ldvfOMbtSDr/fffX90QNSBQkwBB1poAqe6PwDe/+U1toTzllFP8NYhlCEBgWAIEWYdFRAEIQAACEIAABCDglQAbSjvwSt2IjF137Pq8Lg4YhwAEgifAGph1oTQe0vRmvV39avLkyVrs4L777qtuiBoQqEmAIGtNgFT3R4Agqz+2WIaALQHmpS056kEAAhCAAAQgAAE3BNhQ2sFR6kZk7Lpj1+dmFcAKBCAQKwHWwKxnpfGQpjfr7epXRxxxhBZkXb16dXVD1IBATQIEWWsCpLo/AgRz/LHFMgRsCTAvbclRDwIQgAAEIAABCLghwIbSDo5SNyJj1x27PjerAFYgAIFYCbAGZj0rjYc0vVlvV7868sgjtSDrqlWrqhuiBgRqEiDIWhMg1f0RIJjjjy2WIWBLgHlpS456EIAABCAAAQhAwA0BNpR2cJS6ERm77tj1uVkFsAIBCMRKgDUw61lpPKTpzXq7+tWUKVO0IOvKlSurG6IGBGoSIMhaEyDV/RG48cYbtYXy/e9/v78GsQwBCAxLgCDrsIgoAAEIQAACEIAABLwSYENpB16pG5Gx645dn9fFAeMQgEDwBFgDsy6UxkOa3qy3q18dddRRWuzghz/8YXVD1IBATQIEWWsCpLo/AgRZ/bHFMgRsCTAvbclRDwIQgAAEIAABCLghwIbSDo5SNyJj1x27PjerAFYgAIFYCbAGZj0rjYc0vVlvV786+uijtSDrihUrqhuiBgRqEiDIWhMg1f0RIJjjjy2WIWBLgHlpS456EIAABCAAAQhAwA0BNpR2cJS6ERm77tj1uVkFsAIBCMRKgDUw61lpPKTpzXq7+tW0adO0IOvy5curG6IGBGoSIMhaEyDV/RH4xje+oS2UH/jAB/w1iGUIQGBYAgRZh0VEAQhAAAIQgAAEIOCVABtKO/BK3YiMXXfs+rwuDhiHAASCJ8AamHWhNB7S9Ga9Xf3qzW9+sxY7uPfee6sbogYEahIgyFoTINX9ESDI6o8tliFgS4B5aUuOehCAAAQgAAEIQMANATaUdnCUuhEZu+7Y9blZBbACAQjESoA1MOtZaTyk6c16u/rVW97yFi3Ies8991Q3RA0I1CRAkLUmQKr7I0Awxx9bLEPAlgDz0pYc9SAAAQhAAAIQgIAbAmwo7eAodSMydt2x63OzCmAFAhCIlQBrYNaz0nhI05v1dvWrY445RguyDgwMVDdEDQjUJECQtSZAqvsjcMMNN2gL5Qc/+EF/DWIZAhAYlgBB1mERUQACEIAABCAAAQh4JcCG0g68UjciY9cduz6viwPGIQCB4AmwBmZdKI2HNL1Zb1e/eutb36rFDu66667qhqgBgZoECLLWBEh1fwQIsvpji2UI2BJgXtqSox4EIAABCEAAAhBwQ4ANpR0cpW5Exq47dn1uVgGsQAACsRJgDcx6VhoPaXqz3q5+deyxx2pB1jvvvLO6IWpAoCYBgqw1AVLdHwGCOf7YYhkCtgSYl7bkqAcBCEAAAhCAAATcEGBDaQdHqRuRseuOXZ+bVQArEIBArARYA7OelcZDmt6st6tfve1tb9OCrMuWLatuqCU1TP6XmNcSd1TqBkHWSrgo3E8CX//617WF8tRTT+1nF2gLAhDIESDImgPCJQQgAAEIQAACEOgzgdg2lGzxmTadbG2FVC923bHrC2ms0VcIQKD/BFgDs8yl8ZCmN+vt6lfHH3+8Fju44447qhtqSQ2T/yXmtcQdlbpBkLUSLgr3kwBB1n7Spi0IlCPAvCzHiVIQgAAEIAABCEDAF4HYNpRsOZk2nWxthVQvdt2x6wtprNFXCECg/wRYA7PMpfGQpjfr7epXJ5xwghZkvf3226sbakkNk/8l5rXEHZW6QZC1Ei4K95MAwZx+0qYtCJQjwLwsx4lSEIAABCAAgTYQkPim3KS5Db5w2YfYNpRs2UjwtYlN7Lpj12fyKXkQgAAEUgKsgSmJHUdpPKTpzXq7+tX06dO1IOv3vve96oZaUsPkf4l5LXFHpW4QZK2Ei8L9JPC1r31NWyg/9KEP9bMLtAUBCOQIEGTNAeESAhCAAAQg0GICEt+UmzS32EVWXYttQ8kKQpJo7xWV7yWk2Md47PokjFE0QgAC9gRYA7PspPGQpjfr7epXb3/727Xnwdtuu626oZbUMPlfYl5L3FGpGzLehVRCQuH/z967QN9RVPn+JpBMEsBAgMBc5B9YYwBF8eKMEddd40TXgDM8BubigAFEb0wiiBLkEREQRXyAQPABozzGBwMJ6IheHLkKxlkLBiEiN4KgDkQJl1EZmGsMScAQsP5r/3I7dHdV/87p6sep2vWptbK6q0/Xrv397F19+lTl1x0KARZZQ4kEfkDgRQKMyxdZsAcBCOgm8O///u/mLW95iznkkEP4NwSDL37xi7oTIlJ1Kf4od2mONHyVbmubUKoUOuCDFGLtQqBdt3Z9rphyDAIQgEBGgGtgRmLLNjUeqektRrt+7S//8i+tRdbbb7+9vqFAWrjin+KxQMJRyw0WWWvh4uQ+CbCY0ydt+oLAcAQYl8Nx4iwIQCB+Avfee6/1gy3FHzjDaj755JPjD7pCBcPGT/t52kKrbULJNz6uvPW1FVM77bq164sp1/AVAhDonwDXwCLz1HikprcY7fq1gw8+2PrNftttt9U3FEgLV/zlmNaiSa/eKGnNvoR0sZiTULCRGg0BxmU0ocJRCECgIQEWWV9i/WCt+hEkx1lkbZhwHTUfL2YpfdYR3pGZ1Tah5AvSlcO+tmJqp123dn0x5Rq+QgAC/RPgGlhknhqP1PQWo12/Jk+eKjP7zne+U99QIC3KWrJ6IO617kamr7xtvaMeDLLI2gNkuvAjcOONN1oXymOPPdbPGK0gAIFWCLDI2gpGjEAAAhEQYJGVRdYI0nSgi+UfrKnWB4KK7ARtE0q++F357GsrpnbadWvXF1Ou4SsEINA/Aa6BReap8UhNbzHa9Wt/9Vd/Za0d/K//9b/qGwqkhSv+ckxr0aRXb5S0Zl9CulhkTSjYSI2GAOMymlDhKAQg0JAAi6wssjZMoSCaa/rhOgzQVPRqm1AaJrauc1zxdp2n7Zh23dr1actH9EAAAu0S4BpY5Jkaj9T0FqNdv/bXf/3X1iLrrbfeWt9QIC1c8ZdjWosmvXqjpDX7EtLFYk5CwUZqNAQYl9GECkchAIGGBFhkZZG1YQoF0VzTD9dhgKaiV9uE0jCxdZ3jirfrPG3HtOvWrk9bPqIHAhBolwDXwCLP1HikprcY7fq1ww47zFpk/ed//uf6hgJp4Yq/HNNaNOnVGyWt2ZeQruXLl1sXyre97W0JEUAqBMIjwCJreDHBIwhAoBsCLLKyyNpNZvVrVdMP12HIpaJX24TSMLF1neOKt+s8bce069auT1s+ogcCEGiXANfAIs/UeKSmtxjt+rXDDz/cWjv41re+Vd9QIC1c8ZdjWosmvaqiVBWY1I5rGXgssmqJJDo0EUh1XKb2PVKlV1MuowUCgwiwyMoi66AcieHz1K7nqejVNqHkO5Zc8fa1FVM77bq164sp1/AVAhDonwDXwCLz1HikprcY7fq1I444wlpkveWWW+obCqSFK/5yTGvRpFdVlKoCk9pxLQMv1cUcLfFDh04CqY7L1L5HqvTqzGpUQcBN4KGHHjITJ040EyZM4N8QDM466yw3SI6OlEBq1/NU9GqbUPIdJK54+9qKqZ123dr1xZRr+AoBCPRPgGtgkXlqPFLTW4x2/dqRRx5pLbJ+85vfrG8okBau+MsxrUWTXlVRqgpMase1DLxly5ZZF8p58+ZpkYcOCERJgEXWen/Zpe37J8qkxWkIQAACCROo+h7SiiQVvdomlHzz0RVvX1sxtdOuW7u+mHINXyEAgf4JcA0sMk+NR2p6i9GuXzvqqKOstYNvfOMb9Q0F0sIVfzmmtWjSqypKVYFJ7biWgcciq5ZIokMTgVTHZWrfI1V6NeUyWiAAAQikQCC163kqerVNKPmORVe8fW3F1E67bu36Yso1fIUABPonwDWwyDw1HqnpLUa7fu1v//ZvrUXWm2++ub6hQFq44i/HtBZNelVFqSowqR3XMvBSXczREj906CSQ6rhM7XukSq/OrEYVBCAAAb0EUruep6JX24SS7wh0xdvXVkzttOvWri+mXMNXCECgfwJcA4vMU+ORmt5itOvXjj76aGuR9etf/3p9Q4G0cMVfjmktmvSqilJVYFI7rmXg3XDDDdaF8rjjjtMiDx0QiJIAi6w8LjjKxMVpCEAAAokSqPodpBVHKnq1TSj55qMr3r62YmqnXbd2fTHlGr5CAAL9E+AaWGSeGo/U9BajXb/21re+1Vo7+NrXvlbfUCAtXPGXY1qLJr2qoqQpMMMMHu16WWQdJgs4BwL9Ekh1XGq/3pazKDW9Zf3UIQABCGghkNr1PBW92iaUfMebK96+tmJqp123dn0x5Rq+QgAC/RPgGlhknhqP1PQWo12/9nd/93fWIutXv/rV+oYCaeGKvxxrozz99NPmrrvuGvjvBz/4gXnhhRe2dvnMM8+M20bO/8Mf/rD1/Do7Xeqt40cb57YTpTY8acGGpsAMg0O73lQXc4aJPedAYFQEUh2X2q+35XxKTW9ZP3UIQAACWgikdj1PRa+2CSXf8eaKt6+tmNpp161dX0y5hq8QgED/BLgGFpmnxiM1vcVo168dc8wx1iLrTTfdVN9QIC1c8ZdjbZTvfOc7Ztq0aRavcp877bSTefzxx7d2effdd5sddtihst0222xj/uM//mPr+XV2yn1n9To2Qjm3nSgFoiYLRHkbiHutu1HWmdVb72hEBq+//nprAB9//PEj8oZuIQABIcAia/FxwVqzIvs+KW+16kUXBCAAAa0EytfxrI7euAlom1DyjUaWz/mtr62Y2uX1Zvsx+T/I10xTfjuoDZ9DAAIQ0EIgf+3L9rVo89GRMchvfezE0iavM9uPxfdR+Pm2t73NWjtYvnz5KFxppc8s5uVtK8aNGfsLVVk0feUrX2lx23vvvc2//du/ObuSv1SVxzDn/Zo4caKR1zo+/PDDzjbDHMzby+8P0za0c1hkDS0iNfzJJ19+v4aJoE9lkTXo8OBcogRSHZf5a2x+X2sa5DXm97XqRRcEIAABrQTy1/D8fht6eeRUGxT9bGibUPKjYAoTPVl++9qKqV2mNb+Nyf9BvuZ1ZfuD2mj8fO3atea6664z8+fPN6973evMLrvsYiZPnjz2T/blmHwm58i5FAjEQIC8Hhyl7LqX3w5upfeMPIdsX6/adO9tfGM6b948635w2bJlvuZG3i7L8fK2bcd+8pOfGFkkzfdz9tlnj9vNfffdt/X8KVOmmG9961vjnj/Mh/n+8/vDtA3tHBZZQ4tIDX/yyZffr2Ei6FNTXcwJOig4lzyBVMdl/hqb39eaEHmN+X2tetEFAQhAQCuB/DU8v9+GXh451QZFPxvaJpT8KKQ7EZkfy9m+L8MQ22Wa8tsQ/ezKpx//+MdGxrgsqOYZjLcv50obaUuBQIgEyOvho+Ia68O31ndmajxS09s0Y+UvKcvM5Al8sZaylqzehZ7DDz+8wO61r31tZTfr1683BxxwwNj5cs9x2223VZ5b54NMX3lbx0Yo57LIGkokPPwoJ2BW9zAVZJNUF3OCDAZOQeD/EUh1XGbX1/JWa2KUdWZ1rXrRBQEIQEArgez6Xd62pfeFF14wPHKqLZrD29E2oTS88uKZ5byWegpFu27t+qpy9Le//e3YX6ZOmDChMOnp4lF1TNrKX7eKLQoEQiBAXtePgmt817eip0VqPFLT2zRTTzjhBOs78x//8R+bmh1Ze1f85VgX5ZZbbrHYyV+rlsvzzz9vDj300LFz5f2rX//618uneNf71Ovt5JANu4nSkJ23fZqmwAzDRrteuSiWNcrFkwIBCIyOAIusvJN1dNlHzxCAAAQgUJdA+V46q9e1M+h8Hjk1iFC7n2ubUPKlk+VzfutrK6Z2eb3Zfkz+D/I105TfDmoT++crV640e+65pzX/kWdQZ19siU0KBEZJgLz2o+8a636WdLRKjUdqeptm6dvf/nbru1Meox9rccVfjnVRZPH0ZS97WYHfySefbHUlxzK/rrrqKuvzJgcyu+VtE5ujattNlEakphyQrD4idzrvNtNX3nbecU8dsMjaE2i6gUANAqmOy/J1NqvXQBfVqZm+8jYqETgLAQhAAAJbfxD3cT3nkVP9JZy2CSVfcuW8lnoKRbtu7frKOXrrrbeaadOmVV6vXTyGOSY2xTYFAqMgQF77U3eNb39r8bdMjUdqeptm6Iknnmh9f37lK19panZk7V3xl2NdlfPPP7/Ab/r06eaZZ57Z2t2ll1669fNzzjln6/G2dvrW25bfLjvdRcnVW8fHNAVmGFTa9aa6mDNM7DkHAqMikOq41H69LedTanrL+qlDAAIQ0EKgz+s5j5zqL2u0TSj5knPlt6+tmNpp161dXz7X7rjjDjNlypStE5gu7U2OiW3pgwKBPgmQ181ou8Z8M4txt06NR2p6m2bnO9/5Tus79Etf+lJTsyNr74q/HOuqPPbYY2bixIkFhtkitTwWOPvs+OOPN3/4wx9ad6Nvva0LyBnsLkq5Tvra1RSYYZhp1yt/3l/WKP9rmwIBCIyOAIusPC54dNlHzxCAAAQgUJdA+V46q9e1M8z5PHJqGErtnKNtQsmXSpbP+a2vrZja5fVm+zH5P8jXTFN+O6hNjJ//+te/Nrvttps155HX3ca+9CF9USDQBwHyujll17hvbjVeC6nxSE1v08z8H//jf1jfo1/84hebmh1Ze1f85ViXJXvfatb3n//5n5t77rnHTJ06dYzt3LlzzaZNmzpxIeuzvO2ks46Ndhuljp0vmy8HJKuXz9NSz/SVt1r0sciqJZLo0EQg1XFZvs5mdU2xzWvJ9JW3+XPYhwAEIACB8AmUr+NZvSvPeeRUV2SLdrVNKBXVDV/L8jm/Hb51vGfm9Wb78aqxPc805bf2WfEfOeqoo6yJ4bzmNvelLwoE+iBAXjen7Br7za3GayE1HqnpbZqZ8+fPt75L/+Ef/qGp2ZG1d8VfjnVZvvGNb1gMJ02aNHbsla98pVm7dm1n3Y9Cb1diuo1SV15X2NUUmAqJhcPa9aa6mFMIMhUIBEYg1XGp/XpbTrPU9Jb1U4cABCCghUDf13MeOdVP5mibUPKl5spvX1sxtdOuW7s+ybUVK1ZYE5ou3W0ekz4pEOiSAHndDl3XuG/HcpxWUuORmt6mWblgwQLr+/Saa65panZk7V3xl2Ndls2bN5s//uM/tjjuvvvuZs2aNV12bfWZ6e+0046MdxuljpyuMpsForytOj/242WdWT12XZn/8gzwTFO2lfcPUSAAgdERYJGVxwWPLvvoGQL9Eti4caO59tprzdVXX82/IRisWrWq3wDR21AEsnvo8naoxp4n8cgpT3A1mmmbUKohvXBqOa+lnkLRrlu7PsnRN73pTdZch0t3m8ekTwoEuiRAXrdD1zXu27Ecp5XUeKSmt2lWLly40Po+ld/vsRZX/OVY1+Xcc8+1OP7rv/5r191afWb6O++4gw66j1IHTleZzAJR3ladX+f4008/be66666B/37wgx+YF154YavpZ555Ztw2cr7vi4PLOrP61s4j32GRNfIA4r5KAqmOy+z6Wt62EWS+X9qgiA0ItE/g3nvvrbzpL18LqL/EnHzyye0HAYuNCVTlZmPD4xjgkVPjwGnpI20TSr5YXPntayumdtp1a9e3evVqM2HChN7vMaRP6ZsCgS4IkNftUdV+DaxLKjUeqemtmw/l8xctWmR9n1511VXl06Kpu+Ivx7ouv/zlLy2Oy5Yt67pbq89Mf+cdd9BB91HqwOkqk1kgytuq8+sc/853vmOmTZtWGfysz5122sk8/vjjW03ffffdZocddqhst80225j/+I//2Hp+nZ2sz/K2jo2Qz011MSfkmOAbBFIdl+XrbFZvIyP4fmmDIjYg0D4BFlmLf7mfXfeqtiyytp+DbVisilcbtqts8MipKjLtHdc2oeRLxpXfvrZiaqddt3Z9S5curZwfcmlv85j0TYFAFwTI6/aousZ8e9bjs5Qaj9T0Ns3Ik046yfpO/cIXvtDU7Mjau+Ivx7ou559/vsXxL/7iL7ru1uoz0995xx100H2UOnC6ymQWiPK26vy6x+UvVGXRVF76W+5j7733Nv/2b//mNCl/qfq1r32t0GbixInmuOOOMw8//LCzzTAHyz5k9WHaxnDOl7/85QIz0feOd7wjBtfxEQJqCbDIWlx0aCvQfL+0RRI7EGiPAIusxetddp9ZtWWRtV7uffjDH7buc6vYdnG8nrf1zw7tkVNdMMRmvWsEvOBFDpAD5AA5QA6QA+QAOUAO1M+B+r/Ghm/hWn/JYvTzn/98eEMeZ2b9hLr9yEc+MrQqFlmHRvXiiT/5yU+MLJLmE+Dss89+8QTH3n333bf1/ClTpphvfetbjrPqHcr3n9+vZyXcs12DnEXWcOOFZ2kQSHVc5q+x+f22o873S9tEsQcBfwIsstb78ccia71c077IGtojp/Lf3ezXG9vwghc5QA6QA+QAOUAOkAPkADkwuhyo90tz+LNXrFhhJk2aNLZmJX8MuO+++25dv5J4n3HGGcMb8zgz9JyS3+zDFhZZhyVVOu/www8vJN1rX/va0hkvVtevX28OOOCAsfMnT55sbrvtthc/bLBXlYgNTAbVNNXFnKCCgDMQKBFIdVz2eb3l+6WUdFQhMCICLLLW+xHJImu9RNW+yBraI6eqvsc5Xm+cwwte5AA5QA6QA+QAOUAOkAPkQL85UO+X5nBnP/TQQ2bHHXccW6+SRwNv2rTJXH755YX1rl122cX8/ve/H86gx1mh5xGLrC8pJrpHjAc2ueWWWwpJJ0khf61aLs8//7w59NBDx86V969+/etfL5/iXa9KRG+DgTSURenly5cbGeBljfJXwHPmzDHyHqIbb7zRyLkUCECgPwIssvL90l+20RMERkuARdbi9a58T1aus8haL181L7K67hWyfEn9kVMZB7b1ri/wghc5QA6QA+QAOUAOkAPkQKo5UO+X5uCzn3jiCbPXXnuNrbu84hWvML/97W/HGslW1l7ynJctWzbYoOcZ+X5C3GeRtYdFVlk8fdnLXlZIOtfkkhzLkuSqq67yTDl3s8xuees+O/yjjzzyiFmwYIGZNm3aVmZlbeW6nCttpC0FAhDohsDatWvNddddZ+bPn2/k/dPlcSj/s0k+k3PkXI2lrDmrd6GV75cuqGITAvUJsMha70e86z64PvV0WmhdZOWRU/XGTXY/wRZu5AA5QA6QA+QAOUAOkAPkADngyoE2fyVv2LDBvO51rxub291tt93Mo48+WjB/4oknFuZ95Y/guiourSEdY5G1h0VWSa7yY7CmT59unnnmma15d+mll25NynPOOWfr8bZ2qpKuLft92Xn22WfNkiVLtj4DvErXeMfl+eFiQ2xRIACBdgj8+Mc/NvPmzTPymPPxxl/+MzlX2khbTSWvMb/flUa+X7oii10IDE+ARdZ6P3BZZB0+t/o8M/+dld/vwoeQHznVhd5R2jz11FOte7PPfOYzcksBggAAIABJREFUo3RpJH3nczrbH4kjPXeaac1ve3ah0+7yurL9Tjvs2fjs2bOt8Zvp7Hq7zz779KyW7lIhQF63F2nXdaA96/FZSo1HanqbZuTixYut79RPf/rTTc2OrL0r/nKsrbJ58+atT1yVP1yTOY9yueuuuyymXT2NqGu9ZW1d1tuLUpdeDmm778A89thjZuLEiYXE+8pXvjLmrTwWOPvs+OOPN3/4wx+GVDH8aX3rHd6z4c9cvXr11vfVVumpc1zefSs2KRCAgD8BeTyE/GXqhAkTCte3OmNR2oqN7JET/t6E0bJKe1fe8f3SFVnsQmB4AvJOkptvvnnsVQ9yX8e/8Rk8/PDDw8PlzN4I9PX9Ffojp3oD3lNH2iaUfLG58tvXVkzttOvWru+oo47y/o3lYlPnmPRNgUAXBMjr9qi6xnR71uOzlBqP1PQ2zcj3v//91nfq0qVLm5odWXtX/OVYG0XWpmSeVuzJKy3lVZhV5dWvfnWB6+mnn151aqPjXept5JhH43ai5NFxF01GEZjsfatZ33/+539u7rnnHjN16tSxZJw7d+7Yi4O16G1Tx6pVq8zMmTMLgzbj2GQrNsU2BQIQqE9g5cqVZs8992xtXIotsRl7qbomdamL75cu6WIbAhCAQBoE+vj+iuGRU9qirW1CyTc+rvz2tRVTO+26teuTyV+Xxj6OxTzxHNMYTdFX8rq9qLuuBe1Zj89SajxS09s0I2Xxr8zssssua2p2ZO3LWrJ6U4dkgfWkk07ayuriiy8e1+Qll1yy9VzxYccddzS/+93vxm3j82Gmr7z1sTXqNiyyNozAN77xjULSSVLIo2tl+8pXvrLT9xOWEzCrN5TUS3P5a9MuFlgzBmKbv2jtJZR0oojArbfeWuudyNl4G7SVR1CI7ZhLlcYuNfH90iVdbEMAAhBIg0DX3188cmo0eaRtQsmXoiu/fW3F1E67bu36ZJ6iyRODXHyGOSZ9/uIXv4gp1fE1IgLkdXvBco3n9qzHZyk1HqnpbZqRZ5xxhrUuI69vjLW44i/HmhRZHM0/bUD+MPCFF14Y1+S//Mu/WFzlSTptly70tu3jsPaaRWnYXno6bxSBkYmFP/7jP7YSb/fddzdr1qzpVPko9LYhSN6bKo/1rfK/rePSB+9obSNi2EiBwB133GGmTJnS2bgU29JHrKXqutSlHr5fuqSLbQhAAAJpEOjy+4tHTo0uh7RNKPmSdOW3r62Y2mnXrV2f5Nqb3vSmzn53ufjJMemTAoEuCZDX7dB1jeF2LMdpJTUeqeltmpVnnXWW9X36qU99qqnZkbV3xV+O+RR52tC1115rXv7ylzsZPfLII0bmHfNFXgEj72ktP1kv8+ttb3ubue6668zjjz+eb+a9n9ktb70NjrChX5RG6PB4XZcDktXHa9PGZ+eee66VrP/6r//ahulxbWT6yttxGwXw4ZIlSyxeZQ1t1aUvCgQgMD6BX//612a33XbrfFxKH9JXjKXqmtS1Fr5fuiaMfQhAAAK6CXT1/cUjp0abN9omlHxpuvLb11ZM7bTr1q5Pcu173/te57+9yhxXrFgRU5rja4QEyOt2glYeu1JPuaTGIzW9TXPbtcYw6FG4Tfvssr0r/r7XgOXLlw+817jrrru2ytm4cePYu1qrfMgff/Ob37y1XZOdvM38fhObo2qr6kqdD0Z+v2u4v/zlL62kXbZsWdfdWn1mmjvvuEEH8r8ksscpZ/52uZW+pE8KBCBQTSD/2Igux6PYlr5iLFVcutbC90vXhLEPAQhAQDeBLr6/eOTU6HNG24SSL1FXfvvaiqmddt3a9WW5xm+wjARbTQTI6+bRTOUaOCyp1HikpnfYPKg67wMf+IC1PnLRRRdVnR78cVf85ZjWokmvqiiNKjDnn3++NaD/4i/+ovP8H5XeJsIWLFhgsarS0dZx6ZMCAQi4Ccj/aG5rrA1rJ8b/RV2lzU21vaN8v7THEksQgAAEUiTQ5vcXj5wKJ4O0TSj5knXlt6+tmNpp161dX5ZrPE0oI8FWEwHyunk0U7kGDksqNR6p6R02D6rO++AHP2jNaX7iE5+oOj344674yzGtRZNeVVEaRWC+/OUvW4M58+PnP/95p2Mg66e87bTTBsbXr19vpk2bVsmrrKOtuvQpfVMgAAGbAO9NsZm4jlRdj1zntnWM75e2SGIHAhCAQLoE2vz+4pFT4eSRtgklX7Ku/Pa1FVM77bq168vn2h133GGmTJnS2RyJ2JY+KBDokwB53Yx2StfAYUilxiM1vcPkwHjnnHPOOdZ36Mc//vHxmgT9mSv+ckxr0aRXVZT6Doz8NVb26NvjjjvO7LvvvoWBfcYZZ3Q6BvrW21TMMBMzVZqaHpe+KRCAQJHA6tWrzYQJEwrXraZjbZj20qf0HVOp0tWVBr5fuiKLXQhAAAJpEej7+2vUdFPRq21CyTdvXPH2tRVTO+26tesr59qtt97ayX9Gl/9sLrYpEBgFAfLan3pq18BBpFLjkZreQfEf9Pm5555rzWl+7GMfG9Qs2M9d8ZdjWosmvbWj9OEPf9hK3iogoRzvIhEfeughs+OOO46xkEcDb9q0yVx++eUFNrvssov5/e9/30X3YzZD4YsfLynEHR7wIAfSyYEuLvB8vzTPn4985CNdhAabEIAABKIjUHVPEp2QIR1ORa+2CaUhw2ud5oq3dZLCA9p1a9fnSsmVK1eaPffcs7V5BbElNikQGCUB8tqPforXwPFIpcYjNb3jxX6Yzz70oQ9Z350XXnjhME2DPMcVfzmmtWjSWztKLLIa88QTT5i99tprbBC/4hWvML/97W/Hcl225Ue9LFu2rLNxUJWIHG8+QQ9DGJID5MAwOdD2BZ7vl3byTu5VKBCAAAQgYKxJh+y7TSubTF95q02vtgkl3/iU4yz1FIp23dr1VeWozCfNnz+/0ZOG5IlBYiObo6rqi+MQ6IsAeV2fdKrXwCpSqfFITW9V3Ic9fv7551u/dy644IJhmwd3niv+ckxr0aS3dpRSX2TdsGGDed3rXjc2gHfbbTfz6KOPFvL8xBNPLAxu+SvXrkpVInK8nUl6OMKRHCAHBuVAm9d3vl/ayzcWWdvMTGxBAAIxE6j6HotZ03i+p6JX24TSeDEd7zNXvMc7X8tn2nVr1zcoD3/84x+befPmmcmTJxfmllxcsmNyrrSRthQIhEiAvB4+Ktm4zm+Hb63vzDyHbF+fyhcVZRrz2xc/Za9MwLVOFfOTzfJxz++XdWup5zXm92PUxyJrjaht3rzZHHrooWM3uvJ+i3vvvddqfdddd1k3wj//+c+t89o4kE8+9tubnIclLMkBcmDYHGjjWi42+H5pN+dYZG0rM7EDAQjETqDq+yx2XVX+p6JX24RSVTwHHXfFe1AbDZ9r161d37A5KH8BeN111439ZWr2H/3LbOSvVuUc/nJ1WKqcN2oC5PXgCJTHudRTLqnxSE1v09yWBdUys5jng8pasnpTTqG2z/SVt6H6O55fta/Urh90ZRCh1ccDMOxnf/jDH8ZubkXbNttsY2655ZbKpq9+9asLA/z000+vPLfJB6Fxxp92FwngCU9yIPwcaHINz9ry/dJ+nGO+qc7ygi0EIACBNghU3Uu0YTtEG6no1Tah5JtLrnj72oqpnXbd2vX55hpcfMnRLmQC5LUdHZgUmaTGIzW9xWjXr330ox8trMEIP3mtRqzFFX85prVo0qsqSl0FRibATzrppK2D9uKLLx43ty+55JKt54pPO+64o/nd7343bhufD7vS6+PLMG122WWXApcq/7s4vuuuuw7jIudAICkCO+yww8jGpPQdU6m6LjXVwPdLU4K0hwAEIACB8Qh09f01Xp+j/CwVvdomlHxzxhVvX1sxtdOuW7s+31yDiy852oVMgLy2owOTIpPUeKSmtxjt+rULL7zQmtc877zz6hsKpIUr/nJMa9GkV1WUugiMLI4eddRRWwfs1KlTzQsvvDBubv/Lv/zL1vMznxYvXjxuG58PM9vlrY+tPtrMmTPH4lL2vau69E2BAASKBGbPnj2yMbnPPvsUnQm8VnVtauI23y9N6NEWAhCAAASGIdDF99cw/Y7qnFT0aptQ8s0XV7x9bcXUTrtu7fp8cw0uvuRoFzIB8tqODkyKTFLjkZreYrTr1z72sY9Z85rnnntufUOBtHDFX45pLZr0qopSm4HZsGGDufbaa83LX/5ya7B+6lOfMo888sjYO/TySf7EE0+Mvac1e29r2Z+3ve1tY+/LePzxx/PNvPfL9rO6t8GOGy5cuNBimfnc9XbRokUdq8M8BOIjkP8PJF2PwbJ96TumUvY/q/to4PvFhxptIDAaAvKfIdauXcu/IRg899xzowkSvY5LIPu+Km/HbRTxh2WdWT1iSU7XtU0oOUUOcTCLb347RLPoT8nrzfajF5UTkGnKb3MfJ7ub55HtJwsD4WoIZLmc36oR5ykkzyLb9zSlolnGIL9VIaxCRF5ntl9xKoeNMZ/4xCestYYPfvCD0bLJYl7eRitogONlnVl9QLMgP2aRtSIsy5cvtwZpFuhse9ddd21tvXHjxrF3tWafjbd985vfvLVdk52qPprY7LLtMEyrNDU9fuONN3YpDdsQiJLA0qVLB17nmo69qvbSd0ylSoePhmGuhXy/+JClDQTaJfDAAw+M7BpZdc0J+fhpp53WbgCw1gqBqpxpxXiARlLRq21CyTeVXPH2tRVTO+26tevzzTW4+JKjXcgEyGs7OjApMkmNR2p6i9GuX/vkJz9p/WY/++yz6xsKpIUr/nJMa9GkV1WUNAVmmMETm97169ebadOmWRe/Kh1tHZc+pW8KBCBQJLB69WozYcKE3sek9PmLX/yi6EzgtarrUeBue7uXml5vUDRUTeDee+/t/fpYNfZiOH7yySerzodYxVXlTqx6Bvmdil5tE0qD4lr1uSveVedqOq5dt3Z9vrkIF19ytAuZAHltRwcmRSap8UhNbzHa9WsXXXSR9Zv9Ax/4QH1DgbRwxV+OaS2a9KqKkqbADDN4YtS7YMEC6+JXpaOt49InBQIQcBN405ve1PuYlD5jK1XXo9h0DOtvanqH5cJ5aRFgkfUltb4fWGQNc3ykdj1PRa+2CSXf0eOKt6+tmNpp161dn2+uwcWXHO1CJkBe29GBSZFJajxS01uMdv2avNKxzOyss86qbyiQFmUtWT0Q91p3I9NX3rbeUQ8GWWTtAXJXXZQTMKt31V8bduVdtpMmTbIugJnvbW+lL+mTAgEIuAl873vf6208ZuN7xYoVbmcCPpr5Xt4G7HIj18o6s3ojozSGQGQEWGRlkTWylHW6m12/y1vnyQoOlnVmdQXSChK0TSgVxNWoZPHNb2s0j/bUvN5sP1oxDsczTfmt47TkDuV5ZPvJQUCwOgJZLue36kTWFJRnke3XNKHq9IxBfqtKYElMXme2XzqFao7AJZdcYs1pnnnmmbkz4trNYl7exqVieG/LOrP68BbCOZNF1nBiUduTLPHK29qGem6wZMkS6wJY1tBWXfqiQAAC4xM46qijehuT0leMpeqaFKOWYXxOTe8wTDgnPQIssrLIqiHrU7uep6JX24SS71hzxdvXVkzttOvWrs831+DiS452IRMgr+3owKTIJDUeqektRrt+7dJLL7XmM88444z6hgJp4Yp/iscCCUctN1hkrYUrrJOrBllYXtrePPvss+aAAw6wLoJVenyPSx/SFwUCEBifwK9//Wuz2267dT4mpQ/pK8ZSdR2KUcswPqemdxgmnJMeARZZWWTVkPWpXc9T0attQsl3rLni7WsrpnbadWvX55trcPElR7uQCZDXdnRgUmSSGo/U9BajXb+2dOlSay7z/e9/f31DgbRwxT/FY4GEo5YbLLLWwhXWyVWDLCwv3d6sXr3azJw507oQVmmqe1xsSx8UCEBgOAJ33HGHmTJlSmdjUmxLH7GWqmtQrHoG+Z2a3kE8+DxNAiyyssiqIfNTu56nolfbhJLvWHPF29dWTO2069auzzfX4OJLjnYhEyCv7ejApMgkNR6p6S1Gu37t8ssvt+YxTzvttPqGAmnhin+KxwIJRy03WGSthSusk6sGWVheVnuzatWqThZaZYFVbFMgAIF6BG699VYzbdo06wal6loz7HGxKbZjLlVaY9Y0nu+p6R2PBZ+lS4BFVhZZNWR/1fU8teMaYpnXoG1CKa+tzr4rj+u0j/Vc7bq16/PNO7j4kqNdyATIazs6MCkySY1HanqL0a5f+/SnP23NYS5evLi+oUBauOKf4rFAwlHLDRZZa+EK6+SqQRaWl+N7I39t2uajg8UWf8E6PnM+hcB4BFauXGn23HNP6yal6noz6LjYEpuxlyqdseuq8j81vVUcOJ42gd/85jfmuOOOM/PmzePfEAxuvPHGtBMmUPVV1/PUjgcaHm+3tE0o+YJw5bGvrZjaadetXZ9vrsHFlxztQiZAXtvRgUmRSWo8UtNbjHb92mc/+1lr/vLUU0+tbyiQFq74p3gskHDUcoNF1lq4wjq5apCF5eVgb+S9qUuWLDGTJk2yLoxVGsvHpa3Y4B2sg3lzBgQGEfjtb39r5s+fbyZMmOA9JqWt2BBbGkr5mpPVNWhzacj0lbeuczkGAQhAAALhEihfx1OthxshP8+0TSj5UTDO+1RfWzG1c43jmPwf5Kt2fYP0V30OlyoyHI+ZAHltRw8mRSap8UhNbzHa9Wuf+9znrPvB9773vfUNBdLCFf8UjwUSjlpusMhaC1dYJ1cNsrC8HN6bRx55xCxYsKDW40rlMaTSRtpSIACBdgn8+Mc/HvvrrcmTJ1s3LVXXHzlX/upL2moqVXo1acxrSU1vXjv7EIAABDQRqLqep3ZcU0xFi7YJJd/4uPLY11ZM7bTr1q7PN9fg4kuOdiETIK/t6MCkyCQ1HqnpLUa7fu2KK66w5itPOeWU+oZoAYGGBFhkbQhwlM1dF145FntZv369Wb58uflv/+2/WRfKqVOnmjlz5piFCxeOnSPnUiAAgW4JyF+jXnfddWN/mTpr1ixrXMp7kOWvVuUcLX+5Wiaq9Xpb1pnVU9Ob6WYLAQhAQBuBqut5ase1xZUJpS0RdeWxtli79GjXrV2fK6bDHIPLMJQ4JzYC5LUdMZgUmaTGIzW9xWjXr1155ZXWHOV73vOe+oZoAYGGBOJfkcsBcF2I5JjWol0vF0qtmYuumAn8/d//vXUDc/LJJ8csaSjftV9vyxBS01vWTx0CEICAFgJV1/PUjmuJZ6aD30lbSLjyOGOkeatdt3Z9vrkJF19ytAuZAHltRwcmRSap8UhNbzHa9Wuf//znrTnKk046qb4hWkCgIQFVK5CuC5Ec01q062XyQGvmoitmAqmOS+3X23JOpqa3rJ86BCAAAQhAIGQCTChtiY7rfiXkuLXlm3bd2vX55gFcfMnRLmQC5LUdHZgUmaTGIzW9xWjXr33hC1+wFlnf/e531zdECwg0JKBqBdJ1IZJjWot2vaku5mjNV3TpIJDquNR+vS1nZ2p6y/qpQwACEIAABEImwITSlui47ldCjltbvmnXrV2fbx7AxZcc7UImQF7b0YFJkUlqPFLTW4x2/dpVV11lLbIuWrSoviFaQKAhAVUrkK4LkRzTWrTrTXUxR2u+oksHgVTHpfbrbTk7U9Nb1k8dAhCAAAQgEDIBJpS2RMd1vxJy3NryTbtu7fp88wAuvuRoFzIB8tqODkyKTFLjkZreYrTr16655hprkXXBggX1DdECAg0JqFqBdF2IUjzWMCeCaX7FFVdYF8pTTjklGP9wBAIpEmCR9SXWdSml75kUcx7NEIAABCAAgdAIMKG0JSKue7DQYtWFP9p1a9fnmxNw8SVHu5AJkNd2dGBSZJIaj9T0FqNdv3bttddac3Tvete76huiBQQaEmCR9SX6Jswb5kQwzVlkDSYUOAKBrQRSHZeuG90Uj21NBHYgAAEIQAACEBgZASaUtqB33YuNLCg9dqxdt3Z9vqkCF19ytAuZAHltRwcmRSap8UhNbzHa9Wv/8A//YC2yzp8/v74hWkCgIQEWWVlkbZhC3TVPdTGnO6JYhkBzAqmOS9eNborHmmcQFiAAAQhAAAIQaEqACaUtBF33Yk3ZxtBeu27t+nxzDC6+5GgXMgHy2o4OTIpMUuORmt5itOvXvvSlL1mLrO985zvrG6IFBBoSYJGVRdaGKdRd88997nPWhfK9731vdx1iGQIQGEiARVZ9Tz9w3cRXHRuYIJwAAQhAAAIQgEDnBJhQ2oLYdb/SOfwAOtCuW7s+3xSCiy852oVMgLy2owOTIpPUeKSmtxjt+rUvf/nL1trBO97xjvqGaAGBhgRYZGWRtWEKddecRdbu2GIZAr4EUh2XrhvdFI/55g3tIAABCEAAAhBojwATSltYuu7F2qMcriXturXr880suPiSo13IBMhrOzowKTJJjUdqeovRrl/7yle+Yi2ynnjiifUN0QICDQmwyMoia8MU6q55qos53RHFMgSaE0h1XLpudFM81jyDsAABCEAAAhCAQFMCTChtIei6F2vKNob22nVr1+ebY3DxJUe7kAmQ13Z0YFJkkhqP1PQWo12/9o//+I/WIusJJ5xQ3xAtINCQgKpF1oYsaB4Ygc9+9rPWhfJ973tfYF7iDgTSIpDqImtaUUYtBCAAAQhAAAIhE2BCaUt0Up2I1K5buz7fawtcfMnRLmQC5LUdHZgUmaTGIzW9xWjXr11//fXW2sHxxx9f3xAtINCQAIusDQHSvDsCLLJ2xxbLEPAlwLj0JUc7CEAAAhCAAAQg0A4BJpS2cEx1IlK7bu36fK8CcPElR7uQCZDXdnRgUmSSGo/U9BajXb92ww03WIusxx13XH1DtIBAQwIssjYESPPuCLCY0x1bLEPAlwDj0pcc7SAAAQhAAAIQgEA7BJhQ2sIx1YlI7bq16/O9CsDFlxztQiZAXtvRgUmRSWo8UtNbjHb92vLly61F1nnz5tU3RAsINCTAImtDgDTvjsBnPvMZ60J56qmndtchliEAgYEEWGQdiIgTIAABCEAAAhCAQKcEmFDagjfViUjturXr8704wMWXHO1CJkBe29GBSZFJajxS01uMdv3ajTfeaK0dHHvssfUN0QICDQmwyNoQIM27I8Aia3dssQwBXwKMS19ytIMABCAAAQhAAALtEGBCaQvHVCcitevWrs/3KgAXX3K0C5kAeW1HByZFJqnxSE1vMdr1azfddJO1yHrMMcfUN0QLCDQkwCJrQ4A0744AizndscUyBHwJMC59ydEOAhCAAAQgAAEItEOACaUtHFOdiNSuW7s+36sAXHzJ0S5kAuS1HR2YFJmkxiM1vcVo16999atftRZZ/+7v/q6+IVpAoCEBFlkbAqR5dwQ+/elPWxfKxYsXd9chliEAgYEEWGQdiIgTIAABCEAAAhCAQKcEmFDagjfViUjturXr8704wMWXHO1CJkBe29GBSZFJajxS01uMdv3aP/3TP1lrB0cffXR9Q7SAQEMCLLI2BEjz7giwyNodWyxDwJcA49KXHO0gAAEIQAACEIBAOwSYUNrCMdWJSO26tevzvQrAxZcc7UImQF7b0YFJkUlqPFLTW4x2/drXv/51a5H1v//3/17fEC0g0JAAi6wNAdK8OwIs5nTHFssQ8CXAuPQlRzsIQAACEIAABCDQDgEmlLZwTHUiUrtu7fp8rwJw8SVHu5AJkNd2dGBSZJIaj9T0FqNdv3bzzTdbi6x/+7d/W98QLSDQkACLrA0B0rw7AizmdMcWyxDwJcC49CVHOwhAAAIQgAAEINAOASaUtnBMdSJSu27t+nyvAnDxJUe7kAmQ13Z0YFJkkhqP1PQWo12/9s1vftNaZD3yyCPrG6IFBBoSYJG1IUCad0fg8ssvty6Up512WncdYhkCEBhIgEXWgYg4AQIQgAAEIAABCHRKgAmlLXhTnYjUrlu7Pt+LA1x8ydEuZALktR0dmBSZpMYjNb3FaNev/c//+T+ttYO/+Zu/qW+IFhBoSIBF1oYAad4dARZZu2OLZQj4EmBc+pKjHQQgAAEIQAACEGiHABNKWzimOhGpXbd2fb5XAbj4kqNdyATIazs6MCkySY1HanqL0a5fu+WWW6xF1iOOOKK+IVpAoCEBFlkbAqR5dwRYzOmOLZYh4EuAcelLjnYQgAAEIAABCECgHQJMKG3hmOpEpHbd2vX5XgXg4kuOdiETIK/t6MCkyCQ1HqnpLUa7fu2f//mfrUXWww47rL4hWkCgIQEWWRsCpHl3BJYuXWpdKN///vd31yGWIQCBgQRYZB2IiBMgAAEIQAACEIBApwSYUNqCN9WJSO26tevzvTjAxZcc7UImQF7b0YFJkUlqPFLTW4x2/dq3v/1ta+3g0EMPrW+IFhBoSIBF1oYAad4dARZZu2OLZQj4EmBc+pKjHQQgAAEIQAACEGiHABNKWzimOhGpXbd2fb5XAbj4kqNdyATIazs6MCkySY1HanqL0a5fu/XWW61F1r/+67+ub4gWEGhIgEXWhgBp3h0BFnO6Y4tlCPgSYFz6kqMdBCAAAQhAAAIQaIcAE0pbOKY6Ealdt3Z9vlcBuPiSo13IBMhrOzowKTJJjUdqeovRrl/7zne+Yy2yvuUtb6lviBYQaEiARdaGAGneHYHLLrvMulCefvrp3XWIZQhAYCABFlkHIuIECEAAAhCAAAQg0CkBJpS24E11IlK7bu36fC8OcPElR7uQCZDXdnRgUmSSGo/U9BajXb/23e9+11o7OOSQQ+obogUEGhJgkbUhQJp3R4BF1u7YYhkCvgQYl77kaAcBCEAAAhCAAATaIcCE0haOqU5EatetXZ/vVQAuvuRoFzIB8tqODkyKTFLjkZreYrTr12677TZrkfXggw+ub4gWEGhIgEXWhgBp3h0BFnO6Y4tlCPgSYFz6kqN93QFnAAAgAElEQVQdBCAAAQhAAAIQaIcAE0pbOKY6Ealdt3Z9vlcBuPiSo13IBMhrOzowKTJJjUdqeovRrl/73ve+Zy2y/uVf/mV9Q7SAQEMCLLI2BEjz7ghceuml1oXyjDPO6K5DLEMAAgMJsMg6EBEnQAACEIAABCAAgU4JMKG0BW+qE5HadWvX53txgIsvOdqFTIC8tqMDkyKT1HikprcY7fq1FStWWGsHb37zm+sbogUEGhJgkbUhQJp3R4BF1u7YYhkCvgQYl77kaAcBCEAAAhCAAATaIcCE0haOqU5EatetXZ/vVQAuvuRoFzIB8tqODkyKTFLjkZreYrTHr23YsMHIKzNkXnLRokVm7ty55mUve5m1yDp58mQze/bssc/lPDlf2kl7CgS6IsAia1dksduYAIs5jRFiAAKtE2Bcto4UgxCAAAQgAAEIQKCSwJo1a8z1119vzjvvPHPMMceYAw880Oy2227WhNKUKVPGPpNz5FxpI201l1QnIrXr1q7Pd0zCxZcc7UImQF7b0YFJkUlqPFLTW4y2XXvwwQfH7msPOuggs+2221r3vy5eVcekvdiR+2SxS4FAmwRYZG2TJrZaJXDJJZdYF88zzzyz1T4wBgEI1CPAIms9XpwNAQhAAAIQgAAE6hDYvHmz+fa3v23mz59v9t57b+v3UNXEUdVxsSG2xKbY1lRcmjXpq9KiXbd2fVVxHXQcLoMI8XmMBMhrO2owKTJJjUdqeovR3lJbt26dkVeVveY1r2l8H+zimR0T+9KP9EeBQFMCLLI2JUj7zgiwyNoZWgxDwJsA49IbHQ0hAAEIQAACEIBAJYGHH37YnHrqqWbmzJmdTSiJbelD+tJQskmy/FaDrkEa8nqz/UFtYvo805TfxuR/V77meWT7XfWFXQj0RSDL5fy2r75D7SfPItsP1dc+/MoY5Ld99DuqPvI6s/1R+dJ3v0888YQ5++yzzfTp0zu7F86Y5rfSn/Qr/VMg4EuARVZfcrTrnACLOZ0jpgMI1CbAuKyNjAYQgAAEIAABCECgksCqVavGHgM8ceLE3iaUpC95rLD0HXPJT5Bl+zHrGdb3TGt+O2zbGM7L68r2Y/C7ax8zFvlt131iHwJdE8jnc7bfdZ+h28845Leh+9ylf3kO2X6X/Y3adqYxvx21T133v2nTJnPRRReZ7bffvrd74TzfbF/6Fz/EHwoE6hJgkbUuMc7vjQCLOb2hpiMIDE2AcTk0Kk6EAAQgAAEIQAAClQSefPLJscf4TpgwYWQTStK3PEpYfImxZJNi+W2MOur6nNeb7de1EfL5mab8NmR/+/ItzyPb76tv+oFAVwSyXM5vu+orFrt5Ftl+LL534WfGIL/top9QbOZ1Zvuh+NaFHytWrDCzZ88e+l5YXoPxjne8w8irzG655RZzww03WG3/7M/+zPz0pz8d+1zOk/PrvIJD/BG/KBCoQ4BF1jq0OLdXAp/61KesC+VZZ53Vqw90BgEIFAmwyFrkQQ0CEIAABCAAAQjUJXDVVVeZHXfc0fqtk02m5bfbbrutecMb3mDOPPNMc+2115o777zT/NM//ZPV9k//9E/HPpNz5FxpI23ztqr2xRfxKbbi0hObBh9/tevWrs8n5tIGLr7kaBcyAfLajg5MikxS45GK3s2bN489oneYJ7nIPe0VV1xhHnvssWJyGGN+8IMfWN+Pcr6rSHuxI5+7OOePiV/yCGHxkwKBYQiwyDoMJc4ZCQEWWUeCnU4hMC4BxuW4ePgQAhCAAAQgAAEIVBJYu3atOfroowdO7EydOtUce+yxY/8Df8OGDZa9YSeU1q9fP2ZDbInN/OSRa198Ex9jKS4NsfjexE/turXr8409XHzJ0S5kAuS1HR2YFJmkxiMFvb/5zW/M61//+nHvS+W+9ZRTTjGrV68uJkSpdvfdd1t2DjrooNJZdlXsvuc97xl4fyy2xF8KBAYRYJF1ECE+HxkBFnNGhp6OIVBJgHFZiYYPIAABCEAAAhCAQCWB+++/38yaNcuaCMpPpu2xxx5m6dKl5umnn660Ix/4TCitW7fOXHbZZUb6yPdZ3hcfxdcYStl3qadQtOvWrs83R+HiS452IRMgr+3owKTIJDUe2vX+7Gc/M3vttVflvag8heW0004b+lUWK1eutGzNmTOnmETj1OSVGdLfeE9/EX/FbwoExiOQxq+Q8QjwWbAELr74YutCuWTJkmD9xTEIpECARdYUooxGCEAAAhCAAATaJPD973/fvPSlL7V+22QTaTNmzDBXXnml2bRp01DdNplQkj7kUWnSZ9Z/eTt9+nQjPodeyn5LPYWiXbd2fb45ChdfcrQLmQB5bUcHJkUmqfHQrPeee+4Z9/5z7ty55qGHHiomwIDaD3/4Q+t+9nWve92AVvbH0q/07+Ivx+S+We6/KRCoIpDGr5Aq9RwPmgCLrEGHB+cSJcC4TDTwyIYABCAAAQhAwIvAzTffbCZPnlw5afOud73LPPXUU7VstzGhJH1K31WTSeKz+B5ycfkesr9t+aZdt3Z9vnkAF19ytAuZAHltRwcmRSap8dCq94EHHjA77bST875z0qRJ5qKLLioGfsjavffea9n8sz/7syFb26eJH+KPKw7iv+igQMBFgEVWFxWOBUGAxZwgwoATECgQYFwWcFCBAAQgAAEIQAAClQRuv/32ygVWmajxXcRsc0JJfKia9JKFVtEQanFNgIXqa5t+adetXZ9vLsDFlxztQiZAXtvRgUmRSWo8NOqV95/uvvvuzoXLmTNnGvkLV99y3333WXZf+9rX+pobayev5RC/XLEQHYPeE9uocxpHS4BF1mhDp99x+d8j5QvaBz7wAf3CUQiBgAmwyBpwcHANAhCAAAQgAIFgCMhfm26//fbW7xn5fbP//vubNWvWePva9oSS+CI+lX97SV00iJYQi8vfEP1s2yfturXr880HuPiSo13IBMhrOzowKTJJjYc2vRs3bjSvetWrnPeY++yzj/nFL35RDHjN2v/+3//bsn3ggQfWtGKfLn6Jf654iB7RRYFAngCLrHka7AdFgEXWoMKBMxAYI8C4JBEgAAEIQAACEIDA+ASefPJJs8ceezgnZt74xjeatWvXjm9gwKddTCiJT+KbazJJtIim0IrL19B87MIf7bq16/PNCbj4kqNdyATIazs6MCkySY2HNr0nnHCC895yv/32a+XectWqVZb9//pf/2sxiTxrcu8rfrpiIrooEMgTYJE1T4P9oAiwmBNUOHAGAmMEGJckAgQgAAEIQAACEBifwMEHH+yckJFFzGeffXb8xkN82tWEkvhWtdB6yCGHDOFZv6e4Jr369WA0vWnXrV2fb9bAxZcc7UImQF7b0YFJkUkKPNavX2+WL19uFi5c6Lx/nDNnjlm0aJG58cYbjZwbS/niF7/o1DNr1izz+OOPtyLj/vvvt/p4zWte04ptMSJ+ir+uPBR9FAhkBFhkzUiwDY7AJz/5SesidvbZZwfnJw5BICUCLLKmFG20QgACEIAABCBQl4Dr1QoyMSOPLlu3bl1dc87zu5xQEh/FV9dkkmgLqbh8DMm/rnzRrlu7Pt+8gIsvOdqFTIC8tqMDkyITzTweeeQRs2DBAjNt2jTnfZdLu5wrbaRtyEX+CnTGjBmWru222848+OCDrbn+wAMPWH28+tWvbs2+GBJ/xe9yPERfiE96aVU8xoYmwCLr0Kg4sW8CLLL2TZz+IDCYAONyMCPOgAAEIAABCEAgTQKPPvqoc6Js5syZ5le/+lVrULqeUBJfd911V2sySSb2RGMopTzZJfUUinbd2vX55ihcfMnRLmQC5LUdHZgUmWjkIU8OWbJkiZk0aZJ1r+XS6zombcVGG09IKRJvp1b1mOAbbrihnQ7+n5Wf/OQnFkN5Z2rbRfx2xYHHBrdNOl57afwKiTc+SXvOYk7S4Ud8oAQYl4EGBrcgAAEIQAACEBg5gcMOO8yagJk4caK5/fbbW/Wtjwkl8Vl8L08oicZQStk3qadQtOvWrs83R+HiS452IRMgr+3owKTIRBuP1atXmwMOOMC6v3LpHOaY2BKbIZV7773Xqe/EE09s3U35K9Myp/3337/1fsTg29/+dqsv6Vv0UiCQxq8Q4hwlgU984hPWxeuDH/xglFpwGgJaCLDIqiWS6IAABCAAAQhAoE0CK1assH67yMTLGWec0WY3Y7b6mlA6/fTTnZpE66iK1veW1eFZnkyUuqaiXZ9vrODiS452IRMgr+3owKTIRBOPVatWGXm6iUtTk2NiU2yHUo444ghL484772yeeuqp1l386U9/avX1ile8ovV+xKD4LzrKsRK9FAjouhsnnqoIsMiqKpyIUUKAcakkkMiAAAQgAAEIQKBVAnPnzrUmXfbcc0+zYcOGVvsRY31NKMmCpmgoTyaJ1r6L5veW1WVZjofUNRXt+nxjBRdfcrQLmQB5bUcHJkUmWnjIX5t2scCa8RHbIfxF63333WfdN4qPV199dTGwLdV+9rOfWf3tt99+LVm3zYiOjHl+K7opaRPQdTeedizVqWcxR11IEaSAAONSQRCRAAEIQAACEIBAqwTuvPNO54TLTTfd1Go/mbE+J5REQ34SKdsXzX2UFN5bVpdjFoP8tq6NkM/P68r2Q/a3L98yFvltX33TDwS6IpDP52y/q75isZtxyG9j8b0LP/Mcsv0u+unSptzLtPmI4IxDeSt9jPodrfPnz7fuG/fee2+zefPmThD//Oc/t/rbd999O+lLjIoO0VNmL7opaRNgkTXt+AetnsWcoMODc4kSYFwmGnhkQwACEIAABCBQSWDevHnWZEtX74MSJ/qeUBIt5ckk0dx1SeG9ZT4My7GQuqaiXZ9vrODiS452IRMgr+3owKTIRAOPJUuWWPdRLl1tHJO+RlU2btxodthhB0vrNddc05lLDz/8sNXf7NmzO+tPDIuecqxEt+inpEtA1914unFUqfzjH/+4ddE655xzVGpFFARiIcAiayyRwk8IQAACEIAABPogsG7dOjN16lTrd8uyZcs6677vCSXRUp5MEs2ivauSynvLfPiVYyF1TUW7Pt9YwcWXHO1CJkBe29GBSZFJ7DzkdQeTJk2y7qNcuto4Jn1Jn6Mo1113naVz+vTpnf51rWgtc3v5y1/eqXz5a2HRVe5X9FPSJaDrbjzdOKpUziKryrAiKnICjMvIA4j7EIAABCAAAQi0SsD1v9l33XVX89xzz7XaT95Y3xNKokU0lSeTuvrLhFTeW5aPaZ39chykrqlo1+cbK7j4kqNdyATIazs6MCkyiZ3HggULrPsnl6Y2j0mfoyhvfetbLa3vfve7O3VF7hnL7P7kT/6k0z7FuOgq9yv6KekS0HU3nm4cVSpnMUdlWBEVOQHGZeQBxH0IQAACEIAABFolcOSRR1qTLIsXL261j7KxUUwoiabyZJJob7uk9N4yX3blOEhdU9GuzzdWcPElR7uQCZDXdnRgUmQSM4/169ebadOmWfdPLk1tHpM+pe++y4wZMyytd9xxR6du/PKXv7T6lHemdl1EVzlmop+SLgFdd+PpxlGl8o997GPWBevcc89VqRVREIiFAIussUQKPyEAAQhAAAIQ6JrA888/73xc2D333NNp16OYUBJN5ckkeVSaMGizpPLesibMynGQuqaiXZ9vrODiS452IRMgr+3owKTIJGYey5cvt+6dXHq6OCZ991l+9KMfWVrlPaWbN2/u1I1HH33U6nevvfbqtE8xLrpc758VDpQ0Cei6G08zhmpVs8iqNrQIi5gA4zLi4OE6BCAAAQhAAAKtEli5cqU1sdPFwmPZ6VFMKFUtKAuDtkpK7y1rwsw1GdvEXmhttevz5Q0XX3K0C5kAeW1HByZFJjHzWLhwoXWf6NLTxbFFixYVQXZc+/znP29pPfzwwzvu1Zg1a9ZY/c6aNavzfqUD0VeOnXCgpEmARdY04x6FahZzoggTTiZGgHGZWMCRCwEIQAACEIBAJYErr7zSmlzp4hG6ZQdGNaHkejSyMGirpPTesibMyhN6UtdUtOvzjRVcfMnRLmQC5LUdHZgUmcTMY86cOdZ9oktPF8ek7z6L67USF1xwQecu/J//838sxnvuuWfn/UoHoq8cu65fGdKLMDrxIqDrbtwLAY1CJXDhhRdaF6vzzjsvVHfxCwJJEGCRNYkwIxICEIAABCAAgSEInHrqqdbvFfkN03UZ1YSS6/eZMGijpPbesibMyhN6UtdUtOvzjRVcfMnRLmQC5LUdHZgUmcTMY5dddrHuE116uji26667FkF2XHvLW95iaf3qV7/aca/GPP7441a/L3vZyzrvVzoQfeXYCQdKmgR03Y2nGUO1ql0/4llkVRtuhEVCgHEZSaBwEwIQgAAEIACBzgkccsgh1uTK1772tc77HdWEkmgrTyYJgzZKSu8ta8qrHAOpayra9fnGCi6+5GgXMgHy2o4OTIpMYuYxefJk677JpaeLY9J3n2W//faztN5///2du/Dv//7vVr977LFH5/1KB6KvHDvhQEmTgK678TRjqFY1izlqQ4uwiAkwLiMOHq5DAAIQgAAEINAqgX333deaXHnggQda7cNlbFQTSqKtPJkkDNooKb23rCmvcgykrqlo1+cbK7j4kqNdyATIazs6MCkyiZlHSous/+W//BfrHtEVO+3HhAMlTQK67sbTjKFa1R/96EetC/SHPvQhtXoRBoEYCLDIGkOU8BECEIAABEIncMN3fmH+5vTv8y9yBlO2H91j4EKZpBIGbeTyjru/wvrt15dG6bsNDX3ZcHHpq+8++tGuz5chXPjO9M2dkNuR13Zew6TIJGYek6dOH9m9jfTd59jfZvK0kWl15ciojgmHPrnTV/F60TaPZd/95dDTCiyyDo2KE/smwCJr38TpDwKDCTAuBzPiDAhAAAIQgMAgAiyydvuDuO0f2FX2mFB6iWlrMimliciqfBr2uGvicNi2MZynXZ9vDOCi43vDN/5a25HXdl7DpMgkZh4p/QeyCRMmssj6kpcY4aD1ep2iLvnNPmxhkXVYUpzXOwEWc3pHTocQGEiAcTkQESdAAAIQgAAEBhJgkbU4gRbrj3YmlNqbTJq4zaSRTc5J3zHlYMwTzsNw1q5vGAauc+Ci43vDFduUj5HXdl7DpMgkZh6zXn34yO5tZh1weK/3NvzHw5eMxbqt/3yY8vdCSNpZZB04rcEJMRC44IILrC+j888/PwbX8RECagmwyKo2tAiDAAQgAIEeCbDIWpxAC+nHdB1fmFBq7y9ZWWQdfkzEPOE8zPjSrm8YBq5z4DL8GHHx41iY/MhrOy4wKTKJmcefHnaeNa/t0tPFsT897EO9LrLyCo0ti6xtvUaD76zidWBUPFhk7XGChK66I8Aia3dssQwBXwKMS19ytIMABCAAAQi8SIBF1jB+ODf9wc6E0ktMW5NJPC54+DHhmoxtmsshtdeuz5c1XIYfI76Madc/Y/LaZg6TIpOYeRz6vm+bbbb9o94XWqVP6bvPa9oOM/4/S+fct1/buQ9/9Z5vWv329T5a0VfOT+HQJ3f6Kl4v2ubBIuuL8xfsRUyAxZyIg4fragkwLtWGFmEQgAAEIAABCNQksO+++1qTKw888EBNK/VP/8///E+r35133rm+oZotRFt5MkkYtFHmzJlj2S731VVd+o6puDjE5P8gX7XrG6S/6nO4VJHheMwEyGs7ejApMomdx4IFC3q/v5E++y5vectbLJ1f/epXO3fj//7f/2v1O2PGjM77lQ5EXzk/hQMlTQK8kzXNuEehmsWcKMKEk4kRYFwmFnDkQgACEIAABCBQSeCQQw6xJle+9rWvVZ7f1gejmlASbeXJJGHQRlm4cKFlu9xXV/VFixa1IaE3Gy4OvXXeQ0fa9fkihIsvOdqFTIC8tqMDkyKT2Hk88sgjZtKk/t47L31Jn32XxYsXW/dxMn/YdVm7dq3V74477th1t2P2XfOjwoGSJgEWWdOMexSqP/KRj1gXyg9/+MNR+I6TENBKwHUTwbuStUYbXRCAAAQgAAEIjEfg1FNPtX6vXHjhheM1aeWzUU0oibbyZKcwaKMsX77csl3uq6v6jTfe2IaE3my4OPTWeQ8dadfnixAuvuRoFzIB8tqODkyKTDTwWLJkSW/3ONLXKMoXvvAFS+Phhx/euSu/+93vrH6nT5/eeb/Sgegr56dwoKRJgEXWNOMehWoWWaMIE04mRoBxmVjAkQsBCEAAAhCAQCWBK6+80ppcOfLIIyvPb+uDUU0oibbyZJIwaKOsX7/eTJs2zbJf7q/tuvQpfcdUXAxi8n+Qr9r1DdJf9TlcqshwPGYC5LUdPZgUmWjg8eyzz5oDDjig83sc6UP6GkX50Y9+ZOnbYYcdzObNmzt1Z926dVa/L33pSzvtU4yLLtFXzk/hQEmTAIusacY9CtUs5kQRJpxMjADjMrGAIxcCEIAABCAAgUoCK1eutCZX5H/PP//885Vt2vhgFBNKokm0lSeThEFbJZX3ljXlVY6B1DUV7fp8YwUXX3K0C5kAeW1HByZFJlp4rF692sycOdO6j3Lp8zkmtqWPURZ5F2rZ9zvuuKNTl+Q/ypX73H777TvtU4yLrnK/fb0LtnNxdOBFQNfduBcCGoVKQB4NXL5gyQIPBQIQGB0BFllHx56eIQABCEAAAhAIi0DVwuM999zTqaOjmFC6++67rd9mbS8op/LesqbJUf6NLHVNRbs+31jBxZcc7UImQF7b0YFJkYkmHqtWrepkoVUWWMX2qMtb3/pW617x3e9+d6dubdiwwepzu+2267RPMS66yrkp+inpEtB1N55uHFUqZ5FVZVgRFTkBxmXkAcR9CEAAAhCAAARaJeB6hO7ixYtb7aNsbBQTSqKpPJnUxaORU3hvWTmedevlOEhdU9GuzzdWcPElR7uQCZDXdnRgUmSijYf8tWmbjw4WW6P+C9YsYtddd511ryj/Ia/LRxhv3LjR6lNeBdFlET2up7uIfkq6BHTdjacbR5XKWcxRGVZERU6AcRl5AHEfAhCAAAQgAIFWCVx77bXW5M6uu+5qnnvuuVb7yRvre0JJtIim8kSnaG+7pPDesqbMynGQuqaiXZ9vrODiS452IRMgr+3owKTIRCMPudeR/1Q2adIk697Kpdd1TNqKjS4XMIuRGFyT/wToek/pNddcM7ix5xmiv8xnypQpntaGayZ6yn2Kbrk/p6RLQNfdeLpxVKn8/PPPty5aF1xwgUqtiIJALARYZI0lUvgJAQhAAAIQgEAfBOT9qFOnTrV+tyxbtqyz7vueUBIt5ckk0SzauygpvLesCbdyLKSuqWjX5xsruPiSo13IBMhrOzowKTLRzENekyDvo5e/vHTpdB2Tc6WNtA2xzJ8/39Ky9957m82bN3fi7u9//3urvz/6oz/qpC8xKjpETzk2opuSNgFdd+Npx1KdehZZ1YUUQQoIMC4VBBEJEIAABCAAAQi0SmDevHnWZMv+++/fah95Y31PKImW8mSSaO6yaH9vWRN25VhIXVPRrs83VnDxJUe7kAmQ13Z0YFJkkgKP9evXm+XLl5uFCxda91uif86cOWOfyTlybsjlvvvuc2q4+uqrO3F706ZNVn+TJ0/upC8xKjpcOSm6KWkT0HU3nnYs1alnMUddSBGkgADjUkEQkQABCEAAAhCAQKsE7rzzTueEy0033dRqP5mxPieURINrMkk0d100v7esCTtXPJrYC62tdn2+vOHiS452IRMgr+3owKTIJDUeGvQeccQR1r3jzjvvbJ566qlicFuoyV+WlpnJo5S7KOK/6Cj3J3opEGCRlRwIlsCHPvQh68L10Y9+NFh/cQwCKRBgkTWFKKMRAhCAAAQgAIG6BObOnWv9dtlzzz2NvJ+q7dLXhJL8tYRoKE8mida+itb3ljXhV46H1DUV7fp8YwUXX3K0C5kAeW1HByZFJqnx0KD33nvvte4dRdfb3/72YnBbqD3//PNWX9tss00Llm0T4r8rPqKXAgFdd+PEUxUBFllVhRMxSggwLpUEEhkQgAAEIAABCLRKYMWKFc6Jl9NPP73VfsRYXxNK4rtrMun73/9+65oGGdT43rJBmqs+d8Wk6twYj2vX5xsTuPiSo13IBMhrOzowKTJJjYcWvSeccILzHvKGG24oBriFWpnZxIkTW7BaNCF+l/uRuuikQEAIsMhKHgRLgMWcYEODYwkTYFwmHHykQwACEIAABCAwLoHDDjvMmoCRiZ7bb7993HY+H5YnetqeUBKfxWa5H9E4yqLpvWW+HMsxkbqmol2fb6zg4kuOdiETIK/t6MCkyCQ1Hlr0Pvnkk2bGjBnWfeR2221nHnzwwWKQG9bKzCZMmNDQYrG5+Ct+l/sRfaKTAgEhoOtunJiqInDeeedZF7ALL7xQlUbEQCA2AiyyxhYx/IUABCAAAQhAoC8Cjz76qJk2bZr1G2bXXXc1v/rVr1p1ozzR0+aEkvgqPpf7EG2iMZRS9k/qKRTturXr881RuPiSo13IBMhrOzowKTJJjYcmvV/60pese0nRN2vWLPP4448XA92g1iUz8VP8dfUh+igQyAik8SskU8s2KgIsskYVLpxNhADjMpFAIxMCEIAABCAAAS8CF198sXMi5sADDzTr1q3zsulq5JrscZ1X95j4KL667Iu2kIrLx5D868oX7bq16/PNC7j4kqNdyATIazs6MCkySY2HNr3HH3+8855yv/32a+2vQOU/Gpa5FbPIryZ/pbrvvvtatqUvHhPsx1RzKxZZNUc3cm0s5kQeQNxXSYBxqTKsiIIABCAAAQhAoEUCBx98sHNC5o1vfKN59tlnW+mpiwkl8U18LE9USV00hVZcfobmYxf+aNetXZ9vTsDFlxztQiZAXtvRgUmRSWo8tOnduHGjedWrXuW8t5QFzF/+8pfFgHvUXK+38DBTaCJ+7bOkBA4AACAASURBVLPPPk6/RY/ookAgT4BF1jwN9oMiwGJOUOHAGQiMEWBckggQgAAEIAABCEBgfALyP9/32GMP58SMLGKuXbt2fANDfNr2hJL4VLXAKlpCfOeUtonIIcI+dop23dr1DRvn8nlwKROhroEAeW1HESZFJqnx0Kh39erVZvfdd3feF8+cOdPcc889xaDXrG277baW7c2bN9e08uLp4o/45YqF6BA9FAiUCbDIWiZCPRgC5557rnVB+9jHPhaMfzgCgRQJsMiaYtTRDAEIQAACEIBAXQI//OEPzfbbb2/9npEJm/3339+sWbOmrsnC+W1OKIkv4pNrMkk0iJYQi8vfEP1s2yfturXr880HuPiSo13IBMhrOzowKTJJjYdWvQ888IDZaaednPeakyZNMhdddFEx8DVq0r7M7bnnnqth4cVTxQ+XPbEv/osOCgRcBFhkdVHhWBAEWGQNIgw4AYECAcZlAQcVCEAAAhCAAAQgUEng9ttvN5MnT7YmfrKJmptvvrmy7aAPXBNAPhNK4kPVpJf4LhpCLeUJNamnULTr1q7PN0fh4kuOdiETIK/t6MCkyCQ1Hpr1yl+IVt1ziu65c+eahx56qJgAQ9Rc99qbNm0aouWLp0i/0r+LvxybMWOGWbly5YsN2INAiUAav0JKoqnGQYDFnDjihJdpEWBcphVv1EIAAhCAAAQg0IyALGK6Jn+ySZx3vetd5j//8z9rd+KyWWdC6amnnjLSd+ZHeSv2mywC1xbk0aDss9RTKNp1a9fnm6Nw8SVHu5AJkNd2dGBSZJIaD+16f/azn5m99tqr8v5TntRy2mmn1XpNxZQpUyx7zz77bDGRKmryOgzpz/WEmCwW4q/4TYHAeATS+BUyHgE+C5bAOeecY10kP/7xjwfrL45BIAUCLLKmEGU0QgACEIAABCDQJoHvf//7Zvr06dZvm2zyRv53/JVXXmnqLJL6TihJH9KX9Jn1X96Kr+Jz6KXst9RTKNp1a9fnm6Nw8SVHu5AJkNd2dGBSZJIajxT0/uY3vzGvf/3rK+9DhcHUqVPNKaecMtT7T+XcMrdnnnmmmEilmrxXVey72uZtHXTQQUb8pUBgEIE0foUMosDnQRJgkTXIsOBU4gQYl4knAPIhAAEIQAACEPAicP/995tZs2ZZk0D5iZw99tjDLF261Dz99NMD+3BNCo03obRu3box29JHvs/yvvgovsZQyr5LPYWiXbd2fb45ChdfcrQLmQB5bUcHJkUmqfFIRe/mzZvN2WefbSZOnDjufanweMMb3mCuuOIK89hjjxWT4//Vpk2bZtnYuHGjda60Fztiz8U5f0z8Ev/ETwoEhiGQxq+QYUhwTnAEWMwJLiQ4BAHDuCQJIAABCEAAAhCAgB+BtWvXmqOPPnrgxI4soB577LHmlltuMRs2bHB2NsyEkrQVG2LLtSibn0ySffFNfIyllP2XegpFu27t+nxzFC6+5GgXMgHy2o4OTIpMUuORmt4VK1aY2bNnD7w3zrjsvffe5p3vfKe57LLLxu5xf/rTn5rtttvOav+jH/1o7HM5T86XdpmNQVvxR/yiQKAOgTR+hdQhwrnBEPjgBz9oXQA/8YlPBOMfjkAgRQIssqYYdTRDAAIQgAAEINAmgauuusrsuOOO1m8d16SPvCNK/sf9mWeeaa699lpz5513mjVr1jgnlG677baxc+RcaTPe+6XyfYkv4lNsJa8h249Ng4+/mdb81sdOqG3yurL9UH3t06+MRX7bZ//0BYEuCOTzOdvvop+YbGYc8tuY/G/b1zyHbL/tPkKyl2nMb0Pyrwtf5FUWn/zkJ832228/1L1xnk2b+9K/+FHn9R1d8MBmnARYZI0zbkl4zSJrEmFGZGQEGJeRBQx3IQABCEAAAhAIksCTTz5p5s+fbyZMmDCyCSXpW3wQX2Isrom1GHXU9Vm7bu366sY7Ox8uGQm2mgiQ13Y0YVJkkhqP1PTmo/3EE0+MPaJ3+vTpvd4bS3/yaGDpnwIBXwIssvqSo13nBFjM6RwxHUCgNgHGZW1kNIAABCAAAQhAAAKVBFatWmWOOeaYod5J5Zp48zkm75mSPqXvmItLe8x6hvVdu27t+oaNc/k8uJSJUNdAgLy2owiTIpPUeKSmtxjtLbV169aNPQ74Na95TaeLrWJfHics/VEg0JQAi6xNCdK+MwLyv0jKXy7yZ/sUCEBgdARYZB0de3qGAAQgAAEIQEAvgYcffticeuqpZubMmdZvoPJvIt+62JY+pC8NxcVBg65BGrTr1q5vUHyrPodLFRmOx0yAvLajB5Mik9R4pKa3GG279uCDD5rzzjvPHHTQQUO/BsPFUI7JazTEjtgTuxQItEmARdY2aWKrVQIssraKE2MQaIUA47IVjBiBAAQgAAEIQAACTgKbN2823/72t8ce47vXXns1XnAVG/JIYLEptjUV1ySaJn1VWrTr1q6vKq6DjsNlECE+j5EAeW1HDSZFJqnxSE1vMdrj19avX2+++93vmksvvdQsWrTIzJ0718yePdvsvvvuY+9z3Wabbca2Upfj8rmcJ+dLuw0bNozfAZ9CoAEBFlkbwKNptwRYzOmWL9Yh4EOAcelDjTYQgAAEIAABCEDAj8CaNWvM9ddfP/a/7uURvwceeKCZNWuW2Xnnnc3kyZPH/sm+HJPP5Bz5H/rSRtpqLqlORGrXrV2f75iEiy852oVMgLy2owOTIpPUeKSmtxhtahCIlwCLrPHGTr3nH/jAB6z/uX3RRRep141ACIRMgEXWkKODbxCAAAQgAAEIQCAdAqlORGrXrV2f7wiFiy852oVMgLy2owOTIpPUeKSmtxhtahCIlwCLrPHGTr3nLLKqDzECIyTAuIwwaLgMAQhAAAIQgAAEFBJIdSJSu27t+nyHIlx8ydEuZALktR0dmBSZpMYjNb3FaFODQLwEWGSNN3bqPWcxR32IERghAcZlhEHDZQhAAAIQgAAEIKCQQKoTkdp1a9fnOxTh4kuOdiETIK/t6MCkyCQ1HqnpLUabGgTiJcAia7yxU+85iznqQ4zACAkwLiMMGi5DAAIQgAAEIAABhQRSnYjUrlu7Pt+hCBdfcrQLmQB5bUcHJkUmqfFITW8x2tQgEC8BFlnjjZ16z5csWWK9k/Xiiy9WrxuBEAiZAIusIUcH3yAAAQhAAAIQgEA6BFKdiNSuW7s+3xEKF19ytAuZAHltRwcmRSap8UhNbzHa1CAQLwEWWeONnXrPWWRVH2IERkiAcRlh0HAZAhCAAAQgAAEIKCSQ6kSkdt3a9fkORbj4kqNdyATIazs6MCkySY1HanqL0aYGgXgJsMgab+zUe85ijvoQIzBCAozLCIOGyxCAAAQgAAEIQEAhgVQnIrXr1q7PdyjCxZcc7UImQF7b0YFJkUlqPFLTW4w2NQjES4BF1nhjp97zs846y3pc8Kc+9Sn1uhEIgZAJsMgacnTwDQIQgAAEIAABCKRDINWJSO26tevzHaFw8SVHu5AJkNd2dGBSZJIaj9T0FqNNDQLxEmCRNd7YqfecRVb1IUZghAQYlxEGDZchAAEIQAACEICAQgKpTkRq161dn+9QhIsvOdqFTIC8tqMDkyKT1HikprcYbWoQiJcAi6zxxk695yzmqA8xAiMkwLiMMGi4DAEIQAACEIAABBQSSHUiUrtu7fp8hyJcfMnRLmQC5LUdHZgUmaTGIzW9xWhTg0C8BFhkjTd26j0/88wzrccFX3LJJep1IxACIRNgkTXk6OAbBCAAAQhAAAIQSIdAqhOR2nVr1+c7QuHiS452IRMgr+3owKTIJDUeqektRpsaBOIlwCJrvLFT7zmLrOpDjMAICTAuIwwaLkMAAhCAAAQgAAGFBFKdiNSuW7s+36EIF19ytAuZAHltRwcmRSap8UhNbzHa1CAQLwEWWeONnXrPWcxRH2IERkiAcRlh0HAZAhCAAAQgAAEIKCSQ6kSkdt3a9fkORbj4kqNdyATIazs6MCkySY1HanqL0aYGgXgJsMgab+zUe37GGWdYjwu+9NJL1etGIARCJsAia8jRwTcIQAACEIAABCCQDoFUJyK169auz3eEwsWXHO1CJkBe29GBSZFJajxS01uMNjUIxEuARdZ4Y6fecxZZ1YcYgRESYFxGGDRchgAEIAABCEAAAgoJpDoRqV23dn2+QxEuvuRoFzIB8tqODkyKTFLjkZreYrSpQSBeAiyyxhs79Z6zmKM+xAiMkADjMsKg4TIEIAABCEAAAhBQSCDViUjturXr8x2KcPElR7uQCZDXdnRgUmSSGo/U9BajTQ0C8RJgkTXe2Kn3/PTTT7ceF3zZZZep141ACIRMgEXWkKODbxCAAAQgAAEIQCAdAqlORGrXrV2f7wiFiy852oVMgLy2owOTIpPUeKSmtxhtahCIlwCLrPHGTr3nLLKqDzECIyTAuIwwaLgMAQhAAAIQgAAEFBJIdSJSu27t+nyHIlx8ydEuZALktR0dmBSZpMYjNb3FaFODQLwEWGSNN3bqPWcxR32IERghAcZlhEHDZQhAAAIQgAAEIKCQQKoTkdp1a9fnOxTh4kuOdiETIK/t6MCkyCQ1HqnpLUabGgTiJcAia7yxU+85iznqQ4zACAkwLiMMGi5DAAIQgAAEIAABhQRSnYjUrlu7Pt+hCBdfcrQLmQB5bUcHJkUmqfFITW8x2tQgEC8BFlnjjZ16z9///vdb72RdunSpet0IhEDIBFhkDTk6+AYBCEAAAhCAAATSIZDqRKR23dr1+Y5QuPiSo13IBMhrOzowKTJJjUdqeovRpgaBeAmwyBpv7NR7ziKr+hAjMEICjMsIg4bLEIAABCAAAQhAQCGBVCcitevWrs93KMLFlxztQiZAXtvRgUmRSWo8UtNbjDY1CMRLgEXWeGOn3nMWc9SHGIEREmBcRhg0XIYABCAAAQhAAAIKCaQ6Ealdt3Z9vkMRLr7kaBcyAfLajg5MikxS45Ga3mK0qUEgXgIsssYbO/Wen3baadbjgi+//HL1uhEIgZAJsMgacnTwDQIQgAAEIAABCKRDINWJSO26tevzHaFw8SVHu5AJkNd2dGBSZJIaj9T0FqNNDQLxEmCRNd7YqfecRVb1IUZghAQYlxEGDZchAAEIQAACEICAQgKpTkRq161dn+9QhIsvOdqFTIC8tqMDkyKT1HikprcYbWoQiJcAi6zxxk695yzmqA8xAiMkwLiMMGi4DAEIQAACEIAABBQSSHUiUrtu7fp8hyJcfMnRLmQC5LUdHZgUmaTGIzW9xWhTg0C8BFhkjTd26j1fvHix9bjgT3/60+p1IxACIRNgkTXk6OAbBCAAAQhAAAIQSIdAqhOR2nVr1+c7QuHiS452IRMgr+3owKTIJDUeqektRpsaBOIlwCJrvLFT7zmLrOpDjMAICTAuIwwaLkMAAhCAAAQgAAGFBFKdiNSuW7s+36EIF19ytAuZAHltRwcmRSap8UhNbzHa1CAQLwEWWeONnXrPWcxRH2IERkiAcRlh0HAZAhCAAAQgAAEIKCSQ6kSkdt3a9fkORbj4kqNdyATIazs6MCkySY1HanqL0aYGgXgJsMgab+zUe37qqadajwv+zGc+o143AiEQMgEWWUOODr5BAAIQgAAEIACBdAikOhGpXbd2fb4jFC6+5GgXMgHy2o4OTIpMUuORmt5itKlBIF4CLLLGGzv1nrPIqj7ECIyQAOMywqDhMgQgAAEIQAACEFBIINWJSO26tevzHYpw8SVHu5AJkNd2dGBSZJIaj9T0FqNNDQLxEmCRNd7YqfecxRz1IUZghAQYlxEGDZchAAEIQAACEIBAxAQ2bNhgvvvd75pLL73ULFq0yMydO9fMnj3beuqRTEzKcflczpPzpZ2011S0T8Bq1+ebi3DxJUe7kAmQ13Z0YFJkkhqP1PQWo00NAvESYJE13tip9/x973uf9cP5s5/9rHrdCIRAyARYZA05OvgGAQhAAAIQgAAEdBB48MEHzXnnnWcOOuggs+2221q/C12TkFXHpL3YEXtiN/bi0hm7prz/2vXltdbZh0sdWpwbCwHy2o4UTIpMNPNYs2aNuf7668fuT4455hhz4IEHOu93Zs2aNfaZnCP3MtJG2lIgAIFwCLDIGk4s8KREgEXWEhCqEAiAAOMygCDgAgQgAAEIQAACEFBIYN26deayyy4zr3nNa5yTjK6JVp9jYl/6kf5iLC7NMeqo8lm7virdg47DZRAhPo+RAHltRw0mRSaaeGzevNl8+9vfNvPnzzd7771343sdsSG2xKbYpkAAAqMjwCLr6NjT8wACLOYMAMTHEBgBAcblCKDTJQQgAAEIQAACEFBM4IknnjBnn322mT59euMJR9dkbNUx6U/6lf5jKi49Mfk/yFft+gbpr/ocLlVkOB4zAfLajh5Mikw08Hj44YeNPBVu5syZnd3niG3pQ/qiQAAC/RNgkbV/5vQ4JAEWc4YExWkQ6JEA47JH2HQFAQhAAAIQgAAEFBPYtGmTueiii8z222/f2aSja3K2fEz6Fz/EnxhK2X+payra9fnGCi6+5GgXMgHy2o4OTIpMYuaxatUqI4/4nThxYm/3OdKX9Cl9UyAAgf4I6Lob748bPfVA4L3vfa/1JfS5z32uh57pAgIQqCLAImsVGY5DAAIQgAAEIAABCAxLYMWKFWb27NnW7z3XZKock0fiveMd7zCXXnqpueWWW8xPf/pTZ1s5Lp/LeXJ+ncfxiT/iV+jFxSh0n+v4p11fHRb5c+GSp8G+FgLktR1JmBSZxMjjySefHHuM74QJE5z3Ki5NbR+TvuVRwuILBQIQ6J4Ai6zdM6YHTwIssnqCoxkEOiTAuOwQLqYhAAEIQAACEICAcgLyzjB5RO8wf9Xxhje8wVxxxRXmsccec1JxTUi6TpT2Ykfsudrkj4lf4l/I7zbL+5vtu3THeizTlN/GqqVNv/M8sv027WMLAqMgkOVyfjsKP0LqM88i2w/Jv759yRjkt337UKe/q666yuy4444D7zdEz7bbbjt2b3LmmWeaa6+91tx5553Odo8++ujYZ3KOnCv3M9I2z6RqX3wRnygQgEC3BFhk7ZYv1hsQYDGnATyaQqAjAozLjsBiFgIQgAAEIAABCCgn8Jvf/Ma8/vWvH3dScOrUqeaUU04xq1evHkjDNaE4qJHYfc973mOkH1f77NhBBx1kxN8QS+Zjfhuin74+5XVl+762NLXLWOS3mvShJU0C+XzO9tMk8aLqjEN+++Kn6e3lOWT7IVJYu3atOfroo8e9txD/5f7j2GOPHXvqxoYNGywpmcb81jrJGLN+/foxG2Jr0D2N2BLfxEcKBCDQDQEWWbvhitUWCMiP6/yXiuzL/0CmQAACoyPAIuvo2NMzBCAAAQhAAAIQiJXAz372M7PXXntZv++y33vyFxmnnXZarcfaZW3z22H5yOPzpL/x/hJE/BW/Qyt5vdl+aD428SfTlN82saelbZ5Htq9FGzrSJZDlcn6bLo0tyvMssv2UmWQM8tvQeNx///1m1qxZlfc44vsee+xhli5dap5++ulx3c/rzPbHbWCMWbdunbnsssvG+sjauLbio/hKgQAE2ifAImv7TLHYEgEWWVsCiRkItEiAcdkiTExBAAIQgAAEIACBBAjcc889ZsaMGZWTj3PnzjUPPfRQbRKuCcS6RqRf6d9lS46J3ytXrqxrttPzXb522mHPxrXr88UJF19ytAuZAHltRwcmRSah8/j+979vXvrSl457H3HllVeaTZs2FYVV1JrolT7kj5PGu+eaPn26EZ8pEIBAuwRYZG2XJ9ZaJMBiToswMQWBlggwLlsCiRkIQAACEIAABCCQAIEHHnjA7LTTTs7Jx0mTJpmLLrrIm0KTichyp+KH+OOyKf6LjlCKy8dQfGvDD+36fBnBxZcc7UImQF7b0YFJkUnIPG6++WYzefJk572D+P2ud73LPPXUU0VBA2pt6JU+pW+XLTkmPovvFAhAoD0CLLK2xxJLLROQd+WUvxDkf/9QIACB0RFgkXV07OkZAhCAAAQgAAEIxERA3n+6++67W7/p5DfezJkzjfyFa5NS/q0o9Sbl7rvvHvPLZVd0DPOe2Cb9D9vW5d+wbWM4T7s+3xjAxZcc7UImQF7b0YFJkUmoPG6//fbKBVb5z1m+i5ht6hUfqv6jmyy0igYKBCDQDoFmv0La8QErEHASYJHViYWDEBgpAcblSPHTOQQgAAEIQAACEIiCwMaNG82rXvUq5wLrPvvsY37xi1801tHmRGTmjPgl/rlsix7RNeri8m3UPrXZv3Z9vqzg4kuOdiETIK/t6MCkyCREHj/84Q/N9ttv77xX2H///c2aNWuKImrU2tYrvohPLruiQbRQIACB5gRYZG3OEAsdEWAxpyOwmIVAAwKMywbwaAoBCEAAAhCAAAQSIXDCCSc4J/T2228/8+STT7ZCwTVh2IZh8U/8dNkXXaMuLr9G7VOb/WvX58sKLr7kaBcyAfLajg5MikxC4yH3CHvssYfzHuGNb3yjWbt2bVFAzVoXesUn8c1lW7S0dV9WUyqnQ0AVARZZVYVTl5iTTz7Z+gL4+7//e10iUQOByAiwyBpZwHAXAhCAAAQgAAEI9Ezgi1/8ovU7Tib2Zs2aZR5//PHWvHFNFrZlXPwUf119iL5RFpdPo/Sn7b616/PlBRdfcrQLmQB5bUcHJkUmofE4+OCDnfcGsoj57LPPFp33qHWlV3yrWmg95JBDPDylCQQgkCfAImueBvtBEWCRNahw4AwExggwLkkECEAAAhCAAAQgAIEqAvLXEDNmzLAmILfbbjvz4IMPVjXzOt7VRGTmjPgrfpf7EX2j/KuPsj9S11S06/ONFVx8ydEuZALktR0dmBSZhMTj4osvtu4JxL8DDzzQrFu3rui4Z61LveKj+OrqQ7RRIAABfwK67sb9OdAyQAIs5gQYFFxKngDjMvkUAAAEIAABCEAAAhCoJFD1mOAbbrihso3vB65JQl9bVe3Eb1c/o3xssMufKv9jPK5dn29M4OJLjnYhEyCv7ejApMgkFB6PPvqomTZtmnVPMHPmTPOrX/2q6HSDWtd6xdddd93V0iHaRCMFAhDwI8Aiqx83WvVA4KSTTrIu+p///Od76JkuIACBKgIsslaR4TgEIAABCEAAAhBIm8C9995r/X6TycITTzyxEzBdT0RmTr/97W936hK9fZX169eb5cuXm4ULFzp9mTNnjlm0aJG58cYbjZwbc+krrrExgktsEcPfYQiQ1zYlmJix77HQvvMOO+ww6/t34sSJ5vbbb7eD2OBIH/EXn8X3cl+ikQIBCPgRYJHVjxuteiDAImsPkOkCAjUJMC5rAuN0CEAAAhCAAAQgkAiBI444wpqw23nnnc1TTz3VCYHy5KDUuyjiv+go9yd6uy6PPPKIWbBggfOvZ8r+ZHX5axRpI21jLJmO/DZGHW37nOeR7bfdB/Yg0DeBLJfz2759CK2/PItsPzQfu/In1O+8FStWWPcAEpszzjijdRRZzPPb1jsxxpx++ulOTaKVAgEI1CfQza+Q+n7QAgIWARZzLCQcgMDICTAuRx4CHIAABCAAAQhAAALBEbjvvvuck3VXX311Z77mJyCz/a46Ex1ZH/mt6O6iPPvss2bJkiVm0qRJzn7zPlTtS1uxIbZiKi49Mfnfla9w6YosdkdJgLy26afIJPTvvLlz51rfxXvuuafZsGGDHcCGR/qKvzz1QjSU+xOtFAhAoD4BFlnrM6NFTwRYzOkJNN1AoAYBxmUNWJwKAQhAAAIQgAAEEiEwf/58a6Ju7733Nps3b+6MQHliUOpdFdEhesp9iu62y+rVq80BBxxg9VXue9i62BKbsRSXrlh879JPuHRJF9ujIkBe2+RTYxL6d96dd97p/D6+6aab7OC1cKTP+IsGV3+imQIBCNQj0N2vkHp+cDYELALvfve7rYv9F77wBes8DkAAAv0RYJG1P9b0BAEIQAACEIAABGIgsHHjRrPDDjtYv92uueaaTt13TQx22aHoKfcpukV/W2XVqlVm5syZVj/lfuvWxabYjqG4tMXgd9c+wqVrwtgfBQHy2qaeEpMYvvPmzZtnfSfvv//+duBaOtJ3/EVLuU/RTIEABOoRYJG1Hi/O7pEAi6w9wqYrCAxJgHE5JChOgwAEIAABCEAAAokQuO6666wJuunTp3f+mNrypKDUuyzyOEPRVe5X9LdR5K95ulhgzfwV2zH8RWvmb37bBt/YbeR5ZPuxa8J/CGS5nN+mTiXPItvXyCSG77x169aZqVOnWt/7y5Yt6ywkWczz2846M8aIlnxfsi+aRTsFAhAYnkC3v0KG94MzIWARYDHHQsIBCIycAONy5CHAAQhAAAIQgAAEIBAUgbe+9a3WBJ3cM3ZdypOCUu+6uO6FRX/TIgu4bT4i2MVGjkkfob+j1eV7U74a2sNFQxTRUCZAXpeJGOv7VBhpK7F857meYLHrrrua5557rrOQ9D0mRItoKvfb9dNIOgOIYQiMiIC+K/WIQNJt+wQWLVpkXeSvuuqq9jvCIgQgMDQB18QSj/EeGh8nQgACEIAABCAAAXUEZsyYYf1uu+OOOzrXWZ4Q7GMiWnSV+xX9TcuSJUssu+V+2qpLXyEXl86Q/e3LN7j0RZp++iRAXtu0U2ASy3fekUceaX03L1682A5ai0dGEX/RVO5XtFMgAIHhCbDIOjwrzuyZAIusPQOnOwgMQYBxOQQkToEABCAAAQhAAAKJEPjRj35kTczJe0o3b97cOYHyhKDUuy6iy/X+WeHgWx555BEzadIki6NLXxvHpC/pM9Ti0hiqr336BZc+adNXXwTIa5u0diaxfOc9//zzzlcE3HPPPXbQWjwyiviLpnK/8noEYUCBAASGI9D9r5Dh/OAsCFgEWMyxkHAAAiMnwLgceQhwAAIQ6UaAUgAAIABJREFUgAAEIAABCARD4POf/7w1MXf44Yf34l95QlDqfRTRV+5bOPiWBQsWWPbK9tuuS5+hFpfWUH3t0y+49EmbvvoiQF7bpLUzieU7b+XKldZ3cx8Lj6OIf9WCsjCgQAACwxHo51fIcL5wFgQKBBYuXGh9oV199dWFc6hAAAL9EmCRtV/e9AYBCEAAAhCAAARCJuB6xNwFF1zQi8ujmIgUYaKv3Lfv4wPXr19v/n/27jfIjiqv//hOICkSwg5MTIgbcRLd/NHgYlSWoPvDQSWowIKCIAK7GHahaqkKFEtt8YAnFA8WqiCPSO0CcdHInwUUFQU3ZhOVqCT8ERIDKBtIEPkj2SI1ZFIpGKrOrz6z3uXePufO7du3T/c5p9+nKjXTfbvP+X5f5/S9M/2d3Dtnzhyrv2z/ZW9rTI0dYnPlGmKcVceES9XijFeFAOvaVk7ZJKbXvA0bNlivzVW8hW5d8+96a2QZ0BBAIJ8ARdZ8ThxVgwBF1hrQGRKBHgJclz2AeBgBBBBAAAEEEGiQwNlnn23dhHzkkUcqEajrRqTyy44thyLtoYcesvrK9u1rW2OH2Fz5hhhn1THhUrU441UhwLq2lVM2iek1b926ddbr86233mpPWMl76pp/5ZYdWwY0BBDIJ0CRNZ8TR9UgQDGnBnSGRKCHANdlDyAeRgABBBBAAAEEGiSwYsUK66bcrl27KhHI3gzUdhVN+WXHlkOR5vrZOtu3r229Q02IzZVviHFWHRMuVYszXhUCrGtbOWWTmF7z1qxZY73WP/roo/aElbynrvlXbtmxZUBDAIF8AtX8FpIvFo5CoEPA9T799957b8cxbCCAQLUCrh+KeRvvaueA0RBAAAEEEEAAgVAEPvOZz1g35bI36ZqwLYci7fOf/3xtfho7xOZaLyHGWXVMuFQtznhVCLCubeWUTWJ6zVu+fLn1+rx79257wkreU9f8K7fs2DKgIYBAPgGKrPmcOKoGAYqsNaAzJAI9BLguewDxMAIIIIAAAjkEHvjea+aLN2zjHwbRr4GjZlX/eaLZm4AhbMuhyDU9a/awdVOzqnw0dpGYfZ/jyt/3mDH0jwuvmTGs035jZF3b6zplk5he846Z+xO1vT671kAd+2TQ7zXN8fY1jUm8Jg9ufj3Hb/Y/OoQia24qDqxagGJO1eKMh0BvAa7L3kYcgQACCCCAQC8Biqzx/rLNjZLOuRsamtH4m5C68SmHImtjxlEza/PT2EVi9n2O60ay7zFj6B+XzueeGOaMGHvPGevaNkrZJKbXPP6I7FOm6B+Q8dxnX9eYxGmi39nzNoqseaU4rnKBq666yvqFc+PGjZXHwYAIIPCJAEXWTyz4DgEEEEAAgaICFFnj/EWbGyT2vHET8lNTv7MWvREZ0w3nqtZ/ygWGQQxxsZ9/BvHk3DA8Wdf2PKRsEtNrHn9EVvwPyHh+ta9rTOI0ocha9G4H5wUlQJE1qOkgGASmBLguWQgIIIAAAggMLkCRNc5ftLlBYs8bb6f3oyJr0bfUi+mtE6ta/ykXGAYxxMV+/hnEk3PD8GRd2/OQsklMr3n8ERn/k5XXCfv5qWkmFFkHv+9BDwEIUMwJYBIIAYGMANdlBoRNBBBAAAEECghQZOWX9lRuUhw38tPWuw+NXbGxkrehretGtPLLji2HInN6/MKfs/rK9u1rW2MXidn3Oa58fY8ZQ/+48LoRwzrtN0bWtb2uUzaJ6TWPPyL7lCn6B2T9Pg9wvP08gEkYJhRZC9zo4JTwBCjmhDcnRIQA1yVrAAEEEEAAAQQQQKAlcPbZZ1tFwkceeaT1sNevrhvRXgf8v86VX3ZsORRpX/3qV62+sn372r766quLhOz9HFe+3geNYABcIpgkQuxbgHVtk6VsEtNr3vLly63X5927d9sTVvKeuuZfuWXHlgENAQTyCfCZrPmcOKoGgbVr11pP8H/yJ39SQyQMiQACLQGKrC0JviKAAAIIIIAAAghcd9111u9st9xySyUw2ZuB2q6iKb/s2HIo0h566CGrr2zfvra/+93vFgnZ+zmufL0PGsEAuEQwSYTYtwDr2iZL2SSm17w1a9ZYr8+PPvqoPWEl76lr/pVbdmwZ0BBAIJ9ANb+F5IuFoxDoEKDI2sHBBgJBCHBdBjENBIEAAggggAACCAQh8O1vf9u6KXfuuedWElv2ZqC2q2jKLzu2HIq0Q4cOmTlz5lj9Zfsve1tjauwQmyvXEOOsOiZcqhZnvCoEWNe2csomMb3mrVu3znptvvXWW+0JK3lPXfOv3LJjy4CGAAL5BKr5LSRfLByFQIcAxZwODjYQCEKA6zKIaSAIBBBAAAEEEEAgCIHnnnvOuil33HHHmcnJSe/xZW8Gatt3U17KLzu2HIq2r3zlK1Z/2f7L3taYoTZXrqHGWmVcuFSpzVhVCbCubenUTWJ5zduwYYP12nz++efbE1bynrrmX7llx5YBDQEE8gn4/y0kXxwchYAl8Md//MfWE/x3vvMd6zh2IIBAdQIUWauzZiQEEEAAAQQQQCAGgZGREev3tqeeesp76Nmbgdr23ZRXdlzlP0j7wQ9+YGbOnGn1mx2nrG2NpTFDba48Q421yrhwqVKbsaoSYF3b0qmbxPKat3PnTut1eXh42Hz88cf2pJW4p475V07KLTu2DGgIIJBPwP9vIfni4CgELAGKrBYJOxCoXYDrsvYpIAAEEEAAAQQQQCAogYsuusi6MXfNNdd4jzF7M1Dbvpvyyo6r/Adt3/jGN6x+s+OUta2xQm6uPEOOt6rYcKlKmnGqFGBd29pNMInhNa9b4XHHjh32pJW4p475f/rpp62fQaooKJfIRlcI1C7g/7eQ2lMkgFgFKObEOnPEnbIA12XKs0tuCCCAAAIIIIBA/wKbNm1y3pw7cuRI/531cUbVNyKVj+t/eij/QZv6/tznPmc5unIcZJ/G8D0vg1q48hu0zxTOxyWFWSSHrADrOitinK8D9lFx74nlNc/1FrrXXXedV/w6rgnllB23irdG9gpJ5whULECRtWJwhssvcOWVV1pP8vfdd1/+DjgSAQRKF6DIWjopHSKAAAIIIIAAAlELTExMOD+n9N577/WaV/aGoLZ9NuWTHVOfz3r48OFSht27d69ZsGCBNUZ2zKLb6ltjhN5c+YUecxXx4VKFMmNULcC6tsWbYhLDa97GjRut1+T58+ebjz76yJ64kvZUPf/KRTllx1XuNAQQyC/g97eQ/HFwJAKWAEVWi4QdCNQuwHVZ+xQQAAIIIIAAAgggEJzA2rVrrRt0S5YsMZOTk95izd4Q1LavpjyUT3ZM5V1me+GFF7wUWlVgVd8xtKyxz3mNwaMVIy4tCb6mJMC6tmezSSahv+aNj4+b2bNnW6/9Dz74oD1xJe2pev6VS3ZM5azcaQggkF/A328h+WPgSAScAhRznCzsRKBWAa7LWvkZHAEEEEAAAQQQCFLg+eeft27S6abdPffc4y3e7E1BbftqysM1nvIuu+l/95T51sHqK4b/wdpydDm3HmvyV1yaPPvp5s66tue2aSahv+Zdeuml1uv/ypUr7YkraU/V869csmMqZxoCCPQn4O+3kP7i4GgELIEvf/nL1hP9n/7pn1rHsQMBBKoToMhanTUjIYAAAggggAACMQmcd9551u9v8+bNMwcOHPCSRvamoLZ9NMWvPLLjKV9fTZ9X941vfMPMnDnTGjcbR7dtnas+Qv8M1qyhK5/sMU3cxqWJs55+zqxre46baBLya9727dudr8MPP/ywPXkl7Kly/pWDazzlTEMAgf4E/PwW0l8MHI2AU4Aiq5OFnQjUKsB1WSs/gyOAAAIIIIAAAsEKPPvss86bdVdccYWXmF03Bn0MpPhdYylf3+0HP/iB+cpXvmLmzJnjjMEVl47VOTo3xubKKcY8yo4Zl7JF6S8EAda1PQtNNgn1NW9sbMx6DT7ppJOMPpO+7FbV/B86dMgoh+x4ypWGAAL9C1Bk7d+MMyoSoJhTETTDINCHANdlH1gcigACCCCAAAIINEzg8ssvt27Y6QbeAw88ULpE9sagtstuits1jvKssulm6EMPPWS++tWvOuP5/Oc/P/WYjtGxMTeXd8z5lBU7LmVJ0k9IAqxrezYwMVOvYyG95m3dutX52nvDDTfYEzjgnqrmX7G7xtq2bduAGXA6As0UKP+3kGY6krUHgS996UvWE/6f/dmfeRiJLhFAIK8ARda8UhyHAAIIIIAAAgg0T+C9994zIyMj1u9xxx57rNmzZ0+pIK6bg2UOoHgVd3Yc5ac862rZeLSdUks9v6JzhUtROc4LWYB1bc8OJp0moXicc8451s8DM2bMMFu2bOkMeMCtKvJVzIo9O5ZypCGAQDGBtH4aL2bAWYEKUGQNdGIIq9ECXJeNnn6SRwABBBBAAAEEegrcd9991o073cgbHR01b775Zs/z8x6QvTmo7bKa4lS8rjGUX53NFVOd8ZQ9dur5FfXCpagc54UswLq2ZweTTpNQPPbt2+d86/758+ebt956qzPoAbZ856tYFXN2HH3UgHKkIYBAMYHyfgspNj5nIdBVgGJOVxoeQKA2Aa7L2ugZGAEEEEAAAQQQiEbgsssus27g6YbeihUrSvtfoNkbhNouo+l/qS5fvtwZf9VvE+zKx1ferrHq2Jd6fkVNcSkqx3khC7Cu7dnBpNMkJI/bb7/d+bPBqlWrzPj4eGfgBbd85qsYFatrDOVGQwCB4gLl/BZSfHzORKCrAMWcrjQ8gEBtAlyXtdEzMAIIIIAAAgggEI3A4cOHzcknn+y8kacC5uuvvz5wLq6bhIN2qriWLVvmjFv5KK+6m4+8686pffzU82vPtZ/vcelHi2NjEWBd2zOFSadJaB5nnXWW82eEM844wxw5cqQz+AJbvvJVbIrR1b9yoiGAwGACFFkH8+NsjwJXXHGF9eS/adMmjyPSNQII9BKgyNpLiMcRQAABBBBAAAEEJLB3716zcOFC63c63eBbsGCB2bFjx0BQrhuFg3SoeBSXq1/loXxCaK74QoirrBhSz6+oEy5F5TgvZAHWtT07mHSahOahd7tYtGiR82cFFTEPHjzYmUCfWz7yVUzdCqzKpc7Pme+Th8MRCFaAImuwU0NgFFlZAwiEJ8B1Gd6cEBECCCCAAAIIIBCqwO7du80JJ5zgvBk5c+ZMc9tttxUOvcwbkYpD8bj6VPzKI5TmijGU2MqII/X8ihrhUlSO80IWYF3bs4NJp0mIHs8884yZO3eu82eGlStXmv3793cm0cdW2fkqFsXk6lc5KBcaAggMLkCRdXBDevAkQDHHEyzdIjCAANflAHicigACCCCAAAIINFBA/0O0W6FVN/3GxsbMSy+91LeM64Zhv51oXI3v6kv7RkZGzM6dO/vt1uvxrli9Dlhx56nnV5QTl6JynBeyAOvanh1MOk1C9diyZYuZNWuW8+cH/czz2GOPdSaSc6vMfBVDt5+/FLtyoCGAQDkCFFnLcaQXDwKXX3659WL153/+5x5GoksEEMgrQJE1rxTHIYAAAggggAACCLQEXnnlFbN48WLr97vWzcSjjz7aXH/99X29ZV3r3PavrfF6fdVb42k8jdt+fvv3ildxh9baY2x9H1qMg8TTyqn96yD9pXJuu0fr+1RyI4/mCrTWcvvX5mr8KPN2i9b3TTZpGbR/DcVDRcxuhVbFe9VVV5kf/vCHfYXbnmfr+746MMYcOHBgauzW+dmvirloEbjfWDgegaYIUGRtykxHmCdF1ggnjZCTF+C6TH6KSRABBBBAAAEEEPAi8M4775jTTjuta1FTNwFnz55trr322lyff5q9aajtXk2fq6r+NY7r/Na+1atXG8UbYmvF2P41xDiLxtSeV+v7on2ldF7Lov1rSvmRSzMF2tdz6/tmSnySdcuh/esnjzbvu3aH1vchKWzbts0MDw93/ZlC74ixYcMG8+GHH+YKu5Vj+9dcJxozNYbG0pjt57d/r1gVMw0BBMoV6P1bSLnj0RsCuQUo5uSm4kAEKhPguqyMmoEQQAABBBBAAIHkBCYnJ81NN91kZsyY0fUGYOtm4Omnn27uuusu88YbbzgdWse1f3UdqPPVj/prP9b1veJSfIoz1OaKO9RYi8SVen5FTHQOLkXlOC9kAda1PTuYdJrE4LFr1y4zOjrqfJ5uxb9o0SKzfv1688EHH3QmmNlqHd/+NXOItTk+Pj7Vt8ZoPy/7vWJUrDQEEChfgCJr+ab0WJLAZZddZr043H///SX1TjcIIFBEgCJrETXOQQABBBBAAAEEEGgX2Lp1q1m6dKn1+172hmBre8mSJebKK680d955p3n88cfNyy+/7DxX+/W4jtPxOq/VR6+vikdxhd5ceYQecz/xpZ5fPxbtx+LSrsH3qQiwru2ZxKTTJBaPgwcPmgsvvLDnzxx6J41LLrlk6meViYmJzmT7+IManaufd9RXr3fnkKFiU4w0BBDwI0CR1Y8rvZYgQJG1BES6QKBkAa7LkkHpDgEEEEAAAQQQaKiA3jrvm9/8ppk7d27Pm5Kum6xl7dP4iiPvW/nVPV2uvOuOqczxU8+vqBUuReU4L2QB1rU9O5h0msTmcffdd5vjjz8+1881+lx4vcvGjTfeaDZu3Gi2b9/uPG/fvn1Tj+kYHatzpvtM+XYzxaKYaAgg4FeAIqtfX3ofQIBizgB4nIqAJwGuS0+wdIsAAggggAACCDRU4N133516i97pPtOs/YZhWd9rPL01sMaPqbnyjyn+XrGmnl+v/Ls9jks3GfbHLMC6tmcPk06TGD3ee+89s3btWjM0NOQsmrpyKnufxlYMioWGAAL+BSiy+jdmhIICf/RHf2S9GD3wwAMFe+M0BBAoQ4AiaxmK9IEAAggggAACCCCQFdBniultfk855RTr98Aybz6qf42j8WJsLosY8+gWc+r5dcu7135cegnxeIwCrGt71jDpNInZ44UXXjAXX3xxrs+hd+VZZJ8+W15jamwaAghUJ0CRtTprRupTgCJrn2AcjkAFAlyXFSAzBAIIIIAAAggg0HCBPXv2mJtvvtmsXr0691vidbsZqbfUUz/qT/3G3lx5xp5Te/yp59eeaz/f49KPFsfGIsC6tmcKk06TFDxeffVVs27dOrNgwQJvf0SmvjWGxqIhgED1AhRZqzdnxJwCFHNyQnEYAhUKcF1WiM1QCCCAAAIIIIAAAubQoUNm8+bN5o477jBXX321GRsbM0uXLjULFy6c+jzXo446auqrtrVfj+s4Ha/zJiYmklJM4YbzdBOSen7T5T7dY7hMp8NjsQqwru2Zw6TTJCWPyclJ88QTT0y9je/ixYsHLriqD70lsPpU3zQEEKhPgCJrffaM3EPg0ksvtV5wHnzwwR5n8TACCPgUoMjqU5e+EUAAAQQQQAABBBCYXiClG86uTFPPz5Vznn245FHimNgEWNf2jGHSaZKyx/79+839998/9U4beovfVatWmdHRUTNv3jwza9asqX/6Xvv0mI7Ru3LoHJ1LQwCBcAQosoYzF0SSEaDImgFhE4EABLguA5gEQkAAAQQQQAABBBBorEDKN5w1qannV3Th4lJUjvNCFmBd27ODSacJHp0ebCGAQJgCFFnDnBeiMsZQzGEZIBCeANdleHNCRAgggAACCCCAAALNEUj9hnPq+RVdqbgUleO8kAVY1/bsYNJpgkenB1sIIBCmAEXWMOeFqCiysgYQCFKAImuQ00JQCCCAAAIIIIAAAg0RSP2Gc+r5FV2muBSV47yQBVjX9uxg0mmCR6cHWwggEKYARdYw54WojDF/+Id/aL1V0EMPPYQNAgjUKECRtUZ8hkYAAQQQQAABBBBovEDqN5xTz6/oAsalqBznhSzAurZnB5NOEzw6PdhCAIEwBSiyhjkvREWRlTWAQJAC/PFDkNNCUAgggAACCCCAAAINEUj9hnPq+RVdprgUleO8kAVY1/bsYNJpgkenB1sIIBCmAEXWMOeFqCiysgYQCFKAImuQ00JQCCCAAAIIIIAAAg0RSP2Gc+r5FV2muBSV47yQBVjX9uxg0mmCR6cHWwggEKYARdYw54WojDGXXHKJ9XbB3/3ud7FBAIEaBSiy1ojP0AgggAACCCCAAAKNF0j9hnPq+RVdwLgUleO8kAVY1/bsYNJpgkenB1sIIBCmAEXWMOeFqCiysgYQCFKAP34IcloICgEEEEAAAQQQQKAhAqnfcE49v6LLFJeicpwXsgDr2p4dTDpN8Oj0YAsBBMIUoMga5rwQFUVW1gACQQpQZA1yWggKAQQQQAABBBBAoCECqd9wTj2/ossUl6JynBeyAOvanh1MOk3w6PRgCwEEwhSgyBrmvBCVMebiiy+23i744YcfxgYBBGoUoMhaIz5DI4AAAggggAACCDReIPUbzqnnV3QB41JUjvNCFmBd27ODSacJHp0ebCGAQJgCFFnDnBeiosjKGkAgSAH++CHIaSEoBBBAAAEEEEAAgYYIpH7DOfX8ii5TXIrKcV7IAqxre3Yw6TTBo9ODLQQQCFOAImuY80JUFFlZAwgEKUCRNchpISgEEEAAAQQQQACBhgikfsM59fyKLlNcispxXsgCrGt7djDpNMGj04MtBBAIU4Aia5jzQlTGmD/4gz+w3i74kUcewQYBBGoUoMhaIz5DI4AAAggggAACCDReIPUbzqnnV3QB41JUjvNCFmBd27ODSacJHp0ebCGAQJgCFFnDnBeiosjKGkAgSAH++CHIaSEoBBBAAAEEEEAAgYYIpH7DOfX8ii5TXIrKcV7IAqxre3Yw6TTBo9ODLQQQCFOAImuY80JUFFlZAwgEKUCRNchpISgEEEAAAQQQQACBhgikfsM59fyKLlNcispxXsgCrGt7djDpNMGj04MtBBAIU4Aia5jzQlTGmIsuush6u+BHH30UGwQQqFGAImuN+AyNAAIIIIAAAggg0HiB1G84p55f0QWMS1E5zgtZgHVtzw4mnSZ4dHqwhQACYQpQZA1zXoiKIitrAIEgBfjjhyCnhaAQQAABBBBAAAEEGiKQ+g3n1PMrukxxKSrHeSELsK7t2cGk0wSPTg+2EEAgTAGKrGHOC1FRZGUNIBCkAEXWIKeFoBBAAAEEEEAAAQQaIpD6DefU8yu6THEpKsd5IQuwru3ZwaTTBI9OD7YQQCBMAYqsYc4LUVFkZQ0gEKQARdYgp4WgEEAAAQQQQAABBBoikPoN59TzK7pMcSkqx3khC7Cu7dnBpNMEj04PthBAIEwBiqxhzgtRGWMuvPBC6zNZ/+Iv/gIbBBCoUYAia434DI0AAggggAACCCDQeIHUbzinnl/RBYxLUTnOC1mAdW3PDiadJnh0erCFAAJhClBkDXNeiIoiK2sAgSAF+OOHIKeFoBBAAAEEEEAAAQQaIpD6DefU8yu6THEpKsd5IQuwru3ZwaTTBI9OD7YQQCBMAYqsYc4LUVFkZQ0gEKQARdYgp4WgEEAAAQQQQAABBBoikPoN59TzK7pMcSkqx3khC7Cu7dnBpNMEj04PthBAIEwBiqxhzgtRGWN+//d/33q74L/8y7/EBgEEahSgyFojPkMjgAACCCCAAAIINF4g9RvOqedXdAHjUlSO80IWYF3bs4NJpwkenR5sIYBAmAIUWcOcF6KiyMoaQCBIAf74IchpISgEEEAAAQQQQACBhgikfsM59fyKLlNcispxXsgCrGt7djDpNMGj04MtBBAIU4Aia5jzQlQUWVkDCAQpQJE1yGkhKAQQQAABBBBAAIGGCKR+wzn1/IouU1yKynFeyAKsa3t2MOk0waPTgy0EEAhTgCJrmPNCVMaY3/u937PeLvixxx7DBgEEahSgyFojPkMjgAACCCCAAAIINF4g9RvOqedXdAHjUlSO80IWYF3bs4NJpwkenR5sIYBAmAIUWcOcF6KiyMoaQCBIAf74IchpISgEEEAAAQQQQACBhgikfsM59fyKLlNcispxXsgCrGt7djDpNMGj04MtBBAIU4Aia5jzQlQUWVkDCAQpQJE1yGkhKAQQQAABBBBAAIGGCKR+wzn1/IouU1yKynFeyAKsa3t2MOk0waPTgy0EEAhTgCJrmPNCVMaYCy64wHq74L/6q7/CBgEEahSgyFojPkMjgAACCCCAAAIINF4g9RvOqedXdAHjUlSO80IWYF3bs4NJpwkenR5sIYBAmAIUWcOcF6KiyMoaQCBIAf74IchpISgEEEAAAQQQQACBhgikfsM59fyKLlNcispxXsgCrGt7djDpNMGj04MtBBAIU4Aia5jzQlQUWVkDCAQpQJE1yGkhKAQQQAABBBBAAIGGCKR+wzn1/IouU1yKynFeyAKsa3t2MOk0waPTgy0EEAhTgCJrmPNCVMaY888/33q74L/+67/GBgEEahSgyFojPkMjgAACCCCAAAIINF4g9RvOqedXdAHjUlSO80IWYF3bs4NJpwkenR5sIYBAmAIUWcOcF6KiyMoaQCBIAf74IchpISgEEEAAAQQQQACBxAT2799v7r//fnPzzTebiy++2KxatcqMjo5af4isG9B6TMfoWJ2jc2Nt3FB3zxwubhf2xi3Aurbnr6kmExMTZvPmzeaOO+4wV199tRkbGzNLly51vuZpvx7XcTpe5+l8GgIIIFCXAEXWuuQZt6cAxZyeRByAQOUCXJeVkzMgAggggAACCCCAQAMEJicnzRNPPGHWrl1rlixZ4ryx7Lr53m2f+lBf6lN9x9Jc+cQSu884cfGpS991CbCubfkmmezZs2fqj4NWr15tjj766IFe93S++tEfG6lfGgIIIFClAEXWKrUZqy8Bijl9cXEwApUIcF1WwswgCCCAAAIIIIAAAg0RePXVV826devMggULBrrB7Lox39qnvjWGxgq9tWJu/xp6zFXE1+7R+r6KcRkDAZ8CrbXc/tXneDH03W7R+j6GuPPGOD5eUuRbAAAgAElEQVQ+bu68805zyimneHvNk5v61zgaj4YAAgj4FqDI6luY/gsLfPGLX7RecP/mb/6mcH+ciAACgwtQZB3ckB4QQAABBBBAAAEEEHjhhRem3uJ3xowZ1u+9rRvrZX/VWHpbYY0danPlHGqsVcaFS5XajFWVAOvalk7V5N133zU33XSTGR4eruw1T5YaT+NqfBoCCCDgS4Aiqy9Z+h1YgCLrwIR0gEDpAlyXpZPSIQIIIIAAAggggECDBN57772pt/EdGhqq9EZz+417ja23ElYsobX2OFvfhxZjHfG0LNq/1hEHYyJQpkD7em59X2b/MfbVcmj/GmMerZg//PBDc9ttt5m5c+fW9ponS42vOBQPDQEEEChbgCJr2aL0V5oAxZzSKOkIgdIEuC5Lo6QjBBBAAAEEEEAAgYYJ3H333eb444/PdaNZny93+umnmxtvvNFs3LjRbN++3ezbt895rh7TMTpW5+T9bDvFophCau2Fhdb3IcVXVywti/avdcXCuAiUJdC+nlvfl9V3rP20HNq/xprL1q1bzdKlS52vW+35tb7XZ4l/+ctfNnfccYd5/PHHzcsvv+w8V/v1uI7T8f18jrniUVw0BBBAoEwBiqxlatJXqQLnnXee9WKqF1EaAgjUJ0CRtT57RkYAAQQQQAABBBCIU+DgwYPmwgsvtH6/bd1Ybn2dPXu2ueSSS6ZuHk9MTDiTbR3b/jV74KFDh6b6UF/qs/1Y1/eKTTGG0FzxhRBX3THgUvcMML4PAda1rZqCyeTk5NRb9OZ5O3z9YdBdd91l3njjDRvDGOfrl+tAna9+1J/LsH2f4tJbCCtOGgIIIFCGAEXWMhTpw4sARVYvrHSKwEACXJcD8XEyAggggAACCCCAQMMEdu3aZUZHR6e96bto0SKzfv1688EHH/TUab9R3Pp+upPGx8fNnXfeaTRG63jXV8WoWOturtjqjimE8XEJYRaIoWwB1rUtGrvJO++8Y0477bRpX2/0xz/XXnut2bt3rw2Q2VPEQ/1+7Wtf6/lHRqtXrzaKl4YAAggMKkCRdVBBzvcmQDHHGy0dI1BYgOuyMB0nIoAAAggggAACCDRMYNu2bebTn/5015vNIyMjZsOGDX19RlyRG85i1+fQ6X/5aExXH9o3PDxsFHOdzRVbnfGEMjYuocwEcZQpwLq2NWM2eeWVV8zixYu7vsboreyvv/76vj4PfBAPfe64xpvuLfQVr+KmIYAAAoMIUGQdRI9zvQqce+651gvz3/7t33odk84RQGB6AYqs0/vwKAIIIIAAAggggAACEnjsscfMrFmzrN9pWzeMr7rqKnPgwIG+sVrnt3/tpxONqbHbz2//XjEr9rpaeyyt7+uKJaRxWxbtX0OKj1gQKCLQvp5b3xfpJ6VzWg7tX2PIb8eOHdP+Ec/Y2Jh56aWX+k6l3aH1fb+daFyN3zo/+1V/fLRz585+u+V4BBBA4McCFFl/TME3oQlQZA1tRogHAWO4LlkFCCCAAAIIIIAAAghML7Bly5auBdYTTjhhoCJm9uawtos0FVIVi6s/FVqVQx3NFU8dcYQ2Ji6hzQjxlCHAurYVYzTZvXt319eTmTNnmttuu81ONOeeMj0Uh+Jx9anXQ+VBQwABBIoIFPtpvMhInINAnwIUc/oE43AEKhDguqwAmSEQQAABBBBAAAEEohV45plnzNy5c503cVeuXGn2798/UG6um8NFO1QsisnVp3JQLlU3VyxVxxDieLiEOCvENKgA69oWjM1En3+6cOFC5+vIggULjP6H6yCtbI+nn37aKC5Xv8ojz+fEDpIP5yKAQJoCFFnTnNcksjrnnHOsF72/+7u/SyI3kkAgVgGKrLHOHHEjgAACCCCAAAII+BbQ578tWrTI+j1WN3PPOOMMc/DgwYFDcN0YHqRTxaTYXP0qF+VUZXPFUeX4oY6FS6gzQ1yDCLCubb2YTA4fPmxOPvlk5+vHsmXLzGuvvWYn2OceHx6KS/G5+lY+youGAAII9CNAkbUfLY6tVIAia6XcDIZALgGuy1xMHIQAAggggAACCCDQQIGzzjrLedNWRcwjR46UIuK6KTxox4qtW6F1zZo1g3bf1/k+8usrgEAPxiXQiSGsgQRY1zZfTCaXX3658zVvxYoVpf2Bji8P/QGR4nT1r7xoCCCAQD8CFFn70eLYSgUo5lTKzWAI5BLguszFxEEIIIAAAggggAACDRO4/fbbnTdrV61aZcbHx0vTcN0QLqNzxahYXf0rt6qaa/yqxg55HFxCnh1iKyrAurblYjH5zne+43y9GB0dNW+++aadWME9Pj0Up+J1jaH8aAgggEBeAYqseaU4rnKB3/3d37Ve6J544onK42BABBD4RIAi6ycWfIcAAggggAACCCCAgAT27dtn5syZY/3+qs99e+utt0pFct0MLmsAxTp//nwrD+WmHKtoPvOrIn5fY+DiS5Z+6xRgXdv6MZjof4GOjIxYrxXHHnus2bNnj53UAHt8eyhexZ0dR/lV/Xb5AzBxKgII1CxAkbXmCWD47gIUWbvb8AgCdQlwXdYlz7gIIIAAAggggAACoQq4/hBxxowZZsuWLaWHnL0RrO0ym2JW7NlxlGMVLTtu2flVkYOPMXDxoUqfdQuwru0ZiMGk29sEP/DAA3ZCA+6pwkNxu8bhbYMHnDxOR6BBAuX+NN4gOFL1L0Axx78xIyDQrwDXZb9iHI8AAggggAACCCCQssDWrVudN2e//vWve0nbdSO47IFuuOEGZ07K1XerIj/fOfjoHxcfqvRZtwDr2p6B0E2effZZ5+vDl770JTuZEvZU5XHFFVc481K+NAQQQKCXAEXWXkI8XpsAxZza6BkYga4CXJddaXgAAQQQQAABBBBAoIECY2Nj1o3Zk046yUxMTHjRqOKG86FDh4xyyI6lXH20gwcPmk2bNpm1a9daYyqGU089deoxHaNjm9iyc6FtGgKxC7CufzSDMT0Hnnfeedbz9Lx588yBAwe8LMeq1ojiVx7Z8ZQvDQEEEOglwE9lvYR4vDaB3/md37Fe3J588sna4mFgBBAwhiIrqwABBBBAAAEEEEAAgR8JbN++3fqdVTdoH374YW9E2RvA2vbRlINrLOVcVnvxxRfNpZdeambNmuUcyzW+jtU5OrdJzWXRpPzJNU2Bpq/r2J4Dn3/+eedz9T333ONtgVa5RpSHazzlTUMAAQSmE/Dz0/h0I/IYAjkFKLLmhOIwBCoU4LqsEJuhEEAAAQQQQAABBIIWULEve0N25cqVXmPOjqdtX025ZMdTzoO2999/f+p/pg4NDVn9Z8frtq1z9T9f1VcTmsuhCXmTY9oCTV3XsT4Hut5tYMmSJWZyctLbQq1yjSgP5ZMdU3nTEEAAgekE/P00Pt2oPIZADgGKOTmQOASBigW4LisGZzgEEEAAAQQQQACBIAXGx8fN7NmzrZuxDz74oNd4szd/te2rKZfseMpZuRdtO3fudL4VcXacvNt6W2P1mXpzeaSeM/mlL9DEdR3rc+Dhw4fNcccdZ70m3HvvvV4XatVrRPlkx1Teyp+GAAIIdBPw99N4txHZj0BOgd/+7d+2Xtj+/u//PufZHIYAAj4EKLL6UKVPBBBAAAEEEEAAgdgEXDdi58+fbz766COvqWRv/mrbV1Muyik7ZtGb6vr4nzlz5lj9Zfvvd1t9pv7RQi4TX/NOvwhUJdC0dR3zc6A+Ezs7X8PDw+bIkSNel0t2TG37bMpHeWXHVf40BBBAoJuA32embqOyH4EcAhRZcyBxCAIVC3BdVgzOcAgggAACCCCAAAJBCpx//vnWTdjrrrvOe6zZG7++bzgrp+yYyr3f9tRTT5ljjjnG6ivbd9Ft9a0xUm0ul1RzJa/mCDRpXcf+HHjRRRdZz9/XXHON98VaxxpRXtlxlT8NAQQQ6CZAkbWbDPtrF6CYU/sUEAAClgDXpUXCDgQQQAABBBBAAIGGCXz88cfO/+myY8cO7xLZG7/a9tmUU3ZM/S8fGeRtb7/9tjnxxBOtfrL9DrqtMTRWis1lk2Ke5NQsgaas6xSeA0dGRqzn8Cr+sKWONaK8suMqfxoCCCDQTcDvT+PdRmU/AjkEzj77bOtF7Xvf+16OMzkEAQR8CVBk9SVLvwgggAACCCCAAAKxCOgz9bI3YPstPBbNNTuutn22bgXlfj4H9YILLrC8XHmUsU9jpdhcNinmSU7NEmjKuo79OfC5556znsP1OaWTk5PeF2wda0R5uT5/Vg40BBBAwCXg96dx14jsQyCnAEXWnFAchkCFAlyXFWIzFAIIIIAAAggggECQAhs2bLBuOBd5C90iydVxw9n11sgyyNO2bt1qWblyKHOfxkytuXxSy5F8mifQhHWdwnPgt771Let5/Nxzz61kwda1RpRfdmw50BBAAAGXAEVWlwr7ghCgmBPENBAEAh0CXJcdHGwggAACCCCAAAIINFBg3bp11s3XW2+9tRKJ7E1fbftuyi07rgzytDPPPNM6N9tX2dsaM7XmMkotR/JpnkAT1nUKz4Guz+a+5ZZbKlmwda0R5Zcdu4rPXa8ElUEQQKB0Af8/jZceMh02RWDNmjXWC9rmzZubkj55IhCkAEXWIKeFoBBAAAEEEEAAAQQqFHD9rvroo49WEkH2pq+2fTfllh1XBr3a3r17zdDQkHVutq+ytzWmxk6puYxSyo9cmimQ+rpO5TnQdR/okUceqWTR1rVGlF92bDnQEEAAAZeA/5/GXaOyD4EcAq5fXCmy5oDjEAQ8CnBdesSlawQQQAABBBBAAIEoBJYvX27dfN29e3clsWdv+mrbd1Nu2XFl0KutX7/eOi/bj69tjZ1SczmllB+5NFMg9XWdynPgihUrrOfyXbt2VbJo61ojyi87thxoCCCAgEvA/0/jrlHZh0AOAYo5OZA4BIGKBbguKwZnOAQQQACBJAUe+N5r5os3bOMfBqyBSNfAMXN/wrr5mr0Zm/q2DHo9jy387Bdqc9LYveKL6XHXeoopfmLlNd+1BlJf16k8B/Ka96mp17I8r3uudc4+nv9YA3GugQc3v577XgRF1txUHFi1wFlnnWX9QvYP//APVYfBeAgg0CZAkbUNg28RQAABBBAoKECRNc5ftLlBwry11sBRs+ZYv6u6igUp75NBy6Pb12NPWFSbk8buFleM+11rKcY8iJnn0fY1kPq6TuU5kNe8HxVZ87zuta9vvuf5jjUQ9xrQ7+x5G0XWvFIcV7kARdbKyRkQgZ4CXJc9iTgAAQQQQACBngIUWeP+hZsbJszf0NCM2oqHrqJEHftk0OtaqPPGfGo3w11z3Mufx3muCn0NpL6uU3kO5DXvR0XWPK97oV9zxMfrAmsg/xqgyNrztgYHxCBAMSeGWSLGpglwXTZtxskXAQQQQMCHAEXW/L/cciMAqxDXQJ03zl1FiTr25Sli1nljPrWb4a45DvHaICaes/tZA6mv61SeA3nN43+y9nNdcyyvA6msAYqsPu6E0GflAhRzKidnQAR6CnBd9iTiAAQQQAABBHoKUGTl5kMqNx+amgefT/cpk+ez6eq8MZ+nCBzT+k29GBXTXBBrea/hqa/rVJ4Dec3jM1l53ivveQ/LeCwpsva8rcEBMQj81m/9lvUWTFu2bIkhdGJEIFkBiqzJTi2JIYAAAggggAACCOQUWL58ufW76u7du3OePdhhrqLEYD32Plu5ZceVQa+2dOlS67xsP762ly1b1iu8qB53OUWVAMEi4BBIfV2n8hy4YsUK67l8165djhktf1dda0T5ZceWAw0BBBBwCfCZrC4V9gUhQJE1iGkgCAQ6BLguOzjYQAABBBBAAAEEEGigwJo1a6ybr48++mglEtmbvtr23ZRbdlwZ9GoXXHCBdV62H1/bGjul5nJKKT9yaaZA6us6lefAs88+23ouf+SRRypZtHWtEeWXHVsONAQQQMAl4P+ncdeo7EMghwDFnBxIHIJAxQJclxWDMxwCCCCAAAIIIIBAcALr1q2zbr7eeuutlcSZvemrbd9NuWXHlUGvtn79euu8bD++tjV2Ss3llFJ+5NJMgdTXdSrPgdddd531XH7LLbdUsmjrWiPKLzu2HGgIIICAS8D/T+OuUdmHQA6B3/zN37Re0L7//e/nOJNDEEDAlwBFVl+y9IsAAggggAACCCAQi8CGDRus31XPP//8SsLP3vTVtu+m3LLjyqBX27t3rxkaGrLOzfZV9rbGfO2113qFF9XjLqOoEiBYBBwCqa/rVJ4Dv/3tb1vP4+eee65jRsvfVdcaUX7ZseVAQwABBFwC/n8ad43KPgRyCFBkzYHEIQhULMB1WTE4wyGAAAIIIIAAAggEJ7Bz507r5uvw8LD5+OOPvceavemrbZ9NOSm37LgyyNPOPPNM69xsX2Vva8zUmssotRzJp3kCTVjXKTwHPvfcc9bz+HHHHWcmJye9L9o61ojyUn7ZseVAQwABBFwCfn8ad43IPgRyClDMyQnFYQhUKMB1WSE2QyGAAAIIIIAAAggEKdCt8Lhjxw7v8WZv+mrbZ3v66aetG839FJT1blSumH3u27p1q0+SWvp2edUSCIMiUKJAE9Z1Ks+BIyMj1nP5U089VeJqcHdVxxpRXtlxlT8NAQQQ6Cbg96fxbqOyH4EcAr/xG79hvail+MtSDgoOQSAYAYqswUwFgSCAAAIIIIAAAgjUKOB6C90qPq8te+NX2z6b67P4+n1r5AsuuMD63d6VRxn7NFaKzWWTYp7k1CyBpqzrFJ4DL7roIut5/JprrvG+YOtYI8orO67ypyGAAALdBPz+NN5tVPYjkEOAImsOJA5BoGIBrsuKwRkOAQQQQAABBBBAIEiBjRs3Wjdh58+fbz766COv8WZv/GrbV1Muyik7pnLvp7399tvmxBNPtPrJ9jvotsbQWCk2l02KeZJTswSasq5TeA7ctGmT9RyudzU4cuSI10Vb9RpRPq63yFf+NAQQQKCbgL+fxruNyH4EcgpQzMkJxWEIVCjAdVkhNkMhgAACCCCAAAIIBCswPj5uZs+ebd10fvDBB73GXOUNZ+WSHU85K/d+m95+8ZhjjrH6y/ZfdFt9V/HWlf3mXdbxLpey+qYfBOoSaNK6jv05cGJiwvk5pffee6/X5VP1GlE+2TH1+ayHDx/2miedI4BA3AIUWeOev6Sjd304/LZt25LOmeQQCF2AImvoM0R8CCCAAAIIIIAAAlUJXHrppdbN2JUrV3odPnvzV9u+mnLJjqeci7Ynn3zSzJkzx+ozO0a/2+pTfafcXCYp50tuzRBo2rqO/Tlw7dq11vP3kiVLzOTkpLcFW+UaUR7KJzum8qYhgAAC0wn4+2l8ulF5DIEcAhRZcyBxCAIVC3BdVgzOcAgggAACCCCAAALBCmzfvt26Gaubsw8//LC3mLM3f7XtoykH11jKeZC2c+dOc9JJJzn7do3Xa5/6Up+pN5dD6jmTX/oCTVzXMT8HPv/8887n7nvuucfbYq1yjSgP13jKm4YAAghMJ+Dnp/HpRuQxBHIKUMzJCcVhCFQowHVZITZDIYAAAggggAACCAQvMDY2Zt2UVeFPb63oo7luAJc9zqFDh5yFUOVaRnv//feN/mfQ0NCQZefKz7VP56oP9dWE5jJoQt7kmLZAU9d1zM+B5513nvW8PW/ePHPgwAEvi7WqNaL4lUd2POVLQwABBHoJUGTtJcTjtQm4fln9x3/8x9riYWAEEDCGIiurAAEEEEAAAQQQQACBTwS2bt1q3ZTVTdobbrjhk4NK/C57A1jbZTfF7hqn7I/vefHFF43efnjWrFnO8Vwx6Fido3Ob1FwWTcqfXNMUaPq6jvE58Nlnn3U+X19xxRVeFmlVa0Txu8ZSvjQEEECgl0D5P433GpHHEcgpQJE1JxSHIVChANdlhdgMhQACCCCAAAIIIBCFwDnnnGPdnJ0xY4bZsmVL6fG7bgKXOYhiVuzZcZSjr6b/1bVp06ap/5maHVfbp5566tRjOqYp/3M1a+1yyR7DNgKxCbCufzRjsT0HXn755dZrhObygQceKH0JVrFGFLdrHOVJQwABBPIIUGTNo8QxtQhQzKmFnUERmFaA63JaHh5EAAEEEEAAAQQQaKDAvn37zJw5c6ybtPPnzzdvvfVWqSKuG8FlDaBYFXN2DOWmHKto2bG1TTPWnODCqkhBgOvdnsUYTN577z0zMjJiPS8de+yxZs+ePXZSA+zx7aF4FXd2HOWnPGkIIIBAHgF+Ws2jxDG1CFDMqYWdQRGYVoDrcloeHkQAAQQQQAABBBBoqMDtt99u3aTVTdtVq1aZ8fHx0lSyN4K1XUZTjIrV1b9yq6q5xq9q7JDHwSXk2SG2ogKsa1suFpP77rvP+XoxOjpq3nzzTTuxgnt8eihOxesaQ/nREEAAgbwC5fw0nnc0jkOgD4Ff//Vft17o/umf/qmPHjgUAQTKFqDIWrYo/SGAAAIIIIAAAgikInDWWWdZv8Pq5u0ZZ5xhjhw5UkqarpvBg3as2BSjq2/lVGVzxVDl+KGOhUuoM0Ncgwiwrm29mEwuu+wy5+vGihUrSvtfoL489L9Uly9f7oyftwm21yV7EEBgegGKrNP78GiNAhRZa8RnaAS6CHBddoFhNwIIIIAAAggggEDjBXTTdtGiRc6btipiHjx4cGCjsm84K6ZuBVblUvXbJZad38DggXSASyATQRilCrCubc6YTA4fPmxOPvlk52ueCpivv/66nWCfe3x4KK5ly5Y541Y+youGAAII9CNAkbUfLY6tVIBiTqXcDIZALgGuy1xMHIQAAggggAACCCDQUIFnnnnGzJ0713nzduXKlWb//v0DyZR5w1mxKCZXn8pBuVTdXLFUHUOI4+ES4qwQ06ACrGtbMDaTvXv3moULFzpfRxYsWGB27NhhJ9nHnrI9FI/icvWrPJQPDQEEEOhXgCJrv2IcX5mA669p//mf/7my8RkIAQRsAYqstgl7EEAAAQQQQAABBBBoF9iyZYuZNWuW8ybuCSecYB577LH2w/v63nVjuK8O/u9gxaBYXP0pduVQR3PFU0ccoY2JS2gzQjxlCLCubcUYTXbv3t319WTmzJnmtttusxPNuadMD8WheFx96vVQedAQQACBIgIUWYuocU4lAhRZK2FmEAT6EuC67IuLgxFAAAEEEEAAAQQaKqAiZrdCq27wXnXVVeaHP/xh3zqum8P9dHLgwIGpsV39aJ9iHqQI3E8srmNdcbmOa9o+XJo2483Il3Vtz3OsJvofot3+cEc5jY2NmZdeeslOuMeeMjw0rsZ39aV9IyMjZufOnT0i4WEEEECguwBF1u42PFKzAMWcmieA4RFwCHBdOlDYhQACCCCAAAIIIICAQ2Dbtm1meHh42hu7GzZsMB9++KHjbPcu101i95GdezWGxtLNZFcf2qdYFXOdzRVbnfGEMjYuocwEcZQpwLq2NWM2eeWVV8zixYu7vsYcffTR5vrrr+/rs74H8dBnims8jevqR/sUr+KmIYAAAoMIUGQdRI9zvQr8v//3/6wXwaeeesrrmHSOAALTC1Bknd6HRxFAAAEEEEAAAQQQaBfYtWuXGR0dtX63bb/hu2jRIrN+/XrzwQcftJ/q/L79vNb3zgP/b+f4+PhU3xqjdbzrq2JUrHU3V2x1xxTC+LiEMAvEULYA69oWjd3knXfeMaeddtq0rzezZ8821157ba7PPy3ioc9VVf8ax3V+a9/q1auN4qUhgAACgwpQZB1UkPO9CVBk9UZLxwgUFuC6LEzHiQgggAACCCCAAAINFTh48KC58MILp73Zq5u+uiF8ySWXmMcff9xMTEw4tVo3h9u/Zg/UuepDffW6yax+FJtiDKG159X6PoS46o6hZdH+te6YGB+BQQXa13Pr+0H7jP38lkP719hympycNDfddJOZMWNGz9e9008/3dx1113mjTfecKbZ7tD63nWgzlc/6q91XLevikvxKU4aAgggUIYARdYyFOnDiwDFHC+sdIrAQAJclwPxcTICCCCAAAIIIIBAgwXuvvtuc/zxx/e8Aawbw3p7Q90svvHGG83GjRvN9u3bzf79+53n6jEdo2N1znRvjdh+01mxKKaQWnt8re9Diq+uWFoW7V/rioVxEShLoH09t74vq+9Y+2k5tH+NNZetW7eapUuXOl+32vNrfb9kyRJz5ZVXmjvvvHPqD4Vefvll57narz8k0nE6Xue1+uj1VfEoLhoCCCBQpgBF1jI16atUgS984QvWi6R+eaQhgEB9AhRZ67NnZAQQQAABBBBAAIH4BfQZcWvXrjVDQ0PW77u9bg6X9bjGVgyKJbTmyjG0GOuIB5c61BnTtwDr2hZOzUSfB/7Nb37TzJ07t7bXPJlqfMXRz2eg27PDHgQQQMAtQJHV7cLeAAQosgYwCYSAQEaA6zIDwiYCCCCAAAIIIIAAAgUEXnjhBXPxxRfnejtF1033Ivv0FokaU2OH2lx5hRprlXHhUqU2Y1UlwLq2pVM1effdd6feond4eLjSYqvG01sDa3waAggg4EuAIqsvWfodWIBizsCEdIBA6QJcl6WT0iECCCCAAAIIIIBAgwVeffVVs27dOrNgwQJvN57Vt8bQWKG3VAsMg7rjMqgg54cowLq2ZyV1k/Hx8am3+T3llFO8vebJUP3r7YQ1Hg0BBBDwLUCR1bcw/RcW+LVf+zXrBfdf/uVfCvfHiQggMLgARdbBDekBAQQQQAABBBBAAIGswOTkpHniiSem3sZ38eLF1u/Crhvv0+1TH3pLYPWpvmNprpxiid1nnLj41KXvugRY17Z8k0z27Nljbr75ZrN69ercnyXu8tE+fRa5+lF/6peGAAIIVClAkbVKbcbqS4Aia19cHIxAJQJcl5UwMwgCCCCAAAIIIIBAwwX2799v7r///qkbxnqL31WrVpnR0VEzb948M2vWrKl/+v0PHR8AACAASURBVF779JiO0c1lnaNzY22uG+ix5lJm3LiUqUlfoQiwru2ZaKrJoUOHzObNm80dd9xhrr76ajM2NmaWLl1qFi5cOPV5qkcdddTUV21rvx7XcTpe501MTNiY7EEAAQQqEqDIWhE0w/QvQDGnfzPOQMC3ANelb2H6RwABBBBAAAEEEECguQJNLTD0mnFcegnxeIwCrGt71jCxTdiDAAIIhC5AkTX0GWpwfBRzGjz5pB6sANdlsFNDYAgggAACCCCAAAIIRC9AgcE9hbi4XdgbtwDr2p4/TGwT9iCAAAKhC1BkDX2GGhzfr/7qr1qfQ/Ov//qvDRYhdQTqF6DIWv8cEAECCCCAAAIIIIAAAqkKUGBwzywubhf2xi3AurbnDxPbhD0IIIBA6AIUWUOfoQbHR5G1wZNP6sEKcF0GOzUEhgACCCCAAAIIIIBA9AIUGNxTiIvbhb1xC7Cu7fnDxDZhDwIIIBC6AEXW0GeowfFRzGnw5JN6sAJcl8FODYEhgAACCCCAAAIIIBC9AAUG9xTi4nZhb9wCrGt7/jCxTdiDAAIIhC5AkTX0GWpwfKeffrr1dsH/9m//1mARUkegfgGKrPXPAREggAACCCCAAAIIIJCqAAUG98zi4nZhb9wCrGt7/jCxTdiDAAIIhC5AkTX0GWpwfBRZGzz5pB6sANdlsFNDYAgggAACCCCAAAIIRC9AgcE9hbi4XdgbtwDr2p4/TGwT9iCAAAKhC1BkDX2GGhwfxZwGTz6pByvAdRns1BAYAggggAACCCCAAALRC1BgcE8hLm4X9sYtwLq25w8T24Q9CCCAQOgCFFlDn6EGx7d69Wrr7YKffvrpBouQOgL1C1BkrX8OiAABBBBAAAEEEEAAgVQFKDC4ZxYXtwt74xZgXdvzh4ltwh4EEEAgdAGKrKHPUIPjo8ja4Mkn9WAFuC6DnRoCQwABBBBAAAEEEEAgegEKDO4pxMXtwt64BVjX9vxhYpuwBwEEEAhdgCJr6DPU4Pgo5jR48kk9WAGuy2CnhsAQQAABBBBAAAEEEIhegAKDewpxcbuwN24B1rU9f5jYJuxBAAEEQhegyBr6DDU4vtNOO816u+AdO3Y0WITUEahfgCJr/XNABAgggAACCCCAAAIIpCpAgcE9s7i4XdgbtwDr2p4/TGwT9iCAAAKhC1BkDX2GGhwfRdYGTz6pByvAdRns1BAYAggggAACCCCAAALRC1BgcE8hLm4X9sYtwLq25w8T24Q9CCCAQOgCFFlDn6EGx0cxp8GTT+rBCnBdBjs1BIYAAggggAACCCCAQPQCFBjcU4iL24W9cQuwru35w8Q2YQ8CCCAQugBF1tBnqMHxff7zn7feLnjnzp0NFiF1BOoXoMha/xwQAQIIIIAAAggggAACqQpQYHDPLC5uF/bGLcC6tucPE9uEPQgggEDoAhRZQ5+hBsdHkbXBk0/qwQpwXQY7NQSGAAIIIIAAAggggED0AhQY3FOIi9uFvXELsK7t+cPENmEPAgggELoARdbQZ6jB8VHMafDkk3qwAlyXwU4NgSGAAAIIIIAAAgggEL0ABQb3FOLidmFv3AKsa3v+MLFN2IMAAgiELkCRNfQZanB8FHMaPPmkHqwA12WwU0NgCCCAAAIIIIAAAghEL0CBwT2FuLhd2Bu3AOvanj9MbBP2IIAAAqELUGQNfYYaHN+pp55qfSbrM88802ARUkegfgGKrPXPAREggAACCCCAAAIIIJCqAAUG98zi4nZhb9wCrGt7/jCxTdiDAAIIhC5AkTX0GWpwfBRZGzz5pB6sANdlsFNDYAgggAACCCCAAAIIRC9AgcE9hbi4XdgbtwDr2p4/TGwT9iCAAAKhC1BkDX2GGhwfxZwGTz6pByvAdRns1BAYAggggAACCCCAAALRC1BgcE8hLm4X9sYtwLq25w8T24Q9CCCAQOgCFFlDn6EGx/crv/Ir1tsFP/vssw0WIXUE6hegyFr/HBABAggggAACCCCAAAKpClBgcM8sLm4X9sYtwLq25w8T24Q9CCCAQOgCFFlDn6EGx0eRtcGTT+rBCnBdBjs1BIYAAggggAACCCCAQPQCFBjcU4iL24W9cQuwru35w8Q2YQ8CCCAQugBF1tBnqMHxUcxp8OSTerACXJfBTg2BIYAAAggggAACCCAQvQAFBvcU4uJ2YW/cAqxre/4wsU3YgwACCIQuQJE19BlqcHy//Mu/bL1d8HPPPddgEVJHoH4Biqz1zwERIIAAAggggAACCCCQqgAFBvfM4uJ2YW/cAqxre/4wsU3YgwACCIQuQJE19BlqcHwUWRs8+aQerADXZbBTQ2AIIIAAAggggAACCEQvQIHBPYW4uF3YG7cA69qeP0xsE/YggAACoQtQZA19hhocH8WcBk8+qQcrwHUZ7NQQGAIIIIAAAggggAAC0QtQYHBPIS5uF/bGLcC6tucPE9uEPQgggEDoAhRZQ5+hBsf3S7/0S9bbBT///PMNFiF1BOoXoMha/xwQAQIIIIAAAggggAACqQpQYHDPLC5uF/bGLcC6tucPE9uEPQgggEDoAhRZQ5+hBsdHkbXBk0/qwQpwXQY7NQSGAAIIIIAAAggggED0AhQY3FOIi9uFvXELsK7t+cPENmEPAgggELoARdbQZ6jB8VHMafDkk3qwAlyXwU4NgSGAAAIIIIAAAgggEL0ABQb3FOLidmFv3AKsa3v+MLFN2IMAAgiELkCRNfQZanB8q1atst4u+N///d8bLELqCNQvQJG1/jkgAgQQQAABBBBAAAEEUhWgwOCeWVzcLuyNW4B1bc8fJrYJexBAAIHQBSiyhj5DDY6PImuDJ5/UgxXgugx2aggMAQQQQAABBBBAAIHoBSgwuKcQF7cLe+MWYF3b84eJbcIeBBBAIHQBiqyhz1CD46OY0+DJJ/VgBbgug50aAkMAAQQQQAABBBBAIBqBiYkJs3nzZnPHHXeYq6++2oyNjZmlS5da72algoP263Edp+N1ns5vUqPw0qTZbk6uTV7X+/fvN/fff7+5+eabzcUXX2x0r2V0dNT5HKjHdIyO1Tk6l4YAAgggEI4ARdZw5oJIMgIUczIgbCIQgADXZQCTQAgIIIAAAggggAACCEQosGfPnqkiwerVq83RRx/tLCa4ii6ufTpf/ajooH5Tby6D1HMmv/QFmrSuJycnzRNPPGHWrl1rlixZMtDzn9zUh/pSn+qbhgACCCBQnwBF1vrsGbmHwC/+4i9aP3S88MILPc7iYQQQ8ClAkdWnLn0jgAACCCCAAAIIIJCWwPj4uLnzzjvNKaecYv1+7yqwFN2n/jWOxkuxuVxSzJOcmiXQhHX96quvmnXr1pkFCxZ4ew5U3xpDY9EQQAABBKoXoMhavTkj5hSgyJoTisMQqFCA67JCbIZCAAEEEEAAAQQQQCBSgXfffdfcdNNNZnh42FthwVWg0XgaV+On1Fy5ppQfuTRTIOV1rf8korf4nTFjRmXPgRpLY/IfVJp5PZE1AgjUJ0CRtT57Ru4hQDGnBxAPI1CDANdlDegMiQACCCCAAAIIIIBAJAIffvihue2228zcuXMrKyy4CjUaX3EonhSaK8cU8iKHZgukuK7fe++9qbfxHRoaqu05UGPrrYQVCw0BBBBAwL8ARVb/xoxQUMD1dkIvvvhiwd44DQEEyhCgyFqGIn0ggAACCCCAAAIIIJCewNatW83SpUtzFxb0mYJf/vKXzR133GEef/xx8/LLLzvP1X49ruN0fD+fZ6h4FFfsLcViVOxzQvyDC6S2ru+++25z/PHHO5/Hsrnqc6VPP/10c+ONN5qNGzea7du3m3379jnP1WM6RsfqnLyfaa1YFBMNAQQQQMCvAEVWv770PoAARdYB8DgVAU8CXJeeYOkWAQQQQAABBBBAAIFIBSYnJ6feojfP22KqQHDXXXeZN954w5ltthChbVfT+epH/bnOad+nuPQWwooz1taeT+v7WHMhbgRaAq213P619VhMXw8ePGguvPDCns9Fs2fPNpdccsnUH41MTEw4U2y3aH2fPfDQoUNTfagv9dk6rttXxaYYaQgggAACfgTcP636GYteEehLgGJOX1wcjEAlAlyXlTAzCAIIIIAAAggggAACUQi888475rTTTpv2Jr+KANdee63Zu3dvz5xcRYJeJ6nfr33taz2LDatXrzaKN8ZWxCXGPIm5WQIprOtdu3aZ0dHRaZ8DFy1aZNavX28++OCDnhPcr8n4+Li58847jcZwndvapxgVKw0BBBBAoHwBiqzlm9JjSQKf+9znrB8Q+IGgJFy6QaCgAEXWgnCchgACCCCAAAIIIIBAYgKvvPKKWbx4sfV7e+umvt7S8vrrr+/rcwFb57Z/zcumzx/UeNO9labiVdyxtXaP1vex5UC8CGQFWmu5/Wv2mJC3t23bZj796U93fQ4cGRkxGzZs6OuzodstWt/nMdDnT+t/92vM1nnZr8PDw0Yx0xBAAAEEyhWgyFquJ72VKECRtURMukKgJAGuy5Ig6QYBBBBAAAEEEEAAgYgFduzYMe3N/LGxMfPSSy/1nWG2KKDtfpvG1fiuvrRPRYidO3f2222tx7tyqTUgBkegBIGY1/Vjjz1mZs2a1fV55qqrrjIHDhzoW2lQE42psV39aJ9iVuw0BBBAAIHyBPr/abW8sekJgWkFKOZMy8ODCNQiwHVZCzuDIoAAAggggAACCCAQjMDu3bvNCSec4LyJP3PmTHPbbbcVjtVVGCjameJQPK4+Fb/yiKW5coglduJEoJtArOt6y5YtXQusem4ZpIhZloli6PY8rUKrcqAhgAACCJQjQJG1HEd68SDwC7/wC9YvQzH9EuSBhC4RqF2AImvtU0AACCCAAAIIIIAAAgjUJqDPP124cKH1u7oKAwsWLDD6H66DtLIKDK0Ynn766am4XP0qjzyfE9vqq86vrvjrjIexEShDIMZ1/cwzz5i5c+c6nwNXrlxp9u/fPxBNmSaKRTG5+lQOyoWGAAIIIDC4AEXWwQ3pwZMARVZPsHSLwAACXJcD4HEqAggggAACCCCAAAIRCxw+fNicfPLJzhv2y5YtM6+99trA2bmKAYN2qrgUn6tv5aO8Qm+u2EOPmfgQ6CUQ27rW5z4vWrTI+VxyxhlnmIMHD/ZKuefjZZsoJsXm6le5KCcaAggggMBgAhRZB/PjbI8CFHM84tI1AgUFuC4LwnEaAggggAACCCCAAAKRC1x++eXOG/UrVqwo7Ua9qxBQBpsKCYrT1b/yCr254g49ZuJDoJdAbOv6rLPOcj6HqIh55MiRXunmetyHiWLrVmhds2ZNrrg4CAEEEECguwBF1u42PFKzgOsvZP/jP/6j5qgYHoFmC1Bkbfb8kz0CCCCAAAIIIIBAMwW+853vOIsLo6Oj5s033ywNxUeBoRWc4lS8rjGUX8jNFXPI8RIbAnkEYlrXt99+u/O5Y9WqVWZ8fDxPurmO8WWiGBWrq3/lRkMAAQQQKC5AkbW4HWd6FqDI6hmY7hEoIMB1WQCNUxBAAAEEEEAAAQQQiFhA/wt0ZGTEujl/7LHHmj179pSamasAUOYAildxZ8dRfiG/bWY2Xm3TEIhdIJZ1vW/fPjNnzhzreUOfQ/3WW2+VOg0+TRTr/PnzrTyUm3KkIYAAAggUE+CnsmJunFWBAMWcCpAZAoE+Bbgu+wTjcAQQQAABBBBAAAEEIhfo9jbBDzzwQOmZ+SwwtIJV3K5xQn7bYFe8rXz4ikCsArGs63POOcd6zpgxY4bZsmVL6fS+TRSzYs+OoxxpCCCAAALFBCiyFnPjrAoEKOZUgMwQCPQpwHXZJxiHI4AAAggggAACCCAQscCzzz5r3YzXzfkvfelLXrLK3vjXto92xRVXOPNSviG2qlxCzJ2Y0hWIYV1v3brV+Vzx9a9/3cvEVGFyww03OHNSrjQEEEAAgf4F/Py02n8cnIGAJbBy5UrrRb/styKyBmUHAghMK0CRdVoeHkQAAQQQQAABBBBAICmB8847z/q9fN68eebAgQNe8qyiwKDAFb/yyI6nfENpBw8eNJs2bTJr16614lTcp5566tRjOkbH0hCIQSC2dT02NmZdfyeddJKZmJjwwp19TtJ22e3QoUNGOWTHUq40BBBAAIH+Bcp/pu4/Bs5AwClAkdXJwk4EahXguqyVn8ERQAABBBBAAAEEEKhM4Pnnn7duwuum/D333OMthuxNfx8FhlbwysM1nvKus7344ovm0ksvNbNmzXLG54pZx+ocnUtDIESBGNf19u3bndfgww8/7I3YdX37GEw5uMZSzjQEEEAAgf4EKLL258XRFQpQzKkQm6EQyCnAdZkTisMQQAABBBBAAAEEEIhcwPU/KJcsWWImJye9Zea66e9rMOWhfLJjKu862vvvvz/1P1OHhoasmLIxdtvWuYpffdEQCEEg5nWtP1zIXmu6J+KzZcfTtq/mur+jnGkIIIAAAv0J+Hum7i8OjkbAEvj5n/9564eZl156yTqOHQggUJ2A64dw3sa7On9GQgABBBBAAAEEEECgCoHDhw+b4447zvqd/N577/U6fJUFBiWifLJjKm/lX2XbuXOn8+07s7Hl3dZbgapPGgJ1CsS8rsfHx83s2bOt54cHH3zQK6nrGvc1oHLJjqeclTsNAQQQQCC/AEXW/FYcWbEARdaKwRkOgRwCXJc5kDgEAQQQQAABBBBAAIHIBfQ5n9mb78PDw+bIkSNeM8uOqW2fTfkor+y4yr+q9uSTT5o5c+ZYMWRj6ndbfapvGgJ1CMS+rl1/gDF//nzz0UcfeeV0Xee+BlQuyik7pu8/pvGVD/0igAACdQn4/Wm1rqwYNwkBijlJTCNJJCbAdZnYhJIOAggggAACCCCAAAIOgYsuusi68X7NNdc4jix3V/Zmv7Z9N+WVHVf5V9Geeuopc8wxx1jjZ+Mpuq2+NQYNgSoFUljX559/vnVdXnfddd4ZXde6z0GVU3ZM5U5DAAEEEMgv4P+n1fyxcCQCHQI/93M/Z73Qv/zyyx3HsIEAAtUKUGSt1pvREEAAAQQQQAABBBCoQ2BkZMT6fbyKYl32Zr+2fTfllR1X+ftub7/9tjnxxBOtsbOxDLqtMTQWDYEqBFJY1x9//LHzf7jv2LHDO6Hrevc5qHLKjqn/3S8DGgIIIIBAPgH/P63mi4OjELAEKLJaJOxAoHYBrsvap4AAEEAAAQQQQAABBBDwKvDcc89ZN931OaWTk5Nex1Xn2Zv92vbdlJfr82fl4LNdcMEFznxdBoPu01g0BKoQSGFd67Nks9dcVYXH7Lja9tm6FZT5TGef6vSNAAKpCfh9pk5Ni3wqFaCYUyk3gyGQS4DrMhcTByGAAAIIIIAAAgggEK3At771LavAcO6551aST9UFhlZSyi87thx8ta1bt1rjZccve1tj0hDwKZDKut6wYYN1fVb1Frqu697nnKlv11sjy4CGAAIIIJBPgCJrPieOqkFgxYoV1g81r7zySg2RMCQCCLQEKLK2JPiKAAIIIIAAAggggECaAq7P6LvlllsqSbaOAoMSU37ZsX1+/uKZZ55pjZcdv+xtjUlDwKdAKut63bp11vV56623+qT7cd+u6/7HD3r6Rrllx5UBDQEEEEAgnwBF1nxOHFWDAEXWGtAZEoEeAlyXPYB4GAEEEEAAAQQQQACByAXOPvts64b7I488UklW2Rv92q6iKb/s2HLw0fbu3WuGhoas8bLjl72tMTU2DQEfAimt6zVr1ljX56OPPuqDzerTdd1bB5W8Q7llx5UBDQEEEEAgn0A1P63mi4WjEOgQoJjTwcEGAkEIcF0GMQ0EgQACCCAQucAD33vNfPGGbfzDgDXAGghyDRw38tPWDfexKzZWEmv2Rr+2q3i+VH7ZseXgY+yVv/41a6zs2L62NbaPnOiT1/SU1vWxJ5xkXaNjX0r3OVC5ZZ9zZMB1zXXNGmANNHkNPLj59dx3HSiy5qbiwKoFli9fbr3I/+d//mfVYTAeAgi0CVBkbcPgWwQQQAABBAoKUGTlhkWTb1iQe/jr/5i5P2H9Lp69Ad+EbTn4WK8LP/uF2nw1to+c6DP869r3HKW0rnkO/JTx9fznex3SP89FrAHWQFlrQL+z520UWfNKcVzlAhRZKydnQAR6CnBd9iTiAAQQQAABBHoKUGTll/+yfvmnH9aSjzVw1Kw5tRUBQyreysGH77EnLKrNV2P7yIk+eS5KaV3zHPgp4+v5j+cKnitYA6yBWNYARdaetzU4IAYBijkxzBIxNk2A67JpM06+CCCAAAI+BCiycnMhlpsLxNnMtTo0NKO2ImBIRVY5+LgG6izgUDhp5jXtYx1n+0xpXfMc+Cnj6/kvu27Y5jmJNcAaCHUNUGT1cSeEPisXoJhTOTkDItBTgOuyJxEHIIAAAggg0FOAIis3E0K9mUBcrE2tgTqLJSEVWX0VJOss4FA44Rr39Tyf0rrmOZD/yerrOqFfnoNZA/GsAYqsPW9rcEAMAsuWLbP+eva//uu/YgidGBFIVoAia7JTS2IIIIAAAggggAACCEwJfOYzn7F+Fw+p+FlVLHLw0Y477rjafDU2DQEfAimta54DP2V8Pf/5WHv0iQACCNQtwGey1j0DjN9VgCJrVxoeQKA2Aa7L2ugZGAEEEEAAAQQQQACBSgRWrFhhFQF37dpVydiuAmoVAyu/7Nhy8NGWLl1qjZUd29e2fp+jIeBDIKV17frj8t27d/tgs/p0XfvWQSXvUG7ZcWVAQwABBBDIJ0CRNZ8TR9UgQDGnBnSGRKCHANdlDyAeRgABBBBAAAEEEEAgcoGzzz7buuH+yCOPVJJV9ka/tqtoyi87thx8tAsuuMAaKzu2r22NTUPAh0BK63rNmjXWNfroo4/6YLP6dF371kEl71Bu2XFlQEMAAQQQyCdQzU+r+WLhKAQ6BFx/Bffqq692HMMGAghUK0CRtVpvRkMAAQQQQAABBBBAoGqB6667zrrhfsstt1QSRvZGv7araMovO7YcfLT169dbY2XH9rWtsWkI+BBIaV2vW7fOukZvvfVWH2xWn65r3zqo5B3KLTuuDGgIIIAAAvkEqvlpNV8sHIVAhwBF1g4ONhAIQoDrMohpIAgEEEAAAQQQQAABBLwJfPvb37ZuuJ977rnexmvvOHujX9tVNOWXHVsOPtrevXvN0NCQNV52/LK3NeZrr73mIyX6RMCktK43bNhgXZ/nn39+JbPsuu59D6zcsuPKgIYAAgggkE+gmp9W88XCUQh0CFDM6eBgA4EgBLgug5gGgkAAAQQQQAABBBBAwJvAc889Z91wP+6448zk5KS3MVsdZ2/0a9t3U17KLzu2HHy1M8880xovO37Z2xqThoBPgVTW9c6dO63rc3h42Hz88cc++ab6dl33PgdVTsotO64MaAgggAAC+QT8/7SaLw6OQsAS+OxnP2u9yP/gBz+wjmMHAghUJ0CRtTprRkIAAQQQQAABBBBAoC6BkZER6/fxp556yns42Rv92vbdlFd2XOXvs33/+9+3xszGUPb21q1bfaZE3wiYVNZ1t8Ljjh07vM+y67r3OejTTz9tPRdVVVD2mRd9I4AAAlUK+P9ptcpsGCspAYqsSU0nySQiwHWZyESSBgIIIIAAAggggAAC0whcdNFF1o33a665Zpozynmo6gKDolZe2XGVv+92wQUXWONm4yhrW2PREKhCIJV17XoLXV+f09w+L65rvv3xsr93fQZ3VW+NXHYu9IcAAgjUJUCRtS55xu0pQDGnJxEHIFC5ANdl5eQMiAACCCCAAAIIIIBA5QKbNm2yCoD6301HjhzxGkvVBQbl43qrTOXvu7399tvmxBNPtJxdBoPs0xgai4ZAFQKprOuNGzda1+b8+fPNRx995JXRda37GlC5KKfsmMqdhgACCCCQX4Aia34rjqxY4Gd/9metF/q9e/dWHAXDIYBAuwBF1nYNvkcAAQQQQAABBBBAIE2BiYkJ5+eU3nvvvV4Tzt7s17bPpnyyY+rzWQ8fPuxz2B/3rbcqPuaYY6wYsjEV3VbfVbzN848T4hsEjJlac7Gv6/HxcTN79mzr2nzwwQe9zrHrWvc1oHLJjqeclTsNAQQQQCC/gN+fVvPHwZEIWAIUWS0SdiBQuwDXZe1TQAAIIIAAAggggAACCFQisHbtWusG/JIlS8zk5KS38bM3/LXtqykP5ZMdU3lX2Z588kkzZ84cK45sXP1uq0/1TUOgDoEU1vWll15qXZcrV670yum6zn0NqFyy4ylnGgIIIIBAfwL+flrtLw6ORsASoJhjkbADgdoFuC5rnwICQAABBBBAAAEEEECgEoHnn3/eugGvG/L33HOPt/GzN/y17aspD9d4yrvqtnPnTnPSSSc543HF2Guf+lKfNATqFIh9XW/fvt15TT788MPeWF3Xto/BlINrLOVMQwABBBDoT8DfT6v9xcHRCFgCP/MzP2O94L/22mvWcexAAIHqBCiyVmfNSAgggAACCCCAAAII1C1w3nnnWb+Xz5s3zxw4cMBLaK6b/j4GUvzKIzue8q2rvf/++0b/i3ZoaMiKKxtnt22dqz7UFw2BEARiX9djY2PW9ag/YtBbqvtormu77HEOHTrk/KMO5UpDAAEEEOhfgCJr/2acUZEARdaKoBkGgT4EuC77wOJQBBBAAAEEEEAAAQQiF3j22WetAoOKAFdccYWXzKooMChwxe8aS/nW3V588UWjt+ycNWuWM0ZX3DpW5+hcGgIhCsS6rrdu3eq8Dm+44QYvzK7ru+yBFLtrnG3btpU9FP0hgAACjRCgyNqIaY4zSYo5cc4bUactwHWZ9vySHQIIIIAAAggggAACWYHLL7/ceUP+gQceyB468Lbrxv/AnWY6UNyucZRnSE3/A3DTpk1T/zPVFe+pp5469ZiO4X+uhjRzxDKdQIzr+pxzzrGeM2bMPGxRnQAAIABJREFUmGG2bNkyXaqFHnNd64U66nKSYlbs2XGUIw0BBBBAoJgARdZibpxVgQDFnAqQGQKBPgW4LvsE43AEEEAAAQQQQAABBCIXeO+998zIyIh1U/7YY481e/bsKTW77I1/bZfZFK/izo6j/JRnqC0bb9kuoeZNXGkLxLKu9+3bZ+bMmWM9b8yfP9+89dZbpU6STxPFqpizYyg35UhDAAEEECgmUO5Pq8Vi4CwEnAJLliyxXvhff/1157HsRACBagQoslbjzCgIIIAAAggggAACCIQkcN9991m/n+tG/ejoqHnzzTdLCzV781/bZTXFqXhdYyi/kJsr5pDjJTYE8gjEtK5vv/1253PHqlWrzPj4eJ50cx3jy0QxKlZX/8qNhgACCCBQXKC8n1aLx8CZCDgFKLI6WdiJQK0CXJe18jM4AggggAACCCCAAAK1CVx22WXOG/QrVqwo7X+BugoAZSSs/6W6fPlyZ/yhvU2wK19fLq6x2IdAVQKxreuzzjrL+RxyxhlnmCNHjpTC5sNEsSlGV9/KiYYAAgggMJgARdbB/DjbowDFHI+4dI1AQQGuy4JwnIYAAggggAACCCCAQOQChw8fNieffLLzRr0KmGW885SrCDAom+JatmyZM27lo7xCbz5cQs+Z+NIXiG1d6481Fi1a5HwuURHz4MGDA09a2SaKqVuBVbmE/DbpA2PSAQIIIFCRAEXWiqAZpn+BxYsXWz+48BkB/TtyBgJlClBkLVOTvhBAAAEEEEAAAQQQiEtg7969ZuHChdbv6ioMLFiwwOzYsWOghMouMCgexeXqV3konxiaK/4Y4iZGBKYTiHFdP/PMM2bu3LnO55SVK1ea/fv3T5dyz8fKNFEsisnVp3JQLjQEEEAAgcEFKLIObkgPngQosnqCpVsEBhDguhwAj1MRQAABBBBAAAEEEEhAYPfu3eaEE05w3rifOXOmue222wpn6SoGFO1McSgeV5+KX3nE0lw5xBI7cSLQTSDWdb1lyxYza9asrs8tjz32WLeUe+4vy0QxdHueVuzKgYYAAgggUI4ARdZyHOnFgwDFHA+odInAgAJclwMCcjoCCCCAAAIIIIAAAgkI6H+IdruBryLB2NiYeemll/rOtIwCg8bV+K6+tG9kZMTs3Lmz79jqPMGVS53xMDYCZQjEvK5VxOxWaFVeV111lfnhD3/YN9OgJgcOHJga29WP9inmQYrAfSfECQgggEADBCiyNmCSY01xdHTU+qVo0LfdiNWCuBEIRYAiaygzQRwIIIAAAggggAACCNQr8MorrxjX7wetm/tHH320uf766/v6zL/Wue1f82apzxbUeBq3/fz27xWv4o6ttefQ+j62HIgXgaxAay23f80eE/L2tm3bzPDwcNfnG/1Bx4YNG8yHH36YO412i9b3eU7WGBpLY7bOy35VrIqZhgACCCBQrgBF1nI96a1EAYqsJWLSFQIlCXBdlgRJNwgggAACCCCAAAIIJCDwzjvvmNNOO63rTX3d5J89e7a59tprc33+abYooO1eTZ+rqv41juv81r7Vq1cbxRtja+XQ/jXGPIgZgXaB9vXc+r798Ri+37Vrl3HdJ2nlo6+LFi0y69evNx988EHPlNrPa30/3Unj4+NTfWuM1vGur4pRsdIQQAABBMoX6P3Tavlj0iMCuQRcP6TwP1lz0XEQAt4EuC690dIxAggggAACCCCAAAJRCkxOTpqbbrrJzJgxY9qb/Lrxf/rpp5u77rrLvPHGG85cXcUB14E6X/2oP9c57fsUl+JTnLG29nxa38eaC3Ej0BJoreX2r63HYvp68OBBc+GFF/Z8LtIfglxyySXm8ccfNxMTE84U2y1a32cP1LnqQ331+uMS9aHYFCMNAQQQQMCPAEVWP670WoLAT//0T1s/oHT7RayE4egCAQRyCFBkzYHEIQgggAACCCCAAAIINFBg69atZunSpdbv8a1CQfbrkiVLzJVXXmnuvPPOqYLByy+/7DxX+1VQ0HE6Xudl++q2rXgUV+zNlV/sORE/Aqmt67vvvtscf/zxuZ6f9Lbm+iORG2+80WzcuNFs377d6D+WuEz0mI7RsTpnurdEbz9fsSgmGgIIIICAXwGKrH596X0AAYqsA+BxKgKeBLguPcHSLQIIIIAAAggggAACCQjocwG/+c1vmrlz5zqLBe0FAJ/fa3zF0c9nIYbM77IKOV5iQyCPQIrrWp8NvXbtWjM0NFTbc6DGVgyKhYYAAggg4F+AIqt/Y0YoKEAxpyAcpyHgUYDr0iMuXSOAAAIIIIAAAgggkIjAu+++O/UWvcPDw5UWGjSe3hpY46fUUixGpTQ/5FJMIOV1/cILL5iLL74419uouxyK7NNbo2tMjU1DAAEEEKhOgCJrddaM1KfASSedZP0y9t///d999sLhCCBQpgBF1jI16QsBBBBAAAEEEEAAgbQFxsfHp97m95RTTrF+vy9SROh2jvrX2wlrvBSbK+8U8ySnZgk0YV2/+uqrZt26dWbBggXengPVt8bQWDQEEEAAgeoFKLJWb86IOQUosuaE4jAEKhTguqwQm6EQQAABBBBAAAEEEEhIYM+ePebmm282q1evzv2Zgq4ijPbpMwnVj/pTv6k3l0PqOZNf+gJNWteTk5PmiSeemHob38WLFw9ccFUfektg9am+aQgggAAC9QlQZK3PnpF7CFDM6QHEwwjUIMB1WQM6QyKAAAIIIIAAAgggkJjAoUOHzObNm80dd9xhrr76ajM2NmaWLl1qFi5cOPV5rkcdddTUV21rvx7XcTpe501MTCQmMn06TSpGTS/BoykJNHld79+/39x///1Tfyiit/hdtWqVGR0dNfPmzTOzZs2a+qfvtU+P6Rj9UYnO0bk0BBBAAIFwBCiyhjMXRJIRoJiTAWETgQAEuC4DmARCQAABBBBAAAEEEEAAgUYJNLkY1aiJbliyrOuGTTjpIoAAAokKUGRNdGJTSOunfuqnrLfPePPNN1NIjRwQiFaAImu0U0fgCCCAAAIIIIAAAgggEKkAxahIJ46wpxVgXU/Lw4MIIIAAApEIUGSNZKKaGCZF1ibOOjmHLsB1GfoMER8CCCCAAAIIIIAAAgikJkAxKrUZJR8JsK5ZBwgggAACKQhQZE1hFhPNgWJOohNLWlELcF1GPX0EjwACCCCAAAIIIIAAAhEKUIyKcNIIuacA67onEQcggAACCEQgQJE1gklqaoiLFi2y/qrtf/7nf5rKQd4IBCFAkTWIaSAIBBBAAAEEEEAAAQQQaJAAxagGTXaDUmVdN2iySRUBBBBIWIAia8KTG3tqFFljn0HiT1GA6zLFWSUnBBBAAAEEEEAAAQQQCFmAYlTIs0NsRQVY10XlOA8BBBBAICQBiqwhzQaxdAhQzOngYAOBIAS4LoOYBoJAAAEEEEAAAQQQQACBBglQjGrQZDcoVdZ1gyabVBFAAIGEBSiyJjy5saf2mc98xnq74Lfeeiv2tIgfgagFKLJGPX0EjwACCCCAAAIIIIAAAhEKUIyKcNIIuacA67onEQcggAACCEQgQJE1gklqaogUWZs68+QdsgDXZcizQ2wIIIAAAggggAACCCCQogDFqBRnlZxY16wBBBBAAIEUBCiypjCLieZAMSfRiSWtqAW4LqOePoJHAAEEEEAAAQQQQACBCAUoRkU4aYTcU4B13ZOIAxBAAAEEIhCgyBrBJDU1xJ/8yZ+03i747bffbioHeSMQhABF1iCmgSAQQAABBBBAAAEEEECgQQIUoxo02Q1KlXXdoMkmVQQQQCBhAYqsCU9u7KlRZI19Bok/RQGuyxRnlZwQQAABBBBAAAEEEEAgZAGKUSHPDrEVFWBdF5XjPAQQQACBkAQosoY0G8TSIUAxp4ODDQSCEOC6DGIaCAIBBBBAAAEEEEAAAQQaJEAxqkGT3aBUWdcNmmxSRQABBBIWoMia8OTGntrChQuttwt+5513Yk+L+BGIWoAia9TTR/AIIIAAAggggAACCCAQoQDFqAgnjZB7CrCuexJxAAIIIIBABAIUWSOYpKaGSJG1qTNP3iELcF2GPDvEhgACCCCAAAIIIIAAAikKUIxKcVbJiXXNGkAAAQQQSEGAImsKs5hoDhRzEp1Y0opagOsy6ukjeAQQQAABBBBAAAEEEIhQgGJUhJNGyD0FWNc9iTgAAQQQQCACAYqsEUxSU0OkmNPUmSfvkAW4LkOeHWJDAAEEEEAAAQQQQACBFAUoRqU4q+TEumYNIIAAAgikIECRNYVZTDSHE0880fpM1nfffTfRbEkLgTgEKLLGMU9EiQACCCCAAAIIIIAAAukIUIxKZy7J5BMB1vUnFnyHAAIIIBCvAEXWeOcu+cgpsiY/xSQYoQDXZYSTRsgIIIAAAggggAACCCAQtQDFqKinj+C7CLCuu8CwGwEEEEAgKgGKrFFNV7OCpZjTrPkm2zgEuC7jmCeiRAABBBBAAAEEEEAAgXQEKEalM5dk8okA6/oTC75DAAEEEIhXgCJrvHOXfOQLFiyw3i74f//3f5PPmwQRCFmAImvIs0NsCCCAAAIIIIAAAgggkKIAxagUZ5WcWNesAQQQQACBFAQosqYwi4nmQJE10YklragFuC6jnj6CRwABBBBAAAEEEEAAgQgFKEZFOGmE3FOAdd2TiAMQQAABBCIQoMgawSQ1NUSKOU2defIOWYDrMuTZITYEEEAAAQQQQAABBBBIUYBiVIqzSk6sa9YAAggggEAKAhRZU5jFRHOYP3++9XbB7733XqLZkhYCcQhQZI1jnogSAQQQQAABBBBAAAEE0hGgGJXOXJLJJwKs608s+A4BBBBAIF4Biqzxzl3ykVNkTX6KSTBCAa7LCCeNkBFAAAEEEEAAAQQQQCBqAYpRUU8fwXcRYF13gWE3AggggEBUAhRZo5quZgVLMadZ8022cQhwXcYxT0SJAAIIIIAAAggggAAC6QhQjEpnLsnkEwHW9f9v7/xjrCrO/y/rQgVWFhbZkhK+SBt+pJAQ+iNg/zD7j5h8hK9JNVqjWAIpJiUBY/3DJiaNtamYgGkaiVVJ2xg1URISbfikhkAaiRFQYyEIqaUFS4gGbHFhKeJS5pNn6cjdOXPuz5k5M+e8JtmcO+ee8zzP+zXP3Z1n5u69V1nwCAIQgAAE0iXAJmu6Y1f6yG+44YbMxwWfPn269LoRCIGYCbDJGvPoEBsEIAABCEAAAhCAAAQgUEYCbEaVcVTRRF6TAxCAAAQgUAYCbLKWYRRLqoFN1pIOLLKSJsDrMunhI3gIQAACEIAABCAAAQhAIEECbEYlOGiE3JAAed0QERdAAAIQgEACBNhkTWCQqhoimzlVHXl0x0yA12XMo0NsEIAABCAAAQhAAAIQgEAZCbAZVcZRRRN5TQ5AAAIQgEAZCLDJWoZRLKmGqVOnZj4u+NNPPy2pWmRBIA0CbLKmMU5ECQEIQAACEIAABCAAAQiUhwCbUeUZS5RcJUBeX2XBIwhAAAIQSJcAm6zpjl3pI2eTtb0htk1Sq3iuPXrc1YgAr8tGhHgeAhCAAAQgAAEIQAACEICAWwK2mt6th7is2fRW8Vxco+I+GtuYuveCRQhAAAIQgIBfAmyy+uWL9SYJHD9+XL344ovq0UcfVXfddZdavHix6urqyvwn68yZM0eek2vkWrlH7qVdJWCbpFbx3FUiPHJJgE1WlzSxBQEIQAACEIAABCAAAQhA4CqBoaEh9cYbb6hNmzaptWvXqoGBATVnzpzM2ojU+HJenpfr5Hq5T+4vQ6viGoZNcxnGUjSQ12UZSXRAAAIQgICNAJusNiqc805geHhY7dixQ61evVrNnj3bWjDYJph558SG2BKbYrvKLY9R1c5XOQdcaM8rgmxvfvj6179e2uLeBUtsQAACEIAABCAAAQhAAAIQyCNw6NChkTeRL126VHV3d3e0PiL3ix15U7rYTbVVbf0iT2+q4ydxk9cpjx6xQwACEIBAKwTYZG2FFtd2TODDDz9U69evV/39/R0VDnkTUDkvtsWH+Kpiq8emSs9Vcew71UwR1ClB7ocABCAAAQhAAAIQgAAEINCYwODgoNq8ebNatGiRt7URqf/FvvgRfym1Kq1d1NOa0phJrOR1aiNGvBCAAAQg4IIAm6wuKGKjIYH3339/5GOAbf8FV29C2clz4ks+Vlh8V6l1wqxM91ZpzDvRShHUCT3uhQAEIAABCEAAAhCAAAQg0DyBTz75RD3yyCOqt7fX6+aqWduLP/Er/lNoZvxV7acwVhIjeZ3KSBEnBCAAAQj4IMAmqw+q2PySwKlTp0Y+xnfMmDFBC4jaCbj4lo8Slliq0Gq1V/lxFca6E40UQZ3Q414IQAACEIAABCAAAQhAAALNE7h48aLauHGj6unpKWxtRNYHxL/EIfHE3Kq8llGrPeYxktjI69hHiPggAAEIQCAEATZZQ1CuqI9nn31WTZ48uakCQr435KabblIPP/yw2rp1q9qzZ4/1nZ1//vOfR56Ta+RauafZ7yyRWCSmsrfaCXnt47LqrtVY+7isejvVRRHUKUHuhwAEIAABCEAAAhCAAAQg0DyBXbt2qTlz5jS1NiI17ezZs9UPf/hDtWnTJvX666+rw4cPW++V8/K8XCfXy321NXG9xxKPxBVry4s91ng7jStFveR1p6PO/RCAAAQgUBYCbLKWZSQj0nHmzBl1xx13NJzcjx8/Xt19990jRcHQ0FBGwZQpUzI2/vWvf2WuO3fu3IgNsSU28yan+rzEJjGWtWmd5hG9ZSXQvC4XRZDtY6327t1b2uK+ebpcCQEIQAACEIAABCAAAQhA4CqB4eHhkY/obeZrk+QN5E8//bT66KOPrhqoeWTW99K3Nblf7Ig92z215yQu+QhhiTO2Vhtn7ePY4nQVT63G2seu7Lu0Q167pIktCEAAAhAoAwH7rKwMytBQCIEDBw6oWbNm1Z3Mz5gxQz311FPq7NmzdWNsdpO11oj+fknxUTsxNR9LjBJrGZupVffLqFU0aX3msax629Hlsghq9nVZluK+Hd7cAwEIQAACEIAABCAAAQhUm8DHH3+slixZkluvSv0qbxJft26dOnr0aENYZr0r/UZN7P74xz9u+Gb0pUuXKok3pmbT24zmmDS0EksqesnrVkaVayEAAQhAoCoEGs/KqkICnR0T2L17t5o0aVJuEdHX16e2bNnS9Hd/2D5quNn/QJWPRJV3b4rPvMmq/EeexFy2lqe3bDq1nqrp1bqbPbougprdZK2NL+XivlYHjyEAAQhAAAIQgAAEIAABCDQicOTIEXXjjTfmrkXIVx49+OCD6tSpU41Mffm8re798skGD8SP+Kv3VUsSr8QdS7PplXNlbSnoJa/Lmn3oggAEIACBTgmUd4bSKRnub4nA9u3b1bhx43KLiDVr1qjTp0+3ZLOTTVbtSHyK77wJq8QssZep5Wktk8ZaLVXTW6u90WMfRVAnr8sUi/tGjHkeAhCAAAQgAAEIQAACEICAJiBfpVLvzd4DAwPqgw8+0Jc3fbTVvU3f/N8Lxa/4t9mScxL3vn37WjXr5fq8GL04i8Bo7HrJ6wiShBAgAAEIQCBaAmyyRjs06QS2c+fO3A1W+a+3djcxO9nMMelJDLb/wJOJrGy0ioaytNgn5645V01vs/x8FUEuXpcpFffN8uY6CEAAAhCAAAQgAAEIQKDaBA4ePJi77jB27Fi1cePGtgHZ6t52jUkcEo/NpqybiI6imy02OVfWFrNe8rqsWYcuCEAAAhBwRaC8MxRXhLBTl8D+/ftVT0+PdXK+YMECdfz48br313tSPs7XnGh+9tln9W6p+5zEIjGZNqUvGkRLGZpNn5wra6ua3mbG0WcR5GKTVWtIobjXsXKEAAQgAAEIQAACEIAABCCQR0C+ImX69OnW9Yb+/n4lb4LtpNnq3k7svf3220ristkVHc18T2wn/hvda4tLzpW1xaqXvC5rxqELAhCAAARcEijvDMUlJWxZCchHf86YMcM6Kb/55ptVs9+fajWulHK9ySp+JCaJzTaBFS2tfCdKXtxFn7dpoxgpelTC+fddBLl+XcZe3IcbOTxBAAIQgAAEIAABCEAAAikSOH/+vFq4cKF1nWHu3Lnqb3/7W8eybHV+p0YlLonPZlv0iK6imi0m1jXCjgZ5HZY33iAAAQhAIF0CbLKmO3aFR37LLbdYJ+OyiXnhwoWO43O9maMDktjyNlqXLVumL0v2SDFyzUheJjuAHQQeogjy8bqMubjvYDi4FQIQgAAEIAABCEAAAhCoAIH77rvPujYyf/58Z2/kttX5LtDKG80lTpt90VVUs8Uj58raYtRLXpc129AFAQhAAAKuCZR3huKaFPZGEXjyySetk/DFixerwcHBUde225k0aVLGhyvbYkditU1kRVvKzaaJYiTlEW0+9hBFkI9NVlEYa3HfPH2uhAAEIAABCEAAAhCAAASqRuC3v/2tdV1h1qxZ6sSJE85w2Op8V8YlTonX5kP0FdFssbCuEW4kyOtwrPEEAQhAAALpE2CTNf0xDK7g2LFjasKECZkJuHyfx8mTJ53F43OTVYKUWKdNm5bRIdpEY6qNYqSa/8kaqgjy+bqMsbhP9fcAcUMAAhCAAAQgAAEIQAACfgnIG0X7+voyawoTJ05Uhw4dcurcVue7dCDxStymH9FXxNcqmXHovkvNMdnS+sxjETGS10VQxycEIAABCKRMgE3WlEevoNhvu+22zMS7q6tL7dy502lEPjdzdKASs8RuTmRFY6rN1KL7qeppFLfWZx4b3Vem50MWQb5fl7EV92XKE7RAAAIQgAAEIAABCEAAAu4I5H2S0EsvveTOyX8tmfWu9F03idvmp4iPDbbF4UOza4bt2otJL3nd7ihyHwQgAAEIVJWA+1lZVUlWRPeuXbusk+6f/OQnzgn43szRAT/00ENWTaI1xRbT5DwEv6rptTENWQSFeF3GVNzbeHMOAhCAAAQgAAEIQAACEKg2gXfeece6jnD//fd7AWOre304WrlypVWX6A3ZbHrlXFlbLHrJ67JmGLogAAEIQMAngfLOUHxSq7DtgYGBzIR75syZamhoyDmV66+/PuPr7Nmzzv2cO3dOiQZzUitaU2ymDt33oeXIkSPqrbfecvLz73//u60QtT7z2JaxBG8KXQSF2GSVYYiluE8wJQgZAhCAAAQgAAEIQAACEPBMYMWKFZk1hKlTp6rTp0978WzWu9L30SR+0WH6E70hm+lf913HEMOahmjS+syja72N7JHXjQjxPAQgAAEIQCBLwM+sLOuHMyUgsGfPHuvE75VXXvGiLtQmqwQvGszJrPRFc2rNpkPOuW6XL1+2bk7n+W90vl3WeXZd643VXugiKNTrMpbiPtZxJy4IQAACEIAABCAAAQhAoBgC7733nnX94LnnnvMWkK3u9eVMdNj8ie5QzeZfzrlssaxpiKYQehuxI68bEeJ5CEAAAhCAgJ2A2xmK3QdnS0LgnnvuyUz8FixY4E1dqM0cLUC0mBNb0ZxaMzXovmsd+/fvz/CS/whesmSJWr58uVq1apX60Y9+lPnR8dQe77333rbDq7VT+7htgwndWEQRFPJ1GUNxn1A6ECoEIAABCEAAAhCAAAQgEIDA6tWrM7Xw7Nmz1fDwsDfvtbWufuzLmegQPdqPPoruUE37NI8u/ceypiGaTJ2671JvI1vkdSNCPA8BCEAAAhCwE2CT1c6FswaBwcFBNX78+MzE7+WXXzaudNft6enJ+JOP9vXVRIueyOqjaBbtKTUdu3l0reGnP/3pCK+uri61bt061cy7Wrdv367GjBkzivPixYtVux8VLJpMnbrvWm+M9ooogkJussZQ3Mc47sQEAQhAAAIQgAAEIAABCBRD4Pz588pWEz3//PNeA9J1bu3Rp0PRU+tLHotu0R+imb5136XvWNY0RJPWZx5d6q1ni7wOk9f1xoDnIAABCEAgXQJssqY7dkEjt02wp02bpr744gtvcYTeZBUtosmc1PoullwDNOPXfdd+5s2bN7Jh+vvf/74p04cPH84UozfccIM6fvx4U/fnXaT1mce868tyvqgiKPTr0va7J2RxX5Z8QQcEIAABCEAAAhCAAAQg0DmBF154IbNm0Nvbqy5cuNC58ToWzHpX+j6b6BFdpl/RH6KZfnXfpe9Y1jREk9ZnHl3qrWeLvA6T1/XGgOcgAAEIQCBdAn5nZelyIXKDwO23356Z9G3YsMG4ym039GaORC+azEmtaE+pmfHrvksNsmEqdtesWdOU2c8++0zNnTt3FNvu7m61e/fupu6vd5HWZx7r3VOG54oqgkK/Losu7suQK2iAAAQgAAEIQAACEIAABNwQuPPOO0fVtVKHPvDAA26M17Fi1rvS991El+lX9Idopl/dd+U7pjUN0aT1mUdXehvZIa/D5HWjceB5CEAAAhBIk4D/WVmaXIi6hsClS5es72Dcu3dvzVXuH06cODEz0RwaGnLvqMaiaDIntfLuTWGQSjPj132X8cvH/s6ZM0f985//bGj28uXLasWKFRmuv/rVrxre28wFWp95bObelK8pqggKvckqY1RkcZ9yjhA7BCAAAQhAAAIQgAAEIOCWQF9fX6a2ffPNN906sVgz613p+26iy/Qr+kM006/uu/Id05qGaNL6zKMrvY3skNdh8rrROPA8BCAAAQikScD/rCxNLkRdQ2Dfvn2ZCV+IjcciNlnzNpSFQSrNnJTrflHx/+xnP8vkz/333+8sHK3PPDpzEKmhooqgIl6XRRb3kQ4/YUEAAhCAAAQgAAEIQAACgQm8++67mdpWvspkeHjYeyRmvSt930102b5/Vjj4bja9ITTbdPle0xCfReolr68Z4R8ir235xTkIQAACEEifgP9ZWfqMKq9gy5YtmQlfiI/QLWIzRwbb9tHIwiCVVuTk3GT02muvjXxva23mr5XwAAAYcklEQVRM3/72t51+X02t7drHZixl6hdZBBXxuiyyuC9T3qAFAhCAAAQgAAEIQAACEGifwDPPPJNZG1m+fHn7Blu4s7bW1Y9buL3tS0Wf9qePwsF3077Mo2+/pv0Qaxri09Sp+2Y8Pvrk9ZVN1hB57WP8sAkBCEAAAsUTYJO1+DGIPoL169dnJnyPP/6497gnTJiQ8Xv+/HnvfkWbntDqozBIpemYzWPo+I8cOaImTZo0imV/f7/6xz/+4TQUU6fuO3USmbEii6AiNlkFf1HFfWRDTzgQgAAEIAABCEAAAhCAQEEENmzYMKq+ldrzscceCxKNrnNrjyEci75an/JYOPhupk/d9+231n6oNQ3xqfWZx9p4fD0mr69ssobIa19jiF0IQAACECiWAJusxfJPwvuyZcsyE75t27Z5j72oTVbRZk5shUEqzYxd90PGPzg4qObPnz+KY3d3t/rTn/7kPAytzzw6dxSRwSKLoKJel0UV9xENO6FAAAIQgAAEIAABCEAAAgUSuPXWW0fVuFKDvvrqq0EiMutd6Ydoos/0LRx8N9On7vv2q+2HXNMQn1qfedTx+DyS11c2WUPktc9xxDYEIAABCBRHIMysrDh9eHZAYN68eZkJ38GDBx1Yrm+iqM0c0WZObIVBKs2MXfdDxX/58mXrRy7/+te/9hKC1mcevTiLxGiRRVBRr8uiivtIhpwwIAABCEAAAhCAAAQgAIGCCZhvJJYa9MCBA0GiMutd6Ydoos/0LRx8N9On7vv2K/ZDr2mIT63PPIbQS15f2WQNkdchxhMfEIAABCAQnkDLs7KX/vg39f8f2s1PhRhc13ND7oTPnACWtS8MUsn7vDEI9evl5z//eSZfVq1a5c19nt5UxqudOK/v+38ZxgMrtwbJ0Wu7r8v4/p/1/+vdt+gzx1o4tMOPe8r/N/zlN/7u7XcOhiEAAQi4IEBNVf6/Rcw3GGNyoHw5wNrIlc2oEOsjZu2n+y7+BjeyEXpNQ+LR+sxjiN8j5HW4vA4xnvgo398expQxJQeKyYFW1hbZZK3QZmm7L8hrx2W/G9Wc+JW9Lwza5Rf6vryxaFRIuHj+D3/4gxozZsyoAuG73/2u+vzzz12Yt9rI0xuae0h/FEEUQSHzLUVfsnlBgwAEIBAzATZZiymUU/ybRszkCjkQTw6wNnKlDguxPpJX5/v+217EmoZoytMb4vVPXofL6xDjiY94/mYwFowFOZB2DrSytsgmK5usDTcPx4zpyp3w5U0Ey3ZeGKTyizGPve9i5C9/+Yvq7e0dlStf/epX1YkTJ7y6ztObyni1EydFEEVQO3lTpXtamQh5/QWFcQhAAAI5BNhkTbvgrtLfVLSSq+TA1RxgbeRKHRZifSSvzs/5s+rkdFFrGhJ8nt4Qrz/yOlxehxhPfFz9nQ0LWJAD5EAnOdDK2iKbrGyyNtw8ZEPnGhXinZqdvOhr782bnDupOnKMnD17Vn3zm98cVRiMHTtW7dmzJ+cOd6fz9NYyKdtjiiCKoLLltGs9rUyE3P02whIEIACB5gmwyUrB7/pvH/bIKXLAfw6wNhLuza55dX7zf2lbu7LINQ2JNE9viNc1eR0ur0OMJz78/y2AMYzJgWrkQCtri2yyssnacJOVjya9RoX4zhFXv6DzJuetlRjNX3358mX1/e9/P1MUbNmypXkjHVyZp9cVzxjtUARRBMWYlzHF1MpEqINfP9wKAQhAoG0CbLJWozCP6W8jsZBz5EDnOcDayJU6LMT6SF6d3/Yf3jo3Fr2mIaHl6Q3xuiWvw+V1iPHER+e/62EIQ3KAHJAcaGVtseVN1jrzEp4qKYF58+ZlJnwHDx70rva6667L+L1w4YJ3v6LNnOAKg1SaGbvu+4r/F7/4RYbXmjVrfLnL2NX6zGPmwhKd+NrXvpZhbuqvQl840CAAAQhAAAIQgAAEIAABCIQgMH/+/EwdduDAgRCuM36l3gvRRJ9ZWwoH3830qfs+/Ba9piGatD7z6EOvaZO8vrLJGiKvTfb0IQABCECgHATCzMrKwaqyKpYtW5aZ8G3bts07j6I2WUWbObEVBqk0M3bd9xH/jh07VFfX6O/sXbp0qfr88899uLPa1PrMo/Xikpwssggq6nVZVHFfkpRBBgQgAAEIQAACEIAABCDQIYFbb701s1bw6quvdmi1udvNelf6IZroM30LB9/N9Kn7rv3GsKYhmrQ+8+har80eeX1lkzVEXtv4cw4CEIAABNInEGZWlj6nSitYv359ZsL3+OOPe2fyla98JeM3xOadaDMntsIglWbGrvuu4//rX/+qJk+ePIrV9OnT1cmTJ5ty9dZbb6n+/n7V6X9Fa33msakgEr2oyCKoqE3Woor7RFOEsCEAAQhAAAIQgAAEIAABxwQ2bNgwqv6VGvSxxx5z7MVuzqx3pR+iiT7Tt3Dw3Uyfuu/SbyxrGqJJ6zOPLvXm2SKvr2yyhsjrvDHgPAQgAAEIpE0gzKwsbUaVj16+W9Oc6N1+++3euRS1ySraTL2hvl/UBVQzdt13YVvbOHfunFq4cOEoTuPGjVOycdpMu3Tpklq0aNHIJu0XX3zRzC2512h95jH3hhI8UWQRVNTrsqjivgTpggQIQAACEIAABCAAAQhAwAGB3/zmN6NqYKlBly9f7sByYxNmvSv9EE30mb6Fg+9m+tR9V35jWtMQTVqfeXSlt54d8vrKJmuIvK43DjwHAQhAAALpEggzK0uXD5Erpfbt25eZ8PX29irZKPPZitjMEU2izZzYCoNUmhm77ruM/84778wwamVC+stf/nLk/pUrV3YcltZnHjs2HLGBIougIl6XMhRFFfcRpwGhQQACEIAABCAAAQhAAAIBCbz77ruZOvj6669Xw8PD3qMw613p+26iS/SZvoWD72b61H1XfmNa0xBNWp95dKW3nh3y+soma4i8rjcOPAcBCEAAAukS8D8rS5cNkf+XQN7G4969e70ykv+MNCeYFy9e9Orz7bffzvgMsaHsUpTJTPdd+XjiiScyjNauXdu0+c2bN395/2uvvdb0fXkXan3mMe/6MpwvsggqYpO1yOK+DPmCBghAAAIQgAAEIAABCEDADYG+vr4v61ldg7755ptujNexon3VHutc7uQp0VXrTx6L/hDN9Kv7LnzHtqYhmrQ+8+hCbzM2yOswed3MWHANBCAAAQikR4BN1vTGrJCIbR+h6/v7CorYZLV9DGuIj0Z2OajmpFz3Xfj44x//qLq6ukYVAN/73vdUvc3v//znPyPf0/rMM8+ogYGBL+/t6elRFy5c6Dgsrc88dmw4cgNFFUFFvC6LLO4jTwPCgwAEIAABCEAAAhCAAAQCErD9B+QDDzzgPQKz3pW+7ya6TL+iP0Qz/ep+p75jXNMQTVqfeexUb7P3k9dh8rrZ8eA6CEAAAhBIi4D/WVlaPIg2h8DWrVszk75p06apTr9PM8fdyOnQmzmiRTSZk1rRnlIz49f9TjUcPXpUTZkyJcNnxowZ6jvf+c6on29961vqG9/4xsj15qasjucHP/hBpyGN3K/tmUcnxiM2UlQRFPp1KUNQZHEfcQoQGgQgAAEIQAACEIAABCAQmMALL7yQqYnl069cvIG4nhSz3pW+zyZ6bF+lJPpDNJveTjXHuqYhPH3obWWcyOswed3KmHAtBCAAAQikQ8DvrCwdDkTagMDg4KAaP358ZuL38ssvN7iz/afHjh2b8edzU1e0mBNb0SzaU2qmBt3vVIP+HlVtr9Pjtm3bOg1p5P68OJwYj9hIUUVQ6E3Woov7iFOA0CAAAQhAAAIQgAAEIACBwASGhoas31P6/PPPe43EVvf6dCh6TJ/y/aznz5/36fZL26Zv3f/ygjYexLqmIVK0PvPYhsy2biGvw+R1W4PDTRCAAAQgED0BNlmjH6J4ArznnnsyE78FCxZ4CzD0JqtoMSe0ojm1ZmrQ/dR0NBuv1mcem70/1euKKoJCvy6LLu5TzQ/ihgAEIAABCEAAAhCAAAT8EFi9enVm7WD27NlqeHjYj8OcTThfzkSH6DFrbNEdqpm+dT+U/9B+tD7zGDIO8jokbXxBAAIQgECZCLDJWqbR9Kxlz549mUm2TABfeeUVL55DbuaIBnMyK33RnFqz6ZBzZW1V01s7jkUUQSFflzEU97W8eQwBCEAAAhCAAAQgAAEIQOC9996zrh8899xz3uDY6l5fzkSHzZ/oDtVs/uVcWVsMesnrsmYXuiAAAQhAwDeB8s5QfJOrqP2BgYHMZHvmzJlK/qvOdevu7s748vHO0HPnzinRYE5qRWuKzdSh+ylqaSZmrc88NnNv6tcUUQSF3GSNobhPPUeIHwIQgAAEIAABCEAAAhBwT2DFihWZNYSpU6eq06dPu3cW8D9ZJX7RYdbXojdkM/3rfsgYQvrS+sxjyBjEF3kdmjj+IAABCECgDATYZC3DKAbUsGvXrsxkWyaBDz30kPMoQm2ySuzmRFb6u3fvdq4phEGbFjlX1lY1veY4hi6CQr0uYynuTd70IQABCEAAAhCAAAQgAAEIvPPOO9Z1hJUrV3qBY6t7fTiS+G2+RG/IZotBzpW1xaKXvC5rhqELAhCAAAR8EijvDMUntYrbvu222zKT7q6uLrVz506nZEJs5kjMErs5oRWNqTZTi+6nqqdR3FqfeWx0X1meD10EhXhdytjEUtyXJU/QAQEIQAACEIAABCAAAQi4JXDfffdl1hKkLn3ppZfcOgr0n6wSt1lXS190hm62OORcWVtMesnrsmYZuiAAAQhAwBeB8s5QfBHDrjp27JiaMGFCZvI9bdo0dfLkSWeEfG/mSKwSszmZFW2iMdVm6tH9VPU0ilvrM4+N7ivT8yGLIN+vSxmXmIr7MuUJWiAAAQhAAAIQgAAEIAABdwROnTql+vr6MmsKEydOVIcOHXLnKMAmq8QrcZt1tegTnaGbGYfuh44jlD+tzzyG8l/rh7yupcFjCEAAAhCAQGMCbLI2ZsQVFgJPPvlkZvItk8HFixerwcFByx2tn7r22mszPi5dutS6IcsdEqPEak5gpS/aUm42TXKurK1qem3jGLII8r3JGltxb+PNOQhAAAIQgAAEIAABCEAAAkLgd7/7nXVdYdasWerEiRPOINnqXlfGJU6J1+ZD9BXRbLHIubK22PSS12XNNHRBAAIQgIAPAuWdofighc1RBG655RbrJPzmm29WFy5cGHVtOx1fm6wSm8Rom8SKptSbTRfFSOqj2jj+UEWQr9elKIyxuG9MnisgAAEIQAACEIAABCAAgSoTuPfee63rC/Pnz3f2X6C2Ot8Fc3nD7rx586zxF/ExwVqTTS/rGppOmCN5HYYzXiAAAQhAIH0CbLKmP4aFKZDJ+IwZM6yTcdnEPHPmTEex+djMkZjyNlhFi2hKvVGMXDOSk6mPYzvxhyiCfLwuRWusxX0748A9EIAABCAAAQhAAAIQgEB1CJw/f14tXLjQujYiG5h///vfO4Zhq/M7NSpxzZ071xq36BFdRTWbXjZZw44GeR2WN94gAAEIQCBdAmyypjt2UUS+f/9+1dPTY52UL1iwQB0/frztOLu6ujJ22zam1EgsEpNtsi4aREsZmk0fxUgZRraxhhBFkI9N1piL+8bUuQICEIAABCAAAQhAAAIQqDqBo0ePqunTp1vXG/r7+9XevXs7QmSr8zsxKPFIXDa7okP0FNlscbGuEX5EyOvwzPEIAQhAAALpEWCTNb0xiy7inTt3qnHjxlkn51OmTFHbt29vK2aXm6wSg8Rim6hL7KKhLM2mkWKkLKPbWIfvIsjl61LUxF7cNybOFRCAAAQgAAEIQAACEIAABJQ6ePBg7rrD2LFj1caNG9vGZKvz2zUmcUg8NpuybiI6im622FjXKGZUyOtiuOMVAhCAAATSIcAmazpjFXWksomZt9EqE+E1a9aoTz/9tCUNLjZzTp8+PeI7b4IuMbe7CdySmIAX52kNGEJQV1XT2wxcn0WQi9el1pBCca9j5QgBCEAAAhCAAAQgAAEIQKARAXkTad4bvKV2HRgYUB988EEjM5nnbXVv5qIGJ8Sv+LfZknN9fX1q3759DayEeTovxjDew3uJXS95HT4n8AgBCEAAAukQYJM1nbGKPtLdu3er3t7euhP2LVu2qIsXLzalZcyYMRlbTd2o1IgP8SVFQt5kVWKVmMvW8vSWTafWUzW9Wnejo68iyMUma0rFfSPOPA8BCEAAAhCAAAQgAAEIQKCWwJEjR9SNN96YuxbR3d2tHnzwQXXq1Kna2+o+ttW9dW+oeVL8iD/xa7Mj5yReiTuWlhdnLPG5jiMFveS161HHHgQgAAEIlIUAm6xlGclIdBw4cEDNmjUrd+IuE8cZM2aop556Sp09e7Zu1O1ssg4ODo7YFh95k1Q5LzFKrGVsebrLqFU0VU1vK+Poowhq53WpY06xuNexc4QABCAAAQhAAAIQgAAEINAsgY8//lgtWbIkt16VOnb8+PFq3bp1TX3/qa3ubRSLfJWM2Bc/tvv1uaVLlyqJN6amYzOPMcXoMhZTp+679OHCFnntgiI2IAABCECgbATYZC3biEag58yZM+qOO+6oO4mXCaNM9O+++271+uuvq6GhoUzkzW7myL1iQ2w1Kh7Er8QmMZa16cm4eURvWQnU1+W6CGr2dVkbVcrFfa0OHkMAAhCAAAQgAAEIQAACEGiWwPDwsHrkkUeU7dOAzHr9pptuUk8//bT66KOPrObN66Vva3K/2BF7tntqz0lcEp/EGVurjbP2cWxxuoqnVmPtY1f2Xdohr13SxBYEIAABCJSBgH1WVgZlaCicwLPPPqsmT57ccGIvE0j52BopAh5++GG1detWtWfPHut9x44dG3lOrpFr5Z56H3lTOzmVWCSmsrdazVV+XPZxbkWfyyKo2U3WshT3rXDmWghAAAIQgAAEIAABCEAAAiaBXbt2qTlz5ljXOGw1++zZs9WqVavU5s2bR95QfvjwYeu9cl7ecC7XyfVyn82e7ZzEI3HF2mwxV/FcrOMjcZHXMY8OsUEAAhCAQEgCbLKGpF1BX/LxoKtXr1a2jZlQE2TxLTG08n0nKQ9VKK6x+0l5DH3FThHkiyx2IQABCEAAAhCAAAQgAAEI5BO4ePGieuKJJ1RPT0/TG6E+am7xL3FIPDE3H9pTtBnzGEls5HXsI0R8EIAABCAQggCbrCEo40O9//776q677mrqY3JcTXzlo2/Ep/iuUnPFL3U7VRrzVrRSBLVCi2shAAEIQAACEIAABCAAAQi4I/DJJ5+MfERvb29v0M1W8ScfDSz+U2ipr0e4ij+FsZIYyetURoo4IQABCEDABwE2WX1QxWYugQ8//FCtX79e9ff3eysoxLb4EF9VbK4m86nbqeLYt6KZIqgVWlwLAQhAAAIQgAAEIAABCEDAHYHBwcGRj/ldtGiRt7URqenFvnycsPhLqaW+HuEq/pTGTGIlr1MbMeKFAAQgAAEXBNhkdUERGy0TkO+I3LFjx8jH+N54440dFxViQz4SWGyK7So3V5P51O1UOQda0U4R1AotroUABCAAAQhAAAIQgAAEIOCWwKFDh9Sjjz6qli5dqrq7uztaH5H7xY7YE7upttTXI1zFn+r4SdzkdcqjR+wQgAAEINAKATZZW6HFtd4IHD9+XL344osjhYB8xO/ixYvVrFmz1NSpU9W4ceNGfuSxnJPn5BopGuQeuZd2lYCryXzqdq4S4VGzBCiCmiXFdRCAAAQgAAEIQAACEIAABNwTOHfunHrjjTfUpk2b1Nq1a9XAwICaM2eOmj59+sj3uV577bUjR+nLeXlerpPr5b6hoSH3QRVgMfX1CFfxF4Dei0vy2gtWjEIAAhCAQCQE2GSNZCAIAwIQgEBMBCiCYhoNYoEABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAIHYCLDJGtuIEA8EIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIBA1ATZZox4egoMABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABGIjwCZrbCNCPBCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAQNQE2GSNengIDgIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQiI0Am6yxjQjxQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACURNgkzXq4SE4CEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAgNgJsssY2IsQDAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhETeD/ALdz7iTIWvA9AAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## IMPORTS and SETUP" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# general imports\n", + "import numpy as np\n", + "import math\n", + "import matplotlib.pyplot as plt\n", + "# magic word for producing visualizations in notebook\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# AWS imports: Import Braket SDK modules\n", + "from braket.circuits import Circuit, circuit\n", + "from braket.devices import LocalSimulator\n", + "from braket.aws import AwsSession, AwsDevice" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# local imports\n", + "from utils_circuit import get_unitary, adjoint\n", + "from utils_qaa import qaa\n", + "\n", + "# monkey patch get_unitary() and adjoint() to the Circuit class\n", + "Circuit.get_unitary = get_unitary\n", + "Circuit.adjoint = adjoint" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# set up device: Local Schroedinger Simulator\n", + "device = LocalSimulator()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## IMPLEMENTATION OF REFLECTION OPERATORS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In ```utils_qaa.py``` we provide a set of simple helper functions to implement the quantum circuit for the QAA algorithm. \n", + "Specifically, we demonstrate how such modular building blocks can be registered as subroutines, using ```@circuit.subroutine(register=True)```. \n", + "Here we first highlight the implementation of the reflections $-\\mathcal{R}_{B}$ and $-\\mathcal{R}_{0}$ as discussed previously. The functions defined as follows comprise the ```utiles_qaa.py``` module." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### REFLECTION AROUND $|B\\rangle |0\\rangle$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We need to apply a minus sign to $|B\\rangle |0\\rangle$ only. We achieve this goal by applying $XZX$ to the ancilla qubit, so that we obtain a minus sign whenever the ancilla is in the $|0\\rangle$ state." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```python\n", + "# helper function to apply XZX to given qubit\n", + "@circuit.subroutine(register=True)\n", + "def minus_R_B(qubit):\n", + " \"\"\"\n", + " Function to apply a minus sign to |B>|0>. This goal is achieved by applying XZX to the ancilla qubit.\n", + "\n", + " Args:\n", + " qubit: the ancilla qubit on which we apply XZX.\n", + " \"\"\"\n", + " # instantiate circuit object\n", + " circ = Circuit()\n", + " \n", + " # Apply sequence XZX to given qubit\n", + " circ.x(qubit).z(qubit).x(qubit)\n", + " \n", + " return circ\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### REFLECTION AROUND $|0\\rangle^{\\otimes n+1}$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We must implement $-\\mathcal{R}_{0}$, which gives a minus sign to $|0\\rangle_{n+1}$ only, leaving all other states untouched. \n", + "To this end, we implement the circuit visualized previously using ancilla qubits; alternatively, as controlled by the flag ```use_explicit_unitary```, one can evolve the system with the the unitary $\\mathrm{diag}(-1,1,1,...,1)$.\n", + "This way, we can run QAA on _classical_ simulators without the need to resort to ancilla qubits. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```python\n", + "# Helper function to apply rotation -R0\n", + "@circuit.subroutine(register=True)\n", + "def minus_R_zero(qubits, use_explicit_unitary=False):\n", + " \"\"\"\n", + " Function to implement transformation: |0,0,...0> -> -|0,0,...0>, all others unchanged. \n", + "\n", + " Args:\n", + " qubits: list of qubits on which to apply the gates\n", + " use_explicit_unitary (default False): Flag to specify that we could instead implement\n", + " the desired gate using a custom gate defined by the unitary diag(-1,1,...,1).\n", + " \"\"\"\n", + "\n", + " circ = Circuit()\n", + " \n", + " # If the use_explicit_matrix flag is True, we just apply the unitary defined by |0,0,...0> -> -|0,0,...0>\n", + " if use_explicit_unitary:\n", + " # Create the matrix diag(-1,1,1,...,1)\n", + " unitary = np.eye(2**len(qubits))\n", + " unitary[0][0]=-1\n", + " # Add a gate defined by this matrix\n", + " circ.unitary(matrix=unitary, targets=qubits)\n", + " \n", + " # Otherwise implement the unitary using ancilla qubits:\n", + " else:\n", + " # Flip all qubits. We now must check whether all qubits are |1>, rather than |0>.\n", + " circ.x(qubits)\n", + "\n", + " # If we have only 1 qubit, we only must apply XZX to that qubit to pick up a minus sign on |0>\n", + " if len(qubits) < 2:\n", + " circ.z(qubits)\n", + "\n", + " # For more qubits, we use Toffoli (or CCNOT) gates to verify the qubits are in |1> (after applying X)\n", + " else:\n", + "\n", + " # Dynamically add ancilla qubits, starting on the next unused qubit in the circuit\n", + " # NOTE: if this subroutine is being applied to a subset of qubits in a circuit, these ancilla\n", + " # registers may already be used. We could pass in circ as an argument and add ancillas outside of\n", + " # circ.targets instead, if desired.\n", + " ancilla_start = max(qubits) + 1\n", + "\n", + " # Check that the first two register qubits are both 1's using a CCNOT on a new ancilla qubit.\n", + " circ.ccnot(qubits[0],qubits[1],ancilla_start)\n", + "\n", + " # Now add a CCNOT from each of the next register qubits, comparing with the ancilla we just added.\n", + " # Target on a new ancilla. If len(qubits) is 2, this does not execute.\n", + " for ii,qubit in enumerate(qubits[2:]):\n", + " circ.ccnot(qubit,ancilla_start+ii, ancilla_start+ii+1)\n", + "\n", + " # A Z gate applied to the last ancilla qubit gives a minus sign if all register qubits are |1>\n", + " ancilla_end = ancilla_start + len(qubits[2:])\n", + " circ.z(ancilla_end)\n", + "\n", + " # Now uncompute to disentangle the ancilla qubits by applying CCNOTs in the reverse order to the previous.\n", + " for jj,qubit in enumerate(reversed(qubits[2:])):\n", + " circ.ccnot(qubit,ancilla_end-jj-1, ancilla_end-jj)\n", + "\n", + " # Finally undo the last CCNOT on the first two register qubits.\n", + " circ.ccnot(qubits[0],qubits[1],ancilla_start)\n", + "\n", + " # Flip all qubits back\n", + " circ.x(qubits)\n", + " \n", + " return circ\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## VISUALIZATION OF THE CIRCUIT FOR THE REFLECTION $\\mathcal{R}_{0}$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To check our implementation of the $-\\mathcal{R}_{0}$ circuit discussed previously, let us visualize this circuit for small number of qubits. \n", + "Note that our implementation accepts a list of qubit indices with arbitrary index ordering. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example circuit with four qubits and simple index ordering:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : |0|1|2|3|4|5| 6 | 7 |8|\n", + " \n", + "q0 : -X-C-------------C---X-\n", + " | | \n", + "q1 : -X-C-------------C---X-\n", + " | | \n", + "q2 : -X-|-C-------C---|-X---\n", + " | | | | \n", + "q3 : -X-|-|-C---C-|-X-|-----\n", + " | | | | | | \n", + "q4 : ---X-C-|---|-C---X-----\n", + " | | | | \n", + "q5 : -----X-C---C-X---------\n", + " | | \n", + "q6 : -------X-Z-X-----------\n", + "\n", + "T : |0|1|2|3|4|5| 6 | 7 |8|\n" + ] + } + ], + "source": [ + "qubits = [0,1,2,3]\n", + "circ = Circuit()\n", + "circ.minus_R_zero(qubits)\n", + "print(circ)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example with four qubits and arbitrary index ordering:" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that the simulators require contiguous qubit indexing, while our algorithm does not." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "T : |0|1|2|3|4|5|6| 7 |8|\n", + " \n", + "q0 : -X-C-----------C---X-\n", + " | | \n", + "q1 : -X-C-----------C---X-\n", + " | | \n", + "q4 : -X-|---C---C-X-|-----\n", + " | | | | \n", + "q5 : -X-|-C-|---|-C-|-X---\n", + " | | | | | | \n", + "q6 : ---X-C-|---|-C-X-----\n", + " | | | | \n", + "q7 : -----X-C---C-X-------\n", + " | | \n", + "q8 : -------X-Z-X---------\n", + "\n", + "T : |0|1|2|3|4|5|6| 7 |8|\n" + ] + } + ], + "source": [ + "qubits = [1, 0, 5, 4]\n", + "circ = Circuit()\n", + "circ.minus_R_zero(qubits)\n", + "print(circ)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## IMPLEMENTATION OF QAA " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This section puts everything together and shows how to implement QAA using the subroutines given previously. \n", + "We first build a function ```grover_iterator(...)``` that implements the Grover iterator $\\mathcal{Q}=\\mathcal{A} \\mathcal{R}_{0} \\mathcal{A}^{\\dagger} \\mathcal{R}_{B}$, given the unitary $\\mathcal{A}$ and the so-called flag qubit labeling the good/bad subspaces. \n", + "Given this implementation for the Grover iterator $\\mathcal{Q}$ it is straightforward to implement a QAA routine ```qaa(...)``` which repeatedly applies the iterator $\\mathcal{Q}$ for a given number of iterations. \n", + "\n", + "The full code (imported into this notebook in the [imports and setup](#IMPORTS-and-SETUP) section) is available in the module ```utils_qaa.py```. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```python\n", + "@circuit.subroutine(register=True)\n", + "def grover_iterator(A,flag_qubit,qubits=None,use_explicit_unitary=False):\n", + " \"\"\"\n", + " Function to implement the Grover iterator Q=A R_0 A* R_B. \n", + "\n", + " Args:\n", + " A: Circuit defining the unitary A\n", + " flag_qubit: Specifies which of the qubits A acts on labels the good/bad subspace.\n", + " Must be an element of qubits (if passed) or A.qubits.\n", + " qubits: list of qubits on which to apply the gates (including the flag_qubit).\n", + " If qubits is different from A.qubits, A is applied to qubits instead.\n", + " use_explicit_unitary: Flag to specify that we should implement R_0 using using a custom\n", + " gate defined by the unitary diag(-1,1,...,1). Default is False.\n", + " \"\"\"\n", + " # If no qubits are passed, apply the gates to the targets of A\n", + " if qubits is None:\n", + " qubits = A.qubits\n", + " else:\n", + " # If qubits are passed, make sure it's the right number to remap from A.\n", + " if len(qubits)!=len(A.qubits):\n", + " raise ValueError('Number of desired target qubits differs from number of targets in A'.format(flag_qubit=repr(flag_qubit)))\n", + " \n", + " # Verify that flag_qubit is one of the qubits on which A acts, or one of the user defined qubits\n", + " if flag_qubit not in qubits:\n", + " raise ValueError('flag_qubit {flag_qubit} is not in targets of A'.format(flag_qubit=repr(flag_qubit)))\n", + " \n", + " # Instantiate the circuit\n", + " circ = Circuit()\n", + " \n", + " # Apply -R_B to the flag qubit\n", + " circ.minus_R_B(flag_qubit)\n", + " \n", + " # Apply A^\\dagger. Use target mapping if different qubits are specified\n", + " circ.add_circuit(A.adjoint(),target=qubits)\n", + " \n", + " # Apply -R_0\n", + " circ.minus_R_zero(qubits,use_explicit_unitary)\n", + " \n", + " # Apply A, mapping targets if desired.\n", + " circ.add_circuit(A,target=qubits)\n", + " \n", + " return circ\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```python\n", + "@circuit.subroutine(register=True)\n", + "def qaa(A,flag_qubit,num_iterations,qubits=None,use_explicit_unitary=False):\n", + " \"\"\"\n", + " Function to implement the Quantum Amplitude Amplification Q^m, where Q=A R_0 A* R_B, m=num_iterations. \n", + "\n", + " Args:\n", + " A: Circuit defining the unitary A\n", + " flag_qubit: Specifies which of the qubits A acts on labels the good/bad subspace.\n", + " Must be an element of qubits (if passed) or A.qubits.\n", + " num_iterations: number of applications of the Grover iterator Q.\n", + " qubits: list of qubits on which to apply the gates (including the flag_qubit).\n", + " If qubits is different from A.qubits, A is applied to qubits instead.\n", + " use_explicit_unitary: Flag to specify that we should implement R_0 using using a custom\n", + " gate defined by the unitary diag(-1,1,...,1). Default is False.\n", + " \"\"\"\n", + " # Instantiate the circuit\n", + " circ = Circuit()\n", + " \n", + " # Apply the Grover iterator num_iterations times:\n", + " for _ in range(num_iterations):\n", + " circ.grover_iterator(A,flag_qubit,qubits,use_explicit_unitary)\n", + " \n", + " return circ\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## NUMERICAL EXAMPLE" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This section shows how to use QAA to amplify the amplitude of $|11\\rangle$ of a two-qubit state, thereby increasing the entanglement between the two qubits. Consider a single qubit in the state \n", + "\n", + "$$|\\psi\\rangle=\\sqrt{1-\\delta^2}|0\\rangle + \\delta |1\\rangle,$$\n", + "\n", + "where $\\delta$ is small. This state can be prepared using a small rotation around the $y$ direction:\n", + "\n", + "$$R_y(\\epsilon)|0\\rangle=|\\psi\\rangle,$$\n", + "\n", + "where $\\epsilon$ is chosen to give a coefficient of $\\delta=\\sin(\\epsilon/2) \\approx \\epsilon/2$ to $|1\\rangle$.\n", + "\n", + "Suppose $|1\\rangle$ is the \"good\" state and $|0\\rangle$ is the \"bad\" state. \n", + "We can use a single ancilla qubit to mark whether our register qubit is in the \"good\" or \"bad\" state, which can be accomplished by applying a single $\\mathrm{CNOT}$ gate to our ancilla qubit and $|\\psi\\rangle$. \n", + "Thus,\n", + "\n", + "$$\n", + "\\mathcal{A}|0\\rangle|0\\rangle = \\mathrm{CNOT}\\circ R_y(\\epsilon)|0\\rangle|0\\rangle = \\mathrm{CNOT}|\\psi\\rangle|0\\rangle = \\sqrt{1-\\delta^2}|00\\rangle + \\delta |11\\rangle.\n", + "$$\n", + "\n", + "Our goal is to amplify the coefficient of the \"good\" state. Using the previous algorithm, this amplification corresponds to applying Quantum Amplitude Amplification with an input unitary $\\mathcal{A}=\\mathrm{CNOT}\\circ R_y(\\epsilon)$. We then test whether the flag qubit is in the $|1\\rangle$ state, which we can achieve by checking the amplitude of the $|11\\rangle$ state.\n", + "\n", + "Let us check the effectiveness of the algorithm by plotting the probability of measuring $|11\\rangle$ as a function of the number of repetitions $m$, which corresponds to the number of queries of the oracle, in the classical problem. According to the description given previously, we should see a distribution that looks like $O(\\sin^2(m))$. Note that the probability `ResultType` we will use requires a non-zero value for `shots` when running on an on-demand simulator." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAboAAAE9CAYAAAB9QqflAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3deXxU1fnH8c9DCBBZjAgqIAgqoogKGpeKdaEqWDeKoiCCOy5VW7VYsK22ta1WWqs/txY3cGMREVA2F7AudQEERVAUFJSg4EJYNEBInt8fd4JDmCQ3IZM7M/m+X6+8MneZyZfbmif3nHvOMXdHREQkU9WLOoCIiEgyqdCJiEhGU6ETEZGMpkInIiIZTYVOREQymgqdiIhktPpRB6iOFi1aePv27aOOISIiKWLu3LnfuHvLRMfSstC1b9+eOXPmRB1DRERShJktL++Ymi5FRCSjqdCJiEhGU6ETEZGMpkInIiIZTYVOREQymgqdiIhkNBU6ERHJaEktdGb2iJmtNrMPyjluZvZ/ZrbEzN43s0OTmUdEJNkmzsun++0z6TB0Ct1vn8nEeflRR6rzkn1HNxLoVcHxU4COsa/BwANJziMikjQT5+UzbMIC8gsKcSC/oJBhExao2EUsqTOjuPurZta+glPOBB7zYJnzt8ws18xaufuXycwlIlLjtmxi9LRZHFq8gt3rreE7mvGZ70F+UQuGz1hM725tqvRxE+flM3zGYlYWFNI6N4chPTtV+TMkEPUUYG2AL+K2V8T2bVfozGwwwV0f7dq1q5VwIiJbbVwHa7+Agi9i3z/fdnvDKsYCNNj2bUWexYofWsATB0PzvWHXfaD5PtC8A+TuBVnb/xouvTMsLCoGfrwzBFTsqiHqQmcJ9nmiE919BDACIC8vL+E5IiLVMXFePvdOn0/jdUvp0mQd/feDLo3jC9vnsHHttm/KagA77wk7t4WOJ8HO7fjLG+v54Pud+cp3YVfW0aHeV+xlq+jc4Gs6bFgFn78Jmzf8+Bn16gfFbmsB3Bua78NT01axuagpkLX11MKi4mrdGUr0hW4F0DZue09gZURZRKSuKSnh9ZcnwWuPMNneZqeGm6AIWAhF9RuT3XyvoJC1OzL4ntsWdm4XfG+8G9Tb9jGHLjvn82TsTmwZrZhb3Imc7CxuO/0g6NYG3OH7r+HbpfDdUvju0x9fxxXBcUBRwyy+8JZ87G15trg7L5ccysqCwtq/Rhkg6kI3GbjazMYARwJr1T8nIklX8AW8NxrmPcExBctZbzlMLD6aV0q6ssJbssJb0HTnFrxx1c+q9LGld1vl9q2ZQZPdgq+9frLtm91hw2r4bil/fXwKuRs/p719xWH1PqFX1mxWeS7T6p8IBQdBrrpvqiKphc7MRgPHAy3MbAVwC5AN4O7/BqYCPweWAD8AFyUzj4jUYUWF8NEUmPcEfPoK4ND+p1y3+lSmlRzORhpuc/r6tRur9WN6d2tTveZFM2i6OzTdnQNP3WtrH10WxRxfbz4Ds2dxQfEzcNczsO+JcNiFsF+vhH18sq1kP3XZv5LjDvwymRlEpA5zh5XvwrwnYcF42LQ2aII87rfQtT/s0p53bp/JxgRNgq1zcyIIHCh7Z/hRs2Mo6HkJ1qEE3n0M5j0OYwdA01bQbSAcOihoTi1HXX+C04Jak17y8vJcC6+KSLk2fA3vjw3u3r7+EOo3ggNOh27nQ/tjt+lbK/uEIxD0q/U5KHWLQfEW+GQGzHkUlrwU3A3uexLkXRR8j7vLS8t/XzWY2Vx3z0t4TIVORDJCcRF88iLMfxI+ng4lW6DNYUFxO7AP5OSW+9a0vuNZs/zHu7wNq6BZm9hd3kDYeU+63z6T/AR3rG1yc3hjaI8IAieHCp2IZK7VH8H8J+C9sfD9amjcEg7pB10HwG4HRJ2u9hQXBQV+zqOwdGZwl9fxZC75oAuzSrpSUmYiLAM+u/3UaLImQUWFTr2YIpKWpv9vHg1eGkaPkjfZQhZf73EcrU6/LBjTlpUddbzal5UdNM8ecDqsWQZzR8G8J3i4wXTyfVfGbjmB0cUn8DW7ANH2QdY2rV4gIumlpJj3nrmDY2acwtHFc/hX0VkcufFeeuRfzsTCQ+pmkStrl/Zw4i1w/SLeOfwultGG67PHM6vhDQzMeoGdso0hPTtFnbLWqNCJSPr48n146EQOWfBX3i3Zl56b/87dxWfxLTtvnTlE4mRlc8SpF/F17zH0a3Av80o6cmv2SF5reQe999xQ6dszhfroRCT1bdoAr9wGbz0AOzXn2jXnMrnkJ5SdRTDT+p1qnHswUH76MCj6AY4dAt1/DfUbVP7eFFdRH53u6EQktS2eDvcfBW/eGzxJePVs5jb7GYmmyq1L/U7VYgZdz4OrZ8P+p8Gsv8KI42HF3KiTJZUKnYikpnUrYexAGH0uNGgCF8+A0++GnF0Y0jOYQzJeTnZWnep32iFNdoO+j0K/0VC4Bh4+EabfBJu/jzpZUuipSxFJLSXFMPshePlWKCmCn90MP7lmm+a1SueUlHD2/zm07w4v/RHeug8+ej74Y2KfE6JOVqPURyciqePL9+C5X8HKebBPDzj1n8HSNZJ8y96A566Fb5cEYxBP/gvs1Hy701J1cL366EQktW3aADN+F/QXrc2Hsx6G8yeoyNWm9t3hijfgmOvhvTFw35Gw8NngAZaY0unE8gsKcX5cEHbivPzocoegQici0Vo8Lfil+ua9cOgFcPU7cNDZwYMTUruyGwXj7wa/As1awdMXwpgBQX8pQVNx/JyZQFoM61AfnYhEY20+TLsx6BfarTOc/UKwwKlEr9XBcOlMeOt+mPW34A+Rk/7MlwUtSHR/lOoLwuqOTkRqV0kJvP0fuO+IYOb9n90Cl7+qIpdqsupD92vhqv9B667w/K8Zn3Mb7W37tbFTfViHCp2I1J6iQnjm4uBOru2RcNVb8NPrNW1XKmu+NwyaDGfcw0FZnzOjwVCuzJpMfbYA6TGsI3Shs8BEM6tD04GLSI1ZvwpGnoovnMh99QfRYeHFdB/xWco/yCAE/aWHDiL7V3P4pvUJ/DZ7DCOz/06nnUvSYl27qtzRnQzkAZcmKYuIZKqvPoAHe7Dlq0VcW3w9wzf0wrG0eWpPYpruQZvLn4Yz7+eY7I+Z0ewv9G6/JepUlapKobuEoMidbmZ6iEVEwlk8HR7pCV7MZVm38lzRYdscToen9qSMbgNg4LOw/kt46GcpP4VYqEJnZi2AA919OvAS8IukphKR9OcOb94Ho/vBrvvCZTN5ZV3rhKem+lN7kkCHn8IlL0H2TjDyVPjwuagTlSvsHd0gYHTs9aMEd3ciIokVF8Hzv4YZN8EBp8FF06BZ63Kfzkv1p/akHC33g0tfhj26BPOS/u+ebQaYp4qwhe4iggKHu88GWplZ26SlEpH0VbgGnugDc0cGs2z0fQwa7ASgyZgzUZOWcMFz0PlMeOH3MOV6KE6tfrtK+9rMLBe4193je4t/A7QAvkhWMBFJQ98uhafOgTXLofcDwZIwcTQZc4bKzoGzH4WX28Mbd0HBF8HqCA2bRp0M0KTOIlJTlr0OY88HDPo9CXsdHXUiicLckfD89bDbAXDeONi5dv6IScqkzmZ2c/UjiUhGmfcEPNYbGreEy15WkavLDrsQzh8PBZ8HT2R++V7UiXZoZhSNpxOp60pK4MWbYdIvof0xcMmLWnFAgiWWLp4BlgWPnBIMMSlj4rx8ut8+kw5Dp9D99plJHUtZYaEzs3XlfK0HEj8nLCJ1w+bvYdxAeONuyLsYBjwNOblRp5JUsXvn4O6+RUcY0x/eHrH1UG0v91PZHV0B0NHdm5X5agpsP7OniNQN61bCI71g8VTo9Xc49U7NVynba7oHXDQV9jsFpg2BaUOhpLjWl/up7KnLx4C9gFUJjj1V83FEJOWtnAej+weLpfYfC/udHHUiSWUNGsO5jwdDD966HwqWs6bgbKDRdqcma+KACu/o3P337v5OOcd+m5REIpK6Fk0O+lzqZcMlM1TkJJx6WdDrNjhlOHw8nQk5f6Ula7Y7LVkTB2iZHhEJ543/C/rk9ugS9L3sfmDUiSTdHDkY+o9h33ormdTwZjrZ51sPJXPigMoeRvnMzD6t4Kv0+LVJSSciqeH1u+DFP8CBvwhmwWiyW9SJJF3t15P6l85gl5wsJjT8E8fWe582uTlJXe6nwj46d++QlJ8qIunjrQfgpVugy1nQ58GgGUpkR7Q6hJwrX4GnzuWx1cNhwHRom7yB5Wq6FJHyzX4Ypg9lZauTOPaTfnS4aXrSxzxJHbFzG7h4GvT4PbQ5rPLzd4DWlRORxN59HKZcz1e7H0+vFReyrqgI+HHME6A5KmXHNGwKP70+6T9Gd3Qisr33x8Hka2CfHvQvuJJ1RbbNYS2WKulEhU5EtrXwWXj28mBKr35PsWxtccLTtFiqpItQTZdmth8whGDw+Nb3uHuPJOUSkSh8NAWeuRTaHgnnjYXsHFrn5pCfoKhpsVRJF2H76J4G/g08CCT+805E0tvHL8C4C6BV12B5lQaNgWCx1GETFmwzZZMWS5V0ErbQbXH3B5KaRESis3RWsJbc7p3h/GegUbOth7RYqqS7sIXuOTO7CngW2FS6092/q+hNZtYLuBvIAh5y99vLHG8HjAJyY+cMdfep4eOLyA5b9nowd+Wu+8LAiQlXIOjdrY0Km6StsIXugtj3IXH7HCh34SkzywLuA04CVgCzzWyyuy+KO+33wDh3f8DMOgNTgfYhM4nIjvr8bXjyHMhtB4MmwU7No04kUuNCFbpqzpByBLDE3T8FMLMxwJlAfKFzoLSNZGdgZTV+johUR/5cePLsYCmVCyZDk5ZRJxJJigoLnZn1cPeZZtYn0XF3n1DB29sAX8RtrwCOLHPOH4EXzOwaoDFwYqWJRWTHffk+PP4LyNklmLuy6R5RJxJJmsru6I4DZgKnJzjmQEWFzhLs8zLb/YGR7v5PM/sJ8LiZdXH3ku0+zGwwMBigXbt2lcQWkXKtWgSPnQkNmgZFbmf1vUlmq2xS51ti3y+qxmevANrGbe/J9k2TlwC9Yj/jTTNrBLQAVifIMgIYAZCXl1e2YIpIGN98EhS5+g2D5spd9oo6kUjSJXNmlNlARzPrYGYNgH7A5DLnfA78DMDMDiBYcvbrJGYSqbu+XQqjTgccBk2GXfeJOpFIrUhaoXP3LcDVwAzgQ4KnKxea2Z/N7IzYaTcAl5nZe8Bo4EJ3192aSE0r+Dy4k9uyKShyLfeLOpFIrQk7BVhDd99U2b6yYmPippbZd3Pc60VA9/BxRaTK1ubDyNNg07qgT273zlEnEqlVYe/o3gy5T0RSyfpVQXPlD9/BwGeh1SFRJxKpdZUNL9iDYJhAjpl148cnKZsBOyU5m4jsiE0bgnFy67+CgROSvrilSKqqrOmyJ3AhwROTd8btXw/clKRMIrKjSophwmWw6gPoPwbaHRV1IpHIVDa8YBQwyszOcvdnaimTiOyoF2+GxVPhlDtgv55RpxGJVGVNl+e7+xNAezPbbr1zd78zwdtEJEpzHoE37+XTDucxcFZHVj47RSsOSJ1WWdNl49j3JskOIiI1YOlMmPIbvtrtp5yx5DQ2FAULpuYXFDJswgIAFTupcypruvxP7PufaieOiFTb6o+ChVNb7s/AtVeyoWjbw4VFxQyfsViFTuqcUMMLzGxvM3vOzL42s9VmNsnMyl2iR0Rq2Yav4am+kJ0D541lydrEp60sKKzdXCIpIOw4uqeAcUAroDXwNMFMJiIStaJCGNM/KHb9R0NuW1rn5iQ8tbz9IpksbKEzd3/c3bfEvp5g+5UIRKS2lZTAxKtgxWzoM2LrWLkhPTuRk521zak52VkM6dkpipQikarsqcvS5YZnmdlQYAxBgTsXmJLkbCJSmVdug4UT4MQ/Qecztu4u7YcbPmMxKwsK9dSl1GlW0RzKZvYZQWFLuLacu0fST5eXl+dz5syJ4keLpI75o2HiFdBtIJxxD1ii/0xF6gYzm+vueYmOVfbUZYfkRBKRHbLsDZh8DXQ4Fk69U0VOpAJhVy8YlGi/uz9Ws3FEpFLfLoWxA2CX9nDOY1C/QdSJRFJaqEIHHB73uhHBYqnvAip0IrXph+/gqXMAgwHjIGeXqBOJpLxQhc7dr4nfNrOdgceTkkhEEtuyGcYNChZRHTQZmmsoq0gYYe/oyvoB6FiTQUSkAu7w/HWw7DXo8yDs9ZOoE4mkjbB9dM/x47i5ekBnggHkIlIbXv8XzH8CjhsKB58TdRqRtBL2ju4fca+3AMvdfUUS8ohIWQsnwst/gi5nw/FDo04jknbC9tH9N9lBRCSBFXPh2cuh7ZFw5n0aRiBSDWGbLteTeMovIxg43qxGU4lI8NDJ6H7QZHfo9xRkN4o6kUhaCtt0+S/gK4InLQ0YADR19zuSFUykTtu4Dp46F7Zsggufh8Ytok4kkrbCTurc093vd/f17r7O3R8AzkpmMJE6q3gLjL8IvvkYzn0MWmoiZpEdEbbQFZvZADPLMrN6ZjYAKE5mMJE66+U/wZKX4NR/wt7HR51GJO2FLXTnAecAq2JffWP7RKQmLXwW/vd/cPilcNiFUacRyQhhn7pcBpyZ3Cgiddzqj2DiL2HPI6DnbVGnEckY1Z0ZRURq0sZ1wUTNDXZieue/c+s/Xtc6ciI1RIVOJGruMPFK+O4zXjv6Ea6btprCoqALPL+gkGETFgCo2IlUU9g+OhFJltf/BR89DyffytC5zbYWuVKFRcUMn7E4onAi6S/sgPHrE+xeC8x19/k1G0mkDlk6E2beCl3OgqOuYuWkqQlPW1lQWMvBRDJH2Du6POAKoE3sazBwPPCgmd2YnGgiGa7gcxh/CbTcH864B8xonZuT8NTy9otI5cIWul2BQ939Bne/gaDwtQSOBS5MUjaRzFVUCGPPh5ItcO4T0KAxAEN6diInO2ubU3OysxjSU4PGRaor7MMo7YDNcdtFwF7uXmhmm2o+lkgGc4cpv4Ev34P+Y2DXfbYeKn3gZPiMxXrqUqSGhC10TwFvmdmk2PbpwGgzawwsSkoykUw199Fgbbljb4ROp2x3uHe3NipsIjUo7IDxW81sGtCdYFLnK9x9TuzwgGSFE8k4K+bA1Bth3xO1tpxILQk9js7d55jZ50AjADNr5+6fJy2ZSKbZsBrGDoRmraHPg1Avq/L3iMgOC/UwipmdYWafAJ8B/419n5bMYCIZpXgLjL8YCr+Dcx+HnZpHnUikzgj71OWtwFHAx+7eATgReCNpqUQyzUu3wLLX4PS7odUhUacRqVPCFroid/8WqGdm9dx9FtA1iblEMscHE+DNe+Hwy+CQflGnEalzwvbRFZhZE+BV4EkzWw1sSV4skQyx+kOYdDW0PRJ6/i3qNCJ1Utg7ujOBQuA6YDqwlGCIgYiUZ+NaGDMgGAzedxTUbxB1IpE6KVShc/fv3b3Y3be4+yh3/79YU2aFzKyXmS02syVmlvBZajM7x8wWmdlCM3uqqv8AkZRUUgLPXgkFy+GcUdCsVdSJROqsCpsuzWw94ARj5zz+EODu3qyC92YB9wEnASuA2WY22d0XxZ3TERgGdHf3NWa2W7X/JSKp5PU7YfEU6HU77HV01GlE6rTK+ugOcfdPq/nZRwBLSt9vZmMImkDjZ1K5DLjP3dcAuPvqav4skdSx5GWY+Rc4qC8ceUXUaUTqvMqaLp8GMLOXq/HZbYAv4rZXxPbF2w/Yz8zeMLO3zKxXeR9mZoPNbI6Zzfn666+rEUekFqxZDs9cArt1DoYSmEWdSKTOq+yOrp6Z3UJQjLZbk87d76zgvYn+C/cy2/WBjgRL/uwJvGZmXdy9IMHPGgGMAMjLyyv7OSLR27oiQUkwKDy2IoGIRKuyO7p+wEaCgtQ0wVdFVgBt47b3BFYmOGeSuxe5+2fAYoLCJ5Je3GHKDfDV+9BnxDYrEohItCq8o3P3xcDfzex9d6/qlF+zgY5m1gHIJyia55U5ZyLQHxhpZi0ImjKr2ycoEp15T8D8J2MrEpTbAi8iEQg7vKDK81q6+xbgamAG8CEwzt0XmtmfzeyM2GkzgG/NbBEwCxgSZtiCSEr56gOY+hvocJxWJBBJQeaeft1deXl5PmfOnMpPFEm2jetgxPGw+Xu44jVoohEyIlEws7nunpfoWOhlekSkDHd47lew5jNeO3okQ+/9QKuCi6SgUIXOzPok2L0WWKCxb1JnzX4IFk5g4QHXMfjVhhQWFQKQX1DIsAkLAFTsRFJA2LkuLwEeIlhNfADwIHA98IaZDUxSNpHUlT8Xpg+Djidz+afHUFhUvM3hwqJihs9YHFE4EYkXttCVAAe4+1nufhbQGdgEHAn8NlnhRFJS4Rp4+kJosjv84j/kr92U8LSVBYW1m0tEEgpb6Nq7+6q47dXAfu7+HVBU87FEUpQ7TLwK1q2EviNhp+a0zs1JeGp5+0WkdoUtdK+Z2fNmdoGZXQBMAl41s8bAdrOYiGSsN++FxVPhpFuh7eEADOnZiZzsrG1Oy8nOYkjPTlEkFJEywj51+UvgLKA7wdRejwHPeDA24YQkZRNJLZ+/BS/eAgecDkdduXV36QMnw2cs1lOXIilI4+hEwvj+G/j3T4PFUy9/FRrtHHUiEYlT0Ti6UE2XZtbHzD4xs7Vmts7M1pvZupqNKZKiSkpgwmD44dtgpXAVOZG0Erbp8g7gdHf/MJlhRFLS6/+EpS/Daf+C1l2jTiMiVRT2YZRVKnJSJ332Ksz6W7CI6mEXRZ1GRKoh7B3dHDMbS7DawNZBQ+4+ISmpRFLB+lUw/hLYdV847S4toiqSpsIWumbAD8DJcfscUKGTzFRSHKwUvmk9DJoEDZtEnUhEqilUoXN3tdlI3fLKbbDsNej9AOzeOeo0IrIDKix0Znaju99hZvcQ3MFtw92vTVoykah88hK8Ohy6nQ9dy64VLCLpprI7utIHUDRoTeqGtStgwmWw24FwyvCo04hIDaiw0Ln7c2aWBXRx9yG1lEkkGsVFMP5iKN4M54yCBjtFnUhEakClfXTuXmxmh9VGGJFIvfRH+OJtOPsRaNEx6jQiUkPCPnU5z8wmA08D35fu1PACyRgfTQkmbD78UuhyVtRpRKQGhS10zYFvgR5x+zS8QDLDd5/Bs1dCq67Q829RpxGRGqbhBVK3bdkULKIKwfpy9RtGmUZEkiBUoTOzR0k8vODiGk8kUptm/A6+nA/nPgnNO0SdRkSSIGzT5fNxrxsBvwBW1nwckVr0wTMw+0H4ydVwwGlRpxGRJAnbdPlM/LaZjQZeSkoikdrwzScw+VpoeySc+Meo04hIEoVdvaCsjkC7mgwiUms2/wDjBgX9cWc/ClnZUScSkSQK20e3nm376L4CfpuURCLJ5A5TboDVH/LGT0Zw4wOLWVkwn9a5OQzp2Yne3dpEnVBEaljYpsumyQ4iUivmPQ7vPcVHna7k0tebUVhUCEB+QSHDJiwAULETyTChmi7NrLuZNY69Pt/M7jSzvZIbTaSGfbUApg6BvY/nsmU/o7CoeJvDhUXFDJ+xOJpsIpI0YfvoHgB+MLNDgBuB5cBjSUslUtM2rg365RrlQp+HWLF2c8LTVhYU1nIwEUm2sIVui7s7cCZwt7vfDag5U9KDO0y+BtYsh76PQpOWtM7NSXhqeftFJH2FLXTrzWwYcD4wJbaigR5Vk/Tw9n9g0ST42c2w19EADOnZiZzsrG1Oy8nOYkjPTlEkFJEkClvozgU2AZe4+1dAG0CLdUnqWzEHXvg97HcKHP3jOsG9u7Xhtj4H0SY3BwPa5OZwW5+D9CCKSAayoEUyveTl5fmcOVoLVirxw3fw759CvXpw+auQs0vUiUQkScxsrrvnJToW9qnLo8xstpltMLPNZlZsZmtrNqZIDSopgQmD4fvV0HeUipxIHRa26fJeoD/wCZADXArcl6xQIjvs9TthyYvBsjttDo06jYhEKOykzrj7EjPLcvdi4FEz+18Sc4lU32evwqy/BguoHn5p1GlEJGJhC90PZtYAmG9mdwBfAo2TF0ukmtZ/BeMvgeb7wOl3g1nUiUQkYmGbLgfGzr0a+B5oC5yVrFAi1VK8JShym9bDOY9BQw31FJHwc10uN7McoJW7/ynJmUSq55W/wfLXofe/YffOUacRkRQR9qnL04H5wPTYdlczm5zMYCJV8vEL8No/4dBB0LV/1GlEJIWEbbr8I3AEUADg7vOB9pW9ycx6mdliM1tiZkMrOO9sM3MzSzgGQqRCBV/As4Nh94PglDuiTiMiKaYqc11WadxcbJqw+4BTgM5AfzPbrj3JzJoC1wJvV+XzRQDYshmevjDonztnFGRrrkoR2VbYQveBmZ0HZJlZRzO7B6hseMERwBJ3/9TdNwNjCCaFLutW4A5gY9jQIlu9+AfInwO974Nd94k6jYikoLCF7hrgQIL5LkcD64BfV/KeNsAXcdsrYvu2MrNuQFt3fz5kDpEfLXwW3v43HHkldE70N5SISPinLn8Afhf7CivRAKatE2uaWT3gX8CFoT7MbDAwGKBdu3ZViCEZ6ZslMOka2PNwOOnPUacRkRQW9qnLPDObYGbvmtn7pV+VvG0FwXi7UnsCK+O2mwJdgFfMbBlwFDC5vAdS3H2Eu+e5e17Lli3DxJZMVVQIT18AWfXh7EehfoOoE4lICgs7M8qTwBBgAVAS8j2zgY5m1gHIB/oB55UejD3c0qJ028xeAX7j7lqWQMrnDs/9ClYthAFPQ27byt8jInVa2EL3tbtXadycu28xs6uBGUAW8Ii7LzSzPwNzqvp5IkCwiOr7Y+GE30HHk6JOIyJpINR6dGb2M4LVC14meCAFAHefkLxo5dN6dHXUstdh1BmwX08498lgnTkRESpejy7sHd1FwP5ANj82XToQSaGTOmjtChh3Aesbt+OsZefxyU3TaJ2bw5CenbQquIhUKGyhO8TdD0pqEpHyFG2EsQMp2lzIuZtu4uOi4E4uv6CQYRMWAKjYiUi5wrb9vJVoVhORpHOHKTfAynf5g13DoqI9tjlcWFTM8BmLIwonIukgbKE7hmAtusWxoQULQgwvENlxcx6G+U/AsTcydnUudUkAABhaSURBVP3BCU9ZWVBYy6FEJJ2EbbrsldQUIoksfxOm/RY6ngzHD6P1O6+Qn6Cotc7V/JYiUr5Qd3TuvjzRV7LDSR227stgUHhuO+jzINSrx5CencjJztrmtJzsLIb07BRRSBFJB2Hv6ERqz5ZNMG4QbNoAAydCTi7w4wMnw2csZmVBoZ66FJFQKix0ZtbQ3TdVdI5IjZv2W1jxDvQdtd1K4b27tVFhE5Eqqazp8k0AM3u8FrKIwNyRMPdROOY6OLB31GlEJANU1nTZwMwuAI42sz5lD0Y1M4pkqC9mw9QhsE8P6PGHqNOISIaorNBdAQwAcoHTyxzTzChSc9avgnEDoWkrOOthqJdV+XtEREKosNC5++vA62Y2x90frqVMUtds2Rw8YblxLVzyIuzUPOpEIpJBwj51+biZXQscG9v+L/Bvdy9KTiypU174HXz+ZnAnt0eXqNOISIYJW+juJ5jQ+f7Y9kDgAeDSZISSOmTek/DOCPjJ1XDQ2VGnEZEMFLbQHe7uh8RtzzSz95IRSOqQ/Hfh+eugw7Fw4p+iTiMiGSrsXJfFZrZP6YaZ7Q0UJyeS1AkbvoaxA6HJ7nD2SMjS3AUikhxhf7sMAWaZ2aeAAXsRrFEnUnXFRfD0hfDDN3DxDGi8a9SJRCSDhSp07v6ymXUEOhEUuo80Y4pU24s3w/LX4Rf/gdZdo04jIhkudHtRrLBpaR7ZMe+NhbfuhyOvgEP6RZ1GROqAsH10Ijvuy/fguV/BXt3h5L9EnUZE6ggVOqkdG1bDmPODweB9R0JWdtSJRKSOCFXozOwZMzvVzFQYpeo2fw9PnRM8fHLuE9Bkt6gTiUgdErZwPQCcB3xiZreb2f5JzCSZpKQYxl8SNFue/Qi0OTTqRCJSx4RdYfwldx8AHAosA140s/+Z2UVmpjYoScwdpg+Fj6fxXpeb6P5sQzoMnUL322cycV5+1OlEpI4I3RRpZrsCFxJM+zUPuJug8L2YlGSS/t68D94ZwSf7XEi/+QeRX1CIA/kFhQybsEDFTkRqRdg+ugnAa8BOwOnufoa7j3X3a4AmyQwoaWrRJHjh99D5TC5acTqFRdtOpFNYVMzwGYsjCicidUnYO7qH3L2zu9/m7l8CmFlDAHfPS1o6SU9fvAMTBsOeh8Mv/kP+2sRzC6wsKKzlYCJSF4UtdIkGPb1Zk0EkQ3y7FEb3g2atof8YyM6hdW5OwlPL2y8iUpMqLHRmtoeZHQbkmFk3Mzs09nU8QTOmyI++/xaePDt4CGXA+K1zWA7p2Ymc7G1XDM/JzmJIz05RpBSROqayKcB6EjyAsidwZ9z+9cBNScok6aioEMb0h7X5cMFzsOvWxS7o3a0NAMNnLGZlQSGtc3MY0rPT1v0iIslk7l75SWZnufsztZAnlLy8PJ8zZ07UMaRUSQmMvyh4AKXvSDiwd9SJRKSOMbO55T0zUuEdnZmd7+5PAO3N7Pqyx939zgRvk7rmpZth0cRg/koVORFJMZU1XTaOfdcQAknsnQfhf/fA4ZfBT66OOo2IyHYqLHTu/p/Y9z/VThxJK4unwbQbYb9T4JS/g1nUiUREtlNZ0+X/VXTc3a+t2TiSNvLfhfEXQ6tD4OyHoV5W5e8REYlAZU2Xc2slhaSXNcvhqXNhpxbQfyw0aFz5e0REIlJZ0+Wo2goiaaJwDTzZF4o3wYXPQ9Pdo04kIlKhypou73L3X5vZc8B24xDc/YykJZPUs2VTsHjqms9g4LPQUgO+RST1VdZ0+Xjs+z+SHURSnDtMuhqWvw59HoL2x0SdSEQklMqaLufGvv/XzBoA+xPc2S129821kE9Sxcy/wIJx0OMPcHDfqNOIiIRW2R0dAGZ2KvBvYClgQAczu9zdpyUznKSIuaPgtX/AoYPgpzdEnUZEpErCrl7wT+AEdz/e3Y8DTgD+VdmbzKyXmS02syVmNjTB8evNbJGZvW9mL5vZXlWLL0n3yUvw/HWwz8/g1Ds1Vk5E0k7YQrfa3ZfEbX8KrK7oDWaWBdwHnAJ0BvqbWecyp80D8tz9YGA8cEfIPFIbls6EsQNg985wzijIyo46kYhIlVX21GWf2MuFZjYVGEfQR9cXmF3JZx8BLHH3T2OfNQY4E1hUeoK7z4o7/y3g/Cqll+RZ8jKMOQ923RcGToKGTaNOJCJSLZX10Z0e93oVcFzs9dfALpW8tw3wRdz2CuDICs6/BFCfXypY8hKMPo+1jdvTv2AIH976lpbWEZG0VdlTlxftwGcn6sxJuCaQmZ0P5PFjIU10zmBgMEC7du12IJZU6JOXYMx5FDTpwCnf/YYvi4LmyvyCQoZNWACgYiciaSXsU5eNCO64DgQale5394sreNsKoG3c9p7AygSffSLwO+A4d99U3oe5+whgBATr0YXJLVX0yYtBc2XL/em/5oatRa5UYVExw2csVqETkbQS9mGUx4E9CFYc/y9B0VpfyXtmAx3NrENsDF4/YHL8CWbWDfgPcIa7V/hwiyTZxy8ERW63A2DQJD5am/jBk5UFhbUcTERkx4QtdPu6+x+A72PzX54KHFTRG9x9C3A1MAP4EBjn7gvN7M9mVjp12HCCte6eNrP5Zja5nI+TZFo8PXi6crfOMHAi7NSc1rk5CU8tb7+ISKoK1XQJFMW+F5hZF+AroH1lb3L3qcDUMvtujnt9YsifL8myeBqMHQh7dAnmr8wJnjEa0rMTwyYsoLCoeOupOdlZDOmp+S1FJL2ELXQjzGwX4A8EzY9NYq8lnX00FcYNgj0OihW53K2HSvvhhs9YzMqCQj11KSJpy9zT77mOvLw8nzNnTtQx0ttHU2DcBdDqYDh/wjZFTkQk3ZjZXHfPS3QsVB+dme1qZveY2btmNtfM7jKzXWs2ptSaD58L7uRaHbLdnZyISKYJ+zDKGIIpv84Czga+AcYmK5Qk0aLJ8PSF0LobDJwAjXaOOpGISFKF7aNr7u63xm3/xcx6JyOQJNGiSTD+Ymh9KJz/DDRqFnUiEZGkC3tHN8vM+plZvdjXOcCUZAaTGrZwIjx9EbQ5TEVOROqUyiZ1Xk8wbZcB1wNPxA7VAzYAtyQ1ndSMhc/C+Etgz8Ph/PGaoFlE6pTK5rrUb8R098Ez8Mxl0PYIGPC0ipyI1Dlh++iIzWZybGzzFXd/PjmRpMYsGA8TBkPbI2HAOBU5EamTwg4vuB34FcFacouAX8X2SapaMB4mXAbtjtKdnIjUaWHv6H4OdHX3EgAzG0WwOvjQZAWTanKH2Q/BtBuh3dFw3lho2CTqVCIikQnddAnkAt/FXmvwVSoq2ghTb4B5T0DHntD3UWjQOOpUIiKRCju84DZgnpmNjN3NzQX+lrxYUmXrVsLIn8O8JxiZ1Ze9Fwyk+51vM3FeftTJREQiVekdnZkZ8DpwFHA4wVCD37r7V0nOJmEtfxPGDaJo4wZuKL6eyRuD6d60KriISIg7Og9mfZ7o7l+6+2R3n6QilyJK++NGnQYNm3Jh1u1MLtp2TtPSVcFFROqqsE2Xb5nZ4UlNIlWzZRNMvgam3AD79IDLZvK/dS0SnqpVwUWkLgv7MMoJwBVmtgz4nqD50t394GQFkwqsWxkslpo/B44dAsffBPXq0To3h/wERU2rgotIXRa20J2S1BQSXqw/js3fwzmPQ+czth7SquAiIturbK7LRsAVwL7AAuBhd99SG8GkDHeY80gwPi63HVwwGXY7YJtTtCq4iMj2KrujGwUUAa8R3NV1JpghRWrTlk0w9Tfw7mPQ8WTo82C5i6X27tZGhU1EJE5lha6zux8EYGYPA+8kP5JsI74/7qe/gRNugnpZUacSEUkblRW6otIX7r4lGFIntebzt4L+uE0b4JzHoPOZUScSEUk7lRW6Q8xsXey1ATmx7dKnLrV6Z7LMeQSm3gi5bWHQpO3640REJJzK1qNTG1lt27IJpg6Bd0fBvifBWQ9Czi5RpxIRSVtVmdRZkm3dlzBuIKyYDT+9AU74nfrjRER2kApdKigpgfdGw0u3wOYfoO8oOLB31KlERDJC2CnAJFk+fwse6gGTrmLhD7vQc8PNdH+umVYdEBGpIbqji0rBF8Ed3AfPUNhoN24puZqnNx+FUw+06oCISI1Roattm3+AN+4OvnA49kZOe7sbSzf7NqeVrjqgQicismNU6GqLO3zwDLx4C6xbAQf+Ak76M+S249MXpiR8i1YdEBHZcSp0tSH/XZg+FL54G/Y4OBgysNfRWw9r1QERkeTRwyjJtP4rmHgVPHgCfPcpnHEPDH5lmyIHwaoDOdnbDiPQqgMiIjVDd3TJULQR3rofXvtnMAD86GuDdeMaJZ5IRqsOiIgkjwpdTXKHj56HGb+DguXQ6edw8l9g130qfatWHRARSQ4Vupry1QdBP9yy16DlATDwWdinR9SpRETqPBW6HbVhNbxyG8wdCY12hp//Aw67CLJ0aUVEUoF+G1fH+lXw0XN8/fY4mn8zG3d4tv4p7HT87zj1iAOjTiciInFU6MJamw8fPgeLJsHnbwLOem/N6OIzmFh8DJ9uak3O819Q1CBXfW0iIilEha4ia5bDh5Nh0WRYEVtcfbfOcPxQzv/fHry+rgXB0nwBzWYiIpJ6VOjK+nZprLhNgpXzgn17HAw9/hCs8N2iIwBvTNdsJiIi6SCphc7MegF3A1nAQ+5+e5njDYHHgMOAb4Fz3X1ZMjNNnJe//Xi1Pb8PCtuHk+CrYDJlWh8KJ/4JOp8Bzffe7nM0m4mISHpIWqEzsyzgPuAkYAUw28wmu/uiuNMuAda4+75m1g/4O3BusjJNnJfPsAkLKCzawn62gp9veJsDJ74DtiI4oe2R0PNvcMDpkNuuws8a0rNT7LOKt+7TbCYiIqknmXd0RwBL3P1TADMbA5wJxBe6M4E/xl6PB+41M3P3bafyryHDZyymsKiYwVnPc1P2aErceMf35/nsS7nu2hugWevQn6XZTERE0kMyC10b4Iu47RXAkeWd4+5bzGwtsCvwTTIClfafvVxyKN8X5fBCcR5fk4tthuuqUORKaTYTEZHUl8xCZwn2lb1TC3NOcKLZYGAwQLt2FTcrlqe0X22pt2FpcZtt9ouISGZK5uoFK4C2cdt7AivLO8fM6gM7A98l+jB3H+Huee6e17Jly2oF0ioBIiJ1TzIL3Wygo5l1MLMGQD9gcplzJgMXxF6fDcxMVv8cBE2Nt/U5iDa5ORjQJjeH2/ocpOZHEZEMlrSmy1if29XADILhBY+4+0Iz+zMwx90nAw8Dj5vZEoI7uX7JylNK/WoiInVLUsfRuftUYGqZfTfHvd4I9E1mBhERqdu0wriIiGQ0FToREcloKnQiIpLRVOhERCSjqdCJiEhGU6ETEZGMpkInIiIZzZI4EUnSmNnXwPIKTmlBkiaGrgXpmj1dc4OyRyVds6drbsjs7Hu5e8L5IdOy0FXGzOa4e17UOaojXbOna25Q9qika/Z0zQ11N7uaLkVEJKOp0ImISEbL1EI3IuoAOyBds6drblD2qKRr9nTNDXU0e0b20YmIiJTK1Ds6ERERIMMKnZn1MrPFZrbEzIZGnacqzGyZmS0ws/lmNifqPBUxs0fMbLWZfRC3r7mZvWhmn8S+7xJlxvKUk/2PZpYfu/bzzeznUWZMxMzamtksM/vQzBaa2a9i+1P+uleQPR2ueyMze8fM3otl/1Nsfwczezt23cfGFpdOGRXkHmlmn8Vd865RZy2PmWWZ2Twzez62Xe1rnjGFzsyygPuAU4DOQH8z6xxtqio7wd27psHjvyOBXmX2DQVedveOwMux7VQ0ku2zA/wrdu27xtZRTDVbgBvc/QDgKOCXsf9/p8N1Ly87pP513wT0cPdDgK5ALzM7Cvg7QfaOwBrgkggzJlJeboAhcdd8fnQRK/Ur4MO47Wpf84wpdMARwBJ3/9TdNwNjgDMjzpSR3P1VghXh450JjIq9HgX0rtVQIZWTPeW5+5fu/m7s9XqCXwBtSIPrXkH2lOeBDbHN7NiXAz2A8bH9KXfdK8idFsxsT+BU4KHYtrED1zyTCl0b4Iu47RWkyX9MMQ68YGZzzWxw1GGqYXd3/xKCX2zAbhHnqaqrzez9WNNmyjX/xTOz9kA34G3S7LqXyQ5pcN1jTWjzgdXAi8BSoMDdt8ROScnfNWVzu3vpNf9r7Jr/y8waRhixIncBNwIlse1d2YFrnkmFzhLsS5u/YIDu7n4oQdPrL83s2KgD1SEPAPsQNPF8Cfwz2jjlM7MmwDPAr919XdR5qiJB9rS47u5e7O5dgT0JWo4OSHRa7aaqXNncZtYFGAbsDxwONAd+G2HEhMzsNGC1u8+N353g1NDXPJMK3Qqgbdz2nsDKiLJUmbuvjH1fDTxL8B9UOlllZq0AYt9XR5wnNHdfFfulUAI8SIpeezPLJigUT7r7hNjutLjuibKny3Uv5e4FwCsE/Yy5ZlY/diilf9fE5e4Va0Z2d98EPEpqXvPuwBlmtoygC6oHwR1eta95JhW62UDH2JM5DYB+wOSIM4ViZo3NrGnpa+Bk4IOK35VyJgMXxF5fAEyKMEuVlBaKmF+Qgtc+1kfxMPChu98Zdyjlr3t52dPkurc0s9zY6xzgRII+xlnA2bHTUu66l5P7o7g/ioygjyvlrrm7D3P3Pd29PcHv8ZnuPoAduOYZNWA89njyXUAW8Ii7/zXiSKGY2d4Ed3EA9YGnUjm7mY0GjieYTXwVcAswERgHtAM+B/q6e8o99FFO9uMJms8cWAZcXtrvlSrM7BjgNWABP/Zb3ETQ15XS172C7P1J/et+MMGDD1kENwbj3P3Psf9mxxA0/80Dzo/dJaWECnLPBFoSNAXOB66Ie2gl5ZjZ8cBv3P20HbnmGVXoREREysqkpksREZHtqNCJiEhGU6ETEZGMpkInIiIZTYVOREQymgqd1Dlm5mb2z7jt35jZH2vos0ea2dmVn7nDP6dvbDWAWWX2t7fYygxm1rUmVwQws1wzuypuu7WZja/oPSKpQIVO6qJNQB8zaxF1kHixFTjCugS4yt1PqOCcrkCVCl3czBOJ5AJbC527r3T3pBd1kR2lQid10RZgBHBd2QNl78jMbEPs+/Fm9l8zG2dmH5vZ7WY2ILbm1wIz2yfuY040s9di550We3+WmQ03s9mxCXUvj/vcWWb2FMGA6rJ5+sc+/wMz+3ts383AMcC/zWx4on9gbHagPwPnWrDu2LmxGXgeiWWYZ2Znxs690MyeNrPnCCYWb2JmL5vZu7GfXboKyO3APrHPG17m7rGRmT0aO3+emZ0Q99kTzGy6BeuI3RF3PUbG/l0LzGy7/y1EakpFf72JZLL7gPdLf/GGdAjBhL7fAZ8CD7n7ERYsJHoN8OvYee2B4wgmLJ5lZvsCg4C17n64BTPGv2FmL8TOPwLo4u6fxf8wM2tNsAbXYQTrb71gZr1jM1z0IJgxIuEive6+OVYQ89z96tjn/Y1gOqWLY9NDvWNmL8Xe8hPgYHf/LnZX9wt3Xxe7633LzCYTrHXXJTZRcOlKBKV+Gfu5B5nZ/rGs+8WOdSVYsWATsNjM7iFYZaGNu3eJfVZuxZdepPp0Ryd1Umz2/MeAa6vwttmxSXE3ESzVUlqoFhAUt1Lj3L3E3T8hKIj7E8xfOsiCZVPeJlh2pGPs/HfKFrmYw4FX3P3r2PIkTwI7sqrFycDQWIZXgEYEU4dBsIxL6dRhBvzNzN4HXiJYDmX3Sj77GOBxAHf/CFgOlBa6l919rbtvBBYBexFcl73N7B4z6wWk1UoMkl50Ryd12V3AuwSzuJfaQuwPwNjEtw3ijsXPq1cSt13Ctv8tlZ1XzwmKxzXuPiP+QGwuv+/LyZdoaZIdYcBZ7r64TIYjy2QYQDAf4mHuXmTBLPKNQnx2eeKvWzFQ393XmNkhQE+Cu8FzgItD/StEqkh3dFJnxe5gxhE82FFqGUFTIQSrd2dX46P7mlm9WL/d3sBiYAZwpQXL1WBm+1mwUkVF3gaOM7MWsQdV+gP/rUKO9UDTuO0ZwDWxAo6ZdSvnfTsTrAdWFOtr26ucz4v3KkGBJNZk2Y7g351QrEm0nrs/A/wBODTUv0ikGlTopK77J8FKBqUeJCgu7wBl73TCWkxQkKYRzA6/EXiIoNnu3dgDHP+hkhaV2Ez+wwiWJ3kPeNfdq7IczCygc+nDKMCtBIX7/ViGW8t535NAnpnNISheH8XyfEvQt/hBgodg7geyzGwBMBa4sJKZ5dsAr8SaUUfG/p0iSaHVC0REJKPpjk5ERDKaCp2IiGQ0FToREcloKnQiIpLRVOhERCSjqdCJiEhGU6ETEZGMpkInIiIZ7f8BfkgZswOWo8YAAAAASUVORK5CYII=", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Set up the state A|00>\n", + "flag_qubit = 1\n", + "epsilon = 0.05\n", + "A_circ = Circuit().ry(0, epsilon).cnot(0,1)\n", + "\n", + "# Add marginal probability for flag qubit as result Type \n", + "A_circ.probability(target=[flag_qubit])\n", + "\n", + "# Let's find the probability of measuring |11> for different values of m, the number of applications of QAA:\n", + "probabilities = []\n", + "stepsize = 2\n", + "iterations = range(1, 40, stepsize)\n", + "for m in iterations:\n", + " \n", + " # Get circuit object\n", + " circ = Circuit()\n", + " # Apply QAA using A defined by A_circ\n", + " circ.qaa(A_circ, flag_qubit, m, use_explicit_unitary=True)\n", + " \n", + " # Classically simulate the circuit\n", + " # Give the correct device.run call depending on whether the device is local or on-demand\n", + " if isinstance(device, LocalSimulator):\n", + " task = device.run(circ, shots=0)\n", + " else:\n", + " task = device.run(circ, shots=1000)\n", + " \n", + " # Get result\n", + " result = task.result()\n", + " # Append the probability of measuring |11> for this value of m.\n", + " probabilities.append(result.values[0][1])\n", + "\n", + "# Get analytical result for comparison\n", + "probs_theo = [np.sin((2*mm+1)*epsilon/2)**2 for mm in iterations]\n", + " \n", + "# Plot the results\n", + "plt.figure(figsize=(7,5))\n", + "plt.plot(iterations, probabilities, 'o');\n", + "plt.plot(iterations, probs_theo);\n", + "plt.xlabel('Number of Iterations');\n", + "plt.ylabel('Probability of measuring flag qubit in |1>');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As expected, we see that the repeated application of the Grover iterator $\\mathcal{Q}$ does increase the amplitude associated with the state $|11\\rangle$. \n", + "The probability of measuring the bitstring 11 follows the expected analytical result, given by $(P_{11} = \\sin^{2}[(2m+1)\\epsilon/2])$, and shown as the solid orange line.\n", + "Moreover, we have verified that the optimal number of iterations is approximately given by $\\lfloor \\frac{\\pi}{4\\theta}\\rfloor= \\lfloor \\frac{\\pi}{2\\epsilon}\\rfloor \\approx 31$." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "## APPENDIX" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Version: 0.6.0\r\n" + ] + } + ], + "source": [ + "# Check SDK version\n", + "# alternative: braket.__version__\n", + "!pip show amazon-braket-sdk | grep Version" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## APPENDIX: ALTERNATIVE RUN WITH AMPLITUDE RESULT TYPE" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Rather than just examining the marginal probability to find the flag qubit in state $|1\\rangle$ as done before, we can also investigate the behavior of the amplitude associated with the state $|11\\rangle$.\n", + "This amplitude is initially given by $\\delta=\\sin(\\epsilon/2)\\approx \\epsilon/2$ for small $\\epsilon$. We can check explicitly that this amplitude increases using repeated applications of the Grover iterator, and recover the plot using the absolute value squared of the amplitudes. \n", + "\n", + "Using amplitudes also presents a learning opportunity:\n", + "If we use $N-1$ ancilla qubits to implement the reflection $\\mathcal{R}_{0}$ (by fixing ```use_explicit_unitary = False```), then measurement outcomes are bitstrings of size $N+N-1=2N-1$ (as we measure the original qubits on which the circuit acts, as well as the ancilla qubits).\n", + "\n", + "Since the ancilla qubits are initialized in $|0, 0, ...\\rangle$ and are uncomputed back to their initial state in the last step of the algorithm, we can find the amplitude of a given bitstring on the register qubits by padding that target bitstring (for example, $11$ in our example) with the right number ($N-1$) of zeros. \n", + "\n", + "Using a classical simulator backend, we can attach the corresponding amplitude as a `ResultType` to the circuit, as shown in the following code. " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Amplitude <11|Initial State>:\n", + " {'11': (0.024997395914712332+0j)} \n", + "\n", + "Maximum amplified amplitude <110|Final State> after approximately 31 Grover iterations:\n", + " {'11': (0.9997837641893592+0j)}\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbkAAAE9CAYAAACWdRzmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3dd3xUVfrH8c9DSOiEDtKkCCIltACirg0LViwroqKuYi/ourrq7soqrrur/ixr72LHWFaxrLqydlQIxQgoiogQeg0lgYTk+f1xJxpiEgbI5GYm3/frxWvm3rkz8+WKeXLOPfccc3dEREQSUa2wA4iIiMSKipyIiCQsFTkREUlYKnIiIpKwVORERCRhqciJiEjCqh12gJ3VokUL79SpU9gxRESkGpk+ffpqd29Zen/cFblOnTqRmZkZdgwREalGzOynsvaru1JERBKWipyIiCQsFTkREUlYKnIiIpKwVORERCRhqciJiEjCUpETEZGEFbMiZ2ZPmNlKM5tdzutmZveY2XwzyzKzAbHKIiJSJbIy4K7ecGOT4DErI+xENV4sW3ITgOEVvH4U0C3y5wLgwRhmERGJrawMeGMs5CwGPHh8Y6wKXchiVuTc/WNgbQWHjACe9sAXQBMz2yNWeUREYmryeCjI235fQR5F798UTh4Bwp3Wqx2wuMR2dmTfstIHmtkFBK09OnbsWCXhRKSGyMoIClRONqS2h2HjIG3kDt+Wk1vA3GUbgj9LN3B7TnbZrYacJfS44T80q59Ck/opNGuQQtMGKTSrn1xqO4Um9ZNp1iDYV/ebV3Ypl2wvzCJnZezzsg5090eARwDS09PLPEZEZKcVdzEWt8CKuxjh54Li7mSvy2PO0l8K2jfLNrBk/S+ttpaN6rA2qSUtClf+6is2123DWX07sW5zPuty81m7OZ8l6/NYuzmfnLyCMmMdX+tTbk1+jHqW/3MunzQ2+KGpQrdTwixy2UCHEtvtgaUhZRGRmqicLsbN/xnH7Qt7/VzQNm7dBkAtgy4tGzJwz6acOXRPeu7RmH32aEzLRnUg65btCyZAcj0aHTOeP6XtU+bXbyssIievIFL8gsd1m/M5evJV1Nuav92xti2PNZP+wrRav+HgvVtRNzmpUk9FogqzyE0CLjOzicAQIMfdf9VVKSISMznZZe6ul7ucjMzF7LNHY07o346ebYNitnfrRtRLKae4FLewdqKLsXZSLZo3rEPzhnW2f+HtFWUe33TbSi56dgYNUpI4rGdrjk1ry4HdW1CntgpeeWJW5MzsBeBgoIWZZQN/BZIB3P0h4G3gaGA+kAucE6ssIiKlLV6bS6OU1jTJX/6r1wobt2X274+kVq2yrqpUIG1k5XQnpraPjNLcnqW247nRQ3gzaynvzF7O67OW0qhObQ7v1Zpj0/bggL1aklJbtz+XZO7xdYkrPT3dtZ6ciOwKd2fGonU89smPvDtnOSOSPuPW5MdI8a2/HJRcD467J9xrX6WvFZaRq6CwiCk/rOGtSMHbsGUbqfWSObJXa45Ja8t+XZuTnFRzCp6ZTXf39F/tV5ETkUS3rbCI/8xezmOf/shXi9eTWi+Z04d05OyhnWjz06TqOYpxJ0Z95m8r4tP5q3gzaxn/nbOCjVu30bR+MsN7t+HYtLYM6dyM2gle8FTkRCSxRFEEcvIKeHHaIiZ8tpClOVvo3KIB5+7fiZMHtqd+SphDEmJnS0EhH3+3ire+Xsb7c1ewOb+QFg1TOKr3HlxwYBc6NKsfdsSYUJETkcSxg+68n9Zs5snPFvJS5mI25xcytEtzxhzQmUN7tNr562xxbEtBIR/OW8myT5/hiGUPswdr2FS3NXWPvImUAaPCjlepyityifmrjIgktnKG/m9990bGftWF9+auoHYt47i0tpx7QGd6t0sNJ2fI6iYnMbzoE1hzJ1hwvhpvXU7epLHMXLqBfsecj1liF30VORGJP+UM/U/etJQvf1zLJQd35ayhnWjduG4VB6uGyviFoB5baTn1Vk5b2ocbj+9FjzaNQwoXeypyIhJ/yhlin1uvDZ9fNaz8e9lqonJ+IWhXaw3fLt/I0f/6hDP33ZPfH96dJvVTqjhc7CX2cBsRSUjLB/2RLWx/A7Un16Ph0eNV4EpLbV/mbkttz4dXH8zofffkmS9+4pD/+5Bnv/iJwqL4GqexIypyIhI3ioqcxz/9kYPeaclNXEhuvbaAQWoHLOx726qrYeOCQTklJdeDYeNoUj+F8SN689bY37B3m0b85bXZHHfvp0z9saIFZOKLRleKSFxYvDaXq1/6ii9/XMuwHq34x8l9aNVI19yiEsXtFu7O218v55a35rI0ZwvH923L9Uf3YI/UeuV8aPWiWwhEJC65OxOnLeZvb87FzBh3XE9OGdg+4UcFhiUvv5AHP/qBhz76gSQzLjt0L8Yc0LnaTwitIicicWfFhi1c90oWH8xbxdAuzbn9lDTaN03Mm5mrm8Vrc7nlrW94Z85yOjarzw3H9uSwfVpV218uVOREJG64O29kLeOG12azdVsh1w3vwVlDO9WoG7mri0+/X81Nb8zh+5WbOLB7S8Yd25O9WjUMO9avqMiJSPiiuDa0dnM+N7w2m7e+Xka/Dk24c2RfurSsfj9Ua5KCwiKe/eIn7vzvd+TlFzLmgM784Yi9q9WKB5rxRETCFcUq3O/PXcF1r35NTl4+1xy5Nxce2CXhJxaOB8lJtThn/84c37ctt70zj4c/XsDMxet54IwBtCi9Fl41o389IlI1ypmKi8nj2bClgGte+orzns6kRcMUJl12AJcespcKXDXTfMHr3Lr4dH6sewZ3LR3NvXf9ndlLcsKOVSG15ESkapQz84bnZHPU3Z+wLCePSw/pyhXDulerbjCJKNESN6Cdrea6wgf5y8PbOPCkSxjRr13YCcukIiciVaOcqbiWFDWnTu1avHLxfvTv2DSEYBKVcubAvK52BoMm7sfcZRv445E9SKpmg4P065KIVI0yZt7I9RS+7Hwpb439jQpcdVdOS7xF0SpG79uRhz9awLkTppGTW1DFwSqmIiciVSNtJH7cPWyo04YiN5bTkuwD/snJ51yl+SbjQQVzYP7thD7846Q+TPlhNSPu/5TvV2ys4nDlU5ETkSqxrbCIP83vQVrOnfx+nw9ocN03dD98TNixJFoVzIEJcNrgjrxw/r5s2lrIiQ9M4b9zV4QQ8tdU5EQk5vLyC7no2em8MHUxlx2yF3ef2o9GdZPDjiU7I21ksPJ6ageKJ8Wm1KTY6Z2a8cbl+9OlZQPOfzqTeyZ/T1HIqxroZnARiam1m/MZ89Q0Zi1ez/jje3Hm0E5hR5IY21JQyJ9e/ZpXZy5heK823DGyLw3qxHacY3k3g6slJyIxs3htLr99aApzlm7gwTMGqsDVEHWTk7hjZF/+csw+vDd3OSc9MIVFa3JDyaIiJyIxMWdpDic9OIXVG7fy3HlDGN67TdiRpAqZGef9pgtPnTuY5Ru2cPz9n/Lp96urPIeKnIhUus/mr+bUh78guZbxysX7MahTs7AjSUh+060lky7bn1aN6nDWE1/y2CcLqMrLZCpyIlKpXp+1hN89OZV2TerxyiX70a11o7AjScj2bN6AVy/Zn8N7tuZvb33DHzK+YktBYZV8t4qciFSaRz9ewBUTZzGgY1MyLhoaN6tKS+w1rFObB88YyO8P686rM5cw8uHPWZaTt+M37iYVORHZbUVFzs1vzuWWt7/hmD578NS5g0mtp1sEZHu1ahlXHNaNh88cyA8rN3HcvZ8x/ae1sf3OmH66iMS/rAy4qzfc2CR4zMrY7uWt2woZO3Emj3/6I+fs34l7T+tP3WTNYCLlO7JXG/596f40qJPEQx8tiOl3aYJmESnfDtaA27ClgAuezuSLBWu5/qgeXHBgF8yq1wS9Uj11b92ISZceADH+56KWnIiUr4I14JbnbGHkQ5+TuXAdd53alwsP6qoCJ9HLyiD14f6k3tqyzB6CyqKWnIiUr4I14E5+cArrc/N58pxB/KZbyyoOJnEtilXiK4taciJSvnJmnl9Gc7ZuK+LFC4eqwMnOq6CHoLKpyIlI+cqYeT7PU3iizln8+5L96N0uNaRgEtfK6SEod/9uUHeliJSvuOto8ng8J5sl3pwXG5/DJRf9kWYNUsLNJvGrnFXiy+s52B1qyYlIxdJG8ujASXTe8hx/7TyRiy+/TgVOds8O1qarTGrJiUiFJk5d9PNN3v8a1Y/aSfrdWHZTiR4CcrKDFtywcZU+6ARU5ESkAm9lLeP6f3/NQd1bctepKnBSidJGxqSolaZ/sSJSpg/nreTKF2cysGNTHho9kJTa+nEh8Uf/akXkV6YtXMtFz06nW6tGPP67QdRL0TRdEp9iWuTMbLiZzTOz+WZ2XRmvdzSzD8xsppllmdnRscwjIjs2Z2kO506YRtvUejw9RhMtS3yLWZEzsyTgfuAooCdwmpn1LHXYX4AMd+8PjAIeiFUeEdmxBas2cdbjU2lUpzbPnDeEFg3rhB1JZLfEsiU3GJjv7gvcPR+YCIwodYwDjSPPU4GlMcwjIhVYuj6P0Y99CcAz5w2hXROtBSfxL5ajK9sBJe/2ywaGlDrmRuA9M7scaAAcFsM8IlKO1Zu2MvrxL9m4ZRsvXLAvXVs2DDuSSKWIZUuurOnIvdT2acAEd28PHA08Y2a/ymRmF5hZppllrlq1KgZRRWquDVsKOPuJqSxdn8cT5wzSVF2SUGJZ5LKBDiW22/Pr7sgxQAaAu38O1AValP4gd3/E3dPdPb1lS00GK1JZ8vILGTNhGvOWb+TB0QMZ1KlZ2JFEKlUsi9w0oJuZdTazFIKBJZNKHbMIGAZgZvsQFDk11USqQP62Ii5+bjqZP63j7lH9OGTvVmFHEql0MSty7r4NuAx4F/iGYBTlHDMbb2bHRw77A3C+mX0FvAD8zt1Ld2mKyK7IyggWo7yxya8WpSwscq7KmMWH81bx9xP7cGxa2xCDisROTKf1cve3gbdL7RtX4vlcYP9YZhCpkSpYlNL7nMJfXvuaN7OWcf1RPThtcMcQg4rEluauFElEFSxK+c8lfXhh6mIuPaQrFx7UNZx8IlVkl7orzaxHZQcRkUpUzuKTnpPNwx8t4Mx99+TqI/au4lAiVW9Xr8m9V6kpRKRylbP45JKi5ozo15abju+FWVl3+YgklnK7K83snvJeAprEJo6IVIph47a/Jgfkegpvtzqf/zulL7VqqcBJzVDRNblzCEY/bi3jtdNiE0dEKkWJRSk9J5ul3pxXmpzLBRdeQ7LWhJMapKIiNw2Y7e5TSr9gZjfGLJGIVI60kXzRcBhnPzGVvds04rnzhlA3WUvmSM1SUZH7LbClrBfcvXNs4ohIZfluxUbOfyqTDs3qM+GcwTSqqyVzpOYpt8i5+9qqDCIilWft5nzGPDWNuilJPH3uYJo1SAk7kkgodvUWgv9UdhARqRz524q46NnprNiwlUfOHEhbLZkjNVhFoysHlPcS0C82cURkd7g7416fzdQf1/KvUf3o37Fp2JFEQrWjgScfUfaSObqFQKQaevKzhUycFsxmMqJfu7DjiISuoiL3DXChu39f+gUzW1zG8SISog/nreRvb83lyF6t+cPhms1EBCq+JndjBa9fXvlRRGRXzV+5kcufn8nebRpz58h+utlbJKKi0ZUvV/Daa7GJIyI7a93mfMY8lUmd5Fo8dnY6Depo3nWRYvq/QSSOFRQWcclzM1i2fgsvXLAv7TSSUmQ7KnIiccrduXHSHD5fsIY7R/Zl4J4aSSlSmiaxE4lTT3/+E899uYiLDurKSQPKXnVApKbbYUvOzE4qY3cO8LW7r6z8SCKyI598v4rxb87lsH1acc2RGkkpUp5ouivHAEOBDyLbBwNfAN3NbLy7PxOjbCJShh9WbeKS52bQrVVD7h7VnySNpBQpVzRFrgjYx91XAJhZa+BBYAjwMaAiJ1JFcnILOO+pTFKSavHoWek01EhKkQpFc02uU3GBi1gJdI9M4FwQm1giNVRWBtzVG25sEjxmZfz8UkFhEZc+P4Psdbk8dOZAOjSrH2JQkfgQza+Bn5jZm8BLke2TgY/NrAGwPmbJRGqarIztV/POWRxsA6SN5OY35/Lp/NXc9ts0BnVqFl5OkTgSTZG7lKCw7U8wj+XTwCvu7sAhMcwmUrNMHv9LgStWkAeTx/NM7hCe/vwnzv9NZ0amdwgnn0gc2mGRixSzlyN/RCRWcrLL3O052dw4aQ6H7N2S647ap4pDicS3HV6TM7OTzOx7M8sxsw1mttHMNlRFOJEaJbXse92W0ZwuLRpwz2kaSSmys6IZeHIbcLy7p7p7Y3dv5O6NYx1MpMYZNg6St5+Wawt1uJfTefzsQTSqmxxSMJH4FU2RW+Hu38Q8iUhNlzYSjrsHUjvgGKuTWnH9tvMYcdaVdGyukZQiuyKagSeZZvYi8BqwtXinu78as1QiNVXaSEgbyU2T5jBhykL+eVIf9u3SPOxUInErmiLXGMgFjiixzwEVOZEYeGHqIiZMWcg5+3di1OCOYccRiWvRjK48pyqCiAjMWryev74+h990a8Gfj9ZISpHdVW6RM7M/uvttZnYvQcttO+4+NqbJRGqYtZvzueTZ6bRsVId7RvWndpIWCRHZXRW15IoHm2RWRRCRmqywyLli4kxWb8rn5YuH0rRBStiRRBJCuUXO3d8wsySgt7tfU4WZRGqcu9//jk++X80/TupDWvsmYccRSRgV9oe4eyEwsIqyiNRI//t2Bff+bz6nDGzPqEGaskukMkUzunKmmU0imKB5c/FO3UIgsvsWrcnlyomz6LlHY24+oTdmmtFEpDJFU+SaAWuAQ0vs0y0EIrtpS0EhFz07HYCHRg+kbnJSyIlEEo9uIRAJybjXZzN32QYePztdM5qIxMgOi5yZPUnZtxCcG5NEIjXAxKmLyMjM5vJD92LYPq3DjiOSsKLprnyzxPO6wInA0tjEEUl8X2fnMG5ScMP3lYd1DzuOSEKLprvylZLbZvYC8H7MEokksPW5+Vz07HRaNEjhX6O0dI5IrEXTkiutG6AJ9UR2UlGRc+WLs1i5cQsvXbQfzXTDt0jMRbNo6sbIYqkbIoulvgFcG82Hm9lwM5tnZvPN7LpyjhlpZnPNbI6ZPb9z8UXix73/m8+H81Yx7rhe9OugG75FqkI03ZWNduWDI7Ol3A8cDmQD08xskrvPLXFMN+B6YH93X2dmrXblu0Squw/nreTuyd9xUv92jB6ijhCRqhJNS25/M2sQeT7azO40sz2j+OzBwHx3X+Du+cBEYESpY84H7nf3dQDuvnLn4otUf4vX5nLli7PYu3Ujbjmxj274FqlC0Uxz/iCQa2Z9gT8CPwFPR/G+dsDiEtvZkX0ldQe6m9lnZvaFmQ0v64PM7AIzyzSzzFWrVkXx1SJVKCsD7uoNNzYJHrMyfn5pS0Ehlzw3g8JC58HRA6mXohu+RapSNEVum7s7QSvsX+7+LyCaLsyyfl0tfb9dbYKBLAcDpwGPmdmvLla4+yPunu7u6S1btoziq0WqSFYGvDEWchYDHjy+MfbnQnfTG3P5ekkOd4zsS+cWDcLNKlIDRTO6cqOZXQ+MBg6MXGtLjuJ92UDJ2Wbb8+v767KBL9y9APjRzOYRFL1pUXy+SPgmj4eCvO33FeTB5PG8lD+UF6Yu4uKDu3JErzbh5BOp4aJpyZ0KbAXGuPtygi7H26N43zSgm5l1NrMUYBQwqdQxrwGHAJhZC4LuywVRZhcJX052mbs9J5u/vDab/bo25w+H64ZvkbBEM7pyOXBnie1FRHFNzt23mdllwLtAEvCEu88xs/FAprtPirx2hJnNBQqBa9x9za79VURCkNo+0lW5vRXWgqb1U7jnNK3wLRImCy63VXCA2b7AvcA+QApBwdrk7qmxj/dr6enpnpmpxcqlmii+Jleiy3Kr1eG6gvMYff41DNyzaYjhRGoOM5vu7uml90fzK+Z9BINCvgfqAecR3P8mImkj4bh7ILUDYGyo04Zrto6h39EXqMCJVANRTevl7vPNLCmyUviTZjYlxrlE4kfaSEgbyaffr+asJ77k2LS2nDU0mltJRSTWoilyuZGBI7PM7DZgGaCx0CIlLF2fx9iJM9mrVUP+ebJu+BapLqLprjwzctxlwGaC2wJOjmUokXhSUFjEZc/PIH9bEQ+OHkj9lF2Z91xEYiGa0ZU/mVk9YA93v6kKMonEldve+ZYZi9Zz3+n96dqyYdhxRKSEaOauPA6YBbwT2e5nZqXvdxOpkd6bs5xHP/mRs4buybFpbcOOIyKlRNNdeSPBZMvrAdx9FtApdpFE4sPitblc/dJX9GmXyp+P2SfsOCJShmjnrsyJeRKROLJ1WyGXPj8DBx44YwB1amviZZHqKJor5LPN7HQgKbL+21hAtxBIjfaPt78lKzuHh88cSIdm9cOOIyLliKYldznQi2D+yheADcCVsQwlUp29lbWMCVMWMuaAzhypiZdFqrVoRlfmAn+O/BGp0Rau3sy1r2TRv2MTrh3eI+w4IrIDOyxyZpYO/IlgsMnPx7t7WuxiiVQ/xQug1k4y7jt9ACm1NfGySHUXzTW554BrgK+BotjGEam+xr85l7nLNvDE79Jp16Re2HFEJArRFLlVkWVxRGqs12Yu4fkvF3HRQV05tEfrsOOISJSiKXJ/NbPHgMkEg08AcPdXY5ZKpBqZv3ITf/r31wzu1Iyrj9ACqCLxJJoidw7QA0jml+5KB1TkJOHl5RdyyXPTqZecpAVQReJQNEWur7v3iXkSkWrohtdn8/3KTTx1zmDapNYNO46I7KRofi39wsx6xjyJSDWTkbmYl6dnc/khe3Fg95ZhxxGRXRBNS+4A4Gwz+5HgmpwBrlsIJJHNW76Rca/PZmiX5lxxmK7DicSraIrc8JinEAlDVgZMHg852ZDaHoaNg7SRbN66jYufm06jusn867R+JNXSAqgi8Sqq9eSqIohIlcrKgDfGQkFesJ2zGN4YiwN/mtuNhas389x5+9Kqka7DicQzDRWTmmny+F8KXLGCPHLfHsfrs5Zy1eHdGdq1eTjZRKTSlFvkzKxOVQYRqVI52WXurpe3nAO7t+SSg/eq4kAiEgsVteQ+BzCzZ6ooi0jVSW1f5u4V1oK7Rvallq7DiSSEiq7JpZjZ2cB+ZnZS6Rc144nEtWHjtr8mB+R6CnkH/ok9GqoTQyRRVFTkLgLOAJoAx5V6TTOeSHxLGxk8Th6P52SzpKg53/a6ksOGnRtuLhGpVOUWOXf/FPjUzDLd/fEqzCRSNdJG8lXTI/jtQ1M4sFtLHj0lPexEIlLJorlP7hkzGwscGNn+CHjI3QtiF0sk9nJyC7j0+Rm0alSXO3QdTiQhRVPkHiCYnPmByPaZwIPAebEKJRJrRUXOVRmzWLFhCxkXDqVJ/ZSwI4lIDERT5Aa5e98S2/8zs69iFUikKjz08Q9M/nYlNx3fi/4dm4YdR0RiJJqbwQvNrGvxhpl1AQpjF0kktqb8sJr/e3cex/Vty1lD9ww7jojEUDQtuWuAD8xsAcHkzHsSrDEnEndWbNjC2Bdm0rlFA/5xUh/MdB1OJJFFM3flZDPrBuxNUOS+dfetO3ibSLWzrbCIy5+fyeathTx//r40rBPN73giEs+i+r88UtSyYpxFJKZuf28eUxeu5e5T+9G9daOw44hIFdAEzVIjvDdnOQ9/tIDR+3bkhP7two4jIlVERU4S3k9rNvOHl74irX0qNxyrRe5FapIdFjkze8XMjjEzFUSJO1sKCrn42RnUMuP+0wdQp3ZS2JFEpApFU7geBE4Hvjezf5pZjxhnEqk0N06aw9xlG7jr1L50aFY/7DgiUsV2WOTc/X13PwMYACwE/mtmU8zsHDNLjnVAkV31UuZiJk5bzKWHdOXQHq3DjiMiIYiqC9LMmgO/I5jKaybwL4Ki99+YJRPZDd8s28ANr89maJfm/P6w7mHHEZGQRHNN7lXgE6A+cJy7H+/uL7r75UDDHbx3uJnNM7P5ZnZdBcf91szczDQNvOy2DVsKuOS5GTSum8w9p/WndpIuJ4vUVNHcJ/eYu79dcoeZ1XH3re5eblEysyTgfuBwIBuYZmaT3H1uqeMaAWOBL3c6vUgp7s61L2exaG0uL5y/Ly0baQFUkZosml9x/1bGvs+jeN9gYL67L3D3fGAiMKKM424GbgO2RPGZIhV64rOF/Gf2cq4dvjeDOzcLO46IhKzclpyZtQHaAfXMrD/BlF4AjQm6LnekHbC4xHY2MKTUd/QHOrj7m2Z29c4ElxoqKwMmj4ecbEhtD8PG/bzKd+bCtfzj7W84omdrzv9Nl5CDikh1UFF35ZEEg03aA3eW2L8R+FMUn13WzLf+84vBfXd3Rb6j4g8yuwC4AKBjx45RfLUkpKwMeGMsFOQF2zmLg21gdZcRXPb8TNo1rcftp/TVxMsiAlRQ5Nz9KeApMzvZ3V/Zhc/OBjqU2G4PLC2x3QjoDXwY+YHUBphkZse7e2apLI8AjwCkp6c7UjNNHv9LgStWkIdPHs+VU/dkXW4+r16yH6n1dGeLiAQq6q4c7e7PAp3M7KrSr7v7nWW8raRpQDcz6wwsAUYR3FRe/P4coEWJ7/sQuLp0gRP5WU52ufs/XbGa205Oo1fb1KrNJCLVWkUDTxpEHhsStLpK/6mQu28DLgPeBb4BMtx9jpmNN7Pjdyu11Eyp7cvcvcSbc8rA9owc1KHM10Wk5jL3+Or9S09P98xMNfZqpNLX5IA8UvhXvcu54vd/pl6K5qUUqanMbHpZt7VV1F15T0Uf6O5jKyOYSNQioyiZPB7PyWZVrZbcUXgqF435gwqciJSpotGV06sshUi00kZC2khufH02T33+Ew+NHkDnFg12/D4RqZF2NLpSpNqZ9NVSnvr8J847oDPDe+8RdhwRqcYq6q68292vNLM3KHF/WzF31+ARqXLfLNvAtS9nkb5nU649Sqs+iUjFKuqufCby+H9VEURkR9Zuzuf8pzNJrZfMA2cMIFkTL4vIDlTUXTk98viRmaUAPQhadPMic1GKVJmCwiIufW4GKzdu5aULh9Kqcd2wI29ASzIAABcXSURBVIlIHNjhKgRmdgzwEPADwVRdnc3sQnf/T6zDiRS75a1v+HzBGu44pS99OzQJO46IxIloltq5AzjE3ecDmFlX4C1ARU6qREbmYiZMWciYAzpz8sCybwgXESlLNBc1VhYXuIgFwMoY5RHZzoxF6/jLv2dzwF4tuF4DTURkJ1U0uvKkyNM5ZvY2kEFwTe4UgnkpRWJqxYYtXPTMdNqk1uW+07XCt4jsvIq6K48r8XwFcFDk+SqgacwSiQBbCgq54JnpbNq6jWfGDKFJ/ZSwI4lIHKpodOU5VRlEpJi78+d/z+arxet5aPRA9m6zw/nARUTKFM3oyrrAGKAX8PO4bXc/N4a5pAZ78rOFvDIjmyuGdWN47zZhxxGROBbNRY5nCBY0PRL4iGDx042xDCU112fzV3PL299wRM/WXDGsW9hxRCTORVPk9nL3G4DNkfksjwH6xDaW1ESL1uRy6fMz6NqyAXee2o9atSzsSCIS56IpcgWRx/Vm1htIBTrFLJHUSJu3buOCZzJxh0fPSqdhnWhu4RQRqVg0P0keMbOmwA3AJIKVwm+IaSqpUYqKnKtf+orvVmzkqXMHs2dzLZ0jIpVjh0XO3R+LPP0I6BLbOFIT3ffBfP4zezl/OWYfftOtZdhxRCSB7LC70syam9m9ZjbDzKab2d1m1rwqwkmCyMqAu3rDjU2Cx6yMn196b85y7vzvd5zUvx1jDugcYkgRSUTRdFdOBD4GTo5snwG8CBwWq1CSQLIy4I2xUJAXbOcsDraB71sfxe9fnEVa+1T+flIfzDTQREQqVzRFrpm731xi+29mdkKsAkmCmTz+lwJXrCCPovdv4vzCltRLqc3DZw6kbnJSOPlEJKFFM7ryAzMbZWa1In9GEqxCILJjOdll7rYNS1iyPo+HzxzAHqn1qjiUiNQUFU3QvJFgQmYDrgKejbxUC9gE/DXm6ST+pbYPuihLWVLUnJtH9Gbgns1CCCUiNUW5LTl3b+TujSOPtdy9duRPLXdvXJUhJY4NGwfJ27fUcj2FzztfyqjBHUMKJSI1RVR33JrZ8cCBkc0P3f3N2EWShJI2MnicPB7PyWapN+eVJudy8VlXhptLRGqEaCZo/icwCHgususKMzvA3a+LaTJJHGkjWdV5BMff9ym1zJh0/v4ka204EakC0bTkjgb6uXsRgJk9BcwEVOQkKpu3bmPMU9NYl5vPKxfvR/OGdcKOJCI1RLS/Tjcp8Tw1FkEkMRUUFnHxczOYs3QD958+gF5t9c9HRKpONC25fwAzzewDgpGWBwLXxzSVJAR359qXs/j4u1XcenIfhu3TOuxIIlLDVFjkLJiC4lNgX4LrcgZc6+7LqyCbxLlb35nHqzOX8IfDu3PqII2kFJGqV2GRc3c3s9fcfSDBCgQiUXnysx956KMfGL1vRy47dK+w44hIDRXNNbkvzGxQzJNIwngzaynj35zL8F5tuOn43pqTUkRCE801uUOAi8xsIbCZoMvS3T0tlsEkPk35YTVXvfgV6Xs25e5R/UjS6t4iEqJoitxRMU8hCWHu0g1c+PR0OrWoz2NnDdKkyyISuormrqwLXATsBXwNPO7u26oqmMSXxWtz+d2TU2lYtzYTzhlMav3ksCOJiFR4Te4pIJ2gwB0F3FEliSTurN2cz9lPTmVLQSFPnTuYtk20qoCIVA8VdVf2dPc+AGb2ODC1aiJJPMnN38a5E6axZF0ez543hO6tG4UdSUTkZxW15AqKn6ibUsqyrbCIy56fSVb2eu45rT+DOmnZHBGpXipqyfU1sw2R5wbUi2wXj67Ucjs1mLvzp39/zf++XcnfTujNkb3ahB1JRORXyi1y7q6hcTVdVgZMHh+s7p3aPlgbLrJ0zp3//Y6MzGzGHroXo/fdM+SgIiJli2o9OamBsjLgjbFQkBds5ywOtoFnNg/m3v/N59T0Dvz+8O4hhhQRqVhMF/Uys+FmNs/M5pvZr5bmMbOrzGyumWWZ2WQzU5Ogupg8/pcCV6wgj7x3/sq4SXMY1qMVt5yo2UxEpHqLWZEzsyTgfoLbD3oCp5lZz1KHzQTSI7OnvAzcFqs8spNyssvcXWfzMvp1aMJ9pw+gthY+FZFqLpY/pQYD8919gbvnAxOBESUPcPcP3D03svkF0D6GeWRnpJb9n2JlrRY8cfYg6qXokq2IVH+xLHLtgMUltrMj+8ozBvhPDPPIzhg2DpK3v6k7jzokH3EjTRukhBRKRGTnxHLgSVkXa7zMA81GE8yuclA5r18AXADQsaPWJasSkVGUhe/fhG1YwnJvjg8bR7uho0MOJiISvVgWuWygQ4nt9sDS0geZ2WHAn4GD3H1rWR/k7o8AjwCkp6eXWSil8uX2OImzPmtP1pocnjp3MEO7Ng87kojITolld+U0oJuZdTazFGAUpRZeNbP+wMPA8e6+MoZZZCfl5BVw5uNTmbFoHXed2k8FTkTiUsxacu6+zcwuA94FkoAn3H2OmY0HMt19EnA70BB4KTIUfZG7Hx+rTBKdtZvzOfPxL/luxUbuO30AR/fZI+xIIiK7JKY3g7v728DbpfaNK/H8sFh+v+y8FRu2MPqxL1m0NpdHzkznkB6two4kIrLLNOOJ/Gzx2lzOeOxL1mzayoRzdA1OROKfipwA8MOqTZzx6Jfk5m/j2fOG0L9j07AjiYjsNhU5Ye7SDZz1xJcAvHjhUPbZQwtMiEhi0LxMNdyMResY9cjnJCfVUoETkYSjllwN9vkPaxjz1DRaNqrDs2OG0KFZ/bAjiYhUKhW5GuqDb1dy0bPT6disPs+eN4TWjeuGHUlEpNKpyNVAb2Ut48oXZ7J3m0Y8fe4QmmkuShFJUCpyNcxLmYu59pUsBnRsyhPnDKJx3eSwI4mIxIwGniSarAy4qzfc2CR4zMr4+aWnP1/INS9nsf9eLXh6zGAVOBFJeGrJJZKsDHhj7C8reucsDraBB9YO4LZ35nF4z9bce1p/6iZrPTgRSXxqySWSyeN/KXDFCvLIefMGbntnHiP6teWBMwaowIlIjaGWXCLJyS5zd6OtKzhtcEf+dkJvkmqVtcyfiEhiUksukaS2L3P3hjqt+fuJKnAiUvOoyCWSYeMgud52uwpq1SX12JuJLGUkIlKjqMglkrSRbDriTlYntaLIjY119iD5hHuxtJFhJxMRCYWuySWQ6T+t5bL3W7Nmyz3cfEIvTh3UMexIIiKhUpFLAEVFzsMfL+D/3ptH+6b1eOXi/ejTPjXsWCIioVORi3NrN+dzVcYsPpy3imPS9uAfJ/XRTd4iIhEqcnFs6o9rGfvCTNbm5vO3E3pzxpCOGmAiIlKCilwcKipyHvzoB+7873d0bFaff/9uP3q1VfekiEhpKnJxZvWmrfz+xVl88v1qjuvblr+f2JtG6p4UESmTilwc+WLBGsa+MJP1eQX8/cQ+nDa4g7onRUQqoCIXBwqLnAc+mM9d739Hp+YNmHDOYHq2bRx2LBGRak9FrjrIyggmV87JDqbmGjYOIjdwr9oYdE9+On81J/Rry99O7EPDOvrPJiISDf20DFsFy+NMqX8oV7w4iw15Bdx6ch9Gpqt7UkRkZ6jIha2c5XE2vHUDZ2xoQJcWDXhmzGB6tFH3pIjIzlKRC1s5y+M03LKCE/u34+YRvWmg7kkRkV2iCZrDVs7yOHn123DnyH4qcCIiu0FFLmzDxlFUe/vlcYpq16PBUeNDCiQikjhU5EK0ZtNWblncm2u2jmGJt8Axihq3p9bx9/w8ulJERHad+sJCkJNbwKOfLOCJz35kS0EhJ/YfSeGwP2PN66OxkyIilUdFrgpt3FLAk58t5NFPFrBxyzaO69uWK4Z1Y69WDcOOJiKSkFTkqkBefiFPf76Qhz76gXW5BRzeszVXHd6dffbQbQEiIrGkIhdDW7cV8sKXi7jvgx9YvWkrB3VvyVWHd6dvhyZhRxMRqRFU5HZHOdNxFRQW8fL0bO6d/D1Lc7YwpHMzHhw9gEGdmoWdWESkRlGR21VlTMflb4xl2sK1XP3t3ixam0v/jk24/ZS+7Ne1uabjEhEJgYrcripjOi4ryKNt5u00ajGBJ36XziF7t1JxExEJkYrcripnOq52tdbwxmUHUKuWipuISNh0M/hOKCpyZi/J4ZGPf2B1Ussyj7HU9ipwIiLVhFpyFXB3flqTy2c/rGbK/DVM+WE163ILAFiVOppriu4nxbf+8obkesHgExERqRZiWuTMbDjwLyAJeMzd/1nq9TrA08BAYA1wqrsvjGWmihYohWCR0ik/rOaz+av5bP4alqwPrru1aVyXQ3u0Zv+9mrNf1xa0ST0Gsvap8LNERCRcMStyZpYE3A8cDmQD08xskrvPLXHYGGCdu+9lZqOAW4FTY5WpzBGRk8Yye0kOr27bjynz1zBvxUYAGtetzdCuzbnooC7st1cLurRo8OtBJGkjVdRERKqxWLbkBgPz3X0BgJlNBEYAJYvcCODGyPOXgfvMzNzdY5KorBGR2/Jo+vk/eb7oPgZ1asaI/m05YK8W9GqbSpKurYmIxLVYFrl2wOIS29nAkPKOcfdtZpYDNAdWxyRRBSMiv7rhCOomJ8Xka0VEJByxHF1ZVjOodAstmmMwswvMLNPMMletWrXricpZoNRS26vAiYgkoFgWuWygQ4nt9sDS8o4xs9pAKrC29Ae5+yPunu7u6S1blj10PyrDxgUjIEvSiEgRkYQVyyI3DehmZp3NLAUYBUwqdcwk4OzI898C/4vZ9TgIBokcdw+kdgAseDxOC5SKiCSqmF2Ti1xjuwx4l+AWgifcfY6ZjQcy3X0S8DjwjJnNJ2jBjYpVnp9pRKSISI0R0/vk3P1t4O1S+8aVeL4FOCWWGUREpObStF4iIpKwVORERCRhqciJiEjCUpETEZGEpSInIiIJS0VOREQSloqciIgkLIvlBCOxYGargJ8qOKQFsZrgOfaUPRzxmj1ec4OyhyVes0eTe093/9W8j3FX5HbEzDLdPT3sHLtC2cMRr9njNTcoe1jiNfvu5FZ3pYiIJCwVORERSViJWOQeCTvAblD2cMRr9njNDcoelnjNvsu5E+6anIiISLFEbMmJiIgACVbkzGy4mc0zs/lmdl3YeXaGmS00s6/NbJaZZYadpyJm9oSZrTSz2SX2NTOz/5rZ95HHpmFmLEs5uW80syWR8z7LzI4OM2N5zKyDmX1gZt+Y2RwzuyKyv1qf9wpyV/vzbmZ1zWyqmX0VyX5TZH9nM/sycs5fjCwKXa1UkH2Cmf1Y4rz3CztrWcwsycxmmtmbke1dPucJU+TMLAm4HzgK6AmcZmY9w0210w5x935xMMR3AjC81L7rgMnu3g2YHNmubibw69wAd0XOe7/IGojV0TbgD+6+D7AvcGnk33d1P+/l5Ybqf963Aoe6e1+gHzDczPYFbiXI3g1YB4wJMWN5yssOcE2J8z4rvIgVugL4psT2Lp/zhClywGBgvrsvcPd8YCIwIuRMCcndPyZYyb2kEcBTkedPASdUaagolJM7Lrj7MnefEXm+keAHQDuq+XmvIHe154FNkc3kyB8HDgVejuyvduccKsxe7ZlZe+AY4LHItrEb5zyRilw7YHGJ7Wzi5H+mCAfeM7PpZnZB2GF2QWt3XwbBDzagVch5dsZlZpYV6c6sVt19ZTGzTkB/4Evi6LyXyg1xcN4j3WazgJXAf4EfgPXuvi1ySLX9OVM6u7sXn/dbIuf9LjOrE2LE8twN/BEoimw3ZzfOeSIVOStjX1z85hKxv7sPIOhuvdTMDgw7UA3xINCVoEtnGXBHuHEqZmYNgVeAK919Q9h5olVG7rg47+5e6O79gPYEvUX7lHVY1aaKTunsZtYbuB7oAQwCmgHXhhjxV8zsWGClu08vubuMQ6M+54lU5LKBDiW22wNLQ8qy09x9aeRxJfBvgv+h4skKM9sDIPK4MuQ8UXH3FZEfBkXAo1Tj825myQSF4jl3fzWyu9qf97Jyx9N5B3D39cCHBNcVm5hZ7chL1f7nTInswyPdx+7uW4EnqX7nfX/geDNbSHDJ6VCClt0un/NEKnLTgG6RUTgpwChgUsiZomJmDcysUfFz4AhgdsXvqnYmAWdHnp8NvB5ilqgVF4iIE6mm5z1yXeJx4Bt3v7PES9X6vJeXOx7Ou5m1NLMmkef1gMMIril+APw2cli1O+dQbvZvS/xCZATXtarVeXf36929vbt3IvgZ/j93P4PdOOcJdTN4ZBjy3UAS8IS73xJypKiYWReC1htAbeD56pzdzF4ADiaYGXwF8FfgNSAD6AgsAk5x92o1yKOc3AcTdJk5sBC4sPgaV3ViZgcAnwBf88u1ij8RXN+qtue9gtynUc3Pu5mlEQxySCJoEGS4+/jI/68TCbr7ZgKjIy2jaqOC7P8DWhJ0Ac4CLioxQKVaMbODgavd/djdOecJVeRERERKSqTuShERke2oyImISMJSkRMRkYSlIiciIglLRU5ERBKWipzUOGbmZnZHie2rzezGSvrsCWb22x0fudvfc0pkZv8PSu3vZJFVFsysX2XO7m9mTczskhLbbc3s5YreIxI2FTmpibYCJ5lZi7CDlBRZSSNaY4BL3P2QCo7pB+xUkSsxq0RZmgA/Fzl3X+ruMS/oIrtDRU5qom3AI8DvS79QuiVmZpsijweb2UdmlmFm35nZP83sjMiaXV+bWdcSH3OYmX0SOe7YyPuTzOx2M5sWmRz3whKf+4GZPU9ww3TpPKdFPn+2md0a2TcOOAB4yMxuL+svGJn1ZzxwqgXrhp0amVnniUiGmWY2InLs78zsJTN7g2CS8IZmNtnMZkS+u3g1j38CXSOfd3upVmNdM3sycvxMMzukxGe/ambvWLAW2G0lzseEyN/razP71X8LkcpQ0W9tIonsfiCr+IdulPoSTNC7FlgAPObugy1YCPRy4MrIcZ2AgwgmIP7AzPYCzgJy3H2QBTO/f2Zm70WOHwz0dvcfS36ZmbUlWEdrIMEaWu+Z2QmRmSsOJZgNoswFdt09P1IM0939ssjn/Z1gmqRzI1M+TTWz9yNvGQqkufvaSGvuRHffEGntfmFmkwjWqusdmfS3eFWBYpdGvrePmfWIZO0eea0fweoDW4F5ZnYvwWoJ7dy9d+SzmlR86kV2jVpyUiNFZsJ/Ghi7E2+bFpngdivBkivFReprgsJWLMPdi9z9e4Ji2INgPtKzLFj65EuC5UO6RY6fWrrARQwCPnT3VZFlRp4Ddmd1iiOA6yIZPgTqEkwHBsFSLMXTgRnwdzPLAt4nWNak9Q4++wDgGQB3/xb4CSgucpPdPcfdtwBzgT0JzksXM7vXzIYDcbOigsQXteSkJrsbmEEwG3uxbUR++YtMYptS4rWSc+UVldguYvv/l0rPlecEheNyd3+35AuR+fk2l5OvrCVGdocBJ7v7vFIZhpTKcAbB/IYD3b3Aghnh60bx2eUped4Kgdruvs7M+gJHErQCRwLnRvW3ENkJaslJjRVpuWQQDOIotpCgexCCVbeTd+GjTzGzWpHrdF2AecC7wMUWLDuDmXW3YMWJinwJHGRmLSKDUk4DPtqJHBuBRiW23wUujxRvzKx/Oe9LJVjTqyBybW3Pcj6vpI8JiiORbsqOBH/vMkW6QWu5+yvADcCAqP5GIjtJRU5qujsIViUo9ihBYZkKlG7hRGseQTH6D8Es71uAxwi66mZEBms8zA56UiKz8l9PsMzIV8AMd9+ZZV0+AHoWDzwBbiYo2lmRDDeX877ngHQzyyQoXN9G8qwhuJY4u4wBLw8ASWb2NfAi8LsdzBLfDvgw0nU6IfL3FKl0WoVAREQSllpyIiKSsFTkREQkYanIiYhIwlKRExGRhKUiJyIiCUtFTkREEpaKnIiIJCwVORERSVj/D5mUhHgN6DbIAAAAAElFTkSuQmCC", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Set up the state A|00>\n", + "flag_qubit = 1\n", + "epsilon = 0.05\n", + "A_circ = Circuit().ry(0, epsilon).cnot(0,1)\n", + "\n", + "# set switch to either use explicit unitary diag(-1, 1, ...) [True] or use ancillas [False]\n", + "use_explicit_unitary = True\n", + "\n", + "# Let's find the probability of measuring |11> for different values of m, the number of applications of QAA:\n", + "probabilities = []\n", + "stepsize = 2\n", + "iterations = range(1, 40, stepsize)\n", + "for m in iterations:\n", + " \n", + " # Get circuit object\n", + " circ = Circuit()\n", + " # Apply QAA using A defined by A_circ\n", + " circ.qaa(A_circ, flag_qubit, m, use_explicit_unitary=use_explicit_unitary)\n", + " \n", + " if use_explicit_unitary:\n", + " target_string = '11'\n", + " circ.amplitude(state=[target_string])\n", + " else:\n", + " number_ancillas = A_circ.qubit_count - 1\n", + " target_string = '11'+'0'*number_ancillas\n", + " circ.amplitude(state=[target_string])\n", + " \n", + " # Classically simulate the circuit\n", + " # Execute the correct device.run call depending on whether the device is local or on-demand\n", + " if isinstance(device, LocalSimulator):\n", + " task = device.run(circ, shots=0)\n", + " else:\n", + " task = device.run(circ, shots=0)\n", + " \n", + " # Get result\n", + " result = task.result() \n", + " # Append the probability of measuring |11> for this value of m.\n", + " probabilities.append(np.linalg.norm(result.values[0][target_string])**2)\n", + "\n", + "# Get analytical result for comparison\n", + "probs_theo = [np.sin((2*mm+1)*epsilon/2)**2 for mm in iterations]\n", + " \n", + "# Plot the results\n", + "plt.figure(figsize=(7,5))\n", + "plt.plot(iterations, probabilities);\n", + "plt.plot(iterations, probs_theo, 'o');\n", + "plt.xlabel('Number of Iterations');\n", + "plt.ylabel('Probability of measuring 11');\n", + "\n", + "# Let's compare the amplitude of |11> in the initial state versus the state with maximum probability:\n", + "# Print the initial amplitude of |11>\n", + "\n", + "# Add a Result Type to output the amplitude of |11> for A\n", + "A_initial = A_circ.copy()\n", + "A_initial.amplitude(state=['11'])\n", + "\n", + "if isinstance(device, LocalSimulator):\n", + " initial_result = device.run(A_initial, shots=0).result()\n", + "else:\n", + " initial_result = device.run(A_initial, shots=0).result()\n", + "print(\"Amplitude <11|Initial State>:\\n\", initial_result.values[0],\"\\n\")\n", + "\n", + "# Find the number of iterations required to achieve the maximum probability:\n", + "max_prob = max(probabilities)\n", + "max_iter = iterations[probabilities.index(max_prob)]\n", + "\n", + "# Generate that state:\n", + "circ = Circuit()\n", + "circ.qaa(A_circ, flag_qubit, max_iter, use_explicit_unitary=use_explicit_unitary)\n", + "circ.amplitude(state=[target_string])\n", + "\n", + "# Run the simulator\n", + "if isinstance(device, LocalSimulator):\n", + " task = device.run(circ, shots=0)\n", + " result = task.result()\n", + "else:\n", + " task = device.run(circ, shots=0)\n", + " result = task.result()\n", + "\n", + "# Print the final amplitude of |11>:\n", + "info = \"Maximum amplified amplitude <110|Final State> after approximately\"\n", + "print(info+\" {} Grover iterations:\\n {}\".format(max_iter, result.values[0]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "## References\n", + "\n", + "[1] Wikipedia: [Amplitude Amplification](https://en.wikipedia.org/wiki/Amplitude_amplification).\n", + "\n", + "[2] G. Brassard, P. Høyer, \"An exact quantum polynomial-time algorithm for Simon's problem\", Proceedings of Fifth Israeli Symposium on Theory of Computing and Systems. IEEE Computer Society Press: 12–23, [arXiv:quant-ph/9704027](https://arxiv.org/abs/quant-ph/9704027) (1997). \n", + "\n", + "[3] G. Brassard, P. Høyer, M. Mosca, A. Tapp, \"Quantum Amplitude Amplification and Estimation\", [arXiv:quant-ph/0005055](https://arxiv.org/pdf/quant-ph/0005055.pdf) (2000).\n", + "\n", + "[4] Y. Suzuki, S. Uno, R. Raymond, T. Tanaka, T. Onodera, N. Yamamoto, \"Amplitude Estimation without Phase Estimation\", [arXiv:1904.10246](https://arxiv.org/pdf/1904.10246.pdf) (2019). " + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "conda_braket", + "language": "python", + "name": "conda_braket" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/modules/1_Continue_Exploring/C_qtm_algorithms/canonical_algorithms/Quantum_Amplitude_Amplification/R0.png b/modules/1_Continue_Exploring/C_qtm_algorithms/canonical_algorithms/Quantum_Amplitude_Amplification/R0.png new file mode 100644 index 0000000000000000000000000000000000000000..ba436798c0043268a4363e06264862fe58679c12 GIT binary patch literal 40357 zcmdSBbySt>*DeeQN{FBmDiV^?CEX$|As`)!bb}xvDWW0@3Q|&ngh)w9r-F1hNGKpB zAl-20vk>hUW7a4Q(5~@|i|M zbLK!po4tdECK!o^Mrt2Za!VL~z_FLrz7LJ90?ufr!1YI7$idqH+~7Z(>c7j8B?M>BR#0RaJa z4lZ^sE>?Jg^}d^}(_L3q+xs+!g&dW0!{q)wM+RaflD6TO3vDrj%Z+>CWMne-vle;0I?u!0<*sb~YTI}W$LGEcn^|%JiyVPt{ z7t)?RxJ-3Tz29?im|Jm()aZG;Xd?ewUcTz9jydE599E>m*SE zHGfa%b$y!J3*qSKq(zl0#p@$eaZ|QaBM-wDmql@Y#LbtMiEao?t%z*I-4~jCBo|32 zj)snT_(xV{tO&Cy#r*F_F(6Whl zM)7kJ|MSf&r)7$NRiXDz;U|xZgp{vRtl(|Eg`w+l{gb*iGwc}Hw5(NIlVo>W+2ty` zF0scm$G(itIrX<#Dj#t_XbJwK9D#qn8HaEFZ=U&HK0>9{8C~jLNbaIWzt@`J0Udr< zfHoB|D4L;Y;KLl-K&E!$sGhNMG`Z9bJ9M<8F8fYk$qI(@rJOu6Q`JNC5T(UY47B4; zH{iW;qPM$=e`pgbAD<0q>PRIPjP_q!hmelFmV;{izG9prpm;Oc6wx%>lWsECo4Gvl zaIs;3Z)ZhBbgAb2U_4j~UiefZON~G>n%x z9E3y;^RBv!lSzDMH{G8q# zBcQfWJVh}xQvOiQ94_o(|EYw<*g!bF#{*vmEYu2f}8?P5oh{fF^6BscG3yHZt&e{y_fBQ~P3 zaCsrA~}+p1@1R&Z}x>E+LD*>atStMAuelJPB*w^@p_$h^DZ<9i23+CM^$!cL%4 z9nI{P6MFf>SVm7@s_Wa`KDpiw`4fGW`_61dY9$%JgVsKO{yZtVJ^kJ&EW3PNXJKXXwKReMD|A55&z51F*Zi8wAd zFp&1m-M;DhZ6Z-B@Ojg!zX48<%wE~fLTMr;)(+Rq@F({Ocb(AQWM{4`KH|>kp6)j~ z zr)65@gI;U0EgK(U=%pR^a6#bWHFFh*VgmM6ftVIilC+DInF@2p*U@|%F-~JLmnN0J zSy34LxzH`sIitkFyguZ8&G;G|ai$_z*5)&!le$`qc)Dk!?J5NF_uwz%cJ{c_ z>h!IS^mp4is(-qX4&y;aT1*^hi_t25t7`Yy0Fe+60{P? z`1;d(a@yDjHEGEjvtg~Bi?)_`l|{FVwWA7$A4F$p5`ENNO?z*9?o<6;fKNnjMvdIJ{LwTZc+^+Bu2ik$_kV$mVI&6W6r7;RG6Y|5KwQ;aZg65pXRw=}-N zUl~b8Hm>t)xhwHeoj&b8OCi;}oZi>Q!jFO_uG^4{xH~PZ^%=IUO?S{#dNfCJ7PD7u zQop9JnZMz-RI&J{CUnDRXVLe@nFViF7`TKg9X_#Nf-qjY@r$5YA&dNsm_`#nC6y_dzarlyy%N`ijuQ_sCL zztnhZmk-5xZO`O>q=gF{{NxXa0| z-JNck`r6@m+9rjrlzg^U_Le=l?>4zz0;iVhqBO6h0Km-UTAI*DYcZSLF7AA-4wPss9xzvHBfMn;zvX!8l zQCw21N^5v*MdH8O;@JyF+^s%XlP8~Sn?B9D;%VBOq22k}s;~P(K3ire4mxHdloTEv z`RVaWAkM8%sra<9>op(K!WTx$g$^9%D?E25GV)rPL<3j0=dvRfhD%ACc44XB@Q!+x zra$(AyY*ERw^;$Z>}J^C9mE7S;4uAMoyILXX19lPbTj#U51e)Px2EEolH@`s_BKW% zLX`v=4_I0Y3JP|;wh!PCB4?s$B71%vpVRyo>>RJ*Fkx6Cu^`tWg=L^ldWTADn0}ro z#;}vb<$Z-xHM!HiFz)EPNaxw^G$X5@xOIJo-mIE>4pO2W-O*~RrU@{3V(L>*@X02G zMz@sA2PpUdJk4Ev_=MNok$z^McOXNybpCs>n)J&{bn#x>7D@AD!ylC6MH6!_!0GkA zG*<*;1n07V;|=K-7p@Ey*eK*L3KD)Va=15rKH&!Qi=016!G$q~MyJEgq#TmFs(q|} zx;L>FPMmLTjTH(MeUy6dOWJVn4a@2Fge$&vl-|PE+FneAR);ZbKBs@`psbS;uK49* zAp`F&TI_2r422PuH4T-o!L~xy<7WYQ>3G#=$UKrNqIbC~S~8b~m)W_uzBo#$^X)}_@l;%N<)w>LGV?m&20yxUVa-vM_?+py zfGxf8+)AO9-9c_!_l#VsWKN&4!}3JK^7Q-QUk`iU%McXrtq)nPe;OxNDgQB@Rl4x8 zI5?Ym?M5nP;jlv;IqPswmP?w|MI91Neos%njztZ`D`4vH-;Xi8v|=>Jgi&4Z&v?R@ z>hiY!V6Jz|waKw+zhZ`X4=z%VhKh``gU#TB`n?%t??$X(1zh62h{|2MLW{1H@0&~G zP3s*G_Ey9W?k|v5Zb~h@4;ICp@B4i-xnh<}mw{(5!h0)1?~muebFZ-N^r2bN5_Xsj zH8l2{e}3q3JZr-8E3WqrBtH;!He{7-a=bg+U-`v@+jD%k^Tnkd_48xWiDTKEfsC!} z?sG1@sYe&~~vUcj?>aCk>B3Uf0y-~b+1%{_wgsT;2mz#_If@^T}xx3bUht0_36XE|vU-o-~s z@|lE^SP7_FT;!qFH2cnr$I##=Km+da>*eV#_etVD z;q=i-&4-!E_FI_26~w+ZG%y2$X_8R~>xHXTciOAowbR-`1IzJ6$YqWIOed6fv+eEM z%cNt^pO2%bJVdpP6$gf_rmhwBfgX?J!ZiWG{1!ei!YH+p_mO>lPlFM-#Z%?^u!<6Y zn(ECEqsBuRK++PwDlW>TzF<=P)3}Pu8er0)_AZAblTwL*lewCa21nANQUCmXVyOsg z^8&l=twxj)?d9OTWb;l^{m|PXU*KB9-(Qf ztBR-Kq6)Qw-e%&Hqj;yBL<7|t~v?ZqGx@mVU>47 zb(;-rP(q}*jT#EVb9Xo{{JeA0_a+p{J(=ow)Qu_vFpAjEo9t?YW6$Mr>(zZxgOv#@ z=5xaPAE=VnU~TlCHxj{^fg)4P6cth5!XKYP1W!JR3#wzSA`UB(VkAI}QAGzuMkLA^ zqU>@V3@CZInd(&VM z$A}eleqN9;u6tX)`|={!uq2u<5f&5qJw37gl99>}cJcB#!6ocNbTn0At;Twc#7E;I z4$vnl57RFKJD*y`LcN9fsm6@~)a3g=Y^Vt?hTbhX^e84&zcPr&7M#Cc*JO0y%m`5A zdAi8UTl-B3CVirK^1YAQb?@a#SeGy5lx8no!>Fv5wolHJ;NU%;wuI)ebLBa3uZzEf z=hLxYR57dO5TdLn3DzU11D)ihIZZrxM9!o3CIAy-NQ&e zQ4J`f@mEXqWPi@RgzH%VH#^W1(oabA1r;WY-Hu$!tR%+H(7w?bb?bx24vj-{rA*M} z*QE<33KZ_sSGH!;v){UJIL!~;D{{9SyP;DI?LZsWJ_otMigxzwjhYDE3U0MXDVrT$GB%Z#^&k??S6%(BjaW!Rz z{l{(GvOlszJ9_Av4JDx+FG6-{1nkFr%D@?Mewbo&fz#;mWtZ=K8=>T)9$E#~1FFtq z!(J2huT?YWZ@Zkxb&pwZwosJE35$d}mrkP%Sx_yTnLUPQ*h2k|{6A=t-C&D{a z{pb_fd50jK*UaJ?Y%=CbId)+a5)z>o%BeLMOP|=-*leXg0H?*V!aKWizvKlOpVI0( zRg2m0#d#ippA!RA->Ze}+2pgnw9RHHxbeN*Lv)^8T#Xcv(FH^LQplN zPPdi4XINX!&_{;8hcDL_ubetHVB9LZoL=(DX-2Dqnbdf;p+dU|7(Cf4Ke}J8GW`Nd z$fP4tD#3GA{=*2`%0lTPZ2WP3KUcr1edQ8F(?C(xg(~7#a zzg=6r1z$!sV)0kLiT*@e0-J#ob9zDdja#Ahqz0}Dn@es9C;Ig6zdTJLT*N`PZ75TJ z;^gV8Y+Ypf23}hxZb0@Jx4)C9ovbKpkACuV`-~YYcc$c=5dic-7-g%Sq@3^-g-eaL zy%L=>rh0+pf;+$SOm;VyYTZ0@EPFn-d(6BLwVilEW?Rob+nX89qFZp2UMWVaB!Dk_ z%~q>iK_pXdu2T>k(RU?iC#q+8EwX>?h7=U-t-W>{r2JYUQnd9eT5_li{w5v>D#-*> z5SQbA)Er*jiN+&kdlSfBQ8aEk(mZ#cKiZQ;m0MOPqPGFakT94+8V?#A8BusY9q@id zB+qxF@=opTVMW%l28MVR=Ba`q+fZU=jfsf1SRuXxk*~Qgg|**ldaPA1S}5zJ_O?Jd zaI#}IDdrk{*`k}n?!PT2m#V*H`SG)RkK^|0OoAs*afb{oaf-nGU-dM>!XfeHE3HDw zgn5RYpuRngfcISgHa!bSV)?AZVNQfnm?-;diwd|ZC zK zO|*IM-#0zISiWIk>a50zkpjHkH6E_f{J@pKfhEoq=jt{>K_RT*-g>NdjXedf3)RCN z#emqu+*ap@_%`-;78$giwPOov{nrQATyB&-BVF`e-VhHt<<`nRIdW^%54!9UlEC@V zI?L(gBCcTyn|{fgVU;9L!!p;L828z<3XXPVar`gKU$Aglv@k@^>&|8S8dTfKR3i5>vYnvm3S}falk>R*WApwG_DJ& zQZ%n(tME#*%K13gp8@S2I^6W%q=%Bk(BJl~?yj_vZN>5MXyi9F-_!f7!P%*Z-u;t2noA~*f-|dh&(^lLT7?$t-!Q5zSJHS@W0BVHZmmrA>e}JY zr@Ze*n3nwJsVE@0=?A2u&{guu<&i1%ENnr1)G=}FU`uF2lP{N;G!-vxMn zm*D&_;DZRUN(aGj)-1bZIX@Ne%@#_p7&3M-#<5e5q2W0(b5dp|tKpM<@3kJyr;X!J z5(%F+zvWRVc`$#;AaX3`FWN7L$?q7-5@GMvpgKBIA}2WiQokkKdvC38E6K4dMR6-Q zV9g~^S!h1LU9|AKqk?%H;QY&u-!7WfH%D=Q#XBF})KsgXSs>DhO02u`Vci z(#9^-z5!j$>86xsH?aI3ZvAOS4QY2XsyW+U+K7C!<L9QBDntiG`AnGKII z)FC!Lc!fs#Fz+n(BbBA`1XG>!!u4fF+R4rthLsgsPWFTiSfgthrNIl7!tq%}hRp2p zL#o>)VO)9rnqs!4<3U1>)v>=`@5=A!xMuEHUM%o(itrb5rdE*?uM9tj;wY|uWnX)&HTq1PVVK|b9#=9;J2dz?Psyb-ecS1p!G4QPjexZgFNpZwfJ1`l zrhfd_G?y{Q2zMFsUuVsg#_C_wY-MALK!9V5vdTP#$Wt#$ROGtdulqk}oWTcLGn)M` zQ4vdT0t(@)+x$#>7y0*+Q-cieZLSwqvL5^)IH1}Nq~Er;qS%e=puF58$PRN#q$Z2P zZs_3!uSs3+ujPeSK@ik%g`mbyN$-Poy915&g<&#xnfZad)J^gIc3e|%9MAf8`i}Kx z>Pp4m{=RfRX)dc&iLLZEm)WUDqL=LyMuj0vk-u0_PCwIp)u>|c^=7+aNb8IJ$PXmG zmoP;4^|$TISn-SP_E_gjZL*6W4i`M@FgV5=*TKET^OFv3A)4Mi8&{A!i2c2pqMhmR z_YeflwT6eF5E>WB9gau`v=0=%=fDd(ciP||NKOmjFzN+!vinu=evh1GOlkn?(kVug zsIrE@bshvFVJ;V3=cbNiyCdh<=L)#aPcR>u_OrvwJNIM>P_Fa;*Q%WY%IL^asH@of zlfK-f15O|Su->}(eJ_i`vD>^DdNa-6Vs(y?Cwev@&vIP8SQHb1IMTUisZdXl6OG*y zKIJDLfohZy*yF{^kVmKwH_zYUFb7^ExD7gh5FN+pkrBs!!(G0eJU#8&_CgW<$^#tr z=Zr3agT#_Lfj)Q`VL?)CtAV1>-!P@){(i((m#?~TTBF*C69Wf{6P~`gbYvnl3~C6s z;t@WR14NEO5b%pnC{(NTBuohf&p!Z~A322`2?JrF#A1%~7t~RWWq`T!5|Zy(-~rcS z<1mXt!JiNmoMPUgfjT*#AY4mL?Kf;%1O{Ja_do6k_6IaMhQ$+@M&|&G-h4&mhv34o zBq%cUZn7Gxc}!JzUTvUb`~pbx_B@^r3f-dk7-oQz*5)%8j#_dj2woG&c}EwH_lGlX z5@^tDmp5ZP+ua$IOujW0Qi4HkGJ5{YUo3fIUYqy)P9^HqeD@cI^OfNJ9n zWITS=91iJV80Lem{Z3r3dZy z#e{aB7f+V`=bNKP-jaM+~{SiSP3e=J-PG8w!+}5t`x~P#%{^ z&s_o^{P3Y7255}I&6(F%Fg${LUWvD#Mp=snO!pG|#LL6UBMHperN(YwaTDlIBOA-{ zGADd?3mPeX^Z7A(1D=Ff;J$%EIKlRA2a<9O8Fh4EBXQnGvNQBS{LiQw8XYf4c?4B;@@&KiKtLQH6k zLE-U7!otcbz4n_RjO$f6#mJc&#(|rDU}nH`g)oLcii;5Yda`C@(|&Eo8^eR`zG4Vj zg@+C2R8akB@LcVXsbw;JIRE+kQXQqCb0q{irXDPg=zp(xO-eq;*373W-8*Fay@<1~ z()-|}sK2Pxo?%lb7Xtp=d;#lDJYtS0rs}ZVwo}{a;mT(rO|h(d$G`n;i|&k+cT;;h z&&`Y2v~DWx3ztRQucgXOyt*RUc%~*b-pkzKPhJNS0G zhW{@GvojRJkp~qC0Lu+QgFt_tL5XF!CcUrp!FpHFM7J) zVfUN5P%m3&_Wq1~Di$8eGg0a^j+Q8H843t{@BWT;8DS)s$@ZW3*gk;RwL*ERc6XFJ zLmHtkJ%C|eoQN^o7{hZl&N=1_9~wbT#_qpB$llD*^Oit#lPc9EfpoUxAl~g)l!tTm ziPpe5V7UfkMye?`)OGA;=8EP5(#yz&9^|iLhj)tdF6&SZCpvQjJ}wrw4^^JN&|5#M zkvC)+TcFsp{Z?I!zmk@2&Y)Ot=JdXxXQYzABvJ8dr-Gz@PjJ7VOi(?*?h_sH)|a_W zUo=PaWzYJ3mlP5beb1+Y<-L%$p*q)Hf`r>xJ^@B~F2+YT!n7~27oeMYJo<0P`ubj%kT{SXu?LYNu5qblP|uc7uOyk9;L6bGK5t%}nYN2*EX3_+v0-dZyjikr zWxsf;Dr8npkQGP$a!a=i<=R{yyLvYSnCU!s)>}r!yFo$HE*Nj-b+9vP*1N|t*P79# z{z9DGm*vzw?Oy$-wUIqBhA(jZJMgc}ToV*t;>}WsU^C$(vcUfvN9P%7WMQ9Y_uf)4 z6{*i%Xckng#qK^^@5m8uGVHANLc3+FHc};Wm~f*aWpLy@5QWTZ?6IdhY|~oTdl^<{ z5duMb=aJArXj(>6w}yUy<>w7zugxWjF%cCnqxck9 z+$8`RMAo$ixJXcYGFAICSS`}|gN67ZU)L|z8NPNBq!{a5zzUWPL4xW|xAxc4vn!Z@ zKV#Qz{ksb%V%vKKB-ZfK#>SPMT1{y5FU3p!&(L|?-=NLWli(uFRPT(z{Cmx)mhx;Q z?LYANnx0IWA?TRQFLECqPu=GrD5LPynH)=ShE!3A%~;gUcPzq;N#mRgKWu@lG%`VN zHb%V-0fMt=S9+D_fBxKn?7)i$`-_vXHP=3vR=x+CxX=8QQ-S&0WSY@ycia6=;>+)$ zFU=C|QolZZfrBb5OXUoP5;jVc6&k-w8(OhD<-MN@qAc#vlIXN+naEacnmE28syE}r zzaQ_tUwrfJHO6@RIHyjzEi(tpFKMBNK;69!UuypHiBo5q53Z~2gg6<@WM6-6pK?!; z^#P8a*VbgzuFhL}dkB{M>uWLQ1H*?~e?|iszB?+P6%4)ioJG@MdksZ&W#R0GY^kvi zbUqaRgWH$8;`gtWQTZ3g@BKDo?7mKn-Oo@Z-X0U_;Kj*6QtUd6P!6wY9q}s-J-)cDV(F4ak^UZmPIK}SepXQG>>fe)#)ps z2Yc8;@t_Q&#BNj+$EzXjm#AoF_vlB%eDl}9e2e7R0`dke6r3oZVQ1=Hm$QVyNHX4I zib(46b)6$Ei3b*IS7sVk73=ym(E40vtued9?c3xropOtU-^<+cg#T2XNDf@d1|sXn zuKw>f(VYyB-K9E{IZs^<_f>PZrCQRJ(U&hv7q>likNJhum~&*c#aM{4g;9YL=j$6^ z@jt!HJNQoez0LXdKfXLS3F|#8%#`*Y0NkVQ)4u?C*NDsbx0l60LC82V&)@sprxPBI zu&6KbFh{l9u>1=85%MAxBndVv>eC8!2hlUuS= zMTdX2xC#lo0n68?1a?lE?+aWeUCD@h3iqX*IUR&V4fr^j@*A|!JuA|@!tR31Yb%?| zX|9*mQP)}5bF*S0-GnGE>QXTp?+pm{`OrTF5;F|ErNY(I%8EMqr&*iUA9G{YoW^*9 z12NP0KAXH;_di#JFh6}@r+3uy3@-}45R^L+!fNQts zN``CBF|O+^v_6{R2IxLfuZjWxJd72==^6ZBzV{@a)b9F;ONZg)$$F56wbS9rs zC%;F_SDugfwh-Z^A)HH3P_C@_BXDJLeyUzWJZSL;5D(1DOEtx00?%4Q_3p(Zr`|_A z1D?xqRE^ArINK7>@+ujE0;oQMudmKnaEK%2!K=UhBQb{p;Ga98amlkIx7-+9mMCY; z52H8$eE82w3!>tfuORYo_Na&m1)*NW0`U3$JME&cJX92>u65Wvqy)lrcrGJ`=vO)b z3Xhkf_^TuAE$LPiYe(x1QLWzYw^ zWcRJhS=%Jj(&aQ>y#QtWQF+(t(EC)Vhz^)@6Iex^7I#$4&mEa|>@7fHtFy^s zQP}Dwxnp06!)|^`BSLDgk_YU{{8jor3e(Nva9qe>sBy>agoyIZzUaYYM9U69v;4GB zY>+M>T8BVYMD^g~V+D51l6td`Iu9qXE}UML7O!G~67zmaSRKF1fPmD~%(3#wyQrQb z@7ln-1yV28QKZfdBs?7u@RCp#fw?@EOvmtO7m022t*>52T8j+I(G!l^AY9N3V)H~z zjAtO`;65YOh*BzZao<1rZs+i9gxPlqYPGnk_H+fNn1g7I6Ds8TP720@ z1bqNCI8`@cJWRj&YiuEeg5B?#W2N^iu%ek|xB5gbOp^ciYChJmj}^mgn6g7Fp$vvV zd+oR^Bg#ArK#Y`->AEAU!j%;WhPgjoZYN;u5c$LLc<7y<{;BiSdPW&EO4b&ZiSrpw zbkrTV=b6e>#hy7_?ui~TSGGcJTjQMt2-r;D%AdxrP*hzX8iFbEl6<)jf?F{OtIM}@0 zN$g7ynbIaT7%M`yOIa5>WD`I%e*>APNPk&KAi8$6>X9!$NdXTQF598>9yB6t(|_9e zQ4gMg7xA$%6j3&MW(efLZpxcy;>=KW=5!9^B>Xj!I4w+6*_+mn#ciN5-RpN*4}Su( z?i8xR7@|8I)5cmeZ)!1i*Gp=v(|cFJx2hkqtJJq~b|~Jz{QcQknu((Eii-~~|BY1Z zjV}4yiaAcm{xF*uGy!~fwJCxf0g}a@KMV~$H-9{J8~rcB|FA<+p^5}FNCh_z4mI3gj>vs5uQO2Qc7OkZrq1r@Zp&!>=RO1Gd*5EX2HAofXaN*7g_Z;n z_JEXOgnGdFdZ<#$D%PWCR=I}j>{;Omgx?sn%AQ1|=o)np@s1m+@O)VNF^F6!TsPnR zmU;Y`yg8d}_&*pPk^Bv%j9J<*AaPRX`9U6I^-S-u@VN?|C*g?WwSuNy$39Bb&R^2j((#^|lWwec9~zrAU5L5g$~gFD{e9Gtm(+p>R%77v z++NkQcg~)vR2z>n7i|ly=p7D;;inW_>X@_K3nJHs3z{3@?uHve-moAI~aBD)6elr zGH6kT&{PR9E$<4dz{Q%_89ney^t(omW(mBAnhh+Q&z@RC5>sDC`JbHVQN`~jeu?oR#Lo^3sw;*p-L!vqLl=IpZE zpE-GhqqmuxKC_XfT6!vdWREcn331NW1Mun{D|+)dGM_ao^P7y%_6_Ck*r{{0Z?~p; zXCh|OMaEh4^G46&+u z-e%3g`^FRSS(4zLroQv-54&TtI-)taaZ`*SURC}r(V)G`*WGc_Y?W;v5m7Jujgqlc z%>LR&+XA*~rAg|xzt)dDpZ(mvw>(y=bnRq;)(XOT{3DKDa%(mgHYR#A`Mgdq`Sd6~ zyR!`|+k@PlGwntzw#c68?V1Fsn2|+x#1~|21S;VZk-DiJ$s2q`e@J+nT%DJjo0vJb z)+12a&1ZynHbg0S1WUifiLo?6wzSf9$w*+WTTLY7!)Omnwsn#xU24TiU8+~*KBCB?P)MvJ)67D&t^TZJL!DuPe|6a=Xv0SE_#$2_uiPLqoMpg6ST&UX`(Q}SmT0?HVS4r zls^A|PclqUz9jN^!?rTj7NKib&eMILJlP8%UxLZsEC&?@Sm3PWz0O2bGrzC?>@O2t zarp8WCl>&zz+6V&1ZXuvY==u4AVGs2#+iM69k!cLQbUg%{x-bBlhG3L8`6@$mORIx z_v+|=%8ONfwKPE{qE-NlfWK{TTx|bdMckOgRPn~hLw5CDSXQK#k|BIV$sMCAQ#vs? z70(HC(|Y%5!%tN{95tE)&us&6xmH9qXTUo%%SD-)Q3^l)AY*dRo1F9?GgWVNJNEwJ&bL#$Zi_2-c zy?q&_q+gtSv0w6peh!f{c#%IsNz#y`Rei^;?oaqqt3@o52TJtJvbxwrn7 z&Z!LJBj05#f}ZT+V0LCRIBNAvA1G#)9?O`#w!7jr3|^0QB2)@axUF(WjN$Kqum)DT z8PL|A9a={cCLqZr>;T(yrZc&={0yZi%l%)?ui-R*=5;F7sk8J9pWO%xf$$&knV-9J zPbs~$Qj}tu{>3e5+y9kWsLf>^C1>~|l*^-Ncc$!{chY(%cU&?ADrx_GTP~_ss-AQ# zSBPLV@wFUPw4}eh9jmB#&PoyX9n!rssY*}JkcXUC;+F`b5Ye%U*cB8Rt5|Mib}mdW zl!)2O)YOcbLoy4Iq&l0Sf?92BZEX-^1X)8&VD&3J zV#aVTcEUbHn=Y618+DAI!+BlkAL3+6w9QX|d(k-|!O~`75rPdXI6J@>4ywezxBU(x zzkyG8{ia=dk@KLU3LFAsNX|&~`$9|a`D6)>Ut`eq%Mr!9M)6YGMOTB&u;oHjE&*kB z^f{ctyBR+8e$1L#M2cs|;}DAeF}JOD<9%)MP>DUxK-xHt1Q1^o(8sXV#a0ZkLoC+& z^o#^9##G!x+kML#gkAGTvOjlD?DZ>w?jcy}C)?UpBWpi#Cv?RNYj%zeA#}@=5r)!( zIZ!Z{N#mQ{(TQV1gWPT|3J48%3i@n>&=5ojjlt2eji)POoF5rVY6D51jwr&W4mp-P zLx~LBp13~yjb{nG2+nf)foL6Er!9Q zBw&ljA|gp<0yVXIaa!|jATaLpM8(cX@9?OR8)XNa1K#A zf@F?zv^_vs{+!@eN-zq>WCC+jkXToN`tS`x=+}6!U29fDUodF9`X}tnlZ!n5mME-u z8JO&!DjeiPPsyw$c%Q?3>$QJED+=jhSZ8;Hh?zs=~VMk z(P$K6(}GHVj&(TQhXf9zBc+2+6hJeCBtTV?58?PvQsNI}s7%2wkrIsm1oPh^GVkw? zK@Wm5EBrY^m|nP`N{Dwz?L+<40XX};ZVpNd?<0kzap00Du3d+^139|n4$n-myDpS( zy_Yt879qLL$(9_FT#>MNjq-_5X%_!P_Z{I`$MfOG6(1XBixKd(*tk+Q%FKyi9O*(M z1ymihtc(IjcL4-~N<)W;R#?=is~%c%cy9g_>h z8_h4`o*$Kl?u}Wp*>yY5eK1XpA@92|d`lk6PXv z)%l;m2fWaIvyA%if)Kcj8yCzmF%bHR8jJnVK8TS*&Oz8W$vB#&u(Q6bA@Rjv%NqNl z=JV(|Pu^L4>3eXFWQiw_s}IMr^!wb)#FE&yI$zvrp`2mPi0}d8CosZ7SkApUi8eq4 zDpgs*dnc0*c?QI6zDM(-{S(kwm+0@ELK(9SadGkZhY>o{<1DZUptne6g@G=(@%+KD z@QMT`i_T@?x5r5w{m@Sfg(UOT4h)YMW=^i=mys6upu>wNF@5P#ldpyyq%K}+@;BZg zyr;%$|8eGzI2Dp1L`%U7lj(JEANh-Qx(K}x<;x&H;JL_UEUQhREVkz~ zP~lk$=sY#jepcF@`2NBEUM@->;7;c>m~XKRj(&*!6XQrk$Fhs;dzxkA3#^)g<0L#u z!iq#Z0UiKVd-L2pkF90u--VTXHd_cI5yS5300|;ntu7Uz2mR%6YH#f! z5&KTXx9+i~-qDtK{DfvS&mtE;0ET_dUb)NFIWj9?(nu7=W2NCmMQFi*C`z7S;-096 zyx!+$c30J6J7*rBS9-PRx%g0t0JBRN03f5M%Th^}4}I*-89Yqi4&%z-hUZwd3&2kk zk?7Rc=z$#CSTZp$53ixIo#s0j#j?k4@ImkFseeQk3K4@XpMdr1Wg}I}}4$ z##|e5bAqb?(1b+`I$N?`_%5|S)NSKTIoy|=HqM#K5r2ace9MGc+o<)}HSz$dA5`s2 z2ec)r4aW9)D%0X1;5aDCVA9txZ@U*PqES#0hUM=lv_C2zWwBW5F#b&s#xzixe5Z4| z47@5t+`fWn_UAv62R0U3dqTp0FTN*}FNiPAQ$aeyw!b?iMnI>)5a(*dR#aNvzjKPx z<5ST-=&o7Vg6E_L_gV;8-0|DJj>*-6kBmSnl=0K+9$RbKkE=(LqLbp&bEq5xgC*LA= zrn-{}X4+0@`sv!VmF%V0fBi9-$VGzWl>ZpssAD5z>NARbg;dBGZ=B1nWJ`^6x19N@ zWoXthsv-2rea*6XIx$d(H6>xs&~1|VqR<0t$(>J}7@}}lNe1OSs)e(4{;W5GPE=F+ zLXv>&pAT`lXV?wO_&XlwWn5Pv`3@3-w8CqFf@+Jj#MJFcK4&nywkIT_KR8>&-duy^ z0fd);3tL7`AXg-4$BXU$`I>7|!QNkdKXv*m@Y8=`T_aZRg*PU*%-q`MwZ3fC2JxE= z$Y(j3ro~GPBRh+BW;M3}!becKj^&6BTyZ{mM1(-^KRpdV@;qKV*S4XaxyDQpP(bf` zBjh{C6HJ`TfI~15Bi1ZPa%K1^xVS& zBf`-ejY>=u)%Z-sV@hit(I8$37g}lNmYhE*^xi2<`q&x~{f2asenqr~SaamWLiwo> z!FnJ==F1&7hFutlFO4@&%A466JA1lAIq?$ z78RsK&X3QK9?{(yP{3Ay`n}C`l?K3X%p48U)r4Q$?IXZ}G-#W}hIyY!65ZW{lz&oB zG{?K!knulJOKQl{yex*CN2riQW%tBg6D&A^aIa>uY(tda1opsX2+jxY|9rWB>6Wgp zZpFjH^!`~UJ|cg9)NV}p0g^6~aZd+YL3pHhBF80J^n+$-Bk(D5ko#b=wLIyFun2-q ze_4d9HPsMYg+mw%SUzGEEh5FLBD*N}&UaLT31n`#D-KQvkmgoAcID63vXIL{4BoFG(l93JX|G!?u_moHmI=+BWbtsn z9F{p=IxSSj(J+#6B;>W#d#FTU?7+-jbqOH&KV}QGIPAy7kv#KR{T{(nr!O4kpPa_b z3m}||u>P)}`8m`pud1gt>U*}OX2)BcI=E*cUiqBWn#-ty4ou8LvPKXm#6xf{1JOx@6Db;3%?nIjt2XDDf3J*q^wyFYpn6;oC24SDGqu z4xJA+A|ujs`db_~8(AKBkQ>Q%r!8dsw*?cc6crh|;>k6J>uXnb{`3Ba_>(L;`BzuD zD;zd%pL(QoDqgsTRl%(SoWkw>Gw%*wV?vfd?k@gmAgF@#J>R^{XDMgA-ed~L{WP3~ zD11W?p7L8F{6VAqDkP&6IMj2ygK7$Gf4YMofj&Z^$rzEFB9c1WZxqpi(Ia`0-hb$mhglkFH3xt`*a(N`}HO;KJGbNG4VT#G7|0S)1MA1_CahwIkbxyAt=Tayv5 z<$EhTKyp8~H;-l5S9F6^21oU`LOMHY@6O?0FCvU-b)ARRIW0u+b>xF=$= z@?fV@vI%w%Ut_F8C#UgXx9y;w@?f)0#UDBF;o=X&14n17>Fp(6qV_xA3iluUu2fvn zx3*-lk*ZSnm9M0|Juhx_eMTAv>i z`ag-G3rhoRta&DP3$-OG!Gy4Z+ov34XQKq6B;^TW#o0s$ZBVj8<(8X?&4;+voUpu9$Sy-88) zID>(TFb^8j{ElcU72@(+$I5?w0L&%Cx+oB)MGLX!#5*18?10zGvAJW9W6ilBlxXga zA0$5uYzvKV5*ccc17Jkyr4_1CAC9vft^(R-;k$dBwBd7Pn3#A(dc(c2dI^Q%53_U& zP<4Dl1ocwYiD?Fi^yaLoU;xU1@W&X05>c6ApM|Ia>&jrr@u9kS4$$_^7vYak*2;yr zbY!xqGmQ$|nxT!tU??&G;OG%R6+`Y|F#A5kgBlhmIH#vItWkB`c@5-D;3FxuazfC8 zP&YfBJK_@R;mQT%=85C9`m(=Ia9IFdrJxhJjH=xlx|=WZC?7=*yh{WX&~p}+8&up- z2gGhrgayoO!ap)Vx5R68bzwqNLa5lJP~rmqEA6!b23q|AAd1xPpWTesW7H0;B#{TB zP{Q>Ch93Ou+wFB%7pLTxf^#W{Xc>San6PHNc+^Jmv22)3WyFNfB;IvCdz+5WS*41J z^wEbKzHfaT5`+TDZvg1B^o;Rf48U$`N_j#DS$?Qr_<`1)@pv|K=Ms#KoMenv8CLuOHz1d;P#8UJsHCSpQtgOK;=kp~pT;_9d+KnTqv4f~WQ}m})Bz zeg}x(de=#eDLpDhVSuXbUnJhY#00dlB&UK?j>Q%QFa-wBF%BM20WIL%EFAurmk1y< z!2dl` z2sS>mmr6!4b7OI6Q=}V4Z%u<`1-rVH(z5W$cO|K?9^}$Bf#- zdF42h9Pyk&ok=lP$R!-^Si1ok*lHF$O~|mk2hQvp<(XFYrRZ&SYRYV(3-bzW#kBGK z6>#SnmvQ~8Tnf|;UYU0y78aA;(iRj0IeKF9*H?xs4Y|+!jAxG>QGq zl26dcIK0O0K4AOe|M?!fFILEa-~y}H@FZYGA-94pT&Z)$NL^@k=2x`c8CJKI7Cxy1 z=NJgLFu4<}S5Bpkj_Ms>U3ZTHwHkcOz|bSuFJboZCYsC?xF_cUv`)Z7E~@)svUD(H zTdIfv-uQSS7u$W)q@VHz>O}p8cJac{%4NtI4a@Ay<~>a*s%H!GgI(SdR)|tljfFs| z5s6XP4Ic$lMk0A3(dnz~X(_u1!0vJR8Nl%CQRz@%j|d>++BLYn&dlL|RQKIcRV~e) zfPe%88I>T4AR=HO2q*{!6v>h^isURHf<(bUQb9#>&LBBwR754`BtcZ7AV^R^V5;}= zaPR%*eQ(~(teG|Q4@=KEy?1w2b#+yB)vug&j&U!kzUULJ#HVT8&1Rz;Okc{)(ZQ?= z>_)=?Oovka-=mDBkij{AH-fWaLws}g`vzaNd~utVZX`v0 zlsCZO`L<8ACD@}X>MTgnU-=3-FYn#pqSp7}jke*E(|LcQ66f!CtcZS#W2Di_i(t^TdF{Am>x|@AQF9geu4zQ0@qU743&GO%X-gP~f zjP&kG^`&*bq9$bqggYTrZP;#cTH3^=J1#s=n9CJi&w^9_4jlY*R+9t8*~IE+z5>&C z@;vga+@!I19d=H{wUKlyt1*>5EeSE?xhb?`i-)JK&( z_>;a3nVfeE-STuARybtbPETrw5uL_vU^;_t3-KPu|P}q{2D3> zIuyOrH#b*-NR+D_q83+Yen3*lK^LAJvk!1tz}!tSoAY^ukQL2(R|Ej8$=KHM7Yy?jf20XV zFat)Ag7#NZ1UJM9RJ?osXt(!8qUP;BSFsh@G$V)qhRd@J)M%5h$YsFbe(oNV|if;^Q5U!v5iM#x-d}3>E_}_W+F}nX! zR&Xs$)G-}X>yVoM;^oh4wdjhqu}lQc$Uius6Hqu~jPCRGjU7#N0dg{veMDm&ZvB&Y z5Z^6Uny|ZgZ^bw~534Mo|IoP!Kh)ZfbvUP zwG=DqebqyvLUi)^B;hvF3rR+&i7TjXPsBa=a`^0uG^g86(z_=i(=q=2bSy3lcrjY@-kRsG)KE0xw^xQP+P-N1<3aJq$uZCmQI_VsY()(~3 zA;GGOLPSHz(55vP?N6;y@L27Tax!yXL)jO+FC+=cN}wpRwJx>&@Gv+6ZvMjSfjqWt z7a67JbhF+K6qm(y)4M(>>bl;$pU?#Kq9~J==$J3TFoY#qyTmyus$3(K{DWV1cW=!8 ziPW~0uRo1kG`Ui2*>_NUm?I+bm{B>qZI`M#{eH?94%rTDzaXs2p)2?8>wrsz6~n9I z4Wa29uiO!$UoFHcBG$_P7S9cGlKDA1X!JjfH_(Xd6(3eB5MYOR15`29{kG|?AM}Ar z&anp0PXXE?KXm9@6}B<(Y8?{QkTGwEFtxbzImj#GWb_hAx zm{w~sSzxJw5T$8@Wn=f6vVf{5aAaRWovGKS*AE(?B+>{hHeRu^i)Sg?p}3P5p^EN< zO2yuiy?5B26oO&gO&#l=LEPWp|KqGk`loXdyk znO=7TB;Fe!Mi6m$?D5+$4D2PW0_;hq#5J}ONQi|vxcV3G-Qr}by(tPYzX@8udc{Ju zhN6V`-r?1O+)be-r`)vM0(wGa5^gd5!hWyTPVrVgVjZg1?3cgi9-M95%n;bqc{E}N zsqRAow;UzN?&#km*pFQ?E2@J#t$R>Nf=v}XC`b<2f%kRh(2aacNe40(kw=AoQPmN~ z?X>>k7ps9AJ8dz58_*`4iva4WfW}QD&CaJ9xnjaF)rq+hPfEZyd*hpiu7@s*GL2q0 z#6O6@%NRb1P%_+4ED9iwN!!TsaSnh3czoXoUh!Za6%#nygAds&ZILGzrO{4{A6}z@ zNi0D8bzwA)?<%D>NPKY~%7)En~BkITSEnYUZ_Z81X{{JO)hucWjy0LnxEXean3 zfDah~&qF#A<7*H&Qc~BivlCxMVT8bNzdr&+K!9N@L8oiPneLSC!ch^Y{Imc-vzDiIDM)zO*E zM?3|7c{kkH;8#Ha87G%TvCxhR%%lQ`B0`mll}lU8u4I8Am09GF=l=yQ|PSy$WrOcVvTG;$# zAQ?t$pK$mL9*qOHS-@Ks0ji8as7eC~?$(9+RY-f0y%%-`qjEdKT`3Y?I-sZx5?Qp{ zVk_W9d>simVG!&ZY#1hg) z3r?69Y=uU0WI;0WJlk~mA>eWyA2QpTB1VNbkXv&cNf!VV{wapSb6|@uR0yUdD6|(t zJ*+VV>3Zy~(1T|E0_af2th;KQ0Kyfhl+d(A2P2?E2uZ+LI7)`uLPo{IXW%Ncq`=+9 zB<$bgCwg6mt>gRVjTH7^Rv?B8vuhbr6D2$lsrx$7eu@di#42E)6;@J)=*ELK7>|L# zRvHAT*Tjyuscpuefrc$5Pg>cqCB6oYhY!0_J-h@;_spYbcO`US=62FocOh9t8^==u zso`{iOsMMzeG-q)B8q|E;ekt<0Rq(l%AHzI0&yCMr0lm?il3d3Jkap%Js(nxe|tc^ znQ2IvVlR<6gK`|~66uIX;V2D|3BLIk`_n-&swKgVZX2+WX3&opd+=}I^x~f=qOBfi zvV{Z5-XRc*)M7XuzLg`>i;#T{J5BTLfQBdd4hi7+cO0hpn&_N8_L5OZMcIQ;V5wff zCeR6fwiTLYQ&a`%L;2=9& zE*59?bOS2R`0wSt1-q(a=2!b^yd2k%!HU^mNw8ZY4BHv%#C2@2Gzb$XuPhF=CJchm zjXqIVs8gXPQSm&h z?JwJ)DUI*mW;Yj!*39?0EQI_82T1w&oP+|fHcL)&S%@*4~94UW>K$>X; zy0DF<0by-3s|izKY>)8*2@4%G9!RVLDJCP7+3_SCi2@Qj9Y}eNCn5e93Ept3j2kFU zVr7{4;#Lfv$nyxuf}Ah$jKl~N@P3FKKbC;V7ja!)mP8z^oVo{G9hWd}ssRbL+YI$F zdII|54nSYrHwK8hDJfnl1NhN!SfP9-S}+MynWQTm68{M_s;QTNc_xcuN|dKmYm+vc3i89I*0S^oYw~ z_VLSEP2E%j9nyS1no%Ph2b=xR1uz(RfE;PzY^_&iGbzb6FOrL!0LC}<(}9g zGoEw=Ksm5g9!kOrPO$w6(09Ox@(*4#qvdRX+@dv{eobxr_o zZE_Cq2}$9}{1@Rp6Q9Dx+X)0rPI|!)J63JAKtW8-wIg7r8hx1Y#@p!Vh`-+|A+kdtqq7a$mx-tolBfth?mq|MG~H=5g^mgYz>2%t!QN^LmRr8G z@U8P;nIGj&+E;-)ul|w1x(l?B1KUG~T7YSiPkAM6vZZ_R_icHyF!=w^cW?3JAy8~D zI?7VHfsm?Z8d#RCr-UBx>J$;$_W*^qgA|oC=i#%1v5krNg})>W1l!iH?Nc1Cl9UwA zpnX)t;n;x<$@bp0zvPZkd;Mcuqep-_aVQE|G5~6;qXeZ#ICBnmzca466?Gr$q8IGcGx4PC0h(xpuij7k}K9=4Lz= z8<6^GWT&D84gE%S%a83Xdd({{A|^I1;@?f)1`Xz${9LJu7MmM1`RUyKJcLsoD=juV zGW9PvZl9HwM#)+eu0|Hca$7iv9LiVmbyp zCxq)8fU_cBf#{KY=bZ*H{J?SJa$4L)tSg)gzy7+2W%OncWKeZPiRr$^oLfL~Z2Iss z*L4vWY2pc`Bhu$-NU=i`^Q7AHFfZQg3{0j`ImVEk3e@?Ih@3wWOqeL!H5lz9*%uW- zw3u4bH+unxc&87iO4VQY-gU7T123vZ!Qt%?A4dMy9WX+D)Ax9!M?>hMa;5!=4=yJj ztJN>~hRa4*Amk%m=p65bCSjLFUvp++mI$WxF2e@qzovL=Jefd@+q&qq5@zANLD}dw zTiNKgCrp(Ll~fPIHjFYgzKeP5X!H+s<=zvMuyrpg58GU{t&upah@g1Boxyk$<4F-5 z>HR}@JF)9$wyU20wU-&x4n6^Y*Ti~}dF%Qa7qlqiY^NicP?Dy8p^H8C8IU@kuIVxr z_9#hMi1$Gr_9x(cn^bKuV~7PvaoPUi$h!hGSUYqb8{7+;%FxU0cQw2Mx+W@67OCUdNf>FgW1GH4dUuFc8P2TD-PYg%i+p z(9GiCmLj?d&QW7v^tKn$o&&dy%;m0Qyt<6w9d@cN;{r3~1dQILrwHjKYLM0U*#NsO z##X|%6Xq(x90Ei51&>y1t zm>>jH%)A4kCE#%amk*7gs9Y{(?G=80>Pjy%Nb9YhC>pMuY_qm)xcQO4#F;b z{<$0WvoCx#bq2F?5+qb}K*d#I4IJ~(y8l5Q?2H)!GA`QXAb|akZ!H=FZ7`Fp1nw6m z<+W*1nE==ijNbBsr)sqzm|!N!u5@vWqgeTb_LEh{bDpfv&k1aMj=hNs=@2ib2kF?O z1kh|g-*Tn(5&#xq85MF~7<1UO+ahSsiF&Cr&RA>O9|Aso_6$-9Ywij@0&xwi;` z-z?Qsz(KnBy{TBPgoGE6k@BOk%1*?nSUZqprsB^LWQov2BJ4i*+SZobqD|}xPzU?$ zKWk&tng!mJb#z}q?YD$EYU*N@o8)pB;6ts}%PQ39nTU)zkZIGg%#gT&Uy3IQ@QFcy zMwO=uHniWcR40ZPg4cE^y5T8tg-B;dGI4`7wJG#^$(Iza`YX$V3a`SzVPt)tF5rss z#?uqT_PsCmZ^bLH6q&wEVxwHxFm-{Ky0*3kUgc|=!b&Ix&!}L^I~G~0B&Nja*zhM6 zz{K|vd6$U85ln{ER%p&)}QUTabNriFyUsV!3}&#+Igu^1{^QV{$!5hc!7)+hBeojQJP=R1ue~Rid7Y} zdfq`_4}MzXU04DY#O)cqHT~_+{E0|?QpS(Q!3vD zu^~dtU3}2?#KbHjq~?!eB=8!Ac{8N&rux=_IBI;nt%3vap@q@1p(13M0Ca-@81pvI z<70mcTP%ctGHhUiAYC?z#}wn(F^g}#F^84vcqYMEt$tgT@&Z_5l9d+G7LuzU>{ZRJ za~%nq8SDX>fdb-?BoM~D&M^&4OohM?>hCr0#G-1ksvu6<9M`uIpG0TVvj}f&vm$C+ z!|%%AY>mnR8lrO^(Z{PDR7psdG&vS}k$}nEWMxwX1fS;Xh1(0aj>#+Fd}w|!=19$i z)8)NZlFfv~e&E4rW-iAH;rE}!5wv939nTA4D8^mHnE}u^Ru(6wFt?OS1`bpW zgo$DdBn(rs#|6*ep*6bbSR06bhv$b^BMjtE7?Ut!7!lG7(|*y5@i`bV>0FQ-CX;mX z@VHlk5>db6cZ%V06CX*q$Ut*iVacvYyy9BeCBR(26Gp?rD`G z@F42}+P}bq!a%f)JDF1(L6Dx6I{IRoj13OY=0kLS7&ec@C(w#KI!_f3)Wfn_&JvPg z76Z~ukkp#UPigc>$pslX!*7Uj?l}M>n>_V&#bh!z6d1seubcY39Oy7xBo?$~mV^P5 zjis8rKJcK!<$rbAc&2!MhUY(uA@GR_067e{yKxNr<|_yskIeuL!t)v_KxfOTv$c#! zC3*&)d%m@y@{qv2yy$zF5ms{Z+ITEBm;pZ3>eNudn)a|&!RYyyy)<5UivLHi7UO;| zoQLbG^aF`fv6U|hcYyQkFPRb%GeQZ`Ma>$ixGVU<5`DnGhVJ+`PyIodN^|TLF%97l zpYodXq~kg>>I3(Yxhuf{i`3+@$ASAIVS)gOe7yp}D+MV~X^ za-F0Zxqh78beFdT#2lJK|B=2|0-VQA-BQK<-C^!k>`okws>EV&aMnEv~AxfNp8aXv1K#O6F5t?2zFt zudRs1>b($KkwU{IQa=SAV0sqsvSINJ%#y)7lwM`P!?cKiW0;@|!|^n!;Z2Lxcl&`# z$tn=A>&NO$9-TZjSYavC<8;PLF!BG5g<}>Z`a^@R4E8)5EIm?Vb>`GSR4OK@ zqad|!@nzQj$PY-(O--i-`p66LOX5s3Sj-Bnd2G6+P39n|YUzE!$1zQC6^>Ndzz`Np zqklnMh+bv>gWv9hi<4vf1Bc`PVfG{Vadl0%4x3{;`4_wdsZ(sZ2Vr9&bvK0~|FliA zPw*QH@7OH{qkuy2{X>}Q^XdfksGML_kNwP zt8afRCR9XE{GSTWIR*@T#E% zA5PO#Dwg6FIb<{)9Sgd|dg55c++9@5g3wx<5XzV2;_To6bRJ?&hHA<&C=(SLEOX?) z#NzmDvNKKDR9g*f%+Cl5iyvjKXo|&HM-mV)MN40hRDn$1pAntkZ$i0SP<6xWU8ftr zL0a07&DH7#Rxy`Q0Bntjy49aHPcbJ4b)+0~X(2~z<#LN|uoE-W|AOq#MrfYX1ns1o z&hHkx0sXwbCLa=Ynzba|vB!XPH>;&Q^bGDu4jkxlUp!+a9`!4uq$;KhFoP@rA;ugk zt&E@}jLG6@tAdGBkj}E-{uTM*P$*;$hfJGOWk;((69|G3Sd7dC4G>M$Mhch(|J;r6 z#=fM?7y3T$IP;0X<2|V|vb4@uE6~Xi{F@K46380ktp{z{^wa5-T>)}4FZ))og zeT%~&PbdPK`qqD|SZLlkdoTNdrvw->{9Lc{7KmETECiss)i5Ee@IGj=%gH)mnI8z1 z-VdQhG*bk+xbTY@EA2YhURug=Su`Ui$fjcceweUbd?_HNH9;3@ZMWAxXD3_ZyirDA z(?v$z8=|+qh0YE2u@KFI8C2FYc0uRj$jjoPlL#pYVe!8|N~lOAbo~t(zx(go`GD=B zmS$F}_SC`Jx}~DI^k9q}G(1M zRtZr_lIC%c2;kTAO92n2ajGjrdoU(?a|%*!PyLec_J)>8<^U@GOmTOBi)>G(rXj%L ze%mS9F7W_0%I(fKfg&&e(%G`5~w!6spR9FmSqQR%NutX`zs zgyy8-BaydEdlCuHZD(nLU2b z+oit&2Y?EU@*SQz6Cs|#vSP(alIIGqKx^YBvy>=fDApfa_oii@EQ5scdr}{=bV}R5 zL4j)3V0y8XchGFf=Uw*DA1oYz$JfMn^O@!ZMPE~<(dr)6q8ZbwSc)#*N96#CZDHiJ zoCT}5WvboRD~7+Mr9@8!Uf#`mboM(+cou|Y(wLv+Dp$2KCX_;Dj#YN*xGi-x?3jl6z`z9t!q^m6tI_cX(cfZ@dW{?(|VP!nJ@ma0Zo7ekb79?of zxV-q#!o8V!B;;8v!1(6hbTr%ehMP}hDkP>JheS&O1kKfzJxOE>8O}p5XSeM>lQVT| zH8yDYDE z%W~drYHj59FJ|bkn|DBEIaNb)(&3W@F(IX=4c*l1P4{wCOV?+r#e@*{`o}0iV$jPnW~;qLYUbqTi<8T<$Zu({fD@%6r3h>}##@p*&X6 zdOG
  2. knNbw{mrMQJj)H zr^(2o++vfytJXwPm9b0HQGEv;@rQ%4wP*C#`g;PRy>^A5q{<=LT`s#;pPb)C?jHF* z?@`8Q3n}uh!x}0!x>Ve|paX0t!$=s46KEYI3}o&}?MO{iUnC8#-dM`sSsj0Mo7>%m z?dDH{$5t#7Cqy~`c(8Bc<nCi-L3E|gR z93>WOa0O(|?PvWeGyRK40_a?ftP-{@j5SAD$U{vx?NT0@*g#s(=c46Evu_{r4-j$C z#ir!@1YWs(jZiM=q-ksHJ0Ina%!&Q}2PwP18Uf+lU{(&7yjzHuBNFMbMvtmx4vbet7Ecw0+E) z&P4vfOvOr-vt9febdN{l;UFmh?i5g3$Q+7Y*sJ(3V4}TL&J!WOOBD^F; zT}jQA=ELtlq0)2udqqd;?DLE73$7=!8Ti)#gK3aBH z!2&%dp^!4{okT-!>hlvCj(=6W;PSc^x)dz5t{ST)4kqL!S*Mo|h0yRI;eP41-$6~x zW6GIgIg5nlGvBn`_R75}LBXmOft|cF-x1>c&F*{X02^MPb@JUWo-v#><*_zX{9r13 zFFz!{(rUF(5bJ=m?ojxZ<>8$gPeNl*NL81A4%nRS_(4id>*`cylR(Pgz~lxWR2myJ9e!#KYFHNB&OcSR;FDyMVUP~B?wVdHkJV1lgC;E16>0AKR@@op zg|22p2?G?yJGXGDvs!>M{b_wM<-{p#HR*8xqn!~uIR|Hi%6;QS`P*`97ob$OiO9-R zA~t|%pYA?cVfqvo;ivM#`HLOQQGTDahgUiE&+g-T@Wuu_UDL5im+o4kA%%+-CYYnMV3yHeSDpT)zclN|@C1&Wx z*Iy>@(aI)Kw_bP5y{$N!ggBDkbVcbZ6<1WvUXw^_7yX+J3+icgeeDT*MfGG9Ow8+* zd3Zg{RyLFyg+dINwL_i;pk}zystx?P5n6g8Ws_$&R}?bJZJhZ#lS7E>Og`S!c2jP! zFL>!*+)b)IO1V+p?et-;4=PvOLi_;fv^hc?;2t_(HT-Z&6Q)zh(WO5HVl71Z>k>!7 zZ!IpeUcT6Ye$<14D*#G4P8RT`(es{7Y0YY%Q0lw+BvpgX-j;YhWJY(hT8}qr z?nS%pCM{&vuTO$=29`&A`>r}?Kne&$C+ER#-p&K(@BixVtBBROYrmJ0Q-5v`rF2?Cr{f}zHM)Whk^$S`x>4j&g%cz;Uyt;K5GJ`3E=jE~rkq`Jo0rjF4PI%oasRAcf6k3abiX%wN-_{YK%xwqEE&2L=72iIYn@1Y7F^32({U({# zx6(Xuq{zVcBycuQU!r)#QM>Y_bX&$%LEBWzV$b!UlqZ4mJy+KwuNwm7pw_ay%!huwA7XjtIa%rjdvpv@Pt9TLYQVM#N6m<; z9C-xzs2s(mqKX6e$K4*ro_1R>MT#u(sNz)Hbn)P3dZ}CTCQH}k&Agu#BpZ$k5(~Bc z#S2+dS@pwJgREl{N}t}(+rLx^^lm8=U+s!gs#FoYrTp_!xZaiTMA>H^S^JwW&I1&N z{?Cn3_qcvT#=`;5hi3UQ`yUN|85_%+aWduUz$A}(gJSl5Vj=fm)%UB^laF0fEEg11NFd#%+Wa;B{W9RO7>lp!X%5%u3>)`@2M0|7rMp9F+leoA21z#<2#m`5O1@v zCUhgtny|UP>4tEp+tl1W8btaWCEZ$F;_93Chb!2LWL+pyo(=ro5j~G?V&}i zO4eu#IR#Am?VAI&PyKW?fyQ1Jx{E02Z8Rj5$wLiz?2wuC`D(G{9za0mxLd5NjLT7k{6cc;MB zV1+aVwkg*DQJd)ji`?QzNFaNa6i*WeLyCax&@-_yt|vV=CY360cDWP;e<5FHGaFVS zm1gZIa(k&;-pwRj;IcIJQgzt6e5S(39@^aYm1Xts7vK10_;ei@TWXJVs~JEOCTr4s3EH1*qnJttlP0>`^ca{%qt&J2yI zsvNr*IAuc(98PN#j|qN=x*8+VIpCb?q!9*i@54tbC zTWXAU$@ri~_w+ht2$%PWP!`YQ{bz?FDAG<2L9g&I5QpNMs$FNN9Yayyou4ZJ36pMJ zzrBkjzPTP?TYFsrJGQI(#{6MFnZK)zZN49dUOlQyxnPNo`=(m1yP$T%p<42c;7&QN ztby$3U%@v#UKSXkrX&kYUzn+awq#?_*ysfKaW8G$f*8}q?o)Nis46gn30l1Z_QdR+ zN6M8EyTuk2yKc3yB|wwxP{1zg`3<`HV|Zt=MNcyVTKC(-m5*|H_gXd- z<9$EvMP9YW=%y=La{rHJW!aNvI5Z3-We}-)p-1lXvAONZTQB@{w5?0)0ES-Vc?Qk8efQ%^ z+2}KUuHWwrFVwXHg#LG@($9}7N?vV$efKHRqJwDPx39ajqsp^%c))$NSQw6ruUDPd6ky$jza;2+IU&!Ar^_We-X+a4;FyL<&*;kl{T87iFx8%CRP=E!278Mw_r5L` z_q~_NddC^;?n=h(rehDm{K*ugCBkgH){ggKidtR>6NoM%xDcv)AH*#cW&Ub=>`r$@ zSk)=QFt0A!Md%onV>GuC6CfNdoCe(I&U-S2iDyTrbJf!}zyQ{NIU>rqlRi7MVbl;32Jy8B*owo9lhJo(%>bBwFYWl?K-Dod z&C6@c0Jc?ay$iOc&D|d#xJ^CpMt?su;<=4mU3+QVTucGZN;ML-q&#q}ZnPd+1C3;x zcU$bok2kamx2tTv6hE zsI~NV|BX)_KEvU9M|^3Xv#HAPO^HQMrIw{P*T(l+$_snX=jgZ-a$K+eRd?*17q^{q z_ByKVZZ)~66X%j%1*CFRbv+b$(Nb{gSuwb5&cy`vEf+>$8UhH5dP2iRH%jkCYR^|e zWdQ@OU+zvjdCZq*B*HCMA$F49c66Kf*Q5F?eqkc^#s|;g^gu;UX5)e7J}{GfwR}&tzL=; zL?S7hL~;g>=${|$A49Rc?%n-$dh(z57ei@yM2Eszv6G(=c3czuGwR*h#$0b%v-3T{ z$3fI?^-lyb4u=}?}(45iyR6bL6DHqPrZ^GMSp+l&9*)`p?+cMgJ4HPnv+k4ypmWX zY^OtQv~>Jugw8|KGKVotsQBk{&Pa0?U~E!fx=pS#mw)EPQe)Z_{d3zXUQ@pZKKv~V zqrDg5T;y?~RH}YMyt+Iy&0!HKo-_ z8YRDfG*lj`1(7b*IoE9`$PqRbw@U0UmA(lOkH`JIAuLh|*8&!6b7tfuq&xS0S!Zv9 zX!E-Xcko2Q;SB5j4M&p@1YI9~%LLFc=S(;hT410~=f4ia)r%`TU0mYB&`Ly)mGf?MkQjjW}|;oJgHQ_k=F<4dwsch8PYg8gM7 zC_G%55}LfPBoAoPzRJXrh2p4=^8Y0g=63Gg&;8u5Tb<>y^ zdM;_DfL0hNRgYqge=e1Ha%-Tmh$U)Fo^Yt3Fy6yd;7N+d=EhKjs)M%9wjBT%lwnF_ z7Wk%XK-z(67VujHRxcG6#!p5F*j@ve{+Cwf>*HO)$EUYt@OyTqv`!=a;Vv*Lgzo%pXTSFkscq*KN`wx z0{Zk+kKUb^n&r2wtW~=NjMVj^)a^AxEfMPotLhHy-6|xKh?OQBy4-n)O@AvbpUM=H3iBP=i?;5Esc@AR5>;Ep z#B8lduT4u?;tCDWm1yhVQ+rSb(0}+cugz@>w#*-cE=&VzHvxh4MfnR^=M3)tH}X!; AD*ylh literal 0 HcmV?d00001 diff --git a/modules/1_Continue_Exploring/C_qtm_algorithms/canonical_algorithms/Quantum_Amplitude_Amplification/R_full.png b/modules/1_Continue_Exploring/C_qtm_algorithms/canonical_algorithms/Quantum_Amplitude_Amplification/R_full.png new file mode 100644 index 0000000000000000000000000000000000000000..540f808f554b4f18f948af815c2018d2c0db4b61 GIT binary patch literal 114584 zcmb@ubzGH8_Xi3HxCN}51zx%%Tk9+(ah5hVjX3d&4E5B=eS2N3;g7}SrP0uwZlj^Od!nIjgOA*&(a`Kz(9mXe z(a^YJ(9npj;wvBWfCt!CVroyp?}X6*=!QvMUBxGb<}2 z_y*%sM+;lMXN(q4DGmoY9!JRF>0=vXD_dhr3pg~c-XlvpTV8T^F#%8 zaGD=yG5oNY+y&3P;P9O>y1Nt{cNTZ(){D|uOsva70bm3Ii? zMf)Ec#|L1V(7;Ce={>rZeo27fGXQrC^LS!z43IBH*&^(@Tz8U~v3$G}+R#GBPjzJJm3F2qrq0M!1}R1p0sF z1fUUvIJt=3%7#$rf6+?`TWag0>>)S!@7ygA{4xH;-iOE$G!@=a(J3`AY1!lmMbOaau*z$8t#GVd-tWtz zqy3*t&LR5Iq)eZkAo$Ns|IaBA?=fskuh5G<`#*;{MSg+2d)xotBPPFzOik$>w@o>nRx=c$ZcE3B&GqG`KK>fiRb(i8jYZd;&3uS0 zYKpS^FMfu@dlO$#W&aifARqw*lqH*`k^QO_W{~`0;1?|H^p!53wZaL-1UrlG=Wags zTb!O5SMts7UdO(q$s4B%>M!iwvJOKNJ`Dy+Fbyc3UQ%CV|VYnN~{i z;_^z_xA%{~#s|$-HfK4OPeo~@xbBhNZsE0?jW8Rl;WcI9tugJ-3u9bVJEOeNc;)u2 zi=%Dn?c#jSJZgP&H~sksfU37Ny2Bf}=2L;=oT7;k=b16hcKBo^9L-Htm&Y}!FP?0X zhdzvy@40G2Fd6gHU*AFnxkpzWJ~oC@7z`B~cjc%Rsn%_7Y5aPL#~0GoCC}-&te<<1wY*__ zqL!6tc9aUYG5bZAN~MWnmx`S~9}+Hh2lH)u3=H_Niz161vHxImyCLv8_r@2Oo%PmxM#*1ywuTw2;Rh@H2NSk}D$2@f90#=r8wZoYZo7|7 zs(*R6^X*9O?~NUd41UjeNRhr$;&!mlj@M$!o3Z>WGL!UTT2W+MAF0fxi%7N5cpJa} zy1Us_rs)Ussoa*Ad(aXzv37U)4C&|=+i-@jM^%MW-bU^7eH^o);-=WV_0^f~8hssZ zSbv@tJ+IU15|t}6`PxdEM(Zx_RThMDu6pFq?wrnnI^W)EcaPJy_r%v=$&EiF2{T@6 z3FRbz+PD{`_*0VG1)|E5FFe7nXZxh4I}mXCm;qH@i>B~!%JK=$8(hhXD*h&-(meBR zMfZkWYx zKFN;g>1z&i`8lqx-Mx*m=#5cl*`X5C=%K__JT?ZZ>Q}U6Cn_1Cg)z|(82-TfVy~TQ z=MForw7>9VqVpf?>eourqfT?V7viXsp35ueYcH53-Ff`#ZphsUcne3l+nT!aGr#Nn z9)5l}vG*(!18(vTIezVEciVqjvAf)oaIjib;~=&%bH|C{{K;g1X`a+p6M^@*_y@Y5 zCU@H!XxP$ag;I!eeXyg;x=gPu_I`1N054=VK`z>C%^hX6y_z-@Y~WUc5{7Q?;nfK3>KwN#~(<) z=4hqgzfVfqzX2mMG1YK9Z%0lFX+%2@cy0Td_Rmr0MZ3^xXSdZo{uzH6;nc4)Fyp<@ z1D%64oy5S9i-lD)26U4}9LwKbcNV-b8Sj6qw3|zDSRBRjriP#5nKsUJ^~@{W>s0}T zZRJjDvzMDL_9wfw%nz5f8+YgCC)6%YtIy^0E8M3yom!%56@T#X z>-#T0s^3|jHVb@)HRX6S?PBm8b}U_8Fxf>iJ_aD`(VS0ziM?@?GI{fEB3=6RZE&Eo zV=?Doa5;ChGjOIiR8u?a^1dbq`WlX={kqK10(GDTmRwq^oXZP8bM9hFo$Jo!?yUD8Q2WG<+XO2AYXTZq7R84N^69XFZHVEaOUIF7V{^|o!e_&+NeFy z8Y(r{Fe0k)JU>w;RqMJZ-;HVd#%Xo>7IW=xp^PtyCHo6Vyc@o}I6B5n#JY4@-{(}XN7*)nBoj+3bU!)ei@?p$T_VLgZse*z zfu0atyZa=-U#~k&TE;uuzSw@cLm-M#J61$) zs>!u1I01(A*u}bv7Fv7l))6;;oI}51q*S|~nv^6OL>gLH$ZD7_Bh0S%3G;Um_}8GB z$aK(1wXk%S_Wp@L)CFUZxo+wiUC~Rsq5cLJdt-4-N4?nS=g`wX-#II0v$Er;oSBRbUg@l>sckM9?-e`TWUoNZNV|0(OktGipvxxif zJJDH2`}tpC6_JD8-~5oC)*7zT#?G$#67{l88IMcD&SJK!tBZ^K)~d^!B)9#FVza@n z%rZue()$U1LopWWww1Y-HCrNiRm&3Hf7Hvqta~ zCrx;0R^=%Q_r8s5w_7u{E&qYnnE-Ngafp{zwj&u;hI}&;d}mq=qP1>w396^R z9jbCH+GH2x3Rq5yzT4l<#xO<#-pSH#ee@1`c1mDc1}@g(rxoI z8LO-4i2bm+EA{KpCp~QyP2tqnaha;w(&@f3c%7f#@wROq6ZXH7nueVhwD89JCgF`Y zX6nV!d@i=`GS)l$JBuyOi`CTIjg`_Z+iP=Y5?Ccg`%L2)faTTF{a$W8z5&j4W!f9# z_xixKZ(`F!+8hKA772$L%{!66=EkZT`5!~3`K<$OXa8YD(L8=&{c1~~XRcZj6!`>1 zIU?)a`MagV#c#6GdsQ{LGy)mCEUW%DT%UrBqHyx!xzxs>ZKRIlzSNqr z9qHQb@thMw4SukMT)ud$ZGBVV9BbXFUF*}xv(s{1ZlX2-(RSN9P?TcE#>NeIO3gZ` zor-u}7t%e_GL4Ji?(Q1y==c`F89CN2z7o^z1LW1&?02`_{N<_p3`&8+0lzNJ2FvBTI$u!wfs08gR`GAlVvmeo)dTO zZmmr9WGZC#q{${R<=5_47VUq#+b-6c9w~oLefj5SJpK#0DM%$Me$|5u^D5fIb8=!I zDr!72WeXwxxMPG<%i5p4HJgm!KR90?CL{ka!LM0%LU7y_c>FK&;uM|Y>~A^V4ybj@ z-W+e?tULLmJIq;N*nTrpC0~1%k39n~E{)HfkbM!}>^5GH4TW0sBOg@afS%!@9LQ0- zOKrTj@$np)tpP>Apzm9G=Iz%b#T|nt@_%(-*Z60+?nzc183*bo3u{R%dM{QS2MY8) z6~~h6Jpb!;Zq`ef;K`8JRE!*KlNtXP+>@nyU8i)DsJw>AQtSd!`+US zSgph)QWF@4ye_`|&569V!0Y##|BQUl8aC6(RO!9`yptYtq0?o5>vy#uQ^+$O23HZ+ zwa~d);}>>@!8ds)r=oSDw5y#sWh-XM7SEAA|H0#zKv3R@s~50K!`gz3ms`#SMQwmMIYj;mRTfxxBhy=r=aebr@EEqN)jE5TG{(H__b_`djeW6` zc1JO+B+v}#JQ>k!3)h*{=tBGA+5MlNz32Edg}IIFL{y^4FsIGd{z^@c)z%gpb$*Kc zRPprpWL9>bP2w~2q2f$aGWtW4G)WGaO-vPpbah|~?wJ`l{pos{R@{Q*Cpj%jQQd}s zYi&CZ_LxFz-YIq$8h6S7`zr4Uy!iM>I@VtTS1->IShm-;^8=lct!hP2D*DW|-sm;;#if5gq#e=`y%^hY4K=k`Hj|zVr|{ng zCg0;kTD^bq$kLD#%+5cstlcYJ*)iK%p32mmG0WkiT1w<~7CP6K#=LD3Bg?l{?^tMT2i9gnj}}4QuK9BdVW6RKNT39!Y`#Hp}J6 zdtGb{juT?Q5FK;u?-gLwy&1GB6-n+{%sUFO$pmV27Z|8j*rcumDK9AIR!GIL2!L>m zTBFQDdV$MvIYrZDt=9%561ZO)D{y!5P5)3&c=W8^hrn24VMjH8_Un@Hb-x>Zl6KV6 zag@MLz3|^G9kvKxUbgAy$XEG9XZdF8*;=oPuucYP!*Vlyexrgc?`09-Xdv{l{?s10 zij$2H>5Hu0z}{wEFK5tm8MATmZMi1M2Rs=MBb-g^y{^m**Ok{}DSvK(0|rIEd)tFw zH)j{$g2P%7;=1u+tSM=KmAb$5k;*QO<$K3ws@*ttQ~jkMAKwO&YBLQLq}*j%TNv(d zG4efsDwU~&S$sxr(I5Dyi{iT=hhX!^`-APwxcGBd5yJj4Rt? zE1urvQn&jJQV0gXsmq+$gxf4uZ%CB#lk>ZZQBT00FxM;S@+xnL$r|L(UyS?9^f%l&s z%^%;{gOMof>}6PgdGoH0Ak{e;C6b_Cgqu4-q8%!~~D z1lDH@LnW+_8!q%KmhkTkw#O5n)p6aL((W^)%QJh&{g%gc6@-qHLEL}DB5(QN#XSKj zp_gKQZ1_G2?)&D`3U~rcT!G2Pj z>eY3N5TMDq-Rif!5Bzm@1!a=>61dWTwI?kGq=}g?Ej`ebZG?|qx>mL!==979|1t(A zHVYa#by|)>vNLbF*PNuq+Q)~;(^r9AzqTQ0k=nvTXFOGssz+ONd+<2EgZ4x%S?}{J zo1dSs`rB51w@U)gMss+)G^}`x)o$x+NtJD>)4*WXB3)N{A=u;FfT(B?G&I`vYejQ8 zhy+}{1^f&P6Rjkt-iO4l4A#82@NV+ZfT;4yg5uKC&h1XxGf)s_$XXwWm<*VWMoxjwuB!Y%_neYi*<$(G0)Yf}>2;%yPBdThcD+73Ib7i0eac9MY@lw(QZ5^A>>{*(!2 zKjjm=rK;n#E}s2d`W<*x0)cbEstaOT)lMZVV%wj*&QGPiwrKXL07?u>iS(}{m9!ec z%#rdd?jD*Gp6DrO#|18E2ITG8UEgxV>?h{8^SzE#5+0MVj)I8z$`ncz6TGl{@{g@Z9 zYNzdt#7P!$fI+vC`d5?k>vkXA78yfR^igV=_>i(O*Wp;YXOIEADwDuP1$>-nUgvfF zDxa;6HxGc9oz&RETpQ0-v;EmLzxp;%BcYBfznVPGoXfhmVi}1jdeTZdw=i7BEkZ>_ z#ra|S{cM(ANevqlGA#o5;x#-)5;iB9Cr|2qq#tK6*cehxm#&>?@j4OoKfdNUYts=G z+Dh&FU#9iH*2c%|cd(TR`sFX`_sUcaMM0ie%{!%N;4Mo4uWb?tM+uho`r4ln4UooG z`E6}?3MJQ87srw=_QC1B zi*pD&sK2DkB+yAlF@zQww*OMJzkzngr~@8*-})^`^3bNUSl@4KS=7j5w$89#hP)@r z2X!rTDx^YT+M{mU>25Zz4r%>f7spM2%d~x)52cLZA*vopyOY#5yPMW3TR}ItZy)To zAIuM3DT_=wh{{wWvu0#Y$i-eT4VuGNTfxgNU299=ZqYf|R_VXBO*EJ9x<=p6p$r^3 zevegjd~Sz75g=71ze?+-WsBy?_t14Nw~T91LS_~XcD=^3yB$8<{94-{Ilnj|D53Do zOi7!3mJi$iMT2rm-D@$n>t5UEr7;8V<8rl1&`Q|q7%ThS?Yt>-)gpM#A@w2I?)GVX z+tcsb+(>S_;Cu4*<{wDMuy_dISG=%+GLT4LM9$qkQ{ZigT0D+e92_O+Fd;#A=W#K` zmnE@35_0>Ld9nUgsStaChASzaA>4fI(SS@~0Ag=Dc0?;OGV+U%xGJX2l}4T&n~TjJ zFi(12l1y_Geb~L|l%OLaI-F~h9`QM>wx%BSDZUH3!kBv|-mPt_Ti(`0x+FjE_mMb) znj9uMoo=PaosnrFwjKQw55gzaea5xLR_98~r+?HYZ9oAkaX@jDH0FLiHF~1i8g`V? z;n6}x)G)!io(@4nQ~c!=j}xl!FQY$k2GQm~EMB5nNzv$~hb9UW9+{!H2)t79PcaA+ zUbkn9*2qUG@Hq@GL&z6306luQxIuTw!e&Lwm9ylEZL^St&ZykRC z6OwZu)FxM@y<*_ortDA0Z7j?l*u%ljN}2mT;@rt$g)Fofak3t**2{L(d>lA2+h?U* zU>rkoPY$r28D<|eq(B3!QXDc}^^BmvG58FL9$s5hmz3FmR>;n2XRIYIr4x}R za&}IahUMgoXc%^|m_Mm=uup$rKsOWpY`$fRn%)BjRzOEje@6VZ5I(5QwjHjx9a9Ro zEbaP@c0x*Wl-as7V%b?x?~B@Y-EjAr#DN}V<8W*PT;SpL{m2o={s+&1+_YmEsV>Jy zz>XP#j``>|*rjiD40?m9MeKT)O%$x9-pNbpWN^gFDWhh?MCx$KA5aRu_Tn5RpHNZXkMI_lltS^EK7{h{`QSctw!!w@r45@fw__^c z5*TSajNLA35zA8AsJZ~;`#L`YR+?T1jIeTf;y>!@mC(#y=OhERVg7E2J z3|#Y2T}8`flOe_QG?7=6k@1AL+z}C&Qe(moo5_x`1s;=-?ce1}^F&c!avsQ+QCap# zK=mm0l76;BR6QsK!Bm-#4hSCBiLn28bEuSl>4gcM&RVBnmQx2Q+Nnlg2@w!t~E z?1z+wP@z~l-uPW(&E0QoY{YKyMYyNc& zjdb7zj_VKYk9QcUiE4lyY07^rfl6t}eQ?jTOfD=eTu00c*HM67=6yj)f_#bKtbo;( zlWqM7DS;|ZT2vlFNV3jW*32Y3Ksm2TS{@`gq$Q-~QC0mzxuyq4sIYK|mhD8bAmYFh zjjukxpa~9sU6XhRP~jOw-NaccGXzkQ`&fB_B$F_D_aeM|F_q?50uSm~z<+o_Cs~SO z-iyI{k{mFKNrDs^PKJcLXFhE2*^E}uhbo6hV}*o+Rde34#y|eR9q|I3;t+6(F)zs# z<6}*m;SwaJ{Nq3Y;%St@A%28~9egqnz60>QCbVDvZR1bK{hP;cgL;G{TDJmB6qSTV zM0Rwh@ezoa1+Q?p6kzM;9_od+m{JO8F(lXgBs}X*FVr1T4{4fbSfRYA?Ha?9aygU6 zhdFjv5JMScQB4d=6pX;*I$*$kWKw_1x2)eL%x>S&%~a3doVqe?qEe4-8DHdn{?!6ENQ1hN1T1 z%8@yiwBkTf4aau|e15Fs^_~gwS@n0~w^NV)U-=xyHS9m5J=QQAw5=--e2Kp~Qev^v zZko^kQl{9@o;{fo&^^fz((@`c9{oQ4G50{`@9^+`bfQ6fP5{UzRwjpZ_dF5HNL`GD z?R?Lhp5qO3=RZ`HvHY2r=ueIN^SqTTsq2k__%mq)r4{S6+^3$wRB3fhdWw3 zZA(cEn(;8x-aYvOVjm-IP`jMEZ7dYu3#dC&Jqu4iclR0puAWAGkDM?plvF?ha1Us% z=kKTCp?2cM<4#<8$J|jmi2Y1J+Ja9aK7xW zTMG$cN$K3S-g^*0b7$~Wh62swDlEqJT&yeemt-1!f|Fq&+a;CX2VBn=G}wynz|vtQ z6JSD*>lk!RdhW9C$37@Jk#hvl(Iing4=FC7m=}h5c$g_8V+(~uL9XVV0`VkrgcHRI zQ-Ws(5~RI~mV3i1^Ifqfr7!iXtlcwf z-{>cwx-Vb=Ph#g9zQxvz8E$`4k3T*O()}X}#XND{kZbg4gcRo%9r;TX$N3=Z2K+xh z!$_zCFptn}R&^L+dP71GH#U{sc{Q zN1Q`x+Dl2Dq?%-_pB^KTsxJO581;wJ(I&6^wjy6V!8!~t%}N6k85gxyvc%1=C0 zO9*}7-1tc;g%F&)Qmn>2R#-D1dL>wEO9ANUTTzqA;LM|Or9LA)(y%*i%9GcQkH3ebg4)>5o zs*Y{={6>9=#!YT}DUh>M+YwN5UfXD3Ec;I0+W=zhFpw%R#7+O|urSn%9le(9xlm98 zT;DZgCF?_%JzI{3;bcF6sH#%SjZBAXTLGiFy7wFWchD!%32I>v#{ias>+8b6`v)M0 zNHL^lstyv7@UiDBftrp}k!d5o-$e{f$+IH`AshV@7DKXj6_Wt0p6-w`J!}@PAvZ^o zsNH+FQJM_oxs61}KrzsuDU8ZyeST2=ZiV%PNaulsgoJ)avH+{~xX=uEoU3Ox7!Z|#iC4@=RMGTkCpWX(` zlTFHY#dJWYWOlpbp+o@r(-#~Tu1eL9^FNJMn=L-yM9G%^`BP{_g6=b9C6U_P2E+`i z@bkn>5da$1Tx{Gel+>qBU}&Pdz@t@c6xvOo1&SVz9H-xSvvR3tJItQpfXX`Bks#+M z4xWJQ34cjz8s3^Y9fN^1I0xq=si(t~zDArqmIVad6{GjvJO1ryiW!he5<$1MT?KW# zsh!1IS?LF<=ahnj`pBkd{DXpSf&}>Ut*Pj~z@R+)j#pGSj7KY;8m5P4~YV+@e%-0f&Zfb9p992DY(QJ~A!7QA^5ffo7uuqpn$PZmv_&UarfI2T%<*yx~ zl^Zwqj&T7XJMLdCc?&C9FY_PeV@hENp4gSG!aP{(R%Vm&h1qEA>hrCGL(K504+1S8r&=v*SvB z*&-l8adZ>|K<>g0F{3HJu{uHiQTpZ7Idqr85`&f~rl7J>rB1)Vl{aGGZXOv+RdsX-G<+&-3b2p)a=Z-QQ)RsDm zRqGuk?0PaDGWl(-{BFrqNS7b}SIK+KIr9wT4#F_o;BsQhIIEU%m`QjcN-t9?xp#JM z^)ui~ZoMYJK&?sb7#p~yO#?v{w*+)or#r*;>0&5EgT#QS6+NBlN@a!MN-G6=pY;I* zqF|2(VMw1Yn1e}2N2fnp<@nZZ>0t9KKkM>nz7D@((#>~Y!NiCHj0-PdeXn~Cb(7Ca z_nOb%fP`KmK!T(7DgV6?voBwVxh0wzFGnseDy@m!rj@;4EQ!xWlZY#F=_{EVLom;> zkD{_NRFyFRCtE&Wo44PZBflrxALoor1M>lxAavdeccLu7o^Q%kh3SJ7$VpP);If5^C_8;^*F_w)uo$hp+WI`#*}txN<~ZIYI}LWeF4*&EvN4nu zAia(Ia@1NWRYlQ&w|o`N8k>=JtSnkWafceffj^vuU``&JIG%r9@`^fuymEQ;N_4O>bX?XVive)^$G*ED?&`hI zV+Z>V#sEn0=HVtGQ@|MO@Af2zM628_rs3?oN(l&9-LLJO%WTjq_L(N1*y~ME@5{D6 z08i(Xwe3~9cZvltKstc0joRDU zNVjC#e44GCtN(ZWOINC7^ot2N9HaC+s2r_aSXzNfU}^U>kg``rfJAb62L!d0sAz zX0-Z)>Fa)ay~wfw8>nVtm>pEZbY$Js$+i`zekZvxfvS>iP&WY@5=Q>G(zw&%y2~jP zIU`t$-5anu6Sl>D2I?-)^A0#Hz7Nb;0qbm;CvYF|*p)~Z&2vi;xe))s_}oJabAHot zuQ`faMAR_6qB!AIs^pdDD8*5rfJo2BU3STxX$FAJ2%wQtEphgqUabX46CJm`5+KqI zO8b!d2)Xq@^AJ%d9R1G3M43K{j>hGld4rqw<$aLZCk962oxjqGl3~ijHH)|Y9~>4r zZY!;6zx6jTFvw$Bo9nMdV$a+FBJ>1&_IVkc9&NLpjL;TJ4M&{8JW!Vc`aR?WqBp_~ zfXe8f0Sub8$#-k*LKi$orQ83)pgFo$x7z2jnr~>#3>qf2(&+R~8`Xxlighd6mm2JA zH(*|BL;u$w52M60t_MEbpUL(^{<Pdie_XU;x`Y`+ey|oPLTRli7L?Ps?r{sLHyMDI(lYs2P4a=qOq3`_~RB2k}!>6{3(Y3JQ2 zCs##TPF9;qF+&B=R*|FnUT}M3G0D|ODd}tAb!t#$U9SEX_bLqnxt0LYe`}uv->`AP zmVaH0l>A-7XTK91Sl=dcK7G=_!GW>{$e%Eo3tab{Af#)!Rquryo4vLE53GNGy|%3E zQ`-^%b#k&cPtdhd`DhQ=P@#kD3PovL+U=g~ny*S@?UlM8F)CKtxJ_?9X|3ERILAr+ zAuZJy();%4XA$~k*pKo0qgi^yFG2dEjvkmgXDV@?f4EHU8yFw#7s3Qyo^1l?l@ya^ z-PpT^K|Fu!FXefzI*fo{G>26QfRgYoLL`})4;H4<|2k!26|1v5kS5lUt~KB#!w?IA z=haDG7m4#A4#Om%kptB)tWR541LpjL%Y~2$*dN(w@7}pgQQ7>%4ky!~C*T(A)Vj() ze0b~LcdM5S8l_UU9DM{7B0e?yg-%<4J}l}38`zt@yYmjg>k^)gOR{aD*gdZD7oasJ zj<&W=5a;;@W4W^Ss7!)FbQWiX4hl{Hc zAfDQS?Qh)3%~$LEm?q1+rr5k;$iEW{kSz$N+TG5pm@3_X&{glt@2O>TEj*G@X(#uW8rvSm$X+LN_Tq?fus}<-G zMw=14{#3ub8+nHXa<~4-=;-vm>Ro&x$LepEcA7kc>Wn}C*1i)Bj@n*h{(ID(60ca? z@AkvPi&A)qWEKw%%j%K>_nV$Lcg^t%b>xVE#fe50 z&~wyFntMC5LXl9m@_QEF8xhjcux?oYk0pz>IMcjPK9}us@}5jj{{79zj+3FHDTRgd zPV4iupbQyh#=DkRhpn@<^cn8~yxqzTPl?*o1zHh#w2fbvgGcDg@?{=%??vg&4kclzYP#Yvd`IL1uRsaI? zs>|^09vcWslJ3Zgk7O*=4uxjb_Ci4s6d}B}sHA;YK2m8H4l00+@D#H-tmNX50-PcJY(%|FoX^Q z;#rjhM3Ag5gt2gOotL`t+E_K~jL!(_koppLsO-_cQ4kBi~lWK;MQ=%@;g%uSNDFh28=&%<`B#E^8?qV-4bw!VP9*`V7V)d1ydM4i2dSuJr@xvMcL zgw|VmrzI*n2Ul?U)LXo}99HXTx3S${_c9$Ov;pW1DjN4^ z-!bKyo*P?rc(A?vVQf!ke>I&y)sk+zh-`|HOMz2Jj^F$7{S<@;=-p@r@BmgpX6-7~ z-Fc%{u@GD&AAJb{GT@n=Q>U-ovsq85yDp45d8{ZPh$$~I$z^?ToSX)}3Zf+y1kH<6 z`uRt2-9p(I6ENhf)HV-t;*^QF)p6ArO~Pwtr@#aIG#u@k=ZsbekV_9szqC<{&xrd*~*wldT92@UdD>K*7rdKeoeyuY5(O z<1ud~zk4SsDLEB*Z`3NRyR#D@#`4)`;ugh%p2Z-EGT}8CK$T5(ed_=`G6g^r zYNC}vxMHTNoToYSO)w=Pi#;0q(rq!I==A~GFH?(JHZcPDTj~}yTTgyh=Vjh7CR^pr z=lZhbLqO40I0WYNsbeoN_LOw`b6mAQE0W)x2e`tOHntK?9I|0h|w|M_hQ2uCo zH_LDp@ZugXw1f5X>3Ih3D67XYl~B{vx6vx2dA-D4ggtoB84sA*tI}NmNL=)c5SETo)lAY+IKvl;r3F;U@sog= zufy)m=1=1;^M+bGGp7*$#PIsi~>Lr@v(&d&D|AmxU_{VXUDf7CY>|$(o=m(hME`wIuN) zHCj6?4$pRGJAziBN`gG%S=hQp8dH6FR5Z25T-G4zy6L%J6T$p{c$$Wi1j*R;Sfx$6AOA7R}>4zE^bf0N4m&^SQfQ=_MHOQ0*rCW-+}y;{@flf zWBGen55kv4cj;Q|6eY7uLkw5inTos%i;~c>eD{?_Se<7sMiW&vnxxj9P07y5`Nm8b zB$A8(<&pEA*%#Are?o1Rpb47$we6~>3{|}OHNNNNrqQpsK_=1kbt^ridT|Ko{}Okr z&F#NQQU<~FfWN!|bsvp{l>ffM$^r zn85-iBM3Y}%<$QF%8x!T!Ht06(Y(@+uA>XqdE6nh({~@w-gPbEwko0Z2yQuv)MwC} z-mcwFR5=7+&%Dmv|DGyIJox^xcK`{ygjC?Uig6>=KnPk05#<*1Oh0kExbIP6 zksj173g5=jQlcy#BiNt*7oVBNK+$A1H!7NFAPv8nbd%dDM0Z>9=8$1XUr3k+QU{B&*=j<>A4v8=X`ogs1 zYNu$z0m$Ls23SA)Ncp4-eUCxAS)Go@EIR)7y>gRYI#3gc2L2h>Vp<>dT6Z+?#+pVP z#u!1`=J(>=8?R2FOYWjT``^&m$kIb@}2(G0Uu@m%)L4A}SR+wGq5JngG zr*!tI9^==$?f-V`Y9f(YJ1z;pRLKDpjq0-W9h6Nj#2K)cHKVgsCbi#W0y|W5Dg3DR zhMH_2JBCEvq>W=-XSV)SIR>!_EgV^U<3ODWqVMB)r-|=``Os)`*`P#U zvRr@+bCHFZI*g;zF9wd^)fZ^pFmHF6Ffb!R9_z4Tof4H~bC>}H_5Zx#zc~U5)v%RL&7NRBQ~^7g3sJfJt}uI?LLvfj>f9djz^9dTyFXBtU`uA>{2np*QNH z3_k3bKV?!I27FYq#VAI?JeiK*WBesH&EQs$U-k6@rye6G6H|tHcS!0vz3wQh}6Lis$xU(}-RxS!`ke2jt2mLFUn9{6A6T;JWE|Nsuzk^zq z86l{SrVRyYt2q|3JJ|^ap&lLn)TjpLjL$rUW`Mr|$04l4FHrnFXfYQT4sDe>!f-qh zD@BPB^ivan1JH8XiHoB~#kq7?AI0%ckc0Iw0eH;<-~3_J{NPZ&nkXbLqBxfUK82ts z*%T!9D4Pq%*MLAA8g{;o_Y-n`GemGsm~=>iE_4!0`*=>(v@@=N^I(F#kNW@=fEfUyecza!B!3yYY-ra1I|}u5Nc|5& z0HgTw5$EJIyL&-^0KHVvj7ET)$zW}iaK%Uq9RjGg-A7XpZ0Drvi-2o`^ZX^drjZf# z_69~;4Y~r^iw)XK6d2^Tr8bAat7o?lYtql6-~=ZW!+ek++_O+0-eItXh9Q0#5S+<= zJ=msmkR;fNJR0@r@TaQ)V8mKjfWlqWk)wB;F<(FwPh-L=GHgpvA5{JfdL5<(R@{;8e&IxVVV(?!WP8R-hskCD)?(+X`axh$ z&s&EFz%%q-*P+)7Ndds7L)b~GlHG_CY&u}bA79RMpNN2DNV#;Kf<7QgP8I|E>4!;) zy0iiG1OW`my3*A-47LEfKTTD=hX?j-b|}q1M3GV(&|9x^2kV3Ye4z7?IJXRnxW)yJ zNP3&t3-AXI^Cf{z`aucD20~N^pl!mz*D*9ql5CF73_|q?W2?GFp>-^0fVkZ&K*L+= zjps`P2##sD9_l6-=)8m=&=npCVfd>VhK6oS5a1yPp?E+a!JA1hp#=bl>8;^PuLs|C zw*(d8rNAhkW0Cd90o!hns(0@A7`wYuVWc@fQqV}HA|<-33sk_Fv(%g?BOeJ(6%o*t zlG3MA7(VX+c*#1aWO6drq4ah-Q!c%)v7+D1`ChK8|Agr(V;@4s)Vu^wmHcxES*q13 znz~`sYp!Ff!?!O|vjWuCo2W)8wS*6hhA>|qabrwKxb!h82s2aFx6Q}v0CZ&lJl;#T z5~aQiU%4=}VZdc0_N)J=g`z|pVa6~ORkC1d%Ty&y3SPfX7m19)DM{B`x?=_TBJuH< zr^ZLB`z0CRi!3tuqM+>nXAT_Ib|*=Rycq~CtFC&nTWsMhE{Q6QKz)8{HOq5p zMyZ8lj0=cK9?%mEY~z|Z)UYKMgZ2_msQiZLxZmK>Euat>vV5gZX=xe&0R;sWt#o(x zMKkujH@%tRb!Vh*+`?wKEesubj7vYZm(Q^GN7u=45+3DJfJNv3RKoev_b?}lRH@jI zamG}!xZw9h+R*gE>6suhx$|H}hte4qf&OBCx( zSM)bt>;oh5jbvF5m9wCAHmC>7#Dc4)j=*F9Zu8|kQA5oV(eYsTF!8$eS5z+fgH?_z z@#&nEwln1X2V3n^AgFiP?{2S@PFn4Fys8SN=#lThaWKF|IH90s)wI92!`l+nkP7O& zrHrLxmxh(c9@6KpEt*N2dDD z*`y=Mh0B}(Zd|sDe-HA3M(Rr&pszX=v`!^{CF_Mr7gY~f$!bcukRAcv42ia#C!#bg zLQN*XmNbEmv!Yks6CnFcmo`SLcIL}-@3n;7JNf*D{{gi|*u4|wdJuL!YE?`B=*px? z-VyCJ=hiDsnlu0m6Jgw)CJtivu9?k~P;rya3Y0Y*e|VgGK4X;IR&GCTLNau#58T!@ z+v>aD-}7DtAZVspi8ach>jh-KR@ry-mrn03AAIK0<4m%?*30ny2+8QB? z$0R?6lHQpyaz6z~74Bbe|Tk z9(CCmk@21pC3B$!<+DbgLXZJ3bl$Mo0@Kmls~U;$jtl~jB9BJUs;{)9^k|zg zqWIx%RX@Y#iXYLD9Mw5{&?=-oBQw5n$0Ux!wlq#VH+0lm^<4Pc2XOC;NCmiXNWV8r ziT1q9;vyM9G9BFz$DKdbVGi0V3m<*KflA%oc<*QLcEdE3Mu?!xUSP^~Jxj!97sZa9 znHN{U4O7Wqgu_M)h$fv|*%(ibNFAOB$m&Zpx3ui}RQBCxmzL(9@z1=$YJ3KNFYhx{ zV-MRrs^rT`fhhP9iY57FJrUKdQFvGl z?gm^25C(A|>3+=$VP~kT^?WztsJ7-)%?=gZ07bIwzE|f~y0OWSxK5a>EUD1mOn5GY zRG|WQx>#29*-e3N(}><|74BifZ!x!0Q&X>f9Vi7XA2x|!Mi~HTSJAN*WrZUX<7I>+ z&F@GH8_aRL6<&)irLNGU&Dn^HjUPPB>;sV@qF91ZRhOzV3iQ&n6dP7xnomR0&l-^Y zuz zboA*|2L3sZIR2VgzvdlvNt@5|s*CI^HNd|(k_$89O{f4$0lT}9jAK4a2AdEc2bYGZ zZ~=2+U!4X}QWWya%D*VfY-i+SkMCR|Y^bi(nPTG5=F;##%0wcR(YvK(`d$tm8+2bH z=o*6TUfcFaPv|iII;ePnb8JZB>p&v!y5=Kxd7QfoBx--n*)uolYdj2mH;*gM>$8fV z$lP|{^DH+~v~_<1{k{<(YwX|j{c^|K%Ul|aS!RAv$05p{#bm5gRNVJ}O~M)0G1%kMe2!L63A>jaDZI1Bfwc1fJ|$H(393UDm?z( zf~Sxz1yH2Jcq$s);<%+TCT^~Zvoi8XFKuCQP;mZu>!RH46}?J&=I@`UCv#1E4f-MZ zTMNI86zDyeIAaOje+GK6IW$>q{Y=)(IjxM8}9tePqNNhUwyO-nR`xbd%7N1c( zulJxqnm-gAiC3X)#>b(BAl9n3>Z0#wRd6-UwA3Dn$dEwl7SzoRU8<&HgLDWE_7@MJ z`xOZLEdL+I-aD@5_x%G`LJQH-E=fyE(jG+8mi9PFl9slLh9il#v``8Sm8O>VE?Q`p zw)Wmh<9EHzsl)s8`~Dt}-#_n%$9bR5>%Q;Tbzk#&J+GI*y`%^1s>4ICq&-WP1_CVK z*J3boHxZ1S(Goy1m_ebacNC3ve_z|9TD{+sW$O16=ofT7B_<04N`MN>pYN#wmn4Gq z>ssdg3_#d=Q2i~!)SI7yisBtBpJTEyXw^ES0jMF{mrN}`Xz&|}DBX-l$XI}0aO$$- z+v>rwHJ*-$Z^>bgK?Kp?2u`cMnI@Gd=HBmp#I}L06d)qh?iDKo5#rT4BJ({9>Q)DBaeCa@#2Bi7$M&R^R8eXd%Ut2B?EK@LFN=Wls}9 znyWwc)d~HpEjrowoo9dg2WnAv0%t@^hiSx=R3~}AA1$Vx`Ydu%q z_FQuLo9quDz?szSDD75^+2+VqNkW_h3>O<%U?^Z|eDEN8LAcVlK9ygJeIm zFrNE6P4TVGNPAf<1;nR)9n_yl^f9-7h?5_99sT_QD9dL;N4KjcFuDT%^N3mp3gHNy z(p4QM;-c-1DZ`g8aBU5zK5jAtfVtMJ0&oW$Yd;-=xZ8n~u%Nv~JCI3wwn$YYFDx{) z&X4H-Q6g=sp9)f)hqLDF{QhBE*SlA7JH%4~0yWQ134>=wI4ooA!QL(35^ zVfHsJ6=5{)lPiGfK`1FeyeoD2?@jAye*`qg%W+Sk2!QN71=hCf=97PP5s<%gpQ~A8 zOamYIrMf=)zr8f7+HOE`ieN1r>+27 zQ^@s*(0`yS;5xI#x}V>Jm-JFYQ@RFz4^LhpU=b> zcu*LLUrR5X6%z%lm+vYtE~Yj_3b5v+F=c<6Lo9CY#GTn!0pn?2O9n()MXtAbrUo}$ zHUMk##;KG^90ANgv3Hf#V(1dY48X%_*C(6G`tp$uZ{hUW@87TQY^3kdUb24^f9x0B zKI-P=fTzf7pE~fU$b&PtZ)$C#rIv;z_4+mUjfuoG=dI1{wbBUisDEqmU5Mz&dvxpB zI+$a?U0?6$116$G71?K&CJkE4n&cbz8Kgb(I^^Dt`Sp<`mM$jd4tL=y;=fp91$hC) z-L>Wu2yAP-0HBSa;?eu{qPUas!SeXE?+*r+)FUjmZK5qD!m1}%dASJA z&ab6bb0z_cY+FfQYPAGjJ&WG@qZdLu>NmA&t6!wH9cSE5QB4Y@75Yj!yhk`^4cL5D zr)()8p?z~NJK^}VE+23)3Em9z{~#?22ErgTKExkRw3kRo-#GKnw6>ko%_0HX!rjIY z^f<7!h3z<*SOgOmc>M@c2Uvm@0M90_wC2<#ng95%$9+tE*MPTdIkfQqtC>~aDGZqx_lBIx7=DUzf zdrr%bu!c{~>V)ZjK$Co@gDEfY%{M+_!{uXBfYK3(@i|O)+Hw8a_*2tTxr-v-bhiu>Z@mhU(;L7u-5_gGcb)w__M?3rmlky4L(nmaF*4$L zMW}NsGhW}$S?Ps{?fc#=){6J4`+33r6^k)V_`J&K+=Xi(kDqvG_xgPqef@D_+QL-L`}GF!dVeE5id^_5kKTiDyY7b-Uq2 z$1D(pioU<T3O?42`ym_>00He<17 zj8OJIgsLU5%~>&=DmFF;YAY3=;{N0f4=!atT#1)ZAr{=bEbyzwavmo7w zUUR_3Ys?~e(JKhdEgS&x2wFW3VbQ8u(K-CySSWDvYr#$s*b zR>MdknQq7;Q6iW{-(nAQmuTPQ`;V8Ab`*fX>iS7SKgRE%o%Ntr4~F36mLod=BviIu z8uBt4SvhHgs%dWw^z8L6>9B%M2Q8I6>NST) zo7low@FgUDB%a>Ig{`-L1vPTkH%T>f(vsLorlgVK;{-os!YGRmsTgGo>dl1>7rFe_ zm+SwM9KDpo11z{y?pIQHH@@b9D_94>e+!bK=@xCfkNSCOO~aF7W%Y~gVc`*fT(jB~ zm1PaUMQrLU_?Ov~nF%kA@An-;vD{9T$BF_An8ajk0yrgY6hwD>TbZ9%Su)NEk<3P& zWZO*_5vt0FtAd|&ZH%Z2yd+w|cdG1@0*=|Jp{pBKd=UzI>xn*09y-g;7p-?RowF^t z#5k_);wMm!*;J^kdD$OblMW2fz9mk>*$^cvh;uONt~{Jll+vU3Lt>`^#5MYz^jiPt zd7(24s82tehyrn`6f5!!(|zx(S7;*^;m1sr5pwPSf9SsqXn1s;&a91E`_rm)J&_FX zaM5u=bsb3`(n>ZgK7$8~z`caLM5e@w+vW!=O@ZUDX3NTvq_aIEPStiECAcP9M!V;& z-6)g+j@79vjw3~|g46UGFE^Iv2**ds6d(j#=I3YZ0ke8aq zS1+g|Y)zT$%6n(of9{92WqHuhTz8IQf%6=gJx4q|#X`GW^_bFE&6hK7o?7ztUla!}R+GL9Wo zopNf=Hp0;!X61Rwqx;S)1Y#X?l}s2vlVTkF^EFVU_?d=7ue4C7DE_<)fQ~ zkyp+$(%-07ymacxnF_oY{HG;INzaT@vb;T3SSL?*_|!@N6GM&jL6t3!nNep2_=0Fo z7&q{v%lSnP9)3=)rgnn`lEPk@u2m5$=Jx4@bCPR)CGIIHQww3YKBp8+MlJnO>78vE z(}?!ni2*&wLlZjDlp6lX+1NC_c$FAff2S{gWo4&Xih}mhI&s$snZpNeH@{)H*JtqV7by z(zI1039_0SlK@}rIT5Q<;Aq}y5+tdoUOMoIM6W%@W$0N31m5A+PAFtXfWy(92mOCg zv#wu*WoQWQ0TC-%jBxbY@g;v({aoU8k1mTrO6-&Piyj8X4_X(=BC9|it#%aMdf;iM zP2GD5zg>`3m)e}Ktb}MnFSj4MXLzQZP`_)0 zOOC0C3_kuzcoUVt-58)R$3~IA{6n!4=&2+0znGu|RO_|y`uX&EicVs-O&~}0E%RJf zkTVhN8MA_9zF-S-?Uk;Cw)95(%Xc!IqE;w()F2S7$bi^MPC?tq-N}S&a4u$=EtRdAt17zrCS3J^Td4>+ za=;Jwp)(1`b!h#<-TywDBUagv07uETno`@}MJc)u38X7w=1*nZ)fWX+_msp(k1b`9G4p4Y0r&pad|0}h=`Wy} z6h=OF;~Mx={Sv!VLVrz}+8;XA)2g_m7ecqb7uwj^NTy0~A?CP|k>jP{3VDS}NCEwb zjw;@_w7#V#q2oc6y zzd_GVkjT)}j9XtqYChR~k^?DZpf#_RI72|_&r8Oq^3*fvdV&&-``D4Sr|@xs>+{P# zm+QCq`}sbgwcS3PP-sfDOUo)9IsB^hqn{0+Gf9LF? zf|YG(4Xt!8S&E(q_`GRI_1(f5s@dYTKHEALpIaesE)lj~9e|XBsmN%gNd?pPypK|4 z;Qmx-QI!`Nc)0(pvT$=%)@ISlR)|^S7e83w3RT_WpA^y%r>DXw9a_G9cTqz&-$nLc z?+w?0PXC_LyLX4!uy4YbGuFDrqj<9`W=q#ZBH{N_7YA7@?g*!=ZJz$|$um7!HI^AU z?@Ss^C0P!64itk03`lxuQ@qk1C@t}>8v5oKJeJ=xd4nr+w5dW258s-&2*_dsl3I)a z*?vCgglnFNlWoy^C(sSFuCWcDlN$JdNo#@w0 zE=lR8X-j%Oyep@Rgm-$fjkFQ)9V5^%ezPwFs5doosl%;J^!v`05PUne<(Fn}h#+`53f9KZ zKIY!}8WR&*fz+&{*}3HD?$}4;;kyz>%848`b=|w3gcQ2WLTcJ=7rvbAkY%VJZPIei z4WBFuaxUOCEI79b18E$FY4RGqgP7tDF*vG$L6wVyCb&q+2f29dx0%z4ZgG&sD7!-LlzOvPJ<(G=X(P?TOe0Y)5MDKMm%g$h%QLL*;^|1$@35CCLR&(!;N32* zgfNY*h@?&3u$=K3SFhBA`k%x)9F*CQB-e1~y^auB7h6vb8(k|tEfZUa?^H~9GykCK zce;JiZw@>8qGB3-sfb6RI|d5!~fFisY~M0Sme1b+AVnT|H2&1$2^ zBKh4#MWEH<-{1*q?ldm6jW~VpS?XzzKUsAZS!XY$y!)Uzsbh!1B<9XDTjKTi>iUgF zpps|RXFhEzoMOlRD)Qyu#COQYrg-vF!D_ir?3$KcH3ud|4v#_6^rMjJ>AjEY)Nj1D zesaWhWo5$Cslci zQ}=|~EV0Tz4~7^PoE&(WYG@qBvG?1^Ya%48Qw5#p(QdzMstCzA5@alLBeIMh>Z~qO zFDZQ~(U`Sr?9=cSC5)50p&m^lN^zMAb5@x5Oh`8VS%y+P{C;5aKHR7A$K?Z#x!kr) zO3ujkb~3XxPf;m{1*x6EqrO0qA{F`s^JxE5!5e*y=ALtuMzDm1DS0B?q6@geKK_|$ zF?2}sXyIuZz1|U8!fZvWK!B1)` z(nvI-&I&)ZyM)+Pe6er~PvU)hk8VXVw^6^G{Pa+Zd?79+1kSOTy$?oGEMm1Ria+?cV)_=Q}xl~%XWkOL<+%BUfHXJ!V+BP7tn4zSypVzV;iz}vMxXcO(UeL)rx5PI+1d}&xHn56 zcl_IF#;dgtdMWrjyOj;iaW4StZO{`q0)Y*5i0u9a`XWi>O#HXD>k}0;R;i9FTEh8Q z$)6;C>W>vb>~{6RHMGu|_ucy}_6>fLz@t{3i;_;4dX>@Eg)d#6|5!bw8P}~wg-?*o z5xfzlEM%KZ^?++OxtfC!`@Gn7{G@vk_Y@YUl>f?77Wuc+O_<}dHJj=znpWOB4eT)! zv&Whw*=oL%!R=8Lmds{m+jW@mgcU>V{5vK5B<}3%(Ilq6S9Ng`id@zt5JHs^`YU@s zs7ASayj%;u??u3^^t(>205XPFCyArwO**KO&6)cTC#&NnI#|hn*?iAGAvj>Q8C*hdn#L zg7KJTLsN}9xv zu}|T63;R5-_39+zTN5MzB%iCP6M7lN0U#NNorSNUiGuE~&kTmE|AEepai@ zfj)A8H1{6iSVkXlT$v^~n1d%96rDDlSS+s|-@P~%eDFqB6Zh@gJL;JO>h8~zr0Tn6@#+jf zJ&eX-?&jXoV3)t)l6~#azl(cbH3$taD!MiP5}c`e%MfyxaoUrCVV$_QqeiHw_!*77-X8+s zt#@nW$lyMEatyS3T+Q((qCaorGmxCHnu%;eBPaIlOt3|M9IZ%WtqbmQ1qa9^_l8-- zn7(+efm1G6h~uCQ6qWs6>>VKHbh)_U#bs%7^Y7gU^!Wn~t3OVM_MWBY z?|dbiM6g6Ak6CNo`!kFGs!5r2P#-G=2Y=zBjBl2^cd=t6)N_R(Hx(s+5;1XT6e0F5 z@_jw6x+frQyLWN&$k49)LP+)@U52u!Dk*YOr}FZS^>9F4L#FwF`lsSM2vdxsO$bucxjRaSHtPX^~aEN}mKIUc8{u(E6qL20O9{xt6GfF@Kn z$mdE@Mw8~YCnTp(-oaYXoOe`*_jZT8uOGV?bmG1BZfF5Nq2_@YPyp3#-{+Afc+;i# zL{D7~&Nozsx$R}dmo^X#LQ9iI0=XTW5kN{ghU8Z%0|HhNM^+B#BKE z&7Tl-GMhS4K8-V9*me7!4xSACU~x$4`*fJkp8Uj~03%xc!AC5-B6`nw<4&5HMXjy; zvqqxg$xU?|g=(F)jWbS{IVJY?B-23vQYNHF6m)W+sr}l+B10v#M&bo9sFCs7Tzj&J zeESv%D5t(^(w@Ub7^;fByc|Zi6bu~U@?K7789{=bs|4zYBQ*9Wo*Lvhz5AS44KPmH z$?jUou@vEZ>wZ{vf&ld5L(>i=M00%Q6!`afWYD<|N442FvUhZd5A~@Se5gr{SKShy zgjOm)sZjPZS!$+PsZ_rW{A1a*11=8dz^Ae6Gp%FxZ&sN3Fh8i~40^{&dVdw}f&@<{ zwwR3+)yaa_;mT2uSQH^LtQSD5M)-VpfxxhWxyBz{V25{eVJelF z?c>%BOU<2c>eAUMwiT#faB<7|03g z%UHx51f1l&pMQne0)70G%v_=2*l9!OUdq{$KeM(lD9DFtYy65aP|f|OM5$no?FK1+ z$x;nSAQf7pRMW`Fs9s7dm$(QYD}wMemI7G-g6YHN&DUdAUhHw`S|8 z_;g0iPUWmdrm%%{r(Wg;#SvJ_eYlMKmoJ^ylDK}s}VmZ>D5RT;Vpmmj1>E&6rm3wS?*4Mv$ zAh?WE2$+9ZoC0f85Vi#j96qc;681m$r#4=+`*uEorX?5a%)TRBZ{k)^4$Y(Qt};m} zGzk<<5V*0i+@k6Ob3%`bx-?6!kpeiC2<8N>mdRNDo>BS6)gK=PmYvS| zc_jkGK^2iS*-ssuiBZQ_p-1xVA?vQ=o}NlTw=qx*g=?XMMo__#%t%$?1D&6gTde>V zl9xD6Y)L)Z!|=?bIIKNF;}gPQHQ_KgFyYzWh81XcC1sCxR3ERAvGn|G(k&3Q-jE7X zmgD&eBow(8X&_VfBWaGelS=9|Voc+YiIGBg^eRa$;{z*5>rTiJFT5)%{Zm*Yzm)OjuH`&SRe2j9Dg5lw=Z5RU76J&Ws>U5t_sDxw*qdcO3ZE?i70@S?yawd zTNNaHq(BokbAO*e5Rwx`zPzjer;`3FB_jR&!usU$=2ElG)d4^T9bM=jFom{xmcA9* zm|@zO=KCFn&TaQ&g*L#~cMI3~kMo4KBRZ#gS!g}5K2zoLO4*qSlVQ;(CzvwJ zL(~gHpLwS2M&9}H5(EE@rIishnGb)bkiD1Ob;4`XC{576Xplo)f!rTTO9dbGS!Cqci3y{CJ8z=gn?%3(aPHlIVnfV3sor^N#Q}uD2f3hZnL*Oq zB5qK0J_?dYf@CM_A81|dq^ejy07=Q>d4RMAzEazil?JE6gcV)qgf!$o@A>1>LQB`CcN zxnCIG1IQw3#{1)MYf8)amHz3St6=e=KYqI*^4L(+AaFkxai2NJs>>dnSq2n46+rY? zxj0gfus8a|F-lkR<_|owZM}BIdpJ;>cRGJKPihjMyr_^ zUoI4jHCOUNM`B?70v#2b_xBB|0^KImXm4YF9408LrWhYtQ{h|Uy=|@WUV~SrA&qf( z`jXcn{oxZ0z^&0XeKtv5K|g^qxjHMpN$ToWJ=Z!=GI}n8x$(@3e{n-z3fz@3cCa^B zZ|95*HpHAk73Gga@<@kBi$Y#m>i0^zXS75@bU>2MaBdb*b&c>zzl5PO?E0g4Hkq`% zP5F|ubV1K*^+2?=282t0H?jjVeU=@pxNMK-3%h<7C5c>xdfOOT-Rki_Y}{8T5J{%T z*EX=b+|!?0>3%4{?16AtE@`qymMK><%YyYw-^mwHsLFY*d-RKggj}HVPVQ($wder7 z?GcefQTvNng88eM-jIZ94ruLFGWkPq zfb~vVea^J4TNShJJp1DnX~zxAkoctlD3BY809%CqaTo9d_1j--4^c#!#kk)yX$cn> zs00+%iJ?j#p0@&Q6G*8G@MIJ=UuGgtG19d>HIGjaoe?oUbo|51GVb)EA1<@Y{X1Lz zJ|ewFiHZ`inHXb+mh5cyfj{w*><c#~{Hxjc7u!sF2lYmQM8Y(TX4^Lu|Et(RNsuhxo5$f|s zco>fMrG`%dI>=T8u;j>ysBqm)fz-&`N<9}JmUR;3D%CO^k=~rI8Efkdr1zLx@1kz; zH`nhbpWpiN=0!0QSjOh#OK(l6`cTZmptciPjsFc5>a-Cy7GgNbo5OOid9EMy0md~U zH<%Y_&3UP4Y6Ym3Km)K5c%>SOkPJnq0_e^9s;Ek|sLSW^cYX*(5$$Ujcz*&AmVz!3 zdTG+Xf4w;Dm#L)M&8wj#D2A#1WwVpbNlETi(^ik1s6+`gM&^ne^vEv#U1lVH!aJ_p z#T@@h>bIvE(!of){0u0B&I6B)=uas8vozJ*Z`U>RUSF@@9!bsXBZk3J6GkgLF_2EZ zH>mN{IjQNja5~!vs8&HM04?9>d31oJLKSRl%?6BlraIW4dM?AH5rvHA9gKUSGCBE) ze%Rrp38MfXm@QV4s?rD-^hM!=dVd@Op-d@JnPYToeaF3&)Ml6gQM{K2U_zsn#6?yq z;`gt27FW3@!2+La5}zsk{koJ!J#}aP=+3vcC62ihJ&iVmRpEzc81+N9hCV8}@(DD* zt4gQu-8wQ*-vQT@;gxXtpCK-*~!bq1=WGt@AIk1TCxt8~XXsYgT>f3o5UK#Zm7 z0p&LcAdJJ{7$^>(E{6)Bu>CG1;PdLud+**wnJoxEun_2crT*oHz8lr|^F3B0Ku3i& z=OZGM(w^I!HB&9B(vk*%=A!wf6L5+bv^QCL?D*>OrKhgCgk&dl2LKRO=QueqXzzEO zxVGrbdy;hzn%+7_#P~tfi`ZPI#!~4&4%1UpQ=St$Aw&j%bN(E$zJ~$8+|ubL%fI9o5G*Chs1Isf{&tyrK)47b< z<21FUP<8VGtX@tWZQ^l{(U)cwG-gr9hJyNVUcw=ndbE)4GwnizN%!+*x+Py%(5&(# zMSx2ftd-uj+i2vq3UIBK;9*7f(N$accOTkJN&R8qJ}fnhCEB0GH&s6 zWpHY}R#`HKm{`cG@qnMy8kn9t#MRUq*3hhAqPcGu4jsPw3&NM9g0~y) zba}u))!dIA?$tLeshb}{`8J(xWj*Q}YoN$Gf#`W?eK|B*bhj(1hPybwGLPD|J>SsMrmH50B^?bi2qOvmzFL-aQn9y2vhyp_;~!Cx#djheI#< z0pyzjMf}`fWQWM5paW1ijiM90QT@J@B@pnU<60keo{L{-5FE8;k%`s30TVe{q%6he z*hXoVa{bQ?{4u@7G>15%GIIx%E{AzCKmxbFs7JJB`|-NSJ1`SYJSma)8cb~aFL#^` z<;OUL@(|A{#&)(oe@H^sW8&u(2bgOj071DAKLj|Sl!5&hHdaQ7^}r73V{<)Y@FKFj z{j~o_BPh}58iTtm8v=Fu2bI*N>(wkhQ$>R?aoI{DPRz#3Wks$5G@?w3Ow?;nU};LF zbI|cayxo6a{WpCO;guSrT6LSBh0&H#43@woA24QS8m;YiS{v{b#@J+iG1Yu@#}w@c zx$W*M)((>>_i<=AG*_bhxhY=@AV}{6Bvj`Z7pVB6tWiVnjlqI{wgtY!^EP*jN@feD zDqsw1C2WQf1@pgI<~q#1%G-H6R>8#;Yk>>nH9x_0Ic4f%=7 zu@TLJ9-9lbS2&~d-ank99>c>#57(eCs5pfZ64syQ?lmFgg|b$xbI_>p(v-5r*Ssbh z>(0k=!29=ACm-SQ=|ah+6+*UvBMR0PaG|aI0nDP8Mj|HTk*{IPA01#JGEvVpVijT4wszduWP>+4<39_{(pg;Zw3^@a>T+QsDCNStQ0#EPitvH582@K;aXxly?e8-DXY3x$;E54wezo?va~GAq#2nbnC5B`Rp-G4q zx~C#Cth%z$DOZNugxO=<>=gy><_|szUy;ySTx7JAVvn-D$T-LjMlL9)Xq9OjuiGlw z*a5&kr*=?_ohO!fTUQbV-wiU8IUv#Eo5OV)yD~`0WD-Jd@Y$9>6@D*O zonuB$k2jC~hUexm6P;I5v(z6e1nYzeUl<=ue^>uS!kZs!y7i3x4IzXJ=3QDHVd?HO zmXajJ|K50eF#r_FaT*r)t!}BOZ&2}IbmX`O)Ql7D_h1|l-TBH);#ZZFlq5f955$M6 zPh+h8P}ng$W}&_>Vt^H~h49tK>xkGL`L6)2bwTo}^{WtqWttYJarbYu=Utri%IIMf zXtn`H@7^Z44FUyrB&b^X*Z?7`*@dGoGUpY?R-O>Xd8kh4&{o{qk690*;k^&2 zTiv8KbOK-(CGp;k7qBF{=l=>(lvA>sXGn*>KoW?S zs-M=jjx++!T4GJDbgg)95zISw6o}B+_>NZ-CnY8 zHK?Vmdo$hhz$otx8_#uh7+wL)9`$HbG#!$9n+Js7QP)ylx{`$e8*n&8Sn_O5{y*@G z&0>5dMw14AZer76!{ksxl#;%(m(L{(H7YysbR@kpOAbNry?OwHL@J=qx#xrigWEbZ zu~bU^nI;F0R?+!($kbL+gU+{w^o;PEDY1FE7QgkV4w344U9;%6>>Lk1#DPbyQQ9HK zT~`ow16YfXAl~S__^nNq2JTVavFbI&XiFn35aEU!zF2t8*w`K1{a7S{9DV7LdRlaO z`w@#-fD>CwDDp|AJLP+VP_D~-U7&fqpwcn8YTdUDh|wmD)Z$f#I6T z*Mdy_AzwygnL1=DHT0CVB7{xxB7I!b{byh)O&F1%rhZDzURC-MdU^ay9DE*B!NgeP5^#52g91^Y!Yv;Zp&QIvCj}+z(rKO7d$wLG zff5P306S)M1M=#`2v|`2puw<=ZlJR*B840bx;(X zls$`No#%s;eqCVZM!Psq8ttqY`RuIrZ|fuWNH1h7eP^ZgNf@_wuGJ@apfdpmzT2WK z?2Uve#z3ZN41KnP2rqdB42I|o8C>nLVQLZ?_QzzRkUSoP^Uur?cW&&1WikoWqsgne z-u@tE4^9?uAv~IBDvr}4lu$oc-^KdYUsF{Og`}c+@T9>B$4E_lg0oaly%OPtS`7Dl zZq|A}2Ao_vn-3IuyfOOwHO6H?Hiw>u^17)F*Ja#=v)?Vtjrb~<*E7R7w6m=tXA!4@ z0E=3<{z#2tuZE~5hD9xK8{QyR`fFm9@vMi=znu>M4Atp|t8BOmC-yKG0k#mDp7#@X zy1wkeuV$(bJgrViR@BZ3$ z`t6AKp@aZ%{$EU*#p&3}xA!U2Op@+9ah=4SQzp?J@}S20zAmEtPeS5~oFg2;lk^Ji z!J|5-bpI_R#+vOG)g`%OF*#D~IXUVwuiQEOso0UmaPctYK~*qTs_qiDre1$a@Y$a5 z5oQC<+hQANVb$w7|dEW83ny{K9ypwkw zYEJdqf6Q_dw%3#Odru;W2y_wnO2626n6MjTCXVZ7OdE2(i+g(ORjBYfCC}Wfo@{Er z+2->jn=^RwoV*in_RFYV+&hGSs97KiE=|fCS81t}!Pe00n7OZ#-GPd7cZD%VuZZmy zcvV`Q>GveMY#v)gKkr7|_ZQrxb{E!d-(mDp(Iz9OAt&)4yc+Usn57%YmWYXIkOj;1 zBDZ2qFxGj2&T1yQII5NEF=-`-&?IO7M79(Q^AO)0mk}d zkT5QBX~7(fsX!pNL=^GgXbkSb13x5V3pyG?9(H?@cz+i_T72ex5$^8^9j^mu=XJpk z#;avFrsT!?a1a^n6WPeVWokT9P``u|`ZQu}C0qLo+crBQwchH)aZ=0xq5Cf~75p9q zGiyTd>958b*~O%V`CXT(27sepk=QllI)$p2T_%hFc;0*0PvklYKJrOQP8{G79SC0H z5Y!rLX+(m{_yK+AgU&>N$~Z*;KXMraUe`iF6t}qoHUP)+=uQNlzLDW{j%AKoo!Lo9 zVbUu**jt<9-#-O}3KlkMmmBi;0Mt%kVWS3-lSz&jNOQFc?jHb{4Ge)&k9JK`Dg6gO zEaQ$r3Zz}eNmwwI{L1BojWaD*dK6+E;GCj+L__|&V2X>dV3y~K1P>;xdwBy_6oqu^yMg@hm7`)TYR!LbR9=Pg&jVPRs=0kD-*SyMAD_MkqucKiw< z2Nu`LNc$Jo1e=_Nl}>sbd>XTNR#^SPd>J4EUa7i%3W)D6w5vQ`EfT)o{oXfC?0uZF zU^(>{Qxxk1W?Ql<-L?IozNH5~A?{Z(ir_1PCERr4z~7Sv^a4@jjH#PP;4Fe91TS#< zt;{6x3|z#cejJv2-$Hi!>okCcge_?HE*Bw%#x7Xs&H`mh6@E{6{>P3*;d0M6V9LKcYN2;y70C9awJ6huZ3QaO#sUCCQ_qh}{ zC2NHf{@)~UC%>O=DrKCEd|%!!)_(uMO%->U1TktZvShNory^hHPloq$?b$Te4#Nk4 zIt0`(07I(ZQ=yI#z{J(ZdTK}_Uqc4&B;|)oEEuh74Kh!bLsY`~P2*4e#Eg2eQd?4B zyt?LFB-wz~s{Yr(h^DE(_KcD^GWYJGxPIYNZu7spL!KV&15cL-9l=$-)oy`qKiQ#@ zQ-3=nr+Y=eYa9!p;3i?l;RKQ6K1USiaWvjTScqYW4JT-5fao!%8s|nRXxbTj2?W?0 zr^uBfTjE7)n4ywe(haV0V&h(rD|+PefRlu23_#ZMO>)qh(?f{I`p3`3m`4j9hYJmN3O1pT+X+0IBlh`cz1n&RUum)SKX|D)3 zxkS;wE`}5SBph}Uj>7^pI|9+nsXBIU_jF?Gv8J?r zJ)Kc`FJ9~h$O@lXNNaVj$Bz2x;(-Z8DYw0I{^Cb-^6W@G*I((Ri_~nioDMSi_GVBFPsk5O#_~kXiPP zDCRy+J7_yQCpISqWA<(xg#JCPr#lFB2GUr{Z#Pth$8?+Qa@!`V&pQ!oef)dCAjjVf(c3BS5fl$U@DQ@RtWJ3kGh@hM$jJ=a{KJsSmiCoe zrtwC_%>~bH^F(i>tx4^iLa~A_Do$6s_H(B6v#R5Q7 z63#JIn1;g01SDiJC7Y+w0pN2@79r{O%(41jx5V4JL*tsF%`m_?{9}yg_HVMC!zkd* zq92+oSf}q;cWZa~-UCxXBwh0KQt7NxHJ!BCJ6nU&!JlwCNkz1$E%u=oiSot7O2t|- zLt}EHvM60(U~uL0D~vR#2QxVh#{1xfcrEGP4`cEw6Na<-ofAp#r%QU+L$p zfCAA%Q45;=9qR8J;L7Jcd*$<6F$LD(ZRgQa^T9(4PGQZ3;a5}^_Kku&XuuGyT8+im zO2t1XL9Y_Lfv#}5v7eCR>k+>}`T*8YYt&E)+8BM3c%Agj%~X!-T}a!9w$}o08;ozt zIb{z`fKQ-|b=XQDGMDRLR6Ty^lul>WR}Az&*e~8b?OopfN;BW~U#~Ve@nOpQrSI*T zp+TPvvd9rGr^>7B(G*gE6P!NI5URe{i!2i>k1w^~PlN8OIvaqb{Y%d`!d_uLbnNnG9?C#1;UHDg`OtWU-L|E$n@wWjaK9x%H>I$3 ziG3;$G{&`V^@!!(Vbdde~fcvh~qf4NZV%zkVeNnn~}t zZ_67dyQ*UW6OR*BV;BMXR)T1NaQDd)fVa(>JzW30QMjz8c-mK-XH!#wFm8(&jfgAul_~2m1{gZ7ebPh(fP0OvvW2~2P z)+RRq6oB`xCx4N$V8DA}OMRYLT>^1}P5?x%?K|+Vj+WV_1v18-So6a)^3XZU9cSiO zK?8#w|MJjJe<%zfXJschV2k(?ykJut#IGE`a|I%BhWORhXF-o>Bsw=>RvfR}N{W#+ zAG%;BCq7fx&s4G4BV;2&a~^0{wtr0|#%$lJr|gnl?1B+c(g0*oKAQq1991Au{b}D2 z&i#L3#*)tR+V~d4o*K)FObe>fn2`w*5lA zoqcxYJreW4-OF^mzjS-5G}qN}tk9`a;nhTcr$PQdC@?H2tibb#|FWQ#2fpsoW?L{YsSd> zw=~LJ0IE4?>lde$iID;70L&AwfQo})Mz5dh0q7kkL*Nnf@0qsl5Pm^kY|XhwY6IH~ z?-_?m5ETgxP-}`^mTJEd>5tWAMlndbJk!1c3G_V&8~OYMK422{*UOK3@W=71N-SLJ zv^NgTPRe0qXLt_qg+W=1Mp=G^r zEp&vDhiH|V#7tH_ukq~9&x1@m3rzaXomo_g%=(}0P4gFO=qf?vx;up#$%As>Dl(t} zg5V85E?E`WGUu^YD0|iwTD0lrs@;c5!kYlC=6H8Z9+51Lz%o@RlCyXtbZt+pKB0Gm zU98`}NR4!No18g4T4Z{#eLkMgJt>|{xYzM|eLsy2W zgN*hDxcUA0yE&*GFq)Xw^<1T9dYG;^dM(DU$DcChEdnV-a`SMoS;w9>M+F+?F5o`} zT_<=3rsBG4wjk{mE_}1(YXP-YCOpy54m;7%cnwz0tVRk7hx$EZ=%atv%!!5$3C<{> z`T(nvt3*S87Yes5!ktz9PRQ(|$$32+!Om{)$sp%k7*>|UHX<@E{C~s2(n}G30&_IN zBw4ah+si3eG%S>02kzYy#9X7Bu+BwvGU8ke<3A6Q+W0V21-`|*5ErW=^79F%G_Rpt zp6S|!$sqW$g2On}>K*d0nB2%H0}h)?KqGcUM$i8(I|r@H4tU zN+)-uiQG<0eaSgOyU_I^DPDij2nIp&IOt(|_(3_`?gY<;t{SQ7Ayq}%bOefxAY%D7 zivsgT7;I_}FpQQNZ7)U)Mw$c?d4l?S()IpRBhXq9?J-1%DVAL$usB1OII-R2Ttbex z2TBw`Op=G01S)$(^wf*x`(g5ZF?l6M_cdDkn6l_K5nJZT>1+*QR}o1R6MmanaI7i**!tNo~j?Vr8h{*UPovzr}J z;q7zp4nVhmIDW{+qN*=^OKvtFWM|#EAM7HI zz!frLh!bPWntu3&@3^R@;Q-&xBHsh5n{Exkh$C1`F;CN}=dO$5LgO5V=l?hk-#R*|Z#PAC zxr7@}?vEWQqfMb-kyNF;2W`JTKbew#J}odXNNu8Y>FhR>=Qm+K7*Z^|l-yxLA-|P& zu2W3zQsLOi`J8ljo(MPfm&<48G+eD%Wnw)5!c9ME+P9Koer!!4_V>a3?Xy*xClvLV zw^2{`CoSZ4KPDotfPF9=5gU(X5r?}wh{R4jJwS?G6TVWAj=;cZY{9?JiDNuOj^N=l zp!7tRo-iG=RA8F;D!pn#0HGF1io@NNaD*|!#2nGI@nuw?G!A|k3;KiVa2^>Yx*C20j1#hFJ$1eC>(|P1x z3g=oueSa`Sk(Xv+pxn8rW^AC~tu^<{^7d4!m!;is`742s=1CmH=vYTbHn+pQQmDg# zeCUQFN)gKI<}5PIJQ;4k7j1!uC$WFJqCHZ(q2+7=Xut0P)0oh+81Y1Heww6-h2J;h z8_Og?z?UY{ccQMi%{}O+Gb26%1szDqNbUb*7fOr{g|xFemwsOLmExcF^*jMdk6!yu0GRTK9ey@dvQARM%9%CG#-gy)Ve>Z~Hrm_bG^*u;E z)qNg98-~fx-XlA}EIJd+%?{peQw>q4@*1kT$6N^}(A|-!O`>alOrNB*fNox>ya`|n zdUN5qV;|znu3cfEWCRGSfr&Jrm=%Qwx>K6$$VKiI2?WR_3d*SasfZX%TQ&xhX;NmQ5*i>DO17mL}rd>0-Xn9=dWx4?G#8$Ls#> z`Be+AkaUCbdLJdb?i5-#(d&P@T%=_Sse*#=!od zzk$v(-&MTos9$6r7(gvFAe-2#nwpCuBF!3l{`06`Ae)1Sq}R)X>EG;fdm+fmw-MKUM%~9y(Nnt9Bgb3-IU-&lW>Ivk zhHpGF&-50+=UD%^AhZ?G42{XwAlQ>gdkfnpgy{zwE>(3t+mDp#FFdN{a~mWX1mEQd zbi2@X_HCX-*|`Ip_sORwu@u)&9jpjB7GABsHw6;MApBN7Kixx2jfbOo_Ik-KABUJ8 zSSP}{h~jRyO-xOts6V~Q`9UV3h0q8*)v2I=nVS3Fw6n=GFCUoUU?JhPoZX^A zf;b+1XUjH9w>x%-r8m9@6+CxhZEQU{lV*C_7!wwp1QZw@SUP_Ek5=Zbxdn=DKoyXW8@E;I`W7ZIeX z@{3z;iVJ%U1YC3_zZ-4N3%Ww%3Hl<@I_dOBv9BA^9lF^QxmN!VUGE)_b^HF0N0d>L zk`h88G9sIDsU$mFc1BkA3K>_WB_o^cz4zW!Ms6fC6d7f&?D;!hm-+tu9^XIi`{8!G zUf20L&*MDi^LQSVJ>20>zl@pbUMz9|TKd~V)Bj;OgZTS(S5qB{{JAvk!7a=j-v{Q4 zP64~-BBq@b@kCkpzLfe7Zv5T>dVI?O9bp&$sy{R3Wb5zCOGpbSUb_h7!hbtuvgT_| z^A2enhFKcJ@*A0bf|VrOP$rM#NN7<}5}+y&SW6GVXLLuk2lt%z>4~4j(B_{#zUxtu zAV29dRmA)JWy@2d{WM z5B4EA%daf^m_qrSr>(*OG9hh4`t+hszzP~4NPJa!3}qwzjPiN^pV}s`Y!@N6ehmX) zZJdBo~u0v%gstXq3q;YgUGslhFGQgye zH~YeqrX<$Ef0lz78oY~x*200T8sq>l^$u)jgN~%YMd+7^8R5%dF<0FwfvbT<;XSz% zzM!Q6s$t9Yw@8x!N$~v!*X%^)_U6o|7MG>mTJUu*J+sKUKgZfxB-6JWZJ?t5Lv}*l z>8s{hbo&t3J2~!=q>L(qf{m56xRT$do==K|vX}uOg@AgIUS=BUpJx+^yzGk-0yCeD zTtix`DV|QaZnbP*fHuPGSrHu`X0;y`FMMp{gDx_po$4dc$P&MF#~dK^h65wt;{hBF zqPdgMgktsq;CA1@^$QuHnzpIaO>7l9rqY=VAXkisx0*g-tDZvU?&<(ZQ#{zj#rI0j2FP2n{ zj&vj*r?5b2{P-fJt%637(-cePW|i!a&@?lUeYfCT=^qn%cBce)R$RNt>+Nk)xkm@F zq>U`KrW^0mw>Rn@LM2^$^kG+1A5)+m#g%YqW-9`E@{1o#_slo@R{&Bbjcg*p-?faQ z7=1NLWiS5mqzLz)yWMl|F|L@Y|ILzRJGOt*nhLrSKb9L0SZ$s$Md>!|QSU*BWslGt zDwY%GP1|b3t(+{ddvI~4a@(Z{MDsQUFEZF;2S=zYJ^(>#@!b1zG*3a9$|1JB-m>Dk zwUUVpLKq=*5@t_0Auh-3GOgDqa}8R|1Shy>REGZ9dPAE`S#H23bPeIN3AKKLjpLO4D+*t?D zfDp2r{|uw`*Ib@;PD}Cp^fwA6xeVkyD-H{gr}|6Yj3iD2*|Z`|B8Hln8xe0{DE%ac zAq7>6{m{iV|Dyrha;iib5@CFT@iy(ZH(}1mE0|AQ@FaCjJf*^8Lyb3eEy=M@(VH#x zABrFHWAcdjm3JP9--)ZQ?(PprGYgA)ANZ}b_D;>oD> z>cV(^BugW#xWXty?A1y)AieZbP;qY!Ct$dz; zr5Wt&4TpdN9)lOO`)S+tUhY4(5QU?xe>6M1no7QW><_{4vkhN+P}uUXyiNt zLYw#5pr$T$eIgGrlcu?U9Mh4b$}DCDUOBfaZSbYjX>I={sg}v0TU|}SdJk^oM`UM*%0Z73$y&SfHWsVdC7)l5ZX&()2#FCPu{D+A;Gqs zwFU-djZLSwt{&{(97K8a^-uN+y9<&C5!}}28R%Sk=%9B1f}=J^w`*&V9;eq0Q``tz zUiDRUx#Rj)KOn~j&*o}Ym!^}uD3wFpwWAr95G_*v%YxKUMAd0giq;}j^hNu-pE-xV zoMJz1r&F&DXtmoCNQXLDtlL_fA?&he3Pa9wU|3FQ?!1 zw*i2Y;`emm-8wmY=lFe~#)D^AWYp&>y;4+ezeor0AHkQikt0tLibYJm2r*5}ZNat9 zL+o?i!LJPRltw=ji?<--IVjA)5+l47$lwYj0bbBZg2_e!6C}(2-l6QEIGmH~Pl7Sz z@QNrtC|xu@G}mWaG$;@}zv7p3yj6Nt-c@_9DCLz_$5S3iG$NK6X%Cu}fr1{3;-%wO zgJ-KDY2nH{o)lXHg|Sc2KiHk)4ZZ@@Y@qf*?&=5q@OYSc1}@MdQK&at+~UlNq`Q!+ zqGx3T6H%7Z;=h7;+K)=(=gj3tH4#*$9QG&Y2xX>v?&rxpGu7J*kz4Xlq0dx}cH4D( zX4}1T#iP>jhtgs|`>IBMiFC)Kj-d?4XUY8eh+DD=#(kac)@G#{6;LSV7t~cOX>B#S z;v=QOMzrP4f`G=Nxbe#OmhTJy6ESarBGjnLKMPkk5h0r1%@^x+01d6JlKQs=A(guB zw?v1JU4U(2Kob4L+e9COfS;H9b7dD3o8opErMkVXhrPu{CyxjDy*(}fL`9LJf8T0J zCDAIiR2W&7buCkzP#O0&N!w0ro=NGj{TerJseH3SA-v}v=n@yWotq?)TUtEcC0}|~ zdv&!wa_Eb%RBkVC7f`Ic7TTcsT#)0ADg+=3g4{y3=P`CNQJR8o)??`Jhs6YDCW(Ulbqb`B0KEHAao3@R3|0iUqge z$K%nPuO2%kk0kq;e7n<9qMjRc0TDC>aFss&CCtr%~$e1_28&oo-rJ)pSCL$cggni2|Mb2+` znIos67#dL`C%3l@^fX@F+OXUZ{?7)D6kAdY0}~As%|6(HdKKypLoqHhj%FpRecRwl zazDRZ&XiMo|2H@(Oh7-?5z1nx4#asHLgN32uBwLwcoWb0h3{_)6Elo>Bv3X(-?`DP zI`CCC?>DZTvOyyMxmPmP0tb%;q+=lL&Ho&9EvpYX!+lSN_c!%LiO*{StZ|kb11CkZ z13MT?a&6Oj-@JY3B~UcUnPw_nG(92K6R@-0$f+hnB1S?{BY-ijy7Q|-JZgVo$PZD? zAVvor6tJ8(0B*CSTDYyR*)bRdTyY3P=Nate zQ+2T7!3Q4?zwZMv2)Y8&l!W&$#Cu_CE@{YE^1M1bDXu*U_?kMiKX}Mm?&B5V(V}(E z?CM!+QTQmIPU8XdqYvPEEK~Y(0D_tH9lAwXOgk8P_q6iP{&$0$Yn1A)ynoD#h_7K# zzRYj@A|0XEv%lg~LPEDl(<3`bv}c8p_eJ63%2mFVs|*)Ee~8bJ*iZt&S-0U8iWnqX zBD9akBkmykpq+|Jxy;t_yKoUNbN_vF0AcGNpOClz3n;aZdrK~=1+sJNvu1!+8SM1* z-QNk!Hlqt5EX$YD7u`RNcW@fYc{+qtfz_SQm3{U}Tz5~y4(?}utllo*8tx|(LZo?M z$o-$-pxaHilfB$e`_ArDIwHHnLxei852!$vEG!YK8DJ0LmB=WVxLqCGD50S(W zro;HW2P&o2*SPOJozyy#*~V;c9&nR8#rGIaB^t`?triP=1b9DLm7Nvi^Ny*d?rVYF z{YR?;-D8UFBH=!c3?SD(G{cUSLqOj{XzSpmMr~_rm!kWq@4~*vkNG+}M2+~qlRJ>o z4CpMt2Q{K`&F!TLBj~!o4pyYmM-P^j7e~(X<1h0;8v+2Ukfk0R1s+oWE=u82n=Ar< zr_{yYYe!)AUk=$E7J7mG(@{_X$Q@}$ANFg27ghzt8h#>-%V?IiWj+!4+KW?`(`#qm{;v`Nb}^8ej-q+@eJ|)6F`&TY{tyz&n{Mzc*|tu61G+oG zYuAXa$4@oBmd0gL!rQ+SP(WsWkna`mMMJUQT=75+-Oh_(IZbckM0mrJpM{Mec#W@w zMR+muip;2;s<&Q|z*|(vFT5u{*K6%UlG+2|&@&2)>luy))G@-g5^bXMRu#O0VIF~c= zE&_{rJ{)!^a2#DL9)QUMnraZ z1OXpa@XPD$%hMCwom>6HIzaU&E}(J`5eH%H?E!HR8ID~4UyXYDBYW0?BH+O zyyAJVnj@ttW?0YH~|EBjeS^S9zpXXY^S>E9{XVWsE2T8n#eW((g9k6&1eqzS62kK@M954p#?cwFhDsu@B1 zYw+An`y(wltaFs%;hFyX7xNt(I1L;8DLVKj;01j7 zdS=h8xS_VN5o((^_TCq&3|m~ldwpUq3Y00=&EOsn(eF{J!YUh(c93}jW}~^21yIx+ z*PK-N`#426dRlsLR|Ip&f^RuH0;|9E621h|)-;4PSxBQ^?>klgnmfASs&f?fRewlf zoJ-+9i_lz;01h2d1@rfkhWE6k4zLu0CQ!|eeQ?N&3x^&?dqC*#BK0xV{XMk>>gPNx z+dY{8mu6Q@6OVoXo^CQS>ZK$OWB>H(PI5)NfZI~eyb1j0QqJb8>~9hLa2bQ74Q+@XEbvRyA`Ec!JS`5N1FAJVLP zz$BIBlj8B{6w~U({7X+*95xyEd4hM2+7Rx_4I5@YzWuitzXE*^E~Y{dxITh;6_0>s z;W8Dc!~8IkN_d$ppUAzW2F?7zTqa6yUgReuW08KtoIgCMjf<6QG?;?I(#uy8N>X?& zJbou{jfD2_?W{_K?yI}W{nBOo-v@>yYJ0lz&k9h3re!ZKve!|xod*=-SmGz3(kQH$ zOH_uC(?A8FHAp0O{Fv&H+Afk4%FTroXQpIe62xq()@F**(e%^R;pr@i&oL?EQ6OeT zT>c48XN1ijbGeCu%WP&`tWIubazv7v4TJtbXcW>^vSZk%`jOV@S%7bG=k!DR>-OZ? z@ZE_6d#sgV%B{n9qI9wT+Sb_+T|rUP>^LO!MCl_5D;H^rB7Ol5=n)k6PBk5EOANCT z?*=9tKh{-Z=uUpk*fX;04}SI_1lFehjnqoQ%3l(;H3)FrF%BJHh%JAFofJV6!=OC3l9iOv5% zbs*59HTyV^7gTGT{4`cCg9|zeJvxYEXT#{!u)9Ruv!gK3x!BN>Ddl%yyMltP^Pd)r zdzVdRkT@*w!}nP#NWT#OFRql}>~4C^Vo`g+fRjp|1K@(SmkH!L|Nn^2*8f3tB3IpI z(I4Ztt_Iu(4%YXI1G^NKloOA1e+gkG>j15%L-^|)AP*lU`$j(j8E3wQQV^X2QxHycoUvTc?p2aJ8@Lc=hyYr;%!ZV)4tcLGtx@qsB{t1&{ z(Vep(70%Qq@p<4MgNnn2T4lD#yM=^-`F?|Gjp>RT2B1^=L+pEIp53}8VDPxvA!4R% z*30^FbJ=Qwa+5$$M@60t0k$T=Z1Iv@P{CZmw;oM&fehsq6l3<}MD zKKm~;BbK%5FaNk`@CGqngqu-V6=wu-S^bMMvPw#U$atZ7fcDYjECPRm1k6(-8CO}k zgmp|!W916WTfL8r!_<*j3o3)@_K8}o&nCOsA42uy!}{0~ z!P2TL%h$?ZR4+?7x=ebyDPsd#Gmz%atEU~$hI=-l^iS`{AmgR3c}2ky3nu){YMa1Y zIKJkTmks#UmiKzBuhGWqaZeCG4)LtAc5i`c4pId@9_?)0?|Bhge)?_BJ7eAIY89&0 zdxIjz0Fkcd5ElMrc!k-)?eL`uJ%R_i80FA_UtI2gCMaWcbc18@DIXK>FLq zx|y%8=Lw8G>-2cFs8fDSER?Z#jBo=a$RfbWji9qBTkR`JvbS&}MiSriYfL7#~_LGcf?7B)hy-_)e|2VW4DB40# zob07`a}&izCM^%mj36@)$60ur95-iJ`q`@aI`2M5p{oGbOS%1vbkQ7Z(TZuip%a^b zOY*ihjIph7sqn>PPnV*4I)EkW0zd+Z)FwTYY7yLGC@wBe=Kk33g1d>c*n-d~)e1KMcPe=Bx!W(6X!)%Q zs52)f;j>xpNzw4r<(lj+v#yZs;v z#)31`B*E#@GuN3`+niKC34n=AaX~_*(V%{L@NJo|caJw1Xper2#-9SH*y|XfC0`+~xKa7cH7aFip$VV_ zqgB?h4RF2@NQgf=U?VNwk5NA=hV&N`_F)0!FRidRP-k4&ieP)7;?J1*gA1xwDr!?Og|foYMu|!N8ee% zs@~}0dDmR8`T!aE2`ZjZWw>RVbf7`$)GdNFy$R?q@cT9oFfEcm+uuT4LqfwXu3Nc^ zLJsqKW4(o$x)+(YM74nzrZaW|YP$KFRcT~;lOrp0LpjDBOd%Zl@AM1|Jj_zPOD8JM z!lk~4s(c14N_4G^STLY=Vssdoyb3zUxJy{*Zo(UV|EFt?86voi6a4P0kdx!CD%?HZ zcV~F5hTklVcSzh?9X?~CE>f2cH~Z04jO#C(HYxm4Awb69H!=?sp6?$fuNIf;SQt`F z0cc0&nKeM;_awsv&WP#h28Kw%@+}xaHZtZ|=)yiiUi-;;vO8No_MRudV!@LiZJHt@ zN($xEsiuZ%ux1NUZ6I7qTw9)TW!j!jh}$+BFDUVzz8EjpUU^eu2j%{I#$BHxWGZ25ywN{0o{E++v~ zNaDPC#6pZyYLn!jiH9U&oPbANjl|CgT?RtI@XrygJ)dpLVgsW2J|_L8T-<;gf?e0I zCEu*s&Sl!uz7ZXB4$XVn|Yti?CBTLY1bLNEu`MBvnIJZC>p*SQf(9Y%p|jQo`= zKng|!*mo_Kb!eVRY@=AGB{o4juP-&gnCkT8vVWEG;`(!N`l@a56AA-s8RHutrKS66 z6jNU5RIvB6v2P#oaiPXhEi^L?m-k=luSVg_+#ya^&7Y4}E;;cIWhpQF6PQn8a@!0U zgWoZ2*QQ0ir25JW?I$Nh`!>`@sH3sbD1y8vKje@}$67k25JfqU1xd%UfhAn43qElg zFQzKQfS+;(PErhYra!$rj)$DainrFLFEKr(C9x?R{0jJ#vE{GUca zu4UNjHpz~u-CV;7gURGpz)TkrL9bHUn*8!3mkB+X&zxhAN^Qnyp&_a)cR&(J7U_jq{Rbn%iq&_7GSj%k<#y&`_&;U?YY{OKf5JtT4hmAQjxQ=uTKfeS%5?`RHg;KU4Wv;Zy7wrin zFMpTcHFDxlCSRhcaWaYq2^>KGIKLHHPoN%fKN4xereJgi3rC#fx@V!q(HMCtDPRVE ztdZD}?|pMAm@6R5x^X+X^*H|a1oS&B7?)Rk6gnC?+%oQ1!rENP`+8+4?YGtRTE(}T z5hx}5HHQmGY}pjV*q=OCrd>44y}=qIlUH){o9aNyi^86QC1K$s=wVy{bXVSoY4B}S zhAe%tL_NkId${9mu%A`>H+!UGG&%>H#r&|?MER{%`3GWK3JM%BW7w!W>(Om$$K$rY zb8N=sVA#0CZzdPE_#gi@une zm(;|ot z8IeTV?Nj{mrr?^TF=+nlSM$&E!p#Pb-O6FJTdl_S9R>N`&lwvhCm!BAg1(DYE_-*o zdAQP^-_o5>q9>ss-T8qp;y^fDE4YhzarI>=qr?~{ifAxZVj6CQ63M;U4A?G&qu0D` zj^#;`P5lGn_75&^;3F3Neiqd;>OtOD&kF^<-~aJpnXu#XYPRupz8I@Wcc3)f&256 z(mY3m8V|eAO=UqgSinBx#08GeJ@CEjo+u@Wg>4~AXHc% z2iRThT5Rl7aMZp2S~8g6Y@8hkD>B@ioP5%HQO{!?8NDjQ6P5Y0l|jR!w?g}8|JG7r z+xnL|95Jej8TwFZ83n^%I$T>e&S#tQ z^9?)F&(^?~O^P@RZp*N?k#ftNn--54A2Jr)p)SG(mpHJ*cEXV=YAM=Tmbm^UY@_7W zw&U1%XYqhw3XS9XSkA3l=~O;|#c>^=yMy8;;OiB@R1GG1TYvfe>9syo)-N!8yOnPa z&H*njmBa99gZMfwmxVD)@d(bAWeB+%`rq3TEL_a08kfxX!no(ZL zAS&4U!&7;Bllu4^gI^UAVgQ!yq5L4kN&y_sYc{LkZ-){;zZI|ma~!U;>+8_Gsk^5; z-e2iT|D6Z+_;`nV(eu?AF$ymUXt7EwUh#A_5=?97+sdE0e!;2!w_)f^(89LVc>%k$ zPXPowQ;lP2qy9cviutPyvWFL01z=hR4>Gnu$U1f959G7JazVYm2K6e`K6VDZf*<_Y z>30~fOXLelgUNAilY|$ibXEV?C&zcwpk6ht|6Lfa4wRR5O8$Hfu?cVInPrXTO~ohqB7I+~iAg1!tA{W#$Me%Jy7{5@5f4Va{5;(+&g9=aMI zB5u@T)Q%ffj!bj`H)_Xq)Fy#Zw{f>A5#a?1>c%a~(j$9x0X<7Nx)=wo)6&2pZPG-L zz_Y-hW}_C~B(dDVO^_i=S1Qy?GY|m#k*Q}yhJ~Y0Wh4Dx)ABR!vU4CsbiYC7RbM27 z%T(|yIeG@m6jAjP0FYO%nFkOzOetmok9lVW4^-f8*N|^`?Rwi^@GTxC^HO%w5SyWq zxy(R-I08(SzL1Y?b(G5oAEP#Ifl=w_y}}M>8!ZBC;j;tQl%Hd7OX9uMakx1_n`p<^IL{2ki|(;FLAM#g@qgWX8MqmxQ(!I505@ z9`yriz~aJ{q}_4;Q5=Xmy!Y0W7_ZRn*6F7}U#KD!`gUxl{MHw7VQNY2XBnSt^4^f5 z2MB{T)2lgas)fuRd4KC*P;&*2yEmHWi3YuukBeJVaz6CZ~nN|+R#(Cs{!H4lbsnWgETC;4h8 z59MWI1+?Sh`0BYH&?ZxA{la6xGeJ=l_=6}+E`wSf5!|jhTGfLQ;mb()-tT`-;vA5x z`Fc{QQSe!P4rN*amgXQZbP<}akZCXxADGCj{N<=+qSU!P2c3oTNE_tp&lwkc$Mxr0 z5iV;+t&0foJPzigSOEdS*|c{}k!xPB6jPN}ea*qaLY%(ScsVGLs1d+CFVTG_WGnj? zCxuC4$=&Ib~^H#bq>_#78Sg^7G zTOvWfIA3#i%bfH2%j$K~d4N9a*Za`aPK$by)2-!#AKhx7XUylgkkp>3r3Kk5fuUQf z$ukZek#N@<5JN&+=rK;v9fi2s5}30t?LMxFgYHuTI#{W_fddn35X} zX%BG-uRfhCFrP!lS8!Mk-tAvY)WsRR0;}VtG_?}hpSFG-AN)B`rJ1-e>=*a<`zfr8utIkpx3=0{ylk8e-}aM7^m(CVeZ2@!U}}zskSZ z=nUG<_WT8hNjI|;|H=BZN}Q!{#OJZ`u^}}pRl`B}g>XQz?3BrA3;8OWty=jNGlI5r zyV`-;4fPF zRD9w)%J?03?->Ij;Nc0z#y{GZ6|@gx2k#Rpe6G>U;?gKOBnwVbA8^F9LX)eyNP%FhR`v!7Y^z=7ZssHULT4?a*5KEEhq9! zr|zuBz~0Ycga29p{rHV-m27MFvg_X}cGDP$CQT*;m%~=z@Pl6+;i0}a#QTbc@R-^s zyU#kr=1_Ig-`ZG>I8ii?N=4jRI4?dlc=>8PR~6D!*o!H}vjYl}d4vov!M0*Yc zuI)hxYrzWJloU>ax=c9#h?GGd#^2agl1C7s7!ZCdeE%VP{fD!6u6`>pRePANdv(PMZ=&o{h9x>XuX>y^OGDS*TIP9L{_G)K@rgos7n?!V*m;12Pv7wI&- z_bpG#9v2Z>88~|3#^d+UeIX0U*$*Tl5NPPH%>M2aPz~YdrMqo+yNcwSa4RsFG=k;S z2XSCL#W5;U1+<+~Ko237EE{{Q1dJnU6bBM)43Naa)9Ax_e+0Xg4Akv{H~WQMQvnM; z%cfm|#m>f-xe~78feOWjalG`@rB2tPUc|!2`@uMrMjx6xahz?zm>ff@DQw78cFf{a zywQPCa5We}%LRb@7*Ui)Jt5+zn>qu z@Ad8m>C8R*kP#NeS{3k<>;f%GC5lsli%Y# z78#DF;S26saFBuwg1b{SzNx&NuXe3C9jjXu!3-HW*2}bKHCK*#tYSFJ^DoAINFsNDG6h8qP=kURRxwg z4rFLOucaSs`b*KO1>=(mr-@qT2ubVdm+}*qGaAG zy_DL%p(=idds(<@p$&$!5bFl) zuronVKA)Q=gal>C2jX z4?2QXh#Nfh#ZNI;1);r+oHr9XH+%ZOR z?~_qa;q^&pJ{@>A=uyJpTKpmxvdy7s`&WWL#+Oe=xx$}Q(_$z1ooj25y8E5(|s-H{JbE#(*O)(&GnpbPxSMjPN{X1hb}1MHX}La`j3wjh@Y5BoYg(%?c+MWA{&eDh=xcRMA7fajZtDmRu zgRFC*UmUuYJIk*@7HvVr6SHrfi7jN@taX-|jTjxEZt}OE&R1U9sa1ZKdG-GA$NwK&%ZoM=jMjGAx?6P;j`-(; zxEh)3GqEXj%ptqx>o$2$rG6+&x& zUkq%lXq+!2_x%_Sj!1U*>c(&%9uI#Xc_ct%vluc@D{Jd?4{>Pd&3*<9{$5Ei@rI^Ik*FLi#~@hd0EIW3+@?EC+)QeiS+2Jjmm9S6dfh^`sr$H=+1lA0YK&J>G>NHmCNsvxV_@4*? z3+Fj)mi1rhVrXp~fnGpAt&Ksl45GYHt9G>dl<0b!OTH@sb^{(X8owujs_?#uVSe%v zMxa*>kQZa-pPGTnw$qP%lOTg~lU_)p#zQH4&#OmXc7x=bk!u~~HvvEO0owP}i70q| zS|8*IO)0N;@p4iTV1K~}O0_Vei9;KN*`@lZs_CDlBap$(`jxxZW0ENbIjCC4E&xb4 z*QM4*WkX!Ce=7BHRWRpb7>0%VLLamY(WP7JI$djy@1el1hFhfD;!-`ZG15U2;6q=Z`ooH6#c7)5stcP6 zBBYz!Ea5s&A?oT3-vBHGi?RIpA<4H8LAA&r{g4hYAV$3G_biYH_@R#;7thozPh)f? zJf3AW^0mgJa|Uu-0YHtWBIK?Nw1J5n_S5PnZk>5r)dg!Mo-p8498xNDz?P6TTFi@! zuEBmrOJFi9fLwLdSL{BV4;+*Nd%36oaBVDXLC!d!bfH7Xq>w~i?zCLM$_ytg1^FQV ztnx8zSqK&4z{&5FsjhW=y#)jSa3vj=x3hKY2$bkHk}aX>P$NgX8assBG*lr|^X8+Q z;N|a2O%cs33`P@+yyZL$BaN=+@ZBV<02X~DK>7|E@H(0x5dQU}_ls$rEvDg84ds{wxwE09w%pl0Rmhj#B7D-F zCENqiA;8%XwL>U`Bu&G@C?<$p)={YmA12-7A)%lKiB88yCL1erG0tZdZHQHL+f^73 zJ*$W@DmQb~FGb{J-ne`mw3=o@d~%0gDpX+-m0D~2C#3mNrk-X~^wFXg!GG^NyqA>Q z+ft!#xPmmZR!TSuRkfOYP32Q09*#k^`X45ciUJ8)8GNE3~R}mSQ)JDtjuE4a>-v zq4QocHQ6H?`~Y^r(KrY>@t)G`_yJE_c}({m^+#vECD&z?FRAi9osD8&fbP#vjxFO5 zLfuWomQDz6E|>gkm{5>+D*U!o|5S?e$FCr^X~A4}yJ`DF~rS_Sz z7o6)-q<^IHFlYjQjo0EA#W-te^&*X3z2MYZwD?T(Uletf_O-};tGsvLIj&||{J!1L z+#CpFr8`?q0Pv!R+$sS%la7=T6)ko5i)4YICxj3^(d|*2mTf|GSS!h${TEO~b_D4{*RT_q?g5RDvW$m|%K*S4Qm|ph@4=>a&qo{)t|FFvtSLHf7$fhPgaH z!%a)Fh0rWL-9PzBCS# zAmfk{o^6BD&Ve-)BxV~*l7B2WB;p@P;X7=i?kf$zLHQ!nle{3MU~U%fgg`&NY~zzH z*29XT%snMqJh`NuTAy*Ui9drBnCDD3gY{wQM(iZP2@2i^z>h^J>dha_=eqSQS+l%E zSHp;@tSBpv-RMaImU5H+w`6z2R^`kEd;NE&~%Cet|Q)cdyB(%TtPP$5F)_Ea7!AZzjt(VAqMQ+b@lMO7EV zjBG~>ZV`TswGRKTnM3;!06P`~2jl`p7Z8yJvQRPL4yK%tOP-yt@vTkD4vpac*2gJ& zaO+UU*md5Qf)KmqPNsPkr0ZJ8y3nFVG{8>~aEdVV<$LdaK;`q_ZWA5~WKrWEmruVQ ze&%C_T0&37bmE+G-%`w~QH1{rSZVS~UFq6A$=#LV3ulXGa`>(PNM;KOr;@Gw&x*z{H9dZotmbo8pr5|;%vL&$R`k3oh&Mf!44~0kUgufF z`KfZl%6K)t$Y&{>MZOI4aOAR{uE~T;tNe@qECI6rlyatC&!ptcmj!P_JrerUhh+~h z9`Od!jA|#VPk|>;Vn1V+DQ)s&C-M_dJma|vd2n0KX!&HL43~hUimw0IWcIvw^nZA1 zYK77WY~x4PqZcNWhyztX=|BJN&MCgzd=qK8dSEiV)@-g#@*FdEGLycn&Rcv&Hq|YKN5;kc288k zzLV5Y`EK-r>$ns9h;e`I)X3G!uK!H0^+4JRc`>v${%BhwV97lvd-59>tMa5w1@L5w z5DXY%{6)Qh@yR?MoNHuVl3kaPAbLu4xod^%6kJg*bMa>os(H3#)5{;;Cd?IORx6MM z=DoquIRG{Jiw7|Ajkl%Ow_{AC#~*FB(9}O+Z%JM+hw9gSxV5WXsxD#O3_`G53`f&( zFO0dRF8y8>P)C5i&wZq~e7a7%_Vct;>Dj2MSZZ_w`nY92ZRy43uX2#C)%bq&PUQc_VYf z5XzC5z1Sf8)e9ldP?)IiyJbu1ig>RE7k8^FaPp-t8(E$9P&Dtucr)*a1l zwwPRODD93}k}R?$wn;+(f)hM4$_?=iz$9mq>{Dsm z{(dGe{1fZ&!-LUvots(o4%{b03elVce;V@>o=+8UqEWP-IDZ}WHIQWj^HDexvZe-2 z$>QEZ#wn|?UnWYb7Ylat8R%I&id)ZAfPXJ!&MjYNN}x?2pp;&$$B7_;XPryi26pwc z+1EyY*XpH>3%mD3*Uxio`Uzw&y4`%P?i)r>FF5xGfZxOqAnd$@WBrwtvCT~cLafXo zR^R(Ns+vfGmP3n;?y2p{5wRdvIb)Oe@>AnT%|2q~uvrKa?ZMA5ub~HL>O&)IDRXr5 z6z+}}H08p@)|6?{y3v6qaYk;d>-z>I`Cb2JCp!20pgoGSyPd?dvM9DB3SJ9p8f@p+ z@}+iDB;$RWJ6VywNoDJt%1Ci*`+qTVuoZv)WJj~?-Y`H(N6PTCYL@ZFQbUc}ZowWX zcz1*nUZeRfmrIkxzg#lE7tR+0Ke0_GCm8=`nG-ZGaIMS+Eh8ec{p zh)U?*zAGy4V#X)o-nENpV#19Ht?hZ1wW;1hgFN##YF&?WEP~!U(mzW}Ebl^poNX;Z z$`x$#VprrZxX9>wyxokfSn%Cl^ll4-rmHN}$bSBt0a zgQD`NO{&EWxy4#KMZP7%96&_;ZLPl2dWD%P@vB1psg2&x12^&&5@N3XHE4KMYTdG> z$K$zRH%=VbVi0%gr9{KYia&zIBjeVT>Fl0aFJ5Bu{b&W8B79m>uBE->yGjtYv1E9* zjY(13>;i?rtVr^jt@Y5*@d}$tPp-#-fO^I4jW%!wP*pyJ_7Z`*s{^(r(A!`RpAC2>P4oBV-EmGn0P? zRZj@5V&WI%RO#^B1!vajOb36gh5p^D$}NyOX%LWVnBt{DNi@ehT$cO)_Ob9raY=rY_&sgVVI9aj58DKH=*{&0k8^*dYmUes)ZYaHG$`&DmKXmxs+=Yo{ndYbLl$b~8S zmiUSfH}Rb{9UBSditUD8@)wdxQwUK@Ff89UEO_E>Y&FvIOFHSF&hOc2)A=olLVC_7 zK7DLaJu)!QlhJhSheU=L?_MR{eb z`vN{!F7oO=x4y&Uh0axUHI9kUN=Ye-W2$ozJ~v=JCCDFqCG_Rbp=RB}dIY-dH~)03 zAhM5E-nIYdkS58;N;`S$5FuC5+aqr@Nr!7Mwh4(!8nzc?+0SV5nON!Q2N39USZVT@ zbOu?qNxXHoH||&88n1D%)JbK=m2xwB`NHn*o8x;bcE|2ew__t|yw8=;xqxV?1m)D= z$CoTiwdBp{Uns1Zg7eB$TAU+;Kwgbr@8l*y6d=C=pzJ`1Zq8-QFW65>tp8_Y^sB5m zw$T+xN5OnwYZh$dn+ymF`fJBiyCk_9Lh)We{(>>q-$d5-G2&m8UcFB|>Hy-5n0do5Q-#BS1F-if#G(mx{E4>8^m8+N9J z=z_*Kp|CYm-nIJ6CSRNMe8eknIxYDF>^dRGM0MRT@}}dJiivCK$A0XiOs-zJ4nabl z$$5fwyD4Soju%TKqDEaA;jz7dnD`1z?UajVN-MU~X%0p%OFC9r=AW!qKq;TxX1{Xu zumr;9LMeqciTPp9T?B?A6T2`}BmQNM@Yv!X z2GDj9%h#lFvX9BqAu~ixGjFd1{QIu>MQUB_fW9@r43 z?Mp4@?90v|RPFJ%-3jn1Ap@a?3|W84&qD@IG_pK6JvrJrGSW*=Lrb{)Q#qNo;I z1O~g?>~;UkJ5oO)%^h^Yr%e02Q0xqaWZ${IS>Uqs1LR+*omgoz=Gg9+#%`OU{(XBk zDbn&*!kS`gJ(q$N%<(7NvNuRU7cXtcsXNn+gLh(2<5f$sdCD04~F1EDmJZB8fH zDFdf(NfsM6hnAAjLA>#=#*=$5-VnrITSI!NzXFm)L`&EbA*y;&2?)wG+Y(Q+)b-H{ zVPrL6-K#zYzSq*vlYRHePfgyPgNeHXr70P=5#x3b=xdwQ)8n+8T+y zqXojONNwcHLg-uI*V2MmWXN$8n#jsZuw;k21SduQb(AsAA!XTHb^LN6p_sbv8-?#z z_5>88|Ds7o+mrol#=d_!{SV+OBk&IrR&v-r8iO9E7(NK3Quv%SVm2TWnlik!x23ap z27m)KKeiV!O!wZO|D7aLxSQrM%dOo6fA^E7h}D2Z8UT;e>?pXU`X_u>TV4XiL&d~zJW+ob69UCR+}$nhU;3r_dW&!eHA~?q)YnP zN%G-17==dcS17cDfOS-={z6m7Lqk(Lp^87xFsldMe{~W>*!8g4(~oItPO4S za?s)~+5#zku8N47>__CJW~U0qCpbCHoLV8)N|K+wkJMfRx}P z5XT$ROJ|J9_hiZkpYuug1DkOTryu1`g$QB?9BV_Zk)E6}3YLIcu6v$}x}XZAtm6)e z?}M-^8JGDp7kDkAbp0p=?CN1)jJ{x(&6BXZ?#f+P7S)TKmZxLpdOV~rrLD>iGQtuB zy#*frZ}S_T-UIFSB-u{fD^5WOJV~?Mv0-kgZYotyb!iYXNeS%6X-hF=UpRRVGFwNW zJ|!8#A;MZRN?Vrz-GkpDlm4T^xfJq?*UESqI*X9HAQWLNU&gLtfcB0|gUJ1R=EW7V zpV!{m!j-Gnb!$%~YgJZUehybyIivUw`40f9B9H2;z@#e4W6KR$L(d#S6QK2Q7f8>- zM1q9&ROOaz4>3fMN^9 zgm3zFPtxGpv%W?$L*E$8xLBQ9AxqTsn#3G*=8*G71A?QmfV5SO4u7^~`W^Cp*Z=m_ zZxBD4_~fV;TX~K0fUbflC_DdGHb(6C{bvTCN2p2EM$dIifYUPqGfz?tsm{W+8M%QG@{>wwapUUWNH%Dc_Xj-|!Yz?> zBiuElxsAY%A8I}w1<>?h6qyhMSCRb2p_9ep!9_5OkRixTnB@8?nB)vvKr+JN&jlmE z!y*Luoii}pESdeiUdvlsS8#dS>=x~(>J&Ix!{t_>|Lcrr&~wxybXpDJK0JR{vB6%3 zoG}F0D? zF-RRTzMY3f_C@Ooe zka0Irl1g{GRK!tM}*kdwjqD-Q~VtuWOv^T<1K`^PFQYIS&b} zvMB32whhSDpHQ{|q#+4SUcLJ$eGb}KRCDcMxn4Pfa&NvWL)yzLlGAN|2D3X@V}y9xOLVV28jMjdL9lddgsGqQFm82GCivrE)= zA)f7NAprq;c`CXvAtA}93YnU&daaozXU%)7-q&wjM@KDSrbE{4=w7H}exC>W-I;=$ zqA^#qwf5F_iIy}yMSbo_FVt$?@NV7VqhQf%H9zFSJq5~Oh6;OZG7;Gz;dBlDis%$6 z3G85-u#4v6Z2}|bqq)6&;p>qX44JPBLKC9-A&S)>rf_h;qHq#ANO_=$ziwlKLF;4D z4Hs@MNfkzdm$t!7#?GPt=;E&(oW`Awifx?D@o-?~2etS;fTpepIaUKoQg}F)z?9U5 ze34bo4@qT?abQ)SgpvpCo6HBeI*)^y8yc^sqzm3UY>f!$w;Ki@95&p5__2<`1O2WKW-nbR zlmd}lsEZo$#JhW+`8Jp3I=LO(RDAs28}!>Ei8)?`Z@4Lt@5XU%{NM|$6hJB~AYMdI zFjO1fuqsT;(s`B+4212;eT09?+6Ljp{y6MEEcp!=&GIS*An4~|}c>RY&i10|`;3Trf+}=E$^?BwZs^Cuf z=JD%}w7opEk$<@Pe@quc0v9jSR;POGD9Q*x2u&sRH~HYJ14b)Lw1Oa)tzqW>HH_8u z{lvR9IMl52rT6*>|Mf|R6kHXy^OIN;BngJ`aQ8!@KeuA_hrsTI(9+B$@%tOcw!T>F zpCE<#LA+XYO=J%a&xIb&Gn9Yr+M3otKk@_)f*yfD9F{bAMba^V>ZO?m<9`n0zam_J zjq1e(*u8U35{knFzi@+Wy;C1$^ij|9k30*0Yab?Og8cKtVkYG9<4 z9@QY(cufA-=H-8~z+O*W^jh_EHz~Z;wME~g8bfZ|B9ZX93z3YjKTS^j=MrGQEe_v) z+^0>&Y2r~Y!cgHsIUp5Je6dJ`tugfdm_J5C}AB|!GUzn9YIP_^R=EQ2eWz*AE zH-}0PjiUDkF#{UKEi{U;>SOGyfBx$&{}*ckqxk=^7T0bPdMjb)cApWh(|5e=g6mlf z>yk-y4}*LtxC@S-Kd%TS!)Rup7{BWUD5EV66?*8QLm!6Kpcw^6nBmTO3107kj3@{q z<|05*MO}HFSp1Lmpuhot#B(!o(Xxa+l91A~J_J}4C*usk*fAe!mIv+-t)jYJ+O6AX za6Pva;oux0_;vmZjgtR_0_cz2i3p4TTtXw(BGHc@{0jf24V zI6WCXayAzHz6r^53wi5z+)EQ%hBZk%k7qg3&II;x2&%~P8dvJ-ukKy;HdN*Fl}u5gg~NPC;VMj|l&q8dkcuFk8|yAa^VTTqJSEs#%0 z0_uKyOb)fEoPX3u8UyYVDyhIdSsQa73bmQR4g9q0=TGJHaMk8ze>J1Yi%h89S?PC9 z7~yST>RY5D;%xXy7_zS6a_Hs;Y3E7&!}w3vmoWjKg6FO@FnLcx!@ICJ^@4UU_B3M3 zXgjEv7as!UKLvr#O7mdHUR0{-3V^e!15X~Ws1K@O9InhaJ><{}gLz*l0D~LscBUA= z^M}~=>1Jy|JZcS&LiiZ^Z=OPRd?1rw3`_`18`W>>tiVRf76XU&Mv$gF&>?^6+6!;N zkm26d(j(L!++cC7sL*!8K}hr*hAtkQBe}o3_7_Y)irp3;S!zM0I9I)xsy-C5_M32O zps{V&fv7_Aw)k0>2f*b}>Y)Jd5;B|4vVN=3fCU$Cn`B1gf+z#lBiFvZMx6^ijzMSyA_7)7Qu%(Ov}(PXr)2@) zrA)$g&f1d+4LU~=23j9AX~1Cf+7F0#C|i>a4!OVoVOuPt_A6Ln@3+6FUY)t4KnpWoN5Yq0A0s?*srIc%ULlDR7~G(A4r_e`*!wXLxX-50nq@8w&N|b;LL9Hn zI1!~efC%arDY!hI6eD`L7}%+#4auN3PVD@3ORwy*K1z?+yp~4@dbvLWz;sKZO{Gpi z4;2N8I-73T#sG~AlI*1{L(`&@EFA1=E+KE1fOOg2RaT0^t-HI%F$Jf$K2}j>TTEo* zUQ}fUvfu|=1oXafSR^TK0#QT}a0d|qE-J8B_P^M6;lQTR2pqxz_$y56jXg90D^?h% zuL19=(Wb{Q-zW~UWQ&Jt;_ECY+H_{y&kiL7z8W3Z8e2?p}ZN&4MhgPNu!V6*tdVg2dnT5N8B1bL}ZNLyG0LJ``sQ= zd?s|s8bFEw?PJV@OJi0+A8{dk5;0J*kAAl9O z8)j5rZ6FHTKe@7m|4s1mtRX)ya{tT4kDcNc~`f7vfk7;BSs&UXejn=S+dISe|b;M`2qRBP$Ga zGv0%|HmRCHN68PB0IP-ZkWZfWJYa#BR>SYp1ikwEHA~zqjwkf&{{8cd2T*gl8t~#T z0xel0#Yx*x=!*bJDh~ur3lM)|4!?>Ygp!CDu1u#=%<<)f7+B20OBe`;iXyf(R5UOh zNABCTEYk=;2HquCRJuS{`#Kk~A1V94T>4#|yPDfe#DW2Ep~Pg5F*JAjgrF1KjyW~$ z)2s~ur@IuZW%kav{=5Q(cwXX>EKPdm@~Uh;4_J|)CujvC_!y*pe@HfhDcpvu#}ul` za5vz+y7;4Jnsu2kx~lVvgi)cjF*tGDBuDt}WumL@>d|q+Wp>`f7*5>;P&{tZKH^zyn=- z?m!h`5WA9D(tg>5Ndu+JRKpW*sfgdGKV(d0OC&kt1+Qyku& z8U}aCN(cosW2iQ$?5F8BQ6yxu!IDXJTB8Ub2uz8uBM_w&P9^2Ug@h_V_pl*_)fow@ z+gWUWv566D2}Ul4Rw^qZc(1=HlOgHO zmqS0sAsb~cisNQBD@Gow%{0pD-Y0Cu6_oTdAO_H)n`LEX?yoLAIg~S4_3FU{UlZJe z^5)nYaxmtbi8cUhWPEznStqx?ff>HW{w6f($KSeKwq*ufHbSDl3 ztik_hh*57s3cp~BhHGc-=kE&J`7$8hzyFgw-?20!kKr-kGIT?+7*D8fgDM~1hMEV( zCl%wBZ}UD12nsSVK!LZF`{_M3QR+x8Gz5|Wv%$MCYQ&-d`aP5Mzt0U_Wy`^u7oIA- z5!>`=J=t>g-o7H+3FwGtmRS#%^30Ht10z&oh6RnexEeakqx*wP>j5Y2WZQD^4+yL) zl?0)1>!&bU z!Pdpcs#hqK6cab&s#eL9k*VdNSV)8RO*_*Dzd$&xG?k%!d_hYDx}7FU(30$DTO3z;cygRgRcJXrWkVRVE?L z97@H1A8;)>UdwUUP9Jogt}ceBQVg0B4ARPCzFz} zho{p+psL_E800@*Kn=sEU?CS@JvvFaN|8J4P3-g|4wPp0e*FaM zH_?OQf6e!q-2eH{+boguLoJ@EaU-z1GVug9S2?Z*qG zAET6azGUsbbC&LFFh8+V3VIpe?6Ha<+TP9C*|1d_$54?c;oxmM_L$cRy?XEIL%&q> zlk3js1By|5nBO=A$taqbXpbT^nHWzZbXMR~|3Z@D@K64=sI0j2!kgCk*z zQE<}B4{8N|>wDgJ_ikHMdg3z8WOq4!(N(wuIF3x<}luKI&P-wj~+}~4TRXP-s;z7`u+Xv%~6vQ%gUZg7U$+{#qS?E zoU$dyn(R+sQE(ahjvT61H;$P7$nEm6OpBu{e?9N855r zE%&R3rOrx45Dzq7hze_q9#gP5P}Fbip-+z+HuKg~W=oO|2LeI^OI)MZJXN?EsgB_6 z*n7nMcrz4U5LS(37|+wRC-b;;)&yKOKEE$KO?QC86r3vddilut;=UgbQiQwgtJLe* z?Vv}E2_Z$F^%df-3sB)9e|)Q}>auQ0BFN=flC{=(rq z-N;3+y0?!bMc+Dv2LJLD2ks9JqLs8$Lwvcoro!sa?snCb`fTt}<4|dgz%I~tuHP=u z-iBco?t}&XwE=6x7!%&|iak(KsOrWg|Ku#+>}{{uuD3W}mQxR?ml)gs3vi^ZcMojiWp~(d(T_>*H2Cc-D!ShG{V*rw4|2eL(-w= z-Cub7k?uryQSvqddp~75^&wloei!@Yg?w?^u17w;<+DlAq}}4HKrSy@tw7@Vo@Q3s zFJIKew`1)jH)JP`MtiKq6OkgomAUbYt;cy$ng~CqFfG8pe13+Tq~<_%?ETienk7(x zYF~wKr~X9HX!{iRCSsuf#g0pREj(jn&(pGdzls=a59(?n)0pJqDR7Hzw2o-uW9}n- z>p%n*$+(}3dP;!E0vhA<>6+1!4+Y0Bhx39#^FN(28oA*d}2NG|%L=S%R`= zebG;49wDamSx&2g1}1cZiYxPZMVywAN*t!no+(M4xrPhH;O=nnK>ZkUVb!mUkiJAg zuRXjgl}jmFppfK7lGk1wWO+F|rVU@`25yCQ2X41%d?USTIyj3FI(&fAwes;TIvZxBF#>v3rw%_GY5g zV~rrP`l=&{DN|96s-tyxm3g?$(#dJ7`G@5BQVh2EdLx&5+xA_jIu`+=GfF$> zJ9qHE05apr1E?N2#I^m_?;!_^D`_b92`L5v{lgLMQk(7}P!%Wz61Zy|PDkvVAVlL}BQk6h@s?lzkwuf50rX`ZiXy3vQTI3|erRv{eHy8850wet&G zLe$OM%+$0C0*h|5rxmsN{C&WD%`lR!8T*>7839()2?Os*o8=NqD>phQc0^E7%{DiY zcBSByaiie;9=%r#m0}bEf8>k2StPjJ)iA+*1|R&l?EHnR>bQ5$tBpy?TX1G@AoU#L zbZ?F;L56|=q{VeV%uZr~0VsY8vz{7gOf;4kE%0GcSA*(~G>|hUqO)|%vL-!k@6gj_ zBf(J}=jL36Eg%P!a;Qqu{A^=^W!;kq4XA4heu|i{+1sA?XK~cP=k518HH7Z6GXM@c z`BEC!toh%fMA1ObYrXr!)h+&r?cf#^|He9y=c*M-I33b+sum}q9;6O(u?u2Xg$%DZ)^3?;iS7-DFC&M_w*sE9j0;uX&h!LdyD;zeA z-wGWE+#aVJbudH5uvOiY5tSZe0A2vnl=v=4zd}ZD zS7sIi3yTz#N2gMU%tGlaV$UvV*88$ez85m0sHK3TApI6>xf6$zg|?te*Kxj2)hJX(4x7$v?eIvm8<$c$@;zCwTG^7d2}G zidYqFs{^rgtm6or`e$^I9)FdX_x1N0G4F%)D-*qWa4B^2)qG&-O939a-BS@X_K7jE z6dID~4351NV@^i(yio?_s$26ES-^Kb`yPWDT2?Q>zsbQCLxx;@%7OWWD!{2+tJNSe z$r%=>Y-gbR((#&@uJc-Axc85trtF^pSMnwL3@8v4xVnfW0_`u4ka@xJk(=Mf zqWBj?#zz>}X)RRkI9zP12*Utw3;_`wvA2;aVC3JvXveivE70Vzrqy{CJBaCvaGCc~ z0p&!b7uDH^P&Xq40VJa<>+UyNYcV_zn{~Fa7wT4(;blHSkj(cCYB>f8@AeS%pt3qgA}IX;L5EJGEC z6753eHS6c+4{7fXBR{jOQiy1`QU>0G8ouF(-j!-0{ToOD=?&ZpcQO$K1w^w$ISE>! zY#(+!8m30!jpKW0MAmMxRms!e8boj#s!h64P4p4kvH0>W9O?=iwHRqvMMzBF1GaT2 zMp2-W6s}32g8_HO1I%~j5vlWezuWZE;Or>b>Fql7G_Myj?GrcwqYE7eMd;oBjCbAE zTlqwVhk=W|RA|3y*H_u7j-l496#b6;wq#~}@}-bG+pXzuviFu0oPK!Knx2@A&6i_eDv`J@9ir5%?~5**c1jLvIB-<<=ukA9Tko?(Y0_sjKea9%6vV3* zkUxGvV0Y*-`Kz8!zV8(otDNc*wi#)fdv6!m$k&r{XV`eM**0-v!M-7D&bYGqxsx6+ zLUq6e^)sdpL7gA`Y{-|}S_upg1e$)L?*n<$ImBUn!*C3>UVv!Vp(Xw19SBfiZnMKK7kH6gWPTd3`()()2^pqpHjnl0+@@qiydjzEfFP9%5?c%Mx%*snT<#!+k3o%Td7)htCEshd;F}Kb z@b-tp1J1WWzX2WKOp!lPf$XuEpIche$KX$6QnTtXiy}tM!i@{ zGj?^g!K*RAP?^(0Pmt`Z48mR$va4#kT9J zLb$C4QjEM%2+n`LKsWZCl1OM7ZtLaDvh8xv)txBXN1)w-><7OI;i?F1!MNdSyg!>S z{mi*BmqeYT-L#x3LM!-V_<&wwo_EHz=L2DF+Wf&P`xY$B<*)F_vVUi*Zq_v2jomhk zH;I!+aiqB4OH^{eyjdqIVkkYftxkNL-0pG*@g*k78+tMCyiQ^G@#}`qA3DGG(v=UP z;#9%(>{=CpHT6d*?M4q|G(J@!gu)z)eP$tZ*ZU@*8mwA_OyfSyCGB&~Pc45~jC&|j zCuAP#hBD#IyxW+J4qGgr)-4zV0*ZUT-bJ+FmBc$NeLK2%YzV4Kwlqhy47|pki54>9 z4w!U3vGL(={h7LHpKuaFW6vi2+$ew2moRtvnxHRY03S5$iGq^+EO~I-QBLM}H`th* z&~3dq0=;u2M+fVm>3Arsj(^4v7U0Q__s1rBH>;*}cSPAJE!)kK&J z+Gd>{kXsewqBSIxm^=3(g$n; zsZobhkG5d?cTP*h<|iKkai}6eC)oL>_wm&ge1kLE-N|A<`V@L%oR0v+?IfzM9J}!G zp^nx`3ApaE>Mh3RDl|aJ)}^=qO3)ba`g$qIA;#dDmqLkMucc?}!<|FO>&e25s` z_to~}qzgg?CzWGA#ha|_UkRGdPYsa=MV-+B&4;CohH}HJ67YrL^o>Htn)rJ^Eb}1{ zB?)D8B%l+SI7E}K!1*7xY&L1hhb-?%fW{&rGb;-0LyH_H?$yzv?a9VDsiI;vczdnE zDORQ75}qI;4FfFRqK`JXXZG{C%5VUYyn=Q1RkEo-)hL%9zmM5KPmQFs{Q7EKJmqeB z6BGuO;i)}k4|Pt0ik}}1nVlR`iJr$3Te%L9?*2jGt8b8dhWIKi?)3|e1jhqbg$%2H zobiAe;^W4@I9($}8b!~xz6iL7t{0wDIegFYp)gztVfY*bVRSSnBsY9vRqr5$;pte` zAS$B!WMwax=dxzPIp#fIhl9jx{z9P$QTz6P54B1c?YBWu_lAA>$Ge5#-3kw{(xmN!cgKI6 zfOTIve1CnAW`;GoUUU}y-CPV_{g3msvIk^Jg}3xDJEVI5J+_r^)k(p(76vC;w{2Cd zn%GjA@ISsyPJFsanfS6RT4+ZPs@xra?DNW?L+fEa>CH~%oBH7W`CN<(zOQ~f{_D%S zOr3<;%1;NL|L3FyLa)Ohvz$=VaH3vscy;#2JGB3nCAuUKNSwXFRjbGL&-Y>n865)O znr#|b>+$;6LL;%o+3Bm#^s6(?wAWCv`O|9_tAD=|$)F}o#^9L=5gt6Akfrmu)BC-z zaPhOVWG7c^0sK=sL!W|x2n>a=d~gdA0W&DbI>X{IR^|mta57R}HROuYVlw)#(8PY}+F;I1|U7NK~!<=U(Tqg`Kwriab{bN9zCNJ;~X^eYYRM_q*R;BfqmIwT& zWL9zDT!fDSVB-OGSzbax6mQg&A{8#p)?fT{O_h;g zCs6G^%zn!Cz!_=@-_yr-Q*yCdsd!=M8d{CZH{JPw)e4%)0f1Zvz zeD>CrzH=;U&!OrsBbiJ_MBR<`JO(cwrT>*_xJbIj5gFc5NzS~V$XgYQx^L3pe- zz5tpb(c3qB+f6pnQrZqCL$b%Rb&+Q~ryCvryb+B?S{(xwxKVSDNT3l!0`o9@nqpAg z+2i?lEnu!YH1qKND0ZU^Ky9o}N(Bc(*}91+3pH4m(3d!i!m1(?21r+L8WaN+k@|rS zn}PTUmcR~ZJV=;2U2;<6ExY|NpaQAD{qWAemk)yzQ!G@7Bi)VtJ%$<8^kGJ2>iU3+ zApwlL!S}%`9jqsH!N_f@skDMVIII9Kn1f**2_61ucON)?V}M%)G%)-Ytc3kZ`pq0T zaG*IfkCAK=rs%*z1THL28ZD)pw*a?h%0bF2P@C!b*=9Gs@B2PfYmLWa1qGu_kUPGJV-b0P_BKy%Bpmu)dcgE~s4hQC}Aq&v5_WI=C;{)zh zc|fW-b~|m3pVn)LGjF%<@d{3C_Iv#O_fYg}H&KYEOClRk;swB=XHy1%))9!xv;jTp zEfVK(=u~d-o3jVv&sTiZ?XCUK-WJXN;l^EKQbOsYqlok<7t&DYMALOR;A&!PeSz<^ zNqn;Dh&*CPTQgyC3@j?aG&&Y!UL(>sUMt07N8FlW)Ddr3aJ%~<0jbQqKK*FK81x`> zhn|L*aj?-N!J0C>RzKX~G;p|M`Z98G`wrSb2V>csiG5h*Dxiq>eI^E4@X2Qb^B~=N z>M@NQN7%TZ6%=&zHk@hk%ijZeOJw{8<=}(_M@ogL&9;ISsMaDsq*h{9!;c&UAn35F z!kpGKlYL@A3!vRziDWlC&Wwt)i-isNE!_^fyEVT~V z$Z&$4Y+iQ4$8$Clj*0BJpCWZ}rk!R{-0}bu2#ewee~8vYHXXB7W2VbE)cRzwJ6YUQ z4NAZ#M^%dPb=x%5xJv6yd>yNZj>N<@^`aQ+y}8=A0tMR z5Ow~NbeQpR@PiPvPfiK+A5pcb(7kR4SaL|K0mHR}c1801qxy{i$UueHbTTX?0}p{m z7vbvhXx;;aJ1d96?DH9&Z|@)VL5E7@hgY;k)_7G*jqhK$ykvdiyK5$@N6{0nfY$06 z=-XY+glHFg-H>VW`p(g{Ema`#h1fMhJP;yuatL5iPF^@g5nAEHP!iN{qCUZiZv;G1 znO($U*3P~(lcg7y=hQ-?1P&wDw}+%P5NtUcU_a&&a;oj^`CGHQaxHyS;7jgmE@<#G4n2518>W&1j*J{R zbNLjpthF;iqtekV^c0Xz8Vrzcm?$0QNBbbLuU!8vsN=|}5PL3F%ck3Y78B7<9KkmI zF=QrQK2H2&PWQ-Q%K8$8w+0%_78DGTT6Hgo>v%&v&u0&` zx(ED8fda~=MPyRvkCCi`VVguZ`#4xY%qC5~tK$fLgewXC(NdvcfOzp4znPSfg;PVR zwURKQ1SenW^jw0*(r(~*M_W0~(juwYPBvY9KHnYOXZ2guhXI1`6AVVET1o;j19bvN zHQo19EbdZW5!fXI`-ieD8vSnVOrsB=eIFk-ys|W*zT~CT{o>Ld5fDbH7NY{YJF2hc z1oh$MDyzYbBI0+r0(IlR#;+E1)rcN{UQTejOEWx1G9wg>AgE7x%}Xp<_u{dZ|0eqZ z!@Lt(o5Y&m7N2p0dA`CSz1#pKo)9&2W0aXwsW1(KjNGn zbf;rFE?%^dmT1RBYTGKwF^0ZXr2uxJ%I?I!oCb2DOsM*NE`AWQ6SFeNEA+pHlAE-2 zmcGjE>Q>H|u<`~oVZpq^ZYme61`)KunlX9Iv%@mW0t+}$usV=PNAUoF)| z@p&2MjuwmCxidhDV6K+$%d$kSwJwqgT0QbK50v_ z{FUTHq(7;5k_{c0hLX}zz_ipVg#s1Lsld;^)&EqEcvSdE_lYsrTr_ZfaP+c;-WQ-@ zRMEgiHSSbdu{I`&uDG0J`*72JSlNa1$UD;kK{Hj@d*eJI;sLgE3IX&!)wh9^t%}%nJ101k0sj!2Vxj-8ehd9*boa`_b zfb$38^ zdjVtJNK*%aewNSTqD$a#Nq>z6zFq00$2B{lYqbB(Aao_cb$f0?D8cC-b>i4dABP!s zZvrCi-Jr(e&s4lU{)ZlWbLv-1$0GZeU|#Opa>e{HFLBjs#xYZu)(@d6-AKpOpeDNG z)xt+DEPa@b_8SNvtw!Mq%w-bo$C{mxDtk5@hGi3(aFAha>{EHcK~t}70O#)q=MBIc zRv=XL9=bvFaPw=2a2Mwambl~Lu2xlTwKRsp%|reEH;F1V;V)2f$~2(AsQ z58RkP4@os46>f+izr%TMYii(-;Ei|p@%*m1asKojcb2+GEvr86Qc7>i$YQ;{yQRqV z`tI>kn&(~dZ$wqcy9vYJROxzd!9d3Uhcm{|H_7iaoPOCj$%M> zzM!znOo`ItwNthHL0~toH?yjLU&O&g-L{vv)C{e+tE3yvjUcxs{VAKZ>T^E5m%ftt zM09}yyl%o?!)8$Z{@@gZDQ@@s$568r@I1Nm=^8VDLz1A;dII(9Zvc?3m$a35&#LTT zZ>R8Fmg~aL4pgU}wa)53=(!CMC9*2hnK}|`%16bUda;7ai|5~cz}G65AN2Tuh{{Ah zbi*@?wxQyJrTPXYBKwL>{*la>MDR?BMBUnCyhxS6M2t*^*q2tne*`s42G4`Bd(cdv z+H-2^(u}2-nj7D1BeYW!WZK@EH`+(}M$BFXH+T(mqbZ0^#q#3d9#RkGGzx8>9;V(X zivpKB+e7k#hXY10N2-DK{Ea-rPD-dlu)*c)p>xX6KlCfrs@HD36n}im@&> z_kIc)eyb86sZ@6LvBxKq@BGX%=#_6dAME!_waNe3)vLIe+;cYuCNRplEN3=Ayl}oJ z@Ys!JlV*ch@9qscGu_#yUeEN@W>PgH+yYenC4#!&9CBs(+-A8(bkhuYA6|(j`Jbo? z#j!S%C4N)Zu$}VsP4IL>wQ;PEvP#~kYo>EqgV921aSG<9Uk4Ailg(KccP`l{MH*%` zq>N;rh}VSW5)BP5c_lj8=J&(y(mO@^1AFA}*Pp`Nhr5O8t0TeMQ&!9qZE?&HUzVNb zc7+eoT$<9AERh3ER=b~EP=qs)B*6RplGk9)xsti@z6gY!-dA>^)Vy{-scuO^6ED=x> zHX}B+_+mQ^&)A}6!mSRdNhykUJ?G@qk+GO@_495y!OnM4;X%eX9v!FmrBgYReF1?%-cs|$_OclZs(&GbyvIP*;HWN z*~DaoVIfnOcaVGJ?ozq>;@ek4wui2(*<0`79V%JG#V13cFPI`l4n)RyK^fRPW_=U< z3!#F_xnoR9NmR0pr^vAiqQ|yIgf_ya6_0jyKA>PGV9fXwNI_^M&KJ{NsD8&eLkNRb z*0IS7p|^bTOt}v3P#~z*3eF}Mq;b-Zfh}&Z<=Wa!S~ZRXIWk|mIG|m@IJ#Ljsn$V= zqWAe~y3r>l%$km)EH{O`qm(el8+z!KpSj!lAr(UhLYyjM1xW+ciKU6TU7Vgqntod_ zKhc#kuX*ay`mSJCFmyW(x~GD-@1gjb5C!Cp$XrH&76ZA$N155Qrg|#WQ>S~yvml_y zopMbmW2V9?U$%OZ^)g&x!-SyGPrFTl$Ezz0wOD7Nq)V=)#h154)34exy@a*yL+Y>Yos>*d)?Hk( zi{Dumsgbu6)RaoyBB%~Tfa^ldHR#f}VWH!$S%b)LNi9(?&)ow`qs(o%h{@T()NX_XwbyWHZQ@7R}8NP)+sVJxx@Gv8`U+Rl7pT&`3nc7l9HEzSkZBSbg>cg+M{MY1)l*$ckD1c5SabRq z)mD!o_5!3yI;VoOXPGMEGXQq#xn>3UZB;3b5dU^H<9B!m+o6Pg6c7q%Wz~yZfMfx` zw)VkFc>~z!&0LyHvKu7~y>~kf=}GY`B@|}jkx|H{>jTfLv~GWd2EcLjrgSXsdR?s^ zrjV->36;?z5tkuGF;T6}kYUo5J#5`nzPAgNZwVL+ZnFDGt{4vabW!;8l*I@B`K`ZU&kmU(W-^g-``Dkd{(!-}xg2|Qby+YtgcJ~I?@L^oO+4q`0rUkO0OY~bOmqUc1po(R zNO#xsDjzv_N8AS3leGax`F_LT$JBVevEJ==_(L{A19^H6_mvhzi7s<~=b%!4#tHDnOH=ES}0v;o^u60~HMs=?kD9Yew<~ z%OA12Fg=mz5Ol54iJVxgC}8T@L}{g<9*vv7FMgdmoT-Hp0o*pCQf}_^BhMlYSq=8D z?&b2)l0Jh$$f_M+aFwb1EBEn^7LnGXnrzn^>BxyyiVh@u`+$v(@DTyW!hM*6xtszq za6M+dKk_f+K-ON3*3EWjZinXRt!jezAp1(3*vQ(sWrwgm(tTrK*#3-(ra|}y^G?7w z%5Pb&d7s+Em>oy%QtbwC)?)~Clvn<*M=arpIh2ynPEIUawC@bO`-CZidqGyR3IXu* zTO6!hjLXe7pKGIe&T|%mE^S%6~g%PcOdHB(dr=ZiANEZJB@#QX1 z8FEfT8)gn5PO{Y6h~Fvp$+1?fzQvw!Rj7#MOt(bpy#QL~jUhSwt9z*Xp zVu}?_wtSvF37)}GU=?YCL;9ADo(amKQ<|0@i%J%;Hz8QkuwY>lsw+n>gUo{JAD--$smfToAOf@<8A@I?C{4)q@Ly4lt$=Me26QUyKAmiPb0#8JM>~Fz;NE zBf9|Dx6pwTe>fe%0@p=ID=$%k@!8&wB8=vLG61t$Cc;f2Whf&3_48iF+0TpsJRUm3 zh*jC4u{h8@u!He)Z+lG!R)IFbTLAu;+OhFAUAW8HL~@u)&yYGg_D( zL^YsIZXY~D3`(Rr%(nLMDcUSRMuSyGd5wLtL+ZgHp`1}JY<#0tW*Sk#>@NQ_c#Q;% zl3;xHgU^qG5$y;Y99IV8x~sxoeACUv`?Z>jKYRwo*H6$-)oGu@GmYH(~-;N`D zu2OP5B*AckbMmQ3fR_xRebYg=*njE$P__ ziMA8{UVR;k%Je2>xlD4b7{@6KOQL`>REDGvI=P7@Lh>DZb)Y{sE(@M>gjUoM`OaVk0c~GbwvQW3;kVDAWAe(we+_7-~7VL$kHa-1>evh)EJ~uv(74 zy+A`)6s{Y%yFR_>s5_Vl+A7^_TXERPfYWhFUv(`y%NiuWbBQ@28ir{rlXsH%NBMk8 z1s5YW>6q`SQycFRCWm(2wY`ndm>PB7PAh5Pqr&Is*GE z`&!N7lB2*m!Y=icj%R+KoY66V!|-D2k#zgfZSuP>{=f<%R@V?R5P1Y3I&CHY(mgH! z=w*a6uEkxpSqY4~vR5m+2BwLi?@o|9Ie+1JN0%Vz>HxhdlxlB;6{If&XvfnRRN%8l zfG&-sP!L(099AoA#StRofXI3+@&>#O7v}aZ{o1S3sA?6jdd0_`x{~GD zmX3d7B!Sb~s*(O8v)40su@h`*^>jGxjZN;_Cr~@=jlp>H{%b$3CG$5FX|+O{N-dO; zu7$LqS}2sk)hx#gD{XUJ`q|ReDLNtG;eo1W!X3-+EuGU0-Iv_^0PV!`eU*Y=wErV8 z{T$?HodXed;rp#0nTITZEZ+x6E5hpOd4C%Mn>ZqMZfYdtJEu8{0q&qM7J$MpN{7I{ za3S@9l;7r4tYcXHdy>qFpc;x7WRH_pn%O}}z6QGah=y2?W@SJOhAhM?*$~dK4lrTq z?0$aK>Hu0B_OIumd~eMoPDqI{xOf7Zm{w`S-E`PMum~=;)zL10=oO$kDJJ1->G;|o z{fECOl_Z5r&gmk65CD4I_v>@RE9K0|T2D*>JoF1VLhY(Er_znACz9;sVq3*Cs>|?!7u76Eo z44AhchnMClP z1E}Hzog8HLmi%8Lwm$!6geH{Sd_@O*6=hF%659X#dZ;y;^vKswDCWvW4nvg4vHJzlCOXu)hjmE=!H?V{t$x69gWdko!;FA>aX{G^oLN?Sr=ih4Q%5e^V&?nW}Qy zxBhF^0{B3R-=QCSd>K>T(y7PZ;PoFJ7JMn{RJpS zkgoxC&AhRw3RpvuPo{z85I(J=G6_Tw^TFg2l#mhu_1*YBp25bwfjbX|putfG^##Lm zfzY=&Pbf^U*g(~w7Pdo6S;$CeslNsjw!|^He0#=WECd)cWCe-H>|K-ZX2L%iY5F;D z!V&>L_Nd_b{n;D}%Y;Kk7P-`+%i3{(wD_IASMLJ>gwq&>yXqy*)KDBvuTRhe0M8r- z8Z7Nik}GS4_7*|vid{DmU}WbJqgRGf<5)XX^(~545b!-6@+d}@g5R)JADR(rsTPKu3~%*J z8J2AeXp0XbeexrE*-l%VD>`oiI05ViqK)bfcFhp`t_3EZ57fI-sqGCb=siFCoP+uZ zGK$hjl=5sWxaI~^WLwDxUp+Y@3K6Uk-Fl0d#NKnWZU?CMp>N?bFm^@`c}>(Qy8=mF zkw&|1lV;h1IYJ0gen#-3ts{D3EhA&@{_MOeOzDMa@8ESQ_)}4Gn%=t82n;gLJg|n5 z1S3iAgWS{RpTGA&wZ#`GHHa0OE0_bG8V(FI=Gp|r){&F>gA}LFqiOLEQXB`fw+{-Z zGO1>>GF^Ln{7Vq``7a^-4zZQFZX>b)Ob?GER-7ak=LS|>8yOfLhVPr=^KnM?8^*M< zi{ejzzjg}bW`Yp^v=pr|hdNbJzMXU$eQ{#MW~62VgskOrTqhNO zSXV=J!j}FU!+`Mgg?mUcP;UEy`vQ0#chX0mi3Ey|6_HALx;a3sQoA|RL^Codog8}L zFz|BQMg>{wstkdb0A|VxWmm>ws|VM_(QU*;bo*f@%o^(yYJma5Tqx?;2PKjuArI;L z6Z|vpegV+Kt9ozrqYn7T1I9T@)qc*8$F?Jn5}S|$Ae2_D$DSug?eETxK6ePT1S-YY z$wT&8+|0W}Jh!N*g&u5gWPygMIye@PdqU~fgG|IqPd9=l$QZTCRE_I>Q-%r(k;a(p zx(>M#PYm_~hxTL9;DsHOb>G+(kUSNp4bNKWPfoy0mA~Q~0($sq{vB-qOu;s|I z>%E#JhP~QT(dBt~7t8uBks2)^o>ZK&9f~}=Ga7$BQ{s7Kr#W;qjDj*vJ%+M=T?~10}qoApgG0K&Cpo_Xjjyr<*uv*W(4T5N{2) zuL$rX>J5ggcNhw`tf`jO523E87iSH^t-(jFjhuYW!aq|c6$#X^1oMeHXfASYK<_H? zLUFwcv2c;B8uhU6ac3-;VlICJFjuUr52EO&3dgwzduj}aauENdK{1DVHW!{FdPeY6 z_X!vZ%?_-3$VTZ719v91p}Kn&TOk!bW_2*jhi9H2GP3$dOOA#h|LIv7B)0hnLnCc- zNa(xWQ2(0x``!MSD4C5oQ`I%h%zkQ1o+(jBj**Zi zB=ebK^BF_+;6~2*d0P*=Gy-tRQx-;_Ts^u}Rb4no?Wb>YK`aUj8<&|wauu|!vhG7@ zYFw<=N0hwj!uXw$#a+0I)S4a^_^Wpzghj+WJc0UJs(+~RQqVaq$wPqK+)>SAp!Rm6 z*MKiy63@IWiM?jb)xh@biPy)vyX&_O2(I+WU#>>?XcoTjFQAK+&?#~vj$j!FJh}r2 zUeQjO8t;#-v(s*<;2?zpog3uur1*ZGZ>qHS2JTK2u;>&8#feqgfpuqEd{C>7TW|rH z*wQfVoov_dw^2iK#@}${1nDY8Erft7A#fIf>#TQwb;6t9I89Sm8+r46p zx?G&je`jWKSMQ2Jm-6*aFf=~%v{*y_sn}kgUjohWwom7czIHoJpuiikZ3{_dyc-4f zgndmHn4{@U&&c@4>z?jB1!32z$#+mZ?9ObzVuA9NAg4J!^*QB}lbJ!rU9s@C8&3;? zO(UvUWOS{4Y~xk*{MMe?&%aE5yDY@lQWE8`#0dte94F)k+ly7oEKQ)3#8y7=ekO)}!$oR| z+ql;vfbLdZ>gAiLZdS*FTu-b~-K3?^5E_91jjp9#9h*pUkbw>_$cOje+nzacLXXlmjC>`d`cQd!mMpB%L`hK(e*tI5nO0nEBfp}ivmDCB9-nwd=5 zhJsi=`Qs6rg2335PzsTH|B*27%}N~!rg$e1$(UkAuy+Ooi7V^&XHkzi=YA4XTkLL; z)0hD`R}wm@=*lOAyT+PfgSXORm^*jX`5{(z@a{k3W7Lto&e-1+jU$PTg~fVlLE8im;zg9bo{EQO<7-acT@y)mzK z&}CT;SOb#g|IKb;l^OS8!YlFK30cK)m)t<06G)@eMg{mdn_k#sG|6nlf-nqi!d`CJ zqbPt`VYopH1=XU3xhW}O3KPMc>^s+-a;Xc_PmJw-qU-&;lAk{hsPy%NVRZmd+R@|c z9;@0lGBDky4tcWN37Kuv;1;#ivwgVOC1=k#QJU9WQgA291Ne3E^l*c+m8dpsx;o$j z!!Q$k4&modS%8HOvY8qViZOcZ0<>bFw(aR|F}LDO2(*Kwfb1MwpQ)$$x+ZCcKHE|* z$r6B3X@fX%CP0bPtfA!_br!d)W~7cPjnC~mh$UdaOX=XHTcCDB`N;lvcrpg=TlPEeSzz8n2L3gzeO1EO5gLNg;(8W?sme+L~VVA^Nl<%?ofKKdNjcw4%ji`zBvXguYuf-1xWFidk}xD8NDO)*nM(bcy9lxs=z7h zm~(H2H;PFWCC1ia(k9!e_;6cOJs&#I*@d|?O^hl={`qIxW(Hf|Oa(Q*>nXUlV1GWY z-M7!C;wZ(N>ZyUHg%J9Y;|=0l$bt61)IaDTX1g%cp^$m|3-Og0zxKw;E{bhNfr~e1 z7jyfMJ{@ZptLNC0Hl+1|`)IoAsl0@SQI=YF+xI}cwX%I`>2|-a{F&d81Zn+mRQav<46*nAd~X}O&(f?i zcx0blfc{X{>wQqQY&?H)sHCZ^L~Fz#Uh_uq1>hp-Z`> zJT!GNA9g*&@&9!89pG5M?fWIls3@t3D4T3iQYd6bWn@>#PWE0Yp=6dlvXb%0<}oW< z*&~@5Wkp0bzw3VbR{DzF;oMK=CiD8IP5FFDX=k<`R`@r0){bHLt2FKX&g(G!3FAe z%JJd1^DZ})6;r&7CZ<iUB5 z#yM0iM?B-{sSgP*@l8B3;t4kFr|na|prXX>NCm`qn`qsd>5 zo^gKu#zuuK<(_CxN#?Mf8z?Y*kphG#at^c2tl;wYLqn+>wHanUy=e|>COx63J(MK^ zjz_#-m_1lYxG*3=(d@Ag0h50{Ix&ud6W)o;F>J2V$mo+$H%6=VhviETtw9q*HM=e& zpTb4?%=3($*Y#xy!N;uNm~tJTQIr*NoBH{s=!iO2%w5tQIMzR(hX zX!+qNV_C>1bote%k(5#|kH`y*jOvVwqnIogLP%w7x11BeT}fmq_t7IN2+vmT?n3P; zXj<6+N5p`_kO{cD#qWnzf`JR-_JhekTG0Hcgjqg9X`%fOzFVfc4yrQ#aN;LsCQ(>{ zDqw~e^ML{|pFq2wqNNph2!$ zbA&rkEV&g1&^sNnI90}uDLjsdANLzMhWv#gz(3;9g{5{Jdxq=Xg9-MIkZ7wG6#Kg* z_!+W)P$F!aBhZO% zvFIUG=_5E1`Pk9;va-68nue+8E`y=FFJfwZ&D4t%oGl)HYzLZ88EqlI~w4VaPFp4 z!;er~lm5h{@+@F0Ni|2EPN3e8KCnyS+%Rt>6fjsV?A-K2owazP&PM^hxC~6lwHzho zxx>96#njs5`aOr=VyF_RYg#GadF}uRG)|(kbbh68##21+BWkH^g#fJ$-A(RC7bp)daf4hX76DnZl-l>N8@?7kcK zy9rT=knj6_HgHdKleqHUYs45JIv1mMSoOj>$T2pin^gLG^9{Xo>byD9l|r83XUNKg zm%%_59AGioH@83dsYS;mpqcfmCwnask4+(0GA=OEr_<{Q?{=ty$AQ^9VtxG{Ds{yZ zffX>MXVU(CJI)?jDh9G!uf_~UvxpbRk6Xtp|6HnqxgU1jyT?VcWR&qXE%h=&p~j>J zfmF{yGg;qNV-QeskU$EEDA8Pj%!u4y5 zUGI+7@2vb{hb#<^hJpj2K>a-cHM0;g&n<5(mdCzOMfFol5Bp0C5DwL+wE=-n*>Ud# zuySz}tLw(#fTzQN<3G1qU{iRh&}_ITmasb6tHToS=hk?Sv|w7oom4oe>& zgvNY~P*bb%wNEy!%!6KYxdU5(H_=|>H5lq>F#%5SR$JKHN5MjKn3yJ0%>-YduhmBy z`cWT0RG^UAa(xU%q=;e5e}Q!$>~Om(Kz|DhUB9#)ws|-bqpN2Ggb*VbAl-Ox7RDch zV(ydzMh_jWm-kszQWWe{b?^ZgqZZenZ$JRoMl~XF3i>~9g(CZRVeje0+;chE)f7B| zRL}tn(5L@G;E%q4Eff!*tl_`gVPQKe}*6ws%PgJ5C$M~Lf6TWoSIj@yiS z+ME81M28XR8~!o?otRfZnXB@O_VG{NXDxAC9*0n*;@h|UcS5^>){fnG$^LY_qTv-c z9?(36NulAn(Eb;iu{=C9)t%E8#-rPc;3;%zi{+Ep6Jl|C1>a;U&w!|fHBgX0{pg{- zgwxVX3KjrrepvB3$i2fv*Eg+*nht}sLyF}Y*@3fW0^=@OR~p&(nM4`x&-wx7{3WJ` z0zASHbR%|G9{(M89Hc;;R~WIS?F;H<*}%K8Zr~_Lgb4`As7)2>WF`)g3x%8?{J!JX z_KtmasuO@c90~iXN8#ObF%PI}VoI|AjZX)^nR5Hz`E-AP`hSFhqK_*8zKQ`uconNZ zW7{+8wvH6%tbu@^gw!2ermbSxOI<9y{;PUHwO&qKltjZ=hC=XD;>`VlJ1Y@SWwy9 zxWm{wst`W<&xx*AHEk@8Bn(D&s$RHZWKvvM_JMbo7AGpahF?HRxXSVjq z8ftqWc`~pAI5D(n8B6Hcmj*hn^?3ISR0%d}wH~Pr40jo(Oox%8#xMFn+bRhK!8j(Y zmbOH$)6dGBxy_9Uh=HE?bf~&e?x!FiH_TsLK%na{+MN{xf+~>v0o5xV?1yu=H;aL& zmb}!MR8r}4TsD+b9JYt>}-S2b&16r4Nh*C}-o z0Dh5N4D^k!Y5ysC;9-AzP+qVv1V%_lFdy$mth3Qn?W(za) zX1_c<;IU&@Cx7@@rrG8@?iTf{qS0Xf={>@FqYz;p$~bLC&!e9TVM`tTg~qRc20rJb zGWwn588o6V04^6L#n2VT|f;$02dx z8l;^dLr~lb9P-G6oSN724j^Lc9|i1;SjUsSk5spHHe4z9qi-gjnJmm$fv$^)WC+ed z@$^gTAd)fwCOQgvSZ_!Fz#11IAyR2lX;4O4o`j}6`B<|1Km!y zC@aa%IwP-cU6<-SY@cr;{Lt~Ikd1|$658Up6)O%4WCT~^OGRU0>edxaA8BpZ+nk%Q3Ug0Dd)4EGg5^a#-INuS?Jka!ws znk4<=DW#H6vWlxtCb;2u;e5milLr;df%~K@0?=46?*q@SV*QC~sS^b6?vEb^Y}8bnsU} z%FO(&{@)VwpJ(^SN<|6K%ieaGJns;AiZAaL{(~QeKHZE8TTZ01xS!>b8VY&i?SDQn z`WMA(a82*i2zmU|8E&zziVEm5w|ChUfZk@8nb20{y6vHbI4fA1rB95zI%!t;(uDTO{}V{^>K|NgYcci74vr)wyl z^0rOtmB9(|EliiK&z6T2>5dqb{`X&lB{l28BS)HwYB17( zo>#q81HzpCeXY%f@X;f7rsAmU?>vep6yGpj`}Ys0xWo1k(;46W&%cJ=?_Z~<{{ST< zv#eg1_y7ABqmP~kK$~O!D-m)Ne)IrnS5uPUl*Rt}1)^qf&pNBsxc>96p(o@IhZQm% zX;zW0p|H;2ZJqlYFudiL`7!X(YMLW~z=DM0FEk#v-y!;ET?Q9?|2*pGcKp{yipC+c zpWh!QC{YdFB)&I7{`-8yHRF|%(3B1mk&Ok3f^=hA$w!Gw!})uN0DNMtu*cVeZ0%z3)uZ{_!#u4|tHCTcSg(9}e~0l=(g>XOV2c zZhOBDp9zEknIUCIe7ca>6=osMzvqE@lL#Gti-|?KP3Kkj`dnd^CRZR@)Lx(f{6j6z=dR%28+Qa>454Vr$s#Hk1J2}VPe zKDeqHP#^ltQZcK`+Qa^95*ylYROT89tlHAC1aYC4WOkfXMBohgS9Z;}~+*jTvAy1sjrOa5KOJ_6sl+$-K<}9t#Y_2QDt`0 zUhorSI=&^7jyp|&Qk>gm%b(@}6%hn=-eVI$2KDDwr-B~~O{DN6-YB4Ixd1mkM=dM1F3Y2#ZO{!6fs_zI1V02xNd0VEL8-zo z0k{I}v`xl$JJ)^R7RoTInLgXl?T_0F&pPSeU$0d?Vk}Im2a;ME`tKq0gx2)v5G3r> z>h={B=zDIjih1r#g6p2C)d%8Pt$@V!VmKR#T|m376*{N`VERZ4O1o?)8xFzb0wqTQ z8M!h6UDhGDRwv%Q8Bfg>(%EKfn)h9#4m?dX1l&>i+1;ORtlFeaR(%Ip(;FaD!za*(;M;$x6kT1C7{|*Hfl#*F=r%T`$l8D;Dw%Hz@ zMFl0n^5x9}J7!V!1D}U$XfGA<^b+i+lN1fOaJur&)iH$xIznm1$F;{K8I^rmC3c6A z;O`HV;TCJ;#oPaSpQtXw0X#NucVBnvmTiGagrU7(A4qHp=cqXwBoFifruoUm;M2OT zvTt-u!s@bhW_L`?xI=41K*qJKo4v#PqfPxvMK>0iVGQ*N7_ggFY%0=~rrHz{hQMbI z5#l2^R_OakW=tOzu-ww#>$QKq^ie%sIZJ;OZd%;WF*e;CcgC8Jp;;R+%bADs-Z}Sk zdbMOG(gUEWcW&AO`-Xp-!*pmC%HM}d1><9F*v6jC!wiu+&?ih%$xtWgJQjUMe%5&T zepOVXkfWN)wV@;(r|t<&5;W3$W3Tu`ZymE zAGmJADVA=IWtx*r<$NNfTfLj|jBWZ@&&y;b&@M3%ZOJoHZJTcXbbr*}I@3LeqhGJD z8UTCT`L>-Qht4_!iuN2HgL|ac^HAX@Nc|MmU3fM^nuMA0Os94=5=IfY5?R zhu`x1Igv-(3tNtOKcW@U2J=j{NG=D>oS}jP&TT8{!8ucMrjbJ(jto>*OcPNu;WxZP zU87}4tT@p$5K$%kFjGGn*`25Mx)5jUl)J_UMFj(CaGPLO(L|yr2 zJyeU&`PvR-K8-bfJDzUErcZEId&Pz=qoD{lP~!4_mZM46y&3KC(o`~h&$OhH^Ff}T zRTdcWRyR*AG8=h!UIj6x=h0Gy?>wPXOqH#Ap+>bT)SqV3mUAdgw8Pq9JMQB`G-PGf562&#X= z{`o`bXTjB14|x zDv?Mop)MG`+m_d?57(Q=_)fx^g=B z90g|9P?KTH6#?_&jRy)6FT6oehp0-@L#i3TxWTdAsM}O>*&()04xcF-NUA4#$Ii8VgfT`_l4w&SEmAy#Mgph za7AFY0-S3XvrCn@gY84~^3k1}m#Ck_RlvOxFRz(!?vX3M5Z~|>%DZP?u~RsQxkfI) z7@vI4`6C!KDQA?zW*F#Ot=amrEu#Ut!JNSf12#Yjb2YU!bbTy%%q*g0ue>6G5`WK- z-^FL1&mbT!w4IDoi&ZI`#!hOk`UZXcJTnSdR{9L}_~MgjM9$;2|9ag(py$U`qx<0s zL?!X(weOZuIIb;OXe>iST<~E^-HDz<%c(xkI;#JfF1L)CV=*U0(EJKO6)N3fb-p%Q6kFrNJyu(RCJ zB&@}!x0E0O?E{?sL;12cCa&Z(Imd9Ee zof6x10lHZ&o+Ns%L9SKxB-Yp~wt=vwQ+{$2_@ULe)I`i-!V-{MzSJ}C*y?M@q(Vhu zI2OW|^M_JZGK@KjG&0mrYLp#1l5CMlD?4%YtYf=6)iMBq`NoT5Ef=10>D+GkX7vVK z&1ajpVujD2StPM*bEL(Imvc%zaQSJ$H>cR$9y#y9$9q9MW=9M2PsgxtbvEV>Ed!}? ztX|Or4|UiAqSK4>P71Yu~lH%fKUj<3X0tRGFW3c{xFOXOWrEs^kR znEBRv_OMLXjK1Q|W!D1Qu8Tk2C3?Sih@7GL)S9Zyu9{>+*$?E$+9xv-UPir>T^VIy z&}$+7*6Qfb)_>Rw3M3e35nj1jlzal`H)2;I1Py?xP;NoQ^w}c$i*=O=+nF|p@WZ>4zAf?+ zdalV8@QiLf=Atk0z4p?uLGx9)430VLGVU+ZDen%$YT&Ib|C zXFU_Loy%gTb`$r|9r<~u!}p!Cn~t(EuUxL9cTq$v{xaoy{^#{}lG?daI`F_7s=V>hJXURmJJJ9vw#xBAFoEL*6aSM{^mQ^D04v%$Ei;OGB% zSQ7)Del3bT1Cj+a4m>f3sw^}Kd{~zBaOYA&P~r1gdD+&?gtp9bBV||IOw_LzV90=o zQqEKaWGh(qn=T~nxpL`~6#;sNCmIDc@+OksU)UdH-qG&U1_SLh%yTC2jc<%Ymw9WN zDpyaO5_7BdagFj-85x-JPUiV+#A%Pguib@x7G=Y02<5Vi?$6W_LE}5wMcz_U`B#t1 zB`-zS+`AF!MD<;TH;;Y&!|lq0Ki&%)oRD=oMi2P42FT(xyS|z%53b#9UEZnX8lD`+ zZ+nu?h5n^U7iSR&bn5}uKcH8=EZt)Pe5KAslbfW=kWMp$;q!Yp^qB$w@a`gWONLi9 z&wjsiw5nDl!)_bhR_^Aes(pZ0&LVt>R5!i1?PWp43oZFC<|6D-8p(xnvk&-$jQ!Ao z87$Z~V7j1jYN%@yYHK5%8s>QtFB_{ZV``BTQapQ=ROBczIfX)b-)t!+7x2%pmv*cz2`-Eik z5Qi~!UCi_KdC21P+d$HqndXdb?x;g)pwB=9G|^myxs!S%F!PtK)6LT~+;r=PZ^JuB z1odwTu(@W%Sl1e*8huySdI=K9Le`HCfBy8z_i=Gl0}}|DsXg_~sSX;ax!pN+6;v*qqYZ7IhGNX3g*)Fz z)#(iidzlrum$@thucSWz!Y+Lv>}7NK`;9;-KN4lwA+~`;UwiMLx6Fm;1a5&2jntp- zLkPv&BW%eKA(tuSVu|IidR?M3acUYXp0`O=!X_zMuDJJASsBXiZ^bJB(g7P)W>}pADxzPBFiEx9+JERq}WK zJg1Nk?+?V*9h2c9CqbvxT@Z3j$KkL%Ri5=%Er7e!I)>fkqZB__;aLHZGh?aK;=y%6 zk@2fp(8>@343AF+v*!B<7{dw@Meevx19i;?l-0qGq!Sk`mF7vk9D^>I&ucML!(x`<;X zPu`cim8Z@5QJu6Lm0)~x0F4`;b)!;{Xv=%iCFH#yN9FCCwm)n0ASEgGWDoXKsdPnmxgX98;&NKiC&fv_oP`79Svj{ly?f8~lF*aI* z>#A;3^|GqfJ>@eon0V9CFly6XF9Y-Nl1DK)2R$o(NA$w`2FpZ`>W0u{&&EiG^zeo2 zI8z6;3|)iordvT@o&D&}d{2KDVL8_NRoCQ$k3)wK^vi&FVj$ResVO&aV^HUSoH`I@ zd?kM+xg-7>Z#Ujt${ne~hC6gyJRM;oONEPva7Buc-sD-olzfBi^666y?A5dIu0?H$ zp&=vs%d}d1mF#k{aEbxN!tD9O2Oc@C%o~mO6&FMaJIqaZfWZlZB7PmT{@R`Nr!Coc zoh;z9x2NE`Puf-sB>EAr_fRdLZ~O&;fi~}(P6s!7rq1E*Dj+(IJ65;1GimfOjW8Tj z%(gCKc>MU&v%{6Ci>CW3 zo`d9NtJ?2QRF_SfUb_XqyEu5=_ShkGnJYLIr|N0<>h$EiKTl`j0jzAqq!W)RC^ zZcSI?(}?Lh0@Z;hB!{MC4?|0@c74d~qI{28PrfvqPqUBw#_dv&1L`-BOh{(kta_yU zZBk?h=#>OR^7c8O7lcmO5Nt8JoEJE4zwS#PKH2%=>czcBg~Q&m1`6lHuLcDNlh?f` zB;IOT?lRs11OYouV%mr8u-UBeSC6bNb@iLooy=Txg|hR$NJdA0Ll~r*FPtd|Q6i;l zWz;w>N*wN(yGgz-q(D!zF4P$vi#t27St}wlKAIL(v|}NG#b8e{>uBw|cM5mUD~~y< zETCF2ukF;eo`ny2Cd|-E8^qzi$D9E2s1a=3-Z`7W@x@I!(lcWh$Xr9yW={v#y>i(7 zXL9C#2rqdR{<}*%gd)TQU3~ncvbs)BC#vH(TbP|McCH^;!&)9iLEKe&O9;n^aP7?X_3gn_~oa-Y*FIWE-~Z~Q+hu;RX`H9b9?fu zyXz;+^LZD@?tu;V6ufNt$03Dt7}t;?1QdnHD7C;30$?HuHJW?dmXfP*#@oD+a8n_9 zNp9~){}4i)@h&-dJ-frCzJEY3Ez4YbVw(q>)aEj>x-uw5sF}OdYa>4^@qBA6ryHwe3Kv1s_c}9Lo zim9O{m5yoa(i>N|drnkY9Be91t(k8IGQVWh<3dLmge{l9!WhZe#c?_Q9=Q4{iZ4(% z`&3WjRDG9#MDv*8l(Fc32dDv!z!A*5Jl2yAdhoQS4p~Q5~sTFRpUQ&p)Qhquyc;W4%;lZ}e2iiSFAfzRWpfY#&&bGOx= z+7mmR##4+?Z@%$2|6jQY|sFf^_yx4KWdef6Z30-*)7%e1F0 zD^J$GqzM?3#16!@`LO%33K+emIwP$I!&Bx)Lv^q$Fc&zTG08@4d~MSOGUU#Y^rPl* zn;y=Ox7FBi@a{jvy~omqJKb}LC5dJ4TtfS~${*9raSIg{AnJvNl`Ei-rBS;QHw*KK z%p7hEG}}kTUTZCUBmDR?tW#UM{L_ZgTK}t~INNg#+=}kWr6MUj0I-6%S$;5$-NcFDl z8h=`@qN1YkR0KOyQ~C3adyWA~&g#~KTadZTM*6za^t;lOD|h3{8-ouZdxx$1coG!P zFRQi#`tY*f-uernn%B9HDOsn2S#KdcDS!x${cbPbmKhfE-wwjV^pHI$m1yESElxjy z8g}8_o3LjVhQf_{zCB=>KT>e#ajgrLe35>Kv;S-RSZqh-6EoL~_*LHtcmOn356P10 z4QT&FI1j7P@~}SG`jE*w#dVBvT~NQP*V5Z?K1i3ymjO>V?U-pzdWgpQ=9h4r9$;5_ zd+lAyh5;Smd1jhgm?B79veY`8paL2C7p5Tz(~u?HNOjwQ!0NJW`|S}WpB@l1vm^lG zfpi080}ra6qud%ex{C_o&*yNmtE9iAP=*Hd?mUxFRIzwEQ-uJMn!}qgFTNF&Cr;Z= zg=Ks=>o^|(c~j5aS}%81+UWAWoLCD6$1ib}vgMa@t4{4jTSccqV4rhRL!SL3-udgG7^tBnQNtBgsRGec zwE=U~%gZ5h;>c`2FMny^;iqB5sRsE~CfSEi-HCe}eWokV1WeZ)v_TclU9J1Nx_D(W z*>eqKHi}bUcsjQY4%pEB`Ci?d@Ep0sLVM4;t`%l5tXH-|gq5+%luyHI8dhDZ{dm@H z>isd0w@Hga&}{=8!)vnilj||oOn?oQh4MV-i+Np7e5GW5^0oTIb=;BZJ^@yyyLaVW zB_=okJCETTr_}>p75^w9oBE{KM72O(c%@7c{j$9ydoT5=!4HQj zcV|5B>^cnxr(>!0Yzvimf@vzmT9N9J*Ko%p2)R8qp2u8DgP<)F1mk=9YkcP;7F%mmEV8}SvO11i0!T>(`&l#$6dUVom7mUR^$N(Wt^#2+C$7!U?PF7v0#%hJSSw4+ch%o!OODQui- ze-V5_BVP_v`dz)NOq@>!h_4W#M>NE+Dy{*l+Cow)wvwN}?c1~8qD0VU4e0A38#X`qs40w;rwln=-(#sY& z7@m^aW(9csb|BlJJ+fKh#Q6Rah(qi;l40EK9L&p-0ST0!wHun@nZ9Dx>5^}kV0w*z z8XE#F^A2RY-eM)MJCNB)-x0>QPxiR}P9A_7j&s!T{5S$k=m>NU8TqO*--iAHHVQVS zJ5N%`&w#cm_c@wzp;MQ<#{I{XnA8`fS4^m>NQt(uoOJnX^~Lc0wxs#O2b*V{ zKsQ2EjvNC+&y$ePl?r?DXy6q%N2S9kgnhgcRkR=_1mX&+RxYpbT(4?PMM=6NV* z1N~I#Nk25)y*fi4vXH87o9Ld#V1;NQeR&L;K?#Z6aIcF^F~k$7(h3qU%N->tYl`XD zcyw9rcT*}5i`~kvij)f;D^Ld#G-r2#dF*U1%uuWc@{JxK)kJQYg)HTv%lDy{4PzI1 zZ6=iJ-o1O*l)sLuP6N(Ysi2D3VDM*cgz#Yn^eQBRXc&QO8tP_2_`1pQ+?V=J^27bF ztCygauBc>b=pnDuchl2u8_t?S>$YjG>UHz)x(k_?O90V3sCMn`In{=Oh6jw=D|zNx z?j*SFxF-(P$N+vNrBny75GKcM;Gqe;5_gb9hkbzp0rF<`phPrEGn0 z4xRYMVxEK?aSE~Lc&$Fk6+r`q*{Fm*{Ry{3r_pG$S*FQP3)fj%1{&TwdN~Bp9@!yJ=Lqx8=6-%|dJh?v^>VFbu`i(f>>U|fk#bv`P zvT9@t&_GKGW*rjQl?N^$T$TtpeCH7}?3#JaV;ZgJU%)WHbYk0G zPOX9ZgwGnRRc7oFG~q}=I-g#L5>hRHwE_uYEk^L!Xi&^S1mc|oXegS8>|~U3n?!2A%yH^=QE1z+`U-SG3c|_1JM&o zC%ns>QnbSMFXdp0?8l@lZ+bO%%gm{B)p`cWEpY9;5FYegbL%Q=Z+XBB^Lp@@`k;Ac z3H>OKE-R%dip98mSEGc&W(cR2knRFY`t@m(5h8;1vYqSLmoaZ$(Vy^0A>!_)$~(B{ zhA=2~^TguGu`Y=( z<59Re8JPeC`)@jL?!#nqM)JXxQhRwFXFNltOxjb90c$@PR2{rI{esPW#H6(!KG0VT zda+S=o#pCW$iuCktef-BL_2HvX{+S5^vgLc%Ga0wz@=MKq*R!A8#sz5sArLAj z7M?o%%SZqA*0`VOUc()bEVLln^IxC%`3r00EYkx?MZ8fWM3~s>5bN+i2wh! zN^w;QPsy+4~@}W+6MoTmbfI2Ie-1`{{hO>-D&^; literal 0 HcmV?d00001 diff --git a/modules/1_Continue_Exploring/C_qtm_algorithms/canonical_algorithms/Quantum_Amplitude_Amplification/Toffoli_decomp.png b/modules/1_Continue_Exploring/C_qtm_algorithms/canonical_algorithms/Quantum_Amplitude_Amplification/Toffoli_decomp.png new file mode 100644 index 0000000000000000000000000000000000000000..b22ae3b12873b2aaed4188cf4160729c749f8680 GIT binary patch literal 70585 zcmeEvby!qu7q44Uvjv>DJd)=EV5UDo|BVP&f&bdjM|Z7*z52w`Ms7-PWCc5oU5y=u&cQ6 zB?k+fsI;^+PDBhRCME<=2sygjIhnW#**We*2O*7fF z9LJ+d+Kjqmu6sWFF70}5`1O{Z)U=G8_^WHyQvLITFKwsl36?+q`vK|%8VTctJ^wiX zH9bqS7ayZK@4pO=PIqhEp-~U>e zkq4hasaHXww2*$DV5e*M6_fT1Lz9=+H_8WGX2OW|nHe^(vVXyt;_NvE2$PeO6WTtr z+C8$}bIM;`$A`+x@jr7Ef8|W%`~1o`>3UIn(q1Z1%*9jJQNhr+h_l+Bg?+s(A8HdOgKbru)i+sM!S)xknQ{I z`1?QqVnR>Soz}ASOIBbC#koeaA9Niv=y+zOe$Z#hE14}-E1jN4Ig0i`x0hqGJ2f`h z2Z7I7W}}9(;*^t{)5dVwgekkY`>n^C(7qxv0rNM*bhd#YRPm1 zRecyf=3PvcNIZ{{0xwJ5IrlcuSxkxIcs|QeHOWoaJA3OlW)9ctDsw%;wsn-@`EVO@It~_0iP4Xs| zmPy~GACNQe49N5HvruyJ5vPmMjCcfn~UFV7Q z$__nwW%@z)1{Jx17S~ znVrlv)$30C_mdqY!G*4PX?`U4%=5<1Tvj1bl-orzugV$^a5)^hN7I|$FY7wC;Zo_G z`JQ*heSxwSgg@4IiW%KZ;9SjxNyk3teYAVvy`U}m-rV9=knFFf<%OpAmpm|C=VSzY zKkY*`N^{VC>io}P?XvBke3lmv-F`ll@Sq|!vs7lWM8tO;oBztD%lA@$AM4ujee`4g zP1@_&sUcG~-^MR|E3s&bF;XrWklrQha%Ov(Wj4OJFW$deDNS0+(ezvR%Rm2J#da}; zM@H&7y@fl^YhZSMsvwO*6vZ{m1I4Jy^Fs zpZbn?|m$2`_n8)o-M|6tiX4pgA|z(*WhM6&?rCm zT{Bh7_tvdjrv~MK=^A4dcVEAL zoxed~8`+36+$5e>on3lMAP|NUxjH>Y(o4>?=wdQwK`rN!Ca%=AbZ9e&jD~w3S4x$+ zO8qD~f0@&R3~+DQyjfeJAY8pK-ob^AsQd5&)Dp&eS*N+T(FE?4R@+he=J9cxIuZk7 zs;VCM)bq#KoC^O>|HN4D!p}D=wxFXIAWA9wE=Q7?t!-K!ze&w&*ugn{9-tV8Pwnse1Ah&iRX{&SAKoJ zusIb^MO`SwxSVg-6eHhtOjUkmOu}|*uvBbgg(DgELvQ2NvT??xa>d_2*qGFX3dL8l z-$#X@_Hemb&6Lh@P2hPELUMBQ^@ds}l2)gtbvn!`b#&9tgN*CeuV=s=toF~6G@?&r z4JN*Po+obZZr5G@n=A4}{NSYjd8}xB)A68P8&kD2g*WW2_7gR;U5~BooC4UmxoZnC zDW@i3d1*)A$cFbc-v)9nkSJJDM0-P0ogjy@Z zU|WpO(wu#7<*kY4!<&6C)P>F(9F{u}cncY$jwB3UHP3y1{e$VJ>0d^0e?=^8811=%wJk;yX4C% zpmj}g?w%su%a<=retjR^E=*IvaF{5Yh2V?4tq28NT&d!XH#O+hYsceyS|GsY+%QjnD%FZ{3pp z_4lrRUxVNNv5C0ss8wZEm36rF}&sHOrj!3ujD{|AA8wP-;weNPH%2hg6EmSi>e-HimclL>yPk2*H<0Tb3<{#(20`bozpWgV^{Z&Eu%j*4PVPDqYV03v`u5>b*a*a;Lz+DmF zegaeQ$S4FY@LA$D>n>yy86{2=ocwe>;d^K3D#tHu+qRAFQrV)5+qbNmiqD_V4L|$h zIoWxTJ1{`ht48VWs|Ty)rB)3#Tz5ee)hCwM%FA0q9&ZsBrK6&uGbnZw-6`Y5yHna> z|H9|>inQZp%icfxaX!)<@>1G%MWcBWRXA@^+mCrdw%w)j8#Zoay|24<^^r4L-Yb6{ zBJk3ef!+L!yO)<-nogE!o2L;;g4y`v=CV~q2lG#zdzWyg=gX^mIRjq3m2}-hVoH?^ zt4DHD|Lhq1%iv~1Xhe;Q&-^>a2V$GBzn7bWQLq*Ds9t5TiL8*$I?<8UCLDc>c;JL; zaD^niZ=FW96=?|&;vD{beaFC3PVJX3=eH$SVqUupx5y9mV>N5;Kgh=q3k0aiKA6%{ zwka0VADL`6kWqxy}OQRms!fx1U@G^^x`$h04LgRM)SNKNKuNjYLtIt&C! zZZ~#Wea1knIBr;JN$a><+;O&|~=h@6Z zyHH8cf%i@2k5bZKZ*TC2sIU)}?ROncqts=z42I49&Gu5`w|OI;7GW5?gp{06)E9O- z1BYNE@F~kfT{cv0cZO{BBLlKEKi>;Z@X`i!5JEP*`}!_x*y>fn!YrTRtsRZ5nT;Rc z7Li6@kGlgh8(_e8k217<4Z4I+U&o91ShFGQXDp-SHJKT@ich2gKj>XurW^4o)fCuD za`9j7LcxWGa=AIlWA3k2R;i1%RILn8GB&HX-)U_+O$t*-Vg8H8e@;_|J@ZUJ^xF-b z*fQ6{0(J#Q9U>c!n)VA1Yag#~Y^H&;e)wUR$(F_hwYvlpB~lk2FaGTCs{GD5)~-@;{$WfplJ zVpIr+*G%qHNuK4LeJBl7xaD|&2i*nsDz7%D^Ob|r(zfGT<1YqBG2AR{b-ND6`!on`4WtK9k!3clez&6z8W%e|HP^codLv}nZXsaF%g z9JUov3+IcQ6H|ZLgvuu#;jW|Beys-ysOVIm>AXh9=y6VKgE$1Db*PBDYu1HTHwu?j zkgfD8KA%SI!L-_gpM~j9JTQjX4NrQv`0t_6aC$iKZsxf(&>dK&0Zq)psw>In1j8kU zFz#u?EaE&cyo7OK$~1gqB&8VHt-;{3Vhq9RLDEtgp=^U+Efx z9E>$(psk5glpD@f!i2S+Kta(Y15mO2JYlF2a5@Ik4dFz?Axy=pA8$noh`#nU4^y!h zxmqz5yNHBjkIgZceuW6l9zd2h+(Rl<9?W1d+lwT)QGNfL2>1C=u6@nIjt2Bj$6*Ds zHeIhysqc#^l(o^>)nS@!*9)_!aSM_~ml4|&&7DtQ@##xxi3inDJ7s=hf@ zi{KPSmCmgm5FsO;1GvLEsSaiO!aZ1QC2wv>jy|(7s*n%UOqk|*LB%d?K)ZhPt__bLKkjKs zR_|#z&>eNJN56Ys>*vqDAQECau<&UICTj#E>U9|leKQ(39+?~X9W>tKKfG}ZUw9NF zBxjeG#+Nsh{VFPx9g)Y8n1}ctr!gTbD@#O7jLFDjDBd38gcy3mJX_u8fYw%I7#3Ar z-?+nLd*6PH`^$N#cFBIfb!}ORLe-z=5>Zgtwd=~v8zkI*>a)BQvjewfkCat!_(7@a zn^`MBp%DnRM~H)w0FBxK7x!;E0%32TtkyzLISG9=K`Px@Qxy!jYc07ZnJ;=fw(k41 z$Ydr%S~-U3?4%IMI7zA-n|E*0&$rtMD3g$Fqo@`+o@!ZI&-3NSYTbm$u?;b(cNy#4 z#?8%5AL|J3)a+dGi)XV0Z7TXT4KtZVgkJXz5jR(;Of~599)EeI;J#ce1lxkUOpj7?qU)H%(n#ss} zuK)GG4#%n}(h~8fAo_^!m8YbJCW4@z?w?NIXVHK36c+i+aEaLW%ZetJ#y{B{vl6Usl8cqS@l zhDIE=T}8D+H)Bis%A|1v_Jeh%Gyds@oS*cTkZ5|Lp?l#>cR-lV5!(-yTY;;F$dz?ZCXHM?8dP~|=m;??{ z2r8q_&GPaPi?B07=dU`_wFn`=_0YIQvgs}r`B{yv+qNa|4Iv3Dy0PZO@{9RhY@gf* zqZN+h>~!iE`*tt8UH;P_i$b!Q?FW@ylp8)THps_QKI>1JOkCSU*x=!WZZD zFz;2D_pj01{!k1nu*`ssJGNKXGf_Bb51QVJ!#ce8F^2A7BHSW zb@n0K&cwz}hM2Uq=wI;{KqYBy%RO?N70C$bm$TXx(b~i4)dgL-mu}cqEJtp{-yK;Rb7Y@Ax<*`994mMS={nr^{Hcxy?o8g;`}NJ^ z-@C@xXMnu}P{#!xR|MWUC+**V|Lx1Z69i#9&i5TXs>iaK0Sd4? z$$EsGy9kT?8c;!UYCaU}qwu;&j>!f)Lm*1u;+}IcNtIhPSG&Z;iDU#VtL+ky=4b^~&w&TjQ%?A!C*gse-sjp+DnVIhf#EAyH+q=v^v{v> zkR~f}ua|_&sYTghzF`Swi`u6IrfG|i**^_IFQcwzW8R@UldApDRBJ=9P z6$abR=b{S}HxvbDww#B&mZ-TuMK-1wB0jOM>)Nyz-R-b|J)Cyb1DViSZat zehRR2Xo$_w{2XVI>)CXV0B8rm@ZKZHuD3gXbFYAN}vX)6iKG%cYDjqeeWb`xAV0)ZIvqWJ&3JKGJLl2zo860NfA%RZ^*z1#G4CnlT0|ryBu0L$0GTLN z4j|d79V2O{h?A<`0OE2CJB0ExKHwv|2tK&dpQc-P?~V-_H(s7KehJX1Madv00T^35 zsgy_Ky7V1cQS>7P8Is@1ojAd7(@Qu8h=GK)^l4OQp67y%wL0))8k8irj9)b&+69+& z7baw?h>-b7muXU|tE)Q>JoxZlVsQUTWQ}g(J5}Ug zxcZbBPtXHc#lypMZ_oq7>NrX2ff87&J;vGUb@F0wUBWqEj9){5G8)H(woojic|Yu( zJNz-h%M$EQ{73n>ivl5yz0ex zIBpH>fQr#~<#e$RA9yfqv-EX6=9(nwgOrW22FL#97~;T5N8x)mmy_szcz^~nS@nLa zg$;QjgAH)=)T70iljH|c0N*LKsAKd`?ATRCZLPn2IfL0%Yz3!SQEX2s`r2ny*Wp8f z0J_4dk0|+e4(1$Sp7O-#WDHyK?)Rr8lb#UR*K{L=dnh;=0FbEF%v5-%DUBKt3KxLzmYa2CFi*T}Kv6!^9Us_N;!k$dE?@@;uP0GeEag1W$d)H8Q6R;vevVaQ@O6DUse7GC$P*$HIzcBz^!I5OHzYKOSLPAx;E@qJo!(aseNZ1theJ zX%mUsEDTS%q=%6L))g+Gp?k7RcAzorFMD4UqvZe=8v3~#Kh~c})VKX(aSG_UU><0= z0Gh{%@_gh<+7AP8f-YzHJF;Vi{mD_QHH5Wrm&&DRVs=XvfxkmOI8btK01)4*UM-xK zNUvIDi1drNG@DOjfOLczMbS$aBbLlD8`VUCNwQ4HZ>mA&B)P#Iq$eP%_#`$fNkfq9 zPZ0J{Se$NlFBa7!wTjtnsOU6q|MT(+(U1?pETH!G-#&nGA{D}kc$U8?RH$Vvmdg3X zFK&iuF(kcKs0}V5*?9OkHuzqz11pz`Mv_^TVgh$527ImuHadfC5>qq00Exu&p1i!B z4{|vR>ap`0`v$Gm$OcwThkSd=Y$%$)b2BM8EBK` zrA7GzM!m78Y~NOjUbgk$VupcX1W0WveW)smp#8G+Q2O2lH8S|!ddmrU7h4C1?9c*@ zJ2O8g``)>x6;D(!IL0t#1usnM$yVQVEvpR2Ae3_e9Ml;wkCQYDN#-~hPe>X&bXB_k zoalM#Jko}gWmafOt*)050mFVF?}j$np#TtgoVxI>m$b__osI%W3y8CLy)Ky5uX5tc zKp5u&d}B#dVeb<*(Lpf+SAI=kw5+SJ96*6RP{{q@_rq{&4vrSQ*=+e)5bgC!TW$p=DhOR4)k*%Q_C6h9ES( zI5b=w13(BFkpFgC#NijosTlW|O8S7Yk$ZoL>hXPi1O5eQ+!i+ia%8y7pi1FLd`-eP z261>U&bHg=x5_xSYdu3zj?YMZl8P^`*XPVl&KR$V8=J_UxyIwr1gccBFFzGn7 z+TiG(8GWwsW$5|*;_p{DHb~2FcyQp-rjho{%}6N{pc*Dseyr)4x)}BZB%WjV)>U-i z+sAy|@*&L=apr{S!KND;>Inl@x%`VwK1+_*)AdB}A*pymDowA&xV-0ggT?QE8QGKy z-mH6dhHdMP9Sr;S?dypTGolBaq;x=|+pRBvaoMxSmmPr;R?DM(gQz#9dxJ}Hv^VtiIn+vl=&<>@4#svu0%^ow~B_6$Hc$cSrDxD1*idO6SiOY zIXNV&)oUntd+1m-gp|d7M zv&aMYRTgMB=rGx(#QANO8wfHqWQBDJSzdEf6CZ3ceW9}ZK9ezK)G@u2Wc=Ae@s}=C z!BnN)@`94zjgTw}pEcTH93}0@od)>-S(RH~6UU(V(SCkr$bKX}|GRi6T2m7o0J=9@ z_w^Wy0|wjQZ*#kKH!GR>x8z~d)T(nz(Pt<)ynkE>VZDf)oR_nEd|9Bhq|qshP~tOs zoZw9SbyTeCJryRx3*QbXxv~DsP`|5Vq^ia~l@v|s#dyyTy>`TK`AA-*P=?vUN|}18 zto+Wt;}vzdGJ}ZY^{kF75EN0+I28#|<6gH?ouQ)oI+RG}XZzkR0GwV+SK$`%Sn&5~ zyatu-Y1ecP&{l4~3>AaX)7}x6Y`Y3I|42A}4$T>3szLQ$d1d91pQGJNqq^_cuV4QX zF%69#nGLw!zGnw6e$bd_-j4wG%25Zm*pn~i0?o!ZA2WGhT$NEjz+_Y8R9ABNL`FsE|(^(VhFKLW?7H2=0 z>sX9^@FQW&Xn+;L;1oZ{6gCNUlri4^KZaXV8T4DX3Mg!st0rN(Il#x}o^Gw@2>G8p zQuE%oMik{e;=&?0l)3{{hHl?F>bW|L-5n9p4U(HWaY8c2JjSymwh!`DU}rFfFE;=c zR>1wqDybaKN&92{aJ`}a8>ZFnJEtQ-6)21@(eIOx?TOHu^p%aZiru##L@i z2A93_AKafdPEXeCHXfPz_GvdL2SBvxNtwlf1E0dx&5G+TxVasK5;Vh?7Xkwhpu5#O zcXIyXIO5bmeHj0k4bD7eb%B`3;d2fS4%Mj(KK`zmUW+5fu}e5DPiJxdQuc9&%a~?j zUby&dAhHF4W0dQ4zs8_+jOss1eN_nD-R`?t^4w_NrHj&u(P7 z**)2dh0(MuLPVT3!EY1)E`k_!W0W*=Te?1b%F?}nqB!MP1rEEC**3A)Oe9nUoz9v? zr_jmjXKSXnq|LhBS7y%YWIuUeeD6UabJFn0gzoJg)KRxgzBLN9v`w}`0d7KOzj zl_rl&0bD0tOGtX8-z=G4N9 zi*K_%|20^=g7mU;jNDs8p5a9`qz_cXekrTwM-POAD4S3rmfXzDtmn@0U3AHt z>r1%(C`zGGo<9HuiFX0n>*6&E!Oq4C&L;j1y+H`E4s*ImaW|q7ku>I0=(&keuW{@n z&vK*u+ROm~{79o-DvEGu@QK)8IB;Whr>0+>W+4gO|M_CGH{;S=?6SL7>GQ`!w~ZG} zNp3%e?tdY}HVe5X3YxA6SB})8HJpt`0)@<$1IB;FqEY=atab6@w)ghL6hM>LfOw9% zw1fnU_tJE1lSdPI68CFH`S?QP__Yq(2=@hO{7|`hCPH`@cxndDl8BQGY53&Tx4iN8D`1~J2nBd2#77!8bg2L=6Wx2>JwUS z^tS{i*sf(EFB_T$Jd_#m&_RwtYD_zplXCl%yK95Agp#$maT~24CQ|=}-U`9$F6#14 zW9Th_d{*rq5u;SpYO*0}yHnU1-zJj{9vp!mmNf=IGUuq)CL)(4{R!J$=fp>e5t!3H zks6AZnwB)nGsk?sX9(~pByb^yY)Ckb9$1C%JuEdwYXD)&q(yK#-a1ij_^@-{8hSEh zkl+r0sIAdn9!!m1L29u8azT0axAMJ#x4vftMA+4uf`#u%NL2kVFnTotquZT4jp9w` zp%UtDl^8!|%>VT`gy{2U#W8q292)A7?zT(m_+hC@II%W1%U-gLJ+&mXIGYZ8IJ~(< zjVX5-&;)Oj`?Ulq7Apb?kqZgeQ4v@}cmxrR-(8j)WE=>-e>4>O=i0qGjRL&SkmNbS z!;7>}?3h(XEr)sXM9EeVd;>o$BkC+4aXgpQMwbFdoP0`e7sf)Q8R9O(5d`QnF{8>^ z7ifAu%ioV=lSme89tm;lqj8HTwv*5`fQTZJdj`{})pm!f%SLAN>yfVk>S0=(d%t}7 z@|Wqs2y8n0T!?*J_ZqGCB@p2O7);Vw?ZKSPZx{^82p-x>Ls@9}0coSC))YtEjGDdR zse#Np+rIM!e@MPRui9nd_L8U#N&Dmc14BgDF{Gm6qnZQ8xPgI_vXE01pdBLLToJ#I zt=IA~Ji0@>A&Qd6k;s$YgykAK%X46_ett&W^p+E&8mF!#H71&dkO)UyO!*;%b03;E zV!GhJT314;lFxV~H+bo?Wnvw_aT2h>x0W=kT{&dZNMRtu46B$T@i?26;VGAl2fCDW zr9tq>wKor8t8s*74+OjIV<)s+>`mr4Q_zx1Ue}@X9OavWiP~e>JBEP14^0iHl9gUV zFOUK7V4u&L*XWkGK$7lL3sAB*oKFyk&C>RWJw(1=p{FO)i7xJ#4{uu3MNpiEBo>f4 zNFJ$dnLQs`C4fc1yhshUgdTzN3=)t!_A9>isJecJWEP`G%-hK1094Fc1n4Q4j$fm* z2Q`y5V9jNg)(1PzC2y_+B1rE@A}@u{zy%j7Lj+yC#94;*I?~qf0|{aA>zQf9X%ql_27qY1vyyp53H=in{&)qAAKRNKu(nuC z;g&gTq1mh?#J*Txo+IOLh|a4?3fH`X8!Oaa(GZl>*ap&mA;}M`cSgFWYqdCY)%j*0 z%IL50B}3rKi@}6St%Ci5dFJur7|*XLh}y%PxhHYC5x5|0O-$WuAZ|~{Gdar1`(T9a z`TM!i{6aP$qOVN1u~Om!Gy4F=UrgFY(lg+Lip2(Z=WB5~KX9`?u5QC1aT($I*1tv@ zNOu9OtVZV<#=u{XP+<%l4T^85#X*1^R-$F3D49MBlsS6RkJQXS8u6JjD1W{D^V}%f zqPOSi6V@DwlT=qos(0VBJ!Ja~zJ;mYlLfDz@3rr#@U@@#{9>hH3_!|>o*TQBKXw9G z(i5t0M@NCtbfOyLFW^$P)8-^KMshWRk@S_YfV2+>ID|+;Z}H4qrJkw&x>sv=drka# zbGZaM)B%7oqJ_pj1}G^p?#Q*#?s#f)*ufu#w(+N6Lu&k=$V@AUpUfWAEt%4rN7~E3 zJ`TEm=7E&&;;$dZIg@u&WGD(EprXMYf3@I# z<1)!UJYSu!Bk1b5_bn{u{I5PhV9r)A-Fn5h77VQw6c>E(W}H$q(twIn2A|Ao0(~K(xDGw26%78OW-INw8NjIyLfgjkjZh&dob}}=ks5U< z=GoA^#B9U+n}or}Xok&l6L_RJ$ZGo5ssal&;2u8Kl|~@aI-(g*Tzso^abSe{823>H zQq`pPZ^$MXnDb<^8@bC#%lP#g9J5iK7YQxZ(pbS$pnNbAr+wQkIskK%q-X@lWs*%0 z1c-s#X6C9zjC;b=T(RKJLpe5_yN?0S_ip`clJif>rw%gIKDl02Z z56{S#Hg;Z7`9Q3J;6=Jd)1Rrwn=?k?&rl(kLp+~t)3>-#hBWT`EVlbJkVPvO89Ok% zV@HB@;O|Z82{9^qj=#^bI4cR)C7ks_;a`#=T%j?1kfvj~-1Pcx6u#vUC#mq2ccHFq zp>AhzEEG!jC>hVIbv(ap)&X($^T8O;ist6#sOe%#%}UzeJak_TX*WKvri)UzB7@Y> zjC=nm>d|Y`TSO|fC;Ms=mw&b8m$E{i?@MSa-HBvX+A<73K99s)Wzt9_KBxYGGz5+6 zi;I_@qPPs8)V!}h#pE5%>>fALe)|V^wZlK&Mu#C((QYtscX{7pO0`ufPMLu4AtJSK z!9z~4Rp;dz4y3-x1mFwbN@jAFj})2+^O+0l83!ED;>^_e(%5)~@j{hxJ%R(QTeoiD z{)Yq~8NZ;diXJmxqqe{HG8<`2@2S1B??M72u@gg&7XSh_;Yhya*z#BRcwQpquNB*I zqSm&(m8%NzP@OQvPOQa}0PrHhrzb+|Ikb$w7Vw-ON)%|~BYHX##^=U({0ExeZ=k#8 zR#T@9-MbS@zsA`!wm>!DKblF|EPqAsa?fn6NG+Oflzj<>kwp`PD}gr)db^}h|BU1} zA28zd#wmHV=xhrJQ}KfeuT9-+r~d`KFrLzH_xX9lhZg#b`AeRL?;AjgPC#1vPE~mZ zuyy2Es5}hXUZj;Zx#j#nip`ML$%VG>Q2)EBdwJ={OE54>0>agSE7iFtK;b^oC~nsw ztlTp&SM`t5*(nw%u#Fihgz8EA&*cP>g9mlo2v8%&;dqdEu9O66^g*?u%k~Ei% zVbU_6kbOcs1vDz0bx__%-J4$G%z@P43gj05Ry;s@)khFehTQzv+&noJlIgQJ@@~0` zFJZg=q%b?WdmaB(Hwy@vH&!zx8GMG!=Bv$SAu2~I+Gs16(?0?W*$mh``aN7kLRHf7L2bJ!?q!Tu4*=>HOq>-f_LwtA-_tPj`_6*vu<8zfPdVi0I zvI!La1aag{R` zMBtzB5eFn(rxQ%}P?%Io>hsw|#lZS=T5)+Asq`0e(%Cau)4BXJXj$ikAo)#BanfKt z8gv=N(HK=4nzFePTkDHMp-8Y*%OtwMMnKPWwWW2!bIwNNAk{_i)!s`~^t`&THIit*`uNbt`#4JwOY|>c(TG z)S*y+O={sUt^Og#yGjME$TV^f&F|XOXgCz-;kvH;@<>S=%^d==@WDsOmvt9`M!AZ zVkBB&#C4^CzfN!$SsPSv36d2wHbomJ33|X2)+S-kHW1(jhwI=82m^qw@U6Q{u@mmT zaeOPNo4w!mQ?WGM@zNcxz(XwcCPx6i#(;(R(Pn^lddJZdxHR|Q`5PZX1+54@FV^qg zfP^bh$l9CMQnvi7OmWdNOZSooxu+4$iqu0`Tc_mgqQ?*qzb(MKqJfVjR5@o&q;nr9 z6VwlIt(FbOq!XOZ(MWghSr;p!)UP2JfcNfTsOwA?mI8|cB1#Opr`I`9VgAy&>i{fm z*q}(3nt(^Ukl?S)BNYw)NP%ex0~&N|D~O_Z!;ttsP82KqtQHKqMRZdLZP2Os%w^~_ z`4tq4#de8x+ zma&N-(g7a^hg$gTgEa|@Ah}QGbSTi;uzdw+Ker2_GWV+sSTzwzL>Ozqzvk-B)kOO( zNmbaC5QQF~RB2k?uTagM2ZHooIK4tG|5l=l#2xbF%@_hotGD0lVpWqykATz&L|Pqs zhHI(F5yb$o(^j2#!x<_3T-6XTNSa(in~C3lMe4Tl+ltg%6Ht7U#m|&%vFAe3AY0ld zm>rWWf;*6DVC@vCUz>EKoJf(WSG(2);&X8bQYJIoPl=~lBPjgM2 zye|@wm@1)q7b`j((@Rc{K9#(=)zI-Qj*M^%$54y%eaCJ^OiC7kyJiN>DZA=}2^hM$ zE}kFjicUf@*oSPBNhd`jq&bWrVIyCU;@w~1c9Oewr&7!U(RgzNTR@OmiL_kK1 zP`!sJh1Gy?rwX_z@rB6!!5^N4eW-7LBK?2?eR&1FrIcDSH1X?mV1}CIHTNmHUkZ^h z*U;!nE^5K2;P_wXuogfBNyIiKRn)Pbbu6GyItvOWyf7y1vY#5}MF@eRvFdpgA-1v^ z^nbmvj4IQ;NS2LQ|dNVGdewg}Zb7%KDV+gogV1+efhh1tVo5)Nw^U`0XsfsJ2Q z5>Fdo{B2vkDVJM_q&L!MwShP1P}9~kp%~5s$y!nlvRn?1ZF?+e^-5T~Jz&Bp-_eo;Y9}vl~v}UoK!E zM^m>WiTmeVqI=MnRv@i7e(>v3Nm-y~AsEXp-8C`g42s6{u~d+_)(D2+K>seGHgIeUBSnD)u5vsLF1FN$dO5c9W9#v zEIM1vkJ`40!B+3F9@u_K*-!L~1Gw`_#D8{#Ue8)^9 zFy;L0tT>VVNef!Q5d3=M_%>TplXKf zBG6Z&pAaD<_%cA%PDO)1X;6}R6@%h=1X-+mVsPO+KV=KMjg*mEKXwBnsceo7uIR{i zJG_O07KBj5!Ex$2{i~g-CTMqTsTtR&s_gJ;lbt)vDvOM^l@SNL|a-QGvkG1ngq#wq1JFK@hr%9WRZZ86j_|L$a*M@rGV8&6O&Wj~ho62iTk z5obBLs*bg|5HQ|AX<}P%GtxQdV|R?w8{CGZET7)w5bWtJaO@$h-$ffHY{;KJ55*Z+ zZ~9Yv;B(&x+sM6CYTEP2hQIBHCv zUu!wU^i}CIz)3y*Va8)Nwu*nR+_}gAT1YoMEQjn(I9Gq*VKKe>!2476;!PSxRvgj- zIJHAS85Ti^`bCoLDdo!(@d@Q^E+p(hY6blR1GSX5km}aH8iFNv6|l%Vjpaz{UW*x$ zQJGg2HGYC3@v7AGY;OG_+J`uNVnr>`+YPoNNCw3#g%kY=#eP%HJS)rZ!d(K}r7nJuxRPH7%EpuJ)?l^ldAN<@ajNVCk9CeH z_<)^;7;xw-+dsu|gGiV9MbX!|B%}DNsd&m6$yl_~Raj$@_qnAL zR^{r_zs%YKNl5~7N$!O=*Qi>!7|WV207&aAX=KWgb&J`|XwgvAxs{jP|Gh8JoZ#bz z(>^pKMGLonn$OGHrpDMTd@=|KOKI)jhmS+Axq1=UxZIItW&-&e6I0Vi_JrSB1r6z8 z<iBUCC(f!19(nit>(*_o z*8Df|S8JLE>(52~=(^$Pnd!M4liS!^+*I^q+GnY3P-jqnxg-|uCOKXM-J+?XSGLPm zoyd|P6Ybi}^6NW7m#v=U=1P{))uj#508^A5T$p%i6MEcF(xl>AWEC@l|G01AUEa74 z7x8LeK9xn(zsp5`X1u%1IyoUr z-JeAXd6qE7z+39nUBAtl<@wh~x2<=T>=Lz!d2)5N-s4TWda;JSa6Y1a%nUQti}> z6_3cQ2ELUBxfH_E%F2ozu6|I+f--5BD@WbWR>~40pVT|_4-dCW!d!O7>_DegYrd@MtFhTUK4n59L(-CQ1l3`Qz8tSN)-N-!ww~e=7 zJT~iZnE!;V_5=SX4T~{QrGb!;b=^<7`kuuDvAIJ2twfsjk3>&n2AyGH%UZMlI3 z@J%Wq8L>m$y#6L!B`gJ0%KcumxajlFP#CVd2|Bz<`pAp^E3Dn10OA~|Mh{4)cRoJ` zVFdmmjoCLx=-ASxUNMJqTz#1yEeqNwMcRRiOF#26XI!)hd|my-^TE$j z+sbOm>+hrVn9pzq&)yi~4$tGm+|!MMaX;Ud-!`*e%`KqM@Ut{holh5<_Q7>7$=>HM zUx(01e}CEK&PNR{az=-jdD&|Vr>msS_bYp#)&kl?Y$rb9n8#ff?T<4h#g-2$F3&w5 z$tW5YBY@hL8w2%TSjk4-`k5jCT}l(1v#eWFT>f18o?mvf%zN>}ENjovEevOm))vr8 zv-OmzNHcLZ8^GN!RvEMWGqyk8Tf`Rj8#i@0E9sphQ3>&=SdMVoe9UTVYy0awj@0|R zoyrf_sw!!&Nxez-+tb=Ywa5G~+O|nlEp!el!8^3E9$r6G#}2_NV>T+&?H_M)-WBU;{4mJ9KYcLxEAvzqr`YYXCi4!l z^Cu8)&x31sQ>sPDL&X;DbMMX^2mnK#_n`7Fmy+qdGg4OV+Sk~R3LatIGr0GQ&b4KQ z{u5X6j>zSy1#NY<-OMMdf)R^7|6|-(GDyP3@8N`+r0E~4xi8KHSh7t-$z(5)(>M>n zK@{k|Hsunt>wF$A<7~ZQt4Lh$twhmx9emfxxoeKyUK_vEu5+FEW?UP*najqWX-c)8 z!%6jYtb%-Am&-@LfQaf-pv@##a{wdnbvOahHr-J4)llTs7Pi!0D$qc;q#Xw;Px3^w z=#~k(N}iKB5O4=ZAQuGHorJWDHFA6N502o}i6g6STw4`powPkCf$G7fQg;Km(?rzs z`?rGw;bxDF%e)N(V*}3&K5=}v)k<)cJ^*&~;|g{bHMX&_$znW@_1kJ_ocsGn#uvBz zNBg$>D`C)wjf<(qvrSggy1TZz_X8!RYB6IFZl4Lv-VazD=;O|ck|;B z0n>tbq93?Q-6ngt%DLGWmF_LB8O<#P z327Fkz{FW?wP?JE&!OWjmH6lvLGE)v_UtSnjbS!h_-m@A>fabQ7l7`5H9K_*&19{} z664p?U@yh@jAKmI#R@7uBfRgyG0qYG_%!3B2i$v@$$(u#3N0*xKW!cQtuKtrH#4R5 z`;r>eIj${K#f|)>Kxz$zK1Z;ony<-wT0tQSgS~JlNV|)IJI*kDvOpQuroZB5<4b5j z@s6`Hq5#tu75pTZj}8ChW#-z#qjDqG+~G~@d@8Ro;Eow`=70l0t>p+b6kI?XGiNc1mwNop43 zl!w-*SFaW^j#kv!emGtB8Obw;xG{XG#Sj={Oo>eOBRj;)BQ#3Jq1Wx#Cc?fH+BLPt z>CPL*-=AfW#G2|!p-~>bP23m`?^`S#cE9f@;Di~i<~g#(!no=T=M9s>oc}ad=dqf? z)_Vr#vVJY}j~jz6;WPvC_F{NhB;xbUwX3e4k!5rc2@^+4$GslEYg^0(B0XO9_fo2G;xt@p$dljMhH zDTm3=j!OgP*kub6DR9t_GyL7jtRqOM05hAr(~O5c&V0dt1Ydkd}Hs+xub0Fxo8~j{nB8B}#qQME8EUWReGA>i#8A@+)`F;AlCHxst_ZKHExcfwS@w<0wStZX znrz{gy27~33Dq^2$0&>hG7+!IQoM*D?}8OfJx_5!8G9CCi_EgGlwui;Fz_G^BdW;0 zsDi$_ahpGW8MaDPy+&j&{D0MpkmLW7>cuN5yt~UvxQTMEIf?O6Em6gWvaR2u_?};0 z^vLfPTyB#8QR%-;ycb;i0OU8GkSc)CZ`==TnIIy+;=f&zzdC65ZfKIUw9R{OK6fn` z?%^VnZ<1&N_dKS@)b-=W?qWzcmz6{4Xgc-f71Y7GR;FmCif#5D&28U%1?u4hAPg@= z;=i5lU+#!ny?wG(-ot4?S_XLcslwWif$1tWo@8tUdvyb$&4*DV6y&66ki}tWG1&r6J-2rQGlPZP1CzgJ6K{xcz}*+W^x^HR{L{ zpTYZg{|3K~G>KdoVB2PuCSkr^ACw1P8}xPIqc3Pg^^N5)@~Q4k$sl#h?Vet+n#digQ%VU=p1`h%vX9mBcrCBEv z5RG9UZ9H*5vlTeTC3Ep@LcO}$;*!pHxyh4~C2Y0xY2mXG+3kc4FqtMzbA&n>B6#f`R6H5s{#q}%#*ny)d_G!vcqRZ&aAw! zqxgp+)3|xb!ytSPLnr+1$K?t-o@YvZh~pl+G?O?wU;NwDHgBLJ;S;vklOy*Ll`-;X zLIT@~GEZas7c?cWAI582$VTA*U^w5(itObx3z3zmQv{zv&|PS-N4x)7ikMe->6Lvp ziVG>!;=C)vpvwI*zO6g7NR|V**iRaB8f$&a;Rm+Zk>43{yrU#^_uycZWA9xh;pC&d zqU77fzhiJ4PLdp6( zvxY1eb4ojj^1M0Q(@`Dq%$R~zL8t0g!c241O#Bv3Rd)hXPaLp&`De}Ox+UbkJmb07 z+C*fb?dWY?_5%a29??n<%GW^3rRFahhT$o*2-Btq2Qr1TXt?lkSrA*l?HDn0p%nfQ znyIB5L;Ta*V(?uw#{zfi=1YIet`l~?jr{aOfDm{+$XoJ^ZlDeNuJ5qBX_Hx!_wAd$ zT>%&H2Q#89K8gE|_f0ko5cOWJ4|z$Kg)Yo3_BlO8gl zn1&CqbkmHYwCR2J9VR!9w)xbwHi{6T5baTsY94&tNlQeFKv5(P$z@eVV zouCLpQ&#r=mFrLkqTISR-m6Bm+iw*Tr$eRd^Q_^Qqq1LaMRr3G2``aU5wGerxxrz* zOB-CJ$is2*(g{|f)Y&vKUQ@3Q4ktbCh0IT*Lfq|=p|D}61NDDzR@e#`6MBAZJ8vl0 zYJ$+e`3coW+nh5yA-CAGS-?=gT;oZu(SaY(cI~$LYwA8-95$&2G(OX3pjoki;`3UR5y*a6QL#UPT?0Ail^ zK?RKf7e3}(O-&Du*%M`I1v}G;z1mwh?^N6#Oa*I>?Sn)|V2FUW)zztHGg#L+%BNr7- zm6T=+gqA(HMD6LiwTDv4+7rrU{hbvO4F;<{St==T2*BQPb~#3Jyq3ZoAPANYMnE1xj?qp_pTrYoFEc;B9iNWBGEy4bK7L#0 zCjX(vqqSK)%V!*hZbdpmH%tngW+8t+a!;hw;kat&QM>wjk}5`&?tS|6^3zp$X7Q&; zouysClS6@_W|a1_lkWMv{QnLf0M2@1X$Mg>Ib#tfFwoW|qZ8uDuz>Prf4CFF{hV~; z{s&`U9ad%fyuV_1PzI$e(y$0fhpUK!gmmN5jkL6^Yk`1DNuvTvOEvz2se99 z!Brf!QUt;<`mR_m!)g!_mulD3_!XiI=*n(o14C>)<#zhO7bi^e>Av%F)mS*0d#=r@ z8)y#+hI#`B-qtveT5)>PV<7=K&9BgHN!DqhLemQX>A}4fm;Qm&A}=!6WIE?|<3c}9z%CufB*351BcFBWJ3NfR0t&f^~Jy=`{NP5FC5WWEJ@ngP0lGB>{c8l z9qn;ILRE_cLgJ%1kTH%>gYmUp!BGLJYWcu{ovE&A;UwW+Tb?o|W9vfQ2CKB!tH$x> zJDm^~V^jL+u zIirx7(2x>IHkoaZ>Ll~i^pR$`l7hz~b=P}<$-|gq^Y$cdwO0?X{m67}+*6aRPi^|e z0g_!M48YaZQb}`ydmj7wbXMzDbosuRb`(IK7b_ zGEXQ3a>V<&v7pf8**`!h3>A3@K99LX;=DK=bBPFFz3aRyC2T zUirFx8nG1W^afxwS67GQm?x@?ng9}Yy3asop(_Mmu_MNi`LOtO_Td$V4g>U=(l^}v zNeT}TTlMPVm`d2akiRalCOo!#x%lPWgR2IAxXIn%f$}}=mK0sx;s7APvn7JK|DNFF zfz95-&)}Ut%7W_70PeM#r(7ugaqHI8Itbo-^AIZzL|w<|x9YnIlo%Jkv3GDkxUn377kfw_!6Pv_D4nLu zu=ir{dSs)j(YN)I2j~SC*`(a`#M`?bWxy(G;uyKG@A`3RM##cjB_EUF|Bp4GxlzHl zj^LT#8=o>sa|@H~l<)=*wo^kq!SR9N#btRs=o`cE@8PXnJPB%iyi)(W&MUmR`ENuS z-Ws;3h4rh~)6u$HLwLANZbGgNdY)Myufh6g5VJ+Y#Gd!4=HG{h%_uDW@EVHv@l2~B z^cjv{&0cGK;!OGujQGRazTY-^lE_*BM!-;@qh70MLW2Wmfsp>67ZcbWv+FcCIB<{! zu+KS~KirJ)u&+&e*O{&A$3d5=h5}hL$c??y*~PIdQ2Q26f@jW!zU`y@a)oN>&wN1d zj4qtQm$100!F2a%oub)FZ`rkPS`Oyzjb$}{XYihYd-U2>*Lnbt5&UdZPm5DP-5BY2 zKZu+iir1SIP+f*iu~UQ;UCWz}2FgfbQzndFk8a>@K)3$}s$nP0Oa|iAQ4FrZ+&=h4 zr!*t9e^jn};5eP`)G%Wq=`3o|%9)S!)vM&VPww9oQ^CUW;XzkS=tdsumH^Dy(7zK~ z(+j`_afNp-CnX=k-O34I?TwgO@G{yP8@*Nm-j`it5_#-u@*T1LWH!%H> zn)6SSfXkaupTlF15eTx#C$<*cHec($J|15|Y7tOuw4phwZs|rN zlz2vfOcEcA;Z}U(JKWm#16$`j#htHiSIQivYGT7WMMDd{rIAc; zNbPZ<8-g3Mim#)J!xedV+u(*n_u_8nkpmfDMZ}siv_YO@;hbjp?2CQR2EH+Id?2^IYaOkulcn>QPUInY^;fetBapn5C65IKR4Pg*OLte&)vw+ zK{uhx_&v%Z1y$3A+)JT&!Y@YxSkZduy=iy;>5Rwho-_0BTLXiCbP{qn|8!Jiq1Y#> zXu2h-20#K$!YX|jcZqs0#&9x`CenKseUKTcIk>=u`p!*E_AhzPX=fAjE- ze%f$$e^@ePoJ$`ar#>gp*^4^x=1w7G0*TKqPk6gNv7hQI2DVoBXHiN|Acl!JJh&ms z>`Wqoc_tCc%ZdCDpb4pnJ{-g!0!z38pLZAgZFZH?kIy$uC6%r@Hi@%+(^f5R@@}Dj zP@rh?dEc?Op27?nA(rLz2#t;B`g-+@DbYi6TP5V(umR=jB&dWfl>)=1d(5?PHdxSk zvB(x<+BC~)JKUV!o($q!D85G;5Ec*?mbw!&cDS0io7d$@3aw1TvDn)cWSsc8>LSLZ zJ<}PFG4_C8Ow)gmX)|yb%Q}AVOn<4Xv#Fh3rd+tnE`pI=NGmnt?{ZKB#mpovX$6~R zJO-F6GeI~Nv>}p~8kaitN1i`T5B`()uiA)97SQ=4!T8r z^UZI%9?Th!7!$M3t@gXF(pCc;^!@Gl^Q!;}P6~NP>StLuUTo3vLAYD1mKyYjdZwk9 z&Qa<-+wx|_D=>a;2LF-;Lb|n)bFMt)ZzBkl73p=syh~FUZZ_``hPx3nXMR{;=*&R1 zPrNMv(3t{ndY`aYKXO@F)FrP=WX0u-ZD|vx&J}Y{RkC9srdBpBdro6&C27@!KlRJV z|9AD&#TEB$m|II~)JVFx2#AOcvGTe+rXVV5dNfC>Mrq;wUP0+u7g6$j=7M-~uHqZX zZzMxc8?r<(SMgK{^hT@?0r3L>+1SPp=(&0e+VD&uie&2e1@L;2iN!3nOJu#lc-auq zR7|j`kvvh^ei^=(8Qw>R;Aw^b5$?LF?MItC z+2Hf5ln@zhW!~ooS$eb_j>-h)*E<~F7YiH79_=&%PUffAGySNa4vNY>gD{n zgwV7`7!Ux3)Pf)Spz9hU5*^B(Tmc2;ybcBNbb z@0Cmf692rA)9>>dKDkNw$L8@LGf;CwW$P9ogyJuO{=q*WW3h1l&s(zZ1}nx7qYO~u4sv15+u{2 zEC>uc+hJ&Pq`M+8@>XPmri!_0Ax?9}sD(q;i@wPr9g66S(G8YXFIf@t0lE?q14Y%L z&9Z{|nHR!e&?i=dr^3r+dBq1(DOh*SCtAOC^Spn`e{WZ~)Sf~H_cx}}^i%nf;j5wp z?Q{cQ#LW0IM&;@*YSTZg^Y=3zVDocX0m@(z*nraz20uoSQewg4VC6AH_*S!NkY}^# zD$3Xl(0)fL2kkRIDO=l|c)?=@kQdu)rbSn<1SKHjP_gJ(|IFs4M&oYh{Kv_&ZI|xt z5h;I}7NsUzoo)aG>nGQJ&KI-f4xeaJvyy1ZFdGWK+C~QV9pF!Vc&Lqj3Zlj!M$Ys4{W$F@Pp-9)VKz51IsOW0Gg;+WcYlu!nCxpnu{^O z*Qz{UWn|z@xEF$XClJY>=?WlxfhCRjwJHQlv)ul{Zu9cMA`0)^*9OQfNCdmvvbVtA z?0Wm!%cw~)hE$n!P#0o}m^+3czT)ME?f#aM*@~~Da%B}`>-EBA!{!up2Bm64lOez)`Ki~B35-+Fem1|A0WEF_cO{%w2 z_Tuh(6icMhSWN@R`cTbXWyUT|bk68<;CBD)O3<@4`L*lxwXe|G>+$sXLY-|TTdA+D z{IHEc2D!LTO*wsU*dc}%maMOTyPI(~er~HH(b=FKU!g0Qr~j0I4?TNHgtazLiNT+4 znrn+q$vS1vZP`1m>m{_k1!fJJ6w63)hD_mt-f6~OUrW`@s5YNVQLO+w9t%*nRgQWv zWF4{r=n8*^li|KfNaec4P*Bwh6QJ&KEhY%40-%9@C`nE<-<_5IjjyU<#RWQn=(r>h zP#}v_Od1{hmM_RsEXIa26Vldjq+hM=`m`;T$no@jp8Zt0o@`aFhRiz$Q$Bw!{a%0F zr(Ppws$h=WU<}J!EQL2-o#12p z&d8@w<1R9>5;Z;r1vBM6#@=Jqh2RaDGies&@x77jX(nPX#_clUXK2`Yi?hTR_zM0Z+)Sy{z@@jayMsl_^tl0{S`1VMB{inu>+e_#+MuP^T z8;uE`>}QD4lhnjo?K!Mtw)r~@es|-HGb)r&pzaOtlcB#yEKbtEobD&SDwo+zfD8XS z4(P0yX6I@%6j&=(PHg^Tbl@6xsVFAJw>DQ@xE*zWunb_%172;qS7OQR}Z`*iBg*PrzKoYcaK%Sta~zSKVcy`hcrcV+7Qrm*(lxv4U=8(Odpm&N1@>Sx~k$oTwn5^df69T&6GmLtUG1H4rV!_M_I6RNWa z+_VDpULBPKC`OTO7fF&+zlDN5Ht4sh*r-_M6|a6G#a8yMPG!2bE^PRBv-6|Nd?2?o zN~ZBy+YV!z>F%YEyQXVRV3w*fwE8f*SaO}q%hAcZM>fq9++?u_pPXcS#Z&@5JlNHi z!Z*8jN{U4v)p(Kz>iMZR6wHQVumzbcVVf<>`3}tlrt0+Usnnao6aLhGguX zp|XST&Q_J#zxi~+xAqYO%qUQPUI^&9cR=2}e37x?W)hfF`d)?BltW_P1LZ?-zZEB! zQegZpGdkRG57aWoJ~84GJW)i$d2{*~-Q#-*=jTg>D1yy$40Dy4L9`)d^q8TYG^@rJ zpoXJxrrZ?FztkQ-BcJmU?$Fgx!6-|z^m?)kE-Su|2$2iF3+>>k78)X%h>r`jyg{{v zV$2aL94_dLnBclo;K~NW95+0}kpZH*63F$-ed&!0o!2^j9WT6 zgpH0)OMZnAgf6%q5e-0_-B{VxoX<$z={irOnwY9WbyVqe-wXu#Byg!IiDXiVt9ot% z?8gybwNQ0_ThMUK;Fw#ocIj1zd1wyR+EhRSsa#t_yCe;LQ$B?RK23jSRTAXISxWFI z=7N6^cBkv{{9;of1$3?(vB<)v1ADy!DA;+QAy*V1`Z7Bh;SeJ^Yube^vDMAp1v3fe zei9>)NjG{`E*(NLTRbny$K+T~sI0ZJ+Xz=GU^l+_DZ?mUtLGhZrS zz@apBWF_~(65R2JAVS;C->Y*HCuF>7%_0g20yJIh5j!7eT5GM}dE3x_;v2 zQRnX~t70y)16>t}#gf4j&~eje^!MvLjj4xEbI_fa3~8SAJHQylY|0#sHxccq#q3-j zS^E_%9M>+^afLo`3xaxp_8qw5BCWA;Y59wTaVR}e1YKCfJ7Yf$0ZUbYoEu_5&Z_LR zsQ-UBF}kbnUi(q*uXj`O^lHM$5z#DOEjwj6f7DiPNGl&7OZi)hWuw$QT7Xr!+$J-l zFKo$6>>$V{%mS=H8=wRFiXo7z^g?pn6HsyFpWhVfWkjS|7gE<&M<%Wchc6O8)CI%` z?awJ66hMTdxQPl5ToPj4FMnI`9zY^uqzfO}@8g>x*LIT6)`Uqd>)mt$OJN6s1fBsZ z7+ujHK=GpQd7rQR9dt@$B-djoDKP6ylYwu3%4VD=ZHD88aVJ?>oMEi!0dU9z(wX@q zD=A#Lwa;vlH5x^n)lbHn9x-Gwl!UlkfLKF@W&Np|aKx4q6Dqgf6~d#tW; z(;>cvDjdKUrtb2Um3&;dI+N61o`0e^0IIJNm~DeD2Zf(0<0=Qfn*#0GT32h8SC_N|3h0tawl=KF>o0kbcz3AtqdwVSPEN zp7Ob=+qH9|ZXn#yeU`7%6g)nQYM%b0r)Mu~brn6v(jkHPsBY_|=)sC*I1JsRT)u?? zGKVNLgtu%}^7w$>ow`;gL{4{Wx@XtE9*JA2RTn+r83KtpgRv-2hpjJmA?wCeXw1mI zH3pHUbCVmsb~FzaRuMvBFR9kY!^U&^-VnUpNUkR%(l{{lnikjnRQkMhZs(une{KNm z8xVz@#w`fxjWHTbro^)-)w<^>h1vqu8kZKfWV9|rZ#~@D2ifWg_NS_FN-H5c!SwoX zq5qffvTZedGmp4t9wf}}kfLXm9Bqp4weVaQ{It-x!zhO;{rLl)BxO_3WAlvcAh~jz53= z)=re4e}C@9y5ic_d4r)prGz0b$4A}RG!0uu@3sdlkKtXBKkg4A*7AQIIJX%<#^O6m zbAN1sZI5&_LzOrl761PCZ>&ElX6KxXP#O=YVM(ia(UNveBhz+Ed z7p5=;B+M$lJayyWJ|fTP@wEBkX-*@#VRZL^ylG{(4So%dyR*6+*!Iag2zDPsJ*KrF zvYJ4t1f&uORmuZ0jR#4X9!+zCn>y!hZfN*eV78eW>w9opXgwk0nOvE3!l(am5ey=# z=Vi&@Z%*86fLRM-jvR^EeL?dBQm&`1`YH$Nc+`35h|OGP;xyBp)qxz&2EjNGw+OLb z3`9GTjF-9b8eb~!*)VDOEmf}Pk_CWMH! zSYiSXhUviCpGzue+h$GxGY6^<14_5?jb>>tf88teh(_H13r8XLkL&sCoN!qO=_@;G z5RHxWcYTZ(vChk=t#oNq0%*_Z!RkC9Zd#*1aG(qn4k!`b4V6?pI7-=}@JEYofO@&4 z^Xfu>H>jUK0xg$P)Xn>-(DH30k*-^sfI(R|ZghVmuM4q*P@>MJa~9VK;uETo9t}|X zd)uB84%=NfrHBHc;$l)wG9X+INzC|!FYBOe2sU|UdOV}!-r87|w^I-Gvw}ubR|r|U z!W>5*BZ*cD*X0SDPNTUMU}tyT-Ff5@Qd^y9A9LYSQCX&sCCBO4JyivgTd%F*PX+2d z>R(x17sQ{C^JSREC3ziSJ!6`7GXxTRrgllF>A7j=8~xPj=%^_Ge)9m_I;9_SoL*8v zd`e998R(g?)H&f7Xct)ND0QZTs`)yF4r)^$M~Fc{lwr&`GfyRgpje#vK z^2AhwT+69@Ut_}_H-02^VIkl9<@_xSo6x>3o98L58>p|8Li`lAP`ily{BCa{3Mjo+ zyd1UsSjy>@sfM9T)CgK&RY7`I9L>E)0dl3%!^DPmtBXU}T5V+waI8G{Qab%n z_i^-0cGN*CiuFIt%C7LQ2Z{ z_j}71gJYCul~QPov5Vu zx^ZW*uMWCjiMj20vM7#db#S#(@fE^0jGq8a4OPloMCRVXS%8~R-$6guRb zF8Ilf<+zKKa?15AK*8Q`ruQW^V^aKbuFnwA;iW$(l<>NTW>AUaQ<~B!&|v7YG26vI zMZ+ade|+;!CldSGRJdxB2gi5B5obdTwqRWwePkW2 zCEfkBa4_dBb(l*VPN!`dJ0P;8zK6KDTyGrQ2Hv`zgHz2i8uW#A{=L!;HyVdP3cnO6 zS*abdVw(Tcvk+Xb_YQ=I{bzb(s2K~H9#&gw;L~2Asc+n??@b*!-)<&f{_x3# zb$6qr*6>{kUKJ^_4rTeJ{`~k}_0++U^v*>rku(TstRGfKqa)|*)Y(dZI%BbP@BZps zl_$%$f6!OU53+M;6w-*6YW9kjmO#0o%wa?}m{7)W%l#sJco!tN-d^%8Ir^FKp`cBg z@c`GmiJMhVQ5<1(9wJiC*CbmO8arj#!i&_aon7g+dtJKb*I4(Ma>lD`a%%8f4>YIz zH7BI6r>q&p=byi*wLJJ>?M?eT0eU@?w1JDs4#m%HyT1&ItVsyT#YuOePXQDF;*@{S z1#Zze!{yKb?%XZ7)b=QAZT0@h34#7v&#v#U=ggWEJxR}~sR$0<3y>2UHO*Y1FSvbq zsaboD?0DgKz2W+fRz4s;EX?j~_}){ z5mcaJ60`k5o~-Wx)Ap5^geDid2yu-UI!aET6wU2_qrgX#XOR@IJA*U zey;)+B>lwdPap}{Hz2xAG;4VHYN zzM1|0BP;(t2R?DgXkJi}AZ+1zT(9q;jldUvI6(7sX89>{q679Q+w1mrHuQkYUCIrP zf3CxwByaJJbk~2-Om`3*ra~oxepM*yN`}fpxU@&FEkuG3r?47T8b3AzvBF7UfetMm ziTUKXQRm?%17nprp0wGM#o8bYK@NtMi~JmAKD zvdPU^aRwrjHmW+iGyc^q9MeEpw_d>p&;$6V~V=6*%g)Mc5~agw*+X5>i%=! zO1WNf5O$_e0f$qzRi*<{DRd*FvqS%ph0=krSSRND_9$-O7v--&Kw%30SDZDUs7ce+ zdE0fr=m6NE2W*P?SE^5=5=!cTMS^p=tbd2i`0RozkEoca`B!y z=*dq&ROL6rB`XTv@$0lGC)o}^lYvoRa4yaj0Ael*KDr~nHMXGKvQ*srR46d)K&1y; zMC=g&X3Raa@4{y2LAYaA!ODnvK-4tcdYs5ZL@w90DJgs3jCdz;?}4(RX*GXzL!rK= zZ$d1^GBY^ERU@L1{@J0LI|F40xRIVjF#uxp9YGb_#V8F$H0MK~Y@MT#Ifvv&pv+mmm~o9g%w>UZ`iN{Wc6$%)i~PHYCO|DkvS!UC z_`pdB4Q?YgEt6x?alShKdMELNtcHp7g$_g-r$3j4pg*Icgd@D5B&v*m#KyCDNUr5_ zqZnED6pLEcA4ec7bu=HRXzda-v~wB6MdchHWf2t3hoYY41tScM%Z~E{6Knpi*hS89X#z1y@zwFr&dL zIVyFzeA;}=_X!go0O2kwIQWV4fJrD_T#{>^FQOIvJbUOx3fEBcL=mA>T9xtY@`7&a zHTy^>84Y|06AWM3p&%!?F-+VK!e+Z496m#WdV`rjI$f8i0D6L(+P%LK#-BZ$?*Jbf z$!Garp(9=aX5#~U6mETadvjtce2qW#w^WCjK?GW8feM;uf4FM_%N}|&_wc@FeX^|? zU~^&jx*VrJiVu*Wii{?Sk&$)VaRp%n6m=rNAQ_U4x_#WRfssZ;2vBXGQP^sF_;*F# zLC3&9?=D*+G$G z2K0YE-%P{7xk)|1X^Nsj&7ezn>?J#3N-1;J*wu97M{Htyn}cD& zpb)gWlgfGXD2Z-R5p%mNVLD5q0yIu{E_KXlL6kZ~d~LUHBGFA-K(uDOd}jL4Z49Y& zZ>wq^TBzv_uz4hieacf~x8bFmR-q|9>&JIvQ!Wr)yYH1&te7K9vywXy9o)$AnaI3- z{s1dyFDbT7<>_kxsk@PUl>6yV{f?akl|77t&Oi%OfSToXRF`++qb>K<(?Wp$)R7p_ z7p$|^;PyI~Q`o}Ibi<> zqD}CFLx8GNGLl3*NQzNZI2-?hm{Fk!k@5#xn8AavFo8TGo74PwMiSDbgYrP~oqLZk zoqp+rz2b!fAQs8F(Ti6>+T=zH?vlCL3*2LqrE<}$DL5?QE<<&V`% zZyEXqNMEZ9UIdFQ57znpX`->Slnv&j|LRuhy3H=oK5MA4i>i=2Vsa5h*}u@D!@X_t zEF=@WZG5*h+}`}kS}K^%!zst2e_TL6Mv0vBeLbjfi*ktW;N~s5VUys8h)XDyqjUDg z>q+p|Wb9?Bw>y@&X%Oy*SB0M8+1^GOj|`yA@jp+Dfeae-*|0lDe}|^W2^+-*^xa zD&dPbsQFJC(1HGu_y3`&vUzK5WYvE44m2o8pTgXA6|>v?=ZOCI(%`L znRK}?*V*d)bvDE;K-k#*R}2NPMZN?{1&c-@AmcKT?Cs2CmOs;IU}~D6OhK;zG|e|W zk=X{=8G|Ko*|T{8apy5e;cIMMqC2Wq0Lod5;gNw;%+S3}A7uqi?c#@lV9f?nu_;q^ zjashD-IUrLdG=_z?trGZHkAH63p-nXQ=IR1> z`Dv5&NKg^0O7isjq5{gs;MQLipgDL;nVUgmXQ~OEE1cJwQ3VMw=(-`n@dTiHK81Lt ziB-oT7oR>G=v`U5^Cu=QSaj{wy;kWwph1Cqn;S%a3FBedV#&g}!- zmOUASS`sqHQ=lBE2wa)PwM;wOS_i-0f8UKADiXf>;2*Xn2qqcKf9EfZ_5Ent@xjyO`AX)1CkG*uH-% z_n+M_G=~Z6w(qo~?GFk07MiG^5I;4lKeoa@=PV$4qQ-eP6~gk4N6>Vl6iQZeY)GsOVJQJ7F z28?HM)|?vHj8L&D-@lYY-CvnK1{>g$5`$_}dVCHZWJNm^va12rO}zg?E9J5m45}ozCY}0l3f_3x)QX>cp4xW=!1Q4xW`;d4 z>vy?8O1CDuETY0BZ@0rgo7#8I z1V~Y<3vxwCIrae9U~}^jyu?*Eh>Mo^v+2eAjR0@kqY_(t_J6GBU%N?IHOLTsE4GUg ztSvtX@UuZdU#!(k<1=^+L|ickn5`;sRb~c~Xnde4<4gs4!_GZ;e+6&gBP@2aQ!`&iC9@UMh7*q9*8^vs;WU>vKW8|l% z^r50C_7C>bN-RImt&i|zn-hK658PJR_&~fyJ}+e6DFBgrOMr?Nm&?MJuRE?m;o)gW z_u4I4xO^|?)aByF?Rn?l$01NnHtK=!o!IQMg3Vu{wmlcMQA1bI(O}d)u9pZZ^K?T) zp7+3W_wC@B0!W?oh#j=GEQOXXClUX(_IwKF zGG_^nn9Pc6@;%&zbBm|lklf;{x3|U{l3X|;wr||aK3ns2;oynD%eob6?EM`^2!%oM zb23omO5X_1#AHD_@xa3{U>y#qY4|kt3D_rLL#2FR`qc4xUERoHgPaIL%q#%yDMi`S zx^PtC3_Xii6aP(_Pr6+=6*`9H0PjT=&)<&5pT59$340xgAE*rCjAIx>s28OAZ#Hxq zkOyAwlWB3cOw5Z;?FMo!Eh@4?%H-(WKf^q>P47*&m+A-xGl)Ir(@2n7-(_^ekQ+$5 zp>Rt68R?9?y4*wZdwUKuco+fSLbvn?_P!H-y$_K%CLdRq`xpN4nJIxTppwU`vjbhX z+()25qRxj&gwM^|rY(;v+_x;*5?6$f0jj~eOCxO?Ope+J0%*^?MuFmG`RTQV@U`rQ zfX|BRYNF)X64wd}X*y>vpcE~j6hm~pFR{i46T@K1$!8l?DA7OYi8-k6Tx_W%1yc9K^IiZgcDbN*J^VgzE&IaOy15Ee`CvXVSe)8==}tpo(BT@`zpc^+c- zLOUtwX%qzVZ8#FAmA-C0{2aL3?(%MV|GIIiKQ~=EEc8Dr0Be zaV_FaV#0E-+>PIBZAkLc94z6Zvjor*;!Kz7MTQDJ0m^+*zegg!T z(h`(<>+?>DYotOO@n%>|Z8$l@gG3l-_0_vf;VJeY&46@up0Pav!ir13oeM3ZKLON$ z5y(1&Y*hr!ZkI`)@FKVbD=aC2azzH^0J_dqx1aLpnvqXc)fnCeJ7Gs(?7>>VjS{0Q z>KGpnORtb2C{i9P`(qSx7Qz+akf*gh&y@TCq8*{>{`6Q|``t^p)U-H7={96_i@*oP zc(C#)Xw)lD^aAnv2|zAyIBZsb(*>t3>hB79MRobbkmAP~7Y%A7>N3a|2rxkE$h0AK zsdD|e4DF&K3sv*^olE&0FX~RB`=It5L5<*&iF`CNeoLKp^0a5NsMn6vw5?81 zt|c>haC{e==!HtICwnRGL=1Nn@PEp-tUkrAH{Huo0;gM87PVxE@t3`@ak*eleA4`tt}?;QOs8Kt5mkIJ`O~LOJ|gm5PkPxBNO#j$PG12Hqo5+T1v264!Iuy zpPE#$zo+rm+LG(qSY4y4y{y@B+b=goMFgYjl6!4Bfzrln>*u^$FSJr$=dVxBXBC$m z$gc07ai)USy0sOKBxW|bv!Kts-`43>KjLjM-O^?I4p|iNc}mhspG%E9&8CKr_>lgV zDbcAf&qFHB+sLdKGk}1IJihCOkgab<1fqVM-SygF>*`Z?{B5V5};W zKTHQG+8#BIvsfR_O^{@M)UFUCc$wtL5vW3&?S?a#yJF??{f=qNW62{dh0Bxka3RUJ z{>{|cG6^*AsNogbRJ|$&rfWS46y%u{Wdz_>S)Fs;c`>}PY%Z?nsLo_mW{cqT%cC|Y zu8)PAVJ?io*?y93)n5XKC4E|N`rO0F+>jfHM8P_)-3-#Ns}*6Hu8%u+5SjuRyDm8+1q$t180r{j%v zGxoYM?OGmxC}c7=Fdr#yD;dVma|D`1)Eyk1nh%Fdpc@q@jOOw6t}TbJ5u%1R9UUE$ zD@>@Bau-miSZ0`^tX1yHfYN*!p`x0F$dbUqH%N~qIQ%;@9T;-1lo`nx-J8eK3yP3BnKW?H?{c5h`aF`!(yfMdvQ z{*B_%q+zqz?&{@W2IVr~f5^K@k*|H5@9r)!opDl>yfYcaD3zYtW$?zQz9!8>pvjt8Lkp`6W83$1%Qx=2< zm?KLg#)6)y=^w;Zk1bqIfjnS3`BipOP5-=Pmep^23*Bp=Jx`H*{|$qhmc2MH$xY%+ zlWC`?gtemLp~iw0%c={By=|Q0twp=`r9}#x^Z)gBzV3M^Z^AR{&uhX)Gr^1rXIXHi z9@3ozY+ZV=!}8qT6PnsV1y^>weU*#gg6yk=nm(O_4x#}G?Tm1>9ga;o9f z5+(nR8JE1wft5RR`Blk(b^9yjy2!@2zvEFz!Vobw6_7GE=8>8wwVpIjYCEZHZ9jES zi2C7SuZi3-qQdmKcie+t+q>#~=Da_Dw0oP&zZ)_?ZdXZ8W__$}ZtIdNjJ%|uz_>f8 zx}>>dDm}!}QQMXhPL&bR+GQB+r#8^m>EQRKne7S}n?U`hD;&xz$`@OY*aC=>;T@G^ zKNe6h9hFirO5ybVGG%KYv!7G}$`xYr3jArqT~`;d^*`VxuwY6O{Ml?S+SzsbUAR+w zx7obrFE)#|aqiXeWVYVStEJV{L@K;iw#elXAU?^j^TwaG0DYmqNNgg}Ltc+g)Y~b| z9fHQVcQ~%GHcJ7 z6d3hbB~KOTo}Cp~n65>_=_8qOnveLQEzC)%{xB@>tuW3c7rR-#kWy*oMcy<*tLd^b z`#@=Y%5S2fMTpgLQuo6{(V|OB-otaWniss65hpW3dG~pN6k{fpX$55msP%0K3 zmLj_SUz=*rm39^jEw$8~>-1|(9?6|coS2^xwH}UL0NkVxc6HXqwHgK79!ikCQd9oci+X?wEu{*1KohOsZCiS|#`xjlsM{;V zull9p__RsZrJZ}Pte%pYUAvpJ${}thG#kg&Sj_60&*C!OraG}EIBq%2Z+Y!TIPdw@ zuWKy=4-S)mN&T%ItG^UABE-11`l-8srQnNu!G)$L)S1E~@e+`W)GH1MGb?UYHmipF zCL(ZG`D&6VJI#4~H)0g}(2oN{CG$|%KZKHxF5Symxi`txafceqeOxIZd(G;>>Nj== zxonvJ#DJqfU8l=$iee6f6ugibWIi)KMz7^8Ra3ezTQx_9Vyx6BFR}FvEC6>}Q}vkZ z;^UPrJE6s30=Xp-LG0}iush|>8pL6K>V-&oO3l zC4@m}A0lsE5Wk&yu`gqh(SsE!MIp&_Oiom1O;spgrb#vU0z%AuX2ti=d3BwfI9ggN zbZ4@+UNe;P=yKIq#<_c_Cal(&fRI)){`3&2{3i?=`+Ff@g<-0SRw@b7li$4)KJ!+G zVp3N=Q?A@BWeGnGbygCAIE3AP-FTItK2Tn!9wo`|EPc?d-$KH&NoRi?ncFaG%8`Am3Dmz4ACzaY7B&T6Rn!W=loam#j>6-NgKI9(S4TwChT zwgK$p=8qCVF}?ol4T>Ucc1`9plZR831$>~q{eFk~9+dw-j;a)vW;#JUs6yjnr^~AV zK{e2yPlm6|@b;GqavGEkcSllpASx}UIdy*yg@)>>0BX3joBi$~m^(ZfY!}oMwhZW+ zBNF*G@<>ijZL34r^ae3 zV^WBFHS8ryyAd5g`1JI1F3rGS+ zLZgEZkp0wiSlLbZ2L9+Cx78EX;n*gV)gQB_=hlGx2-4dl{{?yNaULK!UO5>XQ)&G#Of)fP3NP?K1ruDw51y zG8soQOG^&%F2Aytm-vgl<-q zG>O^(A(o258boN%h=GkBaK%0B0e!9kgn&t5M&%~UTA1D=&=4bVwe-xC zvz79lGP?p!tD%~7b3M^)=$gPZ9;_+BD44WWFck~A2p8_xIet!4P_so4CQ>1PXToHV zgP;ajU!5a<%vK}UztNOdoGU|W4SuT83e^oQ79`Y`Psrk04zh+Sb0bR<2Km2fxmp}e z0f!dCWTGGP8OA}#t-vVHDYhHr`(g&oeZ5fQgz+-pj&l0UOZiZ{tPPx^D7*GvzW$un z$=0?-rm-qEOPoNo1G?YXh3uM=g+H&xi+KAqS{(Ru8<&rn{;BGN@Y^5u%V&2&UyWyD zR;FqGkQjh(4}tO*T{~|tBw13oq&>M}g4$|`Nu>}SzJo}R)xDhdrUh2#$FO2y5q7)s zpl39hr_4iwg`??j!W?3mQk?eQFkgEeZ9=ej12SNy{~F55oIU*fyl{j!7UG5kK%&F5 zWzeNZbeUv`SZ2g_i4?w7o<10g;cI~blgLKjcnrb6-{EJhX|5o`hR93ILlEs3R421) zje4_XPd`lI*_W1hmsV57ZbWyRJQajts%}hTJqqf6%pNCEc>>alo|J1R*MD-#Soa&v z&Z@S>*W)sFbOewj6!w6vl=kV*Osyc1!YG;PGlvrlsP(b-3V-mxaP1=qUux?|tk#4B zoShOEQ0)xdlnvPq1D~2NlsrjK(UlAg#zquXpjld%_fwTNyy)Y>HfU#wgeMhyCxDPf zhgz5_C2NT^WUJWe+&HCLqSSIBpz=B{^MkVIqceWwSeyyBL9nwL@pAVhIV*&yu7@ZE z^BBCD%x(l)h~T)~=Zf^uUb@shKSsx22qN=ohbG$uB~F$;R%5?i0vzAsn9wnfc?mnlMpV%0Y2#1x(-^<)mK0p*!Db#_U-e|D z>;>%zFX%5(1VFr2cZnx1zxB*Y0;E?hM_>6T>s6l0#eQf4Ld$uLnYT9Qf^UWC2VIW* zX+b{-?nwJmK!-1@=ef8Rw59e&5oj_n{lJqBRoh#4Tu=sDS z3ivJw=^e~|38tkgM%gr51+JNYzl{pYP?_ErS*doTM)3d^Pn4`i{YQ~pWH)eK-P4Vm z%w`s=C42IDu6m^-8g)rEPe$W~41k4j=W1rxo=lDMElgH04Y2YC)^3oaD#d!E?bfnt z&|4XaynXO(Owy!8>@P7_RI~5!ZRNNq*>TYIVK60Cu&##)v>U0gB5o5(_aiA@$i_9N z8Ona{)pb7A1O}3nRNeZfav}DTHeg0cO%?N&jd*c=p@YPzJjfOV{ZO(2rMc-^_rGTT z#uTALxe3L=Zykf3A*=HU$-Wjq&xcYt=^6G3K3E4}8A%?ma+osw zTRXP3e+O8{K7bfS3&vN$aWh1AobC3lwUtkd{pCDXqfah0oYBqi(xldLzyCrdQ_Qg z=r40_!vJD`xRtvL)`rY={-LYVqR&nyP-Ftk1rhe#GIE`AZi_{-`O}i;JczPbh_4a=UI5q8*WjC`CgF*-w7@da&}vgu8wH)f^E0 zEus^(h8gQQ{}Tydea3SX;hMR`rlxG+?L*CLGZt^DX$6lM!{k1rTfz_N07i#Oqb@O{jc}b zrok^rS z|H4VOR@9dGZ1HUmn;V^lv7vc}&WTZ$z%4_cTCIBiap>$_viKVjF&;U?@CQnthLnsA)sl4g$m znx&+IS~>h+&rf%`vh3ZScE=;!DE-z$yUH>`Xxd9JeWPQN(w zm#U3);l>hSe{g3l*!y2^0ndvLE)9;iRG@2?K$0N4NTZIuBnTy!0K+qTh}HocY( zu2y>C&)cQ^e|%T72JC_nKP%04)I?%5;2Ku(bL*tRmw~X^zY>9dk((a9ernTRyhnYq zAz^^Zz3)sElXgQ4;SMFsqzq)1pUzsm-?6s{1opJ*BCoT7EaXWc7pHIOSoT1~60BM~ zm(|{%_p)2iL4aN8DWD1$+Y}n~W8F1ZCj->I48iq%=E|FaI@hk+^lrtth0rrD6uWP~U-gh65ct8WgSJOr1NOc<6 z=8v5M#C08k*P{hOOK8bn@Y$JF26M4al3!3Y&dzr<6GgsCG2S8g+{n^^CA?6=A)UVn zn}5v7urygZ}!pIjSw~ZN{ z8fj4i=qc}XBk+Q5@cjTty72)UBB>b2RL9Zk0+eB!Juc%r_#bsqzy$%!QkuVag?H+#iM_-;-ok4 z;M+Pvc9DK0LLT7<7FET5CYaw2EXV?ZI4&E%aT+-S-vf!A5~=qieenB%y$8pp1elS) zHMF;j91rRkuH->g<8>iCb~jZ4)1&WuqK@^UJ7IN}OFqzU+vjL7oW}t|pzT6QN6>Om zs44`PEI`9Ld`zhY5&*H)b2g%|Jv)I!^DJ2|;|Y&;4H-7y4-;NY+PNRi@HTs3ME6T3 z*B?c7UruS4JZF>7V0z!PP$`1_vVHK7-4cvo$fBXA=2kb&E&4bT7mqPW)~gDN4ViRi zKp{Lh=D@*{7lkM3nm|bUiQq;bl81|EK-0Iv2Xb>ieG@0)29;|{|Nl$n;zXC|!ijyq zSZm_l1&|Rf0$^0bZ}CfvEY@FtdHJD2Xk38T6J{X&F=8P3PJ#{d+!RoF*4tn{*=EYu z*t1nsAHK2nJpob?MC#G!*a8Gwi&2R> z_Xs3mHFyJ>deRZ%^?%%45y4m-2UIF@1{0Br2r?b9t5*k5G6xHaIMV>ip}M(Y~4%MWq;RMA;(IZA$$bDJ|E&Wyx|yvRrGrV_J-Dv`}Ojjfkx2%5qUn z$ev_hLY8bdJ6CwlxoEjpzvub)`Db3uyqfR*en0Cu=e-=Sa$gxk5qSSLc>j(OK%REU zy%w|WD0>E5#sKn7?ckmGIuj*poan zyX_p2%g#wk_6`9eAm;S?uo7vKhGWt)=OLFuYICI@7#C1&?#~ixmn`7`Zk)ICsIw9B zjdrH-Og!5jQ6RUBkva~3qTX*$9*~nVuPiY>(}D>%vq2*X#z6Ddn}$!ADUJxw_Wo;cvpJTjk(Gy>%AQ}1W;-#@&7r$4R z3~u`rbkucCvfR*bjZf#3*T|NsipxGO*F*zRd+$mrh|)KGa;b${CBmZ7lMj=?Pwg%P7f+ait$l%(};L8OD1>?Nf1GZuWbxXXdfo-o5um9ebM;Q`o zV?+6p;?Xn21RLy!n!$NyAX;w=lASRGX6>8d7X=CiT~B0qIQxD**HPwczp$5 zxv_(-RB}J(!m>E1Z+4I`9GYG8GY~WB zZ785krdt73sc@!GBbYG*W zu3N7T6F=ZD4e&m7XJ}^0>M}HIomm!8Ryijq`qXSYz6D9)b#9&5w`2a&btRfFZ5{64 z@AsK#_epi8Em^eE1RWI1)k*i*R?5P%|Dd0AOu#61Qz#7Ft2(&X@o4Mq6e0k!c_ixa zhydT{e>Q+>wZ>`8uEF0LdG$3enLr&h!5pa-+P8imykMAE=AMOgv~|EHRF}Yh6Jgs9 z=ZTnQxk2L~h1T)}qaIi!-QaK3li#=`XCfbXBrh(bb_UEd<)AzPhubW%v@`__EZ4~2 zvjPlLN=qbY-hQW{t|-O6MZOa4`9ouwlViQ;`y?8%omaLk06M#>hhT`DgxthqBeN*F zLRZX#-Yx2q3<%4)AVAlF)6EXKuSP<7w7!6P>0mH6#lG#dJ!MikxiXiSkeen*-m3!G zRr|1lXxlHM*27!2M@^~;7~ieuB04 zeMPt(U`|)-Qnx)}rO1$+JG`WLHG(YPT27(jVF*JQrH zKMSI<5=l(R`oV?J%(%aXdh3R^p$`2cGjbMeuKXB&rT&m(^3Dg2~-h*!2 zndpu3CS-#W$Gu9ez;EhEt8$fD&|9?gg{0NGAmqRSY&nKvTcaDAaz&*6;PkyYxlA7* z8w@9-Psh%FBLh$V#;Oz2f1CZoYw>IgdV5DrIMQ>WDxc>ka{?;liD_GNP`M9Y85_|_ zAcvgMAA}rj$_6k14!3qt(g_^?K*I@0725sYE#jwodXG}#Lk+RK z;g(z2u4Ko~qrb<|hBP4269jW|m9_dAcjX%<69HED8?1PHP&c*gOtAhILZ}o+u=69Y zH1)BAq3wKJ3a*ca4sCzP7VO+!WO#}{xg*M4{aSz*hDFLb2+rzg~HnzJ2%#sx$C5Q34>c`E#)-@ceJept+j~mLgOp zmzy+wruB!rbE|&mWDjAeJF~6tG%%#z^520WFssa%?Vc@Ddk^`AJIJYyo|@YV5j9fU z1x3<7y|9Nb9+N9Y(_RU3_Fwn&MENa#4 zl`QRAH^@{#wL_py#B4nYq)E)u%O_s=-UhXiGDAFd6X)Gwv28b*O95MW|N00qkQ2Qy z_lHV6D%Y`>QZF>ekW-1%(MGkFYK#Vv2TAcvp;l{}uGo1dKOqm&r98O}>~{pRK@Tq2 zxEkw2VAp9IZG|SANW!fI7@-;Sa)@5Hm&az4}%>LSN;<|(T$PR2Oi-6)e>CTEc9~1?IA7C;ZK26*Z@VQYJ-VbUYeiKAT8(o17}yJgmu zxmJJ_LW6?OE$A0f;TG2{Bp#8cBGiy4y#dvo;V$tx=bxKa?Q*=I^t|+ERwL+=CXNLgE)oDNYPb=u z=${Q-grAX;`(db4?gAivc(+U^I9CY6^X8K$*OI>;ieC>XWfBE?Pvr1TH1hdP7z&T} z)PULL?O+v$Z;GoqP(jll?06S`@u=rIF6^DDZC4e3R_z|_1&F?OKu54vxs<0m%Kb2g zXCa_fdV2rn7asAK-!dUmpxh!9n$*#h9|)9LY=2$1%l(R@BB-Hgf~FhTPCVvG(~jan za+1~$OV}&h55w)VYIDRaiTCs;Pxr7T{rGPLK~c+wP^32!1Jgoae@u|M$B;#2^&$XS4_l1L5l{g%(2? z#qcc8`r$VT0mCGzDJuCtMX-Th~Yk^TAF3O zMvBA9x=(Xu<3KQkGmgbh$0Vh^ha@xpJu7IOg-uUKG{#vi#|p*>+`I$WugQVQLaT+|KTsOiC$Pg zTm#!|OIFYX6RF*5io#ERnRUx4lR4ZvMfm5=a@j%P;Liy(l%Mft!N$KR5J9aTwiUZL zfIMY1al$Km`j}b^ZoZ=FDv0e-e;moLG}%s33Y2<owq#PUCP4mGgrS7aSTL_r&9cl)2yG3ExbcaQm|VI zXy&j*iCu4Ok!XIC(gfPO>UUKpFs0CdY-u?D`mjGu`yiHC;aG}}O;4X?jG%cYazM~p z(=;&N@^XJ5O~d}thu2{zihMP1!UdH)RX;kJvHDRvNtzNylWhRLOw@jq@27QB18K6+ zhEw)G%ma63$tmiA#?1;jtzePIqaYhPU?c?%;oQM}P6$0mnaeaj_~o6*YripgYmfR8jz{~aO&2rU|IWhBOR72!Mvv7J!ruD! zZQRA|O>6ZpSNJv+blO20@rPo!oi#|S!!{2%-{>KRLbs4ZL>*O!{UG&2+GKVRN+_y|3e<;y;EZSEvjT4KO3qP)wy8l zI^}n&qfQ;joB%j*CsxPpKRsVy0G(Wj!!}*$rrV5glHr~s0))_~ct$&o^KKohJ zxqJvhcXXBdZC(KIdd<5NPrIuADY|ii+EX*)qxin3aW1?3M6|1W&sMd;b?d)aa=}I$ zWhT`|Ls3tU6fRVAWK}LrRusTLX)t2^ZOmjywNWsrdZ?!$Mf{p46G@pFqN%g8-Ie0Z z_yDqN&zLnj$PgJRPtI5)n)&&X7W~^A^+qEnF+>`$A8xn|b{Wl;@zBV&2ld*W;JZ8a z#re#kl&}2s0krzoht5~MrOASI_rIulR___*ECjpO?mG2{(>i82^g|;csrvXRbd0&! zv&!dTeFO`2>mW?e%a{?6-rMFcFripVhSV8)l($IUH}@1nVWt zkpOlNw2kIMujX@&g09)OuKINEvKUAjDP4Pc?e)YtXGg6g_lL~8dvue-FUU%x=DP?I zLKR?nX&C;^D_B@xoAx9coPniS7a**T)SWH+rWT+r1u8kOU^DT%T2T{G{BX7`cR1SI zvNNVhu_#2-%gDDK+#e$s8v`4-7gCdK@X}VXJpqt*p%9?Og=y4f{_2+Wx=~2WRM$g6 zzq*&-iELN)332K#OAG&?%u8_|wvc~w8i;$tj|%RIZ*x3t|FQeAn4jkkgJ^R|+?rfo z+!6C$B#{iaq;;I-OGAGjV}ufXocsQXY9t@uaHhii z=(k?q6}Mw%D&IvVp~IYLil~-qWBTrj`jnx_K>M4S#8YA3-GUbM>$knpx{VOZ2ZO`l zsyX|LBZb^nt`p$rM6QQ4ptsx7HLXTeNhmnRi8dNWy)SDJ>8yI(`?jcKex>+=S$?(c zt6>6<$^T-Q5Gsj-WqluSdtZR`7*jxRZS4tjdXdPPlo@(X$t8~Z z(b7wbBIj^`+XX1EJh+c$6dNIWCXOgvYjFr4I@zhao?QMXHA1vH`?6E3J(O3_;FGB7 z1@7J_!iQgU0sX#4{IL_{%A3I?K%zunQZsU>$DF$6&I*>fBZL}r0DsGr*k}ZHi&l`@ z4g>see9G=Jd96FBTbV`+!aJEbU!kb-MCL?mvFbJ3U-alj`!tqLiPXP+q?zz1TuYEZ zoL=(^A?BP7*2keY8QHKPWVFCI>P5i@aaAwi$xYEiV`{n>2K1t^oWmZQwsni#q{*fU zwK{&kydYnKK?jTLXb~Pr{Q#2GjYMj(r<`@9xk8GHPBR?N(@_yAx7`{Zmni}NM7#PU zK${l@AS(0CKC$Zs;UEvta_}*Qkb|&;gi)QdVeZVvvfDYZ$?6Qi~!YGpi`5Dz|PvYuFPrH-oMZa<7e77YbRz~Z9 zh`!o6bLMab96NmQEYKpRYy>Vv4+FJ6=5d_w3Nin@?oRQx0)XPdL<1xi*4mw7LQdrJ zmc)f$y)>rxyYd-|bDV{dEP|JCpGJ0BR5nA^Gz#WGb!rZfK38B%%8m3GN=U*F3}^p9 z8h<<-Ow1bOlcIgmiP4Qd9+&cJ-xA;zM&XPLuvF?4d!W%(SEUQ+Eu|*yiP8&Iwgpka z`9%>gvWZm@uh|+rACl*3ut39qeO1~M5q||Xn>tFsV)V`<_M_$F9?-M{SWC~nFP5AK z%H^r~nrglCc#D8Yb!KUO(6W@>U zJB=pWT~~Fo!R#SxSkH5uDN^P-d0#pqDo%ahpO=KhO#GZ%4gzaqe)6ThOLRU;n2S)L z3%v*pb%kFlxq$>J{c-Wv!UUyfp>x|C-B%ZUXr)1#)5&p%j$UtRa7|{k$ z@fepRj_o(S*tN#G#s>r>p+g)Y`zBuY=Hz&Fp4tr8EEo8Z@GB=-8oinD(_SAfTT!N8 zli(SL$Y0NgCJnZE6klv!{VaC<+YXfzOPP$naen22CoMfE9-}RH1z9uHq#-YCd{>&> z#h`lS+nT-ygRY4Rvpptrk-3BAq0B;J+^Rj16?eF}DZvQP6cpEKuiRdpoM_^jFS7LA zN`KU(m#lofkd4Jua-HKR^1ABl5B6r4Eafo>I(#fNjbnVGhGvV@bIeg3k2K2s=Jz%jj2fwb%}1P`pPHQ+Nn~@3ETM^$Q9&c&H>6SVvwPy3TXER>aKVj8G zwJ;Uh*hgiY|F|7jt9sv^1v7*YdPHrv=KANMAsJQ2Ss6tVx3dt+ZPI>r@!X8UzeIR6 z&y64inRZfN$MBgR=0~1vFlS$-zv+R$8L?L$cbrRM=_#DdCm)1XaKs3g(CN+zC#^bN z(%wO2jj=MI>dNyo!1ZL^J{y3?E%_?bo+K-HvGN5aqO;I}`A#(;@f#7U2l$B?MEc-e zu){jqTw(s53Te=7^m6VWEwv|=U*zKM)>Kc*GrC_wn=4PcPiTvyi4GV#?Frp zo*NI^7x^Z7@O;vPRK^iHMwi6J_ne-{HJ-Wi&vK4k7_o;fX$UceSFZBR zq?Mf4zyYfnWa<#Vi@-G0^?-~`{Mdka2ZZy)!M$cjp;k_$hSdtiSph6;00k9^)>O%} zWeQ^|R5(VI-EFq0K`=M>wIJKuEob&w`H{`LS#Y67q+1VF1E`;BvxSg%aMF?4h zB9p$B{yW{+4d=0T8Z|NPoHvN`S4|lj8DmT`WmXmwU0{|#HikyE%+K;;|13R@kjc+& z(fpUuFX9`ela$!?yz*QbVrvsbB-qzYpPNP#hEPdozT^g$ok$3M&3V4yE;9`vs-Sug zZOe$`gY~}O=$VosXb8YU*Xy-O!Ebj|=fEX2n69tS28|8GWg&G>wma!e)jyb5gL8%~ zKu}MoEVIO0J!uB{%;<;G3LG-i3CY;NrDIO?qKRs|0vP-LU0Ydutc5 z)*w=f#u>zD6=HByS~JK!3hxSOw))8c_#%;sTOrO$+sFjgfyVOZY^Ao26Ys4<#Xi^y+&37$;rBjhQ~nCWNRqA{>-UHL0D}FU{T7E%N_JIHt_fuL|hrpZ5}k)&eob^ zn_0FH;nrd%&=~d#8i7WMIX8j;3=)O#e&V*V6oDl|C~>M18`>X&&WcIEK2jvbkn0TL znW^fFDePmX^521|>$3n+8W^_>mZw{YQGfK|LKpj9Z_B|hoyY+==ZUB+*cEL7KI0ld zScKCb?v(}Ln*@ipuQm5mPf3HKN(h2y%4{NuJ)JaJ59&r<36m1LHVb-D_d{zor`6D- z9B(5|iqcLRL8tAj&6pn}3$zj((3?ATCmq2>E%j4suuZGffQ(&{FW?^vKvX1W8WzCu z5Q9RrRFW?DJqQ9t{0^>U8D}W^bK^CLGCV5)!Yw4r5xW4B!c8bY#x7w@H@oVmq+~}I z<86KQ8w7Hyp$zvMAS9Y3=CXs;n?wb0D0sPj=F>%nx+^$Fn-V@Nnv;C4>45Or3bf0w zu!nrh#r_@syELh{wHxXzhilXN!Su4aL*SnaPGrYFl02(sLaERePH&pN1u|oH`6vIu zyjut{oEE7cA3g)gCL*Ij*LFiwgwiE+ALylkEnQ91;?dL{YG9hS^jQj034n!0b?%f! z?>9!(I|Xj-vkrOCsb%_((DgAr0A-?Zm))wdTI%cS(XA1)B}Gv&A;;GmElOyhm#44T zV$~vdAxE8)0Ufk9;`x=#SZLZ)cTYjU=P&A`(HZiE33kdU*LJ$c1kSoS5wB*1SD`q% z!<{eybO>k>@K-;c-U(GIrC`}N23H&2Yk~^MkTNx?P33 z&$QF+tyUcIC`~)p$L-qBeaQzz__^d<r;TtOAg=P!tTaP8k%f$RUaH_HASc~17<8$t7P;{SHjuk>~^X#b1S`}fBA zua>(laE>RBUs<=`gs_zHo;1M}7EDd$N|U89L)mKEPE90Vp~<=keK|)ZqOz`e1vU@1 z(6f2z>AaRP&U@>1Que4^R{l#pWr(Ks!~z{`c9hf7WTeb%f2L<73rbmDJ|JZ|`o7rJ zRj#el3ey`>*}$u>cuZ(GR^!Z40=KCizyd8w|0>. This is achieved by applying XZX to the ancilla qubit. + + Args: + qubit: the ancilla qubit on which we apply XZX. + """ + # instantiate circuit object + circ = Circuit() + + # Apply sequence XZX to given qubit + circ.x(qubit).z(qubit).x(qubit) + + return circ + + +# Helper function to apply rotation -R0 +@circuit.subroutine(register=True) +def minus_R_zero(qubits, use_explicit_unitary=False): + """ + Function to implement transformation: |0,0,...0> -> -|0,0,...0>, all others unchanged. + + Args: + qubits: list of qubits on which to apply the gates + use_explicit_unitary (default False): Flag to specify that we could instead implement + the desired gate using a custom gate defined by the unitary diag(-1,1,...,1). + """ + + circ = Circuit() + + # If the use_explicit_matrix flag is True, we just apply the unitary defined by |0,0,...0> -> -|0,0,...0> + if use_explicit_unitary: + # Create the matrix diag(-1,1,1,...,1) + unitary = np.eye(2 ** len(qubits)) + unitary[0][0] = -1 + # Add a gate defined by this matrix + circ.unitary(matrix=unitary, targets=qubits) + + # Otherwise implement the unitary using ancilla qubits: + else: + # Flip all qubits. We now need to check if all qubits are |1>, rather than |0>. + circ.x(qubits) + + # If we have only 1 qubit, we only need to apply XZX to that qubit to pick up a minus sign on |0> + if len(qubits) < 2: + circ.z(qubits) + + # For more qubits, we use Toffoli (or CCNOT) gates to check that all the qubits are in |1> (since we applied X) + else: + + # Dynamically add ancilla qubits, starting on the next unused qubit in the circuit + # TODO: if this subroutine is being applied to a subset of qubits in a circuit, these ancilla + # registers might already be used. We could pass in circ as an argument and add ancillas outside of + # circ.targets + ancilla_start = max(qubits) + 1 + + # Check that the first two register qubits are both 1's using a CCNOT on a new ancilla qubit. + circ.ccnot(qubits[0], qubits[1], ancilla_start) + + # Now add a CCNOT from each of the next register qubits, comparing with the ancilla we just added. + # Target on a new ancilla. If len(qubits) is 2, this does not execute. + for ii, qubit in enumerate(qubits[2:]): + circ.ccnot(qubit, ancilla_start + ii, ancilla_start + ii + 1) + + # Apply a Z gate to the last ancilla qubit to pick up a minus sign if all of the register qubits are |1> + ancilla_end = ancilla_start + len(qubits[2:]) + circ.z(ancilla_end) + + # Now uncompute to disentangle the ancilla qubits by applying CCNOTs in the reverse order to above. + for jj, qubit in enumerate(reversed(qubits[2:])): + circ.ccnot(qubit, ancilla_end - jj - 1, ancilla_end - jj) + + # Finally undo the last CCNOT on the first two register qubits. + circ.ccnot(qubits[0], qubits[1], ancilla_start) + + # Flip all qubits back + circ.x(qubits) + + return circ + + +@circuit.subroutine(register=True) +def grover_iterator(A, flag_qubit, qubits=None, use_explicit_unitary=False): + """ + Function to implement the Grover iterator Q=A R_0 A* R_B. + + Args: + A: Circuit defining the unitary A + flag_qubit: Specifies which of the qubits A acts on labels the good/bad subspace. + Must be an element of qubits (if passed) or A.qubits. + qubits: list of qubits on which to apply the gates (including the flag_qubit). + If qubits is different from A.qubits, A is applied to qubits instead. + use_explicit_unitary: Flag to specify that we should implement R_0 using using a custom + gate defined by the unitary diag(-1,1,...,1). Default is False. + """ + # If no qubits are passed, apply the gates to the targets of A + if qubits is None: + qubits = A.qubits + else: + # If qubits are passed, make sure it's the right number to remap from A. + if len(qubits) != len(A.qubits): + raise ValueError( + "Number of desired target qubits differs from number of targets in A".format( + flag_qubit=repr(flag_qubit) + ) + ) + + # Verify that flag_qubit is one of the qubits on which A acts, or one of the user defined qubits + if flag_qubit not in qubits: + raise ValueError( + "flag_qubit {flag_qubit} is not in targets of A".format(flag_qubit=repr(flag_qubit)) + ) + + # Instantiate the circuit + circ = Circuit() + + # Apply -R_B to the flag qubit + circ.minus_R_B(flag_qubit) + + # Apply A^\dagger. Use target mapping if different qubits are specified + circ.add_circuit(A.adjoint(), target=qubits) + + # Apply -R_0 + circ.minus_R_zero(qubits, use_explicit_unitary) + + # Apply A, mapping targets if desired. + circ.add_circuit(A, target=qubits) + + return circ + + +@circuit.subroutine(register=True) +def qaa(A, flag_qubit, num_iterations, qubits=None, use_explicit_unitary=False): + """ + Function to implement the Quantum Amplitude Amplification Q^m, where Q=A R_0 A* R_B, m=num_iterations. + + Args: + A: Circuit defining the unitary A + flag_qubit: Specifies which of the qubits A acts on labels the good/bad subspace. + Must be an element of qubits (if passed) or A.qubits. + num_iterations: number of applications of the Grover iterator Q. + qubits: list of qubits on which to apply the gates (including the flag_qubit). + If qubits is different from A.qubits, A is applied to qubits instead. + use_explicit_unitary: Flag to specify that we should implement R_0 using using a custom + gate defined by the unitary diag(-1,1,...,1). Default is False. + """ + # Instantiate the circuit + circ = Circuit() + + # Apply the Grover iterator num_iterations times: + for _ in range(num_iterations): + circ.grover_iterator(A, flag_qubit, qubits, use_explicit_unitary) + + return circ diff --git a/modules/1_Continue_Exploring/C_qtm_algorithms/canonical_algorithms/Quantum_Amplitude_Amplification/vectors.png b/modules/1_Continue_Exploring/C_qtm_algorithms/canonical_algorithms/Quantum_Amplitude_Amplification/vectors.png new file mode 100644 index 0000000000000000000000000000000000000000..14128039f45701b80c92fb6e1ea0079a0ae003e0 GIT binary patch literal 192825 zcmeFZ`9IX}+dhsc<%LQSva}$35wa^G#Mt+xED1BVv5sYEAqi#8t}J64(_rj_7AE_? zGstf2jD7h&CtmmWbAKQA`|}Tc?_WF~sd>(Io!5CD=W!h8^(<6NQ-$^d%LOtrGFsIq zk9Ek%&U%xPQFKtB1%6XZ9w1Fd#!067_@SOR`Qqp~Z$15^W7o37t;oV00V9QPxA+FM zw9)+HW`shlwQ#=Cr7ZQ34qxFe-xch(g(A;IilF;X9_=5bt=RG;^dzWqH^yxHv!}L< zR7{WbV{J6swv$&RK?2mAfn*f_@yA0h7YnV}xF0wFZ~ut;9T`16`G0;0HRnYe3QF%+ zi^1Avlou7q$p6ESKr;IF|I1qb_c8w);{P#u{x@&_$FTgZv;U3F|HkIOW9t86@qg}k z|G$q-0%cpWWd0-$w6Hi>oFK5PH6pRLhtbz$6vF3AjB#Z9?@wa!!osW#4XGWG7(@;Pr$mLn6CJ;f zraxKimz&SVR>Ic7t3oe$V?Hn4oC{SLcb|I&bArE+c$6|u!pX=2I^=kL~=g>(pWB6o)8)&=$hQhJwQaug5~=Q>GYjt})be zYX35D#u7u@zdub5Rc(LngS_)x5Kxa_>5fCHxX)>Q6&1l9J~rqN4O7>iihzE<&iY*% zJayLGPf5MEP+ky3j5~9VVbdRJU%8aZZi3xP-=9C&8*0LP)$zsFVvsc`F(s8qu6^Rp z^?&{ny&x^7or9#cJ=3+Z5?K*((Ae&>91xq@;)p6?)FlN@cPi@DH_O=Rru93kxQ`xu z24B$)ABK}>$s%c~A|gS3rAsP3`D1)o;`h6wK9+Xo`ZcjlvCdx{og9!C$}qj%?c2KX z?CL3J8TwbB(@={+Bn^9034(+K$FMA!d_OpkxvK_E{q-#@Pd=6RkVg?2C|c&6_n$ve zSQc1HOibQ8IvV}2PicsA#WImzL8GViv@SZ3%3I3Iw2($kymzreS{9NzIcqTX0Jiz2 z4;g8Ia8f5O3@f@1%d&a&h9lj3!v#H-G%n>CRbVY(OY}sJ5|a>m9?6VkkgMS&5#H69mzM?HP>#3Yo@6o|Gcv z_P+DcWiXi({WhQ^bNErtUlxS7xAR=TkzD9Lv>$ZO3hV zvxk4Z_#Qm|zK2dg30T_FcZ9^5X2T@$af{?44#@!;M)C0qoT;|l%(;`+9HpDw&Mvm(IpBi=iD zSW=K{bXY7ne-nemfa{M&#HU41k@9zj0uX2MCfnm9Z)4f%#H5?<4;x=-`e#BTxrR7m z5B>ZN(msn@S1kvm=cgXGlPQ&0rvHf-Gic;bavb^9YH#?Q*J)OGBrD1`u~Djg$HbYm zoLMw1j4HQa8EvcnVaUt4z;tE)Yti&@K6E?F-nMC}{!OE)d;9BA;)I>`6X7J*D`_|W zs=kk^oG5bkAyC&1dwJEe@v9WnQyM_n@FN5KZ>ZKUkE83}Q7OvpS$#Ni4=^`3%B#TV z-uuCvy-3^J(0Y##YEE;A^!86NEQmPL&I^kEDZWvIs@@Gzi*+p2NTRnry3@anr}Qp( zb=8B@;_%oAxs}31$WOG^C!&`tci`lRTFa3qMAr5eqD&#Z;Bk#cskiF7N<4+vq^An;_nTP4<+Y`~*fiw5=}_P?W2o1{dVZ2L zF-|_k632X4yKy&pap>)%S3i<#X+)G;2^`x?2IV*Mg4udah9Q?#} zyzpbHOmPlV?lHWEa*sw~g3T@?$@oP)R8LHfBcG4ntN$0TX>QpRWj*X&lLqi=_Wm6+qr6bjuKJoxe`6N0r0GSt z1-i0w60bR!EzT+$P~0XwsMl)Jx-s3c&Ru6M>tok4^o5lVqn%YH1pviPW#-fs6} zgjo%+ZkIUtaVg(YibYM|t+!OCdi#L?V?0?Tl`^C7VE(y$VqaPt3MJBCs*~?YQ-t)I z(lbelU)i_hCRAGyH{tcHbA$0k**2IM{!w3)UZ{v*Z|UUMWV+ZTm@|-=IL(zKe*GF9 zR=ZS1)(JDj#8d3<(cQE&G5}G~M--~-9raO*IY_C*m4^TO^)fU&EaP7eZ~N*Ffr`AI z3sO*f^C$%3qr z+3k5>V6i>)Lm{>zmK|PN78Rva436%;Kng%4)XFN4PML>K?nZrX*>$OyIZ7XaUZn6X zAZcirRyw1PS<>SzIr2PMze4#~2q#2Ap-!W&pNxKq$I07C*k0cC=QtO@djx=xSz*;BS=b7hsQ&U&nw z-(b1_3~1ARL6FH3uP5J=8Z`@RZUa!P#_Ek)EQB}dCwEo7@?Ot@eH8G=Lf-B&yE4^M zLiPDon=)&6_pbrD(xbDNWIP4<2`Hl7T%5FYj$v(V(X(qbr(ZNBG_D>PvK5^yXfNM5 z7!10oP*+Sw&fcyJzVw0uf7ZKzXTeYmCmnt}&R{97X$fPEm>nTjxXSH3_PWZiZTU&s z3OWMrjFPR)bl1i1ce(Ryw-uGmYv5q|h;dy>=CjYf1O1sC!61KLiC&m23xNewqdZ}rbhd?r{XetV7 z8)1b&9$%)uV02&^d8#WzDJfka*LZBgnZ&dJTC#!M(!!(yyuiE=YY&-o!p!dFEYcz| z)^=?{oZCOH=m+A~SB9r>T+O9A#RfHqK-b!{7Pn5!HU(vJXP_+nNAg$ruJU(w*cKuwVexWyak9hrIwrr9SyQ0|K6kIIIFNsI6LT*VZ@3 z#LItosoad-8vDG8XjZtPF0PF$RCgQgBRJ7IVhYa!PW?R}^jm9Q#@)U}!F`Q!0 zI?uR9Ag(5?%t^Mumwn++kMR-8`;6@2Bl-Gz#1vtQaop!COt{zn!L9yDqsUQlHpclh z!_tn9OOl9m5BVp+(*;t%kN4l^x%f(B-hCE!eEIz03C9RZrUJ6EBOt0cZJ(zkt=w^y z1pwJg0LX?h4hO#tlps%?$mk;oALpPp-XG=xs1HI839W{Ohf|mo`B@g?ii8g#!;v{= zyU=Jx-|ihPJ#zM{i}@{pn7D0jQusEzZB_0#ppe?{-KmTQ;1_zZqw29-a~p}*`RXp} zv4WKug8>X@VHBQafRz16Knoxa^2E-$>+c!>xP@MSp;`0w!s@`=mV`3hNSQ$uK--ul zl{HMkAg51ND5vpe0KoCrKH|+5!wPcX^8ZQZ>HuoUJ?cLpf96PHyUm$TyAoYGD`Kbl z@SBO&EJ<}lb+wkbtg%NT?lb|_{~%GsKS|Ae@TsN0#CL+vYZ;3xtS9()afSluYG1$p zNxAPZdo>>+Z>gnHHZo{Y<@Q+=k^aEi8Z?)}^3%hx*U6;nC>_^*#Ws*Jm~-rC^P6s5l4eE|smpJ5He;V%i{Qf0CrC}8z^U%vSJ_Bd~yHN*Mi z;-?HLhKmwBzc(He@fIMK)tk zr?6qXEb%<)a+l)MA&H(@knM`a7+89<4S`M4b@))yO~usg!G^y953J-I(*@ zGO+9)hv&!lim8DuePAz}heKBm7AU=0#8OhGuf0XzqAHPyu;+Zmgu-V7z>1$I^Sdkk}YTk=Gl7ggdx((U{iNO;yyZSMGJ~< z*(0z#K$WNw(Q2Buwx?}*LIBt)z!LGPbVH!^nFb5$H~D1bsV>+JGp`6z+OPCnTdO4l zv6(}4`RjQyr@RHW=_Bg72(@FNj$w{}`dL@#dPRjdyKN1{db6ezbM*#a@EO)*k+djw zW8#UR@r=3D$MSN9%GvKim3fb7*g{)<^qz78OmW*Wp1s*!bv|yP&oM!o77*lrVU?4f z^tFJ7ou8Iyqw+q2J(tz@FG#w48M=J&58o@|^-;`zPEDSqg){u_BNSHlainZFKN4@{ z5f8|>&Sn&SSNxb}N1m8=p*i%h!mnPAM`O5KcvIiZuZ@UMpk6iVSO9{YKLkAk09UFR zDvbW*i>VEPGXUDs`j!m<=@JrKk2uXp{s19mwh~Gzs@+8b+MYc1LRp!IPT{oo-7y4_B9cbLB39v4?3}p_Vl*%L)j(%JF2-pY6 z1!3BbH8a?cvyTFCT}A#!tw!cP{;UYY0)o^|=qb|sFaTc|8ZP^#Ozzt9hw)w0wLRG8 ze5z)Xm~-0;`=(NGSZ5_|NQsqx%voB~{L8j1(i^+UmVdnbH|y^Rn%A^5k48-?T@Ypc zZtb(E|&fTnyBsm4T1ar90Geh z%)%saHjmX5Ci{wKM*UQz5rwwjh5mH~fAgJWzkw*o@umFQ?O(Ih zoF9z=h56zVJ_HNkbo&S6Pem5rX0PsRFj)-UZO2L>T_@X_dOVa@W2%cnx0b^;8u49) zGMkSd?R7YlG&L_9V+73rU@8ty8cIF=puIZ z3KD`zx^O=1wOmGBDD&z7_!g9(?^LG;2FCwwk@7~hN9ha$k|-l{fWTBVd>EUW?(CK* zzJG(m|6T+0`OWPxmbqT9v-^6^XxQ)aP*Zo0x8e>%ZV@<`y7pP`7VzpfOyx$65FjUQ z*xonFUW+aK#ed3xK|r?&0eVo{`5};>gf%_o4|Cw4%H_$;;Ebd_4Sx@2KAz?fe~(B# zA~unsW?Ee3wOb}8^V|(Xj$3PWLGs7qy@%G3D5T1Anf%k9`m7|!hDA2^vTega#KUM~ z_V!qxGfBQLx2jY4{2}W8tAlsaSl)&zQq&miU~+fGCq%BRSzAG0B(S5~sK__usVaF*n$%h-5d8N(Uc zh+pjefK$9s%9nEg*(wW!@`!T>_EvD{&p`-uvwcJ z!4mI5{0Pm=R&KbIMKzeD3U$T~9(3k!%<$Cd=C`@qy>TC8HOY5uw{_xLTb}Nj9|oM4 zR6s&$51}`5yrj{9-$P=L&-nlb4;=jp2hgLc%dFHXFFpZCNVL;;e#+~l<&;jenX3@f z%7UfBxsC<8&Bpo@7YmxhT}Ojo`mfHv)UV9P;{D*|#m)eGxYH1_$-!6<`m#)6HXfW; zbH;Gmv$CWe(6L6sqrWos*utd0+(Pq|0LX0tpB)i9BK|lF+sX>Qogz4QW#0+DdGxoym zrlpS4vLejCy^Peg%=LrYVOJM8+U}%Ram?ib-QU-r9N_W}0JTtygJb~`+Z&SxNG1Ns z3YdD)S9&g~jKnm*LX>W8<<2_y-c-$F(2qq`c;}? z*oDWFy;SH+CqcYH3L;J@Ws6}5^k}n|EdH&60`M}A`(oLlxV9z5@ zsJ1doh=S$Zgp%NvuB3tmh!pbF6mcR zMW@1QP&l*AWjQn&_t!!DqQkm0wlYeIBiUK;%SSns*rVl(vfJxq#%CJM^`!|>{E2hb zR<)AHLX`!ffG^#+yI2vwFO3cIT5hZG%GaP9sMr@d+-PE4=&(ia+mh7P-#)d@I}QoN zX<9!_?RBJ^YffZvAJiB0u&*$H9Sq_%6#!Rv$)tAeqquW;=c{_(9zetTulE|su6lz2 zC!bm)i8)tEeQR!uFNL^_yXBWxwm1lVx-C1T;WaX>dhZ^dDj2A*0iu9$DG2D|M(s5N zmXY$^rX)81Cte&FSOAq}9$Q(InK*E z`D=%2#L~tKyWQlg)K`K5LiR&z=K4b}z}UbEEk1L9#jP=#eH zpRV8sE=hDWJ$a)PnE7%oh_sL!>{}_pMxIG>1!A5QLDN%tNTK9zl%serRFZL`F34M! z_{cIA)uTCl3ra^h?M-%SgOCMXr}6_H_^<%~&2Hsh`1NAdv;bNB`ARcObhuL`7TKNq zQ|hD4jyJvRhLya(KJ=C7xmIApk_-!LJ+>ppQH525${dK1Xaw7mYR>`5qi4D-L!%0RreLh&V9f$KkyC*gx8II$$+jGf~Ga? z^T;SkrGzCrTJ9PF%iik<8es?@&8ByiH!HveIMl1Gjs*r7nBtQs#?aP0Hph#_0|N|g zo_(*ytLppO6IpYco5T#mg_Wh12O&7AlQh5hJBj4e_8Uh&vp z@zH*0OjJx}7JSoiv5ieCy7fsyfdf_5%w}WskQB5sfLB*XKDJsboPRVYhe!}f-rVWT zNE|H0IGCH5$y>tEl~_IV^G@XK1O<2ZF?J-gn3;;_Qp-1C=ZmWdz?_3SxD|Z7_!~&? z!yijwgKp(KTv<}`$n`&{dKQjCtmGqojuoM1`<10XK;;il`V^;VWE$nS-AD8#XB)wB@dAF3)z713e7%p$d0;&stJwFlK@pHu<= z8)b;Uwvd_M+>Rb#I@P?FNDCPa-in5@l%ze`H$dtYU+8x**rzsjDEVp;#qdWAx3-J9szKCJy8{1-F|G zuQHIs0oYv&xrw9Z4LUgMec`h8P7bj$U5^0+79B%$U-1OYs*amp*LxxQQVTUIu({QV z+i6YB{}RY?<2nw&%(QD9W}KawFik}G>|BtpgRW0812W%8VzkquRw8NAy{mCpznJL+ z`X{(Pj*)>LI&=o;e5^c@-)gI;(LY}3O6>a@s+r|I_GK_B%80cW?Z02*)qBBN+^bae zU4%jWY-*2imXO|0R#abhZnVgvBW?uk{Uy2*X^{KJ;rN%L)VJq~!H~t)BaCCuTBAyD z)?T#Qd)cUIr~&6Va3xRXNNeia4X%qh08LHX0{j2|t&oIk*E~dUbY{|l9x!=yn43~2B4T~wyPw?#T#8C9d zJ6f5Z6v`uQPA$@GjdHBJ)Uojz!v z(}~Jb&lzrR=NIF(#@Vu_6lYpG_f{@iiIvwBH1y_j4GV8Xxy*gcKC%EI`3<`Y>uE&c zExwcoHvzX?_`~(vF_aWyb;V9UA6^AGApY3>jlfc^d zj$WzK={QoD3iyn*JwCf_pzyNc{oeSo@Qn(*&H#Dpr3{I`y{KMd(&MhwY-1$0S`Zxk zHFp7EH^5k>eXg-8#-F1j4_6fmAdf>s%W z6lhm_Aomq#Q^pjcv%$n&?yD~Xaj+%bkv;?LK5A3)+Vn;}`phWyz;+`Wrwi{B$et^p3ajJ>P`oJ3pCAo9FL_295!6y%QdF=Iwh0&a>Ws7<@YXBzp6$4s;i|fBvnqVS$vrvKom^5 zofpP`M-G|xpzZLM#jSBBpo9XRPjP;^4O~sY09O+#8Y0Fn-^~DJx4-YP6awd2F3cQd zed_jqLcdzl0T6cRP>V2OdnM9vIxj^Z?RKvI*Y)k@dy>>A!Kb#l`haQNIGaYTv#RlxbCJ1ZcEK- z-kJ|{=K0N{als8;B2X)lh6Jt?e4NST{30n%ih{xb&A|5l`qkN*vF)WudTRP4IBwy( z7(Df>c~#_0?o(CO+{C-~`M?M?|EG$G=F23+nVF*QWFP4ig`TfmzE?PxbSh%vB2RNh zAP7AvL8vl`wp}6%Dgx5rj@OSew<~&qxc*(Q2#)aH4j?&K`eXVsm5D{zcfUSg^ML18 z-dxVh)c+asqDo^X)>V7IcN-Ibe|*Uht9dnk_gb|ICl7G!l8xWwz*OM2&lxJ9-!oC? zW9m67h-94FJ=qx<#l&qbqp_8m&qKeTCk=C>Jb3ff zGc%Jt7Z|9_odK6L>({R<#tFtJOIN6qAZM*`9NP^Nf#K9Z`=QR;ceP4|-jPMh#)o(* z=PAWXdpyI=@=}8LKmT5GfY~XDq5SgcAj45_XItjGhpOBv7R3@AA^-I!-Q~Z6yOp~f?fEhv;nyT12GnSx*C_U?M zaH|@!{m`8YcKkG@RTS~s-Qar3Q=kD-cq6$q*!44Rg-nXqzFYf$*W1&D6 z^y=a&Fv=(Y%nUKf>&3>3RY4pzoVv7XEnuHuHCw>2S@pZ8w@M}noxk=WHTa8K{fps; zCcU*a1p)l}W*&t?NPm9AOn-|G;nLO=q*J?W)_0Ct)Ev@yc87Ov1A5SL1(*^fZpY?7 z`mZDS?>RtW0f^-Gp?kN8zV)mg&wj#YVVc*af%Y7)yQEW(dA|NjpuarehY`l7JP(Y& z-fxvVSlX7HJ*IZ7D<4;_MQpOju0Qmxk`r1@J0J2@YzDCcK(DNcDC|vJs;uew>=fk} z(tvbx<(}cc`Nw8TCD)>V84GrICW&ZaTSxho!AXj;SdwvVn1v zS2ExlNnF29YT^1%?=J+AjLl-d4h2m0ie`$8>rLcN@la`}aMpW5e6vv3Ug%_3-!P4O zec#esJ4~kYRt7XG;<`bI1ATr#MKk8PT3@F;Gu_Or#JN6HcilE#Zv|ePZmu4`vpaWP z=sL-`o;06LJn2;bJ@P<01d(0*Em&urVX;?xoXss(5O2_>%ggI<+>?=KzVJw_a{4US zV~(f$Ef&92IP{8rm!GK5#!V=ymLB)K2-jN~5_ylWzPEv++LPnr)$UG|(B7zW?*E!P zY6GP~bAIFiAZ)kO+VVe@evk|eFmy%xK(od7Wfi}@*e>GQ!#q{BJ4%@t^GlenPC{rH zRN>fr8YgkZelPenv$7quQBDp4{g9#<$XhHpSwx$S9j^8Bc)ucIc~o}*G3$4O8#wA; zPIuxNu2b+tfgJkr4+PEq6(+Nl^0qsO4x^B_3ngahC_+n*^w`s`4UULD2IqhJ4~6Nv zmO#Y*aQbb7LEp;x_f6*d3#Dy*+URJZ%8J)VuGYS@Y1kvXEX~Tzt+qDtX~0T+s{$iL zAolYY)L-i_wNAjkG+e{(FWLC(I>#+wEONwU4RYE$XcO;Rhs2>IbFkXy)l|RCD!9lf z#Q<|vQsjSJdKU)j>|;|AgU<(qe=gS_JzJ>1(bl}FUc9?kz2%NQs;AV4JIAp5dwkA2 zAkdGRAkzxr>G4e?y&CajgTRdsGaYos`>~#fOfk*~8vc_0`Z9OmGDZAor&89+LZ0LD z%9kV#LPk{{eUBpQpH5xp@DBd854zzT*$ex@(4L%8E04KiwKFP^u9Au>jHm90uhvoS zdz%SA9*+O}Mvm5P3RN7)0k>>zQZ1rpoeef@|4!)18+JSFvkI!&gJk3PU|)}j-(Sie z?cE*S{=qrAWdo0e=fndO&AbpBCwbRiMYAOy!%^SD!>KmAvvWc5?U=M`BkK?NW2d4T zq`WEd7Go}?J$6CD?=^SpP;M;YE9UswD;-@BQ>f~l)ca**AkTj3nq`!x3!-nD$#J7) z-dH?AYg>Z$=qBMnx{wwGPy@ic7$3p$LdmA04NS3|Ea|>$+-S3m-%e2~C8y|s4 zEn!r*Fy|dr!I$T=sSglqUvTLjdBYB0kfWX3l?)oHZ1i}I4*wHsS&x=84UzW zMP5_?wRl)EXHUUf-x51`HE?Cs^jA|d`>FeMaN}8urZ`x#0Iho~g{%n_KD!Vu%<~|e zwQpc;n=o|NJ!QIm+C-ZCHlf2R#k$}N?iJ{D1K5-06&)^n)_yyL3HNU~9-mK^@=zZ3 zV(Xn6lun_$%~*og%5b7kJc2p%CVAfhiA?O1*FcntDzM-M!5EqIX`AG zS+5BIX3*@fP9q+yF#woX*H-=2G}M}0DAaxW3Wsi)-1B}GOk8%pOpnWHhJqYbkL8y0 zX_knkKG2@Sw{~JX8QWK}w$Lvr@eFUX0e`8Z8fB(`gZdY{^u(sklGL;CBU7)q4O=Jj zJT`bLE{s1Q*#9N#@*|NDLCsf~p{S(>&OPHw4R>GXfQD08R+c4rX?4j;?= z6kRHbH7p1T4c|nk3iRcB&Xo(ci5q;G>w<@iip*_$s_Rwl`q@pj`HJyK-|}HU+SWqY zg@teOdSabpxg8hLWFLu9yM+^AB1;k8{&6Vi2`{COX3%M0t+_C8$J|i{ed%YP&*Z1$ ze|lrRyt>o;7TvAFuSv)ZsCyZ5%zdCcYPXvtu7SEY6*D9?5pmgU@pbL*0vn$Vb9Iu1wq9Ir%sLx2}w3psV#G4oO!%7n|gqg2*~nC>gRl{ zW5#Rn{i5(y^rsd$R_X_$GS0&+_h69>yH)Rv_~6;*kz_sRK_Dpp+B#`7Q`(#}zg=4` zN(@u>ke)STNYQx@`pwN<=~1bcp&U!cb3Tih=dj&L^xo<|uV&R7s*r-iUm~#sFRdL< z%cozqqnY`}VqQr35NMBXIKAz#4U;yI^PDvcyd=X2E~2|FURmD7aF|>fjY_dBz}8bJ zh~NAz)iqEd@cMoDQ!7=H1y=08e4V6i?I_#Jr7+#}>$Qd|+e_LRY7z_2=z^lV5t{ZJ zo4gMCME3e+-h<7Th^T0>GHX*zj$74>vdE4`8>!p26`=*IssO_QnSrlIP>A2Oo9w%# zsdiEQlGV=u$Y&J7;&$K8v!JANmdsxzY7=uzG-f4ZnQ49vbXc)kC65Vja^=%KnEnPG zTw5=`eLGu9){aqNc;)_&k`=6){E=M0YL%7!9|759VieJRw9m-KUVjmWEGmJ_YIj<5 z$$JI+pER*mi#p{gqr*BWA0uHM^@N$$xrq(um$R9kn3%#oEvwuo1!qF|X&Y3nOs2RGa<9 zB1c*8JJ$4CE7OA~SWQj|ejJgdjo}Q=3NDMt;&NV^T9Y1>YO*lJAiBxxb^1)t>E|~a zsrjlyoOzd#5z%S32b*k~k_FL_0F|9e1d2`Wd46E4Y!6KeM&-+zP&rpW&=zyx*5Fg3IM zEq+;L7Iu=J2g!1MD~{AfBfAx1 zUyXi7QB?{&v&r}%U?}+SP-6;IC-tQO@A8{@+EMZkVUv%0m{{t7IAh1RV1}eK z9bF-h*`BsoKCB)XR^A<&<1qC9zF>qfo>~itV6FD zJHF=qAV~z@M-hC-lrJ!CMkV_-&3~}6cY#o1T1{UXn}UxX8cG)J+i#p1oV(4cWV1h% z{CeUW5NPJj#&ep1h&GHZU_;^sWHR7K58;06595fXKW6a8Qt2ounca60iz5k3;#3vu zEeWC~(l26$WKHy~0}66?UZ14Q4T#L;EFk2(%7+Xg=zI(i4`)8PbnDo!F8TuUFd(R_ZU&<~JX7E^&*SMxow7YRM z%{1~k>%2AXQ*oW&u${Y2Jo0;sVI;J>NJk;Q?lm+rs(HbXa4E^u0>??%Kuf-+MxaEiw zb3Dj};T!DNk7?~9O@{UwX*Djs85t3r@{*CAmb&VTu@wG(rCDD}&4B8^555Th@TU>v zBQSkj4YVFjDaIXiTfKPVkbX^zyrA@l)=w{U_az|GQE9s87HfbDz-I&2YXSuI&4|v` z%AqQBcIDhjaKvGBq=V|11#{nUQa2CCVfM%F!p>7M zDKzZbub3ZJ-z|)XUWp(LK3r!6$ZtNIR}e_IzIvJUFiMx~N1tirdBUiJb+}&X*__nZ{gU64P4kJ( zu8(8HN(QQf`{ogMl@)f~*uZ~}DlkxSR*wtbpp%F zuzle4Wi#(8ukHMKwxrKkjjlK^sQ7`(-;L#xZSG6UU7KX7P2*`BbUwX;!>PWfiWVhEg3#|sO`)dwSliVffOYz4XC|1CWsEvU zu(ir?E||?CG!Gxn66rVHxYw zovdW+2PF~amKV;Xq$)CAw>r62%Be>waP8S{FY?RnD#;}v>odFx;^#AsrC&SAeNI+h zDX*D4Lwee56HF9k#Jcq1LFs1AAeGM0g zz<{HWC|t4IPU{Q(J~PH99^k0uS<~`gtCIjFQuS8Sn&p?(q~0N1BajxCFKys&|E>G^ z%b#%{=9{Y}e|=r^{r4_FfHq`OJy6B2-Qj2E`GvI~q7Ft!4z#G<*uF>(epamLTsI5L z!7lE-^u;Xye1n&}9ET*0e*Yjz81wv(_f>rtoSAj0b9YC(LyjZSVMxmHMcp}-um$7s z>KYngJ~H}2mO_h@YdWUDFgW}N+6+}FEZz@lrghxF4#Yp>%r@P4dmqs$UFb*~tSysT z*v}^*-ZQ{$*&-C4Di-L!)$Gng8?OK4-=gOxSO3!I_#4JU{p>qgzgIZ{5iW34(&tXn zU%(q<=eo0Oc^x$Y9O-BIC&RnQEN1vZe#n3yB_LDgkC@KcCMmZ|T{j+L(dnrCzV??K zr2nQYfQI(o18c^IInRI2Vz+`an3mEK-c%ev8_zP`pb{dj4))~khd*oXScBS^fCd%N zu<*3s6hJOY5MM|_kBma*6wLiDtUl3vkNHitaX(AjpXfu-r`?-66P`U#fTSlX<}(g;JmfjsZA*53Bc9Pe;<->{c|j)3bLuO=*}>{yz2xTnq_9=(^_ zdcN^wo}lpjJc$)TtEvyy1_U0GHGh7dVOAje%3q!e)+A=xLid;_yH^6-W@#w>szZ|ntzFC5E!NoUPr`t~rQu-or`QNvuXDB^g1KwM ztwI-K_u26=V6eSXt&>tP33-3)CvH(+=o~-cJLlYA@+m7|=9*S>k zatg+Y6t?FJ=eM&S_u=*VDRN)Na8Z&-P@TpHp(eUd-pqw;mStUILG zB4jVoU12V~cm0gaGMT|8Od$T&F>_+p#9~ub)qIFD^vY97yHQkl|KDhQ=Y5u<-SBj< z&`^#U(K6pJlsllk(wki1+I`bjR^TV(Jm3h->{r2l-XK{J0)i>|uJy!j7K@vesE#i` zpOz*KhM!#1syW|cS_I-ad?2R2Czc;SaNx=~@_>n5ET*`hN&u?7pN zvq!&Is|Q4(Uc{hqU5fIkMb}6g_X01y+(!oBqaeK7~&{jzRHl4 z-lqdKu75k73{=Zv+MD0zxSnrIR<^0dIG6yINPOICSt-BIW_(JK=qbciT>&d8If8Q8 zBThcvaVb-l`GG_9<>*H|s4DvVgHCFJJp5t3{(|Advlv9PvUi2NN}N=ESJl#hzW^bk z;BSYd_9a)Ra^M{h=uPaE9jR3;n9Q)PdS>%-&-zgy&*+cC*jA-Y$FN;KL$1kWS#iNf zfb+#TR2{TSySiwKRnu50R{{**)#q)6hyjqX-7VTa#Iwhmik<*%9kHMQTQ1Ri!eVr>L93Vf~Khtpvy|H)94mA?!`h_#~h+a*Hy zkRV{JiiqQltu4AE)UWyq9L%J;4+3`}fLGHE$ywKSS3tOVl%YyyuTp_xUGYkUn-uxS zA<=D~*JPk&x#hH>>l!Kh$WOLiuBdGbKXn!VewR|P90yz&ILyuCafpV4R{vOi)Akzp zSKEMz{GC5|=@PH$_kJ9aXE;BmkaAMb$S|FvZ^LCO6QXGW+7`aRirj!44h~&bRjewL z08EWC9p*Aq%+W^@Mhlcr!p@pwtp%0Rv(!)D@~NW)XWAvP^Siem%68R=E>`_iCJa2r z+%NGxP6m<%--OBPO@bU{+u<8O2OtKBOPlt{`Js}fcaFLNCs9fdY#p=XwS-W`5cbBw( zq>GtW0NNPja{1eR$3Dfi9~YLok3M7C$a=?Er!!IMqJb-*Gvw@Jts~n56+CUKSZl1E zIjuk;9bYlilE+xg379_=dIrxoVcF;B^U~N)ajxBmIHf$a7Uvfe`_`pJbq07X>R>br zFlBN8(O|61G`8D9M$1;lHD+%ENlkoFHd;{c@4KLvw*oaX;VV&4Z};4rQiUXnD<_ovlmOR5=z-r92RUKTfdL<1jnOr!{}p`cnDDwYvEo@IT=R0a%8k0o zG*)MOuL7?{YZR@zuQGBSY_A2hjc2dG$9JJu08gIt4yAxCqIGl&-e0P^ulY^&1w^wB zA{}|QUX0S=#`)Eq*|yu+b2+?RcyYX!sJwdRg`)Uj~!%t9iVX@VC` zi`8(}){1#T(3^6a=OiFKYt}aWYVh~o)6T#-9WhRO+f#JjQ`Hn!biCqvxMr^?1*wT% zs(Q((`nm~60}NW~nxFS$lB_nj;5@d!9l`Tw2!K1#tax%+<6XknkpNl{mZ)IKM+f~{2^Y81;L9dtw ziskY4{H|$f14BCC`)l}|H?M>ht|bSNMIJk^N9mtS)`Rqg4(r2f79)flI&Blc>^7E6 zNhogN3@<-f&~qo}{^%>dj}f3fIlkPx&5aeWOo4-Q8LJHhI>dwA!Dpoc66FM@10@MB zm-U|}9U=8_fW;ozCG0+_+O8)Mq(nWAXqnR{E0K%~bN47@6R>};NmJ(6HFG zSc*6zasT&(PML>6hG*DrmFQR{Gd)l_86omxgJwfw0iP46B}-$R#MeIqzR3jxVA0?A zf_ppZ+2jhH33mT18kvaizjfNRHa-9bjkx3Ngh=lPTW?}qN1&! z-WN#F^f^kfUK>tcqkF7S6?EQorqHSFI=Tg9c6a+Nu&DA%4zY!2R&jJ=g`VFhdHgtl z{|E#OyveE12E@^=bb>*cs^HUp86%DR!`;nKbbXVzQHmm18Nnn~%?mPyKlSpRn(y%{ zkh5Z}AF{Cmrj{@;{}Nr}y1Gj7X0`)hXMt%{VD^;$nrms#Gk+p`_w0ZDLf(j78Eyv$ zNM0vrue}TNxR|8AfJE`UpxzuIVMzo#imp!iFR`P#c@a8Q-c7cg`o480U}?Zh>{bZP zW0}KrO7AYg3wyDSO=q`1+=<&O*RAc9@>zF(n3g(u>!K&H@*m4_`zx=I+QY9N^Z~aJ zR!e{TH5WE3+2G-A6>OoGWGd#bwAhK$zs|C+`u1pVM29r|5<2Yv&CP0aLKB__9iD3^ z#$f&*roK8L$}eaa)+H9COQgFIL_lC^0clXW1QF?OkrI&(rIePIM!IAPK}x!70qG9u zxM%&{?|%1RW%r$T&YWkSd1lVpuyEtQ-B5(l8?-9 zXeU^&P$Zg=9UAz)L(9@+qR(H!W4BiR+qXwv6m2|&sOj6^UiiJo<~uq2-!WCPcK;= zt&?#DSKXy4aqur}dCi;It|;B$y1frhsFFyWPCw8U_3W0I)Alt*!6w;+9iQR&WdE}> z;Cq|}_z~qP%~K~U*^8t;ioVouRgmP@Ac${;$dR)p_i<|sUZ9=me={#OT z;Bs4zmM`kyN(9XhnRjmAkG-&SaojTd4~dX30)fo)YuLPDlOb_@UNns_smMRASv=V% zAb)SrUDS0m{&zY9Zb+@)&7{L+Y4)4z2pHuv7Rl2ac6}Rta9-zEBS_~>Gr?o&jVGNO z0MhcbRf^xeJm0bxR~~{9A~{4a`z&h|qe|F{iwI@r<*mxBRbg#nCk#Zxg3{ z2TQ!28MbAmv2>YeYbK!_kO%u+LGwo?QJ2u+q_$(l&{@CO1141s&3V$_fT1%mm0Qmc zY5TZ(P47*j_^KNYoG|U)!-;#56ic+o^RvL(vF&8#hc}Hi?~`A=c*fK7qA*d|q*O;Z zL1)XbRO?BuOZa^G_%ch(*_o=l?-{MBrjv<`Z^-Yk${hLMG`!_>d-C$95P}2>0)ILX`<4$AC4!c&F)k?bkLX32|l5c2N!7Yw^uvQV%sP4DW$MQ z4<&XlznbCIt1~8OaDQC!QT)Zk7Y^mH0Z_vKC)aQnpOiDSC%)+y#~VZS)t3@9%~l8t zD3k-(_ILY0r`aOTz45*Zs&7p+r^_d)j-2CEdJjCzUM|cjUFIhtvEx}TSfE!vH!M?5 z+6>k@s|9P9rM&)**s(rKitLECBhVBcsHQiM_zL`YOx=rvFe7%UPx!Fbb~@+Uq*`iV zT9w~~Hn1P(8NF;kzKsxidLKGn?J3qo$%$T-#O)hqbHp$ETkh5zTVA5Bcmax4Ak`^d z-oAAIL>n~zQGRN9q!SbS6&PHJ8w&DtfCz2ukDdN~dMW3#GB@|=Rq+}vrb7tQ0v*%{ z9HvM(?G0e!n?g?ZA23O%lGXjD;P1Xuftn5}jbLSSnDq;@%ZV=f+5iRxs%@?r2z(Bm z&2YdcRqXc$EWW+tUit20az$YiIrLjRa`e>XBkF|DEXD=iLM#K%HXgyrr(7#@7&ZDS z+5j8DkLAd5YY%%^*}I4Hk;o0>YlgDu6`T{NKG%WH?zsH1!>;It?=sm{Z<>K=Mi&c#`@pfBw^SVw1Q#y{1b?jN-#^{yQoE?Dcrh{f`GMr%`h)qAf`R#= zU+VKp$}CCLo_&fumeOTAMZ#Nij%@k;1LjNzJobh!pA~i;RiZ-{QA;wLfmXXE>2p%t zaQuQvnPUZK7k;_RKE-Us9moOxn{Q8f^;yZ3*HeNf_~V`1vD{kEanP_9aO^~J0W@?v zC^7N#H2Q{q@7I6HseJcAgZum6|L>!C8Rgoj6r|&bYEPHUBdqHB)ByhgbH3%s+J0l5 z?Th1~b|H0sYqLA2_28H(Z1z*g>uzqRv5Fp5>+E!+)^BoLS#Dh;*CU$@VC2Q}k&%@I z#3+Fd%oLpw34A7~W_c*o4z(OdQx&a2v}8lQAh)#jN>=EjrFX{Hvr)4{#jua2-AZU&}O zi9xA@_XGE92Z|ceLDiTuMu9q)my4{SKl9)E%@`a{XNS8C6cZd-kyBT2ClUUs)>EqL zWt{!0LMOQzF$0{At{3X+be984X|Ilq!Tm7cwhaiJQoL<*Zg>pq&rQflwYHDVMbn&_ z1>rUdK)v>mp<#vsDsA4k5kar&_x?+1-znAw+=7&}w&TYKjld|93M4~Z8&T?B=2<#J zO;Wy+V@inu25O2-wt_EOY-b+d-g5ISf#H_1in>3MREOX`AVO@jz%RHb>p)n{8YGS_5 z=yXvQ+6IOL)F037+!_}}O`q3y!|R{%PD1w+D{s!i;>-$&W|LF`*y{E&1S3b!%xnx; ze%@E(jyd`wU>S7T#*R9Nj#NOY%EzOIOv8S<2C?~jd~bHoKh_Q6%LU{Q7U2GQGETJe zg90=6`bATgi>_)~Ws%hHpVBBIFGW=D@d@Y>=_ic?-!mTBHR_F*whEiZJ+-dGNT1n{c!bz@fb-3q;^rO z>NXrv*l7aOTl&dDiAdD=W9n&t^XND%S2jcYqAO}A4cry6dR}v5mz$Hb*6+EH{x8`1 zaEpy7N^oM1)h@+KP|3oYN}uB0-*jRmEK+P@tv;j@>U|+`TQCt!CCu}%-6(ay|FJ=c zxw==gBo!lJICxW;gVI$eRWL@Duu@n{JuPIjHbH*mzB&4Zy5_YzA8HKoL*pM~N}i0P zwdxU{4^#WgizGE~Y6T2YcWg1Rnl@WVmL%MW4ax6BrdIKEls>%T4FQu=v#!b!FY(e! z>%ARH#?`56sPWTq|0sdiEye&7mRlPRALD;0gjaO-}B)49LG>M za-%aM63aOp7h7XQYRxOR#tS+-K4nS^0lFwaA;i&3TdtTGW^-@Z7?LokzR@5w zfyw;_w;!=pK3)7F366%m5jPg(K?u~33oC_6WF9Q|=4ocMq~y2VrLI;4&o02lsnLz2&F_udS@6l%#f} zPj$LHe>Mv&8z*V_0C9}l=~-;+Uw!usom z7vU?drKqa^R$&v#AkXk&DO)NaAM{+0F{_8)iKWriY3D!tgqy?nMS-m4u=_C! za~}Dx`p4{$KxPmfvAZAWdY0y&9wrqrj%M~V-V_`L*=EwdLsQS3r@T$lWE%4AsCj`XLxnES!k_i{be&Iud1TX29Q^N?P~Q`R^z(S^RPtcR!L^ln}Icz!7`) z)Q5V7@pSk56)z>#*5cco*FX)31j29hccKraZ+@YM?}o?vyf@QK_8kCRTkX!36PT#t z?%sX-_lpb{N|dqKVLiE>h14^#*>hF7x-vp>Py&!y1O?*UikSm#lwO1xJ)OQ@(~o<# z6I=tj+}=ELbMO4mn)P=g2~@!;RgSGkAiAZvW~24(pk2!^2BWvX*HQ$w|A&MR+jC%6 zBzFzzF6~7|N(n+(5$UuYb~`Zd9iX6H?0Z%3cWUDJU~@PzXXaBZIYPN7 z73hrbutRZ%WpH533^11X_iF6c$M@e5Kc&Zz35cEdS-wv9bUA$$xBdEZm*dtu9X=&) z`MdA(W_5dN>U^L{w&}aZ1i_*>n(JZD*dNBX{4!{e7$QD=c&f*r0OsAk#?!KRZ;A21 z>T2%f;F-pZlQ@aJg+96U$;5c4CwNf$efB0Y{-;^{m{mh>vEf1xt@V|kEZU>~eL~;j z4v(p9!`i>n2clsI1kA$r`$UY{Nz*mE1h!(UWWi%RrVSRJtEdg-2TstVK}wksW~JV8 zU)5$86FxL0V<}RBZ+~2ywzaj%zWN7M=7#Hn>lx;@?e?cc zsoZF0w7{;9ZZt+7N7BT%)%Td4`CO*R2m%#6RF@tFJr+8iW#M--q!J#|JU3j+t=h9{ z7}->i15c$lUBpWu_@7w-7&Su4O>qkpxtn*P0)GL*2F9{hX+FFl{zz@uX~}q6g|Uqn>(D!y>>rSm+F@M{31VS z*pcXc^jJ_(QXxHBpu*Swv!E{Ljn?c$1`SHPR_(3r%&+!-KRZ=d zcHk)LrC~LhtK+gvip?GZ{&b}(p}ZN16^Gf0GYZefA$SG}YbnB-Fjf*B8-D1>)ZLb~#JQyRv0 zXSJi17mB$Ur`M{)UY{5}Me|?c+HkNJ=Qsq(=B~9XEIiS)=Q&yaj>ho4ClXlpMKF}# z)$79zlen%DK?a?83{`LV@_j}S6tYqFABw2`kVlk0xoaJ+jwS7@fv=rp$-%=fNkSjT z%KN_^REEdg91jwQOSp~QBxFAMNfdy{u48pAXstgdJAQlX{;VbVl5aLi8iF#}5Vn8! zx@LffVt@kQyxEPcO>d@03vWUe*v#c{Py7k7=lI>7om8cgg4~9N==tlHwW9>y*K_?^ z&kXG46ziZ+BXzJxw`LGI82QWJ*E7_)NeI$j)Vk(Z8talrSM z!#X;~)C1|u(??S=!6>7==eSl|E|dn6EM$HZNCO5gRcTwqrn$; zIol-|J(Lv7>l0xY7i%~+mi;niq2vLp2|~lJ3q=%0QLO8pHbks-w=|v&PaRG1eus|r zd<0MHs!{Sarom`BX=2`gubzUO#M#li2p{aU?DB6o)3k%6(|B}5WTi?0ACu4<8U_y( zx(;(+c|3p)=8nF#jc9Y{WC5>}i)YJLtJe8?Sd!LJ@7mMHhhVy#sauUD`yNW^CyWZn;Exrap!LGo`JlI!A zXQR!K{nP&HyM1kr=!(l&0B27yA2$!H6MN3moD6(3l8KPuu~vmn~j%~hNG*r@0kKtZkPat}AI9Rniq<3pSS z_@XpP`j>Z52zc@dGlC)U;zzCAX6;*1UxKkQv$$tI4|SCF3B5*#KSdvzpZ?(LU`WvW zbAD;A%)!gw<(%;K6?n}t!p~RB=-=oLH$zpmjGpD*UqFUlV@n|`=z3RKw8<$xu957p z1hRE56nT@&HMKZ#=&C$i^ut#FG)Mk13%k*b8T{?XMe+T)cb#W307dh{mHGk_%mljI zn6csCtuUvkH1)I;xk+8wRshC)JneD)UQ3Dj4h@?<2(4^*gWoRbQNcq`#mI+uLlSry zKuEAmlId=IIpc09ii`0oy{gU@PJ8V6+*tx)3anitL=wi(sYfJUFzmgpiLkNd@9q#e zPSC{#AyKVATFmjOuCmzHvasY?>8~D!Ji3kgXK-Dw7enqdyrTHjN|@+kU{{;7#h!4! zZaclq{oS1z(-tb5P9GS+54;=svGrgTs?=Nf?J`zlCP)3Wvf_ymK7>A#90DgwWb4@Uo7jJ% z&rHZC2Oh^EGoH3^w&(;hgg{k{d+@LQ!qvDb_?>}YgG!&F5ELW%g;YbbbTCOQu(+#v zh4DWSl!u@{2mk(=@%>RhOiNezn*Wirkl$TF%lD@sEK5j`c*h&yd6_5#1x6Y77Kjv9q%fLci}D;7*A3cG?0OHGzeUdd=8%! zMYivJs%yV<@|50`7d&zGlZ=Ef1luxG{Z5%Q8kC#C>F*nUcdrVw@&sYpIodBa-7CL} zoWbWG`Q6dm@O$k+={_0}+~Q%ImB6z25JX=tc$tw01oqT+a+B7%wFRy_Aqevq^MBpl zN%uEhKY@0M{X1W-SVe1Y&KCX#O|5jHy>b=qAWHhdr)Us$Cfxj%m(B{3M#J2-*=n`u zWSl7g$t-F!xJn#RYBj((O>1g$mvuI=obK~DKPhHXN17r>i0x0Tn zTfpBXkz@Z;?mRrPPbx-%BOn%R7!U&M?p&T;?MIm!+t>MtHST$Iz(|G0?{%T@466q) zIRA~w371hG%faK_b;ZR`zk>E-AKJ4=C1V73Vc@-Z;U9s@q{kY1<=Z*9#Zn12^qG>6 zTYeERe!V|EN+z){0dK%lI!~ARm!f?kBHk;Y^^hOVJW^O+p#K>qq(w z`DPG!(Cw7p){~YMkYq-p*Lyz*EU^QIXM?@p=RKD$)>22c6m4^V93vV9hsOo_&zYSq z^(TI78ERX!v{@JtE65DB#1OJR>x|0fAEDo`%WRdrU{$)Wl2(sxHf1yjE&N6diLpr@ zUWtxO8$L6Vse76vjCB_ceTtBsyD+EA#E|ELr)f>?nBl!eoa!?BAR#s!$LUG;KQA%C5HAbq~|)?6}3Ea#3tJr=1o> zeFqn=!rLFpZzLG(aw6_S#@+=)Vn52@pd(M3eGVH=C7KTkn1<1hH%}W* zy5C46ooRfk$5TB@LT@hPGuCTo$GSs!je4|;iuQ4#kK{}bW3X}#;$RElod2HFxHGi; zU6)YJ|H8(>&XXA&t=6%ACR$TRDY8d}GRA-fy#H{77o8x=cBjjMEqWpp3ONCsu#1*d zQyxrZkgViNGc48r6ws`B&n7(Z4u!RxEC>>f4{w`fH*0}qN>tNw4!|-ZuLNBm4#A9@ zo5^PfvlkO_KipWFpRUlhixX-H2Lh6;d`&pdMhb&&qcVU!vwF#XLPy$9n!UX5sdm7u z?y>$;%vt~KWF>eIl@cJ+U9Bb6wtE&!=+C05E-xBW!YsRhx0+F$fkH8UBvne$T2TDD z)8JtH!X8UKT*Rl+o4g4N&_D+C>t@K>Ij{{UWipo+*v8?ftxKEqS=Q6-nCLnYs}W06 z+AO#58c?ZB9Z1tbv%^4|r^HO~FE$%{D~fXf0&n&ce#-qh@Dfu*iY&HtT(oI<<=)H( z_)42DxCJA=ky8skV%*1K?T9<_}`hpEg`?t1&OC0WUh&eYuFAMK_%qqb; zUjJQCLl|36Ex@w*wjr(Y?C$9sOQwUHOps;NLGmchrxe_>1sU{Y*c^ovzGj@whX(Sn z1ErVb-)1CgQ@^|PXl-)LequryYD0EodfSLAF^S(6@$yyy4MO06p+NFfk&8asdLWIo zFVy{!eLMlAl&RcReK~yj#=OR?vv@06W=v2Psp)>y(^en5lN5SN_{R^I;12`P0syTV z@L1E|yPDdWbY&q+GTqmsc z6n>WNy61xmX2I$Dv$ORn)=~B84(en z>X^S75mc2&ru?@hvreu0V_CESPH|ycTH{YI{SJ#y1rGGd69cyCO(no`tX2-MsLWAt zgozzZ&q?dU4jP`HE#RQP|KWgvuO{*ym?~y|y}$KzqpPDZ>WtsavWdMERXz0wAWLLn z`yaL%T0eoh>2Vb=DWF(LF9`L`6JcaDSy%L0)P4GWB&`!Idb-*?M29)N_&n*KK$3i&6wJZ$(|U0u~QQ3lrM)*M`F7lk^x5G6;Cr_9n zK1m_!p|Hg}+^3c#@KBoqhFb*k*IoHo@yRsy2y_jmKgK z>-Lb5Z}IYa_zX7Sp@8}T;Lwzd&!u|-upVUF7jRQ7y7MsnVmv`q%=~oStr2n{B~L)H zDO?CSifDx4W~9ewY#OzDgX-3EjxhQ=(5y%KvrbAM~kArUh;CZn5gOY{}U z-LVvb4_@!aVQT9*D#a!_m&;cJC@!e6w%D5do5FIO!Rxo=J#q6Bjgz}DzNCcjF0|?i zJ^OLfD8b@F)l+)pT@V_5`9}I$PibRnL9CP9DEGD86Jdc+e>epBzT;>Y0E6bshpZ`2 zo%Y*GQ815gsbqkDP|TMeHR-N_t*tvT^;L@$9g+ufsQiBLW&5;MXGwqe|Jh6};`*I=m)mE9zp$uO==S9wI~jVmveaq# z@`H450ykVnT6G{l_@MmHH1z%O{^nUr;BSA=gWNv5yKd8=q)CQSz^@qPv16ssPrMX^ z8MHQpHH~=qEGAPyph~3ohd76c95-Ix#}xI6nT?btI~V>^$o(FXUAU?hFVOVtBir)9 z!f8YdM~?^iodg@kSX~Y2Q}_(up!cnEV8>E@r4rsUh(IOOEPZ=0f{pZGWZYE=wRFc%sy-bWoJXk|cXsKg`92C0d z41BL@xdQEpIG$PcgjJr-RNIka0uT8^sFOowNe|F08z~?KnS@`%x78_Gz}4*#bz3*5 z-$PJ|ONTPA8)v;8W1osIjoIGWZwal`0(3XmPi`--uhZQYpE(?Hdl5kJL6zSHZ=#x~ z<3ur%7PEP|Ulw2!TzCzESa~Vwlfn0ej#3Ii3?hd6>lk<0<>AP1$cPV%5Qg0cEXOpI zH%aKT!*yV9#cs=wsqaqteH&|f3p`00&>2G$nRN)Lf(THA?8R8|iI3 zNKO`g^TS`3`l`j_IImY1*TRe<5)HkC@Uu|afv2q1JwIWq+_{xMAj6E5d~6VY_J6Ay zl7W;T*dl$bd>%^iXW}O)`n)cy+y4WfQW`-Da3&9%QpBHcRrLD%&dY<=KM!EcgiaXX z-%B&2MgPL~Rho1a?1%?s`Z`9~f+pzcAE0dfNprKTAqPSX2fU<_G>!WvN!=H1rQ5eJ zzj%>*__+%ntahQw$7r^4ZO4_{9J=zug@X>wAO`T~cQviSh4zNZy*}bxFgVc&n_zke zS0iCTVPS6mMJdsBY@_J8#zoZ2#`p*sl&{E6rQ~08TrWFc@s&epcq>r3*aI_sshAN_ zQ3Z0Jk=wJ~t@}^qeun1SlRY(pLhu<8Uqc@=6GezoXJNyjMkoqW^efxM7ZP&Jy4ie* z!MeFo*=h?evjyBitdXE~J}ufb@?k&Fj`H2r^4}#Yg4#x5Mnm60ZHod~tPL%-h#y=K zeL&XIpT13^!hHcMdlZk;dm5W`B6&)lcw!ieH%0RVJSGT{r56E94I9W>aI>0xv|qwM z!~KJn0!V9*KOhp08J9GkaPK-b9+?>oYUAqYYhO6{d}7anOLD$mj1g)K%10J7>>bmg;#4eh&)p1@TnzKt297RUp|{3O>D; zR5C_*5Dyj&Lqqj}6Wh=6Z46;v7!QfD>pp?hq&uuI*AHs~D%p@@eRDI`PnMU7F0K+_ z8=TPZFHU@1ay{Ad*mb*7`5+$tgp%G=5InSVNbYwkcbM3ZIokY&O`GK}&Yir_)d%7n zQ5mL^=8g1YZVX^&SozI+h6K~-=;^Nm_|XOMv%E1^My2h50LFWbZk_3Q<~GG^#1A48VFKTuE74r zxSwkglIB3^oH3v-#R7UTz?ewB2ZCX%o^{H^UeB`H@hm$u8%fqL=gALJuX>s0JHF1u zN+Aq@gZr3ufxu*+en3Ij#Opgj-x2m@HnzV4Ec)Zb2THa7=xDV+zZ9HH?5{zv*Y`xG z4l;UE3W$Q*d~D*i|MiG;V|s0zI=8_rkS3D3BuQd#-E1X}1t!ypz*Fp595F#j7h6vbHq#_7tyX3HfWo6}PpH?=Z z8KJV7V4!EqB#(rD%MMbJ;`w0-FBZkSfM%3|!kY1x1Q57kqGkUf0%suWC+q%6X86M@ z71NIk90%S@1EV#eq&(RHdk;~&**a)+Vtn{eH~k|t{ny?Pn`HF8RQUj1q9cJgU9zLi zm&}Ca@gT@aI!bdWhUn;yiRr4)=^TVVQsqknP6I4V61EY@kTNzFZ{{;?_VT#dQhd?V zU&aTLC={KrJQ>koPmwE~U{PfLpNUMU9Szlvw_;Uk= zLw<)2P^v41A%5tdU_}z|pqj46d|8B8#Oxd;d7udpy0%eyJx&y{hRS<+ux&|?s5*kS zWwxWF^hdtvE&&0kb+QgfPjUHQ05TrDUocD<2zcC35tC4uCC47Fo`#+^J5_X`6fS@c z1A2y~K|A%o#!M0#1Rexgg@p!p>YcFvr_X~%{+U$+;8asqfd4)N_^Bn6U+9oTV&tHm zzgMPNi&RHrZ9MIv*ngcAdE;^7$M;-~?-!ihg`3;+*Wp7S$p)N8*Ol33u5Y=9`e0`# zTfg}!f)kkkwHwSXGKPt5&2Qw_d1y7Z3O`iN(Ky{x57%gH+#gT_i+B(1n;~(RfChd> zof$nAeqaC`yxm6yF$B&CRA@(uSn@*ekABN_)&_3u9pFGa2vG6KGak%8C@-k%+1`pJ zf~KO1!pg9030v6PW7T-C((hjBe%X`LFP&(xt==INT?B z#fd)E3A9|N#iw~me~J3$Qj}C0p3td&LanA-U+XkL3v7Fo{VV0&El}qUq%Z!=tiQHA zAcy`zk$|S@JL6SqnYW+qm!>XGyAq%InaOQ^aV7@_azidIjqIbI@^9S-#eyy@cLq!N7p9;MYLyF&&N5xrjpNp6cz~*-WD%e)W$ZusOEVt?E$`FFR z_8?|;2zBAk&%mvpl?k$4I$GnuMl|$TsKA0I3kLI!FQVE>&al_5LhV7dD4bGwjR$cx zV2S;xujKFN6}Fz!BuwP&XBZqDM{kM==~P%&#S_D$|fkfH)>xDcm!&9!p<;- zc?F|Iy~e!cQ_+Dt6p?ceJRg)u1iMIhFY}E+IX~xHSYbZlA~uY zHEF;$%KV66YpDQw9smFs_I0l=P49F#E;Aw=eO zKET5vN{jc&c%imJrf0();t`0~!$jyzulhFH3+a5`;I$%x79og|Fj-TKhtw*)elv)unp=9y&Rp1{9qK7fu~*Ki}+6=Ko_ZBNGrCxvDSYQN`cB zWk-wahWq_mE-TBMo_Yw8BHI1AOHqGI z*o?}^>bNGe89m4x*=5073a@lC!*<8Y1c48M?;%KybBRAEnCou_5?B z*DoBV;M1bG#TD*H5~z_1@K*#C+L)nSfSeoo$a#HlQ4ANCZ3!n9MPPsdcJW*?dsN1D z=#OIZT4V?&wv{##=IdAvL>Rh*L`(w%UtT{E+YGPW8_+cZGYQ2KSc@O~p^qNy@4M6j zp)QO-skZg2&>cB+dZY?4ELD-peJT!3(uZ!hLI&>Bh>ufYImC_&)lv-*p1B%p-d(C} zm*F7BW)A~iWvM2&8)J)gs}Jy-D_xwr1oIl#&%N*<$&4BXI;yw3OI#NWKgP>Pw9r>5Bq>h5)2a8=bnm0vko2M&&H(fY3LR9DV?-$(YkAiZ=vvyr`hW7m7(!A} zxcJ-_L9Pr_xjv8ex;fmQI;Q$8Zp$J0M;9xQ!xcY#0DZ5;l_&cNjan;iKjC09;yI{} zZp1SZp|tZMSc>&fnVJ`$I@KQ&lM!RDlMGfN+EZTN97sPnKtF%ED&fluUNRiDaf$k& zOoj}6f0k*MDEkD^y>)PiLF2(0V#xF?M@?KN>)zUXfkRY_`iK3UUKJ9gUypyoqrP;S zVUiob8tj zGiP)-Xc3D-lF7Z~Rk11PB3s-|l!E0FL|M-WAmO0ps=%*`AsYoc4CU}Uv0@wxed4c} zDeyrHe%~eyHR6zw02B;#LP8B@uxrEZgzl9nn9kKiEQ$18lbeJ^LLml>gFb&=JKxs& zpcjQ!kM7zWYAZw3<;>9QJsm*Z$aW{G@EeEV7Oq1261LVXf%B1Ai9Wtl6AOAj4%~97 zavd~=!wBRM7iWpDoS;xrR3!`k8#Dm2MaAR`&_Zqckov-E& z%c}2tje#~Bvo)Fh`jV)ip!lQE-M5z`X(wFwSONo-u>Y*;4rb7qFp3_MSnlbD={m_q zfDLR_F*de#1Y{BGEK`kj@4q70F;bb7=;ROG2lkRe9IQOZ9i^p2pjC|fe^_7SoYU-n zf~Jo)f9$bl*0cG979q;LTaJw0kylw7R>4%ofzKSjoK&D|>(olFpV3}thtiS>70MeM zG;>J1X?R&!^i8GQ&qb@1M(_m!ASB9&5fi=8kY4)se23>vTW zFBhym++)x)(ahEoHWkMHEN2RU*12V2yfX?YS3>`Cs|fL6ID$mfCiXv6piY4ZO+Ed` z-i>a+mX3dmF+^k6@h!YpkZpf-e0&6O;BW$&49!rpvhYT|b~T`eI4u|T{Y8-`lIEbF zmFL0eTiUBMv*_qsFe8=j{1-L$p_SW2PMsI;oLI1b1psWId<0P`#|^ZlWI3L}$MeDV zYdQOD-1CG1g@3sgW5)w*iD42KJ|yicR*ZHK^h%hOG*U4PKdB?_d}l8wH3IhfNLn5o zDJm^xnkR^2Q~gUBFprDDQl{n>1~DW(s|_M z{BOqSH}O)Y$jO~0*P+FqQib2XJ%86-P6UlaNmitIYV5Iy+9QI9wIkFJ4M=ntZ_whT z5syGGh3cf|YR)&^jj6KZ7y}Tzhpd?%f%&C*AFh1hEFks-*m~;(O_NKYLfcOPOhl*s zF0X!UROSRpCie2mz%r2^2nsQ0Wx~vD+cW;G{)EuWiK-w4Yq4}wXyPx0P-D0OgvN}L3Z@0iqTVIlPP_OMJ8xqGk}=Z5 z-@SF&o7ExqQp4bpZL|$Q+v6%rA-v~JuX=~JUCtc(h-sgcOqa+}txx!-W9qY+#r6k; zvjw1l*~KUCs#l5b3HgP1>A0%szt4FXL+SD@1~JdH@yyZ}48Lr;64F|ubP`pe#=^AH z;^JJO)sPHq5&Q_(s4jC-GlV{-PI1WiR5M*d80Z37z(ph#mF9{{cuU2z zyX7xY5!u7Vr&0VtD45`h4Vjlq+=Jn(6Hg_G`lgAU;@8|uaX=dmnpQFJQassgyWP(U z6{JWY1ZDH*poFY2Z!vUwGT;knp#@NEvbRry{&vFlC9G$qt&bulbq?-zy%*qQA#^Wy z{&xNK^A_h{Vh3x~Y!y#U!-a2YNeP>Yd*5}UCP~}a9v@swJa9``d3|DM_NVv`nVZhv zn>OhkLX9E>$wQY+01y7PEgttt)0Lp$7nF*;UVHkHeQjo8zwh%E7Pxl#v#TTOcabNd zn2xz;UC&%FBKr_?yxd23I3hW#ubX)gPg^V<<)JzSXO!hI{v1 zOyITNWa>)ybq=hKg*2jOGSn8BcGvvHH9~7fC9QDKXg9 zRla&mlf;rf1D|?j`y`wtiLp!xyTAmwI40J_LBH^4go0W}v9c8p5J*?*Mu6)2+-Geb`Cn)OuLfVZZ_`}59G!{jVww>VLazyjZM~JFIj@=(K#OctwV#x zKh50ABph2IhA(!Ve}aSA<$w|IZrKKZ2;cm7e@7^=myzyCVG z)BTW0_^irXuQ|KakYXOy;IAVXRYNw1EiO^|y_k?fO*eUXE@pJXs71VGH{93$ddoeCrN>!C+?x?uME7~8T=k#QA-2=Dc&@BTlI4L!&lUR zjvx$9hH>7J^}EUEmh%PxfB?mv!*8FZGBojuywZ1S)qa|^3CjMn>_b4Y(M?_umc?2k z)gfJ%l++N4fH$0*Hc>)BANU`kusrWfQ+#a{$W5PV1ZlANJJ3|GQ?G__A+!ocO{yS~ z@toM)`a@@z0$lkjWD>2g9l|q*R-&P`AKBRi2?-NcUCv&Gln@(YFUCCePaQNZw8o+B z)eM1%MUp5IOoC1$EJ8dYjS@t=bF8~Sfy6nvK*1w7b=w}$v`n^f=og&`R2ym3s>}%4n!gc+)|*bb2;O zlAa#BKn~fhsFVZpT09^Iz8|g32xGC~3;t>MBsaueD&6ir7*&_5hN$naLY-xA7sNvY zi*IK18fj&aLk=^x-ABuo4?B)hbzkj@M3!qC*!b|A7hblWo1W4)xZ^HjSC5_;9Fjp| z5)BL+e{7xvTmw}VOsAF@6Yd*nLT9hkB5qDlGsUxSw~dPnI)f@+lMMc?J@;GzCFkoG zY_*XLOju8s@LNC!(HCN-`EB@2(dcFL4M&p>Kl&IBJnc;hvGDQ!ftdE}TPM{m6dk(8 zAB?`8!wdqh<|(ck6?(b{O;+`~Y|>P?$*v+W zfDkyU^aU|rd5ZEXQ}Mta{7)qrr?waRgFAhriH=~e7qrK082P}A>e9{48c8px$kkL! zTPX;wfOw=%LhY6P5(0nvyG0Jwz~9{5)ZXSWdVVJm^xiwJdxq49OUb^qvYeqoFk$S* z$VFcdua-3L(;Mw8x&Djk%nXnc0vXnRx?ThL{_Ire?fD%z9}|6w$gAc>yB{7H8%avD=fj3>D@tuZ24J@=pX!$9H)spl zf7PMbnF8?>w;ebbuS|WHbJCS$$S%Nw$}Z`-{MRS)shBDiZhu= z?X#k3cX(x1P+LW-$W>U$x4hD1kBk`=ERt+Ho}SGuWzL9=_1tDs%El<0Et_H>19K(? zI64*Al{q@@NrOqO9(QPBPyi(egwNy_0F(p0H1HhDn69T>Yll4D?iiQL_-$WyIk z-<_U=v;-3(KtV$`;7R_5lgrlL1Gda2#N=j$UP$8g<8!_GEJ6=|Z}1W`xEIyP|MCdh z=Y$hD{M`oVt;!t&H=Md?aKN>-^0rpZJXUsNroT%2_@F}>dp^lXOFUE`rJ!NjK5^Fwu`t9g7Sy7tRboIHJtj2RdfRg;FnhC zX4@nYem-vZ8(GgF?>=^=V94oKO=R-m>AQ^xKsTZ|fy>$^45qM&Z4O(l#Ho$7XW z*lb3noPn00KH=X#1saD3Y+)ICQviY5p{9{o-`42`LLcW{KiG8$wQg}8uqYBoqDOuT zXM8hLM4@UV(zEGu*I3WQSboUa?2+S)R$+mI_#bl5_@!a>A)k3)tLclFpM{LF7E7N+ zVRz5HLe^`W_|SYX3oC;cwOt_%tq$pm_xy>nUV~OznFOR)NBI5XpZ)KkfYuTFbxjV6 z>NhQF4q~tW`L%4tNwi;veC0d)@XHTeKSK<9GtX<*1H;~z2+3dfEV3%U?%pP76%jBVHacf;_? zQfbz6B4omT6Jt8oHS4XHlpkgrFbxfz1qa@(*~si1qI>X%dC@cIjsu=H#nk!O*pmM3 z4fxr(cji}5ZfZkqptL%S^{#FH#TsDJfE>s%Lo!_LU8_(q;}&6gZErujzWH})HNXGO z-Y@)~m15@PW^2YBiP|Y{!$RAl4ULz~cuqd)iSGx%xW#6F1OAtIRV3TM2mMM<_qJkv zi(2O5TGZB8wqhtVz$PZ&3Ejy;y zHZLPHChIk+HBxP$>HKj_pmCO<$V@nh0~X4_+WPF9dS*>c`pw)=UHB1-so%y=mC=kz zFS-mEiKxW|b!jN&omUp|TCxpMa48J419?SAilpJLX7>+tcipOf@3}{AHRODgr%2kBP2Ygj z2tKAvboDbSxF2IBY?xO#;$U-Sc4eH|Vct?yMgfhs0!1Oc3w`Shph-@%mXt)He5ovV zbn8oU-p21iXd5lrsB?6$hA^XHrQrXZK@2{6Ewr=Dg$lGVLvcWTaoOQy9O0m_T-|fG zPfMP|gk?0+31$RoDrqt4+&bXz6Q$^+N7>7p^5bR+&WlL1nI;$NaB3@s#Z1t`_?%Vo zj-@-kYt{~1i)z@s36ir4y=;~wkiQvL{Z4*YA|fg;Ha8Svi3g}ADgArnyEq}X6bdO2>5kr%ZoAqWT(t@mvWPUarAccV(@<}@j>ahC$6oXN%ADjPHj^M>^;@jvXWgX zOLbVhlo>U&=eJ~<2KmbM@_H#9&!A&nd(dAK-k-?p0|RFxK@>9sarR)*vo?>x105#I6< zedtO}PJ|c{?eK|{mQ_=_K%<|JBp+79gYvy`I`;Ctfez7lId)6zLMQADY$MxEZ-0&9 zyFDqHo2;T(u~<>`16t7(fAHKFs;)=D^Y**`zdm0YF?It07X&o`gqsruE|=D5V0i#P z?=d{6$RfV0mlrSl8Nh;8)vy13HEmr9>9d@X+(6i`NPY1dC)I))h96uV&Z5Y2V(j%Pq9N@$5EBh?vVjHJb`tSI5Sj z+G-9zPoVEFr9SCbI|x-QSp96%M(5X#-i9^!LB#|qcu2e1XI@k zR&Uw{YbZ~iUNYHPL8FPLlCh{T3O+I0E6wr{fhl%xt98sK-)=6p!+l2{6F&XhBj5o+p}*m^cR|x-lvR87 zEv!{zd8Q1K$uK-^DRQopvQiys0v;3#eRFtH%@ms3gy$?-GQ2|dqc>|CakUGgxMGhy z+Pcpbo)>UA!ta-}OCmWoqh^hM+7dVs2FQ2V%!h8A&s8jicDp1On4(l=`J;ie3x~4a zRKs4K#0>9ASKtVPK~Yqb+j_AAC=RVY@D>%;hNGluKRnN^3nB*L4nSx*!V0Ls0RdM4 z3nX1BHWI+JaWHFpL)-t9la6mDOgvn){F+{u!iVUY!KcfYx_a&zZEE*0r4LhIQx^Yv z(#cX1PLmdlyWRW<+8aS5p%sIaV^>pEBA^zf0Qlo>-Xm>!Or~rZ9NQ>_F zc5##t`46&i*z|8-E2Ka4n-+9^-MG)M^VE0S6`MWCa51VK5E`77`(Bro&z`fr^GX)) zh{Inf_5-fALGR-kJ;Gy*(iePaWDlj0)k|)Rs8=mRy)K_UH)RvqU`4H1ijxwzl`Bh3iFy6J*yiz7U(Bgrv*7;1Kc5DXG#t*B?1`*?O?d; zvc&(8hHhOzyovq-<-dw13eQ7j#8MOxe;3Kc2o)wJ*p&p_-KKcH!{qk?L+>p%z1H7i zp!HE`wX$DI0+qD%$V}@yI_rpo2W|5J6!Fc)oTmMBHf`7Txwv0u2I%0?j4| z3JLO8opN%qJMH9q+gp`Ij@1slFR|-g*y_A1x!bp{;Z8USr5bH#-rVYNl%EIb#Fi@o ztw)+?A{3Ai-Y85f1|+`>V9H$aK*o@c=K{(5YW_|&zv$hqq`o&ztApLcp#k?eq_%Z%(TynO_(w2I$@7(CBfk|GVc29!(MxM8Wr$#|Z$_^*L{s zR}WT7YNsF3fc&-}3-!14G|02BgOTfTv(ihU0VxcpzyGQDr$GhXZMR`4wpv5OZ&r;)%+d5t6WN9G?PC118POTYj$Lc#B~#*%p!yT`rE%Agg!@HLxlwTGrS$YLdbJv0bM{s;+$9i;DxFfOvKl@b@lPV;FA37 z567@WyP3(PWAgOo4dui8Y2j`B_Bi)Sew|HN3aeOpY|>dN+6b3WQ3>`=Y7S4M7v-xd zKqkfQ9GH@s52DSL)dLk^5a4+ejz;FioXMV`O zXw!B)bB-m4Wa=L5A&~zRHhK%#9k|_kM05;AOu(CZ#h#7=9qizJCC+bp5hi zKp=4BUB2P}z}g+5x9o1eo8X@MXe@2-XCJ-FrBp16H$ zrab(v2c#f#0hLblC3`siB#UgUh#tOxu8HEP(kXt4gCfkSe^+632$O=z$#Wd!bSmskS7Flo5EF# zVk3H1d<2jc%devwR@d6>D46;KxkDp86$=zF&VIJ9RvYeqh?o z_B_p?>m;%85}AX!u_{H2-=B|#>(EsM9;UP0zrE!^IQ;NS97jKe{Ufa#E)*9$&&D*R z#Ab}&cu8qT!$IwW3GjmtVG!^;g|CD?+iNGS*FO6iveTxRsQl`3TEAnn$R$7d*1MiD zLj6`fQ~*9P0udw=(e?QQgo8(td#M1;hP1=n?WFCA#C2qg9YJD6qHzV;@phT_E4qc* zPQ=A_bAD6gBKT*W=yl_f$w3?|e&S{_wvy}&(b-g+|1SNdt-@`VaB3q$nmc8>Lw!n% z8(Qj*IZIGL0Hum`djM!aw0(xDu%H{j-ZS_jqnLjI^VgN1vIBXMuW{LWOBR-AW3OSN zdKGE&zr6s+_*9eO|9bQP;_2o&&BuC<`(=J??vyYn5zYuQkCf+^g>R6j>KIe_np_tv zM(-8uealFGie8^=d1PhLGpxvJ?x5b1o^GWx8xWc=M0)dTDH{kLjR ztnGknN{7|9B$iqLup97! z9scZ|>zlR7%C@$$#D+|5Y2t^QlDbTcXXTH2PRmcQ-DDOw$xQwF;oUNvKdC{;u6C)_ z&nHhI-5jF0$VP%)Z(gE#Sn>!()&RiO1&kS=ZFYa}Tg$F**jwSpR+4w_iyC$cgd}8p z1)JJs3+R|NmQ>D06~oVsvm0PxHfCW3$(A@-ggnYxaFynd*X(TLZSqBx*6oOVzSg+{ z+wiw%H;o68^MiT^&oFLvauh>EdG9q5BHt`s+q953TLSs1H4bmzOH6?X$^@B$s;cx` zYTuhGwKX4oi^}tz$%E1l5HfPd^DPa3RXSsbEL*(bR}^#}-}tq^V1$>6tc_miP>r6emVSsT)zLF{xZ>&At9yzn)QzmNhBt?t#$ug{C>E>bx@5MJkZkrCBBRdL@FJCdyh!dol^eAuq_Bl0-Qkk)CPcSTn@?eNdc?k3X&5(uXgFuJIig~98R1N?@t~JoWeuUU@y?;Nb(jBVQTDg? zV9??!g2P-zffx_>>T5KNcl0XkzG!dCZK1&nuX&iB8{Y9F8lv`W(norqfZfxV0hJ%l zoF>RFT37xHervYRB5WqUpIZ%xv#B1z8CT&fb+dvSmpqsCRrK=dC*L%(<(226(Ki-W zffl?V%2DKbSL?!i2IsTSEr1qOnDFYQ_)SwtOa6DB-E2%zjnwpeihj)CI&wp#=!*kc zukkZWU4m7*DE}9IqO(qapwYj%8p;`vJApI>dUNirMJX-GM-BCE)x}>MiQ}d zt&a-@mpbWvgoy4|MFg=n`7h&!Dv9nO6UYQZ|3iPUcJ^ad$ z%_JV5J(oOPez!udjLunp1~o~-=BAVZ24a~V&-0UO78A@B^0l8IwlQB4UJMEk?5st969_?)PmDY}a4WO3bHq@tr$zhH^FbnW=V?b|>t|v#&fR zU^Z1pB`!XpV9nsfP*rxd+4Ednyqop+_kkIbT`w*FO}Ta|F9DLjx-F)1SqueBO@4)X zuF4Ya4|xPVM1A(nmlw{i#H4}9yqx>vP;U^213IP&Xy5~pbbp`&C3B5=Aroh+=O~?) z3`KqN{pfD2OtW0_gRNZJAmdreVpuRQ)}6-w(asBX`{87o?yYy`gFCOJPYREyohQFA z|MAmsVb)^3{A~b>!UG@6eM?Y=H*}^}-fUEgM%04~++x*JOQC zG|It_VH~=M*UvGqSG{ABS6jdTu$s-y8757&K`dDLH?_XuumvvXn@(=-pNaltS2i)l z&@S=gS*?mNtA4dmUXcC0KFQ<{EyXDU8_IRi3X$9tM1JmjJp0A7F1%)!nd{f|=O_~Q zoYiDhV=)J1a=WRT19r~HLTV`VYGvR&G2LTQgPlMfCIHx=f%S~#YYJo}lL3}^(($O* z%?D&QZWej=Av@LaMd|koO<*Mhs{3zas_DPcIm&ayi_`z&V)vEArZMsNDzl1$4b~=Y z$qY<9FeiGdaJS2`FGh0}J)zxlmW1pWedE~)^aL?yc0A1>N=V?<3>?PO#_ZmV5S-*d zn<^-9rlf!^NIoj3g#5J0%~l#Sc=v?rNXGQ1bk=_$$D0c0CJfmPsk*B0ung}CJWrUF z_({l2+5as_9?6;4dknQt8=8B#>k2z!jLxvP_rpgr8_e6`1nY`zu(fD9XVpZo zP`8pNG}$7V40`RQCUDAxs!h++DCP%F`AGbf1OsDs#4x=1Y%we_YCQHG|NGk$MY)5W zxErDQJ8v*BonWq=rj$Bgmbu(q3KFW4kNrv1t>fO0NMpg(kr2_zFYWt{m!c|z;R1(Q zVd3ooM?{fe8yOX1Xpdq%e-$R!`fUvcmS>Zi4cJ|k3Z4h>_@_FLq6O?hig>T`{QNxc zOQ8R7UzlzBhWSRsAfrE?Wi~r%1No%%4|(J7*Yb@1Jc^o|9R&TrZkxK#U^6OR`)&r< zuktZgXC+(-T)zZ7JZL$qQxQ8H6r53viB9rz)> zQ_i4r(m`fl!?1|97#g{CNlCi6k5Y2|ro)kxzo4L~&_7c`AjlQzEtX{!mHn~wRE@A@ zwfs<6FYZa>={Wp`=kfha!jjm&n*bfBY@m3QA4UN%)A=%ZJ1ZHUe?24+^#9GxNzT;f zy0UR3@oBUBqg4({4Z1KjWjB?Vm|q;;T8w*46H;}=+}@^PvnLIFK*-RRQm6g zuY4>Vh`;`ZkiY}P?3*^m(AdH5y~q2=r^AtnB|2KjU^a(R8MNzjjZie+u|(HFoPE|g zHgP~X_!rZ?Nw4Ol?;GCw4bQckS4=~ew)8`SpF8nbedx3KpHr@nw`-+krTICHauhj3 z&51h3O`S7+pFg$4XOSNQ92gvC3jR&~J)8R(4@g{|Eu@iyDysUDURai7-5cbH=H64{ z3j{6zhhXu;;fBoeDb(i#w^Xle3V7rYIoE3UP0v2UxsDn{VhPni9O8;kRqJLIh>9 z{OA6|^=)+94Ne~!5Hc)S$J$@mo*p!&_#Vvf-+ikx!ZX2Mv-ZV1!xZ!9_`Qw0_!Ni+ z_%-AJfnfIRoz2~N`I5^s=E`fpNDCTr)7^27_y%^vM0AgH1ZNy&2eGZymRR$B#aX1` z?=EG(@)&>!oy3RF$#-k>Qgp7Zs^RKS+Xe=v3ck8uqMe1mJCb|kDoZNWV)HKN#!`7D z>8~_UuG7}ikaQx*vEt&kMfDfkdN=vD_LzV>o#n3$&OYvgX9Yaw@m&ePa*!k0_pc`s z`lqLM->!sLA->;&{<*EOWHb!^F4_JC9{$T%ptpQN*+F(gBxyGTipr^r5XYjzq=H=G zGzczx17WOT5DAdeQwNM*TT%}{mo&kKl{wavf|H1;5WiKuFtcL&Ll(=(yBPP|$XV!V zhJ##)X`j(Ew9J27eF#S5_6AP=aOcxm{$!-*IoV{pxmjk?|nQ9 z8nm@=Y-{KUiP2pY&-oCY+rH<9IylZjm86zD@y}&zzrDzAYE&qQlr1!^_HsYFmHrAy zy3N84iLPtj%JEAsFF;-tDmdVu8d;!L)p9-7gkOEuD0IRAPpN0w8Qvsv8mE_ExtjhH zVB)FaETs-8DXdEeGM=qX_YIYg6Zv%Im6ork<7uST z`yR*VEHi* zB2nbSpu|B3e81p{keH{uN$_5|bSMBktSbq6$#l4Hxz+qNL)w@2W)LzqL5^>F$G1zO z_Ah&=-|)C9CBrzYU&n6j4zw3x4c@~GvDMGiy$XS&kqN{A@JoSZ^H;W{lAu6QTCZT| zaarq^F?%Dzwi5x=v(Gy&75x7^tpotO8AkZu?B;h#{coL2CmVhqE@|^*o`T!Xo+Eo) z1?m?MgXr5l1@m1Hi@?r}M?{B>luI4_O)_G&noeQ0d8Ycr z*iMle&w_rSb2evT@sEeLl)7PCX*-GZKaSH|L%bx@Duu-2u>*FF@NU%ati2e2`ITDJu3m@Vnvt^B00Jd?F0En(m? z)%O7zqH`8U%`U7aml}u7O$C2^hfq3Co!dz&!jE`N^YQsDY;xG6a#*`5M>rzT+@0|i zJ6Nejl0O?@z;M3p@G(Od_W|~A)rv8h4k%A3GT}9v+LsfeA@vrcyWYL(ucho;u9^hy zF3+(kI4kYC_v7%4Ljz~W{)OIHi%2bpd?8e1b^&lHN)x{FaLZ?sWbL{oWRhMqw65Hv z@ELLm-`7gm#Giita%ExP4hqd0~99%Ke&*EEG?gO@+kckR^t z|-n69eceBYoOj5|IU+R7B*HXDO_HE8h9Tg@^^E`NeI)KY&$3g#k&* zl$6D(bP#)rwg=8Hu5>^f>JBcw`5gYi;%Lrr zoKX69{11JbTn-qih)F%V@Ow=gR>y|_5iDf*^Jypo5%#X9kv)Nx0d4z*r4xVLqpl>I_-R(88#&;pLDttKv5J? zIXGlwIa@&SiT1IA0?_W4xvNAz0))g+E~@@_QLsiIr>h5lv*>6()QGONi+vC`X&dhO zf)%rhilP88wqf0`0W&d=R=)<`t4(iN_^EJIWqMUzV19Wy;A0sBv`tLtl!>UgadXJ# zZ&v$_$g9zGk|2u~Hx`G8dN0-sZGo6;e<_WLnt*>$XNzll&qQKxvs zcJg(_jAMFb71TI`0jf+O zh-tEzAz(R10ms)7#iz;r&papikr9{}DQ=cG+TEmRBhyp6t08(0XA(}X@~Gt@8JX5M z13Pha`;l@67MUn8INn=`My-H%n zWGZMJDI9)g5mDVi3^GVmItt@g>gPf01Z+W#_aMeMnJyTj=z@4UKK z zZ{6GK5=>NIe1M~Xj}TSEM!N%cDs2*7X}XLBtL0h(+e?6gURWYCXeDT+i*j#qpoPj? zb?C*|nlQiaL8@{pi3N}3KTceOj)bbxH?@IKC?G|lui<*d;$TTPtr zLP+&$KYD$uO?$L0M`kDph}6riV#!krb+@WO%B;=$kH*K#2JDJB3C;tfD8NFg!}1)h z`T`UedmI11PwA>f0Ow=sK|OjH;n-4VhaBwvL|Q>`&0g_(MJ6@ho^V)(O4F17(OzLU ze%KJ;Ga1z$IyRo2%eSZq3>ns|pea_PSgba~*eKT?pB&G#Hg??>*LQ##hl#2|W0FDY ze1313Y8~6%nI>SW;=BjRz1guOa}}cnL2b_NTE|}jy7Cu{a6Ugt{%g8$B4oD*U%ryO zV*vNyCX%{D5t`51TJrRn*vwJBw;Kzdu4@zB&K%2UJq&+Ttm>=mG#{AP-=K>c7Ta6yLJE z(LNYiIATSr6msWvm*wUCw*$cHy^lw=s_V`6&ji4@Be+qmg^+Cbr#rs}luq!(*WL-_ z@Z5VH0%eougW6aiL;GjO- zB_gX1!%QtC4*W#wWFKWKh87ir}?!(K_8KD^~ z>~HNXQS7KxmWkNF6lYie4$71gXnY;h$?_&(9~mx1%KL&+^|p`D6%=mx_fwaFBl1h3sx)#l)|Hw)%}B9m#nD(luWA@JC^Z3n1P0I#!Rc7nXQY@GepymjcQRo~P~GK;zODV5aBwvXm}J zC!}E-D(Py3R$iZg!XR#l{ymsobjjVI*u@=aezWpQQmNiDy;CqC?5UoVJWZHGC=1$=z8H<&mH{An!$-2zXfYgt&Y?_Fexnt?wGaYH?BI9{)7i7E()kT zj%^O3mN0NO^H@7EF(H1PhEIjKpK&`>gSyb$xCEWuJ+R=$#om?z|5uWr02b203G{b! z-M&V{P6A=WnA7=vOuMkAYC!vOxX*3yZA#z`)e7ORE()BgdL1*t+v5-7{MgPAE?WC$ zV%jhAu^3)tc7?q)jpS{bko}2$7dpS8+DG6BxT%34u>bGav7FeM3^Y7>&ixq& zJ!Hw{bN6H2GJ0C;_F}C@>h0-R^U=^VMH2_+8DN7$#e-*Ac?Gbcn*i=bAMA4*+Zngy zq(e=`)-0--$#D%4{C4%Ey!|*}m6$TyM9e^pygwJp?tKNdQ&?Qrgav&J?UnV(SclwaXc{p{8J~Q1G^cn3260j>Me<&L61X35>w)xSZrr z+!Q-v8NQ*|k=u;06zHM>03zpy+Fja>fEa)Rn%I^#`Z>5M9_1?Kz8-XG&4(|;ll!Uh zYTjy~H*5bZ_5U@q!Rt;TE4Wq$v6G{Q%s6u^o?RO@?_}A1W$m;Se zo|wJFX>a~RaOl_`)Mm$wJk`#@yu9I(2SQOmgEE8TF=^(iyPISO+-#;v7Twpo!S3k` z9fba%)9-USCu4A@ujC`=FhzqgzWCBJcpeLW-9DNwjKaWj zUp*A23k4)WbY_O%{cj09CW(RxWkJKup%GhT+>^+*-SgB`e>5y?se6+PEvU!0JzTB5 zUM3^F#sD$+{Jimt4wDqJ?~CxV9UdB2Ym4x&;B6IG;-s8oV|?c?CgV)Zayzj~?`iYU zAZT&UzCQp8HB?0o<@@3E;QT-|Dd=I-SBzzPF^n5i&Tnerm)_v29eG)d1UQx!Dd;6# z6+bepvPJUgaA}8$6(9C{+@lW-(q;^`i|JrVIsUe}!tK6C*j~Er#gz$Im7czCvJzgoGb7 zhT-li|15;&mfU#}r4elu0drQ(a$@IKsCoOMb(}ZN<7eW4>f!8{UHrPmw0(XNsiHG` zr@g1jNB?fraxEnJ=0NmbeL7t`8wXQR+RLTD-?yD+XCi=d4>Irt1ej=?Z@xvroIKoI zsDC>NMY#4#1Eh=axayhu3*GClZ#m-DEg<0E`0o380+xiao4^f7-a?aYWp+Sz**K)< zcqoP%0R%<$Mr?`9)0Ri{Bd!vg0X$h42l^~Ag2l^2pz3p92RAH-kq(jPXuRpV$t_RV zU5a>{*8C`ouVx`E7nVTlSObPXed%Cwo9NC54BW=(hD;dBQ|eDNIbFae7l$=qN1}Zy z;f@y!vOt$7aN~cOm0Z)YMA}WvIvw>D_f|H!u`b$eIJJ447qgUyRVpe?A@W?jlfINY zgr59wFF@Zj7E)!yh6V~@M_tLiMM*oq-wA!i*LB&0=F%GMznLFJO)-HuI^f?~hK`Z8 z#x)f;-R&Vjv8RPvaZ2VVjzO4A&T`KNRs;*9xib>8o;A16*+7lnJrY~&uDy!j18nLC zd@ScD=uXMCm*;WT+w&NeBVbMM?B>-8OUlos{hU7Z)kiix@;nC<#Y=qn@|_Q z+5l%j{u{}U6{rPxp2wKtNF=yOo_>n4HFGIfhL3>)0&lMk;KgwVLW!ZeTTsYEcl#SR zRg-d(OtEr??}DL~0Be9uGTj`)A9c7w;wE4P#EvE9u@Y_o;CVy4T>;ROa+;YvG}!vh zXyF?2jYja7Ml&uQWhz7@VK+hkYVDGiD7&f$UESR!Rw)74Y`OWk1=w*D4?)MtQ2&Xp z_*{iTw^jL7BP_nB1QdW;a5k{T2%xL+`Eg9ygYu*B>ui@F>o&8xoyiy*`d!+XV$EW) zgS%?)ip)yO>PVNVL+wUnngsayyosB6pK)~N7o772Y*aB%ZXHV&2p1A-taH|^8PLFm0suRJy>>)J=?Y4uJG0D>}zg5PmAmDEmd`&Zb7kz z;jikxR2;7}-dS^N=2;B30i>zOD_yXP0;;GYDtts3h?XP_CO`N46sm&fpUWKXrX$dj zK%7o0m)UrS$tuk__h+{=Cuy;mi$g--J$sD*athlOj?EdoJ=8=5HeiVuY6Tj)Jfj`T zI6ZxX$rQ#>*TM3!~P#;Uo=r%0u;TW&ST zPn@$LZ7x`<$DAVKrRIjAF{{hL+}_UpOjYt78tDh;cu#NDWBGVhtB-V(tv9-9W;U#S zRc}ngs6Lw!nl5D$B6?O66%sL57XekV49h7E^3}`G6|F>$B|&qYr{KZF3<%@ z7c7y7LYbb6?ygDAc6XwPd&B}ssSqp$nQN25a6I~)Y9b{AS2sAZo||!IhUUV91_eYx z@ftvHDp@UrRrg=l2-IAY=MGn3wVz4|$zbF>3CCt$I)C}g*iYp0Euzh+?O#D(VRaN0 zVey>V47`T^Tp}NB6WkYC5(SX5AlI^q5cU7p2mQ48Uec8NZkFr;9+t?i{=@_tf@K!$ z;Q>)v3(Ts>_$;5*6sK=swP0akuiKI8akGzf3LU$$Wbb;$xG{KghWPo(0>#yP7H;q6 zRM6Hm1hVkp3;9HaxJM=@xO0_5BAdNM;z!=9Sra~_4;rMDMW-)gkG2skOTsD$ zw*PL6@|-W#-M{Z$b~ji%XcGP0&;IFbehK9SF2jYAgQ&3NN-b(XMGo2{I`-xKmKOXT zDgZIv%`Jw_en&?}+HADk$#PK^Erc2oc`!Q2><-=gGQ{H0p zdsa`kz|I0*DJiMMYfQC~CL`s74FdDP>riY7#CG-tXA)O0>!3MaHwC2Z2L<0X*YH22 z)5$r%kf$q@om9-fQ}L3eFwoZoA;S3TmiX@_Y`~~MgEH4kkuZ`fqw_a~mcv_N;fV?9 zYlx{-xh`r)C5~I0pkJ8zsHw~FfA=PN7@g`)S`%B$j|L5rRwCH9*(RZ&^tIbf^&+@X z7%L?CuOmBv$=@DY*sg!)Bb66=HBX%Bdku!^_xh!dBg5}mG*+`7VGXV?UiZ^aiXxIq zN0yK7%GRgLVZr%CMex^D%<@fnlCt`LmsD)QmhtO<j$f@({sC%lAjBQgGI0 zvH?o;3RB<<2ZbhDvC3w%=!DC5vStOv8UK*W9)Fp=0{IXOkT!6?Ga09Vur8DYm( zL{hq7lWn7CA6a}wPBCwDp5%(}w709OXf7pew$rOEMm)FcmhU@MrWwT{uRX}2iNbw8 zuPrg3O5UIRHlAe%r~U?Z+1yJVJ!8sbL?fw<`52o!!lfm)!BW3Q|DpT`1!}`T%@Fi? z7t8n5@!>zmM6OaloNVZ{hfspAkv?U}|{7Cb6ZF2O)sn;;2C zB?_^x!O%^7WQY9f^13)&tiKRCPb7zDjcC1j;GLf_Tr49oiFj_vTSG*A{}hwKM9(My znSPh5GYM|~82K$3=wpu|DJrNqUWiu&O!25VY-c!2(l3)g{Z9Ae6*t^0K>_T~^b6md zzPeUYrtjG}f)j~=M~V8Gj-CZdDMCBuDyU@-ONJSrT-EmeWWt(r`Ln2sl6xBaounrC z;vxdl$<%CEL{Ix9qYDOyQ2LcV3_ZeB4x;{4hxv!my;Y-M7Psu6#nrj^x&3F!hx%+C zjTgd6u|M3@jGQo{_a4+kV*@T)(pVj%CfAOWmVYCu7x&;)zPkA@5nG*qI<-i99QG9w z`xH>!A;a`#&a+8{D@bT5LvPaX0qcv@hUgbi`v7P4TAim_Bf0vf8wL_oFs1v0Eawnb zQp3G$@cS6#FtS`2;20K1UF}(lCMBaH1iAz>e0(_NdvZ7m49{qKMW8_h&?~$DAP$Ib zWvXpAzEC0>*Y*A9K05qKfblqyC5}(ffakA*$@$jx(c3Af_;O3|y2-3<$Gt8;SESS) zNkcHqe#^#5xC;lD&=dItFMJ%kyyO0c6%0{+!hWYZ z%nXfNo;;exvtXVy^!)uq!H+L(etQ-jfMqD!-mb2D~E-C~;Wd9F(m)~nrb7d42##qv)lw;0jER5ayHqu|~nLWKP4p-P% zsKLhAy4&LV-7U4&O!wDzO!vf_Y*vI&!4&RNQZK@RzbUO1J+$3bjs(u3?7j!V~{6BN7Etltw4G6|*GnVh03GEU=A-7SiFH+bid zhIgsN1~z@&?Y>D^Yta4m?fp}!XSjf=8lM)22m}n~uS~&#NIHRyNflPW@`}EEzd~-& z(RfxZmrM`^e?NBHiW_|OCD-j6RR5``tr7&iioMZf4ArWxtq}&T-d5eJtd%+cR8qy~ zaUXXZGuy~(FK2`7_$5&}M<57m2g~(>!>l<(bSLIwP={01pHLOLkB@DncJSu6eQ5 zB7ll{_YSDk;FqDlJ^|9V@}Bu5Xy*@sE6M zjEZ_fTb8H4zu$yY-b>IB5da(r0wQ2kIJ(jGEy&5;q8{DEbWO$j<>)*p4r@4E{U(ua zE=@PKf%Kx`h+a?Z(i*;l@re}9Gb;`e_bX;Y<_$TPCqGiqG?QIVZ_xlxPXGnHKCAQR zcw%aGa9mrD_OiS4heyWKZUDHT?Vx;er#{QsQPlxDefVa)At~ik?jcMjC-&$~!oZ5` zk@Hw_8ChYfJS}~S7o4XLES~ud7i`xVJ?HS2-cBBnyEJnVx z7$vvLx{yEbv(0}1=_cw=x$jim6u2Sn+_13O>w!0$+!cK@^8$Xy4{eC9^|n2HUW=@P z_pwqLloNMt3{P1%@LFTzzQJ?@A198d3I8Z6N_b#Iqi3-97;mG9c+!P(m|u*DWFm1# z*qnA6WhxSfKO{_sv_n#kl$t(rZF-1hqP+K2@PQHGlQDaQJ)x1`tSzfFSXGMtlv@Rk zjp>(d$fZX9PqF;nfnt#nr7X5cH9Js?Bkc^MqHu0@l%)C$I-V+=X8l@jY`iF~xTjU_ zw0YF3=H2mM;x)lzCoV@L{p|U|+%V8!`9M4Q^Im}qbcXeY5VYEguGRj(d4l18=83H$ zQ&gDNoKGsh$SKX{tj*f4zXo)&-lr=<|xp zbwIL(mNe~WnE&TpxFdY9uGZ0)9Ndb<Yu5lts}dPtWmDI&g3j#fT;x%Lu%<01>#j zlJn0jf(OQB59&Hhn0Rgr3}7H>oj6z)l7RH-Do1s4f0BJW&R3=TuUdv^hCbjfzDa6#pvK*QwxJKY+5&*As9;Q;bB)HVbXnX6gdz6UEsJW!>k|H;^1iSw{Av$MZ)-R_!-Ni-!l^UX_hZD379g@N?>V{ zHUK4ugJ5aIi_`s(>uWPK3^!9e*v#0JHMGOjJ(vW2Fr4g2ny~_kElAK6KFT^Im-AKj zq5ebw-4;yGKYSwPLh*@ChcaQC38V`uHiTYO~9^)Dgzx+&t?MTb(!)+T*sZT%*)JvVvgX^N5-D{ z3E@j^b5RBB^8Tt~EHz~=>)9we)<{ppS|tytgo)4as9aDTeFFL8TXTUre}hpxjCNjZ zyxf?3J@Wcpoy`fs;Bk1a_co=qR~{1+Dwy2;RI~{0L*iaIPe5`$BN5;4MR9+0o|#*ucsViz)7`ty)y^>jOm>-w#eT)F&+wD4h zfBQd}Kl}?kjZ*P{j&toWh=7`{*fnA<8bkZvQGf9&I(AM*|FjgWHX(VTQ6H9Hj0dFG zCQ20F%J^05N9}5SOxCxBug#{si&e$C2Ki$uu;H+^6clPdnyC^2>=aq9c^Y;jq)T~{yK zvfK9G!L|pp6MqX3E#9({wNSq1fY|29c>NdwW7Jr;IWgU@xQ=<1U&1^U9rn&*_tWkM zlXaoSMFGbGxe?isoUbAu$jHaQT@ur&B2+p_3u_@Z@E(%^%#SFb$PnsSR8>=AOWaK# zNNnI^LA;;YGx8vQuU|AHquuN#M?F2%lgqclzlr+iCTVu<+iZ!&WwRP8REg2;yl39B z?0=v_JgPhX|AGo}!q+3U0r^Qm{O}>8^*$N^xl=~)WyF%&dF-sKeqTCwpE^Q8;sw&O z6=U%bsJ~eR1!o~GRu_x*iFwW*ocTN5$wOpY^als^f!zKj{f|%*>;N$XWX$;WYCeo% zEX9<(8#s6ZVjOV+)VI-fXBE`%)A=%i?}_bdn7kve6dYfKlwbgGpH+9c-;jyp^-^OC zUT!q3`LId?W0OhK=o!t8ewiXKM>OkleLgfe30aYuUlrP@a|ieuU>m(!j;WQ^=#BKu z0=-=%nF8>-M&LViEf&j-Guw|s2&v`_+s+%&c9JJQ@}3V)>e+86^KMQV(alLB&UIYg zQSRa)_kVlz82amh{*`u9liHV^0Je2ROu{coskcC(W4Ch6bKnM3>DTrSCe0f7E^Lhk zbVvzh-Tw6X8Nz*%;x>S)zz$vwSwCNH5tKNck9|d@=yzGuI#qpGM5!ef*Jw+LrNnxUtTh#~amD)t8`5@yx z47i;*|Mk63Zg+Y4pK{~C<8r+G4RK;G$7Mg8&K(@U7$D%dAM!<%)EsxX7&CaIM+WdD zT?r{0H)RKtH{2mmzqD$fO~|6AkNSnO+X_f& zY&cfLIjh?Hmk(m5#sZMFnNjb2%iy)NzL^F@a0&3y#`u4KKTN#?V_o6ah1;mH-PpEm z+iYyxZfx648Z=HCqcIybP8yp#c5+wF`OdxfAMCZ)i#f)4=3KJ%{nbOI0z-}-jm$E& zLLsIQW1SsMS~S`wEV$$LKU};^5LiF$F;R-8m|7C1ejKEz9|vjr+uk4+>g)C1|GWQa zO~f3UQDKYf?%9T-A^r}+k%5DmhYu!9^WHQ05qgo75qFrF!Z}fp@gX84b2Cz2WVsL7 zi%h(*fG}`uV;ZuCF}7VE!rgsc`?jpv4_wwgrv)(MKigZ;J=M1QBNO>8yj8IKIod_% z&y;qt)BglwqXt4ZB19OqtbX>|5YR)-^a&^}FNge(!;(I}xbbyz*axX&Rxxm!iE2r= zXe0dp_Ix>Q?+(9X!-tXaOV|Zk)+<7^Eqrhzd|pF<-Z_(811ZZ?0O1MSV{7R9IOd(Z zL>})b*>f$9X{?9R%gL2qm~#r)8EK=lwhc$pIN6?o$%ZrZ(z=Ney81bikcK!UM)D>u z;L7NU?~eAvO9hb;f0)pzCMjwlxW!^7(P3M@A9^pu8q_-b?1(@j;q-CqMHr;KSjb%@ zQZTil)iz}XZxHMggNhupqz(mX6eO)ZhWEdXj{_?P6IHwWh<{ZN%N|tam0}2Nd{i)5 zil9T;UZe(N7x+D` ztuQiT#9#x{+$G(Qs!%g-V+Ur=7qU_mB<_=smdxk#PnS$!zi4*nft3k;J;}1@ybVfi z;GxN@e(K?pZkSZI(60(j&%6G=RE-KU=Z_)!- z{3zpJhR%QDoCvLV?)vH;n zl;HcNyT1*{{nx43TJ^!&jHCu>Z4qn{(Uo3g7Fs{@|Ui4+Q= z^6%>6z0qfSZ_vBu(y9=XfSCjL(f{QcSo_oy&y}abvxXF=)%||*(?>CCEl650!=m+O zWyb*##+6^4_(8(vIkld*3Iw7{2^)ZHIQh5s7;1|YTv$g=(wlP2+OyBQ&EN`o{0aOv zYLn!#|DuTNhVj(QMaCN{`tVUTVzlmVUP{|9vCkKKyb*!T)nL=Ie~X?!XG>=uE}^7L zK6su&0AXVl^Lg^L@7uweSSh&lrymSLqj%U2Jak9|0SZCF##?wwCL6yShKxdZUvhvt zf?A@m0WzT{tSE7f1$P?CTPI5vf+7hUFt3>JXNE|homFqCgjQoi0rLuSKwlz2<=>+~ zN?J-VhleYR>UTUhB`xv;m#aqShj4-LpYDS;IXe1;G%f9(CmCNx;$N13tq}xNM#50z z_lkkT>GaMXe8E=6aQ*{g0m3%-yv@tNhhy>-}$~a1?aN6Gq;i=TxD=^yX<@ z7?{{3{ERs0O;5%R>%!ay9Huhw)Ts5FJExXmGsglfqGu;?qcLgzZyYQEi+@$@9IfXU zi&g)0F7Kv&$ow+3$he4n{w#zPfD7U z9ZM(|xL11_#2cR+r_>C&+uQgF0zy%$um+ufm&OmcEP+Z9bL5+L>Hw<13Y!bw|5yOZ zsT~D}acBOAPa|Y)HJI;KhOx>g@kPEJecK`N$_}U_Ob7jnCg1u=<)`1Up#2yU({fZ6 ziObU;tJYkC&zRsBwHT$6lG=pq2pqJ=aVmc%g@lkU@j;199e$COt)wioG}|?f7?XI= zkEyOPjG+EADODvd6Yi=MC%QFriQLrQ92Oqmbxoh>G~Ky_$f@-9423j zMuz$HpNupp6n~`_WMsbI{d*7w`BdPVi!ui(l{zAJ?H&=Z*EO{_!&mSTfdf^OKuupLAvzJgfUyRUzru|p%Z`6GtHtFzEI!nWL%X_ zCwO|xI$s8A*AEd0#n$!aO+$JUdQ-Vu{VnLZq3(Y0AvzDG(3H_Z!^{h>>6)lhyH$-t zXR6H3m}&S<(#a_Ky;WQAbOSbVemd%#Ew`SQ;fs+TV)Z2@5QN|bw@ZQ&J)QqQS^IJ5 zF|pAHgf6rNI^Xts?_!uO9%0)DE=Pu0;DhB9$yM4ws%9SLV;KCgg{e>Fe zsV;65QA4z9I7FYw)I>i@e{&=-4cR}mqG4BuRlB>7WirF6<#uQiIRb4iwmZT`uR5_7 zBP}_O#5-Xmo^M&HOT|=+qUV_})ln3f<%X&znf|d2(a4F*8D_7?T4Ib~Wn(h~|#VTf* zd%alollVBK7`hR%K%$4VBVEcPgrG<7Gu|zUuXz{AeF4dDCFVqrh-NZKS=>9H!ebjG ziotP5lHbh6PQN`=H4-MPRZ>PA>|pFd^tJ{!6B=@&7~Y7p>X#bXg57&{PXZ*`Zz z!%2Z4H~i6$$s3V$pJaVdUwEYoX<_D|fZV(U$M~}4qv)qVN+E|MFTu~U=lDldsV$9e1wX5-8Z0|C!|2yA_0fcY~FlsW1d{%lI(tZ5{@)cgM}CoIDF~ z%LYL^i6;A{qcpX>HEiR2MyMBdihSY8wYu){Wr79c+Cgz*d%NW#=y`mA9x8gF0xhuJ z;d{f6k`|5dwn#wx<7EF6_VC!NHYFuhn|`D7e`(wSXJxa!yEu{*#uv2z9;R`k7?R5G zUZLy&iRK5b;9Mj3ciVLfW)242J$Q4J#tUlW5Pte{CH@FYNIFd~ok!tYbpgq_0CEMF z?6>4(6FYaEKQQ?k3v6L7F~Z?(*q+b}8F$8^He4_6MzHt7=~o#R4MLe`OkKm=G8MP` zSfhwHM{m`rpOIU9T*czaqKi?{vVZTQsp#zearT4C3Ny?6t#=8NAT8<=eUk{-$08ZZ zezT(J?cv=nvE_D{q+aLYR9h+gv`g)c7OtF0Bx4d6QdZNV5P^0Tx%cYJDm^)k*IGo4 z?tuRN?)jJGB8;qX0A@rEL>?aT-yraMNy#~R0vijP_%KRHzShbl_#Y0C?fI?FFkh|5 zpg@%8D5l}CG|N04&lHfpuu0=7dGym8qvI={=Gw7vk% z1>yAF#F>=4osOb(Y3W2Ea5(ShHKYIoYo6WxGs{*_A>0aU9#*o)OdY7rSIIBjUfkj} zj~TV%ycu_fM@BDmW8Um(j#3Leqx{H3rQgM{1!8d=sam+|`%w9@4dAKY?=i8J&AQwI z3djnpAd!=>Gspz~SBhcE2Jo@tA#us0rePS=8gNsPuW#0UO1XXNomRtqFS6r~frhz}O;A8ck z#<=27^E6|+*mGEuz|?+HbfZU95Lg{C#e2eBw3QP;nb~m&lbaB}H5j8`|2HOPs*me+ zg4w0mzciFe#MBWc|JnteAK7$v%ZnPPT>KaT&oTxn?-m6; zhf(bTEmj4$yQSRF{KV!;)zch@k%&yHP!m;IGbEy~JP(E^^p69b@YcMzK(s^x4gIRn zuvVYI04_#NwP5;0E&@F(?$p(Vw!w78ClSRrI?BaZ_4hCP*z8GZ;{u6vK{rn!uu+5{fZ$lNmq zRn?p}nny-%ytmL;^KfCfd@Q}&B)d9EZt}eJWVi96%C^LRom#4pk%XA(|6~hKw~cYN zSYlF2{Pn$}D1gXhTCoZjk z5KSof-d=Scx{ESf(DW{wbEM>h%-)}zHoWEi7Oc$^y8pOqO_|*^KM;DP$a;&t?L-n1 zal?^D;2){8A-r~*OwA}QmEJx6Pu%i@aiVx3mpBUdRZGa)SB9-GIpuHV#NGtW_-cV z@j;?wh4hffVF>VnSO__`&vg^dmEu`pBY8UMLLvt*Ncu6|p=+W?1_*GkE|u0!mq$u0 z5(j(;tE*7!TbNx$vj(L`zy8_D|KmbA5L1%*$5m-9ExS6=MprLyk;FB;x{AV|Y8&3^ zUZWq^JNoy2rZfXAMQ7c%Fr+Oeq0Y}ATt|Yq=iy1fA{ryle{tG12=)v6qG$)xEoc}^ z$t-FVS$c>N?@jRAk281Y`C1omH(D`}^1qT@JG=GsFbDtGEK(_nSJp!|_d61|GyB-M z9Dz%AMVE7`F@^H#gBZ!`U(OHOnWD8Mu4R07c{li9FYiM{k#ms&ngbqYMC?OG0*K0g zWaOO+Lo7z5jQ^(tVZ187&QIcNkzZ0H36)q0f&>Tyf1l*@v3f0eY;}-&o7HT=d}ss9 z3w$XRXPtiVvHQ+mW0IkhyYNA%uY{-)k!v{+(LSWp1tU2-)s>J+78Zin>m)n_qmM`{ z0Y!25UrsF=U`CO4b?6d>4)usrlwrIS1Pp=S9~#ckG~J$p)O_9bqsk zZdHRc8>Ze2R34*KOeQ{g`4AI2t%0npGYj{F+j|ZVl@TNs4BUO9XL4U4;%?U-t^C&H z3G|wMWhyoI+kr!x6Y!|O-0^-qz)p-2k1BD4{|X8sMdz2GkbsGT4-HE|0*ua#|G>1@CjbT5*tWb%86gUz_HvJ!f4r7u`bNw>_dd(&{f|AW{+_?4(N z+&`a|^`e*0{goN-{c{|T1Rc%PJ^Mc&C& zF168=gpHL>d@KStq~zWwrJ!*cs4!P|Udt94GgZa>45$jL>o7r12f>(Fgv)$EOhO-j z5rdG3RC2b1jzVW!hW)mb#6+lQB_&aKoy`@Vb;*?GmBaV%6nz&mcl+L7GNO>a-mQ&SE zbU!;0d&TV0SwtIP&MyBw;jos%jWPys5yqqew2PdG2aLm4EiSxxNr&x@cdbHNlHn0{;~7b6GE$Z!S@ z&}&9}Sh5a2aAfDlrQ}%{h{*51;Zgn9hH=2l|LROf>!s z4v+4}dTb2L%>`2-9N(YD`G2T^!a}s89tf<0SCt&pi5b_IgD^YElBFz;kd3cK@~F7R zQMk=Ut~VbA(vh9Qdy!!h;8j7(bCV#KYq&5MX`@KL$Hu8u9@=SN5VEY}5`DgaMVQOwArK#TEBv^;DtDh>Y z8{7qeQuk1I-2^^zxBjtxAYYpzCl=w1#x{6^U+xi z2dg<*2(Vyh`5<&HrR5rxE87OUVzZ_HScw4r%npdYA+=U0o~;Yh9+M_xrYM(j?w#(3 z`vIF=IDy#I44GLfovDi{t z{eLDV29>_sUwV7`lar5SASbP4WNeZ!6`BA1cPRsJf5#Ayxz%p>h={pLL}GUiWd$FKwd@J^HfJ?P=UjS{4QeN8M#)A+6? zGo=`2`QUuY`wI+R;R%R&C2?{l~zl^u`&|%OB zyWWLAPT4AaN4&$QBSSCLgim{(-#6M*FBI~xI3W`X{TFw(CQ!b`N=jQ4`s-Ty5|JeO>VwPr3VU{)MstP6{~TMp^PX*EvWX&BFWD+C+eX+E zgN%0}ad9Cp5?;3rH_E*7v^ZV<3n?DIgRVw4%NAIVc8iy$F_vqjEvyiGRR2X*Ai)J* z`~O+Gc9?{DI_=5mA|P!v^aCU!zy_Ch)E%}cHVs2LCUbi0r~CWi_gszK>eqE@so8C+!_Iseqkfeqd7ehAI|9L>ox+jc z;^e!LL|;e(VAH|}uTXkXL)vJ+*lT~C??;P}K{LlnHnh+~{Pq_1we|9lb;H)YOFQXV zCTogC>;hVT{*ln^fsDGOFhMc$_k_QYaoRt55Bk>OoW1^8@@rxMBECNlIAXYj#PztPl>E1P6xy zsLvFCzVQU5WNdjOHvjDRjoO=jO@aC_&>F^J;JZH#q!fzNo@e!%1hWTg!n4 z5wpXK3|N&;OcBV^TPTT=piWtt5Ruw=(GaSEHj8370r~iW-cNE>&Tl%E_@bX1D=pvp z!eA0upDX%;D+?ij(ja&gM}D3#bYQ~L9OHFrw!kR8mwAGdFxuDo>OumJcm4~3W==r* zY0J3^@}mo{26XTB{etU5dBv9$2~NjrlXa#m`Pm)2U0V|?Z0W#l|2@>}7n=9eI|1xV z5mWac8`ObHD{cIM#Ns&XE&;hzE?tltbQcOr6MkWzgCpWv1plL=PcnP#;DweQ_+wCX zC*_5-`ol0JQIvj^BvAr_J158zGG#oV-h+ns*+y=p%O+klQb8+wVQIs{^S+QUI^{@A zgJilQ6OO|0#Qz$z$EkM7d>NOa=A{p#xun={^UULQC)#ahdv&jSZ~Ml60<&sLog2o# zXAesV*V61#&G)5c)~HCa>HaZ9-+qtAkv~vcrvV*{GuXs*RB}zpB44l(tCg68Lofe_ z4uLmJKF7x=apf2i4^Szj($%GxGFhge-ffHHi6pffQK+|%EzI}6PZ6`Zy)Q(z(Z>Az zZnsEXLO;sT%ot7Z-Ei4yZ>Ks3X6|$EH7gVR|1SVY)B8}J@mv!q!1$3S?SFoF9Bg#S z_nO*M173f+M=(aAgcs^1^D8q=risqEzK(^;R%9hn2ma(~a}@o))=9?4F6)lUACp03 z8V%c!TZ&?Ng+Z#t_&mTG1~*EN0e-d=6&)x=&Ll2b8YEgHpY1JNwJo6^c!N*FBWPXI zXL1trQ%sUkPAl&>blm;+^OmM6rf99fp6P5X!~;mpJvO`5uy|(l`aox5*7G-tochA7 z)*6oO_R5s)Br{KFM07Q*n|F>oBA7K~!hz69*zV+8lu%JgtIMMTg|P(5A;f<&>aegM zOtoyN0%g;8`&vyXSL~lKuJSV~$%L;)B!>-|Wjci51DPuETUra_E`7Q--R48a$ykZ8 zUKUE-Xs=RRD7+#ca5xvzy;~Bg;!iH?;8f(v<96Z>rWAh&wH>}HSLHfW-SE8K9~rzf zY-g7I7%<3)*qq^N55LE&te<`{gQTmrTlOHl;985R^*JO{45oK#%X%eD1k-u^7+vG#dL1 zJkbkzP0n5}I# zt%_bYDL%$f6@}MRtbYRfYP}?6dCw&dG}p!@d?PEg`gk@fMggq<%TRFar_}(qW&J_V zPN)s5tY1Irj#g)8Q+4Gs({Or7IgQaPSvC72p1;gNurpky9is5O8<%_vM2ZKdD%rI$ z8Z^ov_~y(?1Q0+GE+_u~77yLu@&rJ)DNN+>G-h|W&s}#f%V8F0^Qb;8c9DX;kPVI3 z^+rc5?C#R~^r2A$HVXz2Bt_e> z?3FFvtKNPqn$YWlS9^{atHy{1xmQ2=^vLw)Fc-(mKbKAA?8B(TfyqEBnRrpV@wT9# z@h8;w{M$eu#jxy)Hy$4SMXV#HZb|AR&pJjV71%qo`Yh4_&omzs^bd%-7ms6}FOB=^ z?mP=V8+Upbp1OQR9_ty2afAHetnYBh_#Uq?fERd89e#C@2tDDz?pPZ>Qa;DJt~D#! zVSgXCm@m{Z(_m_SPN-s{1foAul9u{g)kQg;LEp-Fq6a+WP?u1A(~vLXU9psqY19x| zNB}+(BpXkO2)ui1Yc$m~bx8F14D*La=OeiYl@R@^$sJ<()~*Vl%CX86MZnxM0+3dn zA|EXa0JY2wy<+rVY*`%zRUqGr^#fb(1LWVxNodBgNDyan>l{v1Q$CpKR2RT1gqVWG z15yC@;5=7Y1T_I&53|IwihmF?wMX55*XIQ|799(4ZVt7w-C8g1_hFE{DYbfzm|R$F zyW!#4M8_hmU6II+MWP2RkvqbR%!mD_XYZl*_L9m*078~r??ll@{*YKHADgL!>W-}* zG)(npK5M?V&7GKBX{amG1oHn^<`EO`(~eZ8XBT{3s2g?0cGSMzXg2dUnr76GJ^wilY9O?w25Ca>E}+Uf~60|WNAa9!4{;3^Z# zms5HceY&{6uXFxbPx1=S(fX0VlSD^HI}fqJU2v%zkL3xqNF!@WhNgDU+%86AA};Z+ zq46Q9f7Eg@%UkK@wlT0~{4Mb8Fn6cy^$t9TlrY+d8AP0YpxVXWj}nm;3b z%G*p>u~sL=xEYx1oHIjj@3Y~>Hf$Nh8a7!$d<<6ty*w@B?>nUBt*^o52V3~p zEx-Lf===no*9(a@U7(haKs){QE?Z!KC8wF6$oC!}AI!Akuk*B~B@pYhH7gbsjg~E~ z>x1-!#5x>AGAmXQrKk(+qBj5RW`;N-IUZN)&g>?aLnrDlO@+#CmD+C|9pYQxM28i# z{1bI1R5P)hH92OVRGNH=JXtJk$Ht|auM}p6CWre`y%qs3s8{UqE2E^B5dfi!I3JIr z^AsQS@J$T{e*zeESEUZm+etAKi28tca68@`x;H2N(3BQ^VHZTEG_gW+BKYQE{Chv* z>)vBxuc}jr2LH~v*4@Mj!3uB+u=P@(C>r&3$MWb&0YqmZ)dm$f0WlKuj(ZN1F&u9M zH8WIx_Roj}hMac^ITd19&f-}0&v~NSukW@E*k&W770TQ#Tc&3q9qh0CN?tS-z{l^1 z`2U1eqXPN(FV4^FEK){{qq%{CLJYp6ays& zOIp7XXxJ?W7}&IGh!os(o!9>DJMg(-GdJj(y+NRp@|0G`Nl zQi2uPD!IsF(iN4T@-nA5-*3r_OVF-rtZx?8V_UX@s~-EyuLTS5uz~ra5A6Yi^#Lo% znC>s~06_oZ2f=s!(cAccyrtEwVX=!@stEG`ny9$XNQU1D$b`KU8m<>V?mY#^%HcuOQHVBo*naFWyecuz!?U z)FD2#_)1yzFY<5~^lG``2AF)roXNs1+dj#!2eby=sfr+cp~s;Wi@DHORnvJk*78zL z1O>-PL_V#6s%Rg@C}f&lB7Z-K9ZdJk{~leN_OSU>)(K7z=>z~C3Yn}hMyCvUK>ioN z^9cbwzjaueq5Jh6M09<=ADvp+6B_?bwm*oFpOB;xHJR^F%=;Y3aFTTl^`Wk6D8vw- z4splc1Qhd`!+$JhxrB`55xy#H5mEEy;-j+iX>`s28jgQzoU#`9*HZ&6_p(#$)^-)- zKXcB)ZMiLRq>fsaXlL=C6b>AVf7V%919UrYoogpUy@CC|L%#D*DPr<>a*F%C~M%h))%S14gG=lurDWNWQBj~SreUjRI27@(`@za9KZgFEJH zmAR6(IEQzzQiZCbI|&tew$*?oTyczuF9O}s+67X+g8!nbPJA<~UBFCqh8|_~?`9hY zf>_`aof50MZ9@d)9cxJGOk>gXA;WX5!qj36y8E;%X-hksi3dOimF7+0eqtJljq7c4 zk~F#1{*LZ9tB?3|ArC_@f{_-#m(9##Z>@)XGInDVW)9+mv*DMG>ibYU?pahEH!Eg; zgXs?@!(fmT)99J-gWH3CKjp2TN`Z3c%l5L7U@=nt95l++c%a!MYDEr0V>tRAu_j=7fbv$D3KFpl{sIG};lC!x2$Iw_5!E#Jr? z`iUX?)3avzgFZwwuZJLGys$m7vQ9_@0)9yTL;p=QCDuw@TDdfdi6!8E;doyR{#mju z9B2ppm1A&lL*$LAT`ccpyp##i0)T}RPlma=0CpU5$c1#euk^Aoi5B*&PwrrL*^6(_ zn+JFU8XWvOtUw^&AufD>gIik8X2XD^4kYp(QnuiIV&WzX=Y7T!)<5FhHO0`zY3dT` zVrFJ>%_zD#uDyHfc@=omGVYPQ6J>op4rhhLPpb`oEik}MbCN!iJ1_muPaS{&03KI_iorMeNtkD~kpNj=1Jnn}Vn)%y1 zc;jZ73h!fz_^J@tW-X{paUf46I_aSc{;^%RF~mVp&| z-2s1hDq`^OM92qd8BJ;BbAqepLVf-#3^e6RS&)AF)km@W&+4BHJfAuv>jnPRG|lT8 z_+IsL_W}5jlB@Xj-Iv29je19Ku~#f6AE6EY5orK^svP zGmXMVCC*+ktkyVPmB{9QhbyZnqodnU$i2A>Z{FFcI*TijTKE)jF z2ZTz~jPOiAnn{e@o04=5esGazCP|qh4=tUlM=i9eoAJnvVHKB|N{z%QB}{|r#P|Hk zd5R+9^_XWR>5L5v`g|mp2tW@iXnWCpxWL{QL$5AQ`>6hCWMWU?W$kfZ8<4bxCF7{s zJq}gRUp_8AYr|lwHmEl%A2zC>p8{?t;|R5+ZjuBjan^hn(wC%HOtb0Z5Sk_1=ICvN z_V3|J$?i`asimM>n=Yy56uqEL7a7hFTB+yQKJ-yqNqrQE|0MM(h`M*@a1;KU0Rhmq z92o=APu;={9e~_b2k@YjINH>K(`JlI%99D}ejasD3iHZXGfnbVOkqCj$WGiATj*tq4a zJ94^Cysgtid;<(f?U0y_{YRrUMW;qdy*OX|C8a_1dj9%NboIlY{VBjN2Rsj5w`pPV z5;K4BxcLdzL~nFHLbQwepH7fdzegjMwwEoxd!0|2Y`_2&dbtE7IV!*PG7Y!yA|jt+ z%^>7X09sh`|Bo%s|1mtbE$_96AABtGyO$&Pj09-l#g@B)d9wi6zKoy!EhJvlFH4qr z_bm6@z}e628w`)dB=p&35z`Or%?HC3o4{B$%EQp+yB-ml@|w=oT9TOzt^MZyLa^0> z0dg}^uWAaMD&8zmPFLlzUk4=uYWNC*#-s#u>RLrK&5uR#s;DDYkW`x zF|jNt^QBW-`dmBVnebdB0yK50fnz(TSNvucYwT#}q8Go@3!RiW+RsKe?t8G48XE+3 zq;+nLeqz(gNBhs~pq}gE54&3g&exo`Tc12BOXSZ;^`FAxFh__&9A^s>4Z=j*IBaVt zT^=jS4K3Q@_ioov^CEtnYjiFu6HqCQPyVHe*(5ARo+ef@QJa8YDiUc3rMxGaoCR=1{dMdU`9aUp0FO49OXT{WCR!BgpE7N&tFwrTZ~NN* zR`KG&p;hufG7&>omKA{D0Ks5i#?u?)FGbG)s;N4%=`9ZGQiw=l1AAUjNMny)=;j*rT>%0#QnrqtRs|Nc;aH-9@ zghDC}d~5PtV!MbYE6jy~Nu9q4EP`INwKP7h4*$$Gin2aTONY{NbiLq z6ND{LrEYEtw4YX&rZw*zO;1@7lf~;n(DOv zO4Z~Bhj>&VChGy>t{>!_ELNi8Un!Sfv#SGmB2XgeeU8a00blH?$i3+8OVK4mQ>c5d z6@*L^wQ8D@v$Ny6H*y;I#j>(yPh@S&+AsX?@;LOw7^%$Z$|^e?*9oPBmr;O!p3iNC zp4`)|+a`WFFn|K!rHn7hn!1{|j=x=x&?FKT2`_^-clKaVddU*S08Vh6D{Y_I;3*?R z-)QDd7c(RxR&SIpqVGrY+wN%_b)s`v6WT2?=HEb%p?8iM;h3o=VaW>dKJ_2U+T3t# zLV$gonks$Ymm&c|sURcv(yUI)rITV7R0#pzh?zG`3KvUQKZWD=CLe5wMd$`lL*EeY z3}9tseYc~d*rI;`lPb(76^2x5BnjMso_|AwLL+sTv_%{&$@|H&!(=+~btkxBF?Wk7 zUL;Q+Vne|h3yvCGL?ZQYxn^hh9Q~3^i3F^amSiP=$h;0jLBzfiXK^;?yswWjqN<@O zqcGlE^%!yK%*Nq2Ese>i!9>Etqqkscey+AHfaXL!ffr|}ngppiX~>0}fn@4mUVl+$U82 zf+>U8BHgaB5eD=*DWgk6Jr+${X34|AZ}rFM%-*Y%6Dw9)RQI%u5zaj7b)O;Ev5Q$_ zsAtF$ZEvd0rCJIF3IsKP)06%*=Y_8WD4GpbL34BX0IHCkBwE0(6_HbPd@SQx zEO6?Q$xD}j8qz9uiKL!sJT8C-L~!SfT1}5}ve*YBE+j9p$^`Z3$)4E)clO#K3t*GY z5j`8qVMj_Mcshh#F;*R^{Rz_fhY_=goWQT`arD~hZ8V9q`(`qOV!s>bc5je;SVxPG zjh(SsrN#cGX>I^1EqaLYV~OBse6d`*61EB(1;KwrJUWm!RSrdqss5Od$;Ryh)Av&< zhs>{9ezU#_%3w54N;yOsK3-1v$Jj`D5lf9d5iIcWX|JZqPLklV8Zh~Q(+rqbu0O1B z9#S~YLp7V~5~nF9s=#N8;KMxBdNVd~elId9Yl97I`JzqWyS{QL?=v6G@+g35n0 z5$o;f0s5bK>8-c^vKVb_?c2!R_XdCx;qB~3sVS$EzwKaym z9Dy697desnoUgL)NF#lkn%;OJ2Z~Fsesigv9-iMio!D3@#*vG6h-37`)PyJ-69><* z|J|az%lkxX&K$_-IKOR+0ea)x-W_Tel@C2~FPl&DH=stYPt5yv(E2RExq zlw>C(k#B0I_1EVVM2TUooZ;#x-MaU*)Tt1z&BdEjn<+r2je#d%V#Uq?xgw z+4K`W{OCrw0MQh*oQnC-dSJj9*cl(*d%yF<5QsWMHgYXVIDC}~+&MMFz>-jBG3op! zzoR-+4~(cu$W~>Z>4g#+*?VP#*4PvM(mH1r zpPzxxhLlv5w^!^e$ygyFVCax-q%)*OY6~XcpjNDd4M3&!cTYcc9B$5^fL}t$ljqu&-%hCwX$L;&Jtp; zn(T8e_dH0i!ob!dW+ec6wur@ymC&tdSN|9C8y~PAEw0Pdk(g4TL*u^u{65- ziIqL61*Lb#p8|`BOAQ;(M`1c1aL&vkdEk+ONlyOXPeP;y1JE@izKZGOi^D;SJ^GsI zyrA`p$>ioV|25$O8{pK3$JPtflLaT_>xa$P4Jz=g2!-MI%Z+!BNicqF@Xr+VCe)2z zibU?7MIF1jwXfZ}-fKuJ;Q;-ShK|h-jD5AI*Eej0oHBgRMNekOh~{8YdaIjIoa_a} z@y@R|Gp?5!p_VH*o%@kDd6Hboxk#CkgEuC!5X6_@kE=hGp}$4J^|nk zz(yW$aZOG5H;G?e^$CtbP zj?)+%jz(?-PD6Lwa3)*^>}vIC7R6qxW=Ne!9Pd|~^(qhG(1aw@zWt-fqc47%l6NDmU`beT(ks}c#!iCc7ydQ zI&Z}lhha2matWWLmyFm)w#U`zM((rSy#<{0bu(o))h-t}}Rax|sbv9xjEhoWMJ# z)PB=e01`LnG^A`1A`vW#KWsN9>pFL)Fzib)VTrWAI99J|<9oVtdiG_booN;xm=dT* z$@81&;N77kEgLp5{EWvr7+dsmw-l^slLlo{iTduN0RjSjQX(16~y-N44D#;NOHjBNGMxz{r=3?Sk6&!%@2w+0x- zoU0T~(odzmw#gi)(rzRAp{L%ZJ>Pd)Us`4fnrVz@69B~ZXUndJW-C^mD2AnugCt4 zr%4S-4Ou0Ogi7H7`RxT5W#bXJOnLNNStvM4l1AZ0ZRgujD|>yx?x-X#r(5asb7B7%5I!{_so z_nk`dL9--@1=mF9-q>5AvVwOCNp|ukw{nDjr*KIqgM09$zN3D>UC01c#BCxq{hKK; z*VK1ni~&s}h^n@$TyZ-fC?CanV5nHQsP7ll>+(K5o#PX_6~*om$2 zHUd?Bk}i;l;{u5T1EDvX%oupV#sRPhKBn$Gg?$Q}NX8O-1;$n^5wh8)Md<%l58GU} z^!u6_XgNBz<8rV;Vyo)HbUybdh(-qhEP^UDg5;-gd&ON`W0(W7$-0m0kx}nc%!l&Q zBtRu47N*n6bbd?Hm|~Kvq$=T3(|zVOz!=FttG3$?UdeNBqs10y1!Xg>ag=_q`6Er5 zs1qtP-7--W#9kp6V~Ww`RyzkfTQJn{;B7kZBojYjhMNz>9E;7&WB*0-KM+uh%hCg@ zVZ5XIVkcH9@!WpZG?i@Ck{(%_iWp}2!!)f)yl3$L@rQ@{o{mH!B5Dv3OEpZixamQ@ zLv?GJmCZG4n8o{QESirgX0u2{$TvN#rYlxh{BOC;GccU8l*c!oc~CZju{|;%mC}9P zjHAPC-kJTPFfLK~5z(=PQ&)kD@7-)_VdU-m*8Ci)V>p>|APUejh9ZQe zICgr>mD6%1$`om|x$fg4(anSW2{<^cOl`?|MyhW_z(viQmf%i!B?`Y8NQN95mHqvc zo5}NyfOTQ%dq5PfVd8=O-{x#?S4LU-N0RfeN%Yf}i8S30x-|EYI$3Q4Jk1k0-zv1 zHvh+amnEyS@U@Q5_qLrHxwSKgB_z$ze#_GY!UtqG#J%wzu`QKJ!)VF(UMv7iAOs-b zc%Ty|ShQwTujW}uWR>aWa`j2g>ylJ!-xSzFHb$%Y*H&w?@PL^PrSl-`;yyVxCe}kV zaVhe>3vhdNe%vdIZp*oyTSpQ}tq_xm-D#UE{z#`yRHh;J0uL!zoTc_^`A^GRz+E6r zk9O!z$90jAOatrC{vyBrKf}n9h}_c(L%I@&Kh5LQs(W3psLS5=fLlv%5D-g)BRyK! zHKoP)sj=~T>j*Qh+3=A0BJYR&FCA{JF)?Z-5^qwF#YZe1=D>=d;*a5kJ$h z+M(5bZa+|PfjmY4mww8i{w6>j#}=NG`pn1xNuScUUGiu<{8GH8HG^#Ucc z@rixal=HNmesPUX4upY$VSK190uU92egkviRib7wCzl;o^Y!dadOMogOWg;g;~7*Z zI=%iEbO|`Pjovwak6}O@F?aq3Au=(&+do7Lx{Skg)7Z+{Ej$w9W6LUiN5*1>rJT(I zI!7Xy+AsPW54PjJ0eik^V6lY0Nc_J9CmGtTTt&pGZ^|K!9cp9aBQ=Qv9><{@u&OI6m3W}xn6aMU$zey`) zR(b%ww}mPLG>pW;(uDuu0v)G4WL_Uk3JL%9(6yRVB_OoC7{?exY7b>SLAOb%Qb}#| z113qP=rI~HDMVIJxNeyqz)<6XL$$q=Y|EmqX_Q9j)a&O)&~b)&5$g0YIHsLZEM8wW z6IuPa!;$r%{|TH--nW&X{sCSviFs&kftfkvC^>nH@`&c}x88}J%)W-^KQ(;9pC~Ujm9l>tohV)!%S+e5!Fk7f7#=s6jW<6#Mo~Dx zP$jV4U#k4=0=$1@>`o%MaEiN}R3)qhuB#mdRtx-(Klv4a05@jEtEWo6b%wveA3b|1`^jwo@vuVdQmPLPkmSIQG~+RUq_= z`98mnm^D2|$4YoKf-GjQE~W*Q!s{z4cjXVGIe6=_Ifk_8=E1O^Sr6T1rW}-}pv+O7)&8%i4vi0? zUCG;(Iv1CMgR=$6$lDf>htR;)#2ix6IU#yL-m=zF5Nk?xZrnR-O0Q*Wn8*(GSkrJDQ9JyBvow7|{Zv$Il^;O8%5{z&!?e+cLM=Nmk_T0h! zB&@xoMfl%%bLqN6+!qPmLTTp^$Pg%4tdI^l&?b_I7%{mQB1D9M=c_1!NV3#b zbZ}%8q)G5^f2NWOo*(Y_dtmNT`)klAh?*y8Z5pjbm=JM?B+$rM<(aG-eq8rb*tQ$r zC;xQS+pi|co=}$ZMtN~AxAI{3OF0gtFvSk=95fFSy)D3MZA|06ey*-*l0=Ox^o~&4 zsy*-=$U{aDE-XucU;#<5s#%(CuU+$QB^O)~%YK1JkE_ z_ugx-wfZzSNz=WZINwzZ((Bh>8UiZI-`EOY^<=Rg`FYv5+=|Xm5EC0OnqK}xWp|#x zp<;gU{6n(tg-r(Y_&F3$`}SgKYL>_;@gTg3JGory*FRYn;E+}n`MIwePv^_gY6g!TUDdWZW0RH=7cX!IErAX8G8>Ulb zW`}tTw-?y2e-7?s8Y>4PKK<(@KFhJDg9kRL3;D|xYKzvaK9|XATD-_?i_Q_I(3Z7{ zvyUg^c6WraZDed#&7`;cMS^KZ6ObBf?y{x`&j*QC8*p&>W6kfzZH_o}lzUXb;JPQ?U@Vq%7P(_3 z-PW#hMn58Ac(+=Jh`4y)i4a|o7?qz+Nq6^&!&lQ&E92PxSh)4eshoPi-PFss7WjK( zPA@&L>m2cU+&zTue#t-xohc7C%Vn$g$31iGl-{5cm*Ns}tn2rTw@T>z@(B}6_4T^T z=AC!vLrtd~)P&ma2%OPZU+eZ(GlairheIgxt=^X)t*qR&f-bUeCukO3Qm10b zsreyCR_XQC663InhZ6h!G8FGDD++G8igotDmvd*(4nx&HYIy6JTyew{?ktw+DnnWc5AkP8;c|4aLjAk zKjA?R7h=FHmccmBFJ;cmv*M&HrE^mL5$a*aAVENdonry};UcEPMWeR6=_XtVm9JC& zH66*HFIKrZWnE@N@@;#PqRD?wD>U&MjOKhrXy}g{W=8SqT7=OC8u?yrXbt1cI1(R4 zSL~`YBaqTk(r3vmWNFR|4C~@+dl?fGHt@onrI12mwTUwAIfqhj-%Xj`+N|VqUFam2 zILCWYBsN`>+uY?=QRmtmUtI)|EAa170y|e&C`B5PL*qTE{DR8d=Bf1L$+V0 zaVid1{J}y+fq9@LX)XH3Z7#p-nbuZ;^tK%k5QJ6QIS2zI2hJCC8)f4468{MUZKSAu zp{-G;=vd-t!E@uq+@w0k`G3MeyHJk`g@ogvH#x7H@tvi1qDJ`K&Xe0R-rX=;Es>f} zlXpj7Xi@%IlX`f=ub!{j5Fm|#32d|>MB6u-Uy zg1c1^3xA3Yt@mIGYOPwp7R=INKhA3~*b|Fl;F{qc?JWe~8C=&>8ZRn0e7m-gd^nqz zd0Q(^7tN^(CvVCX^$oy$sNBf_%oZpfS1SMH;;GS|09o{LgZhLVAhxssvnPUwnu zy^Aawu-Id%5b883@+4DHvC2S?+j;TGA7ENlxUesU_5r(*5;_Tg^zS9}g#t!ECfx&0 z>Gx%=M+ed%vJMuVe>Mmy%5yP!%@m&ZaT4F*A3tPC@Qh7P#R&%2VUzfuE95v2{aXgJ zT7}nAEKVn7t?S@8D}U-QA|oY)$za=Ua(bDDRgw(TU1gjpv>nCnJG+(>DhZxu9k_Ka z(7%#^#X)j553}v#;8YM#jcp)u!%nf)1B+|bxU;e`c6<@SKb7VtaB!|dbo;=^Ro(8p z)q8fFc7u}(JH_n-OfcNQ{N0sjVgLeM7``TtqgLR;T>*t+r{(cX_AqM3f%&{G{zlRa z;etDF_UVfMeXLeltC%?yD1{;y+K}Yi&>SJ{_YXQjF5o1IBuOfuQW;}*&6rZ~PeH$n z&4=)7?bI-*NBb6>$eLv5>WsD}M}`PY5%I+>Omr+abI6gFF1>Y4-5e+w5$|IGecL~d zFFMT_LF3Dicb_*z@Vx3gR}F8>{<8c1-Vd0N9DSyEL#5uo?1(n|E+j*T1#D|y+ohGy zN>)($_z?=edT-Q<``!FXocQlNo4|V2HBxGK$I-^aL_5?%HZG6!XRn}Snr>#~jt2r* zQ4doI9EV-P|L8)74>!CVlr6V}9VGDvL-Lws&a_k0PGhL{@FsNg%mbemZMAd0nE`j5 zdP@Sl>A{k917ei1%r@xM58}1*u7}AEol%Vk8>kzDP!Qwdj=ckdOK?&5bWvT{F#wP8^R;IBh6H@W|6UF$Wb2s}qyk;01-cG3SN^%rg_1uIEr_WIFYssGHv-H4E#weX690(>)tD$un$=-=M{F5NV|qd z-zzRLNrT)Mx#? z*EmLR$pwF~j&C4*nf`}B8r#!mR}|Xe6YJEvUEv3-ew#bF1w0Ykoh7>G#RPgBkB6V) z?fY)*zM?I{cL@iiM$|A5@aPAXCC>g3h?R>@Fcv4>iUxS{!^F=z{~#8e-0gN~{U^}g z!BB}|9J0*_RW5J|;oiQJ!D=iaeJwc8KY#aZ^^F(a!_r@F|QieuvCY0uW>ic4}avxg3I#<=r53|vKl&5iy- z(jQI=b^J?=PgMxVWmy#LgRezt${FCmc9J_9?DdZ!t3IpI~itShG{be9{KONGX_d}lZqUUAu{<0%x@ zwuaMwcs&iIR#CbiGr6l3#{Yv}aFAA4aiR&F9ryXwmI5zgfq$5o2{#at*$&?L7vgl@o<2J{oT6dRXcKZgNN3>P@UmAPhz=w8(EYL!wsxW8x_LZ< zTE6v`$#p`Gel`V7%!MG9CmO@&`!CT z+|wDsi9Mp%O5dnpu&vP{KUz7IL)e*bl@6{&v;DO2uWEeRK{BsNOOh$-z29N+8%}&c zxg$!zzw-%LL43bsl)JEL;#uJ{M@PwMux5t7uN)Fksb^M`HyL>aaapu3g&41G!(E=G zdP3{o$O_Z!FPjZRBU2BA?~IkK@7Lx^C{9d-E@pvwwcrhlWq^{P>ovbm(`E%dg{;sl z7Sh*`rkCFc3!56kY{!-;O%@)CF*i~skSUZng&h+R5~Wc2<_;ZBxRJ&iG>R?$ge>I4 zzOS;Zda*3c5u<3j3$4Y-Zd0t9!~^PtAiNxLd5L}$-m;JXXN`AIWf;Bun?g2k#ig|&`w(2eEr_O1opx%xi*`>|hwWUxG)3JEmzVUC~_*9ad1Xq(21 z+@8Zd`jaKnEPnoy zccf^zI5M1lnAF{!cHqH=TP|yLZ^3n>-=KFiy1Xwtf zHx4P6z?UmUTMcgk^uhSV;JqWpxO@;ptJhkJ@BMyHWzguY;zLLP%vbW0yj%WRU8EE* z2YVqS@cYOfqeZWf?8Sb>$Ot=t52evxoT|HkFRV?+t3A`iRVZo4AFFH?*7Ul0VZN|* zd*;7a*Uj0rPJ(>@$?20`sVz1c1dJ7q&sQpGcsfC7I3n@Ym-Nbf)6X&=-(v9+0>%B2 z_wLJUocRv}!Ux7OlmZ4zT`Aq>^dS7x6ru%fw0sHnl5f}!5v*2whetC}q{jn^H>ocF zcHD+U?r+Xj`A&wr!s~;b3#t?F4DWs~B^uZqQ2e8z=W89t)1AwBGwWz2Sbx|2^M&-! z7};RM$Sm_toQaF}s4ZUD!ZsTOQiXX>PlX?ZpX~4sFsdnf|BI#@k$wly{9TXnTKE7} zsVplj=;HdWX6LxPD)|7}>wiz2j$v4s#OlSl-aCUcyhVZ~?LL?lvhbr%IqATHyDH<-iW{+$qCJ7<&#?Je=_LX5e}yB2)>kQ{cD5p z>i9hqSKF(m`Z-d2k6EFUTAoUV^0z3oe8VoF6%&KzCLQC#S za&_PX<(*)Zc;ij9RYbrbQ2SN1bRf|j>41reBTlhvy${+*@Q^xo8rA*V%hmz3d`r8Pm6Ih_X!8htZX zqUT1YaEr}qe5?w`htB0lW=7~#z4Yy9evame6NW0CNSB57JArT&5!Gnu;SHN5XE*#w z$@lFan*#mR?>AA1i5qeF7X`kBXZ1vG2#s4E%Wpf>vQ_j`F|C)sBLYWk($D&+aM9WH z;-eiRfX-!lp=c?Q&fYxH%3$Jna;Uk*!7H&`Cx1PrQzvLQAlmvL(ZLzlFx2kOpmmIF zTR_*Me&Nk|>T?>Afo}vS7Ouy*7Abv11}Q4TEp8s^vlklb8QHzAwq25?fWgiofo;Ef zSJ(x-KYM19g2f{yjLn*l*AaC znF)!|EVDO~3MWBrt_I{VI`C~Cp_^})<@^Ewq|k_D(oSlwp{p-!hBmkD#(93~H5Vf4 zjk@}+<35SbQvaf`1eiR~98sJq=h%1c-P}`Z#;NJqZ<$vPmWEa()`mK}cF5<6M;#kw zqqD=CL2AvoM)&GuixP11-eRCJvg?e#40WLvD#@o-OFshI^F~(5uBT3xoG6JCcdA5w z9=WSuEntTdg^m?Z?7X_tiPqT%7*_(4e`2(3nM|-ndV0?aQ1cNQ_Bw`N!-;2_59vAi z`uwD3aJTabuwg(mPcYNlfvww>hb6#p*APE3GpB6a^;Lc?>r}LEc&C)y2)2|=Oi;56 zDgBc}X)Wy?0nWFV==GPnqGbcv3uh#JOAN=~8ga97;uqBQJHVl{In}`dp?(fJ!>ahD z2(AwmCfWR|+#R1r^6c&NjCIwGMcSv-BETQ-l|xIyZ&Q4&iYkV-usB!SDwaZn>4!9T zyqUtj+5xvdN@vy(*-+F`pz*!oNX?pJJfN1HsC6(ut&WiszDF<*ZL(Mx}`7DM_1~iyH+a_&2&tH zob++A<{~TS=(q{@q`$hQ3djscQqWQU$(r7lQFIdE-B^gIIRr zfpa0=5Gk)2ys67|uxyQ(8f(DEkUYY8UdPnWCxQ6Rw#UwGx$nhp^OJ;D#!<$cU6%U- z*4`ZBJdWm80{Ve(vSGO8l#$0(U`MNI^X>;qncH@kx^Z)5#>Au@(CU3WNHB5pgZ!b8 z@wZfDSu;Ob^h0E0Yv^wKYlBOlx%{<}@tt-5AAaD{ERXy7;jqhv=Eo<;S}4irO>t84 zLd?uGc_#CQgrTM8x4SLy>{Y!w2_y{qO8qo%4_#N{!RAAPHc_+8fs(KaLI5{w$XLSs zry=wwbpun!sYkodl_U?krAb+2Fm4msAr9sPAXO7(~N!$djt&bC~JaX%w z4q%6;_)!+9fqJKM(mlW=^__%*_iwAXAA7Q-kUn0|bwHbiKKUbs4demqGN%e3HDn%F z{sXNhOp(D}%i3%m4GViOMe(p~dh>WUUk5~J;1I6*0y&E-+ZsYFb-(~A z3(iWf<+SJNF6w_4TCIHfyW(e0TTiFW>nR&kr3+Wxe=0B0*)f^PsnN`-mB&FW`hCZDJ1?qY&W;Ujiv<#TTYKUrS)Gb1W^&s9jnY%IG$e%l@S$< zrDhs4@M50n>1!1nVjf0Gf3mr1tk`L1YWw_p#^vSKS%nm2OED@K#0i~&R*9ZSqVC-0 zE#qinkL~mGzJniDiLoNKu9MY&3n|9N=K@C#1B7`pijCgOo^Bwv`^m}bOfLRE%2dU1 zV_!p~tRrPMnZuRupk+cOMH!MZpoxTCMaxh)ayS=)a9&tgziF#%ymIMnRTpJWjER>f zL%A3R-41av+M&LBsp)^x88iW8*?uarBPVq8O6H=X(8i+Lp{=FAXacr>RhO^3Xbre6 zcFPT`A^dq3ltA!2Kn2w5b_vEzmz!hxJ8!_nInX%k?A#43OXj_nHK-8 zSeF@j08{dq;x&#U1?&9Kj}i|oSh6}<8I3TfBj0+i(=pjQ7x9@jwUVXTwMMWWIu&uQE-++AbSA++U3svnfAAzV8;sC~Y5CeKXMZp>vmf zWJ8)kht7OmQ{VEOy|6C^5nJdhj8%l<><{iQN2Qs?RnRc zR3k~HzF?xK$P1vIwTUFMx=6##N#p1QCChxy7D;^t+&53V*rll2%AZiC!7u;ftpL-1 z!HO4bAMcP)jF(g|)_X`G;|tb{B%}($7@$&CAoc`gzST`<7(|NTomF|B@YM^LUKK zNhX(O2Ik%RKLQ6~>hP)&G1pQEOb8Itwc~br!gOdF8}Wm36B$cwaI5>pLpv`?K=^fQPh+-DF2sC#U;hG1wj**E>(-(& z%1NX>CHrY3{>U9N9#z#yi9tzQH?7W#Ty%mX55d0y=q!h;=2dhA&RGuQL&xuRwRJLi zWZOj5Yy!wp=&&_>0^niaTJL}|N8?Nvg2bAIoLMk{QfLC-Hn#mM9RYv=K!!f9MpjWmR?%}l4buJ1AHVWZ-40~BFv(?;_S@rvR#!{~gnWi(80^p=kg0q9HPWSBG=K9g zwpk1<4-(fnbfo%Bm_2U0iG_tnLQ(2b(IbQD#I9aCS^~>Gvg`&%zjcRX7Xg<1FUvTq ziPOyXE|?t@5tpFMc3!tY1S` zrZ{3kn3*p<0D@sdTnm5XORMh|m0W5*fkBuuYJRebL6;luhgfxMJQxB~s_RC50FPvL ztXhxuy;6+xn&T7dqZJvhgjf4DWft_^0FBQ>i6f`k{-4&rigw?J3T0u8L6(~K%#8x&eq&(r~+F`EU`Cnk&L zvONwULJ+)k^>?cf0A41drdO=W6>zVpm3FmgEG0sRzjA{GuKr!k*=(~F=rx)ifoUNJ zAmtnzyP3#LDZ%9@5jBSemKtLUplEd`#plmZSk8m*rCMugspLp7w40E!SeJ1fmE}RX zvZyj(3%%tF+{)ex8y>+p^<`G8AzH0I>e3;@sqLi8pO`)kj`VQt;Dq88m!-hkYa4Z#}&R5vdA%ihhxK_cj!7aT58yIoVLcKnCkdOF#_+6C9RcyG= zt6arX-gi6vTrn?A+Lx@TWtMsVCVVBbeX1{YB=3lPj^v;v2q~GJK|KhgK;db)_^tws z_VEKngb4^B7j*VIOHC=JfA1jh`ACr+DLAQGE2Ioyt29E?Rihri2=;>pcylNRe_&pP zJLn*ta!H*2)Owu@Q>%9LqW$XozXsQjb6)~J(z!}EOi;sr4UJz(gpT(b0ObVHE@+tu z!3`kZ7V%+ie|_uw1k&%_I`wxlkng6pH2h7_HGp<-;4t^HI`A_sRhq#f*B4Bi9xB%^ z7tS-MoS(1r-ou8nANm)2)l?P{exaZ;&y#ZeAIjPj*V+|tFk-2jMa#x=g@qCQ;q8yUTf=#za^IVdq1;AgY>Ciyzss;$`V3pVB^Sq~XFaWPn| z4KdDwB<5$H63#m~af?7h)_mSxcw&o1Nx8XvgfT(OUA%S6GM=Zr3UMY&+rjm8k;Gt+ z?Nu%2B(3cg7$=9s-m8=rA9rkMs^+%OK(l};2Y>%wtv1Cx*A{2xPUJ?JHEh&C;mh?gDjAqr(kpx|&w!x0 zZrbn2_=sT3nyd5kdK#DTYuMdTf30K}@y8xSCN{Pwk^ z-!vvOPJ9{WX9JUGcS7#E^WXOZ*lqkaj_#wFHBlt_#jZ0xgaGX0yPzOxN9_U4>Z0|n zV$tV0&Y@ygTPf_E*_pADw=+I*sEYV=-50`++pzI=q#Jl;&-T^jIw zAh6j2s-Vz3Bca>-dH4W4nv<@b5M$-rxFSh1GT2gD<&Lo1f;oGxv=6;N2mw1v=>O3p zW|dG+y3OP=and97^wM6DSS(^mOz^8?^Dg<#2PZE^eH7t-%v@yZNbbjTuxAt(M-x<^ zg1Vwu1CfcjJ1F)P+;3Dkf!qp+`urW8P6O#Thle1GcbxHvMUYF#$1f;wFikTaNLQ@7@CzxED7F%{x zcuL3BiWvyqUlXen0&)~Dk#LCfE6Bz~c914SPfC6tn^vD3>%G9Ymv z*Y1K#QS23t8@%?V?%!dJ`Ac`@U58NqM+gUD#>C{LtBcWy8~<087~K}D88@QQd5?Bf za#A^Za5umx1F!@XsK3=j`LInE=tQ>OP6)I(e?M}5m@>xpHwFwgSjl>FOe7g1_O8|2 zf;LA~JYD-ZxSy!?-oO1kL?qgAt*IaI0XCHL(0tnS3oXsEI0tVwbN8X5=5ugPlNa00 zrI%i=FX{}{DYhcc9-3l6CjM0jd%Biw9y#@H&7vZeI$80AA z%PubziWBt17Jy6a3tSq(8nDtTYdJR5mX30(b;~huymF7_Qi zPhqLtMn-vm(T?Gj|NGi1s(So7ZK_^%3;RX^1^!hK+wJL(eJMP(YQ8#LO5MoEUs|Mx zB@IL5o-xNckYB!c8DXN-PHRJ(ZS4Blh80{jngLw!>*Sy4mbFQ-=nNM|*6`5I#@^Lv zQbu!)q@@2mqv~%DyTwPwW{NSoPk6)te~O-p zPo#BJb$inI>m{9W$m75<*WiyGrzPY$nA0KvEHL597;KfRx5EdT-U1A`r0y>H3BbD$ zwKpeuHSI^elY1Q@A)`!hjNQu+CD4V$9X{}QB5EP?|W3fvXQb;GLT@YX!fRf zQsIvFPV*#0N$$RKIIre=;b6Bs~*``%JBFdf8c0AJO?fs+u(x( zkl5z7>zI$+&}MMs1_P6uPAV4;L%{QwH)wbD^R3IU7?q6W*49C2qr$NtV%0A1aZ&n; z;5(}RnlIAw04=W$%9Tq6S)7Xgk(=J-r3IMp4v?~oE#@OHNsyn?3p0GE@rE^z)`vp&Q0N9M$TbpqQR!t0 zZ(YbfFw0*e12@~VyGL0s_$27vyp_r_&{scn+=nhtG;Dv`@! zHvU>Ptt!`U7|d?gQhw;$^fzDLgPQ%rk)7KR-E9d+yUR0lguR)j`fDJ!;^7=j}a7 zn}HuMz$wrGcRYX*ll;CSN{2pL|H3@tapso8|M#8)Sq;@%>UyFNE^2<*coLzAoMdjJ zc`%IaH+5oh>tgipP5f|y$yX+brEPCE&oYP@3eVHzML5exqTAVKNhupMGG`(!H`}9& zjO*}QGU{YlgedK+=6Oc=ugeUztgrckL)=9 z(BzNm9e&mTlo`u28F~VJUNC4N-d1eeV-(*xt8XR`VFq}YJ#mTz8p62rV+t%0($#T< zBrt8pkmK%uJ3U`2Q$`u%s^7R`8Ja(H?}(Ojy%i2I^S^ec2Yi~UiSMh9oD zsxM=>f+zC264SVU{BDmD1j5^SpK%Z55c^5P{lpQ}m4#)M?dI#bshlWhcoG0o>bRaQ zJ&T0%3#<>sw}cDZ1c7EY0b^5>+XM)aU&0KWF{gzPgUYU3J%Fnuhlk-g@aY(l@RM<1 z6|k}?O4$y#%gdzTLD}Rw>iK=p&C`QZVv<3G@T6e#L#HIjC}IB)DSdK^Q2p`Lb_l^% z$O8(h|4r0WLxsgjpVvWvSw$ZqH_#;b^{&I?isInN>65QDp)-A}w_YlElDY3kwaQ5} z>YTS{h~}f=Li8WbZF-V|g!@UDX<_Dy2+yly_X!s7zzv~kqoZ^Qp{*caNwH3wZp_`L-9yAZ@U#gBz)h32DV#G7rEniJ`V2?0?w@^rfQpcIUz1q}+DJTC+EWa_I8= z!PHXX4l1=LF(zCH=}`s%IIkz2ll9Vr^GWEOdC(6Y-C}yVjVrp1oDDJFaYvy|HKF0! z)#(64ney6x-)ei-+v>RqIk)h`C|?*WFf-eO!_7+T&KL#RwcqAjdpr&PP6 z7zh|wplv_L32VnLEO)maY5_`*;A=+=a>brd_scR`mLvqyhDq;e1DW5RnIhX~(Z?rz z0MQpvh%q%;*YTs%&-HELOb6T8;EoF#w&3S+zvXwL(U9y6*ra47e5MQkJHTiBxSruJ zHUeIJWYGx0TVop&HGN3U6O8oDQP8wVFB9BBhY`bJaMjmKiIy{zCa;FXfnPW)A-%%8;@H%##&-q zj&_l|jUAYBtYEYlL9y#qIHQ8r_&X|ONF@H(bASVxK1M4xmwOrDPsg7!y*rj_1B-l! zxI)5(;o41ix7p+9gkaGr$*2`8`&n5U{{ZH3IKrBU6mv2wl>mj6QDh7re#KJfGRr_G ziUAAxP{or^fOdCxE})4(dL$`$N>TMe|B5%l&b%q)+-VAbLEW!f0-2Iz)-tn?geS}4 zsKEpzq1CIz4_nH5qw=to+c9}bz?-K+ApKaX0p=y-d#+otUA#{&iT$bbbX`gIKo4WD z>}W*8(2usbqnI{ba#!KvE$?q9qr^4~D5jo4z%tk^ry;^E*ie`yAFS}&k{jQBLD70s zQDXmdX`&$CK4TFH0LGB00XE{9gXH)Hba6FbU>6|GOb8_ABIrC4Hw56o|KvYYSWZ3x z%|0yIX{JznrTkR*TkLQW@rUY?RKiHWJbRXyO7M)alB59$Z>eLbuSkS8M+kVcwk{Hg za%IbOcU8%GRR**tF)wWI zw4ErNs~Nsf-M!n5EmNXdO&#KXd}l0dwL>aujJ#(JutEqR?V_Hk{SV)1wzC zFO}Kte1sN<9zsVIvuYd-{bAp`d@-hEMuM&n2sXtE+mTlWXL zy)XHN-4lRsoD!%XDAyVi@|D)QJyWjVPn{0H(lvGrjPI?aW-BccEcEt15s8XRUsDq) zP&O_kk>bj&e%ZHk`PW^pNrh}IDig8R5_DIy))e@77O8jP zo29Px8=ja0SP5(tM6KvFFNg7qaC*}|6>&wKkXiFx5KSq~uT&KL=_wSpdFV7%v1hGM z3}@UVbEa)-L-f){1VuQPeFLGfSDgTDp+459P#QD9Y)A&_!utPF1nxEH3JR&=6Z%LA zQ?e?)*gdDZrxWjpq*qUbLinEOQ^Bc{o1Y7EFZCDI1iITcsd!>Sio>rfd>Wb5CaWq- z^~B`Fi|~!~WLO)_Py9ED;-$^)T}H)p z&3mBa1IIZ)$bE?_Pkp11j!aL4;4TVY|gO3 zzee(2`au}a>`|{IPKfxpM;%oenPJrsUv=XiDi`v;R(-qv-2LS^JRKEkZb{PS`R`ew zq`zaNBu;a0C0%xCjk-Z_ScJS|~{A@paRTw1`&Jx1zW4 zNGSF+WCn%F3g#U z0gg^;U2|#;wLeT_UGk``pSpjuc~jFdf=k+`;eO9Vmbgv!)}a4maOyF(r!;`sAQCK4 z6WYEtbe|U!lm{Hwyt$Za78{4mx*)61JCkC!}vJ zJ9h2lRs?!DAX8r7ECf~}8Dly0ug{}a-@L947z6EoUqRw=#k|B~e2>P*A32fx@p5A4 zSGDxa0NT3IQ#XwWYx^OC&EI@_wAXp_!wo+0szl2)`sIe(p>mpE2^r62=%+AQf!f+7 zuQ8#sq29MsC>&V(5}=T|99wWcv(BUPVLLr`mnet{03cvyC#%Ty9p{{sxSDJm%0GUY zvI0!vgD;WaMO5bktwsG|F(QA;(9i`tXWODuGNoAd9T6V@f*>v)J@O1+v*lvYl7)i$ zrN^A>mK)!utF-)j&Xb{JWYk6&7F8wI-(do7oU&3BuC;^teii+-U;JF-b_2A9U!vFY z2Y~1=9iM)`E<1GeOO`}b9AYV7Jy=?ZsKgt+1EY^LT`}AOt(pyw^T3H5ZE`5|3B@pr z8*a`y&rJkz3n_}gkL#t zaHOw{%46f6BA0}n4_bO?j)e;wSnq?{(TsGoeDpomVsdyhtDkvsLX|K!6d};|BQH&} z*8+t;_)=43=;(MrO6TAH6krtsNFxz_)UTX4c$0t$6tXX0qoDcGcYD0&xEZ9{^oOs% z1(2bdRiN1anL$c2S8>q`^FJNQ!w<;vHQ{9ix4&gfsa;Xk^G?Hc(d8~b9OlQH>w`P7 zGlP>Br+5a0gK81f=k#@*#A+h`c}#o1Yo!mqQ7#((PH_Z}*jS*qRlNQ1EkHdU^H=-&Wk&Z#a< z^~P$YIaf6SHdwp`Zi$c@4u0jI$}rN;379Jsy3YMAn%WuA{@-3{aZ-5}<%Uo#FBj<7 z-qd_yr>?)~n+<$(o6wOFC2T&tW>mNZ#4#LM5H}&30m$XtrWJ(25A`*ItImY~v7ftR(>M}b_8B#d zCNb-`R9^msYV)Q*TY>kh8k~j<7;|eY1E-;$W{?}!Zn$jJos5*$7URJr8aWM^m6Sly zcF~z)dHeDlGXojcvR~5JYqbUOzI#FDao1B#sYW(g2VQerQKla?^S^QiK*VP|%WK<( z$9>CY@+|M@-w;EJX8z>aIPFo;HscstK1D5{;KwEAh-kKUKLAbgu7*MSVsQv78V?R{ zxYH^d0FnY!@~5`caG0*1W<>pS%tn}zhKW}yVB$N|^?c~|O#r<3gU$64 zuf=zsrQxzYKO5%wan1M zrn`NnIE)>jd!psmzT|%j7UEAW8LTf1jW)=aDzT@;9XK3tAnq&uYadh!&ewEm{R&)6 zJg9@W;WoJOmBfPxJouM~<+bY=Jpn8vdIvqaAk}c68%r3CUif((P~frs3RO-ZNmLxc zWph<7I|gJ3q%-j2@@0>l$-+Xqh-P6l6>XDUjSu7iJSZ3IrR}OEhc~bfkn%s!bF*tD zx8nxI#0NImb~XMp2c$JaoSgW%2y1?Q8(%LP%lMuPTNE~CmAU?+%W;9E!ZchU2?l&9 zDHEgJ2#3vh;bXpj4h(Aq7_F+qPBW?5vVXAB%(USkzUATHCwHXw?h>u@?9uYe<_QMm z1wL&H+-@r7OL}4I)_^>SI*<|ga#vk1{fvPl1|6gIy)1KDT$L2;^4V$zuheXL#dc+V zH{UIA4(4$+&XH%2PE9I2$%*8CNCNnCwfyjRB~@cXhj&}-++a|T13LFqoo;w2azRBI zM}ov0BIk_6l?+g$AVkUT|Gb>TLIjx9;wC%Z+r8PK^D5T~0>jC-K!2ru2HGA@nmmK@ z1-96BjLa*0oW&)*QT#&`~w65RMlm zq0K5ypJ7vgYF|A7ErByW7(P=E$0L_YbIJY#zSVNQSoE)K?S7`Vk|dw#B}BtJ!{*Z6 zw4bPL(9F8;Z{O4ol`=AKn>8rj*)miFK)$XF%wH>b*_zQSr3(~NYIl~VOxKI3BY>Seaans z{z*?Ej!lKyDefsdzCiv${v^ki!FJMBAh$u!=p#M z8~0qPYJ*Z_JJwEc0tRa|4ZKNACz@Zt;W3tDX_A}qNuwa*X;WQ=(f}-- z&B;i;X4DY@0#my+d{BX9c`*Y&DlSFQCzrRcVIAJcDY!}iov{dQ|A*&gQIJ_o@bk^( zUJT+0`mrwx?C~KO<*=%u-S==>J7$0vY&bY-E>e%;%A=syA`w6C*p5GLsIM&!7Xdw0 z?-E%Z`s$@4W7%K>#OLZxCP{!G>201cyTaLrZ8SdbPICqClZn{#Wy{GNLf6+Zk8|)> zT=$___;&SnAB-MXVWM;P-oO+)=PhiJJDXOB8jIY2x`j3j$m(d{_7#(_C(Ai}A}q^c zSN~K^0K)WwnZ7Os$_(zKtBL5FKZYxb_=SsZ_4hdfQW_X(9YI zgRhjIaUejY0nY~7D7ureKCgcpB7`@U78y*uox1`Yh8Hf~#4mRJ;e!>zfa*RYq>h3n zS+pbJ+807g;vfSy1H62o9`VB0IvxM@0%(AT{+ve1SMRqpR*;rA_O-OY@HK!KvzGEV zKF`xipwg%q4~Kg6aWND3WUQ>IU!+xd+ZqUhTvfSs;u#FUYGAOaK?U?SdhTW- z7Pt7v>Aq_GXu(!S`nJ4qJK0lQE;RLwqoGD_;iH2clekoJ#KEZ!899Q@6yDhY1u#n1 zaF;vu7EKZNf82q9nu#~ZBEf%?=%9(M)uJ?AO-1(V;IZ}Zu*|dUSxI=w`;;P&gmpLO zBe!dqg0@j&5%ET=qZHB*NdFxOtTmV9V>)X>w(+*a_R8W1~hYK17}9< z);-(oGrB}W_ZozdavF`;{d#?`E>wJqA+7p(Z#8497Sq@50*^oi*idBQ)$O(ab{xE{ zLPO=LHex%AEPd`gqA_uWL_Xr}IdE~VhW79mrWj&u91*9rzTO%I{^o|c zlbqBIp~!GyH2)sY86fOT>P|JZLK2>BX%b|FNPNTANv`XHC;hA8?Pz0AijJhKI|rHDd8C>> zAr!y^kls1Mv3^=49q$v`IFiwA>DAhHc^E;dr2y;+hOg5BG*CR) z3lA5B5KqHHIOT&rbFAC-FuQsFvv9Wb=d1#5J{D|<2Gf_7V?ifsKli`+V(>;3&v7tD z{(pG7>aZxgrwz*@DJdZ!ECP}el1hWL0tVeBB1m_+OLq%MiGhGLNY^6W7^HMcmk3CG z=ULw0cU}I+x_h2;=FHr4-!t=+vU4+0Txh9NXrxz*F4oBj?|?=T+P{!g#Zv#R&BBMj zA~eSS>f+DxXva=k;_HT2siLmqXiUfdi2LyDj;WIRq_O z>#XEYqx|qNcC#H1^^;Tlrx^7i2gOe6e{zKgLDE*5ALw5gUNhwY9oOxGb>SfoD{hBH zCMkbn@sR`vfYOtUs&NjdQ27*J=mX|)tCEsudaHYDv!G6Pjd22aCB%6u;(*>c0*`laNC ze>h-#jKTLi3NjLg;kn#;(l#^PtvcGxqjCZ}y0=PS#z*@*)R?XMr{`&h_}TKfdOhvz z5fEAYso9W|dS{2n(3sKHXFuk{t~=kj35GrJf|a*wCQ%+IViw&G$`I@?PLi=pd3eJV z_8UKLK)a+#g&j`HeXkdE+y}kXaVV2j?+PRO5{z@T>!un4)H&1lD$#Rv6&U|IpKzw~ z8aj3Y?%Rf+r2)C1L2XQ$A!9T2^6tZoM4fA%vdjOW5<=Mgoa!I4T~D^GlFy0v|C3nj zaEcX)CEln#ZQGD`*X@Htg8~<0*-4R+2{R#lWv!N`zLb4_LibMc5WT9Ueg`y*3uo&fXXSkSkK$b zWwI!KNetw%JDxoGFf3>+VGPo;`pPyPp(qEcBXyEp^gI`6Ez@WHkx$9^VB6f>T?0p< z^JaZMTf$kM`jmk6?5dz$AYDUqZ6OV)r}^9(Vs(j98ScwWW+d^3sG-eoQH0^bG#ZV} zzcifG{=A$_0-ePU3+kLj1<#Z=^LMyltwt2184;B66SR$Iv zy@tHFRI7UFMFs>6YNmvS6lg^YAY~av#}Zd2r6W0GB{-K56=-JTu}w!*`({8eyNe*J z;Q^^SLn$IRWL}^>1GVzg#t3&h8GEv9@Uv$_?gpk-vyBy{VZf_N*rVV<{9e2uwV`!) zJU?Q~YSjK7!&|a3OeIK|0Ib~N05e-6XpTqK66)ldDSYcX8_(vI$Kjn<2xGkw zXU`&dVe{oH(3m9);k#}wt^^u3m%GtG;koo-b#2_=qLJKqAMW!`YzC*uJ8L@N<(<+~ zMxfc@$j6#UvMv)#IIlFnFqmK0^_@t+bVQE4sIND#HaC}7Kh~@x)m=A~ z<-AT1Br`jq^!VqPKWHjtPI^XunJ(v&ry4OoLs+!l+uYL35+rEYJ?6;?{plyR)TieA zANvsuCt0SJoiFH~3!Pi2Rxl&wa4vTOLbK z_jd8`=m5EXv+s`>DDoIl%r*u;!5gi<)P`zkmE1{&_-#-p?FNfI^JwrcmOk1W(@zP8 z#UZ6(pgjK3f|l#%v0BBM)r#BYIzuU+Pnd;!7hf!N_zxXm;T+y=(6}}zib@4-`za=% z+>Ndeh$)kz*v4#_Z*~;ICcxrmzq6#2TVrE!6Q#?NZFB3~-7kS|Vdk_{Y^1L997Dev zl8@CC`Ih-kG&DL5d$@~u6HFe;rG1xYJlj6{y$NT7tOlC`=_!5OTtGQ2*l1Mpnw5eb zZa#vpcxI7B*H@0`lx3t>s?7sRR{{J#Wb`dTYMQjJ2!A{DFdJKbeqkhq0>Xw7jWo#axQ_e+iPij?2VYV4Xhd^X857g&3 z>l0mowoSU{@ejp)t7Yx_`Ep7{1`91)J~>RlVfMPTMK0as z{O6ag+W!)Y;vcnN3c1AaXS|a-e@~5@mNjW#SW>ah`ocg9MQ+C#z`j^UD_agLGXkm@ z^uY#~y6}(p_P^Nt$9k=v7&M0Eu?{&LDGJ9}9g13*C@$Up2vs3EsmcKMYT{6X?{`d} zB>Q}l+^M_x@>L0n=674IoG;>}Tc1emihmz>fnqO<j|c4u>_Iv2H&q#tl#EyFSi;FO4);X$>t$=9 zGe8vMcdcgjZgJji{INsX!5dSMeqmv4F^y(9V-Rgzyf&yYupJZq%QJ$V5%1o~17OWY z@MpQ!`Ao^>U5$2b>KG@Mod%yic~(q!QI7ulL}ECodmcInO&oZWoq@CWO35hOoU4Gw z_D?Kl5pr1==uhF0yf2ags<;$O*|ahGJS!OqthLkO$>7VojTIK68rwmEHeZIxX@IWK z{sfxLRVsb5mGrz`DG5Wk&BvfOHKMf#H-M@~@8M@1s)AUT!PeMyq{ZBEfW*hdLCjhF zqrSqLH65PtOHsg&Y)FXmqV7$ur!Qij4KjX5V(hz(F2{{vJB`mg>ns-EBZSouyu=a# zt{Y$WbR`Nzmxp<*sxHUwknw{mx4#?9W5uY*HMy}8rvLG*J!E!V?*t*XP%`X4d(-FEOI5QQ-xi99GKfCl2arjZGn)Bk? z=AT}U^`zP`%UZrmW!_OpPe>(s_4x-4Zm@pepU4|fkqJtdc?aqX-&TWqIjBK!XM^Pk z+@S3hOWxu-0h}b68l2)vv6gq3ok;vc_6NIah++`d(zpHmqv%dS$1s=w_B|g=R!_oe zN=waK%dIE*!Q}jT8V=h>Wme4!cuc0_+@a22?U`_gdY+>3j&V8+G(u{?3TX$CebW_=e_VPe_pNVL;Ce- zWE+@ucNvF`U=$?>829jOoUH3U%*kdpK64J_n5?wVM$c`<2rnbti#O<$mulwGr*oh0 zGe{a6_I@w*qHv@}f%<#yB_l&@0g=}gTUT?y$%je9=Bw7g@UMcEJuvLEoeAr&*cN`_ zL>y6gE6bJsBqxJ~;tQz59g9FL8g2Ww|LNf3tLaIm+{mlB;YwaFP%?&eo)3%F?)_(@Mp~hD6`bum^U{sn!*=>eAyxV{vn5O9jS^1 zF}j9{Od1wufHMfnH=)uiPEJ?6wh|oZOMfz=tf$`;X0_8yOU2m>+HQ-KT7^=kCT8U{ zv6ttGg>NAl{Hr+_!R8lI#34I!>;+96Bm}kVyZz(QdeCU4Hb9O(ty5m#>K&{bApLJ^ zLuB%QJ-GXjCpY4avJ8G(5lZQv3EdEw#D8mOiJ%#}%&eM3a4uf`+=u;zxCCRY1ouf% z-;vW4@w=#zGo)3O>2$NoYVnR}e{ExHy$pF#-$E7p*pMpo{G^?#m%Uu;Y z&)ElT%0i()Ksf9RzKaD5b3;U5WOo@Y8U%q|0nK`x(CLX0xKC z&ny2&uqsQ&f;Woegar5RqMqGI$=i%$JvcLCI6{O+vU|;`Uo$pKdmaS2YE_=M@3X_$z$<_w zv+9*pFdAL#_3_p_hV{ck7=b3gYy}ERC z*!#Q>b)av;zrnBZO34$GzpEbuFs zXEugWz1nZw7k;%LoMLY`tcar#e4@9T=LF<>Zo@gX%N=wi^8~YYUc@hw>ag8pk40g( zwj{Z=@uAw@tq&inP%~MPC;Ugj_+r`s2^FYIw>`auXi8f{lZD&yQEb=odWo|^d}voL z8N<|bf{9`5(>%Kqh+^~A%9gu_?coVSXqOHnFv|7K52w;|k-jMC>F3 z-kKz3XBEw`7b2jnk`GQuD15rVe7;t{cVtW1usGj&xri1rvH0z;5H&P70vssAgGbBJ zPhdhjPn{N0ihDT4Uu5t*zNET)M1JYH`Qd3`curEH$yqMD`-T)b_&CVzcI30c*yyzr zw#fK$j_&_X_a1g{xzm#~^0iv;gFyLr>)O9xm$4GGVWU(kJPNiW?L@BMb@E~OlWGL9 zFsLqy=YQIH4h*SA|Ay|VD^v-LFjB&w&+a0GOoPzW@N%A8$3Onip!G1B#PhP9V)%E&OyhIZrNYW z)lR5{U^Wm9CckLSq&FM>q5<5+$^YjjP56B(gO3NF9KRfW1vmP2V%~1M1eU^S{b*Io zEItJ4uJp^_@_i;`$v%2vy)A)$U$=LDv9VR}S5d#cRlnI>pMOiB@lEO&rNy@J-)Rf; zpU){Cnr{bOvw^8niboITRv?I8N*VDI6HjR)Y&H{Nc_a~S?ZpolvH0| z)XKEW;F;EC)d%)E{xzzZ#FTX@5}#x5GyGbQSnbjg^2KRZ)9a|rlM39g$_@Cw(k`J^ zcustnTZ1hL%kL~9Y={;}AvyE^FfHN_!ZAm>%)qeR@xHCgaAV-dS)NM+7@?GTF7j}! zcVd%T@Jr(XzT{tgF3$(Vemzw#6Phoh8tq`$L?K@)a~&=et`pA^^zK6svhA%3S`jWp z&@v|w>R9pLHziYYaMqR_g!tyG*Ic8XsyH>>0+mvTI)WA)78|z#wE!r_6|xOgy=r)z zB&{{9ac6MJz(?%x&=mG`C-wR%Ii+YpI?-2(y5H%j_I_w}+42af)u=RSGhA_T%jN-U ze_$%5c-Wp@jlUM1ro*hIGT4=U`z}>C%Q`*J>D+dFdsWZE z+uEKDn*~}3tbHeU;kqcCnuF}=-=i0qbI<%Q8IK|6o!{SBY{uMb(*!T}ypfhGlOy9j zv0$hE-Xf!LxzC*!6)tYJ{R52OhH@txm`({z_sk5*)BR^tf7KS}T9tUGm_)MRT2oWiiW|%Jgd71U$e!c-BDz{yS^WrQIw0_0z01?9FR3=7S>ynko*#4rPEuge=L{$%QAo@|36B#O+U| zZG`TVKyXH%5nM}|OdMTP%DcPQJ~8)L*LCnryq_@vNlB?Zk-%1((N5IrxoxCA`B)?x zx&{myv%3G>jvv16ROFNl6(p`+P(oU}dcfYS>@DSg_J48X`zMozdXJPdDC%Mt;4dzv zbp04!$-i5!UqLIICqhlZ!H3P|S;(53j&%9CSftI^KZQ9&KLXd2JCAOw`yWp-jHje6 zG~KWoR7MBm6TdChn@TAqHfUz+4b~s{1Q9mKGyKU0Hzm_381B)&aO=m}zeXpSQNoEx zJjyV``|xm-0}dkc}gK$am5&Slhxi#$*rI7<}Ymybor#rttR6dOMjPpYM5N?eEs? z=$5Yn1FpI>?Q!cI@3(u8{EbOo>U?N zO>Cu=9KsiNX9vkb1r-I|+Oc4uHDaQ{(g%Gn~g^GkWb|1E}WtZX|0ZHt%e zl__nq&X{S=r;LuqH|*hzYi_=gxAo0~4q(e}Khd=t^%##bLY}%&uf+XSuavdFF0dAW zY2+}xbj!2E=1bl7`Csj9!v;fBw;K}R>LB5h!RWO`!3q9}){d9XDfVSduOA=@vz$q= z5@>AA*_sSJq^AD$cE^W;ivwIlMnUkz{VfMyI!=Z5zWRj;mY$J%Zd89gZ`XyydQlK} zpYUAqhdzJs;Zzo+=Ib=ej=&~0fokz;5YWcL(6y1(izN>5Jhv{qei}lFC_Ri*`+=V^ z(32?LxK^_K6*%+WvlCLutJo*D?7(cFVr`uNWH>$`ilub9V`B;N?}E^A}c3& zA4euiH;d?$>Y9NKcQl3>Gvoa{BXp=ocRgKs$zgzDSKJYCZgZayPuZ4bf{H&P$4TOV z7@3NQYdFZzZn-y`Zb|9mi~*iCOxU!oUpc7P<6bq=@bD*FF=HE$X9wg4u*zG+z6fUf zvAk7e`cfhT+BL&abc(e7YRRWcNt|7-7!Y8$SbY&+BiW!>VV*`xqWI@$4wQsl0 zUJDW1`{;9d+VOumQ(`Yjzovroq$;yQHoEZAC8T3fV4FJyTu2X0uTDl=t%Fs40qwzC z-L?lTKO0ZBUobl_(cSL+;&_At*Zd^`LWpgI2VW~Z?llzkUdzvZ`%qURdH;X407~EM zwz=G-Z_@RkSai5@nI(Xy0{$-!oiW57f9;fp!Fl$L7ncUG)!3_w{{}Ko_WUboE0tvp z#|8C{Me<&2VJ?mf1v+wU+xU-`i*e!>H{`en#x<+JbZs;TDymQ7c!68PT-xGBE5=T@ zRMDcR+4>bSErFVsi&C4_Zn+`LXfc`CW!uNE@LHTvLL6AHAA#MNzi~QIYFhs5lX<-1DHfuwEslk`Q4aXe+;XNX1mCoIhn>Hgt0& z#1U#klF6a0@mh}&`SRnUNlHgOYoO?lNEtRbg(Y@=ZqH`01Kon|%YXND+E_5Ikbq!A zqyL*X!>h47$#PWe3@jqu6$GsI_qg$0V%?N`rMRzCp)2_C{${}^W3U=1-yS<=r7e)r zoy=P;U%1rEy1yrR)MByFqMH@>t};vkc3Zz~f|kDkIOM!*u){6MI1O>WCy|t_)-&bl zyX)Lm2+zk9r2;6~nVjdZB_6ojS=1DQX|&nj@iXf4ww-)86(8kP2D1Z=1>i78*U#=Z z_S#A5d#B?KFt;}tAI(iZ9jDD)@p8g;@~kzJF25sB4b*m9YAC*C#XL0ORE4@qc?WTr3@6 zsYuJmT7)83RFtzb;EEdKpZx}9ZaQC{h83*q5pl_V4v*O!d4H`PY(zn%Ik%{&Nh+^i<7nrNHQTyBAFF}CEWx9rb4iKMg! z#%)yH#EM<`mzn(en3%EC;Lz}k)^K4cuw!*N*}=!wY~i)0v*RDe<<4g|;+f&YmqCdD zO;5h9bwtVs*5L@ptYduWrid5!ZS&2bH0VQP@mLLRLXni7yAYVFVMlFb{MvhaDF5^9 z93Yp)z1P3C#vlEK?n@EDAG$L2dV9T^1jbH#$+3+L19E^;`Goa5Kc5_W@crv)`pHne z#v~4AozGr}`+g;PG0ME74xEb;a9W))AI->5)EB@WD5)D(ER5?4L)UpM8EbC?{f~-} zQMdIg7Y1qi5twG~J=KzS8*Ki?s$Uudc~S(n4l}>m0B?~d?sO;QEs7Opz3t1M=2I1K zExc*~mNPixT0~M>3I4?R5Me*XiK4l=$iAa$sqP-z#K17^1&$z!fx4_TsQqe;f~w-P ztjxi#HORKJ=i#Qpx#WMEw58?92D2cndqz+=lfc&19_XglNTT+!W-;r;BTW(jW=AiW z|2}EH7mD(kD5K907o+LXn+25#M8CAYA*=|50#;pM+pM$H%g2jD);pbPZpCMu7mu1+s z9I17zyvIS|_z*^}_G8gnx;@(dyI=5RquRFQD1%B>8eAd}YcKP~a^W+{h2Ksa*INgS z>jY3nc;!m~RDAY`|9r6ATS>2AKWX3&kP>>Bz;4Dzg-oA9@m7g{xy)>I7gWFr+-G1I zlbEvt8*j(e3%MeGlr?y5FXUh`xkL*$PaD{{W1x>aGD`#|?YWJ`>%Ie%}A?z|}EQ9_Ez z2!!ZW{5JN?Zy`yid0K_ns0BWL z{Bf0n{yvNfQR*)L>2$BQ^H`>!TDNNwNoCqC56<6CW0v-V@HiuvEe~{0d!mbd@zy%5 zd~=LqfViQ*_6{ayI_UZgeS%9X-jS+&?+X3!SnVJ{M$tklb{ zNfI27>}CeTxe|eayq0<8ws*aVjj*uao@TlzNP8y<*az!QD%QMyYXMo$jkfyfTIuxX zkhhajGd&9G*Jm3H3s0|X-p8;OPp@Ei)RhpgNw5<XU7^-~e>;9NFv>dsu-1%+3WPWjhT_&>_9UB%T<1Gfolw{XV(S`IaP zm`kJCiC64$%K&&tT6TVbREiSti~*j9u)=ltUx5)nE7O&`D%sx&XqT@vyn0)U&F!Z- zhDEU>0}JyFXjs$SI^CsuB}>8xywMd1OU-linK(c2|7*f0EP$S>nH7=r;&Kx6d_l1z z24!3X3CRFZ9E|`xBN>A&4pwh^9eZ&`mXWcK=ICPc%gf{&U5yx@uLzGDyk=%8fY;(o zP5lL0QI@=nsHkZ{Q^6vD23bG6{(^~NU}2_H?;dTPZYh|clmx(iB!V8@i#6c=<4RRV zR+1oLNsR4}rK58)VEOtEP1>~;63ngBxt3?(J9*Wi(6BciCk!^6M%pe(DVDL;vt-N{ za!?3x+3{J3mIhu;lbRL!=+FvP#ltsbFh2g?N3+qT$4~o|Io#2GT)^yz@hvTvZCcA^ zYg@b6uON>qzY}P-JXw`T1f-UywV_HsDM=Ay!bvF&s$#{V$3<9fxR?BEdC`>2;0>R$ zXN|10_VC&6A3kl~MUFY(O_KpLx|oeHhQ~Gk8Ra|5^IADhGfMzKvr)a>8~man5~
  3. `%;L z1c6l&24n0A9jM@mr|<4TK5+KE40THi@uU%dcoE-KfkDmmNvD;>lOrAWB-OxFiUSW| z?dhxIsKVu)$Fm=li4O_H=`b=+cw&k}W5PLI6F?5_^)K8VhW)o#5}Rd-cSlW6IPG?c zEk?a&ShGnbE~3&N`gz#FaHghHHQ{u($sb8LN8;fqSpYIAg=4$-2-}-u2avnm0VL+p zStz2JVv24+w)_YeMoU``5~su6P|MV-QGE?chgIK%&t>Uv15TM=IB^FM+qDBOQI5NSFb9p#<*+naov(a3!0sUj_wP)5+yMlM zAf$135GH|ex#I30OdR2Ir-Ro9eYBlEnB2jgJ|Y2xOBoYCjt`$s*yzVz_hQRTByOA_ zspA;Cf}8+TmY?9ALB|Q|457ach9zuSTXZi=nBfSQHMT8oc0!#c>7}$4QC;vdV_S~t zVk~*o1dy}oSAOGo`XOEc^W)z+nZEObHUY%Z*X``Rc#3=Q>60f&0Qq8i^3DgA2x76> zA^}7@fB4Fdekwo_N9%dew8n9HY>pWram7=~mDA*Taz*9VPX<24G@3gGrcA|>FJGjC z76Za+cetz*U3*y{6HBz1b?~Ej(&(c|S$jjMxvvFUH0ez}YxJ=pY+=B(*$DzYkw2ME zw$Z~?#X$byn}ll!eclLCI96gSEZHGe@ajY%q>79Rqc$O;CAe360~IRqSxja+NYDUQ zecJJ(!o?G|a+YeEljJLwnYJV+`c^VOy!z!eB*x+u zXuB^z!1aYh=`x+&_2_RPXM`iXQ(|Wwx89%0R;nO1MXb?>GCi?vrXI+63?~BX%f((9L zSuPC>0F-DZkWX{}oHD0Zsqn25Qq)(;NnjOb6>l!jZZ&ZaanW+O3(X!% zK$pVPm>er0)#Mwj{OQY$K)uj8+E-;quF0MPCweZ0$+V?<*0YV=lD=EIBB1r5UpK^O zDNLrVs#8~%S$FMGSHAvM>Aq<^#$goO9G`9a)W@=yy?7jTed(H0o0dq+?cVzJZ*LQK zjoT_2#as6bMnE)0L%g0Y{!J(q1H~l!EMBHP>pEkpxMo}1#F&W@eDHtx(I?ZBzy4r4 z!D~NG50Cx9Kc@QHe(9HV{Ynl;%rAXm&?N-ARc8+4hXgQmMd@b+vn#9%ng&l60D(L{ zMCCu&3l7O0d|-yBq5hZt-nQfqd&=s`Al&tXJ4Nj9)i0I+5{V$(IfOrqTOV-7(^5|W z;nPb#R`c(cHvSH>*p=juNZ_#EAP9y7&32}Uc9EqO(pVZM+6-RsN@*k}eN$5biO2Wtx&bDn{u;Pp#+fk z-@z+j{xj?V@(1^)!^fV?VRL~?6}`ZT2_Ta%RhGoT1P~^FFbRaOe%ZyVU%2DP!AsM0 z{{iYq1mTV#q}k3O!XXjFb`G)R6YDy=Z^;|l>4T+`K=`^BCU#>4grqO~w$TliOK`s*<4%Mb+yyYBGC*FjzdSbUS5cCYs&f2s1EC-nW1cc^2$a zG|dK4#1Jc;_=aK{{Oo%8H9~C*OSG2~Ky+_&MT%c|7Dc#O3prLPUeh>;-?w|bwW|?{ z3D$~NocL|2UOUd`vuKV~+`N~f)p(IIvyxSincJ>n^;rrxk=q8l+UmKvnh(7G__>RO zkNvlB4}9ZQ+!OchyD#a&)rj>SRA(usG&8tS9 z4KY$xn8Ye}Gi{v@+wwbiwi4GpL1Ru~(ad=`o_Sj-Uji!_5wKzpc(N47EH05u)4F4{ z5kO$AVQd#%wNm@%w4%3Qr3hu#B{Fd%I{8@#FtVzpve=TYLAe?$jag7Mm6@08&d)x` zmdyfVhmPEjtOE5-6F@vf)hDwRajVo?qZwk_(DEK!9mu}dV7EFd`nGl(fvb(cZ34*E z#v9hOI;hMJh}M_Fh^{uZIjw$~onyAMDcxC5u8YrdiC+CGt6^UA@(O9{Tu-a5ZOK+% zP}OHGz@;r0#V}WUeGXFm*s3m$v6AqzZ_Q<-uX1WF>uBre$Kq8oUjo>kN(CK6a zPcbcwjVqhZR^SK}O+w;{uD1BO>@jK+Be_h=vbXhZBaqh)%4%+B zx@gj!d7>?qy4G~<5GR^s#Ovwe-_%lZQvCWh`z6{YeeC0N@wn+a`sKZ@wu%4J80B%f z_?RqNd4BX9qoui=G0)ml#apqay`HAFd|{#ledojeqmQxu{3oBI{Cqllf!(0O9Z30V|F8lEF4Ulx3B^p>9bVR-zrrA4~+Xf6TLONg><; zg!Q}li+dynL=uQ4f^hc_JbAU9Ldq^6__oKy3_Q(z`ZRU{L7W&XKA2!>W6tkK#912; z>-a6(zBBpGAO7d>Bqt1YIMQVeANu$m0sMNn{_@Hd<7Eu%p~OF!J~mdK%1#HkRIsTKs}P zGSMiY-w|&nc{M&Yz%>oaKETcxFWsN^-h2&z_55(Uhh0GK;=xyq464o8uGTs9cOaq! zkPqJ7nSTGj*q{FCKR%eg{FIXq2m2RG8i$1ID%)6+ECIxJ@=yW@T-`$wh$n#D@dOYg zg4kY;7tNnaRU&l_L z9O3@^DH1?%Fa8X#;rap@M7%$2u@gw~U-63g*}Mad(^7m*rbDQl*M-FBdeJoXuGbgy&5Mq z;|<$Ey=lnWyTHi4`px@7-mQw3)R%C(w8_i1*>0F@!;UbT|0Fku6lbCw8}h<=4Q`Cm z2%1%TJ!BK3AEU%dRgc11fSI&ON^t>o>B+RDV09I4nLeTv@YNF6mTTjU!Qgk>-Ti$_ zhCTSkTeb@b=YZzJatG#Pw2Zw9js`@2sZHA>TIZ7{=Bhc}iL7caUPr5hf+ug;R4+1Z z0~OaAqIHZ;>N~DzefwH>xudzXjoXr?jO0b@+at_2wno^IjS+5B+BWlS)m#*B zQ@g~;_9_|0c7!Qw%4$$6I=IpG;w$xPJ#4kcT=3E9_0{FJ_P8#u8qrSSusOnp%`ht8 zRm#p#oxDzc5?=CUmd`p>HExmsQuS52qPvhr{VPmV$X|yc-kqKIg}mG2HUd`{f!hR- ztBZA5(n_UL4ydh?^jsgc>ld>64}e}K%WcCGRwecH$1<9ok7(voFwXGc|KzL3(=i@AJ$d&-`%7fzU|d!L zh_0d%hp?MtSb41R2L?*vW5O&`n{{ilWU_~sp0wgmRxRO!Pgt4w5#Z7@Zp>-8G$t!*6{;;)X{J}N`HEa zk|rn@JS!*IBF4z^aLO>)nIj%-2a^cLh937VXeLi2{eUU0~;L8vjRG z{H27M;K?dZpiWn4<75dw_={J*`eO%A(Jc{(i9%8oqV&MVz$y!;V$VElKr$&}^^FwT ztLkNvTKHjqMI$;NdWe;2tP|h--WU2^U*%#mmwuVAILSmK zZhYrp<~OnpZmA)q7zoY>?f`S}&95N=gs%c(!WY(o?2zWelDO>k=?HN5f`r&&! z(;xlUd()r&(ZTfThj%RrgGm%j_^=P8`yD{~1Q0y8vm}rEFCziuCA;!^cK)~C_ zt{?~44TP_PVe$v{vU|KlmH5HezSwRb+}Q&OAx!YFSHDC82>DF(u!IrtEHMN-fKUhN zwp$1jMMOJK0thdE1kgT=TGVq%qK2cyS~$vZ;_whNN?i|30HMEce*1L#>A!wB{rGR4 zOy9=qUtWL9cL2FL2_Rg9u?q;+-ILG1m<~Vq#1cVxZ?+h)--?9=WX(zON-}&+jL0qx zrub2^Fib3RVmH=;N1WE*x+YRWALt4N!pT0{{M0rrbk?FN3=#d2C4?(95lpW)bRX~a zSQ`_uh(x7&IG2#FEK_V(O;&R{kodpGs_NwT9ec$aNYp1iDs_!ef;8D?yBq?O;HC&P zw&Gu~xssKWE(d$M@myaSSo7AE32y#5sXK>kqUL*6BB!c%ijvx?t0aIBr9Mlw+DXIO zDrC*)^T@7MJ_m5@R*uJ9q);^OOY+ivmpfoRLINc2fqSoW_Yd4KaPYhA>O+BCjk-Fn z21S0UO%F!2P4oJev=QbVLZ|*3Q9{;`zH7Ey7;cS zqq($=Uy`MaQ88nbzwNhV+cf^j>CFJL_1&DYheiSyNVn zT2XzmO4MH5mpnweXHZ7#VUjm;nGFLm>49t+zo3;qbo$0kNoTIpv}8-4N+QL}QeJmi zVJi-P7E@7CALdGcxqj^$ zOYei)m*uJAe_8sjo1Q*iqj`FjKKJqNuY-{G98gF`Zy15bIz2@8OZk zIZZ!I#4r2h$NGF3@!r?8T}_R#Gp$Xht;rLo0t@%9(ghc-^fugJrM#70$(D~Q) ztn>S#X$!u^*y_+nJ;0QYdEoLs*U0lYnONp#iiH~@NV1VW<< zbHp308YFOtGskcDB_x1g2ar2_rv{#mGl@yDX&yF(SpVJM`zSwM)*YkSkxwnv`VFKm z9rlr~t~%sbcj=f&>anYk3nQgHPi;yHpJ}df`Me-Q74(^G`CODB0LC-WHpYsE?JKyx z%o4_W2MJyGUVk**|MuI{9uh%p!f8+zG>^L3)A}}5iN?ATKt6hZXZoN2`@QMU|EIm_ zqjz?v$6wsBqzp^cfRmiwB>@D>4U<2(@lbvR%pQ|G>=iI~rUy&{d3a}f30*14AWRCm z&)2_DA+6VLa>ox#{9wYyG1hb>d>lQg2^}X#z6*$U31RXCU;Bc~eqvHcn?y2B0O5MZ z=ZH+M@MVwJiPx#mE_t*`D<3+U+Nu)(^85%Q<@ zx4->#dgV37#9wnm`Fd~ZwOyAsd*q!xeSA0_zW0%RPQH4AT~1CAQ_OKDvn?Hp(+UXH zlU*%^MG%Z$*4|`fL^C!ea74k0J&!T(c*N9ImTlq+7Vhu17!8LB5Exmo2pDDj~l*eP-nu101Yn@1s93s5Ssyg zJ#5YHb3Ja;whyq~H|yNqOqg@b;>5A+I%m8X;~l;V56K_g`Gc=P<8EkJJi>@YAQ|l2 zQry#%$TO|VzKmo)dY&**_Vc%6Z`&M=kFN6(Z%O~C2bs1ccirh)qvdB_9ebWIx8>zW zKyxWy9X(C$Y+ZQqmfDmNCd;p@_xjf1&%@tjo@rj{n$jTk=am z9?Q5f#k9QvxJ3LbsF)gKgT3&5Aor#CQ7Tndy0zq%J{0ToN{_8=VqIgUc{}SBuWDX} z>3Dq~s*-YVbO~qFIg+X5MZ1u_Qko|2E%}>6Et>Sy{>j0rNj_AJ`*wT2jlfk$;5Gr| zsw1wuK`H5g773MdYTgz_%ZU~f-3(n)s9w(!ojCDS_Ofc{vc;MYEh*`p%gN``m*PXk z=0%oN^_O+Yl}fC_Rc}EM-W@YXi}m<_}Ip3`LRqGA4P+jAEtjt5sZ6uHtAt zh(Kl9Ww@>QUxu#hsH2aU<|uvbc~{|oAMZ`plqC#zPT=f6{`B+d@n5|+o#1sar+6ZG z7JojyRsZx$dHkYZ5M0)J&sY$SmAulE!q z$Z;;~e=1+)LN!3PB|M*~0&j=eVT}YQnupempMX$zn)A&U+AI=QmAGLoQH5iUSHPTn z`FJ|PL&&EXe~YL2OQq~53;%vte=L%JVIy#6fC4#13u)u$Q`QjT=Su)F!>-xp z5vuBCvDX+Y)DVicghtp*>%?cxksg4kqWIV8^SS0AC2P&}UN!*9@>`iwc;Po$W zJev03eq*|aWFQ+q%Th4N@HFaXPwU%MBpT~V0QvNzo#{{hXm|Q&|I7aL?!UY{eHOcb zSfU4F#c5R%K(N#(0R(TMn)taFyMOHCH7^H9^k4$W115mHGEFZd{2_J$`Q!`i&h-^u&xKC1*XlUo`B0n|_>4PQ`VcOWthU^5 zrMs+yBIGg|GsX13(rD8rycJHDP2z+VO`6pjnL$|vhQ0-! z5OL~#zy+&(KZoN!447kheH1MwZ1m_Gd2APmtFJiYNj@i@Xkf zuT#53r4UM`+#3od=_$0fQcabpwg9w>3s9F)racoV*VarWGB<&aRkCq2uYx_V0p2z)H3FJTc{F;O+A_Qe zc7&1qCZ*(i+ndO4irHkIX2kvQW?pt5jz3me1-NwTPzCk?*7XocySm?8j~WHUd`{0sMQYPTi|B`^#)e ztFB7LLT#0#=X#4P!&cU*7VD!bT3=?}BVKDut+te$Q|JB&9XKnzE=m0)toEw@N?R^V z*Q4S-xHjGFGQO?PtrmSN;!Yh^GHV=DGh#{dSzz*2od7OD(Y|j~yi;YKY-db6cZArq z+$0X0>Kfsmwf>RKC0h1HvqvG7iL70T;_?UawIR_ZP`aaU%0eZEww4vV|rbq z_PXoJ^^PQ89GYT!(H@OrxxLPO?dV#`S~5S=uXjDiSo3t9$600_mVCuO-xso+_?h;i z)whk=v+VyU-Wr<`kG@#41VHv07$kojeS*)&pHHVq1Telm-L&dPC)&~Xs+nyOpea>N z?>vtDVF1^oK0x`89HfyvEovg6{e)RBkUIq|+50rUl6!mh^)JkW>8CIsXdXp57XgegcJ$yG98= z*e8Ej78sBX8~jptaijY8dFk-d{RyvF5Kr4EEpFDQP@3xI58@dqItVk#{xhhSzs43mk-X5&px>` z{qO(e?(~2D$=>w;{a^Q{4}N~vUZ=w34tr(?40kNzZ;pK96s9a*KUH@CxrfA$y?wmu z#dZLhrUy&{iNueGuinAV7CY0!M@$I0W3PZ=|160E`2kFZIDGtcdV-Jd0^+-U9HD*8 zSHBp>6F`o!69|(!YSIY#HL=590Rw$no-6@G{FDIl6cdrx2|r2-=@USh|EBB9uBpJ2 zM*qn!2Wh2|DnnuNXu;lKIfC& z&k#Vq`sEn+-=hyco{oO;(RBI*ujEn;`h{qn&qXc)MI*^WWK63j{izxQ6W}D11pOi~ zf=&+f`#8rT=uli#G)4w|sajD|EkD#*^d`KL=WLT*eP@%My5^Ru1F>d%24F~$0OTIxRA7yN&CKx3)0uD;4RY zkgsmCX67rwHOi-+KCsu2lJ24220Un-!>-0N&ns#sy|_Obt1!PP&tzTPgmzzj1^2)= zrakQZv5RC#?ug~%BWDNw(6}3`ctNj5;47eIA2u-8Ou#j=8M}dMLh@KG#XqZ3)Yf?N z+@hO(y=XnH;^>ch&MS3Y@8^~!e;!$CyQuu!qpPPVf}2E7SbDh$eyKOo)9VmD%N0yi z&T%=JI_VkN$o96aFU=jz4eHwjvx(g$JtNssKl8d`G6m$($v$g@6*sl3t&Db*-$qa` zdMkSPeL!sD^F1iZ)8{;YN~JP8AX;AvBf9^?!l-4fsl0+N ztCDzqN#ux@>C%=<$vDl;1g-cZe9((8)nfd!uXs>7l4aT2%A8^Q)#4B%1r@eIZ4=)&P_q(p6*g8nkeJyQ z%^uOzPViFgF=`Xg%Vl0s5EWrpVS1Tg(l#b}iB`;QeNodFL$w*95p7-MMwd)~ZH+MN z^xhPgG6bXx!<8GT_IPS(f%X7?w%^VOf$t{0Z)kweeIIhsR5f)0UCR@pT^n zURV6^L4_xOSf$WWA=(7(do0trAN)|D-C7HsKKO97$;dNv32dto(Ubk;{KynvN zx!I(sDpmzS-B3xojXie&!T2))pB0XoGIZmaDY>psLc7VjSlPKbsGBYN%+0 zbLIfYH~3aUYs?|jU!D{J6FwMO_os!ht@ro8ob!1s+C2DU1+M}|UA7QQ| zjq?;qYI|?KI^F-)Thrbv$N;beFI>|$NzU)ILb6T+clF?o6JLCGXZnBtkGs=9|MT7H z|NgUk)6f6;J==X_7aP)WYWW9$sm=iIw0*KMDONb|R z#I7ND1q|_ATSz~#SHd8AXv>Brh*;7{>>hH)Ys)d5?%EN=*C)_PBcDNxK$be%RwoM; zV+%6~wy=2`6HY&A@4LTwJpFtBF%m%jwKIz;lU@8$b_rW^f!94oZJH8|^=or5u@M11 zeE;L=@SXRklh41jq>wY)?S>O+Lr){7hVEs=>*)Y1CRz?PevRQ?PT)c>m7=fSecXRs zHAQ7{C-le%P89Lxy{&ZJj`WR=ny3=etk ztE8&up$|3~k4%?;j_A$;Rk z!jAOZ6q;5nt!wmKv~Btz`HRS&*Y-AkK1;0T!!~ng6YMIVmu!ljWs9w-obz%j>+Z-# zwzqA4)!f-+ehIUQ-Bq@F`M#efTY?$r0&+&{i_@w|t;tr!2UhE0(JLfM@e;|Z87oZC zwC3e87p+$_ZudTWd!$c#GjFc5?PrT^c|~^6zkVFG#=A`Gv-~Rh%1o}5_FF}zSN~v9 zv90Xe+HC}`Z3J!;K(2gfxKe4gQkk6)O{I9=ZWl4<=?1|cs{Ft|m&>Xon#xw+vM)Ve zax5#am@#&xTT}iRx#M+s=T;0CQtv}cGclaRYi_vN87{=REx}S&y{xsjgO(=|{s>Vy zqN?&)hyN=u~-ET5Y9@P-IU5hDyG>_2aJ{LV^V(e$tCkuT!mg`aHYfE?b znwmsEpVsqB^>(vgJ&#t%AJN5Q$wQb`ct@^2UsQgz_7{zN(JyYi{+6zfa&2j7Z)oro zqk3;)pXNmonMV4vI<$Ud{dp{OnPpnWF4kjFVp77%=U+{afBruH`uLOSjPDY_y@vfP zebg`B`rg(k)iu=(JY)(d&$S@7eml`=1hdUjv5&_*pwlO^pW2_)dz%FFl?+S#h>|;* zaEA|+mJp)X!RSdW9^&p89tj}SS^9-WI?OuaLB7U+!b3=YkE}a-fXn}FAgogAMl)eO z9i=P{IBuT&VN3#OA`Y*(E|)9cIs;R@HoqK0VbU8th?6CNVD}G80D0UdfXIfaLuwz5BDB>0clTfzj(<_zD;$ zfb25?Anf#d{`!>{TNAjH}$VECFC$SBc6JA9miW_2czAc;ar9hCD#5bhG)^8Bj2C!u%Tg^RCdJNgK_a^bZwwlhs!7VyVl*B!gaJ zDs@39vB`j}%kTnA7$yB9xqMG>9?4|bFCaEa2n~6oLpj<`spo3aYibLjwp-zO#kkUL z*pOV1eBM%43~G{lrq(=X4Jbd->}}=1wtHjXSV)E{&8B!p@J2RAO1{4du9EtCyem%B zh_lI*SfiEcQdr8y(?VrMu@bRWBRO&BC1dL`bsuxA!GS>a-D0aIgjA(gvy=!~PcvrO zg;u?DOcAO{R~E7QNNxt|2`YmgE!kQmV9cz`+(TK@(w#Dn|oI+ME?XBq-b9?g?9WJFOViDhntUMzC5-e7tJ7V+@Z^x3p(4>( zZ;sY>!-}|#5o2opQDBUqg=Nlap1gDU+$HNO$mEc&uB%l1j3+g^kGVQgsUg+dYSq`$ zy|pYiLT^vY`sKW|WS(fxx*XZOh+kQDqP2duH|`dp6e7iab-ZtGbvWEB(_i?D<#s zVnEkZnk3-eNk8CA98{CCXI-eZ{svDSN+tc!4KGB!O50$R2k9!C1?cdfGkec>J*F0S)~eI$K6nD*Xybvi&2$ld*YpNov5 z#(qn`)OCrC!j&<$%m8$FcxU?T<7xWY|FbjwlRwy>{@EWNARz-u9oVgdOOTc%u2UuN z42d8m0R+2%FbQPuz+VHy1dsVV4l_*hMC4oE-aZA5W0% z@q{~oSR#kh_*xk5`oUxl;w%B=iDQ@m!lVx-Yj774O9(-mVYB3qNCe^TAC~X|9j8bD zVIl{wcS`^fEdoMWCWKfi8Uk68KRidn9TnJT`D>984G5jMalzPp4n~?W5`6 z{0|PN@Bg}MV@&cL96Y7jHvU!;N@#L@Gn~p#K0x>TU+q?%^qy*8$*%V0%b&oD_ z6CmpmSki$hGNJ>A*<)x+$V>F10yL@ae@@SEVXEBvn*1sEFo^WsQM))1YH81XFW)#; z8w>|af5TSQ1KSbYVsnMY>~jwjPyMqCj-dG7Vt8JJ`4F$CXG|A_5p=Gmv(xDFM!w&b z?^Z=jl{P9y4N{h;M$J*ySMkW_AxxHY&hq&@G7KMG&b}{OI6ue69}DnZB)jgv{l;|g z^*4Rzk9$b|hy=1_?R~t}mP8(ho+r#@l_Oi3MmyPup4a)2C+vKpI#_g5opmF0!PE6c zh-fYhZ^A}T7eANMp1l@LIPrSA_}8V(Yja)Wy>YG;`xp6JAm;ezf-Iw!jZaMb=vOw)%%zFdW;AzOCOz;QB-WzrEDydwtw`Q9a?3 zsby1T?yG1j#q+k^SXgb=AyAFo%TQJ{m6^7x-t*YbN7YB$dCjZSsbXBRZ6BYSWLz>A)zwlJ@3`EhzMC44 zmJYdWLLH>yLNAqSF4bCniDA{%vORjccCR}-Pfb04JMHH~k8Ez^*J!3lex&<6UXE;> zN6(8d)2=Jq_gB}Wt`TYwZF_CkS3+^BYdqI}&0F`o+@sL!d83|by&`WZX4%9Nrs~%9 z)B5Fn@hbX7s4>nOlTBj2s?T{mgj*kTA#YBZVgo&+emu;R9z5=IrKX%vR!9;7CG{DVjQB_&O6ekmUKax8 zOfbm{g9izg`0?Zkl0UE$$l(dxJ$1av)$hAhX?o=a_?Ea5y4@yGI^0{gO`5mGr4h-H z<1L=OVWMUNO3bu))33y4ozkBQ~RU!Q`c3GM>&KmOj{ z^e4anVEXbiBy=EAfy<6?N&vB?2y{yTLGlMn?iR9#*TC==sj2Ik=- z?gE0>z`WrJAe`PzhG4?S5t2IWgJcgTdT{e5CVp@S5WL+9yEz5z3Ft?j>|wioK=uR) z9`@=NCWA2P13FnU3B+Fgf_2IgLeM^oSHD>DhtXq4kO+(=hiDm#K(S~OKj%J&s-z~1Vi4$q9V|S&-fqrd2F%Iz{%s;WkUuXJ$k!cy5 z>p80GQKktyihy|6shqEiWi=~q@`~2VTZk8^T(-UoxMHH$&7Y6VOtd51=nY~aeShkX}We!nK0@o_g*>_VEgaEaD zab8)Is-o(`Tw!CoG1$pVZ(b@zs|MyZ;@zzKC;4UB-058Jb$9&*Te@vUGIq#!eQ7ko zxn^97lHPV54^zie#Iqu6t+5dez1Eh^<^GQ(Z)vv?czzMMO#r#F*lVTg%k01s&*|+= zL2|(>i<{^ydwqR-gcVI#wR5@5D?ZNrnac=U7EH*9R;{&i1#1B3l`rifBpr^`jY4`< zRtu_0PHipunJ$_znJ3zEIkG*XEooSfRoMIQ1A1RNHP3hw%4XHk^(G;;5h!clur9rF zhGL>^sNzy!y-oSk)3dP=Ml|7i`OFtjG_@uByvpn5&*pJx*N)BQ)**HI^w$;T#9OE1 zrt|yQmNhvArKk0=Nze<%Enh2|uZpmEnJ$_zH>X?|cg37N>apAOvLCB$WN#AoA~AXv z{p{mDx<*9nv5h|j0dRJ5Y7d>B{Pp|O;V(W!`^0uwXs|09JCP*9D<)qxyqfqidR$tz zQwMcLJ5@-H!Hc=2JGJ_Msqx+Mv)jsyZKu_O?C zGHWd=^TTXFjse8SzSCJh(WY$$HacugJoR*(%Se?)fDcdk6qQHF;PL8AkMp6$6mln# z0+aH{8}T({&!Vzc3zmrg=#y1AB~kJ$=dWb);i{?i}2k z4)EHS``>&EJHPDvbiG5i~)a=x2px#LKu`m)f13r_;wD+?oD||7vgg z+6ClgB!BSp5;vG3z9aN{9(x)OaMVr$dkw9ljd|{nHa((3GUP(8NL!G@A_eFE=Rbw zm;^$d%BssUEE`OW{ZitGmHsPeP-P-0{ly&ku+g;Pl>LjDlHqnspSZ-W$OJ#3+h#NaJ z7HzTgi62s1PBqlu_bLbLNOX!A*MoDS5gSveiWMwKffZA>W-^3^gCm~guXCxL*|_r+ zcfHzs)hIM7ki&a3lyjWL^?cer#e(*ey(tChX{0S!IMAN!58b#1tvzGXHv5iqgB|3 zCq+Tbyd~Y6&^xu8hzv3PxQ)hBG%1iwrjKaC&q@U$Iw9GN6C~4EZ`O|vq-KqcYLF|6 zYK^4a2ce1$DJ-(7Qr5$ushuGGtw4J7@+w*uTduqBl3y)LY}?nlUgt}X^b#jp(Xl}+ zG>%zMwJBRp@qcA_y?R+|RW8@acZ}{e)z6GmT~4plEBtMF8-ZsNf!hR-XA{?fR$cUc znW0NOr{{B(k_>JdvlUJ}m6TFlr8KQ;3zv0dT7T1mzD8x!fMC7F=^o|o&vDs`u!Ux3 zTt>^OG~2>2ffAcuf6ZZCaP5(c8Z}wzalAQOQ z%B8Bidhb~WWKv2}bnDuGrO9y3yw@@qo#;$Z(c*$b`vqY_bgO%P4PJJiF&$`Qm#=)TFkfL9b-4}Z_LMolih9iPn(QJyyxf>v#N*4c z8FTt_q6n|EoO7O_8{1psHLzX-5*t8%21f9R%}%VPtGZv^p;BO&iLfXD^k<_ecD z)|Q9bH>*gcBXVs5DIH+Aa>o;0KuvBpR{cB-MKLb6jjZ^Qyx>hD6K+-2J0s3hel=0C z5k?8m{W(nhCX`%1+U#*=ulw<*fIK}}p4m@)7Ytv5>yS^!d&_jz2R+3^|5=7zDvzyZ zB7>BVR=P}b4hiHdEF;DMMQ&jPpGx{_W9WYoYa0Rd8jynr^9>-f6kGO@*oJEMOVCM% zsBmJee9R7RK4o3GAMPSC^pbO*Q8<*2hQ7 zp*`{A!B@Yyykd{QKhSOnoojW1n;FU3A{*l)ZaE!weIT1HxjQ&`wmkau-tsU0m;1}V z{$F2R-uv#6ZOX9IM4J}0#AuzeL$90C<`1H6mupwHyBT%*^2|16K3X2x zhRhRtGS}Io$Nsb~PxNIsf>_${ve9Q#xQ=sa15gC$87mn<+Aj9>l$2GyQh<{QJOT_y z#Sij!?GYyd1ZbO1h;SV?d6^(~={tGQcApBFIVPsYS-d-aimVT@a4V#awg%1zIDvza%HTM4#FcB_p&rB|bTH?|jtV(lEy_q7PXuj%1A54UE2)$*Gb zPhH0@FflM;Zf(mISYbwdr$bqUS+|Y)dm zG6WfAw|)#jn&d_!Gn2ukvh^WZ)wM1oQ{ABjUmZ02ibPig#GaQ>WYuPCC46ANZY$g* zo{qce;el7Sk%ES)iR?J!rePSz#*@K@i~n87H?d|dao@_;QI|e2Tx*DZ6PuHN9`C00 zo#ZY9SDAsk4Io#U&8=LV_+y!k=DKzMwi)#Scdgz}r>eOaBWgByZIV{&xpHe8W}7Z^ zsJ@OR%^NAGio`Y0G@C&olg$n%BB~QRRM%F%OrIo$&gEFpWtniuRY!-6wsd#Lb!VVo zOKfB~0rqrUPpvYHw4uqgqYlh%FUj4wPG42O_RCv7k3OI07UQu`{&S9*v&d+}hn)6p zEy>e3Z)vMvU|vQa$us$))xN2?zH;TJ_5y z38U+8kVVL<4+oOEqA&n1uy5Vgc1#1b@8rT(yZ{B{)v%R2eRtQdf_%;u2=cHu4=zV( zrE@n*;o%3R$B27u)-OHr<;W@N8_kJ%QfhAj; zmGpF%`)|L#9KUU^f3X{2M{mAn8z|DNU+VZ?-lZ7E6tA&riO>^3o;*HS{@`C9F2DEB z?k|7+XUEG=zJIu!*sE8x$-^H`WQ8v+hc;(zic0PqK`U+V1nIJ=H}0{`p^jy8PDvXd6I&`OKb<^4wpw<5X8V={nahsbS+{NqJ^ZX3|Ez z(+@sgp8Vjw<>V(H+8Ef{XRke)9waia2{TzTW*thRdJf0c*TyOH0c0Z5-la5~pelrk zmoROl>m1*O@+vWP4)-(FU8GQ(%NDfvE1J5lHMC#H&4SsVb&aUhI3ae)E!Yi`a|B$N zQtYFJsMQ1g2uAE9F1Ml0GS%Hp>5smH#L@EO7&Df}eWuA4w#CF6#N(ABzKVj_lj{vy zVY+xW5LYA6d~sj4h^l^Qy8`dO`$oO?9X@;*-)r}B=aHKQd8fS>$rXWTF(BK)1#@V2 zj-cCt1_=MQ;XIWb8JKM)nH+n7Jlleq=`!vn)mg7t1J>F%Ddx{>EX=EMp3zobz>uR| zbfXQnFRNq@R{y0F-8o#=I_7P~ZmY~XTDUiSCZ5rZoFebmlOn9T%41d-A}bf9z7IX9 zazlu%%Gnwzam`Hv5BBipB^6n++ER@;vEQ_{C>#>sb=Qf42YdJe-|IFecOvya2ukfX zSArv{>iXYO(lE1Hwk5uZx1lp8*NKDvW!+uUFJ!zZtTjns%&h!)(*-&eQS~Hndv;6W8FfrEO5igz=oH8sk=FgI#Iu zW%?v3xkJQ*jy9N?9GNg99=p5psx#29CHn51$6pC!#j@=uPLtIEermgToSXXI%%Z)dU>-QQXMkzFR1d%BrwcMMNI zeY|M%$5Z=@BkTASU*RF16795LUT|_Ktf=c38~P@0 zy@TnEdtr~GH)TW(sN>;8sB`#N0sC;X&raC-vqVIJ9_Ge zp8j$8>Xr>4oo!_gw@lJ4cYX#7PiVxSBk$|b_R?srZUD)S$W@j>hK}|OgYE^D3c=@u zm0MD|e>569`(LkndGJ&3E)VPx_<9P+phR4UR)2P8=eK0#H7jV#(E^GkpC$@1U+Pmh;xeCwI#qJax(6WsDz^vBm+zb-%WSF=6&(fj_? zCY~m>aeeY6Ti0_sX0ntWLC5vVO-$iBji2zDv$jW}6x)wJ=HkRm2vgQQW;@?ywdx&L zojOk^q|=_3pwZ>)0@pSlL*qk-eB#1D5W+Y`g%Io($fnBpq0R|UKxhTik6^@}U>ntO z4gqjCTKsevdDKcfq<+n)qhJ>hv|(F7R&b4}fTp@sjo7zcyROUk7`VUk#f6rIEX=FfJe$d4>{_O}@>BT@g(9zR{4{P4Zy$@lD4Ft#B?GVzZ-{aVB+#Bb26d}<0{7B|Lz!y3J0~{r>I97LWBlN~s?5yxGO`%eHnd)~+da{eZ{>5G^ zaHiM4*b_h$FL`VXrB3bH;z$` zo>C!bUzwi7@xgls%U}KZz2*1*#qsic|K!!>!}si|9k!{XKDEQKHrp+HHi7sC5PPb} zp+5!WxjhNwo;?X9?C#s<4{iGJveb3&Pn$q;fae_KH7nQZkt5>$sguNzPzqUEW0A3R9?L9oTf~N%Tv2n zdsr2#qBxW*z3u1qcg~hy`Fl^6-})b(Em1$i#xvWX zck~o_z3;t>HGXHW~Kqo91?`;g(L!>uB$?LHXTNSty2#q=QN3t z0iZoKJKt$<-s8#Nl)4DFU6;o0b1kekN>BkYCuwiZw<6Ecd_gmR|#PEvyM!olxHEgcBPFI@&LyWB_Kq(T#C{ zUDF%BpSUBzYMcDCCICcEJC|U$VzR+4t+Q^;zS*K1yOyzQn9=5vkT^;{ztp3 z^0jTYuj!_8PM4wtqqtG2l24r~H%!KleZ5EOxB-U!A+d9Bfz;W%y;Eo z23}?c?lyqDu zT6%Wz+4Id?SH%N6d}Nh2`WI2od~S(OOd=DKM8x_B=d&-L1|Ze%Z< z6Qd5fu%j;9uhrXmwT8Go^4$NNm)wJlK@N7NYnZ6DFWu3ejb7cVaclXEc3oubGXq5?b9fw``d{4@WvA9Pu^cin!$tS5my{qg(D zqGGrvXWH~Q5f=aUKS6jKWcCRJhz`qTOl=TCg)hgS#+wF538tNKCJYojMN^u);{b8DFLe#0YQ1$HB3jF zs@mnJ=$KnhCpT6>rn-kDvHLPx0rk@~vNBf5Oln27ah!yv*I$)CdSb5^uvfrn^M`Ia zpm)psQDV?05Igw(TjT1Wff1Gb-m?HySL8u2ePD=-GH6!ZrtJGr+-p zd-{hx0p!4*1aj}t#&YaOF>(G%L<}JqO^C(IHeoA;ti(W`U6DTW>3})1uq*k2r^Z!C zh`GoaN4H(UO6PMp#j#O^SBe#$ncO#On90UQjSUC;3GS6SwZU5kL>qjL?601W-+Fy{ z@Rctt59}2%I-YBHgO0Jo^MQ0IT_3wGB{~P%2bfWgK9_m|h?Yk^IpZfkT$ca)pByd! z;Gf@t%IUJK)! zLbO4|>xMfbx)!L?p{IaE9Ev4ks%^`2-Q;2W2DAZ07&ddT;lnqIm|k){Wk=~8H-HFR zf27xs5>o139X5bSzh!6&fh^NuMv7mXWZwM3+49wIoGrifn@^X&^WU5;Z-3#LkC8Tj za0{H z{L|(I$^s7GLg=83*7S3L*p+t*lhFNJ3FdhXaMK1!vk5z`(a0#dhT%BRO?c3aB^;8E zSms;kiWX2d97*?S6D)&Hd&+UX(`J4?c63pP!xUWSV3Cfl%T97I=;9h5N@3kL8<}j| zfq!^2R=O#l2`}O+bMIYOk`;^`Gj1y+nnU^?bM%H?^X!RN_iY1+>IcVmkuZ`x$L18? z>!KQynRRpPtCteP%s0BxYsRi%+Qc1=x3;+!jCn*pGX}dAGc&wpGS*q2XG82w*DKoU zs_DHlR=vrETf6w$1#{s5219&Zw%^S5S@za+$Q4qxqf(UHFq}S^h$rLKzRYn|ynE-i zIIibx%TDbM<5mSbREUEd<^Exgj&?4wZ?a$@mi~JbC^{4E8GnnT)f~O`I@9ywO(knw zH$S#=*}O@CZP-t3hgfR>GkM5H-W+Q^15zB7(t-Amt#aUj`B7~Fc!^JhSkYEFll8d( zL+tGgo7-mgyZT)QURDO~Hh^4v=JQHLof7A{o$FdgXj5XN1<3vZQP!8X$Vs2E)G4z* z%ix{KLf8ASB`>XQRVP`#N_4RhS@Y2-OjZbkD=;jmLD~A-XbV>#44sK}xw%ttO_y2` z$C|FmsS$S@pN@8DU^R$q^Wu8tWv%PoI1sRW7I(61o~_mzm9rbl8gH&7qb$CXdgfLK za{Edg>`8+ESu8ohqRm*`j56BjFIwXJs`xG%$IZ249Z`gJtt#PW-7Y=I=fv8%=jYaE zU^vLlEN95T?2@}R3^|?UZ7s)*i$rrCNQ11QJ`1&+Yw}?`p2) zc{U~^&uwUvhn$~LM*C&;hw)%6XkT?a{wf%|`{%EMdHli zR&lWls?@u$4Id|;KJur4==Cqp&veH(FvZ$gxKZXYCLa9LXW={_71JVdzB1T$8?(hm zz5@{R0edUk{0J{`4m!ZQ=X2pm8$gbi1A9e?{$jRn0BM8c{fG~ub%#Yhkrfx4Heolh zC|t#&vkzJ8i?t_u2&xJvRbU9oXrsq)EO*6?c5Cgc=EKh#ujZnS;gP-W<-wQVU5?+e zzkq(@p}p?se#~Eu?{thI-mT2;sbiT_JnF!x)Ka5Rw3*}ar_1uY|NLnA=fC~R^1c6X zY)|FT>y`pjmLkL3I-?~=n?J1dSHW0auYu7fkVD@LQl11NnagA2hc=1`@0&;zUIvQ4u zBKI-?1r|ED2pqAysDc0(-1_tMN%a5gzj(6z^51>B{QNJUE?@s!&zFa<%YY}7^v1DH zG@hGSBX^oRDQ8szixlP3ZW&MhOlb72PXxOTlT8J^7+=W*8vd{FdJC9R4s_YqljV0JRidGdAz z+?q=Jj;HQ;N4wai*LN_zuJAxl{&@Yhc=E?PZ~80G4s0W&HZDiH$mh0XfRUT*ZF9f zGdmk!jLM)AcZ(qV2^KN5qQKF znku$-x?H*zU6wal5R82(v_pZ_Aok`q9r!t>>!$UUcF+zslU&qvl{jQC7;=d_PRHes z!ADkINge)4@K?gWFUc4WZSmw7)kc@)ql~ujmpSlpReYC;<%ZhYq^?;SCiUhQxAi^@ zrViwMK}TCkWb2GKUqgP{8XTFVtsa26NN;kE$X%8Ne`6kX+t0OT_gSgsT<0-}JncR< zn|W+&Kf1N?xQ)4-7rM)@48j)6^qDhG#{L;5|#=<2w(?K zZcx2>w{Nbt0p#@4PwfdHPyA^hz5%3iHEgpFpXxy45o`ER&RTz6+M^veQu&(VTp)-6WGG^S#dh z!l(%J;}|Rb7{Zc{p{-$nDJES(sM|1|!3}Fz{JI%-{MH-Gt3UIV<-xme#@H&%nh2}c ziM4Z7ih)Iu9Tv=;rl-@CW`n}70P`HO#dy!_;Qhs)zn;+K?d14#7E z+u8tPW7M7kqPlH-Nt;0Q6cM%cB#hYnVK)iOCXnjfDjI67OWMnIW}7*@u1y~L(IyV- zKz-teHhUOO@d~Tg#>8u4f+KisgN4~jE-w1-b|%-M^t)W8^GPVVO9SJd?ZZ{5%lu4m z2gb&@*Z}h2;j;Y7-+#RPy?^|4`7eI%+48zQ1m^w&>z~E${zqeD=&u{i_f4r0a-Pb> zhK_c_sJ}K=_R6j^+r0P0p3?R7`|o)@o}jaGvP0O2p!QN$YwK1AEDhGNm~qPW3{_;K zl5v-Mu-l@l<4ITCe6TMb6Y-2OWN2m-=$P=dGqzrthW;V<_)4NU7wVkcr4t#`I<`ZN zXwQcdR~v|R+kNH-p6k;+OrX3dfACbD^;2?rW?t2AX(a~@8(^`?RB(gK1UhtE&e$-hI7v?Mjh=5 z9p@wG0c}BNvI&KY$lw?`a)Hog*&5$XkaG?y7S=RmWBao4UNzrmEgt&A++i+_a<$RT zu*k5Z9BpPiBUbH^Z^nb&RhP^~I?VYhKUG(p&gK`gjkv~61);-6UTm|;S`PZPB`m>C zzd-TbVKvKbtaB{_t;~d22a7mr%(c>>6;pK1Hd||(iGL5Li9PL&_^QG(T6niC(}s@z z%(1<0OcyqARM%E%b7nJN*pZ(3*l*g2zxAc{FZ*>&3be7b+K9hv-(}!MX5elE$hBsh zWkpV?Q{tF5CGxOo(pGa#TYYSCwaZ*pQ=tr=%o=s+GX}&=)^yE}EwyPKtBb5;8MNY~ z_mY17Zlu8#i0~1=08+f!XHfS{ehtYYkEg{?EtdgLF%)H^+0+TL`sE^%d%ZFBsx^6! znvYXpNOjju%u%YH#)=_PE?Wexmf@KK+P>`VdfjDOnRgQWWvDM?OFTIih@>0k;Ds4= zl4ZTxmpS0SO3ur~b8~I=g|DtvB}~2q?i%%YPOv6rxu08~k>Oa&8F}0{e>u-%&en92 zZ_g>o*114EvwgPefVC$p?8`Yrm{Mk>~Am{R*QqN6N*C zJq5&H1@pm2%jx5%@v0CzmF}@=qMlP+Ya#}3+36O)$Iy9K{t0c>jO3U8HF9-uI5ZaO zzcWbf5c_bf{*i5djHomN;Od6q2AN3=XMDwnk8}BRdht7#bOP#w9UoPuN*r(qCq_3h zRg;%*f>mIZvChCks?uQvIMoX<;g+eXJP*lEaYZw1y#M|>0eb?7y#j`(e=zq;2p&k= z03wbOlk=7D-16rJ=;R~ix9D7J_TbldNVhu(7SuW#(R8fadRt)x+-%WoLsrgDnx|=SZ@oM0mPVP z7*dWl$agH2KA%VD;f3?eSTNh-Igbaub{E*8r@H9rAIJ6=&<}p<3;q|;uFx)n9N6kO z8(O#(Jt-9D7TbkJ9QJ?go*Q8k5Bu5u*o6#1p zZxHc~BGH!2H&|MyRqFMmx6`@asF){maR*L3{c;F7RgUs|x}Bx!o})dV&G{v?nO?Fk^ZLG#4Q zQ`-=tjUfWJYjfd)tP%N~&sk$lDi%?Y<4Ac`b!*ecJiP^1l>hhrjiMlmq|zah(jg!X zQqmyO&CuO2Fm!k4kRl-6-O|j^ISgGxcjte;pL_l8hj6WHt+UR1@7LZ3mbk$}H+0;u zxzUr`n<&A7U6QNLs6Fj{EgOT0YuC46G9vd{)6^-+@K@E*{Uu#}bwZ~2{0T#)Kwy^%@YRLCS1Zga?jZ*H33EuHDZq5F;nihMg`cI2~jlL{nXi? zYoasJ(p#zcWO3Up+W`rZ$g!6dya>MK5|A@c$78e=ZA#$h4|q9RsgMMM9fiYSf5=#0_fnql@l<#=eQGl0EwI6C{BmX<^?2>0}lm4r#d4Q6IY}Cdg3XA zfIlw;QjBKcX2h-s7L7G5b<}1y5IPfuDXZ{mwend5n+Wfr7jle*<1o&cv6yMn5%<#9 zvIdc^Cbv6GaR_g-koZ$U`1z?TBT>>mb=ep^M`t!txgWivR~j+uj^X`f;OYHdJNRVF z?~|DHy=2l&W?!H$dtJBLtvua>yl`T-w}w6)>Z7)kBi$(VDBl91d7EBJt)LTm+HU`H zJlh%X-V7SoldNvdVF|Cqm(JVcA5QnWniB4XAENhgncI<{eqc@ z)s_2MO^$X{>9|tkQpHC;?R@opYH+l}+FkD7=@@&*(NBPZ{TODU>OtB>QBQL9tM*@| zJ8c9DSX@|dhqd?MU!wn+@g#g20kg}KNw2+D?R#n;{Zkl=8%L)sT+}Ww8=H86?7}$O z-v046|DFSg2$M=W>{mS9prB^MZ5@Yj8U z=wO1yG2;WLVCdL@hDT35*wf3)2F()`OfGHT-XM6hF3|B}^X4+tjT*WfxE{&}*%)qP zSSW#++TgriD41J+15^cdPAQkVapG!>#%AdCykm^E3~GrFf`ocMs>l zSvl|!Oop`aY#s-AJ?7DHY+uDcRM|Y8H0aZLi#|> zs3+=X9``o@&J{9a(2NxLdxYX$TAEObNzH*D?!0Y8`oBNrEtKn-{`^p^V&Qt8sl)2^AA=;5RYpKM=Z0%8*?3%q7{F`-vD@}?6484V$JcSG;pA&$W z>|9Z{kMH~0ln)l=lMm-qBlO)^JOO2u3eiz%jmkVT1nk~u|B@`TNk$~C^bBP6SGx%d zHm!ZMo|$I-4)5M=C{OayvqH6ax~!dhv}SCe#9u)<1z8X`??}FQ*QW1M9dV_dgI&|~ zx>~7!G{(9D*RdvR#!?*MD8wAM!Ze za4gA})p`U-*Ew zw^B15PUW`M$-Q%J&(squ4i_M2M1kWyRqfE(Pv)F1wN3)aDE5H$i9V_5<^n%MN9LTC zM7xa_NXRXf00j6j=)Tq@i|I4qapIrdAX}wHuVoi#&?76-18~rMl92gHv}e)1L(7}TZ)CMf z75-bB?8os^HC_&P+XO?Rn!}3;3fn8&4FI8VPlF@8+b|k@TBnJ9K?J&gw}b49?c2Ih z@OsrDw6>M)rhH@cDynj!7Kq#R8=pcf>1%jOLmiivef#oHhPMi&e2Uquker7OTa?>F zbV!cxy?-a#HZ#Szq4U@8iEIW2brbnEC= z&z`XO0ulACj^bt;8!TUq@y90HP&HI`uRm{oe>?W`T*Bw{dlYd?vl6RT0J1saO%M?1vriPM&>jZ!;zLNzFQImz?+(eanukk_uY3C90E< zD)C=k9@;T~qpzS{54eSsc2GVZ5`obz!U_4d9i??|#$s2~_omf3%~lDzfqzy4V2S5Cy6 z;d>C6#pUwztZwSYHHD<(!rOw(k61m>^xbp&#>Uo3y+#VUfd^dw{;Y7uKo85iC%+u- z7Bf&S$B9O-=Pdu>5bGjla11zwWfFZm85|e!76(Vr#Qk1VfMl;^1SMVJ0+VI}T9jZ1N zGbu#2{UUWsG-n}fwMFUHaF*-PmdBV1(xbo;j=M$tk(^ZqY`DR5yK$T=st=&6+5!?U5IerW3Aa2=1cih|1V zLuw+El*L_da~Tk2l4klw64?l1DNX!S*QV#f&1z%<{EY^Fsv8$Xrv%(UXU>O5jJ*2T zrex{`x@W(fXMZL_{9hNq{`z72!SVuq_8}KF=qP}y#k*=AGOn;vGY0$?$pR%M(OoL@ub=!7GrKH;Hj7OR&3G)gF^#3ccq4k%lC$S zwVi@Kc3{z@#4GH57+=Hi-dk_l&8W@(@3jmhC<;dPXAqRRU22~}na7%qms1~uK{p~h zujh=M`i>P!r%+w&5NTJ|C`OEmpaN`GLKU^))EK&Pj}UpMx-n4JIRPqbA{r)EA|F1{ z6ceM6znIf=e8mnJm`Dtbvgrx>;*B~;ADc3D_Ld07OKSZi_p>8G_#YK=;Ye#@;yFM6 z%K5Jb1kYp{ix$~y(4(+YR_bIDN?Vj_dOxygC6qkr2e|l$84W6C+naWb`V%*Xo*8C| zOD*<&e+CW?|cLijag}~Q1%r&DEr7~&3GPl{%7sLBz zoFee~H5|pb(uc36#e8s}m4;O*jo-oLE0J@lrkchtPBfTW(o-m0>M7^>VfhUGdCvoR zI$+V@>D)ag1>4ugc`l|0a9lEG*;lw9&f{qTc%$^fNIYyfPUJfJQz)`x$QH*@(A$0X zL2S$gbz<8N2F**L_Ys`h#tA&lm)UbQ>LNr&*vK<-;8q?_*Su=+fhAqeR{ozcMChH2z;$|Fs$!)N z@M@mN(&uLA><0Z9Hq|0r$I-|=l{1-K?pA3{=9I!M?@G?})liC0A7n>Jzz(FHxhxgf zNeXh|hwz{L$@}E`L7PGMYm-x^x8eHXWS40Jx=0F$@Q(qhw-coplsnI9^+y1=IYr|^ z`Om=eWLa)?61~`uSw1v}+(JE4W$m7oDfeeSgYLy?>{hsv(AeKh2fba3Fo@;Lf(}Q!*#Y9U(V5KovFf*5VUX7UqE_nMKq)I^WvI zXi(*+X5Hh{Gs~%MV#|`<_pv5~)_C)XC8(CHsqprn=aPA3Uhtxckw}A4{lyFsk2lY> z-XSY0ugL$n$_no&O%?{nzgO}h`U~TTf-uSQy$C$u23d2Tz_Q^uW4Vbi<+w7J`hPhz2<3Q#((WJ16MJ&4ZyIo zBc_A9gin{ks{xJ4F^;HV?0;Tfr8FEqtj<9o3zZxOgvS}3=bQJv;th?kg8-_+|8Ev` zAaBa~H}uDC9I9v9A3p4!4${7cQ`^}^w#6rs?f%VY!MtI92LucPEhkH%D#CL_5N3$J z2&wCt!qe_Yr-jy(4Uj2R>b3&JhA)lPzsNx60ss-Wh7jAb!s!|}wLx%`)Jxvlxl%)y z##7i-(UnHO2$BT{S@32EUuksTDA4Ubu7cJdGOD@Ll^=}tCr1p<2(!OrJ^AZ3wM~Z( z(R`2JOaQu6OjZ7r-=$lp^66WZ8pYlI_qtLzKXi-Kt(!mkeT0oT0Pp7-RSDIv+mDKt zXYa@xIlQPI4E<)}Vkg~(70s>i`D=#?#+;`|F4uVM%GGa>Io+HjdcPzv1=ebQ+Bfqn z9f7%TJv5#;9GbqmS?nj>_O#wHWM3s~elC#hz^*gF$?h$&>smcl<_n_r^#y>=l^KtwUosV{8AA2 zCu5Rh6gM+wB9#0i{>YQ+!|o?3p|#EK9t1?`@nGoe`pFS^3E9tijHdh(kXbHo8yc*b zIM82?xtHFKwHIxLR54vj5w>D`6U_U!MaIJ6s9!{f@&jcTU~W8=@F5^L(k5P!t9jv;jHxY zO_5TBLBed;NKM}|AQ`eC_z1B*F{S1FC%-*Wo1P;wk73A?w>B^~Bp}bcF33;t#RND-j;hm@a z9mM_N!g!qQ`+CkJf&9kveScK|({Hsx{vQQ@mgQOX1FiQi*6RoxehKz|##>hvg3N3W z5)DZ${vAt8$6Edm_x7&VrK&6%{1z1=9cn4eCQY7(yiim0Bv(J1G4jVReRoHoxjVDr zVo-|t@NnzkfvP{8S{P%A-I@BA{aA{m_R1~`WJ`vQED z474)0MLWxU?0ors?rwIS&f*`FPu+dnGTW{@L?n%2H%x$0`q9df9~WvSg;|dQ*$+J= z-dNU`u=`^LZ@6{YA>j=jm-2k5uv5Rtg+eNi|EnCA`KEz|@T!@Qowo_h0~*}`TI>YU z-FuxFW=uwT*0#jpzuz#tBf7SB!REA86@=t@O*;4EBi&Q6lq_S&1j!OeDa(PbHs3{O z<3o^VvE-D9&^!()&tk^Ns>ozvP`wAaamqM)xUf*z>@Sojd`4bnT^R@RPTAXo4 zSUUCQ67*5|**{MeJpXpeN~J?z>C&M~1JV5DWH)3MMTd#pPY0l?Yi^g=xmkg3VBuzvqS&&6y4Hlg1>kfFb|Lv`t?^qj8_XAN6pLP-J*7- zUDfF~hg331o9vjy_w@Lf<$2H7tLkCs`F!|n2Ow}=r}Z!MJ|t%S+rLIW3$SoYG$rk8 z)+scc-I4y&f{SEXLGDJe;kR_vlmF1LmEsk?CoeG3HrtS^4llate=CFXk9Z-R+qu7! z6WJHUDz}QN#nz~=*Ry$ELP(DV4LVLC^bp?XtD!R%uSdwr4bbZ{QixmfcG1nDd_JVv zlHZANV?{c&A~mL*$eQ*cz5TAwV9soAr^u5wN(e)u24R{y(Q)e!6H2KT-&U}`If0=& z8SUTkgjm_G)lCkM@=YuDw=lXmzU0((H=+Juh)-E^E-P>TZKseZ$dA(>+px95L`}mT z{(YJj`wUBOtWj)%S59vF4p-Go$9We~%QV7DJY6NPK7G_pg{seaa+3~wBki`(=uhX2 zKKHQpm>l~dx8iw;tnDAsg{-84p598#insNIs>nq~ZI6cSd5H*rgs5Qcm#XS^Yh`O> zCBRnm+r{}tXgDimw76EZhG1NH0FxU4y>3@g^qNbEn#5mdU09(ZLlhVfBMKL^imsMU z&$zmD0Y|vFP793PP-H$r|FOhl^qgAAIi~qX>w;py3muO8Uq78R=^N7NJC2{(#WrcQUMmGZ~{Jjj;AeCdZ zQ)Abc?Tf^QVOc+=VYGjQc=vRxGa)wIJ3M+AQw|PG$?n8WEdQy=<>$Z8tdRFU!VBwrd32Y8}!`11$`R6xlLaZO4=ZKgTP13 znbF)8+-IbaqHC(H(EWw>5k6iP;`U#+8@iR5ND?>nl@7J3dkB*3O@0)Btxj#k$8>$i zDc7H;YLTL?jmXqQ-w6zp+=ydz`5|XZRqFh8?M>e9OQ^ys*?@Cv_`|`b4PPz2pWyw4 z%rVW&lgpN0OJ8sFCjUnG`pDo#ba{}eU(yRV{hlvb*>Z^DHgbLcUQ~-ov<5rOZdP{- zE$%BFcgQ)@tr?7`&OKH*5syoGZo2F|N6_PE0|y;B58k0Mx(}g^lXHO@SbU+&*#Wc} z+c~$5-F|0!IYjwQ$$3Q*8mWS{JY3yc_nKHW&NbY)(n=6x^Y&~R`L> zh=Er_+o_ukh|eB1tm*vnr2%g<6lgpj#=9R^o;v&o4Uum95?CX6yQY*vfAtk-CTF)@ zM0k9E7Gc>dT;bRjZtf;jxj!#@Ajq>v;+uoI&XV})`RGp!b*}#anCLgE&JE77wz2Sf z9(a%VPqZe9=ff=fnHOD2qBbn(BL*vJ?yXhL-`g`oH7cnO8$+5CDW)mSwiwoA)@!Rm z49U#+sq$QnCWcOSM9<9lR|{B?8r8u00^hkUxfNGU_%S&-jLF~tL&Lzwz4>{YG*Tbc z*^n^s=17Vs9C?y`N~*KGS1N6Sb-%$;w;+ZHNmC!L#o|-tcn!Mc8byb{h%|&5xh@Gzge@a{j(qGd5UQP>q|5M=omEcpc zFs*rN{ikk$meB^kF1#8&;>8d*oC_8kPT&?rGEk@&1(ScFuu||f1do3>FC&#!euO72G-%(qEzAYJroK`AP*CtA#);}hRj-ZrBH*w{E8;Af>Pkpf| zJ7B4sB@q+FDIg)$TwF@XD+VgJoPT=9;xw#KLGZ36YQ*(|5u6#!UPm`(ZBTh|SeEQ7 z_MZCP-aIzJ1M{)&3>!MG%%e?^+O&ohkLr#BTElI`k8ncoBdCxEVCDrtq@;Augsr4dbBd+H;2;XUZB`_6W`#$me6#~}v+U^3Vc1XB|C|Pe8 zjGc|QdtXd1?_i!qQzii8Lg?~HqS=A}mxOh;b6T!>XcOLU(^DEfD*oNVoypMmL%jJe?AqLk>(Y0tF4m_^Qogncpn^y`+~$K7Id}izV!*rv%jqHWta; zB#M5kpKSb_p8A$a)(-1N%StwxG%X`{Oh(_;v) zw#a|CnE5r>`J{;sOk|5HDgqr-guyGjum@J;sZGqc$##?h%Zy#!wpE;zAG+@FMICZA zFT`7u=&XLujEba{BB-(y?8*Y>Ks_Js1;^sDbnqB^5hRPsesqybmm=SUuR23~PJ$a# z^BWBeVhp@?0DH0B_V`e|bp9w19chbP3ymVC@D=KXEK(AVK|nU7uTwgoVv*AB`|M((=4R@NOHx_%f|J0CEgC;@_oP<%nzIU+vVbE z{mH;_DclqSQr4)tl=J#tVT*!G;}rk#d{MIu~37>pnr+9OSFWHXS z9B9yDy9%wq;+!o*(?~(cYLXqDbf-N~4RjyH>l~yh4OhXo%V!QZ)a$a_gt*l%8g*u9 zQsPMU&GRS3h5mTXZgdOQF6b%zai*Qt*XPkw_QtC0E#R}5N(p0C1S0=Lv)14lA$Zx2%-T%a&Q`FrMP0(xebIDP%H)4~ zZ!%Vojp=u(aPfttLA8*mcR$^68J?Yv37gCUZOyD}Tn*k&>6ig^FyATZO_jBak-zM{ z%~@AdKhQB4uWBN(b&M#@z<-CY6`eNI@LF5#RamGQm>4zNHNh}(P`$uEU8juWvaN3R zTT)`zxL&=K)}o;wl4kyx;YvB;q;ptv1#c>7wR<{$i1l1I3K<{$<}%2MMqX1LJ>r_g zHaX|o+et}pK%ymL5{+3{Cf*Q^F>;`5&7-nGCh?@jG^8*}TBCO->*K^~8VVweIZQik zbGkaDYZR4>84@@oYHkHU|7QL;F&y$1r=qC^JBd(Clg-4^IjsCv>23 z6tC3i7XZJP>s^4oZ#O{uk*(q%;^yCwSrEybl%$2gu)9lTAeAuMtn4ql-?5*=_|oe~ zHz{2^2vknzQPfeX^LWm7=+?MM1q>{NupBka^=X-5CW_K{5rMz+N@}D-T&L8fuMS`0 z?{B*bpQufl5b64Dgn!=Db&7^Od}NnkCP<5j3P*FC(dd>c=&#R%eF)R1*ivw#5OXYV zC^6(IABzu@mtKqPKYW;0=t1>*cw`cJEZFK+YHua$a9Y_8rVBA=;8&xU+B;#$7n14G zZi!QpuaNkqWD8%+9U&08DfRdWJ${@*he(S|8i2ry6r-!(_DKqm!eD81R5Zn48?$xA zUNc*VR`0joW07LsVZ-Fq5sII3QoENDnyw+oWW`!Z7)OHt)U?WjWOMMo5RePPHkK*{ z&qpX%9%k^7iCx%Pa!$PXMLc%>DY11e&7o+hNr;#`zO2*!hVIMnQlK3vKF{R$8`K9S z2zvSkm2=cqsb>qm+xhG(6D4oYqhre9lyX+N*(SZ&!qX7n2KzD)=40Tj>r@4L!vYcP)<#7%T-G8QunczJm z|GX-Jlaxq>v~w<1=+nu8nf>Sd`!Cy{WR#q+%{Vze8JM^7k&I5jWCM;&rQ~#ZsR*{# zS~iB9k$u%CgFQ~h%}q|Y3Vb+ zQ<9Nq8WI)d_EBN>n2IXb@A+5R(Z>nr4$vJy|O!~@_DkElt(x7Z8lq? zZJmBBTO3akZUut;J6p)MoI@N(IR%%qIT0x!eD9(uPYxIE{p$2&zGt9~6wq$W!>&dC zHf>9}M$g$b%bTXt8sL!C!P~_0rh;HhNimgP#K#vY^Iao-PT|u|_N!~~oQPU#Jsl-N z7a;y`I&>WLLB&O#j8L<9mb>T+Rv1;T^g`puQCHJDsc@zY* z@GrI*ZO;>`UhkbC+m(FlmteT?2jX-Ar}*TP66~|2ft1Xk(e2-%WC%+e6rgFdyU8(R zu-g1gm(4w@w}4ubGGHwcEF9=j|HU(Q1!unG&`u?4HUX{@Vd?YoG(cD=4v#r}VW2*J z4?1z1I7Yhi-iUPQg5e>5j*@l2zP)4dd0hbF?Zx~g)J|An_KB|)Up$k?lg}xw4rjDx1sr z^|>8vT8mzs1od@!u3BB1j{d&sT^GwClpXiEl89JNU6!p)WwS)iU=YN@>T2@~F9MP& zL3u7-**%f>)OodCyJg2DztRP@HNcv0^mua&Sr zuVA5R@|z%IHvp6y`!H?c_$PX?q zv;Gn9x{(A-7%3~s-rU)R$@A29M%REk>>@j}A#hQ`X}zHP&pfR`^!ntj+opty?9ifB z>4nq{vI`6?%vvFJ=!i%SR+=L-y)>n%T$s!qSr5T19&Dnx6^S^SX=NCKOl9`E}?e z$!6zEDf`XL=lxCGx=IvIC%qrJs`_+nL!SJc+bGZO%>In-kg_rQ z(I%9T68*Oi7Q%S@+DQXxf76=(XMba&FnuV<-1M}IJu9>(d_DB-<=D%Cm*QSiu?Hs{ zDGp}xDYl7`^(XZoTg&^jwv%q`CN{M_Y>9pw#z#N(vH4HjzO{b8KCe5-#Ay^~d-pk8 zB{9_w)Lqj~mM&U3G*K!@nW$O@#5pw9h~O8Yn^sE=e_OFzLv?u$Km}GiZ5~Un8fUg@ zuX%x$Tnzh!5|Q}*>UH<<(a}6NY8l}wyyY(&V3Yjt$y8VkIn_8mYj{t~xWTc{JYb74 z&CMRm{pYg8Qc?}X_bM?@X33kHDqDh;lIf?`Y2KSr?*ZSvC}Y3@w7j)~zgxdlCm_Ia z?vKG8cAs`J@RURzEck%OJzKl68yx3PbN4=~UviW(0r4Zzon$XZQ~Wzw9e$houEfWr;a?OI zm#r1t1IK@6Oo0&)WV03oHihpiD7GmrMVtF`oV8Jq8Rg4&U~G2+Jz=Pz8fn9~P>PsI zYPLNh(={uhH?Bv+M<+A)kO^yK!oa=vaftw?tm$d6NgEgVS)=0foeklorz)4qC%8nY zL@{oTmtt==xR?4X(OfX_o~%lNqnK6%;7-4DE;(H8c*lOsIfgFvTzZ$@E`(*!(i2*V z%v+xYZ#@w%*Hn8oks-ky-DhEM{(@7I)kKij`uxH8yZh^C%?)Un}Ee^U50 z^>w$+g_X4hci+~i)*>dczAw-N7Z0^>PHBUE^NZHXS_&6jTIs0g?1UUj5p$9I6-nL6a9)bEFxlqZV$h0>aS5-@+h z`HX6`=IMaLxAT#jQq>53qcwll-#Vt9V@7!V=V1Z9DdxNU=vzicY# zCIFS3akw@}Spiv-i~LpZi$k#u^p1RY_28Q~4MJ;s{^i#VJ6qi=J4%Xv=Dj#t4Myy5 zs>CvFk;cS6^Qp*rv>o;id$iNqP#GZ4tg+q}I^~V%e%z+gLE`_}BACkt?^Ku1{$>nDDyhV|xc+NtF zkh3nHM3WKo@9mK!iWY0HuK77SP!Uc9Sa_r81SI&-9E80U`?4d>U7Q?3ZMKbi7&5Oe z=cqQ%06#$OKps-qJ$(;{ESVg{BK|pe7MTkDvujHky&F0fs3NjuEKmz$^2m_vujBX6 z4z(uuFITnm-~N*l<$R_(JjCi6fMN3_L7lA`_8n56t4CCu!`(@3*2``0y{L5*ALN&; z!eVe7<=Z2P548$rh&Y20*j)0JW$I@s3O9Q=o$mi=d-0j=m?a_v8zxWPxxdgqZpB4V z2X{dLe$Ks^^EFSPH~OrhvR*wr;^chvtL2Y%O$Qo)tvzElsx`W6=0+1R)FBjz2IYiB zJ1tB`Yo2If2}6RWsFvi9hFfEuImc(CP@IJSa_^1iWt5yZ^D>K*`+zG@m;a#w+idKd zS(DLbsb{3KOwOrum@+lKn>8=&NHx3go-1cN$23X~rP=fxlt7xz%>Cp-qH|fFKAoNAO7-(>GcPz^v(Vko%;^2 zigHNQ2j0rp60j}MjQ|?b+13tqa={;U_S9$JfBG%1cd<_UHF;FXaIs%Zl8PdRkyEt) z7hl)U?NvRRd=x+e!b+2`TBB8gI1dw8+**EnqR}PjQ*(naipR=t5g=Q9JWrm>LnQ4_ zuIfkLhN~u^_HrT4_F;$iBt-1H@NX7x8x%gIovz{W^2h5QY0I}on9Ff{wU0Wv87Xfc zq0YF(n!kG^8(YzSoCmdq?~Q!*D6tACZ_$!`b-w`hpy8^xbBAy6N$2W-ZqaaxIN}^g zTpSnPvkN^v-IUKA)Uz4r#;gDVe07}(G5FK|XC1(#+nKEAK~a43_{!jLU9;wQT3B0Z zNeerbg8V5s^ zoh~g82W)~m`arcEudNyOYP+$AM(%ufZ?Fz9Go)DXaFzu5_l?)HZErkkGC?>>$mn^i z;{WbU%}?cI!}k|KDBNNLGF%=KBbu@-#I|z-)%e1d-eq}qIbtud&;de_F_dzw z?$N*JR>#OtRKa|1*~@rZoW*E1nn6>Iwfdj1hX=LHRnl1Y1jVQfpayjgUIK!7zw6%* zL)Mc|%#J^3`2=lHw3e7TPX;?S+{7GWI%8FH^yotQ{EVGvURz^0@0Hx#+7*b+Bo1Ox z2x`U{_|9ZIT`o91FY%`4^Xk`H=d@o1hih?(NW~>8OPjy4wFD$mIgBEW9dcJtq`>{y z8TsSv;>R|E78N(F8Jk6JH?CX0UsKDQ6xrs!Iv2N@rqRQkchw5$$fLZjw!nBrwzbG+ zXMe8zbN&r6w7BCpwNvQN`O!9wyQ>{BPJj;FFuqc2&uB%a5#~GR&pm&f>^;g~iI(R6 zYH_9U|M~GxYLvKp_g970>IlDwskyfA@sUzV1^NRdJcNZ(G3mE)rldin0U1@liQ#yu z46>Owuv{mx*kp#2=*IrkJC)|M(wRLv9GfqwdcX+B@sH2ZRkQtXADdFWV{$84u)Q&} z?kXHp{ZljlYeW2oq8oOnnyvOfZ#vVhHMbkJ5=R%M*~X-FQeVRWbo$p&Na(GE;T)o{xhRl`GYD@3+;D8#Mt;b&O= z>!0F2dyX1NeqQ-w*-v=8o>WE*R&*(dF7GxdE}Bi%T8~>xXsQ7vP4v^H&fE5wJm?9T z`*8vklOc^po`QPFEW0e0aAjN7u{M+-o77(LjL(!a>WPRGNhqm zEq1L-uKakX(S5=#>&9Ax4ZU}idz)W+{x|nBtES)3^V=qI*`Ch_MxzrkMVxVh5VHR3 z*{gTVo#_B_54%nrpjqV!@M^O-nMd6$$``aj|1u6>bn>~_Llzv+V7VsOJ@}U*z4)zZ zGCJ!iw|vP^IPRBN^vZd_tbz9`uYSof$?Ii#@p?79wJWO;YiH%wMo)k|6|LJy5l+!*bft(k_Y^fbRBFS;rqZkVIpwkKe%8r?cj#f<&=&ecjElZz75b%QQo|okM^kfH zL>`^ZA#6|miCdiyBU4+E2EZdFaid!KE!I=zao<_Wg&liq8DDSAa{RjM-7#px@WnK% z?fk>4c&j>m4E<`4$9AF4I)KO26|ubfYvZr0To1&vuwjhrJ`Uto<%mK)=X?`a3T+#V zpD3JG8}Wuzyt!?Nw{^lA3S5Pf-!Zdd-E={>2|cRn*3yzsxb-x5@$b#+dEeKoZ}4+Y zB?fXwt)m4BZO8}!h@@dZva5CPt2Ri{nL@9}FoiT+rb$X-IJ&Cco3V4~f&)&w-dNbj zlA?JsW_uiyQ}%Hmz4xkzr7mm593-=a(w!G=%*3ZO2Mi9F0{pQl7GUU?dhCX5+A+cw z_G=qKBlJuTE_K%o=X_9Lnkn^+Vw$l;WrL~LW~b%hh;xd*t<=KkzALnF2BGv1L{uB3 zOHAxq%j}OX&|n&f=~Y!%OQDzI53dgrzk!@UAEKRAh)g~jy!?x>9NzpUVyOYw3Re8E zd|&d zcH8d3k}$aPs2b@wiS?GF*)YT0mJz+XAvtd7xaJv}iL1nwj>{M1TAVrNbg2E$QF=QN z_)fX=RTX=bsaq7Q2^U2wG3L_t77>=Lf2`n)^p7fuQB?0~ZuC8C-Vj+w&>cX5DE`y(k~W>9>E; zEzzfJS61r1mL8jLtN@F6^$><5Q8~_&d^?*lhrwU}QV(mMDmqwD%W%suS`C9=#6I%0 zstf>=$9PSsuXq}V-Z%d=h>L!FSzAabj9@_6ZEE+J-J5Y`^JXd`sjD-%UIIdE*}O)} z-dXtE!{iov#53FvD#jk{e>%wMoUqH`;iEgQGbd{`G;^DyYIXnXPRI;N7m``u42(s# zf1dKE)y7iZVmyJy1|at^t0D_w>*nS-({eVMjFQQ*0et18c)9yoONBM=*}>j5B{avs zj}g5`9=&_GD?e!|yvxd2wJHo6x@ai*S0@xMqu!VAmVRANS#+!oH;xc}tudV_Aq+wt z)LKIMr|?^f9&F=Rl~=Zx%7$WfQaS{)a^ieq2d@3Fd(T=l{?SSN)Mh z??CDPNA}Iyc-kJ%fiFW2u8K0*ug>{4lG%U4d+K8Gv>D#=cx`N_n{a1FEdLy$35bqq zNSj?e1k?t{zW>y5yCFDA(wJp%l{ztSl{${yaT8JN0blkU5_tms@bB%eK<<4a{Ch2MfEtaDIw$LFArPtHjY~uAYvbZp}`W8<9ke(g|=+ zHvjV!dk%arF;?%U*f4}Hs{-bueRWleP3=UJZI9(f=)SFEtGQCc+4~r`=&AnL`{Opt z!@BNjXA?0O^r77#udk~R!9gh!cI!J_-}tMYz$*e)MQz1tOvzMJfmz~C5Y}g~il0u; zX4yn3GuUz2L`&E_9G}=$cJ?o~P}7*#5XjIc4tvuomY==(6}FqryGTrd{~IzzZH(Cy z^ygOlf=r`)N_|uUHWsB&&U)UM%s2d|xdhUhxx**%)`0djKU`bGENI(2Ke|~aRWJK+ zPo1T;ZZv~LPm3%i(=sD-?fDI-Q%F{?vKer@M|!MKeSWM;K^+w3EoZWUhEu$ty9=;s zt9=q(fPZ?wZ1H+5jCxQdoA_uCNw;YIN4KzSbQ_DNXMM^~Vx2R$rFuC*NAeN z`9ATqvAl!D-P)UqaFcEWnYKT=gx#{oJY&|jhJyVvw;mX`&l(oF)Zy&BRJ`~7?2xSv zvN``w6<|a6wID1S&eiJgVilX_`_O)U&_5~tzk27ZrToPqK*B*9jvX^bHm{!pHT6o< zn_(x`*dmuRjRAalDodw(x1!Bi%@-sXYE$vP-p3zY8myouEFT6ldT&ilO3Ks(>y|WV zQ?4x>dYn&Y7SsLn#SW?^kjt3ELU-X2s(*DXo!A-mKY5P22fKH#D& z=k9b^sogrZ-#6`vG2@fl0RjDbj6?Sc`#a(#3Kzlv&Pp}m+CCO!Q<(kjxrnf4$D;st zO6T3^>Di7r{MA44Bo8jdv+Yy(fRsp7-LO>w(PZ~$dT-*CF@x2aatt1mpNc_vu5E55 zma35A%iS5?l&w~}F9!iIe_Ev%pd_U0#s z4=G)@foHPgpg+5G+z9(lzf;}erDODz>uq!Sqj`?7wxYT-NpO7PcYP+l=*L6{*%n<~BYY)Hgcb+I=&UA&>oeXef+R z!c7#{uHt?W^zs!Y1S{OSO|8O4lBeqx4{D^oDdu?^f?wQv0uYH`(XkI**&22?G)3$? zs>y^veLTDiOa^=TYx!gQ3_&c z*<}Y|ZXYH(uyalyn}J*a+>R8qnWHyOL_di++< zBS%t{2s6O@p?*NAEZKr7X* z+=V?keI)$qIB^!zx`6odUlhQ!PRsjCExrkWuO}$#9ckp-Ng&?_Y>9BTy)th0c)6^< zEQ|;k&K5LrRN!6OS!XOwJnsfnY)1bYx$F}tDE8At%Yi2kk9%y4< zyG*{{!yeU_Mgn{rb~>52{_;SS1HipWPQ&R3n>_25JtR$Lo=yU#RPnn${khiS_Z&a`rkS-h)_Mx1lDCH4?_gHPN$r^M==8k=iR zkt?IrF+v%$v?Za%SDVbob3&=-ntFCocHhx-Fl%*r4k4vWf5;N4m;B~n&Lzkdq|^{u zr6qDVorAd!7CobZakyTF1ZNel7qU3pv41UbVJ)(n+D~Pc^j}uGw#Ws%9%s{wQ;RW1 z@Z%H6X~dp(soGxu{Z?sQ?|4IUg=rCsJ@NkJ3DM4fgEaVes`l^0 ze(C10k-lj+ULUuM+ucUag}ZLT5b#Yd~Wq($qbRv;m6L2A$ zh9q8)Z9TrgIuHUoHubv0s}6M6jf7spZC_0kn|0p`^>SLK3HW4V8p#xOe2vO7u*`DE z5r5+J$q4;BddsjT z+&AnW2~lZLx+JAb8U{#8N;gPL#{glZqJ+fg4hccJN9X9295BMsHM&Or_x(M`|9SDe z*xS9>j{Cgt>pHLNbHaVN;P{D9Mv=M;Y_rP}5E>Prn3=jf9>|*FVQNoNZ7sHFCnbrS z5itCpJb>xAHG}T*EE>^$F7up)@BW90<8K^@1*b1t`m-Cr1X+gev{zcZq~8fV%Clc* z`o`60^nguSTDWwU*J~!y9By=v)<50DE`EKt{;5y;)9J@v&qVd7THCWXBU`{+0tQzD zv?-iPEhL%AST3O!8N{c|71)w|v)Wl%LAY#B7M>S3C~DS-gZ3LX=PO;%Yv~s-=P}3_eFnEl2k!-KXz*zH$HA`ilru8n zDXUalU>P|lOC@bvZAi^vj0?J#{?+yS0dQ>4s1O%DsK2ufff#Y}QU^=GhGxXq0rTD| z-UN5=P4yn<+S`2zfCBz>bpU7xZYu$hgiE+JX}Jmi$>s@lb2U7yWQ3#tcpCDOPJV+? zt}MF20o$KCO6Dx4AVcO`Me-+NZ>O1vD*0a~2d|Aeajf4=N~esED-{@*Ocs~Z*-nnP zT@UMPt%lKhSzEkZXnMl@2$zu>SBfng@*n*??T$^*# zIcMG$sIw1f!R)!%j8Yq1WMvn7`on5ZT&?2Dt&N(#XPMe(b@A4x=eM@_ynqharf&+M z2@QQP-wWc%p>uk2L86@{@D|wkF5{Cc1<8cB^~1!z!Nj*K^Ogn2CVrgEc`gSFra9yb zk+0S(ri@1HU!GRZPxQLKe1)XER2V$&B%44(7_!Ot6`aS{?*evF-}+hTztxf#c z>#Y5VcS$ec=BgOk3tfnN6&^h7IlN?&pUOzM-6?x*e)xpdk=YGHX?wV|409;0nmD7s)}29R%@$u*L#d} zKhf=>dQ5EKsH0&ChW0Rr=)*6EbNq3`0jZMlbsc;mg0!`wmW!X5G&j@C7iE-h(NoH^ zwxbSas$3$Md9HvP8>66eG*@2OJ#R&F_tY4~S6sl+iO^VpfQ+?T(F2SihhaP3mH zCFkwNIY=W1WEg6mZ~Px1nUZQ7*%ni9Ktd4P5NGIh7@jEa7XqE_vku`_&!Z@6 zSV|z$jmjJtAqF9X^PH7?{;_)6I$w_RpY$B7SZLCxgnj!^+-3T1>uk&0N6bt|fI*vn z{lh5s9KxzzT&w#>Q7r3Rg<6|2A*a9)r>Gc%Ps+!|*AgY8)rZsBVcTIOUu}W;@Ipd3 z4VGkyk}JeJz%w_S!53;#N$u315^_zTDhDy%w+~?gTvS=Eag89~FJ%V`N;S2fqH`U1 z|M%!%zH&(R?lAIa9U*r}$tNQw7Y^EupQL>4ea%j7CDPiXt&ebx8PU~uJF&qDV#l*E zdUp0wxwCp@t1Jk?i;bc;HsQsOg9)rLwv?@6U;@2GOAf&7P<}*4)DFz2^(Ag-t*T*m zYdeAXen)&W56wqSzY?+&;;6wm*=U{-dx2x8O$Fzju+9-TVq#4?4+*cGE_(_O)PlE)v_Kxm2LDrLh*cmOahj36~>Z0nax7w#d3& z8rR4?+|XiVtejVD;C6njY0l<$BZVJ6U^jN;=Xs+__}N|p#{RZdwS-y)+;Nf8GGZ(v7}PBpnGvI!9mvChkByc=3?rA35^3G z42VNzFg?A+}?B$w)Kww?C2Jw$e;~V@ZS4u4gFMnKsD>B+;S!V+>2rDQVQ=6-b`h4 zHS>2TT^3iKkE(9GL>=cEk|^kavC*O@A3a27_`@RWCUzA0l#+y8BRYGe_M+`!<3cx6 z;++#+a0^%PrP6;v4v5K9`Um9XsR4v!cn4?Zp+D|vT%bv`g){WGph%6*1%?fHD zGu=065`%5(fmu7X2W{e#3qDDcuBOo$1SwJ%>$~CfyqXss*z) zVH5iJZt=>h49)W2Ok|m+-xN}AtJ6beP+5KdFj>-<`jYlTZn?tr(3=Vf>a&I@f;1yn z`+&h}YSkavx5tllSFGj<>x1cRg0Yeug8O@p4TWON-m23Xeyxv>^tERz^M$$k`K^4bv6R2KB*cF)u?nDhasEP_+9pV2k%lCY(w-as#-vA{XkH!_m=LXu z_y4m18X^O6AKRnI(>v4RE8IO2{jt+8q<#u4a=sT69qf1dt1#NYH7V>9YgMJUCidOX zb&+2>?9TA4jc$Fj!`#J5AvaZW&3!*hX}pXvrWVBgB{`J~i(>cc^zYVz?Q9w9ygl;0_uF(L{-Cou6( z93`6|(a5Y>_@tTs*|DuTIr!`3Kq((^9i<%2BJKCNs5*3z8RrK840AWwchfpRZQy%yB*O2C4wD53QjuM&%FlQOvd|%hL_5LMj{U`-!a9dxj ze0lki^$3HpN=y}H@sx6#-6|W`P)mboSIM!=GFiL6#>i%k*!3M*BEpc>RJ;%>OEPQq z0r#^7#kCK&xB06mTCj6NlKDu10lI%`(2><10LYRGb}aTniWJ1i2YBH3@~^>%&aMsA z)SsinxfTm5zg-%B0478kElYgh9Pun%4G0vtJ2ZeE?>}DnT+cp&r0*Wc*`TmsU*WbJ zL?Yt;Vp`UTH6doyxo^FQq*jr2WQlC7PsF%9o)8V<}A1qJKyk1&mp%|E>JESy@u!$UEL{W14;1%#h~k-*!W#4#8r_ z1e8z8_?^a3-!%RfS+8+dd0*X4K%W0%I`^GuU3U4n`QE^x(gVYKwrN6#1h`lf)`s{H$=^`-B5W%RbG3+;*3_|%Zwc;u_wCe2>DzMShz z<}@tQotE_s=K7U}XRLe7U;*F50?B$`*M!g&(I|r#))j0=L$AOa^CY=EEIgbxK--BR zLVwa`dV`a;*naEhgVukK)>dz0F0)8;rKLM{+pwA(wK8%04#4i#F~XE|F*IM<-dQhz z|H@i$6UYaPJuW}!hMGniE>3~`hcfrI?^1n9WC>K$Mj$SDKbTo`hH=|I zjVeAh(5sxWi>O;GlYT=j9yMUku>CcJ2|`R8W&M+DNs3n9mgdrtExbQq>7a^Af9F-1 zmzg-CI*pi4)uM*eQSZY)6;$-;K~S#i%+{aFW={bP7AZ?y5Zl9?%gTH9r$>qLGR`~b z&8#Ycz0dw?6XW~-l3KyeytW~z9zb@)PtrrYw0?`g?|pc>re^SIOGh=S_Cp=AP2paHe{c*GXLRjzP?*kmYmZnbZi;MsSa&Q z;EGc8WGfARrW`bC9!xQG(xkxrqjB+fkd39T5dI2*Y_iIb9NibA52N#q(tmZ=7kLBn z(_@LU@$Tb=x7VP_4bDm_ZCDY3P>F2PIv$U%@FS3vTIAQlvurBtJVj>59aB|9H)0I- zPeYhm@3c(G(AF(ChFBx5%sDZu)Sr4>p&wIJwnr`tF9o?GpN6z0)cYkF5t(ZIbMf9de~M4HdC1g@r*bl0$qU|Lqx!rNSX!c1M*BJD6Y?^s#prYmM%zxH5Udk zJe%@)(tLe+drs9ja%8^12|d7f@>tFxjKSVA9jgj5RUnt*0@fVZ9Puwt5dKKYii7W| zV$-O0zf#*suP4}M&%0!~dObAw19mHZpA@Z7V_qdrksD>^N$uB&h=Mq71NF$JQescj zi^8SljTXDdF(v$*qokcD2T=CB;RBZ{b-=QH!GW#1_8CsapY*(^{77MzJ|J5v;5{ z?#d)8V#v!+VCOztUBBvNjN8&BU>~?!c`OZEPGU{JQPm!FhC`!zpFRJ&y73K~{Iu>v zN9?Xh({#ZW%FziWPGuU-XHlD>3>>qZ)U%lFuJ7@}OM%1<7U?%YHD251b%r@F$&%kD z1c0Rr1Yq{z))u`B*QB!Fgl)=fV=pD(Mwg3`&ch#>Vuj{Eft=|C-M1-4c`z27hSN)| zcC(%58ZzHQthKdNfpKn)aKX0ss1`S+W?0D~m`?acxNU1pye`(ovutSZl?mtEbfGH+ zy=oOn}G9hBUFyez~ z)67hxKP^i8>zAIoYQJ<1*jP&Jd{y=|>i#nuv6MXM@uCs>8~N1JVU?#N$SsP{3(s0+ zQY=!JH}x%%Qt2p%Y5Sn|g4(s+b z!!fk!%E8wNFgJKOG>&L)vV4=I^q4XkDjXP7;K8Dc$N5PhJji}EU8Woq=ix$>+JLbE z?fWf-oIZUf@sA3{5l@O?OYRo7LI$v0M|gY?AxZMJQ^r=(Q=@ly5H zfX|NfP2cx-b`*6>On@yB?b(nRHN5xI zY>RLDE>XT$16AQ}4_8Ow7LTi|gpUuw?eq`Ft!&UMatneg-VTZtbIHbBduZP*@Ky|F zn?>Yd$UQ+@s>?si^|o_%`)Befc41>$QQI>%vERRnpNcjVPi_~xg`L$IKlynXe`n?Pe;|(qc@{CBPc5AX%s)y%VG%NWpu-?kSZcTRrdLe69 zwe$4jc>@el^UaV`ln;>9*?Nz zkJMU?aGt;aF$w4GqP>t8HfDx)A0Hyrf+BWfmC`>NtnP~ol}z5viJFQ|IqYMC(o&5Q z2rSzM9bcNdJMgcgn%mblhuj?{0t?Ng>u)=> z2fhu;a`EUZY&&;W5@1?#r<}bTZfvahDP?d+aXu52r9#Lv+&BOdyb^LhnW3VZ_MO>Lf>yL-J{$oqYBSXf^rz%Fwv683eo z&|luqi8SE|oX>Ur{A-!Kr?arsul z?q8*#yD3I3ELu>fZ%QJ4`i+|*D`{}%ryK7-+S!XDT;jua%Y5cVH?LGBrOc9Iti$|A zha{JL@6~^QD*I6KDd~N=3eET0-I85R`k{J;`+CjM!Rp9BJPnn)yj#!*w=f5h{Mhh( zW+|ZIIeUiK$8bQ@T(7hf%`5kKmy&p#o$Plf?dp=BYV>|dEtuj$y2m|eHix@9q}}^e ztpk?NfrPA!my_Y_EMOOn6`scP_SC2x=SHsU{fdDuZK@==Ede8i#* zS~Be;b))L3V1={&6~|pF>F+F;U*Y;!91m{ui!2O}1x@-)DP8H=BIWXbXI56q%sZYX zt2bYzQ|r|%jqi)4ZIw9y$-7|sl8WMXBdg>9zK9nuoVD!2=l&8hz!snMl6~E=G`}yi zcpiUdXjs;w_xH~^zd!1Id%pw4CXd$WF@wf)rmh~d3?XcnG1n-WDKg{%ruG3G^;wL$ zXUI_CN57h9!PnErd#RnY9gnFNgsb->RpAD~LDFp(kuF>EnfohqL4JA5skW?po_ZDe2*$s;m)pqFZ8HkI%r4nbbcfd-Oi@ ze=j8mLFi@&*8WPMEuJv%Y8x%jqjQz#?M)_Pm@KTYFLY5$7gir%+$I&-G|`CRM1y)l&2)g}vEp*57Yh9qIFpkZQk8qab%ue57(F3U#jh zvU0_GKr_H925=qjd`Cu^%TMOaoC}S1wu)o%oe=D4Rea}NDm?KjZXh9dH{5a}Zr{o0 zd5L~NSJ^lHJZYg=WAvD1snt){v9|f5l_gHM(Aer)9^MDn_`XF+B6|E%@I0>O51ns+ z&J4$b6bw2Thw52k!%7e)xhqA|pRL8f8$kumq{=w1u&>j+z{kGJ#WAv3oOv~<7a z-``SvJd8&M#L5W9@F4JgV&>00rY~!SXl{G|Wg7OzIFD-*ML8!{h&FbQ_qiuE`dJ4z zf2O|?V1q>)YlR!|0YUEJrZ=Vn(!L8t^Sctw#DL+?ZfhB^M_W^q4XK>)`Ejvvv2HuS z7xg+XI?-U&w0^HNAy3(kS1h%+5oxA$j;=#v+8uwts?)QUTi-CD!uQJ%?MRH%L!#hu ziLY%znUHkN=Avm%(%i#n;Xf z_fJ#h_d%y@)9+FKdK?B6DQ@NIcF?tYMrpJ9Ic3@EKY@mh_CQ;S;Lj)FbQ>q1ED$z@ zP?O}E1rC62_{CaZi!#B#34iY?e(X#M`8XkPgFpH)VLR*ds4VeyM~F|T%{YF&hE&Hd zG7dDKY@?A%q4wuxc7$XKWLQs$QOJf7pR9EcbId%0OqGgluT$DB#}wAGJ2g%};Sv=9 zzh55$cUE(sHk^e&Tn~`FUKyN4Z+X+Fhq~y*uot!y47gaPgF$!382Q=SEBAse=0ZzaD5UE54*k(+rnxzu~wKxZP5M61hoJub2fT_+U1-fh0`>MeAr~ z$2}b`i0Czt6_SgAed89&nCjBldN2pkn&LLFhI4H7va$x9*@7!Q`6bXn+5oyRbc+~T z*heg^AGtgk6oGC}JctHd6u_Vsk1)&Yy<*-la_Pt29VNyfvZpu0eep`djmgN_-`qLH&-;o5%uUhORGr;+kj#gc`C%WN$+G3j6|)VT z@0+i!s3tP-_CILM!S6G;I6g{?zw!)~Y%WApzkH*SHl@LDY}VlwLOIs0m&QLI8ZPHT z_F!xCzzx)l7hLe7Gr7NSB=Y8S}(=yZ4pCk)!`fuZ`tW3)(@13gAkS25Ex`|zS zJ+?;K1_J|n;PS}4Tm=5A= z_uWeKH?%qbZI4$}EHON17vd*(ed3!f;CrCkYOY-@W8dRFJuNmbYcNFQS6K0@fC~ci z8r=>HP>=vews<2uqxXk%Grj$G3qYu?rE{;q6lh{XuBe6s=bG4P-uYJCsb(b^u;8n; ztW!-ldSLB(ZDMshTgKVRk6Uq&h!8W4P@x4}# z1K5s;YTjf)ULhjnj~aekp3`T22V>ssxgTX4Oq_)|4)636dH|ifCd-A^*UeQvP-ham{a35M@V`|UBJJ|0N=?S)T z+pBTy!PDQemgI72VfNDcTTjzMi%T0LTQsOAP|=!Cc8W9L@iTtE;Y8E}Y<^D$;j8x^ zzGow=^E?cl6e|yF1`z)#B8NBOWWMOp(Yv-r1^TKLbocXk>vwW4LDdSnUD50tAGBft zpk9IJqX%`Hs}BPA&oO!`|lcom=p`wrjLlncsz0JoP*8B@3A^D^fHV2ry3t z3PP|XQUG`QUknfaRy3sQw_1Fs>@_(qZ=r+%94mD&tqA~aE+q>PU@%9Mk1613jf_4#&7O)?`AIH42B&Ir_ zoEr_2apcT1PTiEIYFf-6(xc3MtkBtUgw}r1ycYp327|J^p*wT#mSA<~D69plj!dhq zHHN3>03KeQrcV`g+pntN#2njxW1S};ik(PS`Sh8cu5Xc^=i$1iC8-nLK$kumei7tA z2g;RdB5+<%kwQ?F-#PS0v3)51Xhy=dPmLLL70O4ZB#tR-h-t<3#$4}a{MAb3#QQD8 zOOl_df~&o|bJo=~noj*&GL;!^U;GBJSyVXrG@hiqjsGgZA80FH0qF7?_H#ZFtc|Rl zzx-Fu^z`o8*XXv{2fs7ztE!Or!HM134y(F}Jx(E28XQuWQc;g>{a9YO-+fKcXqVhr zm&cPq^9h9sL}XG0gRbcW-PHZ9jvF)R;0=GGZ4y_>MOPHlH~j zYSw?f2~JZo>#m=a&FLHhY+T&*%)?4%(pSH%|E=g=(Kj#{KjH(+&bUY?3Q=EWlgetWJt0!)ool| zQ)I%+km?j_80(^dj*}qz%@&^W7=yC>_x9`Mz{NTD7LCZQenX134dCxG=N~rL>toNM3So=g|inEE4=u^bA!Y)a|_Ac9UuV zd}s}s$Bff4!SGxJlx>~FPoQ^?M(8`|zbd%oVqTQw^uOd@y-dkUifj$HRRhsp!dA2p zLDfI{!;p~taBKTqN!szwJ1^f;18J&p^MHK(#mC{Up06Ed(Rlyzd+Y=S-b8$2M}E@R zKE$^MkUY7{Q}*%9HVg5XNXm)4gQ7++X zdyplb41hMM8izr;Em*A0?=isF|0EJgbvktXa2k0p3Bh65hA=?Q`K?iO;OkdfYk-Dj zz_yqq{Hx=ew#sy2>o&ahBCM-H=phaIiL-xtE5n_nPI5r+r}ld>_5 z)m1|Mueg6#)G{&sVYj|HJU|Z|E?uwt5px(Q3!X>}=hOP5`e9>pus1S0*~2we1K{nx zI#}T>LQZt`)4Y7+Q!LR#4tI;Wk)OKQkmkgv(1SNz7?U(vTQ(9}E#Tk&3yA}}58e-_ z3X4N~2h-bOHDc&wSh|(X@2)$Kc0x>Sr*BqAf2A#cr4?9w&)~EJFS!U{WO};zKOw+@ zXDa=z*ul6m39gE%ohRcKFg<4ki!YvIQ*VSDo>GQPOreE<4lM)||F00>Qa79+Z2t)- zi_|RlN)_94#hzn-tM&@3`R?oeLEwcO%>E75i$)?GvuqJ!3<&y&+h#7l(7_UQX5Bdz z#@y}`I|U7J^92NPC~XX0o=tL zUR5>iMr9KMiD8<8m^3Q-3~Rs9F6j7wDiAYn;TDDl9bv6rdhY^THLSdOUU>e|W;fe- z5+a$Rr3p`+r|>Vcles5%)m5goJ<+GV(8(0;rXmwk25+mdcmW&3RV1Z#(S=zUW9fpqiobaBxgjg)F}9|8|9AAS}$$t_~&Jm&yP5?{l)%>osT73Og{F zcEQxCn9-EV(($^vyv(+y4i7*RN!eaDliPyzjOgH16slBK+-WF~f^J>cJgcI8Qa9nG zM|9-#n%<$+;JV5%aftU}JlZGlsx;`z`t7z?RAcB%y(|hw)2MqWI;vqc`H+dKx0Fhs z)RPDi=w54I;N0uzRF)8YLc||GNQiLXMm5{E{pGJw$l&9!Im(J?q@Gy53NaL?<<_`w zdr^~3`B`%M_2SM^?fDtvfW`Eyv}s0+8LaXc!mme{lR#Ddj7 z7}r``#2awvYz^X^Om;kMTLX6neDIoUv!yGMLVT$PVCN@k_olh?BY5X36t|N-1O<~$ z=5z}^MD1d`=QD+Duw6Y~WBh!B4s?j@_KjFO4PCCq;voZwAle+)x=b^A6Z)x2&G&Ss zgZnWZiE);QKpQuHsOd+?sG1@?nKW@&j`?P67P|r<)v+MTbC(eLYhpv@J4jdM{RjS^pR)z9Qqr@Ep;Q)}ra$QyXLc+^R z7Johy?bR0nJQ`8)e5vF1S%aUCC^&(O!du^)W5(oqW2ISE1Bue)4kcpEK;snY)JV9e z#x;YY<@d@KWpIg%lMC5%_2=6i*Bfq!ZBC~0W^UyS@K?9Y&wmR};!1XapHpp@VPYt` z+Dw?0Wnh$2zItj2DF?o?!qhT~{Q1|?W;-J>k)SH~eY_v}*~Ofo$0*#G6_~%b{TE=r zQ}xx@IfiK=R-9~JMME@r=}fS+uiQs^i(io`zMwC$+^O>~J-Vm>r2IFcv9zPsPx({$ zH=B}TBv0cs!4tjgsGqKqOt0m-l8#H{$yE6U9c~5oTX;|~O9QbjXA#k+fg3K`5k*oV zz#xvxj;^P5)=q!h%J-#r*p2)ADivs>l;RqcVQW_ZnM8pA`9WmgPgtJssF*c`!JO+$ zjS(}KimzDrOC}TRPB;9H)HPY$xq%QuBcjkl!xjCfX>!*x%JAFFY1DpM@O?eIQUKi% zN*V&<4R^ZT0lrI}ZZM^UwN^G=LS|jIQ5}=*XI+M@5W1(?(&Pyq09~;75CCG$E^;*q zlN&(^qb!%aUEWn|Zv*iEYhPv~vGWxeK<qWu7t2h#t_ln#) z-=+~sM&C|ydvL-Ngc*2=mO$@HnfkKI3UDPA>RbMSsVH`UZ;3oK{`@Mpy{*r<0ouY* z`%iLQc5_cFuDvzhA2{&@^gFz(s5JZWZnHj_?7e%v#CIx#lE)3&Ol`-u!0OyYAW{*1 zr*3{F$O;?Twp2T$_l#7rR(+NpuWd86A0cd%5gdAPX)aybI?sxte{xiGq72KW9bWJE z^#atNg>yqDp|u0j4@-1+!9rP5{@ULzvN`iz@Se^?e8R3)#MaFrSer3wX+-Jt3SnF? z8*vyq>CG1i8Qg;J>7nq)Ya$bj)0X#?nUD-7z{98=A5||!d7F>@t3Z5op z;0?a~B4UoQ29!T+Q>$SzklJIGC=7j5p{j<9TpI37^`a{V^-f)i2Aq4*HCB$#+I)sj zsz%AIJfd393zlUn(UJr=8)l@=P95YDi-sbRFU)QwtI#9z9fs@cl?&2 zozG)Y)7?05yntmKyufUJ`x^K}v!O=i0E^-X@6NQjzbHJ9h~MWZe1Z*0sx+PNl(6iy zTNff;A$L^PGL)xK;6o%)2TMjv9XR+L<^FJrazC9nzsgro^SMUZelY-Od%GY<)JYBB zBDq*w?Fep-PD`oC(VWDV*^)8h0riPSsVglm$>VD@q)}$uHW8#|>an~IB}+WK(@J_B z8lNnwRhkRMNG5u-?h9m?Rq7M(QPH)*(Q!$bs3COX3wojO)UJ8-M96={@UcF5VqrFHKZ*x7B%l@J>_E1k7-PF57xc&N+P_+zbi(RwBgfaX_3|NThM zxe`wR0*k@rE!*ZyID^sRw7RXQRJfZsjV5xkYid!ofnW2$PJQ4zBm8$$|0~Ob!Rk-k zsU>9DYE7By2Hs40L@6uFMV;#1FTvp7H*VbOGzTV)}+I`lG$e1lHf&Sed?y( zBSX4bOSAjy)Uymc@DWiFhAB!npjFoMQtfrv3pRlWYr$r8}bcqT74Q56=?2m_WBU5F!Q{7v|*$fMqP z8s%_E*TS0KHn8pLsp!`z_OrBnYi#i$oD?2mGnSbWD7*dI4@DKDztsRbk_+ejG>l1% zv|BqOw=(kYz3ZAzR9Y~mZ;aI0ONRZHOEUuxw)d}AcGNCk6Wzlg^P$-?_1EiDKG>6$ z46rKXEZ-52^8lp@e*ObHE|mxmxvtyadsl;(Zg13aVq10?ynF<7fJxS*y5eQ8t|R2H zu)jFi1mKExzY30Hk)9k!W$k1W#+p+e89DI{r9OGib_+?_dal$JN*=kkdecT2m?T!( zx3?t8XP7Yyvs8;=5_V_s)6}49Xlio zQcGpK^EPlRzGT$Hf9QU8Hx&GOAw|oBu8G0H?N{?qpyeUgIcVLM`n|YvLnm3YPr+y- z%;&u+96n|nQ~?82!m0qCUv~B5zwpeii2gK)9{6=8pa3?#XlT(873iFXf|JF4R6b=% zW4`o>!4GKU8k&^Ux)=L3({8G<^*YtYKwYgwGe>?3+p*^}lk&x+j$KGlvD~z!Rb5b* z@t7lvHR3|&ZSDKUyg|B*c2uuJ^=RA8mHfx(jD`7uzsK&>b}4cc9vgybe>i1%`9y)l z_mqy#xMqjNUe{QY>v8 z@ml#&E*mSXBc5+@=(lCoyA)7}qPQk$)RK3YNB3{Ee)m8$3+4TK(Z?kh*wO zo9h=MxY3$mKO>nJ-+vt#4*#^AQTX{@>-@RzgMdx63uu4fS~pe8lxhBa*w^fNC~eF9 z;R#I(*Ou~0f}B_VZ@Hoy2s(AxexRZMf}t#DbOgpv&%v>k(x!xhoFsnf=e!)8Rou4y zN2fx0Cja31cqiJDN!Mq3>A94+?Blf&dDjcM0*{Xf!(8~kAs$fJcDh}zUR$|YF1*f3Jy6rWeg>Y z7?m8I{&;2m!haWF>iA^vM=}H}0{h3aj=chX>?wYdG-s>ixPUD+f~?yRfzk(vbYCIp zzEO5UPa*ZE+P_M1v{=B;9JnzkNlW^gx2VTvz48Par`2BMHAPUwNbj~!;E-EWI?g!tKQJ?#3PhZEXph@T>HEl;O@uUU%mr{Bv zoWwrEIPG^F4)a3=&aO9GJsI48yk0)OSw))+Zb2e#_sd87n8b)?{Zk%*F-F3GNfi;y zHkEkSis$s%W}{i8@w`q4YGqwTV3+&p+Fa9g)-qYh-8}l^T#q47C!AGVDG}gn+eYuV z{AM;V`2H`lZ>L7;K8x!Vl=CNZy{UOgF%DRGyu57OSBED854Ls~=WF2RTzW+MEyxRXfV`+j`Yi80X z&ZNw79UUHHD!g>xdlai(x+armY-!fcO9ILH2Z zFkF0Xp@^uFN{2$Soge$VC}aQrq+j|$95nAGntnd@M(4hgXk1;&!1RbrIV+dR2WE)a zT}Z?`)q(R=rt$IRxCxM-fG07H>v!4T@Otpk7WtcQ;9vHBi}^SB%ZvvoTy0T1)`BDp z>5}-#xiK?(0`32K1)h*JZ*~Qh z?3YR-NH0MyV%O-}8Rj`wi4Xts&IM+@M|ayKnczn?;{%C&K|JMkjSI@=>cHQ^iHIf^ z5>lWxocAWx^p&(xQSjdd`U25X3+yBvdUe6M2G?t@&>|YRviKfr_1p=ELo&P4G-{DT z1g_v_b&(-w|F85p?Es;O$0_YwIUtR}$HV#PETnUjY(3KzkDcmC*EWCVTK4pn5)s`E zi|I-*y2fFPh=b z6GFsQOqC=QU6Vm+zbC5bp?fhf7q~<&u)kUqg+X%fEx>&kJB$JD#&FYTE|l$_9Z= zGwIJ03<-+K+nrKC4~ZXV#=_!g{;~X$6f33E73Jmi@mih6n5K{=60+44S$tA>t!nzC zFvs8szeg*Dnfb+Rwk#sK{-@H%aG__x0jj~PC!qk6=wMqaYLT1?S&eaxY0ghmn8ZU- zWxAiN2})(G;99ZWF#@u_Z^_p`1b8|ozwC+dEK@v^_j%^IS3BLzKgkb&s{#woZxFP_ zb2=Z}1;TkA?*#or?1(1Oj^*W1wWN>hUz6a&K-~PLM*I9Lt!p6O(tiB1{qFY1PK=G& z&U*oLv3_+cJ+Fa>)}7NeU?SO<9nG{|?3mVHk_%{^!$o2w#0E6%S~Nx$ZD`|DmH%Yw zdwKtA-&og_ZZ)Gy^Zet*W)xxwjC{=p!5SP1zPmktk(POY!59n>aTHWiX!Z*CdE3rD z!HLOPY=z^Ae{vTO-S5}Gbxc0VC%Hy&AP>B4@x(5~DUeU|bDiLn8^%?Bb!MGYWh-eU zub1esHpDGjAh1u4b__j#IJge-qs}@)NA*dw*NZr?O#LY3fdI~2J&;ePFK00N`VA=y zuyywj$T6dudVK9t4*f|dLhUHhJf2vw#_39z4d4F82A-bSC55A)=6XJMQGoM;n<11n zI=SyOz=+_voty0euU{NiRpL@(D&{ebYE$dn#oB6-1<%S#FPSajVVOv?=Jn{!3d7M* z+fleSy+!6OhjO037_2t6V%OrPyavQoWw}IK=S1&w)zqEvq&GyMschV?B7AqK?Mqc^ z+q(D=<2Z21M=G{L+{d&!3%Z2+%4O7*+WMRlITS9bg`2pQ@|J7(ZO*710xH)VRkV1X zMES98lW{e{1gvOR`Q*RaKIT~~LF(DC10ZwW=tG+KN-7p}psPr1n1Y?;ENtGmViG9h zbheNejCaMpny#6fk-;h$O&QP?%^Ab0m;w-B@8~v@q#l!K4 zSXhUKhdgTxZC8eV#@uK zt+h9RBX+CFHwM%a=&dp?w}dBvCIOL2GB$zhcAmWg!c3nrwW@+$?;o=R7UP>vCEFVb zZO_pZ4==6Q4vWjmvd&Q_SNPfcoG&B(kIs_sb|GS|V-Fqx*XaS_rN-RMJL7~e7Qu-= zSj~42G02aWt-AC3DyN-w&9P{I&C+%ZN?LdWkFtwq$*v}yFl8q8lW}{2Nj@@2df^1O zt#+1FV%NBp3wIf+GC-Qb2^lV|JygEkYv28-S{6ZqS$N1Eo7){<{8|tVb!=DntPNbP zN(D)8{&#n;*VTV~lMMv6Zkgh7ZY5!Ezn^Wc5xfi{;?~|h^*@@gmNu^UAhG93GDyD)o|S4Hc?M9`L*e?H6E@#-BH1+)4rKmXagv%rIODz*BB z2B|O7CjnCU5>cZU-EcRZBh=4JC%(!4#$sTUz>4&SYWU59#JeC#JGhhdn1LzJU0w?laNnvt-f!xyH4e3>)gR-tq>cH1hjo1H_G)%;8O5Mb(_ZPT! zg-m4gDtX)sii$6%0oz!@ac7^`0>u#<=Kh4Wh*rA^78SOxtKD3{u`_LtrPJ;OL zU6n;(xIx@~p^{oN^EICDkWyH*n~ybp{ad9o=X{98v-YDL{Dj3vjDhTjY&jIljWDx~;oag|_42PRO1 zOJW_OXfO8LC*r`D*!$zyKQQaQKc5b5+;kI^sowAZN5JVWXRBZ#%vYFH-uy+6?##~x zH3PY0uX6ZhbnK=5fjzWpgtOgp-~K9rxg}wPy~g*uAu=Abi;U$m2k6W*#?*+x-26^3 zm}g&(CB3M_CiZu@#g0JjdG7*aE@xyK-6#T*A{P;wj4j@mRi{AuWOH45?6MGbE^L`LOlKIKeY4K-egR{Eba%TF5y(c~ocPx(<5zMRRNOzgKR! z!J{Ld%z+-?(c|?%3kGw0e&09EtX-O#Rwc#>gN&i+vid3L|Hsr@ct!nvf4Cq5BB?0N z4AMx4^bpc5f^>Ix4?{>v4&9-o(%m5vLw66|-3$$PKHuNE>)tYXYc3rY>z7F zsKDOU1`4TBPnrpxvD})U^|cZ?x!@e?=4FCPD1#`HZ2NEU_6YN@biOc~gS{Yd*=`l> z`}m)PYdS64&Yq#_{jzKEk-N>xap$9+&J<8*uc1KwU&)NQWZ>s>!G97(^~dBk_g<|K{H{ki z>r=g{6koQz#xSO2K#JY0Q7crA(!{-#qFK}pis$j28BKev;Gkoq3_XXaeEv~B2fbG8 zY|22z!{)lYM&)SPynj$_6PG+lC-fp+vPve8J-zl`j4{5mQfrR>9WZM(kmuV=k374bP+cO~z5}|IX3)k|ShmrShEaR0p z_ZHu^vVSa-j=4DCgxw)gJkbA8Jb|G9P`u5-X5qDWijT9#^*i)hIw5Xpj!~@ifBudP zssjgQL^fKrEn!tk7U9*44hg@Po{Awcf&Hz1@5RR7DY|8`9(txHMpo=jTowG0rwB3f zB?PQsY}=VFxP|{wEWJN1Dng)A6TO zyZzy+>*~8qg@iPg2NoKFLq2E4E$8De@GV9M3|7t-QN|w` z5d{kfKb>=zhys=E6(Dfx+|;|6p(=EN4HjjO@4vcUDkkQwd^sjq!svbcy>mYLB385h z0*0I<^qd|y_>(L@o~aS1_j2qB>Ee4rEbH;ljfeWsv-((RT+_i0D6ed zW@lacCu^;Az1a-BVP>DXV#fv1r)n0ITSrkPWOWBqip^w>C^>I20-jFz^ZS(s_Wu37 zYU~<(k&qm%a`f3$RLAT0{mmA+E`dp;(ByXl@Kpwpw*kCdUFT)4bJn(vpygwOsN@3s z@T}9ap<~MSW3gH(_lNRM$w?d2*T+3Z#cVg~h53^oGMc=&OjJ7D(+7-{cjUzr^B^x| zs#my%&CP#hg!a>9B-HYsU2ZY#U77hvrFoQ3P)qM!lGTtewIImbtKwMv3u9RYF1*$% z!_VnrAbY1rw?An1W3kEImzVebzMJ8lR-+V=o&Xn5@^dDo1oSfGS2C35B*tO3@uNGc zrI=CHKn(seirO6kpS#Ng{?1%bqiwTC3D^c4BqjgFk`gTmuXraiQfJbclXpqv ze%vKJAP1Bts)_>{i8|U=1>aDsIasy>h_oq}>eQmKq98s)pRbD*MpsyL{P)myLKcVT zG0hf6 zC7So@b*tH!llGk?ckiv0n)5l$whl}N$P8hi$ zm)mebUt~NDIRJMhwYnIjFyXsJRyD6%3nwu2y|-!hsp>BY4Elj_$B&N5?EdynZL8x4 zv8vzo{{^%?SEs-;wzCZ4{;TNMo2vjDx#K?KM=@nxy438E4Tn7C_6_eo=cQ1Xxw4Cx zvKUQKTgBIv#i{AvQoxgrCy&OPZ7^KqsjhBi8y#B#i>u{Mtb6~=ST0Icv*Yw!vr0h? zbyA8--XyE?AD#Qj1A2|S(vRJSnuwhM*Wk>0?y6!?_jDIO@*n~ngU#h7?~)Rzvznzk zl#&1+|LB`BmD;5AZ;FO7hx{ZJetgJrCr$FV3_bGef=-8n76rUrvVrmB_U9R&`}#aa z&a_ENnNsuXMq@+2Hue%GW?2km^fR;uQ)OfpT12xAkef85XJxwiMWs}|4JQ#|K#1`| zg6?i>)*dd1yG)T#jRSl)CsVY_sb|9@`v+~tf_E(A52m-2WE`q7eiCvY`Tid3fl{8E zQ8s6vwwPTha!Sf5{up$z zT9=uSt;~P9yzO+rE6uX{fa#;_d-L?@WG(bvZ{ER>cx9pOaTvZQkRhqdk-xS;7`%aLTz+2skG&&;nlrSk9x}HCRVw0&#QM)!>|+9^mAyA zgG&AN>HdFR0476^a>G3Adm;t1->jX(Jc_HAK*~Ar7+^gL?U9x_wwSV=!+IaWGyc7v z1EYJd+f8b$`S4`}EVrky2+dWOt{o)mEJ^8NoHqj3T~hh3=xac<%F|>xo*hN{P9ryx z7mrK#3Y3OU`IFipA@APjho>9^qt7%=h1tFE%*_i|c-3KpVOp8zCyw4+ye5{Ca`j}k zI99eih=;Q+oBtDkQS8r1m&+3Ql)s;5+k+VH%9T*P?F8v)A@4{Sn6Y7ye!)8dF14;R z=W>;Zp?kp6*Ldyi9t)BBa2WL~1Y1m1h?KH$UO+FSv;%%5j^bftDwlK)`=IKxQu;<| z{ccHgOI@Rg(R57^^-lQ}{%w`8#j0ul|G_P^lW*wEY_83AnYcso3m2Dc!T&x8c`?EC zl%T%-77>5=qPQdqGrqZhWA3S}`_sfEXxz&uq_la%gDWki{%xigPurFzkRh3>ruA11 zw;nYxuZc3MYP_ovH!lTYW^i&~$|7Lx{ZT6@P%@=g?u~qMalprg``1^=!9P!j<#$8) zes_hrs(xreJ(?+8-qB-mbrDE#h>`GdQ=s@q3C%DIz=zt84B7Qf$B#7Rbu51(Hm}V) zf=$qiW}N?i`hIi;+754$*K+H#y7t;OSD1Z2OP1=LEHQbLIg*9831}$}ExXR^wRSjO(l(s3lSHHrILSC^aq@nc$S3mZLj>bMN{^eIl zOjE+8jzJam$aQ$D@dnA`-(XtXhv$;)e0O*2ukfSOM>CqCy_r|H!7)=jB+Qhu4UwZw z6b~0S-Pk76Nmu zmP4k=hRxz01IZ>BWwjly{Q>DsA1i#(NmB{GRR~24zTC^Wh9a;2#7OMb&jDMk7VQTs zO4T%2+SZrfR+;{j%i0AUfy*?qox2(4`}+jPv`3CDc6@m%OhDMB5dtRMIoiMI8`v4> zMZqSp=OZ|hbbp*73buOl!_Uu4NY6HmK$kXGDuRp~%CkJ3c3JZ*`ziUHV8nU3JBTDX zlpjFE$%uPcTz9;oyRJLo9Rr!V3TGH5Vl(PTK=Ka^h$Eh6y=yps-M1N>xtK)08$Dz= zdN8g4k3&8l-8eh6yq(8)m1-Y(<+kz$anl!c9bOu?LK`XE9?kjyLhix-c*gp)yK)c# zkahewz)*tznjZPR{c5{IDMR|**Mx(HM0Yd*kUD3Ww|KPo9jOH_d%NPf=ehzh_U(Sd zCfc&^8|5TR1o?U4Vzvr_UyMwzMR>TL3uJ#f|F%O33#s(OV3{|ExzX?tz6>Voy%r4&>jLwZB< zUsuZ|ucl8?3M*{^MCy~Iy+Y4HnAB9*Pc2i^Wf1QhP#{_Umb742bySevLez5vre^oE z^6RtYWmw17hp?72i|8DiDv6l|S)&VccEF{nzG)z--a%I*gOX^ul)4>sd~$|F*KAHfCX#YpD>O97z~KK;%Gx{$w!zPPKS_ub*M+Zh}|rB;qMIrk>*svV|Jw zJz@%(#ks-vN@&X0duMQbw#+cAcp~^2qZbZQba&afkb2II;q@`>6^;`%9{Z4Ybi_CN z_^G=tgr%OZhVu3I%w?YEDp3&_-yqmbWD%jq7RT&zerVn>o@elM78G+4zwsG-P1m%$ zRmjj{9lU3px5QUb!8W;$fAsSFX>_GPiVBEKVlkv#C{YT4RnG}>G~KBtS^g=0RU$I6 z^8eAVaVsp1Mv~X+^ZR`->PGIz((3$+M!km7S|9W%z$rX=&$Rt5zOhpDuRg+h3PPVP zo8GT=GZgb$%F7=srZQwFY|-RpXFh;}MXF{K@@LI1<4w7GdYkB9L^CygF1lNA4vlVH zRekIP%y@%%zz+pT&riwdk?vIeO&6dXBq&hBnO6qj%}QkTImZ03gYD|pXPxJ19woaI zjE2N8cOCQ0MuJ=TR1jwWW|38Xb9K6J_yqBK4im*a>9`j;%KnQSDWjMW*Noj3ZTBHh zd3W-w3@4MRxaU;CJIyk>?|S)*bL{$*-E^gQaqZfMhS#Q4QKj+4|N1)GUTjbG4&Uw| z3msYSgE`Mryy#VwVo(2w18$6URn+>8?RH$JpK&#GM*kqcJ~H%=#+2r*R;BX?ffJuc zHS6atgpiyXCKwdO`eI!9!vm#6mbv0_8xS**LqBLS1uy}TbPdJZCR&hdJTWAj+Jhad z)^o=ZfwLF>b=Rom6lo?D%(l(FAQ(=t)|PJ`*$=KevC=r*T5Ob?w2Lj{$PwF(+!4bd z(NE0l7=F8Q{^k*^A0BwXuB_1q`EBGQ2z7P$2gbPmm_;5jpAh-jJ^`Q0zm@AZBX`!@ zC*QOywk6f= z9m|BqEn*rpuA%OH=ra*W7cCa2w>#V9RnuI5^;~JEWzG5)zr3}lW%m6WbjT0-i9EEy zcj>vhtM34%``w`|^`OF{1V7){ocIPZ-#A;zo&A3Sgc!aSmcBe2+ewYFb{#0e0Y?1E zFdSdK{{r|;jl5lTQ;2hE@rPEoq;Q|rhSWJD(%>RA zO*3+kFABKtL)p;Q^HWp+z*}x6uk!a`hMMbp{T^$gJmfhlCh$+tO*}vnC)A)p4?2rK ztC`4NBh16P)0Km^f_Z7ct9jkDll+=@-NjENqe#r|kOz*kXNo z@P~Zl*)?ndDD(B?FAl!O)@hl zv*z&4eEf4G%4QZ4K)HDeTU#(lit~_+<*W!`%6q?Dd)ig*-10XlGBfVs#DcH^9XABX%n8i*2G%OF1f_T4Ls%|2-?M!Q7omz9n znZT9`ygBc2Jr|(2dV?EBN`c4g!hWvxY(HI=yUln&Izeg3`tdRohY0TPHTS+Y7ScvT zcZczQ<#0yqal1h6g~0v2gf(?h4@1E^$}r`_I<+F7qYRJ7F}!chn(y0nn+%(@X1|4F zxb3T3U%IJ=E`8k-NOAJ~qdSi;irO1lUUX5Nv^0+Z%v) z{``F}8q_Spx4f=(Y3ezGp`0|neBk4LGwXDHm}kd>LEHzv#y5+rfzuoLl2~oFkf5r$ zvhn2!^pL-c(MzqnNHTkns9tTg&UlK5)AU)!DE)fJX}kWy__dOOpk9*O*M8@3_vQAz zvA{~gV%l9}SapG1{S&w^Zgv#Eyh9te0&Ubt_d3vHJDq})GEcpeJY_Sj=A?Xh>z5)W3J${4 zmZsKq*-)a$if_wu4nO|oWrSJVkL>7xN$!Q)j_cKV$nUs2F{K9Uu3TTxCmYQBUe&?} zS82pJso>d1+eA0?*>i}qz&-CCJjyww@RG$bJ#aZyx|gJ=t)#;1j}vYL`@YAOv#dv( z?~(@F?3Iv#sGeqZOtX6wKI+ye+HFp^{hw7}5TU-zU#}}uEe@nw@Pex!xW4A<_38|k zIittih(WN59nX7|l_q0#!63*#6Mfc5_gW17~eZ6-*)6gV^`6@gWzhDq8$0ywM zErT6%(z;Xl?nH?}?XE=?NHtL5Dhd zHQFAfPbpFAchLxqGyldi>$n-zR};e*WqgTD@yEOcs*`?E(At$8oKb;KonQ87oo_HB zaBy6pQejcNa|T!%&7Zv1JgVZBCRAZmn^{JU4FLsh-Ma4C6*mDzCh`SnS(_F-MP6ts zy_s9)YryE#m|t{aiObn{b3d0YTj-@^hZKMHE35{#8*VoiLuPqRb1UfDLn-0(84h7? zLX6Ku&fQ0jYH6@PrLXxWym4O1-!bEvNO>YvdN*_bcjx6EhW`)C=2J|aJ&0D{P55Yzd+3lJhsCQhXC7a2x#eo_-hvDlE*8C{45me##xs6O z)rRU@d#>s9Oq~PyCs}cFNIkHjH?x-4n0GJ5drJRt4D#y_bVLbS==O2GgHFT=1|6sf z8?j0}(sIo6M8C~?Xgt+z?nWPc~B3jGxTI8S&guc{EsA!@PADPxdd_?-*Qo|16cY|NRY>7iHoI*olwdjwTv>jcU^fM z?GX7}QA(CRx5tPfer07=!#g5(??#WOo}w;O@Lxoq!A>AlSbBSDQ7b`+xA2!gXo*By z*RA0--tW(Bd?DR0Vu4Tk6#=&mYyX{?K3Tv3S28tu8v~b$NrCtwziRnNG5*qIGNUG* z*DsbB1GQ7it+{9TNe}PjOM5)qyKyX&E~#b)xWVRQgU?SYy6h;be(U_Y8Qea%V*~NM zSzQ`W?tdkO6o3PcG&xr^?hnW-&@Jc58M5(j+aiwg@UJmy0j+PpUc^g zKFRJS$!uL@c*!gC(0dBHVWq8=ZxiO|sR;!qD1PM-D8#z1e_;~0gm-53v!CS=4{{=^pzW?ZZE`XR`T}V%53D~O#%V%5ICPkgohAN9~XQEAWK=|6hUY>Y;Ge4dNImXT1eh zv3e(So^j63YP~dWe;FL@cGV~RUWa2tPMxGBD}`gfc5#ngILWW->)jWQ;d*|TdZh^) zW&L7pOcmgKN=%anESBcXS$Va5WuI1zDT29j*iR&sY39wEogiy3k%If;n+h?wr>^rx2C8R|Y*;CTDPD#7bPKa?Im!{= zt2iW|hv3<5k~B2=kvtnjjtl}cvM$78z~e!Cd-ZW~Cr9TU(P1qxgo^}Q9$r&!RCCJ@ z;cZ|}pY@8=-u=l1^@@Qfag`!u&QcQI`59Y$+5h74^w`r7sX0On-(bVZ46w<0-gEpY z>OG+IyZbSTEx1_=y3fRGs_cnz0`q+Dm&^(KwvTV1Mv<>=3O4LxStFaVxib`yH~0JU zy}&__BSVn#o904ZE{f;!s+c%DTGhiZ@8R$R0U7tu4`6wY$RfPVDjb0xF6& zG=H&nrfH~k`>%d_miG=(W)rre`y&b)L!`UUy5!~Lq<7{t*jff7@mNye4$eXvxr}*X zJB5r?c92crQTbOReVC|ynBZ0YiW13uK+>{S%-kDVIU9y=oD^9p`snX|X=bpEqAM3Y zq#O*ev2nh84XXU6Fq=sfHV4H*;vzkxgLqUsh}Ws_g#x-MhPI@a@g9vDxqKn5s>JYr z)LnSlj4~B(qf$V9K4cjJ=R6ow*7vHQHoOs!7vpt5XaDN!cwhAzyfKaZY!|ylJ0*D| z4uPhP6{soeWd@zl6u*mfvD-U~WVwE$@RVrM>g^$$*yr=0w;`t~0?eHIhtGP)53y*0 z_@1+{%h!g4GpOVsJvX|sR@Vj17vDg$AcRCh(k)L&57l*b-I+-Xkw3gq|E`j{&}Fz( zEQab#gzM|_Pw^RuW1M&-+rapWXMf#pg^I~%8SqNMwKu$drrR&)?B=X9HJp>(c`!u?CvDa&WDOziX6_g zOVq|rVlZ(MeEpbZ$WXz1*D#{kPVt}xvRD=W50l=ME`pLWCui3dNz6FyNn4sEc`sKj zyrl1x)RK*bRo|vASd?COW%Aw0=%zE{V!M|l>U^8pOC|T@Qp&%v(Rw`KIfxvJnDPgn z7yGQS&GFWO4YlWK%Xr=6+)pp#Al4fT`NS@y++YI^8ZnukTZP8Ip3rtp3ALDQVprYssCOsxK5IUDl{?vL$bEOF-9EO4tVKg1;XTFCMA|L+W{TD z_~%vi6`S8JKi7$Bkc^zIPbna#hq|_tExDV-G-W*AA?^}mz^7bZ%;$@Zvv4)0eGx)T z34dm!_5xOfOlw@EAjXCPwevv_CfncJ#c`J3nT$BAgyG=u_6eD@*YyRs$|EP4_Q`pi zHZc#2WbSR~R0~+*LV(R%CDW!$`uDf#GjfC#Cx$%*32d;-uPZ;N;`|dbN-6zYzBa$h zD`$$1Hq!_%W@AO+)JH0<3{Wquz0rr1hywb)4MEMqd^z+;+q)x>A5_(C_}o?HE@S7I zUo4%(M_g%g+d4IGH@_RB7QeagQ05jQww1XNss+k?WWYJ*gAU47r^ib<(K`yKZ$zOw zT$?}7RYJ_V6}cGyricKIW2-J4(F zcw_^4fDPz#6v>J)jzDY4sLwklVvaQ=Ds0ho!^BRgbJ&+B0~yY5Kdpa9h9?M~Ik zB0j7yx2;xow7wrpb^~}CUL9ZUeHTBG1ebBKFV^RL5?}FTArp;CY4S?paBW_03jL`~v`#d2jl9Gu*B6AnK#&=RWEKTGmD$`~?|uQbv_260=Jwhx6KPvr_$ z)*YYAT@dGq>Dn5QBt49LD|(qaIZh}m{c7H7Y9MCz|K`J4Viu)ZJ`+_j+^(oEtj`bIC+ zD(@DxB+_)10-~K&am$N|H{S-74Kzidr)NJh8$sY2M*@fOdLBKMS4`wno`QTB z;w8lAB|T(&D=%ITu)dJPDh@RH#99M+3O2as3^`&`^`&z@Gu}MThimUQPj{(qsbhmi z>>8l3oQ_I;QDo<6zV@iy!?|%ZsB=29GY3YeH#%bmrby-n)DvmlEP~2J;tQ`BM6KaWRWp?S&UXb~QXzr-PE(`|fhqug~WEJ@g^6 z*axKszV9TD8=VjdhNz}O0S^zB^<6`1x-}-)n!ZD%Z8sTuvE+eqtYmTC_Rv_i5v zcpT>_;)%THY+-=;&-kpLrygaIKTYZ5?vTNe$#t$9a8{ri{B`LnFS`|T87g~{Yc|%e z8MSo4+p}(;mo;m@-lPDDs@VWLP)jUx&P&xI0H5hiH~T!#9trH$KRpnbh~$$z-uy7N zWKur#s5)yM2N*!-3-Ju0mU0cz_>~D&VQ6UiV41A@PeI#1Du3b5{-*VUg#o||?cGCz z>L()~xQ&QBqeN`f?eKo{_ULET>Aa18^^vh8B55bQfyBf@umEI1*6_DbMd7UhB!<4Cao+@E1CJ>qbuM!tY@iozTwo z+zG(j5_fbJ&%|?hOQD99S&Lnit|xkB8l3&lX{d~i(HEp+_T{&tU#pSY5{BmTZ5PXx zWGN0W@jQKKDIeO1|KZMW+qhI^uO_qFal(*(&1lw|4cFVe+PB@Wq_M?tzMzHp>KxyT z&vysi<+)OYtcO2lksPZ0ZFR{FyY{)USSb_%pZW4X|0DAEwGm~{fq!R$8yKd&Y!$tR za}W3Y_0F7hJnjAhM`J*&PO~L%ZCL2-(u4teTW_Q~7ZNme7llX{1D~Z7Z9#u{fa_};NWGWc%lHS6lg1o}0`~<~d97PfCe4Y=8{yin9ePC1 z0q+$yJR7%JiNdq&q=(ETHKQ*U6KSbyyHDA<(2j}&XEoev?dz=o75tC$fKhS$9?2$6 z;n6$MB5PNv_WP$-Ude9o8x$c@a8F=|Opx3)kUPr0QJSukuu{$BMDkCBTw)0*O_b;_ z3rfF7NZGop7!PbMT6epaL>pCNHw{PI zo2gpD+J|p)JZw2CWmsI2=(1m|J#9GlZmoRB2nnk`Q@l^$RLo9uWa(NsptV(F|FQLU zWjW^6Eg>%b-y?ASBLx-}B_KwC#@D&GE&2ReAgbaD2 zB-20G?u$h2ZSTje*>Bnebj53xguBV?eH{Mg>YAbt=GBu%Z$4EsUDCt}(6WA=bH(#PqZ5qY8gU)Z3$2-6cz=iNB?V7J5&Z!R}gVpx8O z(r194r`e@v#YX`Cr07EzRfuWa>3C$-`&Wh2{q^S`KWiTos6cVy_8~up6b~%NsR_xW zBxx+zyYzgTeuRx|)rkP*VSn?YR>#WS>f%jl3v$<>UpjfNr1%%N+w%)BHnN1wv|fa% zcz@||5xsC61=2AIuMPhqdR2h=rI^^pd3rIXIz>CgRll?xfgl*}>rq)Q4$>{oKbVdG z@zo% zCM)Ao%_HIu73XFs5iv4xkgoZckyxQgdt$nsQY&Pwxr+mE^%8uOf7svZD|tFbh9i$l z6O+vXl_cQxve%fU#&0{9Dqsz6o-tv%A4kRw;8>D5_~k2bhYya^Bh_~csrz~S%INsq zL%4E|0AkzQk6OV|N!y}FQO2Rxp1-RQy=84MiFT6Ig8V;j*5fdmwh^gFVLMeAQzS@z z|2;eXq-`Jag&sP6tX8xTDDSP=?Pu_JEn3YP`f{HT^YM(!En^^?wOXmZ;a3s92!`1> zFg0cwA21XTMse4^zgh<4 z8}aC}kM2dX72F_WMZG-~3zLEC%?GI|VKkEmZ{W~hmrZGdn&}K(U(P&Sy{Q^@Au)M) zLoRXzldd39Vs>soZt|jwh;P(xtDRbw-t{>YXNbOBVkUt+htI70$i0sm<5o$*MLwn{ z49B73V6St@V(%V!vEh#F2Wu=Q^Yj#Gi6WEZ*l^U%$DDS`W&g)A&|y`W$Si`25yCC9 zBed?<#?wP_S-JM`}K(j(2OlMRJzTp{VBU( zAso9zJ!SQ}+|*!POJ(+OFC1hkqy#?{z1>H)g`gq|@S`GqQ5-k>*)Y)-PoFHp(ovmO zSuhC{D3$Y`jF95mdBg-SO(8Fn1R~Ia(hYDJoiFmg-|`eLu>JY)vG%t4cS5k|_JN-4 zo;>pA-p8NV$5W^rHBip!nQilYsFx+;FVbp+8GC``C!e_Bk-e1qU>Fl)YcaTWARXZac|t57V(*17)d7FP?6r!9jsEJfb90Xe`GNlxUm#YigZ#OV>_&Bt$lb5 zJeV2e_$<>B8Ca7j88a-wa=~D(Z(PRLw+o&95J|G>sr`2LLwEcgW!PhcS**LF`9y+u z)Bb9wd?A{535nrL^WDy;m9+}IN4{=~Fm3Ng5);qzt(%X$rIdxf*p7WmiU zRI^X5R5Wb=W%xAXUHAH0_6=g#253d6x^@Cu2}))^s4*>OB1z^Jzc1eP;+>Qc6ywhl zeebLCxgJ0K72)2`=vct*1{~`lZStBc9o3p$tz_i}9ZD-NXBvVo>Nk(@F$cVF-|@5) zNaJbnuB)pL$0sbDCmpVMSTcTA70Y{ojs&_P98rlP-zBK)5mQCJZ&h}Wb|wm#IxrDo zu~g<+XIx)r=E+hzmWYI4rB%^v#F5X>aI2rIE^Pn24Reg>rL*aJmC zUkhboi^x%6`#k9BSF#Y!$<()$bY9|&-a+(t{)u$o!_FhC^1a|rR;H!1_yfc53#8p5#Jf)wS>m<3G$%wRIqwzAM{(r*tqU&WwFMGAis6kTuDK+L^8?*;G ziqdoLeAj3x;yd#at~(>&`r@E_hf@;P-o`qszwy|yc_>fbbS+px;Gn$YT!r_{Rv&l3 zUN=m-;6@inqp}JuTyn+(R3EvFpN_C-@bnWSTXs`Ltik(RKFaHY_fht~ zRjjyN11y8aMA}8bt1kU2n9qYZx^+xI`&)2)vai`DNlw|q3I1_w=X5P>ffEgA_+JuV zBWH4%B_!%C7cy=8Eyg?#OUb|Noe576om{*OoF$k&xrg@sZmZ(epVm8s>z18x+UQDY ziS{3LksW50a*JGCR%8N?#wJ-PQ7;myc=gx}$n0mSqScTGo>X(H@TZ(aj(R2SOX28l%tQT4F6~Bm8?c zF?mF=2}*Zzc<>gN)WbTox+Us+qOZqr^cV83Zl7V z`1U1*H2st+OLASc+9}R{#uCY!D}tU#<#zeZg_XO7Jd|>_CmRyAr8KkAr(t_TuCjUE z8eJhWcGJurJ4#Y+3aXNYnzPtYIS3I=de<3! z)wA$DzdUn7oO>f%q8^X@H6c{q4m!lMC~D! zHI1XayWk8`Fx%NWhy+nekWHRuB&O_>3}^d*AWN%N`_bzq_ff<}@wUC0sa;~W;f(8; z5;C<8MP{uo$3Elf9vWBRD^z%n|HGfIn;Rn{w)r6IlQn1+_-jNNdOcR-LVngG+#LtM zz{1Gd`SIVjj&;#H>GnKFdfp-U&nfgsH}yMPvYx{>?7zu$*^rZ1dpY+VrzZo`nyGHS z=5P}kR1pMn?Il0{NEG)bY+jGyuMfy$*XsHCunjARR={P6)E%(|>QcLo*gW39_s@7N zqjix}osu6kwYdAe-|TXPdV_}H+8EYiDQO|8A?b+`U^$9Mf(IQEYl=j}0BU#BQrUjE9`X3oe{%+Xz;ES{X!INGYed`k zHGzHp8YRq}k?ftN{RSN20-Qy>06Q`z528dXwb$2I&bm1E@@dv5C{*s42_o!q)flpD zos4mJ9woMD_8ArW7Ll^|`f$BrY4|6)zrT~(%QaRIHg_e~8uk>o$DI9*>bgsgtywE? z)joY=X5-BrCY|5R?vi8Cxnh06;=^ibuvH2A!&KD57C}{ z^`s-x>M-$tEf_=Kn_|HKu~`BpRR zUa zljd0Pt(0PaXpLn$Etc`zEz=UEq-gU7OlIk}3xH{Qs*wy&U5g#eh7x>6pSK6-Z8eS6H0u0MXH4z3$`kJ1F5fUp7uvign}T5u!~y z-v1?2Jy%B~DmZ+6O0x){Oolg4hD}dqiK;iCQL(#|bnpK=WB{E@c|MOViDh^2-1k;| z_-K<8RM++!BU`J$ywF`yfOIW-9O}0z;-73eS0P;AGh^yxPsh;UI}*c51-;3x_syJG&L&}#l5q{beQUZvov~4#7PRcYNfX&< zl4KVQOpt3wd`e>&`IA$UjmZ{uS1P&^IHB#xypOw^K;d>DrO9DxQ_p4=wg(DqiXJ5b zccs|nr3mvR@yh1m`?87H)kIG?cV)&PFAw)3vzo)WR^HnB`RSy)ii{E!k5k4$!s%E6N#K8cW;%a*rQu~(Y zR^^SK2`ov{GhN4C8`$-a+4`Qa?8!T>bF5_dheDl=-{bG`KIX-HH4`*TxBX}^jL7)F zLBPYw?7Il$VI0q=95i(~11l>zawhe{7%NFCE+2MwM;7|%s2k80A1TCS) zE5ATrDV)~j&={E!Y=B2<=yH^z(@*h6=&Q850aSuxFRqBW_J8v1U*iwcJL5+8U*+^v z`JSIwz0zgQm^{G|`{;37qkL}d$ux#au-%YXUL4OCXR548%FoF({LOvnMI=N%=NZ@E z0W#Ck=XcxX88+*G-nBN}urk*%R1a(0t-m)HJIG97!np0OD(51e1=uqYrob$sxH?ib zYb|#zLm(pkHLw}M3QV!5yAyoT$CM5M-@n0x!?G%GU zKEX)W013?yEWKllcv_+`K+f4i2|M1(!->E54RQlu$P#Y%v0%dSm)yEk{rHTxVjmHk z{Rf6$v#b^T-;--axnjfMr#{Pm-FY1{j`vL6iI-Y9PUx6dvIR#<|E{!(?>A>c%CVlkWmr(~%H5kE!ct1pR_2 zp2Tm}o7j3i*uzb~d6g_OqYWh`AKBsQl`)bF1mpA77oZVcjccz#~LSTmRZ z-Z8InPT6ERLfv#!YA>ct%-p~*R~R-ZQ8H!I^Ix(Ht#&s9u+#U46VuUQ5^%$r?TL{K zGx#kq)m(i@M^S$n;?BH&d`HmK=aQ!Gq;q+OtJpzjkppv3ts12n0j!!$_h|h;eEsEH zl>hg|4WlTC3W!R_pmcYa3KCMH(lNjgQVv}+lqd~DcSwum(A_=2(A_n}&^hEipWpYm zj^nr!QI^TP*wb$MQpER<0ntdh)iX9QHuLfK9aC%Gp%x#i6_(B@1s7I}J^=7MI zeN>u@&+f#AgUPJERu9Ig^1%PqYB`Fc^U+}hdt%v&DND8i)k}Y>fcUIsFSx2e`j}-u~N`94M5YnEi z{UB7&esev_$IdRJrjloDg^>2B?r4V&2##>+z}}SS^ee9MEKoTJFWHkP=8SH%XSNQlH<}O3e)wJjQ55 z3NhGQs-5L1mXE&bQeFbYkTUk#TaquHD(q+*)nYuUP zvAWcQd3Vd1xRia#+a{XKI}ctI!VI)H+S<=Q!|vAwEfM5X*WWn|(^`D>Suk32 zET7&h$r4|36uUhdD@5+3Ni+#e=M3RdRrZ8a*CmptqVZ?SG zbS45MQ6$|)f@PF(7404^+YCC3>Uk^cxb#?_@1|NLZZ0$KuMUs$fsPr_h|e5u6n~Vq z3%tayr>|_;Ld9aX!q9%(L=Wp_an^D@a(m3TG+r#-O!!Db?|p9m!3^Fe;jy(G=$&3TF7z>VUd`=d_|1o67m3peBWazk z{kd?LLd^5=w!`I!dZduBRCULC)3>1a@~;EIrGn6Q%-WRyW-hoiEKfhZSp=4}Q3dBY zx>>X+6xNWc&Vj@fBXLeTk+hXHMK8dC^=S77x*q&ocV$O+Vokaf8wa&fEvUv6!eTA| zBtGabEFv3caIjV)Q!B%F%fMdd;nGI~BOe zR7ff%x~2Gp?Az1yG__PmFsK< z;G0y2qx(Fc4gU7V-29bEOPFPin_QvMibHMQTwAX;2D2YkyW)Q@5tm@E^*KDrzdgH-rTE7kn`Ho|6jHun7GfRZ zf7m$%n>BtBHFEBH!s5wzVqTrX1(1l%Y{ueRua;ytd-7w52R@(YFUi(xw|_jXD;yKv z06kojkT^W*s0q|w@`AWq1dcf`n{Vpj$;`QXbv%%M^rSp!LrJf@3vj`q%b@z>U~j7gQstf zquCfbuSZcQsVLEEL3jH%k?+lhk0|s)`+j6Io5**I$!A3SWsb=4E7V)NsAa+8-Qq51 z?z3M^D=u&4A$>!d{hRp%wr-zI0z#h%7YdTN?^(PVG$oYdPeceR80xo+Yiacz=fx12 z_WL^1$MYlI2xft`H&k2goNqQ=ObD6Zw@*x(zayMDQLjp#{rI@4Qoid%bkBg;Vh3Gmzb@S^Ge^)i6gu}tm6Kv|Tt=HzMxBkeV&(ZVs zckPiPNGtv9O#!e_?A-m`B7xlz{C5Kj4O;mk)k~U;`lLV&f|E~?*)K$-?5`1OU}+(< z^p5HO*#+?R?DV`Wv198PDE@ki#mj;`rA6ma7XG6x{bVhoDwe%>nh=SKKzd|OS#WV#Q9+a zEsF^N;_g-u1R^|iWMq?2Ad-;(b<;r|3EEFU-O>^7y7ZEWy?4m25RCTfis$ZjMPK4kR>R18Z738iIT!t#e{(&w zdc4&_#elTY)OzZ!jImLz^SgF#{%6X;2GZLPssd^}vvpPXQpgrtArv)n`S$K*FNM$b zs!sl9Wp_DE3Oi!j_p~Kz!g|z4kGMQ;@!Pf$fzTJzJl}E|&6vl1Pt&LJ$14_WS!eC` zf|s5<-?47`3veGREdwep~tN1&L6^MKs2{k+FE* zJb&=>Ivr*N`Ci{H#~pwxoY)Jn-S`52lnJXFP5^bh<^s0;pgFlu zbaW)g?)QVY1v^~Plr70c%%+P(i-fs!dVY^?#w%4Qg@63fCt|lJv|eno3klkf#sgIc zG?<}Ynyr6N?x|*BRdYv0B&9~LMahUV%oOllsd~$wuY{RR1?0}_9mn~c=>q?Fm-BEO zpiyIUZh^$E^y^KuPe$4zVc@gxiNqe@DZA0VdTH7kE(p~K#!lO)8v6BqAVx>m8vUEJ?&@*kFrcM>fe-2k@=?bvtHSzi^sX%04aQTNRy5d-?wK`5m0zeAoezI8O9F7RD6G zY9>n$HG3ShaebMks?Bf)J$72)xqKa&k#`6pI&<-dY6{UrZg~4TKqd!sIdOjuCSJPh zYLRHX+1z#fBX|AxB)n^te(2+D)?S|p-~Hb%)++snZ!e}Zxu_XzL-#_L)$%)_Ix0<% zY2`Tn%F5_(>LO$okE1E6xaq~ST|S>t6?{|D{9@ zHACs~-leC@U}nF#0`?WA;of^AViqUT$AMvinAZ8=Jq;Q8RFZ%avuXSjrg}R4e-*R` z271bQ2TUg?!_-vaEQzSWNzhNuB&X)a@V^1JIT9P2Bn(pvPvSd8(%QS)zE`GX_Gf*N zoS=()FGG2fd;6jRF;C;Prigg!;PAG?2sq@>r_UWjbh}NMC~=KX^Z?XyaGWN3oX|(} z)2_alY+wSRj(rI*egVk=DAhap=K(y6!l{`fDpCyaTi7|L>yX7CCtG!NJtwg(X`gNT2)jQhT~ z`zOS7mMY#TZ#IxGzUg%ibW)v}wj%FmvkW_hhl}OE1N6g8{{!vj{{uAXr2hvr?_1in zY8RI<56p3HW0b;K`w6tPms;$If5-kiPeQiKYavON{*qGFAAN4Ng$l;{o;Az|VRKab zWJ|C%CWUnkKDn@S*-izuzN222)F|{gh1UfpSbACRhH7rTdQ(QzIj!opgUG*e>OrIr zT%mmn8_M~;t03_@OMy9ucqK3OY)}2kL~Fd4rLz=F$Cd+OJSQ+j`~G$A!n3zN-)1~< z%)0H$?J{$F28vWwQz|<94|%b05C&V0~}}gV1)p${zqB zH0~DEuVcD^%O>iv$bJC7XXMS?rON)J=tM`Y@>E;>uOLjLWL7s3yOhuE&f$d5rAQzc z{UT`d-@aB1xv7k}w1|Uuw<}=XrBZQY@w@I@ELso-+tLh$vEBR*M~Z=?|Dgr+mL?(~ zl03L^w&BF&C~*6hd_qc;f!`hFwHkBxvFAr7`nKP8ext@Z9gt(5Xhlb>F$epqY}??q zv#cMnCa5=`u9iVK&+ZgXOn)g6N+ya_VEW?Jn2B^Ic5XvhO7P5V@A;Dyfng`FsjU)0 z2?O89)F_3}7F1}7bhy#+iXBYUsUEaX^$qSkQlcTw5IE1uyyK`4W?V_|7~1*Ui36GR z;QZy}!@VkLp^IB_i99!GF-?Vil4C|qQ=R0bKt_YhwOZxYREk+qPmn@W{@D3ij!~L* z(ap30q`H@+PQ#~_E*rc)c_3g6BSH3B4!|7A;Zci1rdLz+E}TUf8Pd}r6Eq)hJ#`TF z=f09q69|*JHFd-DfLxw(%V0MSDzd{AbP^H>Aum}NLXOo3m0%4my>AMn6CK8j&P8mh!c*S;MKcN**m6lv8O1;!Axsb_M#Oz zTAO^n;rF!H9u`Ntd_2grL~@C(qg5NJ)s1Hmbm%SC?f^D_0+tAnpXi)QS(k^6(balW z1QD#UyqS)8vbFbJ5-G4${doJN$y26E#@-r&>qLkI}w6y=2ej8YGdZ zj3@Sse6ZTT`zF7V);K0s@Om5~sc)P<-N!b!8zgf;Xr?>2py^ z1iZiYvBQ7Y%myn>T72+mP7Lox7$BCu>j8{e+L-6LnAjb{=v5yEjY>A2TyL-nI?I=n zPD@R&(A_}Oo|KXvDjh2$*YvM9S$4D*kUtMzHC1&y536}lJu%64*|`G3nX}3mv3 zycr5{-H-F#p>l08!_@8Cxw!ny27MIWMXvvKcKzVr#1su#Kv&lN5E?kUIgV1C8eolV zAE+9K6j)b9OHH^J_r>qP2lPC_aAldm(Xv%0(naoOPXyEIXh!;)StfCpJNLXqbrJ(p zXlv5U#t#gR;x14)YOR8DY-Vd{=YUsCfgQcpv{XEewKT;s*wpVZJygFzav|E%K@f&O! zwGlKDKX4M^z|_(-^dBMTB$$U1n^Q=S7P9Is+BKulc~qEzC;Ig*{gU*Q@hg_W>{ zEZa7%%LdfNCpMvDM;(Y5q7r*65<-UNd&^RDjk@*7rrQXZ4>v=FZ{AE&5_^0CMK6tF zgCR{mK9`r9cJ&Os5)B+dJAkDYWw)o>7bzfzAJZ_bW8k%K>(qH*w~0u3mX)hGD*9=v znOOSV8kC+St*((EDy5JJR!EbwyHOOGO;1T-BWl|A0UN91yk}XElEZuhqHOj5Tt!F{ z?$WSKhYwov0H;leC2o$+v;(zUsv5j*4h_X`j^^#p*ih~2A>T94n!*bo-zM_lMWzlf zQod@+*M@Ud7)uz=D~H!9+?hYO9V%M~pkK@)eXf^?W$w?Ga&fJ;kE8>pm~8Ri5!K6% zY~`Bi$1 z1O8F}0Oy0*)HnV(!~QRq%hsHI5oZ&-remOehc-V#hqR%At89X|K7L#fRpctV&bEqdUn#vWz+1eog9 zrDWK#4~Ba06YX6ST^hqKPpxGeMp5;`^dhVhb|w0R4dE$K*4l#wFRGN3hzdUy3$jl8)$JA8ia|OW14&$=3r6LMUL0scziTU zSavG$d1Hya<~fv(vX&M{S852Y1MkGCoo$wmn+i=CvG&qnnLV-FiCt_F{s6NXJNI$t zzI&Bx|Md+$I7_vq2A3%LK9|O8aAO@vOdx!}=xIUqQg(u9a6eUPUkXAy6Rcy=4@Fc8 zm}yc-QFZi<^0^JkgEflt01e%b+2B-Mun&|^!_!X3e=W^fd2zDyYXd{siaAk@rV#d# zA<=9I=fT*~Q6w$QgfwY3ddz4w!fd)BF2C1TdMlUsr`9A1Ta1kN6NBR(Pm|l$$J*3M zJGmh zv+3Bf+yFck!N1d*J0R}C{kENG?~8TwKv1V*R=bIHuEV#rS0O7E&3%j{Oekg>egL!? zy0GO^60K~~m?%@JuSE0sXb@emQ5;|gMJcw~&8xKZm0P!;=H2rR>k@{?;(DnKiNBu} znX>;Xb1DojjXH+v-wA9Wt`oJ_fIpicPdf4JTK30x)74;gU6RdFT}nrS#AWp z=4CcoblX?q!s{K4Vy5~r`YzYZZ{2uBL~!C^#iwlDN9||HV~Ej{#vYm&h(~BSMH~K{ zrT1NfkLbxxhF2;({>P>=<+)3SV>i*|2Y+0|F{6ebERJ=~#Jk8ohVT>v z1mgSO7M`DaNJvb)Vbw4@8G=gt++H0{v|zqoV@^5>570P4RcjAkTxDEE#l`qfa~qZB z(My#m=K_nL^)3tdLG5yIg-cybqIne>wz39lBuvwHifn@A&g^*OAV6>Le!RV=b2?2P z=Ae0YtMQsgqRH+K{4h~{s3hAy>xe@)w~ITHo@=H7W~)5Uaobr}@nvvKtx6ijFGcnK z;C^(sUT?_=mhfP(u!^CTCd}!_c%H)6-*5n|Ernww>L$@B3^bJ2b9=Kk_XOrqvV#$U zlaY!?iCA4Pr_^tB3Ne48Jp7j)?c7w)P;af#C#R1586cO&IC94SG)J^P!ZSSq(kPcb z6UiFw@guI`)9Ntyk$B3s+uD%IX4%CMcuh*3j!L9ARpzadc}P?EYMQs@es^W3er%A^ zphfv5d#X{(&&=q%+E-=V8t+|g7WwUO|3__rEf4$@F9NainCM@D<-mgpMjcL$H&&?0 zm-)Q?KhUMbV=^=*mOHpgxBijYa?b(NVCt%~c+viDwfnj1gXhR^Hgu{(Ob^1UzXi`s zdB%i4i13c7q)N4_OCRG7IhooaVYz?fz9YuabuV}+_PArJv+<8K$FZx(V?moE?}w{z z$aHZ-Ajj>CBpaChlxoemNYSzcT_z3 zqBGWmaHgMhU^qWQ2;_7=x**1A`NuMxRfg$7cSciT&(Av}js8&8*Jmr3-2~U^HADyE zpjo={DtuvYO&_w3Aa^}nn|S788uRRGKpbXAi92WJPFzRi?U>BvJHj&?9l`6ba1v7# zW;PR*#1Y3tH2*cusm@$--LhXJCppmV{0Tc&C0xQT`AKNG#h>%RQn7Hx)PybpOw+6G zn5Y5wGwrLeWg%MQ1DgZm8-3mTAKmFq%No2h&47R36Vb{|v+Szhk%i_V%l?}Go4ihy`wBn!78l+OD zm9WHQQsBvaigSor*h}Fzr8tu+lFU0)`%e?5KE4^r?kr?k{@0=DwZDOJN)7D9eim=& zHlMN&Bn2@5V)OM%vsK3CqHJIEfBe95*Xb4I)wupAQDPuBS4Uw!sH+<7$2B9(d~%f5 zo_;}&qF?F@5@5l-FaSI0T=*prnOOD`|ItNHokq_)8wE1$cHfiqhPLDi+V z!c$jm89AmBl>q4sYL@vMg{NNAfu_oCjN^rOCLakM<=F;? zR|`e7S9@Q>t?jV87k%ABZB9{KON?0c!TNvd!*l9~Od*w^U;`%p2|dG!l0EZ|`Z3i_ ztFNm9)q}(m^&0bc^DE!4-MwfFY0h5&br$I=DjoaNXRd{YSBHIc4HOATqOmt$ls}lM*$r?-NL}wNB+&}^GU?lgfeVVhbA4XQWIF;dr1_5>IbliS ziKbb50os~X;eW?W{mj35-Rj+KP?jK_rBaV=xD{m3fojdUs_urL8C1tyKKNc@{iy9c z5qNj!L+1^brO)v8LJ|2+rv>(E?ig&D?3n2~m21wXK;+8@8qeEYd$~$qzD)NKL7Fw~ zf-AOhdNb~iRuD4xF&(=HdqniE_$eq?x0GqO*^qFk@5my}#bZ`p$vU7IJ&fyjuj7lJ z-AkqwG39FRFPod1c>EKh7EpsRNWbd-*sg!)?Hxs1d;EV~ zffh)XoU*0uX8cfa(0Rgoxf{FwBJw-Y=2G?6d(g9~XSB274mtApsaCeMBQ)n;Dv3IqL zL~YtLImBIG`XAE@ane3?*h_vSITw^tD?)DRH>JQ6e}ogXu49-D*jxBd+VlP&TqG$E zm_n@mH=?x`g}=G3H%FxDGDo^*jspU8W9^c0Q`l?V+4z_KdipH1=S8+mch^>aD?`d+P-RIJ|J4RoWvaAs>|?P%a$b+!Cay!-tR*rA}S4& zZt1DtJ&SPQQC++ml1zlX*q2;0VM>T~b6i7_O?OyqR4(>97!WTn&i(S|Rpq*tV`aJ~ z-^c0`45nyhT`9WF4wy{7g#X_X+&3A{Pvl_HY~5L^Dr(B-0zAP^^{BtO652r%L}~7~ z2I>yfY_t!PLIR&)bVC3`!>z&ZS9OjHs8e%NV`cDisnegxVmkTk_ijSHv=V<0gS)Dzl9fMEggPM}lTlnzz96N>!^ux}{J>*fjsKGBe=_ z3lDxgA4!T%u2aI@W24QDrHnc7$au~_TzcTmHh{MIrb4D#!WWtX06MSZJXu+WoeRaO zm>*Nm?I?GCzxI~*GQ-NRSu)Wci`i2r;|P=50#`xqQnz0;1q>olPMu~f&6{<)@!tDL zR=((Y7O~NmOQpZ`fL)=4(>iyGFfplhr>p!*VpI^@!_2N*2ACji(`J zx;}m#XdH?5Mi-W*i;wj;k6hF<*jh7or_V7+49v5i+;Rj&9Z?faCIOQ0J_%mt6gv)B zd0Ec~gcJFi(cJ}?S}j>)S#kRxD*y?y|FJ^m!|7L0Za8dg&X%H55jUf|vosQ#i~5YD zv2~(-zk?vtem_HLv!rL1?F~n*7Q&kn%7iM^wSnE5k%lSmWwI?P_yfM~@-dl92{GOm ztE1Lr`KwHnXra`BGedrU^CT9u^|&dP2+e|HvkF;?lxplk460!iIXI1*O7|2D9}FskCa$1sV5$E z#RO)j%#Px9c08B}`dLfoC+i(6|K~Hw+(rWkKrq|O)56>7v=9G1Iv|V^a5_0;F1_2s z<4 zJn1VnWZC~`FLB66y}pyq7gpZM3p2ZLcKar^nFJ4Z2P>}KvF!os5yL$9hb=^4bRaJM zCr!NrHp|lxqhzMT)6%t&jl(w_R!JdaJF=}s112BLzm(PW*(E}(%sGCcfQ{nNqn;Ki zs8!%QBd<~{KC_M9Rx2|rq)Cp{Tpmh4>2Vw4`EzB?GC!jEcA}#n!ZL+ea0ByS-bM|a z&^0Zp=EaTtaU%9iMNzA|rr$R1J(?Omq=hNH@kTzF`(kv%I6s>7)d>|XeY}Qms)lru z7gh@<>7dH67r6r1nHjge-sLrtc*rHR5@DuHA(bmqnc&R*v72QXhM*>)4Tx4!qQJ9P4Z3At+ml5*E}NOrwIFkeww;gqCRVoM(kc zakDebh~J`%Hn^tbU3V7+$s#`VCSKm@QJ)qXX7kZ$!FlCwH;iG)JNatz2vL z43Rzesp|H+zd~KioGuj=C_JZwua;{Z*>KS$cHr-}W`ts@T;b!E{09A**w{QnluTONTcrNUe#OeJgJdI`Z3477F2Z}|@h{aBtSmPBRfl@oqZj^G zWc?Qfl%NMRr3Di^6N8n{H0KuQqh<1P6ohj8>FODRh<;748J~WqpnZzDtdL^gOb{VZ zhV8%8jyUrn{4-scA@Ut54`&@Vls0=G2$&}PdjAU-yCCLIymyZJYh%saZ_$m~uvkcy z*f5`^T+1s~Jg<0`=e${9{C6Rw3_H)9*|-<@%!g3y2Ipr!?0f23!b9Sx*cHSF$Hx*9 z=uBL|d13-~u$K0+3@a-{0FY=R0t_FunbG3F@DTY)sEg`ciaz$QuDfIP1rOn(`Wo8# z{gcs%EfAE~_rP20reQvs`e>KjQ8 z%;TSpxoft%^!CC5lbU4Qse(x=*a{}Ca(K}q7p`zpu2fni&#xHKjz2d>%DhImfc((I za-|bU`Na9VGVyb2BfRrOrXx&kYtS>@)|nT#1`lOPbvvU1zu3eh1zy_ec4V`**~=2Y zjkt+cF4^9TDYqb(>W^Xwy#$@@j;_u`<8LZvtSq+ESpHJyea^r;Rx&F=Rf)HQJL&PK z@8&H<9Y6sm> z+r^&qItv->8)a3K_)F2pX{J_4MSHvMWh>Z$6hD(^C`dd$IV@`FfHd33L?lHPS04HJ zY{L+P`^a@?ozvU#rt7L*$0McYiVJrt+HdYb6(Im3|7H1v(<+BRLEPy!vd=sjjfI9t6`K0o*QnQP1+ zY4UP4$s_>`OGp{u>Y%^l42&+!mVOv;^}3^2?4jiJzujt znM=;@**KlUuO%a8%I}b0=DaHIJo@EuO|p4g%@(R=B%tmrQT$oHt+x?@pJkv2baN7%ln&|9ppgG z@^#A0ao$CsI8N4|`bd$Fbt=-{m$DuRvC)!J^%HCJq78039Hpc9oD6JN{!o!5(I@4b zRq=FcZ|=gjY@iH!2*A^P^;T+gBUkEp|9)WyRU3-9h9pZf2h!>=4?2RlW9ApDCl>=KUKf%tF0#6 zU;q2e7*cER>u#bh77dB=co63nTWvT-pH?^^XsE0$=-eMRiZ_-u09e? z@4}b9hVmqou4Ze_;Im8o6wGK3;LI5{|CnW zM%Y3bn#1nvSa%j7jp3(*R}i|BMkZ*^E)T_csML8A6|5$_c;M_nvG?md=QdzdK;}GC zH>q?ZH3Ds1+}BOgFKo#%l61k+_tHiwV1g}Qxpd^1#uxaB!SC7zHl=zjSJRl7GI?Q& z+xpwL*rJC(_Q{1!I%0qEFI19IzIyYJwS%YLhXMTY_Z1Et#q*tQ~%ayUVPv!B5se;^t|MF<@JmJ+CMtcP?c>)FW1{nL+W6{05`J zd$5NSblV6?pd-)bag=HHaI3wZn02j*Oue@C?|51sV^_XJpnLxT@iD1Xla6&$9$)m2 zrUWC)15c-xhN36W0RAn3#lvJw*oY5T{Yzs+)ct&h?&!`5TTY`Xep^lKx?Jv^y4`i7 ziQAETW`idb^ZT}ONX8WfLzMynM$?8Q>2u_3;?J{sS|lMq+-_J`ESw%yGevroWF(kM zU5T?;{+f5AbN(vUPa)8Xke_B&;OLV^ty531p4f?6m0*8$uxgR5!|A#EGh`re50$+~ zewA%$D7zEs66vi3yc>P<;_$7C2R)_H8@BC1qX+q7qpA)GUOastt3PebzK=x-w*c?Y zA&}?){V-M}AdOL2Px;GxX15;4m=C7jjN!YU`T`T%M(Yut;ysT6+XjO1`R|{>Q|upe zpZtsJ76LyN;B9(t`>ngG_vW;gcZqJMj@{PIaqD$VIDxXhV_9$Rt#0fOu89k>V&6dSR04o6WE1%#NOA+CSiHU7cY8EmseadJdLOx`t-3noDxao(E~2hnuz z{{^|UqCeh>HRawhQwvppVLS3@>ZAK6Q-rXw5caPA>XQ8D_f}~s;og`7&wTQ)EV3(O)~hB%gmIRI_nOLC%;KM~$Q=+%#fDr#KshZ`4Ro-PB+?$TXVwU# zoU1vG_d_!Mhn9jua+-C?Dc-VKQ9~p=Do(1v=w_boarf_>I0isdX?OVLw}j7(D_38= zUa2#Mqs@zUfi5xT4*o;up+!cG^3{czCSBKz->xF6f)FqG!yIwU82!ik|1L0oMHtC9 zO_dgWv^A#=e9jIm22h5k&Z@1hX1m2n(<^aiOc#36*4UT@vUtcOEJ(Fsbb9ezBR?8A zn%PUS^e?CW>zt~)O=Vvkn?AZ$SV#%6GNZ%SUy~|n8S$hrv9Sg6TgEatibmUQBbrmY z#Rd%$P^@z=2hZ&LB-WN06gJ^?;uyf7KCko2XmdCJW;cqbpDxRXFJBs^asJ|H+20@% zFxy*Ncj|G5(aMnLhtVFm&HJ=3#?oxc&3M=;Y4od zTNFinM25a+F*8Sh<0-0qL^;feEID_x)~~*08;wf-=0s^7m?cSWVDv^-v1dM(7DGgb z{9@z+M%Ecno4WO5JqdwWwam&5Gn^(}G`?npexc|I#VdgN-gKR*ERJ8WN_>|WerY$`*no3luSearb-QcjjCcuPl#fflL}%o6tt$SyeR0#t zm&MU9O!(M_-G=+qu!@UNl;4Qa&eBWrndrN&zMDo(`vC^~*=WB4X?G8}_Nxg5-ai7W z!3t4)D~{p9feQoF6yp;^@u6S2Tw*%wqu$5486Gy#I~bdoS9_k+8r74VUha!6=u3*9 zVVD)vK&lN^+@O>!0ZrO==Bnkq>CZH;m0gMRt+sKAI``o?FsD6w6drh5#cZ$|ET)@3 zr^AAv3h0*$Jt2fkDo~Dui5feJZ(Y5lHPJt946iyfxl_h**$ePUSrdPm^a?h4X8={R z`(Wj2?Hj!2LY4n_3iyG#aH2fz-`JzUivgqU6S9d$m4F*9Jue~R7^)k#Ddh9 zf(gp0Mp|d4`6|3(IA79K*JfWr&UD!)Y_C#9s%SAa=UlkzLjQv$K8-z|^=IMUZXIEk zT>vpt)%ni@KndeJk2 zsFrt{fgY>eS#enNPDquUk8+sXM3(B5yq)QFV*%IdH zMrc= zKmotB8TG33LpQ*=HVccm)wwn~cnj0rUsx#Q49)0o94d{~!i? zm!?hpGFFhq`Q)?I(0^mw8gJ#N!Yaml<4@t zAh4I28_|ihJRhX4(5AW5qm#z5QX}rH&+|8~+8iSLInl*4TSwj%=&yM9D)1WXR1k z>Q;}U(o8s|KUctt-_-aTb)5u2x_wjMoXC|&M~y1B5BLVc2DV~fs9wm&taDYIvCcWM z?|ZgsC4-WW{Qgn4PgWwG>UY5LE6<#Y2aZXIRT#bjA89<$Oa?4hmr5+WwRPS8iXgvA zL*m6RAs(xEStLJ9y&5Q=yT-D~@_%ghL@%(%8#$=qE!Nsv?`4T>l;x@_qZKW4P#fc# zLr%e#{Yg771X940gN~|yX5cBxyk_9n(ybL zG;TRO0X&yb<`>oP|7~X(npC)Q1-&x(hil|oBr6T(s6GU3TC5kgJyP~xANMuisKNr_JYUY3>_Xj6XH3QTb7Jl~Ba54s#Ep(wSd!w4LFb(* zs4Omd?}a$IX`Z}y1&gV@5`pM6;6`FD$ zJR`CS7@oRr!51j8Jb#xIRt~AvE&cRT@oDmMCHW^ATncL#*WdJya&!kN`ZG%S?-sYP zrs#w93~x903w0mS`58ZW-BcPauLRWeCz+NCo>H`E|K{^&3OqYHsoO7t#)@Ch)i^J2 zPh4PMrTfim=!?!B&qo6+F>E-;8{-+yE*<0h$E`2lXH>Ir^+_IN?YbNn!A1)Q)V^8{ zozO}aNe5$;0#VV~={$V_Nl`?foPHr`VVGcCIJ3-Fkc1^TJgtca`V!x62DhU+!H<@0 zrcw?h?ST#w-yH*jHQvk5Ib{_&e(JjTW%P4I9`!}}-i5^{fko?oqbYT9`F%J}L1IjW z4Cus~D57b;g$PB(7)EI2mGu8yH)gFixNKJ#MO?b_1 z*IGMHd>OVD3b0^(pQGsY{@Y&MQ@)P4w>nkS9C@K>Y;G^KN41~pZhCzjTQ}}}?Elq2 zk%|w9DHF>Q2Id`^BuHys=gm(S2dKss^A!82E^>M*t9lnM@E7gK+;E@c%m@YXAwkhA5Qu`M=bBn4ISMf7zUbXbuUoPj`E17Qb{ z&Ao~y5oS{fqpMozIGxOo4d>@K++9DPmo)kp>>q*n`@p45l*8#OD4A=*^LR7+>exNp z6|&;pjdb=5X|U}|e@KsdOm6MD8t9C#m?mW{MD;`xHE|$|(8!R!K-|&kQ=!UNO?)W& z=r|UYX%dwCkzPGan{HMzAIMzdK{{~!q?OpOG`)Ys>aM?I#|mr$-=U+3F+*6dFVZm~ zvH`aDgTCIs_dP6h1hzdtL*DGcow9IR6ID(;zSqiLC0%h4P(~}|CeoYW#H*P!{S2=W z!$zJ1zj+V4tAMQh`+kZhB-#AMtoG)Mn`cl&x2cH&6+E~st_8ZnBujj>wrie3Quia<NMM<)%1=Tgki!iIGvM2$`CZ75P;^UuYVPU^+p%$rE~q+XM&J3U!JJHuQsuE zTQDyg$=_2_=0`S6i#u5>_U4TG6q$vw?_}0K)nPBnr+sMkJb|Jy*QTl_V~Zbj*Nw6~+nMb;?ZUq>tlt{M zSz6Bf{+tl+zZYdl!mf$Q@AH*66GWOVto1Z{NZhgl#^#w>@|vU*wUaH!Z60;i0z0BT z=uRqjiVAAi-SrtJ>b#kx#9^z?#X7pa=7R|Hv;S4I+PTqkRbCds=Jd#LM~f|#yAHg( zCC=QdUa_;Kzy1u+3@b0t1tN@gy@bT7Y{8w6ccJ5InWfM^d4P5bj}&*YMFNe`(BDbP z4TrwHNf{m_SxTIdtIhvEEyYkJ+KqXV#G z>7u}svgfusgnCiluB|RK%Zj9nSq69@Pv1WVyOKe1n z&Dn_NhoC(74l|KRNLif`rm7>^ch{Vt!o--7nLoCqOfo*Z$?#ZAJb7-2VAt0c@`j&R zlq3PF6maJfYttPB?J+0}bmBkU?QK6|om$_njT_@L^`=Y-${1Q}#OC8$6h3tz#?P_K zz;4)@B4EFl^rye}`X>0bQT8pLn)la?2fq$2Y*Y%tFZ#j>GME1_wNsJ%40VCqBc>@Gck4>Pc)!YtleuO9+9yA(B-nMb9#uq$NMpl z_lP2B9y{t3yZw)L%^Att_%gSr@LC{A=GOU5eQzJ}tbtw3AF%Y|-!k*a#pa+EfN6-X zXJ9k%X-JUOkIC|LY->x^*`tZ&r(KO`oPvHe(O=7r6iUEX|Cco}g{n=AB@}Ui?mI&A z0yzO0@`9kqKLN$+oLcKeeW7kAo;Eq??vNMN*LBk2*G7vH&28Ca1A=@4k`G znEIBmawO-f{=LYyRd)~Ck!y)mW50RP$pj?P$M2RhB~fA$r*R}1lRkMpPE$|q$@KwM zy&PeZ;j(+`1ZoHT%UFd*5E3eOMmJU{1jm7j%m*Dl&jWU_S%WWnVg&QQJZ<*G1-szM zx;%w*`R#1hCA?>vh+w+*Ry(65%c=Jj$S{p`pK?| zfKjN_RIjkqM_W)O{asY{xsf7B!IG~$!_o=69E)~qIDA3m3k)KhfBWgv$_AEeQ?i`w zX>|J!>qsOD6}yjV^q6MS*H7ZS4YKNrx+bZBLs@e&Iqnowr6nV3nKG!VokFsmIG=S5B@1aZ4Fo;0 zRkYEaEYi?XWzCUq_VpL9!vfVI%<kf;CqQohEp;SpFgn)Z02DlRxd2G);yN$$?63 zvW_9|3NTfb;hhy%8mgG+s@DV|Nh9jQw-TsioU^?Ke5cyY7tEizWq0T^uYKHXJ+yi+ zLYD(~W^(!`QM#xUQD$)ghgBdq|3t5S@-9vl?pan;U^Wby>o1hJf=p zTVoIJKg{f3e=L=6aUBq!F1>-8;(&8mPwF_n9Ad%{U?(~J$96#vtVxc^X~QWO^H+O50=d4 zX!v7OT5wUO{Az4%9jg!83nh$!gFIge=3&i{WFR}{#F7-droEsHYFfM5P#VrN!#Hmt zWogm5eok1H%NBF}!DX+fv3}JMpWV;|Yo=uD<8=~hp&)|H0~PKWGv^H3`gldIr4OREus;K zKT?b$RL1z9_b>-vMcx|+eX6)^qOe?2tt^H;qp6(4KP1c7Zevk5Y73=&Xg@VAjvtdjfBY3_T;A;;kkVy{i~jQlkl z{uf8h&!>2%TW?TqP4cHd{(Vo4TKOmJB%CaY#04IGoKptW$N>{#_?RFCC8~oUlDX&_ z?iiiRRwb`v+$fSD5^N2^$AZs?2Ycs|bD&I#^~?OzT!tOTE6?xsZ!#TP&>K@2T_9S> z=G&j8%-k|paC6f*Zj|jV*DFa6?~B#iTiht+$exw2HF-KDC2K*xTk?eZk86G)x1e;X z0G*191yCtfQ5G$hb)c?><(~XaPlHt-|tTda+QbXy-4`137Nv zs;OBIpxBEdV&3P7@_Hofq*-qQPUM1|^t8X}Q9KDCOgn31g>(?2B& zWW;bD-4{CE*-c%k-o&n(Z>dS`6VfPNR}wva6;9~&9$Hoxx92sN0R(7gugPWq({KpV zbza6#H-?UMox_b*cajx@|2Mj7vMC#GfKAt(afQoI%BB&7fGtN=+qpf}K69M*`apyO#>Ec64dk|tsUZ8Np;P@i;Ce}n zs8?(B19Kpn%^D|k`u`!(A!RVYA zWg=fYT#iIFtX5}^bFJikex>opUxMhjyKEm99qL0B*C(&<(VBb`UtA;0R^BVZ2|tqm4E)i%W@R$&{v zG8PcvssWI_m+O9_Gsnm>Z}A|qyxKXFkefxYW?EwU61D7v<%kKm_rUWR)7YFEl7iCZSX)w^I~r-Bmb z+BP~A@+@Wf$r}fT9RoG#KIgNm|6Hj~Nz8NS?Mvd|n(kC)RZ?a-D`aXSDdo|@6;!Rn z=fUs`@P{#X2L0i#Y-X!n-c~NH3Gne%o`0ww|6N_|Eh?tz+-~U;UZpUyhjETn=30Fb zcyRI`!T_XG6~KF1pz8jJN6w^vcd01Z!F!{L+O4_10oFbxzO>f4-2Xy0PlX2Kf{9cc zjP>-q@~tc!SKM}wBRXD5k4UX?v|Bilsm7!}ai_l@$(q?2S!5AReGxjC0q6WV@3zZN zH~LLKMX_{3)Yla^9pPkIWJFHreg~$;nkU9(Lgqc*Es^f@`^I`uM?SO-fMU*T%4kkGu94w zO0Mbldqu?=He7Y?;En;gPCxhpZwl}w%19QNy8Uis?t7TLN(Hb5?yw~aiqYO)cZl1G zCIsu;@3rn<(D4xiiVouB$Gya?99gN1R2{i4^hAgf8rKgIZ8NfUW+jQ;;t5(9^lu>c4Nh#SQfCv*O_!&pjFjxR z4Pibnv~r{m&`|sKY?72A|0BcdP3SKEvpi=1htX-%`lQ1aFK2^GcL@|(Z6P{BqR@Fa*JkYgl@a$X@ z{U%vDYjL<2+>>fV;RY^|mBb%$lY>M{)SGH#eIsYd$ecG!CG_N4A1Qt~7mH_Bi`n5D^El+;SpfuxP#+}^ctar0RZ-nYbny98`?l%~7 zo~@^gMLIOSyVq=J0iu+|aiHOgJQVBRFY&NG2ysb6c*h*G=V@;nPilrh1A;)9zx56! zbWEV6hh-=nZ?{JW+=%?_IWw{He1Ywa_zM#DA1UEIOZssQ$wsdSMjwDWkPq z0OkNkG&i~CHbR5VgFc>UQa(~PNXS7tP30H!lVf<^R84JW_;+{&ABWX={1XnkNB&ik zR`?Ef30>>9h@+Z{27@;o^M`VV%EVq-)eVCDc0WD8<1FcN@h%tjzPUqmTxViUj9M=F z=_f~Xf^X!lbXvWisJWX$O80Y4Km;>FESh64nmOVA8ll{eK*1%ICqlX0Eni{Ymq$w8 zpj|9~;U`5RY4*3sg0NIY0CMvp2g*Kix_$p1`s{OAA|Ag@-(`E(Mqywt+Hf}r zz=>9@QL~moGePSLh1q;Uf5Y@z=IdGziUJJ$Aar`(bWs1 z)V~ziNKZ9Is(*a3p)pJSR=-8ya%L&krAVn%xpA869BVFFzaU^Ur(fU0+!(V~zC|(Q z$*3)}MMIxRLfpKOA;~*MyN{`sw#`{7eAi1ehEDnM{%2{(7=pOtA(J4zFxd%l_?d$+ zu&LNyH}u=H1^D7fO_oE<=X7`9&Mk)Ol+G)KR(snl{k0K zPtQvu&UIr7wMw-jQy6&Hs`zrAa|3L()I)oj{Z5oz6*P7<{W;;Z$ctA%ehrw?pQCtv zBafuY2blgVJ^a%0@>&H6$hKV{N6%b;*@GjBujj?h=tx#l=da8;UtKQBxg-1aJ~`q?D+N-s-TrCx4z`k< zeX9~KCwJM-BB2m1e{Uq-}u4b(VgyWTyA!V*|>dZfsrnPetT? zc{%tWy}QOnesNsNK|?NOW+^RC3=zV*%dK6+Y{dRXDw2GikkuMk;+&9NTGDt@mkZ{k zuXDfavcgK^I*c4~-dz1d^T(ImdycSdl@^*dF<-@ zw5VDaz1h=vO-srpl^f4oT>S;3<7rS)+#UR}V2l4KmD#L%hTb}}V(V}_XOo+9rshQF z38@tvDhX5Np$Zp{>yK1972`xfZVVs^k6X{t0 zMnJX{PHk?s-`ZEWP#_Nb<31Q&U0A8Twb`YUH)-%oudlh@tgdoOuv>!9Tz0Z}-A2%c zjv#65q1XxItLzx z)+7Ew-}FA|jISUUag8^Qdsj4J@>6{@lMwBrhy$@$8^OZW?bELpT==Umds4YRe$a+3AY&)U^CeI zwKSezdNjCXp;^o$XCD*{6e=}AcGf@G%eN}D7r#2CF&$Y{S=XmHEzPyon3v7JS%AJt zjT$0+9yYK0Nld3<2aR~&ufu7&Hw*|28-_%>eNbz9=PvIIcQb%if+Fy`bkFeWyh=H{ zl1%(@V7reNS+@Dp>NG-hzee}#v3xGLDos!uu`H&^q-3_Q%r^{%18E^Gsp$9#sVnx1P!CWIzQoG70pV*$BY6_I-O6hBxd7F9n zQ?AsVSEr9$o=BwJ>RRnKMUU2a<+4*o`!Ol9GzPlF?1Wl>O2+AmY4v!reJrwNHX_%x zIyY^gt`)_DWrHZ9e= z-aJfQ>zRrHf8!KHW)NPGm&tarJDol*%_7H^?L>##ze?-f zXflPXWq=My5OUKHq3zWyJ#$*kF8~4Img+}z+l|k~)$vLv-4f>#(lVqCfdYtF?Jem=UiYMu(d9=&P~ZnA1oK^zsJ?Y6D9Kkdn!nV-%V zGvtjim^}IS>vXJw@C_6DT=naTu$tTK&A02!iHlq><{dpgZHG`{MMr*L^~oE_Kh zV1499^(rykiKn6=d30rZI;<`yt$KE2M2t7+wb$e;p3*l_&&xG!6kg`A@`c|$iJf1w zlpOCzi@4Y})W8ri_ZRtiuUhXE@jrNpd0cEvb>zA1J5>~}PoNy@MThL6-QWMIs9;J^ z3vE9r)jP9MkI(}&+{{fh_CPgLAyS6|%a#6wy|&|s^7aUPXVA=n$p|pj5n^Lqvti*VAySm2;@#&0tBg& zy>xq@BY=7r1~Z@%O( zg#jRAA}TjuS>oS8b)Hy&cz251*T!yDtgc*|xb-Mf%>x+v4ZQok+LufE``KB$ir-0N zMJ8plzN%GmLl8eB1wrt*T%$fZVeNqg{L{^yT4_CMi`ome$NIobD5 zC)NguVl{I?l{N5h!r!?2ED$l8-4dxUn*-kvwf28AMvCb3*^Uf$U;InwpMJkpw&W4} z=s3dbYU-=-Z!?d->P{l{Fd%hGyn}BW@#h15(b<57O0n4~#MK}1%PPUy(Gs^KL*Cin zi(K^-5gwHBOkZr#Puzko=Femp-7>v?be#gLo9U7f*~AsXHtR*6(B0m)(X_J)@tPb( z9S!B9s@e6yeNw}dmsl8tRmlm)F1I}W{i!(?vTi{($Wgc}Te~Sf;%@ka#gR!Us5LjH z)ho{uwH?)v8>xqytFEGn`mDBCi%l3*7Ugzcl1Huem)R|H4TsA>+1cP;Ia7DoyH_R& zkrQEMaV>Ur!|u#2`pqD6Ulbyo;BC?gq@guAXKVCA{OKuw!qg=6MbdM0By~h}h;<{Xs(?qxwQ%SPKp#<8lZ{LqJ8&sm4B9>zPeh3M@T!)j@O`E-Dk(o8r zH2(0K%W~y{l>DK7XMqnNR$L>zokM3k)T+1ej`9+xhhdb-P@?Jb)b9MwKbMo?tt@t$ zZxVxh>eYhY9S%lE!IQ%+bTO>wgFB}lp1H9Gb_xh$@2}^VMTtS&cfokC%682@ISVpU zqTkv!pYGTY{XO|3C0D7>#8oli>bI|u98mhvDB<1rq9^Ikit{-KyLPSI0y+?XF!IA5 zoeGPrl16Bi^7o>$XD`f=r3d*+P+7Dta0!3)V4Ad5{`lbxDVhF2im9jEW0V`@G#BtH zb*%YuS}Wy2t@Z5G^XuyFP4r-3JiM+Cjd3;LHP{RnlCQ8ZSDG8*!>%-L;xu{)BAT>c z|4chAqAo4UboW+r)#>`{o30(*n8wH?uOD0B$X~BF`Kxvhe7WEi0i%j%W{b;mVjJh4 zyxnbmPy7>1r>$Gu#o+k2r24IRRafZ%gmP3lIUdI zww~9<>M_0lgM9-*`GY?6VJ}`=%h|VWx{2 zQ)vL4&yxc)aH5TPYmUlr}3|S{Yz(a}9wnCz1wWMdS6@r4!*MObQ;b9B+$3o3`~4>iDU&QZ$y=eAL-8;h10jf>`8R#gF41)>5exF?>vg zyo0Pw2t`_r+<#Px!HLA9W?Kc6m^fe$QW;mqJj0g5ieA^KX>Vd!|Bq@>tLU}aiizNX zElr_8o7ZA7I;#i3^6PlSdHOqHGw^V|0l3+D_gY0IyEy5CVAwH$a1vUt6sFrP4rrQT zk$h+HZPIdj>y#`sKiXx=1MoEy;Y_<&Km}pqGZg)Xos5}8(P`mz04svSw1sjQrPK%G zE5n7&Z2HXO1`$Tyr8T;L@Lt^;SWX1K1!fv2QV z@#4h26d@XrH-0c?|JUGqSNlX8R%pG{b&zalr^U0+O2!OBO%fEFdeGbffMlD`bRTUd=_^e zUmwwGLv8q1`~8?vdaXf))MR=>afV~q^m z#Xl}r}AQ-OYB5&7MAdYdD?T~iosVr`IeOGrLqA!cJtyXuyd8nkDqs>rd zWcCR5w4l_ot8JTO=f}qQd+uJ+MPLvG{K=#Ka0>KS0n?m~ehbnWx=67E@yxv#rXgu{ zI8L~e`?Z>j(?-kH2$!zrbbL)N4ZYdpm*Nj;!6J;592sg%hB)QV*+0E!G^?3-1 zz83>7tyQ>kLbQRTp@nO5`P(2DqTC_Udc2(7Yu^D7VtYNPX(VA0OI9!Iy``y-belEK zEQ$y!#0g>fvgBL%A+}=tnAA5zHiMz6F79xv@&F%e&!BgYwNe)Bnp*BmKzh(BkC$DU==aaPw`s(XAvi>{9*Rw_l^-=sPW)AHfas>?r{RLotVUGE}j#Oomm;=Wga z`E2du#MFQG$ZX=LCDCFc;+H|ug$p$ifw8q^nE>K$sQ;I zE@_HZtzbC})WZ7C@YAGU)lXA)p2tSZJ|RgvGuPr`p6ZWe4*Ga3Vu)}YVq_&|z@xgu zKI8iM0qkVGjozuCPsAi*RDU!Cm`x5~I;+Tc*|L_fpW3HTxxWIu_HX>Fv>Dv^#WrGB zoDO@l(NwwlBcuRW`t`{>+Rfuv2uZ1k2h2^^=__rbx{CPJ+$`J}9MZA#g*q+ecMM&b zs&LkeW6I6~t@8xj`j0a|YfIFO5=dRD5jef_8wpQDq#jBAILQvJ^(E=faJKzfpk|Ea zD3_i6(KZGHU$f&4C$ma6>#?v2#5^+#ZAoOrem1^_@Snw?si2^xNhCkUG+kLTySv1* zzYQJzpDyw}68w?yDxaR$o+)8Y_oc|;1OSJ6{-zp}wd*h9Hn#u3Q?X$;L3-J4q~KD4 z#a*;&k`BjrE}JGojeD>JjW(X}vL`lbX$9cw-{u=VADDJHDtSqP?326lc0VMNCDb&%)Waq9?Tl z`MlR=F-BrHYbAdqwP+#l{i~#UuB>P$DbMOkI-^(8+Od5i5-5~2il!I7%oAUI)p!!4 z%ejG1Js*T2tB(-YAnXAEGlUH!uq!Fb>Mzb#*Qe18gsDBRBgGPRQ)eK*{Mt_{qMJ(e z95@q(JV)7mKkHUNTCeDa8LninU0>el$MR3^nD$%f*jzACvv7X+5}QJ(`vl+82c4Qq zK0C|&OTu<$A_gpxi?6|Pn6n5BO6TN#}r5g4y`sIMnn7-C1lcb{|$G5aNX~n!t zTjh4G{b{q-jUoWfXTb)(ea!T1y4M z9HWtG*8=0y*eM{E^*e;s{5s>jL3N+A^>y1zNXP-STl4Al(_D ze*vli#Nk3ca@1^#pX1!rP~?yZ0Xn-`b}V-tJAI4&;P<+v22VkRC2L9w1s^I@bePym zGUOIbcu9|;%I6XH*00X2}X_yKwe3teY~><%({71@Bb+E92-ycIV~45+4cZJA#6&h{Y_3S5U4F z4*?usxgPI##ydT+_|Wtb>-J~%pKsXK0QKNUk$hofl); zg1uoK;%HU-g>4svK9kMX-=G=tkbkBIKXYJH9yv zF?u?RQF`_w$}+@JPsEWsqw~}>n~#GXuXSBmJV4VUhQr7EYFH6g^G8w=*(iD*u)9_q zQ|efVkbvz*GoN8>8U_@0xpz)$66d7{SB&Z!h2&t^s(Q)XR5RN)8L%ffL;U(6niAZZ ziCDclWCEBTtCxORg(xhBi1&HWB2}o5ho(P!^mcdkfwjwNqiU7C5=_v0Is?Zbv?L16 z3xVv-_e)%|?gLV<&Y@vTkQntWf9T%$=##^G*8KylIIA6+4@5;A^f~e{1t} zlE)tB4N3fv2oou%Y;VtyzL;dwT?v+aOaGz8RXiP!3oBiHDgh|i%HvQ?`i?!)l|uAv zNx-mX{0SrX0fh)IiaPqb`2+TmM?kyTeu~NyZPZdq3!$(C_4SMKR8t52!A?wvq;=RY z_o6o**#1YEUaxof9P5mdM#bBMZ|{l;wnaUAk5cH2W?;M3p5RB;!ty6KyTZhOnLqkm+Mg2Pash=eLiE;&IS9~ma?hOUS<4E--_v_6STtJR>Qp zWk1MZF9+bv(0!{}ZdNB+_A#BQ5kyQIuKuH;wSwn-2};vBnf-^`4|EObCZ1WNpub-I zOqr35UerB{n518(b@_ZM^4^Oi@GL(a@#DR*u*jG_UGT36hc%(LlE$&6gOZ|6W?v3K1bD>(R%acPQ z9f0G1=gqegEO}Gl{xlFjqZJbSB=qJakDz}V1tJfxJuD)fc2`M=Ax~~*DI}rJl{6g@ zJ2>p$-&@0;iB3JuiIQfk+ncFv>Q3g6HL{?V7by7iIEGJ$?P&S!Q@fpLYE|w5QakU+ z06m9k@Ox*w*w%ILgK-8NwoTZP@ZXm5JnQ@n85%xxBwhVW6Gv4}qG_KArsE%o38@lf zVVh`48`cdTVmRXmAt0SM*+o1`wBZGFZj^o%Z4DRLBj>E8!AsX!pZ>i)B+$|HbkgH% zdBcxZ(c9HdM3y^j{f;`dix2&eLr?Lf)SjNT39H2K4EndA1Kwy4Uo=z+V4}w`VdE95 zjdlR`A#f&#Daf|R4?{0`ixCy<&PQKO_az>uuC&48Qvamu7M6AVvI%vbvEa^}sWYGE ze9%-}skwQ!YL?2ZiaW=8wfH1y7OEFMc;2q5!G=kFUNBf3$VX4*ui99Gv?9}W2Nhk@ zKo@#Gj8;Dou+ow#=2-I?ys*X3=^m%QOdB_P)|wGyeDLxo0rO%P`5IGq(&V7uuDZBVjE9vBzt=mB}n$+y>jwRaQ{hMuPc7)S&f4kH#=o5$kp)m95 zc?5QXYDySRaye^c3SGClZDN;ze1SC^pD4Yt{xPp>B;aaxOL*M$l7{-$@Py*wyT}bF z)OVKUwSP^B<~dm*cLT{%F3Tkj9eJR?e~E*+2+zhsrL7yLD`~?OC_u}2jP5D6cK!?! zFMMjH>SWkAx5M`@XT%s9h<7fmBg$&KhmZAAH7EjLgdrXTf(QB{J6Rur?8~J?{o~mArbH=ltdC<9cVQjG5wS_(#1`aM9Eiv4tkH z2yGM{1S=?EvdxjUltHTk*V+5ziD2*1UpFL7wI`RUYK9@$pm5q6(gktI=iWl9gMFC0|I=QyL^Ca2j~mW(|U zf~$w;?sTo+jPgI!fDd@n0{JBhual#{gSI2VHGG(GY%(NIAP}8&<(C`BI9zW2<`P%X zn(Rit&w0@2#sHcYnR#OHk@j6as z*WLjTj^|z*vy0X(lb`#EhE#H{h+f?f-FscEdEe(r;u!nCtKQDUoBQoJKb~WJW>#Ht z8t|wi+*}hfn;JdFEE>2w_n{%xCRT*m%M)k4H4*D$Qs(V>ag><3bMazlFsypO`lW(> z7n1n7&Kjs}T1&Dla*9={pK#{$-&|u+JRgUE-f=Rkr0Ud-lt~>9v95yNS|bjDlFo-F z^9pU-Wop=R+j+D0v2x}~jRui8PcpU;)S!=f>rhdk0<49c8}ikVZnfK&&y#s7$J$@i zk@^NQlORmgNUHX(^XAZFlKX>HpcF#fQT`cb=7mR|uOsp1eBFCpOa)QhjQPRl3iBgwA|DS>)#ZyE7$#6zuNa}EPm zd~J*&3djO*yeDi&fO!otMGvmKNUx%`ISktY6wQ$a*Kn}V3q>=)sm_-(f6u5&k}MCE z1~KBBnfbS(@}`=v>8(X{MHb#6a;xfV`V9VGB7Bt`1xq|0o|+V(if=U9sY5Pu@HwX& ztJM_MNOrN9n_Y}aP?c<9oMfF7j@|@}=%4o~&R*feiKdSqA8Lm88n3blSgnaHIZE~T zos$87PGvI=M;@jK#`Wg4w=Xpi=(+GXMxMwtwD(3y(bp2sS9Ph4zXR7Fng?$cn44m^ zX>`;;h{wc!u$Y^7B`d}7Gw|JNE!7@4G&SqK%-s0tewypiH7Ecf(kYWC4;DA=4;O#q zh)LzsD@TbZeACw`mO6p#Oogc6Z)a%1K}|8!^p{$P+L-Z+6QK;d$Ry)THn zjB~eX|Rb1bAJ0-`}plyg5jGJUEtcvcqiDYqQJxvo_ro zyLY7 z3Mpjku|Emywq|jT$8yv?pQ?*cO2&%L(=@XX8teJ@i(-cT{uZslL{gI6A;w*4lE0V^ zm16{@+h{Fpp;*oT@K<#Y{M-%r&q!r&YsE9kxokLepS*+kUw9rqezP(34iKhOtVQR* za}O0}=&TWrMH3vqO?_Hs#tate3wgtiI0%H36S>!U{_MlNR*f=5d{)~72{?A3T4AW&&>I#F1AFxl!hx6HK* zbFnW4tKp&@{}Sjdr1;K;6GLmbytE!kdA(FlO9D*mtzUb0+U2wx9D_s?oBgPprMCu+ zywa;hiXJeOJ=npGavzw9v`Bu!GQ@LI#S}!Kp-9>tI{3oICgPEqC)896o~(E}c}{ux zs=rk0({fPF3|+S~F{nb!zQgP`=eCrxqLCH^K1wd6CsaE*N>FNU_y5TniV526d(gk@ zDKy^GB(p1)Ab}H;)3G6>qPjk?lsFU)TDodN)vu-vzD0KsDno@fqaye^#?`N<>?UkZ zOCAhZmq=%z`67?buNv;c$#yJy3ONg&5nevQYVF=$f=jkI*C<|-fqxIa` z&8HZDftVQ=_V&N4{(5^oQ*U}d_iTM+xs)6Cr8&41~^eWex^Taw+1ickoy1IGySgRJjHnFVjqx;G+)SNIGcaViH_62>#jE~X%o=#{ofkxPfG>mvJ zIolAjE+cI2ArUCG*ZEl>lMfT9DFWk4s{CJkr=n!w1bYIO(pAb$xIW%JDE->pG~V@` z6+`bp=sNnV%eQc=IvL(f`8>#1jj--a`?f3fXWt2Pi);d|&qGbeJ)@Q~?iHJ)f-XA` zJDG(ls*`gXzO^!Y4>n{*xPZ9-Y`S;l&$;4=RW3J(T@1=S?)XS4?)<>|fukZ5J4#m?g?-*(B5sX4>dLJ4Xv&s+FyrXRXvZ;>J`2UYIa zsIL8ARAXjxEs~%A7uDEX7vrO%dlx-$oZZjL=2fl4jRF4V<{BZ&(NgYxOr_`A!t9_D zGG~9cPKfR0j@&mTE0RNZff$%!^A0bQ!wFTODif$HVz7guo4~3zh0!8=K|3H)-wvEK z{sKwbcUS#GL(5CwIA<>WS3Z>7)XZH4XY{9qa17aNo;Fv9;fG zH8Rk?4Nr6RxvB5omQhxqwILCcG3r+J^?Xk0rZIU2%(5>@Ip-4FdKRr^mQz2~QC5y9 zTe87G0jCaCxoAKWlBnyqVb7G?OnK(dE9=!g-19>C<>eXl@^RGtzT~!2+s%bKVDoJf z{n9PfE?@SHiVLOvTcP9SlR*rHLAsRh=}`FVd3OvXL57wvH>KTUMZRX|#63k`JXMX!`i)nIy63 zjInNqc<80B2x@qw&<7;kPRoP$C~A)<+)`(;R9AWd!Rf5A2+ui=Tnm9t_?i-5R9SZ! z*(N!>5Gq1<>wg_N4OOo7+Ozt#{H3jZKiu$#c#r_GGc6ge2g_UzLe53pg89=Rs@ z+oDp=wyMvP##(Q2OC~;CvzyN+MZzC37Qx;^YKD$DCrJ?(hoM3>GmmYWGp0_Wpy9!t ze9kL)PyrLz1_cuf+&;fvVNKqP`OOJWUf$)ft?+x&zt?t83BxST`D^VQEyfu*`zO3r zo%J3@(44%4%4mXWuc`C>d1%Ds+}T^F-Z-(~n~`~$3)l@arV>$|om+++{=*tevJV#q{B7+_zka)fV~ma0`wi@3 zy8E&qh7DH30odijvH4Q|%-ZDZs!)#Qxp5A_V5VJ_w{XGlef5}k`4e(yEd^tfaE;Xv)>uSkING*wF%6^V8E$C_QYNaA-S zlruLj0Df?YUF-w%Iyk@&N0B-155NRbJFmEzWf2+n>{6^#jMv zZX`C;|C$Bn649#W;uHzw7uD1%s{g+rm+Vi#n})2%{@) zVis=PJAS#!iE?hL$Pf=6$&ccP!h7L~c##{6mh}cIOJqU-)L=b^9RDtMd(PHd?B>q) z{_+6*-zw!!#rI*~?`|rcZ%*XviM%{}+N%NVx>#d2FJT^*@m3x+n=k!J0y9lFN3{n1 zwLUi`cMk`!_JyGf?l_&>sykZRB`zhYn^8+9bLc+BvrSe@HQut{1;iMY{yPgXy&TIt zx~?T~<|pM3>oY!)EKD9kJq(4-KR%z-QUv(tcwx^Ct8gn!kAG4R3KXb!AU?OwmGpZO z8{&`pfdYxz(sm)|6el+wf-Wo3@6M^6hj_)S@2w!7V2J^O^j)a1iA{pJGar&PkmRUW z*Tgk(7K46quicDn4y$=bJ$dlOi-qR`g?=kAj`?JI_OeE>I?LuZo2VlX`{i$9anO1u z#)%1OGy2g14#TI)MpmCO?NKtU%`{B&5+MadUZLo|-G*LGJ7?^LW3RNUP5Itr+INwW zd&t~YOwruyY`!sZLW|tBm0Xj=XB^b87_TFKaNSV%%3dP%sVn9Pee=j$(#&o=?-c$t z&EsLnUZ5m=$!4`v=_Y;e^c>uC2ykv3{URK+d6#c|wmr(;t6$U#l&rz9b<0 z|J{P0kvDBr&jD4dJU5GuIw`*pNH6Dm`9At8Vg?>b1gq3ulQpm9(dN^`&8lOjzEo=} zg1-GXb^Ew;%Ws@IQanc{Cp&slDs&B`i*Bc&@MRN_SMMhinDT1XWR0b@)E){j2Qm}P zF{JLp8_RDz_O97%lU7t8>F5bP6_?!~^KoGH!FHRuSV&zn z_)|L5cVVzYG$kmHaBHm~o`UP=SvYrPXDKf#=fYs<5?U$RWS3o6ZiSoOVZ9t@^f|no zWG`MJ*_M4(DKE36)5-MhS~#*w@T8l4GoLk>y#w-<$j?h1?yeX@P+ehh*i8bRxC9?f zfEyO5nBZ$FCip_7XU(K;M5qkOse8G+Fs$L$+E$bnqpO&SD~PLoSa#DR(U9ddoU@$U zOMNNM6FhAH+hvqwl32x-x%;R{9X}TVmVT?$>D%SUzC$-z9oVP>C59b4d{rq<$s6r8 z)#lPZYCh<}YW?o{6YwgaR33FtrkYK?&fNfBE}EgjjxHOJKO6y6pAR}qlOJD` z)Q5!!kW?(quj45U+#|awlGDiSdf3$T_>c8Ia|EO#VSp>rbTXYFJ;?z_W_f7`S=ox# zt#h&V-X~^DtFCrTs0H_PWecZZlLNx}%)w$3 z4`{jBP|8Vf=5XP>)@O@IR%?=gP4KDk@u)W){xQgr!ShzC7#+NZg+5O|E*o$&EB;s$r@UV zXJd@ah#I}Q?IEyuD`~|1=KkP+p0I5I_T2eSkXe=h?E5U?WkUJlQ>^I8Gd-Q4WIE{@ zJo`Qavuv12yotwChT@ISxAA+=k{cSJ0WiPdxpGN6QCsqU)*mI6U%{YW=6eC?Ec3&# z!U4^IMfH#+=ZKH(IL^8^KYZ4*COs5C7hkUcJ9c)kySlHOuw`fhhE#LiY%^U37M}89 z2s~#@1h7s_jqy3WrZ=x-wiWJ&K6oH?F37a1?GxC!>znwfpKD>-VSvbqMXxAczO*oB zBxhs3eeaY!W*+F4JJ;#IWG0=85hlWvN!;|XIG$7vpM@it)dEbhRmAs@!ihq;s%qsH zE8%=DO0IL#PF+nV5mVl^?_sgW+fVLtFdVqn4UNEzN_kQ4!_-R8Rh75eanpW4q`{H)N2YSFrNy{T)3X#R5++QN(|}3$ePBrJwz#F39ntvqV!mj`&V7 zujY$$d-*PQ?Yjd;koQG<*wVYcp?m?+cg9UUt4%PJ$jYPm#g1Z@DEYEYT2~a4rA`0W z*|1ig`Ps9gYNqADgO2!(=9AOS&gN7qlMZz{k-=F5^F_YH)5AiN4Vs?LHkiiLBC!!KkF*c(q zJv|km`OX%gphmp*vtWJ|7Lidx?u87J%rl^XuIL@0T-e`vrY|U2xv& z8*f^Gz2cOJU;RRI9>!NaMh{@f=j6AY`_5FB?7U*@a_52Th2mbb1(WIMgT|4)*fVLa zrLiF@DxnJ2>Q|Kio6`EG?*YoV5BxBFMb;-yxn}Dd7&KxnP%qx`r&dMqvhO!7w$?t~ ztA(1r&bv<@O4k6DAbQZ3pZw*#P++6`i3|-e6Z4Q#0fE2taw~u2heu1OvESrNzQ&`0 zp}+Fj(c?#MgwG4;puHNZW2PAW=a_$hFIHaslfO9FP%K!3Iq%$5K^u1Pz60-R6aoR4&8!^iJ+{vff6Zf#EWD59KGAw1EaC} z8KzAwGnpKndQJT}_RLxe{|m7rR*MszQ5W0ps-)C1JnaKjn%eNcJOB zAex^&c|E#rh)c;n0C8s;PkR=u-Z87T;Zj=Q5J-PiE-URdGH|$t&x@&A&EB({FUsmh zuII{BE(pTNsQ!n67a<>94f^#)R(H2t4;dI)t-9Jsa=$x*8>@ z*u89W+xOD#Muz!MlDMgHL6zW*T7FC_$)KEX!r+C%7586|=6(Te%2EJ^ul8kX#}Blt zKh3?l8@eSalJ(2)xQM`1APnI+4LCC2E@}xxQ2Y2lH`dq8D!H7Jt2XeLSVQPIbrdE? zN_(q44llSamvhM7Q=?`sZBhX|@m|b+)MaOx3-9~QZNrxSdM}S1L%4k2N9qNxVM_#TxMN7+U-TlvA{3x<_ z<}2BI%``4iDDPOU`}ay@aRU6oxIOYWe390{YQ~gz;vo^yzq|Ja#!oy!-?RylM4~%u zL)yKbnFIX?l;*%#JB4D7-aVu#c099i?5YMa!TBph7*1`SSf-PY%*;o55}OW9<3OF~ z)~bPJw@8Z~tFjq65#I&=aK46$toU8nn56NnHKt~^ z(?O>Uji==fIX&1UQK*ndNQxVc5Y+|FrATfTfn)S-N2~Cs;fzZ*`cEWEvN$K>LYp{+ zGMZU*mCRM&z8y)A!1t;eml71M8 zuvzx0S%2Usw7oJLHjim(eQh1Vm(x6QCgbz_5oerp?UMH&&{RWT>_JX_mO=sXHB#TS zVO_^-YCuyXM^rrzXTIV^`bN0jmM}!vN(dDyF$tD&$b6A$c}uudD?O+f z{X3Y$!VB;!Na9g)Q*=4(`_U?QK67TCexIqv#^*?vwxjA?K=LYdvO;5{)L6B(U8B5q z_n;cuAJwP)bnPf7!UVFvXEY)fpFQFDclP^rc*$Wa@=&@uJm-EfLnDF#I!OO`95&8+ zU&_TeiG^LPUX=51Ic~5zGbm)~RSTY9;>na}30tE$?D1#JZr3>u{s7xtd(x!c zjc6{JTx^U`UKeh(TN``aC2+IsO>0?r44A|L+crMKGQCShUCMTg;Z0;C z=j(x`@vk5ec1>^H3oz-5U$dIZJXZRYoJEiVRUdP3N6Y%ePT106y{hco4o)AQP^nHJqdOrova4IPY5z2fkvE5#Daza9EFgA9NhPb zueLqX&bgatVvWJ%%}vEuxk<^v8?Awqw{&csZ9!nx@)qVBh=sHuE3? zDrEZl;ptoH{E5#(Rr6>jVZvOZUss(>P=`ea62UyL>(aPkam?<3d_bAUmnkkv*W9)^ z*gNk`;CZKEAF(C%)%j_eH7jf?JR!#2+~dc!OoYk3?*}bSrh2WVLX7mz4l(PuL*i$h zSQM&P#edtN+2a&wQx-Y$>qg0Al+CEpCk@Q}Ls#vX{71V*3~-R#ro+0t#YtrBU3+5+Z|w`sXW4m5=oc%EKjvET6s_fecP~KWFnt3u>^tx0ovLjtN>M3F zR`NZ~53)T+;B(`nX5PWVH@Iw28>}Y2pd!c>CBfEDJoRV^pB5#R{JTCOO@HOrzIVJ+ zoD|8b3L3Dm1GW<5GQ~wzS)H}NPu#ms z4s}aM52UVIlWO*j=zs20%=-64izxW~7aeYvsSSz7XMIh23l?v#*4dJl(%l%qcQEqH zMn`E3?vn2SIM9t=w97h*r9x+MUWU5#6wFoBINN%w(`!KWczGT@GfGY&EK>m>H z*)nB}kZFe4jgFjP1qa;ntA_lY(hK?*Gy~?9N1Tn$8eJVS^Sd;NUz~qzCFSo2u2@^U z;hnvC>vyK~EqV>NqNJ`{dwoq?jFOFQ-FKQktd+G4Z+v$K9oHO6N-Uc!BTC8j?pO#r zv#UM1r)q4uEwf`;xoA*3c9r-P5aS=-v z8|8ZnJxwR}XYtADw|1PeDZ$hpYW~$3A)jFZf-?yQ%^n(?_{uYyl2B^D#CI%xN|E0m z|I1lgwG8dmyzz%L%7;hXD&ia(?jN*yhD7;NBnE_!{v3O6067hdJ6~jRj6T%8Pxxf9 zEo2E!?0ukU>=nw2wJ+>hM(ihiP3ue(Shqgdm+5mJ@m&5{qHR3F5@1G)N$g3koie%r zu)Bbzy+bZ@tDbxRo+>0i597+<5KtT=+U2yt*a8!!^Aw32D};JZUb(MMDGA1Ds{`n|67+)q)}%+4jeY#gH~^+LmPX$tbN+ni zgO9%)x-N2F&?P7C=*xm$=q^&U*81um+=_MuRB+eF68ucjBjQH~?4Hv~I!vi2gji3pS*R0|;1GHh-R$Pl*Z zkQ?na9x^FWuGeFiIRcOBe@>gxc_K(9K3DzmfediGAftc7%`!KdgFU?4;s%^**dfZ$ zGZLjfmD!r+4Vz@(B~lgt9^`gI*f{S>QvL~e=fLX#xeBhYxdIP9qSL4mZtEE3A zix9C^pT99>m zJ3OqK2l+OmsbcoC0q=cQi+vt&L`uUUEErrSiAEEA%r?OKQ+HZ(H2__2ujS9Bi~9vO zm5ikLD`{w|Yb#=v?%(ZnxW=HgeLJ3ZIo)UOICkuLzy3iJyWi8=f7b3=G5Oi`TD2O^ zJ|wG5vE+QYTc*h6ozqxu&6uk2;?FSep1_!(lB*DuhhQ+N)(hP@#|op_qqP_#z;g0Z zMo{wOyj|RgF~K%REQk`9{Qb1TL>4e=Ts+Ms-3_b@a3%q;M@20~p;Y=i&uJNTdi=SB zZI?UbTp~(zt{w)Iw6>Ptt4e46i`mQ(99u$dT;4y}B@@-o*bi;&?>FC5Ll&H6nFq-P_- znbS>=;=oN4to|+sYjLp(KM}SOg(?AUW%^9(*)Xwv8--ch@%4kOFK#sPOIJD#Cx5|L zlH~Bz$@qRR(?-~Ouz(_95a6!IM(K0V8*PG`8eCt34dbE8;whc_jb^^tPN8&xHUHP#e4HoV70}qxZp; z?fTnZ1^ltqBdLoyHofJKpY@m}Yy6!}@%HU4+5e2Nstoz9_-7W_KlFxtP4@cH?V02E zIXf7jshQRjb>G zlK^Wf^2B>0qp~M?kO*hxW^VDSUYU!kw_ldRJ-nDv(1i^XUuAlj%QQ@O)H0q?@u3~3 zC4h~BI3gBK%1?O!`n;o6D1!1lT=a9{{LS7+Uu3?<2Pv2Kr^81pQ|kK1YCKW>b|_x? z3!lc55WhXcHS8%*tSUzm5r^6zi>1e0aiJM*dzhBk>k{##gRn$a&$6ale!J>0BgJhF z1t1Ry5_lDJ`Xcp2!ryRa-YAqxz796uTlp$ts{@FaAvzOkdcpa4fa4HYk!0} zYZI77_}CEkQ3j|%jj&)%ggRxH7Blyi;U?0O>9i(M(bQpOf@Hc z$&kLQmi>{cTG{DEKV@3Y^w{OC&MmvadXVydrVWgOr|XoP&skRRMVe-&vlJg>VK~Y( zzY7GEHUKe7mnZIdM{8TSd>gwY_fw8xS*B@yNS13vg|gYTc;Bm*ke06Y?xvR7nnx?9 zz^#hez;YypP<(wPPcxWm<(ZjuI^6iAD?4*`m-4%9`iq0UZ$zvF!@5rH$jDJk6>J}U zz_Q#CzY^r4hUEOs#?*?H0MTPDv+9MJx#!(fpfH6BO~v|_kKKapWsuT8h=woZcRG#5 zVU~R#TxFbe4y5_rA)Si}jCG0PeZl8ag9vrbqZmXAa#bVZ`Y1Jn^<67f8 z3PY&XAm#3TEv;Xd z3)0%)YRk!F|B^Q0ckop?Sah}rI{&2;5LjJscPElP~gdz3&H&ja2s5LLTl>RZS=V%=w3kh<< z#YP>eM@#;N>a=$ZyhZ1%(lgKuoySab2-@5bZS=FW=gTy)M&Y$SL3@xOd{R#=~f?5OPr| zAPcLQ4UBr`a-GjM9->ouzm%cz=zn#h10`4H^%2Mp)zV=;>8KvUkIZ{L-7?Ugffp(| zWtj5a_>fVw2mm9rZMaY;mBdSUm*eJ3Z`(9T#!tn9b#r_bnePFH121$Bkjv^#iQugv zmeZ8T4!mXn&_$uCF9-F+)*?&u{YQJt&KfkmK>mloeH`O%5}IPWK8v#WSwNQOan0_#MN3(g<>idCWG{2OjBo~bED6y7kMNnM-%0vL5f`ULLhmQNW;V|&0Sf(}Eo zRy_+YD+=N@*pokwZc5^*jp*2Hvv=OB4kp-~-rDhLgl^WDX2KS$t0%U#4&)4UINr~C z>r;|!eEZnZ%`(s-lHw!t*Wy4@sJ_TGGeA0*?A&VB9Pr(Zl#T{X&)*m#@>G{f^Q7Tp zD~QMYGE-IxfS^*AVNQdhHK{LB5{pk<|6{QE4cweLm#{%q3Q_agVCWHQeUTdD>7E8^ zOM>~^VAW$N<8%|>2h+RJcVtI@7r~-SPNw%dwkc!i3k#{%yupX~!;1;dng^!`inK13 zU6s-4Mq5T%iunS54nHqfC(cbI!VjDdr*8Y~3d3Ml zwbC#>1hjRj%NkpL%MRLIa()#1l{SKVTk}Q|muU6k_igU&mxOdpo;q>D4x^OM%s;d~ z$4CV8;-*qX5VPXZ?zcc*_=7Ie3wlu1fd09qks)P$?jQ^cuT4+4qP)b&QeA;RuCXtm z-FvENGCg>&0pw+XOph0vM(}pt31IW;O;w?;hBO$u>6=17_mJh>3F@&U5>KxJsRDO|C$ptj$RFpMb&Kds>DsLgwxD=b4cBgQpd9S*eu-ox_m)| zQcBppcFTBJQ!@Taeq|~D6BOd76k2+Aa(3ZFuj6`%^s<6&-&}v0srZeXRI+jSETd(I zcF51R;HpuB#}Zl?SktpD4j)-{Yo*0OkKHnoVyN7NQxljSVhq;z%Sj9aP3m3#z4j@^ zyO_V^lu258b73wnW;o3s+;*;EbkJ2vmJ%Ioty(9m0Z~hJSq9E~Ez$ojwxF zn|0%cVgF7ll7^~DK*2+Wrcbx#k7`~Nfo&nW6pZMmbD#qp8VmY3H@G($n0YHYUKft1 zy_0Ln8fp<(#&+f}Y$MWgcHDo}`JR#b%pQpk7V-z4B3W6A_<^YPXxYDy}`kmee;pH;Q^n+q+9$xzK zVZ{38{+*lqEv%tst&1uAtgaP%+PCfT4lQ7>LcGpFD2`IQdX00uWcpK1CI?c{8!6TW z<|T4kYQGM0;@$eVxmDks5QO=mR|9=D30yb^m+4%!Ebl#GH(UWVi)B zDOZxZD&;%Hs=6m2k+)S+pCfiec=aZ0h@B3VDkGh_*ioKN^ek&Sih%As{60av-sRZb{7ef#c-om;3{b?TlIc zGHA#V-E&npe#+oqe8*$dXhb`;BrT?%#%hLPY6g11dUiQYwYMgulKwGR13_r?^qifz z6*zw?IJ3t{TacKTlm)>lh?Hy$VFa@@-DRA`TrmUCM@mNz5(b)&|7nn|c>p0Niqht| zq85>b%-!JIb%aLn3@*>s?zVK+46O@V=pA`hYdN?7q?dyG2CZ z%wMz9uV~p~AHR$5t6Yu86id}tTo@koo8NQ+H_=F4;zq6Bymgr8ESru9?z55D>lot> zH7zy`=D=UZ)a4@Me$no4ggK`EYXJt`FZQ znn*EJN7_M~n{(X8BhSc$#TGBoQFiNVPSQ}g$ow1WUpUxY`0^)6N8J~%-xm{$<)9Jv zXiw!jtI_K+?RY2S3scS)0L!#@)(q-K+LTAzh2HkYX*1)+Kob_)NQ=Wt9Ed|%_Rm;w zHGH5C4*VXK{Vb+*Hv%_V?E67spG{4T}ea48r&7UUg(=otK4Jhl= zHjc_|tr4Ee!s4GfQ_{W|=XYQ91bN2voA1SIj)bW|H2X4R+MjE%XmELtUBsK4AAdb* z3Yz}3 zx#g}igVndhf+igg_Hr$HQ@Mt`uwOk!(_Huz9d-oHObyrCP%|g_#x0rijmscwa)c&D ze{95elRBfn$>_rWj=13+YKfmsb2+i1n<(>C5EiJ4zQr4_B9z>O&XyZjSd#zYSS~Uc zK=W+1qMo<$JhWq|8j5;hnGZV%5+?3|?&r7#KEZRYHhp`aQH0)NzVFT~>w2HP+ZrMU zq&G2ZxWRRL?z#MEX^6*Bb$!((>N+Tt;wA6c7Ye5I1g#ie@;RT5(&CQ!*@&2%R7OC%5`jBst)E6xxCusQWm%n)Um7u^iSq*;jgp!2qS@O>|%;`)Vf|Zv0SXL8bMAp)(>m&>#%lrXsUyE<#Zq;-g1xUWbc&U zu36X9VCiY?_nv9E#Xb^dR@+HBB5~;Zi)a zBFYN+zp!i=W-k1iTB&q~s2m^Q-B_^{ZL|I-_J7${S8))848TC!GwCZ4CDQ^Rgrn>7qO1x#PIAWX~Jf)mLDY#SGTU6#ju*t zWgL7?8x%uw4sLFSBoC}W^pIcO!EC~hBY`;d=hsf2yMSc)$&g8X_I~O5>%Yh?m9fH?W7yWe?o>)0W>6D8c9r8Vbix_}hW3oRTruQ2< zmd3)D{gYN@h+kF^Y&o9U4$aL|B2EabMs24|Z*gGMla0lLYjqR1^$B14C3o@_6Aj~a z%E4_?VV(63jCc}31gs?@S1k>kYiHcFLW%UFIUY)WtX(m`nN<3as< z=r`qS_jL1Ol#*d8liB1?W4CFZSVrR=;Cu%wgZj_hhP&XRPG!7%;|*O>ApEoTXAH1%)zGGL?B892mug(@=DeN@SV zCKhFu!P~Aq#Y3+K-;q&DN!-7$r}Qg1>*6eMW}nC&qy14$&d*`9&4RNIN&`_E*(xZ+ z3`dN1OwA09({k^|ai45Dr=6yE*b~gBPZ{NSSkk>P(W%LWtXJKu5a<7Q+=|X0oV%hq z75uAx&$l6B#_Wl1Ts?)}3UE2YCghc$mdsa)-Y{h+su+L-^Ac=Y_ZK8oN;DsDZ<3KA zfmCk2ZhW`h*gxD^x#B!p*0d43q^i~;YO;dY?cO~~EAk2ox?(rTIc4SIHOG@>IToNb z8s6}`p?#)mR3l_Kppw6%oFx#`D%w)6-W-WwwgAIX_nS>wmU+^3m8LRwSZiwuP^nCb zuRK|UZmUb5rFvqg7mh#1&PnG9d~?3U&F=X#y2C+o+IW5TOO#$2 z(rXYq2p?|i+qR!d_^A8@zU9m`MP@K_11|=?7JF-GV`x+GuL4iWA^lQ&*W#!b(Wp}Q zu^)#veZMGsq-HIqS8W7&IpQ;kGl|JQVU-4ywXcimWYUe?^x*H&;S6{4n)Y$*#8hND zMMZ&ZAx5VNZbKIjXg$n^3_E@yve&{Iy%Fkq2=sWAZjVs?;2uTs6WXS#c2Ng(aBJ zyu%da+JZVCBABZ(R{9Si*`+l^(doN^MrY12W^&$X-Nj|;Q}1oDPPfiHCZ`SM&bF(n zhsGW$Dznn8)@e6GWdAHTbpFb*nM6ZHG}>c(8ABe-x8Xk{WO4mwgq5SNuLs>GDgT8R z6RL>OyJ^fHF zdei0ZW(j65VsTVvv^%x72qYRGl@A!MIe117%bcIo2Sg`Bx{Nzgy;|;T0wx}luJYVQH@T6LevFI=9RI0yr6C9c+Npb|@~OSfIxN2zA3WWa6A$!g4s!c?Fx6z_nxhv~(TQ{|w9%+4o3w$} z#lnTFYWLOT#`)srx#|{|Yt;nuCB0db7lK=G_?m-pNq5&;M!YF29IGCjVqTVvqWVL` zdEmcHv5KdB@tJ>%Y`BCe$&tV zy%3jd1>UUC<(7)#@(LDH1;kkzLz(rA8bOxYp{X6MF0L7?mToI0pP3z))pQPjIb4z7 z(65QFDcwyoQBe^8H#BNH2KeNJvdht|lg)i=53}};)p&|UfZ101^h<>OT&;5E?6-HT zXUDV+?VHU3q#+5w{w8S8;ypXtX{OtF%cddlr*d4K)&Kb}#QFG=7Ro<-`yW=z7u}&KR9lXW8>KzI*;fazjKAc)EBv83h8D7WjxR^5GGU3fVVVl5& zvjYHIMO^zv;&vJRQS!-gGGOhk@?uL)uCVFFQJ;?Pv~DH1;jkgKP4AQm4%hK0<5}+K zw#CfZac|!g+TRvVpu{0G^j(3x3zJR|6%Iki8AQYpfCPva!180gnPRe5jaLwUAQGW*!Z5X6hX z#`|G8t@9Vs6=4%t<(Tr4bZ%2W_e;j%(^RI6<-N^t%{lu^u`+Rd$8lRsAh-DQml_Tj zeZ?ZbC0YG8HrXNi3%w;9Q)@NZe;FLp{qholYF=aRUh=|g!Qd~rd56qzGj*7N1>EDY zK(+ZMoQ-yeM6oEnz@woy232tJZQul~guyjrg>L=xtoprx+0LsKf9M~#l<^HDoOpXg z+>$l-S+11ZmOr=RaZUuJBKOlIr%+Msgm&@!Ntk7{dq%;j*wtjWoqc(cINi6K1&R-y zlj-T16m~$hoA;Z{>$?oO@FP1|D{(X%|Y$iv`%ZAq(+h7D|9))89Uguf71( zVb({XptJU8+@bRx>vCgfe(tmpv%~bT=i6vN=4`?I2*aJK^|76YhM)0+P1V{1CPgwP z^Tyz&|A8+5fR~Ay^FE5yybDg1`D`>(=pTzlTk%^&kJs(QgljIPl1a87c2MvgT?>sH z4OBtzKQ3N1l{Hr5W64s({?9}=zMo&aS}FVBuri`Dc)Izi#?4Hie8~P&pA0`oyC249 zdmi61C#zE z4DIzYXYT2=Ho|V(cg76-pf3B&En4J}3(t+(Kdil`%OdxE{2D>*$QF^Q82;JnM2o6L zZLP`%I`N94l?4XqkLpT1Ufp;DUwi`i2$DFS8C@eops@@!bow!ABGL7oJP3Mr7fyui zLYs*}s@K}O5$OM7o}FMM>65>)ati4;TgG^7hUEG81h%HCWv(4 z*OLGux6P~c-oBaYY5sRM1B7jiF9cE*XqZ2x_jd#4iYLXCl?Vi4GQX-S!!*zF z{x(X5X1fYN;~97Ic_Y`H8W;CJ-7ILxo3s}T=RG^-e5MYb!CAeNC37ak*dAL3zoxJsgJ+W5-Sq{C_My>Z8)VxJq4o<8zoQk&`Lsb{@O5 z%5KT%ZM{>j8t`#in&|k}<&@CHr`}>ZU_n>2@b_g&xYUi?ReKz?!>wsllwL-gH5v%u z5#kVMywn!1f?92G*j1*+JJdWf#w=JSknyCiRtn=EHXFd-FKJ24I!W4dM$ zVq%f#qN2aQh|M0t=pj#HX<(*Q9i@b+28-G@Kd+DBf|Fob6ixyHV%TP zP$S)R$PuBfhWbWh)I)JI*av)z5kwm9EIA2g*6$~JUPckucSfn*dx>UclcN zskZ;FuHnqH3%H=-IP{dSx4`MkwoRPC$tkiI7s+~jVOlvIt^DxKlxi~li>2z#uex~n zk%LS9lZP|Eh-Rl3d=2Atd-bemqO+C>ti@@e{L{F-9n8z40O*4W{5=`W^tDIb#C1yCv3R& z&B!N-P|5z_5nk^yC+xavn13$g-!oo!lK(fSKUps~e{FeOLh{xXF@rSQ0?;nCn4KVia~>%25k%=zojOW4+0DwAH=lQO0j$D+h+V_&g8d0RGdPfzWh}yi=WT=%Q*!sNPB}kS@%dyglI3> zHdDZxzSRd_1|f0lRN|F2=|&nQN&GoIY*urPjZ zbvy2O-)t@o@~JTuLu^;zA&VwOTvZ&fjyJ_hKF!Lo0wF$+cDuQZ)5{0ny^s~u6^-7R z#X(rlt^hL!>`#?a;~k_!e&0j>M=|;r9si4vMq#|uy{dvK)Mc*l=Yi2L1A0sSCCB@K2IW*OyNnOZf8@quIZV|A3(^-i#Om&GYdNb*Vca-wX-urJZUT97$3) z`%Xajj~U#G7`@5a_2>J(H@;~R3&wIUe&Ckva`O7ApG}Uh)u>-1#AXt{^$+n+a!e=Z zv^#c#npZVfBHSpf!ZzkR5tf$BsZ}ScvD<=*0L1Q0$h^319VC+lP;+PUr>~9r`cKm) z=I#rrJQj(O6T)vZ;_>bB!&8vM^}T&&*EW}>tF}_vT#N%ATo2W+1DDIk_cfLTTgl2A zmVQ=E|B4dR3sWbwcVr#$-W^Rz+%YMC3W`rwbAt`smkMIE#oS{E8P`o*y|i{`#{0eZ zzVpi~qO)};SwH@~h)GJc0B6NbbDL#u>iPeWmRoMqI5+#rg;C+%uV%_Iy#D=*l&~v| z!H(kOyV$OYHVq>VQsugT8WS(ENWzWHez2-68jmXw+DpZw4y^Yo?T6Rsf_qG^EgATx zFrsMb)58Jt9jbq3-KyeC9$T2eI%$q?pB1ZE8r!UP?o#g`vPm~+`;_K1?U?l9;Spv) zuLS1YEotax7eTEVIn;ce0};)dJ}C%T6stZ=PePUL0`a=1t?|ht>nsfnHHez^!y@Q1nlf9|bGEh5TO=;os}}>#%?(>MTX7dX7o}Tzqn+p{3rt zz4bZ!Xkg~bM#7(Ww^HWw2lgJXv?45zslR}S9M(|*-Ber3H4ff|I)ne!1Zo$+kvpn; zrm4MZ++^A>lRJzo7QWwou<`Lh=!RRxze*X+6UWYm(yQjN&Jj~hE0(IG@0h%N2tjqE zv(!HeDCglZu@;Fj_y}PryDIRd)k)*@H5-Stf_=>;%2gmy`Oi&MB=3mhfVu}tK&JzQ z{%2e1NPe&ziHsDSu&qxoD9CvlaRLb@IXvAYf`yXQbGM{!llsU*-XcCz zbONZ()T$q1wqyOxMuQbuyQ^Fi;P)SW0%tU%rc5)}=CC6f1rYnFXL{r?Tj45cQ(hh? z3!Erc>ldptiP4eVxSpu3&#_#+CrzEI+YtyphAgb{@*|LKLj z@b|*cIp1^6b)9pr^E6`PapsBjb4!frSbm|VV-p9=3WDN$quI&JtVpNF0Xr!@8BEcj|s8S%9Lnnb|&daP@s+A;DvFQ zGUP-<((1piLg(HeR3y?8yd7J~)h~>2)=wNbR4#fZC^)2zR45srB*b=^4Tc9aA;Q+` z%{d>1JDRWkX+*5~`og9x{YlsZU#Xz)ikpQRxpI0-rCM3{4mazI^wU!Y;E*8Bqa+pK z(zr@4e)#CIh=Wdt`WZue-{;(%t0eViuPI#5ICSp|{OQ9w%E>KjeNilzpOWbilQ|>i z&=!W`ma8Av-O~aCD-=mL0Qdb<{g&O3pFEW2igHe^oeG_pf*fnBfNW>4Zmqn&QBTpS zn7cG~5~KVj_-Uu>4qklNW5fC31I@|bUdTMb=$lli$+Tz~a15Oa&*<}!DGRfP>lTw7*u`lj*VsS3fH5ME(vu0=MJzx`$77judYxn(H z#2a!fn&gQTQSn~g=UzT1HE+pmkQvC_s*>6ApkshO!gF5nr7&6Cr8?W|G2#~9^?^@U z>>;IrQXZgTr#az1epj4{s{XzQe|A>$GrF%py$$u-duTp&3I7v1IUS980txUMcsFZ}R?A&VOf{U{|n{&4${;Csccv$H6rS=#i z!n3a>@)xJ<&8BLO=kyML@7-EN8uTw-3%7YJ+S6=0e;oL+bAPP6nkBqJB7t~>Azova z7*0G`awci^t|P6QK%D&G*N4+m!EEWwsB}wVgte9=j>S*Y0Wnl4_Y@8)N~^ToWqhJ# zlo_>^RpfqhBzSiz;8EzPU+<07H9=_{3wu2D1DL8qi*^#y(wOY-1-dFNXC7Q*&ii+^gfrSt2->?u9h_ETd!ZUjxrvv8h=C^Jhw0UUR?Z5-n=Ne@csl%&H)<4!ikqJaqWh-zfKXI zEy0A`O&U$vhW{JN|2dMRG>Y3>1l5=Dn^ueCNi!1FF~2{LIhHo{QTr_Q(%8)Lnfl+RT~GGauS7AsDDe zbK(moGAT(#9g%8T1c7A5fHSQx6GJYxx^4D{{OiQHUVC)*JBat*!_j@bjT zaa&e2F!7;?x#cPd|D{jRazC%nB1GzGz^8g!%Guz8RZ0KHKC=;Pn#ulDoH88yjZ&pq zU%F2zdC4MYe@(YDIPxCxe$&)j{edH^Rf(?R_}jx#CnDTxonoqNtrRxhQGP4&l2?eM z8b{9nM6BgwUX!84mM zRI?S^s^nKU0w40y2J?oMqg?y^6X~5T4Z#OVX4}kT4G%Xu2R!FY^N4OyRF$;Kmh{7G zAH423zG3Eq4Ce?P$T1eAZc%(_e|tI`*LeT@*YJ9+M?XE6?ydH!kpq2%9W&-tvXb>k z(3sY@grUc9sp|TkNCoT19S=v_@Ue;wV@mLVUD|o(Q}t?QK9~7mqYAJ&Qf4Go=JY9@ zlHPrg-h?Igg~{7E3>Cm}YxD<*JGH5AfD2y;z9R(U^Knx-PBN!(zgw+1A_& z$4sBSr@R~YJn8{3YS+P&rww3t?D))yjpfRuldrqRuS94>x#*oTze`vOi&rXc@wCZo zY&L94xu?%~W`>t$h@a5?%=Bl9`}A5heWEiBJk#Z)v`j{YKd!4xxI?5(jX*l8}BN792r3@Ox!}Z}|t1EYRpn8oSN#r-{)_*jU+C@|OHPLTi_j{(B z>1~B$Cx$_%M;#;P8tc|KgiB`wrRETl+SztflJ7sTAG^88lnS2yESYDVkA1si>AgN! z#6aFXH$PDLpwj*tY)g)bQDL2N+%b%(y@O}vk^VNu`sQe<0QZ(7GAtbYm&c&S78skK36Uq z+I7mxX}n4se~@z4;?hugzr(5Zkg@Pk^|t1ef^MEy-D7;`7Uy0Wwx#xN(#Z;VPLocG zk`vUM)YSs&Q=LJH7{(=rf0#TrZvER=$Kj zVhR-}l&T=#%qnMCu0l9yK+cvji}Ss+IAae6o9|!I{Eh+5LC*2^+%g47B;# zJ9?G^L<_Wa)zgl2NIJ8pIPh1HdF}3= z(YAfDit$;_TW&6oghFQ&8)FQFz_}-;Bi)#H#s^~izD~bmUGh(L;CzOwln^C7ia3Q-OX9Fl8Rg z#z!LiM=lFNj()E9Xqz&0kzZA3I6k@Y@BP{=e1sGvXJ-}RrA2h8VdObK?GjBj^~Xx8%Ig6;+gnOnj&2Sl8P zlZl>+Nxyq?{pw;w$3c5=kgXb%7B|qAd(pkNM)e>Fq8x?_KL-L2$1jlxP=Z2Cuoo;ViJ32jD)VbMi`B%U{HwiZTkDK(_7FaRm1{MHK{#QIm zYIVA)W)Wq&U<#DIcJ&`*#(kBMqOq{~yx)XIfCu`l{nN-MIm?Js|vd5|c+=iF-)abP#{ zWUkf9lG*4c`CNFF+J+mCf=iM(-ouK;6$86~KItcB3rsPah^ke1;H;1h+ytdIm5_Q8-OOy4UJEq`mc? z3`>-Wl#MqnuwZw%gN~GE8U6Z5E=u4QV3_Ie+t_AgKg>MNlzkGkFD~rIA&5nsvV7(* zx|KOJAxYd8qM}e5S6uNUjpo{v;4fNcAs{vC9C|H&mJ$d`0v;kdfzf*~O}8Ztz( zD*|0Z?R>JX$e@qQ{7^COeV|a^daQl}*iVU2iyT#+y-N5$&GUZ-zIj?js@QLB<-?5S zr*g#~=PU3ouM>SI_Ih>{$eeDf()9XQA`IO6I<3{Uy7T8u;6kkfvZCHOY8(p*pN2b% zviWj`N9~6qJ~YjEB>UWF8y^troZt=@3@8BZ0^hc(ijJv19)Nb()o~KEd0z_}+0S1u z+I%|_#e(;k8&W$QxFl~EIRh2b(#*vtIaO;kVoQZ5C^Gm1HoEoPx0Q*`t01!=*h#!^ z&eEX!P@2 zp|5tM`?qondNU1$Slnx$hBz`VJ2IPB~!ihO$(L=16JchjYs4Xi!+^ zhqH}JMNCXxOp9`l?m$Q0W#Eqk7qIwU>#cf% zunG$ActW_Ycr1E%zE@b5&IR~>1!7-(kl0a1vwX~R--W~X&lu_`R-EPaU4w5wYmDFR z%1zX@sE(F-Vlwt(e|E{nCsxLbX{Y1mBr2^AL6F(4N3TgnKh7W@&Qy-v|8U^7^yk5) z)|M*GJTz3YJ9mV$xyWySyK_K8OO?JJG#jS@c>3q=4axs-WSU}M*!&haRJ=Je8d#%6 zZ{3s;&Wl5avmZzl}L zNHu_nd4m&A{8qL@vPX4qRk%bP{S@2vOlE6^i=+7Ahf>!m?ci0*>3+<&;bY_IhXXZ@ zKH<@K5?-fO>}bz@qg#K)Zz0ncYNKqvV0mBZa^V_wLjCM1WA>#)CA~sX@wcHfb&ze} z?Tnl<{$$Cxy$g?aJi2prZhO=fh4`EZDL2dxlGdF6;n7~Hv<-KIeHO}!pJD434Mm!e z_0B9`XOrx);<$YuT#d(J!9R9Va$i?j%i=?YFT}@gh>}7$e8c?IwJ~o_?uC|YuTJ_P z-qZE~G5Vuc>q+3yo6`>wfC}Qiw8EXk2&AoYs5QQS1JVHP!dy zx6~z6`D}AoEm+z0o&H^-;I=+!hUpD>ZKRcASh)@-S9|NJKJ;5x-JPD%tDK0HQq2cz zgHgaAvU2nX%N+aVzObp7^8c(Z{jVJ0 z+)(dc;^dm0vBm%YGxFXdq|pk;To$r#1*SUtTSifNgKpx0xo?HRd;wSl5k>S?6P)`} z%MUKs4sKIee^~YDIp85n=|fQsr6G_HhmY>p)os%GZS;KBx^_NQA{bA6u5`11-iwXv&GFR{(l6EdzUJK_144T|7hy0OqOJf@^TnU1Ok_C&V-u>JhBV8D zFQZ&nE|2Aze00i8l2==0&w+4oUwH=m6V6udU0|E$%=RyPOD6k!Tke)bvK!wK@H zb9)5o78#v&g;?ugvBSO8EB(^zR@a}t?(;14 z)qtvm1ebCW^$-+jAX+PcEfH?{g&?9B<=5HO`*=53c!JzM&vb}~AY>U#{v_;Pf6xF7 z3X;gqH}S<}c=g~+ZeV+0KB8-q-^~gO(AK@)!^-V5qN#0+@ zjtm~#<6>UuJK1^r7AFO+2p>)Jg97N8UrfERaJu^GM^bB~*KOPxvRhiT{$P@2f8k}J z+?OP2zd{!rE{j<)SOcK2zJ@!cAL7zOMSH4jP_uGa=dcbrCFf#~GOfSg?w6jN)Q2Mm z(aQFPj6239E}E~loc~a}($#o`4|NZSyom1xoa@)ZW%cj6p+6`xb%78G*agx0372-5 zaKTnkzUq(&f;wT)a|1V$A|i3xE|lb%jt0j$Ki$cmImOp-YOm%{iKH*@ic|6=7S<}4 z*|@mgC^jq@Kn~sq`So+sE+K%>B!CsWoxGxHb?-p(;{1ZKzF{ejm5(LJmNv2c3;1wz(YlRyq^_@Qn0xw? zv0Q(L?7xBwWIlV#OP)REZv$>(8*+9sva0BrJV5xb+;B znTyirq?fCk_R6azDvNZ583GvXQi@+gd@ZWIa(+2^fZ31HQ(k3Pt%Ou)O2s6nL)$-+ z+BcQVP6#lIE>}+)v{wd1!3Xv%Sq8zU(l2jK4Fp8`q)nD;Ljuxt;Ub45))YkK80kNq zD?hg^`-#4f^9ChYp1JFSycxT<$sQ|*n;jYo8)6$96p{#M1iUm+xxVA#iMOzORxR?} zr0@xKzkIF%xhE&yC?fE(k_Hjir zd&#mjZZNWsm#3N>^YMd1l zpu#+a$lx~!_GT`mC+tYcO<&mrQ=K8v9nN@mD*d?VoP~f~)drsA&{{7)B)`?qThy~U z<&kL|yNDs3qVdIwr%r@Ep29K?n4!BxI*C8+2vVq(2ZzYR~_->0$UuG$1oUC!wo+n9WX4=xesJal99 zvK!&^g@DPy@Q6GH+bB_eiK8W?!SIa#c?DY9f6-yzqp%eo!y47;RTrg5{lyz2ulL)R z*~>0>pDc}dwRmo*$5A_9-=@pVb9wPV$RyDzE@BUM<=&cRm@x9#-&nI=dU2uLS1qtW z16{fJ!VYBc5u{3^m8cyx2OK7J?Bermz^AV(cXF2YtNQ^iU}!KH*2RcQ>*Q3GC(Y%_ zJx8AO<(UN)6k4Je;wejrGytx#ZI-t}p3mSpGKeg{f>kHHoGTRv#w9%Xf!WWM!ch)c z>?oQ4vT|T*50HzmFu9YOh}21iK15}NK;?CeJ#VPw;rjO*h?4bAD}1`@nxtcyc9ejp zc)`t?`iA6=%s_clJo5r{z#)J>jtbR-g{2 zq}p@|=zy)9^>ID1ai{UFg-81yjmoPLzUj{3Sai&e&=@0YZ|G2E1fFGxRB3c$Abb)H zu#BG9_nOjG$iUl5YH0WLyIHjGenkGOLo)rFYh9+x@Bm5EYF2E_o60Pe8VzIf_X~+s zk|LKz*P8%(j2t^N0Ns)>c0XeF10R|eFOLFSZ0B|1k<`dwc5?M#8Fq1p4Don9?@3`o zZM&zIi-G|}?I`IEQ=ffZbO0CTbk|gE&(Ay0(zCOsEBpp!$_+&PEnTlpy1K5ppe-HK zTQx*X{FGj-svR-++QjwVg=tSPJFYE`KML&x2nnbxWU(Ovi+OYN~RMk8~ia}$Gxlzk~z+5%STTSACDA1Skv5*Vmuj;ruio)3T)eD>T)MU z;B#j3SN+9T3??QnzyU%ySgoC@O{3j&SoO#IC^?||y2Q6jGn|DiGQiZt;17< zLBBlt9j|H^n=+V-1HFq)MMkH&v{mh$IJ&VKWsB}l)qt`U@ub}dF)tSzp$a04#ESafB=Mjt z;VR5U)N`M>NfPw`)e$xEr-8({^#@rT<`OQ7w40;_k2ot&`{93eX`VX=Z>rfIVM2Ot ztirR`$z{K$3l8^6zc}QB{!@bt?u`slq>z4AVR3;pwf!)Du`!d7%boSpJp9=|@O|_1 z&y@sdD79h<*Tfw0};7UZ3kudI0X}oF-}QNhniHFY%z$&eWkR|a<#*8(z5RU=fIby zlUB<$Mk6Ib4Oqh4WLENtiN#vu%$zP@iaFa*w`>C7F^Ho;tdaG=_BJOHuoWwdU$^n; zSD7NI!_=FV88Zv{WEj4H74oPskoSaP99fPJk20AtSN>k2MF4pCpeGV1;UJQov6c-M zt^^6cb3iSj_CPrX3R|Ae8O7h=Tw_vg#91x_3J5rkV+x#(uj)cl%#(yD4yJhZi>r52 z%_Jl(LT)?*1_;7?0`TIMbPYc`k!9?A>EWTVKo0TbRO3Xt%?dxCm6d3vYahHP;F+9QKBUhBKR30I}U>VhCGCx4{J@D%S9^~B09d(a3${ej3Rb zE0G-lWYRP)EVu39g?Ui&v6BJMeaLf)rFi$YPcVVmgdEI@pA<0Q5Mk2}hCm8uZ^(IT zMx-#}@O_yKty9{`WR=yMb^+%AzU6h9Tjr#>#|$U47X&KZ#^@=C^Q~F%Uei2W zZ1u-ARANup>?5q4qtq3G!e=Hg-HfO)^UHf|ukuM8{$|9`*(Q(08zM8qw&dc*t$tOA zfm9yU7r8pTvRprmuajNv>QHWM3j}z?SFlqV0hVSSjPc-LLp-cOk?-`~88Q3Y&olLk z*c7y)K*qHifAr_I+?rb zC?^WcWUkw_L~G7mitm@HXQeKMPj2zRT^G`Ih_7rj;x_YMS08i*~@>+w*$y6ncmGgu6g{-h8%kUA)HsVUW4gEe$487w(TzHrm z@V$2g37#*Qr)icVhHix$zr|Ihh z2ee%FhnNJ&+3t(*L7}9Z6VFHf$qt|kkvYz|I6=tT(r||hC^fSQ@5;Ijbk|U)@PG@B z;C0@Mdri59#LV0JmKG5x^ZLP`hMx1sc$Ez=z91>6hj{m?{?GzgVww=!={dccF3uCy z>%Fg;nO4qOGr&74e(9CS;FY}t80OR5IFpWNQ)az|nFzaD5mg75k)vDU zCuqOC0O|oT3d@>20FT>6oQ)~2TArx!fz4_jqtL)f-Ki?lbW}){sx7wzcQGIID3cCr_9Jul<@o_*l7mh+I&)E2te>(WVQU8leZG=w4LB!=>9V(r>f3vXvaB&j zfuQk|V#|KG&^dS|hi!nyhQOWXsY?&)y%75CwS+6K)V@$dWp*!*985O!CZ zRXHp;Jbi!7g=_PiSZW|3{P9A+k0^ZcX^@M^?K4oPZwb?=0z)863P!_5`%$l|dK5#PQ37)K*Q79kEoj`D$7b zemY$vhFjd6V2E(Az=Z(lF=;;_{L;$j4`}pZHnC8_pGf{UOyB7_vw?}4<+Mbii=FkE z&glwbd!aky>t7!TdV@5gl%|8B>@-G+wyEEEr^z2cDGx7lg3#v10ygn;!wVHe5Kw`y zS(IYFqGv+OAQN!4$L)a+L2c-hqOKKE!e5{vg>Z!q1CPvMI^M(f=;?#&!lW-OnkL&Q zFGkx=Ha$7pLkh~Hl+HK~P*>n}{Zv@c9kPKRzK09S-rhIS19!wy>ue}hIP&fXUe!N! z=)v`6XPw?VTC-%Y`;Nca;bU*EENgXj+8wJ&g}5^u<^1ijsLa7>w3r^&4lh9MP<3eb zIbi#&yiXa=C%(n#@0cGy1ddKy3tld#*cMi+KZHFpW%MkLI;v9Wn9uqizW;b8ZAb}B zqMV||X!F++d`{kPuKfyh3xA}u>`vB-T%Rjl-S>^nVDCz^bD0f0Sq|25M{F_!ljXuw=1)ns7yN z_ZWN-ttV^|t$tpdrt3Q?K--i2RNv22wlxyLPj~wsOP){h*tS&*}rlfkMpHd;xaS zdzFkRrJ7iCUoMsylsdH&(D6TQr)&ohR0rNepAxy4Z~lR6E~MB8wY@K$>9p`Q^WEIq zX5>Q)1Eh>q;Rjw!f3oP&^-Hm7YD1Myj~S~@=ZbTE&E5fy3gHUHyl^e_mNz~Oyt@&( zPp6f!CA;H}$@$8jM*NC!?+`@}$zR`d-Nkj%uISCe_a6a#pl;OvFyb0%+~s#byTN_o zZ(u+UI8(^lk}Qm0O$P}_sl5#6H|=A^T(PE<{4v2_kNFCfyH8U<&05v`RMy$Zc18Dk zTSB=jM4h+>)-{@(WmO=piDVUXwSDSWQcRa)*@v{Lb?@2celIp?_8}(J?*7}z>XlO z6FY^e=DB<&PU}OB_)u5erzd#FAGS-~0$HT8%Zh2-1aNU4*2RJ?(?S&Oc9jhy%tilW zizNB&%lcMcHD2oDl%I_v7H$wO0M6dBnU4t*KO0sb38L(KG-bT!pS36DnrWJ7!eZ)5 z2q`#DL+&W|_1RYSC!>#FE-9a0?RvrGcXF}sV9_sTwsq+?Nyb+hDx6PCs4g|kb$`%f z2}@3BGv_JtD|>=2PbbBsxZKi41n7Ye;m+u1uWlPK84fMFG2JE+BJOf8oS|hG1kf;> zcnPVR92&+?atk`}EW`n#Q_VMO4Lv{5vPgv_t)637XgM{okX9XC91uxMBp;!SJV{(q z@u#MtlHL^D5m6CV%Rlj^MaRK4GaXHB^kvh}EU{uR#63ElcYV6iOP!PCVry>DcjWZ2 z^_nfGgFMGWF&aBIBECa8IRES9C}V^jHw*7??zUV-d7e+5t0{mnKN`{7o2EE@1yuW1 zOir-*7GqP4|A)a-^mR=!b$pvg&1tWvAfxSzclt`KAD&CB1?Jo83oJ7OXZ|pTZM=t9 zlzr8EPn2kv&XXFCIL(x<&*t7hd5d1<28Zr8^@B_y+LkXrhh$80Ak?LJ3alxgm5=6@ z;}?m1E#IX}n7N^Il@_GOFXmbl-6JoICM+#)9NnLVsv;RW*FKM_3NhKs_x)cy-&jMI zW-U5NSf8MSwu8p2aa5DWJ=ES8Vgy4sJFa1mXHS&>5mLZO5idxbw zHrwRm&bH<}e?xQSoG-9(VgS2WJQDeXwgEkh2VfXAs_npyMV!Q%f}4X$FqN6vD=GA+ zb4&V=i6QbHVb^s0zG5vuw&_Ip`^%ds_;48gL`nDoR|Sn*jAO7h%`5x8+a!S&UzSgIFT&^moWbc7smQdy=#AN>XPp6e>TP3P7RegWn=Zn-wz2Zb z-23tncd)O%hom6%(IGfxQpZZC6LwEwLN($Q0qikd>!P&pAvcdj9-)RxJG<&J!?wOe z8AXpTG&Kk6FfCDT{YiGwF3AFMXh=!qj%PVItY^*3PEAp83nC4TX5u2z;JBkn@65K^17uMR1!uU|yV z!?hikiD!DrR0s-$ytj&SsXaj1pz(^N?K=42;;@;s)GN>Y{`PhDNemw_*?+Dekohr4 zS>L*YP*$J|1#osT$gm`i{!%_tT-Fzimz|3z#v53F^#5k4*O+e!euHQHbk^Vnb4@+> z*W+O2K)Ponz#?M*@h4N@4-+-)3T;k>FM0``%zwZk{q8$~hBUZPO)V?jX97oC9Q~QXMv`?$=_DS`d-hx&n)%#O*v{~D^GXJ>7#qA|9Zpl zfLtyPMuHZ>Y^_|@m1r&BcTv;d7j~{K7oBB})H!s53|p=8?HR1jC>_;kN>O8IcUw97 zku!RZi^C7TqViYd|+^0sscaL$cj?*_X`t)TIZYR{k1KZS;FIRH(nd zgM&<3@{`v#N@z+CJDR!lhL~~PWrnd;sl9KU9&{;0YpM{R69DSYd@^uAZq|REXOpL~ z-`_qNCR#d15l^fQZ&IG0M5rG1z2T#f*V8!T!yvu&4VV2da+18(;n>rNK_E){LX?2h zx!9nikPT~Uc-=nN#yaZ*Vzzo3-H6SrCd|hrJ3cMZUNH`RZ@}qiNE!z#aWL8E|0%?N zgElvGpA~jf7(0rXa1u@UF@9`w*fmI_Ko zG+(yJzzy8wiE#UZ>{I>($o^zsPwr^*hkyM9g14E8_<_^vp=D?4Q3*KVc`g1SGTh|F#KLc!n078)j5&yl zVcfjjnm@Tn%h0mQPJyVA90!BRl_b1yF!~J<{}PgUqcZwZEJpo?ru>KftHy?DUC7_Jj>VOCi15(cZ19{ZrLO;Uii% zz-3SYlCL|SeuFB=M+e~DF^(r+v8LcPwfh1Kv`UpoZPDialE#m2r>0DY=#9Y8k};2G zzK6ePTTaFEhRLH?gOPMU>mu>nxATlfi>Gh)eq^XWtXa6ZXURqkj+fh>Rp?8~@$ae< z=OE+jz|ji6vNM+dlIK4hY^QcD(@sTGs?q=n(jgkGTx}fSorP+y6iJO<9nfz&^fx}E zk6m;AJ#cg%WBD_7^W4So*b99<&r}wVtFm5OI3Q8ohP;|(UCZnWrP>2Ecy~l1cJk5( zfdu&I+DncLER<`B&P~w`g~UMfA?D{r@21Ma(Uc7o=nn&ra3Z^g}v) zN-hs*gO`;V9k4tPmI?q0Q$4rp3PK-;WgXR^uj4>k0l47XO>KUA-JP;c=^o37sc*{; zkC*B$)I^88DOU0{#h}{iU}jMOaN^6r@rZespC&^5$J&QVR+5+D$C}m##_mwt)wJ&2FW=d;g%@zTLDMH8#O^%`Da;sA_3m&Xo)=zD!k_9NYJ(rVx3?`EQo~tu1M;S!hbfzy{Dskx+p7n!^OH zgLhm$_TVm3Mqr;gp}c?{FJ^+zk+gO+8x5y~Yiz2h7I@8j`5Jt@JqpY!?C~LTdS5-b znNB4Nz17gYw`C(9q6kxpik-fL)!&1*f`wseV;<3lGkSBr3r_b^X}4WghCu!h@6Xlc zE{RxP3tlzjb1)CPyRq2qT7k-nXz9LLoRaXzoB0}-Q;CZiXnRxAVYH|xNYXzt-c=;! zmUEpNB!WBVO?tjZLAjZMl^L%+20n2W(?s%&5@9hRAd|zc+J&F#4DGopLajWK+g9$9 z`Hpuuv;IwC_1TA?QS30*nXGjjT-M?gqvyHfsH|-t#zI1fV91OqGb_bz3YWLiS=>Sd zZt%s17%h2#n-a59NmcFiqSBeQuaq#mMvvHYu|1&UG5AYJ-X)8cEakDuEps z^YY~u_43-41h@A65T%*x1MrC~^#6so>ju+LBS5ugYvQ>br5TqcX8n~!9|}U%IX~zG zjsWh7DoMlH{g40EU6H|e4!T5V?)X(xShM3=-R+}vJeCV}W7}-{taHI?Kn^c}*D)lYnIzKFxQUIJ0InS z7{CzZ=aiiuTj}ob2+z6Kb-rC(1C>k>D8=;rn&eO2G*zj$CpZ_6VwYTo3dD1$k07E` zj@UmTJ8MY{)brz(`Y|49_v6(HgU|Y@M5rW@+Nym76Prr>Z@#J3CGvEWuAP@&H@$N~ zYTu)$O=0`U;{JArtiow`fc7!H!kMyI$zx=?rUgz0`KB=?4RmN_;=sg6zeA8v7n0v5 z%RsfQeDfX3RObO>W~_fzpZ!>X&>xy@2{R9hH}vg`=xP{L(~*j?$W)n`o4HpQ2MOVC zIsJVi)qN09nP5L!(9Jz6A2@ru3U-Me9|J1a5?o^JyE)BpT=xpw)xngM!@RTT3r4M2 zAMAW_xZ53hlFt9BbvM?iOA4ZgAp17%HWG$f@3#@9acD90+tnwe*A#)`d||lJ5xIYT z>5X9NSgRpH#XDE#o4i}PCSgzCjgrEYid!#G;a zBy6fX;3A-$!n!SfkTz!$(RN~oN9MykFzzA}TL7+;n;(r-8qMIjtpYSB*)U=vaAUt+ zcMIoU!rJ^k0nfLX>rlP|Ys<10$#;I4+b@6+nw%>~u|J*un8~I>MO4^n{M{*#Xu+ZX zF;qe?!O5^UF+_KNgo+j1D-Z=g;*mLlH)jWf*t@=5c=T0CTBTX~#m<=02bnQ&)5|Q2 zZ*{QrE^kyOZ{p%{2)vqVcexM4h_@%(t1##o^*WG8m(UlcPR)|Ge7u~J^+8*&ajmOnNizfQa`dL0b9}N^5crYp zTc*Yh$%MfNm#`~$Kt-0sDR2p`p<37BR$qhS97a@`uyk3}N5cHyKspnB8j&eS-6Z0D zUtIhV6hC`P+pq6UvHhwxO!WHKlZymA|2*@_gGLe08J^qL-q(XWgg!uchYB1tJ#JSz#YxjeJ?-~m z6rhG`cl_j(oEP|utht%G2yD{L#pt5=H;wTL0Rk#My$zIoPS886+-Wj+;kAORvk^wIC(;NHL>>-r|=2y_#YC zxjQ+0rBBtH!3tv@`sHv%#hdQM^BQO;#sBc}8JN3b>=1;MeT!()JrAS2R{!Bc?%mZ9 zAiNP|XbrJ+taQHyg_gGUz)bfc-58NIe(JQQfCN-#J5;rBu&})RIj|k^qQDE( zmSurnq$P*i+iDSJTVJTzk1G)I!``jY2KDR;%0*JPH3dX21%%W-Ak!V2 zU$CG&>gA6nNzj)h*kVAKvx%~m63sbHa>aoPB?Z{{uo<=Xo!eb0osgUizHu-O4TVe^ zeYufWcSG-!S+!LbEHM*8Eo5XBZ+pcXhX^uWz9(IQ*&BTjAbCS1gippe=;)H)2ks8d zAyOLJJN}vo-P`eMwhu!BSiKR$()laZu(q~SWu-?+%B(7*M7W~M;F`W3PIb_2$=Jw; zuSiJ(G|9u%r;};IQhwN)v-pNdUCB^cpPpor1ZFSkO)E2e6aoRaoe#%jih~7T!#bC} zS4~F3`xP}v?Jt+cE4f_)da&87Czi*zQ ze6?jxJQ>*2sov2v!Mb2C_wXE5uQ(u@D!j{m%}g>T{(nZ{&wqwJBIj;uWft+(Um68v zFnKMD{rp^1A-Q)7eDvoD-e>1M=m`!`(pL4H=J+teYOaYCfvErF#w5Atao8HE*kBdB zxT0sAW>xMul=Qq}x#hfC$1V}WrqVK2aLmfBsmajS%u8!JT!r8c^XLskG(HPcf7fp6 zk(On%*8Nu6wI*v>S}^alLuS3ML)6yVHxGivy&U)+CmD^T3^Om~3$<1>XR~0mi|Slz zXkmM=q~pD>lUKeVX3Zy))2Bm-O&+TTl61%hli_SS2B9~TuFh!1^7;(~ygQ|J>dm_F zv^DjrtBXRAtIL5}dW7?*4^8t3${C4+hG4#$)=4bN5Y$tv0vT)Z8FY;7r1XpDZ8DX` zCsnhkJh!@zSH+bD@>U{SfOU{TxEaxdn0^C8#$&@c|Bt;tkB7Sb;>YnJqEtwz2vI3( z6tc}|v6M1z#j zS6-^mE3p+>3#wI3kDR(dEE=fM>YaVW|9qykCmFN!^>L2k)8$~A_nNTBd={`tc*Q+z z=;_{RVdD>R@Q${rJVibUcy*45>@1SxqLJd^~InOhm7? zB0ZoSaxS;C{3J*whte!Wf9a>$Q3p-ba`kd=6>6iym6@!Cox}z@OMUeL`Wo05vp(D93 zIq>`bDh6rjOEkP)M8Qe5wO3QH*Mat6f~It?LGdIXl-P-AohY&9G%OiJK1I(Ty4Dg| zI*T*^+_NEOU6t!;9oxV@5z1oin?0^iG+oz)MFL1aan#wL@7*b~Cm*4*smgfrBW$6{WsvE2g}6Pio_Zxt7D4 zTMu2vo2});2QDQ&CJA=ev_O{n#asGqP!R7(78gb~uTu&Mm`>}wn$>%H>GO;h$Jh+= z=vE3&VBdv#7Ye^;9&oacT>&F9{ms^e@V@GOU#glX>RY>Ia-q>5tQ-Q0n!+B*M_8dx zWP#Z}n`XO~>i&bB`yFZ$gt-Nrvg-#6!+9GpCv>U@`^#|HBMvEuDT6D+kbD##qQ&kU z?uTDFr{@X(fsuE48|Bxc_VbbFNV^QLG9krUGz)osoPBqeh4Pn@VCtGo_8h*ZiPj~C zRGl>uP27wI#g57XDVVI|rZ_aOG^YEPAr&rH_+`PaqMHL52L zWyscW+;F@iy>>h%%er`6zP`)sZB4Gzxu$gSiGET4#KjxU5pKOX((qa>Fo7VZ*?cxQ z{o30&zB9hvYr?rbrM``>7N)ROxi9!ZEvMS6X(aJeH3=W8=dvO_hvjpZ5UO8zsi>VP zt;yP{9ue*%ZW_|gxp{VyF(FGr(S260@w)8RKpYJ~`r0*|ZVb1f60sYdcVB|>)_uN+`U6JU#bu}%k_59 z-96(T(&WMn#aye2SWlGa+y-4fv`V@vzEQo9sTcAg7fxVDBz4m$Ir?&Gcu8 zhr-$BL(4Ze33aY(6L`H*7iz=e^s&!PMaRVuEv`zlv+mK(&Dmfuy*9y7D&PlPwcw;C z{dVjO4X|Ev^EFQQ$LC!-wWS3;aSC?q6kEVG(phDF&*X zK2DT2vr+a4dMg3WK`M`SH$?R}FLAj3A=@_KY#L>pTR8vv#d;#0&!d*S^rYEwY~Xar$Og39EvT_BJVydotGhNXGHusk{D`Df6Kak05Z1bX+s>iPHEvOX z>1Vnv^2yoBzD&=|Us6f98;f3?s1nS)y4q^16mbG!!v|emn%2(J?^`1!HvgM~1fVBQ z0Xc`TjB&||RVzzWgAxp;$MG?;#I%+Ch>8A8BPiX7+t*cyBI{p9U+`v_ft~y)vgs#v zWt^7h@{##3Rx5pux}KS*jfRuUV((3VxIb-VJJV&#;GpU$W#XpxakjY&V~nZj&o)Eg z*ZPyjnmxebtEbj|2C%&HrFEx^u9q5ygKMQdbgfEke~d)lotPfZO>vxZ_$6y64QClQ zb&ZHT!v30A#vD!(ooLuo5R%p8*c3*Wu#&X)l(X0>6XahLSb{T`c}{Sl^;-YM{JYrL zBx)*ZDS8hGgTklms=2S{pIYc4Lt>k+md>TM{E8&`It1m~C|A0otQw$t*ZP`j;>99e zXOTg|ZP)-iclXFZER(56b%M+?W40aZ|H$?w?fk{K(&wn0PQUwCQ+_Shbf2O9=RWJzpq6+RM;4gQ7&96&6bdC=rP<7 zscBoXo^J@eYiYd|KeLg4C|Y*n?N~zQOxm#vwga6|i8D1a&Dkxf*SyLdz1K{rR1(td zIq2ev(@uL+tX=O#w^)^COw=LNCSHpll}AmYPIp|;597pyYrO6r&ccS=JSEX|aonE}Lp^YO_= zuBJ}Ij6EYK;x|}wiD>L+oXuEZM0ze{KL z_bI1kx$g&dTPLXMb6qWl48ns&Fdat6AM`ej{4&^RrmuHBWg4MeNf-pejjWUvLiwGxx9}dRyd|}ZdHSbC8q&YByIYNkcXvvu2gaw1 z*;l4ZMYNsGTuJYF`EOK_UM@<-~UyW4d8;?pHlzD~UVM!iQe4)4_HqIPD@KK$ypPVK?Txl78^4$z_&5Scgq`OPuhqsmc;c*Mr{8*% zs^g-Ag#^2bbQ6}wwR?=Q12w_jo}QBqPvq|6U_X&J2xDC@@?|5evbP?kHMmX~7Gi_m^0#uL z<&GvK$)RhXD)MrD-gxy?HoN+{iD+c)rLW`HCD$wqSL3mHrns%^M3?kpuC9%lnQb+G zM;vm7KkyVG&vCb+rJpUvRHN(o8Ft8CxjOYCqLn=liIPQX+%(vH17}x}vPl5S#}s zF@A|XPL-ZPZRq?a=?}JL+?S?m9O9Sc_-u;I==$9v6`15Cd>WSgG(v0lx7?YsjkT-5KiljM762pWGV}|nW6?w#Qo=nFj&tjpq zZU$M?fOF2m%1^kZ=RR4BDV_0)H>|CHtk-A18K-uzJ3qZlJv6(Dn>caFc$3q7&K-(n z#s>Gz4cinrUguUhokZAtixQ&Fq!E2&{n*w8T%|LoXv4<=%Hv5T%umy16?pt*oD zS|$HFda0_;N`BE)IzO5(&y~6{&swiJs84cf^m`H~qjzo#VV`reCFInbzpqs(td}INye$$6j%2^V!vA zsK@R{iaP`CodSB6kC~bR>KUhc-;6wSA%BHv+hkwCk2HxiC`*%z#U&BAnlkw(9bjC> zl|6h4;N|JRi`xeYb`G(0@nhQWFLk6(#CIO$4`*g$e3Fl||5=+$SLm7NcsSP)=6hFa zqnR{Lx>H-l&DYDdNNj;TN-C_(f4+N2@Rg`cP`4aCTv9Mx-Igu z`CZcsOd<9a-|g#DU-88FWqKxl>NF%SlY~Fw^436NV0mLy7?|n@Kc2W=_n8wTVUrV3 zntedM%|p}1y0fOHDBmj4QY2;8ogxrqAp5UuH|i#MS5^`x(Hfz zW>wHQ+cr+l_}4&sXJuXCAfBd}!ArA%+Zrj4EflC)(PS}=58Eb6zMs&DFPl49=?yMKy64~2b`WTXfYfaeZypY zSLIc73%}|6>ZhH8){B;C|0%<{N#gLEm`_{HZ>I7(tK@>XV5^uL|9PK8p@oye)W<|G zVq4Ze8}H<1kI&SL)jC_1Mj`1ro<=GL>v!3GM|t10737X4zYNFw7wW^Vf2_{M%^oZ} z`hL*9P%%KJR8Y&QkLVy=V3TEDZPVA?GS8YT$X)RY64&vY-!6G>4{$2 zb3mMGqn>Z24oMcm-(0@mFFZ?R85EYU{CE5Yjw`Zn2L7n@$jbOsDGzZxEpXRi^J&J{ z`s`u(cBe4#25uzY#~LegCv4s-;m>exi;RAm8yX**M57Jok0*FI4r*6#?%@U&skDWZSh;*Rk7}i$yeK3mqb%| z<-v5}9#@Q@a#kyJ)dueOCB5VL-66$@vej+6B#WT5o;F^R~vWHJTzCiyG%KCB{UP5PhM0P_a{N{*}VK#;|Ak z)}PMF5=~DspYUf}ZD0g1yIj9(oQ#vV{TQ_|Go`$$U;8A7$EaS{DYNFb@k)@xKnZTo zr+AW9N?dTqMoW#@ib%02v^Tm#agt~k9JG|+!);vaIjD=gFXh$^P!IuXJaM5qk4Nt?53UTp^Jtc4re6tBLSq7rGQ1 zBLpHN<3w}(yhi#~x=j(qNk^k?1ADq!{4X@uSa^0B*B$9wt;&O#l$s`_p=$h!Vlu|L zvN_y)Y_Wl>0d@OKUAa>L?{3(q4Z+(Z+;;c%zg(H3$ljyIoP8&Zf5ZT_cU3SL$B;w> zSuFGk*Fp}nqqq*EPTh0wQrllgySL$my`3`L@6Jo1%ely)OH=MI(OoY{Qu%)d5L|7*F1{t7~{T9ozAnjWp1A9?s(G1HE(+8KA) zZlzfs`82LS`W?M-TQ($p9<2=#7wxPS3rmea=|b)?8qLYtgA;W9?HCj6W?J~EWB#xY z%AK9jfzaH3iv}|=<|-|)Dh$z44BuB`2sYF(Gjrzu<;t#Cl(v;F%94WWsuwsFfpk{zj27gUUuYUzzZ|+NXMp(x}Zh{^Hfo{5eg8p4G;1 zUNA=K2QX*LflzT+%aeO4b_eGUj!Bkr%jO5_6#vMvPD=o`SaVS#i`n&1tprt*;pmaM!Ah6I+N6bq*F%(O_b&np?pp=ioxrzV`VVV z7Ul=R5N|D>2UN9!3gLep-uRy;0Y}D_S);VBHWI~fXXn{{8vPZA)vr!{@X;^$!Zm_8 zS6P;uH^v+2+FAi>G2+v*M7cE~NS%gIVE`YyDQ6%oSR%+eengk+%|wl>w9|4Hc!-Mw ztq{aDBM$Mm_Yd0t82VFC=8v8NwX3gA-fd_1vl;_W0AHdGb%h=6wEt0+Y*?8$Xn$F; z(^R_8;bhI(7I(+R%6|SO6YQX5ptSi};;iw_W_GVQ(dJ(Sx6q|1&SKx2vW|$A_FEP! zcgZQw4M4oy0O%Mw+#dZu&}Nrgd9PjN(YiI0f44Wn&I+sSX}~Ftlu^kU>uQ{l7*{+# z!60B^m5vi->oI@THb%?CXRG(%je2}&n%J5LUins}s*?EQ6N16>>(h2Z>ng%})V7ov zH>vkl2mUrl2U)z=pN8ah8xuZ;Br5XMFq~RF(xL+ib>(X>DoD)Kh<>SKTn!G#D<0>| zJG1^#7<$flC63MO>3&%nu4~{2=nDC6{ymyHEAl{D_>e};##n@|66r_C`p1x>??!r8 z7C+>fxO#k0Sq`o`GQlABA!!hAd4JVkB&((9!3a1G=HYv5HeR~=rbBptGr{8iYLj2L zVeEXFJUhD4b>b$ar6xh~@Z-ule{~6WE%_gRIlpgI>szIy4Tke$XP_ca?%2kBo>ih} z%?*)H;K6Rz@@g5gzgYWjPoq?&Z3r|WH^V%~pQ?d@lVAE)_uO?MS?u?D!MO$COC2BZ z|2lp7Z$0YYPWFzz^6=};SFbT}wg;6PevcKEg_u*sm^t##cIg>l7mW_#jvr$43J~eZ zJ-z;DE&4JJl9NIA2xpYn@7QTP7-7l$Oh^;6!! zS;A09Lsu}He5;m)o?bO8v^(7}tK5Hyw7GdB*tRmcogKFtOO5gi#C)c)I4|8m7Umc|Lqe8=&nDq5W3|DVV9cX^bL$ZWd*N13<$7r}LDmT8r{m=%d z6zAV^{<{yvyN?D;S2kTg@*h66QweXwJlC}cLcfl(y!JVHcjKdQL3e#p6vjFhEp}s} zNIWsZy>_)q%vH9xAy=`-^%K!eB9Xq)2 zcgdmvpk*me?C+0^e6wqbu)v>=1`ri&S zNBMpck+1*xjsL@iYFNNW7w1?m{JrsiV?h6D5W5EY&;H(des5whKltd#0KeHzN%cRs z^e<#7PzAZ7xPazw$?adR!KDU1T2rjn==b-aM7i-Nk-$5h?e^^|Q~&2B$R&V}20Npo znE%^C|9NFdgiiPe?jsFIgp+!m=zo7`r{A=|wIArET!SfxUhOJs<-TW`L~D_&*(iC^Jeh=5LlOHYZllPX6Ke4F zZ|u-(`)hVpy@gO}Of4U~$L0t4vj1)Da^zN9yXaOGcKvkr)E`xTXod1CZl0#QuSNh+ zeQ=-0=3-4UH+hj8M*0=J^=mR2xsj{}Te<*KXM0|`06jT+aA4od-7`0I)R=WX#PEi= z4SdZJ?z}O8B|4)Jq)hV4{MS}#njMMFdrb$3pKF9cN2|Ydzj6+iTI8{aJ&4cT`x;M@ zsjYA?6+C)tU<7{h=rSYuCrpl18@yRN3ET7~KiTksuluwo!$_0u$$J2M}i$k6k(;cU*l}MqLj9Iw2us&bnsjSxs!- z9(L#R2%=T?MBTj}LmwCSdTdrMB3s!#-^^DdhKN(1alPQ1$@9z6Egs{`p13v7WbVzc z+;Sw!#Rl9+mq$}qT-jy=w!~w9ZIQ~P=hG)QceTwH7QYEGyV9c!uwhGDmeE@)yR`D&y74=V&25*&Oe8s$~hxN38~@9EB56wsefF`hzIzROXHU_732p82m$A2MKFZ{;Snw!?_# zQW7_9QrP#IQgSdr* zW5y-0wZfKxI5nQ#DD&kDK^YzOe{I}a1N@Ubw@itKvoJehg85b>N}99jRjO@PPNK0JXf-S;pS)_cD2u3>ci|i17_DIQW1l8>;x_b>v5Qh$ zN`!eawilIax#Tx6yz*@}f%Cs{|$N0Kw259`IbFjdm2Y>e){ZN?&(meGigOc~FXHIJ4_*|HJYL&Vfm+k6z<*;$GJUoZcVYda8S1)2Q0 zwl-1ZrDSfx8*XXOMRueeVL2GK$iG!Nxwe^rTWaQNci`t@L$0=L^|Ui?4KYR>Sv2TD zPN|Vn+PT;FAm4e&H#;m%DG#xEg9cm4Bl2PmH_B+S6>KDObJ-F(n^}6==jaX=P*IPu zC~Qr_NXe#li*TYPGToy-k(Ouc{H}CANDEwP(8s-w^RI4=w=Y{QEzjaxmO{v=+EyKm za9IRGXf%g9YzQL9GUK*dVH?V0@Fq`E7m{?2tzz>%Y}xlVd_@DUQN}y*e*R{ddopb& zEzjMcOrDL5`HhTrDbIGP()JoN{BEGy-X7vd;`tl8JgSrBtGgJsUc(m!J*aDAN2Ct# zx{)en2IjC!(GK`r0b8+I2wR)D4bHoQD7GaIc_DuJB7Q9cAH&I$O0jEew_yu=U{5wq zV@D(7%9doYOUrcRA%Gr5@U`jN*qKOD7GrZI6;_&JIS+GpaAS$c<>0>pv*}jlpZ4T@ zj)K1G))I27MGZ$L;gB1H^CUxHrb+kq(VeCicLeAKad(ntA8i}1izkFZVLa1|a0f;; z3M@{3x&izO7tVfTBuoMElO6GMnTWv6%X$*?k;F+o?24WmZaomUeteGV+`ju@7dB7t zPPLTm2mfv8^MUh^(XIke&wp=ob35Wo54-fisg`_1J$@d6Esi^HQgX={e+Y~)8rJU5 zE?TdZ=|MpN@D3IAWYLWeq5?4R$aY)u1bGvM_v``CigVuZM=pvcAcpx7!^^@ryl^sZ zr5Mrm+mGv4HGQa-K~9-6tc- zcsOFC1G}MxDjOCo8*YTL2gFJA-(3V?ymf>@fdYud9#-}q2ODiSZeb^nz$+Gg$qU?N zd|`K}*C@>Gmf+eq!5gT== z%{u&bj>X3u<*e$JNQe|ut#bwjQx8eBHaJ+zT zsJ{aH7syBT?wush)S5ntrGuNrLC z7^b<31UairC~dt>l+>m!wC;z}|M3RS$ii?1%n}<>UH3R%+l83zN+|ouQTB5gxLx2F z%jL2ublKF~ffM9a+*V&ZoU&ufYve5)jP#w6^!?m8t3QkqN7(_a@T)BFTO&$C8kGGO zkQn0yAU7@8+7E$TOt^mS@_owMJPH8Zc@(Ub^6jvkl4)?IWP0r#VY_E*YcO<61oEm1 z5T16Bj=j0py~(IjS?`Q2nKjrJ->F6>rD(e7YYKOwnVFcG!mnQrx%~Jp)pOqFe1rIi zJ2yHa+%4aCPUW)cYWp=hfHC>Qdn@FwiO@6e@jLL0iaK%u+p?AU{l(?5xV2N}>t&Xv zV>jmq=eK4mbVo-cCtCXp9daEeZpX_w-e_%YwdhEFJ6AZt)q&P($#um{aXEcVN-FF; z5BFH~In2V6Ym0;GjD;9gy-snQ?sWV0-uDNX=a;Y@?3W*>eRSi-Yt2l<^n!v*!a7;k z%$wuxlD9|_R^8_%tb2d>s0q=0^Y)6Qrco&QVIoAsqyV7;fADzF(tEv_AI!Gjz0wV? z&=3#VljwQ8Ak_3ccZR45%#ga;+V6mV<+_9Cru61qUtC-iX?&<5pO(~c!nyzFH|{_V zDb1!B3DXX_w5gXT*p6e$eSO5!#C-!Xj?1111FV-Z_3lkx_>c7|!DcaEcRhy|Y)n413&GMx2tg*$9&p)Yo z*qVP0mKLYpPZ@51+3hjW9N%8#IDPSP+bQerFJCoCzxoTaHC8GV}9= zfCF7BYzJ(3|5_lh|}F8}u*h@>EdsG(-riU%B#ZKdZn;+4&N6;6H8U-g^uz zqe4%sj$1UwmR>q{?m7$q?H?Z${rfpJ-rdW_xoBstJBKAB*y%B;yk(q{HR0#fa~^!9J|Xk8 zR^u$DydIrdHkBH*E-pF2`=k^sXIil!nBs)LjTizBr1QAm9pT)uAH-XMi3f6+zPMas z#}Do>tP4Vng!Mo~jR_!b#>;eQOrJlC?rhDsh0Cw?J7nOMpFYjm&n^S2SOJ}8WckZpG=IPvDt=qV6&j~~5XPY(I3!4v*jJ%DA_(Zj5@2^0q!S4pn14+Ph zP4iM0O}UyC%W3Gn7NCD^C&g|HSG*v8?5_j7cUOIf3B=s~EAi6I+adRnW|I{{SnadT zwHc5}H!RgvjTGr%hkN|&Pt`zws^LcJi;0P491IYR(#x~5`*|R?LiekFiA!s)+2ett z+yvM0V=Hq5dW!yRO-n~`o@?=z2F4>T@v>UPwRtVz*B9+aRdOvlZsb~aX)X>|Ey+Ro zc|$aS>uDae;rru^lq-f~ml*#z<2#BoE+0A%+u7_=FDx}rU0vPA`baP<2Zvy>=Ul(^ zTVXxT&QD{Q8m_S1dntF`KT|_=ZkU3I$SCsDn7ZV){Fx*3##@2ovQB9)51kNTh|~6A zM$3ivjePTAknvdmB56CA77X1`v9q%i$uVNRDdRZx5kLakgMcqQ5z)o>L>+9hlPcvKNF+iXD zBtfXZ3MfEMX*&l^EB&=_Z!hKr8HharZ%ToCl;>*n)--mjL8IkMm6DQDs>4LH$fbu= zug#ib3eWpwGD)H|$VXv_67)r*5gnD0x#D@Jhhe^4ZnYZIey?BGFWs*RI?=9YTbhI= z&Dw5k5$6pwm>D8VHt`LqTA79kHDlLkvM82I{c8QkmL-%cXwHd~yPj|)2gKR4L8|d> z^LoEy2dl)-=Ho2p2TOGe?UO#Kp)&T+9lFHF@Id>K(NMX!NZj3Qvs9C>o};F zsB|#!*aaogl7(k!!Z!_rmnK>)>q1Xwy{iMs#{hi{ZDho%0Nir4b6C~qO^G4pyUQ<(JSs#ARrWs)NS$X+^K)p0=v8u|-NBsqM zS+DtA zn?I1`HDobF1<;Jxt}|a!IXkJVpB;A|bWOeyDH5NY%BPi~-?}(bL!k(_VkK{pH@dL* zKixdGGS#8V2wi_C<2*M*h>@c;`tptf+DG~-6?bzZl_-dmp?p7vKe?yC2Uu9IeBt~~ zbcLu>Hr`>pv2}fMB-gqx&nogk$0b9z$L%CvC%E1xetdJ(mi0x1J|N8C-FFF>-Nt@4cznc_8>($E(Mmtzpj zjboZ8K&}SB+@hrZ;o82^)m}@tl@2WpKqRbM2yW)Y)!7(%_dLtiED8sdb8S2Ln2O1= zwXN9M7TlpGNSJqlXD-Rb`#_-^zxYU?K56sbLwDrFiFA|NF{?}^`F#q7Ce)JhxUDQ+>VFdqc+^Da2o|p2Zpj}`*=M|Q%HxA!Lwws zn!}B>(xvfHO9RqHkp;%90aw+P`0umAu92$l8WBRmA=!l<=5EBYk zWtqHU@UrSJpcuu$LHXLXUqP~ScVZ>2f28Y4t^8`eI@S=`;$%=*YJ8H#(t(AYogXcC z53MN-$m?xS;;KeRs)k01%VPhbx@qPo6npahS=axaJ!uuvrmD+4i8+s2d2gYhBwczw z7WBQO8yOn)s-mT%u8>pG(mH~gX-}v^R;Ih)3@B~LN4J$Ji{6|RF4s}!gPfP{IGq5* zNDFYg2oZzSDt~sgHpa+p_!a;1LIopQC)+IbZsJSP3J05`6l0DwnNRK{94}w6WVuR{ zvw!^3gOvvon%RHzMTDE08u;+SL$v7Czu z9`LsQF5s0}(mE>NQjr12E>tf;YQH|GGgt@VuetBk>C;tB)>I*Y0--6~=;EUgw1ScF z!;(vBq=t{z!*X1g%oLTBidIGQBrWNT9qf5R^gyf@vW~3$v6>V>cKZvgTvz`h6JTZZ zd%=gkeo@uu+g>+Kj+Yiy2*?r^pcKoXR`&2Hu?!4#{F#qK6f<~LR#v)jK`;WGlF76R zP~yx59od*P<(@24iKoBrl!Bm71>V(}jQ5Z|dGa#1$AY(Bb`w0;LWBMMF)^bT^=}0u zC+wuf{;OatR|Tsuv=C?8F`kzKf2w1ERHZbtyY$TcU7i6SR^znXZ8Wah8U4WI#_ z7ro}|bgE881RR&R!3M#6@y|_o<>yxm@*n$45Ch+ywCjlPtY(M~EDxbzs`4*U0Sd}c z(Z-w4cA`QEL`7vUR!A?eG1vS0jT>!+4ilWQv z0Xk}FN-(OQGxXhcvxTc*wFnj8i9eA*O(_z2<_~r4gzV*$zZaJ&WLTozdE69a3<}j7 z*bw%3`1U-oU$U5SbuBl@8iY^@Q26L%z!E(0*GmcGv8n3G%`0kSlV$1i)0tRJef_vk zH={oo6gy3VJgAXxGw`F--P!Ti_peLuR1-wP!=8ahaI1W`Vr755vp^aOHS`+f5;?RR z2Saoq4mKf&)OHD^G&5y$t?#f2>yCm#`DN{K2xj$cG+0sCJ&-}-^mT*aVPTNk@9(cl zJp4w}Le1l3$1ZC4R73g9?YLjPE#aV`NY~8`ZIUplWl~gB9CJBX!UXp0|9@IY2{q%N z-+XQWvNAVNY)kL;1F$4eObL93_|b|Zh4UdQz*EAA-z{|(?_88=twEah%fR{E$49G*%X2K5u&zKSL0?DaM{pVHR zLz9_E650}JJe@anhEFNrdx70Ze~f&5z}G9f;I~w4Mg4bU9}mDvrR?qn<{dZp@~WYr z|6bEeJ9!gEl}XJbsFm@f#C1s@VglHA7c~#ynpte;4<5frfyd-$`@Q5AD_Pu@nxqCC zT?!j0Y4be`LwO}&&46T0b!DQ^)b?El&M8-X_UAlXJS_L3h8J@9TWmwyj>md?906V( z+&ktI%D&Vte8)GCaa{zOU z1@g~+o{^g1wGv@}Qs~z5Wcv*O0;6?d1DimJ(`reO@5r^(0+QP;uyKsRQY`4@>pXmX z6|@Q<@u@;8`LEyJF7c>nzUd8_QH21+)hl&hJ7jxQ^N)VPv;ek<8sT4{u(L-`DSOmO zZTj^YEyZbp#{g{kf!0zpt`1n#V>pT~$2iUQ>g`paFw%W2XFl5u6d`&J>t&NP27qS4 zdhA%rcvCDIlzVPdDaj_@OhIw`K#?P1E_&d-mX1n&5Reugw|-E};(6=&$X57aTFe1f zg)5J;b@uOURtO_?7oEb)#2XxWYb`?~=@xeod195$eVjZ(5|cFEW#~UCwXD8#g5$P1 zz09c%X%&WthxJ#e8N4W^G7d>DEmk7lNqh41TLxa~=FI@5z~f1vE^~1rNq+xX;R_-_ zr_6&=b3d(Ezxwik9aTu5Etd3hqQqtBS8L+N5{jILBu&F*>_`1RBqpwO8wXG3b{VQa z-+QnmidU%m%WDD6eSC32etz@-CJMj*7_Ra+2$>rC`W!fRi~Jg=@PluY2fym>dI&e| zA zOft|*EmvoH<|;H9%C$M7;9K}eim$Ive~HcRgL8vffL0&wGUA+UPo&1TFKagoIP*Gz zJJthrz4Er#Ho&&ojD>)w8l6?JaT54h;(%7}Rm8{>J$8 z2sH-Fl{3Ykl9IA99&4+wGY7KkZyn@f2LQhZgJu~gb~6tTH!Zkr3)ufgG%<98bUNi9bD=7#9W)vKZVbN0RW)+mjOHc?x6@Jr3xUmR}L~f zv+BuGG;c|0I%AoxB?J*SYdqSrhX;-zBr(9XS7?CZp&FIu>$6V?f}e(ydu^$h&_)m6 zGg^8tO(vr(0Pids36kwEq3Eyi&V!R%;zHAoc6u32uY8=?MD#xcvO`f(WRP1P-R<4* z!@YFN14WMQ*)32(YMzJW2*@s(tHmgoK}>*)X0bijGzhA2ry@#cgQ|W5G=M*Wioy*> z#kU)c56^;VJRlW+dM6t5DQ+sX%nV*d)2pS;%49kAX5|aq3=61o2JcI-dxyB>evRis z{5)%;LqkIyE#3<0-0P$spMa4IiAipG{PIP{R3RTfp3-_%xnZRj^&X&YhTC)Soe*_U z!v~uJ`l^y((oP+weqn45cLU-Et)&C@lV07-*R$bJHG+(|MuOS# zB&|$j6+{t)$(JRzX=N8K84L1hAnng)X_DGcm=WcgWgAEztJ7ZiM^0g)%Dks3~vZb5Vk z1KnhB@91tz2I6f6(nOZs6S^JOuPvp}dQhMi!u9*$(K>=rVf<=l#Ze&MrpF@Togh@? z7`xtmdK#=u}Wthdk@Pap?Wo z)ithk$*m30gd zphtaWLgmeWB=R9p^E2TN?xyc=`sMz>Rq4&R#Sx&;n~UsXU>AAHdLXM!^YfjrJ|~4} zh8>T7`^LYj>VO8y70W$!^?@I3JYQBtLCxx9>N?9lse#sPa??o|fFd>v1`$MSPtb}M z*))33LiFnB9R$1(m+gARk;k3U)WoEK$8X?J1I1FQk#U2g`)+ zgt^LkXtvzgg>LdbKuS=;d^@BhiXLDuCY7VuY1W=wyg5dqAs1hJ<0#N~y5Pux+-n$Y z2p->^Z63@fYB)p90~!LYph)juSiKyVi^P;Q0;lK*Q-hvEUmIR|_|*ppFBBms2Gk%# z)h~cnr>LQz6ly?ecDc%*9`X6?<&!+#7|n;aZ~!_qHP6YS79oZmM_WiPU!e*C%H%JA zWp^_TOE;y3jdz2Oo@Xc<>=SC=u^rI*W>AiX)PlmdUo<`4?JJ-V&L`yEE^=4{)L*XV zuq|Lx!5CF#$xlq5U`WumwX~$l1|-VzCkxS12)$(oa`tBcy%d_s@M2vC-nj(k<9>Bo zd=0~Hj)}hZ_g4p4xk8aWK(fndaRQ}kcEUGn8XJKJtT0NsQUA2hca=uLroQs|pYVh6 zJ^{HH=;CA4Q!sl0wSQUvop&Iz_J^bDw)cbQ2u;a;FKwo8sbHjLGC4-v^mTE3M@=e1 zo0f?v093lpWRJ2^>psb*1bMyb&U6P26(B-PR_8z)DbgIM#a4!%GZtk6wV5CX@1&w= zX#hjnp+HzrGwD!~ahm!3u;OLm)IpF}!+qeFnAXL-!SDw8tp+4o$~IxVVemx8!R-xub_K+V%J>y5;1HnKR*`!} z+GG96c*R^Xt%4zfVA@6f2@rRRFdC$RTL)M_3D~AgMMlLT1}~t~DS=wh@%;g!sav$T zsYkp>A3<}n67djgRJ9*~;W*c&C-16*PM|;CicK}C3w<3B(CBo?nW+Fg?IR>MW#Q;f zICv@80Maz78PN5|)HJUtOYPa0v7?|o(=2a*_?>KwlU4@;;-}TQf!L->K-*yC5(cFo zsTzWP4rPPa0mbs=M*ISWoDYS~9DMwhfdSbKFVb001dW^ot&uN`S~&N4d0|itgBE~* zVM&2f5NAr4q5Cb61(qBi$8jrxE&c`=uE5UnhA46^qSExyu8FCzl+r*@^!ZK{UZQsa zy<(n9&`C|Kth@#qMAM+M4r&GKgA&t}g1OQ+R;C371a45IdZtXBY$b}OpNk;5=@27< zZx-4yunLT(+8yAA>I3CP9i+kgA61yu#v3_Jmd2Yh;_&#fhJlj2Jk-{5vIxz+qNkIM zk&7q1xj~tUPrO#L6HlNYPY0H7?^UU~n>T5w?}1WJ!G?i-r^5PrY6$3^K$Zt;1ZcB_ z$Hb(97KZF0217aEcgKNNgRXp-u3cggc$k9&O{qjACxB=Y{^rfk@tj2z=pTZ<0>v*A zUfve!HnQ~h_ovWeQw^20;ToWTCvTC6Xn-3T$5qakvKMqd1FO9EWvel0r^0(d+1xul z*E@F+`~`S|V8}wBgJ!_?XSf)EMSDOO8zjN`UX0a1kp>PyOfNQK@X|hS1bWdK$Cbg3 z$)l?=6s0uk{AExvH-1uoe}z`d&ZIF)EQ?Sg2iSHpkXbCp>fcgAb9Ej!-`lth+6e|l zPwn#4>-YV?&{Q135Yg!>S~1GR#A($C&^o%>{Pi0Xqx^En#_B8@Kxg4=PN2T7RsI6_ z+DcJ+W_z-00?pG+g`Tv%ySzu9wA`MtUj?x^%|rvkXkU%;RxvI!K3FD zK;d!^Y`+GjS0Fot->cb&@-xPN! z`uTmpoD>z4!BhMEaAGjD4cO*{Z?5s<_D_La9t)Qpr+!=qEs?kE?+-8-0znic0U4Kt zcd-rM&Vc`Q7l=^$XDhDo8|KE=_3P<%&Gcjg?kr$ESkja0PLU;EGIGz2i)f}r3Hg2V zR=7=x=lid_b~PUQ%@D9i?zW%Oe-^0#%80|Y#TB_bi@ftYiWHMUdsR}h(?`5B6F$$G zc3cTm{01w*pth~oO#=P?YW~DVNg>dp0SqHjgBw#J;IIAtqh7wvR5vEkQhLNuA_ydj z$zbGWVp>}rsG&eA7cRxu3sO8AsHbD?MVF-IzzSbXlx17&tf$~xgxckd{0nM~ut`b4g4&#p~ozEgi^lLWZsnkGovF%q@MrSkRQ61Onoky-f9fK47zlIXyzGJHEJ(2ogMO zSp4Fy6}^79HQz>l-AS38l<5V`su0~F&O4w zd$$pQc`>ri8CzRx*kS=5P1DNWk{@Y0>R^1xE?v9GX*Q<)r~PITkXA2IdLcS>@1ql@C+$&Q8; zbAl#9JPc_F2v!@=<#SBx4)@T#aRQo~7T``AfUfC}1&Ev0kJgJ(x~|}6gh1cMfR2&t z=>*QH&w6U0IA3VJHN!v_RJyWSBjcl0c?m!iDxNw6+BkQ>EXnVI3?TMK&zjkbAIiKu z{%N_csB5mxjG%0r*PvTW+V{R?+0q=l?_z<<3U;)#1q|s|qA?Xyr6wwEuZ%r+=z`7`1bNW#*xzm=U8fo(XWADww zsb1gq;bm=#sH7q#R&$0ZDot3;^V~8I5e<}tGG$EBNP|$KaaWePlrfSrRT_y1(TGSH z%JiO>$7ku;`#s+G_k5q@c>j9;+Q(jp_^kVL-`9Oz=XIXvRlh;rt!^4%<@soE=>;kA zY)b}x#EwmvsfIpiF)mUQn^1%*MGC)ahPSt0YH!G>;7Nbi8zs%RwlGBtF`SNQX~u2q z*ZII+q6hY8-=mJv;sA%f_pgrAWVxd84|w1WfN9~kC-$WGuCk;ZyK9h_rRtlkQDCc~ zh4dPi@0czw6pG3;TbeK!B|ac^b^rJ zBq4hl3!7h>d1mtZv2T-2%a^ZQ`4UeZtJ6_6`1kMHSRRVmz2C|Vh`00MnBI@6Yn+i` zh!whTd(FIZuVSoYnzYqCCSb9=JEXAKW-lHyo#ipgm4z&SUj1a8?HQ>D`VY3I+`;|m z!P%&=C%PR!s2%0w$NL5n%PE9GLe`Rg)CIpUdjA1fZOn%w?jbwOsJec5WO(`P(R250 z!m;9E-`hC2xI6&b@$eL3%m)T*KYMj^<6dO{GWuUi6Z!I<9eWG{5B?=&h6QZ9oRiEv zGK(FGXI7uk_Q!6Z($r^HP7=d=5S=CD*^e7z7Ikp))3DiBUcK66FoIf~bld>>nOuAj zj(2=x#aWe`K(-XImwCV9;{3F>wO+Y$g@@+SYaB$%rP1XxnQ#IjBh?``;^ooymZL7> zp85r{Kh7afMw_(#90(9e1193=wOS}W65T?fEA5wxU;{L+1IXhSBEe)yqMX23JZw|Y z`Mlm-iZe{42~8&V36c);_I^FnlTM@nJX?r7-r>F^|Bm@<9Tiav?|`2_9WQ9P>7G1! zGA6wMJeZi&Zz(I0*EtADdh$ARQ;PQu6cZCOOtcO{i}q_wiO(d&>@$fGD1=Uc!*RNK znC-Ygx{s14RtxvN@AKHi$zlTr_uZ<(#BsRzW}>Q8Z^&XBa6n_yG|K2qc%qtS(9NCBRa_HNfGwnVab@%$a3Aj|iZTF@>{x8G zYnumB)Pj4#*s@0aQJ!XltNjQ~c~+*UD_EkMyZEF-dYiW3A%$YG37jY7&0-GG9kvL_ zYGWGdFq~Bjea%(bygtw`F*BA}+fgkDh~tU$9Nh zK#aLY)&=5|0UIKc`wsAaG~wPKmH#Bbw7Mrr`lDue8-lLccHCIhB~S@_5of-T7$ks< z?CZ_g^{&a`m6RQYwLjts$_?*{h^Ei>`PTMc^;peZG$8`RR(zkse6>nxJc6yz56{8d z?%XVi-{SYqz18FiXmi7rbvNM}Ac}xiQ|`FP4cGFc`&Y^e+k-$cUPeD{Sns=$3NP)buat?aX**f(c?@tF;0V0+hZ>s3r(`C{5aP<=pfgm(ddD;}E8N z3U>oFCe&zfriN(E0_69qan6d&VtHjwL2xTOb!gHbMSwAW$ZNM`FmvB|BZI6da&v5| zS&rsezB^HV6%`dhZv^m8QT45D>S|!X>CLQp2e>eP_NrkY4Hhi6Xc?-C+$lSp*@AD! z$;4k3ZtJ(lg?aaF^mWsh5;~is({%~iunmgfm++bTk}~kC?V#!iqCVzYfnk!j;Dg)C@WC zvTxlJD2IG>e>Ag;Sl%2&ZK*})A71NSOYUZb`s6)ks>Vqdkpd|qYa;?8Zj#HmZz64q zW4;1m16%kbdyHmy-Z;@3pwY|T)z2C#c6+<4ymlgMxbII{hi)faW3o20AX zW`?-u#g!yx&HE?SFPL?iigmH9@FSvNSI4h&v-Vs@SMC~cvKz=DN6vA)fxP^hzrTOo zB)h>v0r+8O;k>EL%5(qCdh*f77LeR6AI#jW-iS3d743H5*Iv7NbvxRDuC3)xdw+gj zFVjWDbJw4rFU{Ol+R^^7Y(XYneews?<(POONqJnBW3|Cd!6$5dvS9O21BM_!EDA@( zvt41HGqIsw0R5is^vxL1=k`o5Axd$-rMH^CzPa&Jh1y4HwmiQ7_Yr5Rm}B5Qm5Q0a zM-?XYE(pt8k|=!a^SM&JKXY-j$kwM}H+8zc2gH;w-?Zrr2u6H8Gj|?dgYp}3Wv`N< zs8!m7Ax=QiX@InF1K#%U)`nPIqr}1&vE!|hRi!Utb=`oW0dXqL@Lju_tsMKd!M_ny zpal!jf4C#=HB52CBH$t~L3fZpD-;M8I&msX^ZM;6;B9DZT%%9|h(I+o$Z|U}a(s(p8Y_`MnyRca~8-I6qMGR8=)E2dmoBJIfIb#FhnZKG`lW#ne!k#c} z&$AZn8y|eKVO`VXqs-UfRPu5B%tU50#Zi`NC6duO0O=`yqSCzyq!9=iF2}fA)BLCw z_879eHsHjGeL>tKGHUYsq*Z2hQ<%<}ts%J0E>Sydm{ZUUL26Y+m-oDuP+srPc%gZy zu5M`->UWTf`p0<0_#g3hzruIyY5vN)+huo0G+1l!)xAq}mJ=k% zG^*&nFRKuWV!nW6BbTGmSapA$gf};wo-6dk(7yMWfRr!K=l*JDFR{EYO0{{iSgh{u zn-3KAn5m_8<^3IltWsLOE04MTO!#W6l=$eAoEc*|oXHn&h+g&|%d=dP?eM7DKx6E- zy8KxM&)08rT;d!5Y`$pv@}XZ=4}z-3uhG5rhr7Ax!!d3db5qm0ouYRoobJ^A(7LnO zr{?{=YSpfamBvg&>UkU7GvXcSxW7V)JslJ$h|0TS>s+9~p;(5Oz2w(7eQjo!cyV>b z-b73QZ6^w#2_!M=u`A9{{}&AxRsPw`d4K$F;qj77S>q9l`vf~&mbd6otfhJXEPKJ~ zPNvnp);~uORfL2Wv3xNd;E&&x?Tf$_GHc09!L{#8d-_d)7elqhml3Ad&z)r}V8`H3 zc<0h?H28GCZ#QnIzZX3zC#CQGK)WH|hs5Dug-~1@nv*+G@RV_M8MF_HWA(j579~oe zIlKONPL8Aj&e7P~dHMsH$Cr%8CzqRR^fj4Jys-EG)CY)iB!}W>EZ&bO5oUfyavxns zI?$*I&Wz+mtO2Vki9!8)9&PMOEQ95R{(M2odzpt%ZimY;Y6Dzw99EVai@E6Nds-~O z&#aOgcV6(NvuH!tEzM*zUsy<(P5CuP?ylf4;d^o|kt-aI`muQi^QF1Bk&zrOI=!Ww z`Gke<;yhRo*63fY!u~&ec#EYVW9E{&%(oLlTILHwx`lto_N|^NSYSM{zY3P&eh82{)URlurCq% zYi<5Wz>w=8zPZAu$EwWf^46z)bo6?Dc<^eYiK3MaV?w}TXKldmaQA-GJ;jjZf zPYJ{`*!}bvv$?q{wA~+Wv|7u2;-!PUpshNrWJ2#&_FcERt+C3rz5cGr=lg69?#N;k zN|Z@UJ{=jlFaTs#V%7F^L^Ac2!-CB`44{O%0r+Wn=+UjbY2)y9ww^e3T(AetDPrk* zOcX4#q$nL=N#`;FMKdH5IoIIyA5Z5Rrn@HcSsP+awe*^^0)!;RJ@iE_(ds2uJZLq< zA^CdAPksY>eP<@Em47!~)OQtrS?+e(5zHZK45Hh4wC4H6tlp0-V2QA7)#yp*84%qL zN4KWjsUls8^*-m$By?>YU+Yk^0~+dQWK}W0bAapjWOc^L_EodSe*6g&6Uhj<>2Ld} zla$?LXG;9RjKeG|&X_A!n*}MBmk1Xu)%2B9Hos8zYMaKgM=rbzR2`I9uhAmBq2<jLa^Cy|7<5yeJz+I`IME5 z_LybH&pUqZwuAX8C%cwa>;+pEdWZ6HphCCgo}F^u?M-W18b}{PfoRN|*c3&rM>qO4 z`ap#HQRk)jhfDIlM@MY&2+!R;qU4!1^@qhe=cK(<6w?U>9()TAp|1R>R&Z35g%ifI zEWA(Hh)e=KZhU*yRbDx1K!HwPhad>@QU@Rk4y{-Hbm*`HN~4?^Me-?|9FS~>$gqn-NDY!$`>5G##vxH-)&KNm)zZmm$T+T~+mer32 zGTWNP9zq%Ffr(e=4j(G}=J%0zIg`HMv88l@*DoMdkaM zNVAi_{C(bd#tAgRUjym~Sm!i95d1S2`TRCikP!bX?11u%#A2jeg{Cq|(%=2*LGEPA zu@?kQV^&0{TkLALmd*R@!=#g{Ygk21V*t&cbR_mMJw{xgJUsm6uSxohK6TM$?&QBX zdb(Y+fFV$g7U9`tfM%Y3)c|q#Fl~23-Kq!jv+Zk=z#U8jb}Bt0ew}~%)6#7HsaLt) z>`3F}1f)KHgFL{KmWX#tPa^#m$fv2ST+l7c!%($`ZVTV@qXt6Z@j*+|^yh9_6pI_? zv({W)rj`?3bPAs=n=`P8;g?u6mw94fCh}7aphYs|2VhsHgeF<SlMNNEyB6BD> z1^C2r_Uxg8gj&>jJfiuyWrvvTqPu4cpgEx$Hw|1i;zOXP_yVwoWzh6*DYdGtH_S5b z@jtG=yy&ov{Go&D)K^72Am2w8OXYMw5b7O1UWhdmtl!dptkJvl;GXp3Ak&+cxL1Bx zD|CO(;*d&#kSoI4vy{-68?bf2x5bsDLDoCjD8f7~%bSJGBJA~O3bUBlvXt(RJ>k8$ zH*|8Ri~B-p+124v{O#ca1wyc@{1hA!L-c+UFgKUv|2~O8Vq;&bma{AB z=T|xDiSb^CMCMCLN%g41(OvxtgdB28k0;aAe>{Xl3`c8iY}BW=PB%NUEpdN6W)vTJ)9vt16q16gTu$0h(In-zc*xI&3bP`QL*hdJ>_U2Z;@!8k)|Jd=5;Dnp zI#iv)28<5a*Mzf4C=kiUXRrhe<1G%}LwEGJf{v+lzxaaEd-Hxg*083o=%yQ$N}iU| z7HB&pu>6mwqrt4HhyJ*U+u1W`hLwy%R&ndWR_9K1Gk$_Ro0|AmyDnh>hZv>=_a!AI zNyL5K8Rs2+iH|y>|!WAH59$l^VI+mib-;{ z60iM(;r)4Sl?P&mALD%$y=v&kn~HsLoM?p^-JK0|uj8HHB*8cc{p)~|2dSCeQx1OU zAk3x*l^mrhNR>p5De@1H4DUPQi!fw4@WyNDkg6LFp4aF#Kw4$Qu%jZ{q~gZj{DP+BYg|(0&NFREPy$g^xqZQum<@hUB1&p; z=I1zmCZXWpgLOKdJ=vJ%yhqRAD!v3=+sH}ImYBO}v5S!>+OL+rCjdJ*fy*ge3Ri#V zJ48b$IkGt6bC5aVw+Da{k?j2aa#ZKh#BK3C0ebXmz^-S|90fB^8Au5Uk#RDIPJass zvl*S7uhDnkLDIjIYooE{M;Y=9l(HxJrRG2SyGEO3^zp2|%zyJrkG zg551c7STvtKZb5Ip8B9PL-^&{4^7efsiD-SRfRUnyiVrJzTqnR>xeapcM*FYSw)kP zdULV}cc%_`&g-qMBX+gkFifFQ-*dnkXjWJ+lEA5d0qY0go##c{D6FNE@Jd2T(nyh9gj@FnDnKyu2M z`c)^#F18F>rtW57Br6`Y6J9Y99=~sDceQQNTmGyJ-60xdxKWdX4Qg7f5nP0^8KNETQe@+?IguI*)l|_=aLyou&FDx08=ha za~{Gj9*S71C3~-Lm;NjDWU>Ew%D9^bI1lNGrB5StVv!Ji#=&@w1xv(1k&qV|Ff3^p zkkNrF58aP(20mzw%m1AS*Q4Y6QoRcgOi>eo-@&I;1u|wgVIy}U9O2PJ&fDOaQc_JJ zN()z6euPfn&4$nzf~nql!5&b37-wi4BeH2E-Mm)nT*Nn|XF7Vy_2#lY~2=F~>{jFYxqtzKNT^@%oy* zP!0Wc3v?7sC)AphxKY(XcPyw;U&FWQ>rae$qaEFOlqV+(Qw#q77a-jiZ~YtQNVYMn z2IUp}A1KsC{jh*`Hw3ck>@yG&NVbouhSbj3>KI+%$a-YMh*j6qMr@r2<%H3UL41}v zO5Bz8+f*QwHPc33VM@0UwV@!ew$#_#8i8u6lsAI7gI$e&I!R=lat*RxBO;zaDXTGe zeC*OpWJguU1&|r%-?D0s99@}zcoJ-6n+kK$t+Cvt4`DU3F=NphD7<9DaBof$_xxE~ zTnK43m}1i%KCY4hX*U-#hO#nnrT1xo$N37}$VjwypSp*en+wg0@ALp1L+m-e>nY9M zrii#}v8Q>U^07ypG?EO&vBpkhs^Nc|_x#@+Yf@E`fL}t~;!QQA^s-@;`La3gzkhz8 z$4Y>dTk|fD70=4YW-F%$<1afo*0nA^XF7x!L8>OD?o-}$zmW$Wc9%gxD7B0g74s64 zz7$2DCnTt@v8-VsVu|)V$2)>b*O!Y+P;{Lv!xI69uo5B3QcUAClMktgLrL%p&WkhL ze>=)#BS!SpJ2_j&90PYF5|9A|;WyYE0E&AZ)`qHo*uWa!S%!mp1((fN&5U2iiMrDD z;i9%GP6lYVPUbT0Wrk1Qyi;LWj5!VPOj*lI>eZsMx>0z#d$X-)GI^t@?IQ2Ig6T1zRN2;lwAD8|<7wrn-Jm^_n1%orvFfo##Eoiu0rVZcH zwg?oUwS&&>5+u1}2&J^xd`OUtONtVEJ@C0YV=L0O7>CwhL@XT@+80FZ{=(j}WgQOwI;cKT?~t zup{vnM8-L$F!imV;gqlppGeQw5Hx?hyguP6=S{L=q`r;kNy7y|VF%jPs;q>4^@fWL zSv9cHa+tC?O6qVhOjc5-TV#uZ47Xf&U=1|LX zR>8Xww#A;$JwExnpk2-KUPie4;pZg+$3nvMkdVBWo$y!h<^i2JO~UJ{9xK_Dbro2~7#pE2 zuQgSC_oPctm1fBzP}?l7{$LO>XK#L@M|@=g46e5kn#t?h4)?7M8#Zjp@Nh4depE19 zR(U42M)t?#1Z4&p;_&f_W#X(KeLK||ErM+2<&PK~t6~76WT>|L?`zUial<8V5*n|n zx(2-nRp;m6P6qbll1~U)6ksX*iu`d~dMbfEAbdN&ZuR+<1qu}K-r3Rm@e6jReLqCn zU1V)*sS6HX#n0Sv0XGor@2|R_u1)l|(+9SmXYvKEKOW9^L`YTNyIU|3354Zs2`0>Y zkduNs@{!}C=ju|hMC{QJh8e~x+Og=n2Z9dUbcolpc;ptw+Hh&X!9clspd2Qwng-AA zRN@DLM9Ie`7gN9b#z%>~B_pQqWJ^zkz&?!h*uY0Vqb^5c3xqD66tr>CM-TTs)8& z2}s@b%e7#~oY79s(-uEIZtmUR&C{+E;}%y{?Ei6`v;|590RDr4wmG*kDVQX;vY+sa zzc@oDuCl9okLz>?@_y^*mmdx+d$N)}ys|;lJAaP?Q%N?e;U?=&sMKJ-9*0A5OxOK^ zN9HV`oG2{kEo5bT`sIE zhZ4{dzjpQNXPvHUomc1(e8@YUBVx{;b9F?<7dXJAbeQYRYJNFfK_M3GKv-igBIUf> zV1rTPG;Zp}%7cKPF8fBAdB{p{t}DxufN+!vU_gB9QnjpCtS=1D2~cR=EbTei+%qT9 z&!x0tcfEp^UEj_ZCcd2W!X-?06G8bw`~W$q08S-Z7$jKcT~kmh9sICP<~Q=*SLBvs zc$s8SW@iiGJ1N4&X^+IcV7fPQt@f|09<8Yrd0ov$lVdctJ>8Ca({^CX!XmWR))UB| zk+!=mDPBCBaPeUqmo|s!Dp~;s1Zr_U>iARK@Oyv%+|hbqlUqYuRf2nI_s}~H_@mpg ztqB@HOGDYM0l^5cOPjZkmf-ppb>_tFsa`V0@b)q&Uia;qQ(t%<{GQXi;9G_D4XVc8 zVpsiM50#QSqpYVY6LZtx*53rzyzwey?g1e0^AVZ*4GI@r7NIg^SE92y4D?cQu8MKe zIt0HbaU;Y{fst15guc&VCBVX}xa(nL;Hn7i@`GZk5oI6U$bczdIo7wXzXO3AXhm4L z-IbQt6}gICmXJSASL`Y>U?tKi5^xph47 zHsXFV8&gkHO&~tm1TI>6#LKykpD#kVrV%HU%m_)49v;9=At5)9iF?B8YIGx_XQk>p zjWTC;yxDs*52T}p@Jh1danlBQy%{{~<)_2|-PP}#_-KaE^@Hvb;OK&k4<(;kVn0U> zIPyftwrp0YU+2m=#Ly(AK{I1{j+Ob7H|y*-MUR*tp5XXpLu+!nlM1Wqx_bVdVxr8U zrX?7VFKVH4aW_EfaQ7AiU}+UIak!X_u}#EV8OEa9R*BchDC<5h50bZNJ2n0aQ-?&h@dD6KgGaLauU4PVGFM}x4}&2h4gi-cbxd?xe6!^p1;>3~U*$d7 zJ^#!)a=b{5m?-X zoM+!YkK~;h_$Llk*H928?UI3&5sx*7-my^MJ5C#dcf2Z8{UPdwug4IJHyj)=yi8cv z<%IH7@1KpUTtxznY?BwazH^JU>6U%t|Hrn9(N4xkb5@$aYG3;%p`;sN*7d z9wd8j|7?htZuJ`^_j$nxQ$5x%;O^yV(p@3QwD)~0`||f4{F4F|{ynIQm!enLx}l`H zp!nlMyzQ^V?k09@%U^oui+}GNJaT$&qUU#u6Z&!wx|+)%=d!%if9_qB-?acKV}AQx zh)_^{d%aV~y#3D1S*Vbn0Yy54;!#iQkn~g!XPLOAOqk7_>;03Ji%MX|zB>Jq2uSdGOOB3)JHL_e~%4 zUCO}1etwX)ca%x0E=5{?7fB9f#>OSr`<6wF4eZuOV!O)cGlo!ypt z=-k1=MQy<%4;PKNwSq7G7rwNA=ja_op4xEL-_+&9@K&d>{Df`hTVg7O>k1pU?(n>u zs8e9HSW=bwM=bAu6c3dSbVC88dQJYrIE(JEIf#jT@BtQLANRhVO8ytq($XMb{P6LD z#zyfEFSXcf>T z`!Qrz<~Do6mWOd(oq=7b>`(I&W;$l!B!Jk7{Z}9?Z)Yv+soLIY6dGAj5P*e=j;HkH2UKrA9jFqpT#mfHOUqzFlFrZO@I)8*=edT;4AT{0}FGMFI2Py3D} zrWTaE)K^(!M;EPl4-cAWT2WJu1{bf@=^X#o4`*Fzyx(AjeGj%3oL%iyw#Sb+o9K|q zmbC{ZGn0;pWk(_UvG51BsWWss0779GJ z?=HkE`Q~z~FOS*8*6YV5kq}P*M%HU{nAsq0j(Wl7pkUe4{URC( z5*cYl4L=?nETSFNCl(II8ze12>A^*=;l-qZFCldjxULb$NeZBWrf)AS5=VrK8AJ;Vg(2qaQ9u`=s?p?4fJzE^K z#>Z6UuYZ-_qW@}`iE`{nz@yA{7C<4Ey43LjZ1vMmr(-@<>1gITq7QxdDw5zEcq&o@ z*d~9F{_ym|TV76Xooj6KZ!`o_!;5q}8V>-1sNY_9Bp^T!^{4;SGwkDv+nkCnqM>AQYSEd>g^F z*2n&G)Mr{jiw+Xl52DwOZ2ut;lS7P;ZgM|!p+GVhJv=FV9d2A+lASqnx$>b`fNdn- z(Lkmvt@0)K$&TSmqv}^7p?H~5mzVSM`dS;j3DP9M^*ItEi)448?yCq`fV4}@%Xw^l z#C&v`KSh-Ygf5aRaEdOyvf9an5|;NmG{(iQsWPS$UTVUK+(1n49~?`C85xygVV*wE zl84=7M%3t)*xV*_rDK&W$qO)}y}aQzjHD&D0nM0AvLS$S>k$w%_N%>_B;BPC)STb( z9c_cvbDh39-VXp+s|2?5-SU0sufJa6W1`l&^d8=5uFg1JK{s*{rBd5xO(+t4!m*oz z2QS`GWg{r=Cem}t&9dV{?-7(}B@6IdMbaWT(G*1LJ!1~{8#ppaSMl)S!=d_L63tvu zLYByrCyl|wA*nlKpyay&yyz=Ti5~DK z+~Ca?F&00^^7}MX0gLs$>e4MMX8kxAxWrxHl^@7F7mIB`WS*5Fp-e;2!hkj?oX@Ss zphVkGtpq4*j;d0nS7FEMrbZksJXpc~04_%fnkDK_7J$2U6#YI4y_ zc$boYs>!*_2n0DJP?Kj4W?vfM6$X8_^w~Dl(#=E=106MncO-Nsc9uvFw+On&HQ1C- zrZ*#{G;XWLsEAj9M#?*pE!$TG0MJ+QSt`%Iy!2T;KW1qN2Kryu~4ZmFuJ zx;gCFr@=V4U9-0BJIv}`LSJ%Lym3%gK{qx*Q4n5z7W#fRa)aCMF}L~ ziH7%wOMH}3DbX*Va8!{cFH;S6D@GPQyK5WS=z$ma6@Jstq1w8EYSz!%@KLij zn4Jo8>PAc^C!D|~9F(IW()WDJ==pqu<}=T?mYxse4A!Fub1HESu(%YrDBx*`Gdv;- z@z0Xi3R)t(mvND!rTgWb9OpN;U;DK-klh@?Hmrxul}>lZErKT?@F`%AkWPu4sgAyP z(D9eIcWeZ%pfY}`Gw_DueIH3;R-1ca?%k;J$4DE?)5e6JneUEjFsdYGyHt8~@%8myOc9yCZBuH^4PQ zFTENuW~q&Cf2))A!Fd zj01jueQj;tQt|jVGz|vsJ8TY)=SEy%CXH8cVq-dwO*%cz|38cX>MV=a_ngS*ONd_idTF9)(2yBsD1X|obVWz!``+=^IaA9OhBDP+wrZXxm4<> zJ8x|_qO<|M2A-ugK>Xa5*6Nrh+1=+&BlAFVztt1Tj`Re&T$&h9CV){Q17-eWIu}&s zWlf<%k>qneU`(=V*ouTiJQEki8G^*X{l7MkJ~)IxalEV z22993Jg7c@eOx(wVNBS|qo3}`LqYyF6ntT#o~kxJht?OUHxlH8X9ND@M~ss2GER1} zX|RYkq45Ip(xUNqrY=1pcT!}2T|%W_;sHgJdGN-MrcM&>_n7jd2j?fePk6Qh$8O@P zkc-G>QW6bcp9Br|29m1;)`}aE0hSNDLdL1n9rI{*+yKGNUW&lEs9h|Y@urFF6P_xC0h zN}jN^T3?ot6oX$``=W6m^DCiGf^b`^s(*G9(=}Zx};N-&H!D z7p1?R(oeJ_AfMVodf4B8HI5cmCl>0^|E3sE!Apu+`9QO;Au^VlN4^S@0>yYPDaJcB z=D zFSIarcu7M%xGKzqm$7E(6g3xa2eoM=y7m)SpCcw-9(xQ8X8=NU1BBAapp>Eb$oStc z8xaICuyZZ-9q3w)ba$*TeGPmdNZF}#)UQEoA)ELGx1V<|1Q+(rCHg(MNRN39hHmD#tH8p7M19Ui^15XYDZ;^=H zNGiw^-Tvcam*(U9MZ7uq1;XAr(S136Fny8Bl|%c!+T@{l6081?1WIm9HuN%fpZNCf zZt{AXK|LjOjVbF4(uwL^i9C?<4Agagr%UUYv_-(Oun z5xYBo(6JA_UzdxqgRJD=t6&-iCCg3Rho3Q=VFTL8uZXjT<|jeEbF|2$f)h&<%$&7|ta*(P^O@)MCUb)HYz z^|!L**n8fwoJz_@2208cv|n5<^k_plg3j?GXio#TYt1e?&ib$Pq=!>lz5b0_)g(k? z(sh8-zJY4%)P1|CdJNEN(SIcKLqh1EGIn1d063{_4??Zf?t{%H}; z&Ag6>-tXGDQ=qByCn?%AJO7=GlXjN!W}!eL#sP}eg@pof{d;v%gB!B4rncii&wvzq zHBfAKxIp#Hq=6wB+_S#G(s$5<$dDIgf7D_BqK-MmlA_Ug6VHCD3s%pI`x!6Z_vzV_ zy*n^-68j4P{QaQk?<3NV+P${R;L`zSCT#Os~lxYGtB${$G_79Sb59;M0trkKs= zs|aBnB$#j`By6!32fgls;#>wz67E1E@v~AR_Ns(fn922w=e}Tbl0+ZX>kKM1O-xW1pL!nr$xY7_RVVf>m^`VKCrc~ zCAY5QU4EV`J~ONt>zVK_OqMyV|5Dnqggo&;-*aZ)TG@M!L@#BcLNP8ljT55;O%rk? zBI5FHZn)MXPE$i43~V^+(~vL+FO?4pBAWfimZ~AVhoq7ZnX_glV^t*TyBZ7n=5we( zI>zNJ!`GY7wx7$Kh|T7HK%T#V$UtxwohnQ;LbtroY1YR$B)KJO?@`n7akBZF@B6^D z=I4K`yQ>5hbq?I|$OKJAS7ba&8<-c0UO%3DsSvV7pQ(3}fWGA#z7O#e*^(srPmF;B zdeT4Y!tBfV#`^PkExx_6!a#}So+Z^y%HRvMG``(??V#D{j(y)wCYb$0-sS%<30Nc9 zrs_m!yY>c9SJzkyl5&$I2$NL<}Z&E zn3i)=u-6u~{)%^HepO~6ow)tK>jdsdkT#Ey!l78`m#53zf8JB6>=~!MQ4n85g#mYr zpR8>wP^;o+y_bQ?Af-6z{v5$S{7kf}@=rNm1rMe}mJvU`+;UwP;MY%muQ7w!lwRC*SQ?-A)m#5~P|1I5^!~qniSbJY z-(NHlIcyPC1JnQ}2E8D7>lj249 z*t`#xQw1;8TLmPjQwRITQp76;o;^F!OPP7Fw)-AP3utN|ncBw6))9 zb(yT2C_UxP#v<(HJXeRUf||r)J$9c;xRP7n?SV}HPq8!jj)aqf@wpe|M48{z$UzLf zj%@UxT~V%_D?IhdhU96uma@ZSike6!k8gZVmKva<6%9{vX{ z$A>sw<2iQ)N0sysQ3kheZ!46Cq%BJUStCJ9`~7|Z9V1&xnzabJNDN6aF$D#I_kW>l zM%qR0o0QapmWf+qF`TB0U=l5xWiZa+GwB7;RCkgFO2`_Eoo@5LXD z6e^kJpE!@X_lv7WE-AmnvHzWLqX6}m4`iv$S{#_HgT4C6hdn(TjURPjOt z1E5gt)v`HIrLF_KLL_0ceq7A2yhI4o*H<^GrvjZq^Q(<(Z{k8t0Wk|woac@+wZ~S1 z1Rz40J4-uk>#m}#Np z+0~IyxX`5}j2t5YU>X~Rp{G|%2o#!0uSsPFzS5bbH70Z?d z^7_RG=#I{=wdrX4P9yvhq1x3nqd{Ucs)r2cKsv>k3+ei^#Qm znfB-+L5rEwxDt!uvD~jg(C*aaNSoUOb#B$ zmPwZM2N^NaPh<|oxp^*4NuP9wSfX1^DWtfMz6jaK-!M&gwSIQd`)g4&ACi)ijrGXo zZP08aZ$G0eiQ!-1#Q?vV4@GB9y|Z5~mwnudh1uUN&0;bJ$wrju{*#VL{Gq%1hsxi7 ziZ_rr{l+bzCSWG${$KVobu@-n+*RNI%J%1%$s}Cdu_iyLV7`$}2y8V|R>+YGiyE^q zYA$I7SLFsK0i|%4k;)B8>RQ9wWQl?Czb}xz&VYZIjJ69pWzBGP&;QudmRTod)F8ZX zD5ZK;+Je!k$axmxs@NGeE>)1abRg%+4!Hg_ym#YgZuE}&ua*b$ZPj)0XsPciOM0H@ zdJ|m&%tm>Ab@@;Pq9^W8W{yx$Py;`f2RLyBhw<$)&k`;fAuSv~^$}!YJ=}eCRPGdk>eg5}7^kQE z@)cfpT#E{|O>7D+c3F~rzLGc1hB>$l(C#ivpX553@6v1%zrJ(%G@2YhfZLIR2YISF-!bUg0wo?nx_t~ zsFV3rH0P1ecr4*<{)?0E7JOXtDD9mMO=KLi@X+?3pP#4LRrz3$N{?$KlT`shCr+h)DPCKbk7ax9PYs%Ic%EykAGjTvBb&7yeM z-SUs6Hvu=k;=Rt@8Il!w1a=aqP#*`pkgk zMSL#ABf3z}52aqO|B!Lhp))Bdt|O3vfB9rsn4I0RY8;oCgj^sg(QwqT1|KUwRO34M z%OIWhXoFooU6?<*08S)7pJ-N4`-D0pHsV__3Qb~!-A(J|3l=O`=U}J7{(?XMVnSPA z%U$vqHsa==Nixh;$K{0KXR>Y`)NrL+``fo7WS2Fr~3 zvRyx4u003yQc^*Dq<&_?w!&{d3N+Y~{D3#JM*_m%Q*{bBZ0bG@-TPPJwFaMeT+N$6 zGeH>cm)PHS3C9HIJVjWculn$zD(RSfYabZsyAeM#t2vYbS1cBgjvnB_7d6jcN69mV z+$m72?x}(|jP>XH{S_R?1a3CEt)FWNW^9a9F4RSdP7S6`6N|#HA-{|n;GcL9(LVtF zbai*rJ0EG>2jSB2gD@FBbW|ajlI`b!H1XG6S`aE9JW4W&1{d4hY!r~SSl*9O^yNj3 zh!s>)|E_*6>*7HrL6m5(=!VWuViLxV#Oyk9a3Z4Q-^f;s(03c0UyuA1=IBtskY1dW zezs|BkpVYwaS>yQ8eD++OCSW#BR!V`vehNzjCl`3clEws0j2@MY>>SB&-LhjD&2a3 zL7_3={M4LN+5d;q|1@5*y4a(FzJ(r3g5Yd95%J!#(tG=GnyTGWXF#n%sCb|ESJ;0M z7vh|eHV-X$8pvJ8iLax98fbbCI`@PmGcUSvs3?~AnC6eC1A2$=}`TtlA3LUWS$t?h`DWBs%Hm^6U%MaH| zwYh*tB<&n@_sZA{;rb^qj26=bB1vAU8O|FO-=a<=M4-eZ^)EZPfPDeC)0W@Bzokh$q zAkue(-8pwGKOa*&@teP3WPR~!&GKQJcqaz&HY zy|&x3X(-=X9hVif3`HVFXd?bi4of4aFGHo0a8^Sa_a28VJMVwqqt+*4Q#JwOPTsvH8lc=*Qzm2j5%`VcBgB*cX&g02oxuv%&8YkIh zRy&Mi1M~K6?Q^8_lEHRNTW2ZJmnzv2bne$T7j_kmY5?Qo2zXFR;y%=`?A-7+6C%3# z$1qrfhMR{>?qnz!5inT_9a*rE*7kD-O+p&)`phqio?OO5xSsHO~ zRd1%6L6s029$YCvX}!3&sXo6mbc?`PeoxO#z!isJdL-p1 zG9GUA;pVZ@XEFQ(90QP5Vk9cWTk=4dAc8J5s@5EG7+(l`0u+s^!blr>tbxI?pTAnu z`qg9^HmL#0(G5!n(Tk~l(2}%wdh5hLe7rFfx60n7k9?T;=j~5Oz{#Af%YUpTdZxJp z|Ck_B87!QJ3a70ahApJQP~m(hVh#A{vVTv(EN*d6j3WdhYT0HQx0b4G6!6w)A^`0^ ziT_j|Iu;O648CS0j%?!g=j32|HhNr$4K^nU>b5=(8G~BQD3lu4C`pw-RDvdK^y9{| zS~92A*4}?dAV7Df{CDB1LjvqXGIs-h#vuQRC3A5frS-%_AU^KK9jLEj2Ci}y9akQO zv0dL+ICPag47&CwDUvt&>Yh+H+ zt*-$VcZMeypSc{$(Vto3YBbt}{Di!&*q@I;vDNnLXNjO;QVDgZWP^(AALeW}RFFk$ z-eTB%5+q+VNV2wls#qUNv_@IQI(oGXTKe!OeME}w8ep$_72>1=zlMi3MK!5U_PzqNs$cCRdxd++a=qMaoJVIXlo6LIffn6)SC z7o1Jx>3n8*bdqMH@GnkL(*!M+x=T}yO+PMnQY3V+ZqlsTU}mEGKgnkH56p_Bxu21` z(dWp#5>g9{GFgmrq4lAg|7uryxKT@&2znkJgitj!uv!G$@L!H`L&lOe3ukhqjz^lf zSCnC*5@d&lm&h3iCxQnh-9jl=eEzs1_M;vrkzY#Xn1=D0hU0>!8~fYzqFEA`dN+S+IrPa_g%CnBS?x zSS~Fk+erMVG#(Ri4TSEe)-vKg8!=4Lw?BOz0v14piH6r<8Lek=R7o5rgZzD=~bj;e>UA{3OkXVb$@#anE`Mm;94 z@>Xy^CXhM2^Z^aQs(4}6GTIwgEIGYdXCvP$SSXNe2?uacW8*a(hEdm)&4fn)*$RZh z1aoA1+zPgej}Z4tgQh!Sud@rXw8y-8@xN%g)fAJIO+@YmJ(>qeH4o(x(#mH06_1Xr z$I+kW8n;uRCd{>yHtolKVU%fXDpb=14BhJsWDaCu zrPxYMk#RzSI7g|v(@ocSfc%aL(9n|o!t6w2**8W_)t4Y~I-EvvbA{TQ;Kdyi;My^u>Xfza{fDI|>c0 zUJu;XaLcnjMR!lb#s)Vt?w#LY1HXhhjoxv&*&EPPUyoBux681; zfcull<`7teQKr+u07Bwk`?ov1cW=Qde~RJHzjM-(9z=RcjGDQs$El{FA{Is($vxf{ zbX?u0iEQyr&cwA}-o3DBMc%vH85pQwGl>Ev;v(Drp+V1a6)W^7k-2G?)1#A@9kn^2H%EJH;blPJHkHIxl3vb&O$iIPyO~HJ_B+jbw>38&N z%f;VxF9g#8BWvGU)*po5TUA%Y7?yqO*}h34iy|@hRIna(c%1|Fv6@M z?Z*lJy6tQ4RA|iZkcq3Pj_q#pT=YkB38!$IKFob1Y5I{$^my!KlWGQ&O)q@Tk7`;1 zF|XCG&1^ISTGU#sgpQ3u)bm00NCPqd!aeEPm4rIxF zm>RoJc;h^Iv-x{mD@mJEc#|K47#=ml3W?;f;lr;%lIc3j$a0|7{k?Nv{JoklA*-HL zQGLrY?=o($CDOut0sP7y4}_K*C&2&;C&$t4i%3COBtHwTU;wE@MW5#n8cfPJZxV!K z;_1$I`v6@AtO}bpWC?8ag3eu?O!$?ywe(m%FpZ?Z=yU{$|imx6gs=x6LTa z*IP(=Tv5Rsj-^SXSG4vtLjye?63`;-HOf=yE1k=j9;6H?6jg{%a$#4 zHivgs=4oXs2==)5DO9HNH z>399f4xvDd?5HnK)qGyovNbHd>KDOG;OiWg|MB%u`r$diO=$A0JIx>jjP;?&M&Ui` z%<~xoQbk(uBtL<*CpSKZVN+QlI=1$n>$i;wTs8}E2+ul7>IkoE7W&jichYS~&9JV4 zYt6*>eYFIaqsYDo&1^flEqtrkimM?>ci>6ssms@=H9PE&R(2N(gkPo^`~lWM#%t@& z{sVn2BafQY_wVzVCCGe2hZYnu8e(mO>sM9SeE8@X9V)s=(+zaB7%7C2KBSgj`l42l zv)Nj=Z`Oi3DCW~%63fJz=@>{(ko4olk3cgV*Z7Al35-P8MAjde0>{Vq_YP54d30Md zVpm07?9gb}BfRyLnb;gXGk{aP`)Y&QfcjXmXzQn_3+hTm;kjmdIHK>!b}gfK_|>1> z!Gc=qew}PW(}6w1(WL-n1LpZds4RtfZ{~Hgi(0 zT+GUTCwyzB3S3TrFN0qG1)7+{suO@Qjs&sI&Eat^l7zsx{87^5^`QW^8E0|&?WnMp z`L55qr{uk*=F5CnXb+`Kg7q|`z7iHqrQlsepf_RCuJONS+fK2=5V=mkaJCh6`%nmo znQ$!qlC{}Md;P?rw`KudZx>%}cK7l~FB%)lJ0FFGY5H%I(ih=Uk=kP?u+~m;BYAXD zN|ttJ1X_%k%Hj}x{9wZo75`~ajTRqz2<;ni&GJ#_bvw5JCoKMWM^m$Y;ZMpzP-Bqg zL27;KM74WHZ4V>e^~J-8vWa3oKWz3bph>Fj%5gAqe3AbA>qFzJS%-dInC-BnsO90k z2v}ezE;xLqMeWY@mN`#gq-B(merQUrBTjqk-}VS)XngiunsRp|`lghK3Ul$ssR$-H z008n7Ykw5Jr#r)UWjHvrP1>CCz({mFp+^E3V&3!6p>|?wk=&fS}o4|u|pV^2X zb;lnO9|HzeDY{$VIJvY4wMKOP>@oJq51DqQ!FDaaodsYPLVFOa-J*Z{rzac0MI3Ow z0s8EE=!8)WS^M$lK(bK2t1BM9A5K!|bUg2^I5YVYDxRB=QV_!Ctnuu6P+KZIq>gVq z;VA}Fdzd{g*M0rSXR-A7uZSA3D;n~Br~u#194)*bURvGi0LEH(UnWf> zIG1QwAKqU*(&TqtWBJg6CfKKuLfOpJZyF5UY3i-!T?3%mJo3zK{Z?M?*9tS`2>!Rq z53aJx`$g(jyYk20g8eBvyQxp21kN&|Hz-LE&j+@okM5+yr8ciMk1Ltrf=#Je2S1Iz z;6Iuqwj*1DZE+`U!~@stZOisi)or%KaKD(nIUoeQzO=Bvo<%aUwV2VzO#1g{J4v;H z2BWY#d|pY=mo5zYR!lX)OiIJdGO-gmeE~*F>`lWd-Am6(9e_n5))R*w?UB=;UCRE9 zy1kP$?X;L&&7QLRo!`km3gJ8&2-3s^pq=7sX_Y=hiq1YPAi$UiLI|9k2gNT-ePpD& zoMCxa*8dB2b1~{Ecw@mk<4(x1t%63W{Iuvyq&d_yBpJ10lcQ=s@!djZtZepTY0I%J zsdw#9zA`1CHM!A(?{M0*$eM0;7L(6st@28DL+#ob$AEG}MqU?;{Q!dPWC zrPv9aB^U*UEaAi9-SAozH&?;oSyXdu!o6&6iO zrOBANG#D~eBnm~*fRv$VAWcXiB{D>XP)bokp;8$uQ< z%jf4=H)ikpl%IAL=G_a2wljN$h8{>VIZo2mL;Cl^U5sBG1V%OR>Jol7i=0U$;#M2- zY?k;FesizCVC3uXHIpcIa zTg=UlW6To0@%nl=cuzM;BTN>FWEG^Mt%1u;3!&^4T&^mkd|!8pv81)JT9QsO`9X4bXCmS@0N;iLgThxgaaxDqnEV zQVfH@wwQ585=}sT?XLP|XyP{!mg5+6)WW&8m~?Bq79Z$w1ttz`GJtA&Nn&w?oua~% z>=RIUmJeLhdET4vpShm(T!H>fjRZC?-XGT2OXje9#fDXKGVL6 z?7#BV4CWpu(|RleNfJcooRrxxS<65B_}FSDCsfhavHJ3gQ_Dca-F;(gO#Siw`U2w= z{E*n?M4h9i-i;q5z6N5kKoVMYYLGuAo8RCKvvmG(avQ$YnfI!>L$Q!6B(`7aYxl65 z2nZl3VsgI6#40rVqNj!M^S#S%^n1RR`eMoHywa+w9{OjMRS_0 z;>WK!kE;W-q3H2eyEZ^Zng|3$6o^)F$SS($lQ97gTXxcWO5bJ1l2*f>74qLZwD0QR z_BQ#R*i`ZcADq+tRED(NgszL!vg3AvTt{f*t4kn0>XIIE=xK61K@9kI%o5ofDdvW5 z2Kobz$pi4KjEH;vL+`Wnym>mHUMD$xJWBSEP8H7CH;N9*p^V(K3+?fWn{(|QAe_$d zDNEhfr$_D{jLY}_%Pn&KYk8V56al6AJn1Pj8TK_KSk)oOLuiyr!vm5oP?$V<8G$FK z-Mk-x}6_HHJzpiLqh$Sfo1byJm?5ee~^+=kDj~)6fFH0p-6_6&Yg|nfXsJkZ; z6(&jU6Z4%)0I;v89Yl?~q;PA(M&2WFdVQ7pH8{b8;UierTH`^#uP6@%=w0F7K4Zz4p%XHT`fR&d`5GQdOFstMY^YAv>H&7AuN~#9mkxOah*KHJLq#6 zBJSh{R{!CP{1Uq|pmbqIC-3_C&h!}S-fjw#O=T1q8KwlEV%@Dxj8c&_|hl{2qCQ2)Y_mNFJ zZV9n=Gd^GyrpwKw>ga;130g6_xK)VtNGiydaO+0yE_&u&YU2QwN(Zaj7#78Lh+=&}f$mDaQwmK;O z_)+%TZ9b2O*JF76dpoi??=NG#pfGnVudOG!o>R!@kMUS893`--gFBe(>Px5` z`3(oUe{K^!|2kotAKE1`ptM9G#cLpaoReOFyw-GUA=?t1ho_rMe?`TYvCI*iy4i*m=v zRngfh3rgVG6a7aw3uj9PHJJ23|1&)LS>`6rWdNpzJYD0SpeMaCAiJ@cIw;svJ zZoJKCnEeHWu~JCyT#xP-#ag45fb5Ab`2~$F_m7MATG3gh>-S0Kv!`NBJpwFvtU8c7 zxM&9qxjm!$H=vyRS|D;G_y#kB7Tq#VXUYWBQ=g8kE7wgy;X!Qt=>~8LLmo%EMbo;{?K6hDbA%7ZM%g zT4%r^g_DCM$p{%h@|J?Lue96Y?(Q#eV3eF*VWRuJ17X~5>v|KSfkBM>Uh7<9Xg=^G z;w+U{av|pRmh;(7%aKy3?hE5}tZMxF1}{r5GUl=tp1b{+7kRnDJp=u*e*z zMp(WrK0NF>sG?soWoeX*#vKtw;aDuaJ@%Bq5F4y-c&eMBGVjV~%i-@Gw3w3A$8=(N zq!2;(uKA)qqk(6p#ZZflsV{ zz5p1VJnYex+=$-NPF02<$Bs}!4a{R#`%9KG9XzJZj=g>PHkXrwq=*0KA9mZF_^)=R zFDKV`C^5w#?YF|!RGRLVKGFGuAQ?sA8nu6=I%`XgT?gM@evcF?Geq?k^$D(U-`}CX zp_w(H|M#h3{wSUEheP>$;+uCUF92L-+3_)z2I(Y>M?(pipwB^dN#YCDw_HkE^*ilg8DsJ8z6-@fK^s)*J$(M8a1OK* zFyNua`@T#<*QNG<`{ye{G1joe(12W$;VO*INfZ)jlDh_yf65!15&ZX&j#XWrytyy` zJvj~Q;Lvuy-)tnDR_3LXe=RQ^+DI$&L!=XMM#>wgzfT_I=*Y;zM2TJk@pTC}3{lLT zDkojoO@MoQi|-BV1N(FAK#a_pJM=(*JG7x|2*C%dWlW+{iZTmC&`XOfo z6Z!#60Jq>8UMrg4Y z;_fXUy$Gf(WV$wS?|VK7Rm>k9dsIehDWZ8~-JII~G>i_%t+eBRRNC{gYdsPyw*3BL zZ?*>p&hMZkqpcuWuZP={W~_*-UlGyQp^?>srdBl0dhF;`XuC?C@NBtq5$|-=!>zJ? z70GdW72iI^&*}RlpFa6HD1n#$v+idAjoA!A4>V?0!yOBU&*-y+&@^|w+Tdp@9jl1< zhSLIQgi>m2sTGM+orV-`hV7u)|0woV91!V4TKs!H%+J;^!_SiGA7!%-Fjc#nPgS_} z?1$p_n}J+J_Hamsu0x4FBK=W?*-}#F16Vi$f|gU~%_~mK`a;Ir^KAAVne9A=kF2QM z|I+ps;$s^R><_=;)Wg{59sw)vGR*!!b)jEYeljja<(F_AmHzf~6N$N*xQ6wWavDfQgZ4MMA_>bDM6XTO<8_YqH<)eh>q( zm@SP!aBz!MQXiU^^N_Y<`yhv(ynhcT9;N^Lf^A=TpWwgr{D0s04-4b}t!iH&`+qx! zj@0`L85nd0;+(6BNy|L@nZ>96;X!1~Y?)_6PJVPaqej6{L-BB4U$U*f3RjW0&6wc+ z+U7qpsDLSUXeJn?x$2A9-I9`({aUK~ec7<`gt`HHJ7ygN*rmqwUE`?JL&`_*`uIQ^ z-w@(>$f_@CRoBHgd~TSa+jqAuA(DZH+rV2qEv=?arf3inKN}MwqxTY8=NFM-6zOEO zy$+w3fnG9HMI9zdOHV}?LRRnAMN&BiQT1@?`lJdr0kRKCPsQvTkcuk~{J8ib-G3CBg$djoE`a=aTtlf6o`$hb3izml7#hd|Dsx5jP)FCKHZQzxUotGZ8& z!UGC~458eVXQjVu;S6EQU97JoO_6^FKE;JBj2b77BgiWoz8`egnHZ(t9=$ zcN+PU(LjGRca~W*wopSl&GlYyJBuG#?a}D&=TX|zXab9p=AHQF?^Brv&{+I7z;DCv zU%`MHDHinJvIir1za8o4WW3ae^N#2J9-4T(hdV$H$lWzC*LiVygC%$uKqOI@Pla(; zLBRO+en$wTFGKcx)Ymu2$OPlR@_McYCiLqeiTe_gaV>AQUHAe|i&)8{iCH_K*WaPU z{xNHEFBPWb|4M~WHzYI)W8Fnn!N2m z%+ca*iVMRuod8XQlq(U*{sgPGJ7g+}qTBOTMMB7Xlgh)eZm7u5c~=mHjtu z;LJr6uDlxAJux-`PrZs9l^XFR+z65UN+zc@L|Fl__vwrP@T|!m5)GRY?EG4$L~FnuA_JH7d9m>EB(;(OuyY#qjXdDcM_M?GIRajlY27wEhVJ*jqVAnq-qF9n@@-zVE0xAdk}{-1Q#$;dJak za!-Qs=>J^><|+zyH?n{^5iS5?7c$6@2g=7xI+l3&4eZP1LhK zWq0ebq-{!XE5=NBR`X8kN_#9X_tSVVqiu2IaizlmI^%iYaxd zXmk=y1-EU69-4eUCYDBt{%Ee}qyc1ZxShN_$X%U$iD8%|3z@~EM~{BbL*aR8dWgBa zDdq1_M%YBIcoc|ntdp%;5-)tSl3cUw{Q^YC60@d1I7IPSc*T z;#Lc?wo0-GC`kV`@jEfdIE7-jCdyrUDa}-O4l_9>68-d~(ypyQGHIZ0wF_K;>GCCj z^`tG5-m27~R)}3%K!O;b5`yMn>|Ts9wuIH-YTKL-cZ7d%AJQQ1^^I-3THgJ?P<|Oj zgSdnJ$}g2N?9Ysx-%OU(Av4s76A$T4!)Ot!>*fzec7Qw);yPNjA<|krAR9(%vXb*+ z6SpftPfEZ8eZH)LE9F@0FLL>u-kp2gaVh)8`dkuNKg{$7zRcL(}x9wSxzVx`h*oK0vWXK(=Gd5A9BKhZT*U}F~~~|;Mtu{ zQ#$7FZMsO!JthZO?_*Y2{UR+ZFoD3*w2sgIxP*V_Brt7tWXt-4ligherv{zlHGOFe zi~ks|Gt)OiVtM!~bsf%HK7RyjOYndQK7@&Bqd~@)fJCdfd9wIy1Nv6LSp-_A05zzq zzXih$g2u)quEPJNO_I0Qt4}VUxT5v7V--M3gf9i-KReOm4J7gef}0!4H__nL#yUXQ z_*-qnd?jlNSoOv6eab$ZrL+U5DxT^qdRhNsn0e%k!c>!P*y&+2ogi&&oN9oni-VaT ztSgh|$rGaj{faL2w$wN!4CtU-w-kYVPxWYdgN+KQ%>ihuR7D+>b_xKjq6@e_usqIK zZB9T2NC**N*Voc;8zVA|3gz!*?V8B+!RwW-djH2zaMnQAo;9R$AyB=^B_Emr*MM`% z6+2nfzXRABV-Y4~s`KT32V?eQnsb8vu~K}0^U3Io_U|+Jrsxqa3k^ZEAD~KDKWhB= z+Tc3u-rLZkA&*fq*98E$=5Zd##4*~Mz(Vx0Gv};Wb6K#1TcMl#LA0=xS21aU|bhQm|KkfQbc51YD;u6IzBx~QzU)(jg{Hd&nZdo)^1&Pb;7)zKsDn` zNzL6}n1N06^OTET&IcqsuSh}?nL!jrF%<1UC6l$=a8pJAIbH&3lItc1ets-9 zL@UPO!APqT@>=~VOtgv;9J3hQ&ZRdBn3DlCExf392oZUbR&fT0sDyJd`un|9|Ao8h zTr6hf;eK+k9+89JU^W)>H5+Iiw61YQ&%cSM&C48vCnREk(IycAuf6t&rCE^hcD|v0 zWCB=+>!2A8a)&LA0pOgb(YldjYrq39FTt3Lgt3vhuO+j(n6o|u^{rJ#@OMIypvrGz zO@Badr*|ve-d726*p@i->NeR)JdOct0Rd`syf&95*%Ro8aGhA9l)0N2k-)B#3=@qm zF*aTH{Q2|qdqJ)E0(%^%2g1?CX5x`=1p)sd*ac>(8VdS6h&1QYfIx z3Ab$uM*|e@KoEDg_&xJsgVnnXqJfm0hiObf={+& z+W#S=5`|oFMT`7<=I_Vnyd-A*DuDA6H|t|+ga+;I6WL4-!8=~fM{4R+e?Z{?!R*OU zP`@{Jp%s04e6j3tJq?ooj?#;Z5U|mk6p*5f8EXUrlVU4PfWZsTX`nP&z#Rc$4GO2U zw`R^N|7Aczh!XbwBmS%>35zIOK2hEd4xdg)rN=HHRFa#}k~u&~y(E|liX|D`Nq~H} zJ;oXD6~tk@0dA1;=fk%d8fev8@SVU_pHe&<)c2LGyNiuK0jOSrLgXr@K=;Y;zY%a7 zxSInf@^b%2=NTaGeJxSbjqhIrnf@!H#Y>=iZlX?~;sAYzj>Msy+#Oi~+i#8Esh4;X zGlyhc@`vKSiaF{rA`$FJ>KD?&RcUn#I+aMa1X+H!LCP68G$%(*MxMM5FT5cYchlay?$^O3T@zzk`zJWpehhN-?*cvj#9Nll?7$0*4Go1}${jN%LL0?yxlh zL|94_0}zF7TfdnFenQ6T2_RJ<^^F2Fy4U02j!mulxDu0+@^0%uRVs(biv{;+JU4gt zvqhI60F*2;TZCE3A9rjZZu8r74vv2Z?P#;e3oN1cD067!o5n(wnPA|=9kMh%FJUloBn_dTRvjr*6 zG<0s#G*=coMNc;$y__)Bw&`6usGWL;&E#Ra^$LP_?zrGnf7glsJzNhN2inexHAsA- z{Wt^)4{(nO%DE0WQGC;K5J<_}8z@KZkI-^Ook*&`p$jpKK6>JWHu%4!_X`C429YJ- zYLY;tLd5!NP~HhcpWuNeG@hZ(OTjvj@!SsAl(DFX@gVfsi@u8C-x|b#oKQP$X}`C0%|K;v*VY7!xX`hVIIuVfodqbG*TtDXA~AV_<^FKjbhvr)hdPE5 z8r$ndb^F?h{3QBpT0SsDOzci=fODd_&(v*%_wp zdo@rRdf69L_AeT#QCD`aXy8oi22AGPfph8OLnHHM_)|BM@8g6e0j*8&u0UxsRrg!3 zg3qht+GCt?Wg6y413!7kaRh$=y|U};7x6^d@icz8lsiw3@as=#`JorE}mNy4W=*8KG(gZ8Y_@Y7S* zsiPQpg^NnOu-C&DG`gLO;MB1L+%1FKpHGaORNIO&+9<~Yxy-(rb56I-9}U%Q>D4ZJ zmzD}?4NZo$e*8%nA$UfWyXf>KR{u6H!{BiRo=oO?f#L5M$PW5V-JIk6eG8KNRT${5 z8bzkrA`Bo{wLskjT*+SEbSJ2splp&spYv$Ox70DH123m{epEP%ZfOc($VlF=xop=n znSNwC!mX5`R{uy`;~-W_n)7WGucgEAxJYg5({D4E{@!=osl7IQI#W?3IPm$C-XbEc z?}J{rP%HQX$T#_}Gt8kcDG;(rn*n!;Q*;pn_>x~#{|59g>LizRKQ?#{^~i#OT(W?| zg|csf=pnDW`1+;_6P>*GAUgdeR@7n_ zxc*Tdppxa@ct`fpi>S1$NsI3vPhY0e^7jA5KH9^3w1y85UZc4&b5{~gpyke!@lH_; zp=%5cSJ(Rx?X1k4qT1blsji@yoU~9@l1u=UNvhO2=ck7}$kZ`K9!wf4cXpOXQN065 zCGw_VH1b97SZy`yzacA#UI4<=tM+fz2{iuCz2I;L#JTyz}_kF+Q zJW<0@S|<2!O+{*w3=~aryd4uT$ z^}0^BWtu3L@+ydboBX~LAG(Lx3kTgR6?=9qQ=mGAh$Vzb)*CZ6Wp;?Pq-q>zQ~BKNut5omE1sdh zi{!ZNY#jFl_*jvOYi_JwkB;RY(1pp6r`v=|fVys!z=Dh+S49`~&xzJ^O;J0?uB=30 zEl+oD3qpIV`=6`yi4>`IHljA=nwR}X$n$J|; zV6tJm=)@m+7prW21{i0^3ZOq%$1D+%o30&o8V%8CHQx_I^xVsRA(L~j@JLrjd}Yra z#>cjn56%vK{_b`(-x$9%iC1g0%6ikwXu}y6PezF{NO&^(vuUuo_|CUSe(E@1g4zQw?a=XQIFQ}#?la`D= zn>GH)$?q#o&+*=kdk<)&IhZb#r9U4bt`dW&B#XZJPCEfJ;?34Uh;npiO#Dhz|Aw!Y z3%s`L-@ol}(SGRG=b{al7)k=`bqUx*DHb|GK47gfsl$!Czot~5A0jMp^diI(wvFTH zQ9H|up*B&9d#+~>XM~lJ`K#qI`SGdGEp3yFuWwjRwqN)w<)JrF*0UbIlu*9nHSs`K zi>_$*t&$VkeoD~W!26jhxqgH|iry$E6ZMI14 z7Z@8nbzSDb<2K_uCWL`Wna0q-1PyEcyT3wV={}!Qe^T@xg>8c|QqgXRN9Yh0zX=B&t!%KJZJcv%s<$ryV%PGm;$m7>hAB5M=?((5Syg$toVYn+7C zFVuc~(x_WwA8kk1$WrRWZMRO+}01gL#Y z4+a|vh(UBWZ`02$E;q;=aKC;>Fs`K}#Vb-0?Pii-fDcfDKtR~DSll2>(UXjQq2@h`gR+`CK;r^iyXvAQy$%uMFK50|~;_5T14F)A=IYQ?8^4Q0`J8S_R z#1NvE+TSOCO6?I6NEGJxd0D=#{P&i855hY8ru0}IpjuLg4q)Tz$7Bq~q&3M0iV&s=lqGEP#546Z(OATxObE z=uf=d^dp3Z!;u}lec9pPQ)kKvGR7klshB^D$JknO%Uu-1U(KsHDccd?C|$(}yhhg4 z@R?=mNfX##i!#3@Gjq^f{rU;&UE$=aN6`&(U*FR;(MyE9v(%^R==?-$ z#Ywy@SbkG+pk4zBoO~MgaKV__E&MT~+Q7~=$cU^ko-v!(kYzt%Dh}et42=L~@%9ek zCwWyoL;wRO6I^5_{MNHHc^!xhB2dQ#k=W^T@XZZbRT%U5OfNIIIBen~JyKSJdKLPi zpH=4HWe_>^rk7TXXhP~6eJF!LB`*{DjVq;%C+b{&5amXVL~++9kLUyB1=vgSQ|-JJ zstC@G@tRycGb#gDDF#{e6@4;9gz|NJ%ec?w7J+;epMgMQ2Kp^FgNNPj!DN@0r%4|mPFTWx7l&@mc9@f&cPC-^~VEE z$Qc~nk>Y`BD6+1gl@SG9J?b->Z{DnY?$m=!g8c7om=@iK-dInx+m**=i}Tjk-CY;8 z;QfFtV!WJCj}HQLhqu|7%I%%GuX($!@m{DX_^d*23G!safKx^3tkoQnt{C&{Z~>HR z-W}*D(Ef01=A}!Qv=c40sfA6nY-|_mHn?5Y+}#c2#$1*;20$RjX>3*Ebt= zepaLYd5$==2jhTqs%{l0w(Ww!=rSO{NfZ@~LWwt!fzr!6L$U_A#bduy7v6{wsdYgG z46fi^Gj;Y7nx?VKqCc@+iIrU;v*S}AqKe&wjo@7pahzAp^-8irugn$m73#&KEgX*8 zWd#}bFeW>e0ynO&{95keIOSq(ATh!u7OI1gfp0WVLo@Y-|g+F zze~iOTkXDJ=3YbnTN35l-q2Q+qCHj#`~boWA*}8|NkV}XMNkx#B)HbTTkkhERM^a) zjve^^om6ZeiHJ22FF5>`reQxcAmax5KV>VuI(V}V&^n-J91jHo+d;ErEGNE zt>vg9TA+Cp4f#WAn9bUnzgJXuU&mF0w`Wv)em*lm>o8)9{=y&(V3HN0yDLB1e=d}` zVU$ulkc%>NQcC%K=UwoySfc}*&ak~kHV^Y^x5W^ZNXXSCb9CRn3@7;7D5n!v{a|0> zBnl1OAW3u((#~IEF+oALnS~!m%ZrqfEnh_XbUZmb zH`-*4NHF(huA?c1nuk<(7tp(S57-FX=i4llAYe2Wt~e+f=S0!Vo%*u1LU7%F0pd?2_=u z9b20_a{7yBZ`18$v%AX9LE^5jcfY#$JIrplMGeKp8NUmEE zwyy>5NO⪚BNQm<@dvm#7TldrtzU}?zFxOn@K}m|K#I+r5uM%23{WhZtUJH4=(g_ zY~RHa>ld|5F(vdj%<9P820%rb)b^@l@mz1!Y~=Li?ZpQzFymie)u0rzbE@O|q|UZcFbePfQ_q)aY5}^;TNJQF`>=D)bzss<(U5)rJSY$GG*40 z{dy{Z8i>w{bCeUAPuf$sFoB&o8i?k^$UwH=vojH*LjY23kV!KBN0rcLp7eKxJ`8AddB(VTIeDeCJwiaD|3J#0fwyOn0*Ai|sJiIVvLm)#cZO^tVSo6t8*wm?UsXco~U)(hpRk zpk42~H%|`0Io(yO@+V}cyq!W8J(N*`U7m<@r=QZR7L08iuQc1@$?m(0zq|5>Aw(Oq zcqJKw`QI7)65gmd$O1=46iQa1d z2~kuy2RTHx05ahvl;%VqUIV-f5p<0I{`e?y;U~xJ7$!VNN~amePQD_MqW} zANwl)X8j9kFBx`P{h8U*jNt zd*o;N&Tn_qyH=wIv=$vOtIe|kIucb`(U25&D8xpa(=ES`qxQ$H3V|0PCjZ+^}* zMjOVpXy5m8b-C6=jP&+*|E&3yt=b)qPEa&Zg0Ux7BRSHBor2aUbN~Oq^zkWBC-{1< zUjN3Bp=dQJ@eHqDk-478)rZ?q52Qp*z|HasT<8eseb8l0+&uvsYC?Od$+68}%>@j= z@UlM|Ew#w#8=Q4k_ZkFR9M|r?hS53c4Puj;EX=Mw5kK-%{kR(rxuE9Jl$&$}3s>Mz z8nLKZWvrFAS8y_(By(O^KMt4=sfQ3p?~huDm4uV%E{y#BpI_ja!d*Ft>l%cq3o*?| za2pXnk10|7^ih=O2S5#QaGdxA1l-Z1dhDedV{v?-1{#bJ2<6eZ!=m&Pt^kQx)$rrQ z1n)*d{guF|$(-On`k%%6mt={QWpEAixLVZRq(s*df9r^s ze4Twqyw3FEeUH+%<@i6)ZqEVGh?G4I9+9U`m$lkS?nHZ) z6hI%Y&OHKrdfbQIB?IS4@K&x|AEZ!&51+`m=a1@t*?hpQ2(fhr{l2R_G(H(cwp z8WB*ES8_y#k<6fr0W#RYxmG%&&9}aC92Z_5DG==nXQp33!rcbvNpwAVkQ=*o?a?1U z4usJEm`(nT-eE`4!QNAow38PZ$9b3zaUYX|R|PEurIN3YREFJ^B64|84g|hB8X8tr z_J~2skL<%Jbjk*flHI65KrIY|H{$(`N*i}YKo`HSGC3iJw{_VX`t*xy3#|KpaRpNB zZ%+eG{=VhF13W0h5VGE6YO@`AX(X1k7rf5Yz&M0ZbaQPh47C=0^8`bIZ5>?D;&}}l zj$J-~I*&ccX3fHvsNIn;9MM;-aRYFyq|Y3k(uW7Si!|E7N;IXUw2(ljWcCgfnJY+e zz5s|)gdF1vO)(JLW9JssFMlt{A3z*}FFK3*+WB1Y7{EBT&64W>H4muLNoqS1{d-Q~ z!N$@%bgZV_fE;uPi3)={%yW)`b$^p=8!$6ni~4G`u<)+`ADGQJ|LFN&LeL`D?gbb} zB6GP)tUe5@c31j+{`~pv$P6h~nHQEVC8O$k|FhpEe)*(A(YATqX3PwRPS9_6sUPK?#siQ87lH zRt!g77|KZ!^qs(an9i5eHC`~qVdVdmgn(82aXt*B0*cMJrCWf+wnY6Bwc)BSdNG$^ z`gI*;3@~`r|Ld=*D^JnID5(g+lZL7KoJicJL^r3zgzV%9ZGIs~nbnRL@^Iv$HGN4i zI|MR*GKIqs4AI_Am<%D zVZseWzA{%y5S@=8rBQ8~{|6=iEdHR?sLp=06Wg33jdfO%AurOXV2dd>=Av?+>)LLI zK^46jjGkUWVeR5X<$WNYwtf;$8q7BmyJfF?4!eKDN-{Em(&gnMoQ*i+o?oBZ^O}mi z`JRyNBczo^Z-Wt~HsF-6hfu*rI46)tH^BgKKMGv{MtKo#vMNF8tiII{q~o4x!jS75 zu(OCiD{t|=V7VoM*PKN&dP zXaQ^uHBkh-fJ$drvS`rI1d^B{d=v)abActWC^)OFysx>C0wfiyr~t3qX|Eb9L%+r1 zs(xPv&ep>>d9+yU=Di<=M+QRukT7|v-zaOYCrj`0F>1$PiHH*Qk6O1Nux?Ggw(3~d zuOQ=~(xlEz$eo6^Q?H6 zsXOa90v5F7m1Vj^<8>8K#rsQe;#x$1exFqe)vluhjv$H4kW}6nzB0BHV1#k z-@7w|F6YVPb7%1?GLMb8MFO6T&uH%7l)3bg^@25h{PJ$Cj3{GLFe(Kr1YJo56Jv-* zX`@ph<-46+%hAk)HuBDr1^~!qsWAW^wxGR;-29K&(2@6*X7^oMmDHUOa|-NN(L70U zc2?^d?ce_nmoZQ$*6=!7jkV~NgXW}zKAB-h@GOgNRhKrtox1C8`nkoHSS^<0u*Pu0 zovyF^EYUp9fOW2L2%jYTEbQJQuiY-p^INOVFYWFwd2qLkvFG4nlicTA@_wJ{SK+3z ztMNm+QrM}m_*NyC3ti`G^da~C%s63d1?H+x?>F9m_o#O7tH=4jaEWS)t?T|CoE{0J zi-LUIL!ljk+Bz$+w=DCS%dh_$&6Hq#(JdGoIE0_+alkvHr}J4)B+01e)^1bzamKat zZF<)x)tDU{W!NnKvlBen?sHrOmi-*y!R6osCjHNLBYt(pi)0(|xg-DifIdIU-ut6K zu?U%E(Yx-}yQ{XiwnUp096SPMS8BwxIa>4V_97)Oa)T?x<(qC@wL5&3K50PxO6%7X z-Lw~r0=)y~$>Y&>lwLV@a4^0`fWvJj2bs&joGL?hdhY(}@$WPMU)8wKQC4Gcv31=e zdX#zeDAw{KABXop3O=98@?=DE1aJQF)U4gYe4fjcwwS?CA^D6&(fL6~@E9gVc_wz= z<*7vyK8kymaQHcU_!Z+v(BHZ^m}S@1j^0<%1uz1eq26vG$hvx4Ti0mrk_hFDxohYf ze@U>J{=dw|E72qOEfDLaDAw(z=(`+c-kP!af6Zh*95GvX-tJEeyZ9n>u5WYO9^Gwt zgzes3Q+y(MAoJW}E^F3wVUx}(QQ_sW8Yes$!MBk=%%q6Jnf68O z?Zf#2qseLp_TVb!UQ-I@mKg2`_YyhUBsu&=vu$dNPI9&H!WUqtg%0f1+%B5;*80>k zzlrDOd$?lbJd^YvB(rmrRPRq6#q|Ho|M#~Q9Hpm7{1{R8_viShrXhHJ--pbv3g%w4 zV7J5j?Yyz`$3VI6_cOjhnE%S*=ScRj21+aSWLF!?%~fZ1T^;^f{Qe zs>wX7jk5iFrFS!JSEjwa&t~G>5&WDci0fWKoV@&YXNtTs#2Rz;ZarT%{xXa<=ia!L zIkd=#%e-+q?k7s#lb(4$v2A}e_WUYIpEUO4FGn>a(i%5w5ZE$QxN(w~YRM^#A#v!f1MC-AdnM z1OM9gw6dve7N16{{|VOt9*>t@obTR=P_zm@U+TZeH2L;}LE|Iq@4i!!zu%OppVM^a znd_CfY3q)>co2TWy&862yM%nbIMooUeNyQFeW*)flG}>)x2*UhmOxrF?Hv>)dhBhNXO%GAf_O&2`BZR`6-@37z( zwdlbvWK0zOJ5pSu9kP*OzD4k_pGfawzaKX4ue9M2*w7}NCP?&L1x0GUGNRU(mJ*X^ zOZ99LU&XUNM4NP3nvA+$84Kh<_iQpQ(r^9-tGsPjPlIBjgoESaBgOI<#+QRr8!EEN zI*zvKhbARnG}~$*K3#HzOLF)Pq@8~npZ>{$X<?a>iC|2a`6mjc#`|kTaPXSyTE6IBL`Q`h+s)GTMI@{fz zt$GDBhdEu?U26=vpUzsv&dCmenUmLwTFj>%MMdI{DA8iZTqkMf^%R)+{-K1X5*2x8qQHIFDq!kb4t6s~Q1h!+$|ucp$sLpyT!nQlhuUCY z@XnvD5l6MHReR&Ev13QbuBS?~W%4A5gtrs`+|ywy9mKSvy!Ts0w< z!!L1?>7lbYBlQQ2Ik&8PDVo;g%GvGn43qc-KidzTb?4fqOIL9z?-N-1^Y34^ zKpn4gf`ssezwaXY?HlOVUa^dwYK>KRDaa>1E22fq?bn9n+SrsAFkL$fu!$EYY2p^o zTM8%1^0WZ5VYx~}43)~dZ>3f@KQ=<4W_lN1-m_Q^UGha(g>xv^gXZtK9gKLp((AM{ zx*@x+osncnw1+Hmc2Mb@Fl5ySiHG@$=|2nVxau*RJ3pqh(udQ6g>3U_QoQ(e&d)c%LaR~>+m117K+y#bIoJG;7{MKIvRSY zN%^!PIDSr*eIokTx&7l_`|ER@=d(j`(&uRJT53k&z?U^<KZ#+Ob+j|!8~+zM?;Ej)tG~~yE;kn`d};4*8D1= z8ewGu)Sr1`sk16&~JD#bXtr*DDy%iIAb5TKbK_L z&0a-1-6*wMMcM+Eq5Q6=(Cvd;+nkh z$Dx1i<&d#V3C5YR>fhS_wZD-X4W;X2RKX~(Vf_1!Ga^ohaOd-dFZLelJwzn_n z)NIim--pe&S%k}ZrNC2|EyrZ^?Z-bxa4vZZ`T^P2iIJ1Qz>`-QSb#x z!n5#Aor34#g|uQ}L(*oEL+q2c%foy8+&VY!YZtAL*zdVV%~WbX8oRA^QzKS=e~Y7? zz*stlRU_m+-&;k*V0-u+V3cYab1&%^(G0On@ztAz+{VNs&)yFhIsbE3mqdPceyPBq zud&ar-#o;+W^*B`Alpe({F}kkJ?DRHbKLpB=={g9v1Udtso&GW5OEGT9xjQNciQ$Y zWpL7FwiU^pzL7uDzG82rwvPTJ!4-2BC!Id?stuRQN@NWAn-9iyP{{uE)G6&$?R+@1 z?)f}pPJ(Og&o(4&!sR&&|GJ1To~O(1{O4sA|BfM?LM!@zm0a`{7|7gz)V)a>)#3Jv zNj*5cAIiT8OiwZu87YU0ZU-Ez8jHTq&3tsv!O-!I#TQ)WYbdgdh;vT)&9Cyl{dk?F4Ly~mDVBgb6+Tdlj&JPnt-3Lh91q0$rXb70hi4A6tZy0Kep>_pW+WGri+ zaKUA%yHtx;d!bY1D*pAQkv>snmm|LF5`@k{{Q1+5Q<-C0oJNTqGhLGY{dmctCJiZqgpm?_D)a{rn zY1PIgtVuID?Y!(@plsgyXZLSUxGE6=N>Y+Uy2EIL9hU=NSVrFn@>{P}|BltB&f=BE`D{Pp5*@`eNPk34!GrhP%&L1g$tS!BMaDKu5jm zy2IVykJYd%kE9LN3SY#U$ikHJDC6O_U!Re)2l_NBeF~8h5Kca7JG*k3H{U5y!sDP$zP+IkC}8zzMBTUi;^GvIWLDF*A)MpCAlVjH;a2^v7qhWSIXI86f*S> zEw%qMW$g{D7xzwMB=bV#3bX2jr!iK5P_U( zKh^U-yPggZTd1RF=5>6E(EVvcP97*)t$0~@&3uWPV=>S$ge9H++82TM&wfk^Q^uhB zo|wZC%@b`8=Pq6AUN+gXa2dbm!us1Ab_T;bw0YBDcGbW=pJpvKeOQ0c{}|(v_qg{} zZQu2kj+h>1WxbnV_cGXP#tVfZM@2B7t7C3_yWCYvLn_=)3_@_$`=BitpTOcD!lfLEEL`8!*kxz#=4Cg(%eAy9OWuHw;8a2PPGm|?CFiw$ z#w`=-#rB-sHS>#rCpW#LyzvFnt&m4%n(~PoOK}|H-TkKd#$6R$&*F{?A0095?}$@Q zxmvlJ{8K93c_-!KAU=U)-_k7}cO6gOZME(Cx&J|goWot&5ncCAjK8-N74?T=pZI~y z^2Lmk$N29o>_)zpoAOvN4e%o8ar5m=Cz}lsdAguBMsAkgu7bHmC@vEU-CdUIE)^)B zW>FnB>E$Chxu2$i`R@9}lC5UPU%b(`J<^5D=z@LiwTGTGvCECTI|D{#Vj{TE75402 znR3Bu_EUkoWe%DPP*o%d4+?O)vBOu?+xTYJ%m-RiN18dYxU7*$9;atWC;nKfei&$t zNafboQiATyB}%6j)Q$uWXIU~5>4d31?H=qyNe4G9AM*T#@r9{f{&{{&j;poDfuMDD zw65XI^a~b2`YQHOKQllHJaqth>!&*$CN6fT_>hN*Nw;6#Sz4bPJ4JQ>dA5h?1La#^ zu7rMyv+x)wl5@dHo3Y+yxVmt}+_oeBIuCW1$kXj^fCRuQz0~&IF6O=W2L-+-jo8(& zI&-67Mm}1Z!`C(9KrETPM56x zTbbGLvuMpidEvCoDI81a3Y^Vd^3Z(Rq=%G!gdISiCXDDKdVy z=a2`(50-^pnLmsDe0PhIuXRtBc(?z7)`Sa}^QNcBo$4&LKDVbhHyiQt-8#XuzjpoL zWKy$sw!nz{7m&HBOYhRP|C}YXd{m`fEAqTL%jYjgUr?(YBHuhsa&VRO7`v6v)4dr< zk^khj?_~4^bCND7sk4nTG-suw>{UuQH1x>0#{D{>%_jT(Lso2JS8gBwu39DB#Np!h z&?FbTUv{fEA5n_Af8PYjXTlGE|4GVc-i|9`l_pi&eO`A30tO$}a-(nDF^JWD>(G+@ zu6!`nMG4b}35x5EsZT{AY+*lg@aeQ}6IqlnaWzZN{rOJN)j)h2S1*=0tpBtukX&ni zTv&ypQMdNChE0ie^rY5Oky62LtSMvkrYfY&+cezonr$Q9Iu(x=#)`0-2QkmfQ2OV% zLC@~Nz}Yi%Rxl-w>wS{8gBZ@oa~~Xk3NMI31??>QbDUMoNuReBQ@33*TpTj|!=1I` zGd0--EU(Q@%H}S4@^|yijJ_IGRH-{)XI{a4{zIO<%^TB0!(TX|V7*d~sC3J9z?}QuX=O zn_rYf9FeVEcuISG+Q?Nc((}Ce{8t0n?V06BJ^zE zLaUo|L)hYv&#!RZAKfm`b`*8!2|*+2$MiHENyU|m^$XKbX3V;$*6tCLV5e$#cC}k1 z_hJR5P8F=>-5%UVsSIT`mSE)^))?^dPC8Y&R0x^=61#q&d{4<`x<_sRIIRC+2ClQ0 zMA2zio?`tsk2|bPIt(hVE2DQE zuJ?|#`r@%i?HUIgGqBVp5hz2u; zdr0ovi!6MXSYzXXwiM^*4%k~ZO0IGhLhjxlPk3*F6vr;t4)hwMK58TdS#=J&W`{fY zqF@9NX^&W}9hnoj*F?9-NGx7KdUVNvp$Q+H5GUJN3KG#NtnOWC1iRNgd39cDu~NEf znxveT(#O+t4s^CZwBf2>l)9rdoRyv#9$n#+^#FCq*<4366?XFSiOyR_e3^;1m21`a z#|@|+rVhDW^StD2` zwWZ!}Dc*F|_P~!&eNIuw<)hQ?3}qri2@LYxcSnfX+Yd3~V_&24bn-LJu9IGl-=%g> zS|bX~ja#Wju+fVem9~4|6NB~Xin2UTGIi4z&)LFeT}nF+v7@+%1=<(KIR6oMHKp9Q#JR-jFlIsYI%t$Taeb5? zccBLyDCTJAE2cC{p-SP-Yx5oW3hOUvLV-6Gu)Nn5(oVW?3g5C=!wb(JI^uFp&lFII zGkVLvK1HYh%+%(5wQ+YWg=A}}9c(ydB^oqsRnR~mwR^|JmjzCSgSKg1Pu*VE|sgP-R8y=74&I3guVZhCr9uFCrnYok+& zGS%$P0+W4TE^oSGvSg`?IO?Egl~4AMxEB@Jdr|7VXmso8=!~hHqc)$bm*Fh1F2^Qf z^r@z?o)ChXK46mb2&ubXZu+Jk1HVqRR1Xnmva9rL5}GmvY6_KI>f)9g*gqPr8FwWe ziB;+s^z7{=gE$*2Gr5HuY{Q>4GhbG&7E}<-;B>n+UlO;_9S{s+`dW-jH5PlAlLKh!X}E6Et9x41uMN`N8vY%X z(V49Hd=!R(3t2SN{en*CGl@0x!|b}o%(K=LVeUsJdCu5Z$L*4Mm|OQxrQN65I*+Hd z4b`2}v$@3)ePvszi6wvB_lOABsHe8kYs&}WKNj~G*W`$MT#?AP`d1A~gN0Z>Id5jR zq0>KE{6bgVwo`}ZrjAuG4?o-8gD4(%r{A1G=PFfs+QwPU8A1X z??38#-oEP&@~KBnFgwLQuedIDEPam2kxS#VQ@%gMg zxl;-^?mxDcbf;(hf;Mzc=4n{LE4t~1oZWg}A>_z@km{5^k!-XVD(BnDp1x8G1$(5cPQ*1q#Cs!UG|2;&FyEV<= z1tNMF@It483@ooNQjLvjJQEr{?San>F50BF4jsE>9JE5j-M;)E%HBL2%J=ObXN(Mr z8M0=XK`64MvTu`pPlW6uNtU5T$lA!rzJ+X&vXv!!c1=Q-7LtA6w}k9`ulxP|J>TA+ z=Qw`H@jU-^+<(+G_gvR`p0DlHwm$#y&aTOd2LM#&*0qUTdciF|Y%EgEr)`bh$eBQ! zij^t)*H;hjWP{7lk!SzfCi)k}x=9z*!2D12fwb!%=i>Tj%TFtZm?y9iwpj^3Kdc(A zcdq1B1m4}w-`>*D;G{z@cXNXdvF>3lKt^Uh4sqgtW^pA&$Wa7EfTNVn3x~Z8Y66Sa z;w_nCK4tiUg5xGL|KhPn9$Al6FntSbl{P~&BM7?0v3&j72VeTz7;D`}1Kaief5+=f zoxfN5ky)A})v?sz-Yn&oPKPbaaei*b^P~0X0Q+ln0#tP9VI{te)ArSz$Ft&bG4u_g zg#IU8X>!qoN0=M$LEZbND>;%tiCHWMr!|-RV4TW~>|5u9WzB&ulQ0En9C9E>Zdb=4 zc!^JH0^KR{J1`-%RJm+X5_`jdxJVFfH?u3Q|Dy$l^E=N$VbT&m?|oT7;O@9g3-yy1 zfz_%zNr^XZo*SdzYTy>i*AR7>%=jvR*e5(r0RYh;xZcVr5Xv>{g-0=<2*GVoz#alJ)t`>rkY*Dg(tH5|d`gQ9PaZOF^*bV~!XPA!R*7Ka3-TCg zPD>xq2Alt+j$+)Rd-V$_8DDFQ)bQb868e~BWVSjhRgUB}I=cs;W=QirL2|eBBJ*}! z1KdB3AH1Mvr~%O)=fdeAM#s@4zT(GCq3wPkEzxs(dBd0YfCj_zF7uA&SfZ30Qg{Wx zA2o_b=S(MCl+*6H-Xw7sNrS`hNZtm9oQ=Alj>c!V-h&C;bAO47pilZjGDx%8e9)~D zd&EK>Ourfgm$2}Jh7=BlyFh8sQ`{l|cRf0@1y z4UICOJa35j_lQge1J|rWa7ltc(48!R%HKKp2^vilm!tsTG4coGFZusoR(+kCB;l+Zp*@wL8%MkoiOKg1rW@N_Kqao7V-thYaUQ@j4NiF^K> z5K81^%yHYjmF5&(1Q#p@U?<={``xi6jD6*8BHy3@K8q7rz{+-Jt)?|W>HznnYA{N@J9Co!c_p{J&wac| z0ek=X&!a5fHR^~@)Q`KRrXqyxHv%Y16H25Bb}cRc>vs|(n5H1iS9W^tsQFKN@~u8& z6Wz(z=4}v^m%HYnRz&n%t%a6N_<#n!%%MTmQFg)9MV1A1t*=Fr*0FLG8u+j+xU$CVC%_za)s`;RQ`F4J*cnNMr$V5|jO7gT3N?0^5n{P-f@z8(3mRkX;741<0S@Fj zzNt;_02WR$5a3`1{SW?l-1RIeBR8FW+VFl2A z+LLv-@gS;M+?TQ{NrGX;voDDGu*!fI(x;{4%t(Y#}>bq{HtP$S5^yJ4qXLpQHs9nO80L zJoC`tmVW=6rkRpu(MQfUi-$i;YzMq^3cTH&Ok8>%5O!49sz=;OyzWkwM^=lyXNr$P zr66KFhC?syF*I7^hjE`ej!YJGi58#7wtV_b}5PN(ZLwzxr z7Qt}4qVLA%IS}AqS^4nYst!U?ZPoi7A?v-{G&QeXcn^Ka-p-)@zXM)_x z7Ovda#bu{Aw_dczh;uLuv8w(0^VZF;&^mr!_p8za5x#4o=@X;~6APRw9eq>REdU00 z)wW0u-g!C9f}lrWq(sryv9&5TV8`jhbnTy21GS=rGo_vx8b~iy$SOG2E!i&dr1;VFeyi5K}X?OyjaYmf9 z6~Wy~#dBw+^v5Mf<|wo=|MukiCvL@&2Luflpla)J<&}3SW=p)D`Nag$w8aw4=cmeD zF!}yfahtX^W}fFYj@~Gi*f+tilW-h#;C2zn=OZkQ`{#9}0g?DWe)YZPWOk_jZmU}F z6~2nVF53?xR|obyphUCWe%`S{UCCX>z_crG37 zTX{|9kF~K1% zCdLaPFf|6@X@th7y#c6S7Rq(BL9K_6tC7m};M&Xqc!L;YbxVYM;|@?{-qWqHS(Kx>wao$gTf2{h$ zJyOaN8YMdlWtyJtJS&+8%Lu!9E_q&<*zApNYLdGPI+f2G@4#kBIcf)9ov$g587ZR= zry?!VLzr(0(%OayPu@|gzVZ@YeA8kxzyWoGbkLQo0f(9A|EZPesCwC$c;&hz7BO@E zMhme(wRZIy9X-6A;cM7Fn;M5R9(=k8H+6@VjyV-sEGlImXe}#tcPAbl>K_uA%p4Mp zL8D(VhY+R~>l}~{oR^$kfPZP}x>vvTBQgB$U2)9b7ZV8Y6F%Z+<*~o0zt~ps`p-d1 zy_fa8+wWjDah6y~Wgn)nUoG{Xpj^%!U$?kQS!%56_11>^U&cZ+k;si!Keegdt;n#j|IJ@JD7Lx!F;%_Gc4S9Hu3IjvJ?we=C z!%Z{4V`@81HqJCf;yChHLtlgna4uF{`owX>=N99(*O2PN-%6 z5iSoO6N2pm(zWxDB%yo!YnTnt8jUOn%z63m)HzZFl&@CC6j&s!2jMM~MM$Sv1S>DK zP=qWb-r({j_7F;;UBYp55_|0AM1?$ShEfFg#XDbKEZ?7XGqHSN{2q`EWn`_!A&&+C zQ1A{Nrj6()bo0@%aR^5QbtsdyP^<6W{dl>x%j3@W#VGb|S&7;GsP~M4=;0B`*?Y4o z#xl1AB^*ORuC#bR<%y#9=I(kOj)^?2``D9b;gev>Ncw2oiquRe_z!@&TZmp?8vzmJ$MtfSQNG}I} zgQ3h#CKx+bBKUb+fbQ4#2S4ih2}%Af^#&em96s||y8#&)M*-gkU?F5VWf~v1|Amo( zI>3Gk9LGyH!&SWhK7X-*%*!Ps!3rrY@Z0#yEZSbO%fcPJ3So*e+B~P-QOx)g!0)mp z?H2xlIS}Q5|7F(1#N4{Nkii$eigyCvfynY^Md0VBT%|~`ot6Ro1CQ8sNm(O3L@enn zjQ9d}qXOQY+p|2RA0tcD;Cr6_xm9qIJ||`@B!X4kPKEy)P3+y1;l0PGF9JlK8dFU3 z7L{KL1x4<;NmVSB?6(l}Uu;#$=QY~Z)L1mNSg(>94%a7`jD(ZH)nXMQ1COo`DN4Dp zdTL2=PDQPUY>;IM#|C?|e5INQUhnm)zJR=oCWT?8p4_1&y;sTOKM0k6=06bIlvOD= z>e)V?H)|}Y)Gug%l9gv2nqQD$;>O;aE=yXc=4Zons#v7G zs(u`$yREZupeH*t5z&!*g2{L;#6LLZJo8gu!&a%PWAv8}7}AbLJ})AE^Ic-n{!giWLWowqokNYaHm+)r3YS$ymSjrSV4-w7asM< zZ%=LW@yEr)g;tXgAV5^iChRt#F{TL(rf(A;|H)6a&=Sw7UW6u7y!`0B~HK1 zuijC{3QO~Sk0PqWUJ!gkwh?YvN|!~Y)$U@Gu z58RQtNb6283z{V~>*l^4fAv!C_MaNZ(-Gsmax~&eDmpd_JCJH|N)|xqGtTV$iTSem z2)1&JPB|6k#I-Q{H(>eAJ$z!GkBHW^ot4Xx9%=kJq${L5#0rytuMCb@?foiELJg}C zbrH2Sj!55p?tbv7r1Tn5!f`kosuiZA^qpAV|0dW$$q9H$~*G2S-9 zWaC5`%9?tFlp~M1D@X7{ko;rWKQC=d4*)`vEwKUrZuS2|sQX`60?=URC6N(KCxN)S z9d_!*G~V-OC)3pov8xDH+G)_uJsM~=Co}@d=S6RfV!v(KGCQ;9gI3=N)`(- zMx|CoJ=OZs{VK)r{>;U|^5w;{JlVNRytjv2x&hLpGs~kN8Cn9Npo5@XmeFcd&)gq= zr=ntER4sro53Ngr+0x>KxDX-eUw=AUtv3C1#j7C16-Ki*5sPN-+&t-aT?g75r zkqRCq(xH0t6XtO^9Mu70EYrihT2AIDU=Xp~$_diElfyOPBJc0uYs7B*SncSkx7SaK z%}LBMTw_X#jp|-loNJjxo=2Wg1eSd>(ph>xV|gM^LKcF&_Ibe2T92Tp6pf|^+V}xa z$*jM+1y}%72~^>8$a5Te7PW=9%zPbsUyJowTZY>Z1JxDHfF5k)P`~Z!cy{#ZW_#R` zyU0ZHQRN3Z*&N`xnf0#Ot^M6xTyF$NtFU6V+s7Uh=EX0emfep)U|zJH-qbNSD@{PY z;`Wo5*APmB&WAg~e~&q+;xE`B*|S8sVS@PI=j`l3J_se@`J0<6v!;SoNat%DyEYT? zr{2BHm1Rb$sGxxkz*A-}&GR=*tRy6{v`s6o`4oKp?)v+}c3A0qWLX;E9v483>!Kz7 zPT1CyT}c3WpczHC&y3N-2UTAr!qIJ7DlaV?@jkrgz)V@Rd=#oGAt3uS>;uvSFGion z&mlpFkw`MN3#)rsld{C(Ko2iaBQw)_*kl$&3+H*JLGx8O0^Eknv6K|X)>VqrjzujF zD?iNLx+ZQAogzwyuT+8Em)bd?1Jp0JT1ozPK{hzjj&=wfynXBhq64d*pKlt|OZdNQgOu8nJ9c_FM% zU)TUlv7?A#W#)T)Pjwo?*5kPRi$qIl({<}f*ais6sQskJR&tHol^fgXeuQ5AYBIdB z7p|aAdRg3bnoE_e6ilq<*XHcgFGN9S# z?PXo1)c{OOybllp_nw((Q~djCp;vANp@LRzY7PII;x8hME|8VZ>n7N4&w>*d!}2@G zsrlwT7kKcmbIUKOFZ(=4a!U@oUzM34FupUm>aW4OTV^(T=Vj!@-HE*s-Q|3JprN`C zH3=rL@Xz>`ccTy#SDWgR#)5bR4md*~(s*DYeEO;wD&UeYc5p!V-XruLax~=U<6m9A zcBP{wkKFJasaXdZvMV8c1ymEmY;wr7q7~`6T@#IO-DyLDW8!oiUc)$VIRpL{vT0GO z@RiCT5n7R{quu+?C{@H+616P=Xw2Y-@cXlhfP!xK6oLCY5=#Cts2uGreFxyrvk#(n3{^-7p?SQ1^U$3TzCRpCDQ$3hOsGnAz&-RadpTfvsk0je0-l{bmHRNE$wSBXK zOGBdpGsagmMV9d!!kZ^28=wEa2!y%VF#md}=1jXi3CX7+)&57e3`hBz*9rw=3_%R; zO~$6>Akbj$idX$)oI~A({`19q`Bx0|<{0ESf#_gY@UX7zXObN4k#U`en5X`E?jYLG zGLVR<7(R9=%J&A9^!$JQ-gn&88z~>PoUH7O8}U_P)F7*+LLn3ic}9RvVS&V`-${6P zAbd2qpap*i(EMCZuVHcXV6W|)c$=HQ8o}_hfvvU-KXb1{S!R;R8)rJdWh%GoYBp6j ztNNmmR;jl~<^_ zccS!(k;eDIweoGQe50brd7gre9=va!BH&JUsT97cj})-44GLZ7eRSL6&DllvES*;; z2R~giW?-KJ+JMi8CW^d|jJ*7^MB^F?tp~+>7P2-M8U(eyirX(N=e>;T=tlh(JK_EX z7tO$Vl3PJemi)ft@sUqPLmTD9krRwvrP_co4k_e*HP4f4{+dhx;e+XP2a*A#S2nJ{h4>}Z<$G#U0l>B2!N{` zo{=>BZFq}_lNUDB7@N$8fXtvQ%KFFzy(6^JC3maQLTx1O`B@kdi(q z6mSgLCyuS%Mdy1saKzh$D88eg0FaP)vL&MPzi9glm;+5a(}96_b7vmEpxLHRTRZ7# zE>{_7*(c&)$B4PPT)sd4nEv%AD|If6;xf&0d$%p~Jh(;(HJ`~ z=O_zK$7|!wZ#kEVavyw(JSGf9+HtJnJ(&Qq9; zBC`3XMu5#DO%EtP9*uoym3LEE^2P=#-M?-nk^eCf-Uma5r$cBe^DT6% zaIhA!3N&02=H5dij$i9&c=Se@^FF>2AXC1`tHehVUUJ8t;#2X8x6Hu%77hVqERCgg z=F<<3iQ99Ij%|^vR*K!ur{H^qWYcZ|`{vJqkdWCH8G!DRro=p4*-`!Zvuim6d#}bV z^3(_>sUz8rqZ(W|-@(ry6*TdkNz<~3*A=f{S&-)-+_;xJi zyR=`A$q3&muW4HgWUIQm1JlQC26pveN*%cmg!9-{lh}w{Y;m#|1Der3VfT_Uy`=m$ zWv=Yh&Au>R`qFR%1q<78{iYRf-JcR*e%QM6rr$(9Y36MJ!wxd&zS==n5u9mI*;*pw z%s!D+?R=?4qOC3zVVoyhbmd4tXaLfze7cCuDngXKA8G*dG7%4))qi&U){yD3!8NGb z|L^ll@-SmCt`#|^;nb`)g=^!2RLI^PAMHCz(h-yr!zzByd>4Lq!KnYKUJM=cv=aT@l44UjKFk=TnP{qF)fKK3z!Zq2wg49dbrvB) z$qwUkG4Gk5kW@eV`n}z;ZGTBJfOT>lRPTmKcZTifdY0}6Q7v=`4m}D)Frpq zd=cG{3a<>tBHo@B6dqDJi5IhPi#Zr}dF|6z_GZ?E;EKJE1)uf;F2H`xnE+!sjM|C7FcV&^{`Z@ko?tzcr?YVF(0O)(@9>kUIEesSQd0}(WlG=Ov8&!sz%@1|YbzuYOK6C8OzkJ6~ zM`#8O0cGVz2@-!hMRw+(0!p-+B1}(|-sAd|sCID;Q!w3sbExg_VjafWIYf{Z&p>$FMKEWF=Q#nH_VNPMs`)<(f>qp;IK?c5|c^d_5ZgD=f!7)(K)hG8<*UnFoBF@uZBM6C%S*YrrGCo z($g^=?N-cRnA^>S&0mQA7$zd8QD<;`!6PJj%yU%6up%i>oy>z=x!jC6#}5G7d1~09 zE*Un$!9;O_3KrhytEs}xs}|8#Ya45pjuHG^BjFqJvIGHA{5|k@?(F;7^I%iRKKgw= z#RpzxphOiJLHr`S=1pwVB^Y_G8XOIOl%Ys8bkR2w1DZLn`j*R%?iHo7N5DJh?f;`W z8x@!StA%INX#8911LXvs{y7g;@OklZJSNEe5#%cf?UkBk~l=$Ln>Y*X&LC z-6-7K%>_W3i}XAumJ$h@OnT>0u-5{JPc?rhGUy;4LOPMnZRV)GfBC3KPx;CF&ao?1?mw^e{37GRf*S=a=^eVm)Yq1T= z@8{ZQAhh#A&h%P_Y6Chkgjq>MZBYg`$aqfr!D27RZ}N#(^j^>0SNE7|{nc<}7_!p+ zLC-tDn!U0vL42zqJ`R;|knf+SsWE-e@oEH9@Vj9~%i;ln9weQLRZA>xoaf=aXN0D+ zw~-2T0~hWE=X4Pjm!Gj*Y3@EMn4{|ozUDi_ho4cgjVNSlXjuuQplh=;CwMwC#$}oZ z9k_zeyAZ|05f71O%j3{nK6hrFIyVf+MMN3*iJmQ%o@$;_b}tGtP&3ahz0bB9D74UT z=me{6r>VF%u|1}sv`rCz{Z!@j6x-~$$F;c94;FvGf$Q8>+pSwPdB7>@YEdK_#7s_% zamq-CjCAP%2>hR;Zdfuq@*j4&s(1A`@M?`<>d0*RVkf>HDkf$e zFZHHpg;Xi#M&*QK-|2Kzh-U_)ciq%bun;yY7ye{qmBdd}v~LH~?l;Jk&H+1ACBw2h2uPC?(~HxT2Kj#+L4;^@I_uzUxQ5C@R$7Qe(CMu>jN+U@=z<^1 zAY`(rI@CHC)r1qdHqGJrkH@o7ZB>Q`JSFIE-b=q1YrcHHNaKVaN_8gp_ruE{-)<<3$6r{y2 zTK@RoKr&~^l!<1`<(@{YthJiX@#$_PZh&m$TaejR3I0Yn*(QyEguCCbVqJxwt#DMz zUT+J_Sp8FMsWWrJ?vrFomxzO`u`m107tCc3$8I7vS;*V2>&qunvy)KU(F}3<<@^lc zcNQT5vgJUQRd?oBp>-C!UQ>hG@cKU-u1c*ueC*h=3r^PiBM-+e!=H|4J3ICr56Lq< zD!*V$ZJzBmly41Zm3XhG9#9CAfHCa;eANgXe6#M7E}w_<8hx!4K@3Go=UJHGsx66D zYCMP;|6vpUqxt)Rzx_K|&<{XO=Hr_i{O((w5=Trl79 zOJ20ALaDCrofN9)dU@HZ`c(HBH`(J8k3rbVTj3ln{f-qb0m0K5YP;23iSELCuRR#l zjAA<;+7z85wFCe9_uc9${o4 z(f-C3esdt71C(Ss=n%I=e(JU*gj&v2te!y7+nOv33bZZKC=amdL|!G?;7fU}?!Mjl zylX)T(Swr4$q|Ns9=e=_4;QMSL6k0z-w{|HpCMJJdBRW|9B_`0D<2$3myR_oSNSUD z@D@gSQU2B zYH8bIbeO_Ilt|IJM0BlKoNNPpE~cet4L+Mxa15P&z5K{k$M4cRnM z7IoB;qcHahKO&NZ^>|69*`5nFDK6yox$UlB)~7z@av%K)mF^9Z`)FTvE0IwHz$miN zF-EL^0!oyO54U^c-u=wHmI`93 zOI{LFX)te2WXRGLp);7$PLF~WOFH*>yZxf11YpWPJ@Y1quW4uW&-ODJO;60z+Eoh8 zyg4kYp(uUkD7mgoJ<*yTdMAE~Z1Oa@W%xB0uD3fG^LY{;euJ$;ne{2eJh}?-?LAfXz>8sSm)+y-!mp~fpIBO zy2L0XSDf2*HGWc!KP}GpdL}ND;kZv02p;~g+w9**cngZm*uq}<{VyTRGwAptgl@}@ z#7Iqg4#nO~J)u{|Fn3f6N|>?U-c4ckU@41Q(>7inq#E-=&8bIgzGI(jnVmoPjcljs zEt{%7N0Y~*7advbe)f8?^!-pMRzxWEHtQ{b5G9dla(u)P$i*kKE&oyeONe9$0#-UQ zO?2m>A#ot(lN3SY2pFYad!3gZl#W3N;UH@LqR#QHI%@cNHL}>xK~K=JLQLWe;zWgo zz9N5;G`1x1YA8T#JX7q|5@f*2wv}N9IOQxYm=tm{3P(^ZM#FDT#dF#n0nWK28HZK+ zvZT+^PE?Gju*3yp4#Zp`7ON(TRMx5$EY0WZg5WB;0Mci*NmX!a>@v=L=`PQcN&Lif z2uvvoUt*9%99}*6eui(iv!lyFZ&xbt^w%U0>MBy?W7CigEvB$0lBW)l+hwvsDlplx zMP*0?XnzL$UOjcLOrjD$8yhQKakZX0jT5dstX|;nUu6y{zW(v_-M_Bl zt2_pYK)a}%BLoXYlCu3>usaMI?h|=F{f!~UxMpf4shILp`+*wo?sUHfp}z4g=BC6O zV~Ph8^xjmGq48i%Ry{`evvX(5T7+TGgEiNH-vtUzQ-L)M#@*Yga^d7gBK;;xmblTGTT70`?Kgh=29xh69lQ; zv)J11&Wh?T^bhGO+-Vez+C{b09``E}u6y;!qlOQvVZV|zKGhXfKYsKsLE@;(&*o?v z6{9*QGcKQ zb-9~1%(Um3Ls9@h2ccx6&Fe|Fnb8l;9Md2Cj(UJi(15sdr5$SWK)G2MHhBk1c;P9r z_+IqDR&x2ITOZ#+D3Us30@9H3<88$u?mztyexj`NqIUEI%0qpglM2UbIN~|P@iEB$ z&)tSVQ!m|Ys?5uF!F`afd^K|xj^%rC0EcPp6(N*1ug~%Bfh>!?g$;ogGtVp2GNo5F z-6i@bneDh#az0qTl?_%9(H%@De*EdO%6||pKA0t94f6gzzw$lY0&CaR@vdLgyAl&o z-Enhl+rW6#Q*|@K$IyUByr04U<3n+Wj)aANz6fbRc z75o(r?@eD5)v3#4Mu0s}PJ0Zr`}dE$_Yg z$Um3{!ByBSW{=I}ga}2;eRQiVV^kCwMY9`Sh%kRlY{bB@6BMTxBBsFDfWX61X{}^C;mrEv}3h6cCy?(DPNH1#Nq2QgQhdE|rsDBVXy7TY7 z?Z_vPO#?YYmmNosA-2Oqx0(Z##Cje)@&<9frS1q)virZL-EVQa6@HcC~9L=`CcSX-*MSAUbo1 zA7i5@H9^o>Ef6kQ~LAZfStTJ;$2&jF@Bu+)l&V{GTE6ZPj;4|BQ)89(EZqF zcrD%qf~rzfrS7UGiRoLLh-YxZ(R1Vzy5L|eSAjEIv~PIzQt?iAo)x7R=>j%&hXNJd z*(X_Z1<7^tIWu$Qhh~VFWzZIml`<+nWp3olIRQfyNL}ANfiv}8@oAXjx6Q4qdAwiQ z$w?F=xD0_;?0et)76pdRHm{}~GXAMFEwHT~3HCUxOg99U8sHEP+2Y-F7J@Roujj8R z*FJo=8|qC(6$3PV;-PH8Y`7t45J4nHVRhyM=%mm))Jis2A5D4YBiyS46OPmll*eg5 zKv|FB-mz;O>hI$bTQSobelF3cB||Ujv0z-}Kctmk@MIIx_Jbm;g!ROGBtA_i7&d&+ z?RfO;g@It)YIScyUBXL?>(zo;4-xl>Vp=?Dqu`eN4q4Wh(G#9?NgEy81wNO#F~8Pz z1j^F=ALT&_xT*!Gc4-Pd(hlNkVrmw^q-U(feNpx9{7#mU#jIjX= zg9mh#1+$@4(Odc_TV|A4DM%L_Ie3uR$52F1I4XkNCBAYK1OkDi&j;@x=6{7#yL=uQ z7^_iqR|`57d&2e!oFz*Y4;a}4Uy}f&S8^!O0!bsa=eOaUVC|4E-UbunZr#Mv-JqX$ zb$&eKT+jV1p8^m1rMvPndky|iUP!KCgs~BYwBoTiJ&pHKExA(BFM@8RmR_&7bz8k% z7qhA9%1Ed^D-RIUe|(6nsMP9bB@$_v_wflq)#JcA*tt@q&&ceqHC`eP4Dv<_)@f$a zTaP`E>=E3G3W_GkJ&PM!JY+$q$PsTg-xfU;f2!0|=&%2)d0`TAUiej7d@fuMu722= zEH0gp(vz0kwUjumPsXE@SgLaAa>MSNI|z4=f{Q!rG6o`PjhRME z3uJ0c##<+z1gct(0?mbo>Dj|qRUom(hjyX*zYWNJ(9623!rS<_$lsBM7cd0=#7N^N zNy22M+6?Q0Oyr30WguXk8L0y|!%umgh_A6^@T_0JHBe$mPTa$!Q!DjyHapsyM65lg zlgYcN?cN^-6v2Sg*dAhScRq<$kvM^9@4YfmA$&6N3mu7ji?4gos&=%oe-$oC2Z+bn zZ7#DXfri$T02cY=%#?L`(X#6H=drTrz;Un}uU+;BHGMgG3s-Y^XYX-2WpD;#q+|A# z`{lX>;QY7W2fCwlPA)k|pYLp0E-3{EoV$vy!_^T<`#1b-u{!OxwqUwk`Z2TVhf#~5 zRiPc`kNF4^1ADS5Z5IY*>`yC)#GEI+Q9%*?MOf1=mz%tdJd-9XQav6l%!iKAXe1+j`>&P|LPZ&|m4Y&%iPB=O%r zDp#2%<9$L-f4wriQJ%QRXu$dCSF`jb1Glg*<)?Dx{h~J_a{^e;41aHJ9X)NFfKT~a zD5j~-`M{_lxBOJrY0UeEk<`^&Ag1n`(8saA!g8qJV`qZ|=N?Nc1Am{t0E$5XfV0~4 z++$e_IGPIpz2eE32(c~5V3oF|iT6Bzb*%TOB zXk1>H66G-*Ijh2pg1tl85)CeK(O7~G&GWJaF?_W3UBOZ_tC@~mVA{4EpUSVa--~X; ze9JlN8N4;IAKQ%8F_E+b_bh&KU26nIde-qAthB1FzrcM#klTJ+mBliF^Tek07K^`% zW$Y^saFhwB#RbGAm4e^XL(y0&)q!$&`tl?~%+-c5-~sT~K{4D0_9#u~qMF%Poi&f8AU8j>=WMsKP~(DJ3{zpR6(pLiU?b3s_l2B7H3#LZCMs~ zVCVz-t!pfV0WWK|tRy%iF-et)x{X{hx{!Ph#tTEiB`?EW|3DP^Db1tf+(P+x zz0}cy40D26OH)(b+hpfG7T?{-D?eVRc_$3W=SL$8?txU=UH|jJ1*3vD!SzBhQ?2&z z;XOzRu$<%?@&=K>nfzZD%!^mhug3$Zz;i&zj{WZ@JAc4d5KGW50tKpv4Ge+6Rlu`$ z>8*^ORB+%<2*uNpa*&JhkNSQP&_bSRc$FLG3@={Em>N}nhiGj zo(Kxe*BxdiWXb@X>Y}&Ve${QiXtMGtZrjfp+}Cnf;U_e7?9mKNX4*DN$>aML%rVI- zaFAu*O{gAOhGWEUY}HAg#;CVb&$cN|zjvg>5Di2~r-)vpx0OnNWcXH0;OLn?&(o*~ z!XGd701W~&2wwDmcPm3o*}Bh7TIiuGt?$=90^zcNGyp^-+M^-_#>Y*YSL|+sT!n1$s7~F2ac%LjSkU9j38e`Op8i$7TP&p^zj!nbdB||}P|i&clkexVLBFtwbTDOn zGLxey^e9eg{4pBfpER61!?ij5q;cN^1W$B6ha_E zGL0+smcG$K>eACwY`OA)JxUk8cM}L;J%^0spZLB;8ZMYX;&SE_I47KFvOZ&$(FK|O zkDb07_YS84e(`*iYuF%4?suCoS^oQOm*TO+u@QB`#aTXrOUrq-&j;4y854rNsjIp` z{-Cw=(d+Ne;-AZg8oF!@omI^Kec7P$49N^Rl=i?Slf)VK_9aq`$am#OTg3VJk@88> zki(N_nmHw_4e|1LxpoDRqh8Ux9}jtq=;R}dIZ1hM)*8kjr}JD?MH;W zxa2@;o~~|>xj|#y&7jW9w=sms=!%?M+uH1o%?!tz3v&yeNQ?r7el~L_d8LQ|ooulWxB3Ziv~eeO}|3pm|5q zr9Tz!>e#U;tAZfe&=pCvB4+r+urZ7>O-T=d{qo$YTOyZcGDIigp67TdCmFmSUVhdQ zz5)A+U}2il@rpY@&UDC9M zPm}~_ZA8?#3l!k!h2N2ac$0D504olC?ZS(r|0+;Yg7_wgx>UPik@E84Wh!GqX`2_O2zE#bZ z`+xTb`pbO;=vYf-OF;B94?H5|zU=BxBXbM4RN>Q%fx@6_yBznv9J?@Y9;0rR?me55 za{nFeeb5Z*LPGx0Ek`PUfZ|FZkQdR?2qh$x^K|m=IRLXf7;sIeRdc~UDGgP>$rD6f z_S`JyV`P(5s0|Ok^m{VmEi#CxJ}qoW#}<~La#IEw7Pm(0tWcQxJt@hDX%;}bpJr}`&s}_)fwikVzMc0A z=yVTtHu02HhXaqsLDWDuN#ULU_J~(cGNTkGS~h-|_xCto%WjkBhB;2u#*WX)lI&)p7_@PkPlKKBsbUm9%tuKoXT4}bDh{)CyEVQwX>1q zF~l69)#4>1!dUB=uW5O0tSx(YC?`x91ej`CB{n;ITc_r33>Uh4?G&y5@GGSMkT-4I z?HT2p8bjY&lBnL^Sl5y3a+q#jG}GtZkb8=A@Tz&Ge6dAsZ83>oQq#$_TK_iE(SBER$9iF&F_LNkt?F}Nh9;j zFJq|?YNaDfOt2>|-Z(Plr`Lr&+V*5Wcd7g6UCXd?8fuT@DEl=y zdC5d`h%c87ik_3^cNYDQSstjiQIB9EkY@t;_$`)~Pf^9NRiT1CfxsDH=6W5q@y?Br zNJdz*t8Eq^qReJQM^jOWnMa$t3z#UliPyJjc_Nw|-a6?~(`}`v%X6;9sK!YV}`xUc-(Z+$`o zE>|r3i$Eek88C!NGz+n0h5s&f6hpR1%gH7sm$dxzy9LR`)U+OlQi>tdkm#iXPQpD8Llty;E?( zz4bbBDK;q{lfP9Hm^{UxiX!)Z?E%BU7fzv0*fNMeJAV1R;+3^%tb>eHbe^fIhA%OHSgxy}bp_VbBU04& z^EP}tc@M~(^vUc#T_$e>3qA^~r*nUod^Sfs1=?PPdN3!Y2o3;}^BVxio_S3NEE0Cm zyf*6zZ>6(oQ1&cEBc%=k_k^0Jxs>lTHHnzlb{%i#Dmr9)fz2G$vK_|x14w@Mzqrng=JLUzy_>W}q55bOTbPC2%8l`x&!$C*(^^|!J@1)W#?q-&_ zZcm2%g)ha_S0gBZPS50<8#M-6Yp|SPpxe&Qn*<27ON?=ChMM!)-&m-}3G546JO|Yv z!>H`KUUT%%+WUlxiVD~^=NicRi$+|5RvmW{^&_v(q>`N(@3bw^S%Dfdls13Wl7ne>jGxVSI^{KtGL=0jq!Vc=UPv*vZ3l+u-&?LdA7)^gx_C z$Pzx2DPnu5Sc)hPK(mJB`XBF)IWGCj7KJFIpWiK)+TK!km^D#4fzwsi!I_N1uu4X$ z!W|&&wAG9+h$v2HEPvE%Rot=7fr}6t4sorSc_#eBpdTxRd<5`Vsd#swMZs6Cve-*+ z0|DVfjBIFI^kun8dBYym7j-DICqf*i_Yi@l>p2m6Bt#;9Q8;R~4WbR+h@ha$iSr~j zL!*ZOW#+uxUsCuSS_#a6cq7QuxgBg+Fa7QQSsafnVDvZAn!M9wpkQR->V>CdSZ^W} z*4jxdioiJQdJbUT^9YBZMwHXQ_8NEJ;yNFh6VW0Jkip6yUrs~E*%$w_l-vX?;8uChnJP9D9Qx#gdENIciJz-`_nYMJLRc0c^}Y|n`&i@SiF~WMo@g%D)oKX zYWBAjBN64QfS+?gg+U7({@>f1=YcL}VT3s=zyCu({z>5S1({jT+MhjRk1HwUw=rAx z)J2mizeX{X>w*+E&(RQRQBOVRLaI~1Qi7A?}(pLT=0x`3Uz86=*1<^5e!%M4|SFg66+v(%q9)`S6 zstf>4H66_#7XC9#;)c7>{n-b37mt`v9?lQ)tCzK| zuz9u!!eTy)HpLI@2mttbTDc>Eeyq)5$ zUC2L0@d*tp2fy!&$7@&XYN7N#@XM<_*+cPo;DfJg|UlF~7B3=IOJfI&%@h$vl3Nx9ekybM13{e9nY>|^hL z{Nr|*x$f(_R-NlyYk4dN8I1i=EMvRpLD%z~?T+dE;F{$-a=Mu%Hy^8Cr(zC>v9tZ} z!nnkYC}8F{O{@q3?mwrh&FqaQ#W48ILxZ5Ib2M7NdtPrZA8w-6|EIAzP`|QtQEX$B zi~eue(&JnR&AA3>no6%}@X~^)Z}0Q}2W7R)pRhP%8+@T#9(pNvE|K;07ZTRp1okzE zI-g>@`UH_I)N<20;C z(#f%p_8;vC$Ul#Z3V2#pI`Im+mpU;xV1@!%m#^$gr+Ejr9Kqog(E126WAdX zX`r>mtqPktMV?&O@H-St8egCU`OneE$W08o`>g$3^vzztVB;IHtW*`@Wlqe{hDd}i z=9h2)jql4nAhu%Icv?q$M%r+H&3%*n4-PVhLCPu%bIV%tr7WpEjLzZwBMM0?u|CCm zX2wZH%{F|qrXuP5ADVjcUl&<16xemuYzRCXCL1h$c~lS89}7YRvsXlT?VeIjamQ5= z4%+lw_{v=ggp(7O1IZL`JZ-;wifC^JIfVE^c7rtgZ7b4XbwH{|(&EfBlrNQh7d3nw z>C;nFa<-V>OYkSI?nxMCNH7MCr>D^cxHrMgr0c%Lm37w4)<}< zFU_pC!Umt-f8-U{-QRwWWKkAls{3pIsO%dbs5EhqHXj&!(28pjBIRf~j`StaUG}~o zcy!=-@`=~et?z_ervRzp)B`HBNW)``LrqAtg>p}58a|^(YuOxulGaQfCEa`KbqpLB z#W!OGU-|wqvkV@o5Brm@NzmFs-H*tafKfK zaUAgl`oYC0yp=6@h8s0i zUnxU-mmqisKilH}HX24x8acGK5hk9VSEo=2!E?c zVfMao3rd2NX1-59)$C)pK&ZO9o(<2BKMlx6W?~73v;SrXi)g*?I~VnlSKI1;wxlJ# zPt~5mvJ}dPy84pYAL%QD!4@k9s0yuf(tAxv8>pZ_N>}Hs;mG-~k#01P?ut$P_$Lq77e%Zgj&z87h`N&AYCj^AzU2naL#rHFQAsPA1#=FN0t|7Q>{ zn)nBwHNnQ)O(PCuW!cA!&Y#jsh_?9bm+%fnjnSj`Y6{{4G`b*5d}fKWpVjE(yFjph z$I$VWv2!2G{Z5^ejY@w2X1;ao;@K)(_?bS<6{r$3Dix3vvSxXg3+)0$gEniHb8MEm znYSg_q?cY(*j2RoklMwjryP{n%)jxW$3S52XbYk3TvFtm_jZSeO6XrnGrbOhNyp1s z+SGr|{os^@BWpsqLsd7oAk*F~`m-;+hqHTf-*HFflE$2V65mfX)BR@rDI|;(%|5Xf ztb=?_Y*tf*BSBTPjK`y7_Oll^%Q9I#dlzy%hOu#gea(E)?CmN;>z)@kN~%1b%s5Fv z1sEIXB}nxARCxK*W}$qh@WW3MK{h@~wq~@L$|q#RfK)Aw;`#e$jcxzXoEWBN5*Q$u$~~85vT=Rt ziTvqR?hdt=?9`{;Rk1lDm1qtVzH_}3uYnSbjB~jL6)o?8+YpO5zSb1jL3SujICIF$ zRsU#2c~svJ3pb6a4C!DcbFg*AWSWuXXy=9n*TqK^O_N zEaI|Q)e#RTTSU6R>%oAusHQuj5|+LB=b;;|rI|sfg>3v570K$M)q_DxO$J8h!d{Mp z@9L|Oh&k#b*Xo1cD~zw#-ZHc8(fY9Ee9-@Zl3Zc_GP?`0zjL zjJMH^M+NAm?In$lo+^LrdpZmAWveIsmB*zxXbAedPg*SD0EL9G93Qmy?-Lld{u9^HGGfyw`LR#(cF%^4)cEd=?dlq{d%QB;zp3@S;ie*VePb7>!Z!gD)M)-aKuzl3ghJg4Ww z`)vRj?=>F`7&d>XO|bqp&wIH9g*9Y|{dj@g1mm3U59Z*}esxmJTM}QYQG`J^l!C9t z{QQ@R`bV<%cKt{P1)`jzkO`@>OMF%1-qkH3N$$$TIe8yCQkRPNb(MlUzGp*UhF z#JPcqY7OsF!X6i<)l_p+N#x{wMk$T;Ay=fK8C4z9xPqT<@iL7mBgs|(sDA386_0}? z@|DWp4+egmSt^Z*Jdz@G)Fy03-e@#5H@ul}Z@Jse=in>^n9Nef*K{u+=@HSc)?DR(}>OMxX{y=BrPlpb}VTQfPU@7<~>7W>i{4nxFW!K+}r z7Suu%LYC)Kihe5fh|fA#VYX?FYk2(kGHM zk%zn-ampQ;lnpP?-g{+hAC#&yo3_kvU+6xX{4p=Evl{>?KINFFwK?8dBA=7$ys=N# zHesyM`y(`CM=L*G@Krgt&&;<|9W~l_C40^@>AyS;Z!9}fwH$EEYv136EI1OdL- zE8Cd7Mi@&qkRRFjDbs?H*YAquw04l=SEulnhZRkiqFPp zT@MhK{>&aK7A^qI#C7-j98Nseds~ORB>A%Hf7()=J?Fc<`p^8lLSfl}U?>Q{=s_>w zKK|4d%TdBcHm>BAs$b}HNscRuofh8UuNx?zz2m_A@dBy zlvt;k7rvEwWlL$7%T`MoE${URc0TYm7G_|+T#EU!$>}e}TF8oG9r=3wLXjgty=gFo z_jGCGf-KTU8RE_4!XmY<*0!j~yRx3Aw$*x&j?!ABJkO~1@hKez_uT%Nn5%6xbY+lu zN=6c}-J%2C#4n_%}P7o51Esh}UM^>Y~Ea$5PJ10*+poPTfnm zt~K~O@akJZZ)^}Nb`$D(svp20Go!_27@-$K*7k=5W|*?vjmq`h+$(udCgtMfaZ9yH z)f5GlOG$S~r0MeW-+mLxt*8*vy(^=xS2>cn%2R#OEU`K9D*Yr*xYjdoeDf5iFE;$1 z$=Rsi)vs=RG%_Auapyeua{T_h&MOU=ko|C=QXAa=FfiD)7J23 z+EbpPgeXrU-^N#QEn^A%LEHGR(O(9{cP; zhBWE&vXF(-6}FGpLt4i6vs9afF78z4sQfE#Z8|PBl=R`O#NvrHx-jKsL0mz*g>skD zQokxaU)(&Q?wVr4)ECP2Re$_YhSL+C6)sFN!)Z#+lP5VGavt_KnX;|JJQ~|PJMrB2 z+~y?7BZ~G6?j`fR1#g0rC3Ds<2K!`FdM!=&v|e(Vi;exXs7qR}j-_Adq?EZ$?*3z9 zwbW_4d#?KGEDOQ+DyII`l{UAS%UQVJQm=Z}OJC339Qm|*G-owHSsUg>cbMAp{cCtH zO!y6F=8q3T?VP2qTx}34z@{kLR87KGv1VqtdcdW0BNx>K0W}h}IYdY;o>=;|PZ8q| zJ)lZl7w=rWoy;3XFdbEkP=?v{F03?UXLGA*`&#uX+k&=fW_S(rC^BGL`T&&44AKu& zsOmJ<`P6=b+17*CC;pu18CzVL9k5!S>awQ2*PX3ZaE1H}L+5yn%lxpw`NZZZ<=pz@ zRYgUCtjFyzAjgoGajiur^2ySPv~HHWAD&s_iz3iH=Lx2}2%d-x{hi3xFeD`7}@ zPH}eAZ!2HeBc9eQqNtqNFBx_AZnpjR_i4N(%MNO4&um^iSe3%IP)bcvE<)#sT6fOO z`~G=^=3q2)^z}~Z$?YwG_-{x!(OaMQpghg3nK9yxChrlbS9!<_ev;e&?C?i^ef@=>L=relkr-VoSAXKEjJ=B&^>E^&8S+~^c4V0=Q<`Uji4Di zl*$^XNYLQ&<>Xr*fPM7!o%9t3+=Y8kUN%^M(!@=S(c6~3ZT!=7ejQzubmUs+Bb8Tz z_?mP;q~+ET@4p)82g5&B}9xj`eDLHcriCC$u+8qN<({#uH$ zW@x1#&hr=S@VsI4+guvCvEyCBj?2F!wige&MCNOcWGp$ny6ip!z=Z8q+qYx3Ox{c| zrMmoS%Y3L=p+cgd;`vYU;sbhq(^-Jau(CR~(p*z;ytG%^_i_;-mgM~IE-qIK-? zOO9N_iBs;^zmn+P*3D36brGP9oQz#gUGV2jqI;t9Qu;DpKcQpOTqh9|FnpMPQ`t-U zuzIvnk90|iTvw>;pvRwt<{OHS%*E(sh3&@zETmG@MUTnh>=b5}GZxh}J+Y1jEaOD8k<-BWsXc@{0P{s1?@c0p1MubG?>gcjUbnRRGP!#+i0@TjD#M{6iC z>w`T>xBR+Q@+I>Oa8u@eg{erVado^J_iF63ZMi>bD&OgYy%})q%DnMN`Gyvb{Cr47 zhXF|#G`N1ZbvZNX#k(ZA&=a{8%2z|5F4K_9k+?sfT)n}6Xt^@?`JMZ%H&5o;X85MB z?(rMMElR(tqkJ(nNH=wDMqHfG7=@BI4@GUrp@=iz?Qv8#FikX2E80iWm% zm>uzp+*w%MH?z`tc8b%( zkt~Tbu_}H>x8_0l7PQK7INaW!&N=RwTEJQ8h&xAxR-gy{aGu+b>3sPdm8YrdyVc83 z|Hh-U+330H5A})MW4sF!=A&d(482wNe(CaZSNp%!TN=)6^OCfT9$SsevNfJpX40d}8gzT3&zXc!O>(Uz26jS&;>ONl`5+#(Y^|bqg#8`TDQGtRQsHaw zkC=C8G~%y{;p? z*&N(C1$9b3TFFMV305zKi?7eC%QZ*&c6V)47V@By6b#5R)%fKa`x2%0F-|Rx3u}RZ z9#*F3agXPAOlURp_w*ubIk-RO-kDiew5F!94Zuh6v6F#W%J{ z`b#IwO$px0U5EUX=!6w4M?aM+slJ}RYNh9%qo6aZqakKas}vzMJ5XAxo}*nZbUt-qhYTBBs7q_?`f+vI)Q9IryqLgR8Uu5* z<|-liXEo#fWseNQ+rK49^p5A6A8{COafxG{M)Wk#4*|W3G75gZGwIDI1R3-eH-I?OH`SH(%}VL;4fl-| zryP?}CCRsLs+67!inWuJvtQr%$Knj+eFRX4-rS zK6gRAQJCQ9f5zo;7SNBikv$E^2)GCd<0d&vQw;ZM+cgHZh*27}Gye_i$+Zad(%6G2DCs#|*E4 zywOM6Ii{*-dxP{t%^i}T^HSz=HKeq<;D&yZi7#v8aL2@LpynlQ>ezk7b;$_xt{=E% zTE8>&XH~q6!7Z~!S9t!}7VyG<>+p!6MX4~Iz@2XwnRHQ`=f`uU)jsxMbXu06LX+zn zU~gMidvd?bXiZMpY|-<)mgtbT9h?>x-y(D6Ls`)93#mnB3a^IaC#~6cg)rqLc(G3h`bX>CA3-T-TGcTD}T; z{tlXae1|`prVH0mVP2z=r=L3&;IU%g-c?sIsugjaGQkv)#Gy(T7mc%7U6L6FM<-JE z4g54fgmHhD{U|tm`7o=sTk&0k-nED(^8%IE9`4ia$^KMI4enx{)*HjGFK;c~y!oA+ z?85{4%jZ>co~xQO*+XbqembaSe)IRQ0;^jO4lAwCZK!fJtfsDFzRW6%uG)&9Alpl) ztm--fDR}{|1ZQagyA~7&Fs7S?ImFrEF`IC>IV%g{5q*z2*7(>TNSO>0{JC|@@-zE` z@g@_$TBcjeQ$n8VH=64eyKgu%-fy?idew-B=Bz^ZZ9XTVBI;kJUX8T>Lyh#O*X5Eu z+(3EeUctl>HJn@|wzEd2F>Q*4^3{9!M4m0BK}(h8gM?^RzcX8IvRC2(-s#5KtAzP7 z*jzk3wkXe_JaWz8>(cM!Rob|S%N7woPta0+yMf}Mll3;l{xy4nh}p|1peC9<8aYI~ zd}t`WGtNHZywG(}H;B{4k=_mNQcnBp4;ei6Fg>w2P#?*6yph&eH}&3C%;_5k8J^wS&!;STry|An$Mqh&(bn(_3W3YQfJ&Z zM%|3aX;2FN!dX7G;Kj}5{(S9xfGlsxEe{pYe;Svqx!9lX+u3^m;06SzGmuvG&x%cG zwpToD)=uh>qfHoeOXJ~~sM3@)z`n{fr~0umlck;$&5h~+G&JVKCj2`CQ$b%)U7U2v zT_yG7>}rvpRii6ZP7Q|ts+hm8n879!NPBXSep26$%ldvopx70S&8+1Zyk{mGGV?+A z?J++XOpAX`LFqZMs#?cM7F(siWP`@Zs_-5sGjrVkDf)tg5`KTmf|)7*O_fcgpK+;YmJ z6*n|Kn1x@}*etOg>L)v=c4GLIjD|*5eG_74Qlk2=n5x`8q`1wqmY9`%!S0*W1!}$9 zo4}-gsXb)ck>xnqu>$kjD<88L>nxb4vAgJ@F&9s`Rp(`FR`eTe0_@@vG18Np*nHRT zB=n%X1=V(;7H8~c9V91B$gp(Jn9dpnWPX<(l!^F=k4~9lxx`55yhY(o5}b}^G51Vc z*=J6X<}AG~R?(N#v${0-dB{SiD^+b)woU;TuUw|Uuc+pJ^-7}Hy`N>6RQ+j6b>I4= zFDeAzc9SA}RK@|{JX)`i8}y25snXsG?%VtDkKgqbnSc{jr%dQ*e=SaT2^T3)Eiq`> zKA(!uu7c)00-K4CS=NuMojhdaPX^m2PlYDMcGPp(J^34Q^&G~a?8WKlq=?r$oRua3 z72y2Z>@z3RCC7}IkE${>iu=tv<`zz|jW%0T@$t*#S z%0UM;27~V_1QxP$=iA5bmK!UYW=;j*X(o8A;$Gx7%zb(NnyQ3DSa}YMp@4N*KS}9k z+(*rv4}nv8?Th}ix|I`C9*RHl@5Au>GlrzN1fxw)Tz*hS74e(r$nOx1S^fS}n|U5; z$i*KQ_&Dkm_Ni2`#*ICp^${fNT5u^HE?r25rbj4dqUrYy?)JQo(lae(@m z|C8MtI|5PVg5<8=*o2W#DCxUBU3-m(tL`B)JIi>ZoH8g4O?}i;J0k|-uN*$l!#=OW zAgFH%x!01D*PfTv26EbTZp%d6sdig+ju4NQUbb()e4awwdQcegpohBZqGP+plp8~i zmtX3=HbXwZKoZ7uu&m#}R8`~kJmsy-w+)0K{7EsG5uIyw75o(b&aA}=@mZLs>+DT} za|@`q5!2|#+{dFyuHSPRH7>GKwp8Oe`ac2d{(P7A-nyT)Ry>3+Qw)H*v)Aw z2;6F@R@rv#qc7sqw6U;<(Co;+q%KC8geLOVs$v>4HZ1q5e`u0S5JPvKfrN`pF{cQ9 zzx-Sh?Hc4D3L*XW5uVTIKJJzd;qmCqyxDl-{se2!Ubgaq>b_r2xKhr@wCho$xzsg| zli`(@bgYgQ8|W>5^1)t3fC0@}a3#{(Ui1ra>z2T6CFSJ`SccX$eR>72!dD|nnf5On zr}WA|H&xCM7{Tqe@>F&#H8HAn0oG`Vyb>=pSjOC@@ut|UJP-o7wwlw7zO#+Kok_^j_Ed&K0ph6JPw`~t2DXgxRq(h>cjs7FLhql` zie+Z)4I!PfU7^HY09UInTJ?9%RZI(9RCyjd%lW+=KI}lRXxtKO#?zi>I6qLDN3iH= zQS2B7F1teC{?;oPZ&(^B$KqUXwOgrTtZ;khx{SsI?=1!w714c!_iNC%ZA|;@TX#M+ zn`w7d))L4Sf2mHNH2IP=MSVkJt2hgtv?@fVJ*tlVDc<^JzTX5>GCgmX+O^yoCu(x) zM!e(gxL6T~3d|MN2YDB%DOJsNYG%3D5_z=ESO@8NzNKS=hXvKd<*ytgxT;*B$Kh0( zr1UJRotGw5dMIVPF29fD9j~FAX%JJBefABD@=l=yYm29A-PMpZl1$p4x9IdI>dSPhijG zzJ21uS#hZXl3BTgClKH7r45j&JLspxz^`ot!La?w?>IYb-C@O*0!)}H{MyCmH($=c zbP@Y5iO%>d{I?$jahlM-G##oS9AFkc-8Y;1V1Q!9MNte&rh9}SBh)LTj+af4;Wuy; z5O-T~ye;HM9!|?az9N$U+82FHgMT~Zg^j4)>d3s%H*4N-Yu>>Emw9~+Gm|eh?zx{r z>RIulCvR@WTp>}yX>qG0`EJC0p2yUM%HNN)%_aAJ0cW^y>_*F8;`IvPfF(XX-yh4n zvmvC?m^MT>zmz+qTf`LJszd7(8U;=s43Bng?;_x1RZ6Y(Ty#!$CnqQ8xy4i7%b?o^ z^hkH@PG8~OxySePa&!`~Bt1&9Bs4e%6{eS1zUTxN5&IPA?w1 zeZI#%mL?O?3IzhOqAWP}HrkA4Pd}yeA|C5YW*WC84}ZmnB;3+VSeaA`_=BO5Ch@~| zUY!EWZv|YgXrAmfH0FLaZ-Z8u?QLGQjIhjp%DgQMHFc#Vilmi{+{;zz{oX^nn%{>5 zY=eB;3~|5eHIUtT6??TePq(~-V559846yIAKt?^QEJ_Teb!V1FtKy(J+mC*kSr)o= zNEeYQ2-ytJ#3wBS&}^hv;aC985#H$4F=g;N<37Oz)ysAfZP8dB9RAq_>%rdpt8;P2 z+Df|9?^_euv8b_khKXOcU=r0^GHkAUT0INmx3~!^-(^)CN%NC|J*HQU$;M@=m*>Z7 z2beD6P$~&B!abmohfCqzd3WHiv*AsLLD936kK2T~gWp9SwTuz`y$K#&KjGq<+?Fm}C8ci0x<5Y9 zR9rFKT(wx6U@jn>R3aFC`anaH0^973jqRDDR$X%G#_owPbrGD3(V76G4W*c2Rz3-_ z%Yj=tYRJz-cyJ$DvFV1*^qT<6d#)t94cu|-a)iqwMZmlZ_F!OWJ~(!?ab^>O8YQ_gPl%ztU&E zIIwg4-b{!sD>xYXFI$$2*s|kHA^Ud(s3QQ2*@Nk!<@%V&um`M#9c#!dkM(9nF?>ZM z^}RIBehtvV1lp=r5sz21*X043zMVu`qUR=xSGb%(pwzc-(H z<(QK|M_Q>*pGeB<*L3_oi`s(Jc={>>A+0TGwW5*5a}Z$vnSSj_ai#f(`T~uiEH2*B zZ-W>sy@H3Q$9juQZuC&U`QTo_PYh(^;cZ8>icS$BUlfTAA|lhx-8BE%BMh3%=MbtL z_oGK&CRag^Ou}PxQ7$MjupmdLw7?!Zeif?uchsA97=k=+57{+dg#(Po)TmJCkf92gMkB_Cfe$7e**S>I=FNB z!;Ha`NQp`u#r{%ZN2x$ zrNi|P=`}M{*#k*{AG$9D^rq^a@y3pzJidx*ZL>I{r6xP6(okfDq z%1Z`0rr_t>AiyVtvS&_<-px963Ut`IRE_bcV@whrRs33o4Fpe>Ti1i?Y4H2iz{-Nx z5wkouG~o9p_jP33>s180MY1Sp%+n{CtAf=a3% z{I=KlEj8=tvHjbG7ZM84j`${Aog%t<_LGfoFYTNi%@IVA+1<_hmm*_?*KsvmA-box z1rRm6Cp+-7)j&xfj47VSdzsP_Aj8w0rpV+5sg!Kj#nFqys8F^rY52Atf7R(1(B`+i z&4*`iCR->2AwZQW117s_LM%QwpMqvJb846VG}BjPH8)tEb~?c480CXOXkEDiJ2e26 zpkru3Zjsl&##>|X9@)^b&(E~e<64~%PAxo9`y)8G{;NgLMhbVlJys+(A>HRE1=eXt z2<5{;C^^n7au9_QV+YF$9MG+BY$jxAm0HKec*Tp|E2QU9Yw8S7gh&Tr5okdKarg@= z6ce@|d5K0?@H2!*n)c;QSrCuWdCT55wc}D>{RV7a4;8|3t#X@9m1y6Z{qp(?q2f2_ zP$aW9x90Hu{oU&O%Y~QS*EJy#rn?}MQxIOETV`A5Cn01#XbJ-6lw&|=c{7HQkU!Oy z_%O?84CfY=a)OcQgn8E@H!PN4M|Ss($g|;%YS#;$cHSreg}l(gLQW&YJ9jK6J5pDG z$kYe?i3!dqx0RX6{<9gh@-QozcK3ZK3Ou%!H8!Bx$t--70De=0n-3a;U}lkLmMULf zw9yZG{P^)|Z1K`V$)l7Omi@)ebV54$x4Z#WdEXKzIzH^8U2J+AX5ObmG&D@fz&C;S zZo=LU`|v`r@;%r6+~HC+ap^8qYL?5EXVnOyFeR{JLqNaEl#G(jc0k26?f&vqT8TO_ zAxd)@9GiL*K9R$_htvUDM7lq~p=ReQj+DboHz-`NyX5fWdQZreF9%PEP2dlRL2ol_ zHX*>mpPw;&*Ko0xoty(;_ojJGN-3`5gytZqiR=aR?Y2Ml@%1f=KQ*b&g6n!SJ$bL_ zxm7ua4b6V<^ScP>_iYdgq(}V#L{``Hg27_w0C=NE#zv-3H>ymlbWDSRklM%)4rnWt=UA5~?ee@PQhul@!Y z=CxpM6Cz}Ng#j`>!eyK)&}YXX=Iq_aS)@q{9o9n?eNde_uFZMcEV}G?Cyn<(2Yj6|SA244O|@inC`86LI)a z_MG2sb`Oj_feA|=#Fq;s;D24MsG;Zn@j zTbTa|=hrF8&mZL=TCYSn17FU;hdWLUIVMa9QTD-hqg*@69^(rJkK?j%w3i2Tnzw@a zn{!j^qi=&^`d=fV`Ev=+?FNmpL!_!0P$Mqq$&USKeKlXN0V>NOl8?^3Eve)bu zZK>B7Ek36yMq6+F+|c^tacw*gqC=mg_fq&DiL30mD=NHHFDNFIUuYsB2DS-W4gQgx``GPoYuEbeLMOZ zi-K3uWx;8D64a~cgh^jcJ!sj(>E>|>6yq>JHy~>~uk~HE2LO}5kI#cOa+tkQv$di# zkbnE3h2bcbC|8qmp1!z6XU5Zw3aG*2AIw@rlKCZ;eRo7%=FShP>o6LSOPia^q%O#T z#?$MSn!Q7($*WbElEsj;D#$<-YGx4Xr{}t3xpx8$42?A+Bv#TQEIS_|uRxAt41Ye~ z^N)v4nQh_$CZUhrxq8$60)xP0MBKfLlg!rqr)YU>Z{)+dYzn|QR*DVqq6g={#EZLm zc#eE2rL%N}nYh`Y&DAR$%^2^Kuc899E7y2Dxz_By)&s3vCQ`CETV7Z-WbDks53 z1=FChC>2_S+;6z#*fH3Oz}SKx*NOHXa&)kz*6itQ&CLgp|F9al09N-WMw1u(DQQv$U zs$YFS3av#clE3r)u#N`AOnrIyig>Ifq#Yr!JH_YJnTZ?dn}KZCo@9xaAxsxreteAj z29`^89g!L6?%M(5N565#l_yeh;VI{|4(@my8Xy>4$k;K3J@p~=1#2xt!IJu7PBldfDlv&t&ctA_-h4+Ms z4TEG@=lNl)d%u1VAV}7F?Xjg>8R%1Ui1T6H#l!_{rZ#dA6~RV z>T0~^*hT9Zo&{gG4~%~d6fH@1>>ZmH=ogOA%i|$LAx*J@n`Gv;DSV%JZ%E()#lG9H z1uK9EmqCC5K*(LjZP&H0{(8KR|Nge9=XRAGlyW((rbw*9dcJbIRERc*+Gng{qVwk;Ez7P?0!EqvX6OJ8n+Q?^n4;B zwYvkl$PP?5+3WA@0L^*W=hruFzSImo=hM0a8rz?xVn;HHPDU6Wf=pEx3$$g zC|PR=AN{irPZLnHv>``;cQe|3H#SLlH|hQ7P6ZNA)HfC0EuUFkiE`)leYh8p409N( z6dxz&yR*h0O#zH5fr6>J=nEDMAK#D%x^r)yG5&bu9}})q+CoXsV+4&p!3+!TYx=|Nl? zaC7WQ!s;IG)A{w|6MKshRCulc*|`^DH$A4u@WZ`OW`{)fc3)ox?D^{ZkOxd;#^4Mw zLZl(rfxWmbS{!?X_>(j%$XH~4T4);@iD$gTmcFl58}BP`|JSG?xj$~f>eTR7&8j!=0k=^3#3hVgcV%Kr?R(! zN<)AiF9V1;T)Nb66n4%;=>q_e4O+JKb%^qP;II-vyfnVaa6xUEaV-=(7nCLdaigD} zX^B0#bEu@sBcR28Y;;)Dp%>lBY)e_o%|y616J_?+%-0OeQExxQdcpRSl0W~nvp^L3 z5GNd3{odHmGP~ZCJRI7Q1DxqT#GeL(!~riBIMzNsNZebJdE_8XnxFr*4nDl_Rb|67 z2Z#$q;&U_yJjCW(G7ujIoQ72&5*mr!Wn9w8B3IG$vP2m=pEeC`$zA7XvMKMBky8FwVE-TO2xY_9CX=FGpw4nxxnt6;mg zB;rC`MXe}&)38?IN#X;P_Xwc56uB4O{-U`6@uCp_hlVd^cL&*kqjR@_?gO^I%oZMQzo5vr9Z(3{#=ij-mu>YhQ@Kv_eeN05TMH~cDmk~K7{&%cbN z{MX+-1uMf5F89h|muFUW7=s#(JE^m)lxWBi0Bz)c(M95B!8N5JN3tHMx?wMUxLT&=T@>Q%Nc2{@N48yL}yFCyQ-MPQyK3-_dJTQ`cQ1TF& zKFnWj>wgRUY6R#JGJLn62{JC=)inD_^cR~MLZDL$?tykC&Su+4kCc=tq4(}0TF`>=_7M`>ZFC{xr?V_<>PC~Rxy`!+Ltmo*M$%&`ug*^)|%5nHf`mQ1Ap(JHT zC1K<$94AL-*TGG69;qeSfMO;~AUKpjB1ROb#lZBoNgKCN>HP*`ImZjN1T(ycfv911xM3#K2!j#VDW&S+*RYvUO)^2r|kp-uJXTNCI~2s}m8< z1QqB9Do~KFZ|~nFn!~+RIN-EGbhvMyqtGIyEMdhiMrTz)#csOUNWrlBP(Mwk8!rz*_^4u=}1W-Jr zxhw&-DTG>fO^ErjvEFF?xyM$lG>B*N+=q#Hnjq=0oW(t%IO1uNkgDR4`}4ENfp|Cf zd1Lotb8|NBevT<AE~g%iw3UJVSkrC5frtu`rTh5OMGX8}=`vo|$v zIYXO(zhKe*5m4;Aew6fu6BDM4D3vxT19Pe(@VIpV%t7GCoGb}*p7WqF>5-f>aG{&w zO1R7l+*~TcM?gZjj)70}7Lvv%lY|i2654Bdb>->}&pb3nmP$U*VCS+*}RUl4vlmtf=vao6X@zz%^{Due)gXYN6$SZ-`sPe1K z<`kbHyzRAp#N)VDgaE(@c*v;!8!C)-CsM$ycBd#Dwg8$t!L+>|$GvF6k{wh_0Ljj! z|7xfurA9=%}$z2N*F~w5n;>k5;Y@yXnO| z2Q6V>bGW$%i9l9>Y1a=bfghr9=kYj~if``F9slqFJcrwV$_K(P-}EHhX3IrZ9jtAHk> zwP16T48v&CaRII;&xOjR+yZW2W1aXpGK-7Fm2MV z9;Z|`Rl$V-eA%S`U{QuwrzG3Jx4#7MFtGvo!t1lf2nIkf? zDv0NF4Wx!IL?Aq4n6+}({9Lk-P!t4z@6%kV(HCLw>~FHg|5c}9q_AKG>?rqN{l&@+ z+sWbY_i)Fp^)BW>wi8iLZqEUEKvET^l)hk}-{M*(dJB@FeYqhZ#U8ISAOgM%8Towp z!3v>sl$NF{-$PHuyVe)85Uc_r0)M79B@C5W(8T3N38c6X9_XNpRi#BwE^^r`fhNnR zk*n(ww}+Sg|58;clY~LY+Yf{%i*v>w^FOEGsJzOIUrU@~hK^#dV9(y$kGIUe_zEl3 z#f1QgzaOX*LsnMG1G6A%;tREV1okIgJw6G4xKeYT)e}lLH1v#M?23@brYj_J^AH*X z;Uz%%!Bj6f+}?l?Ie{~;yU(wZcpphf!}(zc`;4;xZZi!VoVlbCMtJ|uwUw_#>+i#Y zn?8eg&v1GVwVAg7p|cal*Q=x}9Y-`}R=i4)u_Bm;m@l@JFQDT19ZZzwA1JYk8Hn#M z?94Ox0$kQR!N)EXBH1};>!DhecU;uD_sgGcmyPx5yjj2*a-D+fSKay{KhdnI-(Y|1@^?`{635ID{^QDd;RMZmxlNrok9 zLxOV_&?3j2n*geO*RFRZ5x!kd>bBgaVFkSOf(;(9_(Q;p>@IgO(V*Y}EyO+C)f{nZ zHaYZiq2TMyj<^^!Ct%qGn6K1_2e$9%Y#|%k4t$P=t`QyR+a0bE02dJ4Fe?nI~(ND-iydSWbGuoM4bfa(20=>Wu{3Bh$ zQ*iv>&gET?I=cdchI@gsVg?Q`EE7oQ#z4}uH-IxJ0t~!@k{u@cyvjzXQQ->U{-{>D zt4kx{tLyQ<`rQ>#SX444-iWCGa{4efQc)DD?0$*v~EBu)C6|t-CT`U`%oz1Zxg#h03D#0_}=LeK_Wh(xjh@O6E z*Jcz3;=S@QBcb3UdoF42;u+Xlh@cuy)$QU>DDPs#XyybTX(Sp=)>9*QQDcyyPeV09 z_4dVqYB!fEhv1Nq5&(xQQSy+V`X>Hk{vcE$I$CJ~R65pQoU#0b0f)+j*aC3`f!ARJ zCNrNI-p|zqPs)}Dc>Tco@-(7~tYbVkzp>h*6rwIb z3w;75c9+r%CT!OskT6Kps>!cxraHK8Y_1C;!~{OJRtlDO;!Yv=Umqj^LGO4jiteCy z-nMiLVAE%M&kWSKS1LxIZ$^r-MO_zeiRD58V8s**%+)yyYL)WN$5@fiWLSj0;=|Qn zUVo%?$Qf8JpfU^ZUSsTNvs)`_XlOvH1`%gV$fBDMK~}_}3u1SPl@7uU`CaMm84~RD zxdg6XvA74bIPw0`@W8?)?{WxJ|6S)8tWzQPNb4?!m3s&lS_mA=o4n7#s`d327|wz+ z4lGSayfMgWo9x-Ue?bhDG!n?;kbw^9uU*53rd)f`LUxw!qbbyxiEl2vQBS~nyEaA+ zvZ(1v)62n>MN61a5p1#NbCL`dV#_Sf-ON-?9kUJ}XCDD;x$u{JPO~5h{t@G2%RR&( z6pOh4A4z$1X@dw}ftrZeO_Gz|?NS1UGEVG_1Y5QkKC{5~vF z6^FOyLY+m*IAI?BPz^n*IbOUn3ystG&n%A5?Aq}>*fQ6X&CY)X$_Md5dPipt68(0i+ALHP z2%{bq1KDZ124V1L#Ihjbs6ferN*6omH3Rkivo|+zC>fl{r~s0_Kv)eyf;Fai>Cv}I z>gNy^>jth@hU5h_eIAB9@Le#J`ZGRO{~rMAe?y)qZ!cIhh42|sB1CP=h+I7LE*{1j zWpYFKIcErl<^>j+Kv6{TArD3fU@5&O#>;|yj!+tJ z_IPf+pfYK2=SwZ^GL{_|bD7gc*kM#vj$mnU#}G@Cbv_&bv1iut%WTSEMo6hIrSDc} zkYeEpO1Y1ND8^n`WjI|@zo@t!F9Rz~`)vVo=(GKiC;~)%E8wf@K-m_p*z<5vu-tbL zoFi^E#-_#$#K-|B0r9K}Wa;uDKlp{ zL~(-$m2L zSmN(u^x?)WYCoGLqVx?EaDq{yF1d(lKqw1Prg7;J*iwj+?CSzNw${sUNrOWp=A_Qc zfE!UJ3q$VVGH|{soE%8PKs@eM*lgK3_2%Cea+*>@;5R-<{H29`K;#v;luM2VmV8yP zO}?vZ_RhqGVDpiibS-*o=O%%V>I!244|IpHeigl~=oRLi zMv#NFJs-?=P635R$Xv8Ww$8+t2Y3-yPSeWO2c4GwS*bK0)}ED2kM3%WP_mY;+E&ez!yts)BXH{g?bh)>-iAO zlUQk!I*2eQ#fMHYQQaVc(&(ILOL7~a_Ow9VAzCCiPT4j7!e4p;W`qFylPA-+o2mBt z?>mLK!(d8dxF0s2GKtWl^10BIZFOfpogDmtj-PT zp;AC;Q=IrU8UksFeyD;oM0|)${_DV}&IV9@1-W9tmaOh28vqKWU&gyo78@W(yO7Wj z4yk^R1yoV4w$I@)@vfuL`s57PS*l6eGe*n9BA3|_d&>tu}=KAj8G@UzlO|20xX2kvGc5@7%=Q&Eg6C`@ShJS25znh3@BvDNAD6PU@Z!6gfnz`P!a6H8 zLfaFo&dbW<<@+n^mBVgwyNVHP0Dx3K@Ev(e9oTev8O#+8>+>?2LVDSPjpJsk7!YHd}v?FockGKp-JO=X< zO5eIS6%F7a;}|MY@lBa36e)ixISv9=0?uI>>N+S!@d1M}OZnTO2%iJsINgB=$Px6> zrKt=g$m63S;Qfw1O-T){C0e&vJ^%E8_*(%=V~=xyDi}Hesg`?xrJYo>79jJ}dRCX{ z*D|z<(jxhFy8W{0D~uJQytcon8?67K_q)9GryN*T#XwyazsqDqEM5R|fGg;eQM(1G ztNYJ4hCM)>7GSv8f2G2qwV+o?mNCt$DP5H^N*af)s<~ti=t$av|B5)cBmrGN=|v4gU)&NymE$qLThxRAqVz!YzA3 z(yLXI@o2_Rf1eA2RsV~$H;<=!U*E=;wJAj<6=`5KONIs-4J%EWQ!P`b49SpCN>ON2 zG*L(+kxFKYh$6|5R7#XoD3K@{q>$&j<+E1L-rwi>J->7Q*ynZ5IyRs6{=DD!`@XOH zx~{urAE^{_+^xPaN0J1%_$)g(ZVVs=FoOEh>Io5cX0N1UV(jD9yhvDL;8~I3bS4)fYif z)Qi#?T=DMC)zSNl_V=K2p7N^Kb~GCy+Fl*4wYMr{?a^Sk+`LJCz}t8ddW4LYVC}WU zj^0zrTeP30b26)X4nMANMA^3>dAD2zQ;D9wfwJC|;YvSe!FNU2V;J}ACs*GzbeSxm zvQI@$ALa0O9G}3&`4_NoTm?7s!Xe*ds?SR)DyYTzH>EF+(Do&M)J*dn*2BLz-Cwl2 zhiurhaEwIiqeqect|9N9-pWLKjxFEcLfAsLc%&g{LNn9Y%g|mrBqRV1a(+2CZX3|URORQ9yp8jB!l>H7K2MC>F*Shh$#pEks) z_Qq?S4uUr+jXJs`F_|&lZrIQ3mn-#CqE>LbyCWBM@6|uFx+{AV8bnp!gSQ+@6;vp- z)b@^6RFoX{kN~q^hYu&Gh@^C?!+sP(iB!TcF!{ueBVwqTWYh% zY+wo?QE8O5ky`tjpNuN@mjzb$E-%R>B?0wwPB8FjM^my1MI zYc>*McTGzGT6t+|K0s7Ec&y5Smo6Kz*zR%DkRI+;l6-?Uw6o2BS4Mud>B z7uS~A{axE}!LHWcr(#_H%!Wbv{j(ds+W_cDv#(ID*NxRv8po0}1+$tTpS-0Iq`!9S zAivrn|Q4s}8zwid9i<=8K?DxNm3LJ{}K~x?^3KQIlLVq-*dh zC9|?n!;Obmotuk*_Cx*o<*nnO@<}0uLf1f<>3Qon8CrWmVD<4bEX`8SOo? zfAsDL>CSH)01fSEtzD#l=?trIK#?0G(U#y=j}YS77=u3|Ry2jR7J44S(MW1op&lg1 zTrfDCqr=ztP58zul@YoES2W|y*p9W##aT;}lkea^SnHp{jGpcXzpA@8e7okg1ue7yO zV^jH{l|rf6`2Kq;zb$d^TEQBxT5#|JpDm?rSY65Tiy0eZVvY8-_K&1FGnrVx5)wYl z5>;U{|2tQ?l?DOev6#9ytLfk7e2kdP`i!iw5|(+!8&0GL{BU=to+r-wGis%_ z0|=c@cjz~!Q@5)KYM!Zh&4i@M3Mj#c1NYR3D#4zQ-+%{tt<(*U>F zpbfd>=^Rw%(x2u`?%D{XrwttTOnmV`>ML(qwo#n-rs46$LoYEoGvT`{ZsfH$&U{Fa zhMd^5>w}p|-G0bhjS%sTiwBBu!47bK>6$*o`vbtKjIjRS`NfRrczryn%Uw4_`94NeYBjyO>mMtGx;(R}T@L}VPH($rGiwq|%FK!+YF z9Uumi)We{WbZprUdJH*;-fYbunTGb?bq(K@>sv2CO;Mg|uTL~Bb+I$;1KrTqnQ47* z=*}>lvK;^1iI_}qGDOkvaq5|+;hHx;z4usBeTiQAvb-UJ`|vn4MdSPFs0(#vJzlw|aLpt93q7f&0GG0k&CFMzwRwaNP)Pkq>B(#|9rmz4ZFYy00cR z0Z2N}OtakoUVR|+aA_CrjU^L=W&@N4R)EcBCB{0hI5+nxb$T}>Tlk7ykFL}Kpl5P- zaN?bblXEv-RGoxHD;XfumyZ|vL}7CVj*=S4s0+ZUB^#ULUU}=7#fIM`C?T}biVkBHg3Tqu_mc7?eE9QR0 zA|<0NBizKpUhG(0Z9`@TVU&#?nuG~1QT zZtVQ@(Wt}(-2evQ%U>VU-wa&+y&!)qiS6GWR{{AP46KhA9{-az6zS9(!vj%UPJ)w9=$TNHp7RoZJL zONN}394uz|Y7uDwt@*2Hb^Qnni~0l(juTG{Yh;6Wu;cb|Vx55^8IKz05=#fTtRk|# zrIn^GVb{=CC&dK3Umo(*bUQ+k4`h6ihslJP&v?&4X4|+UFzH^#KyA$z)uaq1y zx|IcQ?Q*~V~_sUt;T92mS#mlLQiH^ttJemZ=$H0gNq~+jL0b^QaXHnXJ*xC@D!Ww%Ay5tw2ht$UGM0arzoK@avkFo2DoVo-# zbG%bc?hXtyGy?N%R0n7YO-Q^*ZePtbpsu(#E^&gYz1O>U)kqx^e}pNKQZ<%Vr?!7a20G`4;(EINe@BBtz(Z*9#{G~ zXEB@Cg?(GxtKqE*l+w7HQ;1^5D|;k2>HDYGTVZ{5wTFH*#;zl>$VsXH0pfY5`hfiw zYd?4$+yS2GBdJp~yXDbC(M+4>=*#L{Qji7Ifl46qAcEso6MG8s)hIE~U{dm}WhdFs zl$np`7`r)X4v$HXfsY^z_!VCgJUyGTuJc(A3^jY~e9kkW!1PNoamnuA9bX_(c^?pr zy487@_Np*-+nCOX@+o%j3B@6n(=a8YG7&AhmB_*Hc3}Dov9c|xiMqw7$$1v;mp|a& zpIjg2{s4A!)wy#0ul&cXgTT{55*q;{J>UuJo{{FUN*~6g55CUULHA?DQ>~%GMW<$5 zj%^=2dh}@3VkE+qWQf)QSCcK+sV9_8=Gs4v3F&GL@Fc?(k>=UYbloU5`_x+3#6R5T zblgv8Bs>V%lwCy6Ev^{GzXv&i z)Z<%d>&D#9$R+aV>$bC;-Iz`P6MIck?gD8+P&cf+9YC6W;4g7VAc?(CO&0{^`|w#f z-QLGd*qhM2rG2DU3kXO$>+$4~s_KH)xe?Tc>(h5yn-&b+d zKSPO4ZStAmQN)6MY>fkj2pjre|CM73d&Ni3ErTbI6}0!M08E}^`ho=P+)dj3&^BPNt6~Qs9XlwTDz3 z+M1rH!7S+zh)&qRhLmx@5ry=_=!2Q$4$J5(q=nvPyLUm1;4mg*w^~e2|AXY0kDrN3 z7V7Y9dfC@0#QJA<_aNJ^BPI(){Vl3+v;SI=p=;*r3h6rdu@A|g&wSn0eAF7`vRHdV zE7zxsB%+4w{-mKZ^7Q)myh_Pm+g^Sdbmq|tm#`Ey>()bE>OE))n* zVgq*lIuDO5Tu|px@5i8-eA~o8V$*AMfRLhGM7ypLm_;f2d#<2*K=k+#@64Oy+oE4|LiT7cy~i0^1huyTQTBg#wWoFS2G?p&@=6 zRyAmIT>?^eWlcoS)WdH%e+`QE`0-i6Ajv$qbA3{YIU-BH{d2eRkK{2b@;*NZ9?dW9 zOUanTXw_+kL+bTfSb2~aY;C66P4Pm-$U}Nrfv#mLigaGg`lV9)lUbD7b?)dRe%Om> zO!b10-plfz{>O=*O1yvt=jQb051dG0GReSvs|}$>IZ+~9nqKEuX|rkO7XV!Ln73nu z*mcoPzImwKTGaUX7sE9tebL>>%cm5W% z89dq@_%EdeSe@U2lj47LQ`X>Tgz7d;@7>*g3%!BQ+9Qpe3oVd^r6muE7@(ikcvpw= znoW1E2BoeH%m$Ekrd52tD^7bJppD6Q&0GFn(s<=rYpfU&H;{Zbr&C;TBlyH(-#BT^ zDQA4-#*A|Us|gJxW3=AZp$ZEI6@Qqb!5V=415c^-u^S`RIeU9U;M#TTKwDSF&AbF> zZJoBZ_W2Vz>beAq9UK%M-&=&T*s_S#tr9^If+hW(=T)s>=&{G-%{Lx^l&S%Dv!gp8 z^<^D?d0nPkSGS3|btFyE)O)5M+>$grI2e^pV-s8 z4S{<;&XuzbT5R7?TyZ~nIxZP&&7lyjCD!3VUkZ`gD?oXYR>Tj0O7$C@SrneRg4 zLKbS8{Xy*T;+EkX`=7qB=>oGsz08o>w1^Bg7yVqGk6!6x;rG^AJ26iH z;UX>aIOPR`MFzdTnvVa2)2Eni<^5Yfez}-0)%GqVs?78H;*ZSF;8FcX;MePJD|28> zJ0x0g03@yyR$+2Zu%o78y(9gePU&l&oMDqSplAi8Wtu&;3nu{9?V6`56{e z=11^eqvzPo)>} z_kF~KJgG-`ed-(jJ}f28^4tffOa$?VnE#TiLo@{O2hEX4Fjxxrah#oeIv)D{x2N>s}{jj5G-oes{QV!ThW zbI67xEND8X_xLP4lLL45Z^)}|C~#U^TW>U{z4!`5F9wKI>EZ}9P8wH9O zfpGQ`+;m-=+x!2bVA}HTKEGGKkjQR2>by2V)I#za*f85>2P0eEJ2dH_G`f&s=)9|l zdBJOSbyvrC^4jW}ZNGWo7NNiZ&7V4Y!|EUmh(V3D7mThLq+$^n=6b_)X)iU-elE@& z{T?@)`4?;~_}gP*%}zxY`hY02)joDKa3mc#!IwiV@z+}IDY&%+j;!` z!58s0BfnM)fZFPRW{6ylIevz{xMX4P*Oa)zmSUl`wo{qMS}NuRDfZmz4YxqgY6`7x zo1>=ow1n&m?&jy;XdH=6wb$ecxLzhx&SFE`!Lep8+SWi8E+PYo!Hb5OteJF9wJv?v zn1JvS{`L*Sak?kxz9Y`VR3s#h>O?${)WWkP|(9eH#Y;(u54RtP)h)f9%Rgrl1l zm6x|LTh^%nOphVgJB z^IhKEe_#33V39;elEN5MQ}E9oW6J0yz-)fL>l`-*P=l-WajOM%2;x6LE*&SSI9X@2r8u3i*N*? zWH_V>%b+bUZ#)%I|NO4xgHb{-{KZ5x?%!3|2kQKCPz|=pA-rN(>zVa%kyhJMxgG=n zy|rtP$BNeSCIrInZ8Hd%r#1K7h-F*6X={ACoQ%Uag!4H5{{H>mB~RNajP>!)Szyh# zFyTtj%`9|oGV|O*!s^JIYWt1*n;}=IiV06=rNCF|VpJ5l<5UjZN6tY=&aFF2*5P z*`(5U4gzwcQR1_VsMG^Lpo}oN7>Ll4iR|-U(s{pBo24B|%SQL>*H2UKGOsJCO$E|P zr}+|RGI1Dp!)>n0c-AYo3u0&6)d&B@38Z{)uDC2eOp97k@{{&HeK2$Ba5;r|_4_k+IdKh&$h(E4UlD9sy@UA^!A%J!y%n z&(5x4k3(Cw6x$OJxgw>|Qc||)(^9V|X5UZ%O!X3eCDuxIpetSI@txD7TpfzPSe(<8 zZ$_Ja#e`IFXS!V}GGNXL_baXNtE)Ek{7=#eF8n^ks*8yi+l4%#%rs7~&Xon4{S<;HO`^{PFu$2e8hf=ko!xzSAD6)%7)KTQovSY~;rH4T_@2!5&rY=tK|e=lAUH zc;ajDM3RMY3G`gQ05_G_Tkz(2WS|3dk?;fJt2C`F^YIZTE%NRkb)h^oU(NQvGZjw2 zsdf?Rx0+w)h*~YcL(hDa{zqCfo)W3NX-T5Jp$h&Yo+8}1wd5X=inbSw=60S&M?cQ@ zkO{!rwP?xm&^~dvzBV~I?%d%cH#e7#-BNjNDee#D_KhJ#myaQ<*~=H^K&K`~bgjGb z-N2R;tXD#8V>L!9mMtkK_vy)~s>59Jic#&S$-hZN+fnT2No#!M=bRFv)HO42oH2{Z zOnkhu*_`r5YLY^rexf63s-Fq69Uh#(A#vw~$m`}#T3}yl@#Z1aWqU?x>@GWEQzI^R z(m-@PQ0?boZ?LP4&|rr9%VkVRu>(G7hdFOxL!ey_lbuDVLW|qltNggT@jlZOa-1#zV^|l$I9gplxlQKg~|08UwfEJc-zQkd_TH zb{9uA$T75{#)gby-MZ~XPl}SxCyAkc5HU?XI?r9&-C-b+0pzE`U}rpJBXJr=*MB$ zJp_L8Gx{;3YdQ_9HZwm*{ zvT|^Uo4dW?JbHI)U}WRWo98gv@Mhe_!@NPyGj}GE9DBg%x$D9I;o+A(1@BA$c@%m- zhNDkZj0>EPVAN;eEx{2gq^RzY>&!Q?^5T;7u5g#A0gE~JnO>nn5*;FGyaKnn5dCXV zjfku6`uw&OcZnJT{c}r|M5ITXp*l&?n<}MF*UiXRY|hRq=L2LZ206A4{#gT}T#AM( zkO1P&5Ug7X?pxg56~v3V6*oduntcmlsdZ6+yCBgdOYf+qEi(MOol`~EyEmSQFEm}+VY82$+Yya~$+1eBj7%Wc8`b8i&R z#5!QUCd2a}DR!a5jJF(=dM^1O2c9soVqR4cAK!!Lo63T1TZ5_K`7Fmu;|HXFwKgO~ zsl@jRnlXlX#izZbg(U2c5swK}1{0`m%Ar7vfo;0Yc?B3y^%*#-!6;|^`0-ZlVToo2 zFGA55wFguYx=&{2CYY7kKUoV`64YFa!Q=~#zY|)#PYzwrGWZ*$I@M@Tm@wfABvL7$ z+|7EW154v7`RvetbXRi7NKkhEbbeXx#m%8teD-X=-i78o7N!XXFRriF`qh2`!ngBa zDEwSI?5JuYqB2Ms7&)Q>p*TV}Wtdn-Tt}g~ldy(fi$TpnlJAI8wY4Z@R{Y#ec2;PwfCaqr=M^Jea#Yg0xc= zLqSK+cH;cK4orMC^Bh*!yII+->MV<`P7g3+7pYT!9it8zF&l&8P*k?j=-KZ6Tr`OX zp_KTCdyUcv>1C*WqTmH#N=|9^?%NRRV-bcDa{YKCYqUA@5T#Qtt|O}mn1jJl`G%<(4PZL zs+6RQtUS#P+&ju*Ua-|zhc0qC1W3_v{x94of6J7Hhr~O+a(gpC|63ILwRX>vBIt6` z@0VB6nxQopFL7ag##MVJ3Cgj@i#9zp{SRH-c`DtOo!-TilNKUaM2tkx!>)gVjM_x) zC?pD2Q?HiG>vi4H9&Xx~8~3xvzKfNo;2kx{3pF(WvqpHA#Bwb*N~kEuZvTu+o+^mB zdwyPn;_(tSws7T`ia#8#OK4gDLFbhCQE)Fs!M^MF{}BbLKkYSjMnC3=q>#GNzT2W^ zkeCJCYD8UhkjkN}4PFzU*c@UZ)e8k8?${!?aQujFnLRQunWOhBbGCnaWdf2;N}Qy> zbOoBuUmO3&^e76=+ZVP({_5GfY=Y5Twwoa8CYCH&xBYKwpB`Q*eW zW_r$~%liq>#Pidw??rX%rO9n*xD(@LaCh*TFSzv_2a26uA8*8i)?U}a!6B`nKEGiI zYX3bp503J8mnX%;0}7UcGFMm|+l>=^ig79!YXqsFU#jORRomnC{wYuipM&*p#zo$3 z9q2@1iV~*JO3pdJ8;xw}=<%SSL{YD2+OqCV(@1MZ<bAo- zF?G`}Ob_EBd`-DkUpz$b$6Hb=HgEl0|1c2%aPhm80L-RrpRW3SF$s_5=Q*V@jdIcU zrO0H%&1Lu|!Q7lrSkBH>0MCEdgc9#bcN9159%>>g_Mq!qMR3!0oJykzG(SOcsJqVc z(ry7fPQmJV+q?Ye% zjRYBJ(s7vyri@A+`P@M)k2c1^Gp!4s5ab|%fC183h0s+^7v{#Xbx?tQ#RdHy!t;U4 zL;`7;nF!Zmw5h4yH%kCAAMY4dQ)2)Z=gy6xuoZ{~a2)ojqWIeky#}1De&?>5Phes@ z{0#6({S!+*GR^%bz*+6hg-#29*Tv;CZ$pj&t7iv<=%|}#s^;O^#w9%w#Cshxk5=DU z_F8C}FyU|!SOA$#z!HC`+zjh0YP=lm_*5%5zTG94^Urn$I91p#I`ZfG*!QO9-bq7S zrn6j9rKXnu8ox(G!ZX#2*wOYv+itQ70f@d+IOeu%4Lk%Z0O?|^&a#`RZ;3atELc7Q zsoxbu&Kuy#1)n_GP#1i7SOgY#>{s*We8sPXIgXG}ADg*?qx=vThuh*JF0()5d-mr5 z+Mgy94x>^ru@eeH{4+?71n=X5d5=6lMyu=nY6Y`fS!PEoUs*vn(j9}?yq4O|K!2XX zf9qTG3w<27y{CfakHb>vSe=`cDJVcD;Px>1e4l@AIMvk3GZV>R$i|VTq>RSJsfrn& z(k%R@W2uXii(z+{oV*MH4<0PbbaYzE_TYLr4PFYta%k0TMryBr_%*am@KexFs2cYA zORYarF*|sw{RAbd&gc=EECnK5)4e~ed5NYk4^19EE>{E%@t55T@N*|_+HQSn4Qru9 zkov#O7+PcVu#JC#sEB|C0ff_NYgX(2xjUK~>QoO4djDQt^;m87N!Hxnwe_1xXA3=z z9nGs@^$-o${Y|2{X7kt_y#aUjo@#bw<*_MmRYSV;Ek-DCiR`Y0^ilOL1~WN^D|q6T&dv=GspsW@ra={Uz%8@J>7bZ2Wdd7c@pCBlRfF*ZYyHNoc6%lBzzQ z)(hIYbr6TEx@WX?2l5_2hwAXld3Ir9bt_-T$?~2e{Fu#Yvso_Y6^weHx1b5?CiiB< z_r&xAlTwt;J&y+X`#aC~?6@y@S=E`?Zm$Q(FlLmI#kFA1Y`+2B${(!S<}a` zL*ItlVkE{NIYIKJ!99+W?C4zhHNjn68wJ|EEPyuDQjhW8IPBR@`%EP~k0SmF|z zIMfi>UNCxRG|FXS-}D)BD^RR2^r8kd&0G$?7G=2gUXHxdw%<E~XZA)*O(ldYv6N)`BXl@T>j2tQNO6 zCMJ7UnTK|bexhB4K%P)(4HL11y?;Fvi^dO~kdLG6T^+fm4Jt5ao`6zde49(#Yjzbw9OL)`%PJ70EYcbtQHbx@7F>7I>S zBk{5xi*TFFo*SwKf@`=4U}}{6g%DQZ(~I$+5Ad7}v-jSFl!4PxaZpMY;Fs&xRc2iY zg}Z^w8ghCR<%OyIG3;K)CQp8au4#%WyQg`jPD$ zg$`rKe89MInH(U$s^&Q?eUUtjGxzP|U@GQiAVFS#j*cC7Z`_RABT5cqW*IcxjhX!{Tl~xJ*Ro0)(RU0U)xdqbj2sePoJCB{2tU`} z-X7i0>zR;2bseCFL;}gEm7M0;;du$513DT%hunM1Kbh_Qet+xK%j&4Q?Tc(ZZ(S?? zCH^2pLr5&?#p`J(dg7_+jr0M#CxthSgp ztz0ao{Y)kKi5bilDArWRc)5-Cfe+Z#GZm=0_iX}R<7fv|#~4@fW0WopF#!hM_MXNF zzfbVZ;?TamCo;mp(S2MCK=hl)C~E>HkF!|e{^fb@g7TS#3enFjV`VLeO;a2?SSj?I z_$)E^ZLf0IwQXBYOtWx?X~tr|>QA)@_hqG$(eek^W=@c@sJ<755SFLlWx&dd(bR-# zW=CJGXZZvT)~N zv&rZ5;gpRAA0+7OQMwOHuBtMr+@zE&s4DdFuD=0Hj$P<4`98Gnxn*p7D-Bl1ZkQkU z^l*tSZ?$7q>*9y+{I7X84Onl#%R(p;dEAXQ4ZX;@l}0%RcLNX)3UgQJmA(U({Bb}X z?&kNWY{DX@RMa4^^Q{_lWx+=Ik-tD*wuUZ@G4X=8H2=Y$sf4E_uH>-6330`zP?1ggwW< z*%9~g#ctp%PvQRXebXLQgQO+=cP8{&1Yuk6RB7&y@}rM`Dbw(k8>~WzMm)mDA6$~e z^6N5rq8TTtgZlGjc>RTwJ_26aKf2!>BdT=`UJQ(_Hs3lG2dTaif3VNm4w0SMH?r=# z;tj9ni>N5FEao2uzIUUhc|Zo?1nB4B4mv01{p?J*sVSJhJ9ty#e2cVxwGJu?*Lp3o zibnr@Pi$(EZg1PqsR&`W<=bBKQBSDqdK#X*3{zB(mO;t%GW&jJ|V1%mEm?J3XY@X*;x_O|$`-xUxQ;c_%90&a&>H~DN+?a5% z>qA;k7~#fMwSw+~^T@J=mNNENX}Yr|pb(={w_VLu8S5ZqIG);^)F`L7Dgy-ZMhr55 z?xrzUPS4**%-d{8lEhP}@r{R#c7O8f)suaw$mXU*QD%{=^1HU78FV zGDPL!W;k2z2L5Z+arDrkC)9+-_quWO9TMl_E5oPc5*pPmbX9{n%e_NYN>l~=p?7=` zLxA8^lCl;)I9w{3#4I}zTtNeg8n;qMXARjg&5lIEgc-+yVk_Kg&Y=OG-C3uSl7T50 zJ8gB&e1ZR+OUM$%?G{2uVE1YK^OnjWMJtQ=O=yrrfGn^8l!>5k<&Nmrlfem$LEL0# zwp!n;8cFIA?e4<{3`)z97>G}DYl02NF}aUd&Qq+Z@k-x%Cd2SnBy}|n|BT%~ZRba0 zL)XKgYiB$)P#Y+=SRDW-@lig&pPrkQj!ZTY0V4qI%|-ib(B5t`N>)eHI;FtW6hei^ z2oTm!m!OcngyQtW(Rm-&;Krmz`Sm3)W=OM7ktLVmWK)KQ_YI~%gwu8IZ{IOk#X7bm4qPBlsOa3h>kk)~TjaO3RN5!n z!d1ml-CijOlM!BSf3h-RSTUscV`BT%)}d!V^LhbcZRkl6)`v>sUCh~MuYlZKdiKmf z<+4?rC{1yy>3g4F4fPHSQho9p)}VHb8{$~rwzYj2fOPYambok!2oeF_a?4ND0cv`R z{_&_Qsb*I;Tu%UmTvHi^`py8Vq3`}La^+@LAbI|Zo7SZN83XHMM7fbtO+Gk^CW!(T zMDTiFtdhN5$-K!Kw}N%ZVkA2kqoT%NS4pfaY4^!1*$DID@eW51`toz#F+`n;3OI0A zaBmueMo{SL)Xp!817+w8&8$bHR0a7%`d$*pZ_k#Een>2@&>aCgT(p0p*F@Y`Y(1Sg z$D=(7y|zer(!CGw?!1ige9flzw~yl|QGRFd-y_d>0i-Dl14xC)+Mq4~CvP>*Tm{Z@<~6Q4a?3rwdH81o16)L-T7`7+Js+=HlaGeVjm-A0MLs}JI+jVu=NR1 z$vB}17~C~}Q&wEQGuS0ZWHpR>Y#@AtKtTc*Zg)==gS+|XwMmXgO|dsiA*A55Hd`QN z_6t4zM;Y8Z?tBxIo%!hyxuNaj%Mbfx^!kw_VoK6}6Yv|APfkNi2{pLJi%Ym4f%hi- zEPxB_wcX$BXpVToV?UnEd&G9xz3m%knWat2xOb$ycGK%ydq%+V_toBxEhLOhO|wOJ zPR!H5ex$N+3cdb$c2xp+$teR_Z}Fmb0i~N`Obc1OG*E?Mc&s zs9g`VyQkDYe6G?w4*@Cj2$ufd$()4v0Owv0~+{mr+ob zyr-Cg7Yt=V(Y4U-Mw{P!w&rKacSM#`kC1$PUg{$}>3_R`%Hsz7a6qtZH5;uGt6~7x zE_-`RZz(|jTO8;#LHiVgG6MP=C%pr2zljo)xs&t983%g+hU58yzM|-UEU|g?j7hx# zbz!hq_Fo)yG(uCoPeBmgk<=)o*Lp|6x(aO78@K_DFCIm&$@<Svjn0eecRDNB5?cpZ@!&9Ed8Hh)x=)P zF4M#XggGlsMwgy>*oJTw)k^_e5eoxOdM-~@6Z&qoB(fF3oVU7vxnnf^?VDL3=-mM3 z27Bxo6?#ygO|KZ4fBDm%*1OW^WM2dba<6 zE}^Xf6<4Sqh!6(7h8_4H*qf;Af~Nks>eySQ;x#_RbZ#cPn$_Om9|- z%vXH7apOVUB=?Lm4E!ztzfuNuY(Y~P6-*VMKxLds%skRf!IioZ!9PS~e$yO#l{ep9 zF=5uw>u$`+PT-3!O6Hi(WsIguHXS$PjFgHe(@lestNEw=Ws}LI9$r1VpnfMd3bLq9 zx|TlWtzZ}f$CSYi)Y)ACk>X}}a~RAI1e!qozY)CVPpnW#Ws86pn!+Y~!(Z#H{cqa)L52d=&C?WgH z7GnZ|Q4&3A*~*o!ay$BfVzCA+0Wm)V`{82#!Qf%-8LDKo9``k>p>N+PVSn8s;t-K4$Bdbe8@&P)l=I*rmGb%~7f6Zs zE3@9RnPgtXZcErxf{U;Wl!dO3JG0k;&)E5R$HX=6mSK-br!&{)_A-7l=0sAE2bT*f znK$a)K%cyD(! z1xAmuh>8TOed6vya2<`@E~P)`dX>xa^Cxbr52j))chE`3JeS25lEk0mY`(-tuO(U_ zGxV#E5@-1Kr4uC-U@p7kHSiM9sB2Nz?xNUCGuwB!HC;hp(C71G!wti!vbb=^g0HjY zic&A4=FUc2!A7V+O6X!Ddy66Ji+0k4Is1`Fg;x<~h(_#J;C^<<)u;!Aj#Rx-4yYRC zsh2X^L_PX?-^cGP${Lm^XvC(IK*|0^%V=i*vAiGA8dlcdX=F~XINq>vM_`;%3Fs+= z^qzWxLrc_RTpBB3DY+J4K!}#-FZ)3`J0%MD;WsLpx2_fZMtg8wGbRpr{m0GVjGZ-R zFISOixN6g!^3;bYg%@D>(phvV)i4{a3(QN(vEWGbp)zOa zIA+io!2T(vQO;P@4Yga|@|F2~8CRq}e$Ce~jd@F0y`WsK2|h^==X~h>#QQvv4nB)2 zn`T9$C1;Nucf@onKT6w1I;PLZ@g-pDDZIVv9)@?{8@a2GkQ|*$uY!2N0)^6hjI0*o zpIz=r+I3g|vdrlHA&K4i(h2H8pj+GGY9JDtW_$Ht07(|pwL(N5+gL~ zS}h~2P8QxzVp_l0T{R?fG+uqwwKv!27UF3#KFi}Me8YGmOllxbKa@Y1 zxTA#`GV2iG(?9nKo1a7G=dzsX3`G-v0b9oezm=Oaw1ne$k+yzsKpe!xRSmr3<*xfy@|nyH5*{Xn|VW zui(5mztmlL1sg_Q!!3;uzTluiHZ^-;8go_O9tJ)fsLk=g!9(vB6vX1!L%?$$$9Z&> zugJzW5;-7qPeD(b?SJUdIuMe#qgH7oGy^T1zmpU$9hSnvmAX9Uj}((=NyO51|C~OT ze?+{x=@>mcag2H0%Se#?0@7+9AD`%fUIy)V*wZkf`!V)ZG@3;A@aNbK?;IYS9Hj&O zkIRXr$F5;=R0v3LN0Po}?Uj^C{O>&%Yq_vs&Q)f#Ys-ZkWHHuT%)zdB zXLJ@6(wC{~RR7D_3@C{JFn@tYwGiJLj<1tu(1+;9n1rmBWtcq+W0prnRk_EtDNo(hyh_54f4URv-N&hf+|T6 z2WFZ@BFp1NubGb~*?%melLB|iV!sS*5|7n<*!&}R)MLf_9HY^Zby*9xgadkNUTDB4 zUr2=ENprtc83@!0|2uz$bA~Ooy*<@y!6wt7lJ^T5)9yFTn334;%F5)ENfeNFEXm); zL@ndor{}YLHTGrSr zE&KuYbO3!Y{x>jb-gGHGP58I@o4S;gpphEb53lGHx0X+@z`w|m_>W*WdTLG+c8|}? zW69>s>+E&uOHPt!K4E#UK+r4_mQ)dBWKeiNB82LvOii%?k$U4KtXtF3!y^1h_j@Q^fbSv!YGkF2Rht;-#*o>1LVQoE@knc&9+L@* z`cRwAY4(J2{wEwKH7t?-x|%usFMw|9?zB?mS6HG;@yVE7ii&?Y>kYw*f7XOszKjuK_~5F zp}|xp#7i8TvU0V3zc!zDPCvieUWA;f ztDvA@3QDa_xxQZ6h{Ej~PPQ@|-MfLd{^wqz8BWJmpJFy7-v(493KOy z#@x-zlb<|!DawCcq_ON9N7tNm0Fmc3W`@9qCxOZ&ARmN#FFTF?7YAqdr^;|QuJ3Db%ar!9g+fSn*W1BQkqI>_K69$ZcNBhg zR_6csjadKs*3@2&I3VZQSt`OsRdX5BbfW=x?merfdf?YX&tDhFxCN>^S0(euilEv{ zoEF=}8$5vvVe!$R68^rJkJl}!x_csj2TQc*B9{s9s^ZJ?4-cQF{VD6qQ9@i${e7#& z%;`1YqF)#|Y0ezOUb_^NVS%{fK3ohnU5mEMdQ7p3{$hT|n>dRGTQ~7H(^wwPM-(J! z{PQuEV))zeY4ezfttI9G26IB=qGikOU1SxaFSs3T+Mm1LJsP}gAi7WZxjmiO<8Vp>7`5GdM?1D@Ac-I1>gTfvEM zUTVaO`kjQCuh(NePqsX8Ld7frpmMRo1-Pm~eBpXL)eB5~j0CAY&_^g65vO&e(qH^v zt4pgJbM#CJKWzMSy}46`(W%870q=l4@e$hicdz>@JqXuIgsdYy006^WIGeaYIJg)B zxCHH`P$hLV4T=RG_s-jwuT5)&a6D$3r z9n3Bf68=5sYf?^UZ!nZ-Bh@ms^NcWIl9)a2+aAa4HLwqbNn@s+9K<8eN@n5}dnfOG zcVEU(J}-By-moZ4QXob$3LtVXy<#xYE3T#>O@;}nJb5BykBEXI13!lPjKo*oh%;JIo^jh`#|g zKshx-f#wt{>~nJl*RsS{i&~H%a2Q@Zjsdzl&_YE6pn1oZ$KEtuad)_=u_W#a|9yQ0 zx5vK=(0x=DMt81Y!pSiX>6b<3AevkTyVed(2|_7>Z$%&y7sl8bs0H91r%S1{o#lN^ zQW#0xg<;z0M8!kdLf%F{VO-=|og-8sc?qnI7})S3{!J1KFmMe-LofVjzP7^50%BLf z(}_gpzAHawckiVMLL#eRhTw7f?=yqbfpQhrjs2rH9yl6H{ap8rEOU9Wyw}i0)BkeL z23TB<`S+-tN~|80k^zWsZP+k@;yEcJ~J4ap?BJy^ExAK!YI)I2*+gN-^l_ZRmr-m*Si~EY}4Gwnq%XaS?{2#Y_(Xb#pWok2|#EhmJD@2`42}phpbL9lr zL#bXxP1d&$V|GIEtFlf&394|Utr(jRG2xVxG}<}UelnmI&|ZR{Z%q6-*M8Ov)SVa! zt5?1+Um+L}c6E+7@Wedcr<$e0DKxn^)1^v~CI_103fetDmLJGPeS#>{ovT#NfI?#? zS0_TD;5G++6%_uLNGh!btV)}Yt?D@;O^*jYFM zvxzO_KUCS+V320}c>*Q1hu)g1gc&|ZG!R2)Rp1gOhmwl5?}{dcuSb*LqyJ`HNDBcF zxG33>rV5cEBTbD)(t?HubJ%5|A{*aw@OB@ZJ|6Xlq{tvaMD@S{s{Kp$I{!Wt6{h=t z&5u(|lXdKTJfejA6K9}jr!k&G%ySfYf{5&8XaQm@s)66wY12w4<-!VJGmgY*p#7NX z8c$<_j_4z#k%qpp^uht8dK2wO27xW0_z;QSWW$leV}C(Dj_z6_q|!uJ$u7H{9B#wlj$aDOhqYRXznXOilLmr03@YkGUU84xXN=zPrA z#~GCJ>eH!bhOwA9Lk}l?HQW1R5j3_gH34Xnegc3NUgd@}vVBYt5{L|iafr?9fpDCt zPcbXpF!Btp(MIA9fE-|DISZp-Q%}E#k3sD0<8|Jo#3l%>fB)5g)M|!!(i27Lf}5VR zkm}09`ALkKny4A|{K1t0%{M)^vy~!Bqs%4Jz{G62W?!+2%rroD4hCH!yapK48-*jC z?^k<1#{E>~Hq#McjVp0`!AVfw4uMK|bB3bTbgM#%J)obZJX(qu;R;rCLq>hrI<#X_ zG?ZtJ{r4HN(#M1Ds7q%6a$H@{aCPn5!@kc*4>!`FX}}BPQf7@pm`_0VWzyf;fORKk zuR5rZ6x!*kr(xLbXbv~PF^|+yRZdbfC!;-JR~~l-Spqrte4fxVB9=xmJfbn=uMp_1 zcq=e7EDo$0w`7rgE*Gf@K!o0^hMAW7e@#tj8QV6!p)M|lT$85`b%RW$PA5&pF4S0m zbGPe+i4%Vgy{F?TTE6KW#EXw02zG^(VEJoG0!UK;IW?V-(6EP%f5raXI3|eXA9ILU z5pyaF)WwfiQ&Wmo9Xb`4@OQdXRSy z^cNfb3F9=5ig5dg59h?@>w;MD_4Vf;$-L1&a0fy3_^OE<@<%?&l_gz1s9vPY2XtOk ze(dQKH8mdif2Fv^)R2elK_Hmx-WG>U1vL~!q?a%3EsLl7bx_ zE<&vx9eWI$j8KM#lLX|N0!K#bgs%$aT`=c0rUDP#_euI9QK+nT<1(g@q@!&z?z3UZ}Klq-#>&rx7xqGA-vV@tkI#N6dZl!q>3 z0-M&?=xCMK1*}`U)+%HPs^!aI=WmAc`QrqzB2gNPd8=-zEYoOH^RO^Q%^Vij=$CpO z`{C%XmIGQ1uwTgVF!VUWJwYIc{~>9?y=}YzkE&+w_6H^AE!NJbb8s@FToHAp;XTqS zrrVX)(kWDM_JH3}O2PX?P($#?=O?grw6(Q=ZvD~ehCp~4_6o5q@J}SsC4YECX2_5W z*oqmAqxAZ{eK7CSdceqgPH%-mXZlra=fZbNNJL^;E_mt~=(IlX-m0l|;>;a7#Rj9L z5AiQ+Z9RNaC_6xmUl~iZQ?8%Q&b!V}?9GPIRAWU4eVfrjsnrBzZrUWx}f(w!qq~xnc1u=rv>|6t-p!cPqU2Q zPFcIZHbh{5W+pAgaDtS%;}d_6Y5xCPL=r!_IFz*WL}|fay*N|R)&L#El$IrUsTza4 z9A0G^q8{0HTU^YBW+SgWgTpS}4)MsrIPC(=-ikrv;j+@?4dH`E&92_33@?gOxFRQj z`Wb_Ki9UXt9h&E6JYS`Q|);8-YW)ad<|3-2HR~1?Z_oZ+yyC+vb0V|=Bcim4qqEe zsdS|lx^`=5_K82#*AoBo2h3dy{eoZWViL%aQAUijfzH@2&|T+{JY4s;Vuw`Zq`(rA zIP*H@*fVQ*(x=as{+Z;oUt~>F$!dt4Sr$FQ7kRQ7!=O^K8H3@%qmmDIM;#t)f@O;Q zko8=NK@F=_umOJ^w-$IH{?l5Jo7XcD6J4B({YOdV&jxkAPbO-IOjaQr2I_aQtU%*& zbc|(9$E-{Jka1ma(SIPd2HnHpi(l>$5XYWEtLa&Zy^>8_ZV}X;-!NQ6VJl`5$%c-+ zKuN>@)=16*wpV*`qNN}M5+;n5lX{9NgvQch6%rl2Jy&};2_Dc7JR8cZA?-DIw~&64 z))TK8N4S_RGxIx?NRSZY1KsE6BBu$NExjv+(|V9snU z$W4elEgjgR&&qq3ifL1@I*~a3>!81Xsbzr1CF0$tIPI4Xg^SqvL%dOBmji$%k`8mZ z-6hoQ31j_I!@;`yFSOuNx5zz)^n38v`2g{tV>gMKud#ICAEc4UN+GaP9U8t<)9Vhh z{FI#4+G6wPV3`4V!#m#5A3n|pyjSX+6xuX^6$@Lyqv}a8e%t{3aND!fCCjn z02gSCz9p!x!)r|^BZz5x=#7cWHnUHFv#Zr7;oO|?VM$rOw0c?7?5-@5kV{?Cv4-IR~;6>sS_>)10$ za)D}{X3^x=?(rwjA})V=sF|?n!H>EdG`Eb+!MwXw_|E-D-C`AD_*v%&{C5sGW=l7c z=vSI`1^D#Ag6S>?Qd8&b{CKwM1}Jl`h9bcPiqS<0Pq(kte-Ba^J9g~21>07gq@Kf* zBlRgv5dT;2nZ-7ohyt`Y`jlvIDyq$+{R?)eDh5AQNCCuEDq?eRqp!s^t_FktA5(CU z42d^Zk7O`Q3iE-haH`*V|RcIj{2^kH`ISAHs)3*?X1E z?S?R@M5776;;dQ4FX})M^Xu$vNwq=sOCE&cL&jf3@(^GKi=cylYM9K}CraI{`|Ckc zd@mspU>n?vCDWw%<8oGg7aH7(b^Mdwx_g(Sh?w#-O&hRCEO`dt>(Z04!oA(7&#(rE z4LQ8Pe(Z{bGmE2XH;b-TUvj4Q8+dgI1=DwQNO{f#kJzS*+L`>DYZoINM}={!R^El1Gm#8=RE-tgTPHFak$9U^ zd{4>~*fgOKWmir}yQ2Pj8Ic9vrufCHs);N@u zc9vID-4H=d)oOGv70P2hUn)MG?RO@hH!(C3vvlW;X%qa6(`o4qa@ zHnNw|drp`(O%H_xDIw;ZKXqRVOGA6(=ZX6Kd8ai3skvcN8w7S_LJ_#noX2L*;9aG0 z-TLW{!>SBQ6vs*cHV`j09*rWQ799n`>w(Z40YD(dudIuX6yxx*W6j$lV6CLsR_=-# zU^fcTsqj2Ov%C@vhnI6&O0M7(zJb`BpvT$fmq-;drNuXtKOcxjzKFKok;#H``0oy# zV#cI&l#o&)Kb05=$G5;}5>_7DuOT{C_svkyjLLekh~fa<^V-@Cq{)EV&Z)KX(DCDi zI8Y-<-c43RpjG69;0Q}Ut6zoPMJTWtW}y65Lr9TUir;N1aCQ=DOGHmM0l zJqxFPU$+%Vsyb-vw+y1vbkpPKGETy++)$J$;of)XBsP%ahHp!i>K$A}xx+!k9CT2Z z4w~rePHlfI)7E}U^lBI2M@CST5@8C~t@>mSg2bt}dxn(_)YiQRDQMSIkc`)DEmjyi zHlgq_E>c|_z&cMVc^xkGy5Z9Cs~PVgmn)zFRL6@}{s#esA4*hN{3x_KhY2---Ui8SalRd5@Z;)&59#-Dffw=20G83iQ=ECBFwB9tk&g&)fqkC!~P_C>JqL7ZIYoG zQAqwdKhtTP%&pjYyU=>kDN1G-6aqww?_~oSQH-Uy^(RRP$ZGzt}A}V~W|L>0b6%!zo zvnJiO@BvY^uzrtV^K-gy4Cv)V@C+4xyIsN`228m|Pm4p5uK|aJ2-Q4`AA=_(;wlw6sR31GN$SK~$>ulLT>WO&)nrD+ zUfa&N2$K&_Hq@^*65Z?3M8gtI+sLvlbsO5I&*8a-VPaoJ6PP#LfxOlC=%>Ny&-5kRlh9&Sze!Fqb*>Nv+ePk` zm1*e=+|q$=P+ZV3D9)}l1S+LmU>LTqPD)Km6|R$TrN9ix{JCD6pl@xnNwl9)YxEVq zdBx+t8_A3W*g0_Ez|GGtd!g+wPg_u7e*YI5fVC-N#-qxXDKU^vepPP%fsa_7$Ssa5 zGnt`2t{hd}mzWbLPN=-wnz|L%E0e5xIr61A?re43FxfK%Str3}xM)dhZ{udEY=95Q7!N|+M`$=d{d0?uCn}PJ`Uk+nYOC(Byfu%(9+3_U z>Quvqd5fCY_A7uNaVUzY@U&iTl4sVuQFJRB{<8T;luHT5e6^~Bwv?qk$Thv*tiMlc zKVRN(LMt9n#S$c&GgyzYUKO zLuhaFmz|++H{4o*&A!Zhwz9JZAG6Zlhpjq=)i8v2vz8aqL1S>?6E%&vz6kjZeP`cs zckI&B_7;aI49hnsxijif=Ut?5Opox=q`H}|aJjmDP2^=9B1-@^g5-lSv9jKgI6P>p z@5DDQEhZ%L(M!HR_pTcvH97ew0JxOZkNA9=+_K|C)SAymspm_He8&jMgq5bns@T!` z#^+Az^O((3(H!VQvbcaDUt-#aqslwpxeh{RjErKd;?&y%WarlY0XK)OnZ4gHS1`x) zHaaq~BZcg~>B;~ErNyi1fFJ*j)VTi+$+q|OdQ=>43*`lTfuF*K1Q{(+){!LK-s)qx zux~_}bIensl$kUQkQfLcw7-P=5LHtS3c(j0EoEffQFATOZfTrKgdI2w3%90xzn0SZ z!)E#y-siN9y=g=Jq)g3Z({pJ7akWq448ND4wsm^e%7}m>yPNN zqZDU0CxRn;{zuD~l~5L$1wY~!Um^iWBe$%Zpxiwj_Qh~rD(6mmNWFvg^70?JQ-uhN zA^s_u#r!vx_#xeU_^byfsLQ^^6?|bZ?@E%I8#N&R zmbVr{QCZTrpjow{9^HQ<(Dbs3@t` z{hZoc9a^>{DTEBcI~JZ7bxx~@tcmGT2$N2V9T2VR6xl|Tx8w8n9v z5oO=8E4(&8)XzqBV^{NCO!s=<-v5Ew+;(K7R3{-PZ6>O-W*Gs>@4J#2&IgEN~L1J z>*agS8-{6lhEZN!wF0J%EVZ^OeOeEUG;o4UMmvf%Y(uyvstX~{X99i$C`aH0Cr z!BLJ~&C6jxv-h$6u%}uq9EU0fgO6>Qn7%0@L9b^IXOWw&;nv4KywcE;P?o*&df67> zq?0W(XK2RGRF^xO|0w8ukFUK&W4}fI^spvx)H~vbUAT4!lVu8l){?0*W)W*}E7K9) z;;-Ko<(SiaDcM&)2!6bwf8Y`ea{aL>|CX^nM2tJ!MpotTy)^e&M6lxxvky&$8-$p% zvG9YjBoncZ^=5P-0>@g23qLn+Mplz$JD=gls<#nN?dwkIf3cx4asE4=3Re|=d*1B- zrL2C_o@r0`B_~rGhCSSvr42kMDK<+|NEM@iieyo>+K60`6M}3Pp=cOyiKZrcIxATN zq1QLvy4uQA7|}2y!z8bu-&Ry3ZYAVERvdHFF6I0BT_!FWic^b9q=YFhS>n6~(s@)q zu7P4wRrOSq7U!Pg1vJ_V0S}xOWy7ZfxMgdQ(=PsZr72QdcCtY4slHG!GLJ}-Rq|zF zr~h%aU#g;dAdQFgPx|n%T8oM0>lhhK_?6YZ;k084W+K{4Hmn=cE-yCB$jFEf8EP8) z-2eunM4Bx;@E*fR2rIX}C^lPXIQ1CB(IJ>%D6YNc6T0B7@hRytx7Lc@$siC%cNWta z+-ok{yvmSikTztH-_UXqlpT`nu;tT1n18iRMIgMvCBW3Ys4mYtSl!uY(28acT0f4b zt6wFBAwe|m{_ZgjMtas3K17L0fhE}uEMpq8>fqv8xNu>@W*O5Wqc&ftXBVS%*(ul8 zY>8D(uB}t^mohWlDmoCxXav3}*rGg(;Eiq-bF}qgFl8%>9~o?|!`Mg>BUw|bHGJ_2Q0kuS`mi;9p|vM|EgeNuGF-5Fsq4WSV!)mjRL$MumDpugQ3^mPEn zZ<_|J`>`Rk*#WdQ*ff~o{7xZiafnX|>i5L2k7sXxz2(lX9WDW;O1(q?eR3}rjg#W5 zX+-YgC+=mVr33^`F0rU}%;S09!dTm6*NVb1Nl!^nCSB2q)M3gG(nd)ggLiuGm*iRv zF(L}@Wi{$Wjy87M7%9pQ@cHJmuxfY9a!K#r*FO;y?l%E;VA50ltbFDvqVG~S}} zQbFOuF292Yxcv0E|n?Z_099fV2GKaQc`>cPLzx3M#f?ANeKe$t8|P5 zBq9OO=foNnRNdp(t{{gq98Ocf191V*p4d*qRk0RTYzGY=KCx|cNqp3Y{26*-2A5Ki z3Tp%em~cPb4>dSNsX|eAF$vJBcz2OTY%#_U(|Ft8!+j8bvg-AH%btoF{oiw9 zA&W{fLkAwYi`=b3JPa5Qa;?am7>E5gR42Kaamd;Q(wd~A`oSWso_Kh3_vHEVr~jSw zg|9Tp6wJEnuj5c~t5%=JYvMrn6lQ^x;_D@kxzGo#L1d#D1pd+*%v(7ImocLWP>`;_pW?DTlfcq#B5_S6rBT3*%NB{EqO2M`D*Z zjHIES5EuH%oZ?t(`EyiJqiyO|Xn{V4b4j(0Q5xcn?|lK97ajN_?p?dPxdW&xp=2a5 z!6mOFH7fxLB^={GY^I~=FsOAp5GqboDaa}maEy4P2Xlz!<9%uyHf_p%pm zUz2n@DftcgoWYP_ub@d8cr2y6z`UiQ=yuRY6PL08x_r-Tc;2=jHc&~;s>I}|I0Km9 z2GKN$kWH?u+tRMKVRvEH*L?(y*?%4$%3r9$@GQ{2SSMB^Ku!OxMnKwyQly108wbDy zi9aC`HX`%ed3|jBEbkx2osh^pq+8z_TZxt!`_Ip2qLuCp1n-7WBE~dz=ulQcnZkMP zhpPe%C{F4$oddGBpJtO#28~%lvuZ(R709>tl5D`u>KZBvII#8?@(>W*O44*I{hF%h zQH#0k$&uBMcz1-{STMp4Ss3P?Azo121gdo_`h>p4IXFRLl|j-O3|AMEh4j>Ti+O`= znxZ%7E4~`4ceoOV8}hUc&Q8U#8OX7T^8;JUypN{3^x_UH^Zb6jvb!NR@dZSXVeIWTf64E8yXzY6%rtgDDNHy4hsI z4ceeC?jM_5I<@m1Y#Jn@;#nZU=lzet%!Z8!K> z32?RmL$LA!>k40R+vd;N{fz=M=L8=2NTcuF`SWajek0@zhm8!I)tP)$ikYQIb??|b z4PM;mNZ9u2B*iXa{JI$ZVF5N4XOBO&c|3a|pa|VKTf>%h`SZe#=3X^SSUBA|AWHniV-k8YZ0uj7v6{1WeIj zt0~4udOe|!w&@A{solMm_({7+ZY1xKLw^nV$lINkm^*Z1gC47-vvRPxo_n(N^5Eu6 zTK3o-QQU{*Q5TtJ6#5QCQBk(iHwWSdGbuLOCTR_}oxWOzqWw!4Q0B*}rF>U!D=o08 ziHVyGa4sK5tqJ2jNMmp?A;Y4A^RITz(7a2-_m)nlCf`*-c(3V z0aQ%p{Fumtx-I1S5h`w}Nx4NB+3O$yD6G!=3sG2i9QO8h++r5?2UXqq zf_Wq1AUz~ll9rKNk1Ww*?MjVOHji~RX7oBpg;QkFdX+&usI;Ce6H^CI7AQ;quC-_F z1#yt!IK~19Ba5W#(NDd+*g)6h2DC+k=QKiU#dom%nh+Wrzjmy zM`9%8D94oWv@VQ7lY!H1DUpgp*MNj4Db0|92O3-iqHPQx4Y$M+(6XJMz#k^C0z)XKS( zJdK)jD$!?EL_i`KjHu|0mTf6xxD&A30^U|y^N=HkM;8$J{eA+QWOgJy+Jf^|r9How zNhI_&W!^+q2cT~RPBgqMM(-ID3;!_k(;`+Ymg_{+TsH^Y8zUAB(unq~NM}VsXA(j$ zakYZCJg`a`*g}KKhi5eM(8_u&?ckKfi;sYjEb>`}LU)bkiN(w;cdY5Y7aha}A3_|jH9qNwG(u7!g? za`Q_bU|dT3`xEK6G z{&2~@9$nP&wY-`c6A~=jghlrU2v+SpoRjid(|q3dd{gXl{E;OI3b5ZL$C9bYF3a;* zn@{;9NYc)~v(*gn+%i-ZJC!Zg1ZCrsfLyMfSvP~<`?AY7;6ZB|*Yk{^fqvW5b_wsW zmg!uQDaPkdM zli{la#jJ!B-S;c|iuX`yXWA{&6S4*&YZlyQ;bRky?1NC4Eh4vTUi@nNDw}!uZZ0Vvr+Pa)yiL(B26|#xl-G7wE z4cY;?hPoXFHG#v)*E+*>B6d%U9oaY_M^;fU%pcOmn^{>|k+;h|Zq5giJKkJ+S jxd?9P5QK}!8?VH$&lez=b&FSeKc{-b zq9(I0$^L~;rmlxQ2)DLr1K&`Br9&G%XN4m##m}AHN{3PEoDbf-qua^@ak|iJ&ugx@ zEjkLw!)Z-7*Ot=Co5HT~ID2YP6WN^y%&Cji+Y&Sn3Bs;*N|Rct80Z@1D9YP)Y!*WbG&MS)GQk07!iGVkggNVWpbyAi;Zns1ZL}8SocmZiR-do--yevNZ~xjMT)JnY zYe*ZwJ&A5tJgsh;ELb>}R#rshfAT^6n~)#0UYINa2eX20U?j0Y2sFU8-|ySi+bK+9 zy$c6sjpY}?LUea9rg;c{B4(|P_i>B!4%YDd>byG(U^DrVmRg_V*X#1qtrxn!%O(R5EQYVY z#7xlob)Yu5YvXdVJ>Zg?4LC$UAU%b^WHi|kqS|;tYGU$F!YB;EFlHae*n7RAg8cQz z0D+wZwS{uA=Q;c^Fs2?|Fq@MS40spJK^kFW5S4>x*ryOo!TW|70Ih!#bPKK81Tdm^ z*G4_u250C{a%zHDM>Eb{ZJ<3~##xU4ZHoQV&oHY$e)p?i=;dn=icRcXr0igEg)4uy>x)gSBCf& zb(oHt)`hQ>$fd~`Ac3cZb+#6TansZJ1G+uWYZ@F^WNO_*W1XRJe<%O9dpshT)@RfQ zeqAYM4ZNOP`*H*CEsFK=sO{@s)cXxetY=__mKIVHHlq?pf(p|TSjCYH%lqc$J}o7Yky&S>G%2g3mXhcU z>XVri?hb_H@l*eE`~SyO&S-VO^Y*fut|hU06deH$+$SxTRCA=bEX8S|EjGEBuD>bW zD9s?y9|;Jb(DJJcwYWWX*S&@Q}=)Ui#fm!`m+0Puj;X3@Zb&tMu?Ve@eqv8Xa)paCcJtv zj&~jK))Dd!!;JOe$wy*$ANKLt_PC&b74oH{S7l;s8-p$nP@%9K0kvqI@~{0lyk*@b zrfUDtA5q|ELIAc3-GJY%BtZ4#HMJd+LTHLpi=Q}0xn_#3z}I>|VQUzlSRpnAKkTwKZ5?6V-qyj-P z36ut<;68J9nD8Op&d42V#7$JTvhCaUO3{ftM4`{$Igbn7TmoYWhRAE+^;Np%(kWoM zWF7vaK79ZbSBpv=bCm&Ag`3QdwSBb)1^u$u<{FSK;SO3dX2?nbUfimSx1O4lzE5!J z3DG3fefq(xJ%dlSy%?Fc%5MIGJRGT3e~n$yz>F#tchlaXp#bC_B`pNQv9%X0*dLbc z?KQhL9upf051`%sLmx-s_#_Rl=u&X0Dnq;s*y)NM+D!XG)0GfOK?-8^r#5Kf7S{yGb$#AySDHT24MrG=V)7Y1gL znD~*n<6M5n;f@NbVmtp9WHH0ARz0_WFyMtwi}=u(6N6wsuPHR>#Zcg-u29sGxN2EU zTqDU*9W80ns)dWx!Y*e)3H7;(3_6A<;bK%Vu)JjyHt0}<@A5@eR4hrjJqns*i~}P7 z@L+{*hd2Z!ZMQk@?Va=T$K>d7kNb4%!jtZBWO(n8>x(xOy(Tb$w|Rs_{wA|wBL*FC zcWb=`LTyV$6-X7@+Uoql7=;nl1&|P4ptf>?Q)rIGt#wN0)PRbOm6wlaFQQD0R5!Od z5bz=zRQte($cBOlvoFPYdr{SNho$ab0_Lqrl1$PWA05@~de0eZ!MOVNe`|Jh;O!Fj z89c*m_08i1q?~_YS7AcvHI{fQfJt(7g@KWI=fKzi3n*R@;kOe2{$0CwYxF~K5QwN- zC|-qepxs?c17&1Ec2-@SMtcmm!txdlMhCMT-yQlHj2-Pg1`WGD1n@88wirXCy#ip_ z@|O5>?)Q%3;x5tl`o%cpIl-LCmKr>HCi>DZXfxrMb?LHewkP?J@E z@7$q#+p!$O)5`?`Djt2QXP-1u;g{0mZG?@Q9zrLfx^A4UrR1MvEI=6@ zCa>|tO>Q7(0-s3-XHYRtz+_dct^XvMvRKhWY-9`f9S|r0n`MY$j^yUhZ&I z<8P)o+Dy}aHF?Sk#-X)b*pcrO2@Z=jRpXQ+hlnhcP6dN9k3nv;8B+ja{ZloO4?&Hi zbF|Pjv@YLQzG?wgAV+aWk%jL}u# zOooOBO;ixzs85+6G{vlS@W2+mpCK>_C?{fJp-uf{-eKj=o6XiE%viLUj4_IWrWXM#4j_Un9Vo>b3sv zY{VtM_UQTNXZGAotYFFoAulV+8;L=QYrO)6!V4%RucJy%Vl9g9J$aWEhAq)Gk>V_P z>d=&X_%owN#PuQ~Jq@Zpe*D-Mt|81Ly8WZ7N5k$bs5iaP6?f&Z4=#V_^{|*G-+>-j=3UeXsk(Z9wuU_sPOVi`F|=11WI%{@(8g zygaKs$4yH)+Llz-u>u*|iw`_}zd!^&51c%cIIPTb^5s)FhK(UI-O`RO&K^J@p8A-Dn;ObJbKlw&&*IZ$=?fVOV8L9ub*eTGwK%hmY*3h_K z#aCMcMr!ss@&QScMWGafoUc9moX{SHi~7WRG{j!W1}(+r`=F5{Z-EE=5fp^ey0ux4 zDDh)@iteoMl-~(-=LXt-qzv2w+%UJrX?^C0l6pdvQ}#UZ{$Q~9xd7QHj5E9=2S~q(*gLGi?7Lxeaw09#r$ASTX9$MbbLc5J3~Lx& zlmBZV!uzoMPkF5zwfm#o^qtVjow_w~%yjhe--tDd7+zhlu0T+|M0GL}H^QH5FUovJ z(J1x9{$I}>M2r{5WXGCEF%GyO&SO@jYPagbCDIM+FKVLe1CTmh#P}41D{;w zKfh7*{FtXM{qp?id_UtjnOA!5zfAgG)KiJ&2X)^@uF8NE+}|hnLbs$WzWy-C;lfZC zzBOj+=$t0jY}Z$}&f~;&Nt(U3tZp|_HkVQRh_|2z^bd-%m6ROcs4Ejy->0|mCVZtQ z^(F-IxFll4`No*=&w~#I?@5>(bXZ^d+w^p49v7MLS)kPEJP=ci;ytBpeUf0wt0nHq;wSBwa{L7cp&=cF69pOBTHP7h zqMAx#7WtYes3Z387x_?SlWqx)GFJ`0AJDhinug9*$I&xHh-pj`?xviH5tPswRQmzF z0j?lD&_vJ;fs7bI)fwL3YJAPm4Q_c4ig`&b}FX3;*pgjijs== z?agMeLchUwE~!2jA<3|2Uk%;8Hkf?KzXhTV|@CJUsUz^JHXnPF8q`01-^Dd z5x5ham2;eX78@L8k=jkeQfNdzfuf<$;c&odqRLm44SCQPKXF#7Bx4t8-68W%Tq)uN zV;;ie5q8k$hh&TR(icWSwE)S%I`swBJ3{!7mn<@?;XJ`v=L5*Gz2Ugqwwij!ePPuH zV?Cm(#}o)}z=9``mF&LJ0p5U2F2=KAkjDOp2w6=F%;mu?5a5r;){=+{;L{D*_lOM; zB$Z7M`n ziE8czX)Iw(I6+Y{CwGF(#06B9eav(;ir5w?=@4VT) z46F-1EQ}%8NodoIvCQ;9&{Ur+`r!akbtb*q_>0^D{nh^^7=_a<4+hZWB};l2bVu^t zI|s)l+3z>%OZbBsY=XzO#lUqJlEtx)=;Cqx&Q-XhjDR~X+AGk4O(Y_M=~LJ7o)_5xTHqk86y4{K1S_Q+`gCT*LK$AKkhX$KL*Qal$u~iK9ZoW` zSh^h}PS&8v^OZsPBB9_nZ;Q@_z{BwhL%Uo19Sm-M(Brz{wU8?O_;}^Gbr4D(d)<`? z#5tmxaszz$Rx(dmLzjtSzX5{c`Cph~Z0b#J)S2^|Ev64`CJ2qgP;Vr#GC}7#1uCV8 zpOxx(Za=xYrsMxA~l?RpstoMF%Y9f zGYA*V#M?-b=&NtKns9TCss|%!`N14fHFUrFu10I*Agw_7%#pVGP6`$Jx@h6TUER8G z(m0YIq5i^5VHTQ;aoD15d4et4$*jjyyQqoqEW>3vAdB1t!@tx2*k80x|F&r|(gx_c zq}Dsc>LfK=b$`g#L(hTZN^jfW>3gxbzOXi4&R zX>nP%cfsQx{2jBxdMvGmCH4HYgRG0)hmx~JzAD5I@-`32Xkwi43Ez>fRRJ3~l3d87 z_;ABnylIMkw5L-!6`vGsCstkDrx=-J9pYbQ{G4ef7&X-Cnf5=^hJ zHT!M&{U%d8$-TqX`cgX{ePXkx-r=X7t;8H{+u00E<;C2gPnJU@9S-8y>kf;3uihZ5 zF}iFfFJ+4XvvE}%&0i1r@W4|G6*>qptP1bQg^KAjGF!)!hzb5 zhdAB9-RfVpWqlp*T&IhL6r@3OUdLXK@s=&ur6{@l-@&A~c#WFP*K&1Kx#3(?ibxmXS0Z~(O>2U!PQ5?4=aF10i zp5g8aFX@uuw@mW}Z>|KKjYi-HW+ha*NxMc?t2Ik+FOV8LqCb?RHz zooXK|Kn|iz)HwA^%LU;BTSfME-`R=W#E$Sax7YtEtrzLG$0&5(F`qs~UsQJ(h^CUy zIxx3HFy~s&t6H5CeDq-AmU`}=%`4(OzV&g2K|`u1<>}b$QAcj2{`yvG1EtoWY?O1k5E}oLFc@AzT4{s)6UhEp3)|3y z(08lAz1se{#E?`tz+aQkj(e9GmAZ(7D#oVFYR`swOo;)8ZG$Bi?$5P|(A_inRdEG} z2nXUr?C)Qt=|4`6>%!XccbV}k_yv3~sKhA%lGu9CYrQRAZS+8V_TDYaHT)H84@A1% z4!nTu_?;yL*-=XnS|Yt;D2MOiUrz4-uIzQ%JufJx+Fc_in4=i}+%J2qAo||6$1gEi$&}|$!HcrN(eL^pryZLrstJ5YG^v}#qf5V6wlq1D)#&nI- z`k-@AEzV$lEGS56r<0T`cf$P5O1Qz@H^AubbJJ}E|IntlFcHc?dik~JWV^7VOl5Pe z>akBA@Gn7EX`IYqOE1UX&;VS89d!jIe`3N-#>ocdNVn^+{W@09x3&&ONV;5T`^I@p z9s&*u*U#`SxiLMj#rE&c^d3-mOFRqrSrat*W}#^nl@LCr5@TOlI4bo_V`F52+%(jo z@fgd)fCpf^^qiymE4;q5B^B93pH(k+3IHCdgL358Tnx3cb=av&h%Ejeyr)_%ov8LYlNrH!aN2le%j_^%grgxZ!I-bpgQfX_w?PtOK zLYp@DH}8hMyfsrUO{D?=0M4cgOw+1?p!mfuNa&0Vkxdb2r94kB)C>x^aBFu4ocwF% zYTVg8sGzdA|DO4v`RrCXG;sLvnw-Yn9hoK6+5xJ;q)?me8RYyi@D4>&{5j$tHO_NO zo;+&us!nLG+7!QE<9Xu20$`#06G36@Jg`oRJ0r&z9mCMegFH($M zuskpIE8Jp$@8v2^-!xG*+cy{=#?OS$0A#In#eYuneIJ|pw6T$_d0=-qp{-_CsIcRw z=VRvpdH6ib29~d&q_h-Tm_E)nxHJ*Qn%hXNLlENLl^i*; z?#H-2x*ZmPZn~?+vRm5^L<9q8N+=CHhmk5sLq~@Yj<>M#eH3DcTh@m(70dM2H?H&IB2LiiWG>X6^TShrmrO@&jD5=}vz zuvK=DWRG%dcaR*v>K=tR>A>A4264N{p1o-E`);ReCRa*+GX5!pY+S`c3%mygE zN)cqUq2#UHS&Sn2tK-s4@$PKCl=~cBY95Qb5MOk(*x60|bs?fbny8r*di6}0*ztWZ z^Fq$n3vx8VK;4j43HHOWmuW-w9O*_~gEyfA28+IAhQt?Yl#jc$Ux66e&o-WHB0(?; zin@2$k8EqL>&&Q|COIeW)wRF^iDyJJ=e6h$=SajmC)j0*llH;_t%{t`I4rrCN(1hYa;m1M>PR@c0gD3awD<%z-0vfQ|3lg-5_-2>*!j2o$OC zHAzYc%Ued$$xuCIv|h{L5u}6Wvee47V*{n+X}YDLZh@u&Gtls+BYEq-qJcsG{JwGX ztjs=SWMUDS&EZq4xuWzm837XnPqQ5(#0=Fi{^qKX$JhK0y;*qmL9a1n2bWYZzG{<& zSZMpR5Z#I0rVqw<^sKF|uia3EQ3-jwdybw-1~F*dh98 z4rr#Hs5eRPDnNPQ(XqHDY0N-6S;TV;f2?@KV4_sub(mLs!|d$tu!FI#yKv>wnS5T; z&6LIqH1k2Hlq)=bgjldXAe!9|oCSP=e;Fxz&ch#?RLjq?@^F_TPD62&fhd=1>zok< zqsPKClj6Ui7QF_KhJ>Xu0ry{_z{B&YDvl(KKuRp?3Wf!gkuqv;{X9ww1a0zL%&>0aQ2ZSNYVsxMTUJi@i#5T&_aS8j zdGSiCa8?1Ih7A7JYrCX8U73c(L#;4%rxKd;I)FsTQcI(DOojk;6$G}p6i$7%sSx>} zjlbZJKRBGpYHG|Tt&mG zi(^9x7XY4d0}auqVbhgYnxe=}IsRoM#|9sK1Ch@c_nbJ|}=& z>X%{frw*y$i)7$MO)TCs=Ph}Wd(24TPEY_BLT4T?rHmbW(rX;x4qrBnc)M>;J^Eqn zj_*^ILX`+*C;Xm<3xJI{Hz+SA3geQ;eqUWtAfW>U!Q31tlI)1gD$#> z9y6NZt$=K6uos#c)!(>_IO*TFHd97aYh8aVshT#;yzAPKVl9s{x+Jh_Yo%P zBdT3H(JWw%+Prl@$&xn9H7CPGBfODFlCCqaD%`o%lncN<1`>LzQK_ievK}MU z&x-CZL-khzGHbL}`J;~+_E<$y3uh+p`Tis6h0U5sW8ACLoOokgZE@>`jCX#%?7dt# zN)f9HR(I7#cUwdD7(5uzHmL+?Q*{>X{n4CNX-VsCN(U{l%@^FZgz|%1HQZcM!6dOU zo($$w-uc=3*bv_tuiyz12b0^UojjDLk-65ftU zZ^qV`zC0g|iqT|>`ci4|;K2w(*wle-6#l?lRI_$&XuQQ1{k{2^Vp%F%gy}BFDN5CG zaWZ&VlMIgpysXNu?ErF%AyrE2TL}vBq{9|vRJRPRV0UK0Ll5?PdK!A%uYz~*H)6p* z)Iv~4L{DZ6nk1GQ#YK~Z?sWAJc))A}npNn14OranPgnimEp)VOM&QAL+N2YRnc1Mk zYt`wN>zbkv*A>lwVY=FSF)$LLev&yv>yGF$P^)|6er zd{Mg70CqVPJq-HNO`x#VFRmX)b#x6^=0tUM^(G-_5sz)S5SH|oTG>N+!uhMMiwzhu zMS}<8A@!@Ap4Hxc{2Xf$%CUag@)4lU*;(5|h?WlpNw!@XtWL@MP&d`p1vXE_)BoRV zv|&t9NKAZ!0P%Q8XbIW_g$Q*Q#DjNL3mRvADK^tn7O>*(Vwl1I87)RMQ; zx)<1*&v{^|nUq_h>%_1S6{@7Nkq+qS`fynK1~zgi3|uCxd^ZX?jaVClozDqYs6B|W zSyRPb1?&Maa-f_SXQ9LszzDCzXUdtg1g5j_XpTV&QMdONsyE{FfOE4N<&Z8e@YAT$ zPb)YM=!wwOSRwejLrE8F!5J~E-&kTA^OYvg%53oidpRED?3QyUl+cs#VVkGd3qpT*=dNAlT$;nO~eBX zre6Db7^0C1Gm2IGj4Ypcu%2Hhd9;5YICspXVM3zZXEPGvA<+GD<{yQ{S@XO4+k?8$ z{qpx(#mBq*Y~3+U0UrW?$Xjf@`v|ei-z8enTxPs{sRIJagtLC03GYrWvqZHX1?qA< zihe6g%eVJ>?OkBLA1^p2W7`DY>$!^#VgE5A<;q}sDtN(64qM3jQLmV}Ki|RAWOv~# zkG?Q@DLpgytZ>%am2)H~PoBKxQzf`d-l&N)(Hy#(7cCZ9q;!#?Zn?^D%+J>m>#Kto zx_E!~w4RT0u{VD69I5`st_@prWdD@Awo7x)oRPrB?MmFbI_h#$r@TK7 zOM$K~zeb;Z_~vAmzw8fYL-%hrScUf>`hL4Z&$DBAhz?oBFl2N5#{K-Q2juF3<5IB3 zFc8}fjTwf}ir5xK%Gt$N9I#-F*p`D|6t0|3$tTa+*R`V(e+!7i8{qbsV*uLrjdRg9 z|Ar5CW%_m?CqKV%CZ5v)|HR3>FX)HdMaJ{vBhGvNd{ZA+mE#*Yrf^}eI&SVGaSX=? zlKL5FC`T4@oc=s$y#4D-c!Sw$bhcJDz~A6uABA&I-}GAtU4iW(?eAe!1zhlR=apT6lJ-v3tVGNCDtkCTE*8fg*)lJ-3 zGA~}dXaIHU0p_N|Hk@-<1m8|2C@_liw1T#;!eia%{n~=JUL?j{#IYWuf(qv6l8U^C zKOxb#wz20Obcwnmb_@Lft+nXmmEDz0@6K3(fzAv($u_sv`74TMJbLsfqojnhrxPUg z1z*eFy?ZBjYVO!cyJ-&xCXW93x@_}9c;WfWO9Obnx`USL;$tg-HP9c~HvZ}9k!SCG zZ^<)Z)Bn^d^!jdQHR;Qwt&<>J0bQF{Ka!Obbnd;M)@fL(wyFObe;|{L6 zpYI$mnoPf8p-=yw-@yEcO&$DIOsQvcFj@9=3@jG=V8Q<@I0CT_Zu%bF@^gO*30Ep& zLx*R-LQ(efmGN6zc>hdq{r}&;g)-k8;N1BTj*-Ivn_JRqnr2rr6buiW4@n@i@gDfS zvOeS8+s_}<A&yI@D8Xq1Dy008>>PQ^fxN%$5#}zet(U_)Md>qK6+N5w5K4mQZ?5gxy?fUB z4I8Xzw_>|JL~K;?n}OCqSgt-XpUHoX&m!X#6s~*^XavxC7+}alkX(jCRH(<<_H1Dk zCO`4-&lo2fKjt4<-R~{8STERq+LBHxR5_@mDG__B;+o!$a^dWI*|`FLACs+A-(uDgM*{riJY$tu{-9w?gnC z{uH7(fMe6&IFFf&XA9Va#;X~7Tk5@>zOFq)AtFw6pEAPq4RJcqV zGhV?RG|VKa`NF8`C%jVx2M0Fj^9iX6J;ySw7jqrqJk@G=1xm@fd|M6s$SW>={4aoJ zztV5(XR)_`d75X_>f4_jL6vj%f@)v{7(t_fph)|f?0EIxd5m9kzr#K+^UoU5XF!9iAw-HA}9uDeRga;HRnF$AIeqW++{#&Y_@!;f4#ZQ8m(s_qu=mgZJ!3`@07CS18Vy$$Q#tUF?{U>>?z42p;O+U-sv};^G2d zq9yao#uaSqzy56ceayTbon;r}PxfnU`9uJC_X`25B2AOGQZQS!Se`CXL!S5M&gIr`r{M_UJM Y_N`LS`7XJTf&VO7xMD%LmbvHu0io)A7ytkO literal 0 HcmV?d00001 diff --git a/modules/1_Continue_Exploring/A_qtm_hw/analog_hamiltonian_simulation/digital.png b/modules/1_Continue_Exploring/A_qtm_hw/analog_hamiltonian_simulation/digital.png new file mode 100644 index 0000000000000000000000000000000000000000..f677ac7eba344310dee125aa6cb9c24515b7ff09 GIT binary patch literal 126202 zcmd43_dA?j)IZ9Y=w*mr2cvfpz4tC^5Tdt;8boLG&gjvD=skLG(K|sz??Ob4&Y8)3 z-gBPsb^d|#gUejEeebpQTA$VTh46`sb)ly_<9x@{^H60pf zW5IO&s1*?rqh%T}(ESbE4<0h@$;(MMGFm4Et@j}Txygxq+XlMP^SKU##(I+nv6{8C zqLZK(G~fw!PG(j!Q`0e|x|C5BOvxi^@EZsV#n@XUa}s1KbW11X+F9D8=cX?~f2nFR z62La#JCua+G@$hh=+UN1c+E4(_az-*@P2w?ZgLsYSx4CCFJD3#BmKeX%35s7lJy__ zrK~iqz2zf==(!8Eh(ym5FWm@Zuw!CKNhLRMH6MgPlsPfxHXw8KKu{)qPxpFPG8DRl zCp}h}1~r4?qM$tKgrsNCq67zuqx5wO4S$iddSyZSDTa&`{S-OyvvOFxh*m#ba)MU+ zO4e#>NUZSB=t#)nc1S?@CuH~!Is6AMcW~1P4%nLBxk537=#W4{NKNlFrk};?;QB}|MLtgDT$9xKuSgX-)Bk@k_p{Pp0fqR z|HlRxG2;JS)eVsaE3QM@52m;OOC|^?PxJrMgi4wc(19S%1gjUeuK#653Q&Oe|8NE; z!;JywLlDEsn@{M!M8ME#wEyKF!AyDxIuIi(L_jQq^1nn9y7y83%d4t1FbJsLn@O#P z`(Gl8rWgNR1!SZJNCB8O)Z!Wc4>;gJUmgd}Hih9>_)7&>(iK(X=l=o5AQcpB8!xi0X$qdI zgM;Dyk2fSl|Dcpd4INBE63?;v-o#r4XW7(=7LGh8S~Bl{2wIFsKf=>$lo(l#2PsTL zyF+B)@C|AEGM)EdWqZU+9^tNv$=)xoH;_e^_5I4o>N>N(XzbPAz46(!yiB5VExp`Dc|~^sAF)U@|*mvMg>Xv zj!)Q01*HtGq(34Mr#=mq)CUYsc0^?S!)nbSx@Z-UU4y?*x_R)5l@|!u!hz#&>vx>2 z-~Swh0(~3fXU;DQoSqL41+bObGZ}Ls0kp(a-`FE^2xqGba1+$3O z?P`g}KH^M%L2wB80qmJ^5aiZfqyr%pu=>yYgS={@mQB@%G;v4I@O`r!JqVwp9~r~< zJT?}UdGqg_ch8`M(zoPn%Oz~|q3Wog%mk$uOW3R6R$;n~u=3^Aj1v8SD+^@uVD)xY zqGlA?85ue#a7M|<3JVXN5-M3DU%^+ze1vZtcO^o2iG|?86aqYhj79!XJS$MLpGz8X z=2avjqb+>jiCZvD!;6q6CkXByI2~nl=>EBf!9YoRyMi)n7kXk%Q^q7)h-Zr~aqBor=Ml0Vwy2?=4$IA5a+*E=pd=qG8Hc?a<6Y=l2t6*N2D)fxq~SN0>4=Tpe~-c!WAf4I zt_k1`ZRr)|yobMFivjEpWdkuaaR|223j5n%+wKZ#TR$JK=gCVs`dHi|piNxTwF$CueJ7?FMC zE780>M6ys@r>3VQ13+C6UckkLBA?*jSw;DQVW93oX>>nBL0y(vwQNOgHriouY;b(# z5=;bPg7gRzq`%g5`=?wV6sVa%c#N(WJ#-8v%@h*DT4Kj-yRL5*=L_wAl!sf!V<(EH z|NpK<-Q2Zws3yo{;S6yCz?NP!MI&s2n^yXREJoR*YW@Y_ndk<) z)%N2UkTBW%F>-_zPVpk7^XUx{(LWM-LI5%z3fMJIb&>>uWa~x*c$1A2rPlnnq5)IL z+oHQN&Q3TQ^S;2rwy4#_#!B%|A&TgN!@;V-Uncf*@I|oNa;#kx*%Gc9hGUH8*+bM( zx3VM$dG00iE)j2eU$MXY7n-_3KwDV3-YB_KeU4zk6#7!b zlPP27WZ2;qhbG{i^P zlIKGH#6NuT(XIF6oz`#eU}PtWj&II3vjh<7iKkg5hbvJU<29mX@)5FF75Z0U=;Wsp zhLXT#&Jhj=Xlk34=EgsDhtcIx$Y|9Qw8;Mbg}y%Z{vD4S*_AH40xnj~?KBK2gKDZG zn4QT8AqP%`9IjU7#{bEogf^iGIBy;vQYNI5N6@UXXv zZW01to9B+up70gxJMw=zuR+JAwX_pXBUAjl997(p_n!0Tbq~GCOvA74FC(t40zyn7 z%0TV*9lSSr7KHxbsVD@_zO@m%|Fgn8d}PBz)16s6vxa$>;kQe3pBY8zKYCA?Y&tG8 zr~>pA?H}E6z#LJKAR*({N3N8;kg3hY{DIbfcf=Whh%;>R%Q5^r!y*m<>?D7y_)GFp zahZjGb2fsQ$TF2rgd9rLpy&+FzRke>KFt0hc++z zH|0lWNkBTjiZ;m_!j23P=c~LUYWN>h)dwo>UVL})>Q%5K5OQu5P8*`$NLw@R60laCpqOyw;qB z!-EtB&>G#K)Yx$D5sFV9F?>2)T*6MWvG|&-*bLbJ??c86@lba+FKWTEPZopViKxSzy zwLiwv@ggzY^IQMI4MSvm@w{Y$DSezGR1W5$y^~x|$hem}Py-aE+du^=4n zP6~wkgl9)^B%F83RU#0I0q_Y%;xE%Bcm@F8zBsN7YL#i;Ozj>>4IG4y{Q#c4dRHP6 z^1+}?NDLBk>}E`>=<=B(3~vwucTKwZ5nY>l9UnCRz}YF0F*N~o`y!K(QBLahER%N} zMWp%CgZ{F-{d&mK@Le!%GD(&x>@oyo53nPmoD}4%7vesxmUcJ!pR?1Q97K5q3S_ zW}~?U=VOTW#FL=gsCJ82(KQ3sS&vZ|w;!u>Xq_o9`S;=#6(xgACapW{o@E+aWnIx$ z-Vi)RfB<3SPr?*zxT87^>27X7En{%rehD4e4lMdAlZo%>_~V0liJo);)Da^Fo_)>H z7jQzm7ZJGw|1#ZcxJYAAfFAbG=BO&^b=-mszMjp_y{puorCO>M4D4sz_?B`{i_N>ArJ2aUZIZehS&h)75W-6@b3|hzytFpZL*Y8Z>RqZ$a=){YA&Sz} zg)J$Q?*za_9qe(pD`;Z8_<48&Q}w;3yGzuMVem6Ms%>}i38H_Z;0Q&yxK?A$AOBR6 zM;2NBoU~7_U_vvomnXS?;p={eB!N`p=Z&mxYv9z@ez^>F)3u$EFgc@>u8uT19cij0 z8V6jp?(n*4vGt1c9W}b@JD`UMQG3&ri`JsFWzF$R=Wb|7Rqsd4;7wS&?iAySWDxKh zzRP=SWHc!eS{(|yitt}a*hN5f3T;kys84xtXpW@m6C!DTGNWODpRl`Az8hoNdFKeD zcJxsBX5e=+_fIT)D*nq~k2uw>&qXcV7Ozyo6g}cqHKPIn3XLc0&}pKgISwsk9B$Is+>qe`92)0Vv77ATgjFu^@mYPleDHuw@M1vrn8 z7X;ZVA(Xo95Uq?*Dm|cp);HG6bA{c6ipNcQk=2s>D=^>L9z3Di1ZioX@MLlwMWw|<25-V^pQ5f5l`9F z#K?*$%6vj3a|(Ye4Ori}LMAcH`#$}=|9v3F=+A5!hKa{-g z#h3GG#&N@3ADQBF^r2)P0|F?CO&qLL@U5Z(lWI5C7mbC_U(&nY__C}F=UFM8f9XqU zquDx)FgjlD@=eJ?@@BhVQpz1|<&0lAFo)=6n(cn-MU+~p@Vw1*bh)g=7GY5lk~z&* zL47~kd7&A)TqL>**v3wA*9o9`1JrY`tB<65!b}eCy3>6H=bp~7G)A1tlTR`_^ekgT zriQQeRl^k*4&tN#KeiPX_`IGy2-)JL@*Jo%v{+;bU?$+S?x*<806 z`bmsTJ*CLp*AqW-?jnB)ZK2RzZsRNTufMWo^zkhcL78+9|L1lP4Gq0^d(AyKoguX? zMy&!!tXU^npHj|qY7iL^YvfVV5j@JGc5Aej7MenSCP=ueqJBxYOgeafBbc@}*?GLZ z1LMTu{CV-26wLESn_tRmUedlRNn!=m%O0s?ZJBV>`!9+h;+&O}v5qKQ`*k?v!<)ql z>CEi)b1-z+0Yss0FfU2COFmh_59h%RmMvRSw!k7!MAAnJx|StJ$nI;Nl36=rj+pmbAoY+Sva1&OK=q9a$1D5%9=gRTAx%UTvH zQ*Z`}S1X=`k?`)=u#zk{T;cz3+RG8$&9R`j&6dkNI^Zt9y$E7*SO5Dy*)d1`Z171P z^r@@74b0_ZEH%-R$NWXfnoNg4zX>HZBK>F5T2ucA{RK#@c29kjRcfu-i$A#`;}9t1 z8`yv3ChN%SMGANE(44qq#zuXUu(h=Q&$Ql{CYF;RRk1TgyIe7q|H=6bNe~IR&!7BV zju51UJHOLDtCo#-u7VXzeG&|Ar8stiyUkcOcI3NA*-g$H8QYAbxfFRMG_+@_c#XqB zGHNPXVxK!kx&w94&>CWWq;EaYl(n@MB~hcPsJ1+e*HaIjK;{Khte5x=!2FGd)o=d& zkG5-!F;0|N77r?+EJ)=xb-0YivvFd2OEzPRR537WxX;<5L~bV%MP%tmDnLC6t(2?w zM)n00oTW4-H|Au^J`9CvB~(>j15#efkF@=Nc5mE4BnFR?QmYS3QY|+N%S0kxlspdo zx^E__DrLkawYQcvcyXLtCWJfMKR((e&^V=ejA1!%5ITEt(~m#`kF#!1g)cd;hl0mx zh_=ndKg0yf!H8c!r)=65&=o}VqevOx8I1ylPQ){Sh17aa8`~LFAk}I``D+vNK>;0h z(ZHb~Gkq+{ef+a4{s}sDk~I<9kgQ#$1I8*Z9$EUxmiG#$-~OFoYbZ(Vw3>HI!{hf33AM08?!MN5o+gaP>3lz@agQuW)h zU<(wz!Dnz)qN3e>tjPLqUX<$@512cA6Ge$o^Qm#qel+2IZX~VIR`e zP(H2lrn^zj{~^APgdM@#$0A?deyM67b0zqmNACxFKn@`*t*mPt_F3n3$8^lrk;)xm zL}p`gkW>9ATZe01z0($`9=$)kl*pS+d!ncvAyS+l7n z1`F>7Gb_5aQLe1D@RKbihr0CQ?{N3h<;>H5f!4v`0GY#j&i6z? z5OLGB6{x}Dh3Xqk@7I+ut=DPEMQ+NU+fdiv$&W8eKuzp(RIGl?VEJdFeWKOhhQj|4qJuUYNbN$Z|ywi3Zb% zE54}U`;s_BZ{=c*b`Ukf6EeMsLHDI}C^EmO5LrT#^2fccROe%9UHgXE^K*@r8X$qK zfQ#Zd6CruAWKvJU4Cvwro3JmA5q>lZI?d?FPM=ii5slH3itD7bmusk8i9 zq)o|gD_ou}|9!QDef$gNYSLwrG1=r-Bjr}=G9DND`CI(3+byQhH6-}G2Xv1Ym)OdA z%bF~CJPdCpI-5!>V<~o0hea)y^&5+R^wc_kRr!e8g3k7FX4zRcmEfo|{lx(dz~zd7 zjLEed0JBhM9;ww}8B(%YSIjtgdy4wyU#S?60Tra%<>?{$gaY*jdN`JkyfG1C7HQgv zpd8?03Rb>w!%PQGp^8#nmV}{vCLlUzv$~~>;OKfwPp9EgSDR$Xvs3IOJAI~oDPc6j zs6ZvbgEk`tqV-vG5c7|*pEp-5wJ;Q~Slm0AjL@QEWyxGEkoIXy78dzh;zzYE#_)q; zxm9iCXJg-z!i<1#sTiA{^3$z?`>mc-UPbW6%^6a2Svz*$QK66m?@*(L#BsCH(G-{? z_zT(W7j$XQpAIj!ZPqx3jKKkqTe5dHVdCYx0bI<4m!sQ(ex;SHOcLeHT=xa}lpYnY zoozqiKSv~qaozoVct=9GFnZ7;8~XjW2+@yPHLsw!7Ru$Zo{aF9mwbN@a7{ry=ED)0 zRSn?@IKTL%UyNCp+xmU}9toVXVNhabBYag({H#PlOgEpQj#BpK>SO1t)Q7AgntV12)d|5tel@$ID!L+ zj^{$l%g?#3*dW7ad-LLJC$(+&?oMd5Fh*2Ck%YMZ)*NE~YRPA*BMMb(%&(vRcpG$; zf!kPTExql+jw;3yUBC0y&@3Elw`#LvJ!KK{cEoJqR(F-<=Q8EKOAAvLYcD01o%_JPi&t&pqJ~};3?v=Y$8rhYy*#5tUosEB?Sx8cn}S593uBp{(n9|-yIR^ZRqBUp?a z#*7|ivXFzlmCKzNZ?#`aJ&E`4aQwp|*Yq`_ni^SbG7YQ^;~GBy6E4(KYR92}ja(i? zA+K5^S0o7^j7jM;9p6w5mQpJ9nd3Htk?N%h2 zm=KYfD7u<2OBaFF=N+I`IKUw2wp452UozyztD2qQGlqM4WYVVYvEtHnQDwB^w)C;y zimy`58bcMSW(neoL38`gI?P1LOk>uQgA%>x%!XLD9H-Bb;o`RT-kq)NEPGP7&?fD> z{2i0a%%(OaX9d4Unh4ubY0E z!2-Ny^WLu{yOo(D8hzcih&i)ip)@Cm6d4-+r&O71UYbQ<%k&E}wkr7DH(8|bn`l7` z$aM;btI3Xrz~8=niIUU}{9i^l70E?}?H*LL2f?BB*sdJ3;S#y;ta+5J^#z&;3>o-x zWD1g~Za)T>s0$W@^V~x+pRfrVE?A&u0CDPxA>1v+z;xW)x5oal3YM<&S!2RQR-U~% z*Hc0@jvYrxH-~RJIDa1TWMR^)^?kvm`6FBTsuEvfVMqMU0ABSt0IosqR# zKhf#95JAl!-_8n~hwsi(;zKThpZNrYN{KQh^g*SW1$<+ksl(#N2?yznZ|7XP#+*!0 zN5LK;+!8Zt)dzFUZn<7v^Oc|*($%rqH5>Qus;5Nouu&k5B%_8HM0i%9SNNs}Q-zCQ z%MLIm5`p@0f~hOLAa3=5#OrC{Ar=$isM(Ee9J20dM@Voo2c8zqykx0OYs*GbTa^2v zrKY~fP|x=Ydg5wK*Z}m!S6|vll;6s#KcrB;tCQ|!VhMI+I;8)dXX$&z9iz72K}!mx z@()t|gc=!dV(>#uzre#Om()BoM(h9r*fgmyVCGMb@up0-J*3>RmM2b7Q@m< zD`VvAxhe+5<&7?wf zGB?9Oyk6qQ3nMdpaeji|W6aSt*c_5dLmlcWMPKu$;f;9^ehu4Q+~eqP6m_j0THvZ0 zI$Vu3QQ1J`x^swJ_oWUkDLQt1x1nly=`4OirU*A*kE=qt0>#i<{!5i;nxVHMLtv#` zoEZ6eRMTrPPrp~YFoA3Lh14g@Dr|m5dvIDK3>_EumBc1@Vk*q>Oq?`RT~~@jRbgem z`yKB_7B6}ongequfvZuM!fMjD;?(DoM9}!B$ScxmO>46o4(JVzHlUiAB@vt|r2M+4 zXWWnN_3(O}u>mgeo&NIinTXwN(QK3rI8U*>>3LVhDW-I#yz*b>Sa%Fe{K_Cz>z}8m zXVrHGa(Y}}+4@2lqzJ}-Y*&i<+Z>R~l|nM>Z+iAC3jV&n|2@X;m~7|p#&WhBx+uvj zaA~0jRMyH}Xw1Xxx;B9&O_rd?!!QtongYZSecu_gRMJ!y=&_z)`?Ylkt*yQhZvdm} zJaZ;?!CdX7)*^JlyuqS%A*+Kwx<8?Maz2>OfcuH~YbQYQvM=C|YqU!xS(3&IYNvTF74#6;H^2vUX8>L7#YKa$`>b_F~HulmAPK@w=3YovAu=!#AWT z>1e}*o~#g;Dg6z4 zKY%WXR8#m}SbyxYo#Rqj3?C@@oJ=zwfute8I1`NJ zBjMSfs@M z`M9W!G4{+I&e;Xh@J3$c_^{7Kd>lsoKEXs9g%7(UnEoM_X@TfVCEPF}5yI?)d72-t zj0<}7lGUg7)-&FxhQr_;Rr1bx*&;#@v-2U8Ixpv(_tfc51ZA&+nTx>`deQf1XhdGe zZ03fGuOk0Qnpz^J{xKSbsBnMN&Hp|j!da&`F9lUxeJ!!uCEMhRufn}okZP-B&;$S;&)>ObRtKw&j`TQ?W8;%-CA5 zE=-G&&Bg~iu*@j#Cg<6bJJ&oJWUcVZ_PV}KGr{`^39)39OwH?~8HO=uTsonArrFGp z#etEr(B(>8CKqkC@<8x~FiY5%28nr9k5eW!I@*h7xtoe#WT6+nd14J7!k}y>+s?^^ zmP3o{#)efMoIe55WKJ^1p4-&}SZj;wceQoNi}g<@(Z2B-g}P5EdM56OS^Dd@*`!c^ zGYA&3TtgIA#N}!Y8xLh zi)H~pj2hMcLGYQVgSD>pM9&HhD%s?yqaaFk{#D%#BAsnaJRgB^B{u+-7a|;X9kk}RcegO|0K1M<&lb-um|~1M zvJ>r5u3b#uow%}GUF@1)8Q0W4-XyyH5|(pTPODoYyr%Y8J8uyWoxwG+skf2iLt+?i6=8K`;zi5_Q>i}am+W@zO!2oIq*B0 zBBcU+-E+C;@kt^RQvAh@WNtbe3rtec zm&|+^PmJ%J#txLR^`~* zce+2->UKppHba-TnK0~Y+SGx`)0Ir+bA4bEJ;$1<*PzFO6ovp|Mi_}ouz&V91Zj`7 zZBIjkVSzEF5%$$!4Ar`StpcL&J`fzA20z=bpf{6P2Zi!D>k8h|;g zzCgqxQWPw1t9tj~u=XqR-CRQQq)BVOS+{-N1mc+-rha|=Fw0nh^kRd81&!@8QGx6gzUVA&9MwNu|WWV;T zvJzT!jLGTF7e1+SYAKPaI=9xM{0755Ea(dys^SRG5(5>R|e_yZ^e_orahFQCXk+o71Ox1pt##*r-aCm zaD*yW*HPZy@2?TZC;ed0{zh%^vq>KnE1NuE5N9e@v>}#x2!yBu!Vqn8bO=5^`jHSo zC2n_pyDteR!ASjEPi&@$=Y4dW7aCC^MW&30V-sbY$9C90-;hhXHm^d;FZOOH0&1E+ z99hP+M8OQRpU9pJ0FiN{9731{hq7*_G_i$~KPPs*7hxkw65%pil9bCg!h%hpGIx%T z+GXj*e|E}OJ&rEeKbg!X%Du!{*E{fYR8_q%;xVi~Z~d6oh5H;N{-Og$j)z&SuP-8i{$CU1aaIbv(g2oAa(~%NX7!hr#_-w#VUb45h)RJ zyUX-FZxDR?X8_%(af@n)^x&(jzQVh0za0~e%!?7}_v8j5&HCQu+NVvrDLYq@>_P)k zv54`nZ5+Hr#?KJohnLHKq1{r^g5&n|S@_)8>ZIAtdet!vzQO6GbDl9q$(y)l!c4Z5 znjB5v49Y5TEYpRVM~!&P~_a2LY&Kgrxkw>xe@q0`p6q`fc zi>0Ia-h$C-hG{sQmN6y|jH~Q+ zY88AhY4Ma6@K#f0Ox7}Sa<^d+*df|YlpI6sg%IzCjNcMJ;TUgw4z~S`q0}8rn>o2w z{RH3d8P#m6M1p;Z@*rX;%tr@G?Ut8?UpIue2${qSm?fS%agw)jTl+L4^I$DhKV=)u z=bd+C1k0?@uvkhax2(KRCv?@(uC~5^Fv1cH+%iXXCgoEQGgMAS3PPWmZXF^euM~_B z!8gsoml_{X5u{)z>pJ0vd0`zb%`i?0kVd>YqMn`7sN1Sxe%|veP_Hhh%Io@r#M+fg zA|IyB$8yF+Ph%B3YC4ROwXFgB-H~D&Lw(Rtb*ciDp$WYzV|;2EZ(%9u%>+`X9me*T zJ*K|CmyzqKYNj@<%0Xd)b$kR;UjeSKo!fGPF$mD2P0x zpdaA_CItr-!QmW_vM`9!Td?Rebp<|8 z=dak*c4~HtpQz>N;mrPxPPJF)hv4wTxBAF-$b}6FgMHk1k@S9?`FnyBrB+o1bON+I zQyQ2)#;}Yb0Un?5UKGKlw6}HGYg^KF8vOe; zZ%J&EA*(3Z(E83Y02%{$7STPCyj#1~gO4>HYC?;$*j%_BuO~^UKScFxHcb3&|7{np z`rW1sV5qbB)AM5^@}9g-Hi`!y&_i1?f7}TgZe^e-uY9N|8*h!OJz$FVn><`?L z<-n4%)6l0$e;3WhKl&^r4?89!JcCqhB<;VxyWU4K=?`F>R05%a6#cgN&dvat_gWNU zLVtYDSu8RoNQ3Vq@276qIG4{4yKjNnj!tMm%ge#u#Qyq;&J#h!mt zFWt%05`sA>&gKaV2xax-LSMg1-V?3 zi-y&AMR~Xm?QWWV)4iCJ;zxT+nAT1{i?M5<&ME`#xxoe47<%sn`;68HN6U5x8HT}1 zFK28wUKsr4!Gu-tAW6U^sDotzL&hg=*+YFhxW7f82)5(BZ1Km6qFlyzo{!}=i^x{s zm4DM{SdYFeOi92^QKW5Cb-7SP&Gu!*m+fSU#?x&1=iJBv2O3Sp_@5D#n+Sl?_w7{^ zLqkMD1gw7gom4cMfSil3)+cLoe;o&|NS--JB#x?wY6dAgX6AHiVCEi}Jc^U1wGM3Z2q zn6IYs2_95YuK_t?)3ShhG+mKSggVN#+aVthGT4K)3sO zy|Xtf1U}&XEDwpgoW_jh{P4EXz+dBv@7-myZ!;1Wjn$%_7;{GVdO_XEONp5TTTdRU zOUqXCP|uNscUJSVvTkZJe}X0hbcTv*pQgPP6pmG01>D16T?a4hsQQ1p7QH@=J94vT zloe7tf^eGztjTVoslSmc&15hj`(@)^b7t^*K05Al!=BvO+jPtNz_?a<77jvm;5+mX zhMF+B5CD{io*VteNEp*P#2Wy*%7t*zetE7;`meIAV0c+ScAt zXq#S^VbodC&^TiJ*82;t$^hShn%F6RoTAz8h`m6YE&4FgkcSMEO$-eZp*yRFHSa;n zJD}Gjnm8D5IiTx)vZ<3{wn!}vWp{k`?6__3twEDVrRYP9O>dp{XhG!Gee}E#?zQqU zNLdHmBW;Au#DIa$RF&t}u7UiB;zJ=Mwu&dGsp!*JUJk2f zZtYJJxyP+%E`4FsEfHuq>1E-!inr@w+rxvw&)Je>eq`jv_Nw@mzbms(6FRT$dw^Po z&fW^;{0#&BDkh4X?bNn8A&TrKdb+J0ND)9SKHN{{DGobO1ePv6qO!-Wjcr}->aLc` z%NkUqRA1E)(|_I5EZaqO&ihzfU@VL)i-K^Gf$$oLTUZ)=LW-|n>)Yb{tAHjcoW@(R zwXJQZnMq9P?L|h*S+}uO%fahcaj*#c>nMn8bDn$65X)M9SQI_|g1Ac{1b?mv@9;^m zL^BoT^Bd$A)K`5Vy*jkZLea6lr!pXNV#-Z)*;&}t{DhlDSsQ(vsMh0g$DdIDxa-}{ z(-f}J?4}jYwZ{R0?e^E5(!=i~t+R=pTV0SHcoG%Zp%@&#&i(O=Gdq1zB%4J1MH?3O z04Sr!;9t%+7!_>I06$=+>KXd z64yDb;^ACjRC81vHEGKlY{`wkYHt5?aJ*$*hw^!%Lf{Tf9P%+@)^o1^{5(UubKbvC zeKwuueGGAr8il|}AD#r=Ym;-iZ9Z;YCjaG=LjW6@TL+E~pp7*;E+GP_B*D%wX zZt71bMR?~!88=G!m2{#WBW|44ag8hhjThIr^+S>j5~=QVSab z(B?&1cf`}n5~;tIoQnTIjk0Ea@ZX)y_;%AVS?oo5?!D+YfWvfX=VgFbUM)6!CPEC) z&@WGHQ(?K<}Ai+G_cI({9pz7Vscw7(E zLZjVlt8O_?u{T<%CjP_|EwYTGP9WK+P#m;zJ_w@Xh;W0zk_++EPRcLwXs>RrHk)43 z`;Fyac9Zb(_@8Rp;(4$N2oG>~Ty0p*_+7xXx-XoYB~5whU)?G+4`WN#i-Abl0MTij zu(h{7m7?cACKH>w4*yuK-hZ}_y~eDZoftp`Wj$T3uRuJ-xj#)JYf1<|jMh*Ed`2_weh2pGkrv!q9WySn*3A%Dx>niZ21<9hhf3oLJm3>eq_hAQcQfk-Ptmi{%UQwT4O z)t9cqizJqEfcAdQP5x#?0Lps_yhq2}=od8Sc?N&sH|-d40G`y>CMShnW>QH`vAk& z$M0@;f%Z3Kf41YZj=ofLjI@vhmGIRD&bh^KTm*pIXr89RU!Gr(z1Wu9%VC=g7>;(w z*)A?}sae+UDwJwU1o{T=mNy*b z@9;A$lBEv0p8`(HA$BV)iw+{j!ZoRm69zV;yEwWxn-ax#7JsEHoE)}jr@3)mG1C?L zPaYPRX^%2x^%*h1m4R7+-9rMq?-u&;(g1@Cdv%T^LRS23VFLo`MQqUePcc>KBNUD~$-$Lw+J zgTn~AwI`TIPJhc?va*l8}Dkh?P z=a>a>_N@tmV&l#5ki*Er|IT9SlZRa#R=WD(_hIEt4D|OFA6N0isHu7KI`tuo{;LHs2UbNwej+J@g=F%u5b`4T znbov$9NMuzXa%$6L%egC5sb{1x8Hc#W7A54io_nWg4l&c4O}XPGg5=x-;(`-azfXM z!&{2odtLC+RV9G~YgrROpistKEBeLN)#yUk1w+eb9nCxX)?)RPh4#N1g=}gV$9AKw zE(1&Uk7W?9uy4mUYn4OQ0a_`s_CoubN&cnEhSzSdWB`6@y^{yB7*Tr_ASrgPA{W zG<+2K_&a1Giv4XJun^bg(cMFlVrgOJJBKmYv;N(OrPn4l=zn#0?l}*U6Dve&KDdiN zc*(W=ndcp%EOwX{*ubiALRp;a7d|UU6$6QpYj>>1ScrYnsPt3ZyQp>~RMPH(_(PH# zi4zWn0-vT5eJfLb=^Qd_dR5y@?A9vE-K?ky46CbN<@}8)KE!)DKEkd>DG-%hQ!X)& z#*fUD&nODup%UG2a^X9v1)qFV5oeNUxp&o-DqqN4^VamJTD6!y^b!g@{Z03ARVT&A z>AArr`n;)&Ja4Qagk8LuLr`b?WDC=EdH7ky!`A0EQqWb>&u6`ZS0Ebqv1vn;#O>;U zo6$40nuMIYvvbRd<(9j4>!$l6x-`Epba=~3?bzIgG0E4pZn8HGn(yQpT0+>i;stFR zvb;7|T>J4w=FF{$!j0%cRzZn9xLKu({5ZuRCI$1YtC6jY8}&e=`EwkSKfhvqb#M0-V-QcA-%+#ZOE!et$$9D zXDxAPkP&~n@K!VRuqr?1L4SinB0b#Z$;CT;u$ypJhi7(9OEDYl-uU>PJ;?VpcTDm- z95<}IFEY56Aj6Fp@p^14@Q#zGo)AO(g}aPcJ`kg=gn}Udhx&i3!q?H zAQ77*z~t7};J7OrrMVWsGzz~VY+H@r>)X03#ZM5Ccri>%b;ZVzB~q-B^H34%It4{~ zTbk%452=*bCT4$Cu4(a*#m*y6Lmf-Gb1-Bf`kse)u;$RMi>C_veCf<;bQ`(-nKcK0 zu+eqvf-+vwF-^y>z1|P(c3npqGof~G_3ux_n+Vnz0rR?S&r>9g#u>b2cTr=AQ1qX* z;Tl7}PI#t9)pGidZwQDR3~-tz^7z}Q#{Tg3MMrhO7KJ5aoa>LX z(Q+#iem=E>7${tdP9i5ZNWgHH>}5t3d=VI&5CxxuiuRKkZf{jhPh9T z&g2e=yD)%9k|;-~F{7~T+vJQK{`v6p&n17$AkIWN2A`n97&nF!m%4h)M9Cnh z3WHw?V#ET}@>td_AK30W;x}VLcIj#EnKsOZuU7n;M6aGrE=X1Cu4dH!L_L;4Hh0^e zRu~oH@`h15cZ(Vzm(Sf)`=?ZiS=4qtTsA~82&Bh+yS&of(f(69H2H{jI43BkxSHSR z^?w1*Krz1}9*H?|1B5zwwXnyTufzvJ(~4VUR%rtjm_mMonXFwq1)E5w$kHV{VH`tY zo({s%#)H6V;>tNMl2OgV9!EcM7R{ZH_q4p94>KRH*WpLXG7!J{2Og+8mMwb(RF z#fzJQ79D!1oP6r3>X)z!qxb#?Fg1%GFgz2`3s1W2aA=}|DPmaVNP-BdmPHu?jn~C7 zf=8;5*tN}`D^pMg9qU8aJ+&Z*94>PAEfD3DEhDuIk~dz!NAV2nCxvZoU_Ak3Miy)B zMFAZGdVyeaGhGq73vRd0rs67@(`QYpT@=gB9Yh;s^O;RnfK_)&*S!aelhgCL)S zG8OB4>m1vODdhG!quc#mmp3i~ffhv|EP*Y08KIewX-T8eOp=X zyN%3(|2fnv%P>D_(s*Y98B0jAuskJt0%_E%I;hjY*sGm#(@V0+pEJ8(Uh={iNG*{r)?yE+qG(uDJ8SinPxAEHJX@%zN2p_ojUU}fY`(-WA!SlVWd?Z?UpMMqK~FfI`YOW?S?Em5h*6M>6A{I7EJjW=qM&pG>SdFT7y ztLLOWo^_aLWs&@GP^Vk7X0_b@`&)%%dnMMV{q%|-t2O4(B};a@o0x0PKK_of+;b~g zn2{2t5UM*-2$BpIWyM*Tmo#jpI#^!6uFBlDbuxw1z?5?ty-HtD-P2o=l`FgD$RoDv zx;FBV4jeA57PFjev+SPiX?dUIhS%;>Hh(>Usr4e}Q5pA(pIxOSZ|&+eAXhj`1&*6; zl<>il)s97@#~gc{%s=SBA!Me4%{#m9xkq84)sNObDpi=M90XI%ZZyx){6ybmez=t?>95`P(7cR=`OL3~=X9nIAyyTdIJbZTrB#UuOfB*?NEqYKxr#p$M6Nws+ z5T}|+1T8KJGBf^@Fggd+dNCjVEm~So0>~Y~qjg(1ZvmOUPtQeMv23~Aar^DCT+fx+ zxs6Pfox7wRaZUThXbTFtK%hks2ol&LH!7;R?+`fR$Rp*(>#vtLUv!baA*0bUuTpyw`|@lt5>a(r(tcGPiqc`#25ahEVulcT)+l;e%mxJNr{DZ z?HNr@*)>TaKc-lcE=|;H5o?su5d#V!XplEJ$`RF)ogxSRqD z-1A=e0<~W8s3MePA9}{0>{`RHs)32^yytFA1%u3?Fr`+s3X)0bZVZTL4ob+#(xy z{iPn)WyFt}YjM_I)AiJ|3)low#M^9A!791?FXDFMQ%+WEDqo4%1HyOL9e3!oG2e_s z$Fm}dR|z|Y!vz8p9f6n*p6GXYKevzPdp&X=k3Ol&+7(rOeHs^#m)dX$Ee@QWJx^r8 zp#@oTbV26M-?In$SetgwU3bZU;OLikyyrbK50(u&PG82_zp)~^XZdb{)%BJeZ<0U# z%QtGqb!*pRitgX#yjNTxPkQo`GiAT}QAIBO7pwuqKlTh#0w;is;6Tk-wfJd-kp@@b z#F6BMqBM9h&-~&e*bK4_IY3HOD|0}A45ZE(kt9ic>M0xL0-+(}HLkZ|%tXrZy`n^TNHpUI^n;;d;0;!Ugnu z?59Qv$P01?gPbyAPW4h;+n&C0ZVRiDtba%Z0mXrTAdK`$2szEKA|}^Z9p**c&Yd`O zv1^$OPXC>p^_;iJeZQL_YnP)esAn^Z0G{`T&MdXWllRza!)Jw&MPgLIG_%MlXBOqq zBg`tvGBOBEjefH_)bFmD4AUq#8}C7W^@SJe4?xCo8vbiv`VuybOp_Pjm57TmCET%) zhmVH~1ST#5VF{eL_x5pb+0N}%`6=Flapkwo;^z->n~F-0W_W&GM+#9}eemNEPXCA} zik$n$ML7|t|L+aQv(i5G(U0jOd+Os(*1vlD+jQXF8~Q`X*b%t<&O7D1-~5)`ifK@H zvrF%mo{gs{HQ|8GQQOI$9^I12Ac>!n68(Z4i3G@=zF{IU1toi$1S_CCEK`bD3kW$U z2=22G?XwxfK%q?33WywfNRPbgZ}39gVVq~n`^z3#CilYf%ynqAJW*Zu)Nc8kcl<5d zQ`B{m4?p;j9DdYMGM$G|vn>9pZOqhG<4^Kz`aTe5ViCh|3N z_uX2-1`?6g%Ww{64;xx@yuT#tB>P>{s(M%Q;%!%pMaUC*S@_Z2QN;8kty1vZ`SW^Z+f#Hrptl%f$=CE6z$2l+pGOHmdbWSoK4M;$58KI?3(XX`{XGuFyfg)W?Hi$-}NP2+Pq zQvNb_z^?tz|Fq^{>bDAFgR@aAmF;oojmWN1D_Z}w9AKT+1kw`7GXkeQ5x>wza69n2 zwrP0xaHI2Tdo#9gt;+VzRqPs121lG^)7e$PPG267j&f05=5fDKU;et8OhPsc}S+T++Ntoh=9DDhJZAPFG(Ynq1T(J_tA4u(##z!`Jts@~rwGW$7a%GBeIZOo?E ztlo;{%jCbl@>LuKbUHS$JiG3PR=zpR;7xFUxHwgwzVfp9_|b+Ps*&Wmp7ADZ6uai? zU+9}g&i{K@Z4)WZ_pgz3?2RoFwtbC{{A9-t8He#B`2ObBb_OQf&jbX&B3O3ba;Ut-!>UD8Q^86%}<-vk{`D1)X zY*qgJ?@PMI%gY(gzxJAIo6+_3&1UFhMG``cjT}7bY+4vR2H{e5Y(3(Bra9qX^V$JG?O0U_SNq)AgLtj?PXQT)$C@^XAHX{`MVm`ZJ#)FFg0$I&wR_ zraem;9H`1|*W+_T6$fuuWX*EiuCm^2+zQm3l~2%jc8e@IvLH{uJH$^s9m{8q!%Yqs z2#f)NAc125EwW%Ryt5)7d0Pe3zc%pND2k^P9#VWxW%d+4sd=3}v29TICz?LoG!MRX zgn+C*sWk<9n4e`75J2GU%-Zs-{36@bl?2y*W}ON^p_gu zRB*WQjliwffn@DW_ncK_kki1pb+rDqwUd0=^lw|c^@}3jO>3g;bs&70E@toHR4|Dl z{TZ^s&dK9cGA)GK-9RWo2)PbTGa@g4jIhr!f7WGrWko=sAV2u;yW~}`KThKgUUV>C z+4i6uFn>ONXdH!&9Y@K+MT-(iuy$zWv;Y>0D_8731@d7PVjL41T(dYA@wDXgJVOS# z3s`+x{xpC{`XqRM?K+fMqy2++h&C;Qx{DaQWw~jDZ&XQ*FkjnanQy+~MtOAIIwjxF zd%+7eQvak;hU1rSW@8#NxE#ZcvW&~SX8H5!k2UOXw;5Q!L4I-FZ*^TK*LKoE_!oEu z-BHKXc8WiivNo=($`#+N=<{s{o~Lwt-q{ln*Z8m3{5#+c!~Z_4r@R-3r{8y*$oIco zkp+iT5rH>$l z`54pd^i1NFiZE6$Ae$m}@I_)~5oCS{*@F-ns0;sZ{Xa}UzrP}H{$NoDaHhDs?RUSI zf4}(R?A^8e)&A-~zR;7yZvh1EyorP>5is0vZW5@o0)m6kNCj@9WRC<;i6PsDey05j z`Di^B@)r1&LRqE{Zq+o-gz9?23gaQ4EP|XGW;vWXHX>-gGZ7txO}VUk2vek~PoI41 zQ{|+SpQ7)i9SW~@Zi{B#lqZwZI97sk4e5=tS*Cn|Ld;9&8T=YCAaqq-6bUIzab_YZ zPOmBMSrJrul49g#n=2rL#S%7!z_M8d3uk(jhfHUgAPYIJ1N;rh5p91bKjl<8a31C? zl{B)3_*-_skWS~93DWGEX&#q{hw>gz8F%@(;bbVAN6Pay`oqcapzUX!dYWv)#-7W+ z{{y_X?_qiO+utsK@cie?pW+?OWBqZ-jdb6+v?9OwK^1)5?wj_rbWiOG%D)9CgjQod z6FtqJn`?0V);IpWESG()Am_cVAZOzk9p81`*v_~P1o8+33CyDr;oTy@2iHg6Hi(zf z^D)E+JRV+n5_8IqS9JEkuRXj>(jWXb$lFfOlpp!*+VbloJBU1hIv{P;eh`*EEMe=HYCp(IaX`At8}XjtN6~Yj8w97qK^4C~*tNJ> zLf>}_0$2bMtiUhx3-8P=S4%i&89vw~PLY&B956FjZI|}Kl8lhdm@&+5;apd?+U35r zPy00l+0G%(BlC(924R!;} zl8E>MP$+NMEdA}vA&?44{+dS~k$E6Xo!!&qX-f~2z6T$n7IiFItBkJ#rihEYc_fq! zbE+9wYdo!uyqWkofpMtZr$W`m`Zl1dJ7C=sQwE6fpygg{MmcD~LCiT+H=`h)Rlgz3EKH*zvH(I@ zY=_AgpCVq3SLlS_*YiTxmBrO($wJ+0m%FM&xFCV)2!_t9) zB3x@DuwiXg{^sS@zu2ePhqwWR)4x-v49e8DZ8E(R$B(pw^mV}Mhj_IDDnmirQx_}4 z00{nrsZ7KT^vSe=)#!8RXXtNL`siP_Hv)Z(aqNZ2TSk~`{&1=B+6So=|MiCo`ztMn z$baU!c*D(swZWByrPK{V*wrls9R0%Gq}HiZ<+Ot{3}sDSl4F{S<)WyI1g`>;RmGvk zv~sGi@BbZ6r^trOeh6}iH-)H9{+&UV?WE%$VpgA2X!=2=ZN|nDPgYV0>)njgo(d9} zNFEZYj(_w(g&N_!@^+Q~b_g^NB_Zl@lxqy<^JZbxNy%Ub2{=AoQ$QFoU7d7ga{D0A zIe(sXEE;-v^iQxE=8KnHqVH~g`72*3=br!aA@6Z!b-3~4vslV<{nfx7^)=Mcr@ZnB zI(xQS1K2z1GFgQ59#WP{9JBmu*w}dnf#2jz*8OG&G zX>jGU%btnMgNk5KwuheiT0Syy+N5WDx9qt4WVzz9%jBi!pWmd`5!Ffv?9wxw?Y^_W zbQX5X3=qE=ZQEh>>ys%YefVJf$9Zx_0I^&xbL=jjUF z$wDPl-dq+0H4=U*+>69zrH_`q{^VO2%rs?pLHFym=C8EwsTdMoEz)1xq1jzWssq;! z(&3NOb_ClWxN>8fO!;^2^+kx&qRW>p(>K7(!5cVgY4vhQNch!!k8|wp@1C(H(=47- z*wvn1sqX5vdr4suLs(=BAcRF&>S&qG3Tx0s@u4+i?C{Rz2exdH_Js#QHDhXS;USCE z0=Ra~8u`}Ozb?P}uu87aIzd8s>8|hp(5U zMd~d=|I?z=bGQMtX6vZG_Q{I=pnC54b}u!1d<6mtfgpj=6-I@?HJ4Xp(|UWh@*%{B zm_3bPu>qM=4u~(3KOW8D2m4aFJB80!P+uZ{mm=qQ?dpz#1-8fG}AFq&(=`0TQ&IzGyHZ4W#fj4i)C_$*D8 z;=#uMgM%IN>nlp~qCc|O_--u(c#nIrz`jfi+Uo7Hs2y9*(J?qY($SK|8_j-2BFO$S zh2uJmYuybmrC<&cLRtfP!bxX|8$>Gl)?8%=&_j!L8BC$TV`ac|n1{n6>`OW*E7w8! zwnPE_5b`8_N(fWmXB@c_d#h={H#;*sGF|2)jOa2fdgZ=NQr@^3ma1+e5fmrk16i!_ zl^J!8dg-Xo!}RmlOsDhoe45K54u7CV01=lCht@TLo{jaU)9h?3{xJEs$v@HtBFHp- zdkFsaDbLsZkpOmeb;)tZAD@({wp^I{A?)Sh%8R6=hY6X7>GRs-@;>vp%gcG3%EHoF z*}hXhP-D}^c!LSa8>fy(a+Dv*4Q$>rgalHa%TZo+;cMiX&v~|d`3ql^*JIbPyZ`$9 z{c_d!mI4Jn7n9S*vR|>?jPBT(szN~190!HB9E?uoDx4ikZe%oKu8kEYdxj|gS5tR;KqMF zuMH0;e}L(15(XFgIJHA%b<6=VxqYQ+k<7jI`_{4Q8#_zE?K|M*W|FWj}gal;1rr}w^3 z4ep527W!9^THR(VM|W6isPoMRn4xn|Ii3k0s&Mj9|<6gG1IUym)(PdXkRZk zkAMKe8b}hTa{W8?An7vVnBNcHO}Ws0taI_l3yF^poArGzRRXCxR%@qA{atgQ6M6>g z=+-Z_VxAWw{exJZh-uvo8+DqOYX)_ycuJQMD-~_X(VZf+vMbgNwhCjKf@)xA9!8;T_M2 zeE0kRF%$U753iNWzxqTVgZ`uV*pCe-dF;E20V<*Ce6}KY_M-z=T>3)C-Rtb5?kj#w zCypw>aIK%xI!)*Ox)|6Rphm+1kdPa8aR zXyxOB3m+0ddxHarTspVSt$4KDU_CoTkspivl?WoQ9>qa2h~o8)B3!_Q3+AJ>CbJBt zI4vI*8I{p0+XIfl)sGZp#e-Ejt#-Kt@Q+l&J0Mkwcd()`jdmX6NTW{TayH zPTAFC>6AJBnP{@h3F=`&)h|U%K>C4d=gJcEJTo z0^4ATS-X6>%*L@G^Lgjt)3NO7vlzlXwEqa>9_yfH_f`8A`V-0C)EQhGXgh{U02%J< zt11a}V^3)t>S$etn$(iW4IitK-@=uIa=2HEzrxR?LblS{AHwgWGmU0TwGIgD`7m@95S15X`%jSED>k zpN^s)$7>Cz{3LA|0p$HcyzUMjk^xDGb7IJ;VANSHu}TE(KB4LA?!{~J=;j?bPZlp( zqG2mI1?xPoU|nPmXJTTXyhH{mv%}@D8Fr_zL&oE%%fl|?aU_I;_z1{2iC}5w3|&v? za=Y_6C0xee40j2S#{K*|?B(_b9L0z21cp{;^fmM+?{E6X8}>E2e4`+s>#5oIa0{7V ze@G+V37&Puq>E%R<)^RDUic)FJY4$MKd#CdFG%HBY4JUY5eO1EiEsXBn|{~Lc!2O> zq62`DG(Nbv0n$hx2UuIMPiqYcAs$tHF45DqfP4Vv5AfBuAt9~6V>}?nXBHn<{I3r@ z#Bs1@Je>{Hl(B~zLlpLh;GH*BKmyZ1r8y?v*8oghZdr4m7Px~J*p5ZM$zTQE-AW6b z5xiY83rASI@vr|%!T9-=Kb1>A^BIiuWI#3dsY^dE2QOR*3)-Ok=jT6POGu%E7cR<3 zAPMBo9oWHR(l$k=U;%#z zc6fHepD|;G61nL!`BoTcLqFgb`LXBo^J+OoDZ6+*w6Ou`G|q42@%YO5;|3e zd*4@`Dm$vPq^B}N`eh1c#XF#)h|>`Ju~Y-oyM=AiUD+bjuqnrgFR~&ZWeT(o!kzZ? zr^|hJ-z^6pys%bBHQ(kd?G^JlzlMSoMa&IXM5VCZhx&Le6kn9hr+e6a%H_i@pN~^r zxXBePLExu=UEL-8os=+T+~^wNWqNt*wo#G56%SQq^@B@O&qYR5#@fnfsP#)CCba@bogl!tiMpI_>y@9%!0ET=yge@l2)hYJLP z1V$ei5rJ)+@gQ4n4<|gr>>-9`_| zIyOBeY$#ms*!QwgX(uWIs^AK&~B*?Vs*$T_d1?(ykJly+?2 zZdNvgdtglnh5VpgPI6^IUM&Ll=KuV4{`lw9j1+RXU zyznJ2R)Xg;Q$hIL@hvU<#Bg5Ej@XEU-n8W^QWW zLDrcX54cYq2s0n6!scrdzZhBbG_<2KThVdYKV1dlcCNs)Q$(F4EU&U_6vC1xx~H z3-)c8Xv09w2M^b1@j=JyL4^6R;=2dv)EcN^2x=4_Sopciha4lgi6sAU%bw^^XzN{& z3IF+!T(t~OLw!s#@7{GiSirv???fe8;zzA)AZVN-sf&4G*wujnMMnWT2c^4uE%uZ%re#bqSq9(F3JIRJ`Jz9 z=M@n7D(@MDg-Nab*h+|La*gX5D zJg=;!7LOPWSo>@Jq$=xs=gYF5lVxXhu8{&Ia@uSvq#9G_bxp*93A7MytR5m82M>|< z!CpDI?LJxY`#Yt3?hHBV3CAcAR2}^CilpXv9h34TmL=M?m(A=czruiU-gk(S67}+N z!-ezmjp2rxm`+%52Uf08Yi#L&xpp35V@6yn;RpM2D{B)GeW&^jSEqZVjYGde2jjEN zKImUqAI%@TwvHO{`e*2kht||EE@7aIO#vfb!{{ftmyPSFnZ>cxdy6l9BKv(!IA48P z1td@(w9Tp?agzvvAc2$UW{;(*>sF;)c(U+;#b2l-eLU`kGeiCc2dr;b>mRK&x+V(` z8$NuP&H;i1P#yJXz(xSG;9!8qdM-Y|_+aEf$V@D&%t-v#fsGF|JouQ$B>0@PL3`aw z#+WmmmWMI-VWWbsbHku*)1*7)kj0DTgp*Fv43~ZHdvYt*ve61>B(F!OC_nv$OEvx0 zTW*n${mX|mod4qaU?hPgPrv@fFY5>y5O^X@n$>W;6PA_<#{bL89|wBTTQ#X*av5!i2~pY&I>s zURKBqS+MZn+JKvSH8rRXD$L?kRr*4_HVPhMSdLah<=K~09YC4~@dKcU^YGecO~-51 z+B6&cfjR#>qB{EsXggda`IJhqWtjUl(>x!; z?wZAUTBFZmyv96kri@SfoZ0gK*?SW(%aW_UGv0fdSy_8`RabYFdQ&fIq}GOnkN{yM zfs9}zvB<;6BET@lECvQ_#v1T^GXu=vZ|ni%ff*PBwg>Px0|tx-28l&15;m)LB(;`q zb*q=^>aF%At1|Pw`TzbW&V7-uGOMfAUDaJ(H>%!^h!f|Wh&VSg;@lJ4Xt(}eESD(- z9}TP8)HJuzm4QP2%RjEmU&Pf_;Gz1`p6EB}=SJ>F>F4NAqhIqeTB4vVykTy=0k$fi z`m$2M)OQ2T*FYovNxV1ld zoX#gYvKWBeo2Ube1^Rhp2RaVcz6D+HHNPov=yd2}G#)-H(P6@pK-uryqMWn=YQHRf_O9hVla~wvlcf;zI?#tfvCdp)2*TJE{ zZIz;VLneE7>^FYvw+g;l=iE(sC&DeyyS04(+uoMZb^V)exp`gqGYQD?BWE7iU(RSJ zX6tyT*(zH2ENthlLAmy(LAn3#c&|*|`dA^g3(n>{BZcocYXc-;i-KIq6^;Po2LZ~E#a|i~9ax1kg4!EN3q}I$G*V@JdvPkM3 zR(1z<^vfnqwQto%1L&hpSz~;o`tQgL6$eMCUJu*;U8Ry2R4PB(?W4LzZrD8y$SX|wS4V9?Ft0oxFl#KuvCm4k<* z3`*J4)Gt@p;c89eT*7lGfgk#d+HX=`{lluvpfa`kG_--Yu=rW@}i+1gl-f4 zqAcL#Y-NxS6)A-JvvB?VMum@(NZqhDy55pqE@yyGecR?k9QVP$7?&^oFQSSyY^w+F9DOqCZ%=m59>=g(3GBuoo*=ZdB?B0ov zhfb=^UcD8YMbM>CG$-op;)_;DwbNt}2gZQx&P?#M;Lw%Pxj9Aj2OpJ*XsG!?Ijnl= zP};b(J}hXlQDM(DVPOO36|Z`g?;4IN)R-oPCf)5Xeo^`5U;j0&L({DU^t9`^Z~gYa zzYcT?+PQP*H1aGBan_%$e=`a<)s122{3`zPFGLAsm}5ZG+tqX!v&kI&vUIWzXky5& zbKTO`akmvvIAuxa@+l2`UlS)7Vw> zf>oY#lddS6yRoy-0>1O(AJ<35Y5gs1Ry(@7?AddbHm>Xtc5N%v!PJo#`I16gsu&$E z%s`my|2iw6lD#HXyOTDTlV!_DyLPKeG*SCyslyF7>-LY)P0<{Me@2TG=X6FM zO5kZ(pdZlg><4rN&U3E6zTAxER_!ucsE}3uP{!1*{r9B<>U9s^>6&D@5c-#{nN} z_x2g>t{&~s(I#3BfQxh~3##Xz|AE#3J_sp)H>?&z5ve&!7|xUHQ%D!wYJrpiGnbbN zU{KZqI2Y$sL%^ZYhn6;pzw7N%1hv!j%Bwm=r-9-+1RnYzM-%7vi#sfYFw*jBqbcTs7#vN4UBM1thH;U9RTlmD=&_ct9 zg4b1PgHoHxNV{}NV@)8Iz)%L|OHpFjV=QE%6q-;3VMr^|8pGj`62a=29Jb5@xK7Rw0#HDdqO05nop2*rdXI?`qwSV=;QUDJ`nNjB~F)cug8p9|4 zN|@qJEX!7LvCSN086>YzA@LJ8Bw)npLy1ho|Jm;sZ!+K`u$FX+j*@96JR+yHz7wZB z;UEz8#-&d#-yIMD~dfP0~5 z+=KT9m*{t5CIh*%9*`N6y!nP%6Z%V(LNdm8dsD%&V)M~)=8Qge6rR2#y%SeVe-G*_ zsTYdn$})NCz3Fe~taa3a+fr-{F`OUa1Ke zCT(rLoGROgN40hf>sgjCXvlKwmL)Bs$NB~{oREwcI4m{TqRmD(=yy^ULC!!V{gif` za!U$rbN>Smc*D`|-B*=sbhhI*rWeI7IVQ_4F2Gb}i(KQWfnIzk%LmJxEK?tO->4k8 zKg$F|$x6zA{{r>5!@r5@HIWtq6upc;GV*p62nZjC!VM1T0}HOgBh}BKO5)g<^JjlB zF0cEFp%s^k6rRvJd_&*|aMpKXU__P|ULfL{A2f0L$xu>kUc?PWCE0*5>- zd-*7YEC+SInRyjLObd&)Sw{_jw{@DY*xA}`e%P|bKrq@t2o1i1$*ic2=w;`{*(;{f z^zNA`0X3c8^%B@v0{d>DThc#uYF=neS5kY}>}0c33! z3HqeXoJpr^a(6hB=ngAN5gnQGPZ;!cZu@RbPQ8CIBydL4V@vmZdW`}|zP!cradkX9 z3$=aqZ}^&F*>MFe0>?D2ezNZI;jpR!j1P$=86b6_?*D<<2y`V z`X9&FjLX9xJ5=tyqwc)2^o3Uyk51WBfWHx}d~iikrmjQzo~A^DFsPOjvDpEo@ zfjV6iR`B>yb|dTMIERWO9uch>JCCH##Pky$zVnAnye$q`)httPNs(~k83w0y2?y3D zweS|d#cAP$mmhjK4h82Xn04I44<1oDQa+NR!bA~s93&kpf;H6KfU|ukOKS8} zm_9Y8jUzobl2Ce-KR$fuGx@>SkIPR2y(RGS zd*@H6#(VY^55&g~M`wZ}$e_xA>_yA9uS40}vv*Los8j0(58<9tC*w{>c+oG0`sQ%- zT;>BCc;aGLu=r~bw`o^DSEC24G{L0V9(J#FFA?;2+id-JEf#TwUPVfaCX0lQn7wh=cNcgW5xoX*>4HI6J z^>6Dy1GbVNIjczKQ_783KU@~(QE;Yiic2W+aVpHB#hd56Oy$>Ved=?rzd=XbER{zz zrFc-5!QH!en~ZZFKk)t!=ysE#)!j#O>8n!HjEO>yREWqazL(Lk^g%J!2y(1U_K_%ppUFDvtW)n_z7pt_z{~gD zpI6NpNM7(V?K=G9P`X&Z#8d;F4;>L_vSEQ)()n#Cbezm)Pi@dm3C7xK(Vx-|VY)8x za5>Gvw1zuuy13eNyAv0-*J{ZpjmJ=~vGJn# zHvc+=b)eaJm#{&ACb92^Vfm`RTgq?z8>uEzNUWgnu^`PPK1Q&5@G%ff=A{I#+T_Kc zs#b^+qr_-CYBq|GG&QK%k54)(x<(_@`kGplpTxO0Ws8dZs27`&aP$( zTtAZR>uF^SH~>>(-B~Q0EqR?bji8@GeO&W#+`+u8$~^SogZk~4rDvf$PxmojC53RT zdV&WVCUaeXMJV0@Wf3-bgTc|9PAQkDUr$#n%(*aeVJ8s+6D zMFItRsNX~zNX8P5t1A@NR)UFxD(D=TK7_!rBUfKLw1S?PQ^KI^;HHfHr%a}y>ART1 z2)P=`swRb;BhrS~!(WfSvhlm%tk4tOpRMZ=k5`}jvALoV_b2asr>6Or%7Z%2;0|3+ zh~pg6JQ)7UU7IbVb{%zE>%5LyiX11-Y?T7IBAV zYVul~9)du2y}Jx0&?|wL;Y)v_Rer^5hC2LIS0JfJatDi#MMlPvQ(F6X;;63f(rnrO zd)P6^02p{EfgI_5|EZGz_x_%`>uyhjt;ZGV#~YreK3;r^xprXB_LJ}bW~~qWnr|!RH~%l) zK%&L)@lQ$-87O0JPB4v920GS-f=I7YlGVVj-J+PymD6SW;IQ^YN}Up(S%^oLA3lUh zdG1vYmMgZY5gTST$th<&#E4lqW$9^J(xdFbDVd{c@jvSY-p(s_mCyUU&o2iLK3X2p z?J7r(9M&eOWm$(7rKeH4Qttlbol+LAD7$v;_H-@!n+#Cp!TX&oo}r*E40Jx?pS=Qy2T`T-5Wl){MGML zaQ_z=r7kvLum+IhVYX}^Xf2+8G6-*$#T&P{l@I3#^Q642qh8>^ef@u`*HL3hWw)@tF790X5? z`3iU0K2v)rfw7})%<&yeFY8A~iEt+(~WZk5*fV`<${2Zu3Zo?VB@wQ?4hVPw}-}=SXa_G@$2Q(EJ z#nBfGnzWE*DKXJ@B991T`Px)Ylx^Dlk%~gwVo(l%~IH^sFMi=%p|9 zIiOqWEk3^0M`wj{tIxJ=Tgwh9eCb~E#b2!cW==90mMgyeOMHG{rr~3~RuAVYAyKZ$ zjOIfh$#F2Wps)b4nQp6QPiP0HP5_mwbz9O53hM&tKcoIlr9rC|hssMFpsfymIG*Mz z#^6-(8FtmaSYK$w{&Cq#pjQGf+gE@76=&_rYu`L9@Ay?l0d-jFO!6*Q7UeU=kq%`q z4vR)Xq@zOli)+3@`9ndBV-J{4Mxo@G0x#efd+`0M;p7XiLc%_DBt}3qw**J-&oU*%3X~DUNJ?>0INYxcf@&c zYzha?Rw;j5G-Zm5wnV^DKPU^D+?898lxufAsx^9il?XWUQJl~Vi;A3m(Vl~q{_ANFt4fa8#=Vn-Rt zUlr47A>zGKwvVI;4zEzTq{daHFBMU^T1Kib1Xh4m9Iv4SCO%^^WC{~2YwQ>n7;TYs zTogaTek$Wyr(?R&g)<&^?Q!kaA_Kyd*+^>|o-*YfrMTKKS#dVwDOvB1GhHi7-Zhff z&MTx8i{|&<{*H3wu%;!dgU2rI#zqOmabI>gK5TV$qZGVtvh1oTL9re9>2$Ub}ks{ETHGAs~5j=T;BZ--5>l(XkdgQgc1~LnH!1Vz_tyK zl`T5|5127)K7>);7&o^qoGklxK3cXd%7hI++MXA3FFe;Tuv3&rkOVJ9 zK;)6ZhB6f;Fihw`&?lb?vbR;cieK=O7fX4-0;(xv{f-`7)rXbtFi|ntC7jMd6#{=w zmZNQ1bqh^pLW@Zhm<}3(3H#v8DNgnN$Vg)|*wQq1R9Tk)~?dVeKNo zN~ACT?3ejYY+#Fvn~GMaIDM1CSn{saxqjf0e*FzMmc2Tjhie_F*LsfQe$Ly;N;xm_aeF@`77f z1_K6!zX~HdCp{Fs{biAFf_ne*lt8ZpUY_s$3D=rwi#LDMu>6OAqXB~+RU;?XI}UfI zE1@IGuiUx0v6R5*jK~NDa79zV(D4<_?l%UUIPyaiCsGVOFfm%mvGY^da??&KJ41Xp zgMqU7b>G#WcyCcX#Shj1F4+QzX7I!vO~ixK6CedYT}R)*GMzN0+`jfZv@Y)6arwYs zl=6uWYG7pvf~Im&{BX3Ctx^Ct%K~Uxz%(g*{pMuZ+P-+S?B05)Y~Li4HjX*wR1Q#% z2DGmr!JxRD@|pDXq1zN>#yz}W0E1yx8CM+6YUC_Mlsr0bKsm#eJWb*rgdWJbBkK8vtP=Qr{@UzhY7 z;g6Z_SjWBe^9JR;e=6x@-uMzM{a(9{n%hO9uCg3z|52`^W;qR4Zh9HbIo45AL0kV+ zPx??~?q=(Fyf;KiJ;FLD4`C?&lFwUT38qB7yL=?jD}k5KyMEF&ee*XC%U`^6Qug0V zkETvXJzQ+?&|shr4&{wLku$E^DPoXw>K8h`VzB^XIm8bu15+jORZ9;AY^wOxqN^th zBSPf=mcKVBdo)GZyQfwH6Rk@-b>|bC0`?fw6e9=S2IOEnsBRPn(c_eu&hnY1K^fe4 zLn&YSmPvWwo=JJ=eWg75siRu>KPN-iO4*`yfV8Kf&I9DUzr}go@jKGy5bgNgD(fFs zEqJccraYPoCaal8Rw+;nnmmkJX&e(V)->RuV<~Q2&{3LDrPN+=Ek)_1ER0 z0|%t+oN#{N?!4lP@`g8lxoL+w{O%Mt&+tbs#~MiP@Ls8FQBnH7@Qc2vEXq>1P0HVb z*7{LC>WPoLQX6P8OuP*fPuJ2UY(0NNdLcW@n(r*_tG;+xe(@*AmM?u7%HQldYL4A{ z@IFodo*Zf#dhBH~Y@}l?ARo%Pj+%bZHz`Tp@Zc@bZ&HA`MJM`BlwW32D6^;bLEv2r z5XB@eI?3zS+XrRub$*+(MepO6nFM+z@G^VhPo}z9-oEEYN9BjVU5D|?vPVb5c*$Bn zIvNx~Uvw^OpZaqdRHEylbE5abQb=dmbylL~&|j2CF_?B(e9_j|*{<*gJ74f+>; zZYfMr_wK2cz+`nC3g89@;l>+1JI{^aV73D;uQ}apxWxk}(_47LX4Bc}c;oZ*Q6L54 z=t$StX_x0fH-|{u=<;v*xJ8N?FxnGsi_1b7E?MwzCt3zfn^qhkJ?cZchgP*yhwY&( z1xY0|mHC6;)!j^|jLadYo0Y%*xg6CexvF1=FP%{Ns-i>%z$OpOe}uW(&QZmw%3!#x zq@!hJVW(12{PdKP7wg9&CoG^{@njO@@7hXfRRo!iQJK4fT;)>PO%}8qiSw#ge}R=oEP1TYbD=70c0ixyTltG+G*STRKUqg@Kl)q0rz#82>eny@i8@C9Ifb9E>9xAu zrFXpqkU*~l_U+&aNq~X&+kS9Ze&$ED0KX2JoKA1+o(2pQ!4(YzaYYi{8iN`x!Z9VH zj!BMADilC;EIrD%cTb%Jko(fzpDtq!*5~Wm zfi-DnVfA%7c{Z($CtkwRZ{aW@o@wbP+!hepg{+yZb;G(9?MX0=m~Jt8;G2(qG328o z+mrCD%y}vp1YuXj&~&0EUpwd&rmdQ3ganJWN{g<|x~28hqMR9Nnp7WXOv$cDDH#cIMFk`m zj7wIU1>>whbj2vF0+wU^MFMk@o*hK^u|Wq;k*Y~q9i^f#LWCvIEw|oUuD$MBt<%%4 zTUiG;>lgv1sl!bSW243z2fONcU+K(J@mZhr#G6e^c=Bld#9ae}R|{A#JiqY}`jy{2 zDu4b5(%7iJ`bzpZW=>G@=pW(Eky$5X+2sS9>o;*IfEGg0;Z3dA}QAA%5pa`Y!D|`deSt2-dmwkIPj88@J%gRU&=8A6EjeeuL}^ zhfDc)KjmS=Q#%6LUcv&`IYjr&-r}a0j;p>H<1-@pW%LVb#Cbr81yCt1Pl4jqH@T1>yre|ER1-% zOwV}wElvl^K;vg=6Ex~}8z*GyUw_M>e8HCv%Afr~6yDRqk~bDr6hVq*1y9Nz>!>+8 zhPsjm8|r+Tg78rs(*nr!JqjTfK>ys2D$Kid)=-DbezQ{ug@MKR?|hq%)bhQ0laGOw4;MV@1DE_mLEGW@UZif1t> znt3_x9FLCe3{DG&XB(eET{lYU(h(l+SbIE7rltQ4-!m#7_|MwythIj8--${}9rg6F zSdtMtg;__a+d(zVDEYfd`1%Z;;$T*xBbLWcMH>3)1#`B;-|5M&WJ_Ibad{txrHEI;ydy#koxc`ALTe^1}XcFyy2-8Gzx?v zQ0-2L0mc%jy|9q0ASNRMwF?_<7ps|_h@xx|@IP?7GzEe#$``D}12p~GIAKpMD}gXp zKRZ0a-H)_T3fY;D0>=UB^Hv5qe-Ncm{+tw!72TMk&wnh2xH&0);E!ZJr2Z(6S-xp@ z>;+cE48SKYr#wC7PPlWFE0oX<6arC{f>#FvM|mWCHXOJ~PWFUn{mQY*Jz`n*Oq=zS z=Pdku1mt64jc&*eB(;amPOsxk$q?DT`$^dUt%*9Nj9_=K+FKBn0fuHNLBEp`f{ z9P(pon8Wpb$^uqF`czK|({AZQLnef&Q`9Tu$@_GhR{mTO_nrT}l>f&Q%(*Jmr#CUCbU?FtMv7CNq@k%UqZY2SIxitDc<2?5O!Eh;~(ujlY^d^t>hK#Y2AiDgSHh)Jmq0}NQp~{i>cS99;Q{gaIyM9 z!_*?n)#kO<%=A(a*tF$yIA!|Vw0g9h9PE_kP%vR&VI&KtgS|#jN}^4^7G+{-&rT=T#MCsP};tmL@r;#=x#$ucMX%?n;p%Zv+x(_@I_g z9daGDr{(Eyg_jmU+N9eLV82n?GHqZ|zWtw!`W?ZDrFUy2&?|v!#L-7S6AAFO`~ClP zuKdkkjmxk9!noY^5jradhv@@4#o*fpLEiQ^J~LNn>hGM*YZo6#A|UJW(}WA zB(?-rFSxK)`B45`1d0JrZi{ZiSnFyT z6KGsL3EZXC2&R{ee^Sz09HYMcf5b>tG(Xyt~mUZ>8#o( zsY{B%&;tnl6hAsT0{YMGA77}QYp;3Js9dr8{5sgryu_C`PI3Ks+ zKsv(!JRD;azm{&ja2>-Q7Z09EpL|z25=KCZpz+a4og;}`&0Sbj(DRJPLv7L;jHfsS z(7^2VfMDpql}dI}I74s=MoV_PbvW|0GGqk!f+}P=TmHbS6&%UphRzkKwJbAn=tvKq z!~$=#tmCW8Ls^t`n+H6Nl&Om7KhwP^c6nwen+vqWOb;q7MNt;O(V62?Di=i0FaTUB z*5sHLwnk`Jr(jl)W$SuCgN0sFP;d&50&Uxg-#7|d>u=~xa;>eBG9k*8(Im&uFnrbv zx7p0%v}r9ZcDDuts;5SzQD006t;C*G1@NjF+GK>1$CWZW)O50N4(zpy`#b!?%wqhSWg1I61bjJ zdf1bazzbeBEc}-L+ex|eBNHiwMF;tg%K;sXdR)gLum*2wsqf z^^8xj5YBN(7dA- z6n3JH=A}GJ`LGlI+_DamE}GV)4B~}#N?i0rjtUtya?TGm(rnF_(mbxpqLmhuXZ=G# z*}PS2(6$7x$PBi@2mYPwf|*82hPy5dR%_**QT<{#=zze>X&UrAGtRq25da-W+Y zmv8^?<_pu&z3U~gkpy}ra3jg|@Fy(+I=vU@e##fT3|4(d^rQv)6f!t{@BKO+q|T9U zz_%T6L79yMYX{LbJd01-EPdj)@C@Up%W(QF?}T-{q`-BqDu3WGIHKgimN-5-qv@5% z)S3^81{WnsA1UC3Vkn+cc-F23GzX2t5LBiN)sB)@=@oPcP<0;UU0^3BxE3a(l_2>m z6GIf=u}jzG>4S=Vlb7Wy3{Ni#o|^}vK-ySJ9lBAgt@`Va%xq(29yxT zzlgOJ45_N*p}$=$gVaM&<3yM;g+($_giay#*z+9f0d}p&ny`^Th~ywrq{VmYng`{^ zr5~|)=KCkshKYmU!e-;(oXa((Epu02RYqGjyQHRR+uOOA)HE!D-~9cf@`BGElwbJg ztL4OzkU8HWyvtDZ@?BRVr6Cy}Q>8B}HB|(o#R)@|9gprVtJ{CNTzA_Ki14{k_pX<~ zx)Nx5%yrXyU@w7Q0?#rDtQ5>`EEY}Lc`XQx3^K__>W*6>LfAb6TaWnL~6s;ce?!Mci)%&AV< znT67%BB~Ok)uEVl=A4xV@1Tiz6a&RlafqNn$!vd8E`n2~QCi>@osp?eDn8$p1Yhv@ z=i=)=U=%(Xddrd&zLVN%dir$TO{&cYocG7tGof2i6nPmf>-@mUiZ>kC8Ymnq8&tUF z0bZx835F2yD1oP>iMgV|`#Cp|YD8oC5d@~`fUW=!T;gXupnf(Wztbj8wiYEEx;&;~ z@Nt=z@qn&n3(mgULawS zcv-#fzOt9Q1lSF{-f=KF(4CKba@@U1T;s@G9TQ)0NJz!8^^(nH4dhWKbx+GXo8*K>7|w^^zXSq`I;FA4gg zh~c<-1jUHySs>!nr3EC)NICsOS;XPx&+)Z*nGtKpc3&gJS`d}iw|k&8c$es^taDle z$Q5K9H*);Q*hi9_)@Bkmhxou@&Z-07)z#GT^6?0Bcp?SY4>90dPH2G0%(A19Q7`-O za4o5+)*v02nB0;W}`+IL2m4ET8bLI7K8E7Mos8tV_Q;(2405XdAFs)Q5 zec;pX_UxOKuhS_C|J!ej%A3D&Q~5_f__i{y?b-L=cVGFP-}g2w*<~Sc%Y0qa7<1^ON_sco&O^T(;Rd&p8iIhNKYDk+-y9c=lK*rSE8bGX4?R> z3Q85)P1X)2ui`if9S@Z1I|+n}$Dry&u8pIBf)6-IS}5p==tfpF0k|Rz(1h!FtsoIa zYkG}mr6WqBc!ovI<9v-fS-6?zjK!>SbQC4)k^L%3!;`5*rmR<(&epkdBvHo^$Ht)4 zio=*ghf(bGvsF+{f$&f#L=QDrysFzoP>QLerAEOB!%X}g6{}GC$O9{=;7YIzg!|m* zOHQ_KnRJ~8WvMQTW!{u;>JkT7gtMyTQ;Rc22dk2#PvUxbNtAf!#1ZnmHi3+;+?iyZ zKjiSmr@-ymr?UiqV5AKk!}9(=o0Jd#wboI;Z&Dt-Ulr1ei1&bWvQ5P430&cM`^yLA zWnVBXx4op5o!-GsHoXVQ&7sD#j{lcy%P9reY1VNdI`)(V60<7 zmLJhM71h--Go$PJ?Eu+^L2d_Q($WFXw1nX&PWqYF#@leDPn7`c0$n}|u#idvBg3SJ zNHmYln;V#dD0ZOg$67z{vQ!x5i0N7s9vlNKcddnT2TbZ7iw2oqh8PQ@^TNt!5*f)* zfEbuzAfWzZ0dzQFPywsXW$Dr&3Hro{JObHaF^|KdD+Ac;-?r_gT)C%|L-mpu%78ei z7nk3mIA8=F=@yDr71+fRfOOuF-b zb||i~P7ubqVSxg0cJi&aqbjF^h}w}+!fKpo6KoI?QGQ3%wW$r24UUgj%^Wn_ z0W!mx*7C?SU^zAc%P{c7X<@+6c6AhAGsY=mrBB!l_Nf3mlgdFT^SiF7Q*?@0(^DD> zO;c#w-k?ufG&7v>74~9(3QsoDj;civG!!xvKa{8GGCdGQPaau0`zT)|KnF@FV=g{m z2Lf&+02StV7Y-gBP6W!0&l{B^2c_6axkX6>os6*XQ4S1(z9x_B;N+~Jf}#Yf&JX3! zhe9jDF6g<*$#QzUrM@dElfv=YbmmaYA(#^sMFAX25LN`0_w!#WWzxHXO`u0sv<3mg zbX}LYv;JD-BuBIvZZTR|;?}3Gd0YWW1JIsrur+I z{^d9l6hNwm5(qwZStutJM@huehhiC4Ke8m9NBmP*`GqCa2|Cn$qPuBbS`r)gI4~#A z;t+@L)LASwIvaM`l-9yQO?V~iyji?VAjjd(on_(r>&kH9910+KJ}f#ZpSk`$pSrvJ z{yW}LKJl@SmH+3LfBBhP(7t3(iv+qp?P2TkHxiloJveG80S+qD4r7^xrt-C5QY%Nz@uOS*>3Ax_U3Ik)pUk(Eu!T=o^?( ziSx^}3_G!VKu-3~y9tAk@LIf%CIc4uwiCCeq? zZhQV`m9P2wuXjoRx40R{S4w#4d#neR%xij%@-0&+voMuQ=QVgkt>NMjV{<|Qw39MZ zO1-V6^5-nev7<-Jhu-&ra#HssGZlON%}Zs|=Aes0x#;M<3Q#@j zfc1~*U#xy8iBYe#98wXl6BPcYqHV>J4^zCyVbnCzNtilbak`F81rX2l^b;rjgeQ;mVLRHjvuwKYdYu6n9}uK9 zB}~*c{%}$E_gy0H?|j|YmfK(SBA523e&WZ=k;7|m3c5t9(HHXqNI<oa zUzOEL1`q4F3Ro9L(UW4x8b8(%lE$IZo(>kw)499aWzh(L(&q#Vf_hBK z%RZmAYf&d9c61IWlZZ4=m{(U>Mr9M8e#KEV#Q=otEw;u74lMn6SAiSQX?n(oTep;j z=U%VlU(UAv&6FVcRzhxT8E}d7CE_UW_xWP!(-i8M_pC;;Ue6!MiZ?G=4!oOuJ&be1=45T&eA_MOMtTOO-ua17lxwfMu54~Bo=>!x zOQ$B~=%Kh5o(~Cqi`WXhWn25+o+#HI|LKxIzdQKpl6;?UFM*37f#rv%N5Y(McI`l# z1L`cSjT6SDAF+Hgh;J}zCqZTs+JVs>%<=#6#+FR4{%|wrx24SrCi+!gZMi!|kTe%j zN{q{-2o^vc8RMy8uIDg3)f^F2h0m5hk(&Ye3(v&>-%6eoEYJaR1dTkDDQ0@D7%GnI z!b$*(A^{}FhxQ*RpT7H3R${RLZr!>~)4y7e2IKhe47iK?MXwl^J3l%uhaV-uT#N(% zaFnOQ1#n1Z2~eb=tWp9ti7XYSM?rv^M`+NCx*Pa&zo?X}_N6A>D1e|*QTrxTq;)ee zM>_%`&ZIY_$dR(n`iat1t;5MQe3U=m{IS8YFD>r5!b4phcPYACZ@aB4_Q&tI!$-#4 zeCw?pY`wq(_e{zM|9o6NsWcRrS?zlg$mc49oLhUdl^eIViWR zIV#8`{o@%ZfnEuG2ELTONWBD}3JFZkESHr-kH7XO2h_~-Tmz|<86oCCoHS?qF;E2J zOllI_S6W5w1{BZ}HbZ(o(b1+wDF7OxFjI)nSiaZ!d+HMnqG50C2qbYv>7z{gu}Q=9 zO#6Xfl|Gc9P!xfoDh0EIxqMRO;tDvWWkswIM$G3E8WC!6a2`@4q#~eNt*G3ey6evJ zm=63Ubx~F;ruFP7k6;uWr7hjOW+-3q*~7B`-qmv7T`He;0cSE*!{H?jYXx0`YAucQ zKwLx#9P6H3A%yxGsn^~-C@*={pln)HLM^^!VKO~{ITP?J0>Q2%j!YlMk31W~jqxjG z+itU6lGN2RSqe7Vsy1u)sZ zu4PtZ+2u{ZLjzLX(CRX~gEd?Uoy`3|X9;R@s%Fj<>e!$~~FbD1ckeuQxu z&Uip8T#@0nZMyB_iqdZ4NSee=f0|PiyN$PD@aM$$Qg*k!;Q6)!K6Kzf`MLk&XS`mJ z`p^#E{W}vYaR;#`%lSRmcj&gGa0>$`T9Mij|HOmz1G@3#SAKT2{Pr&o${XLR-`5Yl ziyZvkJ#!>5`eC_ePI3B@^b+VL@RUeE9r4mV_k}fU9fk~q=i|Uj+}W_{87Ep^g!vh+ zK#tBG6H`rTI@&JKAOOoBL50l+zb1jLJiL+P^qDeVS}LoD50&E|xr3b{LYJC{k8+0M z2Cj%v^~blLF1&c`p0Z=jDNeGD96=NWVt&;*n6OOG#Hk%aJma_>F&ls(s6UA8XXRDR-ZtL689gLS1flu=b=(F!7a3LhHa`c$41(V{jf%90bH2U!M z!Yvu;vv^&4*PmBLiRi(hVmZtZlJN}ScMPUsK#ATZOI2aVt`w&Uij#dQeJE2>uB`mP zPITjAvf81Kq4c4g!NdAhC|M|LQoC%(n`n0fQ^&ZedRQ}M9+aR25NQ?e!ijg5-C%H~ zGODg7Yo~1mi@{PTgh^AD&XwY+Jldry?eLQuGJuY%?=%1qV;E19;MaA zG;>wBq}ZZ&2D2ENg%EL5>$}Q12|6Dl{a}pW(N}ykBTaGRR0M%0y5eHIbUG|%vWTJV6;3%`$8~H;BO-pD z*0hGCu%?Vaz2JnXo&b|;G z4VaZYr)j8^!iO#zDku1k$VW{9pZsODJ$0r$aNqqh94?#pE?FMIT+n5_$RRjWURc3X z3gNuU$#k??k`T%GfnP(etnw2sX82$-MEg5wdA27bjT^D$EyO+ zv@BD1JZj!13_bygJPbi*6+c7};TNh zjdYGjTRPC@cIe{fXNmic@A>X>*9UJb2k-eRwTx)jC~UkJ{yb8eZF?u3f57m$j?irf z8VGr}4LxkKt#dx*Fa67Lc|>Q|zx8|6j(Hiqds-!sz1!1Th(7aP0=)#DItgGgTRC!6 z-Sb*E8*fwFfw2vPll`>&_BDNW6N#QaSmpqq88m1KvR@ff-tnm={j~l~%AOTI4zyz= zaV^qcL*1kUZ*WkwnEqXf>)@>Gc)B*wEC&=sC6K0-gJCF?jyce=E0__PFh-HY^5!*t zW)g#B4sv9fvT=Zjexj1XgrcUnGlK^@N>udGz5&G_$-a#Y?wV=++Y) z^sN1}Qkmt4gz09iywZ!!Uu-#pkon)?+X@;3n)yL%fkf)F@==Q z08d>l10)O zz>4k&_Lunvtk)gr)G@b%WQJScoxXX_aL7?MeQu9n8;rEnJ*O1A!7{g$c!WBs|rVG67d&K4nXqLwa)gOREy+^ci3qwI!s!7h-P@++OJp`$I@-MeM0 zcK2?!!b>q+cb7RxGM@fyQD@`l$gwHI+8|ayE9Gm!mt^cc?;e+5{E2vP(E@nqA(d#e zso3-JlWAF1QSi=<&zs_11+R>`h1VBFyK@|JWdZ*0{`+ycQtJcX^j5XO-aTy+=#{{y zP4s=ny#y|d1Xhn6IVWSfV_XiF5mU#U2?^NHuZT%7%ZPELa~eoAjcZGv4m=*8l(kP5 zuW)t1>2NcU3}*dIZ~erX!aRMcC>ArOc74_#BM(Ycb-+9;uKjU`9!VMxpl){K}a`S*Og_@o;`KL zN)*)=I26!ywH%bweB?VB)-ZEf6D9s zKEiB9iNV}SQRNyW67&j1RlAh411?Z4mr`ARU_l6XmpvDi?-z$+M-V7ey^Rd{ z5UN5W9hA2H2-7t2e$*Zu2)RHuZ6SnVT*|NfpR47T7sjzhf!RMVwgh@5@M256&##xj z1(X2Rqm`q_&nt)Mtfzyf`+ZRY&$P9SqLX*;od_LrgDDtOx+r`T-EWHmNQb}HHN4g& z%pk_-5g2VaY0iR)zE*^R$~$ynSrtH(zpSTOXif^_U<_)Snj%uIV-|vtI5lRZO$U?J z*vT6kNnlD|c%hWVh$+PnOPn&XqJ|bI98U!scTf%=JXm(@+@Wmd%69qBz4hj@C`E_s z+*0`9TZxk*nij!HGj$tfhp}j6;q&w^Q|OJ(=mA^rf@5W`=2P`j<~BHDjQBEqVragPCA-&{Fnf_)IEQTdK*rbEsR2AZLEr)l_cSXMNnXAby)e>8LWq_Z!6NJ zbdH4;L@901vc?XlIu5W1Zjxd$Sg;~x3!2XH11|=}u#~wz%G=YZSke?8N+Cq~;y0G! zwO_Y?oH}{DoX~ZC*WPfwtH@ohnDnePRwa(jEFm9!x#|I9BMHiyrB~6yU$su(Y6D!HW%mLon=z-Ob9K4=ON*eV<$<4t#m=g;%f_OHEC|F>?V_Nu% zuOnQBn-(O~MJaun=9L0W{>UpFrEp11ZoZjBN+t=G;q;+z!>}aY!oWFSN47P)GP+_% zOrM`G@iP>Ua{xd2H&Hmh5mhop@AppoQZnB!Lq0Ni$24(-m;#m0{nPOg61aSWxE*y8 zgG9V6#83u_#NSN#wB>^jm-3tcc3i&xAJo6OC|du#ND}Ckz>6g4KATLGMCdDwc)(h?P>Qcqa)MKLli0)f=>Za0!jCL+EBZHPnHMw?^kh@ zuKRu$W%V+iP^4pOYL)<2yPw!Z9v&6OLsluM4X(R@|~E#uFm+ z{-<(MCR-gvCS`Xb4br6+Ey|=Vos_fE3K}%zSCv$Yd;@< zrxvpWi7dmq9nF>x1=_Kv|K(fOycX+dv~x*8C|C*oH>B5zLWrUWPYzgT9jX3!h#9$) zqu@Y!*sssu{nc^#vacC>jUdUryLb}lmB5Q9>prJm0vB8Yt2!U>T&^7yGfXE>cs)OO z(OuK2%M%hCIaam#Wc9f6YR@8U8JtxJ6HlQT#h0tBr{xH6H&9r~sIVlh(X+}8lks?1 z4y=Awd3b!QqN6fDIAvZnyU54+QhEKCw^VlMx4j%4@AW{pRp;bgG1*^s52OqV*X!Xd z3QqNt;%DtmgW-ZkM>dnpF%>MIocx~wb5f2SK2i=y0Yt%@lLEMR@4m7{ch_23LpejH z8bL$pLs_fxuwMsFg`MD0mxyq9Y5I@YUBEza8X!j^`er0vA#OV;!KpTF;b=ZujwX%YhTjcEANbb?VraI6kJ09XfhuRY$o@)7K!@ z5qkz^MuOEs;eoLxKjOfZz`&8X0?DN!1QoO$hi;JRNW}E6j}6Klr{Ane-bM3~ZLKT} zPfF>sdS+vm^M_Xrkb_ht=j5y61V1skvYc4GvOIQpsoeC?r0lu|B}fVUH({lZLJ6#N zcuE<>T8PDqBVV@5>i6k`kCZK%{(SDuHZo5#omadnmzt}*EDex0Oti-R@)XXO0bVUb%P!I3)RF+tIBAL3!hoO4 zkzFlKht|U8uiDkU^A6z>4E)i5q>V>w=Y6C2g#xHoEd_9-YYzDkU^N7a9q)m*X`xym zAtlcH11F|{h3ByNs=cVC89l!@5R>0YCs5&aFGoP&a_{<`arxTs?5~y!XQO0v2esq4PWMi6A*#7`zy_AR zds85S&e!bM;u7oFFiPJ@w1WwX;7zy*y{ zXM`218Us`eRx#*}K_t}$AeFdFTb5QA%f~(-C2-HA-0~vbz_D4QW7Y}ZwDN128C8!; zSsu#jw^N5cFG%^j{Y5X9zo`zW!jwYg94I5!J=RdNn_0iHWX`%ncJcbC8|1E^*9jUI z#ZS1v$R7)zeLXlj#=t1z7$p&_4!eXI)$#4H%76o54BBGqYQt;7$lxSBMCM)A0*rQW z7q6y8$p(~mboYxDe)ke#P+f}$D3jLE05sQ11pi={zDbi7Hcfg*R0Ga(2AJ8+fV<+f z@XUrbF~4Vbn{-KrAGk+%Nq?diy}m!z^q~auO9gO#L4PAy0lD{DLezJR-b#Ef;IC+j z1+Z25$e7uEHAgiQ;jm6nyrILI$Yv)us|w4%X-X0DO(~ah^4Orf|Ia4nb6-On=-tJV zK(7Q|EJ^qI^b)wh5?DQcV#6HT0Wk-{76u`4(wwd--<5-h%j%J1UH5P1Rl(>o0yz@& z%nm(aQxFOV&`4n@3Fkq9U}oOHYtREq4j!$a>A*hqvDNY+4ImR)D2SusP#W)UROs|% zOW8Wq?q20X@=)n6x{y!+F?Lw_F;fp`3Q^81sTQzH$vpArlXC0J22$=c@=+r^`c+JmTx#UaUJ>=e6T?aZb~}8We5$Q^o^!X$aS4l}sm|M#fU7G>xk888LdQ zym&rHT6kj=MQTRnG~iC_qcBQiO@hv)(=_JfjBZ{LPZU9~2UH#tof8;NSo-g2x>_H< zVvXvK%G^VKWXGbg747uaB(HgscMXyHIF8bo%UV41Xh6hW@PPRpDVV;KDKBW%Z&@U) z;kYKa23INTlxPh;5iFnFKYXdX5322Ed!gpG+DV33^hUA*Qbm+OFL%`+L`)4gFGB*L zC2W#%7@N!WcY`uWvz0=qX6pCimM1cA91#pRp9s6zDa zqDkP=Z`l`3RDDLh1fJOv@ELsPQN(rtP4t9~m(G+`-CxUQ4?64UsH59X-0*?5E;@5V zYA`!~7_}XK4(Q-^R03M5us`J+XXPpaLJjAAQfbeBuMpkP&H2tA@poFm6Sb z!PUWWDSO({YvqeUOQmwztdBX|mB<2tQh3satV{~Fd`45ve?2bGd+DI;-lyC#fy5%I zaz@wN-FfGy%E{BGv`%nAn?JMxg;7#vv9bp{j%#tL@zL&}S32dSJ{pAwI<}^h9TgP5 z>sn<1Im4#Zw4ebFAJ< z$pP$e)Co}J&;cW{LY)eN<4qF5tQ3BxS2pm?2PtO!F=*BAo%V{`rEdp9&zBLoE^Tw}cp2m_fq{ zoU}9Ahu66h*T1O(I>nE7peO%To;%)8!FqQwCD8v&Y>fZ_KmbWZK~yV&7gO4OUcCe^ zlms;Tt#T0ajH649j&^NA4wfDaz>($e%%caj?ypt;psCbr`sT_tMv}FRiM7d&BuX88 z6g5{D0(GW3@yl{02#Z1InjkQ6|K=~p<<1XBLMSD1)5o;jnWwCQ<1J;&P?k+B6Z#ib z3ZJStWLA-Cif!gDdm(7!v5$TAJsZU4Wd#2pL5-H<%XMY zii3_(?3h}U@)_n5P2*Aq#RaL3JoMA(X&B{Ez~z#qWsOsU(}eFqmbl9(g7`mu2j(GW z8sx3;!Pm+lh@w&kaiBJcMz-gY5oIl5<&L>@RUZjr(YY>-0^ukyg~;+41}NbGs&geO zw@RL5W+Sxpp~x&MwbK%ocp0C?C%sKe9<9Gl3Cp~Wg&BD#cZ+#xhVQ$xmK#B+vfc`)0Q53K=){$oah6}OwGT4Tv!S8O5lZ+Z_mA#z(tY3L>3xbc$8a? zr)1oQ*Bb~~f3|w?P+2*21cMcQvD|D2OguT&FwE?LXSjmoG3HO9p=@{nFjOfX2&Nbv zWedtINo?U2`OXiA0vO64$mA1Bi&0!*lq%FXSuJ!l%w%v}5Dicbh}f1+I4Z$17tDjL z%FlGNGvsBHah+1O=BFqY92_#mF)$ksT!Kt3%a69yl(lOQPz5a^)5ashB=Lh^FbTgQ zSwjw9Ma7@y9bsU&kU@lbChLUErYF4hYgPtj5$E?_)1q9m;iXer&hQALSIyLR{eJDM z-K!a*0B%|w=oewu1)>1XODTlr%xPYFOckq%D{M{*_(euL13}ZmOck@4WR>-SP=l+s zZ)3N@w5dE~Ixu*DQ6|zJytkB_o`1=T`jRVnuLNFludFX{FM+cqu)3sMIppY6H*)O& z${@*cGRqG?ssPrrmTHCz79u+#8IQ*r0%x39Br!ygM|SQ>AA_+llN=(4d2}2CU4_b| zj?NGbXa`F9$X_efWvl!mL(`^W=xN+6ztB%lwwBEUZQ5{dK_7z?xf2gxp2|)gx&qeX zX%JIBfGN|*-@j5``h~-?uw|~?^1SDHGsuGOxJ4mH(Hk<)M!C!w4GVt6DvUHVP&q4a zic%gM&J33VTQl?f15fBEbwL#X53R5i4W1o18Ns5b#ak${t`g-#3L2cnvC_%6U_4Bd ziP^aL&QH6V8R1z3rcEy!yP%7LQlW}TSu(sau~Vocj=X2X#1o!=U{9Y(Gli@l+Nelm z&ppA<7AxSCU9hd2Zrt77-CY}Z zcMb0Dk`UZISa5d_4#6FQI|-q2cZa~?J!9Mt_ujuyd+k}P=Bj!siUwU^ww1H{b7#-M zbKul$QCiX1I@k)3-GX&^ zd|Z&Ffjd>uq9)e2Z5Cf9>P26pQ2k9}M01i|;~fCn7>6lcZym6mzGt)HV_>e6W#kDb z|2PF18-VTVl35X|R9W;b4vXT;i5O&46UCgKZ$8W16pIMbh)!})6x)kKyM>tlojF}P zA@*vhHmPbn#k?R)9BpcEtP{j5!QSGf9Hj@Rs}o_6=-b)-cvA|mz;O)=T)ssRB`9P+ zDz~Uu&=&|7!UfC7!qiUdgIU7>CDke|O2j0RY4o3VYb_yaS~~;cHBC`axM;-bVl~Ba z6B6)>`IqV{UESeuKNNu9PqN7;K((CuB3_+wJaqiTa=$GjR$gP!(`YYlcS7>t*V`q zeSZ^6*ktCIAF~(4N;Q`^jfMXcr{Qm2`I>CONVLJx({MRnKR{G&WnXm30;U!cwyI~e z4}|Z^{{(o>YUWAIzq=Y2god+f3;8FRIs(1Uc`D5MNxslaY{3^d0byPvex&iC3ufYr zzqpaCGvfyT8sX% zBPK|JKOww126|A%DK1W^KF7!p`&UlbNjhTt|#!|Il|Ce&nFaMSTh_qo-pA z>{J70div-^Ro6k{79(g}SYcq~_1^U4SfoEwZc|9L{|`t>7MP-rm61#V>Vk1sUeGTH ze_>19z>^F4KphpY8WTPxJo8m>WSkspU}o2pRc|*R#(wQrgjrI;2#Q6A)zY&BdYL%#zNyQS)C!qVqW{J<>K4uBLHcjpIf!K} zlp5V5olelzf5AvKtCqn?NaRXdfpZ51wq!|8d9oC7j|ZUe~co^rQupZ zew5G%_xc36x5)c@j4eCWK;@*8=qfPm>PU8|O)w9uZ0;9xGhg#BqZYw$|0cb|RAUu@ zL3q=vd;$m8c@+2r!9QN;fNPTf9}7hZh*iIAlK)RnXMpRaB?@&i)ksLqd*^{rLuRWk zQU}q@|LpK^!?r|=KT|%v;CN%c#Pi0rY(U$9nl5<>%R*T;3SYRpQJldM7IJR1Hhyf1 ztC0LuZJzbGI2LM8PyE@AOQ$oZC4zu+(Z#O2#qk@a+%zkfCFi^TlZN046hzX57-Nu; z*6=AP8!XDH;alTylwOiUD$LHRD+1RpBNlCdWveh^P_e;N;`lUelwd$HqxGgn2`Lnx zA0481yl2g{9h(7w!)5!Imr149y0 z96M#Q{XJnee~df*jlQMvc)KA?>IfVDi{kJY^@G526sHhi;+K{Ttz6wD&s5uq>4Yu* zWYNa%tdb5c3tO}M`~f_KD2g_p6lj?|^TkWQ$p9;wT&0ltH?;nLb#l|bwC36Z9PPo8 z&G)IO64fEdl;?^35ZsDU|03LvyswUd6PFa3mSy55G$YkdrnmR2V7^g_eQJIfK8@q0 zUp^*wKlA+Ow{D9DSB6yE*!&~4EH(Sve9q(Y0-bI}sCmGSqn6(-E6J{Ix>wMxk=Ym1 zc6!*b?eAdxOmH9~>WI{EWOt;(ij;@I<&oPO3kb8>IIW-`ky9*1+?86|1IKILFT?@{ zZApDa z&qHT3(z({Wj?+QGu^qOsx;8P#(&&zOCAjN$AA89Yz`^jHz%^sJOo)C-$)@y#+?l2= zVO?jXWXzR?H#IyQ(@A}0AP>lTKs;|un7_`5{k$Vdnc41I1j~B z0)C*=U?xj!ek&Ga^o4%|fIMu@?3?sOylZOg5&7f&=Z@ecB1C38XPhDjEGbvB-r8jr zV>hnLP>Bwvv$qJ1T%oyy1$~NS+(IaiuxFr1UX@hzM##EVi8wwBhr?shN4U}zC#UB0 zt1+U+5YP+Y?d|!R(cEUy==ZqV=(H*zq^=FD8!@K$3$ozr!(z3wqAvLl7wluoVF>%% z+Qx2e>zvy0W4OL&=}c@;(j!4uZ(I~wycw}^bgPWIsjMQ*N4Lh+S)&IUIbMtNPA|X= zEmFgzlXSyP1GlziB zA>|4M2yq_Ep(V@7kvG}O6>GY`r4;AmvYVSe+T2w~T6VLY+nt@n^N@FJ@Xzk}&?ZSP zVq2rHhucuHvt0x4{M%x);jAWG#n);o&BTjq;WL)Yxn_U*NtHu0ke;!k3&QsNL$`J= z2U@6?i`*n=j8mmf6p3l1+I|vN2e+L?ajJ)G8v7zxig`dhjy(=(W)-)9@&zO#l(AQC zB=6T-gXf>QGzHC#P%GxH;F$9~d!9Sc_T6|t?R;k!JTE|Mg0HUD?bM%LW7?vi=2Gm% z)S%5^f=8y&g(VR>>{s6{eCaHt3)&739N@0T>rh;i%(&vwoByd-Ai9XXA{UdWmO4`8 zl`xP*DP`2L>|iFE80JE~Xkwzr zydG6WJf)sJokmVWfpW>Xj1gqXN*_vuFqY+NOLEk4Pt~rqf}U-@22iC`n3ya!T(Jkp zgcyiUoL;N5t%!eCqhvwj6ffgH&M;Glg8tN0%}hdTaV%*(0OQ3H_47H(aweg)|;yrGV5_a35$8N|~_CNjx(XxF!q@;@wAScz5} z_m2jMnEbh;s`E9Q<-_qRBwJ!!xG~Z+wzehqqRvUrJeIuyFS07D2vtD zrm3SYs4?d}{silC-k)zP1of1C3_|!L7!6=%p7D;-soJ9yFbAD19@U5^L-i+s-xw<- zQB}^s#Gft)ii=07_`*Y_*uTxLfl&Q-5Z5}i#L&ms4w*oJeZD)my<`xf(N^iFN7n%c zvOCKu6V%eJrzx)73C>i?v1wVT9Kb!XVn3Q zqZS>Pxh7D3DhHU*MxHr2Ah}B)V313OtF9Rl&dsFAqh+@8O|bL&I+@LtgX7aBOtlNg z@iDTg8p+cyLDRRR{(xfV#}od^`e3?e8ETen9!LaSzkbhmVZ)fh4@{Pkj}xsJ)4z;v z#&xg`>Y8b#g}~LscePWsYt*B|*#J=v2D(I;{YrnDrxfO3dM7=gUm|_NSn>tbmi@f9 zMNRB;VoLO+5Bi0?QxzgvzRq4cY|1v9pY}gV0qCbIYTORV|-$r09 zlp~{*O*Vcq5o8RcELUbc^SaBYL+Zr_ShZ9gpjhv(ten;BVp?yJ?w$U!eO7G7>6w>rg z?a(%k9P$4t=-S~}bX8~5uV&96KY_Nngn$*NEx5ax8fd^-M8$Blh-CN!I5Gg8xf?=}zOhc)=We8sBvm#L3$13*~Bh)+mUCjVGQk)?{7 z;yK?QCmUz8aD}NfgzLO}c!-b{=~~;a{g?jsuqZO#t;tb^+Z?4Zroc$aj9P1Any-m; zG(pN>xBSjsqecz>Cxa9OA{UdJAYs;tH#`$VF_B^0ao|~VQX?mcK`c*Tu+%r?$imLg zW@q3#c}yk8zQ)#<`roSIwr>jX74sj5LNwD55g0)|E4t z+~OaQiX;BlU}qi3-`| z#}L7BkFr9NroPjpiW{iNC81Ez2aP6#4Wlz{#bAro1knfadY-t%wGOqxi7^FUyR9J) z;Hmy>SamINU-Z75U|SYnGIXFGdp?lQvFg z1~qxR@1ga#SYq?@sE))6c=Nn*A(r zkyLCq$L?AoYF&T6S@w%P?GnL?$wMjYpswRnA!JvQ|&ScRNTxoaa>j+Hjblp5Xp90z}IihHFvCD@ubtwb3lwgBJOKD5xn zPr?j}&!l3}H7 zW3P+i9ez(WN%~dx6dE^m*-Vj)h&u|>4XbA64SgeNXNgE4ec6mHlM2S}`+)i+Kf1*A z68y}xt?riPUuX^M6XLTGL7;!b`MX$6g*z@Cc&pJn2E6!jLgOkv9cEjZ*ubr6`5 zz~{e-pC7L@nplkhjg>0m6|bAy*BLg4th&qaB@CKw+ysRQ4Lm(*hru=G7tP7V!MVsliWjkMeG&760ZgwY0p%N={-nc{x1&g5^B&+J8_6T8}^z$m$K1G zWPWI~-?z#%=gdiUJXZngX;kJ+KGqZIK!OA#p%Un}Kpm(OUL|5-Qx;*flKgrHMZv|9 zg5hjuS0cer&o-2#nmqvzXH2?AepVgU7n@CA4iemt7b~yZOkUQnKYbp~p7e0(>0sg& z`ug`Ze(?I@Yr+G4VU;n5*W_Z|UrQYHuP$_nCl?A|6$Afn2VF@vUOqXKRTlA(XA`%*@QNn2v!n`XxAU*vY(z4TlxKKXd5{)J4tW}F99?|bVm zRce;2pJJ zsfBc@doXJa0Kd+YFqMF4zjAQ71bfBAVL5Qbj1{)HmB`!=#L}o>ReXA6l%@Iifi&ta zVl;K#LI)d6RZDO%N9pORsN!Tpj7kG*Sp6oTc>!U@x6tO2@H6Z?JUUsMKq9DuKlb28 zEg8w=b^LyS?ZS{{m~L?s{jC;X$Z$~h?|>=_?^P5K>8TNHhTfr>85tyNJPI2TSy znKjljn6cZ5XXvsyE9BoF=|A;#XodZ>lX`(PEy~n=*nLy-`{eKIe#2=&=s@?=O*Uh| zNbDpeQdetGa@A>ObdY4gT9NR3(6l#{&&~(H=nGYB1|X@G3*D9!T!)kjhhC5R{z;Rx zzrchYe!olpX&F|#$tTo>=d1sL&Y(d3xLR2H_k<)CF%q2_Cu=075}3=4G#lW0{jz_* zXwoyA={`Z`LvtWjz+T89^xMR}LPZ5NR2)pH+UOpUYn0c}3Chwgf-r?cb#n}7MJNrZuAZA=?b`5$Xcjk_PqORGHDTzD=zZ^Jc1(lkG+Y13$!EE zW8%XcVE{}LcYGw%)tYmB2h#F ztbLVFw%_4qc8B);L>wj{H~TLmVpaIfZ;1=N6-<|r%}}B*Unf^mJ&PM*^Uz7FHubqn z#r!YdA42$a2SSF&k-*EuWm7-`XqE4k9+GRoZx+FGfBv;sPRZPj1iRJ*H}f8j5WfEV z^h(N#sSeRQv>bv3+-B$WuCRbB`cVIvJ!-QBH&TQuB`0F|eXB{9<02rWAF>XGhodrv zg6pWVxyi(Ummuc-ivD>HYZZj9Hv%pP?8$i6Gr;noN1^NyNCC_5!{@}CWy#@h)U{Q( zJSf|Go7r!*+Yp&510IW{O25wnWGUff5}c@0B3JA<;?dxQrMyvy`qCPQ#&~1&T_jy- zifxgR3Mgg3aKh)XP9AvwfT0}&3ggX63a%#ahcYibi`0GEo#OC?Z48B*V}Rk74uVmV zNde~_2loNdZYPpiQ%14Xcg&36sQS1BmZ7DSVwEok*@&p)rUkoSum_P8F|dppBbF$^ zlw##yySfly&z3Cm11UEs0=l|8r z)9+yyGV)FX6ni5poV$}ne57X!Oo|b+Orl;AJF+Wveaq$qq^g%)F@^ToaR)jJ8k$lv ztL@pbRVn#RMdyBCoz@eI^+q>%}nk91)#D?m1KnrVExMvuW=k2 zEI3Ef&D2BvoRR&rHFV5Dagdkh+;c4=pCUV^}=v0+a4Ww3Xp35j}0-s7#tvmfLCUM4Wo(M4cs+a;NO_2=@&`V%GX-#>!tfMfIWF zK9NY0tV2EQ7A^CeGG)kw%a>~BiH8qjF7koNWz+1!0#@Kos^;x?_|h3ak~h_U>A)r3 zE0w-XnpYe5mz$QY2nJTOy^RTr@3(MCd4;7<`Eh`x3)fDp%+9qR>Q+lD?>Oj3UcyIq zdzYQ>gQZyXGiC-XN#a}0Sz>&7ESHZg1sk+kQCFY#nYY<2_fJ4k#2w+}$BO(tLi}b1 zj+kHyb^IfESffl+eMe}!0T@)$03M~DeMEI5k=}S}e0~M9qke5864{wx2C120de4>H zN=CxmCIrHc?BtUyJ!dt9J!sL!-d)=I?hyQ`_5u=Q{6+ZEzKA&&RXfyWqs~6xf3-iJ znOpJHU1(Re#oYrh{Pv-y0Io&(`@!Rr-5?aZ@T;%lQS*YoF$fT$-#Cw$Dci|@J9bAsz;B5!( zu`mJ152^c;6td)FWyK#=)iT+{UT0q@+L5+!SXWD3@BMo?3=&>M>10MYjbgfKt?BP* zdlH!Zvqc;^FVmQ&A{6R&49QxxK*xj{B`(7fdC5F+p^RimbDsV;ivXq3egm+|@5SsU z#|Bof{Cb(!7pE$q4=i~Io?V; zbDF)p^VxtQGrbqPg>{B^&vKr#kzX83p9RG$*s zzS`vJB1DpXLVUkYNN(^d_Pcv@K6=;vJpFls(-phwfVRQ*A_;M4kS|ey;okZ3U6$=0 z(tTRw?z{fuQgm;Y6St2n;N_WZiPPU&x(TKUW~8BS>kC>KiC70|sKw5u?x%h@!x3Eb zklwSW$jD0*ud0*32*vK35ePRStZ=ZT(D7=V< z97evWd-gF~I64>D2Q8il5LcU0s^y%o1cU@mXn zT?gfGMu!eR5MtoIuzhT*H7xG|DqFlt`+uo80S{gq{n6$9Dup%}RWXY<%Az2?pd ztjx+j&}slRpx_S`e{c#}e#HpGU(~|~w)|I1y=LF!Je;3%zo9vo%uIcFKJV>3e!aIk z9T^n}`kZ+C&Lb+-BY5?zA#Br7bZ7f(?^5!1qo@gg9_VpfS9f55CN)WtNuN9bXn162 zY1{;Z+6TP#ObrUFk`l5A8|hyS^uePNwdcrv3sG6np+rTXtOns!k5csYksL$H^>*;? z7=p-#{eNgsww?r0TI-`=S~w9|cKT16J!PSjM)0ZG90g}Ag)ITL;ZN^}L^!(&SrULMqha15QmJ5^~y&Fi@jzTgae_ydnR=k>eWT9)HJ?&k@~Xp7>zhP9w(5U zLzxwzP6ow}F(i_sUYs2rA!hSBBNAWAvj6L}n%s9i?39cr@Ztj&Tm}7|W+m5yxnF_K zB30wm(31!n^+s}K<|B79z2hE?r5-ox9o})KSDBG$En|mwGyFj)gz+?_lma{iP?S0& zV@R!Q4Qs^)ArdSlo-*HG%RSJJC#UV9IPCv-Lc}bqy{SA+#Faw;z=5TbSTzX3}J9(shu^7b4mRr>HqzcCijA#uoI<<6r(+>z-8TDgDZmfRdVOb>sLJsR{1 z!f|@2nNsV=P)}krIw~;p`WJRigjIei^0y(CM?N)!Ai=#^&COEpVUVDWe@4CaOEbua zJY!(HRPm0Y{dcF8;%bD$zx`{#r^AI_2cPzT>4p$9rtt7gPLn1_eZ3e}x^8D&^OvcL zE*_!=9A1eIM<(3S@E2xHESbp9Z(LjOD!ap54#02LQss`Y{?me2W}w3Wc?Tj2yuMOz z!>Gn0A#(d#M+1o&i@)8vGY1X|DIx6Oa*yD#(Et0ZQ8+^Z_cgqp#SG z3FX0LKMm!4yG`BTM{~7M>4aOb^RByAOY<*)n`A#!kzDdn^KgG0$b8&wXMy`!4jJNV>nVw*zh|Qla9!zgG+mkv{7<6cSC|f4TD{gv*p9;A*=XFh=3V_{&VwAhEA~)jvl3VUEp2XDKy1$0qtAjQi8oqOfYafsLqD4?iJU4 ztWMppWx0lo1|eyC$JCqyS0|4gofRhtuo5?a7O=HthONE;Cwz&RX1s51Q>0vI)`t%T zGSl-z;X=93L)F36O0nu4}e1h>lTk_=8dlGE6NcVae9O^ZIosx!McI_OB z^UfJhU6j^XUAn!5@K}bN$RiiA@m+=yK2q)Vzu8hU6eb;WGp2zVmv)Mr%Mv=}?9mHw zS7(5(cHX0tq3=qANOoQi`aTPDI1anO4)OXVa1CqKWQNHho28)*hF!zEPR|4mNCc-c z^AhAF!9TW>;SI%qipM|t?^ai!0G7Ul5*&0;ovC7lvC>t^jp!4EAFZQG%24eB?LsqA z>o8|q7W!r7mMt7hg&|xSEu(QHk%*}x2ukQ!?hh=~;l!g>Lz%oe4eF;?3TsIv*-QZ0 z&!FEJ(cQuhNs(1RQt0mnThp96O;s_n4GzAewz7vzPAFf#EH${-9*w)~lps&eF)xa> zi2MYXi#oZjc6t$&#qmY3JR+M-`;$&LhFWj;e*6uN7UT1wu2?aC@FaQ~(S-Pxy+4f^ z$retjlW7nz4(+Tn{5!3)3`n*;F zg3obs%$G=gJZ?`(ylZ-~6Ag`UXMz6-4h*S;4u#>?l|g~UaDSoa=$}GC_y--yOYvn3 zTrMZ7?!@~k!wMqPVcWr`o_`O$2tmYjzD`5xyp0ht#t|UQM*p8fzqG&v>7{BxIFz^0 zj9UUhqaq!IZ!dx&svsri1K&v^v_p*D{R9l=RjxaL(JXR#V6@Ju4Cp*Bek*ZXfMtsI zPFfU`U`oi^ui8c0v4hA^Iz56e_mN&W*_EmY+^%|u2nCyz*>XHTt}toF!3(_96geJi zu-Letojg%dYqt>UgHRFOb(|y!LCo~gQSCE1y@Q5CIe*!x*WhV^USk02hcjTV#K2_E ztBwlPvOq=Af0OQF>$FY&8J_9H0A-5}=K3SE=L*!GtSiBIVK2M-TYQcs1<*VCk*KFv z0iLU1$lt^MRspNG9kMq$`{wJ^3(r-Cwl)9%!grS^zf5mv+RHLKw?QPh1w+v3BGMRP zmQGJYV##wJtHKH`eI!Q~T?1{sGth=P#iiVfpMYj2AlhPQ0xZ+ZcihB3*>>iQ?&I_G z?N)G<;EAE4`I!G%-R7>o8wx^Z5}eidaU^IXiHm^yiV`@B^2#2sO#Y|^;6FNA(4wX6 zBWoGtJsZ3iFD;hg4on{DxgxVfKyM z1@(75xJ7D})?ZXK{F4j*vkhoY{%OY6t4uyMzcDMYzG3P&lXv zxTQSZ{Y5V}-rufO{#BBKdoTAs-BiSZyBKCm6p>*EKeu2YW5tPxsseY5t=ZSP_C)*l zWh+2G<*nOwv9>%Gb`IP=_^y+Kcan&9)YD|;fbrYlOc1*z_MW{7vB-SQ#140D$~)sWb|AdU^0d^u`g+kmuFDvf+TdswhE0h2cWn z%D+d#)BPN*^f^i2Sx%$xE1`7~C-h(8PoN@w&V%?@Lp-6x9D)L;F#9y+O+>UB$d1bI zcR)q-=QPPmLnMGW#c5$GZMO^2rL<)m!k69vAA#4?ktfJV_I|j~#W7N7=srQ&2(mv~ z1@sS&JU$<4Vz0%zOCmZaG`f5p1P@e0kv$@?bMM{qWv$ES;*a9^A@6DG@|dqD*#01i zWtR89Q}0Bot;20-`WJWg%S-*h*!defaszvl)rrZJD1Z-$g3^#Y=H&?Oi5QgzL?nlw zg&MpCVy-6B1v3BQ$nsLx^i0^;y6ME!0x2D}lRA7DN_}#u47RJ?b`|{!39jZ@Hm}A$ z+B}XBH($?anh*pa%qcpS()WjC?t7?Cz*F*{Zu3(rcgi7a;a}G3pTKN020POIiM~KtLfbAcZvn(UtgWxZzcryr5(y?cpXTj9gBAX$9M%rGt@#c7~A3FF4 zU49ihG*bCRSD`rlj(dPQ2q>^NliYWGkxlFRIv2!ONPD$+R-LO?5w$RmtcTW4OrBKc zZo<@XVcp#Pdm)?GD}t%s0JH9=b7A+FGBT?yk>PUQ-#ukYpUr1C4sZ4|2FPCR1cXmi z70po75tO7?W8MwxeUB9HR2qK@?+M|27|KfN{~2b?lhz$;KuyPBkp~fUSSSDiVQ>N3 zbPGQL`_aC+co;NcR5(y>WGj)fpLhu9MZV|`$x+vCX-4JC#4BJC@d8)O3>fQj)(|g__x7bubBU{Jju27bTXMddfX= ztu`WYETtJ6;VaZfJ43ju9~PPu1ADf*lZZBnDkyj6-0^Zg3-gZ=@Okl@jXdTMgaY@> z-w@V)?eF1}qOZmu!Gjru*t{#`Y*Cru6;(gsKQ)eM({``>IFkcQfA!;9r#2J<*VASs z?lS=Q%eL`*_fxChwK;&x@Ot`i8)39;!&^~>v9QlisTa|7xx^pZkC5`Ddg0Hfnh1jjRvHjW-soOI`EN;)@Pd@GZW%qR#%^ViJdMhdXo_GgsqrC`4#h?!mtX z`{}%=h0yumQB;CI#dlIM#D=?YORBL3Q@iwG?+?mE3U|YmCahB!!)#~c?&)|thUJqz zXe1TJ9a(w+VYP${KZ0FEIL2f9*iXOFlnIktUO6xMkJ8i?$9&FqAsBW-Jc~%4*PLp6 z-Rs2k9nq1U_`LmGkk}EWZ*vXDA9re)ARMV#G3`!q4raXBQX%t8sbGUr0Tz+8Ts?Cp z9&Y~qt+}zOMtuFC$#a0fD4*;un)axy-fcY-b^CT zB^8KD@Hx8lGRsE`IMWf(UFbIPFkYU6`F8E{E@QqBPoCJ8Yb0i9D#((=7ok*s=drN{ z#Ig-WL>;>ePBj-W&FB;woRuVMaPn?J@ua&)llb^yiT%{7>RGvr!UfuF=GFdqVl38X){uAGLG7}vU zL-H2z_by?9yHTffj#Rfo=Z7rG0rV9F^XDXR6)(SoEsV{-g7dzpicpJ|$M3FvBluFe zXi?n3VLeId)EJb#E9&V$hA4v1LF`MoMC2kPC5?Ix=;PH#dJA(^jp8%qrfgvXH8g5GXQIHqy;Hr;MbKPFfm3|3pjZIYAk&k*xDFmJu<~Px8Tuf^&jr3Os4k zVkJE$cuGqYP*+AC$2E;b&H1N$e$sE;({2U5rL?3!L5q&#S6z6KN}HU_S5RRAqKMJ6Q#BB4o->Ma{ z3!}Ux&G8mIF_@EtBGlXWt-uMLmDF%z(zEJ4?Y)Kn^@R^L-KmzX5kpF8?#)`Aihnf} zyBl<$U@Jn`F%-ha+sFMuSWDh)`HB4o@uGsDyrVZbdwd2bY4!;DoFhlp87l^x@x0BT zLzBLQ?cAi+GpF=gSHWC+UMhWQ>iG0y9te8)T~0FaOHdV1lsg!3KV%+P}A64{5j9TSqF7q+E;Xz{c3Vz01w zm!I<}2R6fyV=hQf(SnOJoELiEg|N(A@gE*gYY`3MG9u2X6am0!lOanJ6@dCF3T!4h zcK^@5B@r|6(UFFRS5v+9C-hEUOhH_>WkLRGI;Sb4^wc~Bjr>mMlqBfG!AeN-*(EaS z)_JEJEZ)hyIiL2%0#48rCxEmSeuE3-@hUopVK5x}jZf9wq| zBitlA4i+;6USstSk$2-7yM^CPV2e4NFvp^Tl<4X#-zL#K!;15VOt{gGQZMF4Nr~Pb z0ybGjWO*IoyL`?N9ngeo{Dzf&;bv0cj^*_cT$6k7HNn_I`RDp7A%ozw$mqV;-va50 zn;7E;b~r+g`WXQT?U(&g@+17fjRFTi(w(sFfh%+%;gr6v*uIlIlqnP;11?}Lq)oj( z6F`Cw538>VZcz72E!Gp?`X<}nm%S(M3jAWqle|WI9(;1#x8@G1Ybd%=@s*Pu$g?La zlRJPg_p1OX@{Grf2PO4{+URb>ND8}tqlwI>oFIRJM{}qRh~@t7fc;CCDTaYw(>9(u zb;r}*Z@fs2V6`}&ii#g}*$7mw8^tQ^u=DLkni*Mm@*TeoD8%h^MS!!p(T_L3QDO@! z+MSh28m@$p+@f!b;0KX{0vu(Z=1n&ABm%DP(OX9eg%ee0me|Z`{m3Bc8~b6Cz3s$2 zG=Ow=q2nj%uGN5{0~w|p2EzIl`PoD}GyEWbygO}Mfx980@YNH|saaE=?st|!NN)Zy z{G?8%k#0t$z}GXyPlylH;LJW3INsZ-K~@LjKL=9+)3}-aADZI|EB5<$%bE>TEl8@3 z=l3#u403;C3YCBO!naHy@vuRQ88J@?lB0B+0W9GV(Vnf*2)_Nn`4U>$Ek1z)d&N+H z_mDEQV+>9>TCzE^OSUD&cyk++ueb#9ZvVh@raSf)IhL4|#3d{tKf8L0tbPSUEirLW zz8|R-NIYwTczB(^AbQrA5U@Jf$e@M(fWif@!hVGKMGI)Jd{S(xG= z^s5Nw+dUQZk6EF6$a&W}Gl0DObH2y^cS!2r*Iz}yy~f;H`;^+iu)$pa5DwmcF(SDt zn_4-Op(1SloC(At({8Y6=KSi6-`~7K?}Pa;h!g>}By5DSD2@ncghbB`8!Pb0Ig?q; z4}#mr=c)}hf#!zCrKOQ*R6ZiK+(}ZMA%*h>1>M4Du~spv*$U-CNX&)Mb!eKBK5KbN z6HH=7{bI+zJ(}YLk2{e*>W<*p)kHF=@8j$~h0;zH^$4fP*=GrzmuQPob!l(&wb+cB zi*twC<*4!N(}*^TkictB7SXX{KVotX zPMD+3gUnWAh~rvw$3d%x?*>yZR@Ki>Xczxx;l^?DzKjqEnn!N2sXk3mKRKiukcal^ zKW}-o+0?->BJE#bK?{y-kxxN2hqRccb$Cd?fs>c3`%;YttqK&>EapBD|(Bb24ekwqGjSg3;0TQF2PS0x{y$V|>sFOnP9KQ@W&nRaR?zOdUiaq6^OJ5@y99(M?n z=+c`yg+LhOe}~Hqzvs95YcjM9%D)QWWaYSOs zGC*51z17qL3H3|$((W8wr%FH;a=V>sJ=+*OFBDl{9Z&nNuLyKurR`RG+Vx+5wtVmX0b||xU!gOMCg$_S z+MvK=u893{YmiWNfz+LRsSlwjv4aO_n`wWl*My%hjep5;xYMws?u!6g{#J-x1G`VZ z5aEd2Ogt>$L>Np4g9k{mONXLN`V`s*Yg6XrpUBZ)G%*RVcbrIzJAN>aO;veNm%$0}sehJhz6U$$)KgUDMfSYgvOgYjch8Tng+ z|N2KsEXNC<6NHIc{r)$_u!+g{$@Gk5O@>2xa>q&rvb5Lnbq>1f)Gkq8X`hX0>;}ptQQ(}P zq;Md>Mg)N@r4Z7c=n!)lWeUlD&TAb$T)Cb~NyH6PrqkGY8T2Lk7Jr#IKczJX zWwKMl0d6)YW8G)Oet7I4=*99QSYxfEieP$mG zu$b6Y{jBcX6)270XFTk&AIuTy80-k8{~;Hzl$JLlJPr}zBcxLhbpZI4IGn@Z`@mqu4G~AJA!Wlz2VexjbC19Z7w6r6 zE~IV568RZ*4Y&qu`bdON(jOg=!MKNd-R!B$Vp?!1tI8-@@&CMvMn>Rcq;|IKLfeCB zb~zYzUGd!z$iaD{$PLBqq{`WB{K`?eBQ!O=JGQL#sNxxfBY2nt_{2x@#5BP~*noZZ z!y8+?O*+GY=7yl6h-ba&7Bdd`Dhda4c(`3$jY`X4N;Wd65A*>3DwCwo873{=FakPf zH1f)pID@S@dHh);N+G&pHB?}u8FVmi=_SmiA{w)p(I_5!Dbwu8i@&-^ptSQc-rRL_ zi_|=6IxA^3kJYYTjZM&ond^kd7MrW`%)P~PVA9F`CG#P}P~@g)Ey(lI=H|d&bBleV zwN*Kdl4KHIZ>^jg9qfJt2tE?O#3uVZk2S~z@e8z^Y`whC*!ubHOCN~f8E`p=G$uPY zH!g-h^)h;7w7=IV39|kI3L6B3tb(Y(a)w*#@~|uM?t@5oi`E$2;J=M|IJWELz${D7 zL`s|y)Ysi!c%TKX?0+GDCQ12~#FE6qKFAEdobRv|#~<lfv1cy z)pnxB$wejoH6~q{!@5_7smz9{<<=}y;qCzvak|uSQ_d3&y(Da!)nj+Icq}Vt55aPo zTP96epzpy57Fasq!%jBf;oYHC4?<<0t>yPfq7VCc*t^6+gQ9nUL_RBG_v+;rNXAeq z6N+BDx-;SdD#EgPU41f1)+A(0hK{GF9iM;8;gNa4 z!87gb2oGiol9Kk_iu}xn4vRv_YQHfcRRww>ZlSH0kN}pn@-vg|{N20oEPfzj)NmT*TX|Opg`DfmSGaZ`Dx`UnBwPDx zTEROmb^1g~zgq^QG9UY(k5ME_7Q)4Uvq%VqM(VQ%NbpMI5r{9I5e_rBg{Zmt z^L&gV(p1Q~Wcuy#vxmxH07!3#2-t_#!ZMe4pLtan60h;`{2S0uz9Dbz>&Ilpk}f3K zJN3wzTFhk~bSpiWcr zM8En}36&P~0QN7b#S{x$YuLXkc`~e~YIH_{?u?8qs>58rIFEHB;1bEz@`R(<23tuh zBHC7!0_Nej1a)iCGw=OlG^JBQHe8BS>+VU_zJ_=K#X`7yRCA5BYgox2shnF?a32X? z2ldRr7X?sYP=c=rJ$$ZtoDceDALs6TvJwe`Gs5fXmml}zs@?%AI*HK0sV?Wrh#gln z&;M0}$M^L3|2>*qENcBun6I|~^ya1E@DLbi1!mX#jDqOWq*RrSVdBSl6h7=c|J%OG zzz-6FB#x*_0-gZFKOYt0(~kQ(_1`XB)Lty>}jg^dDv-6qV@7eb>W%Ow)=$0ZWo)s`v- z{XK?Yk<5?%aF^nk?=$_?yG)&v+iNm0j0s*xn^XJ*RJyd(e}U#ci)6fn?1c>-R>$Xkj#Ld`=zR0yfbEi# z6P6({?OdV>#`=ava~A?0r2RrnSd=FhG8G>eT$ib2as3k)Ayb&z%Pm|15P^_;}DjUb{ zH(BJ2eJ9(j7G|h1HO*zLi!;Y3>X!hXUD7CD|WJF4`!)i3d`5%B~Vnfbl zYGZK6q0{mV^dmUL$O@Z=tdp!$LWBcExkp?*!u2!lM#`6B9|;BZQzuuf20k^`zGb|D zIN>LHTzRqw;H)tTj3Q~H$p>;z*wmu}WLx{g9b=$a7+_L%G)Q-_xjI1BB~+NvQCG$J zJ8@jM;A+F<7bv&48BM&kdH&BXY980_rL&ZuW=e2F89Uxt4B3-7XDEL>C{c!Srtt?& zZVedz z4}Xq>Zgi=ZsCA9d(Vmbnzl-2$GW%@PP@<$e_^4qXn*%YSD`$vN1e^RMeR7m8Bu?Yo zM#ZtUY_rghm}*g`)~q9f4^^lIAP>BtZDrh75`E4o8lI#Ba&tH z(5gB~vhUH(qfGL8m+$A*B2&z-5I4=!#x&%g zemwv1e{>^iWeRhGEnUOEestksyKmu?@@XB(Sg0cMVVgmWB-3Gq z@$f9_KWHSI4*y9%teW%>zL60=E26>HF7!i{g^(2nzywOy4~Em@tl!r@n}F*PCxLbW zz$O&&@0*^m?L7jp%bTlZS#u+LjJA{OJ3T1?J6g6-r3jO^S5%Z9#4<`*t}J-tF@rZ7 zQ9mq7CFgKYa0-0o(XeBKcGM`zB)0_;n;81npQ*g!iq3{hq10PVK71~4M6}a1 z$-`81qKF>oRu*QsnS-0qg8y#n5;(&Q`9i=pstRBT0e#0I$1~$Y%bXwYY!jNl-~uhs z0?92_J(Mq75a@h%*kRMkD|?fp%0?F)J9ELrcaspYPz$&kvP8U=MZ!^YTg`rI$!Vv#`extDAjg>)x zzh5B3{LT?*tzYxuXpxuc0Dl&%9eEJ$NfXqK;9RN;q7`Z~3`7wRsC^Pb1;YoXc@n9a zm(KJ%VcOq-W@mB-g&b_SEAp8iV*N%_8mengxMwu><{{VIJ;OG+NJ~VWCO$Hxk7{SJ zNZDH3Ie#v!{6mdrT1x^HKL23U_+U~<#&b`Y$5Zk<V%MXxa{+yHah8FIidRK-NG0HFua(i|2@n7}W7V?B4h$h;W6EU{_7hnah`=&I zyhVOD@~|r03cYyQCz;)|v9QA!ev)QjU#y9DX5M_=EN=8$w25gl z{kMSM>8&rj_tO?7R9Hmn`am-$U~R{P0iljIdHCn z2mbZ>pgN2!24P6j1Vni}OqaLY6rLR3ut%Uq$~lTMea;SWTux+;=|8x_|AZ(?I-Mxv z6G{{LTNvZ1TH#!d$$Q2FsDK%$tbvoF;Uh0KRVp(8{|)|~>?E`7SayLoC&6&BlD{Yj ztVjh%{(-zrE!#tOVszsNPS{TlZiD$Sy(f;a>c2-zAEZ(}l|CmDnSFvdPAIyOriRng zuvUD7pb)I;FJmKPT9NgdmZRu-V^a~nh>QCY-`UuZ z@_mB+10P$CTVC3&T+0j{_(M$z-Rh*5ISjJu^b+mN34#Ua?h+JXfte-2B8t zW5Rl!|BP8~=YQ&R>a~&KG>WqJeB!2SxWGHB9CgDxD^@BRNa((amrcBSnRWa9@#HtV zp6i17216tJ)xMJ71OAtobU|e_`}HH3%4e_raJ7J%Kj@)RhgNcYzQjLis|ZmG^Cz(~ zLW8mj00rIyAih(lceR1SZHY?QA#W7vjkE2big*}?IlgJN4xTwZJkf`V z=%6LLcKrvRm&IRdd1LbU)Hs0#P?61xB8RLl3dxA8ROGaJR^lXyWj411$%Ej-DMbuU^vr`$V@hOvD(RH|Jq@YYLTGVA6kHa01fspq1wdYGJo;=9Hf3vFr~xJM2+md zb4MKMO^7MP+YtN_5kL~~W(;aH+7s)wfZ8TpXTx-LN=+&9o$9D_Cyvb>-T{t6RAUV@ zydskXIhgAx;7xahXea$ks^>KDlZx#r)_?{Z=^&<%bY>o@KwS(%Mf;2AS4hkKPWn%E zL&NMOiV3om?rm*w^m@F-5(&G9Fd#-KESW|7-PYF$wl_xtX6o}UhwMC%MSJZjVFX-6 zd##|(L`&3ww^&q;D&+_czl?zwRjG)`A$__?qRq*9yWyGYK0vT?8Jq57obz=mWxsBCisDe)ovb9) zcg6;+#1fXz^c4rAcT4wA;5S@bseQd~2%dqqn^E;G@5tcZbQlO#?JLN4IWSz_i&Ovo z^kF{nbQpQ`nv4R3{fBDY>tVqJ9$Fz}0;&Th#B%dvX9pf`dNbl7xqDdFrG-3C{0?z! z7x;q}#T&{4luHh_AAd`f!I&LC_1XXWa4y*IF4zwl-XDEsWo09f-P@S|wB@qv8^XM3 zR(JkCOz?r{^oY=R#bwS4Zonz)lKeSXbUQ}k^Dl9ooLjoG+fCqP04$Ir7oxy~M1}Z{ zLyL&N198G+j}{IUg(|_h5}V6;Oj5jz4vPXvY<0)EP_6L!EV`=QaJ=wP72$EFqP0C$Ta`BhVx5=spNz18R97r9@rn9WJM&PM?DW7kNR5Qv|W# z2)G`a%qMydR8SNxr)VVAe92No!`@qQ=zB9?ze1Ar`m`II+C9 z9cGQ#ly`S%_}c7BAO?3RXz(zZ9F!L=>e-O`X&{Zk&uH8>Gs8}QpN zpmW+@N}XX4k|v)15f)Olhz_cx?l3};36IfW0}k8Y)|g@QD6_|NqTc_>P2+{PHv=0c zI!=oP;J@XNm5QPzo5~MK47zYc<(=)dtKpwlo#~fp)?^S-;2X3YzHGwp>;xmH^_maA z7sdNN*wU0MY*@(0{HkU6$u7dwMA6HY1dKhFZHI_ou;7ldOyPcu_#kJz^jQdZ=VVEy znwj`GAb1yT5>1wUW1RvZ){<1#y}!O8?rrZv4$N6?xNCIrA!iITZoz34vP?42f9CWj zt{Fk)&R0X7W)GgN=~#wQ#X_s+QTFr3!GV8=HcCc}Ke9r_if(r`hY}8w$kKs?cRlRB zIHJ${N=PU4H}(g`g+Z5NVqzK2lOGfZ&+&DQ%;rwUUx$RyiaPvP5Qo#K5r`w;ij?Ig znbR)dn4>9i8bhlgU|5Hl#tFjS+4p}xY{>V+3HmwBe7_Qm^o`o-Y$ted0eV6Kd0zZ@ z;J*R@Z@vhfq6^tJe=v%6(XK@``r^WbF7B9%1%&%%FOeXlT_OeXuLY41if!FW%+*|t ze@)KYyqo#H^K4oclF?Q`HU$Z(9k>^Iu5Y^Jy%vU z0yb%=6cmlA)23xQ)&0fhY;s)g=*wnw--OT<^) zjV9<3lK2k~KobRa76jViYl9z)glz!v#2HBsu@D&K2?{y)M#l76)Q-mI_TnodnY@!Z z>$jhGplaEgJi3kHywGfb)It89V%PB0AkYtio`z1e$2^l<-HsRQnU|f$L^fU?PqAS3 zXukT@t-G!0?6QK|Wgo4a5S*+?u8~)F_QY z)Dtie6b((C%y%-f7=AbOn;&&OW)w{EQ#KDhjE4y4QbH?O@a_yT{TuzAWcngDl^t!q zGSd41WPn21z~`;$jNQHSG@(J$J^kO9n#IO1pE^Ba9S}9AB?F?qb-6RaFhzJq>Ee|3{ z6x6(A7Z!B3W3q-kZ|UdxgnUMP+S`l$P1pneT+mSgY;Mn+Z4_;ljkrUP=lR+w@SQm6 z6kHhi>{8v=p~&SPL3`D>?x$YG#h)9>;HS`l&|tel+F-onPti`UGX`4VTlE|>lm6m- zw-FrN{`%OCW%zQD+)eprq`5qo~keh-y};dfOHayBO&*7+0bno4JPb zZaERtWH=~lXNh{TBR>F^Iereo#K^7sLK5>$tly8LgU@oQi4d24rpL!nc{vA9c@;fKmxUTf`+1p=uJliB$I@dTN#+JNo<}tpyF*MF8 z$2f@kD$E8AV$gzCtE)Egf=t){_M+KJawx-+3AW*S4kyS0n|VJkot1Ihm`d>A#zkiE zvEeqx348eD%-JeeQhI37`*28&Xdk?Fg@457MiHK0?D-HyT1a0og^Y^eIgcqyC`@3A z65^?&ZlRW4Ucg;G5o^MeMiV(O9#KGV@|8V$f%>CIM$sh(3P7dEH31PyEpe5iVPEL9 z+lfSAv~XC`T_Yo2>_SI(3%V$_^gy*IFR#f}wsBauUs z4D-`g?LX7>o2G$dT#$P)@O9SihOb&^WHtSmkP)Zw#RUJ5of+KhpaVwQ;$KHx)(v5e zl=IA9UNmT*#%8gO2^}4Md+k2n?&aB*Dxl+;SG$4(hmaTxK;CKh`tfQ{UNT*~ca@OQ z^kb# zB{dk05fcPf{%qMvRuA%ySB3M9NYy;ax*xLa`42pcV+VN=xJF z*&ClP3zwcsau6=d_pSTn+9>gz2?#{C{!WN1NM*=YQ%G|q9ZE+;vNTc?>c<15l}`vg zIae5v9Ane<$Cz~mfAz@fk;juQF(wS?Tr%>Aw?8;d?pBzK3ZnEyOPm0H<42^J87av? zrN7Jb*iV^ul4;tv{0&8U*_Mjv>x6BUrFS7-KU6|hho?Vyk}+~q#Jimw${GL7wF)l! zfQk1NXgk=v8OH29e%XyB#&RyKn#3pfS35hj;pPv_5o*6_lS-$MgW%3QP-<{pVt=z> z5lqywj*v@qnB- z*GU9mqCbr*>JMR|CT7_lGG9vutVUhGy$O&^gbD83adG`M7A@ni?upd9;M}6W|F+ZY z)*0FjmQ}5P=k{!}C5s^Riz&NVn>mRM0Cq19V-*A3N%R)%b`ps|z4NrP#j@yggpUQN zgfF9^@0?&+Bj}iz2bRe~r!A_-Je@%42i(qQEW^*4xgMS#4av;H$0V$COo#{)lfA~saXqJSwaV- zVQDzWlzG#GEzA3+Jzn+rorcZyF~T-AaBi}0Y`wsii=)`y-JsJVB+8g6VfvIG7+S%U zKU*WK6F`}oe_H=OCssK|){7%}3u>yiI?S<02Tw#9QD6i_f*XY9T>(poF^wefmH6p& z{Q1vU#_b88PgCge^LKvQZ`uXgZy1^Z7`x>!G>IDgD4m8mjbEPbH|i^W%4dDWPCdqk z0QPamqBxu9LUFHwj{Ss|tY~K+o0%(HKCMUp4kg(!a-&y@^P31aNKlH){@$k^IPz%M z&K0p<`S95v(&?wm@zo#Y1y%eA{Ud3>#|)C{gIZ*(mn|i{TySp(s)5)`!6vwpKD@E_ zy|$43F@E8%9;ExDD+L8s9g*C^LYgI#&hZHpD{vKP`%Z5Z4Cb-r^UQjZtnwVr*1*?orr_7rvJ zy#QV87Y)~&(Dm02mW;WD3Af*iecVX&iyUFsa!To*)`A|sx`(T+A_()`WEE+^R3nUX zp9SJgfE8R#2PLKOh^K9jw)LIG#;f{IM;2mUpB6Jl-pc^Nu4@j-$J<{`kRyLNESD2F z<A^Gs8^w{vyEKI7Bj`>;+ zgK7B#G&6_k8Z*y7YbTKlZh~Eplzn_QUX@9*(oX7wr(1ql4z;B7@Rmpt2v;ORrLnB0 zQ?F3j9*(t}sLdBFJORJHc^|FNY%pl1CP%UE`(VHQ^-}AfCa^+`cyLE?=8^^D}1)Cwk?C1bMu+BZ*502yCJBYLTFH8$slJUyITd*h$$7YlwpZHal2q}ij68vZJH3xMg zEPxS-&^L8i#61aJeAO*@m>o9D>&Qzb$QwtCZ20oE7D`pU z&ykRbPs5Iq1z_{Or!T-Q=&yHvS$6@(T{T=Ag>t6&!o|$Y*$tLD0JKF#R%M_&A5iXu^zXCVbOt z?M_4eW|Jy6f;b$f+s%vxfPN3b`|Y0c4hqKJ6*$8dCe3z2J1I_T(_<{LdtAT}MRI9knG#DN}k2~vY?Ai;GjR=paO|u{c;Kw^O;Sr%^`g`>q)eK(Ed3- zv7dM=_j6b{2*G_BZOrxg4}&Pq&Cx<0H=oZohZ9ST8`4;Yg@CnZ9B_SG>>w%-joYVj z*Px=jb{+c16iE<=0g94=@F^5d5Q_l^mnMcL7;C$C^zAl2ax55+in`B<;D8zQ16fb2 zFMuG=3WS;vZDNZ2iB9kSbGib6pt0It9ff}L#Hf;jtk}FW&k0l2qG(jb3@BAA?oB*^ zTmW6_R2V1rf-9jYJz+jJkGvMn?)@}`Qp7kOm> zqkwz{!kr9J@`m?aHzg*P=v@wcC9F+5yNN~zF^rCugPCBS_zfnrH}un>jOM#Jzvnso zlcwDrv;oRO^I%>(46nL@AN2j5k*XU`vsqj#{DZPRvKKUa7+1j|K_kD_MRU)X&-nMDX_LXO>VPhO1t&S&=Sg| zDR!lfnrlB)_oT3lSbms6k#iI=B0xHKsnm{S-T(l$t{R;oyUXFTjSgnnsDJ(fzng#uB1uP%WGV;& zjWIYFJF>hB0BA4PChT|a9 z2A}U1pFQxo3JN~0*e-~}Amf!Ur{>D%0d;0|&z{t4|LKfyi_huxS5Tp+7C@%L)>6io zh5+x3DOyRjaF|83*8iS^Beaz`dqO^6gcZLh>f;4Iz!TPQbgrYB|0v)UMaG}}EoHw) z2@)$HQ4K=+hV2poZ}$hSynmtRb4f|qRB>BjE4`JKC5wgj52?WtX9<^yLH*3!M`at( z{&7Pj=S0A6BFf@Z-q#6(4hw8uCl1+rMZ9^r!yhaN34tjnie>=*PDCGc2PLn?sj~;o zuI#6Q>^-;LA%mM5@0lgj`LdPpOK1DvVx48LDTIyZy=2{eqBqs{&)0L|!4_KQfT`rR ztDg&8`~@?;Y{Uyq%;?K5SS?(R*^vW#Mgdt^aC&{`!V{r7_p&LMPKB&ZV}0nuX#tM{P9y5XMq1vFwB*&@2*-x_V#Y1T(o)*1o3ay(~$JuO+unEiKDv(>r_ zMDxf&Qg~$#Z_tPW5g0NV!{CIY>E6atmJ-DN(#59dpQv|s*z098a*a`44@l=N4lDqV zv^KtDdK}Cd?IvDDsSSULhJGegLD(`Um@mZp6{L2NxmqW^^!?xI5;S05>sjTEwwWXt z0ozY1WRU$Q=>zZ+H~RSyuhvO{sg834D56^==v%Vg{yJQ1 zdwY$EWWBc#L5erhMJJSU?vFT%27T^;oFnaEllTB*pi#PP{pVt`PhZ@DQKPE%lK z{DH6$1}mMh9(2#o|aXLCnW6X5o<(fA6Fy%Mt)-R*16%V?F9B6fK`cSnS)I*)qpw zz6z9SQZe3M2t{Zwk!#{QyYXLB=E*`WJY<0O<|v*&UFpe)hkQw)2>r;6+)%2b#Nd|m zT=!+fO!oH<46umx9K7O0q4@Kz8hgk`iQKO4Q2nkS)gUq|)or>^|NLI%@i6#1Wjpq( zH7(BF!WGccFFP#C*So%M*!iX7?~$q74+s{8IeFJ%zK(I$*ex5N)_VKPVS8Qt-9K*9 zBHPC`C0^vsqc=OuMTG9-BVxRs_1GmV#%IcnHPWF-Q&^=1;zrH?G@c?0#>Gi~pHEea z4@8B7l10l+d@oQ6ptd+fz(7d-u0@F>MVJ%H1cH>|;Pd^J(FjwT8s_58=Df+l| z_c0A46Kxmi1d!xbQO$<1^wM>t*PNd-5w%gW?qP(ayUj$ukIP~{0UhBu$i)Z)^Ldhq{42!~I z|H+DR-v}St*??py(%1nsboIUDAKoq@P6c1Vk?+CIYYrp*SKh3G*Tpb z58vL;(*{6(DO>m4uKD?CwYWPNj85uA|D>xQ09Vmb%4w9Svvkz+tljnUbuoyZqhxa3 z!Fqkx?Ja`dTW9Hw#6_pI0Apge1>T_ZZ*)LhHF_h{Gf&fr;Ob(Fx#M4GdnnsdU@pPo zYwI?H(QRdeJiW=u9M{H9cw=C}l>14}&~-D@tNT<`ZSSUqK%viX4T@#&<27OenTN*> zj1?Mm%_@5xcSC;*#&#F36oM2uz$cUgp7ERCz{;F` zW55hLXoXsp^t6Lg<8o&teUjJ7lxqs)VcI|JUD2e8XXAfza)J)P8ZQtwtu%dU;i&Vl zChp=s?_XbUq~!sX^$G{(uk!!AmjVQjP;Sp1Q-akw5st3WJg2|eP#jG5D`(ge8vDC; zr)iGgPu*nhRR7Z4j>X1ydM}{|+{@dIZV+4t2dboFr~tjab+mlo+*MUHumk;xJP2mon8hgzxKI4MAYZWp#IPV`Z+zqoN((A!8rDQ9*K5i~ppzN-ZA4bwiw zjYEs&x;t&`2WA-Al>NPbQ8uV45_2n~K5B=ItM{j0iG5tf@IIP85@kMIG2R7`ZpOm7 zph65_AM`oboU4Nfn03&rv5?K3Z~mhe==ARxT^Z1$`1 z84k2_XAm>ZOF^n(gCw<%&}H z86o)v_*4P;G=z$li;pWe)ec+I_2<)tqC9%e6H*)F5?GmaytV5K|31FOSna4trX-sE z$U2BTxij#34JOxc-s2u4+MalqzdLRO1fWoGkBseAtN;SiyUy~K%-Ru0TWg|vzDtou z@DrgTd?tTt+8y#Izf%jG>Os-CItUwxIrB=bWWQ>GqaBN8U^D(@N96j|aZ0B6x3#eP zO>}UtzcKtPE|?`9`*%}ozA%@prJS?8Of#^Rap(}4CmvYeD2`a|iV+^yPQM6(K?3&f z{}g56hEMN*XqM{`tisNI(3GOk*B|MF7ci64MQ_Z1id%+N5Ui=vZM@qI@4lWhWZ!6U z*lxKTMPv7z2*2>3iZ-_WRu)?xy?L_4dVwj5=ry$|!q4c2H7e8nMjOO*rDA1Q7SLHx zPZ2;YqVL2pvgQB?KS$9Jvd74UoW6e&hjh`xgWlPqTk-zYZ9klYR#~geoUDgjeKI?? z>J1$&ld^&>;n{dMKllUy_7TNBKMmPu1 zN(sIM`ZrEq?wQC4=4}bRi|7dL5UPie?ouvf?j`vvzPT44Sa(i%r`uq&AQ?V(QG;Lx z+ZmVPFk`|8!kpW`Vy~BC-7=yVI4eu{JACaPaXM)WCZ+rrX2iGIQAhKEV^JL#q^5!X z!4#+xx(${xHXyG9;Q&l$#%^&1(s%=G+;fjS zLZ9jXX76zWPZ?be3JuzSL<&N*lw;R%1YDzXmP#v5%@kUoRtf|gvoWYG{{Jan>k9vs z*RkECdRrQ_vyOdn^idxlpRf5Yhb4kxk+d{gGW}zWw#XA3{Wz%t$j-<6Z>-^YOc0DN z)&b*}5iWeTwC>NgWdoa@qCxKpLWWvJ1cxdkc6I#c?3zVPFhO~XBb{KhseMBW-{D3e zwc{Hq&~bwJx+y6;7p%0G{o8CwKHS>XsV2azzlmd)X^n*g5()PkJE%c#c|DMkZ?L{^ zyy)i&)*;9WQ5jW3@&FX8W}M9IL={P9x+w#qTIIS@IfhcM^_eq*6U zZ0c_xOZ2^Q)8oIHH@)pl4TsUubN?cmD|~9NZ2TRx*B{qjefiJ-;9V+iI%t<>g-%rn zTMA$kgNgz_Vyvrix(x3tssNm&QFKx!65iovpw94axc?-V)f+>aR&=8r?3DBUj+x;! zUtNSz@xjSH4N%7k%ynS}wa%*)9@8lPJq}Y2;sZJe;ek?GK-Z@v5mfv-ji~1K1mJnF?834B+wFUdCWSo7{+CGaQM`!g1N2TT!4P z^{=8BJO$Q{($$y0hA(v9*QJJut-GU{WTX6B5d|%&DXbjogp9rnis}JPnJ`0{zbD!e zjHxe!4WjI0?solNcI{`iEdo!ycZIIy1^C#|=539jyz*NI&3v zYDA~$RIhZ|xvQjaf>2}Fj1C(J+)ZugzupQZ1LpdrF)F@Piz>`p*C^W=0&1*Qv}Ly! za-X(Nm<{j4j;>*ob0P2Za6^1nFQCN++QfVPQ8EdgJ!3QV&y@&`(tGJ^PX(^HcB?Jg zLGF|BS@^3kSZcX4epEmFa_!w${%bMzofd;7g$Pve8znTa4{mc$|EP=ejSt|koK)H& zANjGk4R^YFj3U0RvZ~T?(T>ue%;e&^a|A;Y`m{LL#`|vM% z^1c8TuU?H%!(bnVk(E9~X!#lF3HOg(8dUwSBeNy{?J%Xlx8ED9Qq=lxr3O5fh?See`>FtMT?-7_3YsSrO?}eT+~qwK z4u++1kDZ^+`wlyHHQOI%Hr8H_*WLj#BH7=g-3q|QfOi{aGq8nlS7MyQ(s$?~(BaQ= z!;U)DpZC2SL7a`FF+yHnrd|e+%PX(ys~Up=2Bv>zprhMnWxxX_(h<_4*jrO>-EeTrZA7$#D$3KK;t#n5~52 z2&ZU)Ubc4Gh2GFvL_W28c&?uAy%z_w`jmeN=M~0E4-ws|z0Zgke7i@9Jg{Bah zEyz;@?ks!l9S8T+dZ659l3`=L+gT`pGj*(IX+KXYztO^DL@9iNiS6;lqpJZ&(M~-L#uU z_D>J_=9qg+Fja_~nFXfxE^{AliszaE@h#g+?46!sCF?nUaEFn3_`VnM*~8NnqOR@B zc(O+zj$cGMPHBBACaAH<_^lNOg)K2_m{1FLj(*=L;Q9{~mX997`h78GEg9!5XndxZ z6CS&nM6hvOG{P#{3+&v8v|N|lWtwaBuVgY2_LE6`9*iG;PDvyLGj5325gB?r%-5KQ z+t@E!6$bLPoktqal&IGZ(sv8F1^FXUK>M&dzN`NF!|>kab5I{wCNl(C+bK%)ZGy*7 zz3@Qix66Ev`ER4hS{^*#R|+e}%!Touv&pLsORR`JZD0{0iLx8C@c#$hQelunk|*}B z8Jc_(Y{zCe#_uA+k}+37&Uw$_zAsKo5|=1M}w@l-1oR7 zl$4Z?T%us#b?sjV{mL~g(ofh=2t`1wrjLWfbQXGqt|225Z1!S$)}SLTMCq`*l2TDy z4{XsY+bP;q5#1bCmT^z!jHNCc?SX%H zQ&KH7fYS4l-zQx8O=Pe%%`qgP)Pb(%#hqCa)d{sF!EFF2QqIaEGqeTG)DC5Xi@SD_= zwe{W&v+M}YIBfe7kl&Al*UFlQFK1O+Sr^vj;8{%GC6A>qV-4fM>%(FQoD6B&P@%)u z9lIBL;j3|pkuWY+U8CNA5?PW*OQ$|qtaL*MQQKMIS<{#gTZYT5_QsImizD$h*G+H5 zqy`-bw(u0tJyeKn4l$oUM+KbMI{P5<19f&@m&P@`CtqL08+1=$`YnDmJ6d;2t-(pNO?q@9hrwQ<41uCz~|?{~8)*&5fsjZb_-@{j(d zl*+EV4*6H;{Iyu;1_)Ec3Fkvh)nE3rUzlKUWlg10qe72F^voaYy9Aa)u&4Rx--igc0=FjV@xpMjsa5SnGQ&v9U`ZJc6x#g^Rx%|5j`R{&`pI!~ zVZ+rTi4~8zn?kYYeRKfBWQVrK(!Xr%rIT3mKv*>!1GP|uXLa&e&&nIn#Dh~;D@EFB z@!(p#;HL^mTLV~}Qna8gTH;yVf5M5Wb6DJ5gKPnRU6JGWacpD&dt(uDlrX}~Fc42k zc;dsqJe~S~c{;PA56kB;Bd{s(TboEaFM^E|8?W~nf3kDyn&eedx~%77znmZmq$(4* zF4+R7Ee%VCsey>Hc+!iEEGOIeYk%Gf@oMLJTKIaU zrD;o|4s;B-B)NA|qm!en9r*7&qtrkQ@c6}phD~Y^J_jH)R=vPFLX`A97weyZ)-O=3 zuycMQ0AKbQ9S6(kYxv>I!NvLv4kwH1;w(ZK14vF0hf5wlCoYHSi5kjvj23>Rd3X#D z_+__70TWL)8$J&W!vqO4u(C8d%aHw;$!ZTEY<#*H>W1CEByTDnk72tRKr63E0OSI; zx?cwKNpSQtZ^NU;&Z>WbN?f7il1y5MnSQyf)KYxn0+mUfJ3kzPjbe8 z_s#of74~eoEavC&tvIXl-!40K{{wCfbXsY~igkcIG735gIc*BwCSC&&PvPf313iuR;*5v^F?>L~vI*Jz>e~}%q)@(HS&<%EoBHCP4TBXRD6Hp3f!%E&zcG(drvmlDW%mY%kTzHe z>DScMVDo1*m~DYQO5Si{iXu-;FU%?BlC|GEHd0ENRJ9KkyQxDG3CaMON6 z9Rx-?|1}-@Xn|Ijgy0Kv@&qfA=X=ADx>C5wKLqo(pdelGRyu|Oi)tbh_UvpLv6A5t z+z?q4@_-IA_;7>vcZFDUeb<6=QH28_z2t|uDZlVJl06c*!?QG_BJu3jKWWAq7++!9F9i(@|gae==Po@(~G!-&9Z(o15 zjk1bFf!`fT=PMW7?yda?Iqs|WVE?YIefwWL2t-l%2$Ai6r47Zh6wVh#geQ|Sdb17$ z{x+_aR2Z=Gaf;Fc!2di3wjN(4EPD1>T7B+c{BKa(h!7MMM6V#>aq%MNwF{(|n)tr) zo{mO978CRhJ``0J@dGvTM||4i91}tnYIgTr?_G}HN zC0Sk#T3A|0UC6A=+MQq6&%(5$^s1lHS09JRA(TEoTwPvJ|NYw`Y;DBJKlHV6Doe9c z7>~Hx#jKka0-D8@eJcD>zh!0zd!Qn3G?>6NnJa;`@Y}6&zqYX$&}#)%eo3Gvz8z~1 z%l<`x^)aJh+{#6b1)_yqZ{b|IC^CgKf{1~`@AFWX>sclVqK)APse$nNB9&qRD8#e? zwDta28U!ly#d>Q7G$J6-0FA9jyot6eb8V`c>_15PZq>jPwfqU06~5^=L~+ z8&za%wJdM(?$*OHFfGnXZU%z5i{wh%PQO%X)?BNEi_0Dl+>R3vt^yJ_-hKA7+U5tFU3)+x|Vu1?JZp*1f$?XW%A~`Ht_S(52tfM~)zwW<>p`E7g`Wu7a!J5w^$E`O{3d|;Y7(UrWk|^PTi&xi^Wo;(tz~;rf z+rv4fEbogCZ=uF2f4gb1GXSjqog~$WC@~Otay`nV8Az`Xr4*&wdYYHARP(i=O;oIk-=I~jgi z5&AJ_$q$a-4>!aS4qLd&AD5cVyPtmRXie!lkLf<{w*2)MFbsf%GmKw-}QAbhaQ_zu-66r*sa}2On zuoW#;LOnm>n&MN+$?;B71ma=Db#C z+CQ_Mf&|2hS>;gfOJ22-NPLX8R+-=5{`MmDz+dfVOlqkEmix;BV)skat>JcNHe;j< zeN_Z)XP~(IotcuxikV`^N?L##&&W1ti8@O$r19&!W7qMACWrRNY6_Ql!-GfD zRo2byT=uSon1_s8UPzGc40f=M@a^KnrVx$6%1|~DeL)U$Sc0H9cDGH)y190MYP9SM z3;m_Lq4UcHe|!1d{O;$NwQ~B^9ZBlhMdC?m2&Z4&)Z7x};zSi`C7EBhPnNo;isGCn zMm4oD@eI=uYN?Q3oy7sbCSK>b73w$;dpH<_p_k`2!hKGCRufnO{F!+t0 zcvs%=JDsB_V|+W_UO}}OvUyp<$fK*js?>1KRQTJq*q?oA4#V2#gr7@ze~~@d`*dY# zb+jl|#>ci~{tY8R*%eeG48;fX!48#VEP_DFh()skRUDNq`yNW`Hvu&-h%*JQZnRfs zQ|v$ADWjhMEGs0m!Lwmt&D5ftzC-i3GW}I}hMEx9m+-i`cEa4s`vKnkDcgBTZ|?l8 z(XHzViwj3l@))EiT{^KaQ^rls6tX&eK12bdg#?%eDj9hWYzq7gpS(Sud(IXHiD=$TmD@wXtDge z%y;1$%4dgYPh|Ke`z6U@wfiLQ^0J0unGhf?^dekQHB0a3U_Mc(8~-(~X{W69>NSSSAB_=;&W0N&$12og2_d8c1;J*24HJoGcbnhdOpid%e@@u* zNuH>&(u0qpCS2KI0sltR2~Gzu|AMH+nu1O?Ls|7`i{Kim6n?A5oCXn`&eS%=Y<->i z(QAUMVetIRnm~}vKf}XxE>Um2$EnF3Fc{wfV~`i)R@=3=wfvs2@(Y%rUWqOaypR6H z)nPySXUBCD<^da7IXvm|X!?}@R(9lq5$;X17SvH56#&!lv0c8LqFG7TS6!AEyrLF81(w|FtrCQ9jV z@(Bz6c;Y`F*r9`&H)u@JwOg%=Oj-lhj&*yUYE+*xiqoD1`@MUa3GT}phcLVX-g|Ai zlTE!IaPui*%~5+Ki4z&$njr!#l1~BR4c|mo>gnun>xvp{iyh*lK<1Bj`CfzsFfG;P zu=z1YZ4r!01kKqU?QwGrYoAJfJ0`vRo5sV_v+cu_WK36yTG>1>oY9dLpJRilfNh0L zFzQS4Jg`cmIx+;Veg|%WU&>P9VSfADFus73jRTLUztotUE5j*hh>+<>NGc)fyPk$c zaHN%QS?>}l$o@#gF7wXepA6u)Pp{Gy2;@>zeSYcjNYZ^w8e+b#@} zWD=JZJ2pk_T2o80>QoBH;gjb0q1rM6E)Zdip5^S=^dE{UUGI1h4*wCxwVAHf~~sg8Y#$CD|4%{RljI-j@Xm7vNW zzt6j5mpmw^5l6K%An+W$(tiQQK9K{C;iuPy4HG|FRkPXZK_BIScu)XF8yS3jl&@7KUu$%LQ5UucF^? z46oBDC%A4e_LgX;ut(NMOa+u7Q%3~D>1V|&Q+Q{eQ4X0)``q@+S`5_6U*m%w!C1d0 z_&`B7`?GKK?1J;Dn!?+^asPQDoN?)rZ_pEX12^2+_y^A4IpLc^DU_!k$r_!$<%>4N z^_e5TT|*dlq_#AIM>PjGK2{D=d*UmurD%BT|6Z)JAUdBPj+KI+3v;l#vOB7%>(24P zD8WmHz*qipI|2Mp?8^Lomb+w5WH2O2W0htP3v37KO3_GdYOU`e!Q|!+ok(9s833(^TG28+LIk-8TZz&Ot=fzP=L%bv!y&L4R|hRJ9(`bO*2p_ zd*T6_zpDF4n5m?Gz7|&a5zMO9B;rjN;~qwAp|UN=2fSrh@)BPiWGNQFb9^hgpGe+t z2>9fg1P8@Nm!mJ*lgpyvGCc6pd5u&zUjGz+6?*VuC|7YN+n}i75tDpCxz}#7PMU5M z?)k!7G>prHP$0?4?v_A%?T zwKoaPU2CfI&KYrK=9kKUujP z#`T_V{BO7+4)>H38Rfor#Sr=bni8{o6W}#8^pNr_ZgRl8E)?`!gd>URVDXK*PgGYd zOM`6nIHzb-hwb423@A>)bzb=U27(-zehyi}_ff3G>{?i?A#0YasF4g)>6Mfue$%F&7D`?Cpn@7%^9#@nw}}F zTn6;TW(aPiciB=^#rj#sf7WMKUTtO)@wO*dnpM4a9?0Q=5oE;7Xk(D2{lx&ws>?3y zcZSno=4Ib?Zk5_!C3=r4`K~^*{(RYF#agH1H*)qTS0k|C-O5;21>WhGPWIIda%9;6 z>!gZ14>Xfwujr$malsJ2)Ejw#+@Xm6wNGVScQ(Elmm9LFd{Kvh91()g`Cx{yc_DYr zzZALC%BVK{4mH`Jo$qaNfv{RwHQ}P;M`M;6;EVqEf@K|yhgaAw4h!giuUI39myWlt z%L)Cz-{GsnG-JIe2$92=3;R2nZIky?ft6t$IF;u6SgldB^%FUKa0=Kc-(BteswNx8ze5CrY{uJrCJyi&X{EffJOpA z7cix@J1#rFRhIUgVx5n&ez#u$bE!EErpcXW@~%vdXY=s*-`_`9?ZTwqx@7LJ5wj>+ zUkv#5como5yqXtDjUYSr5=eqo-nn_W^-cv}wCeo(oy8&()| znfZKv;e79hmI)U>X0+iNqX2<=B34F6f1UFn449FAzV$2rRLL90FMIDoa|v&*&QXD* zFwod0GGbb1vjZ~7RIA5G780OXlf|8Nv!pyS0R{>y*Q^StlKoMfZj?vAS4mS&N5VH3(Ne>8gD29LA@n;Q)Y?Bdn2#d;{=EIUO^6?(u7dqpj|bBz)Y9NJWA24_3WcP~&w3QWV-00_+GdYQ;ZE8tH;T&yf<}evlINc|LX{mW z3Ik1!JG87}d3f>8hT!=NlF2ZiA%KK9K@+FA-=g~G*SD+mv&1z@ujC2CnobGYUB=Ov z0D8>Kb$@F?<>w3J3s`Ml-!iVXSLvipc`AP=d%T)!-A&gXP_58f(o>jl>Ui)yqjd&G zin@X1-9ILabtn;@#|fCWxls49a<+#wLdFE^e!gJ<4z~wdzfuWZGvzle&rjD1RtWyI z@K2i}aI^KV(?VB_aa-ttc7UV%Oqs#c)UbblDx~X}^v}{_0!-=zv>k^k7EK!A3PcwthkeSN}I@P<}BY8jxdcl&XG-k}o@vM5xLMNw^Hnn)2|{x$I1d8vTt zG9dZ1I)ZNf7}N23$t3Hm435*Hh}(XdqCn|%2`xlC_7pn$QT5zu=li=K#N}D%RGKsU zm_r0P@3Tw%OKNO{1YUh_Xg6ZC(VtO-Ks~p^D`hiM5%S;g-(%R$!u=3(D`6bA>$7>x zEB__k187Go0iMqvmi=L-|k%?^f9!T(L)eu6Mm!aNE8> z%_7(C?tz9^dlbvC`y$>ezw0qEg*bgr-)y|r1JaJJ`TBF?oJ%2xYh^eyjk3681ZxvD zPduk;Rk-yZlRa2=th_Ay;!D`y*w&+X7NtN}AVwEaBE0U{$m?qqHIM;1ci47m-ym{4ZIn0{eQqL(qIu)BQg;US*Y1|TPM z4NOk(-UvIsY>o;-VI8l>T3@X+)rp~w6xTkRyA=3OA*p=G+9o)MmP}HwsWf`7&dZz~ z*izJXiKOYrok+M3e+xaK3``-C+ zBecLjXFDWU*mJ`QclqdK#f*YU`P=&6?$&S94>p{7nM1oIV&@WyS0bbE6>R;alPPi{ zO3}E}gqi~V>!CZ}b;enT=WxaY4Ca?n<{VOA;Z%1i7)nz4902y9l&C zkNuE>V{ntF=mf!P(~7DQ%5V6Jh#TI5E{ec`tdPV3w+&1xn9A2}L#si`J%PWzwzn_h zl-~Y1aeja#%hrE+hz~M3k;PvCwF4E7%R^a(UNU&WSj=yyHnjFx?ILs9%vVw-K0d!8 zwjY}C@Go-nJJz7IyLCvYv9@pD`w5+!quFakFxK?#`T3qpQI7G>akjvSLRM_oO^%(Tryjng`c~?$ zFR}8Qw*oDX7RG;FA-n7LcVm`0$u<1nn$AnwOsKXowc~Y1rE!xGD=f;3CMa(RPO-14$;IL zo(i@DsxaRGYB8td!{7XEIc3Jl4{hEA5Dc&4q^{(J+XCZZ+d1I}5!uYlQ_tgDi*7T-teMxwGgeP#~W?OE7WFCa9jV9oy|4A>HUTG+i?iTm;isbP1bg;etNxEZLm~9#szMGw= zcDEu@{J7Q#!G88CcP%P`2xGcM9Q=?b{hpy9hC?fnDv-Tfr^oxoSb55PAHP_kpvTGv zl8|#Q3^7_&npT+JEb#1g455q5FKsEp_9W$?)aLa+*l{+qVTk%$5BE!A52xp!9LHw( z{sLYGGif4wL0~7t4f&jlX*^dl0mR!`!qyG@-+Z$d>mh!K=|eJ2s6WLJqde0hjo zO*dbO)RWh>8;amUl;&iG3D5U+b$L0<&rJ|L9+EzOET+<_W&YT(I?wm}HZxJ9=zTZCDM%fqx@g zM-SC`=?5;O+D}iQ8DyXFj04?A$UPSNInsw%Ey2HMf;DfBAk#Sau9{raJ^QXLikJRG z6A~YIn?DSnQx)qA@a06$eTGs&Vr=h2ff|mh27r8~=Sq#HEFpq^r8d zG5tdtyclHavvz|0Zcj-20E&~*1ODge&Zv1y?)I_x!TqR4#idsZE2!`fY=*dzy*Zz< zE$SR%I(D|F9Ft;h-7^ePny_2w5Cxbn^&Z#|0!B4*?b_?zrV4%X z8_gWHW){1?!oGcpOxqiH!S&a>aVxA}y(nUoKqXAZy@0e(<$DRg@$y;T3WsTQ$kF}p zI%R}$sa#YC0qf&=!71S2&7_XVi8Al%dytwd<2OZ0vCG)~0|Y-s68)_g0x%9C?F&CD zK?}oPtmqx5Qq~4EmBAjhHo&as3ISm?k7$H7XBN+okqpdJMT%hm{xMEup0R}F8D*3$ zd}T29g4Hg5ha)vTJFE8fk~@c684cI(cP=bdrcjr6x{3k}Lr3Ofvs+VaD3jRX2g2lNAqbauOK zsF;ZRM59#+>g0u;A|GslOb1vN8#0|yt@fybIxjoIo!S#^f$3>mJ_F`Pg~H474@Fv} ze6}skUtb?a>ZEa3$hx&v>mCNTG~UBXzl)9_q2kBoo6HwHqzI&Y#BVlmHDx5k7vFuZ zw;T0L$K@x|X7nWaL#@Yu zW(a=lzrobl%gO_+nYN>zYf8p)kaU=#2j8Gj_{l-pP>!6*mPWUMO2n>D+kvKS$hy>0 zf%l5Vlnin?(W()CD7Av#*AKwoa%1X5&2}0JXS3RMqD_s!UG@ZeDmkYx<+-9LvQ##zL8XZeW_aNRA1ZT9Mwq#WyAly|>0 z`=LCf86C-Fv(JjkQRRrt4mXPuIy#PYNnSkJyn9FKcqEL5c!$^d)JsXD?-6KVqbYck z`ei$7>|Ku|J4|R_J$Q5bCruq@;R_o|4^pJOLl~VGUB%}(8llQckL`narNQ7c2*Lv( zb-j4At1V@GVY`ooG-P>8HD>2AJlPIix7_8Ob3XbqmenDU5hii%B6!KZ7bAWLc0^#i z3(%R%^5Ca;04Y{wsIleQq?a5*zvAOpI-$+4^5*TkyTA?Ps6=EcyH=mmB4@|`9u*^1 z2c-x3AQ8i2vW1Nn)`VCN(U5#6?%-tTA-)wjt@<$6|M+__>&4t2OVf~J8T#LMW?iklw~Nfh}QzDdl{Km%7-4k3{m$ zw?5?gD&7?7)j49I!^)3PUIWfIH}e;co1yzD2zEQyK@F}c-ZTLh2y%cJ9mKH{M;8CNF+}KMJO9S zg|8s2!bF=3uB3umiHwomTjqm_O!CE0bNfR{XE`ecY`YevvVlt=msJhgd!{krl;!xy zr6Xt^z|J3&ff-KwOK^lg&s9tlvH0em*|xeLOu4?#E_o4cF()R^iG81P|5yD8dhQ+m zd&m3wk3~DvV$Q_&FDE>w?dauisPcEbQ`70$cxmd|?VeS7D+uEQ%#4iLS=kkDbpw#|;Dv zHGKTpHE#n@09Zew32B9^Ur)7#g%rPW_=hZ&|34YcNtOqIoV~P!+W*_z^8&B0v%ovV zw2^!)Txn+V8VC|Io1nu^76tjk-^3BLoMh2hswK+RFVKn1iq}Bz5dpP`R9u|qjKL0t zwDfIvUOoz)d-w1LNR;uN)5~Tdu%lp!af$A-RDY&+hZB%5RAfCr&>Gs^k*e4n6{ zZVLJ9Ef=)I8CA}s-YpMjpaP-}F)FsVjR0Cj^ctdnw|S^9djkV9j`;`lomT0&MqSi( z3T5S8An+>8tEVVVem-wEwS(&Z>hq(siXk5KLbr6PpS>LRlXArnz$*NFe+ta`ZzXi& zTLcLknxLe5KV9dQWrT6ZqpVfhd=z!v*DZy|_i*oqWvxBNbN01aiRnP5(39yo&;vub zbW%B0@CD*4cqU6_o>-_s|U|R3}&?q#91@#@wvME%2#_EMZ zSDs{3lM&`Ky=qZBw}1o1f+?b$W(?BUMBRJ22xW-jL_1LV#`!&KOOUz{Rz#;rGoctN zH{Gn!ME(|=&!GufuU*MgYDGw-+Hu(Hdy}7tOESCSgMR%RMx_OzJ2HhwJf_Zjewfx)=d&qs!wfL!ur5 zf|yh?y!cVFX;QxP%C~31{gZFNC`%d$T;3qiBgH;n+pzg2s;*vn;W{D=DA*~qA)?rV zZV*kD2KeY+VGu{(jm z08N~?Xab6*GRLY5TdXeme;*2kd$~$U)*e)iERJlF}mb;VrXp*S^fY=I6=FejrQd6 z-CH&K+~kwTdcQVcZv2nRXUPcI7rF{-6KZEtSyaw>P1YcbgH7l>iMV}C-F4j)cqj3o z9j9W*?+@rSY>K7NkdlVRSarFU+d%i=Cfz%+S}#|! z{v5gbF%TN&S*3jD6u{%-J$rGSB(nI)xQhcG?!%`>ok7Z>%<~GYIRZ!T5cds;z$U$6 zhkGedARbixcty%X!Errsi(Ue%MoXwB3nY3#{iOAj_~-8%#U%~OFu(UaY&!aj{$T)S z1pCdT7Q@4oNl{r&pcY=P{8TfoDr#Nqwxb-=YQ`@r zT;iL+%aJ~;{``9jk2p7piXs+`-80f{*$o^I-cTLWgSPG)Ci0}QbP*@R>ne4?I^|@Gz@+(sJedaZB!VPPWr-3h_Ht$-!nNo>Yg;65)FFw5fW`iR_kQ1p` zbqDDNPE)i~x&q^4PZU^B@{%q{@y|K#qwa^!PnE{3c<~lKO&J26{cB(H+Bupru)p@1 z;0;)1@S7=Yj>=5kV_&6QNxq&CecN0laAX8qk=#}uQD4exwBzIPm{X<(#v>KKF*K2r zwgWZ{!AHljEm!Pq;#5bF3Hk1|Hyx;=#I&$6PN6CI@|#^)NpSUo?L5iTgX~3 zz5GOB5+mGj)V|NExsSsk?)aAYB~w)Qcf=&^N&(akF46h4$DTIwGj?PjBMfcVN!yUH`r2m9PPj?ip@iz{+?8N^CszCuHC z*MIT%?suAtHa>1?3XTluCj?}iN!AghZ1I^DCY(g;mFOFo`CoNL^wOS>SE-FdPdc*i zH-{JCDWUa^5R8RM&X|8 zgWwuS(XzOY7UYQ#<&1U2bH$hOX6X7vOPnuAueeM;z<$Hha?dsHoMKYV4cWA{q-r-p zPK5+D^5QD>+TfuCRn({^B%6jBi}VCqHu`KCAK}>c-$N23<$;*C(ps+>=>yo~d2E8X zWgimh_o{1=A%L(&L$fEso&5SbW(l!$~HDrsEO4X3mfM_JKb0ey5yLXvkZ#$}T3GT>|OqsbrwWqCPdB1nP-vA3`T&PY^VN|5q!X8i1r#HV|)qC>rYG)tA zcYZBf$D*vup^}|eoc00`tr{2axUR^yN9FmVzqVbsjOHSLB@gKG7RrSe^Y8B_ZLzte z6($ZXA9mEL-LN^!9jU@mO%=d|;={;3ie<5LkQB`LBlvNIEfpI8Rt9hqMYor%mAoy~ zxB8Mv*o03tVhh)v6rh)YFeG*A@&J+oh&h0>5nAu1*0F-%om zWU4;P8SG1_vF{<@Q=0tdFPPI7MbIIJwn~f@C@V1`zTKQnQ7$JIeHdCj`P`zeaGIY* z*4JLWEUw0jH)pj^+h8x2E?6seu8m%489Kf3GHxq*uhv~PC?=yXt^6e!&YTml@p zu`fnH)=BfS)WKRArx1YB%q)?5D|%AgiLyRSaxndCpf<9WuT!40gJA5;6;Y#%*u6WbgmYe&7hb!T6(4u`^*23s~pdES)zd?H)G z$Ed#|;$*kir^m;xvvMH7i4}I_I@g4`%r*G-7h)w8-uWeCga*ZoW1rRgYnx(w3{M;@ zOPo0hzXlEUUmdj|6tem`vZEHxQ7_4~w*GCl%jAsq+t*iXq8iEP18Tiii{3bTMoraG zM-sEG((1CtpuebN)veBf`kul3{_^g!HE?X~i0R_{)Z1HwQ*oD}VqChZ-k2h6^SZp6 zBlFHMiB5+m3MwATqcdH$LlENHd-k;#0k7|DdJo2fnBZu2=v;=-8wkVUfez#roiI<| z{ZC&#BU{eFow^Xw!;iedUK;!RcnR=Z$q`TC*V8(AVTh|Lu>;7o?@%HqW1quq_TB&s zT5?1^0GV48!M>94K`{eXNKyQ^zqEz@a|kWXVTQkdLR@W!@EA4Z?;2Qg(QF}qHxep> z{KVlGqsUe5)zE9{!&&vB0npZHhW{AjlMDG%U63Vc`9giEyJXP~pH=|uK6IQg+^oFj z;G= z7#x5a)^#ItBsF3ktvXAgbZa&F!cC}=y;$V&kfD)>>wP*UitAp?l?VW`?y#42&)*w=CtMNkl9(_np2ZXsa2J;0K|S zfA5*;l>+@T4L32GjZq^{<#|>{@~(a>;`;E>*};{QY!~^?BZ|HW^bB-CHGT1a2(B!J zM(($to8y!LS0JVLzzZhN#cXO(2=l4z8gcgHmIlbZyhi|@&FiMsbix?8NJv*TQHo>BrlbqoT!Y-s20C~K(gne7ki!cVDou1duSIQs%T^Z=2wO|} zUUybMr~uApp_g(u{qVXP?ksfK*f%_9?Yn{+=7P0$bCTOdv+>rN@sfIEO*L3mwd)*u z6>bU`=0_lQ^uymjd0K;ir$T`%Ai&b)wx0%C3Sv)n?ujM;*cx&td^|7@?GTBTcxnEj z2~-D;4oW%Tdylw@|AAsP=Vk1>6kyBLnS;KQcP{(^I-=JE>o+Cr%^_0)KkNYe1%6(e zJq?0qAh8M8ST&g!IAn_0<>u$eXtQSGOZv=NGZh5F0{|RvT+1PXEBMh^66R#-5R@<8*zsiy@6H#RzbBE11B z9AL$CP>mKKqr6P-72Ew~(&9!l#upE(=mD~`gu4n@Bz%6^74E~I-uLWTx#wuVY z?ZR#5JM~}bU}@Rytc+Y?IB$ex7I-iLq**S`dMX0!D z**KO(^CsyDG6~C#rZU+BS9N73q^;mVj+}}!AWm3}erp1oF z(HYcI?>chGgi>vvpAmJMeSQ0$5?RUvr~YKNA6W>4h5*ys>pxkJI^U&m-2VbJ5Mr-A zsO$gxfEeX5{!vmsyi^fqn+ zo*e{1?G8dD1>iW-{_*?$!>nZghKWq}2BB?ocE>d;Z9q<(TT~~oHL(+rzL?4vL)<7J zHcVy?egBMBt7qS~xWu{6+-BMW`+uVbx1qM)GjrHEL`Xiw5|xa(e?|(K1Apu$<@ac> z3C1>1?DS*lWe>OIwT~scV^;Mp2`kfIaU5{F9w+#UQMr;UmlEa7S_7q^eXctgnDonD z?R7RDer%vFOVD}T7V+E$=7$6xr>a*|0PF=NR1 zq6a%ZQ4vAp?1c=llLuFx02{hp{U8@L+Y1|-^CQgK^u?Y7{x}Kz7N8gTx9&JlDSP4e z6V~6^v_))10RqdmFR?!OM(%K(!y`#Ym@H`PSgCq^=J9~OwYR4i?~k8n31Gm$$_XxI zjHAHE!){e3C+41_xaYRu7CG)3JI)?#D`my_~u1xXicnyL^rchwmq`X=uLk0ck zbAWdI#ReIMc|+`L)!ZTNfO+N}n<7HaovKouw0l-v(x)yeH@-Ie6;L-)NiLiFl7HPB{<1%JTj#5Fxez6zu(Ygc;>>fgr{XPT{#!;R+qakF(=s*^x_+bx66!j0u1rz{1g5=*AO% zoKiuIFGWe})y&3oh?+|7@wMW7h|i5|xnb_h*>s0Y;`LYLXS!%Bi0Q@qecF#p8y~JS z68#In!+>Ut)*oLZA>7D@rqVk#P0saT(+O#5OC}+nxz?$k_i*Y>g7S#!f$~H$mYxU}YU)bKy$&s6x@2fjIJs1@dLQ_PmuDqG)JdFXwN`$KUbiwVf zdvj5EsJGD`sCk8^8>l)+KS!QTPY9N{F z7ng5BJJPeVmG+av!JAC04nWW3F2Wl_o}IH{m463`8WAeDsYaAXY6bn#7i7EzYZrfX zqq!Poc>l=KpWOE&+cr_xw9Iss!|`3w1DVT zphT1Ln_QJ(A%)BnWJkb5=189j^^He=Od#bV=D%#kYNl&g);^41!%tfW{ypI{;qLtH z)kJ^O`o0=|v{mPv`qOP@=2lROO}97V1HHa6vMqiK+wP^^0nt#t>(dNjDzqaS&N3723u>4DCeFCH}T)WR!E5WD? z%YYLch-m;5;_ifY!b8KgMANmeVV^Vd*QBowiCw_gn*?~}3`CuAr77Ri`vi%nzKp8& zPM)V19`LNiTV}}+`slGP+N!cK18p7jw3Z9WV_WR@o+IynvbAwxddT{-B+7{CM3s*_ zDDd@|U$AkS*HXuOIkwXJJIpNJoFI!>B6U^TKId8h7+9jwkuew!SiPJKYqI?63GhwI zs1#Pv={d_^yw6Ab{t;lr@%`EshVpm^J2CgCUsJhJANh&EO_w#@0s3ppp40Vdq3RH0 zv1fJBPZx|rXFu&wjs2uhn7)C<;Q3G>g;nA-Kty~sltV=zn~13LO`ME|qA2|Ghc}(} zyFcfvM4e&gM4n`YAb&(p8xPX9_RwYhD01e`V>O1zsu?FZlR$?-%(?T5pKGjSx(l4x zrRk*gQQT)vBKI{|uKrM;+II>}s(col3#n#w|G4?_P z04D_W{HnpDFdh`Vb@k-fn!WS&UGGEMH8O`8!rE`zl+8b%y>WuWgAwmQ`%dp4$b!}e zV8nQIisB471ar;HB?ad64nP}3kp?D!atY@D=A12(6exb}IoIC$&Vb4BWv>M7S`QT2 z1Uk^|N&IPP?0@kcv^xqkY84BPL9SuMvfcAvo+q*}ym!BxwK-t#uDh5n>0 zap$-rfFGp|eVS(>iVQ3#=SHue#Xt*f`w#glJAiC;p!`7kN@)HJJ%hJ>(S}o&d3F(+ zi8$xAQP&Qep{M+!e<&jrNVA?uJEzspcb{R=sUvETg8z4Is*y-Fqzi!tR$-BIiL3#f z&SRcrDGzfgz#Kpknk?aeNF!`LwOO8WxDFdQ>{um6 zBJHJMVEZ;cny#$S4n)-FI!CP*|Klf!jtUX=cN2v*(9L?n*3HTDcY#yXsK3a~`~5tu zhDm6qSj{e3R)=99V#V6D;q{5N%;LGioOc<~hLn!B)bgCC-@A`jav7o^g;c~9%pZd- zJ#v2aq&RSUQ6-~e~J4%5=BM2kyKZ1#m+Z=Zc`7%Di-XBr&Jh28@EQ z2=>K$&3D$jvkxF|;9N2vggtk-q5Mj%bL_i@xKA+UJjondB+jk+DeM|!BQcaPr||Ot z!EMpMh*2l&$lL(P`yHS!o8oM>r3B371f(J^Ua^3#PvtQ=4aN#yqe3*|z)6lUB=|0Z zaYjQ8&jD4(3&c40G>9L}74yGL!Ay{0j6C@=-w}hFY6-fDqmb zo3Q@j^$g*G%m%$ioM3AnlO<&omoKzxfTe?aL>X?E!1K1lO6dKxf=!Y5p`1^JR-KT6 zFq@8Vb%q71Kdk3LUkWu_Q2gKNuwqzY4&Y+p!*~q_w7XGM--HoVC9aihJt~32y1vz`- zcHe*VyJv^OfkT-a2Hao)_q35Esc0C-_OQK;3Jtm+>V{(5riVSfNH?UC8H zu>W&W*q7j<4zasu7AWZygB!}oi`e*JhmO+R&I9G|2Io1!q5?9q(^$C?rm`*`&8Uav z>SPzXt$`^EJ=|Nv+5VR-{tToy{tvqlf`KL`L7ILKkvw=Jb?X-~vPH+p6!1suAor&L zrEz5&!~%uMHsK3W?!_nexHA|3{1)6y0X_?!YQqncISWeE$Yr9DHY{a z`>w~BPW-wrI%oiPya2r$FQk@!$6;VeS07vdSn_b?v;9bI4w6FRAyBzRQ~Zq9pP%oH z+RoL1e!7;wCv&Sev)PkxiGq6|WGtwXfRY=(hN07~?u!A6C3FiDPbbD+&DIeod-rI+ zc6uIZ%;n67Xbg_$stPptju&rif_vaJ`})JHl)Sg6%t^RwaSP|bp2JejKd93|gFI;B zY9h1Ct&<+gE9G=qE)BiXNVvb;v2W*k=jP%sHO~C2b7Ui+fC$7N1{}S_L~YbcepKmU zVVjdl!|I}a35{9+WSp8UWt{>~y&3LKRV{+Isl=}RuI-%z@NPw*|6lV7cG$%x!}Jd5 zYw7W@`D)ODntcLPJwf(J-M=w_(z<{yeQdHtU>0MpalFJG0>`(C$W3984fSX zvcy_{0mwZ0by@1n_K6s-`}_AJ$We!Cn{#nbQ&wJHJW=3z>Aw!Dvafo9lp#mg)iN?L zZn1FYoSti2_S;_6xWXD>x6}e=8fBCw{uh^Gil0c&GIXT3+X=Nk@~sVM`3XgnB4i!#EML3IKM(&Pi8G$cY0#{#&a>p z+lgQ`L#Aj#A$}DC>Nakv505Qol7Tl28lbMamXKYof$mgWsp>F!Xj@$aC-BRsnm2q% z755BH6By%6!TRwX994DiRn8G|wM4J+F`BhsOk@!p&W3>dY5UuEtoMks`>a<G^At zP~a2gr3i^_N~sZ*ef z2cS>c30%A=qFbUjzBJdZnP0a+0U$xT)Xq;R!juxlzJ`6iC@w1wI)PpIo=T-4e(br3 z`O)$uY`W)$e{p|HB8dXoHz0&z@Ak)Hol24%^C2*syWf(6>3j{Fy%}+sS)Tdr zju2-O?Rlauwunoi!7IeA{L5#>4*g?rwC-cm3)7~w5_D$!dB%BAI;N23g< z!K3#)r)Y?dR3QqFn9g3)1oj2d?pQ(q%@HkY>Zfqnv`x{q0AeXkgMe%d>z@ng+&0ao z8GyaM0v6ZjFOhIYY-!Zat$lOlc6n^b3mX)O+=h<9p>O_M^C}Q+ldNCg;xiiAWrF}Y z1vyu=apIFv{kyzN?X1s5(Ab#P?)E^^03e48gYeoRna%YoeeLEKcOT=0O$=B@v=2CY zo*1xVEqQ@jlPc|XZG^VSunz}E9Q?Bn2q|iQ|Ar1kT_{DJ!JRiP)CM53`7xC4v?6WP zCcs|)1MI0irp`3;iD?F#K%C z)&S`ul3)47^P&O!|~C5js>Txk~_=*e%XeUoF4O}q+`&X&aU$R z%2-MSqSE2X{&KH117re1zW%^13L**uQVK|il!PGN{O0ZRJn#FC@%{IWamF~~aAb4ub+0wooY!^D zYg*}bVNZoIBP2^JdDWRJLiqaA0ssYB{_8@*jsoi&YSAy6&J-A5GzhT(gl<-%v^ji5 z@#CHUn~r*{CsTkjrj7_-LabMwVAbZw>pgLQhN-mr5*dmEpB&3XuGmG|#mX13=PLa$ z9x9a=!@P*?$lt7a2wLoVy;PmM!^l}h(lB*V^tkS?XN+}##Gx3)$z%yBCujt#&yDXo z8id-+|CHD-kaTT+pvr9pf_fq-SPY~>5rrL)K5Y8kx}Er+Nlj#%l{0EeL%O5j^vNNr z*+}!p#|j>^?M!42~#S4oNR4;c5XlCul&h1|%2?ECoo-v8*q_PWm4z_$QQJNF~mjDF*;?E+}1- zb~{P`eG2p-A{(oruCbE>PB#a@%a7R;C(AZ#6Yn;F_virMkJE-PJn%JSamc3V?Jpp0 z+WGH|c%TI8{9eE)dGA(t<_(v-sX&2uAy!ucob~08fjJ}yEKY(q+yRY32;;T^N@T-v zNu*L^UxzG5VSA57(l_805{^G0dUi?e6>;=t9%M5w6gv#kLfi5adC zHkAZ2&Z+kANPvSCEQy~kCnc0i11yLo_Bp*B&gUnLW&G3$myPrcHlUg6D(Hyn4>0#v zD%x7x&v#vZGscYcgaZqb?=ovR8t~U>&y@hY84Q6D;Q&Bwb65>}8uMWDs_c(Kd4M<$ ztw%HJpHwdcp}AMR1Hnt(@QrhcR8xR=b1JL(8TjtP7$2kLJ-o-~)B>=eO~Jsm^qf&W zR5sxUdX3Nsi-dSYeE0tJL~Q*;Q&5mZky&Vjmk83sL~XhVgSLhc2ecnRv1i?1G5IEt zAk29mVA#admuk>L}XnE+ShNdHIgAY!7J{Rq2No! zszte#b}o|RRUO*;&r|vWIy#^SmID*ZReyj!G%+}=Zh@Oa1r)d6jRHcxCU8B|qgsax z*d-Bcy9kP-frTU1PY!1_|F?j2WBh^oe6Eq4T<>#cv%?=Si%3G$$57dE0Oz%HTX(#z zmV`HEkMC7na3anGcnG9O_*H_jRA-0t@a-@H^TYG;q~JJ9FDnV$n=V}EIkB}hYS?x`mYwxj;1_D&=rWhpr*-mZf^XT_(hm?+=rqh@tw!xfb zs_Y`-CKVTKhHCIxOM*K#oGSPP^6V&E+|RMC0L~uoOc!BId=%9S_UNNR6j+Iv>%ZE3 zCn?$0*1O7Gr&|y~y5SYQ0NKxCA26Yp?-0D#(n-^pf&?^LnyBMuYR_k zcjgz$nT759<=}}fAcY+|8&ObY`;L$AL82mo1)bx+kc#`dkFy3~9*=O{u#XA52gkgI zOaRzG538R21>3mugd^6Yn=3x(I>yJ&2AM|gbU`_b;yjFL)tkgRQ&^wivVESblL`>MA5LQM;hVbTVXNBe|-Kn`plk{N$ zgzTdJF*&Sz+7`D=eW!6#Aa*t``33@z@DvV<@9u+lACmQbi9bez`9T9j`|3vlF}n@0 z34H}x{cf;iKgo5GBgFim4TytcnZU$hxp^i`Afx<*sq|uTO-R}U^ZjKI-%t7AH{okC z{Gkg6`zG7Ptf}ezc6y(&m$fzVQD<%d%As@K8Yio50gsskhjK*_eKyUTR80SVRp*}+ zUr1~p1-7-WNc~_Sgl0N6J{qPZj%X}*>!nYN-l~X0!jqSe&G)0+81M_8ll?Mt@!Jw? zAvPi~PkjSoHx%(YC=>GR`m!Ik#RDE%vx?uT0ZKDmJ!>MuV60*vB{7J3UYVG6HWqNI z=@_AFuOK=1ktp(NoF?-s1y1|I1^R}?Dl>pB+9w}Gk~K%vuSo0VnWb)ej)cmrT;8BoqAfQL9v6RbqcqLhN`De67j%y259voEOcIYN^vU zA&v-8j4|>!pc{X4?vP{RT+_a_4i~%PnxW&qVqe4Mnx@1!id(%YH`-V3Qk#+_eSPle zbWq~15YGrSZ|M$$J72Wjd}E>42rpLfftK@`n9e^o@D#g`ihsJnUP`l7xoy?}6!~PVUfU#3aR_3Ugm&fGARFb1^onrhaHbSp zoWk#>i`>7UWPaStID@%kx!$;Q9b2QrJm}V$ZCgFsG*a^q(rWe4A(t{x+$NRI zK=niV39|R1G~|xBvaWLIvGOa1-sf^u%z?w20~X@e@ug$@KdLpWra?V+W_mS~ZuccQ zAGX`^gH8<$PE0K`0I`p-+Xd~xEDLN{B=K&H;f2S%yZGtkbN2PGAHs@ye_F?tFv5885uT5SBY7jtKt znK0$!p&qXZjC7#*y5=DfS+qBB+w2RB9bf{UrqcgK(smQ#nZ3=SA5o4o0d8j8dgkTz zA3B6=g>p>me%SX?wV69P%qhGtx9i9hW>__7oY|x}W|oc8MO>DO>Md@NB4P<9VseL% z&C^cr(0Nb2PvnCp4-MDOlHm5X;};C#H9jDJLT2B-a=!HwF`ID4_)nptps=kFib&6( z4=27%a`*{czU256j-R9n<;2A}_`(w@e}1l0blgv2EBBNpTp6pY8iPqUHbTpL-sW|T z*S#H^-DZv$z#!m{@I?24-4m3gt^WIiG@%kB7$bGlaY$>0Dfqj=R1=tB})#JYEgoJAqO%8uZibVV{&0;_6f; zmueIW(KeT>bsBwDI2}V$>;0IZHX8bW3aD@ex`}CjJ@Y!EY_7W;fbF|lGbEAm?!*EA z3ZgG+E{rjsN?0dEHwp9Chb_&L1@=TaOheX~2wEIY>$6OTuCtc2?eVYl!z&_JjpcSM0zOLhU^)3Reag@Mhy?pdtP7GIVZ# zpLWs5CO;a8oKid2NL=Byg43hLV(BfL?mpK+Xu);@LpOEKOXsAR2?_(A`+np=_V*Mh zJnY}>tDs(y_gb7~9yhkYJwE`*Xg-<#%UW#3!#mLGmiO11W>IC&8abgSDvQFTiSYBPkZqDt3_~-!PQ< zNH_Y%!E%{und!Ulj6eQz0u-`Y&^@q}#w0_=rnla3R^v}=J3L+~Z#=i+r#u4g*}JH57qM zE7Y~`TyJ`UxM0cnV)29Whf}U6kd@{EF{BMLN`soaiIu-E*5Db5(tA@wnHs}T!B8X7 z`ts&kJqgjAx$gAq-xYNca;2!J6d)@0B|j-Slnt4Axt#!K<>O!+GSQ0$=Utugq;FT; zCw4g3eKb8rQyZdX3yFz}GQp4MrDT)2w~O^((#e!>tATYuSWF1@daBF&co2fJt#1u% zV9R2MQPUKh#=P3BwERq99D{C(jLM%2tg)n95ePsbB@$F3MOWD-D%8)^#C9p{@juus zjM8O}CoKhp`Hze}?$R^s|LvJ&M`JmR2VZgD~rFxZ8Wd!k2A0t)tQ7^3Y+ znZ}4n!(T{xxph;DDgW^R?-c39WLOVEnfp^m=;E-bntXjpmLmpBV)C|2U0pO5+Y&!A zm7tuuMdtob)pCaw>F=O*lsWF|7so_nL=)^3&8rWgNG(F(jTdh_4_;-srS2*&kQIQeHShCqTxq!Ww+kC>qF*H29JZC`A^4PchH3i72fjLWFJ4MP!3=E6jz7*+E$pN!BZ)3eU!EcZgW_iI0*z^0vUe zjy4NAu4&#(hdh81prPN?=BFUOE-?>yq)}{Znk_yj%StwfWB#WeG}NM;eSQ12GNfrMIQHzL+EB|YDi-lS@ExT3l^uYZW z4@Rt;ct#@Yjk$vlgm&&%)=&|AnyiztqWaK{+dnba9{;g{7HkWQkbE8Y`t`FBShb;` zx#a|Ch4eM8)L(l@1{8sSkjK2*+@Htv4=p}L`*l(fRUU6BFpbi)7Zl9zq|G6Io``Q5AYo;pqd`!KOQ*^uv9va| z+EU;QVgiJj9>l*vv!l~~AnMySX5^v3BHE7UWN}rZ;!j0O`Zdcl4^`uOB2=*qoHFh$ zaZyi6jMeTnZW5sF1nJ~Mzrgvk21)nQ5o0$N^Wj$z=M9kJCMdr{x`j@YhFGU)ASBXP zQS}Lt1!&&I&n}@8OOpZ9BWCFTtgSTKkw-D0wu-m2T(@yiV?RMs+lR1ef@K+xEs?Pp zxYw$RlV}BO^#AdEMzF+?=OFCoV^1DU8TurF+`SBb+oPbHIq)!3wRw ztVv4pR{C2E*cRy{jbWdfhv^Y)_J_PVa6O@oHSGgkd~Dt&s6#gF1+pxka*x4KmjBb> z(22Yp5~1t=A(#M?!9PR9<5NoiB76Y#HS;41W7@mkU}#K6j6+7{3s;akfd8s5Wx_4) zsHB~N_5a`TA{bN@3!ndvBS;OSR7{lE_}obLLAeqvKme#P?J}8H&RfW0d$yF~GunZ@ zoP!cM{`bRGr1nS9oi5NC(`>5Jr4TYZ=|N(~{LMF558$}senBRAN-(KK3!(^!0f}Ky z2Bn1Exk|(+T8(1L+g0s~!z@P)_%n;aVV=FdvGfuuE?_bwke2g2X!1493qY)pBAdaP znOR;}PS9PUOl#nCU~b`{#e~a8`3v$W)M*`eK-RTr-I7 zE|)cKL?a*?yhj$%(PSoByx~T_s;Pi!s70*7Vg{7zqgmzVX9Ga^X$6E@KWIO)whcg8 z)Vz;_0Q!rMvNmlkx(NWJ@j*0oVvj4RDb^84m65N}i6I1h;8Xx@(RHi=7F!9p8_CBa zuvrm790KS;I&Q32tk0Bre<$Vj*pNKvWM%;?J?}`UL%1a$xy!7KNIVfh9_fx?ZE#Z` zHHRnk80s2Yl!I0Z9(ZpeNHT!df?S=Q=n^Bp$`q)&`pfUgCRQ^<^luYo4JyD1umU)? z5@|7+JUw|$F}e%dcAlH-FQo3@3mGs!+WS*^|InKYjC@1I8>Lb4%P^GX*Ld%-)4`-(#*63^b0P)KL8--80BqDcLTl}AuQetta$Z3 zc0RAATN={fTa5IIB7rO#)ZfhT4&a%%LZD+piWB8;DL!Xy zH}M(I3!K^tyDDnK9S--B&VmPc@=sxy=_ufD48Y$oR3BqIo<27OAcQ2MIc``G@5Svm zv_}B0)&2z@82AYGlQvz?nV`#I-5^3lxj704F>nQKT{0qnA1pJw`b1(QlIUev#f%zn z3+G?i77GQU8R>}o+3M%21}ohMq9Jq7vP?_GCd)R`4=EUR*b=Wz@B#*gi~!zfuIH5N z!swrE1KbROa)ZZlz)GAQ^md7G9`!+M#Q|GO$Ea#OEeL_?*2z$WA-$kfVnf_sD>m1y zUxU!W`&{NRgo;)gz>%-jX5CC7ZF#rI2AJZ(o4~SdS_~LfZj;G$=YkaX{qc^G*(Z=6 z#4-g71VujDN6I}&`%7Z4CvfX>PwgSFF8KQCWNgBD(Ic{I#@GM*zL_8f(x7*o`~W z-U?foTJL%Qcu9k`Iig0{U=AT8SWK+YOu(#N*;@5Y{x$hg8fUa^oeJRRX9NiCjo9h` z>dT1;v!LD;!siS|gug0P`96&sxFyUDWBXvD}Xqy-XPzAL7Roa^Q`U%!KwXdvG-;D(&3VK6P1Bn<}}uD|LdV z>dzv{qm9RtkRrnam1cSa5mPXoODSGT(+ZGCovBzrbbPv0rUCpn>jIS_)Q zE$F=_B3<>9=#K zERe90te9z9doq9;wooBrveT%VyWqmpAe{N`bO*5gvxTa{wxs`9!50eCi(F2?GjDbk zQp*k$1V9kp=;Beel&7hKE*;6ucmiw!O!Ffwm8=W&{W6rIE9D8$#veqWEJDwgm;~j_y=^Q2{qg~n>C1Cz1V8?H#I;{zm;kvZDs~+ zM0s6%=6#0fHS_8s6Ry9cZopW18=xL+fXvK$hPwYAW^lxGa|S}J4cT}`h$3ruL2-uc zOE%4ki_;tXkiI>nkG`!4sstyhWZjL?$&0))<{|I}NMAqbbk;*0+uDnPk}rY~R7B|RcUR|4(vURftbt}oeGGH*1iD2(1_0SxowV;znvM;)oefE2K_@HTGw<^`0!f}A%%e3cK2}Y36)~UgSg6)SUf)&!z%q7)8ff_7s{Iel=25dXci+Xtz!M!@_`Fm`*^r^&Vmq17l zYALQU0V5Xi8>ELi^lN18oY)5S%hy+S>}ji|x!mDS;|B~OqYkG1r~?=9HRyCV=#l|x zXL8moVAlLs-)%hw$Aw7An{JR!{Aff{#(3r^B%(w{W2uNO8Pg z1NI|nFhqJD9$f@-A|b=RNy!GV^ zH;QtSYsyShMOw>8btrCAMc%B?PeDQ^-TlV(;8&L5rW8DKX zOd zcu^^qs$XeYvr49*O{+)z{a15=TW3QWnX_DDkw1uwar1;G8p9!;Q#-v2ch|Vaf0G1o0|f?NlMWGZUEp9`Ku`t9?^pMrza)IoqgY)I9~iNmFg`K>zp6n|d?nS+5% zg?uzRE)=WjJXf>pbrC}FQ0Z(pSOa%gkE#b-+-ro34Ij6h};aHy*4gYu&M-#Q_ zA1EL!?j)AfR-1EF_$5yPbo%_l!rTvoFJSXJyjzUJ!zO5rf+tS1;fXjXY-a#vTj#we zut=gT91TR&5g2qb0cU7CKn^Xep)A zM8540W%x~F@W1PDjFwzs6Bk$>z)#d|Wk5n@Fht4?N#y&JVTU}sDgFf<&?T+aK{TM2 zGS6!4J#4Me=c*kwNn{H0@R-R5+E9pS>-OA-4cH97dj3b4fH53M0UYqzFyG>S1ZJl7 zyq_LZeFX!6gaT3`Su9kzELMa?xWG^h75qK;L-1Ny;aAx;U9sUT!$Cq`EbIdF=`JCb z@PGaR{Fo574k4BCzyAPsDd-a^^hG_sDj|{P?~gH|@LMQcXgtvetpYUDNsG%fe>sE# zB?VwoIqeIH|9yN4))fmPznxA#qyakx)L$#%c?Jbk2j=(?)5nU1qpcZ)B*>3$(Pz!ol}ZCM>6TPDLz|!=APIK#{>Ox9(u6 z=&_8YzuM*V^bTL4s!slSgJow_w)f-N6013j*MMHQ8wO-}gg{!48@= zetQYV!I%Z~c`o*TaGZQUj?BxmfmUhZ&v(H#O$`J;UC@%<1vRw`ga67kj}iOVDS*!T z*On$WpE)Pd%N-&wFQ4J39QN<4`=5^`$95Vv4fyj(4?6%{4vROEiQHSP7sKX3fpgw|MmsO752afgLna)kV`I&eU4*q`#{*z0%J1< zsvZJFFbZVA>(r*>RhJAudU^6Q3N-t49H!Cg&Kx^`JBERcNmc_7X-7Aa4lRxy)zOpGH(KX z9k#Tzk?k$MfHP$5E5#%QQys#~Nj*a<+PqRTWIAZw0}Fd+a=Q+q{43a?3bxYp2pIj& z2O`cW|46@2$D*OFgzf_5R%y(QaHb%~c}SRrV?*Q0bo&N~6RMXy`Tg2tD#CP&x`4@bB`=WkKi7Jg9Hp@RY;7qF(LZ!S(t%=x_%Epj?_aJ3UDL z1)v&p3EV_G8L@aE&XjO#f^mHFpi1P2eNgGuA=5}EKL(_n(m zcq#*SSPAQ?@cy(~BI<=9^8H<6W@H?>l@Sbpnh_tCM`B2A%3R<)s3+Bu!u@I4vn~fI zg6!7{YQUucwf*0w)2mR-fPcAGN8^4PTHessMkuhPkO36BuK@m5D4ITSUT*&g^t%s50wDL;4o9(7$PNBQVy^x>ci^jrRkl^~o)pewZvZ zAomF*XR5~jCT}m-KS=shc-7fnoYL=`x`=`5KBOt%4C^>9eS{0yNhJAh@q#Vk{b zNp_Lrmn#d2AHCu1Sv5@Qow01EQFJBnwyc#UfB?FsFUhEcbwB;mmK8%1w?f|Q*9Af7 z2VTwNHJa_c?dB51TJ=}p@Fus3(cHz&NOG3q_?RIdy@x_7Lxbx=L&lcflDo$Kc*14D zd^8YVjp6+!@thnv9f5_O8j17n_=BLYR{B%zu;{kO#NwIoaByF|0>)(?41hMhc%BtY z?6y!ozY+AlW<&R^wqs}{m7;C`tN`&|LhTr~N^5bq= zX5`Xrffz@k8ta~cGZu)QPR-JTI#u>ez~OKK5ly=4QzNp(7_Zm*m8wG5}TPK=(K0%;i`19E2a>6 z7U0^ZRsssgr*vOj?2DWLa~HEB+^iVMj}mUN<`m+@o-{QR9KwKs#z>la`&+4yAgu4NY=yq|UtC zuwij(I^GfBNcYqheo^UEZ2C^z!71FJkJwU);#06yN@+wCuuWpoOELp5Pl=;*=;u-} zkBdNBH78!G$;XLGHtl#UHPQbK(x z5GL45-(4Boht{pdM4@*6u`^S;$-H97yr$GVxL4-GC~y8fUIv(wnD#q@ zPYqCadd`S%X2L5-VIyzc0c80FT!ZrSyoL*OaP0=@fbZK>I+_FWs1R0&^v^KUdV)B! z;<=C<*YcNq->>@;7dlPzkmQmuuPaA2b@A!~u+}(NWIwy&v=lEU4*4~^vUI5xfGOMc zN`a7rAVIL+?ea`8WWovwg?d$A^IQ7yhge#H&j)eOrdtp%wPEaIO_l1q{h(a+U)}A2 zG}=Dr8jS85MJn&WVdbkV*l#Fkwj{Ey-!ksyw_dU7roOTLUFR!+g{yS~mEON!r8-xh zAG9us*gzIU6SYrjl@M%9ij>)gE2eIrs1^Fyo<`|y+H|Mc-yJG-f-il3udV;jGhy@Q zV5Pmu^u^}MEqp4`+Cn&&*{;V2E$S$ zB@Tnzm*yfp?gNUrP+aW+4hI8iLDGI{k_&?8@?3YTG*>ruZ1?| zh64^H>=v1EY$~bGFcXsIVigR;r zQNe(^I~6KSTqb2{j1Dzro-Yov1Q*^{J8|6bioOOS90+dv!C;hl4Xfu%x6pDvg^mn9Wr9jccP za!}Nx+OH!kKc2vk z{^vuX_LiMi1$sYjfgdv!A$PHw8foO05JXTr*wg+xQP4Zvu)(ikkmI$M^4jD46 z?Xl@_5>k^wY5WD6Q@BRezcKu~IAu`5&kuNhw&gSYVgwb|Fa#RIbSW6qrVdGd7uXto z<5sl!Z*5d4(B7`f3;`YJ5TGnmZ=C#jG7nW>RkSfU7kq{K#0r5As#|;@yGezT#cv1m z3q;ra2)bv`=v!ewP?%_YBBPonU>iFOE&D`HKe*Zsp(1^)#)6F$LoWf>(8;B@_Qy?ya&z?zVB!MJC3W_r zwI%Rp9vf8K#fvTF=TP{mn5DV45YB^fsxUO>T|=x8fHAQ6#f!VUpZ(|xKS(UO-n!w_ zu7kLRlJ$}w^6shV;6;U|Zmf{{g2sIwt`Po))!I~AXs9K`?H#8qSpM1+Es(kKrem&5w{>($5lnN9kT;dpbKdmp9T*0mWSv z(!gr_3n|07A0em*)PdVwqpvj>tANVAxPMmezip@lJJtN4i<3MqSPvVSm6+N9bB^BU zkxK2Ef6JC9PKCK5;8gscw%r~VHRV164(|M{nH%He?dLt4JF?Otf4 z$9YY?kCi9e6i$Q=iEa>eO^1~p{D&M6hJ24GeQGs-9;cs)4|*TvcEEK^&~4RA3z!nQ zO1=HY;-H%P{DF@^r|W;DOuzp3ajim|AB#*p=W`r|Wm(;y2Ro8+@voB=mJxlb=koXi zi=fePwFPPL9k=*`b@OWCGve1kW{n(e#AXc%^hj7jUH&Y}S%(8h0*?H>8K!HzA@J?G z0iR*lYJ~bX%AxEL_$_igorG+()vJ=2HrCkv3)_5Y!*6~lcV38r0rWHLpUBw=;ir5% z6V1~Fr^iLudCboF{l1Mqm3(5Y%jASH^clSZeob%Rg9?-Pi+2m*r)JBvOUu&)x;7qj zzcGMIx(3e#vM@bw9FzeELZ`Fj;46vb$Ul_OwIkJ9XhsM=7$Cz^s**m z_DSRjw{qmg0m1`hK}gZylH@(l>=ytca=0alxozIK;2s%-fDsyH=MNRV{UHc_s_JpqREZ2|68;gSA@_jbHt>Ky%*hpV*iH|)q+Q% z4{aojKmWRTboTGH{0zsc{8f|4({DGgU)IzS-(B!k5uJ^bT{-WT6>1gwAHeZaZ_PCE z+w`w2ZSgf|&<%LRZTK)-#!i(c1a?iFGU~U}c$T83=X-;5HBYmw`Ni;-9tO*z_sXht zLVW;W&bmygh}4Kq(?uM1H-&t6f~hoaHq-A8IkBZl?3VecE_h{<9|;YW-ahy^0?Lf#htg7S$&etUMcG?h z>cPOb7@fgjMK4Q{j=x2mN$Ztaa1O?0X`%o@KK~+k^rGnE-HeMoCCzoqf0knOE`i&U z3o?devxWGouQl6QB>r)t?$m~YLeuGInv)GRAC)(ebsSb8N`T-^T#@(n`$-h})bG)w zEx)V6W}q3RrkMt*{Wd$AvSx@_kTu9=ozg?qs7_DJs}FPosz#|Sefu0G?%V%?nO^FZ zxjH*Tz21N*ZVvVO9l+)lkI}g)r2F{RnugSVu6hS9M=|J^h1{7RVbGk|@`-Vr-16d+ zhgsVTmQtT+T%ZM1@8LXDflb!uAc$mn!(`W#_GEQ7SBT2G)$H94aXRSKiNli(7@J4d`y?hYT@Q zehlT%Cn3z6e*1LHUK{0QL(atuu`66?(%@1_@w^q?Od3qf^68bv->*FdZkT<8&S%Um z%Atw)SUQREN}I}$t3j{6<;5(8Bj4Of2$X6=&=%K^!wm%kTCD%*E%~7jotJ5YPa|{-!hQMZuq))df1J0i^GULN|U$`3S{64W5PU2$dMNJ zcBetpdS@^UWS!8Z-)Ml{s zZEPr2YJ1Lnj^LHNj8K_#l4tzJ-p9xy(MnMiz)HE5u3NGhAmDT}ZbjgMg383VWk--Q z@`C_H)OKAZZu$&79(4#G&pqc)*G3nxb1sT(&q7+%e3bdqoqihnF^fM9gGCa^nk=<< z#y}wh3~xDx$@QEkf{NTu8;{$<}Lv$Hv$HE31+KBE15^ zvqEn+^y@xDT#2dRGhHwb!!fry@jO>>vWa&JGJRSN+5^94o@~ADH_#3o)LTbjT9{~^ z%72a!IW;X5y^|aZ5^x1F*tN70D*zgk>7Igsp!O}_U1BA7^c~*zfxLpnG9I>fA=;c8)ib`paK`#~C}p-WK7Fd`qne&h$(Q85_*O znavx_X6CDqv-WnSiu8ba^Y_J-Nx+<)&^rK1ya1=9OY-}@I^Njn|07LUuI%GR zhz{a7RL5=P9D;e9VgrXz;HIvh%a1Sz0v*^fzT39!8i#E7y}v|5c3Oa?16P{oP~!Pn zv;2)L=BU%7g&SWHd=jaPJWKRvV*%f$7d9==W;F5ali$g!hRgH?OnyiORv;C0r7wVA z5tm>2=+fZ5ss;(3I*_btnmKReaE&qO2XLqb2$Bm06fsw95icqMt9G)gAya?rQl`5P zfeDHZ?!M;WBSZdV>y5l~sps!K5Or5{Oh8AZ-Ijai*<1HcE!Z@(kGNlN+@y6nSELq~ zuUt!U5`sxW0ym-HS2@+@KW7);W<}L{--X12D6tt56$jv|6L!|GLvOA(EfI40nbT-b z2w)EFDK&YKAs)2pJxHJM$Q&1v`y**~@HNhm0AdS841P@>fdv^wLqX0*lP}2*_o1#qL)ISxTAjo>V3Au`S@vFz( zP`>?lv-DgE0Tg8zZaXaK}){2KQ7TnY{$@BOtYp_p##iC=?(;Rs}U?sZh5Rr9gAO0Wf7{B6XqvJPHQw z1cA$*B`27Gikf=(cC9@LooKJH7+4NDim3bl^TfbmV}87Ce9=9|7?aQjIerg-pe=T~ zYgrFS`9XXmEdB9Ay7!3vD}Y?)p`}d(#P`C~-0Rfc#|Ez>{@F^8fMV?WWboyq)G=sf z=7GNu1VNDqqP{>9OJwvy7o<;)kfB<310`5QcX0MTm=X(|!6V@V^e++GK4Q(h`~Rav z|4-EdZJT;u8Xy-{gVCD6XghTMsIXjBnSd7m)&2KCTXfL@sbT|@9^aqc1w+#nI41MJ zhi!jV#e?d%iBMEg$M9T5+tT7%Z17404< zEuBrl76dTHw&$H!8oF+QlXMz%PB+YYIDaoO8bZiLXyhI$CBPe3@$T3p1w`}Q-}AEb zk}pW1RS6v@2}?d~X%ct&OYl!94h2ANR7NZ2Zl!_;LKHs4i8+2cf=W95_}jZ%?x31` z0T+G>s6A60%H9d<3jc;1(NE1BK&hP&z9$hh_v}DjN??){3j8x$x$C_6GRrZ-ydqJ4 z^c|!aD@2*MIiTsqI&imPG6jiS&?B0Hz=YO22y{Nk!A8l($Hq>9jvK<+D$lXbyuOqn!-?j^2_^0{TqlxP%pVs&R zKUjPz8(q|=Rh{ZgKXV9Mf?cnA``ztH(C$2U)}2KFiMaFFdZ=$L^7C0Z)n|`D>&#wx zyGZXcRCr9C=88zi*8=}sgWegWF%{%HJ-J=7G6y)hz)n4hxi|YvtIRg@{vbDxw*Ho3 zQ{X!UDeR+DB6NXKx(NGk_*mKPyPuZ9Lt7ar(XVa}HJuF9vp;P~QLO}A$pJ^V%0}G- zsOT49x<27u2F%$jc;yP`ZVnlHsLv?LU)fH753zqADgAHEUt3V9fOaX0`y)V+ss!BJ zz5`6B1}j%#WM=!?REGcWFG=N$`EkFrZ?PJ_ggHV3S8Ccrjk+7!VrVVlk~V+iS#ys@ z4hV4hP3ZZ34!kbz7Y1<+(AKGgJoxMS^henta%<^7@eR3v{~8V{Z}@XvP>zne9M9sF zZoL9DC}J(pr$w}F@=y&nEz!W7pox(Q7e}8y6_BKTkLD>^wJ=UxA2%tyluEEExnP<)&m+BC(jp9 zaVF)x;7?A(?gFux#ha$ny|x=8`C^r!$&;!j1S-|2d;;<4@|=?i*NaqugHNHPGxU%wT~I`Ko=$>eHWaP1evClzW0dfKp0Cm@5v< zO;I>+I+L-6Xm@yu)W6jtUJXu=SS_cDM3Zc!yh?m?<8;4A>(+%r()-DIE8qh0sqxR} zOY^%;r|;ZuY_S&IIuV+)QBLYMG)Z>PuX_H^>JZ?Zdc|f7EpgJIU=oI`MKR=}x>?mN zi=`Y|cM2YXB1Jz3#T63B6Ok9a(f1&@+iS@SFj_q$H`>!4?)`Z{)W|~L& z=TSGv$pjPoNETG8e)%5#w6@zbgDC1@a1~Mhs&bo`M&S!DZ}n^sM}9Jp=8!uMm8P53 zDt*gq4+Ocpu%1^gHGaO@@29gHN_xFS{xk|!5;=)oQIs4biLHEIns~?^kKlBvcti2z zk#}p@>?HYb#>(JJWW&-x6Z-M;oduYv)k({ejK0r)4$f@@&N}7u z1`o>RjJh6iT-{m0seZrlZC`8zPwGn=hLRDqz#bXcj^-kMC4y_`-Q;O_)irviru0=NgD3%L0JB=YTrg6?|e6xN<6kbj}y$_ zgsc;nMzQhf%wgilc!D2)JlIRfENd@Z4cb>tDH`&H&3%_egrA=u;Yd=Jb5TI*y22qj z|9i~Va~9&7PxgtYu~9os>*e3~#&(~XbYiSPATc=ba3X#kp_KXt(eZLD;~*t5m@WmXsK;0{0ZHMjaZIvlPeLZy^ zx6BfU?MA5Saqj~y$Q5JsZoS)Bvl|KAszVfBU0!?T_@5DL~i;GQMmU zUL6;-jeV!*r>Ynn&vLiqrufUb+-hY)_kd;GRar2KQRBBAG%QJ)DY*TrmEOIl=xkjT zA+z{S)&*2ZKEdKz(vdcEI3PGz9jE#3z(3SH~7r8>VN^w03$@<`r2&=4zUKd3V&g;j4lf*D;xHeHw|nRZU4d3jt0x zGuc3Vc>aN`WD0`F`F+M64y6+1y5H@cNH@2n*r`Fq)*6pKnNMp3$=93Fv^sYM6&}3} z;$#Qr_kjNXSs83P*}i(|i%iN9bGWZw0&|}qP47=wA&i9sZiutqp zgXMOD#iPu_0&OEdX*r&Iv1y+D%7`SH^0HjS$#vjzQ4m`a@}f$SZaY2(cZ9Qn~sVnY0~MR;%>~@7wsr zQ((j-Ysq3`ZnsX-z=Anz`b!E(Ob4NWw3NJGH}2=8`{k|d4Ci@M$w9rmfF@15op>&1*+~JkmBr@8hd=Zqni(Etz%pP{jHGt>r9HswIxpOeS7I?vLt)}vV74;f` zCvT?bw&>j-84ua9bzS3kd!1LGwEZ?gG5lp`t=+cHXS&mEvs3F?3Go<&S`n7%T{5pv+PMvXf*S+_PbjMnFA^+jb4k{PHYq)tCbZQ(7d%cd@21{ zbxuLy&&vmLFSX88^63?iZ%Bv~zVFD-0VlDYyvxo$qVKKH-(Awb(m{HB_Sx%RzrR^b zKEV_RANSMmKb0{zW;Zs4!7)jvk;p3OsQPSyX#U1y?^bd}-z1GBQRgvH|J0HxD^K^+ z37cD zWKa47K_iJt{`dqNS_4)A}SF;@GW0(?PWOu-a7 zNtJQtM}GH_y{=>&G?R5aiy1v>V&CcyT@~Xw z?a?OZ0D=#2i4r1x0P-dJ4pU$$F7al$Q?mx zybjzz@Q8J&*Z#7|tl0Z_2`oQVuhg+}94fvJCGR!p1`3eYAhrxx9{rcWb+bFrYA0m_ zh7auNWMSAvPb5;iKXot(6PeH26_EWeA-He_TmD5aEmwNZ(;hL_2^^~5YY3J3Syn4n zu8kVhWq9A9_~$IjyMnBypKS2zRAWj<3vGKCA*JIiE{V*BZ8yTsgX;1BP2^>R*Ke_& zEk#M}#)u~;ZPkdX^b+}_Duwgs{xWdy4b9y%|-vC%L#eb73-U=L9HMy>?2ODVM@CN#8 z!xIg5=x7-OOOg+;*K};M`*oO-2H>6_aI=RG=yb@q%8?nsdZS0Ze;u%|4jn|<0QAz~ zNsDC=14D+uaT*DKxmf4~HqhsZz$RUrs=Fn`8$hE3l0j{ic{aO%!wBGzK`e%YS>>Q` z3{+9rRF=rXt#45Uu8^4~^At7))!@(rH2GM?rx(D|XbT8r9>~jvYfg6Z{!!pzS1i?wQ!xZT62!Hvx2!B81 zNRSZflU@pQTZ6+IkbA3sy@0OB0EQw5Xn0P>+za8}2;f|J&(|*(D`7#SAkYVNqD9^m z*yt7m(?-x*q1P`Le?|lsX!;pAvH=-=h<2DBO(;I%9H1KZxF(T(3-zQ4iTZi v#S;>v0R+ih@TSpd06|KZLqi}1J^0V4?aexQMUjdf0}yz+`njxgN@xNAoZ*J& literal 0 HcmV?d00001 diff --git a/modules/1_Continue_Exploring/A_qtm_hw/analog_hamiltonian_simulation/mis_graph.png b/modules/1_Continue_Exploring/A_qtm_hw/analog_hamiltonian_simulation/mis_graph.png new file mode 100644 index 0000000000000000000000000000000000000000..ccd8bed6d1671a5290544298a9925c4004660ca1 GIT binary patch literal 22715 zcmeFZhhNYA`!@bAni`^vv@}JEl=eVr4;AfFib6Zu>k?X9`4+Pb>gJ2@T^78Mp1;<9shca|0r`CtEC*va*RNE~NG z7>UG1Qd2r+;F&nq>EUiL*i}0{nR1+5bvyU2ksIfAGn=RVVp)sW(&aC2!XMRT`k=s(hUF#3P$e>o01fV-uxb4gJ3U zuv@ChjV;dBIF$J1;F-X{#f@KH8Wg%pN=h~74M@uP_vMrS{~!N9vl^wERChLVg>G(2 zXUJKpaTHE7t7&bFf5!J*ufXQCEZgtj*xx?Z{ed@(^Hoz@A_`vKtj-f^bf+$9+fi{#c(x>GX^e?isYwV`5@*5!fF{X%ttRVX5-P!^={rk^7ta$AwFB?2jZ53iv%(uwC-2 z7N=)sVv1tZC;M*mke-KsRl@xQ13FqrV=PKd*~m6$ zj^aDML2?2MHvYQX?r65vOdd=AWx4TU%Vhxv?u4-ILpsg_AEHJX4`3{gI+!NgpIP1S z59BN#)qY>EYn?3ijegO6VS{tUEkP6eJ4UPoZz{j7pYE56b>jg}%f*e+q@Ct-^7y{B z&;CHK%BFUa(Q6HB^GymH)AL8-b)x453mw|tRb8WUk$#oyYeeJ-4NN+S`2wwSm$2(N zeKJ`jdB1AOK>NCr<;IR5G;^E7ZKqH21l{Zz8dA~K-TLjhVY>JH@2?rBuKoV@TtCZ1 zoR($3yLl3kZfNDR$Ukke;IP;nPyefkr^0+C*;LhZtt2e}TP2ICDMjgaJN39hksKqg z16N<1U7YANTs0}YyqkuGh9t?xu>bV47z?@$i>(^*!hUO<2E+q5YmsK(PrdJ@GdWD1 z9$P>7)8H(hJ>L|aE?Wj;$KB=EWwNEiCPfF5^Y$SPkd4uO?4z7vL3|byLc8pnYriq2vAHA&^q+gFO?2xUFIjC=D zLXMHx8NcRJa9^*o9m*HFSzKKFTv%YTtLy>(-(0_A+5GqC!hD9=77tAwUn@89A%N=Z zh~Vekxz08GifdbwfOYTvjh}0!Yd<<2B!VO;-VFE}FV8k9{Cstx>2$4gcex+0fWRi* ze7i4nA_9h4CM=wsNwW2V7)xs!c|u*Bl1OjWZpQQeB4-&iFG<|`RQ1r@_2p<(boBAd zm&aJ*qeM2=zh>%_JiWd3Qq^PW8m+>%@zDj4Bal~g$;8h7D!domw1w*ZX(soc%C~)Y z&m?_*YQ<<+=O);gr>d&@eoDT&J7D8s5hiE}0+ERSBT!_q`O&mgh7|LL>;BRtt?xTgY{s5bA#rS3h$n;97y zIZFBu%fH#+X;_M{Z_n|1KjQ8>)l)^c^KngG-6ne<)-xHpd#fAkZ5v{~a1-fD6I-<@ zY-szk_iXEG@rKIx+N}O2jSU};M5N6tPMM8y%cgdwFAwV1X^SU(ExjwClO}R}d8O>e z%HpJexVS^K$rGh8x|>#m4Y393k3&PL_XjRV+8QTH2K;kVaOd>&T<`gf2h+};ht5`# z21S9nx-tOk6dWx$QToPY?>^7&g`@Xee*TDwcrO?uu!NyV7nQnG@ zx~Qlet4%fUj_Yk(T0VA*RX3X>I5@B&KUB3mo!ls}<4UW!L6%9Zl-sX_$i5w)9?3O! zmHA|QD|O*tYU=9bmEGM6SSF0;RV(k+pQ1~{JWIV)IYLtlH)3M)yL~)U*3{L4j$iMo z7kGT3DPM0NH}`Th?OC#!-VjbvOtr7S|Mf`P1I;=Y)6C3FHc986XBzb-SI7HqE3A{6 zcMKT3G?S`!HF{z{sRn5})CmSt*gPHdIN z_3X-3yD!{Xo6~;vO{XNN@aMe^@gh#rkv3H$?%Q_m^!QdNUg9zNYxv94kvigJ z?6%Nmpr(GmqP%aX$nl5LIRODT1}6p2y7G%C(3wqJrlntK^9$N8@J1{RBYlLCy8W56 zZ-_hCIMrM2wKm_XRTnkt{AX@tPL3W)@#)j2YRjV*B@Z0m2v%DgrK+=(I(;p>vi7H{ zWHRmG)ceZp%Jl%>kK`7c_mj)KywWvU5kke`d`gvx={3jxK#I>#Z_77e-+z{Ry&Bo) zx(TUd`}XZ_-%RWUkVYZ+cbqqu=Qa*~dU8 z#f=Dtsj0wrr;vv-EfWL|c#8E%rr5G$>y91o7RK8%Pd|?vk&IRWa6s0qUZD%vSX-Ry zCnqNtO=P8{r0nbMjaq&{$N8wxdoi2h;Lmx{DT=Kp+L)*AbMrhle#Q3CR7uH9ha!ih zuCC6_#TB^I(l@H8+rQnNt)A-BLz%jAzm=D7nw*j1&EB}vkQ5XY{`u!0(T zuMM#W?7K>(qN1Y2TKL54uh-Pn9N6*LGs~p5y<+`-|ExQCIYlJ7v18Eq2+h!^pofp1 zaC1j967SbezpEa*f4XuL<5cZV%Y;atiJo?+$LH$U$_9jVcN8-k#dPjuS74CnPJDG4 z;6?AvRU<_&PtVV<-7b_b|9UVt^gY}x-fUG!l2ek=y}W9YhnxFlDvtV{7S~Jy* z3JHu)3lxiedD#>4*$udC=2pMTfe}K>Re3Ef<_ax7u zv!hzFofW5ATlL(yt7BB;X#VGXE5^Kt{VkrFa^8U?U4AS_^=0fnGL{49SEha{(*CSi zeek=tD$=@km#pU@`aMTeZ0e(Brz$syM6SmVwHyNb)lif z!L-SH5+q%?o8%VRLKxVe_%6?+^{XChEs=;|jqR_ivbFC$Zr6Uav06`0??%mb6>)&59-7`#B zObUbb(_KAulB>zCjJ}QL)6Gj6-Lz3V;+}`^&Cyt48UT2nUS6jv{MYd3yZl=F^itl_ zH}2)uyMv_(Lt1Cry0sE{|3fGf53w}ohdw>bckH~sWv4LC_HkA*yE_ZF`s;dYcUpCo z=G$9b4Ns0YY+JjwiL$aXsHflUT=m8^TVvq918W>_QJztlrsw8T96R3x-?*_2``nVI zCHU(}W=g2)v8Uw2C*NEhZ;0m82n`FXsy-pJs=6R#{w4hwx;vrKP0AmT5oi`DVCRQqoD`y*L`CM{+*RjXmKk2PD1c z_Hl4&V;k;{y|y*p@#V{x5!*uu zyy_6ferL(z*-tVp0>K~ei$5KpFLgi2Z5@qQxkx`WcwrRvJLgf zJu>$rYk%g?tu9To$$2v;$(Apw)7}6sZO+seC|{Y7kzZdr_r_z=QChFut*0{R0Dmx2 zEa~e@a~Z$mI4f=qF@onLGecD;u;KT{+l$=l*gbO2R*`df5AVh3lB9f>4mq?J@<~hI z2i%?QxyE=u(twLi)^jTS^gGO$g!nt+cYGK2@@Jkcy#NbSJqL@Tgh9GCJK(^lv7fKB zRHA%skThiHKA!-@&GVeL{%5wH`_@1EgoP)zJ+yHCm%dnw#i+fYNxxYsN-S z_#h(y>h|5c@5%FZt3WBm>7N3v=-#t1d4CHv5!sc;|a z=LVTij_>1^K)gPXzVe&dwlQw-p+{G5L94|Pc9ogW>uW3aEot=A)6*XwNZiIMv_$c4 z5zu+0DH4oib-68{CcQ;%d1er+b>{gQt?Rl=?M@QxYOcL=BP}mX3ie|}$k`~(G}P3^eH?GmyglClnnM1OcFW2lqm%yZ#W;@0f5>tjH9${3LO8}~5m?VBs3@32CET6=2pgl^F7etT!{iQ(qdE&X-3TlLR& zbRZgy%e=4r37!HH;gOQMhplNT^_oQ@LuM?PQc)63As_x_;n_lkq?Pdck#6c04~3~U(r8Q2zX=}uqKWPUL7|mHs zOW&PGn)$+aifF$&|FKyh*rUrUo%V6479v~r;+Nv&_YzfodS*tH-B4*JkT#iq zZoEC7W;?(0-0-Q+J-;Z4xua%g=sqUDx#M7S3omaSI_VlTc5&t7ng#~ULrqEPc3+-| z**Ek09VZY*X<3<89ZS?6MT*aqs75E9oev@1ryvQW^}oNeOTv+@^Uan1?u~T`Vm_}P z)$(D%PytW;33f)uk|^WB5D*Y>U(7yQe(wv*igN!@W|!^z1CKJXv1wvSkWJ%8_C;?& zV^TW(ZchZOc=$wT$?O*u&Jn$b9f#`c>o0c{AI46&4yu1jlsbWC)V`zG@_R3T&0s=3Ar>z07{zCPlo_JFB#7B>Lku2fSIHYe0OmWi#|;nLoo{;d@fxE% z_Ldq0zx*?g4>@o5?)v(>0@L&JsaDlDu+=ATvGxuPT|lhZVDU~KKXC$M>rGGc7iCw@ zv+93$3lH0&qocD!#6r{AIcG$bd$+6f!^`c32md}y&Dxr~tE+3|`XSUJ;GljqK6q9# zx!nOv|7AY31A`b)hil_OpdbDnLPm<|+7B~MKi`4v;pO70bmxt_>?ZwitmE|&zf)@e z@9G{pQp{bLLT<-{uRg&vBG{y&4K4k?0m%p28WWp=blg(z=fkh_=!J%zUXO8H?Mw3# zge{T?awN`z8n(Zs=%IaEe&)of9rZle+F6|Zsg=o!S60=OEvE)J|66*rtnjDfls9W~ zVJWgP-r=)2p(Sz+_^b!bn5UT0U0K>s_AElc!IS(KzINcZF0}As^nu#(saXn@=N7 zjNP#2UglgKe)4zSzBA%b-ocNQsqOLcpT@JD5Z!zp_@N`{6KxA zV&tglb>7OxmRO#Vg0vPRY~JSHaXCz3PtzZs(Vy;@w}Y^7kz|WmIPkHvs6(sFb$;Kt z;UW2uVn!ClJ>CNWUyo0ye55AesJhV64{iyXJ4;sNkO%}lv;tF zOHcCYZ)e<{K0iEj+B7x5a^R#MS^i@JBj7-6V_{K7plQ|RX6-(5erm2orzPVQ&#zAp zH8S;5HC46=9%A5-O(=gWi9Cj|CSCmg;+{XF6|gbtiFmY=Q=i47#6{jq{ongWrg*_J z&n-39iDiFI%;sFbug#`j6%~z07P?ILDL?XCFh2hwp$Y_*7U;Jt zyDbJN35bWzZzMj#W4w(*vEbsj=Ek#_SWr-quwVCxY5HtUsX)&AHOnjpHjtX@E5iXa z&pCd*b?4rAN^YlbTI86j{ZLxSBtI009W&Yja2$O7dM-*{n&!RZsL@&~+j4IKj35dD z>}0Nvk&-bHLo?Brz^5;}&$WEf`kJJ>(H8HsJt!&YS|vpfe-A_Q;U2fa#|&(qKHjh9 zYqK`TGBjM_kGgbcoi?ndqAe)8^DN)jGr{gclNj+;t(7rH`QS4f0mB>N%9No0^=X z;twAv-wt+XiRVe?x6(r{I4V3-ye9BBP~yHhPL9pCe88;3tX-h{l?Psi5V&Rnj>_xva%BARHoEM|ZAi@Y8Wp1+AUu-Fhr2rR_R^82tP1|JA{DEm z8-H3W66AaeIo$a46cc5=qEA0RliGcv*uI57QCk4Ko`%S^$B!R_>7@^3J$Erj!ez2x zOOGBG?J)h)M*ryZAb+zfyLVMq_a5ss{hc?leC6e;C*tPnP5{!!$FCdZ*@TVkbL0~j zkCpfPGX;LEIm=YyXF={ia0QMQo2QNp9|-&a>uBo$0%f6P;F6ji8_ zKPzn??{k7op=WCjb@3Lv*yTo#^3uDk60OA(O?zGM(I$V?N;nim5F*9Jk|0#Txots{ z^pq$?2&Mm&BBh#IqMD)LBKw{F9%Q`AF(+eF5a6~sXWP=sr$ZkDcNkZ6*M#uT%$a*D zr4&aN?kReWlGFpxiKbms#bt|&i;LK$?-7HI@vlIv#VRmKoW|yv6kM!*AH`$89`JE` z=EJ+-3Q1iuyDhTnZ39kxIY(#Xy?i`h^$y<{y(Q#IRLui`c8u~%TmWYh?5UOQ#V$Ok zt380nO3KR9f8jkZw-?uhCY#`y9ed=Rc*b2PPbiuv^G_Xe7RaHK4EQUaNO~`1TzVV6 zs!X9v&B%BG9SDGaoqG)VB_eV$NKm1#0Hyx9b`6InN;dlUhtm1Ys#g@qwZ-Z)vKU(Z2O1JEQCri6|9urjCc%HI!y_>)-NC zJKIdRj!0GBt7;Wld=pW=xKku#XYCf2CR=HuXP`v^f8w{YpqV7ko<-A8J}_Wo;XAEt z5wLazd|kCfx9_#2q$FbB>wd>%T~j#|@Gy=%l1yNIdVV}`(>|Z^cxe~C^ve%N8}`lU z><=VQF{g|S3$p@jNqfpnjhfk4Ma5~;R}-cQ0u(@wiji@xTdgMYckJ`{dAYz_Y7b_# zxE;i&q|dVEJjk!*x_6oBcYfm61BOlFR?6#79L{bgp~pu*auTh2lHbC;5y@o}O-(w7 zw*1~7x#w0FD>eqZd?v-&)s*PoB)CQeGLlRBjky1!;-EZp=O~RVV+`pxNh?tE(cGEu z6+$7FG7<413)@&)zq~(AnwpwQMw$HZNbUiq-QqHn1x2U@xD3_U_|^Ga4N0N8@1JiK z`RYfeqq3uEw2XzC%7Utk+?({VK7Z9qQg--E#e;^V;zZiylu=*^0qw+|zu1M(^8Vp- zl&I94z_K=2iw^&l@id+=RrxQkPU)h%>^*UVpvyRX#t!@c84&>8W-A>RI>0j+9@pPOC11AiD$uR!ZC_)drCx(h zKv(E!CP`g7r23err{wHV(-8QfwElrDU{QEwWfP&39kH&V=GVF(Oz`>GP)0f9A+ zXsHMYU}I=C?_y$F>~oe}nt3cj!^luE;dUjfJ@&S#-`GC}+`C)$pM9-9`|IQM>})?C zEXH1&0BH8*&6P_86$W@pc#mDwM_9nHhRz-aMoW1Ea+ zmzt-ur2Hd!poj5Zzi+wm6=&YR+G=51Htd?VMW=f{zago^`97)P^!idiBl3|am|m~J zSVPUadVRF3J*n{)eU=-4c7h^EGs@MxdI1gl4F%!Vs#5b=qW~MZ(a0A(y=LSLA=gCL zZS8bllF>IvB%9y58o?$Sts}o2oRF}KpbVr7i=|i;>va*vDv@kffP`sJ2g1OQ{aF}q zq~i2dEOPAJCFd<>VbSJ+qpJ;Q8@vDXlS{2HOE=b6()vRmwD6s+*TvpetS#&TEEH!S zyn)__4HU!$bmzV^^#Z;NKQ9oIA3~@ogIflmiEwbLiYk3dzHj$MR7$i?ZYy$R{e69Q zfPCN^FQ8cfhfxc&PIYweP=)#ynp=o@qLCb6HU!23x#f?6=vG8<0SY_ zP}cvI*m%uzt!sxnOC*T>>8ZL#td1U8%%z#Rxq<0A&I{;{AqqT*bnC=P_8LizAO7}y zr&H-PrQ5F$RZUGz?m|%I2y`NT>3VH#lzyhNtC`44%TV* zo1x`2ejj!nP?eRPOR5MR&`}O&eyo!uPvkUE0WB^y^!A*J^)a@_pot#HOqRZ?w4g;A ze2f{h$y|*fII#|&$ugvXP@54bhlHH87GlU`*i5Y?I_NA(l!W!w-eqgdhy+GLwdWG|xcU7j6!5E;#LF%)yqH16?~B!#QAu6Kj+zMl&>wA z61`#|*(PU6wzP9$p=LYr07?e7_m~7ydf__1V|HfWZ*L@76r4HC&T$u_2lMAXZ3z`bct&8$G_5S%vh4pDG{3S4BM z@svW8@I|YE7O&Qw%>^|!+5tu8F*^O_i-+F_(`>i<_Kf8gt2p=m{ow$W_YuCXCuFB< zwnLY{j_e8*!ch@xn*|9c9~=>osnwrPK{(;wixVHWh?G_mztPkXbvxqxHm286AP&4n zvx*3Ade70zhuBqUB|A6mlgjg5c7>Us9(08rGGi3oe}hN2<^P0o$a&l4hJ^k&uC7jt zPACmD9w6usaN3n(WHD?s^z?%S0=T+cQdl?=)aR?qKSj~}RtBuka$>r<^dcf6l=Q4M z9^HQNB0C4vsvgrM4;bMDCrDq}56tB0<1_Sg#j!0v3~UCnx>2d;;VZwt*1uZZ!Bj6o zuvrWY{D%(R;S5;)f|n)}FWth(D1fv;aBM$)gn{GEf4omn;b5f<)|F}sW#!~{LtN2_ z69S#p@L%70C3F*L%mtP52-bSfy2VqK+i5Tsuy6x2`anVbwb(XFqXK7an=N8=NG_ zefX4+u?0=?_W@sh{ztMN6lZ+_!HR=cD&JW5iGL(<^k^K?g&SxjbdQZ?i(RA5vo}MF zZ=#!SDReMJM{p8^5+MpGQRupk-xMiNMjB_6at%fkTRf2X+%TITZ7*`tG`bBYX6AwD z+3?U}p2j>o5HF7&Jp$ger``86&40QbesNb^M-Lk#@5o2%v`8>SM0w$rYKpxdaB&mtFYFo zU+;J7+$4*LL8ABI@9EFujMFv`1zuU-N6-A=?#;glcQrDGl!A3~Vf4ItHrF@e>Ya*YF>dLkE@PIkammKDGr(T!e zFs=6i%LiRd3d{H|$EteQp|gSOQ`?y8A2;3}G0V4OLP&sAq9tLeb6rO3zPPFB=p_nb zx_N8Tj3HD(wdD7H`tvVt?y3&kE?@`zOH@YvG|gU6V`V{^P=4ZVjUk)3{`#={=;a^D zoGE-DOQIdnc=rsEmA?A@&@8FCr8g`+L?G$ta*RikPdtiz9=Lo~@rwg*Q@FVowlgsu zgR+L+Bo&YaERuXW`M#eERlgaB%kmemB-I6NI`HjDbGZ7d?BIp{XI^-&^(rX^W2;?P zmt4S4M1+KV_i890vft%f-RhmwSB{hq_^`o6M)rxktMa4b_8yZhUI#ObO1Wi9##3@U zdiO*dE7dqYdGf@rEnl$Pcb1-A=BgOz>cd!tXj@~VcO{Ho&tkpj$$Wwe6uESnRVlBM zQw1GWEQ@Fw?Vakm_0DNZyRpMk4~pdhpviFbl6em8M{xu}4*RMjN6op7HRUHnSF`_m zSSiUxG3+v4y;`;w79h7C9$N*q)CcMEDfSy(!9%q8_ab?gV;r~M5%MdXI0D<9>jF0; zI(6$`ArE!ro8}x^-1cZGDXl*~c8xOMzU2mv+MVd=wTG-V7N{5c+Ku(MzbKq{Dv9Uq zVVk0wI*`Mdk+`e@aYkWmrT2|nc3d=ibq^oZ?Mt2GsdFvArboaN5ZQ z28+#?mqr&Ek|{s$cyE2H?x3<`uWB~W>rXIo7$W4@K}6WXfrYe%#IPKJ#E|)rM&?z3 zGfxi<7hQ&Wn_uAW7rU3!pI*4_Dm-HLawaTP^&JTE5~y zd@`-Gz~_7U8gGvTUjC3Ek}}Za2P2>clq3|eD6C3UOpJ|m7j!Uir+xg5?5dz^e+GY#Rt<7LpCWc2K{G)Dm4$QgLoP0;Tvx)Ws{{)e3L2NCpEa}hwx*v1Egn`tUM-3c+9uSHG2b%7& zz1-Ffx##LKAd~^5NuLN|5Xb0s$zo(7#ewl`Qj~M-NlZB`o|2 zGv>KZ3O@|uT#T^Upp#izUPdD1wl)n|Ulss+oC5Uit(~J~N51b}>HK$7kbk1*KkRBb z1tV$}$VNghC3GbS(ZtyBv6E$U%^KK}5cGs{F=k3N$*4DanR7 z*5cm(>{>8d3BV+4GXP&THML&IF^AZdm1@4PuC5NZ7m2`T!!Iq}=Favy2#3-4G0ueV z>U16P#5B#_|2`2YnK0hLN^l5bU5m>AB^GbydaGpsJ5Z$D9ZVtzpCNdFG@YbR5T*zL zQfa$ly#%pc1l{cJE(T5d`3M;F!Ye5G&(372LkLSaeC`G&vkB|6d=ky7pk4|!&&h~? zM+lF|Zb@e@e9Rg&GGsJ*0Qms~!-o9Y%Hjn?CxBbMI~x;IJK?Z`0TD*t!+?7@7quul zmaj`Gsx~poR;H-kMH|4BTL6eK1Fu`2*X((?JPe}pQDcG-6vyORnA1@7d}FgE;sezx5-niSx ziCE%{nh9X;tzeete}8+b8pVwd_c%*J7-7oILOyGOFT#I$a3`cY!sJJcpbOAb1p?I) zn#85nignw+)BoQQG~*xzID!Em81IW+&Y`6+F1ebuUdhCC*bcH5At9oZ_yW5lPENc5 zDOJ&^+*b;#X#=*Dutoe`09+YCBS(#v5^!nmgcn&V`96wwFs!J6Ji!1^;UFg=L`?E* zXkbU}3*q!n25|uxCya_2#02RF%*H)ApQBivjK2X2R|=YTJ}D{VqF>Cq`vdioWtV!c z!4{W;6a`=5-(bpWEc*2y*@H(a1+Q(mLBA)%Fq?xA#s3vU(e%KIASM=rwjAh|Qj2WM zE*3>WXX2~_8GgV~fu4qRi4Vfng=}p*(eWCc50QIN?gX6+ow~I_2x5m)0dxM%%Z+gd zrTkYVA4oWTCodx!3EC8pXar2fG5agd63-JB`MmP$fz$Ah+^29cYGE2&rBIeY#8>qtuGOa^7-+J%MePiidgGCSnEn}&`8GU`G}mivI0znocDhL!k^e`itj<2 zsET1{+YM7M@-5;YXQHjpfpF*kMC)ESvY+H$l*Vj?bUAQ+r$rCCqJGc`f9KK$-hmLg zj-3C1L!WnSyQ1LdNH(eCpuL7$(iwrFz;h7KE4WmLg7c%`(oTrIgp!MFMV!F}}m zE!4xPgakVx#i%9g00!hBnfG23W zalS^uo*XcI$tx}Wm-}$x-Gn4=x(^kFsI->8(-bfi{F^X{zB`IXCE<|OKk%;7<8$qj zZolYI-P6!u{H;cRp9tRuXeir_^)-0>@RnsNEmExm^FfmsI50$A`jjB!{yP~^^mk$L zIO5nLiAn!`^K0i`a)?fkafaG%C@R$)lFK`?fsVIB9dsX&R}uB+Kq~yZ4d{ZGkwBJK zXPe+W3iyoAeM;4chr{Rz0KM<*M~QzwhsyXK77z^xupof3*XvJcl8f0v)^vG~9z@=% zMkDucvPG2!n%FJBGIj*&wv!kcb5RVuD`3KDXlbo+uKx{YfcASJ%BdLGl2I?y`l+!T z4`ya&tf90Kwge=>f8!K#Nk3{^1czLkJM;2Q{=mLMWF&ABd*Q9cSdsh?&DrID_QPYs zjYfPMpE?9dA7XiDrl!t9s1q_Rj6f9r`#irtb9+G*;ncr(XGY+;xW(DR)8|JxA7P1w zR!vZKKhFH0D9E%0i*p}+_tI1^y763_`fY!+=J+j%uF4Vj8E72|k=B1-i-s8#2qC?K z``B+4U=NaqQO?<*zd`r?xuJ-xtSmu8YpLXl zW805{3{vy;mBpcd*U|#-B2t<+cq1exMi~FF29;3F@vO_|Fs{qp<>t3Twlf_b18G@X zR~LeCyB}$7inYih5-X}5;W_$GE+g7{aG(p5-8x{#po6pHm1l_JjYtC{^lSuuR^bA2 z2CmK2f!sVN9exl;rm!XVoC-0wg^A9aw{PG6JNWreGLwg3LxxYR4x-I@>Buacn!+PC z@3#^MDc;f_)G|)${C~*T&;u1NBiqK>soIN9xQp=$JfInVhj=md?h6wjl0L2+q=QlW z8!+Dqo*dT8P~*JdN>2YkK8>@j!m4V^-N#^RtYiQDMqGA7b~EMuEo1x!q}n)QO1S0& zk)I>GY~lXj0ba3MbUgDdv$`TWy0T@vo_@ApPP%~P!>ND`D$W49HdX0Xe6x`7K!H_K zAwoTz`EQQ)=hymYqSM8qG&H2;-dd}d_wg@J?6VoSl(;N+ButPox3l705y%j%ST3<- z3rDOs%g)jzDkQy{p|aP1+mhZJrE>Od@SeL(ABp8#NZMEp0m-#>&mIk2U-^4*LZZ0rqu?Iuq1VK27gJ30p)+`Ry;3s;O%4abwGy$T!kQ>F(jY6^<#;!hS%LL z5lbu4$GUC#*SLYBaz8kDGZCE~-Lp*>%0F*fVmvg@S@Fzb^lallM=m5^&@oJN_j$8f zs4)J&qwS4yVx1-~weT0OOkDE!p>P&CL^XV;#m&dFahsr53>12qw?rBb zx*bGO>3nw2XSyFT4;O#D5jUmKcV|pieFLKA)N5B;l%VHBn?b&r7%+=D-0zQ9-c+UN z)>C)6jEfbxaeC#)E&f36fa%4>bl7ctaYF%jc>wealXBy4FM<~k z1S5 zecB35<;RVswjIgxQzZK>Cqz%DGhFWSm7{Suv0X7LU}}2W>T~ijLWhG^K%})k`H2dJ z7C+JkqaA$&iJz2Bev3@utj(FBg}LB>jdpP<2St35E(JKWKd(4Xnd4o0)yZ6)m(qml0R5ZxCkIALnippy{t)hKWgVNodRO zZ*FV;eijy=pRov;47_oB1CcB0lJozhYxkcHhfVM2--XS&a^QQXN5AUF?`gt6`-iAX zuG*8SG7NLz;}Bxc!VgE#uKNSIxrMil57lLC<1_PVK77t#-BlIC)-;M!h9wrhJ@D_e zA=OsW(V?nA1+csk?o0D$%$N3vKUw;k*&5Ky!~=`zsKV`!h|*{pn4I7NTb^&VT()4` zy_2cF0IEqdkR`f+>g-G3b$w@Sc1ekjua{|_p}g?EaSJWWKhyoE*Im`{Rw29kvI$fiSZCHtcuHb&-m% z;oYOj74=Ga&R(>HMFUxdSaQ`Mm)^G&P{C?2xZP5&ykK$$V+R?zBzJw!)@kSdHC@+o z^yVkk<(a9mSN414HfC-%bYDS==Y8Dk4)G+|^A%`|GAk3)5 z(p?MV*EHgjovo;8|ItfzG&9~SfEs&1Ogx+M12tfG=Z0k-AA^8p?+df z=AFh~g{NrnY?h6G-L+p9;(?%C442Y_FLos;DFszjN;*zyd1Ogu-Oo0tcyf zlKe-ANT=6n0okL>2+oAKN-GD=Rilg*!t1|K2|i9s>1ZU z4h5pKpMe$$Rfs!U0GGCae4hd$6BQVHeI1JR{YbvoNRH7O=#CGFl+A79^qnFLSe=I8 z1&YrADW7;Jpo$f2=!E|kef9%<2knL{JH$W@$Upc>5K(L-KEPLL4}l7tgzd~gJ$!p~ zjEtv4|IvINsQgkNHFIg;u1@H!Td5xkIIM*swJWQrv_Qbcy|gNLfbF_UUyrEvkw2T{ zZq0tJH!t+-wx>fEFF$ahAK z`0c+st)d<$WG@|8j1Dn$3*0{uFd`ko-dmqL_cvZ+;Y^rX>c36+8M^!y%?UMv03b#n z6PQ9nZ^BR;i5s}Mz{7ZmU|~@MU3ul@A0ea?5R9V#9ucONr~yixs2XKrG>6WTKm}W& z10Z6?rX2tVu7tf68|yN#$n6g}3jQH<3p%?nsBK?T)V81hln7T=sA?SK6vFD3i5S7* zf%hCHw0Z)D7vIUw7I7+H<|kMT^iO{u{Cl=(qoT}*G4fgYisbrF4b@`W_vX5ePh1Zx z{u8#hUhkbe*Jis)^-ME1N-49$bdvc77xb1-(0Cq*RX=7zx0C6YaaP+Hr8QT_ z_LSacr3q?Y#lTAbl9kn5+2^^zn?FpbxprmW)8v2f>Vm>5lHZEVkVjWD?4z-Xi7&>+ zE;l5F9U|NO+elgYI)`Tu+5BX;_#P}Jyy-2O=m|#9?H7EBI!mJE+DdMbZ3r6c zGo-A8=`Hr|Y@|E9>~h`)f`WqZvp3^(i6g+C@>Fq|ZK4hi{CK`)GGN2U@6Skj!>3P2 zF&Mj*g>moU$06=Wl!F5Uy6c*eG+bM`<&$)PpRozCd3kv@xkeF@n=4bkzchc218_iE z+5}TE#CF_@+uv$R0c+jsrbcIa!o0ma4Puw9$*sJQ#Bp@WKyS&^%ze5r4X z+{}BPwj8T#?;>`e!wmU#O-!DF^0R~4#pI29W}5cHi|)K%j}RZnTW>IOzHDyR8}E31 zcOz&MbtcGGd$6uM_Ps@Nvwy9+OuGo zQ`2*F6dq*!W=&2VT#t*8&z?NtW?^Q2?^v{lol24C6{KUWBzbe(h%kYJ32E;f25?T3 z6m)30nsYt*?c3viOT8f{RmeVvF8RuT#4Q8#f-Puj2i>Iw12UMlD{@7=yUm&1S>o|L zCr1|^=96_~pDSbI<45ZSlD=ZwVjn$v*}c9{G#2L{)G6ZWBuro*AD=SEZ57Di zx*$36;Yw$EuC3?cV`|05&f|t0D?5earU7?pY*8|n>k>{>j6%l_gxY!J$S)9{<{?PjN;XQtSCs1o_k02_tcwTF0S&%AeRTwEIbLx1lZ zpa8vqfXB+dg??8niJa04{^b0N-}bYxu#7}z>=TqQY|A~df8QNp%eb+tnLZwZ{3q2_ z??_(}l@=v!iiwT2Z%$DILTGsZ{xhiFTam#h1Iej(4Zts`KJin((fV9$zEhI>dZ|qT zWx20>y)}*R=`)n&w|DcbEe2>*hwNczS4_aoq`wD6Sok|}P>|;k8Bxh3@{?05sf%5A zha@VZ3i9*{yoEzMIrd%KE}(vMrv~_QX+F}X!NEcMu^+kN5fNWe6|Dzit{l&2mcRZ8z*-HScZ zo*mLi^4n4TZj$n)+8<6eb6)XSW`Pk-3F*(H^d0-6qq)srZ+ntMdRvb(2B)DnTsmSn zV?=abgi-!W?q^jOM1ZiDm!6qf&!38mn$aebiNds4^YqiI@r`3r0;;$VS@ReMSz@9lF|H7(qn<{^=z6%^Jz8vV;GVEkFi zdbG4^L*_*3j+^dFIbWZubpE2)x&vl*19kOqkZS3GO2}6A!>WhK;sS%5e^gkymOMWg zpm%oW!ri&CMT?u!bNMORyzE&Mw=j?{pDWDFijuE89no}aM7z4V2?kK_!BQ|Z##0r# zybd#u{-b(v{#q;Nn{_{rD^7FXsR|p*X&Q~B-%0Q^j7F(&oN{;1$M?RKcsL<3Dk0}e z4h;Af-O>=(R{!mLt#xCgV7r9R?7bt+)BQ#9^omBy|K}0@mZr7m>A5PKi)9qM1KS4{ zHDo-#dm6n?dB3NWW4^4r`)ee-UhB)EIDGfNjx@-y6ovKa+xL%Lh!l!zZ`(?{bP8|I zIDJMvUih1*kv>IX(DLKw-79Na52f5Ly(R^J!<}1k&`qEe4KICvaq8m5XGr?i$Z}sV zdO28JP?IpJk@H&fiNCL{`?2dEQiP$dZgNZvvzIIfu{!VGv9i88H&>Wg9lH8vSQ}s6bY$*3@S!YUfu#U+4E}( z%z=9Z4;*L#_ednYsHn&Hj$FXPEiq!9%_te;7RG2keq>!)Q1e?k<5fR2E2yAgDIBjs zJi4Tls3{#a6p4CGeV6eCOgDQ{k#^JpW4Y z=+QF_At&$;3fIMNze5-^Hcj~vb`lugSlHRKfXknwr{1XPik-VsC@So zWIPbLv~g80UI?)(_?w-1etHuX1D)`00Y1KIHvNR?y8bU{Nb=#gBJRSWc*TEfn7C-S zYhPd>lPrgQ75PX(D|t&PYhg$fv*f3tyEhnO<(CwHe>*TIRZ%y&INH6j?h#AV3&sw} zW)Acor9d$5cfGl*mHFj;Y)p*Z+hCf8`uhKs-pGoAQC#esIB=nR#3^7)Ol2r_=99jX z?)LGZROtr?7;5~Ji-G*R!`N(}cO*b-A^QI_)KN97g&O_zLkCH4{*`S*M5 z=9Kp}ibkQS=!tfL3ux#2r&S0+buF#afN%x44KhE`**>gV>3}GszK3l*Z7eG9IhD*i zvc59Os7=kz5Q2EU?5vl39+uQr=mVH)%7+h{Fa4CSog~}5^(dUx)Y??9^70IfjP|Mh zM$kAPA9j{>hf=jWk$EYyX{ZG~;}hJ=I!)Yk>hfQ4zz^}+#lD3|Wh6Sc-(Lk^cTV&K zPmN|*#PMP{GLr0UM=vM9op#iU_FlU|J z>;BrT?bU_byd!WrW$ID;%ner=P+obKoUDl2GUF*rz(+JTz^h*c@ixk*DJe=wV^w_p zfMAW2i_dWiszfC(|2PBz?&k5(_FwMO^JspagOq41c6o|?2aK7FT1_TqgnZNnCC|Cu zv-PF<%(Cxq)WKL9t0Z~9eZd*AxZ(xduQAL`F|eJaLet&FPD4$Dx1Q`rZ`lSnrt|UQ zb9D?}WftJpGaIz{aG_Y?`qtB)WfmVF$(f?R(K9i*kDsBi@4?6O?m}EPSY6hvygX3{ z-0zdz+fnXUvj4z=Z?F+y;*xB?Au=~Pi|674TKC1&wA1x>@7{f1$}R0nRNx)d?s2pCb%&deB`I`tSP06{4!sbZTB2+FjN)!>d(LUVq~#U&SfK^7CwNn*%bXt_u& zZ(Ik%anI>_PxLh4;NZ09SD5VZQxd4+BhVEeqqX9RiH}c*;{ol4`W^{K12n;C7J}(1 zwvt{R5D_tSbaZq+p77uSvBH_C^$?P2wW%RSyq~wC?|@b&1_XgNc@*Nv8Jv6K%Pjcv zGne__r*XOSpyb{UIE%P5fZH$!`1tscX|GYzM|V0(NDE)Anp`{}Cua^=ln3QL15!*T ze1-_Bw~^%3qyqQxHgO=e(}KZS7|0Z1UD|!em?;y3|S2R*hWwcvLBNa zl2ZK=cHrfXcadX|lCNpJBXACY!#8X=J-f76u?^dvJYu7Mbd@H(fuz6{^{~K;a z!o#NqTZO3fHeC^2d|k8DBKzuO*TMKkKKz5821)XOsHh&KP>cv7hXnuEAY8XmY?7Ug zz%|*Jd-pPNy9~RYA%S2!yA>TO>_ts6_iNvqsk+3Jj=-V3<>f{LPEk; z0ZP`Rn3jZ|D+C`=kbF)PO@kPA9}+G@(oOlLr3u`2$S?z+>@(tVikFM7gw%8 zW!kUt4qf)$TI(-hyRWr>g7fw{&cuyD*?{@d^8wPP0YBGv8Xr94wbpgq+tgC9Lqt1|&UTuZHMpNSi!2YoDN6 zZT?#a!LgYei8{#V8Q;$G*SwIOSY|){JhGo7ME=jR%Ej$JPhvmMoIH7hkZ;P?|BM2c z?Ny}{)5gLdio(T83|d)PIXVUMB$d;CHEnI;SpQyqwc)bFscszmMBOs=f2^kNe(v1E zc^hB9vwj!WuV1Z^9Xt)V`*;m-E5((>YVNqZjMRmm9g;MRekho8L`J+8g=9ODCPkWpKK$0JDUv;bRzz?rk@DtCd~ z4uEOB{cz!B>wNM2=rxi5t-b3)fm6LpmlS#Giq2s8=V>YiTx>AC;9)-3)z!M^zq96n zO1Xe+VAVDaSncUazQ4WQf6^6DUJ*W2{cflGq$i($U#Skv7oD%aZXZM4eO<8wTYi}6 z{#oB@|LQ!;3_+mog4>|1vHiAejM2IC=clWHI+Z{l$v(1r@ijkw{a?=fg$!Ont51ae zDm%BmYm56mznTMEfcd+@su(z|3aK^kmTfl)3Cb^EV%`KHV9-Tc{j4A_cf;E?RUep$ngIU@&T^Mp*Xi#ku{U%Yb9#zU4P{#BBlr4XMo&UZ5{~v$Wc|t+G>(=giwXf{^-y1U; zUf$^CV_?YGv&h<2``tQ=r*ltCKL398zXRfVfA55Khn~0pvS*E0n&g4CkMemL6qdw! z)x3Q6^u1X`N?^B|?w2bImcRP4ry&wpv@$4u-Tb?L*+>4K^_OQm{`r)Ba)oNv^)<0` z=L#DL1Iq`6C-)@(_E~Lv5uvVnA#3BS=e70g)Y)tT*-tVQgMGBF_Vc$>v!*TmcJ}t^ zyuE)st8*`J*IXEVNO%ABw2dc~y5nko zxUT(ww956CvhxH11OD#&@A>aKOEEJ1V4Qz{dHMGJtADQh`Rm)K?VBQVuI7m*Z@(4# za&?H$bBR=&Sqs~D+sZuK;_w)l`xzt_9g1Ga+baF#du@IAyNxljdn-(SSkFGXY~S18 zS})(J*qXl3JX+FeXrOuF2guW34;{@GFa3DS^`?&5*4$guQsWd_fU(KIpmx|-0Yo_i z4P`Kp1O@;@!%2`12A?)y+%qH?0V9}!VKT5y%D^xK*kEH|H~?zSjA|h+#LoO@)ZF>T VaA#sM@YG=j22WQ%mvv4FO#m?lNyz{J literal 0 HcmV?d00001 diff --git a/modules/1_Continue_Exploring/A_qtm_hw/analog_hamiltonian_simulation/py_graph.png b/modules/1_Continue_Exploring/A_qtm_hw/analog_hamiltonian_simulation/py_graph.png new file mode 100644 index 0000000000000000000000000000000000000000..53f2efb653df980bc4c8eea5364da633bdea7f85 GIT binary patch literal 22741 zcmeFZg;$o{yEXcNG}7JOjUb4WfRsoH2uOz_4N?NqodO~T9TI|oigY6(s5Gc_mxQ2% z#JO(#eS4q1zrWy&aTwzr4t<~Jj9=BZXdU#v9 z+oGH-JzO1KJRI*^F?-p%Ke+GWd`VDLP?Vq9&cnl1N=WFx|G%J%`#qtjOmWdD6f;Uq z>6)HT`o^TUp5DDvtnGVv*+B#yg1ov)A3JL7`J-s9JE#dbPlpXvFF)-dzoX$;il=^g zz;5E1q16UvJ*k73Rci=ly($T@V^GjwZ{Nf;laXn3(34>AyPLaLxbD5{>uV$$xFqer zJhiW{n#>*?1wS^5JW?nU_|X@nlxKyX=ay*f@JBMu|Nqzj&#Z<{ETO#6r@j&9%U8%A z(lYdosEbuqg`{Gh6~PXx%8m10RI*W!x*XBL!YxhW#$)t2(@z7fWvY`@#$?UHP{mJj zq>Pi76N2D5Dx6(yus2JYf{Ja{+Cf3PZr7hSPekhYkT&4fdb=nLE-0G56D&3V8M=11V!pCV zbxeYG)dBzF68mF#BlRfEisX-lHkJl6@d`}63Aoqiyv(1CIVI3$M9N#5VZP`h%DEY+ zw;^&y;d3G5<=B#VFx*Oy^%$onIsQNZqcAVUyki5~mlFw$L z8Dk!X)ep&N(gAYXKj9_+rjwMce4d>F;I(ar}VE5-gN_ zT1rmZE-_rK5@kU8z;oxU`186rHp*@=1>fH^B@-Q`Z8XX~@No0v^ffaxGa6D-cxaPt zt4j63;ZZ!i?C!+iGUFPypBr8_CMOs4UpD>PSf{ythI+zlI9?Brkj$PFn5e0}_G_Tj z=+b+;0dzq@L031ohkv%byu7rz$&U_SL1c7uBX{S+7vFH=cPosdyVkcZ9;yFQBI)68 z;badfy-Jt(^csimI*Pcp46JLWpZ^pr+nKz>8)cA<+TM1ZsPn|1ot+(T^pmi%vdSJh z`90wJ`Gq*XK*Z;l5|QEI;bzVEkR8&Pz|AN9OxO_oo5efE1W$R;etV(Mz{W%d-ANg5 zSbRhKXH`JaR6xs(#4=r8;auw!g)y|g&!4aB>5;d!x8px)zfV@TWN__s+5Gg>a*KLM&WhLMpoZisaZuTXP(T?&dJ%NeX+g0orHnG z)WY7-P{hN-V__JQq8kU^{B73|&SDR`$uCONF_vEd4%cXz{| zw%2*CyW6WODcNKjqWFyb)hT@iq!LVI1jnp$4CcC(h{Qfr4*w8|WmO|hPEN)Xh!7DG z>9?;!1<{JzlV1@p)h$pDUxuvC&8-Y$z4g=#QJ6-gBbu-tw)VdB>RGtE%V5 zuGW^Pk_fjQ7#R5aDq`gIZK3zn=g*sO&L4!1nV#5Q+CtaAlCNt@R;0_DZNNM8qdE1O z#_6Z|)!~YYt532t2`KO|UtD%FUil^ddu?PMS)HOMaKBisp0+*HF;~$w5FJW<@V30@_}Rfx8me8L zk0mj#v$G0bdEJu0f`?k0=&JA`51+*6Otmkjy7eS2EplaLMZrZ$P3_QOT{>JLnDgcf zaw+jr^Jdw?2&i`s{6SdUmu`oSFK8^>_Yl6#Hvr)ue6@Nult@T{P(ICISAPrdQWOvEF9V%D&W&S*+0u2fZv=!AJ+a=%_db{A?0jLc)mp`l|^HSFwnQhz8s=%mM;rA(QYjXk~r( za9Yf7Df;>SRp_;Bk06NmwKtrqA70*b31?9bNRuK-Dz<`~C$qQ0i%!;gwwLI?R_aQs zT3A@1;zR-|Dkg?kSlq+Q3xZne>Q%bqVQuquy?~J)G+FzugNl%sgItvIZ1d~uv4^|M z^Y8{0Z{LzKM4m1oaY3g8!JH|xwK}}L<;_FaHe6AZVgD<6b4G2Ob3rC9!Sy_*m;G$$?WEZfpv0)P#+armn7$VhKI5-OWt*9v|!eOmZ zL8++}=@}Ui@u}kC{LbZT8$Xtlyk@-(#T?O6s|cVJ+k|H+Z%)!xtnOYZY5ZQ;Z*8z- zHUfDd${(cM-QIp-X=zE)|Da-pJ0F`ie(4)L^*@{=cR(3Fs`zvP>!b!zv{i2?Ka<; zJFktYe)Fclduq7m`}gnp-R%uu^kT4*4el%@a;ayCxc#7Ckd0HC7rIRTw*d-HPXNgS zR#wGUbi1&@!9i_^uH$v{v$o;lTi3f-(8Op7tgNl^8x^mJi0pjZg~Fh>;>;aSEADG) zFL`wvYcz7=;p(1NTG|D*6ns->%C~Hak7?iIJ$Zy>JYS4+7B-Ap`S_&D$8%7 zYGnTkIMb;p*`N$j@lOn1Ur*t@DQwY#IzHb0nmhkE=_*|SmEx!g&yWKdx_@@>XZgk? zd~;*w{YL{7WwgWGLk|If1=eIeOVTaYqn7oTyzDX+H!)!X57KR792=B;b& zVm$k1M-vSSPt#afb3b*V+jTTFHYUAz5!2|mACsV<{KdrdPc=HvS-H8qN9}V8Uq*;` zrY1T%k=wU#zjv8tTpukXV+fBkxpjxHVPj3sX=$FSiSxdAcS8UgefE7cw0==BUD6G`E0L)y9G@zCz)ri~%c-WmUXCx^>HGU&^@5Tpm!znu z(^$-YjEnS=#FdqmI0OU~um*-k-sn8V&084B&!0zMy7xtzFN}qSr5hSBglK=2!`Qv> z?W!@e(C5#M!WV(*uu;mBRowf^*zk9=zQ*@A@5ICevKj{88-s4-=KG;7FD%SJ#C*k@ zT^%Y+N=?P&LsHlY~c$$U9#T+Pc+kgIahG60&m!ix{ z4$qXsVA0}R{aGiCUq!0I>6;B8y4Wl&D=QJAUY0McwY63C#*NVMa7-z$je`x^Hq8vF zRQs>itgKKMY392UyGG0IkT5Y3RlV5%qy6pp&kvVpH8xirkNn?MTL(z=6NLU~-XNS! z8?vveabLvKOqbl*$XZyiDH^dqo@YAqF~F(!SPh{SuNfC3(Qz|G-Bhx(1W%*swh@tv47-1lW}%{?A$0&Kk9|JLrj9AGBX?7g-~pwPNu-) zVB|(@Dhd4CK7evwZPi7j=p<(A^2P{+Xfb*J>-)OqySGU;Cu(;~FJ?ltB_$=HQ1|XF zqlfoTHT{a=h1)<&WFcadmd{g;ukcvajib4w3`^yTi;KH5R?g%+Sr^W5)hpY3YwEhJ zgeVIGo#GrZc~Vr(0>AXxs~nVti$gTy7f<11&%fw58mV9W-QSvD=t+TCil>u6p>Dps zETE0^Qo`lS$KvSj{7TddYAr3T{DOj6D7CqHkI`bIqJjzwx!%5g>pIhdhO9J4fYaSK zSd~4`yN6aR-WcQ-mr<1R$L)6J<>#|wU}MYig{29ZN3g5e^=G%fv%M!REj_cg_DMli zi8CCtzXJmU!(ydBCn_#3EYJF*iN99o&y8>IkT-!E;JQ6?P3-=lk_UU}&cTj#x|HXd z5le&XEc$z60sFBxrrE@GwY6^5q^zR$u)mzpgaKc*AMDJ}uCMb+5z;(sX_3E3BZ~3! zdsTa;jGu+IHJeoOwchS-AIs|Gh6d^3BAvXJKb}rMJ}f$ODB0*i5caPOm_1@5-F;duZFWv2Hsh$pq6>2^v#itTn=t}cVPD|TwbLLoG zU9G67Xjw0BHnXTEy>Vm5`#Kqk%tv&)5O%eYloYaw$;nFJ-}VD;s@d?|akS!i>tp3z zkj=vP2id3kw1YD@4Swy>wvlmZGIMZX-o1NQXv09a(bsdpEn2k`-s?$uxzN(rti(tn zCig78=ju0ZwEJx}M#ASUV0EZPZK76G-{uXixtH zDN1>7#+lZ8_K9+sSvbeYy(~GaxXNMIc7XsUCyew=zh*U=hc4h*Q z;Xu8&OS+67C1fr+L*$-D;gIF0Cp?BVt}IQbM-Kjfe^wvo2wj38fva5c-lYHa>zDSs zyPv7N_;g;!Klpl=bx;o0q;SN3AYYB_BDF9|?(F#8ie$b@ZEY=5_MuYmWSt#jX9b?t zuBh6eAZ+nB4BVIcXl(A?YybY8Hsh*yfER%!y#5s)&SVivd75XJooJs5nI~WqF>Vt~ zE9Jj>)z;gK4}ELA#*Gb&ke*wLl%@z`(WJ(8)`&&gbB%m(Xh^3(Jr%t^wc+$=eWEN( zRoM__3#)Qb;LeARKRQh2HDK*VNOS8*Rac!0!=fbn}`hUmC- z&BAu5V|e_U8PA^K6zE2enfaBqICEUSd^vZXG%2$J^{L~l+*uqh8RyJYqhHaj!h{t` zJuH<(#_+T>suvP22@uP9W{tkE>$u76xS$?j;>|(==V)`|Z5YgLZho0mkBXzl&(>h) z;>rs+IXXD~yCq`ThB4q)^yISB_b?*4V`3S(i6@J!~FW=0Hh89sy3py$t@uNbmF zfNCyKA?XQ?4%O1ynj_ERI9f_G#>642%^xKC_J2c#oHXFa)N%pR0jG!e4h{}1pobn? zs$=nph*Zk6G(f*%S5tuY0n7ArZmzAlT?s1$Q(GB=s=vZg(Z|ov8f065=pqm%B97z2 zP>`{2qzQg}CSt9m!pd7YJgoPxu;=9Dz@1t#>pUFfz5?tPH>WafjNx$6xle|{7hl+hB> zOQKX%R0fiwc(0q8F@DLCGl$9(7k5#w%=mZsq3G5=dyW_1 zjaxs3q-c`HVroZF@*4&{zjSX7Qn|?J-K!NzjG39%P@l7t{ecpFzKzLxDiDQo*+_8n z2JBo9e=Xh{BhHk5`0JZ92Sha>A)rN$6*pL~bLLxHtI~(Gk&&b&hc5^A^P)J5SfR4?LWcGu@L(9=pBkD_cFCsx@hSJhQPiAM4mTrK6^4?-3$HV;o z{{AgkwNDd=+%x|4cQL1el({JG9G_|y=*gGqS!kXaP!CQup_7rG5JCE2{-^H)oJdJY zS&@7TDLOPZ#;%`Cn}|7_3+)b224rIm<7_Gq1RdTHGBY z7q5?(AGzxkD?R0XVN&>6ihPL$WZ>nyebn?)9yp*(nZ#8kgD5ulvwFG{8d=4ozg`W$ zNAJMi_Wr078C7=~^*M0F)(UXH`q8%f_iZr{BX7SKjwYg7SOXPg1k4+3H{TtxVp;mZDxPe-Hak=~+!)K$B6f0tCr3b~RU! zUO-?mC^rMiP7NOy_gZtniG_nhEUb4fEGE46zyk;*NJjV5c~!^Oq8>q@!PVjixT4 zZdlargm_aq>!@6&3OT zf<+!3c_6{(O~%+-Y7lB=&UXJ7D)k$_`R$_5XZt=PbII=>KYz{R2hgnoMG7R|ZEr;f zVm~&)iWExz_G~0m+w?RO(s?L_%r2&?b4XE=tPV7C)e1dIP;er&+ciHp8k*aGk3)GK z9qOOaD}N=Sc63#wxMUL7tcP^l1e2LrcJq2ts(J@w^Q)Gg?F2jHI_oTFchy zf|K$ZzIou$z}8S=NUtAb?pq5qcD>gI1Q)OgI{+KDylm^;JU#h~&~{Z-96|=EFe2Fl zc@K8h66U3~w6g=T^7)|SCw~2lcPS2hr%sx^E{c?|XM@BKW2L(!LCvyQghWJLwGWn+ zR7BJ*EiG4ui^)J^Bc`YC^Q4H@I2R%uKe&9$#b;i99B?@Eu3YVfzm3V&i@R8Y9|h4a zpkmH4Ba2vJjZoS5zGec>V{yUa2?ZSQu{wwe(b5hT9V3|+h*5XU4>}@;Ubq$W)$?y)}@rgE}e8CMQVX)IX27Uw!5kn!CJ$a z5R45>H`evkF?}V+2JV^UqSuh&$dFM|MnFVb{rKR7Y|Zs95g#D(ogL9+B0k#|rAF_t zC@Co+A$2%>ziBcre$0?BVs%4T{aRC3mkXuhnEHUjLyDp4XpK+fnJ`)kmsTf$X`|C9 zo9<#~@tUin0juN{@8O;k3=Z#(b)fv@qa(otERdbk9rLJdVQI+tn@JLqM$#@2r{Q_waqV3FniniCJ&3)!FYBLY3X#$z>kg&T_vSVm@M zW=-IkETsNGmBVf5orT>>)z{<ChuMe-J#7CT;E=uKlCoQ9$WFE zo|tNCyF?1iPE|a`G+A9te428NtMy&g@uN}bl zS2%tX?aR2DwwM^jYXS^a1KHOu0Pc=TP!MfFz9VdbvL7xA23QiCkn0VoH6$_;d*kO%x1+uL zl2@)oL#T@yKq>8m*&ZmD*X`_zRwQla4oHL>hhZ&USNd5xIy&Tw#p0)F0ELAD^vlu8 zk{y3*i(gt=3J{nzL^h zfJFX#11bm0a%a&1&)*%BB(-Y49zh^iYbdtcTn8?^X&Ahz5Nt4v5C#fvP(kfb_DB~U zvJ<10aHbD9`F;D~=*ViR@43lRc+|xN;9PR2J4Aq$DL^yy&&tJX#bs`MqL9-9?XnU8 zkd2K^RKhJz;4(h@lirm8^h=Ga@ML9W{cmxwhUV+>&Tefb!e&@QsDgwYJ%{mFo&EA< zN?`2mAP9;;ybidjbBKtLKt{9!nXk0&BK!}kBB20u>H%^B%oIBdZlq}}9XW{7^9Si! z!P`X|mvttwsVJ%NR2CI+BYm2NhGx7uP|nQnr#M7Ml==evBM?x0gt`Gf1dhQO(X6W- z{m{>E9+V*EcltWej6iq7s4|WR>9zvaOJ{YW_7aH9*i1}J5Pz}AcQ7BTZ=CE;t3aEG zx4PK^&6ELxKIq-MOHfk6?|y!P?6ICbG)F}b4>3UE98!4CsUa8(M4=(1U-c#g;Z}6~ zB{xF3VL)Qp5`>1d(R1cON}}@|l&6bb2@HxbvYq~_>LQ7juS)}=2va6vQc_l_PxvsW zgaWkF!@_iCHH#l_rw4hEMGLT0qC2301Yf`o zJK?0Ir;h`*t_3uYdtcH4v$3Y!1H8&}>y-uQd^Hc2K@hN6Fhmt=U=cB1{MVuMk7~XD z_30ewSBTUEecEJ|CMrtlnXo0g{b*_Ql?O|Z?aB$5k3V&cj#6$l>=KT?F}+i~eDXE$ zG!!PC$c9RKtPn#f(l1`-VkPZ?CqVQ-2yhZgN={HKL3QE1gtVqwcTCWlinkxEdPr$J z7sW)hc4*_34|nex8XD>yJcJJOdA!nkpvKMmUzt&kgB$k^4UqxOG^}2(ML?Us|A3f;hOW#2UqV7c%zhXr@OUQ@mMctBImaEASXn^<9dKLz zzI9huSNr570|>v!yCNMnq@hq>_2L(OARcw| zi&CaC_Jb~+cQc`C zc55-B^YT;FY28bwxsK?A)xs=cr|)8YFC`Mk-V&3fwm~|_zP?>P2PF4+@ws{!gbDwD zvGZ%M`3}w5QgzX)bc3&)+_98*xO$OEmcHJ5t23G7#x`8cz`}}^b;#r7$P;EGSWrY- zYux6My@R%9`<9)X6#q1ed*7|3i&14blViN$;U%n#)Y*|XN=m=PplZ|0`cv!Z==_^| zU!=!pPBjK^md516vi>f{pQd4b>w%Pq-y^chg6oWbqMOt0mQcJR+I;ghN=fN0GUBG9 zqCz?i7*U`t1Y1MRi`ME5e$Y--rc%e}C_{VLIeEK7rHCoRBi(w(5hE9dD zj-+VDuWxYKS##eWf^=W$Hm?j&CJ*W^TnKGm3aTJ@$wFT}TR-8atpjN~5&f*lVL1Fr z7CyL)@E^r1bAd|I#uWoa+a0o09+V_d&xNG$Xe1#^EB|A_Dxs4_F~jT-g=bi`$GzuP zrr8Gev?z6rF-3J&*25C;Sac>bC4P*hg7JTIAg$t_9MYL!B$KWC)cGN$+UskhWfq2F z?%{QJCt0%!b$Kgh9Zepxk&^UGjhP1$fVc@;spUZ~3Mzx1)wS8^g3MFft}unP41-Ny-5jCQK)QqIV7wq{SVy%EI?Xg#XwhLXS*F*^Q2U_SrDF6zBr=5VJuBn zLhuUy^V%10JJL=&JEZ@k4iCl3hDGdernKX` zBw*;tkeK!-gEw!7HVi}&vaA&VU}{Wr8r^Wg1mULbFhZav_Ix$q!`;Bxf#U+-3WX&_ zA#ea+k}0zIYWeCkuLOS~{D9gXSsxyL?3w>W|oiC5_|lcA}a`e=pOD*#QL67d5+}n)(H% z69EAMav z5JuBH787kr4`*jSC>+!}+VL zz>EI;P62AZWZlRn#=$gATTg6EF!{c`AY`k zE1Ji6e6bS(a~3`gp2qgCU$v0?8?6l$62b7&4Vqce$XZ%+P#h^&kc}|xZIDpY0eUQ@ z00^`p=PR`Ud<52{^iH*=2YHEnIx6{^nwna0Xy^q{JkDbm*`L+3)2%btKO08i%gt6# zO}k0${6E5x?<>Fk$`tLICaoR!72Io+HH{}!E~KoLeJFDeP!=<4AS1}OGi zKScrw{2+LKe>ScGM*xcvfWlQ8ct+RKvN90}M|d7W03|RXj8c6HoFaU0&x7Ciy(&B- z3VBBGIfjC7^ZN&<-bI|KD2(S~_el-jm_#G!9l)pu{UDnrEco-6FRg*Xj#oKQ!Q*kA zM=;=80>CxXXQ$O*`ML*JYaO(&@>xv1jd-o-ued9nuOWCED4YInUWGl&ft`S|pXrLO ziiKc1D5wX!U*(KY(QsqwhobPzwero;P!le`U{_lK$^@fNSYdEjAP_$}gDKzuZQ6gA zpslTKW?_LH-W7t3rU7Kry^U{V|6MrYqcGnAn%oNU49)}y$GsrT$8ico2H0- z!<(vp9%F|vZ$EpIw1ff&=|53(T_G^q)KI%N%N@B!pBlw*jTcx6PrXajp6 z$RuP8k)NXBs-4-_LR~i}uE3tQAmjY=$OWDadQ}L-TrQ~Xu+LYZ=nT|&u2X`qEgalH zR>ucB=lcv~SP?`l3n!;|7_D!2O0#vMt12(fC(3nhHJ>HG5b%KuKm#%L*9p z%8zQOIC{$PoO*L}bFda+AT+jhb*Y@+Jc%8bk&zLcIErA8d7>`J;}~~PsI2^PYKjp$ zZ#!539;c`CpXVYsIo`qFzw=NB5Rn+UChX&Yn!0)jM6T@N0$Cpnw$As_7beOiG&IpL zQE%z%)9|3@<$%ao0Ts*g*Fp~hBVA!-&r|U}Y%I7lI$-OSRB}Wiz~gj{je$nd3%kz9 zml{@{uaOb0ln1wFrgU_7x9Y!)=f#98a_g6yF#xmgf@lUSHp_Xe0VPESWr)fHSJVZz zA7`McNeIr?eh?c#9EGZ`#D2rNE8!zJH;EY-;@3uA1Iy+B!a!5Tt6yUAXX6{9eE^Sx zuz|EW0WYA!-MgFt2ea4%Iz{A?XzY2f2JHG_Bq`=FdJ&tD9_&7lGylm-7AYxOWF9xK zjSJDMe6!2|iUbiN97U6HomZ8D;#-9Z#d@HNn|qM+vLI^%Tnw?b>6hpsLhb%5c2?3B z_|}8vFW12(3t|qG@-$?1riP}aK%9vOO%;aS@FIw(4HA0>@uc9Tq9CD3Vg3rLS5kU< zTyL7tzlaDp-cixWl%|0M4~vbBh26Udm6QgQ=<9`=85Nf8SQqIo!%jgZ?dj%FBU%Y^CxH*ux6l|;{Y>;vHy7?dk0#J|M5;2(k{+554R#5h%?0y_({0(j5E2ShBy9|hJ0NuTX(cmSA1h+bh+j%xwiKs1zcLt|qQNR-&GLKt@; zd9pDs0_+I3D;%`^6f)Q;@KYnJ0(l*O{s3&C5>~qq0g#1e64U#DhIxutjkBw@70tRc zuC@8>#03Wa|1OFbj(&Q2D*0gP;vaBrND)$mK#^17p4sJFz`bb z3Yo71dei=eRB4Dt&I%mO$D&1MF;=y_onOuzEr@slSVy>90pfx*i!m}bTR zFGKXte;)yEMNCW_gp})2Bk;d{gI1=ISzCL>|Is57YU(J^pZ=u=NM~R{0v?I4q{0Fr zEQ+9w4^DRg5zT;VWs;g1r5XewYz0~@f?w7~%lM=cN&(Wn&DP@;ahZ~)zv^`ntUypp zAuXB?m*~Ki_m65IH?>jxAN}`s0q7MifH(oYDMPTo5WCMRmEgF;#oQACDj(u#0=;=- zyb=T=SdAlK)jF>Y1o|>%?s$+JA=m2yX#$3$Fp`!6ZQ(pJc89d&EZf3xYrKBa8h>yE zUpIdxDtY6)ayR~=Mfw&PX$=1b{O8Z%NMoyV=+d&m0MuecD{6y-C~HW$0juNrr;O^o z1Z0o56%jQJ{3BEhDqe;twWq9XY_qV^P<|P~DhmeeC{-_LMTmF}nue<<78-o&0|1&( zz&fl@8o*fs5;J@XB>r$vA?Cm_q6C`+w3C8TKDi9|aofNE3Cvy>C+(D!&_SC3vc`Y{ zDDdrG?B2cq+a)0JbCnFAx##nFKD=%tfDAF0 zDSAZG3i$g|;=CzXs%f)R9+T*7&intD-~A!%3wi|rdyN-jxDw72@_?w2d=tHowmdKF zxm=~dG_+{TCSb$mz7@%~bq&Mg3Qfh&t7xN6z7!7|V7g){%oSYF))*9x^8eMt1%e}q zzdsxsK(4UEWAu!|C$GE9)9AjByZt5bM_U>c8bv1@mbcJFY4r@=Rx*MTgl=JJ8H^A} zXy{-|ItO!{4q$iaC-=^atRkR&)WjIyS*BdZc*Z{3@*J4P?5&J_TXf1xiZG-@K@(Jw9&f%JEh6hj!;Io^N6N zRTNzE%D*}Y{P&uL1yo@;^Tmd6c)TVZwtuu8PbRV$UiRoEGB^Y!ss+3f*(3Hy1r)_a z4owYYy;en8rCj1W;C~g2`M8J}>MGP0tjo?5V4VV47Mz+IYto&dRu&P10VN2$PY9d@ zHy5(IahbJs?z}3t8C~N$&7?Xc$P3ogNS?QPa#q&7F*qPX@!)LhjQiA&(f3N#3Q8%W z1b{8Ih!qC%Swws_Fz|=tAiTg}{+)cnkO;{)J!Ys&*RZ<;XIj7MEN80)VxWqqHW|2I zlb;4Sx;WtS;Tyb6h7MXpjno-?dtMkL@*~eXus*9>sI-oH6~57yl0x^`?Ye~pMC-bbdMB7 zo*=LTdrv><(^pyUn#WYF&>x+t&!!!g6B&APDYzR@rXut20XMArrLEZ`C)n_=MP z*^fPZC!N&F^jfBSZ@P4)T%eTCB|TVsU2bvzJ}zQJ(SenH%C0uPx2~l+zE4JucXAW$ z(cfwXYdX+4wFnJS(dyaYH$;4QNb!Syd%hV72CqMYmn9e}=W{^`&yHWcGfTKyP>qjO zT|L%Yxez81Oq{Ci<#idsPavf`et)lq#9>}iMn*iizAd408P<95K!Lk}!U2uIC|DwU zK&^jG-Ao163`7P0ztvWUd|*1y)itcN!bF_bfJ)|JBn=8oRQC*2oIH>|VAx8E%mQG@ zPvIl|KTczQq--rrtiL)M0a}IJ9|3ISQr%y_s=#1yc5W`@{KNn(Q~&>K()Od82qKUB zS1p_?8>c3X%#MQDd>ufFqi_TjR6ok6SAVm)2rE|9+Bn1|a zm>4-gtnjKTaY9CE92J!=(&o$m>l{X$w4ez7)BwkWbkDWlaqJ+x|aqA70TvgO3`5f&T zgubTo-L3$^8`$=cQs;mjtpGs=uTDkaSpY1SrUyF$;iEtGjEzx6M@JjJwTWKg zMm~CcxQlozz=8uTvi;Y+FbLgG#SeFvkooTE$yVSz&~60L=oi5T<$zHSXl@78RhY~$ z!?Oa-OJan%1v5Cc@G1F;8N#EA+7KoD0@lTrmo81wV3E&;-kZy&Lj#3#6{aTyh$FxX zCbHnVK8Nznfr)5%j$I) zav>ZD89knB4FGzagYTomHV&o$jhh8)Sm$8D4X_;p_$1M(wY9OafT0bHQy2iHMMD0) zJ${Y@E3(H8hBBB!s({a`;_hc!WM4kLF*Fkwru_0U(MM$In3vi{9fG5+VW-3NbNxZBFnY&ryu{f*}w>Gcp(; z(4%0U9hIO&5kw}>DsxFfA`*Pv2u=YWg0KxeE5uO?iV;jy+`zr}RF13@mstlBY?|j} z9%e(whs#;WiZl+twe8*hb}y?H8WY`RNBLAf;#os z)sls8-}Wy+p{VJQ-wR;fdC~u9wGgq!SK9VcK9!?EYIg{rAy5?*Uyrb|vxnW_B2H@U zf#a8u36;*1Qb0hNfJHC)rD}lBMn4-kUJgVj%(Af0EyaW+1BlDnXRC1^As3~l^^}T{ zgkY)QC4n@?^jj~hCI*QTCK?LhHh`xJL!6K<(@jwc37s(Y2c?;4AgL&MhgLopZwb<& zqC)teKZ%t!EId31Fq^8nx&jcm-Yg9y#c%-vhQZpw(M5E`9y3pzqyaM+JOu3^$`B0G z&(Eu|B{8SN1EWJBpJ?=>g2D!eo1$#&L38q%kC#BarC^DDciaO*4jm5g4q(b2t*`;2 zCW6;NuG)7DS|sAj+1ae$nu8-c=RQ$Yc53AF&p}p!%-aT;0FG8EA#i>hl#F?(9Ub{< zDHZpJIL#syP(B3AIt2i}|EH+KDryOI?|h&SL1{hP77jzn5O7q>LtgUgz?cf*>R^Z9 zH>?0!#44(zl_?zzEngEzD(Lr!;{rl8cvhuFDYg5{7ed7P16=7p3P3jo4AO}` ze|j)a^i+2XLO&jOU}@b3;0A)bfZLBqpe2%oPn;F?=+T<}FJQm6G~gY=FsIrXz1r6#lk0 z38kP`qgo?~sTqWE!Li%+o!@E2h6pyP^GoTM(pzJ4!u5Zpzj~kf+?6{#6-C-d8RT0mg5~8wsK0G%TL4Y}6Fnn}3UuDfwzjrCv#xfqnIQNS z4RGWz%%@=qKl^Ak;85Q9YH(0jz^q|>#T^xv1JLW!qC1bEpyu`K*TdvY#HE7dpMjw! z29BOoJy_PfLQk02i$=@|ib4LjclR7XK{KxNCM!@S!%^RLnTh-9TpDsfF|!ARV+_*tED?($HZcwxoR1hZ zKRdczCU_L-Ud=F8x0TRyOFxfkI-gSQ#7|1x+0Ny&#?SH&$pGS@gjbc7I&x=+U#nba z6;9S}HxKfaH?#?&;qag{6D#AL?PP2omKUt0KW2S7lB*oJTfJPnZyIVXE_c;vM<&C` zkSA!=9faV|=~r%V>YIp}13?|<_ekvJf)Fge<|_;Q4` zekAu{N{ZOeQJAN&1dSRP85P5@_71eBveUgnx%-3pYRK1P;OoKR>z}GDK5xF3{rZk9 zVx`9|nxzOw{?1jvCY+k-MV~&Ymw^liBXHykea;?eLEi+vt=zwSEUw2ey8ke%WHamP zf}Ef7hc}Jnp6!O7H$OkEy0yG3+idaK`S%)WPO%4iuonP$fx7vGs|y}d`i6!@9ZIK< z71whw;83q<>&H6>IyA2NpYBfWW=OrsyQ1}pl%!zg3BM6rp1!wFT0_A!x4UbJ@AUp0 z=2sfa>a~|wte=zNyeD%QEggXI(`)2d6P#wyHZe&b;Aq8IL7`*4czK7{{1U!QgYEi4 z`EJS91()sthah&Iqo>ijEkZ8ejKxPYlgb{X?I!FVUVsmmXa#g`lMrvpo*r1s{OV?V z0X0tc?Dzo$7mX>YM#v)+TIiG8=>}7oWS`&c{T>@rO?K3oeA(c3tv!B(|$ zp!`EWO}np^LpcJ}^4%EdXhV0V5o9lGFZII6*&CXD? z$GiH%IfswFg#uQzAR78)|UMZY|w zgC{mz++=00`sPBmrxQ%_?%%(koS&P^+Q!s|jz%mT)E=;Nr@V5>4-3n#E`Or^ra!>8d2C72ok=>f`J+@&LQ7j?bVwkx`S!j0 z{_%I5tM7o{Df#R2EudJ7?zIcfu9)14rl-qmUrSF z&Q*ABW+9;;Z?s~FF4vR1XCGlW)SO-x(pCH@E1oGM;I}X7S-Uem?77$Y*3juQF}PtQ>J%kA8P{ z_i*oEK9P@$O9dH(1RVC7f3m7IY-Y0aLmpv~qVRW0^<^UgSX~|lxGPz5%bd1>46yat|SND zB|)KGka>2iwCz!|7KH)_!f?qTRP9J0M*4F~XeUoceMiDw>!0G( z>reO5ygtbM!Y8W&n+#_=7rg32b6nx*UvfT>Ud+fiAWRfs&?^}X_9|{@FaeOQck^aE zFl%Ik@@}9DLS?0P>`_h(*tvec`^)~3OwS8nhqK2STj>BfdBE2{&N5MH9m&oEXWpo> z;Bu+Yo^_{lJyUjbtK6(x7yQ`SiI}<6RaJ%S*k_W7QNh9$uBNq=rQaTnEI)K^(>__Q zX=N!|nS+zhIpBu1NOOe}`|Iz?8UU&kLQ8k|w~il{s7g^kM*xV6fo+F?N!A2Df`k+F zz#1D2=z;v-Rt9eLe&}5$G8s*m|JOHeb8=OwFK_7rP*sQe*UAFNk*!9?#$JPWR9#Dp z$O}g$j+!O1-O?~ao*QvTAazL$@W3O$>!q10^@=Erwr*I^&z}YKp5)i;@eXv!J z)ny;x^-KTrp#woxRTVD}4=y1M6*+nL`fpxQQC&D?MCgSJaJ>w)iM(D+K{Z%cnU$^Zu%%QX~6zjM0uLtRWv%vQo#7`-p- z9+H!h<;BItS#UQjKD}d8U43ThPW?JNTOOdf0gMchvvQYZR3a6S?>=labAq!9<1GBV zyt+$UN$)ZjH7GzwAd1Uv~-aPc}5>b|Xg2hf~-PkxX6?z{AL z<+H@JjWdrFKRPpN2nPe5S4ha^?cf1eWRmmgoNID=*f!oY{xP2UR zT&-?CDFeT;wTGJgYgQDxuy|tEkWIl35KRs>*sO~Y*V1|mIy#g-WUgkHyngKo{1L9K zmF52{I^bw1i`JC1e+@Qin+?1ex52$paRY|828SmBA3uH+UnS<`;<_X~js|u$L+=T< zNNL8zrsH2X;u)@vLSefMI}}6-<12Ll&5&!!$)rfGfvkb#+7~wXRt-I2%zJJc4qiprxgK55Kp-B2pOMN?%|9?T?>eM7OC>e3qH{ z26!)>sUW+6X`LRC^mY&w)ICrPi=Y@lQ+|I1RyyqQ^wt>6QeQaAJXq)^0S++fF?6$) zFsFA>7etIW!7-1ifWJ;MyM32l$Udq&-HwzKb|e~tm6qqj!$AMu92f}s<5gb;Cr#A` zAG0Wi#HvHf5r3K_SY>8IKJcXDeF)PQw3bY@LLq!Ew8K{;&z^S>z-2G}Dx zA1K0y9`$*s&m=gC*>B!x63Og6MnGKS?w6~+p!q}96Q)NaMqM<}*DnYO34xM1^y;R) zqobaqV=25B^dZoPjJ)b6SKNQ3LNdT%zdNvnM?k|ozRK()VMz%KMtm2PsXQ3J!2*M_ zq5Ur_NGE(d7u{D!@3`m#ZI2g}a0CTX74}QYeIW{b*Kc6b0ga&z3!b12^pgzu)hP5E z#7oP|>)<(#iHg#;x3_og_5u4&OhUrtx`_&HNcPfF{%=3M%FG&#L5^#LjJ6Di_x`B? zi2)~BMr{~pp-R}k`}PFlhF7rE%zCdfICbke={dFvs2NH2 zJGI8yCy=f3SE+C?-b2_~P(#5S0_!vfm{QbkQa%majp#xex>2Rddec=-E&cd_<9VB; z;pW0y^AUeW`-V@|Rf6@K^_DpL;xtOe;eqL>D!KWV&6fVEM9)G$N`1DKT7A^hj!*4w?TZipK z2I#>-Z~`_Prpaaq>)HxD^YaALW?2(@|0dMb77U2JS4aztbOoA@v_S9#q!1#*i}6=~ z=Yg#Jr^mggK0cNEFLLB@wjJ=|(!GSKNBgFY+imzqzsm!ie2OsJ7+{Aqit6f&k&Gm? zR8xzF1Q`aId1myIVA>5(3hb&hzqffV8du!i*UwshLH1JrczSmac-d-Y7bE^PTlp>( z6b5Pq5ERnozOX^5$7uz|If~?-gj?OuiW29-IqSct+(Cb3v3m} zeVAd#uNUC5pL_kYxppVkUzeL(aWGTvFTTuAaZeUJ++?X=vli02k)9*W zu^<&##vX75mQ!zm>ke-ymh8T3RrO_sj#zgdaL)F@gpI)b8xs@L{k+Oxc|_}PEq#mU z?_(Hx=6>RKjh$b3^6SktVoQ0uE~?vm?|t*0Z3eI%#ZYh)7+Ju94e>VuyMXb1cX#+C zladz~9!w|%w#9&pcLi+L?Rm7N?$fs2H$VTgU~uD;(eqx;5xHiY_qx}!EoVyInY}i? zp&OVS8Jr#gw|DrOE!Wf5o~&~8_;GgYmfP0%7pyOzpI3JD{Z59ALKm%o`mjwAqJs06 z$UT+|bGd&+Y<)hwL96-XKJSYRU~X*)3j}t4A=w=`)!$Y9q_*@`q3`D7SN;_*_sc&M z`eebxO;)>CK5TJc?o}k3u_AOn`@JcP&zI`P6+83Xr@h5I2 zH<#Y;9c`1{OH7_?x*k#2%zLG+TX#)q<(sGV`=1;?#+Y`sY7^EVxwd3OpjO1(-WBguja4`1UmD=I&!&y>_fpucE$MHADha zHAC*9#QmS<%iRC|U%C6PV)x?W)p6_w-0y^duJGvSymXYUQ966o`RcX%lICZf^1foJ z=ql!Y+CF+(eJs1f=^3irK%)Z%%f14S06Vy9R+@eBpVQY<-#!5*t;GLPtTi6#|29TV z^Amhkc>7Iv+~WG4$*c+oR3GRuGHjVy=v@7J@}uUn@0ef67)9NCTYr7!B>kuB*H1iq z)AyWW=BsIjdyl?NULyaEQO0~pdG-|E5{n#WW`+!7@oJ$HS08yQ99Wvjr@*k_tjaOh z)20?-X0NB_a$c4JX1wbUA`ZzHbb?~V3^cm&O@Q42I8p)3>58`M7bXJR_zbyP`<4fP zcKWmD909*+rh;6);qltfFCCVK zf3@2$Q?^OP3\n", + " Note: This section and the next verbatim box section uses the Rigetti Aspen-M-3 device. When you run this notebook, make sure the device is currently available. You can find QPU availability windows on the Devices page in the Amazon Braket Console\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Verbatim Compilation with OpenQASM\n", + "\n", + "In [a previous example notebook](https://github.com/aws/amazon-braket-examples/blob/main/examples/braket_features/Verbatim_Compilation.ipynb), we talked about verbatim compilation on Braket to gain more precise control on Rigetti devices. With OpenQASM3.0, we can use the `box` syntax together with the `verbatim` pragma to perform verbatim compilation. Here is an example:" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "program_with_verbatim_box = \"\"\"\n", + "OPENQASM 3;\n", + "\n", + "bit[2] ro;\n", + "#pragma braket verbatim\n", + "box{\n", + " rx(3.141592653589793) $0;\n", + " rx(3.141592653589793) $0;\n", + " cz $0, $1;\n", + "}\n", + "ro[0] = measure $0;\n", + "ro[1] = measure $1;\n", + "\"\"\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To program with verbatim boxes, we need to make sure that\n", + "- we are using native gates supported by Rigetti devices. Native gates can be found using the following script:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The native gates for the Aspen-M-3 device are:\n", + "rx\n", + "rz\n", + "cz\n", + "cphaseshift\n", + "xy\n" + ] + } + ], + "source": [ + "print(\"The native gates for the\", aspen_m.name, \"device are:\")\n", + "for gate in aspen_m.properties.paradigm.nativeGateSet:\n", + " print(gate)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "- we use the physical qubit notation.\n", + "- qubit operands are indeed connected on the physical device. Recall that the device qubit connectivity can be found using the following commands:" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'0': ['1', '7'], '1': ['0', '16', '2'], '10': ['11', '113', '17'], '100': ['101', '107'], '101': ['100', '102', '116'], '102': ['101', '103', '115'], '103': ['102', '104'], '104': ['103', '105', '7'], '105': ['104', '106'], '106': ['105', '107'], '107': ['100', '106'], '11': ['10', '12', '26'], '110': ['111', '117'], '111': ['110', '112', '126'], '112': ['111', '113', '125'], '113': ['10', '112', '114'], '114': ['113', '115', '17'], '115': ['102', '114', '116'], '116': ['101', '115', '117'], '117': ['110', '116'], '12': ['11', '13', '25'], '120': ['121', '127'], '121': ['120', '122', '136'], '122': ['121', '123', '135'], '123': ['122', '124', '20'], '124': ['123', '125', '27'], '125': ['112', '124', '126'], '126': ['111', '125', '127'], '127': ['120', '126'], '13': ['12', '14'], '130': ['131', '137'], '131': ['130', '132', '146'], '132': ['131', '133', '145'], '133': ['132', '134', '30'], '134': ['133', '135', '37'], '135': ['122', '134', '136'], '136': ['121', '135', '137'], '137': ['130', '136'], '14': ['13', '15'], '140': ['141', '147'], '141': ['140', '142'], '142': ['141', '143'], '143': ['142', '144', '40'], '144': ['143', '145', '47'], '145': ['132', '144', '146'], '146': ['131', '145', '147'], '147': ['140', '146'], '15': ['14', '16', '2'], '16': ['1', '15', '17'], '17': ['10', '16', '114'], '2': ['1', '15', '3'], '20': ['123', '21', '27'], '21': ['20', '22', '36'], '22': ['21', '23', '35'], '23': ['22', '24'], '24': ['23', '25'], '25': ['12', '24', '26'], '26': ['11', '25', '27'], '27': ['20', '26', '124'], '3': ['2', '4'], '30': ['133', '31', '37'], '31': ['30', '32', '46'], '32': ['31', '33', '45'], '33': ['32', '34'], '34': ['33', '35'], '35': ['22', '34', '36'], '36': ['21', '35', '37'], '37': ['30', '36', '134'], '4': ['3', '5'], '40': ['143', '41', '47'], '41': ['40', '42'], '42': ['41', '43'], '43': ['42', '44'], '44': ['43', '45'], '45': ['32', '44', '46'], '46': ['31', '45', '47'], '47': ['40', '46', '144'], '5': ['4', '6'], '6': ['5', '7'], '7': ['0', '6', '104']}\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEuCAYAAADx63eqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydeVxU9frH32c29k1AQTBR0VQUBTX3XXMrK5c0s9verfxV2mrL7Zq2WFbWzcryVlbazSxLS1Mzc9/3hUVADRFBFpV9YGbO749xhhmYgZkBdcDv+/Xy9YIzZ845A3ie8zzfz+d5JFmWZQQCgUAguE5QXOsLEAgEAoHgaiICn0AgEAiuK0TgEwgEAsF1hQh8AoFAILiuEIFPIBAIBNcVIvAJBAKB4LpCBD6BQCAQXFeIwCcQCASC6woR+AQCgUBwXSECn0AgEAiuK0TgEwgEAsF1hQh8AoFAILiuEIFPIBAIBNcVIvAJBAKB4LpCBD6BQCAQXFeIwCcQCASC6woR+AQCgUBwXSECn0AgEAiuK0TgEwgEAsF1hQh8AoFAILiuEIFPIBAIBNcVIvAJBAKB4LpCda0vQCAQCGojt0jLj/szSMoqoKBMh7+nivZh/kzsFkmwr8e1vjxBA0OSZVm+1hchEAgEtjh85iIfb0pl84kcALQ6g/k1T5UCGRh0YyiPD4ymS4vAa3SVgoaGCHwCgcAlrnQWtmTXad5Yk0SZTk9NdylJAk+VkpdHt2dqr6g6n1fQ+BGBTyAQOMXVyMKMQS+R0gpD7Ttfxkut4OXRHUTwE9SKCHwCgcBhrkYWll9cTt+3N1JaoQegT5tg5oztRPNALw6ducizPx7m7MVS8/592wTz4qgOtA71oaBUh1anp2WwjysfT3CdIFSdAoHAISqzsJqDHoAsQ2mFnjfWJLJk12mnzpOUVUCZzhj0grzVLJzajff+SKbrnPUcOXuRBXfFmfeNburLh5PjeHd9Mp1fW8+o/2xh0daTzn40wXWGUHUKBIJaMcgyPh5qq9JjTZnY+ukDiAj0Mu8ryzKSJNV6npJyHVmXysyBdWRMGCnZRaw5lgXABxtSOPiv4bQJ9SEtp5gnBkfz3Z50Nl0uu14oqWD5/gxmDGsn1J4Cu4iMTyAQ1MqWEznoDZVBr7ZM7OYPthAzax0xs9bR6bV15BWXWx3vyy+/ZNWqVdXOk3iu0Or7ds38SDxXYP6+tELP33kltG3qB0DcDUEArH2qP3teHMr8O7sS6KXmxwMZdf/QgkaLCHwCgaBGcou0VsEHrDMxrc7ABxtS6BDuT5vQ6mtrN0U1wUutJK9IS3FxMdOnT+fBBx/ktttuo3fv3ixbtgytVgtAXpEWg0Ud1VujorCswup4hWUV+HoYi1Vh/p6Mi4vgsaUHGPTeJjzVCl4c3YGkKgFUILBElDoFAkGN/Li/evZUUyaWllNste/4+EjWH8/ip983sOrtJyktrRSm7Nq1i8mTJwMQFhbGCx8vI7JlK/PrJeU6fD3VVsfz9VRRpNUBUKbTs3x/Bqdyjef8+K9Ulj7Ui18PZ9b6uYQp/vpFBD6BQFAjSVkFtAn1tdrmrVGRX6y12maZiZnwVCsY1SmMh7/Zx4adRyksrJ6JqVQqbr75ZubNm0e6IZAird782onsQsbHR5q/91IradnEh5TzxuMknSvEUphu+uriefuBr2Y7RhbzN5wQpvhGjih1CgSCGiko01XbVlsmZmJkTDiXSivYdSqfMXdM4PPPPycmJgalUglAnz59SEpKYvXq1XTs2JGm/l6olQo8VAqUCol1Cdm0C/NjZEwYHioFTw1tS1JWgTmrXL7/DBO7taBFkBeeagWPDWzDnwnn2Lzqf+zfvx9ZlikqKjIHxyW7TjN50S7+SMxGqzNYBT2Assvb1idkM3nRLqcVqYKGgcj4BAJBjXgpq3sXasvETIyPj+CnA2cBaOLrxcOTHubhhx/m+++/588//+Tzzz+3UnvG3xBE/A1B3NY1gg82nOCDP1N4bMl+Zo/txAeTunLozEWe+N9B8/7L92cQGeTFL4/3BWBzSg7/XnmEC/t/p3v3Zeb9vvnmG6S2/R02xVvaMQBhim9kiMAnEFxHOLuulZOTw2/ffErnl15CoZDwUCnQGWTWJWTz4ugOjIwJ46/k89UyMTAKT3q3DublX47hqVLQPtzP/NrkyZPNa3tVeeTbffyRmG22NGxPy2Po/M12P9P8DSnM35ACgGwwUJKyE0Opcf1x2rRp3H///cTFxbPycKbDdox3J8QytksEFXrj/nqDjFJRux1D0DAQgU8guA5wZV1LlmXWrl3L3+u/Mu87Li7SoUzMuG8EB9Ivkp5fgodKwQSLDLEmpg2KZmtKrrlzizNIso7WpSlomjcnKyuLzMxM3nzzTe586t8ofYLM+5nsGDN/OsKfSed5eng7FtwVxx2f7jDv89mWNN774wSSBCM6NmPh1O5OX4/APREtywSCRo4zbcbUEgwPKaST5wU2btzIihUrMBgMhI57Ge+2PUFyXhbgSuCoa6/O8vJy+vTpw4EDB1izcStpclOa+Xvy7I9HALirRwsmdGvB+IU7Lr9XycF/DWfMR1tJyynm3QmxnLtUxnt/nADAQ6VgxwtDhNqzkSAyPoGgEeNMAJFlKJfh17Nqlm5aw6X9vwGgUCgo2fcznq3iUKg9nb4GT5WSxwdFO/Ue05qaq31BNRoN69atY+nSpZyWwlBgfQBH7Bj39GrJPb1acuZCKYu2pPHjgQz+OaCNU59D4J6IwCcQNFKcbTOmUSp4/fZOjOoURmn5GN59fz4bVi3ngQcewMvLi4QKJWsyFS5kYe2JjXTeFjC1VxSxkYF8simVv5JzkDCqLk2YJkEMvjGUxwdFVztHcHAwTz75JNOXHXTajvHVjtO8viaRwjId/duGsOCueL7cdsrpzyBwT0TgEwgaKfbajNlb15o+rC1RwT70fXsjob4a/jf9CWbPnIGnZ2WWF3eVZ+TFRgaycGp38oq0/Hggg6RzhRSUVeDvqaZ9uB8T4ms3m7tixzieWZkNbkrOYeWhs9wY5oegcSACn0DQCDG1GQv1qwwKtTV8Hh8fybM/HqagTEdBmY7lB8/xUL/WVsetaxbmKsG+Hi6XGf09q9/mHLVjmJBl4zqfoHEgAp9A0Ahxts1YTqGWZv6eVq+fyC6iqFyHh1ppdZz6yMKuJjHhARiQnbJjjOoUxuYTOZRW6OkXHcIdcRH8mZR9jT+JoL4QgU8gaIQ422bM5/LaVqFFWTCvuBwJ+961umRhV5OHB1RmrY7aMe7v04q3x8ciARkXSnll5TFeGd3hGly94EogAp9A0Ahxdl2r+PLalq+HCq2u3Px1SbmOJj6aK3/BV5iqpnio2Rh/5+c7zV+b7BjulMUK6oYoWgsEjRB761odLAQalutaBWU6sgvK6BDub369Q7g/5wu11Y7TEJk2KBpPlbL2HW3gih1D4N6IwCcQNEJiwgPQqBTmdS1HGj6vOJDBE4Oj8fdU0SbUh7tuakHWpdJaztQw6NIikJdHt8dL7dwtT6WQeGpo/Yl0BO6B6NwiEFwHmNa1+rYJZvbYTkQEXfbxLT9Mhg0fX1mFgf9uO8kj/Vs3qhKfo11sTKgkUCoVYkxRI0MEPoGgkWJrXctRGnN/yiMZF812DL1BRmeo/QdUX75EgXsgSp0CQSNFrGvZxmTHeHpYW8CxpwLLMUViRl/DRwQ+gaCR4uq6Vl3ajDUUDLJMU38vLOfQ9mkTzJ8zBpL42kj+91AvIgK9qr1Po1IyunNzswpW0DARdgaBoBEztVcUu0/l8+uRcw6/Z1iHZm5XznN2jmBtONvOzcTMke1JPV9IEx8N0U1FC7OGigh8AkEjZsmu02xIdK7jyIbEbJbsOu0Wwc+VOYK14Uo7NzBOh78xzI//7Ulnco8W5BVp3U74U98PCI0VEfgEgkaKs9MZxnQO54G+regY7s/Rs5c4knHxmpY7a1NgmnqErk/IZsuJXIeFJ862c0vLKUYhweyxMcxccYT2YUavozuNKboSDwiNGbHGJxA0UuyV8977I5muc9Zz5OxFFtwVZ379Ykk5X24/xaebUzHIMp9sSr0Wlw1YzhGs3XZQm/CksLCQY8eOmb9PyiqopuT01qgoLKuwfp/FmKL7+7Ti0JmLHLs8tcEgQ9I52w2trzZLdp1m8qJd/JGYjVZnsAp6YHxA0OoMrE/IZvKiXUKcg8j4BIJGiSvlvO1peQBM6t4CgL+Sc65JOc/ZTHXmyPaM7dIcP08VhWU6zl0qJTzAi2+//ZZ58+aRnp6ORqPh7NmzqNVqLhSVQZU+pjW1c2vq58F9faK4ZcE2q9cLqgRKe1zJ8qOzg4ZNDwiAW5SyrxUi8AkEjRBXynlVkbg25TxnhSc/7DvDh3+mUFqhJyzAgxWP9gXg0KFDHD161HwcjUaDj48PvsOn0f2Jh6zOWdOYoq4tAmnq58GGGQMA8FAr8VQpeW9CLCNHjuSXX36xmllo4kqXHw+fucgba5JsBr1bY8N5amg7mgd6klOo5dkfD7P39AUASisMvLEmidjIwEat3K0JEfgEgkaIs9MZbFGmM1z1cp4rmerJ3MqgLcvGz/ThgsW8//77VsdWKBTMnDmT4L53olAqHB5TdCa/lH7v/GU+zi2x4dzWpTkPv/g6B/74g9jYWPr3709ERASzZ88Grtz6pCUfb0qlTKevtr1fdAgvjGzPE/87yKGMizT1q55Vlun0fLIptVE2KHAEEfgEgkaIK1PHbR/HsXIe1E9Jz9VM9bGBbfi/wdH4eKhIzyvm9+R82rRpQ1pamvl9jz32GK+88orVsR0ZU1SuN5BTVPnAUFimo0Jv4MDP/8VgMJCSkkJKSgrDhg0Dqpcfj88aYXVOT7WSb3f9zaxfj7tcfswt0rL5RI7NoDpjWDv+szGVg2cuApBdUL3RuCxfu1K2OyACn0DQCKmPqePG46hZtWoVQ4YMwdfX1+Y+9VnSczVT/XRzGp9uTiMm3J+bY5rRddCtrP3oZUaOHIlOp2PMmDF07drVvL+zY4os+elgBrsPHEYus/65nTx5kvX7knljzSmr8mPMrHUWn0XJ3peGseaota/SXvkxOTmZ9PR0+vTpg4+Pj3m7rQcEAIUEnSMC2JCYzaZnB+GhUrA+IZs31yRWE71cq1K2OyBUnQJBI8SV6QwKCTxUClQKCUkCXw8FEd4Gbr/9dkaMGEFubi4nTpygrKzMfJ76UBRWVFSwbp0xONQ1Uz1+roCyCgND2jcF4Pfff2fDhg3MmDGDwYMHm/erazu36PI0unbtSnBwMAqFArVaTVRUFPe/+z2l5faz5FGdwsgrLmfP6fxqr5nKjyYyMzPp0qULN998M2PGjGH37t2YWisnZRVU+1kDhPh6oFEpGNUpjImf7WT0f7YSE+7PE0Pa2jif46Xs3CItCzenMX3ZQR74ei/Tlx1k4eY08ooa5tgqkfEJBI0QV6aOj4uL5N2JXczfH5s1im+WfIcsy+zYsYOmTZsiSRKff/45Dz74YJ0UhXf3bMncuXMJCQlh0aJF7N27lzNnzuCrqR6MnM1UlQqJ8MvtxiTJ9gR5Uzs3R6+/8tyKy+txI4HXKCkpoW/fvowbN47HZjxPn7kbKdfbP974+EhWHLCdrZnKjzmFpSz6aD5z5sxBqzUGls2bN9O7d28UCgUdO3akoMsUiOxc7RhlFcY1v693nibn8izF/247xRNDonl3fXK1/fMKS5Bl2e7PqbH6A0XgEwgaKc6W8348kMGPl2/KkgQ3d2jG4ofuN78uyzLTpk3jnnvucdpy8NKoDgzv2IxQPw/OF5SRnl/CG2+8QUlJiTmLadWqFc0G3sVLL73isPBEkuCuHjfw25FMCsp0dIkM4B+9W5KSXVTrz8e0nubImCJ70xm8vb3Zv38/kiTx2ZaT2IkfAEQEetGzVTDP/3TE7j7asjLajfgHF3f+aOMaJNq3b8+8efNYnuHNhtSCavsUlOnIvFhq9VlqskH+sXolL6auYu7cudVeuxoCnWuFKHUKBA0ce2WoqT1b1qmcNzRcR3l5OSpV5fPx2bNneeyxx1i154RT5vjSCh0PfbOXzq+t45nlhwn2UdO1a1csp6K9+uqrZGz4hseHtGNcXCTJc0bxxOBo8ovLeWzJfp67+UYOv3ozXVsEWmWqI2KaseW5wRyfNYL5k7qyZNfftA9zrI/m1F5RLHukFyM6NsNDpcBTZX1L9FQp8FApGNGxGcse6WXzxq5QKJAkyW750cQdcRHsO51PxoUahvuqNEx5/Dm2bNnClClTUCqNvz8vLy+2bt3KsWPHGDFiBN2jm+Ohsn37Xr4/g3v7RBHso8HfU8WDfVvxZ9L56jvqKyjNSuPdd98lIiKC5s2bm8U/9dlAwB0R8/gEggZKzWUoBTLQOtSHk+eL0Ood/29uLOd14M745hw8eJDQ0FBmzpzJ8uXL+fXXX/ELbc7RYl/CArx49kdj9nJXjxZM6NaC8Qt3XD6GkoP/Gs6Yj7ba9Aguuieejd9/xtw5rwGgVCpRqVQUFxfz2HcHr8kcwbwiLT8eyCDpXCEFZRX4e6ppH+7HhHjHVKkPfL2XjbYCzGU2PjOQTzelsdyOMMXE0PZN+eLeHgCsWrWKxYsXc9dddzFx4kTzPrlFWvq+vdFmoFUpJP59awy3dWmOVqfnt6PnmPt7UrV9ZV05GR/fh6HUmDkqlUq++uorYgfdyuRFuyitsLZKfP9wL+JaBJq73mQVlDH0fevqgZdaybJHerm9P1CUOgWCBoijZajEzEtIyKiUKvSy7HQ5r2fPngB89913DBkyhJEjR/Lf7X+jVFgfyBlzvIdKQZcWQRTeei/S67O56667ePTRR8nMzESpVDJtUDRbU3Kr3XgdoS5zBIN9PeqkcLSlpDURf0MQYf6e1dScto9TKeQZO3YsY8eOrbZPiK8HA9uF2nxA0Blk/rXyGP9aeaza+0xIQEnaPitlql6v55NPPiHojC9lFRqb73t11XGW7Ttj97gNxR8oAp9A0MBIyykyizLUSokPJ8URGxlAZJA3kz/fya5TFopBSUHH5v7MujWGTs0DKC7X8dnmNBZtO2XexZQdDr4xlMcHRdt8WlepVDz66KNA3c3xb97RmcRzBWw9eYmEhARuvPFGK3FFXYUn1yrbaB/mj4cqy2YWNiE+grXHsygurzmYe6oUtA93rExblwcED5WCIW086DhvHkuXLuXw4cMMHTqU8Xffx9wEBbKLi2ANxR8oAp9AcAWp7z6NuUVajmRcsgoI+/7O58vtp/hkSny1/YO81Xx9/03MWZ3AX0nnWTilG9FNfbmja4RL5Tyom+XgxVHtadfMj7sW7aJnqya0b98VW9SH8ORqM6FbJPM3nLD52ku/2M++LJGBCRYK1pqo2wNCB6b2GgXAE088wT333MP06dM5XN4UTeoJu2uVz4+4kRdGtudkThHvrk+2fsi6TEPwB4rAJxBcAa6UDHz3qTwrUUmFXubL7acB0NuIDg/1a82WlBxWHspEkuCb3adZOLU7k3rc4OInc90cP2NYWwa1a8qkRTsp0uqsSnq2mNoritjIQD7ZlMpfyTlIVJZwwbFM9WpSU/nRESTJ+FmceSCqjwcEjUbDsmXLAFi27KDdoDd3bRIp2YVU6GVu7RLOf+/twej/bCU9v8Rqv2vR6s5ZROATCOqZKyUDzy3Skp5XYtXHsjbibggkOauQnx7tQ8tgb45kXOJCsZYgH9fLUDHhARiQHbYcADw+sA1ju0Rw52c7uVhS4XBJLzYykIVTu9dZeHK1uBbrk/X5gGArmzdx6HILNICfDpxlbJfmDL6xKV/vPG3jOI63ursWiMAnENQjV3JMjL02VTURFuBJp+YBTP1yN8lZhbwyugMdHVxDsocr5vjnR7ZHq9Oz6dlB5m01WN6qUVfhydXCVH6cs7p6i7CaqOv6ZH09INQk0KmKLGPXt1hbNn+tEYFPIKgnqpq6axOeLL6vBz2imli9X3H5TvLiiy+yb98+mjVrxpIlSwDbopLa0FYYWHc8iyMZlwB4b8MJ7ukd5fD77a1R7jqZx+aUHIfN8VEvrjZ/XRfLQUNBb3C81qlWSpfX3KLqfN66PiDYE+j4e6ro2iKQ3afy0RlkbokN56ZWTXjtt4Rqx3BGoHOtEIFPIKgnqs6Rg5qFJ/ct3mv+WpJg3VMDaNfMj5MnTzJv3jz0emO5bMeOHbRq1Yqym+6jzfBeTl1TYlaBVecOR9eealuj1MsyEjV3BbFHXSwH7o4p46864b0m3KmLiD2Bjkqp4Jmbb6RNqC8Gg0xaThGPfLufU7nVPZrOCHSuFSLwCQT1gK05crUJTyyJCPCiTagv059/mQXvv20OegCnTp3izJkzdO88DqVCslpb0xtkNEqFueSkvtxpxBSolu/LYOHUbizecZoT2YU8OSSakzlFZKUc4YUXXmD16tX4+/tbXYuja5TOlCpNXGvLwZXE3mDYAC8174yPpX/bEPKLy3lnXTKrDmeaX9fqZbcZDGtPoJNfXM5tH2+v9f2uCHSuBSLwCQT1gCvrb5aMi49gz6lcluxMQ6/XI0mSuZ1X586d2b59O35+leUjy7W1jc8MJDLIG4BvHzAazvu9vZGMi6XsPJnHvHVJfHlvD7w0SvaeyuXRWfM5/stCMjMziYyMpFmzZrz++utMmjTJuTVKJz6fu1gOriT2BsPOuS2GCr2B7m9soGO4P1/e14PEcwWknK/sJ+pOxu9r1UDgaiICn0BQD7iy/mbJuPhIFmxM5Z7/m8nsNYuYNWsW77//Ph4eHrz99tv4+fnZbVNlOR3cFkt2p7NkdzoAagXk/PgZl84bM47CwkLuvfdeRo8e7fQa5fShbZk2OJpyi+u57eNtpFp0anE3y8GVwt5gWC+1kpEx4Yz4cAsl5Xr2/X2BDYnZjIuL4O11ldMS3Mn47ao/UClB/7YhRFyejOHOuFN5WSBosNQkA6+N7i2DCPX1YM2xcxSUVeDn58dbb71FcnIyZWVljBplNBqbylA1TQCoCUmCoR2a8eLTT1htP3v2LM888wwbEzJtrlFOX3aI8wVl2OK3I+eImbWOTq+t4//+d4CJ3VtwR9cIhrZvyh1dI5gxvB07XhjCwqndG23QA/sZf+sQH/QG2WotLPFcIW2bVRd/mIzf7sDUXlG8PLoDXmqlw39vetm4zt3n7Y38c8k+DlvYH9wNkfEJBPWAMzLwqoyPj2Tt8SxKyvVmGbhGo6Fdu3bV9q2PMtSqxWuJjY0lJSWFsrIyzpw5Q7FOQeK5QsKDKqd8O7NGKcuwIy2Pdyd0ueYZy7XA3mQGbw8lRVprT5u9Vm7uZvyuzR9oi4YyqkhkfAJBPWBr4jmARqkwj48xCU8s8VApGBMbzo/7MxySgZvKUF5q5/7rWopKXnnlFQ4fPkxSUhJ9+vRh9erV3PHM21bjhxxlaIemHPrXcNZPH8BdPW5wm4zlamMv4y/R6vH1qNLKzcP29HjjcdzL+G3yB+54YQgD24WidDD7c/dRRSLjEwgcoLaem/ZM3TUJTwBGxIRRUFrBzpN5eKgUDsnA66uP5Q033MC2bdsASPrrrNNrlL8dPcd3e9LJLdLStUUQC++OZ+3xLKeO0Viwl/GfzC1GqZCICvbmdJ6xtVeHcH9Ssm1ndu5q/M64UMqWlFzsTbeKCvZm3VMDWHMsixk/HDJvL60wuI1i1RIR+ASCGnCm5+Z//kxmQ+J5JEVlNlab8GTV4UxWHc50WgZe330sXVmjTLVQJR5Iv8BXO04zrENTp4/TGLBn/C6t0LPueBZPD2/HCz8dpWNzf4Z3bMb4T3dUO4Y7G7/tKVZNzL6tE4cvN0moijspVk2IwCcQ2MGZnpubks8TmH0I2f9GJIWn0+dyRQZen30s67JGaUKWZdTK63P1pKbJDK+sPMa88bHsf2UYF0oqeOWXY1ZWBhPuavy2p1g1cWtsOAWlFRw4f4GWwT7VXncnxaoJEfgEAhs423NTq5M5538jwzuGseN0wVWdI1cffSxtNZ6uzRw/vEMzdp/Ko6BMR5fIAO7v24oEi2G01xM1TWa4VFrBI0v21/h+dzZ+1+RR9fVQMWN4O6Ys2s3kHi3s7uduo4pE4BMIquCsnw1g5sj2TOrRAgmjwu/+xfsazBw5sN94uqY1ylu7hPPOhFg0SgVZl8pYtPUkjw10jxvbtaCxGr/tKVYBnhnejh/2niHLjt3FhLspVkXgEwiq4GzPzSk33cDwjs0Y9eFWkGR+frQvf8wYwOurExrEHDkTj3y7r1rGUtMa5ZPfV4oYTI2n3TFjuVqYFLevr06gTOd4Xxt3b+Nmb/23Y7g/faNDGPPRVgeP4z6KVRH4BAILXOm5OT4+kv9uPWl+6l3wVyqzxsY0qDly0HgzlqvF4TMX2ZKSi6PTiNwp468Je+u/vVo3ITLIix0vDAHAW6NCqZBo27QftyzYZuM47qNYFYFPILDAlZ6bbZv5kphVWcZJziowZ00NZY4cuN6qyt0zlqtBbUKoqiglGN6xmVtl/Pawp1j9bk86vx4+Z/7+4f6tiQzy4pWVx6odw90Uq9enBEsgsENSVoFTI2UAfDQqCi3KOLnF5WhUDfO/lrOtqlQKiXbN/NiYnMP0ZQdZuDmNvCLtlb9QN6JSCOVY0AOjUKhfdIjbBz0wKlZtUVZhIKdIa/5XUq5DqzOQX1xebV93U6yKjE8gsMAVP1txuc6qBZWvh4qyCj2eamV9XtpVozaPoEYpmR8OFBJW/q2q3sYuLdz/xl4XbI0i+kfvlkyIj+TGMD9+PZzJsz8eqfa+Mjc1dttr1NC7TXCNlgaAD/5MsbndHRWrIvAJBBa44mdLyS6iQ7i/OQB0CPcnq6CMKBuepoaCPY9gbpGW45kFGGQZkCiv0sqjofRqrC9sGbuzC7Qs+CuVAW1D8ayhtZw7Gbuvt8HDIvAJBBa44mdbcSCDh/q15q/k88gyPDKgNen5JQ068JmwXKNMyynilo+2ojMYjeo1WTxMvRrfWZfErV2aE+CluVYf4Yphz9i97nLbts4RAYQH2G9m4C7GbkcbNbiCu67/isAnEFjgip9t6Z50WilB53oAACAASURBVDQx9ioEo0DmjriIq3/xV5DcIi1HMi5ZlfRqsniYuKdXK1Kyi4iNDGyw6572qOvwYbj2xm5nGjVYUlv25+6KVRH4BIIqOOtnA5i7Nom5a5PMfraH+reucf+Gxu5TeVbeRkdGFkUGeXFHXASvr0lg/sSuaFSNK+urydjtKNfS2G1rfRJg/p1d6dsmGC+NkpwiLZ9tPsmyfWes9pEko7BJKUkNwqNaFRH4BIIqCD+bNblFWtLzSqy8jY7w2tgY5q1Loqxcj1ZnuOYlvfqmLsOHrY/jmLG7tgkhzmKv8fQnm1J54acjlOsNtAn14fuHe3E88xLHMivb0clA/+gQerYObhAe1aqIwCcQVMFVP5unSnLL9Yy64kpJb0THZigliXUJ2fRq1cR4HDfq1WiJqwEl+8xpwLvO5z+XfpItW0oZMGCAzdedmRDiqIq2psbTlg20Zdn4r2Wwj3Xgk2F7Wh7zGujgYRH4BAIbODPzzoTOAFtTc+kcEdioZPxJWQVOzerzUiuZOaoD9y/eY94mI7tVr0aoW0BZtWoV235bRpOB9yArrG+jSoVkLAMqpGoiqapolBK71/3M6Ld/Y82aNYSGhqJWq4mONlYNnJkQ4oyKtraHmTm3dWJCfCReGiXHzl7ir+Tz1fa51uuTdUEEPoHADpZ+tj8Ssu0O4TShM8iNUsbvbEmvVYgPkUFeLP9nbwDUSgV+nmpmjY1x+Bj1XdarirMB5cVRN3JnXDg6nY709HTuvvtuSgxKAvvfjVRFs/PE4GimD2tn/t5SJFUVrVbLxQO/YygtZuDAgWg0Glq0aEFqaqrTE0JME88Bm397siwjXZYm17Y++a+Vx/j3qmPE3xBEr9bBlNvY190aTzuDCHwCQQ3ERgbSLzqETck56B0QMjhyA2poNPFW28xe7Fk8krML6TN3o/n98S2DmD02ho//SiUgdR033XQT/fv3t3muK1HWq4orAWXWL0eYNm0aZUf/QKerfBAoPbkf77Y9sYx+H/yZYtfMbYkkgZx5HENpZQmxvLycUaNG2RSeaJQK5tzWib7RwQR6a0jPK+addclsuvyzguoTzxcsWEB+fj7Lly9n2LBhzJ8/H3DsYcYgw76/L3BHXARTe7Vk8Y7T1fZxp8bTziACn0BQA6YRRaYMoLYRRb1bB/PkkLbERPhTWKrjSMbFBr/m9+7EruavHbV45Fi0LbtUUo5Bltnz1+9sWPAikiTRrVs3hg8fzpw5c8z7XamyniWmgDKxewu73VU81QpeHt2RMZ3DUSklEs8VMOnzXTQZ8iBZ51IgKxUAhUJB8Z4VeLWKR1I7n4V6KBVkbPsf3t7elJaWIl/+0F999RVb5PaU+Vl/NqVC4tylUiZ/vouzl0oZfGNTFkyJZ+QHW8i4WGrxc6o0xn/++eccPXoUgMTERHbs2EG3bt04rOwAvo4pj5UKiZZNbK9lulPjaWcQgU8gqAFnRxSVlOv4Yf8ZPA8rmDY42m06c9jC0XJibpGWHq+vQ5asW7DVZvEwsetUPr3fWMeZz1/HoDeqCHfv3k2nTp3M+9R3Wc8eJiVjTd1V3rojFpVCYtj8zVwsKadjuL/xBaUG/94TKVn3IV988QWTJ092+tpNGI3dHbh79jEkSWLfvn306dOHESNG8NGixQz9cGc1n1xphd4qk9yYdJ4z+SV0igiwCnyyDH8mZtOpe2+OXw56AHq9nj179hAQEEC3UYPZlAflVUSdwT4a+rQJ5s+k85RV6OkXHcLYLs158vuD1T6DuzWedgYR+AQCO7gyouhwxiUOZ1yib5tgwD06c1TF2XKirugCJal78WxzE5LCeRO6JMHNnSNZIukosdj+zTffcO+99+If1bnGLOy2rs158/bO5vcpJAkvjZJbPtrqVL9LSyWjve4qbUJ9GNahKb3nbqRIaywHmtSMkkKBV5seDBk/2Rz0wDkhlD1jd/fu3dm6dSuhoaGsTb6ISqWstbQe4quhdYgPKeerr7NVVFRQ4NsahWIPBosHt40bNzJ48GByi7T0fXsjYH0OGZjasyVv3N4ZSYKzF0uZ/VsCGxKri1vcrfG0M4jAJxDYoTF05qiKw+XE49lsTMyiU0UKv//nReSgG2gW1RVJYb8Flz08VUqmxofyjcGAUqlEr9fj4eGBr68vt99+O03Hv0JZcFu7WdjKQ5msPJRp/n5CfCRPDInmWGYBkkS1rDoxMZGHH36Y5557jltuuQWl0pipOvL77BIZyNmLpcwY1pY74iI5X1jGBxtSWHs5UGrUKvr949lq76utsbcjxu6ePY3l4qS9B2s1xqsUEh9MiuOnAxmk5RRX30GpZspjz/HwJy8TExND+/btkSSJiAhjR6EQXw8Gtgut1qghv7icSYt21fJTcs/G084gAp9AYAdnZfy2cFb5diXVjE6VE4EKg8R+/Q2oOwzh2dt70nJoV95ef8KlWX39Y1pSWlpKYWEhQ4YM4eWXX+b222/nXH4R/d/dhCxLDve4HB8fyYqDZ43XadHvUqkr5aWXXmLx4sWUlpZy4MAB/Pz8ePrpp3nkkUcc6rQSFuBJ+zB/1h7LoudbG4i/IYgv7+1Byvki0nKK0MkKTubZHrtkr7G3s8bu2oQnkmTsrlKhN/DqquM1HKeCjh27cvToUauysonruVGDCHwCgR2uZmeOK61mNIl0TEGrNpHOg31bcW+fKIK81ZRoR6NQSIT6eaJSKetU0vPz82Pv3r3m71cezUapVKJzsPVXRKAXN7VqwnM/HTZv0+v1jHx8Fge/m4fBYDCLREpLSyktLWXmzJnMnDmTsDtn4dG65vVWbYWBcp2Bj/5KRW+Q2X0qn50n8xjQNoS0HKOxu7bfp2Vjb9ODTOK5Ap776YhDDzL60poflN4ZF0uIrwf3Ld5T4+xIk/DEVtCD63vwsAh8AoEdXBlRZPs4an799Vc2bNjABx98YPZSmbgaakZnRTp/JGazfP8ZCsp0BHqp+P6R3oT6edZLSc8SZ/tdjouPYO/pfDIuVIo5dLJEtlaFwWBAkiRz4APQaDT4+vry73//m+QmvVl9vPpalSWJWQXVtlX9nfh7qsnNzeXs2bN06dLF5nFcfZApKytj88rvMMSMRmFDKfrG7Z2IburL3V/srvHn5qjwpD7WJxsiIvAJBHZwZUSRJBn9VmqlcY3KQ6HnwMZVLP15Abm5ufz8888EBwezYsUKWrVqdVXUjK6IdNLzLWQokkR+cbl5uG59lfTA+ax6XFwkn2xKrbZ9+OixvP/5s3z11Ve88847nDt3Do1Gw+zZs5kxYwYajYaFm9PYkJyLVmew211lz6l8Mi+V8vigNnyyKY2uLQLp3SaYuWuNP3OVJNM21NtcUl2+fDlhYWG0b9+egIAAoG4PMs8++yznd60itNOYau+LCPTi7p4t0Vbo2fvSMPP2l345arUGCs4JT+r7YaYhIMmyI82YBILGhStraSb/2rbnB5v9ayZM/rVerZrw/SO9rV7btGUrgwdW9mF84oknmD9/PpJCwcpDmcz44RBQe/nxkf6tGR8fSUSQFxdLylFKEuGBXrV+1oWb05BlmVA/D5vTwHfOHMKMZYeszgUwtktz3ri9E36eavKLy/kzKZuJ3VrUej5nmL7sIL9UuWk/M7wd4QGe1a61W8sgvn3gJnq8sYHiKjr8O7pGMH+S0W9oMBj44Ycf6N27Ny1btjTvY1IyanUGpg9ta9VdBSp/v22b+vL2+Fjah/lx9kIp765PZl1CNgCSQceZBfeiL6mcOq9QKFi0aBEPPPCAa2N+dFoq9vzAxX2/UlJifOAIueMlvNv2cllFO6JjM5dsNPXxMNMQEBmf4LrC2RLUsNd+IKXEy+oGVJN/bdepfKJeXA1U3oBK//iv1T4ZGRm8/vrr9L/zn06VHyUJnl5+iKSsQqKCvfmhSoDdvHkz48aN4/nnn+ehhx4iONhoqXBVpLPqcCarDmcSFezNuPhIcgu19R742of546E6h1Yn19rjcnx8JL8fy6oW9KqW9RQKhZXdwISlkrGm7iop54sY9+mOatslCUZ0juDvAb1Zu3atebvBYCAuLq5Wc3xkoBfbXhhCsbYyy124JY2PNqai7DER3Yn9UJJKaGgoTbL3URbdHXB+lFNdhCeW65ONGRH4BNcNTkn5E84RmrGNg3/+Quhdb7os4398UDSzVhQSEhJCXl4ekiSRlpbG2bwCmvSdRHhQ5ZT22sqPn205af46LaeY1UfPMbFbC9QKmbfeeos333yTsrIyZs2axauvvkqrVq2Ii4vjXNvbaDOom9PXb+J0Xgkp2YXc16eVw+9xNKOe0C2SeWsTAEWNPS49VApu6RzOo0v3VzuXM2W9+lAyPvrJJbMtw0Tv3r3p9tRCyhShNZrjAWJnr6/WsFpSagjqO5l7WpUxb948oC7G+IYtPLkaiMAnuC5Iyyky30TiWgTy9PB2dI4IQG+Q2XUqn1m/Hien0ChTl4F24YG8+uCzdP7sNSSlmvkbkvl86ymHz2d5A1qxYgUAv/32G3PnzmXr1q18tuUkdV1l6N4yiP9t2MOMu0ZSWFhoPl5ZWRkAycnJnDx5kpueGlKn8wAoFQrCAjy5ePEiqampdO9uu4zmbEbtp4bStH2oW3WvMQvT6gzEzl5fbbuzfrL6UDJ+/PHHXLp0iY8//pgff/yRTZs24RkYyl3/S0XGvjm+JiSFAs/W3Xjmxcq1u+tVeHI1EIFP4FZcCR9bbpGWIxmXzDe6AC81/9uTzmMpuegMBmaP7cS7E2K59yujzD7IW83X99/EnNUJ/JmQxfeP9KZT8wC81Mo63YBuueUWbrnlFqDuHsEZw9oiSRJvf7+BoqIiFAqFVQbi5eXFc889xyuvvMLinWecFulM6t6CDYnZ5BWXE93Ul2mD2nD+UglfzPs3n376Ke+88w4tWrRgzJgx+PgYs1ZnRB2bkrIZGJDP6g9mkmfwodkNsXXKqp2hrgElLi4OgP79+7Ny5UoGDBjAZ1tOolarHVKobn9+CDIy21JyefP3RC6UGO0RGo2GlUez+eeAyr+L61F4cjUQgU/gFlxJH9vuU3lWa2mW3ewBvt55mmUW62UP9WvNlpQcVh7KRJJgwV/GziBRIT71dgOqi0fwH71bMi4ukomf7aTf0JEkLn6ZnTt38uWXX/L111/j5eXFtm3bzFL7hwdUNiN2tMl095ZBPHvzjfh4KMkvLmf1kbPMuL0vpReNP7tnnzV2L0lOTqZdu3ZOq1O1elib7U1B0y708i9mbP8W/Hd/3lUr69VHQFEqlYwbNw5wzJaRX1LOrQu2kXCugCBvNbPHduLDSXH84yvj3MJyve2ZhfWpohUYEYFPcM25kj623CIt6XklVlL+qvRs1YSU7MobTtwNgSRnFfLTo31oGezNkYxLXCjW1usNyFWP4MRukTw2sA13fraTrIIyercORqFQ0LdvX/r27cu8efNQqVT4+/tbve+Rb/dVa09Vk0jnuZ8qFZUmkU6fbrH8+eefFtsliouLHZp40KdNMHPGdqJ5oBeHzlzk2R8Pc/YiNBn6EO8+3o8erZvSrFnNfweW11MfZb2rbcsoKddz9KxRDZpbVM6/Vx1n78vD8NEozYKdmszx14vw5GogAp/gmnKlfWy19WdsH+bHk0Pa8vC3+8zbwgI86dQ8gKlf7iY5q5BXRnego4VqsD5uQK54BG/r2pznR9zI5EW7OXOh1KZJuUmTJjbPVx+ijpeXeaFQKMxNj2VZpkePHsQ/tZAyTbhdUUeQt5qFU7sx86cj/Jl0nqeHt2PBXXHc8ekOJLWGL3ak06N102tW1quP36crDzLy5fkLCouGBg11zE9DQwQ+wTWjahut2kQni+/rQY+oJlbvN900du3axcyZMzlx4gRHjhwhJCQEqHktrWWwN4vvu4nXfktg7+kL5u3aCgPrjmdxJMP4dP7ehhPc0zuqXj+7K+XHZ4ffSKC3hlXT+prfq1RYd4GxR32IOt566y2mT5/O7Nmz2bNnD+fPn+f0uVxu/+pYjaKOkTFhpGQXseaY8fUPNqRw8F/DaRPqQ1pOsdUEi4Za1jPaMrJqNMd3jgigoLSCU3nFBHipmXVrDDvT8ii8bG9oyGN+Ghoi8AmuGVXbaNUmOrlvcWWPR0mCdU8NoF0zP4qLi3n++efZunUrAM2bN6dNmzZ07tyZv1uOos2oftXOHRHoxdIHe/LRxhR+vtzw2ERiVoHVLDRnxZeOCnTuXriZbacKHPYI9p9X+ZorJuW6ijo6depEp06d6NevH8nJyfj5+bH9wHlUKlWNI3TaNfMj8VxlK7DSCj1/55XQtqkfaTnFNidYNLSy3oRukczfcALAri3jZG4xz918I8G+GorKdGxNzbWac9eQx/w0NETgE1wTbLXRqk10YklEgBdtQn15+4MFzHrxObOEH4yzyJKSkrh06RJxseOqPXmH+Gr47qGefL3zb5buSa927OX7Mlg4tRuLd5zmRHYhTw6J5mROEbOf+z8eeugh+vWrHkjBeYFO9sZvkG8YfdXUjFA/og4PDw9iY2MBx0Qd3hoV+cXWEw0Kyyrw9TDefpydYOGOOGqOX3U40+b2hj7mp6EhAp/gmuDIbLSqohNLxsVHsOdULgvXH6aiosJq7UmtVrN48WKmTJli/Z7LT94y0DLYx9i2amhb8+sxs9YBsPNkHvPWJfHlvT3w0ijZdyqPmR98yYolS/juu++4+eab8ff3Z+nSpeaG044KdNYdz+KPo2cp3bmUrK3LadIzD/8B9yErHV/bqatJ+eqLOnT4Vlm78vVUmQe9Go9T+wQLd+d6HvPT0BCBT3BNqM3HZkt0Ysm4+EgWbEzl9nun8f7qzzl69CgDBw6kpKSEiRMnmoOeZX9GSz6080RuYsnudJbsNmaDkkFH+kf/wqDXo9frWb16NVFRUZX7OtVhQ8KgUKHuMYm4sDAO/PCfWoOm+Z31bFK+WqKOE9mFjLco4XmplbRsYj05vDGIOq7nMT8NDRH4BNeEmjIFe6ITE91bBhHq68GaY+fo3ToYSZKIjY0lISGB0NBQVKrKP2t7k6YdRZJgaMcwvq4owfJWdsstt1BUVISPr69TAp3pQ9sybXA05ToDcBt6g9ygTcqOiDrWJWTz4ugOjIwJ46/k8zw1tC1JWQXmyeGNSdRhtY5aoae2PzmFBPf2jhLdVq4yIvAJrgn2MoWaRCcmxsdHsvZ4FiXleqtMITw83Ob+dS1B3drag7XNmlFcXExBgVGkodPpePrppxk8ZRoa/2Dz/rUJdAB+O3KOGT8cshKoNFQ1oyOijg/+TOGxJfuZPbYTH0zqyqEzF3nif41X1DG1VxRnL5Ty2daTtT5sGWT4euffRAZ5ieB3FRGBT3BNsOVjq010AuChUjAmNpx/frvf4UyhriWo23pFcVtGBrIsM3XqVDQaDZ9++innC0pZvj+DZhbvcUagI8tYSfmh4akZHRV1bE/LY+j8zdW2N0ZRx5Jdp1m88zQ1DEe3wpUZi4K6IQKfoN5xRM5vy8dWm+gEYERMGAWlFew8mYeHSuHUsE2oW8NfSZJYunSpuRn0ioOZVuZjW9gS6Azt0JRD/xrO+UIt3+1Oryblb2gIUUcljnSxMfHkkGieHn4jd/93F9vT8nhjTRKxkYFuVcpurIjAJ6g3nJXzj3nrF45dVFr52GoTnZhmxLmSKdTXWppJyemKQOe3o+f4bk86uUVaurYIYuHd8ay9bPxuqLiaUXuqpEYn6vh4UyplOn2to4luaOLN6M7hZBdU2nDKdHo+2ZTq0gBZgXOIwCeoF5ybdZdFZM4edq1ZVudZd85ytaT89gQ6qeeLzF8fSL/AVztOM6xDU6c/h7vhTEZtQmeAram5dI4IdLrxuDuSW6Rl84kcZLn20URzboth7tokXr+tk3mbrdK34MogAp+gzjjVbxOokCXS/LsQ0i6V18fH89bvSVdd/n0lpfyOCHRMyLKMWlk9I2iIWGbUfyRko68l+OkMskuNx90VR7ypAKM7hVGuM7ApOafaa7a62AjqHxH4BHXC2X6bADNHtmdSjxbArVToDSgkqUEO23RFoDO8QzN2n8qjoExHl8gA7u/bigSLdl4NndjIQPpFh7ApOafGNmYmXGk87q440sXGR6PkuRHtueeL3TZfbwxdbBoCIvAJ6oSz/Tan3HQDwzs2Y9SHW0GS+fnRvg3Wx+aKQOfWLuG8MyEWjVJB1qUyFm09yWMDG8/TvUnccWcP2+IOtVLiw0lxxEYGEBnkzeTPd7LrVD6lFYYGL+5wpIvN9GHt+PlgBhkXS2s4TsPvYuPuiMAncBlX+m2Oj4/kv1tPknV5UX/BX6nMGhvTYH1stubc1STQefL7Q+avTT4+d/xcruKIuGPf3/l8uf0Un0yJt9re0MUdjnSx6dsmmLAAL+7p1RKAJj4efDwlnoWb01i45eTl4zT8Ljbujgh8Apdxpd9m22a+JGZVfp+cVWAVNBqaj01I+StxRNxRoZf5cvtpAPRV6toNXdzhSBebKV/sRm2hYl45rS+vr04wPzA2pi427owIfAKXcUXO76NRUWhRysktLkejarjiDiHlr8RRcUdNuKu4wxFvqqNdbCwxyDKXSisouTyBvbF1sXFXROATuIwrcv7icp15HA2Ar4eKsgo9nmrlFb3WK4mQ8htxRNxRG+4m7nDWm9oxUObAeUONXWwssZy/2Bi72LgrDfdRW3DNcUXOn5JdRIdwf/P3HcL9zet9DZmpvaJY9kgvRnRshtKBoegmKf/kRbtYsuv0Fb++q4Ej4g7HjuMe4o4lu04zedEu/kjMRqszVAvqZZe3rT+ezYSF27jjufdZ98EzyPpyl87X2Erf7ozI+AQu44qcf8WBDB7q15q/ks8jy/DIgNak55cQFexzDT5B/XI9S/nBMXGHY8dxXNzh6LR7Z3Ham2qQ2G9oiU9kB54eHMVnu8+L0URujAh8ApdxRc6/dE86LZp4s+6pAYBxXeiOuIiret1XCpOn0WTFcMTTCMbsr3ebEMp1hga93umIuENvkNEoFZhanKpVCjxUCnM2ZRJ3PPbYYzRt2pTXXnvN5rmcLUE6Q239NqOb+vL+xC60vPywdvTsJWb9epzU8xA05EGGdGlDSHBwg/SmXi9IsuzKlDKBwIgtOb+jWI7laQxsSj5PbpHWfIMc1C4Ub42SLRaexmb+HlYjisCoDB3YLoS2Tf0I8tFci0uvFyyH/k4f2tZK3AGYxR3bnh9MZJC31Wv93t5o9LbpK4hOWMymtb8BcNNNNxEYGMjrr79OfLzR/nClB/ea/qZv7hiGLMtmS4bp9+rvqcLfU03GxVIUEvyjdxSTurdg1H+2Wv1NH8m42OC8qdcLIuMT1Akh5zfiiqcRIDLIizviInh9dQJzx8W6rZTfkZJiiK8HA9qGsP54Vo3iDktBhyWSBF2aqln17irzBIydO3ciSRLz5s0DnCxBulBKdsSSUVCmM69nSpKE3iCbS/WWloyG6k29HhCBT1An6jrrrrE86briaQR4bWwM89YZp3WD+0n5nS0ptixOQtZ7u9x4fNadPdnxTgg5OZUPDbIs8/PPP1Pq3bTGEmRNpeWqXWHOnz9PVlYWOTk5DB061HwuZywZR169GW+NEoUk8f5lGwNUt2Q0NG/q9YAIfII644qcPyrEh84RjSPogWueRqMCVGJdQja9WjVBRnYrKb8zEzc2HM9Ec+w3kn5bhH/8GJoMfQhZ6bhIxfQg1C7Eg44dO1JSUsKBAwcAiI6O5rfffuOzBBllyzi7XWFqapdn2RVGlmXuv/9+1qxZg1KpZNGiRYwfPx5/f3+nLBmxs9fjpVYyvlskZy9UtiBzN0uGoDoNdyVd4FaY5PwdwhzrOpGUVXjdSPlteRq91EpmjurArF+PVzmO41L+3CItCzenMX3ZQR74ei/Tlx1k4eY08oq0tb+5FipLirU/yMiAHiXF7UYQ0usO8nb/wpxxXfFSK6llTi+SZPxZvDy6A1N7ReHt7c2mTZvYs2cPK1euJCoqisOHD/Pbhs14tooHJNYdz2J9QjYXSqxtA5tO5LDmWBZFWh1lFQa+3nmabi2bGK/xcgnyyIlT9O7dm3XrjGIrvV7PAw88QEBAACEhIfy4crVTP6fSCj1Ld//N+3d2IdhifdZdLBkC24iMT1Bv+HioOJVbDNSuaOzVKpgnh7SlU4Q/RVprU3tDxFlPY6sQHyKDvFj+T+Oan1qpwM9Tzfw7u5KXl0dCQgL9+/e3ecwrqWg0Hf+ddcnMurUTfaODCfTWkJ5XzDvrkitba6kVvDy6I2M6h6NSSiSeK2DS57sIGHw/CVlF9dJ4fMyYMYwZMwaAr3aloVAowOB4Ob1qaVlbVka/e56lcI/1ZASFQkFoaCjvvPMOO+R2rE3Kc+KnBQpJwkutJMzfk7xiYzAW/Tbdm4Z9txG4DblFWo5kXDKv89U2paGkXMcP+8+w6rCC/xvclpM5RQ16vc9ZT2NydiF95m40fx/fMojZY2P4aVcKO799h6VLl/LKK6/QsmVLJk2ahK+vsYzqcPmxDnPuPt6Uis4gc+5SKZM/38XZS6UMvrEpC6bEM/KDLWRcLOWtO2JRKSSGzd/MxZJyOl5uSqCXFeaSYn2KO5ztCmOrtIxKw5THn6Xno7fw7rvvkpCQAMCTTz7Je++9h0KhoGRzGn+lXqjRktG7dTAXistJzCrAW6PimZvbcam0gtQc45Bh0W/T/RGBT1Av7D6VZzWeqDZF4+GMSxzOuETfNsHIyG7dld8RRaOznka9QSbHoiR5qaQcgyzzxO39MJQa5/PNmTMHgGHDhuHr63vFFY2mz7r5RA5ancFKlbkx6Txn8kvoFBGAh1rBsA5N6T13I0VaY4n3WKbxmmWqN5quD3GHM11h7LXLA6hAxf3338+dd97Jo48+Stu2bXn00UeN2SSO9ds8kV3I/jaudwAAIABJREFUa7fGEBbgSVmFnsMZl7j3qz3mwCz6bbo/IvAJ6kxukZb0vBIrKX9VbCkaLXHHrvzOlhRvnvMjyUUeSBbd92saUWTJ7tP5vPbrcUYM6svvv/9u3i5JEunp6VxUBNRYfryta3PevL2z+X0KScJLo+SWj7banHNnMBhIT08nKirK6jrsqRpDfDW0DvEh5XwhXSIDOXuxlBnD2nJHXCTnC8v4YEMKay/L/69Eo2lHu8LU1C7PeBxjCdLHx4dvv/222ushvh4MbBfKH4nZNVoy1hzLsrld9NtsGAhxi6DO1CYBN5Wd3vw90e4+ppulu+Bwn8aEbO78bAePvbeUrQtfrnOfRp1OZ84+wCjlHzJkCA+8twydvrL82Pm1dbz7xwkWTIknMtCLlYcyiZm1zvzvXyuP8XdeMccyC8yKRhNarZbJkyfTqlUrunfvzvfff09JSQlgu6SoUkh8MCmOnw5kkJZTTFiAJ+3D/Cks09HzrQ38e9Vx3pvYxaxqvRKqRmNXGOPPRXm57GhZglQqJJr5e9TYLs/REuS0QdF4qlxrmt6YvKmNGZHxCepMTVL+mspOljh7s7xSPRrBeZO0Vi+zOtMTTVg0E9ooWJOpsBJy1Ialp/GTTz7hwoULvPrqq2zfvp2cnBz+zs5n1Kf70Ffo7ZYfq070Hh8fyYrLGY+lqfpU0lEmTpxIZmYmAPv37+eee+5Br9cTHBxMk9tfgpDK8p4kwfw7u1KhN/DqKqMCVVthoFxn4KO/UtEbZHafymfnyTwGtA0h7fI6l7PqVEdG/rz/RzJgvwRZW7s8R0uQwpva+BGBT1Bn7K2/1FZ2qn6c2m+WV1rRaOq3abrh1aZOfbBvK+7tE0WQt5qS8jEoJOh2PIvXXWypFR1tzBZWrVrFmTNn8PDwYOOpElQqVbXG15blR0siAr24qVUTnvvpsHmbrqKCmyY/xcnVn1W7Dp1Oh1KppHfv3vh1iWH72crfwzvjYgnx9eC+xXvQGYwfJjGroNoxqn5Of081b731Fl27dmXUqFE2P7+zv0v/4gxyNOE1liDtlZadLUE6400V/TYbHiLwCepME291NeVbbVMaJAk0SgVqpbF85aFSEOStpn///jz11FNMmDCh2nuuhqJxy4kcK5FOberUPxKzWb7/DAVlOgK91Xz/cC/u7hVF5zpK+dVqNa1bGwUzjpQfLRkXH8He0/lkWJiq9ZKS9t0H0F4+w+7duykpKaG0tBSlUkmfPn1YunQpLVq0YOHmNPZln0CrM/DG7Z2IburL3V/stjr/nlP5ZF4q5fFBbfhkUxpdWwTSu00wc9caS9kKWcffh3fw8bv/BuC2227D29ubhQsX4uXlBThnjt+YkEXQ6b84tuk3mk15CxTOZ/SulCDrw5IhcE9Ek2pBvWMqO80Y1o5irXU2aCo79WrVhO+r9K3cffQEvbu0ByAwMJC+ffvy66+/As6VH00YS08dnFI0Lt93hlA/D3MbrKrENPdn2SO96XT5c1gS6K3mkynxxN8QZB6sWx9S/ge+3svGpPPm7yUJ/jMpDl9PFQ9/s8+ciZn465lBfLIpleVV1l6Htm/KF/f2QJZl9uzZw9SpU4mPj+f7779Huuw0NzWaDvH1YPsLQ9BW6K2O/9IvR1l5KJO2TX15e3ws7cP8OHuhlHfXJ7MuIdt4fQY96R/dY1anglFMkp+fj0ajcel3aSgvI6YimbunTLnifwe2EP02Gxci4xPUiCPrL7lFWnq9uQFdlUeomhSNu07lE/ViZZcMyaAj/aN/mJsTX7hwgYkTJwLOlx8f6d+a8fGRRAR5cbGknHMXSwkP9Kr1s7rab3Nsl+a8cXsn/DzV5BeX8+uRTCZ2awHUj5S/qqLRVvnRRLeWQTTz92DN0XM2jmNUNEqSRM+ePUlJqf77sVQ1Wv5+qpJyvohxn+6otl2SYETn5qzw9SDHYtmxuLiYNWvWENVtYI3q1MhAL7a9MMTqgWnhljQ+2pjKKe84YiMDeXl0h6teghT9NhsXIvAJbOLs+ovuzGHk5p2tpPyOIkkwtGMYi8utS3a//PILPj4+NInp51T5UZLg6eWHSMoqJCrYmx8sMktZlpk6dSqHDh1i8eLFdO/e3ZztuNJvE2DV4UxWHc4kKtibcfGR5BZqzYGvPrCcc2ev/GhifHwkvx/LorjcelqGM6bquk7cuO+m5iyrqMDb25vSUmP0Cw0NZdq0aXiPmI4qspNdc7yJ2Nnr0VcJ6lq9wcocL0qQAlcRgU9QDcfXX7LYcCyTsp1LyUs5RNjdc0Hh/Dw5T5WSSZ0CORwXR25uLn///TdNmzZFrVbzxZJljJoWQ3hQ5YT22szxn205af46LaeY1UfPMbFbC7IzzzBlyhT27NmDXq9n0KBB+Pj40L9/f4YMGcKRnFDahMbZvEZH1Kmn80pIyS7kvj6tHP7sjioa5284QUSgF3f3bIm2Qs/el4aZj2EqP3qoFNzSOZxHl+6vdh5nTNV1VTX2atecCxcuIMsyTzzxBAcPHmT79u2cLyilz9sbKa2wb44/dvaS3eOLkT+C+kIEvgbKlZLzp+UUmW949idNGyXrMhLtI4J49csFdL0hCIMsMX9DMp9vPeXw+Uw3y+Hdohi+dy+yLPP8888zYMAAbr31VhZuTsNQyzJ0beb47i2D+PC7X3n5wfEYLDLHkpISSkpKWLFiBfv376f5+Bdtvt8ZdapSoSAswJPc3FwCAwNRqWz/F3M2o24fYOBQTnGN5UetzkDs7PXVtrtiqq4PVaMkSSxYsAC93pg5rjiYiVKhQGeoXZ26/fkhyMhsS8nlzd8TuVBiVJqKkT+C+kAEvgbGlZTzV+23eb6gjMeXHrCaNP3R5DhG/WcrAEHear6+/ybmrE7g4SUH+O6hnnRqHoCXWlmnm6Vp6Ci4Xn40MWNYWyRJYuEaY1BVKpXmG7FGoyE4OJhly5bRv39/Fm056VS/TYBJ3VuwITGbvOJyopv6Mm1wG3KLtIzt242Y/2/vvMObLNcHfH9Jd0s3HbRA2ZTSQhlSpsoUZIioIHIURXAexe1xHJWluP2JiuIAxYGIHoYoUEbZoyCUVQpltUA33Svr90eaNGnTNkkHSfve1+V11S/Jl6Qp35P3ee/neSIi+PDDD3F3d6dt28rUpyV2alxSJlO7OBL3+St43vlfq+fcWVNU3VBWo1yuFX3MsVPdnORMWLKbU9fy8XFzZN7EnnwyNZr7vzsIiJE/goZBBD47orF1/qr9NmubNA3w8JCO7DybydqjV5EkWLJdu/8S5u/eYPsvlo77MeT+ge25MzqUu7/cx4jb7+DDZS+yZs0aPvzwQ06ePMmkSZNYvnw5bm5ugOX9NkG7mnx+dDfcneXkFJXz57ErPHvnEIqvZ3D58mU2bdpETEwMe/bsASwvji9VqPnuWB4qrxCGumcSr2pLmQVbb/Utqm7IlGLVz9JUcXxxuYrjFenOrMJy3lh3kkOvjsTdSa7ftxQjfwT1RQQ+O6GxGxTX1m+zpknT0e28OZNWwJpHB9Hez42E1DyuFzXs/oul43503N03lMdu7sQ9X+4jLb+UgR398PLy4qGHHuKhhx7i9OnTdOvWzag9GMCcH+LZcjrd6ItFbXbqC2sqyx4kCXr7SZTkVu5BqtVqfWA1Z9zPoE5+zJ/YkzberhxNyeX5345xJRcCbnuUl2YPIyE194YUVTe1napDg/a4zGCwnxj5I6gvIvDZAVV1/rr23pbP7E//MF+jxxteOABKS0txcalMm9Wm8tc0aTrIy4WebbyY8e0BzqQV8Nq4cHoYmIMNcbG0dNwPwKTebXhxTDemLTtAyvUSk0ZjeHi4yeerr9H44vhI1r8k06dTAWJjYxk5ciSetz+HUi3VaDQWlStZOqMvL69JYGtiBs+O6sqSe6OZ/MVe1Mjt3mg0x07t3dab/BIFF7KL8HJ15M0JEexLzqagorxBjPwRNASigN0O2HEmg6zCMn1RtaeLA54ujkZ7b1P7tdXvvRkiSbDp6WF0DdReLJ588klWr16NQqHgwoULeHl5ATB31T90au1BsJdLjcXbkgRHXhvFyA/jyC4q56+nhnLiSp5+1ePt5sjR10c3xq9AjznF8bteuJUgLxfKDS6ocpmkLyqvi/oUy0/pFcgXX3zBpUuX+PTTTxk9ejTz588ndtcBvkwLBXn11cpfTw3lk61n8XFz5K6+bZmydG/FOeX88/oobv90F8mZRTg7yNj70nD9atnejEZziuM1GnhhdDf8PJwoLFWy61wW7/yVqB/hVPV3IBBYg1jx2ThZhWWcvpZvlIKsa+/NkBAvVzq19uB6URkn/znEN998Q2lpKQB+fn54e3vTp08fUjtN4LG7b6v1tVSdNH06LR/Db02WfoUy10wd8p/vSVH7mD3uZ+h72/U/SxKM6RFo0ay/+hqNzz77LADjx4+nW7dutGvXjsPFvjjHJlWTOwyNxhkD2nP6WmW3kxKFikvZxXQJaEVyZpHdG43mFsevO3bV5HEx8kfQUIjAZ+PUloKsae/NkDv7hBB/MZv7nn6d5A1LjW5TqVRcv36dwMBAWod3tnjS9Or4VJbO6MvyvRdJSi/gqeGdOZuezwOTb2PVqlVGJqMhlpip7Tw0HP5hEa2nLbQ7o3HUqFH6n80zGh3IKSozuk9BqQIPZ+0/0+ZgNNY3lSxG/ggaAhH4bJzadP6a9t4MubNPKEu2ncMlsAMBAQFkZWXpa9kiIiLYtm0bAQEBxo8xc9L0vvPZvLcpkW8f6I+rk5z4C9k88voH7Nu3j+7duxMZGcnw4cNZtGiR/tzmmqmbTlxj07EUsrcuo/TKGVqn7CKv4wiUFoyQtD+jUYlHFXHDw8VBP+Vcex77NhrFyB+BLSACn41Tm84P2nTYjwcuGe296ejX3ofWHs5sPHGNgUNv5ZuvXyQhIYGbbrqJdu3a8fbbb+uDnm7/peqqpKZJ0zpWHrjMygMVgolKQcrKjwFtcXi/fv147LHHKu9bsXcW4uNWq5wzd0QXnri1s3aPbsEEHGTg7OhQZ9DUYa9GY1J6AVMMuqu4Ospp72tc2N0cjEZLUsk6wvzdiQwRQU/QMIgJ7DZOTTq/IYZ7b4ZM6RPK3yfTKC5X6S+YUVFRFBcXk5SUxIQJE/T31e2/VJE/zUaSoE+QM5rSyov01atXefnll8nOzianqJyFGxMpUaj1hfG95m0mev5mYk+n8+k041ZhGxKu6aeJ954fS0JqLjNiwlg1J4YxPQJxdpDh4mD85+viIMPZQcaYHoGsmhNjU7PRDCeI64zGWd8fMvqiselUOl2DWnFbRBDODjKeHtGFxLR8/dih5mQ06j7L8CDz3k9iWgHTlu1n5f6LjfvCBC0CseKzcUzp/HXtvYHWfrs9KphHfjhc7YJZtXZNR333X2I88zjdrRvXrl0jPz+f3bt3061bN1auXEnbfiMoUSgBySI5B6BUqTJS+e2xR6O5/TYfW3mYeRN78vHU3hxNyeXfP/+jv48l/TbtgRNXcpk1uAMDOpquadTx1PDOPDuqG/d9vd+i2lSBoCZE4LuBmGM1muomUtfeG8CYiCDySxTsO5+Ns4PMrAtmffdfZsSE8eLDUykqKmLMmDG89tpr3HbbbRSWlrPpZDraTouV1CbnjAgP4Ojro8goKOP7fRdZfTiV7MIy/e+luRqNe5KzGfFRXLXjzc1oPJaSy/ubz3L/wPZ8ZKKmMTVXu2fdzteNcZHBpOdrTeQShZqFGxOJCvUW+30CqxGB7wZgab/NB5btZse560Y6f117b7pROZZeMBuiObG7uzu7d+/W//+Z9CL96B9DapJzNhy/xk8HL5NVWEbvtj4sva8PJeUqI5XfHhFGYyWf7TjH9ZLyGqc06ALf/EkRvPN3Igsm9dTfzzADIBBYg9jja2JW7r/ItGX72XI6nTKluppMUlpxbPOpdP2exvW9q9Coyms4Y+1Yc8Fs6L207MKyGics6OScD+/phZ+7dqTRuYxCMgrKUGvgyOXrfLf3IiN7BNq9yq9bUbs6WvbPzsVBalZGY1ZhGXFJmdW+VFWd0jCuZxDlSjU7zhinPg3HEwkE1iBWfE2INf02X/3tCNePnScktAxFxIQm0/kbci+tTFX7+61aGF8VjUaDhGT3Kj9YZzQq1bDrXBaRId4WT9ywRUzVplataXR3kvPCmO7865sDJs9RtZhfILAEEfiaCEv7bQK8fFt3pvZvC2+NR6FWs/lkWpPr/A2xl+bqIEOhUpst54wKD+TAhWzyS5X0CvVi5qAOvLc5sVmo/GBcHL/lVDqqOoKfUq2xeuKGLVK1mN9UTePckV35459UfcqzKs2hmF9w4xCBr4nYmZRpNPKnrll3029qx6gegYz9ZBeg4Y/HBjfYfLSmZmSPIMB8OWdCr2DevSsKJ7mMtLxSlu5M5s+EazwzquuNfBsNSlSoN0M6+7PjTCYqZeNM3LBVqtammqppHNzJjyAvV/4V0x4AX3dnPpveh6VxySzdeb7iPPafARDcGETgawKs6bc5pU8oX+86T1qFzbZk+znenBhhlzq/qeL42uScp345Wu2YuWaqvXAsRTteSK2BxXdGmRxT5CiX+GRqNFGhXoT6uDHtq33sv5Bj91ajYW1qTVMapn9zAEcDmWvtE4NZ8Ocpo1KH5pIBEDQ9IvA1Adb02+wS6MHptMpUzpm0fKP0pj3p/IYqvzWzQJqbyg9aq7FUqcLFQV7jmKL0glLiL+Xw7Z4LfD69j/6x9m416sYT+Xs411rTaIhaoyGvREFxxTDa5lTML2h6ROBrAqzpt+nu5ECBQSonq6gcJwf7lXCFyl+JodVYolDVrPSfLOHbPRcBUBl8YzC0Gm3ty4A5tal39Q3l/U2nuZJbUmtNoyFD3t1u9P/NrZhf0LSIwNcEWNNvs6hcqe/KD+Dh7ECpQmX2TDlbw9ri+Oam8kPtGYCqSn9N2JrVaEltalSoF2UXjiBrF21Um2ouzTEDIGha7HcJYUdY02/zbHoh4cGe+tvDgz31+332yoyYMF4dF46ro9zsnqA6lf9YSm7jvrgmxNSIIqiu9NeGLVmNZtemnkznzs93EnrLvWTsWImkrv0LYU00twyAoOkRga8JiAj2wslBpu+3KZdJDOnsT0SwJzJJu5p77fZwI6X/9yOpPDykI4GezgS0cmbOsI5czim+we+k/hgWx8vNCH46lb85NSg2lQEwpfTXfZ4bbzVW1qbWXZOoAVTIkfe7m+cWfsKCKdEWF/OL8USChkCkOpsAa/pt/njwMm193dj09DBAmx6bHB1yQ15/Q9OSVX4wnQEwpfTXfR7zrUZzp91bwrGUXN7ddIY3J/Q0aaXWXKsKf1yUmDbam1fHhd+QUVOClo0IfE3EnB/iq1mNdfXbfOfvRN75OxFJgjE9Anl4aMda728v6Ir5dTWI5hTzg3b1N7CTP+VKtV2LPjqrUfclpyalH8BJLtOnhR0rWsWVKdV6q/Hjjz8mJyeHefPmmXwuS/vCWsJnO86hVGtqtFJrq1WtOnHD3mpTBfaNpNFYI5gLLOVYSi7Tlu23ymp0dZSzak5Ms/lHv+NMBlmFZTz/WwKgXQF5ujgaXSCn9murL+bX8cQtnbm5qz9dAlrhU9HX0x4xrGsM8XZlz0vDKVOojFZ6OqV/94u3EurjZvT4IYu3kZpTwNDsv1nz0woUCgU333wzgYGBPPvss/Tt2xeoe9q9DmtWUzUNLgb466mhfLL1LH+frPxiJ5dJTL+pHa+MDSf8jb8BbW3m3peG61ec9lSbKrBvxIqviajvyJ/mEvSsKeYHCPVxZXJ0CAv+PMU7d0bZpMoP5qUU/T2cubmLP5tOptWp9FfV+EEbqCJ9JX56/yvUFd2Atm7dikwm49FHHwWs6wtrSSq5JjPVlJVaU61qVTPVnmpTBfaNCHxNiDUNisP83YkMaR5BD6wr5gd4a2IE721KpLRixWxLKj9YnlLsrDjP3yoHJJmLxc/l4iBn4X2DSfk5kmPHjumPq9Vqtm3bhke7iFr33qLbevPsqK5EhnihUmvYfyGHN9efJLOgrFpXmHfeeYdNmzbh6urKxo0b9c9lykytyUqtqVbVlsxUQctCBL4mRtdv8+XfEzhlxj/6xLQCpi3b32w29a0p5tcaoBKbTqUT08EXDRqbumDWlVLU7VltPplO7MmruCX+xYn/LcUjeix+I2eD3Py0rWEGwMnJiY4dO3Lx4kUAAgICWLVqFd+edcCtY58a9968XB35+eBlHjubhVKtZt7Enrx/VxQPfHfIaO/twoULLFiwgKIibRALCgqie/fuDBo0iL3lncExUP+66rJSTdWqgm2YqYKWhwh8N4CE1FwuZNVep6WjuRmNlhbzF5ereHlsOA8uP1jlPOZfMBvDaNRhUUoRrc6f13EkvgOucWXHL/x21PqJGwcPan8nGzZsYObMmSQmJqKQuzDw7VhKFOoaO8IY7r0BrNh3kVVzBmpfowa2JmZw94wH+eOXH1CpKvek09PTSU9PR61W4zcyigyDwQnmWKmmxk+JfpuCG4EIfE2MpeOJBnb046nhXYgI8aSgRElCaq5d7/dZWsyvQbu/t/oR7YXZUS6jlYsjH93TmzNnzpCRkcHQoUNNnqcxjUbd+RduTGTR5CgGd/LD1UlOZmEZX8adZ1V8ivZ5HGW8Oq4Ht0cG4yCXOH0tn6lf7cfn1lkkZZU2yMSN8ePHk5GRgUwmY2lcMjKZDNTGgbi2jjADOvhyNr3yuKKsjJ2p5ajVauRyuT74hYSEsGXLFsLDw1kal8z52CTKlOoardQhnf1rHT8l+m0KbhQi8DUxlo4nKi5X8uvhFFyOyXji1s523ZwYtMX8ajT6Yv665vMp1RoGvbNN//g+7X2YNzGC5bFH+GX+Exw/fpwXXniBgIAAnnjiCZyctGlDs9OP9Zhzp2s0/fmOc7y0JoFylZpOrd35ZXYMJ6/mceJqPm9PjsJBJjHyozhyi8vpUdGNR4XMSOev78QNWUXrL0v23gC6B7XiqeFdmP1DvMEDnJj+2Au8/fc3fPnll8ydOxcnJyeWLFlCeHg4oO23+VFsEiHerjU2mlYo1bXWqop+m4IbhQh8TYg1RuOx1DyOpeYxuJMfYLvNicG8lKI1xfyZhWX6x+QVl6PWaHhlxljUJfmAVsBwcnLikUcewcnJqdGNRt171TWaPmtQb6jRaP9r7+dOiULFyPAABr6zjcIy7Wd84qr2NWuo/lk2hNVYNZVc295bez83ls+8ibc2nOLQxetVzqPAxcWFp556ittvv53OnY1bhBlO3KjNSq2pVlX02xTcSETga0KsNRoNsbXmxGB5SnHwyytI1fgaNSiuq5hfx4GLOby1/iRR3Tpy9Gjl3D6lUklCQgKuId1rTT9O6t2GRXdE6h8nkyRcneSM/3SXyTl3CoWC06dPExUVZfQ6qn6W8yf15K4+obg6yTlxJY/tZzK4LSKIK7klPDOyC5OjQ8koKOXj2Mr6tsb4LKumkmvaewvxduXHWQP4dNtZ/vjnionzaPfeJEmqFvR0iIkbAntFBL4mxBqjsSq2poBbklLckZhONBeJX/EJgfe9bbXK//gtndn0ei6SJGHYf+GWW24hfM5HlLq3qzH9uPboVaNZb3f1CeXfwztz4mo+koRRKjknJ4fx48ezb98++vbty7///W/uvPNOWrVqVS2l+PraE7yx7gR92vkQ09GPcqWaIC8Xugd58veJNAa8HUufdj58+0B/zmYUkpxZ2CifpWFXmJr23gI9nfnp4QGs2HeJHw9eNvE7Nm/vTdSmCuwVEfiaEGvGE5k+jx0ajRooU8He8iBatY/god5e/JKkoNTKC+bOnTtRKpXMnj2blJQUEhMTSU7NYMznB9FQc/pRl2rUMaVPKL9XrHgM59zFbf6Thx56iMJC7XkOHz7MrFmzmDlzJr6+vvhM+g8EhhudS62B+EvXmRwdwoyY9pQp1JQr1Xy6/RwqtYYDF3LYdz6bYV38Sa4QPBr6s7yrbygfbjlT695bmJ877f3cmTuiC3NHdNHfFvHmJu3vAfP33iypTRX9NgW2ggh8TYilRmNNgc/TxZGSkhJcXV1rPE9jG42W2qmzBnfggUFh+Lg5Ulx+OzIJupxMY4GVF8y2bdsCsHHjRvLz85EkidjzhTg4OOgbX5tKPxoS4u3KTR18eWFNZRG4orycnhMfJm37yurvWa3GwcGBCRMmoO4fzc7LpsdEyWUS7X3d2HI6vdptVd+np4sjL7/8MhMmTGDw4MEmz2fpZ+lVlEqqIrjWvbdPDEodDLFm760hzFSBoCkRga8JsdRoBO2FyEkuw1Gu3Q/zdHGgi78LgYGBzJ8/n9mzZ6NWq/HwqEyhNoXRaKmduuV0OqsPp5BfqsTbzZFfZsdwX0wYkfW8YDo5OeHv7w9UNxpNpR8NubNPCIcu5pBqkFpWyxzoM3wCrQIUbN++neLiYgoLtQF1/PjxLFu2DH9/f5bGJXPgahIezg4M6uTH1sQMShUqhnT2Z2KvNjz1yz8cvJDD1bwSHr+lE5/vSKZ3W28GdvLjnb+1Io1Mo+LSsb2se/99Pv74Y6ZOnYqLiwtLlizB0VG7x2ZJcfy2U2n4XY4jYevaeqeSLaUhzFSBoKkQTapvIDqj8blR3YyMxnc3JZKYpt37iengyy8VxcU6du3Zy7AhlauDgQMHsnfvXsCy9KMObQox3CKjcXV8Cq1bOesbTRtiqiGxId5ujnw+vQ992vnoJ8o3xAXzoRWH2JaYYfK2hXf05GxGIcv3XtQf2/7cLXy+4xyrq4gqI7oH8M0D/dFoNBw4cID777+fKVOm8Pbbbxv9DgYv3oa7swNfTO9DeLAnkgRXcktYvvcivxzS1vF1CfBg8ZQouge14sr1Et7ffIZNp7QrQUmt5PKn9+vtVABvb2+ysrKQy+VWfZbq8lI65h0bKwogAAAgAElEQVRl1qxZLPqrcf8OBAJ7Raz4Gghz99Lu/r8tHLxSarbRuP9Cjj5lJUkQqslm9zsPGN1n9uzZgOXpxzlDOzKlTyghPq7kFpdzLbeEYO+a06c6rLVTJ/Zqw8I7etLKxZGconLWJ1zl7r7alGVDqPy1pZJ16Ucdfdv7EOjpzMbj10ycp9JojImJISmpumVrqPNPXba/xuc9m1HInV/srXZckmB0zxB+QIGhypSfn8+BAwdwb9ujVjs11NuV3S8Np6isct946c5kPt12jrTgQRXiiZh1JxCYQgS+emLp/kvyus/R9J5hdRrqjTsGMuod4+Pr168nLy+PHsOnoDL4gl9X+lGS4NnVR0lMKyDMz41fDVaWRUVFDBo0iMuXL/Pll18yceJEXFy0r9laO3XdsausO3aVMD837uwTSlZBmT7wNQQ6o7G29KOOKX1C+etEGkXlxiq+Jd1E6qvzT+7uzionJyRJoqRE+7vy9/dn8uTJ+Ex8kVL/bjXaqbnFWikmat5mVFVahJWp1GLWnUBQCyLw1QNLmxOr4ldzJW4D3VoFUdp9HErMH6aqMxp7BGkLtXNycvjtt9+IiIjg8ccfJ27/Ec5kFhPsXbmqqas4/sud5/U/J2cW8efxa9zdty17dm5nxowZZGZmolarmTlzJiqVis6dOzNmzBgOOPai05hBNb7WuuzUi9nFnE0vYOagDma/f0uMRg0wY0B7Ft4RqU8/zttwitjT2jSos4OM8ZHBPPrj4WrPY4nRWF+d/7b+YeTm5qLRaJgxYwbp6enExsaSnlvE4He3g0aq0U7NLc6t8fyGdqrYexMIqtMiAl9jKP3JmYUmL3hPDe/Ms6O6cd/X+9mTnA1oL6YxnQJ4+Yn/o2vAtzg7ObIzKYNHVh6xKg21dOlSAFatWkVYWBgDBgzgnGMHatquNbc4vm97H976/AcWP/Og0XHdauTUqVP4+fnhcUvf2n41QN12qlwmI8jLhZMnTxIeHq5vuVUVS1fUAaosUgp8ak0/linVRM3bXO24tUYj1E/nlySJlStX6nti/nEsDblcjrIWO9XXTduabc+Lw9GgYffZLBb9dZrrFStBMetOIKiZZh34GkvpzyosIyE1r1rQa+frxrjIYNLzjTX3zgEefDItmudXH+PQpRx+nTOQYV0DWDUnpl5pqKlTp+p/rm9x/DMjuyCTJDYcT8Pd3R2FQoFCoUCj0eDi4sLAgQP5/vvvCQ0NZdnO8xbbqVP7tSX2dDrZReV0DvDgiVs7cS27gJsiI5k1axZPPvkk3t7etG/fXv+aLCuOz2CQaxrxKxYTMH1RkxqNDaHzS5KEg4P2n6M5dmpOcTkTluzm1LV8fNwcmTexJ59Mjeb+77QTG2yt0YFAYEs0W6uzroumDms29v88fpWSclU1o3HFg/35bu9FFkzqyUtrEvQrvk+m9uZSTjEfbklCkrTz5QwbTTeU0Rjd1ptgLxeTpqXuvZpKP94/sD2zh3Tk7i/3EdHGk6/v70d8fDwLFixg/fr1vPvuuzz33HNIkmTyvObYqe9NieKWbgG4O8vJKSrnz2NXeGbyYEpytV9K5HI548aNY926dYB1dqq6vJSCnSt48KGH2HjViVKl+X/aDWU03gg7FaC1hzOHXh1JxBt/6/ctdXaqQCAwplmu+BqzSXFWYRmXs4uNGk0DjOsZRLlSzY4zmdUeE93Oh0s5xfz99FB83ZzYfyGbnMIyfBuwObG1xfF39w3lsZs7cc+X+0jLL2VgRz8kSaJ///6sXbsWjUZjMuDN+SGeLafTjb5U1GanvrCmMhhLEkT5og96ACqVCj8/bSNuc8b9DOrkx/yJPWnj7crRlFye/+0YV3Kh9ehHmDlhMH1Sc2+I0djUdqoODdo3KTP4rMSsO4HANM0u8FVV+g0xtf+2ee4wQgwUft2FXqPRoFaruXjxIq1atSIgIAAwrfK7O8l5YUx3/vXNAZOvKcjThTujQ/jXtwdJzy/l43t6k11crg98DYE1xfGTerfhxTHdmLbsACnXS0wajTWt8uprNN7RxZF1VY4vX76c4uJiygfMpFSprtFovJJbwtIZfXl5TQJbEzN4dlRXltwbzeQv9qLQYPdGozl2au+23uSXKLiQXYSXqyNvTohgX3I2BRXlDWLWnUBQM80u8FXtKKKjpv230R/v1P8sSXDolZH4ezjz6aef8sILL1BeXs706dP5/vvvkcvlJvfS5o7syh//pJKaa3r/rFSpYvXhVP3U9f/bdpZfHxlo8r6maKxxP8+P6oa3mxPrnqgshpfLTAe6qtTXaBzTyZ3ly5eTnJzMggULePjhh5k3bx4rflnDF1fLQO5Yo9EYGeLF2fRC/Qrz49iz/PP6KDq1dic5s8jujUbdrLva7NSJvdrwwuhu+Hk4UViqZNe5LKNyDTHrTiComWYV+EzNu9Mxf1IE7/ydyIJJPWt8/E1hvrg6yjly4gzvv/8+5eXadODPP//MqlWrCAkJwWnkUzx130Sjxw3u5EeQlyv/itGKGb7uznw2vQ9L45JZuvM8idcKjIxLDboLuek0og5L5Zzof39Ojltbs4vjh763Xf+zqb3Huqiv0fjAA9pC/GHDhtG7d2/8/f3xir4N5+wk/Xs1ZTS+MLobp69VdjspUai4lF1Ml4BWJGcW2b3RaE5xvK4m0hRi1p1AUDvNKvDV1FGktv03Q6b0CeWv41d56IlXKEhJ0R/XBaiRI0ei7h+NXCYZpRSnf3MAR4Ngs/aJwSz48xQ7KgLW6sMpPDW8C3/8c4XMwjIeu7kTCSnZTBkWzaZNm4iMjKz2WiwxGuOSMhnhk8up3z5u8h6NDWE0jhxZOT3AHKPRzcmBnKIyo3MUlCrwcNb+OTcHo1HMuhMIGo9mFfhMpSHr2n/T4eIoY2zPIGZ/H8/AsVNw8C9l48aNgNY4TEtL08sXOnQpxY+rdLpXazTklSgorrDrVh9OJdTHlf89rk0p7kzK4NFXFnPt2jX69u1L9+7d8fHxIS4uDrBczilVqFmf6oRH+x6MaV3EzgJXylSWGo3Wz0dryJSiqdFNVcf9FJcr8agibni4OOinnGvPY/64H1tEzLoTCBqPZhX4TF0069p/03FbRDB5JQr2X8hhRPcufP3GBoYMGcKgQYNwdXXVBz1dc+IyZc0XoyHvbq927KPYs3wUqw2QkkbF5Q3LAe2E7+PHj7N48WLAcjnn/buimNgrBIVKDUzCxVHOLwcvWT3upz40ldGYlF7AFIP9K1dHOe193TmbUbnKaw5GoyWpZB1h/u5EhoigJxDURrMKfKYumnXtv+mY0ieENUeuVJzHEUmS2LNnT7XzGe6/WFMBKUkQ5Sfnclmh0fGDBw+ye/dulK27WCTnAHy5M5kPqtQI1nfcz43CHKPxyOVc/jMunNsigth+JoOnR3QhMS2f5EytPNScjEZdKvnl3xM4ZUb6NjGtgGnL9ouG0wJBLTSrwGdK6a9r/w205QYDO/rx6v9OmHXRrO/+y9h2aspHjyY3N5f4+HjkcjnBwcG8tmAxU55/j2Af92qPM0fOaQ49Gs0xGgEeW3mYeRN78vHU3hxNyeXfPzdfozEhNZdHb+5ETAfTNY06DDMC5talCgQtEbsJfNYq/XXtv2nvG8KRy7lczinG2UFW50WzvvsvM2LCePSecQC8+uqrSJLEggULWBqXjNrEMrIuOedfMe35V0x7Uq6XsGxncrM3GgH2JGcz4qO4asebm9GoK+YP9XHl+ezqNY0nrmrt1qoZgRKFmoUbE4kK9bapFb1AYAvYfOCzVOmPeORjCr07GSn9hpjaf/s8LpnP45Itumg2RHNigIULF+p/tkbO+W7vRRZsPE1BqZKhXfxZcm8fvt19oc7Xb8sIo7GSz3aco1SpqrGmURf4TGUESpUqfTG/QCCoxKYDn6VNirsVn+TcumVNpvQ3hMpviDVyzsmrlfVsO85ksvboFboF2ff+lrUragcZzB1hW3uW9SGrsIy4pEz9376pmkaoOSNgmPpuLitggaAhsNnAZ6nSX6bScFTqyORZTzN2bDTvbDrTJBp4Q+6l1UfO0aHRaOfN2TvWGI0g8WHsWY6k5Fo8ccMWqVqXaqqmsa6MQNVifoFAYKOBz1Kl30kuY8EdPRnbM4hShRqFSo1cLmvSJsUNsZdmjZwztmcQcUmZlFSYj5OjQ9iamF6v12ErVF1Rq1Rqahu4oFRrUKo1bD6Vzs6kLLs3G6sW80P1msYQb9c62uXZfzG/QNDQ2GTgs7Tf5tyRXQjzc2fw4m0EeLqw5tFBDZ6GbAqskXMeHNSBxVOikIDU6yW8tvYEr40Lb8qX3ajoVtRL487x/uYkzFn6WTpxw1YxlfrWoatpHNDBt86MgL0X8wsEDY3NBT5r+m1O6RPK878dI79USX5pIT8euMSswR3sUuk3Ne7HkKpyzj1f7dP/rKvjs7X3VF+OpeTyydZzvHdXL5NjihzlEp9MjSYq1ItQHzemfbWP/Rdy7N5s1KW+/dydaqxp/GTb2TrLdZpDMb9A0JDYXOCztN+mp4sDgZ4uRk2Lz6QVUFiuxNlRDtiX0i+MxurozMaaxhSdSS8g/lIO3+65wOfT+xg91lbNRnPKc3TF/HXVNBpSNSPQnIr5BYKGwuYCn6VKv3tFY+ICg7RQdlE5EuaN17E1hNFojKHZWJvS/+2eiwCoqiyVbc1stKQ8566+oby/KZGcovJaaxoNqZoRaG7F/AJBQ2Bzgc9Spb+oojGxh7MDZcpy/c/F5Up83Z0a98U2EsJorKRqBqAmpb82bMVstKQ8RyfnKFOOomkTVWNdam00t2J+gaChsLnAZ43Sn55fSniwJ7vPZQEQHuxJRkEZoT5uTfraG5KWbjTqMGdMUV3YgtloaXlOiULFq78dJi/lLN5BPUBm+Ze45pr6Fgjqi80FPmuU/t+PpPLvWzuTkJpL61bO3HtTW+Iv5gA+N+hdNAwt2WjUYc6YouV7L5pxnhtnNuraji2aHGVSzukc4MGHd/eivZ+2R+vxK3m8uf4k5zKg9aC7eHhYJ5bvvSjGEwkEDYTNBT5rlP6PYs+y4I6e7HlpOKUKNV/vPs+coR1pDqg1GgI9XVGqqwc9UzWNOpwc5IyLbENRmVK/D2qPmDOmyBxaOcvrnHgP5kknllKXnHM5p5jHfzxCam4JMgnuHxjGp9OiGft/u1AicSGriFfHhTdpXapA0JyxySuipUp/uUrNi2sSeHFNQrNT+i2tadTx8m3dOZdRgK+7E50D7NfqM2dMEWibGOhimqODDGcHmT5F6uIgY/+m35n2x2J++eUXk8HP0p6w5mKunKNb2UqShEqtIaxi9aeTcxbeEWl3dakCga1ik4FPKP1arKlpBOjTzoduQa34+eBlpvVvazNGoyHmrqy0ZuNpNDjUqvRve+5m/Z7uDw8NAGDI4m2k5pZQWlbG4dWfcbiskIiICIKCgrjvvvuYNWsWYJ10Yu5qyhI5J+G/o3FzkiOTJD6MTdIfN5Rz7K0uVSCwRWwy8Fmr9Ls4SM1qX8PSmkYAmQTzJkbw8u8JdA/y1J7HBoxGHZaurPzcnVClJJDdJrJWpd/U1A3QBo3SC0dQFuUCcPr0aZKSkpg+fTqgDXqero7EPX9Ltb236LbePDuqK5EhXqjUGvZfyOHN9Sdr3T+tmk61RM6JmrcZV0c5U/qGcuV6pcFcVc6xp7pUgcAWsdluxjNiwnh1XDiujnLq2JbRo1TDrnNZHEvJbdwX10QkpuVX29vT1TS+tf6Uycc8OKgDR1Ny9eNq1BpuuNGoY+X+i0xbtp8tp9MpU6qr9aEsrTi2+VQ605btZ+X+iyxZsoSrscvRqMqtek5nRxklR9YaHVOpVOzbt49dJy+zcGMin247x5B3txP51mZmfx/P86O70rONJ16ujvx88DJD3t3O4He3UVSm5P27ovQdYRJSK//OZs+eTevWrRkxYgQlJZVBqzY5J9jLhRkVprKOEoWKHw9c4sN7euFnUI4j2o4JBA2HTa74dBgq/VtOpaOqQ2psbjq/pTWNAa2cmTkojPFLdlc5j3kXzcYQO3RYp/MfIWfrX5BziS4Fx7ns1xeFxvzvaq6OMl4c3YX47CFI0lB+/PFH8vLyiIyMpKCggKnzvsWpQ1/OZlSm1A333v48fs3ofCv2XWTVnIGAcUeYDRs2sHz5cpRKJTt27KBVq1b4+/vTt29fLrW5Bfx7mHx9Nck5MknC1VFOkKcL2UXagC/ajgkEDYdNBz7QKv1DOvuz40wmKjNqtpqTzm9pTeP5rCICWjkT+8wwAJwd5bg4yPnont61Go2NJXYYnn/hxkR90Avzc2PT08PYeCKNZ349WvE+nHhjfA9u7R5QIXRkMHfVUXxHzGLVqm+I6Rpc516cjqpm44NDPgPgueeeY+zYsfzxxx94BoQw6J2tlFd8mzKnMH5AB1/OpmtXzxoNxJ5Ko2OPXlw4naC/j0ajQaVSkZmZib+/P91uimDDJWjl4lijnDOksz/Xi8o5nZaPm5MDz43uSl6JgnOZhRWfgWg7JhA0JDYf+HQjikpNBD1TOv/tkcE8NLgDPYI9OX4lj4TUXLvd87O0plGp0hjtdY2PCuaO3iF8ufpvDv70Prt27cLV1dXoORpT7NCh0/l1zJvUk2OpeUb3WXpfXxKu5DL4nW2UKFR0C9Re6CVHZ5YfvEJM1+B6T9zo0KEDiYmJ2ueLS674IqB903UVxncPasVTw7sw+4d4/TGVSokyJBrHc6fRaDQoldoVekxMDGvXriUgIICswjL+XLyt1n6b43oG8daECIK8XChVqDiWmscD3x3UfwERbccEgobF5gOfpTp/bnE53+65QKfW7gzq5G+TDYrNxZqaxszCMv1tBaVKypUqvpv/FGV5WbRt25bQ0FAmTpzIvHnzrEo/WrqSrjpFfEJUMPklCo5kXNcXbA/t4k8bbxemLTuNbkvzpL7puGTUa7OhJm6YM+tOVxjf3s+N5TNv4q0Npzh08Xrl70TmyF0Pz+WDTd+ydu1a7rrrLvz9/fnuu+8ICAgAwN/DmZu7tmbL6fQa5ZyNJ9LYeCLN5G2i7ZhA0PDYdOCzRufXrfym9msL2FaDYkPM3U8b/sYvJJe619irsSabEWDNkVR+/d86SnO1Kczs7GxycnK477776kw/Pn5LJ54wKAuRyySc5DL6Ltxi0agfQzPVw9mBZ0Z1ZfqyA0zr31Z/PLqtN+czi/jg7t7c0q01l3OKWbTxNAcu5ACme23W12w0Z9YdQIi3Kz/OGsCn287yxz9XTJxHgUwmY/LkyRQVFeHi4lLtPqI8RyCwLWzW6gTrdP6q6C6atsKxlFzm/BDP4MXb+Cg2if8dvcq2xAz+d/QqH8cmMWjxNh5ZGc+xlFyUSiVHf1pstdHo4iinq+KC0TGNRsPXX3/NorWHa00/fr4jmYg3N+n/WxqXzP4L2VwvVujFDkPOnz/PuHHj9KlEHYYrq+dGdeXXQymkVVmlB3m5Mqxra/adz6b/wli+3nWeZf/qh4+bVuhojF6bhrPuJkQFV9TPwbAu2r23PclZBHo689PDA1ix7xI/Hrxcw3kqpRNTQQ8qy3NcHS375ybajgkEjYNNr/gsHVFkCksumo1pNYIF+2kn04k9eZWiXT9w/dxRnA+swnXQfahl5n9cuovmaVUwAffey65du7hy5Qpdu3ZlyMixbLlcgCTXXrRNpR+rcmefUD7Zqi2qrjrqZ+3atdx///3k5+ezdetWoqKiePLJJ5k0aRIZ17WCRo9gTwZ39uf2T3dVO3eZQkVKTjG/xqcAsD7hGk/c2pl+7X3ZcjodaHgzVdsR5lqte29Pj+hCez935o7owtwRXfSPjXhzE2CZdGLJxA3RdkwgaFxsOvBZqvPXRE5RCQkJCURFRZm8vbGtRrBQ5wdUyHEaMI3ZEyfw1Yv3W200ErMQgMLCQsaPH8+iRYtIUASyKzaJMqW6xvSjITeF+eLn7sRfBvtQErD41x38+cGzJCUl6cWO8vJy4uPjmTlzJgChd7+KvNNAYjr6Eurjyt6XhgPg5uSAXCbRJWAI3++/xIjwQOPfQZX36OniiFqtRlZDytfSz/CuvqG89/cpcpSaGvfePtl6lk+q7KkavUYsk07qK+cIBIKGwaYDnzUjikxx5cJZ+j4yi7///psRI0YY3dYUVqPOTDUV9EyZqS/f1p2JvdrQysWBglIl1/JK6n3R9PDwYMeOHQD8uuqfOtOPhkzpE8pfJ67pBRrd72XFuu1knKpeSO/k5ERkZCQ///wzW6/K+Cg2iZ8OXmb9scq6uNlDOxLq48pra0+gUmt4dVw4U/qE8Mc/VxgTEUSwlwvxl3L0762VOp+AgAB27txJjx7GdXHWfIZTegVSdO4Qzh37N+msu4aScwQCgfXYdOCzZkSRTAJHuQwHmYQkgRNKEnb8hVKpZPTo0YSGhpKfn8+iRYtoFT220a1GsNxM/TU+hU+2nqVEoSLIy5nfHx0MNNxFU7eSri39qMPFUca4yCDm/HC42m3jJ9/Ngi+e4YcffuCzzz7j8uXLODo6smLFCqZOnYokSfgEl/FRbBKlCjWlikrjtLhcSZlSTU5FgfbD3x9i/qSezJvYk+TMQmb/EM/1Ym16s6y8nO9ef5bs7Gz69u3L0KFDkSSJ1atXs+5UjsWf4eu/H+XJf39DSeoZgsOib8isO9F2TCC4cdh04LNG578zOpT37+6lvz3p7Ums+KGQmbt/Qa1WM2HCBB588EF6945mXcI1s1dhr4wNZ1SPQFq3ciYjv5TLOUW08zW9H2aINWbq+awi/c8aDRSUKY3GC9X3oqlbSdeWftR1fxkTEUReiYJ957NNnMeR4OBgXnzxRV544QW++uor+vTpQ//+/fX3MdT5DVdjVT/HQxevc9sn1QOwBLThOnuTtdJMaWkpW7Zswdvbm3M5ilrN1JgOvvz0cIyRTfnfdSdYc+QKnjfP5PORgai9Qy3uCSukE4HAvrHpwAeWjyj67Uiq3uKUJAhSpBP/8SPI5XJUKhVXr15l/vz53PvcfORu1S9cNa3CShRKHv7+EOeziugd6s3KWQOMbl+0aBG7d+/mnnvu0e9vgfVm6mM3d+LJWzvj7uxASk4xf/yT2mCig27UT23pRx1T+oSy5kh1jb+q2CFJEo888ojJ56uXzu8oZ7iPgv0yGWqDVXNRURHz1hyg1GAsvanC+PSCUga+s63aeWUOTuzMcmHpbWGAkE4EgpaEzQe++tZAPTeyJ1LMLwQEBPD000+zbt06Hp37AllKFwJNPKamVdhHsZUrlH9ScjlwIZsBHfxwc5KzevVq/vvf/6JSqdi8eTPx8fE8/fTThIWFcfRiBhFt/Y3OZY6Z+kVcMl/EJRMR7MnoiECu5da8B6fDklE/5qQfAz2dGdTRj9cNAqEOS8QOa6dt6FZWrleKmD59OtnZ2cTGxqLRaLhrxoPsTS8HC8xUIySZ3kwV0olA0LKw+cBX34vmXTFhwE0AxMXFMWvWLEKGTEFmom+lufWBzg4yerbx4sOf/+K9p+6jsLAQTcVSQaVS8dlnn/HZZ58hl8sJuudNIh6eavR4S8zUk9fyGda1NcO7B9R4H0uNRn8PZzq6lnIqz8FI7KiafkzPL6Pza39Vez5rxI766fxhTJkyBYC33nqLEydOMOyBFzlshpnq5+7MoVdGUqpQsflUGu9vTtJ/iTIsjBfSiUDQcrD5wAcNVwPVqlUrfv31V+au+gePGsb9mFMfuGhyJKfT8ll3+BIODg5IkqQPfADe3t4sXryYWbNm8dxvCdUeb6mZKpdJyErzuHChhA4dOhjdZo3ReHd0MIeWL8Bt4itIMtNF17VhrdjRECurN954A4C5ZpipyZlFjPt0F8mZhYR4u/LB3b14/fZwXvmfdgVrqsZTSCcCQfPHLgIfNGwNVH3qA/8ztjtdA1tx77L9DOg3gEOf5pCSksKdd95JfHw8vr6+pKam6ptBW2qmShLc278dGxKukl+qpFeoF/fHtOeDr3/i3rdfYtGiRZSUlDBgwADOagItNhpfW/MPjz32OIVnj+B1fD2a6MmoJcsL461N9zWlmZpZWKbvXZp6vYR3/krkmwf66wOf9jxizp1A0NKwm8AHDXfRtLY+8JmRXbilawBTl+2jsEypb1fVtm1b1q9fr+/VaDgBwVIzVZJgTEQgL47phqNcRnpBKd/tSeb9155BXZLPo48+ikwm44nXF7NJ2cMo6Jka9zOxVxteHNMNX3cndp/N4oU1CahHzGL2lDF8+NrT1hfG15OmNFN1aNCWuxifR8y5EwhaGnYV+HTU96JpTX3g4zd3YmKvEO75ch+5xYpqVmNQUFCNz2eJmarRwAPfHdL/v4SGoqT9qEsqJqqr1ajVapJdulCaayz8VLUauwR4sGhyJA8tP8SJq3m8PTmSBZN68uRPhyloqx2oaq9ihzlm6sCOflzOKeZKbgnBXi68NKY7W06l6+8r5twJBC0Tuwx89cWa+sAXb+tOmVLFjudv0d/H9FjX6tTHTHWQoG3+SXreeiu7d+9GoVDgHxLG8SwVyCsDtSmr8Y7eIWw9nc7Bi9oOKB9sSSL2mZvxcHFk57nsBh/105SYY6b2aOPJR/f0xsvVkevF5Ww6lcb7m87o7yvm3AkELRNJo6ktwdV8qWsVVhuSBGN6BFo058+SXp06tPtp4frU4tatWxkzZgxPLPkff1+R6+UOD2cH1j05WG81tvdz55lfj7LsX305fOm6kTBz8s0xTP1qH+cyCnlmVFe7Fjma+jMUCATNA5seS9SYPHFLZ1wc5FY91hqrcUZMGK+OC8fVUY6JSgojJAlcHeVGQQ9gxIgRXLx4EcknxKhkoSar0c1J2+vTkIJSJR7ODo0y6qepaerPUCAQNA9abOC7ETPSZsSEsWpODGN6BOLsIMPFwfi5XRxkODvIGNMjkN2zL0UAAAkvSURBVFVzYkxKJKGhoUZWqs5q/GbPhWr3LS5X4lFF5PFwcaCwTPt4ezcarf0MXRwk0XJMIGjBtMg9Ph03YkZaQ+ynGVqptVmNcUmZhAd76u/b1scVJ7mMCxW9QJuD0WjJZ6hDqYZd57KIDPG2esyUQCCwX1rsHp8hCam5dmU1Lo1L5qOKriUujjJaOVcGMEOr0c/did8fG8RDKw5x4ko+iyZH4iCT+Pcv/+DiILP7PT5DdJ/hllPpqMz4ixZ9NwWClkuLXvHpsDerUWc0ArVajTlF5bz6vxN8PDUaHzdH9pzL4vmKTjLNzWiMCvVmSGd/dpzJRKVs3DFTAoHAvhErPjtFGI3GHEvJZdqy/fqSEVPF/DrenRLFPf3acvP727mUXYyro5xVc2JsYjUvEAganxYrt9g7wmg05rMd5yhVVtZJmhpRBNCvvQ/tfd2MjpUqVXy+41yjv0aBQGAbiMBnp1hrNMok6Browd5kbQF7cyCrsIy4pEz96ldXzL83OcvofnKZxFsTI3hj/Umj4xoN+hFFAoGg+SMCnx1jSW2gDrUGjqXm8XFsEoMWb+ORlfEcS8lt3BfayBgO+9WNKFrw5+lq95s1uAMHL+SQmFa9flE3okggEDR/ROCzc+qqDayJUqWaMqWazafSmbZsPyv3X2zcF9qIJKbl1zmiKNjLhekD2vHhliST52gOBf0CgcA8hNXZDKhqpW48fo3jV/JQmyG+NAe70ZwRRf8d34P/23qWgrLqI6kqz2PfBf0CgcA8ROBrRvh5OBPTwY+PY8/qg15Vu7F1K2cW3RFJVKgXgZ4uDFm8jdTcEkoUahZuTCQq1Nvu7EZzRhS183WjX3tf/jO2u/5xvz86iLc2nGLdsasV57H/gn6BQFA3IvA1M+qyGzUaDXFnM/ki7hy/PzbY6LE6u9HeyhzMGVEkATKDjdBDr47k4e/jOXVNO+5JjCgSCFoOIvA1I2qyGw1HFWUVlrNy/yXkVSeyYmw32krBflZhGb8dTiUxLZ/8UiWeLg50D/Lk7r6VTQXMGVFkipzicv3eYHMr6BcIBDUjAl8zwpTdqBtVZC46u/FGtzI7lpLLZzvOEVcxCLjMqI1cGh/FJnFLt9Y8fnNnerX1ZmCYJ9uTcpAMhglXnbFoSNh//tT/LEnalnS2EuwFAkHjIgJfM8Icu7EubMFu1M4urLnptK6X6uZT6cSdyeSOMDW7vvwAzbAnkGQuFj9fcyzoFwgENSMCXzPCHLvRvPPUbTeak4K0BksG9mo02iD406lS8tXu/HdYO5bFZ1kx7FeMKBIIWhIi8DUjzLEbxy/ZXed5Eg4fQHN/PyQTVfGWpiAt4VhKLgs3JuoDV1UjdWBHP96Y0IM2Xq6oNBoOXsjhv+tOkJ4P/qPnMLJPFwICWjfpmCmBQGB/iMDXjDDHbgRwdpDpDUeniuG3eslDUUby4Z28/noaCxYsQK1Wo1KpcHR0tCgFuTMpy+KgUpeRejajgPu/PUhGQRlOchnPjurKgkmRzP4hHpVGpjdSo0K97WrMlEAgaFpE4GtGmGs3npk/Vn/btuduASplD40kkffPJhbuXc17772HQqEgNDSURb/utCgFaWlRvLlGqiFqjYYwP23DaQ2VRqq9jZkSCARNiwh8zQh/D2du7tq62riiqnajodFohFpNSfIh1CXa2rby8nIkSSLm9qm1piBv7RbA47d0oltgK8qUKrYmZjB/wymKylUmi+Lz8vK4fv06YWFh+mPmGqltvFz4++lheDg7oNJo+M/vx/W3VTVS/Tycb7idKhAIbA/Rq7OZUZ9xRRIquiovMmLECBwcKr8T7cttRYmistVX1RRkKxcHlmw/x01vxzLiwziCPF14ZVw4UH3kz759+/D29qZTp04sW7aM3Fxtg2xzjdSreaVEzdtM9IItfLD5DMmZhfrbbMFIFQgEto8IfM0Ma8cVuTrKmD+5N3vW/URsbCy//fYbMpmMATePxKVjX7TrKdMjf9Ydu0pcUialCjX5pUp+PpRC3/Y+QGVRfHpeMQsWLGD4cK1wo1areeyxx/D19cXb25stO7TSjc5I/WbPhVpfb16JgjVHrvDVv/oZFeOLfpsCgaAuRKqzGaLbU6uP3Thp0iRWrFjBGVk7fj1dBGq12UXxAzr4cja9ciVWXl5O+NiZXN+32uh+KpUKSZIIDQ0lvEtHDmVaZqTKZRKtWznj4exAXok24Il+mwKBoC5E4GumzIgJq7fdOGPGDOau+ocypTZ9aE5R/JDO/kzpE8odn+/RH9PIHBh0+934dnZhw4YN5ObmotFoCAoKYv369fTr14+lcckkxCbVaqSOiQjibHoBF7KL8HFz4rXbwzlxJU8f9ES/TYFAYA4i8DVjGsJutKQoPrqtN59M7c1jPx7mQlaR0W2BoWF88+r3qFQq7r//fo4fP86KFSuIjo4GzDNSgzxdeG1cOH4eThSVKdl/PodHVh7W31f02xQIBOYgaTS1JcIELZ25q/7hf0ev8tDgMJ4f3Y2iinl2uhTkuYxCxi/ZTUSwJyseuomX1iSwNTGj2nkm9w7ho6m9a32uOT/EVzNSzUWSYEyPQLubLCEQCJoeseIT1Io5RfFdAz1Y/uBNvLnupMmgZ24K8olbOrPrbBYlClWd963+HKLfpkAgMA9hdQpq5a6+2tRhqUJNZmGZ/j/DFOTsIR3xc3di8ZQoTr45hpNvjmHz3GH6c5ibgqyPkSr6bQoEAnMRqU5BnTR1CrKu1miG5xb9NgUCgaWIwCeok2MpuUxbtt+qFKSro5xVc2IsXo0lpOaKfpsCgaBREIFPYBaWjAvSoU1BhtdrNSb6bQoEgoZGBD6B2YgUpEAgaA6IwCewCJGCFAgE9o4IfAKrEClIgUBgr4jAJxAIBIIWhajjEwgEAkGLQgQ+gUAgELQoROATCAQCQYtCBD6BQCAQtChE4BMIBAJBi0IEPoFAIBC0KETgEwgEAkGLQgQ+gUAgELQoROATCAQCQYtCBD6BQCAQtChE4BMIBAJBi0IEPoFAIBC0KETgEwgEAkGLQgQ+gUAgELQoROATCAQCQYtCBD6BQCAQtChE4BMIBAJBi0IEPoFAIBC0KETgEwgEAkGLQgQ+gUAgELQoROATCAQCQYvi/wGMUcagJzp4jwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "

  4. 5p_x3o!Ccf=z)-xnB~fhog%$4_;W)k+o7kqE`0t4x_fE4t z$#Y0ll;0e}h3JT1F|ceht$Q~u{)~HzZveUm`?TSZ46sCaBRGVh*RG9lym?fi&W_Jq ziZxkvBpq%a8aC%P&^F%_M_1>P#$S!ucs)CDCS~wmjD%fIG1wZQV>6S=x~UV)l*UOj z4G%HAxdj}$Qd7_e=m2=A&sE@!fx)tTd0}szp5Zx00kx2TdreBqIMsm`Sq9^t2FEXj z_)_3#PVi)QCJ9Y85i}c7S10Blw_XuNSR*(BGs2m|Lbe_wWm@g;!bUS?(cpUenS>!@ z3xj7ny&MVAr9Sj8@1UhIRR?Z*ND?+h!v@UD<+_|Pb-z~WO9dY=SIRwax`n{4Rr8^2 zu-3-Ah!A&_>~6G%JD6-tP@TFsG}AZhzHfYfK!bs7UTR(IrKhF}X7qIzRM{1GOB{VL- zsXM%U7+h!pGBxR+T>>D=4>N@?SJxE7`dcU$H<{0aUh)QX*cf^!+f2c-ube#5K;1%{ zAy~VJPWu7&OW($C?=50!@yJeNUW6gtAA4O_O(h;rtidx_jQRQb(mkBS)g)pCD_qy` z2VSywSSUWvClwe24`GFp?0|(p3ji_qgSwFh$~Lq>>$P{8)>ogd z;Z$Z09jDm5mBUDs8dn}%ixFUl8xu2$iBCdhKPj5$;z8%%MoTBUB_*-AiIe9+*JeR% zB4Xe5yB$kBd#MO+*!R&e5_dVyU$0pC zmhPT~A5?tj`7nV?!^}^3QjwJm=mE=L&x*s!d+I-65woz>o)P$di=D*@(vC$4*lhVIJ zr94ifJX}?Zf@u;ClWLb6W1!lZdG)mBAg-`%&(8J*E)9TUzx1NDeG z;&Yj75{TU#g*@Rld;Uk!Bs#Lfa7d#_0)0UZo*&QJ`9oBEk;4Oyp>dtc?-FtLXyF$f zUeB)h>ziu|O=+Sunbo4fGt7)~u9q?Bp+aojpd;r9%m?v&aOiMS;?!Q_>{qQ2V!{25 z!8ji~!rA=o;+tZT-8*-!Db;e*{+p+v*C0_bso(Q~xn8}L*27Nf3s(v>N?e9PE zP@}xR1z$?OTNaBt^0T8EdGKKz4dvDU`Oci9iJG{4Xj>NKG*6MPsJkA%ts5p zR7CrKq4*4A-`vLK1KveOPmZA#l~tT;wXLQ;)BWRL6$~=} za!XA&In%qXdE1Rw<1{sIc6e&5f#yIPf<=1cb}Mm6^vKJmMO8~DVeuP7VOrJL@-pR6T)AQ`NTnZrxEa6KsqSMC>l%rKyW%EC1hX)T$oU(H!362K?rN@e+NqI52ByyRrW9I)j$LBoJpi|OIFI%?7s?mm~6|$t(e7)fmj-bB@ zFj8AbGTw%0dBlpCU`X3ZxXxB|2$kG?k-nOj&7cY+C5W6eO8J6!~VVD`Q5lXdJCmX z7)KGA{p|1ov=_vi=>71B{L6NByLX@BN%kMbHXH+Kn7ihr6`BNze&DYmyjF)aW^rgzo$4A-KRlo8v+BT4Z2oez(> z)+-VkhB>ppr~v%k8B^n$i*>M?_LtF5(9L!kc(p@-<-PazhFC;G{+_@4UOw<E4jIjbFhTe-c93KKv!kNSZmbC)P)7yMYqp^Als&{D|GjORzTU9mH zR%f3sCk|*POD)Lg(mbP{^KmwQ-rOv;&W-$he1I-=qjy!w{YwSZ7RvmQ4F8t2hjb>S zoGMpnk)I+^4q04v2#Y9f)=9>x4b8aaE7H;?S(Oh$c3D!Dtd(64?O4g?S=kqWQ@F%| zO559ENS`XUWRaAC^;s!;MI?d&5OQxvd58|%&tRZpy+mb)evp``ZFs{jWYF#83LZk= z7f$}~l}-mevwKyCyI#mjYE-K<&vP;n40o<2N$yDP{7@O$n!K~F{BD6=M=fDgRnr84 z74W8CBs4Pp5nH+K=-AiomXV={J8)c3xk7c}NKam17x+90v0rSa94wXNGV>i*JBpgGTt#q$=-&i#EL=j>fTd6Gdw9f=Uu2ROlGYU3|Pa1ys%yLfyFnL3bj&Tlq z^@-YGpeaO%F+-~INr#}#K1rmnU&_QHm6G=*#0p~H08-(JvQ!o?dEY9OGn}AET$=Hs z+~9E$7B;%iI$fe`y{yUaHvY}!Q5&-89P=m!zKZuZI-K)Lwpwk`ruG5g!6}|-;Y-TY zNx&$<>m7oIkwOnJx6Rt_Lp6VKXgom3@5A9^1^!^z#;bp|f(;kov)V7qeru94ygjH4 zr0M+U6NO-W$a=&FHjO0}n?2P3a-C9_r*iO+_jK3_N8zy5U<>=QYc3#+_QA)+y$hCu zkDK_5R+X`)P{lM%uk9K+^XEaayx}>alJcNlj+nKSYauHpFyq{~2z_*>8;lVi>NyZZ z^r-&NHm$yAsie!5w3U8jP`S09wrR43w#gQZ=CCqHH8TcH4nPbrFdtfBImP%j;Of%Wt2I^Vn@E%5QQzSvm04XbOw3QS>@k zgq9kwyZcJuzj{0St=BAsC-Mq>MX)2AxH7lf>;6g5J|;2`@ocy zc93$R+rwAIS?8ngq1bT=W&6mq;)WG31o&7KO#B`qInuZ>yo8N|BMj(-U#z2su4%?j zz3DHajOvkc?(CBf3*i_kB1(~us>3Kv+IycUR{_DbeA2a{;53<+F*lrdt{+45Dowik z^s+VH#po;EG%)N?`j;-$JNPjka}Nbn3GnKAh1{0sElo&Ml5-M7WOdGauQGLvCd@{4 zHv=Jj4o?jWK{6dbP4$xPg)zdJ(Xv3zXE+ zK!Gms`agsSficoH{B8p-1Mp`Hm(9Q`0MPoz_VFFQ70H13b3Slh!DOGHfLkd)0pL_Q zSs0&x0S|hh^aYR%(8s6luZ*Rn+6ploJ(pB6=8h5X#xgb%<}K9Z?bCm^!9uS+sc^XB zkkXLJZxCAs*))|fgh4L=OC>POD$=h$9ay7net%p0Q0@n?ukXhqB%LYomTl;&XX*6lQj*@(fJo-k* zB!_c>wR($O#{Dg2xx(%DK!i)vqVHI=1ch}--KOO;r#D4F;~ooJC>r*7G0eX=kaVZgy2FVoY;&GpJ?{Oi${zPil5wGL3uO|4Hh}rAokF z!`=v|9;%iqd(AGpnSqcad{&(O3%m3MYY0bcMGHHj!ipl}Bwcu)@KaIk>f{6yiJH4! zbEp~Y$t5ezW`2TlBWP-0@x;I|+0inq2q)fwCC=SiEJ&?IFWy-54)b}hnt_P6NgOsmG`4d@ z={Ra4x!fWQeg0)kMmEXLpY(lLXku_q_4zkuW>%ab36JtnOx5P_=>Vpi!smYm>K@DN z${Asvhr1o#%J~09a1E!51u*hs#0-xcnq|0&bDmT4D@+V%ed|u0{WsB}g3t%onehy> z%R@V)L4vPolo*weFEJtp#Oo{T$p2uLIO?tU!4tna?Igb~(#Po#(B+T9aQ*z2u5JOs z{s`@sx%G=Yt}Z9vk8Hwyz1+>qh}XGvdlkp|+Y2a;fA5*1)u|8=CvgiB0mt$DDH%uq z#qj?j>nnq*{-SoJ1OzFO?v$1WB@W#wEg>!4-GX#?mvlGM(ueMDICOU(?vMX_=bgE8 zhcEDjVc7euz1Fjy2>Et0x|>Ojo8i)cO{Yxt6YKIChh%tREwWasU&e!TonKdmJRI_w zRKUXpnq8Ig)n%YiPcE^N*5?##!r|^>uqp)sT7N^N7`lYJ&+S?XWV$LC(^1dj*9wUn zjjI^b7GED<5w7-RjmX!JqCGqja6;NwF{b3)v%|pn{d#stZt(3E?_u#T3FPfLez0hp zIIb-j9Y4llj%N)Ivo^hp3y?sRX}Xc4c2H=RJ-x7zT5Hy+-hl7xRS~Bg6o1Qk<}_Y1 z=bUiR_SLKnB8W3IsNRua^}-liRmYJrAJe1utkqq=MI`%;>lu?eRO)>8eg4jS9jY3m zR-6~FmAD!YyIA?`n;G;b{S*z+%AojDz>SuHd(hLB%)wp)ZeRN-Cv_~3%~y*I>@0M6GuTzLBC6`3lQYJ*ipvo@ zL-2fTv3s9Bn@v4nyFKSuBPO^|r~?!eQGv%<7ZEa1Oj|e-#`C7 zyeI5}9KYo6Ns+!Z$4|TmlG-mLvd0PTA04E-QuVPg^g~f4CH$BH;q0T zl~_O;2LBi=2Gv~PHYUXd>FggE#QsId>>gm>8ESBoifu4xJCa(>J@q-rnwwI%G5T^_&SH{_{LUDR&y%1XP#~UabeOZ)m6nfs!ARBWdV}E(iHLWv!=9H&si=gYb$o`9oxER%=qu_6f%PvOX zX-xtarNREj?MhZ?xpII6iNyh|*~b2BJm6s;#L-U>ZVJp+$E{sfjon)y6!j;oAVqlm29$m*5bT_BRjpHKWYe%gx;*}j}fg(M!J zFD?h`xW~7(%zV+jilK=3x@A8xPs!U#M}g^A-ojhj5TE@3M*YW%=@C7C;E|VHFFcHl(Rt!+bUu1p!57t2frlKD>k?qU%o|vhjaUPOw#9UO7J5{;nX?-#8Eljlq)V2X`2wqH z)n9$caG^LXnDG?r*cWryF&EyS861ey1uGd~Vo%Pf3@Nw!ldm$cnX`agyZBnFzW^-V zfG}@gZUh;L@Hc?%MGu8LbHMN0^#?L#mewZ%&A+ZGjslhbe4H14{?p8No8JT1SoFLu z+tRfQ8$6-VJAZ<8zG!yiGhYkHEV=en*W|`)mD!*$J${|wlF9%1{Z6x7{I_YV&;`W0 zLx5O%W#Kv?;X=9ITs0&#^ozC~t!N7nRjcEEds6O|!DbxlcrOu{sNTB}XGElX|GrJkwyDM5>OfBj28w%sa?EsxQkY~`$? zpyi+~tye~!*fm6@CkQ~|{ zzg9Aw^qy61T;SP6G=>i^iv~fs9J0R~t|37p_}7?N5{$JkpkRznE>jY%PsPKO9ZRB< z`?UIUr|k3_?H3pCs%u9L$QUfioA$ZZ(WImn-om=YV}i-u-j4hf$^L;c?(wGLW#?18 zpsUNlWCT3v`TSfh_J!0$I?%WMgO|05$uQCDMG{ezzc{P3w7JI6k{L6#8gG9i@sz zb6{6(H<=@X*mOPn-2vlImgiHoHn%OtK7uWYfaWiSjAcWAz5>82crc7*hp8fw3#oIY zXO4D|v+eQUg|FxNHm-f=J#N4cmj5<0JVfvXb^B3S?F!Y(uoXTeG6ZN*`d+FkB45u^ zgAJeln6g&lE(iAZNR>+6N@?f6B1aommmiFWPQ#3jgVu&J-+w16md3)h!rK(8EMLt0 z!cN^ROJ{c9=~D&L{cHKOZ6oD*!5>npBLyToQdAh2g)m~W#JF;@Grnt{VxzX|XGZ=< z$x9q|cr33K)!~F>tfYLvKdH{Nc(-Dyd2$>TJqg$f1J3OO z5=7z$VVqu&m07Ki4@L-IaeRFH9S5DaG_k8(ztm!%kyJ`MD7GV&CZ**^l4$n(_?j%L zw1fy6nWL)~s0V#^(6a>GG7nWY$%7q`!r(E$+GQ@AG73^lvm;USfloMRmo^iM{9sY>}X?sE8 z1f295yEE!~3DD>J5`|HrbP3`gJ7ZF9l7J&L1h6c8*YK6ZrN)EI=NthEf?|&azS?U) zV(TFnN#(Ri#AZ-Cat-KwFhWX?Mv^r{fL+iz0r}V)gu$)JB;$&wEe5noHjXR8)#Qy$RVUcIB%k^n6K1E%C zvG|bdADYB^$#?d8gzK-I`gK$6h0x^hc|COXGyeBctCU7#gHD4RHS?wANscF%IpmcO z`udni`V%^X8BqWy9nK9X<_RRXj|$dF5N0XeI{JzBrs==W(#TO8giO)vhyC7*iN`fZ z?Z`DA8}{XgD*~REiZd%qO2P2YsM|UD|6=-l4Xy8bC7J5w_Q=P}1^J>IC*knJ_B2r; zufGn-*#k$YD+IyPk@z2?{G z2Z{_pyl_FBIcCY_F7i>p00(DT?pM7sN2_vb17Ex0GK?xba8Trv%~ZjFSz%^qpuTd$ zkoW`xNGo12=oN2MqhJ}00(?PMb#&`$<>>-x(+sLy(Z)OXy;;ntJOUov+Z5CMP(cHcPWVR6bSN zKi|X63v4qS;&v+2_`YM2rW8FcR31lqh#P+Vw>KjHPDCSK{WZOIj<4kAFEnn-Nt9dt zh+&pONSw_kPJ-7a2%(#J4*?^8F%vTOrkgKdwc?#mE`^k58} zIqg5s_nSj3m|dGsL|z^+R1fQ&{+we-5TfyUKXQxgD!-{;?xInm{KOLUE)1M<|r0IT}*h#BHnZ62sw%Q?`*a~uTMY!uP6D) z>rJv(HYQJjfz4d?@QL@@-cT90k>Z3h68SiA5(D2G7b)Dy9Y=>%MAkLP)&=K*UBXSpz0iSuOiGsI=hLp_mEH7DT$Xv_f7nE4FE*cJpd0}bp4p*vK;z*TicK~fUDQT}wln>7U7LKc}s#+Y2OFllQpbCD%H09DTs`XOEFEsYvC zuM#`O+7P@JW*FTHhPWJH& zzJRRJi76U$C~lf7=dNV3QkO}+=0wi zVWs-lSugf)i2`3RiEKdzC2H|SSYk?9H~xLUN$dycJ1K38J3Pl~6YAu3k{H8I38SQo z!1j8C#xo^U^(T9Qd@-t(3NhD}KHFXLcQ?MWmG^rfx`~nsfv4x)P(&)j77u?hLZQq` zQW~Cn6}abv{RsOKtE&VzG6r4pzx&?Dz+7#D3Q+J7>Ive%5YRv+Z&w{E-6=_%u_qAj{*IFr`&(4DoK)eAmVRrAWYlaHwQkzR zS!l3IYken--|Aa%zSS?2CE(?l1?=Pu`nDqj~mOQoZoC@^2OHGO&6gI+Zisa6V0gT7sFFypujo94rJ-dzZcSObESm| zR)+r(Bm8WH$k?_0QNF{l#dYXt^y}5Qk8ghRT@yssj?H9bSfmotifqxjeR2EotL$+H zH=vyi^PPao5+S7VR_c8BCN_+q659~R)ZtvInM6KW`SsK?)xv_y0v7wBuYOKkPcEiRS zJ*9wWSu|wGdQ}c^BWQB|Zcw;?|JDF-ZDXm!f(&qnOfrLl+z`ED6{RSzoEq?W<1J?Sn;SVw%nRqQL+6 z8UUPl$34O4t8c(ZTc&D5Rb7Yrio|-B@f3x!6-Hrwl}eFy!PEn*WW#gh0pmkkmK2() zf>|@A~{9wA4ABP;EUof7oY<; zgII;lm9tH=H(AWdVEF(2`vg~M%xo=z4x!ERR8|!L3Kg5>{O6Ui2#|>+THq6z6|2qa zG7-G}>FOMrpf4U+Gi)zLQLpYN=G7CEl+;iHgl9M1ftr4hiNa|o#gtzE*wPY?P-l&~ z?Mj(Wm(PW8hUfp5k@cm-=d&f69I3&0(rmGAe6`MPvmzv%jo3Ybb*6Ave8{77-&q}rxUEA;ilGph^P98L{pi4XB zckh(|(nf2=~j7At4%ozZZKXpwK)EI94(vKw_?GWTmZA(Zb@In2pU zcVj>mYq^w}I)xt(@W810m?W4mu=gHw6L6M?8TJK{5j>G7%=3p4nl;=Ot93E0oX~|M z&4v!#*WE5cF!AeRb3+0|d)~@jGN-!H*jS~J%x_(tRv+fRcJsU6h9w{Xh<1i}%TZ6b z9~4_rGcoBLrn@hi0qjYyja(0YkDIIDglDcXCB+tJE6rxhV$lGJpRyZ(d;d2P^E>pn z8uvgR_tbCb->emel>RG8fol#%q+r6A6_+)pE4%{k%lYav0dZ+*>DUt0(gSa6!fOx- z8oE&(a6i27HiEX>ABl3$(7i3Mjxl4j?tK2$e(ST)9@Sogbc z0|(BI!INWBuHB}A(#Y2W;zwH~=tC#T21w!z&ZD;FLbLVB(A5j zDGvK^So2LE9-&5~b7K$ISrPTzBq<=Jh;{VI@@sy0x>{L$?;bCFpMz};B7pT%4v@v z{H--?9D7XQv259ODneSk_2Pg*=z^Df!5az1*=xsJSYz3R1*f(PU;ssb;Db#enQNe?Wv*M-!lvKpOnEy&b~&qZ}-L*5(fB^_yr*Bh}V?Tv+9F5$f1Pp&*p*Oc`$jDdXWzy8cJ|A;u_SVAC#xz0xY%Zy0aMICLvvEud7y!s zfx5x~KcrMe+?e$xDlIbxvi71>Y4lEw#i+zr;6;eEl4*l1MoEWa%P{}CkdlgzS#6er zqc>JU?~*UC_KMqcwpRd6WIkPUg(Q|=BN!bv`vdGxzQ(6)lGFK@af0EX_JeK^ncf>% zw-KEC(p~=&fR%m~r`y99X``lqC9a1^j7<=TH}c)+wwVb_?@y~}V(=Wa@N}6H1(6@& zJ6Fx1_f_o+qw}0+5JQxZvX2!&x1gc=h8|Eg|9U5)2tyFdfWDMUAs62Y3HuE!RAY@V z`V#R-UPIKz%^;S;yax~Lb_uGGs5Eh9R>0#HUu+m`Qj>*hI2kE>L#+a@h&{iqnnb|* zJ*~tb*Ukn70J?)9_$1X=&(GE&jd90)sJecmz3ti8$devlgF*$VfkUubq> zF!;o+&X$~@Ua8CUkwJ~`=U2f1vC_nHjsiRD_nTW=#et>3wAqNq53G+ugg!mmTIaguel-&Xkjue0%8BLkY z@8QL2TU{A17QS9zH2C%$M79bBDo&{hdWpfq@Ll0Fe_!gHgUh-ir80eDSBf>V>ijS> z({y-=Sd$a!IJcLSPlO#=Cpt&ti3TytK`!ex+5+^S8yBzDCF?U?M>zPud7rvB=2;9TdOYuxsAr;d5YsPdlQ{vJ7@(V z8=pyB*I~+UuDSJwnleWDH9ic;AcejANDppyI?U4*=5O*oyM6@csl(!)SuFppuCrMa z&}jF5c8^HmBVmol9nCs*sI&jL$-(Z478O@q-+H$LFmB#ifG9CMqJ`DigN9L8qoivHz)AA{I(@KvkDW4 z-Ip^r!z^s10ujfA>apHr&{k~u-KUuld&ho`{3o1aMZ=%1+pmqyVr(62nNkl@>v(C) zvsxbRTm1Da-G$|QE>n%$n4vGSOTO(zm(Zekri%2U_Z=y67*djPr8hN$-t+Jj?Ih%0 zUpd!K?yVqz2d=VsaDjpnOEl`!PzFA`r7n{Muh=r8;Y}mJnJ-Vs&^uZ)wagWQ)2(k? zxPHon`9CB6sWAF{K_Q(KU!yY`y*Y9ysZvc5+sum3n!Y=rHWjxouvHO>VrFyqXbfz5kPTuryXSkD6V*~L@Ji`-CrPG=U{j?!?&h+ zg+qr|AZr~w{%9ZE#$Xa*4I&D^RyPaKEN$44^n1w(o|t#}-FX_A+*pHpkSGN+V1mrr zopCotBANsE9274Kr--DUWWb!?^o~Tp^KUp2FPnlii5mp7X*biO?gRjfaO3T=`8v+l&3eEandALuqVFtr)Njcl`ovw9Y^@5w#t7V3yXiU!h+x{L*!BMM6-Czo-DYi?o;; zQm#Nqp#7v2t#PHn<16z73FEFAL0H4r{Cz;DF>cnEnKLfy#SP4C^U_O26SM_|!1{IX zwvD#@17lNZ8UwPI`E#0q<=TEq8-6yNU+LJ=RMiJm-%vjo60yryE8NFwlsmZi6uWve zNXe`+vo}9|$88HK1!hNi`?+n^EGSJ#R8x>CwgkP_zP>`;BbdTJ!+ZYdI?mk!^^k5G zzOP}nhw`*R04kVLMwQ7bWPLX+2M3F2?D~ixPj`g^Q*O&2=Ee+FnTZD@6T1@sG zJ=9Yl)V}Qaq52AQH~~kB9Z;1VfPn+lUr~kJl>e!}ZDYb35cGKfdY{C=i6ER!x?OXO zWJZjWh2^as_aIw)iw+T?j3&kFkie-N1+BGC1fj`_j+)~z!+nt;Ma5x21iJjCxmW6f zFd7W8hOK>Q^54V@M8BnK-_GFv0t1H zh{{r?E53a<#3B6@Aoc=%o{>q??dy2vdQW9j>OVMA-UW2|lt8M`TyB&gRHNB(pF)A} zJYZSi$oV?a<89dKif#9M-c*2y_R{_s4<@S~`r9je;CIB7n^cN;LB^PSyNN<3Ad2-N zNv7U>#vZ(~)(Hg5GO3f_a0or^QJQW+548S!iV5M{0}*RhJzST_r&2-&5GCc@59nFL zJkJVN1zdb@dc=Brja%esn3g6rHUaGylgsLtH4z z{p+7l8m#UkT4~^{fsSlZ`k(;&{_^56ohXWDR-iU<&ZqCEiQuw0;O4v-93=Yd*8;Wq zTcz?F*O9tVwV}yVdVdx1+CIG$M79m&-f62h!Wwy&B1mBq;(&}0`Bg>;EBsn&5mH&B zKg6|S;MhQzUMnCwM%QMs@F75-IkU2DA0YH=)t4z)KHnrMdxW!Og$4)rfhl35ri7>* z=*S}FLi+-T92$GcD(s<~KCMy!ankkcpIK6XY6=1bVL{%pq&`n}n)T)h=|CF&WUHHl zesHi(i!<`pTc7*wBsS}19%^(0L&G{<03J{s09tWmHV&mxfk#WTiQL}}TNIu?&(}%I zJ}=J)Aw!{7iw!YmWbT)-PhxhaFi-|^WU8Xqw9j!T{xqHezq3*Y0_$~UU7?&GdSE~!qPHA2 zj!PwG-MlZ}w4M09>W6MBl+$uv@h2rNndM|&$aML4b^b^*$^mcz~jgW}gDswsqaCR)w4C>0Ru1dARMWs#FzdQtTTHQzS z#P%~7b0q?;=;-UiEq0=C#>-!^yg8kDv_+&rvSJ_1r7qQj^jTz0wC$tvD%PmZoh&3T z&s~RLL)<*LtS7wm_&x@TIMZ~?AN^TdIJuhoppn;i%%A`C+scTWFM3zoF3KI}v8HZK zSJqgyD`F0_BhoNeM^IDtJ?1#kbQG}6rl3MO<{YfhBaBWKe@XMSfM;Vx?VScFJB+!F zs;h2pb@7ZFn|?tCg8!jOJk3aVVZEt{_R#h8k8ml#p4F5D9D~W`vvZ3GZ+_k9i|WIg zU;#@3!JQp5Bc(HK42{>|A+nK12JdzlgX1;#KOu%_Q)xrLau872+rm457HAD}Fu}B& znvDX$7#R85abr27hc0Zb5nd|9OOl-T0C=xZhq3f?~08 zHMM0N(S9+uvvw=+HR|*0cK8K&5*P`(8;t9LMgDZp%RfuyIo9 z0l4E&Y^@PWJ`dC`Lz&lUV*JsxsOn#d{lf41|C+E{*Z4e}dQtn#$dgn7eVTmrQi+Kx znI82=W=9gRkG6AV!?(xmwQJJ)8N;Akgt^HOr8R^4h}99y_$Y(5sfCWD7J2s@Os;7= z<#ccAL{*^zj{6-u^%a1O4MN8Pf8X$XnnZFXOG4s(9QpA&0pr0xdH4f*CI8zd9e1hC z3o5he&oJ;8Il%0$Tj{lt z(P(wS-E>wmW9fjQDenFw)owH|fNgveQ}sGyBjLj@|NHe}B^_c4c3j89lRll3ASEX6 z7!w`VmmTNjbrJn_B9+Ev#c^VHgRuXTW{DNjUD@#*N?S{2rIZopBOM$W8S4j!XpRc8 zCyTjE#lte#_=PZurB8Q*3%8KeTZP%U`bCAyYIW~uv>;2LNj!ppy6#>xAoqvmR$d-e z2OVRNU==r2PnO3CAS-NjtqQkC)DzTjwp@zX#jiT3yEUMg|`Q4mA`$K_l{Z9?uo~=Olp8q@nnA9_eSfBwHK(m)jI6&I@Yhy z4a}TtFyp1=u^FMb(SEQM{(~H>$sx_|WZ@^{;@jKH@l-berPO z`CJrhzcLcVKRodFs^Hb7Gf)Gtt^{N|Mk0W0XPqzVHeA+4gr2NCr?f!nFw&iHt}))0 zazv;VZpg96YW)E@;$SWgoi<|Vn?zI+9$2A0jiz>I>RJN=ZJ$tXl(sdhMn^l9my1*I z5%V+(k9+GF8H>hrL!EkS<_K#7_)EZMIv&=LV;msu{e$KHCCeR$etm*n^o(j)Z8U(T zQ)UIkk1N-j$QA#_zQnU+iU$rqX#GFydIn@C<(GGyaX%(VYb5 znt;5fQ|g$u_ubZ(i*-_nwsqtlxe-T*c1GZEAeXwB`wD6~ygGaHS}W$s&y2$?9ED{P zRYKHKVQ;@TmJyQ(>rWPV(wo!W4=hy5d-G!U1&E<2v9M`DueS{We6px4gYWy!>Lo10 zCi;86SZqY;Jc=SXmA`nsy6++Dq&@qrSGY1obcL;KvXx>}EnRSK-6nMQ_D*Iw@b+)W z8BfGWL^P@pK4$Yne>J#$aJo(o+=wp^dHl4MSG!ZC3s4W#CL1ji7IaSS9_ZdZQ-lml zwI2#Xnyp=XJ~LF~f>94l2}veN6900^)7oqF@mU>Q)uM5LO#bmje=Hhb{`}US4QHYj zkZZX?hs{N@vw?Uil8Srik}pC&x5_mYhfNf3wL{6|*F)V~jazXQ5COM28EI=wBL>d( zcgOgvaDKM)-fDaEw4L8*sd@z?@!tM{n^Fz|jLFYl6*tu7L-8KE@>8tR{W}|zx4-;Z zVsFm^_}K(mzfn+hLl(a0=DD^Cei~HmMNTn;zd&|dET0Ml{iIyi-FDK)7H*+6X#?i? z*Hz*tvao6#8z9isGPXOOz$~y9gvlY zCHV|xjttEE6UBB#lLo&bM!85)PX3f-d>1tjmao_`6xnRpsmcUGLiycVhGC_S!FuXr za#vy$m~TI|OId}`e?!e2{Ax6p-Wyxst~A#D>q{L|=G3e7&N*ow{@O5$*PHYsT1j^Y z%~~oV+n5~SCh&Y}8@AWRHwjpW{BOV5QJIWrzxt+QH>cmOayBh5lEG2?R{``4a%fZ7 z1!G#sVWz0Cnic=w38d#Aj>~$Q$>!*YR<2zG9&>!kJ0q#h=!!%-s9rRxv$Uqt1GySR zr?dV+dFyAUhmpRh_-UcN*Rb}wOP}^<=iA%t%lkPQ3> zHNO)70e2HU&Xzt(-2vy=U?;D2#1OgI4C~20Hb}|TyUR91HPf#~Vz#Vp3KCLAd^k+c z2F;AFXVlS!gPZi#C6jyz^n}Co{9bTS1E+WqH%YNW^0zh2$+*$mTOBc>xLM4s`PCr& z0~@^>HE882B`i0^%!v4+yr38Iu)n4IJNB^Vt8S-g2~L|+1lXpCBcZ3o1>7}as=8u9 zJ{m20^mY|`?di9XpjASmMUHQ?3Q$4K^Wh+@`F6@6Z|cyGWO|5&?c<7{v{Le^5RD^=(vyc2=Ppt0G8#N~n z2S@Go3!PW}A>BzydQA9mZuo$7LI7}*0vK>_LbQSbGpU=FD?(2~oZhf_geDBI>nhWn zUksea->#RX#b|>U@cRLkH{eEg{03Gsn`MWqwYrfwrQb!dfLF$zQ8FDc^+t2U z3p@RYX@g-Tc8zod~$r5jabIomXCKIU}UBAVEKGLR6FsXL@%wGiz0kXMP7 zTZYPp?Np-ew3m7(mHVr1u@*beOn$?IJ>7 z*Ih(aAm>a0i}c%>d;V7H6}ma4`Ic~wLg zL>v%{hXX$)2+9_&8}pPPICcigm=jR=3SSLO(z9kG0iEIp((6xq+}$i(KINr zllh(iOmopU?=^@XFZ5DpA#swZ!sj7aXdIyJpgZkXl4WZQ*rC}LE`PB^3J`$pMDX3) zHvZ3CF*mY~8R z=RfY2pluUyOY>mL-s#2qxW3@Fp&)Eae}5RNx-=E33c%qXCRW3eMDq| zb%Wx~--D7VwW4aRXH7@C?OF!(2?>L6EU}YJtagFf*LtJTdHuA!ANZb8vxQ>+(YET4 zHxwxx1N+Pg%3Hg^#whk~;E8|b{9l8-J(dAOw6oYoqyK6uGg80>-{~B_4>;_@YLb)2 zcw%D(`yyA;p}QXa_F&>bej!5K44~mFqlQC=h+kh4!SUuqe*iDUY$f;k?EQO+po77G z(54r*4ZiBY2;1NsT6*AGFphLJjCyKg{I+S>1-V}`bd1?L+NQl|2Wrg4LSs8HRD}Ar zNZDeIn$=PN&pij;)jf(clV}B2&bp~xQRVip z6sDQhoH|##BDL=q7wWNhlZb;GB`&oJsmf>sF{m^PB@Y7!n^1{o%!%sBvva~9@}OCt z%NEO2HW64eGihbS>nZs`p$j?Xv`-)K>mpD#mAGC?1zzxiID>9uLo+t~TAd1qTldi7 z*Y#BLI9@#SMEk^tZhA|NPu6Lvs%YQWw6+`Qr@4;&q1MU`L|MUTNU`3N>m>6 z9%^%T7O+W-Ml&V|1o2x6Wx4(%faM}y%$6@1Vt%}aWELBg-9|t`9_iv8a1dkmreoLgT;K{?lK?XdELNIVDqX-$Sv^a-s z;v!302Rcl_7JB&`LT%v7#vaKSjYv;4rt*bkx)*QbsJ#3zK7K0k!FV1={Gb9>M{`0y zqA$CHjDW2L3_8FjJ1+h2Wd-22Xe3WNX&Y*Zgn{e*S<6f0{GS^Le^55=Ig0xe&Fjfn z4+-pKg#WIdttua1IIsJ&8_%w@#$Nb1)PL8FN9sSxEvL+$kWTYIL3osoN#!6+%l0mZ z9Mo7fxI-~d|5%Q(L5+noDf`+6!77tDS@i%4;s=-|^=-OZVt&M>6gyO(8VnPcjU8E& z9V#Y0mTs^icRD>Scfwh|4z07}(h5G{QyZq-9 zI1D&mgjdT&OF$)^@uhYKODeP z<1zCE=OEzQz8bYsb*E40A8#5Lmf?b|cl?d3+1_)g^*N*w_)Agc=Q(+GlMUwFY#d_) z&WL4%G=Lpl0zLnzvz21DRsFA}Cw>U;!ugmmHe_0_&P=CR@aFAIqw91_?9*|j&~v*d zb@@bOK+|HfT-(kY8y(QNYP3mQ)_6e!GCzE?o=1?Slrww{Kp0-VfAuu`CA{uR9_`f% z)vOZD^tmS1taJQr!damwVU0JgW3E4{?utat$cGLIVTp)oC{H6* zeZ2T~ccTM?f8kh?R~X9Y>=mxUXI3fHOa95@^wIGiV%nyzV2?!ma1$<)>f?f4eaKUNML&kk{l1>( zI`365KF*{2iPp66pqDe}rtI|(f!=WSm}MYR)4?f5Xy&)GdAGoW(mP(EXBALOYq-f8 zfuF3TFzYp7x;OIOMbfNC5H0GTTOY1(4!G;ysM{yl@68t9i>xOoHiVYsVP)>ygpNmu=tJJgpPBdIwFtS~2BmOt|V^L~0#4+9_ye)(I1E$ws5EdD1DkM>+w2 z(voOm#b~_T-EzA>IRkGyMzJD+A)c>BbsboWx;tMZhUgChM*IE+^ktIMu-1{} zq7}grXGrwd(B7-hlG+I0vwum1Dh0-Ee$Xun;FTKaL!Lb9XzZfom3A&${8Wn=9zQKN z@W~NAb?q&_ynqXt)b$^JS26{}D~HH#SgOXMS>3nShvZz|Twg$!8vdG=kVrEI`w8Ed zC&&Zy=H_{?GC-)Z%=!8HWX0Lg8!CHRc)<_ zDa8OU_)GJF*d-!H!fkOm^_J#Yd(2Up(MBZ49Q7gMb0jFjzJ#>t;r+-$J>kS!0(X-N;?CDhXfPXN<*v>29uOKcH)d9^%(n>}$~}m!`+_ z7uE+zwA}K?={}3kwnM4w&2!OwGQ}8YD!i_~HO@|Rm5r5*6!I1KzgEfyOQ{&t$fedb z6rh}3v?DV9Dg9iUGyW2}qcz7cCWUD#b=A(68Y2?9KeuLAkxT%+d1ip`=#WmpScJJv zoncTvIOU!@HAi}eHo5Lu*m%*io4n*d>!aSa^EXQt*2>SU<(iOm7U*8yd_kLFh3zBv z{2*DG-5S5Sv%h9a$X%9X3d@@#CP5udi>-)+!WWbX{j=T|W)bbPU07I6>7J3MvAJM}nQeAn}sex~-*Z4S+vx5EvlxYa7pUp}3muzi6J z7LeXO%3G%t9i8FQk&x1iEn`I};z5ZA4)ub)@cf7jXop`NvS3zeU0M4|BM$71g8{Z{ zi_7UOp@FDqfT#p1G#6fCXjP@mF+C=RTuDjk!KLmhS^KrmKF7Fw!o~ng{(b&I;kOXZ zt*K-q6(#NbQE}M)A<9XIP!N6L=`{A8LqFrLcCkv@x4iu=e=0UEtx1=Hfi?7~q=;`O zJZ;|J^#t>aKAT_O*6y1Y6lV3do3MP9jIR;}?5||~6i4I&{+@Q}pG|S9%MC*9Lur(~ zG!%+mCyKE#Wh*LAY^S1ph9(hp`ydJnrXzWu>VL!j%z8XC_+mPTj>U_5%md>b5e}kp z{2xOKo=8jp4s&@cNF-O}oZt{U)(#cY^|^IesCGyar3ki8x?CJmRd-Chqp-W5Eq^$} zaduI5VY#(VI)R4zUk!7t*i06+x4!g+xlMkrbd%u2Tc!MsWI1 z#)k+8Ke~XkJO8pc2I(6nO*N}NZe-)BfWpZ!<= zJsfx5Q80gzHCIE88!Z%*o?0Zbg)lvznFe~^dK6GqjQR3$=WeL8QN&(!=Pe9uOy*iA zt1#nMWR9XLVIpsS!CLL}UTpfB{jAwUPG%z~6~~F>5Q9w8tc>4d(%y-VxHE@Vt^ic( zL(i0YptpGg0KKrc!d?VFqk*$_GM`JN9!eav^hqXAT>t7Y7aoU{@I1TSrcAw zo zZz4jb;3e29t9W^rq;^f2r!B=j3SKQXK4XKr$%ESO`E|MtjSBQ-3(g1b0zZNcdD!*V zw$H2#wRfU0vr-)DWR}DRjZM4$VaNgd&b<)!+V_4R@L}48hg*P!1HvN{nNSNhyj7`M zxp80kK0+xU`l9*V`H{uKyPFZPNZ5Fh{SZ?lILilG3`bF)oQJ&@M@!!Qf*1aCnF)hE zwH5s&&fwxF-JEWkt6N!+;i-R%=i|s$E060gOulQ##}rvX(C4S?q0Z9}?YR9zx0QBr z1#Heoc+aV)ZRCE#S-u|Wn@p>}*M8k(H9b5!2!48Az#x2nc7rdnIC{>j3lx^*j~~cN zfI{vRAL&86wp;!|EA9yRAnYvXSo&Z8oV^bm~aNU_J(zFb|p+B~na z3jWo=KfIIg(*7CM;dA@}yc4WZX0%!!r_xpsCrZZHd!XPQ(?h$eT)%MLuU0`816Xpu zRf}C{TW0zNi9gNH8svM%?h+a48j}|EfAEs6Ys4@hXT*koB|8J42oYsAx|v(rdNxPT zWU3S4c0TgyP~Fd4}d>ZFkr)p6lUjEv(+_J8S^_VX#io@ zIhyqk3HV!DcX1uV$DX6O;u^%v_T7fi=+#|f@A;6z)g{W>9aHHUdwn*8AK|i3G;-bn z+^m@{htdAuV+WiVehXD;P7-h2!sxLb{BkBmSD8z1LFmbqdk zcVkw*9Gp7I*QGC|67_84>yMo#&Jb3=`BD7Y%@Z8cZz{mY5ZRglc>P4?NWH>Yu;RXO zDB5cx4+D-cB8e;q2fo<=dl%k*gX*UjVBjvX&<^lRWSBdS>`_HvUzG%OT6I6$*INY1 zDJ8<=ZQ7s31JOyDcL7BKv_$hi@_-n;fW;yTgyxhl&jnK$*<<5}!hY5e9rFv%es({z zjbfyRQygZSX%6h6;xA^Ze#%=$mCHKW?Upa8_#|}o6)h^}x4cP%fy)IHg8taV$m1d9T>f5e_VC-QPEOMjgleZDS|NJktsfr(SK4B%{5X1VPeB2V_?GJQ@zVgPRQ09pn#2? z+I~KrIT}7*JtjsxLWs2fn~{R1y29DQzG7ppi;reRFiT|!1AO@nTfhV%W^ntJeq#Fm zoG|QZ;n&mC^Tro7A@X*O+UnH0WcuSiZ}`rwb1eTOnq>aFbr6)y_|3&+!eQP^Hs)E^ z`*;PAhaJjdfw-`?>i+d60y2VXZy9t0%lrPWnvacKm;z*{^tc0Z%PkkH2b*FPjy6M{ zSqzO1<&~8+KA^YXiRtXZ{5bsMJj(hxqy^UzcfB`@_xvwZFG8W<+sx-;##Ye*tnA=< zls8T8fmdhse0jHd?k_kjx{SBW9_TTcylxi(kii57RVG1w*f)>_2BY!pPWyghm%I{Y z%4Lmz8vhy*aMax-eJ%%)%M=Uhk;s*akfJmXBk-7c{;t;-;ZG|d%#@|#ygAS<(Wt6D zKIkH2C<`zSueWs`nyml=$ZCS)Nhjp&6FQ_E?(Cdz^?A<*+Ck(0{@I6R5yE_WyAEQ=o&lz-qOX(N}B&54*KtM_w>27I|ZV(aa z21yB#?(QC1N$DCI>CW%+xu5%a*ZS7=hxswAHS0R-#6ElPb9-7ztGeQ0yYMqbbh5Y} z-puYkhsGrKIHoT_=X-sWs?eCE$Q1_cKnPsz#01MheRvb(?8og~Vp>p(kXC==uTo3l zg5JJsTjx@VBL0@vK>ThtOJ~ZkfZ#LjrlBp821%*ZLA`s%H2F7J0fj1jO&DMn_ zmYS-~BalKp7H^fe!Nkg4fp+HT%sVG%i5aO|YbBqv(oUofyi$vOB-j9w&{)T&YgP1~b?axpT99M7b@IiT5DhHng0T z=E80cBP8JgVB!s}Tr12{oa;nV*F{FgByX-h)4UaUU}fxBWQs?t9#&%`{2*V2yL|U@ zSN-uP;KdLJuh5k|<13+?(_-2JmtM){DQ6}6JFzCdQtXh@^f*CMuMrDChoF4U`*m23 zxO=Mb@jd;~j8rZb`Zo@;g|mqUJIn>gI!3rA#r|Yd*kspz`jH?kLdIBG3Bi<|vo>=ge7%z_STaULU_0Zz4bXAIzF<{Gi z3hhld3wl#(k_M;cUOJJK1RsfR9sZ$UNtB3^g-Tw@v~o1ppu+aBupPt2UxC2Q@$(JN z;>Y5D9{O)ppC*Y^RSqQ%6HGz*#m|rH14#4d4{84YNj94GL4PgX>&4QQwekysomD{I zn*-5j+Zk@~45tp1@_u$EwY*Q$6^8m?{|hw?oXY^=`^W3m5n1HrO^ZCm9rgr{oa?@Q zfE$)PmLYI}4ynvXl~GtFe>vjv>8{QzFD)UBzhsd|Nh_ukSiP2oWm z%h7!8+oy+f6`G(2fYHdzz;hKw!WloD=g+L)P`2bgXXxSH=`a{ejfWYj#oec>b2Iis zHmP%ns(*n>7j9$&ZJXL*F7B2P4xvVoC%k#iOIGZgUTuKaO-Pc%*-D)sk{kU*j|?J)>8JH7cRR^(qM5W7oF(= zY3UGQG9%yy;)^7<$WJ>HuS^9D80QsNzvTK0$jf=KTG`Va^1fI+4m?&AYVoV>TYr34 zB=Lu)>>$cmI}Uk}sY@?Sw}()7&SRD|gwyB*n|81!#rI(W^RK4Fr&7^7d3|-cP|4*7 z9#GAqj+Oa;^M?s#*n_W`Q)grT;i4x#7{-K`XMMevy4s)^UJ^5YgY-tBoX zYrdsO|2nX|px$e+Ayx;;Njw;L^O|~ge!eC8%Zoi6Oe}T9kM>|@HjYH|n_c--(MJWs zkmY9h)?hE4r-$Nmd?GE!Xk^^8@)_wl-YBDEo4Bg1CtiHnIs*F2PQv$EE(xh?A+}9@ zlR_*sST5Qddf-gljNx_VnFazM>rTac=(w}3^J^D-udswqXYONwpdFryGWFC2 zn6`g96&dp9%+ONlXRlcLJVn&K#rV%r1%01m3R7$e}yaE)KAE+HS0gDXI8BX5_5+gls+RO zbm_%0SAGaSQEGq%%yUeeGuU$Jd~PTq!J>8~Qm|x5g1^>QcWlaUfOnRcSTH$Lv3#hx z&`78+J0Je&sui(cb)oB!uacAa%>Td~o*KwvEvIFAFsC5+(HCqdQ7)y3I%q@v=3{OQ zU-ymo>JM^zA>k|KLD*^N%U{g!8ycm-pIY;v=lViT<4qCR_Zi=F+yAXo&h`3T&5dVP zR+B{fL6orju3*0rdLPK*S9$B|fGOg1A-jr)dZ*5NBZuTO>^Es{L1=#X!YL_%5PuEV_5 zYRoydm3Iln5}ig_(6dPxWU#!hbXplZk0TSAsAD5aqeGRJ>$2 z$wc7x+}%QeArDgrV~_hDRlH=Sa%#-XQRi=o(i#E5$PWC{R!Ff(u?o5nt<2&PUlmFv ztDl@Kqu?3;h>ODyswpp2N}nWW-PlCII`Nq{Vr%VOempx3iFMDR26Qd)0K>_20tIyY z76jAE;y(IkdXgRZO@8` zCEOr`mxL6njx(Y@?2R906vlHpK_`M4tVmuEQ>dlGlw1o5x@8uQ@Xbgig3-0#z-!LV;~hw&LJy~~!1+{ExButb5jvE6IdX^ZXNe?6ZLBvEhe z15RG5n#$V|e!QV0F;E;!QoIZkc3!HU`MQ3=mGH{!=~#?T`mJu=T9~T0KQzsv6`MSg zZP6T_tdd7h7}FlROu<~)y_lLg_`tpe+Fq=d`7+(vZ?0^?a{b4Zp~hY@$}b2QH8YTD zzdBv9qQg7`zeHtFgmv}MCW5gNDb93wNMe7GEI(SNDl)X=J(;gc@s>ajSm_GUxmRI>YKis(3{>uG+_@~*>mKJ^ZeVLA0t2NkDrkEiiuO-Jeaq!%M1j&Y70Hbn79q^M~K3r+-7V0MQ}0Wo8 z*@ER$cjEKnlk2#Vs{A?YpneKIoebEs+Gf2v`Srv?WS~QmLpiyg;Q{x=Hvv->G5?Tr zLk`oqofMO{aI!R_QsM-@w`OW#Xdl!Dl{fK@J$jZ0vIB+g#I}uRA7}URwp!N6%Juzf z^bf;P9&6rsh+X02OAqP}ehcIp6bpFqmS+w8{7Pf*r|Minl!D{q2br%jiV7PI3k$YC zO%ndwyA2kX^%UrU8?`M%NJs9bq9-zSV~Pb z5#L6tWOrw1eOVMaNLRc*Gpy#5T`?rcZ^!NFV@Abme8bso<6{^1vAH)xkBk0I266{H z=Q(P|8|^mUkSi_RM5N6P!0&s~#|jITH)-iWyi|qISgxA;!t0&MxAkZrOqd($d zm8~|(fPGy#k5QXox)P!*lpiPNPi?vk4ZoQ7vOw&F9lWCoSYAtwCYjB3vsa|(&De&D ziU@IM5`#rN=&!H1FDA0Z)yM_P5}|QI7ey$CjHy;;>nf#21}R(Xt!Qms1z)N}{lxU! zaqt^}x#R9UTlkWGZ?!XrII*YaYV=aZG(HK9+xx48;YIP&)83`;`IvxjiDKRHQ1AmF z9#o7>VcQzrn@V8Q=htodSj_uj8dmxaDA`-*6B4N#{gI&}-i_L1o%#iPH`l*9rDFF{ zPO2JSBEaWCao)?o&>&5Y{QDK!*@r>|+X$}of0I(&74c2p3y?)t>z{KxCEl(by9tTu z)-;);TQoA#GNG?C+C@wrZC^iv&E-wsl}<01%h-{P(L;ziV(`I;jyM;;D!<07Jhn)h zAE}}eaqn^Q_L0!w4H6zJ#{^hEy_v9Wk`ZxZL{~#d+MKNns?5LHxcfe`|4lz*Spsf{ z8@qg0|D&~+vhx(`k@LEiiX6B`&xq_) zvN!PPuxnxi7T(QBUq{_*+ErVq5ee3b+ zm*~nbLnDcpb=;+`RH*Sl&EUv)3iMdJwB)GP7ut!Fp#7STue_ zSxMZ&6S*C}Z82@5Kwjmpl;=jDD49!|ay{Gak4mV;M0Ta&57v*gZQ-r zCKhTp79L)zMv=1oto@0oQ41@9mlDE7+)9Igh9cH@qZoVglG04IB;%rf*jMfK8dnWthYJ9h=8z_i!%FS3U_Jh8Q00 z?%Zevw&Aq%E@Vyr$PCnNFRq?-h8zfSQV$^hd(x*7XM5ER&i{t_Fi;hBey(>pZ>%Ds zzCwJ?9s3y4mGL7i6`P7rK88}Lgc26HGI&QH`lGv+cB_kE{0pLmY$xYXVq$Fw{G|yg z*|lTR!?DvEmqIc9WTQjXbjQ2|WiKziEt|N(%Y3V?%+jkd$unt+NDAE|=AnACKVM&~pr{&Tg7Bxak8QO*{XLFzg^x_u=W=P+*OOL$61 zi~x#j6p_4ewU}Vv8P7^BSyTG4bJnlUq-uYN+6838X#t;Un{eIgD+9RlrNC`!lAX#x^dc7%%;>%WoU z&BxE=*b^mYS{qw^vf|adCSpVg(prsWk)krX1n*V8TX^~#`QC6SxBIfW$nR-$r3L;3 zx)=Bnn&nU2ka~~w@*Mw~>@xFkyuFD1Je2!_1^HJ42f4}iMhe$Cs(mm1>jm(AcB><# zZ@QARsdf4{9=$>E?c{`TNlxApGFA5G+vZjs-#27@O88=p!D9peX@1=Fg0A1SKmS%7 zEnsPYp3i1k9Iqg$pK^!p8oHpVLxQG0y|k9TYbQr&L64_JL9|@TA8N&OTBRsj>gzKW zd|tn+G)#opE_Xdc{sJQyTqUSmDf0(>j0h4c62@@wZnVog_FW8qm9bny71Z0`_|(b=n8phgQ`uWoVnuvbZdu9~t8{(D_z1CZ zQl~486&nJsd2ZrPN2GjeJU#bT>O(C~d2IexcK8lA;}g(0P3S|WjI#1e8P33SW$(54 z{U6)G6WLsnS1_f0iM98|v zzJK|M1Z~gg$VAaE_~ay>(nz5VOsrq%?XS`Ev~!^dqFfTRmLn<2tAWpki;UN5HPZ6) z?VgRF!gcXFXs*q96Ga zt@fq*3_lFj)DWH1b1LfUknFkh**?ZaNc{!K3KES0b(U`WfuNNYb<;ymx8-or$!Z(R zk(cRrnw`Woh!&=t2D?ljqWpRWC_7Q_d%5%(W>paE^AM|w5X(dx?Hj7O%cAo`26_V> zFva+0Dex>tq_(I2UyM*O)Q+D|+&Tm}G0r!7b}qSM3B?&-$NthxsM!wJ@wU^gTe)CK z#!Tp@@(-_wmT2J&3BQ=H%w_n~uS2}I`^wnw(Ofuonpw6is z1iEvUug7~;;ZlWCTy`m2#qn-wgT_&D8Yev1(w?6^n?;W-RMN>TCA2_rz#JG834HqY zpOb^&QfddPn9qfc_vMUs{cdSxhpSQGm6kw09LO50cbEb>uFgHBFKv(95}c?64XFg3 zbFoP|yM)GHiwtYs$$4h=;sNT?foO^%LqO1aUEsDe-l8)83(z!9IT;%5Y(uw?9X3m3 zYHUXu&z61;RdKu!7pcIz`Tr(Un1h0-84lCXHZ+}b$$jZZP~m{B=f$sgAO`M17p z$S%F7f>JtwpX;x=`9NN|;P%evAYr!pTV&nlzV9NK<1mo?gK^6*H*De=WQcG>8-9S_ zu%5%v`aa|pn{_(h{YByGG9^G>$H5ly{^LT2MAon?034MmQ@mX;hBx1vIV_HXAH&ki*xVSi-oWcy^MhFphFN2r?V{+R+AIc%Me-p7$Hb2$Y%2KL4KMaI& zfAu%ftpDrn5e8#380&NVtGB~n2wwTky&E(@4ay^-YF(tr_T>LUeH=^~l&himfC;Hw zKB>Pz2tye=pV^m5kT5p7eHt{jT&vrX3%WgR@y?)K4Y}|V?biN+C%10RdC^8F&`KZ zdBxmDfsgKc^R-1sjF)OJD8~w_e(Ki#KwLWReD3H_TmKrFnAz+)1h{K{@^731G`}PI zPM!Gzo`@UB*%}G<&PQ)-wZvnFg6)sm|l=Xq-IOS&0xRz&%8L%C>33Z z#+p9(kz^FeTIjmRw^!W#XHQ#N^kRgWCY#lDY!y3_jfAs@N4W8ZT@@5M!8^0NC(e%hqN;}Q3rj5Foz$oKdD!&uTe zWopIfUh;294mMQJt2c{RTb%U&&P$zIsysIEHtD0$3PRXMr3bO8BtA_&)nf;hd2s!= zRhmJx%Gz1wS-kxHRAYI7r(SRpU1K%m_l&7RZ~JP6!BV;m85K<~wl$>CCE27o$ixE) z>f(ZV7@8@q$w7tOv59{PJ>qAQ%6lb^invs+KAcTf>DLMSRje=$%_-#XVxwXhCQ(AkH`6mQ1PgUh&fJ77ukP~;sckREj$5l%!Crf^ zn}}Rx3(W%2-`5yS>IGk}*uYR?5bWs^YE&Cgd$EUxiDk2}iyBw_aW32ctdFPHa_*?T z#Sg+MvfUhfvQZC~vKgGbH5Y3udfUdSg-a7hlIjBJCE~S>$QkLslFVe!gSb=Q)fNHJ z!L+y`0Cz1AU$NzY&a#(%PuM(%{(+o+zTW|P6uF!uK*Zn0&vv= z|NAQ+IgT~&^KE%RbJ4qi_+@{w206#TxGeH|?Ebc0l>zf23ann+=5Z9D1F`G?%o z8F%>g1o@XKRyBE@ZY-ow!dgB4p5^_?E#jn3Snpv4{#$ar-Q0&0QT`jiDK;rqh}elZ zE;}@dqH#5#HH04M^Ai6V7zW(!G5Yg-zV&bw{Sn`768v}qNveY$T7OvTWdQV5VW-fB zF{g$B#67d%31;`MWeId`iIGj|^>^3dj;dzeMQuwu;NejO@(*ePO^V*n>KHcC&a+o^ zR)$!>xY_hrI=RkzRgxt|h5*jP;S3+B?bips_$N$3v(w#R##nB#4N& z+0_0}|28GH+7OMc9Q(CLY>o^}V;}QqBQ0Om>(BD&!mr8&v4G?l{v(%-U-HQ1c4a(- z#4(biG5_5Z1^FMJ_Gxmjb57aINj$a~f)8i48L7ltJd=ui+*9M?qW%(4U^s0AOudpM zSx<;#W%mZP4N#X4>al!%iIH0OlZ@3+ug{l3A5?<{a@Ao*gjFX{fhTIwKJPt5yL}_U zhd2$2L;BN}EhcCut6Zzf?$~9`xPCJmamo#dzE~aP6_V_N^@nwAwiJl2w%~fjmxPem@T1^J3fno$>b5X4aFdZPWVhSV zIJhSS$oj?4x$!lAmwJzqsHWX~e!CiH&_&-*yaap6=&b&A&ec&_7d6f~Sx)m0{OSC* z1=^{UATpL*-KjyvMA^%>VU6>((R7}KS8rpcHRIPU4*C#RUujdOW-=5eqf8@_NnTK9 zN{h`1Qq%l0wM=9W`H1CyumN6EhRZU{>zgX)*5$%98{lXj=%oB1Y}P{T2&#nTh0 zQT>N7Y;sYZBTg_Zpth92;vd3#Q??Q6=ttP;@wCRbAV6J&;AlzAuGU8P8WKg7Vk2X; zFikeF9K-ep^tYa7O>^tg8hlWr@$hT=ldE@bT;)v6ZBpu|fKm>dUfgOn%l(0U#&a!( zOEDRP}wfTxUV#k)H37Fi^d)w^FW?9$5m-^|1!sFv$@Dg;p? z?!U+4w_Yt1&c4G5Lvb+s4~zxft`90~T-QDp={`YON zk4iLQ6+z3T-Xh~M7I37#?eu%a2{a}woErf?Os}OY<)Zyj)LpXf;YI`mFGJw=g{GyJ z&56e*yz4xpVxn6>d{!XBO;KCsq4pZ3`GFZ^ucm`9>O9o{nw1bbu#x31*32<4#Ng9C z>FWTLu3>ZeBc*!|m2A=X^w*5-ov`&*_k;H+G^9&W2H&tTwSl0nY;kJ8Ovw~>SGW}h z{(67OYyPXrd@x2n9GB{oWMYCsHW(Hwe)lsDmzF+a>DNdqN9wO%s(Xu#l@9ko(!tZnjh{CoLnz<)h#fik<3T9u?*AZxB*M#zxK;7KK@V=@1hCHMw?s2{VO8)5o(lNc@ku9 z&}>$S4d(vSEMf3nZt5SsW9Q*-X&v_<)^?NN>FJ9u>D)8>@ajZt%`V<~_%8B{@`^k^E?}-0e9$ zp#6D6R;h?>+jo?|&Jz~d`MfA#U%EOQe+kXH_sC;jd0uREpf?X^q-HrR>fC_$qo}?Q>hX7lK1>qOaV#`6{3)4)K{=K0K%n@WL9;6?_sJjrH0yb*=?j-|h6p&6 zmKM(2;!DS_W^k<$uT}-Le}Yu~i3HV_yf5FcbxP-&0(O2oWdLCSjdD92PON%K=ck%n zmHNEy*@I@~=k@jjHDZ72+2`*0TI(>pjUMNB`5n+8jwgl8f-^}lf=x&d3Knq^FiXg< z_k<;CO18uRRSUF+9*2m6NvC_PfW@Fh7t|(&iU&3W!CClz*gCN~rvuf%>}_40sLM%W zV~T1TOK^=g(r>28p|GU!GeP=IsU95OS2@-1Z#;;&OvkIMs=L(w#@2UX_Jj;0I+VLM zzV^fs2q`7EXCs-zi)W56zM#Nj5_sJa;zi1tFLO8JR;?l=q z`rJPKip}+$;h;lnjM=?0IN-9c;WGbgvMQD(e~6*oBX(<-eKY`O{Cl{+ql^l3Tq^I! zNIWIDQ}AOTSgyFO`gsOROUuedWPFv2w2E#gTD-P{XN!3ntz>kf46*c^_`QQgYXQ@)9DoRYKL<@}yBPHa9;F8_sejMp4X-s(-@8U~;XYcH zi-<-D){)EXlYN6p8N27d)EF)BWyxU@#TkMI>q2`|fY}uPnDt{cRvKT7#D;k-_z(f| zRysmdf>HfRC`KN<%@N$)wX@Deg^Ta)dJMpw8rG6eN6Ib3iteD>JTPoHSjh?T7~-?) zf1NcQ?5WF2yo>EK-Qb}Ay^*{0DEo%)&Q4C?duVX?x|b5!`FfUo z$11S*-D-u~O)C+n?l{_ImnCYYT8wZ!F*i#0p5XGq>{w?lb{2~{luGoi*&9UEQ8 zR(n;Oxegk7Ds)p|4sXy$ZnZi!_F&EyWOeqJfFdXaZ1a|H4r?bYCsvk)1&)`RYkk-k zANAY3s_Sg0h)tB_FEcB2iu2&3@fywIB!SgBfj@D`dAmwyDE=}?ftrN`#e^<|oC|lrw&W7=-iq5q{tO}AJ zg`i20{bB=^QQEvEA~;5~`E!@~!h|rMfz76wLjpi`Y6MP1R)zqcP@BP-Ln`%TMyL&4 zMUA4n)$eCo(VHJ7q>8c5?Q(udjOswcSXkMfq~5;~qp-vNsbb z{mgF-S0rxaac&$!&kJAk38ltNR49g;p3=T%4N%3za)#i6grh!Q6e!+}1@Zj!#nsBU zk6Y4Z)EQ`tR^G%?QnDLgV^yY3BtMu*$pN4Zp*V-9kw^qsLn;@?%SBK7Iqf)GX_W~J zpD-deJzn|6@hlN-@X_qMqMyfY=eVLat-|ifr7xhoQ&pzDnc8W5e_phuki~7Thf{yH zo-?`ptcVHuh-^0aqiU^9(DUfvQ{|gQDDmQ;smDYOaQI<0(lKPEy1BUVR zXhs4OIF-U8<+`=9-v|q9|d48W|lAN@rW`D@QRC zf1i-hEdTt(ID5qFRA3G2G4KjH={XODHw;|Tks38VDHlL>(Y{5S<}>u%-(nLh1gn=1 zv#o8DG0Q{}D!ivcfcw1D-)uvJmDv^#29LT4t?fOznmn(%zUfBfzAQ{F)TuTbx?c*=baSvc7e9lK6iYX%V1f{0=}uW#Af?1UGPLt5ZgY-{M&*9A z9J3quU>AX>F34T*y`#`1MFKX;xUXb3X|3S_QS%Xs4tg@^&uN?T_9%;qva3%> z>?sXgVkhRIlzGE6y%3)tNVd7Xep0=lWPIrp#-b(N=mLsczg^slQMFa;&6c}K2=MlP zwHlEiaXl#in?ia(f}DNzC@N7~JOWWQrm;0da_~2u+);&{w@l?9au#a8h#Jxh0=$(~ zvhC>KhDLbY%B7kJamh%{?5|llN!mz*l$2LfjT>m0UqUNXJ3{oV0l0yDIU9{6Kgnjf zrQYwUe@8t}$7LQRcZP>RnoaX(9Ayv7>|d}ABbK;cZhs+Y;Ao*%|HJ!Ard5Wu;S2j? zyH&)v$owx;)}B3wsV_Z!0&T?kGddPNnS`8nPp`-X38TbuNgB0$j95w!s!drMQ5Xqs z80_x%UUr|GpLEy1_>l*~#gh~AQac7*)0yM}d%UL6%v)S}R!PD1_k)K8 zT2RL(4nQNkE>N5s7baG>p*zgy?--4}G;T()*nRkL$rur`d;3Ds2+sA=C`l%#GALL^ zYF+;6CV#m=J9fOI#8_>`&TV^WbZ$r9g4bxT>-q;@cAA*P#h$d^U`G-@)DeVdk^MZ6 zo;TO@{aGxo(P@zZ2@N-C>f|Sfenp#7HaA&Y=}_oN$K5xwGsKT!5gFm^T|B*CMoFVk z5*k2EY42Z$0Z54Qg2InJ9f&*INihW!^*7?ST;}t7Y@|Vj2504OdCW8KQ9ce5vG-1R0A5%B}BH!BmH%`E8@MM-nDsITP?GmSy$v} zv!Zs;fL-9%l*jN*_>*k+hh61UR5Z|9cN6?T*X~pE8o|_Dom3L?=Wg`0Ewi z{m38hoHW*w#*&c8K(5jIe7w8a`kG()8_>8lZGQa(ukl#bbhGLQ?u_Hv<}&K<_P6;` zRgrXldO4`l)hg7utl6klx`O#FCg)?Oi09!2^CrTrOe2CtLF$KpHd6-kllKldD>dMxu^*p$Q!-2sSJ^(V3j35&Ix#4zdX#0wyQV?S<;bSxUlPigKaU z;%YeIuWUS9rP*vXq2Qg%A?-oh6XJT#y_ zywy13!tLRgvGpTMio*Yq9pjkTOqNHSvDVvr3jn-uD;OKpEN|$|Muv%X2?Q&3n?tDO z4qysL0Ssy5e}nyOL1)vqYG<1{E(+;0TUYqa?Wl||Bc`(7#63IKWk$mNdg*D>!lk=6 z8{dVRG*hp1Jt z_N|JDVvY3(`wl2(|ADAE^ISNUB8zDgeW(7-J?-jzQ$F;JZ3=k6H|r&jAU{_R@+A(iU3bugQCtPe6Nx_t~I?dE+y9asEF21 zawZPTpgRsDp0=}$>j}PAj64Z$)VhwILN#3We1E`hw;ZS&*4KG)SAR5`)ZcJd?9(Jy zy`V$EmKOj=t9kj&`I-@gCFIhUQ~QDYPWOifQu*%poWVGU1MR(2YRs<(nO)@)U(V41 z+4&12Rf(%IhO3n1c4U3NKXK-7IVtH53YR0w zadF{OYtW7~w6pJlv2yt-7f{q7KLR|s>x`2IW~Aa4bfqCYm-8mnrPfK0O|E6t-9=?X zvi8;18o{XK(s}GxdPK|JH&54BfA3vCWeP@D>?IA*<1nKt9wP@oyvXKLcDqxFRjsg4 zk8S6p!?F>0G23z%V``^N^O&(KW{@Y1L3Fp9ANxVIrGPiC!L&Oh_9Lw?fRTBPhY&2j z;_4A=w^Koxol}v-Lza6K^2tw>%ZSs|e)rrxCYND0M-OXVLVh{gTw=I&aqeZ>Ha$$IXkmHC8lG!R3{T5qRW zUs~XGKXxrKauWZNfb}>x;F&pz1F2)PJC*3C3Ig2fdXM(Q)yF_27?#CAl(aRQlK2vyH(9ir=R64)iTGEtX5mg@^XvTKXp`HLGrw=lqR7 zn3WedecS2F>mg+4+L8NMAmvM$6d^S(TehNe6+~xolGv;_f7i!eESk1SSC;2>jB8fW zn)6;{)&z+X!TG&>nbhMq)@XNrQqX+EmwEF4Ok1*8Y3@b~Su^|5`oZAyBm-=y6@L3? z^gI%LLe|dbD*k!g6qK+q7KZl>K|LGlA-nFVu`ZNtzHU3{aoYF3Jh*g4&YK+7XWOo- zdeSZp1dzf=)M1$86GHq%rsvSFc{SIKsPT^ z28+AU0`jZ!#ua9XNBBF_?lo`ZS*uswXl2-$j9Q?jn7(P@O^y_q~@B#Fbp&|CX(LJ+Bw?frxr$COA&3>dT~p*u^> zl^WyS=hH_nW@K*dCGXD^mt%E}85e~Ey#U}j$IZ%0y! zi-%$S|2T3z|N67;d~CzFq%&Ix9t&gWS1+FEZocBUX!+ZW_%ZaGJ6OCQsUxq_WK%=g zU$z&3QiyG*AfBd|1v(-$)E8Y9bTuAR`>|mv16wF;-d=RmXx?3zD*Si zXtaO7^+&5>Uk0_YY*31hZHfx6M#9aS(I0Dkshcv%-w@Ei52~?z@xMhl4!~Sj@uKrp z_jA@&#EmgW*<~?Ty+V1*j9KKvb|#GDR3xv-!UR@<`z3}6mpYu+k6|y!$(ifd*0l3< z;w=sq!kpNmQ|i}nwuhhkJ50$*C)gE-JWjVs(>oak((OKdLWYIDdsE>3PQ0#Rn~W)b zQ+MZ4i>u~P1hSB8ZiR{NF|>xeu3r5~EWi4U5Wp=Z!oLkCrh)xVx+l?oJM z1}V8|mcGX^Ia2xKW_ywYkn!niCI_iG;;!)O=9(=x2i{pMx4?6(RJ(w|VyhcXq+|&= zm7;Xier>dMT$t(#X(K1?imf9gQPf6+9IrMSJ2HE`)Vv{qDl>(J6`^sre|HKI;MD+} zS1o?$$+S2H#)(_>!3czduTdc92gg%LWVanqNByHMdp2BnH}4|7hK|?%{nOwoJWL+& zv03$$OuAgK_R{(J(SJ8!Z@D(Z0z*Z3atp;7eZtSbV$}cGJOcS<{B-jhEzxjtyfvCQ z4PS}Ym1gpWe|Qh#3k@Ww)mu_&r(Z$AuKUwWgPmI^Isze{7$r0Z6A*UMbQG#QwWxQSN=NmbmD zix1|GCfmb3k0KMf-10Bjidmh{#Hb4=Dhf@qL3^s|r_Knimk4opURyg0zweITQS!#AW12h^X z*4&|I%STr&Y$%wKhN<$Vl6dfq{;y2V9sqf6q$?Pyo!vQGMTlARC*<~QYsy84kl48y zFlSF+iVy1Pc?rGR3buEH@ce?bSEc9W=dXKbA~~MM??)&Ne+7;gGm)H?>DF3|{^4?c z_~TN3fB~uehr0kIlG}f<%S&me{;x#Jo#5m9CTuUOAVPKnoxhdIm207(vwRiYe!L7q z;v9vJwmIXPy5oQw8SvgC?*K(PNqU)XPc?O@TWrxAXY*q1qL#MX1wyfFjIeWt3%MMG zvrB9_%Caq7C@ljC0Wsg*e1$i)9yX@fg&a@jv3LO z#b2X9m;a$L1*9F3Kt4i%Zodp3(@zK(f$-f~896B6l#-{D%^+U*^C4W|I zkaOL`V-AtT*Gi$}P9`X-IO#Xm8{mZvn(xTK2(W~w8uLq%J~O)2s*;`ge44Zyqe!XC zH*=Mh0A+6joLWA?wZ!W%xiQx#yo=P#fWVYO@}N;=@rz$?&Ytd%O9zYd%8#;NJ~yUK zvL65L@V^h)oXMCflQ}1@`EbeXK!6)NNh|XeJ#x5KGEs z_UU~c2+qEL*b4( z8%%Z{6(X~TY!E;au3-(4NWpkatuj^3nNP(!tFuTn5AEiO(Z zU3mnf|JFGSQlCAf$=CP~=9F|guTxmUe-#y)^`CJ&Y-gOUhfMIw847}#E|2E5d^`@k zdi*eb zsD>&7Dna<<@ikga#We;=o(`(JTUNblHFD zOt%P;*8EN{olOQD(y_Yr zCZxY%qW*fdmI<8hoS;RX@zuV&Jm46Np{hMQm8nji1r)Qp{WDE2=4>q56>SfvgU6{v z(y?o-q0{tAU5;$yBCVjoS8w}}fIZ+qsNQ}gI0SNo9kPZm{SDE_(U)NnDZLv6Tn`{A z`m*#J2$AHikyN3(A(5&4w|F!XynkghZZPxS(g3_lBAm>f6glBIrrfuGs@=j}bt{e9 z_4b>Br96{I7IY|KxmD0Sz@DBE5yk~Er51Ah>epsd4A_xiCKv$*N2^B5gq+q45z8VU z|I$A{xFKJ;$>W|#a`-*tG#A^@%m=PfH+O2_3HfhRerUn}$dxmiBckv4+Qj?w6wht4 z?lH{HX_V-U<@_=NZDEBiKZoKA7CM{f>Boys^U1X<{sQDAKo&wFpdRYs;RAoI z+ZmAc>GLO8JMRhp}1h3l&1cIxmBSWY~0;ICZ zgk?K!uY9#~L_FC+tw;slwX!~kw=QSXwqz2QTDSJ6n0*Z{^3HO(ybepM9R}A#ZIP#< z7=$Dadi8PNk?s_Z41~lo_Me711YqapML)wi?sXd9^Q8m6GtJ_$jf`G-pJ7$6Srfyh)oPa;9L*&w)`p8o-i7&g`! zh2qf2Kti=SA9%$7N2mVJ7~_A;G3*u)zlwnl-3T6em^Ad)riD^3yty!^U%H%)=dz}X zy${d=gGp$ryHLL^k+a5vq?OZlquU%jSrHNRg8h*~4PKBaO4ES2>I_`%yiE^t*x&Jsr ztcQ8*QUCvy6pE!YZpWZ=SAXIlh_a920|`e^@wZz`4le243HrRDTBgZL@cIqZJf8Cr zkC2FC9E}v)$sEODDZpllaGU}%;enC3G~cejF5|T)#3hx7aMw`slJ0K?18Q2kK3(86 z3NLZ6vtxkuNpduwH(Rm(2M~O^zB2yE6ah#@5C0!kR~Z#$+pUL22LVArkQk6q89=&A z1VoS&>5!BT=}sx>ZltBVySuxkyF1U#`+nb9=d3k9SvvDPckF%bD<vU)) zx}aehJuV$VO)X=p1qds;H9>i8|p3j z6nc$@NfNp)Ea^URjAd`$1;twVD|jW=GxL&q>L99(-h^rSxwZl9-?F&xd1M8$KG zQWr5Gc6?YAG`E$lQ%cT7VL@3W*C~g{=C2G8!zv;lg<@8qKw%VQjkha3AxrK|%gg6K zKju9aEumJ)?U)(#ezY%=JzF(E2)WceV_a=V1R`?W7Dlod~M?oo4sNUm0Y9V>*^6FF6EwZyixOM=!51$ZdGX#7Opr zN%*c>XSu<@=u}Bw1&44v2NIGkcA1iT)S>0e8_qlg?L;I`J7$Q5L896#E)NA)62M)0 zN7PBM;u&r7P{ga8;=$@jmPHTTn2}85{@1>Q0j?pfppo8zZb+qL0R4b4xQpWF+j=;F|4Z0|?Imsx)172=OzcAH)&(DJL&QwW^uUki-bMPsb_<3#iYPq3<)_qr> zeIf}w7R{O%ksaI4UnQ%uyCbSe`1$!o4i5G>jKL70{$5G65r?vB5idF)J$e#3!~dDV zWCgn`kta^x1`xT_h~}e#e3B)1SuRl#3y^Q{xq}--N60KRo7ThDx-4U3=U$6ZL&aZU zLF^)cZA#aT@Pls%1bzVe3v{iRm98)mB+>Q0xQR?v>)mMpYQaN5B8F(hTRF$^F7z0T zqq%fL{8LV)65W7@SZ9LY${ASys>LR1Q8wJf8yndltG-nCV#5>Z`l-J3>=n7j_4gc& zN6^2Y?w5QWn};Ay2s52Bwxslzgg(p&1kNrna>)00&6=VF$h{7=R_``MA7Ncf)ZCeO z5uL0K7P0#xvRSyU3T8$4@>rS>zyTI$P*^8*La)Q~%-08pfQRkV8L^+o`488VdNzfv zd5f5jrTh7r`uX6;jm}P#GsZQ$f1RvdW9o8nBI$tL6Z6q|cn2V1UlKd-n-i{>fNF8L zS)`CVQ<`u$_q|!&UoC8v{ZUaBFT^zG-B?ERof5TMYS-C94!|;fbyl_+wo-10%AfD= zpGl+YzHyjsoG6|-6x5g{Dh~w}D>&kq74|BZ11)#`rA^?$BzU&lc@^57gJhLEXynlr zic^K(1nn)CV@J9mpJlPX1&VLWo;C?(QEbWsfAe3_? zAC|hkI49S+CaG2Z6=z}VBj&e~nQ0b0`voTDhu0V|oq$PV)#Z{YWPOiI({S^g#ybc% zIY4kHhrhH;N=wY|W0j`caFKrDGdGM2gba37$csJ=2hx168!i4!w|ndWOi0R3Gb=YU zfAivu0(;WOfTJdv6b;vvuIK1mzigj7-1&y_f!26yUvp)06LK=}zKn|*8u8VtK_ZhuoCk-^{-QjGX6_10bhnyufH;7M}5=dNBpQ>D2@9uBUGP8gss9NViX^5kL7z% zJD~eroKEO-Qh=?OvBugxJcS4xe-b2JrIYsXvOwaGM{(rF zjU|C%v}BgsG%c;=)i9i_xuf)6!>8+YU4{yqW(nq4V>Na(_@7udQy< zN<>0}ZLtdIT;IwZi5ZDp%JSkB-uYWU@56 z-B;6v8jOk2ux@E?(E@@O%J1F$1&C@5ED$$H=*kSghT&36ir(rPn~6RORvc;f*jk!~ z1b4ahis?+F4J~g|SF$fRKd^LkD;h5jmj%8Refo((0tZy@-klbfWhT6XVu(I&cO>n0 z2tG`bZ%#c!B4H~;&-&KbZH-o`Gpcg$fNloy8ldixp!?`4(&|_NMEo%08RxLw8JkWJ zGWh1(w?h?YU`G-85F-cBdN?tc^@&Zz4b=cbaM2nQ;6XDz@Sq?1^@m%aMaxbVqasoW57ulWrpx@{|D#4FWuXfV zPP+FC!{_@6WpH2VbL9L|toO~oM@;>e@Ks5@&rb>DRfo6Y`8`iz-giH`u#LBeFfX>;c;F5udLwdV5p zr&VpU>p8yt`40K{oI}*8;kXjLK}n`LtKLRU0KiSZ0t<>8ZXMafGuyEQGIhdQ?E z!L~*Y99Q38!x=BDSX;!5-2S$B_e>Vie>@|a0v<9{#UT1i2BMaac7LZ_r-EDYjziwS z&Bq75YOi|RbB5Das@CpUx2I<96N+B)8K&zm-iH^fqRcc{#i072L$55SP2T2?ez*^2 z7Cd^0oz~4U((tK+W}jv=zlfsIyK4S^X)O|u?A_Wm`J9boAe1%jBxCM3>#aO+4S8ynMn`(*1p-hAQTUnVG72(jCz3ocn7 zFwE*-`%Kui#j<@_E2=A*1PgenMg!Eohr+1t8%_zB5XSx}(6}Fn8D^`F;YG85bBC)} z4TF5FF})$nI}3QDp`-6oo6df{)9~eQ?=-78R*MCvG=H2Yqt+9uHk3FuKh`BskT;); z-Kn9v#Cf~wH{2ch?@ZOmgUJg$h?)FRd-*6Zzjc2bKb(}u{!3lL_38F{7`aDc#RIDw zEY8l~E|^_K%N?FgE0dW(2GHog&j!@Y8Ino)jXApmNaT8r0w$+PzU?)qq^prIQx z97s(+8;s|^dEjgiaad3oB)waH5DIcyZ6}wcSZChK#PVKkyt;h3=-eOAkq$;#5==6h za6wYR#;BWCT*=NR4>T_r-EKYBdc}LMxNjZhn87{A#g1(jQ)hs8?zx^WPOv%A;F5Bj zVu1je(V`yf0`%-`i)CzyI?kOL%=L`vyb4aIzY?Dy+A7U*S^iTH+jmSgCLBs`eZwj0VY1QxXa+>zmp42#Yw9?V51S<^c zSQVxX!OfF0+wMl|XX2Vk$@QRc(&5O!d@YLgM)DFXDFwtn@0~)IkNZn&d;6GH&JM8lmTyaOUnUY++ zPvJKYc)`#d0RSr71d=Nnx$G6h*Rfen%@~mCKv*}s{M$eY<_3G%lvQI{Re~2`Wemx{zNh9mCht$TZYSW-KFrr9tPd&+%*I>Wz zs2{i5Pert{wG`S;{^WOBqVBSPFM`R)ST%<|W7v&U#mb%cG{kZw(iDE3K9p%!_9g(s zcvKr5DlUb&GRA0o0P8Sh6twKMY*v6p&<@r)*w|g~Rzyhr1towS{Ro|Eb=LX!NVwu( zRYxg{_5R&4C?t1_%wQqP|2Ykn&AeSE>JKDzS`g!Qnyn6C_w;s+HN7M!Du=V3p(F3b zLveaJt|H@?w)|0as!DI0U%t@DwLi{Rt@#QVztB8k$t9rc-g5r(CA`#l=Ii;KEYy(n z80!c%jKtk{zVhUYE_sCet{gE5N&d2iRQ2ukd5(y=xOi^AX}K#a;E*d#|0GSEFO9#~ z9!QkktICY9mt|UnaX7z9ZG7bOVPEBlfI5nuFU5OTlJCxw;Cae#{5RxazLPt6X5Cnu zHa&t01~;M2Uj8tjdFRYnJyM}TIm7>Y0mQ_F9$U;9S8S@#-qpg;`vene`^9c9%fA2z zGR*is+P?@1f;=VobShaWCs%jRNv7Bqj8OQ_b|jl&_KqXDpn5v$8EE*Pyx2kFAimqQ zkI9n@^fA8snlEbOUGTP;y8a7}y5KEVC!Y7QtIk|Y=7(4sE4aRpioz#lANg5RL{t{6~bN}5fuiDG;nv2&@Tpi6{#t=FeH~tJjPdTSx4<-wGM~BZ* zOTS1W&_K`(f^3lLR7%YjvI9Q5zruS1=`Eks`%Lr4@|^DM_s7)|UJFIZ3T_FM+X)<3 z6|7mG(%lTxVYlY@1Ed3KqQLoL29Xu*2piH#D~?^)>r~vgK?DUXCkgb#L>`B))iy34 z<{f_oMn2uCsTrHIf0e}JP|gjA2NEy$Y!Usy&@&Vmx7nFff|FYcC~*tQsSjoVYc-Rn zX&EQkUxVEB0)S*(I>^sO^%n`=1$rSXi_!>8qYewk^EyrIFB^Kpw1Gqgg{1p2ZzvtP ze7?&2ZvRiuX}bCsY(BkSqA{8;o${ypwj0Z0;c&c0*jgbmSAE3tnq+6?(a&L$THWB5 zNeN(T8!VkFvi%oIUz@B^s2VvM*~sLvPRwC}ESDRjh&d<|oWBfI5Fz%bTbD+JSTKCR z(`fv&Jk>F@0UhwCHdbtMXY2mPO|dvTFk$z`_qdtsE-yLd0?>0DyD8PrIzwL7t@Hzd zxc&KF-l?eSdjo8$+eFLF+#k`D7ZQhL9trby>%?~8?@xoV-Yrs^;QLb7p>@0imQR_z zz~|yWv$ragU#Wu;GY3jh2W@LF6bq?@-J3tmle`GD6X>RGUbL0`92DFL3voX8?#fH2 z|83qqrc%ZNUjA5Obxy&u%T1MX`{zWuAq5KaCY|4vFVI{YA+W|13hQq#8!O&zN)vf= z!dv+0UhinF=__|8;}=Gtv!(`kefS}iDQAncl+^rdua=)g{im~7@|e2h?OQ0pC@Bsh zd;rr{raO}E@1FeH{3x0T`R6JQ9?<`lM(#3I1oUnELV-i*t_9C;PDu!1}ZTbspwij)a-h-;CP)E z{#NeOHcnxlQdxGtL$%dzM&iUHuTppU!_YP{<~YXhXc@NenE4~&s!J$8i{nWE6T@AP z;C%bHpm#SQTx&@G1TJ^rB;mWCpxw3Gy^;Oe>0m@HLMQQ>Cy&QXW1Q?jvfyye!CGuj zr7D6n_HsJk5Wh^c`EF3~8VJ}XydMFbt)>;V`Mh+N6xrXZ6Xdjn$GRQ=IRqB{;K|!I zvu3~0j-JOH#+nczQ8$s`zM`a>rX1@=6TP>7bN+shiA6>tsiltB#Z`O<1$mmn6ske4 z4LXZhMFS?e_&p+Ydqi76u11aS2C-EPAob}O4y>K9K#{5knXr3{Y!;4 zt$ZD4*|1}$0`*Z0f9y8PW58!=L0s-~n@uZ%7F1+<+oz5wz*OObxr$76{p+A=dumEw zYgC4@Ej9tH#5c$I;&AbUf}AX7nqQ6?_&fN}o2W}EC382T7$DMDogpCZR*e^^?;}F~ z)UKf0t|QiYj3faK=Zsuk`N{`j7+1vSz*S%@Y8&BU(6ou)u}JedfphHdUmemN?Vy-5 z$O{8KE@ju`w{hnZXQwi_ubEX22(2UFio-(#4rXUNQ>q8UXEZQvjB%^8BK3JiM$oIz17~~YiPFsx z75avo;<6wuJ@y!4 zFp>&LCym=2N2p?OR_8ZO;&qDWrE*e3#7V$crt8=@-1%~MG9t-U+~h&DKze=-`^JUJ zuwqwiY>=eIt5A5ZD6BF4uRZod6|2-(e|IIH9b!$Zv>4+1^f5Xg_gyW`6}j!fC3;lO zaV0cA5E7ge`x7b5QK=Eq$=j#N_@IE2(L_K5ol4Yrms(?bnOZ7fqVmAsInUZcbdiGt z&@AjH7dFHlpa;Kwof0Z4e4DtT$aG(GqoK?w64Z|}ru_#z8(}n4B%R?lORbMG6Y7u% zAE994+E?=)_cBQ&p}%vNY4J+7$d9B|u5KI?C!wLu%rtLC?nX!Z^ zg1>?5I1ac2fg|2RNpOp;*FIb0``e$rKv+B1RRJ=8`Samaf}6H!{ORVAyX3;b8*;BO zgkUFI(V2BGnDH>AnBoWnuz=MQTdiF{CA9gAbQCw%xa@}m9rcE!8zPD&hE7j}Rc+uH zZp?h=MJgL3B5Cz_p0ZvJu;u%Ah=RbU*jT@REgJvy#}j3ZmVu#sI(miVgHkW)E+x$a z!;pN5)c%}~qu=*S>k(b7)u>Q#9Xv_2WYX3`a8Yz!G`E*hi1zhr=uZy$!J?pn_y!J6 zmNBzzanf6D1pE6VP7p^vQA6TV8Pe%RnQ(9@^ zzA=5>Noc{_!!HDb$3657>{dkBEWQltfHRZYsg()zdV#k*0zbT)Q>4g(rs>je7CEYL z44#&sa?^h?D=I3H2y6d5T0RA_p3$GLIVN(TS1fMrAE&J>EBl3o3q}PG_HKX@r3{@s zZ!R4(DAoB2t*xgZY&<}bUoU!^-$g1!MM%XHgw~JPiBawE4a)GmyZLi&TIm);<`#fM zZTPaau;LwfqkL2spkFDK;4ErfTA%Zs3G)?K?I5u9U3w6TP)N&MbecTj${O+_RNbu z21HNeIK+WkJ?TXHAU$PN_azRsI&^V8J+2ub)R7NK5h^47tJtgxTorzF)1jttKEvC% zFKMAmK$?%rWdvW*GGiPM-_%V)+mk6W4()}&*_LVJwOUsvP-8+uIQtYQY=1tO6nG+&YacoC3 zK45y&ApNeb2`!5?} zv75H>ny+9ANQf>*5J&KZYdFc1)iOiyRj>jB2c3?H`Pgw58ILAzzH5N8r&^n!T!MuzHCayv(BtmXds)jL@nbV&}7eOh+^GLD?t|dS#WSrlvsW zwc`QQ;74@RcGje0vg32=HMwJRHe7-?;8m!4y)&tSLm+y0Hc2ep_dvtqbSk{YdFEME-O)+gA(L*QgO4CLpe?H~$eY*&E||Nte*Y(g7o7Cg zW-XrUI*D<|(