-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
578 lines (493 loc) · 22.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
"""
This training script can be run both on a single gpu in debug mode,
and also in a larger training run with distributed data parallel (ddp).
To run on a single GPU, example:
$ python train.py --batch_size=32 --compile=False
To run with DDP on 4 gpus on 1 node, example:
$ torchrun --standalone --nproc_per_node=4 train.py
"""
import os
import time
import math
import pickle
from contextlib import nullcontext
import yaml
import numpy as np
import torch
import torch.nn.functional as F
import torch.nn as nn
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed import init_process_group, destroy_process_group
from pathlib import Path
from flow_model import GPT, GPTConfig
# -----------------------------------------------------------------------------
# these values will be overridden by the config file so their values here don't matter.
out_dir = 'out'
eval_interval = 2000
log_interval = 1
eval_iters = 200
eval_only = False # if True, script exits right after the first eval
always_save_checkpoint = True # if True, always save a checkpoint after each eval
init_from = 'scratch' # 'scratch' or 'resume' or 'gpt2*'
# wandb logging
wandb_log = False # disabled by default
wandb_project = 'owt'
wandb_run_name = 'gpt2' # 'run' + str(time.time())
wandb_id = 'blank'
is_repeat = False
# data
dataset = 'openwebtext'
gradient_accumulation_steps = 5 * 8 # used to simulate larger batch sizes
batch_size = 12 # if gradient_accumulation_steps > 1, this is the micro-batch size
block_size = 1024
overfit_batch = False
# model
n_layer = 12
n_head = 12
n_embd = 768
dropout = 0.0 # for pretraining 0 is good, for finetuning try 0.1+
bias = False # do we use bias inside LayerNorm and Linear layers?
qk_layernorm = False
proper_timestep_emb = False
do_x1_sc = False
x1_sc_prob = 0.5
# adamw optimizer
learning_rate = 6e-4 # max learning rate
max_iters = 600000 # total number of training iterations
weight_decay = 1e-1
beta1 = 0.9
beta2 = 0.95
grad_clip = 1.0 # clip gradients at this value, or disable if == 0.0
# learning rate decay settings
decay_lr = True # whether to decay the learning rate
warmup_iters = 2000 # how many steps to warm up for
lr_decay_iters = 600000 # should be ~= max_iters per Chinchilla
min_lr = 6e-5 # minimum learning rate, should be ~= learning_rate/10 per Chinchilla
# DDP settings
backend = 'nccl' # 'nccl', 'gloo', etc.
# system
device = 'cuda' # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1' etc., or try 'mps' on macbooks
dtype = 'bfloat16' if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else 'float16' # 'float32', 'bfloat16', or 'float16', the latter will auto implement a GradScaler
compile = True # use PyTorch 2.0 to compile the model to be faster
data_dir = 'data/text8' # directory should contain train.bin, val.bin, meta.pkl
warm_start_ckpt = None
resume_dir = None
model_type = 'flow' # flow, d3pm
d3pm_loss_weighting = False
d3pm_loss_weighting_maxT = 1000
timesteps = 1000
min_t = 0.0
bonus_seed_offset = 0
# -----------------------------------------------------------------------------
config_keys = [k for k,v in globals().items() if not k.startswith('_') and (isinstance(v, (int, float, bool, str)) or v is None) ]
exec(open('configurator.py').read()) # overrides from command line or config file
config = {k: globals()[k] for k in config_keys} # will be useful for logging
# -----------------------------------------------------------------------------
assert model_type in ['flow', 'd3pm']
if resume_dir is None:
if wandb_id == 'blank':
out_dir = os.path.join(out_dir, time.strftime('%Y-%m-%d-%H-%M-%S') + '_' + wandb_run_name)
else:
out_dir = os.path.join(out_dir, str(wandb_id) + '_' + wandb_run_name)
Path(out_dir).mkdir(parents=True, exist_ok=True)
else:
out_dir = resume_dir
assert (resume_dir is not None) == is_repeat
# various inits, derived attributes, I/O setup
ddp = int(os.environ.get('RANK', -1)) != -1 # is this a ddp run?
if ddp:
print("ddp run")
init_process_group(backend=backend)
ddp_rank = int(os.environ['RANK'])
ddp_local_rank = int(os.environ['LOCAL_RANK'])
ddp_world_size = int(os.environ['WORLD_SIZE'])
device = f'cuda:{ddp_local_rank}'
torch.cuda.set_device(device)
master_process = ddp_rank == 0 # this process will do logging, checkpointing etc.
seed_offset = ddp_rank # each process gets a different seed
# world_size number of processes will be training simultaneously, so we can scale
# down the desired gradient accumulation iterations per process proportionally
assert gradient_accumulation_steps % ddp_world_size == 0
gradient_accumulation_steps //= ddp_world_size
else:
print("not ddp run")
# if not ddp, we are running on a single gpu, and one process
master_process = True
seed_offset = 0
ddp_world_size = 1
shared_generator = torch.Generator(device).manual_seed(42) # for use when we want the random numbers to be the same across processes
tokens_per_iter = gradient_accumulation_steps * ddp_world_size * batch_size * block_size
print(f"tokens per iteration will be: {tokens_per_iter:,}")
if master_process and resume_dir is not None:
os.makedirs(out_dir, exist_ok=True)
with open(os.path.join(out_dir, 'config.yaml'), 'w') as f:
yaml.dump(config, f, sort_keys=False)
torch.manual_seed(1337 + seed_offset + bonus_seed_offset)
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
device_type = 'cuda' if 'cuda' in device else 'cpu' # for later use in torch.autocast
# note: float16 data type will automatically use a GradScaler
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
# attempt to derive vocab_size from the dataset
# data_dir = os.path.join('data', dataset)
meta_path = os.path.join(data_dir, 'meta.pkl')
meta_vocab_size = None
assert os.path.exists(meta_path)
with open(meta_path, 'rb') as f:
meta = pickle.load(f)
meta_vocab_size = meta['vocab_size']
print(f"found vocab_size = {meta_vocab_size} (inside {meta_path})")
stoi = meta['stoi']
itos = meta['itos']
if dataset == 'text8':
# increase vocab size by 1 to include a mask token
meta_vocab_size += 1
mask_token_id = meta_vocab_size - 1
stoi['X'] = mask_token_id
itos[mask_token_id] = 'X'
else:
raise NotImplementedError
def encode(s):
return [stoi[c] for c in s] # encoder: take a string, output a list of integers
def decode(l):
return ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string
# init these up here, can override if init_from='resume' (i.e. from a checkpoint)
iter_num = 0
best_val_loss = 1e9
# model init
model_args = dict(n_layer=n_layer, n_head=n_head, n_embd=n_embd, block_size=block_size,
bias=bias, vocab_size=None, dropout=dropout, qk_layernorm=qk_layernorm,
do_x1_sc=do_x1_sc, mask_token_id=mask_token_id, proper_timestep_emb=proper_timestep_emb,
d3pm_loss_weighting=d3pm_loss_weighting, d3pm_loss_weighting_maxT=d3pm_loss_weighting_maxT)
if init_from == 'scratch' and not is_repeat:
# init a new model from scratch
print("Initializing a new model from scratch")
# determine the vocab size we'll use for from-scratch training
if meta_vocab_size is None:
print("defaulting to vocab_size of GPT-2 to 50304 (50257 rounded up for efficiency)")
model_args['vocab_size'] = meta_vocab_size if meta_vocab_size is not None else 50304
gptconf = GPTConfig(**model_args)
model = GPT(gptconf)
elif init_from == 'resume' or is_repeat:
# print(f"Resuming training from {out_dir}")
assert wandb_id != 'blank'
init_from = 'resume'
# resume training from a checkpoint.
ckpt_path = os.path.join(out_dir, 'current_ckpt.pt')
print(f"resuming training from {ckpt_path}")
checkpoint = torch.load(ckpt_path, map_location=device)
checkpoint_model_args = checkpoint['model_args']
print(f"loaded checkpoint model args {checkpoint_model_args}")
# override some values
checkpoint_model_args['vocab_size'] = meta_vocab_size
print(f"overrided checkpoint model args {checkpoint_model_args}")
# create the model
gptconf = GPTConfig(**checkpoint_model_args)
model = GPT(gptconf)
state_dict = checkpoint['model']
# fix the keys of the state dictionary :(
# honestly no idea how checkpoints sometimes get this prefix, have to debug more
unwanted_prefix = '_orig_mod.'
for k,v in list(state_dict.items()):
if k.startswith(unwanted_prefix):
state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
model.load_state_dict(state_dict)
iter_num = checkpoint['iter_num']
best_val_loss = checkpoint['best_val_loss']
elif init_from.startswith('gpt2'):
print(f"Initializing from OpenAI GPT-2 weights: {init_from}")
# initialize from OpenAI GPT-2 weights
override_args = dict(dropout=dropout)
model = GPT.from_pretrained(init_from, override_args)
# read off the created config params, so we can store them into checkpoint correctly
for k in ['n_layer', 'n_head', 'n_embd', 'block_size', 'bias', 'vocab_size']:
model_args[k] = getattr(model.config, k)
elif init_from == 'warm_start':
print(f"warm starting from checkpoint {warm_start_ckpt}")
checkpoint = torch.load(warm_start_ckpt, map_location=device)
checkpoint_model_args = checkpoint['model_args']
# force these config attributes to be equal otherwise we can't even resume training
# the rest of the attributes (e.g. dropout) can stay as desired from command line
for k in ['n_layer', 'n_head', 'n_embd', 'block_size', 'bias', 'vocab_size']:
model_args[k] = checkpoint_model_args[k]
# create the model
gptconf = GPTConfig(**model_args)
model = GPT(gptconf)
state_dict = checkpoint['model']
# fix the keys of the state dictionary :(
# honestly no idea how checkpoints sometimes get this prefix, have to debug more
unwanted_prefix = '_orig_mod.'
for k,v in list(state_dict.items()):
if k.startswith(unwanted_prefix):
state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
# if warm starting from a non-SC model, will need to init the SC params
if 'xt_x1_proj.weight' in model.state_dict():
if 'xt_x1_proj.weight' not in state_dict.keys():
print("SC params not in warmstart ckpt so initializing them from scratch")
state_dict['xt_x1_proj.weight'] = model.state_dict()['xt_x1_proj.weight']
if 'xt_x1_proj.bias' in model.state_dict():
state_dict['xt_x1_proj.bias'] = model.state_dict()['xt_x1_proj.bias']
model.load_state_dict(state_dict)
else:
raise ValueError(f"Unknown init_from value {init_from}")
model.to(device)
# initialize a GradScaler. If enabled=False scaler is a no-op
scaler = torch.cuda.amp.GradScaler(enabled=(dtype == 'float16'))
# optimizer
optimizer = model.configure_optimizers(weight_decay, learning_rate, (beta1, beta2), device_type)
if init_from == 'resume':
# don't do this if warmstart
print("loading optimizer state from checkpoint")
optimizer.load_state_dict(checkpoint['optimizer'])
checkpoint = None # free up memory
# compile the model
if compile:
print("compiling the model... (takes a ~minute)")
unoptimized_model = model
model = torch.compile(model) # requires PyTorch 2.0
# wrap model into DDP container
if ddp:
if do_x1_sc:
model = DDP(model, device_ids=[ddp_local_rank], find_unused_parameters=True)
else:
model = DDP(model, device_ids=[ddp_local_rank])
def corrupt_data(data, times):
b = times.shape[0]
t = data.shape[1]
assert times.shape == (b,)
assert data.shape == (b, t)
if model_type == 'flow':
u = torch.rand((batch_size, block_size), device=times.device)
target_mask = u < (1.0 - times.view(batch_size, 1))
data[target_mask] = mask_token_id
return data, target_mask
elif model_type == 'd3pm':
u = torch.rand((batch_size, block_size), device=times.device)
target_mask = u < (times.view(batch_size, 1).float() / timesteps)
data[target_mask] = mask_token_id
return data, target_mask
else:
raise ValueError(f'Unknown model type {model_type}')
# poor man's data loader
train_data = np.memmap(os.path.join(data_dir, 'train.bin'), dtype=np.uint16, mode='r')
val_data = np.memmap(os.path.join(data_dir, 'val.bin'), dtype=np.uint16, mode='r')
def get_batch(split, times=None):
data = train_data if split == 'train' else val_data
if not overfit_batch:
ix = torch.randint(len(data) - block_size, (batch_size,))
else:
ix = torch.zeros((batch_size,), dtype=torch.int64)
x = torch.stack([torch.from_numpy((data[i:i+block_size]).astype(np.int64)) for i in ix])
y = torch.stack([torch.from_numpy((data[i:i+block_size]).astype(np.int64)) for i in ix])
# y = torch.stack([torch.from_numpy((data[i+1:i+1+block_size]).astype(np.int64)) for i in ix])
if times is None:
if model_type == 'flow':
times = torch.rand((batch_size,)) * (1.0 - min_t) + min_t
elif model_type == 'd3pm':
times = torch.randint(low=1, high=timesteps+1, size=(batch_size,)).float()
else:
raise ValueError(f'Unknown model type {model_type}')
else:
assert times.shape == (batch_size,)
if device_type == 'cuda':
# pin arrays x,y, which allows us to move them to GPU asynchronously (non_blocking=True)
x, y, times = x.pin_memory().to(device, non_blocking=True), \
y.pin_memory().to(device, non_blocking=True), \
times.pin_memory().to(device, non_blocking=True)
else:
x, y, times = x.to(device), y.to(device), times.to(device)
return x, y, times
def calc_loss(X, Y, times, target_mask, infill_probs, num_ones_in_mask):
if model_type == 'flow':
logits, loss = model(X, times, Y, target_mask)
elif model_type == 'd3pm':
logits, loss = model(X, times.float()/timesteps, Y, target_mask)
else:
raise ValueError(f'Unknown model type {model_type}')
return loss
# helps estimate an arbitrarily accurate loss over either split using many batches
@torch.no_grad()
def estimate_loss():
out = {}
model.eval()
for split in ['train', 'val']:
losses = torch.zeros(eval_iters)
for k in range(eval_iters):
X, Y, times = get_batch(split)
if model_type == 'flow':
X, target_mask = corrupt_data(X, times)
with ctx:
loss = calc_loss(X, Y, times, target_mask, None, None)
elif model_type == 'd3pm':
X, target_mask = corrupt_data(X, times)
with ctx:
loss = calc_loss(X, Y, times, target_mask, None, None)
losses[k] = loss.item()
out[split] = losses.mean()
model.train()
return out
# learning rate decay scheduler (cosine with warmup)
def get_lr(it):
# 1) linear warmup for warmup_iters steps
if it < warmup_iters:
return learning_rate * it / warmup_iters
# 2) if it > lr_decay_iters, return min learning rate
if it > lr_decay_iters:
return min_lr
# 3) in between, use cosine decay down to min learning rate
decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
assert 0 <= decay_ratio <= 1
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) # coeff ranges 0..1
return min_lr + coeff * (learning_rate - min_lr)
# logging
if wandb_log and master_process:
import wandb
if wandb_id == 'blank' :
wandb.init(project=wandb_project, name=wandb_run_name, config=config, id=None,
resume=is_repeat)
else:
wandb.init(project=wandb_project, name=wandb_run_name, config=config, id=wandb_id,
resume=is_repeat)
# training loop
X, Y, times = get_batch('train') # fetch the very first batch
t0 = time.time()
local_iter_num = 0 # number of iterations in the lifetime of this process
raw_model = model.module if ddp else model # unwrap DDP container if needed
running_mfu = -1.0
while True:
# determine and set the learning rate for this iteration
lr = get_lr(iter_num) if decay_lr else learning_rate
for param_group in optimizer.param_groups:
param_group['lr'] = lr
# evaluate the loss on train/val sets and write checkpoints
if iter_num % eval_interval == 0 and master_process:
losses = estimate_loss()
print(f"step {iter_num}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}")
if wandb_log:
try:
if model_type == 'flow':
times = 0.85 * torch.ones((batch_size,))
X, Y, times = get_batch('train', times)
X, target_mask = corrupt_data(X, times)
with torch.no_grad():
logits, _ = model(X, times) # (B, T, V)
elif model_type == 'd3pm':
times = (0.15 * torch.ones((batch_size,)) * timesteps).long().float()
X, Y, times = get_batch('train', times)
X, target_mask = corrupt_data(X, times)
with torch.no_grad():
logits, _ = model(X, times.float()/timesteps) # (B, T, V)
else:
raise ValueError(f'Unknown model type {model_type}')
predictions = torch.argmax(logits, dim=-1)
samples = torch.multinomial(torch.softmax(logits, dim=-1).view(-1, meta_vocab_size), num_samples=1)[:, 0].view(batch_size, -1)
# calculate accuracy
matches = (samples == Y) # (B, T)
acc = (matches * target_mask).sum().float() / target_mask.sum()
first_pred_idx = torch.argmax(target_mask[0].float())
zero_logit = logits[0, first_pred_idx, 0]
one_logit = logits[0, first_pred_idx, 1]
two_logit = logits[0, first_pred_idx, 2]
predictions[~target_mask] = X[~target_mask]
samples[~target_mask] = X[~target_mask]
wandb.log({
"iter": iter_num,
"train/loss": losses['train'],
"val/loss": losses['val'],
"lr": lr,
"mfu": running_mfu*100, # convert to percentage
"clean" : decode(Y[0].cpu().numpy()),
"corrupted" : decode(X[0].cpu().numpy()),
"argmax_recon" : decode(predictions[0].cpu().numpy()),
"sample_recon" : decode(samples[0].cpu().numpy()),
"zero_logit": zero_logit,
"one_logit": one_logit,
"two_logit": two_logit,
"acc": acc,
}, step=iter_num)
except Exception as e:
print(f"logging failed: {e}")
def save_checkpoint(file_path):
if iter_num > 0:
checkpoint = {
'model': raw_model.state_dict(),
'optimizer': optimizer.state_dict(),
'model_args': model_args,
'iter_num': iter_num,
'best_val_loss': best_val_loss,
'config': config,
}
# print(f"saving checkpoint to {out_dir}")
# torch.save(checkpoint, os.path.join(out_dir, 'ckpt.pt'))
print(f"saving checkpoint to {file_path}")
torch.save(checkpoint, file_path)
save_checkpoint(os.path.join(out_dir, 'current_ckpt.pt'))
if losses['val'] < best_val_loss or always_save_checkpoint:
best_val_loss = losses['val']
save_checkpoint(os.path.join(out_dir, 'best_ckpt.pt'))
if iter_num == 0 and eval_only:
break
if do_x1_sc and torch.rand(1, generator=shared_generator, device=device) < x1_sc_prob:
do_self_conf_loop = True
else:
do_self_conf_loop = False
# forward backward update, with optional gradient accumulation to simulate larger batch size
# and using the GradScaler if data type is float16
for micro_step in range(gradient_accumulation_steps):
if model_type == 'flow':
X, target_mask = corrupt_data(X, times)
elif model_type == 'd3pm':
X, target_mask = corrupt_data(X, times)
else:
raise ValueError(f'Unknown model type {model_type}')
if ddp:
# in DDP training we only need to sync gradients at the last micro step.
# the official way to do this is with model.no_sync() context manager, but
# I really dislike that this bloats the code and forces us to repeat code
# looking at the source of that context manager, it just toggles this variable
model.require_backward_grad_sync = (micro_step == gradient_accumulation_steps - 1)
with ctx:
if model_type == 'flow':
logits, loss = model(X, times, Y, target_mask, do_self_conf_loop=do_self_conf_loop)
elif model_type == 'd3pm':
logits, loss = model(X, times.float()/timesteps, Y, target_mask, do_self_conf_loop=do_self_conf_loop)
else:
raise ValueError(f'Unknown model type {model_type}')
loss = loss / gradient_accumulation_steps # scale the loss to account for gradient accumulation
# immediately async prefetch next batch while model is doing the forward pass on the GPU
X, Y, times = get_batch('train')
# backward pass, with gradient scaling if training in fp16
scaler.scale(loss).backward()
# clip the gradient
if grad_clip != 0.0:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(raw_model.parameters(), grad_clip)
# step the optimizer and scaler if training in fp16
scaler.step(optimizer)
scaler.update()
# flush the gradients as soon as we can, no need for this memory anymore
optimizer.zero_grad(set_to_none=True)
# timing and logging
t1 = time.time()
dt = t1 - t0
t0 = t1
if iter_num % log_interval == 0 and master_process:
# get loss as float. note: this is a CPU-GPU sync point
# scale up to undo the division above, approximating the true total loss (exact would have been a sum)
lossf = loss.item() * gradient_accumulation_steps
if local_iter_num >= 5: # let the training loop settle a bit
mfu = raw_model.estimate_mfu(batch_size * gradient_accumulation_steps, dt)
running_mfu = mfu if running_mfu == -1.0 else 0.9*running_mfu + 0.1*mfu
print(f"iter {iter_num}: loss {lossf:.4f}, time {dt*1000:.2f}ms, mfu {running_mfu*100:.2f}%")
try:
wandb.log({"train/iter_loss": lossf}, step=iter_num)
except Exception as e:
print(e)
iter_num += 1
local_iter_num += 1
# termination conditions
if iter_num > max_iters:
break
if ddp:
destroy_process_group()