Skip to content

Latest commit

 

History

History
69 lines (51 loc) · 2.43 KB

README.md

File metadata and controls

69 lines (51 loc) · 2.43 KB

DNA Hash

A specialized datastructure and tokenization library for counting genetic sequences for use in Machine Learning and Bioinformatics. DNA Hash stores k-mer sequence counts by their up2bit encoding - an efficient two-way hash that works with variable-length sequences. As such, DNA Hash uses considerably less memory than a lookup table that stores sequences in plaintext. In addition, DNA Hash's novel autoscaling Bloom filter eliminates the need to explicitly store singletons and makes it suitable for use on streaming data.

  • Ultra-low memory footprint
  • Variable sequence lengths
  • Embarrassingly parallelizable
  • Open-source and free to use commercially

Note: Due to the probabilistic nature of the Bloom filter, DNA Hash may over count sequences at a bounded rate.

Installation

Install DNA Hash using a Python package manager, example pip:

pip install dnahash

Example Usage

from dna_hash import DNAHash
from dna_hash.tokenizers import Kmer, Canonical

from Bio import SeqIO
from matplotlib import pyplot as plt

hash_table = DNAHash(max_false_positive_rate=0.001)

tokenizer = Canonical(Kmer(6))

with open('covid-19-virus.fasta', 'r') as file:
    for record in SeqIO.parse(file, 'fasta'):
        for token in tokenizer.tokenize(str(record.seq)):
            hash_table.increment(token)

for sequence, count in hash_table.top(25):
    print(f'{sequence}: {count}')

print(f'Total sequences: {hash_table.num_sequences}')
print(f'# of unique sequences: {hash_table.num_unique_sequences}')
print(f'# of singletons: {hash_table.num_singletons}')

plt.hist(list(hash_table.counts.values()), bins=20)
plt.title('SARS-CoV-2 Genome')
plt.xlabel('Counts')
plt.ylabel('Frequency')
plt.show()
TAACAA: 70
TTAAAA: 68
ACAACA: 65
...
CATTAA: 49

Total sequences: 29876
# of unique sequences: 2013
# of singletons: 100

SARS-CoV-2 Histogram

References