-
Notifications
You must be signed in to change notification settings - Fork 28
/
main.py
executable file
·51 lines (41 loc) · 2.05 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import os
import scipy.misc
import numpy as np
from utils import pp, visualize, to_json
import tensorflow as tf
flags = tf.app.flags
flags.DEFINE_integer("epoch", 25, "Epoch to train [25]")
flags.DEFINE_float("learning_rate", 0.0002, "Learning rate of for adam [0.0002]")
flags.DEFINE_float("beta1", 0.5, "Momentum term of adam [0.5]")
flags.DEFINE_integer("train_size", np.inf, "The size of train images [np.inf]")
flags.DEFINE_integer("batch_size", 128, "The size of batch images [64]")
flags.DEFINE_integer("output_size", 64, "The size of the output images to produce [64]")
flags.DEFINE_integer("c_dim", 3, "Dimension of image color. [3]")
flags.DEFINE_string("dataset", "mnist", "The name of dataset [celebA, mnist, lsun]")
flags.DEFINE_string("checkpoint_dir", "checkpoint", "Directory name to save the checkpoints [checkpoint]")
flags.DEFINE_string("sample_dir", "samples", "Directory name to save the image samples [samples]")
flags.DEFINE_boolean("is_train", True, "True for training, False for testing [False]")
flags.DEFINE_boolean("is_crop", False, "True for training, False for testing [False]")
flags.DEFINE_boolean("visualize", False, "True for visualizing, False for nothing [False]")
FLAGS = flags.FLAGS
def main(_):
pp.pprint(flags.FLAGS.__flags)
if not os.path.exists(FLAGS.checkpoint_dir):
os.makedirs(FLAGS.checkpoint_dir)
if not os.path.exists(FLAGS.sample_dir):
os.makedirs(FLAGS.sample_dir)
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 1/10
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
if FLAGS.dataset == 'mnist':
from model import CoGAN
dcgan = CoGAN(sess, image_size=28, batch_size=FLAGS.batch_size, y_dim=10, output_size=28, c_dim=1,
dataset_name=FLAGS.dataset, is_crop=FLAGS.is_crop, checkpoint_dir=FLAGS.checkpoint_dir)
if FLAGS.is_train:
dcgan.train(FLAGS)
else:
dcgan.load(FLAGS.checkpoint_dir)
dcgan.evaluate()
if __name__ == '__main__':
tf.app.run()