-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtts.py
96 lines (83 loc) · 3.54 KB
/
tts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import os
import json
import math
import torch
import commons
import utils
from downloader import ModelDownloader
from models import SynthesizerTrn
from text.symbols import symbols
from text import text_to_sequence
from scipy.io.wavfile import write
from pathlib import Path
class tts_infer:
def __init__(self, model_name='herta'):
"""
Initialize the VITS inference model.
Args:
- model_name (str): The name of the VITS model to load.
"""
print("loading tts")
self.model_name = model_name
self.config_path = "model/config.json"
self.model_path = f"model/{model_name}.pth"
self.model_download = ModelDownloader()
os.makedirs("model", exist_ok=True)
if not Path(self.config_path).is_file():
raise FileNotFoundError(f'{self.config_path} not found')
if not Path(self.model_path).is_file():
self.model_download.ask_download(f"https://huggingface.co/spaces/zomehwh/vits-models/resolve/main/pretrained_models/herta/herta.pth", self.model_path)
self.hps = utils.get_hparams_from_file(self.config_path)
if torch.cuda.is_available():
self.device = torch.device("cuda")
self.net_g = SynthesizerTrn(
len(self.hps.symbols),
self.hps.data.filter_length // 2 + 1,
self.hps.train.segment_size // self.hps.data.hop_length,
n_speakers=self.hps.data.n_speakers,
**self.hps.model).to(self.device)
else:
self.device = torch.device("cpu")
self.net_g = SynthesizerTrn(
len(self.hps.symbols),
self.hps.data.filter_length // 2 + 1,
self.hps.train.segment_size // self.hps.data.hop_length,
n_speakers=self.hps.data.n_speakers,
**self.hps.model).to(self.device)
self.model = utils.load_checkpoint(self.model_path, self.net_g, None)
print("tts loaded")
def get_text(self, text, hps):
"""
Convert the input text into a sequence of integers (symbols) using the text-to-sequence function.
Args:
- text (str): The input text to convert.
- hps (object): The hyperparameters object.
Returns:
- A tensor containing the integer sequence of the input text.
"""
text_norm = text_to_sequence(text, hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm = torch.LongTensor(text_norm)
return text_norm
def convert(self, text):
"""
Convert the input text into speech by running the VITS inference model.
Args:
- text (str): The input text to convert.
"""
if text is None:
pass
else:
speaker_id = 0
text = text
noise_scale = 0.6
noise_scale_w = 0.668
length_scale = 1.0
stn_tst = self.get_text(text, self.hps)
with torch.no_grad():
x_tst = stn_tst.to(self.device).unsqueeze(0)
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(self.device)
sid = torch.LongTensor([speaker_id]).to(self.device)
audio = self.net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale)[0][0, 0].data.cpu().float().numpy()
write('dialog.wav', self.hps.data.sampling_rate, audio)