-
Notifications
You must be signed in to change notification settings - Fork 3
/
export-det.py
executable file
·97 lines (88 loc) · 3.06 KB
/
export-det.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import argparse
from io import BytesIO
import onnx
import torch
from ultralytics import YOLO
from models.common import PostDetect, optim
try:
import onnxsim
except ImportError:
onnxsim = None
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('-w',
'--weights',
type=str,
required=True,
help='PyTorch yolov8 weights')
parser.add_argument('--iou-thres',
type=float,
default=0.65,
help='IOU threshoud for NMS plugin')
parser.add_argument('--conf-thres',
type=float,
default=0.25,
help='CONF threshoud for NMS plugin')
parser.add_argument('--topk',
type=int,
default=100,
help='Max number of detection bboxes')
parser.add_argument('--opset',
type=int,
default=11,
help='ONNX opset version')
parser.add_argument('--sim',
action='store_true',
help='simplify onnx model')
parser.add_argument('--input-shape',
nargs='+',
type=int,
default=[1, 3, 640, 640],
help='Model input shape only for api builder')
parser.add_argument('--device',
type=str,
default='cpu',
help='Export ONNX device')
args = parser.parse_args()
assert len(args.input_shape) == 4
PostDetect.conf_thres = args.conf_thres
PostDetect.iou_thres = args.iou_thres
PostDetect.topk = args.topk
return args
def main(args):
b = args.input_shape[0]
YOLOv8 = YOLO(args.weights)
model = YOLOv8.model.fuse().eval()
for m in model.modules():
optim(m)
m.to(args.device)
model.to(args.device)
fake_input = torch.randn(args.input_shape).to(args.device)
for _ in range(2):
model(fake_input)
save_path = args.weights.replace('.pt', '.onnx')
with BytesIO() as f:
torch.onnx.export(
model,
fake_input,
f,
opset_version=args.opset,
input_names=['images'],
output_names=['num_dets', 'bboxes', 'scores', 'labels'])
f.seek(0)
onnx_model = onnx.load(f)
onnx.checker.check_model(onnx_model)
shapes = [b, 1, b, args.topk, 4, b, args.topk, b, args.topk]
for i in onnx_model.graph.output:
for j in i.type.tensor_type.shape.dim:
j.dim_param = str(shapes.pop(0))
if args.sim:
try:
onnx_model, check = onnxsim.simplify(onnx_model)
assert check, 'assert check failed'
except Exception as e:
print(f'Simplifier failure: {e}')
onnx.save(onnx_model, save_path)
print(f'ONNX export success, saved as {save_path}')
if __name__ == '__main__':
main(parse_args())