-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathplanner.rs
2604 lines (2401 loc) · 101 KB
/
planner.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Physical query planner
use super::analyze::AnalyzeExec;
use super::unnest::UnnestExec;
use super::{
aggregates, empty::EmptyExec, joins::PartitionMode, udaf, union::UnionExec,
values::ValuesExec, windows,
};
use crate::datasource::source_as_provider;
use crate::execution::context::{ExecutionProps, SessionState};
use crate::logical_expr::utils::generate_sort_key;
use crate::logical_expr::{
Aggregate, EmptyRelation, Join, Projection, Sort, SubqueryAlias, TableScan, Unnest,
Window,
};
use crate::logical_expr::{
CrossJoin, Expr, LogicalPlan, Partitioning as LogicalPartitioning, PlanType,
Repartition, ToStringifiedPlan, Union, UserDefinedLogicalNode,
};
use crate::logical_expr::{Limit, Values};
use crate::physical_expr::create_physical_expr;
use crate::physical_optimizer::optimizer::PhysicalOptimizerRule;
use crate::physical_plan::aggregates::{AggregateExec, AggregateMode, PhysicalGroupBy};
use crate::physical_plan::explain::ExplainExec;
use crate::physical_plan::expressions::{Column, PhysicalSortExpr};
use crate::physical_plan::filter::FilterExec;
use crate::physical_plan::joins::HashJoinExec;
use crate::physical_plan::joins::SortMergeJoinExec;
use crate::physical_plan::joins::{CrossJoinExec, NestedLoopJoinExec};
use crate::physical_plan::limit::{GlobalLimitExec, LocalLimitExec};
use crate::physical_plan::projection::ProjectionExec;
use crate::physical_plan::repartition::RepartitionExec;
use crate::physical_plan::sorts::sort::SortExec;
use crate::physical_plan::windows::{
BoundedWindowAggExec, PartitionSearchMode, WindowAggExec,
};
use crate::physical_plan::{joins::utils as join_utils, Partitioning};
use crate::physical_plan::{AggregateExpr, ExecutionPlan, PhysicalExpr, WindowExpr};
use crate::{
error::{DataFusionError, Result},
physical_plan::displayable,
};
use arrow::compute::SortOptions;
use arrow::datatypes::{Schema, SchemaRef};
use async_trait::async_trait;
use datafusion_common::{DFSchema, ScalarValue};
use datafusion_expr::expr::{
self, AggregateFunction, AggregateUDF, Between, BinaryExpr, Cast, GetIndexedField,
GroupingSet, InList, Like, ScalarUDF, TryCast, WindowFunction,
};
use datafusion_expr::expr_rewriter::unnormalize_cols;
use datafusion_expr::logical_plan::builder::wrap_projection_for_join_if_necessary;
use datafusion_expr::{logical_plan, DmlStatement, StringifiedPlan, WriteOp};
use datafusion_expr::{WindowFrame, WindowFrameBound};
use datafusion_optimizer::utils::unalias;
use datafusion_physical_expr::expressions::Literal;
use datafusion_sql::utils::window_expr_common_partition_keys;
use futures::future::BoxFuture;
use futures::{FutureExt, StreamExt, TryStreamExt};
use itertools::{multiunzip, Itertools};
use log::{debug, trace};
use std::collections::HashMap;
use std::fmt::Write;
use std::sync::Arc;
fn create_function_physical_name(
fun: &str,
distinct: bool,
args: &[Expr],
) -> Result<String> {
let names: Vec<String> = args
.iter()
.map(|e| create_physical_name(e, false))
.collect::<Result<_>>()?;
let distinct_str = match distinct {
true => "DISTINCT ",
false => "",
};
Ok(format!("{}({}{})", fun, distinct_str, names.join(",")))
}
fn physical_name(e: &Expr) -> Result<String> {
create_physical_name(e, true)
}
fn create_physical_name(e: &Expr, is_first_expr: bool) -> Result<String> {
match e {
Expr::Column(c) => {
if is_first_expr {
Ok(c.name.clone())
} else {
Ok(c.flat_name())
}
}
Expr::Alias(_, name) => Ok(name.clone()),
Expr::ScalarVariable(_, variable_names) => Ok(variable_names.join(".")),
Expr::Literal(value) => Ok(format!("{value:?}")),
Expr::BinaryExpr(BinaryExpr { left, op, right }) => {
let left = create_physical_name(left, false)?;
let right = create_physical_name(right, false)?;
Ok(format!("{left} {op} {right}"))
}
Expr::Case(case) => {
let mut name = "CASE ".to_string();
if let Some(e) = &case.expr {
let _ = write!(name, "{e:?} ");
}
for (w, t) in &case.when_then_expr {
let _ = write!(name, "WHEN {w:?} THEN {t:?} ");
}
if let Some(e) = &case.else_expr {
let _ = write!(name, "ELSE {e:?} ");
}
name += "END";
Ok(name)
}
Expr::Cast(Cast { expr, .. }) => {
// CAST does not change the expression name
create_physical_name(expr, false)
}
Expr::TryCast(TryCast { expr, .. }) => {
// CAST does not change the expression name
create_physical_name(expr, false)
}
Expr::Not(expr) => {
let expr = create_physical_name(expr, false)?;
Ok(format!("NOT {expr}"))
}
Expr::Negative(expr) => {
let expr = create_physical_name(expr, false)?;
Ok(format!("(- {expr})"))
}
Expr::IsNull(expr) => {
let expr = create_physical_name(expr, false)?;
Ok(format!("{expr} IS NULL"))
}
Expr::IsNotNull(expr) => {
let expr = create_physical_name(expr, false)?;
Ok(format!("{expr} IS NOT NULL"))
}
Expr::IsTrue(expr) => {
let expr = create_physical_name(expr, false)?;
Ok(format!("{expr} IS TRUE"))
}
Expr::IsFalse(expr) => {
let expr = create_physical_name(expr, false)?;
Ok(format!("{expr} IS FALSE"))
}
Expr::IsUnknown(expr) => {
let expr = create_physical_name(expr, false)?;
Ok(format!("{expr} IS UNKNOWN"))
}
Expr::IsNotTrue(expr) => {
let expr = create_physical_name(expr, false)?;
Ok(format!("{expr} IS NOT TRUE"))
}
Expr::IsNotFalse(expr) => {
let expr = create_physical_name(expr, false)?;
Ok(format!("{expr} IS NOT FALSE"))
}
Expr::IsNotUnknown(expr) => {
let expr = create_physical_name(expr, false)?;
Ok(format!("{expr} IS NOT UNKNOWN"))
}
Expr::GetIndexedField(GetIndexedField { key, expr }) => {
let expr = create_physical_name(expr, false)?;
Ok(format!("{expr}[{key}]"))
}
Expr::ScalarFunction(func) => {
create_function_physical_name(&func.fun.to_string(), false, &func.args)
}
Expr::ScalarUDF(ScalarUDF { fun, args }) => {
create_function_physical_name(&fun.name, false, args)
}
Expr::WindowFunction(WindowFunction { fun, args, .. }) => {
create_function_physical_name(&fun.to_string(), false, args)
}
Expr::AggregateFunction(AggregateFunction {
fun,
distinct,
args,
..
}) => create_function_physical_name(&fun.to_string(), *distinct, args),
Expr::AggregateUDF(AggregateUDF {
fun,
args,
filter,
order_by,
}) => {
// TODO: Add support for filter and order by in AggregateUDF
if filter.is_some() {
return Err(DataFusionError::Execution(
"aggregate expression with filter is not supported".to_string(),
));
}
if order_by.is_some() {
return Err(DataFusionError::Execution(
"aggregate expression with order_by is not supported".to_string(),
));
}
let mut names = Vec::with_capacity(args.len());
for e in args {
names.push(create_physical_name(e, false)?);
}
Ok(format!("{}({})", fun.name, names.join(",")))
}
Expr::GroupingSet(grouping_set) => match grouping_set {
GroupingSet::Rollup(exprs) => Ok(format!(
"ROLLUP ({})",
exprs
.iter()
.map(|e| create_physical_name(e, false))
.collect::<Result<Vec<_>>>()?
.join(", ")
)),
GroupingSet::Cube(exprs) => Ok(format!(
"CUBE ({})",
exprs
.iter()
.map(|e| create_physical_name(e, false))
.collect::<Result<Vec<_>>>()?
.join(", ")
)),
GroupingSet::GroupingSets(lists_of_exprs) => {
let mut strings = vec![];
for exprs in lists_of_exprs {
let exprs_str = exprs
.iter()
.map(|e| create_physical_name(e, false))
.collect::<Result<Vec<_>>>()?
.join(", ");
strings.push(format!("({exprs_str})"));
}
Ok(format!("GROUPING SETS ({})", strings.join(", ")))
}
},
Expr::InList(InList {
expr,
list,
negated,
}) => {
let expr = create_physical_name(expr, false)?;
let list = list.iter().map(|expr| create_physical_name(expr, false));
if *negated {
Ok(format!("{expr} NOT IN ({list:?})"))
} else {
Ok(format!("{expr} IN ({list:?})"))
}
}
Expr::Exists { .. } => Err(DataFusionError::NotImplemented(
"EXISTS is not yet supported in the physical plan".to_string(),
)),
Expr::InSubquery(_) => Err(DataFusionError::NotImplemented(
"IN subquery is not yet supported in the physical plan".to_string(),
)),
Expr::ScalarSubquery(_) => Err(DataFusionError::NotImplemented(
"Scalar subqueries are not yet supported in the physical plan".to_string(),
)),
Expr::Between(Between {
expr,
negated,
low,
high,
}) => {
let expr = create_physical_name(expr, false)?;
let low = create_physical_name(low, false)?;
let high = create_physical_name(high, false)?;
if *negated {
Ok(format!("{expr} NOT BETWEEN {low} AND {high}"))
} else {
Ok(format!("{expr} BETWEEN {low} AND {high}"))
}
}
Expr::Like(Like {
negated,
expr,
pattern,
escape_char,
}) => {
let expr = create_physical_name(expr, false)?;
let pattern = create_physical_name(pattern, false)?;
let escape = if let Some(char) = escape_char {
format!("CHAR '{char}'")
} else {
"".to_string()
};
if *negated {
Ok(format!("{expr} NOT LIKE {pattern}{escape}"))
} else {
Ok(format!("{expr} LIKE {pattern}{escape}"))
}
}
Expr::ILike(Like {
negated,
expr,
pattern,
escape_char,
}) => {
let expr = create_physical_name(expr, false)?;
let pattern = create_physical_name(pattern, false)?;
let escape = if let Some(char) = escape_char {
format!("CHAR '{char}'")
} else {
"".to_string()
};
if *negated {
Ok(format!("{expr} NOT ILIKE {pattern}{escape}"))
} else {
Ok(format!("{expr} ILIKE {pattern}{escape}"))
}
}
Expr::SimilarTo(Like {
negated,
expr,
pattern,
escape_char,
}) => {
let expr = create_physical_name(expr, false)?;
let pattern = create_physical_name(pattern, false)?;
let escape = if let Some(char) = escape_char {
format!("CHAR '{char}'")
} else {
"".to_string()
};
if *negated {
Ok(format!("{expr} NOT SIMILAR TO {pattern}{escape}"))
} else {
Ok(format!("{expr} SIMILAR TO {pattern}{escape}"))
}
}
Expr::Sort { .. } => Err(DataFusionError::Internal(
"Create physical name does not support sort expression".to_string(),
)),
Expr::Wildcard => Err(DataFusionError::Internal(
"Create physical name does not support wildcard".to_string(),
)),
Expr::QualifiedWildcard { .. } => Err(DataFusionError::Internal(
"Create physical name does not support qualified wildcard".to_string(),
)),
Expr::Placeholder(_) => Err(DataFusionError::Internal(
"Create physical name does not support placeholder".to_string(),
)),
Expr::OuterReferenceColumn(_, _) => Err(DataFusionError::Internal(
"Create physical name does not support OuterReferenceColumn".to_string(),
)),
}
}
/// Physical query planner that converts a `LogicalPlan` to an
/// `ExecutionPlan` suitable for execution.
#[async_trait]
pub trait PhysicalPlanner: Send + Sync {
/// Create a physical plan from a logical plan
async fn create_physical_plan(
&self,
logical_plan: &LogicalPlan,
session_state: &SessionState,
) -> Result<Arc<dyn ExecutionPlan>>;
/// Create a physical expression from a logical expression
/// suitable for evaluation
///
/// `expr`: the expression to convert
///
/// `input_dfschema`: the logical plan schema for evaluating `expr`
///
/// `input_schema`: the physical schema for evaluating `expr`
fn create_physical_expr(
&self,
expr: &Expr,
input_dfschema: &DFSchema,
input_schema: &Schema,
session_state: &SessionState,
) -> Result<Arc<dyn PhysicalExpr>>;
}
/// This trait exposes the ability to plan an [`ExecutionPlan`] out of a [`LogicalPlan`].
#[async_trait]
pub trait ExtensionPlanner {
/// Create a physical plan for a [`UserDefinedLogicalNode`].
///
/// `input_dfschema`: the logical plan schema for the inputs to this node
///
/// Returns an error when the planner knows how to plan the concrete
/// implementation of `node` but errors while doing so.
///
/// Returns `None` when the planner does not know how to plan the
/// `node` and wants to delegate the planning to another
/// [`ExtensionPlanner`].
async fn plan_extension(
&self,
planner: &dyn PhysicalPlanner,
node: &dyn UserDefinedLogicalNode,
logical_inputs: &[&LogicalPlan],
physical_inputs: &[Arc<dyn ExecutionPlan>],
session_state: &SessionState,
) -> Result<Option<Arc<dyn ExecutionPlan>>>;
}
/// Default single node physical query planner that converts a
/// `LogicalPlan` to an `ExecutionPlan` suitable for execution.
#[derive(Default)]
pub struct DefaultPhysicalPlanner {
extension_planners: Vec<Arc<dyn ExtensionPlanner + Send + Sync>>,
}
#[async_trait]
impl PhysicalPlanner for DefaultPhysicalPlanner {
/// Create a physical plan from a logical plan
async fn create_physical_plan(
&self,
logical_plan: &LogicalPlan,
session_state: &SessionState,
) -> Result<Arc<dyn ExecutionPlan>> {
match self.handle_explain(logical_plan, session_state).await? {
Some(plan) => Ok(plan),
None => {
let plan = self
.create_initial_plan(logical_plan, session_state)
.await?;
self.optimize_internal(plan, session_state, |_, _| {})
}
}
}
/// Create a physical expression from a logical expression
/// suitable for evaluation
///
/// `e`: the expression to convert
///
/// `input_dfschema`: the logical plan schema for evaluating `e`
///
/// `input_schema`: the physical schema for evaluating `e`
fn create_physical_expr(
&self,
expr: &Expr,
input_dfschema: &DFSchema,
input_schema: &Schema,
session_state: &SessionState,
) -> Result<Arc<dyn PhysicalExpr>> {
create_physical_expr(
expr,
input_dfschema,
input_schema,
session_state.execution_props(),
)
}
}
impl DefaultPhysicalPlanner {
/// Create a physical planner that uses `extension_planners` to
/// plan user-defined logical nodes [`LogicalPlan::Extension`].
/// The planner uses the first [`ExtensionPlanner`] to return a non-`None`
/// plan.
pub fn with_extension_planners(
extension_planners: Vec<Arc<dyn ExtensionPlanner + Send + Sync>>,
) -> Self {
Self { extension_planners }
}
/// Create a physical plans for multiple logical plans.
///
/// This is the same as [`create_initial_plan`](Self::create_initial_plan) but runs the planning concurrently.
///
/// The result order is the same as the input order.
fn create_initial_plan_multi<'a>(
&'a self,
logical_plans: impl IntoIterator<Item = &'a LogicalPlan> + Send + 'a,
session_state: &'a SessionState,
) -> BoxFuture<'a, Result<Vec<Arc<dyn ExecutionPlan>>>> {
async move {
// First build futures with as little references as possible, then performing some stream magic.
// Otherwise rustc bails out w/:
//
// error: higher-ranked lifetime error
// ...
// note: could not prove `[async block@...]: std::marker::Send`
let futures = logical_plans
.into_iter()
.enumerate()
.map(|(idx, lp)| async move {
let plan = self.create_initial_plan(lp, session_state).await?;
Ok((idx, plan)) as Result<_>
})
.collect::<Vec<_>>();
let mut physical_plans = futures::stream::iter(futures)
.buffer_unordered(
session_state
.config_options()
.execution
.planning_concurrency,
)
.try_collect::<Vec<(usize, Arc<dyn ExecutionPlan>)>>()
.await?;
physical_plans.sort_by_key(|(idx, _plan)| *idx);
let physical_plans = physical_plans
.into_iter()
.map(|(_idx, plan)| plan)
.collect::<Vec<_>>();
Ok(physical_plans)
}
.boxed()
}
/// Create a physical plan from a logical plan
fn create_initial_plan<'a>(
&'a self,
logical_plan: &'a LogicalPlan,
session_state: &'a SessionState,
) -> BoxFuture<'a, Result<Arc<dyn ExecutionPlan>>> {
async move {
let exec_plan: Result<Arc<dyn ExecutionPlan>> = match logical_plan {
LogicalPlan::TableScan(TableScan {
source,
projection,
filters,
fetch,
..
}) => {
let source = source_as_provider(source)?;
// Remove all qualifiers from the scan as the provider
// doesn't know (nor should care) how the relation was
// referred to in the query
let filters = unnormalize_cols(filters.iter().cloned());
let unaliased: Vec<Expr> = filters.into_iter().map(unalias).collect();
source.scan(session_state, projection.as_ref(), &unaliased, *fetch).await
}
LogicalPlan::Dml(DmlStatement {
table_name,
op: WriteOp::Insert,
input,
..
}) => {
let name = table_name.table();
let schema = session_state.schema_for_ref(table_name)?;
if let Some(provider) = schema.table(name).await {
let input_exec = self.create_initial_plan(input, session_state).await?;
provider.insert_into(session_state, input_exec).await
} else {
return Err(DataFusionError::Execution(format!(
"Table '{table_name}' does not exist"
)));
}
}
LogicalPlan::Values(Values {
values,
schema,
}) => {
let exec_schema = schema.as_ref().to_owned().into();
let exprs = values.iter()
.map(|row| {
row.iter().map(|expr| {
self.create_physical_expr(
expr,
schema,
&exec_schema,
session_state,
)
})
.collect::<Result<Vec<Arc<dyn PhysicalExpr>>>>()
})
.collect::<Result<Vec<_>>>()?;
let value_exec = ValuesExec::try_new(
SchemaRef::new(exec_schema),
exprs,
)?;
Ok(Arc::new(value_exec))
}
LogicalPlan::Window(Window {
input, window_expr, ..
}) => {
if window_expr.is_empty() {
return Err(DataFusionError::Internal(
"Impossibly got empty window expression".to_owned(),
));
}
let input_exec = self.create_initial_plan(input, session_state).await?;
// at this moment we are guaranteed by the logical planner
// to have all the window_expr to have equal sort key
let partition_keys = window_expr_common_partition_keys(window_expr)?;
let can_repartition = !partition_keys.is_empty()
&& session_state.config().target_partitions() > 1
&& session_state.config().repartition_window_functions();
let physical_partition_keys = if can_repartition
{
partition_keys
.iter()
.map(|e| {
self.create_physical_expr(
e,
input.schema(),
&input_exec.schema(),
session_state,
)
})
.collect::<Result<Vec<Arc<dyn PhysicalExpr>>>>()?
} else {
vec![]
};
let get_sort_keys = |expr: &Expr| match expr {
Expr::WindowFunction(WindowFunction{
ref partition_by,
ref order_by,
..
}) => generate_sort_key(partition_by, order_by),
Expr::Alias(expr, _) => {
// Convert &Box<T> to &T
match &**expr {
Expr::WindowFunction(WindowFunction{
ref partition_by,
ref order_by,
..}) => generate_sort_key(partition_by, order_by),
_ => unreachable!(),
}
}
_ => unreachable!(),
};
let sort_keys = get_sort_keys(&window_expr[0])?;
if window_expr.len() > 1 {
debug_assert!(
window_expr[1..]
.iter()
.all(|expr| get_sort_keys(expr).unwrap() == sort_keys),
"all window expressions shall have the same sort keys, as guaranteed by logical planning"
);
}
let logical_input_schema = input.schema();
let physical_input_schema = input_exec.schema();
let window_expr = window_expr
.iter()
.map(|e| {
create_window_expr(
e,
logical_input_schema,
&physical_input_schema,
session_state.execution_props(),
)
})
.collect::<Result<Vec<_>>>()?;
let uses_bounded_memory = window_expr
.iter()
.all(|e| e.uses_bounded_memory());
// If all window expressions can run with bounded memory,
// choose the bounded window variant:
Ok(if uses_bounded_memory {
Arc::new(BoundedWindowAggExec::try_new(
window_expr,
input_exec,
physical_input_schema,
physical_partition_keys,
PartitionSearchMode::Sorted,
)?)
} else {
Arc::new(WindowAggExec::try_new(
window_expr,
input_exec,
physical_input_schema,
physical_partition_keys,
)?)
})
}
LogicalPlan::Aggregate(Aggregate {
input,
group_expr,
aggr_expr,
..
}) => {
// Initially need to perform the aggregate and then merge the partitions
let input_exec = self.create_initial_plan(input, session_state).await?;
let physical_input_schema = input_exec.schema();
let logical_input_schema = input.as_ref().schema();
let groups = self.create_grouping_physical_expr(
group_expr,
logical_input_schema,
&physical_input_schema,
session_state)?;
let agg_filter = aggr_expr
.iter()
.map(|e| {
create_aggregate_expr_and_maybe_filter(
e,
logical_input_schema,
&physical_input_schema,
session_state.execution_props(),
)
})
.collect::<Result<Vec<_>>>()?;
let (aggregates, filters, order_bys) : (Vec<_>, Vec<_>, Vec<_>) = multiunzip(agg_filter.into_iter());
let initial_aggr = Arc::new(AggregateExec::try_new(
AggregateMode::Partial,
groups.clone(),
aggregates.clone(),
filters.clone(),
order_bys.clone(),
input_exec,
physical_input_schema.clone(),
)?);
// update group column indices based on partial aggregate plan evaluation
let final_group: Vec<Arc<dyn PhysicalExpr>> = initial_aggr.output_group_expr();
let can_repartition = !groups.is_empty()
&& session_state.config().target_partitions() > 1
&& session_state.config().repartition_aggregations();
let (initial_aggr, next_partition_mode): (
Arc<dyn ExecutionPlan>,
AggregateMode,
) = if can_repartition {
// construct a second aggregation with 'AggregateMode::FinalPartitioned'
(initial_aggr, AggregateMode::FinalPartitioned)
} else {
// construct a second aggregation, keeping the final column name equal to the
// first aggregation and the expressions corresponding to the respective aggregate
(initial_aggr, AggregateMode::Final)
};
let final_grouping_set = PhysicalGroupBy::new_single(
final_group
.iter()
.enumerate()
.map(|(i, expr)| (expr.clone(), groups.expr()[i].1.clone()))
.collect()
);
Ok(Arc::new(AggregateExec::try_new(
next_partition_mode,
final_grouping_set,
aggregates,
filters,
order_bys,
initial_aggr,
physical_input_schema.clone(),
)?))
}
LogicalPlan::Projection(Projection { input, expr, .. }) => {
let input_exec = self.create_initial_plan(input, session_state).await?;
let input_schema = input.as_ref().schema();
let physical_exprs = expr
.iter()
.map(|e| {
// For projections, SQL planner and logical plan builder may convert user
// provided expressions into logical Column expressions if their results
// are already provided from the input plans. Because we work with
// qualified columns in logical plane, derived columns involve operators or
// functions will contain qualifiers as well. This will result in logical
// columns with names like `SUM(t1.c1)`, `t1.c1 + t1.c2`, etc.
//
// If we run these logical columns through physical_name function, we will
// get physical names with column qualifiers, which violates DataFusion's
// field name semantics. To account for this, we need to derive the
// physical name from physical input instead.
//
// This depends on the invariant that logical schema field index MUST match
// with physical schema field index.
let physical_name = if let Expr::Column(col) = e {
match input_schema.index_of_column(col) {
Ok(idx) => {
// index physical field using logical field index
Ok(input_exec.schema().field(idx).name().to_string())
}
// logical column is not a derived column, safe to pass along to
// physical_name
Err(_) => physical_name(e),
}
} else {
physical_name(e)
};
tuple_err((
self.create_physical_expr(
e,
input_schema,
&input_exec.schema(),
session_state,
),
physical_name,
))
})
.collect::<Result<Vec<_>>>()?;
Ok(Arc::new(ProjectionExec::try_new(
physical_exprs,
input_exec,
)?))
}
LogicalPlan::Filter(filter) => {
let physical_input = self.create_initial_plan(&filter.input, session_state).await?;
let input_schema = physical_input.as_ref().schema();
let input_dfschema = filter.input.schema();
let runtime_expr = self.create_physical_expr(
&filter.predicate,
input_dfschema,
&input_schema,
session_state,
)?;
Ok(Arc::new(FilterExec::try_new(runtime_expr, physical_input)?))
}
LogicalPlan::Union(Union { inputs, schema }) => {
let physical_plans = self.create_initial_plan_multi(inputs.iter().map(|lp| lp.as_ref()), session_state).await?;
if schema.fields().len() < physical_plans[0].schema().fields().len() {
// `schema` could be a subset of the child schema. For example
// for query "select count(*) from (select a from t union all select a from t)"
// `schema` is empty but child schema contains one field `a`.
Ok(Arc::new(UnionExec::try_new_with_schema(physical_plans, schema.clone())?))
} else {
Ok(Arc::new(UnionExec::new(physical_plans)))
}
}
LogicalPlan::Repartition(Repartition {
input,
partitioning_scheme,
}) => {
let physical_input = self.create_initial_plan(input, session_state).await?;
let input_schema = physical_input.schema();
let input_dfschema = input.as_ref().schema();
let physical_partitioning = match partitioning_scheme {
LogicalPartitioning::RoundRobinBatch(n) => {
Partitioning::RoundRobinBatch(*n)
}
LogicalPartitioning::Hash(expr, n) => {
let runtime_expr = expr
.iter()
.map(|e| {
self.create_physical_expr(
e,
input_dfschema,
&input_schema,
session_state,
)
})
.collect::<Result<Vec<_>>>()?;
Partitioning::Hash(runtime_expr, *n)
}
LogicalPartitioning::DistributeBy(_) => {
return Err(DataFusionError::NotImplemented("Physical plan does not support DistributeBy partitioning".to_string()));
}
};
Ok(Arc::new(RepartitionExec::try_new(
physical_input,
physical_partitioning,
)?))
}
LogicalPlan::Sort(Sort { expr, input, fetch, .. }) => {
let physical_input = self.create_initial_plan(input, session_state).await?;
let input_schema = physical_input.as_ref().schema();
let input_dfschema = input.as_ref().schema();
let sort_expr = expr
.iter()
.map(|e| create_physical_sort_expr(
e,
input_dfschema,
&input_schema,
session_state.execution_props(),
))
.collect::<Result<Vec<_>>>()?;
let new_sort = SortExec::new(sort_expr, physical_input)
.with_fetch(*fetch);
Ok(Arc::new(new_sort))
}
LogicalPlan::Join(Join {
left,
right,
on: keys,
filter,
join_type,
null_equals_null,
schema: join_schema,
..
}) => {
let null_equals_null = *null_equals_null;
// If join has expression equijoin keys, add physical projecton.
let has_expr_join_key = keys.iter().any(|(l, r)| {
!(matches!(l, Expr::Column(_))
&& matches!(r, Expr::Column(_)))
});
if has_expr_join_key {
let left_keys = keys
.iter()
.map(|(l, _r)| l)
.cloned()
.collect::<Vec<_>>();
let right_keys = keys
.iter()
.map(|(_l, r)| r)
.cloned()
.collect::<Vec<_>>();
let (left, right, column_on, added_project) = {
let (left, left_col_keys, left_projected) =
wrap_projection_for_join_if_necessary(
left_keys.as_slice(),
left.as_ref().clone(),
)?;
let (right, right_col_keys, right_projected) =
wrap_projection_for_join_if_necessary(
&right_keys,
right.as_ref().clone(),
)?;
(
left,
right,
(left_col_keys, right_col_keys),
left_projected || right_projected,
)
};
let join_plan =
LogicalPlan::Join(Join::try_new_with_project_input(
logical_plan,
Arc::new(left),
Arc::new(right),
column_on,
)?);
// Remove temporary projected columns
let join_plan = if added_project {
let final_join_result = join_schema
.fields()
.iter()
.map(|field| {
Expr::Column(field.qualified_column())
})
.collect::<Vec<_>>();
let projection =
logical_plan::Projection::try_new_with_schema(
final_join_result,
Arc::new(join_plan),
join_schema.clone(),
)?;
LogicalPlan::Projection(projection)
} else {
join_plan
};
return self
.create_initial_plan(&join_plan, session_state)
.await;
}
// All equi-join keys are columns now, create physical join plan
let left_right = self.create_initial_plan_multi([left.as_ref(), right.as_ref()], session_state).await?;
let [physical_left, physical_right]: [Arc<dyn ExecutionPlan>; 2] = left_right.try_into().map_err(|_| DataFusionError::Internal("`create_initial_plan_multi` is broken".to_string()))?;
let left_df_schema = left.schema();
let right_df_schema = right.schema();
let join_on = keys
.iter()
.map(|(l, r)| {
let l = l.try_into_col()?;
let r = r.try_into_col()?;
Ok((
Column::new(&l.name, left_df_schema.index_of_column(&l)?),
Column::new(&r.name, right_df_schema.index_of_column(&r)?),
))
})
.collect::<Result<join_utils::JoinOn>>()?;
let join_filter = match filter {
Some(expr) => {
// Extract columns from filter expression and saved in a HashSet
let cols = expr.to_columns()?;
// Collect left & right field indices, the field indices are sorted in ascending order
let left_field_indices = cols.iter()
.filter_map(|c| match left_df_schema.index_of_column(c) {
Ok(idx) => Some(idx),