-
Notifications
You must be signed in to change notification settings - Fork 847
/
Copy pathmod.rs
2339 lines (2003 loc) · 86.1 KB
/
mod.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! [`ParquetRecordBatchStreamBuilder`]: `async` API for reading Parquet files as
//! [`RecordBatch`]es
//!
//! This can be used to decode a Parquet file in streaming fashion (without
//! downloading the whole file at once) from a remote source, such as an object store.
//!
//! See example on [`ParquetRecordBatchStreamBuilder::new`]
use std::collections::VecDeque;
use std::fmt::Formatter;
use std::io::SeekFrom;
use std::ops::Range;
use std::pin::Pin;
use std::sync::Arc;
use std::task::{Context, Poll};
use bytes::{Buf, Bytes};
use futures::future::{BoxFuture, FutureExt};
use futures::ready;
use futures::stream::Stream;
use tokio::io::{AsyncRead, AsyncReadExt, AsyncSeek, AsyncSeekExt};
use arrow_array::RecordBatch;
use arrow_schema::{DataType, Fields, Schema, SchemaRef};
use crate::arrow::array_reader::{build_array_reader, RowGroups};
use crate::arrow::arrow_reader::{
apply_range, evaluate_predicate, selects_any, ArrowReaderBuilder, ArrowReaderMetadata,
ArrowReaderOptions, ParquetRecordBatchReader, RowFilter, RowSelection,
};
use crate::arrow::ProjectionMask;
use crate::bloom_filter::{
chunk_read_bloom_filter_header_and_offset, Sbbf, SBBF_HEADER_SIZE_ESTIMATE,
};
use crate::column::page::{PageIterator, PageReader};
use crate::errors::{ParquetError, Result};
use crate::file::metadata::{ParquetMetaData, ParquetMetaDataReader, RowGroupMetaData};
use crate::file::page_index::offset_index::OffsetIndexMetaData;
use crate::file::reader::{ChunkReader, Length, SerializedPageReader};
use crate::file::FOOTER_SIZE;
use crate::format::{BloomFilterAlgorithm, BloomFilterCompression, BloomFilterHash};
mod metadata;
pub use metadata::*;
#[cfg(feature = "object_store")]
mod store;
use crate::arrow::schema::ParquetField;
#[cfg(feature = "object_store")]
pub use store::*;
/// The asynchronous interface used by [`ParquetRecordBatchStream`] to read parquet files
///
/// Notes:
///
/// 1. There is a default implementation for types that implement [`AsyncRead`]
/// and [`AsyncSeek`], for example [`tokio::fs::File`].
///
/// 2. [`ParquetObjectReader`], available when the `object_store` crate feature
/// is enabled, implements this interface for [`ObjectStore`].
///
/// [`ObjectStore`]: object_store::ObjectStore
///
/// [`tokio::fs::File`]: https://docs.rs/tokio/latest/tokio/fs/struct.File.html
pub trait AsyncFileReader: Send {
/// Retrieve the bytes in `range`
fn get_bytes(&mut self, range: Range<usize>) -> BoxFuture<'_, Result<Bytes>>;
/// Retrieve multiple byte ranges. The default implementation will call `get_bytes` sequentially
fn get_byte_ranges(&mut self, ranges: Vec<Range<usize>>) -> BoxFuture<'_, Result<Vec<Bytes>>> {
async move {
let mut result = Vec::with_capacity(ranges.len());
for range in ranges.into_iter() {
let data = self.get_bytes(range).await?;
result.push(data);
}
Ok(result)
}
.boxed()
}
/// Provides asynchronous access to the [`ParquetMetaData`] of a parquet file,
/// allowing fine-grained control over how metadata is sourced, in particular allowing
/// for caching, pre-fetching, catalog metadata, etc...
fn get_metadata(&mut self) -> BoxFuture<'_, Result<Arc<ParquetMetaData>>>;
}
/// This allows Box<dyn AsyncFileReader + '_> to be used as an AsyncFileReader,
impl AsyncFileReader for Box<dyn AsyncFileReader + '_> {
fn get_bytes(&mut self, range: Range<usize>) -> BoxFuture<'_, Result<Bytes>> {
self.as_mut().get_bytes(range)
}
fn get_byte_ranges(&mut self, ranges: Vec<Range<usize>>) -> BoxFuture<'_, Result<Vec<Bytes>>> {
self.as_mut().get_byte_ranges(ranges)
}
fn get_metadata(&mut self) -> BoxFuture<'_, Result<Arc<ParquetMetaData>>> {
self.as_mut().get_metadata()
}
}
impl<T: AsyncRead + AsyncSeek + Unpin + Send> AsyncFileReader for T {
fn get_bytes(&mut self, range: Range<usize>) -> BoxFuture<'_, Result<Bytes>> {
async move {
self.seek(SeekFrom::Start(range.start as u64)).await?;
let to_read = range.end - range.start;
let mut buffer = Vec::with_capacity(to_read);
let read = self.take(to_read as u64).read_to_end(&mut buffer).await?;
if read != to_read {
return Err(eof_err!("expected to read {} bytes, got {}", to_read, read));
}
Ok(buffer.into())
}
.boxed()
}
fn get_metadata(&mut self) -> BoxFuture<'_, Result<Arc<ParquetMetaData>>> {
const FOOTER_SIZE_I64: i64 = FOOTER_SIZE as i64;
async move {
self.seek(SeekFrom::End(-FOOTER_SIZE_I64)).await?;
let mut buf = [0_u8; FOOTER_SIZE];
self.read_exact(&mut buf).await?;
let metadata_len = ParquetMetaDataReader::decode_footer(&buf)?;
self.seek(SeekFrom::End(-FOOTER_SIZE_I64 - metadata_len as i64))
.await?;
let mut buf = Vec::with_capacity(metadata_len);
self.take(metadata_len as _).read_to_end(&mut buf).await?;
Ok(Arc::new(ParquetMetaDataReader::decode_metadata(&buf)?))
}
.boxed()
}
}
impl ArrowReaderMetadata {
/// Returns a new [`ArrowReaderMetadata`] for this builder
///
/// See [`ParquetRecordBatchStreamBuilder::new_with_metadata`] for how this can be used
///
/// # Notes
///
/// If `options` has [`ArrowReaderOptions::with_page_index`] true, but
/// `Self::metadata` is missing the page index, this function will attempt
/// to load the page index by making an object store request.
pub async fn load_async<T: AsyncFileReader>(
input: &mut T,
options: ArrowReaderOptions,
) -> Result<Self> {
// TODO: this is all rather awkward. It would be nice if AsyncFileReader::get_metadata
// took an argument to fetch the page indexes.
let mut metadata = input.get_metadata().await?;
if options.page_index
&& metadata.column_index().is_none()
&& metadata.offset_index().is_none()
{
let m = Arc::try_unwrap(metadata).unwrap_or_else(|e| e.as_ref().clone());
let mut reader = ParquetMetaDataReader::new_with_metadata(m).with_page_indexes(true);
reader.load_page_index(input).await?;
metadata = Arc::new(reader.finish()?)
}
Self::try_new(metadata, options)
}
}
#[doc(hidden)]
/// A newtype used within [`ReaderOptionsBuilder`] to distinguish sync readers from async
///
/// Allows sharing the same builder for both the sync and async versions, whilst also not
/// breaking the pre-existing ParquetRecordBatchStreamBuilder API
pub struct AsyncReader<T>(T);
/// A builder for reading parquet files from an `async` source as [`ParquetRecordBatchStream`]
///
/// This builder handles reading the parquet file metadata, allowing consumers
/// to use this information to select what specific columns, row groups, etc...
/// they wish to be read by the resulting stream
///
/// See examples on [`ParquetRecordBatchStreamBuilder::new`]
///
/// See [`ArrowReaderBuilder`] for additional member functions
pub type ParquetRecordBatchStreamBuilder<T> = ArrowReaderBuilder<AsyncReader<T>>;
impl<T: AsyncFileReader + Send + 'static> ParquetRecordBatchStreamBuilder<T> {
/// Create a new [`ParquetRecordBatchStreamBuilder`] for reading from the
/// specified source.
///
/// # Example
/// ```
/// # #[tokio::main(flavor="current_thread")]
/// # async fn main() {
/// #
/// # use arrow_array::RecordBatch;
/// # use arrow::util::pretty::pretty_format_batches;
/// # use futures::TryStreamExt;
/// #
/// # use parquet::arrow::{ParquetRecordBatchStreamBuilder, ProjectionMask};
/// #
/// # fn assert_batches_eq(batches: &[RecordBatch], expected_lines: &[&str]) {
/// # let formatted = pretty_format_batches(batches).unwrap().to_string();
/// # let actual_lines: Vec<_> = formatted.trim().lines().collect();
/// # assert_eq!(
/// # &actual_lines, expected_lines,
/// # "\n\nexpected:\n\n{:#?}\nactual:\n\n{:#?}\n\n",
/// # expected_lines, actual_lines
/// # );
/// # }
/// #
/// # let testdata = arrow::util::test_util::parquet_test_data();
/// # let path = format!("{}/alltypes_plain.parquet", testdata);
/// // Use tokio::fs::File to read data using an async I/O. This can be replaced with
/// // another async I/O reader such as a reader from an object store.
/// let file = tokio::fs::File::open(path).await.unwrap();
///
/// // Configure options for reading from the async souce
/// let builder = ParquetRecordBatchStreamBuilder::new(file)
/// .await
/// .unwrap();
/// // Building the stream opens the parquet file (reads metadata, etc) and returns
/// // a stream that can be used to incrementally read the data in batches
/// let stream = builder.build().unwrap();
/// // In this example, we collect the stream into a Vec<RecordBatch>
/// // but real applications would likely process the batches as they are read
/// let results = stream.try_collect::<Vec<_>>().await.unwrap();
/// // Demonstrate the results are as expected
/// assert_batches_eq(
/// &results,
/// &[
/// "+----+----------+-------------+--------------+---------+------------+-----------+------------+------------------+------------+---------------------+",
/// "| id | bool_col | tinyint_col | smallint_col | int_col | bigint_col | float_col | double_col | date_string_col | string_col | timestamp_col |",
/// "+----+----------+-------------+--------------+---------+------------+-----------+------------+------------------+------------+---------------------+",
/// "| 4 | true | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 30332f30312f3039 | 30 | 2009-03-01T00:00:00 |",
/// "| 5 | false | 1 | 1 | 1 | 10 | 1.1 | 10.1 | 30332f30312f3039 | 31 | 2009-03-01T00:01:00 |",
/// "| 6 | true | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 30342f30312f3039 | 30 | 2009-04-01T00:00:00 |",
/// "| 7 | false | 1 | 1 | 1 | 10 | 1.1 | 10.1 | 30342f30312f3039 | 31 | 2009-04-01T00:01:00 |",
/// "| 2 | true | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 30322f30312f3039 | 30 | 2009-02-01T00:00:00 |",
/// "| 3 | false | 1 | 1 | 1 | 10 | 1.1 | 10.1 | 30322f30312f3039 | 31 | 2009-02-01T00:01:00 |",
/// "| 0 | true | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 30312f30312f3039 | 30 | 2009-01-01T00:00:00 |",
/// "| 1 | false | 1 | 1 | 1 | 10 | 1.1 | 10.1 | 30312f30312f3039 | 31 | 2009-01-01T00:01:00 |",
/// "+----+----------+-------------+--------------+---------+------------+-----------+------------+------------------+------------+---------------------+",
/// ],
/// );
/// # }
/// ```
///
/// # Example configuring options and reading metadata
///
/// There are many options that control the behavior of the reader, such as
/// `with_batch_size`, `with_projection`, `with_filter`, etc...
///
/// ```
/// # #[tokio::main(flavor="current_thread")]
/// # async fn main() {
/// #
/// # use arrow_array::RecordBatch;
/// # use arrow::util::pretty::pretty_format_batches;
/// # use futures::TryStreamExt;
/// #
/// # use parquet::arrow::{ParquetRecordBatchStreamBuilder, ProjectionMask};
/// #
/// # fn assert_batches_eq(batches: &[RecordBatch], expected_lines: &[&str]) {
/// # let formatted = pretty_format_batches(batches).unwrap().to_string();
/// # let actual_lines: Vec<_> = formatted.trim().lines().collect();
/// # assert_eq!(
/// # &actual_lines, expected_lines,
/// # "\n\nexpected:\n\n{:#?}\nactual:\n\n{:#?}\n\n",
/// # expected_lines, actual_lines
/// # );
/// # }
/// #
/// # let testdata = arrow::util::test_util::parquet_test_data();
/// # let path = format!("{}/alltypes_plain.parquet", testdata);
/// // As before, use tokio::fs::File to read data using an async I/O.
/// let file = tokio::fs::File::open(path).await.unwrap();
///
/// // Configure options for reading from the async source, in this case we set the batch size
/// // to 3 which produces 3 rows at a time.
/// let builder = ParquetRecordBatchStreamBuilder::new(file)
/// .await
/// .unwrap()
/// .with_batch_size(3);
///
/// // We can also read the metadata to inspect the schema and other metadata
/// // before actually reading the data
/// let file_metadata = builder.metadata().file_metadata();
/// // Specify that we only want to read the 1st, 2nd, and 6th columns
/// let mask = ProjectionMask::roots(file_metadata.schema_descr(), [1, 2, 6]);
///
/// let stream = builder.with_projection(mask).build().unwrap();
/// let results = stream.try_collect::<Vec<_>>().await.unwrap();
/// // Print out the results
/// assert_batches_eq(
/// &results,
/// &[
/// "+----------+-------------+-----------+",
/// "| bool_col | tinyint_col | float_col |",
/// "+----------+-------------+-----------+",
/// "| true | 0 | 0.0 |",
/// "| false | 1 | 1.1 |",
/// "| true | 0 | 0.0 |",
/// "| false | 1 | 1.1 |",
/// "| true | 0 | 0.0 |",
/// "| false | 1 | 1.1 |",
/// "| true | 0 | 0.0 |",
/// "| false | 1 | 1.1 |",
/// "+----------+-------------+-----------+",
/// ],
/// );
///
/// // The results has 8 rows, so since we set the batch size to 3, we expect
/// // 3 batches, two with 3 rows each and the last batch with 2 rows.
/// assert_eq!(results.len(), 3);
/// # }
/// ```
pub async fn new(input: T) -> Result<Self> {
Self::new_with_options(input, Default::default()).await
}
/// Create a new [`ParquetRecordBatchStreamBuilder`] with the provided async source
/// and [`ArrowReaderOptions`]
pub async fn new_with_options(mut input: T, options: ArrowReaderOptions) -> Result<Self> {
let metadata = ArrowReaderMetadata::load_async(&mut input, options).await?;
Ok(Self::new_with_metadata(input, metadata))
}
/// Create a [`ParquetRecordBatchStreamBuilder`] from the provided [`ArrowReaderMetadata`]
///
/// This allows loading metadata once and using it to create multiple builders with
/// potentially different settings, that can be read in parallel.
///
/// # Example of reading from multiple streams in parallel
///
/// ```
/// # use std::fs::metadata;
/// # use std::sync::Arc;
/// # use bytes::Bytes;
/// # use arrow_array::{Int32Array, RecordBatch};
/// # use arrow_schema::{DataType, Field, Schema};
/// # use parquet::arrow::arrow_reader::ArrowReaderMetadata;
/// # use parquet::arrow::{ArrowWriter, ParquetRecordBatchStreamBuilder};
/// # use tempfile::tempfile;
/// # use futures::StreamExt;
/// # #[tokio::main(flavor="current_thread")]
/// # async fn main() {
/// #
/// # let mut file = tempfile().unwrap();
/// # let schema = Arc::new(Schema::new(vec![Field::new("i32", DataType::Int32, false)]));
/// # let mut writer = ArrowWriter::try_new(&mut file, schema.clone(), None).unwrap();
/// # let batch = RecordBatch::try_new(schema, vec![Arc::new(Int32Array::from(vec![1, 2, 3]))]).unwrap();
/// # writer.write(&batch).unwrap();
/// # writer.close().unwrap();
/// // open file with parquet data
/// let mut file = tokio::fs::File::from_std(file);
/// // load metadata once
/// let meta = ArrowReaderMetadata::load_async(&mut file, Default::default()).await.unwrap();
/// // create two readers, a and b, from the same underlying file
/// // without reading the metadata again
/// let mut a = ParquetRecordBatchStreamBuilder::new_with_metadata(
/// file.try_clone().await.unwrap(),
/// meta.clone()
/// ).build().unwrap();
/// let mut b = ParquetRecordBatchStreamBuilder::new_with_metadata(file, meta).build().unwrap();
///
/// // Can read batches from both readers in parallel
/// assert_eq!(
/// a.next().await.unwrap().unwrap(),
/// b.next().await.unwrap().unwrap(),
/// );
/// # }
/// ```
pub fn new_with_metadata(input: T, metadata: ArrowReaderMetadata) -> Self {
Self::new_builder(AsyncReader(input), metadata)
}
/// Read bloom filter for a column in a row group
///
/// Returns `None` if the column does not have a bloom filter
///
/// We should call this function after other forms pruning, such as projection and predicate pushdown.
pub async fn get_row_group_column_bloom_filter(
&mut self,
row_group_idx: usize,
column_idx: usize,
) -> Result<Option<Sbbf>> {
let metadata = self.metadata.row_group(row_group_idx);
let column_metadata = metadata.column(column_idx);
let offset: usize = if let Some(offset) = column_metadata.bloom_filter_offset() {
offset
.try_into()
.map_err(|_| ParquetError::General("Bloom filter offset is invalid".to_string()))?
} else {
return Ok(None);
};
let buffer = match column_metadata.bloom_filter_length() {
Some(length) => self.input.0.get_bytes(offset..offset + length as usize),
None => self
.input
.0
.get_bytes(offset..offset + SBBF_HEADER_SIZE_ESTIMATE),
}
.await?;
let (header, bitset_offset) =
chunk_read_bloom_filter_header_and_offset(offset as u64, buffer.clone())?;
match header.algorithm {
BloomFilterAlgorithm::BLOCK(_) => {
// this match exists to future proof the singleton algorithm enum
}
}
match header.compression {
BloomFilterCompression::UNCOMPRESSED(_) => {
// this match exists to future proof the singleton compression enum
}
}
match header.hash {
BloomFilterHash::XXHASH(_) => {
// this match exists to future proof the singleton hash enum
}
}
let bitset = match column_metadata.bloom_filter_length() {
Some(_) => buffer.slice((bitset_offset as usize - offset)..),
None => {
let bitset_length: usize = header.num_bytes.try_into().map_err(|_| {
ParquetError::General("Bloom filter length is invalid".to_string())
})?;
self.input
.0
.get_bytes(bitset_offset as usize..bitset_offset as usize + bitset_length)
.await?
}
};
Ok(Some(Sbbf::new(&bitset)))
}
/// Build a new [`ParquetRecordBatchStream`]
///
/// See examples on [`ParquetRecordBatchStreamBuilder::new`]
pub fn build(self) -> Result<ParquetRecordBatchStream<T>> {
let num_row_groups = self.metadata.row_groups().len();
let row_groups = match self.row_groups {
Some(row_groups) => {
if let Some(col) = row_groups.iter().find(|x| **x >= num_row_groups) {
return Err(general_err!(
"row group {} out of bounds 0..{}",
col,
num_row_groups
));
}
row_groups.into()
}
None => (0..self.metadata.row_groups().len()).collect(),
};
// Try to avoid allocate large buffer
let batch_size = self
.batch_size
.min(self.metadata.file_metadata().num_rows() as usize);
let reader = ReaderFactory {
input: self.input.0,
filter: self.filter,
metadata: self.metadata.clone(),
fields: self.fields,
limit: self.limit,
offset: self.offset,
};
// Ensure schema of ParquetRecordBatchStream respects projection, and does
// not store metadata (same as for ParquetRecordBatchReader and emitted RecordBatches)
let projected_fields = match reader.fields.as_deref().map(|pf| &pf.arrow_type) {
Some(DataType::Struct(fields)) => {
fields.filter_leaves(|idx, _| self.projection.leaf_included(idx))
}
None => Fields::empty(),
_ => unreachable!("Must be Struct for root type"),
};
let schema = Arc::new(Schema::new(projected_fields));
Ok(ParquetRecordBatchStream {
metadata: self.metadata,
batch_size,
row_groups,
projection: self.projection,
selection: self.selection,
schema,
reader: Some(reader),
state: StreamState::Init,
})
}
}
type ReadResult<T> = Result<(ReaderFactory<T>, Option<ParquetRecordBatchReader>)>;
/// [`ReaderFactory`] is used by [`ParquetRecordBatchStream`] to create
/// [`ParquetRecordBatchReader`]
struct ReaderFactory<T> {
metadata: Arc<ParquetMetaData>,
fields: Option<Arc<ParquetField>>,
input: T,
filter: Option<RowFilter>,
limit: Option<usize>,
offset: Option<usize>,
}
impl<T> ReaderFactory<T>
where
T: AsyncFileReader + Send,
{
/// Reads the next row group with the provided `selection`, `projection` and `batch_size`
///
/// Note: this captures self so that the resulting future has a static lifetime
async fn read_row_group(
mut self,
row_group_idx: usize,
mut selection: Option<RowSelection>,
projection: ProjectionMask,
batch_size: usize,
) -> ReadResult<T> {
// TODO: calling build_array multiple times is wasteful
let meta = self.metadata.row_group(row_group_idx);
let offset_index = self
.metadata
.offset_index()
// filter out empty offset indexes (old versions specified Some(vec![]) when no present)
.filter(|index| !index.is_empty())
.map(|x| x[row_group_idx].as_slice());
let mut row_group = InMemoryRowGroup {
metadata: meta,
// schema: meta.schema_descr_ptr(),
row_count: meta.num_rows() as usize,
column_chunks: vec![None; meta.columns().len()],
offset_index,
};
if let Some(filter) = self.filter.as_mut() {
for predicate in filter.predicates.iter_mut() {
if !selects_any(selection.as_ref()) {
return Ok((self, None));
}
let predicate_projection = predicate.projection();
row_group
.fetch(&mut self.input, predicate_projection, selection.as_ref())
.await?;
let array_reader =
build_array_reader(self.fields.as_deref(), predicate_projection, &row_group)?;
selection = Some(evaluate_predicate(
batch_size,
array_reader,
selection,
predicate.as_mut(),
)?);
}
}
// Compute the number of rows in the selection before applying limit and offset
let rows_before = selection
.as_ref()
.map(|s| s.row_count())
.unwrap_or(row_group.row_count);
if rows_before == 0 {
return Ok((self, None));
}
selection = apply_range(selection, row_group.row_count, self.offset, self.limit);
// Compute the number of rows in the selection after applying limit and offset
let rows_after = selection
.as_ref()
.map(|s| s.row_count())
.unwrap_or(row_group.row_count);
// Update offset if necessary
if let Some(offset) = &mut self.offset {
// Reduction is either because of offset or limit, as limit is applied
// after offset has been "exhausted" can just use saturating sub here
*offset = offset.saturating_sub(rows_before - rows_after)
}
if rows_after == 0 {
return Ok((self, None));
}
if let Some(limit) = &mut self.limit {
*limit -= rows_after;
}
row_group
.fetch(&mut self.input, &projection, selection.as_ref())
.await?;
let reader = ParquetRecordBatchReader::new(
batch_size,
build_array_reader(self.fields.as_deref(), &projection, &row_group)?,
selection,
);
Ok((self, Some(reader)))
}
}
enum StreamState<T> {
/// At the start of a new row group, or the end of the parquet stream
Init,
/// Decoding a batch
Decoding(ParquetRecordBatchReader),
/// Reading data from input
Reading(BoxFuture<'static, ReadResult<T>>),
/// Error
Error,
}
impl<T> std::fmt::Debug for StreamState<T> {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
match self {
StreamState::Init => write!(f, "StreamState::Init"),
StreamState::Decoding(_) => write!(f, "StreamState::Decoding"),
StreamState::Reading(_) => write!(f, "StreamState::Reading"),
StreamState::Error => write!(f, "StreamState::Error"),
}
}
}
/// An asynchronous [`Stream`]of [`RecordBatch`] constructed using [`ParquetRecordBatchStreamBuilder`] to read parquet files.
///
/// `ParquetRecordBatchStream` also provides [`ParquetRecordBatchStream::next_row_group`] for fetching row groups,
/// allowing users to decode record batches separately from I/O.
///
/// # I/O Buffering
///
/// `ParquetRecordBatchStream` buffers *all* data pages selected after predicates
/// (projection + filtering, etc) and decodes the rows from those buffered pages.
///
/// For example, if all rows and columns are selected, the entire row group is
/// buffered in memory during decode. This minimizes the number of IO operations
/// required, which is especially important for object stores, where IO operations
/// have latencies in the hundreds of milliseconds
///
///
/// [`Stream`]: https://docs.rs/futures/latest/futures/stream/trait.Stream.html
pub struct ParquetRecordBatchStream<T> {
metadata: Arc<ParquetMetaData>,
schema: SchemaRef,
row_groups: VecDeque<usize>,
projection: ProjectionMask,
batch_size: usize,
selection: Option<RowSelection>,
/// This is an option so it can be moved into a future
reader: Option<ReaderFactory<T>>,
state: StreamState<T>,
}
impl<T> std::fmt::Debug for ParquetRecordBatchStream<T> {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
f.debug_struct("ParquetRecordBatchStream")
.field("metadata", &self.metadata)
.field("schema", &self.schema)
.field("batch_size", &self.batch_size)
.field("projection", &self.projection)
.field("state", &self.state)
.finish()
}
}
impl<T> ParquetRecordBatchStream<T> {
/// Returns the projected [`SchemaRef`] for reading the parquet file.
///
/// Note that the schema metadata will be stripped here. See
/// [`ParquetRecordBatchStreamBuilder::schema`] if the metadata is desired.
pub fn schema(&self) -> &SchemaRef {
&self.schema
}
}
impl<T> ParquetRecordBatchStream<T>
where
T: AsyncFileReader + Unpin + Send + 'static,
{
/// Fetches the next row group from the stream.
///
/// Users can continue to call this function to get row groups and decode them concurrently.
///
/// ## Notes
///
/// ParquetRecordBatchStream should be used either as a `Stream` or with `next_row_group`; they should not be used simultaneously.
///
/// ## Returns
///
/// - `Ok(None)` if the stream has ended.
/// - `Err(error)` if the stream has errored. All subsequent calls will return `Ok(None)`.
/// - `Ok(Some(reader))` which holds all the data for the row group.
pub async fn next_row_group(&mut self) -> Result<Option<ParquetRecordBatchReader>> {
loop {
match &mut self.state {
StreamState::Decoding(_) | StreamState::Reading(_) => {
return Err(ParquetError::General(
"Cannot combine the use of next_row_group with the Stream API".to_string(),
))
}
StreamState::Init => {
let row_group_idx = match self.row_groups.pop_front() {
Some(idx) => idx,
None => return Ok(None),
};
let row_count = self.metadata.row_group(row_group_idx).num_rows() as usize;
let selection = self.selection.as_mut().map(|s| s.split_off(row_count));
let reader_factory = self.reader.take().expect("lost reader");
let (reader_factory, maybe_reader) = reader_factory
.read_row_group(
row_group_idx,
selection,
self.projection.clone(),
self.batch_size,
)
.await
.map_err(|err| {
self.state = StreamState::Error;
err
})?;
self.reader = Some(reader_factory);
if let Some(reader) = maybe_reader {
return Ok(Some(reader));
} else {
// All rows skipped, read next row group
continue;
}
}
StreamState::Error => return Ok(None), // Ends the stream as error happens.
}
}
}
}
impl<T> Stream for ParquetRecordBatchStream<T>
where
T: AsyncFileReader + Unpin + Send + 'static,
{
type Item = Result<RecordBatch>;
fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
loop {
match &mut self.state {
StreamState::Decoding(batch_reader) => match batch_reader.next() {
Some(Ok(batch)) => {
return Poll::Ready(Some(Ok(batch)));
}
Some(Err(e)) => {
self.state = StreamState::Error;
return Poll::Ready(Some(Err(ParquetError::ArrowError(e.to_string()))));
}
None => self.state = StreamState::Init,
},
StreamState::Init => {
let row_group_idx = match self.row_groups.pop_front() {
Some(idx) => idx,
None => return Poll::Ready(None),
};
let reader = self.reader.take().expect("lost reader");
let row_count = self.metadata.row_group(row_group_idx).num_rows() as usize;
let selection = self.selection.as_mut().map(|s| s.split_off(row_count));
let fut = reader
.read_row_group(
row_group_idx,
selection,
self.projection.clone(),
self.batch_size,
)
.boxed();
self.state = StreamState::Reading(fut)
}
StreamState::Reading(f) => match ready!(f.poll_unpin(cx)) {
Ok((reader_factory, maybe_reader)) => {
self.reader = Some(reader_factory);
match maybe_reader {
// Read records from [`ParquetRecordBatchReader`]
Some(reader) => self.state = StreamState::Decoding(reader),
// All rows skipped, read next row group
None => self.state = StreamState::Init,
}
}
Err(e) => {
self.state = StreamState::Error;
return Poll::Ready(Some(Err(e)));
}
},
StreamState::Error => return Poll::Ready(None), // Ends the stream as error happens.
}
}
}
}
/// An in-memory collection of column chunks
struct InMemoryRowGroup<'a> {
metadata: &'a RowGroupMetaData,
offset_index: Option<&'a [OffsetIndexMetaData]>,
column_chunks: Vec<Option<Arc<ColumnChunkData>>>,
row_count: usize,
}
impl InMemoryRowGroup<'_> {
/// Fetches the necessary column data into memory
async fn fetch<T: AsyncFileReader + Send>(
&mut self,
input: &mut T,
projection: &ProjectionMask,
selection: Option<&RowSelection>,
) -> Result<()> {
if let Some((selection, offset_index)) = selection.zip(self.offset_index) {
// If we have a `RowSelection` and an `OffsetIndex` then only fetch pages required for the
// `RowSelection`
let mut page_start_offsets: Vec<Vec<usize>> = vec![];
let fetch_ranges = self
.column_chunks
.iter()
.zip(self.metadata.columns())
.enumerate()
.filter(|&(idx, (chunk, _chunk_meta))| {
chunk.is_none() && projection.leaf_included(idx)
})
.flat_map(|(idx, (_chunk, chunk_meta))| {
// If the first page does not start at the beginning of the column,
// then we need to also fetch a dictionary page.
let mut ranges = vec![];
let (start, _len) = chunk_meta.byte_range();
match offset_index[idx].page_locations.first() {
Some(first) if first.offset as u64 != start => {
ranges.push(start as usize..first.offset as usize);
}
_ => (),
}
ranges.extend(selection.scan_ranges(&offset_index[idx].page_locations));
page_start_offsets.push(ranges.iter().map(|range| range.start).collect());
ranges
})
.collect();
let mut chunk_data = input.get_byte_ranges(fetch_ranges).await?.into_iter();
let mut page_start_offsets = page_start_offsets.into_iter();
for (idx, chunk) in self.column_chunks.iter_mut().enumerate() {
if chunk.is_some() || !projection.leaf_included(idx) {
continue;
}
if let Some(offsets) = page_start_offsets.next() {
let mut chunks = Vec::with_capacity(offsets.len());
for _ in 0..offsets.len() {
chunks.push(chunk_data.next().unwrap());
}
*chunk = Some(Arc::new(ColumnChunkData::Sparse {
length: self.metadata.column(idx).byte_range().1 as usize,
data: offsets.into_iter().zip(chunks.into_iter()).collect(),
}))
}
}
} else {
let fetch_ranges = self
.column_chunks
.iter()
.enumerate()
.filter(|&(idx, chunk)| chunk.is_none() && projection.leaf_included(idx))
.map(|(idx, _chunk)| {
let column = self.metadata.column(idx);
let (start, length) = column.byte_range();
start as usize..(start + length) as usize
})
.collect();
let mut chunk_data = input.get_byte_ranges(fetch_ranges).await?.into_iter();
for (idx, chunk) in self.column_chunks.iter_mut().enumerate() {
if chunk.is_some() || !projection.leaf_included(idx) {
continue;
}
if let Some(data) = chunk_data.next() {
*chunk = Some(Arc::new(ColumnChunkData::Dense {
offset: self.metadata.column(idx).byte_range().0 as usize,
data,
}));
}
}
}
Ok(())
}
}
impl RowGroups for InMemoryRowGroup<'_> {
fn num_rows(&self) -> usize {
self.row_count
}
fn column_chunks(&self, i: usize) -> Result<Box<dyn PageIterator>> {
match &self.column_chunks[i] {
None => Err(ParquetError::General(format!(
"Invalid column index {i}, column was not fetched"
))),
Some(data) => {
let page_locations = self
.offset_index
// filter out empty offset indexes (old versions specified Some(vec![]) when no present)
.filter(|index| !index.is_empty())
.map(|index| index[i].page_locations.clone());
let page_reader: Box<dyn PageReader> = Box::new(SerializedPageReader::new(
data.clone(),
self.metadata.column(i),
self.row_count,
page_locations,
)?);
Ok(Box::new(ColumnChunkIterator {
reader: Some(Ok(page_reader)),
}))
}
}
}
}
/// An in-memory column chunk
#[derive(Clone)]
enum ColumnChunkData {
/// Column chunk data representing only a subset of data pages
Sparse {
/// Length of the full column chunk
length: usize,
/// Set of data pages included in this sparse chunk. Each element is a tuple
/// of (page offset, page data)
data: Vec<(usize, Bytes)>,
},
/// Full column chunk and its offset
Dense { offset: usize, data: Bytes },
}
impl ColumnChunkData {
fn get(&self, start: u64) -> Result<Bytes> {
match &self {
ColumnChunkData::Sparse { data, .. } => data