-
Notifications
You must be signed in to change notification settings - Fork 80
/
import.py
58 lines (50 loc) · 1.95 KB
/
import.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import datafusion
import pyarrow as pa
import pandas as pd
import polars as pl
# Create a context
ctx = datafusion.SessionContext()
# Create a datafusion DataFrame from a Python dictionary
# The dictionary keys represent column names and the dictionary values
# represent column values
df = ctx.from_pydict({"a": [1, 2, 3], "b": [4, 5, 6]})
assert type(df) is datafusion.DataFrame
# Dataframe:
# +---+---+
# | a | b |
# +---+---+
# | 1 | 4 |
# | 2 | 5 |
# | 3 | 6 |
# +---+---+
# Create a datafusion DataFrame from a Python list of rows
df = ctx.from_pylist([{"a": 1, "b": 4}, {"a": 2, "b": 5}, {"a": 3, "b": 6}])
assert type(df) is datafusion.DataFrame
# Convert pandas DataFrame to datafusion DataFrame
pandas_df = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
df = ctx.from_pandas(pandas_df)
assert type(df) is datafusion.DataFrame
# Convert polars DataFrame to datafusion DataFrame
polars_df = pl.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
df = ctx.from_polars(polars_df)
assert type(df) is datafusion.DataFrame
# Convert Arrow Table to datafusion DataFrame
arrow_table = pa.Table.from_pydict({"a": [1, 2, 3], "b": [4, 5, 6]})
df = ctx.from_arrow(arrow_table)
assert type(df) is datafusion.DataFrame